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ABSTRACT 

Transition metal complexes, dubbed ‘Lego molecules’, are composed of small 

molecules, ions, or atoms arranged around a central metal. The diversified research 

field of organometallic compounds includes but is not limited to the study of metal-

ligand interactions, structure-property relationships, and practical applications. This 

dissertation leverages machine learning techniques to expedite the research in this 

domain. The first part focuses on neural network potentials (NNPs). A Zn_NNPs 

model was built to depict the potential energy surface of zinc complexes. In this 

work, a simple but useful embedding of partial charges was proposed, which could 

model the long-range interactions accurately. Furthermore, an Fe_NNPs model was 

designed to identify the lowest energy spin state of Fe (II) complexes. The model 

integrates electronic characteristics such as total charge and spin state to account 

for long-range interactions effectively. For each model, a high-quality data set 

including tens of thousands of distinctive conformations was well curated using 

metadynamics. The third model is a scaffold-based diffusion model, called 

LigandDiff which can generate valid, novel, and unique ligands for organometallic 

compounds. Users only need to specify the desired size of the ligand, LigandDiff 

then generates a diverse and potentially infinite number of ligands of that size from 

scratch. Collectively, these models surpass traditional computational methods on 

both accuracy and efficiency, demonstrating substantial potential to accelerate 

transition metal complexes research. 
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CHAPTER 1 INTRODUCTION 

1.1 General Introduction of Transition Metal Complexes 

Transition metals are chemical elements which mainly lie in the d block of the 

periodic table. They include 3d elements from Sc to Zn, 4d elements from Y to Cd, 

and 5d elements from Hf to Au. The existence of transition metals on earth varies a 

lot, from ubiquitous to rare; 3d Fe ranks as the fourth most abundant element in the 

Earth’s crust while 4d Tc is only artificially produced.1 Most transition metals 

display slivery color, but copper and gold are usually in slightly red, and mercury is 

the only one which is in liquid at ambient temperatures.  

The research of these transition metals started in the nineteenth century and quickly 

drew people’s attention since the compounds of these transition metals exhibit 

different properties than typical covalent organic compounds. First, the partially 

filled d orbitals can accommodate electrons from outside to form dative covalent 

interactions. This bonding pattern is usually called coordination, which is a 

representation of Lewis acid-base interaction. Such coordination compounds are 

interchangeably called complexes, where the transition metal is the electron acceptor, 

while the electron donor is known as a ligand. The coordination sphere typically 

contains the central transition metal atom or ion along with the ligands that are 

bonded to it. The type of ligand is very flexible, and the sole criterion for ligands is 

that they must possess at least one pair of electrons to donate. Therefore, the ligands 

cover a diverse range of chemicals, either atoms, molecules, or ions. Some common 
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ligands are water, ammonia, and chloride.  The coordination number (CN) is the 

count of ligand attachment sites surrounding a transition metal center in a complex, 

ranging from 1 to 162,3 which depends on both the central metal and the ligands. 

Some metals prefer certain coordination numbers since these coordination numbers 

may stabilize electron energies. Moreover, the nature of the ligands also plays a role. 

The shape and the size of ligands greatly determine the coordination number. Larger 

ligands typically give rise to a reduced coordination number.   Overall, this diverse 

coordination range further enriches the chemical space of TMCs. 

Second, a characteristic feature of transition metals is their ability to exist in various 

oxidation states, because they can lose electrons easily in contrast to the alkali metals 

and alkaline earth metals. Alkali metals, with a single electron in their s orbitals, 

typically exhibit a +1oxidation state. Similarly, alkaline earth metals, which have 

two electrons in the s orbitals, almost invariably show +2 oxidation state. In contrast, 

transition metals are more complex because their oxidation states are determined by 

both the charge of ligands as well as the overall charge of the complex. For instance, 

most transition metals in 3d block have oxidation states of +2 or +3, like Co2+/ Co3+, 

Ni2+/ Ni3+, Fe2+/Fe3+, but the element Mn has more choices, ranging from +2 to +7. 

The flexible oxidation states give TMCs intriguing redox properties, resulting in a 

myriad of potential applications that will be discussed later.  

In addition, the spin state of transition metals can vary. The spin state describes the 

spin configurations of the central metal’s d electrons. It manifests as the unpaired 
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electrons of the metal. Usually, a complex can be categorized as either high spin or 

low spin, sometimes an intermediate spin state is also possible. The spin state is 

determined by the energy gap between the crystal field splitting energy (∆) and the 

pairing energy (P). When ∆ exceeds P, electrons occupy all the lower energy orbitals 

and pair up within them prior to climbing to the higher energy orbitals. In this case, 

it is energetically more advantageous for electrons to pair and occupy all of the low 

energy orbitals. Conversely, when the pairing energy exceeds the crystal field 

energy, electrons will first fill all available orbitals singly before any pairing occurs, 

regardless of the orbitals’ energy levels. Many properties of TMCs are highly related 

to the spin state, such as the magnetic properties and the spin-crossover properties.  

The overall unique properties of TMCs can be briefly summarized below: 

1. Various charge states. The transition metals are usually cationic in aqueous 

solution. But the charge is manipulated by the coordination environment so 

that the whole complex can be either cationic, neutral, or anionic. 

2. Unique interactions with ligands. The dative covalent bonding between 

ligands and transition metal center is selective and specific. The ligands can 

tune the electron configurations of the d orbitals of the metal, thereby 

forming unique overall property that the individual metal or ligands do not 

own.  

3. Diverse coordination geometries. The flexible choice of CN provides a wide 

variety of coordination shapes different from the organic molecules. 
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Furthermore, isomerism exists extensively in coordination compounds 

which further enriches the diversity of geometries. For instance, one type of 

isomerism is attributed to the relative arrangement of the ligands. A planar 

complex M(L1)2(L2)2, where M is the metal, L1 and L2 are two different 

ligands, can be in either cis or trans form, depending on the relative position 

of the same type of ligand. 

TMCs have extensive applications in many fields.4-20 In biology, optical imaging is 

an important tool in life sciences for disease diagnostics. Many luminescent TMCs 

have shown promising applications in bioimaging and biosensing due to their 

remarkable photophysical properties.21,22 For instance, oxygen deprivation in 

biological systems can cause various diseases such as fatty liver, cerebral infarction, 

diabetic retinopathy, and cancer.23-25 Investigating the mechanism of diseases related 

to oxygen deprivation requires O2 imaging technology that is capable of detecting 

O2 in real time with high selectivity and high stability. Studies have shown that a 

wide range of TMCs including Pd (II) and Pt (II) porphyrins, Ir (III) complexes, Ru 

(II) complexes have strong phosphorescence within the visible to near-infrared 

spectrum, with notably extended lifetimes exceeding 1.0 microseconds and they 

have been successfully used to monitor O2 level in cell nucleus,26 PC12 cells,27 bone 

marrow,28 etc. Transition metals also play important catalytic and structural roles in 

biology. For instance, iron is an essential ion for the process of the respiration and 

electron transport in biological systems.29 Fe is bound to a porphyrin, and the whole 
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complex, called a heme, is the major oxygen carrier in blood. Small ligand like CO 

can easily bind with the heme so that the cellular uptake of oxygen is blocked which 

deactivates oxygen transport, leading to the death of the organisms. Such process is 

called carbon monoxide poisoning.30 In addition to respiration, Fe actively interacts 

with many enzymes to support the redox processes,31 electron transfer reactions,32 

and even nitrogen fixation in plants.33 Another important application of TMCs is 

metallodrugs. Barnett Rosenberg and colleagues at Michigan State University 

fortuitously unveiled that cisplatin has anticancer effects, which initiated 

metallodrug research.34 Currently, the platinum-based metallodrug family including 

carboplatin and oxaliplatin has been extensively used to treat ovarian, breast, colon, 

testicular and prostate cancer.35 Some other TMCs have also shown intriguing 

properties as promising metallodrug candidates. The Ru-based complexes exhibit 

high affinity for DNA and can reversely bind to the double helix.36 They are 

expected to be potential candidates as antineoplastic drugs since they can tune the 

tumor cell cycle and cause apoptosis.37 A couple of complexes such as KP1019, 

KP1339 and NAMI-A are being evaluated in clinical trials.38 Copper(II) complexes 

have emerged as an promising chemotype against cancer since they are capable of 

generating reactive nitrogen species and reactive oxygen species, resulting in 

cellular death.39 A typical family example of Copper metallodrugs is  Casiopeínas, 

which have phenanthroline or bipyridine bidentate ligands in the coordination 

sphere, and the second charged ligand is either O-O or N-O coordinated, such as 
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acetylacetonate, salicylaldehyde and aminoacidate. These compounds are able to 

increase endonuclease G and activate caspase 3, thereby leading to apoptosis.40 

Recently other new copper complexes similar to Casiopeínas have also been 

successfully synthesized. And the results indicate that these compounds have 

remarkable cytotoxic and antiproliferative bioactivities in multiple cancer cells, like 

breast cancer, melanoma cancer, osteosarcoma cancer, cervical cancer, colon cancer 

and ovarian carcinoma.41-43 Overall, the mechanisms of metallodrugs against 

diseases include inhibition of angiogenesis, induction of cell apoptosis, alteration of 

the cytoskeleton, etc.44 And they open novel pathways for treating diseases that  

traditional organic medications cannot address due to issues with drug resistance.45 

But currently, the comprehensive functions of TMCs in disease diagnostics and 

treatments are still unclear and more research is greatly needed. 

TMCs have also been widely used in material science. One important application is 

their great contributions as organometallic catalysts to chemical synthesis. The 

properties of transition metal catalysts are determined, to large degree, by the ligands 

coordinated to the metal. The electronic properties, the size of the ligand and the 

ligand bite angle are a couple of important parameters to consider for the design of 

new TMCs as catalysts.46,47 For instance, the electrocatalytic CO2 conversion offers 

tremendous potential to use carbon-free renewable energy to meet green 

chemistry.48 The high energy barrier for electrochemical CO2 activation is related to 

the high energy requirement for breaking the linear neural molecule into the bent 
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radical anion, leading to a high overpotential demand for the one electron reduction 

from CO2 to 𝐶𝑂!∙#. But once the transition metal catalyst is introduced to the system, 

this critical potential can be met by the reduction potential of the catalyst, thus 

making the conversion.49 The whole process starts from the coordination of CO2 to 

the central transition metal so that the electron can transfer to CO2. The selection of 

ligands in TMCs is of great importance in this step. The suitable ligands should be 

flexible electron carriers that can accept or donate electrons via redox reactions. 

Examples include pyridines and imines. Currently, TMCs including elements Mo, 

W, Mn, Rh, Re, Cr, Fe, Ru, Ni, Pd, Pt, Cu, Zn, Os, Ir, have been successfully 

synthesized as catalysts for electrochemical conversion of CO2.50 

One more example of TMCs in material science is the utilization of TMCs as 

photosensitizers. Photosensitization is a process where the energy transfers from the 

photosensitizer to a substrate so that the substrate can be activated to undergo further 

chemical transformations.51 The generation of singlet oxygen is a typical example 

of photosensitization reaction.52,53 The reaction is initiated by the excitation of the 

photosensitizer via the absorption of a single photon, resulting in a high energy 

singlet state. The photosensitizer then proceeds to convey its energy to the ground 

state molecular oxygen (3O2), undergoing an internal intersystem crossing to reach 

an excited triplet state. And the transferred energy allows the production of 

metastable excited state singlet oxygen (1O2). TMCs are ideal candidates for 

photochemical applications due to their intense absorption in the visible light 
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spectrum. The effectiveness of a photosensitizer depends on the presence of readily 

available, low-energy valence exited states. For TMCs, it usually corresponds to the 

charge transfer states between metal and ligand, either from metal to ligand or ligand 

to metal. For instance, Ru (II) complexes are most widely used photosensitizers 

because their low-lying valence excited states are predominantly long-lived metal-

to-ligand charge transfer states.54 And considering that Ru (II) is extremely rare on 

earth, recently other transition metals, especially the first-row TMCs have been 

largely explored. The relative inaccessibility of MLCT excited states may limit the 

viability of these complexes to activate photosensitization, but well-designed novel 

complexes show a promising balance between cost, abundance and efficiency.55 
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1.2 Machine Learning 

Artificial intelligence (AI) refers to a computer system’s capacity to emulate human 

cognitive functions, including learning and problem-solving with machine learning 

(ML) representing a subset of AI applications. It is a process where mathematical 

models are well designed to make predictions via learning implicitly from available 

data. The beauty of ML is that the learning process is driven by the model itself 

without direct human intervention. The learning process is evaluated by the loss 

function of a ML model and the overall goal is to reduce the error between the true 

values and the predicted values as much as possible. 

Depending on the type of used data, machine learning mainly includes supervised 

learning and unsupervised learning. The former uses labeled training data, thereby 

having a baseline understanding of what the correct output should be. By contrast, 

the latter uses unlabeled data, which means the model learns independently to 

understand the inherent structure of the given data without any specific guidance. 

While the type of data is a distinctive difference between both models, they also 

have different goals and applications which set them apart from each other.  

Supervised learning is used to investigate the underlying relation between input and 

output while unsupervised learning is more focused on discovering new patterns and 

relationships in raw, unlabeled data. For instance, a supervised model might be 

designed to predict the flight times under the conditions of weather, airport traffic, 

peak flight hours, etc. But an unsupervised model might be used to automatically 
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categorize some unlabeled images. In this case, the data is not labeled so the model 

does not know the object in the image, but the model can discern the common 

characteristics of the same type of images, thus classifying the images correctly. 

Traditional machine learning requires feature engineering with human intervention. 

Features related to the target property need to be carefully determined and extracted 

and then fed into the model. They usually have simple framework and thus are easy 

to interpret. Examples of traditional machine learning model include linear 

regressions, logistic regressions, support vector machines, decision trees, random 

forests, etc. However, feature engineering is a meticulous and time-intensive task, 

requiring experts’ knowledge to pinpoint the pertinent features for the model. In 

addition, due to their simple and fixed structures, they are usually unable to model 

complex and high-dimensional data, thus limiting their application domains. To 

circumvent the limitations of traditional machine models, deep learning is used. 

Deep learning uses neural networks to process raw data without any feature 

engineering which eliminates the human intervention, thus allowing the use of large 

amounts of data. Artificial neural networks (ANNs), or neural networks are 

proposed to imitate the mechanism which human brain operates. The human brain 

consists of millions of neurons, all interconnected and they are sending electric 

signals back and forth to each other to help human process information and make 

decisions. And neural networks were first designed by the inspiration of these 

biological neurons dating back to 1943. A typical neural network architecture 
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consists of one input layer, a minimum of one hidden layer as well as one output 

layer. And every layer has multiple nodes, i.e. the neurons in the biological systems. 

Usually, nodes are fully connected between two consecutive layers. And the 

connection strength is determined by the weights. The input layer processes the data 

input from outside, analyzes it and then passes the data to the hidden layers. The 

hidden layers further transform the data via nonlinear functions and pass the 

transformed data to the output layer. Subsequently, the output gives the final result 

of all the data processed by the neural network. The transfer of information from 

one layer to the subsequent one in a neural network is termed as feedforward 

propagation, which is usually used for training. Once the error between the 

predictions and the true values is determined, backpropagation is activated to 

minimize the error by fine-tuning the neural network’s weights and biases. The 

backpropagation uses gradient descent algorithm to propagate the error from the 

output back to the input layer.  The gradient descent algorithm computes the gradient 

of the error function in relation to the model’s parameters, such as weights and biases, 

and then updates the weights and biases in the direction of the negative gradient to 

reduce the error. In essence, feedforward and backpropagation work together in a 

neural network's training phase: feedforward makes predictions, backpropagation 

assesses and corrects them, and this cycle repeats until the network optimally learns 

to map inputs to the correct output.  
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Machine learning in chemistry is not new. The earliest application of data science 

techniques to chemistry research is the determination of molecular formula from low 

resolution mass spectrometry in 1969.56 Machine learning has wide-ranging 

applications in chemistry: For instance, traditional ML methods have made 

contributions to quantitative structure activity relationship (QSAR) applications.57,58 

Usually, a set of molecular descriptors which are precomputed molecular 

physicochemical properties are fed into a traditional ML model, such as linear 

regression model, random forests, support vector machines, etc.. With such a well-

trained model, the target property of new, unseen molecules can be quickly predicted. 

In addition, using ML to accelerate traditional quantum mechanical (QM) 

calculations has been emerging in the last few years. Having a deep understanding 

of the electronic structure of chemical systems is crucial for the design of molecules 

and materials. The most accurate way to decode the chemical structures is to solve 

the Schrödinger equation used to calculate the wave function of a given system. 

However, this equation can be solved exactly only for the single electron system, 

e.g., the hydrogen atom but not for multi-electron systems, such as the Helium atom. 

For larger molecules, carefully chosen approximations are needed at the cost of 

losing accuracy as little as possible.59 Machine-learning potentials (MLPs) with 

reference to high-level quantum chemistry methods have gained increasing 

attention in computational chemistry.60-63 Well-built MLPs can reach as high 

accuracy as their reference method but at much lower computational cost. Since the 
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MLPs are built based on non-linear functions which do not require any physical 

knowledge, such methods are very flexible and can be used for almost any system, 

such as a molecule,64,65 nanoporous materials,66 oxides,67 and metals.68,69 And one 

more example of ML for chemistry is computational material design. The design of 

novel structures with desirable properties is a core part of chemistry. In the early 

years, materials discovery was primarily driven by serendipity.70 Compared to 

traditional high-throughput screening methods, deep generative models can generate 

rational molecules at a reduced cost since little human intervention is required and 

much time can be saved. Once a generative model has been well designed, unlimited 

and diverse new molecules can be automatically generated within seconds. 

Currently, several generative models have been widely used for molecular 

generation, including variational autoencoder (VAE), convolutional neural network 

(CNN), Transformer-based models, recurrent neural network (RNN), flow-based 

models, generative adversarial network (GAN), and diffusion models.71  

The powerful learning ability of ML has revolutionized many fields in modern 

society, and we have already witnessed great progress in chemistry that interacts 

with ML. Currently, AI or specifically ML, is still quickly developing, and powerful 

large language models (LLMs), such as ChatGPT, demonstrate potential for 

advancing human development. However, how these tools can benefit chemists thus 

accelerating chemistry research, has been underexplored to date.  
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CHAPTER 2 MODELING ZINC COMPLEXES USING NEURAL 

NETWORKS 

2.1 Zinc Complexes 

Zinc is a crucial trace element responsible for all livings on our planet.72-75 Zinc 

deficiency can result in a variety of health issues related to skin, bones, and the 

reproductive, digestive, and immune systems.76 With an [Ar]3d104s2 electronic 

configuration, zinc has only one oxidation state, but exists in different isotopic 

forms of mass ranging from 66 to 70. The completely filled d-shell enables Zn2+ to 

coordinate various ligands in highly flexible geometry and run fast ligand-exchange 

reactions.77 The coordinating atom of zinc is usually N, O, S and these electron-

donor ligands attach to the central meal zinc in tetrahedral, trigonal bipyramidal, or 

octahedral geometries, among which tetrahedral is the most common geometry 

with a coordination number of four.  

As the second most essential and abundant element in human bodies, transition 

metal zinc plays important structural and catalytic roles in various biological 

activaties.78-82 Zinc is a good electron acceptor, thus serving as a Lewis acid in 

catalysis. Its structural functions are validated by the fact that zinc is found in 

various protein structures and superstructures. The importance of zinc to biological 

systems can be briefly summarized below:   first, the importance of zinc to the gene 

is indispensable based on the fact that approximately 25% of the zinc compound of 



 

 15 

rat liver is identified in the nucleus.83 Specifically, zinc actively participates in the 

process of genetic stability and gene expression in various ways, such as the 

structure of chromatin, DNA repair, RNA transcription, DNA and RNA 

polymerases as well as programmed cell death.84 Second, the d10 configuration 

makes Zn2+ redox inactive, an ideal antioxidant which inhibits any possibilities of 

free radical reactions. And this property is crucial for antioxidant protection in 

biological systems.  The antioxidant effect of zinc can be mediated via multiple ways 

including the direct activity of zinc ions, the regulatory effect on metallothionein 

induction as well as its structural functions in antioxidant enzymes. Specifically, 

zinc ions can directly bind to thiol functional groups to prevent oxidation.85 

Meanwhile, zinc is also identified as a crucial component of the antioxidant enzyme 

known as Cu, Zn-superoxide dismutase (SOD1), which plays a vital role in 

defending the body against oxidative stress. When there is a deficiency of zinc in 

the body, the activity of SOD1 can be suppressed, potentially leading to increased 

oxidative damage in cells.86 Furthermore, it has been indicated that zinc can 

indirectly influence the functionality of various other antioxidant enzymes.87 Third, 

zinc complexes are reported to have great medicinal effects for a variety of diseases. 

For instance, zinc complexes have shown appealing properties as photosensitizers 

in photodynamic therapy against cancers.88 Compared to platinum derivatives which 

are the most widely used anticancer agents, zinc complexes have lower toxicity, 
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which make them ideal alternatives. Besides, Zn complexes have been widely used 

as anti-Alzheimer agents,89 anticonvulsant90 and for antidiabetic treatment.91-93  
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2.2 Neural Network Potentials 

Electronic structure theory methods enable the understanding of molecules, 

materials on the quantum level and thus complement the experimental studies. The 

rapid development of computational resources allows large-scale electronic 

structure simulations for simple systems. However, the ever-increasing demand for 

accurate computational calculations of large and complex systems is currently 

infeasible to achieve. Density functional theory (DFT), currently the computational 

backbone within the electronic structure theory, provides a practical compromise 

between chemical accuracy and computational cost, but the explicit form of Kohn-

Sham DFT is still unclear and the functionals are formulated in increasingly 

complicated analytical forms as they climb the Jacob’s ladder.94 In addition, the 

functionals are crafted to satisfy certain physical conditions, including asymptotic 

behaviors and scaling characteristics, however these designs highly depend on 

human heuristics, particularly in the intermediate regime where the asymptotic 

principles are not applicable.95  

Alternatively, force fields methods have been proposed to model the chemical 

reactions for large system by summing over the bonded and nonbonded 

interactions.96 The bonded term is used to describe the simple interactions at close 

distances between the directly bonded atoms, as well as angles and dihedrals among 

atoms connected through shared bonding partners. Conversely, nonbonded terms 

model the pairwise interactions between atoms, mainly for electrostatics with 
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Coulomb’s law and dispersion with Lennard-Jones parameters97. The simple format 

of classical force fields (FF) methods greatly improves the computational efficiency 

comparing to DFT methods, thus making it possible to model the system which 

includes thousands of atoms via molecular dynamics (MD) simulations. Even 

though a fundamentally sound analysis of chemical interactions is ensured, deep 

insights derived from MD simulations are usually limited due to the low accuracy 

of FF methods.98 Especially for systems where the polarization and many-body 

interactions have to consider, large error may appear using FF methods since both 

types of interactions are completely ignored in classical FF methods. 

Considering the limitations of both DFT and classical FF methods, new pathways 

for accurately and efficiently modeling the electronic structure of molecules, clusters 

and materials are highly required. And ML should be a good choice. ML methods 

strive to discern the implicit relationships between inputs, either predefined 

chemical descriptors or just xyz coordinates and outputs, i.e., the chemical properties. 

The learning process relies on the provided data set. And a well-trained model can 

capture the fundamental physical laws of quantum mechanics embedded in the data. 

Practically, ML methods do not need to deal with any mathematical formulas that 

obey the physical principles to represent the structure-property relation, which 

greatly simplifies the calculations. This unique ability allows to investigate the realm 

of chemistry and forecast the attributes of new molecules and materials with 

unparalleled efficiency and remarkable accuracy.99-101  
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A potential energy surface (PES) delineates the relationship between a system’s 

energy and its geometrical parameters, such as the atom coordinates, with the 

assumption of the Born-Oppenheimer approximation.  Each point on the PES 

represents a unique conformation of the given configuration at different energy 

levels. As a result, the PES is utilized to locate stable conformers, i.e. local minima, 

to investigate the minimum energy pathways among numerous possible conformers, 

and to find transition states which include all information about the chemical 

reactions. Furthermore, the PES is also utilized to run MD simulations to gain 

understanding of the reaction dynamics.104 The PES aims at providing an 

understanding of systems at the atomic level, such as small organic molecules, 

liquids, solids, and polymers because all stable and metastable structures, atomic 

vibrations, transition states and activation barriers between various structures can be 

tracked on the PES.  

However, MD simulations assisted by the PES is challenging. On one hand, for large 

systems the PES can only be generated using quantum mechanics/molecular 

mechanics (QM/MM) techniques since it is practically impossible to determine the 

complete PES for over thousands of atoms due to the complexity of the system. For 

instance, the PES was used to investigate the catalytic mechanism of enzymes.105 

The insights into electrons movement in a chemical reaction and the mechanistic 

role of active site in residues can all be obtained by analyzing the PES. However, 

the semiempirical methods used in QM/MM are often unreliable for providing 
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accurately microscopic chemical properties. On the other hand, to develop the full 

PES, the energy of a nonlinear molecule with N atoms is associate with a function 

of 3N-6 degrees of freedom. And the computational expense for calculating the PES 

escalates quickly with an increase in the number of atoms because the electron 

structure theory or DFT methods are utilized, and the computational scaling of DFT 

is typically cubic with respect to the number of atoms (O(N³)), whereas the coupled-

cluster singles, doubles, and perturbative triples [CCSD(T)] method scales as the 

seventh power (O(N⁷)) with the number of atoms. 

To circumvent the limitations mentioned above, machine learning potentials (MLPs) 

were proposed to represent the multi-dimensional PES two decades ago.106 MLPs 

learn the contours of the PES using reference data curated from first-principles 

calculations. These MLPs implicitly encode the atomic interactions in regard to 

nuclear charges and atomic positions without a significant loss of accuracy 

compared to the electronic structure calculations but they are much faster than these 

traditional quantum calculations.  

To build a ML model to investigate the potential energy surface (PES), suitable 

reference data is of great importance. The reference data is usually obtained from ab 

initio calculations. But the ab initio calculations are only required for data 

preparation, since once the model is trained with the reference data, any predictions 

can be directly obtained from the model with ab initio level accuracy. The reference 

data determine the applicability domain of the trained model as well as the reliability. 
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Any deficiencies in the data will unavoidably result in imperfections of the trained 

model. Therefore, the reference data stands as a crucial element of any model. But 

in computational chemistry, compiling the data sets is not easy. This is primarily 

because each reference point derives from calculations that are both computationally 

intensive and complex, restricting the volume of data that can be gathered. Besides, 

the chemical space of molecules, clusters and materials is extremely large, and it is 

not easy to locate the representative geometries efficiently. The most common 

strategies for sampling and generating the reference data sets can be summarized 

below:  

(1) ab initio molecular dynamics (AIMD) Sampling. In this method, 

dynamical trajectories at finite-temperature are produced by using 

forces derived from electronic structure computations. Although this 

method is expensive, it is able to accurately describe the chemical 

process, such as chemical bond breaking and forming. In most cases, the 

system is simplified so that only N nuclei and Ne electrons are 

considered to meet the Born-Oppenheimer approximation and the 

dynamics of the nuclei are assumed on the ground-state electronic 

surface. But due to the impossibility of precisely solving the differential 

equations of the ground-state electronic structure, approximate 

electronic structure methods are widely used, among which DFT is the 

most common one due to its good performance at a relatively acceptable 
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computational cost.  

(2) Normal Mode Sampling. This method does not require to run any MD 

simulations. To generate a set of data with the energy range around the 

minima energy structure, it starts from an equilibrium point on the PES, 

where atoms at the geometry’s energy minima are randomly displaced 

with the normal modes. To achieve this, the normal mode coordinates 

at the minimum position are first calculated and the displacement 

coordinates are then obtained based on the setting of harmonic potential 

which is derived from the normal mode coordinates. The single point 

energy of the newly generated geometry is calculated as the reference 

data while the displaced coordinates are as input. A typical example of 

this sampling method is ANI-1.102 Although this method is efficient 

since no MD simulations are involved, only samples close to minima 

can be generated which limits the energy space, thus resulting redundant 

geometries in the data set.  

(3) Metadynamics Sampling. Metadynamics103 is a dynamic sampling 

method which is capable of biasing configurations away from the 

positions that have already been visited. This enhanced sampling 

method uses collective variables to define a biased potential, compelling 

the system to explore less probable states, thus all states on the PES can 

be sampled. The collective variables are a predefined number of degrees 
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of freedom. In metadynamics, the externally applied bias potential, a 

function of the collective variables, is iteratively added to the 

Hamiltonian of the system, which induces the system to sample the 

high-energy area. One benefit of this approach is that the high-energy 

landscape on the PES which is usually ignored in classical MD 

simulations can be frequently visited. Therefore, the data collected from 

this method is evenly distributed, instead of being limited to a narrow 

energy window.  

One drawback of ML methods is the limited extrapolation abilities since the trained 

models can only make reliable predictions in the training data domains. For data 

curation in ML, the sufficient sampling of the PES is therefore crucial. In the three 

sampling methods discussed above, metadynamics sampling is highly 

recommended.  

In the past 20 years, various MLPs have been proposed. Models based on traditional 

ML include support vector machine potentials,107 atomic cluster expansion 

potentials,108 spectral neighbor analysis potentials,109,110 gaussian approximation 

potentials,111,112 moment tensor potentials,113 gradient domain machine learning,114 

etc. For example, Roman and coworkers developed a least-squares support vector 

machines (LS-SVM) to investigate the interatomic potentials of around 200 small 

organic molecules which only contain H, C, N, O, F five elements.107 To accurately 

model the pairwise interactions in the system, constitutional descriptors, such as the 
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mole fractions of different atoms, the size of molecule, and quantum-chemical 

descriptors including average polarizability, dipole moment, quadrupole moment, 

HOMO-LUMO gap were used to decode the structure of molecules. With these 

molecular descriptors, it is practically accessible to have a clear intuition of what the 

model learns from the provided reference data, thus allowing to understand the 

structure-property relations.  The LS-SVM is able to deal with multivariate 

calibration problems and solve both linear and nonlinear multivariate calibrations. 

And regularization technique can be introduced to the LS-SVM model to better 

balance between overfitting and underfitting. The findings indicated that the LS-

SVM demonstrates greater efficiency compared to ANNs for training. Furthermore, 

for two extra test sets, the LS-SVM model showed better interpolation and 

extrapolation abilities than ANNs.  

Although in this specific example of LS-SVM, traditional ML methods outperform 

ANNs, this conclusion is not universal. For large amount of data, which is necessary 

for real-world applications, ANNs definitely surpasses traditional ML methods, due 

to its structural flexibility. The potentials modelled using neural networks are call 

neural network potentials (NNPs). Starting from 1995 NNPs have been developed a 

lot and can be classified into four generations.115  

Doren and coworkers first proposed a single feedforward neural network model to 

estimate the adsorption energy of H2 molecule on the Si (100) cluster surface.116 

This first-generation neural network is a two-dimensional system since the input 
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layer has only three input coordinates and the single neuron in the output layer gives 

the predicted energy. At least one intermediate hidden layer resides between the 

initial input and the final output layer. But no physical information is embedded in 

the nodes of these hidden layers since they are used just to increase the neural 

network’s flexibility and allow for the processing of complex features and patterns 

in the input data before reaching the output. Adding more hidden layers and nodes 

increases the network’s capacity for flexibility, thus having better generalizability. 

The relation between any two nodes in the two consecutive layers is defined as     

𝑦 = 𝑤𝑥 + 𝑏                                                 (1) 

where w is weight, b is bias, and both are learnable parameters. However, this simple 

linear representation is not enough. A nonlinear function, or activation function is 

applied so that any arbitrary function can be well represented. The output of a node 

is then defined as 

𝑦 = 𝜎(𝑤𝑥 + 𝑏)                                            (2) 

where 𝜎	is the activation function. Various activation functions are frequently used. 

Some examples are available from Figure 35 to Figure 38 (See APPENDIX B: 

FIGURES). The advantages of this first-generation NNPs are obvious: they can 

accommodate numerous training parameters so that any physical principles can be 

modelled. And no preliminary equations are required to represent these physical 

rules which make this method simple to implement. Furthermore, the high flexibility 

also enables the model to accurately represent the energy of the system in regard to 
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atomic coordinates. Finally, this method allows the calculation of analytic 

derivatives. Hence, both energy and forces can be calculated at speeds that are much 

faster than first-principles methods. However, the limitations of this single feed-

forward neural network are also obvious. First, this method is not applicable to large 

system, since the extra input neurons of the model is required whenever a new atom 

is introduced to the system. For a system with hundreds of atoms, the number of 

input nodes is excessively large, and it can impede efficient training of the model 

due to increased computational demands and potential overfitting. Second, in this 

simple feed-forward ANN, the symmetry is not guaranteed. Changing the input 

order of each atom results in different energy output, which is contradictory to the 

fundamental principle that the PES should inherently be invariant under translation, 

rotation, and permutation of identical particles. For example, for a water monomer, 

the input can be the pairwise distances of these atoms, since the two O-H bonds 

should be chemically equivalent, exchanging the input order of two H atoms should 

not change the energy of this water molecule. However, each weight and bias in the 

neural network are usually numerically different, different input orders possibly give 

rise to different outputs. Finally, once the NNP is determined, it can be only applied 

to a specific class of system because the framework of this neural network limits it 

to predict the potential energy for a system with different size of atoms. Any new 

system containing more or less atoms needs to be retrained.  
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The restrictions of the low-dimensional neural networks prevent its application to 

complex system. To solve these issues, Behler and Parrinello introduced the second-

generation NNPs in 2007.117 The first improvement is to abandon the single 

feedforward neural network. Instead, in the second-generation NNPs, each atom is 

given a neural network to predict the atomic energy. By aggregating these atomic 

energies, the cumulative energy for the entire system can be determined by 

𝐸$ = ∑
%

&
𝐸&                                                     (3) 

where 𝐸& is the atomic energy and 𝐸$ is the total energy across all N atoms. The 

unique design of this method is that each element shares the same neural network 

with the same weights and biases which reduces the computational cost. In addition, 

this atomic neural network allows to model the PES for any arbitrary system since 

if a new atom is introduced to the existing system, a corresponding neural network 

of that element can be easily added to the whole framework of neural network. On 

the other hand, an atomic neural network can also be easily deleted if one atom is 

removed. The second improvement is that the locality approximation is introduced. 

Instead of including all pairwise interatomic interactions, interactions are only taken 

into account between atoms that fall within a predefined cutoff radius. This type of 

short-range interactions can cover the main interactions among atoms without a 

significant loss of accuracy. Finally, the so-called atom-centered symmetry 

functions (ACSFs) are introduced to encode the local structural fingerprints of the 
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atomic environments. Meanwhile, this type of descriptors can also keep the 

translational, rotational and permutation invariance. One important component of 

ACSFs is the cutoff function which is used to define the local atomic environments. 

The cutoff function should meet some criteria: (1) it should be differentiable to 

ensure there is no discontinuity in the descriptor numbers as well as the 

corresponding derivatives; (2) It should decay smoothly to zero at the cutoff radius 

to make sure the interactions decrease at larger distances and become zero outside 

the cutoff. A common cutoff function117 adapted from the cosine function is defined 

as 

𝑓'0𝑅&(2 = 3
0.5 7𝑐𝑜𝑠 ;𝜋 )!"

)#
= + 1? , 𝑅&( ≤ 𝑅'

0																																		, 𝑅&( > 𝑅'
                  (4) 

where 𝑅&(  denotes the relative position between atom i and atom j. 𝑅' 	denotes a 

predefined cutoff radius. The shape of this cutoff function is given in Figure 1. The 

local atomic environments are then described based on this cutoff function. The 

ACSFs include two types of functions, i.e., the radial and angular symmetry 

functions. Both symmetry functions depend on the distance between the center atom 

i and its neighbor j. They complement each other to fully describe the local atomic 

environments of each atom. And each type of symmetry functions has a range of 

different functional form. 
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Figure 1.  The cosine adapted cutoff function. 

But the symmetry functions have to meet some requirements. First, like the cutoff 

function, they should also decay in value as the neighbor gets away from the center 

atom and become zero beyond the cutoff range to reflect the real physical 

interactions along with distance. Moreover, they should be able to capture the 

minimal differences of similar structures, such as conformers. Each unique structure 

should have unique representations decoded by these symmetry functions. Finally, 

they should not depend on the number of neighbors since the number of atoms 

within the threshold value varies in different molecules, but the dimensionality of 

the input layer of the neural network keeps fixed once it is determined.  
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The radial symmetry functions are two-body terms, based on the pairwise distances 

among atoms. They are designed to describe the radial environment of atoms. The 

frequently used radial function is a sum of Gaussians of all neighbors, 

𝐺&*+, =	∑ 𝑒#-.)!"#)#/
$
𝑓'(𝑅&()%

(0& 			 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	(5)	 

Figure 2. Radial symmetry functions(η=2). 

Figure 2 shows the radial functions with a set of different cutoff radius. Summing 

over these Gaussian functions ensures the representation of local atomic 

environment is not affected by the number of neighbors so that molecules with 

various system size can all be fed into the neural network. The radial function’s 

spatial range is controlled by the parameter η to provide a smooth transition of both 

potentials and forces at the cutoff.118 However, only using the radial symmetry 
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functions is not enough to exactly describe the local atomic environments because 

the radial functions only cover the radial environment, but for some systems, such 

as square planar coordination and tetrahedral coordination, if all the bond lengths 

are  the same, the radial function is not able to distinguish both geometries. The 

angular symmetry function is then designed to solve this issue. Angular terms are 

constructed to incorporate the angles for any three atoms. A typical form is 

𝐺&
+12 = 23#4 ∑ 01 + 𝜆 𝑐𝑜𝑠 𝜃&(52

4𝑒#-6*!"
$7*!%

$ 7*"%
$ 8+99

(,50& 𝑓'0𝑟&(2𝑓'(𝑟&5)𝑓'0𝑟(52         (6) 

where 𝜃&(5 is the angle spanned by the atoms i, j, and k. The parameter 𝜆	= ± 1, 

inverts the shape of the cosine function to capture an accurate depiction across 

different values of 𝜃&(5 , while 𝜁  controls its width. As shown in Figure 3, the 

exponent 𝜁 can achieve good angular resolution. 

 

Figure 3. The angular term 23#401 + 𝜆 𝑐𝑜𝑠 𝜃&(52
4  with a set of 𝜁 and 𝜆 = 1. 
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The term 23#4  is a normalizing factor to control the range of the angular symmetry 

functions. And since 𝜃&(5  and 2𝜋 − 𝜃&(5  should give the same angular function 

value, cosine function is used to keep the symmetry. Both radial and angular 

symmetry functions use a set of different parameters to fully describe the atomic 

environments.  

The ACSFs are useful descriptors for NNPs and have shown successful 

applications in a variety of systems. For example, ANI-165 is a well-trained NNPs 

for small organic molecules that only have less than 8 heavy atoms of carbon, 

nitrogen, oxygen. From ~58k neural molecules, the authors used normal mode 

sampling method to generate ~17.2 million conformers. They then redesigned the 

symmetry functions. First, they introduced a predefined parameter to shift the 

angular functions. Second, the cutoff radius was added to the distance exponent part 

of the angular function. Both modifications allow the descriptors to recognize 

different molecular features more accurately, such as bonding patterns, functional 

groups. The ANI-1 model uses 32 evenly spaced hyperparameters for radial 

functions and 16 shifting hyperparameters for modified angular functions, resulting 

in total 768 predefined parameters. It includes 3 hidden layers, each of which has 

128, 128, 64 neurons. The results indicate that ANI-1 model can yield a RMSE of 

0.6 kcal/mol with regard to DFT reference method and also has good transferability 

of predicting the energetics of larger systems with 10-24 heavy atoms.  
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Although the second-generation NNPs with ACSFs greatly improve the 

performances compared to the first-generation single feed-forward neural network, 

one limitation is that these predefined descriptors require much human expertise 

since each hyperparameter needs to be manually selected or adapted through 

numerous tests which is laborious and time-consuming. In addition, an increasing 

number of input dimensions can rapidly lead to high computational cost for both 

descriptor calculation and model evaluation in multicomponent system. To 

overcome the bottleneck in ACSFs, learnable descriptors are introduced. The base 

framework is ‘message passing neural networks’ (MPNNs), in which every 

molecule is considered as a three-dimensional graph.119 MPNNs are adapted from 

Graph Neural Networks (GNNs)120, in which every sample is considered as a graph. 

A graph is an ensemble of objects with specific connectivity. And it includes node, 

edge, and global three parts of attributes. Generally, the graph represents the 

relations (edges) between a collection of nodes. The simplest GNN applies an 

individual multilayer perceptron (MLP) to each element in a graph, i.e., for each 

node, a MLP is applied and returns a learned node, and a learning embedding can 

also be applied to single edge and the whole graph. Finally, an updated graph is 

obtained. One drawback of this simplest GNN is that it does not consider the 

connectivity of the graph, since each node, edge and global context is processed 

independently. But the connectivity contains very important information, for 

example, the connectivity of an atom with its neighbors reflects its local 
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environment which greatly affects its own atomic contribution to the total energy.  

MPNNs were then proposed to overcome this limitation. A MPNN aims at updating 

all attributes of a graph while maintaining the graph symmetry, i.e. the connectivity 

is unchanged during the course of transformation. In other words, MPNNs follow 

a ‘graph-in, graph-out’ mechanism meaning that only the information of a graph 

loaded into its nodes, edges and global context are progressively transformed, but 

the connectivity index of any at least two nodes are still kept.  Molecules in 

chemistry are good examples of graphs since all atoms in the molecule are 

interacting with each other via electrons. And the interactions can be reflected by 

bonds connecting two atoms. Therefore, for a given molecule, each atom can be 

considered as a node and each bond is regarded as an edge in GNNs. The task on 

the graph can be either node-level, edge-level or global-level. For example, on the 

global level, we can predict the property of the whole graph, like whether a ligand 

binds to a receptor. And for the edge-level property, we can predict the type of a 

bond, either single, double, or even triple. Finally, for node-wise property, GNNs 

can be designed to estimate the atomic partial charges of a given molecule. In terms 

of NNPs based on MPNNs, the node-level prediction is of great concern. The goal 

is to predict the atomic energy of each node and sum them up to get the total energy 

of the molecule. MPNNs leverage the connectivity of graphs which makes GNN 

models more sophisticated. Further, multiple GNN layers can be stacked together, 
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through which, a node can eventually incorporate information across the entire 

graph. The MPNNs include in three steps: 

1. Each node in the graph collects all the neighbors’ embeddings. 

2. All these neighboring messages are aggregated through pooling technique. 

3. The pooled messages are passed through nonlinear layers to update the node 

information. 

Specifically, each node’s embedding is first randomly initialized, ℎ; ∈ 	ℝ	and each 

node exchanges its own information with its neighbors via message passing block 

𝑀<. The central atom first collects its neighbors’ message, 

		𝑚&
<73 = ∑

(
𝑀<0ℎ&< , ℎ(< , 𝑒&(2                                (7) 

where 𝑚&
<73 is the total message passed from the neighbors j to the central node i 

at step t, and the bonding information of pairwise atoms 𝑒&( are included to model 

the interactions between i and j. The central node is then updated based on both the 

gathered message 𝑚&
<73 and its own representation ℎ&< via update block, 

ℎ&<73 = 𝑈<(ℎ&< , 𝑚&
<73)                                      (8) 

The message passing and update block together is called one interaction. And each 

node goes through the interaction block multiple times, allowing the message to be 

disseminated throughput the molecule. At the final step T, each node transforms its 

updated embedding into atomic energy, 

𝐸& = 𝑅(ℎ&$)                                                   (9) 
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Finally, all atomic energies are summed up as the total energy via eq 3. Compared 

to neural networks based on ACSFs, MPNNs do not require any predefined 

descriptors because they are replaced by neural networks to learn all pairwise 

interactions implicitly. In MPNNs 𝑀<,	𝑈< , 𝑅	are all nonlinear functions designed by 

neural networks. And they are much more expressive than manually selected 

descriptors due to their flexible framework.  

 

Figure 4. The schematic process of SchNet.  

 A well-designed MPNNs for NNPs is SchNet.121 The inputs of SchNet are the 

nuclear charges Z=	{𝑍3, 𝑍!, … , 	𝑍%}	and the atom positions R=	{𝑟3, 𝑟!, … , 	𝑟%}.	First, 

these nuclear charges are transformed to high-dimensional features to represent the 

atom type meaning that the same atom type gets the same initial nuclear embedding. 
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This is a common step for initialization in MPNNs. The first feature of SchNet is 

the expansion of distances by a set of Gaussian basis, 

𝑒50𝑟( − 𝑟&2 = exp	(−𝛾0Y𝑟( − 𝑟&Y − 𝜇52
!)                   (10) 

eq. 10 is similar to the radial symmetry functions in ACSFs to extend the distance 

in space by adding some nonlinear transformations,	ℝ= → ℝ>  where D is the 

dimension of the expanded distance. Both 𝛾 and 𝜇5 	 are hyperparameters to 

determine the degree of expansion. Another contribution of SchNet is to decode the 

edge information. Instead of using the direct relative positions of pairs of atoms, 

the authors used convolutional filters to further transform the bonding information. 

These convolutional filters are designed by neural network, 

		𝑚&
<73 = ∑

(
𝑀<0ℎ&< , ℎ(< , 𝑒&(2 = ∑

(
ℎ(< ∘ 𝑊< ;𝑒50𝑟( − 𝑟&2=		 	 	 	 	 	 	 	 	 	 	 	 	(11)	

where ∘ represents the element-wise multiplication and 𝑊<  are convolutional filters 

at step t.	The advantage of 𝑊<  is that the atomic positions can be mapped from 

ℝ> → ℝ?, where F is the hidden features. The framework of SchNet is given in 

Figure 4. As the results shows in the original work, SchNet models the interatomic 

potentials very well. The authors first tested a well-known benchmark data set 

QM9122 which includes ~131k organic molecules with less than nine heavy atoms 

of carbon, nitrogen, oxygen, fluoride. SchNet evaluated 12 molecular properties 

which are minimal energy, enthalpy, the energy of HOMO and LUMO along with 

the corresponding energy gap, polarizability, harmonic frequency, dipole moments, 
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etc. SchNet shows good performance on all these tested properties. For example, 

the mean absolute error (MAE) of minimal energy predictions is 0.014 eV.  

In the past five years, a lot of variants of SchNet have been proposed to further 

improve the performances of NNPs, like PAINN,123 tensor field networks 

(TFNs),124 NequIP, 125SE (3)-transformers126 to name a few. The common feature 

of these NNPs is that they are all equivariant GNNs. For example, in order to 

overcome the limitation of only invariant representations in SchNet, a new type of 

rotationally equivariant representations were proposed in PAINN. As shown in 

Figure 5 (a), only distances and angles are considered in SchNet and since both 

representations are rotationally invariant, they are unable to differentiate both 

structures. However, the directional vectors in Figure 5 (b) can easily recognize the 

differences in both structures. Therefore, geometric vectors and tensors should be 

introduced to NNPs to make the model more expressive. Another advantage of 

these equivariant GNNs is that with the equivariant atom-wise representations, the 

model can predict tensorial properties accurately, such as forces, molecule dipole 

moment, polarizability, etc. 
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Figure 5. Invariant representations and equivariant representations.	

The second-generation NNPs with either predefined or learnable descriptors have 

greatly advanced MLPs. They are the mainstream methods in machine learning for 

MD simulations. However, their limitations are also very obvious that only short-

range interactions are considered. This design can dramatically decrease the 

computational complexity but for systems where long-range interactions play an 

important role, large errors may appear. Electrostatics is a major component of long-

range interactions, and the relatively weak dispersion interactions can also 

contribute a lot to large systems.127 It is necessary to incorporate long-range 

interactions in MLPs since it not only covers the interactions beyond cutoff radius, 

following Coulomb’s law, which adds physically meaningful energy term to MLPs 

but also reduces the radius to smaller threshold, which facilitates a reduced sampling 

configurational space. A few NNPs which contain electrostatic interactions 
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explicitly are called third-generation NNPs. The first example is an extension of 

HDDPs proposed in 2011.128,129 In this method, a second neural network is designed 

to predict the atomic partial charges. Like the neural network for atomic energy 

predictions, the partial charges are dependent on a set of ACSFs representing the 

local atomic environments. The electrostatic energy 𝐸@9@' is subsequently computed 

based on the predicted partial charges q with Coulomb’s law. Finally, the system’s 

total energy is calculated as 

𝐸<A<+9 = 𝐸BCA*< + 𝐸@9@' = ∑
%

&
𝐸& + ∑

D!D"
)!"

%
&E(                  (12) 

Practically, the short-range interactions can also cover electrostatic interactions up 

to the cutoff range, in order to avoid redundant calculation in both parts, the atomic 

charge neural networks are developed based on reference atomic charges calculated 

from ab initio methods. And the electrostatic energy is calculated with the predicted 

partial charges. By subtracting the electrostatic energy from the total reference 

energy, the reference short-range is obtained. Another variant of third-generation 

NNPs is to include both the electrostatic interactions and dispersion interactions. 

One typical example is PhysNet.130 This method uses Grimme’s D3 method to 

explicitly include dispersion corrections in NNPs. Another feature of this model is 

that the atomical charges and energies are predicted simultaneously with the shared 

neural network, further improving the NNP’ s efficiency.  
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The partial charges in the third-generation NNPs are considered to be localized as 

they are determined solely by only the atomic positions within the cutoff sphere. 

However, in systems where partial charges are influenced by molecular 

characteristics beyond the cutoff range, this local charge approximation may not 

hold true. A representative example is the change of global charge state in the system 

by chemical reactions, such as protonation, deprotonation, or ionization. All three 

generations of NNPs are unable to describe the PES well because they cannot 

recognize the electronic differences of these configurationally identical structures. 

Potentials which can capture the nonlocal or global attributes are defined as fourth-

generation NNPs. It should be noted that currently there is no consistent terminology 

to define third/fourth generation NNPs since the distinction between nonlocal 

interactions and long-range interactions is still unclear. In this work, any NNPs that 

involve some interactions which only depend on local property is regarded as third-

generation NNPs, otherwise, if the electronic structure is considered or global 

property is involved, the NNPs are classified as fourth-generation NNPs. The charge 

equilibration neural network (CENT) is the first fourth-generation NNP.131 The core 

idea is to use charge equilibration method132 to redistribute the electrons throughout 

the entire system, giving rise to the electrostatic interaction minimization. The total 

energy is calculated as  

𝐸<A<+9 = ∑
%

&
(𝐸&; + 𝜒&𝑞& +

3
!
𝐽&𝑞&!) +

3
!
	∬ F(*)F(*&)

|*#*&|
𝑑𝑟𝑑𝑟J             (13) 
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where 𝐸&; are the potentials of free atoms, 𝜒& are the atomic electronegativities, 𝑞& 

are the atomic charges and 𝐽&  are the element-wise hardness values. The charge 

density 𝜌  is calculated by Gaussian distributions. The inputs of CENT are still 

ACSFs to represent the atomic environments, but the predicted partial charges are 

redistributed before calculating the electrostatic interactions. The charge 

redistribution strategy implemented in NNPs shows remarkable performances for 

systems with predominantly ionic bonding.133-135 Recently, some other fourth-

generation NNPs have also been proposed, such as BpopNN,136 4D-HDNNP.137,138 

Since the introduction of second-generation NNPs, MLPs have gained considerable 

attention. And the swift advancement in this area is still going on without reaching 

full maturity. Currently, most work focus on organic molecules due to its simple 

electronic structures and already available public data set, such as ISO17,121 QM9,122 

MD17,139 ANI-1,140 etc. However, the exploration of TMCs in MLPs is still being 

ignored, possibly because of the unclear interactions between ligand and metals as 

well as the scarcity of large data set. Although a few available data sets for TMCs 

are already available,141-143 none of them considers multiple conformations. The 

process of conformational sampling is pivotal in defining the macroscopic and 

physicochemical properties of molecules because the three-dimensional 

arrangement of atoms greatly influences a variety of properties.144 Furthermore, 

molecular conformations mediate biological activities as well. For example, DNA 
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only binds to a zinc transcriptional regulator once zinc coordinates in a specific 

manner and tunes a conformational change in the transcription regulator.145 

In this work, a NNP to model the PES of zinc complexes was built by following 

steps below: 

1. A dataset including zinc complexes with both configurational and 

conformational diversity was curated. 

2. A neural network which covers both short-range and long-range interactions 

was well designed.  

3. The results indicated this proposed model is orders of magnitude faster than 

DFT methods without losing significant accuracy.  
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2.3 Zinc Data Set Curation 

The transitional metal quantum mechanics (tmQM) data set, including tens of 

thousands of GFN2-xTB146 optimized TMCs extracted from the Cambridge 

Structural Database (CSD),147 was used to get the configurational ensemble of zinc 

complexes. From the tmQM data set, 771 complexes were extracted and each of 

them has 60 atoms or less. And only H, C, N, O elements are included in these 

complexes. All complexes are neutral, closed-shell, and mononuclear. Some 

examples are given in Figure 6. The size distribution and the element distribution 

of the 771 complexes are given in Figure 7 and Figure 8, respectively. A variety of 

ligand types and bonding patterns are present in this data set. As shown in Table 1, 

the coordination number of these complexes is various, ranging from 2 to 8. And 

totally 38 denticity types were identified in this data set. In 2435 ligands extracted 

from these 771 complexes, 829 ligands are unique (evaluated by SMILES). The 

denticity distribution of the ligands is given in Figure 9. Several polydentate ligands 

are given in Figure 10. 
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Figure 6. Some structures of zinc complexes with the refcode taken from the CSD. 
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Figure 7. This size distribution in 771 zinc complexes. 

 

Figure 8. The element distribution in 771 zinc complexes. 
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Table 1. The coordination types in the 771 complexes.  

 

  

 
 
 
 
 
 

CNa Denticity 
type Count CN Denticity type Count 

2 1,1 25 

6 

1,1,1,3 10 

3 
1,1,1 3 1,1,4 4 
1,2 18 1,1,2,2 134 
3 1 1,2,3 14 

4 

1,1,1,1 27 1,5 3 
1,1,2 23 2,2,2 27 
1,3 21 2,4 3 
2,2 66 3,3 41 
4 17 6 10 

5 

1,1,1,1,1 1 

7 

1,1,1,1,3 4 
1,1,1,2 8 1,1,2,3 14 
1,1,3 28 1,3,3 10 
1,4 27 2,2,3 20 
1,2,2 42 4,3 2 
2,3 8 

8 

1,1,3,3 52 
5 2 1,3,4 1 

6 1,1,1,1,1,1 40 2,2,2,2 1 
1,1,1,1,2 10 2,3,3 54 
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Figure 9.The denticity distribution in 771 complexes. 
 
 

 
 
Figure 10.Representative examples of polydentate ligands. The coordinating atoms 
are in red. 
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To build the PES of zinc complexes,  multiple conformations of each complex 

were generated using metadynamics. As illustrated in section 2.2, metadynamics 

outperforms other sampling methods. The canonical MD simulation is a commonly 

used method to prepare a data set for NNPs. However, it is an energetically uneven 

sampling method, i.e., geometries in low energy regions are more frequent to 

generate than those in high energy area. As a result, a lot of redundant geometries 

with low energy are present in the data set while geometries with high energy are 

few. The neural network trained on such data sets is biased to energy predictions 

meaning that it can reach high accuracy in dense configuration regions, while large 

errors may appear for high-energy geometries. Such uneven sampling can be 

overcome by introducing additional potentials against previously generated 

geometries to induce frequent sampling in high-energy space. In this work, the 

automatic conformation search engine, CREST148 was used to generate 

conformations for each zinc complex. In CREST the biased potential is applied as 

the sum of multiple Gaussian functions in relation to the root-mean-square 

deviation (RMSD), 

 𝑉K&+B = ∑
1

&
𝑘&𝑒𝑥𝑝(−𝛼&∆&!)                                 (14) 

where n is the number of all reference structures, the RMSD related to the ith 

reference structure is applied as the collective variable ∆&, 𝑘& is the pushing strength 

which is scaled by the size of the structure, and the parameter 𝛼& determines the 
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width of the potential. A dozen metadynamics simulations with different 

combinations of 𝑘&  and 𝛼&  were performed in parallel to get a complete 

conformation ensemble. With the 771 zinc complexes, 53247 conformations were 

gained via CREST. To avoid redundant sampling, RMSD filtration was applied. 

People usually calculate the RMSD in a straightforward manner without any 

structural adjustment, so the value is likely to be too big. But in this work any two 

conformations were recentered and then rotated onto each other to get the real or 

“minimum” structural differences. Any conformation within 0.1 Å was removed. 

This step ensures only highly distinctive conformations were present in the data set. 

An example of RMSD distribution with 9 conformations is given in Figure 11. 

 

Figure 11. A RMSD distribution of 9 conformations. (CSD code: UGIBAP). 
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Finally, 39599 conformations were present in the final Zinc_60 dataset. The 

chemical diversity of this conformation ensemble is given in Figure 12~14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The molecular size distribution in Zinc_60 dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. The element distribution of Zinc_60 dataset. 
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Figure 14. (a) An ensemble of 19 conformations (CSD code: QUQVAB) ;(b) The 
geometries of the lowest energy and the highest energy in the ensemble, ∆𝐸 =
5.76	kcal/mol, RMSD = 2.47Å. 

The unique CSD code of 771 complexes and the number of conformations in 

Zinc_60 data set is given in Table 12 (See APPENDIX A: TABLES). The single-

point energies of all the 39599 conformations were calculated using the meta-GGA 

r2SCAN-3c149 method. All calculations were conducted using ORCA 5.0.4,150 with 

TightSCF and all other parameters set to the default. Finally, the Zinc_60 dataset 

was divided into training, validation, and test sets with a distribution ratio of 8:1:1. 

 

 

 

 

 

(a) (b) 
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2.4 Zn_NNPs Framework 

One limitation of the second-generation NNPs is its local approximation that only 

short-range interactions within the cutoff range are considered. To overcome this 

drawback, some models explicitly include the long-range interactions, for example, 

the electrostatic interactions can be included using the Coulomb’s law and the 

dispersion interactions can be contained using Grimme’s D3151 or D4152 method. 

However, either the D3 correction used in the ML models, like PhysNet130 or even 

the D4 correction is a generally good method to calculate the dispersion interaction 

in most systems, but neither is 100% accurate since currently people don’t have a 

full understanding of the long-range interactions in complex chemical systems. And 

it is possible that there are some factors missed in physical laws affect the 

dispersion interactions. Moreover, one advantage of both dispersion correction 

methods is their simple form because the parameters in these corrections are 

predefined by training some datasets. But it is hard to guarantee that these universal 

parameters are perfectly applicable to all systems. It is possible that large errors 

may appear for a specific class of systems, like TMCs in this work.  

To model the long-range interactions more accurately, in this work we referred to 

EwaldMP153 which is a neural network to implicitly model the long-range 

interactions of our zinc complexes.  The basic idea is to embed Ewald 

summation154,155 into neural networks. Usually, the long-range or nonlocal 
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interactions are divided into electrostatic, repulsion, and dispersion three 

contributions. The total term of these potential is given as 

𝐸(𝑟) = D'D$
LMN(*

+ O)*+
*'$

− P,!-
*.

                           (15) 

One challenge of calculating the long-range interactions is the slow convergence of 

potentials with distance. The potentials are defined in non-negative range and the 

closed forms of the sum are unknown. To practically evaluate them, they are usually 

truncated at predefined cutoff radius. Potentials beyond this cutoff distance are 

ignored, which raises systematic errors to the calculation. The Ewald summation 

was proposed to solve this problem. The main contribution of this method is to 

transform a single conditionally or slowly convergent sum into two quickly 

convergent sums by using Fourier transform. The rapid convergence ensures a high 

accuracy of the calculations, thereby avoiding the systematic artifacts of cutoff-

based approximations.  The method is mainly designed for electrostatic 

interactions,156 but later it has also been used for dispersion interactions,157 as well 

as higher order electrostatic multipoles.158 EwaldMP refers to this method but 

implements it in neural network. And as a standalone block, EwaldMP can be added 

to any short-range model. Moreover, in principle, it can account for both long-range 

electrostatics and long-range dispersion interactions together. The advantages of 

this method are (i) a neural network is used which is much more powerful than the 

simple equations in D3 or D4 corrections because the ML model can deal with 

complicated physical laws via its flexible framework.  It should be able to be more 
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comprehensive in evaluating the long-range interactions; (ii) each conformation in 

this work is a zinc complex, a very specific class of system. The long-range 

interactions in these conformations should be similar. Hence, the model can learn 

specifically to just model the long-range interactions of zinc complexes, which 

should be more accurate than the D3 or D4 method which use the general 

parameters for all systems.  But EwaldMP was not directly copied in our work. One 

contribution of our work is to introduce the partial charges as the input of EwaldMP. 

In the original EwaldMP, partial charges are never considered. The long-range 

interactions are captured with only the Cartesian coordinates and the embedding of 

the atomic types. Our hypothesis is that such embeddings are not good enough to 

capture the long-range interactions of zinc complexes. In our opinion, the partial 

charges should be also considered since they are an essential part of the long-range 

interaction. We first proposed a simple but efficient way to embed the partial 

charges. The inputs of the model are the atom types, represented by the nuclear 

charges, 𝑍& ∈ 𝑁, the Cartesian coordinates 𝑟& ∈ 𝑅=, as well as the total charge of 

each complex, 𝑄 ∈ 𝑍. Initially, the single nuclear charge number of each atom is 

transformed to high-dimensional features to get the nuclear embedding 𝑥; ∈ 𝑅?, 

where F is the number of features. Instead of feeding the nuclear embedding into 

EwaldMP, in this work, the nuclear embedding was further transformed to partial 

charges via well designed neural networks, 

𝑞 = 𝜎(𝑊𝑥; + 𝑏)                                         (16) 
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where 𝜎  is the activation function, 𝑊	and 𝑏  are trainable parameters. To better 

model the electronic structures, these partial charge embeddings are then scaled to 

make sure the sum of these partial charges are equal to the total charge Q via 

𝑞B = 𝑞 + (𝑄 − ∑
%

&
𝑞&)/𝑁                                (17)  

𝑞z = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑞B)                                       (18) 

where N is the number of atoms. A two-layer residual block is used to avoid 

gradients vanishing or exploding.159 These predicted partial charges are then input 

into EwaldMP for modelling the long-range interactions. To test performances of 

the proposed partial charge embedding on predicting the long-range interactions, 

three types of models were run on the Zinc_60 data set: i) Baseline. Only short-

range interactions are covered in the baseline models. In this work, we used SchNet 

and PAINN as baseline model. Please see Chapter 2.2 for more details about both 

models;(ii) Baseline+EwaldMP. Both the baseline and EwaldMP share the same 

nuclear embedding as the inputs of the model. This is the original design in 

EwaldMP in which baseline model covers short-range interactions while EwaldMP 

cover long-range interactions;(iii) Baseline+EwaldMP_Q. In this case, the baseline 

model still accepts the nuclear embedding as input, while EwaldMP now accepts 

the partial charge embedding. The adapted EwaldMP was named as EwaldMP_Q 

for clarity in this work. The whole process is illustrated in Figure 15. 
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Figure 15. The schematic model used in this work. 
 
The initial learning rate of all models is 5 × 10#L. The batch size of SchNet-related 

models is 64. The warmup technique is used with a warmup factor of 0.2 up to the 

first 30000 steps and decays at steps of 60000, 90000, 120000 with a decay factor 

of 0.1. For the PAINN-related models, the batch size is 32 and the Adam optimizer 

is used with the plateau scheduler. All data and code are freely available at 

https://github.com/Neon8988/Zinc_NNPs. 
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2.5 Results and Discussion 

We first compared the performance of the three types of models. The total potential 

energy of each conformation in the test set were predicted by each model and the 

results are given in Table 2.  

Table 2. Mean absolute errors (MAE) for energy predictions in kcal/mol. 
 

 

 

 

 

Our proposed model, i.e., baseline+EwaldMP_Q yield the lowest errors which are 

0.92 kcal/mol and 1.02 kcal/mol, respectively. Compared to the baseline models, 

our proposed models decrease the error by 23.33% and 25.00% with regard to 

SchNet and PAINN. The results also show that the importance of long-range 

interactions in modeling zinc complexes. And as the partial charges play an 

important role in long-range interactions,152,160 accurately predicting the partial 

charges is necessary in NNPs for zinc complexes. The original EwaldMP takes the 

nuclear embedding as inputs to make sure atoms of the same type are initialized 

identically. But the global attribute is completely ignored. In contrast, we further 

transform the nuclear embedding into partial charges via neural network and scale 

them to ensure the sum of partial charges match the global charge of the complex. 

Model MAE 
SchNet 1.20 
SchNet+EwaldMP 2.42 
SchNet+ EwaldMP_Q 0.92 
PAINN 1.36 
PAINN+EwaldMP 1.50 
PAINN+ EwaldMP_Q 1.02 
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This implementation gives some physical meanings to the NNPs to better model 

the potentials. The results indicate the original EwaldMP raises the largest errors in 

both cases, which increases the error by 101.67% and 10.29% from the baseline 

model, respectively.  

To further evaluate our proposed EwaldMP_Q scheme, we compared this NNP 

with some widely used semiempirical methods, i.e., GFNn-xTB(N=1, 2),161,162 

PM6-D3H4X and PM7.163-165 To achieve this, we extracted 3838 conformations 

from the test set. Not all conformations were used for this evaluation since some 

configurations has only one conformation in the test set which is not applicable to 

compare the relative energies in terms of different tested methods. GFNn-xtb 

calculations were conducted in the xtb166 package (version 6.6.1). The PM6-D3H4 

and PM7 calculations were performed using version 22.0.6 of the MOPAC 

program167. We then calculated the conformational energies at the double hybrid 

PWPB95168/CBS (def2-TZVPP/def2-QZVPP) level with the D4 correction based 

off its known accuracy for TMCs.169 These calculations were performed in ORCA 

5.0.4.150 with TightSCF and the RIJK approximation.170 The PWPB95 method is 

used because it is very accurate in predicting the conformational energy of TMCs. 

Hence, it can be used to validate whether the reference method (r2SCAN-3c) we 

used to curate our data set is good enough. And it can also indicate how good our 
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ML method is compared to this double-hybrid method which is accurate but very 

expensive. The results are given in Table 3.  

The proposed NNP clearly outperforms these semiempirical methods with a MAE 

value of 1.32 kcal/mol. And it is expected that it is worse than the r2SCAN-3c 

method because the latter is the reference method of our NNP. The overall trends 

of these relative conformational energies are given in Figure 16. The reference 

PWPB95-D4 method is along the x-axis while the various tested methods are along 

the y-axis. The Pearson correlation coefficient (rp) is also reported. The first 

subfigure shows the correlation between PWPB95-D4 and r2SCAN-3c. And 

expectedly, it is generally good with a MAE of 0.65kcal/mol which indicates this 

method’s reliability for curating the reference data of NNPs. And our ML method 

follows a similar trend. A detailed example of the relative conformational energy 

Table 3. Performance of all tested methods on 3838 conformations with 
respect to PWPB95-D4/CBS method.a 
 

Method MAE Count 
r2SCAN-3c 0.65 150 

SchNet+ EwaldMP_Q 1.32 529 
GFN1-xTB 2.15 764 
GFN2-xTB 2.35 970 

PM6-D3H4X 2.39 796 
PM7 2.41 782 

aThe mean absolute errors (MAE) are given in kcal/mol. The count is the number 
of conformations which have lower energy than the actual most stable 
conformation, i.e. the lowest energy conformation at PWPB95-D4 level. 
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is given in Figure 17. The r2SCAN-3c method and the proposed NNP follow a 

generally similar trend as PWPB95-D4, while the relative energies evaluated by 

these semiempirical methods fluctuate dramatically.  
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Figure 16. The relative conformational energies in all tested methods with 
reference to the PWPB95-D4 method. 
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Figure 17. The relative energies of an ensemble with 8 conformations (CSD code: 
YUMWOT). 

We then did some qualitative analysis. The 3838 conformations were grouped into 

418 ensembles, each of which has more than one conformation with the same 

configurational structure. Each ensemble was individually ranked by energy. The 

lowest energy conformation of each ensemble at the PWPB95-D4 level was 

regarded as the most stable conformation. We then counted the number of 

conformations which has lower energy than the reference geometry ranked by each 

method. This analysis indicates the possibility of each method to incorrectly 

pinpoint the most stable conformation. As indicated in Table 3, for the r2SCAN-3c 
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method, only 150 conformations, i.e., the number of y-axis values below 0 in 

Figure 16, were incorrectly predicted to have lower energy than the actual lowest 

energy conformation at the PWPB95-D4 level, and the number of such cases in 

NNP is 529. However, in the semiempirical methods, the MAE is larger than 

2kcal/mol, and the number of incorrect low energy conformations is more than 700, 

among which PM7 yields the largest MAE of 2.41 kcal/mol, while GFN2-xtb yields 

the largest number of incorrect low energy conformations (970 out of 3838 

conformations). Interestingly, the GFNn-xtb method has a bias to lower the relative 

energies, as shown in Figure 16, the y-axis range in GFNn-xtb is around 10 

kcal/mol, while the reference relative energy range, i.e., the x-axis range is around 

25 kcal/mol, but other tested methods generally match this range well.  Overall, the 

results indicate that our ML method outperforms these semiempirical methods in 

both qualitative and quantitative evaluations.  

Finally, the computational efficiency of each method is generally evaluated. our 

proposed ML method can greatly reduce the computation cost. It only took 10 

seconds to predict these 3999 conformations on a single GPU, while the average 

time of r2SCAN-3c in our test set was 4.46 minutes running on 4 CPU processors 

for each geometry. For the PM6-D3H4X method, the average time is 0.97s, while 

it took 0.94s for PM7 method. And the GFN1-xtb method took 6.65s on average, 

while GFN2-xtb took 10.82s for each geometry.  
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2.6 Conclusions 

In the present study, a high-quality data set, Zinc_60 which includes both 

configurationally and conformationally diverse zinc structures was curated. The 

metadynamics was used to generate the conformations, aiming at covering a wide 

potential energy space. This data set was then used to train a ML model to model 

the PES of zinc complexes. To accurately model long-range interactions, 

EwaldMP_Q was proposed to introduce partial charges to a neural network based 

on Ewald summation. The results indicate the usefulness of this method in both 

types of models which shows the generality of this method and the possibility to 

apply this method to other baseline models in the future. Moreover, this NNP 

outperforms some widely applied semiempirical methods but at much less cost in 

both qualitative and quantitative evaluations.  
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CHAPTER 3 MODELING Fe (II) COMPLEXES USING NEURAL 

NETWORKS 

3.1 Fe (II) Complexes 

TMCs with d4 to d7 configurations have multiple electron configurations. Depending 

on the ligand types, coordination number, and the transition metal itself, TMCs can 

exist in either low-spin (LS) or high-spin (HS) state. And sometimes transition 

metals with d5 or d6 electron configuration also have an intermediate-spin state. The 

spin state indicates the quantity of unpaired electrons the central metal has and the 

energetically favorable electron configuration. An important contribution to the 

energy difference between different spin states is vibrational effects. The stretching 

vibrations between metal and ligands usually have lower frequencies in HS state 

than in LS state. Compared to LS state, the HS state also has higher entropy but 

lower zero-point energy. Both energy terms also give rise to the free energy 

difference.171 But since the energy difference is minimal, both HS state and LS state 

can interconvert flexibly, which is called thermal spin crossover (SCO). 

Many SCO complexes with Fe (III),172 Mn (III),173 Co (II),174 Fe (II)175 as the metal 

center have been synthesized. Among these reported complexes, Fe (II) compounds 

are prevalent because the variations of their physicochemical property along with 

spin state change is more prominent than other TMCs. For example, during the spin 

state exchange, the Fe-N distance varies a lot (∆𝑑?@#%~0.2Å ), resulting in a 
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dramatic change in the unit-cell volume. In addition, the color of materials may 

abruptly change from light color, e.g. yellow, green to dark color, such as blue, red, 

or pink. And the magnetic property changes between diamagnetic (𝑡!2Q 𝑒2;, S = 0) and 

paramagnetic (𝑡!2L 𝑒2!, S = 2).176 The SCO-active Fe (II) complexes usually possess 

a N6 coordination sphere in octahedral shape.177 Some frequently observed ligands, 

such as 1H-1,2,4-triazole178, 2,6-bis(pyrazol-1-yl) pyridine,179 tris (2- pyridylmethyl) 

amine,180 are widely used to synthesize the Fe (II) SCO complexes. Such N-

coordinating ligands are reasonable choices because they are abundant and easy to 

synthesize and functionalize.181 The SCO process appears in a variety of chemistry 

areas.182,183 For example, it occurs in metal-ligand bond dissociations, e.g. O2 

binding to hemoglobin.184 And small ligands, such as H2O, NO, CO only binds to 

heme group under specific spin state.185 Meanwhile, it can also induce emergent 

superconductivity in iron-based honeycomb lattic.186 In addition, the optical 

behavior is also observed.187,188 And the SCO process can be activated under various 

external stimulus, such as pressure perturbation, temperature variations, light 

radiation.189,190  

Precisely calculating the spin splitting energy, i.e., the energy gap between both spin 

states is crucial. First, the spin-state energetics determines the ground spin state, 

magnetic properties, and the possibility of SCO. More importantly, different spin 

states result in different ligand-activation propensities191 and chemical 

reactivities.192 However, the spin-state energetics heavily depends on the electron 
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correlation effects. For instance, the Hartree-Fock (HF) theory, where only includes 

exchange without any other correlation effects, strongly biases HS state. And the 

electron correlation included DFT, or wave function theory (WFT) methods can 

effectively mitigate this bias but at a much more expensive computational cost. 

Another underlying issue is the effect of conformations on the ground spin state. 

Usually, researchers randomly select one geometry for each spin state, and calculate 

the relative energy to determine whether the investigated complex has SCO property. 

But such simple calculation is not enough, or it can only decide that the investigated 

conformations of the given complex have SCO property or not but it could not 

conclude that the complex in the given configuration has SCO property or not since 

the relative energy of different conformations in this given configuration may vary 

a lot.  For example, in the present work, we used CREST to generate 78 

conformations for a Fe (II) complex (CSD code: WIWBEK). And among them, 44 

conformations are in HS state, while the remaining are in LS state. For more details, 

please see section 3.2. Figure 18 shows the relative energy of these 1496 pairs 

(44×34). As we can see, the relative energy fluctuates from -10.21 kcal/mol to 54.92 

kcal/mol. Therefore, the ground spin state is heavily influenced by the conformation. 

To expedite the high-throughput screening of Fe (II) SCO complexes, this present 

work designed a neural network model to efficiently and accurately locate the 

ground spin state. 
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Figure 18. The relative energy of WIBEK complex. 
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3.2 Fe (II) Data Set Curation 

A data set of over 240,000 crystallized mononuclear TMCs extracted from The 

Cambridge Structural Database (CSD)147 was reported by Aditya and coworkers.193 

Well-defined Fe (II) complexes were collected from this data set by following the 

procedures below: (i) both oxidation states and charges were predetermined by the 

structure uploader; (ii) no hydrogen atoms were lost in the structure. Eventually, a 

subset of 383 unique Fe (II) complexes with 80 atoms or less was curated in this 

present work. Some representative structures are given in Figure 19. The size 

distribution of these 383 complexes is given in Figure 20. As shown in Figure 21, 

the element types in this subset include H, C, N, O, S, Cl, P, Fe. Most complexes 

have +2 charge (Figure 22). These complexes also cover a variety of coordination 

patterns (Table 4). 
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Figure 19. Fe (II) complex examples in Fe (II)_80 dataset. 
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Figure 20. The molecular size of the 383 complexes. 

 

Figure 21. The element distribution in the 383 complexes. 
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Figure 22. The charge distribution of the 383 complexes. 

Table 4. The denticity types of the 383 complexes.  

Denticity type Counts 
6 51 
5,1 53 
4,2 15 
4,1,1 27 
3,3 115 
3,2,1 1 
3,1,1,1 15 
2,2,2 27 
2,2,1,1 35 
2,1,1,1,1 4 
1,1,1,1,1,1 40 

 

We then followed the strategy we developed in Chapter 2 to generate conformers 

for each Fe (II) complex. Specifically, we designated a HS state and a LS state for 

every configuration, then employed CREST to obtain conformers specific to each 
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spin state. Conformations with a RMSD of 0.1 Å or less were excluded. And each 

pair was recentered and then rotated unto each other to get the real structural 

differences. The B97-3c method194 was utilized to optimize the geometries. All 

optimizations were with the TightSCF, DEFGRID3, SOSCF, and SlowConv 

settings using ORCA 5.0.4.  Geometries were removed if they met any of the 

following criteria: (1) convergence was not achieved during optimization, (2) the 

presence of an imaginary frequency was detected after optimization, (3) the 

discrepancy between the anticipated 〈Ŝ!〉 and the actual value exceeded 1μB. Finally, 

the curated dataset for Fe (II) complexes, designated as Fe (II)_80, comprised a 

total of 15568 geometries in HS state and 13266 geometries in LS state. The size 

distribution and the element distribution in each spin state are given in Figure 23 

and Figure 24, respectively. A representative conformation ensemble is given in 

Figure 25. Certain DFT methods might demonstrate a bias towards HS or LS states, 

arising from the specific formulation of each functional. In this present work, 

TPSSh functional195 was utilized as the reference method due to the exceptional 

cabilities it demonstrated across various evaluations.196-199 The ultimate energy 

assessments for the structures were executed with the TPSSh-D4 functional with 

the def2-TZVP200 basis set via ORCA 5.0.4 with the TightSCF setting. To expedite 

the computational process, the RI-J approximation201 was employed in conjunction 

with the def2/J202 auxiliary basis set. The totally 28,834 geometries included in the 

Fe (II)_80 data set was divided at random into three distinct sets: a training set 
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comprising 23,834 samples, a validation set with 2,500 samples, and a test set also 

containing 2,500 samples. 

  

Figure 23. The molecular size distribution of 28834 geometries. 

Figure 24. The element distribution of 28834 geometries. 
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Figure 25. (a) 3 HS state conformers (refcode: ACEYOW01) (b) 4 LS state 
conformers (refcode: ACEYOW01). (c) The minimal energy conformation for both 
high-spin and low-spin state. ∆𝐸RS#TS = 12.45kcal/mol. (refcode: ACEYOW01). 

The unique CSD code of 383 complexes and the number of conformations in Fe 

(II)_80 data set is given in Table 13(See APPENDIX A: TABLES). 

 
  

(c) 

(a) (b) 

(c) 
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3.3 Fe_NNPs 

In the present work, both charge and spin state were incorporated into our proposed 

model to better predict the nonlocal interactions. The inputs contain the nuclear 

charge 𝑍& ∈ 𝑁, the atomic coordinates 𝑟& ∈ 𝑅=, the total charge 𝑄 ∈ 𝑍 and the spin 

state 𝑆 ∈ 𝑍 . Electronic properties Q and S as well as nuclear charge were 

subsequently converted into high-dimensional features. The atomic representation 

𝑥; ∈ 𝑅, has two components: (1) the nuclear embedding 𝑥%; = 𝑥U; + 𝑥@/
; , where the 

atom-type embedding 	𝑥U; as well as the atomic electron-configuration embedding 

𝑥@/
;  depend on the atom types; (2) the electronic embedding	𝑥V; = 𝑥W; + 𝑥S;, where 

𝑥W;  is the charge embedding 	and 𝑥S;  is the spin state embedding. The complete 

atomic embedding is 

𝑥; = 𝑥U; + 𝑥@/
; + 𝑥W; + 𝑥S;                                        (19) 

where 𝑥U;	and 𝑥@/
;  are embedded via a look-up table based on the atom types. For 

𝑥W;  and 𝑥S; , SpookyNet203 uses the attention mechanism.204 In this work, we 

simplified the mappings through only scaling the spin state embeddings and charge 

embeddings, 

𝑞 = 𝑀𝐿𝑃(𝑥U; + 𝑥@/
; )                                                (20) 

𝑒 = 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑞 ∗ 𝑀𝐿𝑃(𝑠))                                    (21)       

ẽ = 𝑒 + (𝑠 − ∑
%

&
𝑒&)/𝑁                                              (22) 
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𝑥B; = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(ẽ)                                                   (23) 

where s = Q is charge embeddings, and s = S is spin state embeddings. A detailed 

workflow is shown in Figure 26. The total charge is initially distributed equally 

among all atoms as the partial charges, which are subsequently multiplied by 𝑥%;  to 

differentiate the significance of partial charge. At the final step, the partial charges 

are scaled to ensure their summation matches Q. The spin state S is processed 

similarly to derive the spin state embeddings.  

 

Figure 26. The workflow of the initial embeddings x0. 
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Several types of models were run in the present work. First, the electronic 

embeddings 	𝑥V;  were tested. Three types of atomic embeddings including the 

SpookyNet electron embeddings, the scaled embeddings as well as the sole nuclear 

embedding were compared. For the baseline model, which only covers short-range 

interactions, we tested SchNet and PAINN. Compared to SchNet, PAINN uses extra 

vector representations to model the PES. Third, as Zinc_NNPs, EwaldMP was 

compared with the baseline models to test whether it can model the nonlocal 

interactions in Fe (II) complexes. We evaluated it in the following ways: (1) the 

entire embedding x0 was fed into both models. EwaldMP is a standalone module to 

combine with any short-range model, resulting in a connected model that 

encompasses both short-range interactions and long-range interactions; (2) the 

nuclear embeddings	𝑥%;  were input to base model, either SchNet or PAINN, while 

the electron embeddings 	𝑥V; were passed into the EwaldMP. In this scenario, both 

models underwent independent updates at each iteration.  

The batch size of 16 was used in all models with learning rate, lr =  5 × 10#L.	The 

warmup technique was used with a warmup factor of 0.1 up to the first 50000 steps 

and decreased at steps of 150000, 250000, 350000 with a decay factor of 0.1. For 

the PAINN-related models, the Adam optimizer was used with the plateau 

scheduler.  
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3.4 Results and Discussion 

Each model’s capability of estimating the total energy and the splitting energy was 

tested. Among 2500 Fe (II) conformations in the test set, 121 configurations have 

both HS state and LS state conformations. Specifically, totally 1075 conformations 

are in HS state and the number of conformations in LS state is 654. To compare the 

splitting energy (SE), totally 23446 pairs from the test set, i.e., every pair contains 

a HS spin state conformation and a LS spin state conformation, and both have the 

identical structural configuration. The mean absolute error (MAE) of each model is 

listed in Table 5.  

Table 5. MAE for the total energy and the splitting energy predictions in eV, 
respectively. Best result in bold. 
 

a ‘+’ indicates base model and EwaldMP have the identical embedding and ‘,’ 
indicates the nuclear embeddings are input to base model and the electronic 
embedding are fed to EwaldMP. 

The results show that the introduction of electronic embedding 𝑥V;  significantly 

enhances the capabilities of these models. Moreover, the scaled embedding 

Modela 

With 	𝑥V; Without 	𝑥V; 
SpookyNet Scaled Only 𝑥U; 

energy ∆𝐸RS#TS energy ∆𝐸RS#TS energy ∆𝐸RS#TS 
SchNet 0.045 0.036 0.037 0.030 0.140 0.118 
SchNet+EwaldMP 0.083 0.068 0.083 0.070 0.128 0.099 
SchNet, EwaldMP 0.048 0.038 0.050 0.039 – 
PAINN 0.189 0.108 0.173 0.127 0.128 0.120 
PAINN+EwaldMP 0.192 0.127 0.176 0.113 0.119 0.097 
PAINN, EwaldMP 0.149 0.125 0.106 0.094 – 
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outperforms the SpookyNet embedding. In terms of SchNet-related models, the 

scaled embedding results in the lowest MAE of 0.037 eV for the total energy and 

0.030 eV for SE.  The attention-focuesed electronic embedding results in a 

marginally higher MAE of 0.045 eV and 0.036 eV, respectively. But both types of 

embeddings enhance the accuracy of modelling Fe (II) complexes, as evidenced by 

the fact that removing them results in significantly larger MAEs of 0.140 eV and 

0.118 eV, respectively. When the electronic embedding 𝑥V;  is not utilized, the 

baseline PAINN model slightly outperforms SchNet in predicting total energy, 

reducing the MAE from 0.140 eV to 0.128 eV. But with regard to SE, both baseline 

models achieve almost the same MAE of 0.120 eV. Finally, if only 𝑥X; is considered, 

the combined models, i.e., the baseline+EwaldMP decrease the MAE by around 

0.01 eV and 0.02eV in terms of SchNet and PAINN, respectively. For instance, for 

the total energy predictions, the SchNet+EwaldMP combined model yields a MAE 

of 0.128 eV while pure SchNet yields a MAE of 0.140 eV. With the electronic 

embeddings 𝑥V;, simply add the Ewald message passing to the baseline model as 

another contribution, is not the best choice for modelling the PES of Fe (II) 

complexes. Since the electronic embeddings 𝑥V;  already cover the long-range 

interactions, simply concatenate two models together and sharing the same 

complete embedding can cause the interactions to overlap. To overcome this issue, 

these electronic embeddings 𝑥V; should be passed into EwaldMP separately. As a 

result, the nuclear embeddings 	𝑥%;  models the short-range interactions, while the 
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electronic embeddings 	𝑥V; reproduce the nonlocal interactions. For instance, with 

the scaled embeddings, the MAE value of SE decreases from 0.070 eV 

(SchNet+EwaldMP) to 0.039 eV (SchNet, EwaldMP), along with the total energy 

error from 0.083 eV (SchNet+EwaldMP) to 0.050 eV (SchNet, EwaldMP). These 

comparisons indicate that EwaldMP can model the long-range interactions well. 

But the most efficient way is to just pass the complete embedding 𝑥; into SchNet. 

With the scaled embeddings, this model can cover the long-range interactions even 

better than EwaldMP but at much less cost, give the lowest MAE of 0.037 eV for 

the total energy predictions, along with 0.030 eV for SE error. The computational 

time of each type of model is given in Table 6. 

Table 6. The training time of each model. 

 

As shown in Table 6, although the additional scaled embeddings are incorporated 

into SchNet, since the embeddings are quite simple to compute and do not need 

 Time/h 

Model 
With 𝑥V; Without 𝑥U; 
SpookyNet Scaled Only 𝑥U; 

SchNet 5.97 5.88 5.11 
SchNet+EwaldMP 11.48 11.43 10.81 
SchNet, EwaldMP 11.69 11.60 – 
PAINN 8.60 8.51 7.54 
PAINN+EwaldMP 13.05 12.97 12.43 
PAINN, EwaldMP 13.00 13.05 – 
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many extra parameters, our adapted method (5.88hr) does not take much longer 

time than the original SchNet (5.11hr). Hence, our method is very efficient.  

Next, we compared the ML method with a couple of widely used semiempirical 

methods since the computational cost of all these methods is roughly at the same 

level. Recently, Hagen and co-workers designed the newly spin-polarized 

(sp)GFNn-xTB(n=1,2)205 as an extension of the GFNn-xTB (n=1,2) methods to 

differentiate the spin states of TMCs. We also tested PM6-D3H4 as well as the PM7 

method. (sp)GFNn-xTB(n=1,2) calculations were conducted using xtb version 6.6.1. 

The PM6-D3H4 and PM7 calculations were performed using MOPAC, version 

22.0.6. All results are given in Table 7. We report the MAE of the splitting energy 

in eV as well as the number of correct spin states predicted as a qualitative analysis. 

In these semiempirical methods, some geometries were excluded due to job failures. 

In this extensive test, we found that the semiempirical methods did not predict the 

splitting energy nor the correct spin state very well. The splitting energy errors are 

consistent with the results tested on the TM90S benchmark set.205 In contrast, the 

SchNet model with the scaled embeddings only predicted 8 incorrect ground spin 

states with a MAE of 0.030 eV. The splitting energy predictions of each method is 

given in Figure 27. An overall trend is given in Figure 39 (see APPENDIX B: 

FIGURE). A detailed example is given in Figure 28. This complex (CSD code: 

CODQAO) has 6 conformations in HS state, while 3 conformations in LS state. For 

these totally 18 pairs, the ML method make good predictions for the splitting energy 
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which match the reference method well. However, these semiempirical methods 

increase the errors by orders of magnitude. 

Table 7. Performance of the ML model and all tested semiempirical methods on 
the spin state splitting. 

 Countb ∆𝐸RS#TSc 
SchNeta 23438/23446 0.030 
PM6 6724/23307 2.8904 
PM7 9757/23428 2.1062 
spGFN1 5539/23428 3.5372 
spGFN2 4407/23446 3.7195 

aThe SchNet baseline model with the scaled electronic embeddings is used as a 
comparison with these semiempirical methods. bThe number of correct spin states 
predicted. Since some systems could not run successfully in these semiempirical 
methods, the total numbers differ. cThe MAE value is given in eV. 
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Figure 27. The splitting energy predicted by each tested method with regard to 
TPSSh-D4. 
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Figure 28. The splitting energy of Fe (II) complex (CSD code: CODQAO). 
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3.5 Conclusions 

In the present study, a high-quality data set, Fe (II)_80 which includes both 

configurationally and conformationally diverse iron structures was curated. More 

importantly, the spin-state-specific conformations were generated by using 

metadynamics. This data set was then used to train a ML model to model the PES 

of Fe (II) complexes. To accurately model long-range interactions, the electronic 

properties which include the total charge, and the spin state were introduced to the 

baseline model. The results indicate the usefulness of this method in both types of 

models which shows the generality of this method and the possibility to apply this 

method to other baseline models in the future. Moreover, this NNP outperforms 

some widely applied semiempirical methods but at much less cost in both 

qualitative and quantitative evaluations.  
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CHAPTER 4 3D TRANSITION METAL COMPLEXES 

GENERATION 

4.1 Generative Models 

Generative models, a type of unsupervised ML model, aim at producing unseen, 

new representation of a targeted variable based on probability distribution. The 

goal of generative modeling is to learn the joint probability distribution of a data 

set. For example, in terms of language generation, a generative model learns from 

the joint distribution to determine the likelihood of the occurrence of a particular 

set of words and phrases in specific context.  From the probability distribution, 

generative models learn the patterns and structures in a given dataset and 

synthesize new content.  

Generative models have a wide range of applications, such as image synthesis, 

language translation, text-image translation, inpainting, etc. For instance, one 

latest class of generation AI for context generation is large language models 

(LLMs). The LLMs can create artificial text context and large chunks of 

sentences. But these generated sentences are not incoherent rambling or irrelevant 

words strung together. Instead, they can understand intricate concepts about this 

physical world and conduct some challenging tasks, like summarizing a book, 

writing great essays, solving complicated math problems, and so on. A primary 

example of LLMs is ChatGPT. It is trained based on ~13T tokens compiled from 
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Wikipedia, books, academic publications, historic documents, webpages, etc. 

With such extensive context sources, ChatGPT can quickly give comprehensive 

and insightful responses to a wide array of prompts, encompassing topics from the 

annals of history to the complexities of philosophy, from the creative nuances of 

the arts to the empirical rigor of science. Another primary application of 

generative models is image creation. For instance, DALL⋅E is an advanced AI 

model that can synthesize intricate, detailed, and realistic images from textual 

descriptions. It enables users to transform their textual ideas into vivid visual 

representations. By bridging the gap between words and images, DALL⋅E can 

accelerate the imaginative exploration and artistic creation.  

Diffusion models represent a novel category of generative models. They have 

ended the longstanding supremacy of generative adversarial networks (GANs) in a 

variety of fields, such as image synthesis,206-208 natural language processing,209, 210 

computer vision,211, 212 temporal data modeling,213, 214 multi-modal modeling.215, 216 

More importantly, diffusion models also show remarkable performance in life 

science from small organic molecule generation217, 218 to medical image 

reconstruction.219, 220 Denoising Diffusion Probabilistic Models (DDPMs)208 , 

inspired by non-equilibrium thermodynamics, are becoming a predominant class of 

diffusion models. The key to DDPMs is to progressively destroy data by adding 

noise randomly and subsequently new samples could be generated by successively 

removing noise. A DDPM works in a dual-phase mechanism with two Markov 
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chains. In the first stage, random noise is sampled and then added to the clean input 

data point x0 with predefined steps T. This process aims at transforming any 

complex data distribution of the data set into a simple predefined distribution, e.g., 

Gaussian. The technique behind this idea is that noise is sampled from a Gaussian 

distribution and is progressively added to the input data. With enough steps, the 

input data is covered by all sampled noise and lose the structural patterns. This first 

Markov chain is called the forward diffusion in DDPMs. And it generates an array 

of random variables 𝑥3, 𝑥!, ⋯ , 𝑥$.		At a specific step, denoted as t = 0, …, T, the 

intermediate noised data state 𝑥<  given the previous state is derived by the 

multivariate normal distribution, 

𝑞(𝑥<|𝑥<#3) = 𝑁(𝑥<|(𝛼�<𝑥<#3, 𝜎�<!𝐼)                             (24) 

where 𝛼�< ∈ ℝ7 signifies the retained information, and 𝜎�< ∈ ℝ7 controls the added 

noise. Furthermore, Sohl-Dickstein et al.221determined 𝜎�<! = 	1 − 𝛼�< . With the 

chain rule of probability and the Markov property, the joint distribution of 

𝑥3, 𝑥!, ⋯ , 𝑥$		given on x0, denoted as 𝑞(𝑥3, 𝑥!, ⋯ , 𝑥$		|𝑥;), is derived as 

𝑞(𝑥3, 𝑥!, ⋯ , 𝑥$		|𝑥;) = ∏ 𝑞(𝑥<|𝑥<#3)	$
<[3                     (25) 

Finally, a simple and unified formula for the intermediate state 𝑥<  given 𝑥;  is 

derived as  
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𝑞(𝑥<|𝑥;) = 𝒩(𝑥<|𝛼<𝑥;, 𝜎<!𝛪)                                   (26) 

where 𝛼< = ∏ 𝛼�&<
&[3 	. This closed-form formula indicates that any intermediate 

state can be obtained directly from 𝑥; instead of iteratively adding from 𝑥;, which 

greatly simplifies the forward diffusion. Usually, the noise schedule 𝛼<  is set in 

advance, and it gradually shifts from 𝛼; ≈ 1	 to 𝛼$ ≈ 0 . And with sampling a 

Gaussian distribution 𝜖 ∈ 𝒩(0, 𝛪)	, the transition state 𝑥<  is derived as 

𝑥< = �𝛼<𝑥; + �1 − 𝛼<𝜖                                         (27) 

Intuitively, 𝑥$ is sole noise, devoid of any embedded structural details. The second 

Markovian chain reverses the diffusion process by removing the added noise at 

each step. This reverse chain involves recognizing the specific noise patterns 

introduced at each step and denoising the data accordingly. The denoising process 

is also a closed-form formula, defined as 

𝑞(𝑥<#3|𝑥;, 𝑥<) = 𝒩(𝑥<#3|𝜇<(𝑥;, 𝑥<), 𝜎<→<#3! 𝛪)             (28) 

along with the mean and variance are as follows  

                              𝜇<(𝑥;, 𝑥<) =
]0|02'^02'$

^0$
𝑥< +

]02'^0|02'
$

^0$
𝑥;                      (29) 

𝜎<→<#3 =
^0|02'^02'

^0
                                                 (30) 
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𝛼<|<#3 =
]0
]02'

                                                         (31) 

𝜎<|<#3! =	𝜎<! − 𝛼<|<#3! 𝜎<#3!                                         (32) 

Eq. 28 indicates that any intermediate state 𝑥< is an interpolation between 𝑥; and 

𝑥$ in a diffusion trajectory. Then the true denoising/generative process starts with 

a predefined initial distribution 𝑝(𝑥$),  

𝑝(𝑥$) = 𝒩(𝑥$; 0, 𝛪)                                             (33) 

and the goal of this process is to invert the diffusion trajectory, however 𝑥; in eq. 

28 is not known. A neural network ϕ	 is then utilized. Following eqs.28 and 33 

mentioned above, the denoising transition state can be derived as  

𝑝(𝑥<#3|𝑥<) = 𝑞(𝑥<#3|𝑥z, 𝑥<)                                     (34) 

where 𝑥z = 𝜙(𝑥< , 𝑡),	an approximation of 𝑥;.	For better performance, ϕ	is modified 

to estimate the noise,	𝜖<̂ = ϕ(𝑥< , 𝑡).208 The approximated 𝑥z is obtained as 

𝑥z = (1/𝛼<)𝑥< − (𝜎< 𝛼<)𝜖<̂⁄                                      (35) 

The aim of this model is to reduce ℒ(𝑡) = ‖𝜖 − 𝜖<̂‖! by applying gradient descent 

techniques. After proper training of the model, new data points can be synthesized. 

By starting with any noise vector 𝑥$ drawn from a normal distribution 𝒩(0, Ι), the 

denoising process described by eq 34 is performed iteratively for steps t = T, . . ., 0. 
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4.2 LigandDiff 

Molecular generation is crucial for drug design and new materials discovery. 

Developing de novo drugs is an essential research field in chemistry, biology and 

life science. However, traditional theoretical methods are costly and time-

consuming. For instance, the approximate cost of developing a new drug varies 

from $314 million to $ 2.8 billion and continues growing.222 And the drug 

development process typically spans almost 12 years.223 Estimates suggest that the 

synthesizable chemical space contains nearly 1023~1060 potential drug-like 

molecules,224 but so far, only about 108 to 1010 of these molecules have been 

synthesized.225 Identifying new drugs through exhaustive high-throughput 

screening is an incredibly time-consuming and laborious process. Additionally, 

relying solely on human intuition for searching small molecules can introduce 

biases, potentially overlooking novel compounds with optimal properties. 

In recent years, generative models have proposed novel avenues for molecule 

design. A variety of models have been developed, including SMILES strings 

oriented generative models, such as the Sequence Autoencoder (seq2seq AE)-

based226 and the variational autoencoder (VAE)-based227; 3D full-molecule 

generation models, such as GraphRNN,228 molGAN229 and scaffold-based 

generative models, such as EMPIRE230 and DeepScaffold.231 All previous work 

achieved remarkable performance on generating small organic molecules. In this 

present study, a generative model, called LigandDiff was developed to generate 
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novel ligands for TMCs. The design of novel TMCs is vital to a variety of 

applications. In medicine, TMCs are important metallodrugs. The first metallodrug, 

cisplatin, and its derivatives have been widely used for various disease treatments.35 

In material science, TMCs are good catalysts for organic synthesis and 

electrochemical reactions.46, 47  

The importance of organometallic complexes motivates researchers to explore the 

chemical space of TMCs. However, the currently available methods simply extract 

ligands from existing TMCs in CSD and attach the random ligands to transition 

metals under different combinations to design new TMCs.232, 233 Such methods are 

very limited to explore the diversity of novel ligands, thereby restricting the 

discovery of novel TMCs. As the ensemble of available ligands in CSD is already 

fixed, the diversity of generated TMCs is limited by the combinations of these 

ligands. Moreover, in this workflow, plenty of work, such as the selecting and 

assembling ligands, still requires much manual input and discernment, which 

hampers the pace of the overall procedure. 

LigandDiff, proposed in this work, is a generative model which can automatically 

design numerous unique and novel ligands from scratch. LigandDiff is scaffold-

oriented since exclusively one ligand is diffused or generated while both the central 

metal and other ligands remain static in the whole process.  Such ‘scaffold modeling’ 

has been extensively applied in organic synthesis and drug discovery. The idea is 

to keep the majority of the molecule unchanged while selectively altering certain 
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segments.234 Maintaining the main structure usually enables to keep the core 

properties of the molecule, meanwhile adjusting minor functional groups leads to 

the enhancement of overall properties.235 Generative models have potential to 

accelerate the targeted exploration with its powerful flexibility which do not require 

any human intervention. In addition, LigandDiff can be applied to investigate the 

ligand substitution reactions for new material discovery.236, 237 Overall, LigandDiff 

offers a tool to explore the structure-activity relationship (SAR) in the context of 

metal-ligand interactions. Ferrocene is an instance of an organometallic ‘sandwich’ 

compound, characterized by two stable cyclopentadienyl rings. Either functional 

group can be easily modified by inserting new segments to the existing functional 

groups or supplanting the entire group with other new organic segments, giving rise 

to a bunch of diverse derivatives. Indeed, Fc analogues are promising drug 

candidates for the treatment of cancer and malaria. Each redesigned 

cyclopentadienyl moiety has shown unique mechanism to interact with 

biomolecules, leading to an overall improvement of the therapeutic efficacy.238 And 

we believe LigandDiff has great potential in exploring TMCs derivatives with 

promising properties. 

In LigandDiff all TMCs are considered as three-dimensional point clouds within a 

given space. And any point cloud x can be represented as 𝑥 = [𝑟, ℎ, ℎT], where r is 

the Cartesian coordinates 𝑟 = (𝑟3, … , 𝑟%) 	∈ ℝ%×=,  the variable h denotes the one-

hot encoded representations that identify type of each atom ℎ = (ℎ3, … , ℎ%) 	∈
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ℝ%×`, where N is the size of  a given complex, m is the count of the corresponding 

atom types and hL serves as a one-hot vector that decodes ligand group information 

and it indicates the specific ligand group to which a given atom is associated, hL=	

0ℎT' , … , ℎT32 	∈ ℝ
%×9, where l is the quantity of ligands. Prior to the input being 

fed into ϕ,	random noise is applied exclusively to the ligand undergoing diffusion 

for both Cartesian coordinates and atom types, keeping the ligand-group 

information intact. In addition, even though the neural network updates the entire 

atomic embedding 𝑥 = [𝑟, ℎ, ℎT] , we only focus on the estimated Cartesian 

coordinates as well as the discrete atom type attributes. 

Every designated ligand xL undergoes a process of diffusion or noise reduction 

under a static context u, i.e., the metal center and other ligands. u has the same 

component as x. On condition of this fixed context, both sampling steps eqs. 34 and 

35 are modified accordingly as  

𝑝(𝑥<#3T |𝑥<T , 𝑢) = 𝑞(𝑥<#3T |𝑥zT , 𝑥<T)                                (36) 

𝑥zT = (1/𝛼<)𝑥<T − (𝜎< 𝛼<)⁄ 𝜙(𝑥<T , 𝑢, 𝑡)                        (37) 
 

The entire process is illustrated as Figure 29. 
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Figure 29. LigandDiff’s overall scheme.  The entire procedure begins from the 
forward diffusion process q, transitioning from the original ligand state 𝑥;T to the 
noised state 𝑥<T, in order to obtain the noised datapoint of a specific ligand 𝑥T. After 
it has been trained, any new ligands are synthesized starting from a noised state 
𝑥$T ,	which is sample from	𝒩(0, 𝛪) , and progressively refined by denoising 𝑥<T 
through the conditional distributions p.	 

The dynamics of the diffusion model, specifically the adapted function ϕ are 

captured using Geometric Vector Perceptrons (GVPs).239 GVPs are based on GNNs 

and define scalar and vector embedding as nodes and edges. The edges 𝑒 = (𝑠, 𝑉) 

include the relative position between two nodes 𝑠 ∈ ℝ%×3  and a normalized 

direction vector 𝑉 ∈ ℝ%×3×=, where N is the number of edges. And they are further 

transformed as 𝑒J = (𝑠J, 𝑉J), where 𝑠J ∈ ℝ%×? and 𝑉J ∈ ℝ%×3×=, F is the number 

of hidden features. The update mechanism for the nodes initiates with scalar 

attributes and follows a similar procedure,	ℎ = (𝑠),	where 𝑠 ∈ ℝ%×` and m is the 

number of features. Every node is updated as  ℎJ = (𝑠J, 𝑉J), where 𝑠J ∈ ℝ%×? and 

𝑉J ∈ ℝ%×(?/!)×=. In the subsequent part, except where specifically stated, e will 

represent the updated edges, and h will represent the updated nodes for ease of 

understanding. Within LigandDiff, every graph is completely interconnected, with 



 

 98 

all atomic interactions being considered during the message passing process, 

characterized as 

𝑚&( = 𝜙@0ℎ& , ℎ( , 𝑒&(2                                   (36)  

𝑒̃&( = 𝜙+<<𝑚&(                                           (37) 

𝑚& = ∑ 𝑒̃&(𝑚&(
%#3
(                                       (38) 

ℎ& = 𝜙C(ℎ& , 𝑚&)                                         (39) 

where hi represents the central node’s embedding, hj corresponds to the adjacent 

node’s embedding, 𝑒&( signifies the attributes of the edge between them, and 𝜙@ 

employs three GVPs to integrate messages from neighboring nodes. The 𝜙+<< is an 

attention-based neural network crafted with a single GVP for edges, while 𝜙C uses 

multiple GVPs to refine each central node. To thoroughly capture geometric details 

from the molecular structure, this message-passing procedure is iteratively applied. 

In the last step, an additional GVP reconverts scalar and vector features into a three-

dimensional data point in the format of x0, from which the estimated noise 𝜖̂ =

[𝜖̂* , 𝜖̂C] is deducted, where 𝜖̂*  represents the positional noise and 𝜖̂C denotes the 

atomic type noise. 
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4.3 Data Set Curation and Evaluation Metrics 

Recently, Naveen et al. compiled a data set including nearly 86k mononuclear 

octahedral TMCs.240 Organometallic complex containing M metal, M = Cr, Mn, Fe, 

Co, Ni, Cu, Zn with 100 atoms or fewer were extracted from this data set. 

Furthermore, nonmetal elements were constrained to {H, C, N, O, F, P, S, Cl, Br}. 

TMCs that lacked hydrogen atoms or exhibited disorder were further removed, and 

finally 23308 TMCs were collected and each of them has at least two ligands. 

Figure 30 shows the distribution of metals.  Figure 31 shows the size distribution. 

Figure 32 gives the denticity type of each ligand in these complexes. Table 8 lists 

the denticity type of each complex. Table 9 lists the distribution of heavy atoms in 

the masked ligands. 

 

Figure 30. The distribution of metals in 23308 complexes. 
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Figure 31. The size distribution of 23308 TMCs. 

 

Figure 32. The denticity type of a single ligand in 23308 TMCs. 
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Table 8. The denticity types of the 23308 complexes. 

 

 

 

 

 

 

By using molSimplify,241,242 each complex was deconstructed to extract the 

information about its ligands. And every ligand within each complex was selected 

for the diffusion or generation process. For instance, from a complex with six 

ligands, six variations can be derived, each with a different ligand targeted for 

modification. This process resulted in a total of 87,531 samples. To streamline the 

computational effort, all hydrogen atoms were excluded from the data. For the 

purpose of validation and testing, two groups of 400 samples were set aside, with 

the rest employed for the training set. 

 

 

 

 

 

 

Denticity type Counts 
5,1 719 
4,2 702 
4,1,1 2500 
3,3 3539 
3,2,1 512 
3,1,1,1 1146 
2,2,2 3318 
2,2,1,1 5022 
2,1,1,1,1 1151 
1,1,1,1,1,1 4699 
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Table 9. The number of heavy atoms in the masked ligands.  

Nheavy_atom Count Nheavy_atom Count 
1 22871 33 51 
2 8089 34 119 
3 5467 35 31 
4 5017 36 77 
5 3639 37 19 
6 3343 38 42 
7 3072 39 20 
8 2878 40 107 
9 2466 41 17 
10 2538 42 28 
11 1832 43 2 
12 4586 44 20 
13 2094 45 10 
14 4218 46 10 
15 1549 47 5 
16 1852 48 52 
17 1400 49 3 
18 1974 50 4 
19 1128 51 2 
20 1270 52 14 
21 734 53 1 
22 1101 54 4 
23 626 55 2 
24 931 56 8 
25 513 58 1 
26 489 59 1 
27 211 60 2 
28 345 64 2 
29 144 65 1 
30 249 72 1 
31 73 76 1 
32 174 80 1 
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To comprehensively evaluate the performance of LigandDiff, a range of metrics 

were used. First, OpenBabel243 was utilized to introduce chemical bonds into the 

denoised data points xL. We used RDKit244 to first examine the validity of the 

generated ligands,  

𝑝9b+9 =
%4
564!,

%07064
                                              (40) 

where 𝑁9b+9&, is the number of valid ligands, 𝑁<A<+9 is the number of total generated 

ligands. The second metrics is connectivity, i.e., to check whether all atoms in the 

valid ligands are fully connected, calculated as 

𝑝9'A1 =
%4
564!,&#799*#0*,

%4
564!,                                    (41) 

where 𝑁9b+9&,&'A11@'<@,  is the number of valid and connected ligands. The 

uniqueness and novelty are also evaluated as  

𝑝9
d1&D = %4

:9!;:*

%4
564!,&#799*#0*,                                  (42) 

𝑝91Ab =
%4
975

%4
564!,&#799*#0*,                                   (43) 

where 𝑁9
d1&Dd@  is the number of unique ligands among outputs and 𝑁91Ab	 is the 

number of the ligands outside the training dataset. Finally, the validity of the whole 

complex is check by molSimplify, calculated as  

𝑝'b+9 =
%#564!,

%07064
                                               (44) 
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4.4 Results and Discussion 

In the evaluated set, 25% of the samples resulted in generated ligands comprising 

solely 1 heavy atom. Furthermore, 50% of the complexes contain fewer than five 

heavy atoms. Such implementation facilitates the generation of valid ligands by 

LigandDiff due to their simplicity. To strictly assess LigandDiff, we first did some 

random sampling, i.e., the size of generated ligands was randomly assigned. We set 

the sampling range from 6 to 20 because it only covers around 42% of the ligand 

size found within our training data set. Notably, half of the ligands diffused during 

training are characterized by having no more than five heavy atoms. Therefore, the 

sampling range we chose is challenging for LigandDiff. The results are given in 

Table 10. Even though with this tricky sampling, LigandDiff demonstrates strong 

capabilities. It inherently learns valency rules that other models245, 246 require to be 

predefined, allowing for the automatic generation of valid ligands. This leads to a 

high rate of valid and interconnected complexes, achieving a 90% validity rate. 
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Table 10. Performance of LigandDiff. 

 

To further evaluate LigandDiff’s ability to understand chemical principles rather 

than simply memorizes the training set ligands, the size of the generated ligands 

was fixed, i.e., the generated ligand of each TMC in the test set had the same 

assigned size. The testing began with ligands composed of 6 atoms and 

incrementally expanded to 11. As shown in Table 10, consistently high validity 

rates were maintained for both ligands and complexes throughout the evaluation, 

with ligands showing 0.96 validity and complexes 0.91. In addition to the high 

validity, the connectivity metric is also impressive, with over 94% of the valid 

ligands being fully connected. This significant surge in uniqueness and novelty 

strongly suggests that our model can ‘learn chemistry’ from the given data. For the 

 Natom 𝑝9b+9 𝑝9'A1 𝑝9
d1&D 𝑝91Ab 𝑝'b+9 

Random 
sample 6 ~ 20 0.94  0.96  0.97  0.96 0.90 

Fix the 
ligand 
size 

6 0.97  0.94  0.56 0.81 0.91  

7 0.97  0.95  0.70 0.83 0.92  

8 0.97  0.95  0.89 0.94 0.91  

9 0.96  0.95  0.90 0.98 0.90  

10 0.96  0.95  0.92 0.98 0.91  

11 0.96  0.96  0.95 0.99 0.91  

PPR_100 11 ~ 40 0.94  0.94  0.92 1.0 0.87  
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smaller size n = 6, uniqueness is relatively low at 0.56, indicating a high repetition 

rate in the ligands generated. However, as the size increases to n = 11, uniqueness 

soars to 0.95, underscoring a broadened structure variety. This trend is in agreement 

with chemical principles where larger systems inherently possess greater structural 

diversity. LigandDiff effectively utilizes its learning capabilities to create a diverse 

array of ligands. This applies to novelty as well. LigandDiff displays a tendency to 

innovate by creating new ligands rather than merely replicating those present in the 

training set, indicating its capability to venture into unexplored regions of the 

chemical space and contribute novel structures for potential applications. Even with 

a smaller size of n = 6, LigandDiff successfully generates 81% novel ligands, 

illustrating its capacity to innovate beyond the structures contained in the training 

set. As the ligand size increases to n = 11, the model almost exclusively crafts 

ligands that are novel, highlighting its robustness in designing unique TMCs. All 

the results mentioned above show that in this extreme situation where all the 

generated ligands must have the same size, LigandDiff still can generate different 

ligands under the given context. Some examples are given in Figure 33.  
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Figure 33. Various complexes created by LigandDiff with fixed ligand sizes. Each 
column represents complexes generated from ligands of the same size but varied 
contexts, while each row represents an increase in ligand size within the same 
context. The generated ligands are outlined in green for emphasis. Atoms include 
C: gray, N: blue, O: red, F: greenyellow, P: orange, S: yellow and Cl: green.   
 
Finally, to test the transferability of LigandDiff, a trickly data set named PPR_100 

was created from a larger original data set.240 This subset includes 100 TMCs that 

specifically contain Pt, Pd and Ru, chosen due to their prevalence in the database 

after excluding the TMCs already present in the training dataset. Every complex in 

the PPR_100 set has more than 50 atoms, which presents a challenge due to their 

size and complexity. Ligands comprising more than ten heavy atoms were selected 

for masking, resulting in 148 samples for the generative task. This selective 

masking was because a subset of the complexes contained multiple ligands that met 

the criteria. However, since about 68% of the ligands in the training set contained 
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ten or fewer heavy atoms, it is tricky for LigandDiff to generate valid complexes 

for PPR_100 data set. The results are given in Table 10. Even in the absence of Pt, 

Pd and Ru transition metals in the training set, LigandDiff demonstrates an 

impressive capability to generate new and structurally diverse ligands. it showcases 

a 94% success rate in creating valid and connected ligands that are entirely novel, 

with a very low repetition rate of only 8%. Furthermore, 87% of the generated 

complexes meet the validity criteria set by molSimplify. These achievements 

highlight LigandDiff's effectiveness in exploring the chemical space of ligands for 

various transition metals, despite the complexity and novelty of the task. Some 

successful examples of the newly generated TMCs and the reference TMCs are 

given in Figure 34. The LigandDiff framework utilizes the metal component 

merely as a static reference point to facilitate the prediction of variations in the 

surrounding ligand. This strategic limitation ensures that the metal does not 

participate in the diffusion dynamics. With this flexible framework, LigandDiff is 

capable of crafting novel ligands tailored to various transition metals without 

modifying the metal core. 
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Figure 34. Newly generated complexes (bottom) and the corresponding reference 
complexes (up) in the PPR_100 set. The CSD code is given. 
 
In evaluating the ease of synthesis for the ligands produced, the average synthetic 

accessibility (SA) score247 was employed as a measure. Table 11 reveals that the 

ligands generated by LigandDiff not only bear high SA scores, denoting their 

realistic synthetic potential, but also maintain these high scores consistently, even 

as the size of the ligand increases. 
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Table 11. The SA scores of LigandDiff. 

 
 
 
 

	

 
 
 
 
 
 
 
 
 
 
 

 
 
  

 Natom SAa 

Random sample 6 ~ 20 0.69 ± 0.008 

Fix the ligand size 

6 0.80 ± 0.005 

7 0.77 ± 0.020 

8 0.74 ± 0.005 

9 0.74 ± 0.003 

10 0.73 ± 0.008 

11 0.72 ± 0.008 

PPR_100 11 ~ 40 0.68 ± 0.008 
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4.5 Conclusions  

In this present study, we proposed a generative model, LigandDiff, to design 

novel and unique ligands for TMCs from scratch. We first curated tens of 

thousands of TMCs from available database. To enrich the diversity of ligand 

samples, we masked each ligand in each complex as a unique sample. And 

inspired by diffusion models, we designed our scaffold-oriented generative 

model. Our results shows that LigandDiff is able to generate unlimited, diverse 

and easily synthesizable ligands on the condition of given context.  
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APPENDIX A: TABLES 

Table 12. The 771 complexes in Zinc_60 data set. 
 
CSD Code Formula N_con 
 SESWET   C16H14O8Zn  39 
 VIGFIA   C14H30N4O2Zn  51 
 KEYVES   C27H22N2O7Zn  59 
 BEZDER   C14H12N2O6Zn  35 
 BUDBEI   C6H8N6O6Zn  27 
 GUKZOD   C19H13N7O6Zn  46 
 ATAFEG   C20H18N12Zn  51 
 WEGHOH   C12H10N2O6Zn  31 
 HATCEN   C21H26N2O5Zn  55 
 LUGTAJ   C13H18N4O3Zn  39 
 MPEZNC   C16H12N4Zn  33 
 HAVBUC   C26H20N6O2Zn  55 
 QITRUH   C13H13N5O6Zn  38 
 VUYBEX   C16H12N4O5Zn  38 
 QISMUD   C18H22N4O6Zn  51 
 TOXMIE   C13H14N4O8Zn  40 
 GEPDAH   C26H18N4O2Zn  51 
 GARQUM   C22H20N10O2Zn  55 
 KERLOJ   C10H10N4O10Zn  35 
 QEBFOV   C26H24N2O7Zn  60 
 SANVOT   C24H18N6OZn  50 
 UGIBAP   C8H10N4O8Zn  31 
 BONRIF   C20H22N4Zn  47 
 AMOXZN   C4H8N2O8Zn  23 
 NOBHIX   C24H16N6O13Zn  60 
 BOMQEZ   C22H24N6O4Zn  57 
 ISUYAW   C30H20N2O4Zn  57 
 CEXPOM   C22H18O8Zn  49 
 EBAXUD   C17H14N4O6Zn  42 
 AHITUI   C16H22N4O4Zn  47 
 AHUTED   C17H19N3O4Zn  44 
 QOBTAE   C11H22N2OZn  37 
 QOBSOR   C12H24N2OZn  40 
 XUNDAM   C26H20N4O4Zn  55 
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Table 12. (cont’d) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VILBOK   C14H12N2O6Zn  35 
 YELXAR   C26H22N8O2Zn  59 
 VEVVID   C16H21N3O6Zn  47 
 SEKXOY   C20H26N8O4Zn  59 
 RIKXUH   C18H24N2Zn  45 
 LOSLUB   C26H20N6O4Zn  57 
 WENQEO   C12H12N2O6Zn  33 
 LOPYOE   C15H25N3O4Zn  48 
 IRATOL   C18H24N2O4Zn  49 
 IDANOS  C16H16N10O10Zn  53 
 MALFIO   C12H14O8Zn  35 
 FAYMIC   C17H13N3O4Zn  38 
 BUXZUQ   C7H11NO8Zn  28 
 SOTCAG   C28H24N2O2Zn  57 
 GUWGIP   C8H14N8O4Zn  35 
 SIHFEX   C18H18N10Zn  47 
 UCIFOC   C28H20N6Zn  55 
 GANZIG   C22H18N12O2Zn  55 
 RUDWIX   C17H17N3Zn  38 
 GILWOP   C24H17N5O8Zn  55 
 MUDMAA   C18H14N4Zn  37 
 LAJMUE   C16H38N2Zn  57 
 HAYNOM   C14H14N12O4Zn  45 
 BUYBAZ   C13H13N3O5Zn  35 
 ZERHEL   C18H18N12O8Zn  57 
 CORCAP   C18H16N2O10Zn  47 
 XIYREC   C10H22N2O4Zn  39 
 SOSHIS   C15H22N4O4Zn  46 
 SUQCIR   C6H12N6O10Zn  35 
 TEWNEO   C10H10N4O6Zn  31 
 VIPJOU   C24H25N5O4Zn  59 
 IMIMEY   C14H18O10Zn  43 
 FORKED   C15H22N4O4Zn  46 
 CIXZIV   C26H23N3O4Zn  57 
 BIYJAU   C14H22N4O4Zn  45 
 ERIKIA   C14H16N10O2Zn  43 
 MOLTEM   C20H18N6O9Zn  54 
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Table 12. (cont’d) 
  
BIGXOH   C12H20N2O2Zn  37 
 CAPWAU   C25H26N2O5Zn  59 
 KUJRAI   C16H20O2Zn  39 
 HAGBIA   C14H6N2O8Zn  31 
 YENSEQ   C22H12N12Zn  47 
 FOKXIO   C18H23N5O6Zn  53 
 GOXFII   C10H14O10Zn  35 
 BUZQUK   C12H12N2O8Zn  35 
 KIMWUA   C12H19N5O5Zn  42 
 UGINEE   C33H21N5Zn  60 
 RILBIA   C26H26N4Zn  57 
 QUYDIZ   C24H16N6O12Zn  59 
 EHEWIY   C11H9N5O9Zn  35 
 TIHMUV   C18H26N2Zn  47 
 QAHTOK   C27H18N4O4Zn  54 
 PESHEB   C18H14N4O2Zn  39 
 QEXQAO   C24H20N6O4Zn  55 
 WUZNIP   C16H18O10Zn  45 
 INOCIY   C10H14N4O8Zn  37 
 OXUVAF   C16H18O10Zn  45 
 QAYGOM   C14H13N3O7Zn  38 
 PIKFOF   C20H22N8O4Zn  55 
 KESTAF   C18H14N4O8Zn  45 
 ZACZOS   C12H12N10O4Zn  39 
 UQAFOI   C18H18N4O6Zn  47 
 RUQDAK   C18H18N2O4Zn  43 
 MIDKUF   C26H22N4O2Zn  55 
 LATKIB   C21H32N2O4Zn  60 
 HERGIU   C16H28N6O8Zn  59 
 WEGBEP   C12H24N6O12Zn  55 
 HOTFAZ   C10H10N4O10Zn  35 
 DEZGOH   C21H35N3Zn  60 
 DEXSUX   C24H30N4OZn  60 
 KEGJUC   C14H18N4O4Zn  41 
 BUYBED   C13H12N2O6Zn  34 
 XUGJAL   C20H18N4O6Zn  49 
 HOPTIS   C6H13N17O2Zn  39 
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Table 12. (cont’d) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CEWBUC   C26H18N4O9Zn  58 
 XIWTUU   C28H20N6Zn  55 
 QIMRIQ   C12H12N2O6Zn  33 
 DENSIB   C24H16N4O6Zn  51 
 ODIGEO   C20H18N4O4Zn  47 
 GIYLIM   C16H18N2Zn  37 
 CIBLIK   C14H18N8O6Zn  47 
 KOKVIQ   C12H20N8O6Zn  47 
 AFEJAX   C22H20N2O3Zn  48 
 OBOJUM   C12H14N4O7Zn  38 
 HUVTAT   C21H17N7O6Zn  52 
 AYIFUL   C16H14N4O4Zn  39 
 YABNIA   C18H20N6O6Zn  51 
 IDATOZ   C14H10N4O6Zn  35 
 ONAFIT   C21H22N2O2Zn  48 
 XACMIY   C20H24N4O2Zn  51 
 GIWLOO   C18H17N5O4Zn  45 
 ECOZAA   C20H22N4O6Zn  53 
 WIKZOI   C14H22N12O8Zn  57 
 KUYGIV   C8H12N8O7Zn  36 
 EBAVOU   C22H24N2Zn  49 
 VOGFIG   C12H26N2Zn  41 
 YAMXAO   C17H15N5O6Zn  44 
 LELFOZ   C17H18N2Zn  38 
 SAPNOO   C20H16N2O3Zn  42 
 VIQFAE   C24H14N6O12Zn  57 
 QERHEB   C22H16N4O4Zn  47 
 IZAVEK   C26H18N4O9Zn  58 
 KUBVOU   C16H22N2O5Zn  46 
 URONUL   C16H28N2O2Zn  49 
 QEZLUD   C8H18Zn  27 
 YEBYAI   C16H18N4O6Zn  45 
 OLOZEV   C14H26N4Zn  45 
 FUHYOX   C8H14O12Zn  35 
 EJEBIF   C12H14N4O10Zn  41 
 LALTID   C25H21N3O4Zn  54 
 GIRMEA   C16H30N6O4Zn  57 
 JUXLUL   C12H14N4O8Zn  39 
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Table 12. (cont’d) 
  
PUVWEK   C12H12N4O10Zn  39 
 WABSAV   C12H16N10O4Zn  43 
 TIHDAR   C18H14N4O8Zn  45 
 POCVAG   C20H14N10Zn  45 
 YOXFEX   C25H32N2Zn  60 
 KUJREM   C18H24O3Zn  46 
 VOXNED   C26H22N4O2Zn  55 
 WEZGEO   C18H12N4O5Zn  40 
 FAHCUO   C16H38N2Zn  57 
 EHOYIK   C18H26N4O4Zn  53 
 DURFUS   C10H22N2O4Zn  39 
 NICAZN   C12H16N2O8Zn  39 
 NEXKUX   C15H19NO5Zn  41 
 OZIMOB   C17H13N11OZn  43 
 YUVPIQ   C25H26N4O4Zn  60 
 UGOKAC   C25H16N4O3Zn  49 
 UCEDEL   C18H18N4O4Zn  45 
 IJOFIY   C20H21N7OZn  50 
 BENLAJ   C20H20N6O8Zn  55 
 SATKOO   C14H25NO5Zn  46 
 BONXAE   C21H17N3O4Zn  46 
 GIJMAO   C24H19N3O4Zn  51 
 GIRMEB   C6H14N12O4Zn  37 
 GOSXET   C18H31N3Zn  53 
 ICIZUQ   C18H22N2Zn  43 
 QOLDEB   C16H15N3O5Zn  40 
 PEHDAK   C21H29N5OZn  57 
 ACOCIF   C15H20N2O4Zn  42 
 YEGQAC   C20H22N6O6Zn  55 
 ECUQAV   C7H9N3O4Zn  24 
 VUQCEQ   C20H18N2O6Zn  47 
 GIFDEH   C2H10N12O8Zn  33 
 ETUBAX   C8H10N4O6Zn  29 
 PUVPAY   C26H22N4O6Zn  59 
 RIKYIW   C24H22N4Zn  51 
 JIFKAN   C14H18N2O6Zn  41 
 YOWCAQ   C11H15NO8Zn  36 
 XOKGIQ   C16H16N2O10Zn  45 
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Table 12. (cont’d) 
 
XOTVOS   C18H24N2O12Zn  57 
 ICEXUK   C25H29N3O2Zn  60 
 FORKAZ   C14H22N4O2Zn  43 
 RAHPIC   C20H14O8Zn  43 
 QERMIK   C5H10N2O8Zn  26 
 XICBUI   C24H18N2O11Zn  56 
 WOFNUC   C20H36N2OZn  60 
 BOFWOK   C16H18N4O6Zn  45 
 RUXGOG   C8H12N6O6Zn  33 
 NASFIW   C6H14O8Zn  29 
 PAWGOK   C16H26N4Zn  47 
 MATLEB   C11H10N4O6Zn  32 
 MAZTEO   C20H24N2Zn  47 
 POWDOV   C15H15NO5Zn  37 
 JEKMUH   C16H22N4Zn  43 
 EJIPAP   C10H15N9Zn  35 
 PUVDUF   C10H16N2O8Zn  37 
 GENWAY   C12H16N10O6Zn  45 
 ZOMWIJ   C16H18N8O6Zn  49 
 ABASAA   C13H19N9OZn  43 
 NUGRAK   C16H22N4O6Zn  49 
 JAMPIZ   C18H22N4O6Zn  51 
 LUFHOL   C6H12N10O8Zn  37 
 XEJZUJ   C19H19N3O5Zn  47 
 SOSHAK   C18H24N4O4Zn  51 
 CUDXIJ   C16H28N2Zn  47 
 AZOLAD   C24H20N4O4Zn  53 
 OXOXEG   C22H26N2O8Zn  59 
 EBAYEO   C21H20N2O4Zn  48 
 FOWHEF   C24H18N4O10Zn  57 
 POKPUD   C10H20N4O5Zn  40 
 FUGLOJ   C26H22N2O4Zn  55 
 TEJHUM   C16H20N2O8Zn  47 
 GIMWAC   C12H28N2O4Zn  47 
 TICXEK   C30H18N2O6Zn  57 
 GEVXEK   C28H22N2O2Zn  55 
 XETHEK   C10H10N12O2Zn  35 
 ATULUY   C18H22N4O12Zn  57 
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Table 12. (cont’d) 
 
YEFYUF   C20H14N4O5Zn  44 
 YIXSAB   C16H18N4O6Zn  45 
 GOMMUR   C20H16N8O4Zn  49 
 MAHZUR   C25H20N2O2Zn  50 
 YOXDUL   C19H24N2Zn  46 
 DEVTEE   C12H16N10O4Zn  43 
 NUZXOX   C16H16N2O16Zn  51 
 RURFOB   C22H32N4Zn  59 
 EQEFOW   C17H15N5O6Zn  44 
 ATUMUZ   C14H18N4O4Zn  41 
 ECAQIL   C26H20N2O10Zn  59 
 EFOXAB   C22H14N6O4Zn  47 
 ZEXHOZ   C6H14N4O6Zn  31 
 LIVYOE   C20H30N2Zn  53 
 BOCRUG   C12H6N2O6Zn  27 
 QELPAB   C28H22N2O4Zn  57 
 LODZOV   C22H18N12O2Zn  55 
 CADHIY   C18H26N4Zn  49 
 IROLAC   C22H20N2O6Zn  51 
 OYAKAB   C26H16N6O4Zn  53 
 XUCGEI   C21H20N6O6Zn  54 
 WELSOW   C18H32N2O4Zn  57 
 VUWJIH   C13H11N5O4Zn  34 
 FESBOV   C17H26N4Zn  48 
 UMOVIC   C18H16N4O5Zn  44 
 ROQQIZ   C22H34N2Zn  59 
 XIYNOJ   C26H22N2O4Zn  55 
 RUVDET   C23H21N5O8Zn  58 
 GILSIF   C12H12N6O6Zn  37 
 KEKHEP   C16H18N4O9Zn  48 
 NAQWEK   C32H18N2O5Zn  58 
 OBIHEN   C20H18N4O6Zn  49 
 INICZN   C12H16N2O8Zn  39 
 IGOPAW   C9H12N4O6Zn  32 
 UWIQEX   C13H16N6O5Zn  41 
 MIJVAF   C24H22N4O4Zn  55 
 OZOQIF   C16H28N2O2Zn  49 
 TAPVOY   C20H26N2O4Zn  53 
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Table 12. (cont’d) 
 
LELFAL   C19H20O3Zn  43 
 LUGREK   C18H23N3O2Zn  47 
 HAVBOW   C26H18N4O2Zn  51 
 HECMEI   C14H10N2O9Zn  36 
 RUSDIS   C23H28N4Zn  56 
 OJUJAE   C12H16N4O5Zn  38 
 INOCEU   C10H14N4O8Zn  37 
 FOJVIL   C20H18N4O8Zn  51 
 DIYYAL   C6H12N6O10Zn  35 
 OCOZAJ   C14H24N4Zn  43 
 ILONIG   C14H18N4O4Zn  41 
 ROPZOL   C20H30N2Zn  53 
 KOVQOD   C18H14N4O6Zn  43 
 XACMOE   C22H28N4O4Zn  59 
 TUMQOI   C24H16N10Zn  51 
 LICMEQ   C25H19N3O2Zn  50 
 LEWFAV   C20H18N2O3Zn  44 
 PYACZN   C14H16N2O6Zn  39 
 LEPVUA   C18H26O8Zn  53 
 FIDWUL   C6H12N2O8Zn  29 
 SOSHOY   C15H24N4O4Zn  48 
 XALWUF   C10H14N2O8Zn  35 
 KAGLOU   C16H18N4O4Zn  43 
 QIPXUI   C16H20N6O2Zn  45 
 RIRVIY   C6H8N6O6Zn  27 
 GEKVUQ   C24H20N6O2Zn  53 
 YIDSEK   C14H12N2O10Zn  39 
 IWOPUF   C16H19N5O4Zn  45 
 LUFKOM   C10H18N4O8Zn  41 
 PEGQEX   C18H22O13Zn  54 
 VOJMEP   C8H17NO6Zn  33 
 EQECOT   C23H21N5O6Zn  56 
 LELJAO   C20H30N2Zn  53 
 NIWNOX   C26H20N2O7Zn  56 
 DORGUM   C14H16N2O9Zn  42 
 MIQVAL   C8H15N5O4Zn  33 
 MAHRAP   C10H10N4O6Zn  31 
 YUSZIX   C20H21N3O11Zn  56 
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Table 12. (cont’d) 
 
QERPAE   C22H24N2O4Zn  53 
 QIQLAD   C14H16N6O8Zn  45 
 POMMOV   C4H10N10O8Zn  33 
 TISBUS   C16H14N2O6Zn  39 
 PIZLAN   C12H16N10Zn  39 
 NAFGOT   C34H18N2O4Zn  59 
 YADNUO   C30H20N2O7Zn  60 
 CEGFIE   C25H25N3O2Zn  56 
 DAFLIG   C28H20N10Zn  59 
 DEXYEL   C24H18N12Zn  55 
 PUTPUP   C18H36N2Zn  57 
 JUVCEK   C18H18O16Zn  53 
 ROGXAM   C14H22O12Zn  49 
 CEHCAT   C14H12N2O10Zn  39 
 OZOQOL   C18H32N2O4Zn  57 
 RUVDIX   C20H21N5O6Zn  53 
 KIWTOA   C20H22N2O4Zn  49 
 MAVLEB   C22H20N2O6Zn  51 
 XOXYOZ   C18H30N2OZn  52 
 SEZVID   C12H14N4O6Zn  37 
 ATUPEM   C14H12N6O4Zn  37 
 DAPQAN   C18H18N8O4Zn  49 
 HODTEZ   C23H19N7O3Zn  53 
 SESPIQ   C28H20N2O7Zn  58 
 DUHJUM   C19H13N3O2Zn  38 
 YUMWOT   C12H16N6O6Zn  41 
 CAPXEY   C21H16N4O8Zn  50 
 GOSMOS   C10H8N10O4Zn  33 
 BIPFAI   C20H16N10Zn  47 
 YAZXAZ   C26H20N6O4Zn  57 
 QURTED   C18H22N4O4Zn  49 
 VOXNIH   C26H22N4O2Zn  55 
 SIZPOJ   C15H16N4O4Zn  40 
 DUVSIY   C25H22N4Zn  52 
 YEXJOB   C32H18N8OZn  60 
 BPPZNH   C16H8N10O12Zn  47 
 ERURAL   C20H32N2Zn  55 
 NOWHEO   C26H23N3O6Zn  59 
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Table 12. (cont’d) 
 
DEHKIM   C11H13N5O6Zn  36 
 GERTEE   C22H14N4O4Zn  45 
 XIBYOX   C20H14N6O5Zn  46 
 KAGMAH   C17H14N4O6Zn  42 
 POWVON   C24H20N2O7Zn  54 
 IDAVER   C24H16N6O4Zn  51 
 CUMBES   C16H15N3O5Zn  40 
 HOXYUQ   C20H15N3O5Zn  44 
 TAHYOS   C12H26O6Zn  45 
 VIFTAI   C24H22O6Zn  53 
 XECNUQ   C18H19N3O4Zn  45 
 PIKGAS   C22H24N6O6Zn  59 
 KAZFIC   C20H14O8Zn  43 
 IGATUF   C12H28N2O6Zn  49 
 EXUYOL   C10H9N9Zn  29 
 WAPMUW   C28H24N2O2Zn  57 
 TIBPEB   C22H16N2O10Zn  51 
 MASRED   C24H22N4O4Zn  55 
 ZOPQUS   C8H18N2O4Zn  33 
 KIYSEQ   C18H18O6Zn  43 
 WISNET   C14H16N4O9Zn  44 
 UNOPUJ   C26H24N2O6Zn  59 
 SAJDAK   C4H10Zn  15 
 SOGLOS   C26H19N3O8Zn  57 
 EFOKIW   C22H24N6O4Zn  57 
 UGINOO   C29H19N5Zn  54 
 OHORIM   C12H12N10O2Zn  37 
 KEFNUF   C25H28N4OZn  59 
 IKOYUE   C26H26N4O3Zn  60 
 KIKNAT   C16H26N4O8Zn  55 
 ULICOH   C23H19N7O2Zn  52 
 SIRMOX   C22H22N2O8Zn  55 
 FASBEG   C5H10N2O8Zn  26 
 SAGYEH   C18H18N2O4Zn  43 
 DENSAT   C19H20N4O7Zn  51 
 PATSOT   C28H20N6O2Zn  57 
 ZETDOT   C26H20N2O2Zn  51 
 MIRSEM   C16H18O6Zn  41 



 

 146 

Table 12. (cont’d) 
 
MIQVEP   C8H15N5O4Zn  33 
 TEFDOY   C18H18N2O6Zn  45 
 SUNNAR   C27H17N7O2Zn  54 
 TARWIT   C24H20N4O4Zn  53 
 MESZAM   C22H18N4O6Zn  51 
 FOMKOH   C22H28N2O2Zn  55 
 UZIFAL   C24H21N5O4Zn  55 
 FOJTUV   C20H18N6O6Zn  51 
 IXOCIH   C10H14N8O6Zn  39 
 MIRXUI   C24H20N10O2Zn  57 
 PAGFUA   C24H26O2Zn  53 
 QAFHAH   C12H12N2O8Zn  35 
 UYAQAO   C18H14N10Zn  43 
 QEJLEX   C10H14N4O4Zn  33 
 HUCHOD   C12H12N4O5Zn  34 
 ISAVAZ   C28H22N2O4Zn  57 
 XAHGIY   C12H8N10O2Zn  33 
 NEYTES   C17H15NO6Zn  40 
 BAXROH   C10H20N2O10Zn  43 
 SUXREJ   C14H18N4O8Zn  45 
 BIYZUF   C18H22N8O8Zn  57 
 NALKUI   C12H24N2O8Zn  47 
 WECKUN   C26H20N4O8Zn  59 
 TEKJEA   C18H34N4O2Zn  59 
 WIWCUB   C18H14N4Zn  37 
 MEXFOM   C14H20N10Zn  45 
 REWFAB   C20H16N2O7Zn  46 
 MOVBUV   C24H21N5O4Zn  55 
 IKADIJ   C26H20N4O4Zn  55 
 MALFOU   C14H18N2O5Zn  40 
 IKEYOM   C10H18O6Zn  35 
 RUQLIA   C25H19N5O6Zn  56 
 ONATED   C10H22O6Zn  39 
 GEPLOD   C10H13NO7Zn  32 
 PAXZOG   C6H16O2Zn  25 
 JIZCAW   C14H36N6Zn  57 
 NUFJAB  C16H16N10O14Zn  57 
 ERUQUE   C18H28N2Zn  49 
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Table 12. (cont’d) 
 
QANSAB   C12H11N5O7Zn  36 
 REWHIN   C12H14N8O2Zn  37 
 AYISEH   C20H24N2O5Zn  52 
 BEKPUC   C8H24N6O4Zn  43 
 XISBOR   C12H12N2O8Zn  35 
 QABYAV   C12H16N6Zn  35 
 QURSOM   C18H22N4O4Zn  49 
 FEHBAY   C22H28N2O2Zn  55 
 RATXER   C14H20N2O3Zn  40 
 GEGQUE   C12H9N5Zn  27 
 KAPDIQ   C20H14N8O12Zn  55 
 QIRFUV   C12H14N4O10Zn  41 
 LUSVEA   C19H30N4O2Zn  56 
 EKIGEM   C12H18N8O6Zn  45 
 UNELEF   C10H16N2Zn  29 
 GILSOL   C12H12N6O6Zn  37 
 QEMDOB   C11H11NO6Zn  30 
 EXOFAZ   C21H24N2O7Zn  55 
 SAQHUP   C12H17NO8Zn  39 
 HUXVAX   C19H30N4O2Zn  56 
 WUXCUO   C20H16N4O4Zn  45 
 MUSPUL   C13H18N4O4Zn  40 
 RIKZIX   C28H26N4Zn  59 
 JAMNIX   C10H22N4O6Zn  43 
 ICOBEI   C14H30N2Zn  47 
 HIQBIS   C28H24N2O4Zn  59 
 ZIQBIM   C16H16N2O10Zn  45 
 ONISUA   C15H19N7O6Zn  48 
 SIDNAW   C20H22N4O4Zn  51 
 PAKXEG   C17H21N7O6Zn  52 
 MIWSOC   C24H22N4O6Zn  57 
 COLTUT   C18H17N3O9Zn  48 
 DENRUM   C14H16N2O8Zn  41 
 LAJRIZ   C22H16N4O10Zn  53 
 FOMLAU   C22H28N2O4Zn  57 
 KAZFAU   C20H14O8Zn  43 
 WUDMEN   C18H20N2O4Zn  45 
 ABOWOF   C16H20N2O5Zn  44 
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Table 12. (cont’d) 
 
POMMEL   C4H8N8O8Zn  29 
 GOSMIM   C12H8N10O2Zn  33 
 CIBTIS   C25H17N5Zn  48 
 WUDMAJ   C11H15NO5Zn  33 
 UQEBEZ   C18H18N2O6Zn  45 
 YABNAS   C16H16N6O6Zn  45 
 UNOKIS   C18H20O11Zn  50 
 FORJUS   C15H26N4Zn  46 
 QAHZOQ   C24H19N7O7Zn  58 
 SAJDEO   C2H6Zn  9 
 ICIMAJ   C26H20N4O4Zn  55 
 DOSQUA   C7H11NO9Zn  29 
 QOLMEK   C19H23NO5Zn  49 
 PAXPOU   C12H30N2Zn  45 
 NAPMUM   C16H36N2Zn  55 
 ERIMIC   C15H19NO4Zn  40 
 RIKGEA   C16H16N2O2Zn  37 
 MASYAH   C25H23N5O3Zn  57 
 CAPDIG   C12H14N4O4Zn  35 
 XAXBIJ   C10H21NO7Zn  40 
 AGEJOM   C20H21N3OZn  46 
 QOLDIF   C18H16N4O5Zn  44 
 PESKEE   C24H18N2O4Zn  49 
 FULSOV   C10H12N6O16Zn  45 
 GOQQAG   C16H16N10O6Zn  49 
 WILHOR   C14H16N10O6Zn  47 
 DUVKOU   C8H12N10O6Zn  37 
 AXUQER   C12H20N10Zn  43 
 UZICIQ   C16H20N6O6Zn  49 
 XEZTII   C4H14N8O8Zn  35 
 HIQBEO   C26H18N4O6Zn  55 
 XIZVAG   C16H22N4O4Zn  47 
 YOWMAY   C26H22N4O6Zn  59 
 QAHVAY   C20H14O10Zn  45 
 HOSXUJ   C8H10N12O2Zn  33 
 AXILUO   C12H16N10O6Zn  45 
 PIKVAJ   C17H19N5O5Zn  47 
 ZUTNUZ   C22H24N2O5Zn  54 
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Table 12. (cont’d) 
 
TIGJEZ   C6H14N2O4Zn  27 
 YAFZEL   C16H14N2O6Zn  39 
 VORNOF   C12H18N8O8Zn  47 
 QUQVAB   C12H16N6O2Zn  37 
 GEZLAA   C26H24N4O2Zn  57 
 ICOBAE   C16H18N2Zn  37 
 MUZNIG   C24H16N4O8Zn  53 
 GISQAA   C14H32N10Zn  57 
 XILGAB   C6H14N12O2Zn  35 
 REZDEI   C10H12N6O6Zn  35 
 NENCOZ   C14H15NO6Zn  37 
 VOLWAV   C16H16N4O4Zn  41 
 ULASUW   C21H29N3Zn  54 
 BIGXIB   C15H25N3OZn  45 
 CUDXOP   C13H22N2Zn  38 
 SOJXUK   C6H13NO9Zn  30 
 CELKAF   C14H16N2O10Zn  43 
 OFUFEA   C15H14N4O6Zn  40 
 USIVEZ   C20H12N4Zn  37 
 EHOYAC   C18H26N4O4Zn  53 
 MIDKOZ   C24H18N4O2Zn  49 
 DICWAP   C20H17N5O5Zn  48 
 DUMLIH   C20H22N8O4Zn  55 
 JIHROK   C16H20N2O12Zn  51 
 WELSIQ   C18H32N2O2Zn  55 
 YEVNOD   C24H24N2O9Zn  60 
 OLOWIV   C9H14N6O6Zn  36 
 DISWUA   C24H22N4O8Zn  59 
 TERQEM   C14H14N2O5Zn  36 
 FIDWOF   C4H8N2O8Zn  23 
 AZILOK   C22H28N2O2Zn  55 
 ICEWOD   C24H32N2OZn  60 
 XECRAZ   C10H10N4O6Zn  31 
 CODRIX   C14H18N2Zn  35 
 QOLWUJ   C17H24N2O4Zn  48 
 VIKMEK   C19H12N6O6Zn  44 
 PUKLUE   C26H22N4O4Zn  57 
 ASOCOC   C10H14O4Zn  29 
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Table 12. (cont’d) 
 
OGANAM   C24H16N4O8Zn  53 
 YUZROC   C16H17N7O8Zn  49 
 ILAZIG   C28H22N2O4Zn  57 
 YAYYED   C20H18N4O6Zn  49 
 ATUMAF   C18H22N4O12Zn  57 
 KIWTIU   C22H22N2O4Zn  51 
 LIYXIA   C28H16N10Zn  55 
 EXIFUN   C21H24N4O6Zn  56 
 COLCUD   C28H24N2O5Zn  60 
 TENGEB   C22H28N2OZn  54 
 HINLIC   C11H17N9Zn  38 
 EYIXEQ   C21H19N5O8Zn  54 
 UQEBID   C28H22N2O4Zn  57 
 VUJTEA   C26H16N6O4Zn  53 
 UNEQUB   C12H16N2O10Zn  41 
 ASOZEP   C28H24N2O4Zn  59 
 XILHAB   C18H22N2O6Zn  49 
 GICFUW   C18H20N6O8Zn  53 
 LOFYIP   C26H20N6O2Zn  55 
 WEWVIG   C16H18N8O8Zn  51 
 KOVRAQ   C24H28N2O4Zn  59 
 SIGLUP   C17H24N6O2Zn  50 
 LUYBAI   C26H22N8O2Zn  59 
 DAMLAG   C20H26N4O5Zn  56 
 PAXPIO   C14H34N2Zn  51 
 DUCPAT   C14H26O6Zn  47 
 ECULAQ   C19H13N3O5Zn  41 
 BEZLID   C15H19N3O4Zn  42 
 MEHHIS   C9H10N6O9Zn  35 
 MAHQAO   C12H22O6Zn  41 
 FENVEA   C26H18N2O8Zn  55 
 YORRUU   C14H18N4O10Zn  47 
 PAXPUA   C19H36N2Zn  58 
 XACGUD   C14H16N6O6Zn  43 
 VIQMEO   C20H16N2O5Zn  44 
 VIRTIC   C14H26N2OZn  44 
 HILMOG   C18H20N6O8Zn  53 
 MATLIF   C12H12N4O6Zn  35 
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Table 12. (cont’d) 
 
RACYAW   C20H14N2O5Zn  42 
 YAFZIP   C25H25N3O5Zn  59 
 METVIR   C12H30N2Zn  45 
 IWOLEN   C8H20N10O8Zn  47 
 WUXCOI   C22H16N4O4Zn  47 
 ROKDIF   C18H28N4Zn  51 
 EQIMEY   C10H14N2O8Zn  35 
 LIKXAF   C11H18Zn  30 
 VAQZUK   C17H19N5O4Zn  46 
 EZICAS   C24H16N4O6Zn  51 
 FIPRUR   C5H11N5O4Zn  26 
 DAXGUF   C19H16N2O5Zn  43 
 UGINII   C26H18N4Zn  49 
 SORBOQ   C18H22N8O11Zn  60 
 SIGXOX   C18H23N3OZn  46 
 MELYAE   C20H18N2O6Zn  47 
 IDIFIN   C22H22N4O8Zn  57 
 LEHCUY   C20H30N4O4Zn  59 
 DAMJUY   C19H24N4O4Zn  52 
 IJEDOR   C19H14N2O8Zn  44 
 BENDAB   C16H18N2O4Zn  41 
 PIFFEQ   C22H20N2O5Zn  50 
 XACNAR   C10H16N2O9Zn  38 
 SOBRAD   C14H12N6O6Zn  39 
 IDAVAN   C19H12N6O4Zn  42 
 CEHNAH   C15H18N10OZn  45 
 TAZYUP   C14H22N2Zn  39 
 YIGGAZ   C10H19N3O7Zn  40 
 DIYDUK   C18H20O12Zn  51 
 POFCUJ   C20H16N4O5Zn  46 
 JEVMIH   C18H18N4O2Zn  43 
 BEPJOY   C25H22N2O9Zn  59 
 DEMJIR   C18H18N10O3Zn  50 
 YAMXOA   C16H18O8Zn  43 
 SUPDIQ   C16H32N2Zn  51 
 NISVAO   C16H29NZn  47 
 COLWIK   C29H16N4O5Zn  55 
 TEDGUF   C20H22N2O4Zn  49 
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Table 12. (cont’d) 
 
FODMEQ   C10H24N2Zn  37 
 LOBDIS   C28H22N4O2Zn  57 
 TOMTAR   C12H14N2O5Zn  34 
 RIJHAV   C15H27NZn  44 
 CIWDOC   C16H14O10Zn  41 
 YIHMAD   C24H18N4O2Zn  49 
 ISEXOU   C16H28N2O2Zn  49 
 ALOPAS   C14H14N2O5Zn  36 
 RIKGIE   C28H24N2O2Zn  57 
 ZUGVEC   C12H17NO6Zn  37 
 KUFBAP   C28H18N12Zn  59 
 GOGPAU   C17H26N4Zn  48 
 DUVMUD   C29H21N5O3Zn  59 
 VUGBOP   C24H26N4O4Zn  59 
 UYAJIO   C13H17N3O6Zn  40 
 QOBTOS   C18H32N4OZn  56 
 SELXEM   C22H30N2OZn  56 
 QITROB   C12H11N5O6Zn  35 
 TEFDIS   C18H18N2O6Zn  45 
 UNODOR   C18H20N2O12Zn  53 
 HOLTUX   C10H14O12Zn  37 
 FOSJIJ   C18H28N2O2Zn  51 
 OMUVUO   C22H18N6O4Zn  51 
 HIQSIK   C22H18N4O6Zn  51 
 NUNYAX   C22H24N2O4Zn  53 
 BOFROF   C16H20N6O6Zn  49 
 DISWOU   C24H24N4O7Zn  60 
 COBKOW   C18H10N8O4Zn  41 
 CAKGIH   C26H26N4Zn  57 
 WOBGAV   C16H20N6O4Zn  47 
 AKAPIN   C23H31N3Zn  58 
 PAMBEM   C20H22N6O8Zn  57 
 KAYPUW   C16H16N2O5Zn  40 
 MAZTAK   C16H16N2Zn  35 
 PEHDEO   C22H31N5OZn  60 
 JILGUJ   C24H18N4O2Zn  49 
 WIBHEW   C13H14N4O5Zn  37 
 LAYLAB   C22H18N2O7Zn  50 
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Table 12. (cont’d) 
 
NABVIY   C14H20N2Zn  37 
 QANTOP   C24H16N10Zn  51 
 KAWSAD   C12H20N2Zn  35 
 RUSDAK   C22H26N4Zn  53 
 PEGQIB   C18H22O13Zn  54 
 LIVRUD   C25H22N2O7Zn  57 
 TISBOM   C14H14N2O6Zn  37 
 BIBBEU   C14H22N4O6Zn  47 
 HEFJEJ   C14H26N2OZn  44 
 FABZUF   C21H33N3O2Zn  60 
 QUHNIS   C12H14N4O10Zn  41 
 GIHSIA   C18H22N4Zn  45 
 TIPXIZ   C14H16N2O14Zn  47 
 NIQXER   C22H20N6O4Zn  53 
 FEQTUS   C5H10N2O8Zn  26 
 IFICEG   C20H16N4O5Zn  46 
 COVTEN   C22H30N4O2Zn  59 
 CAPDEC   C10H10N4O4Zn  29 
 GODFEK   C18H18N2O4Zn  43 
 CEFZUL   C14H16N2O5Zn  38 
 FEKGAE   C24H20N4O3Zn  52 
 REHDIS   C26H18N2O4Zn  51 
 ICOWED   C14H17N5O5Zn  42 
 BENLAH   C6H16N4O4Zn  31 
 FEVFAQ   C24H20N6O2Zn  53 
 CIBLIL   C30H20N6O2Zn  59 
 GOWQOY   C14H15N3O4Zn  37 
 HIVHIG   C14H22N4O4Zn  45 
 RACYEA   C20H16N2O6Zn  45 
 USIVAU   C14H17N3O7Zn  42 
 GEZLEE   C24H20N4O2Zn  51 
 DUCPUN   C24H22N4O2Zn  53 
 PIZTOK   C22H14N4O4Zn  45 
 BAQROA   C22H22N4Zn  49 
 WOGFEE   C22H26N2Zn  51 
 OMEWOU   C8H19N3O4Zn  35 
 MPLZNC   C16H12N4Zn  33 
 RUVDAP   C15H17N5O8Zn  46 
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Table 12. (cont’d) 
 
BOVNOQ   C16H16N10O6Zn  49 
 XEBVOQ   C14H24N4O4Zn  47 
 ERIRAZ   C4H12N4O7Zn  28 
 LOFCEP   C20H22N2O4Zn  49 
 EMUKEC   C30H22N4Zn  57 
 WUKNAR   C14H12N2O10Zn  39 
 TEYDUZ   C28H24N2O4Zn  59 
 FEXWEM   C23H19N5O4Zn  52 
 IXOFUY   C28H22N2O6Zn  59 
 NIDLEU   C22H24N6O6Zn  59 
 EFOXEF   C28H18N6O4Zn  57 
 HUBMUM   C12H16N6O6Zn  41 
 KUMTUI   C24H32N2Zn  59 
 JIPBEP   C12H27N3O4Zn  47 
 NOJPUA   C20H22N4O2Zn  49 
 PIHKUP   C20H26N2O4Zn  53 
 CORLOM   C21H17N3O4Zn  46 
 IDATUF   C24H18N8O4Zn  55 
 LENFOB   C22H30N2OZn  56 
 VOBXER   C8H8N6O8Zn  31 
 TOGSUF   C22H18N4O8Zn  53 
 XILGUU   C26H20N4O4Zn  55 
 NENMAU   C16H14O4Zn  35 
 ABEGOG   C18H16N4O5Zn  44 
 ULAVUY   C19H26N2O4Zn  52 
 VOPVAY   C16H34N4Zn  55 
 OCOYUC   C14H29N3Zn  47 
 WESRAN   C10H10N4O10Zn  35 
 XUCGAE   C10H16N6O6Zn  39 
 CIBJUU   C26H24N2O6Zn  59 
 KIYRAN   C20H22N4O10Zn  57 
 PAHSOH   C24H18N2O6Zn  51 
 DITWEL   C25H17N3O5Zn  51 
 ZUDLUF   C10H16N6O6Zn  39 
 SOGLUY   C24H19N3O8Zn  55 
 ACUDUA   C20H20N12Zn  53 
 FOZGEH   C15H24N10O2Zn  52 
 YOTFOD   C16H16N18Zn  51 
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Table 12. (cont’d) 
 
EYOTER   C6H12N2O8Zn  29 
 YUJMAT   C14H24N2O4Zn  45 
 WEDLUM   C17H32N2Zn  52 
 MIPYAO   C19H22N2O6Zn  50 
 NUGFEA   C14H16N6O4Zn  41 
 ERUREP   C20H32N2Zn  55 
 SOSHEO   C18H22N4O4Zn  49 
 ICEXIY   C26H28N2O2Zn  59 
 GAQYOM   C18H20N6O4Zn  49 
 AREWOJ   C10H10N4O6Zn  31 
 TASZAP   C22H19N5O4Zn  51 
 TECTUR   C18H18O16Zn  53 
 APURZN   C8H8N6O11Zn  34 
 NIDFEM   C22H18N4Zn  45 
 TOXDIV   C19H14N6O5Zn  45 
 LACGAA   C10H16N8O3Zn  38 
 KABWUH   C14H12N2O12Zn  41 
 VIJTUE   C8H12N2O10Zn  33 
 QITKEL   C18H14N12Zn  45 
 LUTPOG   C16H18N8O10Zn  53 
 VENGUR   C20H26N4O6Zn  57 
 MOHZAL   C18H18N4O4Zn  45 
DEZNOM   C8H10N4O6Zn  29 
 BEZKOH   C8H12N6O4Zn  31 
OPOLUC   C6H8N8O5Zn  28 
 IDAWAN   C16H28N2O4Zn  51 
 XUBPAM   C14H14N4O10Zn  43 
 TOPYEE   C26H22N4O2Zn  55 
LARYOS   C21H26N4O5Zn  57 
 AYIYOX   C16H18O10Zn  45 
 WAQSIR   C21H21N5O8Zn  56 
 CERPAS   C17H28N4OZn  51 
 PIMTAI   C8H10N4O6Zn  29 
 INILOH   C20H32N2Zn  55 
 XISTAX   C10H18O6Zn  35 
 APUDIA   C24H20N6Zn  51 
 RUSDEO   C21H24N4Zn  50 
 ONUNER   C14H34N6Zn  55 
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Table 13. The 383 Fe (II) complexes in Fe (II)_80 data set. 

refcode index N_atoms N_con 
GORMOS 5 59 3 
LOWXON 8 37 56 
NOZZOU 9 37 7 
YOYVEQ 12 53 569 
AMAVOB 14 19 99 
APAFEH02 2 49 691 
AXAKIT 20 55 306 
AZOFOL 23 57 7 
AZUHUY 24 55 4 
BANSEQ 3 53 4 
BEPZIF 28 53 2 
BINZUW 30 58 78 
BOMFER 32 31 16 
BOVMEF 33 53 14 
BUKRAB 34 53 18 
CAQFEH 37 55 4 
CARQUH 38 39 64 
CETFAI 41 35 29 
CEVTUT 42 55 29 
CEYRAA 43 54 32 
CIRTII 45 56 20 
CODQAO 4 41 75 
COMKUL 48 47 3 
CUCVIH 51 57 9 
CUDVUT01 53 57 186 
DAJRAH 54 53 10 
DAQHIO 56 57 3 
DAQHOU 57 48 2 
DETTOL 60 49 29 
DIBJED 63 43 76 
DIDXEV 65 49 15 
DIHCUV 66 57 101 
DOQRAC 69 52 22 
DOYKIN 70 56 51 
ECAJOH 72 38 42 
ECOHOT 73 59 9 
EKAKUY 74 51 1 
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Table 13. (cont’d) 

EMIPIZ01 75 49 4 
ESOSOW05 76 59 11 
ESUQOY 77 53 3 
ETOGEA 79 60 16 
ETOHOL 80 55 71 
EWIGEY 81 45 66 
EXOTAN 84 58 25 
FEGKEK 86 57 2 
FEISXC01 90 49 323 
FEJBOM 91 53 14 
FEJJAG 93 54 10 
FEWREG 95 57 9 
FOGFIT 97 51 4 
FOGFOZ 98 57 3 
GAVDEN 103 39 96 
GEDJUX 105 41 67 
GEHBEB 108 56 12 
GEJZAX 109 57 22 
GLYCFE01 6 33 350 
GUWTEX 114 56 10 
HAKDOO 117 47 101 
HENGIR 121 57 30 
HEYMIH 122 43 26 
HEYMON 123 49 86 
HIKPEZ 124 59 7 
HIVQEJ 126 59 4 
HOLMOK 39 13 3 
HOMXIT02 111 51 5 
HOPJAY 127 57 17 
HUQFAA 129 46 5 
HUYDUB 130 47 9 
IFIPAP 132 47 315 
IGIHEL 133 59 184 
IGURAF 134 59 10 
IPIWAF 135 57 20 
ISULAJ 137 53 22 
IXOZOK 138 46 12 
IXUZOQ01 139 59 8 
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Table 13. (cont’d) 

JAQQIB 142 52 18 
JITWUF 144 59 85 
JOWGEH 145 43 5 
JUDZUF 146 31 8 
JURBEF 148 55 34 
JUXPUN 149 49 23 
KETMED 150 58 49 
KETMON 151 55 25 
KINQUT 155 55 5 
KISRUA 156 40 55 
KIWWUL 157 51 8 
KIWXAS 158 48 25 
KIXVUJ 159 46 13 
LAXNON 162 49 291 
LAXNUT 163 49 37 
LONMIN 166 52 2 
LUGWEQ 167 57 52 
MEMYIN 172 51 23 
MENXAF 173 51 153 
MEQVEM01 175 59 5 
MIKJAS 180 37 78 
MUCREJ 184 59 5 
NAJKIS 187 52 52 
NANMIZ 188 58 46 
NAXSOV 189 57 24 
NEBHUX 190 49 90 
NEBLIR 7 43 2 
NEJBOT 191 35 15 
NELGUG 192 53 16 
NENTAB 193 55 3 
NEVROW 194 51 65 
NIPNUW 10 53 7 
NOBYOU 195 37 423 
NUDJED 196 51 109 
NULGIL 197 54 2 
OBUYIT 198 54 3 
ODAJUB 199 50 18 
OJIZUC 201 43 132 
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Table 13. (cont’d) 

OWIHIM 207 48 3 
PASFAR01 209 57 2 
PAZXAP 211 49 4 
PEGZIM 212 23 307 
PEWHAC 214 55 50 
PEWHEG 215 55 22 
PURYIK 219 55 8 
QERDIB 223 59 17 
QETDOI 224 47 578 
QIFBIR 226 58 7 
QOQHEK 230 57 10 
QOQHIO 231 60 31 
QUWGUM 235 51 159 
RAXWUK 237 52 17 
RIPZAS01 239 59 11 
RIYTIC 240 54 25 
RIYTOI 241 54 5 
RIZSOI 243 55 2 
SAJHIX 245 47 4 
SAPYIU 246 60 4 
SAVQIR 247 49 18 
SAVYUM 248 55 5 
SEDJIU 249 51 28 
SEGXUZ 250 49 9 
SEKMEA 251 49 2 
SIDMEA 256 55 725 
SIXMES 257 51 217 
SOFNEG 258 57 4 
SOYVEK 262 55 5 
SUJVAW 263 45 32 
TAGLAO10 265 52 9 
TAPUFE 266 33 2 
TAWFIH01 267 55 10 
TAYBUT 268 53 78 
TEKJIE 269 57 883 
TEVWUN 273 37 153 
TIHTAF 275 53 38 
TITRAS 277 59 381 
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Table 13. (cont’d) 

ULEHUO 284 59 3 
UMAXIQ 285 54 22 
URABIZ 286 51 75 
USIMOA 287 37 621 
VIHCOF 294 59 32 
VUGQAR 296 33 71 
WAHPEC 298 37 5 
WEWQOH 299 31 18 
WEYWEC 301 53 7 
WIGPOR 302 53 13 
WIWBEK 306 51 78 
WIYGOA 307 41 138 
WULSEB 309 49 20 
WUSBOD 310 54 20 
XABSOJ 311 53 89 
XAXNIW 313 51 4 
XENBEX03 314 51 5 
XEVKIU 315 52 14 
XILLEK 317 27 29 
XOPSEB 319 39 71 
XOVQIK 320 39 11 
YAQVIY11 322 50 9 
YAZJEP 323 55 3 
YILFEH 11 57 8 
YOQKOG 327 51 2 
ZEBSAA 330 55 26 
ZEKGAZ 332 49 27 
ZIMLUC 334 45 42 
MUHMOU 335 58 9 
DULDAS 338 55 6 
DUBSUR 401 73 26 
QOSZOQ 404 73 49 
ACAHUJ02 405 79 476 
ADEQIL 406 61 11 
AFANEB 407 63 6 
ALILEN 409 77 1019 
AVINUO 411 62 4 
AWUKEK 412 79 11 
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Table 13. (cont’d) 

BAKGUR 416 73 2842 
BEHCEY 419 61 38 
BEQKOY 420 73 6 
BOJLUI 422 71 84 
BUDKUG 425 61 48 
BUKDUH 426 75 2 
BUNSIN 427 63 35 
BUSVAO 428 67 24 
CAYQOI 429 73 8 
CIDDUR 432 71 24 
CIDXAR 433 73 1 
COTZUH 434 62 86 
COWFAW 435 67 25 
CUCPUM 402 67 12 
DENYAZ 437 64 21 
DEYNAX 438 62 10 
DEYNIF 439 74 162 
DEZMIF 440 73 458 
DOBRIY 442 65 19 
DOMQON 444 77 1 
DOZROA 445 73 102 
DUCFOW 446 61 12 
DUDDUD 447 63 4 
DUDHUH 448 75 4 
DUVQAN 450 63 3 
DUXGUA 451 63 82 
EBORIW 452 62 10 
ECAKUP 453 79 2 
EHABAQ 454 65 136 
EJONEW 455 63 8 
EXOMOU 457 61 6 
EXOVUI 458 69 2 
EXOWIX 459 73 8 
FEDSAL 460 75 30 
FEHPYO 462 73 193 
FEXWUC 464 71 295 
FILCAF 465 67 25 
FOGFIS 466 63 113 
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Table 13. (cont’d) 

FOZKAH 469 75 26 
FUFMAW 470 77 3 
GEDFIE 473 61 19 
GIMDEL 476 68 55 
GIZZUL 478 63 4 
GOLVEK 480 75 3 
GUJJUQ 481 62 5 
HATGIU 482 64 11 
HIKPID02 486 65 10 
HIPXOW 487 61 253 
HIQFOE 488 79 19 
HOGFER 489 80 78 
IBUVUW 492 67 27 
ICAHUP 493 79 113 
ILASIY 495 61 294 
IQIJAT 497 67 153 
IQIWOW 498 79 4 
ITOKEI 499 75 54 
IWOTEV 500 71 13 
JAFBOI03 501 61 17 
JAMYOO 502 78 57 
JAMZIJ 503 71 103 
JAVVAG 506 67 3 
JEFBOO 509 79 7 
JOHCOZ 510 61 2618 
JUVHIR02 513 61 72 
KABWAO 514 79 20 
KAFWAQ 515 67 3 
KAHNAK 516 63 47 
KALWUR 517 63 3 
KAQYUZ 518 63 2 
KATZUB 519 67 84 
KEPDIT 520 69 4 
KETLUS 521 75 27 
KEXCAU 522 75 18 
KITFAV 523 77 1 
KOFMUP 525 75 3 
KOKKUR02 526 61 7 
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Table 13. (cont’d) 

LEXLIK 529 70 88 
LINQUV 530 68 29 
LINRAC 531 65 47 
LINREG 532 65 47 
LINROQ 533 64 40 
LIQCEW 534 79 9 
LOCTEF 535 66 5 
MAGCUV 536 69 10 
MAKJUD 537 78 670 
MALGIQ 538 67 173 
MELLOF 539 63 41 
MENTEF 541 73 368 
MUTMIZ 543 64 33 
MUTXEG 544 62 9 
NAVYEP01 546 62 50 
NEBJAF 547 63 79 
NERNAZ 550 63 8 
NESVUD01 551 63 2 
NEXLOS 552 77 4 
NEXMAF 553 71 13 
NIQFUP01 554 68 41 
NISBIA 555 68 186 
NOKFID 557 79 37 
NOYJEQ 558 67 8 
NUVJOE 559 68 87 
OBATIW 560 73 81 
OGELAQ 564 63 4 
OWIGUX 569 63 5 
PASDOD01 570 62 14 
PEPWIS 572 61 180 
PEXMIO 573 62 21 
POBCEQ 577 67 70 
POKCUO 578 61 28 
POMYIC 579 75 195 
PYAMFE 581 63 2 
QAHGIQ 582 77 7 
QAWMAE 583 63 10 
QAXQAJ 584 71 9 
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Table 13. (cont’d) 

QOSNIW 590 79 462 
RANDAN 592 64 150 
REVCIG 594 79 34 
REXROE 595 67 199 
RIRHAB 596 68 10 
RISSUI 597 76 190 
ROCDUK 598 76 44 
RONPIT08 599 75 78 
SANRIL 601 75 9 
SAVZEX 603 63 4 
SAVZIB 604 63 4 
SAXFIH 605 75 18 
SUFLOU 606 64 26 
TADQUN 607 71 194 
TAMZAJ 608 70 229 
TILREL 612 70 25 
TODSAJ 613 76 47 
TUDVUK01 615 63 6 
UHEFOC 619 72 53 
UHEGOD 621 67 90 
VAHGES 622 69 30 
VASZIY 623 64 12 
VESNEO03 624 71 18 
VIHCUL 626 76 91 
VONYEF01 627 67 13 
VURXUB01 629 67 73 
WAWGIK 630 69 25 
WEPDED 631 76 17 
WEZVIH 632 67 27 
WEZVON 633 68 13 
WIZNEB 634 61 119 
WOGLUA 635 77 59 
WOGMEL 636 77 35 
WOQXEF 638 77 27 
WUJCUA 639 77 2 
WUPKEX 640 63 16 
WUPKOH 641 65 15 
WUPKUN 642 73 9 
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Table 13. (cont’d) 

XETFUA 645 73 2 
XIFKOP 647 73 2 
XIFVAM 648 77 60 
XIGVUG 649 71 9 
XIGWAN 650 70 9 
XIQFEJ 651 78 4 
XISXIJ 652 62 2 
XITDIO 653 70 6 
XITLAQ 654 71 1 
XUKDOY 656 65 7 
XURWOX 657 69 59 
YACNEW 659 79 60 
YAZJOZ 662 75 2 
YIKNUC01 666 73 2 
YIMYEZ 667 71 10 
YIMYUP 668 77 2 
YUVBOH 670 65 3 
ZASMAK 672 79 11 
ZAVRUM 673 63 2 
ZEKDOK01 674 71 51 
ZERFEK 675 70 64 
ZUYQOB02 677 71 42 
BOZQUF 678 79 23 
MUHMUA 679 61 1 
DULCOF 680 79 7 
GUTXEB 681 69 5 
OSABOB 203 50 14 
OWIHEI 206 55 3 
IYUFOX 140 59 12 
IZAFOG 141 55 11 
TIYPIC 278 49 28 
UDULOU 281 57 66 
AYOFEZ 414 65 9 
BACVOR 415 67 2 
FOGLEV 467 63 36 
FOYYAU02 468 61 3 
KUWGUE 527 64 22 
LABMUY 528 77 149 
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APPENDIX B: FIGURES 

 
Figure 35. The Sigmoid function. 
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Figure 36. The ReLU function. 
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Figure 37. The softmax function. 
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Figure 38. The Tanh function. 

  



 

 170 

 

 
Figure 39. The overall trend of splitting energy predictions.  


