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ABSTRACT 

Genetic variations play a crucial role in the development of severe human diseases, but 

deciphering their genetic basis remains challenging due to the complex multi-scale 

genome structure and intricate molecular mechanisms. Genome-wide Association 

Studies (GWAS) have identified genotype-phenotype associations, but face limitations 

such as low statistical power and lack of causality. With advancements in Next Generation 

Sequencing techniques, researchers have gained insights into the vast non-coding 

genome, discovering millions of functional DNA elements that regulate cell type-specific 

gene expression, including promoters and enhancers. These cis-regulatory elements 

form gene regulatory networks (GRNs) that provide pathways for understanding the 

effects of genetic variants on diseases. However, leveraging GRNs in non-coding genetic 

variant analysis poses challenges, such as the vast number of potential enhancer-gene 

links, the influence of multilevel variabilities on chromatin interactions and 3D structures, 

and the need for comprehensive data integration methods. This thesis aims to address 

these challenges by developing machine learning, deep learning, and optimization-based 

models to discover novel disease-associated genes, enhance eQTL fine-mapping 

predictions, and investigate the multi-level variabilities of multi-scale 3D chromatin 

organization. By leveraging regulatory networks of long-range chromatin interactions, 

incorporating 3D chromatin organizations, and modeling the 3D structures, this work 

contributes to deep understanding on cell type-specific non-coding genetic variations and 

advancing precision medicine and clinical care. 
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INTRODUCTION 

Genetic variations play a crucial role in the development of various severe human 

diseases, including leukemia, Alzheimer's disease, and cancers1.  Understanding the 

relationship between genetic variants and human diseases is essential for advancing 

precision medicine and clinical care. Genome-wide Association Studies (GWAS) have 

revolutionized complex disease genetics by identifying genotype-phenotype associations 

through the analysis of millions of single-nucleotide polymorphisms (SNPs)2,3. However, 

GWAS faces limitations such as low statistical power4 and lack of causality due to Linkage 

Disequilibrium (LD)5. Deciphering the genetic basis of human diseases remains 

challenging, considering the multi-scale genome structure and intricate underlying 

molecular mechanisms6,7.  

Traditionally, research focused on SNPs located in the coding regions of genes, 

which only account for 1.2% of the human genome2. With the advancements in Next 

Generation Sequencing (NGS) techniques8, such as RNA-seq, DNase-seq, and ChIP-

seq9, scientists have gained insights into the functions of the vast non-coding genome10. 

Recent studies have discovered millions of functional DNA elements that regulate cell 

type-specific gene expression in cis, with promoters and enhancers being the two major 

cis-regulatory elements (CREs)11. Enhancers, bound by various transcription factors 

(TFs), activate target gene expression by forming chromatin loops with promoters. Gene 

regulatory networks (GRNs), formed by enhancers, genes, and TFs, provide clear 

pathways for understanding the effects of genetic variants on diseases6. However, 

leveraging GRNs in the analysis of non-coding genetic variants poses several challenges, 

including the vast number of potential enhancer-gene links, the need for comprehensive 

data integration methods, the unclear relationship between non-coding genetic variant-

gene associations and enhancer-promoter associations, and the influence of multilevel 

variabilities on chromatin interactions and 3D structures. 

To address these challenges, this thesis aims to develop machine learning, deep 

learning, and optimization-based models to (1) discover novel disease-associated genes 

by leveraging regulatory networks of long-range chromatin interactions, (2) enhance 

eQTL fine-mapping predictions by incorporating 3D chromatin knowledge, and (3) 
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investigate the multi-level variabilities of 3D chromatin organization and model the 3D 

structures. 

Accurate prediction of cell type-specific enhancer-promoter interactions (EPIs) is 

crucial for constructing GRNs12. Computational algorithms for predicting chromatin 

interactions can be classified into unsupervised and supervised models12. Unsupervised 

models, such as the Activity-by-contact (ABC) model13 and correlation-based models, 

have demonstrated superior performance compared to distance-based approaches. 

However, their performance is sensitive to feature selection and correlation calculation 

algorithms. With the development of chromosome conformation capture (3C)-based 

techniques, such as Hi-C14, HiChIP15, ChIA-PET16, and Capture Hi-C17, supervised 

models have been designed to identify potential EPIs by incorporating various 1D 

genomic/epigenomic features18,19. Deep learning-based models, such as SPEID20 and 

DeepTACT21, have further expanded the predictive capabilities by extracting information 

from reference DNA sequences using representation learning techniques. 

Understanding the spatial organization and folding of the human genome within 

the cell nucleus is crucial for deciphering the complex systems of spatially coordinated 

transcriptional and epigenetic activities7. Hi-C14 has been a driving force in studying 3D 

genome structures, revealing structural components such as chromatin loops, 

topologically associated domains (TADs), and chromatin compartments. However, 

accurately reconstructing high-resolution spatial conformations for all chromosomes is 

computationally challenging due to the large missing rate and high noise level in Hi-C 

data. Two categories of computational models have been developed to address this 

problem: (1) Hi-C simulation and prediction22–24 and (2) 3D genome structure 

reconstruction25–28. Simulation-based models rely on physical mechanism assumptions, 

such as polymer modeling and phase separation, while data-driven deep learning-based 

models, like DeepC23 and Akita24, predict Hi-C contact maps using DNA sequences. In 

3D structure reconstruction, observed Hi-C contact frequencies are converted into spatial 

distances29, and consensus or ensemble structures are inferred by maximizing the 

similarity between predicted and observed Hi-C distances. The emerging single-cell Hi-C 

(scHi-C)30–40 technologies have enabled the mapping of 3D chromatin structures in 

individual cells, revealing the fundamental genome structure and function connections at 
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single-cell resolution. However, the extremely low sequencing depth of single-cell 

chromatin contact maps poses challenges for studying high-resolution 3D chromatin 

structures. Methods like Higashi41 have been developed to impute contact maps based 

on latent correlations among single cells, but there is still a lack of comprehensive 

methods to reconstruct single-cell 3D chromatin structures. 

Identifying functionally relevant variants is a significant challenge in human 

genetics, particularly for non-coding variants10,42. Large-scale efforts, such as the 

ENCODE consortium9 and the US National Institutes of Health Roadmap Epigenomics 

project11, have provided data from various assays across the genome to help interpret 

non-coding variants. Tools like GWAVA43 and FunSeq244 have been developed to 

annotate potential regulatory variants and predict their effects genome-wide. However, 

simply considering the overlap of a variant with annotations is insufficient due to the low 

resolution of publicly available data and the high false-negative rate of rare variants. 

Traditional machine learning-based model like Kmer-SVM45 and gkm-SVM46 emerged as 

pioneering models for predicting regulatory elements directly from DNA sequences, 

bypassing the need for existing annotated motifs. These models employ support vector 

machines (SVMs) trained on k-mer features to assess the likelihood of a sequence being 

a functional genomic regulatory element or a tissue-specific enhancer. Delta-SVM47 

incorporates gkm-SVM predictions to assess the disruptive impacts of genetic variants. 

However, the complexity and non-linearity of the underlying regulatory grammar in DNA 

sequences require further improvements in model performance. 

In recent years, advanced machine learning, deep learning, and optimization-

based models have achieved extraordinary performance across various scientific fields48–

68, including the prediction of genetic variant effects from DNA sequences. DeepSEA69, 

Basset70, and DanQ71, have demonstrated the potential of convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) for predicting genetic variant effects based 

on DNA sequences. These models are trained on large-scale multi-omics datasets across 

different cell types from the reference genome and can predict the effects of genetic 

variants on transcription factor binding, chromatin accessibility, and gene expression. 

Further advancements, such as Basenji72 and ExPecto73, have expanded the scope of 

predictions to include a wider range of genomic signals and target gene expressions. 
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The Transformer architecture74, originally developed for natural language 

processing, has shown remarkable success in capturing long-range dependencies and 

has been adapted for genomic applications. Models like Enformer75, which combines 

CNNs and Transformers, excel in predicting functional genome profiles and offer 

improved interpretability through attention weights. Enformer's ability to capture distal 

regulatory elements up to 100kb away enables more accurate predictions of genetic 

variant effects. Foundation Models, such as DNABERT76–78 and the Nucleotide 

Transformer79, leverage self-supervised pre-training on unlabeled genomic sequences to 

capture the fundamental grammatical structures of DNA. These models have 

demonstrated remarkable efficacy across various downstream applications, including the 

detection of functional genetic variants. The increased model size and ability to process 

longer sequences have further enhanced their performance. 

Despite the advancements in deep learning models for predicting genetic variant 

effects, challenges remain. The reliance on labeled data at the cell type level limits their 

capability to discern functional effects at the single-cell level. Quantifying the impact of 

genetic variation at the single-cell level has also been studied. The development of single-

cell RNA-sequencing (scRNA-seq)80 has enabled the simultaneous and unbiased 

estimation of cellular composition and cell type-specific gene expression, creating 

opportunities for mapping eQTLs across different cell types and in dynamic processes81. 

The single-cell eQTLGen consortium (sc-eQTLGen)81 has been established as a large-

scale international collaborative effort to identify the upstream interactors and 

downstream consequences of disease-related genetic variants in individual immune cell 

types. The integration of single-cell sequencing data, such as scRNA-seq80,82, scATAC-

seq82,83, and scHi-C30–40, presents opportunities for fine-tuning models with minimal data. 

Additionally, the training of current models based on the reference genome neglects the 

diversity and frequency of genetic variations across different genotypes. CRISPR84–87 

technology, which elucidates the causal and real effects of genetic variants, offers 

valuable insights beyond the reference genomic context and can help bridge the gap 

between model predictions and biological reality. 

In conclusion, this thesis aims to address these challenges by developing machine 

learning, deep learning, and optimization-based models to discover novel disease-
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associated genes, enhance eQTL fine-mapping predictions, and investigate the multi-

level variabilities of multi-scale 3D chromatin organization. By leveraging regulatory 

networks of long-range chromatin interactions, incorporating 3D chromatin organizations, 

and modeling the 3D structures, this work contributes to deep understanding on cell type-

specific non-coding genetic variations and advancing precision medicine and clinical care. 
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DISCOVER NOVEL DISEASE-ASSOCIATED GENES BASED ON REGULATORY 

NETWORKS OF LONG-RANGE CHROMATIN INTERACTIONS 

2.1 INTRODUCTION 

Genome-wide association studies (GWAS) has been one of the major approaches to 

identify genetic variants, e.g. SNPs, that are associated with specific phenotypes, such 

as diabetes, neurodegenerative diseases, autoimmune diseases and cancer3,88–92. The 

statistically significant SNPs from GWAS can indicate genomic loci containing genes 

whose expression levels are functionally related with the disease status93. Although it has 

been successful in many studies, there are two major limitations of traditional GWAS 

analysis: 1) limited statistical power due to sample sizes and minor allele frequencies, 

and 2) the lack of mechanistic understandings of statistical associations. These limitations 

are especially challenging for some complex diseases, where multiple functionally 

coordinated genes and non-coding SNPs contribute to the observed phenotypic changes 

with mild effect sizes94. 

A key to address these two challenges is to systematically delineate the regulatory 

effects of non-coding SNPs95 on gene expression. Since the vast majority of the human 

genome are non-coding, most of the significant SNPs from GWAS are located in non-

coding regions instead of in genes92. As has been shown, non-coding GWAS SNP hits 

are enriched in regulatory elements, such as enhancers96. Algorithms are therefore 

needed to leverage the regulatory information from multi-omics dataset to discover more 

disease-associated genes that are regulated by the non-coding SNPs97. It also provides 

benefits to identify cis- and trans-factors of co-regulation to further understand the 

functional relationships among multiple disease-associated genes and SNPs97,98, as well 

as mechanistic insights of genetic associations mediated by dysregulation of genes99–101.  

Based on the recognition of transcriptional dysregulation as one of the major 

mechanisms underlying disease-associated genetics102, gene regulatory networks have 

been proposed to improve and interpret GWAS results94,103–105. But most network-based 

GWAS analysis algorithms are based on basic gene co-expression networks, where 

nodes are genes and edges represent correlated expressions94,103. Co-expression 
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networks are limited in improving GWAS analysis because only genes are modeled as 

nodes and non-coding SNPs are largely missing in the networks. Furthermore, the co-

expression based edges treat the underlying regulatory mechanisms as black boxes 

without considering the specific cis- or trans- regulatory elements, such as enhancers and 

transcription factors (TFs), that mediate the observed correlated activities103,104.  

Due to the recent biotechnology developments, such as Hi-C14,106, ChIA-PET107 

and Capture-C108, high-throughput chromatin contact maps are being generated14,109,110. 

These chromatin contact maps provide information of three-dimensional (3D) chromatin 

structure14,106–110 and reveal specific long-range chromatin interactions linking distal non-

coding enhancers to target genes14,106–110. Unlike cis-regulatory links identified by eQTL 

calling111, the chromatin interactions are based on evidence of physical interactions 

between enhancers and promoters and can capture longer cis-regulatory interactions (e.g. 

~1Mb)14,106–110. Therefore, the incorporation of 3D chromatin contact maps into regulatory 

network construction is expected to extend the capability of analyzing distal non-coding 

GWAS SNPs and their regulatory impacts on specific target genes, which may participate 

in critical biological pathways associated with the disease. There have been several 

successful case studies of using long-range chromatin interactions to decode the 

underlying disease mechanisms, such as SNPs associated with prostate cancer, 

erythrocyte and triglyceride were found to be enriched in regulatory DNA regions and may 

disrupt TF binding96,112,113. Statistical methods have been built to jointly model SNPs and 

gene expression with respect to the impacts on disease risks114,115. Although the methods 

show promising results, further incorporation of chromatin interactions to link SNP with 

specific genes will substantially enlarge the SNP-sets associated with genes and improve 

the statistical power. A couple of algorithms104,116 have been developed to utilize 

chromatin interactions to combine cis-regulatory elements with gene-gene networks for 

disease-association analysis, which can prioritize disease-associated non-coding SNPs. 

But these methods cannot aggregate the SNP-level signals to discover new genes that 

might be functionally associated with diseases. 

Another layer of complexity of gene regulation comes from combinations of TF 

bindings to not only gene promoters but also linked distal enhancers117,118. Knowing the 

key TFs as trans-regulatory factors for specific genes can shed light on common 
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regulatory mechanisms shared by multiple genes and can also indicate how multiple 

enhancers coordinate together to regulate target genes119,120. In this regard, long-range 

enhancer-promoter interactions provide important information to aggregate TF binding 

patterns across promoters and enhancers. Combined with GWAS data, candidate master 

TF regulators of disease-associated genes can be inferred based on enrichment analysis 

from both promoters and enhancers121–123.   

Given the benefits of integrating 3D chromatin interactions into the study of gene 

regulation, we have developed a computational infrastructure to construct regulatory 

networks and make network-based predictions of novel disease-associated genes. The 

software, named as APRIL, combines cell-type specific epigenomics and transcriptomics 

datasets with public available chromatin contact maps to build expanded regulatory 

networks, which include long-range cis-regulation between non-coding enhancers and 

genes and trans-regulatory links of TFs. APRIL also provides functions to analyze co-

occurring signatures of GWAS SNPs in the constructed networks, in order to obtain 

insights on functional coordination of disease-associated genetic variants. Furthermore, 

APRIL contains both unsupervised and supervised machine learning algorithms to predict 

new disease-associated genes, by leveraging the information from non-coding regulatory 

SNPs and the regulatory network structures. The application of APRIL on GWAS studies 

of leukemia demonstrates that not only new disease-associated genes can be reliably 

predicted but also regulatory mechanisms underlying diseases can be indicated. 

2.2 MATERIALS AND METHODS 

2.2.1 Dataset and annotations/definitions 

For chromatin interaction datasets used in this study, the ChIA-PET dataset of two 

replicates are collected from GSE39495124 for K562 cell-line. The two replicates are 

merged together, leading to ~100k interactions in total. Additional public-available high 

quality chromatin interaction datasets, including ChIA-PET107, Hi-C106, Capture-C108 and 

computationally predicted enhancer-gene interactions, i.e. JEME125 and IM-PET18, can 

also be used as inputs. 

GENCODE version 19126 is used as the gene model annotations. Only protein 

coding genes are considered. The promoters for each gene are defined as the +/- 1kb 
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region centered at the transcription start sites (TSS). In total it includes ~20k protein-

coding genes. The consensus enhancer annotation is collected from the Roadmap 

Epigenome and ENCODE consortia96,124, using the version filtered by DNase-seq signals 

(-log10(p) >= 10). The enhancers are further annotated as cell-type specific enhancers 

based on chromatin segmentations learnt from chromHMM in all 127 cell lines/tissues 

based on histone modifications96.  

For epigenomics dataset, the imputed DNase-seq and RNA-seq data of 127 cell 

lines are collected from the Roadmap Epigenome and ENCODE consortia to quantify cell-

type specific enhancer activities and gene expression96,124. For TF binding site 

annotations, TF motif hits predicted by Kheradpour et al127 are collected. The version 

filtered by conservation scores across multiple species (>0.3) is used. This resulted in 

~13.6M motif hits for ~500 TFs. 

Known disease-associated genes are collected from DisGeNET128. This curated 

dataset includes gene-disease associations from multiple resources, including UNIPROT, 

CTD, ORPHANET, CLINGEN, GENOMICS ENGLAND, CGI and PSYGENET129–132. 

Immune-associated genes are identified based on keywords matching summarized in 

Supplementary Table (Figure A. 1). GWAS SNPs associated with immune are collected 

from two sources: Biobank133 and EMBL EBI134. Significant eQTLs in whole blood are 

collected from GTEx V7111. The nominal p-values of eQTLs are provided by GTEx and 

are used in this paper. 

2.2.2 Regulatory network construction based on long-range interaction 

Construct 3D chromatin modules of long-range cis-regulation 

Groups of genomic fragments that are inter-connected with each other by chromatin 

interactions, i.e. 3D chromatin modules, are first identified in the APRIL algorithm (Figure 

2.1 A). Within each 3D chromatin module, nodes represent genomic fragments and edges 

represent long-range chromatin interactions. For each pair of nodes in a module, there 

exists at least one path connecting them. Every chromatin interaction has two linked 

genomic loci, i.e. interaction anchors, and different chromatin interactions may involve 

overlapping interaction anchors. To create a catalogue of unique indexes for interacting 



 10 

genomic locations, consecutively overlapping anchors along the genome are merged into 

single fragments and are represented as single nodes in the network.  

Genomic fragments (i.e. nodes) in 3D chromatin modules are further annotated 

based on their potential functions in gene regulation. The nodes are classified into three 

types: gene nodes, enhancer nodes and other-element nodes. A genomic fragment is 

classified as a gene node if it overlaps with a gene’s promoter (i.e. +/-1kb from TSS) 

based on the provided gene model annotations and if the gene is expressed in the specific 

tissue or cell-type (log2(RPKM)>0) based on the provided transcriptome data. A genomic 

fragment is classified as an enhancer node if it contains enhancer-specific epigenetic 

signatures provided by the user. Enhancer-specific epigenetic signatures can be: 

a) enhancer chromatin state called by chromHMM or Segway135,136, 

b) high chromatin accessibility such as DNase-seq peaks or ATAC-seq peaks, 

c) enhancer-specific histone modification (e.g. H3K4me1 or H3K27ac) ChIP-seq 

peaks, 

d) enhancer RNA (eRNA) signal peaks. 

Users have the flexibility to select the specific enhancer epigenetic signatures to 

run APRIL. Genomic fragments that are not classified as genes or enhancers will be 

considered as other-elements. Based on these annotations, nodes will be color coded in 

the final network visualizations (Figure 2.1 A). Overall, the annotated 3D chromatin 

modules represent connected regulatory units of multiple genes and multiple enhancers. 

The chromatin interactions within each module represent long-range cis-regulation 

among pairs of enhancers, other-elements and gene promoters, which are usually co-

located in chromatin domains137. 

Expand regulatory sub-networks with trans-regulation 

The regulatory networks will be further expanded from 3D chromatin modules, by 

incorporating connectivities of trans-regulation. Although long-range cis-regulation within 

3D chromatin modules are mainly generated by intra-domain interactions14,137, trans-

regulation by transcription factors (TFs) can coordinate expression of genes located in 

different chromatin domains. The APRIL algorithm builds expanded regulatory sub-

networks by merging 3D chromatin modules that share common enriched TFs (Figure 

2.1 A, Figure A. 2). Based on the genome-wide TF motif annotations provided by the 
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user, APRIL will first scan genomic fragments in every 3D chromatin module by counting 

the motif occurrences for each specific TF. The motif occurrence counts across all 

genomic fragments are then organized into a node-level TF matrix, where each row 

corresponds to a genomic fragment (i.e. nodes in the network) and each column 

corresponds to a specific TF. To reduce false positives of TF motif analyses, only TFs 

that are expressed (log2(RPKM) > 0) in the specific tissue or cell-type under study are 

included. Based on the node-level TF matrix, a module-level TF matrix is then constructed, 

where each row corresponds to a 3D chromatin module and each column corresponds to 

the averaged TF occurrence counts across nodes within the specific module. Hierarchical 

clustering is then applied on the module-level TF matrices to identify clusters of 3D 

chromatin modules whose TF occurrence profiles are significantly similar (Figure A. 3). 

Considering the large variances across different TFs, ‘complete’ mode of hierarchical 

clustering is used. Pearson correlation is used as the similarity metric. The default number 

of clusters is determined based on analyses of Within-cluster Sum of Squares and 

Averaged diameters of the resulting sub-networks (Figure A. 3). 3D chromatin modules 

belonging to the same clusters are linked together by adding 1) nodes to represent the 

common TFs shared by the chromatin modules, and 2) edges between TF nodes and 

genomic fragments in the 3D modules which contain motifs of the specific TFs. The 

resulting graph of multiple 3D chromatin modules linked by common TF nodes are used 

as the expanded regulatory sub-networks, which serve as the foundation for the 

subsequent disease-associated gene predictions.  

In the meantime, based on the hierarchical clustering, clusters of TFs that are 

enriched within specific regulatory sub-networks are identified as candidate master TF 

regulators, and a clustered heatmap is generated to visualize the associations of 

candidate master TF regulators and specific regulatory sub-networks. 



 12 

 

Figure 2.1. The workflow of APRIL and its application on K562 ChIA-PET dataset. (A) 
APRIL takes 3D chromatin contact maps and cell-type specific multi-omics dataset as 
inputs to construct 3D chromatin modules including gene nodes (red), enhancers nodes 
(orange) and other-elements nodes (blue). Enriched TFs based on motif analysis are 
added as TF nodes (purple) and are used to merge 3D chromatin modules into sub-
networks. Based on the GWAS SNPs and the constructed regulatory sub-networks, novel 
disease-associated genes are predicted using different machine learning techniques. (B) 
One example of the constructed regulatory sub-network based on K562 ChIA-PET data. 
(C)-(D) Statistical distributions of network properties. Global graph properties (C) include 
Node count (upper panel) and Diameter (lower panel). Node centrality metrics (D) include 
Betweenness centrality (upper left panel), Closeness centrality (lower left panel), Degree 
centrality (upper right panel) and Page-rank centrality (lower right panel). (For 
interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

2.2.3 Network-based enrichment analysis for genetic associations 

Before predicting novel disease-associated genes, APRIL provides a series of functions 

to statistically test whether GWAS SNP hits are over-represented within specific 

regulatory sub-networks. Based on the provided GWAS summary statistics (e.g. 

association p-values of SNPs) from the user, APRIL first identifies genomic fragments (i.e. 
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nodes in regulatory sub-networks) that harbor those SNPs. Geodesic distances, which 

are defined as the lengths of shortest paths between two nodes harboring GWAS hits, 

are calculated to quantitatively demonstrate how close GWAS hits are located across the 

topology of the regulatory sub-networks. 1,000 random controls are generated by 

shuffling the labels of nodes (i.e. GWAS-hit labels and non-GWAS-hit labels) across all 

regulatory sub-networks. The observed distribution of geodesic distances based on real 

GWAS hits are then compared to the distributions from the 1,000 random control sets 

using Kolmogorov-Smirnov tests to statistically evaluate whether significant GWAS hits 

prefer to be located closer in the network.   

For each regulatory sub-network, APRIL further statistically tests whether the 

specific sub-network has significantly higher frequency of observing GWAS hits. 1,000 

random control sets are generated by shuffling the labels of nodes across all sub-

networks (i.e. GWAS-hit labels and non-GWAS-hit labels), with the total number of nodes 

and edges in each sub-network controlled. For each sub-network, using the counts of 

GWAS-hit nodes in the 1,000 random sets as the null distribution, we calculated the 

empirical p-value using the formula: 1+No. of (GWAS-hit in random networks > observed 

GWAS-hit in APRIL sub-network)) / 1001. The regulatory sub-networks are then sorted 

based on their GWAS enrichment significance.  

2.2.4 Prediction of novel disease-associated genes 

APRIL employs both unsupervised and supervised machine learning algorithms to predict 

novel disease-associated genes, based on the constructed networks of long-range gene 

regulation. Users have the flexibility to choose the prediction methods and do comparative 

analysis on the results. The unsupervised prediction is based on label propagation138 and 

the supervised prediction is based on random forest models.  

Unsupervised label propagation to predict disease-associated genes 

APRIL utilizes HotNet138 algorithm to predict novel disease-associated genes. Different 

from traditional applications, APRIL incorporates three different types of nodes in the 

network for label propagation, i.e. gene nodes, enhancer nodes and TF nodes. As in the 

HotNet138 diffusion framework, every regulatory sub-network is considered as a dynamic 

fluid system, where each node (except TF nodes) serves as a source of fluid with a 
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constant rate and fluid can diffuse from node to node within the sub-network. APRIL uses 

the GWAS association effect sizes of each node as the corresponding node-specific 

source fluid rates. Therefore, nodes harboring significant GWAS SNP hits are assigned 

with higher source fluid rates. If a node contains multiple SNPs, the maximum effect size 

is used for the node. Sub-networks with less than five gene nodes are removed from this 

analysis. After HotNet label propagation converges to the steady state, a predicted 

disease-association score is assigned for every node, especially for gene nodes. Top-

ranked genes based on the association scores are highlighted as candidate disease-

associated genes. 

Supervised prediction of disease-associated genes using random forest models 

To construct predictive models of disease-associated genes and identify key network 

features, APRIL provides a supervised mode of predictions based on random forests. For 

every gene node in the sub-networks, the binary label to predict is disease-associated or 

not. The features used in random forest to predict the disease-association labels for a 

specific gene node include five sets: 1) regulatory sub-network related features, such as 

node degree, betweenness, closeness, page rank centrality; 2) GWAS related features, 

such as the maximum and summation of effect sizes of neighboring nodes; 3) TF related 

features, such as TF motif occurrences in the gene node and neighboring nodes. For 

each specific TF, the motif occurrence counts from neighboring nodes are aggregated 

into a weighted summation score, where the weights are GWAS effect sizes assigned to 

each neighboring node; 4) eQTL features in neighboring nodes, including the count of 

eQTLs and the p-value of the most significant neighboring eQTL; and 5) cell-type specific 

activity features of genes and enhancers, such as the z-scores of gene expression and 

enhancer chromatin accessibility across multiple cell-types. Since different gene nodes 

may be connected to different numbers of enhancer nodes, APRIL uses quantile statistics 

of enhancer activities to uniformly describe activity distributions of neighboring enhancer 

nodes for every gene node. To train the random forest model, balanced negative training 

sets are generated from the pool of genes in regulatory sub-networks that are not 

identified as disease-associated based on traditional GWAS and do not share common 

neighboring nodes in the sub-networks with genes in the positive training sets. Random 

forest classifier is trained using the R package ‘randomForest’ with 50 trees. Ten-fold 
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cross-validation is used to evaluate the performance. Feature importance is calculated 

and provided to users. 

2.2.5 Cell-type specific activity analysis 

Based on user provided cell-type specific activity datasets for genes and enhancers, 

APRIL also provides functions to understand how cell-type specific activities are 

coordinated in regulatory sub-networks. To quantitatively evaluate whether genes, 

enhancers and TFs are significantly correlated, APRIL provides different versions of 

random backgrounds to carry out statistical tests. The first version of background is 

created by randomly pairing nodes in the same networks, with all other factors controlled. 

The second version is based on all potential pairs. For each version, 1,000 random 

samples are generated. Pearson correlations of observed node pairs are calculated 

based on quantile normalized cell-type specific activities. Similar correlation calculations 

are carried out for node pairs from random samples. The observed correlations are then 

compared with random background and are statistically tested (one-sided Student’s t-

test). Three types of node pairs are considered: 1) gene-gene pairs, 2) enhancer-gene 

pairs, and 3) TF-gene pairs. Since the regulatory sub-networks are constructed based on 

information of 3D chromatin interactions and TF motif occurrences, the cell-type specific 

activity correlations and the significance tests provide orthogonal information on 

functional coordination of gene regulation at systems-level. Furthermore, APRIL employs 

public available protein-protein interaction (PPI) databases139 to evaluate whether TF-TF 

pairs in regulatory sub-networks are statistically enriched with PPIs based on empirical 

permutation tests. For each sub-network, APRIL generates 1,000 random sets of TF-TF 

pairs by shuffling TF names across all sub-networks. This procedure controls all other 

factors and can efficiently eliminate bias. The fractions of PPI-supported TF-TF pairs in 

the observed sub-networks are then compared with random samples to quantitatively test 

whether TFs co-regulating genes are more likely to physically interact with each other. 

2.2.6 Network and prediction visualizations 

The constructed regulatory sub-networks are visualized using the R package ‘igraph’. In 

the network visualization, gene nodes are marked as red, enhancer nodes are marked as 

orange, other-element nodes are marked as blue, and TF nodes are marked as purple. 
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Edges of gene-gene pairs, enhancer-gene pairs and enhancer-enhancer pairs represent 

long-range chromatin interactions. Edges of TF-gene pairs and TF-enhancer pairs 

represent predicted trans-regulation. A plotting function with default setting above is 

provided to users. Along with the network visualization, additional plots can be generated, 

including 1) activities of genes, enhancers and TFs, 2) correlations of gene-gene pairs, 

enhancer-gene pairs, and TF-gene pairs, 3) PPI enrichment, and 4) clustered heatmap 

of enriched TFs across 3D modules. The plots are generated based on the same method 

as stated in the methods 2.2.4. 

For predictions of novel disease-associated genes, results of the two machine 

learning methods are provided as a series of plots and tables. The predictions based on 

label propagation are provided as a table with three columns: gene names, predicted 

scores and sub-network indexes. Since the raw predicted scores from different regulatory 

sub-networks are not directly comparable, the mini-max normalized scores are provided 

for each gene to make it comparable across sub-networks. Along with the table, a boxplot 

of predicted score ranks between disease-associated genes and control gene sets is also 

provided to the user. The result can also be visualized in the regulatory sub-networks, 

where nodes are colored by the predicted scores of label propagation and candidate 

disease-associated genes are represented as stars. The predictions based on the 

random forest are provided as a table with two columns: gene names and the predicted 

disease-association probabilities. The ROC plot of ten-fold cross-validation is provided to 

the users. The predicted disease-associated genes can be visualized in the sub-networks 

and the newly discovered candidate genes are highlighted as red stars. 

2.3 RESULTS 

2.3.1    Expanded regulatory networks constructed based on 3D chromatin 

interactions. 

To demonstrate the performance, APRIL is applied on a ChIA-PET chromatin interaction 

dataset of K562 cell-line124. The distances of chromatin interactions linking regulatory 

elements and genes can be longer than 1Mb, with a median distance of 25kb (Figure A. 

2). The regulatory elements mainly include enhancers as characterized by enhancer-

specific epigenetic signatures, including enhancer chromatin states and DNase-seq 
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signal peaks96,124, along with other potential non-coding regulatory elements. They are 

termed as enhancer nodes hereafter in this paper. The interacting genomic locations that 

overlap with gene promoters126 are annotated as gene nodes. In addition, APRIL 

identified ~402k DNA motif occurrences for 221 TFs located in interacting genomic 

locations from this ChIA-PET dataset. By integrating the long-range cis-regulation of 

chromatin interactions and trans-regulation mediated via TFs, APRIL constructed an 

expanded K562-specific regulatory network, including edges linking different types of 

nodes (i.e. gene, enhancer and TF nodes).  

Overall, there are 10,458 gene nodes, 73,494 enhancer nodes (including enhancer 

elements and other regulatory elements) and 14,667 TF nodes. There are 741 sub-

networks containing at least one gene node. In each sub-network, multiple 3D chromatin 

modules (i.e. groups of long-range cis-regulation) are connected by common enriched 

TFs (i.e. combinatorial trans-regulation). Figure 2.1 B shows one example of the 

constructed sub-network, where different types of color-coded nodes connected by cis- 

or trans-regulatory links.  More examples are shown in Figure A. 2. The sub-networks 

have different sizes, as demonstrated by the number of nodes and the network diameters 

(Figure 2.1 C). In addition, indicated by a variety of centrality metric analyses (Figure 2.1 

D), substantial fractions of sub-networks are organized in a hierarchical structure with 

node ‘hubs’ linking many neighbors in the graphs, emphasizing the importance of 

understanding gene regulation from a systems-level. 

2.3.2    Cell-type specific regulatory signatures encoded in networks 

The constructed regulatory sub-networks provide a platform to analyze K562 specific 

gene regulation, as the networks contain 83,952 genomic locations in total, such as gene 

promoters, enhancers and other regulatory elements, which participate in long-range 

gene regulation (Figure 2.2 A). In addition, the TF nodes in sub-networks represent 

abundant trans-regulation mediated by TF combinations. Compared to genome-wide 

background, genes included in the expanded regulatory networks have significantly 

higher expression levels in K562 cells (Figure 2.2 B). Similarly, enhancers and TFs 

included in the networks also show higher activities in K562 cells compared to other 

enhancers or TFs not in the networks (Figure 2.2 C, D). These results suggest the 
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functional importance of nodes contained in the constructed regulatory networks for cell-

type specific activities.  

To characterize the coordinated activities of genes, enhancers and TFs in specific 

sub-networks, correlations across different cell-types are calculated for gene-gene, 

enhancer-gene and TF-gene node pairs, based on DNase-seq and RNA-seq data from 

127 cell-types/tissues in ENCODE and Roadmap Epigenomics consortia96,124. All three 

types of node pairs are found to have significantly higher activity correlations than random 

samples, where basic network topology properties are strictly controlled (Figure 2.2 E-

G). These observed high correlations indicate that the constructed regulatory networks, 

which are built from long-range chromatin interactions and TF motif enrichments, can 

accurately capture the cell-type specific regulatory modules. 

To obtain mechanistic understandings of potential multi-TF collaborations involved 

in gene regulation, APRIL further incorporates protein-protein interaction (PPI) data139. 

Compared to randomly shuffled TF node annotations across the regulatory networks, TF-

TF node pairs within the same sub-networks are found to be highly enriched with PPIs 

(Figure 2.2 H), suggesting combinations of TFs involved in co-regulation of genes may 

have the potential to physically interact with each other.  

As the constructed 3D chromatin modules represent cis-regulatory units with 

multiple enhancers and genes, they provide a better way to characterize combinatorial 

TF groups in gene regulation than analyzing single enhancers or promoters. For every 

3D chromatin module, the TF motif counts from enhancer or gene nodes are aggregated 

together to create module-level TF enrichment profiles. Interestingly, clusters of TF 

combinations are found to be shared across specific subsets of 3D chromatin modules 

(Figure 2.3). For example, there are 14 3D chromatin modules enriched with TFs of the 

FOXO family, 8 3D chromatin modules enriched with TFs of the MAF family and 10 3D 

chromatin modules enriched with TFs of the ETS family. This observation suggests that 

the clusters of TFs are potential trans-regulators working together to co-regulate multiple 

genes and enhancers across different 3D chromatin interacting hubs. 
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Figure 2.2. Genomic fragments in regulatory sub-networks tend to share similar cell-type 
specific regulatory activities. (A) Pie-chart summary of node annotations. (B-D) 
Regulatory sub-networks constructed by APRIL capture highly active (B) genes (based 
on RNA-seq), (C) enhancers (based on DNase-seq) and (D) TFs (based on RNA-seq, P 
= 0.007302) in K562 cells. The controls are genes, enhancers and TFs that are not 
covered by the regulatory sub-networks. P-values are calculated by the one-sided 
Student’s t-test. (E)-(G) The constructed sub-networks capture highly co-active (E) gene-
gene pairs, (F) enhancer-gene pairs and (G) TF-gene pairs across cell-types (red) based 
on quantile normalized activities, compared with controls of shuffled networks (orange) 
and random pairs (purple). P-values are based on the one-sided Student’s t-test. (H) The 
TF-TF node pairs within the same sub-networks are enriched with PPIs. Controls are 
generated by randomly shuffled TF names on the same networks. Error bars are the 
standard errors based on 1,000 random controls. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Figure 2.3. 3D chromatin modules form clusters with common TF combinations. Rows 
represent different TFs and columns represent 3D chromatin modules. TF enrichment 
within a specific 3D chromatin module is calculated based on motif occurrences in 
promoters and enhancers. All five highlighted TF combinations enriched in different 
clusters of 3D chromatin modules are known leukemia or immune related TF families. 

2.3.3    Long-range regulatory networks can characterize the relationship among 

disease-associated genes. 

To show how disease-associations are encoded in the constructed K562-specific 

regulatory sub-networks, the co-occurring patterns of GWAS SNP hits are statistically 

tested with respect to both topological closeness and enrichment of over-representation. 

Considering that K562 is a blood cancer cell-line, immune-associated GWAS datasets 

from the UK BioBank and EMBI databases133,134 are used for the analysis (see Methods). 

After overlaying the immune-associated GWAS SNPs to the regulatory networks based 

on genomic location overlaps, the pairwise geodesic distances for each pair of gene 

nodes containing significant GWAS SNPs, termed as disease-gene nodes hereafter, are 

calculated (Figure 2.4 A). Compared to randomly shuffled networks, the geodesic 

distances between disease-gene nodes are significantly shorter (p-value< 2.2x10-16, 

Kolmogorov-Smirnov test), suggesting that disease-associated genes are closer to each 

other based on the topology of the constructed networks. This observation also indicates 

the functional relationship of GWAS SNP hits in the process of gene regulation, which 
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may mediate the association between the genetic variants and traits through regulatory 

paths in the networks. Consistent with this hypothesis, the immune-associated GWAS 

SNPs contained by nodes of the regulatory network demonstrate more stringent GWAS 

p-values than SNPs that are not contained by the network (Figure 2.4 B, C). In addition, 

disease-associated genes in regulatory networks tend to have relatively higher fractions 

of neighboring nodes containing eQTLs (Figure A. 4). 

Furthermore, a subset of regulatory sub-networks are found to be statistically 

enriched with GWAS genes (Figure 2.4 D), compared to randomly shuffled controls using 

empirical permutation tests with the network topologies maintained. As one of the 

examples, Figure 2.4 E shows a K562 regulatory sub-network containing five genes (red 

nodes) linked together by a number of long-range cis-regulation and six TFs. Three out 

of the five genes are found to be significantly associated with immunity based on the 

GWAS analysis (Figure 2.4 F), which is significantly more than randomly shuffled controls 

(p-value=0.008, empirical permutation tests). These sub-networks enriched with GWAS 

genes suggest that disease-associated genes and the corresponding regulatory elements 

are functionally inter-connected with each other.  
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Figure 2.4. Connectivity and enrichment of disease-associated genes and GWAS SNPs 
in regulatory sub-networks. (A) Geodesic distances between disease-gene nodes in sub-
networks are significantly shorter compared to random networks (P < 2.2e-16, 
Kolmogorov-Smirnov test). (B-C) GWAS SNPs covered by the regulatory sub-networks 
are more significantly associated with disease based on data from (B) the UK Biobank (P 
= 0.00096) and (C) EMBL database (P = 0.05). The P-value is calculated using one-sided 
Student’s t-test). (D) A subset of sub-networks are enriched with disease-associated 
genes. P-values are based on the permutation tests against random graphs. (E) One 
example of disease-associated genes enriched in a regulatory sub-network in K562 cells. 
Disease-associated genes are represented as stars. (F) Distribution of disease-
associated gene counts based on random samples of shuffled GWAS labels (disease-
gene and non-disease-gene nodes) across the networks. 
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2.3.4    Unsupervised disease-associated gene discovery using long-range 

regulatory networks 

As supported by the observed co-occurring GWAS SNP hits in regulatory sub-networks, 

predictive machine learning algorithms are applied to predict novel disease-associated 

genes based on network features. As every node in the networks is assigned with a score 

of association with immunity, based on the GWAS SNPs from UK BioBank133,134 that 

overlap with the nodes, HotNet label propagation algorithm138 is employed to aggregate 

the scores of connected nodes (Figure 2.5 A). Using the GWAS scores from gene nodes 

alone to do the label propagation, the disease-associated genes from GWAS are 

significantly top-ranked compared to control gene sets (Figure 2.5 B), which is expected. 

Strikingly, without using any GWAS scores from gene nodes, the disease-associated 

genes are also significantly top-ranked, based on GWAS scores from enhancer nodes 

that are linked to the regulatory networks by long-range chromatin interactions with genes 

(Figure 2.5 B). This finding suggests that distal genetic variants in linked regulatory 

elements are predictive for disease-association of target genes. By combining GWAS 

scores from both genes and distal enhancers, APRIL can achieve a better separation of 

disease-associated genes and control genes (Figure 2.5 B).  

As an interesting example, the gene CTPS1 is predicted to be immune-associated 

based on label propagation on K562 regulatory networks (Figure 2.5 C). The association 

of CTPS1 with immunity is found to be supported by DisGeNet128.  As shown in the 

regulatory sub-network where nodes are color-coded by predicted association scores, 

CTPS1 is predicted mainly due to a neighboring enhancer node (Figure 2.5 C), which 

has long-range chromatin interaction with CTPS1’s promoter based on K562 ChIA-PET 

dataset. Therefore, the high association score of this particular enhancer with immunity 

accurately predicts CTPS1’s functional relevance in immune systems. Furthermore, this 

specific enhancer contains multiple SNPs that are also eQTLs of CTPS1 in whole blood 

tissues (Figure 2.5 C), providing cellular level evidence of the genetic association. In 

addition, CTPS1 has a neighboring TF node: NRF1, which is supported by the ChIP-seq 

signal peak of NRF1 in the promoter region of CTPS1 (Figure 2.5 C). Considering the 

known functional roles of NRF1 in cancer140, this observation further indicates potential 

mechanistic insights of CTPS1’s association with immunity. 
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Figure 2.5. Predict disease-associated genes using regulatory sub-networks based on 
label propagation. (A) Schematic figure of label propagation. Disease association scores 
are propagated along the sub-networks so that every gene node can borrow disease-
association information from neighboring nodes. (B) Disease-associated genes have 
higher percentile ranks of predicted scores than control genes (one-sided Student’s t-
test), suggesting that effect sizes of genetic associations from other nodes in the network 
can help to improve disease-associated gene prediction. (C) Example of newly 
discovered disease-associated gene CTPS1, which is validated by DisGeNET. The color 
of nodes corresponds to the predicted disease-association score. The neighboring TF 
node (NRF1) is inferred based on NRF1 motif in the promoter region of CTPS1, which is 
supported by the ChIP-seq data of NRF1 binding. Also, the neighboring enhancer node 
in the network is linked to CTPS1 by long-range K562 ChIA-PET data. The enhancer 
element contains three significant GTEx eQTLs in whole blood tissues. 

2.3.5    Supervised prediction based on aggregated SNP information from 

neighboring nodes 

The random forest based supervised prediction of disease-associated genes is also 

applied on the constructed K562 regulatory networks, which provides complementary 

advantages compared to unsupervised predictions. As explained in the methods section, 

multiple sets of features in gene promoters, linked enhancers and network topology are 

included (Figure 2.6 A). Using the database of DisGeNet128, genes are labeled as 
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immune-associated or not associated to train the random forest classifiers. Based on ten-

fold cross validation, the random forest models achieve high accuracy (average 

AUC=0.87) in predicting immune-associated genes (Figure 2.6 A). By analyzing the 

calculated feature importance, the top-ranked predictive features include network-

topology related features of genes (e.g. centrality metrics), gene expression levels, 

specific TFs, and most interestingly, the GWAS effect sizes of linked enhancers in the 

regulatory networks (Figure 2.6 B, Figure A. 5, Figure A. 6). Since the distal enhancers 

are linked to genes by long-range chromatin interactions, this finding strongly highlights 

the importance of non-coding genetic variants that may induce gene expression 

dysregulation in complex diseases. As an example (Figure 2.6 C), the gene ABCA7 is 

predicted to be associated with immunity, consistent with its high expression in whole 

blood tissues. This gene is located in a large regulatory sub-network with multiple genes, 

enhancers and TFs densely connected, and it has been found to be associated with 

autoimmune diseases141,142. One of the contributing features for this prediction is a non-

coding regulatory enhancer element linked to ABCA7 promoter through chromatin 

interactions. In support of dysregulation of ABCA7’s expression from SNPs in this 

enhancer, there is an eQTL discovered in whole blood tissue which is correlated with the 

expression changes of ABCA7 (p<7.8x10-28). Other contributing features for this 

prediction include neighboring TF nodes of KLF16 and SP1, both have been 

demonstrated to be related with immunity, especially leukemia143–146. A similar example 

of predicted immune-associated genes can be found in Figure A. 7, which also leads to 

insights on the predictive features of cis- and trans-factors underlying disease-

associations. 
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Figure 2.6. Supervised prediction of disease-associated genes based on regulatory sub-
networks. (A) Overview of features used in the random forest model, including network 
features, effect sizes, TF features and activity features. The supervised prediction of 
disease-associated genes achieves an averaged AUC = 0.87 based on ten-fold cross 
validation. (B) Boxplots of top ranked features in predicted disease-associated genes 
compared to control genes (one-sided Student’s t-test). (C) Example of a newly 
discovered disease-associated gene ABCA7. ABCA7 has high expression in whole blood 
tissues based on GTEx dataset. ABCA7 has two neighboring TF nodes: SP1 and KLF16, 
based on their motif occurrences. They are validated by ChIP-seq dataset of SP1 and 
KLF16 bindings. Both TFs are highly ranked with respect to the feature importance 
calculated by the random forest model. Also, a neighboring enhancer node linked to 
ABCA7 contains a highly significant eQTL in whole blood tissue based on GTEx dataset 
(p-value = 7.8e-28). 
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3DVariantVision: MULTIMODAL FRAMEWORK TO DECODE GENETIC VARIATION 

BASED ON 3D CHROMATIN 

3.1 INTRODUCTION 

Decoding the functional impacts of genetic variants plays pivotal roles in revealing the 

underlying mechanisms of complex human diseases, such as Alzheimer’s disease1,147,148, 

autoimmune diseases121,149 and cancer150–152. Although conventional genome-wide 

association studies (GWAS) have enabled the identifications of specific single-nucleotide 

polymorphisms (SNPs) associated with different diseases, its analytical framework 

imposes significant limitations, such as the low statistical power, the ambiguity among 

neighboring SNPs in LD, the restricted capability of pinpointing distal non-coding SNPs, 

and the lack of mechanistic interpretations4,5. These challenges are collectively caused 

by the limited sample sizes in disease genetics, moderate SNP effect sizes, the burden 

of genome-wide multiple hypothesis testing, the LD blocks, and, particularly, the simplified 

black-box treatment of molecular-level SNP effects, such as the functional dysregulation 

of cell-type specific transcription4,5.  

To address these challenges, one promising strategy is to integrate the multi-omics 

information under specific cellular contexts into the analysis and leverage the molecular-

level phenotypes as mediators to decipher the disruptive impacts of SNPs. This strategy, 

depending on the specific modeling architectures, has led to a series of important 

discoveries, including molecular-level genetic associations (e.g. eQTLs, histone QTLs, 

and meQTLs)153–156, transcriptome-wide association studies (TWAS)157, and de novo 

machine learning predictions of cell-type specific SNP effects (e.g. delta-SVM, GWAWA, 

FunSeq)43,44,47. More recently, given the fast advancements in deep learning, a variety of 

natural language processing (NLP) models have been successfully adapted to predict 

non-coding SNP effects at single-nucleotide resolution. Based on Convolutional Neural 

Networks (CNN) and Bidirectional Long Short-Term Memory (BLSTM), DeepSEA69, 

Basenji72, DanQ71 and BPNet158 can predict cell-type specific transcription factor (TF) 

binding sites, chromatin accessibility, histone marks and nearby gene expression, which 

are further used to predict the disruptive effects induced by specific SNPs. Also based on 
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CNN architecture, SPEID20 and 21 can predict enhancer-promoter links, while Akita24 and 

DeepC23 characterize Hi-C chromatin interactions. As the most recent development 

beyond the CNN-centric framework, Enformer75 employs the attention mechanisms74 and 

extends the genomic window of input features to be 100kb centered around gene 

promoters, in order to learn the long-range regulatory effects of non-coding SNPs, which 

yields promising results. Overall, these models substantially expand the functional 

annotation from coding regions to non-coding genetic variants and provide mechanistic 

hypotheses on potentially functional SNPs. However, existing approaches face 

challenges: 1) Integrating long-range and local effects remains unaddressed, and 2) the 

gap between chromatin and gene expression effects persists. 3) lacks cell-type specificity 

in chromatin interactions and fails to illustrate the relationship between chromatin and 

gene expression effects. As a result, a holistic comprehension of genetic variant impacts 

on local profiles, long-range chromatin, downstream target genes, and associated 

diseases remains incomplete. 

Here we introduce 3DVariantVision, a cutting-edge deep learning-based 

multimodal framework, designed to offer a comprehensive view of genetic variant effects, 

spanning from genotype to phenotype. This innovative approach integrates diverse 

genome-wide datasets, including ChIP-seq9, Hi-C14, and eQTL summary statistics159–161. 

Initially pre-trained on predicting cell-type-specific 1D genomic and epigenomic profiles, 

3DVariantVision crafts informative embeddings solely from DNA sequences, employing 

cross-attention in communicative learning to discern intricate enhancer-promoter 

relationships. Fine-tuning eQTL prediction tasks, it bridges the knowledge gap between 

3D chromatin structure and gene expression. Remarkably, relying solely on DNA 

sequences, 3DVariantVision excels in predicting functional genetic variants, deciphering 

their disruptive effects on TF bindings, histone modifications, enhancer-promoter 

interactions, and gene expression. This enhanced capability leads to improved eQTL 

discoveries. By capturing the intricate, nonlinear regulatory grammar across multiple 

feature levels and genomic distances, 3DVariantVision accurately identifies the distal 

target genes of non-coding variants, unveils novel TF combinations, and provides fresh 

insights into trait-associated variants, transcending conventional GWAS and TWAS 

studies. 
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3.2 MATERIALS AND METHODS 

3.2.1 Model framework of 3DVariantVision 

We introduce 3DVariantVision, an innovative multimodal framework tailored to 

deciphering the effects of genetic variations using a 3D chromatin context. The framework 

operates across three distinct stages to unravel the effects of these variants: 1) Disruption 

of upstream TF binding effects; 2) Influence of chromatin interaction effects; 3) 

Manifestation of downstream gene expression effects, encompassing eQTLs. Through 

these three intricately connected stages, 3DVariantVision achieves a comprehensive and 

nuanced understanding of the complex interplay between genetic variations and their 

functional consequences within the context of 3D chromatin architecture. 

Epigenomics prediction based on representation learning 

The 3DVariantVision approach employs a configuration consisting of three CNN blocks, 

succeeded by two fully connected blocks. This architecture is applied to predict 139 

distinct ChIP-seq peaks within the human genome, encompassing TF binding sites, 

histone modifications, and DNase peaks. As input data, the one-hot-encoded DNA 

sequence is utilized, where nucleotides A, C, G, and T are represented as [1,0,0,0], 

[0,1,0,0], [0,0,1,0], [0,0,0,1], respectively, while N represents an unresolved base as 

[0,0,0,0]. The input sequences are of length 2,000 base pairs. 

The employment of CNNs in this context derives from their capability to effectively 

capture local sequence patterns. The CNN-based architecture serves to generate a 

representative embedding of the DNA sequence. Each individual CNN block comprises 

a convolutional layer, which is subsequented by Batch Normalization, Rectified Linear 

Unit (ReLU) activation, and Max Pooling operations. This orchestrated sequence of layers 

within each CNN block contributes to the network's capacity to discern and encode 

essential features from the DNA sequence data. Batch Normalization is a fundamental 

technique in machine learning that enhances training stability by normalizing activations 

within each mini batch, mitigating issues related to internal covariate shifts and 

accelerating convergence. ReLU is a widely used non-linear activation function in neural 

networks, facilitating the incorporation of essential non-linearity by outputting the input 

directly if it's positive, while transforming negative inputs to zero, enhancing the network's 
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ability to capture complex relationships within data.  Max pooling is a pooling operation, 

where the input data is partitioned into non-overlapping regions and the maximum value 

from each region is selected to form a downsampled representation, aiding in feature 

extraction and spatial hierarchy preservation. The second and third CNN blocks utilized 

dilated CNN that introduces gaps or "dilation" between filter elements, effectively 

expanding the receptive field while preserving computational efficiency. This allows 

dilated CNNs to capture both local and global features from input data, making them 

particularly useful for tasks involving hierarchical or multiscale information. 

The embedding resulting from the CNN blocks is transformed into a 1D vector 

through a flattening process. Subsequently, this vector is fed into a sequence of two fully 

connected blocks, which together facilitate the prediction of binary ChIP-seq peaks. The 

initial block encompasses a Linear layer, accompanied by Batch Normalization, a ReLU 

activation function, and Dropout operations. This composite arrangement serves to 

project the embedded features into a 200-dimensional space, enabling enhanced 

discriminative capabilities. The subsequent block, which follows, comprises a Linear layer 

designed to produce output vectors of dimensionality 139. These vectors undergo a final 

transformation using the Sigmoid activation function. This transformation generates 

probabilities indicative of peak bindings for the 139 distinct categories. The utilization of 

the Sigmoid function allows for the effective modeling of these binding probabilities, 

encapsulating the predictive capacity of the network regarding the presence of ChIP-seq 

peaks across the target genomic regions. 

In training the model, we employed the Binary Cross-Entropy as the objective 

function to gauge the loss. The derivatives of this objective function with respect to the 

model parameters were computed through a standard backpropagation algorithm. To 

optimize the objective function and facilitate efficient convergence, we harnessed the 

power of the Adam optimizer. 

For the input preparation in the representation learning stage of 3DVariantVision, 

we divided the entire human genome into non-overlapping 2kb regions and computed 

labels for all 139 epigenomic peaks. Training labels were derived from uniformly 

processed data releases from ENCODE124, encompassing 127 TF ChIP-seq, 11 Histone 

ChIP-seq, and 1 DNase-seq datasets specifically from the GM12878 cell type. Each 
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epigenomic peak was labeled as 1 if the corresponding 2kb bin overlapped with the peak 

region and 0 otherwise. Our focus was on the set of 2kb bins that contained at least one 

peak, resulting in a total of 382,742 sequences. 

To facilitate model training, we partitioned the data into training, validation, and 

testing sets, following an 8:1:1 ratio. In summary, each sample within the dataset 

comprises a 2kb sequence extracted from the human hg19 reference genome, paired 

with a corresponding label vector encompassing information for all 139 epigenomic peaks. 

This meticulously curated dataset forms the foundation for training and evaluating the 

performance of 3DVariantVision in decoding genetic variations within the context of 3D 

chromatin architecture. 

Chromatin interaction prediction based on communicative learning 

Through its training for epigenomic peak prediction, 3DVariantVision acquires the 

capability to generate embeddings that effectively encapsulate the sequence information 

of any given DNA sequence. These embeddings are derived from the CNN blocks and 

can be directly leveraged for the prediction of chromatin interactions between two DNA 

fragments. It's noteworthy that existing methods for chromatin interaction prediction 

commonly adopt a simplistic approach of concatenating the features or embeddings of 

two DNA fragments, thereby neglecting to model the joint features that emerge from their 

interaction. To address this limitation, 3DVariantVision introduces a novel approach 

known as communicative learning. This approach is designed to foster a deeper 

understanding of the relationship between enhancer-promoter pairs, leveraging the 

power of cross-attention mechanisms. In doing so, 3DVariantVision goes beyond the 

conventional concatenation method by actively learning and capturing the intricate 

interplay and dependencies between enhancer-promoter pairs, thereby enhancing the 

accuracy and interpretability of chromatin interaction predictions. 

Cross-attention mechanisms, also known as inter-attention, are a crucial 

component in transformer-based models74, differentiating themselves from self-attention 

mechanisms. While self-attention focuses on capturing relationships within a single 

sequence, cross-attention extends its scope to establish connections between elements 

in different sequences or entities. This means cross-attention allows the model to weigh 

and attend to information not just within one sequence but across multiple sequences, 
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enabling a more comprehensive understanding of relationships and dependencies in 

broader contexts, making it particularly valuable in tasks involving multiple sources of 

information or different modalities, such as translation, summarization, or multi-modal 

understanding. 

Derived from the CNN, the one-hot encoding representations of enhancers 𝑆𝑒 and 

promoters 𝑆𝑝 undergo a transformation into richer embeddings, denoted as 𝐸𝑒 and 𝐸𝑝, 

respectively. These embeddings are structured as 𝐸 ∈ ℝ𝐾×𝐿 , where 𝐾  signifies the 

embedding dimension, which corresponds to the number of CNN channels, while 𝐿 

stands for the sequence length of the enhancer or promoter after pooling processes. In 

this arrangement, each column within the matrix symbolizes the embedding of a specific 

minuscule region. Positional encoding is strategically employed to incorporate positional 

information into the embeddings of both enhancers and promoters.  

In the context of implementing cross-attention, we have three fundamental 

components at play: query (𝑋𝑞), key (𝑋𝑘), and value (𝑋𝑣). The query represents the 

information we are actively seeking, the key provides the context or reference, and the 

value encapsulates the content we are searching through. The query and the key are 

multiplied together to produce the attention scores, which are then used to compute the 

weighted sum of the values.  

In our communicative learning framework, the promoter embedding takes on the 

role of the query 𝑋𝑄 = 𝐸𝑝, while the enhancer embedding assumes the roles of both key 

and value 𝑋𝐾 = 𝑋𝑉 = 𝐸𝑒. Each of these components possesses its unique set of weights 

for linear transformations within distinct representation subspaces. Queries 𝑄 = 𝑊𝑄𝑋𝑄, in 

essence, represent the promoter-specific information at each minuscule region, whereas 

keys 𝐾 = 𝑊𝐾𝑋𝐾 encapsulate enhancer-specific details, enabling each minuscule region 

to focus on relevant information during the attention process. The scaled dot-product of 

these queries and keys gives rise to the attention matrix 𝐴, where 𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑖𝑘𝑗

𝑇

√𝐾
). 

Here 𝑞𝑖 and 𝑘𝑗 represent the 𝑖th and 𝑗th minuscule region of query and key, respectively. 

Values 𝑉 = 𝑊𝑉𝑋𝑉 , on the other hand, encapsulate the enhancer-derived 

information. Each individual attention head computes its output as a weighted summation 

across all input positions by 𝐸𝑝
𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  𝐴𝑉. This enables each promoter minuscule 
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region to glean insights from the entirety of its corresponding enhancer minuscule region. 

Crucially, the multiple attention heads operate with independent parameters. The outputs 

from these multiple heads are concatenated to form the final layer output, which is 

subsequently subjected to a linear layer for aggregation and combination. This 

comprehensive approach effectively integrates positional and contextual information, 

enhancing the model's ability to capture intricate relationships between enhancers and 

promoters in chromatin interactions. In our cross-attention mechanism, we employed four 

heads, each with a value size of 200 and a key/query size of 200. To effectively capture 

the intricate, non-linear relationships between enhancers and promoters, we integrated 

three layers of cross-attention modules. In this architecture, the input to the current 

module consists of the embeddings of enhancers 𝐸𝑒  and the reweighted promoters 

𝐸𝑝
𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  obtained from the preceding module.  

Following the establishment of the intricate relationship between enhancers and 

promoters, the cross-attention mechanism facilitates the creation of a reweighted 

embedding of promoters, influenced by their paired enhancers. The attention matrix 𝐴 

generated in the final layer of the cross-attention mechanism is referred to as the 

"communication map." This communication map serves as a representation of the 

detailed relationships between enhancer-promoter pairs and is then transformed into a 

1D vector through a flattening process. Subsequently, this vector is channeled through 

two fully connected blocks. These blocks serve to process the information and generate 

binary predictions pertaining to chromatin interactions. In essence, this series of steps 

consolidates the knowledge acquired from enhancer-promoter associations and 

leverages it to make informed predictions about the presence or absence of chromatin 

interactions. 

To construct the enhancer-promoter dataset, we sourced chromatin interactions 

from Capture-C data within the GM12878 cell type108. These interactions were generated 

by overlapping fragment pairs with active enhancer and promoter regions associated with 

genes, thus forming the positive enhancer-promoter interaction dataset. To maintain a 

balanced dataset, we created a negative set by randomly pairing enhancers and 

promoters while preserving the same distance distribution observed in the positive set. 

For partitioning the data into training, validation, and testing sets, a careful approach was 
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undertaken. We divided the data by chromosomes, ensuring strict non-overlapping 

partitions to mitigate overfitting concerns. Chromosome 9 was reserved for validation, 

whereas chromosomes 10 and 11 were allocated for testing purposes. The remaining 

chromosomes constituted the training dataset. 

Similar to the representation learning stage in the first phase, we employed the 

Adam optimizer to optimize the target function, which in this case was Binary Cross-

Entropy. 

eQTL prediction based on transfer learning 

The final stage of our model focuses on predicting eQTLs by leveraging information 

gleaned from both 1D epigenomic signals and 3D chromatin interactions. These insights 

are captured through the preceding stages of representation learning and communicative 

learning. To accomplish this, each SNP-gene pair is examined, and the genomic region 

spanning 2kb centered around the SNP is designated as the "enhancer." Consequently, 

we establish the corresponding enhancer-promoter pairs derived from these SNP-gene 

associations. Both reference enhancers and alternative enhancers are constructed based 

on the underlying genetic variants present in these pairs. These enhancer-promoter pairs, 

representing both reference and alternative scenarios, are individually fed into 

3DVariantVision. After undergoing the cross-attention process, two reweighted promoter 

embeddings are obtained—one for reference enhancer-promoter pairs and the other for 

alternative enhancer-promoter pairs. These embeddings collectively encode the features 

characterizing the SNP-gene pairs. 

In the final stage of 3DVariantVision, we employ a Random Forest Classifier. This 

model is used to predict whether the SNP-gene pairs exhibit an eQTL effect or not, 

drawing on the information encapsulated in the embeddings. This approach allows us to 

make informed predictions about the regulatory impact of genetic variants on gene 

expression, contributing valuable insights to the study of eQTLs. 

3.2.2 eQTL dataset preparation 

To compile the SNP-gene pair dataset, we aggregated eQTL data from an extensive 

ensemble of 31,684 blood samples sourced from 37 eQTLGen Consortium cohorts. 

Given our primary focus on chromatin-mediated eQTLs, we first filtered out SNP-gene 
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pairs with distances smaller than 5kb and retained only those SNPs situated within 

enhancer regions. To enhance the statistical robustness of our analysis, we concentrated 

on SNP-gene pairs with a sample size exceeding 20,000. 

To distinguish significant SNP-gene pairs from non-significant ones, we employed 

a Bonferroni correction threshold of P-value < 0.05 for significance, and P-value > 0.1 for 

non-significance. It's important to note that one gene may be associated with multiple 

SNPs based on this criteria. 

Creating the positive dataset of eQTLs from the significant SNP-gene pairs 

involved two key steps: 1) Addressing linkage disequilibrium (LD) concerns, we retained 

only the most significant SNP within each SNP island. SNP islands were defined by 

grouping significant SNPs with adjacent distances of less than 2kb. 2) To balance the 

genetic influence of each gene, we retained a maximum of five of the most significant 

SNPs for each gene. This ensures a balanced representation of SNP-gene associations. 

To establish a balanced negative set for our dataset, we followed the same distance 

distribution as the positive set. This meticulous approach to dataset construction ensures 

that our analysis is rooted in rigorous statistical criteria and represents a comprehensive 

understanding of chromatin-mediated eQTLs. 

3.2.3 Performance comparison 

In the first stage of 3DVariantVision, we conducted a comparative analysis of epigenomic 

predictions with DeepSEA69, a cutting-edge CNN-based model renowned for its 

performance in this domain. To ensure an equitable evaluation, both 3DVariantVision and 

DeepSEA were trained and tested on identical datasets. We evaluated the predictive 

performance by calculating the Area Under the Receiver Operating Characteristic Curve 

(AUROC) for each epigenomic track in the testing set, separately for each model. This 

rigorous approach allowed us to objectively assess and compare the effectiveness of both 

models in predicting epigenomic features. 

In the second stage of 3DVariantVision, we conducted a comprehensive 

comparison of enhancer-promoter interaction predictions with previous state-of-the-art 

models. These prior models included tree-based models utilizing engineered features, as 

well as deep learning-based models that based on DNA sequences. However, it's 

essential to note that many of these models merely concatenated enhancer and promoter 
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information or features without explicitly modeling their joint relationships. One notable 

model in this context is ProTECT162, a tree-based model that excels at capturing joint 

features between enhancers and promoters, specifically through Protein-Protein 

Interaction (PPI) bindings. Both ProTECT and 3DVariantVision possess the ability to 

model these joint features, prompting a direct comparison. To ensure fairness in our 

evaluation, ProTECT was trained and tested on the same datasets as 3DVariantVision, 

focusing on subsets with PPI occurrences. It's worth mentioning that ProTECT utilizes 

only PPIs as features, aligning with the approach adopted by 3DVariantVision, which 

exclusively uses joint features for predictions. Unlike the original ProTECT, 

3DVariantVision does not leverage additional information such as genomic distance, 

activity levels, or epigenomic correlations across different cell types. To gauge prediction 

performance, we employed ROC curves and quantified performance metrics on the 

testing set. 

Additionally, we assessed the model's capacity to learn joint features by utilizing 

Capture-C supported enhancer-promoter interactions. To create background data, we 

randomly shuffled the enhancer-promoter pairs while preserving the same enhancer and 

promoter information but altering the joint features. We then calculated the odds ratio for 

both ProTECT and 3DVariantVision based on different percentages of enhancer-

promoter pairs predicted as interactions by each model. A higher odds ratio signifies more 

accurate predictions, highlighting the effectiveness in learning joint features. 

In the third and final stage of eQTL prediction, we conducted a comprehensive 

evaluation of our model's performance by comparing it with the state-of-the-art model 

known as Enformer75. Enformer, trained on DNA sequences, is adept at predicting multi-

chromosome gene expression by integrating long-range interactions, thereby 

demonstrating competence in eQTL prediction. To facilitate this comparison, we retrieved 

the predicted features generated by Enformer and subsequently trained a Random Forest 

model on the same datasets used for 3DVariantVision. In assessing the performance, we 

leveraged ROC curves and compared the performance on the same testing set.  

Furthermore, to further substantiate our findings, we amassed three orthogonal 

fine-mapped eQTL datasets as gold-standards161,163,164. We then meticulously 

constructed balanced negative sets while controlling for genomic distances separately. 
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Once again, we employed ROC curves to evaluate model performance and conducted a 

comparative analysis to ascertain the effectiveness of our approach in comparison to 

existing state-of-the-art methods. 

We compared 3DVariantVision predicted eQTLs with the traditional statistical 

eQTL calling method (GTEx)160. We assembled a gold-standard eQTL dataset by 

aggregating eQTLs from Muther et al163, Battle et al161, and Geuvadis et al164, resulting in 

a dataset comprising 11,210 entries. To facilitate a rigorous comparison, we generated a 

background dataset ten times larger by randomly selecting SNP-gene pairs while 

controlling for distance. Both 3DVariantVision and GTEx were tasked with predicting the 

same number (11,210) of positive eQTLs. Our analysis focuses on three distinct subsets: 

1) 'Recalled_by_3DVariantVision': This subset comprises eQTLs that were successfully 

discovered by 3DVariantVision but missed by GTEx, representing the intersection 

between GTEx's False Negatives and 3DVariantVision's True Positives. 2) 'TP_by_GTEx': 

In this subset, GTEx effectively identified eQTLs, representing True Positives according 

to GTEx's predictions. 3) 'All_eQTL': This subset encompasses the entirety of gold-

standard eQTLs used as the benchmark. We conducted a comparative analysis involving 

genomic distance and Minor Allele Frequency (MAF) among these three groups. 

3.2.4 Comprehensive genetic variant insights 

3DVariantVision offers a multifaceted and comprehensive perspective on genetic variants, 

encompassing a wide array of insights. These include understanding the impacts of 

genetic variants on TF binding, elucidating chromatin effects, predicting eQTLs, 

uncovering novel TF combinations, identifying target genes, and explaining associations 

with various diseases. 

Genetic impacts on TF binding 

In the case of a SNP, we gather the 2kb DNA fragment centered around the SNP. From 

this fragment, we construct both a reference sequence and an alternative sequence, 

reflecting the genetic variants present. Within 3DVariantVision, predictions for 

epigenomic peaks are made separately for these two sequences. The disparities between 

these predictions are then quantified as "TF disrupting values," signifying the influence of 
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the genetic variant on different TF binding patterns. These values serve as indicators of 

how the variant affects the binding of various TFs. 

Chromatin effects 

In the context of SNP-gene pairs, 3DVariantVision enables the quantification of chromatin 

interaction effects by assessing the distinctions between the reference genome and the 

alternative genome. To elaborate, consider a specific SNP-gene pair: the genomic region 

spanning 2kb centered around the SNP is designated as the "enhancer." From this, we 

establish enhancer-promoter pairs that correspond to these SNP-gene associations. 

For both reference and alternative scenarios, we construct enhancer-promoter 

pairs based on the underlying genetic variants inherent in these associations. 

Subsequently, we individually input these enhancer-promoter pairs into the second stage 

of 3DVariantVision to obtain separate predictions for chromatin interaction scores. To 

quantify the chromatin effects, we calculate chromatin changing ratios, which reflect the 

extent of change and are computed as the ratio between the difference in alternative 

chromatin interaction and reference chromatin interaction and the reference chromatin 

interaction itself. Furthermore, the sign of the chromatin changing ratio indicates whether 

the SNP enhances or diminishes the chromatin interaction. These ratios provide a 

meaningful representation of the impact of genetic variants on chromatin interactions.  

Functional TF combinations for chromatin 

3DVariantVision employs cross-attention mechanisms to effectively model the intricate 

relationships among minuscule regions situated between enhancers and promoters. This 

enables the identification and prioritization of vital pairs of these minuscule regions, 

thereby unveiling crucial functional TF combinations that play a role in chromatin 

interactions. 

For each enhancer-promoter pair, we select the top-priority minuscule region pair 

based on the cross-attention weights. Subsequently, we cross-reference these selected 

pairs with TF ChIP-seq datasets to determine how many TF combinations are bound to 

these prioritized minuscule region pairs. To establish a rigorous baseline, we generate 

background data by shuffling the top-priority minuscule region pairs 1,000 times. We 
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calculate Z-scores for each TF combination relative to this background. TF combinations 

are then prioritized based on a p-value threshold of 0.05. 

To ascertain the biological significance of these prioritized TF combinations, we 

evaluate Protein-Protein Interaction (PPI)139 enrichments. Specifically, we examine the 

number of TF combinations supported by PPI data, comparing the counts between the 

prioritized TF combinations identified by 3DVariantVision and a set of randomly shuffled 

pairs. This analysis serves to validate the relevance of the identified TF combinations in 

the context of chromatin interactions. 

Downstream gene discovery 

3DVariantVision exhibits remarkable proficiency in eQTL prediction, a capability that can 

be harnessed to unveil prospective downstream target genes linked to genetic variants. 

The eQTL prediction scores, generated by 3DVariantVision, can be computed for any 

candidate SNP-gene pairs. By identifying the gene within each pair with the highest 

prediction score, we can effectively prioritize target genes. 

This targeted gene prioritization approach goes beyond conventional Genome-

Wide Association Studies (GWAS)3 and Transcriptome-Wide Association Studies 

(TWAS)157, offering a pathway to uncover novel mechanistic insights into variants 

associated with specific traits. It provides a powerful means of understanding the 

functional implications of genetic variants and their influence on gene regulation, 

shedding new light on the genetic basis of complex traits and diseases. 

3.2.5 Genetic Variant and target gene prioritization 

Prioritize the SNP within CRISPRi-perturbed enhancer 

We devised a strategy to prioritize the causal SNP among CRISPR-QTLs13,165, 

specifically those originating from CRISPRi-perturbed enhancers. For each CRISPR-QTL, 

we collect all SNPs with a MAF greater than 0.05 located within perturbed enhancers. 

These SNPs are then paired with their corresponding target genes. Next, we calculate 

eQTL prediction scores based on models like 3DVariantVision. The SNP-gene pair with 

the highest score is prioritized, and its associated score is deemed representative of the 

CRISPR-QTL. 
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We utilize CRISPR-QTL data to corroborate the eQTL predictions made by 

3DVariantVision. To establish a baseline, we generate a background dataset for CRISPR-

QTLs by assembling random enhancer-gene pairs with matching enhancer lengths and 

genomic distance distributions. Employing the aforementioned strategy, we calculate 

predicted scores for each pair independently using both 3DVariantVision and Enformer 

models. To visually compare the score disparities between CRISPR-QTLs and the 

background, we construct boxplots for each model, thus facilitating a thorough analysis. 

Additionally, a similar analysis is performed based on the ABC model for comprehensive 

insights. 

Prioritize target gene from neighbors based on fine-mapped eQTL 

We compiled a dataset of four fine-mapped eQTLs specific to blood cell types, utilizing 

four distinct fine-mapping methodologies: SuSIE166, DAP-G167, CAVIAR168, and 

CaVEMaN169. For each eQTL, we meticulously generated corresponding control datasets 

by matching the same SNP to the nearest gene, ensuring that these genes had a False 

Discovery Rate (FDR) greater than 0.1. Moreover, we imposed an additional criterion for 

these control genes, requiring that the distance between them and the actual target genes 

exceeded 1kb. This step was taken to eliminate any potential overlaps in sequence 

features. Subsequently, we computed prediction scores using 3DVariantVision, and to 

assess the performance of our model, we employed ROC curves. These ROC curves 

provided a robust means of quantifying model performance for each fine-mapping dataset 

individually, thereby allowing for a comprehensive evaluation of 3DVariantVision's 

predictive capabilities in the context of fine-mapped eQTLs. 

3.2.6 Local effect predictions of genetic variant 

Variant effect predictions on Saturation Mutagenesis data 

In 3DVariantVision, we employ TF disturbing scores as a metric to quantitatively assess 

the genetic impact on epigenomic signals. This metric serves as a valuable resource for 

identifying high-effect genetic variants, a task facilitated by integrating insights from 

MPRA (Massively Parallel Reporter Assay) experiments170. The MPRA experiments offer 

detailed insights into genetic variation effects within ten enhancer and ten promoter 

regions, providing data at a single-base pair resolution. Building on this data, we crafted 
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a classification task aimed at identifying high-effect variants amid a broader background. 

To define positive variants, we employed the following criteria: 1) a p-value threshold of 

less than 1e-5, and 2) selection of the top N-ranked variants based on their effect sizes. 

Conversely, for negative variants, we applied these criteria: 1) a p-value greater than 0.05, 

and 2) a log2(effect size) threshold below 0.05. To ensure the creation of a balanced 

dataset, we sampled the data accordingly. 

Next, we employed a RandomForest model and executed a rigorous 5-fold cross-

validation procedure using the TF disturbing scores derived from 3DVariantVision for 

each variant. Our model underwent training and evaluation separately for the top 200, 

500, and 1000 effects on both promoter and enhancer regions. Evaluation of model 

performance was carried out using ROC curves, providing a robust assessment of the 

model's ability to discriminate high-effect genetic variants from the background. 

Decipher TFs’ role as activators and repressors in chromatin 

3DVariantVision offers insights into chromatin effects and their directions by computing 

both the ratio and sign of chromatin changes. These metrics provide a valuable 

foundation for investigating the intricate relationship between chromatin effects and 

expression effects. To facilitate this exploration, we partitioned the consolidated eQTL 

dataset into groups defined by distinct TF ChIP-seq peak bounds on the corresponding 

enhancers. Within each group, we computed the Spearman correlation between the 

absolute values of the chromatin changing ratio and the absolute values of eQTL 

expression effects. 

For a deeper understanding of a TF's role as an activator or repressor in chromatin, 

we devised a sorting mechanism based on the absolute values of expression effects. We 

introduced a metric to gauge the consistency of effect direction between chromatin and 

expression, measured as the fraction of concordant signs among the top N eQTLs with 

the most pronounced expression effects: 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝑛) =
1

𝑛
∑ 𝐼(𝑐𝑖 = 𝑒𝑖)

𝑛

𝑖=1

 

where 𝑐𝑖 , 𝑒𝑖  represent the sign of the chromatin changing ratio and expression 

effects, respectively. Subsequently, we constructed a plot illustrating the evolving 
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consistency as N varies. A pivotal point of reference is the consistency at N=100, which 

is instrumental in determining whether the TF functions as an activator or repressor. This 

determination hinges on whether the consistency surpasses 0.5, signifying activation, or 

falls below 0.5, indicating repression. 

3.2.7 Disease association evaluation 

3DVariantVision delivers a comprehensive understanding of genetic variants and their 

implications for disease associations. In our analysis of eQTL predictions using 

3DVariantVision, we bifurcated the dataset based on whether the SNPs were 

substantiated by GWAS. To elucidate the distinctions between these groups, we 

compared the eQTL prediction scores through the use of boxplots. 

Furthermore, we curated TWAS data171 related to lipid traits, identifying 28 

statistically significant SNP-gene associations in whole blood cell types with p-values less 

than 0.05. For each SNP-gene pair, we gathered all coding genes within a 500kb radius 

from the TSS of the TWAS-targeted gene, constituting the background. Subsequently, 

we leveraged 3DVariantVision to prioritize genes from this background. To assess 

performance, we computed the rank of the TWAS target gene within the background 

based on the 3DVariantVision prediction score. We created a control scenario by 

randomly selecting one gene from the background and determining the corresponding 

ranks, thus allowing for robust quantification of 3DVariantVision's prioritization capabilities 

in the context of TWAS data. 

3.3 RESULTS 

3.3.1 Comprehensive decoding of genetic variation through 3D chromatin with 

3DVariantVision 

Recent advances in genome-wide chromatin conformation capture methods have 

unveiled the crucial role of long-range chromatin interactions in bringing distant cis-

regulatory elements and promoters into close proximity, thereby exerting influence over 

gene expression160. When a genetic variant resides within an enhancer and disrupts TF 

bindings within that enhancer, it often emerges as the causal eQTL for the target gene 

associated with that enhancer (Figure 3.1 A). This assumption is substantiated by the 
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significant enrichment of chromatin interactions observed in fine-mapped eQTL datasets. 

Specifically, the three eQTL datasets, CaVEMaN169, DAP-G167, and CAVIAR168, exhibit 

markedly higher proportions of chromatin interaction support in comparison to the 

genomic distance-controlled background, showing fold changes of 2.75, 2.28, and 1.73, 

respectively (Figure 3.1 B). As an illustrative case on chromosome 13, rs9517725 

emerges as an eQTL for the gene ENSG00000125304 in whole blood tissues. 

Remarkably, this SNP is situated within an enhancer that interacts with the promoter of 

the same target gene, as supported by Capture-C data108. Both the SNP region and the 

promoter region are bound by critical TFs, which may play a mediating role in gene 

expression (Figure 3.1 C). With the aim of harnessing 3D chromatin information for 

comprehensive long-range prediction of genetic variant effects, we introduce 

3DVariantVision, offering an in-depth understanding of genetic variants' impact. 

 

Figure 3.1. Genetic variants impact gene expression through chromatin regulation. (A) 
Chromatin interaction is a key mechanism for genetic variants to regulate gene 
expression. (B) Fine-mapped eQTLs (CaVEMaN, DAP-G, CAVIAR) are enriched in 
Capture-C supported chromatin interactions comparing the genomic distance controlled 
background. (C) An example of chromatin interaction supported eQTL in the blood cell 
line. 

3DVariantVision is a multimodal framework designed for the comprehensive 

assessment of genetic variant effects on both local and distant regions within the cis-

regulatory domain of target genes (Figure 3.2 A). This encompassing understanding of 
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genetic variants necessitates the integration of three distinct types of multi-omics datasets 

(Figure 3.2 A Left): 1) Genome-wide cell-type-specific genomic and epigenomic peaks, 

comprising 127 TF ChIP-seq, 1 DNase-seq, and 11 Histone ChIP-seq datasets in 

GM128789. 2) Chromatin interactions, derived from enhancer-promoter interactions 

sourced from Capture-C data in GM12878108. 3) An expansive eQTL dataset in whole 

blood tissue, meticulously curated through meta-analysis involving 31,684 blood samples 

across 37 eQTLGen Consortium cohorts159, thus maximizing statistical power and 

enabling robust model training. The 3DVariantVision framework serves to quantify variant 

impacts through multiple lenses by (Figure 3.2 A Right): 1) Predicting genetic influences 

on TF binding sites within the local vicinity. 2) Revelating chromatin effects on long-range 

chromatin interactions in cis, along with insights into their connection with expression 

effects. 3) Forecasting whether a given SNP-gene pair qualifies as an eQTL or not. 4) 

Unraveling the roles played by TF combinations within the context of 3D chromatin. 5) 

Identifying potential distal target genes affected by genetic variants. 6) Shedding light on 

associations between genetic variants and diseases. 

The architecture of 3DVariantVision unfolds through three distinct stages, each 

contributing to a comprehensive understanding of genetic variants (Figure 3.2 A Middle, 

Figure B. 1):  

1) Genomic Track Peak Prediction based on Representation Learning (Figure B. 1 

Left): In the initial stage, we embark on the task of pre-training an embedding 

model. This model's purpose is to craft informative representations for any given 

DNA sequence. Here, 1D Convolutional Neural Networks (CNNs) come into play, 

extracting local features from DNA sequences and predicting genomic and 

epigenomic profiles within the GM12878 cell line. The input consists of one-hot 

encoded 2kb DNA sequences, while the output manifests as a binary vector 

signifying peak occurrences, including ChIP-seq, DNase-seq, and Histone ChIP-

seq. Through rigorous training for peak predictions in this first step, the CNN 

module is subsequently frozen, empowering 3DVariantVision to adeptly generate 

embeddings that effectively encapsulate sequence information from any given 

DNA sequence. 
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2) Chromatin Interaction Prediction based on Communicative Learning (Figure B. 1 

Middle): The second stage delves into modeling 3D chromatin information by 

predicting enhancer-promoter interactions. When presented with enhancer-

promoter pairs, 3DVariantVision leverages the embeddings of enhancers and 

promoters, which are generated based on the now-frozen CNNs trained in the 

initial step. Unlike many existing approaches that simply concatenate features of 

enhancers and promoters, 3DVariantVision introduces communicative learning. 

This innovative approach capitalizes on cross-attention mechanisms, inspired by 

self-attention in Transformer-based models. Cross-attention establishes intricate 

connections between elements across different DNA fragments, enabling the 

model to weigh and prioritize information spanning enhancers and promoters. This 

facilitates a more profound comprehension of relationships and dependencies 

among enhancer-promoter pairs. After traversing through three layers of cross-

attention, a communication map emerges, depicting the intricate relationships 

between enhancers and promoters. This map is subsequently deployed to predict 

the existence or absence of interactions. 

3) eQTL Prediction based on Fine-Tuning (Figure B. 1 Right): In the final stage, the 

focus shifts to eQTL prediction based on large-scale eQTL datasets. For every 

SNP-gene pair under consideration, two corresponding enhancer-promoter pairs 

are constructed based on the reference genome and alternative genome 

separately, contingent on whether the genetic variant occurs or not. Utilizing the 

cross-attention block pre-trained in the second stage, two communication maps 

are generated. These maps serve as the foundation for predicting whether the 

SNP-gene pair qualifies as an eQTL.  

In summation, the 3DVariantVision architecture unfolds across three stages, 

amalgamating both local features and 3D chromatin information. This holistic approach 

enables accurate eQTL predictions and a profound comprehension of genetic variants. 

Taking the representative long-range eQTL instance of rs12413588, 

3DVariantVision predicts it as an eQTL for the gene ENSG00000170525, validated by 

the fine-mapped eQTL dataset from Battle et al161 (p-value=9.54e-14, distance=258kb) 

(Figure 3.2 B). Furthermore, this predicted eQTL is substantiated by experimentally 
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verified chromatin interactions identified through Capture-C. Intriguingly, 3DVariantVision 

reveals that this SNP significantly disrupts the binding sites of crucial TFs, including 

SMC3, RAD21, CTCF, RUNX3, and PAX5. This disruption leads to a noteworthy 0.02% 

reduction in chromatin interaction with the target gene, offering insightful explanations for 

the underlying eQTL mechanisms. In addition, rs79259450 emerges as an eQTL 

prediction for the gene ENSG00000185112 (Figure B. 2 A). This prediction aligns with 

validation from the fine-mapped eQTL dataset provided by Geuvadis et al164 (p-

value=3.70e-11, distance=460kb) and corroborated by Capture-C chromatin interactions. 

Notably, this genetic variant is anticipated to disrupt the binding sites of TBP, NBN, SPI1, 

among others, resulting in a 0.06% decrease in chromatin interactions. Similarly, 

rs813000 surfaces as an eQTL prediction for the gene ENSG00000257923, with 

validation stemming from Battle et al.'s161 fine-mapped eQTL dataset (p-value=5.03e-37, 

distance=458kb) and Capture-C chromatin interactions (Figure B. 2 B). This SNP is 

predicted to disturb the binding sites of EBF1, RUNX3, and others, resulting in a 

substantial 0.17% reduction in chromatin interactions. Collectively, these examples 

underscore 3DVariantVision's remarkable capacity to predict eQTLs and elucidate the 

intricate effects of genetic variants spanning both local and distal genomic regions. 
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Figure 3.2. Overview of the 3DVariantVision framework. (A) 3DVariantVision mainly 
utilized 3 multi-omic datasets in training, including epigenomic peaks (TF binding sites, 
open chromatin, histone modifications), chromatin interaction pairs, and ensembled 
eQTLs (left). Representation Learning was used to generate embedding for DNA 
sequences by predicting epigenomic peaks (middle). (B) One example of predicted 
eQTLs based on 3DVariantVision in the whole blood cell line. rs12413588 is validated by 
Battle et al. eQTL dataset with p-value = 9.54e-14 and also supported by Capture-C 
chromatin interactions. The right panel shows the predicted effects of chromatin 
interaction effects and represents TF bindings of the corresponding SNPs. 



 48 

3.3.2 Superior performance on 1D genome profile and long-range chromatin 

prediction 

3DVariantVision significantly outperforms the previous state-of-the-art model, DeepSEA69, 

in the prediction of 1D genome profiles, underscoring its proficiency in generating DNA 

sequence embeddings during the initial phase. To ensure a rigorous comparison, both 

3DVariantVision and DeepSEA were meticulously trained and evaluated using the same 

balanced dataset. 3DVariantVision consistently exhibits higher AUROC and AUPR 

scores in comparison to DeepSEA across most predictions for TF ChIP-seq peaks and 

Histone ChIP-seq peaks (Figure 3.3 A-B, Figure B. 3). This heightened prediction 

accuracy is further affirmed through qualitative assessments when visualizing the 

predicted peaks alongside observed ones within the genome. For instance, consider a 

representative case on 1Mb region in chromosome 17 (Figure 3.3 C). The peaks 

predicted by 3DVariantVision not only align with peaks identified by traditional peak 

calling methods at significant TF binding sites and histone modifications but also unearth 

previously undiscovered peaks. These novel peaks, although overlooked by traditional 

peak calling methods, find support in raw experimental signals, underscoring the 

enhanced predictive capabilities of 3DVariantVision. 

Beyond its proficiency in predicting local genome profiles, 3DVariantVision excels 

in accurately forecasting enhancer-promoter interactions, shedding light on the intricate 

distal 3D chromatin mechanisms in stage 2. We gathered enhancer-promoter interactions 

from Capture-C data specific to the GM12878 cell type and created a balanced negative 

dataset while controlling for genomic distance. To mitigate the risk of overfitting, 

3DVariantVision underwent training and testing on distinct chromosomes. Anchored by 

the cross-attention module, a backbone of communicative learning within 

3DVariantVision, this module meticulously models the nuanced relationships between 

minuscule regions within enhancers and promoters. This approach equips the model with 

the capability to glean joint features shared between these two genomic fragments. To 

evaluate this aspect, 3DVariantVision's performance was benchmarked against 

ProTECT162, another model harnessing protein-protein interaction features to encode 

joint features within genomic fragments. Both ProTECT and 3DVariantVision exhibit the 

ability to model these joint features, warranting a head-to-head comparison. In the interest 
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of fairness and accuracy, ProTECT was subjected to the same dataset for training and 

testing as 3DVariantVision, with a specific focus on subsets featuring protein-protein 

interactions (PPIs). The superior AUROC scores achieved by 3DVariantVision in 

chromatin interaction prediction, compared to ProTECT, underscore its enhanced 

performance (Figure 3.3 D). 

To further assess 3DVariantVision's prowess in learning joint features within the 

communicative learning framework, we turned to enhancer-promoter interactions 

supported by Capture-C. To ensure consistency in enhancer and promoter information 

while modifying joint features, we generated background pairs by shuffling the 

corresponding enhancer-promoter pairs. We computed predictions using both ProTECT 

and 3DVariantVision, followed by the calculation of odds ratios at various thresholds. 

3DVariantVision consistently exhibited higher odds ratios, affirming its superior ability to 

capture joint information between enhancers and promoters (Figure 3.3 E, Figure B. 4). 

This robust performance ensures the model's capacity to decipher intricate chromatin 

mechanisms within minuscule regions, such as those proximal to SNPs, and their 

influence on target genes. 

In a compelling example from the testing set, 3DVariantVision adeptly predicted a 

long-range enhancer-promoter interaction within chromosome 4, a prediction that was 

subsequently validated by Capture-C experiments. This interaction was found to be 

associated with crucial TF binding sites, including HCFC1, SIX5, EED, YY1, and RAD21 

(Figure 3.3 F). Impressively, 3DVariantVision went beyond validation and unearthed 

novel interactions that had eluded detection by Capture-C. For instance, in chromosome 

8, our model effectively uncovered an enhancer-promoter interaction corroborated by Hi-

C, an independent experimental dataset within the same cell type. This interaction 

featured the binding of BATF, SPI1, RUNX3, YY1, TAF1, and ELF1(Figure 3.3 G). 

Additionally, 3DVariantVision successfully unveiled enhancer-promoter interactions, 

supported by Hi-C data, in chromosome 5 and chromosome 21, all of which had been 

previously missed by Capture-C. These newly discovered interactions were also found to 

be associated with crucial TF binding sites (Figure B. 5). These remarkable findings 

underscore 3DVariantVision's capacity to not only validate existing chromatin interactions 
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but also to uncover previously unrecognized interactions, thereby enhancing our 

understanding of the complex 3D chromatin architecture. 
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Figure 3.3. 3DVariantVision achieved superior performance in TF binding sites (A) and 
histone modification (B) predictions compared with the previous state-of-the-art model 
DeepSEA. Each point represents the AUROC of 3DVariantVision and DeepSEA in one 



 52 

Figure 3.3 (cont’d) 

epigenomic peak prediction. (C) Examples of epigenomic peak predictions in 
chr17:45,314,322-46,234,870. 3DVariantVision successfully predicted the annotated 
peaks and discovered the novel peaks supported by the signals. (D) ROC comparison of 
chromatin interaction prediction between 3DVariantVision and ProTECT. (E) Odds ratio 
comparison at top 10% predictions when shuffling the pairs of enhancer-promoter 
interactions. (F-G) Examples of predicted chromatin interaction by 3DVariantVision. (F) 
is validated by Capture-C, while (G) is a newly discovered interaction supported by Hi-C 
but missed by Capture-C. 

3.3.3 3DVariantVision prioritizes casual SNP on eQTL prediction 

In the final phase of our model, we shift our focus towards eQTL prediction, harnessing 

insights accumulated from the earlier stages of representation learning and 

communicative learning. These critical insights are the result of a meticulous process that 

incorporates 1D epigenomic signals and 3D chromatin interactions (Figure 3.4 A). For 

each SNP-gene pair, two corresponding enhancer-promoter pairs based on the reference 

genome and alternative genome are generated. Concurrently, communicative maps, 

hinging on these two enhancer-promoter pairs, are meticulously calculated. These maps, 

crafted through communicative learning trained during stage 2, encapsulate the 

distinctive features of each SNP-gene pair, serving as a foundation for our eQTL 

prediction framework. The construction of balanced training, validation, and testing sets 

is achieved through the large-scale eQTL dataset sourced from blood tissues. To quantify 

our eQTL prediction performance, we rely on the AUROC metric in the testing dataset. In 

a rigorous comparative analysis, we pitted the performance of 3DVariantVision against 

Enformer75, a cutting-edge model adept at gene expression prediction, leveraging long-

range interactions through self-attention mechanisms. Notably, 3DVariantVision achieved 

a commendable AUROC compared to Enformer, thereby underscoring its superiority in 

eQTL prediction (Figure 3.4 A). Furthermore, we conducted a comprehensive 

performance evaluation by comparing 3DVariantVision and Enformer using four 

independent fine-mapped eQTL datasets as gold standards. This orthogonal assessment 

aimed to provide additional insights into the predictive capabilities of both models across 

various scenarios. In each of these datasets – SuSIE166, DAP-G167, CAVIAR168, and 

CaVEMaN169 - 3DVariantVision consistently outperformed Enformer in terms of AUROC 
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(Figure 3.4 B). These consistently higher AUROC values for 3DVariantVision across all 

datasets underscore its robust and superior performance in eQTL prediction, regardless 

of the dataset characteristics and complexities. These results further solidify the efficacy 

of 3DVariantVision as a state-of-the-art tool for eQTL prediction. 

While chromatin effects and expression effects share a related connection, it's 

imperative to distinguish between these two distinct molecular phenomena. This 

distinction underscores the necessity of the fine-tuning procedure in Stage 3 of 

3DVariantVision, where we transition from capturing chromatin interaction information to 

making accurate eQTL predictions. Notably, some existing predictive models are trained 

solely on reference genomes to forecast chromatin interactions and subsequently derive 

eQTL effects by contrasting alternative genomes with reference genomes. However, this 

direct approach may struggle to bridge the gap between chromatin-level information and 

expression-level outcomes. To substantiate this notion, we embarked on an experiment 

to assess the feasibility of employing chromatin interaction changes from Stage 2 of 

3DVariantVision as prediction scores for eQTLs. Utilizing SuSIE fine-mapped eQTLs as 

gold standards, we observed an AUROC of 0.5606, which falls short of the AUROC 

achieved in Stage 3 of 3DVariantVision (0.7605) (Figure B. 6). This observation 

underscores that understanding the intricate dynamics of genetic variants' effects on gene 

expression necessitates a dedicated model fine-tuned for eQTL prediction. Such a model 

can meticulously consider the complex interplay between genetic variations, chromatin 

structures, and gene expression patterns. This approach allows us to navigate the 

intricate relationships between these factors, ultimately culminating in heightened 

accuracy for eQTL predictions. 

Traditional statistical eQTL calling methods, such as GTEx160, face inherent 

limitations stemming from their restricted sample sizes and incomplete understanding of 

underlying mechanisms. These constraints render the identification of long-distance and 

rare eQTLs challenging. To underscore the advantages of 3DVariantVision in eQTL 

prediction, we conducted a comparative analysis between 3DVariantVision and GTEx. 

Our comparision focuses on three distinct subsets: 1) 'Recalled_by_3DVariantVision' 

representing eQTLs successfully discovered by 3DVariantVision but missed by GTEx. 2) 

'TP_by_GTEx' representing true positives according to GTEx's predictions. 3) 'All_eQTL 
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representing the entirety of gold-standard eQTLs used as the benchmark. Our findings 

reveal several compelling insights. Firstly, 3DVariantVision excels at recalling long-range 

eQTLs that eluded GTEx (Figure 3.4 C). Secondly, 3DVariantVision demonstrates a 

knack for pinpointing rare eQTLs missed by GTEx (Figure 3.4 D). These observations 

underscore the superior capacity of 3DVariantVision to unveil elusive eQTLs, particularly 

those located at extended genomic distances and characterized by low allele frequencies, 

thereby enhancing our understanding of the regulatory landscape underlying gene 

expression. Illustratively, consider rs17824742, predicted as an eQTL affecting gene 

ENSG00000100577, an instance successfully recalled by 3DVariantVision but 

overlooked by GTEx (Figure 3.4 E). Notably, this serves as a paradigmatic long-range 

eQTL, characterized by a Minor Allele Frequency (MAF) of 0.09 and an extensive 

genomic separation spanning 233kb. What lends further credence to this prediction is its 

substantiation through chromatin interactions gleaned from both Hi-C and Capture-C data, 

shedding light on the potential regulatory mechanisms underpinning this eQTL. 

 

Figure 3.4. 3DVariantVision prioritizes casual SNP on eQTL prediction. (A) 
3DVariantVision achieved better performance in eQTL prediction at the testing set  
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Figure 3.4 (cont’d) 

compared with Enformer. (B) Consistently better performance in fine-mapped eQTL 
predictions based on three different datasets. (C-D) 3DVaraintVision also recalled eQTLs 
which were missed by GTEx, the statistical method in a smaller population. Recalled 
eQTLs have longer genomic distances (C) and smaller MAF (D). (E) One example of 
recalled long-range eQTL supported by chromatin interactions with MAF < 0.1. 

3.3.4 3DVariantVision identifies TF effects and TF grammar in chromatin 

The multifaceted 3DVariantVision framework adeptly encompasses local genomic and 

epigenomic profiles, long-range chromatin interactions, and eQTL predictions, providing 

a comprehensive outlook on genetic variants that spans a wide spectrum of insights. To 

gauge the local impacts, we utilize the TF Disturbing Score, which quantitatively 

measures the perturbation of genetic signals by computing the difference in TF profile 

prediction scores between the reference genome and the alternative genome. To validate 

the efficacy of the TF Disturbing Score, we devise an unsupervised algorithm aimed at 

genetic variant effect prediction, leveraging data from Massively Parallel Reporter Assays 

(MPRA)170. MPRA experiments grant us insights into the effects of genetic variations at 

a single-base pair resolution across ten enhancer and ten promoter regions. Employing 

the Principal Component 1 (PC1) of TF Disturbing Score predictions derived directly from 

3DVariantVision, without further training, yielded commendable results in the prediction 

of genetic variant effects. To illustrate this effectiveness, consider an enhancer region in 

IRF4. 3DVariantVision exhibited a notably high Pearson correlation (r=0.295) with MPRA 

experimental effects (Figure 3.5 A). Impressively, 3DVariantVision adeptly pinpointed two 

loci with significant scores, which were subsequently validated as disrupting the binding 

motifs for two crucial TFs, namely, RUNX1 and NR2F1. These observations underscore 

the capacity of 3DVariantVision to faithfully capture the effects of genetic variants without 

the need for additional training or refinement, further demonstrating its utility in genetic 

variant effect prediction. 

Furthermore, we devise a classification task aimed at identifying high-impact 

genetic variants. We select the topN-effect variants as the positive set based on MPRA-

derived p-values and effect scores. To create a balanced background set for each positive 

set, we employ random sampling. We experiment with various values of N, specifically 
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200, 500, and 1000, constructing multiple datasets for enhancer and promoter variants 

separately. We employ a RandomForest classifier, utilizing TF Disturbing Scores 

generated by 3DVariantVision for each variant. Remarkably, our observations reveal high 

AUROC scores during testing when identifying top-effect variants in both promoters and 

enhancers. Specifically, we attain AUROC scores of 0.7199, 0.6743, and 0.6484 when 

considering the top 200, 500, and 1000 affected promoter variants (Figure 3.5 B), and 

AUROC scores of 0.8393, 0.7974, and 0.7499 when evaluating the top 200, 500, and 

1000 affected enhancer variants (Figure 3.5 C). These results underscore 

3DVariantVision's proficiency in discerning high-impact genetic variants with precision 

and confidence. 
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Figure 3.5. 3DVariantVision identified the high-effect variants based on MPRA. (A) One 
example showed the accurate prediction of variant effects based on 3DVariantVision 
using unsupervised learning. The top panel represents the variant effects in IRF4 loci 
based on MPRA, while the bottom panel represents the predicted effects based on the 
PC1 of TF disrupting values of 3DVariantVision. The Spearman correlation between the 
predicted effects and observed effects is 0.295. High variant effects were observed on 
the TF binding sites (highlighted). (B-C) A Random Forest model was trained based on 
TF disrupting values from 3DVariantVision to predict high-effect variants from the 
balanced background. The ROC curves showed that the 3DVariantVision’s ability to 
identify the top effect variants against the background in enhancer regions (B) and 
promoter regions (C), respectively. 
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3.3.5 3DVariantVision prioritized the SNP within CRISPRi-perturbed enhancers 

and the target gene of fine-mapped eQTLs 

3DVariantVision's outstanding capability in de novo eQTL prediction opens up new 

avenues for prioritizing causal SNPs among the vast pool of nearby SNP candidates, a 

challenge previously hindered by LD in GWAS and traditional QTL calling methods. When 

multiple SNP candidates in enhancer are linked to the same target gene, 3DVariantVision 

calculates eQTL prediction scores, ultimately prioritizing the SNP-gene pair with the 

highest score (Figure 3.6 A). The validity of this approach is demonstrated using 

CRISPR-QTL datasets165, which are not constrained by LD and offer insights into 

potential causal genetic variants. CRISPR-QTL mapping is akin to conventional human 

eQTL studies, with individual humans replaced by individual cells, genetic variants 

substituted by unique combinations of 'unlinked' guide RNA (gRNA)-programmed 

perturbations per cell, and tissue-level RNA-seq of many individuals replaced by scRNA-

seq of many cells. We applied both Enformer and 3DVariantVision to prioritize causal 

SNPs among CRISPRi-perturbed enhancers. To establish a baseline, we generated a 

background dataset for CRISPR-QTLs by assembling random enhancer-gene pairs with 

matching enhancer lengths and genomic distance distributions. eQTL prediction scores 

were calculated for the prioritized SNP-gene pairs in both CRISPR-QTLs and the 

background, using 3DVariantVision and Enformer separately. 3DVariantVision predicted 

a higher scores of CRISPR-QTL compared to scores of the background (Figure 3.6 B). 

In contrast, there is no significant difference between CRISPR-QTL and background 

based on Enformer predictions (Figure 3.6 B). These results highlight 3DVariantVision's 

significant discrimination in CRISPR-QTL compared to Enformer. Similar comparisons 

were carried out for enhancer-gene interactions (ABC-EPI) predicted by the Activity-by-

Contact (ABC) model13, where 3DVariantVision consistently exhibited greater 

discrimination than Enformer. 3DVariantVision predicted a higher score of ABC dataset 

compared to scores of the background (Figure 3.6 C). In contrast, there is no significant 

difference between ABC dataset and background based on Enformer predictions (Figure 

3.6 C). 

By adeptly modeling the joint features between enhancers and promoters, 

3DVariantVision not only excels at predicting genetic variant effects in the local genomic 
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region but also possesses the capability to predict downstream target genes accurately. 

For any SNP of interest, 3DVariantVision generates eQTL prediction scores for all 

candidate genes paired with that SNP. The gene with the highest prediction score is 

prioritized as the target gene (Figure 3.6 D). To validate 3DVariantVision's proficiency in 

target gene identification, we employed four distinct fine-mapping datasets: SuSIE166, 

DAP-G167, CAVIAR168, and CaVEMaN169. Balanced control backgrounds were 

meticulously generated, ensuring that each SNP matched the nearest gene to the actual 

target genes of eQTLs. The resulting AUROC values for these fine-mapped eQTLs are 

as follows: 0.7410 for SuSIE, 0.7173 for DAP-G, 0.7200 for CAVIAR, and 0.7679 for 

CaVEMaN (Figure 3.6 E), underscoring the superior performance of 3DVariantVision in 

target gene identification. To further enhance stringency, we curated a more selective 

background by exclusively choosing the nearest coding genes of the actual target genes 

of eQTLs. Remarkably, 3DVariantVision continues to exhibit commendable accuracy 

across all four fine-mapped eQTL datasets, with AUROC values of 0.5529, 0.5346, 

0.5310, and 0.5870, respectively (Figure B. 9). These results affirm the precision and 

reliability of 3DVariantVision in target gene identification. 

For instance, consider the eQTL rs6985508, where 3DVariantVision successfully 

pinpointed ENSG00000022567 as the target gene, distinguishing it from the nearby 

ENSG00000204882 (Figure 3.6 F). This eQTL is further supported by chromatin 

interactions from Capture-C data, and the target gene is bounded by pivotal TFs such as 

RUNX3, ELF1, HCFC1, NRF1, and MAZ. Additionally, in the case of eQTL rs1545837, 

3DVariantVision precisely identified ENSG00000147439 as the target gene, effectively 

discriminating it from the nearby ENSG00000179388 (Figure 3.6 G). Notably, both the 

target gene and the background gene are associated with important TFs. However, a 

crucial distinction emerges - the actual target gene is bound by ELF1, while the 

background gene is not. Intriguingly, the occurrence of RUNX3 in the SNP region implies 

a potential mechanism of ELF1 repression, as RUNX3 has been proven to repress ELF1 

in the CD8-TC cell line172. These two illustrative examples underscore 3DVariantVision's 

remarkable proficiency in identifying the target genes of genetic variants, shedding light 

on the intricate interplay between genetic variations, TFs, and gene expression regulation. 



 60 

 

Figure 3.6. 3DVariantVision prioritized the SNP within CRISPRi-perturbed enhancers 
and the target gene of fine-mapped eQTLs. (A) Schematic figure of validation by 
CRISPR-QTL. The eQTL prediction scores of all the potential SNP-gene pairs located in 
the cis enhancer-gene pair are calculated. The SNP-gene pair with the highest prediction 
score is prioritized to represent the score of the corresponding CRISPR-QTL. (B-C) 
3DVariantVision showed significantly higher prediction scores on two orthogonal datasets, 
CRISPR-QTL (B) and ABC (C), compared with genomic distance-controlled SNP-gene 
pairs. (D-E) 3DVariantVision prioritized the downstream target genes of genetic variants. 
(F) For the SNPs with interests, 3DVariantVision calculated the eQTL prediction scores 
with surrounding genes and prioritized the top effected one. (E) 3DVariantVision 
successfully identified target genes of 4 fine-mapped eQTL datasets from the closest 
gene to the real target genes with distance > 1kb. (F-G) Two eQTL examples of target 
gene identifications supported by chromatin interaction (F) and TF profiles (G). 
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3.3.6 3DVariantVision deciphers the relationships of effects between chromatin 

and expression 

3DVariantVision excels in modeling long-range chromatin interactions, providing a means 

to quantify the chromatin effects of SNP-gene pairs by contrasting the reference genome 

with the alternative genome. While the preceding eQTL prediction section underscores 

the related yet distinct nature of chromatin interactions and gene expression associations, 

this section delves into quantifying their relationship by calculating correlations between 

chromatin effects and expression effects. GTEx supplies the slopes for all significant 

SNP-gene associations, serving as proxies for expression effects. Chromatin effects, in 

turn, are determined by assessing the chromatin changing ratio between the alternative 

and reference genomes, as derived from 3DVariantVision. The Spearman correlation of 

absolute values between expression effects and chromatin effects yields 0.1759, 

revealing a positive relationship wherein elevated chromatin effects correspond to 

increased expression effects. Notably, this correlation is even higher (0.2126) for a subset 

of SNP-gene associations characterized by genomic distances exceeding 500kb. To 

comprehensively explore this connection, we segment the significant SNP-gene 

associations into 20 evenly-distributed groups based on genomic distance. Strikingly, a 

statistically significant higher correlation emerges in the associations with longer genomic 

distances (p-value=0.0022) (Figure 3.7 A), suggesting that chromatin interaction may 

mediate long-range eQTLs. 

Continuing our investigation, we delve into the directionality of chromatin effects 

and expression effects. While the absolute values of these effects exhibit positive 

correlations, the directions reveal a more intricate, non-correlative relationship. We posit 

that distinct roles of TFs might underlie this phenomenon. Specifically, eQTLs influenced 

by activator TFs may exhibit consistent directions between chromatin effects and 

expression effects, whereas those influenced by repressor TFs may demonstrate 

opposite directions. To put this hypothesis to the test, we segregate significant SNP-gene 

associations from GTEx into groups based on different TF bindings at the SNP sites, 

referred to as TF-mediated groups. We assess the fraction of consistent directions 

between chromatin effects and expression effects for each TF-mediated group based on 

the top N effect values derived from expression effects. N varies from 20 to 2000. The 
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direction consistency is plotted against N for each TF-mediated group. At the top-effect 

eQTLs, some TF-mediated groups indeed exhibit consistent directions, while others 

manifest opposite directions (Figure B. 8). However, the consistency tends to approach 

neutrality when the expression effects of eQTLs are less pronounced. To glean insights 

into the roles of TFs, whether they activate or repress, we employ the consistency at the 

top 100 expression effects as a representation (Figure 3.7 B). Notably, all TF-mediated 

groups exhibit positive Spearman correlations between the absolute values of chromatin 

effects and expression effects. Two well-established examples, EBF1 as an activator173 

and TBX21 as a repressor174, exemplify consistent and opposite directions between 

chromatin effects and expression effects, respectively (Figure 3.7 B). These results 

underscore 3DVariantVision's capacity to unveil the roles of TFs in both chromatin and 

expression regulation. 

Communicative Learning effectively modeled the intricate relationships among 

minuscule regions situated between enhancers and promoters, allowing for the 

prioritization of vital functional TF combinations that contribute to chromatin interactions. 

To assess the significance of these TF combinations, we focused on Capture-C 

supported enhancer-promoter interactions in heldout chromosomes (chr9, chr10, and 

chr11). We counted the occurrences of TF combinations within the top-priority minuscule 

region pairs using TF ChIP-seq peaks, and we created corresponding backgrounds. 

Subsequently, we calculated z-scores for each TF combination and visualized them as a 

heatmap (Figure B. 7). Notably, some of these enriched TF combinations were validated 

by Protein-Protein Interactions (PPIs)139, such as SIN3A-ZBTB40, YY1-JUNB, CHD1-

SRF, and STAT3-ARNT, highlighting the role of PPIs in chromatin interactions (Figure 

3.7 C). To comprehensively assess the significance of the TF combinations prioritized by 

3DVariantVision, we conducted PPI enrichment analysis by comparing them against 

shuffled backgrounds. This analysis revealed a statistically significant enrichment of PPIs 

among the prioritized TF combinations, as confirmed by the z-test (p-value = 1.03e-2) 

(Figure 3.7 D). These findings collectively underscore 3DVariantVision's capacity to 

discover and prioritize crucial TF pairs essential for chromatin interactions. 
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Figure 3.7. 3DVariantVision deciphers the relationships of effects between chromatin and 
expression. (A-B) 3DVariantVision deciphered the chromatin effects of eQTLs. (A) The 
eQTLs were divided into 20 groups based on genomic distance and the Spearman 
correlation between chromatin effects and expression effect sizes was calculated 
separately. The eQTLs with longer genomic distances showed a higher correlation 
between effect sizes and chromatin effects. (B) The eQTLs were grouped by different 
harboring TFs located near the SNPs. The direction consistency on the top 100 
expression effected eQTLs was calculated by the fraction of the consistent direction 
between expression effects and chromatin effects. The red dots in the scatter plot 
represent TFs with directions while the blue dots represent TFs with opposite directions. 
All of them have a positive Spearman correlation between chromatin effect sizes and 
expression effect sizes. The right panel highlights two TFs with high consistency and high 
opposite directions. (C-D) 3DVariantVision prioritized the TF combinations of chromatin 
interactions. For the minuscule regions of the Capture-C enhancer-promoter interactions  
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Figure 3.7 (cont’d) 

in chr9, chr10, chr11, the harboring TF combinations were counted based on TF ChIP-
seq. The Z-score was calculated for each TF combination by comparing the top important 
minuscule region pairs based on the attention weights of 3DVariantVision and the random 
minuscule region pairs from the same enhancer-promoter interaction. The enriched TF 
combination block was shown in (D). (E) PPIs are enriched on the prioritized TF 
combinations (p-value of Z-score < 0.05), compared with the randomly shuffled TF pairs. 

3.3.7 3DVariantVision helps to understand the disease associations 

Understanding Genome-Wide Association Studies (GWAS)3 and Transcriptome-Wide 

Association Studies (TWAS)157 is of paramount importance in unraveling the genetic 

underpinnings of complex diseases and advancing personalized medicine. To assess 

3DVariantVision's capacity to elucidate the implications of genetic variants for disease 

associations within the context of GWAS, we categorized GTEx eQTLs into two distinct 

groups based on whether the associated SNPs were corroborated by GWAS findings. 

Notably, for the eQTL group supported by GWAS, 3DVariantVision exhibited markedly 

higher eQTL prediction scores in comparison to the group without GWAS support (Figure 

3.8 A). Furthermore, TWAS aims to identify genes whose expression levels are influenced 

by genetic variants. To comprehensively assess 3DVariantVision's potential in prioritizing 

target genes associated with TWAS, we focused on a set of 28 statistically significant 

SNP-gene associations linked to lipid traits in whole blood cell type171. For each of these 

associations, we generated a corresponding background set by aggregating all coding 

genes located within a 1Mb region centered on the TSS of the TWAS-targeted gene. 

Subsequently, we calculated the rank percentile of the TWAS target gene within this 

background, utilizing the 3DVariantVision prediction score. Remarkably, our results 

revealed that the TWAS target genes consistently obtained significantly higher rank 

percentiles compared to all the coding genes in the 1Mb background (Figure 3.8 B). 

Those observations underscore the potential of 3DVariantVision to shed light on the 

intricate relationship between genetic variants, gene expression, and disease 

associations, offering valuable insights into the genetic basis of complex diseases and 

the development of precision medicine approaches. 

In this demonstration, we present notable examples of successful target gene 

prioritization for four distinct traits - high-density lipoprotein cholesterol (HDL-C), low-
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density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG). 

Consider the genetic variant rs12050262, associated with the HDL-C trait. Remarkably, 

3DVariantVision effectively prioritized SETD3, the genuine target gene, out of a pool of 7 

coding genes within the surrounding 1Mb background region (Figure 3.8 C). Similarly, for 

rs17599675, linked to the LDL-C trait, our model accurately pinpointed FBXO38 as the 

target gene among 11 coding genes within the 1Mb background region (Figure 3.8 D). 

Furthermore, rs11578696, associated with the TC trait, was successfully linked to 

TMEM79, the actual target gene, from a set of 38 coding genes located within the 1Mb 

background region (Figure B. 10 A). Lastly, for rs10889347, a genetic variant associated 

with the TG trait, 3DVariantVision precisely prioritized USP1 as the target gene, out of 6 

coding genes situated in the 1Mb background region (Figure B. 10 B). These compelling 

examples underscore 3DVariantVision's efficacy in accurately identifying genes 

associated with specific traits, facilitating a deeper understanding of the genetic basis of 

complex phenotypes, and offering insights for potential therapeutic interventions. 
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Figure 3.8. 3DVariantVision interprets disease-associated traits. (A) eQTLs supported by 
GWAS showed significantly higher prediction scores based on 3DVariantVision 
compared with the background eQTLs. (B) For 28 TWAS associations with blood cell 
traits, all the coding genes within 2MB from the TSS of the TWAS targeted gene were 
collected as the background, and the corresponding eQTL prediction scores were  



 67 

Figure 3.8 (cont’d) 

generated by 3DVariantVision. The y-axis represents the percentile rank based on eQTL 
prediction scores, showing 3DVariantVision prioritized the TWAS associations against 
the background. (C-D) Two examples of prioritizing target genes of TWAS SNPs based 
on 3DVariantVision within 1Mb. The barplot at the bottom panel shows the eQTL 
prediction scores. (C) and (D) are the examples of HDL and LDL trait associations, 
respectively. 

 

  

 

 

 

 

 

 

 

 

 

  



 68 

  

SYSTEMATIC DELINEATION OF MULTI-LEVEL STRUCTURAL VARIABILITIES OF 

SPATIAL GENOME CONFORMATIONS 

4.1 INTRODUCTION 

The three-dimensional (3D) organization of chromatin plays a crucial role in regulating 

gene expression, DNA replication, genome stability, and tissue differentiation175–177. In 

recent years, the rapid development of chromatin conformation capture assays, such as 

ChIA-PET107, Capture-C108, and Hi-C14, has enabled the quantitative analysis of 3D 

chromatin interactions, including enhancer-promoter interactions and genome-wide intra-

chromosomal and inter-chromosomal contacts across various species and cell types. 

These studies have revealed structural components of chromatin at multiple scales, 

including chromatin loops, topologically associating domains (TADs), and chromatin 

compartments14. However, bulk-tissue measurements can only represent the average 

chromatin conformation, failing to capture the heterogeneity among millions of individual 

cells (Figure 4.1 A). The advent of single-cell chromatin conformation capture methods, 

such as single-cell Hi-C30–40, has opened new frontiers in the field, allowing researchers 

to investigate 3D genome structure at the single-cell level and unveil the dynamics and 

variability of chromatin organization across cells30–40. 

The analysis of 3D genome structures encompasses both intra-chromosomal and 

inter-chromosomal interactions. Within a chromosome, researchers investigate chromatin 

loops, TADs, and chromatin compartments14. When studying the inter-chromosomal 

structure of a diploid cell, researchers examine the relative positions of chromosomes and 

their spatial organization within the nucleus41,178–180. These multi-scale structures, both 

intra- and inter-chromosomal, are heavily influenced by variability at multiple levels 

(Figure 4.1 B). As cells differentiate from stem cells, cell-type variability leads to the 

emergence of distinct functions and shapes of different tissues181. Even within the same 

cell type, cell-level variability arises from differences in cell age and individual-level 

variations182. Moreover, within a single diploid cell, the two copies of the same 

chromosome, one from the paternal genome and the other from the maternal genome, 

can exhibit structural differences in allele-level, such as the active and inactive states of 
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chromosome X183,184. This multi-level variability poses significant challenges for both 

computational and experimental analyses of 3D chromatin regulation. 

Based on bulk-tissue unphased Hi-C data, which is more widely available 

compared to single-cell Hi-C, researchers have developed numerous methods for contact 

normalization185,186, imputation187, and interaction calling188, as well as further structure 

reconstruction26–28,189–192. These methods often employ a 'beads on a string' polymer 

model, where each chromosome is represented as a chain of 'beads' consisting of DNA 

fragments or loci, and the pairwise spatial distances between genomic loci are inferred 

from Hi-C contacts29. Structure reconstruction methods can be broadly categorized into 

two types: consensus methods and ensemble methods (Figure 4.1 C). Consensus 

methods, such as FLAMINGO28 and GAM-FISH192, reconstruct a single consensus 

structure for each chromosome by treating the intra-chromosomal Hi-C contact map as 

an average representation of pairwise distances between genomic loci without further 

justification29. However, these methods overlook cell-level and allele-level variability30,182. 

In contrast, ensemble methods25,193 decompose the bulk-tissue Hi-C contact map matrix 

into a large tensor, with an additional dimension representing individual cells, thereby 

generating thousands of different structures. While ensemble methods attempt to capture 

cell-to-cell variability, the resulting structures mix multi-level variability and are challenging 

to interpret due to the lack of a clear correspondence between the generated structures 

and the individual cells in the Hi-C experiment25,193. Consequently, the strategies and 

underlying assumptions of these methods require further systematic evaluation to provide 

guidance for future research. 

In this study, we provide a comprehensive analysis of the multi-level variability in 

3D chromatin organization by leveraging a wide range of bulk-tissue and single-cell Hi-C 

datasets14,34,35 across different cell types, developmental stages, and alleles. Our findings 

reveal several key biological insights. First, we demonstrate that intra-chromosomal 

chromatin organization is more stable within the same cell type compared to the dynamics 

observed across cell types, with the large-scale skeleton being stable at low resolution 

and the short-scale detailed organization captured at higher resolutions. Second, we 

show that inter-chromosomal chromatin exhibits a higher degree of complexity and 

variability that cannot be captured by a single consensus structure, emphasizing the 
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importance of considering cell-to-cell variability in inter-chromosomal interactions. Third, 

we uncover an ordered hierarchy of structural variability, with tissue-level variability being 

more pronounced than age-level variability, followed by individual cell-level and allele-

level variability for autosomes, while chromosome X exhibits a distinct order with allele-

level variability being more prominent than individual cell-level variability. These findings 

highlight the importance of considering cell type-specific factors, developmental dynamics, 

and allele-specific differences when studying 3D chromatin organization and its 

relationship to gene regulation and cellular function. From a computational perspective, 

our analysis provides guidance for selecting appropriate resolutions and read depths 

when studying chromatin organization across different genomic scales, considering the 

trade-off between resolution and genomic distance. We also emphasize the need for 

advanced computational methods that can capture the complexity and variability of inter-

chromosomal interactions beyond single consensus structures. Furthermore, we propose 

a framework for modeling and analyzing chromatin structures at different levels of inquiry 

based on the ordered hierarchy of variability sources. Our study highlights the limitations 

of existing methods, such as consensus and ensemble approaches, in addressing the 

multi-level variability in 3D chromatin organization and underscores the need for 

integrating multiple experimental techniques to remove biases and obtain a more 

accurate representation of chromatin interactions. In conclusion, our comprehensive 

analysis of multi-level variability in 3D chromatin organization provides valuable insights 

into the complex interplay between cell type-specific factors, developmental dynamics, 

and allele-specific differences, guiding future experimental designs and computational 

method development in this rapidly evolving field. 
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Figure 4.1. Overview of 3D chromatin structure modeling and analysis based on Hi-C. 
(A) Bulk-tissue Hi-C provides an average representation of both intra-chromosomal and 
inter-chromosomal chromatin organizations from millions of cells. The heatmap shows an 
example of a bulk-tissue Hi-C contact matrix, with warmer colors indicating higher 
interaction frequencies between genomic regions. (B) Multi-level variability in analyzing 
3D genome structures. Intra-chromosomal contacts represent the 3D structure of a single 
chromosome, while inter-chromosomal contacts represent the interactions between  
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Figure 4.1 (cont’d) 

multiple chromosomes in diploid cells, which contain 23 maternal and 23 paternal alleles. 
The analysis of 3D genome structure is influenced by variability at different levels, 
including cell-type level, individual cell level, and allele level. (C) Summary of existing 
methods for 3D genome structure reconstruction. Consensus methods based on bulk-
tissue unphased Hi-C data ignore cell-level and allele-level variability to reconstruct the 
3D structure of a single chromosome using the intra-chromosomal distance matrix 
derived from Hi-C. Ensemble methods decompose the distance tensors to generate 
thousands of multi-chromosomal 3D structures, but the resulting models can be difficult 
to interpret biologically. 

4.2 MATERIALS AND METHODS 

4.2.1 Datasets and pre-processing 

Hi-C datasets from seven bulk tissues (GM12878, K562, KBM7, HUVEC, IMR90, HMEC, 

and NHEK) obtained from Rao et al14 were utilized to compare intra-chromosomal 3D 

chromatin organization across different cell types. For the analysis of inter-chromosomal 

interactions, both SPRITE194 and Hi-C data from the GM12878 cell type were employed. 

Single-cell Hi-C datasets from Dip-C experiments in human (GM12878)34 and mouse 

(MOE and retina) cells35 were used to investigate intra-chromosomal interactions at the 

single-cell level. All Hi-C datasets underwent mapping and normalization procedures as 

described in their respective original publications14,34.  

4.2.2 Bulk-level Intra-chromosomal Hi-C cross cell-type analysis 

To assess cell-type level variability, Spearman correlation was calculated across different 

cell types. The Hi-C data was partitioned based on genomic distance bands to control for 

confounding factors such as missing rate and genomic distance. Let 𝑔 represent the 

genomic distance between two genomic fragments. The Hi-C data was divided into the 

following bands: (0,1Mb], (1Mb,2Mb], (2Mb,5Mb], and (5Mb,10Mb]. For Hi-C data from 

two cell types, the union set of available data was considered, and Spearman correlation 

was calculated within each chromosome separately. Various Hi-C resolutions were 

examined, including 1Mb, 500kb, 250kb, 50kb, 25kb, and 10kb. However, the correlation 

for 𝑔 ∈ (0,1Mb] at 1Mb resolution was not available. Additionally, the correlation for 𝑔 < 

2Mb at 10kb resolution was not computed due to low data quality resulting from a high 
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missing rate. The primary replicate of GM12878 was used as the query cell type, and 

Spearman correlation was calculated between the query cell type and the target cell types, 

which included K562, KBM7, HUVEC, IMR90, HMEC, NHEK, and another replicate of 

GM12878. 

Spearman correlations between the primary replicate of GM12878 and another cell 

type were calculated for specific chromosomes, resolutions, and genomic distance bands. 

These correlations from all chromosomes were then grouped based on the corresponding 

resolution, genomic distance band, and target cell type, representing the overall 

correlation between GM12878 and the other cell type under specific resolution and 

genomic distance band settings. The cell type with the highest median correlation was 

used as the cell-type-specific boundary for a given resolution and genomic distance band, 

as all median correlations between GM12878 and other cell types fall below this threshold. 

This cell type is considered the most similar to GM12878 in terms of chromatin 

organization under specific resolution and genomic distance band settings. 

To quantify the influence of read depth on the data, a single replicate of GM12878 

was used, and the original mapped reads were downsampled. For a given chromosome 

and resolution, the corresponding Hi-C matrix was obtained. Original reads were 

randomly downsampled at the following rates: 80%, 50%, 30%, 20%, 10%, 8%, 5%, 3%, 

2%, and 1%. Based on the sampled reads, downsampled Hi-C matrices were constructed. 

The downsampling process was performed once for each specific chromosome and 

resolution combination. Spearman correlation between the original Hi-C matrix and the 

downsampled Hi-C matrices was then calculated separately for different genomic 

distance bands. 

4.2.3 Bulk-level inter-chromosomal Hi-C data normalization 

To remove the bias in Hi-C interaction frequencies, two transformation functions were 

applied between Hi-C and SPRITE data. For the GM12878 cell type, both Hi-C and 

SPRITE data were collected. All interaction frequencies at 10Mb resolution were divided 

into intra-chromosomal and inter-chromosomal categories for Hi-C and SPRITE 

separately. First, for intra-chromosomal interaction frequencies, a linear transformation 

function 𝑔(𝑥) = 𝛽1𝑥 + 𝛽0 was used to convert SPRITE interaction frequencies to Hi-C 
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interaction frequencies using the equation 𝐼𝐹𝐻𝑖𝐶𝑖𝑛𝑡𝑟𝑎
= 𝑔(𝐼𝐹𝑆𝑃𝑅𝐼𝑇𝐸𝑖𝑛𝑡𝑟𝑎

) , where 

𝐼𝐹𝐻𝑖𝐶𝑖𝑛𝑡𝑟𝑎
and 𝐼𝐹𝑆𝑃𝑅𝐼𝑇𝐸𝑖𝑛𝑡𝑟𝑎

 represent the intra-chromosomal interaction frequencies in Hi-

C and SPRITE, respectively, and 𝛽1, 𝛽0 are the learned parameters. Second, for inter-

chromosomal interaction frequencies, a log transformation function 𝑓(𝑥) = 𝑎1(𝛼1 𝑙𝑜𝑔 (𝑥 +

1) + 𝛼0) + 𝑎0  was employed to convert Hi-C interaction frequencies to SPRITE 

interaction frequencies using the equation 𝐼𝐹𝑆𝑃𝑅𝐼𝑇𝐸𝑖𝑛𝑡𝑒𝑟
= 𝑓(𝐼𝐹𝐻𝑖𝐶𝑖𝑛𝑡𝑒𝑟

), where 𝑎1, 𝑎0, 𝛼1 

and 𝛼0 are the learned parameters. The log function was chosen over the linear function 

due to its better performance. The learned transformation functions were applied to 

normalize inter-chromosomal Hi-C interaction frequencies by removing the bias using the 

equation: 

𝐼𝐹𝐻𝑖𝐶𝑖𝑛𝑡𝑟𝑎
= 𝑔(𝑓(𝐼𝐹𝐻𝑖𝐶𝑖𝑛𝑡𝑒𝑟

)) 

The normalized Hi-C interaction frequencies were transformed into 3D Euclidean 

distances using the exponential function: 𝑑𝑖𝑗 = 𝐼𝐹𝑖𝑗
𝜂, where 𝑑𝑖𝑗 represents the pairwise 

3D distance between DNA fragments 𝑖 and 𝑗, 𝐼𝐹𝑖𝑗 represents the interaction frequency 

between fragments 𝑖 and 𝑗, and 𝜂 is set to 0.25, as suggested by previous literature. A 

standard distance metric satisfies the triangle inequality: 𝑑𝑖𝑗 < 𝑑𝑖𝑘 + 𝑑𝑗𝑘, which can be 

used to quantify the quality of spatial distances transformed from inter-chromosomal 

interaction frequencies. For all genomic fragments in the whole genome at 10Mb 

resolution, a triplet of fragments 𝑖, 𝑗, and 𝑘 was randomly sampled to check whether the 

triangle inequality holds. This sampling process was repeated 1000 times to generate 

1000 triplets, and the fraction of cases in which the triangle inequality held was calculated. 

The entire procedure was performed 100 times to obtain the distribution of these fractions. 

A higher fraction indicates a better quality of the distance from Hi-C. 

4.2.4 Low-rank property evaluation 

The pairwise distance matrix is biologically generated by the underlying low-rank 

coordinate matrix of DNA fragments with rank ≤ 3. Thus, Due to the property of ranks for 

matrix addition, the observed Euclidean distance matrix has a rank ≤ 5. Singular value 

decomposition (SVD) was performed on the observed distance matrix transformed from 

the Hi-C interaction frequency. The SVD is given by: 
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𝐷 = 𝑈𝛴𝑉𝑇 = ∑ 𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑛

𝑖

 

|𝜎1|  ≥  |𝜎2|  ≥ . . . ≥  |𝜎𝑛|, 

Here, 𝐷 represents the observed distance matrix, 𝜎𝑖 are the singular values (SVs), 

𝑢𝑖  and 𝑣𝑖  are the left and right singular vectors, respectively, and 𝑛  represents the 

dimension of 𝐷. According to the low-rank property of the distance matrix, the top 5 SVs 

and corresponding vectors are used to reconstruct the approximation of the distance 

matrix: 

�̂� = ∑ 𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

5

𝑖

 

To assess the low-rank property in the observed distance matrix, we first 

calculated the explanation ratio of the top 𝑘 SVs: 

𝑟𝑘 =
∑ |𝜎𝑖|

𝑘
𝑖=1

∑ |𝜎𝑖|
𝑛
𝑖=1

∈ [0,1] 

The ideal explanation ratio of the top 5 SVs 𝑟5 should be close to 1, indicating that the 

low-rank property holds well when the ratio is closer to 1. Additionally, we checked the 

correlation between the observed distance matrix (𝐷) and the approximation matrix (�̂�) 

based on the top 5 SVs. Both Spearman and Pearson correlations were calculated. A 

higher correlation indicates a better low-rank property, as the approximation matrix 

closely represents the original observed distance matrix.  

4.2.5 Allele-allele correlation in single-cell 

Dip-C, a high-throughput single-cell Hi-C technique, provided data for 17 cells in the 

human GM12878 cell type and approximately 400 cells in mouse, including retina and 

main olfactory epithelium (MOE) cell types. By leveraging unique single nucleotide 

polymorphisms (SNPs) in paternal and maternal alleles, the reads from Dip-C were 

mapped to specific alleles, enabling the construction of allele-specific interaction 

frequency matrices. Let 𝐴♂ and 𝐵♀ represent the paternal allele of chromosome A and the 

maternal allele of chromosome B, respectively. 𝐼𝐹𝐴♂𝐵♀  represents the interaction 

frequency matrix between 𝐴♂ and 𝐵♀. For example: 
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1) 𝐼𝐹𝐴♂𝐴♂ is the intra-chromosomal interaction frequency matrix within the paternal 

allele of chromosome A. 

2) 𝐼𝐹𝐴♂𝐴♀ is the inter-chromosomal interaction frequency matrix between the paternal 

and maternal alleles of chromosome A. 

3) 𝐼𝐹𝐴♂𝐵♀ is the inter-chromosomal interaction frequency matrix between the paternal 

allele of chromosome A and the maternal allele of chromosome B. 

Due to the high missing rate in single cells, inter-chromosomal interaction frequencies 

are almost unavailable. Therefore, we only used the single-cell intra-chromosomal 

interaction frequency matrices, 𝐼𝐹𝐴♂𝐴♂  and 𝐼𝐹𝐴♀𝐴♀ , from Dip-C at 1Mb resolution. To 

control the confounding factors, including genomic distance, we normalized the read 

depths band-wisely using BandNorm195. For simplicity, the normalized 𝐼𝐹𝐴♂𝐴♂ and 𝐼𝐹𝐴♀𝐴♀ 

will be referred as 𝐼𝐹𝐴♂ and 𝐼𝐹𝐴♀, respectively. To distinguish the interaction frequency 

matrices in different cells,  let 𝐴𝑖
♂ represent the paternal allele of chromosome A in cell i, 

and 𝐼𝐹𝐴𝑖
♂ represent the intra-chromosomal interaction frequency matrix of 𝐴𝑖

♂. 

We calculated different correlations for a quantitive comparison: 

1) Allele level correlation in the same cell (allele-level correlation): 

For chromosome A in cell i (𝐴𝑖), we computed the Spearman correlation between 

𝐼𝐹𝐴𝑖
♂ and 𝐼𝐹𝐴𝑖

♀, which represents the correlation between paternal and maternal 

alleles of the same chromosome within a single cell. 

2) Cell level correlation in the same allele (cell-level correlation): 

a. Paternal allele: For the paternal allele of chromosome A (𝐴♂), we calculated 

the Spearman correlation between 𝐼𝐹𝐴𝑖
♂  and 𝐼𝐹𝐴𝑗

♂ , which represents the 

correlation of the paternal allele of the same chromosome between different 

cells i and j. 

b. Maternal allele: For the maternal allele of chromosome A, 𝐴♀, we calculated 

the Spearman correlation between 𝐼𝐹𝐴𝑖
♀  and 𝐼𝐹𝐴𝑗

♀ , which represents the 

correlation of the maternal allele of the same chromosome between 

different cells i and j. 

3) Overall correlation in different alleles and cells (overall correlation): 



 77 

For chromosome A, we computed the Spearman correlation between  𝐼𝐹𝐴𝑖
♂ and  

𝐼𝐹𝐴𝑗
♀, which represents the correlation of the same chromosome between different 

alleles across different cells i and j. 

Allele-level correlations were calculated for different cells, while cell-level correlations 

and overall correlations were calculated for different cell pairs. Boxplots were used to 

visualize the correlation distributions across different chromosomes j. 

4.2.6 Embedding of single-cell alleles and distance calculation 

We applied BandNorm to generate embeddings for each allele of a specific chromosome 

in single cells from mouse Dip-C data without imputation. For each chromosome, we 

collected the normalized interaction frequency matrices at 1Mb resolution of each allele 

across individual cells and performed principal component analysis (PCA). The loadings 

on the top 50 principal components (PCs) were used as the embedding of the 

corresponding allele in a single cell. To visualize the embeddings in a two-dimensional 

(2D) space, we employed two strategies: (1) using the loadings on the top 2 PCs directly, 

and (2) using Uniform Manifold Approximation and Projection (UMAP) to project the 50-

dimensional embedding vectors onto a 2D space. 

4.2.7 Multi-level variability quantification and comparison 

We compared different levels of chromatin variability based on single-cell allele 

embeddings using sampling strategies, including tissue, age, cell, and allele levels. To 

compare the tissue-level variability and age-level variability, we used Dip-C mouse cells 

from MOE and retina tissues. All cells were from male mice, including retina cells at 

postnatal day 7 (P7) and P28, and MOE cells at P28. For each chromosome, we randomly 

sampled one allele from a retina cell at P7 (𝐿𝑟𝑒
7), one allele from a retina cell at P28 

(𝐿𝑟𝑒
28), and one allele from an MOE cell at P28 (𝐿𝑚𝑜𝑒

28). To remove confounding factors 

arising from different alleles, all three sampled alleles were either paternal or maternal, 

i.e., 𝐿𝑟𝑒
7, 𝐿𝑟𝑒

28, 𝐿𝑚𝑜𝑒
28 were either all paternal or all maternal. Euclidean distances were 

calculated based on the embeddings to determine the age-level distance, 

𝑑𝑖𝑠𝑡(𝐿𝑟𝑒
7, 𝐿𝑟𝑒

28), and the tissue-level distance, 𝑑𝑖𝑠𝑡(𝐿𝑚𝑜𝑒
28, 𝐿𝑟𝑒

28). The distances were 

normalized by setting the age-level distance to 1 ( 𝑑𝑖𝑠𝑡𝑎𝑔𝑒 = 1 ) and calculating the 
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normalized tissue-level distance as𝑑𝑖𝑠𝑡𝑡𝑖𝑠𝑠𝑢𝑒 = 𝑑𝑖𝑠𝑡(𝐿𝑟𝑒
7, 𝐿𝑟𝑒

28) / 𝑑𝑖𝑠𝑡(𝐿𝑚𝑜𝑒
28, 𝐿𝑟𝑒

28). The 

sampling process was repeated 1,000 times, generating 1,000 𝑑𝑖𝑠𝑡𝑡𝑖𝑠𝑠𝑢𝑒  values for each 

chromosome. Boxplots were used to visualize the distribution of 𝑑𝑖𝑠𝑡𝑡𝑖𝑠𝑠𝑢𝑒  across different 

chromosomes. 

Similarly, to compare the age-level variability and cell-level variability, we used Dip-

C mouse cells from retina tissues. All cells were from male mice, including retina cells at 

P7, P28, and P56. For each chromosome, we randomly sampled two alleles from different 

cells at P7 (𝐿7
1, 𝐿7

2), one allele at P28 (𝐿28), and one allele at P56 (𝐿56). All sampled 

alleles were either paternal or maternal. We calculated the Euclidean distances based on 

the embeddings: cell-level distance 𝑑𝑖𝑠𝑡(𝐿7
1, 𝐿7

2) , 28-day age-level distance 

𝑑𝑖𝑠𝑡(𝐿28, 𝐿7
1) , and 49-day age-level distance 𝑑𝑖𝑠𝑡(𝐿56, 𝐿7

1) . The distances were 

normalized by setting the cell-level distance to 1 ( 𝑑𝑖𝑠𝑡𝑐𝑒𝑙𝑙 = 1 ) and calculating the 

normalized age-level distance as 𝑑𝑖𝑠𝑡𝑎𝑔𝑒
28 = 𝑑𝑖𝑠𝑡(𝐿28, 𝐿7

1) / 𝑑𝑖𝑠𝑡(𝐿7
1, 𝐿7

2)  and 

𝑑𝑖𝑠𝑡𝑎𝑔𝑒
49 = 𝑑𝑖𝑠𝑡(𝐿56, 𝐿7

1) / 𝑑𝑖𝑠𝑡(𝐿7
1, 𝐿7

2) . The sampling process was repeated 1,000 

times, generating 1,000 𝑑𝑖𝑠𝑡𝑎𝑔𝑒
28 and 𝑑𝑖𝑠𝑡𝑎𝑔𝑒

49 values for each chromosome. 

In addition, to compare the cell-level variability and allele-level variability, we only 

used Dip-C female mouse cells at P5 from MOE tissues. For each chromosome, we 

randomly sampled two cells, with 𝑃1  and 𝑀1  representing the paternal and maternal 

alleles from the first cell, and 𝑃2 and 𝑀2 represent the paternal and maternal alleles from 

the second cell. Euclidean distances were calculated based on the embeddings to 

determine the allele-level distance, 𝑑𝑖𝑠𝑡(𝑀1, 𝑃1), the cell-level distance, 𝑑𝑖𝑠𝑡(𝑀1, 𝑀2), 

and the overall distance, 𝑑𝑖𝑠𝑡(𝑀1, 𝑃2). The distances were normalized by setting the 

allele-level distance to 1 (𝑑𝑖𝑠𝑡𝑎𝑙𝑙𝑒𝑙𝑒 = 1), calculating the normalized cell-level distance as 

𝑑𝑖𝑠𝑡𝑐𝑒𝑙𝑙 = 𝑑𝑖𝑠𝑡(𝑀1, 𝑀2) / 𝑑𝑖𝑠𝑡(𝑀1, 𝑃1) , and normalized overall distance 𝑑𝑖𝑠𝑡𝑐𝑒𝑙𝑙+𝑎𝑙𝑙𝑒𝑙𝑒 =

𝑑𝑖𝑠𝑡(𝑀1, 𝑃2) / 𝑑𝑖𝑠𝑡(𝑀1, 𝑃1). The sampling process was repeated 1,000 times, generating 

1,000 𝑑𝑖𝑠𝑡𝑐𝑒𝑙𝑙 and 𝑑𝑖𝑠𝑡𝑐𝑒𝑙𝑙+𝑎𝑙𝑙𝑒𝑙𝑒 values for each chromosome.  
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4.3 RESULTS 

4.3.1 Cell-type specificity of intra-chromosomal chromatin across distinct scales 

and resolutions 

Cell-type-specific intra-chromosomal chromatin organization has been widely studied 

using Hi-C datasets, leading to the development of various techniques for data 

preprocessing, normalization, imputation, and structure reconstruction26–28,185,186,188–192. 

However, a comprehensive analysis of intra-chromosomal chromatin across different cell 

types, scales, and resolutions while controlling for confounding factors is still lacking. In 

this study, we aimed to address this gap by systematically investigating the intra-

chromosomal chromatin organization in multiple cell types. 

As a sequence-based experiment, Hi-C relies on read depth to capture 

chromosome conformation, which limits data quality and resolution14. Limited read depth 

results in higher rates of missing data at higher resolutions, with the rates of missing data 

being strongly related to genomic distance. For example, analysis of bulk Hi-C data from 

the GM12878 cell type at 10kb resolution revealed that the available rate (1 - missing rate) 

substantially decreases with increasing genomic distance (Figure 4.2 A). The available 

rate is approximately 90% within 1Mb, 60% within 2Mb, 40% within 3Mb, 30% within 5Mb, 

and 10% within 10Mb. To control for the effect of genomic distance, we split the Hi-C 

matrix into different genomic distance bands: (0,1Mb], (1Mb,2Mb], (2Mb,5Mb], 

(5Mb,10Mb], (10Mb,20Mb], and (10Mb,50Mb]. The contact frequency distribution for 

available entries in each band was examined (Figure C. 1). We observed that when the 

genomic distance exceeds 10Mb, the entries become almost binary. Therefore, we 

focused our analysis on four genomic distance bands: (0,1Mb], (1Mb,2Mb], (2Mb,5Mb], 

and (5Mb,10Mb]. 

To investigate intra-chromosomal chromatin variability across cell types, we 

utilized eight bulk Hi-C datasets, including two replicates of GM12878 and one replicate 

each of K562, KBM7, HUVEC, IMR90, HMEC, and NHEK. All Hi-C data were obtained 

from Rao et al, with similar read depths to minimize experimental biases. We calculated 

the Spearman correlation between the primary replicate of GM12878 and the other six 

cell types to quantify the variability between cell types. Additionally, we calculated the 
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Spearman correlation between the two replicates of GM12878 to determine the variability 

within the same cell type. These calculations were performed at various resolutions 

ranging from 1Mb to 10kb to assess the multi-scale variability in four different genomic 

distance bands. Significantly higher correlations within the same cell type compared to 

across cell types indicate that chromatin organization is stable within the same cell type 

(Figure 4.2 B). At the short genomic distance band (0,1Mb], the correlation within 

GM12878 is higher than 0.9 under various resolutions from 500kb to 25kb, and higher 

than 0.85 at 10kb resolution, demonstrating stable chromatin organization at short 

genomic distances across various resolutions. However, as the genomic distance 

increases, the correlation decreases, suggesting that stable chromatin organization only 

holds at lower resolutions for longer genomic distances (Figure 4.2 B). These findings 

highlight the importance of considering both genomic distance and resolution when 

studying intra-chromosomal chromatin variability across cell types. The stability of 

chromatin organization within the same cell type and the decreasing stability with 

increasing genomic distance provide valuable insights into the multi-scale nature of 

chromatin organization and its relationship to cell type identity. 

To further check the influence of read depth on data quality and determine reliable 

resolutions, we established cell-type-specific correlation boundaries based on across-

cell-type correlations at different genomic distance bands and resolutions. The correlation 

within the same cell type should not be lower than these boundaries under the same 

genomic distance and resolution settings, as a lower correlation would indicate that the 

chromatin organization is more dynamic than across cell types, suggesting unreliability. 

For the primary replicate of GM12878, we downsampled the mapped reads from 

80% to 1% to generate Hi-C matrices with fewer reads and assessed the decrease in 

data quality based on the correlation between the downsampled and original matrices. At 

low resolutions, such as 1Mb and 500kb, even with downsampling rates as low as 1%, 

the correlation remained higher than the cell-type-specific correlation boundaries, 

demonstrating extremely stable chromatin organization across different genomic distance 

bands (Figure 4.2 C, Figure C. 2). Higher resolutions required higher read depths. For 

instance, at the genomic distance band (0,1Mb], the minimal downsampling rates for 
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resolutions of 100kb, 50kb, 25kb, and 10kb were 2%, 5%, 10%, and 20%, respectively 

(Figure 4.2 C). 

Furthermore, to maintain consistent correlations at the same resolution across 

different genomic distance bands, the read depth varied. For example, to achieve 

consistent correlations at 50kb or 100kb resolution, the downsampling rates could be 1% 

for (0,1Mb], 10% for (1Mb,2Mb], 30% for (2Mb, 5Mb], and 50% for (5Mb, 10Mb], indicating 

that longer genomic distance bands require more read depth to maintain consistent 

correlations at the same resolution (Figure C. 2). Similarly, to maintain a consistent 

correlation at the same read depth, the reliable resolutions varied across genomic 

distance bands. For instance, when the downsampling rate was 10%, 20%, or 30%, the 

reliable resolutions were 10kb for (0,1Mb], 50kb for (1Mb,2Mb], and 100kb for (2Mb, 

10Mb]. When the downsampling rate decreased to 1%, the reliable resolutions were 10kb 

for (0,1Mb], 100kb for (1Mb,2Mb], 100kb for (2Mb, 5Mb], and 250kb for (5Mb, 10Mb] 

(Figure C. 2). 
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Figure 4.2. Cell-type specificity of intra-chromosomal chromatin across distinct scales 
and resolutions. (A) Missing rate based on different genomic distances based on Hi-C at 
10kb resolution from GM12878 cell type. Hi-C map was split based on several genomic  
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Figure 4.2 (cont’d) 

distance bands including (0,1Mb], (1Mb,2Mb], (2Mb,5Mb], (5Mb,10Mb], (10Mb,20Mb], 
(20Mb,50Mb], (50Mb,inf]. (B) Bulk Hi-C correlation between different cell types based on 
different genomic distance bands and resolution. The boxplots show the Spearman 
correlation in single chromosome between GM12878 with another cell type including 
K562, KBM7, HUVEC, IMR90, HMEC, NHEK, and another replicate of GM12878. (C) 
Correlation decreased with fewer read depths based on different genomic distance bands 
and resolutions. The GM12878 Hi-C was downsampled based on different rates from 80% 
to 1%, and the Spearman correlation was calculated between the downsampled one and 
original one. Each subfigure shows the results based on one genomic band. The line 
chart shows the correlations in single chromosome changes based on different 
downsampling rates. Different lines with various colors show the correlation changing 
trend at specific resolution. The right panel of each subfigure is the boxplot showing the 
cell-type specific boundary as a reference to determine the reliable correlation threshold 
of the downsampled Hi-C. 

The observations from our analysis provide valuable biological insights into the 

variability of intra-chromosomal chromatin organization. We found that intra-

chromosomal chromatin is more stable within the same cell type compared to the 

dynamics observed across cell types. This stability is particularly evident in the multi-scale 

nature of chromatin organization, where the large-scale skeleton is stable at low 

resolution, while the stable short-scale detailed organization can be captured at higher 

resolutions. Our findings also highlight the complex interplay between read depth, 

resolution, and genomic distance in determining the reliability of chromatin organization 

data. Read depth has a more significant influence on the reliability of longer-range 

chromatin interactions at higher resolutions. This analysis provides guidance for selecting 

appropriate resolutions and read depths when studying chromatin organization across 

different genomic scales. The results suggest that for any Hi-C experiment, the reliable 

resolution for longer genomic distances is lower compared to shorter genomic distances, 

due to limitations in read depth. This trade-off between resolution and genomic distance 

is an important consideration when designing and interpreting Hi-C experiments. To 

overcome this limitation, methods like FLAMINGO28 employ a hierarchical approach to 

reconstruct the skeleton of an entire chromosome at low resolution and capture within-

domain structures at high resolution. 

In conclusion, our study reveals the stability of intra-chromosomal chromatin 

organization within cell types and the importance of considering the complex relationships 
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between read depth, resolution, and genomic distance when studying chromatin 

organization. These findings have implications for the design and interpretation of Hi-C 

experiments and the development of computational methods for multi-scale chromatin 

organization analysis. 

4.3.2 Heterogeneity of inter-chromosomal chromatin contacts and spatial 

distances  

Moving on to cell-type-specific inter-chromosomal chromatin, we investigated the 

chromatin organization between single chromosomes. Inter-chromosomal spatial 

distances are much longer than intra-chromosomal spatial distances14,196,197, which 

results in 3C-like techniques capturing limited reads and causing extremely high missing 

rates for detailed inter-chromosomal organization information196. Moreover, due to the 

digestion and ligation procedures, Hi-C is biased towards intra-chromosomal interactions 

compared to inter-chromosomal interactions, as it lacks the ability to handle long spatial 

distances. SPRITE, which does not rely on digestion and ligation procedures, exhibits no 

bias between intra-chromosomal and inter-chromosomal interactions194. This property 

makes SPRITE a valuable tool for removing the bias in Hi-C data and enabling a fair 

comparison between intra-chromosomal and inter-chromosomal interaction frequencies 

(Figure 4.3 A). We plotted scatter plots showing interaction frequencies based on Hi-C 

and SPRITE for intra-chromosomal and inter-chromosomal interactions separately. At 

1Mb resolution, inter-chromosomal interaction frequencies showed no significant 

correlation between Hi-C and SPRITE due to the high missing rate caused by limited read 

depth (Figure C. 3). However, at a lower resolution of 10Mb and after removing entries 

close to the centromere, Hi-C and SPRITE exhibited a clear regression relationship with 

a correlation of 0.956 and 0.776 for intra-chromosomal and inter-chromosomal 

interactions, respectively (Figure 4.3 A, Figure C. 3). We fitted separate regression 

models for intra-chromosomal and inter-chromosomal interactions to remove the bias in 

Hi-C data based on SPRITE at 10Mb resolution. 

To validate the transformation applied to Hi-C data using SPRITE, we leveraged 

the exponential relationship between bulk-level intra-chromosomal interaction 

frequencies of Hi-C and real spatial distances, as established in a previous study29. This 

relationship is widely used to convert interaction frequencies to Euclidean distances in 
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various computational tools27,28. After removing the bias in inter-chromosomal interaction 

frequencies of Hi-C, we applied the same exponential transformation suggested by the 

previous study to convert the corrected inter-chromosomal interaction frequencies to 

spatial distances. To assess whether the converted spatial distances constitute a valid 

distance metric, we employed the triangle inequality. By sampling triplet entries in the 

inter-chromosomal distance matrix, we observed significant improvements in the fraction 

of cases where the triangle inequality holds, compared to the matrix based on the original 

Hi-C interaction frequencies (Figure 4.3 B). This finding suggests that our transformation 

of interaction frequencies based on SPRITE effectively removed the bias in Hi-C data and 

rendered the exponential transformation, originally developed for intra-chromosomal 

distances, applicable to inter-chromosomal distances as well. 

Using the distance matrices converted from the corrected Hi-C interaction 

frequencies, we investigated whether a consensus 3D structure can represent them. 

Since the Euclidean distance matrix is calculated from 3D coordinates, it is expected to 

be low-rank, with a rank not exceeding 528. We compared the inter-chromosomal distance 

matrix at 10Mb resolution with the intra-chromosomal distance matrix of chr1 at 1Mb 

resolution, as they have similar dimensions. Singular Value Decomposition (SVD) was 

applied to both matrices separately, and the singular values were ordered by their 

absolute values. The top 5 singular values could only explain 55.4% of the total variance 

in the inter-chromosomal distance matrix, compared to 70.2% in the intra-chromosomal 

distance matrix (Figure 4.3 C). The explanation ratio of the inter-chromosomal distance 

matrix was significantly and consistently lower than that of the intra-chromosomal 

distance matrix across different numbers of top singular values (Figure C. 3). 

Additionally, we constructed a low-rank approximation of each distance matrix 

using the top 5 singular values and their corresponding singular vectors and compared 

the approximated distance matrices with the original ones. The approximated intra-

chromosomal distance matrix was highly similar to the original matrix, with a Spearman 

correlation of 0.985 and a Pearson correlation of 0.977 (Figure 4.3 C), indicating that the 

bulk-level intra-chromosomal Hi-C distance matrix can be well represented by a 

consensus 3D structure of a single chromosome. In contrast, the approximated inter-

chromosomal distance matrix differed from the original matrix, with a Spearman 
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correlation of 0.835 and a Pearson correlation of 0.661 (Figure 4.3 C). We further 

examined the correlation between the original matrices and their approximations based 

on different numbers of top singular values. The results clearly showed that the intra-

chromosomal distance matrix has a rank no larger than 5, while the inter-chromosomal 

distance matrix has a rank much higher than 5 (Figure C. 4). This finding suggests that 

although the inter-chromosomal distance matrix represents an average across cells at 

the bulk level, it cannot be adequately represented by a single 3D structure. 

 

Figure 4.3. Heterogeneity of inter-chromosomal chromatin contacts in bulk tissue. (A) 
Removal of experimental biases in Hi-C data using SPRITE. The top panel shows 
schematic figures illustrating the correction of inter-chromosomal Hi-C contacts using  
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Figure 4.3 (cont’d) 

SPRITE by fitting two regression models. The bottom panel displays scatter plots 
comparing Hi-C and SPRITE contact frequencies for intra-chromosomal and inter-
chromosomal contacts separately, with the fitted models overlaid. (B) Comparison of the 
fraction of cases where the triangle inequality holds in distances transformed from original 
Hi-C data and corrected Hi-C data. The boxplots show the distribution of the fraction of 
cases across multiple samples, with higher fractions indicating better agreement with the 
triangle inequality and more reliable distance transformations. (C) Low-rank properties of 
intra-chromosomal and inter-chromosomal distance matrices based on singular value 
decomposition (SVD) approximation. Two scenarios are presented: the distance matrix 
derived from intra-chromosomal contacts of chromosome 1 at 1Mb resolution (top panel) 
and the distance matrix derived from inter-chromosomal contacts of the whole genome 
at 10Mb resolution (bottom panel). The line plots show the cumulative explanation ratio 
as a function of the number of top singular values used in the approximation. The 
heatmaps display the original distance matrices and their corresponding approximations 
based on the top 5 singular values and singular vectors, with higher correlations between 
the original and approximated matrices indicating better low-rank approximations. 

Our results highlight the fundamental differences in the variability of intra-

chromosomal and inter-chromosomal chromatin organization across cells within the 

same cell type. While intra-chromosomal chromatin can be well represented by a 

consensus 3D structure, inter-chromosomal chromatin exhibits a higher degree of 

complexity and variability that cannot be captured by a single structure due to the highly 

dynamic nature of interactions across cells. This finding suggests that the cell-to-cell 

variability in inter-chromosomal interactions is a crucial factor to consider when studying 

chromatin organization at this scale. Furthermore, our analysis indicates that inter-

chromosomal interaction frequencies derived from Hi-C data are biased and noisy at high 

resolution. Unbiased experiments, such as SPRITE, can serve as a reference to remove 

these biases and provide a more accurate representation of inter-chromosomal 

interactions. This observation highlights the importance of integrating multiple 

experimental techniques to overcome the limitations of individual methods and obtain a 

more comprehensive understanding of chromatin organization. The findings of this study 

have significant implications for the development of computational methods aimed at 

modeling 3D chromatin structures based on bulk-tissue Hi-C data. While it is feasible to 

build models that reconstruct the consensus structure of single chromosomes within the 

same cell type, our results suggest that using a single consensus 3D structure to 
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represent inter-chromosomal chromatin organization based on bulk Hi-C data may be 

inadequate. The higher-rank nature of the inter-chromosomal distance matrix indicates 

the presence of substantial cell-to-cell variability, emphasizing the need for more 

advanced methods that can capture the complexity of inter-chromosomal interactions 

instead of relying on single consensus structures. 

In conclusion, our study reveals the inherent differences in the variability of intra-

chromosomal and inter-chromosomal chromatin organization across cells within the 

same cell type. These findings underscore the importance of considering cell-to-cell 

variability when investigating inter-chromosomal interactions and highlight the need for 

integrating multiple experimental techniques to remove biases and obtain a more 

accurate representation of chromatin organization. Moreover, our results have significant 

implications for the development of computational methods, emphasizing the need for 

advanced approaches that can capture the complexity and variability of inter-

chromosomal interactions beyond single consensus structures. These insights contribute 

to a deeper understanding of chromatin organization and provide valuable guidance for 

future research in this field. 

4.3.3 Diploid-specific variability of chromatin coupled with diverse sources of  

biological factors  

Bulk Hi-C provides a cell-type-specific average representation of chromatin interactions 

from millions of diploid cells, each containing 46 chromosomes (23 maternal and 23 

paternal alleles)198. Even within the same cell type or tissue, differences in cell age and 

allelic variation can result in different chromatin organizations. The rapid development of 

single-cell Hi-C (scHi-C) techniques has enabled the analysis of chromatin interactions at 

the single-cell level, providing the potential to investigate cell-to-cell intra-chromosomal 

chromatin variability30–40. However, compared to bulk Hi-C, scHi-C suffers from more 

missing data due to the extremely limited read depths, leading to lower resolution and 

increased challenges for analysis tools. Dip-C, an advanced scHi-C technique, generates 

a higher number of contacts with minimal false positives34. By detecting unique single-

nucleotide polymorphisms (SNPs) based on paternal and maternal genomes, Dip-C 

distinguishes reads between the two haplotypes of each chromosome, allowing for the 

construction of diploid scHi-C maps. Additionally, Dip-C employs an algorithm to impute 
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the two chromosome haplotypes using reads without unique SNPs, assuming that the 

two homologs typically contact different partners34. This makes Dip-C a valuable resource 

for analyzing both cell-to-cell and allele-to-allele variability in chromatin organization. To 

quantify variability using the imputed diploid scHi-C maps from 17 GM12878 cells 

generated by Dip-C at 1Mb resolution34, we calculated Spearman correlations, with lower 

correlations indicating higher variability. We computed paternal-paternal and maternal-

maternal correlations across cells to represent cell-specific variability, and paternal-

maternal correlations within the same cell to represent allele-specific variability. Moreover, 

paternal-maternal correlations from different cells were calculated to represent overall 

variability, which is a combination of cell-specific and allele-specific variability. Our 

analysis revealed that paternal-maternal correlations within the same cell were 

consistently lower than paternal-paternal and maternal-maternal correlations across cells 

(Figure 4.4 A). This finding indicates that allele-specific variability in chromatin 

organization is higher than cell-specific variability, suggesting that differences between 

homologous chromosomes within a cell are more pronounced than differences between 

the same chromosome across cells of the same type based on the imputed diploid Hi-C 

maps. 

However, the conclusion drawn from the imputed diploid Hi-C data may be 

influenced by the biased assumption of the imputation algorithm. The imputed diploid Hi-

C is based on the assumption that the two homologs typically contact different partners, 

which assigns reads with unknown haplotypes to different alleles by maximizing the 

difference between paternal and maternal alleles within a single cell. To address this 

potential bias, we re-examined the mapped reads within the homologous chromosomes 

without imputation (Figure 4.4 B). Our analysis revealed that the majority of reads 

(87.61%) do not harbor any unique SNPs, allowing us to determine the chromosome of 

origin but not the specific allele. Only 11.79% of reads are one-phased, meaning that one 

fragment of the read harbors unique SNPs that can determine the allele of origin for that 

fragment, while the allele of the other fragment remains unknown. The remaining 0.6% of 

reads are two-phased, indicating that both fragments of the read harbor unique SNPs, 

enabling us to determine the allele of origin for both fragments. Interestingly, among the 

two-phased reads, only 1.17% are inter-chromosomal contacts (Figure 4.4 B), which we 
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refer to as two-homolog reads. This finding suggests that the majority of contacts are 

intra-chromosomal. Therefore, although the specific allele of the other fragment in one-

phased reads is unknown, we can reasonably impute them as originating from the same 

allele, considering them as intra-chromosomal contacts. Based on this rationale, we 

constructed single-cell diploid intra-chromosomal Hi-C maps using only one-phased 

reads without any biased imputation. 

To account for the important confounding factor of genomic distance, we applied 

BandNorm195 to normalize the single-cell diploid intra-chromosomal Hi-C maps and 

repeated the correlation analysis. After normalization, the previously observed 

significantly and consistently lower correlations for paternal-maternal comparisons within 

the same cell disappeared (Figure 4.4 C). Interestingly, the correlations for paternal-

maternal comparisons within the same cell were slightly higher than the paternal-paternal 

and maternal-maternal correlations across cells, but the differences were not significant. 

These results demonstrate that the relationship between allele-specific variability and cell-

specific variability is complex and requires further investigation. 

To gain deeper insights, we utilized additional Dip-C data from mouse cells. We 

generated embeddings for each allele of the chromosomes and visualized them across 

cells using UMAP for each chromosome separately. In the resulting visualizations, each 

dot represents either the paternal or maternal allele of a specific chromosome in a single 

cell (Figure 4.4 D). The colors of the dots in different subfigures were based on different 

tissues, sexes, alleles, and cell ages, respectively. Our analysis revealed clearly distinct 

patterns between different tissues, sexes, and cell ages. Interestingly, the differences 

between alleles were not significant in chromosome 1 to chromosome 22. However, 

chromosome X showed significant differences, which were mainly attributed to the 

differences in sex. These observations suggest that the overall differences in chromatin 

organization across cells arise from multiple levels of variability, including tissue-level, 

cell-age-level, cell-level, and allele-level variability. 
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Figure 4.4. Diploid single-cell-specific variability of chromatin based on Dip-C. (A) 
Spearman correlation between two alleles under four scenarios in different chromosomes  
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Figure 4.4 (cont’d) 

based on imputed Dip-C data. The boxplots show the distribution of correlations for each 
scenario: (1) paternal and maternal alleles within the same cell (red boxes), (2) paternal 
alleles between different cells (blue boxes), (3) maternal alleles between different cells 
(purple boxes), and (4) paternal allele and maternal allele in two different cells (green 
boxes). Higher correlations indicate greater similarity in chromatin organization between 
the compared alleles. (B) Counts of mapped reads from Dip-C experiments. The bar plot 
shows the number of reads in different categories, including all reads (red), one-phased 
reads (green), and two-phased reads (blue), and two-homologous reads (purple). (C) 
Spearman correlation between two alleles under four scenarios in different chromosomes 
based on one-phased reads from Dip-C data without imputation. The boxplots follow the 
same color scheme as in panel (A). (D) UMAP embeddings of mouse cells based on one-
phased reads from normalized Dip-C data without imputation. The UMAPs are shown for 
different chromosomes separately, with each dot representing one allele of a specific 
chromosome. The colors of the dots represent different tissues, sexes, alleles, and cell 
ages, allowing for the visualization of cell-to-cell variability in chromatin organization 
across various biological factors. 

These findings underscore the importance of considering various sources of 

variability when analyzing cell-to-cell chromatin organization. Making biased assumptions, 

such as assuming that the two homologs typically contact different partners, can lead to 

misinterpretations of the data. By utilizing normalized single-cell diploid intra-

chromosomal Hi-C maps and employing unbiased analysis methods, we can gain a more 

accurate understanding of the complex interplay between different levels of variability in 

chromatin organization. 

4.3.4 Ordered hierarchy of structural variability guiding 3D chromatin analyses 

under different contexts  

To further investigate the relative contributions of tissue-level, cell-age-level, cell-level, 

and allele-level variability, we developed sampling methods based on the generated 

embeddings. By controlling for confounding factors, the sampling-based approach allows 

for a more rigorous and unbiased comparison of different levels of variability in chromatin 

organization. 

First, to compare tissue-level and age-level chromatin variability, we focused on 

male cells from the Dip-C dataset, including main olfactory epithelium (MOE) cells at 

postnatal day 28 (P28), and retina cells at P28 and P7. For each chromosome, we 

randomly sampled one allele from a retina cell at P28, one allele from a retina cell at P7, 
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and one allele from an MOE cell at P28. To control for confounding factors arising from 

different alleles, all three sampled alleles were either paternal or maternal. We then 

calculated Euclidean distances based on the embeddings to determine the age-level 

distance (i.e., the distance between retina cells at P28 and P7) and the tissue-level 

distance (i.e., the distance between retina and MOE cells at P28) (Figure 4.5 A). The 

distances were normalized based on age-level distance to remove sampling bias. We 

repeated the sampling process 1,000 times for each chromosome and found that the 

normalized tissue-level distance was significantly larger than the age-level distance 

across all chromosomes (Figure 4.5 B). This result indicates that tissue-level variability 

in chromatin organization is higher than age-level variability across different cells. 

Next, we compared age-level and cell-level chromatin variability using male retina 

cells from different cell ages, including P7, P28, and P56. Similarly, we randomly sampled 

one allele from cells at P28 and P56, and two alleles from cells at P7, while controlling for 

the allele origin (either paternal or maternal) to ensure a fair comparison. Euclidean 

distances were then calculated based on the embeddings to determine the age-level 

distances (i.e., the distance between P7 and P28, and the distance between P7 and P56) 

and the cell-level distance (i.e., the distance between two cells at P7) (Figure 4.5 C). To 

remove sampling bias, the distances were normalized based on the cell-level distance. 

We repeated the sampling process 1,000 times for each chromosome and found that the 

normalized age-level distance was significantly larger than the cell-level distance across 

all chromosomes (Figure 4.5 D). Interestingly, the magnitude of the difference in age-

level distance increased with the age difference between the compared developmental 

stages (Figure 4.5 D). This result suggests that age-level variability in chromatin 

organization is more pronounced than cell-level variability across different cells, and that 

the extent of this difference is related to the magnitude of the age difference. 

Finally, we investigated cell-level variability and allele-level variability using female 

MOE cells at P7 to control for tissue-level and age-level variabilities. For each 

chromosome, we randomly sampled both paternal and maternal alleles from two cells 

separately. Euclidean distances were then calculated based on the embeddings to 

determine the cell-level distance (i.e., the distance between maternal alleles from two 

cells), the allele-level distance (i.e., the distance between maternal and paternal alleles 
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from the same cell), and the overall distance (i.e., the distance between the maternal 

allele of one cell and the paternal allele from another cell) (Figure 4.5 E). To remove 

sampling bias, the distances were normalized based on the allele-level distance. We 

repeated the sampling process 1,000 times for each chromosome and found that the 

normalized cell-level distance was significantly larger than the allele-level distance for 

chromosomes 1 through 22 (Figure 4.5 E). This result suggests that cell-to-cell 

differences contribute more to the overall variability in chromatin organization than allele-

specific differences within individual cells for these chromosomes. Interestingly, 

chromosome X exhibited a contrasting pattern, with the allele-level distance being 

significantly larger than the cell-level distance (Figure 4.5 F). This observation indicates 

that, for chromosome X, allele-specific differences in chromatin organization are more 

pronounced than cell-to-cell differences. The distinct behavior of chromosome X 

compared to the autosomes highlights the unique regulatory mechanisms and 

evolutionary pressures associated with this sex chromosome. The larger allele-level 

distance in chromosome X suggests that the maternal and paternal copies of this 

chromosome may be subject to different regulatory environments or epigenetic 

modifications, leading to more pronounced differences in their chromatin organization. 



 95 

 

Figure 4.5. Ordered hierarchy of structural variability guiding 3D chromatin analyses 
under different contexts. (A-B) Comparison of tissue-level and cell-age-level variability.  
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Figure 4.5 (cont’d) 

(A) Schematic figure illustrating the sampling strategy from embedding spaces. The 
tissue-level distance and age-level distance were calculated based on embeddings and 
normalized. (B) Boxplots showing the distribution of normalized tissue-level distances 
across different chromosomes. Higher values indicate greater tissue-level variability 
compared to age-level variability. (C-D) Comparison of cell-age-level and cell-level 
variability. (C) Schematic figure illustrating the sampling strategy from embedding spaces. 
The age-level distance and cell-level distance were calculated based on embeddings and 
normalized. (D) Boxplots showing the distribution of normalized age-level distances 
across different chromosomes, including age-level distances over 28 days (red) and 49 
days (blue). Higher values indicate greater age-level variability compared to cell-level 
variability. (E-F) Comparison of cell-level and allele-level variability. (E) Schematic figure 
illustrating the sampling strategy from embedding spaces. The cell-level distance and 
allele-level distance were calculated based on embeddings and normalized. (F) Boxplots 
showing the distribution of normalized cell-level distances across different chromosomes. 
Higher values indicate greater cell-level variability compared to allele-level variability. 

Our analysis of single-cell Hi-C data reveals the relative contributions of different 

sources of variability in chromatin organization. We found that tissue-level variability is 

more pronounced than age-level variability, indicating that cell type identity plays a crucial 

role in shaping chromatin structure. Additionally, age-level variability is more significant 

than cell-level variability, suggesting that developmental changes have a greater impact 

on chromatin organization than cell-to-cell differences within a specific age group. 

Furthermore, cell-level variability is generally more pronounced than allele-level variability 

for autosomes, while chromosome X exhibits a contrasting pattern with larger allele-level 

variability. These findings highlight the importance of considering the ordered hierarchy 

of cell type-specific factors, developmental dynamics, and allele-specific differences 

when studying chromatin structure and its relationship to gene regulation and cellular 

function. For autosomes, the variability order is as follows: tissue-level > age-level > 

individual cell-level > allele-level. In contrast, chromosome X exhibits a different order: 

tissue-level > age-level > allele-level > individual cell-level. These variability orders have 

important implications for modeling and analyzing chromatin structures at different levels 

of inquiry. When investigating chromatin organization at a specific level, variability 

sources lower in the hierarchy can be considered less influential and potentially ignored, 

while variability sources higher in the hierarchy should be carefully accounted for in the 

analysis. 
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For example, when studying chromatin structure at the tissue level, age-related 

changes, individual cell-to-cell differences, and allele-specific variations may have a 

smaller impact on the overall organization and could be treated as less significant factors. 

However, when investigating chromatin organization at the allelic level, it is crucial to 

consider the effects of tissue-specific factors, developmental dynamics, and cell-to-cell 

differences, as these sources of variability rank higher in the hierarchy and can 

substantially influence the observed chromatin structure. In conclusion, the insights of 

variability orders provide a valuable framework for future studies aimed at unraveling the 

complex interplay between chromatin organization, gene expression, and cellular identity. 
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DISCUSSION AND FUTURE DIRECTIONS 

Deciphering the effects of non-coding genetic variants is critical for understanding human 

diseases. With the knowledge gained from cell type-specific 3D chromatin organization, 

researchers have developed numerous machine learning methods to boost the prediction 

of causal genetic variants associated with corresponding phenotypes, including cancers, 

compared to traditional statistical methods. In this thesis, we developed APRIL to 

leverage long-range chromatin regulatory networks for discovering disease-associated 

genes, demonstrating the vast potential and interpretability of understanding underlying 

mechanisms through chromatin regulation networks. We also developed 3DVariantVision 

to provide a comprehensive understanding of genetic variants based on 3D chromatin 

information, including eQTL prediction, local and 3D effect discovery, and even insights 

into disease associations. Additionally, we provided a comprehensive analysis of the 

multi-level variability in multi-scale 3D chromatin organization, offering valuable insights 

into the complex interplay between cell type-specific factors, developmental dynamics, 

and allele-specific differences, which can guide future experimental designs and 

computational method development in the field of 3D chromatin organization. 

Building upon these contributions, we propose the following future research 

directions: 1) Novel 3D chromatin structure reconstruction methods: Leveraging our 

comprehensive analysis of multi-level variability in multi-scale 3D chromatin organization, 

we aim to develop novel methods for reconstructing 3D chromatin structures that provide 

a more comprehensive chromatin network for long-range interactions. 2) Graph Neural 

Networks for disease-associated gene discovery: APRIL has demonstrated the 

importance of chromatin regulatory networks in discovering disease-associated genes. 

With the comprehensive chromatin network for long-range interactions reconstructed 

using our proposed methods, advanced techniques such as Graph Neural Networks can 

be applied to further investigate signals within the network, including disease-associated 

genes and GWAS hits. 3) Comprehensive modeling of genome-wide chromatin regulation 

networks: 3DVariantVision is a pioneering framework for comprehensive understanding 

of genetic variants based on 3D chromatin. However, it currently focuses on one-to-one 
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interactions (enhancer-promoter interactions) without considering the overall view of 

chromatin regulation. In the future, we plan to model the entire genome-wide chromatin 

regulation network to capture more complex and comprehensive underlying mechanisms. 

4) Integration of Foundation Models for DNA sequences: With the rapid development of 

AI techniques, including Foundation Models for DNA sequences76–79, we can further 

utilize the embeddings directly from these models to enhance the performance and 

interpretability of our entire framework. 

By pursuing these future research directions, we aim to deepen our understanding 

of the complex relationships between genetic variants, 3D chromatin organization, and 

human diseases. The integration of advanced computational methods, such as Graph 

Neural Networks and Foundation Models, with the knowledge gained from our 

comprehensive analyses will pave the way for more accurate predictions and mechanistic 

insights, ultimately contributing to the development of precision medicine and improved 

clinical care.  
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APPENDIX A  

SUPPLEMENTARY FIGURES FOR CHAPTER 2 

 

 

Figure A. 1. Summary of Immune-associated phenotypes to filter GWAS SNPs and 
disease-associated genes.   



 116 

 

Figure A. 2. Constructed regulatory sub-networks using K562 ChIA-PET dataset. (A) 
Distance distribution of long-range chromatin interactions in K562. (B-E) Examples of 
regulatory sub-networks based on K562 ChIA-PET data. Nodes are annotated as 
expressed promoters (red), active enhancers (orange), other elements (blue), and TF 
nodes (purple).   
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Figure A. 3. Determination of the number of clusters of 3D chromatin modules using (A) 
elbow methods and (B) averaged degree of the expanded regulatory sub-networks. The 
tested number of clusters of 3D chromatin module range from 0 to 450. The hierarchical 
clustering tree is cut with different numbers of clusters. (A) Within cluster Sum of Squares 
(WSS) is calculated for each cluster assignment to find an optimal number of lusters. (B) 
Expanded regulatory sub-networks are constructed based on different clustering 
assignments, and the averaged diameter are calculated across all regulatory sub-
networks to indicate the selection on the number of clusters. The selected number of 
clusters is highlighted as red dot.   
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Figure A. 4. eQTLs in neighboring nodes of disease-associated genes in regulatory sub-
networks. Disease-associated genes are annotated by known disease-gene associations 
from DisGeNet. The significant GTEx eQTLs are overlaid with the sub-networks. Only 
eQTLs contained by the neighboring nodes of genes are considered. Box-plot shows the 
number of significant GTEx eQTLs contained by the neighboring nodes (Y axis) of each 
disease-associated gene and non-disease-associated gene (X axis). P-value is 
calculated based on one-sided Student's’ t-test.  
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Figure A. 5. Performance of disease-associated gene prediction using APRIL regulatory 
sub-networks based on label propagation using different sets of features. Graph features 
and TF features show important role in prediction. (A) Compare the performance of using 
only graph features and without graph features; (B) Compare the performance of using 
only TF features and without TF features; (C) Compare the performance of using only 
GWAS effect features and without GWAS effect features; (D) Compare the performance 
of using only activity features and without activity features.  
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Figure A. 6. Bar-plot of feature importance for Top 50 features in the random forest model. 
Graph features have highest importance among all features. The GWAS effect sizes of 
neighboring nodes, gene activity, and specific neighboring TF nodes also have high 
feature importance.  
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Figure A. 7. Example of newly discovered disease-associated gene TBKBP1. TBKBP1 
has high expression in whole blood among 53 different tissues from GTEx. Besides, 
TBKBP1 has KLF16, ETV6, NFIC, NR2F1 and NR2F6 motifs validated by ChIP-seq data. 
Also, the neighboring enhancer linked to TBKBP1 in the APRIL sub-networks contains 2 
significant GTEx eQTLs (P=3.2e-16, P=3.9e-19).  
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APPENDIX B  

SUPPLEMENTARY FIGURES FOR CHAPTER 3 

 

 

Figure B. 1. Overview of 3-stage 3DVariantVision. Stage 1 (left) uses representation 
learning to generate sequence embedding using CNN by predicting epigenomic peaks 
including TF bindings, histone modifications, DNase peaks. Stage 2 (middle) transfers 
the learned sequence embedding from stage 1 to generate communication maps (joint 
features) of enhancer-promoter pairs using communicative learning by predicting 
enhancer-promoter interactions. Stage 3 (right) transfers the learned communicative 
model to generated communication maps of the reference genome and alternative 
genome of SNPs. The random forest model is used to predict eQTLs based on the 
communication maps. 
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Figure B. 2. Examples of predicted eQTLs based on 3DVariantVision in whole blood 
tissue. (A) eQTL rs79259450 is supported by Geuvadis with p-value = 3.7x10-11; (B) 
eQTL rs813000 is supported by Battle with p-value = 5.0x10-37. Both predicted eQTLs 
are supported by Capture-C chromatin interactions. The right panel shows the predicted 
TF binding effects and chromatin interaction effects of the corresponding SNPs, which 
were calculated by the differences of scores between the alternative allele and the 
reference allele normalized by dividing the reference scores. 
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Figure B. 3. AUPR comparison of epigenomic peak predictions between 3DVariantVision 
and DeepSEA based on (A) TF binding sites, and (B) Histone modification peaks. Each 
point represents one epigenomic peak and x, y-axis represent the AUPR of DeepSEA 
and 3DVariantVision, respectively. 
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Figure B. 4. Odds ratio comparison of chromatin interaction predictions between 
3DVariantVision and ProTECT using shuffled enhancer-promoter pairs based on 
Capture-C. The higher odds ratio of 3DVariantVision demonstrates the ability to capture 
the joint features between enhancer and promoter. 
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Figure B. 5. Examples of predicted long-range enhancer-promoter interactions based on 
3DVariantVision in GM12878 cell line. (A-B) The newly discovered EPI missed by 
Capture-C is validated by Hi-C. 
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Figure B. 6. ROC of eQTL prediction based on chromatin interaction changes and 
3DVariantVision on SuSIE fine-mapped eQTL dataset. 
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Figure B. 7. Enrichment of TF combinations prioritized by 3DVariantVision in enhancer-
promoter interactions from Capture-C. The enrichment of each TF combination was 
quantified by the z-scores of the occurrences in top-weighted tiny region pairs of 
enhancer-promoter interactions against random tiny region pairs. 



 129 

 

Figure B. 8. Effect direction consistency of eQTLs with different TF bindings. The effect 
direction consistency is calculated by the fraction of consistency between the effect size 
direction of top effect eQTLs and the direction of the corresponding chromatin changing 
from 3DVariantVision. (A) and (B) show several represented examples of positive and 
negative consistent TF binding eQTL groups, respectively. 
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Figure B. 9. Performance of identifying target genes of eQTLs from background protein-
coding genes. Four fine-mapped eQTL datasets were used to plot the ROC curves. 
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Figure B. 10. Examples of prioritizing target genes of TWAS SNPs based on 
3DVariantVision. (A) and (B) is the examples of TC and TG trait associations, respectively. 
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SUPPLEMENTARY FIGURES FOR CHAPTER 4 

 

 

Figure C. 1. Hi-C contact frequencies at different genomic distance bands after removing 
missing data. The contacts tend to be binary values at long genomic distance bands 
(>5Mb). 
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Figure C. 2. The effect of read depth on the reproducibility of Hi-C contact maps across 
different genomic distance bands and resolutions. Hi-C data from the GM12878 cell line 
was downsampled to different read depths, ranging from 80% to 1% of the original read 
depth. Spearman correlation coefficients were calculated between the downsampled and 
original Hi-C contact maps for each resolution and genomic distance band. Each 
subfigure shows the correlation curves for a specific resolution, with different colors 
representing different genomic distance bands. The blue dashed line indicates a 
correlation threshold of 0.85, and the blue shaded regions in each subfigure highlight the 
downsampling rate range between 30% and 10% where the correlation is above the 
threshold. The red dashed lines in the subfigures for 100kb and 50kb resolution 
demonstrate the different downsampling rates required to maintain the same correlation 
across different genomic distance bands. 
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Figure C. 3. Scatter plot showing the relationship between inter-chromosomal interaction 
frequencies measured by Hi-C and SPRITE at 1Mb resolution (A) and 10Mb resolution 
(B). Each point represents a pair of genomic bins from different chromosomes. The 
highlighted regions in (B) correspond to genomic bins located close to the centromeres.  
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Figure C. 4. Approximation of intra-chromosomal and inter-chromosomal observed 
distance matrices using singular value decomposition (SVD). (A) Explanation ratios of the 
observed distance matrices for intra-chromosomal (red) and inter-chromosomal (blue) 
contacts using different numbers of top singular values. (B) Pearson correlation (left panel) 
and Spearman correlation (right panel) between the observed distance matrices and the 
approximated distance matrices using different numbers of top singular values and 
corresponding singular vectors for intra-chromosomal (red) and inter-chromosomal (blue) 
contacts.  
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