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ABSTRACT 

 

Circadian clocks are intrinsic molecular oscillators present in cells across prokaryotes and 

eukaryotes that synchronize physiological processes with external cues, enabling organismal 

adaptation and survival. These clocks regulate crucial biological functions, including sleep-wake 

cycles, thermoregulation, hepatic metabolism, and hormonal secretion, through the rhythmic 

expression of clock-controlled genes. The mammalian liver comprises structural units called 

lobules, with hepatocytes arranged in a hexagonal pattern along a pericentral-to-periportal axis 

extending from the central vein to the portal triad. Perturbations in the circadian clock network can 

contribute to the pathogenesis of various disorders, such as obesity, diabetes, inflammatory 

conditions, and certain cancers. 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an exogenous ligand that binds to the aryl 

hydrocarbon receptor (AHR), eliciting diverse toxic effects by disrupting the circadian clock 

mechanism. To investigate whether TCDD-activated AHR disrupts the intrahepatic circadian clock 

by interfering with genome-wide CLOCK:BMAL1 binding, potentially leading to a reduction or 

loss of rhythmicity in clock-controlled genes, interpretable machine learning models were 

developed to predict BMAL1 binding to DNA in liver, kidney, and heart tissues using genetic and 

epigenetic features (binding sequence, DNA shape, and histone modifications). Thus, TCDD 

activated AHR has been proposed to bind to the E-box binding motifs to disrupt the regulation of 

circadian clock genes. The findings demonstrated that BMAL1 binding to DNA is tissue-specific, 

and the combination of sequence, DNA shape, and histone modification features yielded the 

highest binding prediction accuracy. Additionally, the flanking sequences upstream and 

downstream of the binding motifs played a crucial role in BMAL1 binding to DNA. 

Furthermore, a spatiotemporal multicellular mathematical model of the mammalian circadian 

clock in the liver lobule was developed to investigate intercellular coupling for the synchronization  



iii 
 

 

 

of circadian clock expression across the portal-to-central axis. The analysis revealed that, similar 

to the coupling of autonomous circadian oscillators in the suprachiasmatic nucleus (SCN), hepatic 

clock rhythms are likely synchronized by an unknown coupling factor. Sensitivity analysis, 

bifurcation analysis, and parameter estimation from the model provided insights into the 

physiology of the hepatic clock and potential mechanisms of alteration. 

Lastly, to understand the interplay between the spatial and temporal axes of gene expression in the 

liver, particularly in drug metabolism pathways, the existence of a third axis, chemical 

perturbation, and its implications for hepatic function were uncovered. We developed a non-linear 

mixed effect models to investigate the effect of acute TCDD perturbation on the spatial and 

temporal axes of gene expression in the liver lobule. The analysis revealed a distortion of the 

spatial axis of gene expression but a low significant effect on the temporal axis. These findings 

provide a comprehensive examination of circadian rhythms and their disruption by TCDD in the 

liver, encompassing molecular mechanisms, predictive modeling, and spatiotemporal dynamics. 

The study offers valuable insights into the intricate regulatory mechanisms governing circadian 

rhythms, the significance of zonation in hepatic functions, and the interplay between spatial and 

temporal gene expression. The findings have the potential to contribute significantly to our 

understanding of circadian resilience and the mitigation of pathological conditions, particularly in 

the context of drug metabolism pathways and hepatic function. 
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CHAPTER 1: INTRODUCTION 

Circadian clocks are endogenous molecular networks present in the cells of wide spectrum of 

organisms from prokaryotes to eukaryotes that regulate 24 -h physiological and behavior rhythms 

1–3. The circadian clock mechanism synchronizes physiological activities with the external cue 

cycles for organismal survival. In 1729, Jean-Jacques d’Ortous de Mairan discovered that Mimosa 

pudica leaves exhibit daily folding and unfolding cycles in constant darkness4. Animal circadian 

rhythms were later affirmed by experiments in 1972, which demonstrated persistent rhythmic 

activity in rats under constant darkness and temperature5 and in Drosophila melanogaster and other 

insects6. The circadian clock rhythms are regulated by a molecular clock mechanism which exists 

in all cells in the mammalian body.  The hypothalamic suprachiasmatic nucleus (SCN) contains 

the master pacemaker clock that synchronizes subsidiary oscillators in peripheral tissues like the 

liver, heart, and kidney. The SCN receives input from external cues and, in turn, relays temporal 

signals to synchronize peripheral clocks2,7.  The molecular basis for the mammalian circadian 

clock mechanism involves a coordinated transcriptional-translational feedback loop that operates 

on an approximately 24 hr period. The feedback loop is driven by both positive and negative 

regulatory interactions that allow for sustained oscillatory activity8–10. The positive arm of the loop 

centers on the activation of E-box mediated transcription by the circadian locomotor output cycles 

kaput (CLOCK) or Neuronal PAS domain protein 2 (NPAS2) with brain and muscle ARNT-like 

1 (BMAL1) forming the heterodimeric complex CLOCK-BMAL1 or NPAS2-BMAL1. This 

heterodimer protein drives the expression of various clock-controlled genes (CCG’s) including the 

Period (Per 1, Per 2 and Per 3) and the Cryptochrome (Cry 1 and Cry 2) which comprise the 

negative arm by repressing their own transcription by interacting with CLOCK-BMAL1 or 

NPAS2-BMAL1 complex, thus constituting an auto-regulatory feedback process. Additionally, a 
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secondary stabilizing loop involves the activation of Bmal1 by retinoic acid receptor-related 

orphan nuclear receptors (RORα, RORβ, and RORγ) and its repression by REV-ERBα and REV-

ERBβ. The precise balance and delays involved in the kinetics of these multiple interconnected 

feedback processes allows for sustained 24-hour periodicity. 

 

 

 

 

  

 

 

 

 

Figure 1: The key molecular component of the mammalian clock mechanism with the 

transcriptional – translational feedback loops driving by the positive and negative loop. Adapted 

from Lee, Y11. 

 

Several physiological and biological functions and processes are regulated by circadian clock-

controlled genes12,13, display rhythmicity over time. These include core body temperature, which 

fluctuates on a circadian cycle; sleep-wake cycles, which follow a circadian rhythm dictated by 

the suprachiasmatic nucleus; cardiovascular variables like heart rate and blood pressure, which 

demonstrate both circadian and ultradian rhythms; feeding behavior and digestive processes, 

which are influenced by circadian, hunger-satiety, and digestive cycles; secretion of hormones like 
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melatonin, cortisol, growth hormone, and prolactin, which often follow circadian or ultradian 

patterns determined by the hypothalamic-pituitary axis and other oscillators; liver metabolic 

activity and gene expression, which varies cyclically over 24-hour periods and in response to 

feeding times and fasting; renal blood flow, glomerular filtration rate, and other measures of kidney 

function, which display circadian variations; as well as several other measurable bodily processes 

14–18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Physiological and biological functions regulated by circadian along with the implicated 

genes and proteins in parentheses. Green arrows represent induction and red arrows repression by 

circadian clock gene or protein. Adapted from Jacob et al19. 
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Studies from animal models and human subjects have shown that perturbation or 

desynchronization of circadian rhythms can contribute to, the progression of various pathologies20–

22. These include metabolic diseases like obesity and diabetes, inflammatory disorders, and certain 

cancers23–25. Additionally, times of day can affect the severity of symptoms or acute exacerbations 

in some conditions with a circadian component. For example, asthma attacks and rheumatoid 

arthritis flares display circadian patterns, as does the incidence of adverse cardiovascular events 

like myocardial infarction and stroke18,24. The cyclic nature of these conditions points to circadian 

misalignment and loss of coordination between external timing cues and internal oscillators as an 

integral mechanism in disease pathology. Strengthening circadian resilience through timed 

behavioral, or pharmacologic, or genetic interventions represents a therapeutic opportunity to 

mitigate disease severity in select disorders.  

The chemical compound, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic 

pollutant that elicits diverse toxic effects in mammals. TCDD exposure has been associated with 

a myriad of adverse health outcomes, including developmental abnormalities, carcinogenesis, and 

hepatotoxicity. It exerts these effects primarily through activation of the cytosolic protein aryl 

hydrocarbon receptor (AHR), acting as a transcription factor26,27. TCDD exposure perturbs 

circadian rhythms in peripheral tissues like the liver by disrupting molecular circadian clock 

oscillations. Specifically, TCDD activated AHR affects circadian rhythm by reducing the 

amplitude, shifting the phase, and lengthening the period of circadian oscillations in clock-

controlled genes expression28.  

The liver exhibits strong rhythmicity, regulating various metabolic functions like, detoxification, 

glycogen storage, lipid metabolism, and bile production in accordance with the body's internal 

clock29. The mammalian liver is made up of structural units called lobules. The lobule is composed 
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of hepatocytes, the liver's parenchymal cells, arranged in a radial pattern around a central vein. 

The hepatocytes are arranged in a roughly hexagonal architecture with a pericentral to periportal 

axis extending from the central to the portal veins. Hepatocytes are not homogeneous in their 

metabolic activities; instead, they display distinct biological functions depending on their location 

within the lobule30–32.  Thus, metabolic functions within the liver lobule exhibit a distinct spatial 

organization, a phenomenon known as zonation. The periportal hepatocytes, being exposed to a 

higher oxygen concentration, are primarily involved in processes such as gluconeogenesis (the 

synthesis of glucose from non-carbohydrate precursors), urea synthesis (detoxification of 

ammonia), and bile acid synthesis. Conversely, the pericentral hepatocytes, which receive oxygen-

depleted blood, are more active in glycolysis (the breakdown of glucose for energy production), 

lipogenesis (the synthesis of fatty acids), and xenobiotic metabolism (the detoxification of drugs 

and other foreign compounds) 30,32–36.  

The hepatic expression of AHR is zonated across the lobular axis29,33. However, no zonation is 

observed in the basal expression of circadian clock genes. While a large number of mathematical 

models of the natural circadian clock oscillation have been developed9,37,38, none of these 

specifically address spatial disruption of the circadian clock in peripheral tissues like the liver. I 

aimed to address the question of whether TCDD-activated AHR disrupts the intra-hepatic circadian 

clock in a zonated manner by interfering with genome-wide CLOCK:BMAL1 binding, which 

could lead to a reduction or total loss of rhythmicity of clock-controlled genes. To do this, I first 

developed an interpretable machine learning model of genome-wide DNA binding by BMAL1 in 

the liver, heart and kidney using published Chromatin immunoprecipitation-sequencing (ChIP-

seq) data.  My results confirmed an overlap between the binding motif of BMAL1 (E-box – 5’-

CANNTG-3’) and AHR (5'-GCGTG-3') in the promoter regions and bodies of core circadian clock 
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genes. This is consistent with the proposed mechanism of TCDD activated AHR binding to the E-

box motif to disrupt the regulation of circadian clock genes. Also, my model showed that, using 

both genomic and epigenomic features like the core motif plus flanking sequences, the shape of 

the DNA and histone modification, we could achieve significant prediction accuracy of BMAL1 

binding. Interpreting my model, I showed specific features with the highest contribution to tissue-

specific binding of BMAL to DNA. My cross tissue predictive model demonstrated that while 

BMAL1 exhibits high specificity in binding certain DNA conformations and chromatin contexts, 

these specificities exhibit variation across different tissues. Our discoveries expand upon the notion 

that DNA shape and chromatin context can modulate the binding specificities of transcription 

factors (TFs). Specifically, our results demonstrate that in addition to conferring differential 

binding specificities to distinct TFs within the same tissue, DNA shape and chromatin environment 

can also confer distinct binding specificities to a given TF in different tissue contexts.  

Secondly, I developed  spatiotemporal multicellular mathematical models of the mammalian liver 

lobule circadian clock network. I developed two sets of mathematical models to investigate the 

dynamics of circadian clock genes expression in hepatocyte across the portal-to-central axis of the 

liver lobule: one model with communication and one without communication among cellular 

oscillators (hepatocytes).  Simulations of the model revealed the dependencies of the model 

observables (expressed mRNA levels of the various genes) on their corresponding transcription 

and degradation rates. Estimating the model parameters and fitting the coupled model to 

experimental data yielded a high correlation with R2 > 0.9, elucidating the way alterations in model 

parameters modulate the reinforcing and attenuating feedback loops that govern the circadian 

rhythm. Collectively, my modeling framework establishes a foundation for probing the regulatory 
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mechanisms underlying circadian rhythmicity and its associated aberrations in the context of 

hepatic physiology and pathological states. 

A recent investigation by Droin et al29 revealed the intricate interplay between spatial and temporal 

axes of gene expresssion, leading to rhythmic patterns of expression within established zonated 

pathways. Notably, these pathways encompass a significant number of gene sets implicated in drug 

metabolism processes. The observed overlap between the temporal and spatial axes with drug 

metabolism pathways suggests the existence of a third axis, chemical perturbation, that warrants 

consideration when characterizing hepatic function. This led to the final project in my dissertation 

where I developed a nonlinear mixed effect model to investigate the effects of acute TCDD-

activated AHR on the temporal (rhythmicity) and spatial (zonated) expression patterns of genes 

along the portal-central axis of the liver lobule. 
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CHAPTER 2: PREDICTING MAMMALIAN TISSUE SPECIFIC DNA-BINDING BY 

CLOCK-BMAL1 
 

INTRODUCTION 

All living organisms possess a robust circadian timekeeping mechanism enabling anticipation and 

adaptation to recurring environmental changes. In mammals, this system consists of a hierarchical 

network of oscillators. The central clock, situated in the suprachiasmatic nucleus (SCN) of the 

hypothalamus, synchronizes peripheral clocks across various tissues3. The intracellular gene 

regulatory network of the circadian clocks, both central and peripheral, involves a relatively small 

set of key transcription factors (TFs) that are interconnected through multiple negative and positive 

feedback loops. These feedback loops play a crucial role in regulating the expression of clock 

genes and maintaining the oscillatory patterns of the circadian rhythm. In this regulatory network, 

specific TFs bind to the promoter regions of target genes, either activating or repressing their 

transcription. The expression of these TFs is, in turn, regulated by the products of the genes they 

control, creating intricate feedback loops39.  The core activators of the circadian network are, the 

Clock Locomotor Output Cycles Kaput (CLOCK) and brain and muscle ARNT Like 1 (BMAL1) 

transcription factors, both of which belong to the basic helix-loop-helix (bHLH) family. These two 

proteins form a heterodimer complex (referred to hereon as CLOCK-BMAL1). In the absence of 

CLOCK, another member of the bHLH-PAS transcription factor family, the Neuronal PAS domain 

protein 2 (NPAS2), can compensate by forming a heterodimer with BMAL140. In the classical 

model of clock gene regulation, the CLOCK-BMAL1 or NPAS2-BMAL1 dimer acts as a 

transcriptional activator, initiating the expression of various clock-controlled genes by binding to 

a specific hexanucleotide sequence known as the E-box motif (canonical sequence 5’-CANNTG-

3’, where N represents any nucleotide) within the promoter or enhancer regions of clock-controlled 

genes. This binding event regulates the transcription of these genes, which are crucial for the proper 
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functioning of the circadian clock machinery40,41. In vivo studies have shown that, BMAL1 binds 

also to non-canonical E-box sequences such as 5’-CACGTT-3’ in the promoter region of the 

murine Per2 gene42. However, comprehensive experimental evidence supporting genome-wide 

binding of BMAL1 to such sequences remains elusive. Consequently, in this study, I have focused 

solely on the classical E-box motif with the canonical sequence 5’-CANNTG-3’ (where N 

represents any nucleotide). Disruptions in the expression or binding functionality of the core clock 

transcription factors (TFs) disturb natural circadian oscillations and can lead to various 

pathologies, including insomnia, cancer, cardiovascular disease, and metabolic disorders43,44. 

Here, I aim to enhance our understanding of gene regulation by the CLOCK-BMAL1 or NPAS2-

BMAL1 complex and its perturbations by employing interpretable predictive models of DNA 

binding by the master regulatory factor BMAL1. By developing these models, I seek to gain 

insights into the mechanisms underlying the binding of BMAL1 to target DNA sequences and the 

subsequent regulation of clock-controlled genes.  

The genome-wide identification of transcription factor binding sites (TFBS) poses a significant 

challenge. Typically, only a small fraction of the classically defined sequence motifs for a 

particular transcription factor (TF) are bound45. For example, the canonical E-box binding motif 

occurs more than 7 million times across the mouse genome, but less than 0.7% of these motifs are 

bound by the CLOCK-BMAL1 or NPAS2-BMAL1 complexes in mouse peripheral tissues46. The 

binding of a particular TF to its cognate DNA motif depends on several molecular features, 

including the DNA sequence of the core motif, sequences flanking the core motif, chromatin 

accessibility, local shape of the DNA, presence of co-factors, histone modifications, DNA 

methylation, and other biophysical parameters47–50. These features and their relative contributions 

to binding can vary greatly across different cell and tissue types51,52. Chromatin 
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immunoprecipitation followed by sequencing (ChIP-seq) is the current gold standard for assaying 

genome-wide TF binding locations53. However, assaying the binding of a given TF under various 

conditions and in different tissues is prohibitively expensive. Consequently, several predictive 

computational models of genome-wide TF-DNA binding have been developed. From these 

models, DNA sequence and chromatin accessibility emerge as the most important determinants of 

TF binding. Despite the vast number of potential binding sites in the genome, TFs exhibit highly 

specific binding patterns, with only a small fraction of the canonical motifs being occupied. This 

specificity is attributed to the interplay of various factors, including the DNA sequence context, 

chromatin accessibility, and other biophysical parameters. These features can vary significantly 

across different cell and tissue types, contributing to the complexity of TF binding patterns54–56. 

Chromatin accessibility assays, such as deoxyribonuclease hypersensitive sites sequencing 

(DNase-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq), have been 

employed to enhance the prediction of transcription factor binding sites (TFBS). These assays 

provide valuable information about the regions of the genome that are accessible to regulatory 

proteins, a crucial determinant of TF binding57. Recently, advancements in machine learning, 

particularly deep learning techniques, have led to improved model predictions for TF binding. 

Deep learning models have demonstrated the ability to capture complex patterns and interactions 

within the data, leading to more accurate predictions of TF-DNA binding events. While deep 

learning models excel in predictive performance, they often tend to be "black boxes," where it is 

challenging to understand the reasoning and mechanism behind their predictions. This lack of 

interpretability hinders the ability to elucidate the molecular features and interactions that 

contribute to the tissue-specific binding patterns of transcription factors58–60. 
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In this study, I present interpretable machine learning models capable of predicting which 

canonical E-box motifs occurring in accessible chromatin regions of the mouse liver, heart, and 

kidney are likely to be bound by BMAL1. Our predictive models are based on the XGBoost61 

machine learning algorithm, with logistic regression used as a baseline algorithm to evaluate model 

performance. Published data from a BMAL1 ChIP-seq study46 was used to train and evaluate the 

models. When considering which features to include in our predictive models, I noted that DNA 

shape62,63 and histone modifications64 have been shown to be efficient predictors of transcription 

factor (TF) binding in addition to DNA sequence. Specifically, it has been proposed that TFs prefer 

specific 3D DNA conformations and not just specific sequences65. For example, the incorporation 

of DNA shape features led to improved model performance when predicting in vivo binding of 

TFs from the basic helix–loop–helix (bHLH) family. Particularly, five distinct shape features - 

Electrostatic Potential (EP), Minor Groove Width (MGW), Propeller Twist (ProT), Roll, and Helix 

Twist (HelT) have been shown to be useful for TF-DNA binding prediction. These shape features 

capture the local three-dimensional structure of the DNA, which can influence the binding affinity 

and specificity of TFs66. In addition to DNA shape features, histone modifications have also been 

implicated in regulating TF-DNA binding. Specific histone modifications can alter the chromatin 

structure and accessibility, thereby affecting the ability of TFs to recognize and bind to their target 

sequences. By incorporating information about histone modifications, predictive models can 

potentially capture additional regulatory mechanisms governing TF-DNA binding67. 

Our study revealed that while most of the flanking DNA sequence features showed low importance 

in predicting the binding of BMAL1 to canonical E-box motifs. However, the second flanking 

nucleotide upstream of the E-box motif in the liver, specific histone modifications and DNA shape 

features emerged as significant predictors of BMAL1-DNA binding across all tissues examined. 
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Specifically, the histone modifications H3K27ac, H3K4me1, H3K4me3, and H3K36me3, together 

with the DNA shape features electrostatic potential (EP), roll, and minor groove width (MGW), 

were identified as crucial determinants of BMAL1-DNA binding in the liver, heart, and kidney 

tissues. The incorporation of these features into our machine learning models resulted in high 

predictive performance, highlighting their importance in governing the binding specificity of 

BMAL1. However, our cross-tissue predictive model revealed that although BMAL1 exhibits a 

preference for specific DNA conformations and chromatin contexts, these specificities vary across 

different tissues. This finding suggests that while certain genomic and epigenomic features are 

generally important for BMAL1 binding, the relative contributions of these features and the 

specific combinations that facilitate binding may differ among tissues. The tissue-specific 

variations in BMAL1 binding preferences could be attributed to the unique chromatin landscapes, 

regulatory networks, and cellular environments present in different tissues. These differences may 

influence the interplay between DNA sequence, DNA shape, histone modifications, and other 

regulatory factors, resulting in distinct binding patterns of BMAL1 across tissues. 

Our interpretable machine learning models not only achieved high predictive accuracy but also 

provided insights into the key genomic and epigenomic features that govern BMAL1-DNA 

binding. By identifying the most influential features and their relative importance, our study 

contributes to a better understanding of the regulatory mechanisms underlying the tissue-specific 

binding patterns of BMAL1, a critical transcription factor in the circadian clock machinery. 
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METHODS 

ChIP-seq dataset preprocessing. 

Uniformly processed BMAL1 ChIP-seq peaks from the C57BL/6J mouse liver, kidney, and heart 

were retrieved from the Gene Expression Omnibus under accession code GSE110604946. BMAL1 

ChIP-seq experiments were conducted at Zeitgeber time 6 (ZT6). Accessible chromatin regions, 

represented by DNase I-hypersensitive (DHS) sites for all three tissues (DNase-seq), were obtained 

from the Encyclopedia of DNA Elements, ENCODE (Supplementary Materials). DNase-seq 

experiments were performed on unsynchronized tissues. The Genome Reference Consortium 

Mouse Build 38 (GRCm 38) served as the reference genome. DHS sequences were processed in 

Python with BEDTools68 to extract all E-Box sequences (5’-CANNTG-3’) within accessible 

chromatin. E-box motifs in accessible chromatin regions not overlapping their respective tissue 

ChIP-seq bed files were considered instances of unbound motifs (the negative dataset for the 

model). All accessible chromatin singleton E-boxes (instances of only one E-box motif under a 

BMAL1 peak) and E-boxes closest to the summit of the BMAL1 peaks for peaks with multiple E-

boxes were labeled as bound (the positive dataset). Other E-boxes under BMAL1 peaks were 

deemed ambiguous and excluded from further analysis. Specifically, 1175 E-boxes, 1082 E-boxes, 

and 663 E-boxes from the bound Bmal1 liver, kidney, and heart, respectively, were found to be 

ambiguous due to multiple E-boxes. Each E-box motif sequence was extended to include 4-

basepair (bp) flanking sequences upstream and downstream of the E-box. As the E-box motif 

sequence is a palindrome, the reverse complement was disregarded. Each E-box, thus represented 

by a 14-nucleotide sequence (6-bp core plus 4-bp sequence on either end), was one-hot encoded. 

The binary (bound and unbound) E-box data resulted in highly imbalanced datasets, with 

significantly more unbound than bound E-boxes in mouse accessible chromatin. Specifically, the 
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number of bound E-box motifs in the liver, kidney, and heart were 3725, 3237, and 1313, 

respectively. Conversely, the number of unbound E-box motifs in the liver, kidney, and heart were 

189581, 262053, and 291840, respectively. Notably, the negative samples outnumbered the 

positives by factors of 51 in the liver, 223 in the heart, and 82 in the kidney. The reported 

occupancies and the ratio of bound to unbound E-box motifs in the liver, kidney, and heart tissues 

are consistent with previous studies, indicating a low percentage of canonical E-box motifs being 

bound by BMAL1 in accessible chromatin regions. 

DNA shape preprocessing. 

The DNA sugar-phosphate backbone possesses degrees of freedom, allowing neighboring base 

pairs and bases within a pair to vary their positions relative to each other through rotation or 

translation, resulting in changes to the overall shape of the DNA molecule. To estimate DNA shape 

features, the R/Bioconductor package DNAshapeR69,70 was employed. The DNAshapeR algorithm 

predicts DNA shape features based on a given DNA sequence and encodes them into feature 

vectors. These feature vectors for each shape category were normalized to values between 0 and 1 

using Min-Max normalization and grouped into sets of 10 values for Minor Groove Width (MGW), 

Propeller Twist (ProT), and Electrophoretic Mobility (EP), and sets of 11 values for Helix Twist 

(HelT) and Roll, to serve as inputs for predictive models. The number of bins for each shape feature 

corresponds to the length of the sliding window used to generate the features – 5 base pairs (bp) 

for MGW, ProT, EP, and 6 bp for HelT and Roll. 

Histone modification preprocessing. 

I obtained ChIP-seq data for five histone modifications, namely H3K27ac, H3K4me1, H3K4me3, 

H3K27me3, and H3K36me3, in mouse liver, kidney, and heart tissues from the ENCODE database 

(Supplementary Materials). The ChIP-seq experiments for histone modifications were performed 
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on unsynchronized tissue samples. These specific histone modifications were chosen based on data 

availability across all tissues and their established roles in transcription factor binding. The 

corresponding bed files were utilized to generate signal profiles and heatmaps using the deepTools 

software71. From the generated profiles and heatmaps, we observed that the histone modification 

ChIP-seq signals extended meaningfully up to a 1.5-kb region (+/- 750 bp) centered on the E-box 

core motif. Focusing on this 1.5-kb region centered at the E-box core motif, we extracted the 

histone modification features for the binary dataset for each tissue using the bwtool software72. 

Subsequently, these features were divided into 10 bins, with an equal number of nucleotides in 

each bin. 

Machine learning models. 

XGBoost 

Extreme Gradient Boosting (XGBoost) is an ensemble learning method based on boosting decision 

trees for both classification and regression tasks61. I used up to 20 features as inputs for each E-

box motif - 10 sequence features (one for each nucleotide), 5 DNA-Shape features and 5 histone 

modification features. The first two and last two nucleotide of the E-box motifs were set because 

they were the same in all motifs. Using the Scikit-learn library in Python, I performed 

hyperparameter tuning of the following parameters to reduce the degree of overfitting - the number 

of iterations in training (n_estimators), the sum of sample weight of the smallest leaf nodes to 

prevent overfitting (min_child_weight), the maximum depth of the tree in building a model while 

training (max_depth), the sampling rate of the training set in each iteration (subsample), the 

learning rate (learning_rate), and the feature sampling rate when constructing each tree 

(colsample_bytree). Hyperparameter tuning of the XGBoost model involved exploring a grid 

search of the hyperparameter space with specific values: n_estimators = {30, 40, 50, 60, 70, 80, 
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90, 100}, min_child_weight = {1, 2, 3, 4, 5, 6}, subsample={0.5, 0.6, 0.7, 0.8, 0.9, 1 }, max_depth 

= {1, 2, 3, 4, 5}, learning_rate = {0.1, 0.2, 0.3, 0.4, 0.5}, and colsample_bytree = {0.6, 0.7, 0.8, 

0.9, 1 }, resulting in a potential combination of 36,000 hyperparameters. Additionally, I evaluated 

the model's performance using 5-fold cross-validation on predicting the binding status of E-box 

motifs in accessible chromatin regions. 

Logistic Regression  

Logistic regression is a parametric classification model that estimates the probability of the output 

variable belonging to a particular class73. It serves as a baseline for most machine learning-based 

classification models. In this study, I tuned the following hyperparameters of the logistic regression 

model to reduce overfitting on our testing dataset: the regularization solver for the training dataset 

(solver) and the maximum number of iterations the solver algorithm is allowed to run before 

convergence (max_iter). The regularization solver determines the algorithm used for optimization 

and regularization. Common solvers include 'lbfgs' (limited-memory Broyden-Fletcher-Goldfarb-

Shanno), 'newton-cg' (Newton-Conjugate Gradient), and 'liblinear' (coordinate descent 

algorithms). The max_iter parameter specifies the maximum number of iterations the solver is 

permitted to run before terminating the optimization process. By tuning these hyperparameters, I 

aimed to find the optimal combination of solver and maximum iterations that would minimize 

overfitting on the testing dataset, thereby enhancing the generalization performance of the logistic 

regression model. 

 

 

 



17 
 

RESULTS 

BMAL1 binds most frequently to the CACGTG E-box motif in all tissues. 

To understand the molecular factors governing the binding of BMAL1 to DNA, I first delved into 

the role of the canonical 5’-CANNTG-3’ E-box motif in the binding of BMAL1 to DNA in the 

various tissues. I conducted a comprehensive scan of the mouse mm10 reference genome to 

identify occurrences of the E-box motif; 5’- CANNTG -3’. I considered all possible nucleotide 

permutations of the central two nucleotides (NN) and included the reverse complement of the 

canonical E-box sequence. However, a particular E-box and its reverse complement were treated 

separately. Utilizing DNase-seq datasets retrieved from the ENCODE database74 for C57BL/6J 

mouse tissues (liver, heart, and kidney), I identified subsets of E-boxes that intersected or 

overlapped with DNase-seq hypersensitive sites (DHS), indicative of accessible chromatin. The 

tissue-specific list of E-boxes from accessible chromatin were then compared with their respective 

tissue matched BMAL1 ChIP-seq46 peaks to extract all BMAL1 bound and unbound E-Boxes in 

accessible chromatin. Furthermore, I identified instances where BMAL1-bound E-boxes were 

situated outside of accessible chromatin, accounting for 0.8% of all peaks. To prevent potential 

confounding effects between the two classes of bound E-boxes, I excluded these instances from 

our model training and evaluation processes. Comparison of BMAL1-bound E-box occurrences 

within accessible chromatin across liver, heart, and kidney tissues revealed marked tissue 

specificity. Specifically, only 398 E-boxes were found to be bound in common across all three 

tissues (Fig 3A-C). E-boxes bound across all three tissues were frequently located within the 

promoters of core circadian clock genes, as indicated by our findings (data not shown). 
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Figure 3: (A) BMAL1 ChIP-seq peaks in the liver (red), kidney (blue), and heart (green), and E-

box binding motifs (black vertical bars) under the peaks at the Per1 locus. (B) Venn diagram 

representing the overlap of bound E-boxes motifs in open chromatin across liver, kidney, and heart. 

(C) Venn diagram representing the overlap of unbound E-boxes motifs in open chromatin across 

liver, kidney, and heart. Adapted from Marri et al75. 

 

Subsequently, I quantified all occurrences of the canonical E-box motif (5’-CANNTG-3’) 

throughout the mouse genome, wherein N denotes any nucleotide type. The canonical E-box 

encompasses 16 unique E-box types, corresponding to each permutation of the NN dinucleotide 

situated at the center of the motif. I computed the fraction of each individual E-box type compared 

to the total number of E-boxes (Fig 4A). Notably, the E-box types 5’-CACATG-3’ and 5’-

A B 

C 
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CATGTG-3’ collectively constituted the highest fraction of E-boxes within the mouse genome, 

accounting for 17.3% of all instances. These two motifs, being reverse complements of each other, 

demonstrated approximately equal frequencies, like all other non-palindromic E-boxes that exhibit 

reverse complementarity. Interestingly, the palindromic BMAL1-preferred E-Box motif, 5’-

CACGTG-3’, occurs the fewest number of times, representing only 1.83% of all instances within 

the mouse genome. Subsequently, I employed the same methodology to analyze E-boxes within 

accessible chromatin regions of mouse liver, kidney, and heart. The palindromic motif CAGCTG 

was the most common E-box type across accessible chromatin regions in all three tissues, while 

the BMAL1-preferred E-Box CACGTG was among the three least common motifs, which were 

all palindromes (Fig 4B). Using the overlap between the BMAL1 ChIP-seq and DNase-seq peaks, 

I computed the percentage of BMAL1 bound E-boxes in the mouse liver, kidney and heart relative 

to the total number of E-boxes of the same type within accessible chromatin of their respective 

tissues. Interestingly, the BMAL1-preferred E-box 5’-CACGTG-3’ emerged as the most frequently 

bound E-box type across all three tissues. In addition, about 18% of CACGTG E-boxes accessible 

in the liver were bound, and for the kidney and heart these fractions were 15%, and 4%, 

respectively. Furthermore, less than 20% of all individual E-boxes identified within accessible 

chromatin in any given tissue were also bound in that same tissue (Fig 4C). The kidney and heart 

had a higher overall number of E-boxes within these open chromatin regions compared to the liver. 

However, despite having a lower total count of E-boxes in accessible chromatin, the liver exhibited 

a higher proportion of BMAL1-bound E-boxes. This observation suggests a differential regulatory 

landscape for BMAL1 binding among these tissues, potentially reflecting distinct functional roles 

and circadian regulatory mechanisms.  
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I observed instances where there were none (zero), exactly one (singleton), or two or more (multi) 

E-box motifs under a single BMAL1 ChIP-seq peak across all tissues examined (Fig 4D). I then 

extracted all singleton E-boxes and the E-boxes closest to the summit of the BMAL1 peak within 

multi-E-box peaks, categorizing them as bound peaks (positive dataset). The E-Boxes present in 

accessible chromatin regions that were not bound by BMAL1 were labeled as unbound peaks 

(negative dataset). All other E-boxes were excluded from further analysis. The ratios of the positive 

(bound) to negative (unbound) peaks were 1:51, 1:82, and 1:223 in the liver, kidney, and heart, 

respectively. These ratios indicate a significant imbalance between the bound and unbound E-

boxes, with a substantially higher number of unbound E-boxes in all three tissues.  

Together, these results suggest that BMAL1 likely interacts with multiple different E-box types 

across the liver, kidney, and heart in a tissue-specific manner. Notably, the E-box motif CACGTG 

was found to be the most highly associated with BMAL1 binding among the different E-box types 

analyzed, despite its lower occurrence in the genome overall. The observation of varying ratios of 

bound to unbound E-boxes across tissues highlights the tissue-specific nature of BMAL1 binding 

and suggests that additional factors, such as chromatin accessibility, co-factor availability, and 

regulatory mechanisms, may contribute to the differential binding patterns observed. Furthermore, 

the identification of instances where BMAL1 ChIP-seq peaks do not overlap with any E-box 

motifs or contain multiple E-boxes under a single peak underscores the complexity of BMAL1 

binding and the potential involvement of alternative binding mechanisms or indirect interactions 

with chromatin. 
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Figure 4: (A) E-box binding motif distribution across the entire mouse genome. The canonical E-

Box motif CACGTG (marked with an arrow) is the least represented motif in the mouse genome. 

(B) Distribution of E-box binding motifs in open chromatin across the liver (blue), kidney (orange) 

and heart (green).  (C) Percentage of BMAL1 bound E-box motifs in open chromatin across the 

liver (blue), kidney (orange) and heart (green).  (D) Distribution of BMAL1 peaks with zero (0-E-

Box), exactly one (singleton E-box) and multi (two or more E-box) E-box motifs in the liver (blue), 

kidney (orange) and heart (green). In (A), (B) and (C) the sequences along the x-axis are ordered 

by their frequency in the mouse genome shown in (A), which also happens to group 

complementary sequences adjacent to each other. The four palindromic sequences, which are their 

own complements, are marked with asterisks. Adapted from Marri et al75. 
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Predicting genome wide BMAL1 binding within tissues. 

Given that nucleotides flanking the E-box have been demonstrated to influence the binding 

specificity of E-box binding transcription factors (TFs)55. Therefore, I extended and one-hot 

encoded the genomic sequence for all BMAL1-bound (positive) and unbound (negative) E-boxes 

by 4 base pairs (bps) upstream and downstream of the E-box. Additionally, I computed the 

following DNA shape features for the extended 14 bp sequence: Electrostatic Potential (EP), Minor 

Groove Width (MGW), Propeller Twist (ProT), Roll, and Helix Twist (HelT), utilizing the k-mer 

+ k-shape (k=1) sequence feature model50. Although the shape features are derived from the DNA 

sequence, they can potentially capture higher-order interdependencies between neighboring 

nucleotides, thereby providing additional information to the model input. DNA shape features can 

also elucidate the importance of flanking sequences in TF-DNA binding specificity55. Visualization 

of the DNA shape features EP, ProT, and Roll revealed disparities in DNA shape between bound 

and unbound motifs across the liver, kidney, and heart, whereas the MGW feature exhibited 

differences between bound and unbound motifs solely in the kidney. The shape feature vector for 

each category was then normalized to values ranging from 0 to 1 using Min-Max normalization, 

grouped into intervals of 10 values for the DNA shape features EP, MGW, and ProT, and intervals 

of 11 values for HelT and Roll. These normalized DNA shape feature vectors were utilized as input 

features for the predictive models, as depicted in Fig 5. 

Epigenetic modifications are known to influence transcription factor binding. Specifically, histone 

modifications intricately regulate transcription factor occupancy and subsequently modulate gene 

expression patterns62,76. Histone modification ChIP-seq  signal values, encompassing genomic 

regions spanning ± 750 base pairs (bps) around the E-box, were utilized to compute feature vectors 

for five histone modifications: H3K27ac, H3K4me1, H3K4me3, H3K27me3, and H3K36me3. The 
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selection of the ± 750-bp region was guided by the need to consider local profiles of histone 

modifications, approximating the size of a typical promoter or enhancer. The histone feature vector 

was partitioned into 10 bins, with the signal strength averaged across 150 bps within each bin. This 

approach allowed for the comprehensive characterization of histone modification patterns 

surrounding the E-box, providing insights into the regulatory landscape governing transcription 

factor binding dynamics and gene expression regulation. 

 

 

 

 

 

 

 

Figure 5: Design of the machine learning algorithm input features. The local chromatin features 

(E-box DNA sequence features) and flanking sequences were one-hot encoded. The DNA shape 

genomic feature matrix from the k-mer + k-shape (k=1) sequence feature model and epigenomic 

(histone modification) features averaged and binned were used as the final feature matrix for the 

model. Adapted from Marri et al75. 

 

I implemented three distinct models to investigate the predictive power of various feature 

combinations for determining the binding status of E-boxes in accessible chromatin regions. The 

models were constructed using subsets of the final encoded feature set, encompassing (i) DNA 

sequence information alone (DNA sequence-only model); (ii) a combination of DNA sequence 

and DNA shape features (sequence + shape model); and (iii) an integrated model incorporating 
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DNA sequence, DNA shape, and histone modification data (sequence + shape + HM model). To 

predict the binding status of E-boxes, I employed two machine learning algorithms: XGBoost 

(eXtreme Gradient Boosting) and logistic regression. XGBoost, a powerful tree-based ensemble 

learning algorithm, served as our principal predictive model, while logistic regression was utilized 

as a baseline for performance comparison. Aiming to optimize model performance, I employed a 

grid search strategy in conjunction with stratified 5-fold cross-validation to tune the 

hyperparameters of each model. This process involved partitioning the data into five stratified 

folds, where each fold was used as a validation set once, while the remaining four folds were used 

for training. Hyperparameter tuning was performed independently for each model based on the 

liver, heart, and kidney datasets, allowing us to derive the optimal hyperparameter configurations 

tailored to each tissue-specific dataset. Subsequently, the models with the optimized 

hyperparameters were trained through five-fold stratified cross-validation, and their predictive 

performance was evaluated for  the liver, heart, and kidney datasets (Figure 6 and table 1). The 

average performance across the five folds was reported for each model and tissue type. 

 

 

 

 

 

 

 

 

Figure 6: Schematic of machine learning- predictive model training. Based on 5-fold cross-

validation, the XGBoost classifier predicted the binding status of E-box motifs in open chromatin, 

training on all accessible bound E-boxes and unbound E-boxes. Adapted from Marri et al75. 
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DNA shape and histone modification features improve within-tissue model performance. 

Model performance was assessed using two widely adopted metrics: the area under the receiver 

operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). 

These metrics provide a comprehensive evaluation of the models' ability to distinguish between 

positive (bound) and negative (unbound) instances, accounting for both sensitivity and 

specificity. 

Performance of sequence-only models: We conducted training and validation of our XGBoost 

classifier across liver, heart, and kidney datasets, utilizing 10 sequence features: the 2 central 

nucleotides of the E-Box, along with an additional 4 flanking nucleotides upstream and 

downstream of the E-box (NNNNCANNTGNNNN, excluding the conserved CA and TG 

subsequences) due to the repetition of CA and TG nucleotide in all the sequence features. To 

evaluate classifier performance, we computed the average AUROC and AUPRC scores for each 

tissue via stratified 5-fold cross-validation. Given the unbalanced distribution between the two 

classes - bound vs unbound E-boxes, AUPRC was deemed a more appropriate metric in our case. 

The mean AUROC scores across liver, kidney, and heart were 0.71, 0.78, and 0.80, respectively. 

Correspondingly, the mean AUPRC scores were 0.09, 0.10, and 0.06 for the liver, kidney, and 

heart, respectively (Fig 7A&B). The relatively high AUROC and AUPRC scores across all tissues 

suggest differences in the two central nucleotides and flanking sequence between BMAL1 bound 

and unbound E-boxes. However, the predictive power solely derived from DNA sequence seems 

insufficient for robust prediction, indicating the need for additional features or more sophisticated 

modeling approaches to enhance prediction accuracy. 

Performance of sequence + shape models: The specific local configurations of DNA are 

determined by its three-dimensional structure, which in turn influences various biological 
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processes. Computational methods, including Monte Carlo simulations, have been utilized to 

derive features that quantify DNA shape from its local sequence66,69. Five distinct DNA shape 

features – Electrostatic Potential (EP), Minor Groove Width (MGW), Propeller Twist (ProT), Roll, 

and Helix Twist (HelT) – have been identified as significant contributors to the DNA binding 

affinity of transcription factors belonging to the basic helix-loop-helix (bHLH) family50. The 14 

bp sequences (NNNNCANNTGNNNN) were used to derive five distinct DNA shape features. 

Integration of these DNA shape feature matrices with sequence features as input for predictive 

models, help to evaluate the contribution of DNA shape to BMAL1 binding. The mean AUROC 

scores for the liver, kidney, and heart were 0.97, 0.98, and 0.98, respectively, which are higher than 

the sequence-only model. Additionally, the mean AUPRC metric increased significantly compared 

to the sequence-only model, rising from 0.09 to 0.79 for the liver, 0.10 to 0.51 for the kidney, and 

0.06 to 0.71 for the heart. This suggests a significant difference in local DNA shape features 

between the bound and unbound E-boxes. Further analysis revealed that the EP, Roll, and ProT 

DNA shape features contributed 33% to the prediction of BMAL1 binding to the E-boxes in the 

liver. In the kidney, the EP, ProT, and MGW DNA shape features contributed 68%, while in the 

heart, EP, Roll, and MGW contributed 70% to the prediction. Overall, the EP, Roll, MGW, and 

ProT DNA shape features had the most significant influence on the prediction of bound E-boxes 

across all three tissues. However, training and evaluating DNA shape-only models yielded lower 

performance compared to DNA sequence-only models, suggesting that the local shape or 

configuration of DNA near the E-box alone is insufficient to predict BMAL1 binding. This 

demonstrates the importance of considering both DNA sequence and shape features in predicting 

transcription factor binding, with specific DNA shape features playing a crucial role in determining 

BMAL1 binding affinity to E-boxes across different tissues. 
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Performance of sequence + shape + histone modification (HM) models: Histone modifications 

(HMs) within gene promoter and enhancer regions are widely recognized to correlate with the 

binding of transcription factors (TFs)77. Despite this correlation, the intricate mechanisms 

governing the interaction between TF binding and HMs remain incompletely understood. Recent 

investigations have shed light on the role of HMs in enhancing the predictive accuracy of models 

aimed at forecasting TF binding. Notably, the impact of HMs on model performance varies 

depending on the specific TF under consideration. For instance, models predicting binding of 

bHLH transcription factors have exhibited significantly enhanced accuracy upon the inclusion of 

HMs78,79. Based on these findings, several models have been developed to improve TF binding 

prediction using results from epigenetic assays80,81. We examined the importance of HMs in 

prediction of BMAL1 binding by augmenting the sequence and DNA shape feature matrix with 

five histone features: H3K27ac, H3K4me1, H3K4me3, H3K27me3, and H3K36me3. The 

selection of these HM features was based on both their availability in existing datasets and their 

established roles in facilitating transcription factor binding79. By incorporating these HM features 

into the models, I obtained mean AUROC scores of 0.99, 0.988, and 0.99 for the liver, kidney, and 

heart, respectively. Additionally, the mean AUPRC performance increased significantly to 0.95, 

0.65, and 0.79 for the liver, kidney, and heart, respectively (Figure 7). These results highlight the 

importance of considering not only DNA sequence and shape features but also epigenetic 

information, such as histone modifications, in accurately modeling transcription factor binding 

events across different tissue types. 
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Figure 7: Adding DNA Shape and Histone modification (HM) features to DNA Sequence 

significantly improves prediction of BMAL1 binding across all tissues. (A) The area under the 

receiver operating characteristics (AUROC) for liver, kidney, and heart for the sequence-only 

model (blue), sequence plus DNA shape model (brown) and sequence plus DNA shape plus HM 

model (green).  The mean AUROC increases sharply with the addition of DNA shape features to 

the model, with a much smaller increase associated with the addition of HMs. (B) The area under 

the precision recall curve (AUPRC) in liver, kidney and heart for the sequence-only model (blue), 

sequence plus DNA shape model (brown) and sequence plus DNA shape plus HM model (green). 

As with AUROC, the mean AUPRC increased by a large margin with the addition of DNA shape 

features to the model, with a smaller increase associated with the addition of HMs. Adapted from 

Marri et al75. 
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Table 1: Model Performance scores: The performance of models predicting BMAL1-DNA binding 

status in open chromatin of the liver, kidney, and heart using XGBoost and logistic regression.  

 

 

XGBoost  Logistic regression  

AUROC AUPRC AUROC AUPRC 

Liver  

DNA Sequence Only model  0.71 ± 0.00 0.09 ± 0.01 0.71 ± 0.00 0.08 ± 0.01 

DNA sequence plus DNA shape 

model 
0.97 ± 0.00 0.79 ± 0.01 0.97 ± 0.00 0.79 ± 0.01 

DNA sequence plus histone 

modification model  
0.85 ± 0.02 0.13 ± 0.01 0.80 ± 0.00 0.12 ± 0.03 

DNA shape plus histone 

modification model 
0.90 ± 0.01 0.22 ± 0.01 0.81 ± 0.01 0.16 ± 0.01 

DNA sequence and shape plus 

histone modifications model  
0.99 ± 0.00 0.95 ± 0.00 0.97 ± 0.00 0.91 ± 0.00 

Kidney  

DNA Sequence Only model 0.78 ± 0.01 0.10 ± 0.01 0.77 ± 0.00 0.10 ± 0.01 

DNA sequence plus DNA shape 

model  
0.94 ± 0.00 0.50 ± 0.01 0.79 ± 0.01 0.10 ± 0.01 

DNA sequence plus histone 

modification model  
0.89 ± 0.00 0.19 ± 0.01 0.87 ± 0.00 0.13 ± 0.01 

DNA shape plus histone 

modification model 
0.95 ± 0.01 0.31 ± 0.01 0.88 ± 0.01 0.15 ± 0.01 

DNA sequence and shape plus 

histone modifications model 
0.96 ± 0.00 0.65 ± 0.01 0.88 ± 0.01 0.15 ± 0.01 

Heart  

DNA Sequence Only model 0.80 ± 0.01 0.06 ± 0.01 0.78 ± 0.01 0.05 ± 0.01 

DNA sequence plus DNA shape 

model  
0.99 ± 0.00 0.71 ± 0.03 0.97 ± 0.01 0.49 ± 0.02 

DNA sequence plus histone 

modification model  
0.96 ± 0.00 0.26 ± 0.01 0.92 ± 0.01 0.8 ± 0.01 

DNA shape plus histone 

modification model 
0.97 ± 0.00 0.35 ± 0.00 0.95 ± 0.00 0.22 ± 0.00 

DNA sequence and shape plus 

histone modifications (Heart) 
0.99 ± 0.00 0.80 ± 0.04 0.98 ± 0.01 0.47 ± 0.02 
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Table 1 (cont’d) 

Performance of each model is represented as a mean value with a 95% confidence interval around 

the results from 5-fold cross validation. The highest model performance for each tissue is bolded. 

Adapted from Marri et al75. 

 

Feature importance reveals tissue-specific BMAL1 binding grammar. 

Given the improved performance of the models incorporating sequence, shape, and histone 

modification (HM) features, I applied the ELI5 permutation importance method to discern the most 

predictive features governing BMAL1-DNA binding82. The importance of each DNA shape and 

histone modification feature was computed by aggregating the importance scores across all bins 

associated with that specific feature. Furthermore, to facilitate comparative analysis, the feature 

importance of each nucleotide type at a given position relative to the E-Box motif was normalized 

against the cumulative feature importance at that nucleotide position. The analysis revealed that 

the immediate flanking sequences upstream and downstream of the core E-box binding motif 

played pivotal roles in predicting BMAL1 binding across the liver, heart, and kidney tissues as 

compared to distal flanking sequences (Fig 8). Previous studies examining the binding specificities 

of bHLH transcription factors CBf1 and Tye7 in yeast have shown that 2-bp flanking sequences 

contribute to binding of these transcription factors to the E-box55. In our quantitative analysis of 

the E-box sequence, we did not find the two central base pairs of the CANNTG E-box motif to 

directly contribute to the model performance, even though BMAL1 has a strong preference for the 

CG central dinucleotide across all three mouse tissues. The nucleotide G at the second proximal 

upstream flanking sequence (Seq-2) was a robust predictor of BMAL1-DNA binding in the liver 

(Fig 8A). Remarkably, this nucleotide accounted for over 50% of the feature weights utilized in 

predicting BMAL1-DNA binding in the liver. Additionally, other influential features included EP 

(10%) and H3K27ac (6%). The comprehensive assessment of feature importance highlighted the 
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significance of various DNA shape and histone modification features in predicting BMAL1 DNA 

binding in the liver, with the majority exhibiting individual weights exceeding 5%, underscoring 

their critical roles in this process. Conversely, most DNA sequence features, barring Seq-2, 

exhibited feature weights below the 5% threshold. In the kidney, H3K27ac emerged as the most 

influential feature, contributing 21% to the overall feature importance (Fig 8B), followed closely 

by EP, with a feature importance of 19%. Notably, three histone modifications (H3K27ac, 

H3K4me3, and H3K4me1) and four DNA shape features (EP, ProT, MGW, and Roll) all 

demonstrated feature weights surpassing 5%. Similarly, in the heart, H3K27ac and H3K4me3 

assumed the highest feature importance (both exceeding 20%), followed by EP (8%). 

Predominantly, DNA sequence features exhibited weights below 5% in both heart and kidney 

tissues. Across all three tissues, histone modifications (H3K27ac, H3K4me1, H3K4me3) and DNA 

shape features (EP, Roll) consistently exhibited high importance scores (Fig 8A-C). Notably, 

H3K27ac and H3K4me1 emerged as the most influential histone modifications across all tissues, 

with H3K4me3 and H3K36me3 also making substantial contributions, particularly in the kidney 

and heart. These results show that the combination of the TF binding motif and its flanking 

sequence, local shape of DNA, and histone modifications is sufficient to produce predictive models 

of BMAL1 binding to E-box motifs, especially in the mouse liver. The second upstream flanking 

nucleotide (Seq-2) stood out as the most crucial feature in the liver, with nucleotides G and C 

overrepresented in this region. This observation was corroborated by the sequence logo of bound 

E-box sequences, encompassing 4 base pairs upstream and downstream of the core motif (Fig 8D). 

Further analysis of bound E-box motifs, along with their upstream and downstream flanking 

sequences, unveiled a notable enrichment of the nucleotide G at the third position of the 5' flanking 

region, particularly prevalent among liver-bound E-boxes (1228 out of 3374 bound E-boxes) (Fig 
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9A-B), a trend not mirrored in bound E-box motifs kidney and heart. The histone modifications 

H3K27ac (associated with active enhancers and promoters), H3K4me1 (enriched at enhancer 

regions), and H3K4me3 (found at active promoters) played significant roles in determining 

BMAL1 binding affinity across different tissues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Feature importance of all genomic features (sequence and DNA shape) and epigenomic 

(histone modification) features from the XGBoost classifier model across all tissues. Feature 

importance in the XGBoost classifier model in (A) liver, (B) kidney, and (C) heart. The feature 

importance for each DNA shape and histone modification feature is calculated as the sum of all 

the feature importance of all bins for that particular histone modification feature. The feature 

importance of each nucleotide type at a particular position relative to the E-Box motif is 

normalized to the nucleotide type and the sum of all feature importance at that nucleotide position. 

(D) Standard plot sequence logo for BMAL1 bound E-box motifs in the liver83. Adapted from 

Marri et al75. 
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Figure 9: Analysis of Liver bound E-box motifs to investigate the importance of the nucleotide G 

in the third position of the 5’ flanking sequence. (A) Analysis of the bound E-box motif with their 

upstream and downstream flanking sequence revealed that the nucleotide G at the position third of 

the 5’ flanking sequence is enriched in bound E-box motifs in the liver. 1228 out of 3374 of the 

motifs have nucleotide G at the third position of the 5’ flanking sequence. 48 out of the 1228 are 

palindromes and 16 out of the 48 are the sequence GTCACGTGAC. (B) Percentage of enriched 

flanking sequence nucleotide in the liver E-box motifs. (Orange bar corresponds to unbound E-

box motifs and blue bar corresponds to bound E-box motifs). Adapted from Marri et al75. 
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Cross-tissue models highlight differences in BMAL1-DNA binding among tissues. 

To test the hypothesis that the DNA binding of BMAL1 is determined by similar factors across the 

three tissues, we formulated cross-tissue models aimed at predicting binding with features based 

on - (a) sequence only; (b) sequence plus DNA shape; and (c) sequence plus DNA shape plus 

histone modifications. We trained these models on all data available in the respective tissue, using 

the optimal hyper-parameters previously derived for the respective within-tissue model. Models 

trained on one tissue were used to predict BMAL1 binding in a different tissue. The performance 

of the sequence-only models trained on tissue X and predicting tissue Y (X_Y model) was 

comparable to the performance of the within-tissue sequence-only model in tissue X, for all tissues 

(Fig 10A). However, the incorporation of DNA shape and histone modification (HM) features lead 

to a reduction in performance scores across some cross-tissue models in contrast to the sequence-

only models (Fig 10A-C). Notably, the sequence plus shape model, trained on liver data, aptly 

classified 22% of the E-boxes bound in both kidney (liver_kidney) and heart (liver_heart) (Fig 

10C). This model predicted most of the bound E-boxes in the kidney and heart as unbound, 

yielding a high false negative rate. The inclusion of histone modification features improved 

AUROC and AUPRC metrics for most cross-tissue models (Fig 10 A-B) . However, the cross-

tissue sequence plus DNA shape plus HM model, trained on liver data, correctly classified only 

18% of E-boxes bound in the kidney and 19% in the heart, manifesting a higher false negative rate 

than the sequence plus shape model. The cross-tissue analysis revealed an intriguing pattern when 

models trained on kidney and heart data were evaluated on liver data (kidney_liver and 

heart_liver). In these cases, the inclusion of DNA shape and histone modification (HM) features 

led to a significant improvement in performance compared to other model types. Specifically, the 

AUROC score of the kidney_liver model increased from 0.68 for the sequence plus DNA shape 
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model to 0.83 for the sequence plus DNA shape plus HM model. Furthermore, the AUPRC  score 

exhibited a sharp increase, from 0.055 to 0.38, when HM features were added. In contrast to the 

previous findings, where the addition of DNA shape and HM features generally decreased the 

performance of cross-tissue models, the kidney_liver and heart_liver models demonstrated a 

significant improvement in predictive power when these genomic and epigenetic features were 

incorporated. These results suggest that while sequence-only models performed relatively poorly 

in cross-tissue binding prediction, the inclusion of additional features, such as DNA shape and 

histone modifications, can enhance the predictive capability of cross-tissue models in certain cases. 

However, the effectiveness of these features appears to be tissue-specific, as evidenced by the 

contrasting results obtained when predicting binding in the liver versus predicting binding in other 

tissues. Overall, the observed tissue specificity of BMAL1 DNA binding highlights the complexity 

of the regulatory mechanisms governing this transcription factor's binding patterns. The interplay 

between sequence features, DNA shape, and epigenetic modifications, such as histone 

modifications, appears to be context-dependent, with varying degrees of influence across different 

tissue types. These findings underscore the importance of considering tissue-specific factors in the 

development of accurate binding prediction models for transcription factors like BMAL1. 
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Figure 10: Performance metrics for cross-tissue prediction models. Scores for the liver, kidney and 

heart sequence-only model (blue bars), sequence plus DNA shape model (brown bars) and 

sequence plus DNA shape plus HM model (green bars): (A) Area under the receiver operating 

characteristics (AUROC); (B) Area under the precision recall curve (AUPRC); (C) True positive 

rates. (Notation explanation: liver_kidney refers to the model trained on the liver dataset and used 

to predict binding on the kidney dataset). Adapted from Marri et al75. 
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CHAPTER 3: MATHEMATICAL MODELING OF THE SPATIAL AND TEMPORAL 

DYNAMICS OF CIRCADIAN CLOCK IN THE LIVER 
 

INTRODUCTION 

In the previous chapter, the genetic and epigenetic determinants of BMAL1-DNA binding within 

peripheral tissues were elucidated. In this chapter, the focus will be on investigating the 

spatiotemporal expression patterns of circadian clock genes within the liver lobule, as well as 

exploring the factors that contribute to the synchronization of their expression. Within the intricate 

landscape of the brain, the suprachiasmatic nucleus (SCN) emerges as the central orchestrator, 

functioning as the master pacemaker of the circadian system. It coordinates and synchronizes 

cellular, tissue-specific, and systemic rhythms, thereby regulating vital biological processes84,85, 

including the regulation of body temperature, glucose metabolism, sleep-wake patterns, hormone 

secretion, and bone formation86–88. Disruption of the circadian cycle by environmental stimuli has 

been linked to several pathological conditions, including cardiovascular disease, diabetes, bipolar 

disorder, obesity, and cancer39,89–91.  At the molecular level, a complex network of transcriptional, 

translational, and post-translational feedback loops intricately governs the generation of circadian 

rhythms, not only within the SCN but also in peripheral tissues such as the liver10,92. At the core 

of this regulatory network lies a group of transcriptional activators including circadian locomotor 

output cycles kaput (Clock), Neuronal PAS domain protein 2 (Npas2), brain and muscle ARNT 

Like 1 (Bmal1), and the retinoic acid-related orphan receptors (Rora, Rorb, Rorc). These activators 

act in concert with a cohort of repressors, notably the period genes (Per1, Per2, Per3), the 

cryptochrome genes (Cry1, Cry2), and the reverb-clear orphan receptors (Reverbα, Reverbβ), to 

establish the rhythmicity of gene expression75,84. 

As discussed in the previous chapter, the master regulator heterodimer composed of CLOCK-

BMAL1 (or NPAS2-BMAL1), binds to specific DNA motifs known as E-boxes within the 
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regulatory regions of target genes such as Per, Cry, Ror, and Reverb, thereby promoting their 

transcriptional activation. Subsequently, the PER and CRY proteins form a cytoplasmic complex, 

which translocates into the nucleus to create a negative feedback loop by inhibiting the 

transcription of their own genes. This intricate interplay also extends to the suppression of Ror and 

Reverb gene transcription. Further complexity arises from the competitive binding of ROR and 

REV-ERB proteins to the ROR regulatory element (RRE) within the promoter region of the Bmal1 

gene. Here, ROR acts as an activator, while REV-ERB serves as a repressor, thus exerting tight 

control over the transcriptional regulation of Bmal1 and consequently influencing the overall 

circadian rhythm92,93.  

The liver stands as a pivotal peripheral oscillator within the intricate machinery of mammalian 

physiology, serving as a crucial hub for the interplay of anabolic and catabolic processes involving 

lipids and amino acids94. Structurally, the mammalian liver is organized into functional units 

known as "lobules," each comprising predominantly hepatocytes, the primary cellular constituents 

of liver parenchyma. Hepatocytes in the lobule are aligned along a distinct axis extending from the 

portal vein to the central vein, thereby facilitating their categorization based on their proximity to 

either endpoint (Fig 11). Gene expression and resulting metabolic functions exhibit a spatial 

gradation along the portal-to-central axis of the lobule. Specifically, processes such as 

gluconeogenesis and β-oxidation predominate at the portal end, whereas glycolysis and lipogenesis 

are enriched towards the central region. This spatial organization underscores the liver's intricate 

orchestration of metabolic pathways to ensure optimal nutrient utilization and energy balance95. 

Recent insights from single-cell gene expression studies have unveiled an intriguing aspect of liver 

physiology: the expression of core circadian clock genes manifests in a non-zonated manner across 

hepatocytes along the portal-to-central axis. Unlike metabolic functions, where spatial gradients 
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are evident, circadian gene expression appears to be uniformly distributed across the lobular axis. 

This observation hints at a sophisticated mechanism whereby hepatocytes synchronize their 

circadian rhythms across the entire liver tissue, despite their spatial heterogeneity29. This 

phenomenon of synchronized circadian oscillations across hepatocytes has been attributed to a 

coupling mechanism that harmonizes gene expression among cells along the portal-to-central axis, 

thereby generating coordinated and synchronized temporal rhythms96–98. While the precise 

molecular machinery orchestrating this synchronization remains elusive, emerging evidence 

suggests a potential role for transforming growth factor–beta (TGF-β) as a putative coupling factor. 

However, the intricacies of how TGF-β or other potential mediators precisely regulate the 

synchronized oscillations in liver gene expression warrant further investigation98–100. Unlike the 

established neurotransmitter-mediated coupling mechanism in the suprachiasmatic nucleus (SCN) 

regulating central nervous system circadian rhythms101, the mechanisms behind synchronized liver 

gene expression oscillations are fully not understood. Understanding this synchronization would 

offer insights into tissue-level circadian regulation and novel therapeutic strategies for metabolic 

disorders. 

We developed a spatiotemporal multicellular mathematical model of the mammalian liver 

circadian clock regulatory network9,102–104. Two sets of models were developed for the mouse 

hepatic clock: 1) Model 1, which assumed no communication among the cellular oscillators, 

leading to non-synchronized gene expression in hepatocytes across the central to portal axis of the 

lobule; and 2) Model 2, which incorporated communication among cells, resulting in synchronized 

gene expression across the lobular axis. The analysis revealed a positive correlation between the 

amplitudes of the observables (gene expression levels or protein levels) and their respective 

transcription rate parameters, while a negative correlation was observed between the amplitudes 
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and their respective degradation rates. This finding highlights the crucial role of transcription and 

degradation rates in determining the oscillatory amplitudes of the circadian clock components. To 

validate the models, the transcription and degradation rate parameters were estimated from single-

cell RNA-Seq data102. The simulated results exhibited a high correlation with the experimental 

data, with an R2 > 0.9, indicating a strong agreement between the model predictions and the 

observed gene expression patterns. In summary, this study computationally analyzed asynchronous 

and synchronous spatial and temporal circadian oscillations in the mammalian liver. The models 

revealed the dependence of the oscillatory amplitudes of circadian clock components on their 

respective transcription and degradation rates. The high correlation between simulated and 

experimental data demonstrated the robustness of the mathematical models in capturing the 

intricate dynamics of the liver circadian clock regulatory network, and the complex interplay 

between spatial organization, cellular communication, and circadian rhythms. 

 

 

 

 

 

 

 

Figure 11: Schematic of a cross-section through the lobule, the fundamental structural unit of the 

mammalian liver, predominantly made up of hepatocytes extending in layers from the portal 

triad to the central vein (generated using https://biorender.com/). 
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METHODS 

Model design. 

This model was developed to study the communication among single cellular circadian oscillators 

(i.e. hepatocyres) in the liver lobule, or intercellular “coupling”. This coupling ensures a coherent 

output in the suprachiasmatic nuclei (SCN) and other peripheral tissues. In our model, we 

assembled the key interactions within the clock gene network from the literature. Five known clock 

genes were used in developing this model. For simplicity, we do not distinguish between the 

multiple isoforms in these genes. For example, Per1, Per2 and Per3 are represented by a single Per 

gene as a model variable. The same reasoning applies to the proteins and respective protein 

complexes. The gene network used in this model consist of the interactions among (Per, Cry, Ror, 

Rev-erb and Bmal1). Per, Cry, and Rev-erb act as transcriptional repressors and Ror, and Bmal1 

as activators. The interactions among these genes were then transformed to a wiring diagram that 

consist of two main dependent feedback loops: the Per-Cry negative feedback loop and the Ror, 

Rev-erb, Bmal1positive feedback loop. 

The central component of the model, the CLOCK_BMAL transcription factor complex binds to 

the promoter regions of the clock genes (Per, Cry, Ror, Rev-erb) activating their transcription. 

These various mRNAs are translated into the respective proteins in the cytosol. The RORc and 

REV-ERBc protein in the cytosol are phosphorylated reversibly and unphosphorylated RORc and 

REV-ERBc are transported to the nucleus. In the nucleus, RORn binds to the promoter region of 

the clock gene Bmal1 activating its transcription. The Bmal1 mRNA is translated to BMAL1c 

protein in the cytosol which is phosphorylated reversibly. Unphosphorylated BMAL1c is 

transported in the nucleus where it forms a reversible heterodimer with the CLOCK protein 

denoted as CLOCK_BMAL. The nuclear REV-ERBn protein binds to the promoter region of the 
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Bmal1 gene to repress the activity of the nuclear RORn protein.The PER and CRY proteins in the 

cytosol are phosphorylated reversibly. Unphosphorylated PER and CRY protein in the cytosol 

form the reversible PER-CRY heterodimer which is then transported into the nucleus. PER-CRY 

represses the transcription of their own genes (Per and Cry) by binding with the CLOCK_BMAL 

protein. This association represses the transcriptional activities of all the genes that are activated 

by CLOCK_BMAL. The dissociation of CLOCK_BMAL from the PER-CRY complex allows 

CLOCK_BMAL to bind to the promoter regions of clock genes (Per, Cry, Ror, Rev-erb) starting 

the process all over again. 

Two sets of models were developed in this study. (1) Model without communication between the 

cellular oscillators leading to non-synchronized gene expression across the central to portal axis 

of the liver lobule and (2) model with communication between cells leading to synchronized gene 

expression across the lobule. 

Model 1: Model without communication between the cellular oscillators. 

• The first five ordinary differential equations (ODEs) represent the transcription of Per, 

Cry, Bmal1, Ror & Rev-erb genes into their respective mRNA’s denoted by 

𝑀𝑃,  𝑀𝐶 ,  𝑀𝐵 ,  𝑀𝑅𝑜 & 𝑀𝑅𝑒 respectively by the nuclear CLOCK_BMAL protein (𝐶𝐵𝑛), 

PER_CRY protein (𝑃𝐶𝑛), ROR protein (𝑅𝑜𝑛) and REV_ERB protein (𝑅𝑒𝑛). 

𝑑𝑀𝑃

𝑑𝑡
=

𝑉𝑠𝑝 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑛

𝐾𝑖𝑝𝑛 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑚 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑛
− 𝑑𝑝 ∗ 𝑀𝑃 

𝑑𝑀𝐶

𝑑𝑡
=

𝑙𝑖𝑔ℎ𝑡 ∗ 𝑉𝑠𝑐 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑜

𝐾𝑖𝑐𝑜 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑝 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑜
− 𝑑𝑐 ∗ 𝑀𝐶 

𝑑𝑀𝐵

𝑑𝑡
=

𝑉𝑠𝑏 ∗ (𝑅𝑂𝑅)𝑝

𝐾𝑖𝑏𝑝 + (𝑅𝑂𝑅 ∗ 𝑅𝐸𝑉_𝐸𝑅𝐵)𝑞 + (𝑅𝑂𝑅)𝑝
− 𝑑𝑏 ∗ 𝑀𝐵 
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𝑑𝑀𝑅

𝑑𝑡
=

𝑉𝑠𝑟 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑟

𝐾𝑖𝑟𝑟 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑠 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑟
− 𝑑𝑟 ∗ 𝑀𝑅 

𝑑𝑀𝑅𝑒

𝑑𝑡
=

𝑉𝑠𝑟𝑒 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑡

𝐾𝑖𝑟𝑒𝑡 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑢 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑡
− 𝑑𝑟𝑒 ∗ 𝑀𝑅𝑒 

• The next six ODEs represent the translation and reversible activities of the 

unphophorylated PER, CRY, BMAL1, REV-ERB, ROR protein and PER-CRY 

protein complex in the cytoplasm denoted by 𝑃𝑐 ,  𝐶𝑐,  𝐵𝑐,  𝑅𝑒𝑐 , 𝑅𝑜𝑐 & 𝑃𝐶𝑐 

respectively. 

𝑑𝑃𝑐

𝑑𝑡
= 𝑘  ∗  𝑃𝑒𝑟_𝑚𝑅𝑁𝐴  +  𝐾𝑝𝑐1 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑐𝑜 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) − 𝐾𝑝𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))   +

𝐾𝑝𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) − 𝑑𝑝𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝐶𝑐

𝑑𝑡
= 𝑘1  ∗  𝐶𝑟𝑦_𝑚𝑅𝑁𝐴  +  𝐾𝑝𝑐1 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −   𝐾𝑝𝑐𝑜 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑐𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)) 

+𝐾𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) − 𝑑𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝐵𝑐

𝑑𝑡
= 𝑘2  ∗  𝐵𝑚𝑎𝑙1_𝑚𝑅𝑁𝐴  −  𝐾𝑏𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑏𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))

+𝐾𝑏𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝑑𝑏𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑜𝑐

𝑑𝑡
= 𝑘3  ∗  𝑅𝑜𝑟_𝑚𝑅𝑁𝐴  −  𝐾𝑟𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑟𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))

+𝐾𝑟𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝑑𝑟𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑒𝑐

𝑑𝑡
= 𝑘4  ∗  𝑅𝑒𝑣 𝑒𝑟𝑏 𝑚𝑅𝑁𝐴  −  𝐾𝑟𝑒𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   − 

𝐾𝑟𝑒𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)) + 𝐾𝑟𝑒𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑒𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝑃𝐶𝑐

𝑑𝑡
= 𝐾𝑝𝑐𝑜  ∗   ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))

−𝐾𝑝𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑐1 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝐾𝑝𝑐𝑝 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   +  𝐾𝑝𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
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• The next six ODEs  represent the reversible activities of the phophorylated PER, 

CRY, BMAL1, REV-ERB, ROR protein and PER-CRY protein complex in the 

cytoplasm denoted by 𝑃𝑝𝑐,  𝐶𝑝𝑐,  𝐵𝑝𝑐,  𝑅𝑒𝑝𝑐 , 𝑅𝑜𝑝𝑐 & 𝑃𝐶𝑝𝑐 respectively. 

𝑑𝑃𝑝𝑐

𝑑𝑡
= 𝐾𝑝𝑐  ∗  (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝐶𝑝𝑐

𝑑𝑡
= 𝐾𝑐𝑐  ∗  (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝐵𝑝𝑐

𝑑𝑡
= 𝐾𝑏𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑏𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑏𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑜𝑝𝑐

𝑑𝑡
= 𝐾𝑟𝑐  ∗  ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)) − 𝐾𝑟𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑒𝑝𝑐

𝑑𝑡
= 𝐾𝑟𝑒𝑐  ∗   ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))   −  𝐾𝑟𝑒𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑒𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑃𝐶𝑝𝑐

𝑑𝑡
= 𝐾𝑝𝑐𝑝  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑐𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

• The last six ODEs represent the activites of BMAL1, ROR, REV-ERB, CLOCK-BMAL, 

PER-CRY, and PER-CRY/CLOCK-BMAL proteins in the nucleus denoted by 

𝐵𝑛 , 𝑅𝑜𝑛,  𝑅𝑒𝑛,  𝐶𝐵𝑛,  𝑃𝐶𝑛,  𝑃𝐶/𝐶𝐵𝑛,  respectively. 

𝑑𝐵𝑛

𝑑𝑡
= 𝐾𝑏𝑐𝑐  ∗  (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑏𝑛.∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑜𝑛

𝑑𝑡
= 𝐾𝑟𝑐𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑟𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
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𝑑𝑅𝑒𝑛

𝑑𝑡
= 𝐾𝑟𝑒𝑐𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑟𝑒𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑒𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁);
 

𝑑𝐶𝐵𝑛

𝑑𝑡
= 𝐾𝑐𝑙𝑏𝑛  ∗  (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝐾𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

+ 𝐾𝑑𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝑑𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   +  𝑑𝑝𝑐𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝑃𝐶𝑛

𝑑𝑡
= 𝐾𝑝𝑐𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝐾𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

+ 𝐾𝑑𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝑑𝑝𝑐𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   +  𝑑𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝑃𝐶/𝐶𝐵𝑛

𝑑𝑡
= 𝐾𝑐𝑏𝑝𝑐  ∗  (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝐾𝑑𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝑑𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑐𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

Model 2: Model with communication between the cellular oscillators. 

To incorporate the synchronicity of cells in the second model, we assume a global coupling among 

N cells through cell-to-cell communication. Using a parameter K_f (where K_f is the sensitivity 

of individual cell oscillator to another cell oscillator, i.e. coupling strength) to describe the 

communication strength, we calculated a second parameter F, which is the mean communication 

signal among N cells in the system. This approach was initially used in a three-variable model by 

Gonze et al105  We assume the cell-to-cell communication leading to synchronization is mediated 

by a coupling protein. Previous studies have assumed Transforming growth factor beta (TGF-β) to 

be the coupling factor responsible for synchronization of the cells to produce a sustained 

oscillation98 
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• The time-evolution for a single synchronization factor (M, which will later be used to 

calculate the mean field F) in the cellular medium mediated by a coupling protein is 

given as: 

 
𝑑𝑀

𝑑𝑡
= 𝑝𝑟𝑡 ∗ 𝑋𝑖 − 

𝑣𝑐∗𝑀

𝑑𝑐+𝑀 
 

Where i = 1...5 represents each of the observable genes used in the model. 𝑋1 for Per, 𝑋2 for Cry, 

𝑋3 forBmal1, 𝑋4 for Ror, and 𝑋5 for Rev-erb. There are delays with respect to the clock genes Xi 

due to transcription, translation, phosphorylation, diffusion, etc. Assuming a linear production 

equation of the synchronization factor by the clock genes and a nonlinear diffusion rate, prt 

represents synchronization protein concentration, vc represents Maximum rate of synchronization 

factor synthesis and dc represents Activation constant for enhancement of synchronization factor 

synthesis. 

The mean field F was then calculated as: 

𝐹 =
1

𝑁
∗ ∑ 𝑀𝑖

𝑁

𝑖=1

 

• The first five ODEs of this model represents the transcription of Per, Cry, Bmal1, Ror & 

Rev-erb genes into their respective mRNA’s denoted by 𝑀𝑃,  𝑀𝐶 ,  𝑀𝐵 ,  𝑀𝑅𝑜 & 𝑀𝑅𝑒 

induced by the nuclear proteins CLOCK_BMAL (𝐶𝐵𝑛), PER_CRY protein (𝑃𝐶𝑛), ROR 

protein (𝑅𝑜𝑛) and REV_ERB (𝑅𝑒𝑛). 

𝑑𝑀𝑃

𝑑𝑡
=

𝑉𝑠𝑝 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑛

𝐾𝑖𝑝𝑛 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑚 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑛
+

𝑉𝑑𝑝 ∗ 𝐾𝑓 ∗ 𝐹

𝐾𝑐 + 𝐾𝑓 ∗ 𝐹
− 𝑑𝑝 ∗ 𝑀𝑃 

𝑑𝑀𝐶

𝑑𝑡
=

𝑙𝑖𝑔ℎ𝑡 ∗ 𝑉𝑠𝑐 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑜

𝐾𝑖𝑐𝑜 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑝 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑜
+

𝑉𝑑𝑝 ∗ 𝐾𝑓 ∗ 𝐹

𝐾𝑐 + 𝐾𝑓 ∗ 𝐹
− 𝑑𝑐 ∗ 𝑀𝐶 
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𝑑𝑀𝐵

𝑑𝑡
=

𝑉𝑠𝑏 ∗ (𝑅𝑂𝑅)𝑝

𝐾𝑖𝑏𝑝 + (𝑅𝑂𝑅 ∗ 𝑅𝐸𝑉_𝐸𝑅𝐵)𝑞 + (𝑅𝑂𝑅)𝑝
+

𝑉𝑑𝑝 ∗ 𝐾𝑓 ∗ 𝐹

𝐾𝑐 + 𝐾𝑓 ∗ 𝐹
− 𝑑𝑏 ∗ 𝑀𝐵 

𝑑𝑀𝑅

𝑑𝑡
=

𝑉𝑠𝑟 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑟

𝐾𝑖𝑟𝑟 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑠 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑟
+

𝑉𝑑𝑝 ∗ 𝐾𝑓 ∗ 𝐹

𝐾𝑐 + 𝐾𝑓 ∗ 𝐹
− 𝑑𝑟 ∗ 𝑀𝑅 

𝑑𝑀𝑅𝑒

𝑑𝑡
=

𝑉𝑠𝑟𝑒 ∗ (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑡

𝐾𝑖𝑟𝑒𝑡 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1 ∗ 𝑃𝐸𝑅_𝐶𝑅𝑌)𝑢 + (𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1)𝑡
+

𝑉𝑑𝑝 ∗ 𝐾𝑓 ∗ 𝐹

𝐾𝑐 + 𝐾𝑓 ∗ 𝐹
− 𝑑𝑟𝑒 ∗ 𝑀𝑅𝑒 

• The next six ODEs represent the translation and reversible activities of the 

unphosphorylated PER, CRY, BMAL1, REV-ERB, ROR protein and PER-CRY 

protein complex in the cytoplasm denoted by 𝑃𝑐 ,  𝐶𝑐,  𝐵𝑐,  𝑅𝑒𝑐 , 𝑅𝑜𝑐 & 𝑃𝐶𝑐 

respectively 

𝑑𝑃𝑐

𝑑𝑡
= 𝑘  ∗  𝑃𝑒𝑟_𝑚𝑅𝑁𝐴  +  𝐾𝑝𝑐1 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑐𝑜 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) − 𝐾𝑝𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))   +

𝐾𝑝𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) − 𝑑𝑝𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝐶𝑐

𝑑𝑡
= 𝑘1  ∗  𝐶𝑟𝑦_𝑚𝑅𝑁𝐴  +  𝐾𝑝𝑐1 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑐𝑜 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑐𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)) 

+𝐾𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) − 𝑑𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝐵𝑐

𝑑𝑡
= 𝑘2  ∗  𝐵𝑚𝑎𝑙1_𝑚𝑅𝑁𝐴  −  𝐾𝑏𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑏𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))

+𝐾𝑏𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝑑𝑏𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑜𝑐

𝑑𝑡
= 𝑘3  ∗  𝑅𝑜𝑟_𝑚𝑅𝑁𝐴  −  𝐾𝑟𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑟𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))

+𝐾𝑟𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝑑𝑟𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑒𝑐

𝑑𝑡
= 𝑘4  ∗  𝑅𝑒𝑣 𝑒𝑟𝑏 𝑚𝑅𝑁𝐴  −  𝐾𝑟𝑒𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   − 

𝐾𝑟𝑒𝑐 ∗ ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)) + 𝐾𝑟𝑒𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑒𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
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𝑑𝑃𝐶𝑐

𝑑𝑡
= 𝐾𝑝𝑐𝑜  ∗   ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))

−𝐾𝑝𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑐1 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝐾𝑝𝑐𝑝 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   +  𝐾𝑝𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑐𝑐 ∗ (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

• The next six ODEs represent the reversible activities of the phosphorylated PER, 

CRY, BMAL1, REV-ERB, ROR protein and PER-CRY protein complex in the 

cytoplasm denoted by 𝑃𝑝𝑐,  𝐶𝑝𝑐,  𝐵𝑝𝑐,  𝑅𝑒𝑝𝑐 , 𝑅𝑜𝑝𝑐 & 𝑃𝐶𝑝𝑐 respectively. 

𝑑𝑃𝑝𝑐

𝑑𝑡
= 𝐾𝑝𝑐  ∗  (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝐶𝑝𝑐

𝑑𝑡
= 𝐾𝑐𝑐  ∗  (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝐵𝑝𝑐

𝑑𝑡
= 𝐾𝑏𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑏𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑏𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑜𝑝𝑐

𝑑𝑡
= 𝐾𝑟𝑐  ∗  ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)) − 𝐾𝑟𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑒𝑝𝑐

𝑑𝑡
= 𝐾𝑟𝑒𝑐  ∗   ((𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁))   −  𝐾𝑟𝑒𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑒𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑃𝐶𝑝𝑐

𝑑𝑡
= 𝐾𝑝𝑐𝑝  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑝𝑐𝑝𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑐𝑐 ∗ (𝑃𝐻𝑂𝑆_𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

• The last six ODEs represent the activites of BMAL1, ROR, REV-ERB, CLOCK-BMAL, 

PER-CRY, and PER-CRY/CLOCK-BMAL protein in the nucleus denoted by 

𝐵𝑛 , 𝑅𝑜𝑛,  𝑅𝑒𝑛,  𝐶𝐵𝑛,  𝑃𝐶𝑛,  𝑃𝐶/𝐶𝐵𝑛,  respectively. 

 



49 
 

𝑑𝐵𝑛

𝑑𝑡
= 𝐾𝑏𝑐𝑐  ∗  (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑏𝑛.∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑜𝑛

𝑑𝑡
= 𝐾𝑟𝑐𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑟𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝑂𝑅_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)
 

𝑑𝑅𝑒𝑛

𝑑𝑡
= 𝐾𝑟𝑒𝑐𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   −  𝐾𝑟𝑒𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑟𝑒𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑅𝐸𝑉_𝐸𝑅𝐵_𝑃𝑅𝑂𝑇𝐸𝐼𝑁);
 

𝑑𝐶𝐵𝑛

𝑑𝑡
= 𝐾𝑐𝑙𝑏𝑛  ∗  (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝐾𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

+ 𝐾𝑑𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝑑𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   +  𝑑𝑝𝑐𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝑃𝐶𝑛

𝑑𝑡
= 𝐾𝑝𝑐𝑐  ∗   (𝐶𝑌𝑇𝑂𝑆𝑂𝐿𝐼𝐶_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝐾𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

+ 𝐾𝑑𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝑑𝑝𝑐𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)   +  𝑑𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

𝑑𝑃𝐶/𝐶𝐵𝑛

𝑑𝑡
= 𝐾𝑐𝑏𝑝𝑐  ∗  (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝑅𝑂𝑇𝐸𝐼𝑁) ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝐾𝑑𝑐𝑏𝑝𝑐 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

− 𝑑𝑐𝑙𝑏𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

−𝑑𝑝𝑐𝑛 ∗ (𝑁𝑈𝐶𝐿𝐸𝐴𝑅_𝐶𝐿𝑂𝐶𝐾_𝐵𝑀𝐴𝐿1_𝑃𝐸𝑅_𝐶𝑅𝑌_𝑃𝑅𝑂𝑇𝐸𝐼𝑁)

 

In the proposed model, various parameters were incorporated to capture the dynamics of the 

system under investigation. These parameters, along with their definitions and values, are 

presented in the table below. To account for potential variations and uncertainties, three distinct 

sets of parameter values were defined, with parameter set 3 serving as the nominal set (wild type 

parameter; WT) employed in the model simulations.The simulation from parameter set 3 revealed 

the experimental peak expression for the circadian clock genes in the model. Also, parameter 

estimation analysis from figure 8 was used to confirm the accurate reflection of parameter set 3 

(WT) to true biology. The table lists the parameters, their descriptions, and the corresponding 

values for each of the three parameter sets. 
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Table 2: Model parameters, definition and values. 
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RESULTS 

Circadian clock mechanism – model design. 

The development of the model involved identifying and compiling the key regulatory interactions 

in the mammalian circadian clock gene network from scientific literature9,103. The model postulates 

a reversible phosphorylation mechanism for all cytosolic circadian clock proteins. This inclusion 

is supported by the pivotal role phosphorylation plays in orchestrating circadian regulation. The 

reversible nature of phosphorylation allows for dynamic fluctuations in protein activity, thus 

contributing to the intricate regulation of circadian processes. This hypothesis is based on evidence 

that phosphorylation of key clock proteins (e.g., PER, CRY, BMAL1) plays a regulatory role in 

the circadian system by altering their stability, localization, protein-protein interactions, and 

transcriptional activity over the circadian cycle. The reversibility of phosphorylation allows for 

dynamic changes in protein activity and regulation of circadian processes104,106.  The RORc and 

REV-ERBc proteins (where the subscript 'c' stands for 'cytosolic') undergo reversible 

phosphorylation, after which they are transported to the nucleus. In the nucleus, RORn and REV-

ERBn (the subscript 'n' stands for 'nuclear') bind to the promoter region of the Bmal1 gene to 

regulate its transcription. Specifically, RORn acts as an activator, while REV-ERBn serves as a 

repressor in this context. Similarly, the Bmal1 gene is translated into the BMAL1c protein in the 

cytosol, which subsequently undergoes reversible phosphorylation. BMAL1c is then transported 

to the nucleus, where it forms a reversible heterodimer with the CLOCK protein, generating a 

protein complex termed "CLOCK/BMAL1". In parallel, the PER and CRY proteins undergo 

reversible phosphorylation within the cytosol. Upon dephosphorylation, the unphosphorylated 

PER and CRY proteins assemble into the reversible PER-CRYc heterodimer, which then undergoes 

nuclear translocation. Within the nucleus, the PER-CRYn complex exerts its regulatory role by 
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repressing the transcription of key clock genes, including Per, Cry, Rev-erb, and Ror. This 

repression is achieved by binding to the CLOCK_BMAL1 complex, thereby dampening its 

activity. The dissociation of the transcription factor PER-CRY from the promoters of these genes 

permits CLOCK_BMAL1 to activate the transcription of Per, Cry, Ror, and Rev-erb, thus initiating 

a new cycle. This cyclical regulatory process forms the basis of the circadian rhythm. These 

interactions are summarized in a wiring diagram consisting of two main coupled feedback loops: 

a positive loop involving the activation of Bmal1 transcription by RORn, and a negative loop 

involving the repression of Per, Cry, Ror, and Rev-erb transcription by PER-CRYn (Fig 12). 

 

 

   

 

 

 

 

 

 

Figure 12: Modeling framework and schematic network diagram. (A) Approach to construction of 

a deterministic model of the mammalian circadian clock, and data-driven sensitivity analysis and 

parameter estimation. (B) Schematic diagram of the principal positive and negative regulatory 

feedback loops in the mammalian clock network. The core negative feedback loop is formed by 

PER:CRY heterodimers that repress their own transcription. Another regulatory (positive and 

negative feedback) loop is formed by Ror and Rev-erb competing for binding to ROR/REV-ERB-

response element (RORE) to regulate Bmal1. Green lines indicate activation by the transcription 

factors CLOCK-BMAL1 and RORn, red lines indicate repression of genes by transcription factors,  

and black lines indicate the translation and translocation of mRNAs and proteins. White ovals 

represent genes, gray ovals proteins in the nucleus and orange ovals proteins in the cytosol. 

 

 

A B 
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Multicellular spatiotemporal model of the core clock genes describes coupling among cells. 

Gene regulatory networks can be mathematically described by a set of coupled ordinary 

differential equations (ODEs), where molecular interactions, such as transcription factor binding 

and gene regulation, are represented by nonlinear functions like Michaelis-Menten or higher-order 

Hill functions. These nonlinear functions capture the cooperative or saturable nature of these 

interactions, providing a more accurate representation of the underlying biological processes107. In 

this study, the gene regulatory network depicted in Fig 12 B was translated into two deterministic 

spatiotemporal models, as detailed in the Method section. One model operates in isolation, devoid 

of intercellular communication (coupling), while the other incorporates intercellular coupling 

mechanisms. In both models, I employed Michaelis-Menten and Hill function approximations to 

describe the interactions between transcription factors and genes. Additionally, I assumed mass 

action and linear kinetics to describe processes such as degradation, translation, and complex 

formation. These mathematical representations provide a robust framework for simulating the 

dynamic behavior of the circadian clock gene network. In the absence of synchronization signals 

that enable cell-cell coupling, autonomous cells in the suprachiasmatic nucleus or other peripheral 

tissues like the liver would oscillate with different periods, amplitudes, and phases. This 

desynchronization is due to intrinsic noise and variability in the gene regulatory networks of 

individual cells. However, intercellular communication induced by extrinsic or intrinsic signals 

ensures synchrony in the oscillations and resulting biological functions across the cell population. 

This coupling mechanism, mediated by signaling molecules or direct cell-cell interactions, 

promotes coordination and coherence in the circadian rhythms and associated processes98,103,105. 

The two models developed in this study were specifically designed to investigate the 

spatiotemporal expression patterns of circadian clock genes in the liver. By incorporating 



54 
 

intercellular communication in one of the models, I aimed to explore the role of coupling 

mechanisms in synchronizing the circadian rhythms across hepatocytes (liver cells). I used a 

comprehensive dataset comprised of single-cell RNA sequencing (scRNA-seq) and single 

molecule fluorescence in situ hybridization (smFISH) data , which previously demonstrated that 

the expression of core circadian clock genes in the liver lobule is non-zonated due to coupling 

among autonomous cell oscillators29. To dissect the regulatory intricacies underlying these 

observations, 1 constructed an uncoupled model by translating the wiring diagram depicted in Fig 

12 B into a system of 23 differential equations. These equations encapsulated the dynamic 

processes of gene transcription and translation, protein complex formation, phosphorylation, and 

inhibition, thus providing a mechanistic framework to explore the underlying regulatory dynamics. 

This model was applied to an assembly of over 435 cells spatially arranged to mimic the geometry 

of a liver lobule (the lobule geometry was described in a piff file for use in the Compucell3D 

simulations). To capture potential heterogeneity across cells in transcription rates, which could 

arise from desynchronization in gene expression, I assumed a Gaussian distribution to randomize 

the transcription rate parameters for every gene in each individual cell. This stochastic modeling 

approach aimed to incorporate the inherent variability and noise present in gene expression 

dynamics across the cellular population within the liver lobule microenvironment. The spatial and 

temporal expression patterns for each gene were then simulated in the Compucell3D modeling 

environment, a powerful platform for simulating and visualizing multicellular systems and their 

dynamics108–110.   

The simulations of the uncoupled model revealed that the mean expression of both Per and Bmal1 

genes at timepoints 6, 12, 18, and 24 hours was not zonated across the portal-central axis of the 

liver lobule (Fig 13 A). This finding confirms results from previous studies, which observed a non-
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zonated expression pattern for core circadian clock genes in the liver lobule111. In the uncoupled 

model, the temporal profiles of Per and Bmal1 gene expression exhibited distinctive autonomous 

oscillations spanning the lobule, characterized by periods ranging from 21 to 28 hours and 

amplitudes varying between 2.8 to 4.7 (arbitrary units, a.u) for Per, and periods ranging from 21 

to 28 hours and amplitudes spanning from 0.8 to 3.2 a.u for Bmal1 (Fig 13 B, E and F). These 

autonomous oscillations reflect the desynchronization and variability among individual cells in the 

absence of coupling mechanisms. 

To explore the impact of intercellular communication on circadian synchronization, in the coupled 

model, I assume that synchronization of autonomous cells across the liver lobule is achieved 

through communication mediated by a putative coupling ligand between each cell and its 

neighbors. The transmission of this coupling ligand across the liver lobule effectively synchronizes 

the period of the oscillations. I hypothesized that global synchronization across the lobule is 

achieved through the average concentration of the coupling ligand affecting clock genes via 

receptor molecules, as previously suggested98,105. Data from Finger et al98. revealed a potential 

coupling factor: the transforming growth factor-beta (TGF-β), which activates early transcription 

factors to control the molecular clock machinery, leading to a significant upregulation of Per2 

mRNA levels after 2-4 hours. This finding supports the role of TGF-β as a potential coupling ligand 

in synchronizing the circadian clock across the liver lobule103,112. The spatial and temporal 

expression for each gene in the model was then simulated in Compucell3d, showing coupling 

across the portal-central axis (Fig 13 C). The temporal profiles of Per and Bmal1 gene expression 

exhibited synchronized oscillations, characterized by a period of 24-25 hours and an amplitude of 

5.2 for Per, and a period of 23-25 hours with an amplitude of 2.2 for Bmal1 (Fig 13 D, E, and F). 

These results demonstrate the impact of intercellular communication and coupling mechanisms on 
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synchronization of circadian rhythms across the liver lobule. While the uncoupled model showed 

desynchronized oscillations with varying periods and amplitudes, the coupled model exhibited 

synchronized oscillations with consistent periods and amplitudes, reflecting the role of coupling 

factors in coordinating the circadian clock across the cell population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Multicellular spatiotemporal model simulations. Expression across the liver lobule of 

(A) Period gene (Per) and Brain and Muscle ARNT-Like 1 (Bmal1) without coupling at circadian 

times ZT 6, 12, 18, and 24 hours. The central- portal lobule display a non-zonated circadian clock 

genes expression as reported in Droin et al29. (B) Limit cycle oscillations of the Per and Bmal1 

genes for 435 cells without coupling with varying period and amplitude values for Per (period: 21-

28 hours, amplitude: 2.8-4.7) and Bmal1 (period: 21-28 hours, amplitude: 0.8-3.2).  

B 
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Figure 13 (cont’d) 

(C) The spatial expression of Per, and Bmal1 genes for 435 cells with coupling at circadian time 

ZT 6 12, 18 and 24 hours across the liver lobule. The expression profile shows a synchrony across 

all time points. (D) Limit cycle oscillations of the Per and Bmal1 genes with coupling producing 

synchronized period and amplitude for Per (period: 24-25 hours, amplitude: 5.0-5.2) and Bmal1 

(period: 23-25 hours, amplitude: 2.0-2.2). The color bar shows the expression values of genes in 

each cell across the central (CV) and portal (PV) in the liver lobule. Each dot represents the time-

dependent expression of a gene per cell. (E) The distribution of uncoupled Per and Bmal1 

oscillation periods for over 400 cells in the model lobule. The period ranges from 21 hours to 28 

hours. (F) The distribution of coupled Per and Bmal1 oscillation periods for over 400 cells in the 

model. The period ranges between 24 hours to 25 hours for Per oscillations and 23 hours to 25 

hours for Bmal1 oscillations. 
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Figure 13 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensitivity analysis 

To investigate the sensitivity of the model dynamics to variations in key parameters, I performed 

a parameter sensitivity analysis using the AMIGO2 toolbox in MATLAB113,114. The model 

dynamics analyzed included the period of oscillation, amplitude of oscillation, phase shift, and the 

average amount of mRNA produced. Specifically, the sensitivity analysis focused on the effects of 

transcription and degradation rate parameters on these model dynamics. I used the Latin hypercube 

sampling (LHS) method, which is known for providing more precise estimates compared to 

E 

F 
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random sampling methods115. The LHS technique is used to divide the tested range of each variable 

into intervals, from which sample points are selected to ensure an efficient exploration of the 

parameter space. 

The LHS method involves the following steps: 

• Defining the ranges of the parameters to be tested: For each transcription and degradation 

rate parameter, I specified a biologically relevant range within which the parameter can 

vary. The ranges for each parameter were determined from literature values. 

• Dividing the parameter ranges into intervals: The LHS method divides the range of each 

parameter into equal intervals, ensuring that the entire range is adequately sampled. 

• Sampling from the intervals: The LHS algorithm selects sample points from each interval 

in a stratified manner, ensuring that the entire parameter space is covered without clustering 

or gaps. 

• Running simulations: For each set of sampled parameter values, I ran the model 

simulations and recorded the respective values of the model dynamics (period, amplitude, 

phase, and average mRNA levels). 

• Sensitivity analysis: The sensitivity of each model dynamic to variations in the 

transcription and degradation rate parameters was quantified by analyzing the relationship 

between the sampled parameter values and the corresponding model dynamics. Various 

statistical measures, such as partial rank correlation coefficients (PRCC) or standardized 

regression coefficients, can be used to assess the sensitivity. 

By employing the LHS method and systematically exploring the parameter space, I aimed to 

identify the most influential parameters affecting the circadian clock dynamics and quantify their 
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relative impacts. This sensitivity analysis provided valuable insights into the robustness and critical 

control points of the model, as well as potential targets for experimental validation or therapeutic 

interventions. 

The transcription and degradation rate parameters of the Reverb gene respectively show 

negative and positive correlation with the average expression level of Bmal1. 

 

I investigated the effect of the transcription and degradation rate parameters on average expression 

of the observables (mRNA levels of clock genes) for a complete circadian cycle (24 hrs) after 

reaching a stable oscillation. A 10% increase in the transcription rate parameter of each gene 

demonstrated a direct correlation with the corresponding mRNA level. This phenomenon was 

evident across the entire network, as elevating the transcription rate parameter resulted in a 

proportional rise in the average expression levels of the associated observables (Fig 14 B). 

Moreover, the intricate interplay of positive and negative feedback regulations within the gene 

network was reflected in the sensitivity analysis of transcription and degradation rates. For 

instance, an increase in the transcription rate parameter of the Cry gene (vCs) led to a decrease in 

the average expression of Per mRNA due to the delayed inhibition imposed by PER-CRYn. 

Similarly, elevating the transcription rate parameter of Bmal1 (vBs) resulted in a decrease in the 

average expression of Rev-erb and an increase in the average expression of Per and Cry, 

attributable to the positive feedback loop involving Bmal1, Per, and Cry, alongside the negative 

feedback loop involving Bmal1 and Rev-erb (Fig 14 A-B).   

Conversely, a 10% increase in the degradation rate parameters exhibited an inverse correlation 

with their corresponding observables, causing a decline in the average expression levels of their 

associated genes (Fig 14 C). Notably, an increase in the degradation rate parameter of Bmal1 

(d_mB) led to an increase in the expression level of the Rev-erb gene, owing to the negative 
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feedback loop involving Bmal1, PER-CRY, and Rev-erb genes. Similar relationships between 

degradation rate parameters and observables were elucidated across the network (Fig 14 C). 

This analysis revealed that the clock gene network demonstrated greater sensitivity to changes in 

transcription rates compared to degradation rates. Notably, among all genes analyzed, Bmal1 

exhibited the highest sensitivity to degradation rates across the entire network, despite being 

directly regulated solely by Ror and Rev-erb. In summary, our study sheds light on the intricate 

regulatory dynamics of the circadian clock gene network, highlighting the differential effects of 

transcription and degradation rate parameters on gene expression dynamics. These findings deepen 

our understanding of the underlying mechanisms governing circadian rhythm regulation and 

underscore the complex interplay of feedback mechanisms within the gene network. 
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Figure 14: (A) Schematic diagram of the mammalian clock network with its transcription and 

degradation parameters. (B) Sensitivity analysis of transcription rate parameters.  The transcription 

rate parameter for the observables (mRNA levels of clock genes) were optimized and the dynamics 

revealed a positive correlation between the transcription rate parameters and the average mRNA 

level of the respective gene. (C) Sensitivity analysis of degradation rate parameters. Optimization 

of the degradation rate parameter for the observables (mRNA levels of model clock genes) revealed 

a negative correlation between the degradation rate parameters and their respective average 

mRNA. Also, an increase in the degradation rate parameter of the Bmal1 gene, d_mB, led to an 

increase in the expression level of the Reverb gene due to the negative feedback loop between 

Bmal1, PER-CRY and Reverb gene.  

 

Increase in the transcription rate parameters lead to a non-monotonic decrease in the 

oscillatory period while increasing the amplitude of the oscillation. 

 

The circadian clock genes exhibit oscillatory behavior with periods ranging from 23.5 to 24.5 

hours10. While the oscillatory period is consistent across all genes, the amplitude, defined as the 

absolute difference between the peak and trough levels of the oscillation, varies from gene to gene  

due to the different biochemical reactions involved in the transcription of each gene. A systematic 

A 

B C 
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exploration of the transcription rate parameters within the range of 0 to 5 a.u revealed a non-

monotonic change in the oscillatory period. Specifically, the periods of the circadian clock genes 

Per and Reverb initially increased linearly at very low transcription rates, but subsequently 

decreased monotonically with increasing transcription rate parameters for Per (vPs) and Reverb 

(vRes) (Fig 15 A). Conversely, the oscillation period of the Ror gene exhibited a monotonic 

increase with an increase in its corresponding transcription rate parameter, consistent with previous 

studies attributing this behavior to the positive feedback loop mediated by ROR116. To investigate 

the effect of transcription rate parameters on the amplitude of circadian clock oscillations, the same 

range of parameter values (0-5) was explored. The amplitude of the oscillation was monitored 

across all clock genes in the model. The analysis revealed a consistent trend of monotonic increase 

in the amplitude of oscillation for all clock genes as their corresponding transcription rate 

parameters were increased within the specified range. This observation suggests a direct 

relationship between the rate of gene transcription and the magnitude of oscillatory behavior 

exhibited by the circadian clock genes. Specifically, as the transcription rate parameters were 

incrementally increased from 0 to 5, the amplitude of oscillation for each clock gene exhibited a 

continuous and unidirectional increase, without any deviations or fluctuations in the observed trend 

(Fig 15 B). This monotonic increase in amplitude indicates that higher transcription rates lead to 

more pronounced oscillations, with greater deviations from the mean value. It is noteworthy that 

the rate of increase in amplitude may vary among different clock genes, potentially due to the 

specific regulatory mechanisms and feedback loops involved in their respective transcriptional 

processes. However, the overall trend of a monotonic increase in amplitude with increasing 

transcription rate parameters was consistently observed across all clock genes in the model. These 

findings highlight the crucial role of transcriptional regulation in modulating the oscillatory 
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dynamics of the circadian clock network. By adjusting the transcription rate parameters, the 

amplitude and the period of circadian oscillations can be effectively modulated, potentially 

influencing downstream processes and physiological rhythms governed by the circadian clock. 

 

 

 

 

 

 

 

 

 

 

Figure 15: A non-monotonic period and amplitude dynamics for observables Per mRNA and 

Reverb mRNA as gradient of the transcription rate parameters applied in the model. (A) Oscillation 

period changes with respect to changes in transcription rate parameter for Per mRNA and Reverb 

mRNA. The oscillatory period exhibits a monotonic decrease with an increase in the transcription 

rate parameter. The red dot corresponds to the wild-type parameter value from the simulated model 

for the transcription rate parameter for Per and Reverb (x=2.9 and x=2.425) respectively, and their 

corresponding oscillatory period (y=23.8 h and y=23.97) (B) Oscillation amplitude changes with 

respect to changes in transcription rate parameter for Per mRNA and Reverb mRNA.  A monotonic 

increase of oscillatory amplitude is observed with an increase in the transcription rate parameter. 

The red dot corresponds to the wild-type parameter value for the transcription rate parameter for 

Per and Reverb (x=2.9 and x=2.425) respectively, and their corresponding oscillatory amplitude 

(y=3.4 and y=2.6). 

 

The period shows a concave dependency, along with a monotonic decrease in amplitude as the 

degradation rate parameter for Per and Reverb is increased. 

 

We conducted a systematic exploration of the parameter space by varying the degradation rate 

parameters in the model to investigate their impact on the two key characteristics of the circadian 

A 

B 
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rhythm: the oscillatory period and the amplitude. These parameters govern the rate at which the 

molecular components of the circadian clock, namely the clock genes and their associated 

regulatory elements, are degraded or broken down within the cellular environment. Our analysis 

revealed a non-linear, concave relationship between the degradation rate parameters and the 

oscillatory period of the circadian clock genes. As the degradation rate parameters were increased 

incrementally from 0 to 1.0, the period initially decreased, reaching a minimum value, and then 

increased monotonically with further increments in the degradation rate (Fig. 16 A). This concave 

pattern was observed for the core clock genes, Per and Reverb, when their respective degradation 

rate parameters, d_mP and d_mRe, were varied independently. 

Conversely, our investigation unveiled a monotonic decrease in the amplitude of oscillations across 

all clock genes in the model, as their corresponding transcription rate parameters were increased 

(Fig. 16 B). The amplitude, which represents the magnitude of the oscillatory signal, exhibited an 

inverse relationship with the transcription rate parameters, such that higher transcription rates led 

to lower amplitudes of oscillation. These findings highlight the intricate interplay between the 

degradation and transcription rates of the molecular components involved in the circadian clock 

machinery, and their profound influence on the temporal dynamics and robustness of the circadian 

rhythm. Notably, the non-linear relationship between the degradation rates and the oscillatory 

period suggests the existence of an optimal range for these parameters, within which the circadian 

clock operates most effectively, ensuring the maintenance of a stable and consistent oscillatory 

pattern. 
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Figure 16: A concave dynamic period for Per and Reverb as degradation rate parameter increases. 

(A) The oscillation period of both Per and Reverb decreases and then increases giving a concave 

profile with respect to an increasing degradation rate parameter. (B) Oscillation amplitude for Per 

and Reverb showed a monotonic decrease with an increase in the degradation rate parameter.  The 

red dots in (A) and (B) denote the wild-type parameter value from the simulated model degradation 

rate parameter value and the resulting period/amplitude value respectively. 

 

Bifurcation analysis shows that Cry and Ror exhibit Hopf bifurcations with varying 

transcription rate parameter value. 

 

I further probed the dynamics of the oscillatory rhythm by conducting a bifurcation analysis, which 

allows for a systematic exploration of how the system's behavior, characterized by properties such 

as the oscillatory period, amplitude, phase, and average mRNA levels, responds to variations in 

key parameter values. This analysis was performed using XPPAUT117, a powerful computational 

A 

B 
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tool for studying dynamical systems. The bifurcation analysis was initially carried out by 

considering the transcription rates as the primary bifurcation parameters. Specifically, we 

examined the dependence of the oscillatory dynamics on the transcription rates vCs for Cry mRNA 

and vRs for Ror mRNA. The resulting bifurcation diagrams, which depict the system's behavior 

as a function of these parameters, revealed a cyclic oscillatory pattern (Fig. 17 A and C). These 

diagrams illustrate the coexistence of stable and unstable limit cycles, represented by green and 

blue curves, respectively. The points at which these curves intersect correspond to Hopf bifurcation 

(HB) points, indicating a transition between steady-state and oscillatory behaviors. By leveraging 

the information contained within the bifurcation diagrams, I derived the stable and unstable 

oscillatory periods for both Cry and Ror (Fig. 17 B and D). Notably, the stable and unstable 

parameter values exhibited a remarkable alignment, both in terms of the oscillatory period and the 

limit cycle oscillation amplitude, for each gene under consideration. Furthermore, we extended the 

bifurcation analysis to incorporate the degradation parameters of the observable molecular species, 

thereby assessing the stability and robustness of the model's rhythmic dynamics under varying 

degradation rates. The bifurcation analysis not only elucidated the intricate relationships between 

key parameters and the emergent oscillatory dynamics but also served as a powerful tool for 

validating the model's capability to capture and maintain robust circadian rhythms. By 

systematically exploring the parameter space, we gained valuable insights into the regions of 

stability and instability, as well as the transitions between these regimes, enabling a deeper 

understanding of the underlying mechanisms governing the circadian clock machinery. 
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Figure 17: One parameter bifurcation analysis of the model rhythmic dynamics. (A&C) The 

bifurcation diagram of the transcription rate parameter of Cry mRNA, (vCs) and Ror mRNA, 

(vRs). The green and blue lines represent stable unstable limit cycles respectively. HB denotes the 

Hopf bifurcation points in the bifurcation diagram. (B&D) Bifurcation diagram showing the 

periodic stability of the transcription rate parameter of Cry mRNA, (vCs) and Ror mRNA, (vRs). 

The green line represents stable period and the blue line represent unstable period of the model.    
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Model parameter estimation 

I used parameter estimation to calibrate the mathematical model of the circadian clock against 

experimental data obtained from single-nuclei RNA-sequencing of mouse liver cells. The 

experimental data was acquired from male C57BL/6 mice housed under a 12:12 light:dark cycle, 

ensuring synchronization with the environmental circadian rhythm102. Parameter estimation was 

carried out with the AMIGO2113,114 software package, which implements advanced algorithms for 

optimizing model parameters to achieve the best possible agreement between model predictions 

and experimental observations. Specifically, we aimed to optimize the transcription and 

degradation rate parameters of the model to fit the hepatic single-nuclei RNA-sequencing data. 

The goodness of fit between the model predictions and the experimental data was quantified by a 

cost function, which measures the discrepancy between the observed values and the values 

predicted by the model for a given set of parameters. The parameter estimation algorithm seeks to 

minimize this cost function, effectively identifying the parameter values that yield the closest 

agreement between the model's output and the empirical observations. A smaller overall value of 

the cost function indicates a better match between the model's predictions and the available data. 

I defined the cost function as a maximum (log-) likelihood function, which is a suitable choice 

given the availability and nature of the measured noise in the experimental data. The initial values 

for the transcription and degradation rate parameters to be estimated were set to the wild-type 

values used in the original model simulation. Additionally, we imposed upper and lower bounds 

on these parameters based on values reported in the literature on circadian system modeling37,38,118. 

Mathematically, I formulated a non-linear programming problem (NLP) with algebraic constraints, 

aiming to find the optimal transcription and degradation rate parameters that minimize the cost 

function. This formulation allows for the incorporation of additional constraints, such as parameter 
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bounds and other physiological considerations, ensuring that the estimated parameter values are 

biologically plausible and consistent with prior knowledge. By employing this parameter 

estimation approach, I was able to refine our mathematical model to better capture the dynamics 

observed in the experimental data, ultimately enhancing our understanding of the underlying 

circadian clock machinery and its regulatory mechanisms.  

Estimation of transcription and degradation rate parameters. 

To assess the predictive accuracy of our mathematical model, I utilized single-nuclei gene 

expression data obtained from male C57BL/6 mice at specific time points: 2, 4, 8, 12, 18, and 24 

hours. My focus was on the core circadian genes incorporated in the model: Per, Cry, Bmal1, Ror, 

and Reverb. The normalized RNA-sequencing data replicates for these genes constituted the 

experimental dataset against which I optimized the transcription and degradation rate parameters. 

To represent the overall gene expression levels, I averaged the expression values of individual 

isoforms for each gene. Given the large scale and non-linear nature of our model, local 

optimization techniques can often converge to suboptimal local minima, failing to identify the 

globally optimal solution. To overcome this challenge and efficiently locate an accurate global 

optimum, I employed the enhanced Scatter Search (eSS) hybrid global-local optimization 

algorithm available in the AMIGO toolbox119,120. This advanced algorithm combines global and 

local search strategies, enabling a more comprehensive exploration of the parameter space and 

increasing the likelihood of finding the globally optimal solution. In the optimization process, I 

targeted five transcription rate parameters and five degradation rate parameters, each associated 

with one of the observable variables in the model. Notably, the optimized parameter values 

exhibited a positive correlation with the nominal wild-type parameter values used in the initial 

model formulation. Consequently, the model predictions generated using the optimized parameter 
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set demonstrated a positive correlation with the experimental measurements for all five observable 

variables (Fig. 18 A and B). This strong agreement between the model's output and the empirical 

data validates the effectiveness of my parameter estimation approach and highlights the model's 

ability to accurately capture the dynamics of the circadian clock machinery. By leveraging 

advanced optimization techniques and incorporating experimental data, I successfully calibrated 

the model, enhancing its predictive capabilities and enabling a more accurate representation of the 

underlying biological processes governing the circadian rhythm.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 18: The predicted model results and experimental data fit for observables using maximum 

(log-) likelihood function. (A) Correlation between predicted transcription and degradation and 

wild type transcription and degradation rate parameter values. (B) Correlation between model 

predictions and measured data. 
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Figure 18 (cont’d) 

(C-F) The fitted curves for the model variables (Per, Cry, Bmal1 and Reverb). The red dotted line 

indicates the experimental data at timepoints 2,4,8,12,18 and 24 h. The solid blue line indicates 

the predicted results from using maximum (log-) likelihood function to fit the model to the 

experimental dataset. 
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CHAPTER 4: SPATIAL-TEMPORAL PERTURBATION OF THE LIVER LOBULE BY 

2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN 
 

INTRODUCTION 

The mammalian liver is a highly organized organ with a unique spatial architecture that facilitates 

its various metabolic functions. The fundamental structural unit of the liver is the hepatic lobule, 

primarily composed of hepatocytes, the parenchymal liver cells. Hepatocytes are arranged along 

the portal-central axis of the lobule, forming a gradient from the portal triad (comprising the portal 

vein, bile duct, and hepatic artery) to the central vein29. This spatial organization of hepatocytes 

within the liver lobule is closely linked to the compartmentalization of gene expression and 

subsequent metabolic activities. Hepatocytes situated closer to the portal triad exhibit higher 

expression levels of genes involved in gluconeogenesis, oxygen utilization, and β-oxidation 

processes33,121. In contrast, hepatocytes located nearer to the central vein display increased 

expression of genes associated with glycolysis, lipogenesis, and xenobiotic metabolism mediated 

by cytochrome P450 enzymes122. This spatial organization of gene expression and metabolic 

function along the porto-central axis of the hepatic lobule is known as liver zonation. This is a 

continuous pattern of concentric layers of hepatocytes, reflecting the specialization of different 

regions of the liver lobule for specific metabolic tasks29,33,95. Liver zonation is established and 

maintained by a complex interplay of chemical cues, metabolic gradients, and cell-to-cell 

interactions. The establishment of metabolic gradients is facilitated by the direction of blood flow 

from the portal triad to the central vein, creating spatial gradients of nutrients and metabolites 

along the porto-central axis. Additionally, circadian rhythms and molecular signaling from core 

clock genes contribute to the temporal organization of metabolic processes within hepatocytes. 

The canonical master regulatory pathway governing liver zonation is the Wnt/β-catenin signaling 

pathway. Wnt proteins bind to Frizzled receptors, leading to the phosphorylation of the β-catenin 
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degradation complex by lipoprotein receptor-related proteins. This event causes the dissociation 

of β-catenin from the degradation complex, allowing its translocation to the nucleus, where it 

activates transcriptional regulators that potentiate the zonation process34,123,124.  

The temporal regulation of liver functions is intricately governed by the biological phenomenon 

known as the circadian rhythm. This temporal compartmentalization ensures that metabolic and 

biological processes within the liver, such as glycolysis and gluconeogenesis, are synchronized 

with the feeding and fasting cycles of the organism28,29,121. The molecular machinery driving 

circadian rhythms is a complex network of circadian genes and proteins interconnected through 

intricate negative and positive feedback loops. The core components of this molecular oscillator 

include the CLOCK and ARNTL (or NPAS2) proteins, which form heterodimeric complexes. 

These CLOCK-ARNTL or NPAS2-ARNTL complexes bind to E-box motifs in the promoter 

regions of downstream circadian genes, such as Per, Cry, Ror, and Reverb, activating their 

transcription. The translated PER and CRY proteins form the PER-CRY complex in the cytoplasm, 

which subsequently inhibits the binding of the CLOCK-ARNTL or NPAS2-ARNTL complexes, 

thereby creating a negative feedback loop. Additionally, the REV-ERB protein competes with the 

ROR protein to inhibit the transcription of the Arntl gene, further modulating the circadian 

rhythm3,75.  

A recent study by Droin et al29. demonstrated that the spatial and temporal axes of the hepatic 

lobule interact with one another. Consequently, many established zonated pathways exhibit 

rhythmic patterns of gene expression. Among these pathways are gene sets involved in drug 

metabolism, suggesting a potential interplay between the spatial zonation, temporal rhythmicity, 

and chemical perturbations within the liver. Notably, while rhythmicity impacts the core pathways 

that determine zonation, the converse is not true, as the core circadian clock genes themselves do 
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not exhibit zonation patterns. This observation highlights the complexity of the interplay between 

the spatial and temporal axes in regulating liver function. The overlap between the temporal and 

spatial axes, particularly in the context of drug metabolism pathways, suggests the existence of a 

third dimension to consider when describing liver function: chemical perturbation. This third axis 

represents the influence of exogenous and endogenous chemical compounds on the intricate spatial 

and temporal dynamics within the liver. 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental toxicant known for its 

detrimental effects on various biological functions. Upon entry into the body, TCDD binds to the 

aryl hydrocarbon receptor (AHR), initiating a cascade of events that lead to toxic effects. Upon 

binding to TCDD, the AHR undergoes a conformational change, translocates to the nucleus, and 

binds to specific DNA sequences called dioxin response elements (DREs) located in the proximal 

promoter regions of target genes, particularly the cytochrome P450 (CYP) genes28,51,125. The 

binding of the TCDD-activated AHR to DREs modulates the transcription of these target genes, 

leading to the subsequent inhibition or activation of downstream genes involved in various 

biological processes. Notably, TCDD exposure has been shown to disrupt both the spatial and 

temporal components of hepatic function within the liver lobule, ultimately contributing to the 

development of several liver-related diseases and disorders. Exposure to TCDD has been 

implicated in the pathogenesis of autoimmune hepatitis, non-alcoholic fatty liver disease 

(NAFLD), cardiovascular disease, bipolar disorder, obesity, and cancer. The mechanisms 

underlying these adverse effects involve the disruption of the intricate spatial organization and 

temporal regulation of gene expression within the liver lobule28,89,124. Specifically, sub-chronic 

exposure to TCDD has been demonstrated to ablate or significantly dampen the oscillations of 

most core circadian clock genes, altering their phase and leading to the disorganization of the 
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rhythmic expression patterns of various zonated gene biomarkers. This disruption of the spatial 

and temporal axes of hepatic function by TCDD can have far-reaching consequences on liver 

homeostasis and overall organismal health126. 

Despite our current understanding of how TCDD-activated AHR may impact these organizational 

pathways, the specific mechanisms underlying the interaction between these regulatory axes 

remain elusive. Furthermore, the acute effects of TCDD-activated AHR on the temporal 

(rhythmicity) and spatial (zonation) components of the hepatic lobule are not well defined. To 

elucidate the transcriptional impact of acute TCDD exposure on hepatocyte rhythmicity and 

zonation, we employed hepatic single-nuclei RNA-sequencing data from male C57BL/6 mice 

administered a single dose of 30 μg/kg TCDD (or sesame oil vehicle) at time-point 0. Liver 

samples were collected and snap-frozen at various time-points (2, 4, 8, 12, 18, and 24 hours) after 

TCDD administration. Zonation within the hepatic lobule was inferred from pseudo-space and 

benchmarked against zonal gene biomarkers from previous studies by Halpern et al95. and Droin 

et al29. Genes were then classified based on the effects of TCDD, zonation, temporal regulation, or 

a combination of these variables using a mixed-nonlinear effect model. Our analysis revealed that 

more genes were regulated by zonation independently than by rhythmicity and TCDD alone. 

Notably, a larger number of genes were regulated by a combination of TCDD and zonation than 

by a combination of TCDD and rhythmicity. Chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) analysis of dose-affected categories revealed the interaction of dioxin 

response elements (DREs), E-box motifs, and AHR in most of the genes affected by TCDD-

activated AHR. Overall, our study demonstrated that TCDD exerts a significant effect on hepatic 

zonation and rhythmicity even at acute exposure levels. The interplay between TCDD, zonation, 

and rhythmicity in regulating gene expression highlights the complexity of the regulatory 
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mechanisms governing hepatic function. Importantly, our findings suggest that the disruption of 

zonation by TCDD may be a more prominent event than the disruption of rhythmicity, as evidenced 

by the greater number of genes regulated by a combination of TCDD and zonation. This 

observation underscores the potential impact of environmental toxicants on the spatial organization 

of hepatic function and the associated consequences for liver homeostasis. Furthermore, the 

interaction between DREs, E-box motifs, and AHR in the genes affected by TCDD-activated AHR 

suggests a potential crosstalk between the AHR signaling pathway and the molecular machinery 

governing circadian rhythms. This crosstalk may contribute to the observed disruption of both 

zonation and rhythmicity upon TCDD exposure. 

METHODS 

Single-nuclei RNA-seq expression dataset and preprocessing. 

Cholico et al127. conducted a time-series experiment to investigate the effects of TCDD on hepatic 

gene expression in male C57BL/6 mice. The experimental design involved treating the mice with 

either sesame oil (vehicle control) or a single dose of 30 μg/kg TCDD via gavage. At specific time 

points (2, 4, 8, 12, 18, and 24 hours) post-treatment, the animals were euthanized by CO2 

asphyxiation, and their livers were immediately collected and snap-frozen for subsequent single-

nucleus RNA-sequencing (snRNA-seq) analysis. The single-nuclei RNA-seq dataset generated 

from this experiment was processed and analyzed using methodologies outlined in previous 

studies124,126. Specifically, the clustering and cell type annotation of the single-nucleus 

transcriptomes were performed to identify and characterize the various hepatic cell populations 

present in the samples.  
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Figure 19: Extraction and sequencing of single nuclei data from male C57BL/6 mice. Male 

C57BL/6 mice housed in a room with a 12:12 light dark cycle was gavaged with single dose of 

sesame oil (as vehicle) or 30 μg/kg of TCDD (as treated). Their livers were harvested 2, 4, 8, 12, 

18, 24, hours post treatment and snap frozen. The snap frozen livers were sequenced to acquire the 

single nuclei sequencing dataset.  

 

We employed a comprehensive preprocessing pipeline to prepare the single-nucleus RNA-

sequencing (snRNA-seq) dataset for downstream analysis.  The preprocessing of the dataset was 

conducted using the scanpy package in Python128, a bioinformatics tool for analyzing single-cell 

RNA sequencing (scRNA-seq) data. Raw counts from the dataset were first normalized to the 

median total cell count using the normalize_total function, ensuring consistency across samples. 

Subsequently, a log transformation with a pseudocount was applied using the log1p function to 

mitigate the effects of extreme values and bring the data into a more interpretable range for 

subsequent analyses. Next, the preprocessing pipeline focused on filtering cells and genes to 

remove low-quality or uninformative data points. Since the study aimed to investigate the effects 

of TCDD on hepatocytes, the first filtering step involved removing all non-parenchymal cell types, 

retaining only hepatocytes in the dataset. This step ensures that the analysis focuses specifically 

on the cell type of interest. Subsequently, low-quality hepatocytes were filtered out based on two 

criteria: 1) hepatocytes with fewer than 1,500 counts, and 2) hepatocytes with fewer than 200 
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detected genes. These thresholds were chosen to exclude cells with low sequencing coverage or 

poor transcriptome quality, as they may introduce noise and bias into the analysis. In addition to 

cell filtering, gene filtering was also performed. Genes that were expressed in fewer than 200 cells 

were removed from the dataset. This step helps to reduce the computational burden and focus the 

analysis on genes with sufficient expression levels across the cell population. We adopted a non-

standard preprocessing step due to the lower formation of clusters observed during batch correction 

analysis. This step highlights the importance of tailoring the preprocessing pipeline to the specific 

characteristics of the dataset and the research questions being addressed. Finally, the identification 

of highly variable genes (HVGs) was accomplished using the highly_variable_genes function from 

the scanpy package. HVGs are genes that exhibit substantial variability in expression levels across 

cells, potentially reflecting biologically relevant differences. These genes are typically used as 

input for downstream analyses, such as dimensionality reduction and clustering, as they capture 

the most informative aspects of the transcriptomic landscape. 

Batch correction using scVI. 

To mitigate sample-specific batch effects present in the snRNA-seq data, we employed scVI129 a 

variational autoencoder model designed for single-cell RNA-sequencing data analysis. Variational 

autoencoders are a type of deep learning model that can learn complex, nonlinear representations 

of high-dimensional data, making them well-suited for batch correction and other tasks in single-

cell genomics. To account for batch effects arising from different biological samples, we assigned 

a unique batch label to the cells originating from each individual sample. These sample-specific 

batch labels were then provided as input to the scVI model during training. By incorporating batch 

information during the model's training process, scVI learns to disentangle the biological signal 

from the technical artifacts introduced by batch effects. The scVI model was trained using the 
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hyperparameters and architecture configurations specified in Tables 2.1 and 2.2, which detailed 

the model's neural network architecture, regularization techniques, optimizer settings, and other 

training specifications. These hyperparameter settings were deemed suitable for the given snRNA-

seq data and batch correction task. 

Hyperparameter Value           

Latent dimension 30 

Number of layers 1 

Layer width 128 

Dropout rate 0.1 

Kullback-Leibler weight 5 ∗ 10−5 

Gene expression distribution NB 

Latent Distribution Normal 

 

Table 3.1: Hyperparameters for scVI’s variational autoencoder model. 

 

 

 

 

 



81 
 

Hyperparameter Value 

Training epochs 46 

Learning rate 0.001 

Learning rate decay 10−6 

Optimizer Adam 

Optimizer epsilon 0.01 

 

Table 3.2: Hyperparamters for scVI’s variatonal autoencoder training. 

Layer calculations. 

We utilized the latent space representation of the normalized cell counts obtained from the single-

cell variational inference (scVI) method as input into the diffusion maps algorithm. Diffusion maps 

were generated using the diffmap function from the scanpy Python package. This technique is a 

non-linear dimensionality reduction method that captures the underlying geometric structure of the 

data in a low-dimensional representation. The second component of the diffusion maps 

representation was extracted and min-max scaled to generate a pseudo-space metric. This metric 

was oriented such that genes with central zone enrichment had the highest values, while genes 

with portal zone enrichment had the lowest values. The rationale behind this approach is to capture 

the transcriptional heterogeneity along the central-portal axis of the liver lobule. The cells were 

then divided into five equal bins based on their pseudo-space metric values, representing 

transcriptional zones along the central-portal axis. Each bin contains cells within one-fifth of the 

full pseudo-space range (i.e., cells in bin i have pseudo-space values between 
𝑖−1

5
 and 

𝑖

5
). This 

binning approach allows for the identification of genes with varying expression patterns across the 

central-portal axis. For each treatment condition, time point, and bin (layer), the raw counts were 
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summed across the constituent cells. This step aggregates the gene expression data across cells 

within each bin, effectively capturing the transcriptional profile of each zone. These count sums 

then underwent normalization using the computeSumFactors function from the scran R package 

to obtain "Normalized Counts." This normalization step is crucial to account for technical biases 

and variations in sequencing depth, ensuring that the gene expression values are comparable across 

different samples and conditions. Genes were then categorized by zone based on the bin (layer) 

showing their maximum Normalized Counts. Genes with peak expression in bins 1 and 2 were 

classified as central zone genes, as they exhibit the highest expression levels in regions closer to 

the central vein. Bin 3 genes with mid-range pseudo-space values were termed mid-lobular, 

representing genes with intermediate expression patterns. Finally, portal zone genes displayed 

maximal Normalized Counts in bins 4 and 5, indicating their enrichment in regions closer to the 

portal vein. 

Design of Non-Linear Mixed Effect Model. 

We devised an analytical framework by constructing a a non-linear mixed effect model (NLMEM) 

using the MixedLM class in the statmodels Python package to investigate the effects of various 

factors on gene expression. Mixed effect models are statistical models that incorporate both fixed 

and random effects, allowing for the analysis of data with hierarchical or nested structures. In this 

study, the NLMEM models were meticulously designed to incorporate various factors, enabling 

the examination of the impact of TCDD exposure (D), rhythmicity (R), and zonation (Z) on gene 

expression dynamics. Table 2.3 provides descriptions of the individual terms representing each 

factor in the NLMEMs. These terms capture the specific aspects of each factor that influence gene 

expression. For instance, the term representing TCDD exposure may include parameters related to 

the dose, duration, or time since exposure, while the term for rhythmicity may incorporate 
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parameters related to the amplitude, period, and phase of the oscillations. The specific equations 

for the NLMEM classes outlined in Table 2.3 are presented in Table 2.4. These equations 

mathematically represent the relationships between the factors (D, R, and Z) and gene expression, 

incorporating both fixed and random effects. Fixed effects are parameters that are constant across 

all observations, while random effects account for the variability among different groups or levels 

within the data. The NLMEM approach offers several advantages over traditional linear models. 

First, it allows for the incorporation of non-linear relationships between the predictors and the 

response variable, which is particularly relevant for biological systems where responses may be 

non-linear or exhibit complex patterns. Second, the mixed effect structure accounts for the 

hierarchical or nested nature of the data, where observations may be correlated within groups or 

clusters. This is crucial when analyzing gene expression data, where measurements from the same 

individual or experimental unit may be correlated. 

 

Term Effect Equation 

𝐷 D 
{
0 𝑖𝑓 𝑆𝑒𝑠𝑎𝑚𝑒 𝑂𝑖𝑙 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

1 𝑖𝑓 𝑇𝐶𝐷𝐷 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
 

𝑅𝑆𝑖𝑛 R sin (𝜔𝑡) 

𝑅𝐶𝑜𝑠 R cos (𝜔𝑡) 

𝑍𝑃1 Z 𝑙 

𝑍𝑃2 Z 3𝑙2

2
 

 

Table 3.3: Terms for mixed linear effects models. Each term is denoted by the name and its effect. 

D is TCDD (Dioxin) Influece, R is rhythmicity, and Z is zonation. 𝑡 is the time in hours after  
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Table 3.3 (cont’d) 

treatment. 𝑙 is the layer of the liver lobule. 𝜔 is the conversion factor between 𝑡 and radians which 

is equal to 
2𝜋

24
. 

 

Class Equation for Model 

F 𝑦 = 𝛽0 

D 𝑦 = 𝛽0 + 𝛽1𝐷 

R 𝑦 = 𝛽0 + 𝛽1𝑅𝑆𝑖𝑛 + 𝛽2𝑅𝐶𝑜𝑠 

Z 𝑦 = 𝛽0 + 𝛽1𝑍𝑃1 + 𝛽2𝑍𝑃2  

Z+R 𝑦 = 𝛽0 + 𝛽1𝑅𝑆𝑖𝑛 + 𝛽2𝑅𝐶𝑜𝑠 + 𝛽3𝑍𝑃1 + 𝛽4𝑍𝑃2 

RxZ 𝑦 = 𝛽0 + (𝛽1𝑅𝑆𝑖𝑛 + 𝛽2𝑅𝐶𝑜𝑠 ) ∗ (𝛽3𝑍𝑃1 + 𝛽4𝑍𝑃2) 

DxR 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑅𝑆𝑖𝑛 + 𝛽3𝑅𝐶𝑜𝑠) 

DxZ 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑍𝑃1 + 𝛽3𝑍𝑃2) 

Dx(Z+R) 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑅𝑆𝑖𝑛 + 𝛽3𝑅𝐶𝑜𝑠 + 𝛽4𝑍𝑃1 + 𝛽4𝑍𝑃2) 

DxZxR 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑅𝑆𝑖𝑛 + 𝛽3𝑅𝐶𝑜𝑠 ) ∗ (𝛽4𝑍𝑃1 + 𝛽5𝑍𝑃2) 

 

Table 3.4: Equations for each non-linear mixed effects model used for classification.  

Implementation of the NLMEM was almost identical to Droin C et al29. These equations were fit 

to normalized count of each individual gene using the Nelder-Mead optimization algorithm130. A 

noise offset (σ0 = 0.15) was added to the data to avoid overfitting. Equations with the smallest 

overall Bayesian information criterion131 (BIC) were classified with their corresponding class. BIC 

acts as a general multi-comparison analogue to the likelihood ratio (𝜒2) test as it penalizes more 

complex models. The exception to classifying with models that have the smallest BIC was when 



85 
 

models tied with one another. Like for this was in ties, which we defined as having a relative 

difference of 1%. In the case of ties, models with fewer parameters were selected.  

Bar graphs of classification were calculated using Shwarz weights. Shwarz weights are calculated 

using differences between the BIC values and the minimum BIC value in across all models 

(𝐵𝐼𝐶𝑀𝑖𝑛) using the following equation: 

𝑠ℎ𝑤𝑎𝑟𝑧 𝑤𝑒𝑖𝑔ℎ𝑡 =  
exp

𝐵𝐼𝐶𝑖 − 𝐵𝐼𝐶𝑀𝑖𝑛

2
Σ𝑖=0

𝑛 (𝐵𝐼𝐶𝑖 − 𝐵𝐼𝐶𝑀𝑖𝑛)
 

Differential Rhythmicity and Zonation. 

To conduct a comprehensive analysis of differential rhythmicity and zonation between treated and 

control conditions, gene expression data were fitted to models similar to the approach described in 

section 2.4. and the Differential RhythmicitY analysis in R (DryR)132 framework model in R. DryR 

(Differential RhythmicitY analysis in R) is a statistical framework based on model selection that 

is designed to detect and estimate changes in rhythmic parameters (amplitude and phase) and mean 

expression levels across multiple conditions. This framework leverages the power of rhythmic 

regression models and likelihood-based model comparison techniques to rigorously analyze time-

course gene expression data. The core principle of DryR is to fit gene expression data to a set of 

competing models that represent different rhythmic behaviors and subsequently compare the 

goodness-of-fit of these models using likelihood ratio tests. By fitting these models to the time-

course data and comparing their respective likelihoods, DryR can identify genes that exhibit 

rhythmic expression patterns, as well as those that display significant changes in rhythmicity or 

mean expression levels between conditions. 

With respect to the models similar to the approach described in section 2.4, instead of using the 

Nelder-Mead optimization algorithm, we employed ordinary least squares (OLS) regression for 
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model fitting by leveraging the statsmodels Python library. The OLS regression method is a widely 

used technique for estimating the unknown parameters in a linear regression model. By minimizing 

the sum of squared residuals between the observed data and the predicted values from the model, 

OLS provides an unbiased and efficient estimate of the model parameters under certain 

assumptions. Specifically, the ols function from statsmodels.api was utilized to carry out OLS on 

each gene's expression values, which were separated into treated and control groups. This 

separation enabled the quantification of differences in rhythmicity parameters and spatial 

patterning between the two conditions across various zone regions, supporting subsequent analysis 

of spatial and temporal expression patterns under treatment conditions. These separated treated 

and control gene expression values were then fitted to either the R class model (capturing 

rhythmicity) or the F class model (non-rhythmic flatline) for rhythmicity analysis. The R class 

model incorporates parameters that describe the oscillatory behavior of gene expression, such as 

amplitude, period, and phase, while the F class model represents a constant, non-rhythmic 

expression pattern. Similarly, for spatial zonation analysis, the data were fitted to the Z class model 

(spatial patterning) or the F class model. The Z class model accounts for the spatial organization 

of gene expression along the central-portal axis of the liver lobule, capturing the varying 

expression levels across different zones. To determine if the R class or Z class models, which have 

more parameters, provided a statistically significantly better fit than the simpler F class model, 

likelihood ratio tests (also known as χ2 tests) were employed. The likelihood ratio test is a 

statistical method used to compare the goodness of fit between nested models, where one model 

(the null model, in this case, the F class model) is a special case of the other model (the alternative 

model, either the R class or Z class model). The likelihood ratio test compared the maximum 

likelihood estimates of the more complex model (R or Z class) to the simpler model (F class), 
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quantifying if the additional parameters justify the increase in model complexity. This enabled a 

rigorous identification of differences in rhythmicity and spatial patterning between treated and 

control conditions for each gene tested. Genes with expression data that were significantly better 

explained by the R class model compared to the F class model, based on the likelihood ratio test, 

were classified as exhibiting differential rhythmicity. Similarly, genes better fit by the Z class 

model were designated as displaying differential zonation. The likelihood ratio test was 

implemented using the chi2 function from the scipy.stats Python package for this model selection 

approach. This function calculates the p-value associated with the likelihood ratio test statistic, 

allowing for the assessment of statistical significance and the selection of the more appropriate 

model for each gene. 

We estimated rhythmicity parameters from the fitted parameters in R models. If we let 𝑎 = 𝛽1 and 

𝑏 = β2 then we can calculate the amplitude of the expression oscillation as: 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 2√𝑎2 + 𝑏2 

And we can define the phase as: 

𝑝ℎ𝑎𝑠𝑒 = 𝜔 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏, 𝑎) 

Linear zonation slope was calculated for all zonal genes that kept zonation post TCDD treatment 

and were not mid-lobular. To calculate zonation slope we fit a simpler zonation model than the one 

in table 2.4: 

𝑦 = 𝛽0 + 𝛽1𝑙 

We fit this model much in the same way we did above during differential zonation. The zonation 

slope was equal to 𝛽1. The procedure was like how one would find the line of best fit. 
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Statistical Tests. 

Differential expression analysis between treatments and comparison of parameter values were 

performed using the non-parametric Mann-Whitney U test, implemented via the mannwhitneyu 

function in scipy.stats. The Mann-Whitney U test is a non-parametric statistical test that is used to 

compare the distributions of two independent samples. It is particularly useful when the data 

violates the assumptions of normality or homogeneity of variance, which are required for 

parametric tests such as the t-test. To determine if there were differences between the distribution 

of gene zone assignments between gene lists, the Kolmogorov-Smirnov two-sample test was 

utilized through the ks_2samp function. The Kolmogorov-Smirnov test is a non-parametric test 

that quantifies the distance between the empirical distribution functions of two samples. This test 

is useful for comparing the overall shapes and distributions of two datasets, rather than just their 

central tendencies or means. Correlation coefficients and associated p-values were also computed 

using scipy.stats functions. Correlation analysis is a statistical technique that measures the strength 

and direction of the linear relationship between two variables. The correlation coefficients quantify 

the degree of association, while the p-values indicate the statistical significance of the observed 

correlation. All statistical tests leveraged Python-based scipy.stats functions, which are part of the 

SciPy library. SciPy is a widely used open-source Python library for scientific and technical 

computing, providing a comprehensive collection of mathematical algorithms and functions. For 

gene set enrichment analysis, the Enrichr API within the gseapy package was used to identify 

enriched pathways and processes. Gene set enrichment analysis (GSEA) is a computational 

method that determines whether predefined sets of genes (e.g., pathways or biological processes) 

are overrepresented or underrepresented in a given gene list, compared to a background set of 

genes. The Enrichr API provides access to a comprehensive collection of gene set libraries, 
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enabling the identification of enriched biological annotations associated with the genes of interest. 

Significant pathways were called at a false discovery rate (FDR) threshold of < 0.2. The FDR is a 

statistical method used to correct for multiple hypothesis testing, which is a common issue when 

performing numerous statistical tests simultaneously. By controlling the FDR, researchers can 

balance the trade-off between false positive and false negative rates, ensuring that the identified 

enriched pathways are statistically robust. This integrative analysis enabled connecting the 

observed differential expression and rhythmicity changes to impacted biological functions and 

processes. By combining the results of differential expression analysis, rhythmicity parameter 

comparisons, and gene set enrichment analysis, researchers can gain a comprehensive 

understanding of the transcriptional responses to experimental treatments or conditions. This 

approach allows for the identification of dysregulated genes, alterations in rhythmic patterns, and 

the associated biological pathways and processes that may be affected by these changes. 

RESULTS 

Treatment with 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) induces an oscillatory pattern in 

circadian clock genes and elevates the expression of TCDD response genes in acute 

hepatocyte response. 

 

To investigate the transcriptional impact of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

exposure on the disruption of rhythmicity and zonation in hepatocytes, we utilized single-nucleus 

RNA-sequencing (snRNA-seq) data from the livers of male C57BL/6 mice, as generated by 

Cholico et al127. The mice were housed in a controlled environment with a 12-hour light/12-hour 

dark cycle. At the start of the light phase (6:00 AM), the mice received a single oral dose of 30 

μg/kg TCDD or a vehicle control (sesame oil) via gavage. Subsequently, the livers were harvested 

and snap-frozen at specific time points: 2, 4, 8, 12, 18, and 24-hours post-treatment. Following 

sequencing, the snRNA-seq data was processed, and hepatocytes were identified based on 
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established hepatic biomarkers from previous studies124,126. After excluding non-hepatocyte cell 

types and filtering out low-quality hepatocytes with low read counts, a total of 129,373 hepatocytes 

remained in the dataset. The top 15,000 highly variable genes (HVGs) were selected for 

downstream analysis. Dimensionality reduction techniques (Batch correction) were applied to the 

TCDD response genes for data visualization and analysis, as detailed in the methods section (2.2). 

Uniform Manifold Approximation and Projection (UMAP) analysis was conducted on the 

hepatocyte population to examine the cell clustering patterns. The UMAP analysis revealed a 

distinct circular pattern in the hepatocyte clusters, which corresponded to different time points and 

treatment conditions (Fig. 20 A). This circular pattern suggests an inherent rhythmicity in 

hepatocyte gene expression, potentially reflecting the circadian rhythm or other cyclical processes 

within these cells. This circular pattern in the UMAP analysis, indicative of rhythmic gene 

expression, was not observed in other cell types present in the dataset. Notably, the hepatocyte 

cluster corresponding to the TCDD treatment group exhibited a distinct separation from the control 

group, suggesting a significant alteration in the gene expression profiles due to TCDD exposure 

(Fig. 20 B). To examine the immediate impact of TCDD over time and space, the expression 

patterns of known circadian clock genes (Per1, Arntl, and Cry) and TCDD response genes (Cyp1a1 

and Ahrr) were analyzed. For the circadian clock gene Per1, the circular pattern (oscillatory pattern 

with a peak at the 8-hour time point) was observed (Fig. 20 C), indicating the preservation of 

rhythmic expression despite TCDD treatment. While acute TCDD treatment impacted hepatic 

rhythmicity, it did not completely abolish circadian oscillation, as seen in previous studies with 

sub-chronic TCDD exposure28 (Fig. 2E). This finding suggests that the disruption of circadian 

rhythms by TCDD may be dependent on the duration and dosage of exposure. As expected, a 

significant increase in the expression profiles of TCDD response genes (Cyp1a1 and Ahrr) was 
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observed after treatment (Fig. 20 D and 20 F). Interestingly, the expression of Ahrr and Cyp1a1 

achieved saturation at 12 hours post-treatment (Fig. 20 F), while Cyp1a2 and Tiparp reached 

saturation at or before the 2-hour time point (data not shown). This differential temporal response 

of TCDD-inducible genes suggests a complex regulatory mechanism underlying the 

transcriptional response to TCDD exposure. The observed circular pattern in the UMAP analysis, 

coupled with the analysis of circadian clock genes and TCDD response genes, provides insights 

into the impact of acute TCDD exposure on hepatocyte rhythmicity and gene expression dynamics. 

While TCDD treatment altered hepatic rhythmicity, it did not completely abolish circadian 

oscillations, at least in the acute exposure scenario. Additionally, the varying temporal responses 

of TCDD-inducible genes highlight the intricate transcriptional regulation mechanisms at play in 

the liver's response to dioxin exposure. 

 

  

  

 

 

 

 

 

 

 

 

 

Figure 20: Visualization of acute TCDD in mouse hepatocytes. UMAP of hepatocytes colored by 

A B 

C D 
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Figure 20 (cont’d) 

(A) Time in hours after treatment, (B) Dose in μg/kg of TCDD, (C) Circadian clock gene Per1 

showing peak expression between timepont 8 to 12 hrs and (D) TCDD activated gene Cyp1a1 

showing almost zero expression at dose 0 μg/kg (vehicle/sesame gavaged) and high expression at 

dose 30 μg/kg (TCDD gavaged). Each dot represents a cell. Time series expression of Circadian 

and TCDD response genes. Normalized counts time series expression of known (E) Circadian 

clock genes Arntl (Bmal1), Cry1 and (F) TCDD activated genes Ahrr and Cyp1a1. Expression of 

genes are plotted as a function of sesame oil vehicle (0 μg/kg) in blue and TCDD (30 μg/kg) in 

orange. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

Zonation of hepatocyte from single nuclei gene expression profile. 

Identifying zonated genes in the liver lobule is a challenging task when using single-nucleus RNA 

sequencing (snRNA-seq) data, as zonation is not directly measured in these experiments. Instead, 

E 

F 
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zonation patterns need to be inferred from the gene expression profiles of individual hepatocytes. 

However, this inference can be confounded by various experimental factors that can distort the 

zonation profiles. For example, the centrally zonated gene Cyp1a2133 is known to be activated by 

TCDD treatment, while another centrally zonated gene, Slc1a2, exhibits a rhythmic expression 

pattern over time. To accurately infer zonation from hepatocyte gene expression, these 

confounding factors need to be corrected. To address this challenge, we utilized the approach 

developed by Nault et al124. The first step involved batch correction of the single-cell data to 

remove variance introduced by TCDD exposure and temporal effects. This step is crucial as it 

eliminates the influence of these confounding factors on the gene expression profiles, allowing for 

a more accurate inference of zonation. After batch correction, trajectory inference was performed 

to calculate the latent zonation value for each individual hepatocyte. This approach leverages the 

inherent structure and relationships within the gene expression data to infer the underlying 

zonation patterns. By applying batch correction and trajectory inference, we aimed to disentangle 

the effects of TCDD treatment and temporal variations from the gene expression profiles, thereby 

enabling a more accurate inference of hepatocyte zonation. This approach is particularly important 

in the context of studying the impact of TCDD on zonation, as it allows for the identification of 

zonated genes that may be affected by dioxin exposure, while accounting for potential confounding 

factors. To perform batch correction on the single-nucleus RNA sequencing (snRNA-seq) data, we 

utilized scVI129, a variational autoencoder (VAE) method. The choice of a VAE approach was 

driven by the large size of the dataset, which comprised approximately 130,000 cells after 

preprocessing. Most single-cell integration tools are not designed to efficiently handle datasets of 

such a magnitude. However, scVI129 was specifically developed to integrate large gene expression 

atlases across multiple laboratories and to batch correct technical variations, making it well-suited 
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for this analysis.  The batch correction process using scVI aimed to disentangle the technical 

variation introduced by TCDD treatment and time of harvest from the biological variation in gene 

expression. By removing these confounding technical factors, the resulting batch-corrected data 

would provide a more accurate representation of the underlying biological processes, such as 

hepatocyte zonation and rhythmic gene expression patterns. Visualizations of the batch-corrected 

data (Fig. 21 A-C) demonstrate the effectiveness of the scVI approach in mitigating the effects of 

TCDD treatment and time of harvest on the gene expression profiles. This batch-corrected data 

served as the foundation for subsequent trajectory inference analyses, enabling a more reliable 

inference of hepatocyte zonation patterns while accounting for the potential confounding factors 

introduced by the experimental design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: UMAP of batch correction by scVI of single-nuclei RNA sequencing data. 
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Figure 21 (cont’d) 

(A) UMAPs of single-nuclei RNA sequencing data and the latent space of scVI (batch correction). 

Cells are colored by the combined label of hours and TCDD dose treatment. (B) Batch corrected 

single-nuclei RNA sequencing colored by 0 μg/kg dose treatment (blue) and 30 μg/kg dose 

treatment (orange). (C) Batch corrected single-nuclei sequencing colored by six (6) time-points in 

hours after treatment. Each dot represents a cell. 

 

After batch correcting the single-nucleus RNA sequencing (snRNA-seq) data using scVI, we 

employed a trajectory inference algorithm, diffusion pseudo-time134,135 on the latent space 

generated by scVI to infer the trajectory of the portal-central axis. This approach aimed to capture 

the zonation patterns within the liver lobule. Utilizing a second component of the diffusion pseudo-

time plot (analogous to components of PCA) as our trajectory, we observed most zonal genes 

follow along the component of either high expression in the portal axis with low expression in the 

central axis or high expression in the central axis with low expression in the portal axis. Expression 

values were normalized and reoriented from portal to central expression. We referred to the 

trajectory inference values as "Pseudo-space," which we defined as an ordering of cells based on 

how closely they approximate the expression patterns of centrally zonated hepatocytes 

(represented by a value of 1) and portal zonated hepatocytes (represented by a value of 0). To 

validate whether the inferred pseudo-space accurately captures liver lobule zonation, we examined 

the expression profiles of known zonated genes, Cyp2f2 and Slc1a2, across the pseudo-space axis. 

Significant correlations were observed between the expression levels of these genes and the 

pseudo-space values of the cells. Specifically, we observed high expression of Slc1a2 at the central 

axis (Fig. 22 B) and high expression of Cyp2f2 at the portal axis (Fig. 22 C), consistent with their 

known zonation patterns. As a negative control, we analyzed non-zonated genes, such as Arntl and 

Clock, which are not expected to exhibit zone-dependent expression patterns¹. As anticipated, 

these genes did not show significant correlations with the pseudo-space values, further validating 

the accuracy of the inferred zonation trajectory. Our analysis confirmed that no significant 
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correlations exist between the expression of the non-zonated genes Arntl and Clock and the 

computed pseudo-space metric. The expression of these genes was observed to be non-zonated in 

nature (Fig. 22 D). The presence of strong correlations for known zonated genes, such as Cyp2f2 

and Slc1a2, and the absence of such correlations for non-zonated genes, confirms that the 

computed pseudo-space metric accurately reflects the zonation pattern across the liver lobule. To 

streamline subsequent analyses, we binned the continuous pseudo-space values into distinct layers 

(Fig. 22 A). The number of layers used depends on the resolution of the data. For example, Halpern 

et al95. defined fifteen zones, whereas Droin et al29. used only eight zones. In our study, we elected 

to bin the data into five layers, ensuring at least two thousand cells in each layer. The pseudo-space 

axis was divided into five equal-length bins. As expected, fewer cells were binned into the first 

(central) layer compared to the last (portal) layer (Fig. 4A). This observation aligns with the 

anatomy of the liver lobule, where there is a single central vein and numerous peripheral portal 

triads, resulting in fewer cells located proximal to the central vein. Using the binned pseudo-space 

values, we generated pseudo-bulk expression profiles for each treatment, time point, and layer by 

summing the counts across cells within each combination of these factors. These count sums were 

then normalized to account for differences in the number of cells comprising each pseudo-bulk 

profile using size factor estimation136. The resulting normalized expression values for each 

treatment × time × layer combination were utilized in downstream analyses and gene classification. 

The binning of the continuous pseudo-space values into distinct layers facilitated the analysis of 

zonated gene expression patterns by providing a discrete representation of the spatial organization 

within the liver lobule. By generating pseudo-bulk expression profiles for each treatment, time 

point, and layer combination, we could effectively capture the dynamic changes in gene expression 

across different experimental conditions and spatial locations within the liver lobule. The pseudo-
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space values obtained through trajectory inference provide a quantitative measure of hepatocyte 

zonation, allowing for the identification and analysis of genes exhibiting zonated expression 

patterns within the liver lobule. By combining batch correction techniques (scVI) and trajectory 

inference (diffusion pseudo-time), we were able to disentangle the confounding effects of 

experimental factors and accurately capture the underlying zonation patterns, enabling a more 

comprehensive understanding of the spatial organization and functional specialization of 

hepatocytes in response to TCDD exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: UMAP visualization of pseudo-space binning and zonation. (A) UMAP plot of the 

pseudo space of hepatocytes binned into zonation layers. The pseudo-space value of 1 represents 

A 
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Figure 22 (cont’d) 

hepatocytes with high pericentral gene expression and 0 represents hepatocytes with high 

periportal gene expression. Zonation layers are deduced between number 1 (pericentral) and 5 

(periportal).  UMAP plot of (B) Pericentral gene marker Slc1a2, (C) Periportal gene marker 

Cyp2f2 and (D) Circadian clock gene Arntl. Each dot represents a cell. 

 

 

 

 

 

 

 

 

 

 

 

Figure 23:  Bar plot of the number of hepatocytes in each inferred layer. Layers with smaller values 

represent more pericentral hepatocytes and layers with larger values represent more periportal 

hepatocytes. 

 

Classifying hepatocytes genes according to rhythmicity, zonation, and effect of TCDD 

treatment using a non-linear mixed effects model. 

 

To investigate the spatial and zonated expression profiles of genes and assess how these profiles 

are altered by TCDD treatment, we adopted and extended the approach outlined in Droin et al29. 

In their approach, rhythmicity (R) is modeled using sine and cosine functions, and zonation (Z) is 

modeled using first and second-order Legendre polynomials. We expanded on their model by 

including the effect of TCDD exposure (Dioxin; D) on gene expression across the peri-central axis 

of the liver lobule. We represented TCDD treatment in the model with a simple indicator function, 

where TCDD-treated hepatocytes were denoted as D=1, and untreated hepatocytes as D=0. Using 
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these variables, we constructed a series of non-linear mixed-effects models (NLMEMs) 

comprising different combinations of factors (D, Z, and R) that could potentially influence gene 

expression based on the experimental design and zonation inference (Fig. 24 and 25). The effects 

of these factors can be independent (e.g., Z + R) or dependent (e.g., D × Z), as illustrated in Fig. 

6. With this modeling approach, we classified the top 15,000 highly variable genes according to 

the best fitting NLMEM model to describe each gene's expression pattern (see methods). The 

NLMEM approach allowed us to model the complex interplay between TCDD exposure, rhythmic 

gene expression, and zonation patterns within the liver lobule. By incorporating the TCDD 

treatment factor (D) into the model, we could assess the impact of dioxin exposure on the spatial 

and temporal expression dynamics of individual genes. The model formulations included both 

independent and dependent effects, enabling the capture of various scenarios. For instance, the 

independent effects (e.g., Z + R) would describe genes whose zonation and rhythmicity patterns 

are not influenced by TCDD treatment, while the dependent effects (e.g., D × Z) would capture 

genes whose zonation patterns are altered by TCDD exposure. By fitting these NLMEM models 

to the gene expression data and selecting the best-fitting model for each gene, we classify the top 

highly variable genes into different categories based on their expression patterns. This 

classification provides insights into the diverse transcriptional responses to TCDD treatment, 

including genes exhibiting altered zonation patterns, disrupted rhythmicity, or a combination of 

both. 
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Figure 24: Schematic illustrations of each single or no effect non-linear mixed effect model profiles 

for classification of hepatocyte genes. Ideal simulations of each model plotted in terms of Time (in 

hours after treatment) versus expression or inferred layers of the liver lobule. Each line plot is 

colored either by time, layer of dose of TCDD of treatment. TCDD (Dioxin) influence is delineated 

by D, influence of liver rhythmicity is delineated by R, and influence of liver zonation (layers) are 

delineated Z. Models with no influence from either D, R, or Z are delineated as flat, F. 
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Figure 25: Schematic illustrations of multiple effect non-linear mixed effect model profiles for 

classification of hepatocyte genes. Ideal simulations of each multiple model category plotted in 

terms of Time (in hours after treatment) versus inferred layer of the liver lobule. Each line plot is 

colored either by time and layer of dose of TCDD of treatment. Effects that are separated with ‘+’ 

indicate models in which factors are independent of one another. Effects that are separated with a 

‘x’ indicate models in which factors are dependent on one another. Example: Z+R indicates genes 

that are zonated and rhythmic independently and ZxR indicates genes that are zonated and 

rhythmic dependently. 
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To evaluate the accuracy of my gene classification approach, we initially examined a set of known 

genes with established rhythmic, zonated, or TCDD-responsive expression patterns. These 

included Arntl (known for rhythmic expression), Slc1a2 (exhibiting both zonated and rhythmic 

patterns), and Ahrr (a gene induced by TCDD with saturation observed at 12 hours).  As shown in 

Fig. 26, the model successfully captures the rhythmic profiles of Arntl and Slc1a2. The rhythmic 

expression patterns of these genes are accurately represented by the periodic functions 

incorporated in the model formulations. Additionally, the model can differentiate between TCDD 

saturation effects and true temporal rhythmicity. This distinction is crucial, as some genes may 

exhibit saturation in expression levels due to TCDD treatment, which should not be mistaken for 

rhythmic oscillations. Furthermore, the model correctly identifies the zonated pattern of Slc1a2. 

The incorporation of Legendre polynomials in the model allows for the accurate modeling of 

spatial zonation patterns within the liver lobule. Finally, Ahrr is properly classified by the model 

as being influenced by TCDD. The model captures the TCDD-induced expression changes in this 

gene, as evidenced by the distinct expression profiles between the treated and untreated conditions. 

Taken together, the expected expression patterns of these control genes are recapitulated, thereby 

validating the performance of our classification model. The model's ability to accurately capture 

rhythmic, zonated, and TCDD-responsive expression patterns in these well-characterized genes 

provides confidence in its applicability to the classification of the larger gene set. 
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Figure 26: Classification of canonical rhythmic, zonal and TCDD responsive genes. (A) Bar plots 

of Schwarz weigh classification of Arntl, Slc1a2, and Ahrr. Line plots of expression colored by (B) 

Layer and TCDD dose. 1_0 denote lineplot expression of gene in the pericentral region after 0 

μg/kg dose treatment and 5_30  denote lineplot expression of gene in the periportal region after 30 

μg/kg dose treatment. (C) Hours after treatment and dose of TCDD. 2_0  denote lineplot expression 

of gene at timepoint 2hrs after 0 μg/kg dose treatment and 24_30  denote lineplot expression of 

gene timepoint 24hrs after 30 μg/kg dose treatment. 
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Finally, we categorized each gene mRNA profile into one of ten distinct patterns based on its 

expression dynamics: Flat (F) for profiles lacking rhythmic, zonated, or TCDD-induced 

influences; Rhythmicity (R) for genes exhibiting purely rhythmic expression patterns; Zonated (Z) 

for genes displaying solely zonated expression patterns; Dioxin (D) for genes induced by TCDD 

treatment; independent Zonated and Rhythmicity (Z+R) for genes showing both zonated and 

rhythmic expression patterns independently; dependent Zonated and Rhythmicity (Z×R) for genes 

with both zonated and rhythmic expression patterns dependently; dependent Dioxin and 

Rhythmicity (D×R) for genes exhibiting both TCDD-induced influence and rhythmic expression 

patterns dependently; dependent Dioxin and Zonated (D×Z) for genes displaying both zonated and 

TCDD-induced influence independently; independent Zonated and Rhythmicity with TCDD 

influence (D×(Z+R)) for genes showing both zonated and rhythmic expression patterns 

independently and influenced by TCDD treatment; and dependent Zonated and Rhythmicity with 

TCDD influence (D×(Z×R)) for genes exhibiting both zonated and rhythmic expression patterns 

dependently and influenced by TCDD treatment. The classification revealed that over 39% of the 

gene mRNA profiles were recorded as Flat (F), indicating no significant rhythmic, zonation, or 

TCDD influence. Additionally, 16.63% of the mRNA profiles were classified as Zonated (Z), while 

15.15% and 8.84% were classified as Rhythmic (R) and Dioxin (D), respectively. These 

percentages agree with a previous study by Droin and Kholtei et al.¹, where they recorded more 

mRNA profiles classified as Zonated (Z) compared to the Rhythmicity (R), independent Zonated 

and Rhythmicity (Z+R), and dependent Zonated and Rhythmicity (ZxR) classes. The classification 

of gene expression profiles into these 10 patterns allowed for a comprehensive characterization of 

the diverse transcriptional responses to TCDD treatment, rhythmicity, and zonation within the liver 

lobule. By accounting for the independent and dependent effects of these factors, as well as their 
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potential interactions, we could gain insights into the complex regulatory mechanisms governing 

gene expression dynamics in hepatocytes. Furthermore, the agreement between our findings and 

those of the previous study by Droin et al29. regarding the prevalence of zonated gene expression 

patterns provides additional confidence in the validity of our approach and the biological relevance 

of the observed patterns. 

The classification also revealed that about 32% of the mRNA profiles exhibited rhythmic 

expression patterns, encompassing classes with a rhythmic component like R, Z+R, RxZ, DxR, 

etc. Additionally, approximately 35% of the mRNA profiles showed zonated expression patterns, 

including classes with a zonation component such as Z, Z+R, RxZ, DxZ, etc. Further analysis 

revealed that nearly 50% of rhythmic genes (mRNA profiles classified with an R component) were 

impacted by TCDD treatment, compared to around 25% of zonated genes (mRNA profiles 

classified with a Z component) (Fig. 27 B). This finding suggests that TCDD treatment had a more 

pronounced effect on disrupting rhythmic gene expression patterns compared to zonated patterns. 

The largest multi-effect category was D×(Z+R), which exhibited synergistic effects of TCDD on 

zonation and rhythmicity independently (Fig. 27 A). This class represents genes whose zonation 

and rhythmic expression patterns were independently influenced by TCDD treatment. Gene set 

enrichment analysis of the D×(Z+R) class showed that these genes were enriched for canonical 

pathways involved in TCDD liver toxicity, such as metabolism of xenobiotics and drug metabolism 

by cytochrome P450 (Fig. 27 C). This enrichment indicates that the genes in this class play crucial 

roles in the liver's response to TCDD exposure, potentially contributing to the observed 

toxicological effects. Notably, no genes displayed dependence between dose, zonation, and 

rhythmicity (D×Z×R), suggesting that the effects of TCDD treatment on zonation and rhythmicity 

were independent in the context of this study. Overall, our results demonstrate that gene expression 
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in the liver is not static but is partitioned across the liver lobule in space (zonation), time 

(rhythmicity), and by treatment dose. The interplay between these factors results in a complex 

landscape of gene expression patterns, with TCDD treatment exerting differential effects on 

rhythmic and zonated gene expression profiles. By integrating spatial, temporal, and treatment-

related factors in our analysis, we could comprehensively characterize the transcriptional dynamics 

within the liver lobule and elucidate the impact of TCDD exposure on these intricate regulatory 

mechanisms. This approach provides a more holistic understanding of the molecular processes 

governing liver function and toxicological responses, contributing to the development of targeted 

interventions and therapeutic strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Classification distributions and enrichment of TCDD toxicity pathways. (A) Bar plot 

of the number of genes (mRNA profiles) in each class for the top 15,000 HVGs. (B) Bar plot of 

the proportion of genes that have TCDD influence for all zonal genes (5182 total zonal genes) and 

all rhythmic genes (4865 total rhythmic genes). (C) GSEA analysis of the Dx(Z+R) class of genes. 
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Figure 27 (cont’d)  

 

 

 

 

 

 

 

 

 

 

 

 

The effects of acute 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) perturbation of rhythmic 

genes. 
 

Utilizing the classification framework illustrated in Figure 27A, our investigation delved into the 

acute toxicity effects on rhythmic genes within the liver lobule. We first analyzed the the impact 

of TCDD on a core set of circadian rhythm genes (Clock, Arntl, Per2, Cry1, Nr1d1, Npas2, Rorc) 

by by examining their mRNA transcript classification. Notably, we found that all core circadian 

clock genes exhibited rhythmicity in their classification classes. Only Arntl, Clock and Rorc were 

classified as purely rhythmic (Fig. 28 A). However, upon closer examination of their expression 

patterns, we found that Arntl and Clock exhibited significantly increased expression between 11 

and 16 hours (p-value < 0.01, Mann-Whitney U-test) with TCDD treatment. This observation 

aligns with the saturation of TCDD response genes analyzed in Figure 20 F. Conversely, Npas2, 

Per2, and Nr1d2 were classified as having TCDD influence (Fig 28 A). Per2 had significantly 

higher expression for all time points except 18 hours post-treatment. Npas2 had significantly lower 

C 



108 
 

expressions at timepoints 2, 4, and 24. Nr1d2 exhibited significantly higher expression at 

timepoints 2 and 4, but significantly lower expression at timepoint 12. Cry1 was classified as zonal 

and rhythmic, which corroborates previous studies. However, the second-highest classification of 

Cry1 implied TCDD influence, observable at timepoints 18 and 24.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Core circadian clock genes classified as only rhythmic. (A) Bar plots of Schwarz 

weights for gene classification. (B) Line plots of gene expression graphed with respect to hours 

after treatment and colored by dose of treatment of TCDD. (C) Violin plots plotting the distribution 

of expression for each treatment condition at each timepoint. 
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Figure 29: Core circadian clock genes classified as having multiple effects. (A) Bar plots of 

Schwarz weights for gene classification. (B) Line plots of gene expression graphed with respect to 

hours after treatment and colored by dose of treatment of TCDD. (C) Violin plots plotting the 

distribution of expression for each treatment condition at each timepoint. 
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To quantify the effects of TCDD on rhythmic gene expression, we explored whether TCDD 

treatment induced or removed rhythmicity in genes classified as rhythmic and influenced by 

TCDD (DxR and Dx(R+Z)). First, we used dryR (Differential RhythmicitY analysis in R)132,137, a 

package in R, to assess the differential rhythmicity of the control and treated genes found in the 

DxR and Dx(R+Z) classes. This analysis unveiled that genes such as Elovl7 and Cdh13 gained 

rhythmicity subsequent to TCDD exposure, whereas Klf9 and Myc lost their rhythmic patterns (as 

depicted in Fig 29 A and B). We further analyzed rhythmicity changes by using a likelihood ratio 

test to compare whether gene expression better fit a rhythmic or flat (non-rhythmic) model. Genes 

fitting a rhythmic model under control but a flat model under treatment were deemed to have lost 

rhythmicity. Conversely, those fitting a flat expression model in control but a rhythmic model in 

treatment were classified as having gained rhythmicity. Among TCDD-influenced rhythmic genes, 

distribution analysis revealed 13% lost rhythmicity after treatment, while 21% gained rhythmicity 

(Fig 29 C). Subsequent gene set enrichment analysis (GSEA) conducted on both the gained and 

lost rhythmicity groups elucidated hallmark pathways of TCDD toxicity. The lost rhythmicity 

group showed enrichment for processes related to chemical carcinogenesis, drug metabolism and 

metabolism of xenobiotics by cytochrome P450, while the gained rhythmicity group was enriched 

for retinol metabolism 138. In summary, TCDD exposure induced both gains and losses of 

rhythmicity in different sets of genes, with the affected genes enriched for processes related to 

TCDD toxicity and metabolism. 
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Figure 30: Analysis of gain or loss of rhythmicity for TCDD influenced rhythmic genes. 
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Figure 30 (cont’d) 

Time series expression profile (A) gained rhythmicity genes Elovl7, and Cdh13 (B) lost 

rhythmicity genes Klf9, and Myc for control and treated set. (C) A total of 1072 genes that were 

classified to be influenced by rhythm and TCDD were analyzed as to whether they had gained, or 

lost rhythmicity based on the likelihood ratio test using dryR. A bar plot of the proportion of genes 

analyzed colored by whether they lost or gained rhythmicity. (D) GSEA analysis of gene sets for 

genes that gained rhythmicity. (E) GSEA analysis of gene sets for genes that lost rhythmicity. 

 

Further analyzing genes that maintained rhythmicity after TCDD exposure, we investigated how  

TCDD impacted the properties of their rhythmic expression patterns, specifically the amplitudes 

and phases. When analyzing the core circadian clock genes, we observed only small changes in 

the phase and amplitude of these genes (Figure 30 B) after TCDD treatment. Extending this 

analysis to all genes that kept rhythmicity, we similarly found no major trends reflecting a delay 

in phase or reduction of amplitude after TCDD exposure (Figure 30 C). To determine if the 

magnitude of gene expression changes induced by TCDD treatment correlated with changes in the 

phase or amplitude of rhythmic expression, we examined the relationship between these 

parameters. However, we found only a weak correlation between the magnitude of gene expression 

changes and the magnitude of phase or amplitude changes (Figure 30 D). These findings suggest 

that while TCDD exposure induced gains and losses of rhythmicity in certain gene sets, the genes 

that maintained rhythmicity after treatment generally exhibited minimal alterations in their 

rhythmic properties, such as phase and amplitude. Furthermore, the extent of gene expression 

changes induced by TCDD did not strongly correlate with the degree of phase or amplitude shifts 

in the rhythmic expression patterns of these genes. 
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Figure 31:  Analysis of rhythmic parameters for TCDD influenced rhythmic genes. (A) Schematic 

and equations describing phase and amplitude of gene’s expression. (B) Bar plot of core circadian 

clock genes and their respective phase and amplitude in each treatment group. Phase is measured 

in radians, and amplitude is measured in normalized counts (C) Violin plot of all genes that kept 

their rhythmicity’s rhythmic parameters. (D) Regression plot of the magnitude of change of phase 

or amplitude vs. the magnitude of the mean log fold change in expression with respect to treatment. 
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The effects of acute 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) perturbation of rhythmic 

genes. 

 

To elucidate the effects of TCDD on zonal gene expression patterns in the liver, we examined the 

enrichment of known transcriptional targets of the Wnt/β-catenin, Ras, and hypoxia signaling 

pathways, which are primarily responsible for regulating hepatic zonation35,139. Our investigation 

aimed to ascertain whether each zonated gene class exhibited enrichment in these zonation 

pathways, considering the presence or absence of TCDD influence. Our analysis unveiled that all 

targets associated with zonation pathways demonstrated enrichment within the Z+R class of genes, 

which exhibited both zonal and rhythmic expression patterns. Interestingly, the TCDD-perturbed 

Dx(Z+R) genes and the dual-effect DxZ class, which exhibited both TCDD influence and zonal 

expression, were enriched for Wnt and hypoxia pathway target genes but not for Ras pathway 

target genes (Figure 31). These results demonstrate that TCDD selectively disrupts Ras signaling-

mediated periportal gene expression, while the zonation programs regulated by the Wnt/β-catenin 

and hypoxia signaling pathways remain largely intact. In summary, our findings suggest that 

TCDD exposure selectively perturbs the Ras signaling pathway, which is responsible for regulating 

the expression of periportal genes, while leaving the Wnt/β-catenin and hypoxia-mediated 

zonation programs relatively unaffected. This selective disruption of Ras signaling may contribute 

to the hepatotoxic effects of TCDD and highlights the complex interplay between xenobiotic 

exposure, signaling pathways, and spatial gene expression patterns in the liver. 
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Figure 32: Enrichment analysis of zonation regulation pathway targets on all zonation gene classes. 

Building upon the analysis of rhythmic gene expression, we conducted an analogous investigation 

of differential zonation to discern whether genes in the DxZ and Dx(Z+R) categories experienced 

alterations in their zonal expression patterns following TCDD treatment. Using a likelihood ratio 

test, we performed zonation differential expression analysis to identify genes that gained, lost, or 

maintained zonal specificity with TCDD exposure. Our findings indicate that 18% of the analyzed 

genes gained zonation after TCDD treatment, while 13% lost their zonal expression patterns 

(Figure 32). Gene set enrichment analysis revealed that pathways related to UDP-

glucuronosyltransferase enzymes, such as "Pentose and Glucuronate Interconversions," were 

overrepresented among genes losing zonation (Figure 32), with no pathways enriched in the gained 
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zonation set. Furthermore, in analyzing whether the genes that lost or gained zonation exhibited a 

more portal or central enrichment, we observed that genes losing zonation were significantly more 

centrally enriched compared to the background (p-value < 0.001, Kolmogorov-Smirnov Test), 

indicating selective disruption of periportal gene expression by TCDD (Figure 32). Together, these 

results demonstrate that TCDD exposure leads to bidirectional alterations in hepatic zonation, with 

apparent centrilobular targeting of UDP-glucuronosyltransferase zonal discontinuity. The selective 

disruption of periportal gene expression patterns and the enrichment of UDP-

glucuronosyltransferase pathways among genes losing zonation suggest a potential mechanism for 

TCDD-induced hepatotoxicity through impaired xenobiotic metabolism and clearance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Analysis of loss or gain of zonation based on TCDD treatment. (A) A total of 1059 

genes that were classified to be influenced by Zonation and TCDD were analyzed as to whether 
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Figure 33 (cont’d) 

they had gained, or lost zonation based on the likelihood ratio. (B) GSEA analysis of genes that 

lost zonation with TCDD treatment. (C) Stacked bar plot describing the distribution of zonated 

genes and in which zone of the liver lobule are those genes most highly expressed. Differences in 

distribution calculated using the Kolmogorov-Smirnov Test. ** means significant difference 

between the two expressions at the time point and ns means no significant difference between the 

two expressions. 

 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis of dose affected 

categories. 

 

To understand the transcriptional regulation across various gene class categories under the 

influence of TCDD, which impacts both zonal and rhythmic gene expression, we investigated the 

presence of binding motifs for the transcription factors BMAL175 (E-box motifs) and AHR75,140 

(Dioxin Response Elements, DREs) in these genes. While the presence of motifs is necessary but 

not sufficient for transcription factor binding, we focused specifically on motifs located in 

accessible chromatin regions, mapped by DNase I hypersensitivity (DHS) data in mouse liver 

tissue from the ENCODE project. Using the GRCm38 reference genome and BEDTools68, we 

extracted all canonical E-box (CANNTG) and DRE (GCGTG) motifs located in DHS peaks. We 

then matched these accessible motifs to hepatic AHR ChIP-seq data in male C57BL/6 mice treated 

with 30 μg/kg TCDD, to identify motifs likely bound by transcription factors. Our approach 

involved extracting genes with E-box and DRE binding motifs in their promoter or genome region, 

as well as identifying genes with an overlap of both E-box and DRE motifs (E-box intersect DREs). 

By integrating this information with our gene classification data, we aimed to elucidate the 

potential transcriptional regulatory mechanisms governing the observed gene expression patterns 

under TCDD exposure. Specifically, we investigated whether the presence of accessible E-box, 

DRE, or overlapping E-box/DRE motifs could explain the differential expression, rhythmicity, and 

zonation patterns observed in various gene classes. By benchmarking these gene sets against the 
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classification classes derived from our non-linear mixed effects models (NLMEMs), we uncovered 

intriguing insights. Specifically, more than 55% of genes in the Dx(R+Z) class, which exhibited 

both TCDD influence and combined zonal and rhythmic expression patterns, contained DRE 

(Dioxin Response Element) binding motifs, 20% exhibited E-box binding motifs, and over 5% 

possessed overlapping E-box and DRE binding motifs (E-box intersect DRE) (Figure 33 A). Gene 

set enrichment analysis further illuminated distinct pathways associated with these binding motifs. 

For genes enriched with only E-box binding motifs in the Dx(R+Z) class, pathways related to 

chemical carcinogenesis, drug metabolism, and xenobiotic metabolism by cytochrome P450 were 

prominent (Figure 33 B). Meanwhile, genes featuring only DRE binding motifs in the Dx(R+Z) 

class were enriched in pathways like the PPAR signaling pathway, p53 signaling pathway, and 

glycerolipid metabolism (Figure 33 C). Notably, genes with overlapping E-box and DRE binding 

motifs (E-box intersect DRE) in the Dx(R+Z) class exhibited enrichment in pathways related to 

vitamin B6 metabolism and circadian rhythm (Figure 33 D). These findings suggest that the 

interplay between the circadian clock machinery (E-box motifs) and the xenobiotic response 

pathway (DRE motifs) plays a crucial role in regulating hepatic gene expression under TCDD 

exposure. The presence of accessible E-box and DRE motifs in specific gene classes may explain 

the observed differential expression, rhythmicity, and zonation patterns. Furthermore, the distinct 

pathway enrichments associated with genes containing E-box, DRE, or overlapping E-box/DRE 

motifs provide insights into the biological processes potentially regulated by these transcription 

factor binding sites under TCDD exposure. 
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Figure 34: ChIP-Seq and GSEA analysis of classification categories.  (A) ChIP-Seq analysis of the 

gene classification categories. Stacked histogram of genes enriched for BMAL1 binding (orange), 

genes enriched for AHR binding (green), genes enriched for AHR and BMAL1 binding (red) and 

genes enriched for neither AHR nor BMAL1 binding (blue). Gene-set enrichment analysis on (B) 

Genes enriched with BMAL1 binding (C) Genes enriched with AHR binding. (D) Genes enriched 

with AHR and BMAL1 binding. 

 

We took a similar approach to characterize the presence of E-box motifs, DRE motifs, and 

overlapping E-box/DRE motifs in genes that gained or lost rhythmicity following TCDD 

treatment. Our analysis found that comparable numbers of rhythmicity-perturbed genes contained 

only E-boxes, only DREs, or intersecting E-box/DRE motifs. Over 50% of TCDD-affected 

zonated genes that lost spatial zonation contained DRE motifs in accessible promoter or genomic 
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regions. Notably, about 38% of arrhythmic genes lacked both DRE and E-box motifs, suggesting 

other mechanisms of regulation (Figure 34 A). Gene set enrichment analysis linked E-box/DRE-

containing genes that lost zonation to pathways including starch/sucrose metabolism, fatty acid 

elongation, and proteoglycans in cancer. E-box/DRE motifs were also enriched in arrhythmic 

genes associated with bladder cancer, insulin signaling, FoxO signaling, and related pathways 

(Figure 34 B). No pathways were significantly enriched among gained rhythmicity genes based on 

our cutoff criteria. Overall, intersecting E-box and DRE motifs emerged as key potential mediators 

of TCDD-disrupted hepatic rhythmicity and zonation, though additional factors appear 

contributory for approximately 38% of rhythmicity-lost genes that lacked these motifs. These 

findings suggest that the interplay between the circadian clock machinery (E-box motifs) and the 

xenobiotic response pathway (DRE motifs) plays a crucial role in mediating the effects of TCDD 

on hepatic gene expression rhythmicity and zonation. The presence of accessible E-box and DRE 

motifs in specific gene sets may explain the observed gains or losses of rhythmicity and zonation 

following TCDD exposure. Furthermore, the distinct pathway enrichments associated with genes 

containing E-box, DRE, or overlapping E-box/DRE motifs provide insights into the biological 

processes potentially dysregulated by these transcription factor binding sites under TCDD 

exposure. However, for a subset of rhythmicity-lost genes (~38%), the lack of these motifs 

suggests the involvement of other regulatory mechanisms in mediating TCDD-induced 

arrhythmicity. 
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Figure 35: ChIP-Seq and GSEA analysis of TCDD perturbed rhythmic and zonated genes.  (A) 

ChIP-Seq analysis of the TCDD perturbed rhythmic genes (gained and lost rhythmicity genes) and 

TCDD perturbed zonated genes (gained and lost zonation genes). Genes enriched for BMAL1 

binding (orange), genes enriched for AHR binding (green), genes enriched for AHR and BMAL1 

binding (red) and genes enriched for neither AHR nor BMAL1 binding (blue). (B) Gene-set 

enrichment analysis on lost rhythmicity and zonated genes with AHR and BMAL1 binding. 

 

Comparison of Gene regulatory networks (GRNs) of control and treated data. 

Gene regulatory networks (GRNs) are complex systemsthat govern gene expression patterns and 

cellular processes, influencing cellular functions and phenotypic outcomes. Traditional methods 

for inferring GRNs relies on bulk RNA-seq and chromatin immunoprecipitation sequencing 

(ChIP-seq) average out cellular heterogeneity and lack the resolution to capture regulatory 

dynamics at the single-cell level141,142. Recent advances in single-cell sequencing technologies, 
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such as single-cell RNA sequencing (scRNA-seq) and single-nuclei RNA sequencing (snRNA-

seq)  have enabled the measurement of gene expression levels at an unprecedented resolution, 

capturing the heterogeneity and dynamics of individual cells within a population126,143,144 To 

understand the gene regulatory mechanism across the portal-central axis of the liver lobule and 

how this mechanism is impacted by TCDD, we employ ScGeneRAI145. ScGeneRAI is an 

interpretable machine learning method that employs layer-wise relevance propagation (LRP) to 

infer GRNs from single-nucleus RNA sequencing data of cells in each layer. ScGeneRAI train a 

deep neural network to predict the expression of a target gene based on the expression of arbitrary 

sets of regulator genes in single cells. Subsequently, LRP quantitatively assigns each regulator 

gene a relevance score for the target gene expression prediction. Thereby, LRP identifies key 

transcription factors and constructs cell type specific GRNs de novo. Comparison of the layer 

specific GRNs generated by scGeneRAI then allowed us to determine conserved and distinct 

regulatory interactions in central versus portal hepatocytes. Utilizing the computational framework 

tailored for inferring GRNs from single-cell data, we unraveled the transcriptional regulation 

between transcription factors (TFs) and targeted genes along the portal-central axis of the liver 

lobule and the impact of TCDD on this mechanism. We analyzed the gene regulatory networks 

(GRNs) of central cells in layer 1 to portal cells in layer 5 to characterize transcription factor 

interactions with targeted genes and assess similarities and differences across the liver lobule. We 

compared the network similarities and differences across layers and across treatments (Control vs 

Treated).   

Our analysis of single-cell transcriptomic data from liver cells revealed intriguing insights into the 

gene regulatory networks (GRNs) governing circadian rhythms and zonal gene expression patterns 

along the portal-central axis of the liver lobule. Employing the state-of-the-art ScGeneRAI 
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framework, we inferred GRNs from both control and TCDD-treated datasets, unveiling the 

regulatory interactions between transcription factors (TFs) and their target genes. In the control 

dataset, our findings highlighted a crucial interaction between the TF NPAS2 and the gene Arntl, 

which together form the master regulator of the circadian clock mechanism [2]. Notably, this 

interaction between NPAS2 and Arntl was the only observed interaction involving the NPAS2 TF, 

underscoring its importance in maintaining circadian rhythmicity. Moreover, our analysis revealed 

that several TFs, including FOXO3, PROX1, RXRA, and GPAM, exhibited substantial 

interactions with the Bach2 gene, suggesting its potential involvement in various regulatory 

processes within liver cells. Intriguingly, upon analyzing the TCDD-treated dataset, we observed 

a striking disruption of the interaction between the NPAS2 TF and its target gene Arntl. This 

disruption was consistent across all layers of the liver lobule, implying a potential dysregulation 

of the circadian clock mechanism following TCDD treatment. Furthermore, our findings unveiled 

a gradual reduction in the number of interactions between TFs and target genes as we traversed 

from the central to the portal region of the liver lobule. This observation aligns with the well-

established concept of zonal gene expression and metabolic function zonation within the liver 

lobule. Cells in the central lobule exhibited a higher density of regulatory interactions compared 

to those in the portal lobule, suggesting a more intense transcriptional regulation in the central 

region.  

Finaly, we investigated the similarities between the gene regulatory network (GRN) graphs within 

the control and treated datasets. To achieve this, we utilized the average number of interactions 

based on transcription factors, their target genes, and the interactions between them. The analysis 

involved comparing the GRN similarities across different layers of the liver lobule. Our findings 

revealed that the GRN similarities decrease across the liver lobule, indicating a gradual divergence 
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in gene regulatory networks as we move from the periportal zone to the pericentral zone. 

Specifically, we observed that the similarity between the GRNs of adjacent layers, such as Zone 1 

and Zone 2 (Z1Z2), was higher than the similarity between the GRNs of more distant layers, such 

as Zone 1 and Zone 5 (Z1Z5). This observation suggests that the gene regulatory mechanisms 

governing cellular processes may differ across the liver lobule, potentially reflecting the varying 

metabolic demands and functional specializations of hepatocytes in different zones. The higher 

similarity between adjacent layers could be attributed to the gradual transition in cellular 

environments and the shared regulatory mechanisms between neighboring zones. It is important 

to note that these findings are based on the analysis of transcription factors, their target genes, and 

the interactions between them, which form the basis of gene regulatory networks. Further 

investigations may be required to elucidate the specific factors contributing to the observed 

differences in GRN similarities across the liver lobule and their potential implications for liver 

function and disease pathogenesis. This spatial variation in transcription factor-target gene 

interactions reflects the functional specialization of hepatocytes along the central-portal axis, with 

cells in the central lobule displaying more interactions compared to those in the portal lobule. 

These findings underscore the intricate regulation of gene expression within the liver lobule and 

provide insights into the spatial organization of transcriptional networks governing hepatic 

physiology and response to environmental perturbations. 
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Figure 36: Weighted gene regulatory network in the form of a heatmap to understand the 

interactions between transcription factors and their weight of interaction for (A) Control Cells in 

Layer 1 (central axis) ,  (B) Treated cells in Layer 1 (central axis),  (C) Control Cells in Layer 2,  

(D) Treated cells in Layer 2, (E) Control Cells in Layer 3,  (F) Treated cells in Layer 3, (G) 

Control Cells in Layer 4,  (H) Treated cells in Layer 4, (I) Control Cells in Layer 5 (portal axis)  

and (J) Treated cells in Layer 5 (portal axis).    
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Figure 36 (cont’d) 

(K) Average similarity interactions of gene regulatory inference networks between layers of cells 

in the liver lobule. Z1Z2 refers to average similarities between Zone 1 (layer 1) and Zone 2 (layer 

2). Blue squares represent control average interactions (similarities) and red pentagon represent 

treated average interactions (similarities). 
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DISCUSSION AND CONCLUSION 

Transcription factor (TF)-DNA binding patterns play a crucial role in regulating gene 

expression146. However, the precise DNA-binding sequences and the degree of flexibility in these 

sequences remain elusive for many TFs, including BMAL1, a key regulator of the circadian clock. 

While the core clock gene regulatory network in the brain's suprachiasmatic nucleus is believed to 

be similar to that in peripheral tissues, clock-controlled gene expression exhibits significant tissue 

specificity46,147. In this study, I aimed to elucidate the determinants of BMAL1-DNA binding 

beyond the simple DNA binding site sequence, leveraging features such as DNA shape and histone 

modifications. I employed used XGBoost, an ensemble decision tree-based machine learning 

algorithm, to predict the binding of BMAL1 to its putative binding motif (the E-box) in three 

mouse tissues – liver, heart and kidney.  We developed three different types of models: 1) sequence-

only, 2) sequence plus DNA shape, and 3) sequence plus DNA shape plus histone modifications 

(Fig 2A-B). Examining of the binding motifs revealed that the canonical 5’-CACGTG-3’ E-box 

type was the least frequent among all E-box types in the entire mouse genome and in accessible 

chromatin regions across the liver, heart, and kidney tissues.  However, this E-box type exhibited 

the highest frequency of BMAL1 binding (Fig 1E), consistent with previous observations that 

CACGTG is the preferred binding motif for BMAL1148. Despite the over-representation of the CG 

dinucleotide at the center of BMAL1-bound E-boxes, these nucleotides did not enhance model 

performance. Interestingly, the heart tissue harbored more E-boxes in accessible chromatin regions 

than the liver and kidney, yet it had the lowest number of bound E-boxes in accessible chromatin. 

The role of circadian rhythms in cardiac function is not well understood, and only 6% of protein-

coding genes in the mouse heart exhibit circadian regulation, compared to 11%-16% in the liver149. 

This observation is likely a consequence of the overall lower BMAL1 binding in the heart tissue. 
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However, the underlying reasons for the low level of BMAL1 binding to otherwise accessible E-

boxes in the heart remain unexplained. One possible explanation for the low BMAL1 binding to 

accessible E-boxes in the heart tissue could be the interference of a heart-specific E-box binding 

factor. For instance, it has been shown that elevated levels of Usf1, a ubiquitous transcription 

factor, can impede the binding of a mutant CLOCKΔ19:BMAL1 complex to E-box sites, and other 

such factors may exist150. Interestingly, neither the kidney nor the heart within-tissue models 

achieved the same level of performance as the liver within-tissue model. This could be due to 

evidence suggesting that the heart circadian rhythm might be phase-shifted compared to the liver, 

indicating that maximal BMAL1 binding in the heart might occur at a different time than the 

Zeitgeber time 6 (ZT06)46 used for the liver BMAL1 ChIP-seq experiment. Consequently, some 

of the heart BMAL1-bound E-boxes might have been labeled as unbound, affecting model learning 

and resulting in lower performance. A limitation of this work is that the authors considered only 

E-boxes in accessible chromatin regions and disregarded inaccessible E-boxes. While their 

observations confirmed that, on average, more than 75% of BMAL1 peaks lie in accessible 

chromatin, suggesting a higher likelihood of BMAL1 binding in these regions, it has been 

demonstrated that the BMAL1-CLOCK complex can act as a pioneering factor and rhythmically 

control the accessibility of chromatin surrounding BMAL1-bound sites151. Recent studies have 

demonstrated that incorporating DNA shape features computed from core transcription factor (TF) 

binding motifs and their flanking sequences improves the prediction of TF binding for many 

human TFs50,62,63. Furthermore, DNA topology is highly correlated with the structure and stability 

of the nucleosome, suggesting that topological changes can influence the binding of TFs to 

DNA152. In the sequence plus shape models developed in this study, the DNA shape features EP, 

Roll, MGW, and ProT exhibited the highest influence on the prediction of bound E-boxes. A recent 
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study50 showed that for Max, a basic helix-loop-helix (bHLH) TF like BMAL1 and CLOCK, it 

was Roll and ProT that were the dominant determinants of TF-DNA binding affinity. These 

observations agree with our findings. Further, in agreement with previous studies, I found that 

DNA shape features by themselves do not enhance model accuracy. The analysis of feature 

importance in the sequence plus shape plus histone modifications (HMs) models revealed that the 

HMs H3K27ac and H3K4me3, along with the DNA shape feature EP, dominated binding 

prediction across the kidney and heart tissues, and were also highly ranked in the liver. Previous 

studies have shown that H3 acetylation and methylation modifications surrounding CLOCK-

BMAL1 bound sites exhibit rhythmic changes153. My results findings indicate that even with a 

single snapshot of these HMs from unsynchronized mice, we can accurately distinguish between 

bound and unbound E-boxes, likely owing to the information encoded in the shape and surrounding 

sequence of the E-box motif, in addition to the average levels of histone modifications. I propose 

that this is likely due to the information that is encoded in the shape and flanking sequence of the 

E-box motif in addition to the average levels of histone acetylation and methylation. The analysis 

suggest that this information is tissue-specific, as evidenced by the performance of the cross-tissue 

models. Intriguingly, the DNA sequence features alone had little to no effect on binding prediction 

in the kidney and heart. However, the second nucleotide upstream of the E-box had a significant 

contribution to predicting BMAL1-DNA binding in the liver, with the nucleotide G at this position 

contributing to approximately 50% of the feature importance score. Analysis of the bound E-box 

motifs and their flanking sequences revealed an enrichment of the G nucleotide at the third position 

of the 5' flanking sequence in the liver. Since the heart and kidney models do not rely on this 

feature, it is understandable that the liver_kidney and liver_heart cross-tissue models showed an 

unexpected decrease in performance when DNA shape and histone modification features were 
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added to the sequence features. On the other hand, the kidney_liver and heart_liver cross-tissue 

models exhibited a boost in performance with the addition of histone modification features. These 

results suggest that there is some degree of commonality in BMAL1 binding between different 

tissues. However, in cross-tissue models, sequence-only models exhibited the most robust 

performance, with the exception of the kidney_heart and heart_kidney models. This indicates that 

DNA shape and chromatin context features can exhibit a high degree of tissue specificity and are 

more similar between the kidney and heart than between the liver and the other two tissues. 

Previous studies on the yeast bHLH transcription factors Cbf1 and Tye7 have shown that E-box 

binding specificity is governed by sequences flanking the E-box, as reflected in DNA shape154. My 

findings extend this concept, indicating that not only might DNA shape and chromatin context 

confer different binding specificities to different transcription factors within the same tissue, but 

they might also confer different binding specificities to the same transcription factor across 

different tissues. These observations suggest that while there may be some shared determinants of 

BMAL1 binding across tissues, there are also tissue-specific factors, such as DNA shape and 

chromatin context, that modulate BMAL1's binding specificity. This tissue-specific regulation 

could contribute to the observed differences in clock-controlled gene expression patterns among 

various tissues. 

Dynamic modeling of biological processes from gene regulatory to multicellular network levels 

provides critical insights into the fundamental properties, physiology, and behaviors related to 

circadian rhythmicity155. While experimental and theoretical explorations have extensively 

detailed the circadian clock gene regulatory network156, few studies have examined the cell-cell 

communication processes enabling synchronization of circadian period, amplitude, and phase 

between autonomous cellular oscillators. Elucidating circadian synchronization through cell-cell 
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coupling can advance our understanding of circadian rhythm robustness and plasticity at the tissue 

level29. Neurotransmitters, acting as coupling factors, have been shown to regulate the 

synchronization mechanism in the suprachiasmatic nucleus (SCN)105,157. However, the coupling 

factors in other peripheral tissues are unknown. In this study, I developed mathematical models of 

the mouse hepatic circadian clock to examine intercellular communication and synchronization of 

autonomous oscillators across the murine liver lobule. The models incorporated core clock genes 

and their regulatory interactions in individual hepatocytes. Simulations showed that incorporating 

cell-cell coupling led to synchronized gene expression between hepatocytes, matching 

experimental findings29,158. Strong synchronicity of circadian oscillation has been associated with 

period lengthening. However, the models suggest that without synchronization, the period is 

variable outside of the near 24-hr range. Therefore, optimal cell-cell coupling is required to achieve 

both synchronicity between cells and appropriate oscillatory periods159. Synchronicity of circadian 

oscillation has been shown to induce key cell-cycle events, including cyclin-dependent kinase 

network activation, cell growth, DNA replication, and cytokinesis160. A weak synchronicity at the 

cellular level in the SCN manifests as mistimed sleep and impaired cognitive and psychomotor 

performance in humans. This circadian misalignment has detrimental effects on physiology and 

behavior, including deficits in reaction time, memory, alertness, and mood8. The sensitivity 

analysis revealed dependencies between clock components; for instance, increased Per 

transcription decreased Cry expression, likely due to their mutual repression161. Specifically, 

increased Cry transcription rates markedly diminished Per mRNA levels. However, perturbations 

in the Per transcription rate did not comparably suppress Cryptochrome transcripts37. This aligns 

with experimental reporter assays demonstrating that the repression strength of PER proteins on 

Clock/Bmal1-driven transcription is weaker relative to CRY162. The disproportionate parametric 
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sensitivities suggest that CRY dynamics play a more dominant role than PER in governing 

circadian rhythmicity via interlocking negative feedback loops. Validating the coupled mechanism 

in the model, the authors used bifurcation diagrams to show the periodic stability of the 

transcription rate parameters. These theoretical bifurcation diagrams generate experimentally 

testable hypotheses, potentially through overexpression or knockdown of circadian factors in vivo 

and in vitro, to validate predicted changes in periodicity, amplitude, or phase shifts149.  Our 

knowledge of the complex mammalian circadian clock mechanism is still incomplete. More than 

40 genes directly interact with the core clock genes in generating the circadian oscillatory 

rhythm163. It is, therefore, essential to understand the temporal and spatial dynamics and the 

regulatory mechanism of the circadian clock oscillation. I addressed this knowledge gap with a 

detailed mathematical model incorporating known clock and associated rhythmic genes. The 

current model focused on healthy cells under normal circadian entrainment. An important 

extension would be to model circadian disruption by genetic alterations or toxicant exposure. The 

model could be used to predict the effects of parameter changes representing mutations or cellular 

damage. Linking the circadian clock model with zonated metabolism models could offer insights 

into compounding hepatic effects across scales. While the study provides valuable insights into the 

circadian clock mechanism, I acknowledge the limitations of my current model, which focuses on 

healthy cells under normal circadian entrainment. I propose extending the model to simulate 

circadian disruption caused by genetic alterations or exposure to toxicants, which could be 

achieved by modifying parameters to represent mutations or cellular damage. Additionally, 

integrating the circadian clock model with zonated metabolism models could provide a holistic 

understanding of the multi-scale effects on hepatic function. 
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The liver exhibits a remarkably intricate spatiotemporal metabolic organization. As the primary 

site of drug metabolism, elucidating the impact of chemical compounds on hepatic gene regulation 

in both spatial and temporal domains could provide critical insights. Firstly, characterizing the 

acute restructuring of rhythmic and zonal gene expression patterns in response to drug exposure 

could reveal adaptive mechanisms. Secondly, disruption of these regulatory mechanisms likely 

contributes to the progression of pathological states such as non-alcoholic fatty liver disease. 

Analysis of drug effects on the liver has often been limited by examining temporal rhythmicity 

and spatial zonation independently. In this study, we integrated these hepatic properties to account 

for chemical perturbations, an important consideration given the understudied aspect of how the 

liver reorganizes its metabolic framework in response to toxic stimuli. We expanded on previous 

work unifying rhythmicity and zonation to incorporate the effects of acute exposure to 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD). Despite the short timescale, we demonstrated that TCDD 

significantly impacts both rhythms and zonation. The canonical TCDD receptor, the aryl 

hydrocarbon receptor (AhR), exhibited both rhythmic and zonal expression patterns. Moreover, 

numerous TCDD-induced effects had both temporal and spatial components. Overall, this 

integrated methodology enabled a more comprehensive characterization of rapid liver 

reorganization in response to TCDD exposure than studying zonation or rhythms in isolation. Our 

findings highlight the utility of integrating diverse regulatory properties when elucidating the 

impacts of chemical compounds on hepatic gene regulation and metabolic organization. Our 

integrated analysis demonstrates that hepatic rhythmicity is more sensitive to acute exposure to 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compared to zonation. This aligns with previous 

findings showing that subchronic TCDD administration at the same dose greatly dampened 

amplitude and significantly phase-shifted the core circadian clock28. Although acute TCDD did 
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not perturb all core clock genes analyzed, we still observed significant influences on nearly half of 

these critical circadian regulators. Effects were most notable for genes directly downstream of the 

CLOCK-ARNTL heterodimer (e.g., Per2, Nr1d2), supporting the hypothesis that the aryl 

hydrocarbon receptor (AhR) interferes with CLOCK-ARNTL transcriptional activation by 

competing for ARNTL binding. Additional evidence lies in the expression pattern of Per1, a direct 

target inhibited by AHR-ARNTL binding. Although Per1, a core circadian gene, was excluded 

from our dataset due to low variance, its normalized expression showed signs of repression at 

multiple timepoints between 2-24 hours post-TCDD exposure, consistent with disrupted CLOCK-

ARNTL control. TCDD elicited variable effects on rhythmic hepatic genes; while most exhibited 

modest expression changes at specific times, overall oscillation patterns were largely maintained 

with treatment for approximately 85% of rhythmic transcripts. However, approximately 15% of 

rhythmic genes gained or lost transcriptional rhythmicity, representing selective arrhythmic 

effects. Notably, gene set enrichment analysis linked these arrhythmia-gaining genes to canonical 

TCDD response pathways, including hallmark AhR-mediated responses126,164. This indicates that 

TCDD preferentially disrupts rhythmicity of major regulatory nodes and downstream processes 

most susceptible to aberrant AhR activation. Rather than inducing widespread distortions in cyclic 

waveforms, TCDD appears to ablate oscillatory control of TCDD-vulnerable pathways. TCDD 

also significantly impacted zonal gene regulation, altering spatial expression patterns for nearly 

25% of zonated transcripts. Notably, about 30% of these genes either gained or lost zonation, 

representing substantial chemical-induced re-patterning. Genes losing zonation were enriched for 

phase II UDP-glucuronosyltransferase metabolism and localized to the central hepatic layer, 

matching the enrichment of the AhR receptor itself. TCDD-perturbed genes were also enriched for 

known regulators of zonation, potentially via crosstalk with Wnt/β-catenin signaling. This was 
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most prominent for genes jointly exhibiting rhythmic and zonal properties, which are hypothesized 

to arise from Wnt-mediated pericentral signals. As AhR shows central layer enrichment, its 

aberrant activation by TCDD could disrupt this external cue, explaining the observed perturbation 

in rhythmicity and zonation. While the precise mechanisms through which aberrant AhR signaling 

perturbs hepatic rhythmicity and zonation after TCDD exposure remain unclear, potential routes 

could involve direct transcriptional regulation via AhR binding to target gene cis-regulatory 

elements or hierarchical effects by disrupting core clock regulators, secondarily altering cyclic 

control of downstream processes. High-throughput approaches like ChIP-seq, profiling genome-

wide binding locations for AhR, ARNTL, and binding partners after TCDD exposure, could 

elucidate these questions and map binding sites to clarify pathways exhibiting direct, canonical 

AhR-mediated regulation versus downstream, non-canonical disruption. In summary, these results 

indicate that the disruption of temporal rhythmicity is a primary route through which TCDD alters 

hepatic gene regulation, relative to spatial patterning. The specific effects on core circadian 

components highlight direct mechanisms through which aberrant AhR activation propagates to 

disrupt hepatic rhythmicity, with the immediate downstream targets of CLOCK-ARNTL appearing 

especially sensitive to functional interference by ligand-activated AhR. This approach enables 

matching of precise TCDD-induced expression changes to interactions within the circadian 

regulatory network, refining hypotheses on the routes by which AhR signaling disrupts clock 

function. The method enables comparative assessment of the impacts of chemical exposure on 

rhythmic versus zonal gene expression, revealing that perturbations in rhythmic transcriptional 

outputs precede and potentially contribute to changes in zonation in the case of TCDD exposure. 

The developed methodology provides a framework readily extensible to additional chemical 

exposure contexts, dose-response relationships, and single-nuclei RNA sequencing datasets 
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assessing hepatic chemical impacts. By matching pathway-specific expression changes to 

overarching spatiotemporal regulatory logic, this systems-based strategy has potential utility for 

pharmacology and toxicology, enabling researchers to situate perturbed pathways within the 

broader scheme of metabolic zonation and rhythmicity. Characterizing how xenobiotic disruption 

of specific functional modules scales up to influence zonation control pathways and circadian 

timing at the tissue level will drive a more holistic understanding of chemical threats to hepatic 

function. Overall, this multi-parametric modeling approach provides a blueprint for deep 

phenotyping of gene regulatory restructuring in this vital metabolic organ. 
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