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ABSTRACT

Circadian clocks are intrinsic molecular oscillators present in cells across prokaryotes and
eukaryotes that synchronize physiological processes with external cues, enabling organismal
adaptation and survival. These clocks regulate crucial biological functions, including sleep-wake
cycles, thermoregulation, hepatic metabolism, and hormonal secretion, through the rhythmic
expression of clock-controlled genes. The mammalian liver comprises structural units called
lobules, with hepatocytes arranged in a hexagonal pattern along a pericentral-to-periportal axis
extending from the central vein to the portal triad. Perturbations in the circadian clock network can
contribute to the pathogenesis of various disorders, such as obesity, diabetes, inflammatory
conditions, and certain cancers.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an exogenous ligand that binds to the aryl
hydrocarbon receptor (AHR), eliciting diverse toxic effects by disrupting the circadian clock
mechanism. To investigate whether TCDD-activated AHR disrupts the intrahepatic circadian clock
by interfering with genome-wide CLOCK:BMAL1 binding, potentially leading to a reduction or
loss of rhythmicity in clock-controlled genes, interpretable machine learning models were
developed to predict BMALI binding to DNA in liver, kidney, and heart tissues using genetic and
epigenetic features (binding sequence, DNA shape, and histone modifications). Thus, TCDD
activated AHR has been proposed to bind to the E-box binding motifs to disrupt the regulation of
circadian clock genes. The findings demonstrated that BMALI binding to DNA is tissue-specific,
and the combination of sequence, DNA shape, and histone modification features yielded the
highest binding prediction accuracy. Additionally, the flanking sequences upstream and
downstream of the binding motifs played a crucial role in BMAL1 binding to DNA.
Furthermore, a spatiotemporal multicellular mathematical model of the mammalian circadian

clock in the liver lobule was developed to investigate intercellular coupling for the synchronization



of circadian clock expression across the portal-to-central axis. The analysis revealed that, similar
to the coupling of autonomous circadian oscillators in the suprachiasmatic nucleus (SCN), hepatic
clock rhythms are likely synchronized by an unknown coupling factor. Sensitivity analysis,
bifurcation analysis, and parameter estimation from the model provided insights into the

physiology of the hepatic clock and potential mechanisms of alteration.

Lastly, to understand the interplay between the spatial and temporal axes of gene expression in the
liver, particularly in drug metabolism pathways, the existence of a third axis, chemical
perturbation, and its implications for hepatic function were uncovered. We developed a non-linear
mixed effect models to investigate the effect of acute TCDD perturbation on the spatial and
temporal axes of gene expression in the liver lobule. The analysis revealed a distortion of the
spatial axis of gene expression but a low significant effect on the temporal axis. These findings
provide a comprehensive examination of circadian rhythms and their disruption by TCDD in the
liver, encompassing molecular mechanisms, predictive modeling, and spatiotemporal dynamics.
The study offers valuable insights into the intricate regulatory mechanisms governing circadian
rhythms, the significance of zonation in hepatic functions, and the interplay between spatial and
temporal gene expression. The findings have the potential to contribute significantly to our
understanding of circadian resilience and the mitigation of pathological conditions, particularly in

the context of drug metabolism pathways and hepatic function.
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CHAPTER 1: INTRODUCTION

Circadian clocks are endogenous molecular networks present in the cells of wide spectrum of
organisms from prokaryotes to eukaryotes that regulate 24 -h physiological and behavior rhythms
1= The circadian clock mechanism synchronizes physiological activities with the external cue
cycles for organismal survival. In 1729, Jean-Jacques d’Ortous de Mairan discovered that Mimosa
pudica leaves exhibit daily folding and unfolding cycles in constant darkness*. Animal circadian
rhythms were later affirmed by experiments in 1972, which demonstrated persistent rhythmic
activity in rats under constant darkness and temperature’ and in Drosophila melanogaster and other
insects®. The circadian clock rhythms are regulated by a molecular clock mechanism which exists
in all cells in the mammalian body. The hypothalamic suprachiasmatic nucleus (SCN) contains
the master pacemaker clock that synchronizes subsidiary oscillators in peripheral tissues like the
liver, heart, and kidney. The SCN receives input from external cues and, in turn, relays temporal
signals to synchronize peripheral clocks®’. The molecular basis for the mammalian circadian
clock mechanism involves a coordinated transcriptional-translational feedback loop that operates
on an approximately 24 hr period. The feedback loop is driven by both positive and negative
regulatory interactions that allow for sustained oscillatory activity® '°. The positive arm of the loop
centers on the activation of E-box mediated transcription by the circadian locomotor output cycles
kaput (CLOCK) or Neuronal PAS domain protein 2 (NPAS2) with brain and muscle ARNT-like
1 (BMAL1) forming the heterodimeric complex CLOCK-BMAL1 or NPAS2-BMALI1. This
heterodimer protein drives the expression of various clock-controlled genes (CCG’s) including the
Period (Per 1, Per 2 and Per 3) and the Cryptochrome (Cry 1 and Cry 2) which comprise the
negative arm by repressing their own transcription by interacting with CLOCK-BMALI1 or

NPAS2-BMALI1 complex, thus constituting an auto-regulatory feedback process. Additionally, a



secondary stabilizing loop involves the activation of Bmall by retinoic acid receptor-related
orphan nuclear receptors (RORa, RORp, and RORY) and its repression by REV-ERBa and REV-
ERBp. The precise balance and delays involved in the kinetics of these multiple interconnected

feedback processes allows for sustained 24-hour periodicity.
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Figure 1: The key molecular component of the mammalian clock mechanism with the
transcriptional — translational feedback loops driving by the positive and negative loop. Adapted
from Lee, Y'!.

Several physiological and biological functions and processes are regulated by circadian clock-
controlled genes'>!3, display rhythmicity over time. These include core body temperature, which
fluctuates on a circadian cycle; sleep-wake cycles, which follow a circadian rhythm dictated by
the suprachiasmatic nucleus; cardiovascular variables like heart rate and blood pressure, which
demonstrate both circadian and ultradian rhythms; feeding behavior and digestive processes,

which are influenced by circadian, hunger-satiety, and digestive cycles; secretion of hormones like



melatonin, cortisol, growth hormone, and prolactin, which often follow circadian or ultradian
patterns determined by the hypothalamic-pituitary axis and other oscillators; liver metabolic
activity and gene expression, which varies cyclically over 24-hour periods and in response to
feeding times and fasting; renal blood flow, glomerular filtration rate, and other measures of kidney

function, which display circadian variations; as well as several other measurable bodily processes
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Figure 2: Physiological and biological functions regulated by circadian along with the implicated
genes and proteins in parentheses. Green arrows represent induction and red arrows repression by
circadian clock gene or protein. Adapted from Jacob et al'®.



Studies from animal models and human subjects have shown that perturbation or
desynchronization of circadian rhythms can contribute to, the progression of various pathologies>®
22 These include metabolic diseases like obesity and diabetes, inflammatory disorders, and certain
cancers>>2°, Additionally, times of day can affect the severity of symptoms or acute exacerbations
in some conditions with a circadian component. For example, asthma attacks and rheumatoid
arthritis flares display circadian patterns, as does the incidence of adverse cardiovascular events
like myocardial infarction and stroke!®?*. The cyclic nature of these conditions points to circadian
misalignment and loss of coordination between external timing cues and internal oscillators as an
integral mechanism in disease pathology. Strengthening circadian resilience through timed
behavioral, or pharmacologic, or genetic interventions represents a therapeutic opportunity to

mitigate disease severity in select disorders.

The chemical compound, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic
pollutant that elicits diverse toxic effects in mammals. TCDD exposure has been associated with
a myriad of adverse health outcomes, including developmental abnormalities, carcinogenesis, and
hepatotoxicity. It exerts these effects primarily through activation of the cytosolic protein aryl
hydrocarbon receptor (AHR), acting as a transcription factor’®?’. TCDD exposure perturbs
circadian rhythms in peripheral tissues like the liver by disrupting molecular circadian clock
oscillations. Specifically, TCDD activated AHR affects circadian rhythm by reducing the
amplitude, shifting the phase, and lengthening the period of circadian oscillations in clock-

controlled genes expression®s.

The liver exhibits strong rhythmicity, regulating various metabolic functions like, detoxification,
glycogen storage, lipid metabolism, and bile production in accordance with the body's internal

clock?®. The mammalian liver is made up of structural units called lobules. The lobule is composed



of hepatocytes, the liver's parenchymal cells, arranged in a radial pattern around a central vein.
The hepatocytes are arranged in a roughly hexagonal architecture with a pericentral to periportal
axis extending from the central to the portal veins. Hepatocytes are not homogeneous in their
metabolic activities; instead, they display distinct biological functions depending on their location
within the lobule*®2. Thus, metabolic functions within the liver lobule exhibit a distinct spatial
organization, a phenomenon known as zonation. The periportal hepatocytes, being exposed to a
higher oxygen concentration, are primarily involved in processes such as gluconeogenesis (the
synthesis of glucose from non-carbohydrate precursors), urea synthesis (detoxification of
ammonia), and bile acid synthesis. Conversely, the pericentral hepatocytes, which receive oxygen-
depleted blood, are more active in glycolysis (the breakdown of glucose for energy production),
lipogenesis (the synthesis of fatty acids), and xenobiotic metabolism (the detoxification of drugs

and other foreign compounds) 3032736,

The hepatic expression of AHR is zonated across the lobular axis?**. However, no zonation is
observed in the basal expression of circadian clock genes. While a large number of mathematical

d’*738 none of these

models of the natural circadian clock oscillation have been develope
specifically address spatial disruption of the circadian clock in peripheral tissues like the liver. I
aimed to address the question of whether TCDD-activated AHR disrupts the intra-hepatic circadian
clock in a zonated manner by interfering with genome-wide CLOCK:BMALI1 binding, which
could lead to a reduction or total loss of rhythmicity of clock-controlled genes. To do this, I first
developed an interpretable machine learning model of genome-wide DNA binding by BMALI in
the liver, heart and kidney using published Chromatin immunoprecipitation-sequencing (ChIP-

seq) data. My results confirmed an overlap between the binding motif of BMALI1 (E-box — 5°-

CANNTG-3") and AHR (5'-GCGTG-3") in the promoter regions and bodies of core circadian clock



genes. This is consistent with the proposed mechanism of TCDD activated AHR binding to the E-
box motif to disrupt the regulation of circadian clock genes. Also, my model showed that, using
both genomic and epigenomic features like the core motif plus flanking sequences, the shape of
the DNA and histone modification, we could achieve significant prediction accuracy of BMALI
binding. Interpreting my model, I showed specific features with the highest contribution to tissue-
specific binding of BMAL to DNA. My cross tissue predictive model demonstrated that while
BMALTL exhibits high specificity in binding certain DNA conformations and chromatin contexts,
these specificities exhibit variation across different tissues. Our discoveries expand upon the notion
that DNA shape and chromatin context can modulate the binding specificities of transcription
factors (TFs). Specifically, our results demonstrate that in addition to conferring differential
binding specificities to distinct TFs within the same tissue, DNA shape and chromatin environment

can also confer distinct binding specificities to a given TF in different tissue contexts.

Secondly, I developed spatiotemporal multicellular mathematical models of the mammalian liver
lobule circadian clock network. I developed two sets of mathematical models to investigate the
dynamics of circadian clock genes expression in hepatocyte across the portal-to-central axis of the
liver lobule: one model with communication and one without communication among cellular
oscillators (hepatocytes). Simulations of the model revealed the dependencies of the model
observables (expressed mRNA levels of the various genes) on their corresponding transcription
and degradation rates. Estimating the model parameters and fitting the coupled model to
experimental data yielded a high correlation with R>> 0.9, elucidating the way alterations in model
parameters modulate the reinforcing and attenuating feedback loops that govern the circadian

rhythm. Collectively, my modeling framework establishes a foundation for probing the regulatory



mechanisms underlying circadian rhythmicity and its associated aberrations in the context of

hepatic physiology and pathological states.

A recent investigation by Droin et al*

revealed the intricate interplay between spatial and temporal
axes of gene expresssion, leading to rhythmic patterns of expression within established zonated
pathways. Notably, these pathways encompass a significant number of gene sets implicated in drug
metabolism processes. The observed overlap between the temporal and spatial axes with drug
metabolism pathways suggests the existence of a third axis, chemical perturbation, that warrants
consideration when characterizing hepatic function. This led to the final project in my dissertation
where I developed a nonlinear mixed effect model to investigate the effects of acute TCDD-

activated AHR on the temporal (rhythmicity) and spatial (zonated) expression patterns of genes

along the portal-central axis of the liver lobule.



CHAPTER 2: PREDICTING MAMMALIAN TISSUE SPECIFIC DNA-BINDING BY
CLOCK-BMALI1

INTRODUCTION

All living organisms possess a robust circadian timekeeping mechanism enabling anticipation and
adaptation to recurring environmental changes. In mammals, this system consists of a hierarchical
network of oscillators. The central clock, situated in the suprachiasmatic nucleus (SCN) of the
hypothalamus, synchronizes peripheral clocks across various tissues®. The intracellular gene
regulatory network of the circadian clocks, both central and peripheral, involves a relatively small
set of key transcription factors (TFs) that are interconnected through multiple negative and positive
feedback loops. These feedback loops play a crucial role in regulating the expression of clock
genes and maintaining the oscillatory patterns of the circadian rhythm. In this regulatory network,
specific TFs bind to the promoter regions of target genes, either activating or repressing their
transcription. The expression of these TFs is, in turn, regulated by the products of the genes they
control, creating intricate feedback loops®®. The core activators of the circadian network are, the
Clock Locomotor Output Cycles Kaput (CLOCK) and brain and muscle ARNT Like 1 (BMALT)
transcription factors, both of which belong to the basic helix-loop-helix (bHLH) family. These two
proteins form a heterodimer complex (referred to hereon as CLOCK-BMALL). In the absence of
CLOCK, another member of the bHLH-PAS transcription factor family, the Neuronal PAS domain
protein 2 (NPAS2), can compensate by forming a heterodimer with BMAL1. In the classical
model of clock gene regulation, the CLOCK-BMAL1 or NPAS2-BMALI dimer acts as a
transcriptional activator, initiating the expression of various clock-controlled genes by binding to
a specific hexanucleotide sequence known as the E-box motif (canonical sequence 5’-CANNTG-
3°, where N represents any nucleotide) within the promoter or enhancer regions of clock-controlled

genes. This binding event regulates the transcription of these genes, which are crucial for the proper



functioning of the circadian clock machinery*®*'. In vivo studies have shown that, BMAL1 binds
also to non-canonical E-box sequences such as 5’-CACGTT-3" in the promoter region of the
murine Per2 gene*”. However, comprehensive experimental evidence supporting genome-wide
binding of BMALI to such sequences remains elusive. Consequently, in this study, I have focused
solely on the classical E-box motif with the canonical sequence 5’-CANNTG-3" (where N
represents any nucleotide). Disruptions in the expression or binding functionality of the core clock
transcription factors (TFs) disturb natural circadian oscillations and can lead to various
pathologies, including insomnia, cancer, cardiovascular disease, and metabolic disorders**,
Here, I aim to enhance our understanding of gene regulation by the CLOCK-BMAL1 or NPAS2-
BMALI complex and its perturbations by employing interpretable predictive models of DNA
binding by the master regulatory factor BMALI. By developing these models, I seek to gain

insights into the mechanisms underlying the binding of BMAL1 to target DNA sequences and the

subsequent regulation of clock-controlled genes.

The genome-wide identification of transcription factor binding sites (TFBS) poses a significant
challenge. Typically, only a small fraction of the classically defined sequence motifs for a
particular transcription factor (TF) are bound*’. For example, the canonical E-box binding motif
occurs more than 7 million times across the mouse genome, but less than 0.7% of these motifs are
bound by the CLOCK-BMAL1 or NPAS2-BMALI1 complexes in mouse peripheral tissues*. The
binding of a particular TF to its cognate DNA motif depends on several molecular features,
including the DNA sequence of the core motif, sequences flanking the core motif, chromatin
accessibility, local shape of the DNA, presence of co-factors, histone modifications, DNA
methylation, and other biophysical parameters*’>°. These features and their relative contributions

51,52

to binding can vary greatly across different cell and tissue types Chromatin



immunoprecipitation followed by sequencing (ChIP-seq) is the current gold standard for assaying
genome-wide TF binding locations®’. However, assaying the binding of a given TF under various
conditions and in different tissues is prohibitively expensive. Consequently, several predictive
computational models of genome-wide TF-DNA binding have been developed. From these
models, DNA sequence and chromatin accessibility emerge as the most important determinants of
TF binding. Despite the vast number of potential binding sites in the genome, TFs exhibit highly
specific binding patterns, with only a small fraction of the canonical motifs being occupied. This
specificity is attributed to the interplay of various factors, including the DNA sequence context,
chromatin accessibility, and other biophysical parameters. These features can vary significantly
across different cell and tissue types, contributing to the complexity of TF binding patterns>*-°.
Chromatin accessibility assays, such as deoxyribonuclease hypersensitive sites sequencing
(DNase-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq), have been
employed to enhance the prediction of transcription factor binding sites (TFBS). These assays
provide valuable information about the regions of the genome that are accessible to regulatory
proteins, a crucial determinant of TF binding®’. Recently, advancements in machine learning,
particularly deep learning techniques, have led to improved model predictions for TF binding.
Deep learning models have demonstrated the ability to capture complex patterns and interactions
within the data, leading to more accurate predictions of TF-DNA binding events. While deep
learning models excel in predictive performance, they often tend to be "black boxes," where it is
challenging to understand the reasoning and mechanism behind their predictions. This lack of
interpretability hinders the ability to elucidate the molecular features and interactions that

contribute to the tissue-specific binding patterns of transcription factors>® .,
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In this study, I present interpretable machine learning models capable of predicting which
canonical E-box motifs occurring in accessible chromatin regions of the mouse liver, heart, and
kidney are likely to be bound by BMALI. Our predictive models are based on the XGBoost®!
machine learning algorithm, with logistic regression used as a baseline algorithm to evaluate model
performance. Published data from a BMALI1 ChIP-seq study*® was used to train and evaluate the
models. When considering which features to include in our predictive models, I noted that DNA

62.63 and histone modifications®* have been shown to be efficient predictors of transcription

shape
factor (TF) binding in addition to DNA sequence. Specifically, it has been proposed that TFs prefer
specific 3D DNA conformations and not just specific sequences®. For example, the incorporation
of DNA shape features led to improved model performance when predicting in vivo binding of
TFs from the basic helix—loop—helix (bHLH) family. Particularly, five distinct shape features -
Electrostatic Potential (EP), Minor Groove Width (MGW), Propeller Twist (ProT), Roll, and Helix
Twist (HelT) have been shown to be useful for TF-DNA binding prediction. These shape features
capture the local three-dimensional structure of the DNA, which can influence the binding affinity
and specificity of TFs®. In addition to DNA shape features, histone modifications have also been
implicated in regulating TF-DNA binding. Specific histone modifications can alter the chromatin
structure and accessibility, thereby affecting the ability of TFs to recognize and bind to their target

sequences. By incorporating information about histone modifications, predictive models can

potentially capture additional regulatory mechanisms governing TF-DNA binding®’.

Our study revealed that while most of the flanking DNA sequence features showed low importance
in predicting the binding of BMALI to canonical E-box motifs. However, the second flanking
nucleotide upstream of the E-box motif in the liver, specific histone modifications and DNA shape

features emerged as significant predictors of BMAL1-DNA binding across all tissues examined.
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Specifically, the histone modifications H3K27ac, H3K4mel, H3K4me3, and H3K36me3, together
with the DNA shape features electrostatic potential (EP), roll, and minor groove width (MGW),
were identified as crucial determinants of BMALI-DNA binding in the liver, heart, and kidney
tissues. The incorporation of these features into our machine learning models resulted in high
predictive performance, highlighting their importance in governing the binding specificity of
BMALL. However, our cross-tissue predictive model revealed that although BMALI1 exhibits a
preference for specific DNA conformations and chromatin contexts, these specificities vary across
different tissues. This finding suggests that while certain genomic and epigenomic features are
generally important for BMALI1 binding, the relative contributions of these features and the
specific combinations that facilitate binding may differ among tissues. The tissue-specific
variations in BMALI binding preferences could be attributed to the unique chromatin landscapes,
regulatory networks, and cellular environments present in different tissues. These differences may
influence the interplay between DNA sequence, DNA shape, histone modifications, and other

regulatory factors, resulting in distinct binding patterns of BMALI across tissues.

Our interpretable machine learning models not only achieved high predictive accuracy but also
provided insights into the key genomic and epigenomic features that govern BMALI1-DNA
binding. By identifying the most influential features and their relative importance, our study
contributes to a better understanding of the regulatory mechanisms underlying the tissue-specific

binding patterns of BMALL, a critical transcription factor in the circadian clock machinery.
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METHODS

ChIP-seq dataset preprocessing.

Uniformly processed BMAL1 ChIP-seq peaks from the C57BL/6J mouse liver, kidney, and heart
were retrieved from the Gene Expression Omnibus under accession code GSE1106049%. BMAL1
ChIP-seq experiments were conducted at Zeitgeber time 6 (ZT6). Accessible chromatin regions,
represented by DNase [-hypersensitive (DHS) sites for all three tissues (DNase-seq), were obtained
from the Encyclopedia of DNA Elements, ENCODE (Supplementary Materials). DNase-seq
experiments were performed on unsynchronized tissues. The Genome Reference Consortium
Mouse Build 38 (GRCm 38) served as the reference genome. DHS sequences were processed in
Python with BEDTools®® to extract all E-Box sequences (5’-CANNTG-3’) within accessible
chromatin. E-box motifs in accessible chromatin regions not overlapping their respective tissue
ChIP-seq bed files were considered instances of unbound motifs (the negative dataset for the
model). All accessible chromatin singleton E-boxes (instances of only one E-box motif under a
BMALI peak) and E-boxes closest to the summit of the BMAL1 peaks for peaks with multiple E-
boxes were labeled as bound (the positive dataset). Other E-boxes under BMALI1 peaks were
deemed ambiguous and excluded from further analysis. Specifically, 1175 E-boxes, 1082 E-boxes,
and 663 E-boxes from the bound Bmall liver, kidney, and heart, respectively, were found to be
ambiguous due to multiple E-boxes. Each E-box motif sequence was extended to include 4-
basepair (bp) flanking sequences upstream and downstream of the E-box. As the E-box motif
sequence is a palindrome, the reverse complement was disregarded. Each E-box, thus represented
by a 14-nucleotide sequence (6-bp core plus 4-bp sequence on either end), was one-hot encoded.
The binary (bound and unbound) E-box data resulted in highly imbalanced datasets, with

significantly more unbound than bound E-boxes in mouse accessible chromatin. Specifically, the
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number of bound E-box motifs in the liver, kidney, and heart were 3725, 3237, and 1313,
respectively. Conversely, the number of unbound E-box motifs in the liver, kidney, and heart were
189581, 262053, and 291840, respectively. Notably, the negative samples outnumbered the
positives by factors of 51 in the liver, 223 in the heart, and 82 in the kidney. The reported
occupancies and the ratio of bound to unbound E-box motifs in the liver, kidney, and heart tissues
are consistent with previous studies, indicating a low percentage of canonical E-box motifs being
bound by BMALI in accessible chromatin regions.

DNA shape preprocessing.

The DNA sugar-phosphate backbone possesses degrees of freedom, allowing neighboring base
pairs and bases within a pair to vary their positions relative to each other through rotation or
translation, resulting in changes to the overall shape of the DNA molecule. To estimate DNA shape
features, the R/Bioconductor package DNAshapeR%*7® was employed. The DNAshapeR algorithm
predicts DNA shape features based on a given DNA sequence and encodes them into feature
vectors. These feature vectors for each shape category were normalized to values between 0 and 1
using Min-Max normalization and grouped into sets of 10 values for Minor Groove Width (MGW),
Propeller Twist (ProT), and Electrophoretic Mobility (EP), and sets of 11 values for Helix Twist
(HelT) and Roll, to serve as inputs for predictive models. The number of bins for each shape feature
corresponds to the length of the sliding window used to generate the features — 5 base pairs (bp)
for MGW, ProT, EP, and 6 bp for HelT and Roll.

Histone modification preprocessing.

I obtained ChIP-seq data for five histone modifications, namely H3K27ac, H3K4mel, H3K4me3,
H3K27me3, and H3K36me3, in mouse liver, kidney, and heart tissues from the ENCODE database

(Supplementary Materials). The ChIP-seq experiments for histone modifications were performed
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on unsynchronized tissue samples. These specific histone modifications were chosen based on data
availability across all tissues and their established roles in transcription factor binding. The
corresponding bed files were utilized to generate signal profiles and heatmaps using the deepTools
software’!. From the generated profiles and heatmaps, we observed that the histone modification
ChIP-seq signals extended meaningfully up to a 1.5-kb region (+/- 750 bp) centered on the E-box
core motif. Focusing on this 1.5-kb region centered at the E-box core motif, we extracted the
histone modification features for the binary dataset for each tissue using the bwtool software’?.
Subsequently, these features were divided into 10 bins, with an equal number of nucleotides in
each bin.

Machine learning models.

XGBoost

Extreme Gradient Boosting (XGBoost) is an ensemble learning method based on boosting decision
trees for both classification and regression tasks®!. I used up to 20 features as inputs for each E-
box motif - 10 sequence features (one for each nucleotide), 5 DNA-Shape features and 5 histone
modification features. The first two and last two nucleotide of the E-box motifs were set because
they were the same in all motifs. Using the Scikit-learn library in Python, I performed
hyperparameter tuning of the following parameters to reduce the degree of overfitting - the number
of iterations in training (n_estimators), the sum of sample weight of the smallest leaf nodes to
prevent overfitting (min_child weight), the maximum depth of the tree in building a model while
training (max_depth), the sampling rate of the training set in each iteration (subsample), the
learning rate (learning rate), and the feature sampling rate when constructing each tree
(colsample bytree). Hyperparameter tuning of the XGBoost model involved exploring a grid

search of the hyperparameter space with specific values: n_estimators = {30, 40, 50, 60, 70, 80,
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90, 100}, min_child weight= {1, 2, 3,4, 5, 6}, subsample={0.5, 0.6, 0.7,0.8, 0.9, 1 }, max_depth
= {1, 2, 3, 4, 5}, learning_rate = {0.1, 0.2, 0.3, 0.4, 0.5}, and colsample bytree = {0.6, 0.7, 0.8,
0.9, 1 }, resulting in a potential combination of 36,000 hyperparameters. Additionally, I evaluated
the model's performance using 5-fold cross-validation on predicting the binding status of E-box
motifs in accessible chromatin regions.

Logistic Regression

Logistic regression is a parametric classification model that estimates the probability of the output
variable belonging to a particular class’. It serves as a baseline for most machine learning-based
classification models. In this study, I tuned the following hyperparameters of the logistic regression
model to reduce overfitting on our testing dataset: the regularization solver for the training dataset
(solver) and the maximum number of iterations the solver algorithm is allowed to run before
convergence (max_iter). The regularization solver determines the algorithm used for optimization
and regularization. Common solvers include 'lbfgs' (limited-memory Broyden-Fletcher-Goldfarb-
Shanno), 'newton-cg' (Newton-Conjugate Gradient), and 'liblinear' (coordinate descent
algorithms). The max_iter parameter specifies the maximum number of iterations the solver is
permitted to run before terminating the optimization process. By tuning these hyperparameters, I
aimed to find the optimal combination of solver and maximum iterations that would minimize
overfitting on the testing dataset, thereby enhancing the generalization performance of the logistic

regression model.
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RESULTS

BMALI binds most frequently to the CACGTG E-box motif in all tissues.

To understand the molecular factors governing the binding of BMALI to DNA, I first delved into
the role of the canonical 5’-CANNTG-3" E-box motif in the binding of BMAL1 to DNA in the
various tissues. I conducted a comprehensive scan of the mouse mm10 reference genome to
identify occurrences of the E-box motif; 5’- CANNTG -3°. I considered all possible nucleotide
permutations of the central two nucleotides (NN) and included the reverse complement of the
canonical E-box sequence. However, a particular E-box and its reverse complement were treated
separately. Utilizing DNase-seq datasets retrieved from the ENCODE database’* for C57BL/6J
mouse tissues (liver, heart, and kidney), I identified subsets of E-boxes that intersected or
overlapped with DNase-seq hypersensitive sites (DHS), indicative of accessible chromatin. The
tissue-specific list of E-boxes from accessible chromatin were then compared with their respective
tissue matched BMAL1 ChIP-seq*® peaks to extract all BMAL1 bound and unbound E-Boxes in
accessible chromatin. Furthermore, I identified instances where BMALI1-bound E-boxes were
situated outside of accessible chromatin, accounting for 0.8% of all peaks. To prevent potential
confounding effects between the two classes of bound E-boxes, I excluded these instances from
our model training and evaluation processes. Comparison of BMALI1-bound E-box occurrences
within accessible chromatin across liver, heart, and kidney tissues revealed marked tissue
specificity. Specifically, only 398 E-boxes were found to be bound in common across all three
tissues (Fig 3A-C). E-boxes bound across all three tissues were frequently located within the

promoters of core circadian clock genes, as indicated by our findings (data not shown).
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Figure 3: (A) BMALI1 ChIP-seq peaks in the liver (red), kidney (blue), and heart (green), and E-
box binding motifs (black vertical bars) under the peaks at the Perl locus. (B) Venn diagram
representing the overlap of bound E-boxes motifs in open chromatin across liver, kidney, and heart.
(C) Venn diagram representing the overlap of unbound E-boxes motifs in open chromatin across
liver, kidney, and heart. Adapted from Marri et al”>.

Subsequently, I quantified all occurrences of the canonical E-box motif (5’-CANNTG-3")
throughout the mouse genome, wherein N denotes any nucleotide type. The canonical E-box
encompasses 16 unique E-box types, corresponding to each permutation of the NN dinucleotide
situated at the center of the motif. I computed the fraction of each individual E-box type compared

to the total number of E-boxes (Fig 4A). Notably, the E-box types 5’-CACATG-3’ and 5’-
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CATGTG-3’ collectively constituted the highest fraction of E-boxes within the mouse genome,
accounting for 17.3% of all instances. These two motifs, being reverse complements of each other,
demonstrated approximately equal frequencies, like all other non-palindromic E-boxes that exhibit
reverse complementarity. Interestingly, the palindromic BMALI1-preferred E-Box motif, 5’-
CACGTG-3’, occurs the fewest number of times, representing only 1.83% of all instances within
the mouse genome. Subsequently, I employed the same methodology to analyze E-boxes within
accessible chromatin regions of mouse liver, kidney, and heart. The palindromic motif CAGCTG
was the most common E-box type across accessible chromatin regions in all three tissues, while
the BMAL-preferred E-Box CACGTG was among the three least common motifs, which were
all palindromes (Fig 4B). Using the overlap between the BMAL1 ChIP-seq and DNase-seq peaks,
I computed the percentage of BMALT bound E-boxes in the mouse liver, kidney and heart relative
to the total number of E-boxes of the same type within accessible chromatin of their respective
tissues. Interestingly, the BMAL1-preferred E-box 5’-CACGTG-3’ emerged as the most frequently
bound E-box type across all three tissues. In addition, about 18% of CACGTG E-boxes accessible
in the liver were bound, and for the kidney and heart these fractions were 15%, and 4%,
respectively. Furthermore, less than 20% of all individual E-boxes identified within accessible
chromatin in any given tissue were also bound in that same tissue (Fig 4C). The kidney and heart
had a higher overall number of E-boxes within these open chromatin regions compared to the liver.
However, despite having a lower total count of E-boxes in accessible chromatin, the liver exhibited
a higher proportion of BMAL1-bound E-boxes. This observation suggests a differential regulatory
landscape for BMAL1 binding among these tissues, potentially reflecting distinct functional roles

and circadian regulatory mechanisms.
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I observed instances where there were none (zero), exactly one (singleton), or two or more (multi)
E-box motifs under a single BMAL1 ChIP-seq peak across all tissues examined (Fig 4D). I then
extracted all singleton E-boxes and the E-boxes closest to the summit of the BMALI1 peak within
multi-E-box peaks, categorizing them as bound peaks (positive dataset). The E-Boxes present in
accessible chromatin regions that were not bound by BMALI1 were labeled as unbound peaks
(negative dataset). All other E-boxes were excluded from further analysis. The ratios of the positive
(bound) to negative (unbound) peaks were 1:51, 1:82, and 1:223 in the liver, kidney, and heart,
respectively. These ratios indicate a significant imbalance between the bound and unbound E-

boxes, with a substantially higher number of unbound E-boxes in all three tissues.

Together, these results suggest that BMALI likely interacts with multiple different E-box types
across the liver, kidney, and heart in a tissue-specific manner. Notably, the E-box motif CACGTG
was found to be the most highly associated with BMALI binding among the different E-box types
analyzed, despite its lower occurrence in the genome overall. The observation of varying ratios of
bound to unbound E-boxes across tissues highlights the tissue-specific nature of BMAL1 binding
and suggests that additional factors, such as chromatin accessibility, co-factor availability, and
regulatory mechanisms, may contribute to the differential binding patterns observed. Furthermore,
the identification of instances where BMAL1 ChIP-seq peaks do not overlap with any E-box
motifs or contain multiple E-boxes under a single peak underscores the complexity of BMALI1
binding and the potential involvement of alternative binding mechanisms or indirect interactions

with chromatin.
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Figure 4: (A) E-box binding motif distribution across the entire mouse genome. The canonical E-
Box motif CACGTG (marked with an arrow) is the least represented motif in the mouse genome.
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and heart (green). (C) Percentage of BMAL1 bound E-box motifs in open chromatin across the
liver (blue), kidney (orange) and heart (green). (D) Distribution of BMALI1 peaks with zero (0-E-
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by their frequency in the mouse genome shown in (A), which also happens to group
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own complements, are marked with asterisks. Adapted from Marri et al”.
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Predicting genome wide BMALI binding within tissues.

Given that nucleotides flanking the E-box have been demonstrated to influence the binding
specificity of E-box binding transcription factors (TFs)>>. Therefore, 1 extended and one-hot
encoded the genomic sequence for all BMALI1-bound (positive) and unbound (negative) E-boxes
by 4 base pairs (bps) upstream and downstream of the E-box. Additionally, I computed the
following DNA shape features for the extended 14 bp sequence: Electrostatic Potential (EP), Minor
Groove Width (MGW), Propeller Twist (ProT), Roll, and Helix Twist (HelT), utilizing the k-mer
+ k-shape (k=1) sequence feature model>’. Although the shape features are derived from the DNA
sequence, they can potentially capture higher-order interdependencies between neighboring
nucleotides, thereby providing additional information to the model input. DNA shape features can
also elucidate the importance of flanking sequences in TF-DNA binding specificity>>. Visualization
of the DNA shape features EP, ProT, and Roll revealed disparities in DNA shape between bound
and unbound motifs across the liver, kidney, and heart, whereas the MGW feature exhibited
differences between bound and unbound motifs solely in the kidney. The shape feature vector for
each category was then normalized to values ranging from 0 to 1 using Min-Max normalization,
grouped into intervals of 10 values for the DNA shape features EP, MGW, and ProT, and intervals
of 11 values for HelT and Roll. These normalized DNA shape feature vectors were utilized as input
features for the predictive models, as depicted in Fig 5.

Epigenetic modifications are known to influence transcription factor binding. Specifically, histone
modifications intricately regulate transcription factor occupancy and subsequently modulate gene
expression patterns®>’®. Histone modification ChIP-seq signal values, encompassing genomic

regions spanning + 750 base pairs (bps) around the E-box, were utilized to compute feature vectors

for five histone modifications: H3K27ac, H3K4mel, H3K4me3, H3K27me3, and H3K36me3. The
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selection of the + 750-bp region was guided by the need to consider local profiles of histone
modifications, approximating the size of a typical promoter or enhancer. The histone feature vector
was partitioned into 10 bins, with the signal strength averaged across 150 bps within each bin. This
approach allowed for the comprehensive characterization of histone modification patterns
surrounding the E-box, providing insights into the regulatory landscape governing transcription

factor binding dynamics and gene expression regulation.
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Figure 5: Design of the machine learning algorithm input features. The local chromatin features
(E-box DNA sequence features) and flanking sequences were one-hot encoded. The DNA shape
genomic feature matrix from the k-mer + k-shape (k=1) sequence feature model and epigenomic
(histone modification) features averaged and binned were used as the final feature matrix for the
model. Adapted from Marri et al”.

I implemented three distinct models to investigate the predictive power of various feature
combinations for determining the binding status of E-boxes in accessible chromatin regions. The
models were constructed using subsets of the final encoded feature set, encompassing (i) DNA

sequence information alone (DNA sequence-only model); (ii) a combination of DNA sequence

and DNA shape features (sequence + shape model); and (iii) an integrated model incorporating
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DNA sequence, DNA shape, and histone modification data (sequence + shape + HM model). To
predict the binding status of E-boxes, I employed two machine learning algorithms: XGBoost
(eXtreme Gradient Boosting) and logistic regression. XGBoost, a powerful tree-based ensemble
learning algorithm, served as our principal predictive model, while logistic regression was utilized
as a baseline for performance comparison. Aiming to optimize model performance, I employed a
grid search strategy in conjunction with stratified 5-fold cross-validation to tune the
hyperparameters of each model. This process involved partitioning the data into five stratified
folds, where each fold was used as a validation set once, while the remaining four folds were used
for training. Hyperparameter tuning was performed independently for each model based on the
liver, heart, and kidney datasets, allowing us to derive the optimal hyperparameter configurations
tailored to each tissue-specific dataset. Subsequently, the models with the optimized
hyperparameters were trained through five-fold stratified cross-validation, and their predictive
performance was evaluated for the liver, heart, and kidney datasets (Figure 6 and table 1). The

average performance across the five folds was reported for each model and tissue type.
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Figure 6: Schematic of machine learning- predictive model training. Based on 5-fold cross-
validation, the XGBoost classifier predicted the binding status of E-box motifs in open chromatin,
training on all accessible bound E-boxes and unbound E-boxes. Adapted from Marri et al’>.
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DNA shape and histone modification features improve within-tissue model performance.
Model performance was assessed using two widely adopted metrics: the area under the receiver
operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC).
These metrics provide a comprehensive evaluation of the models' ability to distinguish between
positive (bound) and negative (unbound) instances, accounting for both sensitivity and

specificity.

Performance of sequence-only models: We conducted training and validation of our XGBoost
classifier across liver, heart, and kidney datasets, utilizing 10 sequence features: the 2 central
nucleotides of the E-Box, along with an additional 4 flanking nucleotides upstream and
downstream of the E-box (NNNNCANNTGNNNN, excluding the conserved CA and TG
subsequences) due to the repetition of CA and TG nucleotide in all the sequence features. To
evaluate classifier performance, we computed the average AUROC and AUPRC scores for each
tissue via stratified 5-fold cross-validation. Given the unbalanced distribution between the two
classes - bound vs unbound E-boxes, AUPRC was deemed a more appropriate metric in our case.
The mean AUROC scores across liver, kidney, and heart were 0.71, 0.78, and 0.80, respectively.
Correspondingly, the mean AUPRC scores were 0.09, 0.10, and 0.06 for the liver, kidney, and
heart, respectively (Fig 7A&B). The relatively high AUROC and AUPRC scores across all tissues
suggest differences in the two central nucleotides and flanking sequence between BMAL1 bound
and unbound E-boxes. However, the predictive power solely derived from DNA sequence seems
insufficient for robust prediction, indicating the need for additional features or more sophisticated

modeling approaches to enhance prediction accuracy.

Performance of sequence + shape models: The specific local configurations of DNA are

determined by its three-dimensional structure, which in turn influences various biological
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processes. Computational methods, including Monte Carlo simulations, have been utilized to
derive features that quantify DNA shape from its local sequence®®®. Five distinct DNA shape
features — Electrostatic Potential (EP), Minor Groove Width (MGW), Propeller Twist (ProT), Roll,
and Helix Twist (HelT) — have been identified as significant contributors to the DNA binding
affinity of transcription factors belonging to the basic helix-loop-helix (bHLH) family>’. The 14
bp sequences (NNNNCANNTGNNNN) were used to derive five distinct DNA shape features.
Integration of these DNA shape feature matrices with sequence features as input for predictive
models, help to evaluate the contribution of DNA shape to BMALI1 binding. The mean AUROC
scores for the liver, kidney, and heart were 0.97, 0.98, and 0.98, respectively, which are higher than
the sequence-only model. Additionally, the mean AUPRC metric increased significantly compared
to the sequence-only model, rising from 0.09 to 0.79 for the liver, 0.10 to 0.51 for the kidney, and
0.06 to 0.71 for the heart. This suggests a significant difference in local DNA shape features
between the bound and unbound E-boxes. Further analysis revealed that the EP, Roll, and ProT
DNA shape features contributed 33% to the prediction of BMALI binding to the E-boxes in the
liver. In the kidney, the EP, ProT, and MGW DNA shape features contributed 68%, while in the
heart, EP, Roll, and MGW contributed 70% to the prediction. Overall, the EP, Roll, MGW, and
ProT DNA shape features had the most significant influence on the prediction of bound E-boxes
across all three tissues. However, training and evaluating DNA shape-only models yielded lower
performance compared to DNA sequence-only models, suggesting that the local shape or
configuration of DNA near the E-box alone is insufficient to predict BMAL1 binding. This
demonstrates the importance of considering both DNA sequence and shape features in predicting
transcription factor binding, with specific DNA shape features playing a crucial role in determining

BMALI1 binding affinity to E-boxes across different tissues.
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Performance of sequence + shape + histone modification (HM) models: Histone modifications
(HMs) within gene promoter and enhancer regions are widely recognized to correlate with the
binding of transcription factors (TFs)’’. Despite this correlation, the intricate mechanisms
governing the interaction between TF binding and HMs remain incompletely understood. Recent
investigations have shed light on the role of HMs in enhancing the predictive accuracy of models
aimed at forecasting TF binding. Notably, the impact of HMs on model performance varies
depending on the specific TF under consideration. For instance, models predicting binding of
bHLH transcription factors have exhibited significantly enhanced accuracy upon the inclusion of
HMs’®7, Based on these findings, several models have been developed to improve TF binding
prediction using results from epigenetic assays®*!. We examined the importance of HMs in
prediction of BMALI1 binding by augmenting the sequence and DNA shape feature matrix with
five histone features: H3K27ac, H3K4mel, H3K4me3, H3K27me3, and H3K36me3. The
selection of these HM features was based on both their availability in existing datasets and their
established roles in facilitating transcription factor binding’®. By incorporating these HM features
into the models, I obtained mean AUROC scores of 0.99, 0.988, and 0.99 for the liver, kidney, and
heart, respectively. Additionally, the mean AUPRC performance increased significantly to 0.95,
0.65, and 0.79 for the liver, kidney, and heart, respectively (Figure 7). These results highlight the
importance of considering not only DNA sequence and shape features but also epigenetic
information, such as histone modifications, in accurately modeling transcription factor binding

events across different tissue types.
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Figure 7: Adding DNA Shape and Histone modification (HM) features to DNA Sequence
significantly improves prediction of BMALI1 binding across all tissues. (A) The area under the
receiver operating characteristics (AUROC) for liver, kidney, and heart for the sequence-only
model (blue), sequence plus DNA shape model (brown) and sequence plus DNA shape plus HM
model (green). The mean AUROC increases sharply with the addition of DNA shape features to
the model, with a much smaller increase associated with the addition of HMs. (B) The area under
the precision recall curve (AUPRC) in liver, kidney and heart for the sequence-only model (blue),
sequence plus DNA shape model (brown) and sequence plus DNA shape plus HM model (green).
As with AUROC, the mean AUPRC increased by a large margin with the addition of DNA shape
features to the model, with a smaller increase associated with the addition of HMs. Adapted from
Marri et al”.
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XGBoost Logistic regression
AUROC | AUPRC | AUROC AUPRC
Liver
DNA Sequence Only model 0.71£0.00 | 0.09+0.01 | 0.71 £0.00 | 0.08 +£0.01
DNA sequence plus DNA shape | o7, 00 | 079+ 0.01 | 0.97+0.00 | 0.79 +0.01
model
DNA sequence plus histone | )¢5 605 | 0.134£0.01 | 0.80+0.00 | 0.12 +0.03
modification model
DNA shape plus histone 0.90+0.01 | 0.22+0.01 | 0.81+£0.01 | 0.16+0.01
modification model
DNA sequence and shape plus | g9 00 | 0.95+0.00 | 0.97+0.00 | 0.91 +0.00
histone modifications model
Kidney
DNA Sequence Only model 0.78+0.01 | 0.10+0.01 | 0.77+0.00 | 0.10+0.01
DNA sequence plus DNA shape | 5, 00 | 0.50+0.01 | 0.79+0.01 | 0.10=0.01
model
DNA sequence plus histone | ¢5 . 00 | 0.194+0.01 | 0.87+0.00 | 0.13%0.01
modification model
DNA shape plus histone 0.95+0.01 | 031+£0.01 | 0.88=0.01 | 0.15=0.01
modification model
DNA sequence and shape plus | g 00 | 0.65+0.01 | 0.88+0.01 | 0.15+0.01
histone modifications model
Heart
DNA Sequence Only model 0.80+0.01 | 0.06+0.01 | 0.78+0.01 | 0.05+0.01
DNA sequence plus DNA shape | 66 00 | 0.7140.03 | 0.97+0.01 | 0.49 +0.02
model
DNA sequence plus histone | 90 60 | 026001 | 0.92+0.01 | 0.8+0.01
modification model
DNA shape plus histone 0.97+0.00 | 0.35+0.00 | 0.95+0.00 | 0.22 % 0.00
modification model
DNA sequence and shape plus
histone modifications (Hear!) 0.99 +0.00 | 0.80+0.04 | 0.98+0.01 | 0.47+0.02

Table 1: Model Performance scores: The performance of models predicting BMAL1-DNA binding
status in open chromatin of the liver, kidney, and heart using XGBoost and logistic regression.
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Table 1 (cont’d)

Performance of each model is represented as a mean value with a 95% confidence interval around
the results from 5-fold cross validation. The highest model performance for each tissue is bolded.
Adapted from Marri et al’.

Feature importance reveals tissue-specific BMALI binding grammar.

Given the improved performance of the models incorporating sequence, shape, and histone
modification (HM) features, I applied the ELIS permutation importance method to discern the most
predictive features governing BMAL1-DNA binding®. The importance of each DNA shape and
histone modification feature was computed by aggregating the importance scores across all bins
associated with that specific feature. Furthermore, to facilitate comparative analysis, the feature
importance of each nucleotide type at a given position relative to the E-Box motif was normalized
against the cumulative feature importance at that nucleotide position. The analysis revealed that
the immediate flanking sequences upstream and downstream of the core E-box binding motif
played pivotal roles in predicting BMALI1 binding across the liver, heart, and kidney tissues as
compared to distal flanking sequences (Fig 8). Previous studies examining the binding specificities
of bHLH transcription factors CBfl and Tye7 in yeast have shown that 2-bp flanking sequences
contribute to binding of these transcription factors to the E-box™. In our quantitative analysis of
the E-box sequence, we did not find the two central base pairs of the CANNTG E-box motif to
directly contribute to the model performance, even though BMALL has a strong preference for the
CG central dinucleotide across all three mouse tissues. The nucleotide G at the second proximal
upstream flanking sequence (Seq-2) was a robust predictor of BMAL1-DNA binding in the liver
(Fig 8A). Remarkably, this nucleotide accounted for over 50% of the feature weights utilized in
predicting BMALI1-DNA binding in the liver. Additionally, other influential features included EP

(10%) and H3K27ac (6%). The comprehensive assessment of feature importance highlighted the
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significance of various DNA shape and histone modification features in predicting BMAL1 DNA
binding in the liver, with the majority exhibiting individual weights exceeding 5%, underscoring
their critical roles in this process. Conversely, most DNA sequence features, barring Seq-2,
exhibited feature weights below the 5% threshold. In the kidney, H3K27ac emerged as the most
influential feature, contributing 21% to the overall feature importance (Fig 8B), followed closely
by EP, with a feature importance of 19%. Notably, three histone modifications (H3K27ac,
H3K4me3, and H3K4mel) and four DNA shape features (EP, ProT, MGW, and Roll) all
demonstrated feature weights surpassing 5%. Similarly, in the heart, H3K27ac and H3K4me3
assumed the highest feature importance (both exceeding 20%), followed by EP (8%).
Predominantly, DNA sequence features exhibited weights below 5% in both heart and kidney
tissues. Across all three tissues, histone modifications (H3K27ac, H3K4mel, H3K4me3) and DNA
shape features (EP, Roll) consistently exhibited high importance scores (Fig 8A-C). Notably,
H3K27ac and H3K4mel emerged as the most influential histone modifications across all tissues,
with H3K4me3 and H3K36me3 also making substantial contributions, particularly in the kidney
and heart. These results show that the combination of the TF binding motif and its flanking
sequence, local shape of DNA, and histone modifications is sufficient to produce predictive models
of BMAL1 binding to E-box motifs, especially in the mouse liver. The second upstream flanking
nucleotide (Seq-2) stood out as the most crucial feature in the liver, with nucleotides G and C
overrepresented in this region. This observation was corroborated by the sequence logo of bound
E-box sequences, encompassing 4 base pairs upstream and downstream of the core motif (Fig 8D).
Further analysis of bound E-box motifs, along with their upstream and downstream flanking
sequences, unveiled a notable enrichment of the nucleotide G at the third position of the 5' flanking

region, particularly prevalent among liver-bound E-boxes (1228 out of 3374 bound E-boxes) (Fig
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9A-B), a trend not mirrored in bound E-box motifs kidney and heart. The histone modifications
H3K27ac (associated with active enhancers and promoters), H3K4mel (enriched at enhancer
regions), and H3K4me3 (found at active promoters) played significant roles in determining

BMALI binding affinity across different tissues.
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Figure 8: Feature importance of all genomic features (sequence and DNA shape) and epigenomic
(histone modification) features from the XGBoost classifier model across all tissues. Feature
importance in the XGBoost classifier model in (A) liver, (B) kidney, and (C) heart. The feature
importance for each DNA shape and histone modification feature is calculated as the sum of all
the feature importance of all bins for that particular histone modification feature. The feature
importance of each nucleotide type at a particular position relative to the E-Box motif is
normalized to the nucleotide type and the sum of all feature importance at that nucleotide position.
(D) Standard plot sequence logo for BMALI bound E-box motifs in the liver®®. Adapted from

Marri et al”>.
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Figure 9: Analysis of Liver bound E-box motifs to investigate the importance of the nucleotide G
in the third position of the 5’ flanking sequence. (A) Analysis of the bound E-box motif with their
upstream and downstream flanking sequence revealed that the nucleotide G at the position third of
the 5° flanking sequence is enriched in bound E-box motifs in the liver. 1228 out of 3374 of the
motifs have nucleotide G at the third position of the 5 flanking sequence. 48 out of the 1228 are
palindromes and 16 out of the 48 are the sequence GTCACGTGAC. (B) Percentage of enriched
flanking sequence nucleotide in the liver E-box motifs. (Orange bar corresponds to unbound E-
box motifs and blue bar corresponds to bound E-box motifs). Adapted from Marri et al’>.
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Cross-tissue models highlight differences in BMALI-DNA binding among tissues.

To test the hypothesis that the DNA binding of BMALLI is determined by similar factors across the
three tissues, we formulated cross-tissue models aimed at predicting binding with features based
on - (a) sequence only; (b) sequence plus DNA shape; and (c) sequence plus DNA shape plus
histone modifications. We trained these models on all data available in the respective tissue, using
the optimal hyper-parameters previously derived for the respective within-tissue model. Models
trained on one tissue were used to predict BMALI1 binding in a different tissue. The performance
of the sequence-only models trained on tissue X and predicting tissue Y (X Y model) was
comparable to the performance of the within-tissue sequence-only model in tissue X, for all tissues
(Fig 10A). However, the incorporation of DNA shape and histone modification (HM) features lead
to a reduction in performance scores across some cross-tissue models in contrast to the sequence-
only models (Fig 10A-C). Notably, the sequence plus shape model, trained on liver data, aptly
classified 22% of the E-boxes bound in both kidney (liver kidney) and heart (liver heart) (Fig
10C). This model predicted most of the bound E-boxes in the kidney and heart as unbound,
yielding a high false negative rate. The inclusion of histone modification features improved
AUROC and AUPRC metrics for most cross-tissue models (Fig 10 A-B) . However, the cross-
tissue sequence plus DNA shape plus HM model, trained on liver data, correctly classified only
18% of E-boxes bound in the kidney and 19% in the heart, manifesting a higher false negative rate
than the sequence plus shape model. The cross-tissue analysis revealed an intriguing pattern when
models trained on kidney and heart data were evaluated on liver data (kidney liver and
heart liver). In these cases, the inclusion of DNA shape and histone modification (HM) features
led to a significant improvement in performance compared to other model types. Specifically, the

AUROC score of the kidney_liver model increased from 0.68 for the sequence plus DNA shape
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model to 0.83 for the sequence plus DNA shape plus HM model. Furthermore, the AUPRC score
exhibited a sharp increase, from 0.055 to 0.38, when HM features were added. In contrast to the
previous findings, where the addition of DNA shape and HM features generally decreased the
performance of cross-tissue models, the kidney liver and heart liver models demonstrated a
significant improvement in predictive power when these genomic and epigenetic features were
incorporated. These results suggest that while sequence-only models performed relatively poorly
in cross-tissue binding prediction, the inclusion of additional features, such as DNA shape and
histone modifications, can enhance the predictive capability of cross-tissue models in certain cases.
However, the effectiveness of these features appears to be tissue-specific, as evidenced by the
contrasting results obtained when predicting binding in the liver versus predicting binding in other
tissues. Overall, the observed tissue specificity of BMAL1 DNA binding highlights the complexity
of the regulatory mechanisms governing this transcription factor's binding patterns. The interplay
between sequence features, DNA shape, and epigenetic modifications, such as histone
modifications, appears to be context-dependent, with varying degrees of influence across different
tissue types. These findings underscore the importance of considering tissue-specific factors in the

development of accurate binding prediction models for transcription factors like BMALI.
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Figure 10: Performance metrics for cross-tissue prediction models. Scores for the liver, kidney and
heart sequence-only model (blue bars), sequence plus DNA shape model (brown bars) and
sequence plus DNA shape plus HM model (green bars): (A) Area under the receiver operating
characteristics (AUROC); (B) Area under the precision recall curve (AUPRC); (C) True positive
rates. (Notation explanation: liver kidney refers to the model trained on the liver dataset and used
to predict binding on the kidney dataset). Adapted from Marri et al”.

36



CHAPTER 3: MATHEMATICAL MODELING OF THE SPATIAL AND TEMPORAL
DYNAMICS OF CIRCADIAN CLOCK IN THE LIVER

INTRODUCTION

In the previous chapter, the genetic and epigenetic determinants of BMAL1-DNA binding within
peripheral tissues were elucidated. In this chapter, the focus will be on investigating the
spatiotemporal expression patterns of circadian clock genes within the liver lobule, as well as
exploring the factors that contribute to the synchronization of their expression. Within the intricate
landscape of the brain, the suprachiasmatic nucleus (SCN) emerges as the central orchestrator,
functioning as the master pacemaker of the circadian system. It coordinates and synchronizes
cellular, tissue-specific, and systemic rhythms, thereby regulating vital biological processes®*53,
including the regulation of body temperature, glucose metabolism, sleep-wake patterns, hormone
secretion, and bone formation®® ¥, Disruption of the circadian cycle by environmental stimuli has
been linked to several pathological conditions, including cardiovascular disease, diabetes, bipolar
disorder, obesity, and cancer’®*~!. At the molecular level, a complex network of transcriptional,
translational, and post-translational feedback loops intricately governs the generation of circadian
rhythms, not only within the SCN but also in peripheral tissues such as the liver'®?2. At the core
of this regulatory network lies a group of transcriptional activators including circadian locomotor
output cycles kaput (Clock), Neuronal PAS domain protein 2 (Npas2), brain and muscle ARNT
Like 1 (Bmall), and the retinoic acid-related orphan receptors (Rora, Rorb, Rorc). These activators
act in concert with a cohort of repressors, notably the period genes (Perl, Per2, Per3), the
cryptochrome genes (Cryl, Cry2), and the reverb-clear orphan receptors (Reverba, Reverbp), to
establish the rhythmicity of gene expression’>*,

As discussed in the previous chapter, the master regulator heterodimer composed of CLOCK-

BMALI (or NPAS2-BMALLI), binds to specific DNA motifs known as E-boxes within the
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regulatory regions of target genes such as Per, Cry, Ror, and Reverb, thereby promoting their
transcriptional activation. Subsequently, the PER and CRY proteins form a cytoplasmic complex,
which translocates into the nucleus to create a negative feedback loop by inhibiting the
transcription of their own genes. This intricate interplay also extends to the suppression of Ror and
Reverb gene transcription. Further complexity arises from the competitive binding of ROR and
REV-ERB proteins to the ROR regulatory element (RRE) within the promoter region of the Bmall
gene. Here, ROR acts as an activator, while REV-ERB serves as a repressor, thus exerting tight
control over the transcriptional regulation of Bmall and consequently influencing the overall

circadian rhythm®>%,

The liver stands as a pivotal peripheral oscillator within the intricate machinery of mammalian
physiology, serving as a crucial hub for the interplay of anabolic and catabolic processes involving
lipids and amino acids®. Structurally, the mammalian liver is organized into functional units
known as "lobules," each comprising predominantly hepatocytes, the primary cellular constituents
of liver parenchyma. Hepatocytes in the lobule are aligned along a distinct axis extending from the
portal vein to the central vein, thereby facilitating their categorization based on their proximity to
either endpoint (Fig 11). Gene expression and resulting metabolic functions exhibit a spatial
gradation along the portal-to-central axis of the lobule. Specifically, processes such as
gluconeogenesis and -oxidation predominate at the portal end, whereas glycolysis and lipogenesis
are enriched towards the central region. This spatial organization underscores the liver's intricate
orchestration of metabolic pathways to ensure optimal nutrient utilization and energy balance®.
Recent insights from single-cell gene expression studies have unveiled an intriguing aspect of liver
physiology: the expression of core circadian clock genes manifests in a non-zonated manner across

hepatocytes along the portal-to-central axis. Unlike metabolic functions, where spatial gradients
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are evident, circadian gene expression appears to be uniformly distributed across the lobular axis.
This observation hints at a sophisticated mechanism whereby hepatocytes synchronize their
circadian rhythms across the entire liver tissue, despite their spatial heterogeneity?®. This
phenomenon of synchronized circadian oscillations across hepatocytes has been attributed to a
coupling mechanism that harmonizes gene expression among cells along the portal-to-central axis,
thereby generating coordinated and synchronized temporal rhythms’®°®. While the precise
molecular machinery orchestrating this synchronization remains elusive, emerging evidence
suggests a potential role for transforming growth factor—beta (TGF-) as a putative coupling factor.
However, the intricacies of how TGF-f or other potential mediators precisely regulate the
synchronized oscillations in liver gene expression warrant further investigation®®'%. Unlike the
established neurotransmitter-mediated coupling mechanism in the suprachiasmatic nucleus (SCN)
regulating central nervous system circadian rthythms'?!, the mechanisms behind synchronized liver
gene expression oscillations are fully not understood. Understanding this synchronization would
offer insights into tissue-level circadian regulation and novel therapeutic strategies for metabolic

disorders.

We developed a spatiotemporal multicellular mathematical model of the mammalian liver
circadian clock regulatory network®!91% Two sets of models were developed for the mouse
hepatic clock: 1) Model 1, which assumed no communication among the cellular oscillators,
leading to non-synchronized gene expression in hepatocytes across the central to portal axis of the
lobule; and 2) Model 2, which incorporated communication among cells, resulting in synchronized
gene expression across the lobular axis. The analysis revealed a positive correlation between the
amplitudes of the observables (gene expression levels or protein levels) and their respective

transcription rate parameters, while a negative correlation was observed between the amplitudes

39



and their respective degradation rates. This finding highlights the crucial role of transcription and
degradation rates in determining the oscillatory amplitudes of the circadian clock components. To
validate the models, the transcription and degradation rate parameters were estimated from single-
cell RNA-Seq data'®?. The simulated results exhibited a high correlation with the experimental
data, with an R? > 0.9, indicating a strong agreement between the model predictions and the
observed gene expression patterns. In summary, this study computationally analyzed asynchronous
and synchronous spatial and temporal circadian oscillations in the mammalian liver. The models
revealed the dependence of the oscillatory amplitudes of circadian clock components on their
respective transcription and degradation rates. The high correlation between simulated and
experimental data demonstrated the robustness of the mathematical models in capturing the
intricate dynamics of the liver circadian clock regulatory network, and the complex interplay

between spatial organization, cellular communication, and circadian rhythms.

Hepatic artery

Central vein

Portal vein

{ ) Bile duct

Figure 11: Schematic of a cross-section through the lobule, the fundamental structural unit of the
mammalian liver, predominantly made up of hepatocytes extending in layers from the portal
triad to the central vein (generated using https://biorender.com/).
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METHODS

Model design.

This model was developed to study the communication among single cellular circadian oscillators
(i.e. hepatocyres) in the liver lobule, or intercellular “coupling”. This coupling ensures a coherent
output in the suprachiasmatic nuclei (SCN) and other peripheral tissues. In our model, we
assembled the key interactions within the clock gene network from the literature. Five known clock
genes were used in developing this model. For simplicity, we do not distinguish between the
multiple isoforms in these genes. For example, Perl, Per2 and Per3 are represented by a single Per
gene as a model variable. The same reasoning applies to the proteins and respective protein
complexes. The gene network used in this model consist of the interactions among (Per, Cry, Ror,
Rev-erb and Bmall). Per, Cry, and Rev-erb act as transcriptional repressors and Ror, and Bmall
as activators. The interactions among these genes were then transformed to a wiring diagram that
consist of two main dependent feedback loops: the Per-Cry negative feedback loop and the Ror,
Rev-erb, Bmallpositive feedback loop.

The central component of the model, the CLOCK _BMAL transcription factor complex binds to
the promoter regions of the clock genes (Per, Cry, Ror, Rev-erb) activating their transcription.
These various mRNAs are translated into the respective proteins in the cytosol. The RORc and
REV-ERBc protein in the cytosol are phosphorylated reversibly and unphosphorylated RORc and
REV-ERBc are transported to the nucleus. In the nucleus, RORn binds to the promoter region of
the clock gene Bmall activating its transcription. The Bmall mRNA is translated to BMALIc
protein in the cytosol which is phosphorylated reversibly. Unphosphorylated BMALIlc is
transported in the nucleus where it forms a reversible heterodimer with the CLOCK protein

denoted as CLOCK_BMAL. The nuclear REV-ERBn protein binds to the promoter region of the
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Bmall gene to repress the activity of the nuclear RORn protein. The PER and CRY proteins in the
cytosol are phosphorylated reversibly. Unphosphorylated PER and CRY protein in the cytosol
form the reversible PER-CRY heterodimer which is then transported into the nucleus. PER-CRY
represses the transcription of their own genes (Per and Cry) by binding with the CLOCK_BMAL
protein. This association represses the transcriptional activities of all the genes that are activated
by CLOCK BMAL. The dissociation of CLOCK BMAL from the PER-CRY complex allows
CLOCK BMAL to bind to the promoter regions of clock genes (Per, Cry, Ror, Rev-erb) starting

the process all over again.

Two sets of models were developed in this study. (1) Model without communication between the
cellular oscillators leading to non-synchronized gene expression across the central to portal axis
of the liver lobule and (2) model with communication between cells leading to synchronized gene
expression across the lobule.

Model 1: Model without communication between the cellular oscillators.

e The first five ordinary differential equations (ODESs) represent the transcription of Per,
Cry, Bmall, Ror & Rev-erb genes into their respective mRNA’s denoted by
Mp, Mo, Mg, Mg, & Mg, respectively by the nuclear CLOCK BMAL protein (CBy,),

PER_CRY protein (PC,), ROR protein (Ro,,) and REV ERB protein (Rey,).

M, Vip * (CLOCK_BMAL1)"
dt  Kip" + (CLOCK_BMAL1  PER_CRY)™ + (CLOCK_BMAL1)"

dy * Mp

dM; light = V;, * (CLOCK_BMAL1)®
dt  Kic® + (CLOCK_BMAL1 » PER_CRY)? + (CLOCK_BMAL1)°

—d.*xM,

dMg Vip * (ROR)P
dt  Kib? + (ROR * REV_ERB)4 + (ROR)P

dy * Mp
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dMp V., * (CLOCK_BMAL1)"

= —d,*M
de Kir™ + (CLOCK_BMAL1 = PER_CRY)S + (CLOCK_BMAL1D)™ 7"k
dMg, V. * (CLOCK_BMAL1)¢ i oem
= —_ *
dt Kiret + (CLOCK_BMAL1 « PER_CRY)* + (CLOCK_BMAL1)t ¢ ""Re

e The next six ODEs represent the translation and reversible activities of the
unphophorylated PER, CRY, BMALI1, REV-ERB, ROR protein and PER-CRY
protein complex in the cytoplasm denoted by P., C., B., Re. ,Ro. & PC,

respectively.

dP,
d_tc =k * Per_mRNA + Kpcl* (CYTOSOLIC_PER_CRY_PROTEIN) — Kpco * (CYTOSOLIC_PER_PROTEIN)
« (CYTOSOLIC_CRY _PROTEIN) — Kpc = ((CYTOSOLIC_PER_PROTEIN)) +
Kppc +» (PHOS_CYTOSOLIC_PER_PROTEIN) — dpc * (CYTOSOLIC_PER_PROTEIN)
dC.
Fr k1 = Cry_ mRNA + Kpcl* (CYTOSOLIC_PER_CRY_PROTEIN) — Kpco * (CYTOSOLIC_PER_PROTEIN)
* (CYTOSOLIC_CRY_PROTEIN) — Kcc * ((CYTOSOLIC_CRY_PROTEIN))
+Kcpc * (PHOS_CYTOSOLIC_CRY_PROTEIN) — dcc * (CYTOSOLIC_CRY_PROTEIN)
dB,
T = k2 » Bmall mRNA — Kbcc « (CYTOSOLIC_BMAL1_PROTEIN) — Kbc + ((CYTOSOLIC_BMAL1_PROTEIN))
+Kbpc * (PHOS_CYTOSOLIC_BMAL1_PROTEIN) — dbc * (CYTOSOLIC_BMAL1_PROTEIN)
dRo,
T k3 x Ror_-mRNA — Krcc* (CYTOSOLIC_ROR_PROTEIN) — Krc * ((CYTOSOLIC_ROR_PROTEIN))

+Krpc * (PHOS_CYTOSOLIC_ROR_PROTEIN) — drc * (CYTOSOLIC_ROR_PROTEIN)

dRe,

dt
Krec * ((CYTOSOLIC_REV_ERB_PROTEIN)) + Krepc * (PHOS_CYTOSOLIC_REV_ERB_PROTEIN)

—drec * (CYTOSOLIC_REV_ERB_PROTEIN)

= k4 * Rev ,rb ,RNA — Krecc » (CYTOSOLIC_REV_ERB_PROTEIN) —

dpPc,
dtc = Kpco * ((CYTOSOLIC_PER_PROTEIN) x (CYTOSOLIC_CRY_PROTEIN))
—Kpcc * (CYTOSOLIC_PER_CRY_PROTEIN) — Kpcl x (CYTOSOLIC_PER_CRY_PROTEIN)
—Kpcp * (CYTOSOLIC_PER_CRY_PROTEIN) + Kpcpc * (PHOS_CYTOSOLIC_PER_CRY_PROTEIN)
—dpcc * (CYTOSOLIC_PER_CRY_PROTEIN)
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e The next six ODEs represent the reversible activities of the phophorylated PER,
CRY, BMALI1, REV-ERB, ROR protein and PER-CRY protein complex in the

cytoplasm denoted by B,¢, Cpe, Bper Repe , Rope & PCp respectively.

dP,
dlgc = Kpc * (CYTOSOLIC_PER_PROTEIN) — Kppc * (PHOS_CYTOSOLIC_PER_PROTEIN)
—dppc * (PHOS_CYTOSOLIC_PER_PROTEIN)
dcC
d:C = Kcc * (CYTOSOLIC_CRY_PROTEIN) — Kcpc * (PHOS_CYTOSOLIC_CRY_PROTEIN)
—dcpc * (PHOS_CYTOSOLIC_CRY_PROTEIN)
dB.
d;:jc = Kbc = (CYTOSOLIC_BMAL1_PROTEIN) — Kbpc *x (PHOS_CYTOSOLIC_BMAL1_PROTEIN)
—dbc » (PHOS_CYTOSOLIC_BMAL1_PROTEIN)
dRo
dtpc = Krc = ((CYTOSOLIC_ROR_PROTEIN)) — Krpc « (PHOS_CYTOSOLIC_ROR_PROTEIN)
—drc « (PHOS_CYTOSOLIC_ROR_PROTEIN)
dRey,.

BT Krec * ((CYTOSOLIC_REV_ERB_PROTEIN)) — Krepc x (PHOS_CYTOSOLIC_REV_ERB_PROTEIN)
—drec * (PHOS_CYTOSOLIC_REV_ERB_PROTEIN)

dpPC

Tpc = Kpcp * (CYTOSOLIC_PER_CRY_PROTEIN) — Kpcpc * (PHOS_CYTOSOLIC_PER_CRY_PROTEIN)
—dpcc * (PHOS_CYTOSOLIC_PER_CRY_PROTEIN)

e The last six ODEs represent the activites of BMAL1, ROR, REV-ERB, CLOCK-BMAL,
PER-CRY, and PER-CRY/CLOCK-BMAL proteins in the nucleus denoted by

B, ,Ro,, Re,, CB,, PC,, PC/CB,, respectively.

dB,
d—tn=Kbcc + (CYTOSOLIC_BMAL1_PROTEIN) — Kclbn * (NUCLEAR_BMAL1_PROTEIN)
—dbn.x (NUCLEAR_BMAL1_PROTEIN)
dRo,
T = Krcc * (CYTOSOLIC_ROR_PROTEIN) — Krn* (NUCLEAR_ROR_PROTEIN)

—drn x (NUCLEAR_ROR_PROTEIN)
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dRe
— " = Krecc * (CYTOSOLIC_REV_ERB_PROTEIN) — Kren * (NUCLEAR_REV_ERB_PROTEIN)

dt
—dren * (NUCLEAR_REV_ERB_PROTEIN);

dCB,
= Kclbn » (NUCLEAR_BMAL1_PROTEIN)
—Kcbpe * (NUCLEAR_CLOCK_BMAL1_PROTEIN) * (NUCLEAR_PER_CRY_PROTEIN)
+ Kdcbpe » (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)
— dclbn  (NUCLEAR_CLOCK_BMAL1_PROTEIN) + dpcn * (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)

dPC
dtn = Kpcc * (CYTOSOLIC_PER_CRY_PROTEIN)
—Kcbpce * (NUCLEAR_CLOCK_BMAL1_PROTEIN) * (NUCLEAR_PER_CRY_PROTEIN)
+ Kdcbpc * (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)
— dpcn *« (NUCLEAR_PER_CRY _PROTEIN) + dclbn x (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)

dPC/CB,

i = Kcbpc * (NUCLEAR_CLOCK_BMAL1_PROTEIN) » (NUCLEAR_PER_CRY_PROTEIN)

— Kdcbpc * (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)
— dclbn * (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)
—dpcn * (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)

Model 2: Model with communication between the cellular oscillators.

To incorporate the synchronicity of cells in the second model, we assume a global coupling among
N cells through cell-to-cell communication. Using a parameter K f (where K f is the sensitivity
of individual cell oscillator to another cell oscillator, i.e. coupling strength) to describe the
communication strength, we calculated a second parameter F, which is the mean communication
signal among N cells in the system. This approach was initially used in a three-variable model by
Gonze et al'® We assume the cell-to-cell communication leading to synchronization is mediated
by a coupling protein. Previous studies have assumed Transforming growth factor beta (TGF-f) to
be the coupling factor responsible for synchronization of the cells to produce a sustained

oscillation”®
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The time-evolution for a single synchronization factor (M, which will later be used to
calculate the mean field F) in the cellular medium mediated by a coupling protein is

given as:

vexM
dc+M

am
E—prt*Xi—

Where i = 1...5 represents each of the observable genes used in the model. X; for Per, X, for Cry,

X5 forBmall, X, for Ror, and X5 for Rev-erb. There are delays with respect to the clock genes X;

due to transcription, translation, phosphorylation, diffusion, etc. Assuming a linear production

equation of the synchronization factor by the clock genes and a nonlinear diffusion rate, prt

represents synchronization protein concentration, ve represents Maximum rate of synchronization

factor synthesis and dc represents Activation constant for enhancement of synchronization factor

synthesis.

The mean field F was then calculated as:

F=—x

M;

2|

N
—y

l

The first five ODEs of this model represents the transcription of Per, Cry, Bmall, Ror &
Rev-erb genes into their respective mRNA’s denoted by Mp, M., Mg, Mg, & Mg,
induced by the nuclear proteins CLOCK _BMAL (CB,,), PER_CRY protein (PC,), ROR

protein (Ro,,) and REV _ERB (Rey,).

dM, V,p * (CLOCK_BMAL1)" VdpKpxF
= — k
de Kip™ + (CLOCK_BMAL1 « PER_CRY)™ + (CLOCK_BMALD)" = K.+ K;«F 7 '
dM. light * V. « (CLOCK_BMAL1)° Vdp * K¢ x F
dc * MC

dt  Kic® + (CLOCK_BMAL1  PER_CRY)? + (CLOCK_BMAL1)° * K, + K, *F
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dM, Vi * (ROR)P Vdp * K * F

= - —_ db * MB
de Kib? + (ROR * REV_ERB)4 + (ROR)? ' K.+ K;  F
dMg V., * (CLOCK_BMAL1)" VapsK s F
= —_ *
dt Kir™ + (CLOCK_BMAL1 * PER_CRY)® + (CLOCK_BMAL1)" = K.+ K¢+ F " R
dMp, Ve * (CLOCK_BMAL1)* A Vdp * Ky * F i em
= — *
dt Kiret + (CLOCK_BMAL1 » PER_CRY)* + (CLOCK_BMAL1)t = K.+ Ky «F ¢ "%

e The next six ODEs represent the translation and reversible activities of the
unphosphorylated PER, CRY, BMALI, REV-ERB, ROR protein and PER-CRY
protein complex in the cytoplasm denoted by P., C., B., Re. ,Ro. & PC,

respectively

dP,
d_tc =k * Per_mRNA + Kpcl* (CYTOSOLIC_PER_CRY_PROTEIN) — Kpco * (CYTOSOLIC_PER_PROTEIN)
+ (CYTOSOLIC_CRY_PROTEIN) — Kpc * ((CYTOSOLIC_PER_PROTEIN)) +
Kppc * (PHOS_CYTOSOLIC_PER_PROTEIN) — dpc * (CYTOSOLIC_PER_PROTEIN)
dc,
T =K1 x Cry mRNA + Kpcl + (CYTOSOLIC_PER CRY PROTEIN) — Kpco » (CYTOSOLIC_PER PROTEIN)
* (CYTOSOLIC_CRY_PROTEIN) — Kcc * ((CYTOSOLIC_CRY_PROTEIN))
+Kcpc « (PHOS_CYTOSOLIC_CRY_PROTEIN) — dcc * (CYTOSOLIC_CRY_PROTEIN)
dB,
it = k2 * Bmall_mRNA — Kbcc * (CYTOSOLIC_BMAL1_PROTEIN) — Kbc * ((CYTOSOLIC_BMAL1_PROTEIN))
+Kbpc * (PHOS_CYTOSOLIC_BMAL1_PROTEIN) — dbc * (CYTOSOLIC_BMAL1_PROTEIN)
dRo,
o, = k3 * Ror mRNA — Krcc + (CYTOSOLIC_ROR PROTEIN) — Krc » ((CYTOSOLIC_ROR_PROTEIN))

+Krpc * (PHOS_CYTOSOLIC_ROR_PROTEIN) — drc * (CYTOSOLIC_ROR_PROTEIN)

dRe,

dt
Krec * ((CYTOSOLIC_REV_ERB_PROTEIN)) + Krepc * (PHOS_CYTOSOLIC_REV_ERB_PROTEIN)

—drec *» (CYTOSOLIC_REV_ERB_PROTEIN)

= k4 * Rev ,rb ,RNA — Krecc* (CYTOSOLIC_REV_ERB_PROTEIN) —
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dPC
dtc = Kpco * ((CYTOSOLIC_PER_PROTEIN) * (CYTOSOLIC_CRY_PROTEIN))
—Kpcc * (CYTOSOLIC_PER_CRY_PROTEIN) — Kpcl * (CYTOSOLIC_PER_CRY_PROTEIN)
—Kpcp + (CYTOSOLIC_PER_CRY_PROTEIN) + Kpcpc * (PHOS_CYTOSOLIC_PER_CRY_PROTEIN)
—dpcc * (CYTOSOLIC_PER_CRY_PROTEIN)

e The next six ODEs represent the reversible activities of the phosphorylated PER,
CRY, BMALI1, REV-ERB, ROR protein and PER-CRY protein complex in the

cytoplasm denoted by B,¢, Cpe, Bpey Repe , Rope & PCp respectively.

dP,
P2 — Kpc * (CYTOSOLIC_PER_PROTEIN) — Kppc * (PHOS_CYTOSOLIC_PER_PROTEIN)

dt
—dppc * (PHOS_CYTOSOLIC_PER_PROTEIN)

dc
d—fc = Kcc * (CYTOSOLIC_CRY_PROTEIN) — Kcpc * (PHOS_CYTOSOLIC_CRY_PROTEIN)
—dcpc * (PHOS_CYTOSOLIC_CRY_PROTEIN)
dB,,
T Kbc = (CYTOSOLIC_BMAL1_PROTEIN) — Kbpc * (PHOS_CYTOSOLIC_BMAL1_PROTEIN)
—dbc x (PHOS_CYTOSOLIC_BMAL1_PROTEIN)
dRoy
Pk Krc * ((CYTOSOLIC_ROR_PROTEIN)) — Krpc * (PHOS_CYTOSOLIC_ROR_PROTEIN)
—drc * (PHOS_CYTOSOLIC_ROR_PROTEIN)
dRey,
P Krec * ((CYTOSOLIC_REV_ERB_PROTEIN)) — Krepc x (PHOS_CYTOSOLIC_REV_ERB_PROTEIN)
—drec * (PHOS_CYTOSOLIC_REV_ERB_PROTEIN)
dPC,.
T Kpcp * (CYTOSOLIC_PER_CRY_PROTEIN) — Kpcpc * (PHOS_CYTOSOLIC_PER_CRY_PROTEIN)

—dpcc * (PHOS_CYTOSOLIC_PER_CRY_PROTEIN)

e The last six ODEs represent the activites of BMAL1, ROR, REV-ERB, CLOCK-BMAL,
PER-CRY, and PER-CRY/CLOCK-BMAL protein in the nucleus denoted by

B, ,Ro,, Re,, CB,, PC,, PC/CB,, respectively.
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dB
—= = Kbcc * (CYTOSOLIC_BMAL1_PROTEIN) — Kclbn *+ (NUCLEAR_BMAL1_PROTEIN)

dt
—dbn.x (NUCLEAR_BMAL1_PROTEIN)
dRo,
T Krcc % (CYTOSOLIC_ROR_PROTEIN) — Krnx (NUCLEAR_ROR_PROTEIN)
—drn x (NUCLEAR_ROR_PROTEIN)
dRe,

= Krecc * (CYTOSOLIC_REV_ERB_PROTEIN) — Kren* (NUCLEAR_REV_ERB_PROTEIN)
—dren * (NUCLEAR_REV_ERB_PROTEIN);

dt

dCB,
= Kclbn » (NUCLEAR_BMAL1_PROTEIN)

—Kcbpc * (NUCLEAR_CLOCK_BMAL1_PROTEIN) x (NUCLEAR_PER_CRY_PROTEIN)
+ Kdcbpc + (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)
— dclbn * (NUCLEAR_CLOCK_BMAL1_PROTEIN) + dpcn * (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)

dPC
Tn = Kpcc * (CYTOSOLIC_PER_CRY_PROTEIN)

—Kcbpc * (NUCLEAR_CLOCK_BMAL1_PROTEIN) x (NUCLEAR_PER_CRY_PROTEIN)
+ Kdcbpc » (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)
— dpcn « (NUCLEAR_PER_CRY _PROTEIN) + dclbn x (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)

dPC/CB,

T = Kcbpc * (NUCLEAR_CLOCK_BMAL1_PROTEIN) » (NUCLEAR_PER_CRY_PROTEIN)

— Kdcbpc » (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)
— dclbn * (NUCLEAR_CLOCK _BMAL1_PER_CRY_PROTEIN)
—dpcn * (NUCLEAR_CLOCK_BMAL1_PER_CRY_PROTEIN)

In the proposed model, various parameters were incorporated to capture the dynamics of the
system under investigation. These parameters, along with their definitions and values, are
presented in the table below. To account for potential variations and uncertainties, three distinct
sets of parameter values were defined, with parameter set 3 serving as the nominal set (wild type
parameter; WT) employed in the model simulations. The simulation from parameter set 3 revealed
the experimental peak expression for the circadian clock genes in the model. Also, parameter
estimation analysis from figure 8 was used to confirm the accurate reflection of parameter set 3
(WT) to true biology. The table lists the parameters, their descriptions, and the corresponding

values for each of the three parameter sets.
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Parameter Definition Set1 Set2 Setz
Vsp Maximum rate of Per synthesis 2.2 1.7 2.9
Kip Activation constant for enhancement of Per by nuclear CLOCK/BMAL 0.24 0.302 028
d_p Maximum rate of Per degradation 0.34 0.375 0.125
Vse Maximum rate of Cry synthesis 2.3 1.6 2.8
Kic Activation constant for enhancement of Cry by nuclear CLOCK/BMAL 0.262  0.32 0.17
d_c Maximum rate of Cry degradation 0.324 0.39 044
Vsb Maximum rate of Bmal1 synthesis 2.32 1.2 3.4
Kib Activation constant for enhancement of Cry by nuclear Ror 0.13 0.16 0.16
d_b Maximum rate of Bmal1 degradation 0.46 0.43 0.49
Vsr Maximum rate of Ror synthesis 2.04 1.6 3.1
Kir Activation constant for enhancement of Ror by nuclear CLOCK/BMAL 0.27  0.39 0.3
d_r Maximum rate of Ror degradation 0.372  0.34 0.27
Vsre Maximum rate of Rev-erb synthesis 2.15 1.8 2.425
Kic Activation constant for enhancement of Rev-erb by nuclear CLOCK/BMAL 024 037 025
d_re Maximum rate of Rev-erb degradation 0.382 0.32 0.285

k Maximum rate of Per mRNA translation 0.408 0.453 0.412
Kpe1 Dissociation rate of PER-CRY protein to PER protein 0.362 0.383 0.34
Kpeo Association rate of PER & CRY protein to PER-CRY protein 0.3 0.484 0.31
Kpe Rate of PER phosphorylation 0.304 0.204 0.33
Kppe Rate of PER de-phosphorylation 0.39 0.306 0.32
dpc Degradation Rate of PER Protein 0.23 0.024 0.10

ki1 Maximum rate of Cry mRNA translation 0.39 0.53 042
Kee Rate of CRY phosphorylation 0.365 0.242 0.4
Kcpe Rate of CRY de-phosphorylation 0.306 0.31 0.35
dpe Degradation Rate of PER Protein 0.18 0.023 0.08

ke Maximum rate of Bmalt mRNA translation 0.47 0.34 0.53
Kbce Rate of cytosol BMAL Protein transported into the nucleus 0.34 0.342 0.48
Kbe Rate of BMAL phosphorylation 0.30 0.28 0.3
Kbpc Rate of BMAL de-phosphorylation 038 039 0.25
dbe Degradation Rate of BMAL Protein 0.07 0.05 0.07

k3 Maximum rate of Ror mRNA translation 0.42 0.44 0.5
Kree Rate of cytosol ROR Protein transported into the nucleus 0.4 0.35 0.504
Kre Rate of ROR phosphorylation 0.33 0.36 0.4
Krpe Rate of ROR de-phosphorylation 0.2 0.40 0.16
dre Degradation Rate of ROR Protein 0.05 0.05 0.05

k4 Maximum rate of Rev-erb mRNA translation 0.42 0.36 0.4
Kreee Rate of cytosol REV-ERB Protein transported into the nucleus 0.4 0.304 0.48
Krec Rate of REV-ERB phosphorylation 0.33 0.36  0.36
Krepe Rate of REV-ERB de-phosphorylation 0.2 0.34  0.33
drec Degradation Rate of REV-ERB Protein 0.05 0.06 0.05
Kpee Rate of eytosol PER-CRY Protein transported into the nucleus 0.37 0.345 0.4
Kpep Rate of PER-CRY phosphorylation 0.25 0.24 028
Kpepe Rate of PER-CRY de-phosphorylation 036 036 039
dpee Degradation Rate of PER-CRY Protein 0.017 0.017 0.017
dppe Degradation Rate of Phosphorylated PER Protein 0.023 0.023 0.23
depe Degradation Rate of Phosphorylated CRY Protein 0.020 0.019 0.020
dbpe Degradation Rate of Phosphorylated BMAL Protein 0.013 0.013 0.015
drpe Degradation Rate of Phosphorylated ROR Protein 0.02 0.02 0.02
drepc Degradation Rate of Phosphorylated REV-ERB Protein 0.023 0.23 0.02
dpepe Degradation Rate of Phosphorylated PER-CRY Protein 0.025 0.025 0.03
Kclbn Association rate of CLOCK and BMAL protein to form CLOCK-BMAL protein 0.37 0.32 0.47
dbn Degradation Rate of nuclear BMAL Protein 0.09 003 0.05
Krn Association rate of ROR and REV-ERB protein 0.35 0.31 0.25
drn Degradation Rate of nuclear ROR Protein 0.07 002 007
Kren Association rate of REV-ERB and ROR protein 0.35 0.31 0.35
drn Degradation Rate of nuclear REV-ERB Protein 0.06 0.02 0.06

Kcbpe Association rate of CLOCK-BMAL & PER-CRY proteins in the nucleus 0.49  0.25 0.4

delbn Degradation Rate of nuclear CLOCK-BMAL Protein 0.30 015 0.30

dpen Degradation Rate of nuclear PER-CRY Protein 0.15  0.075 15
prt synchronization protein concentration 1.34 0.945 128
ve Maximum rate of synchronization factor synthesis 1.734 1945 158
dc Activation constant for enhancement of synchronization factor synthesisL 0.134 0.145 0.28

Table 2: Model parameters, definition and values.
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RESULTS

Circadian clock mechanism — model design.

The development of the model involved identifying and compiling the key regulatory interactions
in the mammalian circadian clock gene network from scientific literature®!%. The model postulates
a reversible phosphorylation mechanism for all cytosolic circadian clock proteins. This inclusion
is supported by the pivotal role phosphorylation plays in orchestrating circadian regulation. The
reversible nature of phosphorylation allows for dynamic fluctuations in protein activity, thus
contributing to the intricate regulation of circadian processes. This hypothesis is based on evidence
that phosphorylation of key clock proteins (e.g., PER, CRY, BMALI) plays a regulatory role in
the circadian system by altering their stability, localization, protein-protein interactions, and
transcriptional activity over the circadian cycle. The reversibility of phosphorylation allows for
dynamic changes in protein activity and regulation of circadian processes!*#1%. The ROR. and
REV-ERB. proteins (where the subscript 'c' stands for 'cytosolic') undergo reversible
phosphorylation, after which they are transported to the nucleus. In the nucleus, ROR, and REV-
ERB, (the subscript 'n' stands for 'nuclear’) bind to the promoter region of the Bmall gene to
regulate its transcription. Specifically, ROR, acts as an activator, while REV-ERB, serves as a
repressor in this context. Similarly, the Bmall gene is translated into the BMAL1. protein in the
cytosol, which subsequently undergoes reversible phosphorylation. BMALI. is then transported
to the nucleus, where it forms a reversible heterodimer with the CLOCK protein, generating a
protein complex termed "CLOCK/BMALI1". In parallel, the PER and CRY proteins undergo
reversible phosphorylation within the cytosol. Upon dephosphorylation, the unphosphorylated
PER and CRY proteins assemble into the reversible PER-CRY heterodimer, which then undergoes

nuclear translocation. Within the nucleus, the PER-CRY, complex exerts its regulatory role by
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repressing the transcription of key clock genes, including Per, Cry, Rev-erb, and Ror. This
repression is achieved by binding to the CLOCK BMALI1 complex, thereby dampening its
activity. The dissociation of the transcription factor PER-CRY from the promoters of these genes
permits CLOCK BMALI to activate the transcription of Per, Cry, Ror, and Rev-erb, thus initiating
a new cycle. This cyclical regulatory process forms the basis of the circadian rhythm. These
interactions are summarized in a wiring diagram consisting of two main coupled feedback loops:
a positive loop involving the activation of Bmall transcription by ROR;, and a negative loop

involving the repression of Per, Cry, Ror, and Rev-erb transcription by PER-CRY (Fig 12).
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Figure 12: Modeling framework and schematic network diagram. (A) Approach to construction of
a deterministic model of the mammalian circadian clock, and data-driven sensitivity analysis and
parameter estimation. (B) Schematic diagram of the principal positive and negative regulatory
feedback loops in the mammalian clock network. The core negative feedback loop is formed by
PER:CRY heterodimers that repress their own transcription. Another regulatory (positive and
negative feedback) loop is formed by Ror and Rev-erb competing for binding to ROR/REV-ERB-
response element (RORE) to regulate Bmall. Green lines indicate activation by the transcription
factors CLOCK-BMALL1 and RORy, red lines indicate repression of genes by transcription factors,
and black lines indicate the translation and translocation of mRNAs and proteins. White ovals
represent genes, gray ovals proteins in the nucleus and orange ovals proteins in the cytosol.
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Multicellular spatiotemporal model of the core clock genes describes coupling among cells.

Gene regulatory networks can be mathematically described by a set of coupled ordinary
differential equations (ODEs), where molecular interactions, such as transcription factor binding
and gene regulation, are represented by nonlinear functions like Michaelis-Menten or higher-order
Hill functions. These nonlinear functions capture the cooperative or saturable nature of these
interactions, providing a more accurate representation of the underlying biological processes!®’. In
this study, the gene regulatory network depicted in Fig 12 B was translated into two deterministic
spatiotemporal models, as detailed in the Method section. One model operates in isolation, devoid
of intercellular communication (coupling), while the other incorporates intercellular coupling
mechanisms. In both models, I employed Michaelis-Menten and Hill function approximations to
describe the interactions between transcription factors and genes. Additionally, I assumed mass
action and linear kinetics to describe processes such as degradation, translation, and complex
formation. These mathematical representations provide a robust framework for simulating the
dynamic behavior of the circadian clock gene network. In the absence of synchronization signals
that enable cell-cell coupling, autonomous cells in the suprachiasmatic nucleus or other peripheral
tissues like the liver would oscillate with different periods, amplitudes, and phases. This
desynchronization is due to intrinsic noise and variability in the gene regulatory networks of
individual cells. However, intercellular communication induced by extrinsic or intrinsic signals
ensures synchrony in the oscillations and resulting biological functions across the cell population.
This coupling mechanism, mediated by signaling molecules or direct cell-cell interactions,
promotes coordination and coherence in the circadian rhythms and associated processes’®103:19%,
The two models developed in this study were specifically designed to investigate the

spatiotemporal expression patterns of circadian clock genes in the liver. By incorporating
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intercellular communication in one of the models, I aimed to explore the role of coupling
mechanisms in synchronizing the circadian rhythms across hepatocytes (liver cells). I used a
comprehensive dataset comprised of single-cell RNA sequencing (scRNA-seq) and single
molecule fluorescence in situ hybridization (smFISH) data , which previously demonstrated that
the expression of core circadian clock genes in the liver lobule is non-zonated due to coupling
among autonomous cell oscillators?®. To dissect the regulatory intricacies underlying these
observations, 1 constructed an uncoupled model by translating the wiring diagram depicted in Fig
12 B into a system of 23 differential equations. These equations encapsulated the dynamic
processes of gene transcription and translation, protein complex formation, phosphorylation, and
inhibition, thus providing a mechanistic framework to explore the underlying regulatory dynamics.
This model was applied to an assembly of over 435 cells spatially arranged to mimic the geometry
of a liver lobule (the lobule geometry was described in a piff file for use in the Compucell3D
simulations). To capture potential heterogeneity across cells in transcription rates, which could
arise from desynchronization in gene expression, I assumed a Gaussian distribution to randomize
the transcription rate parameters for every gene in each individual cell. This stochastic modeling
approach aimed to incorporate the inherent variability and noise present in gene expression
dynamics across the cellular population within the liver lobule microenvironment. The spatial and
temporal expression patterns for each gene were then simulated in the Compucell3D modeling
environment, a powerful platform for simulating and visualizing multicellular systems and their
dynamics!'%110,

The simulations of the uncoupled model revealed that the mean expression of both Per and Bmall
genes at timepoints 6, 12, 18, and 24 hours was not zonated across the portal-central axis of the

liver lobule (Fig 13 A). This finding confirms results from previous studies, which observed a non-
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zonated expression pattern for core circadian clock genes in the liver lobule!!!. In the uncoupled
model, the temporal profiles of Per and Bmall gene expression exhibited distinctive autonomous
oscillations spanning the lobule, characterized by periods ranging from 21 to 28 hours and
amplitudes varying between 2.8 to 4.7 (arbitrary units, a.u) for Per, and periods ranging from 21
to 28 hours and amplitudes spanning from 0.8 to 3.2 a.u for Bmall (Fig 13 B, E and F). These
autonomous oscillations reflect the desynchronization and variability among individual cells in the
absence of coupling mechanisms.

To explore the impact of intercellular communication on circadian synchronization, in the coupled
model, I assume that synchronization of autonomous cells across the liver lobule is achieved
through communication mediated by a putative coupling ligand between each cell and its
neighbors. The transmission of this coupling ligand across the liver lobule effectively synchronizes
the period of the oscillations. I hypothesized that global synchronization across the lobule is
achieved through the average concentration of the coupling ligand affecting clock genes via
receptor molecules, as previously suggested’®!%. Data from Finger et al®®. revealed a potential
coupling factor: the transforming growth factor-beta (TGF-), which activates early transcription
factors to control the molecular clock machinery, leading to a significant upregulation of Per2
mRNA levels after 2-4 hours. This finding supports the role of TGF-f as a potential coupling ligand
in synchronizing the circadian clock across the liver lobule'®*!!>, The spatial and temporal
expression for each gene in the model was then simulated in Compucell3d, showing coupling
across the portal-central axis (Fig 13 C). The temporal profiles of Per and Bmall gene expression
exhibited synchronized oscillations, characterized by a period of 24-25 hours and an amplitude of
5.2 for Per, and a period of 23-25 hours with an amplitude of 2.2 for Bmall (Fig 13 D, E, and F).

These results demonstrate the impact of intercellular communication and coupling mechanisms on
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synchronization of circadian rhythms across the liver lobule. While the uncoupled model showed
desynchronized oscillations with varying periods and amplitudes, the coupled model exhibited
synchronized oscillations with consistent periods and amplitudes, reflecting the role of coupling

factors in coordinating the circadian clock across the cell population.
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Figure 13: Multicellular spatiotemporal model simulations. Expression across the liver lobule of
(A) Period gene (Per) and Brain and Muscle ARNT-Like 1 (Bmall) without coupling at circadian
times ZT 6, 12, 18, and 24 hours. The central- portal lobule display a non-zonated circadian clock
genes expression as reported in Droin et al29. (B) Limit cycle oscillations of the Per and Bmall
genes for 435 cells without coupling with varying period and amplitude values for Per (period: 21-
28 hours, amplitude: 2.8-4.7) and Bmall (period: 21-28 hours, amplitude: 0.8-3.2).
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Figure 13 (cont’d)

(C) The spatial expression of Per, and Bmall genes for 435 cells with coupling at circadian time
ZT 6 12, 18 and 24 hours across the liver lobule. The expression profile shows a synchrony across
all time points. (D) Limit cycle oscillations of the Per and Bmall genes with coupling producing
synchronized period and amplitude for Per (period: 24-25 hours, amplitude: 5.0-5.2) and Bmall
(period: 23-25 hours, amplitude: 2.0-2.2). The color bar shows the expression values of genes in
each cell across the central (CV) and portal (PV) in the liver lobule. Each dot represents the time-
dependent expression of a gene per cell. (E) The distribution of uncoupled Per and Bmall
oscillation periods for over 400 cells in the model lobule. The period ranges from 21 hours to 28
hours. (F) The distribution of coupled Per and Bmall oscillation periods for over 400 cells in the
model. The period ranges between 24 hours to 25 hours for Per oscillations and 23 hours to 25
hours for Bmall oscillations.
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Figure 13 (cont’d)
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Sensitivity analysis

To investigate the sensitivity of the model dynamics to variations in key parameters, I performed
a parameter sensitivity analysis using the AMIGO2 toolbox in MATLAB!"*!4 The model
dynamics analyzed included the period of oscillation, amplitude of oscillation, phase shift, and the
average amount of mRNA produced. Specifically, the sensitivity analysis focused on the effects of
transcription and degradation rate parameters on these model dynamics. I used the Latin hypercube

sampling (LHS) method, which is known for providing more precise estimates compared to
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random sampling methods!"

. The LHS technique is used to divide the tested range of each variable
into intervals, from which sample points are selected to ensure an efficient exploration of the

parameter space.

The LHS method involves the following steps:

e Defining the ranges of the parameters to be tested: For each transcription and degradation
rate parameter, | specified a biologically relevant range within which the parameter can
vary. The ranges for each parameter were determined from literature values.

e Dividing the parameter ranges into intervals: The LHS method divides the range of each
parameter into equal intervals, ensuring that the entire range is adequately sampled.

e Sampling from the intervals: The LHS algorithm selects sample points from each interval
in a stratified manner, ensuring that the entire parameter space is covered without clustering
or gaps.

e Running simulations: For each set of sampled parameter values, I ran the model
simulations and recorded the respective values of the model dynamics (period, amplitude,
phase, and average mRNA levels).

e Sensitivity analysis: The sensitivity of each model dynamic to variations in the
transcription and degradation rate parameters was quantified by analyzing the relationship
between the sampled parameter values and the corresponding model dynamics. Various
statistical measures, such as partial rank correlation coefficients (PRCC) or standardized

regression coefficients, can be used to assess the sensitivity.

By employing the LHS method and systematically exploring the parameter space, | aimed to

identify the most influential parameters affecting the circadian clock dynamics and quantify their
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relative impacts. This sensitivity analysis provided valuable insights into the robustness and critical
control points of the model, as well as potential targets for experimental validation or therapeutic

interventions.

The transcription and degradation rate parameters of the Reverb gene respectively show
negative and positive correlation with the average expression level of Bmall.

I investigated the effect of the transcription and degradation rate parameters on average expression
of the observables (mRNA levels of clock genes) for a complete circadian cycle (24 hrs) after
reaching a stable oscillation. A 10% increase in the transcription rate parameter of each gene
demonstrated a direct correlation with the corresponding mRNA level. This phenomenon was
evident across the entire network, as elevating the transcription rate parameter resulted in a
proportional rise in the average expression levels of the associated observables (Fig 14 B).
Moreover, the intricate interplay of positive and negative feedback regulations within the gene
network was reflected in the sensitivity analysis of transcription and degradation rates. For
instance, an increase in the transcription rate parameter of the Cry gene (vCs) led to a decrease in
the average expression of Per mRNA due to the delayed inhibition imposed by PER-CRY..
Similarly, elevating the transcription rate parameter of Bmall (vBs) resulted in a decrease in the
average expression of Rev-erb and an increase in the average expression of Per and Cry,
attributable to the positive feedback loop involving Bmall, Per, and Cry, alongside the negative
feedback loop involving Bmall and Rev-erb (Fig 14 A-B).

Conversely, a 10% increase in the degradation rate parameters exhibited an inverse correlation
with their corresponding observables, causing a decline in the average expression levels of their
associated genes (Fig 14 C). Notably, an increase in the degradation rate parameter of Bmall

(d_mB) led to an increase in the expression level of the Rev-erb gene, owing to the negative
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feedback loop involving Bmall, PER-CRY, and Rev-erb genes. Similar relationships between
degradation rate parameters and observables were elucidated across the network (Fig 14 C).

This analysis revealed that the clock gene network demonstrated greater sensitivity to changes in
transcription rates compared to degradation rates. Notably, among all genes analyzed, Bmall
exhibited the highest sensitivity to degradation rates across the entire network, despite being
directly regulated solely by Ror and Rev-erb. In summary, our study sheds light on the intricate
regulatory dynamics of the circadian clock gene network, highlighting the differential effects of
transcription and degradation rate parameters on gene expression dynamics. These findings deepen
our understanding of the underlying mechanisms governing circadian rhythm regulation and

underscore the complex interplay of feedback mechanisms within the gene network.
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Figure 14: (A) Schematic diagram of the mammalian clock network with its transcription and
degradation parameters. (B) Sensitivity analysis of transcription rate parameters. The transcription
rate parameter for the observables (mRNA levels of clock genes) were optimized and the dynamics
revealed a positive correlation between the transcription rate parameters and the average mRNA
level of the respective gene. (C) Sensitivity analysis of degradation rate parameters. Optimization
of the degradation rate parameter for the observables (mMRNA levels of model clock genes) revealed
a negative correlation between the degradation rate parameters and their respective average
mRNA. Also, an increase in the degradation rate parameter of the Bmall gene, d mB, led to an
increase in the expression level of the Reverb gene due to the negative feedback loop between
Bmall, PER-CRY and Reverb gene.

Increase in the transcription rate parameters lead to a non-monotonic decrease in the
oscillatory period while increasing the amplitude of the oscillation.

The circadian clock genes exhibit oscillatory behavior with periods ranging from 23.5 to 24.5
hours'®. While the oscillatory period is consistent across all genes, the amplitude, defined as the
absolute difference between the peak and trough levels of the oscillation, varies from gene to gene

due to the different biochemical reactions involved in the transcription of each gene. A systematic
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exploration of the transcription rate parameters within the range of 0 to 5 a.u revealed a non-
monotonic change in the oscillatory period. Specifically, the periods of the circadian clock genes
Per and Reverb initially increased linearly at very low transcription rates, but subsequently
decreased monotonically with increasing transcription rate parameters for Per (vPs) and Reverb
(vRes) (Fig 15 A). Conversely, the oscillation period of the Ror gene exhibited a monotonic
increase with an increase in its corresponding transcription rate parameter, consistent with previous
studies attributing this behavior to the positive feedback loop mediated by ROR!'®. To investigate
the effect of transcription rate parameters on the amplitude of circadian clock oscillations, the same
range of parameter values (0-5) was explored. The amplitude of the oscillation was monitored
across all clock genes in the model. The analysis revealed a consistent trend of monotonic increase
in the amplitude of oscillation for all clock genes as their corresponding transcription rate
parameters were increased within the specified range. This observation suggests a direct
relationship between the rate of gene transcription and the magnitude of oscillatory behavior
exhibited by the circadian clock genes. Specifically, as the transcription rate parameters were
incrementally increased from 0 to 5, the amplitude of oscillation for each clock gene exhibited a
continuous and unidirectional increase, without any deviations or fluctuations in the observed trend
(Fig 15 B). This monotonic increase in amplitude indicates that higher transcription rates lead to
more pronounced oscillations, with greater deviations from the mean value. It is noteworthy that
the rate of increase in amplitude may vary among different clock genes, potentially due to the
specific regulatory mechanisms and feedback loops involved in their respective transcriptional
processes. However, the overall trend of a monotonic increase in amplitude with increasing
transcription rate parameters was consistently observed across all clock genes in the model. These

findings highlight the crucial role of transcriptional regulation in modulating the oscillatory
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dynamics of the circadian clock network. By adjusting the transcription rate parameters, the
amplitude and the period of circadian oscillations can be effectively modulated, potentially

influencing downstream processes and physiological rhythms governed by the circadian clock.
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Figure 15: A non-monotonic period and amplitude dynamics for observables Per mRNA and
Reverb mRNA as gradient of the transcription rate parameters applied in the model. (A) Oscillation
period changes with respect to changes in transcription rate parameter for Per mRNA and Reverb
mRNA. The oscillatory period exhibits a monotonic decrease with an increase in the transcription
rate parameter. The red dot corresponds to the wild-type parameter value from the simulated model
for the transcription rate parameter for Per and Reverb (x=2.9 and x=2.425) respectively, and their
corresponding oscillatory period (y=23.8 h and y=23.97) (B) Oscillation amplitude changes with
respect to changes in transcription rate parameter for Per mRNA and Reverb mRNA. A monotonic
increase of oscillatory amplitude is observed with an increase in the transcription rate parameter.
The red dot corresponds to the wild-type parameter value for the transcription rate parameter for
Per and Reverb (x=2.9 and x=2.425) respectively, and their corresponding oscillatory amplitude
(y=3.4 and y=2.6).

The period shows a concave dependency, along with a monotonic decrease in amplitude as the
degradation rate parameter for Per and Reverb is increased.

We conducted a systematic exploration of the parameter space by varying the degradation rate

parameters in the model to investigate their impact on the two key characteristics of the circadian
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rhythm: the oscillatory period and the amplitude. These parameters govern the rate at which the
molecular components of the circadian clock, namely the clock genes and their associated
regulatory elements, are degraded or broken down within the cellular environment. Our analysis
revealed a non-linear, concave relationship between the degradation rate parameters and the
oscillatory period of the circadian clock genes. As the degradation rate parameters were increased
incrementally from 0 to 1.0, the period initially decreased, reaching a minimum value, and then
increased monotonically with further increments in the degradation rate (Fig. 16 A). This concave
pattern was observed for the core clock genes, Per and Reverb, when their respective degradation
rate parameters, d mP and d_mRe, were varied independently.

Conversely, our investigation unveiled a monotonic decrease in the amplitude of oscillations across
all clock genes in the model, as their corresponding transcription rate parameters were increased
(Fig. 16 B). The amplitude, which represents the magnitude of the oscillatory signal, exhibited an
inverse relationship with the transcription rate parameters, such that higher transcription rates led
to lower amplitudes of oscillation. These findings highlight the intricate interplay between the
degradation and transcription rates of the molecular components involved in the circadian clock
machinery, and their profound influence on the temporal dynamics and robustness of the circadian
rhythm. Notably, the non-linear relationship between the degradation rates and the oscillatory
period suggests the existence of an optimal range for these parameters, within which the circadian
clock operates most effectively, ensuring the maintenance of a stable and consistent oscillatory

pattern.
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Figure 16: A concave dynamic period for Per and Reverb as degradation rate parameter increases.
(A) The oscillation period of both Per and Reverb decreases and then increases giving a concave
profile with respect to an increasing degradation rate parameter. (B) Oscillation amplitude for Per
and Reverb showed a monotonic decrease with an increase in the degradation rate parameter. The
red dots in (A) and (B) denote the wild-type parameter value from the simulated model degradation
rate parameter value and the resulting period/amplitude value respectively.

Bifurcation analysis shows that Cry and Ror exhibit Hopf bifurcations with varying
transcription rate parameter value.

I further probed the dynamics of the oscillatory rhythm by conducting a bifurcation analysis, which
allows for a systematic exploration of how the system's behavior, characterized by properties such
as the oscillatory period, amplitude, phase, and average mRNA levels, responds to variations in

key parameter values. This analysis was performed using XPPAUT!!"  a powerful computational
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tool for studying dynamical systems. The bifurcation analysis was initially carried out by
considering the transcription rates as the primary bifurcation parameters. Specifically, we
examined the dependence of the oscillatory dynamics on the transcription rates vCs for Cry mRNA
and vRs for Ror mRNA. The resulting bifurcation diagrams, which depict the system's behavior
as a function of these parameters, revealed a cyclic oscillatory pattern (Fig. 17 A and C). These
diagrams illustrate the coexistence of stable and unstable limit cycles, represented by green and
blue curves, respectively. The points at which these curves intersect correspond to Hopf bifurcation
(HB) points, indicating a transition between steady-state and oscillatory behaviors. By leveraging
the information contained within the bifurcation diagrams, I derived the stable and unstable
oscillatory periods for both Cry and Ror (Fig. 17 B and D). Notably, the stable and unstable
parameter values exhibited a remarkable alignment, both in terms of the oscillatory period and the
limit cycle oscillation amplitude, for each gene under consideration. Furthermore, we extended the
bifurcation analysis to incorporate the degradation parameters of the observable molecular species,
thereby assessing the stability and robustness of the model's rhythmic dynamics under varying
degradation rates. The bifurcation analysis not only elucidated the intricate relationships between
key parameters and the emergent oscillatory dynamics but also served as a powerful tool for
validating the model's capability to capture and maintain robust circadian rhythms. By
systematically exploring the parameter space, we gained valuable insights into the regions of
stability and instability, as well as the transitions between these regimes, enabling a deeper

understanding of the underlying mechanisms governing the circadian clock machinery.
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Figure 17: One parameter bifurcation analysis of the model rhythmic dynamics. (A&C) The
bifurcation diagram of the transcription rate parameter of Cry mRNA, (vCs) and Ror mRNA,
(VRs). The green and blue lines represent stable unstable limit cycles respectively. HB denotes the
Hopf bifurcation points in the bifurcation diagram. (B&D) Bifurcation diagram showing the
periodic stability of the transcription rate parameter of Cry mRNA, (vCs) and Ror mRNA, (vRs).
The green line represents stable period and the blue line represent unstable period of the model.
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Model parameter estimation

I used parameter estimation to calibrate the mathematical model of the circadian clock against
experimental data obtained from single-nuclei RNA-sequencing of mouse liver cells. The
experimental data was acquired from male C57BL/6 mice housed under a 12:12 light:dark cycle,
ensuring synchronization with the environmental circadian rhythm!??. Parameter estimation was
carried out with the AMIGO2!'*!' software package, which implements advanced algorithms for
optimizing model parameters to achieve the best possible agreement between model predictions
and experimental observations. Specifically, we aimed to optimize the transcription and
degradation rate parameters of the model to fit the hepatic single-nuclei RNA-sequencing data.
The goodness of fit between the model predictions and the experimental data was quantified by a
cost function, which measures the discrepancy between the observed values and the values
predicted by the model for a given set of parameters. The parameter estimation algorithm seeks to
minimize this cost function, effectively identifying the parameter values that yield the closest
agreement between the model's output and the empirical observations. A smaller overall value of
the cost function indicates a better match between the model's predictions and the available data.
I defined the cost function as a maximum (log-) likelihood function, which is a suitable choice
given the availability and nature of the measured noise in the experimental data. The initial values
for the transcription and degradation rate parameters to be estimated were set to the wild-type
values used in the original model simulation. Additionally, we imposed upper and lower bounds
on these parameters based on values reported in the literature on circadian system modeling®’-3%:118,
Mathematically, I formulated a non-linear programming problem (NLP) with algebraic constraints,
aiming to find the optimal transcription and degradation rate parameters that minimize the cost

function. This formulation allows for the incorporation of additional constraints, such as parameter
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bounds and other physiological considerations, ensuring that the estimated parameter values are
biologically plausible and consistent with prior knowledge. By employing this parameter
estimation approach, I was able to refine our mathematical model to better capture the dynamics
observed in the experimental data, ultimately enhancing our understanding of the underlying
circadian clock machinery and its regulatory mechanisms.

Estimation of transcription and degradation rate parameters.

To assess the predictive accuracy of our mathematical model, I utilized single-nuclei gene
expression data obtained from male C57BL/6 mice at specific time points: 2, 4, 8, 12, 18, and 24
hours. My focus was on the core circadian genes incorporated in the model: Per, Cry, Bmall, Ror,
and Reverb. The normalized RNA-sequencing data replicates for these genes constituted the
experimental dataset against which I optimized the transcription and degradation rate parameters.
To represent the overall gene expression levels, I averaged the expression values of individual
isoforms for each gene. Given the large scale and non-linear nature of our model, local
optimization techniques can often converge to suboptimal local minima, failing to identify the
globally optimal solution. To overcome this challenge and efficiently locate an accurate global
optimum, [ employed the enhanced Scatter Search (eSS) hybrid global-local optimization
algorithm available in the AMIGO toolbox!!*!?°, This advanced algorithm combines global and
local search strategies, enabling a more comprehensive exploration of the parameter space and
increasing the likelihood of finding the globally optimal solution. In the optimization process, I
targeted five transcription rate parameters and five degradation rate parameters, each associated
with one of the observable variables in the model. Notably, the optimized parameter values
exhibited a positive correlation with the nominal wild-type parameter values used in the initial

model formulation. Consequently, the model predictions generated using the optimized parameter
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set demonstrated a positive correlation with the experimental measurements for all five observable
variables (Fig. 18 A and B). This strong agreement between the model's output and the empirical
data validates the effectiveness of my parameter estimation approach and highlights the model's
ability to accurately capture the dynamics of the circadian clock machinery. By leveraging
advanced optimization techniques and incorporating experimental data, I successfully calibrated
the model, enhancing its predictive capabilities and enabling a more accurate representation of the

underlying biological processes governing the circadian rhythm.
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Figure 18: The predicted model results and experimental data fit for observables using maximum
(log-) likelihood function. (A) Correlation between predicted transcription and degradation and
wild type transcription and degradation rate parameter values. (B) Correlation between model
predictions and measured data.
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Figure 18 (cont’d)
(C-F) The fitted curves for the model variables (Per, Cry, Bmall and Reverb). The red dotted line
indicates the experimental data at timepoints 2,4,8,12,18 and 24 h. The solid blue line indicates
the predicted results from using maximum (log-) likelihood function to fit the model to the
experimental dataset.
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CHAPTER 4: SPATIAL-TEMPORAL PERTURBATION OF THE LIVER LOBULE BY
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN

INTRODUCTION

The mammalian liver is a highly organized organ with a unique spatial architecture that facilitates
its various metabolic functions. The fundamental structural unit of the liver is the hepatic lobule,
primarily composed of hepatocytes, the parenchymal liver cells. Hepatocytes are arranged along
the portal-central axis of the lobule, forming a gradient from the portal triad (comprising the portal
vein, bile duct, and hepatic artery) to the central vein?’. This spatial organization of hepatocytes
within the liver lobule is closely linked to the compartmentalization of gene expression and
subsequent metabolic activities. Hepatocytes situated closer to the portal triad exhibit higher
expression levels of genes involved in gluconeogenesis, oxygen utilization, and B-oxidation

33121 "In contrast, hepatocytes located nearer to the central vein display increased

processes
expression of genes associated with glycolysis, lipogenesis, and xenobiotic metabolism mediated
by cytochrome P450 enzymes!??. This spatial organization of gene expression and metabolic
function along the porto-central axis of the hepatic lobule is known as liver zonation. This is a
continuous pattern of concentric layers of hepatocytes, reflecting the specialization of different
regions of the liver lobule for specific metabolic tasks?***%. Liver zonation is established and
maintained by a complex interplay of chemical cues, metabolic gradients, and cell-to-cell
interactions. The establishment of metabolic gradients is facilitated by the direction of blood flow
from the portal triad to the central vein, creating spatial gradients of nutrients and metabolites
along the porto-central axis. Additionally, circadian rhythms and molecular signaling from core
clock genes contribute to the temporal organization of metabolic processes within hepatocytes.

The canonical master regulatory pathway governing liver zonation is the Wnt/B-catenin signaling

pathway. Wnt proteins bind to Frizzled receptors, leading to the phosphorylation of the B-catenin
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degradation complex by lipoprotein receptor-related proteins. This event causes the dissociation
of B-catenin from the degradation complex, allowing its translocation to the nucleus, where it

activates transcriptional regulators that potentiate the zonation process#!23124,

The temporal regulation of liver functions is intricately governed by the biological phenomenon
known as the circadian rhythm. This temporal compartmentalization ensures that metabolic and
biological processes within the liver, such as glycolysis and gluconeogenesis, are synchronized
with the feeding and fasting cycles of the organism?®**!2!. The molecular machinery driving
circadian rhythms is a complex network of circadian genes and proteins interconnected through
intricate negative and positive feedback loops. The core components of this molecular oscillator
include the CLOCK and ARNTL (or NPAS2) proteins, which form heterodimeric complexes.
These CLOCK-ARNTL or NPAS2-ARNTL complexes bind to E-box motifs in the promoter
regions of downstream circadian genes, such as Per, Cry, Ror, and Reverb, activating their
transcription. The translated PER and CRY proteins form the PER-CRY complex in the cytoplasm,
which subsequently inhibits the binding of the CLOCK-ARNTL or NPAS2-ARNTL complexes,
thereby creating a negative feedback loop. Additionally, the REV-ERB protein competes with the
ROR protein to inhibit the transcription of the Arntl gene, further modulating the circadian

3,75

rhythm

A recent study by Droin et al?’

. demonstrated that the spatial and temporal axes of the hepatic
lobule interact with one another. Consequently, many established zonated pathways exhibit
rhythmic patterns of gene expression. Among these pathways are gene sets involved in drug
metabolism, suggesting a potential interplay between the spatial zonation, temporal rhythmicity,

and chemical perturbations within the liver. Notably, while rhythmicity impacts the core pathways

that determine zonation, the converse is not true, as the core circadian clock genes themselves do
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not exhibit zonation patterns. This observation highlights the complexity of the interplay between
the spatial and temporal axes in regulating liver function. The overlap between the temporal and
spatial axes, particularly in the context of drug metabolism pathways, suggests the existence of a
third dimension to consider when describing liver function: chemical perturbation. This third axis
represents the influence of exogenous and endogenous chemical compounds on the intricate spatial

and temporal dynamics within the liver.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental toxicant known for its
detrimental effects on various biological functions. Upon entry into the body, TCDD binds to the
aryl hydrocarbon receptor (AHR), initiating a cascade of events that lead to toxic effects. Upon
binding to TCDD, the AHR undergoes a conformational change, translocates to the nucleus, and
binds to specific DNA sequences called dioxin response elements (DREs) located in the proximal
promoter regions of target genes, particularly the cytochrome P450 (CYP) genes®°"12° The
binding of the TCDD-activated AHR to DREs modulates the transcription of these target genes,
leading to the subsequent inhibition or activation of downstream genes involved in various
biological processes. Notably, TCDD exposure has been shown to disrupt both the spatial and
temporal components of hepatic function within the liver lobule, ultimately contributing to the
development of several liver-related diseases and disorders. Exposure to TCDD has been
implicated in the pathogenesis of autoimmune hepatitis, non-alcoholic fatty liver disease
(NAFLD), cardiovascular disease, bipolar disorder, obesity, and cancer. The mechanisms
underlying these adverse effects involve the disruption of the intricate spatial organization and
temporal regulation of gene expression within the liver lobule?®#%!24, Specifically, sub-chronic
exposure to TCDD has been demonstrated to ablate or significantly dampen the oscillations of

most core circadian clock genes, altering their phase and leading to the disorganization of the
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rhythmic expression patterns of various zonated gene biomarkers. This disruption of the spatial
and temporal axes of hepatic function by TCDD can have far-reaching consequences on liver

homeostasis and overall organismal health!2¢.

Despite our current understanding of how TCDD-activated AHR may impact these organizational
pathways, the specific mechanisms underlying the interaction between these regulatory axes
remain elusive. Furthermore, the acute effects of TCDD-activated AHR on the temporal
(rhythmicity) and spatial (zonation) components of the hepatic lobule are not well defined. To
elucidate the transcriptional impact of acute TCDD exposure on hepatocyte rhythmicity and
zonation, we employed hepatic single-nuclei RNA-sequencing data from male C57BL/6 mice
administered a single dose of 30 pg/kg TCDD (or sesame oil vehicle) at time-point 0. Liver
samples were collected and snap-frozen at various time-points (2, 4, 8, 12, 18, and 24 hours) after
TCDD administration. Zonation within the hepatic lobule was inferred from pseudo-space and

195

benchmarked against zonal gene biomarkers from previous studies by Halpern et al””. and Droin

et al®®

. Genes were then classified based on the effects of TCDD, zonation, temporal regulation, or
a combination of these variables using a mixed-nonlinear effect model. Our analysis revealed that
more genes were regulated by zonation independently than by rhythmicity and TCDD alone.
Notably, a larger number of genes were regulated by a combination of TCDD and zonation than
by a combination of TCDD and rhythmicity. Chromatin immunoprecipitation followed by
sequencing (ChIP-seq) analysis of dose-affected categories revealed the interaction of dioxin
response elements (DREs), E-box motifs, and AHR in most of the genes affected by TCDD-
activated AHR. Overall, our study demonstrated that TCDD exerts a significant effect on hepatic

zonation and rhythmicity even at acute exposure levels. The interplay between TCDD, zonation,

and rhythmicity in regulating gene expression highlights the complexity of the regulatory
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mechanisms governing hepatic function. Importantly, our findings suggest that the disruption of
zonation by TCDD may be a more prominent event than the disruption of rhythmicity, as evidenced
by the greater number of genes regulated by a combination of TCDD and zonation. This
observation underscores the potential impact of environmental toxicants on the spatial organization
of hepatic function and the associated consequences for liver homeostasis. Furthermore, the
interaction between DREs, E-box motifs, and AHR in the genes affected by TCDD-activated AHR
suggests a potential crosstalk between the AHR signaling pathway and the molecular machinery
governing circadian rhythms. This crosstalk may contribute to the observed disruption of both

zonation and rhythmicity upon TCDD exposure.

METHODS

Single-nuclei RNA-seq expression dataset and preprocessing.

Cholico et al'?’. conducted a time-series experiment to investigate the effects of TCDD on hepatic
gene expression in male C57BL/6 mice. The experimental design involved treating the mice with
either sesame oil (vehicle control) or a single dose of 30 png/kg TCDD via gavage. At specific time
points (2, 4, 8, 12, 18, and 24 hours) post-treatment, the animals were euthanized by CO2
asphyxiation, and their livers were immediately collected and snap-frozen for subsequent single-
nucleus RNA-sequencing (snRNA-seq) analysis. The single-nuclei RNA-seq dataset generated
from this experiment was processed and analyzed using methodologies outlined in previous

124126 Specifically, the clustering and cell type annotation of the single-nucleus

studies
transcriptomes were performed to identify and characterize the various hepatic cell populations

present in the samples.
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Figure 19: Extraction and sequencing of single nuclei data from male C57BL/6 mice. Male
C57BL/6 mice housed in a room with a 12:12 light dark cycle was gavaged with single dose of
sesame oil (as vehicle) or 30 pg/kg of TCDD (as treated). Their livers were harvested 2, 4, 8, 12,
18, 24, hours post treatment and snap frozen. The snap frozen livers were sequenced to acquire the
single nuclei sequencing dataset.

We employed a comprehensive preprocessing pipeline to prepare the single-nucleus RNA-
sequencing (snRNA-seq) dataset for downstream analysis. The preprocessing of the dataset was
conducted using the scanpy package in Python'?® a bioinformatics tool for analyzing single-cell
RNA sequencing (scRNA-seq) data. Raw counts from the dataset were first normalized to the
median total cell count using the normalize total function, ensuring consistency across samples.
Subsequently, a log transformation with a pseudocount was applied using the loglp function to
mitigate the effects of extreme values and bring the data into a more interpretable range for
subsequent analyses. Next, the preprocessing pipeline focused on filtering cells and genes to
remove low-quality or uninformative data points. Since the study aimed to investigate the effects
of TCDD on hepatocytes, the first filtering step involved removing all non-parenchymal cell types,
retaining only hepatocytes in the dataset. This step ensures that the analysis focuses specifically
on the cell type of interest. Subsequently, low-quality hepatocytes were filtered out based on two
criteria: 1) hepatocytes with fewer than 1,500 counts, and 2) hepatocytes with fewer than 200
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detected genes. These thresholds were chosen to exclude cells with low sequencing coverage or
poor transcriptome quality, as they may introduce noise and bias into the analysis. In addition to
cell filtering, gene filtering was also performed. Genes that were expressed in fewer than 200 cells
were removed from the dataset. This step helps to reduce the computational burden and focus the
analysis on genes with sufficient expression levels across the cell population. We adopted a non-
standard preprocessing step due to the lower formation of clusters observed during batch correction
analysis. This step highlights the importance of tailoring the preprocessing pipeline to the specific
characteristics of the dataset and the research questions being addressed. Finally, the identification
of highly variable genes (HVGs) was accomplished using the highly variable genes function from
the scanpy package. HVGs are genes that exhibit substantial variability in expression levels across
cells, potentially reflecting biologically relevant differences. These genes are typically used as
input for downstream analyses, such as dimensionality reduction and clustering, as they capture
the most informative aspects of the transcriptomic landscape.

Batch correction using scVI.

To mitigate sample-specific batch effects present in the snRNA-seq data, we employed scVI'?’

a
variational autoencoder model designed for single-cell RNA-sequencing data analysis. Variational
autoencoders are a type of deep learning model that can learn complex, nonlinear representations
of high-dimensional data, making them well-suited for batch correction and other tasks in single-
cell genomics. To account for batch effects arising from different biological samples, we assigned
a unique batch label to the cells originating from each individual sample. These sample-specific
batch labels were then provided as input to the scVI model during training. By incorporating batch

information during the model's training process, scVI learns to disentangle the biological signal

from the technical artifacts introduced by batch effects. The scVI model was trained using the
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hyperparameters and architecture configurations specified in Tables 2.1 and 2.2, which detailed
the model's neural network architecture, regularization techniques, optimizer settings, and other
training specifications. These hyperparameter settings were deemed suitable for the given snRNA-

seq data and batch correction task.

Hyperparameter Value
Latent dimension 30
Number of layers 1

Layer width 128
Dropout rate 0.1
Kullback-Leibler weight 5%107°
Gene expression distribution NB
Latent Distribution Normal

Table 3.1: Hyperparameters for scVI’s variational autoencoder model.

80



Hyperparameter Value

Training epochs 46
Learning rate 0.001
Learning rate decay 107¢
Optimizer Adam
Optimizer epsilon 0.01

Table 3.2: Hyperparamters for scVI’s variatonal autoencoder training.

Layer calculations.

We utilized the latent space representation of the normalized cell counts obtained from the single-
cell variational inference (scVI) method as input into the diffusion maps algorithm. Diffusion maps
were generated using the diffmap function from the scanpy Python package. This technique is a
non-linear dimensionality reduction method that captures the underlying geometric structure of the
data in a low-dimensional representation. The second component of the diffusion maps
representation was extracted and min-max scaled to generate a pseudo-space metric. This metric
was oriented such that genes with central zone enrichment had the highest values, while genes
with portal zone enrichment had the lowest values. The rationale behind this approach is to capture
the transcriptional heterogeneity along the central-portal axis of the liver lobule. The cells were
then divided into five equal bins based on their pseudo-space metric values, representing

transcriptional zones along the central-portal axis. Each bin contains cells within one-fifth of the
full pseudo-space range (i.e., cells in bin i have pseudo-space values between ? and é). This
binning approach allows for the identification of genes with varying expression patterns across the

central-portal axis. For each treatment condition, time point, and bin (layer), the raw counts were
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summed across the constituent cells. This step aggregates the gene expression data across cells
within each bin, effectively capturing the transcriptional profile of each zone. These count sums
then underwent normalization using the computeSumFactors function from the scran R package
to obtain "Normalized Counts." This normalization step is crucial to account for technical biases
and variations in sequencing depth, ensuring that the gene expression values are comparable across
different samples and conditions. Genes were then categorized by zone based on the bin (layer)
showing their maximum Normalized Counts. Genes with peak expression in bins 1 and 2 were
classified as central zone genes, as they exhibit the highest expression levels in regions closer to
the central vein. Bin 3 genes with mid-range pseudo-space values were termed mid-lobular,
representing genes with intermediate expression patterns. Finally, portal zone genes displayed
maximal Normalized Counts in bins 4 and 5, indicating their enrichment in regions closer to the
portal vein.

Design of Non-Linear Mixed Effect Model.

We devised an analytical framework by constructing a a non-linear mixed effect model (NLMEM)
using the MixedLM class in the statmodels Python package to investigate the effects of various
factors on gene expression. Mixed effect models are statistical models that incorporate both fixed
and random effects, allowing for the analysis of data with hierarchical or nested structures. In this
study, the NLMEM models were meticulously designed to incorporate various factors, enabling
the examination of the impact of TCDD exposure (D), rhythmicity (R), and zonation (Z) on gene
expression dynamics. Table 2.3 provides descriptions of the individual terms representing each
factor in the NLMEMs. These terms capture the specific aspects of each factor that influence gene
expression. For instance, the term representing TCDD exposure may include parameters related to

the dose, duration, or time since exposure, while the term for rhythmicity may incorporate
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parameters related to the amplitude, period, and phase of the oscillations. The specific equations
for the NLMEM classes outlined in Table 2.3 are presented in Table 2.4. These equations
mathematically represent the relationships between the factors (D, R, and Z) and gene expression,
incorporating both fixed and random effects. Fixed effects are parameters that are constant across
all observations, while random effects account for the variability among different groups or levels
within the data. The NLMEM approach offers several advantages over traditional linear models.
First, it allows for the incorporation of non-linear relationships between the predictors and the
response variable, which is particularly relevant for biological systems where responses may be
non-linear or exhibit complex patterns. Second, the mixed effect structure accounts for the
hierarchical or nested nature of the data, where observations may be correlated within groups or
clusters. This is crucial when analyzing gene expression data, where measurements from the same

individual or experimental unit may be correlated.

Term Effect | Equation

D D {0 if Sesame 0il Control
1if TCDD treatment
Rgin 'R sin (wt)
RCos R cos (wt)
Zp, | Z l
Zpy | Z 312
2

Table 3.3: Terms for mixed linear effects models. Each term is denoted by the name and its effect.
D is TCDD (Dioxin) Influece, R is rhythmicity, and Z is zonation. t is the time in hours after
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Table 3.3 (cont’d)
treatment. [ is the layer of the liver lobule. w is the conversion factor between t and radians which

. 21
is equal to e

Class Equation for Model

F y = PBo

D y = Bo+p:D

R Y = Bo + BiRsin + B2Rcos

Z Y = Bo+ B1Zp1 + B2Zp;

Z+R Y = Bo + B1Rsin + B2Rcos + B3Zp1 + PaZp
RxZ Y = Bo + (BiRsin + BaRcos ) * (B3Zp1 + BaZp2)
DxR Y = Bo + B1D * (B2Rsin + B3Rcos)

DxZ Y = Bo+ 1D * (B2Zp1 + B3Zp2)

Dx(Z+R) ¥ = Bo + B1D * (B2Rsin + BsRcos + BaZp1 + PaZps)
DxZxR y = Bo + B1D * (B2Rsin + B3Rcos) * (BaZp1 + BsZp2)

Table 3.4: Equations for each non-linear mixed effects model used for classification.

Implementation of the NLMEM was almost identical to Droin C et al*’. These equations were fit
to normalized count of each individual gene using the Nelder-Mead optimization algorithm!*°, A
noise offset (oo =0.15) was added to the data to avoid overfitting. Equations with the smallest
overall Bayesian information criterion!*! (BIC) were classified with their corresponding class. BIC
acts as a general multi-comparison analogue to the likelihood ratio (y?) test as it penalizes more

complex models. The exception to classifying with models that have the smallest BIC was when
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models tied with one another. Like for this was in ties, which we defined as having a relative
difference of 1%. In the case of ties, models with fewer parameters were selected.

Bar graphs of classification were calculated using Shwarz weights. Shwarz weights are calculated
using differences between the BIC values and the minimum BIC value in across all models

(BICyi) using the following equation:

wBIC —ZBICMm
57 (BIC; — BICyin)

shwarz weight =

Differential Rhythmicity and Zonation.

To conduct a comprehensive analysis of differential rhythmicity and zonation between treated and
control conditions, gene expression data were fitted to models similar to the approach described in
section 2.4. and the Differential RhythmicitY analysis in R (DryR)'* framework model in R. DryR
(Difterential RhythmicitY analysis in R) is a statistical framework based on model selection that
is designed to detect and estimate changes in rhythmic parameters (amplitude and phase) and mean
expression levels across multiple conditions. This framework leverages the power of rhythmic
regression models and likelihood-based model comparison techniques to rigorously analyze time-
course gene expression data. The core principle of DryR is to fit gene expression data to a set of
competing models that represent different rhythmic behaviors and subsequently compare the
goodness-of-fit of these models using likelihood ratio tests. By fitting these models to the time-
course data and comparing their respective likelihoods, DryR can identify genes that exhibit
rhythmic expression patterns, as well as those that display significant changes in rhythmicity or

mean expression levels between conditions.

With respect to the models similar to the approach described in section 2.4, instead of using the

Nelder-Mead optimization algorithm, we employed ordinary least squares (OLS) regression for
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model fitting by leveraging the statsmodels Python library. The OLS regression method is a widely
used technique for estimating the unknown parameters in a linear regression model. By minimizing
the sum of squared residuals between the observed data and the predicted values from the model,
OLS provides an unbiased and efficient estimate of the model parameters under certain
assumptions. Specifically, the ols function from statsmodels.api was utilized to carry out OLS on
each gene's expression values, which were separated into treated and control groups. This
separation enabled the quantification of differences in rhythmicity parameters and spatial
patterning between the two conditions across various zone regions, supporting subsequent analysis
of spatial and temporal expression patterns under treatment conditions. These separated treated
and control gene expression values were then fitted to either the R class model (capturing
rhythmicity) or the F class model (non-rhythmic flatline) for rhythmicity analysis. The R class
model incorporates parameters that describe the oscillatory behavior of gene expression, such as
amplitude, period, and phase, while the F class model represents a constant, non-rhythmic
expression pattern. Similarly, for spatial zonation analysis, the data were fitted to the Z class model
(spatial patterning) or the F class model. The Z class model accounts for the spatial organization
of gene expression along the central-portal axis of the liver lobule, capturing the varying
expression levels across different zones. To determine if the R class or Z class models, which have
more parameters, provided a statistically significantly better fit than the simpler F class model,
likelihood ratio tests (also known as y2 tests) were employed. The likelihood ratio test is a
statistical method used to compare the goodness of fit between nested models, where one model
(the null model, in this case, the F class model) is a special case of the other model (the alternative
model, either the R class or Z class model). The likelihood ratio test compared the maximum

likelihood estimates of the more complex model (R or Z class) to the simpler model (F class),
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quantifying if the additional parameters justify the increase in model complexity. This enabled a
rigorous identification of differences in rhythmicity and spatial patterning between treated and
control conditions for each gene tested. Genes with expression data that were significantly better
explained by the R class model compared to the F class model, based on the likelihood ratio test,
were classified as exhibiting differential rhythmicity. Similarly, genes better fit by the Z class
model were designated as displaying differential zonation. The likelihood ratio test was
implemented using the chi2 function from the scipy.stats Python package for this model selection
approach. This function calculates the p-value associated with the likelihood ratio test statistic,
allowing for the assessment of statistical significance and the selection of the more appropriate

model for each gene.

We estimated rhythmicity parameters from the fitted parameters in R models. If we let a = 8; and

b = 3, then we can calculate the amplitude of the expression oscillation as:

Amplitude = ZW
And we can define the phase as:

phase = w arctan(b, a)
Linear zonation slope was calculated for all zonal genes that kept zonation post TCDD treatment
and were not mid-lobular. To calculate zonation slope we fit a simpler zonation model than the one
in table 2.4:

y =PBo+ Bl

We fit this model much in the same way we did above during differential zonation. The zonation

slope was equal to ;. The procedure was like how one would find the line of best fit.
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Statistical Tests.

Differential expression analysis between treatments and comparison of parameter values were
performed using the non-parametric Mann-Whitney U test, implemented via the mannwhitneyu
function in scipy.stats. The Mann-Whitney U test is a non-parametric statistical test that is used to
compare the distributions of two independent samples. It is particularly useful when the data
violates the assumptions of normality or homogeneity of variance, which are required for
parametric tests such as the t-test. To determine if there were differences between the distribution
of gene zone assignments between gene lists, the Kolmogorov-Smirnov two-sample test was
utilized through the ks 2samp function. The Kolmogorov-Smirnov test is a non-parametric test
that quantifies the distance between the empirical distribution functions of two samples. This test
is useful for comparing the overall shapes and distributions of two datasets, rather than just their
central tendencies or means. Correlation coefficients and associated p-values were also computed
using scipy.stats functions. Correlation analysis is a statistical technique that measures the strength
and direction of the linear relationship between two variables. The correlation coefficients quantify
the degree of association, while the p-values indicate the statistical significance of the observed
correlation. All statistical tests leveraged Python-based scipy.stats functions, which are part of the
SciPy library. SciPy is a widely used open-source Python library for scientific and technical
computing, providing a comprehensive collection of mathematical algorithms and functions. For
gene set enrichment analysis, the Enrichr API within the gseapy package was used to identify
enriched pathways and processes. Gene set enrichment analysis (GSEA) is a computational
method that determines whether predefined sets of genes (e.g., pathways or biological processes)
are overrepresented or underrepresented in a given gene list, compared to a background set of

genes. The Enrichr API provides access to a comprehensive collection of gene set libraries,
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enabling the identification of enriched biological annotations associated with the genes of interest.
Significant pathways were called at a false discovery rate (FDR) threshold of <0.2. The FDR is a
statistical method used to correct for multiple hypothesis testing, which is a common issue when
performing numerous statistical tests simultaneously. By controlling the FDR, researchers can
balance the trade-off between false positive and false negative rates, ensuring that the identified
enriched pathways are statistically robust. This integrative analysis enabled connecting the
observed differential expression and rhythmicity changes to impacted biological functions and
processes. By combining the results of differential expression analysis, rthythmicity parameter
comparisons, and gene set enrichment analysis, researchers can gain a comprehensive
understanding of the transcriptional responses to experimental treatments or conditions. This
approach allows for the identification of dysregulated genes, alterations in rhythmic patterns, and

the associated biological pathways and processes that may be affected by these changes.

RESULTS

Treatment with 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) induces an oscillatory pattern in
circadian clock genes and elevates the expression of TCDD response genes in acute
hepatocyte response.

To investigate the transcriptional impact of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
exposure on the disruption of rhythmicity and zonation in hepatocytes, we utilized single-nucleus
RNA-sequencing (snRNA-seq) data from the livers of male C57BL/6 mice, as generated by
Cholico et al'?’. The mice were housed in a controlled environment with a 12-hour light/12-hour
dark cycle. At the start of the light phase (6:00 AM), the mice received a single oral dose of 30
ug/kg TCDD or a vehicle control (sesame oil) via gavage. Subsequently, the livers were harvested
and snap-frozen at specific time points: 2, 4, 8, 12, 18, and 24-hours post-treatment. Following

sequencing, the snRNA-seq data was processed, and hepatocytes were identified based on
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established hepatic biomarkers from previous studies'?*!26. After excluding non-hepatocyte cell
types and filtering out low-quality hepatocytes with low read counts, a total of 129,373 hepatocytes
remained in the dataset. The top 15,000 highly variable genes (HVGs) were selected for
downstream analysis. Dimensionality reduction techniques (Batch correction) were applied to the
TCDD response genes for data visualization and analysis, as detailed in the methods section (2.2).
Uniform Manifold Approximation and Projection (UMAP) analysis was conducted on the
hepatocyte population to examine the cell clustering patterns. The UMAP analysis revealed a
distinct circular pattern in the hepatocyte clusters, which corresponded to different time points and
treatment conditions (Fig. 20 A). This circular pattern suggests an inherent rhythmicity in
hepatocyte gene expression, potentially reflecting the circadian rhythm or other cyclical processes
within these cells. This circular pattern in the UMAP analysis, indicative of rhythmic gene
expression, was not observed in other cell types present in the dataset. Notably, the hepatocyte
cluster corresponding to the TCDD treatment group exhibited a distinct separation from the control
group, suggesting a significant alteration in the gene expression profiles due to TCDD exposure
(Fig. 20 B). To examine the immediate impact of TCDD over time and space, the expression
patterns of known circadian clock genes (Perl, Arntl, and Cry) and TCDD response genes (Cyplal
and Ahrr) were analyzed. For the circadian clock gene Perl, the circular pattern (oscillatory pattern
with a peak at the 8-hour time point) was observed (Fig. 20 C), indicating the preservation of
rhythmic expression despite TCDD treatment. While acute TCDD treatment impacted hepatic
rhythmicity, it did not completely abolish circadian oscillation, as seen in previous studies with
sub-chronic TCDD exposure?® (Fig. 2E). This finding suggests that the disruption of circadian
rhythms by TCDD may be dependent on the duration and dosage of exposure. As expected, a

significant increase in the expression profiles of TCDD response genes (Cyplal and Ahrr) was
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observed after treatment (Fig. 20 D and 20 F). Interestingly, the expression of Ahrr and Cyplal
achieved saturation at 12 hours post-treatment (Fig. 20 F), while Cypla2 and Tiparp reached
saturation at or before the 2-hour time point (data not shown). This differential temporal response
of TCDD-inducible genes suggests a complex regulatory mechanism underlying the
transcriptional response to TCDD exposure. The observed circular pattern in the UMAP analysis,
coupled with the analysis of circadian clock genes and TCDD response genes, provides insights
into the impact of acute TCDD exposure on hepatocyte rhythmicity and gene expression dynamics.
While TCDD treatment altered hepatic rhythmicity, it did not completely abolish circadian
oscillations, at least in the acute exposure scenario. Additionally, the varying temporal responses
of TCDD-inducible genes highlight the intricate transcriptional regulation mechanisms at play in

the liver's response to dioxin exposure.
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Figure 20: Visualization of acute TCDD in mouse hepatocytes. UMAP of hepatocytes colored by
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Figure 20 (cont’d)

(A) Time in hours after treatment, (B) Dose in pg/kg of TCDD, (C) Circadian clock gene Perl
showing peak expression between timepont 8 to 12 hrs and (D) TCDD activated gene Cyplal
showing almost zero expression at dose 0 pg/kg (vehicle/sesame gavaged) and high expression at
dose 30 pg/kg (TCDD gavaged). Each dot represents a cell. Time series expression of Circadian
and TCDD response genes. Normalized counts time series expression of known (E) Circadian
clock genes Arntl (Bmall), Cryl and (F) TCDD activated genes Ahrr and Cyplal. Expression of
genes are plotted as a function of sesame oil vehicle (0 pg/kg) in blue and TCDD (30 pg/kg) in
orange.
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Zonation of hepatocyte from single nuclei gene expression profile.
Identifying zonated genes in the liver lobule is a challenging task when using single-nucleus RNA

sequencing (snRNA-seq) data, as zonation is not directly measured in these experiments. Instead,
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zonation patterns need to be inferred from the gene expression profiles of individual hepatocytes.
However, this inference can be confounded by various experimental factors that can distort the

zonation profiles. For example, the centrally zonated gene Cypla2!3

is known to be activated by
TCDD treatment, while another centrally zonated gene, Slcla2, exhibits a rhythmic expression
pattern over time. To accurately infer zonation from hepatocyte gene expression, these
confounding factors need to be corrected. To address this challenge, we utilized the approach
developed by Nault et al'?*. The first step involved batch correction of the single-cell data to
remove variance introduced by TCDD exposure and temporal effects. This step is crucial as it
eliminates the influence of these confounding factors on the gene expression profiles, allowing for
a more accurate inference of zonation. After batch correction, trajectory inference was performed
to calculate the latent zonation value for each individual hepatocyte. This approach leverages the
inherent structure and relationships within the gene expression data to infer the underlying
zonation patterns. By applying batch correction and trajectory inference, we aimed to disentangle
the effects of TCDD treatment and temporal variations from the gene expression profiles, thereby
enabling a more accurate inference of hepatocyte zonation. This approach is particularly important
in the context of studying the impact of TCDD on zonation, as it allows for the identification of
zonated genes that may be affected by dioxin exposure, while accounting for potential confounding
factors. To perform batch correction on the single-nucleus RNA sequencing (snRNA-seq) data, we
utilized scVI'®, a variational autoencoder (VAE) method. The choice of a VAE approach was
driven by the large size of the dataset, which comprised approximately 130,000 cells after
preprocessing. Most single-cell integration tools are not designed to efficiently handle datasets of

such a magnitude. However, scVI'?® was specifically developed to integrate large gene expression

atlases across multiple laboratories and to batch correct technical variations, making it well-suited
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for this analysis. The batch correction process using scVI aimed to disentangle the technical

variation introduced by TCDD treatment and time of harvest from the biological variation in gene

expression. By removing these confounding technical factors, the resulting batch-corrected data

would provide a more accurate representation of the underlying biological processes, such as

hepatocyte zonation and rhythmic gene expression patterns. Visualizations of the batch-corrected

data (Fig. 21 A-C) demonstrate the effectiveness of the scVI approach in mitigating the effects of

TCDD treatment and time of harvest on the gene expression profiles. This batch-corrected data

served as the foundation for subsequent trajectory inference analyses, enabling a more reliable

inference of hepatocyte zonation patterns while accounting for the potential confounding factors

introduced by the experimental design.
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Figure 21 (cont’d)
(A) UMAPs of single-nuclei RNA sequencing data and the latent space of scVI (batch correction).
Cells are colored by the combined label of hours and TCDD dose treatment. (B) Batch corrected
single-nuclei RNA sequencing colored by 0 pug/kg dose treatment (blue) and 30 pg/kg dose
treatment (orange). (C) Batch corrected single-nuclei sequencing colored by six (6) time-points in
hours after treatment. Each dot represents a cell.
After batch correcting the single-nucleus RNA sequencing (snRNA-seq) data using scVI, we

employed a trajectory inference algorithm, diffusion pseudo-time!'3*!3

on the latent space
generated by scVI to infer the trajectory of the portal-central axis. This approach aimed to capture
the zonation patterns within the liver lobule. Utilizing a second component of the diffusion pseudo-
time plot (analogous to components of PCA) as our trajectory, we observed most zonal genes
follow along the component of either high expression in the portal axis with low expression in the
central axis or high expression in the central axis with low expression in the portal axis. Expression
values were normalized and reoriented from portal to central expression. We referred to the
trajectory inference values as "Pseudo-space," which we defined as an ordering of cells based on
how closely they approximate the expression patterns of centrally zonated hepatocytes
(represented by a value of 1) and portal zonated hepatocytes (represented by a value of 0). To
validate whether the inferred pseudo-space accurately captures liver lobule zonation, we examined
the expression profiles of known zonated genes, Cyp2f2 and Slc1a2, across the pseudo-space axis.
Significant correlations were observed between the expression levels of these genes and the
pseudo-space values of the cells. Specifically, we observed high expression of Slcla2 at the central
axis (Fig. 22 B) and high expression of Cyp2f2 at the portal axis (Fig. 22 C), consistent with their
known zonation patterns. As a negative control, we analyzed non-zonated genes, such as Arntl and
Clock, which are not expected to exhibit zone-dependent expression patterns'. As anticipated,
these genes did not show significant correlations with the pseudo-space values, further validating

the accuracy of the inferred zonation trajectory. Our analysis confirmed that no significant
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correlations exist between the expression of the non-zonated genes Arntl and Clock and the
computed pseudo-space metric. The expression of these genes was observed to be non-zonated in
nature (Fig. 22 D). The presence of strong correlations for known zonated genes, such as Cyp2f2
and Slcla2, and the absence of such correlations for non-zonated genes, confirms that the
computed pseudo-space metric accurately reflects the zonation pattern across the liver lobule. To
streamline subsequent analyses, we binned the continuous pseudo-space values into distinct layers

(Fig. 22 A). The number of layers used depends on the resolution of the data. For example, Halpern

195 129

et al””. defined fifteen zones, whereas Droin et al””. used only eight zones. In our study, we elected
to bin the data into five layers, ensuring at least two thousand cells in each layer. The pseudo-space
axis was divided into five equal-length bins. As expected, fewer cells were binned into the first
(central) layer compared to the last (portal) layer (Fig. 4A). This observation aligns with the
anatomy of the liver lobule, where there is a single central vein and numerous peripheral portal
triads, resulting in fewer cells located proximal to the central vein. Using the binned pseudo-space
values, we generated pseudo-bulk expression profiles for each treatment, time point, and layer by
summing the counts across cells within each combination of these factors. These count sums were
then normalized to account for differences in the number of cells comprising each pseudo-bulk
profile using size factor estimation'*®. The resulting normalized expression values for each
treatment X time x layer combination were utilized in downstream analyses and gene classification.
The binning of the continuous pseudo-space values into distinct layers facilitated the analysis of
zonated gene expression patterns by providing a discrete representation of the spatial organization
within the liver lobule. By generating pseudo-bulk expression profiles for each treatment, time

point, and layer combination, we could effectively capture the dynamic changes in gene expression

across different experimental conditions and spatial locations within the liver lobule. The pseudo-
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space values obtained through trajectory inference provide a quantitative measure of hepatocyte
zonation, allowing for the identification and analysis of genes exhibiting zonated expression
patterns within the liver lobule. By combining batch correction techniques (scVI) and trajectory
inference (diffusion pseudo-time), we were able to disentangle the confounding effects of
experimental factors and accurately capture the underlying zonation patterns, enabling a more
comprehensive understanding of the spatial organization and functional specialization of

hepatocytes in response to TCDD exposure.
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Figure 22: UMAP visualization of pseudo-space binning and zonation. (A) UMAP plot of the
pseudo space of hepatocytes binned into zonation layers. The pseudo-space value of 1 represents
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Figure 22 (cont’d)
hepatocytes with high pericentral gene expression and 0 represents hepatocytes with high
periportal gene expression. Zonation layers are deduced between number 1 (pericentral) and 5
(periportal). UMAP plot of (B) Pericentral gene marker Slcla2, (C) Periportal gene marker
Cyp212 and (D) Circadian clock gene Arntl. Each dot represents a cell.
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Figure 23: Bar plot of the number of hepatocytes in each inferred layer. Layers with smaller values
represent more pericentral hepatocytes and layers with larger values represent more periportal
hepatocytes.

Classifying hepatocytes genes according to rhythmicity, zonation, and effect of TCDD
treatment using a non-linear mixed effects model.

To investigate the spatial and zonated expression profiles of genes and assess how these profiles
are altered by TCDD treatment, we adopted and extended the approach outlined in Droin et al®.
In their approach, rhythmicity (R) is modeled using sine and cosine functions, and zonation (Z) is
modeled using first and second-order Legendre polynomials. We expanded on their model by
including the effect of TCDD exposure (Dioxin; D) on gene expression across the peri-central axis

of the liver lobule. We represented TCDD treatment in the model with a simple indicator function,

where TCDD-treated hepatocytes were denoted as D=1, and untreated hepatocytes as D=0. Using
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these variables, we constructed a series of non-linear mixed-effects models (NLMEMs)
comprising different combinations of factors (D, Z, and R) that could potentially influence gene
expression based on the experimental design and zonation inference (Fig. 24 and 25). The effects
of these factors can be independent (e.g., Z + R) or dependent (e.g., D x Z), as illustrated in Fig.
6. With this modeling approach, we classified the top 15,000 highly variable genes according to
the best fitting NLMEM model to describe each gene's expression pattern (see methods). The
NLMEM approach allowed us to model the complex interplay between TCDD exposure, thythmic
gene expression, and zonation patterns within the liver lobule. By incorporating the TCDD
treatment factor (D) into the model, we could assess the impact of dioxin exposure on the spatial
and temporal expression dynamics of individual genes. The model formulations included both
independent and dependent effects, enabling the capture of various scenarios. For instance, the
independent effects (e.g., Z + R) would describe genes whose zonation and rhythmicity patterns
are not influenced by TCDD treatment, while the dependent effects (e.g., D x Z) would capture
genes whose zonation patterns are altered by TCDD exposure. By fitting these NLMEM models
to the gene expression data and selecting the best-fitting model for each gene, we classify the top
highly variable genes into different categories based on their expression patterns. This
classification provides insights into the diverse transcriptional responses to TCDD treatment,
including genes exhibiting altered zonation patterns, disrupted rhythmicity, or a combination of

both.
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Figure 24: Schematic illustrations of each single or no effect non-linear mixed effect model profiles
for classification of hepatocyte genes. Ideal simulations of each model plotted in terms of Time (in
hours after treatment) versus expression or inferred layers of the liver lobule. Each line plot is
colored either by time, layer of dose of TCDD of treatment. TCDD (Dioxin) influence is delineated
by D, influence of liver rhythmicity is delineated by R, and influence of liver zonation (layers) are
delineated Z. Models with no influence from either D, R, or Z are delineated as flat, F.
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Figure 25: Schematic illustrations of multiple effect non-linear mixed effect model profiles for
classification of hepatocyte genes. Ideal simulations of each multiple model category plotted in
terms of Time (in hours after treatment) versus inferred layer of the liver lobule. Each line plot is
colored either by time and layer of dose of TCDD of treatment. Effects that are separated with ‘+’
indicate models in which factors are independent of one another. Effects that are separated with a
‘x” indicate models in which factors are dependent on one another. Example: Z+R indicates genes
that are zonated and rhythmic independently and ZxR indicates genes that are zonated and
rhythmic dependently.
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To evaluate the accuracy of my gene classification approach, we initially examined a set of known
genes with established rhythmic, zonated, or TCDD-responsive expression patterns. These
included Arntl (known for rhythmic expression), Slcla2 (exhibiting both zonated and rhythmic
patterns), and Ahrr (a gene induced by TCDD with saturation observed at 12 hours). As shown in
Fig. 26, the model successfully captures the rhythmic profiles of Arntl and Slcla2. The rhythmic
expression patterns of these genes are accurately represented by the periodic functions
incorporated in the model formulations. Additionally, the model can differentiate between TCDD
saturation effects and true temporal rhythmicity. This distinction is crucial, as some genes may
exhibit saturation in expression levels due to TCDD treatment, which should not be mistaken for
rhythmic oscillations. Furthermore, the model correctly identifies the zonated pattern of Slcla2.
The incorporation of Legendre polynomials in the model allows for the accurate modeling of
spatial zonation patterns within the liver lobule. Finally, Ahrr is properly classified by the model
as being influenced by TCDD. The model captures the TCDD-induced expression changes in this
gene, as evidenced by the distinct expression profiles between the treated and untreated conditions.
Taken together, the expected expression patterns of these control genes are recapitulated, thereby
validating the performance of our classification model. The model's ability to accurately capture
rhythmic, zonated, and TCDD-responsive expression patterns in these well-characterized genes

provides confidence in its applicability to the classification of the larger gene set.
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Figure 26: Classification of canonical rhythmic, zonal and TCDD responsive genes. (A) Bar plots
of Schwarz weigh classification of Arntl, Slc1a2, and Ahrr. Line plots of expression colored by (B)
Layer and TCDD dose. 1_0 denote lineplot expression of gene in the pericentral region after 0
ng/kg dose treatment and 5 30 denote lineplot expression of gene in the periportal region after 30
ng/kg dose treatment. (C) Hours after treatment and dose of TCDD. 2 0 denote lineplot expression
of gene at timepoint 2hrs after 0 pg/kg dose treatment and 24 30 denote lineplot expression of
gene timepoint 24hrs after 30 pg/kg dose treatment.
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Finally, we categorized each gene mRNA profile into one of ten distinct patterns based on its
expression dynamics: Flat (F) for profiles lacking rhythmic, zonated, or TCDD-induced
influences; Rhythmicity (R) for genes exhibiting purely rhythmic expression patterns; Zonated (Z)
for genes displaying solely zonated expression patterns; Dioxin (D) for genes induced by TCDD
treatment; independent Zonated and Rhythmicity (Z+R) for genes showing both zonated and
rhythmic expression patterns independently; dependent Zonated and Rhythmicity (ZxR) for genes
with both zonated and rhythmic expression patterns dependently; dependent Dioxin and
Rhythmicity (DxR) for genes exhibiting both TCDD-induced influence and rhythmic expression
patterns dependently; dependent Dioxin and Zonated (DxZ) for genes displaying both zonated and
TCDD-induced influence independently; independent Zonated and Rhythmicity with TCDD
influence (Dx(Z+R)) for genes showing both zonated and rhythmic expression patterns
independently and influenced by TCDD treatment; and dependent Zonated and Rhythmicity with
TCDD influence (Dx(Z%R)) for genes exhibiting both zonated and rhythmic expression patterns
dependently and influenced by TCDD treatment. The classification revealed that over 39% of the
gene mRNA profiles were recorded as Flat (F), indicating no significant rhythmic, zonation, or
TCDD influence. Additionally, 16.63% of the mRNA profiles were classified as Zonated (Z), while
15.15% and 8.84% were classified as Rhythmic (R) and Dioxin (D), respectively. These
percentages agree with a previous study by Droin and Kholtei et al.’, where they recorded more
mRNA profiles classified as Zonated (Z) compared to the Rhythmicity (R), independent Zonated
and Rhythmicity (Z+R), and dependent Zonated and Rhythmicity (ZxR) classes. The classification
of gene expression profiles into these 10 patterns allowed for a comprehensive characterization of
the diverse transcriptional responses to TCDD treatment, rhythmicity, and zonation within the liver

lobule. By accounting for the independent and dependent effects of these factors, as well as their
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potential interactions, we could gain insights into the complex regulatory mechanisms governing
gene expression dynamics in hepatocytes. Furthermore, the agreement between our findings and
those of the previous study by Droin et al®. regarding the prevalence of zonated gene expression
patterns provides additional confidence in the validity of our approach and the biological relevance
of the observed patterns.

The classification also revealed that about 32% of the mRNA profiles exhibited rhythmic
expression patterns, encompassing classes with a rhythmic component like R, Z+R, RxZ, DxR,
etc. Additionally, approximately 35% of the mRNA profiles showed zonated expression patterns,
including classes with a zonation component such as Z, Z+R, RxZ, DxZ, etc. Further analysis
revealed that nearly 50% of rhythmic genes (mRNA profiles classified with an R component) were
impacted by TCDD treatment, compared to around 25% of zonated genes (mRNA profiles
classified with a Z component) (Fig. 27 B). This finding suggests that TCDD treatment had a more
pronounced effect on disrupting rhythmic gene expression patterns compared to zonated patterns.
The largest multi-effect category was Dx(Z+R), which exhibited synergistic effects of TCDD on
zonation and rhythmicity independently (Fig. 27 A). This class represents genes whose zonation
and rhythmic expression patterns were independently influenced by TCDD treatment. Gene set
enrichment analysis of the Dx(Z+R) class showed that these genes were enriched for canonical
pathways involved in TCDD liver toxicity, such as metabolism of xenobiotics and drug metabolism
by cytochrome P450 (Fig. 27 C). This enrichment indicates that the genes in this class play crucial
roles in the liver's response to TCDD exposure, potentially contributing to the observed
toxicological effects. Notably, no genes displayed dependence between dose, zonation, and
rhythmicity (DxZxR), suggesting that the effects of TCDD treatment on zonation and rhythmicity

were independent in the context of this study. Overall, our results demonstrate that gene expression
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in the liver is not static but is partitioned across the liver lobule in space (zonation), time
(rhythmicity), and by treatment dose. The interplay between these factors results in a complex
landscape of gene expression patterns, with TCDD treatment exerting differential effects on
rhythmic and zonated gene expression profiles. By integrating spatial, temporal, and treatment-
related factors in our analysis, we could comprehensively characterize the transcriptional dynamics
within the liver lobule and elucidate the impact of TCDD exposure on these intricate regulatory
mechanisms. This approach provides a more holistic understanding of the molecular processes
governing liver function and toxicological responses, contributing to the development of targeted

interventions and therapeutic strategies.
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Figure 27: Classification distributions and enrichment of TCDD toxicity pathways. (A) Bar plot
of the number of genes (MRNA profiles) in each class for the top 15,000 HVGs. (B) Bar plot of
the proportion of genes that have TCDD influence for all zonal genes (5182 total zonal genes) and
all rhythmic genes (4865 total rhythmic genes). (C) GSEA analysis of the Dx(Z+R) class of genes.
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Figure 27 (cont’d)
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The effects of acute 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) perturbation of rhythmic
genes.

Utilizing the classification framework illustrated in Figure 27A, our investigation delved into the
acute toxicity effects on rhythmic genes within the liver lobule. We first analyzed the the impact
of TCDD on a core set of circadian rhythm genes (Clock, Arntl, Per2, Cryl, Nrl1dl, Npas2, Rorc)
by by examining their mRNA transcript classification. Notably, we found that all core circadian
clock genes exhibited rhythmicity in their classification classes. Only Arntl, Clock and Rorc were
classified as purely rhythmic (Fig. 28 A). However, upon closer examination of their expression
patterns, we found that Arntl and Clock exhibited significantly increased expression between 11
and 16 hours (p-value < 0.01, Mann-Whitney U-test) with TCDD treatment. This observation
aligns with the saturation of TCDD response genes analyzed in Figure 20 F. Conversely, Npas2,
Per2, and Nr1d2 were classified as having TCDD influence (Fig 28 A). Per2 had significantly

higher expression for all time points except 18 hours post-treatment. Npas2 had significantly lower
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expressions at timepoints 2, 4, and 24. Nrld2 exhibited significantly higher expression at
timepoints 2 and 4, but significantly lower expression at timepoint 12. Cry1 was classified as zonal
and rhythmic, which corroborates previous studies. However, the second-highest classification of

Cryl implied TCDD influence, observable at timepoints 18 and 24.
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Figure 28: Core circadian clock genes classified as only rhythmic. (A) Bar plots of Schwarz
weights for gene classification. (B) Line plots of gene expression graphed with respect to hours
after treatment and colored by dose of treatment of TCDD. (C) Violin plots plotting the distribution
of expression for each treatment condition at each timepoint.
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Figure 29: Core circadian clock genes classified as having multiple effects. (A) Bar plots of
Schwarz weights for gene classification. (B) Line plots of gene expression graphed with respect to
hours after treatment and colored by dose of treatment of TCDD. (C) Violin plots plotting the
distribution of expression for each treatment condition at each timepoint.
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To quantify the effects of TCDD on rhythmic gene expression, we explored whether TCDD
treatment induced or removed rhythmicity in genes classified as rhythmic and influenced by
TCDD (DxR and Dx(R+Z)). First, we used dryR (Differential RhythmicitY analysis in R)!**137 a
package in R, to assess the differential rhythmicity of the control and treated genes found in the
DxR and Dx(R+Z) classes. This analysis unveiled that genes such as Elovl7 and Cdh13 gained
rhythmicity subsequent to TCDD exposure, whereas KIf9 and Myc lost their rhythmic patterns (as
depicted in Fig 29 A and B). We further analyzed rhythmicity changes by using a likelihood ratio
test to compare whether gene expression better fit a rhythmic or flat (non-rhythmic) model. Genes
fitting a rhythmic model under control but a flat model under treatment were deemed to have lost
rhythmicity. Conversely, those fitting a flat expression model in control but a rhythmic model in
treatment were classified as having gained rhythmicity. Among TCDD-influenced rhythmic genes,
distribution analysis revealed 13% lost rhythmicity after treatment, while 21% gained rhythmicity
(Fig 29 C). Subsequent gene set enrichment analysis (GSEA) conducted on both the gained and
lost thythmicity groups elucidated hallmark pathways of TCDD toxicity. The lost rhythmicity
group showed enrichment for processes related to chemical carcinogenesis, drug metabolism and
metabolism of xenobiotics by cytochrome P450, while the gained rhythmicity group was enriched
for retinol metabolism !*%. In summary, TCDD exposure induced both gains and losses of
rhythmicity in different sets of genes, with the affected genes enriched for processes related to

TCDD toxicity and metabolism.
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Figure 30: Analysis of gain or loss of rthythmicity for TCDD influenced rhythmic genes.

111



Figure 30 (cont’d)

Time series expression profile (A) gained rhythmicity genes Elovl7, and Cdhl3 (B) lost
rhythmicity genes KIf9, and Myc for control and treated set. (C) A total of 1072 genes that were
classified to be influenced by rhythm and TCDD were analyzed as to whether they had gained, or
lost rhythmicity based on the likelihood ratio test using dryR. A bar plot of the proportion of genes
analyzed colored by whether they lost or gained rhythmicity. (D) GSEA analysis of gene sets for
genes that gained rhythmicity. (E) GSEA analysis of gene sets for genes that lost rhythmicity.
Further analyzing genes that maintained rhythmicity after TCDD exposure, we investigated how
TCDD impacted the properties of their rhythmic expression patterns, specifically the amplitudes
and phases. When analyzing the core circadian clock genes, we observed only small changes in
the phase and amplitude of these genes (Figure 30 B) after TCDD treatment. Extending this
analysis to all genes that kept rhythmicity, we similarly found no major trends reflecting a delay
in phase or reduction of amplitude after TCDD exposure (Figure 30 C). To determine if the
magnitude of gene expression changes induced by TCDD treatment correlated with changes in the
phase or amplitude of rhythmic expression, we examined the relationship between these
parameters. However, we found only a weak correlation between the magnitude of gene expression
changes and the magnitude of phase or amplitude changes (Figure 30 D). These findings suggest
that while TCDD exposure induced gains and losses of rhythmicity in certain gene sets, the genes
that maintained rhythmicity after treatment generally exhibited minimal alterations in their
rhythmic properties, such as phase and amplitude. Furthermore, the extent of gene expression

changes induced by TCDD did not strongly correlate with the degree of phase or amplitude shifts

in the rhythmic expression patterns of these genes.
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Figure 31: Analysis of thythmic parameters for TCDD influenced rhythmic genes. (A) Schematic
and equations describing phase and amplitude of gene’s expression. (B) Bar plot of core circadian
clock genes and their respective phase and amplitude in each treatment group. Phase is measured
in radians, and amplitude is measured in normalized counts (C) Violin plot of all genes that kept
their rhythmicity’s rhythmic parameters. (D) Regression plot of the magnitude of change of phase
or amplitude vs. the magnitude of the mean log fold change in expression with respect to treatment.
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The effects of acute 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) perturbation of rhythmic
genes.

To elucidate the effects of TCDD on zonal gene expression patterns in the liver, we examined the
enrichment of known transcriptional targets of the Wnt/B-catenin, Ras, and hypoxia signaling
pathways, which are primarily responsible for regulating hepatic zonation®>!*°. Our investigation
aimed to ascertain whether each zonated gene class exhibited enrichment in these zonation
pathways, considering the presence or absence of TCDD influence. Our analysis unveiled that all
targets associated with zonation pathways demonstrated enrichment within the Z+R class of genes,
which exhibited both zonal and rhythmic expression patterns. Interestingly, the TCDD-perturbed
Dx(Z+R) genes and the dual-effect DxZ class, which exhibited both TCDD influence and zonal
expression, were enriched for Wnt and hypoxia pathway target genes but not for Ras pathway
target genes (Figure 31). These results demonstrate that TCDD selectively disrupts Ras signaling-
mediated periportal gene expression, while the zonation programs regulated by the Wnt/p-catenin
and hypoxia signaling pathways remain largely intact. In summary, our findings suggest that
TCDD exposure selectively perturbs the Ras signaling pathway, which is responsible for regulating
the expression of periportal genes, while leaving the Wnt/B-catenin and hypoxia-mediated
zonation programs relatively unaffected. This selective disruption of Ras signaling may contribute
to the hepatotoxic effects of TCDD and highlights the complex interplay between xenobiotic

exposure, signaling pathways, and spatial gene expression patterns in the liver.
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Figure 32: Enrichment analysis of zonation regulation pathway targets on all zonation gene classes.
Building upon the analysis of rhythmic gene expression, we conducted an analogous investigation
of differential zonation to discern whether genes in the DxZ and Dx(Z+R) categories experienced
alterations in their zonal expression patterns following TCDD treatment. Using a likelihood ratio
test, we performed zonation differential expression analysis to identify genes that gained, lost, or
maintained zonal specificity with TCDD exposure. Our findings indicate that 18% of the analyzed
genes gained zonation after TCDD treatment, while 13% lost their zonal expression patterns
(Figure 32). Gene set enrichment analysis revealed that pathways related to UDP-
glucuronosyltransferase enzymes, such as "Pentose and Glucuronate Interconversions," were

overrepresented among genes losing zonation (Figure 32), with no pathways enriched in the gained
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zonation set. Furthermore, in analyzing whether the genes that lost or gained zonation exhibited a
more portal or central enrichment, we observed that genes losing zonation were significantly more
centrally enriched compared to the background (p-value < 0.001, Kolmogorov-Smirnov Test),
indicating selective disruption of periportal gene expression by TCDD (Figure 32). Together, these
results demonstrate that TCDD exposure leads to bidirectional alterations in hepatic zonation, with
apparent centrilobular targeting of UDP-glucuronosyltransferase zonal discontinuity. The selective
disruption of periportal gene expression patterns and the enrichment of UDP-
glucuronosyltransferase pathways among genes losing zonation suggest a potential mechanism for

TCDD-induced hepatotoxicity through impaired xenobiotic metabolism and clearance.
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Figure 33: Analysis of loss or gain of zonation based on TCDD treatment. (A) A total of 1059
genes that were classified to be influenced by Zonation and TCDD were analyzed as to whether
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Figure 33 (cont’d)
they had gained, or lost zonation based on the likelihood ratio. (B) GSEA analysis of genes that
lost zonation with TCDD treatment. (C) Stacked bar plot describing the distribution of zonated
genes and in which zone of the liver lobule are those genes most highly expressed. Differences in
distribution calculated using the Kolmogorov-Smirnov Test. ** means significant difference
between the two expressions at the time point and ns means no significant difference between the
two expressions.

Chromatin immunoprecipitation followed by sequencing (ChlP-seq) analysis of dose affected
categories.

To understand the transcriptional regulation across various gene class categories under the
influence of TCDD, which impacts both zonal and rhythmic gene expression, we investigated the
presence of binding motifs for the transcription factors BMAL17® (E-box motifs) and AHR>!40
(Dioxin Response Elements, DREs) in these genes. While the presence of motifs is necessary but
not sufficient for transcription factor binding, we focused specifically on motifs located in
accessible chromatin regions, mapped by DNase I hypersensitivity (DHS) data in mouse liver
tissue from the ENCODE project. Using the GRCm38 reference genome and BEDTools®®, we
extracted all canonical E-box (CANNTG) and DRE (GCGTG) motifs located in DHS peaks. We
then matched these accessible motifs to hepatic AHR ChIP-seq data in male C57BL/6 mice treated
with 30 pg/kg TCDD, to identify motifs likely bound by transcription factors. Our approach
involved extracting genes with E-box and DRE binding motifs in their promoter or genome region,
as well as identifying genes with an overlap of both E-box and DRE motifs (E-box intersect DREs).
By integrating this information with our gene classification data, we aimed to elucidate the
potential transcriptional regulatory mechanisms governing the observed gene expression patterns
under TCDD exposure. Specifically, we investigated whether the presence of accessible E-box,
DRE, or overlapping E-box/DRE motifs could explain the differential expression, rhythmicity, and

zonation patterns observed in various gene classes. By benchmarking these gene sets against the
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classification classes derived from our non-linear mixed effects models (NLMEMs), we uncovered
intriguing insights. Specifically, more than 55% of genes in the Dx(R+Z) class, which exhibited
both TCDD influence and combined zonal and rhythmic expression patterns, contained DRE
(Dioxin Response Element) binding motifs, 20% exhibited E-box binding motifs, and over 5%
possessed overlapping E-box and DRE binding motifs (E-box intersect DRE) (Figure 33 A). Gene
set enrichment analysis further illuminated distinct pathways associated with these binding motifs.
For genes enriched with only E-box binding motifs in the Dx(R+Z) class, pathways related to
chemical carcinogenesis, drug metabolism, and xenobiotic metabolism by cytochrome P450 were
prominent (Figure 33 B). Meanwhile, genes featuring only DRE binding motifs in the Dx(R+Z)
class were enriched in pathways like the PPAR signaling pathway, p53 signaling pathway, and
glycerolipid metabolism (Figure 33 C). Notably, genes with overlapping E-box and DRE binding
motifs (E-box intersect DRE) in the Dx(R+Z) class exhibited enrichment in pathways related to
vitamin B6 metabolism and circadian rhythm (Figure 33 D). These findings suggest that the
interplay between the circadian clock machinery (E-box motifs) and the xenobiotic response
pathway (DRE motifs) plays a crucial role in regulating hepatic gene expression under TCDD
exposure. The presence of accessible E-box and DRE motifs in specific gene classes may explain
the observed differential expression, rhythmicity, and zonation patterns. Furthermore, the distinct
pathway enrichments associated with genes containing E-box, DRE, or overlapping E-box/DRE
motifs provide insights into the biological processes potentially regulated by these transcription

factor binding sites under TCDD exposure.
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Figure 34: ChIP-Seq and GSEA analysis of classification categories. (A) ChIP-Seq analysis of the
gene classification categories. Stacked histogram of genes enriched for BMAL1 binding (orange),
genes enriched for AHR binding (green), genes enriched for AHR and BMALI binding (red) and
genes enriched for neither AHR nor BMALI binding (blue). Gene-set enrichment analysis on (B)
Genes enriched with BMAL1 binding (C) Genes enriched with AHR binding. (D) Genes enriched
with AHR and BMAL1 binding.

We took a similar approach to characterize the presence of E-box motifs, DRE motifs, and
overlapping E-box/DRE motifs in genes that gained or lost rhythmicity following TCDD
treatment. Our analysis found that comparable numbers of rhythmicity-perturbed genes contained

only E-boxes, only DREs, or intersecting E-box/DRE motifs. Over 50% of TCDD-affected

zonated genes that lost spatial zonation contained DRE motifs in accessible promoter or genomic
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regions. Notably, about 38% of arrhythmic genes lacked both DRE and E-box motifs, suggesting
other mechanisms of regulation (Figure 34 A). Gene set enrichment analysis linked E-box/DRE-
containing genes that lost zonation to pathways including starch/sucrose metabolism, fatty acid
elongation, and proteoglycans in cancer. E-box/DRE motifs were also enriched in arrhythmic
genes associated with bladder cancer, insulin signaling, FoxO signaling, and related pathways
(Figure 34 B). No pathways were significantly enriched among gained rhythmicity genes based on
our cutoff criteria. Overall, intersecting E-box and DRE motifs emerged as key potential mediators
of TCDD-disrupted hepatic rhythmicity and zonation, though additional factors appear
contributory for approximately 38% of rhythmicity-lost genes that lacked these motifs. These
findings suggest that the interplay between the circadian clock machinery (E-box motifs) and the
xenobiotic response pathway (DRE motifs) plays a crucial role in mediating the effects of TCDD
on hepatic gene expression rhythmicity and zonation. The presence of accessible E-box and DRE
motifs in specific gene sets may explain the observed gains or losses of rhythmicity and zonation
following TCDD exposure. Furthermore, the distinct pathway enrichments associated with genes
containing E-box, DRE, or overlapping E-box/DRE motifs provide insights into the biological
processes potentially dysregulated by these transcription factor binding sites under TCDD
exposure. However, for a subset of rhythmicity-lost genes (~38%), the lack of these motifs
suggests the involvement of other regulatory mechanisms in mediating TCDD-induced

arrhythmicity.
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Figure 35: ChIP-Seq and GSEA analysis of TCDD perturbed rhythmic and zonated genes. (A)
ChIP-Seq analysis of the TCDD perturbed rhythmic genes (gained and lost rhythmicity genes) and
TCDD perturbed zonated genes (gained and lost zonation genes). Genes enriched for BMALI
binding (orange), genes enriched for AHR binding (green), genes enriched for AHR and BMALLI
binding (red) and genes enriched for neither AHR nor BMALI1 binding (blue). (B) Gene-set
enrichment analysis on lost rhythmicity and zonated genes with AHR and BMALI binding.

Comparison of Gene regulatory networks (GRNs) of control and treated data.

Gene regulatory networks (GRNs) are complex systemsthat govern gene expression patterns and
cellular processes, influencing cellular functions and phenotypic outcomes. Traditional methods
for inferring GRNs relies on bulk RNA-seq and chromatin immunoprecipitation sequencing
(ChIP-seq) average out cellular heterogeneity and lack the resolution to capture regulatory

dynamics at the single-cell level'*!:'4?, Recent advances in single-cell sequencing technologies,
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such as single-cell RNA sequencing (scRNA-seq) and single-nuclei RNA sequencing (snRNA-
seq) have enabled the measurement of gene expression levels at an unprecedented resolution,
capturing the heterogeneity and dynamics of individual cells within a population!?614314 To
understand the gene regulatory mechanism across the portal-central axis of the liver lobule and
how this mechanism is impacted by TCDD, we employ ScGeneRAI'*. ScGeneRAI is an
interpretable machine learning method that employs layer-wise relevance propagation (LRP) to
infer GRNs from single-nucleus RNA sequencing data of cells in each layer. ScGeneRAI train a
deep neural network to predict the expression of a target gene based on the expression of arbitrary
sets of regulator genes in single cells. Subsequently, LRP quantitatively assigns each regulator
gene a relevance score for the target gene expression prediction. Thereby, LRP identifies key
transcription factors and constructs cell type specific GRNs de novo. Comparison of the layer
specific GRNs generated by scGeneRAI then allowed us to determine conserved and distinct
regulatory interactions in central versus portal hepatocytes. Utilizing the computational framework
tailored for inferring GRNs from single-cell data, we unraveled the transcriptional regulation
between transcription factors (TFs) and targeted genes along the portal-central axis of the liver
lobule and the impact of TCDD on this mechanism. We analyzed the gene regulatory networks
(GRNs) of central cells in layer 1 to portal cells in layer 5 to characterize transcription factor
interactions with targeted genes and assess similarities and differences across the liver lobule. We
compared the network similarities and differences across layers and across treatments (Control vs
Treated).

Our analysis of single-cell transcriptomic data from liver cells revealed intriguing insights into the
gene regulatory networks (GRNs) governing circadian rhythms and zonal gene expression patterns

along the portal-central axis of the liver lobule. Employing the state-of-the-art ScGeneRAI
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framework, we inferred GRNs from both control and TCDD-treated datasets, unveiling the
regulatory interactions between transcription factors (TFs) and their target genes. In the control
dataset, our findings highlighted a crucial interaction between the TF NPAS2 and the gene Arntl,
which together form the master regulator of the circadian clock mechanism [2]. Notably, this
interaction between NPAS2 and Arntl was the only observed interaction involving the NPAS2 TF,
underscoring its importance in maintaining circadian rhythmicity. Moreover, our analysis revealed
that several TFs, including FOXO3, PROX1, RXRA, and GPAM, exhibited substantial
interactions with the Bach2 gene, suggesting its potential involvement in various regulatory
processes within liver cells. Intriguingly, upon analyzing the TCDD-treated dataset, we observed
a striking disruption of the interaction between the NPAS2 TF and its target gene Arntl. This
disruption was consistent across all layers of the liver lobule, implying a potential dysregulation
of the circadian clock mechanism following TCDD treatment. Furthermore, our findings unveiled
a gradual reduction in the number of interactions between TFs and target genes as we traversed
from the central to the portal region of the liver lobule. This observation aligns with the well-
established concept of zonal gene expression and metabolic function zonation within the liver
lobule. Cells in the central lobule exhibited a higher density of regulatory interactions compared
to those in the portal lobule, suggesting a more intense transcriptional regulation in the central

region.

Finaly, we investigated the similarities between the gene regulatory network (GRN) graphs within
the control and treated datasets. To achieve this, we utilized the average number of interactions
based on transcription factors, their target genes, and the interactions between them. The analysis
involved comparing the GRN similarities across different layers of the liver lobule. Our findings

revealed that the GRN similarities decrease across the liver lobule, indicating a gradual divergence
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in gene regulatory networks as we move from the periportal zone to the pericentral zone.
Specifically, we observed that the similarity between the GRNs of adjacent layers, such as Zone 1
and Zone 2 (Z1Z2), was higher than the similarity between the GRNs of more distant layers, such
as Zone 1 and Zone 5 (Z1Z5). This observation suggests that the gene regulatory mechanisms
governing cellular processes may differ across the liver lobule, potentially reflecting the varying
metabolic demands and functional specializations of hepatocytes in different zones. The higher
similarity between adjacent layers could be attributed to the gradual transition in cellular
environments and the shared regulatory mechanisms between neighboring zones. It is important
to note that these findings are based on the analysis of transcription factors, their target genes, and
the interactions between them, which form the basis of gene regulatory networks. Further
investigations may be required to elucidate the specific factors contributing to the observed
differences in GRN similarities across the liver lobule and their potential implications for liver
function and disease pathogenesis. This spatial variation in transcription factor-target gene
interactions reflects the functional specialization of hepatocytes along the central-portal axis, with
cells in the central lobule displaying more interactions compared to those in the portal lobule.
These findings underscore the intricate regulation of gene expression within the liver lobule and
provide insights into the spatial organization of transcriptional networks governing hepatic

physiology and response to environmental perturbations.
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Figure 36 (cont’d)
(K) Average similarity interactions of gene regulatory inference networks between layers of cells
in the liver lobule. Z1Z2 refers to average similarities between Zone 1 (layer 1) and Zone 2 (layer
2). Blue squares represent control average interactions (similarities) and red pentagon represent
treated average interactions (similarities).
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DISCUSSION AND CONCLUSION

Transcription factor (TF)-DNA binding patterns play a crucial role in regulating gene

146 However, the precise DNA-binding sequences and the degree of flexibility in these

expression
sequences remain elusive for many TFs, including BMALI, a key regulator of the circadian clock.
While the core clock gene regulatory network in the brain's suprachiasmatic nucleus is believed to
be similar to that in peripheral tissues, clock-controlled gene expression exhibits significant tissue
specificity*®!4’. In this study, 1 aimed to elucidate the determinants of BMAL1-DNA binding
beyond the simple DNA binding site sequence, leveraging features such as DNA shape and histone
modifications. I employed used XGBoost, an ensemble decision tree-based machine learning
algorithm, to predict the binding of BMALI to its putative binding motif (the E-box) in three
mouse tissues — liver, heart and kidney. We developed three different types of models: 1) sequence-
only, 2) sequence plus DNA shape, and 3) sequence plus DNA shape plus histone modifications
(Fig 2A-B). Examining of the binding motifs revealed that the canonical 5’-CACGTG-3" E-box
type was the least frequent among all E-box types in the entire mouse genome and in accessible
chromatin regions across the liver, heart, and kidney tissues. However, this E-box type exhibited
the highest frequency of BMALI binding (Fig 1E), consistent with previous observations that
CACGTG is the preferred binding motif for BMAL1'*. Despite the over-representation of the CG
dinucleotide at the center of BMAL1-bound E-boxes, these nucleotides did not enhance model
performance. Interestingly, the heart tissue harbored more E-boxes in accessible chromatin regions
than the liver and kidney, yet it had the lowest number of bound E-boxes in accessible chromatin.
The role of circadian rhythms in cardiac function is not well understood, and only 6% of protein-
coding genes in the mouse heart exhibit circadian regulation, compared to 11%-16% in the liver'®.

This observation is likely a consequence of the overall lower BMALI binding in the heart tissue.
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However, the underlying reasons for the low level of BMAL1 binding to otherwise accessible E-
boxes in the heart remain unexplained. One possible explanation for the low BMAL1 binding to
accessible E-boxes in the heart tissue could be the interference of a heart-specific E-box binding
factor. For instance, it has been shown that elevated levels of Usfl, a ubiquitous transcription
factor, can impede the binding of a mutant CLOCKA19:BMAL1 complex to E-box sites, and other
such factors may exist'®’. Interestingly, neither the kidney nor the heart within-tissue models
achieved the same level of performance as the liver within-tissue model. This could be due to
evidence suggesting that the heart circadian rhythm might be phase-shifted compared to the liver,
indicating that maximal BMALI1 binding in the heart might occur at a different time than the
Zeitgeber time 6 (ZT06)* used for the liver BMAL1 ChIP-seq experiment. Consequently, some
of the heart BMAL1-bound E-boxes might have been labeled as unbound, affecting model learning
and resulting in lower performance. A limitation of this work is that the authors considered only
E-boxes in accessible chromatin regions and disregarded inaccessible E-boxes. While their
observations confirmed that, on average, more than 75% of BMALI peaks lie in accessible
chromatin, suggesting a higher likelihood of BMALI1 binding in these regions, it has been
demonstrated that the BMAL1-CLOCK complex can act as a pioneering factor and rhythmically
control the accessibility of chromatin surrounding BMALI1-bound sites'*!. Recent studies have
demonstrated that incorporating DNA shape features computed from core transcription factor (TF)
binding motifs and their flanking sequences improves the prediction of TF binding for many
human TFs>*6263, Furthermore, DNA topology is highly correlated with the structure and stability
of the nucleosome, suggesting that topological changes can influence the binding of TFs to
DNA'52, In the sequence plus shape models developed in this study, the DNA shape features EP,

Roll, MGW, and ProT exhibited the highest influence on the prediction of bound E-boxes. A recent
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study”® showed that for Max, a basic helix-loop-helix ((HLH) TF like BMAL1 and CLOCK, it
was Roll and ProT that were the dominant determinants of TF-DNA binding affinity. These
observations agree with our findings. Further, in agreement with previous studies, I found that
DNA shape features by themselves do not enhance model accuracy. The analysis of feature
importance in the sequence plus shape plus histone modifications (HMs) models revealed that the
HMs H3K27ac and H3K4me3, along with the DNA shape feature EP, dominated binding
prediction across the kidney and heart tissues, and were also highly ranked in the liver. Previous
studies have shown that H3 acetylation and methylation modifications surrounding CLOCK-
BMALI bound sites exhibit rthythmic changes'**. My results findings indicate that even with a
single snapshot of these HMs from unsynchronized mice, we can accurately distinguish between
bound and unbound E-boxes, likely owing to the information encoded in the shape and surrounding
sequence of the E-box motif, in addition to the average levels of histone modifications. I propose
that this is likely due to the information that is encoded in the shape and flanking sequence of the
E-box motif in addition to the average levels of histone acetylation and methylation. The analysis
suggest that this information is tissue-specific, as evidenced by the performance of the cross-tissue
models. Intriguingly, the DNA sequence features alone had little to no effect on binding prediction
in the kidney and heart. However, the second nucleotide upstream of the E-box had a significant
contribution to predicting BMAL1-DNA binding in the liver, with the nucleotide G at this position
contributing to approximately 50% of the feature importance score. Analysis of the bound E-box
motifs and their flanking sequences revealed an enrichment of the G nucleotide at the third position
of the 5' flanking sequence in the liver. Since the heart and kidney models do not rely on this
feature, it is understandable that the liver kidney and liver heart cross-tissue models showed an

unexpected decrease in performance when DNA shape and histone modification features were
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added to the sequence features. On the other hand, the kidney liver and heart liver cross-tissue
models exhibited a boost in performance with the addition of histone modification features. These
results suggest that there is some degree of commonality in BMALI1 binding between different
tissues. However, in cross-tissue models, sequence-only models exhibited the most robust
performance, with the exception of the kidney heart and heart kidney models. This indicates that
DNA shape and chromatin context features can exhibit a high degree of tissue specificity and are
more similar between the kidney and heart than between the liver and the other two tissues.
Previous studies on the yeast bHLH transcription factors Cbfl and Tye7 have shown that E-box
binding specificity is governed by sequences flanking the E-box, as reflected in DNA shape!*. My
findings extend this concept, indicating that not only might DNA shape and chromatin context
confer different binding specificities to different transcription factors within the same tissue, but
they might also confer different binding specificities to the same transcription factor across
different tissues. These observations suggest that while there may be some shared determinants of
BMALI binding across tissues, there are also tissue-specific factors, such as DNA shape and
chromatin context, that modulate BMAL1's binding specificity. This tissue-specific regulation
could contribute to the observed differences in clock-controlled gene expression patterns among

various tissues.

Dynamic modeling of biological processes from gene regulatory to multicellular network levels
provides critical insights into the fundamental properties, physiology, and behaviors related to

circadian rhythmicity'™

. While experimental and theoretical explorations have extensively
detailed the circadian clock gene regulatory network!'*®, few studies have examined the cell-cell

communication processes enabling synchronization of circadian period, amplitude, and phase

between autonomous cellular oscillators. Elucidating circadian synchronization through cell-cell
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coupling can advance our understanding of circadian rhythm robustness and plasticity at the tissue

level®

. Neurotransmitters, acting as coupling factors, have been shown to regulate the
synchronization mechanism in the suprachiasmatic nucleus (SCN)'%>157, However, the coupling
factors in other peripheral tissues are unknown. In this study, I developed mathematical models of
the mouse hepatic circadian clock to examine intercellular communication and synchronization of
autonomous oscillators across the murine liver lobule. The models incorporated core clock genes
and their regulatory interactions in individual hepatocytes. Simulations showed that incorporating
cell-cell coupling led to synchronized gene expression between hepatocytes, matching
experimental findings>*!*®. Strong synchronicity of circadian oscillation has been associated with
period lengthening. However, the models suggest that without synchronization, the period is
variable outside of the near 24-hr range. Therefore, optimal cell-cell coupling is required to achieve
both synchronicity between cells and appropriate oscillatory periods'*®. Synchronicity of circadian
oscillation has been shown to induce key cell-cycle events, including cyclin-dependent kinase
network activation, cell growth, DNA replication, and cytokinesis'®’. A weak synchronicity at the
cellular level in the SCN manifests as mistimed sleep and impaired cognitive and psychomotor
performance in humans. This circadian misalignment has detrimental effects on physiology and
behavior, including deficits in reaction time, memory, alertness, and mood®. The sensitivity
analysis revealed dependencies between clock components; for instance, increased Per
transcription decreased Cry expression, likely due to their mutual repression'®!. Specifically,
increased Cry transcription rates markedly diminished Per mRNA levels. However, perturbations
in the Per transcription rate did not comparably suppress Cryptochrome transcripts®’. This aligns
with experimental reporter assays demonstrating that the repression strength of PER proteins on

Clock/Bmall-driven transcription is weaker relative to CRY %%, The disproportionate parametric
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sensitivities suggest that CRY dynamics play a more dominant role than PER in governing
circadian rhythmicity via interlocking negative feedback loops. Validating the coupled mechanism
in the model, the authors used bifurcation diagrams to show the periodic stability of the
transcription rate parameters. These theoretical bifurcation diagrams generate experimentally
testable hypotheses, potentially through overexpression or knockdown of circadian factors in vivo
and in vitro, to validate predicted changes in periodicity, amplitude, or phase shifts'**. Our
knowledge of the complex mammalian circadian clock mechanism is still incomplete. More than
40 genes directly interact with the core clock genes in generating the circadian oscillatory
rhythm!®®. It is, therefore, essential to understand the temporal and spatial dynamics and the
regulatory mechanism of the circadian clock oscillation. I addressed this knowledge gap with a
detailed mathematical model incorporating known clock and associated rhythmic genes. The
current model focused on healthy cells under normal circadian entrainment. An important
extension would be to model circadian disruption by genetic alterations or toxicant exposure. The
model could be used to predict the effects of parameter changes representing mutations or cellular
damage. Linking the circadian clock model with zonated metabolism models could offer insights
into compounding hepatic effects across scales. While the study provides valuable insights into the
circadian clock mechanism, I acknowledge the limitations of my current model, which focuses on
healthy cells under normal circadian entrainment. I propose extending the model to simulate
circadian disruption caused by genetic alterations or exposure to toxicants, which could be
achieved by modifying parameters to represent mutations or cellular damage. Additionally,
integrating the circadian clock model with zonated metabolism models could provide a holistic

understanding of the multi-scale effects on hepatic function.
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The liver exhibits a remarkably intricate spatiotemporal metabolic organization. As the primary
site of drug metabolism, elucidating the impact of chemical compounds on hepatic gene regulation
in both spatial and temporal domains could provide critical insights. Firstly, characterizing the
acute restructuring of rhythmic and zonal gene expression patterns in response to drug exposure
could reveal adaptive mechanisms. Secondly, disruption of these regulatory mechanisms likely
contributes to the progression of pathological states such as non-alcoholic fatty liver disease.
Analysis of drug effects on the liver has often been limited by examining temporal rhythmicity
and spatial zonation independently. In this study, we integrated these hepatic properties to account
for chemical perturbations, an important consideration given the understudied aspect of how the
liver reorganizes its metabolic framework in response to toxic stimuli. We expanded on previous
work unifying rhythmicity and zonation to incorporate the effects of acute exposure to 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD). Despite the short timescale, we demonstrated that TCDD
significantly impacts both rhythms and zonation. The canonical TCDD receptor, the aryl
hydrocarbon receptor (AhR), exhibited both rhythmic and zonal expression patterns. Moreover,
numerous TCDD-induced effects had both temporal and spatial components. Overall, this
integrated methodology enabled a more comprehensive characterization of rapid liver
reorganization in response to TCDD exposure than studying zonation or rhythms in isolation. Our
findings highlight the utility of integrating diverse regulatory properties when elucidating the
impacts of chemical compounds on hepatic gene regulation and metabolic organization. Our
integrated analysis demonstrates that hepatic rhythmicity is more sensitive to acute exposure to
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compared to zonation. This aligns with previous
findings showing that subchronic TCDD administration at the same dose greatly dampened

amplitude and significantly phase-shifted the core circadian clock?®. Although acute TCDD did
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not perturb all core clock genes analyzed, we still observed significant influences on nearly half of
these critical circadian regulators. Effects were most notable for genes directly downstream of the
CLOCK-ARNTL heterodimer (e.g., Per2, Nrld2), supporting the hypothesis that the aryl
hydrocarbon receptor (AhR) interferes with CLOCK-ARNTL transcriptional activation by
competing for ARNTL binding. Additional evidence lies in the expression pattern of Perl, a direct
target inhibited by AHR-ARNTL binding. Although Perl, a core circadian gene, was excluded
from our dataset due to low variance, its normalized expression showed signs of repression at
multiple timepoints between 2-24 hours post-TCDD exposure, consistent with disrupted CLOCK-
ARNTL control. TCDD elicited variable effects on rhythmic hepatic genes; while most exhibited
modest expression changes at specific times, overall oscillation patterns were largely maintained
with treatment for approximately 85% of rhythmic transcripts. However, approximately 15% of
rhythmic genes gained or lost transcriptional rhythmicity, representing selective arrhythmic
effects. Notably, gene set enrichment analysis linked these arrhythmia-gaining genes to canonical
TCDD response pathways, including hallmark AhR-mediated responses'?®!%4, This indicates that
TCDD preferentially disrupts rhythmicity of major regulatory nodes and downstream processes
most susceptible to aberrant AhR activation. Rather than inducing widespread distortions in cyclic
waveforms, TCDD appears to ablate oscillatory control of TCDD-vulnerable pathways. TCDD
also significantly impacted zonal gene regulation, altering spatial expression patterns for nearly
25% of zonated transcripts. Notably, about 30% of these genes either gained or lost zonation,
representing substantial chemical-induced re-patterning. Genes losing zonation were enriched for
phase II UDP-glucuronosyltransferase metabolism and localized to the central hepatic layer,
matching the enrichment of the AhR receptor itself. TCDD-perturbed genes were also enriched for

known regulators of zonation, potentially via crosstalk with Wnt/B-catenin signaling. This was
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most prominent for genes jointly exhibiting rhythmic and zonal properties, which are hypothesized
to arise from Wnt-mediated pericentral signals. As AhR shows central layer enrichment, its
aberrant activation by TCDD could disrupt this external cue, explaining the observed perturbation
in rhythmicity and zonation. While the precise mechanisms through which aberrant AhR signaling
perturbs hepatic rhythmicity and zonation after TCDD exposure remain unclear, potential routes
could involve direct transcriptional regulation via AhR binding to target gene cis-regulatory
elements or hierarchical effects by disrupting core clock regulators, secondarily altering cyclic
control of downstream processes. High-throughput approaches like ChIP-seq, profiling genome-
wide binding locations for AhR, ARNTL, and binding partners after TCDD exposure, could
elucidate these questions and map binding sites to clarify pathways exhibiting direct, canonical
AhR-mediated regulation versus downstream, non-canonical disruption. In summary, these results
indicate that the disruption of temporal rhythmicity is a primary route through which TCDD alters
hepatic gene regulation, relative to spatial patterning. The specific effects on core circadian
components highlight direct mechanisms through which aberrant AhR activation propagates to
disrupt hepatic rhythmicity, with the immediate downstream targets of CLOCK-ARNTL appearing
especially sensitive to functional interference by ligand-activated AhR. This approach enables
matching of precise TCDD-induced expression changes to interactions within the circadian
regulatory network, refining hypotheses on the routes by which AhR signaling disrupts clock
function. The method enables comparative assessment of the impacts of chemical exposure on
rhythmic versus zonal gene expression, revealing that perturbations in rhythmic transcriptional
outputs precede and potentially contribute to changes in zonation in the case of TCDD exposure.
The developed methodology provides a framework readily extensible to additional chemical

exposure contexts, dose-response relationships, and single-nuclei RNA sequencing datasets
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assessing hepatic chemical impacts. By matching pathway-specific expression changes to
overarching spatiotemporal regulatory logic, this systems-based strategy has potential utility for
pharmacology and toxicology, enabling researchers to situate perturbed pathways within the
broader scheme of metabolic zonation and rhythmicity. Characterizing how xenobiotic disruption
of specific functional modules scales up to influence zonation control pathways and circadian
timing at the tissue level will drive a more holistic understanding of chemical threats to hepatic
function. Overall, this multi-parametric modeling approach provides a blueprint for deep

phenotyping of gene regulatory restructuring in this vital metabolic organ.
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