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ABSTRACT

The human body is an incredibly complex system that researchers have studied for decades to

uncover its secrets. Genetic, transcriptomic, and epigenetic data each offer unique insights into

its functioning. Recent technological advancements have enabled the generation of vast amounts

of high-quality biological data, creating unprecedented opportunities to explore molecular mech-

anisms underlying health and disease. Analyzing these diverse datasets is crucial for developing

targeted therapies, personalized medicine, and advancing our understanding of biology. Build-

ing advanced statistical and computational models to handle these complex datasets is now more

important than ever for translating biological information into actionable insights and driving

breakthroughs in medical research and treatment strategies.

In this dissertation, I first developed BayesKAT, a kernel-based testing methodology for as-

sessing the association between user-defined groups of SNPs or genes and a phenotype of interest

(Chapter 2). Unlike existing kernel-based tests that use predefined single or average kernels and

often yield ambiguous results, this algorithm adaptively selects the optimal composite kernel using

a Gaussian process model within a Bayesian framework, providing more interpretable outcomes.

Next, I explored the emerging field of spatial transcriptomics, where similar Gaussian process

models and kernel-based testing have significant potential. To complement the recent surge in spa-

tial transcriptomics research, Chapter 3 presents a comprehensive literature review of significant

methodologies, particularly for spatial gene detection, which is a crucial step in spatial transcrip-

tomics data analysis. This review provides an overview of the current state of research in the

field.

In Chapter 4, I extended the kernel-based testing procedure to address challenges in spatial

transcriptomic data. The newly developed algorithm, cSVG, not only detects spatially variable

genes, but also improves spatial domain detection accuracy and addresses additional problems in

this field.

Finally, to tackle the scarcity of crucial TF binding information for many transcription factors

(TFs) across various cell types, I developed a computational model, 3D-TF-IMPUTE (Chapter



5). This model predicts TF binding sites by utilizing readily available epigenetic datasets and

leveraging the three-dimensional structure of the genome in an unsupervised manner, efficiently

predicting TF binding sites essential for understanding the functional genome.

By tackling key challenges in the analysis of genetic, transcriptomic, and epigenetic data, this

dissertation makes significant contributions to the field. It provides powerful tools for researchers

to better understand the molecular underpinnings of health and disease, paving the way for future

breakthroughs in biomedical research.
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CHAPTER 1

INTRODUCTION

In contemporary biomedical research, the analysis of diverse biological datasets has emerged as

a cornerstone in deciphering the intricate mechanisms of human diseases. Within the human

body, comprised of trillions of cells, each cell type is specialized to execute distinct functions.

At the core of cellular function lies the flow of genetic information, wherein DNA within the

nucleus undergoes transcription into RNA, subsequently translated into proteins pivotal for various

biological processes.

Throughout this transcription and translation cascade, distinct types of data are collected at

each stage. Beginning with genome sequencing data extracted from DNA, researchers scrutinize

variations such as single nucleotide polymorphisms (SNPs) to discern associations with diseases or

phenotypic traits. Transitioning to transcriptomic data, derived from the second stage, unveils the

remarkable diversity in gene expression among cells, despite harboring identical DNA sequences.

Gene expression data analysis plays a crucial role in biomedical research by providing insights into

the activity levels of genes within cells or tissues. Gene expression profiling can identify genes

whose expression levels correlate with specific disease states or physiological conditions. These

genes can serve as biomarkers for disease diagnosis, prognosis, and treatment response prediction.

In addition to genetic and transcriptomic datasets, epigenetic data play a pivotal role in un-

derstanding functional regulation. Epigenetic modifications, including DNA methylation, histone

modifications, and transcription factor (TF) binding, orchestrate changes in gene expression crucial

for the specialized functions of diverse cell types within various organs. These chemical modi-

fications to DNA and associated proteins exert profound effects on gene expression, influencing

cellular phenotypes and contributing to the complexity of human diseases.

Understanding the molecular underpinnings of human diseases requires comprehensive anal-

ysis of genetic, transcriptomic, and epigenetic datasets. This thesis addresses key challenges

associated with these three types of datasets by developing advanced statistical and computational

methodologies.
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Genome-wide association studies (GWAS) have been instrumental over the past two decades

in identifying millions of disease-associated single nucleotide polymorphisms (SNPs). However,

many complex diseases and phenotypes are influenced by multiple genetic variants, where individ-

ual SNPs may only have a weak linear association with the phenotype. These SNPs can collectively

contribute to the phenotype through their involvement in crucial biological processes or pathways.

The problem of evaluating the strength of association between user-defined SNP groups and spe-

cific phenotypes or diseases is often addressed by semiparametric models and kernel-based tests.

However, existing kernel-based testing methods rely on pre-specified single or average kernels,

which can sometimes lead to inconsistent or ambiguous results. Chapter 2 introduces BayesKAT,

a Bayesian optimal kernel-based test that adaptively selects the optimal composite kernel using a

Gaussian process model within a Bayesian framework, providing more interpretable results. This

algorithm is applicable not only to SNP-groups but also to sets of genes, whether user-specified or

from genome-wide biologically important pathways. Based on a series of performance compar-

isons using both simulated and real large-scale genetics data, BayesKAT outperforms the available

methods in detecting complex group-level associations.

Recent advancements in spatial transcriptomic technology have transformed the field of gene

expression analysis, sparking a surge in research over the past few years. Given the extensive

research in this field, Chapter 3 offers a detailed literature review, particularly on techniques for

detecting spatially variable genes (SVGs), which is a crucial initial step in spatial transcriptomic data

analysis. While various methods have been proposed for SVG detection, the significance of these

genes lies in their contribution to downstream analyses, particularly in tasks like spatial domain

detection. Conventional approaches typically rely on using all or a predetermined number of top-

ranked SVGs for spatial domain detection. However, in datasets characterized by high diversity

and a large number of SVGs, this strategy may not ensure accurate spatial domain detection or

subsequent downstream analyses. Alternatively, grouping SVGs based on their expression patterns

and leveraging all SVG groups in the downstream analysis can enhance accuracy, as seen in many

examples. Furthermore, classifying SVGs in this manner is akin to identifying cell type marker
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genes, offering valuable biological insights. The challenge lies in accurately categorizing SVGs

into relevant clusters, aggravated by the absence of ground truth and prior knowledge regarding the

number and spectrum of spatial expression patterns exhibited by genes. Addressing this challenge,

Chapter 4 introduces cSVG, a framework that begins with SVG detection and proceeds to precisely

classify SVGs based on their spatial patterns by adjusting for confounding effects caused by shared

cell types. Notably, this method eliminates the need for prior knowledge of gene cluster numbers,

distinct spatial patterns, or cell type information. Through comprehensive simulation studies and

real data analyses, this approach demonstrates considerable efficiency and holds promise as a potent

tool in spatial transcriptomics analysis.

Transcription factors (TFs) are essential in the biological system as they are key regulators of

gene expression. By binding to specific parts of DNA, TFs can activate or repress the transcription

of target genes, thereby controlling the flow of genetic information from DNA to mRNA. TFs

orchestrate complex gene networks, ensuring that genes are expressed at the right time, place, and

levels, which is vital for maintaining cellular function. Understanding TF binding sites and their

regulatory mechanisms is fundamental for insights into health, disease, and potential therapeutic

interventions. Epigenetic data analysis often faces the challenge of unavailable or poor-quality

TF binding data across various cell types and species. Accurately predicting TF binding sites

remains a significant hurdle. Existing methods for predicting TF binding sites are typically based

on supervised models, which involve computationally intensive preprocessing and training steps,

and require various types of input data that may not be available for many cell types and species.

Moreover, these methods overlook the three-dimensional structure of the genome, which holds

valuable insights into underlying processes. To tackle these limitations, Chapter 5 presents a

pioneering computational model, 3D-TF-IMPUTE. This method predicts TF binding sites for

various TFs by leveraging the three-dimensional DNA structure, requiring only motif information

and chromatin accessibility data for unsupervised prediction of TF binding sites.

This thesis addresses critical challenges in the analysis of genetic, transcriptomic, and epigenetic

data, paving the way for a deeper understanding of disease biology and potential therapeutic
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interventions.
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CHAPTER 2

BAYESKAT: BAYESIAN OPTIMAL KERNEL-BASED TEST FOR GENETIC
ASSOCIATION STUDIES REVEAL JOINT GENETIC EFFECTS IN COMPLEX

DISEASES

A modified version of part of this chapter was previously published in Briefings in Bioinformatics

journal by Oxford University Press:

Sikta Das Adhikari, Yuehua Cui, Jianrong Wang, BayesKAT: bayesian optimal kernel-based test

for genetic association studies reveals joint genetic effects in complex diseases, Briefings in Bioin-

formatics, Volume 25, Issue 3, May 2024, bbae182, https://doi.org/10.1093/bib/bbae182

2.1 Introduction

Deciphering the genetic basis of complex traits, such as the Alzheimer’s disease, plays pivotal

roles in functional genomics and precision medicine [1],[2]. Based on the advancement in high-

throughput sequencing techniques, specific associated genetic variants, e.g., single-nucleotide

polymorphisms (SNPs), have been identified for a large panel of phenotypes using Genome-wide

Association Studies (GWAS) [3]. However, traditional GWAS approaches treat SNPs independently

and can only discover individual SNPs that have strong marginal statistical associations with the

phenotype of interest. It is well documented that many complex diseases and phenotypes are often

associated with multiple genetic variants [4], [5], [6], [7] where an individual variant itself might

be weakly associated with the phenotype. In contrast, groups of such SNPs may jointly contribute

to the phenotype, potentially mediated via their cooperative participation in important biological

processes or pathways [8], [9]. Therefore, the traditional GWAS framework of testing individual

SNPs separately without considering the correlation structures and the potential interactions among

SNPs may not capture the group-wise joint SNP effects. Separate testings of SNP associations by

traditional GWAS approaches are also limited to reveal the underlying biological mechanisms of

complex phenotypes. Alternative approaches based on multivariate regression significantly suffer

from the large degrees of freedom in genome-wide association tests and can substantially lose the

statistical power [10].
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To overcome this critical challenge, kernel-based testing (KBT) framework has been introduced

to test group-wise joint SNP effects [10], [11], [12], [13], [14], [15], [16]. By incorporating a

kernel function to measure the similarity among genetic variants and compare with the phenotype

similarities, the KBT framework simultaneously models the joint effects of multiple genetic variants.

Wu et al. 2011 [12] first proposed the widely-used sequence kernel association test (SKAT) model to

test rare-variant associations. As a supervised, versatile and computationally streamlined regression

approach, SKAT accesses the associations between genetic variants within a specific region and the

trait. As the outputs from the SKAT model, p-values of the statistical associations are generated,

facilitating straightforward interpretations of the findings. An R package [17] has been developed

for implementing different kinds of kernel-based testing models, including SKAT.

To enable novel discoveries of the genetic basis underlying complex diseases, maximizing

statistical power in genome-wide association tests while effectively controlling type 1 errors is

strongly desired. Under the KBT framework, statistical power heavily depends on the specific

choice of kernel functions [16], [18], [19], [20]. However, the existing KBT models, including

SKAT, require the kernel function to be specified a priori. Because the true functional relationship

between the genetic variants and phenotypes is usually unknown in practice, selecting the ideal

kernel function in advance for the KBT model, one that maximizes statistical power without

increasing the type 1 error rate, poses statistical and computational challenges. One common

approach that has been used is to repeat the KBT procedures based on different choices of kernels

and then select the one resulting in the minimum p-value, which has been discussed by multiple

studies [18], [21]. The major problem of this straightforward approach is the inflated type 1 error.

Although data-dependent permutation or perturbation methods [18] can help ease the problem,

they are not computationally scalable, especially when applied to high-dimensional datasets in

large-scale genomic studies. An alternative approach is to use an equal-weighted average of

multiple candidate kernels to form an averaged composite kernel [18], which performs better

than the worst performing candidate kernel but does not usually achieve the performance of the

optimal kernel function. Tests based on the average kernel approach may lead to inconsistent or
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incorrect conclusions in applications, as we will demonstrate below. He et al. 2018 [21] proposed a

maximum kernel test model based on the U statistic, i.e. the mKU model, which claims to achieve

the statistical power as close as to the best candidate kernel in high-dimensional settings under

certain distributional assumptions. However, the specific distributional assumptions may not hold

in practice and hence lead to inflated p-values, which will also be discussed in this study.

To further illustrate the significance and difficulty of choosing appropriate kernels in genetic

association testings, Figure 2.1A demonstrates an example based on the genotype data for the trait

of whole brain volume collected from the ADNI project for the Alzheimer’s Disease Neuroimaging

Initiative (https://adni.loni.usc.edu/)[22]. The group of genetic variants located in genes belonging

to the caffeine metabolism pathway [23], [24], [25] are included into the kernel-based testing model

to test the hypothesis that whether the caffeine metabolism pathway is associated with the whole

brain volume phenotype. Using different kernel functions, the SKAT model leads to inconsistent

conclusions. For instance, based on Quadratic kernel, the SKAT model rejects the null hypothesis

(p-value<0.05), while the use of Gaussian kernel or IBS kernel does not lead to any rejection of

the null hypothesis Figure 2.1A. On the other hand, using the equal-weighted average composite

kernel, the SKAT model tends to reject the null hypothesis (p-value= 0.047). Since there is no

clear mechanistic link between the caffeine metabolism pathway and whole brain volume, the

rejection of the null hypothesis based on the Quadratic and the average composite kernels is likely

a false discovery. To further quantify this issue, in Figure 2.1B, a cohort of total 500 replicate

synthetic datasets based on the same covariates and genotype data is created, where the phenotype

variables are generated by a Quadratic function ℎ(·). Applying the SKAT test based on different

kernel functions on the synthetic datasets, inconsistent testing results appear to be a persistent

problem. Although the Quadratic kernel function leads to the correct hypothesis testing result

as expected, the average composite kernel usually leads to incorrect conclusions (Figure 2.1B).

As shown in the barplot of Figure 2.1B, using different kernels (Linear, Quadratic, Gaussian and

average composite kernels) across the 500 synthetic datasets, inconsistent results are observed and

the overall fractions of correct testing results are very low. Hence, the inconsistent conclusions
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based on different kernels suggest the fundamental need of developing a systematic data-adaptive

approach of selecting appropriate kernel functions for KBT models in genome-wide association

tests.

Figure 2.1 Overview of the significance and model design for BayesKAT. (A) Real-world example
of association tests with inconsistent results depending on specific kernels. where BayesKAT
offers a more interpretable metric. (B) Based on a synthetic data cohort simulated assuming a true
quadratic function, different kernel functions lead to inconsistent results. Across 500 simulation
replicates, each individual kernel yields inconsistent and ambiguous conclusions (barplot). In
comparison, BayesKAT generates both interpretable and highly consistent results, with
substantially boosted power. (C) Workflow of BayesKAT implementation for diverse types of
genetic association tests to derive biological meaningful interpretations. (D) Model structures and
the inference algorithms for the two BayesKAT strategies: BayesKAT-MCMC (left) and
BayesKAT-MAP (right). BayesKAT-MCMC samples from posterior parameter distributions,
providing a comprehensive view of the posterior parameter distributions. On the other hand,
BayesKAT-MAP provides a more scalable solution, particularly well-suited for high-dimensional
data.
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Figure 2.1 (cont’d)

In this study, we developed a novel Bayesian Kernel-Based Association Testing algorithm,

BayesKAT (https://github.com/wangjr03/BayesKAT). This algorithm effectively tackles the kernel

selection challenge by choosing the optimal kernel in a data-adaptive way and calculating the poste-

rior probability of association by evaluating the joint statistical associations of specific SNP groups

with a complex phenotype. Moreover, compared to existing KBT-based methods, BayesKAT si-

multaneously achieves four goals in genome-wide association tests: (i) superior statistical power,

by selecting the optimal kernel function based on the dataset under study; (ii) consistent results,

by avoiding repeated tests based on a variety of different kernels; (iii) controlled type-1 error,

without relying on unverified distributional assumptions or minimum p-value kernels; and (iv)

strong computational scalability for high-dimensional and large-sample genome-wide data. Two

alternative computational strategies, i.e., MCMC and MAP, are incorporated in BayesKAT, leading

to additional implementation flexibilities for users. Extensively tested on a series of simulated

datasets under different parameter settings, BayesKAT consistently demonstrates superior perfor-

mance against existing methods. Furthermore, applied on the ADNI genotype datasets of the

complex trait of whole brain volume (https://adni.loni.usc.edu), BayesKAT successfully discovered

mechanistically related genes and biological pathways with higher accuracy. Specific genes and
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pathways related with neurodegenerative diseases, as reported by previous studies, are consistently

prioritized by BayesKAT while not prioritized by other methods. Strikingly, BayesKAT is able to

identify group-level SNP effects of novel co-expressed gene modules and protein complexes that

potentially participate in the molecular processes modulating the whole brain volume phenotype.

These algorithmic advantages and new biological discoveries robustly support the statistical in-

novation of BayesKAT and strongly highlight its effectiveness in decoding the genetic basis and

associated molecular mechanisms underlying complex diseases.

2.2 Material and methods

2.2.1 Overview of kernel based testing models for genetic data

Under the kernel machine regression framework, continuous quantitative traits can be associated

to genetic variants or molecular features, along with additional covariates, through a semiparametric

model:

𝑌𝑖 = 𝑋𝑖𝛽 + ℎ(𝑍𝑖) + 𝜖𝑖, 𝑖 = 1, 2, · · · , 𝑛 (2.1)

where 𝑌𝑖 denotes the continuous value of the trait for the 𝑖th person in a sample of size 𝑛; 𝑋𝑖 =

[𝑋𝑖1, 𝑋𝑖2, · · · , 𝑋𝑖𝑘 ] is a set of 𝑘 covariates for the 𝑖th individual that need to be controlled; and

𝛽 = [𝛽1, 𝛽2, · · · , 𝛽𝑘 ] are the corresponding effects of covariates. 𝑍𝑖 = [𝑍𝑖1, 𝑍𝑖2, · · · , 𝑍𝑖𝑝] is the

vector for the 𝑝 genetic variants or molecular features, where 𝑍𝑖 𝑗 denotes the 𝑗 th genetic variant or

molecular level feature for the 𝑖th individual . The unknown errors 𝜖𝑖 are assumed to be independent

and follow 𝑁 (0, 𝜎2), where the value 𝜎2 is also unknown. The most common genetic features

are SNPs and the widely used molecular-level features include gene expressions. The features, i.e.

𝑍. 𝑗 , 𝑗 = 1, 2, · · · , 𝑝 are associated with the trait, i.e. 𝑦, through an arbitrary function ℎ(·) which is

assumed to lie in a function space 𝐻𝐾 generated by a kernel function 𝐾 (·, ·). The supplementary

files provide More discussion about different kernel function types.

It has been shown (see Appendix A) [11] that the kernel machine regression model in equation

(2.1) is equivalent to the following linear mixed model:

𝑌 = 𝑋𝛽 + ℎ + 𝜖 (2.2)
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where 𝛽 ∈ R𝑘 is a vector of effect sizes for covariates 𝑋 ∈ R𝑛×𝑘 , ℎ is an 𝑛 × 1 vector of random

effects which is distributed as ℎ ∼ 𝑁 (0, 𝜏𝐾), where 𝐾 is the 𝑛 × 𝑛 kernel matrix and the error is

distributed as 𝜖 ∼ 𝑁 (0, 𝜎2𝐼), where 𝜎2 is the error variance and 𝜏 is a variance component for the

genetic effect.

The main goal is to test if the genetic variants have any combined effect on the outcome variable

𝑌 . Testing for the presence of group effect of 𝑍 is equivalent to testing the hypothesis 𝐻0 : 𝜏 = 0

vs. 𝐻1 : 𝜏 > 0. Choosing an appropriate kernel is crucial and that topic has been discussed further

in the supplementary files. Most KBT methods, including SKAT, choose the kernel function first

and then perform the testing based on the specified kernel function.

2.2.2 Importance of choosing appropriate Kernel

Although a variety of different kernels are available, for a given dataset, it is practically

impossible to know a priori which kernel will fit the dataset best and maximize the testing power.

Genetic data related to complex phenotypes pose particular challenges, primarily stemming from

our limited understanding of how the interplay among genetic or molecular features influences their

collective association with a phenotype. Therefore, choosing a kernel randomly can lead to a less

powerful testing procedure for genome-wide applications. For example, if the outcome variable𝑌 is

related to the features through a Quadratic function, using a Linear kernel in the model will lead to

weak tests that are not able to reject the null hypothesis even when the association is strong. On the

other hand, by repeatedly applying KBT models based on different candidate kernels and choosing

the one resulting in the minimum p-value, there is a high chance of making a false discovery, i.e.,

rejecting the null hypothesis when there is no association.

Combining a panel of candidate kernels together to create a composite kernel is thus a natural

and effective strategy to overcome this issue. While a straightforward strategy of averaging kernels

to form a composite kernel, i.e., a linear combination of candidate kernels with equal weights, can

perform better than the worst-performing kernel function, it usually cannot perform as efficiently

as the best kernel to accurately represent the association between the trait and features for a given

dataset, thus, is not guaranteed to increase the statistical power. As shown in 2.1A and 2.1B,
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evaluated on both real and synthetic datasets, the average kernel strategy can often lead to incorrect

and inconsistent results in practice. Thus, a systematic data-adaptive approach of optimal kernel

selection is highly desirable for high-dimensional genome-wide association tests, especially for

complex human disease phenotypes that are genetically modulated by multiple inter-dependent

genetic variants.

Although a variety of different kernels are available, for a given dataset, it is practically

impossible to know a priori which kernel will fit the data best and maximize the testing power.

Genetic datasets of complex phenotypes are particularly challenging due to the limited prior

knowledge about the structure of interdependence among genetic or molecular features and how the

features are quantitatively associated with the phenotypes. Therefore, choosing a kernel randomly

can lead to a less powerful testing procedure for genome-wide applications. For example, if the

outcome variable Y is related to the features through a Quadratic function, using a Linear kernel

in the model will lead to weak tests that are not able to reject the null hypothesis even when the

association is strong. On the other hand, by repeatedly applying KBT models based on different

candidate kernels and choosing the one resulting in the minimum p-value, there is a high chance of

making a false discovery, i.e., rejecting the null hypothesis when there is no association.

2.2.3 BayesKAT

Our new algorithm, BayesKAT (https://github.com/wangjr03/BayesKAT) employs a novel

Bayesian modeling strategy to automatically select the optimal composite kernel based on the

data and does not require the composite kernel function to be set a priori by the user. Based on the

inferred optimal composite kernel function, BayesKAT can efficiently test the joint effects induced

by a group of genetic or molecular features associated with a phenotype. The optimal composite

kernel is a linear combination of candidate kernels where the weight of each candidate kernel re-

flects the degree of usefulness of the kernel explaining the complex relationship between a group of

features and the phenotype of interest. As an illustration, suppose there are three potential kernels:

Quadratic, Gaussian, and IBS. If the IBS kernel effectively captures the underlying relationship,

it will carry greater significance within the composite kernel, hence have a larger weight, while
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the impact of other kernels may be relatively weak, as indicated by their lower weights. Figure

2.1C provides an overview of the workflow of BayesKAT and its two computational strategies:

1) the Markov Chain Monte Carlo (MCMC) strategy; and 2) the Maximum a Posteriori (MAP)

strategy. Additionally, it is noteworthy that while BayesKAT is primarily developed to test genetic

associations, it can also be employed for a wide range applications, including testing the association

between continuous gene expression features and complex traits.

Consider a set of 𝑚 candidate kernels 𝐾1, 𝐾2, · · · , 𝐾𝑚, the composite kernel is in the form of∑𝑚
𝑖=1 𝜌𝑖𝐾𝑖, where 0 ≤ 𝜌𝑖 ≤ 1 and

∑𝑚
𝑖=1 𝜌𝑖=1 and

ℎ ∼ 𝑁 (0, 𝜏∑𝑚
𝑖=1 𝜌𝑖𝐾𝑖),

Therefore, selecting the optimal composite kernel is equivalent to selecting the optimal value for

the weight 𝜌𝑖 (𝑖 = 1, · · · , 𝑚) so that it can capture the underlying relationship between the genetic

or molecular features and the trait, when testing the group-level effect of a set of multiple features.

As a kernel-based testing model, BayesKAT relies on a set of candidate kernel functions, which

are incorporated to infer the optimal composite kernel for the association tests. For the convenience

of practical implementations, BayesKAT infers the optimal composite kernel consisting of three

candidate kernels as the default setting. And the default candidate kernels include Quadratic,

Gaussian and IBS kernel. To construct a composite kernel, the candidate kernels are normalized

in BayesKAT based on the previously proposed technique [21] so that they are in the same scale

and comparable.

To gain robust performance, weakly informative prior distributions are used for model pa-

rameters by default, although the users can incorporate more informative priors based on spe-

cific knowledge about the data. The important model parameters are 𝜃 = [ �̃�, 𝜏1, 𝜎2, 𝛽], where

�̃� = [𝜌1, 𝜌2, ..., 𝜌𝑚] are the unscaled weights of the candidate kernels (
∑𝑚
𝑖=1 𝜌𝑖 ≠ 1), 𝛽 =

(𝛽1, 𝛽2, · · · , 𝛽𝑘 )𝑇 and 𝜏1 = 𝜏

𝜎2 after reparameterization. And the weakly informative prior dis-

tributions are:

𝜎2 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(2, 2),
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𝜏1 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 2),

𝛽 ∼ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙 (0, 10𝐼),

𝜌1, 𝜌2, 𝜌3 ∼ 𝐺𝑎𝑚𝑚𝑎(1, 1).

The actual weights for candidate kernels 𝜌 = (𝜌1, 𝜌2, 𝜌3) = (𝜌1, 𝜌2, 𝜌3)/
∑3
𝑖=1 𝜌𝑖. Clearly

∑3
𝑖=1 𝜌𝑖 =

1 and 𝜌 ∼ 𝑑𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1, 1, 1). The data distribution is defined as:

𝑦 |𝜃 ∼ 𝑁 (𝑋𝛽, 𝜎2(𝜏1𝐾𝑐 + 𝐼)), (2.3)

where the composite kernel 𝐾𝑐 =
∑3
𝑖=1 𝜌𝑖𝐾𝑖.

2.2.3.1 BayesKAT strategy:

Here the main hypothesis to test is: 𝐻0 : 𝜏 = 0 vs. 𝐻1 : 𝜏 > 0. It is equivalent to test

𝐻0 : 𝜏1 = 0 vs. 𝐻1 : 𝜏1 > 0. Bayes factor(𝐵𝐹10) is calculated to test the hypothesis, which

evaluates the evidence in favor of the alternative hypothesis. Bayes factor is defined as the ratio of

marginal likelihoods under two hypotheses [26]:

𝐵𝐹10 =
𝑃(𝐷𝑎𝑡𝑎 |𝐻1)
𝑃(𝐷𝑎𝑡𝑎 |𝐻0)

(2.4)

where 𝑃(𝐷𝑎𝑡𝑎 |𝐻0) and 𝑃(𝐷𝑎𝑡𝑎 |𝐻1) are the marginal likelihoods under 𝐻0 and 𝐻1, respectively.

Given the input data, BayesKAT mainly uses two efficient and easy-to-implement strategies to

select the composite kernel and calculate the Bayes Factor 𝐵𝐹10 by estimating 𝑃(𝐷𝑎𝑡𝑎 |𝐻0) and

𝑃(𝐷𝑎𝑡𝑎 |𝐻1). The two computational strategies are explained in subsequent sections.

2.2.3.2 Interpreting BayesKAT output:

The preliminary output from BayesKAT, 𝐵𝐹10, is a summary of evidence provided by the

data in favor of 𝐻1 as opposed to 𝐻0. In addition, the posterior probability of the association

(𝑃(𝐻1 |𝐷𝑎𝑡𝑎)) is calculated as the final output, which has a one-one relation with 𝐵𝐹10, i.e.,
𝑃(𝐻1 |𝐷𝑎𝑡𝑎)
𝑃(𝐻0 |𝐷𝑎𝑡𝑎) =

𝑃(𝐻1 |𝐷𝑎𝑡𝑎)𝑃(𝐻0)
𝑃(𝐻0 |𝐷𝑎𝑡𝑎)𝑃(𝐻1) ×

𝑃(𝐻1)
𝑃(𝐻0)

⇒ 𝑃(𝐻1 |𝐷𝑎𝑡𝑎) = 1
1+ 𝑃 (𝐻0 )

𝑃 (𝐻1 )
1

𝐵𝐹10

Here 𝑃(𝐻1) and 𝑃(𝐻0) are the prior probabilities under 𝐻1 and 𝐻0, respectively, i.e. the

probabilities of existence of association and no association, respectively. Depending on the specific
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biological problem and dataset, the values of 𝑃(𝐻0) and 𝑃(𝐻1) can be set given biological evidence

or prior knowledge, and 𝑃(𝐻1 |𝐷𝑎𝑡𝑎) can be calculated. 𝑃(𝐻1 |𝐷𝑎𝑡𝑎) is the posterior probability

of the model under 𝐻1 given the data. 𝑃(𝐻1 |𝐷𝑎𝑡𝑎) gives a quantitative evaluation of how probable

there exists an association between the genetic features and the phenotype of interest or how strong

the evidence is against the null hypothesis.

As already demonstrated by the example in Figure 2.1A and 2.1B in the introduction section,

existing methods based on pre-selected kernels or average composite kernels suffer from inconsistent

hypothesis testing results and may lead to false discoveries. In contrast, for the Figure 2.1A scenario,

BayesKAT calculated the posterior probability of a true association given the data P(𝐻1 |𝑑𝑎𝑡𝑎)=0.19,

i.e. the evidence of association is very low and the existence of true association is not very likely.

This is consistent with the fact that there is a lack of documented evidence of the association between

the caffeine metabolism pathway and the whole brain volume phenotype. Strikingly, in the scenario

of the synthetic data cohort simulated with known association based on the Quadratic kernel (see

Figure 2.1B), BayesKAT successfully calculated the posterior probability 𝑃(𝐻1 |𝐷𝑎𝑡𝑎) = 0.99 to

suggest the existence of association, without incorporating any prior information. Moreover, tested

on 500 repeated simulation cohorts, BayesKAT achieves much higher statistical power than other

methods and also demonstrates more consistent testing results (see Figure 2.1B). Investigating

the inferred weights for each candidate kernel functions in the final composite kernel selected by

BayesKAT further shows that the Quadratic kernel is correctly assigned with the largest weights

(Supplementary Figure E.1), suggesting that BayesKAT can efficiently capture the functional form

of the underlying statistical associations in a data adaptive way.

2.2.4 BayesKAT-MCMC

As a Bayesian model, BayesKAT-MCMC employs the Markov Chain Monte Carlo (MCMC)

sampling-based strategy to infer the optimal composite kernel function. Leveraging MCMC for

efficient and traceable samplings from complex target distributions, BayesKAT-MCMC avoids

direct sampling from the posterior distribution 𝑃(𝜃 |𝐷𝑎𝑡𝑎) (see section 2.2.6), which does not

have a closed mathematical form and is computationally intractable. Instead, Metropolis-Hastings
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method [27, 28] is used to iteratively draw samples based on the generated Markov chain, which

are able to approximate the target probability distribution 𝑃(𝜃 |𝐷𝑎𝑡𝑎).

Let 𝜃0 denote the initial value for 𝜃. The 𝑡th iteration of the Metropolis-Hastings algorithm

consists of the following steps [29], [30]:

1. Sample a candidate point 𝜃𝑡 from a proposal distribution 𝐽𝑡 (𝜃∗ |𝜃𝑡−1).

2. Calculate the acceptance ratio for jumping to the new point 𝑟1 =
𝑝(𝜃∗ |𝐷𝑎𝑡𝑎)/𝐽𝑡 (𝜃∗ |𝜃𝑡−1)
𝑝(𝜃𝑡−1)/𝐽𝑡 (𝜃𝑡−1 |𝜃∗)

3. Set 𝜃𝑡 = 𝜃∗ with probability 𝑟1 and 𝜃𝑡 = 𝜃𝑡−1 with probability 1− 𝑟1. That is, it jumps to the new

proposed value with probability 𝑟1 and stays at the same value with probability 1 − 𝑟1.

Here is the main workflow for BayesKAT-MCMC:

Input: Genotype matrix 𝑍 , covariate matrix 𝑋 , response 𝑦.

Parameters under 𝐻1 : 𝜏1 > 0: 𝜃𝐻1 = [ �̃�, 𝜏1, 𝜎2, 𝛽]

Parameters under 𝐻0 : 𝜏1 = 0: 𝜃𝐻0 = [𝜎2, 𝛽]

Prior distribution of 𝜃𝐻1 , 𝜃𝐻0 as mentioned in "BayesKAT" section.

Define the data distribution based on 𝜃𝐻𝑖
, 𝑋 ,𝑍 and 𝑦, as defined in (2.3) where 𝑖 =0 or 1.

Step 1: Using the Metropolis-Hastings MCMC method mentioned above, draw samples from

the posterior distribution of 𝜃𝐻1 using three separate MCMC chains, each of which ran 50,000

iterations.

Step 2: check if the algorithm has converged, otherwise run more iterations.

Step 3: Draw samples from the posterior distribution of 𝜃𝐻1 by similarly Repeating step 1

and 2.

Step 4: Using the posterior samples of 𝜃𝐻1 , the unknown parameters are estimated: ˆ𝜃𝐻1 =

[ ˆ̃𝜌, 𝜏1, 𝜎2, 𝛽]. From ˆ̃𝜌, the optimal kernel weights 𝜌 can be estimated.

Step 5: the posterior samples of 𝜃𝐻1 , 𝜃𝐻0 are used to calculate 𝑃(𝑑𝑎𝑡𝑎 |𝐻1), 𝑃(𝑑𝑎𝑡𝑎 |𝐻0)

respectively using Chib’s method[31].

Step 6: Bayes Factor calculated from 𝑃(𝑑𝑎𝑡𝑎 |𝐻1), 𝑃(𝑑𝑎𝑡𝑎 |𝐻0) using (2.4).
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BayesKAT-MCMC uses the R package BayesianTools [32] to generate two sets of samples from

the posterior distribution of 𝜃 under the hypotheses 𝐻1 and 𝐻0, using the Metropolis-Hastings

algorithm in an adaptive way [33] to leverage the history of the stochastic process and appropriately

fine-tune the proposal distributions. Three separate MCMC chains initiated from different random

start points are generated for 50,000 iterations. To ensure that the MCMC chains are converged,

trace plot is used to visualize the moves of the Markov chains in the state space [34] . In addition,

based on the Gelman-Rubin diagnostic method [35], the potential scale reduction factor, i.e. PSRF

score, is also calculated and presented at the end of MCMC sampling to inspect whether the chain

is converged in which the PSRF score is close to one.

Based on the generated posterior samples, the marginal distributions of the parameters are

further visualized as shown in Figure 2.1D. The posterior samples are used to estimate the composite

kernel weights and also the marginal likelihoods 𝑃(𝐷𝑎𝑡𝑎 |𝐻𝑖), 𝑖 = 1, 0 using the Chib’s method

[31]. Bayes Factor is subsequently calculated using the formula presented in equation (2.4).

2.2.5 BayesKAT-MAP

Although BayesKAT-MCMC yields comprehensive information of the marginal distributions

of model parameters, drawing large sets of samples from the posterior distributions in the MCMC

strategy is computationally expensive. Here, we provide an alternative strategy, termed BayesKAT-

MAP, which is easy to implement, allows parallel calculations, and has higher computational

scalability. Instead of drawing numerous MCMC samples from the posterior distributions and

then estimating the parameter values, BayesKAT-MAP employs the quick optimization technique

to estimate the parameters of interest directly, based on the Maximum A Posteriori (MAP) strategy

such that,

𝜃𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

[log 𝑝(𝜃 |𝑦)]

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

[log 𝑝(𝑦 |𝜃) + log 𝜋(𝜃)]
(2.5)

where 𝜋(𝜃) denotes the prior distribution 𝜃. Because the objective function is nondifferentiable

at some points, a derivative-free optimization algorithm by Quadratic approximation using the
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R package Minqa [36] is implemented. The most important model parameter 𝜏1 indicates the

existence of association between the feature set and the trait variable, with 𝜏1 = 0 suggesting that

there is no association. In BayesKAT-MAP, if the calculated MAP estimator of 𝜏1, i.e., 𝜏1𝑀𝐴𝑃 = 0,

it follows that the Bayes Factor =0 (i.e., no evidence of association is found), and the computational

process terminates. On the other hand, if 𝜏1𝑀𝐴𝑃 > 0, it implies that there might be some evidence

of association and BayesKAT-MAP proceeds to calculate the MAP estimator again under 𝐻0 and

then computes the marginal likelihoods 𝑃(𝐷𝑎𝑡𝑎 |𝐻𝑖), (𝑖 = 1, 0), along with the Bayes Factor.

Due to the practical limitations of exact analytical methods, such as relying on specific dis-

tributional assumptions, efficient numerical integration approaches [37] are needed to calculate

the marginal likelihoods under hypotheses 𝐻𝑖, 𝑃(𝐷𝑎𝑡𝑎 |𝐻𝑖) =
∫
𝑃𝑟 (𝐷𝑎𝑡𝑎 |𝜃, 𝐻𝑖) 𝜋(𝜃 |𝐻𝑖)𝑑𝜃, so

that the model can be applied on diverse panels of data. BayesKAT-MAP employs the Laplace’s

method [38], [39], [26] for approximating the integral 𝑇 =
∫
𝑃𝑟 (𝐷𝑎𝑡𝑎 |𝜃, 𝐻𝑖)𝜋(𝜃 |𝐻𝑖)𝑑𝜃 by 𝑇 ,

where 𝑇 = (2𝜋)𝑑/2 |Σ̃ |1/2𝑃𝑟 (𝐷𝑎𝑡𝑎 |𝜃, 𝐻𝑖)𝜋(𝜃 |𝐻𝑖) and 𝑑 is the dimension of 𝜃, 𝜃 is the mode of the

log-likelihood function 𝑙 (𝜃 |𝐷𝑎𝑡𝑎), Σ̃ is the inverse of the negative Hessian matrix of the second

derivative of 𝑙 (𝜃 |𝐷𝑎𝑡𝑎) computed at 𝜃. For boundary regions of the parameter space, the Laplace

approximation is modified according to the previously developed protocol [40] to accommodate

the boundary cases. Based on the estimated marginal likelihood densities, the Bayes Factor is then

computed and the posterior probabilities are finally inferred, given user-defined priors 𝑝(𝐻0) and

𝑝(𝐻1) for which equal values are used as the default setting in BayesKAT.

Here is the summary of the workflow for BayesKAT-MAP:

Input: Genotype matrix 𝑍 , covariate matrix 𝑋 , response 𝑦.

Parameters under 𝐻1 : 𝜏1 > 0: 𝜃𝐻1 = [ �̃�, 𝜏1, 𝜎2, 𝛽]

Parameters under 𝐻0 : 𝜏1 = 0: 𝜃𝐻0 = [𝜎2, 𝛽]

Prior distribution of 𝜃𝐻1 , 𝜃𝐻0 as mentioned in "BayesKAT" section.

Define the data distribution based on 𝜃𝐻𝑖
, 𝑋 ,𝑍 and 𝑦 as mentioned in (2.3), where 𝑖 =0 or 1

Step 1: 𝜃𝐻1 = 𝜃𝑀𝐴𝑃 is calculated using this formulation 2.5 using optimization technique.
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Step 2: check if 𝜏1 = 0.

If 0, stop. conclusion: no association!

If >0, go to next step.

Step 3: Calculate 𝜃𝐻0 using same technique in step 1 under 𝐻0.

Step 4: Calculate 𝑃(𝑑𝑎𝑡𝑎 |𝐻1), 𝑃(𝑑𝑎𝑡𝑎 |𝐻0) using Laplace approximation(look at previous

paragraph) based on 𝜃𝐻1 and 𝜃𝐻0 .

Step 5: Bayes Factor calculated from 𝑃(𝑑𝑎𝑡𝑎 |𝐻1), 𝑃(𝑑𝑎𝑡𝑎 |𝐻0) using (2.4).

The performance and runtime of BayesKAT-MCMC and BayesKAT-MAP under different settings

are systematically compared and further discussed in supplementary files. Because of the superior

computational scalability of BayesKAT-MAP, as shown in 2.1D, the results in the paper are

generated using BayesKAT-MAP.

2.2.6 Input data organization and model set up for BayesKAT

Data containing the information of genotypes or molecular features for complex phenotypes can

be collected from large public-accessible or user-generated cohorts (e.g., ADNI, UK biobank, All

of Us (https://allofus.nih.gov/), GTEx, PsychENCODE (https:// psychencode.synapse.org/), etc.).

Individual-level data can be pre-processed and efficiently undergo steps of quality controls using

software such as Plink [41]. Additionally, biological meaningful feature groups need to be defined

and created depending on the goals of genome-wide association tests. In this study, we have

explored four different biology inspired ways of grouping functionally related genetic variants,

including 1) gene-wise groups: aggregating SNPs located within genomic regions of genes; 2)

pathway-level groups: aggregating SNPs situated within genes that belong to a specific molecular

pathway; 3) co-expression gene modules: aggregating SNPs located within genes that belong to a

specific co-expression module; and 4) Protein-protein interaction(PPI) modules: aggregating SNPs

located within genes that belong to a specific PPI module, which may represent a protein complex.
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2.2.7 Comparison with other methods and performance evaluation

The performance of BayesKAT is compared to two state-of-the-art algorithms: 1) SKAT using

the average composite kernel, denoted as SKAT(Avg) [18]; and 2) the U statistic-based method,

denoted as mKU [21]. Both of these two methods are frequentist approaches that maximize the

power after restricting the type 1 error to a fixed level of 𝛼, such as setting 𝛼 to 0.05, and have

been shown to outperform other existing methods. In contrast, as the first Bayesian model for this

problem, BayesKAT uses a fixed threshold on the posterior probability or the Bayes factor, based on

previously suggested guidelines [26], to reject the null hypothesis. To make fair comparisons, the

performance of each method (i.e., the empirical statistical power), is evaluated at a fixed and equal

empirical type 1 error across all three algorithms. A systematic comparison based on rigorous

simulations are presented in the Results section. As multiple groups are simultaneously tested, a

multiplicity correction technique is implemented, which is discussed in detail in the supplementary

files.

2.3 Enhanced efficacy of BayesKAT benchmarked on simulation studies

As defined in the section of Materials and Methods, the rows of the feature matrix 𝑍 ∈ R𝑛×𝑝

correspond to 𝑛 individuals and the columns correspond to the 𝑝 features. Depending on the

particular genetic association studies, the features may encompass discrete genetic characteristics,

like alleles with values of 0, 1, or 2, or continuous molecular features, such as gene expressions.

We have conducted simulations for both cases, with 𝑍 corresponding to discrete or continuous

features, under both low and high dimensional settings.

2.3.1 Simulation with continuous features:

As shown in Figure 2.2A, the simulations based on continuous features are first conducted to

evaluate the performance of BayesKAT using similar scenarios presented in [21]. With the specified

parameters (𝑛 = 500, 𝑝 = 100, 𝑘 = 2, 𝑚 = 3), the feature matrix 𝑍 is simulated from a multivariate

normal distribution with mean 0𝑝 and an AR(1) correlation matrix 𝑅 where (𝑅( 𝑗 , 𝑗 ′) = 𝑟 | 𝑗− 𝑗
′ |).

In the simulation, the correlation 𝑟 is set to be 0.6. The covariate matrix 𝑋 ∈ R𝑛×2 has one binary

covariate generated from a Bernoulli (0.6) distribution and one continuous covariate generated
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Figure 2.2 Performance comparison based on simulations using continuous features. (A)
Schematic summary of the data generation process for continuous molecular features (e.g. gene
expression features) and the demonstration of the implementation under various scenarios. (B)
Performance comparison across different simulation settings with systematic performance
evaluations, i.e. the empirical power versus empirical type 1 error, for SKAT(Avg), mKU, and
BayesKAT across different scenarios and parameter settings. When increasing 𝑝 while keeping
other factors constant, all methods exhibit a slight decline in power, but BayesKAT consistently
outperforms SKAT(Avg) and mKU. Additionally, as 𝑟 increases under fixed parameters,
BayesKAT also consistently surpasses SKAT(Avg) and mKU.
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from N(2,1). The covariate coefficients are set as 𝛽 = (0.03, 0.5) and the outcomes𝑌 are simulated

based on model (2.1). The error term with variance 𝜎2 = 1 is added as the random noise. Three

commonly used candidate kernels are incorporated in BayesKAT: Linear, Quadratic, and Gaussian.

Different functional forms of ℎ(·) are used to create different scenarios to test the performance.

The empirical type 1 errors of each method are calculated based on the specific scenario where

ℎ(𝑍) = 0, i.e. there is no association between 𝑍 and𝑌 in the simulated data. The different scenarios

are given below:

• Scenario A: ℎ(𝑍) = 0.6 × 𝑍1𝑍3

• Scenario B: ℎ(𝑍) = 0.55 × 𝑍1𝑍3 + 0.1 × 𝑍1 + 0.1 × 𝑍3

• Scenario C: ℎ(𝑍) = 0.3 × (𝑍1 − 𝑍3) + 1.5 × 𝑐𝑜𝑠(𝑍3)𝑒𝑥𝑝(−𝑍2
3/5))

In all the simulation scenarios, as shown in Figure 2.2B, the empirical power versus empirical type 1

error for BayesKAT is consistently better than that of SKAT(Avg) and mkU. Moreover, sensitivity

analyses are conducted to evaluate the effects with different simulation parameters on the final

performance of different algorithms. Notably, when the number of features 𝑝 increases from 100 to

150, while keeping all other parameters fixed, BayesKAT consistently achieves superior empirical

power compared to other methods (see Figure 2.2B). Similarly, when the correlation 𝑟 increases

from 0.6 to 0.8 with 𝑝 fixed as 150, BayesKAT consistently demonstrates higher empirical power

and outperforms other methods. Taken together, these simulation results demonstrate the robust

superior performance of BayesKAT compared to SKAT(Avg) and mKU in various settings with

continuous features.

2.3.2 Simulation with discrete features:

The performance of different models on discrete SNP features is first evaluated based on

simulations where randomly selected SNP groups are used as features. Because randomly selected

SNPs are generally not functionally related, the overall effectiveness of all KBT models decreases

as expected, with BayesKAT still showing improved empirical power compared to other methods

(Supplementary Figure E.2). Because the real-world implementations of KBT models for genetics
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Figure 2.3 Performance comparison based on simulations with discrete features. (A) Schematic
summary of the data generation process for discrete genetic features (e.g., SNP variants) and the
demonstration of the implementation under various scenarios. Starting with the original 𝑍 matrix
containing groups of SNPs from each pathway, a simulated SNP matrix 𝑍′ is generated,
preserving the underlying interrelationships among the SNPs. Covariate variables (i.e., age,
gender and occupation) are incorporated based on the data from ADNI. (B) Performance
comparison across different simulation settings. Systematic performance evaluations, i.e. the
curves of empirical power versus empirical type 1 error, for SKAT(Avg), mKU, and BayesKAT
across different scenarios are plotted. The performance across three sets of simulated datasets is
averaged. The performance curves based on each individual simulated dataset can be found in
Supplementary Figure E.3.

studies usually focus on functionally related groups of SNPs, a more realistic strategy of simulating

groups of discrete SNP features, instead of randomly selected unrelated SNPs, is employed to

further benchmark the performance of BayesKAT (Figure 2.3A).

To rigorously capture the underlying linkage disequilibrium structures of discrete features in

real-world SNP data, the ADNI dataset is used as the basis for the simulations, where the covariate

matrix 𝑋 is created from the real covariates (e.g. age, gender and education) of the corresponding
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individuals in the dataset, and SNPs located in specific genes belonging to the selected KEGG

pathways are included into the testing (see Materials and Methods). Three different KEGG pathways

are randomly selected for performance evaluations. For each pathway, the groups of SNPs located

in the corresponding gene members are identified. The "SNPknock" package [42] is then used to

simulate the knockoff SNP data, which maintains the structural dependency among SNPs in each

group intact in the simulated knockoff SNPs (Figure 2.3A). The feature matrix 𝑍 is constructed

based on the simulated SNP data, with 𝑛 = 755 and 𝑝 ranging between 4000 and 5000. The

outcome variable 𝑌 is simulated based on three different scenarios. Each scenario corresponds to

a different functional form ℎ(𝑍), that is:

• Scenario D: ℎ(𝑍) = 2 × 𝑍1𝑍3

• Scenario E: ℎ(𝑍) = 2 × 𝑍1𝑍3 + 0.04 × 𝑍𝑖 + 0.04 × 𝑍3

• Scenario F: ℎ(𝑍) = 0.4 × (𝑍1 − 𝑍3) + 0.4 × 𝑐𝑜𝑠(𝑍3)𝑒𝑥𝑝(−𝑍2
3/5))

Where 𝑍𝑖 is the 𝑖th column of 𝑍 corresponding to the 𝑖th SNP. For each group of pathway-level

knockoff SNPs, 500 simulations are generated. By applying BayesKAT and the other methods on

the set of simulations, the corresponding empirical type 1 error and empirical power are calculated

accordingly. The summary of performance comparisons based on this extensive set of simulations

is shown in Supplementary Figure E.3. The empirical power and empirical type 1 error for

each SNP group clearly demonstrates that BayesKAT robustly outperforms SKAT(Avg) and mKU,

across different simulation scenarios and settings. The averaged performance over 3 pathway-

level SNP groups can be found in Figure 2.3B. To demonstrate the robust superior performance

of BayesKAT, the simulation study is repeated using different sample sizes, n=1000,1500. The

comparison outcomes are illustrated in supplementary Figures E.4 and E.5. Remarkably, in addition

to these consistent advantages, BayesKAT also achieves much lower empirical type 1 error across

all simulation settings, when the suggested Bayes Factor threshold [26] is employed. It suggests

that the associations between the SNP groups and the phenotype detected by BayesKAT exhibit a
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significantly higher level of reliability compared to other methods, a crucial attribute for genetic

applications in complex diseases.

2.4 Application to ADNI datsets: BayesKAT reveals novel associated genetic basis of complex
traits

To illustrate the novel biological insights generated by BayesKAT, the individual-level data, in-

cluding the genotype, phenotype and demographic covariates, from the ADNI project (https://adni.

loni.usc.edu) [43], [22] are used to conduct a series of group-level genetic association testings.

Specifically, BayesKAT is used to test the group-wise associations between SNP sets and the com-

plex phenotype of whole brain volume, based on the available information across 755 individuals

in the ADNI cohort.

2.4.1 Real data preprocessing

In addition to a series of simulated datasets, real genetic datasets are used to evaluate the

performance of BayesKAT and its derived biological discoveries. The data used in the preparation

of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers

and clinical and neuropsychological assessments can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Plink software [41]

(http://pngu.mgh.harvard.edu/purcell/plink/) is used to pre-process the individual-level genotype

data. Detailed information on data access, download and pre-processing steps can be found in

the supplementary material. Four biology-based strategies are used to create the feature groups

of functionally related SNPs, leading to complementary biological insights into the genetic basis

underlying the specific phenotype. The four SNP feature grouping strategies are: (1) Gene-wise

SNP groups for 18,999 protein-coding genes in the human genome[44]. For each protein-coding

gene, all SNPs located within +/-5KB of the gene body are collected as the gene-wise SNP feature

set; (2) Pathway-wise SNP groups for 352 KEGG pathways [23], [24], [25]. For each pathway,
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gene-wise SNP groups for all genes belonging to the specific pathway are collected as the pathway-

wise SNP feature set. The number of SNPs per pathway varies from 35 to 22,555, with a mean of

1,721 SNPs. Figure 2.5A provides a schematic figure demonstrating the pathway-wise joint SNP

testing procedure; (3) Co-expression gene module based SNP groups. Forty-one co-expression

gene modules are identified using the R package "WGCNA" [45], [46] to find correlated gene

co-expression clusters from expression data (available on the ADNI website). The co-expression

gene modules have a different number of genes in them, which varies from 6 to 3361. SNPs within

each module are extracted for further group-wise testing; and (4) 401 protein-protein interaction

(PPI) gene module based SNP groups. The PPI gene modules are previously created in [47] based

on the topology of the PPI network. The number of genes in PPI modules ranges from 2 to 497.

Figure 2.4 Functional validation of BayesKAT’s prioritized genes using orthogonal information.
(A) Top-ranking genes prioritized by BayesKAT are strongly supported by previous literature of
functional studies of brain-related diseases. (B) The selected genes by BayesKAT demonstrate
higher fractions of overlapping meQTL’s CpG sites than the genes selected by SKAT(Avg) and
mKU. The CpG sites of significant meQTLs from the brain tissues represent orthogonal
molecular-level evidence in support of the gene’s functional involvement with whole brain volume.

2.4.2 BayesKAT prioritizes functionally related genes:

To identify genes associated with the trait of whole brain volume, we conduct a gene-wise

association test with gene-level SNPs (see Materials and Methods). BayesKAT prioritized 17

genes, whose posterior probability of association (𝑃(𝐻1 |𝐷𝑎𝑡𝑎)) is greater than 0.7. Figure 2.4A

shows some examples of the prioritized genes, which have been suggested to be associated with
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brain or neurodegenerative disorders by previous seminal studies [48], [49], [50]. The whole

list of the 17 prioritized genes and their corresponding posterior probability of associations are

provided in Supplementary Table E.1. Strikingly, as external evidence in support of BayesKAT’s

prioritized genes, 12 out of the 17 genes (71%) contain CpGs that have been found to be involved with

significant meQTLs [51] in the human brain cortex. In contrast, the genes prioritized by SKAT(Avg)

and mKU demonstrate much lower fractions of overlapping with CpGs linked to meQTLs (66%

and 61% respectively, Figure 2.4B). The higher proportion of prioritized genes containing CpGs

offers molecular-level support for BayesKAT’s ability to uncover genes mechanistically linked to

complex traits.

Figure 2.5 Pathway-level association tests by BayesKAT prioritizes neurodegenerative disease
related pathways. (A) Schematic representation illustrating the steps of pathway-level association
tests. Sets of SNPs located within genes belonging to each of the 352 pathways are tested
simultaneously for pathway-level associations with the phenotype of interest (e.g., the whole brain
volume ). Multiplicity control is implemented to identify the specific list of significant pathways
linked to the phenotype.(B) The top-ranking pathways prioritized by (i) BayesKAT, (ii) mKU, and
(iii) SKAT(Avg) demonstrate distinct enrichment with neurodegenerative disease associated
pathways. Top 50 pathways are shown for fair comparison. The top-ranking pathways by
BayesKAT are ranked by the estimated posterior probabilities of the pathway-level associations.
The top-ranking pathways by the frequentist methods, mKU and SKAT(Avg) are ranked by the
-log10(p-values). The pathways highlighted in red are neurodegenerative disease related pathways.
The red horizontal dashed line in each bar plot indicates the threshold used by each model for fair
comparison (see Materials and Methods). The pie charts illustrate the proportion of the selected
pathways (above model’s thresholds) that belongs to the neurodegenerative disease pathways.
BayesKAT notably exhibits enhanced prioritization of neurodegenerative disease pathways. Due
to the issue of inflated p-values in mKU, pathways with p-values of 0 are assigned
-log10(p-values)=30 for visualizations.
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Figure 2.5 (cont’d)

2.4.3 Biological pathways linked to neurodegenerative diseases are top-ranked by BayesKAT

To identify biological pathways that potentially modulate the whole brain volume trait, BayesKAT

is used to analyze pathway-level SNP groups (see Materials and Methods, Figure 2.5A). The top 50

ranked KEGG pathways by each model are summarized in Figure 2.5B, where BayesKAT ranks the

pathways based on decreasing posterior probability of association (𝑃(𝐻1 |𝐷𝑎𝑡𝑎)) while the mKU

and SKAT(Avg) methods rank the pathways based on decreasing -log10(p-value). Interestingly,

BayesKAT successfully prioritized most of the neurodegenerative disease related pathways with top

ranks (Figure 2.5B). This is a strong mechanistic support to BayesKAT’s results, because the neu-

rodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Amyotrophic lateral

sclerosis and Parkinson’s disease, have been found to be strongly related to brain volume loss [52],

[53], [54], [55]. Based on a reasonable posterior probability threshold 0.7, there are 21 pathways

identified by BayesKAT (Figure 2.5B), Supplementary Table E.2), among which five pathways
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are associated with neurodegenerative diseases. In comparison, the mKU and SKAT(Avg) models

prioritized large numbers of pathways (242 and 72 respectively), while only a small fraction of

them are neurodegenerative disease related pathways (6 and 5, respectively). For SKAT(Avg),

these functionally related pathways are not even the top-ranked ones. As summarized in the cor-

responding pie charts in Figure 2.5B, BayesKAT achieves the highest efficiency in prioritizing

important pathways and resulting in fewer false discoveries than the other methods. These results

are also consistent with the larger type 1 errors of mKU and SKAT(Avg) observed from simulation

analyses described above. Note that, setting the posterior probability threshold is subjective, same

as selecting type 1 error threshold or FDR threshold (0.05 or 0.01 or 0.1). Opting for a threshold

greater than 0.7 (such as 0.9, 0.95, or 0.99) is also effective, as BayesKAT efficiently prioritizes

the top pathways. Overall, the highly prioritized functional relevant pathways imply the novel

biological insights that can be generated by using BayesKAT.

To further evaluate the performance of BayesKAT in determining the optimal kernel weights, 10

randomly chosen pathways are used to test the pathway-level associations. The resulting composite

kernels are compared to the results of using SKAT based on individual kernels separately. The

corresponding -log10(p-values) metrics from SKAT using individual kernels are compared to the

inferred kernel weights in the composite kernels from BayesKAT. As shown in Figure 2.6A, the

high similarity between the two heatmaps indicates that BayesKAT can efficiently select the optimal

composite kernel automatically from the data, without relying on prior knowledge or repetitively

trying different individual kernels.

2.4.4 BayesKAT identifies trait-associated gene modules and protein complexes

To further demonstrate BayesKAT’s capability of revealing novel group-level associations to

traits from specific sets of cooperative SNPs, two additional SNP grouping strategies are applied:

1) SNPs from co-expression gene modules; and 2) SNPs from protein-protein interaction (PPI)

modules (see Materials and Methods). Applied on the SNP groups aggregated from co-expression

gene modules, BayesKAT is able to pinpoint specific modules as significantly associated with the

whole brain volume trait (Figure 2.6B Left). On the other hand, SKAT(Avg) and mKU identify
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a large number of modules (Figure 2.6B Right), which are consistent to the inflated type 1 errors

of these two methods as observed previously, and failed to provide specific prioritizations of the

gene modules. Remarkably, by comparing to the significant GWAS SNPs identified from another

genome-wide meta-analysis of brain volume study [56], two out of the four selected modules by

BayesKAT (50%) contain significant GWAS SNPs (Figure 2.6C). In contrast, only 26% (7/27) and

43% (6/14) modules selected by mKU and SKAT(Avg) contain significant GWAS SNPs. These

results further provide orthogonal support for the superior performance of BayesKAT in identifying

new collective associations to the complex traits for SNP groups of functionally related genes.
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Figure 2.6 Boosted association tests based on BayesKAT’s composite kernels reveal novel
modules of genes and proteins linked to brain volume. (A) The inferred weights of individual
kernels in BayesKAT’s composite kernels (right) recapitulate the strength of each kernel
(-log10(p-values)) when each kernel is incorporated separately (left). Without relying on prior
knowledge or repetitively testing different kernels separately, BayesKAT automatically infers the
appropriate composite kernels to boost the group-level tests for different pathways. (B) Prioritized
co-expression gene modules by BayesKAT (left) vs. SKAT(Avg) and mKU (right). The
significance threshold of selection for each model is represented by the horizontal red dashed lines
(see Materials and Methods). (C) The selected significant co-expression gene modules by
BayesKAT demonstrate higher fractions of overlapping with significant SNPs from orthogonal
GWAS studies, compared to the results from SKAT(Avg) and mKU. (D) The selected significant
PPI modules by BayesKAT demonstrate higher fractions of overlapping with significant SNPs
from orthogonal GWAS studies, compared to the results from SKAT(Avg) and mKU. (E)
Prioritized PPI modules by BayesKAT (left) vs. SKAT(Avg) and mKU (right). The significance
threshold of selection for each model is represented by the horizontal red dashed lines (see
Materials and Methods)
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Figure 2.6 (cont’d)

When applied to SNP groups organized according to PPI modules that largely represent protein

complexes, BayesKAT distinctly prioritizes eight PPI modules as significant, six of which contain

significant GWAS SNPs (75%, Figure 2.6D, Figure 2.6E Left). On the contrary, only 30%(17/56)

and 65%(13/20) of the modules selected by mKU and SKAT(Avg) respectively contain significant

GWAS SNPs (Figure 2.6D, Figure 2.6E Right). Taken together, the highly specific prioritizations of

potential gene modules and protein complexes, along with the substantially improved justification

from other GWAS SNPs, suggest that BayesKAT can facilitate novel discoveries of molecular

components involved in complex traits and may pave the way for innovative approaches to disease

treatments.

2.5 Discussion

BayesKAT (https://github.com/wangjr03/BayesKAT) is a data adaptive methodology that auto-

matically selects the appropriate composite kernel using the MCMC algorithm (BayesKAT-MCMC)

or the optimization technique (BayesKAT-MAP) and conducts hypothesis testing on the presence

of group-level genetic associations for complex traits. The Bayesian framework and the inferred

posterior probabilities are more interpretable and informative, compared to p-values from fre-
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quentist methods. Based on extensive benchmark analyses, BayesKAT demonstrates consistent

superior performance than other methods across different settings. Moreover, evaluated on a series

of biologically inspired SNP groups based on a real genetic dataset, BayesKAT not only achieves

improved prioritization of functionally relevant and justified group-level SNP associations, but also

enables novel discoveries with respect to the underlying molecular mechanisms of complex traits.

By revealing the collective effects of functionally cooperative SNPs without relying on the prior

knowledge of specific kernels, BayesKAT represents one important step forward towards the goal

of deciphering the intricate genetic basis of human diseases.

Although some methods based on the Gaussian process [57] or supervised learning technique

[58] attempt to select the best kernel using training data for prediction purposes, BayesKAT is

the first Bayesian KBT methodology that simultaneously selects the optimal composite kernel

while testing for the associations, without requiring the training data. In addition, the data-

adaptive strategy of composite kernel selections also facilitates the description of more complicated

interdependence structures that can not be fully captured by individual kernels. Furthermore,

BayesKAT provides the flexibility of incorporating multiple testing corrections, integrating prior

biological knowledge, and modeling various data types. To complement the MCMC strategy,

BayesKAT-MAP is highly scalable and can be efficiently implemented for large-scale genome-

wide studies.

BayesKAT utilizes the Metropolis-Hastings MCMC algorithm in combination with a derivative-

free grid-search-based optimization approach to choose the composite kernel for specific datasets.

Nevertheless, the BayesKAT framework is not restricted to these techniques. Other efficient MCMC

sampling algorithms or reliable optimization techniques can be incorporated. A variety of sampling

techniques have been reviewed and compared for different purposes of modeling [59], [60], [61],

[62]. Integrating these techniques, especially the variational Bayes techniques, into the BayesKAT

framework and systematically evaluating their performance for different types of applications will

be an important step for future developments (More discussion on this topic is included in the

supplementary files).

33



2.6 Data and code avilability

BayesKAT is an open source infrastructure available in the GitHub repository https:// github.com/

wangjr03/BayesKAT. The repository includes R codes for BayesKAT, along with comprehensive

instructions, sample testing data, and code for pre-processing real data. Please note that the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data used for this manuscript is not publicly

available, and interested users can request for access through the official portal: https://adni.loni.usc.

edu/data-samples/access-data/. Detailed information on data download and processing procedures

can be found in the supplementary material.

2.7 Supplementary materials

2.7.1 Kernel functions

A kernel function is defined as a function𝐾 : X×X → R, where the kernel matrix𝐾 = (𝑘𝑖,𝑖′)𝑛𝑖,𝑖′=1

is symmetric and positive semidefinite with 𝑘𝑖,𝑖′ = 𝑘 (𝑍𝑖, 𝑍𝑖′). In this setting, 𝑘 (𝑍𝑖, 𝑍𝑖′) is a measure

of similarity between the 𝑖th and the 𝑖′th subject. There are a variety of kernel functions to choose

from, and the most widely used ones include the Linear kernel, the Quadratic kernel and the

Gaussian kernel. For genetic SNP data, identity by state (IBS) kernel is a popular candidate kernel

function suggested by various studies [19], [10], [12]. The functional forms of these kernels are

summarized below:

• Linear kernel: 𝐾 (𝑍𝑖, 𝑍𝑖′) = 𝑍𝑇𝑖 𝑍𝑖′

• Quadratic kernel: 𝐾 (𝑍𝑖, 𝑍𝑖′) = (𝑍𝑇
𝑖
𝑍𝑖′ + 1)2

• Gaussian kernel: 𝐾 (𝑍𝑖, 𝑍𝑖′) = 𝑒𝑥𝑝{−∥𝑍𝑖 − 𝑍𝑖′ ∥2/𝑙}, where ∥𝑍𝑖 − 𝑍𝑖′ ∥2 =
∑𝑝

𝑗=1(𝑍𝑖 𝑗 − 𝑍𝑖′ 𝑗 )
2,

𝑙 is a tuning parameter.

• IBS kernel: 𝐾 (𝑍𝑖, 𝑍𝑖′) = (2𝑝)−1 ∑𝑝

𝑗=1 𝐼𝐵𝑆(𝑍𝑖 𝑗 , 𝑍𝑖′ 𝑗 ) = (2𝑝)−1 ∑𝑝

𝑗=1(2 − |𝑍𝑖 𝑗 − 𝑍𝑖′ 𝑗 |)

2.7.2 Importance of choosing appropriate Kernel

Although a variety of different kernels are available, for a given dataset, it is practically

impossible to know a priori which kernel will fit the dataset best and maximize the testing power.
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Genetic data related to complex phenotypes pose particular challenges, primarily stemming from

our limited understanding of how the interplay among genetic or molecular features influences their

collective association with a phenotype. Therefore, choosing a kernel randomly can lead to a less

powerful testing procedure for genome-wide applications. For example, if the outcome variable𝑌 is

related to the features through a Quadratic function, using a Linear kernel in the model will lead to

weak tests that are not able to reject the null hypothesis even when the association is strong. On the

other hand, by repeatedly applying KBT models based on different candidate kernels and choosing

the one resulting in the minimum p-value, there is a high chance of making a false discovery, i.e.,

rejecting the null hypothesis when there is no association.

Combining a panel of candidate kernels together to create a composite kernel is thus a natural

and effective strategy to overcome this issue. While a straightforward strategy of averaging kernels

to form a composite kernel, i.e., a linear combination of candidate kernels with equal weights, can

perform better than the worst-performing kernel function, it usually cannot perform as efficiently

as the best kernel to accurately represent the association between the trait and features for a given

dataset, thus, is not guaranteed to increase the statistical power. As shown in main Figure 1 (A)(B),

evaluated on both real and synthetic datasets, the average kernel strategy can often lead to incorrect

and inconsistent results in practice. Thus, a systematic data-adaptive approach of optimal kernel

selection is highly desirable for high-dimensional genome-wide association tests, especially for

complex human disease phenotypes that are genetically modulated by multiple inter-dependent

genetic variants.

2.7.3 Comaparison between BayesKAT-MCMC and BayesKAT-MAP

The performance and runtime of BayesKAT-MCMC and BayesKAT-MAP under different

settings are systematically compared. Supplementary Table 2.1 summarizes the empirical type-

1 error and empirical power for different simulated functional dependencies. The simulations

were based on the proposed settings used by previous studies [21]. As shown in Table 1, both

MCMC and MAP strategies achieve nearly equal statistical power in detecting associations. While

BayesKAT-MCMC provides more information on the posterior distributions of parameters, it is
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more computationally expensive compared to BayesKAT-MAP. When the number of samples

or features, i.e. 𝑛 or 𝑝, increases beyond 500, BayesKAT-MCMC is not sufficiently scalable

without requesting more high-performance computing resources. On the other hand, Main Figure

1(D) shows the superior computational scalability of BayesKAT-MAP based on the same level of

computational resource support. Therefore, these two alternative strategies provide similar accuracy

and complementary signatures for genetic association tests of complex traits, with BayesKAT-MAP

being more flexible and conservative. For the rest of the paper, results of BayesKAT-MAP are

presented due to its scalability. The code for implementing BayesKAT-MCMC and BayesKAT-

MAP are both made publicly available via GitHub: https://github.com/wangjr03/BayesKAT.

Table 2.1 Empirical power of BayesKAT-MCMC and BayesKAT-MAP.

h(Z) n p BayesKAT-MCMC BayesKAT-MAP
ℎ(𝑍) = 0 500 500 0.018 0

ℎ(𝑍) = 2 × 𝑍1𝑍3 500 500 0.946 0.946
ℎ(𝑍) = 2 × 𝑍1𝑍3+

0.04 × 𝑍𝑖 + 0.04 × 𝑍3 500 500 0.948 0.958
ℎ(𝑍) = 0.4 × (𝑍1 − 𝑍3)+

0.4 × 𝑐𝑜𝑠(𝑍3)𝑒𝑥𝑝(−𝑍2
3/5) 500 500 0.976 0.998

The functional forms in simulation scenarios are taken from [21] and coefficients are adjusted based on 𝑛 (sample size)
and 𝑝 (no. of features)

2.7.4 Multiple testing correction

When 𝑚1 multiple groups are simultaneously tested, multiplicity corrections are needed. Mul-

tiple testing corrections on p-values from frequentist models are carried out using methods such

as the Bonferroni correction [63], which controls the family-wise type 1 error to 𝛼 by setting the

individual test’s type 1 error at 𝛼/𝑚1. Other methods like FDR control have also been popular ones.

For multiple testing corrections on Bayesian models, the multiplicity control is achieved by setting

a high prior probability of the individual null hypothesis, as suggested by previous studies [64]

[65]. For each test, the prior probability is set as 𝑃(𝐻0) = 0.99, which is equivalent to assuming

that, on average, one in 100 tests is believed to have a true association. Considering the number
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of SNP groups in genetic applications, such as the number of biological pathways or co-expression

modules, this choice of prior probability setting is regarded as rather conservative and ensures fair

performance comparisons.

2.7.5 ADNI Data Handling and Pre-processing steps

The Alzheimer’s Disease Neuroimaging Initiative(ADNI) data referenced in this manuscript is

not publicly accessible. Interested users can request access through the official portal at https://adni

.loni.usc.edu/data-samples/access-data/. Once granted access, users can navigate to the "down-

loads" section and download the genotype data. For this study, "ADNI 1 SNP genotype data -

PLINK" file containing the .bed, .fam and .bim files was downloaded. Initially, these files contain

information on 757 individuals and 620901 SNPs. The standard quality control steps are per-

formed using Plink[41] software, which resulted in the removal of SNPs and individuals failing

standard missingness thresholds, Minor Allele Frequency (MAF), and Hardy-Weinberg Equilib-

rium (HWE) criteria. Subsequent to quality control, a simple imputation technique addresses the

remaining missing values, resulting in a final genotype matrix featuring 531086 SNPs and 756

individuals meeting the established quality criteria. Demographic and phenotypic information for

these individuals is retrieved using the publicly available ADNIMERGE package (detailed descrip-

tion: https://adni.bitbucket.io/). Covariates, specifically Age, gender, and education levels, which

exhibit significant linear relationships with the phenotype of interest (whole brain volume), are

integrated into the model. By aligning individual IDs across response, genotype, and covariate

data, a final dataset comprising 755 individual-level data points is obtained. The GitHub repos-

itory https://github.com/wangjr03/BayesKAT contains the specific codes for preprocessing real

individual-level genotype datasets.

2.7.6 Further Discussion

In recent years, different deep learning models have been developed and applied in genomics

studies to predict molecular features, such as gene expression, histone marks, chromatin accessibil-

ity and transcription factor binding, using DNA sequences as features [66], [67], [68], [69]. These

models allow for in silico mutations of DNA sequences and the prediction of perturbed molecular
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features for each mutation individually. Compared to these models, the power of BayesKAT in

delineating the collective group-level genetic associations based on automatic composite kernel se-

lection opens up a new level of analytical capability of dissecting the genetic complexity. Combined

together, the complementary advantages of BayesKAT and deep learning models are expected to

facilitate novel mechanistic insights into human diseases.

The implementation of BayesKAT is not limited to genetic studies based on features of SNPs or

gene expressions. Any group of continuous or discrete features that are functionally related can be

tested for associations with an outcome using the BayesKAT methodology. For instance, BayeskAT

can be used to test if a group of images is associated with a particular disease trait by adopting

properly defined kernels. As another direction for future developments, non-linear functions of

candidate kernels, instead of the linear combinations, will be explored as the composite kernel,

which may lead to improved power for kernel-based testing.
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CHAPTER 3

SPATIAL TRANSCRIPTOMICS - SVG DETECTION TECHNIQUES AND SCOPES FOR
IMPROVEMENT

A modified version of part of this chapter was previously published (Das Adhikari,Sikta et al, 2024):

Das Adhikari S., Yang J., Wang J. and Cui, Y. (2024) Recent advances in spatially variable gene

detection in spatial transcriptomic. https://doi.org/10.1016/j.csbj.2024.01.016

3.1 Introduction: Analysis of spatial transcriptomic data

Recent advancements in Spatially-resolved transcriptomics (SRT) technology have provided

comprehensive gene expression data for thousands of genes across multiple samples or spatial spots,

accompanied by their respective spatial coordinates across a tissue which refers to a collection of

cells that are organized in a specific manner and perform a particular function or set of functions

within an organism. It is a complex and dynamic landscape where the spatial arrangement of

cells is integral to understanding gene expression patterns and their implications for health and

disease. Depending on the specific technology utilized, a sample could represent a single cell (as in

the case of STARmap technology), a cell-sized local region (as with HDST technology[70]), or a

localized region comprising dozens of cells (as seen in Slide-seq[71, 72] and Visium technologies).

The latest SRT platforms, such as 10x Genomics Visium and Slide-seqV2, encompass thousands

of spatial locations within each tissue sample, with future developments poised to achieve even

higher resolutions. As technology progresses, the demand for more robust statistical frameworks

to effectively analyze spatial data intensifies.

Although spatial transcriptomic (ST) data permit addressing a range of distinct questions, a

fundamental initial step in the downstream analysis of spatial data is the identification of spatially

variable genes (SVGs). These are genes that exhibit variations in expression levels either across

the entire tissue or within predefined spatial domains. These genes can potentially unveil tissue

heterogeneity and the underlying structural factors that drive distinct expression patterns across

spatial locations, thus offering valuable insights into biology.

Numerous methods have been developed for the identification of SVGs. These methods en-
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compass a spectrum of approaches, including the utilization of standard spatial statistics measures

like Moran’s I statistic[73] and Geary’s C statistic[74] to rank genes based on their spatial au-

tocorrelation. More advanced methods employ model-based approaches such as SpatialDE[75],

SpatialDE2[76], SPARK and its extensions[77], nnSVG[78], BOOST-GP[79], marked point pro-

cess frameworks like Trendsceek[80] and scGCO[81], or model-free frameworks like sepal[82] and

GLISS[83]. Additionally, there are toolboxes, such as MERINGUE[84], Giotto[85], Seurat[86],

Squidpy[87] that integrate some of these methods into comprehensive end-to-end analysis frame-

works.

Downstream analysis involving SVGs encompasses various tasks, such as spatial clustering,

deciphering spatial domains, and identifying spatial domain-specific SVGs. Additionally, there

are numerous other downstream analyses that leverage additional information like scRNASeq data,

histological images, and more, for tasks such as spatial decomposition of spots, gene imputation, the

inference of cell-cell and gene-gene interactions and spatial location reconstruction for scRNA-seq

data. However, this review till section 3.7 primarily concentrates on SVG detection frameworks

and does not delve into the details of other downstream analyses in this section.

Therefore, the primary focus of this chapter is to discuss selected frameworks for SVG identifi-

cation. This serves as a literature review aimed at providing a comprehensive overview of the field

of spatial transcriptomic studies. The goal is to become acquainted with existing SVG identification

frameworks, including their unique characteristics, novelty, as well as their pros and cons.

3.2 An overview of SVG detection techniques

Generally, in a spatial transcriptomics setup, the available spatial dataset contains gene expres-

sion measures/counts for 𝑚 genes distributed across 𝑁 known spatial coordinates or spots. This

section establishes the key symbols that will be frequently utilized. Specifically, 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑁 )

is defined as the gene expression profiles/counts for a given gene across spatial coordinates (referred

to as samples or spots), denoted by 𝑠 = (𝑠1, ..., 𝑠𝑁 ). The coordinates of the spatial locations are typ-

ically two-dimensional, i.e., 𝑠𝑖 = (𝑠𝑖1, 𝑠𝑖2), but any dimensional coordinates can be employed. The

primary objective of these SVG detection models is to ascertain which genes, out of the 𝑚 genes,
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are spatially variable across the tissue. In other words, the main goal is to determine whether the

gene expression measure 𝑦 depends on or relates to the spatial locations where the gene expression

measures are collected.

Here, we classify SVG detection methods based on two primary categories: (1) based on input

data type and (2) based on the computational framework. The initial categorization focuses on

input data type, representing the foundational step in SVG detection. Therefore, we first discuss

the input data pre-processing step in Section 3.2.1. Subsequently, Sections 3.2.2 and 3.2.3 delve

into the detailed exploration of model-based and model-free approaches, respectively, aligning with

the later categorization based on the computational framework. Table 1 is then presented in this

sequential order to reflect the dual categorization process.

3.2.1 Gene expression data and pre-processing step

The gene expression measure 𝑦 are generally of count data type (originated from sequence based

or image based technology). Various SVG detection models have been developed to specifically use

count data as input following some mandatory filtering and quality control steps. Some examples

of these models include SPARK-X[88] ,BOOST-GP[79], SINFONIA[89], and GPcounts[90]. The

gene expression count data often exhibit over-dispersion and contain numerous zero values, mainly

due to the technology employed for data generation or simply because many genes are poorly

expressed for biological reasons. These particular issues in count data are generally taken care of by

using negative binomial models which handle over-dispersion well. For the issue of zero-inflation,

Zhao et al, 2022 [91] showed that modeling zero inflation is not necessary in spatial transcriptomics,

thus is not a concern in many method development. On the other hand, some methods, for

example SpatialDE[75], nnSVG[78], and BOOST-MI[92], use normalized gene expression data

as input in the framework for easy implementation, where in most of cases, the data is modeled

using multivariate normal distribution after transformation. Authors in SPARK[77] proposed

two different data models, SPARK and SPARK-G which uses count data and normalized data,

respectively. The data normalization method is not unique for these methods. The normalization

step generally removes the bias due to differences in sequencing depth using size factors and
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normalizes the data using log transformation(log10 or log2 transformations after adding a pseudo-

count value 𝑐, preferably 1). The method sepal[82] uses a slightly different normalization procedure

which involves mapping the log-transformed values to the interval [0,1] and using a pseudocount 2.

Other normalization methods, such as scran, scuttle, and scater R/Bioconductor packages[93, 94],

can also be applied. Table 3.1 provides information on some selective methods together with their

required input data type and the implemented model:

Table 3.1 A selective list of methods for SVG detection in ST data analysis categorized based on
required input data type and the implemented computational framework.

Method Input data type Computational framework Data model
SpatialDE2[76] Count model-based Poisson

SPARK[77] Count model-based Overdispersed poisson
BOOST-GP[79] Count model-based Zero-inflated

negative binomial
CTSV[95] Count model-based Zero-inflated

negative binomial
GPcounts[90] Count model-based Negative binomial
SPARK-X[88] Count model-free -
SINFONIA[89] Count Model-free -
HEARTSVG[96] Count Model-free -
SpatialDE[75] Normalized model-based Multivariate Normal
SPARK-G[77] Normalized model-based Multivariate Normal

nnSVG[78] Normalized model-based Multivariate Normal
SOMDE[97] Normalized model-based Multivariate Normal

BOOST-MI[92] Normalized model-based Modified Ising model
Trendsceek[80] Normalized model-based Marked point process

scGCO[81] Normalized model-based Marked point process
sepal[82] Normalized Model-free -

GLISS[83] Normalized Model-free -
MULTILAYER[98] Normalized Model-free -

BSP[99] Normalized Model-free -
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3.2.2 Overview of model-based frameworks

3.2.2.1 Gaussian process(GP) regression based and similar models

The majority of the methods, including some of the state-of-the-art algorithms to detect SVG,

are based on Gaussian process (GP) regression models. For example, one of the first published

SVG detection methods, SpatialDE[75], models the normalized gene expression 𝑦 for a given gene

using the following multivariate normal model:

𝑝(𝑦 |𝜇, 𝜎2
𝑠 , 𝛿, 𝐾) ∼ 𝑁 (𝑦 |𝜇1, 𝜎2

𝑠 𝐾 + 𝛿𝐼), (3.1)

where the covariance term is decomposed into a spatial and a non-spatial part, where 𝛿𝐼 represents

the non-spatial part and 𝜎2
𝑠 𝐾 is the spatial covariance matrix, whose (𝑖, 𝑗)𝑡ℎ element in the kernel

matrix 𝐾 denotes the spatial similarity between the 𝑖𝑡ℎ and 𝑗 𝑡ℎ spot calculated based on the

corresponding coordinates 𝑠𝑖 and 𝑠 𝑗 . The choice of the kernel function plays a very important role

in detecting the spatial correlation present in the gene expressions. More discussion about kernel

function is provided in the next subsection.

Other methods like SPARK-G [77] (the Gaussian version of SPARK), nnSVG [78], and SOMDE

[97] implement similar GP models for modeling normalized gene expression data with some extra

features or added level of complexity. SPARK-G and nnSVG provide the option to include extra

covariate terms in the model. The covariates or the explanatory variables could contain batch

information, cell-cycle information, or other information that is important to adjust for during the

analysis. SOMDE is a two-step procedure. This approach involves first utilizing a self-organizing

map to cluster neighboring cells into nodes. Subsequently, it employs a Gaussian process to model

and analyze the spatial gene expression patterns at the node level.

Table 3.1 shows that methods like SPARK[77], SpatialDE2[76], BOOST-GP[79], CTSV[95],

and GPcounts[90] model count data directly. SPARK models the count data using an overdispersed

poisson model where the logarithm of the unknown Poisson rate parameter is assumed to follow a

stationary Gaussian process with similar spatial and non-spatial covariance components. BOOST-

GP presents a novel Bayesian hierarchical model to analyze spatial transcriptomic data, which
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models the count data using a zero-inflated negative binomial(ZINB) model. The logarithm of

the normalized expression level, which is included in the expectation term in NB, can be seen as

a GP with a spatial covariance term representing the spatial variability in case there is a spatial

pattern. GPcounts also uses negative binomial distribution to model the UMI(Unique Molecular

Identifier) data. SpatialDE2 employs a Generalized Linear Mixed Model (GLMM) for count data

modeling. In contrast to GP-based techniques that typically separate covariance into a spatial and a

non-spatial component, SpatialDE2 dissects the covariance into several spatial components along

with a non-spatial random component. CTSV implements a slightly different technique and does

not use the GP model. In CTSV, the gene specific, spot specific and cell-type specific relative

mean expression level in the ZINB model is a linear combination of ℎ1(𝑠.1) and ℎ2(𝑠.2) where

the functions ℎ1(·) and ℎ2(·) represents the underlying true spatial effect modeled with the kernel

function in GP model.

3.2.2.2 Statistical inference and selecting kernel function in GP-based frameworks

Typically, when evaluating the existence of spatial patterns within the data, an assessment is

made by testing the alternative hypothesis, which suggests the presence of a spatial covariance term

in the model, against the null hypothesis, where the spatial covariance term is set to zero, indicating

the absence of spatial variability. This comparison between the model fitted under the alternative

hypothesis and the null model forms the basis of a significance testing procedure. This often

involves conducting significance tests and drawing conclusions based on p-values in frequentist

approaches. For example, in model (3.1), testing SVG is equivalent to testing 𝐻0 : 𝜎2
𝑠 = 0.

As previously mentioned, selecting the appropriate kernel function for computing the spatial

covariance matrix is a critically important step in identifying spatial patterns within the data.

Ideally, the kernel function should accurately capture the true underlying relationship between the 𝑦

values and the spatial coordinates 𝑠. In practice, the actual underlying function remains unknown,

and the closer the chosen kernel function approximates the true functional form, the more precise

the model specification becomes, rendering the test more robust and powerful.

SpatialDE employs a squared exponential covariance function(a.k.a Gaussian kernel function
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or radial basis kernel function) to compute the spatial covariance matrix:

𝐾𝑖, 𝑗 = 𝑘 (𝑠𝑖, 𝑠 𝑗 ) = 𝑒𝑥𝑝(−
|𝑠𝑖−𝑠 𝑗 |2

2𝑙2 )

The hyperparameter 𝑙, recognized as the characteristic length scale or bandwidth, determines

how rapidly the covariance decays as a function of distance and is typically chosen by grid search.

SOMDE also uses the squared exponential (Gaussian) kernel in their model with ten different length

scales and chooses the one that achieves the highest log-likelihood ratio value. GPcounts uses linear

or periodic kernel based on BIC values. SPARK asserts that relying on a single kernel restricts

the ability to robustly identify spatially variable genes across diverse spatial patterns. Therefore,

SPARK (and SPARK-G) adopts an approach involving a total of ten distinct spatial kernels. These

comprise five periodic kernels (e.g., Cosine kernels) with varying periodicity parameters and five

Gaussian kernels with different smoothness parameters. SPARK proceeds to compute ten p-

values, each derived from a different test employing these various kernel functions. These p-values

are subsequently combined using the Cauchy combination rule [100, 101]. Similar to SPARK,

SpatialDE2 incorporates a variety of pre-defined kernels with varying structures and length scales.

It also offers the flexibility to conduct an omnibus test as an alternative to independently testing each

kernel and subsequently merging the p-values. nnSVG posits that genes can potentially display a

vast spectrum of spatial patterns, and using the same set of kernel functions for all of the genes

might lead to less powerful tests. They consider the use of an exponential covariance function as a

kernel function where the length scale parameter of the kernel function is fitted for each gene, which

allows capturing the unique spatial variability pattern of the gene. CTSV uses five different sets

of functional forms for ℎ1(𝑠.1) and ℎ2(𝑠.2), which includes linear functions, squared exponential

functions, and periodic functions with different sets of scaling parameters and the five p-values

calculated from five different forms are combined using the Cauchy combination method.

Although different models discussed here have some similarities in testing procedures, the

model fitting techniques implemented and the testing procedures utilized are different and are

summarized in Table 3.2.
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Table 3.2 List of some popular SVG detection methods with model-fitting and testing information.

Method Bayesian/ Model fitting and Hypothesis testing
Frequentist parameter estimation method

SpatialDE Frequentist Maximizing marginal Likelihood ratio test
log likelihood

SpatialDE2 Frequentist Only null model parameters Score test based
needs to be estimated on Zhang and Lin[102]

by BLUP
SPARK Frequentist Approximate-inference Satterthwaite method

algorithm based on the on the basis of score statistics
PQL approach

SPARK-G Frequentist Maximum likelihood Score test
nnSVG Frequentist Fast optimization algorithms Likelihood ratio test

for NNGP models
(BRISC R package)

SOMDE Frequentist Gradient optimization Likelihood ratio test
CTSV Frequentist Approx. maximum likelihood Wald tests (R

using conjugate gradient(CG) package pscl)
algorithm

GPcounts Frequentist Optimization of log marginal Likelihood ratio test
likelihood by variational

approximation
BOOST-GP Bayesian Sampling from posterior Bayes Factor or posterior

using MCMC probabilities of inclusion (PPI)

The statistical power of GP-based methods hinges on the selection of kernel functions[77], which

can complicate the model selection and limit SVG detection power. To address this challenge, the

authors in [92] introduced BOOST-MI. This novel approach employs Bayesian modeling of spatial

transcriptomics data via a modified Ising model to identify SV genes. As an initial step, BOOST-MI

takes normalized gene expression data as input and dichotomizes the normalized expression levels

into a binary spatial pattern. Subsequently, BOOST-MI proceeds to identify a wide spectrum of

spatial patterns displayed by the genes by inferring the Ising model interaction parameter within

a Bayesian framework. It achieves this by generating samples from the posterior distribution of

the parameters through a double Metropolis-Hastings (DMH) algorithm[103]. Subsequently, it
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computes the Bayes factor based on these posterior samples, which are then used for selecting SV

genes.

Trendsceek[80], one of the earliest published SVG detection methods, models data as marked

point processes, where they assign points to represent the spatial locations of spots and marks on

each point to represent expression levels. The pivotal objective of Trendsceek revolves around

evaluating the dependency between the spatial distribution of points and their respective marks

through pairwise analyses as a function of the inter-point distances. The underlying premise is that

if there exists no dependency between marks and point locations, the resulting scores should remain

constant across various distances. A resampling procedure is executed to gauge the significance of

a gene’s spatial expression pattern, involving permutations of expression values that create a null

model with no spatial expression dependency.

Similar to Trendsceek, ScGCO[81](single-cell graph cuts optimization) method also models

gene expression data as a marked point process where points represent the spatial locations of

measured cells or spots, and marks are discrete gene expression states (such as, down-regulated or

up-regulated) associated with points. It analyzes the dependency of points with a specific mark on

spatial locations using a hypothesis test. Under the null hypothesis (i.e., no spatial dependency),

it assumes that points with a specific mark in a 2D space are distributed in a completely random

fashion and can be described by a homogeneous spatial Poisson process. Genes with spatial

regions whose number of cells/spots of specific marks are associated with statistically significant

low probabilities under the null model are selected as SVG.

3.2.3 Overview of model-free frameworks

There are other SVG detection methods such as SPARK-X[88], sepal[82], GLISS[83], and

SINFONIA[89] which do not attempt to model the data generation process or rely on distributional

assumptions. Instead, they use model-free techniques to detect SVGs. The authors introduced

sepal[82] (Spatial Expression Pattern Locator), an innovative method that leverages transcript

diffusion simulations to identify genes exhibiting spatial patterns. It simulates transcript diffusion

within the spatial domain and measures the time required for convergence. The core idea is that
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transcripts with random spatial distributions will converge more quickly or reach a homogeneous

state faster compared to those with distinct spatial patterns. Consequently, the diffusion time

serves as an indicator of a gene’s degree of spatial variability. Genes with longer diffusion times

exhibit less spatial randomness. Therefore, ranking genes based on this indicator and selecting the

top-ranked genes as SVGs is a logical approach.

SINFONIA[89] offers a scalable approach to initially identify spatially variable genes through

ensemble strategies as part of its spatial transcriptomic data analysis, with the ultimate goal of

deciphering spatial domains. SINFONIA initially identifies the 𝑘 nearest neighbors in Euclidean

space for each spot and builds a Spatial Neighbor Graph (SNG) using the weight matrix where the

(𝑖, 𝑗)th element is determined by a function of the distance between the 𝑖th and 𝑗 th spot. Next,

SINFONIA calculates Moran’s I and Geary’s C statistics for each gene based on the weight matrix

𝑊 to assess spatial autocorrelation. The underlying concept is that genes with more pronounced

spatial autocorrelation exhibit more organized spatial expression patterns.

HEARTSVG[96] utilizes a unique, distribution-free, test-based approach that focuses on iden-

tifying non-SVGs first and then infers the presence of SVGs using this information. The process

involves assessing serial autocorrelations within the marginal expressions across the global spatial

context to pinpoint non-SVGs. This, in turn, enables the automatic recognition of all other genes

as SVGs, regardless of their spatial patterns. HEARTSVG asserts its superiority in terms of ro-

bustness and computational efficiency by abstaining from assumptions about specific underlying

spatial patterns for these variable genes.

SPARK-X[88] is a nonparametric method grounded in the following insight: if 𝑦 is independent

of 𝑠, then the spatial distance between two locations 𝑖 and 𝑗 would also be unrelated to the gene-

expression difference between those two locations. SPARK-X constructs two 𝑁 × 𝑁 projection

covariance matrices: (1) The expression covariance matrix based on gene expression levels; and

(2) the distance covariance matrix based on all spatial locations. It employs a test statistic derived

from the product of these two covariance matrices to evaluate the independence between the gene

expression (𝑦) and the spatial coordinates (𝑠). In simpler terms, if gene expressions are indeed
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independent of spatial coordinates, the product of these covariance matrices will yield a small

value. Conversely, if gene expressions are dependent on the spatial coordinates, the product of the

matrices will yield a large value.

Similar to the kernel matrix used in methods like SpatialDE or SPARK, the statistical power of

the SPARK-X test inevitably hinges on how the distance covariance matrix is constructed and how

well it aligns with the true underlying spatial patterns exhibited by the gene of interest. To ensure

robust identification of spatially varying genes across diverse spatial expression patterns, SPARK-X

explores various transformations of the spatial coordinates (𝑠) and subsequently generates distinct

distance covariance matrices. Specifically, the algorithm applies five Gaussian transformations

with varying smoothness parameters and five cosine transformations to the spatial coordinates (𝑠).

This process results in the creation of eleven distinct p-values, corresponding to the ten transformed

distance covariance matrices and the original one constructed using the original coordinates. These

individual p-values are then combined using the Cauchy combination method. MULTILAYER[98]

treats spatially transcriptomics data as a raster image and uses digital image strategies to resolve

tissue substructures. The basic unit in MULTILAYER is the "gexel", gene expression element

analogous to a pixel in a digital image. The gene expression levels per gexel relative to the average

gene expression are computed within the tissue. Genes are considered upregulated or downregulated

when their normalized read counts per gene are above or below the average behavior, respectively.

Differentially expressed genes are ranked based on the number of related gexels, providing a rapid

view of genes that are overrepresented on the digital map based on their relative expression.

GLISS[83] (Graph Laplacian-based Integrative Single-cell Spatial Analysis) utilizes a graph-

based feature learning framework to detect and discover SVGs and recover cell locations in scRNA-

seq data by leveraging spatial transcriptomic and scRNA-seq data. The workflow involves multiple

steps. First, SV genes are identified from ST data using graph-based feature selection. Next, it

determines the cells of interest in the scRNA-seq data based on unsupervised learning methods

and leverage these selected SVGs to discover new SVGs in scRNA-seq data. The final goal of this

workflow is to cluster genes based on their spatial patterns.
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The BSP (Big-Small Patch)[99] method, introduced in a recent publication, utilizes a non-

parametric model for the identification of spatially variable genes in 2D or 3D spatial transcriptomics

data. The approach involves taking normalized spatial transcriptomics data as input. It defines

big and small patches for each spatial spot based on neighboring spots with larger or smaller radii,

respectively. The method then calculates local means of gene expression for both big and small

patches. Following this, it calculates the ratio between the variances of local means for each gene,

approximating a log-normal distribution for the distribution of these ratios. Subsequently, a p-value

is determined for each gene based on this approximated distribution.

3.3 Statistical Inference with Multiple Testing Control

We have previously discussed both model-based and model-free methods for detecting SVGs.

The mathematical models employed for capturing the data generation process and the innovative

model-free SVG detection technique have proven valuable for uncovering significant SVGs that

offer critical biological insights. However, from a statistical perspective, concerns arise regarding

the potential for false discoveries of genes that lack genuine spatial variability. This concern

becomes more pronounced when a large number of genes are simultaneously tested across most

frameworks. If the false discovery rate or type 1 error is not adequately controlled, it may lead to

incorrect conclusions and the selection of numerous genes that exhibit false spatial variability.

Various methods have been developed for multiplicity correction (MC) to address this concern.

Some methods analytically constrain the false discovery rate (FDR) to remain below a predetermined

threshold, while others do not analytically control the FDR and simply select a user-specified number

of top genes as SVGs. Researchers may choose a method that aligns better with their research goals

and the type of downstream analysis they intend to perform. In Table 3.3, we present an overview of

these methods, organized around these critical questions. The permutation-based method is usually

considered as the golden standard method as it is purely data-driven and distribution free. However,

it is the least scalable one since it is computationally more demanding. The FDR-based methods

have been the commonly applied ones since they offer type I error control while maintaining high

power compared to the Bonferroni method. Nevertheless, depending on the downstream analysis
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goal, it is not necessary to strictly enforce the MC rule. For example, when the goal is to find the

low dimensional embedding of genes, such as in spatial PCA analysis [104], people usually choose

top ranked genes for further analysis. In such cases, strictly enforcing MC is not needed.

3.4 Exploring Performance, Advantages, and Limitations

In the preceding sections, we have explored the complexities associated with spatial count data.

In many instances, these count data are characterized by sparsity and overdispersion. Section 2 of

this review classifies modeling frameworks based on whether they directly model the count data or

opt for modeling the normalized data. Some literatures [88, 79] argue against modeling normalized

data with a Gaussian distribution due to concerns that such a parametric approximation may result

in reduced statistical power and difficulties in controlling type 1 errors, especially when dealing

with small p-values.

On the other hand, methods that employ normalized count data, such as SpatialDE, SPARK-

G, and nnSVG, offer advantages, including simpler model structures and reduced computational

challenges. Notably, SPARK employs a dual modeling approach, encompassing both an overdis-

persed Poisson model (SPARK) and a Gaussian model (SPARK-G) for count data analysis. They

declare that SPARK-G exhibits significantly improved computational efficiency compared to the

Poisson version of SPARK. Moreover, SPARK-G may demonstrate greater resilience to model

misspecification, potentially enhancing its effectiveness in specific data applications.

Although many researchers prefer to model count data directly, there is no consensus on the

preferred approach for directly modeling count data either. While some opt for Poisson distribution

models, others argue that it may be insufficient to address issues of overdispersion, suggesting that

a negative binomial distribution is more suitable in such cases. Furthermore, when data exhibit

extreme sparsity, the utilization of a zero-inflated Poisson or negative binomial model may be more

logical, although it tends to introduce greater complexity into the model. But we need to note that

direct modeling of sparse count data with a negative binomial distribution or other over-dispersed

Poisson distributions incurs algorithm stability issues [88, 108, 90].

With the continuous evolution of spatial transcriptomic technologies, researchers now have
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access to increasingly vast and high-resolution spatial datasets. Analyzing these extensive datasets

demands the use of efficient and scalable methods for downstream analysis. Notably, approaches

like Trendsceek and BOOST-GP impose substantial computational demands. In a study referenced

from SRTsim[109], it was observed that when applying these methods to synthetic data, Trendsceek

(v.1.0.0) required approximately 10 hours, while BOOST-GP needed about 8 hours to analyze a

single synthetic dataset containing 1000 genes and 673 locations. In the same research context,

SOMDE (v.0.1.8) struggled, failing to process nearly 90 percent of the genes and yielding NA

values.

Another comprehensive comparison, outlined in a review paper[110], assessed the performance

of various SVG detection methods. The evaluation considered computational time and memory

usage across 20 diverse spatial datasets, each varying in the number of spots or samples. Among

the methods examined, including SpatialDE, SPARK-X, nnSVG, SOMDE, Giotto KM, and Giotto

Rank (both are implemented in the Giotto package), SPARK-X emerged as the swiftest, with

SOMDE following as the second-best option, albeit notably slower than SPARK-X. SpatialDE

exhibited poorer performance in larger datasets, while nnSVG proved faster than SpatialDE for

larger datasets but relatively slower for datasets with fewer spatial locations. In particular, SPARK-

X [88] scales linearly with the number of spatial locations, while other methods scale cubically

(e.g., SpatialDE) or quadratically (SpatialDE2, SPARK).

In terms of peak memory usage, study [110] revealed that SOMDE consumed the least memory,

with SPARK-X ranking second. Conversely, SpatialDE demonstrated high peak memory consump-

tion. Considering the trade-off between speed and memory usage, SPARK-X and SOMDE emerged

as the two most efficient methods, as determined by the experiment. Furthermore, the evaluation

included other methods such as Giotto KM, Giotto Rank, and Moran’s I , but none of these

alternatives matched the efficiency of SPARK-X or SOMDE based on the experimental findings.

In summary, each modeling framework comes with its own set of pros and cons, necessitat-

ing careful consideration of the trade-off between computational efficiency/cost and performance

when selecting the most suitable approach for analyzing spatial count data. The model-free or
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nonparametric approaches do not try to capture the data generation process and offer alternative

frameworks to detect SVG. Most of the method frameworks are very intuitive but each comes with

its own sets of restrictions or assumptions. For example, Trendsceek is a resampling-based method,

which incurs a substantial computational load, rendering its application impractical for extensive

ST datasets. SPARK-X exhibits impressive performance for high dimensional data, but the authors

recommend using it with large sample (e.g., spot) size, say 3,000 or more.

3.5 Assessing Input Data and Model Outputs

For the various methodologies we reivewed so far, some of these approaches primarily focus on

identifying genes that exhibit spatial variability across the entire tissue, exemplified by methods like

SpatialDE and SPARK. In contrast, others are additionally equipped to detect genes with spatial

variability within predefined spatial domains, as seen in nnSVG. Other methods like SpaGCN[111]

and STAMarker[112] are designed to identify Spatial domains and detect SVGs within spatial

domains.

Additionally, certain methods aim to identify SVGs to facilitate downstream analysis. For

instance, SINFONIA, as cited in this work, provides a scalable approach for the initial identification

of spatially variable genes using ensemble strategies within the context of spatial transcriptomic

data analysis. The ultimate objective of this method is to decipher distinct spatial domains within

the tissue.

Furthermore, some of these methods leverage additional information as input, such as single-

cell RNA sequencing (scRNA-seq) data, spatial domain information, or tissue-specific markers, in

conjunction with spatial transcriptomic data. For instance, CTSV requires scRNA-seq data and a

set of marker genes as input alongside the spatial transcriptomic data. It employs deconvolution

techniques like SPOTlight[113], RCTD[114], or SpatialDWLS[115] to estimate cell-type propor-

tions for each spatial spot. Ultimately, this approach identifies spatially variable genes specific

to different cell types. Similarly, Trendsceek identifies genes with significant spatial trends and

subsequently determines the subset of cells occupying spatial regions of interest.

Given the distinct ultimate objectives and input criteria for each method, it would be unfair to
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evaluate their performance solely based on a single parameter. Rather, the utility or superiority

of these frameworks depends on the researcher’s specific goals and the nature of their research

inquiries. In this context, we present a table that combines these selective frameworks, including

details about their typical inputs and primary research objectives (see Table 3.4).

3.6 Publicly Accessible Code for Major SVG Detection Methods

Every prominent SVG detection method featured in this paper has made its code publicly

available. Certain frameworks have packages published in CRAN or available as Python modules,

while others have shared their code on Github, and the package can be installed directly from

Github. Here, we have compiled a list of the packages and repositories associated with these

techniques, along with the coding language they have used (see Table 3.5). This compilation aims

to facilitate convenient access to their respective code bases, making it easier for researchers to

choose a method based on their preferred programming language.

3.7 Summary and Outlook

We systematically reviewed recently developed frameworks for identifying spatially variable

genes and grouped them into different categories and delved into the unique aspects of their

models and underlying principles. Here, we provide a brief discussion encompassing various

facets, including pre-processing steps, modeling frameworks, inference techniques, scalability, and

practical applicability of these frameworks. We explored the performance of select methods as

reported in previously published papers. Nevertheless, it is essential to note that we refrained

from conducting evaluations based solely on the number of SVGs detected or the trade-off between

statistical power and FDR. This decision arises from the fact that the methods discussed in this paper

often serve different research objectives, each tailored to specific research questions. For example,

a method primarily focused on spatial clustering may yield similar outcomes when considering

the top 100 genes versus the top 110 genes. In contrast, a method geared toward accurately

identifying genuine SVGs and scrutinizing individual SVGs to glean deeper insights into biological

mechanisms may prioritize stringent control of false discovery rates, making it a pivotal concern

in their evaluation. The evaluation criteria must align with the unique goals and nuances of each
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method, akin to comparing apples to oranges when attempting to gauge their performance solely

based on the number of SVGs selected.

This paper[110] has previously investigated several methods for detecting spatial gene expres-

sion variations and benchmarked their performance based on different measures. It reported that,

although each SVG detection method successfully identifies a significant number of SVGs, there

is limited overlap in the SVGs detected when a significance cutoff is applied to filter the SVGs.

The study’s simulation analysis revealed that, in most cases, the estimated FDRs do not accurately

reflect the true FDRs. These findings indicate that there is room for improvement in the commonly

used methods for SVG detection and their associated FDR control approaches.

In the context of Gaussian process based methods, one potential issue could be related to the

selection of kernel function. For instance, as an improvement to spatialDE, approaches like SPARK

and SPARK-X employ a variety of different kernels to robustly identify various traits. However,

they apply the same set of parameter values to all genes, even when these genes may exhibit vastly

different spatial patterns. While nnSVG offers improvements by allowing gene-specific kernel

function parameter selection, it relies on a single type of kernel function. This opens room for

further methodological development for optimal kernel selection when kernel-based methods are

applied for SVG detection.

Furthermore, model-free techniques, in many cases, do not analytically control FDR, making it

challenging to establish a specific cutoff for selecting SVGs. Many methods claim to detect more

SVGs than others, often undetected by alternative methods. However, the mere detection of more

SVGs does not necessarily indicate the superiority of a framework if it does not effectively control

the FDR. If the goal is to pinpoint the top 𝑘 (say 1000) SVGs for subsequent analysis without the

necessity of precisely quantifying detection uncertainty, these methods can be employed. However,

for a more rigorous approach, it is crucial to implement stringent FDR control measures to prevent

false discoveries. In our empirical analysis, we observed that numerous methods exhibit elevated

false positive rates with inflated p-values (data not shown). There is an urgent demand for the

development of more rigorous statistical approaches to enhance false positive control.
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Model-based SVG detection techniques frequently incorporate covariate variables, such as cell

type information or domain structure information, into the model. However, the unavailability

of this information alongside spatial transcriptomics data poses a challenge. It remains unclear

how to obtain covariate information without utilizing the same data twice—once for identifying

covariates and again for detecting SVG. Addressing this issue represents an ongoing challenge

within the framework of SVG detection techniques. Hopefully, future methods will be developed

to effectively bridge this gap.

Finally, we acknowledge that benchmarking existing methods is essential to determine their

efficiency in terms of scalability and accurate selection of SVGs. This is crucial for ensuring proper

downstream analysis. To address this need, we present a foundational outline of a benchmarking

design. For data generation, they can be simulated through methods such as SRTsim [109] and

scDesign3 [116]. Both methods are capable of simulating datasets that emulate the structure of a

real spatial dataset by learning their parameters. SRTsim offers a ShinyR platform where spatial

patterns can be visualized, and parameters can be configured to generate count data for spatially

variable gene expression. Diverse datasets containing both spatial and non-spatial genes can be

simulated, with various spatial effect strengths, sparsity levels, distinct spatial patterns. scDesign3

is another model-based simulation machinery where users can use real data to estimate parameters

which allow for a wide range of simulation scenarios, from homogenous cell populations to complex

tissues with diverse cell types. Benchmarking involves assessing the performance of implemented

methods by checking their power and false discovery rate (FDR) in detecting SVGs, their scalability,

as well as the impact on specific downstream analysis such as spatial domain detection.

In summary, this chapter provides a selective survey of recently published and archived literature

on SVG detection, offering an analysis of their practical utility, adaptability, innovation, and

constraints from various practical perspectives. This effort aims to facilitate new researchers in

gaining a holistic understanding of the available methods and assist them in selecting a framework

aligned with their specific research needs and questions.
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Table 3.3 Compilation of SVG detection techniques Grouped by the method’s control of False
Discovery Rate (FDR).

Method
If framework

How SVGs are selectedanalytically
controls FDR

Trendsceek Yes Permutation based p-values,
Benjamini–Hochberg procedure[105] for MC

SpatialDE Yes Analytically estimated p-values,
q-value method[106] for MC

SpatialDE2 Yes Analytically estimated p-values,
Benjamini–Yekutieli procedure[107] for MC

SPARK Yes Analytically estimated p-values,
Benjamini–Yekutieli procedure for MC

SPARK-G Yes same as SPARK
SPARK-X Yes same as SPARK

nnSVG Yes Analytical approximate p-values,
Benjamini–Hochberg method for MC

BOOST-GP Yes Based on Bayesian FDR controlled PPI threshold
GLISS Yes Permutation based p-values,

Benjamini–Hochberg procedure for MC
scGCO Yes Analytically estimated p-values,

Benjamini–Hochberg procedure for MC
CTSV Yes Analytically estimated p-values,

q-value method for MC
HEARTSVG Yes Analytically estimated p-values,

MC by Bonferroni/Holm/Hochberg
GPcounts Yes Analytical or permuted p-values,

q-value method for MC
BSP yes Analytically estimated p-values,

q-value method[106] for MC
SOMDE No Top ranked genes based on

spatial variability score
sepal No Top 𝑘 genes with highest ranks

SINFONIA No Top 𝑘 genes with highest score
and an ensemble technique

BOOST-MI No Based on specific Bayes Factor threshold
MULTILAYER No Based on the two-fold threshold

of a test statistic
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Table 3.4 List of selective methods with input data type and main goal.

Method Input data Main goal
(Publication)

SpatialDE(2018) ST data Finding SVG
Spatial gene-clustering

SpatialDE2(Archived,2021) ST data Tissue region segmentation
Finding SVG

Spatial gene-clustering
SPARK(2020) ST data Finding SVG

SPARK-X(2021) ST data Finding SVG
nnSVG(2023) ST data Finding SVGs across tissue

or within spatial domains
BOOST-GP(2021) ST data Finding SVG

SOMDE(2021) ST data Finding SVG
sepal(2021) ST data Finding SVG

Spatial gene-clustering
SINFONIA(2023) ST data Finding SVG for

deciphering spatial domains
BOOST-MI(2022) ST data Finding SVG

scGCO(2022) ST data Finding SVG
BSP ST data Finding SVG

HEARTSVG (Archived,2023) ST data Detecting SVG and spatial domain
MULTILAYER(2021) ST data Detecting SVG, dimensionality

reduction, spatial clustering and more
STAMarker(Archived,2022) ST data Spatial domain-specific variable genes

GPcounts(2021) ST data Finding SVG, identifying gene-specific
scRNA-seq data branching locations and more

SpaGCN(2021) ST data Identifying spatial domains
histology image data and SVG in domain

Trendsceek(2018) ST data Finding SVG
scRNA-Seq data Identifying cells in spatially

significant gene expression regions
GLISS(Archived,2020) ST data Finding SVG, recovering cell

scRNA-seq data locations in scRNA-seq data
and gene-clustering

CTSV(2022) ST data Detecting cell-type-specific
scRNA-seq SVG

set of marker genes
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Table 3.5 List of methods with implementing code language and package site.

Method Code Package or GitHub or vignette
language

SpatialDE Python https://github.com/Teichlab/SpatialDE
SpatialDE2 Python https://github.com/PMBio/SpatialDE
SOMDE Python https://pypi.org/project/somde

https://github.com/XuegongLab/somde
sepal Python https://github.com/almaan/sepal

10.5281/zenodo.4573237
GLISS Python https://github.com/junjiezhujason/gliss

SINFONIA Python https://github.com/BioX-NKU/SINFONIA
ScGCO Python https://github.com/WangPeng-Lab/scGCO

MULTILAYER Python https://github.com/SysFate/MULTILAYER
GPcounts Python https://github.com/ManchesterBioinference/GPcounts

BSP Python https://github.com/juexinwang/BSP/
Trendsceek R https://github.com/edsgard/trendsceek

SPARK R https://github.com/xzhoulab/SPARK
SPARK-G https://xzhoulab.github.io/SPARK/01_about/
SPARK-X

nnSVG R https://github.com/lmweber/nnSVG
BOOST-MI R https://github.com/Xijiang1997/BOOST-MI

CTSV R https://bioconductor.org/packages/devel/bioc/html/CTSV.html
HEARTSVG R https://github.com/cz0316/HEARTSVG.git
BOOST-GP R/C++ https://github.com/Minzhe/BOOST-GP
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3.8 Downstream analysis: Spatial domain detection

In spatially resolved RNA-seq data, researchers aim to identify spatially variable genes (SVGs)

as an initial step in the analysis, although detecting SVGs is not the primary objective. The main

goal lies in the downstream analysis, which relies on the SVGs identified in the initial step. Key

downstream analyses include detecting spatial domains, spatial trajectory inference on the tissue,

and high-resolution spatial map reconstruction. etc. Here, our primary focus is on spatial domain

detection. Various algorithms have been proposed by authors that are equipped to perform this

task, such as SpaGCN[111], SpatialPCA[104], BayesSpace[117] etc. Among these, we opt for

SpatialPCA due to its superior performance compared to other existing algorithms. In this section,

we elaborate on the method and domain detection steps conducted by SpatialPCA in greater detail,

as we have employed this efficient algorithm in our framework, which will be described in the next

chapter.

3.8.1 SpatialPCA

Spatial transcriptomic datasets are typically vast and high dimensional, with a significantly

higher number of genes (m) than spots (N). Handling the entire dataset directly poses challenges.

Moreover, disregarding spatial information while seeking low-dimensional embeddings of the data

from gene expression values results in information loss. To address this issue, the Authors propose

SpatialPCA, a method for spatially-aware dimension reduction. SpatialPCA effectively extracts

a low-dimensional representation of spatial transcriptomic data while preserving both biological

signals and spatial correlation structures. This condensed representation of spatial transcriptomic

data can be further utilized for many downstream analysis, for example spatial domain detection,

which we are interested in.

3.8.1.1 Method to obtain Spatial PCs

𝑌 is denoted as the available 𝑚 × 𝑁 normalized gene expression matrix. The 𝑗𝑖𝑡ℎ element of

𝑌 , 𝑦 𝑗𝑖 (𝑠𝑖) represents the gene expression measure for 𝑗 𝑡ℎ gene on 𝑖𝑡ℎ location. SpatialPCA aims

to perform dimension reduction on the gene expression matrix and infer a 𝑑 × 𝑁 factor matrix 𝑍

that represents a low-dimensional embedding of𝑌 .For dimension reduction, consider the following
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latent factor model

𝑌 = (𝑋𝐵)𝑇 +𝑊𝑍 + 𝐸

where 𝑋 is the covariate matrix, 𝐵 be the corresponding coefficients. 𝑊 is a 𝑚 × 𝑑 factor loading

matrix and 𝐸 is the 𝑚 × 𝑁 residual matrix, where 𝐸 𝑗𝑖 ∼ 𝑁 (0, 𝜎2
0 ). The model is currently

unidentifiable, so following the probabilistic principal component analysis model (PPCA)[118] an

orthonormality constraint is imposed on𝑊 : 𝑊𝑇𝑊 = 𝐼𝑑 .

Unlike the independent assumption on 𝑍 (𝑍 ∼ 𝑁 (0, 𝐼)) in PPCA and similar models, here the

elements of 𝑍 are not independent because in spatial transcriptomic data, the spots spatially close to

each other are likely to be more similar than the ones far from each other. This is because the spots

closer to each other might share similar cell type composition and display similar gene expression

measures. In order to promote consistency among neighborhood factor values and enhance the

exchange of information among adjacent areas for factor estimation, it is assumed that the 𝑙𝑡ℎ factor

values 𝑍1×𝑁
𝑙.

across N locations follows a multivariate normal distribution:

𝑍𝑙. ∼ 𝑀𝑉𝑁 (0, Σ𝑙)

where the covariance matrix Σ𝑙 is constructed using the Gaussian kernel

Σ𝑙 = 𝜎
2
0 𝜏𝑙𝐾

where 𝐾 (𝑠𝑖, 𝑠 𝑗 ) = 𝑒𝑥𝑝(−|𝑠𝑖 − 𝑠 𝑗 |2/𝛾)

where 𝛾 being the bandwidth parameter and 𝜎2
0 𝜏𝑙 is the variance component that is scaled with

respect to the residual error variance 𝜎2
0 .

With the model specifications provided above, the factor loading matrix 𝑊 and the factor

matrix 𝑍 , along with the hyperparameters (𝜏, 𝜎2
0 ), are inferred through maximum likelihood-based

optimization. Specifically, both 𝐵 and 𝑍 are integrated out initially to obtain a marginal likelihood,

based on which 𝜏, 𝜎2
0 , and 𝑊 are inferred. Subsequently, 𝑍 is estimated by computing their

posterior mean conditional on the estimated 𝜏, 𝜎2
0 , and𝑊 . The rows of the final matrix 𝑍 are called

Spatial PCs.
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3.8.1.2 Spatial domain detection with spatial PCs

The spatial PCs 𝑍 inferred from SpatialPCA can be combined with various methods already

developed in the scRNA-seq literature to enable a range of downstream applications in spatial

transcriptomics. Spatial domain detection, aimed at segmenting the tissue into multiple structures

or microenvironments, each characterized by a distinct transcriptomic profile, is facilitated. For

spatial domain detection, it is formulated as a clustering problem on the inferred spatial PCs 𝑍 .

Specifically, standard clustering algorithms like walktrap or Louvain are applied on 𝑍 to categorize

spatial locations into different spatial domains. Due to the critical spatial correlation information

present across locations in 𝑍 , clustering based on the spatial PCs would result in similar cluster

assignments in neighboring locations, leading to smooth boundaries in the detected tissue structures.

This advantageous property of SpatialPCA is harnessed by our framework, to be described in the

next chapter, to enhance the accuracy of spatial domain detection.

62



CHAPTER 4

CSVG: IMPROVED SPATIAL DOMAIN DETECTION BY
SPATIALLY VARIABLE GENE CLUSTERING ADJUSTING FOR CELL TYPE EFFECT

4.1 Introduction

Recent advancements in spatially-resolved transcriptomics (SRT) technology have revolution-

ized our ability to acquire comprehensive gene expression data for thousands of genes across tissue

locations in multiple samples. The number of genes and spatial resolution vary depending on

the specific technology employed. However, regardless of the technology and resolution, spatial

transcriptomic data facilitate the exploration of various biological questions.

Often a fundamental initial step in the analysis of SRT data involves identifying spatially vari-

able genes (SVGs). These genes exhibit expression level variations either across the entire tissue or

within predefined spatial domains. In recent years, there has been an abundance of research and the

development of new methods to address the challenge of detecting SVGs[119][120]. Although the

detection of SVGs lets us visualize the spatial patterns in the tissue which might offer some level of

biological insights about the tissue of interest, the main use of SVGs lies in downstream analysis,

specifically for spatial domain detection. Spatial domains are distinct and functionally specialized

anatomical structures within tissue, each distinguished by unique local characteristics including

cell-type composition, transcriptome heterogeneity, and cell-cell interactions[121][122][123]. De-

tecting these domains is crucial for understanding their collaborative role in tissue functions and

development stages. To achieve this, a set number of top SVGs is typically selected, and spatial

domains are identified using these top SVGs.

However, using an arbitrary number of top SVGs might not represent all the spatial patterns

exhibited by the SVGs. As previously argued [82], Some dominant patterns may overshadow

less pronounced yet relevant patterns. Previous methods, like SpatialDE[75], SPARK [77] and

Sepal[82], attempted to classify SVGs into groups with similar spatial patterns, aiding in a more

holistic representation of results. It’s important to highlight that classifying spatially variable genes

(SVGs) is a challenging task requiring specialized methods. Simple clustering approaches are
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inadequate as they overlook spatial information [75]. However, in existing methods challenges

arise regarding the selection of the unknown number of spatial pattern groups and selection of

other parameters, as well as the unclear impact of classification on downstream analysis. Here, we

propose an efficient method cSVG to classify SVGs into clusters and explore the benefits of this

clustering step in the final goal of spatial domain detection.

The concept of clustering SVGs carries a significant biological rationale. Researchers have

already identified many SVGs as the markers for specific cell types [124],[125],[126],[127], yet

detecting these cell type-specific SVGs presents a formidable challenge. As distinct spatial patterns

are associated with distinct cell type compositions, it follows that different cell type-specific SVGs

would manifest distinct spatial patterns. Consequently, clustering SVGs with similar patterns can

be viewed as a means of segregating distinct cell type-specific SVGs.

cSVG is a Gaussian process-based method that initially identifies SVGs and then establishes

a dependency map among these SVGs using an intuitive approach (see methods 4.2). This map

links each SVG with other SVGs exhibiting similar spatial patterns, ultimately clustering similarly

expressed SVGs together (see Figure 4.1A). The resulting SVG-clusters from the cSVG algorithm

can serve as inputs for further downstream analysis.

For performing downstream analysis, we employ a well-known dimension reduction technique

tailored for spatial data, SpatialPCA[104], to derive low-dimensional embeddings specific to each

SVG-cluster. These embeddings are subsequently utilized for spatial domain detection. In each

example considered in this study, whether through simulation setups or real data analysis, we

compare our findings with those obtained from the SpatialPCA framework, which generates low-

dimensional embeddings for all top SVGs collectively and subsequently performs the same spatial

domain detection step. This comparison aims to elucidate the advantages of the gene clustering

step facilitated by cSVG.

To evaluate the performance of cSVG, we conducted a comparison using a synthetic dataset

derived from real human DLPFC cortex data, with known annotations of its 5 layers (4 prefrontal

cortex layers and the white matter). See Supplementary Figure F.1 for more details on the synthetic

64



data generation. Figure 4.1B illustrates the domain-based SVG clusters within the synthetic dataset:

cluster 1 represents genes predominantly expressed in layer 1 cluster 2 includes genes from cortex

layers 2, 3, or 4, while cluster 3 comprises genes overexpressed in the white matter region. The

distribution of the number of genes across clusters is uneven in this scenario as shown in figure

4.1C, as frequently evident in real datasets. Upon repeating the analysis on 10 simulated synthetic

datasets, and considering ARI scores (Adjusted Rand Index, higher the better) and PAS scores

(Percentage of abnormal spots, lower the better, see method section 4.2) (see Figure 4.1D), we

observe that our framework provides better domain detection results compared to the SpatialPCA

framework. Additionally, Figure 4.1E displays a t-SNE plot [128] representing genes from a

randomly chosen simulation outcome. The genes are color-coded according to the gene cluster

label identified by cSVG. This visualization demonstrates that genes within each cluster are packed

together, indicating the accuracy of gene classification by cSVG.

In this paper, we conducted two types of simulation studies: firstly, to assess the accuracy of

the cSVG framework for SVG classification, and secondly, to evaluate the accuracy of domain

detection based on the detected SVG-clusters by cSVG using synthetic datasets mimicking real-

world scenarios. In addition, we analyzed three publicly available datasets and one newly acquired

pancreatic cancer SRT dataset. The publicly available datasets include: 1). The DLPFC human

cortex annotated dataset[129], comprising 12 samples; 2). The HER2 human breast tumor annotated

dataset[130]; and 3). The dataset from study of human breast cancer biopsies[131]. The newly

acquired dataset is the pancreatic cancer dataset, which comes with rudimentary annotation. The

application of cSVG and the detection of domains aligns well with the rough annotation. Overall,

findings from simulation studies and real data analyses across multiple datasets affirm that utilizing

SVG clusters and, consequently, the cSVG framework can markedly enhance the performance of

spatial domain detection. This approach holds significant promise to unveil hidden spatial patterns

which provide novel insights into spatial heterogeneity of tissue samples.
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Figure 4.1 (A) Schematic overview of the cSVG framework. (B-E) An example simulation based
on a synthetic dataset: (B) The synthetic dataset is generated based on a real dataset with
annotated spatial domains. Three types of domain-specific SVGs and noise genes are created. (C)
The distribution of the number of each type of gene is presented. (D) Evaluation based on ARI
(higher is better) and PAS score (lower is better). (E) Visualization by the t-SNE plot: shown is
for a randomly selected simulation result. The gene clusters identified by cSVG are highlighted
with distinct colors. The plot illustrates that genes within the clusters are densely grouped together
and separated from genes belonging to other clusters.
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4.2 Method

In a typical spatial transcriptomics setup, the dataset comprises gene expression measures

or counts for 𝑚 genes distributed across 𝑁 known spatial coordinates or spots. Suppose 𝑦 =

(𝑦1, 𝑦2, ..., 𝑦𝑁 ) represents the gene expression profiles or counts for a particular gene across spatial

coordinates (referred to as samples or spots), denoted by 𝑠 = (𝑠1, ..., 𝑠𝑁 ). The spatial locations

are typically represented as two-dimensional coordinates, i.e., 𝑠𝑖 = (𝑠𝑖1, 𝑠𝑖2), although coordinates

of any dimensionality can be employed. The primary objective of spatially variable gene (SVG)

detection models is to identify which genes, among the 𝑚 genes, exhibit spatial variability across

the tissue. In essence, the key goal is to determine whether the gene expression measure 𝑦 is

dependent on or related to the spatial locations where the gene expression measures are sampled.

Consider a scenario where there are 𝑘𝑑 spatial domains within the tissue of interest. A spatial

domain represents a distinct region or area within the tissue characterized by unique molecular

signatures or gene expression patterns. These patterns may arise from specific factors such as

cellular composition, anatomical organization, spatial arrangement, or functional attributes.

In reality, the specific spatial domains are typically unknown. However, each domain may

be defined with a set of spatially variable genes (SVGs) exhibiting characteristic gene expression

patterns in proximity to these domains. To accurately reconstruct the underlying domain structure, it

is beneficial to group SVGs based on their spatial patterns and utilize all SVG groups in downstream

analysis, rather than relying solely on an arbitrary subset of all SVGs.

With this objective in mind, we present the cSVG framework, organized into two primary steps.

The first step involves the selection of SVGs, while the second step utilizes the SVGs selected in

the first step to generate an SVG dependency list and subsequently create clusters of SVGs based

on this information (see 4.1A). It is worth noting that there exists a plethora of SVG detection

techniques in the literature [119] [120], and any of these methods can substitute for the first step

in the framework. However, methods that rigorously control the False Discovery Rate (FDR) are

preferable, as they enhance accuracy in the subsequent stages of analysis.
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4.2.1 Step 1: Selecting SVGs

Like the majority of the SVG detection methods this step is based on the Gaussian process (GP)

regression model which models the normalized gene expression 𝑦 for a given gene assuming the

following multivariate normal model:

𝑝(𝑦 |𝜇, 𝜎2
𝑠 , 𝛿, 𝐾) ∼ 𝑀𝑉𝑁 (𝑋𝛽, 𝜎2

𝑠 𝐾 + 𝛿𝐼), (4.1)

where the covariance term is decomposed into a spatial and a non-spatial part, with 𝛿𝐼 and 𝜎2
𝑠 𝐾

representing the non-spatial and spatial covariance matrix, respectively. The (𝑖, 𝑗)𝑡ℎ element in the

kernel matrix 𝐾 denotes the spatial similarity between the 𝑖𝑡ℎ and 𝑗 𝑡ℎ spot calculated based on the

corresponding coordinates 𝑠𝑖 and 𝑠 𝑗 . The choice of the kernel function plays a very important role

in detecting the spatial correlation presented in the gene expressions. 𝑋𝑁×𝑘 represents the covariate

matrix, while 𝛽𝑘×1 denotes the array of corresponding coefficients. This model can incorporate up

to 𝑘 − 1 covariates, such as cell type information or domain structure information. However, often

such information is either unavailable or deemed untrustworthy. Hence, in practice, we typically

employ 𝑋 solely as the intercept.

When evaluating the existence of spatial patterns within the data, an assessment is made by

testing the alternative hypothesis, which suggests the presence of spatial variance in the model,

against the null hypothesis, where the spatial variance component is zero, indicating the absence

of spatial variability. This comparison between the model fitted under the null and alternative

hypotheses forms the basis of a significance testing procedure. This often involves conducting

significance tests and drawing conclusions based on p-values in frequentist approaches. In model

(4.1), testing if a gene is spatially variable is equivalent to testing 𝐻0 : 𝜎2
𝑠 = 0.

Within this framework, we use a straightforward score test to test the underlying hypothesis

and a p-value is calculated. More information regarding the test is provided in the supplementary

material. Prior studies [77, 132] indicate that Gaussian and Cosine kernels are adept at capturing a

wide spectrum of distinct spatial gene expression patterns. Hence, we utilize 10 different kernels (5

Cosine and 5 Gaussian kernels with varying parameter values) following the approach established

by SPARK [77]. Denote the number of detected SVGs by 𝑚1 in step 1.
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4.2.2 Step 2: Classifying SVGs

This stage categorizes the SVGs identifed in step 1 into cohesive groups. While conventional

clustering algorithms can segregate genes into distinct groups based on gene expression, they

invariably disregard spatial information. Hence, we require more sophisticated algorithms to

classify spatially variable genes more precisely [75].

Intuitively, if two spatially variable genes 𝑦1 and 𝑦2 exhibit similar spatial patterns, they should

be correlated which is equivalent to assume 𝑦1 = 𝑦2 + 𝜖 , where 𝜖 ∼ (0, 𝜎2
𝜖 𝐼) is a random noise

term with arbitrary variance 𝜎2
𝜖 . Hence, while testing gene 𝑦1, if we use gene 𝑦2 as a covariate in

model (4.1) and test the same alternative hypothesis described in step 1, we would expect gene 𝑦1

to be less or even not significant depending on how strong the correlation between 𝑦1 and 𝑦2 is.

On the other hand, if after using another gene 𝑦3 as a covariate in the model we still find gene 𝑦1

to be significant, that would imply that gene 𝑦1 and gene 𝑦3 have different spatial patterns. Given

that many SVGs are cell-type marker genes [124][125][126][127], we would expect gene 𝑦1 and 𝑦2

belong to the same cell type while gene 𝑦3 belongs to a different cell type. However, our algorithm

does not require such knowledge (often not available in spot-level SRT data) as detailed below.

With this intuition, for each SVG 𝑗 , 𝑗 = 1, · · · , 𝑚1, we can select a list of genes 𝑆 𝑗 which

are correlated to gene 𝑗 and use them as covariates in the model 4.1. If the no. of genes in

𝑆 𝑗 exceeds 3, we choose the top 𝑘 𝑗 principal components and include them as covariates in the

model. Typically, 𝑘 𝑗 is chosen such that at least 80% of the total variance is explained by the top

𝑘 𝑗 principal components. With this, model (4.1) becomes:

𝑦(𝑠) =
𝑘 𝑗∑︁
𝑙=1

𝛽𝑙𝑃𝐶𝑙 + 𝛼(𝑠) + 𝜖 (𝑠) (4.2)

where 𝑃𝐶𝑙 represents the 𝑙𝑡ℎ principal component, 𝛼(𝑠) ∼ 𝑁 (0, 𝜎2
𝑠 𝐾) and 𝜖 (𝑠) ∼ 𝑁 (0, 𝛿𝐼).

There might be different ways of selecting related genes. It could be done by choosing a

threshold based on a correlation measure, either linear or nonlinear, such as Pearson correlation,

Spearman correlation, distance correlation or kernel correlation. Alternatively, one can run a

penalized regression with LASSO[133], Elastic net [134][135] or MCP penalty[136] or perform
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sure independence screening[137] to select genes correlated with gene 𝑗 .

In real applications, many SVGs represent marker genes for cell types, exhibiting spatial

expression patterns that reflect the distribution of various cell types. Given that marker genes for a

given cell type often exhibit similar or strongly correlated gene expression distributions, employing

this model adeptly controls for the cell-type specific effect, a factor typically challenging to ascertain

or quantify in real-world settings as the cell type information is typically unknown in spot-level

SRT data.

Employing this model on all the genes, we can get a set of genes with unique patterns (showing

significance under model (4.2)) and a gene dependency list. From the list, we come up with a

weighted graph structure, where nodes are SVGs and two nodes are connected if they are correlated.

By applying a clustering algorithm such as leiden [138], groups of genes are determined and the

unique genes (which are not part of any gene group) create singleton sets. The full algorithm steps

are provided in the supplementary file.

4.2.3 Downstream analysis: spatial domain detection

Spatially resolved transcriptomics serve a crucial role in identifying tissue or region substruc-

tures through domain detection analysis. Numerous frameworks have been developed for this

purpose, to name a few, SpaGCN[111], SpatialPCA [104] and BayesSpace[117]. In our analysis,

we opted for SpatialPCA[104] due to its proven superiority in performance over other available

algorithms. Furthermore, to conduct domain detection post identification of SVG clusters using our

framework, we require an effective low-dimensional representation of the dataset, a task efficiently

facilitated by SpatialPCA. SpatialPCA effectively extracts a low-dimensional representation of spa-

tial transcriptomic data while preserving both biological signals and spatial correlation structures.

This condensed representation can serve as an input for efficient clustering algorithms, such as

the Louvain [139] or Walktrap algorithm [140], facilitating the clustering of spots and thereby

identifying spatial domains. The steps for obtaining spatial domains in the SpatialPCA workflow

include: 1) Select the top 3000 SVGs and calculate spatial PCs based on these genes, and 2) Use

the top 20-30 spatial PCs for spatial clustering using algorithms like Louvein or walktrap.
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In our approach, we utilize our framework to identify SVG groups with similar spatial patterns.

Within each SVG group, we compute the spatial PCs and aggregate the top spatial PCs from each

group to form the final embedding. These aggregated spatial PCs are then used as input in the

clustering algorithm to detect spatial domains. The differences between our method and the existing

ones are that existing methods use low-dimensional embeddings based on all top SVGs, while our

method gets low-dimensional embeddings within each cluster. The within-cluster embeddings can

capture unique spatial structures and hence lead to improved spatial domain detection.

4.2.4 Measuring accuracy of domain detection

Detecting domains essentially involves assigning a cluster label to each of the 𝑁 spots in the

tissue sample. Once a framework is implemented for detecting spatial domains, it becomes crucial

to measure its accuracy against the ground truth domain labels. We primarily employ a standard

clustering evaluation metric, the Adjusted Rand Index (ARI), to assess the similarity between

the predicted domain labels and the true labels. Additionally, we utilize the PAS (Percentage of

Abnormal Spots) score to quantify the clustering performance of spatial domain detection, following

the approach outlined in [104]. This score gauges the randomness of spots located outside their

clustered spatial domain computed as the proportion of spots with a cluster label differing from at

least six of their ten neighboring spots. A lower PAS score reflects greater homogeneity within

spatial clusters.

4.3 Simulation Study

We conducted two simulation studies: one to demonstrate the effectiveness of the SVG clustering

performance and another to assess whether the SVG clusters identified by cSVG are beneficial for

enhancing domain detection accuracy.

4.3.1 Evaluation of the clustering performance

To illustrate cSVG’s capability to accurately classify SVGs, we devise the simulation scenario

I in which 100 normalized gene expression datasets were simulated, each consisting of 53 genes

(labeled g1-g53) and 2000 spots following model 4.1 with no covariates. The first 10 genes (g1-g10)
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Figure 4.2 Simulation setting for cSVG. A) Six representative genes each with a distinct spatial
pattern in the simulated dataset. Green and Red color represents low and high gene expression. B)
Correlation heatmap of the simulated dataset with compound symmetry correlation structure
within gene groups. Independent: uncorrelated gene group for genes without any spatial pattern;
Correlated: correlated gene group for genes without any spatial pattern. Pattern 1-3: correlated
gene group for genes with spatial pattern 1-3. Pattern 4-6: single gene with spatial pattern 4-6. C)
Empirical power of the SVG detection step at detecting SVGs for the simulated datasets with
compound symmetry (Left) and AR(1) (Right) correlation structure within each gene group. D)
The distribution of ARI values based on predicted gene clusters for simulation under each
correlation structure. E) Empirical FDR distribution for simulation under each correlation
structure. Here, false discovery occurs when Correlated or Independent genes show up in any of
the final gene clusters.
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represent independent noise genes, not correlated with any other gene in the dataset. The next set of

10 genes (g11-g20) exhibit strong correlations among themselves but do not show any spatial pattern.

The third (g21-g30), fourth (g31-g40), and fifth (g41-g50) sets of genes represent spatially variable

genes with three distinct spatial patterns (Spatial Pattern 1, Spatial Pattern 2, and Spatial Pattern 3,

respectively). Figure 4.2A exhibits the six sets of representative genes with distinct spatial patterns.

Genes are correlated within the spatial pattern 1-3 as exhibited in Figure 4.2B, and the spatial effect

strength increases with the gene index. For example, g21 and g30 are correlated and share the same

spatial pattern, but the spatial effect is stronger in g30 compared to g21. The correlation between

the genes within a gene group could have different structures. They could display Compound

Symmetry (CS) if any pair of genes within a group have the same correlation, i.e., 𝜌𝑖 𝑗 = 𝜌.

Alternatively, they could demonstrate a first order Autoregressive (AR(1)) pattern if the correlation

between two genes decays as their distance increases, i.e., 𝜌𝑖 𝑗 = 𝜌 |𝑖− 𝑗 |. Figure 4.2B exhibits CS

correlation structure. The last three genes, g51, g52, and g53, each exhibit a unique spatial pattern

(Spatial Pattern 4, Spatial Pattern 5, and Spatial Pattern 6, respectively). As the spatial pattern

strength increases within each spatial gene group (pattern1-pattern3), the SVG detection power

converges towards 1, as expected (see Figure 4.2C). Furthermore, upon comparing this outcome

with the performance of the most efficient comparable SVG detection method, nnSVG[78] (where

both nnSVG and cSVG use normalized gene expressions), we observed that cSVG detects spatial

genes slightly more effectively (see Supplementary Figure F.3). The cSVG framework not only

demonstrates efficacy in identifying the true SVGs (g21-g53) but also adeptly categorizes them.

The Adjusted Rand Index (ARI) scores, calculated for each simulated dataset, which are computed

based on the cluster labels of detected SVGs and their true cluster labels - cluster near 1 in the violin

plot in Figure 4.2D, indicating high accuracy of gene clustering. The false discovery rates were also

monitored in this study. Here false discovery happens when any of the non-spatial genes (g1-g20)

appears in any of the final gene clusters. FDR is calculated as the number of false discoveries

divided by the total number of SVG discoveries. As indicated in Figure 4.2E, the FDR values are

predominantly distributed near 0, indicating high accuracy of the results.
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4.3.2 Evaluation of the spatial domain detection performance

To showcase how the outputs of the cSVG algorithm aid in the downstream analysis of spatial

domain detection and enhance its accuracy, we generated synthetic datasets based on the annotated

human DLPFC data with sample ID 151670. Supplementary Figure F.1 details the steps involved

in generating the synthetic data, ensuring that key features of the original dataset are preserved,

such as the distribution of means and variances of all genes. The dataset is annotated with 5 layers

(4 prefrontal cortex layers and the white matter layer). After filtering out sparse genes, we ended up

with 4,865 genes whose expression were measured in 3484 spots. We first randomly selected 2,000

genes which were converted to SVGs in the generated dataset (See supplementary Figure F.1). The

rest of the genes were converted to random noise genes with no specific pattern. Among the 2,000

SVGs, three distinct spatial domain structures were represented (see 4.1B and 4.1C): 800 SVGs

correspond to the first cluster, wherein genes are predominantly expressed in the cortex layer 1; 150

SVGs exhibit overexpression in cortex layers 2, 3, or 4; and the remaining 1,050 SVGs from cluster 3

predominantly display expression in the white matter domain region. In such 10 simulated synthetic

datasets, we applied our framework, cSVG, to identify gene clusters which were further leveraged

for domain detection. We compared the domain detection results of cSVG with the default one by

SpatialPCA without an additional clustering step. As we mentioned previously in the introduction

4.1, our framework significantly improves the spatial domain detection accuracy, as evidenced by

ARI scores and PAS scores (see 4.1D. Additionally, t-SNE plot[128] from a randomly chosen

simulation result for the genes displays the accuracy of gene clustering performance of cSVG. The

t-SNE plots for all 10 simulation results were given in Supplementary Figure F.2.

4.4 Real data analysis

4.4.1 Human DLPFC 10x Genomics Visium dataset

We applied cSVG algorithm to the human dorsolateral prefrontal cortex (DLPFC) data[129]

generated by Visium from 10x Genomics. Publicly available datasets from 12 human DLPFC tissue

samples, obtained from three individuals, can be accessed and downloaded from the link: http://

spatial.libd.org/spatialLIBD/. We directly downloaded the processed datasets from the SpatialPCA
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Github repository, available at: https://github.com/shangll123/SpatialPCA_analysis_codes. These

samples, on average, encompassed 3,973 spots, each manually annotated to one of the six prefrontal

cortex layers or white matter.

Our primary analysis is focused on two samples with ID 151670 and 151673, which contain

expression measurements of 33,538 genes across 3,498 spots and 33,538 genes across 36,39

spots, respectively. We also analysed the other 10 samples and the results are available in the

supplementary files.

We applied our framework to detect the spatial domains (see methods 4.2) for each of the

samples. We also followed the SpatialPCA framework provided in https://github.com/shangll123/

SpatialPCA_analysis_codes without separating genes into clusters to detect spatial domains to com-

pare with our results. The comparison is based on the ARI scores, utilizing the provided annotations

for each sample. We also compared the PAS scores for all the samples. In Figure 4.3A, sample

151670 is presented with annotated spatial domains as the ground truth (left), spatial domains

detected by SpatialPCA (middle), and spatial domains detected by our framework (right). The ARI

values for the detected domains by SpatialPCA and our framework (0.34 and 0.69, respectively, as

shown in Figure 4.3E), along with the PAS scores (0.013722 and 0.006289, respectively, depicted

in Figure 4.3F), highlight the superior performance of our framework over SpatialPCA.

Similarly, in Figure 4.3C, the spatial domains for sample 151673 are displayed in the same

order: annotated domains, spatial domains by SpatialPCA, and spatial domains by our framework.

The ARIs for SpatialPCA and our framework are 0.58 and 0.65, respectively and the PAS scores are

0.028579 and 0.023083, respectively. Combining the results from all the samples, our framework

significantly enhances spatial domain detection compared to SpatialPCA (see Figure 4.3G, 4.3H)

as confirmed by the increase in the median ARI score.

We visualized the SVG clusters identified by cSVG through the t-SNE plots in Figure 3B and

3D for the two samples. These visualizations highlight the resemblance among genes within the

same cluster and the disparity between genes from separate clusters, emphasizing the efficacy of

cSVG in delineating SVG clusters.
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Figure 4.3 Spatial domain detection analysis results of the Human cortex data from DLPFC: (A)
The detected spatial domains for Sample 151670: Annotated domain used as the ground truth
(left), by SpatialPCA (middle), and by our framework (Right). (B) The t-SNE plot for all the
SVGs detected by cSVG for Sample 151670. SVGs are colored based on cluster label calculated
by cSVG. (C) The spatial domains detected for Sample 151673: Annotated domain used as the
ground truth (left), by SpatialPCA (middle), and by our framework (Right). (D) The t-SNE plot
for all the SVGs detected by cSVG for Sample 151673. The fact that SVGs with similar color are
close to each other but are away from those with different colors indicates accurate gene
clustering. (E) Comparison of ARI score (higher the better) between SpatialPCA and our
framework based on these two samples. (F) Comparison of PAS score (lower the better) between
SpatialPCA and our framework based on these two samples. (G) Comparison of ARI score
between SpatialPCA and our framework based on all 12 samples. (H) Comparison of PAS score
between SpatialPCA and our framework based on all 12 samples.
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4.4.2 Analysis of HER2 breast tumor data

We applied cSVG to another dataset, the HER2-positive breast tumor data[130], initially com-

prising 36 tumor datasets from eight individuals (patients A-H), each consisting of 3 or 6 sections.

Following SpatialPCA analysis, we selected the H1 dataset, encompassing 15,030 genes measured

across 613 spatial locations. We utilized the pre-processed dataset available in the SpatialPCA

repository, containing 10,053 genes across 607 spots, and omitted datasets from other samples due

to sparse gene expressions or minimal spot coverage. cSVG identified 268 SVGs grouped into

three main clusters, along with a few unique pattern genes. The three main gene clusters consist

of 84, 48, and 117 genes respectively. The t-SNE plot of the SVGs (see Figure 4.4B) exhibits

a similar pattern for genes within the same cluster in close proximity to each other. Comparing

spatial domains detected by SpatialPCA and cSVG based on the ARI value, our framework shows

better performance (ARI=0.48) than SpatialPCA (ARI=0.44), thereby improving domain detection

accuracy (see 4.4C).

4.4.3 Analysis of the pancreatic cancer data

Our final analysis was conducted on a new dataset concerning Pancreatic cancer, obtained from

the Henry Ford Health System. This dataset comprises gene expression measurements for 17,943

genes across 3,142 spots, collected from a pancreatic tumor-infested tissue.

Following standard filtering and normalization procedures, we applied our cSVG framework

to identify SVG clusters and detect spatial domains. Three primary SVG clusters were identified,

each showcasing differential expressions in distinct tissue regions. Representative genes from these

clusters are depicted in supplementary Figure F.8.

For each SVG cluster, we extracted low-dimensional embeddings (top SpatialPCs from Spa-

tialPCA), combined them, and applied the Leiden algorithm to identify spatial domains. We

repeated this process for the SpatialPCA framework, utilizing the top 20 Spatial PCs from the

top 3,000 SVGs. Due to the absence of spot annotations, the exact number of spatial domains

is unknown. Therefore, we employed the same Leiden algorithm for the SpatialPCA framework,

rather than using algorithms typically utilized by SpatialPCA that require a predetermined number
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Figure 4.4 Analysis of the HER2 data. (A) Annotated spatial layers considered as ground truth,
showcasing 6 known tissue components including cancer-related spots in blue shades. (B) The
t-SNE plot illustrating SVGs detected by cSVG, with distinct colors representing distinct
SVG-clusters. (C) Spatial domains detected by cSVG and SpatialPCA, with respective ARI scores
of 0.48 and 0.44.

of domains.

The dataset includes a rough annotation (see 4.5A) highlighting the tumor (marked in red) and

non-tumor (marked in yellow) regions of interest. Figures 4.5B and 4.5C display the predicted

domains by SpatialPCA and cSVG frameworks, respectively.

As the precise annotation labels for each spot are unavailable, we cannot compute scores like

ARI to compare spatial domain detection accuracy between the two methods. However, through

visual inspection, the domains detected by cSVG appear more accurate, effectively capturing the

most important regions. Tumor-containing regions identified by cSVG are notably smaller and

more accurate compared to those identified by SpatialPCA.

The cSVG algorithm identified three primary clusters of spatially variable genes (comprising

3931, 2751, and 1781 genes, respectively) in the pancreatic cancer dataset, each providing sig-
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nificant biological insights. Supplementary Figure F.8 demonstrates that genes in Cluster 1 are

predominantly overexpressed in non-tumor regions, while genes in Clusters 2 and 3 are overex-

pressed around tumor regions. Consequently, pathway enrichment analysis reveals that genes in

Clusters 2 and 3 are associated with cancer-related pathways, whereas genes in Cluster 1 are not.

Notably, Cluster 3 genes are enriched with several T cell-related pathways, a feature not observed

in Cluster 2. This suggests that Cluster 3 gene expressions exhibit immune cells spatially located

around cancer regions, offering intriguing insights into the biology of cancer.

Figure 4.5 Analysis of the Pancreatic cancer data: (A) Rough annotation of the tissue depicting
different important regions. Tumor regions are highlighted in red, while non-tumor yet significant
regions are marked in yellow. (B) Spatial domains detected by SpatialPCA, utilizing the
calculation of spatial PCs and employing the Leiden algorithm for clustering without
presupposing the number of clusters. (C) Spatial domain detection by cSVG, involving the
aggregation of SVG-cluster specific spatial PCs and utilizing the Leiden algorithm for clustering
without presupposing the number of clusters.

4.5 Discussion

In recent years, the exploration and analysis of spatial data have reached unprecedented heights,

offering diverse insights into biological systems. Central to this endeavor is the identification

of SVGs, which serve as pivotal components in understanding tissue organization and function.

However, merely detecting SVGs does not inherently yield substantial biological insights. Rather,

their significance lies in their dual role: 1) SVGs are used for spatial domain detection and 2) Some

SVGs serve as markers for specific cell types. Traditional approaches often struggle to achieve

precise spatial domain detection, and discerning cell type-specific SVGs amidst the data noise poses
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a formidable task. Our proposed framework, cSVG, addresses these challenges to improve spatial

domain detection without requiring cell type information.

By implementing cSVG, we effectively detect SVG clusters that can be interpreted as clusters

of cell type SVGs. Remarkably, this identification is accomplished without the need for complex

cell type deconvolution techniques, streamlining the analysis process while providing biologically

meaningful insights. Through extensive real data analysis and simulation studies, we have demon-

strated the efficacy of cSVG in enhancing spatial domain detection accuracy, validating its utility

in spatial transcriptomic analysis.

The implementation of cSVG involves two sequential steps, with the initial phase focusing

on SVG detection. This step can be performed using any existing SVG detection technique and

the alteration can be done without changing any code for cSVG. The detailed step-by-step code

and results are provided on our GitHub repository https://github.com/wangjr03/cSVG. Looking

ahead, there are ample opportunities to refine and expand upon the cSVG framework. Future

enhancements may involve simplifying and scaling up the SVG detection and cluster detection

methods to accommodate larger and more complex datasets. Additionally, continued refinement of

the framework will enable researchers to extract deeper insights from spatial transcriptomic data,

advancing our understanding of tissue biology and disease mechanisms.

In conclusion, the use of SVG clusters generated by cSVG represents a crucial advancement in

spatial transcriptomic analysis. As we continue to refine and evolve this methodology, it is poised

to become an indispensable tool for dissecting the spatial complexity of biological systems and

unraveling the intricate interplay between genes, cells, and tissues.

Data and code availability

All relevant codes for reproducing each step of the real data analysis and simulation study

results are available on our GitHub repository: https://github.com/wangjr03/cSVG. The publicly

accessible datasets and their sources are provided in the data folder. Please note that the pancreatic

cancer data used in this study was received from our collaborators Dr. Nina Steele and Dr. Brian

Theisen from the Henry Ford Health System. The Institutional and Review Board approval is
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maintained for 16150 at Henry Ford Hospital for The Translational and Clinical Research Center

Biorepository. The data has not been published and is not publicly available at this time. We

received a de-identified dataset for the analysis described in this chapter.

4.6 Supplementary materials

4.6.1 Score test for SVG detection

The Gaussian process (GP) regression model which models the normalized gene expression 𝑦

for a given gene using the following multivariate normal model:

𝑝(𝑦 |𝜇, 𝜎2
𝑠 , 𝛿, 𝐾) ∼ 𝑁 (𝑦 |𝑋𝛽, 𝜎2

𝑠 𝐾 + 𝛿𝐼),

where the covariance term is decomposed into a spatial and a non-spatial part, where 𝛿𝐼 represents

the non-spatial part and 𝜎2
𝑠 𝐾 is the spatial covariance matrix, whose (𝑖, 𝑗)𝑡ℎ element in the kernel

matrix 𝐾 denotes the spatial similarity between the 𝑖th and 𝑗 th spot calculated based on the

corresponding coordinates 𝑠𝑖 and 𝑠 𝑗 . The choice of the kernel function plays a very important role

in detecting the spatial correlation present in the gene expressions. 𝑋𝑁×𝑘 represents the covariate

matrix, while 𝛽𝑘×1 denotes the array of corresponding coefficients.

As we mentioned in the main text, testing if a gene is a SVG is equivalent to testing 𝐻0 : 𝜎2
𝑠 = 0.

The null hypothesis 𝐻0 : 𝜎2
𝑠 =0 can be tested using the variance-component score test which is the

locally most powerful test[141]. The variance-covariance score statistic is:

𝑄 = (𝑦 − 𝑋𝛽)𝑇𝐾 (𝑦 − 𝑋𝛽)

where 𝛽 is the MLEs under the null model. Under the null hypothesis, the score statistic 𝑄

follows a mixture of chi-square distributions [142], which can be closely approximated with the

computationally efficient Davies’ method[143]. More details about the test is provided in the

appendix B.

In this chapter, we utilize part of the code provided along with the SKAT paper [142] which

uses the same score test for the purpose of rare-variant association testing in genetic data.

Kernel functions: A kernel function is defined as a function 𝐾 : X × X → R, where the kernel
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matrix 𝐾 = (𝑘𝑖,𝑖′)𝑛𝑖,𝑖′=1 is symmetric and positive semidefinite with 𝑘𝑖,𝑖′ = 𝑘 (𝑠𝑖, 𝑠𝑖′). In this setting,

𝑘 (𝑠𝑖, 𝑠𝑖′) is a measure of similarity between the 𝑖th and the 𝑖′th subject. There are a variety of kernel

functions to choose from, and the most simple one is the Linear kernel. The other useful kernels

are Polynomial kernel, the Gaussian kernel and the cosine kernel. The functional forms of these

kernels are summarized below:

• Linear kernel: 𝐾 (𝑠𝑖, 𝑠𝑖′) = 𝑠𝑇𝑖 𝑠𝑖′

• Polynomial kernel: 𝐾 (𝑠𝑖, 𝑠𝑖′) = (𝑠𝑇
𝑖
𝑠𝑖′ + 𝑐)𝑑 , where 𝑐,𝑑 are the free parameters.

• Gaussian kernel: 𝐾 (𝑠𝑖, 𝑠𝑖′) = 𝑒𝑥𝑝{−∥𝑠𝑖 − 𝑠𝑖′ ∥2/𝑙}, where ∥𝑠𝑖 − 𝑠𝑖′ ∥2 =
∑𝑝

𝑗=1(𝑠𝑖 𝑗 − 𝑠𝑖′ 𝑗 )
2 is

the Euclidean distance, 𝑙 is a length scale parameter.

• Cosine kernel: 𝐾 (𝑠𝑖, 𝑠𝑖′) = 𝑐𝑜𝑠(2𝜋 ∥𝑠𝑖−𝑠𝑖′ ∥2

𝜙
), where 𝜙 is the periodicity parameter.

Choices of kernel functions: We must define the kernel function in order to proceed with the

hypothesis testing. As it is unknown which kernel will be best for the test, we employ the score

test to evaluate the null hypothesis across various kernel functions with distinct kernel parameters.

Gaussian and cosine kernels are typically effective in capturing spatial patterns. Following the

method outlined in the SPARK paper [77], we compute five different length scale parameter values

for the Gaussian Kernel and five different periodic parameter values for the cosine kernel. We

conduct the test across ten different kernels and aggregate the resulting p-values using the Cauchy

combination rule[144].

4.6.2 cSVG algorithm

Our model is built upon the Gaussian process model. Thus, we require normalized count matrix

data with 𝑚 rows (genes) and 𝑁 columns (spots). We also need the spatial location matrix 𝐿 with

𝑁 rows, 2 columns (𝑋 and 𝑌 coordinates of spots).

Step 1: Detect SVGs based on model 4.1 defined in the main text. Suppose there are 𝑚1 SVGs and

denote the SVG list as 𝑆𝑦 with |𝑆𝑦 | = 𝑚1 where | · | denotes the cardinality of a set.
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Step 2: Start with the subset matrix denoted by 𝑀𝑚1×𝑁
𝑆𝑉𝐺

.

Repeat for 𝑗 = 1, · · · , 𝑚1:

1. For the 𝑗 th gene in 𝑆𝑦, find genes correlated with it using methods such as (1) SIS[137],

(2) marginal correlation test (+ve correlation), (3) Elastic net[134][135], (4) SIS+Enet, or other

methods. Denote the correlated gene list as 𝑆 𝑗 .

2. If |𝑆 𝑗 | = 0, then the 𝑗 th gene has an unique spatial pattern.

If |𝑆 𝑗 | <= 3, then fit all genes in 𝑆 𝑗 as the covariates in model (2) in the main text.

If |𝑆 𝑗 | > 3, then get the 𝑘 𝑗 PCs of genes in 𝑆 𝑗 and fit them as covariates in model (2) in the

main text.

3.. Using the model 4.2 in the main text, conduct a score test to compute the p-value under

10 different kernels following the SPARK idea, then integrate these 10 p-values using the Cauchy

combination rule[144],[145] to get the final p-value. The output includes: a) For each SVG 𝑗 , a

list of correlated genes in 𝑆 𝑗 ; and b) A list of unique SVGs as defined in 2.

Step 3:

1). Based on the output in step 2, a weighted graph structure is created where each SVG is

a node. Each SVG 𝑗 in the output list in 3.a) has a common edge with all its dependent genes

specified in list 𝑆 𝑗 in the graph.

2). Clusters are determined from the weighted graph structure in 1) using the Leiden community

detection algorithm[138] (see Appendix D).

3). The unique genes in output list 3.b) not connected with other nodes in the graph structure

are allocated to the singleton set.

4.6.3 Multiplicity correction

At each stage of cSVG, our model is applied to each of the 𝑚 genes. To control the false

discovery rate (FDR), multiplicity correction is required. We employ the Benjamini–Yekutieli

(BY) procedure, known for its effectiveness under arbitrary correlation conditions, to obtain adjusted

p-values to claim significant genes [146].
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4.6.4 Analysis of human breast cancer dataset

We analyzed another spatial transcriptomics dataset of human breast cancer. We obtained

the data from the SPARK[77] GitHub repository at https://github.com/xzhoulab/SPARK-Analysis

(specifically the ‘Layer2_BC_count_matrix-1.tsv’ file). The dataset can also be downloaded from

Spatial Transcriptomics Research (http://www.spatialtranscriptomicsresearch.org). This dataset

contains 14,789 genes measured across 251 spots. Our preprocessing involved filtering out genes

with expression levels below 10% across the array spots and retaining spots with a total read count

> 10. Following these criteria, our analysis focused on a final set of 5,262 genes observed across

250 spots within the breast cancer dataset.

Using our framework cSVG, we identified 724 spatially relevant genes in the initial step. In

comparison, SPARK[77] detected 290 genes, SPARK-G detected 244 genes, nnSVG[78] detected

592 genes, and SPARK-X[88] detected 901 genes. The 724 genes were subsequently classified into

three main clusters(containing 369, 320, and 14 genes respectively) in the second step of cSVG

framework, along with a few unique singleton genes. The representative genes from each cluster

are visualized in Figure 4.6. Genes in cluster 1 exhibited higher expression levels in the lower tissue

region, while cluster 2 genes were overexpressed in the middle tissue region, and cluster 3 genes

highlighted the upper tissue region. Additionally, the unique genes showcased distinct expression

patterns in the third row. This figure confirms the superior performance of our cSVG method.
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Figure 4.6 The representative spatial genes in the human breast cancer dataset from SVG clusters
detected by cSVG.
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CHAPTER 5

3D-TF-IMPUTE: A COMPUTATIONAL MODEL TO IMPUTE TF BINDING SITES

5.1 Introduction

Typically, the initial phase in understanding gene regulation involves pinpointing the in vivo

binding sites across the genome for various transcription factors (TFs). Unfortunately, ChIP-seq

data of TF binding are only available for a small subset of TFs in limited cellular contexts. For

instance, within the human genome, despite hundreds of recognized TFs, ChIP-seq data is available

for fewer than 10 TFs in most cell types cataloged in ENCODE [147]. This limitation is exacerbated

in other organisms, such as plants [148].

Hence, there arises an urgent demand for innovative algorithms to predict TF binding sites

on a genome-wide scale across diverse cell types. While several methods have been proposed

[149],[150],[151] to address this TF binding imputation challenge, The most recent algorithm,

Avocado [152], proposes to leverage the information from 6,870 epigenomics and TF binding data

together and do imputation for the human genome. Although it can generate a rich model, it is

limited for biological applications since it is usually impossible for biologists to gather the huge

amounts of data first, especially for studies in other species.

As chromatin accessibility data is becoming widely available [153] , other algorithms, with

‘J-Team’ and ‘Yuanfang Guan’ as the winning methods [149],[150] , all share similar ideas: i.e.

combine TF binding motif information with in vivo chromatin accessibility to impute TF binding

for specific genomic locations, based on models learned from another cell type. To improve the

performance, co-occurring motifs in local flanking sequences, which biologically represent the

potential co-factors, are integrated into the models as important features.

The fundamental restriction of these methods (e.g. ‘J-Team’) is that only local co-occurring

motif information along the 1D genome (< 1KB) is used. Since TF bindings happen in 3D

chromatin, we need to explore the co-occurring motif patterns of potential co-factors and the TF

itself in 3D neighborhoods. This idea has big potential to improve cell type specific TF imputation

because: 1) It align with the real biology better. TFs and their co-factors usually form complexes
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and co-regulate genes in 3D chromatin space, i.e. the well-known transcription factories [154],

[155]. 2) Preliminary observation: We grouped 3D interactions (in GM12878 cells) by genes

and looked at TF binding frequency in 3D neighborhood for two TFs: CTCF and it’s known

co-factor YY1. A substantial number of 3D neighborhoods show binding for both the TFs (See

5.1A), suggesting the TF co-factors patterns in 3D space are critical. 3)Leveraging 3D chromatin

information can significantly expand useful features from local flanking sequences to long-range

interacting sequences. The percentages of binding sites for TF cofactors CTCF and YY1 are

much higher in 3D neighborhood compared to in 1D flanking region (See 5.1B). 4) Based on 3D

interactions to genes, we are enabled to explore specific TF co-occurring information in different

gene groups.

There are many challenges in this work. To efficiently leverage the 3D chromatin information,

we need to overcome a series of computational hurdles: 1) Co-factors of TFs in 3D interacting

neighborhood are largely unknown ; 2) Combinations of TFs and corresponding co-factors may vary

for different gene groups; (See 5.1C) 3) Distributions of chromatin accessibility (e.g. DNase-seq)

are unknown in 3D interacting regions vs. non-interacting regions.

We propose 3D-TF-IMPUTE, a novel probabilistic model designed to concurrently infer cell

type-specific TF binding and uncover all pertinent unknown parameters, as depicted in Figure

5.1C,D, employing an unsupervised approach. The algorithm takes as input: 1)Chromatin acces-

sibility data, 2)Motif hit information for the entire genome across various TFs, and 3)Chromatin

interaction data. The first key feature of the model is to explore 3D chromatin neighborhoods,

instead of 1D flanking regions. The second key feature of the model is to explore gene group

specific co-factor association patterns, so that we can borrow information across different genes.

Notably, TF-ChIP-Seq data is omitted during model computation and only utilized post hoc to

validate the model’s outcomes.

5.2 Input data pre-processing

3D chromatin interaction data is now widely available for different cell types and species

[153],[156],[157]. Both Capture Hi-C data and ChIA-PET data based on general factors (e.g.
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Figure 5.1 Motivation and Overview of 3D-TF-IMPUTE. A) Often TF pairs exhibit tendency to
bind simultaneously in 3D neighborhood. Barplot shows frequency of CTCF and YY1 binding
sites in chromosome 1 within 3D neighborhood regions, comparing individual binding
occurrences versus simultaneous binding. B) Pair-wise binding tendency of CTCF, YY1 in 3D
neighborhoods vs. in 1D neighborhood regions. C) Schematic of TF binding imputation. 3D
neighborhoods are defined for each genes (doted circle). Genes are grouped based on similar 3D
co-factor profile (rectangular line). D) Modeling and inference of TF binding by borrowing
information from 3D neighbors and gene groups. Subscript nbr denotes features of 3D
neighborhoods. 𝐵: binary label represents TF binding. 𝐷: continuous ATAC-Seq signal at the
location. Seq: binary sequence featured by matching with known TF motifs. 𝑆: 3D chromatin
structure. 𝑀𝐺 : gene group-specific 3D co-factor profile. Posterior probability of 𝐵 is calculated
based on observed ATAC-Seq signal and sequence feature of local and 3D neighborhoods given
3D chromatin structure and group-wise co-factor profile. After updating 𝐵, each probability
component is recalculated based on updated 𝐵 until convergence.

p300, Pol II or H3K4me2) can be used as inputs to the model since they have better resolution. For

Hi-C data, we use ATAC-Seq peaks to significantly increase the resolution and cell-type specificity

of chromatin contacts, as suggested by previous studies [158].
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To enhance scalability, we partitioned the entire genome into consecutive 100-base pair (BP)

bins and assessed the likelihood of a binding site occurrence within each bin for every TF. If a

bin is predicted to contain a binding site, the specific binding site location can be identified by the

presence of an 8mer MOTIF within that bin.

5.3 Method Overview

Here we describe our advanced novel sampling framework 3D-TF-IMPUTE, which uses ATAC-

Seq, Hi-C, and TF binding motif information datasets as input and predicts the TF binding sites for

our TF of interest. First, the whole chromosome is divided into consecutive 100 Base Pairs length

segments or genomic bins and 3D-TF-IMPUTE predicts which of these bins contains the potential

binding sites for the TF of interest. It narrows down the search to active bins, which serve as the

potential region for TF binding sites. Each of these active bins create a 3D neighborhood, which

is defined as genomic regions in chromatin interacting hubs(indicated by 3D chromatin interaction

data) where at least one gene promoter region is involved. We refine the selection of active bins

further by identifying those that overlap with any TF MOTIF. These bins, characterized by such

overlap, emerge as highly active and promising candidates for TF binding sites.

3D-TF-IMPUTE starts with this subset of active bins and calculates the probability 𝑃(𝐵 =

1 | 𝐷, 𝐷𝑛𝑏𝑟 , 𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 , 𝑀𝐺 , 𝑆) for all the bins in the active set, where B is the latent variable

indicating whether the genomic bin location belongs to a TF binding site or not (B=1 or 0), D

represents the ATAC-seq signal at the location, 𝐷𝑛𝑏𝑟 represents the ATAC-seq signals in the 3D

neighborhood corresponding to the location, Seq represents the occurrences of motif hits for all

available TFs at the location, 𝑆𝑒𝑞𝑛𝑏𝑟 represents the same in the 3D neighborhood, 𝑀𝐺 represents

the TF co-occurrence in 3D neighborhoods for a specific gene-group 𝐺, and S represents the 3D

chromatin structure. A higher value of 𝑃(𝐵 = 1 | 𝐷, 𝐷𝑛𝑏𝑟 , 𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 , 𝑀𝐺 , 𝑆) indicates higher

chances of the TF binding at the active bin of interest. Directly this posterior probability is complex,

but it can be decomposed into several parts: 𝑃(𝐵 | 𝐷, 𝐷𝑛𝑏𝑟 , 𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 , 𝑀𝐺 , 𝑆) ∝ 𝑃(𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 |

𝐵, 𝑀𝐺 , 𝑆)𝑃(𝐷, 𝐷𝑛𝑏𝑟 | 𝐵, 𝑆)𝑃(𝐵 | 𝑆). The first probability term infers the likelihood of the event

based on 3D neighborhood TFs interdependence, the second probability term incorporates the
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information based on chromatin accecibility and the third probability term simply includes the

odds of having a binding site.

The first probability term can be further decomposed into𝑃(𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 | 𝐵, 𝑀𝐺 , 𝑆)=𝑃(𝑆𝑒𝑞𝑛𝑏𝑟 |

𝑆𝑒𝑞, 𝐵 = 1, 𝑀𝐺 , 𝑆) 𝑃(𝑆𝑒𝑞 | 𝐵 = 1, 𝑀𝐺 , 𝑆) = 𝑃(𝑆𝑒𝑞𝑛𝑏𝑟 | 𝑆𝑒𝑞, 𝐵 = 1, 𝑀𝐺 , 𝑆) 𝑃(𝑆𝑒𝑞𝑇𝐹1 | 𝐵 =

1, 𝑀𝐺 , 𝑆) 𝑃(𝑆𝑒𝑞𝑇𝐹2 |𝐵 = 1, 𝑀𝐺 , 𝑆) · · · 𝑃(𝑆𝑒𝑞𝑇𝐹𝑡 | 𝐵 = 1, 𝑀𝐺 , 𝑆), where 𝑆𝑒𝑞𝑡×1 array contains in-

formation about 𝑡 known TFs MOTIF binding at the location, 𝑆𝑒𝑞𝑡×1 = [𝑆𝑒𝑞𝑇𝐹1 , 𝑆𝑒𝑞𝑇𝐹2 , · · · , 𝑆𝑒𝑞𝑇𝐹𝑡 ].

The second "=" holds with the assumption that given the binding status at the location and

the TF-TF co-occurrence information provided by 𝑀𝐺 , 𝑆𝑒𝑞𝑇𝐹𝑖 , 𝑖 = 1, 2, ..𝑡 are independently

distributed. While predicting TF binding sites for 𝑇𝐹𝑗 , 3D-TF-IMPUTE algorithm estimates∏𝑡
𝑖=1𝑖≠ 𝑗 𝑃(𝑆𝑒𝑞𝑇𝐹𝑖 |𝐵 = 1, 𝑀𝐺 , 𝑆) by

∑𝑡
𝑖=1 𝑆𝑒𝑞𝑇𝐹𝑖×𝑀𝐺𝑗𝑖∑

𝑖=1𝑡 𝑀𝐺𝑗𝑖

, where 𝑀𝐺 𝑗𝑖
is the 𝑖𝑡ℎ component of the row in

𝑀𝐺 corresponding to the TF of interest 𝑇𝐹𝑗 .

The second probability term is calculated based on a kernel density estimation(KDE) of the

joint distribution of 𝐷, 𝐷𝑛𝑏𝑟 . The third probability term is calculated based on the proportion of

active bins with predicted binding sites.

In the iterative process of 3D-TF-IMPUTE, the 𝐵 values are initialized for all active bins using

TF MOTIF data. Subsequently, utilizing these initialized 𝐵 values, the probability terms 1, 2,

and 3 are computed. Based on the resulting final probability 𝑃(𝐵 | 𝐷, 𝐷𝑛𝑏𝑟 , 𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 , 𝑀𝐺 , 𝑆)

values, the 𝐵 values for the active bins are sampled, initiating the next iteration. This iterative cycle

continues until the probability values converge across all active bins. The schematic overview of

the sampling framework is provided in figure 5.1D and the detailed algorithm is provided here:

Set ch=chromosome1, TF=TF1,num𝑖𝑡𝑒𝑟=1000

Prepare ch specific ATAC-seq data

Prepare ch specific MOTIF data.

Prepare ch specific 3D neighbourhood data

Prepare TF specific MOTIF data

iter 1:num𝑖𝑡𝑒𝑟 :
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Initialize latent variable values b1 specific to the TF for all active bins.

Prepare P2 function input based on ATAC and initialized latent variable values.

b1 in ActiveBinList:

calculate 𝑃1(1), 𝑃1(0)

calculate 𝑃2(1), 𝑃2(0)

calculate 𝑃3(1), 𝑃3(0)

calculate 𝑃(𝐵 = 1|𝐷, 𝐷𝑛𝑏𝑟 , 𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 , 𝑠) = 𝑃1 (1)∗𝑃2 (1)∗𝑃3 (1)
𝑃1 (1)∗𝑃2 (1)∗𝑃3 (1)+𝑃1 (0)∗𝑃2 (0)∗𝑃3 (0)

Sample B based on 𝑃(𝐵 = 1|𝐷, 𝐷𝑛𝑏𝑟 , 𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 , 𝑠), update b1

where, 𝑃1(1) = 𝑃(𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 |𝐵 = 1, 𝑀𝐺 , 𝑆), 𝑃1(0) = 𝑃(𝑆𝑒𝑞, 𝑆𝑒𝑞𝑛𝑏𝑟 |𝐵 = 0, 𝑀𝐺 , 𝑆)

𝑃2(1) = 𝑃(𝐷, 𝐷𝑛𝑏𝑟 |𝐵 = 1, 𝑆), 𝑃2(0) = 𝑃(𝐷, 𝐷𝑛𝑏𝑟 |𝐵 = 0, 𝑆)

𝑃3(1) = 𝑃(𝐵 = 1|𝑆), 𝑃3(0) = 𝑃(𝐵 = 0|𝑆)

5.4 Results

In cell types where TF-ChIP-seq data is available, the data is often noisy or incomplete. Since

there is no ground truth available, we evaluate the performance of our predictions by examining

the number of overlaps with TF ChIP-seq binding sites. Specifically, we compare the predicted

binding sites of CTCF, YY1, and RUNX3 in GM12878 cell type with the ChIP-Seq data. Figure 5.2

showcases real examples on the UCSC genome browser, where black tracks represent TF ChIP-Seq

peaks and predicted binding sites are marked in red. These examples illustrate the degree of overlap

between predicted binding sites and TF ChIP-Seq peaks.

Figure 5.3 presents the ROC and Precision-Recall curves for these three key TFs: CTCF,

YY1, and RUNX3. The high quality of TF MOTIF data for CTCF leads to highly accurate final

predictions as evident by the high area under the ROC and PR curve. On the other hand, the

MOTIF data quality for YY1 and RUNX3 is extremely low. Nonetheless, their predictions remain

reasonable.

Overall, the results demonstrate the effectiveness of the 3D-TF-IMPUTE algorithm in accurately

predicting TF binding sites.
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Figure 5.2 Examples of predicted TF binding sites by 3D-TF-IMPUTE overlapped with significant
TF peaks shown in the genome browser. The tracks in black correspond to the transcription factors
A) CTCF, B) RUNX3, C) YY1. The predictions by 3D-TF-IMPUTE are highlighted in red.

5.5 Discussion

In conclusion, while existing computational methods for TF binding have predominantly relied

on supervised setups, our proposed approach marks a significant departure by introducing an

unsupervised probabilistic model. Unlike traditional methods, which often encounter challenges

when training data from one cell type fails to accurately represent TF binding in others or data

quality is low, our method circumvents such issues.

Moreover, in contrast to existing methods that suffer from lengthy execution times, our approach
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Figure 5.3 Evaluation of 3D-TF-IMPUTE performance. A) ROC curve demonstrating the
prediction accuracy for significant TFs. B) Precision-Recall curve demonstrating the prediction
accuracy of the same TFs.

showcases remarkable efficiency by running in parallel, thus substantially decreasing preprocessing

and computation time.

Remarkably, 3D-TF-IMPUTE attains a notably low false discovery rate, particularly in cases

where input data quality is high. Even in instances of subpar motif data quality, 3D-TF-IMPUTE

adeptly utilizes information from co-factors to predict high-quality TF binding sites, thereby aug-

menting prediction reliability, as illustrated by the example of YY1( see figure 5.3).

While our approach represents a pioneering advancement, there remains room for enhancement.

Addressing the impact of low-quality motif data on prediction accuracy could be a promising avenue

for future refinement. Incorporating mechanisms to update motif information based on co-factor
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interactions may prove instrumental in bolstering prediction power.

Importantly, our work underscores the pivotal role of three-dimensional chromatin neighbor-

hoods in enhancing TF binding prediction accuracy. Looking ahead, this concept holds significant

promise for inspiring further methodological developments, with potential applications across

diverse research endeavors focused on predicting TF binding sites.

5.6 Data and Code availability

The code to run this model is available at GitHub: https://github.com/wangjr03/3DTFImpute.

The input dataset ATAC-Seq and ChIP-Seq for GM12878 cell type is downloaded from ENCODE

[147]. The Motif data downloaded from [159] https://www.internationalgenome.org and the Hi-C

data from [160] https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The cSVG model introduced in Chapter 4 represents a significant advancement in spatial domain

detection, substantially improving accuracy compared to existing methods. However, there are

opportunities to further enhance its performance.

One area for improvement is addressing the challenge of gene separability observed in t-SNE

plots of LIBD data samples 5, 6, 7, and 8 (see F.6). In these instances, genes may form large clusters

with spatial patterns overlapping multiple distinct clusters. This suggests the presence of genes

with mixed spatial features, requiring a more nuanced approach to modeling spatial variability.

The integration of composite kernel functions, as facilitated by the BayesKAT model, could offer

a more efficient means of capturing the spatial complexity of these genes.

Furthermore, enhancing the scalability of cSVG cluster identification represents a significant

area for improvement in future research. While we have demonstrated the utility of SVG clusters in

improving downstream analysis, the current approach may be resource-intensive for larger datasets.

Leveraging the BayesKAT model to identify gene clusters based on selected composite kernel

weights offers a promising solution to this challenge, streamlining the process of SVG cluster

identification and enabling more scalable analysis.

These future directions hold the potential to address key questions in the field of spatial transcrip-

tomics and further enhance our understanding of spatial gene expression patterns. By refining our

methodologies and leveraging advanced computational techniques, we aim to unlock new insights

into the spatial organization of gene expression and its implications for biological processes.

The primary objective behind developing the BayesKAT algorithm was to assess the joint

association of a single group of SNPs or gene expressions with the phenotype of interest. While

the effectiveness and efficiency of BayesKAT in prioritizing and ranking significant SNP groups

were demonstrated through pathway-wise or gene-wise analyses in the chapter, from a statistical

perspective, determining a threshold that effectively controls false discovery rates poses challenges.

Additionally, the current version of BayesKAT relies on approximations, which may not perform
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optimally with small sample sizes. As a response, I propose an updated version of the BayesKAT

model which improves the model structure. Also, I intend to enhance its speed and performance

by implementing variational inference techniques[161].

As defined in 2.3 in chapter 2, a slight reparametrization of the BayesKAT model has the data

distribution:

𝑦 |𝜃 ∼ 𝑁 (𝑋𝛽, 𝜏𝐾𝑐 + 𝜎2𝐼)), (6.1)

where the composite kernel 𝐾𝑐 =
∑3
𝑖=1 𝜌𝑖𝐾𝑖. Now we use one indicator variable 𝛿 to indicate

whether or not 𝜏 is 0. That means, if 𝛿 = 0, it indicates that 𝜏 = 0, i.e there is no association

between the group of SNPs and the phenotype. We treat the indicator variable 𝛿 as Bernoulli

random trials with success rate 𝑝(𝛿 = 1) = 𝜋. 𝜏 follows an exponential(𝜆𝑠) prior distribution

when 𝛿 = 1 and equals to 0 when 𝛿 = 0. This is similar to the spike and slab prior [162], where

the slab distribution is generally normal as it is normally used for variable selection. We might

set specific values for the hyperparameters of the model 𝜋, 𝜆𝑠 or different prior distributions can

be assumed on them. The posterior distribution for all the parameters can be estimated using

the variational inference technique[161] assuming a mean-field variational family and finally, the

posterior inclusion probability (PIP) can be defined as: 𝑃𝐼𝑃 = 𝑝(𝛿 = 1 | 𝑋, 𝑦). Based on the

PIP value it would be possible to infer the strength of the association. Furthermore, in the case of

multiple testing(same phenotype, different sets of SNPs), the problem can be written as a variable

selection problem and solved following the sparse Bayesian variable selection technique outlined

in literature [163], [164].
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APPENDIX A

KERNEL BASED MODELS: FROM SEMIPARAMETRIC MODEL TO LMM

As mentioned in chapter 2, under the kernel machine regression framework, continuous quantitative

traits can be associated to genetic variants or molecular features, along with additional covariates,

through a semiparametric model:

𝑦𝑖 = 𝑋𝑖𝛽 + ℎ(𝑍𝑖) + 𝜖𝑖, 𝑖 = 1, 2, · · · , 𝑛 (A.1)

Here, ℎ(𝑍𝑖) is an unknown centered smooth function. Model A.1 models covariate effects para-

metrically and the spatial effect parametrically or nonparametrically. When h(·) = 0, A.1 reduces

to the standard linear regression model.

We assume that the nonparametric function ℎ(𝑍) resides in a function space H𝑘 defined by a

positive definite kernel function 𝐾 (., .). According to Mercer’s theorem [165], assuming certain

regularity conditions hold, a kernel function 𝐾 (., .) implicitly defines a unique function space

spanned by a specific set of orthogonal basis functions (features) 𝜙 𝑗 (𝑍)𝐽𝑗=1. This implies that any

ℎ(𝑍) can be expressed as a linear combination of these bases: ℎ(𝑍) = ∑𝐽
𝑗=1 𝜔 𝑗𝜙 𝑗 (𝑍) = 𝜙 𝑗 (𝑍)𝑇𝜔

(referred to as the primal representation), where 𝜔 is a coefficient vector. Alternatively, ℎ(𝑍) can

be represented using the kernel function 𝐾 (., .) as ℎ(𝑍) =
∑𝐿
𝑙=1 𝛼𝑙𝐾 (𝑍∗

𝑙
, 𝑍) (known as the dual

representation), where 𝐿 is an integer, 𝛼𝑙 are constants, and {𝑍∗
1 , 𝑍

∗
2 , .., 𝑍

∗
𝐿
} ∈ R𝑚.

Now, assuming ℎ(𝑍) belongs to H𝑘 , the function space generated by a kernel function 𝐾 (., .).

Estimation of 𝛽 and ℎ(.) in A.1 proceeds by maximizing the scaled penalized likelihood function:

𝐽 (ℎ, 𝛽) = −1
2

𝑛∑︁
𝑖=1

[𝑦𝑖 − 𝑥𝑖𝛽 − ℎ(𝑍𝑖)]2 − 1
2
𝜆∥ℎ∥2

H𝑘

= −1
2

𝑛∑︁
𝑖=1

[𝑦𝑖 − 𝑥𝑖𝛽 − ℎ(𝑍𝑖)]2 − 1
2
𝜆𝛼𝑇𝐾𝛼 (A.2)

where 𝜆 is a tuning parameter which controls the tradeoff between goodness of fit and complexity

of the model. When 𝜆 = 0, the model interpolates the data, whereas when 𝜆 = ∞, the model

reduces to a simple linear model without ℎ(.). This is exactly similar to the log-likelihood of the
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linear mixed model[166] up to some constant:

𝑦 = 𝑋𝛽 + ℎ + 𝜖 (A.3)

where the random effect ℎ ∼ 𝑁 (0, 𝜏𝐾), random noise 𝜖 ∼ 𝑁 (0, 𝜎2). Here, 𝑦 ∼ 𝑁 (𝑋𝛽, Σ), where

Σ = 𝜏𝐾 + 𝜎2𝐼 and 𝑦 |ℎ ∼ (𝑋𝛽 + ℎ, 𝜎2𝐼). The log-likelihood:

𝑙𝑜𝑔(𝑙 (𝑦)) = 𝑙𝑜𝑔(𝑙 (𝑦 |ℎ)𝑙 (ℎ)) = 𝑙𝑜𝑔(𝑙 (𝑦 |ℎ)) + 𝑙𝑜𝑔(𝑙 (ℎ))

= 𝑙𝑜𝑔(𝑒𝑥𝑝−
1

2𝜎2
∑𝑛

𝑖=1 (𝑦𝑖−𝑋𝑖𝛽−ℎ𝑖)𝑇 (𝑦𝑖−𝑋𝑖𝛽−ℎ𝑖)) + 𝑙𝑜𝑔(𝑒𝑥𝑝− 1
2𝜏 ℎ

𝑇𝐾−1ℎ)+ constant terms

=− 1
2𝜎2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑋𝑖𝛽 − 𝑍𝑖)𝑇 (𝑦𝑖 − 𝑋𝑖𝛽 − ℎ𝑖) − 1

2𝜏 ℎ
𝑇𝐾−1ℎ

=−∑𝑛
𝑖=1 [𝑦𝑖 − 𝑥𝑖𝛽 − ℎ𝑖]2 − 1

2𝜏 ℎ
𝑇𝐾−1ℎ

Setting 𝜏 = 1/𝜆 and ℎ = 𝐾𝛼, one can easily see that equations A.2 and A.3 are identical.
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APPENDIX B

SCORE STATISTIC AND THE NULL DISTRIBUTION

B.0.1 Score test for SVG detection

The Gaussian process (GP) regression model which models the normalized gene expression 𝑦

for a given gene using the following multivariate normal model:

𝑝(𝑦 |𝜇, 𝜎2
𝑠 , 𝛿, 𝐾) ∼ 𝑁 (𝑦 |𝑋𝛽, 𝜎2

𝑠 𝐾 + 𝛿𝐼), (B.1)

where the covariance term is decomposed into a spatial and a non-spatial part, where 𝛿𝐼 represents

the non-spatial part and 𝜎2
𝑠 𝐾 is the spatial covariance matrix, whose (𝑖, 𝑗)𝑡ℎ element in the kernel

matrix 𝐾 denotes the spatial similarity between the 𝑖𝑡ℎ and 𝑗 𝑡ℎ spot calculated based on the

corresponding coordinates 𝑠𝑖 and 𝑠 𝑗 . The choice of the kernel function plays a very important role

in detecting the spatial correlation present in the gene expressions. 𝑋𝑁×𝑘 represents the covariate

matrix, while 𝛽𝑁×1 denotes the array of corresponding coefficients. This model can incorporate up

to 𝑘 − 1 covariates, such as cell type information or domain structure information.

For the 𝑖𝑡ℎ location, the model can be written like this:

𝑦𝑖 (𝑠𝑖) = 𝑋𝑖 (𝑠𝑖)𝛽 + ℎ𝑖 (𝑠𝑖) + 𝜖𝑖 (B.2)

where 𝜖𝑖 is the iid residual error which follows 𝑁 (0, 𝛿), 𝛼𝑖 (𝑠𝑖) is such that: ℎ(𝑠) = (ℎ1(𝑠1), ℎ2(𝑠2),

· · · , ℎ𝑛 (𝑠𝑖)) ∼ 𝑀𝑉𝑁 (0, 𝜎2
𝑠 𝐾 (𝑠)) is a spatial random effect which captures the spatial variation

using the spatial covariate matrix 𝜎2
𝑠 𝐾; Overall the covariance for the normalized gene expression

𝑦(𝑠) is Σ = 𝜎2
𝑠 𝐾 + 𝛿𝐼.

As we mentioned in the main text, testing if a gene is a SVG is equivalent to testing 𝐻0 : 𝜎2
𝑠 = 0.

The null hypothesis 𝐻0 : 𝜎2
𝑠 =0 can be tested using the variance-component score test which is the

locally most powerful test[141]. The variance-component score statistic is:

𝑄 = (𝑦 − 𝑋𝛽)𝑇𝐾 (𝑦 − 𝑋𝛽)

where 𝛽 is the MLEs under the null model. Under the null hypothesis, the score statistic 𝑄

follows a mixture of chi-square distributions [142], which can be closely approximated with the
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computationally efficient Davies’ method[143]. More details about the test is provided in the next

subsection.

B.1 More details on its null distribution

The Gaussian process model presented in B.1 has many unknown parameters, for example 𝛿,

the kernel parameter 𝜌, 𝜎2
𝑠 . The unknown parameters are estimated simultaneously by treating

them as variance components in the linear mixed model and estimating them using the Restricted

Maximum Likelihood(RML) model. The RML model was used to reduce bias in the variance

components model [167][168][169].

The restricted log-likelihood[170][166] for the lmm in 4.1 is as follows:

𝐿𝑅 (𝜎2
𝑠 , 𝛿, 𝜌) = −1

2
𝑙𝑜𝑔 |Σ | − 1

2
𝑙𝑜𝑔 |𝑋𝑇Σ−1𝑋 | − 1

2
(𝑦 − 𝑋𝛽)𝑇Σ−1(𝑦 − 𝑋𝛽) (B.3)

where Σ = 𝜎2
𝑠 𝐾 + 𝛿𝐼.

The score statistic can be written in the form of �̃�(𝛽, 𝛿) − 𝑡𝑟 (𝐻𝐾)[166], where 𝐻 = 𝐼 −

𝑋 (𝑋𝑇𝑋)−1𝑋𝑇 , 𝛽 and 𝛿 are the MLEs under the null model and �̃�(𝛽, 𝛿) = 1
2𝛿 (𝑦 − 𝑋𝛽)

𝑇𝐾 (𝑦 − 𝑋𝛽)

Under 𝐻0, the final score statistic for the test Q reduces to 𝑦𝑇𝐻𝑇𝐾𝐻𝑦 and

𝑄 ∼
𝑁∑︁
𝑖=1

𝜆𝑖𝜒
2
𝑖,1 (B.4)

where 𝜒2
𝑖,1 are independent 𝜒2

1 random variables and 𝜆1, 𝜆2, · · · , 𝜆𝑁 are the eigenvalues of

𝛿𝐻1/2𝐾𝐻1/2.

The form of the null distribution of the score statistic distribution stated follows from this

argument [171]. Under 𝐻0, 𝑦 ∼ 𝑁 (𝑋𝛽, 𝛿𝐼), the covariates can be removed using the transformation

�̃� = 𝐻𝑦. Now �̃� ∼ 𝑁 (0, 𝛿𝐻𝐻𝑇 ) and 𝐾1/2 �̃� ∼ 𝑁 (0, 𝛿𝐾1/2𝐻𝐻𝑇𝐾1/2). Let 𝑈 be the matrix whose

columns are the eigenvectors of 𝛿𝐾1/2𝐻𝐻𝑇𝐾1/2 and the corresponding eigenvalues are 𝜆1, · · · , 𝜆𝑛.

Therefore,𝑈𝑇𝐾1/2𝐻𝑦 ∼ 𝑁 (0, 𝑑𝑖𝑎𝑔(𝜆𝑖)) and𝑄 = (𝑈𝑇𝐾1/2𝐻𝑦)𝑇 (𝑈𝑇𝐾1/2𝐻𝑦) ∼ ∑𝑛
𝑖=1 𝜆𝑖𝜒

2
𝑖,1. Using

the fact that the eigenvalues of any matrix 𝐴, 𝐴𝐴𝑇 , 𝐴𝑇 𝐴 are the same and 𝐻2 = 𝐻, it can be shown

that 𝜆𝑖 = 𝜆𝑖, the eigen values of 𝛿𝐻1/2𝐾𝐻1/2.
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APPENDIX C

T-SNE PLOT

t-Distributed Stochastic Neighbor Embedding (t-SNE) [172][173] is a powerful nonlinear dimen-

sionality reduction technique designed to facilitate the visualization of high-dimensional data by

mapping it into two or three dimensions. This reduction process enables the identification of

inherent patterns, clusters, and relationships that are otherwise difficult to discern.

t-SNE begins by calculating pairwise similarities between data points 𝑥𝑖 and 𝑥 𝑗 in the high-

dimensional space. The similarity of datapoint 𝑥 𝑗 to datapoint 𝑥𝑖 is the conditional probability,

𝑝 𝑗 |𝑖, that 𝑥𝑖 would pick 𝑥 𝑗 as its neighbor if neighbors were picked in proportion to their probability

density under a Gaussian centered at 𝑥𝑖 . For nearby data points, 𝑝 𝑗 |𝑖 is relatively high, while for

widely separated data points, 𝑝 𝑗 |𝑖 becomes almost infinitesimal.𝑝 𝑗 |𝑖 is given by:

𝑝 𝑗 |𝑖 =
exp

(
−∥𝑥𝑖 − 𝑥 𝑗 ∥2/2𝜎2

𝑖

)∑
𝑘≠𝑖 exp

(
−∥𝑥𝑖 − 𝑥𝑘 ∥2/2𝜎2

𝑖

)
For the low-dimensional counterparts 𝑦𝑖 and 𝑦 𝑗 of the high-dimensional data points 𝑥𝑖 and 𝑥 𝑗 , we

model the similarity of map point 𝑦 𝑗 to map point 𝑦𝑖 by:

𝑞 𝑗 |𝑖 =
exp

(
−∥𝑦𝑖 − 𝑦 𝑗 ∥2)∑

𝑘≠𝑖 exp
(
−∥𝑦𝑖 − 𝑦𝑘 ∥2)

If the map points 𝑦𝑖 and 𝑦 𝑗 correctly model the similarity between the high-dimensional data

points 𝑥𝑖 and 𝑥 𝑗 , the conditional probabilities 𝑝 𝑗 |𝑖 and 𝑞 𝑗 |𝑖 will be equal. To achieve this, t-SNE

aims to minimize the mismatch between 𝑝𝑖 𝑗 and 𝑞𝑖 𝑗 . This is done by minimizing the sum of

Kullback-Leibler divergences over all data points using gradient descent. The cost function 𝐶 is

given by:

𝐶 =
∑︁
𝑖

𝐾𝐿 (𝑃𝑖∥𝑄𝑖) =
∑︁
𝑖

∑︁
𝑗

𝑝 𝑗 |𝑖 log
𝑝 𝑗 |𝑖
𝑞 𝑗 |𝑖

where 𝑃𝑖 represents the conditional probability distribution over all other datapoints given datapoint

𝑥𝑖 , and 𝑄𝑖 represents the conditional probability distribution over all other map points given map

point 𝑦𝑖.
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In summary, t-SNE reduces high-dimensional data to two or three dimensions by preserving the

pairwise similarities between points as much as possible, thereby facilitating the visualization of

complex data structures. Because the Kullback-Leibler divergence is not symmetric, different types

of errors in the pairwise distances in the low-dimensional map are weighted unequally. Specifically,

there is a high cost for using widely separated map points to represent nearby data points (i.e., using

a small 𝑞 𝑗 |𝑖 to model a large 𝑝 𝑗 |𝑖). Conversely, there is a relatively small cost for using nearby map

points to represent widely separated data points. This means that the SNE cost function prioritizes

preserving the local structure of the data in the map.

In Chapter 4, t-SNE plots are extensively used to illustrate the similarity between the gene

clusters identified by cSVG. The R package "Rtsne" [174][175][176] has been used for that purpose.

In complex biological data, traditional methods such as PCA often fall short, necessitating the use of

advanced techniques like t-SNE to achieve better performance and more meaningful visualizations.
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APPENDIX D

COMMUNITY DETECTION ALGORITHMS

In many complex networks, nodes cluster and form relatively dense groups—often called commu-

nities, where the nodes within each community are more densely connected to each other than to the

rest of the network. Such a modular structure is usually not known beforehand, making the detection

of communities an important problem. One of the best-known methods for community detection is

called modularity[177]. This method tries to maximize the difference between the actual number

of edges in a community and the expected number of such edges. Community detection algorithms

use various methodologies to partition networks into meaningful clusters, revealing insights into

the relationships and interactions within the network. Different community detection algorithms

like Louvain and Leiden are widely used in single-cell RNA sequencing (scRNA-seq) analysis for

clustering single cells, aiding in the identification of distinct cell types and states.

The modularity is defined by:

H =
1

2𝑚

∑︁
𝑐

(𝑒𝑐 − 𝛾
𝐾2
𝑐

2𝑚
)

where 𝑚 is the total number of edges in the network, 𝑒𝑐 is the actual number of edges in community

𝑐, the expected number of edges can be expressed as 𝐾2
𝑐

2𝑚 , where 𝐾𝑐 is the sum of the degrees of

the nodes in the community 𝑐. 𝛾 > 0 is a resolution parameter. Higher resolutions lead to more

communities, while lower resolutions lead to fewer communities. The Louvain method[178] is

one of the most popular community detection algorithms due to its simplicity and effectiveness,

typically operating based on modularity optimization. However, in recent years, some drawbacks of

the Louvain algorithm have been identified[138], leading to the increased popularity of the Leiden

algorithm. The Leiden method is more robust and accurate, making it better suited for analyzing

complex networks where high-quality community detection is crucial.

In step 3 of the cSVG algorithm, we use the Leiden algorithm, implemented through the "igraph"

R package[179],[180] with the default resolution parameter value 𝛾 = 1.
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APPENDIX E

CHAPTER 2 SUPPLEMENTARY TABLES AND FIGURES

Table E.1 List of significant genes selected by BayesKAT and their posterior probability of
association.

Gene Name p(H1|Data)

CARD10 0.9835514
MGAT5 0.9474112

TMEM71 0.9237384
FAM174B 0.9042780

ACTA2 0.8677653
C18orf45 0.8569289

TMEM163 0.8357041
LRP1B 0.8257515

SLC35B4 0.8248786
EDNRA 0.7878737
ABCB7 0.7699132

C9orf135 0.7660853
SLC25A18 0.7583290

DKK2 0.7501011
PCID2 0.7387756

TMEM38A 0.7042073
NXNL2 0.7037605
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Table E.2 List of the significant KEGG pathways selected by BayesKAT and their corresponding
posterior probabilities of association.

Pathway Name p(H1|Data)

Pathways of neurodegeneration - multiple diseases 0.9998840
Alzheimer disease 0.9982576

Salmonella infection 0.9897521
Antifolate resistance 0.9666899
Huntington disease 0.9630876

Bile secretion 0.9530779
Alcoholic liver disease 0.9285561
Dilated cardiomyopathy 0.9240475

Metabolic pathways 0.9211165
Amyotrophic lateral sclerosis 0.9070785
Hypertrophic cardiomyopathy 0.8975824
Cardiac muscle contraction 0.8966726
mTOR signaling pathway 0.8869947
cAMP signaling pathway 0.8688107

Pathogenic Escherichia coli infection 0.8645842
Calcium signaling pathway 0.7962372

ABC transporters 0.7851350
Citrate cycle (TCA cycle) 0.7766141

Non-alcoholic fatty liver disease 0.7676582
AMPK signaling pathway 0.7640913

Parkinson disease 0.7242965
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Figure E.1 Inferred weights of each candidate kernel within the composite kernels based on the
simulation tests as presented in Figure 1(B). The inferred composite kernel demonstrates strong
agreements with the underlying true kernel function (the Quadratic kernel) used for data
generation. High kernel weights are consistently inferred for the Quadratic kernel.
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Figure E.2 Performance comparison based on simulations involving unrelated discrete genetic
features. With the same fixed level of empirical type 1 error, the empirical power of all three
methods are overall low, because this basic simulation only groups unrelated genetic features
together, which is not recommended for real-world genetic association studies. Even through,
BayesKAT still achieves better empirical power.
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Figure E.3 The empirical power vs empirical type 1 error plot from the pathway-based simulations
with sample size n=755. For each scenario, BayesKAT consistently achieves the best
performance. The aggregated result presented in main figure 3(B).

122



Figure E.4 The empirical power vs empirical type 1 error plot from the pathway-based simulations
with sample size n=1000. The strength of the relationship is intentionally weakened by adjusting
effect sizes for performance comparison purposes. Note that for larger sample sizes under the
scenarios in S3, all methods exhibit a power of 1, making them incomparable. For each scenario,
BayesKAT consistently achieves the best performance.
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Figure E.5 The empirical power vs empirical type 1 error plot from the pathway-based simulations
with sample size n=1500. The strength of the relationship is intentionally weakened by adjusting
effect sizes for performance comparison purposes. Note that for larger sample sizes under the
scenarios in S3, all methods exhibit a power of 1, making them incomparable. BayesKAT
consistently performs reasonably well for each scenario.
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APPENDIX F

CHAPTER 4 SUPPLEMENTARY FIGURES

Figure F.1 Steps to create a synthetic dataset from an annotated original Spatial dataset. We begin
with a filtered gene expression count matrix and a location matrix where spots are annotated. The
tissue region contains 𝑁 spots where gene expression measurements are measured for each of the
𝑚 genes. Step 1: Randomly select 𝑚1 genes from the original dataset to be converted into new
SVGs in the synthetic dataset. The remaining 𝑚 − 𝑚1 genes will serve as noise genes with no
spatial pattern. Step 2: For each of the 𝑚1 genes in the original dataset, sort and arrange the gene
expression count values according to the reference domain structure. For the remaining genes,
sort and arrange the count values randomly on the tissue region.
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Figure F.2 The t-SNE plots[128] illustrate the separation of domain-specific SVGs by cSVG
across 10 synthetic datasets.

126



Figure F.3 The performance comparison between A)nnSVG[78] and B)cSVG is conducted for the
simulation setup outlined in section 3.1 of the main manuscript. The gene groups are:
Independent: Uncorrelated Gene group for genes without any spatial pattern(g1-g10), Correlated:
Correlated Gene group for genes without any spatial pattern(g11-g20). Pattern 1-3: Correlated
Gene group for genes with spatial pattern 1-3 (g21-g30,g31-g40,g41-g50). Pattern 4-6: Single
gene with spatial pattern 4-6(g51-g53) The spatial pattern strength intensifies within each spatial
gene group(pattern1-pattern3) as indicated by the triangles between the plots. The empirical
power of the SVG detection step is evaluated for simulated datasets with AR(1) (Left) and
compound symmetry (CS) (Right) correlation structures within the gene groups.
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Figure F.4 The SVG-clusters detected from the DLPFC data using cSVG distinctly highlight the
disparity between genes in the two main clusters. The representative genes in the second cluster
demonstrate overexpression in the white matter region, while those in the first cluster exhibit
overexpression in the other six cortex layers. Additionally, the three unique genes in the final row
display a slightly different pattern compared to the genes in the main clusters.
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Figure F.5 Annotated and predicted spatial domains for all 12 DLPFC samples using cSVG,
alongside ARI scores for each sample indicating prediction accuracy.
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Figure F.6 t-SNE plots illustrating genes from all 12 DLPFC samples, with colors representing
SVG cluster labels detected by cSVG. Across the majority of samples, distinct clustering is
observed, indicating accurate separation of genes within different clusters.
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Figure F.6 (cont’d)
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Figure F.7 Table displays gene-cluster sizes by cSVG for all 12 DLPFC samples.
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Figure F.8 Analysis of Pancreatic Cancer Data using cSVG unveils three primary SVG clusters.
Representative genes from each cluster (Cluster 1, Cluster 2, and Cluster 3) are showcased. The
genes from these distinct clusters exhibit overexpression in three different regions.
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Figure F.9 Analysis of Pancreatic cancer data: Pathway enrichment analysis of genes from A)
Cluster 1, B) Cluster 2, and C)Cluster are showcased. As expected, cluster 2 and cluster 3 genes
show enrichment in cancer-related pathways.
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