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ABSTRACT

In the realm of the Internet of Things (IoT), users, devices, and environments communicate
and interact with each other, creating a web of complex interactions. This interconnected web
of interactions makes the IoT a powerful tool for enhancing human experiences. However, it
simultaneously presents substantial challenges in ensuring security and privacy amid interactions
among users, devices, and environments. This dissertation investigates potential IoT interaction
security and privacy issues by customizing data-centric Al algorithms. First, this dissertation
studies complex interactions in smart homes where many interconnected smart devices are
deployed. A graph learning-based threat detection system is designed to discover potential
interactive threats across multiple smart home platforms. Second, considering smart home data
privacy and data heterogeneity issues, a dynamic clustering-based federated graph learning
framework is proposed to collaboratively train a threat detection model. Meanwhile, a Monte
Carlo beam search-based method is designed to identify the interactive threat causes. Third, we
explore the privacy issues behind the interactions between users and smartphones. Specifically, a
potential bio-information leakage attack channel has been identified that utilizes near-ultrasound
signals from a smartphone to recognize facial expressions based on a contrastive attention learning
model. Fourth, we reveal two critical overprivileged issues in mobile activity sensing data
generated from interactions between users and mobile devices: metadata-level and feature-level
overprivileged issues. Correspondingly, we design the multi-grained data generation model to
reconstruct mobile activity sensing data, so as to mitigate the privacy concerns behind the mobile
sensing overprivileged issues. We have implemented and extensively evaluated the proposed
threat detection model, federated model training method, acoustic-based expression recognition
model, and privacy-preserving data reconstruction model in practical settings. This dissertation
concludes with a discussion of future work. We highlight the potential challenges and opportunities
associated with the applied Al techniques for addressing security and privacy issues in the [oT.
This dissertation points out the pathway for future research in enhancing security and privacy to

safeguard the interactions among users, devices, Al, and environments.
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CHAPTER 1: INTRODUCTION

In the context of 10T, the interaction encapsulates the diverse and multifaceted communication
pathways between users, devices, and their environments. There are active interactions between
users and devices. For example, people are using smartphones every day. Users can talk to the
voice assistant to instruct it to play music or turn on the light. Meanwhile, there are passive
interactions between users and devices. For instance, the smart light automatically turns on when
low illumination and motion are detected using light sensing and infrared sensing. Such interactions
enable users to send commands and receive responses from devices, while the devices themselves
exchange data and adapt their functions in real time, considering the environmental cues.

In addition, the environment plays a pivotal role, providing a context that is continually
interpreted by IoT devices to make informed decisions and actions. There are interactions between
the environment and devices. For instance, when smoke is detected in the air, the fire alarm
will start beeping. The smart fans can accelerate the airflow, and the air conditioner can adjust
the room temperature. These interactions form a complex network, endowing the IoT with its
unique capabilities to automate processes, monitor various parameters, and augment the human
experience with enhanced connectivity and intelligence.

However, the complexity and interconnections present significant challenges in safeguarding
the security and privacy of the systems involved. First, every interaction point can potentially
become a vulnerability, posing risks not only to the data integrity and privacy but also to the physical
safety of individuals (e.g., a house is burgled, a heavy appliance burnt out). For example, it is
reported that smart home devices suffer from about 10,000 hacking attempts every week [244].
If the smart lock is hacked, the attacker can take control of anyone getting in the house. If the
smart light is hacked, the attacker can keep all the lights on to overload the power system. Second,
a single compromised element can have far-reaching implications. For instance, the ultrasound

attacks [177,234,245] can hijack voice assistants such as Amazon Alexa, and Apple Siri, which
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Figure 1.1: Research overview.

can be tricked to unlock doors, turn on lights, or read texts. Third, the dynamic nature of IoT
interactions, where devices communicate and update their states, adds another layer of complexity
in ensuring robust security protocols are functioning effectively.

Considering the vulnerable, complex, and dynamic interactions in the IoT, this dissertation
aims to uncover the vulnerability of IoT interactions and propose innovative methods to enhance
security and privacy in this ever-evolving landscape. Through this research, we contribute to
the foundational understanding of IoT interactions and offer practical solutions to fortify mobile
and IoT systems against the myriad threats they face. Specifically, as shown in Figure 1.1, we
proposed four main systems related to the security and privacy issues in the IoT. First, we design
the graph representation learning model to learn the patterns of interactive threats, which refer to
the undesired and insecure issues caused by interactions among smart devices. Second, we propose
the federated learning paradigm to train the threat detection model, so as to protect the privacy
of training data from smart homes. Meanwhile, we design the Monte Carlo beam search-based
method to identify the root causes of interactive threats. Third, we design an acoustic-based facial
expression recognition system using a smartphone earpiece speaker, demonstrating the potential
privacy issues with acoustic sensing. Fourth, we design a generative diffusion model-based method

to achieve user-controlled information disclosure in mobile activity sensing.



Table 1.1: Comparing to existing [oT interactive threat detection systems.

System Source Code Dynamic Test Long-term Correlation Cross-platform Interaction Method

IoTGuard [28] Yes Yes No No Code instrumentation
HAWatcher [70] Yes No No No Code analysis & Log analysis
IoTSafe [55] Yes Yes No No Static analysis & Dynamic testing
iRuler [222] No No Yes No SMT solver & Model checker
IoTMon [54] Yes No Yes No Code analysis & Text analysis
Ours No No Yes Yes NLP & GNN models

1.1: Related Work

This section provides an overview of the current literature pertinent to the research conducted in
this dissertation, organized into four distinct categories: 1oT device interactive threat detection,
federated graph learning for threat detection model training, facial expression recognition, and
privacy protection in mobile activity sensing. For each category, we review the latest advancements

in research and then discuss how this dissertation contributes to the field.

1.1.1: 10T Device Interactive Threat Detection

Numerous investigations have explored device interactions within smart home environments.
Many studies depend on app source code analysis [3, 28,55,203]. For instance, loTGuard [28]
employs code instrumentation to gather runtime data to verify against established security policies.
Yet, this approach hits a roadblock with closed-source platforms such as IFTTT and Alexa,
rendering these techniques ineffective. Alternative approaches [28,55] implement dynamic testing
to identify interactive threats. loTSafe [55], for example, merges static and dynamic analyses
to foresee potential risks. Nonetheless, deploying such systems in real-world settings is costly
and requires meticulous test case management to prevent unforeseen safety hazards. Dynamic
testing also grapples with code coverage limitations and often overlooks variables such as time
and seasonal influences. While HAWatcher [70] deduces normal interaction patterns from app and
event logs, it struggles with long-duration correlations and deviations in user behavior.
Additionally, many frameworks [28, 70,222] necessitate predefined security policies or threat
patterns. For example, iRuler [222] only examines interactions on a singular platform and requires

expert insights to define a complex threat landscape for its rule-based analysis. The challenge



amplifies when trying to predetermine varied interactive threats across diverse, closed-source
platforms, limiting rule-based methodologies to detecting only known threats and resulting in a
higher rate of false negatives. iRuler also has to account for all possible device state combinations,
with rule definitions, device statuses, and search depth settings. An increased search depth could

prolong the analysis duration and impact the precision and efficiency of the analysis.
Contribution of this Dissertation

In this dissertation, we study the interactive threats among devices from various closed-source
platforms. By crawling data from different sources such as app descriptions and event logs, we
leverage natural language processing (NLP) techniques to integrate multi-domain information
without depending on code scrutiny. In addition, we propose a new method to build interaction
correlations among devices into interaction graphs and design the unified graph representation
learning model, ITGNN, for multi-scale interactive threat pattern learning. To cope with the
threat pattern coverage issue, we propose the drifting threat pattern detection algorithm, thereby
sidestepping challenges from dynamic testing. Our evaluation shows that the proposed model can
achieve high accuracy in detecting interactive threats across heterogeneous platforms. We identify

four new types of interactive threats in the user-defined Home Assistant platform.

1.1.2: Federated Graph Learning

Federated Learning (FL) aims to train a shared learning-based model while avoiding sharing data
from local clients. Recent research [31,116,117,120,128,220,251] has delved into system and data
heterogeneity challenges within FL. For instance, FedProx [128] introduces weighted aggregation
across various clients, though determining appropriate weights for diverse applications remains a
complex issue. Alternative strategies involve sharing data between local devices or through server-
side proxies [251] to address data heterogeneity, yet this demands an understanding of local data
distribution. Strategies such as bounding gradients [240] or incorporating additional noise [105]
have been proposed to ensure convergence, albeit at the cost of increased training duration and

reduced model precision. GNN models have shown superior results in tasks such as graph or



node classification [94, 99, 123, 249], effectively extracting node dependencies within graphs to
create graph embeddings. Recent efforts [22, 125,148, 165,211] have applied FL to GNN models,
such as GraphFL [211] which utilizes a meta-learning-based FL framework for semi-supervised
node classification. Yet, the presence of non-i.i.d. structural information within graph data poses

additional challenges, potentially impairing learning performance [229].
Contribution of this Dissertation

This dissertation proposes a layer-wise dynamic clustering-based FL algorithm, drawing upon
certain critical observations. A principal observation is that despite the heterogeneity in data,
similar data distribution patterns emerge in smart homes due to the presence of common automation
rules among various users. We design a layer-wise clustering-based federated contrastive GNN
model for non-i.i.d. graph datasets to learn contrastive graph representations. In each cluster, the
graph datasets share similar feature information, which exhibits the i.i.d. property. In this way, we

can reduce the data heterogeneity during the federated learning process in each cluster of clients.

1.1.3: Facial Expression Recognition

Many researchers have proposed to use body sensors that generate physiological signals [32, 175]
to recognize emotional states. Yet, such methods require extensive signal analysis over prolonged
periods, such as 30 seconds [68], which may hinder efficiency. ExpressEar [208] leverages
commercially available ear-worn devices with added inertial sensors to detect facial muscle
activities linked to emotions. Similarly, FaceListener [194] transforms headphones into acoustic
sensors to measure facial skin changes. However, users need to wear additional devices for
emotion detection, which is a notable drawback.

In addition, wireless and mobile sensing technologies have been employed for recognizing
behaviors, including daily activities [86, 118, 119, 217, 253], and facial expressions [36]. For
example, WiFace [36] discerns facial expressions by analyzing WiFi signal patterns, while Hof et
al. [91] propose to use mm-Wave radar for facial recognition. These methods, however, necessitate

specialized hardware and setup, which may not always be practical.



Acoustic sensing, leveraging ubiquitous speakers and microphones, involves emitting
acoustic signals and interpreting the echoes from objects to monitor breathing [233], authenticate
users [254], and recognize activities [76, 121, 230]. EchoPrint [254], for instance, uses both
acoustic and visual signals for user verification, and TeethPass [230] authenticates users via the
sound of teeth clenching captured through earbuds. Similarly, LASense [121] enhances activity
sensing precision by refining signal processing techniques. Another application, SonicFace [75],
evaluates emotional expressions by analyzing echo patterns, but it cannot obtain fine-grained

facial features due to the acoustic signals’ frequency resolution constraints.
Contribution of this Dissertation

In this dissertation, we leverage commercial smartphones to emit near-ultrasonic signals (19-23
kHz) directed at the user’s face. The smartphone’s microphone captures the echo signals reflected
off the face, encapsulating details of the facial expressions. Through an analysis of these detailed
echo patterns, our developed system, Facer, is capable of identifying six distinct facial emotional
expressions: anger, disgust, happiness, fear, sadness, and surprise. We have designed a novel model
for acoustic facial expression recognition, which employs contrastive external attention to discern
and fortify facial expression features, simultaneously filtering out irrelevant background noise.
Furthermore, we introduce a domain adaptation contrastive learning algorithm to reconcile the
distribution discrepancies between training and testing datasets, significantly reducing the impact
of variability in facial expressions among different users. Our smartphone-based system, Facer,
has been rigorously tested in diverse real-world settings, demonstrating its superiority over existing
methods by achieving more than a 10% improvement in recognition accuracy, while also offering

enhanced mobility and user convenience.

1.1.4: Mobile Activity-Sensing Privacy Protection

Metadata Information Protection

Two principal approaches exist for safeguarding metadata information. The first approach

involves adversarial training-based techniques [21, 115, 133, 140, 173], where a discriminator



model seeks to deduce sensitive attributes from the features, while a generator model aims to
reduce the discriminator’s success rate. For instance, DySan [21] obfuscates personal attributes
through adversarial training on datasets containing such attributes. The second approach
encompasses methods using variational autoencoders and information theory [160, 252], striving
to minimize the mutual information between private attributes and their representations, as seen in
InfoCensor [252], which addresses both privacy and fairness issues in deep learning.

However, the current body of work exhibits several limitations. Initially, many methods
necessitate the disclosure of labeled private data by users for model training, as the optimization
loss functions in these models depend on labeled private attributes. Secondly, conventional noise
addition techniques compromise not only the metadata but also the utility of activity recognition.
Lastly, existing research [21, 133, 140] often overlooks overprivileged issues at the feature level,

focusing merely on particular sensitive attributes such as age, gender, or user identity.
Semantic Information Protection

To safeguard semantic details, a simple idea is to generalize the activity labels provided by
activity recognition APIs [47,49]. However, the label generalization alone doesn’t ensure privacy
protection [79], not to mention that many applications require access to the raw sensor data instead
of labels. For example, gaming apps might use motion sensor data to interpret user gestures, and
navigation apps might depend on geomagnetic and accelerometer data for directional guidance.

Many mechanisms [20, 30,79, 143, 171] are designed to determine if activity labels should be
disclosed or withheld. Nonetheless, there are two main limitations. First, filter-based methods [30,
79, 171] depend on real-time activity labeling for their decision-making, which is difficult due
to human behavior variability and sensor diversity, with limitations noted in platforms such as
Android, which only recognizes a limited number of activities [49]. Second, for applications that
need raw sensor data, existing privacy mechanisms are too coarse-grained, often removing entire
data segments associated with sensitive motions, thereby compromising data utility. For instance,
IPShield [30] completely conceals segments of raw data linked to private activities.

Addressing the handling of raw data, multiple obfuscation techniques [60, 89, 198, 218, 248]



have been suggested. Anonymization methods [124,139,198] primarily focus on static databases to
safeguard tabular data against specific types of attacks. These methods, however, are generally too
imprecise for the nuanced issues in time-series data. While differential privacy (DP) [60] introduces
noise to data for statistical analyses, it’s not ideally suited for interpreting streaming sensor data.
Dataset synthesis models based on DP [69,218,246-248], such as PrivSyn [248], are designed for
tabular data generation under DP but do not directly address the nuanced overprivileged challenges

present in mobile sensing data.
Contribution of this Dissertation

In this dissertation, we propose a multi-grained data generation system, Hippo, for user-controlled
information disclosure. Specifically, we introduce a novel system that leverages a noise diffusion
process to obscure private attributes, maintaining activity recognition capabilities without
necessitating user-provided private data and labels. In addition, we have developed a hierarchical
latent feature guidance diffusion model for generating multi-grained data, enabling precise control
of information release and addressing feature-level overprivileged concerns. The “granularity” is
determined based on the features learned at the i-th layer of a stacked convolutional autoencoder.
Hippo offers two main advantages: (i) it operates as a self-supervised framework, processing raw
sensing data without depending on labeled private attributes, and (i1) it focuses on generalizing
individual activities rather than a sequence of activities, eliminating the need for predefined
patterns of private activities. For example, it can transform detailed “playing games” data
into a more general “sitting” category. This process filters out the specific “playing games”
features, allowing Hippo to provide fine-grained control over the data available to overprivileged

applications by eliminating fine-grained and sensitive activity features.



1.2: Research Scope

1.2.1: IoT Device Interactive Threat Detection

As a typical scenario in the IoT, the surge in smart home adoption has significantly elevated the
importance and necessity of smart home security. As homes become increasingly interconnected
with many smart devices— from thermostats, lighting systems, and security cameras to voice
assistants and automated appliances—the potential attack surface for cyber threats expands
correspondingly. Smart home security is essential not only for protecting the privacy and personal
data of individuals but also for ensuring the physical safety and integrity of the home environment.

From the application layer, we study how to manage the configuration data of smart home
automation to mitigate interactive threats spanning various closed-source platforms in real-time,
especially when it’s challenging to enumerate interactive threat patterns in a cross-platform setting.
To tackle this problem, our goal is to devise a data-driven methodology that efficiently identifies
patterns of interactive threats. While current data mining approaches to threat detection, such as [59,
109,236,257], typically rely on event logs in sequence, they often fall short in capturing the intricate
logic of interactions within smart apps. Thus, we propose to use a graph data structure to represent
the rich event semantics and the complex interplay of logic within automation control apps. Then,
we design the graph neural network model and transfer learning techniques to learn the interactive

threat patterns behind the complex device interaction graphs.

1.2.2: Federated Training for Interactive Threat Detection Model

In this dissertation, we study how can we develop an interactive threat detection model that
accommodates the significant heterogeneity in datasets without necessitating the sharing of raw
data. Given the limited number of devices in a single household, training a specialized and robust
threat detection model is not practical. Federated learning (FL) offers a solution by enabling
collaborative model training without disclosing raw data. However, dataset heterogeneity can

impair the FL. model’s performance, often resulting in slow convergence and diminished accuracy,



particularly when the data distribution is dynamic or unbalanced across different clients [9,45,199].
To address this, we propose a layer-wise clustering-based federated graph contrastive learning
framework that enhances the training of a shared vulnerability detection model, distinguishing
between normal and vulnerable graphs across non-i.i.d. datasets, thereby enhancing generalization
capabilities without compromising user data privacy.

In addition, we study how to filter out drifting threat patterns to mitigate the data heterogeneity.
The IoT environment is inherently complex, characterized by various device types and potential
threats. Despite utilizing FL to train on diverse interaction graph data from multiple households,
there remains the possibility of encountering drifting samples that represent either evolved or
entirely new vulnerabilities. Thus, we design the statistic-based drifting sample detection method
with federated contrastive graph representations. In this way, we can isolate these drifting samples.
Furthermore, to pinpoint potential triggers of vulnerabilities, we devise an effective causal analysis
strategy by examining different subgraphs within an interaction graph. Specifically, we apply the
Monte Carlo beam search (MCBS) [25], a strategic heuristic algorithm for game tree exploration.
Then, we propose to employ optimal SHAP values [136] to assess the risk associated with different
subgraphs in the interaction graph. The SHAP value can leverage the potential correlational
features among IoT devices. This method allows us to identify and follow the most probable

information flow chain that could contribute to the observed interactive threats.

1.2.3: Mobile Sensing and Privacy

Mobile activity sensing leverages the various sensors embedded in smartphones and wearables,
such as accelerometers, gyroscopes, magnetometers, microphones, and cameras, to collect data
about the movements and behaviors of users. In this dissertation, we propose Facer, a system
for recognizing facial expressions utilizing near-ultrasound acoustic sensing technology on
smartphones. The smartphones can emit near-ultrasound signals (19-23 kHz) directed at the
user’s face from the earpiece speaker. The microphone captures the echoes reflected off the

face, containing information about the user’s facial expressions. By analyzing the detailed echo
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patterns, Facer can identify six distinct facial emotional expressions. Our experiments show that
when a user holds the smartphone at a consistent distance (e.g., 20-50 cm), Facer can accurately
recognize six universal facial expressions with an accuracy exceeding 85%.

Meanwhile, mobile sensing data often encompasses more details than what is necessary for
the intended functionalities of user applications. As a result, mobile applications tend to have
excessive access to sensing information, leading to overprivileged issues [201,237]. To mitigate
the overprivileged issues, we have developed Hippo, a system that leverages a generative Al model
to reconstruct mobile activity sensing data at various granularity. The primary goal of Hippo is
to obscure sensitive attributes and generalize overly detailed activity data. To obscure sensitive
information, Hippo introduces a controlled amount of noise into the sensing data using a diffusion
model, a type of generative model. When it comes to generalizing activity features, Hippo is
designed to generate new data at different levels of granularity, effectively stripping away sensitive
activity features. The proposed method allows users to eliminate unintended sensitive details in

activity data, focusing only on the essential semantics required for different applications.

1.2.4: Data-centric Al Algorithms

Computer security research encompasses a broad range of methods to address different types of
threats and vulnerabilities in various systems, from traditional computer networks to modern Al-
driven systems. For example, rules-based methods use predefined heuristics and patterns to detect
violations and security threats, but they cannot discover potential new threats. Formal analysis
through model checking and symbolic execution requires significant running time and specialized
knowledge to implement. In addition, applying formal methods to large systems can be challenging
because the complexity of the analysis tends to grow exponentially with the size of the system.
Furthermore, formal methods can hardly capture all aspects of a system’s behavior, especially
human factors or external environmental variables. This can be a disadvantage in dynamic or
rapidly evolving environments where flexibility and the ability to adapt quickly are crucial.

Al and machine learning-based methods are used in security for tasks such as anomaly

11



detection and automated threat detection systems. These methods can adapt to new threats faster
than traditional methods. First, Al models can analyze large volumes of data and identify patterns
that may indicate malicious activity. This capability allows Al systems to detect sophisticated
threats that might elude traditional, rule-based security systems, such as zero-day attacks and
advanced persistent threats (APTs). Second, Al can process and analyze data at a speed and
scale unattainable to human analysts. This is crucial in security contexts where time is often
critical to prevent damage. Al systems can monitor thousands of events across multiple vectors
simultaneously, providing a scalable solution that grows with the network or system it protects.
Third, through predictive analytics, Al can foresee potential security incidents before they occur by
identifying the likelihood of threats based on historical data and emerging trends. This proactive
approach helps organizations to preemptively tighten their defenses and allocate resources more
effectively to high-risk areas. Fourth, Al systems can continuously learn from new data. As they
encounter new types of attacks or variations of existing threats, they can adapt and refine their
detection and response strategies without human intervention. This self-improving capability is
crucial in keeping up with the rapid development of new threats.

Data-centric Al is a methodology that focuses on improving the quality, consistency, and
relevance of the data used in training Al models. Considering the performance of Al models is
dependent on the training dataset, instead of primarily focusing on modifying the algorithms, we
need to pay more attention to the data preparation process, which serves as a key driver of the
Al revolution. There are several key aspects of data-centric Al. First, the data quality is crucial
for model training. Al models learn to make predictions based on the data they are trained on.
If this data contains noise, biases, or corruption, the model will inherently learn these flaws,
leading to inaccurate and unreliable outputs. Second, data quantity is important to enhance the
generalization and robustness of Al models. Enhancing the diversity and volume of training data
through techniques such as synthetic data generation or transformations can help improve the
robustness of Al models. Third, data collection strategies are essential for designing data-centric

Al algorithms. We need to collect more representative or comprehensive data sets to cover a wider
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variety of scenarios that the model might encounter in real-world applications. Meanwhile, we
need to check for and mitigate biases, which can otherwise lead to unfair, unethical, or harmful
decisions. Incorporating continuous feedback into the training process can refine and update the

data sets and model accuracy over time.

1.3: Organization

The following sections of the dissertation are structured as follows. Chapter 2 delves into the
proposed interactive threat detection model, which includes IoT data fusion, interactive threat
pattern learning, and threat knowledge transfer learning. Chapter 3 introduces the designed layer-
wise clustering-based federated learning approach for training the threat detection model, and
details the proposed Monte Carlo beam search-based method for threat root cause analysis. Chapter
4 presents the proposed contrastive attention-based acoustic sensing model for six facial expression
recognition, which reveals a new potential privacy leakage channel using smartphones. Chapter
5 introduces the designed multi-grained mobile activity sensing data generation model to address
both metadata-level and feature-level mobile sensing data overprivileged issues. Finally, Chapter

6 concludes this dissertation and outlines opportunities for future research.
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CHAPTER 2: GRAPH LEARNING FOR
INTERACTIVE THREAT DETECTION!

2.1: Introduction

Smart homes are increasingly equipped with intelligent devices such as smart locks, smart plugs,
and smart ovens, enhancing the living experience through automation. Homeowners can integrate
various systems to leverage cross-platform automation functionalities, considering aspects such as
device compatibility, centralized voice control, and user-friendly operation. A recent study [38]
indicates that 82.4% of smart home setups utilize multiple automation rules for a single device,
and 62.4% of users deploy more than one platform in their residences. The integration of different
platforms is facilitated by universal application programming interfaces (APIs), enabling apps from
distinct platforms to interact seamlessly. For instance, [FTTT [97] can link with other ecosystems
such as SmartThings [189], Amazon Alexa [5], and Home Assistant [10].

Nonetheless, the interconnections between users, devices and the environment can lead to
undesirable or insecure issues, referred to as interactive threats. These threats can arise from various
sources, including user misconfigurations [93,205] or external attacks [1,245], particularly when
multiple systems are configured simultaneously. For example, a conflict might occur in a smart
home if a Home Assistant app sets a rule to “open the window if smoke is detected”” which conflicts
with another rule to “close the window when the outside temperature is high”, potentially hindering
the window’s ability to open in response to smoke. This highlights the critical need to manage the
interaction logic among automation rules to avoid potential hazards and property damage.

Various techniques have been devised to analyze app interactions, but when confronted with

I'This chapter is based on previously published work by Guangjing Wang, Nikolay Ivanov, Bocheng Chen, Qi Wang,
ThanhVu Nguyen, and Qiben Yan titled “Graph Learning for Interactive Threat Detection in Heterogeneous Smart
Home Rule Data” published in the Proceedings of the ACM on Management of Data. DOI: 10.1145/3588956 [215].
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closed-source, heterogeneous platforms, two main challenges arise. The first major challenge is that
many prevalent platforms, such as IFTTT and Alexa, are closed-source. This fact makes methods
dependent on source code analysis or code instrumentation futile [3,55,203]. Consequently, these
proprietary environments hinder the effectiveness of existing heuristic strategies that are reliant on
analyzing or instrumenting source code [2,27,28,39,54,55,70,154,203].

The second challenge is the complexity of interactions across various platforms. Many
approaches that are based on security policies [28, 70, 222] operate under the assumption that
all automation rules are executed within a single platform [38]. These methods are limited to
intra-app and inter-app analyses within a single platform environment, such as the open-source
platform SmartThings [189]. In addition, existing methods require predefined threat patterns and
security policies. Such approaches are often inadequate to encompass the diverse array of threat
types stemming from intricate rule interactions across different platforms.

In this dissertation, we tackle an important but unexplored research question: how can we
manage the configuration data of smart home automation systems to avoid interactive threats
spanning numerous closed-source platforms? In a cross-platform setting, it is challenging to
enumerate all possible interactive threat patterns. To resolve this question, we propose a novel
data-driven method aimed at efficiently identifying interactive threat patterns. While current
data mining strategies for detecting threats typically rely on event logs [59, 109, 236, 257], these
methods do not fully capitalize on the intricate interaction logic inherent in smart apps. This
is primarily due to the difficulty of representing the semantics of events and the sophisticated
interaction logic through the sequence structure of time-series data.

Graph neural network (GNN) models [71,96,108,228] have experienced widespread success in
various tasks such as a graph or node classification problem, link prediction, and graph matching.
GNNs are adept at capturing both the explicit features of nodes and the implicit structural features
of graphs. In the context of smart home automation, the interactions among different platform
rules can be structured into a graph, where each node represents a rule, and the edges depict the

interactions between these rules. Node features can be enriched using semantic-aware embeddings
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derived from natural language processing (NLP) techniques [18]. We model interactive threat
analysis in smart homes as a graph representation learning task using GNNs and introduce
Glint, a framework called Graph learning for interactive threat analysis, aimed at safeguarding
heterogeneous smart home environments.

There are three main challenges in designing Glint for interactive threat detection:

First, there is a notable absence of graph data with ground truth labels for identifying
interaction patterns on closed-source smart home platforms. Nevertheless, smart home platforms
have comprehensive app descriptions, which include device control rule examples. In addition,
the event logs are available in most smart home apps, which reflect timestamps and device states.
By integrating rule descriptions and event log data, we can create a dynamic interaction graph.
Furthermore, insights from previous research on open-source platforms [55, 70, 203] provide
valuable expert knowledge on vulnerable device interactions, enabling us to construct and label
large interaction graph datasets. Thus, we can model interactive threat analysis as a supervised
learning problem. This approach is beneficial for its accuracy, leveraging labeled data for learning,
and efficiency during the testing phase with a trained model.

Second, interaction patterns may evolve, posing the issue of drifting samples due to new or
changing threat types, making it challenging to catalog all possible interactive threats. To address
the problem, we introduce the ITGNN model, which incorporates a contrastive learning loss to
discern graph embeddings, allowing for the identification of drifting samples. This data-driven
strategy, utilizing a GNN model to uncover potential threat patterns from graph datasets, surpasses
the limitations of static analysis and dynamic testing, which depend on predefined patterns, thus
enhancing security policy coverage with Glint.

Third, data availability can significantly vary across platforms, potentially impacting graph
representation learning outcomes. Despite this variability in data formats, the underlying semantics
of rules across different platforms are similar since they all aim to control smart devices. To
overcome data scarcity on certain platforms, we propose a cross-domain graph transfer learning

approach, enabling the transfer of knowledge across heterogeneous platforms and boosting model
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efficacy on data-limited platforms.

We conducted a comprehensive evaluation of Glint using datasets crawled from five platforms,
encompassing over 48,000 interaction graphs. Our results demonstrate that Glint is proficient
in identifying interactive threats both within individual platforms and across multiple platforms.
Notably, within the SmartThings platform, Glint achieved a detection accuracy of 100%. For
detecting threats in diverse interaction graphs, it attained an accuracy of 95.5% and an F1 score
0f 95.6%. Furthermore, through the analysis of drifting samples, Glint successfully identified four
new interactive threat types in custom blueprints on the Home Assistant platform, which we have
named “action block™, “action ablation”, “trigger intake”, and “condition duplicate”.

In summary, we make the following contributions:

* We have created the first large interaction graph datasets with verified ground truth labels by

examining the trigger-action relationships among rules from closed-source platforms.

* The ITGNN model is developed to facilitate the learning of interaction patterns across diverse
platforms. This model utilizes contrastive learning to identify drifting samples and applies
transfer learning to improve the generalization capabilities of GNN models.

* We have extensively evaluated Glint in a real-world environment. The evaluation results

indicate that Glint surpasses existing state-of-the-art methods in detecting interactive threats

across platforms, improving precision by 12.8% and recall rates by 12.6%.

2.2: Problem Definition

We initiate our discussion by presenting a running example of interaction graphs, which sets the
stage for a deeper understanding. Then, we provide a formal definition of interactive threats. The
process of identifying interactive threat patterns is then elaborated upon, highlighting how graph

representation learning plays a crucial role in the threat discovery process.
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Table 2.1: Specific rule contents of nodes, where the index is the node ID in Figure 2.1.

Index Platform Automation Rule Description

1 SmartThings Turn off lights if playing movies.
If the outdoor temperature is between 65 °F and 80 °F,

2 SmartThings . .
open windows after sun rise.
3 SmartThings If outdoor temperature is below 60 °F, then close windows.
4 SmartThings Turn on the air conditioner when temperature is above 85 °F.
5 IFTTT If air conditioner is on, then close windows.
6 IFTTT If the smoke alarm is beeping, then open the window
and unlock the door.
7 IFTTT If motion is detected, turn on lights.
8 IFTTT If motion is detected, open the door.
9

Amazon Alexa Lock the door if all lights are turned off.

LR R 2D

Light Door Window

b o e

Figure 2.1: An interaction graph, where nodes (in circle shape) are rules from three platforms.

2.2.1: Interaction Graph

An interaction graph serves as a conceptual model that illustrates the relationships among various
rules from different platforms. For instance, as depicted in Figure 2.1, an interaction graph
encompasses rules from SmartThings, IFTTT, and Alexa. The specifics of each rule within the
graph are detailed in Table 2.1. These automation rules encapsulate a “trigger-action” logic,
indicating that the activation of one rule prompts the execution of another. For example, the
command “Alexa, play movies” is linked with Rule 1 through a “trigger-action” relationship.
Rules can be interconnected through various devices and physical channels, such as temperature
or humidity. Additionally, an “action-trigger” relationship can exist between rules, where the action
of one rule initiates the execution of another. For instance, the interaction between Rule 1 and Rule

9 is mediated through the action of turning off lights, which subsequently triggers the locking of a
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door when movies are played. Interaction graphs encapsulate interactions between devices, users,
and the environment based on “trigger-action” logic. The “trigger-action” and “action-trigger”
connections exemplify the causal relationships within the configuration data of automation rules.
Suppose there are n rules that are deployed, then the number of distinct interaction graphs is
fixed. For example, if there are ten smart home apps each with a single rule, only one interaction
graph will exist in real time, defined by the “action-trigger” relations among the rules. The absence
of a direct relationship between any two rules means an edge will not connect their corresponding
nodes in the graph. Thus, while the total number of rules impacts the complexity and size of an

interaction graph, it does not directly alter the count of interaction graphs in real-time.

2.2.2: Threat Model

Interactive threats in smart home environments are essentially the abnormal interactions among
various devices, users, and their surroundings. These interactions, harboring threats or anomalies,
can lead to unwanted behaviors or significant security and privacy concerns. We mainly consider
the threat scenarios where smart home automation control rules interact with each other to
jeopardize the home automation system. We define three general scenarios where an adversary
can implement attacks to exploit interactive threats:

» Targeted compromise: An attacker can attack a device, such as a voice assistant to control
smart devices by executing inaudible voice commands [1,234,245]. An attacker can also
trick the user into installing malicious apps to trigger unexpected interactive actions.

* Interaction abuse: An attacker can use existing exploitable interaction chains to subvert the
intent of original home automation [66, 159]. To achieve that, the attackers can try to trigger
an automation rule, which leads to unexpected interactions among devices.

* Misconfiguration: When deploying trigger-action rules, the users may misconfigure their
devices, introducing vulnerabilities in the home automation [93, 205]. For instance, the
elderly and children can accidentally trigger some vulnerable events via voice assistants,

leading to undesirable interactions.
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All the above attack scenarios cause interactive threats. An adversary exploits flaws in the
interactions among various components to achieve attack goals, such as entering a house without
permission, causing property damage by fire, or stealing private information. Note that we assume
the smart home IoT platforms and app descriptions are trustworthy. Glint aims to detect interactive

vulnerabilities caused by the above attacks, fortifying [oT security in smart homes.

2.2.3: Problem Formulation

We formally define the task of managing automation data to avoid interactive threats as a graph
representation learning problem. Given an interaction graph G = {V, £, X'}, the nodes V are rules
from different platforms, the edges £ are correlations among different rules such as “trigger-action”
or “action-trigger”. Each node v € V has a feature vector z, € X, which is a word-embedding
or sentence-embedding that encodes semantic information. For example, the word “sunset” is
encoded as a 300-dimension embedding [0.60014, . .., 0.35422] with an NLP library spaCy [195].
We derive the averaged word embedding of each word as the rule-level embedding, which is a
node feature. While node features in homogeneous graphs come from the same feature space to
better characterize rules from homogeneous platforms, node features in heterogeneous graphs come
from distinct feature spaces. Given an interaction graph dataset {G'}, the goal is to design a model
fu @ 1€t — R9 to learn a d-dimensional representation of the graph G. The model f,, can be
different learning tasks, such as drifting sample detection and binary classification. The learned
graph representation preserves the structural and semantic information [96], which is associated

with the interactive threat patterns.

2.3: System Design

In this section, we delve into the design and application of Glint, outlining its back-end (offline) and
front-end (online) components. We elaborate on the four pivotal elements of Glint: (i) The process
of constructing the interaction graph dataset is detailed, explaining how we gather, structure,

and label the data to create a comprehensive representation of smart home interactions. (ii) The

20



! Threat Warning and User Intervention
B,V . © g

(5 Drifting Sample i

(@) Interaction

. . .
| Graph Constructlon: o Detection ,  GNN-based
LA ) Interactive Threat Detector
Online | Threat Detection

Offline EI (@ Special Grapll Case Updating @Well-tralned Model

(O Cross-Platform Analysis Wums® (2) GNN Model Trainin -

> >
2/ I p— ‘Q Model Adapting ->
41 .
Heterogeneous Smart Interaction Graph
Home Platforms Database Graph Neural

Network

Figure 2.2: Glint builds an interaction graph for a house, and uses a well-trained GNN model to
automatically discover interactive threats and generate threat warnings.

ITGNN model is introduced as our chosen method for graph representation learning, detailing
its architecture and how it processes the interaction graph to learn meaningful representations.
(i11)) We describe the algorithm developed to detect drifting interaction patterns, highlighting its
role in identifying evolving or new threats within the smart home environment. (iv) We discuss
our strategy for augmenting the ITGNN model’s generalization capabilities, which involves
transferring learned knowledge across different, heterogeneous smart home platforms to improve

model robustness and adaptability.

2.3.1: System Overview

Glint operates through two primary phases: offline model training and real-time interactive threat
detection. The workflow of smart home automation data analysis is depicted in Figure 2.2. In
the offline stage: @®: Glint conducts an analysis of potential intra-platform and inter-platform
interactions to construct interaction graphs, which are then aggregated into a comprehensive
interaction graph dataset and stored in a database. @: The GNN model, tailored for this task, is
trained on the interaction graph dataset, utilizing contrastive learning and a classification approach.
@: Transfer learning is applied to the trained model to enhance its generalization capabilities,

culminating in the development of a GNN-based interactive threat detection tool.
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In the online stage: @: Utilizing the trigger-action logic derived from rules and device statuses
from event logs, Glint can dynamically generate interaction graphs in real time. ®: The freshly
constructed graph undergoes a two-step analysis: initially, it’s processed by the contrastive
learning-based drifting sample detector, followed by scrutiny from the interactive threat detector
(classification model). ®: Should an interactive threat be identified, Glint issues an alert and
prompts for user intervention. @ & ®: In cases where drifting samples are detected or when
users identify non-threatening graphs as false alarms, these specific graph cases are noted, and the
model is fine-tuned to better align with user expectations and improve threat detection accuracy.

In the offline stage, a generic GNN model is developed utilizing graph datasets from diverse
platforms. This model, created by a security solution provider, can be accessed via cloud services.
Each user utilizes the same offline component, ensuring consistency in the model’s foundational
training. For practical application, Glint is integrated into the smart home hub, simplifying the
process for users who then primarily interact with the online stage. This feature enables Glint to
play a crucial role in scanning for interactive threats during the initial configuration of a smart
home system. As the system operates and gathers deployment setups and event log data, the GNN
model undergoes fine-tuning to align with individual user preferences. Additionally, a companion
application, Glint, can be installed on smartphones. This app is designed to alert users to potential
interactive threats detected by Glint, facilitating user engagement and intervention when necessary.
This interactive process ensures that the smart home system remains secure and tailored to the user’s
specific requirements and preferences.

Imagine a user sets up a series of rules detailed in Table 2.1. For the sake of simplicity, let’s
assume that Rules 2, 3, 7, and 8 are inactive during a certain period. A real-time interaction graph
is formulated by examining the rule descriptions that have been deployed and the runtime event
logs. When Glint identifies an interactive threat, it alerts the user, as depicted in Figure 2.3a.
In this interaction graph, the potential sources of the threat (e.g., specific nodes and associated
devices) are highlighted in red to help reduce the amount of information the user has to process.

These potential sources can be pinpointed using GNN explanation tools like PGExplainer [137],
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Figure 2.3: The usability demonstration of Glint.

SubgraphX [241], or FexIoT [214], which determine the crucial subgraphs or nodes influencing the
GNN’s prediction. By considering the user’s daily appliance usage habits and analyzing the event
logs shown in Figure 2.3b alongside the potentially vulnerable rules illustrated in Figure 2.3c, the
user can discern if the rule interaction is undesirable. If it is, they have the option to halt or modify
the rule configurations by adjusting the relevant smart home platform apps, ensuring the system’s

alignment with their preferences and enhancing security.

2.3.2: Building Interaction Graph Dataset

We first build interaction graph datasets using rule descriptions in the offline stage. Then, we
construct real-time interaction graphs with deployed rules and event logs in the online stage. We
consider exploring IoT interactions in closed-source and cross-platform environments. The design

of the NLP pipeline facilitates information access in the closed-source platforms.
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Figure 2.4: An example of dependency parsing.

Algorithm 1: Home Automation Rule Feature Extraction
Input: IoT Automation Rule Trigger Set T, Action Set Ag
Output: Rule Correlation Feature Vector V'

1 foreachT € Tgand A € Ag do

2 [nouns, verbs|y = PoS(T)

3 [nouns, verbs| 4 = PoS(A)

4 V1= DTW Distance([nouns, verbs|r, [nouns, verbs| )

5 V2 = binaryRelation([verbs]r, [verbs] )

6 V3 = binaryRelation([nouns|r, [nouns] )

7 Vi=FEr+E4 > B and E 4 are averaged word embeddings of a trigger and an
action, respectively.

8 end

return [V1,V2 V3, V4]

=]

Rule Correlation Discovery

The primary obstacle in constructing interaction graph datasets lies in identifying the correlations
among various rules. The plethora of noisy, inconsistently formatted data complicates the task
of establishing rule correlations across diverse platforms. Drawing inspiration from existing
research [197, 200, 222], we employ natural language processing (NLP) methods to extract
meaningful semantic features from the publicly accessible descriptions of apps. Given the
extensive potential “action-trigger” combinations, we approach correlation identification as a
binary classification task, aiming to minimize the need for extensive manual labeling.

We design the smart home automation rule feature extraction algorithm as shown in
Algorithm 1. The input is a set of trigger phrases and action phrases, and the output is correlation
feature vectors. We implement part-of-speech (POS) tagging and syntactic element extraction
(lines 2-3). POS tagging follows context and word definition to recognize the main task, trigger

object, and action object. For example, in Figure 2.4, the dependency parser recognizes the root
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verb Turn as the main task. The dependency edge connects other syntactic words to the root verb,
which indicates a grammatical relation between the trigger object and the action object. We focus
on direct objects (dobj), nominal subjects (nsubj), compounds and modifiers, nominal and passive
nominal subjects, and clausal complements, based on which we extract the main task, objects, and
their properties in one sentence. Moreover, we discard the named entity since a named entity may
modify two different objects, which will reduce the uniqueness of features. For example, Wyze
Cam and Wyze Thermostat are two different objects, but Wyze will add bias when computing the
semantic similarity.

We compute the numerical context features based on the linguistic elements. We calculate
the verb similarity and object similarity in the trigger-action pairs (line 4 in Algorithm 1). We
apply dynamic time warping [169] to compute similarity because the number of verbs or objects
in trigger and action sentences varies. Then, we compute the binary semantic features (lines 5-6).
We analyze whether the verb or object words in trigger-action pairs have synonym or hypernym
relations and whether the object words in trigger-action pairs have meronym (i.e., a constituent
part of an object) or holonym (i.e., a part of meronym name) relations. These relations can better
reflect the generic semantic relationships between triggers and actions. Finally, we compute the
trigger-action pair embedding (line 7) by summing the averaged word embeddings in corresponding
triggers and actions. These are unique features of “trigger-action” rule pairs, which allow classifiers
to learn the internal characteristics of interactions. We compose the above semantic features into
feature vectors to train a model that detects correlations among “action-trigger” correlation pairs.
In this way, we can build correlation pairs among different rules, which are formulated as a binary
classification problem. If the given action can lead to the invocation of the trigger, it is labeled

“true”. Otherwise, it 1s labeled “false”.
Offline and Online Graph Construction

In the offline stage, there are two phases to building interaction graphs. The input dataset is a
set of crawled rule sentences, which provide rich trigger-action interaction logic. First, based

on the rule correlation discovery model, we predict the remaining unlabeled rule pairs. In this
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way, we obtain “action-trigger” correlations between two rules. In the second phase, based on the
correlation results, we randomly select and concatenate the “trigger-action” and “action-trigger”
rule interactions to form interaction graphs, which makes generated graphs less prone to bias. We
use the DGL [221] library to build and store the graphs, which are accessible with DGL APIs.

In the online stage, we consider the scenarios when one house is equipped with single or multiple
platforms. With our designed offline rule correlation discovery classifier, we can first build a
complete interaction graph from all rules deployed in a user’s smart home, as shown in Table 2.1.
However, it cannot reflect the actual interactions among smart devices in real-time because such
graphs lack the triggers’ chronological ordering information. Fortunately, event logs contain three
basic elements: time, object, and the current status of the object, which can reflect real-time device
status as shown in Figure 2.3b. The event time helps determine the event sequences. Users can
set up the device name and location when they deploy and configure devices. Thus, we obtain
semantic information such as device types, locations, and device states to differentiate among
different devices. Then, we match the device type and current status with the graph constructed
from the deployed rules. In this way, we can remove the unrealistic “trigger-action” pairs such as
the second rule (action) happening before the first rule (trigger).

The temporal dimension is not only integrated into the NLP embeddings but is also used
for pruning graphs. First, we encode the temporal semantics (e.g., “sunset, at midnight”) into
embeddings, such that the ML models could learn the temporal features. Second, in the online
stage, we use the triggers’ chronological ordering information in event logs. For example, we can
set a time interval (e.g., 3 hours) and use the timestamp to remove any unrealistic pairs. In this way,
although two rules (nodes) could potentially interact, there is no edge between them in a real-time
interaction graph because of the disjoined occurrence time. The temporal information allows
the model to better learn “action-trigger” correlations. Besides, with temporal information, we
can remove unrealistic correlations and reduce the interaction graph edges, making it convenient
for users to inspect device interactions. We acknowledge that there could be opportunities for

enhancement from both data and model perspectives when considering the temporal dimension.
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Figure 2.5: The proposed ITGNN model for interaction graph representation learning.

2.3.3: Graph Representation Learning

In this section, we model the interactive threat analysis as a graph learning problem to automatically
learn interaction patterns. Considering the different types of information linked to nodes, a single
type of feature representation cannot represent the whole graph due to the differences in types
and dimensionality. Existing GNN models [71, 96, 108, 228] either target homogeneous graphs
or heterogeneous graphs with different designs. Besides, the interaction patterns could exist at
different scales in a heterogeneous interaction graph, e.g., at the different subgraph levels. In this
chapter, we design ITGNN, a unified model for Interactive Threat analysis based on GNN, which

learns interactive threat patterns from different scales of an interaction graph.
Graph Representation Model Design

We design the interaction graph representation learning process as shown in Figure 2.5, and the
ITGNN model is detailed in Algorithm 2. Other input parameters in Algorithm 2 include node type
set A; the number of node V4; node weight matrix W 4; node feature vector =, € X; metapath set
‘P; the number of layers L; the number of scales D; weight matrix for linear transformation of each
metapath-specific node vectors M4 and b 4; activation function o; aggregation function ®. ITGNN
takes as input a graph G(V, E, X) and corresponding parameters, and outputs a d-dimensional
graph representation z,. ITGNN considers interaction features from both neighborhoods of a vertex

and multiscale structures of a graph.
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Algorithm 2: ITGNN Graph Representation Learning
Input: interaction graph GG and other input parameters

Output: graph representation z,
1 if Vi > 1 then

2 for A € Ado

3 hv = WA : X{j‘

4 for P € P, do

5 forv € V, do

6 ‘ hfj = ﬁZUGNS(ﬁ Z|v\ hv)vvv EP(Uaul)
7 end

end

9 Spi = ﬁ Yvev, sigmoid(Ma - hBi 4 ba)
10 Bp; = Softmaz(qa - sp,)

1 hEA =3 hep, Bp - 1)

12 end

13 Gm =G(V,E,{h?4})
14 end

15 for/l=1...L do
16 ford=1...Ddo

17 h = VIPool(G,,)

18 h, = h,||hd

19 end

20 | Al =g (h{Fi-1) ®(hEi-1): € N,))
21 end

22 return z, = readout(h,;v € V)

First, we project all nodes’ features in heterogeneous graphs to the same feature space
and then aggregate intra-metapath and inter-metapath information, called metapath-based node
transformation. A metapath describes a composite relation between a series of node types, and the
metapath instance is a sequence of nodes in a graph following the metapath schema [71]. Unlike
homogeneous graph classification, we need to consider how to aggregate various types of nodes
into the readout function. Inspired by MAGNN model [71], we first project heterogeneous node
features to the same embedding space (line 3). For a node v of type A, we have the projected node
embedding as h,,. Then, for each target node, we average the node features of metapath instances
into a single vector (lines 5-7). In line 6, N” is metapath-based neighborhoods of node v, p(v, u;)

is a metapath instance, and v is the mapping target.
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Second, we use the attention mechanism to aggregate the inter-metapath information (lines 9-
11), where s,, is the summarized metapath of p; € pa, g4 is the attention vector for node type A and
fBp, 1s the relative importance of each metapath p; for the targeting node v. The interactive threats
are usually caused by a subset of graph metapath instances. Different instances will contribute
to the final graph embedding to different extents. In this way, we transform the node embedding
features while retaining the graph structure to form homogeneous-type graphs (line 13).

Third, we extract comprehensive features from multiple scales of a graph by incorporating the
vertex infomax pooling (VIPool) module [123] into ITGNN, which is called a multi-scale graph
generator and fusion. We input the homogeneous-type graph and apply the VIPool [123] to generate
multi-scale graphs (lines 15-21), from which we extract the features. The multi-scale graphs
are propagated via the TAG [58] convolution layer, which does not need to approximate graph
convolution. By vertex pooling, we select and keep vertices that contain high mutual information
with neighborhoods, which can well express local subgraphs. We concatenate different scales of
features as h,, = hY|| - - - ||h¢7||hd (line 18). hZ is the dy, scale of the graph features, || represents
concatenation. Fully connected layers are connected to fuse multi-scale features.

The ITGNN graph representation learning can be used for different tasks. If the interaction
graph is heterogeneous, it will first map node features from different feature spaces into the same
space. Then, Glint can map the homogeneous graph into graph embedding. Next, we feed the
generated graph embedding to the drifting sample detection module and classification module to

identify the presence of an interactive threat.
Drifting Interaction Pattern Detection

The concept drift is an important problem when modeling heterogeneous data from different IoT
platforms. Given that the interactive threat labeling is based on a set of known interactive threat
patterns, it is conceivable that the learned model could have false negatives. This is because the
testing interaction graph distribution may drift away from that of the training dataset due to the
new smart device automation rules and the presence of various attacks. As a result, there will be a

shift in the decision boundary [73] of the supervised or semi-supervised machine learning models,
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Algorithm 3: Drifting Interaction Pattern Detection

Input: Training interaction graphs gl-(j ) i = {0, 1} is binary classes, j = {1, -+ ,n;}, n; is
the sample number in class 7, testing data 2 m = {1,---, M}, M is the total
number of testing samples, ITGNN-C model f
Output: Drifting degree for each testing sample A®*)
1 fori e {0,1} do

2 for j =1ton; do

3 ‘ 29 = f(g) > The latent representation of "’
4 end

5 for j =1ton; do

o || d =1 - s

7 end

8 MAD,; = medmn(|d§j) — median(dij)ﬂ)

9 end

10 form =1to M do
u | forie{0,1} do

12 dz(-m) = || f(z(™) — n% >0y Zz'(j)‘|2
13 -

14 end

15 return mm(Agk)), i=1,---,N

16 end

which will degrade the model performance. Since the classification models are mostly based on the
i.i.d. assumption, the detection and filtering of drifting samples could help reduce the classification
model’s false positives and negatives.

Therefore, we need to detect the interaction graph samples that drift from existing classes. Here,
we design ITGNN architecture with contrastive learning loss, called ITGNN-C, to learn a distance
function to discover drifting samples. Taking advantage of our labeled graph dataset, contrastive
learning can achieve better performance compared to unsupervised methods [235]. The basic idea
of contrastive learning is to enlarge the distance among samples with different labels and reduce
the distance among samples with the same label. Given a set of samples x; and the corresponding

label y;, the contrastive loss takes a pair of samples (x;, x;) as input and tries to learn a function fy.
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The formula is written as follows:

Lo(xi,%5,0) = Ty = yslll fo(xi) — fo(x;) 134+ T lys # y;] max (0, e—|| fo(x:) — fo(x;)[|2)%, (2.1)

where 7 [y; = y;] means the value is 1 if two graph samples have the same label, otherwise is 0.
Ty # y;] means the value is 1 if two graph samples have different labels, otherwise is 0. € is the
upper bound distance to avoid the exceptional contribution of some dissimilar pairs. The ITGNN-C
model augmented with contrastive loss can map samples from each class to a compact region in
the latent space. After training the ITGNN-C model with labeled data, we can apply it to discover
drifting samples. Given a list of testing samples x;, with respect to the current classes in the training
data, inspired by CADE [235], we evaluate if z, is a drifting sample as shown in Algorithm 3.

We have binary classes “normal” and “threat”, denoted as 0 and 1, respectively. We first
generate the latent representations of training graph samples and compute the mean values of the
representations as the centroid of each class (lines 2-4). We calculate the median of the absolute
deviation M AD; within each class ¢ (lines 5-9). For testing, we generate representations of the
testing samples and compute each test’s drifting degree (lines 10-16). We recognize a potential
drifting sample by comparing A* with a threshold T); 4 p, which is set as 3 empirically [114]. Users

or security analysts can further investigate the drifting samples and conduct retraining.
Vulnerable Interaction Classification

Besides designing contrastive learning, which learns to compare two samples, we design the

supervised classifier loss function L for classifying graphs as normal or vulnerable:

N 1

L--y%

N Wy, Ty — ﬁLpoola
n—1 Zn:l wyn

1 2.2)
Lipoor = - > _(tixlog(oi) + (1 — t;) * log(1 — 0;)),

(2

where w,,, 1s the weight of class labels to impose a high penalty when misclassifying the minority

class. L, is graph pooling loss [123], /3 is a hyperparameter to balance the classification loss
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and pooling loss, x,,, is the element of input embedding to the loss function, o; is the logit
output from each VIPool layer, and ¢; is the binary label. In order to minimize false positives
and false negatives, it is necessary to remove potential drifting samples and subsequently employ
a classification model for detecting interactive threats. This approach can yield higher accuracy

compared to solely relying on contrastive learning, as demonstrated in Table 2.6.
Cross-Domain Graph Transfer Learning

Another challenge is that the semantic knowledge from different platforms varies. Some platforms
contain less semantic knowledge, making it hard to train a robust GNN model. For example, the
interaction rules of apps from the SmartThings platform are limited, with only 135 apps suitable
for analysis. However, a key insight is that the apps’ descriptions are mainly about the functions
of device controls on the smart home platforms, which share common information. For example,
the app on the SmartThings platform “Turn on the air conditioner when the temperature is above
85 °F” and the skill on the Alexa platform “Alexa, turn on the air conditioner” trigger a similar
action. Interaction knowledge can be transferred across different smart home platforms as these
platforms all target the same trigger-action paradigm. Therefore, we design a transfer learning
module to transfer knowledge of interaction information across platforms.

Transfer learning has demonstrated its superiority in enhancing model performance and
reducing the training time with less training data in computer vision [80, 239]. Deep learning
models typically show excellent transferability properties. For example, the first layer features
tend not to be specific to a particular task [239]. Similarly, the first few layers of embedding
features of GNN contain some common information. The node features are both semantic-based
embeddings. In addition, they share some properties that are transferable among smart home
platforms. For example, the knowledge in the IFTTT interaction graph can be transferred to the
SmartThings interaction graph. In turn, the learned features of the SmartThings graph model can
be used to train a better IFTTT graph model. We can transfer embedding features from other
pre-trained models to train a more robust model.

Formally, suppose Dy is source domain and Dr is target domain, where D = {X, P(X)} and
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Xs # Xr. A domain feature space X is defined as a set of graph node features in a certain platform
in the context of Glint. X is the feature space of the source domain, and X is the feature space
of the target domain. The goal of transfer learning is to learn P(Y7|X7) by gaining information
from Dg and source task T's. First, Glint trains a source domain model Mr,. We take source
domain graph node features as input to train M. Then, Glint transfers part of the layers of Mp,
to the target domain task model. Finally, Glint uses a small number of data in D to fine-tune
parameters in the transferred layers and train parameters in new layers. The number of transferred
layers depends on the specific graph model to yield better performance.

Glint uses a two-pronged approach for transfer learning. First, Glint transfers semantic
knowledge from one platform to another, such as from the SmartThings interaction graph to
the IFTTT interaction graph. There are common features in semantic knowledge from different
platforms. Thus, Glint can transfer semantic knowledge in the form of feature embeddings.
Second, Glint transfers interaction graph knowledge from homogeneous to heterogeneous
interaction graph. Different platforms provide certain similar functions even though the usage is
different. For example, an Alexa voice command or a SmartThings app can directly control the
light status. The embeddings of GNN layers can transfer such interaction knowledge. Because the
first several layers’ features learned by GNNs are generic to be applied in many tasks [178], Glint

can freeze the first several layers close to the input layer to preserve the transferred knowledge.

2.4: Evaluation and Discussion

We first evaluate the rule correlation discovery models for graph dataset construction. Then, we
present and label the constructed interaction graphs. Next, for interactive threat analysis, we
evaluate the performance of our designed ITGNN model on homogeneous and heterogeneous
graph datasets. Then, we explore the possible interactive threats in user-designed automation rules.

Finally, we evaluate Glint with a real-world testbed.
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Table 2.2: The number of rules from 5 platforms.

IFTTT SmartThings Alexa Skill Google Assistant Home Assistant
316,928 185 5,506 5,292 574
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Figure 2.6: The performance of five classification models.

2.4.1: Rule Correlation Discovery Evaluation

We use Scrapy [181] to crawl publicly available rule descriptions from 5 smart home platforms, as
shown in Table 2.2. We randomly choose and manually label 5,600 pairs that have action-trigger
correlations and another 8,000 pairs that have no action-trigger correlations. Part of the labeled
data is directly from [222], and we manually label the interaction pairs in newly crawled data. We
use the labeled dataset to train classifiers to recognize whether a sentence pair has an action-trigger
correlation. Then, we use the well-trained classifiers to label whether a sentence pair has action-
trigger correlations for unlabeled rule pairs. Besides, we manually check the classification results
to ensure the correctness of action-trigger correlations. In this way, we can efficiently filter out the
impossible and unrealistic correlations among different rules.

We compare five different classification models: C-Support Vector (SVC), Multi-layer
Perceptron (MLP), Random Forest (RForest), K-nearest Neighbors (KNN), and Gradient Boosting

(GBoost) using Scikit-learn [164] library. The input of a model is the features of action-trigger
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pairs. The output is true or false. True means there is a correlation between “action” to “trigger”.
To deal with the issue of class imbalance, we adjust class weights inversely proportional to class
frequencies in the training data. For instance, we use a weight balance in the MLP loss function
to give a high cost for the misclassification of “true” flows. We apply the grid search method to
find the most effective hyperparameters and use 10-fold cross-validation to test the generalization
of models. We compute the accuracy, recall, precision, and F1 to evaluate the models. The recall
R represents the percentage of positive samples in the test set which are predicted correctly. A
high recall means a low false-negative rate. The precision P shows the percentage of positive

predictions which are truly positive. The high precision means a low false-positive rate. The F1

2.P-R
PYR"

score is the harmonic average of precision and recall: F'1 =

Can ML aid in rule correlation discovery? As shown in Figure 2.6, all five models achieve
excellent correlation classification performance, demonstrating the utility of the designed features.
MLP and Random Forest achieve 98.2% and 98.4% accuracy, respectively. Both SVC and KNN
achieve the highest average precision rates of 100%. The high precision ensures that the true
connection predictions have a high possibility of being truly positive. MLP and Random Forest
models achieve 99.8% and 98.2% recall, respectively. Besides, Random Forest achieves the highest
98% F1 scores. A higher F1 score for a classification model means better performance. With
deep and large hidden layers, MLP can better characterize the hidden features in the dataset. The
Random Forest model is based on bagged trees and uses a random subspace method to prevent
overfitting. We chose MLP, RandomForest, and KNN to collaboratively predict the remaining
20,000 unlabeled pairs based on the highest precision, recall, and F1 value, so we can uncover the
interaction correlations between actions and triggers. If the predictions of the three models differ,

we manually review the prediction results to determine the final correlation labeling result.

2.4.2: Interaction Graph Construction

Due to the large volume of rule combinations, we randomly select and chain different rules that

formulate “trigger-action” correlations to build interaction graphs, of which the number of nodes
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Table 2.3: The number of interaction graph datasets.

Num. of Num. of
Type Platforms Label Total Graph Unsafe Graph
labeled 6,000 1,473
Homo. IFTTT unlabeled 10,000 *
SmartThings labeled 165 36
labeled 12,758 3,828
Hetero. 5 platforms unlabeled 19,440 N

is from 2 to 50. In an interaction graph, we build an edge between two rules that have a “trigger-
action” correlation, and each rule is a node.

For the IFTTT interaction graph dataset construction, we use rules from both the dataset
(315,393 applets) from [222] and our newly crawled 1,535 applets to construct interaction
graphs among different applets. Considering descriptions could be lengthy and contain multiple
sentences, we extract word phrases for text descriptions of IFTTT applets. Similarly, we build
the SmartThings graph dataset by analyzing the apps’ descriptions provided by the developers.
For IFTTT and SmartThings homogeneous interaction graph datasets, we use the en _core web lg
model in spaCy [195] to get the averaged word embeddings of each phrase in every rule. The
dimension of embedding is 300, which is used as node features. As shown in Table 2.3, on the
IFTTT platform, we build and manually check 6,000 interaction graphs to label whether graphs
contain interactive threats or not. Finally, we label 1,473 graphs that contain interactive threats.
Besides, we build 10,000 unlabeled IFTTT interaction graphs for discovering interactive threats
in the smart home platform. On the SmartThings platform, we cross-check our 165 SmartThings
inter-app interaction graphs with existing graphs [54] to ensure accuracy. We label 36 unsafe
graphs out of 165 graphs.

We build a heterogeneous interaction graph dataset on IFTTT, SmartThings, Alexa, Google
Assistant, and Home Assistant platforms by building interaction correlations across platforms.
Specifically, we use IFTTT, SmartThings, and Alexa to build 12,758 heterogeneous interaction
graphs with labels. We have heterogeneous graphs, among which 3,828 graphs are labeled as

vulnerable graphs. For voice assistant rules, we use the Universal Sentence Encoder [29] to obtain
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sentence embeddings of rules, which are more suitable for identifying sentence features. The
dimension of each embedding is 512, which is used as the node feature. Besides, Glint generates
19,440 unlabeled graphs based on the above five platforms. The Google Assistant and blueprints
(rules) from Home Assistant are used in unlabeled graphs. These blueprints were created and
discussed from December 2020 to January 2022.

We use DGL [221] to build the graph datasets. The stored labeled graph dataset file for [IFTTT
is 21.8G, the one for SmartThings is 0.018G, and the heterogeneous graph amounts to 81.6G. The
large dataset file is partly due to the storage of all vertex information with DGL. We apply the DGL
with Pytorch to build and train the GNN model. We run experiments on TensorEX Ubuntu 20.04
Deep Learning Stack with 256GB DDR4 memory, Intel(R) Xeon(R) Gold 5218R 2.10GHz CPUs
and RTX A6000 GPUs.

In the labeling phase, two students who study IoT security volunteer to label interaction graphs.
They first learn the security policies and 10T interactive threats identified in the literature [3, 28,
54,55,70,203,222]. For example, loTSafe [55] specifies safety and security policies such as “All
electrical appliances should be turned off when smoke is detected”. Then, two volunteers follow
the six types of threats [222] as criteria for labeling, where the specific rule settings are in Table 2.4:

(1) Condition bypass. Users may configure different granularity of settings with the same aim
on different platforms. As a result, some conditions in fine-grained settings may be bypassed due
to existing coarse-grained settings. For example, the users may have SmartThings setting 1 and
have a concise setting 2 with Alexa. Such settings will allow condition bypass and cause threats.

(2) Condition block. With different smart home settings, the condition may be blocked because
some commands may cancel the execution condition of another command. For instance, suppose
we have settings 3, 4, and 5; when motion is detected at the door after 7 p.m., no notification is sent
because the home state is disarmed.

(3) Action revert. The same device may be correlated to multiple environmental factors, and
the action could be reverted if some environmental factors change. For example, with settings 6

and 7, the AC is turned on and then turned off. Such interactions may cause action to revert.
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Table 2.4: Rule examples from different platforms.

Platform Setting

Content

SmartThings Setting 1
Alexa Setting 2

IFTTT Setting 3

IFTTT Setting 4
SmartThings Setting 5

Alexa Setting 6

IFTTT Setting 7

SmartThings Setting 8
Alexa Setting 9

IFTTT Setting 10

If outside temperature is above 70°F and
time is 11 a.m., then open windows.

If outside temperature is above 70°F,
then open windows.

If motion is detected at the door and home
is in armed state, then send a notification.
When light is on, disarm home state.
Turn on the light at 7 p.m.

Turn on the air conditioner when
temperature is above 100°F.

When humidity is below 30%, turn on
humidifier and turn off air conditioner.

If smoke is detected, unlock the door.
Lock the door at 10 p.m. every day

Turn off the living-room light

when bedroom light is on.

If the living-room light is turned off and the

home state is away, then turn on the bedroom light.
Turn on a heater

Open windows if indoor temperature is above 80°F.

IFTTT Setting 11

Alexa Setting 12
SmartThings Setting 13

(4) Action conflict. Some actions may conflict with each other in multiple platforms. For
instance, with settings 8 and 9, the action is conflicted if smoke is detected after 10 p.m.

(5) Action loop. The interactions among devices and the environment could trigger each other,
which will introduce a loop in the interaction graph. For example, with settings 10 and 11, when
the home state is away, the actions will loop forever.

(6) Goal conflict. Users could make misconfigurations, such that the actions’ goals conflict
with each other. Suppose the user turns on the heater to keep a room warm while in the bathroom;
however, given the settings 12 and 13, the window opens, resulting in the temperature drop.

We develop the Python scripts to show the graph and rule contents, so the first volunteer can
quickly check the graph edges and derive the conclusion. If a type of defined threat is found, then
the volunteer stops checking and labels the graph as vulnerable. Otherwise, it is labeled as normal.
Especially we cross-check our 165 SmartThings inter-app interaction graphs with the existing inter-

app interaction chain graph of SmartThings [54] to ensure accuracy, from which we label 36 unsafe
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Figure 2.7: The ablation study of ITGNN model.

graphs out of 165 graphs. Note that there could be multiple types of interactive vulnerabilities in a
graph, which can be future work if fine-grained labeling data is required.

The other volunteer double-checks the labeling result to avoid mislabeling. If they have
disagreements on the labels, they will have a further discussion based on the security policies
identified in the literature. For large and complex interaction graphs, such as a graph with 50
nodes, it takes about 6 minutes to examine the possible interactive threats in a graph. For simple
graphs with two nodes, we just need to check whether they violate the security policies, which
takes about 20 seconds. On average, it takes about 1 minute to label each graph at the beginning.
After the two volunteers get familiar with the labeling process, it takes about 40 seconds to label

and double-check each graph. In total, it takes about 8 weeks to label the entire graph dataset.

2.4.3: Ablation Study of ITGNN

In this section, we implement an ablation study focusing on the ITGNN model. We evaluate
the hyper-parameters and components of ITGNN on the heterogeneous dataset as shown in
Figure 2.7. Specifically, we consider (i) The number of scales, which is in the multi-scale graph
generator. We can see that ITGNN achieves the best performance when the number of scales is 3

in Figure 2.7. When the number of scales is small (e.g., 1, original scale), ITGNN underestimates
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Table 2.5: Accuracy for each type of vulnerability.

Condition Condition Action Action Action Goal
bypass block revert conflict loop  conflict

94% 94% 95% 98% 93%  95%

local information in graphs while global information is underestimated when the scale number is
large (e.g., 5). (i1) Pooling ratio, which is graph pooling in VIPool. When the value is 1, the model
keeps all vertices and yields VIPool ineffective. When the value is 0.6, ITGNN can select vertices
that can better express neighborhoods’ information, which helps achieve the best performance.

(ii1) The number of propagation layers in the multi-scale graph generator. We test the influence
of the number of layers in the propagation process. As shown in Figure 2.7, when the number of
layers becomes large (e.g., 6), the model achieves worse performance compared with the number
of layers being 2. The GNN model suffers from over-smoothing and becomes less expressive
when the layer number increases. (iv) We also remove some modules in metapath-based node
transformation. As shown in Figure 2.7, when we remove both intra-meta path and inter-meta
path aggregation modules, the model can only achieve an accuracy of 81.5%. For heterogeneous
graphs, the model ignores the various types of node information in different metapath instances.
Thus, the model cannot effectively learn the graph structure information in heterogeneous graphs.
In contrast, the complete design of ITGNN achieves the best accuracy of 95.1%.

We also report accuracy for each type of vulnerability in Table 2.5. Considering a graph can
contain multiple types of threats, our labeled dataset does not label the specific types of threats.
Thus, for each vulnerability, we manually sample 50 graphs and mix them with 50 benign graphs
to compose a test set. In total, there are 6 test sets, where each test set is corresponding to one
vulnerability. From Table 2.5, we notice the action conflict is best recognized by Glint because it

contains conspicuous antonym semantics.
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Table 2.6: Results of homogeneous graph classification.

Dataset Model Accuracy Precision Recall Fl1
GCN[108]  89.5 100 89.5 94.5
GXN[123] 787 790 764 763
GIN [231] 95 94.7 94 944
IFG [196] 69.8 755 702 67.4
IFTTT SVC[166]  84.1 84.1 84 839
KNN [4] 89.5 909  89.5 89.6
ITGNN-C 954 953 949 95
ITGNN-S 957 959 957 95.8
GCN[108]  90.9 8.6 909 86.6
GXN[123] 882 80.9 882 872
GIN[231]  89.7 859 895 877
. IFG[196] 86.1 893 875 859
SmartThings ¢y r166) 844 873 848 813
KNN [4] 84.8 838 848 832
ITGNN-C 76.5 69 706 69.5
ITGNN-S 882 899 882 872

2.4.4: Homogeneous Graph Evaluation

With the interaction graph datasets, we can train the GNN-based interactive threats detection model.
We run experiments in 5 trials. For each trial, we split the dataset into the training set and testing set
by 8:2. However, there are only 1,473 vulnerable interaction graphs out of 6,000 interaction graphs,
as shown in Table 2.3. The imbalanced classes will degrade the performance of the model. Thus, for
the training set, we first increase the number of vulnerable graphs by random oversampling until the
number of vulnerable graphs is doubled. Second, we assign unequal costs to the misclassification
class. The class weight is inversely proportional to the number of class examples. We use the
weighted F1 score to measure the performance of graph models. We calculate the F1 value for each
label and then compute the average weights by the number of occurrences of each class. Thus, the
F1 value may be beyond the range of precision and recall.

We compare ITGNN with four state-of-the-art graph models and two classification models,
including: (i) graph convolutional network (GCN) [108], which is a convolutional network
operating on graphs; (ii) graph cross-network (GXN) [123] model, which extracts graph features

by learning from multiple scales of a graph; (iii) GIN [231] model, a graph isomorphism network,
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which is used to distinguish certain graph structures; (iv) InfoGraph (IFG) [196], which uses
graph-level representation learning via mutual information maximization. (v) Two classical ML
methods: SVM and KNN. We compute the average of the node embeddings as the graph sample
feature. (vi) ITGNN-C uses the contrastive learning loss in Eq. (2.1) and ITGNN-S uses the
classification loss in Eq. (2.2) to differentiate between vulnerable and normal interaction graphs.
We train the eight models and fine-tune hyperparameters on interaction graph datasets.

Why not use traditional ML models? As shown in Table 2.6, on the IFTTT dataset, the
two traditional classifiers, SVC and KNN, achieve 84.1% and 89.5% accuracy, respectively.
Nevertheless, the graph models can achieve better performance. For example, compared to KNN,
GIN improves accuracy by 5.5% to 95%, and ITGNN-S improves accuracy by 6.2% to 95.7%.
Traditional ML models cannot mine the graph structure information, while GNN is designed to
learn graph information, and it can better mine the interactive threat patterns in graph structures.

Why not use the contrastive loss for classification? Compared with models trained on the
IFTTT dataset, models trained on the SmartThings dataset have worse performance. For instance,
ITGNN-C on the SmartThings dataset only achieves 76.5% accuracy because contrastive learning
needs a large number of data to learn to compare two samples. However, the size of the SmartThings

dataset (165 graphs) is much smaller than that of the IFTTT dataset.

2.4.5: Heterogeneous Graph Evaluation

We evaluate the performance of our proposed ITGNN model on the heterogeneous graph
dataset. We compare ITGNN with three state-of-the-art heterogeneous graph learning methods.
(1) HGSL [249] performs heterogeneous graph structure learning for classification. The
MAGNN [71] is designed for heterogeneous node classification and link prediction. Due to the
different downstream tasks in the original models, we construct two heterogeneous graph models.
(i1)) MAGCN model is an adapted GCN [108] model with a MAGNN graph converter. (iii)
MAGXN model is then adapted GXN [123] model with a MAGNN graph converter.

Why not use existing GNN models? With the evaluations on both homogeneous and
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Figure 2.8: The results of heterogeneous graph classification.

heterogeneous graph datasets, we show the benefits of ITGNN as a unified framework for both
homogeneous and heterogeneous graph representation learning. Besides, ITGNN is designed for
both drifting sample detection and interactive threat classification problems. On the IFTTT dataset,
as shown in Table 2.6, ITGNN achieves the best accuracy, recall, and F1 score. Specifically,
ITGNN-S achieves 95.7% recall and F1 score on the IFTTT dataset. Achieving a better recall
means that ITGNN-S avoids safety and security problems by better reducing false negatives of
interactive threats. Even though GIN performs better on the SmartThings dataset, it achieves
lower precision than ITGNN-S. Other complex GNN architectures entangle the whole interaction
graph information, which is not suitable for our interactive threat detection task.

On the heterogeneous graph dataset, as shown in Figure 2.8, our proposed ITGNN model
can achieve the best average accuracy (95.5%), precision (95.9%), recall (95.6%), and F1 score
(95.6%). The HGSL achieves 92.9% accuracy, the MAGCN achieves 90.2% accuracy while
MAGXN achieves 81.7% accuracy for threat detection. The MAGXN has a more complex
architecture with more parameters, resulting in a slow training process. By contrast, the MAGCN
achieves acceptable performance even though it has a simpler structure, which confirms the “No
free lunch” theorem [227] for machine learning. Overall, the proposed ITGNN outperforms both
the homogeneous and heterogeneous models. ITGNN is highly effective since it can not only
preserve heterogeneous node feature information but also leverages the multi-scale graph structure

features to generate graph representations.
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2.4.6: Transfer Learning Evaluation

From previous results in Table 2.6, we find that the simple GCN architecture can be easily
trained, while other models such as GXN and ITGNN have relatively complex architecture, which
can be overfitting on an insufficient dataset (e.g., SmartThings). This indicates that one model
may best perform for some datasets, but not in all cases. To apply Glint in a more diverse type
of heterogeneous smart home platforms, we need to enhance the adaptability of GNN models.
Transfer learning applies the learned knowledge from one domain to a different but related domain,
improving modeling performance with less training data and time.

As shown in Table 2.7, we not only evaluate the transfer learning between homogeneous
(IFTTT)-homogeneous (SmartThings) datasets but we also evaluate homogeneous (IFTTT)-
heterogeneous datasets. We take [IFTTT and SmartThings platforms as examples of homogeneous
graph learning because these two are prevalent platforms in [oT interaction studies. Besides, the
IFTTT dataset contains a large number of graphs, while SmartThings contains a small number
of graphs, which are representative datasets for transfer learning problems. The size of the
SmartThings dataset is much smaller than the IFTTT dataset. Therefore, given the IFTTT dataset
as the source domain and the SmartThings dataset as the target domain, we only fine-tune the
fully connected layer for classification and freeze the other layers of a model trained on the IFTTT
dataset. Then, we let the SmartThings dataset be the source domain and the IFTTT dataset be the
target domain; now, we can freeze the earlier two layers of the model trained on the SmartThings
dataset. The earlier layers capture the basic features of interaction graphs. Finally, we can train
the rest of the layers using the IFTTT dataset.

Can transfer learning improve model performance? The performance of all models
improves with transfer learning techniques as shown in Table 2.7. For example, the accuracy of
the GIN model on the SmartThings dataset improves by 6%. One interesting phenomenon is that
if a model performs well in the source domain, it will also work well in the target domain. For
instance, the ITGNN model achieves 88.2% accuracy on the target domain (SmartThings). With

knowledge of the source domain (IFTTT), the model can achieve 100% accuracy. Moreover,
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Table 2.7: Detailed performance of transfer learning.

Model  Target Domain Source Domain No trans. Trans. Improved

GIN SmartThings IFTTT 89.7%  92.3% 2.6%
GIN IFTTT SmartThings 95.0%  952% 0.2%
GCN SmartThings  IFTTT 90.9%  94.1% 3.2%
GCN IFTTT SmartThings 89.5%  93.9% 4.4%
ITGNN  SmartThings IFTTT 88.2%  100% 11.8%
ITGNN IFTTT SmartThings 95.7%  96.4% 0.7%
ITGNN IFTTT Heterogeneous 95.7%  96.1% 0.4%
ITGNN Heterogeneous IFTTT 95.1%  95.5% 0.4%

even though the source domain (SmartThings) knowledge is limited, it can still provide helpful
knowledge across platforms. For example, the accuracy on the IFTTT platform grows from 95.7%
to 96.4%. Moreover, we check if the transfer learning techniques could bring negative effects.
As shown in Table 2.7, the applied transfer learning techniques consistently enhance the model
by achieving better accuracy in the target domain. Therefore, models trained on datasets from

multiple smart home platforms do not incur negative transfer problems.

2.4.7: Drifting Interaction Pattern Evaluation

We implement the Algorithm 3, and we use principal component analysis (PCA) to project the
graph embeddings from the original 256-dimensional into a 2-dimensional space. We use the K-
means method to cluster the projected embeddings as shown in Figure 2.9, where the centroid of
each class is the white cross.

We test the samples in the unlabeled dataset to detect the potential drifting samples (the samples
in the red circle in Figure 2.9). The drifting samples are examined manually to summarize the
potential interaction patterns and can be used for retraining. Among 10,000 unlabeled IFTTT
graphs, we found 63 potential drifting samples. For 19,440 unlabeled heterogeneous graphs, we
found 104 potential drifting samples. For example, the opening and closing of a lawn sprinkler
valve is a rare example and only exists in the unlabeled dataset, so it is regarded as a potential
drifting sample. The ratios of vulnerable interaction graphs on the randomly generated unlabeled

IFTTT dataset and heterogeneous dataset are 8.3% and 16.7%, respectively. To recognize whether
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Figure 2.9: K-means clustering on graph embeddings learned with contrastive loss.

there are new threat cases, we manually examine all drifting samples and randomly check 50%
predicted vulnerable interaction graphs. Primarily, in drifting samples, we discover four new types
of interactive threats related to user-designed blueprints (rules) [10] across multiple platforms. The
reported new interactive threat types are more complex and easily overlooked, while the previously
discovered threat types from existing work are all rooted in a single platform.

e Action block: Automation is blocked by non-automation settings. Users create automation
blocker rules that block some automation from running. For example, users can set rule 1, “If the
light is set in manual mode, then keep the light brightness to 100%.”. Thus, rule 2, “dimming lights
when turning on the TV” will become ineffective. Rules 1 and 2 are encoded into two nodes in an
interaction graph, and they target the same device, “light”, which will be labeled as a vulnerable
interaction because of the block of the action.

e Action ablation: Automation action can be reverted over time. A device can have multiple
attributes that are triggered by different factors. For example, a blueprint turns on the air conditioner
(AC) when the temperature is above 95°F. Another blueprint has the rule that turns on the humidifier
and turns off the AC when humidity is below 30%. The status of the AC between the two rules is
conflicted and will be reverted when the humidity becomes low.

e Trigger intake: Automation is caused by unexpected triggers. A user applies a rule to send the
camera a snapshot notification when motion is detected at the door. There is another rule that starts
the vacuum cleaner at 9 pm, which could accidentally trigger the motion sensor. As a result, the user

may frequently receive false snapshot notifications. Without a deep analysis, the user can hardly
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Abbr. Device Name Attributes

L Light Bulb switch

M Motion Sensor motion

C Contact Sensor contact

T Temperature Sensor Temperature
PS Presence Sensor presence
Camera Camera snapshot
Button  Smart Button button

Figure 2.10: The layout of smart home devices.

notice this is caused by the event that the vacuum cleaner triggers the motion sensor, especially in
a bad light condition.

e Condition duplicate: A fake automation condition is generated by rules from other platforms.
For instance, a rule that reports the room is occupied when any of the conditions are met: motion
sensor detects motion, the door is shut, or media is playing on devices in the room. A rule from
IFTTT can play music in the room from 3 pm to 4 pm. Due to the trigger from the played music, the
room is reported to be occupied. Another rule that starts the heating when the room is occupied and
when the temperature is below 60°F is subsequently triggered. Because of the applet from IFTTT,
the rule condition is accidentally satisfied in the platform of Blueprint.

Note that action block involves user intervention and action ablation happens over a long
time. They are neither action revert nor action conflict defined in iRuler [222]. Besides, existing
work such as HAWatcher [70] cannot handle these user interventions and long-term correlations.
Similarly, trigger intake and condition duplicates are not pre-defined in iRuler or mined in

HAWatcher. As a result, the existing work cannot detect these new types of interactive threats.

2.4.8: Evaluation on a Real-life Testbed

We construct real-time interaction graphs with event logs collected from a real-world home testbed,
as shown in Figure 2.10. A volunteer deploys the SmartThings and Alexa systems in his house
following the setup in HAWatcher [70] with off-the-shelf devices and apps. The volunteer uses the

desired automation and spends a week collecting 1,813 event logs related to home automation.
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Efficacy Comparison

Following the setup in HAWatcher [70], we simulate five types of attacks by modifying event logs
or manually interfering with the home automation: (i) Targeted compromise: fake commands,
stealthy commands. (ii) Interaction abuse: fake events, event losses. (iii) Misconfiguration:
command failure. For example, we simulate “fake commands” by manually turning off lights
during normal operation, and “stealthy commands” by manually starting a robot vacuum to trigger
motion sensors. We build 600 graphs as the test set. Out of 300 graphs, 150 graphs contain binary-
correlation threats (BCT). Among another 300 graphs, 150 graphs contain complex-correlation
threats (CCT). BCT means interactive threats are caused by two nodes, while CCT is caused by
more than two nodes.

We choose three white-box anomaly detection methods for comparison: (i) HAWatcher [70],
which extracts binary correlations and verifies them with run-time event logs. The input is the
device states extracted from event logs. The inconsistencies are reported as anomalies. We reuse
the refined correlations reported in the work [70] to check the actual states of devices. (ii) One-class
Support Vector Machine (OCSVM) [180], which is a unsupervised anomaly detection method. (iii)
IsolationForest [131], which is also widely used for anomaly detection. We capture all devices’
states as a frame when a new event happens. Four consecutive frames compose a data vector,
which is the input of OCSVM and IsolationForest. The output is -1 for threats and 1 for normal
cases. We use Scikit-learn [164] to implement OCSVM and IsolationForest. Note that for many
other systems, it is unfair to directly compare the performance of existing methods and ours when
considering the big gap between the analysis of open-source and closed-source platforms.

As shown in Figure 2.11, OCSVM and IsolationForest achieve worse performance compared to
Glint. For instance, for complex graphs, the OCSVM can only achieve 66.9% precision and 63.3%
recall. This is because they only use time-series event log data, without the consideration of rich
information in neighbor nodes and graph structure. The HAWatcher can achieve 97.8% precision
and 94.1% recall taking 21 days of training for binary-correlation threat detection [70]. By contrast,

Glint takes no more than 1 hour to train the model and apply transfer learning to improve model
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Figure 2.11: Comparison with different detection methods.

performance, which achieves 100% precision and recall for binary-correlation threat detection. For
complex-correlation graphs, HAWatcher cannot check interactive threats caused by goal conflict,
action revert, and condition bypass because the three types of threats are not covered. For such
cases, we set HAWatcher to generate results by the Bernoulli distribution with the probability of a
single success of 0.5. Finally, HAWatcher achieves 83.2% precision and 82.7% recall. By contrast,
Glint achieves 96% precision and 95.3% recall, which outperforms HAWatcher in heterogeneous

platform scenarios by 12.8% precision and 12.6% recall rate.
Efficiency Comparison

The efficiency is affected by many factors, such as code implementation, third-party libraries, and
hardware setup, we qualitatively compare the efficiency of different systems. HAWatcher [70]
needs to traverse all defined correlations. Suppose the number of correlations is n, then the time
complexity is n? for their extracted binary correlations. The time complexity will be n’ when the
length of the interaction chain is N. Thus, such search-based methods are retarded by the path
explosion when dealing with large and complex graphs. iRuler [222] applies satisfiability modulo
theories (SMT) solver to check interactive vulnerabilities. However, the existence of heterogeneous
platforms indicates that there will be more complex rules for smart home management. With the
fact that the SMT problem is typically NP-hard, such symbolic execution has poor scalability when
dealing with large and complex interaction graphs. It is thus unlikely that a symbolic execution

engine can exhaustively explore all the possible states within a reasonable amount of time. By
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contrast, our proposed Glint is a learning-based system, which achieves a high efficiency for real-
time interactive threat prediction. For each graph, the prediction time is related to the graph size,
and the average prediction for a heterogeneous graph takes about 0.61s. The ITGNN model trained

on heterogeneous graphs is only 6.13 MB.

2.4.9: Discussion

While the above evaluation results are encouraging, we consider this work as a first step toward
data-centric Al-based IoT interactive threat analysis. There are many factors that need to be

considered in the future work.
Time factor

The IoT device influence can occur in the long term. For example, turning on/off the heater
will change the temperature over a relatively long period. The existing system, HAWatcher [70],
only considers interactions that arise within a short time frame, which cannot mine long-term
correlations. By contrast, Glint discovers interactions based on automation rule semantics and real-
time event logs. Glint encodes the time-related semantics into node embeddings. By annotating
such long-term correlations in graph datasets, the GNN models can effectively learn such patterns
manifested over a long time interval. For example, settings 12 and 13 in Table 2.4 compose a

vulnerable interaction graph, which can be discovered by Glint but not by HAWatcher.
User factor

The automatic interactions could be disturbed by user-activity deviations. An example is shown
in the drifting interaction pattern “Action block™ in Section 2.4.7. Existing systems such as
iRuler [222] use pre-defined vulnerability patterns, which cannot report such interactive threats. In
comparison, Glint can detect abnormal patterns with concept drift detection. According to users’
feedback, Glint can fine-tune the model and adapt to user preferences. How regularly we should
update the interaction graphs to accommodate changes in user actions and IoT devices poses an

important future research problem.
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NLP techniques

In this dissertation, we rely on the NLP techniques to identify the correlations between different
automation configuration rules, so as to construct an automation rule interaction graph. However,
the accuracy of interaction graph construction will affect threat detection results because of the
inaccurate input to the threat detection model. Applying NLP techniques may overestimate or
underestimate physical channel properties, especially when involving different locations. The
physical properties of two devices at different locations can vary. For instance, the temperature
of the oven in the kitchen can hardly influence the temperature in the living room. As a result, the
lack of complete understanding of the physical channel properties can lead to wrong predictions
about the correlation between the two rules. For example, “Set the temperature of the oven to
350°F for preheating at 7:00 pm” should have no correlation to “Open the window if the indoor
temperature is above 80°F”. A potential solution is to request feedback on the correctness of the
built graphs from users, so we can fine-tune the graph builder model. Besides, more advanced NLP
techniques such as large language models [157,210,255] can be applied to enhance the accuracy

of IoT rule correlation recognition.

2.5: Summary

To detect interactive threats across heterogeneous closed-source platforms, we propose the Glint to
learn interaction patterns. We design the unified ITGNN model for multi-scale graph representation
learning. To train ITGNN, we build the first interaction graph dataset on five high-profile platforms.
Our evaluation shows that the proposed model can achieve high accuracy in detecting interactive
threats across heterogeneous platforms. We identify four new types of interactive threats in the user-
defined Home Assistant platform. However, there are two remaining issues. Firstly, the training
data for threat detection incorporates event log details, encapsulating sensitive information about
daily activities. Consequently, the training data should be avoided sharing with the third party
considering the privacy concerns. Secondly, there is a necessity to delve into the explainability of

GNN models, which is crucial for unraveling the underlying root causes behind interactive threats.
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CHAPTER 3: FEDERATED THREAT
DETECTION MODEL LEARNING?

3.1: Introduction

As introduced in Chapter 2, a growing number of smart devices are deployed in modern homes
to achieve home automation. The devices are controlled by rules that follow the trigger-action
paradigm. For example, a SmartThings [190] app has the automation rule (R1) “If smoke is
detected (trigger), turn on the water valve and start alarm beeping (action)”. According to a recent
survey [38], 82.4% of smart homes have multiple rules for controlling a single device. These rules
allow devices to interact with each other, referred to as IoT interaction.

However, unexpected IoT interactions could lead to threats such as action conflict and action
revert, which result in severe security and privacy risks. For instance, suppose a user has set up the
above SmartThings rule R1. Unexpectedly, as soon as the water valve was turned on and a water
leak was detected in the kitchen, the SmartThings rule R2 “Close the water valve when a water
leak is detected” would close the water valve. In consequence, the two rules compose a vulnerable
interaction, which exposes the threat “the water valve fails to turn on when smoke is detected”
because of the action conflict “water valve opening and closing”. Such vulnerable interactions can
be caused by user errors [93, 153,205] and physical attacks [82,224,234,245].

It is crucial to manage the IoT automation rules and track the trigger-action information flow
to avoid interactive threats. Naturally, the [oT automation rules follow the general trigger-action

paradigm, and the interactions among rules can compose an interaction graph. Automation rules

2This chapter is based on previously published work by Guangjing Wang, Hanging Guo, Anran Li, Xiaorui Liu,
and Qiben Yan titled “Federated IoT Interaction Vulnerability Analysis” published in the Proceedings of IEEE 39th
International Conference on Data Engineering (ICDE). DOI: 10.1109/ICDE55515.2023.00120 [214]. © 2023 IEEE.
Reprinted, with permission, from Guangjing Wang, Hanqing Guo, Anran Li, Xiaorui Liu, and Qiben Yan, “Federated
IoT Interaction Vulnerability Analysis” (paper and IEEE titles are the same), July 2023.
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can be represented by nodes, and the edges are “trigger-action” connections among different rules.
A naive idea is to detect the sensitive event based on predefined security policies, and then trace it
back to find root causes. However, the query or search-based methods have limited coverage of the
security policies or threat patterns. Most methods [26,28,55,70,223] pre-define security policies
and threat patterns within a single platform [38]. For example, ProvThings [223] requires users to
define and input policies describing sequences of causal interactions with a graph database backend.
Yet, the predefined policies can hardly cover potential new threats across heterogeneous platforms.
As a result, it may yield significant false positive and false negative errors. Moreover, federated
query-based methods [15,85,107,202] are not applicable. Even though common security policies
could be extracted and shared among multiple houses, device interactions in different houses do not
intersect. Each interaction graph is a complete data sample. Therefore, the query outcome for threat
detection in a single house cannot necessarily be computed over the union of source databases of
multiple houses.

Another approach profiles the behaviors of systems by analyzing event logs [59, 127, 257].
However, they cannot fully expose the interaction correlations between different events. Their
limitations are three-fold. First, considering the complex causal dependencies among multiple
automation rules, it is hard to accurately mine the cross-app interaction logic from event log
sequences, which are within individual devices [70]. Second, sharing smart home usage data with
a third party might cause privacy leakage issues such as the leakage of living habits and routines,
while a dataset from a single house is insufficient for training a model with high generalization
ability. Third, the mining results are difficult to interpret. When a threat alarm is generated, the
users can hardly learn the exact segment of device interactions that caused the issue.

To address these problems and limitations, we propose FexIoT, a Federated and explicable
GNN-based approach for automatic IoT interactive threat analysis. For an interaction graph, the
node features can be represented by semantic-aware word or sentence embeddings. Compared
with benign graphs, vulnerable interaction graphs could have different graph patterns that express

abnormal behaviors. FexIoT utilizes the GNN model to learn the interaction patterns. Meanwhile,
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as the event logs belong to different platforms and households, by leveraging federated learning,
we can collaboratively develop a more generalized model while retaining users’ data locally.
Moreover, the interaction graph allows to search and extract a special subgraph that contains
execution flow paths related to abnormal behaviors. Based on the extracted flow path, we can
explain the model’s predictions and identify the causes of vulnerable interactions. There are two
key technical challenges for IoT interaction analysis across multiple closed-source platforms.

(i) How to build the threat detection model with high heterogeneity in datasets while avoiding
sharing raw data? One household has a limited number of devices, which makes it infeasible to
train a custom and robust GNN model. FL allows for collaboratively training a model without
exposing raw data. However, the data heterogeneity leads to poor modeling performance with
slow convergence and low accuracy in FL training paradigms [9, 45, 199], especially when the
data distribution is time-varying or not well balanced among different clients. To overcome this
challenge, we design a layer-wise clustering-based federated graph contrastive learning framework.
We train a shared threat detection model by differentiating normal and vulnerable graphs over non-
i.i.d. datasets with high generalization ability without sharing users’ data.

(i) How to adapt to new threat patterns and automatically identify potential causes of
vulnerable interactions? The interactions in the IoT world are complex due to the different types
of devices and threats. Even though we apply FL to train on various graph data from different home
sources, we acknowledge that there could be drifting samples that evolve from existing threats or
are novel kinds of threats. We propose to filter out drifting samples based on federated contrastive
graph representations and the corresponding median absolute deviation. Then, we design an
efficient cause analysis method by exploring different subgraphs of an interaction graph with
Monte Carlo beam search (MCBS) [25], which is a heuristic game tree search algorithm. Based
on IoT devices’ potential correlation features, we propose using the optimal SHAP values [136]
to measure the risk of subgraphs of a complete interaction graph. Thus, we can trace the most
possible information flow chain relevant to the vulnerable interactions.

In summary, we make the following contributions:
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* We design a layer-wise clustering-based federated contrastive GNN model for non-i.i.d.
graph datasets to learn contrastive graph representations, and it achieves more than 90%
average accuracy in threat detection.

» We propose an efficient cause analysis method based on Monte Carlo beam search and the
SHAP value to evaluate the risk of subgraphs, which automatically provides explanations
for any complex vulnerable interactions.

* We implement various experiments on large-scale datasets, which shows that our method

outperforms state-of-the-art baselines with high accuracy and reduces communication costs.

3.2: Problem Definition

Interactive threats refer to the vulnerability coming from interactions between devices, and the
environment. Specifically, we label the graph as vulnerable if it satisfies at least one of the 6
types of vulnerabilities identified by existing work [222]: condition bypass, condition block, action
revert, action loop, action conflict, and action duplicate. Internal graph vulnerability refers to the
vulnerabilities inherently from interaction graphs, while external graph vulnerability refers to the
vulnerabilities caused by external attacks.

Instead of enumerating all possible interaction vulnerabilities, we design a federated GNN
model to learn the vulnerability patterns. Given the interaction graph G, our task is to learn the graph
embedding Z' at each time ¢, and Z* is used for vulnerable interaction prediction. Considering a
graph can contain multiple types of vulnerabilities, multi-class classification is not suitable. Thus,
the prediction problem is formulated as a binary classification problem f(Z') — ' that maps
the interaction graph embedding Z' to the binary label ' of interaction incident at a given time
t. Finally, we identify a subgraph G, with the highest risk score by exploring various subgraphs

with the SHAP-based Monte Carlo beam search, which explains the result of prediction y'.
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Figure 3.1: System architecture of FexIoT.

3.3: System Design

We design FexIoT for IoT interaction analysis as shown in Figure 3.1. A client represents a house
where data is collected and a GNN model is trained using federated learning. Each client can
run FexIoT on devices such as a Raspberry Pi or NVIDIA Jetson Nano. Each client implements
three main components: data fusion from event logs and apps’ descriptions, vulnerable interaction
detection with federated GNN, and vulnerability explanation with the Monte-Carlo beam search-
based method. A server can perform the clustering and aggregation in FexloT, which could be

served by a security solution provider.

3.3.1: Fine-grained Clustering-based Federated Graph Learning

After the graph construction, we propose a fine-grained clustering-based federated contrastive
graph representation learning model considering data heterogeneity and drifting samples in FL.
The learned graph representations can be used for vulnerability detection. In our designed FL
paradigm, each client reserves two models. The first is the graph representation learning model,

which participates in the FL process in Algorithm 4. The second is a linear classification model
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such as an SGDClassifier, which locally learns to classify the learned graph representation to detect

vulnerable or normal graphs.
Contrastive Graph Learning Loss Function

In the graph representation learning model, we design the contrastive learning [35] loss function in

Eq. (3.1) for learning a distance function to measure the dissimilarity of samples:
L.= dfj(l — Yij) —I—mam((),k:—d?j)yij, (3.1)

where d;; is the Euclidean distance between two graph embeddings, v;; is 1 if graph G; and G; are
from different classes, and y;; is O if graph G; and G; are from the same class. We set a threshold
k to restrict the unusual distance contribution of graphs from different classes. Note that we apply
existing well-developed GNN models [71, 108,231] in our federated learning framework. Finally,
the learned representations are used for training a linear classification model to classify normal or

vulnerable graphs in each client.
Dynamic Clustering-based Federated Learning

We design a fine-grained dynamic clustering-based FL algorithm as shown in 4. There could be
domain shifts when the knowledge transfers across non-i.i.d. datasets in FL framework [43]. The
heterogeneity is two-fold. First, the interaction graph can be either homogeneous or heterogeneous.
Different households deploy heterogeneous devices and different users have their own usage
habitats, which can cause graph heterogeneity. The heterogeneous graph data will cause negative
transfer among users and decrease the model performance. Second, the graph dataset is unbalanced
and non-i.i.d.. The non-i.i.d. graph datasets from different households will cause biased stochastic
gradients, which will impede the convergence of FL models.

Another key observation is that despite the heterogeneity, there exist similar data distributions
in smart homes because different users can have common automation rules. We assume that there
exist several clusters of households, where the graph datasets from each cluster satisfy the i.i.d.

property following [179]. We argue that the assumption is reasonable since even though there
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Algorithm 4: Dynamic clustering-based federated GNN
Input: Graph dataset G, of each client ¢, GNN model weight W., GNN layer [ < L, client cluster
C, global update round 7', thresholds €1, €5

1 fort < T do

2 for c € C'do

3 W, < local training process

4 W, = RecursiveClusteringAgg(l, C)

5 end

6 end

7 Procedure RecursiveClusteringAgg(l, C'):

8 if [ > L then

9 ‘ Return;

10 end

1n Receive [-th layer’s weights Wcll from each client c;;
2| ife > || D Tol AWL]| && e < maz(|[AWL]]) then
13 M; ; < CosineSimilarity(VVCli7 Wclj) fori,j € C
14 clustery, clusters < BinaryClustering(M; ;)

15 Whisster, < FedAvg(W}) for each ¢ € cluster;
16 Wcllustem  FedAvg(W}!) for each c € clusters
17 end

18 else

19 Wt « FedAvg(W}) foreach c € C
20 end
21 Send W}, ;. back to each client ¢
22 RecursiveClusteringAgg(l + 1, clustery)
23 RecursiveClusteringAgg(l + 1, clustery)

24 End Procedure

are heterogeneous smart devices, from the semantic perspective, the functionalities of devices are
indeed limited. There will be some graph datasets that share common feature information, which
could be grouped into several clusters. As a result, a new challenge ensues on how to effectively
aggregate clients into different clusters.

Consider the clustering-based FL setting with a central server and a set of n clients
{c1, ¢, -+, ¢, }, which can be dynamically clustered into different clusters {clustery, clusters, - - - }.
Each client ¢; has a set of interaction graphs G = {G;,Gs,---}, and conducts the graph
classification y = hj(G;), where h} is the optimal graph classification model for cluster set
clustery. The graph feature information can be reflected by the model parameters and their

gradients [179]. Existing federated graph classification over non-i.i.d. graphs [229] is coarse-
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grained since it only considers the similarity of parameters of a whole model. However, from the
bottom up, the degree of similarity among deep models decreases [135, 151, 239]. Therefore, to
learn the fine-grained clustering structure, we design the bottom-up layer-wise dynamic clustering
algorithm to obtain the similarity among weights of clients as shown in Algorithm 4.

Suppose n is the number of clients in FL training, each client ¢ performs local GNN training
(lines 2-4), which follows the traditional FL training paradigm. The server receives n local models
W! (line 12). The dynamic clustering on the server starts from the bottom layer /;. We define two

thresholds €; and ¢, to determine the conditions of clustering of different clients (line 13):

|G|
AW,
€

e >

i€[n]

)

(3.2)
€2 < max(||[AW,]]),

where |G| represents the number of graphs owned by client 4, |G| is the total number of graphs
owned by all clients, and AW, is the local update of model weights of client ¢;. €; measures
the degree of fluctuation of FL training, and it bounds the relatively stationary point of the global
model before initiating the clustering. Meanwhile, if there are large norms of weight update that are
greater than e,, it means high heterogeneity occurs among different clients, and the clustering starts
to avoid performance degradation among clients. The two thresholds can be determined via initial
experiments on the validation sets [179]. Ifthe conditions in Eq. (3.2) are satisfied, the server further
divides the clients from the same cluster into two sub-clusters and performs model aggregation
within each sub-cluster (lines 14-17). This process continues to the next layer recursively. Thus,
with more layers of client models being clustered and aggregated, each cluster of clients has reduced

divergence, which achieves model converging in fewer training rounds.
Drifting Interaction Pattern Detection

Due to dynamic changes in smart device settings and the presence of different attacks, the testing
interaction graph distribution may diverge from that of the training dataset in actual deployment

scenarios. The performance of the detection may be impacted by the drifting samples, which
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are new interaction vulnerability patterns that are different from already known vulnerabilities.
Considering the high false-positive or false-negative rate caused by drifting samples, we design
the interaction graph drifting pattern analysis method based on the federated graph representation
learning and median absolute deviation (MAD) [114] in the model application stage.

First, in each client, we use the well-trained model in FL to map all the training graph data
into latent space. We can calculate the centroid of each class by computing the mean value for
each dimension of the latent embedding. Similarly, for the incoming graph data, we also generate
latent embeddings. In this way, we can compute the Euclidean distance d¥ between the centroids of
each class in the training dataset and the test sample x*. Second, based on MAD, we can estimate
the graph data distribution within each class ¢ by computing M AD; in the training dataset, which
is the median of the absolute deviation from the median d; of distance d{ . The d{ is the distance
between the latent embedding of each training sample to its centroid in class 7. Third, for each
testing sample, we check if d¥ is large enough to make x* an outlier of class i. Specifically, we

] g
1

denote the “normal” label as 0 and the “vulnerable” label as 1. Then AF = MAD, > = MAD;

and AF = min(AE, A¥). If A" is greater than a threshold T}, that is set as 3 empirically following
existing practices [114], then z¥ is a potential drifting sample. The MAD method allows each class
to decide outliers based on its in-class distribution. In the model application stage, given a set of
testing interaction graphs {G'}, we first check each graph G; to see if it is a drifting sample. If a
new sample has a larger distance from all existing classes, then it is a potential drifting sample.

Thus, we can filter out and manually inspect drifting samples that are outside of the training space.

3.3.2: Vulnerable Interaction Cause Analysis

Given a detected vulnerable graph, we design the SHAP-based Monte Carlo beam search (MCBS)
algorithm to discover the causes of vulnerable interactions considering the IoT dependency
relationship. We first formalize the vulnerability explanation problem. G represents the interaction
graph that is examined by a GNN model followed by a linear classifier i(-) in the model application

stage, and the prediction result is y. The vulnerable interactions are caused by a connected subgraph
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Gsup 1n an interaction graph. We further define a cooperative game following [111] to measure
the contributions of different parts (players) of a graph. Suppose G, is one player, where G,
contains nodes {vy,vq,- -+ ,vs}. Other nodes in G\Gg, are other players {{vsi1}, - ,{vm}}
Our goal is to find the most possible subgraph G, that is responsible for the prediction .
However, the device’s abnormal behaviors are hardly noticeable until certain consequences
occur. Moreover, an app can trigger unexpected events that are subscribed to by another device.
Different apps could introduce contradictory changes to a device attribute. Directly using
the prediction scores to measure the risk of subgraphs is problematic, since it cannot capture
connections among different graph structures. Suppose there is a subgraph G, that contains
the exact interaction vulnerability chain, any subgraph G, containing G,; will also cause the
vulnerable interaction. Meanwhile, a subgraph G;,. that is included in G, may also trigger
the same threat, but GG;,,. can only reveal part of the causes instead of the complete causal route.
Another method SubgraphX [241] applies the Shapley value to measure the risk of subgraphs,
where they assume the players are independent. However, in an interaction graph, the existence
and actions of nodes are not independent because the deployment of devices is related to each
other. Therefore, the Shapley value could neglect the dependent relations among different nodes.
We propose to calculate the SHapley Additive exPlanations [136] (SHAP) value to evaluate the
risk score of subgraphs and apply MCBS to improve the efficiency of the search process as shown
in Algorithm 5. In the MCBS tree, following the notation in SubgraphX [241], the root node N, is
the input graph G, and each node NV; in the search tree is a connected subgraph G, the edge in the
search tree is the pruning action a. A subgraph G is acquired by the action a; from G, which is
represented by (IV;, a;). We combine beam search with Monte Carlo tree search to store a set of best
playouts, which is called beam (lines 2-4 in Algorithm 5). The size of abeam B, is fixed for each
level, which shows that B.,.; best nodes are kept at each level. From the model perspective, the
target node feature is aggregated from a limited number of neighbor nodes. From the smart home
perspective, devices are directly related to limited neighboring devices. Therefore, it is reasonable

that only neighboring nodes in a beam Bj.,; are employed for information aggregation.
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Algorithm 5: SHAP based Monte Carlo Beam Search
Input: GNN model A(-), interaction graph G, MCBS iteration number I, kernel SHAP samples
K, the least node number INV,,;,, the root of search tree Ny
Output: subgraph G
1 fori <1Ido

2 S; = No, curPath={N0}
3 while |2(S;)| > Npin do
4 for subgraph G; in Bjeyei(S;) do
5 for k < K do
6 9(zr) = h(S;)
7 h(Tx—l(Zr)) = h(Sl U Gl)
8 end
9 Score(h(-,G,G;)) =W
10 end
11 Select Nyeqt following Eq. 3.7
12 Si = Nypeat
13 curPath = cur Path+Ny et
14 end
15 Sl = Sl U SZ'
16 end

17 return subgraph G, with the highest score from S

The SHAP approach can rate the relevance of each feature for a specific prediction. SHAP
values are the Shapley values of a conditional expectation function [136], which can better
measure the feature importance. Here, we use {Gy,--- ,G;,- -+ , G, } to represent n subgraphs of

an interaction graph GG. The analysis result can be written as:

G* = argmax SHAP(h(-), G, G;), (3.3)

where N,,;, 1s a hyperparameter that limits the number of nodes in a subgraph. Following SHAP

framework, the SHAP value ¢; can be computed as follows:

zr\(M — |z.| — 1)! .
el =D ) — (i), (3.4)

z2rCar

where z, is the set of total non-zero entries, z, is a subset of z,, |z,| is the number of non-zero

entries in z,, M is the number of set of all entries, z,.\7 denotes setting z;, = 0. In our proposed
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Algorithm 5, non-zero entries mean the nodes (players) of a graph that are included in the Monte
Carlo beam search process. h,(z.) = E[h(z)|zs] means it calculates the expectation across all
possible node combinations, where S' is the non-zero index in z,. Solving Eq. (3.4) is challenging.

Thus, we apply the kernel SHAP to approximate it (lines 5-9 in Algorithm 5).

L(h,g) = > [MT, (z)) — g(z)]* - C, (3.5)

2r€Z

_ M—-1
()12 (M = |z])

where we assume ¢(z,) = Wz, is the explanation model following a linear form. ¢(z,) matches

(3.6)

the original model h(z) when z = T,(z,). T.(-) is a mapping function that converts the inputs to
the original input space. We use the weighted linear regression to solve the equation since L(h, g)
is a squared loss and ¢(z,) is the linear function. The intuition is that Eq. (3.4) is calculating the
difference of means, which has a connection with linear regression, and the mean value is the best
least-squares point for a set of data points. Thus, noted by [136], we calculate ¢;(h, z) = w;(z; —
E(x;)) given h(x) = Y-}, w;x; 4 b, which is a linear classification model such as SGDClassifier
as introduced in Section 3.3.1.

During the MCBS process, the node N,.,; selection criterion is computed as follows (lines
11-13 in Algorithm 5):

arg max Q(Nnea:t7 aj) + /\R(Nnezt7 aj)7 (37)

where Q(Nyeqt, a;) is the average reward score over several visits, A is the hyperparameter that
balances the exploration and exploitation. R(N,.t, a;) is the immediate reward for choosing Nyey+,
which is the SHAP(h(-), G, G;) score. Finally, Algorithm 5 will output the subgraph G, with the

highest risk score for cause analysis.
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Table 3.1: Statistics of interaction graphs.

Type Label Total Vulnerable
yp Graph Num. Graph Num.
Homo. labeled 6,000 1,473
(IFTTT) unlabeled 10,000 *
Hetero. labeled 12,758 3,828
(5 Platforms) unlabeled 19,440 *

3.4: Evaluation and Discussion

3.4.1: Experimental Setting

To simulate the FL training, we evaluate the dynamic clustering-based federated GNN on a high-
performance computing cluster, which is equipped with Intel(R) Xeon(R) Gold 6148 2.4GHz CPUs
running on CentOS 7. For collecting app description data, we use Scrapy [181] to crawl smart home
app rules from the following 5 platforms:

* For SmartThings [190], we crawl rule descriptions from 185 open-source apps.

» For Home Assistant [10], we crawl rule descriptions from 574 blueprints.

For IFTTT [98], we integrate 315,393 applets from [222] and newly crawled 1,535 applets.
* For Google Assistant [78], we crawl 480 services and 4,812 action commands.

* For Amazon Alexa [5], we crawl 2,232 services and 3,274 skill commands.

3.4.2: Clustering-based Federated Graph Learning Evaluation

FexIoT conducts fine-grained clustering-based federated contrastive graph representation learning
for vulnerability detection. Note that as it is hard to build large-scale smart homes in real life,
following the template of deployed smart homes, we leverage the offline graphs to produce a
set of online interaction graphs for federated GNN evaluation. The only difference is that online
interaction graphs reflect real-time IoT interactions.

We compare FexloT with two GNN models, four baselines, and five different Data
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Figure 3.2: The performance of GNNs under five different Dirichlet distribution parameters a.

distributions. The two homogeneous GNN models are: (i) GCN [108] is a convolutional network
operating on graphs, and we adopt three graph convolutional layers. (ii) GIN [231] is a graph
isomorphism network model, and we adopt the original model architecture. For the heterogeneous
graph classification model, we choose the MAGNN model [71], which learns heterogeneous graph
embeddings based on metapath aggregation.

The four federated learning frameworks are: (i) Federated multi-task learning (FMTL) [179],
which groups the clients into clusters by using geometric aspects of the loss surface. (ii) Graph
clustered federated learning (GCFL+) [229], which is a gradient sequence-based clustering
method for graph classification. (iii) Federated averaging (FedAvg) [146], which aggregates
locally-computed updates in federated learning. (iv) Self-training in clients (Client), which trains
the GNN locally without any communications.

Data Distribution Configuration. We study the impacts of different data distributions on the
federated GNN models. We split the IFTTT graph dataset according to Dirichlet distribution to
simulate the non-i.i.d. dataset in each client, and we set the number of clients as 10. We draw

class marginal distribution from Dirichlet distribution with the probability density function p(z) o

k -1

+,x7" . «is the positive concentration parameter, which we set to 0.5, 1, 2, 5, and 10. When

a 1s close to 0, most of the generated values drawn from the Dirichlet distribution will be close to
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0. Thus, we can simulate clients with unbalanced and non-i.i.d. datasets.

Following the above Dirichlet distribution, different clients will have different numbers of
graphs. We split 80% of the IFTTT dataset as the client training dataset and 20% of the dataset as
the testing dataset for each trial. During the training process, we empirically set the two thresholds
€1 and €5 in Eq. (3.2), which are related to the size of model weights, to start and end the layer-
wise clustering process. We found that the local clients achieve decent performance when the two
values are set between 0.5 and 2. The value setting also depends on the initialization settings such
as the learning rate with the corresponding optimizer. We set the learning rate as 0.001 in the Adam
optimizer, €; is 1.2 and ¢, is 0.8 if they are not specified in the following experiments. We apply the
weighted cross-entropy loss function to handle class imbalance for interaction graph classification.
We set up the weight given to each class in the cross-entropy loss according to the inverse ratio to
class frequencies. Figure 3.2 shows the average accuracy, precision, recall, and F1 value of models.

GNN Models Evaluation. We test the influence of different GNN models in the federated
learning process. Note that the GNN models are used for graph representation learning in the FL
process. We use SGDClassifier from Scikit-learn [164] to implement the normal or vulnerable
binary classification. As shown in Figure 3.2, the GIN model achieves better performance than the
GCN model, which is consistent with the previous study [231]. Moreover, we found that when the
dataset is more evenly distributed (« is larger), both the GCN and GIN achieve better performance.
However, the data distribution indeed has a great impact on the model performance. For example,
the F1 values of the GIN model in FedAvg are 0.735 and 0.748 when « is 0.1 and 10, respectively.
The GIN achieves better performance (average F1 is 0.92) when « is 10 than the performance when
a is 0.1 (average F1 is 0.89). Our proposed dynamic clustering-based federated graph learning
method achieves the best performance with different GNN models.

Efficacy Evaluation. Compared to baselines, our FexIoT achieves the best performance
because of the design consideration of fine-grained homogeneous data features in heterogeneous
data distribution. For example, for FexloT, the accuracy is 0.891 and 0.919 when « is 0.1 and 10,

respectively. For GCFL+, the accuracy is 0.852 and 0.889 when «v is 0.1 and 10, respectively. The
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Figure 3.3: The test accuracy of client models with different numbers of clients participating in
training with the IFTTT dataset (left) and heterogeneous graph dataset (right).

accuracy of FedAvg is 0.717 and 0.768 when « is 0.1 and 10, respectively. The average client
accuracy is 0.542 and 0.622 when « is 0.1 and 10, respectively. FexIoT improves the accuracy by
17.4% compared with the FedAvg. FedAvg is deeply affected by the data heterogeneity, which
leads to poor modeling performance with low accuracy in FL training paradigms. By contrast,
FexIoT can mostly reduce the data heterogeneity effect among different datasets by training on
clusters with high homogeneity. We also compare the performance of federated learning compared
with centralized training. We test the GIN model in centralized training, which collects all data
from clients to train a GIN model. The centralized training achieves 0.944 F1 value, while our
federated GIN model achieves 0.91 average F1 value over five data distributions. Overall, our
proposed FexIoT can better depict the homogeneity of the GNN models learned from different
data distributions than the coarse-grained ones.

Stability Evaluation. The clustering-based methods (FexIoT, GCFL+, and FMTL) can achieve
better and more stable performance than FedAvg and single client training. For example, with our
proposed algorithm, the average accuracy of GIN under five different data distributions is 0.907,
and the standard deviation (STD) is 0.01. For FedAvg, the average accuracy is 0.738, and the
STD is 0.017. The performance of FedAvg is more divergent according to the data distribution of
each client. Similarly, the performance of self-training in each client is also affected by different
data distributions. Besides, our FexIoT outperforms the state-of-the-art method GCFL+, which has

an average accuracy of 0.87 and STD is 0.012. Facing the heterogeneity in datasets, the GCFL+
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considers the similarity of parameters of a whole model, which can be fluctuating due to the changes
in parameters of different layers of client models. By contrast, our FexIoT implements clustering
based on fine-grained bottom-up layer-wise parameters, which is less affected by fluctuating layers.
Overall, our FexIoT is more stable under different data distributions than other FL methods.

Scalability Evaluation. We simulate different numbers of clients (25, 50, 75, 100) joining the
FexIoT on two datasets. We use GIN on the IFTTT dataset and MAGNN on the heterogeneous
graph dataset if not mentioned. The concentration parameter o of the Dirichlet distribution is 1.
Figure 3.3 is a box plot, in which minimum, maximum, median, first quartile, and third quartile
accuracy are reported. On the IFTTT dataset, the third quartile accuracies of 25, 50, 75, 100 clients
are 0.869, 0.879, 0.882, and 0.873, respectively. Therefore, even though the number of clients
increases, 75% of clients can achieve more than 86% accuracy, which shows the high scalability
of FexIoT. When the number of clients is larger (e.g., 100), the results show more divergence as
the minimum accuracy is 0.8, and the maximum accuracy is 0.977. When the number of clients
increases, due to the fixed size of the entire dataset, the size of the dataset for each client decreases,
which affects the evaluation results. Nevertheless, the results show that FexIoT can effectively
aggregate clients that have similar data distribution to boost the model performance.

Drifting Interaction Pattern Evaluation. The methods that rely on known patterns will
become fruitless when there are drifting samples. Therefore, we need to identify the possible
drifting graph samples with unknown interaction patterns. We evaluate drifting interaction pattern
detection on the unlabeled dataset, to check if the randomly generated graph dataset contains
drifting samples. We show the clustering results in Figure 3.4 on 1500 randomly sampled graph
feature representations learning with federated contrastive graph learning. The data is processed
with TSNE dimension reduction. The centroid of each class is the white cross, and the possible
drifting samples are in the red circle. The six types of known interaction vulnerabilities are clustered
in gray dotted boxes. Through our federated contrastive learning, the model can learn well the
features of six types of vulnerability patterns and the normal graph pattern, which are separable in

hidden space shown in Figure 3.4. Based on the drifting interaction pattern analysis in Section 3.3.2,
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Table 3.2: Comparison of different systems with testbed data.

Method Accuracy Precision Recall F1

HAWatcher [70] 0.82 0.83 0.87 0.85
DeepLog [59] 0.74 0.78 0.79 0.78
IsolationForest [131] 0.63 0.74 0.61 0.67
FexIloT 0.9 0.9 093 091

. .................................. e '(-...-.: )

Figure 3.4: K-means clustering on 1500 randomly sampled graph representations with TSNE
dimension reduction.

we found 63 and 104 potential drifting samples in the IFTTT dataset and heterogeneous graph
dataset, respectively. After manually checking, we found three new types of vulnerability patterns:
(1) Automation action is reverted over time. (ii) Another action can generate fake automation
conditions. (ii1) Non-automation settings can block the existing actions of smart devices. In this
way, FexIoT can reduce the false-alarming rate while the security rule-based querying methods in
the traditional database cannot discover new patterns and even incur high false-positive or false-
negative rates because of the drifting samples.

System Comparison. We compare FexIoT that is trained across 50 clients with existing
vulnerability detection systems: (i) HAWatcher [70] is a search-based system that extracts secure
rule interaction templates and evaluates device interaction. We use the extracted templates to
discover vulnerabilities in the test dataset. (ii) DeepLog [59] models event logs as a language
sequence and uses Long Short-Term Memory (LSTM) to learn log patterns. We train LSTM on

normal logs and find anomalies that deviate from the training data. (iii) IsolationForest [131]
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Figure 3.5: Communication cost with different number of clients.

is a density-based anomaly detection method with a tree structure, which is implemented by
Scikit-learn [164], and the input is a data vector that includes device status. We use 600 online
interaction graphs in Section 3.4.1 that are integrated with event logs and descriptions as the
test dataset. The system performance is shown in Table 3.2. From the results, we find that all
methods fail to differentiate between normal user interruptions (e.g. manually turning on a light)
and malicious attacks, which cause false positives. Feedback from users should be provided to
update such correlations and reduce false alarms. FexloT outperforms the existing methods due to
the following reasons: (i) HAWatcher only extracts binary rule templates, which can hardly cover
long-term complex correlations such as the correlation between an air conditioner and temperature
events, and (ii) DeepLog and IsolationForest cannot effectively mine interaction correlations
across different events.

Communication Cost Evaluation. We measure the communication cost during the training
process by computing the total data transferred (download and upload) between the server and
clients. As shown in Figure 3.5, the total transferred data is less than 40 GB in 60 rounds with 100
clients, which is acceptable for wired network bandwidth. FexIoT saves 40.2% communication
overhead compared with FedAvg [146]. FedAvg needs to aggregate the whole model during the
FL process, and FMTL [179] and GCFL+ [229] also share the whole model but within different
clusters. The low cost of FexIoT is attributed to our proposed layer-wise clustering-based FL

method. At the initial stage, only the parameters of the first layer are uploaded to a server for
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clustering. Then, based on the previous clustering result, the upper layer parameters of models are
uploaded to the server, and the server sends parameters of different layers back to the corresponding
client clusters. Clients in the same cluster share more layers than clients that are in different clusters.

Thus, it reduces the number of parameters transmitted between the server and clients.

3.4.3: Vulnerable Interaction Cause Analysis Evaluation

After vulnerability detection, we implement qualitative and quantitative evaluations to show the
efficacy and efficiency of the proposed vulnerable interaction cause explanation method. We
randomly select 100 interaction graphs that contain vulnerable interactions, which are reported by
the GCN model on the unlabeled IFTTT dataset. Among the 100 graphs, we identify four graphs
that are benign after manually checking, which are false-positive results from the GCN model.

We compare our method FexloT with two baseline methods: SubgraphX [241] and
MCTS_GNN. SubgraphX is a general graph explanation method that applies Monte Carlo tree
search with shapely value to explore various subgraphs, while MCTS GNN applies Monte Carlo
tree search with the prediction score of the GNN model to explore subgraphs. Other graph
explanation methods such as PGExplainer [137] and GNNExplainer [238] can only identify
discrete edges or nodes, which cannot be used for the interaction vulnerability explanation among
nodes. The SubgraphX and MCTS_GNN are implemented by the DIG [132] library. We apply
GCN as the vulnerability detection model because the proposed vulnerable interaction cause
analysis method does not rely on specific vulnerability detection models.

Example Illustration. To visually demonstrate the superiority of our explanation method, we
give two intuitive examples in Figure 3.6. The first row illustrates the example of the false positive
of the GCN model prediction, while the second row illustrates the correct prediction. For the first
row in Figure 3.6, the interaction graph is predicted to contain vulnerable interactions, but it is
deemed benign after manual inspection. The interaction graph describes that when the door opens,
the water flow will run with the switch turned on with a notification sent to users. The user can

notify the app to turn on the camera. Then, if the smoke is detected, the door unlocks and the
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Table 3.3: The content of indexes in Figure 3.6.

Index Rule

23 Connect to the WiFi

47 Turn camera off

62 If the fan runs, turn on water flow switch

174 Turn on cameras if lights are off
281 If smoke is detected, the fan starts
1076  Turn on air conditioner if plug is on
1177  Turn the camera on if get notified
1215  Tap to turn on camera off
1291  Turn on plugs if door unlocked
2184 If smoke is detected, unlock

the door and start fan

exhaust ventilation fan starts. This interaction graph does not contain interaction vulnerabilities,
as shown in Figure 3.6, our FexloT offers a minor misleading explanation subgraph, as it only
identifies the concise subgraph to explain the prediction. By contrast, other methods try to find a

larger subgraph to explain the prediction result, which causes more confusion for the inspector.

Example 2: FexloT explanation result Example 2: SubgraphX explanation result Example 2: MCTS_GNN explanation result

Figure 3.6: Vulnerability explanation comparison.

For the second example in Figure 3.6, the GCN model prediction is correct. It describes that
when the user taps to turn off the camera, the camera will be turned off and the action will be

recorded in a Google spreadsheet. When a new spreadsheet subscriber is added, it will send a
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Figure 3.7: The comparison of Fidelity and Sparsity scores.

notification to turn on the camera. FexIoT, SubgraphX, and MCTS GNN all can recognize the key
subgraph that causes the interaction vulnerability that turns off the camera within a loop. For both
cases, FexIoT can provide a reasonable vulnerability explanation with better visual explanations.

Fidelity and Sparsity. Besides the visualization to evaluate the vulnerability explanation
methods, we use the Fidelity and Sparsity [168] to quantitatively measure the explanation results.
The Fidelity metric refers to the difference between two prediction scores before and after removing
a part structure of a graph. The Sparsity metric refers to the percentage of the structure that
is recognized as important by the explanation model. There is a trade-off between Fidelity and
Sparsity. A high Sparsity score means a smaller structure, which tends to be low Fidelity (less
important). For real-life cases that lack the ground truth, the Fidelity and Sparsity scores can help
measure the explanation quality.

We test the Fidelity and Sparsity scores of 50 randomly picked interaction graphs. The scores
depend on the structure of interaction graphs, which fluctuate among different cases. Half of the
tested cases have relatively high Fidelity which is greater than 0.3, and low Sparsity which is smaller
than 0.7. For better visualization, we plot the curve of Sparsity concerning Fidelity for four cases
as shown in Figure 3.7. The four cases have higher Fidelity and lower Sparsity, or lower Fidelity
and higher Sparsity. Our method FexIoT can strike a decent balance between Sparsity and Fidelity
scores, which means FexIoT can accurately identify the concise subgraphs that are the possible

causes of the vulnerabilities. The results indicate that our explanation method can find the important
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Table 3.4: Runtime efficiency with different datasets.

Graph Construction  Prediction Vulnerability

Time (s) Time (s)  Analysis Time (s) Model Size (MB)
IFTTT 17.19 0.52 2.18 5.48
Hetero. 976.99 0.61 3.64 6.13

yet concise subgraph for prediction explanation, which is more faithful for interaction analysis.
Vulnerability Explanation Efficiency. As shown in Table 3.4, the 12,758 heterogeneous
graphs generation takes 980s. The size of the MAGNN model for heterogeneous graphs is only
6.13MB, which makes it feasible to train the model on devices such as a Raspberry Pi. The
prediction time is 0.61s on average, which is related to the graph size. For vulnerability explanation,
the average cause discovery time is 3.64s for an interaction graph. It takes 182s for 50 graphs with
18 nodes on average. Note that the time is related to the algorithm parameters such as the number
of MCTS iterations, and the kernel SHAP samples. Overall, the FexIoT achieves vulnerability

analysis with high efficiency.

3.4.4: Discussion

Security and Privacy

We acknowledge that FexIoT itself faces security and privacy issues. For example, it might suffer
from Sybil attacks and data poisoning attacks [56,72,103,256] when an attacker controls multiple
clients to attack the system. One possible solution is to enhance the software and network security
(e.g., using firewalls, CAPTCHAs, or device-specific asymmetric keys) in smart homes to protect
the internal FL model. Moreover, there are several defense methods that can identify sybils based
on the diversity of client updates [72], training loss from randomly selected sets of clients [103],
and feature importance [256], which could be integrated into FexIoT. To enhance the data privacy,
we will add differential privacy [61, 134,226] and secure aggregation mechanisms [19,42,129] to

FexIoT in the future.

74



Data Labeling

Providing ground truths is necessary for scientific evaluation. Existing works [57,122,242] have
proposed methods for efficient data annotation. In this chapter, we detailed how to manually label
the dataset with cross-validation. In the future, we plan to combine experts, amateurs, and ML
models for cross-validation to further enhance the quality of labels for IoT data. For example,
experts can label a few samples and develop few-shot learning-based models. ML models and
amateurs can collaboratively label new data. Iteratively, the newly labeled data could be used to

re-train the model.

3.5: Summary

IoT data security and privacy management are essential for many IoT applications. In this chapter,
we investigate how [oT rule configuration data could expose interaction vulnerabilities across
heterogeneous closed-source platforms. We present and implement a novel [oT data management
solution, FexIoT, that leverages federated and explicable graph learning to analyze large-scale loT
interaction data. We design the fine-grained dynamic clustering-based federated contrastive graph
representation learning algorithm to discover interaction vulnerabilities and tackle the concept drift
problem of smart home data. We propose the MCBS-based search method with SHAP value to
search and measure the risk of each subgraph. With the data collected from 5 real-world IoT
platforms, we demonstrated the superior performance of FexIoT in detecting and tracking the root

causes of interaction vulnerabilities.
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CHAPTER 4: ACOUSTIC-BASED FACIAL
EXPRESSION RECOGNITION?

4.1: Introduction

With the emergence of new media in the digital era, a variety of social media services are craving
users’ attention. Fine-grained emotional reaction understanding is pivotal to facilitating a user’s
interaction with digital content. Traditionally, crowd-sourced ratings and reviews have been used
for evaluating users’ feedback on services. However, they are too coarse-grained to provide real-
time spontaneous feedback. To provide a more personalized service, we need an accurate and
robust approach to recognizing the users’ emotions and acquiring spontaneous feedback.

A number of techniques have been proposed to recognize emotions, expressed by various
biometric features, such as facial features [32, 75, 155], speech features [156], or heartbeats [250].
Nevertheless, as a universal form of nonverbal communication, facial expression is recognized as
the most direct way of understanding human emotions [126]. There are six widely adopted facial
expressions (FEs): anger, disgust, fear, happiness, sadness, and surprise [63]. These FEs can be
modeled by the Facial Action Coding System (FACS), which includes action units (fundamental
action muscles) and action descriptors (unitary movements of several muscle groups) [41]. When
people make different facial expressions, different facial muscles will move, which could be
captured by various sensing signals.

Existing facial expression recognition (FER) methods can be categorized as camera-

based [23, 163, 183], radio-based [36, 40, 81] and acoustic-based [75] expression recognition.

3This chapter is based on previously published work by Guangjing Wang, Qiben Yan, Shane Patrarungrong,
Juexing Wang, and Huacheng Zeng titled “FacER: Contrastive Attention based Expression Recognition via Smartphone
Earpiece Speaker” published in the Proceedings of IEEE Conference on Computer Communications (INFOCOM).
DOI: 10.1109/INFOCOMS53939.2023.10228985 [216]. © 2023 IEEE. Reprinted, with permission, from Guangjing
Wang, Qiben Yan, Shane Patrarungrong, Juexing Wang, and Huacheng Zeng, “FacER: Contrastive Attention based
Expression Recognition via Smartphone Earpiece Speaker” (paper and IEEE titles are the same), August 2023.
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Figure 4.1: Facial expression recognition using a smartphone.

However, the existing camera-based methods raise privacy concerns due to their continuous video
recording on a device. For instance, FaceWarehouse [23] collects RGBD images of different
expressions from different users. Yet, serious privacy concerns impede the wide adoption of
such methods in a real-world scenario. Moreover, these camera-based methods cannot accurately
recognize facial expressions when the users cover their faces with masks. Other alternative
methods require extra sensing devices, affecting the usability. For example, WiFace [36] uses a
WiFi router with three antennas placed at a specific position for FER, but it requires additional
hardware and configurations. Similarly, PPGface [40] requires expensive wearable devices with
photoplethysmography sensors.

We propose FacER, a Facial Expression Recognition system based on near-ultrasound
acoustic sensing on a smartphone. We utilize commodity smartphones to emit near-ultrasound
signals (19-23 kHz) towards the user’s face. As shown in Figure 4.1a, the microphone on the
smartphone will receive the reflected echoes from the face surface, which will carry the facial
expression information. By examining the fine-grained echo patterns, FacER can differentiate six
different types of facial emotional expressions as shown in Figure 4.1b. We demonstrate that in a
scenario where a user holds a smartphone at a relatively stable distance (e.g. 20-50 cm), FacER
can recognize six universal facial expressions with more than 85% accuracy. Compared with

the state-of-the-art acoustic-based SonicFace [75], FacER uses a commodity smartphone without
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requiring a customized microphone array, providing a more convenient and usable solution.

There are two main challenges in designing FacER. First, acoustic interference, such as the
multipath of reflected signals and environmental noises, can significantly impact recognition
performance. Apart from the echoes reflected from the face, the microphones can also receive
echoes from the surrounding obstacles. It is imperative to mitigate or remove any undesired signals.
However, even with the application of various noise-reduction techniques, the environmental
noises at a similar frequency to the emitted signal could persist. There could be a similar distance
between the smartphone and obstacles as the distance between the smartphone and the user.
Besides, there could exist low-frequency and high-frequency environmental noises. Therefore,
we propose a contrastive external attention-based learning model to depict more robust facial
expression feature representations from the noisy data. In this way, the model can distill the
universal features of expressions while eliminating background noises.

Second, different users express facial expressions in different manners, and even the same user
could express them differently at different times. This will result in the domain adaptation issue,
a common issue in machine learning (ML) models, where a model trained on a labeled dataset
(source domain) has limited performance on a testing dataset (target domain). This is because the
target domain dataset has a distribution shift with the source domain dataset, which violates the
independent and identically distributed (i.i.d.) assumption of ML models. Therefore, we propose
a domain adaptation contrastive learning algorithm to align the distribution of the source domain
and target domain dataset. In this way, FacER can achieve consistent performance in recognizing
various expressions across different users.

We evaluate FacER on a dataset collected from 20 volunteers of different ages, genders, and skin
colors in various environments. We show that FacER can effectively recognize six different facial
expressions from different users. Remarkably, it achieves more than 90% test accuracy when the
training and testing datasets have the same distribution. It achieves more than 85% accuracy when
training and testing on different sets of users. In summary, we make the following contributions:

* We design FacER, which uses a contrastive external attention-based acoustic facial
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Figure 4.2: Illustration of Preliminaries.

expression recognition model to learn representative and robust facial expression features
while eliminating the background noise.

» We propose the domain adaptation contrastive learning algorithm to align the training and
testing data distributions, which can largely mitigate the negative effects of variations in
users’ facial expressions.

* We implement the smartphone-based system FacER and perform the evaluations in various
real-life scenarios. FacER outperforms the state-of-the-art approaches by more than 10% in

recognition accuracy with high mobility and convenience.

4.2: Background

In this section, we introduce the background of acoustic signals, the preliminary knowledge of

attention mechanisms and contrastive learning.

4.2.1: Acoustic Signal

The acoustic signal refers to a coded chirp signal transmitted by a device. Especially, the
chirp sound signal is the frequency-swept signal, which is modulated in frequency as shown
in Figure 4.2a. Particularly, the chirp signal can be regarded as the component of sawtooth
modulation in the Frequency-Modulated Continuous Wave (FMCW), which changes its operating
frequency during the measurement. In FMCW, the frequency of the signal will periodically

increase or decrease during transmission. The differences in frequency between the transmitted
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and received signal are proportional to the time delay At. Therefore, the FMCW can measure the

small movement of the target, which is calculated as follows:

wlAl _ wlAf|T

R==3 9B

4.1)

where R is the distance between the sound source and the reflecting object, vy is the speed of sound
(340 m/s) at 20 °C, At is the delay time, and A f is the measured frequency difference. B is the chirp
frequency bandwidth, and 7" is the chirp periodic time. The duration of the transmitted waveform
T should be greater than the required receiving time for the distance measuring range. We use % to
measure the frequency shift per unit of time. Therefore, with the features of the FMCW, the chirp

signal can help group reflections from various distances into multiple range bins.

4.2.2: Attention Mechanism

Similar to the human visual system, attention mechanisms [207] aim to focus limited attention on
key information, which saves resources and distills the most essential information. The basic idea
of attention mechanisms is to combine all of the encoded input features in a weighted fashion, with
the most important features receiving the highest weights. The self-attention mechanism improves
the representation at each position by combining features from other positions in a sample (e.g.
image), and it captures long-range dependencies.

Given a feature map I € RY*9, where N is the number of elements and d is the feature
dimension of each element, by multiplying three different random initialized weight matrixes, self-
attention projects the F' into a query matrix QQ € RV*% a key matrix K € RV*? and a value

matrix V € RV*4, The self-attention is represented as follows:

Fou = softmar(QKT)V, (4.2)

where softmaz(QKT) is the attention matrix, and the F,,; is the improved feature representation

of the input F.

80



4.2.3: Residual Attention Network

Residual attention network (RAN) [213] is a type of convolutional neural network. The RAN
contains multiple attention modules that generate attention-aware features. In each attention
module, there are trunk branch 7'(z) and mask branch M(z). The T(x) performs feature
processing, and M (z) softly weight output features of 7'(x). The output of the attention module is

H; (z) = M, (x) % T; (), 4.3)

)

where ¢ covers all spatial positions, and c is the index of a channel. However, directly stacking
multiple attention modules would degrade the model performance. Therefore, the residual learning
mechanism is applied to optimize the performance. The main design of residual learning is the
skip connections that jump over some neural network layers, containing nonlinearity activations

and batch normalization. Thus, the modified output H of the attention module is

H(z) =14+ M, (x))* F,.(x), (4.4)

where F; () is the original features, which can be approximated when M(x) is 0. This method
is called attention residual learning. The facial expression echos contain multiple facial muscle
movements, as well as the background noise. Therefore, it is essential for the neural network to

capture different important aspects of expressions.

4.2.4: Contrastive Learning

A domain D = {X, P(X)} includes the feature space X and marginal probability distribution
P(X). If two domains are different, they have different X or P(X), but the label space is the
same. In our context, the source domain refers to the dataset with labels while the target domain
indicates a dataset with different distributions.

Contrastive representation learning aims to learn an embedding space where dissimilar samples

are spread out and similar samples remain close together. Normally, a positive pair refers to a pair
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of samples that have the same label, and a negative sample pair has different labels. The contrastive

loss with two samples is defined as

Lo(xi,x;,0) = Lly; = yjlll fo(xi) — fo(x))l2

+1[y; # y;lmax(0, € — || fo(xi) — fo(x;)[12)?,

(4.5)

where 1[y; = y,| means the value is 1 if two samples have the same label, otherwise is 0. 1[y; # y;]
means the value is 1 if two samples have different labels, otherwise is 0. € is the upper bound
distance to avoid the exceptional contribution of some dissimilar pairs.

The supervised contrastive loss [106] is defined as follows when the training objective includes

multiple positive and negative pairs in one batch:

Z log exp(2i - 2p/T)

’ 4.6
peP(i) Saca() erp(zi - 2q/T) (4.6)

—1
L= :
2 PO
where [ is a set of samples = within a batch, A(i) = I\{i}, P(¢) is a set of indices of all positives
in the multiviewed batch, |P(7)| is the cardinality, z = Proj(Enc(z)) is the encoded feature
representation by an encoder model Enc(-) and a projection layer Proj(-) such as a linear layer.

The - denotes the inner product, and 7 is a temperature parameter to adjust the final results.

4.3: System Design

In this section, we design the acoustic sensing and signal pre-processing techniques to prepare the
sensing data. Then, we propose the contrastive external attention-based domain adaptation model

for acoustic facial expression recognition.

4.3.1: Acoustic Sensing Design

A unique facial expression contour is a distinct collection of various reflecting surfaces. As different
objects absorb and attenuate sound waves to different degrees, it is possible to differentiate between

the reflected echoes from objects and those from facial expressions [254].
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Signal Generator

On a smartphone, there are usually one main speaker and microphone at the bottom or on the
back, and an earpiece speaker and microphone at the top of the phone body. Considering that the
earpiece speaker has a proper position to illuminate a user’s face as shown in Figure 4.1a, we select
the earpiece speaker for emitting the acoustic signal. Similarly, considering the gesture of holding
a phone, the top microphone is chosen since it is less affected by the hand.

The acoustic signal should satisfy the following properties. (i) The period of the signal should
be moderate to minimize the overlap of echoes from various distances. (ii) The signal should be
distinguishable from the background noise in the frequency domain, while the noise frequency is
mostly under 8 kHz. (iii) The signal ought to be inaudible in real-world scenarios. Therefore,
considering that the change of facial expression happens within 1 second, we choose a chirp signal
of 25 milliseconds with frequency sweeping from 19-23 kHz to compose the inaudible acoustic
signal with fading at the start and the end. In this way, we can better capture the expression features
caused by muscle movements and filter out echoes from different obstacles. According to the
Nyquist sampling theorem, the sampling rate is set as 48 kHz. FacER leverages the earpiece speaker
to periodically emit the near-ultrasound signals and simultaneously uses the microphone to receive
the signals reflected by the face. We set up the time interval as 50 milliseconds to allow all the
reflected signals from the previous chirp to be received, such that we can separate two chirps before

the following chirp is transmitted.
Noise Removal

Expression-irrelevant signals from various background noises, nearby people and obstacles should
be filtered out. To achieve that, we first apply a 19-23 kHz band-pass filter to keep the desired
frequency band and filter out the background noise. There remain three main types of signals in
the received recording: (i) the direct path signal directly travels from the speaker to the microphone;
(11) the major echo signal 1s the mix of echoes from the facial contour, which is the interest of FacER;

and (iii) the noisy echo signals are echoes from different obstacles in the environment because of
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Figure 4.3: The raw signal and the signal after noise removal.

the multipath of reflected signals. Figure 4.3 shows a segment of the raw signal (in blue) and the
processed signal (in orange) after filtering out the background noise and the direct path signal noise.

To remove the interference of the direct path signal, inspired by AIM [144], we use a separate
speaker and microphone to record the direct transmission by positioning the devices in a clean and
quiet space. Therefore, we remove the direct path signal from the received samples by minimizing
||S — ¢Sq4l|, where S denotes the received samples, Sy denotes the pre-recorded direct signals, and
c is a scaling coefficient to achieve optimal cancellation which is set as 0.9 in our experiments. In
this way, we remove the direct path signal from the speaker to the microphone.

Then, we proceed to remove the noisy echo signals. In the FacER application scenario, a user is
facing a phone, so we assume that there is a relatively stable and static distance between the phone
and the user’s face. We consider filtering out the noisy echo signals from the nearby obstacles at
different distances. The FMCW provides distance measurement, which is an important tool for
differentiating among different echoes when more than one source of reflection is received. A
comfortable distance between human eyes and the phone is 25 — 50 ¢m [254]. Therefore, based on

Eq. (4.1), we can calculate the desired frequency shift as:

2RB

Af| = :

(4.7)

Thus, |Af| is between 235 Hz and 470 Hz. We further analyze the FMCW distance measurement

resolution. Given the minimum measurable frequency shift Af,,;, = 1/7, we can compute the
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Figure 4.4: The spectrogram of six expressions in 50 milliseconds. The first row is from a woman
without a mask, the second row is from a man without a mask, and the third row is from the same
man with a mask.

resolution d, that FMCW separates mixed echoes as:

UOAfmin'T Vo
dy = ——r— = —. 4.8
2B 2B (4.8)

Thus, d, is % = 4.25 cm. The resolution of the major echo signal corresponding to a single

sample is 53~ = 3.54 mm, where Fj is the sampling frequency 48 kHz.

4.3.2: Contrastive Attention-based Domain Adaptation

We use the Short-Time Fourier Transform (STFT) with the Hann window to process the signal,
which outputs the complex amplitude, and we compute the absolute values of the STFT values. The
generated spectrogram is used as input for our proposed model in Algorithm 6. Figure 4.4 shows
the spectrogram of the segmented major echo signals of different expressions from two volunteers.
We can observe that, for the same person, different expressions will yield different spectrograms.
For the same expression, different people have different ways of making expressions.

However, we make two observations that would affect the modeling performance. First, it is
nearly impossible to entirely remove noisy echo signals from different obstacles at various distances

in some scenarios. We set up the desired frequency shift |A f| as 500 Hz in Figure 4.4. However,
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Figure 4.5: The contrastive attention-based domain adaptation model for acoustic facial
expression recognition using smartphone earpiece speaker.

there could be minimal multipath changes caused by body motions or objects between the face
and the phone, which is hard to filter out since the resolution d,, for FMCW to separate mixed
echoes is 4.25 cm. For example, the second row in Figure 4.4 is from a man without a mask, while
the third row is from the same man with a mask. We can observe subtle differences between the
corresponding spectrograms (e.g., “surprise”) in the two rows. Considering that the image-based
expression recognition model can cope with various backgrounds around the face in an image to
extract the facial expression-related features. Similarly, we aim to design the model to pay attention
to the acoustic facial expression features.

Second, normal ML models face the poor generalization problem when there is a distribution
shift between the training and testing datasets [258]. For example, as shown in the first and
second rows of Figure 4.4, for the same expression, different people will have different ways of
expressing facial emotions, as manifested in the differences in the corresponding spectrograms.
These differences will cause distribution shifts. Therefore, we should align the training and testing
data distribution before training a classification model. Moreover, the model should only require a
limited amount of enrollment data to improve its usability. Yet, it is challenging to extract useful
features that can identify expressions from weak signals with limited acoustic samples.

To tackle these challenges, we have developed a contrastive attention-based domain adaptation
model aimed at extracting consistent acoustic facial expression features, as depicted in Figure 4.5.
The core principle of domain adaptation in this context is to minimize the disparities in feature
representations of expressions across different domains. Yet, acquiring a sufficiently diverse and

extensive dataset to train deep learning models for robust facial expression feature extraction poses
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a significant challenge. To overcome this, our initial step involves augmenting the dataset to ensure

a broader representation of facial expressions from various populations.
Data Augmentation

Data augmentation, which involves adding modified versions of existing data or generating new
synthetic data from existing data, is a typical technique to address the data deficiency problem.
First, it can mitigate the model overfitting problem when the original dataset is relatively small.
Second, contrastive learning learns discriminative representations by bringing together positive
pairs and separating negative pairs. The different augmented views of each sample can compose
positive pairs that have the same labels, which enhances the model’s discriminative ability.

We propose to use two methods for acoustic expression data augmentation. First, we shift the
acoustic expression signal segment by the same distance. In accordance with the inverse square law
of sound propagation, the amplitude of the signal is changed by a scale equal to the inverse square
of the distance (e.g., 0.3 meters). Second, for the generated spectrograms, we produce different
versions of the spectrogram by multiplying the magnitudes of the spectrogram by a scalar. We
generate the scalar by sampling from a Gaussian distribution with the mean being 0 and the standard
deviation being 0.1. Considering our scenario when a user is holding a smartphone, a small device
rotation at a fixed position creates negligible changes in the signal due to the omnidirectional nature
of speakers and microphones, therefore, we only consider the changes in the device positions for
acoustic signal transformation. In this way, we can grow and enrich our acoustic facial expression

dataset for contrastive external attention learning.
Pseudo Label Generation

A domain D = {X, P(X)} includes the feature space X' and marginal probability distribution
P(X). If two domains are different, they have different X or P(X), but the label space is the
same. Suppose we have a source domain with a fully-labeled expression training dataset D, and
an unlabeled testing dataset D; is the target domain, which has the same categories as the source

domain. The first problem is how to form the positive pairs from the same category of D, and D,
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when the labels in D, are unknown.

Inspired by DeepCluster [24], we generate pseudo labels for unlabeled data in D, according to
the highest category probability. Specifically, we propose to use K-means clustering to generate
pseudo labels, re-train the current model and adjust the noisy pseudo labels iteratively. For each
iteration, we first calculate the centroid for each class in the target domain:

(i) _ Zaex 0(2)ge(wt)

= 49
S SR P B (*9)

is the softmax function

where c,(j) i _exp(z)

is the centroid for class k at the i, iteration, §(z) = S (e

that is used to output category probability. g¢;(z;) outputs the representation of an acoustic
expression sample z;, and z; = h(g;(x;)) is the linear transformed representation of x;. The
centroids can characterize the distribution of categories within the target domain. The pseudo

labels are obtained via the nearest centroid:

Yy = arg min cos (g, (), cx), (4.10)
k

where cos(-) is the cosine distance between the representation embedding ¢;(z;) and the centroid
embedding c;. As a result, we can obtain pseudo labels for the target domain dataset and compose
the positive and negative pairs using both source and target domain datasets. Then, we iteratively

update the model parameters by minimizing the loss function in Eq. (4.13) described below.
Attention-based Expression Learning

Given the challenge of eliminating all noisy echoes, the model needs to learn to differentiate
between echoes related to facial expressions and those stemming from background noise. While
self-attention mechanisms are commonly employed to learn robust features, their quadratic
complexity and lack of consideration for potential correlations between different samples limit
their effectiveness. Each facial expression generates multiple data samples (at a rate of 0.1 seconds
per sample for an expression lasting approximately 1 second). By identifying and leveraging the

correlations among these samples, the model can be trained to concentrate on the consistent and
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common features specific to acoustic facial expressions, enhancing its accuracy and reliability in
feature extraction.

To generate the expression representation z, as shown in Figure 4.5, external attention [83]
is applied to focus on important features and implicitly learn correlations among all expression
samples. Following symbols in Eq. (4.2), we first compute the attention map A = QM by
multiplying the query vector ) and the external learnable transposed key matrix M; € R*%
Q is projected from a feature map F' € RN*?, where N is the size of feature elements, d and S
are hyper-parameters. We normalize the attention map A and then multiply it with another external
value matrix M,. M) and M, are generated by additional linear layers, which can be optimized by

back-propagation during training on the entire dataset. The feature map F,,; is as follows:

Fou = Norm(QME)M,. (4.11)

In the end, we obtain the refined feature map with linear complexity O(d - S - N'), which is suitable

for resource-constrained mobile devices.
Feature Alignment for Domain Adaptation

Reasonably, we assume that samples with the same label are closer to each other in the feature space,
while samples from different categories are farther apart, no matter which domain they come from.
With the augmented dataset, pseudo labels, and the attention-based learning model, we design
contrastive learning to minimize the domain discrepancy by aligning facial expression features
between the training and testing datasets.

Specifically, given an acoustic facial expression sample x, from the source domain, and a
sample x; from the target domain, we minimize the distance between z; and x; if two samples are
from the same class while maximizing the distance between two samples from different classes. The

output of the model is domain-independent expression representations. Following the supervised
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Algorithm 6: Contrastive Attention-based Cross Domain Acoustic Expression
Representation Learning
Input: source dataset Dy, target dataset D;, epoch F, iterations K per epoch, weight ),
contrastive attention-based model f
Output: source and target representations Z* and Z*
1 fore=11t F do
2 Calculate centroids in target domain using Eq. 4.9
3 Update pseudo labels for target data using Eq. 4.10
4 for k=11t K do
5 for each batch do
6 Extract features with f based on external attention in Eq. 4.11
7
8
9

Compute L., for each batch from D
Compute L. from Dy and D, using Eq. 4.12
Compute L..(0; D) + ALL(6; D, Dy)

10 end

1 Back-propagate and update 6 of model f

12 end

13 end

14 for each batch Xpgz.p, do

15 Generate source domain expression representation Z; ., = f(X;,,.,) for Dy
16 Generate target domain expression representation 2}, ., = f(X},.en) for Dy
17 end

18 return Z° and Z*

contrastive loss in Eq. (4.6), we define the domain adaptation contrastive loss as follows:

JoRE SR SRR C A ey (4.12)

TP ity Saer, exn(eh - 22 7)

where I; denotes the set of target samples in a batch, I is the set of source samples, and P (y})
is a set of indices of all positive samples from the source domain. A positive sample means the
label of the sample is the same as the pseudo label of the target anchor sample x;. The domain
adaptation contrastive loss aligns the expression representation in the target domain to the source

domain. Finally, we define the acoustic expression representation learning loss function as:

argmin L..(0; D) + \LE(O; Dy, Dy), (4.13)
0
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where L. is the standard cross-entropy loss applied on the Dg, A is used to balance the two loss
terms (0.5 in our experiments), and 6 represents the model parameters.

Overall, the proposed contrastive external attention-based acoustic expression representation
learning model is presented in Algorithm 6. After data augmentation, in each epoch, we first
generate pseudo labels for target domain acoustic samples (lines 2-3). Then, we minimize the
loss and back-propagate to update the model f (lines 4-12). After training, model f can align
features for domain adaptation, and in turn minimize the distribution shift. We use the trained
model f to generate the acoustic expression representations Z° and Z* (lines 14-17). Finally, we
can train a classifier on source domain representations Z°, and generate labels for the target domain
representations Z*. The proposed algorithm effectively enhances the expression recognition model

performance across different users.

4.4: Evaluation and Discussion

We introduce the data collection process, the software, and the hardware setup for acoustic
expression recognition implementation. Then, we evaluate the impacts of multiple factors (e.g.,

location, time, people, mask) on the performance of FacER for expression recognition.

4.4.1: Data Collection

We recruited 20 volunteers (16 males and 4 females) to participate in the acoustic facial expression
data collection process. To guarantee the heterogeneity of collected facial expressions, the
recruited volunteers have different skin colors and grow up in different regions of the world
such as Asia, North America, and Europe. Their ages range from 20 to 38. The participants
are allowed to wear glasses, a hat, and other accessories during the data collection process. To
simulate different scenarios in real-life, we collect data at different locations (e.g., office, dining
hall, garden) with different background noise. For example, we collect data in an office with
people having conversations, online meetings, and computer alarm beeping.

We show the six facial expressions: anger, disgust, fear, happiness, sadness, and surprise as
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Figure 4.6: A smartphone and a volunteer for data collection.

examples at the beginning of data collection. Then, a volunteer starts with a poker face and performs
their preferred styles of six expressions accordingly. Figure 4.6 shows the example of a smartphone
and a volunteer during the data collection process. The volunteers are allowed to hold the phones in
their most comfortable gesture while watching the smartphone screen. Considering the necessity
of wearing masks during the COVID-19 pandemic, we also consider expression recognition in
scenarios where the participants are wearing disposable masks. For each expression, we collect
about 5 seconds when the participants wear masks, and another 5 seconds when they do not.

The acoustic facial expression collection process repeats 10 times for each expression per
person with rest breaks during the data collection process. An independent observer helps record
the label of each acoustic expression sample as the ground truth. The whole data collection process
takes about a week intermittently. The collected dataset is over 1 GB in plain text format. Finally,
we get 20,535 samples with the sliding windows segmentation, of which the window size is 0.25s.
The design consideration is that if the window size is too small, it will be hard to reflect the integral
process of facial muscle movements. If the window size is too large, it will easily mix instantaneous

variations of different facial expressions.
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4.4.2: Experimental Setup

We use two Android phones: the Samsung Galaxy A21, and the OnePlus 8T to collect the
acoustic signals. We develop the app to emit and collect signals based on the LibAS [204] and
Chaperone [33], which provide a framework for acoustic sensing applications. LibAS can simplify
the necessary signal processing procedures such as synchronization, which determines the start
position of the sent signals in the received audio. The sensing signal is a chirp signal modulated
from 19-23 kHz, which is emitted from the earpiece speaker of a smartphone.

We employ the SciPy library for signal processing. We use ResNet-18 [88] as the backbone
model for our contrastive attention-based expression recognition model, which is implemented
with Pytorch. We train the model on TensorEX Ubuntu 20.04 Server with 256GB DDR4 memory,

Intel(R) Xeon(R) Gold 5218R 2.10GHz CPUs, and RTX A6000 GPUs.

4.4.3: User Dependent Evaluation

The confusion matrixes are shown in Figure 4.7. Case 1: training and testing on the mixed dataset;
Case 2: training on men’s dataset and testing on women’s dataset; Case 3: training on users with
masks and testing on users without masks; and Case 4: training on users without masks and testing
on users with masks. The tick labels are angry, disgust, fear, happiness, sadness, and surprise. The
x-axis contains the prediction labels, and the y-axis contains the ground truth labels.

Case 1a. We first consider a simple scenario, where we can collect and label acoustic data from
a group of users. Our goal is to recognize the facial expressions from this specific group of users,
namely mix testing. We split 80% of the whole dataset as the training set and the remaining 20% as
the testing set. We only use the external attention-based ResNet-18 model without cross-domain
adaptation to implement classification. We use the SGD with a momentum of 0.9. The learning
rate is 0.1 with a learning rate decay rate of 0.01. We show the performance of FacER with an
accuracy heat map in Figure 4.7a. As we can see, the model can recognize each acoustic facial
expression with more than 91% accuracy. Besides, we implement the 10-fold cross-validation, and

the average testing accuracy is 94.3% with a standard deviation of 0.4%. However, the results are
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Figure 4.7: Evaluations of different cases.

unsurprising because the training dataset and testing dataset belong to the same distribution. As a
result, the model can easily fit in the dataset.

Case 1b. Next, we consider the impact of the environmental factors on the performance of
FacER. We test the model performance on the data collected in three different locations, i.e., office,
dining hall, and garden. We repeat the /eave-one-place-out evaluation by training on data from
two places and testing on data from another place. We implement Algorithm 6 to extract feature
representations, and then we use a linear classifier with two linear layers network with hidden layer
sizes 1,024 and 256 to implement expression classification.

We compare the performance of FacER with two baselines: (i) ResNet-18 [88], which is our
backbone model trained with cross-entropy loss without adopting attention; (i) XHAR [258],
which is the adversarial training-based domain adaptation method for human activity recognition.

The adversarial training is another major direction for cross-domain adaptation, so we choose it as
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Figure 4.8: The bars of location factor evaluation.

the baseline. We adapt XHAR to make it applicable for facial expression recognition.

We report the average accuracy, precision, recall, and F1 values across three locations in
Figure 4.8, which is a bar plot on the polar axis. FacER achieves 89.8% average accuracy, which
is a bit lower than the mix testing method (94.3%). The standard deviations of the accuracy of
FacER, ResNet, and XHAR from three leave-one-place-out evaluations are 0.017, 0.014, and
0.016, respectively. The results show that the location causes the distribution shift and affects the
model performance because of the noise caused by different obstacles. Nevertheless, the model
still achieves high performance with an F1 value of 90%, which is higher than the XHAR method
(82.6%). The result proves that FacER can learn consistent and robust acoustic facial expression
features even in a noisy environment with various types of noises.

Case 1c. We consider a more complex scenario that is related to time variation. The
consideration is that the same facial expression may not be consistent over time. For example,
sometimes people may show a wide smile while other times people may show a gentle smile to
express happiness. Therefore, to evaluate the time factor for acoustic facial expression recognition,
we split the dataset into two subsets according to the time. The first subset is the first 8 times of
data collection for each facial expression per person, which is the training dataset. The second
subset is the last 2 times of data collection, which forms the testing dataset.

The results show that the time factor affects the model performance. Under the time factor
condition, the accuracy of FacER is 90.3%. The precision and recall are 90.5% and 90.3%,

respectively. The model has slightly worse performance (4% lower accuracy) than Case 1a, which
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Figure 4.9: The precision-recall curve of time factor evaluation.

shows that the changes of the same expression over time indeed degrade the recognition accuracy.
Nevertheless, FacER can still achieve high performance, which shows the efficacy of the designed

model in acoustic expression recognition. We show the precision-recall score curve in Figure 4.9.

Precision is tpjf’fp and recall is tpipfn, where ¢p means true positive, fp means false positive, fn
means false negative. The tradeoff between precision and recall for various thresholds is depicted
by the precision-recall curve. The area in Figure 4.9 is calculated by the average precision (AP):
AP = >, (R, — R,_1)P, where P, and R, are the precision and recall at the ny, threshold
automatically set by Scikit-plot [152]. For different classes, FacER can achieve at least a 0.958

AP score. A high precision-recall (area) score under the curve shows both high recall and high

precision, which indicates low false-positive and false-negative scores.

4.4.4: User Independent Evaluation

Case 2. Now we consider a more general scenario where the model is trained and tested on different
sets of users. Different people have different face geometries and behaviors. As a result, they may
produce distinct feature patterns. To evaluate FacER in the user-independent scenario, we use the
dataset from 16 men as the training dataset and that from 4 women as the testing dataset.

We first show the efficacy of the K-means model in clustering the acoustic facial expression
representations. We randomly select 2,048 samples from the training dataset in Figure 4.10a and

from the testing dataset in Figure 4.10b, respectively. As we can see, the K-means model can
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separate the six types of expressions from both training and testing sets, which indicates the learned
representations contain consistent and distinctive features. During the iterative training process,
the pseudo labels of the testing data can be accurately updated. Therefore, the proposed model can
effectively compose positive and negative pairs for contrastive attention learning.

The accuracy heatmap is shown in Figure 4.7b, and the average accuracy is 85%, which is lower
than the results from Case 1a because of the user expression differences. We notice that men and
women have different ways of expressing “disgust”, which causes FacER to only achieve 78.7%
accuracy. But the result shows that men and women have high similarity in expressing “surprise”,
which achieves 90.5% accuracy.

To evaluate the efficacy of the domain adaptation of FacER, we compare FacER with the three
baselines: XHAR [258], SonicFace [75], and ResNet [88] as shown in Figure 4.11. XHAR and
ResNet are set up as in Case 1b. SonicFace uses both FMCW and pure tone signals to extract
different features. It focuses on tracking the movement of facial components such as the eye,
eyebrow, and cheek, and it uses 1D convolution for signal processing. In contrast, we regard the
spectrogram of the received echos as an image, which is the instantaneous static facial expression.
Different expressions will generate different spectrogram features as the different pixels of facial
expression images. Therefore, we use the 2D convolution. Due to the key difference in the
applied signals, we directly report their best performance in Figure 4.11. For SonicFace, the
average accuracy of the intra-session classification is 78.6%, while the best accuracy of the user-
independent model with calibration is 72%. For the user-independent Case 2 scenario, FacER can
achieve 85% accuracy and 85.2% F1 value. The adversarial training-based XHAR method only
achieves 79.1% accuracy and 78.7% F1 value. The results show the superior performance of our
proposed contrastive external attention-based representation learning method, as it helps extract

robust and accurate acoustic facial expression features.
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(a) Clustering on the training set. (b) Clustering on the testing set.

Figure 4.10: K-means clustering on 2,048 sampled representations, which are processed with
TSNE dimension reduction.

4.4.5: Mask Factor Evaluation

Case 3 and 4. Masks are obvious obstacles to camera-based facial expression recognition methods.
It is very common for people to wear masks during the Covid-19 pandemic. We investigate the
performance of FacER when people wear masks. As mentioned before, half of the dataset is
from volunteers wearing masks (mask dataset), and the remaining half is from volunteers without
wearing masks (plain dataset). We train FacER on the plain dataset and test on the mask dataset,
and the result is shown in Figure 4.7c. The average accuracy is 8§7.2%. Then, we train FacER on
the mask dataset and test on the plain dataset, and the result is shown in Figure 4.7d. The average
accuracy is 84.9%. As we can see, the mask has a noticeable impact on the performance of FacER.

Another interesting finding is that FacER achieves the highest accuracy of 90.8% about the
“fear” expression when training on the plain dataset, while it achieves the lowest accuracy of 79.5%
about “fear” when training on the mask dataset. This is because the mask itself will generate
some echoes back to the microphone, which will cloud the echoes from the facial expressions.
It is harder for FacER to learn robust “fear” features when people wear masks. Nevertheless, for
the “happiness” expression, people have a larger facial muscle movement, which could trigger
the movement of masks. As a result, it can achieve 88.7% and 88.5% accuracy when testing on

the mask and plain datasets, respectively. Overall, in different mask factor scenarios, FacER can
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Figure 4.11: The comparison across different models.

achieve comparable accuracy with Case 2. The results confirm the cross-domain adaptation ability

of our proposed contrastive attention-based representation learning method.

4.4.6: Discussion

Data Perspective

FacER is a data-driven acoustic facial expression recognition system based on the contrastive
attention-based deep learning model. The quality and quantity of the acoustic sensing data
are important to the performance of FacER. We will collect more data from female users and
underrepresented groups to reflect the diversity of facial expressions. We will also consider other
forms of emotional expressions such as hand gestures. Moreover, we will collect data on facial
expressions that gap a longer time such as after one week for the time factor evaluation. We will

also try applying generative models to synthesize more data.
Model Perspective

In this chapter, we mainly consider the scenarios where the users hold the phone at a distance of 20-
50 cm. In the future, we will investigate the performance of FacER when the distance between the
user and the phone is longer. We will also study how to determine the start and end of an expression,

so we can effectively segment acoustic signals to extract facial expressions for inference.
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System Perspective

We understand the design difference between different phone hardware, especially its impact on the
direct path from the speaker to the microphone. We will evaluate the effect of different smartphones
on ultrasound signal transmission in the future. Besides, many other real-world impact factors such
as slight hand shaking, finger swiping on the phone, and the orientation of a phone should be taken
into consideration. We will continue optimizing resource usage on mobile devices and mitigate the

security and privacy concerns of mobile sensing data.

4.5: Summary

Facial expression recognition, as a universal way to understand human emotions, is significant not
only for content recommendation but also for mental health care. In this chapter, we designed
FacER, an acoustic facial expression recognition system using a smartphone earpiece speaker
and microphone. To enhance the accuracy and robustness of FacER, we proposed a contrastive
external attention-based representation learning model to learn robust facial expression features
across different users in various noisy scenarios. Real-world experiments show that FacER achieves
expression recognition with more than 85% accuracy even when the users are wearing a mask,
a new norm during the COVID-19 pandemic. In the future, we will explore more expression
variations such as emotional hand gestures to better capture users’ emotions in a privacy-preserving
manner. We will continue to improve the fairness of the facial expression recognition system, i.e.,
the training data should be diverse enough such that the model would not be biased. Moreover, we

will optimize resource consumption on mobile devices.
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CHAPTER 5: MULTI-GRAINED
ACTIVITY SENSING INFORMATION
RELEASE

5.1: Introduction

Smartphones and wearable devices have seamlessly integrated into our daily lives, offering
personalized services with an array of motion and position sensors. These sensors are adept at
capturing three-dimensional movements and orientations, enabling continuous monitoring of user
activities. Such sensors are categorized by operating systems as low-risk, allowing apps to access
their data without specific permissions. For example, on Android platforms, an application can
retrieve sensor data at rates over 200 Hz without needing direct approval from the user [50].
Consequently, an application designed for navigation, utilizing these sensors to determine compass
direction, can continuously gather activity-sensing data, highlighting the ubiquitous presence of
these mobile devices in our daily routines.

The data harvested by mobile sensors often exceeds what is necessary for the intended
functionality of user applications, leading to apps gaining excessive access to this information.
This surplus of access has made mobile applications overly privileged in terms of the data they
can collect [201,237], containing superfluous or minimizable details that service providers do not
necessarily need. Moreover, there is a risk that this data, which is more extensive than needed,
could be exchanged or compromised by entities other than the service provider [11]. Two primary
concerns arise from this overprivileged access in mobile activity sensing: (i) Metadata-level
overprivileged issue, where applications can determine sensitive user information such as age or

gender. The data on physical activities, enriched with unnecessary personal details, could lead
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to privacy breaches, as individuals exhibit unique activity patterns based on their characteristics.
These distinct patterns could potentially be leveraged by malicious attackers to deduce sensitive
user information [100, 101, 141].

(i) Feature-level overprivileged issue: This issue arises when apps access more detailed
activity data than necessary, potentially exposing users’ sensitive behaviors. For example,
consider an elderly individual using a smartwatch primarily for fall detection purposes [182].
While the device’s main function is to ensure safety, it can also monitor detailed hand
movements [37, 110, 147,212]. This capability might allow a nefarious entity to decipher users’
banking passwords or other sensitive information by analyzing precise sensor data [44, 184, 187].
In essence, app developers with malicious intent could exploit the excess motion data to uncover
private behaviors and information unrelated to the app’s intended use [192]. Thus, sensors deemed
low-risk might pose significant privacy threats, as the detailed data they collect could inadvertently
reveal confidential user information.

Many efforts have been made to address overprivileged issues in mobile activity sensing data.
For metadata-level overprivileged concerns, adversarial training techniques [21, 115, 133] have
been employed to obscure personal attributes within sensor data. When it comes to feature-level
issues, a range of filtering strategies [20, 30,79, 171] has been developed to eliminate unnecessary
raw data, leveraging predefined private activity patterns from users. For example, Masklt [79]
offers a mechanism to decide if a data segment should be disclosed or concealed. Nonetheless,
these approaches typically necessitate gathering labeled private data for model training or specific
patterns for filtering, which is infeasible in real-world settings. Besides, semantic label-based
filtering is generally coarse-grained, opting to either fully expose or suppress data segments, thereby
destroying the utility of the data when a segment is associated with a private label.

Adding noise to data [87, 150,219] is another common method for protecting privacy, aiming
to distort both the private attributes and activity semantics. However, due to the repetitive patterns
in sensor data over time, substantial noise levels must be introduced to prevent data cleaning

techniques from effectively removing the noise, which can significantly impair the utility of the
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data, particularly in recognizing activity patterns [143]. Thus, noise addition approaches tend to
be coarse-grained, often impacting the granularity required to finely mitigate overprivileged issues
without compromising data utility.

To address the aforementioned challenges, we introduce Hippo, a system built on a generative
Al model that reconstructs mobile activity sensing data at multiple granularity levels. The primary
objective of Hippo is to obscure sensitive attribute details and simplify overly detailed activity
features that are not essential. Hippo employs a diffusion model, a type of generative model, to
infuse noise into the sensor data with a learning-based diffusion process. This involves a two-step
process: first, introducing noise to the data through forward diffusion, and then learning to refine
the data by removing the noise during reverse diffusion. These steps are integral to the diffusion
model’s training phase, ensuring that while the noise disrupts sensitive attributes, the essential
activity features are preserved, maintaining the utility of the data.

To refine activity feature representation, Hippo does not merely inject noise; instead, it crafts
multi-grained data by pruning features that are not intended to be released by users. This approach is
grounded in the understanding that human activities exhibit a hierarchical semantic structure, where
activities can be broken down into basic actions or aggregated into broader activity categories.
For instance, the action of “jumping” comprises basic movements such as “arms swinging”, “legs
contracting”, and “stretching”, and can be categorized under the broader term “locomotion” along
with actions such as “running”.

In its operation, Hippo leverages stacked convolutional autoencoders (CAEs) to derive multi-
resolution feature representations from data segments. This capability stems from the convolution
and pooling operations and the architecture of deep neural networks (DNNs), which are known
to capture data representations at varying levels of granularity. Research has shown that different
layers in a DNN encapsulate representations at diverse scales and depths, establishing a connection
between these representations and semantic concepts. Following this, Hippo utilizes these multi-
resolution representations to produce multi-grained sensing data, employing the diffusion model’s

generative capabilities. This is particularly crucial for applications such as travel or pedometer
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apps that depend on raw data rather than processed feature representations, necessitating a method
to regenerate data that aligns with the original yet without the sensitive or unnecessary details.

Hippo plays a critical role in data reconstruction, focusing on two main aspects: perturbing
personal attributes and generating multi-grained data. In terms of personal attribute perturbation,
Hippo effectively obscures potential attributes or metadata, which are not essential for the
functionality of activity sensing applications, thereby enhancing user privacy [21, 133, 140, 173].
When it comes to generating multi-grained data, Hippo allows users or applications to define
the desired level of data granularity, which corresponds to the number of stacked convolutional
autoencoders (CAEs) used. This approach eliminates the need for predefined privacy patterns or
labels during data reconstruction.

The efficacy of Hippo is assessed by examining the multi-grained sensor data across various
activity recognition and attribute inference models. In the realm of metadata-level security,
Hippo manages to decrease the risk of private attribute exposure by approximately 50% while
maintaining the accuracy of activity recognition akin to that of raw data. For feature-level security,
the reconstructed multi-grained data exhibit varied levels of activity recognition precision.
Furthermore, we demonstrate the utility of reconstructed data in fall detection and pedometer
services, showcasing how users can manipulate data granularity to safeguard their privacy.

The main contributions of Hippo are summarized as follows:

* We introduce an innovative approach that utilizes a noise diffusion process to obscure
personal attributes effectively. This method maintains the integrity of activity recognition
performance while eliminating the need for users to provide specific private data or labels.

* We develop a hierarchical latent feature guidance diffusion model aimed at generating multi-
grained data. This design allows for precise control over the dissemination of information,
addressing and reducing feature-level overprivileged concerns.

* Through both theoretical analysis and practical experimentation, we demonstrate that the
comprehensive model Hippo is equipped to tackle overprivileged issues at both the metadata

and feature levels across a range of different contexts.
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5.2: Problem Definition

In this section, we formally define and analyze the activity sensing utility and privacy from the

semantic perspective.

5.2.1: A Motivating Example

We assume a strong attacker who can train various attribute inference and activity recognition
models offline to recognize personal attributes and activity labels. The attacker can implement the
re-identification attack [84]. Specifically, the attacker knows the defense methods and has a dataset
with private attribute labels. Then, they can build a sanitized version of the dataset by passing
the dataset through the defense methods. After that, the attacker can train a new private attribute
identification model based on the sanitized datasets. Considering many apps need raw sensor data
instead of activity labels, Hippo reconstructs raw sensor data to filter out sensitive information.
Users should have full control over the mobile sensing data that they share, but the current OS
does not provide any permission restriction. Currently, for example, Android provides eight types
of motion sensor APIs and six types of position sensor APIs to access raw sensor data [51]. To
protect activity-sensing information, we assume attackers can only access sensor data after being
processed by Hippo. The mobile sensors can be designated solely for the secure realm (e.g., ARM

TrustZone [48]) as in prior research [65], and then processed by Hippo.

5.2.2: Mobile Activity Sensing Data Utility

Human activities inherently exhibit a hierarchical organization, essential for identifying and
understanding activities at various levels of granularity [130]. For instance, activities such as
walking, running, and jumping fall under the broader category of locomotion, as illustrated in

Figure 5.1. Initially, we delineate the concept of granularity within the realm of activity semantics.

Definition 1 Let A represent a set of activity semantics, and the granularity G is a function that
maps each activity a; € A to a level of detail L, where L = {ly,ls,- - ,1,} with || representing the

most detailed level and l,, representing the broadest level of categorization. For any two levels [;
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Figure 5.1: The hierarchical semantic nature of activities.
and l;, ifi < j, l; is more general than [;.

Each activity label a; is associated with a level of granularity [;, which indicates
the categorization applied to the activity. Consider a segment of the time series X =
(rowy, rows, -+ ,row,), where row; has multiple values such as the 9-axis values of inertial
sensors, and w is the window length of X. The semantic label of X is obtained by the activity
recognition models such as DNN models [34, 217] and statistical methods [113, 138]. If the
fine-grained activity features in X are removed, then X can only be recognized in coarse-grained
activity semantics. The role of Hippo is to generate multi-grained data by removing fine-grained
features. For generated data X, at granularity level [, X, can be recognized into multiple possible
fine-grained activities, which compose a hierarchical structure.

We define activity recognition data utility function as U(a,a) = U , where U, is the activity
recognition accuracy score on raw data a and U, is the accuracy score on reconstructed data a.
The accuracy score is computed by an activity recognition model. U (a, @) quantifies the utility of
data after generalizing activity semantics from a to a. For example, the raw sensor data contains
the highest-resolution features corresponding to fine-grained activity semantics. The maximum
utility is 1 if we keep the raw data. The U(-) monotonically decreases when the semantic of X is

generalized from a fine-grained a;_; to a coarse-grained a;:

0< U(CL,CALZ) S U((l,&i_l). (51)
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The utility of sensing data is intrinsically linked to the specific functions of the applications
using it. While it is presumed that applications transparently declare their data needs for intended
functionalities, there exists a risk that the data gathered may contain excess information, vulnerable
to unauthorized access or misuse through third-party transactions or breaches. Therefore, the users
can determine the granularity level of the reconstructed data to generate coarse-grained data, so
the mobile sensing data can be recognized into ¢ different activities. Or the user can utilize Hippo
to just perturb the metadata information linked to the activity sensing data while retaining the raw
activity sensing features.

To address the issue of data being overprivileged, both service providers and users can engage
in a cooperative effort to determine the ¢-th layer feature guidance for data reconstruction. The
1 1s related to the number of stacked convolutional autoencoders (CAEs) for multi-resolution
extraction. For instance, if the raw sequence data X, is indicative of “arm swinging” within
bodily gestures, then X,,,, comprises high-resolution features capable of identifying the “arm
swinging” movement. For a given layer 7, Hippo enhances privacy by stripping away the detailed
“arm swinging” feature during the reconstruction of data X,, utilizing the guidance from the
i-th layer’s features extracted by stacked CAEs. If ¢« = 0, then Hippo only perturbs metadata
information linked to the sensing data. If ¢ > 1, the Hippo utilizes the ¢-th layer to guide the data
reconstruction process. This i-th layer represents a more abstract view, omitting the detailed “arm
swinging” feature.

As a result, the reconstructed data X, is categorized under broader, less specific activity
semantics such as “jumping” or “running” without the granularity to distinguish “arm swinging”.
Similarly, if the reconstruction process generalizes the features corresponding to “jumping”, the
activity could be classified under the even more generic category of “locomotion”. The selection
of layer ¢ is tailored to meet the demands of the particular application, determined by setting the
requisite number of CAEs for extracting features at different resolutions. This process ensures
that the reconstructed data aligns with the necessary level of detail dictated by the application’s

requirements, balancing the need for functionality with the imperative for privacy.
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5.2.3: Sensing Data Overprivileged Information

In the context of mobile activity sensing, we categorize overprivileged information as any data that
is irrelevant to the app’s specific task. For such applications, metadata, which includes personal
attributes extracted from activity sensing data, is considered ancillary information [21, 133, 140].
This metadata is not essential for the app’s primary functions and poses potential risks for privacy
breaches. To address this, Hippo is designed to indiscriminately distort this metadata within the
raw data, eliminating the need for users or developers to explicitly identify which attributes are
private. This approach ensures that sensitive personal details are obscured, reducing the likelihood
of unintended privacy exposure.

In addition, raw data may contain fine-grained features that are unnecessary for applications. To
generalize unnecessary activity semantics, Hippo reconstructs multi-grained data, allowing users
to specify the desired granularity of data. Given an activity semantic distribution D of raw sensing
data X and activity distribution GG of reconstructed data X, we define mutual entropy H(G; D) to

measure the amount of overprivileged information:

H(G; D) = H(G) — H(D), (5.2)

where H (-) denotes the Shannon entropy. H (D) and H(G) are related to the possible semantics
of X and X, which are calculated based on the classification prediction score. The lower bound
of H(D) is 0 if the score is 1. We define the threshold A to control the amount of overprivileged
information in reconstructed data. Hippo generalizes the raw data X to increase the entropy H (G),
so as to guarantee H(G; D) > A, where 0 < A < 1. A smaller A means more overprivileged
information. When A = 0, the activity data X, is kept as the original sensor data X. The lower

bound on H(G) is calculated by H (D) and the lower bound A on H(G; D).
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5.3: System Design

In this section, we first introduce preliminary knowledge and the system model. Then, we provide

a detailed design and analysis of Hippo for deep hierarchical data generation.

5.3.1: Background Knowledge

Stacked Convolutional Autoencoder Model

Convolutional autoencoder (CAE) [145] is widely used to extract features in an unsupervised way.
The convolution module has local undirected connections and shared parameters between the input
layer and the hidden layer. In the encoder part, the input X is encoded into ¢-th hidden unit z, which
is given by z; = o(XW,; + b). The o is an activation function, W is the learned weights and b
is the bias. In the decoder part, hidden unit z; is decoded back to reconstructed input X’ with a
deconvolution module, which is given by X’ = o(z,W; + d). where W is the flipped version of
W and d is the bias.

The stacked convolutional autoencoder consists of multiple CAEs where the input of each
hidden layer is the output of the previous layer. Each data vector X™ is translated into another
vector X" in a lower dimensional space where m > n. The pooling module such as max pooling and
mean pooling makes feature representations invariant to the small changes in the input. Unpooling
is used in the decoder part which uses the recorded locations of activations in the pooling operation
to place the reconstructions. The loss function is to minimize the mean square error between input
X and reconstructed input X’:

MSE = ! Zn:(Xl - X)% (5.3)

ni4

Diffusion Model

The diffusion model (DM) is a form of generative model. Previous studies [90, 191, 193] have

demonstrated that DM produces data of higher quality compared to existing generative models
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(e.g., GAN [77]). During the training phase, the DM introduces random noise ¢; ~ N(0,c?) to
input data using a noise scheduler, known as the forward diffusion process. Specifically, given a
real data distribution ¢(x) and a data sample =y drawn from ¢(z), noisy samples x1, - - , zp are
generated by adding Gaussian noise to the output of the previous step. This process involves T’

steps (e.g., 1000) following a Markov chain. The conditional distribution is:

q(xe|my 1) = N (g V31— Bixi—1, Bil), (5.4)

where 5; € (0, 1) denotes a variance schedule controlling the step size. There are many methods
to set up ;. For example, we can use a linear function to map a beta range (e.g., [0.0001, 0.1]) to a
sequence of 5. With the increasing step ¢, the data sample xy will lose the distinguishable features
because of the added noise. Suppose oy = 1— 3, a; = II_, v, noise €(zy, t) is the merged multiple
Gaussians A (0, 021), then

xy = Vauw + V1 — age(ay, t). (5.5)

The posterior mean 1 in the forward process is as follows:

1 1—Oét

Mt:\/a—t(xt_me(

7y, 1)). (5.6)

Then, the diffusion model py learns to remove noise from z;, called the reverse diffusion process.
Following the existing work [53, 90, 193], we use the UNet [176] as the backbone architecture to
learn to remove noise. The input of UNet is a noised z;, and the output is the added noise € or
clear data xy. The UNet includes a stack of downsampling convolutions followed by upsampling
convolutions. The advantage is that UNet can progressively lower the feature map resolution and
then increase the resolution in the diffusion process. Besides, UNet contains the skip connection
to add details across layers with the same spatial size. Specifically, py learns to approximate the

conditional probabilities p(x;_1|x;).

p@(xtfllxt) = N(mtfl; M@(xta t): E@(l’t, t))a (57)
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Figure 5.2: The latent feature guidance diffusion model of Hippo, which acts as a middleware
between the OS Sensor Manager and Apps.

where 3y (zy,t)) is set as 021 to time-dependent constants [90]. Eq. 5.7 can be reparameterized to

predict €; from input x; as follows:

1 1—O[t

po(we, 1) = ﬁ(l’t - ﬁ@(%ﬂ)a (5.8)

where €y(x,t) is the predicted noise. Finally, by minimizing the differences between the forward

process posterior mean /i, and the reverse process mean /iy, the loss function can be simplified as

L=l — poll = Epp mmore||€ — €, 1))
= E 1 T w0 ||| €6 — eo(vaywo + V1 — aze, t)| %]

(5.9)

In the sampling phase, we input random noise as a seed to the diffusion model, and the model

can generate new data such as images or sensor data in the reverse diffusion process.

5.3.2: System Model

We focus on a system designed for mobile activity sensing applications, where Hippo operates
as middleware on a smart device, as depicted in Figure 5.2. The raw sensor data X is collected
from various sensors (e.g., accelerometer, gyroscope) of a mobile device over a defined time period
(e.g., 1 second). X encompasses not only the desired information but also overprivileged data, and

completely eliminating this data compromises its utility. To address this overprivileged data issue,
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Hippo reconstructs a data representation X, at a specific granularity. X, serves as a less privileged
version of X, providing applications with the necessary information for their tasks, while restricting
access solely to X, instead of the raw data X.

To address metadata-level overprivileged issues, we employ a well-trained DM to perturb
metadata within raw sensing data. Initially, the raw data undergoes the forward diffusion process
to introduce noise. Subsequently, during the reverse diffusion process, Hippo employs a learning-
based approach to eliminate the noise. However, the residual noise after the noise addition and
denoising stages within the DM model can perturb the metadata in the sensing data. Nevertheless,
the primary semantic information regarding raw activity is preserved, as it constitutes the principal
features of the activity sensing data.

To address feature-level overprivileged issues, we leverage both the CAE model and the DM
to produce multi-grained data. Initially, we extract multi-resolution features from a segment of
data X using the stacked CAE model. Subsequently, employing a random noise seed and guided
by the multi-resolution features, Hippo utilizes a well-trained DM to generate multi-grained
data. This generated data retains specific-layer feature information while sacrificing finer-grained
features. Consequently, the resulting data encompasses various granularities of activity semantics,
as expressed by the multi-resolution feature representations. Users or applications can then specify
the desired level of granularity for data reconstruction to alleviate the overprivileged issues.

To implement the functionalities described above, we train both the CAEs and DM, as illustrated
in Figure 5.2, utilizing publicly available datasets. The core component of Hippo is the latent feature
guidance-based diffusion model, which comprises two primary modules, depicted in Figure 5.2:
(1) A self-supervised stacked convolutional autoencoder (CAE) responsible for extracting multi-
resolution activity representations without necessitating private labels from users for model training
(refer to Section 5.3.3); (ii) A hybrid diffusion model (DM), incorporating both conditional and
unconditional aspects, based on multi-resolution representations to generate multi-grained activity

sensing data (refer to Section 5.3.4).
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5.3.3: Multi-resolution Feature Extraction

We propose the utilization of a self-supervised stacked CAE to extract multi-resolution features,
which serve as guidance for the generation of multi-grained data. The convolution module (CM)
has been widely employed for feature extraction from time series data [74,102,243]. For instance,
Lasagna [130] was introduced to produce hierarchical activity representations using CM. CM ofters
dual benefits for the utility of extracted features. Firstly, it can leverage local connectivity by
focusing on multiple receptive fields of the input, which is particularly suitable for time series data
where local patterns often hold more informative value than individual data points [243]. Secondly,
CM implements weight sharing, implying that the same weight is applied across different filters.
Each filter can capture patterns across various dimensions of the time series, ensuring that the
model can recognize a pattern regardless of its position in the time series. Consequently, CM
proves effective in extracting robust features for activity recognition.

We organize raw sensor data into a structured tensor for input into stacked CAEs, as depicted
in Figure 5.2. Each CAE takes either the raw data X; or the output feature z; from the preceding
CAE as input. The output of a CAE is denoted as feature z;, where 7 and j represent the indices
of stacked CAEs, with 0 < ¢ < j. For instance, the input of CAE-1 is the raw sensor data, and its
output is the layer-1 feature. CAE-2 then takes the layer-1 feature as input. Normally, z; resides in
a lower-dimensional space compared to z;. However, to maintain the same spatial dimensionality
between z; and z;, we pad z; with zeros to match the dimension of z;.

The encoder of each CAE comprises a convolutional layer and a pooling layer. During the
encoding process, these layers learn multi-resolution activity features. Conversely, the decoder
consists of an unpooling layer and a deconvolution layer. Throughout decoding, these layers are
employed to reconstruct the input data within each CAE. We train each CAE independently, aiming
to minimize the mean square error between input data and reconstructed data, as expressed in
Equation 5.3. Following the training process, we can utilize the encoder of stacked CAEs to extract
multi-resolution activity features.

We select three activities from the DSA Dataset [14]: running, jumping, and playing basketball.
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(a) Layer 1 standing  (b) Layer 1 running  (c) Layer 1 jumping (d) Layer 1 basketball

(e) Layer 2 standing  (f) Layer 2 running  (g) Layer 2 jumping  (h) Layer 2 basketball

(i) Layer 3 standing (j) Layer 3 running (k) Layer 3 jumping (1) Layer 3 basketball

Figure 5.3: Visualization comparison of multi-resolution features extracted by stacked CAEs
w.r.t. three activities.

These activities exhibit a hierarchical semantic structure, where playing basketball encompasses
running and jumping. As illustrated in Figure 5.3, the layer 1 features of all three activities are
discernible from each other. This disparity arises because the CAE is capable of extracting distinct
feature components from the raw data.

As we progress to layer 2, the features of playing basketball and jumping start to resemble
each other. This convergence can be attributed to the pooling and convolution modules learning
a low-resolution version of the layer 1 features. Consequently, some intricate features specific to
playing basketball and jumping become obscured, rendering the two activities indistinguishable.
Similarly, the layer 3 features of running, jumping, and playing basketball exhibit similarity, as
depicted in Figure 5.3. The visualization outcomes indicate that stacked CAEs can filter out fine-
grained features as the depth increases. Therefore, by employing varying numbers of CAEs, Hippo
can extract multi-resolution features encompassing different levels of information.

The generation of multi-resolution features is facilitated by the convolution and pooling layers
within the self-supervised CAE. The convolutional layer is responsible for learning various aspects

of features from the input data. Essentially, the input data is partitioned into multiple receptive
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fields for convolution. By employing different kernels for each receptive field, the CAE learns
features from distinct parts of the input. Consequently, intricate feature maps of the input are
obtained as a result. Previous studies in visual analytics have illustrated that the convolutional
layer can discern different aspects of data, such as detecting edges and lines [17, 64, 67].
Moreover, deep convolutional neural networks have been shown to capture multi-grained feature
representations [16, 174, 188].

Within each CAE, the pooling layer plays a crucial role in filtering out feature details by
reducing spatial resolution in feature maps. Essentially acting as a bottleneck, the pooling layer
compresses the features extracted from the input. This pooling operation limits the amount of
information that can traverse through the neural network, compelling the model to focus on learning
the most pertinent information while discarding irrelevant details.

Various resolutions of feature representations convey different levels of activity semantic
information. For instance, in Figure 5.2, the raw data feature z; is considered as semantic
granularity-0, encompassing the most detailed motion features. On the other hand, the layer-1
feature z; corresponds to semantic granularity-1, containing coarser motion information achieved
by blurring features present in z5. The convolutional and pooling operations contribute to z;
losing detailed features compared to zy,. Furthermore, as the number of stacked CAEs increases,

the information encapsulated in the upper layer features z; diminishes.

Lemma 1 Given a stacked two CAEs whose outputs are layer features z; and z; respectively. Then

z; is low-resolution version of z; such that H(z;) < H(z;) when i < j.

We use the H-score H proposed in [95, 232] to quantify the informativeness of extracted
features. H is computed in an information-theoretic framework to show that DNN extracts

informative features for learning tasks. The 7 (-) function is defined as follows:

H(s) = S B [[Bry, (A5 500)VP) (5.10)

The H function takes as input the feature embedding matrix and label matrix of data samples. It
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quantifies the quality of features generated at any layer of the DNN. A higher value of H indicates
that more information in the feature embeddings is relevant to the label. We compute the H-
score on the feature embeddings generated from stacked CAEs using the DSA dataset [14]. The
H-scores for layer-1 features, layer-2 features, and layer-3 features are 7.717, 7.518, and 7.423,
respectively. Thus, using this framework, we demonstrate that stacked CAEs can extract multi-
resolution features containing varying amounts of information. In Section 5.3.4, we devise the

data generation model conditioned on z;, which generates data containing multi-grained features.

5.3.4: Multi-grained Sensing Data Generation

Considering that many apps rely on raw data formats, Hippo is designed to generate multi-grained
data to mitigate overprivileged information. The multi-resolution features extracted in Section 5.3.3
serve as the basis for multi-grained data generation. Suppose an app necessitates the i-th granularity
of sensing data, corresponding to the i-th layer feature z; in the multi-resolution feature extraction
model. Leveraging the well-trained latent feature guidance diffusion model, Hippo generates the
1-th granularity data from random noise conditioned on a specific resolution feature z;.

During the offline training stage, the raw data x is encoded into a bipartite latent representation
(7, z;). The diffusion latent 2 is produced via the forward diffusion process, representing the
noisy version of z after multiple noise addition steps. x1 encodes the residual information essential
for reconstructing = during the reverse diffusion process. On the other hand, the multi-resolution
feature z; is generated by the stacked CAE, encapsulating multi-grained feature representations.
We design the latent feature guidance diffusion model to generate hierarchical data samples from
random noise conditioned on z;.

In the forward diffusion process, a key observation is that the learning objective L in Eq. 5.9
relies on the marginal ¢(x;|x) instead of the joint ¢(z1.7|x¢). The forward process can be derived

from Bayes’ rule [193]:

C]a(wt—1|$ta wo)qo($t|$0)
Go (T1-1]70)

(5.11)

qo($t|$t—1,$0> =
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Indeed, each z; in the generation process not only depends on x;_; but also on xy, rendering the
process non-Markovian. Consequently, the term L in Equation 5.9 is not contingent on a specific
forward procedure. Therefore, during the generation process, if ¢(z;|zo) remains fixed, we have
the flexibility to sample only a portion of the forward steps. This approach allows us to reduce the
number of steps 7" and enhance data generation efficiency.

To guarantee ¢(x;|z;_1) satisfies distribution Eq. 5.4, ¢, (z;_1|x¢, 9) should satisfy the
Gaussian function [193]:

Qo (Ti1 |z, 70) = N, 021). (5.12)

1y — /1 — ageg(y|2i,t) (5.13)
Ve |

= /o 120+ 1 — 1 — 0f eo(xs]2i,t) (5.14)

Thus, given a subset {z,,- -+ , 7, } where 7 is a sub-sequence of [1,--- ,¢,---,T] of length S,

Ty —

the model can be trained with arbitrary forward steps. We follow the setup to variance ¢ in [193]

as follows:

Or = \/(1 - aTi—l)(l - aTi)\/l - aTi/aTi—l (515)

In the reverse diffusion process, Hippo removes the noise in data conditioned on the feature

P(z,z
P(z)

z;. Consider the generative model is formalized as P(x|z) = ), and P(z) is a deterministic
function of x in the multi-resolution feature extraction model, so we only need to estimate P(x, z).

Thus, we propose to project the z; to the existing diffusion model latent x:

co(wrlzi T) = eolwrl0, T) + s - (eolar|, T) — eolr|0,T), (5.16)

where s is the guidance scale, which is empirically set as 7.5 in our experiments. In Eq. 5.16,
we can simultaneously train an unconditional diffusion model py(x7) and a conditional diffusion
model py(xr|z;). For the unconditional model part, we replace the z; with a null vector with a
probability such as 0.3 in our experiments. For the conditional model part, the denoising process is

conditioned on z;. Thus, we can guide the data generation toward the z; during the training process.

117



It has been proven that the training objective in Eq. 5.9 is still applicable in the reverse
process [193]. Finally, we train the diffusion model to approximate the conditioned probability
distribution in the reverse process. Given the initial input noise ¢, ~ N(0,I), we sample

21 ~ po(xi_1|x;) as follows:

Ti—1 = U + 0464 (517)

where 1 1s in Eq. 5.14. With the same model for predicted noise ¢y, we can choose different o,
without retraining the model to generate different samples. In the sampling phase, the reverse
process in the DM can generate multiple data corresponding to a given latent feature representation
z;. Particularly, when o, # 0, the reverse process is non-deterministic. Larger values of o
introduce higher stochasticity, resulting in more variations of generated data guided by the same

latent representation z;.

5.4: Evaluation and Discussion

5.4.1: Experimental Setup

We implement the latent feature guidance diffusion model of Hippo using PyTorch [162]. The
model is trained on a TensorEX Ubuntu 20.04 Server equipped with 256GB DDR4 memory,
Intel(R) Xeon(R) Gold 5218R 2.10GHz CPUs, and RTX A6000 GPUs. During the training of
the diffusion model, we randomly set the number of timesteps from 100 to 1000, as the model
is designed to be trained with any number of forward steps, as described in Section 5.3.4. We
conduct training for 100 epochs. In the phase of multi-grained data generation, we empirically
set the inference time steps to 100. The guidance scale for hierarchical features is set to 2. For
sensitive attribute and activity recognition, we employ 5-fold cross-domain validation to mitigate
overfitting and ensure more consistent and fair evaluations. This approach also considers the size

of the training and testing datasets.
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5.4.2: Datasets

We evaluate Hippo on four public datasets: HARBox dataset [161], UCI HAR dataset [§],
MotionSense dataset [142], and the daily and sports activity (DSA) dataset [14].

Dataset 1. The HARBox [161] dataset includes 9-axis IMU sensor data collected from 121
participants (17-55 years old) with 77 smartphone models in a crowdsourcing manner. The five
activities of daily life are walking, hopping, calling, waving, and typing. The collected IMU data
is resampled at 50 Hz, with a sliding window of 2 seconds. Thus, each data sample contains a 900-
dimensional feature. Considering the large variety of users and devices, the dataset is heterogeneous
enough to evaluate the robustness of different models.

Dataset 2. The MotionSense [142] dataset includes time-series data generated by
accelerometers and gyroscopes in iPhone 6s, which is put into the front pocket of each
participant. There are 24 participants, each with a unique combination of height, weight, age, and
gender. They complete 6 activities in 15 trials: walking, jogging, sitting, standing, and downstairs
and upstairs. The data is collected at a 50Hz sampling rate. The sensing data is collected by
the SensingKit [104] from the Core Motion framework [47]. Note that to be consistent with the
baselines, we use the four activities for comparison: downstairs, upstairs, walking, and jogging.

Dataset 3. The UCI Human Activity Recognition [8] dataset includes 30 participants
performing activities while carrying a waist-mounted Samsung Galaxy S II. There are six daily
living activities: walking, upstairs, downstairs, sitting, standing, and laying. The accelerometer
and gyroscope data are collected at a SOHz sampling rate. The sensing data is pre-processed by
applying noise filters and segmented with a sliding window of 2.56 seconds and 50% overlap.

Dataset 4. The daily and sports activity [14] includes 19 types of daily and sports activities.
Each of the 19 activities is performed for 5 minutes by every four females and four males. The
19 activities are walking, exercising on a stepper, exercising on a cross-trainer, rowing, jumping,
playing basketball, and so on. The participants perform the activities in a flat outdoor area. The

sampling rate is at 25Hz, and the 5-minute signals are divided into 5-second segments.
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Table 5.1: Metadata information perturbation methods comparison using activity recognition and
gender recognition models on the MotionSense dataset.

Average Classification Accuracy on 5-fold Cross-Validation (%)

Acuracy Overall

Method Downstairs Upstairs Walking Jogging
Activity Gender Activity Gender Activity Gender Activity Gender Activity Gender
Raw Data 95.6 87.7 95.4 90.9 98.5 95.1 97.3 95.6 96.7 923
Differential Privacy [62]  82.5 78.3 83.3 79.1 84.6 80.2 84.2 79.8 83.7 79.4
AAE [141] 90.7 59.8 93.2 57.6 91.8 529 93.7 52.5 92.4 55.7
TIPRDC [115] 91.5 77.4 92.8 78.6 97.5 79.4 95.2 78.8 94.2 78.6
ObscureNet [84] 87.5 72.5 92.8 81.3 94.7 83.2 96.9 89.5 92.9 81.6
InfoCensor [252] 91.1 76.8 92.4 77.1 96.6 78.2 94.3 77.3 93.6 77.4
Hippo-Granu.0 92.4 54.2 92.8 54.8 97.6 51.6 96.5 50.7 94.8 52.8
Hippo-Granu.1 83.8 52.1 84.2 53.5 86.3 53.5 84.2 51.8 84.6 52.7
Hippo-Granu.2 66.2 53.5 65.7 52.8 63.8 54.7 67.2 51.8 65.7 53.2
Hippo-Granu.3 53.8 51.8 55.4 52.1 54.7 53.5 53.6 52.5 54.4 52.5

5.4.3: Metadata-level Information Evaluation

In this section, we evaluate the metadata-level overprivileged information protection. The metadata
(i.e., personal attributes) is auxiliary side-channel information in activity sensing data. We consider
a scenario where an app requires the most fine-grained activity features, and the side-channel
information is unnecessary but sensitive. The data utility is related to the find-grained features
in raw sensor data and personal attributes are overprivileged information. In this case, Hippo only

perturbs the attribute information while keeping the fine-grained activity features.
Baseline Methods

For metadata-level privacy protection, we compare Glint with five methods that garble personal
attributes. We use the source codes provided by related authors to implement experiments. For
semantic-level privacy protection, the existing methods are coarse-grained because they require
users to provide private activity patterns, and then brutely remove or replace the segment of data
that contains sensitive activity information. To the best of our knowledge, there is no existing work
that considers fine-grained activity semantic-level privacy protection.

Baseline 1. The DP [62] method injects Laplace noise with various privacy budgets
{0.1,0.3,0.7,0.9}, and we report the average accuracy under the four parameters. The noisy data

is used for activity recognition.
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Baseline 2. The Anonymisation Autoencoder (AAE) [141] is a deep autoencoder model
with a loss function to minimize the user-identify information and preserve the original activity
information. The synthesized data from the decoder is used for activity recognition.

Baseline 3. The TIPRDC [115] is a framework to hide private information by adversarial
training while retaining the original information by using a neural network-based mutual
information estimator. The sanitized feature representations are used for activity recognition.

Baseline 4. The ObscureNet [84] is an encoder-decoder model to conceal private attributes
in the time-series data. It learns latent features invariant to specific private attributes based on
adversarial information factorization. The synthesized data is used for activity recognition.

Baseline 5. The InfoCensor [252] is also an information-theoretic framework to minimize the
mutual information between the representations and the attribute. The feature representations are
randomized by the parameterized Gaussian mechanisms and used for activity recognition.

Table 5.1 presents the performance of various models for attribute protection, focusing on
the gender attribute. These models are trained to sanitize the gender attribute, utilizing two
convolutional neural network models on the MotionSense dataset with 5-fold cross-validation
for gender and activity recognition. When employing noise-based differential privacy (DP),
increasing the strength of the added noise to better preserve sensitive information significantly
compromises data utility. For instance, increasing noise to the extent that gender recognition
accuracy decreases from 92.3% to 79.4% also results in a drop in activity recognition accuracy
from 96.7% to 83.7%. In contrast, Glint aims to destroy sensitive attributes in the reconstructed
data (Granu.0) while retaining as much of the original activity semantic information as possible.
For instance, gender recognition accuracy on the Granu.0 data is approximately 52.8%, akin
to random guessing. However, activity recognition accuracy on Granu.( data is approximately
94.8%, comparable to model performance on raw data. Glint maintains high data utility owing to
the learning-based denoising process during reverse diffusion.

Several methods, such as AAE, TIPRDC, ObscureNet, and InfoCensor, utilize information

minimization in adversarial training. For instance, ObscureNet alters private attributes in latent
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features before synthesizing new data. Consequently, it can deceive gender inference models to an
accuracy of approximately 20%. However, for a binary classification task, reversing the output is
straightforward for a knowledgeable attacker familiar with ObscureNet’s mechanism. Therefore,
we report the reversed accuracy in Table 5.1. For instance, with the ObscureNet method, gender
inference accuracy can be reversed to achieve approximately 80% accuracy. In contrast, Glint
reduces the gender inference probability to around 50%, leading to the highest entropy (uncertainty)
for attackers. Moreover, we evaluate gender information in multi-grained data. Multi-grained data
generation is based on random noise conditioned on multi-resolution feature representations. As
indicated in Table 5.1, gender information is perturbed in the multi-grained data, resulting in gender
recognition becoming a random guess. In summary, for metadata-level overprivileged information
protection, compared to the existing methods, Hippo preserves better data utility while perturbing

overprivileged attributes.

5.4.4: Matadata-level Perturbation Analysis

In our scenario, suppose we have a dataset of sensing data from multiple users, denoted as X.
Without loss of generality, each user has one segment of data x. Privacy is related to personal
attribute information. Recall the definition of the differential privacy (DP) mechanism [13, 62].
Suppose we have two neighboring datasets X and X', where X differs from X’ only by one person.

The perturbation mechanism M satisfies (€, §)-DP if it holds:

Pr[M(z) € O] <e°- Pr[M(x') € O] + 6, (5.18)

where ' € X' is the perturbed version of z € X via local perturbation M, so x and =’ are
neighboring inputs. O is any subset of outputs, € is a metric of privacy loss (Note that € in DP
is different from €(z, t) in diffusion models). The higher the ¢, the larger the privacy loss. § is the
probability of violating the DP constraint.

The local perturbation mechanism M is defined as M (x) = x + Z, where Z is the Gaussian

noise. Suppose we have a query function f : X — R% which can be a classification model.
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We define the sensitivity of the query function f as s = max(||f(x) — f(z)||1), which is the
maximum impact that one individual can have on the result of a query [225]. For example, for
the gender attribute, f is a gender classification model. s is set as 1 considering the maximum
difference of model prediction probability.

For the metadata-level perturbation, Z is the residual noise in the forward diffusion and reverse
diffusion process. Recall that in the forward diffusion steps, Hippo is adding noise to = gradually
as in Eq. 5.4 and Eq. 5.5. Suppose M;(r) = r; + €(zy,t), where r, = \/%xo and €(x,t) is
the merged multiple Gaussians A (0, 3.1 o2) given T steps. For each forward step ¢, we add the
independent Gaussian noise A (0, 07) to the input of each step indexed by ¢. We can choose the
parameters of additive Gaussian noise. If the added noise satisfies o, = s\/m /€ in the
forward diffusion step, then each step in the forward diffusion process satisfies (e, d;)-DP. For
example, in the experiments, we set the initial noise o in the first step as 11.5. DP satisfies the
composability property [62]. Thus, given a sequential composition of adding noise steps 7', the
M, (r) still satisfies the differential privacy. In the final forward diffusion step, the composition
M;(r)is (XL, €, >, 6;)-differentially private. Recall that \/T — @; in Eq. 5.5 is constant, and
DP is robust to the post-processing [62]. Then the output 7 = /1 — @;M;(r) in the forward
diffusion process still satisfies differential privacy.

In the reverse diffusion process, Hippo learns to denoise by predicting the added noise in the
forward steps with a learning function F following Eq. 4.13. The input of F is the final result xp
in the forward process. The output of F is x’. 2’ retains original semantic features as in x while

metadata information is perturbed.

' =F(V1— aM(r)). (5.19)

Considering DP is robust to post-processing of F, the whole diffusion process in Hippo is still
differentially private. In Section 5.4.3, we have empirically shown the effectiveness of Hippo for

personal attribute perturbation and activity feature preservation. However, due to the complex

123



Raw Data

u

10 20 30 10 20 30

Granularity-3 Granularity-2 Granularity-1

10 20 30 10 20 30

Figure 5.4: Spectrograms of multi-grained data for the accelerometer w.r.t. four activities. Red

means high energy, blue means low energy, and white is in the middle. The x-axis is time
(second), and the y-axis is the frequency (Hz).

deep learning mechanism in the reverse denoising diffusion process, obtaining the overall privacy

guarantee of ¢ and ¢ in the whole diffusion process is open for future research.

5.4.5: Feature-level Information Evaluation

In this section, we address apps encountering feature-level overprivileged issues. To mitigate this,
Hippo generates multi-grained data for reducing activity feature-level overprivileged information.
This entails utilizing different resolutions of features for multi-grained data reconstruction.
Consequently, apps may experience reduced accuracy when recognizing fine-grained activity

semantics using coarse-grained data.
Hierarchical Data Visualization

While it is challenging to interpret activity semantics from time series graphs visually, we can gain
insight into the hierarchical sensor data generated by Hippo by examining the different granularities

of data in the frequency domain, as depicted in Figure 5.4. Specifically, we showcase four arm-
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intensive activities: calling, hopping, walking, and waving, sourced from the HARBox Dataset.
(1) “Calling” involves a volunteer holding the device in a calling motion. (ii) “Hopping” entails
a volunteer holding the phone and jumping on one foot. (iii) “Walking” occurs when a volunteer
holds the phone and walks. (iv) “Waving” involves a volunteer holding the phone in hand and
waving it. These visualizations offer insights into the frequency features of the sensor data for each
activity, allowing for a deeper understanding of the hierarchical structure of the reconstructed data.

The multi-grained data is generated based on the guidance of different resolutions of feature
representations extracted from raw data. Figure 5.4 provides visual representations of the
spectrograms of multi-grained data generated by Hippo. In raw data, signal strengths vary
across different frequencies. Conversely, in multi-grained data, signal strengths stabilize and
become similar across various frequencies, indicating that detailed features are filtered out in
coarse-grained reconstructed data. For instance, as depicted in Figure 5.4, the fine-grained features
(in blue) of raw waving data gradually generalize across different granularities of data. Notably,
the granularity-3 data of waving becomes unrecognizable. This is because detailed features are
blurred in the coarse-grained (granularity-3) data. Similarly, the granularity-3 data of walking
and calling also become unrecognizable. Therefore, if calling behavior is considered private,
the user can opt to release granularity-3 data of calling to make the private mobile sensing data
indistinguishable from other motion data. Overall, the visualization illustrates that Hippo can

generate multi-grained mobile sensing data containing varying levels of feature information.
Clustering

We implement the K-means clustering based on feature embeddings learned via contrastive
learning. With contrastive learning, we can learn a feature representation space where samples
with different labels spread out and samples with the same labels remain close together. We use

the following loss function of contrastive learning:

Lo(xi,%5,0) = Ly: = yilll fo(xi) — fo(x5)|15 + Llys # y;] max(0, € — || fo(xi) — fo(x;)]2)?,

(5.20)
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Figure 5.5: K-means clustering on 5000 randomly sampled HARBOX raw data and granularity
1-3 data with TSNE dimension reduction.

where 1[y; = y,] means the value is 1 if two samples have the same label, otherwise is 0. 1[y; # ;]
means the value is 1 if two samples have different labels. ¢ is the upper bound distance to avoid
the exceptional contribution of some dissimilar pairs.

Given the raw data from the HARBox dataset, we evaluate different granularity of data
generated by Hippo. First, we train the Hippo to obtain a stacked CAE and a diffusion model-
based data generator. Second, we extract different resolutions of feature representations from
the raw data via the stacked CAE. For each resolution of feature representation, we calculate the
mean of the representations Z; of the raw data with the same label. In this way, we can mitigate
the differences between different data samples of the same class. Third, we use the well-trained
Hippo to generate new data samples from noise conditioned on Z;. For example, the granularity-1
data is generated with the guidance of the layer-1 feature of the stacked CAE. We generate 5,000
samples for each level of granularity of data. Fourth, we train a contrastive model to obtain the
contrastive feature representations. We use the t-SNE [206] method to implement dimensional
reduction, and the K-means clustering on the feature representations of raw data, granularity-1
(Granu.1), granularity-2 (Granu.2), and granularity-3 (Granu.3) data.

We show that the reconstructed multi-grained data contains different granularity of feature

information. Figure 5.5 illustrates the generalization of activity semantics. For instance, K-means
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can easily cluster different classes of raw sensor data. This is because raw data contains most fine-
grained feature information. However, distinguishable fine-grained features are removed from
coarse-grained reconstructed data. For Granu.1 data, the boundary of different activities becomes
vague. For example, hopping and waving are hard to differentiate. The reason is that Hippo
generates the new data with the guidance of the layer 1 feature of the stacked CAE. The layer 1
feature hides part of the fine-grained information of the raw data. Thus, though we obtain the feature
representations via the contrastive learning model, the intrinsic boundary among different activities
of data becomes blurry. For Granu.3 data, the representations of walking, hopping, calling, and
waving are aggregated in a big cluster. Overall, we can see that Hippo can filter out fine-grained

activity features and generalize the activity feature information in reconstructed data.
Classification

In this section, we implement classification models to evaluate the feature-level information in
reconstructed data. The changes in classification performance show that the Hippo can generate
multi-grained data that contains different granularity of activity features.

We compare Hippo with other generative models: Convolutional Autoencoder (CAE) [209],
Generative Adversarial Network (GAN) [77]. Based on our designed multi-grained data generation
framework including multi-resolution feature extraction and latent feature-guided data generation,
we design CAE and GAN to generate new data. (i) For CAE, we extract the ¢-th layer feature z;
of raw data X with the encoder of CAE. Then, we map the z; with a matrix W to the data X':
X' = Wz;. We control the error rate between X and X': Err = || X’ — X|| to retain the amount
of information in X'.

(i1)) GAN is based on adversarial training to learn to generate new data. We design GAN
to implement the adversarial information factorization based on the specified layer of latent
representations. Generally, the generative models such as GANs can be regarded as a nonlinear
parametric mapping g : Z — X to the data manifold, Z is an open subset in R?, and X is an
open subset in R”. The mapping is from a low dimensional space Z to a manifold M embedded

in the higher dimensional space X. We propose that M approximates the different granularity of

127



the data manifold. We study the manifold approximation error of the generator, which minimizes
a chosen divergence measure between the raw data distribution and the distribution of different
granularity of the sensor data.

Ideally, we can learn the latent representation z = h(z), where z € Z, so that g(h(z)) = =.
However, in practice, g can only learn an approximation to the true data manifold, which causes the
approximation error. We utilize the approximation error to generate the privacy-preserving item.
We control the semantic closeness between x and g(h(x)), so the class label has different semantic
granularity. The tangent space of a manifold generalizes to higher dimensions. We use the J,h to
estimate the tangent space, of which the rows of J,.h are the directions that approximately span the
tangent space to the data manifold at x.

Note that several places can cause approximation errors, M/ ~ Manifold, g(h(z)) ~ =z,
h(g(z) ~ z, so we only consider dominant tangent directions in the row span of .J,h. These can be
obtained by the SVD on the matrix .J,.h, and get the right singular vectors. However, this process
is expensive because, for each data sample, SVD needs to do it one by one. Kumaret al. [112]
propose to use GAN to estimate the tangent space to the data manifold. In this chapter, we take the
stacked autoencoder, with the encoder-generator-discriminator triple to get the dominant tangent
direction. A distribution p, over the space Z results in a distribution p, over the space X, and
we can get the sample x = ¢(z) from the distribution by sampling z ~ p,. The discriminator
approximates a divergence measure between p, and the real data distribution p,. We use K L[p||q]

to denote the KL divergence between the distributions p and ¢ as follows:

AKL(Tﬂ z, 9) = KL[p(y‘CL’, 9)||p(y]x + 7, 9)]
(5.21)
Tady = argmax{Ag(r,z,0);||r|]2 < &}

We train the generator using feature matching where the generator minimizes the mean
discrepancy between the features of raw data and generated data from an intermediate layer [ of

the discriminator f. Meanwhile, we maximize the mean discrepancy between the features of raw

128



HARBox MotionSense

0.8 0.8
2 i) 06
® 0.6 I
g I : m
2 204
£04 B Granu.1 £ B Granu.1
5 02 BN Granu.2 5 0.2 BN Granu.2
’ E Granu.3 = Granu.3
0.0 " 0.0 "
CAE GAN Hippo CAE GAN Hippo
UCIHAR DailySports
0.8 0.8
= 0.6 2 0.6
€ € |
204 204
= = EEN Granu.1
5 0.2 5 0.2 I Granu.2
I Granu.3
0.0 CAE GAN Hippo 0.0 CAE GAN Hippo

Figure 5.6: Comparison of different generative models.

data and generated data from the layer [ + 1 of the discriminator f as follows:

Ly = ||E:[fi(2)] = E:[filg(2DI]3 = | Ealfrea (2)] = E:lfira(g(2)]I]3 (5.22)

We employ the same CNN model structure, comprising two convolution layers and two fully
connected layers, to evaluate datasets generated by different generative models. Specifically,
for CAE data evaluation, we train the CNN model on datasets generated by CAE. We set three
thresholds 0.001, 0.01, 0.1 to generate three levels of granularity of data with CAE. Similarly,
for GAN, we employ adversarial training to train the generator conditioned on layer 1-3 features.
We then train Hippo on these datasets and generate new data with the guidance of layer 1-3
features. Figure 5.6 illustrates the differences in utility across different granularities of data.
Utility is computed using the activity recognition utility function defined in Section 5.2.2. Hippo
successfully generates multi-grained data with varying amounts of semantic information. For
example, on the MotionSense dataset, Hippo achieves the highest utility score of 0.856 for the
Granu.1 reconstructed data. Granu.l data guided by the layer-1 latent features preserves the most
activity information from the raw data. The utility scores for Granu.2 and Granu.3 data are 0.685
and 0.564, respectively. The decrease in utility score indicates that Hippo can generate multi-

grained data with hierarchical semantics. By filtering out fine-grained activity features during the
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data reconstruction process, Hippo makes fine-grained activity semantics indistinguishable.
Hippo surpasses existing generative models in several aspects. Firstly, while the CAE method
can control the information in the generated data, setting the F), parameter to control data
granularity is challenging due to the heterogeneity of sensor data. Different sensors or activities
may exhibit varying magnitudes of data, complicating the task. For instance, the utility scores of
Granu.1 data on HARBox, MotionSense, UCIHAR, and DailySports using CAE are 0.89, 0.715,
0.676, and 0.65, respectively. In contrast, for Hippo, the utility scores of Granu.1 data on these
datasets are 0.834, 0.856, 0.864, and 0.852. The utility scores of CAE on the same granularity
exhibit higher divergence than those of Hippo. Secondly, training GAN to generate high-quality
data consistently in practice is challenging. While GANs are designed to be conditioned on latent
features, controlling the amount of information contained in the generated data is difficult. For
instance, the CNN model trained on Granu.2 data may perform better than the model trained on
Granu.1 data. Additionally, samples generated by GANs often exhibit more noise, resulting in a
more diverse utility compared to other methods, as shown in Figure 5.6. In contrast, our designed

model Hippo can consistently generate high-quality data.

5.4.6: Feature-level Data Granularity Analysis

Mobile activity sensing data often contains fine-grained action feature information beyond the
requirements for user-intended purposes. We consider a scenario where an app requires only a
certain level [, of activity semantics. In this case, Hippo will generate new data X, from random
noise conditioned on a certain resolution feature. The fine-grained features are removed in X,.. As
a result, the X,. can be predicted into a coarse-grained activity semantics, which is a category of ¢
distinct fine-grained semantics.

On one hand, Hippo generates new data z’ from random noise conditioned on a specific
resolution feature z as in Eq. 5.16. Therefore, the feature of 2’ depends on the z. From Lemma 1,
we know that the higher dimensions of z in low-level CAEs encode finer-grained data features, and

the lower dimensions of z in high-level CAEs preserve coarse-grained semantic information [172].
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Figure 5.7: The impact of feature selection and inference steps.

Suppose x; = f(N;z;) and x; = f(N;z;), where i > j and 2; is in low-level CAE and z; is in
high-level CAE, then data z; has fine-grained features than z’;. On the other hand, Hippo provides
two ways to generate diverse data for each granularity. (i) Recall from Eq. 5.17, we can choose
different o to generate multiple data conditioned on a given feature representation. (ii) Various
noise levels related to 7' correspond to different scales of features captured by the diffusion
model: the greater the noise level, the larger the scale of features [90]. Thus, Hippo can learn
different scales of data features and generate multi-grained data according to the latent feature z

and diffusion noise level.

5.4.7: Ablation Study and Efficiency Analysis

The impact of input feature

Our initial assessment focuses on how feature selection influences the effectiveness of
activity recognition, utilizing the HARBox Dataset for this analysis. Figure 5.7 elucidates
that ‘Acc’ represents a 3-axis accelerometer, ‘Gyro’ denotes gyroscope modality, ‘Mag’ signifies
magnetometer modality, and ‘All” encapsulates all 9-axis modalities. We calculate the utility ratio
as outlined in Section 5.2.2, defined by the quotient of model accuracy on reconstructed data to that
on original data. Observations from Figure 5.7 reveal that the utility derived from reconstructed
data using Hippo maintains consistency irrespective of feature (modality) selection. For example,
the utility ratios for Granu.1 reconstructed data across the four modalities are 0.836, 0.833, 0.823,
and 0.834, respectively. This uniformity in utility ratios across various feature choices further

validates the resilience of Hippo towards feature selection.
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In addition, we recognize that the sequence in which input features are presented and
their sampling frequency can influence the accuracy of activity recognition. However, it is
fundamentally presumed that the order of features should not significantly alter the effectiveness
of feature utilization for recognizing activities. Consequently, the feature extraction capability
of Hippo remains unaffected by the sequencing of input features. Specifically, convolutional
layers demonstrate resilience against variations in inputs (e.g., through image augmentation
techniques [186]) during feature extraction. In a similar vein, Hippo exhibits stability when
dealing with data sampled at varying rates. For example, while the DSA Dataset [14] operates at
a 25Hz sampling rate, the MotionSense dataset [142] utilizes a 50Hz rate. Figure 5.6 illustrates
that Hippo maintains consistent performance across different sampling frequencies. In essence,
provided that the activity recognition models are adaptable to feature variations, Hippo is also

robust to such changes will persist.
The impact of inference steps

The influence of inference steps within the diffusion model on data generation is assessed utilizing
the HARBox Dataset. We document the accuracy of activity recognition using Granu.l data
generated by Hippo at various inference stages. As depicted in Figure 5.7, with a minimal
inference step count, such as 5, the accuracy of activity recognition dips to 40.5%, indicating
suboptimal data quality. However, as the inference steps are incremented to 100, there is a
noticeable enhancement in accuracy. Beyond 100 steps, the accuracy levels off, suggesting a
plateau in quality improvement with additional steps. This observation underscores that a higher

number of inference steps does not inherently equate to superior data quality.
Runtime Efficiency

Given a 5S0Hz sampling rate in the sensing application and a 1-second data buffering window for
reconstruction, we find that on a server equipped with NVIDIA RTX A6000 graphics cards, Hippo
is able to reconstruct a new data version from a sequence of size 100 x 9 within 0.61 seconds using

100 inference steps in the diffusion model (DM). This efficiency ensures that Hippo can generate
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new data within the allocated 1-second buffer time. Furthermore, the storage footprint of Hippo
is relatively minimal, with its model size being just 49.5 MB when saved to disk. This compact
size, combined with advancements in hardware technology, suggests the potential for deploying
Hippo on mobile devices. For instance, the iPhone 14, with its 6 GB RAM and A15 Bionic chip
featuring a 5-core GPU and 16-core Neural Engine, already supports complex operations such as
text-to-image generation [158]. An alternative approach could involve running Hippo on a trusted
edge server, allowing various applications to access and utilize the processed sensing data. Moving
forward, our efforts will focus on enhancing Hippo’s computational efficiency through techniques
such as quantization [167], model pruning [259], and model parallelism [185], to further facilitate

its adoption in diverse computing environments.

5.4.8: Case Study

Pedometer Application

The pedometer, a common tool in our daily routines, allows individuals to track their daily
steps using smartphones, smartwatches, or smart bracelets. For the sake of this analysis, assume
the user engages in four primary activities throughout the day: walking, calling, hopping, and
waving. Among these, the user wishes to keep the calling activity private, as it represents sensitive
information. However, there is a potential privacy concern: if the pedometer service provider
excessively gathers mobile sensing data, it could inadvertently expose sensitive information, such
as instances when the user is making calls during class. In this scenario, an attacker’s primary
objective would be to discern this sensitive activity, specifically identifying when the user is
calling during class time, thereby breaching the user’s privacy. This highlights the importance
of developing mechanisms to safeguard sensitive information while still utilizing the benefits of
mobile sensing technologies.

To safeguard sensitive activity information while maintaining the utility of step counting, users
can employ Hippo to reconstruct motion sensor data. Consider four primary activity time windows,

denoted as X1, X5, X3, X4, corresponding to walking, calling, hopping, and waving, respectively.
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The parameter A in Eq. 5.2 is crucial as it governs the balance between reducing overprivileged
information and retaining essential features for step counting in the reconstructed data. Importantly,
the setting of A needs to be personalized based on the user’s profile and the nature of the activities.
For instance, in the context of X, (calling), if an attacker is able to discern the activity’s semantic
meaning with a certain probability distribution (e.g., 0.9,0.025,0.05,0.025 for calling, walking,
waving, hopping, respectively), the entropy H (D) in Eq. 5.2 is calculated to be 0.186. By setting
A to 0.25, we aim to limit the amount of sensitive information in the reconstructed data, ensuring
that H(G), the entropy after reconstruction, should exceed H(D) + A = 0.436. Through this
approach, Hippo can adaptively reconstruct the sensor data, applying a degree of feature guidance
to maintain step-counting functionality while protecting sensitive activity information.

In a collaborative effort between the service provider and the user, the hyperparameter ¢ can
be established for the i-th level of feature guidance. If a user desires to retain the full utility of
sensor data, they can opt for granularity ¢« = 0, designated as Granu.0. This setting keeps the raw
data X; within a time window while merely altering metadata to protect privacy. For instance, to
obfuscate sensitive information within data X5, the user might choose granularity ¢ = 1, termed
Granu.1, which abstracts the specific details of the sensitive activities while ensuring that critical
features for step counting, such as peaks and valleys in X, are preserved. Upon assessing the
overprivileged information in the reconstructed Granu.1 data X7, it is observed, as illustrated in
Figure 5.4, that the Granu.l data for calling and waving motions appear similar, indicating the
removal of detailed features that could distinguish between these two activities. Consequently, an
attacker’s ability to identify the possible semantics of X7 as calling, walking, waving, hopping
shifts to probabilities 0.41,0.15,0.39, 0.05, resulting in H(G) being 0.507 and H(G; D) being
0.321. Given that H (G} D) surpasses the set threshold A = 0.25, it confirms that the requirement
for reducing overprivileged information is met. This approach effectively mitigates the risk of
exposing sensitive details through feature-level data in mobile sensing, thereby enhancing user
privacy while retaining essential functionality.

The effectiveness of reconstructed multi-grained data for step counting is assessed by collecting
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Figure 5.8: The pedometer performance on multi-grained data using different devices.

accelerometer and gyroscope data from a user through two Android smartphones, Lenovo ZUK Z2
and Samsung Galaxy S9. The user performs walking activities for 200, 600, and 1000 steps, with
data captured at a 50 Hz sampling rate. Utilizing Hippo, we generate Granu.l and Granu.2 data
variants. Subsequently, the Pydometer library [46] is employed to determine if the reconstructed
data maintains its utility for step counting. Figure 5.8 demonstrates that Granu.l reconstructed
walking data retains step count information effectively, exhibiting an error rate below 5% regardless
of the step increment. This indicates that for pedometer services, which primarily rely on peak and
valley information, a granularity setting of ¢ = 1 ensures the preservation of essential utility in the
reconstructed data. Consequently, we can reconstruct sensing data with level-1 feature guidance
to mitigate the risk of sensitive “calling” information leakage, all while maintaining the functional

integrity of pedometer applications.
Fall Detection Application

Mobile devices such as cStick [170], designed as a monitoring tool for fall detection in older
adults, highlight the need for selective data usage in sensitive contexts. While cStick is focused
on detecting falls, it inevitably collects a broader range of activity data, some of which might be
sensitive and not directly relevant to its primary function. This broader data collection could lead
to overprivileged access issues, where more information is gathered and potentially exposed than
necessary for the device’s intended purpose.

To address this, Hippo can be employed to reconstruct the sensing data, thereby perturbing
sensitive information while maintaining crucial information related to fall detection. By selectively

filtering the data through Hippo, the device can still perform its core function of fall detection
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Table 5.2: Fall detection results on multi-grained data.

Ganularity Raw Data Granu. 0 Granu. 1 Granu. 2 Granu. 3

Utility 1 1 0.966 0.874 0.798

without retaining unnecessary details about the user’s other activities. This approach ensures that
the cStick continues to serve its purpose effectively, providing essential support and safety for older
adults, while respecting their privacy and minimizing the risk of exposing sensitive information.

The generalization capability of Hippo is assessed by training the model using the HARBOX
and MotionSense datasets, then applying the trained model to process the cStick dataset. A
RandomForest classifier, trained with accelerometer readings from the open cStick dataset, is
utilized to detect falls. The evaluation focuses on the utility of reconstructed multi-grained
data. According to Table 5.2, when the RandomForest classifier is trained and tested with raw
data, it achieves 100% accuracy in fall detection. Hippo, through its diffusion process, can alter
sensitive attributes in raw data to generate Granu.0 data, which safeguards metadata-level sensitive
information without compromising the utility for fall detection—retaining a utility value of 1,
equivalent to that of the raw data.

When examining the Granu.1 data, generated with guidance from the first layer feature of the
stacked CAE, there is a slight decrease in detection accuracy due to false negatives and positives,
as detailed in Table 5.2. The accuracy for fall detection using Granu.1 data is 96.6%, indicating a
utility of 0.966. This decrease in accuracy illustrates the trade-off involved in enhancing privacy by
removing detailed motion features to produce more coarse-grained reconstructed data. In essence,
Hippo allows users to balance the level of detail in the reconstructed data with their privacy
needs. If high accuracy for specific activity recognition is crucial, users can opt to retain more
detailed activity features in the reconstructed data. Our proposed multi-grained data reconstruction
approach offers fine-grained control over information release, enabling users to tailor the balance
between privacy protection and the utility of sensing data for specific applications such as fall

detection.
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5.4.9: Discussion

Data Granularity

In Hippo, the data granularity level is a critical hyperparameter that dictates the resolution of feature
extraction, influenced by the number of Convolutional Autoencoders (CAEs) employed for multi-
resolution analysis. It is important to note that data granularity and semantic granularity are not
directly correlated; their relationship varies depending on the specific use case. However, there
are overarching guidelines for using different granularity levels in Hippo: (1) Mitigating Metadata-
level Overprivileged Issues: When the objective is to address concerns at the metadata level, users
can opt for “Granularity-0 data reconstruction. This approach leverages Hippo to obscure personal
attributes while preserving the activity features found in the raw data. Essentially, this level aims
to protect the user’s privacy without significantly impacting the utility of the data for its intended
purpose, such as activity tracking or fall detection.

(i1) Protecting Feature-level Overprivileged Issues: If the concern extends to feature-level
privacy, users can generate “Granularity-:” data. This is achieved by selecting the ¢-th layer of
features from the stacked CAEs, where ¢ > 1. Each incremental level of granularity (increasing
1) typically offers a higher degree of data abstraction, removing more detailed information to
enhance privacy. However, this also means potentially reducing the utility of the data for certain
applications, as more fine-grained features may be filtered out. By adjusting the granularity level,
users have the flexibility to find a balance between privacy protection and data utility, tailoring
output from Glint to suit the specific requirements and sensitivity of their application.

The configuration of the granularity level ¢ in Hippo is intricately linked to the specific utility
requirements of applications and the need to mitigate overprivileged information exposure. Given
the wide array of human activities and the varying contexts in which they occur, it is essential for
users and service providers to collaboratively determine the most appropriate granularity level 7.
This process typically involves the following steps:

(1) Evaluation by Service Providers: Initially, service providers should assess the
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hyperparameters of Hippo, such as the number of stacked CAEs, using public datasets.
This evaluation helps in understanding how different configurations impact the data reconstruction
process and the resulting data granularity.

(i1) Generation of Multi-Grained Data: Based on the evaluation, service providers can then
generate data at various levels of granularity using different numbers of CAEs. This produces a
range of reconstructed datasets, each offering a different balance of privacy protection and utility.

(ii1) Collaborative Selection: Users and service providers can collaboratively review these
multi-grained data sets to identify which granularity level aligns best with the desired level of
activity semantics and privacy protection. This empirical approach allows stakeholders to make
informed decisions that cater to the specific needs of the application.

Additionally, the threshold A, as discussed in Section 5.2.3, plays a crucial role in determining
the balance between privacy and utility. It is tailored to align with the specific activity recognition
scores, as illustrated in the pedometer example in Section 5.4.8. Since setting the ideal A can be
challenging without comprehensive context, involving a trustworthy third party might be necessary
to assist users in defining this hyperparameter accurately.

It is worth noting that completely eliminating feature-level overprivileged information without
compromising necessary activity features is a challenging endeavor. Hippo offers a pragmatic
solution by allowing the selective release of multi-grained data, thus providing a mechanism for
data minimization. Recognizing the complexities surrounding data minimization, future efforts will
focus on enhancing Hippo’s user-friendliness and effectiveness in real-world applications, ensuring

it remains a viable tool for balancing data utility and privacy.
Implementation

Hippo serves as a middleware for reconstructing sensor data at multiple granularity levels, enabling
the perturbation of metadata and the removal of detailed features to address privacy concerns.
Integrating Hippo within a secure realm, such as ARM TrustZone, enhances data security by
providing an isolated environment where raw mobile sensing data is exclusively accessed and

processed by Hippo. This setup ensures that only preprocessed data, which has been perturbed
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or generalized according to the specified granularity level, is accessible to other applications.

In practice, Hippo’s functionality allows for tailored data access: For applications that
necessitate raw activity features, Hippo minimally perturbs only the metadata, ensuring that
essential details for the application’s functionality are preserved. For applications where only broad
activity patterns are necessary, Hippo produces data at a coarser granularity, removing detailed
features to enhance privacy. Moreover, Hippo’s integration with privacy-check mechanisms such
as Masklt provides a dynamic framework for determining when data reconstruction should be
applied, catering to the diverse privacy needs across different scenarios. This adaptive approach
allows Hippo to offer a customizable privacy-preserving solution that aligns with varying
requirements, thereby providing a more secure and flexible data-handling process within mobile
and wearable device ecosystems.

As a learning-based method, Hippo can be generalized to new users and tasks by training
on large-scale datasets considering the diversity of user activities. Hippo perturbs the metadata
information without changing activity feature information. In addition, Hippo can change the
activity feature granularity by generating multi-grained data, which can be applied to new scenarios
or tasks. For instance, Hippo can be applied to defend against eavesdropping attacks that utilize
motion sensors on smartphones [6, 12,92, 149] by removing fine-grained features. Furthermore,
in this chapter, we assume the apps are trusted to honestly claim the intended functionalities
considering the law and policy regulations. In the future, we will consider how Hippo prevents
apps from overclaiming the requirements for intended functionalities. Alternatively, we will
enhance the mechanism of setting data granularity in Hippo to avoid the involvement of third-party

services.

5.5: Summary

In this chapter, we address the challenges of metadata-level and feature-level overprivileged issues
prevalent in mobile sensing applications. Drawing on the layered complexity of human activities

and the capabilities of generative artificial intelligence, we introduce Hippo, a system designed
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to produce data at multiple granularity levels. This system enables the perturbation of extraneous
metadata and the elimination of unnecessary activity details, offering a tailored approach to data
privacy. For tackling metadata-level overprivileged issues, Hippo employs a diffusion process that
obfuscates private attributes, establishing a theoretical linkage between the diffusion model and
the principles of differential privacy. On the feature level, Hippo adeptly removes detailed activity
information by generating data at varying granularities, allowing the same data to be interpreted at
different levels of detail depending on the requirements of applications. Users gain the capability to
control the granularity of the data they release through Hippo, effectively addressing overprivileged
data access concerns. Our implementation includes a variety of data visualization, classification,
and clustering tasks, along with two case studies across different datasets to assess the efficacy of
Hippo in generating multi-grained data. The comprehensive evaluations demonstrate that Hippo
is proficient in managing overprivileged issues in mobile activity sensing, offering a fine-grained
approach to controlling data access and usage. This enables a balance between data utility and
privacy, providing users and developers with a powerful tool to manage data privacy in mobile

sensing applications.
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CHAPTER 6: CONCLUSION

In this dissertation, we investigate the complex interactions between users, devices, and the
environment. In particular, we explore the potential security and privacy issues behind the
interactions. There are external attacks and user misconfiguration issues that could lead to
unexpected and insecure [oT device interaction, causing damage to the physical world. To enforce
the IoT device interaction security, we proposed the interactive threat detection system, Glint, to
identify the potential interactive threats in smart home automation configuration rule data. Then,
considering the privacy concerns of sharing smart home data for threat detection model training,
we designed the federated training paradigm to collaboratively train the threat detection model
with multiple local households. In addition, we present the Monte Carlo beam search-based
method to discover the root causes of the interactive threat in the IoT device interaction graph.
We then pay attention to the privacy issues behind the interaction between users and mobile
devices such as smartphones. In particular, we present a new acoustic-based method to recognize
the facial expressions of users, which can be used to expose the emotional privacy of users in real
time. Meanwhile, the proposed acoustic-based facial expression method can be used for digital
content recommendation and mental health care. Furthermore, we point out the overprivileged
issues in the mobile activity sensing data, where the sensing data contains more information than
is required for application purposes. Considering that excess information may contain sensitive
information of users, we propose Hippo to reconstruct multi-grained mobile activity sensing data.
In this way, Hippo can empower users with the choices to perturb metadata information and obscure

sensitive activity information that is unintended to be released by users.

6.1: Summary of Contributions

We addressed multiple challenges in developing data-centric Al techniques for interaction security

and privacy in the Internet of Things. From the data perspective, we solve the data scarcity problem

141



by fusing data from multiple sources and collecting data from volunteers in real-world scenarios.
(1) We have crawled automation rule description data from public smart home control platforms
and built a correlation classification model to find correlations between different rules. Then, we
synthesize a large scale of interaction graph datasets by randomly composing different numbers of
rules with correlations into graphs. (ii) We collect acoustic-based facial expression signals from
20 volunteers. The collected facial expressions are anger, happiness, disgust, sadness, fear, and
surprise. To ensure diversity in facial expressions, the volunteers vary in skin color and come from
various parts of the world, with their ages ranging between 20 and 38 years. The data collection
process was conducted intermittently over the span of a week. The dataset amassed exceeds 1 GB
when saved in plain text format. Finally, we obtained 20,535 samples using the sliding windows
segmentation method, with each window being 0.25 seconds in length.

From the model perspective, we design different deep-learning models to learn features for
different tasks. (i) We design a novel graph neural network model to learn interactive threat
patterns in complex interaction graphs. Specifically, considering the threat pattern could exist
at different scales in a heterogeneous interaction graph, the designed ITGNN model includes
metapath-based node transformation, multi-scale graph generator, and multi-scale graph fusion.
In addition, we propose to apply transfer learning techniques to enhance the model performance
on different platforms with data imbalance issues. (ii)) We propose a contrastive attention-based
domain adaptation model to extract acoustic-based facial expression features and identify six
basic facial expressions. Specifically, we incorporate testing data without labels into the training
process by designing the pseudo-label generation process. The external attention learning method
makes the neural network focus on important features that are related to differentiating different
facial expressions. In addition, the external attention mechanism can force the model to learn
correlations among different expression samples. (iii) We present a latent diffusion guidance data
generation method based on a convolutional autoencoder and diffusion model. The designed
method can perturb metadata information and generate multi-grained data that contains different

granularity of activity semantic information.
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From the system perspective, we design multiple systems to explore and defend against
the potential security and privacy attacks in the IoT. (i) We design a graph learning-based
interactive threat detection system, which can discover the potential new threat across close-source
heterogeneous systems. (ii) We propose a layer-wise dynamic clustering-based federated learning
system to train the graph learning-based threat detection model while preserving the privacy of
smart home usage data. (iii) We design the acoustic-based facial expression system using the
microphone and earpiece speakers in the commercial smartphone, which can be used to understand
users’ emotional status. (iv) We design a mobile seeing data reconstruction system, which can be
used as a middleware between sensor manager in the operating system and various application.
The designed system can perturb sensitive metadata information and obscure sensitive activity

features that are unintended to be released by users.

6.2: Discussion of Limitations

While this dissertation has yielded significant insights, it is important to consider the following
limitations that might influence the generalizability and applicability of the results. Addressing
these limitations can provide a clearer path for future studies to build upon and refine the work

presented here, ensuring that subsequent efforts are more robust and comprehensive.
Graph Learning for Threat Detection

This dissertation proposes a graph neural network (GNN) based solution for detecting interactive
threats among smart home automation applications. natural language processing (NLP) techniques
are employed to extract automation rule information from app descriptions so that the source code
of applications is not required for the interaction analysis. However, we acknowledge there are
limitations to implementing the proposed system.

First, we build the interaction graph dataset using NLP techniques, which discover semantic
correlations between different rules that are crawled from various platforms. However, due to the
heterogeneous loT platforms, this dissertation acknowledges that different platforms need different

techniques for analyzing IoT apps and extracting their app semantics. Moreover, the loT data could
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have data missing and corruption issues. We need to pay more attention to detecting and fixing data
corruption issues in the [oT environment. Nevertheless, our goal is to create an interaction graph
dataset to train the graph learning-based threat detection model. The evaluation has shown that
the created dataset from publicly available platforms can empower the threat detection model to
achieve decent performance in real-world settings.

Second, for the interaction graph construction in a real environment, we mainly use the device
names and status information from event logs to build the correlation between different rules, that
are associated with different devices. In the threat detection process, we approach the interaction
graph as a static entity, essentially viewing it as a snapshot within a dynamic setting. However,
there are time delays when extracting event logs and building the interaction graphs. As a result, if
two events occur synchronously or nearly at the same time, there could be delays or inaccuracies
in building the interaction graph in real-time.

Third, the graph learning-based method is essentially a probabilistic model. The model
generally requires a large amount of data to perform well. Insufficient data can lead to poor
estimates of the probabilities and model parameters, thereby affecting the overall performance.
In addition, the graph neural network models, involving complex interactions or numerous
parameters, can be difficult to interpret. This complexity can make it challenging for users to
understand the reasoning of models or to extract actionable insights. In the future, we aim to
improve the interpretability of Al-based models. For instance, the saliency maps can highlight
the parts of input data that are most important for the predictions of a model. The SHapley
Additive exPlanations (SHAP) uses game theory to explain the output of any machine learning
model. It assigns each feature an importance socre for a particular prediction, providing a more
comprehensive understanding of model behavior. The layer-wise relevance propagation method
decomposes the output decision to reveal the contribution of each input feature to the final
decision, helping to visualize how individual features contribute to predictions. Implementing
these techniques can help make machine learning models more understandable to both developers

and users, ultimately leading to better trust and more effective deployment of Al technologies.
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Fourth, to facilitate classification, we have manually labeled every interaction graph as “safe”
or “unsafe”, which takes much effort. Given the thousands of possible graphs of apps and devices
on different platforms, labeling a large number of graph data could be prone to error. Besides,
in different scenarios, different users have different security requirements. What is typical in one
house may be atypical in another. For example, opening a window at night may invite robbers.
However, if this is a high-rise apartment, then it would not be a threat to certain users. In the future,
we plan to enhance the precision of our data labeling and introduce more detailed threat-type labels
with the assistance of experts and current threat identification tools. Furthermore, this dissertation
introduces the use of transfer learning techniques, and we will further explore how to effectively

balance the original local data on a platform with transferred models from other platforms.
Federated Threat Detection Model Training

In this dissertation, we design a federated learning (FL) approach on non-IID data to learn the
threat patterns. However, FL faces several security and privacy challenges. (i) FL suffers from
data poisoning attacks. Malicious participants can manipulate the training process by injecting
corrupted data or gradients, which can lead to a compromised model that fails to perform accurately
or behaves undesirably when triggered. (ii) FL is vulnerable to the inference attacks. Despite
not sharing data directly, subtle information about the training data can still be inferred from the
shared model updates. For instance, membership inference attacks can determine if a particular
data point was used in the training dataset, potentially revealing sensitive information. Techniques
such as differential privacy are often needed to mitigate this risk, but they can also degrade the
model’s performance. (iii) FL is challenged by significant communication overheads and security
concerns. FL requires frequent exchanges of information (model updates) between clients and
the central server, which can expose the process to interception and tampering attacks. Secure
communication protocols are essential to protect these exchanges. Addressing these issues is

crucial for the successful deployment of FL in privacy-preserving threat detection in smart homes.
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Acoustic-based Facial Expression Sensing

This dissertation designs an active acoustic facial expression recognition system that leverages
the earpiece speaker and microphone at the top of the phone body. This dissertation proposes
a contrastive external attention model to learn representative and robust facial expression features
while eliminating the background noise. There are some factors and cases that need to be considered
in future work to enhance the robustness and practicality in real life.

First, the relative position between the user and the smartphone is flexible. When a user
is interacting with a smartphone, the position of their face in relation to the device can change
significantly. For instance, the distance and angle between the user’s face and the smartphone can
vary widely. Additionally, users might turn their heads to engage in conversation with others, often
not facing the smartphone directly. In addition, the distance between the user and the mobile phone
has a relatively strict limit in this dissertation, namely 20-50cm, but there is often a small distance
in real life. Therefore, in the future, we will consider more factors such as head orientation, and
distance to evaluate the performance of FacER.

Second, smartphone designs differ significantly. For instance, the placement of the microphone
and earpiece speaker varies across different brands. Consequently, in the process of removing
direct path signals, which travel directly from the speaker to the microphone, the specific design
parameters—particularly the direct path data from the speaker to the microphone—play a crucial
role. In the future, we plan to expand our evaluation to include various smartphone models and
design advanced algorithms to mitigate the negative effect of direct path signal noise.

Third, enhancing the continuous recognition of facial expressions requires additional effort.
In this dissertation, accurate facial expression recognition necessitates the initial segmentation of
acoustic signals that reflect facial expressions. However, determining the exact start and end of a
facial expression poses a challenge. On one hand, the duration of the same facial expression can
vary considerably when performed by the same individual. On the other hand, the signal variations
stemming from facial expressions are quite subtle. We have collected data for each facial expression

over five seconds. In the future, we aim to explore solutions for segmenting acoustic signals to
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effectively extract facial expressions, thereby facilitating real-time facial expression recognition.
Multi-grained Sensing Data Reconstruction

This dissertation provides a learning-based data sanitization method to minimize the information of
a data point to the information that is needed for a given task. To this end, the hierarchical feature
extraction model and latent guidance-based data generation model are developed to generate multi-
grained data. There are several limitations to the current work.

First, formal guarantees for information minimization concerning a given task need further
study. We acknowledge that it is hard to empirically illustrate information minimization since all
possible other information would have to be evaluated. Sensing data from Hippo is generated from
random noise with the guidance of latent representations of different CAE layers, which contain
multi-grained information of raw data. Users can choose the i-th layer to quantify the released
sensing information. The method enables different levels of privacy, but these levels are not easily
aligned with interpretable privacy requirements. In the future, we will seek provable guarantees
and interpretable reconstruction results for information minimization with in-depth development
of the learning theory of deep learning. Nevertheless, the success of text-to-image generators such
as DALL-E2 [52] proves the ability of data generation models as in Hippo.

Second, there is a risk that reconstructed data could diminish the accuracy of model inference,
which is potentially harmful to certain applications (e.g., fall detection, where ideally accuracy
should be 100%). Moreover, employing diffusion models to reconstruct an anonymized signal
could entirely invalidate any system relying on anomaly detection (e.g., arrhythmia detection). This
issue makes the approach unsuitable for such scenarios. We need to continue to explore advanced

methods to prevent the degradation of use cases that depend on anomaly detection.

6.3: Outline of Future Work

In the future, I will continue making efforts to enforce security and privacy measures in the
interactions between users, devices, environments, and Al. In particular, with the development of

Large Models or Foundation Models [255], the generative Al models have shown great ability
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to simulate the physical world. Meanwhile, these Al models will empower the physical devices
with great ability to interact with each other and the surrounding environments. Regarding the
security and privacy issues in the interactions of artificial intelligence of things, there are three

main directions for further efforts in the future.
Multimodal Federated Learning for Privacy-enhanced Interaction between IoT Devices

The world of the IoT is an important source of multimodal data. IoT devices, ranging from
smartphones and wearables to industrial sensors, collect a variety of data types, including images,
audio, text, and sensor readings. This diversity is foundational for multimodal learning, providing
a rich dataset for comprehensive analysis and insight generation. In addition, IoT devices
continuously generate data in real-time, offering a dynamic and evolving dataset for multimodal
FL. This continuous data flow is ideal for developing models that adapt and evolve over time,
enhancing their accuracy and relevance.

IoT devices often collect sensitive information. Multimodal FL allows for the analysis of
this data directly at the source, without needing to centralize it, thereby preserving privacy and
reducing data transmission costs. By leveraging data from multiple modalities through FL, IoT
systems can make more informed and accurate decisions. For instance, in a smart city context,
data from cameras (visual), microphones (audio), and environmental sensors (numerical) can be
integrated to optimize traffic management and public safety. Multimodal FL fits naturally with
edge computing—a key component of modern IoT frameworks—where data processing occurs
closer to where it is generated. This synergy reduces latency, decreases bandwidth usage, and
ensures more responsive and autonomous IoT applications.

However, in multimodal FL, data heterogeneity is more challenging because different
modalities can have varying data distributions, dimensions, and modalities, making it challenging
to integrate and learn from them effectively. Multimodal FL requires sophisticated models that
can handle and integrate multiple data types. Designing and training such models in a federated
setting adds to the complexity, especially when considering the need to adapt these models to

potentially sparse and non-IID (independent and identically distributed) data across nodes. While
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FL inherently offers a level of privacy by not sharing raw data, multimodal FL must ensure that
combined data modalities do not inadvertently reveal sensitive information. Additionally, robust
mechanisms are needed to protect against adversarial attacks that can exploit multimodal data.
Multimodal FL can be applied in various domains, such as healthcare, where different data
types can be integrated while respecting patient privacy. We will need to develop new algorithms,
including new strategies for data fusion, model training, and communication efficiency, which
can contribute to the broader field of machine learning. By leveraging FL, multimodal learning
can utilize data from diverse sources without centralizing it, thereby enhancing data privacy and

security—a significant advantage in sectors such as healthcare and finance.
Defend against Al-enabled Fraud for Trustworthy Interaction between Users and Al systems

Al-enabled fraud and deception refer to sophisticated methods that use Al technologies to commit
or enhance fraudulent activities and deceptive practices. Al-enabled fraud is becoming a serious
issue in the interactions between users, devices, and Al because of the ability of Al to simulate
the physical world. The adversary can leverage the power of Al to analyze large datasets, identify
vulnerabilities, automate deceptive processes, and create realistic forgeries that can deceive
individuals, businesses, and even automated systems.

For example, Al can be used to craft more convincing phishing emails and messages by
analyzing large datasets to mimic communication styles, creating personalized messages that are
more likely to deceive the recipients. Using deep learning, the adversary can synthesize fake
images, videos, or voice recordings (deepfakes) that are convincingly real, enabling them to
impersonate individuals for unauthorized access or to spread misinformation. In the context of
cybersecurity, Al can be used to generate adversarial examples that deceive Al systems, such as
manipulating images so that they are misclassified by visual recognition systems.

The sophistication of Al-enabled fraud makes it challenging to detect, as it can often bypass
traditional security measures and detection algorithms. In the future, we will develop advanced Al
algorithms, leveraging Al itself, to learn and adapt to new fraudulent patterns over time, helping

to identify and mitigate Al-enabled fraud. AI can analyze vast amounts of data in real-time,
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identifying complex patterns and anomalies that might indicate fraudulent activities, thus offering
advanced detection capabilities beyond human analysts or traditional methods. By automating the
detection process and reducing the incidence of fraud, Al-enabled systems can significantly lower
costs related to fraud investigation and losses.

In the future, we will put efforts into enhancing the trustworthiness of interactions between
users and Al systems. First, the high-quality and extensive datasets are crucial for training effective
Al models. However, accessing diverse and comprehensive fraud-related data while maintaining
privacy and security is a significant challenge. Al fraud detection can be integrated with other
technologies such as blockchain for enhanced security or [oT for broader data collection, opening up
new avenues for innovative solutions. Second, the adversary may continuously evolve the tactics,
meaning Al systems need to be adaptable and capable of detecting new and unknown types of fraud,
which is a non-trivial task given the adaptive adversaries. Third, balancing the sensitivity of Al
models to accurately detect fraud while minimizing false positives (legitimate transactions flagged
as fraudulent) and false negatives (fraudulent transactions not detected) is critical to ensure trust
and efficiency. Finally, ensuring that fraud detection decisions are explainable and transparent is

essential for regulatory compliance and trustworthiness.
Al for Secure Interaction between Users and Devices

The integration of Al for finding and fixing vulnerabilities in critical software within the IoT
ecosystem presents a unique set of challenges and opportunities. As IoT devices become more
prevalent and integral to our daily lives, ensuring their security is paramount.

The IoT ecosystem is incredibly diverse, with devices varying in computational power,
operating systems, and functionalities. Developing Al models that can effectively address the
security needs of such a diverse range of devices is a significant challenge. In addition, many
[oT devices have limited processing power and memory, which can restrict the deployment of
sophisticated Al algorithms directly on the devices. The lack of standardization across IoT devices
can complicate the integration of Al solutions for security, as these solutions must be compatible

with a wide range of device protocols and architectures. Furthermore, IoT devices often collect
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sensitive data. Utilizing Al to analyze this data for vulnerabilities must be done in a way that
respects user privacy and complies with data protection regulations.

In the future, we will develop lightweight Al models to analyze data from numerous IoT devices
in real-time to identify patterns and anomalies that may indicate a security vulnerability or an
ongoing attack, allowing for proactive threat mitigation. The AI models can learn the normal
behavior of IoT devices and networks, making it possible to detect deviations that may signify
a security breach, even in the absence of known malware signatures. The benefits of Al in securing
IoT devices apply across various sectors, including healthcare, manufacturing, and smart homes,

enhancing overall security and trust in [oT environments.
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