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ABSTRACT

This dissertation studies three different models and estimation strategies to conduct the causal

inference conditioning on the lagged outcome. The first and second chapters develop estimation

strategies under a feedback environment where both past outcome and unobserved heterogeneity

affect the policy intervention, resulting in non-random heterogeneous treatment timings assignment.

The third chapter focuses on the context of the imputation method.

The first chapter uses dynamic panel data linear models, which have been useful for studying

the state dependence issue, to study the policy evaluation conditioning on the lagged outcome.

For the estimation of dynamic linear model with endogenous/feedback treatment, the first chapter

compares the two distinctive approaches based on different assumptions. The first chapter compares

Arellano and Bond (1991) and Wooldridge (2000) approaches through Monte Carlo simulation,

under the environment where the size of the treated group monotonically increases as time goes by.

Under the correctly specified density assumption, Wooldridge (2000) approach outperforms that of

Arellano and Bond (1991). Monte Carlo simulation also shows that Wooldridge (2000) approach

has similar level of bias with that from Arellano and Bond (1991) while retaining relative efficiency

even under some level of misspecifications.

The second chapter proposes a dynamic panel data model with non-negative outcomes in the

context of the causal inference. This GMM approach provides a useful tool for economists when they

want to include unobserved heterogeneity and the lagged outcome in the model without imposing

a linear relationship between the outcome and its lag. The framework in the second chapter further

allows past dependent variables to have feedback to the current period treatment assignment, which

can be a driving source of heterogeneous intervention timing. The second chapter provides the

asymptotic properties of the resulting estimator of treatment effects using Monte Carlo simulations.

Lastly, the second chapter revisits the policy intervention during the opioid crisis in United States

to estimate the effect of must-access Prescription Drug Monitoring Programs (PDMPs) on child

maltreatment. The GMM approach with non-negative outcome models yields significantly different

policy implications depending on the inclusion of lagged outcome, and the potential feedback from



the past outcome.

The third chapter conduct a Monte Carlo simulation study to propose an imputation estimator

that accounts for the lagged outcome included in the potential outcome model. This chapter

identified the homogeneous average treatment effects for treated group through our imputation

method and our simulation study suggests that the imputation method is easy to implement and

works well in the general environments. the chapter also found that the usual two way fixed effects

approach suffers bias in the most of scenarios under the dynamic environment. Under the unit root

process of the dependent variable, the bias from the two way fixed effects could be amplified.
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CHAPTER 1

ESTIMATING ENDOGENOUS TREATMENT EFFECTS USING DYNAMIC PANEL
DATA MODELS

1.1 Introduction

Just as in many disciplines of science, modern applied economists have been widely using

causal inference, or as known as treatment effect analysis (Lee 2016). Through the policy evaluation

literature, economists have been interested in parametric estimation (Mullainathan and Spiess

2017), typically a linear model. A famous estimation strategy is to use panel data, as researchers

can not only handles the dynamic relationship across observations, but it also helps them to remove

unobserved heterogeneity (Wooldridge 2010). For example, parametric estimation of a linear

regression model is implemented straightforwardly for both of static model (e.g., fixed effect) and

the dynamic model (e.g., Arellano and Bond (1991) approach). In the context of the treatment

effect, one of the giants in the literature is the difference-in-differences method1, which manipulates

the exogeneity of the time constant treatment group indicator, and a uniform jump of the treatment

indicator between the controlled period within the treated group.

In many cases, however, treatment assignment is not exogenous. For example, Collinson et al.

(2024) considered the effect of eviction (treatment) to the economic outcome of tenants. Suppose

a representative economic agent has been suffering from a poor economic outcome last year, say

low earning and/or unemployment. Since one cannot pay rent properly for a year, he or she might

get evicted (treated). Because of such treatment (eviction), the life of the agent gets even more

harder, making worse economic outcome this or next year too. Similar logic can be applied to

the effect of employment/household status to the individual poverty (Biewen 2009), and the effect

of unemployment to the mental health (Zimmer 2021), and so on. In general we can call this

environment as feedback model, where past dependent variable affects current/future treatment.

Under the feedback environment, the treatment group indicator is endogenous, and time-varying in

general.
1Imbens and Wooldridge (2009) provides a great introduction to difference-in-differences framework. See Angrist

and Pischke (2009), Lee (2016) and references therein for the detail about difference-in-differences framework.
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Another caveat of this feedback environment is the state dependence or persistence of the

dependent variable. As we can see from the previous eviction example, it is not difficult to assume

that the poor economic outcome of tomorrow can be affected by a poor outcome of today. In a linear

regression model, putting a lagged dependent variable would be a good starting point for a remedy.

Combining the feedback nature described in the previous paragraph and the lagged dependent

variable on the right hand side, we need to estimate a dynamic panel data model with endogenous

variables other than the lagged dependent variables. Note that I used the word “dynamic" to

emphasize that we included the lagged dependent variable as a regressor.

There has been meaningful development in “dynamic" treatment effect literature, but not

in the way we discussed above. Traditionally, treatment indicator has been treated as indepen-

dent/exogenous random variable, where feedback is not allowed for the main equation of interest

(e.g., Abbring and Heckman (2007)).2 If we focus on the panel data, dynamic average treatment

effect was proposed and studied based on Robins (1989)’s approach, but again the word “dynamic"

focuses on the time-varying treatment indicator. For an example of formal framework of such

dynamic treatment effects, see Lechner (2015) and the references therein.

On the other hand, “dynamic" linear model was studied mainly under the name of state-

dependence literature. The literature focused on removing endogeneity problem between the

lagged dependent variable and the unobserved heterogeneity. Typical response to this issue is

to take a first differencing to the equation to remove the time constant heterogeneity, then use

instruments or moment conditions (e.g., Ahn and Schmidt (1995); Blundell and Bond (1998)).

One of the benchmark method among them in this literature is using the generalized method of

moments (GMM, hereafter) under specific exogeneity assumptions. Notably, Arellano and Bond

(1991) provided a framework to consistently estimate the dynamic linear model with regressors

of lagged dependent variable and endogenous regressors, under the correct exogeneity assump-

tion(e.g., sequential exogeneity). Arellano and Bond (1991) approach also allows researchers to

find ready-made instrument, as it allows researchers to use past variables as the instruments. The
2For duration analysis, dependent variable is included in the treatment hazard function. Hazard analysis makes,

however, a different story, and it is beyond the scope of this paper.
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approach uses first-differencing to remove the heterogeneity, so one might doubt potential ineffi-

ciency of Arellano and Bond (1991), compared to other methods who does not subtract out the

heterogeneity. Another downside of the method is related to the ready-made instruments. Since it

allows various ways to construct the instruments, there are numerous arbitrary decisions to make.3

Another way to tackle the feedback environment is to take itself into account and modeling it.

Instead of running a GMM estimation relying on arbitrary decisions, Wooldridge (2000) assumed

the joint distribution of dependent and explanatory variables and run a maximum likelihood estima-

tion (MLE, hereafter). Instead of first-differencing the heterogeneity, one can model the conditional

density of heterogeneity given the initial values,4 and integrate out the heterogeneity during the

MLE process. Wooldridge (2000)’s approach consistently and efficiently estimates the dynamic

structural equation of interests under correct specification. It allows the state dependence, existence

of heterogeneity, and take the feedback nature of policy assignment into account, by allowing

lagged dependent variable and the heterogeneity included in the treatment indicator equation. Due

to the advantages listed above, there are empirical applications using this approach (e.g.,Biewen

(2009), Welsch and Zimmer (2015, 2016), Zimmer (2021)). The downside of Wooldridge (2000)

approach is the inconsistency under misspecification of the model, as the method is based on MLE.

The paper wants to fill the gap of the literature by comparing two promising estimation methods,

Arellano and Bond (1991) and Wooldridge (2000) approaches, under the feedback environment,

where the treatment assignment is affected by the past response, and the size of the treated group

is monotonically increasing. Since we are on the context of treatment effect literature, this paper

focuses on the parametric estimation of treatment dummy coefficient, instead of the persistent

parameter. As outside options of the two approaches, I also simulated the results from pooled

ordinary least squares (POLS, hereafter), fixed effect (FE, hereafter), and first-differencing (FD,

hereafter) estimates.
3We can have more instruments other than the original suggestion of Arellano and Bond (1991) following the

method of Roodman (2009a,b), or we can also add extra moment conditions (e.g., Arellano and Bover (1995)). See
appendix for another example of GMM estimation strategies other than Arellano and Bond (1991).

4Similar idea of using the initial value can be found in Wooldridge (2005). It assumes the strict exogeneity of the
treatment, contrary to Wooldridge (2000).
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The rest of the paper is organized as follows. Section 1.2 describes the model of interests,

and provides a quick refresher of related estimation strategies in the context of this paper. The

following Section 1.3 describes the benchmark data generating process (DGP, hereafter), and shows

the simulation results. In Section 1.4, I conclude with a short discussion regarding future research.

1.2 Framework

1.2.1 Dynamic Potential Response Model

We begin from a simple switching regression model with a constant treatment effect. Following

the treatment effect literature,5 let 𝑦 (1) be a potential treated response, and 𝑦 (0) be a potential

controlled response. Then we can write a constant treatment effect model as

𝑦
(1)
𝑖𝑡

= 𝑦
(0)
𝑖𝑡

+ 𝛽𝑑 (1.1)

where 𝛽𝑑 is the treatment effect for all observation 𝑖 at time 𝑡.

Let 𝐷𝑖𝑡 as the treatment indicator, who switches from zero to one if treated. Then, the observed

response 𝑦𝑖𝑡 can be written as

𝑦𝑖𝑡 = (1 − 𝐷𝑖𝑡) · 𝑦 (0)𝑖𝑡 + 𝐷𝑖𝑡 · 𝑦 (1)𝑖𝑡 (1.2)

To parametrically estimate 𝛽𝑑 , we need following assumptions.

Assumption [Unconfoundedness]. Suppose (𝑦 (0)
𝑖𝑡
, 𝑦

(1)
𝑖𝑡

) be a pair of counterfactual outcomes,

defined as in the subsection 1.2.1, and let 𝑤𝑖𝑡 = (𝑦𝑖𝑡−1, 𝑧𝑖𝑡 , 𝑐𝑖) be the set of covariates. Then

(𝑦 (0)
𝑖𝑡
, 𝑦

(1)
𝑖𝑡

) is independent of 𝐷𝑖𝑡 , conditional on 𝑤𝑖𝑡 :

(𝑦 (0)
𝑖𝑡
, 𝑦

(1)
𝑖𝑡

) ⊥⊥ 𝐷𝑖𝑡 |𝑤𝑖𝑡

Assumption [Conditional expectation]. Let 𝑦 (0)
𝑖𝑡

be the potential controlled response, and 𝑤𝑖𝑡 =

(𝑦𝑖𝑡−1, 𝑧𝑖𝑡 , 𝑐𝑖) be the set of covariates. Then conditional expectation of 𝑦 (0)
𝑖𝑡

given 𝑤𝑖𝑡 is

𝐸 (𝑦 (0)
𝑖𝑡

|𝑤𝑖𝑡) = 𝛽𝑡 + 𝛽𝑦𝑦𝑖𝑡−1 + 𝛽𝑧𝑧𝑖𝑡 + 𝑐𝑖
5Angrist and Pischke (2009), Imbens and Wooldridge (2009), Wooldridge (2010), and Lee (2016) provide intro-

ductions to the treatment effect literature.
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Note that𝑤𝑖𝑡 contains the unobserved heterogeneity 𝑐𝑖. Conditional expectation assumption implies

𝑦
(0)
𝑖𝑡

= 𝛽𝑡 + 𝛽𝑦𝑦𝑖𝑡−1 + 𝛽𝑧𝑧𝑖𝑡 + 𝑐𝑖 + 𝑢𝑖𝑡 (1.3)

where 𝑧𝑖𝑡 is strictly exogenous covariates, and 𝑐𝑖 is unobserved heterogeneity, and 𝑢𝑖𝑡 is an idiosyn-

cratic error. Combining equations from (1.1) to (1.3) and two assumptions6 yields our estimating

regression equation:

𝑦𝑖𝑡 = 𝛽𝑡 + 𝛽𝑦𝑦𝑖𝑡−1 + 𝛽𝑑𝐷𝑖𝑡 + 𝛽𝑧𝑧𝑖𝑡 + 𝑐𝑖 + 𝑢𝑖𝑡 (1.4)

where the (conditional) average treatment effect is captured by 𝛽𝑑 . Note that 𝑐𝑖 is already included

in 𝑦𝑖𝑡−1 by the equation (1.4) applied on the time 𝑡 − 1, so running POLS on equation (1.4) would

be inconsistent in general.

Moreover, even though econometricians want to assume that 𝐷𝑖𝑡 is (strictly) exogenous, and use

FE (or FD) strategy to remove the heterogeneity, 𝑐𝑖, the policy assignment might not be exogenous,

but predetermined by the past outcome.

𝐷𝑖𝑡 = 1[𝛾𝑦𝑦𝑖𝑡−1 + 𝛾𝑧𝑧𝑖𝑡 + 𝛾𝑐𝑐𝑖 ≤ 𝜅 + 𝜀𝑖𝑡] (1.5)

As a motivation for the structural equation (1.5) for the policy assignment, consider a textbook

funding program for those who were not performing well in the (centralized) exam last period. Let

𝑦𝑖𝑡−1 is the exam score of the last year, and 𝜅 is the cutoff of the treatment qualification/assignment,

and 𝜀𝑖𝑡 is to capture any idiosyncratic error components at year 𝑡. Then the textbook funding

program of this year 𝐷𝑖𝑡 can be written as:

𝐷𝑖𝑡 = 1[𝑦𝑖𝑡−1 ≤ 𝜅 + 𝜀𝑖𝑡] (1.6)

which is a short version of equation (1.5). Note that both equation (1.5) and (1.6) have the

lagged dependent variable from the feedback nature of the environment. Due to the endogeneity

of (𝑦𝑖𝑡−1, 𝐷𝑖𝑡), running a POLS, FE, or FD would be inconsistent for estimating 𝛽𝑑 via equation

(1.4), as we can see from the main result at Section 1.3. From here, one might start searching for

instruments for 𝑦𝑖𝑡−1 and 𝐷𝑖𝑡 , and one estimation strategy allows us to use the past variables as the

instruments under the exogeneity assumptions.
6Following the treatment effect literature, we may assume the overlap assumption as well: 0 < 𝑃(𝐷𝑖𝑡 = 1|𝑤𝑖𝑡 ) < 1.
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1.2.2 Arellano and Bond (1991) Approach 7

Arellano and Bond (1991) starts from time-differencing the equation (1.4) to remove unobserved

heterogeneity

Δ𝑦𝑖𝑡 = Δ𝛽𝑡 + 𝛽𝑦Δ𝑦𝑖𝑡−1 + 𝛽𝑑Δ𝐷𝑖𝑡 + 𝛽𝑧Δ𝑧𝑖𝑡 + Δ𝑢𝑖𝑡 (1.7)

Under the sequential exogeneity assumption, it consistently estimates the parameters of equation

(1.7).

Assumption [Seqential Exogeneity]. Suppose our general model of interest is

𝑦𝑖𝑡 = ®𝑤𝑖𝑡𝛽 + 𝑐𝑖 + 𝑢𝑖𝑡 , 𝑡 = 1, 2, ..., 𝑇

Then we assume sequential exogeneity by:

𝐸 (𝑢𝑖𝑡 | ®𝑤𝑖𝑡 , ®𝑤𝑖𝑡−1, ..., ®𝑤𝑖1, 𝑐𝑖) = 0, 𝑡 = 1, 2, ..., 𝑇

Note that here ®𝑤 stands for the placeholder of the sequentially exogenous regressors. Under

the sequential exogeneity, first-differenced error, Δ𝑢𝑖𝑡 , would be uncorrelated with the past history

of the covariates, ®𝑤𝑜
𝑖𝑡−1 = ( ®𝑤𝑖1, ®𝑤𝑖2, ..., ®𝑤𝑖𝑡−1):

𝐸 ( ®𝑤𝑜′𝑖𝑡−1Δ𝑢𝑖𝑡) = 0, 𝑡 = 2, 3, ..., 𝑇 (1.8)

Now, we need to pick the instrument matrices. There are several ways to pick the instruments,

but we only pick two of them, for the simplicity of discussion.8

For example, let’s focus on a simple case with 𝑇 = 3. Since the time dummy9 (𝑑𝑡, hereafter)

and 𝑧𝑖𝑡 are strictly exogenous, we put them together and define them as 𝑤̃𝑖𝑡 = (𝑑𝑡, 𝑧𝑖𝑡). Motivated by

the original work of Arellano and Bond (1991), we can construct the theoretical instrument matrix
7This subsection mainly draws on Arellano and Bond (1991), and Wooldridge (2010).
8For example, Arellano and Bover (1995) proposed a broader set of moment conditions other than sequential

exogeneity as a remedy for the weak instrument problem. In this paper, however, we skip this version of instrument.
9Since various estimation strategy have different identification of time variables, 𝑑𝑡 varies depending on the context

of estimation strategies. For example, FE and FD drop one time variables by their construction.

6



as

𝐼𝑉𝑖 =


𝑦𝑖0 𝐷𝑖1 0 0 0 0 Δ𝑤̃𝑖2

0 0 𝑦𝑖0 𝐷𝑖1 𝑦𝑖1 𝐷𝑖2 Δ𝑤̃𝑖3

 (1.9)

Even with a small total time period of 𝑇 = 3, the dimension of instrument matrix gets huge

pretty quickly, yielding unnecessarily many overidentification restrictions. One alternative is to

collapse the instrument matrix and reduce the number of conditions (Roodman (2009a,b)). Then

we have the following instrument matrix

𝐼𝑉𝑖 =


𝑦𝑖0 𝐷𝑖1 0 0 Δ𝑤̃𝑖2

𝑦𝑖0 𝐷𝑖1 𝑦𝑖1 𝐷𝑖2 Δ𝑤̃𝑖3

 (1.10)

We use the instruments (1.9) and (1.10) and run the GMM estimation on the equation (1.7).

Under the sequential exogeneity assumption, we can consistently estimate 𝛽 = (Δ𝛽𝑑 , 𝛽𝑦, 𝛽𝑑 , 𝛽𝑧)′.

As a practical matter, since the treatment starts from 𝑡 = 2, 𝐷𝑖1 = 0 for all observation. In this

paper, therefore, we drop 𝐷𝑖1 from equation (1.9) and (1.10), then use them as the instruments.

Subsection 1.3.1 explains the DGP of this paper in details.

1.2.3 Wooldridge (2000) Approach 10

Let 𝑥𝑖𝑡 ≡ (𝑦𝑖𝑡 , 𝐷𝑖𝑡), as both 𝑦 (of past) and 𝐷 is the main regressor of interests. Omit the

index 𝑖 for the simplicity of discussion. In Wooldridge (2000) approach, we start from assuming

the conditional distribution of interests:

𝐷 (𝑦𝑡 |𝐷𝑡 , 𝑍𝑇 , 𝑋𝑡−1, 𝑐) = 𝐷 (𝑦𝑡 |𝐷𝑡 , 𝑧𝑡 , 𝑋𝑡−1, 𝑐), 𝑡 = 1, 2, ..., 𝑇 (1.11)

𝐷 (𝐷𝑡 |𝑍𝑇 , 𝑋𝑡−1, 𝑐) = 𝐷 (𝐷𝑡 |𝑧𝑡 , 𝑋𝑡−1, 𝑐), 𝑡 = 1, 2, ..., 𝑇 (1.12)

where 𝑋𝑡−1 = (𝑥𝑡−1, ..., 𝑥0), and 𝑍𝑡 = (𝑧𝑡 , 𝑧𝑡−1, ..., 𝑧1) subsequently. Since we are using a panel data,

and for the nature of dynamic model, we assume that we have 𝑥0 = (𝑦0, 𝐷0). The two equalities

comes from the strict exogeneity of 𝑧𝑡 . In other word, equation (1.11) states that once present 𝑧𝑡 is

controlled, along with 𝐷𝑡 , 𝑋𝑡−1, and 𝑐, neither past nor the future 𝑧𝑠 affects 𝑦𝑡 for all 𝑠 ≠ 𝑡. Equation

(1.12) states the similar meaning for the treatment dummy accordingly.
10This subsection mainly draws on Wooldridge (2000).
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By assuming parametric conditional densities of 𝑦 and 𝐷, the joint density of 𝑥𝑡 conditional

on (𝑍𝑇 , 𝑋𝑡−1, 𝑐) can be written as

𝑝𝑡 (𝑥𝑡 |𝑧𝑡 , 𝑋𝑡−1, 𝑐; 𝛽0, 𝛾0) = 𝑓𝑡 (𝑦𝑡 |𝐷𝑡 , 𝑧𝑡 , 𝑋𝑡−1, 𝑐; 𝛽0) · 𝑔𝑡 (𝐷𝑡 |𝑧𝑡 , 𝑋𝑡−1, 𝑐; 𝛾0) (1.13)

where 𝑓𝑡 is the parametric conditional density of 𝑦𝑡 with the vector of parameter 𝛽0, while 𝑔𝑡 is the

corresponding density of 𝐷𝑡 with the parameter vector 𝛾0.

Now, the joint density of 𝑋𝑇 = (𝑥𝑇 , 𝑋𝑇−1, ..., 𝑥1) given (𝑍𝑇 , 𝑥0, 𝑐) should be look like

𝑝(𝑋𝑇 |𝑍𝑇 , 𝑥0, 𝑐; 𝛽0, 𝛾0) =
𝑇∏
𝑡=1

𝑝𝑡 (𝑥𝑡 |𝑧𝑡 , 𝑋𝑡−1, 𝑐; 𝛽0, 𝛾0) (1.14)

Unlike Arellano and Bond (1991) GMM approach, MLE method does not cancels out the

unobserved heterogeneity. Instead, Wooldridge (2000) proposed to model the parametric density

of heterogeneity given 𝑍𝑇 and the initial value 𝑥0, as a practical matter. Following Wooldridge

(2000), we model the conditional density of the heterogeneity as follows

𝑐 |𝑍𝑇 , 𝑥0 ∼ 𝑁 (𝜆1 + 𝜆𝑦𝑦0 + 𝜆𝑑𝐷0 + 𝜆𝑧𝑧, 𝜎2
𝜆 ) (1.15)

𝑎 |𝑍𝑇 , 𝑥0 ∼ 𝑁 (0, 𝜎2
𝜆 ) (1.16)

Note that integrating out 𝑐 is equivalent to integrating out 𝑎, once we put 𝑧 and 𝑥0 as additional

regressors in the equations. Using the specified conditional density of heterogeneity ℎ(𝑐 |𝑍𝑇 , 𝑥0;𝜆),

we integrate out the heterogeneity:

𝑝(𝑋𝑇 |𝑍𝑇 , 𝑥0; 𝜃0) =
∫
𝑅𝑑𝑖𝑚(𝑐)

𝑝(𝑋𝑇 |𝑍𝑇 , 𝑥0, 𝑐; 𝛽0, 𝛾0) · ℎ(𝑐 |𝑍𝑇 , 𝑥0;𝜆0)𝜈(𝑑𝑐) (1.17)

where 𝜃0 ≡ (𝛽′0, 𝛾
′
0, 𝜆

′
0)

′, and 𝜈(·) is a suitable measure for the integration. Then finally, combining:

i) equation (1.4) for the main equation; ii) equation (1.5) for the policy equation; iii) equations

(1.13) through (1.17) for the MLE construction yields (with abuse of notation)

ℓ(𝑋0
𝑖𝑇 , 𝑍𝑖𝑇 ; 𝜃) = log

[∫
𝑅𝑑𝑖𝑚(𝑐)

(
𝑇∏
𝑡=1

𝑓𝑖𝑡 · 𝑔𝑖𝑡) 𝑑𝐹𝑐𝑖 |𝑍𝑇 ,𝑥0;𝜆

]
(1.18)

where 𝑋0
𝑖𝑇

= (𝑥𝑖𝑇 , ..., 𝑥𝑖1, 𝑥𝑖0), and 𝑑𝐹𝑐𝑖 |· stands for the conditional CDF of the heterogeneity.

The consistency of MLE 𝜃 from the likelihood (1.18) comes from the consistency of the MLE

(Wooldridge (2000)).
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In this paper, I used the following for the likelihood function:

𝑓𝑖𝑡 =
1
𝜎𝑢
𝜙

(
𝑦𝑖𝑡 − 𝑤𝑦𝑖𝑡𝛽𝑤 − 𝑎𝑖

𝜎𝑢

)
(1.19)

𝑔𝑖𝑡 =
[
Φ(−𝑤𝐷𝑖𝑡 𝛾𝑤 − 𝛾𝑐𝑎𝑖)𝐷𝑖𝑡 · (1 −Φ(−𝑤𝐷𝑖𝑡 𝛾𝑤 − 𝛾𝑐𝑎𝑖))1−𝐷𝑖𝑡

]1−𝐷𝑖𝑡−1 (1.20)

where 𝑤𝑦
𝑖𝑡
= (𝑑𝑡, 𝑦𝑖𝑡−1, 𝐷𝑖𝑡 , 𝑧𝑖𝑡 , 𝑦𝑖0, 𝑧𝑖) and 𝑤𝐷

𝑖𝑡
= (1, 𝑦𝑖𝑡−1, 𝑧𝑖𝑡 , 𝑦𝑖0, 𝑧𝑖). Conditional density function

(1.19) comes from the conditional distribution of idiosyncratic shock 𝑢𝑖𝑡 |𝑤𝑦𝑖𝑡 , 𝑎𝑖 ∼ 𝑁 (0, 𝜎2
𝑢 ), the

main equation (1.4), and the heterogeneity assumptions (1.15) and (16). Similarly, conditional

density function (1.20) comes from putting a probit assumption on the policy equation (1.5), and

heterogeneity assumptions (1.15) and (1.16). The last upper right power term came from the DGP

of this paper described in the Section 1.3. For the practical matter, I integrated out 𝑎𝑖 instead of 𝑐𝑖,

which is equivalent once we controlled 𝑧𝑖 and 𝑦𝑖0 in the regressor terms. To boost the integration

process, I used the numerical integration Hermite-Gaussian quadrature.11

1.3 Results

The Monte Carlo experiment focuses on estimating 𝛽𝑑 of equation (1.4), and compares the

bias and relative efficiency between various estimation strategies. This paper is mainly interested

in comparing Arellano and Bond (1991) approaches with two different instruments under the

sequential exogeneity assumption, and Wooldridge (2000) approach based on the correctly specified

model. For the Arellano and Bond (1991), AB1 stands for the result based on the original version

of instrument matrix in the paper, while AB2 stands for the result based on the collapsed instrument

suggested by Roodman (2009a,b). I also reported the results from POLS, FE, FD run on equation

(1.4) or (1.7), depending on the context. For the replication, I ran each of the estimation 1,000

times, and calculated the average of bias, standard deviations, and the root mean squared error

(rMSE, hereafter).

1.3.1 Benchmark DGP

Dynamic feedback nature of this paper makes it difficult to explain the DGP in a short list

of equations. Let me instead explain the DGP using a story about a treatment program whose
11For the theoretical details of numerical integration in general, see Davis and Rabinowitz (2007).
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participation rates are increasing over time.

Suppose we have a data sample with 𝑇 = 3. Let 𝑡 = 1 be a controlled period, where nobody

gets treated, and 𝑡 = 2, 3 are treatment period, where treated sample gets bigger, monotonically, as

time goes by12.

We start from period 𝑡 = 1, where no observation is treated. Since 𝐷𝑖1 = 0 for all units, I

dropped 𝐷𝑖1 from the equation (1.4)

𝑦𝑖1 = 𝛽1 + 𝛽𝑦𝑦𝑖0 + 𝛽𝑧𝑧𝑖1 + 𝑐𝑖 + 𝑢𝑖1

where 𝑦𝑖0 is drawn from standard normal distribution. For the simplicity of discussion, 𝑧𝑖𝑡 and

𝑢𝑖𝑡 are also independently drawn from standard normal distributions for all 𝑡 = 1, 2, 3. Using the

drawn 𝑧𝑖𝑡’s and 𝑦𝑖0, and independently drawn 𝑎𝑖, I constructed 𝑐𝑖 following the equations (1.15) and

(1.16):

𝑐𝑖 = 𝜆1 + 𝜆𝑦𝑦𝑖0 + 𝜆𝑧𝑧𝑖 + 𝑎𝑖

𝑎𝑖 |𝑍𝑖𝑇 , 𝑥𝑖0 ∼ 𝑁 (0, 1)

where 𝑧𝑖 stands for the time average of 𝑧𝑖𝑡 . Note that 𝜆𝑑𝐷𝑖0 was omitted from the equation (15) as

the treatment comes from 𝑡 = 2 and 𝐷𝑖0 = 0 for all observations.

At 𝑡 = 2, treatment is assigned based on the policy equation (1.5)

𝐷𝑖2 = 1[𝛾𝑦𝑦𝑖1 + 𝛾𝑧𝑧𝑖2 + 𝛾𝑐𝑐𝑖 ≤ 𝜅 + 𝜀𝑖2]

where 𝜀𝑖𝑡 is drawn independently from standard normal distribution for all 𝑡 = 2, 3. Then I used

this 𝐷𝑖2 to construct 𝑦𝑖2 following equation (1.4)

𝑦𝑖2 = 𝛽2 + 𝛽𝑦𝑦𝑖1 + 𝛽𝑑𝐷𝑖2 + 𝛽𝑧𝑧𝑖2 + 𝑐𝑖 + 𝑢𝑖2

At 𝑡 = 3, I designed the policy assignment as

𝐷𝑖3 = {1
[
𝛾𝑦𝑦𝑖2 + 𝛾𝑧𝑧𝑖3 + 𝛾𝑐𝑐𝑖 ≤ 𝜅 + 𝜀𝑖3

]
}1−𝐷𝑖2 · 1𝐷𝑖2 (1.21)

12For this paper, I used 𝑇 = 3 for the simplicity of discussion. Maximal length of time can be extended in the future
research.
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We can interpret the equation (1.21) as follows: If the observation was not treated in the

previous period (𝐷𝑖2 = 0), then they are assigned to the treatment program following the equation

(1.5), as we did in the previous period; If the observation was treated last period (𝐷𝑖2 = 1), then

they are also treated this period too (𝐷𝑖3 = 1). We can imagine this treatment program as one

without out-movers, and the size of the treated group is monotonically increasing as time goes by.

Note that the 1𝐷𝑖2 term is redundant and we can ignore or drop them during the actual estimation

process, as they are always one.13

Now we have 𝑦𝑖3 based on the equation (1.4)

𝑦𝑖3 = 𝛽3 + 𝛽𝑦𝑦𝑖2 + 𝛽𝑑𝐷𝑖3 + 𝛽𝑧𝑧𝑖3 + 𝑐𝑖 + 𝑢𝑖3

The structural parameters are set as follows:

©­­­­­­­­­­­­­­­­­­«

𝛽1
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𝛽3

𝛽𝑦
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ª®®®®®®®®®®®®®®®®®®¬
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©­­­­­­­­­­­­­­­­­­«

0

0

0

0.5

2

1

1

ª®®®®®®®®®®®®®®®®®®¬

(1.22)

©­­­­­­­­«

𝛾𝑦

𝛾𝑧

𝛾𝑐

𝜅

ª®®®®®®®®¬
=

©­­­­­­­­«

1

0

1

0

ª®®®®®®®®¬
(1.23)

13I put it to help readers to understand the intuition of this DGP. Estimating equation (1.21) by probit after we drop
the redundant term yield the conditional density function (1.20) in the previous section.
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=
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0

1

3

1
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(1.24)

1.3.2 Simulation Results

As discussed above, we concentrate on the parameters of equation (1.4), especially on the

estimates of 𝛽𝑑 . This paper also briefly shows the simulation result for the estimation of 𝛽𝑦,

which has similar implication. For the full result including the coefficients of time dummies and

exogenous regressor, see appendix for the detail.

Table 1.1 shows the simulation results for 𝛽𝑑 depending on the estimation strategies. For the

simulations, I ran 1,000 repetition for each sample size from 500 to 10,000. As we can see, POLS,

FE, FD’s are biased, and the biases do not go away by the increasing sample size.

Table 1.1 Treatment Effect under Feedback Environment

𝛽𝑑 = 2 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.675 0.113 0.684 -0.209 0.126 0.244 -0.007 0.121 0.122
𝑁 = 1, 000 -0.674 0.079 0.678 -0.210 0.092 0.229 -0.006 0.088 0.089
𝑁 = 5, 000 -0.670 0.036 0.671 -0.206 0.043 0.211 0.000 0.040 0.040
𝑁 = 10, 000 -0.670 0.026 0.670 -0.206 0.031 0.208 0.000 0.029 0.029

𝛽𝑑 = 2 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.601 0.143 0.618 -0.345 1.222 1.270 -0.162 1.634 1.642
𝑁 = 1, 000 -0.602 0.100 0.610 -0.138 0.777 0.789 -0.045 0.857 0.859
𝑁 = 5, 000 -0.599 0.048 0.601 -0.022 0.325 0.326 0.001 0.339 0.339
𝑁 = 10, 000 -0.599 0.034 0.600 -0.007 0.223 0.223 0.005 0.235 0.235

Compared to Arellano and Bond (1991) estimates, Wooldridge (2000) method outperforms

from a small sample size (𝑁 = 500). For each sample size, Wooldridge (2000) estimates have

smaller bias on average, smaller standard deviations, and smaller rMSE than those of Arellano and

Bond (1991) results.
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Another interesting point to pay attention is the difference between AB1 and AB2. According to

Table 1.1, using collapsed instrument (AB2) works better than the original work (AB1) of Arellano

and Bond (1991) for the all sample size. For both of AB1 and AB2, bias goes down towards zero

as sample size goes up. Standard deviations and rMSEs also improve as the sample size goes

to 10,000. Notably, such convergence is also faster in AB2 than AB1. For example, between

𝑁 = 500 and 𝑁 = 1, 000, the method based on the collapsed instrument (AB2) had approximately

72% decrease in the average bias, while that of original instrument (AB1) had approximately 60%

decrease in the average bias.

Table 1.2 shows simulation results for the estimates of 𝛽𝑦, which was the traditional concern

of the state-dependence/persistence literature. As we can see, Wooldridge (2000) method still

overwhelms the competitions. For each sample size, Wooldridge (2000) approach have the smallest

bias, the smallest standard deviation, and the smallest rMSE. Similar to Table 1.1, POLS, FE, FD

are biased, and the biases do not go away, even though the sample size goes up.

It is also interesting to see that the collapsed instrument method (AB2) still keeps some level of

relative efficiency over that of original instrument (AB1). For each sample size, AB2 has smaller

bias and rMSE over AB1. For the standard deviation, however, AB1 outperforms AB2.

Table 1.2 Persistence under Feedback Environment

𝛽𝑦 = 0.5 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 0.488 0.018 0.488 -0.124 0.021 0.126 -0.002 0.020 0.022
𝑁 = 1, 000 0.488 0.012 0.488 -0.124 0.015 0.124 0.000 0.016 0.016
𝑁 = 5, 000 0.488 0.006 0.488 -0.123 0.007 0.123 0.000 0.007 0.007
𝑁 = 10, 000 0.488 0.004 0.488 -0.123 0.005 0.123 0.000 0.005 0.005

𝛽𝑦 = 0.5 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.250 0.024 0.251 -0.111 0.386 0.402 -0.055 0.563 0.565
𝑁 = 1, 000 -0.249 0.017 0.250 -0.049 0.258 0.263 -0.014 0.306 0.306
𝑁 = 5, 000 -0.248 0.008 0.249 -0.007 0.110 0.110 0.001 0.123 0.123
𝑁 = 10, 000 -0.249 0.005 0.249 -0.003 0.076 0.076 0.002 0.088 0.088

As a robustness check, I have studied additional simulations for: i) misspecified idiosyncratic
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error; ii) misspecified heterogeneity distribution; iii) both error and heterogeneity are misspecified.

Interestingly, for all cases, Wooldridge (2000) MLE approach works well and has similar implication

to the correctly specified case. For the misspecified cases, even though Arellano and Bond (1991)

GMM approaches starts to have less bias than those of MLE when the sample size gets close to

10,000, Wooldridge (2000) approach works more efficient than GMM (AB1 and AB2) while having

similar level of bias. See appendix for the detail of misspecified cases.

1.4 Discussion

In this paper, I compared two estimation strategies, one of Arellano and Bond (1991) and another

of Wooldridge (2000), in the context of treatment effect analysis. Under the correct specification,

Wooldridge (2000) approach outperforms those of Arellano and Bond (1991) approaches, regardless

of which instruments they are using. For outside options, POLS, FE, FD are inconsistent overall.

In future work, I would compare them under more misspecification including asymmetric

distributions or heteroskedastic probit instead of usual probit. Another interesting question would

be comparing them under the limited dependent variable, typically zero-one variable case. For

example, I can compare an average partial effect from probit/logit method based on Wooldridge

(2000), and the coefficient from a linear probability model based on Arellano and Bond (1991).

Moreover, there are plenty of rooms for empirical illustration using these methods.
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CHAPTER 2

CAUSAL INFERENCE OF DYNAMIC PANEL MODEL WITH NON-NEGATIVE
OUTCOME

2.1 Introduction

Econometricians introduced non-negative outcome models1 into the economics literature by

relaxing distributional assumptions (Gourieroux et al. 1984a,b) and developing a framework for the

panel data analysis (Hausman et al. 1984) from the very early stage. The literature further relaxes

the distribution assumption and mean-variance assumption when it comes to static panel data fixed-

effects models (Wooldridge 1999), allowing applied economists to utilize the rich information of

the panel data. Advances in non-negative outcome models attracted many researchers to use the

exponential specification including the fields as, but not limited to, recreation demand (Ozuna

and Gomez 1995), international trade (Santos Silva and Tenreyro 2006, 2011), R&D investment

(Guceri and Liu 2019), crime (Lindo et al. 2018), and health (Balestra et al. 2021, Horn et al. 2022).

Econometric literature also developed a straightforward approach to estimate the average treatment

effects on treated for the non-negative outcome models (Lee and Kobayashi 2002, Ciani and Fisher

2018, Lee and Lee 2021). After adjusting the parallel trends assumption into the ratio form,

practitioners can conduct the causal inference to estimate the effects in the proportional change

interpretation. None of them above, however, considers dynamic nature of economic variables that

is very common in the practice.

A recent paper in the health economics forms a good example of dynamic nature of economic

variables. In Evans et al. (2022b), they study the impact of the prescription drug monitoring program

(PDMP) on the child maltreatment. Under the assumption that abuse of controlled substance can

affect child maltreatment, they estimate the effects of PDMP on child maltreatment, relying on the

linear two-way-fixed-effects (TWFE) specification. They, however, do not consider two important
1There is no consensus on how to call the literature. Some authors prefer Poisson model, another group of people

refer it under the title of count data model. I choose to call the literature as the non-negative outcome models as: i)
Poisson regression does not necessarily rely on Poisson distribution assumption; ii) as long as the dependent variable
has non-negative value, it does not necessarily have to have a count nor integer form. For the general introduction and
overview, Cameron and Trivedi (2013) provides a comprehensive references on non-negative models literature.
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factors that can change the policy implication: i) If the child maltreatment is affected by the abuse

of materials, addictive properties of such substances can create a persistent behavior of outcome

variables; ii) The different timing of the policy intervention might be assigned non-randomly. For

example, The timing of PDMP implementation can be affected by the last period’s socioeconomic

status (e.g., child maltreatment) of each state.

In this paper I propose a dynamic panel data model with non-negative outcome, which i)

allows applied economists to include the lagged outcome in their exponential models; ii) allows

feedback from the past outcome to affect the treatment assignment, when the policy has a staggered

intervention; iii) does not impose a linear relationship between the outcome variables; Applied

economists can also benefit from my framework when they are focussing on the proportional

interpretation, as the exponential mean specification of my paper relies on the weaker assumptions

compared to those the usual log-level linear models assume.

My paper contributes the econometrics literature by suggesting a unified framework to esti-

mate the conditional average treatment effects with the proportional change interpretation. My

contribution can be viewed from two different perspectives of econometrics literature.

First, from the perspective of treatment effects literature, I fill the gap of staggered intervention

literature by proposing a way to allow arbitrary correlation between the staggered assignment and

the past outcomes and the unobserved heterogeneity. Modern prevalence of panel data models

brought attention of both applied practitioners and theoretical econometricians when it comes to

the causal inference in economics. The popularity comes from the rich information of the panel

data structure which allows researchers to remove or control the unobserved heterogeneity (or

unit fixed effects). Recent explosion of TWFE literature is also motivated from the real world

problems where different units can enter into the treatment status at different timing (staggered

intervention) and the heterogeneous intervention might happen over time (Callaway and Sant’Anna

2021, De Chaisemartin and d’Haultfoeuille 2020, Sun and Abraham 2021, Goodman-Bacon 2021,

Borusyak et al. 2024). The literature points out that there might be a negative weights problem,

and econometricians have been interested in solving the problem (Dube et al. 2023). The literature,
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however, does not say much about the treatment timing assignment mechanism. If the heterogeneous

intervention is affected by the past outcome, ignoring such mechanism could bias the treatment

effects even when the effects themselves are homogeneous. Therefore, my paper focus on the

endogeneity of the staggered intervention and develop a causal inference framework that allows

feedback into the consideration of the applied economists.

Furthermore, my paper motivates treatment effects literature to include the lagged outcome into

their consideration. Recent developments in the literature try to include the lagged outcome into

the controlled variable (Caetano et al. 2022, Dube et al. 2023), but the progress gets relatively less

attention2, and the situation does not improve much when it comes to the non-negative outcome

models. My study contributes to the literature by developing non-negative outcome models that

allows including lagged outcome during the causal inference.

Second, from the perspective of dynamic panel model literature, I propose a dynamic non-

linear model by capitalizing an exogeneity assumption that has not been viewed as a tool for

causal inference. Specifically, my paper relies on assumption in the form of sequential exogeneity,

which can be traced back to the dynamic linear panel data models literature (Arellano and Bond

1991, Ahn and Schmidt 1995, Arellano and Bover 1995, Blundell and Bond 1998). Combined

with the sequential exogeneity assumption, the transformation technique suggested by Chamberlain

(1992) and Wooldridge (1997) allows the feedback of lagged dependent variable to affect policy

assignment of current period. This assumption was proposed to estimate the persistence parameter,

but my paper implies that the assumption can be a useful device to estimate the conditional average

treatment effects. The advantage of the sequential exogeneity assumption comes from the fact that

it is weaker than the usual strict exogeneity assumption, which is commonly and implicitly assumed

in the treatment effects literature.

The rest of the paper is organized as follows. Section 2.2 introduces my model and argues that the

dynamic model with multiplicative form has a less restrictive data structure compared to those with
2Including lagged outcome as covariates while assuming parallel trends assumption can be either difficult or even

impossible. Literature have been suspicious about mixing parallel trends assumption and the lagged outcome together
(Angrist and Pischke 2009, Chabé-Ferret 2017, Ding and Li 2019).
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the additive form. Section 2.3 discusses the identification of conditional average treatment effects

(CATE) and its necessary assumptions. Section 2.4 explains the generalized method of moments

(GMM, hereafter) strategies suggested by Wooldridge (1997) and their necessary assumptions, and

explains the details of the adjustment when we want to use the framework in the context of causal

inference. Section 2.5 presents the Monte Carlo simulation to show that the framework works well

and shows asymptotic behavior. In Section 2.6, I revisit the causal inference of Prescription Drug

Monitoring Program during the opioid crisis in United States (Evans et al. 2022b) to show that, under

the staggered intervention where different units have different entrance timing, path dependence of

outcome or feedback nature of dynamic treatment assignment might yield a significantly different

policy implication. After the empirical application, I conclude the paper with a short discussion

about the future research.

2.2 Econometric Model

2.2.1 Notations, Setup, and Potential Outcome Model

In this paper, I rely on the standard Neyman-Rubin causal model as the basic setup. Let 𝑌𝑖𝑡

denote the dependent variable at time 𝑡 ∈ ®𝑇 ≡ {1, 2, . . . , 𝑇}. Then, one can write the potential

outcome model as a additive form of two potential status, treated and controlled:

𝑌𝑖𝑡 = 𝐷𝑖𝑡 · 𝑌 (1)
𝑖𝑡

+ (1 − 𝐷𝑖𝑡) · 𝑌 (0)
𝑖𝑡

(2.1)

where 𝑌 (1)
𝑖𝑡

is the potential outcome of observation 𝑖 in the treated state at time 𝑡, while 𝑌 (0)
𝑖𝑡

is the

potential outcome of the controlled state. Let 𝐷𝑖𝑡 be the treatment indicator which is one if the

observation observation 𝑖 is treated at time 𝑡, and zero when controlled. Let 𝑋𝑖𝑡 be a 1 × 𝐾𝑥 vector

of contemporaneous conditioning covariates which is strictly exogenous. For each 𝑡 = 1, . . . , 𝑇 , an

econometrician observe (𝑌𝑖𝑡 , 𝑋𝑖𝑡 , 𝐷𝑖𝑡) and has a complete panel of them, so that we can focus on

the balanced panel case. We further assume that the lagged outcome at 𝑡 = 1, 𝑌𝑖0 is exogenously

given for all 𝑖 = 1, . . . , 𝑁 , but we do not observe 𝑋𝑖0. Furthermore, define the ever treated indicator

𝐺𝑖 = max
𝑠∈ ®𝑇

𝐷𝑖𝑠 which is one if the unit is ever treated within the period 𝑡 = 1, 2, . . . , 𝑇 .

This paper is interested in the environment where the policy intervention starts at 𝑡 = 2 so that
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we have 𝑡 = 1 as controlled period, which should be familiar to the researchers who are interested

in staggered intervention studies. Furthermore, throughout this paper, I assume the no reversibility

assumption, which means that there is no exit once the unit has entered into the treated status. To

be specific, without loss of generality,

𝐷𝑖𝑠 ≥ 𝐷𝑖𝑡 ∀𝑠 ≥ 𝑡, ∀𝑡 = 1, . . . , 𝑇

This is a standard assumption that is commonly assumed, either explicitly or implicitly, in the

staggered intervention literature. My paper also focus on the same setup where the treatment status

is absorbing3.

One might notice that my model still use the classical additive form model (2.1), even though

the literature of non-negative outcome models usually impose exponential mean specification. In

this paper, I am interested in estimating the conditional average treatment effects with the ratio

form:
𝐸 (𝑌 (1)

𝑖𝑡
− 𝑌 (0)

𝑖𝑡
|𝑌𝑖𝑡−1, . . . , 𝑌𝑖1, 𝑋𝑖, 𝐷𝑖𝑡 = 1)

𝐸 (𝑌 (0)
𝑖𝑡

|𝑌𝑖𝑡−1, . . . , 𝑌𝑖1, 𝑋𝑖, 𝐷𝑖𝑡 = 1)
= 𝑒𝜏 − 1

where we can interpret the ratio as the proportional change of potential outcome relative to the

controlled outcome, conditional on covariates. For the algebraic details, see Section 2.3.

2.2.2 Parametric Model

Suppose that the potential outcome model satisfies

𝐸 (𝑌 (𝑑)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖; 𝜃) = 𝑐𝑖 · exp(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝑋𝑖𝑡𝛽𝑥 + 𝜏𝑑) (2.2)

for treated (𝑑 = 1) and controlled (𝑑 = 0) groups, where 𝜃 = (𝛽𝑡 , 𝛽𝑦, 𝛽𝑧, 𝜏, 𝛽′𝑥)′ is 𝐾 × 1 vector

of parameters4, ®𝑌𝑖𝑡−1 = {𝑌𝑖𝑡−1, 𝑌𝑖𝑡−2, . . . , 𝑌𝑖1} is the history of outcome variables until 𝑡 − 1, 𝑐𝑖 is

the 1 × 1 unobserved heterogeneity (or unit fixed effects), 𝛽𝑡 are common time-specific effects,
3For a generalized framework with dynamic treatment effects where, for example, treated units can exit after

receiving treatment, one can consult the structural nested mean models (SNMM) literature (Robins 1986, 1994, 1997).
This generalized framework, however, reaches beyond the scope of this paper.

4This paper assumes the common parameters between the treated and controlled outcome, and I use 𝜃 instead of
𝜃0 to indicate the true parameter of the model. The only exception is the section 2.4.1., where I denote 𝜃0 as the true
parameter. I am abusing notation in 2.4.1 as I don’t have to list parameters with 𝛽𝑡0, 𝛽𝑦0, 𝛽𝑧0, which look like separate
parameter for controlled potential outcome.

19



𝑍𝑖𝑡−1 = 1[𝑌𝑖𝑡−1 = 0] is the indicator function whether the past outcome is zero, and 𝑋𝑖𝑡 is the

contemporaneous covariates which is strictly exogenous5. The model is motivated by Crépon and

Duguet (1997) who suggested a multiplicative function approach, but the specific functional form

can be also found in an alternative suggestion of Windmeĳer (2006). Again, after some algebraic

details and assumptions described in Section 2.3, the model (2.2) becomes

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 ; 𝜃) = 𝑐𝑖 · exp(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝜏𝐷𝑖𝑡 + 𝑋𝑖𝑡𝛽𝑥) (2.3)

The model further simplifies depending on the value of past outcomes:

If 𝑌𝑖𝑡−1 = 0, then 𝑍𝑖𝑡−1 = 1 and the function becomes

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, 𝑌𝑖𝑡−1 = 0, ®𝑌𝑖𝑡−2, 𝑋𝑖, 𝐷𝑖𝑡 ; 𝜃) = 𝑐𝑖 · exp(𝛽𝑡 + 𝛽𝑧 + 𝜏𝐷𝑖𝑡 + 𝑋𝑖𝑡𝛽𝑥).

If 𝑌𝑖𝑡−1 > 0, then 𝑍𝑖𝑡−1 = 0 and the function is taking the form of

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, 𝑌𝑖𝑡−1 > 0, ®𝑌𝑖𝑡−2, 𝑋𝑖, 𝐷𝑖𝑡 ; 𝜃) = 𝑐𝑖 · exp(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1) + 𝑋𝑖𝑡𝛽𝑥 + 𝜏𝐷𝑖𝑡)

= 𝑐𝑖 · 𝑌
𝛽𝑦

𝑖𝑡−1 · exp(𝛽𝑡 + 𝑋𝑖𝑡𝛽𝑥 + 𝜏𝐷𝑖𝑡).

The model has exactly the same form as the linear feedback model (LFM) suggested by Blundell

et al. (1995, 2002) when 𝑌𝑖𝑡−1 = 0. When the lagged outcome has a positive value (𝑌𝑖𝑡−1 > 0),

my model differs from the LFM as the LFM separates the lagged outcome from the exponential

function in an additive form:

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 ; 𝜃) = 𝛽𝑦𝑌𝑖𝑡−1 + 𝑐𝑖 · exp(𝛽𝑡 + 𝑋𝑖𝑡𝛽𝑥 + 𝜏𝐷𝑖𝑡).

Notice that we need to pull out the lagged outcome term from exponential term either in multi-

plicative or additive form. When we leave the persistence term inside the exponential function, the

entire outcome dynamics tends to explode in a short time (Cameron and Trivedi 2005, Windmeĳer

2006).
5I put 𝑋𝑖 , the entire history of 𝑋𝑖𝑡 for 𝑡 = 1, . . . , 𝑇 , in the conditioning set on the left hand side to emphasize that

the covariate vector 𝑋𝑖𝑡 is considered strictly exogenous. Since I am assuming that they are strictly exogenous, just
conditioning on 𝑋𝑖𝑡 has the same model specification.
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Compared to the conventional LFM, there are two advantages to use my multiplicative form

for the dynamic panel models with non-negative outcomes. First, it allows researchers to include

lagged outcome without imposing restrictive assumptions on dynamics of dependent variables. For

this linear separation, suppose we have the unit root (i.e., 𝛽𝑦 = 1). Then one can observe that LFM

is imposing a monotonically increasing series for the dynamics of outcome variables. As a result,

LFM implicitly assumes that once the dependent variable took off from zero (𝑌𝑖𝑡−1 > 0), then it is

almost impossible to have zero values in the future

𝐸 (Δ𝑌𝑖𝑡 |𝑐𝑖, 𝑌𝑖𝑡−1 > 0, ®𝑌𝑖𝑡−2, 𝑋𝑖, 𝐷𝑖𝑡 ; 𝜃) = 𝑐𝑖 · exp(𝛽𝑡 + 𝑋𝑖𝑡𝛽𝑥 + 𝜏𝐷𝑖𝑡) ≥ 0.

Even if we relax the unit root assumption and allow relatively small values for the persistence

parameter 𝛽𝑦 < 1, the additive term, 𝛽𝑦𝑌𝑖𝑡−1, still generates a lower bound for the future values. As

a result, the data cannot have zero values in the observation in the future, once the unit experienced

positive outcome. Such monotonicity could be a restrictive assumption for broad practitioners.

By the nature of multiplicative form, however, my model yields a different result. By rewriting

equation (2.3), we have a ratio between the two non-negative variables,

𝐸

[
𝑌𝑖𝑡

𝑌
𝛽𝑦

𝑖𝑡−1

|𝑐𝑖, 𝑌𝑖𝑡−1 > 0, ®𝑌𝑖𝑡−2, 𝑋𝑖, 𝐷𝑖𝑡 ; 𝜃

]
= 𝑐𝑖 · exp(𝛽𝑡 + 𝑋𝑖𝑡𝛽𝑥 + 𝜏𝐷𝑖𝑡) ≥ 0

where its non-negativeness makes sense as ratios of non-negative values are always non-

negative. Unlike LFM, my framework with the multiplicative specification does not impose

monotonic outcome dynamics while it still allows to include lagged outcome as covariates.

Second, my model (2.3) also allows the researchers to impose feedback of the lagged outcome to

affect today’s treatment assignment. Even if the researchers decide not to include the lagged outcome

as covariates, they might be still interested in allowing yesterday’s outcome to affect today’s policy

intervention (feedback). I also want to emphasize that the model also allows to have an arbitrary

correlation between the treatment indicator and unobserved heterogeneity, regardless of allowing

the feedback. In section 2.4, I explain that estimation of model (2.3) requires no structural equation
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for treatment assignment mechanism, which means that my model allows arbitrary relationship

between the treatment assignment and both of lagged outcome and unobserved heterogeneity.

2.3 Identification

2.3.1 Motivation of Conditional Average Treatment Effects

Static panel data models which exclude lagged outcome as covariates have standardized frame-

work to apply the causal inference with a panel data, not only for linear models but also for non-linear

models as difference-in-differences with non-negative outcomes. For example, proportional effect

on the treated group at the post period can be identified as a ratio of difference of potential outcomes

and the base of potential controlled outcome (Lee and Kobayashi 2002, Lee and Lee 2021), which

is characterized by

𝐸

[
𝑌
(1)
𝑖𝑡

− 𝑌 (0)
𝑖𝑡

|𝐺𝑖 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝐺𝑖 = 1
] (2.4)

This might be enough when econometricians are getting their data from randomized trial where

systematic gap between the observations are controlled by experiment design. In the real world,

however, economists have been obtaining observational data to study the causal effects of policy

interventions, where controlling covariates could get crucial issues. Therefore, conditional average

treatment effects (CATE) has been a major parameter of interest in the ratio-based treatment effects

literature (Lee and Kobayashi 2002, Lee and Lee 2021, Yadlowsky et al. 2021), where the effects

of interest can be written as

𝐸

[
𝑌
(1)
𝑖𝑡

− 𝑌 (0)
𝑖𝑡

|𝑊 = 𝑤,𝐺𝑖 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑊 = 𝑤,𝐺𝑖 = 1
] . (2.5)

There are three advantages in estimating the treatment effects in the form of (2.5). By taking

ratios, we can cancel out the unobserved heterogeneity where simple subtraction between the

exponential terms will not yield such result. Second, the ratio form is useful when an econometrician

estimates the percentage change. Notice that the ratio of potential outcomes themselves, (𝑌 (1)
𝑖𝑡

−

𝑌
(0)
𝑖𝑡

)/𝑌 (0)
𝑖𝑡

, will not be well defined when 𝑌 (0)
𝑖𝑡

= 0. By relying on the exponential specification,

however, an econometrician can bypass the problem and the ratio (2.5) would be interpreted as
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the proportional change. Specifically, (2.5) shows the proportional change relative to the potential

outcome as the base level, conditional on the covariates 𝑊 at 𝑤. Finally, under the exponential

mean model, conventional difference estimator for average treatment effects could introduce the

unnecessary heterogeneity (Yadlowsky et al. 2021, Lee and Lee 2021). To be specific, suppose the

ratio (2.5) is constant 𝜏 and we assume that the denominator is the function of covariate 𝑊 . Then

the numerator is equal to 𝜏 times the denominator, whose heterogeneity might not be our special

interest. For these reasons, static models with non-negative outcome structure have been interested

in estimating ratio of conditional expectations when they want to conduct the causal inference.

For the dynamic panel data models, however, relatively less is known in the context of the causal

inference with the lagged outcome. For example, an integration of parallel trends and sequential

ignorability has been producing less progress until now (Roth et al. 2023). Structural nested mean

literature in the statistics and biostatistics (Robins 1986, 1994, 1997) relies on a specific device

called the blip function, whose application does not necessarily coincide with the convention of

staggered intervention6. Therefore, this paper motivated its identification of treatment effect with

lagged outcome from a work of Ding and Li (2019) who compared the difference-in-differences

approach with lagged-dependent-variable adjustment in the context of nonparametric identification.

Suppose that difference-in-differences approach is interested in identification and estimation

of the parameter 𝜏𝐷𝑖𝐷 , which is equivalent to the average treatment effects for treated under the

parallel trends assumption. In the original language of Ding and Li (2019), they define their

difference-in-differences estimator as

𝜏𝐷𝑖𝐷 = (𝑌1,𝑡+1 − 𝑌1,𝑡) − (𝑌0,𝑡+1 − 𝑌0,𝑡)

which can be written as, after translating notations into those described in Section 2.2,

𝜏𝐷𝑖𝐷 = 𝐸 [𝑌𝑖𝑡 − 𝑌𝑖𝑡−1 |𝐺𝑖 = 1] − 𝐸 [𝑌𝑖𝑡 − 𝑌𝑖𝑡−1 |𝐺𝑖 = 0]

Rewriting above equation yields

𝜏𝐷𝑖𝐷 = (𝐸 [𝑌𝑖𝑡 |𝐺𝑖 = 1] − 𝐸 [𝑌𝑖𝑡−1 |𝐺𝑖 = 1]) − (𝐸 [𝑌𝑖𝑡 |𝐺𝑖 = 0] − 𝐸 [𝑌𝑖𝑡−1 |𝐺𝑖 = 0])
6For the recent development of combination of structural nested mean model and the parallel trends assumption,

one might consult the recent paper of Shahn et al. (2022)
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= (𝐸 [𝑌𝑖𝑡 |𝐺𝑖 = 1] − 𝐸 [𝑌𝑖𝑡 |𝐺𝑖 = 0]) − (𝐸 [𝑌𝑖𝑡−1 |𝐺𝑖 = 1] − 𝐸 [𝑌𝑖𝑡−1 |𝐺𝑖 = 0])

which is analogous to the expression of Ding and Li (2019) after changing places of terms

𝜏𝐷𝑖𝐷 = (𝑌1,𝑡+1 − 𝑌0,𝑡+1) − (𝑌1,𝑡 − 𝑌0,𝑡)

For the average treatment effects with lagged outcome, Ding and Li (2019) defined their

estimator for the conditional average treatment effect on treated:

𝜏𝐿𝐷𝑉 = (𝑌1,𝑡+1 − 𝑌0,𝑡+1) − 𝛽𝑦 (𝑌1,𝑡 − 𝑌0,𝑡) = (𝑌1,𝑡+1 − 𝛽𝑦𝑌1,𝑡) − (𝑌0,𝑡+1 − 𝛽𝑦𝑌0,𝑡)

where the AR(1) persistence parameter 𝛽𝑦 comes from the conditional mean functional form

assumption of Ding and Li (2019)

𝐸 (𝑌𝑖𝑡 |𝑌𝑖𝑡−1, 𝐺𝑖) = 𝛽0 + 𝛽𝑦𝑌𝑖𝑡−1 + 𝜏𝐺𝑖 .

Note that unobserved heterogeneity 𝑐𝑖 does not show up on Ding and Li (2019), and the

conditional mean function is using the ever-treated group indicator 𝐺𝑖 instead of treatment effects

indicator 𝐷𝑖𝑡 . Their equation for conditional mean specification works in their 2 × 2 setup. When

𝑇 ≥ 3, conditioning on𝐺𝑖 could make a restriction that does not fit well to the feedback environment.

Recall the definition of 𝐺𝑖 which is a non-linear function of entire history of treatment assignment.

Conditioning on 𝐺𝑖 is similar to conditioning on entire history of 𝐷𝑖𝑡 , which is equivalent to

imposing a strict exogeneity of treatment indicator7. In this paper, I suggest the exponential analog

of conditional average treatment effects inspired by the definition of Ding and Li (2019). The

rest of this section introduces nonparametric and parametric identification of conditional average

treatment effects along with necessary assumptions.

2.3.2 Identification of Average Treatment Effects with Ratio Form

I begin the identification procedure from suggesting necessary assumptions. The first identifi-

cation assumption is the homogeneous treatment effect assumption in the ratio form.
7For example, suppose 𝑇 = 3 and the unit 𝑗 is treated at the last period 3. If we use the specification with 𝐺𝑖 as

suggested in Ding and Li (2019), conditional mean of 𝑌 𝑗2 is already conditioning on the future treatment assignment,
𝐷 𝑗3 as the unit 𝑗 is in the ever-treated group 𝐺 𝑗 = max𝐷 𝑗𝑠 = 𝐷 𝑗3 = 1. It would be impossible for 𝑌 𝑗2 to affect
𝐷 𝑗3 as 𝐷 𝑗3 is already fixed by conditioning on 𝐺 𝑗 . Similar argument (persistence cannot affect assignment) could be
found from the literature (Ghanem et al. 2022) in the context of the necessary and sufficient condition of parallel trends
assumption.
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Assumption 2.1. Homogeneous Treatment Effects. For each 𝑡 = 2, 3, . . . , 𝑇 ,

conditional average treatment effects is homogeneous. That is,

𝐸

[
𝑌
(1)
𝑖𝑡

− 𝑌 (0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] =

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] − 1 = exp(𝜏) − 1,

where 𝜏 ∈ R is the non-stochastic constant unknown number.

This assumption is analogous to the linear model where econometricians assume

𝐸

[
𝑌
(1)
𝑖𝑡

− 𝑌 (0)
𝑖𝑡

|𝐷𝑖𝑡 = 1
]
= 𝜏, 𝑡 = 1, . . . , 𝑇

Note that exp(𝜏) = 𝜉 and 𝜏 = ln(𝜉) for any constant 𝜉 ∈ R++, so the right hand side can be

any positive value. One can relax this assumption by allowing time-varying treatment effects

relatively easily, but I want to focus on the case when we have a homogeneous treatment effects

and see the impact of introducing lagged outcome or feedback into our consideration. By assuming

homogeneous effects, we can also bypass the negative weights problem in the staggered intervention

literature.

The second assumption is an analog of Ignorability assumption in Ding and Li (2019).

Assumption 2.2. Sequential Ignorability.

𝑌
(𝑑)
𝑖𝑡

⊥⊥ 𝐷𝑖𝑡 | (𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖), 𝑑 = 0, 1.

The assumption differs from the assumption 2 of Ding and Li (2019) as: i) I explicitly include

the unobserved heterogeneity 𝑐𝑖 into consideration while Ding and Li (2019) ignores it; ii) I

conditioned on the history of lagged outcomes instead of one lag, 𝑌𝑖𝑡−1, as I want to allow more

than two period in my framework (𝑇 ≥ 2); iii) I used time-varying 𝐷𝑖𝑡 while Ding and Li (2019)

used time-constant 𝐺𝑖. This does not creates much problem when 𝑇 = 2, but as the time length

gets bigger (𝑇 > 2), using 𝐺𝑖 works as if the researcher imposes strict exogeneity of 𝐷𝑖𝑡 , which

rules out the feedback environment.

Under these assumptions, we can have a nonparametric identification of the conditional average

treatment effects in the ratio form.
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Proposition 2.1. Identification of CATE with Ratio Form. Under the Neyman-Rubin causal model

(2.1), homogeneous treatment effects (Assumption 2.1), and sequential ignorability (Assumption

2.2), conditional average treatment effects could be identified by

𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1

]
𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0

] − 1 =

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] − 1 = exp(𝜏) − 1

Furthermore, it is also true that

𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1

]
𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0

] − 1 =

𝐸

[
𝑌
(1)
𝑖𝑡

| ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

| ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] − 1 = exp(𝜏) − 1 □

For the proof, see appendix B.1. Under the homogeneous treatment effects (Assumption 2.1),

econometricians can further identify unconditional average treatment effects.

Corollary 2.1. Identification of Average Treatment Effects with Ratio Form. Under the same

assumptions as in Proposition 2.1, average treatment effects would be identified by

𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1

]
𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0

] =

𝐸

[
𝑌
(1)
𝑖𝑡

|𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝐷𝑖𝑡 = 1
] = exp(𝜏).

The proof of the corollary use the same iteration of expectation using the conditional distribution

of 𝐷 ( ®𝑌𝑖𝑡−1, 𝑋𝑖 |𝐷𝑖𝑡 = 1), as we did in the Proposition 2.1.

For the parametric identification of average treatment effects with the ratio form, I need addi-

tional assumptions. Let me begin with the parametric potential outcome model by repeating the

equation (2.2):

𝐸 (𝑌 (𝑑)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖; 𝜃) = 𝑐𝑖 · 𝑒𝑥𝑝(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝑋𝑖𝑡𝛽𝑥 + 𝜏𝑑), 𝑑 = 0, 1.

Observe that the potential outcome model (2.2) is a parametric version of homogeneous treat-

ment effects as the only difference between the controlled and treated outcome comes from the gap

between exp(𝜏). Next, we assume that the conditional mean function of outcome model.

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 ; 𝜃) = 𝑐𝑖 · 𝑒𝑥𝑝(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝑋𝑖𝛽𝑥 + 𝜏𝐷𝑖𝑡) (2.6)
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Combining the potential outcome model (2.2) and the conditional mean of outcome (2.6) yields

an interesting result, which is already provided in Lee and Kobayashi (2002). In this paper, I

extended the conditioning set to show that we can achieve the parametric identification even after

conditioning on the lagged outcomes.

Proposition 2.2. Identification without Selection Bias. Suppose we assume the standard Neyman-

Rubin causal model (2.1) and the parametric potential outcome model (2.2). If we further assume

the conditional mean of outcome (2.6), then we have

𝐸 (𝑌 (𝑑)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 𝑑; 𝜃) = 𝐸 (𝑌 (𝑑)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖; 𝜃) (2.7)

If we assume (2.1), (2.2), and (2.7) instead, then we have the outcome model (2.6) as a result.

For the proof, see appendix B.2. As discussed in Lee and Kobayashi (2002), (2.7) means that

there is no selection bias, or we can just regard (2.7) as the mean-independence assumption. The

Proposition 2.2 basically says that under the mean-independence assumption (2.7) and potential

outcome model with homogeneous treatment effects (2.2), conventional Neyman-Rubin causal

model (2.1) provides the parametric identification of the outcome model (2.6) to estimate the

conditional average effects in the ratio form. One can also regard the conditional mean specification

(2.6) makes a necessary and sufficient condition for the mean-independence assumption (2.7), given

(2.1) and (2.2).

The following proposition presents my main identification result:

Proposition 2.3. Parametric Identification of CATE with Ratio Form. Suppose the standard Neyman-

Rubin causal model (2.1), parametric potential outcome model with homogeneous treatment effects

(2.2), and the mean-independence assumption (2.7) holds. Then the conditional average treatment

effect is identified by the form of ratio

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1)
𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0)

− 1 =

𝐸

[
𝑌
(1)
𝑖𝑡

− 𝑌 (0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] = exp(𝜏) − 1. (2.8)

For the proof, see appendix B.3. Again, identified parameter 𝜏 would be interpreted as the

proportional change relative to the potentially controlled outcome as the base level.
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2.4 Estimation

In this section, I explain the Wooldridge (1997) GMM framework to estimate the parametric

model (2.3). This approach has three advantages in the study of causal inference with the lagged

outcome. First, the framework allows us to include lagged outcome as covariates, which was

allowed in the static fixed effects Poisson models. Second, it also allows the treatment indicator

𝐷𝑖𝑡 to be arbitrarily correlated with both of unobserved heterogeneity 𝑐𝑖 and the lagged outcome

(feedback). Here, I want to emphasize that we do not need to impose any specific structural models

to capture the relationship between the treatment indicator and confounding heterogeneity or

feedback. Finally, statistical inference is straightforward as the asymptotic behavior of the resulting

estimator, including consistency and asymptotic normality, is followed by the conventional theory

of GMM.

2.4.1 Wooldridge (1997) GMM Approach

Wooldridge (1997) estimates the multiplicative model in the form of

𝑦𝑖𝑡 = 𝑐𝑖 · 𝜇(𝑊𝑖𝑡 ; 𝜃0) · 𝑢𝑖𝑡 (2.9)

where 𝑐𝑖 is the unobserved heterogeneity, and 𝑢𝑖𝑡 is the unobserved time-varying error term. 𝑊𝑖𝑡

stands for the vector of covariates at 𝑡. Note that the lagged outcome 𝑌𝑖𝑡−1 and the function of

lagged outcome could be included in the 𝑊𝑖𝑡 . 𝜃0 is a 𝐾 × 1 real column vector of unknown true

parameters8. The key assumption to estimate the model above comes from the dynamic panel data

model literature (Chamberlain 1992, Wooldridge 1997).

Assumption 2.3. Sequential Exogeneity. For each 𝑡 = 1, 2, . . . , 𝑇 , suppose the model follows

the functional form of (2.9), and let 𝑢𝑖𝑡 and {𝑊𝑖1,𝑊𝑖2, . . . ,𝑊𝑖𝑡} is defined as described above. We

assume

𝐸 (𝑢𝑖𝑡 |𝑐𝑖,𝑊𝑖𝑡 ,𝑊𝑖𝑡−1, . . . ,𝑊𝑖1) = 1, ∀𝑡 = 1, 2, . . . , 𝑇 □

Note that the Assumption 2.3 is weaker than the usual assumption used in the panel fixed-

effects literature. For example, strict exogeneity assumption in Wooldridge (1999) assumes that
8As mentioned in section 2.2, I am denoting 𝜃0 as the true parameter instead of 𝜃. I abuse notation in this section

as I need the notation 𝜃 during the GMM procedure (13).
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entire history of covariates should be considered in the conditioning set

𝐸 (𝑢𝑖𝑡 |𝑐𝑖,𝑊𝑖𝑇 ,𝑊𝑖𝑡−1, . . . ,𝑊𝑖1) = 1 ∀𝑡 = 1, 2, . . . , 𝑇 .

To construct an orthogonality condition, define 𝑟𝑖𝑡 following the transformation suggested by

the literature (Chamberlain 1992, Wooldridge 1997).

𝑟𝑖𝑡 ≡ 𝑦𝑖𝑡 − 𝑦𝑖𝑡+1 ·
𝜇(𝑊𝑖𝑡 ; 𝜃0)
𝜇(𝑊𝑖𝑡+1; 𝜃0)

, 𝑡 = 1, 2, . . . , 𝑇 − 1 (2.10)

Observe that the second part of the right hand side is trying to mimic 𝑦𝑖𝑡 using the model speci-

fication, and leave the term 𝑢𝑖𝑡+1 only. To be specific, combined with the model (2.9), 𝑟𝑖𝑡 would

be

𝑟𝑖𝑡 = 𝑐𝑖 · 𝜇𝑖𝑡 · 𝑢𝑖𝑡 − (𝑐𝑖 · 𝜇𝑖𝑡+1 · 𝑢𝑖𝑡+1) ·
𝜇𝑖𝑡

𝜇𝑖𝑡+1
= 𝑐𝑖 · 𝜇𝑖𝑡 · (𝑢𝑖𝑡 − 𝑢𝑖𝑡+1)

where 𝜇𝑖𝑡 = 𝜇(𝑊𝑖𝑡 ; 𝜃0). Then we have the moment conditions to use.

Lemma 2.4.1 Lemma 2.1. of Wooldridge (1997) Under the multiplicative model (2.9) and As-
sumption 2.3. (Sequential Exogeneity),

𝐸 (𝑟𝑖𝑡 |𝑐𝑖,𝑊𝑖𝑡 ,𝑊𝑖𝑡−1, . . . ,𝑊𝑖1) = 0 □

The proof is already provided by Wooldridge (1997). The direct result of this lemma is the following

moment condition

𝐸
[
𝑊′
𝑖 𝑟𝑖 (𝜃0)

]
= 𝐸 [𝜓𝑖 (𝜃0)] = 0 (2.11)

where 𝑟𝑖 (𝜃0) = (𝑟𝑖1(𝜃0), 𝑟𝑖2(𝜃0), . . . , 𝑟𝑖𝑇−1(𝜃0))′ is the (𝑇 − 1) × 1 vector, while the matrix𝑊𝑖 is a

𝐿 × 𝐿 matrix constructed in the following block-diagonal form:

𝑊𝑖 ≡

©­­­­­­­­«

®𝑊𝑖1 0 · · · 0 0

0 ®𝑊𝑖2 · · · 0 0
. . .

0 0 · · · 0 ®𝑊𝑖𝑇−1

ª®®®®®®®®¬
(2.12)

29



where ®𝑊𝑖𝑡 is the 1 × 𝐿𝑡 vector of functions of 𝑊𝑖1, . . . ,𝑊𝑖𝑡 for each 𝑡 = 1, . . . , 𝑇 − 1, and 𝐿 =

𝐿1 + 𝐿2 + . . . 𝐿𝑇−1. For the details of specific form of instrument matrix (IV matrix, hereafter) and

necessary adjustments, see Section 2.4.2.

Under the moment condition (2.11), the GMM estimator 𝜃 is a solution of the following

minimization problem

𝜃 = argmin
𝜃

[
𝑁∑︁
𝑖=1
𝑊′
𝑖 𝑟𝑖 (𝜃)

]′
Ω̃−1

[
𝑁∑︁
𝑖=1
𝑊′
𝑖 𝑟𝑖 (𝜃)

]
(2.13)

where 𝑟𝑖𝑡 (𝜃) is defined as in (2.10) which is the function of 𝜃, and Ω̃ is a GMM weighting matrix.

The optimal weighting matrix with the moment condition (2.11) would be a consistent estimator

of Ω0 ≡ 𝐸 (𝜓𝑖 (𝜃0)𝜓′
𝑖
(𝜃0)), which could be written as

Ω̃ ≡ 1
𝑁

𝑁∑︁
𝑖=1
𝑊′
𝑖 𝑟𝑖 (𝜃)𝑟𝑖 (𝜃)′𝑊𝑖 (2.14)

where 𝜃 is an arbitrary 𝐾 × 1 vector. Recall that 𝜃 does not necessarily have to be a consistent

estimator of 𝜃0. For example, one can use initially inconsistent estimator including fixed effects

Poisson estimator to construct the weighting matrix. In fact, Ω̃ can be an arbitrary 𝐿 × 𝐿 vector.

Therefore, one can try the following two step GMM approach to estimate 𝜃: In the first step, plug

a 𝐿 × 𝐿 identity matrix, Ω̃ = 𝐼𝐿×𝐿 and get 𝜃 which is could be an non-optimal estimate of 𝜃0. Note

that this 𝜃 is still a consistent estimator of 𝜃0. Then, use 𝜃 and repeat the procedure (2.13), but this

time, we use the estimator of optimal weight defined in (2.14). This procedure does not require the

arbitrary choice of initial 𝜃 by replacing Ω̃ with the identity matrix. One can choose arbitrary 𝜃

instead. The asymptotic normality is a straightforward result of the conventional theory of GMM.

Theorem 1. Asymptotic Normality of GMM. Under the regularity conditions (Hansen (1982))

and the moment condition (2.11), the solution 𝜃 to
𝑁∑
𝑖=1
𝜓𝑖 (𝜃) = 0 achieves

√
𝑁 (𝜃 − 𝜃0) →𝑑 𝑁 (0,Λ𝜓)

where Λ𝜓 ≡ (𝑅′
0Ω0

−1𝑅0)−1, 𝑅0 ≡ 𝐸 (𝑊′
𝑖
∇𝜃𝑟𝑖 (𝜃0)), and Ω0 ≡ 𝐸 (𝜓𝑖 (𝜃0)𝜓′

𝑖
(𝜃0)) □
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2.4.2 Construction of IV Matrices

If an econometrician wants to utilize the Wooldridge (1997) GMM approach in the context of

staggered intervention, one needs to deviate from the original work of Wooldridge (1997). In this

section, I briefly discuss necessary adjustment applied to Wooldridge (1997) to fit my model (2.3)

and the staggered intervention environment. I can write the model as

𝜇(𝑊𝑖𝑡 ; 𝜃) = 𝑒𝑥𝑝(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝜏𝐷𝑖𝑡 + 𝑋𝑖𝑡𝛽𝑥)

while 𝜃′ = (𝛽𝑡 , 𝛽𝑦, 𝛽𝑧, 𝜏, 𝛽′𝑥)′ is the 𝐾 × 1 vector of the parameters of interest. There are two

variables that I want to assume beyond the sequential exogeneity. First, I want to assume that time

dummies are non-random. Second, I want to include the strictly exogenous time-varying covariates

𝑋𝑖𝑡 . Therefore, I need to change the moment condition as

𝐸 (𝑢𝑖𝑡 |𝑐𝑖,𝑊𝑖𝑡 ,𝑊𝑖𝑡−1, . . . ,𝑊𝑖1, 𝑋𝑖) = 1, ∀𝑡 = 1, 2, . . . , 𝑇

while 𝑋𝑖 includes the time dummies and the entire history of strictly exogenous covariates,

𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑇 . Observe that 𝑌𝑖𝑡−1 and its functions, 𝑍𝑖𝑡−1, 𝐷𝑖𝑡 (if we allow feedback), are still

inside the vector of sequentially exogenous covariates9. In accordance with the adjustment on the

baseline assumption, we change the IV instrument matrix𝑊𝑖. By adding 𝑋𝑖 to the IV matrix (2.12),

we have

𝑊𝑖 ≡

©­­­­­­­­«

𝑊𝑖1 0 0 · · · 0 0 · · · 0 𝑋𝑖1

0 𝑊𝑖1 𝑊𝑖2 · · · 0 0 . . . 0 𝑋𝑖2

. . . 0 0
...

0 0 0 · · · 0 𝑊𝑖1 · · · 𝑊𝑖𝑇−1 𝑋𝑖𝑇−1

ª®®®®®®®®¬
(2.15)

where we can find the motivation of such matrix from the dynamic panel linear model literature

(Arellano and Bond 1991). One theoretical caveat of Wooldridge (1997) framework comes from

the fact that the choice of IV is arbitrary10. As a natural alternative of Arellano and Bond (1991)
9If a researcher faithfully believes that the treatment assignment is strictly exogenous, and uncorrelated with the

feedback from past outcome, one can put 𝐷𝑖𝑡 into 𝑋𝑖𝑡 instead. In this case, we still allow 𝐷𝑖𝑡 to be correlated with
unobserved heterogeneity.

10The original proposal of Wooldridge (1997) was not necessarily efficient. One might try to achieve the optimal
IV following the guidance of Chamberlain (1992). This paper does not cover the derivation of such optimal IV as it
was too difficult to obtain in the environment of this paper
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type of IV matrix, I also tried another form of IV suggested by Roodman (2009a,b), who collapsed

the block-diagonal matrix into the triangular matrix

𝑊𝑖 =

©­­­­­­­­«

𝑊𝑖1 0 · · · 0 0 𝑋𝑖1

𝑊𝑖1 𝑊𝑖2 · · · 0 0 𝑋𝑖2

. . .
...

𝑊𝑖1 𝑊𝑖2 · · · 𝑊𝑖𝑇−2 𝑊𝑖𝑇−1 𝑋𝑖𝑇−1

ª®®®®®®®®¬
Finally, recall that the first period is the controlled period which makes 𝐷𝑖1 = 0 for all 𝑖 =

1, . . . , 𝑁 . To avoid any zero vectors, I dropped 𝐷𝑖1 from the𝑊𝑖1.

2.5 Monte Carlo Simulation

2.5.1 Benchmark DGP

In this section, I present a Monte Carlo simulation study to check the asymptotic behavior of

GMM approaches suggested in the previous section. The true DGP of this simulation study has the

form of

𝑌𝑖𝑡 = 𝑐𝑖 · 𝑒𝑥𝑝(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝜏𝐷𝑖𝑡 + 𝑋𝑖𝑡𝛽𝑥) · 𝜀𝑖𝑡

𝑐𝑖 = 𝑒𝑥𝑝(𝜆1 + 𝜆𝑥 𝑋̄𝑖 + 𝜆𝑦𝑌𝑖0 + 𝜆𝑎𝑎𝑖)

where 𝑎𝑖 ∼ 𝑁 (0, 1), 𝑋̄𝑖 = 1
𝑇

𝑇∑
𝑡=1
𝑋𝑖𝑡 , and 𝑋𝑖𝑡 is also following the standard normal and 𝑌𝑖0 is

exogenously given. The benchmark DGP has the parameter value of 𝛽𝑦 = 0.3, 𝛽𝑧 = 0, 𝛽𝑥 = 0.2, and

𝜏 = 0.3. To allow correlations between 𝑐𝑖 and covariates, I also put 𝜆1 = 0, 𝜆𝑥 = 1, 𝜆𝑦 = 1, and 𝜆𝑎 =

1 in the benchmark DGP. I draw the idiosyncratic error 𝜀𝑖𝑡 from the Poisson distribution, so that we

can have the expected mean as 𝐸 (𝑌𝑖𝑡 | . . . ) = 𝑐𝑖 ·𝑒𝑥𝑝(𝛽𝑡+𝛽𝑦 ln(𝑌𝑖𝑡−1+𝑍𝑖𝑡−1)+𝛽𝑧𝑍𝑖𝑡−1+𝑋𝑖𝑡𝛽𝑥+𝜏𝐷𝑖𝑡).

Broadly speaking, my paper consists of four types of cases based on the two categories: i) We

can either use the block-diagonal IV matrices following the approach of Arellano and Bond (1991),

or we can rely on the matrix collapsing technique from Roodman (2009a,b) to have triangular IV

matrices; ii) We can assume that treatment assignment is either affected by the feedback from the

past outcome (sequential exogeneity of treatment assignment), or we can assume that there is no

feedback from the past outcome as the conventional two-way fixed-effects literature implicitly do
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(strict exogeneity of treatment assignment). When the paper states that the treatment assignment is

sequentially exogenous, I am assuming the following mechanism of feedback,

𝐷𝑖𝑡 = 1[𝛾𝑦𝑌𝑖𝑡−1 ≤ 𝜅 + 𝑐𝑖 + 𝑁 (0, 1)]

where the constant 𝜅 could be working as a cutoff for the treatment qualification. When the paper

says the treatment assignment is strictly exogenous, it means that there is no feedback of lagged

dependent variable, and I made the true DGP of assignment as simple as possible by putting

𝜆1 = 𝜆𝑥 = 𝜆𝑦 = 0. I will still allow, however, that the unobserved heterogeneity to be correlated

with the treatment assignment by putting 𝜆𝑎 = 1 as before and defining the treatment assignment

to have different entrance timing

𝐷𝑖𝑡 =

𝑇∑︁
𝑗=2
𝑄𝑖 × 𝑓 𝑗

while 𝑓 𝑗 is the cohort indicator function which is one if the unit is treated at time 𝑗 , and 𝑄𝑖 =

1[𝑎𝑖 ≤ 𝜅𝑞] is the ever treated indicator which is correlated with the unobserved heterogeneity.

Note that the time index 𝑗 starts from 2, so that period 1 would be remained controlled throughout

the simulation study. For the DGP with the strictly exogenous assignment, I assigned the cohorts

using the uniform distribution, so that neither feedback nor heterogeneity could affect the cohort

assignment mechanism.

Finally, as mentioned in Section 2.2, I designed the simulation based on the no exit condition

(𝐷𝑖𝑠 ≥ 𝐷𝑖𝑡 , ∀𝑠 ≥ 𝑡), following the convention of the staggered intervention literature.

2.5.2 Results

Table 2.1 shows the Monte Carlo simulation result when the model is correctly assuming that

the treatment assignment is sequentially exogenous, being affected by the feedback from the past

outcome. As one can see, usual two-way fixed-effects models estimated by fixed effects Poisson

method are generally biased, regardless of including lagged outcome (AR1FE) or not (TWFE).

When the true parameter was 0.3, TWFE yields the negative estimates on average, while AR1FE

overestimates the true parameter. For both types of IVs (IV1 for Arellano and Bond (1991) style,
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and IV2 for Roodman (2009a,b) style), GMM methods are generally consistent, and their standard

deviations decrease as the sample size goes up.

Table 2.1 Average of estimated coefficients and
their standard deviations when the treatment is se-
quentially exogenous (T=4, 1000 Repetitions)

ln(𝑌𝑡−1 + 𝑍𝑡−1) included

𝜏 = 0.3 TWFE AR1FE IV1 IV2

N=500 -0.196 0.565 0.316 0.313

(0.269) (0.035) (0.168) (0.201)

N=1000 -0.246 0.562 0.307 0.306

(0.252) (0.024) (0.117) (0.139)

N=2000 -0.276 0.562 0.301 0.302

(0.219) (0.017) (0.083) (0.093)

N=4000 -0.330 0.561 0.302 0.302

(0.232) (0.013) (0.063) (0.072)

Note. Standard deviations in the parentheses. TWFE used
the fixed effects Poisson with strict exogeneity. AR1FE
also used the same estimation strategies but with function of
lagged outcome term included. IV1 used the Arellano and
Bond (1991) types of instrument matrices, while IV2 used
the suggestion of Roodman (2009a,b).

When the treatment assignment is indeed strictly exogenous, we can include the treatment

effects indicator into the last column of IVs along with strictly exogenous covariates, and estimate

the coefficient. By putting 𝐷𝑖𝑡 into 𝑋𝑖, we can only consider the sequential exogeneity of lagged

outcome and its function 𝑍𝑖𝑡−1. Note that during the simulation, we still allowed the unobserved

heterogeneity, 𝑐𝑖, could be arbitrarily correlated with the treatment assignment indicator. Table 2.2

shows the result of Monte Carlo simulation under the strict exogeneity assumption on the treatment

indicator. As one can see, both of the usual two-way fixed-effects models are still generally biased

again, even for the case when the treatment assignment is strictly exogenous. The result comes
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from the design of true DGP in this simulation, which included the lagged outcome. TWFE

explicitly ignores the lagged outcome term, which creates the bias. AR1FE tries to include the

lagged outcome, but the fixed effects Poisson method relies on the strict exogeneity assumption,

which does not allow researchers to include the lagged outcome. Since conditioning on the lagged

outcome violates the strict exogeneity assumption of the fixed effects Poisson method, AR1FE

could not completely remove the bias.

Table 2.2 Average of estimated coefficients and their
standard deviations when the treatment is strictly ex-
ogenous (T=4, 1000 Repetitions)

ln(𝑌𝑡−1 + 𝑍𝑡−1) included

𝜏 = 0.3 TWFE AR1FE IV1 IV2

N=500 -0.086 0.271 0.315 -0.231

(0.214) (0.036) (0.163) (17.179)

N=1000 -0.048 0.277 0.300 11.87323

(0.193) (0.026) (0.093) (365.938)

N=2000 -0.041 0.279 0.299 0.304

(0.179) (0.018) (0.065) (0.125)

N=4000 -0.047 0.282 0.302 0.302

(0.189) (0.013) (0.049) (0.094)

Note. Standard deviations in the parentheses. TWFE used the
fixed effects Poisson with strict exogeneity. AR1FE also used
the same estimation strategies but with function of lagged out-
come term included. IV1 used the Arellano and Bond (1991)
types of instrument matrices, while IV2 used the suggestion of
Roodman (2009a,b).

Both of GMMs are converging to the true parameter as we expected. For the triangular

specification of IV2 (Roodman 2009a,b), however, estimates works poorly in the small sample.

In general, simulation studies suggest that the block-diagonal suggestion from Arellano and Bond

(1991) works well while collapsing triangular IV reports a less preferable result compared to the
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triangular IV. Appendix C.1 presents the detailed simulations including the un-optimal GMM who

use the identity matrices for the initial weights. One can find a tendency that the block-diagonal

IVs are generally working well and efficient compared to the triangular IVs for exponential mean

specifications like in this paper.

2.6 Application: Effect of Prescription Drug Monitoring Program on Child Maltreatment

This section revisits Evans et al. (2022b) to show that the persistence of outcome variable and

feedback structure of assignment could yield completely different policy implication. The original

work of Evans et al. (2022b) evaluates the impact of implementation of must-access Prescription

Drug Monitoring Programs (PDMP, hereafter) on the child maltreatment, and concludes that the

monitoring program had either no effects or even a positive impact on the child maltreatment.

They emphasize the importance of policy designs that consider the substitution pattern seriously,

as such unintended consequence could be coming from the strong dependence on the controlled

substances. For instance, they argue that inconsiderate policy design can aggravate physical and

psychological distress. For the details of their analysis and opioid crisis in the United States, see

Evans et al. (2022b) and the references therein.

Before we proceed further, notice that the PDMP makes a good example of staggered inter-

vention. As stated in the online appendix of Evans et al. (2022b), drug monitoring programs

were initially enacted and implemented from the early 2000s in several states. During the 2000s,

however, the policy itself was generally optional, and did not have any specific instructions/actions

enforced to the supply side of prescriptions. In 2007, Nevada adopted the first substance monitoring

program with mandatory measures. This must-access prescription drug monitoring program now

includes: i) the report duties of all prescriptions; ii) for the prescriptions of controlled substance,

providers need to consult PDMP with patient’s history beforehand. After Nevada, Oklahoma (2010)

and Ohio (2011) adopted their must-access provisions, and numerous states followed, expecting to

reduce the abuse of controlled substance. Table 2.3 reproduces the Table B1 of the online appendix

of Evans et al. (2022b) and it summarizes the staggered nature of the PDMP assignment.
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Table 2.3 Entrance Years of Must-access PDMP

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

NV OK OH DE MA IN CT NH

KY NY LA NJ RI

NM TN VA

WV VT

Note. Must-access PDMP implementation years were taken from the online appendix of Evans et al. (2022b).
Details of treatment entrance can be found in their online appendix and the references therein.

To measure the effects of must-access PDMP implementation on child maltreatment, Evans

et al. (2022b) use the following Difference-in-differences specification11 with the linear model:

𝑌𝑖𝑠𝑡 = 𝑐𝑖 + 𝛽𝑡 + 𝜏 · PDMP𝑠𝑡 + 𝑋′
𝑖𝑠𝑡𝛽𝑥 + 𝜀𝑖𝑠𝑡

where 𝑖 is the county-level index, 𝑠 is the state index, 𝑡 is the year index, 𝑐𝑖 is county-wise fixed

effects, 𝛽𝑡 captures the time fixed effects, 𝜏 is the parameter of interest, and 𝑋𝑖𝑠𝑡 is the vector of

strictly exogenous covariates which is not affected by treatment status. They use two outcome

variables to estimate the impact of PDMP to child maltreatment. The first outcome variable is the

count of allegation of physical abuse and neglect per 1,000 children within the county 𝑖 for the year

𝑡. The second outcome variable is the count substantiated cases of physical abuse and neglect per

1,000 children for each county 𝑖 and year 𝑡.

Using the above level-level equation, Evans et al. (2022b) interpret the meaning of coefficients

in the following order: i) Suppose the estimate of 𝜏 is 2.984, which is approximately 3. This means

that the PDMP implementation raise the count of alleged case of physical abuse and neglect by

three per 1,000 children per year; ii) Evans et al. (2022b) then collects the sample size used during

the estimation. For example, the sample mean of outcome variable used in the first estimation

was 38 allegations per 1,000 children; iii) since 2.984/38 ≈ 0.0785 is approximately 0.08, they
11In this paper, I focus on their two-way-fixed-effects (TWFE) specification. They also examined the event study

model along with the simple TWFE to estimate the effects of must-access PDMPs on child maltreatment. For the
details of their specifications and results, see Evans et al. (2022b).
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claim that the size of the PDMP effect is about 8 percent. Interpreting the result in the percentage

change is natural in this study as the outcome variable is already defined as the size of cases per

1,000 children per year. For example, it might not be intuitive to determine whether the coefficient

is big or small enough, as the estimated number is always interpreted as per thousand children.

I had three concerns, however, regarding their linear model, estimation strategies, and the model

specifications.

First, I want to include the lagged outcome into the model as the behavior of child maltreatment

could have persistence issue. For example, if a county has 40 allegations of child maltreatment last

year, one would expect the county might have a similar number of allegations this year. If the abuse

of controlled substance could be a source of child maltreatment, the addictive nature of controlled

substance might result in the persistent pattern of child maltreatment. However, their model does

not contain any lagged outcomes.

Second, I also want to estimate the model using the log-level equation, instead of constructing

ex-post ratios to re-calculate the percentage change. Considering the advantage of exponential

specification (Santos Silva and Tenreyro 2006, 2011), my framework could provide a reasonable

estimates to study the impact of PDMP on the child maltreatment with percentage change interpre-

tation. Note that their data set is an ideal case for the exponential model as their outcome variable

is a count response. Specifically, I use the following model:

𝑌𝑖𝑠𝑡 = 𝑐𝑖 · 𝑒𝑥𝑝(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑠𝑡−1) + 𝜏PDMP𝑠𝑡 + 𝑋𝑖𝑠𝑡𝛽𝑥) · 𝜀𝑖𝑠𝑡

where the econometricians can impose 𝛽𝑦 = 0 depending on whether they want to include the

lagged outcome into the covariates set or not. In this paper, I estimate the models both with and

without lagged outcome.

Finally, I want to take the feedback environment into our consideration during the analysis. If a

policy has a heterogeneous entrance timing (staggered intervention), it might have been determined

by latent structure. For example, Figure 2.1 presents the heterogeneity of treatment entrance of

must-access PDMP. As we can see, early takers are concentrated in the Midwest area and regions

between California and Texas.
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Figure 2.1 Implementation Year of must-access PDMP

Figure 2.2 shows the regional difference of allegation count one year before the adoption of

must-access PDMP. Since many states adopted must-access PDMP after 2019, those states are

having no data as the data set only contains observations up to the year 201612. However, we can

find the similar pattern between Figure 2.1 (entrance timing) and Figure 2.2 (outcome right before

the entrance). For example, early takers in Nevada and Oklahoma reports relatively high levels of

allegation count. States in Midwest also reports relatively high level of allegations, corresponding

with the pattern shown in Figure 2.1. Even though the graphical illustration does not prove that

there is a structural relationship between the lagged outcome and the treatment timing decision,

overlapping geographical pattern suggests that it would be worthwhile for researchers to consider

about the feedback environment as a potential source of staggered intervention. It is also useful to

recall that my framework does not require specific structural relationship as it allows an arbitrary

correlation between the lagged outcome and the treatment assignment. To see the impact of

introducing feedback environment, I estimated the exponential models with and without feedback

assumption.
12One can also use the initial outcome level at year 2006 for the baseline instead. In this case, we can still conclude

that early takers between California and Texas, and the Midwest states are showing a similar pattern. For the details,
see the appendix C.3.
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Figure 2.2 Allegations of Child Maltreatment, 1 Year Before PDMP

2.6.1 Data

For the empirical illustration in this section, I used the data set provided by Evans et al. (2022b),

whose replication package (Evans et al. 2022a) is publicly available in OPEN-ICPSR website. For

my GMM approach, I need a specific environments in the panel data set. First, I lose the first period

observation (2006 in the data set) as I use them for the equation of the second period (2007) when I

include the lagged outcome (𝑦2006) into the model. Second, I lose the last period observation (2016

in the data set) to construct the moment condition which use the future period outcome for the

ratio. Therefore, my framework will lose at least two period, initial one and the last one. Therefore,

I could not use Nevada sample within my application as the data set has no observation in year

200513. To make a fair comparison with TWFE specification with my dynamic models, I cut the

sample before 2007, and used the data starting from 2008. This allowed me to use year 2009 as the

controlled period while losing samples in 2008, in exchange for including the lagged outcome14.
13The data starts from the year 2006. If I include the Nevada units, year 2007 is the first treatment period while year

2006 become the controlled period. Since the data has no 2005 observation, I cannot include the lagged outcome in the
controlled period. If I decided to lose 2006 observations in exchange for including lagged outcome, my framework does
not have controlled period as Nevada starts the first PDMP from 2007. In this case, I cannot make a fair comparison
between my framework and TWFE/DiD specification as they have at least one controlled period.

14Although it is not reported in the manuscript, regressions with/without Nevada sample (3 observations) does not
create a significant difference, which is mentioned in Evans et al. (2022b) footnote 35.
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2.6.2 Estimation Results

Table 2.4 shows the estimation result for the alleged child maltreatment per 1,000 children. To

make a fair comparison between the percentage change interpretation, I calculated the approximate

percentage change following the original work of Evans et al. (2022b), where they divided the

coefficients of linear models by sample average of dependent used during the estimation. The

ex-post percentage interpretation is also reported in the Panel A. As one can see, the usual TWFE

strategy with the linear model has a significantly different implication when we compared it to

those with exponential specification reported in Panel B.

First, it is noticeable that all of coefficients estimated by GMM in Panel B reports negative

estimates. When we allow both of persistence and the feedback environment, GMM1 with un-

optimal identity weight reports that PDMP decreases the size of child maltreatment allegation by

7.3% with 1% significance level. GMM2 with optimal weighting matrix reports that PDMP still

decreases the amount of child maltreatment allegations around 2.9% at the 10% significance level.

When we dropped the persistence, GMM2 estimates reports 12% reduce in child maltreatment

with 5% significance level. Panel B suggests a weak but existing evidence that PDMP might have

reduced the amount of child maltreatment allegations. It is a noticeable result as the original paper

of Evans et al. (2022b) was reporting a positive but insignificant effects.

If the practitioners changed the model specification from the linear one to the exponential

one, they would still obtain a different implication. Fixed effects Poisson method, which does not

assume persistence nor feedback structure, reports that the implementation of PDMP raised the

allegations of child maltreatment by 7.4%. The magnitude of the effect is similar to the result from

TWFE (approximately 10.6%), while the exponential specification (FePoi) provides statistically

more significant result (𝐹 = 13.69) compared to the original linear model from Evans et al. (2022b).
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Table 2.4 Effects of PDMP for Child Maltreatment Allegations

Panel A. Coefficients % Interpretation

Linear Models TWFE LyStD LySqD TWFE LyStD LySqD

Alleged Cases

PDMP 4.150 -0.031 0.177 0.106 -0.000 0.005

(2.769) (0.289) (0.219)

Allow Feedback NO NO YES NO NO YES

Lagged Y controlled NO YES YES NO YES YES

Panel B.

Exponential Models FePoi GMM1 GMM1 GMM1 GMM2 GMM2 GMM2

Alleged Cases

PDMP 0.074*** -0.101* -0.096 -0.073*** -0.120** -0.032 -0.029*

(0.020) (0.060) (0.023) (0.020) (0.054) (0.018) (0.017)

Allow Feedback NO YES NO YES YES NO YES

Lagged Y controlled NO NO YES YES NO YES YES

Note. Standard deviations in the parentheses. Significance levels are ***(1%), **(5%), and *(10%) respectively. LyStD
and LySqD were estimated using the GMM approach following the Arellano and Bond (1991) instrument while report-
ing only the second stage estimates. FePoi is the analogy of TWFE into the exponential mean specification. GMM1 is
the first stage GMM estimates while GMM2 stands for the second stage GMM estimates. % Interpretation in the Panel B
were calculated by dividing the average size of outcome used during the estimation, following the approach in Evans et
al. (2022b). All GMM results including LyStD and LySqD are based on the IV matrix suggested by Arellano and Bond
(1991).

If practitioners want to keep the linear model, but also want to include the lagged outcome into

their model, they can use the GMM framework of dynamic panel linear model literature mentioned

in Section 2.1. LyStD and LySqD in Panel A report the results estimated by Arellano and Bond

(1991) approach. Table 2.4 still suggests that choice between the linear model and the exponential

model can create a remarkable difference during the policy evaluation. For example, linear model

considering the feedback and the persistence (LySqD) argues that there the PDMP has a relatively

weak effects around 0.5% on the child maltreatment. When we consult the exponential model, it
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has an opposite policy implication: PDMP reduced the size of child maltreatment by 2.9%, or even

a 7.3%.

Table 2.5 Effects of PDMP for Child Maltreatment Substantiations

Panel A Coefficients % Interpretation

Linear Models TWFE LyStD LySqD TWFE LyStD LySqD

Substantiated Cases

PDMP 1.006 0.254** 0.294*** 0.117 0.030 0.034

(0.661) (0.127) (0.078)

Allow Feedback NO NO YES NO NO YES

Lagged Y controlled NO YES YES NO YES YES

Panel B.

Exponential Models FePoi GMM1 GMM1 GMM1 GMM2 GMM2 GMM2

Substantiated Cases

PDMP 0.097*** 0.024 0.059 0.050* -0.135 0.028 0.018

(0.025) (0.094) (0.033) (0.029) (0.088) (0.032) (0.029)

Allow Feedback NO YES NO YES YES NO YES

Lagged Y controlled NO NO YES YES NO YES YES

Note. Standard deviations in the parentheses. Significance levels are ***(1%), **(5%), and *(10%) respectively.
LyStD and LySqD were estimated using the GMM approach following the Arellano and Bond (1991) instrument while
reporting only the second stage estimates. FePoi is the analogy of TWFE into the exponential mean specification.
GMM1 is the first stage GMM estimates while GMM2 stands for the second stage GMM estimates. % Interpretation
in the Panel B were calculated by dividing the average size of outcome used during the estimation, following the ap-
proach in Evans et al. (2022b). All GMM results including LyStD and LySqD are based on the IV matrix suggested
by Arellano and Bond (1991).

Table 2.5 presents the estimation result for the substantiated cases of physical child abuse and

neglect, instead of alleged cases. Similar to the previous Table 2.4, the linear model (TWFE) and

the exponential model (FePoi) share similar implication (around 10% increase of substantiations).

By consulting the exponential model over linear model, however, researchers can find additional

significance at 1% level (𝐹 = 15.05). Linear models with persistence (LyStD and LySqD) also
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reports that there is a significant increase in the substantiation (around 3%) due to the implemen-

tation of PDMP. If the researchers relied on conventional methods, they would end up with the

conclusion that PDMP significantly raise the size of child maltreatment substantiations, contrary

to the expectation of the policy makers. If they consulted my GMM framework, however, they

would have different conclusion: From Table 2.5, there is no evidence that the PDMP raised the

substantiations of child maltreatment.

The discrepancy between the estimation strategies come from several source. First, assuming

persistence (including lagged outcome) can change the coefficient. Since we conditioned on the

lagged outcome, variations of outcome variable explained by the persistence would be fixed,

resulting in a different estimates for the treatment effects. Second, assuming feedback environment

can change the coefficient. If the staggered intervention is indeed affected by the lagged outcome,

assuming feedback environment could solve the potential source of endogeneity of treatment

assignment, resulting in different estimates.

One can further argue that we are getting the different estimates because we are comparing the

level equation to the log equation. To conduct a fair comparison, an economist can also think about

the following log-level linear equation, where we put the natural log to the outcome variable to

interpret the coefficient as a proportional change.

ln(𝑌𝑖𝑠𝑡) = 𝑐𝑖 + 𝛽𝑡 + 𝜏 · PDMP𝑠𝑡 + 𝑋′
𝑖𝑠𝑡𝛽𝑥 + 𝜀𝑖𝑠𝑡

Table 2.6 compares the log-level linear equations and the exponential forms when we focus

on alleged cases. As we can see, model specification can lead to different conclusions. For

example, economists can consider persistence and feedback environment seriously and estimate

the log-level equation using LySqD specification. Table 6 reports that LySqD estimated the

effect of 2% increase in the allegations with significance level at 1% (𝐹 = 16). Meanwhile,

two exponential specification with persistence and feedback reported negative effects (-7.3% and

-2.9% respectively). Even though they have different significance levels, log linear models and

exponential models presents completely opposite policy implication in this data set, which was

already anticipated in Santos Silva and Tenreyro (2006, 2011). Briefly speaking, the log-linear
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model has completely different assumption on the error terms compared to the errors in the usual

exponential mean specification. This gap comes from the benefit of exponential specification which

allows 𝑌𝑖𝑡 = 0, while log-linear model does not allow it.

Table 2.6 Effects of PDMP for Child Maltreatment Allegations

Panel A.

Log-Linear Models TWFE LyStD LySqD

Alleged Cases

PDMP 0.055 0.013* 0.020***

(0.055) (0.006) (0.005)

Allow Feedback NO NO YES

Lagged Y controlled NO YES YES

Panel B.

Exponential Models FePoi GMM1 GMM1 GMM1 GMM2 GMM2 GMM2

Alleged Cases

PDMP 0.074*** -0.101* -0.096 -0.073*** -0.120** -0.032 -0.029*

(0.020) (0.060) (0.023) (0.020) (0.054) (0.018) (0.017)

Allow Feedback NO YES NO YES YES NO YES

Lagged Y controlled NO NO YES YES NO YES YES

Note. Standard deviations in the parentheses. Significance levels are ***(1%), **(5%), and *(10%) respectively. LyStD
and LySqD were estimated using the GMM approach following the Arellano and Bond (1991) instrument while reporting
only the second stage estimates. FePoi is the analogy of TWFE into the exponential mean specification. GMM1 is the first
stage GMM estimates while GMM2 stands for the second stage GMM estimates. All GMM results including LyStD and
LySqD are based on the IV matrix suggested by Arellano and Bond (1991).
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When we focus on the substantiated cases (Table 2.7), log-level linear equation still reports

the positive effects, while exponential mean specification (GMM1 and GMM2) does not yield

significant effects of PDMP on the child maltreatment. General implication stays the same as we

had in Table 2.5: it would be an impetuous conclusion if an economist argues that PDMP raised

the substantiated cases of child maltreatment.

Table 2.7 Effects of PDMP for Child Maltreatment Substantiations

Panel A.

Log-Linear Models TWFE LyStD LySqD

Substantiated Cases

PDMP 0.073 0.056*** 0.075***

(0.060) (0.014) (0.012)

Allow Feedback NO NO YES

Lagged Y controlled NO YES YES

Panel B.

Exponential Models FePoi GMM1 GMM1 GMM1 GMM2 GMM2 GMM2

Substantiated Cases

PDMP 0.097*** 0.024 0.059 0.050* -0.135 0.028 0.018

(0.025) (0.094) (0.033) (0.029) (0.088) (0.032) (0.029)

Allow Feedback NO YES NO YES YES NO YES

Lagged Y controlled NO NO YES YES NO YES YES

Note. Standard deviations in the parentheses. Significance levels are ***(1%), **(5%), and *(10%) respectively. LyStD
and LySqD were estimated using the GMM approach following the Arellano and Bond (1991) instrument while report-
ing only the second stage estimates. FePoi is the analogy of TWFE into the exponential mean specification. GMM1 is
the first stage GMM estimates while GMM2 stands for the second stage GMM estimates. All GMM results including
LyStD and LySqD are based on the IV matrix suggested by Arellano and Bond (1991).
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2.7 Conclusion

This paper studies the identification strategy of proportional treatment effects conditional on

the lagged outcome, and provide a GMM estimation strategy which allows the treatment effects

to be correlated with unobserved heterogeneity and past outcome. Monte Carlo simulation study

suggests that the IV matrices following the block-diagonal tradition of Arellano and Bond (1991)

generally work well, while triangular specifications from Roodman (2009a,b) work relatively poorly.

The empirical application revisiting the causal inference of PDMP on child maltreatment suggests

that considering persistence or feedback environment can create a significantly different policy

implications depending on which assumptions we apply.

This paper focuses on the homogeneous treatment effects, as I wanted to see the impact of

introducing i) persistence of outcome variable or ii) feedback environment. A natural extension

for the future research would be allowing conditional treatment effects to be time-variant. This

will further require ex-post reconstruction of time constant effects, which will reach far beyond the

scope of this paper.
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CHAPTER 3

IMPUTATION ESTIMATION OF DYNAMIC POTENTIAL OUTCOME MODELS FOR
INTERVENTION ANALYSIS

3.1 Introduction

The rich information of panel data helps economists to identify models with the unobserved

(time constant) heterogeneity, which is not allowed in the cross-sectional or time-series data. There

are at least two approaches to handle this unobserved heterogeneity using the (linear) panel data

models. First, econometrician can cancels out the time constant heterogeneity by time differencing,

then instrumentize the differenced variable with the exogenous information under the sequential

exogeneity assumption (Arellano and Bond 1991). Panel data allows us to do “time-differencing”

as we can obtain multiple observations across time for the same unit. This approach is particularly

useful when we want to control the lagged outcome as we are instrumentizing them using the

exclusion restrictions anyway. The caveat of this approach comes from the fact that differencing

will also remove variations in the time-differenced variables and the instruments too. Therefore,

the econometrics literature has been focusing on finding more moment conditions to wrestle with

potential weak IV problem (e.g., Ahn and Schmidt (1995), Arellano and Bover (1995), Blundell

and Bond (1998), and Roodman (2009a,b, 2020) most recently). The literature extensively reviews

even for the case with nonlinear models (Arellano and Honoré 2001, Arellano and Bonhomme

2012), but there has been relatively less attention from the literature in the context of causal

inference. Except an extensive development in biostatistics literature based on Robins (1986,

1994, 1997) which usually imposes sequential ignorability assumptions for the entire path of

covariates and lagged/realized outcomes, there has been some recent developments who tried to

i) incorporate sequential exogeneity into the covariate balancing (Viviano and Bradic 2021); ii)

integrating autoregressive integrated moving average (ARIMA) model with the Rubin Causal Model

(Menchetti et al. 2023); iii) taking design-based perspective to avoid super-population assumptions

(Bojinov et al. 2021). None of them, however, tried to integrate sequential exogeneity in the context

of causal inference relying on parallel trends (Roth et al. 2023).
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Such hesitations coincide with the recent development of econometrics literature regarding

parallel trends. Since Angrist and Pischke (2009) described that there is a “bracketing relationship"

between the Difference-in-Differences (DiD, hereafter) and the dynamic linear models, literature

has been accumulating warning signs when people want to mix parallel trends and dynamic model.

Chabé-Ferret (2015, 2017) investigates the merits of DiD and matching on pre-treatment outcomes,

and pointed out that mixing DiD and lagged outcome might not work well, recommending to

control initial outcome instead. Ding and Li (2019) generalized the result of Angrist and Pischke

(2009) into a nonparametric analogue, arguing DiD and dynamic model always have a monotonic

relationship. As a result, mixing DiD (parallel trends) and sequential ignorability (regressor of

lagged outcome) has been discussed as “an exciting new literature" or “an interesting area for future

research" (Roth et al. 2023).

Another literature that was hesitant to adopt dynamic model was regression imputation/adjustment

approach. In our best knowledge, it is believed that it was the seminal work of Heckman et al.

(1997) who brought attention of econometricians into the method of imputation. It is also notable

that the main concern of Heckman et al. (1997) was the estimation of the average treatment effects

(ATE) by DiD in the context of matching methods. Recent development of this literature still works

in the context of DiD (Gobillon and Magnac 2016, Gardner 2021, Wooldridge 2021, Caetano et al.

2022, Borusyak et al. 2024), and most of them, if not all, are not interested in incorporating the

lagged outcome into their conditional covariates set during the DiD.

In this paper, therefore, we conduct a simulation study to mix dynamic model with imputation

approach. The ultimate goal of this paper is to estimate the average treatment effects for treated

groups based on the regression imputation approach while allowing lagged outcome included in the

potential outcome models. We designed our imputation estimator mainly motivated by Borusyak

et al. (2024), but details can be traced back to various works in the regression imputation/adjustment

literature (Gardner 2021, Wooldridge 2021). We suggest easy steps to construct the estimator, and

demonstrated that our imputation estimator works well by Monte Carlo simulation.

We believe our work can contribute two distinct literature that were mentioned above. First,
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we showed that sequential exogeneity assumption used in dynamic panel linear models (Arellano

and Bond 1991) can be also utilized in the context of causal inference to construct imputation

estimator. Next, our work can provide evidence that regression imputation/adjustment estimators

can be extended into the dynamic models too.

Our methods are similar in principle to Menchetti and Bojinov (2022) and Menchetti et al.

(2023) who predict counterfactual outcomes using classical time series models. One benefit of

their approach is that they do not require a control unit to fit the time series model. While beneficial

to applications lacking untreated units, their methodology will not allow for the capture of time-

varying secular trends as in a classical DiD analysis. Further, we derive our estimator in a fixed-𝑇

setting, but show how the main idea can extend to large samples as well.

The rest of the paper is structured as follows. Section 3.2 describes our dynamic potential

outcome model, parameter of our interests, and necessary assumption in this paper. Section 3.3

discuss the identification of our treatment effects. Section 3.4 summarize our estimation strategy of

imputation estimator in three simple steps, which was inspired by Borusyak et al. (2024). Section

3.5 represents the our monte carlo simulation results, and we close our paper in section 3.6.

3.2 Model

We assume a balanced panel of 𝑁 individuals over 𝑇 time periods. We first consider the case

of a common treatment timing where some individuals are treated immediately after period 𝑇0 > 1

and the others remain untreated. Let 𝐷𝑖𝑡 is an indicator function to be 1 if the unit 𝑖 at time 𝑡 is

treated and 0 otherwise. Then We define 𝐷𝑖 as an ever-treated indicator variable, which is 1 if unit 𝑖

is treated through the entire history and 0 otherwise. Since the treatment assignment 𝐷𝑖𝑡 can either

have 1 or 0, we can also write 𝐷𝑖 as a nonlinear function of entire history of treatment assignment.

For example, we can write the ever-treated indicator as 𝐷𝑖 ≡ max(𝐷𝑖𝑡)𝑡=𝑇𝑡=1 .

We adopt a potential outcome notation: 𝑦𝑖,𝑡 (1) is the outcome of unit 𝑖 at time 𝑡 if they were

exposed to treatment at 𝑇0 + 1. The counterfactual untreated outcome is 𝑦𝑖,𝑡 (0). We are primarily

interested in dynamic Average Treatment Effects on the Treated (ATT), defined as

𝜏𝑡 ≡ E
[
𝑦𝑖,𝑡 (1) − 𝑦𝑖,𝑡 (0) | 𝐷𝑖 = 1

]
(3.1)
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We similarly define 𝜏𝑖,𝑡 = 𝑦𝑖,𝑡 (1)−𝑦𝑖,𝑡 (0) as unit 𝑖’s effect of treatment at time 𝑡. We put no restrictions

on the objects 𝜏𝑖,𝑡 other than the necessary regularity conditions for the appropriate sample averages

to converge. The parameter 𝜏𝑡 is similar to the object of interest in Callaway and Sant’Anna (2021)

when there is only a single treated group. These parameters can be further aggregated to identify

different effects of the treatment. For example, we could average 𝑡 = 𝑇0 + 1, ..., 𝑇 for an overall

average treatment effect.

We consider the following model for untreated potential outcomes:

𝑦𝑖,𝑡 (0) = 𝛼𝑦𝑖,𝑡−1(0) + 𝑐𝑖 + 𝜃𝑡 + 𝑢𝑖,𝑡 (3.2)

where 𝑐𝑖 is a unit-specific fixed effect, 𝜃𝑡 is a constant time effect, and 𝑢𝑖,𝑡 is a mean-zero idiosyncratic

shock. The fixed effect 𝑐𝑖 captures permanent discrepancies between the treated and never-treated

units and the time effect 𝜃𝑡 captures secular changes in the macroeconomy1. The non-standard

component is the lagged untreated potential outcome 𝑦𝑖,𝑡−1(0). The AR(1) structure captures

transitory shocks that can affect treatment decisions, like a worker’s temporary layoff before a work

training program (Ashenfelter 1978). It is also responsible for the failure of unconditional parallel

trends (PT). The usual PT assumption states that variation in the untreated potential outcomes is

equal across treatment status. It is formally written as

E
[
Δ𝑦𝑖,𝑡 (0) | 𝐷𝑖 = 1

]
= E

[
Δ𝑦𝑖,𝑡 (0) | 𝐷𝑖 = 0

]
(3.3)

where Δ be the first-differencing transformation so that Δ𝑦𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑦𝑖,𝑡−1. Let 𝒖𝑖 = (𝑢𝑖,1, ..., 𝑢𝑖,𝑇 )′

and 𝝉𝑖 = (𝜏𝑖,𝑇0+1, ..., 𝜏𝑖,𝑇 )′. We make the following assumptions on the data:

Assumption 3.1. Sampling. The random components (𝑐𝑖, 𝒖𝑖, 𝑦𝑖,0, 𝝉𝑖, 𝐷𝑖) are iid with finite fourth

moments.

Assumption 3.2. Dynamic Completeness. E
[
𝑦𝑖,𝑡 (0) | 𝑦𝑖,𝑡−1(0), ..., 𝑦𝑖,1(0), 𝑦𝑖,0, 𝑐𝑖

]
= 𝛼𝑦𝑖,𝑡−1 +

𝜃𝑡 + 𝑐𝑖 for all 𝑡.
1The interactive fixed effects model, or factor model, nests the two-way error model as a special case. We explicitly

cover the general factor model later in the section.
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Assumption 3.3. No Anticipation. 𝑦𝑖,𝑡 = 𝑦𝑖,𝑡 (0) if unit 𝑖 is not subject to treatment at time 𝑡.

Assumption 3.4. Exogeneity. E
[
𝑢𝑖,𝑡 | 𝑐𝑖, 𝑦𝑖,𝑡−1, ..., 𝑦𝑖,1, 𝐷𝑖

]
= 0

Assumption 3.1 is a standard random sampling assumption as in Callaway and Sant’Anna

(2021) and can be relaxed at the expense of notational complexity. Assumption 3.2 implies that

the model in equation (3.2) is dynamically complete in the sense that all correlation between units

are captured by the lagged outcome and fixed effect. We could extend the dynamic specification

to a general autoregressive distributed lag model without changing the fundamental identifying

argument, meaning we can allow for additional lags along with lagged independent variables.

We would only need additional time periods. We point out that Assumptions 3.1 and 3.2 imply

almost no distributional assumptions on the treated potential outcomes 𝑦𝑖,𝑡 (1). Thus we can allow

for almost arbitrary treatment effect heterogeneity, so long as the aggregate parameters can be

consistently estimated. Assumption 3.3 is also standard in the literature and rules out anticipatory

effects. We can test the assumption by redefining the treatment date to before 𝑇0 + 1 and estimate a

treatment effect at 𝑇0.

Finally, we require Assumption 3.4 to estimate the potential outcome model written as in

equation (3.2). By conditioning on the ever-treated indicator function 𝐷𝑖, we are also allowing a

general correlation between the treatment indicator 𝐷𝑖𝑡 and the unobserved heterogeneity 𝑐𝑖 for all

time. Therefore, one can say that the lagged outcomes are sequentially exogenous up until each

time period 𝑡, while the treatment indicator 𝐷𝑖𝑡 or ever-treated indictor 𝐷𝑖 = max(𝐷𝑖𝑡)𝑡=𝑇𝑡=1 is strictly

exogenous. For the detail of various versions of exogeneity levels in the panel data literature, see

Wooldridge (2010) and the references therein.

3.3 Identification

We now describe identification of the dynamic ATTs. We follow a similar strategy to the popular

“imputation" approach in the panel data literature (Gardner 2021, Wooldridge 2021, Borusyak et al.

2024, Brown and Butts 2023). We start by writing the model for untreated potential outcomes (3.2):

𝑦𝑖,𝑡 (0) = 𝛼𝑦𝑖,𝑡−1(0) + 𝜇𝑖 + 𝜃𝑡 + 𝑢𝑖,𝑡
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In this paper, we use the untreated outcomes to estimate the model’s parameters, then subtract the

estimated untreated potential outcomes from the post-treatment treated observations to estimate the

ATT. Our model for treatment effects is

𝜏𝑖,𝑡 = 𝑦𝑖,𝑡 (1) − 𝑦𝑖,𝑡 (0)

which places no restrictions on the treated counterfactual and allows arbitrary dynamics in the

treatment effect parameters. Since this paper is interested in the impact of dynamic model on

the two way fixed effects approach, and suggest imputation approach as an alternative, we further

assume that the treatment effect is homogeneous (𝜏𝑖,𝑡 = 𝜏𝑡 = 𝜏). By narrowing down our interests

to this specific environment, we can make a fair comparison between the imputation and the simple

two way fixed effects, as the imputation approach will allow us to estimate various parameters for

different timings, while the simple two way fixed effects will give us one parameter as a basis.

The original identifying result depends on Arellano and Bond (1991) estimation of the au-

toregressive parameter 𝛼. First, note that taking first differences removes the unit effect 𝑐𝑖. We

have

Δ𝑦𝑖,𝑡 (0) = 𝛼Δ𝑦𝑖,𝑡−1(0) + Δ𝜃𝑡 + Δ𝑢𝑖,𝑡 (3.4)

One issue to consider is the “exogeneity" of the treatment effect parameters. Consider the Arellano

and Bond (1991) moments modified to use only control outcomes:

E
[
(1 − 𝐷𝑖)𝑦𝑖,𝑠 (Δ𝑦𝑖,𝑡 − 𝛼Δ𝑦𝑖,𝑡−1 − Δ𝜃𝑡)

]
= 0 (3.5)

where (1−𝐷𝑖) appears to use only the controlled observations. This moment condition holds under

Assumption 3.4 as one can see from the dynamic panel literature (Arellano and Bond 1991). Once

we control for past outcomes and unobserveables, the path of the untreated outcomes is independent

of treatment and differ in levels only up to the time effects. We assume common treatment timing

with no sample switching.
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Turning back to the primary moment conditions, we assume 𝑠 < 𝑡 − 2. Then observe that

E
[
(1 − 𝐷𝑖)𝑦𝑖,𝑠 (Δ𝑦𝑖,𝑡 − 𝛼Δ𝑦𝑖,𝑡−1 − Δ𝜃𝑡)

]
= E

[
(1 − 𝐷𝑖)𝑦𝑖,𝑠Δ𝑢𝑖,𝑡

]
= E

[
E

[
𝑦𝑖,𝑠 (0)Δ𝑢𝑖,𝑡 | 𝐷𝑖 = 0

] ]
.

Applying iterated expectations to the expectation conditional on 𝐷𝑖 = 0 gives zero moment condi-

tion. We summarize this conclusion in a lemma:

Lemma 3.3.1 Under Assumptions 3.1, 3.2, and 3.4, 𝛼 and 𝜃𝑡s are identified by

E
[
𝑦𝑖,𝑠 (Δ𝑦𝑖,𝑡 − 𝛼Δ𝑦𝑖,𝑡−1 − Δ𝜃𝑡) | 𝐷𝑖 = 0

]
= 0 (3.6)

where 𝑠 < 𝑡 − 2.

Once we have 𝛼 and 𝜃𝑡 , we have

𝑦𝑖,𝑡 (0) − 𝛼𝑦𝑖,𝑡−1(0) − 𝜃𝑡 = 𝑐𝑖 + 𝑢𝑖,𝑡 (3.7)

so E [𝑐𝑖 | 𝐷𝑖 = 0], and E [𝑐𝑖 | 𝐷𝑖 = 1] are identified and estimable ex-postly. In this paper, we use

the pre-treatment observations to impute E [𝑐𝑖 | 𝐷𝑖 = 1], whose approach can be traced back to

Gardner (2021), Wooldridge (2021), and Borusyak et al. (2024). For the detailed form of imputed

heterogeneity, see the next section and Appendix C.1.

Identification of the ATTs follows an iterative procedure. First, consider 𝑡 = 𝑇0 + 1, the first

treated period. In this stage, we can impute E
[
𝑦𝑖,𝑇0+1(0) | 𝐷𝑖 = 1

]
to get our ATT estimate:

E
[
𝑦𝑖,𝑇0+1(0) | 𝐷𝑖 = 1

]
= E

[
𝛼𝑦𝑖,𝑇0 (0) + 𝑐𝑖 + 𝜃𝑇0+1 + 𝑢𝑖,𝑇0+1 | 𝐷𝑖 = 1

]
= 𝛼E

[
𝑦𝑖𝑇0 | 𝐷𝑖 = 1

]
+ E [𝑐𝑖 | 𝐷𝑖 = 1] + 𝜃𝑇0+1

where the second equality comes from the construction that 𝑇0 is a controlled period. Therefore

𝜏𝑇0+1 is identified by taking the difference between the observed outcome and the imputed untreated

potential outcome over the treated sample.

Theorem 3.3.1 Under Assumption 1, and given (𝛼,E [𝑐𝑖 | 𝐷𝑖 = 1] , 𝜃2, ..., 𝜃𝑇 ), 𝜏𝑇0+1 is identified
by

E
[
𝑦𝑖,𝑇0+1 − 𝛼𝑦𝑖,𝑇0 − 𝑐𝑖 − 𝜃𝑇0+1 | 𝐷𝑖 = 1

]
□
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We can continue inductively to identify the treatment effects past 𝑇0 + 1. Suppose 𝜏𝑡 =

E
[
𝑦𝑖,𝑡 (1) − 𝑦𝑖,𝑡 (0) | 𝐷𝑖 = 1

]
is identified. Then 𝜏𝑡+1 can be achieved recursively:

𝜏𝑡+1 = E
[
𝑦𝑖,𝑡+1(1) − 𝑦𝑖,𝑡+1(0) | 𝐷𝑖 = 1

]
= E

[
𝑦𝑖,𝑡+1 − 𝛼𝑦𝑖,𝑡 (0) − 𝑐𝑖 − 𝜃𝑡+1 | 𝐷𝑖 = 1

]
= E

[
𝑦𝑖,𝑡+1 − 𝛼(𝑦𝑖,𝑡 (1) − 𝜏𝑡) − 𝑐𝑖 − 𝜃𝑡+1 | 𝐷𝑖 = 1

]
= E

[
𝑦𝑖,𝑡+1 − 𝛼𝑦𝑖,𝑡 − 𝑐𝑖 − 𝜏𝑡+1 | 𝐷𝑖 = 1

]
− 𝛼𝜏𝑡

The following theorem summarize our identification result.

Theorem 3.3.2 Under Assumption 1, and given (𝜏𝑡 , 𝛼,E [𝑐𝑖 | 𝐷𝑖 = 1] , 𝜃2, ..., 𝜃𝑡+1) for 𝑡 > 𝑇0 + 1,
𝜏𝑡+1 is identified by

𝜏𝑡+1 = 𝛼𝜏𝑡 + E
[
𝑦𝑖,𝑡+1 − 𝛼𝑦𝑖,𝑡 − 𝑐𝑖 − 𝜃𝑡+1 | 𝐷𝑖 = 1

]
□

An interesting component of this AR(1) dynamic specification is that the treatment effects also

follow an AR(1) dynamic process.

3.4 Estimation

In this section, we summarize the estimation procedure. Estimation of average treatment effects

on treated groups can be conducted by regression imputation approach in the following three steps.

1. Using controlled observations only, regress the potential outcome equation (3.2) and estimate 𝛼

and 𝜃𝑡 by Arellano and Bond (1991)

2. Impute 𝑐𝑖 by

𝑐̂𝑖 =
1
𝑇0

𝑇0∑︁
𝑡=1

(
𝑦𝑖,𝑡 − 𝛼̂𝑦𝑖,𝑡−1 − 𝜃̂𝑡

)
3. Estimate 𝜏𝑇0+1 as

𝜏̂𝑇0+1 =
1
𝑁1

𝑁∑︁
𝑖=1

𝐷𝑖 ·
(
𝑦𝑖,𝑇0+1 − 𝛼̂𝑦𝑖,𝑇0 − 𝜃̂𝑇0+1 − 𝑐̂𝑖

)
(3.8)

Then for 𝑡 > 𝑇0 + 1, estimate

𝜏̂𝑡 = 𝛼̂𝜏̂𝑡−1 +
1
𝑁1

𝑁∑︁
𝑖=1

𝐷𝑖 ·
(
𝑦𝑖,𝑡 − 𝛼̂𝑦𝑖,𝑡−1 − 𝜃̂𝑡 − 𝑐̂1

)
(3.9)

where𝑁1 =
∑𝑁
𝑖=1 𝐷𝑖 and𝑁0 =

∑𝑁
𝑖=1(1−𝐷𝑖) be the number of treated and untreated units respectively.

The general construction of this estimation procedure is motivated by the approach suggested in
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Borusyak et al. (2024), where the original work was focusing on the static models without lagged

outcomes in their model. In this paper, we extend the linear panel data models from static versions

to dynamic version, and check whether regression imputation approach still works.

In this step 1, we exchange the ordinary least square into the generalized method of moments

method to estimate the dynamic panel model. We chose Arellano and Bond (1991) for the

simplicity of use, but different researcher can also apply various estimation strategies depending

on their context. After step 1, we still do not have the unobserved heterogeneity part as the step 1

estimates the model in the form of differenced equation. Again, inspired by regression imputaion

literature (Gardner 2021, Wooldridge 2021, Borusyak et al. 2024), we imputed 𝐸 [𝑐𝑖 |𝐷𝑖 = 1] by

using the pre-treatment periods (𝑡 ≤ 𝑇0), whose identification can be found in Appendix C.1.

In step 3, we estimate the treatment effects for treated group. The effects for the first treatment

period is captured by the gap between the data (𝑦𝑖,𝑡 = 𝑦𝑖,𝑡 (1)) and the fitted/imputed counterfactual

(𝑦̂𝑖,𝑡 (0) = 𝛼̂𝑦𝑖,𝑇0 + 𝜃̂𝑇0+1 + 𝑐̂𝑖). It is interesting to point out that, after the first period, the treatment

effect parameters (𝜏𝑡) also follows AR(1) process, and their estimation can be achieved accordingly.

If we are willing to assume further that the lagged outcomes are non-stochastic, we might be

able to try inference guided by the results in Borusyak et al. (2024). Since it is not reasonable to

assume that the past dependent variables are non-stochastic, we narrow our focus to the simulation

study in this paper.

3.5 Simulations

We present the results of Monte Carlo simulations to compare our imputation approach with the

usual TWFE approach under the dynamic potential outcome model. Even though we are assuming

a homogeneous treatment effects in this paper, we estimated the treatment effect for the two different

treated periods (𝜏4 for the first treatment period and 𝜏5 for the final period). For the two way fixed

effects, we captured the homogeneous treatment effects by regressing the standard two way fixed

effects equation with a large set of dummy variables

𝑦𝑖,𝑡 = 𝑐𝑖 + 𝜃𝑡 + 𝜏 · 𝐷𝑖𝑡 + 𝑢𝑖,𝑡
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3.5.1 Benchmark DGP

In this paper, we designed the last period 𝑇 = 5 and the last controlled period 𝑇0 = 3, so that the

intervention happens at 𝑡 = 4, 5. The untreated potential outcome model follows the equation (3.2)

𝑦𝑖,𝑡 (0) = 𝛼𝑦𝑖,𝑡−1(0) + 𝑐𝑖 + 𝜃𝑡 + 𝑢𝑖,𝑡

where 𝛼 ∈ {0.5, 1.0} is the persistence parameter that captures path dependence in the dynamics

of outcome variables, 𝑐𝑖 is the unobserved heterogeneity, and 𝜃𝑡 is the time fixed effects. We draw

𝑐𝑖 from the standard normal distribution, and we put time trends are all zero for the simplicity of

discussion. We defined our strictly exogenous treatment assignment as 𝐷𝑖 = 𝑐𝑖 + 𝑁 (0, 1) so that

the assignment is correlated with the unobserved heterogeneity. For the uncorrelated assignment,

we drew the assignment from the standard normal distribution.

3.5.2 Results

Table 3.1 shows the simulation results with the treatment assignment correlated with the unob-

served heterogeneity under the presence of persistence in the outcome variable dynamics. One can

find the pattern that various parameters report the same results in Table 3.1. Under the dynamic

potential outcome models, imputation approach has the smaller bias than the two way fixed effects

approach. We can also observe the shrinking bias from the imputation approach as the sample size

increases, and the standard deviation also decrease as the sample size goes up.
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The biases from the two way fixed effects approach, however, does not go away. Under the

dynamic potential outcome model, the two way fixed effects estimator converged to a biased target

from the small sample size (𝑁 = 300), and the estimate does not change much even with much

bigger size of sample (𝑁 = 1, 000). The two way fixed effects approach also reports the biggest

root mean squared error (rMSE), dominated by big size of bias.

Table 3.1 Monte Carlo Simulation under Strictly Exogenous Assignment (𝛼 = 0.5)

Regression Imputation TWFE
𝜏4 = 1 𝜏5 = 1 𝜏 = 1

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE
300 0.039 0.164 0.168 300 0.036 0.233 0.235 300 0.543 0.133 0.560
500 0.027 0.120 0.123 500 0.026 0.178 0.180 500 0.553 0.105 0.563
1000 0.012 0.088 0.089 1000 0.012 0.133 0.133 1000 0.552 0.074 0.557

Regression Imputation TWFE
𝜏4 = 2 𝜏5 = 2 𝜏 = 2

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.039 0.164 0.168 300 0.036 0.233 0.235 300 0.543 0.133 0.560
500 0.027 0.120 0.123 500 0.026 0.178 0.180 500 0.553 0.105 0.563
1000 0.012 0.088 0.089 1000 0.012 0.133 0.133 1000 0.552 0.074 0.557

Regression Imputation TWFE
𝜏4 = −1 𝜏5 = −1 𝜏 = −1

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.039 0.164 0.168 300 0.036 0.233 0.235 300 0.543 0.133 0.560
500 0.027 0.120 0.123 500 0.026 0.178 0.180 500 0.553 0.105 0.563
1000 0.012 0.088 0.089 1000 0.012 0.133 0.133 1000 0.552 0.074 0.557

Note. Repetition size is 1,000 for all simulations. 𝑁 is the size of unit observations in the panel. The treatment assign-
ment is correlated with the unobserved heterogeneity.

Table 3.2 presents the result under the unit root process of outcome variable. Regression

Imputation method is still retain considerably less bias compared to the simulated estimates from

the two way fixed effects method. Imputation method, even under the unit root process, reported

shrinking standard deviations along with reducing bias as observation size goes up. If we compare

table 3.1 and 3.2, we can see that the biases in the two way fixed effects method magnify as the

persistence parameter gets bigger. By increasing the magnitude of persistence from 0.5 to 1.0,
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biases of TWFE estimates now have five times bigger magnitude than those from the previous

table. The standard deviations of TWFE estimators are also having twice as bigger size in Table

3.2 compared to those in Table 3.1.

Table 3.2 Monte Carlo Simulation under Strictly Exogenous Assignment (𝛼 = 0.5)

Regression Imputation TWFE
𝜏4 = 1 𝜏5 = 1 𝜏 = 1

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.017 0.153 0.154 300 0.029 0.318 0.320 300 2.805 0.284 2.820
500 0.016 0.119 0.120 500 0.031 0.247 0.248 500 2.810 0.222 2.819
1000 0.004 0.086 0.086 1000 0.007 0.176 0.176 1000 2.818 0.162 2.823

Regression Imputation TWFE
𝜏4 = 2 𝜏5 = 2 𝜏 = 2

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.017 0.153 0.154 300 0.029 0.318 0.320 300 2.805 0.284 2.820
500 0.016 0.119 0.120 500 0.031 0.247 0.248 500 2.810 0.222 2.819
1000 0.004 0.086 0.086 1000 0.007 0.176 0.176 1000 2.818 0.162 2.823

Regression Imputation TWFE
𝜏4 = −1 𝜏5 = −1 𝜏 = −1

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.017 0.153 0.154 300 0.029 0.318 0.320 300 2.805 0.284 2.820
500 0.016 0.119 0.120 500 0.031 0.247 0.248 500 2.810 0.222 2.819
1000 0.004 0.086 0.086 1000 0.007 0.176 0.176 1000 2.818 0.162 2.823

Note. Repetition size is 1,000 for all simulations. 𝑁 is the size of unit observations in the panel. The treatment assign-
ment is correlated with the unobserved heterogeneity.

Sometimes, economists want to estimate the causal effect of natural experiment or lab exper-

iment, where treatment assignment is completely random. Table 3.3 shows the simulation result

when treatment assignment is not even correlated with the unobserved heterogeneity. As men-

tioned in the section 3.5.1, we have independently drawn the assignment as a standard normal so

that it is not correlated with the unobserved heterogeneity. The pattern described in the previous

tables continues to hold in Table 3.3. Imputation estimators retained shrinking bias and standard

deviations with respect to increasing sample size, and working well compared to the two way fixed

effects method in root mean squared error.
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Table 3.3 Monte Carlo Simulation under Strictly Exogenous Assignment (𝛼 = 0.5)

Regression Imputation TWFE
𝜏4 = 1 𝜏5 = 1 𝜏 = 1

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.003 0.102 0.102 300 0.005 0.126 0.126 300 0.001 0.134 0.134
500 -0.002 0.080 0.080 500 -0.003 0.100 0.100 500 -0.001 0.106 0.106
1000 -0.001 0.054 0.054 1000 -0.001 0.072 0.072 1000 0.001 0.077 0.077

Regression Imputation TWFE
𝜏4 = 2 𝜏5 = 2 𝜏 = 2

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.003 0.102 0.102 300 0.005 0.126 0.126 300 0.001 0.134 0.134
500 -0.002 0.080 0.080 500 -0.003 0.100 0.100 500 -0.001 0.106 0.106
1000 -0.001 0.054 0.054 1000 -0.001 0.072 0.072 1000 0.001 0.077 0.077

Regression Imputation TWFE
𝜏4 = −1 𝜏5 = −1 𝜏 = −1

N Bias S.D. rMSE N Bias S.D. rMSE N Bias S.D. rMSE

300 0.003 0.102 0.102 300 0.005 0.126 0.126 300 0.001 0.134 0.134
500 -0.002 0.080 0.080 500 -0.003 0.100 0.100 500 -0.001 0.106 0.106
1000 -0.001 0.054 0.054 1000 -0.001 0.072 0.072 1000 0.001 0.077 0.077

Note. Repetition size is 1,000 for all simulations. 𝑁 is the size of unit observations in the panel. The treatment assignment
is correlated with the unobserved heterogeneity.

Unlike the previous tables above, The two way fixed effects methods are working competitive in

Table 3.3. Recall that the lagged outcome variable is still in the dynamic potential outcome models

in Table 3.3. In case where treatment assignment is uncorrelated with unobserved heterogeneity,

the two way fixed effects method has the smallest bias when the sample size is small (𝑁 = 300)

and the root mean squared error also decreases as the sample size grows. Combining Table 3.1 and

Table 3.3, one can also mention that the two way fixed effects estimator could bear bias when we

doubt zero correlation between the assignment and the unit fixed effects in the data, while the data

also could have path dependence or persistence in the outcome variable sequence.
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3.6 Conclusions

In this paper, we expanded the regression imputation method to study the causal inference under

potential outcome models with lagged outcome. We designed our imputation estimator inspired

by Arellano and Bond (1991) and Borusyak et al. (2024), and the Monte Carlo study suggests that

the imputation estimator might work even for the potential outcome model with dynamic form.

The usual two way fixed effects estimator, however, suffered severe bias from the existence of path

dependence, and such bias could be amplified when there is a unit root process in the dependent

variable sequence. The simulation study also suggests that ignoring persistence might require

heavy restriction on the treatment assignment (selection) mechanism.

The result from this paper can be extended to the various directions. First, we want to allow

staggered intervention beyond common intervention. In this paper, we focused on the common

intervention as we were interested in comparing imputation approach with the two way fixed effects

approach under the dynamic setting. Furthermore, combined with staggered intervention, we can

also allow heterogeneous effects for different timings.
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APPENDIX A APPENDIX FOR CHAPTER 1

A.1. Full result of Table 1.1 and Table 1.2

For the fair comparison, I report the estimates for the parameters of equation (1.4), for each

sample size.

Table A.1 Estimation Results under Feedback Environment (N = 500)

Reps=1,000 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.339 0.123 0.361 0.107 0.090 0.139 0.006 0.090 0.090
𝛽3 − 𝛽1 -0.112 0.136 0.176 0.241 0.107 0.264 0.006 0.104 0.105
𝛽1 0.001 0.094 0.094 0.001 0.064 0.068
𝛽𝑦 0.488 0.018 0.488 -0.124 0.021 0.126 -0.002 0.020 0.022
𝛽𝑑 -0.675 0.113 0.684 -0.209 0.126 0.244 -0.007 0.121 0.122
𝛽𝑧 0.575 0.044 0.576 -0.044 0.032 0.054 -0.001 0.032 0.032

Reps=1,000 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.303 0.099 0.319 0.175 0.609 0.633 0.084 0.813 0.818
𝛽3 − 𝛽2 0.282 0.067 0.290 0.128 0.463 0.481 0.062 0.661 0.664
𝛽𝑦 -0.250 0.024 0.251 -0.111 0.386 0.402 -0.055 0.563 0.565
𝛽𝑑 -0.601 0.143 0.618 -0.345 1.222 1.270 -0.162 1.634 1.642
𝛽𝑧 -0.109 0.034 0.114 -0.048 0.170 0.177 -0.025 0.245 0.246
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Table A.2 Estimation Results under Feedback Environment (N = 1,000)

Reps=1,000 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.335 0.091 0.347 0.104 0.062 0.121 0.002 0.063 0.063
𝛽3 − 𝛽1 -0.115 0.101 0.153 0.238 0.077 0.251 0.002 0.076 0.076
𝛽1 0.001 0.069 0.069 0.001 0.046 0.046
𝛽𝑦 0.488 0.012 0.488 -0.124 0.015 0.124 0.000 0.016 0.016
𝛽𝑑 -0.674 0.079 0.678 -0.210 0.092 0.229 -0.006 0.088 0.089
𝛽𝑧 0.573 0.031 0.573 -0.044 0.022 0.050 -0.002 0.023 0.023

Reps=1,000 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.300 0.066 0.308 0.068 0.389 0.395 0.021 0.428 0.429
𝛽3 − 𝛽2 0.282 0.047 0.286 0.055 0.305 0.310 0.015 0.356 0.357
𝛽𝑦 -0.249 0.017 0.250 -0.049 0.258 0.263 -0.014 0.306 0.306
𝛽𝑑 -0.602 0.100 0.610 -0.138 0.777 0.789 -0.045 0.857 0.859
𝛽𝑧 -0.110 0.023 0.113 -0.023 0.114 0.116 -0.008 0.136 0.137

Table A.3 Estimation Results under Feedback Environment (N = 5,000)

Reps=1,000 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.335 0.040 0.337 0.103 0.028 0.107 0.001 0.028 0.028
𝛽3 − 𝛽1 -0.116 0.043 0.123 0.238 0.035 0.241 0.000 0.033 0.033
𝛽1 0.001 0.030 0.030 0.001 0.020 0.020
𝛽𝑦 0.488 0.006 0.488 -0.123 0.007 0.123 0.000 0.007 0.007
𝛽𝑑 -0.670 0.036 0.671 -0.206 0.043 0.211 0.000 0.040 0.040
𝛽𝑧 0.575 0.014 0.575 -0.043 0.010 0.044 0.000 0.010 0.010

Reps=1,000 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.300 0.031 0.302 0.011 0.164 0.165 0.000 0.171 0.171
𝛽3 − 𝛽2 0.283 0.021 0.284 0.008 0.130 0.130 -0.002 0.143 0.143
𝛽𝑦 -0.248 0.008 0.249 -0.007 0.110 0.110 0.001 0.123 0.123
𝛽𝑑 -0.599 0.048 0.601 -0.022 0.325 0.326 0.001 0.339 0.339
𝛽𝑧 -0.109 0.010 0.109 -0.003 0.049 0.049 0.000 0.055 0.055
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Table A.4 Estimation Results under Feedback Environment (N = 10,000)

Reps=1,000 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.334 0.028 0.335 0.103 0.020 0.105 0.000 0.020 0.020
𝛽3 − 𝛽1 -0.115 0.031 0.120 0.239 0.025 0.240 0.000 0.024 0.024
𝛽1 0.001 0.021 0.021 0.000 0.014 0.014
𝛽𝑦 0.488 0.004 0.488 -0.123 0.005 0.123 0.000 0.005 0.005
𝛽𝑑 -0.670 0.026 0.670 -0.206 0.031 0.208 0.000 0.029 0.029
𝛽𝑧 0.575 0.010 0.575 -0.043 0.007 0.044 0.000 0.007 0.007

Reps=1,000 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝛽2 − 𝛽1 0.300 0.022 0.301 0.004 0.113 0.113 -0.002 0.119 0.119
𝛽3 − 𝛽2 0.284 0.015 0.284 0.004 0.090 0.090 -0.002 0.102 0.102
𝛽𝑦 -0.249 0.005 0.249 -0.003 0.076 0.076 0.002 0.088 0.088
𝛽𝑑 -0.599 0.034 0.600 -0.007 0.223 0.223 0.005 0.235 0.235
𝛽𝑧 -0.109 0.007 0.109 -0.001 0.034 0.034 0.001 0.039 0.039

A.2. Blundell and Bond (1998) Approach

One might argue that Arellano and Bond (1991) is not the only one GMM estimation strategies

we can use, and there could be efficient alternative other than Arellano and Bond (1991) approach.

A direct extension of Arellano and Bond (1991) would be Blundell and Bond (1998) approach. In

this section: i) I briefly introduce the logic of Blundell and Bond (1998); ii) show that the approach

is not valid for our case when initial value is given exogenously; iii) show the simulation result for

the correctly specified cases. For the theoretical details, consult Blundell and Bond (1998).

Recall that Arellano and Bond (1991) uses the following moment condition to find instruments:

𝐸 ( ®𝑤𝑜′𝑖𝑡−1Δ𝑢𝑖𝑡) = 0, 𝑡 = 2, 3, ..., 𝑇

where ®𝑤 is the placeholder of the sequentially exogenous regressors vector, and ®𝑤𝑜
𝑖𝑡−1 is the

history of ®𝑤 from period 1 to 𝑡 − 1, as defined in the section 2.2. In addition to the Arellano and

Bond (1991) moment conditions above, Blundell and Bond (1998) uses extra moment conditions:

𝐸 (𝑣𝑖𝑡 · Δ ®𝑤𝑖𝑡) = 0, 𝑡 = 2, 3, ..., 𝑇

where 𝑣𝑖𝑡 = 𝑐𝑖 + 𝑢𝑖𝑡 is the composite erorr term.
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Note that Blundell and Bond (1998) condition starts from 𝑡 = 3, and 𝑡 = 2 is included just

because they are observed and ready to use. As Blundell and Bond (1998) have mentioned in their

paper, the extra moment condition at 𝑡 = 2 should depends on the initial condition DGP ®𝑤𝑖1, which

is 𝑦𝑖0 and redundant 𝐷𝑖1(= 0, ∀𝑖)in this paper.

Even if we focus on 𝑡 = 3, which is the actual starting point of Blundell and Bond (1998), the

moment condition does not hold in our setup due to the initial value problem. At 𝑡 = 3, we have

three instruments: Δ𝑦𝑖2,Δ𝐷𝑖3, and the exogenous regressor 𝑧𝑖3. Observe that Δ𝑦𝑖2 can be rewritten

as

Δ𝑦𝑖2 = Δ𝛽2 + 𝛽𝑦Δ𝑦𝑖1 + 𝛽𝑑Δ𝐷𝑖2 + 𝛽𝑧Δ𝑧𝑖2 + Δ𝑢𝑖2

= {Δ𝛽2 + 𝛽𝑧Δ𝑧𝑖2 + Δ𝑢𝑖2} + 𝛽𝑦Δ𝑦𝑖1 + 𝛽𝑑𝐷𝑖2

where the second equality comes from the fact that 𝐷𝑖1 = 0 for all 𝑖. Since 𝑦𝑖0 is exogenously

given and does not include the heterogeneity 𝑐𝑖, Δ𝑦𝑖1 = 𝑦𝑖1 − 𝑦𝑖0 does not remove the heterogeneity.

Also note that remaining 𝐷𝑖2 also includes heterogeneity term by construction. Therefore, Δ𝑦𝑖2

will be correlated with the heterogeneity, which violates the Blundell and Bond (1998) moment

condition. Similarly, the third instrument 𝑧𝑖3 is correlated with the heterogeneity by construction,

unless we impose a strong assumption that the heterogeneity is not correlated with 𝑧𝑖, the time

average of exogenous variable2.

Table A.5 shows the simulation result of 𝛽𝑑 for the correctly specified case. Unlike all the other

simulations based on GAUSS, I used Stata’s user written commend suggested by Roodman (2009b)

for the simplicity of computation. As we can see from the result for POLS, FE, and FD, DGP itself

seems to similar between two packages. Wooldridge (2000) approach retains both of consistency

and efficiency compared to any other estimation strategies. As we can see from BB1 (with original

diagonal instrument matrix) and BB2 (with collapsed instrument matrix), adding violated moment

conditions would give us much bigger bias for 𝛽𝑑 .
2Δ𝐷𝑖3 might make a valid instrument, but the other instruments are already invalid and they will make the estimates

biased anyway.

71



Table A.5 Treatment Effect under Feedback Environment

𝛽𝑑 = 2 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.672 0.106 0.680 -0.201 0.129 0.239 0.001 1.250 1.250
𝑁 = 1, 000 -0.674 0.080 0.678 -0.205 0.096 0.227 -0.000 0.120 0.120
𝑁 = 5, 000 -0.671 0.034 0.672 -0.205 0.041 0.209 -0.000 0.038 0.038
𝑁 = 10, 000 -0.671 0.026 0.672 -0.207 0.031 0.210 -0.002 0.030 0.030

𝛽𝑑 = 2 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.592 0.148 0.610 -0.232 1.268 1.289 -0.641 4.673 4.717
𝑁 = 1, 000 -0.598 0.106 0.607 -0.111 0.828 0.836 -0.588 7.645 7.668
𝑁 = 5, 000 -0.598 0.045 0.599 -0.026 0.308 0.309 -0.031 0.901 0.902
𝑁 = 10, 000 -0.601 0.033 0.602 0.004 0.214 0.214 0.026 0.622 0.623

𝛽𝑑 = 2 BB1 BB2
Bias S D rMSE Bias S D rMSE

𝑁 = 500 -1.062 0.119 1.068 -1.180 0.131 1.187
𝑁 = 1, 000 -1.068 0.089 1.072 -1.184 0.094 1.188
𝑁 = 5, 000 -1.066 0.040 1.067 -1.183 0.042 1.184
𝑁 = 10, 000 -1.067 0.029 1.067 -1.184 0.030 1.184

Table A.6 shows the simulation result for 𝛽𝑦 for the correctly specified case. The implication is

the same as for the result of 𝛽𝑑 . For this reason, I only used AB1 and AB2 as a candidate of GMM

estimator for the misspecified cases as they are consistent at least, while Blundell and Bond (1998)

is not even consistent in the setup of this study.
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Table A.6 Persistence under Feedback Environment

𝛽𝑦 = 0.5 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 0.488 0.018 0.488 -0.122 0.021 0.124 -0.008 0.188 0.188
𝑁 = 1, 000 0.488 0.012 0.488 -0.123 0.015 0.124 -0.000 0.022 0.022
𝑁 = 5, 000 0.488 0.006 0.488 -0.123 0.006 0.124 0.000 0.006 0.006
𝑁 = 10, 000 0.488 0.004 0.488 -0.123 0.005 0.123 0.000 0.005 0.005

𝛽𝑦 = 0.5 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.248 0.025 0.249 -0.084 0.402 0.411 -0.173 1.222 1.234
𝑁 = 1, 000 -0.248 0.017 0.249 -0.042 0.275 0.278 -0.160 2.046 2.052
𝑁 = 5, 000 -0.249 0.007 0.249 -0.009 0.107 0.107 -0.009 0.243 0.243
𝑁 = 10, 000 -0.249 0.005 0.249 0.001 0.076 0.076 0.008 0.170 0.170

𝛽𝑦 = 0.5 BB1 BB2
Bias S D rMSE Bias S D rMSE

𝑁 = 500 0.416 0.019 0.416 0.395 0.021 0.396
𝑁 = 1, 000 0.416 0.014 0.416 0.395 0.014 0.395
𝑁 = 5, 000 0.416 0.006 0.416 0.395 0.007 0.395
𝑁 = 10, 000 0.416 0.004 0.416 0.395 0.005 0.395

A.3. Misspecified Models

Suppose the idiosyncratic error 𝑢𝑖𝑡 is not following standard normal, but the uniform[−2, 2]

distribution instead3. Table A.7 and Table A.8 show the results from the misspecified idiosyncratic

error. As we can see, for both of 𝛽𝑑 and 𝛽𝑦, Wooldridge (2000) approach still outperform the

others, and has almost identical implication to the correctly specified case.

Suppose the error is following the standard normal distribution, but the part of heterogeneity,

𝑎𝑖, is following the uniform[−2, 2] distribution. Table A.9 and A.10 shows the result for the case.

Under the DGP of misspecified heterogeneity, Arellano and Bond (1991) approaches seems to

have less bias as the sample size gets close to 10,000. As we can see from columns of standard

deviations, however, Wooldridge (2000) approach works very efficiently, while having similar level

of bias compared to Arellano and Bond (1991) approaches.
3I chose uniform distribution between ±2 as it has thicker tail than normal distribution, while having a similar

range of support.
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Table A.7 Misspecified Error Term

𝛽𝑑 = 2 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.692 0.128 0.704 -0.252 0.149 0.293 -0.002 0.146 0.146
𝑁 = 1, 000 -0.692 0.087 0.697 -0.251 0.108 0.273 0.001 0.101 0.101
𝑁 = 5, 000 -0.688 0.040 0.689 -0.248 0.048 0.253 0.004 0.044 0.045
𝑁 = 10, 000 -0.687 0.029 0.688 -0.246 0.034 0.249 0.006 0.032 0.033

𝛽𝑑 = 2 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.715 0.169 0.735 -0.487 1.379 1.462 -0.396 5.432 5.446
𝑁 = 1, 000 -0.712 0.116 0.722 -0.195 0.895 0.916 -0.092 1.110 1.114
𝑁 = 5, 000 -0.712 0.053 0.714 -0.032 0.381 0.383 -0.002 0.399 0.399
𝑁 = 10, 000 -0.711 0.037 0.711 -0.009 0.255 0.255 0.008 0.274 0.274

Table A.8 Misspecified Error Term

𝛽𝑦 = 0.5 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 0.485 0.018 0.486 -0.153 0.023 0.155 0.000 0.026 0.026
𝑁 = 1, 000 0.485 0.012 0.485 -0.153 0.016 0.154 0.000 0.017 0.017
𝑁 = 5, 000 0.486 0.006 0.486 -0.152 0.007 0.152 0.001 0.007 0.007
𝑁 = 10, 000 0.486 0.004 0.486 -0.152 0.005 0.152 0.001 0.005 0.005

𝛽𝑦 = 0.5 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.300 0.026 0.301 -0.163 0.465 0.493 -0.138 1.729 1.734
𝑁 = 1, 000 -0.299 0.018 0.300 -0.072 0.314 0.322 -0.032 0.414 0.416
𝑁 = 5, 000 -0.298 0.008 0.298 -0.011 0.138 0.139 0.001 0.153 0.153
𝑁 = 10, 000 -0.299 0.006 0.299 -0.003 0.093 0.093 0.004 0.106 0.106
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Table A.9 Misspecified Heterogeneity

𝛽𝑑 = 2 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.736 0.116 0.745 -0.220 0.131 0.256 -0.032 0.134 0.138
𝑁 = 1, 000 -0.735 0.078 0.739 -0.221 0.095 0.240 -0.029 0.089 0.094
𝑁 = 5, 000 -0.730 0.036 0.731 -0.216 0.042 0.221 -0.024 0.040 0.047
𝑁 = 10, 000 -0.730 0.027 0.730 -0.216 0.030 0.218 -0.023 0.029 0.037

𝛽𝑑 = 2 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.614 0.147 0.631 -0.298 1.208 1.244 -0.132 1.491 1.497
𝑁 = 1, 000 -0.615 0.105 0.624 -0.106 0.783 0.790 -0.018 0.869 0.869
𝑁 = 5, 000 -0.612 0.046 0.614 -0.015 0.332 0.332 0.008 0.346 0.346
𝑁 = 10, 000 -0.611 0.034 0.612 -0.010 0.224 0.225 0.001 0.239 0.239

Table A.10 Misspecified Heterogeneity

𝛽𝑦 = 0.5 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 0.493 0.018 0.493 -0.121 0.021 0.123 -0.002 0.026 0.026
𝑁 = 1, 000 0.493 0.012 0.493 -0.121 0.015 0.122 -0.002 0.016 0.016
𝑁 = 5, 000 0.494 0.006 0.494 -0.120 0.007 0.120 -0.002 0.007 0.007
𝑁 = 10, 000 0.494 0.004 0.494 -0.120 0.004 0.120 -0.002 0.005 0.005

𝛽𝑦 = 0.5 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.245 0.024 0.246 -0.094 0.379 0.391 -0.040 0.531 0.532
𝑁 = 1, 000 -0.244 0.017 0.245 -0.038 0.252 0.255 -0.004 0.302 0.302
𝑁 = 5, 000 -0.243 0.008 0.243 -0.005 0.109 0.109 0.004 0.123 0.123
𝑁 = 10, 000 -0.244 0.005 0.244 -0.003 0.074 0.074 0.000 0.086 0.086
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Finally, suppose both of the error term and heterogeneity terms are misspecified; While both of

the error and the heterogeneity are following the uniform distribution, econometrician might assume

that they are following the standard normal distribution, and run MLE based on that assumption.

This “both wrong case" would be a realistic scenario for most of researchers. Table A.11 and Table

A.12 show the result for the doubly-misspecified cases. Surprisingly, the implication is close to

the previous conclusions. Wooldridge (2000) approach seems to work efficient with some bearable

bias even under a realistic misspecification.

Table A.11 Misspecified Error and Heterogeneity

𝛽𝑑 = 2 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.748 0.130 0.760 -0.266 0.151 0.306 -0.027 0.151 0.154
𝑁 = 1, 000 -0.746 0.089 0.752 -0.267 0.106 0.287 -0.020 0.101 0.103
𝑁 = 5, 000 -0.741 0.041 0.742 -0.261 0.050 0.265 -0.016 0.046 0.049
𝑁 = 10, 000 -0.740 0.029 0.741 -0.259 0.034 0.262 -0.013 0.032 0.035

𝛽𝑑 = 2 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.735 0.170 0.755 -0.444 1.422 1.489 -0.366 2.489 2.516
𝑁 = 1, 000 -0.731 0.117 0.740 -0.195 0.996 1.015 -0.071 1.358 1.360
𝑁 = 5, 000 -0.727 0.054 0.729 -0.035 0.413 0.415 -0.001 0.454 0.454
𝑁 = 10, 000 -0.725 0.038 0.726 -0.022 0.275 0.276 -0.007 0.311 0.311
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Table A.12 Misspecified Error and Heterogeneity

𝛽𝑦 = 0.5 POLS FE W2000
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 0.490 0.018 0.491 -0.150 0.023 0.151 -0.001 0.029 0.029
𝑁 = 1, 000 0.491 0.013 0.491 -0.149 0.016 0.150 -0.002 0.017 0.017
𝑁 = 5, 000 0.491 0.006 0.491 -0.148 0.007 0.149 -0.001 0.007 0.007
𝑁 = 10, 000 0.491 0.004 0.491 -0.149 0.005 0.149 -0.001 0.005 0.005

𝛽𝑦 = 0.5 FD AB1 AB2
Bias S D rMSE Bias S D rMSE Bias S D rMSE

𝑁 = 500 -0.294 0.026 0.295 -0.146 0.478 0.500 -0.130 0.895 0.904
𝑁 = 1, 000 -0.294 0.018 0.294 -0.070 0.344 0.351 -0.025 0.504 0.505
𝑁 = 5, 000 -0.293 0.008 0.293 -0.012 0.145 0.146 0.001 0.170 0.170
𝑁 = 10, 000 -0.293 0.005 0.293 -0.008 0.097 0.097 -0.003 0.118 0.118
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APPENDIX B PROOFS FOR CHAPTER 2

B.1. Proof of Proposition 2.1.

It suffices to show the result with ratios while ignoring -1. Observe that

𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1

]
𝐸

[
𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0

] =

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0
] =

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] = exp(𝜏).

where the first equality holds by Neyman-Rubin model (2.1), the second equality holds by

sequential ignorability (Assumption 2.2), and the third equality holds by homogeneous treatment

effects (Assumption 2.1). Therefore, the ratio between the outcome models of treated and controlled

group identifies the conditional average treatment effects. Furthermore, we can show that the

following equality holds, indicating that under the homogeneous treatment effects, integration of

heterogeneity is straightforward.

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] =

𝐸

[
𝑌
(1)
𝑖𝑡

| ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

| ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] = exp(𝜏).

To have this equality, take the denominator 𝐸
[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

to the right hand

side and apply iterated expectation to integrate out the heterogeneity 𝑐𝑖 using the distribution

𝐷 (𝑐𝑖 | ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1). Then put 𝐸
[
𝑌
(0)
𝑖𝑡

| ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

back to the denominator on the left

hand side.

B.2. Proof of Proposition 2.2. (Identification without Selection Bias)

It suffices to show that (2.6) implies (2.7) and (2.7) implies (2.6), given (2.1) and (2.2). First,

observe that (omitting 𝜃 for the simplicity)

𝐸 (𝑌 (𝑑)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 𝑑) = 𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 𝑑)

= 𝑐𝑖 · 𝑒𝑥𝑝(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝑋𝑖𝛽𝑥 + 𝜏𝑑) = 𝐸 (𝑌 (𝑑)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖)

where the first equality hold by construction, second equality holds by (2.6), and the third equality

hold by (2.2). Second, notice that

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡) = 𝐸 (𝐷𝑖𝑡 · 𝑌 (1)
𝑖𝑡

+ (1 − 𝐷𝑖𝑡) · 𝑌 (0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡)
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= 𝐷𝑖𝑡 · 𝐸 (𝑌 (1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡) + (1 − 𝐷𝑖𝑡) · 𝐸 (𝑌 (0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡)

= 𝐷𝑖𝑡 · 𝐸 (𝑌 (1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖) + (1 − 𝐷𝑖𝑡) · 𝐸 (𝑌 (0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖)

= 𝐷𝑖𝑡 · 𝑐𝑖 · 𝜇𝑖𝑡 · exp(𝜏 · 1) + (1 − 𝐷𝑖𝑡) · 𝜇𝑖𝑡 · exp(𝜏 · 0) = 𝑐𝑖 · 𝜇𝑖𝑡 · exp(𝜏 · 𝐷𝑖𝑡𝑠)

= 𝑐𝑖 · 𝑒𝑥𝑝(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝑋𝑖𝛽𝑥 + 𝜏𝐷𝑖𝑡)

where the first equality hold by (2.1), the second equality holds as we are conditioning on 𝐷𝑖𝑡 , the

third equality holds by (2.7), the fourth equality holds by (2.2) where 𝜇𝑖𝑡 = exp(𝛽𝑡 + 𝛽𝑦 ln(𝑌𝑖𝑡−1 +

𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝑋𝑖𝑡𝛽𝑥), the fifth equality comes by construction of binary 𝐷𝑖𝑡 .

Remark. One would find almost the same proof from Lee and Kobayashi (2002). What I

did was extending the conditioning set to include the (sequential) history of lagged outcomes, and

check whether it still works or not.

B.3. Proof of Proposition 2.3. (Parametric Identification of CATE with Ratio Form)

Under (2.1), (2.2), and (2.7), we have (2.6) by Proposition 2.2. Then by (2.6) we have

𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1)
𝐸 (𝑌𝑖𝑡 |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0)

= 𝑒𝜏 .

Therefore, it suffices to show that

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] = 𝑒𝜏 .

Observe

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
] =

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖

]
𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖

] =
𝑐𝑖 · 𝜇𝑖𝑡 · exp(𝜏 · 1)
𝑐𝑖 · 𝜇𝑖𝑡 · exp(𝜏 · 0) = 𝑒𝜏

where the first equality holds by (2.7), the second equality holds by (2.2) where 𝜇𝑖𝑡 = exp(𝛽𝑡 +

𝛽𝑦 ln(𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1) + 𝛽𝑧𝑍𝑖𝑡−1 + 𝑋𝑖𝑡𝛽𝑥).

Remark. As mentioned in section 2.3, one might think of another identification result with a

ratio-in-ratios form, which can be written as

𝐸 (𝑌𝑖𝑡/ℎ(𝑌𝑖𝑡−1) |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1)
𝐸 (𝑌𝑖𝑡/ℎ(𝑌𝑖𝑡−1) |𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 0)

=

𝐸

[
𝑌
(1)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]

𝐸

[
𝑌
(0)
𝑖𝑡

|𝑐𝑖, ®𝑌𝑖𝑡−1, 𝑋𝑖, 𝐷𝑖𝑡 = 1
]
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where ℎ(𝑌𝑖𝑡−1) ≡ (𝑌𝑖𝑡−1 + 𝑍𝑖𝑡−1)𝛽𝑦 . Considering the original definition of Ding and Li (2019), the

ratio-in-ratios above would be a faithful analog.

𝜏𝐿𝐷𝑉 = (𝐸 [𝑌𝑖𝑡 |𝐺𝑖 = 1] − 𝐸 [𝑌𝑖𝑡 |𝐺𝑖 = 0]) − 𝛽𝑦 (𝐸 [𝑌𝑖𝑡−1 |𝐺𝑖 = 1] − 𝐸 [𝑌𝑖𝑡−1 |𝐺𝑖 = 0])

Observe that including ℎ(𝑌𝑖𝑡−1) terms are redundant as they are all cancelled out once we condition

on the lagged outcomes. For the simplicity of discussion, I removed the ℎ(𝑌𝑖𝑡−1) terms from my

main identification result.
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APPENDIX C EXTENSIONS OF CHAPTER 2

C.1. Simulation Results

Table C.1 repeats the result of Table 2.1. Here IV1 and IV2 stands for the block-diagonal

and triangular IV matrices respectively, and GMM1 stands for the first stage GMM who used the

identity matrix as the weighting matrix of GMM. GMM2 used the optimal weighting matrix, whose

result was posted on Table 2.1. As one can see, un-optimal GMM can work poorly under the small

sample size, but the optimal GMM converge to the true parameter even with small sample. For

both of IV specifications (IV1 and IV2), we can also find that the optimal GMM2 gets efficiency

gain, as we use the optimal weighting matrix over the identity matrix. As mentioned in Section

2.5, IV2 cannot converge to the true parameter in GMM1, which makes the triangular collapsing

matrix specification less competitive compared to the block-diagonal one.

Table C.1 Average of estimated coefficients and their standard deviations when
the treatment is sequentially exogenous (T=4, 1000 Repetitions)

ln(𝑌𝑡−1 + 𝑍𝑡−1) included

IV1 IV2

𝜏 = 0.3 TWFE AR1FE GMM1 GMM2 GMM1 GMM2

N=500 -0.196 0.565 9770937 0.316 13778.3 0.313

(0.269) (0.035) (3.09e+08) (0.168) (378361.7) (0.201)

N=1000 -0.246 0.562 0.355 0.307 0.754 0.306

(0.252) (0.024) (0.389) (0.117) (12.286) (0.139)

N=2000 -0.276 0.562 0.293 0.301 2706153 0.302

(0.219) (0.017) (0.348) (0.083) (8.56e+07) (0.093)

N=4000 -0.330 0.561 0.278 0.302 49353.76 0.302

(0.232) (0.013) (0.321) (0.063) (1458559) (0.072)

Note. Standard deviations in the parentheses. IV1 used the Arellano and Bond (1991) types
of instrument matrices, while IV2 used the suggestion of Roodman (2009a,b). GMM1 is the
first stage GMM estimation using the identity weighting matrices, while GMM2 stands for the
second stage GMM based on the optimal weighting matrices.
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Table C.2 shows the extension of Table 2.2 when the treatment assignment is strictly exogenous.

As in Table C.1, block-diagonal IV matrix (IV1) works well. Triangular IV2 reports less competitive

performance compared to the block-diagonal specification.

Table C.2 Average of estimated coefficients and their standard deviations
when the treatment is strictly exogenous (T=4, 1000 Repetitions)

ln(𝑌𝑡−1 + 𝑍𝑡−1) included

IV1 IV2

𝜏 = 0.3 TWFE AR1FE GMM1 GMM2 GMM1 GMM2

N=500 -0.086 0.271 0.319 0.315 0.432 -0.231

(0.214) (0.036) (0.230) (0.163) (3.411) (17.179)

N=1000 -0.048 0.277 0.302 0.300 0.306 11.87323

(0.193) (0.026) (0.143) (0.093) (0.220) (365.938)

N=2000 -0.041 0.279 0.297 0.299 0.305 0.304

(0.179) (0.018) (0.106) (0.065) (0.111) (0.125)

N=4000 -0.047 0.282 0.298 0.302 0.297 0.302

(0.189) (0.013) (0.106) (0.049) (0.171) (0.094)

Note. Standard deviations in the parentheses. IV1 used the Arellano and Bond (1991)
types of instrument matrices, while IV2 used the suggestion of Roodman (2009a,b).
GMM1 is the first stage GMM estimation using the identity weighting matrices, while
GMM2 stands for the second stage GMM based on the optimal weighting matrices.
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Table C.3 presents a simulation with the case where the true DGP is designed with the strictly

exogenous treatment assignment, while an econometrician decided to run the GMM assuming

that the treatment is sequentially exogenous (over-misspecification of treatment assignment). The

implication of this simulation study is similar to the previous table: block-diagonal IV1 works well

for both of GMM1 (un-optimal) and GMM2 (optimal), while the triangular IV2 is producing poor

result, including relative inefficiency even in the large sample.

Table C.3 Average of estimated coefficients and their standard deviations
when the treatment is strictly exogenous (T=4, 1000 Repetitions)

ln(𝑌𝑡−1 + 𝑍𝑡−1) included

IV1 IV2

𝜏 = 0.3 TWFE AR1FE GMM1 GMM2 GMM1 GMM2

N=500 -0.086 0.271 0.319 0.317 0.326 0.776

(0.214) (0.036) (0.231) (0.167) (0.349) (14.570)

N=1000 -0.048 0.277 0.302 0.299 0.306 10126.74

(0.193) (0.026) (0.143) (0.106) (0.220) (320226.1)

N=2000 -0.041 0.279 0.297 0.299 0.308 0.301

(0.179) (0.018) (0.107) (0.066) (0.120) (0.156)

N=4000 -0.047 0.282 0.298 0.303 0.297 0.303

(0.189) (0.013) (0.106) (0.053) (0.172) (0.087)

Note. Standard deviations in the parentheses. IV1 used the Arellano and Bond (1991)
types of instrument matrices, while IV2 used the suggestion of Roodman (2009a,b).
GMM1 is the first stage GMM estimation using the identity weighting matrices, while
GMM2 stands for the second stage GMM based on the optimal weighting matrices.
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Table C.4 shows the simulation result for the case when the true DGP is designed with the

feedback (sequentially exogenous treatment assignment), while an econometrician wrongly assumes

that the assignment is strictly exogenous (under-misspecification of treatment assignment). For all

instrument specifications, un-optimal GMM (GMM1) is generally biased. Optimal GMM (GMM2)

works relatively better, but bias can be big under the small sample size. The Pattern between the

two IV specifications stays the same: Triangular IV2 is generally inefficient compared to the result

from block-diagonal IV1.

Table C.4 Average of estimated coefficients and their standard deviations
when the treatment is sequentially exogenous (T=4, 1000 Repetitions)

ln(𝑌𝑡−1 + 𝑍𝑡−1) included

IV1 IV2

𝜏 = 0.3 TWFE AR1FE GMM1 GMM2 GMM1 GMM2

N=500 -0.196 0.565 0.542 0.319 161.765 -0.062

(0.269) (0.035) (1.941) (0.171) (5065.52) (11.887)

N=1000 -0.246 0.562 0.377 0.307 1.636 0.303

(0.252) (0.024) (0.730) (0.118) (41.000) (0.142)

N=2000 -0.276 0.562 0.297 0.302 197476.7 0.302

(0.219) (0.017) (0.332) (0.084) (6244753) (0.094)

N=4000 -0.330 0.561 0.287 0.303 15916.02 0.301

(0.232) (0.013) (0.304) (0.066) (440807.8) (0.073)

Note. Standard deviations in the parentheses. IV1 used the Arellano and Bond (1991) types
of instrument matrices, while IV2 used the suggestion of Roodman (2009a,b). GMM1 is
the first stage GMM estimation using the identity weighting matrices, while GMM2 stands
for the second stage GMM based on the optimal weighting matrices.
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C.2. Empirical Application

Table C.5 and C.6 are the analog of Table 2.4 and Table 2.5, using the triangular IV collapsing

method suggested by Roodman (2009a,b). They yields similar implications in general.

Table C.5 Effects of PDMP for Child Maltreatment Allegations (with Triangular IV)

Panel A Coefficients % Interpretation

Linear Models TWFE LyStD LySqD TWFE LyStD LySqD

Alleged Cases

PDMP 4.150 -0.031 0.177 0.106 -0.000 0.005

(2.769) (0.289) (0.219)

Allow Feedback NO NO YES NO NO YES

Lagged Y controlled NO YES YES NO YES YES

Panel B

Exponential Models FePoi GMM1 GMM1 GMM1 GMM2 GMM2 GMM2

Alleged Cases

PDMP 0.074*** -0.127 -0.183** -0.040 -0.053 -0.045 -0.055

(0.020) (0.118) (0.090) (0.042) (0.072) (0.036) (0.039)

Allow Feedback NO YES NO YES YES NO YES

Lagged Y controlled NO NO YES YES NO YES YES

Note. Standard deviations in the parentheses. Significance levels are ***(1%), **(5%), and *(10%) respectively.
LyStD and LySqD were estimated using the GMM approach following the Arellano and Bond (1991) instrument
while reporting only the second stage estimates. FePoi is the analogy of TWFE into the exponential mean speci-
fication. GMM1 is the first stage GMM estimates while GMM2 stands for the second stage GMM estimates. %
Interpretation in the Panel B were calculated by dividing the average size of outcome used during the estimation,
following the approach in Evans et al. (2022b). All GMM results including LyStD and LySqD are based on the IV
matrix suggested by Roodman (2009a,b).
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Table C.6 Effects of PDMP for Child Maltreatment Substantiations (with Triangular IV)

Panel A Coefficients % Interpretation

Linear Models TWFE LyStD LySqD TWFE LyStD LySqD

Substantiated Cases

PDMP 1.006 0.254** 0.294*** 0.117 0.030 0.034

(0.661) (0.127) (0.078)

Allow Feedback NO NO YES NO NO YES

Lagged Y controlled NO YES YES NO YES YES

Panel B

Exponential Models FePoi GMM1 GMM1 GMM1 GMM2 GMM2 GMM2

Substantiated Cases

PDMP 0.097*** -0.012 0.056 0.088* 0.020 -0.052 0.053

(0.025) (0.094) (0.077) (0.048) (0.136) (0.066) (0.042)

Allow Feedback NO YES NO YES YES NO YES

Lagged Y controlled NO NO YES YES NO YES YES

Note. Standard deviations in the parentheses. Significance levels are ***(1%), **(5%), and *(10%) respectively.
LyStD and LySqD were estimated using the GMM approach following the Arellano and Bond (1991) instrument while
reporting only the second stage estimates. FePoi is the analogy of TWFE into the exponential mean specification.
GMM1 is the first stage GMM estimates while GMM2 stands for the second stage GMM estimates. % Interpretation
in the Panel B were calculated by dividing the average size of outcome used during the estimation, following the ap-
proach in Evans et al. (2022b). All GMM results including LyStD and LySqD are based on the IV matrix suggested
by Roodman (2009a,b).
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Figure C.1 Allegations of Child Maltreatment in Year 2006

C.3. Graphical Illustration

Figure 2.2 lacks the information about states where the must-access PDMP was implemented

after the year 2017, as the data set only contains the outcome until the year 2016. Figure C.1

presents a graphic illustration of regional variation of alleged count using the initial observation in

2006. We can still detect an overlapping patterns in Midwest regions and states between California

and Texas.
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APPENDIX D PROOF FOR CHAPTER 3

D.1. Imputation of Heterogeneity

To avoid confusion, let me abuse notation of covariates into 𝑥𝑖𝑡 = (𝑦𝑖,𝑡−1, 𝜃𝑡) so that we have

𝑐̂𝑖 ≡
1
𝑇0

∑︁
𝑡

[
𝑦𝑖,𝑡 − 𝛼̂𝑦𝑖,𝑡−1 − 𝜃̂𝑡

]
=

1
𝑇0

∑︁
𝑡

[
𝑦𝑖,𝑡 − 𝑥𝑖,𝑡𝛽

]
.

where 𝛽
𝑝
→ 𝛽 under the Assumption 3.4. Now, it suffices to show that

1
𝑁

∑︁
𝑖

𝑐̂𝑖
𝑝
→ E [𝑐𝑖] =

1
𝑇0

∑︁
𝑡

E [𝑐𝑖] = E
[

1
𝑇0

∑︁
𝑡

𝑐𝑖

]
By taking summation both hand side, we have

1
𝑁

∑︁
𝑖

𝑐̂𝑖 =
1
𝑁

∑︁
𝑖

[
1
𝑇0

∑︁
𝑡

[
𝑦𝑖𝑡 − 𝑥𝑖,𝑡𝛽

] ]
𝑝
→ E

[
1
𝑇0

∑︁
𝑡

[
𝑦𝑖𝑡 − 𝑥𝑖,𝑡𝛽

] ]
where the last convergence hold under the weak law of large numbers and Slutsky’s theorem under

their regularity conditions. By this convergence, we only need to show that

E [𝑐𝑖] = E
[
𝑦𝑖,𝑡 − 𝑥𝑖,𝑡𝛽

]
.

By (3.2) and Assumption 3.3, we have 𝑐𝑖 = 𝑦𝑖,𝑡 − 𝑥𝑖,𝑡𝛽 − 𝑢𝑖,𝑡 for 𝑡 ≤ 𝑇0. Under the Assumption

3.4, after iterated expectation, we have the result. To impute E [𝑐𝑖 | 𝐷𝑖 = 1], one need to exchange

𝑁 with 𝑁1 =
∑𝑁
𝑖 𝐷𝑖 and multiplied 𝐷𝑖 inside summation as one can see from equation (3.8).
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