
By

Xitong Zhang

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computational Mathematics, Science and Engineering—Doctor of Philosophy

2024

DEEP LEARNING REGULARIZATION: THEORY AND DATA PERSPECTIVES

ABSTRACT

Generalization is a central research topic in deep learning. To enhance the test performance of

well-trained models on unseen data, it is essential to apply regularization techniques that refine the

model’s expressive capabilities and the training process. This thesis categorizes regularization into

theory-driven and data-driven approaches.

Theory-driven regularization encompasses methods that are broadly applicable across various

contexts, including conventional techniques such as weight decay and dropout. Conversely,

data-driven regularization involves techniques specifically designed for particular data sets and

applications. For instance, different neural network architectures can be developed to capture

various useful patterns in data for specific applications. This dissertation explores both types of

regularization, from the development of new training algorithms with theoretical guarantees to the

design of deep learning architectures for data-driven approaches.

For theory-driven regularization, this dissertation discusses a training algorithm based on

PAC-Bayes bound. PAC-Bayes bound evaluates the upper bound of the test error using only training

data. However, minimizing the upper bound of the test error using existing PAC-Bayes bounds, which

are theoretically tight and should intuitively benefit generalization, often results in compromised test

performance compared to empirical risk minimization (ERM) with commonly used regularization

techniques such as weight decay, large learning rates, and small batch sizes. The designed algorithm

seeks to bridge the gap between theoretical tightness and practical effectiveness in boosting test

performance for classification tasks.

For data-driven regularization, this dissertation discusses graph neural networks specifically

designed for directed graphs and spatial-temporal seismic data. It also introduces a physics-informed

deep learning framework for full-waveform inversion, which aims to estimate subsurface structures

based on seismic data by integrating the governing acoustic wave equation with convolutional neural

networks. Additionally, data augmentation is considered a specialized form of regularization. This

thesis explores the design of generative neural networks for time-lapse full-waveform inversion to

obtain more training samples and achieve lower test errors in the target inversion task.

The material presented in this dissertation incorporates several publications and preprints. For

details on PAC-Bayes training, where the model is trained using the PAC-Bayes bound, review

Zhang et al. (2023). For discussions on regularization through the design of graph neural networks,

refer to Zhang et al. (2021b) and Zhang et al. (2022). For physics-informed regularization, see Jin

et al. (2021). For approaches to data augmentation with generative models, check Yang et al. (2022).

Copyright by
XITONG ZHANG
2024

To all warriors exploring in the darkness.

"There is only one heroism in the world: to see the world as it is and to love it."
— Romain Rolland

v

ACKNOWLEDGEMENTS

Pursuing a PhD degree has been a long and memorable journey, filled with many emotions, including

happiness, excitement, hopefulness, and, at times, depression. In this dissertation, I sincerely thank

all my friends, colleagues, advisors, and family who have supported me throughout this journey.

Over the course of my six-year journey at Michigan State University, while my research may

not be the most acclaimed, I am confident that my experiences are among the most diverse of all

the graduates. Throughout my PhD, I had the opportunity to work in several different research

labs. After transferring from another department, my journey in the Department of Computational

Mathematics, Science, and Engineering began under the guidance of Dr. Matthew Hirn and, later,

Dr. Rongrong Wang. They introduced me to high-quality research practices, effective project

management, and the essentials of good leadership and mentorship. Additionally, I was fortunate to

intern with Dr. Youzuo Lin four years ago, who encouraged and guided me in exploring a completely

new field in geoscience. Working with them has been a profoundly rewarding experience; words

cannot fully express my gratitude. I would also like to extend my thanks to all my other committee

members, Dr. Saiprasad Ravishankar and Dr. Jianrong Wang, for their invaluable guidance, advice,

and constructive feedback.

I am deeply thankful to Jingwen Shi, who has been a steadfast companion throughout nearly my

entire research career. I also appreciate Qi Wang, who provided encouragement and support as I

explored new research paths during challenging times. I am grateful to Guangliang Liu, Haitao

Mao, and Zhiyu Xue for their support during my job search. Additionally, I extend my gratitude to

all my labmates and friends, including, but not limited to, He Lyu, Avrajit Ghosh, Ismail Alkhouri,

Peng Jin, Will Reichard-Flynn, Yuxin Yang, Shihang Feng, Michael Perlmutter, Yixuan He, Xiaorui

Liu, and Junyuan Hong. It is impossible to name everyone here; please accept my apologies if I

have inadvertently omitted anyone. Most of all, I extend my deepest gratitude to my family, my

unwavering supporters. Their understanding, encouragement, and love have been the foundation of

my success throughout all that has happened these years.

vi

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW . 1
1.1 Background . 1
1.2 Dissertation Contributions . 2
1.3 Dissertation Structure . 5

CHAPTER 2 THEORY-DRIVEN REGULARIZATION 6
2.1 Introduction of Implicit Regularization: The Gradient Descent Case 6
2.2 Unlocking Tuning-free Generalization: Minimizing the PAC-Bayes Bound

with Trainable Priors . 9

CHAPTER 3 DATA-DRIVEN REGULARIZATION 29
3.1 MagNet: A Neural Network for Directed Graphs 29
3.2 Spatio-Temporal Graph Convolutional Networks for Earthquake Source Char-

acterization . 47
3.3 Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and

Partial Differential Equation in a Loop . 71
3.4 Making Invisible Visible: Data-Driven Seismic Inversion with Spatio-

temporally Constrained Data Augmentation 86

CHAPTER 4 CONCLUSION . 114

BIBLIOGRAPHY . 117

APPENDIX A UNLOCKING TUNING-FREE GENERALIZATION: MINIMIZING
THE PAC-BAYES BOUND WITH TRAINABLE PRIORS 135

APPENDIX B MAGNET: A NEURAL NETWORK FOR DIRECTED GRAPHS . . . 167

APPENDIX C UNSUPERVISED LEARNING OF FULL-WAVEFORM INVER-
SION: CONNECTING CNN AND PARTIAL DIFFERENTIAL EQUA-
TION IN A LOOP . 176

vii

CHAPTER 1

OVERVIEW

1.1 Background

Before delving into the details of this dissertation, it is crucial to define what is meant by

‘regularization,’ a term with varied definitions in the field. For instance, a recent taxonomy has

categorized regularization techniques into explicit and implicit types. According to Hernández-

García and König (2018), explicit regularization involves techniques that reduce the representational

capacity of a model classH0, such as a neural network, resulting in a sub-hypothesis setH1 ⊂ H0

based on specific assumptions. Examples of explicit regularization include weight decay and

dropout. On the other hand, implicit regularization comprises techniques that reduce generalization

error indirectly through characteristics of the network architecture, the training data, or the learning

algorithm, as discussed in Zhang et al. (2021a).

Due to some ambiguity in these definitions, this dissertation adopts the taxonomy proposed by

Kukačka et al. (2017), defining regularization as follows:

Definition 1.1.1. Regularization is any supplementary technique that aims at enhancing the model’s

ability to generalize, i.e., to produce better results on the test set.

Based on this definition, we can categorize different types of regularization with the following

objectives:

An arbitrary deep learning model can be described as a function 𝑓𝜃 : 𝑥 ↦→ 𝑦 with trainable

weights 𝜃 ∈ Θ. The objective of training is to find the optimal weights 𝜃∗ that minimize the loss

function L : Θ ↦→ R:

𝜃∗ = arg min
𝜃

L(𝜃). (1.1)

The loss function generally takes the form:

L = E(𝑥,𝑦)∼D [ℓ(𝑓𝜃 (𝑥), 𝑦) + 𝑅(· · ·)], (1.2)

1

where D represents the data distribution, ℓ is the misfit function that measures the discrepancy

between the network output 𝑓𝜃 (𝑥) and the target label 𝑦, and 𝑅 is the extra penalty term based on

specific criteria, such as Occam’s razor (e.g., weight decay).

Since the data distribution D is generally unknown, we evaluate the loss function using a

training dataset S ∼ D, defined as S = {(𝑥𝑖, 𝑦𝑖)}𝑚𝑖=1, where S comprises 𝑚 pairs of training samples.

Training can then be framed as solving the following optimization task:

𝜃∗ = arg min
𝜃

1
|S|

∑︁
(𝑥𝑖 ,𝑦𝑖)∼S

[ℓ(𝑓𝜃 (𝑥𝑖), 𝑦𝑖) + 𝑅(· · ·)] . (1.3)

Based on the above equation, we can identify different sources of regularization:

• 𝑓 : the neural network architecture, such as the use of pooling layers to achieve output

invariance to slight spatial distortions in the input.

• 𝑅: the extra penalty term, for example, weight decay and sharpness minimization (Foret et al.,

2020).

• S: the training dataset, including techniques like data augmentation (Wang et al., 2017).

• ℓ: the misfit function, such as the dice coefficient which is robust to class imbalance (Milletari

et al., 2016).

• arg min
𝜃

: the optimization procedure, for instance, implicit regularization in (stochastic)

gradient descent (Barrett and Dherin, 2020; Ghosh et al., 2022), as well as early-stopping and

warm-start methods.

1.2 Dissertation Contributions

This dissertation focuses on exploring all types of regularization— 𝑓 , 𝑅, ℓ, S, and arg min
𝜃

. More

specifically:

1. In Section 2.2, we discuss a two-stage training algorithm for neural networks that minimizes

the PAC-Bayes bound (Zhang et al., 2023), integrating both ℓ and arg min
𝜃

. Previous research

2

in PAC-Bayes learning theory primarily focused on establishing tight upper bounds for test

errors, whereas PAC-Bayes training updates network weights to minimize these bounds for

better generalization. While theoretically tight, practical implementations of PAC-Bayes

bounds often fell short of achieving test errors as low as those obtained by empirical risk

minimization (ERM) with optimally tuned hyperparameters of commonly used regularization,

such as learning rate, dropout, and weight decay. Moreover, traditional PAC-Bayes training

algorithms Pérez-Ortiz et al. (2021) typically require bounded loss functions and extensive

searches over priors using additional datasets, limiting their applicability. Our new PAC-Bayes

training algorithm, which allows for unbounded loss and involves a two-stage training process,

minimizes reliance on prior tuning by training both the prior and posterior using the same

dataset. Comprehensive evaluations across various classification tasks and neural network

architectures show that our method not only surpasses existing PAC-Bayes algorithms but also

achieves test accuracies comparable to ERM with optimal commonly chosen regularization

settings.

2. For 𝑓 , this dissertation presents the design of graph neural networks, MagNet (Zhang et al.,

2021b) and STGNN (Zhang et al., 2022).

• Section 3.1 introduces MagNet, a graph neural network for directed graphs. Unlike

typical GNNs that focus on undirected graphs and require symmetrization, MagNet

utilizes a complex Hermitian matrix, the magnetic Laplacian, to preserve direction

information. This matrix captures undirected geometric structure in the magnitude of its

entries and directional information in their phases. A “charge” parameter adjusts spectral

information to account for variations among directed cycles. MagNet has been applied

to various node classification and link prediction tasks, showing superior performance

compared to other methods on most tasks. It is adaptable to other GNN architectures

such as GCN (Kipf and Welling, 2016) and ChebNet (Defferrard et al., 2016).

• Section 3.2 discusses the Spatiotemporal Graph Neural Network (STGNN) designed

3

for estimating earthquake locations and magnitudes. Traditional machine learning

earthquake characterization methods use waveform information from a single station;

STGNN, however, utilizes data from multiple stations to construct dynamic graphs via

adaptive message passing. Tested on data from the Southern California Seismic Network

and Oklahoma, STGNN has demonstrated more accurate earthquake location predictions

than baseline models.

3. Combining 𝑓 and 𝑅, Section 3.3 details an architecture for Full-Waveform Inversion (FWI)

(Jin et al., 2021). FWI is typically used in geophysics to estimate subsurface velocity

maps from seismic data, a challenging task formulated by a second-order partial differential

equation (PDE). By using finite difference methods to approximate forward modeling of

the PDE and modeling its inversion with a CNN, we transform the supervised inversion

task into an unsupervised seismic data reconstruction task. The architecture effectively acts

as an auto-encoder, with the decoder designed around governing physics (𝑓). Perceptual

loss (Johnson et al., 2016) has also been found to enhance generalization in this setting (𝑅).

Our results indicate that the model, utilizing only seismic data, achieves accuracy comparable

to supervised methods and outperforms them when more unlabeled seismic data is included.

4. For the regularization of S, Section 3.4 describes a data augmentation approach based

on generative neural networks (Yang et al., 2022) for time-lapse full-waveform inversion

(FWI). Traditional data augmentation techniques from computer vision often yield physically

unacceptable samples that do not benefit FWI. We developed generative models that incorporate

physics knowledge, such as governing equations and observable phenomena, to enhance the

quality of the synthetic data. We applied these techniques to detect small CO2 leakages

and validated our methods through comprehensive numerical tests. Our analysis shows

that data-driven seismic imaging can be significantly improved with our data augmentation

techniques.

4

1.3 Dissertation Structure

The dissertation is organized as follows.

Chapter 2 explores theory-driven regularization, starting with a review of implicit regularization in

gradient descent in Section 2.1. While numerous studies have investigated individual regularization

techniques and recognized their advantages, the interactions among these techniques remain

less understood. Consequently, extensive tuning of the hyperparameters associated with each

regularization technique is often necessary to achieve optimal test performance in practical

applications. Motivated by this challenge, Section 2.2 introduces a training algorithm based on

PAC-Bayes theory. This algorithm proves effective across various in-domain classification tasks and

different architectures, aiming to enhance generalization.

Chapter 3 focuses on data-driven regularization by designing deep learning architectures tailored

for specific applications. Section 3.1 introduces MagNet, a graph neural network for directed

graphs. Section 3.2 presents STGNN, a graph neural network that predicts earthquake locations

and magnitudes based on waveforms collected from various seismic stations. Section 3.3 discusses

full-waveform inversion conducted in an unsupervised manner, leveraging governing physical

principles. Additionally, Section 3.4 describes a scientific data augmentation approach specifically

for time-lapse full-waveform inversion.

Finally, Chapter 4 summarizes the discussed regularization techniques and discusses the potential

future work.

5

CHAPTER 2

THEORY-DRIVEN REGULARIZATION

This chapter focuses on theory-driven regularization, which operates independently of data char-

acteristics. The methods discussed here are applicable across a broader spectrum of applications,

underpinned by theoretical frameworks aimed at enhancing generalization.

This chapter initially explores implicit regularization in Section 2.1, represented by the arg min
𝜃

term in Equation 1.3. Building on the insights gained from studying implicit regularization effects,

this chapter will then delve into a training algorithm that leverages the PAC-Bayes bound, detailed

in Section 2.2. This approach illustrates how theoretical principles can guide the development of

practical regularization techniques that enhance model performance across various domains.

2.1 Introduction of Implicit Regularization: The Gradient Descent Case

Figure 2.1 Backward error analysis. There is error in the numerical solution of the system ¤𝜃 = 𝑓 (𝜃)
because of discretization. Thus, the numerical solution becomes the exact solver of the other system
¤𝜃 = 𝑓 (𝜃).

Barrett and Dherin (2020) pointed out that deep learning models trained with larger learning

rates could achieve better generalization performance by analyzing the gradient descent algorithm

based on the backward error analysis. The backward error analysis is used to measure the error from

the discretization of ODE solvers. The general intention is visualized in Figure 2.1. In order to

measure the error of ODE 𝜃𝑛+1 = Φℎ (𝜃𝑛), which is the numerical solution of the system ¤𝜃 = 𝑓 (𝜃),

we can compare ¤𝜃 = 𝑓 (𝜃), the exact solution of 𝜃𝑛+1 = Φℎ (𝜃𝑛), with ¤𝜃, the discretized solution, by

Taylor expansion.

Consider the gradient descent, the iterative weight update process can be represented by the

6

learning rate ℎ and the gradient of loss function ∇𝜃𝐸 (·):

𝜃𝑛+1 = 𝜃𝑛 + ℎ 𝑓 (𝜃𝑛) = 𝜃𝑛 − ℎ∇𝜃𝐸 (𝜃𝑛). (2.1)

To obtain what 𝑓 will make the trajectory of ¤𝜃 = 𝑓 (𝜃) coincides with that of (2.1) on the discrete

time-grids, we can first write 𝑓 (𝜃) in its Taylor series form

¤𝜃 = 𝑓 (𝜃) = 𝑓 (𝜃) + ℎ 𝑓1(𝜃) + ℎ2 𝑓2(𝜃) + · · · (2.2)

Then for any fixed 𝑡 > 0, by using numerical integration, we have

𝜃𝑡+1 = 𝜃𝑡 + ℎ(𝑓 (𝜃𝑡) + ℎ 𝑓1(𝜃𝑡) + ℎ2 𝑓2(𝜃𝑡) + · · ·)

+ ℎ
2

2
(𝑓 ′(𝜃𝑡) + ℎ 𝑓 ′1 (𝜃𝑡) + ℎ

2 𝑓 ′2 (𝜃𝑡) + · · ·) (𝑓 (𝜃𝑡) + ℎ 𝑓1(𝜃𝑡) + ℎ
2 𝑓2(𝜃𝑡) + · · ·)

+ · · ·

≈ 𝜃𝑡 + ℎ 𝑓 (𝜃𝑡) +
ℎ2

2
(𝑓 ′(𝜃𝑡) 𝑓 (𝜃𝑡) + 2 𝑓1(𝜃𝑡)).

(2.3)

To match the two trajectories, ¤𝜃 = 𝑓 (𝜃) should match 𝜃𝑛+1 = 𝜃𝑛 + ℎ 𝑓 (𝜃𝑛) whenever 𝑡 = 𝑛,
ℎ2

2 𝑓
′(𝜃𝑡) 𝑓 (𝜃𝑡)+ℎ2 𝑓1(𝜃𝑡) should be 0. Thus, we have 𝑓1(𝜃) = −1

2 𝑓
′(𝜃) 𝑓 (𝜃), which turns Equation 2.2

into:

¤𝜃 ≈ 𝑓 (𝜃) + ℎ 𝑓1(𝜃) = 𝑓 (𝜃) − ℎ
2
𝑓 ′(𝜃) 𝑓 (𝜃) = −∇(𝐸𝜃 (𝜃) +

ℎ

4
| |∇𝐸𝜃 (𝜃) | |2). (2.4)

Equation 2.4 indicates that the numerical solution of the gradient descent has the implicit

regularization term | |∇𝐸𝜃 (𝜃) | |2. The exact loss that the gradient descent solves becomes:

𝐸̃ (𝜃) = 𝐸 (𝜃) + ℎ
4
| |∇𝐸 (𝜃) | |2. (2.5)

Consequently, it explains why the testing performance is better with a larger learning rate for the

gradient descent method. Following the same analysis process, Smith et al. (2021) has the same

conclusion for the stochastic gradient descent method.

There are several other implicit regularization techniques and scenarios. Keskar et al. (2016) notes

that training with large batches often leads to convergence at sharp minima, which experimentally

results in poorer generalization performance compared to flatter minima. Neyshabur et al. (2014) and

7

Nakkiran et al. (2021) empirically observe that test performance improves with the addition of more

trainable weights, even after achieving 100% training accuracy. Kobak et al. (2020) discusses how

features with independent components can act as implicit regularization in ridge regression, where

the optimal regularization weight can sometimes be negative. Bishop (1995) shows that adding

small Gaussian noise to features leads to a loss expectation equivalent to adding an implicit term of

| | 𝜕L
𝜕𝑥
| |2 to the original loss function. Additionally, Santurkar et al. (2018) empirically examines the

effect of batch normalization, concluding that it smooths training without reducing internal covariate

shift as initially proposed by Ioffe and Szegedy (2015).

Implicit regularization generally arises from mechanisms where the strength is difficult to

tune, unlike traditional regularization techniques such as weight decay. For example, learning rate

and momentum (Ghosh et al., 2022) are related to convergence: overly large values can hinder

convergence. To enhance the effect of implicit regularization without impacting convergence, one

can convert implicit terms to explicit ones. A notable method in this context is Sharpness-Aware

Minimization (SAM) (Foret et al., 2020). However, despite SAM’s effectiveness in achieving good

test performance, Andriushchenko et al. (2023) argue that sharpness does not necessarily correlate

well with generalization. Instead, it correlates more with training parameters like the learning

rate, which may arbitrarily relate to generalization depending on the setup. This raises a pertinent

question: Is there a more reliable metric strongly correlated with generalization? The answer lies in

the PAC-Bayes bound, which directly measures the upper bound of the test error. If the PAC-Bayes

bound is sufficiently tight, it should correlate perfectly with generalization. This concept will be

elaborated in the next section.

8

2.2 Unlocking Tuning-free Generalization: Minimizing the PAC-Bayes Bound with Trainable
Priors

The PAC-Bayes bound is instrumental in assessing the generalization capabilities of machine

learning models by estimating the upper limits of test errors. This theoretical framework offers crucial

insights into a model’s generalization ability and provides a solid foundation for developing practical

training algorithms (Shawe-Taylor and Williamson, 1997). PAC-Bayes bounds are particularly

valuable as they elucidate the discrepancy between training and generalization errors, underline

the importance of incorporating regularizers in empirical risk minimization, and demonstrate how

larger datasets can enhance generalization. The efficacy of PAC-Bayes bounds in determining the

generalization capabilities of machine learning models has been validated by extensive empirical

evidence across various generalization metrics (Jiang et al., 2019).

Minimizing the upper bound of generalization error is inherently advantageous for generalization.

This section introduces a training algorithm that leverages the PAC-Bayes bounds, aiming to optimize

these theoretical limits through an approach involving trainable priors. The objective function,

designed based on the proposed PAC-Bayes bound, corresponds to the ℓ term in Equation 1.3, while

the complete practical training algorithm is represented by the arg min
𝜃

term.

2.2.1 Introduction

Traditionally, PAC-Bayes bounds have been primarily used for quality assurance or model

selection (McAllester, 1998, 1999; Herbrich and Graepel, 2000), particularly with smaller machine

learning models. Recent work has introduced a framework that minimizes a PAC-Bayes bound during

training large neural networks (Dziugaite and Roy, 2017). Ideally, the generalization performance

of deep neural networks could be enhanced by directly minimizing its quantitative upper bounds,

specifically the PAC-Bayes bounds, without incorporating any other regularization tricks. However,

the effectiveness of applying PAC-Bayes training to deep neural networks is challenged by the

well-known issue that PAC-Bayes bounds can become vacuous in highly over-parameterized settings

(Livni and Moran, 2020). Additionally, selecting a suitable prior, which should be independent of

training samples, is critical yet challenging. This often leads to conducting a parameter search for

9

the prior using separate datasets (Dziugaite et al., 2021). Furthermore, existing PAC-Bayes training

methods are typically tailored for bounded loss (Dziugaite and Roy, 2017, 2018; Pérez-Ortiz et al.,

2021), limiting their straightforward application to popular losses like Cross-Entropy.

On the other hand, the prevalent training methods for neural networks, which involve minimizing

empirical risk with SGD/Adam, achieve satisfactory test performance. However, they often require

integration with various regularization techniques to optimize generalization performance. For

instance, research has shown that factors such as larger learning rates (Cohen et al., 2021; Barrett

and Dherin, 2020), momentum (Ghosh et al., 2022; Cattaneo et al., 2023), smaller batch sizes (Lee

and Jang, 2022), parameter noise injection (Neelakantan et al., 2015; Orvieto et al., 2022), and batch

normalization (Luo et al., 2018) all induce higher degrees of implicit regularization, yielding better

generalization. Besides, various explicit regularization techniques, such as weight decay (Loshchilov

and Hutter, 2017), dropout (Wei et al., 2020), label noise (Damian et al., 2021) can also significantly

affect generalization. While many studies have explored individual regularization techniques to

identify their unique benefits, the interaction among these regularizations remains less understood.

As a result, in practical scenarios, one has to extensively tune the hyperparameters corresponding to

each regularization technique to obtain the optimal test performance.

Although further investigation is needed to fully understand the underlying mechanisms, training

models using ERM with various regularization methods remains the prevalent choice and typically

delivers state-of-the-art test performance. While PAC-Bayes training is built upon a solid theoretical

basis for analyzing generalization, its wider adoption is limited by existing assumptions about loss

and challenges in prior selection. Moreover, it is still an open question regarding how to enhance

PAC-Bayes training to match the performance of ERM methods with well-tuned regularizations.

This section introduces a training algorithm using a new PAC-Bayes bound for unbounded loss. The

contribution is summarized as follows:

1. We introduce a new PAC-Bayes bound for unbounded loss complemented by a training algorithm.

This algorithm simultaneously optimizes the prior and the posterior using the same dataset.

2. The test performance of the proposed algorithm is theoretically justified.

10

3. The proposed PAC-Bayes training algorithm outperforms existing methods that minimize other

PAC-Bayes bounds in terms of test performance.

4. Our training algorithm approaches the best test performance of the widely-used ERM using

SGD/Adam, enhanced by standard regularizations like noise injection and weight decay.

5. Our training algorithm exhibits robustness to variation in hyperparameters such as learning rate

and batch size. Besides, the same hyperparameter configuration is effective across various neural

network architectures.

2.2.2 Preliminaries

This section outlines the PAC-Bayes framework. For any supervised learning problem, the

goal is to find a proper model h from some hypothesis spaceH , with the help of the training data

S ≡ {𝑧𝑖}𝑚𝑖=1, where 𝑧𝑖 is the training pair with sample x𝑖 and its label 𝑦𝑖. Given the loss function

ℓ(h; 𝑧𝑖) : h ↦→ R+, which measures the misfit between the true label 𝑦𝑖 and the predicted label by h,

the empirical and population/generalization errors are defined as:

ℓ(h;S) = 1
𝑚

𝑚∑︁
𝑖=1

ℓ(h; 𝑧𝑖), ℓ(h;D) = ES∼D (ℓ(h;S)),

by assuming that the training and testing data are i.i.d. sampled from the unknown distribution D.

PAC-Bayes bounds include a family of upper bounds on the generalization error of the following

type.

Theorem 2.2.1. (Maurer, 2004) Assume the loss function ℓ is bounded within the interval [0, 1].

Given a preset prior distribution P over the model spaceH , and given a scalar 𝛿 ∈ (0, 1), for any

choice of i.i.d 𝑚-sized training dataset S according to D, and all posterior distributions Q overH ,

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) +

√︄
log(2

√
𝑚

𝛿
) + KL(Q||P)

2𝑚
,

holds with probability at least 1 − 𝛿. Here, KL stands for the Kullback-Leibler divergence.

A PAC-Bayes bound measures the gap between the expected empirical and generalization errors.

It’s worth noting that this bound holds for all posterior Q for any given data-independent prior P

11

and, which enables optimization of the bound by searching for the best posterior. In practice, the

posterior expectation corresponds to the trained model, and the prior expectation can be set to the

initial model. In this section, we will use | | · | | to denote a generic norm, and | | · | |2 to denote 𝐿2

norm.

2.2.3 Related Work

PAC-Bayes bounds were first used to train neural networks in Dziugaite and Roy (2017).

Specifically, the bound McAllester (1999) has been employed for training shallow stochastic neural

networks on binary MNIST classification with bounded 0-1 loss and has proven to be non-vacuous.

Following this work, many recent studies (Letarte et al., 2019; Rivasplata et al., 2019; Pérez-Ortiz

et al., 2021; Biggs and Guedj, 2021; Perez-Ortiz et al., 2021; Zhou et al., 2018b) expanded the

applicability of PAC-Bayes bounds to a wider range of neural network architectures and datasets.

However, most studies are limited to training shallow networks with binary labels using bounded

loss, which restricts their broader application to deep network training. Although PAC-Bayes bounds

for unbounded loss have been established (Audibert and Catoni, 2011; Alquier and Guedj, 2018;

Holland, 2019; Kuzborskĳ and Szepesvári, 2019; Haddouche et al., 2021; Rivasplata et al., 2020;

Rodríguez-Gálvez et al., 2023; Casado et al., 2024), it remains unclear whether these bounds can

lead to enhanced test performance in training neural networks. This uncertainty arises partly because

they usually include assumptions that are difficult to validate or terms that are hard to compute in

real applications. For example, Kuzborskĳ and Szepesvári (2019) derived a PAC-Bayes bound under

the second-order moment condition of the unbounded loss. However, as mentioned in the paper,

that bound is semi-empirical, in the sense that it contains the population second order moment of

the loss, in contrast to usual PAC-Bayes bounds that only contain empirical quantities that can be

computed from the data. To the best of our knowledge, existing PAC-Bayes bounds built under the

second-order moment condition all suffer from this issue.

Recently, Dziugaite et al. (2021) suggested that a tighter PAC-Bayes bound could be achieved

with a data-dependent prior. They divide the data into two sets, using one to train the prior and the

other to train the posterior with the optimized prior, thus making the prior independent from the

12

training dataset for the posterior. This, however, reduces the training data available for the posterior.

Dziugaite and Roy (2018) and Rivasplata et al. (2020) justified the approach of learning the prior

and posterior with the same set of data by utilizing differential privacy. However, the argument only

holds for priors provably satisfying the so-called 𝐷𝑃(𝜖)-condition in differential privacy, which

limits their practical application. Pérez-Ortiz et al. (2021) also empirically shows training with

Dziugaite and Roy (2018) could sacrifice test accuracy if the bound is not tight enough. In this

work, we advance the PAC-Bayes training approach, enhancing its practicality and showcasing its

potential in realistic settings.

2.2.4 New PAC-Bayes Bound for Unbounded loss

Popular PAC-Bayes training algorithms (Dziugaite and Roy, 2017, 2018; Pérez-Ortiz et al.,

2021) are limited to bounded loss. When dealing with unbounded Cross-Entropy loss1, they require

a clipping of the loss to small bounded regions before applying the training, leading to suboptimal

performance. On the other hand, PAC-Bayes bounds for unbounded loss were also established

in the literature (Germain et al., 2016; Rodríguez-Gálvez et al., 2023) where the requirement of

bounded loss is replaced by the weaker requirement of the finite second-order moment of the loss

or finite CGF (cumulant generating function). However, these bounds are often not non-vacuous

when applied to deep neural networks (as shown in Figure 2.2 of Section 2.2.8), meaning that the

numerical value of the bound is too large for the training to progress.

We propose a modified PAC-Bayes bound that imposes milder conditions, making it effective

for training deep networks. The new bound is based on a modification of the existing assumption of

the loss function, detailed as follows.

Definition 2.2.2 (Exponential moment on finite intervals). Let 𝑋 be a random variable defined on

the probability space (Ω, F , P) and 0 ≤ 𝛾1 ≤ 𝛾2 be two numbers. We call any 𝐾 > 0 an exponential

moment bound of 𝑋 over the interval [𝛾1, 𝛾2], when

E[exp (𝛾(E[𝑋] − 𝑋))] ≤ exp (𝛾2𝐾) (2.6)
1The MSE loss could also be unbounded when used in regression tasks

13

holds for all 𝛾 ∈ [𝛾1, 𝛾2] .

By restricting the range of 𝛾 to a finite interval [𝛾1, 𝛾2], (2.6) is weaker than the usual exponential

moment condition for sub-Gaussian distributions. Later, when we apply this condition to the PAC-

Bayes analysis, the random variable 𝑋 in Def. 2.2.2 will represent the loss function. Since most loss

functions in machine learning (e.g., Cross-Entropy, 𝐿1, MSE, Huber loss, hinge loss, Log-cosh

loss, quantile loss) are non-negative, it is of great interest to analyze the strength of Definition

2.2.2 under 𝑋 ≥ 0. In this case, we can show that our condition is weaker than the second-order

moment condition, which is currently the weakest condition allowing the establishment of

PAC-Bayes bounds.

Lemma 2.2.3. For non-negative random variable 𝑋 ≥ 0, the existence of 𝐾 on the interval

𝛾 ∈ [0,∞) in Definition 2.2.2 can be implied by the existence of the second-order moment E𝑋2 < ∞.

This lemma suggests that for non-negative loss functions, our Definition 2.2.2 is weaker than

the second-order moment condition. In addition, the assumption 𝑋 ≥ 0 can be further relaxed to

𝑋 ≥ −𝑀 with 𝑀 > 0, as in this case the random variable 𝑋 + 𝑀 is non-negative to which we can

apply Lemma 2.2.3.

Proof of Lemma 2.2.3. We show that E𝑋2 < ∞ implies Definition 2.2.2 holding for any 𝛾 ∈ [0,∞)

with some finite 𝐾 . Since E𝑋2 < ∞, we have (E𝑋)2 ≤ E𝑋2 < ∞. If 𝛾 ≥ 1
E𝑋 , then it suffices to take

the 𝐾 in

E𝑒𝛾(E𝑋−𝑋) ≤ 𝑒𝛾2𝐾

to be 𝐾 = E𝑋
𝛾
≤ (E𝑋)2 ≡ 𝐾1. If 𝛾 < 1

E𝑋 , then using the inequality

𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2, ∀𝑥 < 1

with 𝑥 := 𝛾(E𝑋 − 𝑋) ≤ 𝛾E𝑋 < 1, we have

E𝑒𝛾(E𝑋−𝑋) ≤ E(1 + 𝛾(E𝑋 − 𝑋) + 𝛾2(E𝑋 − 𝑋)2) = 1 + 𝛾2Var(𝑋) ≤ 𝑒𝛾2Var(𝑋)

Therefore, it suffices to take 𝐾 = Var(𝑋) ≡ 𝐾2. Collecting the two cases, we see taking

𝐾 = max{𝐾1, 𝐾2} would be enough for Definition 4.1 to hold with 𝛾1 = 0, 𝛾2 = ∞. □

14

Remark 2.2.4 (Comparison with the first-order-moment condition). Still under the assumption

𝑋 ≥ 0, when the 𝛾1 in Definition 2.2.2 is finite (bounded away from 0), the existence of 𝐾 can

be implied by the existence of first-order moment. Indeed, by taking 𝐾 =
E[𝑋]
𝛾1

, the inequality

E[𝑋] − 𝑋 ≤ E[𝑋] (assumed 𝑋 ≥ 0) immediately implies (2.6). However, this argument does

not hold when 𝛾1 → 0. Hence we cannot say our condition is as weak as the first-order moment

condition.

We want to emphasize that the main motivation for proposing Definition 4.1 is from

an empirical perspective, where we want to have a bound with a smaller numerical value.

Therefore, in practice, we always take 𝛾1, 𝛾2 to be positive scalars.

In addition, we propose to make the exponential moment bound depend on the prior distribution,

which leads to a further reduction of the bound. For this purpose, we first extend Definition 2.2.2

from a single random variable to a family of random variables parameterized by models in a

hypothesis space.

Let us first explain what we mean by random variables parameterized by models in a hypothesis

space. In the network setting, let us define 𝑋 (h) as 𝑋 (h) ≡ ℓ(𝑓𝜃 (𝑥), 𝑦), where ℓ is the loss and

h = 𝑓𝜃 is the model/network parametrized by weight 𝜃. For a fixed model h (i.e. 𝑓𝜃), we see

𝑋 (h) is a random variable whose randomness comes from the input pairs (𝑥, 𝑦) ∼ D (D is the

data distribution). Since this random variable 𝑋 (h) varies with h, we call it a random variable

parameterized by models h.

Definition 2.2.5 (Exponential moment over hypotheses). Let 𝑋 (h) be a random variable param-

eterized by the hypothesis h in some space H (i.e., h ∈ H), and fix an interval [𝛾1, 𝛾2] with

0 < 𝛾1 < 𝛾2 < ∞. Let {Pλ,λ ∈ Λ} be a family of distribution over H parameterized by

λ ∈ Λ ⊆ R𝑘 . Then, we call any non-negative function 𝐾 (λ) a uniform exponential moment bound

for 𝑋 (h) over the priors {Pλ,λ ∈ Λ} and the interval [𝛾1, 𝛾2], if the following holds

Eh∼PλE[exp (𝛾(E[𝑋 (h)] − 𝑋 (h)))] ≤ exp (𝛾2𝐾 (λ)),

15

for all 𝛾 ∈ [𝛾1, 𝛾2], and any λ ∈ Λ ⊆ R𝑘 . The minimal such 𝐾 (λ) is

𝐾min(λ) = sup
𝛾∈[𝛾1,𝛾2]

1
𝛾2 log(Eh∼PλE[exp (𝛾(E[𝑋 (h)] − 𝑋 (h)))]). (2.7)

Similar to Definition 2.2.2, when dealing with non-negative loss, the existence of the exponential

moment bound 𝐾min is guaranteed, provided that the second-order moment of the loss is bounded,

or provided that the first-order moment of the loss is bounded and 𝛾1 is bounded away from 0.

Now, we can establish the PAC-Bayes bound for losses that satisfy Definition 2.2.5.

Theorem 2.2.6 (PAC-Bayes bound for unbounded loss with a preset prior distribution). Given a

prior distribution Pλ over the hypothesis spaceH , parametrized by λ ∈ Λ. Assume the loss ℓ(h, 𝑧𝑖)

as a random variable parametrized by h satisfies Definition 2.2.5. Fix some 𝛿 ∈ (0, 1). For any

0 < 𝛿 < 1 and 𝛾 ∈ [𝛾1, 𝛾2], we have

𝑃S

(
∀Q ∈ Q,Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) + 1

𝛾𝑚
(log

1
𝛿
+ KL(Q||Pλ)) + 𝛾𝐾 (λ)

)
≥ 1 − 𝛿

where Q is the set of all probability distributions.

Remark 2.2.7. By setting 𝛾 = 𝑂 (𝑚−1/2), we observe that the asymptotic behavior of this bound

aligns with the 𝑂 (𝑚−1/2) convergence rate of popular PAC-Bayes bounds in the literature. A

corollary of this theorem and Lemma 2.2.3 is that this convergence rate can be achieved for CE

loss under a bounded second-order moment condition. While bounds under the second-order

moment condition were derived in the literature, as discussed in Section 2.2.3, our bound

seems to be the first purely empirical bound (i.e., computable from data) that can be easily

used for training. Moreover, our use of finite 𝛾1 > 0 and 𝛾2 < ∞ and the permission of 𝐾 to

depend on the prior parameter 𝜆 further reduce the value of the bound.

The proof is available in Appendix A.1.1.

With the relaxed requirements on the loss function, our bound offers a basis for establishing

effective optimization over both the posterior and the prior. We will first outline the training process,

which focuses on jointly optimizing the prior and posterior to avoid the complex hyper-parameter

search over the prior as Pérez-Ortiz et al. (2021), followed by a discussion of its theoretical guarantees.

16

The procedure is similar to the one in Dziugaite and Roy (2017), but has been adapted to align with

our newly proposed bound.

We begin by parameterizing the posterior distribution as Qσ (h), where h ∈ R𝑑 represents the

mean of the posterior, and σ ∈ R𝑑 accounts for the variations in each model parameter from this

mean (i.e., variance). Next, we parameterize the prior as Pλ, where λ ∈ R𝑘 . We operate under

the assumption that the prior has significantly fewer parameters than the posterior, that is, 𝑘 ≪ 𝑑;

the relevance of this assumption will become apparent upon examining Theorem 2.2.10. For our

PAC-Bayes training, we propose to optimize over all four variables: h, 𝛾, σ, and λ:

(ĥ, 𝛾̂, σ̂, λ̂) = arg min
h,λ,σ,𝛾∈[𝛾1,𝛾2]

𝐿𝑃𝐴𝐶 (h, 𝛾,σ,λ), (P)

where

𝐿𝑃𝐴𝐶 (h, 𝛾,σ,λ) = Eh̃∼Qσ (h)ℓ(h̃;S) + 1
𝛾𝑚
(log

1
𝛿
+ KL(Qσ (h) | |Pλ)) + 𝛾𝐾 (λ).

Compared to previous PAC-Bayes training, the most notable change in 𝐿𝑃𝐴𝐶 is that we

allow 𝐾 to depend on the prior parameter λ, and optimize it along with other terms.

We provide an end-to-end theorem that guarantees the performance of this optimization algorithm.

To derive our theorem, we need the following assumptions:

Assumption 2.2.8 (Continuity of the KL divergence). Let 𝔔 be a family of posterior distributions,

let 𝔓 = {𝑃λ,λ ∈ Λ ⊆ R𝑘 } be a family of prior distributions parameterized by λ. We say the KL

divergence KL(Q||Pλ) is continuous with respect to λ over the posterior family, if there exists some

non-decreasing function 𝜂1(𝑥) : R+ ↦→ R+ with 𝜂1(0) = 0, such that |KL(Q||Pλ) − KL(Q||Pλ̃) | ≤

𝜂1(∥λ − λ̃∥), for all pairs λ, λ̃ ∈ Λ and for all Q ∈ 𝔔.

Assumption 2.2.9 (Continuity of the exponential moment bound). Let 𝐾min(λ) be as defined in

Definition 2.2.5. Assume it is continuous with respect to the parameter λ of the prior in the

sense that there exists a non-decreasing function 𝜂2(𝑥) : R+ ↦→ R+ with 𝜂2(0) = 0 such that

|𝐾min(λ) − 𝐾min(λ̃) | ≤ 𝜂2(∥λ − λ̃∥), for all λ, λ̃ ∈ Λ.

17

These two assumptions are quite weak and can be satisfied by popular continuous distributions,

such as the exponential family.

We will first present a general theorem applicable to all distribution families satisfying these

assumptions. Then we demonstrate why the Gaussian prior/posterior distribution, commonly used

in practice, satisfies these assumptions.

Theorem 2.2.10 (PAC-Bayes bound for unbounded losses and trainable priors). Assume the loss

ℓ(h, 𝑧𝑖) as a random variable parametrized by h satisfies Definition 2.2.5. Let 𝔔 be a family of

posterior distribution, let 𝔓 = {𝑃λ,λ ∈ Λ ⊆ R𝑘 } be a family of prior distributions parameterized

by λ. Let 𝑛(𝜀) := N(Λ, ∥ · ∥, 𝜀) be the covering number of the set of the prior parameters. Under

Assumption 2.2.8 and Assumption 2.2.9, the following inequality holds for the minimizer (ĥ, 𝛾̂, σ̂, λ̂)

of (P) and any 𝜖, 𝜀 > 0 with probability as least 1 − 𝜖:

Eh∼Qσ̂ (ĥ)ℓ(h;D) ≤ 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̂, σ̂, λ̂) + 𝜂, (2.8)

where 𝜂 = 𝐵𝜀 + 𝐶 (𝜂1(𝜀) + 𝜂2(𝜀)) +
log(𝑛(𝜀)+ 𝛾2−𝛾1

2𝜀)
𝛾1𝑚

, and 𝐶 and 𝐵 are constants depending on 𝛾1, 𝛾2,

𝜂2, 𝑚 and the upper bounds of the parameters in the prior and posterior.

The proof is available in Appendix A.1.2.

The theorem provides a generalization bound on the model learned as the minimizer of (P) with

data-dependent priors. This bound contains the PAC-Bayes loss 𝐿𝑃𝐴𝐶 along with an additional

correction term 𝜂, that is notably absent in the traditional PAC-Bayes bound with fixed priors. Given

that (ĥ, 𝛾̂, σ̂, λ̂) minimizes 𝐿𝑃𝐴𝐶 , evaluating 𝐿𝑃𝐴𝐶 at its own minimizer ensures that the first term

is small. If the correction term is also small, then the test error remains low. In the next section, we

will delve deeper into the condition for this term to be small. Intuitively, selecting a small 𝜀 helps to

maintain low values for the first three terms in 𝜂. Although a smaller 𝜀 increases the 𝑛(𝜀) in the last

term, this increase is moderated because it is inside the logarithm and divided by the size of the

dataset.

18

2.2.5 PAC-Bayes Training Algorithm with Gaussian Families

2.2.6 Gaussian prior and posterior

For the 𝐿𝑃𝐴𝐶 objective to have a closed-form formula, in this section, we employ the Gaussian

distribution family. For ease of illustration, we introduce a new notation. Consider a neural network

model denoted as 𝑓θ, where 𝑓 represents the network’s architecture, and θ is the weight. In this

context, 𝑓θ aligns with the h discussed in earlier sections. Moving forward, we will use 𝑓θ to refer

to the model instead of h.

We define the posterior distribution of the weights as a Gaussian distribution centered around the

trainable weight θ, with trainable varianceσ., i.e., the posterior weight distribution isN(θ, diag(σ)),

denoted by Qσ (θ), where σ includes the anisotropic variance of the weights and θ includes the

mean. The assumption of a diagonal covariance matrix implies the independence of the weights.

We consider two types of priors, both centered around the initial weight of the neural network θ0 (as

suggested by Dziugaite and Roy (2017)), but with different settings on the variance.

Scalar prior: we use a universal scalar to encode the variance of all the weights in the prior, i.e.,

the weight distribution of P𝜆 is N(θ0, 𝜆𝐼𝑑), where 𝜆 is a scalar. With this prior, the KL divergence

KL(Qσ (θ) | |P𝜆 (θ0)) in (P) is:

1
2

[
−1⊤𝑑 log(σ) + 𝑑 (log(𝜆) − 1) +

(∥σ∥1 + ∥θ − θ0∥22)
𝜆

]
. (2.9)

Layerwise prior: weights in the 𝑖th layer share a common variance λ𝑖, but different layers could

have different variances. By setting λ = (λ1,,λ𝑘) as the vector containing all the layerwise

variances of a 𝑘-layer neural network, the weight distribution of prior Pλ is N(θ0,BlockDiag(λ)),

where BlockDiag(λ) is obtained by diagonally stacking all λ𝑖 𝐼𝑑𝑖 into a 𝑑 × 𝑑 matrix, where 𝑑𝑖 is the

number of weights of the 𝑖th layer. The KL divergence for layerwise prior is in Appendix A.1.3. For

shallow networks, it is enough to use the scalar prior; for deep neural networks and neural networks

constructed from different types of layers, using the layerwise prior is more sensible.

By plugging in the closed-form (2.9) for KL(Qσ (θ) | |Pλ(θ0)) into the PAC-Bayes bound in

Theorem 2.2.10, we have the following corollary that justifies the usage of PAC-Bayes bound on

large neural networks with the trainable prior.

19

Corollary 2.2.11. Suppose the posterior and prior are Gaussian distributions as defined above.

Assume all parameters for the prior and posterior are bounded, i.e., we restrict the model parameter

θ, the posterior variance σ and the prior variance λ, all to be searched over bounded sets,

Θ := {θ ∈ R𝑑 : ∥θ∥2 ≤
√
𝑑𝑀}, Σ := {σ ∈ R𝑑+ : ∥σ∥1 ≤ 𝑑𝑇}, Λ =: {λ ∈ [𝑒−𝑎, 𝑒𝑏]𝑘 }, respectively,

with fixed 𝑀,𝑇, 𝑎, 𝑏 > 0. Then,

• Assumption 2.2.8 holds with 𝜂1(𝑥) = 𝐿1𝑥, where 𝐿1 = 1
2 max{𝑑, 𝑒𝑎 (2

√
𝑑𝑀 + 𝑑𝑇)}

• Assumption 2.2.9 holds with 𝜂2(𝑥) = 𝐿2𝑥, where 𝐿2 = 1
𝛾2

1

(
2𝑑𝑀2𝑒2𝑎 + 𝑑 (𝑎+𝑏)

2

)
• With high probability, the PAC-Bayes bound for the minimizer of (P) has the form

Eθ∼Qσ̂ (θ̂)ℓ(𝑓θ;D) ≤ 𝐿𝑃𝐴𝐶 (θ̂, 𝛾̂, σ̂, λ̂) + 𝜂,

where 𝜂 = 𝑘
𝛾1𝑚

(
1 + log 2(𝐶𝐿+𝐵)Δ𝛾1𝑚

𝑘

)
, 𝐿 = 𝐿1 + 𝐿2, Δ := max{𝑏 + 𝑎, 2(𝛾2 − 𝛾1)}, 𝐶 = 1

𝛾1𝑚
+ 𝛾2

𝐵 is a constant depending on 𝛾1, 𝛿, 𝑀, 𝑑, 𝑇 , 𝑎, 𝑏, 𝑚2.

In the bound, the term 𝐿𝑃𝐴𝐶 (θ̂, 𝛾̂, σ̂, λ̂) is inherently minimized as it evaluates the function

𝐿𝑃𝐴𝐶 at its own minimizer. The overall bound remains low if the correction term 𝜂 can be deemed

insignificant. The logarithm term in the definition of 𝜂 grows very mildly with the dimension in

general, so we can treat it (almost) as a constant. Thus, 𝜂 ∼ 𝑘
𝛾1𝑚

, from which we see that 1). 𝜂 (and

therefore the bound) would be small if prior’s degree of freedom 𝑘 is substantially less than the

dataset size 𝑚 2). This bound still achieves the asymptotic rate of 𝑂 (𝑚−1/2) after optimizing over

𝛾1. We note that even if the corollary assumes that the parameters (i.e., mean and variance) of the

Gaussian distribution are bounded, the random variable itself is still unbounded, so the loss is still

unbounded. The proof and more discussions can be found in Appendix A.1.4.

2.2.7 Training algorithm

Estimating 𝐾min(λ): In practice, the function 𝐾min(λ) must be estimated first. Since we showed

in Corollary 2.2.11 and Remark 2.2.4 that 𝐾min(λ) is Lipschtiz continuous and bounded, we can

approximate it using piecewise-linear functions. Notably, since for each fixed λ ∈ Λ, the prior is
2See Appendix A.1.4 for the explicit form of 𝐵.

20

Algorithm 2.1 PAC-Bayes training (scalar prior)
Input: initial weightθ0 ∈ R𝑑 ,𝑇1 = 500, 𝜆1 = 𝑒−12, 𝜆2 = 𝑒2, 𝛾1 = 0.5, 𝛾2 = 10. //𝑇1, 𝜆1, 𝜆2, 𝛾1, 𝛾2
can be fixed in all experiments of Sec.2.2.8.
Output: trained weight θ̂, posterior noise level σ̂
θ ← θ0, v← 1d · log(1

𝑑
∥θ0∥1), 𝑏 ← log(1

𝑑
∥θ0∥1)

Obtain 𝐾̂ (𝜆) with Λ = [𝜆1, 𝜆2] using (A.20) (Appendix Algorithm A.1)
/*Stage 1*/
for epoch = 1 : 𝑇1 do

for sampling one batch 𝑠 from S do
//Ensure non-negative variances
𝜆← exp(𝑏), σ ← exp(v)
P𝜆 ← N(θ0;𝜆𝐼𝑑), Qσ (θ) ← θ + N(0; diag(σ))
//Get the stochastic version of Eθ̃∼Qσ (θ)ℓ(𝑓θ̃;S)
Draw one θ̃ ∼ Qσ (θ) and evaluate ℓ(𝑓θ̃;S)
Compute the KL divergence as (2.9)
Compute 𝛾 as (2.10)
Compute the loss function L as 𝐿𝑃𝐴𝐶 in (P)
//Update all parameters
𝑏 ← 𝑏 + 𝜂 𝜕L

𝜕𝑏
, v← v + 𝜂 𝜕L

𝜕v , θ ← θ + 𝜂 𝜕L
𝜕θ

end for
end for
//Fix the noise level from now on
σ̂ ← exp(v)
/*Stage 2*/
while not converge do

for sampling one batch 𝑠 from S do
//Noise injection
Draw one θ̃ ∼ Qσ̂ (θ) and evaluate ℓ(𝑓θ̃;S) as L̃,
//Update model parameters
θ ← θ + 𝜂 𝜕L̃

𝜕θ
end for

end while
θ̂ ← θ

independent of the data, this procedure of estimating 𝐾min(λ) can be carried out before training.

More details are in Appendix A.2.1.

Two-stage PAC-Bayes training: Algorithm 2.1 outlines the proposed PAC-Bayes training

algorithm that contains two stages. Stage 1 performs pure PAC-Bayes bound minimization, and

Stage 2 is a refinement stage. The version of Algorithm 1 that uses a layerwise prior is detailed

in Appendix A.2.2. For Stage 1, although there are several input parameters to be specified, one

21

can use the same choice of values across very different network architectures and datasets with

minor modifications. Please see Appendix A.3.1 for more discussions. When everything else in the

PAC-Bayes loss is fixed, 𝛾 ∈ [𝛾1, 𝛾2] has a closed-form solution,

𝛾∗ = min
max

𝛾1,
1

𝐾min

√︄
log 1

𝛿
+ KL(Qσ (θ) | |Pλ(θ0))

𝑚

 , 𝛾2

 (2.10)

Therefore, we only need to perform gradient updates on the other three variables, θ,σ,λ.

The second stage of training: Gastpar et al. (2023); Nagarajan and Kolter (2019) showed

that achieving high accuracy on certain distributions precludes the possibility of getting a tight

generalization bound in overparameterized settings. This implies that it is less possible to use

reasonable generalization bound to fully train one overparameterized model on a particular dataset.

By minimizing the PAC-Bayes bound only, it is also observed in our PAC-Bayes training (Stage

1) that the training accuracy is hard to reach 100%. Therefore, we add a second stage to ensure

convergence of the training loss. Specifically, in Stage 2, we continue to update the model by

minimizing only Eθ∼Qσ̂ℓ(𝑓θ;S) over θ, and keep all other variables (i.e., λ, σ) fixed to the solution

found by Stage 1. This is essentially a stochastic gradient descent with noise injection, the level of

which has been learned from Stage 1. The two-stage training is similar to the idea of the learning-rate

scheduler (LRS). In LRS, the initial large learning rate introduces an implicit bias that guides the

solution path towards a flat region (Cohen et al., 2021; Barrett and Dherin, 2020), and the later

lower learning rate ensures the convergence to a local minimizer in this region. Without the large

learning rate stage, it cannot reach the flat region; without the small learning rate stage, it cannot

converge to a local minimizer. For the two-stage PAC-Bayes training, Stage 1 (PAC-Bayes stage)

guides the solution to flat regions by minimizing the generalization bound, and Stage 2 is necessary

for an actual convergence to a local minimizer.

Regularizations in the PAC-Bayes training: By plugging the KL divergence (2.9) into P, we

can see that in the case of Gaussian priors and posteriors, the PAC-Bayes loss is nothing but the

original training loss augmented by a noise injection and a weight decay, except that strength of both

of them are automatically learned. More discussions are available in Appendix A.2.3.

22

Prediction: After training, we use the mean of the posterior as the trained model and perform

deterministic prediction on the test dataset. In Appendix A.2.4, we provide some mathematical

intuition of why the deterministic predictor is expected to perform even better than the Bayesian

predictor.

2.2.8 Experiments

In this section, we demonstrate the efficacy of the proposed PAC-Bays training algorithm through

extensive numerical experiments. Specifically, we conduct comparisons between our algorithm

and existing PAC-Bayes training algorithms, as well as conventional training algorithms based on

Empirical Risk Minimization (ERM). Our approach yields competitive test accuracy in all settings

and exhibits a high degree of robustness w.r.t. the choice of hyperparameters.

Comparison with different PAC-Bayes bounds and existing PAC-Bayes training algorithms:

We compared our PAC-Bayes training algorithm using the layerwise prior with baselines in Pérez-

Ortiz et al. (2021): quad (Rivasplata et al., 2019), lambda (Thiemann et al., 2017), classic (McAllester,

1999), and bbb (Blundell et al., 2015) in the context of deep convolutional neural networks. The

baseline PAC-Bayes algorithms contain a variety of crucial hyperparameters, including variance

of the prior (1e-2 to 5e-6), learning rate (1e-3 to 1e-2), momentum (0.95, 0.99), dropout rate (0

to 0.3) in the training of the prior, and the KL trade-off coefficient (1e-5 to 0.1) for bbb. These

hyperparameters were chosen by grid search. The batch size is 250 for all methods. Our findings, as

detailed in Table 2.1, show that our algorithm outperforms the other PAC-Bayes methods regarding

test accuracy. It is important to note that all four baselines employed the PAC-Bayes bound for

bounded loss. Therefore, they need to convert unbounded loss into bounded loss for training

purposes. Various conversion methods were evaluated by Pérez-Ortiz et al. (2021), and the most

effective one was selected for producing the results presented.

To demonstrate the necessity of our newly proposed PAC-Bayes bound for unbounded loss, we

compared this new bound with two existing PAC-Bayes bounds for unbounded loss. One is based

on the subGaussian assumption (Corollary 4 of Germain et al. (2016)), while the other (Theorem

9 of Rodríguez-Gálvez et al. (2023)) assumes the loss function is a bounded cumulant generating

23

Figure 2.2 Training process when minimizing different PAC-Bayes bounds on CNN9 using CIFAR10
(Stage 1). Minimizing our bound (layer) achieves a tighter bound and better test accuracy compared
with optimizing the other two (subGaussian and CGF).

Table 2.1 Test accuracy of convolution neural networks on CIFAR10. The test accuracy of baselines
for bounded loss is from Table 5 of Pérez-Ortiz et al. (2021), calculated as 1-the zero-one error of
the deterministic predictor. subG represents the subGaussian bound. Our proposed PAC-Bayes
training with a layerwise prior (layer) achieves the best test accuracy across all models.

bounded unbounded

quad lambda classic bbb subG CGF layer

CNN9 78.63 79.39 78.33 83.49 81.49 80.02 85.46
CNN13 84.47 84.48 84.22 85.41 85.84 84.21 88.31
CNN15 85.31 85.51 85.20 85.95 85.63 84.36 87.55

function (CGF). It is important to note that, as of now, no training algorithms specifically leverage

these PAC-Bayes bounds for unbounded loss. Therefore, for a fair comparison, we conducted an

experiment by replacing our PAC-Bayes bound with the other two bounds and using the same

two-stage training algorithm with the trainable layerwise prior.

We found that the two baseline bounds are not non-vacuous on CNN9/13/15; both are larger than

1e5. The subGaussian bound even explodes on CNN13 and CNN15. When using these bounds for

training a model, it is expected that they deliver worse 3 performance than the proposed one as shown

in Table 2.1. We also visualized the test accuracy when minimizing different PAC-Bayes bounds for

unbounded loss in Stage 1. As shown in Figure 2.2, minimizing our PAC-Bayes bound can achieve

better generalization performance. The details of the two baseline bounds are in Appendix A.3.2.
3Despite the vacuousness of the bound, the final results are still meaningful due to the use of Stage 2.

24

Table 2.2 Test accuracy of CNNs on C10 (CIFAR10) and C100 (CIFAR100) with batch size 128.
Our PAC-Bayes training with scalar and layerwise prior are labeled scalar and layer. The best
and second-best test accuracies are highlighted and underlined. Our PAC-Bayes training can
approximately match the best performance of the baseline.

VGG13 VGG19 ResNet18 ResNet34 Dense121

C10 C100 C10 C100 C10 C100 C10 C100 C10 C100

SGD 90.2 66.9 90.2 64.5 89.9 64.0 90.0 70.3 91.8 74.0
Adam 88.5 63.7 89.0 58.8 87.5 61.6 87.9 59.5 91.2 70.0

AdamW 88.4 61.8 89.0 62.3 87.9 61.4 88.3 59.9 91.5 70.1

scalar 88.7 67.2 89.2 61.3 88.0 68.8 89.6 69.5 91.2 71.4
layer 89.7 67.1 90.5 62.3 89.3 68.9 90.9 69.9 91.5 72.2

Comparison with ERM optimized by SGD/Adam with various regularizations: We tested

our PAC-Bayes training on CIFAR10 and CIFAR100 datasets with no data augmentation4 on

various popular deep neural networks, VGG13, VGG19 (Simonyan and Zisserman, 2014), ResNet18,

ResNet34 (He et al., 2016), and Dense121 (Huang et al., 2017) by comparing its performance with

conventional empirical risk minimization by SGD/Adam enhanced by various regularizations (which

we call baselines). The training of baselines involves a grid search for the best hyperparameters,

including momentum for SGD (0.3 to 0.9), learning rate (1e-3 to 0.2), weight decay (1e-4 to 1e-2),

and noise injection (5e-4 to 1e-2). The batch size was set to be 128. We reported the highest test

accuracy obtained from this search as the baseline results. For all convolutional neural networks,

our method employed Adam with a fixed learning rate of 1e-4.

Since the CIFAR10 and CIFAR100 datasets do not have a published validation dataset, we

used the test dataset to find the best hyperparameters of baselines during the grid search,

which might lead to a slightly inflated performance for baselines. Nevertheless, as presented in

Table 2.2, the test accuracy of our method is still competitive. Please refer to Appendix A.3.5 for

more details.

Evaluation on graph neural networks: To demonstrate the broad applicability of the proposed

PAC-Bayes training algorithm to different network architectures, we evaluated it on graph neural

networks (GNNs). Unlike CNNs, optimal GNN performance has been reported using the AdamW
4Result with data augmentation can be found in Appendix A.3.4

25

Table 2.3 Test accuracy of GNNs trained with AdamW versus our proposed method with scalar
prior scalar. The best test accuracies are highlighted. The performance of our training can almost
match the best results of the baseline obtained after carefully tuning hyperparameters.

CoraML Citeseer PubMed Cora DBLP

GCN AdamW 85.7±0.7 90.3±0.4 85.0±0.6 60.7±0.7 80.6±1.4
scalar 86.1±0.7 90.0±0.4 84.9±0.8 62.0±0.4 80.5±0.6

GAT AdamW 85.7±1.0 90.8±0.3 84.0±0.4 63.5±0.4 81.8±0.6
scalar 85.9±0.8 90.6±0.5 84.4±0.5 60.9±0.6 81.0±0.5

SAGE AdamW 85.7±0.5 90.5±0.5 83.5±0.4 60.6±0.5 80.7±0.6
scalar 86.5±0.5 90.0±0.5 84.4±0.6 61.2±0.2 79.9±0.5

APPNP AdamW 86.6±0.7 91.0±0.4 85.1±0.5 62.5±0.4 80.6±2.8
scalar 87.1±0.6 90.4±0.5 85.7±0.4 63.5±0.4 81.8±0.5

optimizer for ERM and enabling dropout. To ensure the best baseline results, we conducted a

hyperparameter search over learning rate (1e-3 to 1e-2), weight decay (0 to 1e-2), noise injection (0

to 1e-2), and dropout (0 to 0.8) and reported the highest test accuracy as the baseline result. For our

method, we used Adam and fixed the learning rate to be 1e-2 for all graph neural networks. We

follow the convention for graph datasets by randomly assigning 20 nodes per class for training, 500

for validation, and the remaining for testing.

We tested four architectures GCN (Kipf and Welling, 2016), GAT (Veličković et al., 2018),

SAGE (Hamilton et al., 2017), and APPNP (Gasteiger et al., 2018) on 5 benchmark datasets CoraML,

Citeseer, PubMed, Cora and DBLP (Bojchevski and Günnemann, 2017). Since there are only

two convolution layers for GNNs, applying our algorithm with the scalar prior is sensible. For

our PAC-Bayes training, we retained the dropout layer in the GAT as is, since it differs from the

conventional dropout and essentially drops the edges of the input graph. Other architectures do not

have this type of dropout; hence, our PAC-Bayes training for these architectures does not include

dropout.

Table 2.3 demonstrates that the performance of our algorithm closely approximates the best

outcome of the baseline. Appendix A.3.6 provides additional details and more results. Extra analysis

on few-shot text classification with transformers is in Appendix A.3.7.

Evaluation on the sensitivity of hyperparameters: In previous experiments, we selected

26

Table 2.4 The test accuracy for CNNs on CIFAR10 (C10) and CIFAR100 (C100) using a batch
size of 2048. Values in (·) indicate how much the results differ from using a batch size (128). Our
PAC-Bayes training with scalar and layerwise prior are labeled as scalar and layer. The most robust
results w.r.t. the increase of batch size are highlighted, indicating the elevated robustness of our
method compared to the baseline regarding batch sizes.

VGG13 ResNet18

C10 C100 C10 C100

SGD 87.7 (-2.5) 60.1 (-6.8) 85.4 (-4.5) 61.5 (-2.6)
Adam 90.7 (+2.2) 66.2 (+2.5) 87.7 (+0.2) 65.4 (+3.8)

AdamW 87.2 (-1.1) 61.0 (-0.8) 84.9 (-2.9) 58.9 (-2.5)

scalar 88.9 (+0.2) 66.0 (-1.2) 88.9 (+0.9) 68.7 (-0.1)
layer 89.4 (-0.3) 67.1 (0.0) 89.2 (-0.1) 69.3 (+0.3)

Table 2.5 Test accuracy of ResNet18 and VGG13 trained with different learning rates on CIFAR10.
The best test accuracies are highlighted. Our method is more robust to learning rate variations.

Model Method 3e-5 5e-5 1e-4 2e-4 3e-4 5e-4 1e-3

ResNet18 layer 88.4 88.8 89.3 88.6 88.3 89.2 87.3
Adam 66.6 73.9 81.2 85.3 86.4 87.0 87.5

VGG13 layer 88.6 88.9 89.7 89.6 89.6 89.5 88.7
Adam 84.3 84.8 85.8 87.4 87.9 88.3 88.5

specific batch sizes and learning rates as the only two tunable hyperparameters of our algorithm, with

all other parameters remaining constant across all experiments. We further demonstrate that batch

size and learning rate variations do not significantly impact our final performance. This suggests a

general robustness of our method to hyperparameters, reducing the necessity for extensive tuning.

More specifically, with a fixed learning rate 5e-4 in our method, Table 2.4 shows that changing

the batch size from 128 to a very large one, 2048, for VGG13 and ResNet18 does not significantly

affect the performance of the PAC-Bayes training compared to ERM with extensive tuning as before.

Also, as shown by Table 2.5, our algorithm is more robust to learning rate changes than ERM,

which utilizes the optimal weight decay and noise injection settings from Table 2.2. Please refer to

Appendix A.3.8 for more results.

27

2.2.9 Summary

In this section, the objective function is designed by the proposed PAC-Bayes bound for the ℓ

term in Equation 1.3, and the comprehensive implementation of the training process is encapsulated

by the arg min
𝜃

term. This integration of theoretical principles and practical application forms a

robust algorithm for reducing generalization error of machine learning models. Specifically, we

presented the practical deployment of the PAC-Bayes bound, expanding its use for effectively training

neural networks with satisfactory test performance. To realize this, we proposed a new PAC-Bayes

bound for unbounded loss with a trainable prior. This new bound overcomes the limitations inherent

in the assumptions of bounded loss and extensive prior selection.

28

CHAPTER 3

DATA-DRIVEN REGULARIZATION

This chapter presents data-dependent regularization approaches. According to the regularization

taxonomy in Equation (1.3), the terms 𝑓 , 𝑅, ℓ, and S can all be data-dependent. To regulate learning

and directly learn desired patterns, a new architecture, termed 𝑓 , is required. Depending on the

task, a specific 𝑅 term, such as the total variation (TV) loss—popular in full-waveform inversion

(FWI)—can be incorporated into the loss function. Specialized ℓ functions can be designed to

encode physical constraints relevant to scientific data. Furthermore, data augmentation techniques,

tailored to the unique characteristics of the data, can be implemented as part of S.

3.1 MagNet: A Neural Network for Directed Graphs

Introducing graph structures to a collection of objects allows the encoding of pairwise rela-

tionships, which often possess inherent directional properties. For instance, the WebKB dataset

Pei et al. (2020) comprises a list of university websites interconnected by hyperlinks, where one

website might link to another without reciprocal linking, typifying directed graphs. In this context,

the section introduces MagNet, a graph convolutional neural network designed for directed graphs.

This network, represented by the 𝑓 term in Equation (1.3), leverages the magnetic Laplacian to

effectively model and learn from the directional relationships present in such datasets.

3.1.1 Introduction

Most graph neural networks fall into one of two families, spectral networks or spatial networks.

Spatial methods define graph convolution as a localized averaging operation with iteratively

learned weights. Spectral networks, on the other hand, define convolution on graphs via the

eigendecompositon of the (normalized) graph Laplacian. The eigenvectors of the graph Laplacian

assume the role of Fourier modes, and convolution is defined as entrywise multiplication in the

Fourier basis. For a comprehensive review of both spatial and spectral networks, we refer the reader

to Zhou et al. (2018a) and Wu et al. (2020b).

Many spatial graph CNNs have natural extensions to directed graphs. However, these extensions

typically only consider the outgoing neighbors of each vertex and neglect the incoming neighbors.

29

Therefore, they run the risk of discarding potentially important information. Consider, for example,

a directed social network such as Twitter, where the nodes are Twitter accounts and a directed edge

(𝑢, 𝑣) ∈ 𝐸 means that account 𝑢 mentions account 𝑣 (using the @ functionality). To infer something

about account 𝑣, there is important information to be gathered both from other accounts that 𝑣

mentions, and accounts that mention 𝑣. Therefore, it is common for spatial methods to preprocess the

data by symmetrizing the adjacency matrix, effectively creating an undirected graph. For example,

while Veličković et al. (2018) explicitly notes that their network is well-defined on directed graphs,

their experiments treat all citation networks as undirected for improved performance.

Extending spectral methods to directed graphs is not straightforward since the adjacency matrix

is asymmetric and, thus, there is no obvious way to define a symmetric, real-valued Laplacian with

a full set of real eigenvalues that uniquely encodes any directed graph. We overcome this challenge

by constructing a network based on the magnetic Laplacian L(𝑞) defined in Section 3.1.2. Unlike

the directed graph Laplacians used in works such as Ma et al. (2019); Monti et al. (2018); Tong

et al. (2020a,b), the magnetic Laplacian is not a real-valued symmetric matrix. Instead, it is a

complex-valued Hermitian matrix that encodes the fundamentally asymmetric nature of a directed

graph via the complex phase of its entries.

Since L(𝑞) is Hermitian, the spectral theorem implies it has an orthonormal basis of complex

eigenvectors corresponding to real eigenvalues. Moreover, Theorem B.6.1, stated in Section B.6 of

the appendix, shows that L(𝑞) is positive semidefinite, similar to the traditional Laplacian. Setting

𝑞 = 0 is equivalent to symmetrizing the adjacency matrix and no importance is given to directional

information. When 𝑞 = .25, on the other hand, we have that L(.25) (𝑢, 𝑣) = −L(.25) (𝑣, 𝑢) whenever

there is an edge from 𝑢 to 𝑣 but not from 𝑣 to 𝑢. Different values of 𝑞 highlight different graph

motifs Fanuel et al. (2018, 2017); Guo and Mohar (2017); Mohar (2020), and therefore the optimal

choice of 𝑞 varies. Learning the appropriate value of 𝑞 from data allows MagNet to adaptively

incorporate directed information. We also note that L(𝑞) has been applied to graph signal processing

Furutani et al. (2020), community detection Fanuel et al. (2017), and clustering Cloninger (2017);

Fanuel et al. (2018); F. de Resende and F. Costa (2020).

30

In Section 3.1.4, we show how the networks constructed in Bruna et al. (2014); Defferrard

et al. (2016); Kipf and Welling (2016) can be adapted to directed graphs by incorporating complex

Hermitian matrices, such as the magnetic Laplacian. When 𝑞 = 0, we effectively recover the

networks constructed in those previous works. Therefore, our work generalizes these networks in a

way that is suitable for directed graphs. Our method is very general and is not tied to any particular

choice of network architecture. Indeed, the main ideas of this work could be adapted to nearly any

spectral graph neural network, and some spatial ones.

In Section 3.1.3, we summarize related work on directed graph neural networks as well as

other papers studying the magnetic Laplacian and its applications in data science. In Section

3.1.5, we apply our network to node classification and link prediction tasks. We compare against

several spectral and spatial methods as well as networks designed for directed graphs. We find that

MagNet obtains the best or second-best performance on five out of six node-classification tasks and

has the best performance on seven out of eight link-prediction tasks tested on real-world data, in

addition to providing excellent node-classification performance on difficult synthetic data. The full

implementation details, theoretical results concerning the magnetic Laplacian, extended examples,

and further numerical details are in the appendix Section B.

3.1.2 The magnetic Laplacian

Spectral graph theory has been remarkably successful in relating geometric characteristics of

undirected graphs to properties of eigenvectors and eigenvalues of graph Laplacians and related

matrices. For example, the tasks of optimal graph partitioning, sparsification, clustering, and

embedding may be approximated by eigenvectors corresponding to small eigenvalues of various

Laplacians (see, e.g., Chung and Graham (1997); Shi and Malik (1997); Belkin and Niyogi (2003);

Spielman and Teng (2004); Coifman and Lafon (2006)). Similarly, the graph signal processing

research community leverages the full set of eigenvectors to extend the Fourier transform to these

structures Ortega et al. (2018). Furthermore, numerous papers Bruna et al. (2014); Defferrard et al.

(2016); Kipf and Welling (2016) have shown that this eigendecomposition can be used to define

neural networks on graphs. In this section, we provide the background needed to extend these

31

constructions to directed graphs via complex Hermitian matrices such as the magnetic Laplacian.

We let 𝐺 = (𝑉, 𝐸) be a directed graph where 𝑉 is a set of 𝑁 vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set of

directed edges. If (𝑢, 𝑣) ∈ 𝐸 , then we say there is an edge from 𝑢 to 𝑣. For the sake of simplicity, we

will focus on the case where the graph is unweighted and has no self-loops, i.e., (𝑣, 𝑣) ∉ 𝐸 , but our

methods have natural extensions to graphs with self-loops and/or weighted edges. If both (𝑢, 𝑣) ∈ 𝐸

and (𝑣, 𝑢) ∈ 𝐸 , then one may consider this pair of directed edges as a single undirected edge.

A directed graph can be described by an adjacency matrix (A(𝑢, 𝑣))𝑢,𝑣∈𝑉 where A(𝑢, 𝑣) = 1 if

(𝑢, 𝑣) ∈ 𝐸 and A(𝑢, 𝑣) = 0 otherwise. Unless 𝐺 is undirected, A is not symmetric, and, indeed, this

is the key technical challenge in extending spectral graph neural networks to directed graphs. In the

undirected case, where the adjacency matrix A is symmetric, the (unnormalized) graph Laplacian

can be defined by L = D − A, where D is a diagonal degree matrix. It is well-known that L is a

symmetric, positive-semidefinite matrix and therefore has an orthonormal basis of eigenvectors

associated with non-negative eigenvalues. However, when A is asymmetric, direct attempts to

define the Laplacian this way typically yield complex eigenvalues. This impedes the straightforward

extension of classical methods of spectral graph theory and graph signal processing to directed

graphs.

A key point of this project is to represent the directed graph through a complex Hermitian matrix

L such that: (1) the magnitude of L(𝑢, 𝑣) indicates the presence of an edge, but not its direction;

and (2) the phase of L(𝑢, 𝑣) indicates the direction of the edge, or if the edge is undirected. Such

matrices have been explored in the directed graph literature (see Section 3.1.3), but not in the context

of graph neural networks. They have several advantages over their real-valued matrix counterparts.

In particular, a single symmetric real-valued matrix will not uniquely represent a directed graph.

Instead, one must use several matrices, as in Tong et al. (2020b), but this increases the complexity of

the resulting network. Alternatively, one can work with an asymmetric, real-valued matrix, such as

the adjacency matrix or the random walk matrix. However, the spatial graph filters that result from

such matrices are typically limited by the fact that they can only aggregate information from the

vertices that can be reached in one hop from a central vertex, but ignore the equally important subset

32

of vertices that can reach the central vertex in one hop. Complex Hermitian matrices, however, lead

to filters that aggregate information from both sets of vertices. Finally, one could use a real-valued

skew-symmetric matrix but such matrices do not generalize well to graphs with both directed and

undirected edges.

The optimal choice of complex Hermitian matrix is an open question. Here, we utilize a

parameterized family of magnetic Laplacians, which have proven to be useful in other data-driven

contexts Fanuel et al. (2017); Cloninger (2017); Fanuel et al. (2018); F. de Resende and F. Costa

(2020). We first define the symmetrized adjacency matrix and corresponding degree matrix by,

A𝑠 (𝑢, 𝑣) B
1
2
(A(𝑢, 𝑣) + A(𝑣, 𝑢)), 1 ≤ 𝑢, 𝑣 ≤ 𝑁, D𝑠 (𝑢, 𝑢) B

∑︁
𝑣∈𝑉

A𝑠 (𝑢, 𝑣), 1 ≤ 𝑢 ≤ 𝑁 ,

with D𝑠 (𝑢, 𝑣) = 0 for 𝑢 ≠ 𝑣. We capture directional information via a phase matrix,1 𝚯(𝑞) ,

𝚯(𝑞) (𝑢, 𝑣) B 2𝜋𝑞(A(𝑢, 𝑣) − A(𝑣, 𝑢)) , 𝑞 ≥ 0 ,

where exp(𝑖𝚯(𝑞)) is defined component-wise by exp(𝑖𝚯(𝑞)) (𝑢, 𝑣) B exp(𝑖𝚯(𝑞) (𝑢, 𝑣)). Letting ⊙

denote component-wise multiplication, we define the complex Hermitian adjacency matrix H(𝑞) by

H(𝑞) B A𝑠 ⊙ exp(𝑖𝚯(𝑞)) .

Since 𝚯(𝑞) is skew-symmetric, H(𝑞) is Hermitian. When 𝑞 = 0, we have 𝚯(0) = 0 and so H(0) = A𝑠.

This effectively corresponds to treating the graph as undirected. For 𝑞 ≠ 0, the phase of H(𝑞) (𝑢, 𝑣)

encodes edge direction and the value H(𝑞) (𝑢, 𝑣) separates four possible cases: no edge, edge from 𝑢

to 𝑣, edge from 𝑣 to 𝑢, and undirected edge. If there is no edge, we will have H𝑞 (𝑢, 𝑣) = 0. In the

case of a directed edge, the Hermitian adjacency will be complex valued, and changing the direction

of an edge will correspond to complex conjugation. For example, in the case where 𝑞 = .25, if there

is an edge from 𝑢 to 𝑣 but not from 𝑣 to 𝑢 we have

H(.25) (𝑢, 𝑣) = 𝑖

2
= −H(.25) (𝑣, 𝑢) .

1Our definition of 𝚯(𝑞) coincides with that used in Furutani et al. (2020). However, another definition (differing
by a minus sign) also appears in the literature. These resulting magnetic Laplacians have the same eigenvalues and
the corresponding eigenvectors are complex conjugates of one another. Therefore, this difference does not affect the
performance of our network since our final layer separates the real and imaginary parts before multiplying by a trainable
weight matrix (see Section 3.1.4 for details on the network structure).

33

Thus, in this setting, an edge from 𝑢 to 𝑣 is treated as the opposite of an edge from 𝑣 to 𝑢. On

the other hand, if (𝑢, 𝑣), (𝑣, 𝑢) ∈ 𝐸 (which can be interpreted as a single undirected edge), then

H(𝑞) (𝑢, 𝑣) = H(𝑞) (𝑣, 𝑢) = 1, and we see the phase, 𝚯(𝑞) (𝑢, 𝑣) = 0, encodes the lack of direction in

the edge. For the rest of this section, we will assume that 𝑞 lies in between these two extreme values,

i.e., 0 ≤ 𝑞 ≤ .25. We define the normalized and unnormalized magnetic Laplacians by

L(𝑞)
𝑈
B D𝑠 −H(𝑞) = D𝑠 − A𝑠 ⊙ exp(𝑖𝚯(𝑞)), L(𝑞)

𝑁
B I −

(
D−1/2
𝑠 A𝑠D−1/2

𝑠

)
⊙ exp(𝑖𝚯(𝑞)) . (3.1)

Note that when 𝐺 is undirected, L(𝑞)
𝑈

and L(𝑞)
𝑁

reduce to the standard undirected Laplacians.

L(𝑞)
𝑈

and L(𝑞)
𝑁

are Hermitian. Theorem 1 (Section B.6 of the appendix) shows they are positive-

semidefinite and thus are diagonalized by an orthonormal basis of complex eigenvectors u1, . . . , u𝑁

associated to real, nonnegative eigenvalues 𝜆1, . . . , 𝜆𝑁 . Similar to the traditional normalized

Laplacian, Theorem 2 (Section B.6 of the appendix) shows the eigenvalues of L𝑞
𝑁

lie in [0, 2], and

we may factor L(𝑞)
𝑁

= U𝚲U†, where U is the 𝑁 × 𝑁 matrix whose 𝑘-th column is u𝑘 , 𝚲 is the

diagonal matrix with 𝚲(𝑘, 𝑘) = 𝜆𝑘 , and U† is the conjugate transpose of U (a similar formula holds

for L(𝑞)
𝑈

). Furthermore, recall L = BB⊤, where B is the signed incidence matrix. Similarly, Theorem

3 (Section B.6 of the appendix) shows that L(𝑞)
𝑈

= B(𝑞) (B(𝑞))†, where B(𝑞) is a modified incidence

matrix. The magnetic Laplacian encodes geometric information in its eigenvectors and eigenvalues.

In the directed star graph (Section B.7 of the appendix), for example, directional information is

contained in the eigenvectors only, whereas the eigenvalues are invariant to the direction of the

edges. On the other hand, for the directed cycle graph the magnetic Laplacian encodes the directed

nature of the graph solely in its spectrum. In general, both the eigenvectors and eigenvalues may

contain important information, which we leverage in MagNet.

3.1.3 Related work

In Section 3.1.3.1, we describe other graph neural networks designed specifically for directed

graphs. Notably, none of these methods encode directionality with complex numbers, instead opting

for real-valued, symmetric matrices. In Section 3.1.3.2, we review other work studying the magnetic

Laplacian which has been studied for several decades and lately has garnered interest in the network

science and graph signal processing communities. However, to the best of our knowledge, this is the

34

first work to use it to construct a graph neural network. We also note there are numerous approaches

to graph signal processing on directed graphs. Many of these rely on a natural analog of Fourier

modes. These Fourier modes are typically defined through either a factorization of a graph shift

operator or by solving an optimization problem. For further review, we refer the reader to Marques

et al. (2020).

3.1.3.1 Neural networks for directed graphs

In Ma et al. (2019), the authors construct a directed Laplacian, via identities involving the random

walk matrix and its stationary distribution 𝚷. When 𝐺 is undirected, one can use the fact that 𝚷 is

proportional to the degree vector to verify this directed Laplacian reduces to the standard normalized

graph Laplacian. However, this method requires 𝐺 to be strongly connected, unlike MagNet. The

authors of Tong et al. (2020b) use a first-order proximity matrix A𝐹 (equivalent to A𝑠 here), as

well as two second-order proximity matrices A𝑆in and A𝑆out . A𝑆in is defined by A𝑆in (𝑢, 𝑣) ≠ 0 if

there exists a 𝑤 such that (𝑤, 𝑢), (𝑤, 𝑣) ∈ 𝐸 , and A𝑆out is defined analogously. These three matrices

collectively describe and distinguish the neighborhood of each vertex and those vertices that can

reach a vertex in a single hop. The authors construct three different Laplacians and use a fusion

operator to share information across channels. Similarly, inspired by Benson et al. (2016), in Monti

et al. (2018), the authors consider several different symmetric Laplacian matrices corresponding to

a number of different graph motifs.

The method of Tong et al. (2020a) builds upon the ideas of both Ma et al. (2019) and Tong et al.

(2020b) and considers a directed Laplacian similar to the one used in Ma et al. (2019), but with a

PageRank matrix in place of the random-walk matrix. This allows for applications to graphs which

are not strongly connected. Similar to Tong et al. (2020b), they use higher-order receptive fields

(analogous to the second-order adjacency matrices discussed above) and an inception module to

share information between receptive fields of different orders. We also note Klicpera et al. (2019a),

which uses an approach based on PageRank in the spatial domain. There are also some related

methods for directed graphs that are not based on the graph Laplacian, such as the directed graph

embedding Sim et al. (2021), and directed message passing for molecular graphs Klicpera et al.

35

(2019b).

3.1.3.2 Related work on the magnetic Laplacian and Hermitian adjacency matrices

The magnetic Laplacian has been studied since at least Lieb and Loss (1993). The name

originates from its interpretation as a quantum mechanical Hamiltonian of a particle under magnetic

flux. Early works focused on 𝑑-regular graphs, where the eigenvectors of the magnetic Laplacian are

equivalent to those of the Hermitian adjacency matrix. The authors of Guo and Mohar (2017), for

example, show that using a complex-valued Hermitian adjacency matrix rather than the symmetrized

adjacency matrix reduces the number of small, non-isomorphic cospectral graphs. Topics of current

research into Hermitian adjacency matrices include clustering tasks Cucuringu et al. (2020) and the

role of the parameter 𝑞 Mohar (2020).

The magnetic Laplacian is also the subject of ongoing research in graph signal processing

Furutani et al. (2020), community detection Fanuel et al. (2017), and clustering Cloninger (2017);

Fanuel et al. (2018); F. de Resende and F. Costa (2020). For example, Fanuel et al. (2018) uses

the phase of the eigenvectors to construct eigenmap embeddings analogous to Belkin and Niyogi

(2003). The role of 𝑞 is highlighted in the works of Fanuel et al. (2018, 2017); Guo and Mohar

(2017); Mohar (2020), which show how particular choices of 𝑞 may highlight various graph motifs.

In our context, this indicates that 𝑞 should be carefully tuned via cross-validation. Lastly, we note

that numerous other directed graph Laplacians have been studied and applied to data science Chung

(2005); Chung and Kempton (2013); Palmer and Zheng (2021). However, as alluded to in Section

3.1.2, these methods typically do not use complex Hermitian matrices.

3.1.4 MagNet

Most graph neural network architectures can be described as being either spectral or spatial.

Spatial networks such as Veličković et al. (2018); Hamilton et al. (2017); Atwood and Towsley

(2016); Duvenaud et al. (2015) typically extend convolution to graphs by performing a weighted

average of features over neighborhoods N(𝑢) = {𝑣 : (𝑢, 𝑣) ∈ 𝐸}. These neighborhoods are

well-defined even when 𝐸 is not symmetric, so spatial methods typically have natural extensions

to directed graphs. However, such simplistic extensions may miss important information in the

36

directed graph. For example, filters defined using N(𝑢) are not capable of assimilating the equally

important information contained in {𝑣 : (𝑣, 𝑢) ∈ 𝐸}. Alternatively, these methods may also use the

symmetrized adjacency matrix, but they cannot learn to balance directed and undirected approaches.

In this section, we show how to extend spectral methods to directed graphs using the magnetic

Laplacian introduced in Section 3.1.2. To highlight the flexibility of our approach, we show how three

spectral graph neural network architectures can be adapted to incorporate the magnetic Laplacian.

Our approach is very general, and so for most of this section, we will perform our analysis for a

general complex Hermitian, positive semidefinite matrix. However, we view the magnetic Laplacian

as our primary object of interest (and use it in all of our experiments in Section 3.1.5) because of the

large body of literature studying its spectral properties and applying it to data science (see Section

3.1.3).

3.1.4.1 Spectral convolution via the magnetic Laplacian

In this section, we let L denote a Hermitian, positive semidefinite matrix, such as the normalized

or unnormalized magnetic Laplacian introduced in Section 3.1.2, on a directed graph 𝐺 = (𝑉, 𝐸),

|𝑉 | = 𝑁 . We let u1 . . . , u𝑁 be an orthonormal basis of eigenvectors for L and let U be the 𝑁 × 𝑁

matrix whose 𝑘-th column is u𝑘 . We define the directed graph Fourier transform for a signal

x : 𝑉 → C by x̂ = U†x, so that x̂(𝑘) = ⟨x, u𝑘⟩ . We regard the eigenvectors u1, . . . , u𝑁 as the

generalizations of discrete Fourier modes to directed graphs. Since U is unitary, we have the Fourier

inversion formula

x = Ux̂ =

𝑁∑︁
𝑘=1

x̂(𝑘)u𝑘 . (3.2)

In Euclidean space, convolution corresponds to pointwise multiplication in the Fourier basis.

Thus, we define the convolution of x with a filter y in the Fourier domain by �y ∗ x(𝑘) = ŷ(𝑘)x̂(𝑘).

By (3.2), this implies y ∗ x = UDiag(ŷ)x̂ = (UDiag(ŷ)U†)x, and so we say Y is a convolution

matrix if

Y = U𝚺U† , (3.3)

for a diagonal matrix 𝚺. This is the natural generalization of the class of convolutions used in Bruna

et al. (2014).

37

Next, following Defferrard et al. (2016) (see also Hammond et al. (2011)), we show that a

spectral network can be implemented in the spatial domain via polynomials of L by having 𝚺 be a

polynomial of 𝚲 in (3.3). This reduces the number of trainable parameters to prevent overfitting,

avoids explicit diagonalization of the matrix L, (which is expensive for large graphs), and improves

stability to perturbations Levie et al. (2019). As in Defferrard et al. (2016), we define a normalized

eigenvalue matrix, with entries in [−1, 1], by 𝚲̃ = 2
𝜆max

𝚲 − I and assume

𝚺 =

𝐾∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (𝚲̃) ,

for some real-valued 𝜃1, . . . , 𝜃𝑘 ,where𝑇𝑘 is the Chebyshev polynomial defined by𝑇0(𝑥) = 1, 𝑇1(𝑥) =

𝑥, and 𝑇𝑘 (𝑥) = 2𝑥𝑇𝑘−1(𝑥) + 𝑇𝑘−2(𝑥) for 𝑘 ≥ 2. With (U𝚲̃U†)𝑘 = U𝚲̃
𝑘
U†, one has

Yx = U
𝐾∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (𝚲̃)U†x =

𝐾∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (L̃)x , (3.4)

where, analogous to 𝚲̃, we define L̃ B 2
𝜆max

L − I. It is important to note that, due to the complex

Hermitian structure of L̃, the value Yx(𝑢) aggregates information both from the values of x on

N𝑘 (𝑢), the 𝑘-hop neighborhood of 𝑢, and the values of x on {𝑣 : dist(𝑣, 𝑢) ≤ 𝑘}, which consists

of those of vertices that can reach 𝑢 in 𝑘-hops. While in an undirected graph these two sets of

vertices are the same, that is not the case for general directed graphs. Furthermore, due to the

difference in phase between an edge (𝑢, 𝑣) and an edge (𝑣, 𝑢), the filter matrix Y is also capable of

aggregating information from these two sets in different ways. This capability is in contrast to any

single, symmetric, real-valued matrix, as well as any matrix that encodes just N(𝑢).

To obtain a network similar to Kipf and Welling (2016), we set 𝐾 = 1, assume that L = L(𝑞)
𝑁

,

using 𝜆max ≤ 2 make the approximation 𝜆max ≈ 2, and set 𝜃1 = −𝜃0. With this, we obtain

Yx = 𝜃0(I + (D−1/2
𝑠 A𝑠D−1/2

𝑠) ⊙ exp(𝑖𝚯(𝑞)))x .

As in Kipf and Welling (2016), we substitute I + (D−1/2
𝑠 A𝑠D−1/2

𝑠) ⊙ exp(𝑖𝚯(𝑞)) → D̃−1/2
𝑠 Ã𝑠D̃−1/2

𝑠 ⊙

exp(𝑖𝚯(𝑞)). This renormalization helps avoid instabilities arising from vanishing/exploding gradients

and yields

Yx = 𝜃0D̃−1/2
𝑠 Ã𝑠D̃−1/2

𝑠 ⊙ exp(𝑖𝚯(𝑞)) , (3.5)

38

where Ã𝑠 = A𝑠 + I and D̃𝑠 (𝑖, 𝑖) =
∑
𝑗 Ã𝑠 (𝑖, 𝑗).

In theory, the matrix exp(𝑖𝚯(𝑞)) is dense. However, in practice, one only needs to compute a

small fraction of its entries. In most real-world datasets, the symmetrized adjacency matrix will be

sparse. Since the Hermitian adjacency matrix is constructed via pointwise multiplication between

the symmetrized adjacency matrix and the phase matrix, it is only necessary to compute the phase

matrix for entries (𝑢, 𝑣) where A𝑠 (𝑢, 𝑣) ≠ 0. Thus, the efficiency of the proposed algorithm is

comparable to standard GCN algorithms, and can leverage any existing developments such as Fey

et al. (2021) that increase efficiency of standard GCNs (although the computational complexity our

method does differ by a factor of four because of the computational complexity of complex-valued

multiplication).

3.1.4.2 The MagNet architecture

Let 𝐿 be the number of convolution layers in our network, and let X(0) be an 𝑁 × 𝐹0 input feature

matrix with columns x(0)1 , . . . x(0)
𝐹0

. Since our filters are complex, we use a complex version of ReLU

defined by 𝜎(𝑧) = 𝑧, if −𝜋/2 ≤ arg(𝑧) < 𝜋/2, and 𝜎(𝑧) = 0 otherwise (where arg(𝑧) is the complex

argument of 𝑧 ∈ C). Let 𝐹ℓ be the number of channels in layer ℓ, and for 1 ≤ ℓ ≤ 𝐿, 1 ≤ 𝑖 ≤ 𝐹ℓ−1,

and 1 ≤ 𝑗 ≤ 𝐹ℓ, we let Y(ℓ)
𝑖 𝑗

be a convolution matrix defined in the sense of either (3.3), (3.4), or

(3.5). Define the ℓth layer feature matrix X(ℓ) with columns x(ℓ)1 , . . . x(ℓ)
𝐹ℓ

as:

x(ℓ)
𝑗

= 𝜎

(
𝐹ℓ−1∑︁
𝑖=1

Y(ℓ)
𝑖 𝑗

x(ℓ−1)
𝑖
+ b(ℓ)

𝑗

)
, (3.6)

with b(ℓ)
𝑗
(𝑣) = 𝑏

(ℓ)
𝑗

and real(𝑏 (ℓ)
𝑗
) = imag(𝑏 (ℓ)

𝑗
). In matrix form we write X(ℓ) = Z(ℓ)

(
X(ℓ−1)

)
,

where Z(ℓ) is a hidden layer of the form (3.6). In the numerical experiments reported in Section

3.1.5, we utilize formulation (3.4) with L = L(𝑞)
𝑁

. In most cases we set 𝐾 = 1, for which

X(ℓ) = 𝜎
(
X(ℓ−1)W(ℓ)

self + L̃(𝑞)
𝑁

X(ℓ−1)W(ℓ)
neigh + B(ℓ)

)
,

where W(ℓ)
self and W(ℓ)

neigh are learned weight matrices corresponding to the filter weights in (3.4), and

B(ℓ) (𝑣, ·) = (𝑏 (ℓ)1 , . . . , 𝑏
(ℓ)
𝐹ℓ
) for each 𝑣 ∈ 𝑉 .

After the convolutional layers, we unwind the complex 𝑁 × 𝐹𝐿 matrix X(𝐿) into a real-valued

𝑁 × 2𝐹𝐿 matrix, apply a linear layer, consisting of right-multiplication by a 2𝐹𝐿 × 𝑛𝑐 weight matrix

39

Figure 3.1 MagNet (𝐿 = 2) applied to node classification.

0

1

2 3

4

Majority flow

(a) Ordered meta-graph.

0

1

2 3

4

Noise edges
Majority flow

(b) Cyclic meta-graph.

Figure 3.2 Meta-graphs for the synthetic data sets.

W(𝐿+1) (where 𝑛𝑐 is the number of classes) and apply softmax. In our experiments, we set 𝐿 = 2 or

3. When 𝐿 = 2, our network applied to node classification, as illustrated in Figure 3.1, is given by

softmax(unwind(Z(2) (Z(1) (X(0))))W(3)) .

For link-prediction, we apply the same method through the unwind layer, and then concatenate the

rows corresponding to pairs of nodes to obtain the edge features.

3.1.5 Experiments

3.1.5.1 Datasets

Directed Stochastic Block Model

We construct a directed stochastic block (DSBM) model as follows. First we divide 𝑁 vertices

into 𝑛𝑐 equally-sized clusters𝐶1, . . . , 𝐶𝑛𝑐 . We define {𝛼𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑛𝑐 to be a collection of probabilities,

0 < 𝛼𝑖, 𝑗 ≤ 1 with 𝛼𝑖, 𝑗 = 𝛼 𝑗 ,𝑖, and for an unordered pair 𝑢 ≠ 𝑣 create an undirected edge between 𝑢

and 𝑣 with probability 𝛼𝑖, 𝑗 if 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶 𝑗 . To turn this undirected graph into a directed graph, we

define {𝛽𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑛𝑐 to be a collection of probabilities such that 0 ≤ 𝛽𝑖, 𝑗 ≤ 1 and 𝛽𝑖, 𝑗 + 𝛽 𝑗 ,𝑖 = 1. For

40

each undirected edge {𝑢, 𝑣}, we assign that edge a direction by the rule that the edge points from 𝑢

to 𝑣 with probability 𝛽𝑖, 𝑗 if 𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶 𝑗 , and points from 𝑣 to 𝑢 otherwise. If 𝛼𝑖, 𝑗 is constant,

then the only way to determine the clusters will be from the directional information.

In Figure 3.3, we plot the performance of MagNet and other methods on variations of the DSBM.

In each of these, we set 𝑛𝑐 = 5 and the goal is to classify the vertices by cluster. We set 𝑁 = 2500,

except in Figure 3.3d where 𝑁 = 500. In Figure 3.3a, we plot the performance of our model on the

DSBM with 𝛼𝑖, 𝑗 B 𝛼∗ = .1, .08, and .05 for 𝑖 ≠ 𝑗 , which varies the density of inter-cluster edges,

and set 𝛼𝑖,𝑖 = .1. Here we set 𝛽𝑖,𝑖 = .5 and 𝛽𝑖, 𝑗 = .05 for 𝑖 > 𝑗 . This corresponds to the ordered

meta-graph in Figure 3.2a. Figure 3.3b also uses the ordered meta-graph, but here we fix 𝛼𝑖, 𝑗 = .1

for all 𝑖, 𝑗 , and set 𝛽𝑖, 𝑗 = 𝛽∗, for 𝑖 > 𝑗 , and allow 𝛽∗ to vary from .05 to .4, which varies the net

flow (related to flow imbalance in He et al. (2021)) from one cluster to another. The results in

Figure 3.3c utilize a cyclic meta-graph structure as in Figure 3.2b (without the gray noise edges).

Specifically, we set 𝛼𝑖, 𝑗 = .1 if 𝑖 = 𝑗 or 𝑖 = 𝑗 ±1 mod 5 and 𝛼𝑖, 𝑗 = 0 otherwise. We define 𝛽𝑖, 𝑗 = 𝛽∗,

𝛽 𝑗 ,𝑖 = 1 − 𝛽∗ when 𝑗 = (𝑖 − 1) mod 5, and 𝛽𝑖, 𝑗 = 0 otherwise. In Figure 3.3d we add noise to the

cyclic structure of our meta-graph by setting 𝛼𝑖, 𝑗 = .1 for all 𝑖, 𝑗 and 𝛽𝑖, 𝑗 = .5 for all (𝑖, 𝑗) connected

by a gray edge in Figure 3.2b (keeping 𝛽𝑖, 𝑗 the same as in Figure 3.3c for the blue edges).

Real datasets

Texas, Wisconsin, and Cornell are WebKB datasets modeling links between websites at different

universities Pei et al. (2020). We use these datasets for both link prediction and node classification

with nodes labeled as student, project, course, staff, and faculty in the latter case. Telegram Bovet and

Grindrod (2020) is a pairwise influence network between 245 Telegram channels with 8, 912 links.

To the best of our knowledge, this dataset has not previously been studied in the graph neural network

literature. Labels are generated from the method discussed in Bovet and Grindrod (2020), with a

total of four classes. The datasets Chameleon and Squirrel Rozemberczki et al. (2019) represent

links between Wikipedia pages related to chameleons and squirrels. We use these datasets for link

prediction. Likewise, WikiCS Mernyei and Cangea (2020) is a collection of Computer Science

articles. Cora-ML and CiteSeer are popular citation networks with node labels corresponding to

41

scientific subareas. We use the versions of these datasets provided in Bojchevski and Günnemann

(2017). Further details are given in the appendix.

3.1.5.2 Training and implementation details

Node classification is performed in a semi-supervised setting (i.e., access to the test data, but not

the test labels, during training). For the datasets Cornell, Texas, Wisconsin, and Telegram we use

a 60%/20%/20% training/validation/test split, which might be viewed as more akin to supervised

learning, because of the small graph size. For Cora-ML and CiteSeer, we use the same split as Tong

et al. (2020a). For all of these datasets we use 10 random data splits. For the DSBM datasets, we

generated 5 graphs randomly for each type and for each set of parameters, each with 10 different

random node splits. We use 20% of the nodes for validation and we vary the proportion of training

samples based on the classification difficulty, using 2%, 10%, and 60% of nodes per class for the

ordered, cyclic, and noisy cyclic DSBM graphs, respectively, during training, and the rest for testing.

Hyperpameters were selected using one of the five generated graphs, and then applied to the other

four generated graphs.

In the main text, there are two types of link prediction tasks conducted for performance evaluation.

The first type is to predict the edge direction of pairs of vertices 𝑢, 𝑣 for which either (𝑢, 𝑣) ∈ 𝐸 or

(𝑣, 𝑢) ∈ 𝐸 . The second type is existence prediction. The model is asked to predict if (𝑢, 𝑣) ∈ 𝐸 by

considering ordered pairs of vertices (𝑢, 𝑣). For both types of link prediction, we removed 15% of

edges for testing, 5% for validation, and use the rest of the edges for training. The connectivity was

maintained during splitting. 10 splits were generated randomly for each graph and the input features

are in-degree and out-degree of nodes. In the appendix, we report on two additional link prediction

tasks based on a three-class classification setup: (𝑢, 𝑣) ∈ 𝐸 , (𝑣, 𝑢) ∈ 𝐸 , or (𝑢, 𝑣), (𝑣, 𝑢) ∉ 𝐸 . Full

details are provided in the appendix.

In all experiments, we used the normalized magnetic Laplacian and implement MagNet with

convolution defined as in (3.4), meaning that our network may be viewed as the magnetic Laplacian

generalization of ChebNet. The setting of the hyperparameter 𝑞 and other network hyperparameters

is obtained by cross-validation. Since currently complex tensors are still in beta in PyTorch, we

42

did not use them, and instead we stored any complex tensor as two real tensors (one for the real

part, one for the imaginary part), and carried out complex multiplication using the standard formula:

(𝑎 + 𝑖𝑏) (𝑐 + 𝑖𝑑) = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑏𝑐 + 𝑎𝑑) (note, 𝑎, 𝑏, 𝑐, 𝑑 can be real numbers or real matrices).

We compare with multiple baselines in three categories: (i) spectral methods: ChebNet Defferrard

et al. (2016), GCN Kipf and Welling (2016); (ii) spatial methods: APPNP Klicpera et al. (2019a),

SAGE Hamilton et al. (2017), GIN Xu et al. (2018), GAT Veličković et al. (2018); and (iii) methods

designed for directed graphs: DGCN Tong et al. (2020b), and two variants of Tong et al. (2020a), a

basic version (DiGraph) and a version with higher order inception blocks (DiGraphIB). All baselines

in the experiments have two graph convolutional layers, except for the node classification on the

DSBM using the cyclic meta-graphs (Figures 3.3c, 3.3d, and 3.2b) for which we also tested three

layers during the hyperparameter search. For ChebNet, we use the symmetrized adjacency matrix.

For the spatial networks we apply both the symmetrized and asymmmetric adjacency matrix for

node classification. The results reported are the better of the two results. The appendix provides full

details, as well as results for two other types of baselines: (i) BiGCN, BiSAGE, BiGAT which are

obtained by applying GCN, SAGE, GAT on both the original adjacency matrix and the transposed

adjacency matrix; and (ii) a 𝑘-nearest neighbors classifier based on the eigenvector with the smallest

eigenvalue of the magnetic Laplacian Fanuel et al. (2017).

3.1.5.3 Results

We see that MagNet performs well across all tasks. As indicated in Table 3.1, our cross-validation

procedure selects 𝑞 = 0 for node classification on the citation networks Cora-ML and CiteSeer.

This means we achieved the best performance when regarding directional information as noise,

suggesting symmetrization-based methods are appropriate in the context of node classification on

citation networks. This matches our intuition. For example, in Cora-ML, the task is to classify

research papers by scientific subarea. If the topic of a given paper is “machine learning,” then it is

likely to both cite and be cited by other machine learning papers. For all other datasets, we find the

optimal value of 𝑞 is nonzero, indicating that directional information is important. Our network

exhibits the best performance on three out of six of these datasets and is a close second on Texas

43

Table 3.1 Node classification accuracy (%). The best results are in bold and the second are
underlined.

Type Method Cornell Texas Wisconsin Cora-ML CiteSeer Telegram Score

Spectral ChebNet 79.8±5.0 79.2±7.5 81.6±6.3 80.0±1.8 66.7±1.6 70.2 ±6.8 6.94
GCN 59.0±6.4 58.7±3.8 55.9±5.4 82.0±1.1 66.0±1.5 73.4 ±5.8 19.16

Spatial

APPNP 58.7±4.0 57.0±4.8 51.8±7.4 82.6±1.4 66.9±1.8 67.3±3.0 18.75
SAGE 80.0±6.1 84.3±5.5 83.1±4.8 82.3±1.2 66.0±1.5 66.4±6.4 5.76
GIN 57.9±5.7 65.2±6.5 58.2±5.1 78.1±2.0 63.3±2.5 86.4±4.3 16.53
GAT 57.6±4.9 61.1±5.0 54.1±4.2 81.9±1.0 67.3±1.3 72.6±7.5 16.39

Directed
DGCN 67.3±4.3 71.7±7.4 65.5±4.7 81.3±1.4 66.3±2.0 90.4±5.6 8.55
Digraph 66.8±6.2 64.9±8.1 59.6±3.8 79.4±1.8 62.6±2.2 82.0±3.1 15.70

DiGraphIB 64.4±9.0 64.9±13.7 64.1±7.0 79.3±1.2 61.1±1.7 64.1±7.0 16.36

Ours MagNet 84.3±7.0 83.3±6.1 85.7±3.2 79.8±2.5 67.5±1.8 87.6±2.9 1.10

Best 𝑞 0.25 0.15 0.05 0.0 0.0 0.15 -

and Telegram. We also achieve an at least four percentage point improvement over both ChebNet

and GCN on the four data sets for which 𝑞 > 0. These networks are similar to ours but with the

classical graph Laplacian. This isolates the effects of the magnetic Laplacian and shows that it is a

valuable tool for encoding directional information. MagNet also compares favorably to non-spectral

methods on the WebKB networks (Cornell, Texas, Wisconsin). Indeed, MagNet obtains a ∼ 4%

improvement on Cornell and a ∼ 2.5% improvement on Wisconsin, while on Texas it has the second

best accuracy, close behind SAGE. We also see the other directed methods have relatively poor

performance on the WebKB networks, perhaps since these graphs are fairly small and have very few

training samples. To make this analysis more quantitative, we computed the absolute difference of

the classification accuracy of each method from the classification accuracy of the top performing

method (in percentage points) on each data set, and averaged over the six data sets. In this context,

lower scores are better, and a method with a score of zero indicates the method is the top performing

method on each data set. As reported in Table 3.1, MagNet achieved a best score of 1.1 percent.

On the DSBM datasets, as illustrated in Figure 3.3, we see that MagNet generally performs quite

well and is the best performing network in the vast majority of cases. The networks DGCN and

DiGraphIB rely on second order proximity matrices. As demonstrated in Figure 3.3c, these methods

44

0.05 0.06 0.07 0.08 0.09 0.10*

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ac
cu

ra
cy

(a) Ordered DSBM with varying edge density.

0.05 0.15 0.25 0.35*

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(b) Ordered DSBM with varying net flow.

0.05 0.15 0.25*

0.2

0.4

0.6

0.8

1.0

1.2

ac
cu

ra
cy

(c) Cyclic DSBM with varying net flow.

0.05 0.15*
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ac
cu

ra
cy

MagNet
DGCN
Digraph
DigraphIB
ChebNet

GCN
APPNP
SAGE
GIN
GAT

(d) Noisy Cyclic DSBM with varying net flow.

Figure 3.3 Node classification accuracy. Error bars are one standard error. MagNet is bold red.

are well suited for networks with a cyclic meta-graph structure since nodes in the same cluster are

likely to have common neighbors. MagNet, on the other hand, does not use second-order proximity,

but can still learn the clusters by stacking multiple layers together. This improves MagNet’s ability to

adapt to directed graphs with different underlying topologies. This is illustrated in Figure 3.3d where

the network has an approximately cyclic meta-graph structure. In this setting, MagNet continues to

perform well, but the performance of DGCN and DiGraphIB deteriorate significantly. Interestingly,

MagNet performs well on the DSBM cyclic meta-graph (Figure 3.3c) with 𝑞 ≈ .1, whereas 𝑞 ≥ .2

is preferred for the other three DSBM tests; we leave a more in-depth investigation for future work.

For link prediction, we achieve the best performance on seven out of eight tests as shown in Table

3.2. We also note that Table 3.2 reports optimal non-zero 𝑞 values for each task. This indicates that

incorporating directional information is important for link prediction, even on citation networks

45

Table 3.2 Link prediction accuracy (%). The best results are in bold and the second are underlined.

Direction prediction Existence prediction

Cornell Wisconsin Cora-ML CiteSeer Cornell Wisconsin Cora-ML CiteSeer

ChebNet 71.0±5.5 67.5±4.5 72.7±1.5 68.0±1.6 80.1±2.3 82.5±1.9 80.0±0.6 77.4±0.4
GCN 56.2±8.7 71.0±4.0 79.8±1.1 68.9±2.8 75.1±1.4 75.1±1.9 81.6±0.5 76.9±0.5

APPNP 69.5±9.0 75.1±3.5 83.7±0.7 77.9±1.6 74.9±1.5 75.7±2.2 82.5±0.6 78.6±0.7
SAGE 75.2±11.0 72.0±3.5 68.2±0.8 68.7±1.5 79.8±2.4 77.3±2.9 75.0±0.0 74.1±1.0
GIN 69.3±6.0 74.8±3.7 83.2±0.9 76.3±1.4 74.5±2.1 76.2±1.9 82.5±0.7 77.9±0.7
GAT 67.9±11.1 53.2±2.6 50.0±0.1 50.6±0.5 77.9±3.2 74.6±0.0 75.0±0.0 75.0±0.0

DGCN 80.7±6.3 74.5±7.2 79.6±1.5 78.5±2.3 80.0±3.9 82.8±2.0 82.1±0.5 81.2±0.4
DiGraph 79.3±1.9 82.3±4.9 80.8±1.1 81.0±1.1 80.6±2.5 82.8±2.6 81.8±0.5 82.2±0.6

DiGraphIB 79.8±4.8 82.0±4.9 83.4±1.1 82.5±1.3 80.5±3.6 82.4±2.2 82.2±0.5 81.0±0.5

MagNet 82.9±3.5 83.3±3.0 86.5±0.7 84.8±1.2 81.1±3.3 82.8±2.2 82.7±0.7 79.9±0.6

Best 𝑞 0.20 0.10 0.20 0.15 0.25 0.05 0.05 0.05

such as Cora and CiteSeer. This matches our intuition, since there is a clear difference between a

paper with many citations and one with many references.

3.1.6 Summary

In this section, we introduced MagNet, a neural network specifically designed for directed

graphs, utilizing the magnetic Laplacian. This network represents an advancement in spectral

graph convolutional networks by extending their application to directed graphs, thereby regularizing

learning through the 𝑓 term in Equation (1.3). We have demonstrated the effectiveness of MagNet,

particularly highlighting the crucial role of incorporating directional information via a complex

Hermitian matrix. Our results, based on both real and synthetic datasets for tasks such as link

prediction and node classification, confirm that MagNet provides substantial improvements in

handling directional data compared to traditional methods.

46

3.2 Spatio-Temporal Graph Convolutional Networks for Earthquake Source Characterization

This section discusses the application of a graph neural network designed specifically for

earthquake source characterization. This network exemplifies the regularization of the 𝑓 term in

Equation (1.3), focusing on the unique challenges presented by spatio-temporal seismic data inherent

in earthquake events.

3.2.1 Introduction

Earthquake source characterization plays a fundamental role in various seismic studies, including

earthquake early-warning, hazard assessment, subsurface energy exploration, etc. Li et al. (2020a).

Characterization of an earthquake source can be posed as a classical inverse problem. Its purpose

is to infer the source information (location, magnitude, etc.) from seismic recordings. Various

approaches have been developed to characterize earthquake sources, the most well-established

being traveltime-based inversion Zhang et al. (2017); Li and van der Baan (2016); Lin et al. (2015);

Zhang and Thurber (2003) and waveform-based inversion Beskardes et al. (2018); Zhebel and

Eisner (2015); Pesicek et al. (2014); Gajewski et al. (2007). Traveltime-based methods implement

a multi-step process, in which the arrival times of P and S waves are determined through phase

detection and associated to specific earthquakes; earthquake locations are estimated as an inversion

process given arrival times, station locations, and a velocity model. Magnitudes are calculated

based on waveform amplitudes and source-receiver distances. Though traveltime-based methods are

commonly used in seismic applications, they are susceptible to noise-related errors, particularly

when estimating low-magnitude events, and fail to utilize abundant phase and amplitude information

in the complete waveform. In contrast, waveform-based inversion integrates all phase and amplitude

information recorded in seismographs, resulting in high quality source characterization. However,

waveform-based inversion is computationally expensive. Both methods require domain expertise

to properly tune parameters in the inversion process. Deep learning for source characterization

provides a data-driven alternative, where integrated location and magnitude predictions extract

full-waveform features with less computational expense than waveform inversion.

Advances in algorithms and computing, and the availability of large, high-quality datasets have

47

allowed machine learning techniques to attain spectacular success in seismological applications

Kong et al. (2019); Bergen et al. (2019) including phase picking Zhu and Beroza (2019), seismic

discrimination Li et al. (2018), waveform denoising Zhu et al. (2019a), phase association Ross

et al. (2019), earthquake location Perol et al. (2018), as well as magnitude estimation Mousavi and

Beroza (2020b). Although machine learning has long been applied to seismic event detection Wang

and Teng (1995); Tiira (1999), the first work to leverage recent advances in deep learning was

developed by Perol et al. (2018), where convolutional neural networks (CNN’s) were trained to

detect earthquakes from single station recordings and predict the source locations from among six

regions. Though successful in establishing foundational research in machine learning for earthquake

location, the CNN model is restricted to waveforms from a single seismic station and can only

classify earthquakes into broad geographic groups without providing specific location information.

Since then, more advanced single-station approaches have been developed to improve location

accuracy. Mousavi and Beroza (2020a) build Bayesian neural networks to learn epicenter distance,

P-wave travel time, and associated uncertainty from single-station data.

Recently, multi-station based machine learning methods have shown promising results. For

instance, Kriegerowski et al. (2019) develop a CNN structure that combines three-component

waveforms from multiple stations to predict hypocenter locations, resulting in more accurate

source parameters than single station methods. Zhang et al. (2020) developed an end-to-end fully

convolutional network (FCN) to predict the probability distribution of earthquake location directly

from input data recorded at multiple stations, which was extended to determine earthquake locations

and magnitudes from continuous waveforms for earthquake early warning Zhang et al. (2021c).

Shen and Shen (2021) also adopt a CNN framework, extracting the location, magnitude, and origin

time from continuous waveforms collected across a seismic network.

Though multiple-station approaches improve upon single-station methods, the use of standard

convolutional layers is limited in several ways: (1) CNN’s are designed to function on evenly-spaced

grids (i.e. photographs) where information is exclusively shared between adjacent cells, and (2)

CNN’s require the input of station locations to be static (i.e. recordings from station N must always

48

be found at position N of the input file) in order to learn positional mapping. These assumptions

are inappropriate for seismic networks, which are not regularly-spaced and may record information

related to non-adjacent stations. Additionally, station outages, the addition/removal of stations to

seismic networks, and the ability to select a localized array for the detection of small-magnitude

events makes dynamic station input highly desirable for source characterization.

To solve this problem, recently several graph-based machine learning methods have been

developed. Münchmeyer et al. (2020) developed an attention-based transformer model for earthquake

early warning, which was extended to predict hypocenters and magnitudes of events in Münchmeyer

et al. (2021). While this model is successful in implementing a multistation approach that allows

for dynamic inputs, high computational complexity restricts inputs to a relatively small number of

stations. Another method for implementing flexible, multi-station input that avoids high complexity

for large networks is through graph convolution. This method is implemented by van den Ende and

Ampuero (2020), who develop a multi-station source characterization model. This model regards

features as nodes on an edgeless graph, implementing single-station convolution and global pooling.

However, global pooling may not sufficiently extract all useful information from multiple seismic

stations, as the pooling layer is ideally applied after global features are obtained by feature fusion

along the spatial dimension. Yano et al. (2021) introduce a multi-station technique in which edges

are selected and held fixed for all inputs. While this model allows for more meaningful features to

be constructed than in global pooling, station inputs are required to be fixed during training and

implementation, introducing the same limitation inherent to CNN’s. McBrearty and Beroza (2022)

propose a GNN framework using multiple pre-defined graphs constructed on both labels and station

locations. The model allows for variation in the set of input stations, but the inputs are waveform

amplitudes and phase arrival times rather than whole waveforms.

To harness the full functionality of Graph Neural Networks (GNN’s) while maintaining flexibility

in the location and number of seismic stations, we design a data-driven framework, spatio-temporal

graph neural network (STGNN), that creates edges automatically to combine waveform features and

spatial information. In order to evaluate the performance of our approach, we compare STGNN

49

to two baselines: the GNN model designed by van den Ende and Ampuero (2020) and the Fully

Convolutional Network (FCN) designed by Zhang et al. (2020). We apply all three models to the

two datasets upon which the baselines were originally tested and trained: (1) regional 2.5 < 𝑀 < 6

earthquakes recorded by 185 seismic stations in Southern California from 2000 to 2019, and (2)

local 0 < 𝑀 < 4 earthquakes recorded by 30 seismic stations in Oklahoma from 2014 to 2015.

3.2.2 Methodology

3.2.2.1 Overview

Graph neural networks (GNN’s) are designed to handle graphical data, or data that can be

represented by vertices connected by edges. In GNN’s, convolution and pooling operates along

connecting edges. In CNN’s, on the other hand, convolution and pooling operates on regions closest

together on a Euclidean grid, meaning that input order directly impacts information-sharing and

featurization. This is not the case for GNN’s, in which edges are not restricted to Euclidean grids

but may instead be constructed by any criteria. Two major advantages of GNN architectures are that

they do not require a fixed input order, and can handle graphs with different sets of vertices. These

properties of GNN’s are well-suited for seismic data analysis with inputs from multiple stations. It is

common for stations in a seismic network to be added, removed, or repositioned, or for the recording

quality of individual stations to fluctuate over time due to operation and/or equipment issues. It is

therefore beneficial to dynamically select relevant seismic stations for source characterization. We

therefore propose a dynamic GNN framework as the basis for STGNN, in which seismic stations act

as nodes, connected by dynamically defined edges.

Inspired by Wang et al. (2019), our graph convolutions follow the design of EdgeConv layers

to automatically generate edges between nodes. Instead of manually constructing fixed edges or

implementing an edgeless graph, our framework learns to combine useful information from multiple

stations implicitly during the training process. Our framework consists of three major components

as shown in Figure 3.4:

1. Waveform feature extraction: We first extract temporal features from the waveform recorded

at each seismic station using a CNN-based encoder. The three-channel seismic recordings are

50

Figure 3.4 The overview of STGNN. There are three major components in STGNN: (1) Waveform
feature extraction for obtaining time domain feature from each station independently. (2) Spatial
feature fusion for time domain feature integration from different stations based on their geographic
locations and extracted feature similarity. (3) Earthquake location and magnitude prediction given
spatiotemporal features from the previous step. See Fig 3.5 for a more detailed summary of the
network architecture.

reduced to a low dimensional representation.

2. Spatial feature fusion: We then represent the seismic station network as a graph, in which

each node (i.e. station) is connected to other nodes by automatically generated edges.

Through iterative steps of edge generation and convolution, the perceptive field is gradually

enlarged. The model integrates and fuses features from different stations to obtain a high-order

spatiotemporal representation of the recorded wavefield over the seismic network. The graph

convolutional architecture considers both geographic locations and waveform feature similarity

among multiple seismic stations.

3. Prediction: The last component is the prediction module. A fully-connected neural network

outputs four normalized scalars corresponding to latitude, longitude, depth and magnitude

based on features learned from the previous steps.

51

3.2.2.2 Graph Convolutional Layers

The spatial feature fusion process consists of multiple graph convolution layers. The goal of

each graph convolution layer is to enlarge the perceptive field by combining the extracted feature

of each seismic stations and auto-selected neighbor stations. Each graph convolution layer can be

broken down into two steps: edge generation and feature update.

Edge generation. Each station node is connected to several other station nodes which show

maximum similarity to the node. Similarity measurements are based on two criteria:

1. Geographic distance: The geographic distance is the intuitive choice, since adjacent stations

tend to record related signals due to similar wave paths. Additionally, events are more likely to

be mutually recorded by stations in close proximity, especially in the case of small-magnitude

events.

2. Feature similarity: As the same earthquake event can be recorded by distant stations in a large

area, waveform similarity provides a complimentary perspective to geographic distance. We

compare 𝑙2 distance of features from station 𝑖 and 𝑗 directly by | |𝑥𝑖 − 𝑥 𝑗 | |2, and thus we can

combine waveform features from distant stations, where 𝑥𝑖 and 𝑥 𝑗 are the extracted feature

vectors.

In edge generation, we link every station with its K-nearest neighbors based on their similarity,

where K is a tunable hyperparapeter. In our framework, both geographic proximity and waveform

feature similarity are considered.

By ignoring the feature channel and batch dimensions, we assume the feature for neighbors

selection is 𝑋 ∈ R𝑁×𝑑 , where 𝑁 is the number of stations and 𝑑 is the feature dimension. 𝑑 equals

to 2 when the criterion of generating edges is geographic distance (longitude and latitude). Let

𝑥𝑖 = 𝑋 (𝑖) and 𝑥 𝑗 = 𝑋 (𝑗), the process of selecting K-nearest neighbors can be explained with the

following equations:

1. Compute the pair-wise distance matrix 𝐷 ∈ R𝑁×𝑁 :

𝐷 (𝑖, 𝑗) = | |𝑥𝑖 − 𝑥 𝑗 | |2, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 (3.7)

52

2. Get K-nearest neighbors N ∈ R𝑁×𝐾 by sorting each row of 𝐷:

N(𝑖) = smallest-K(𝐷 (𝑖)), 1 ≤ 𝑖 ≤ 𝑁 (3.8)

In practice, the similarity between waveforms can also be affected by other factors, such as wave

path and signal to noise ratio. By training with a large amount of samples with different sets of

seismic stations with distinct spatial distributions, the network will learn to embed these implicit and

complex factors to low dimensional features automatically in order to minimize the misfit between

labels and predictions.

Feature update. Given the edges, we update the features of each stations by
𝑥𝑖 = maxpool

𝑗∈Ndistance (𝑖)
(𝑔(𝑥𝑖 − 𝑥 𝑗) + 𝑓 (𝑥𝑖)) + maxpool

𝑗 ′∈Nsimilarity (𝑖)
(𝑔′(𝑥𝑖 − 𝑥 𝑗 ′) + 𝑓 ′(𝑥𝑖)), (3.9)

where 𝑥𝑖, 𝑥 𝑗 and 𝑥′
𝑗

are features of station 𝑖, 𝑗 and 𝑗 ′, respectively. 𝑗 is a neighbor of 𝑖 based on

geographic distance and 𝑗 ′ is a neighbor of 𝑖 by measuring feature similarity from the previous edge

generation step. 𝑔(·), 𝑓 (·), 𝑔′(·), and 𝑓 ′(·) are trainable fully connected neural networks. 𝑥𝑖 is the

updated feature of station 𝑖. Max pooling is conducted along the constructed edges to combine

information from the K-nearest neighbors of 𝑖, so that each station is once more associated with a

single feature vector. The update is asymmetric for station 𝑖 and 𝑗 to encourage the update processes

of 𝑖 and 𝑗 to be different, as it is possible that only one of the stations records the event.

3.2.2.3 Architecture

The model takes as input (1) A list of station coordinates, and (2) waveforms recorded by each

station. Each input can contain an arbitrary set of stations, limited by a trainable maximum. If the

number of functioning stations is less than the maximum number of stations for which the model is

trained, the input is padded with zeroed channels and the coordinates of the missing stations are set

to (−1,−1).

A graphical illustration of the architecture is presented in Figure 3.5. In Temporal Feature

Extraction, time domain waveform features are extracted from each station independently using an

encoder with eleven convolutional layers. These features are used to construct the initial inputs for

Spatial Feature Fusion.

53

Two graphs are generated for each layer of graph convolution: one in which edges are generated

based on geographic distance, and one in which edges are generated based on waveform feature

similarity. For graphs in which geographic distance dictates edges, two scalars containing station

coordinates, normalized between −1 and 1, are concatenated to the station’s feature vector for

neighbor selection and graph convolution. Spatial Feature Fusion uses four layers of graph

convolutional layers to obtain spatially hierarchical features.

The features from all four graph convolutions are concatenated together along the feature

dimension for final source characterization regression. A fully-connected layer transforms the

features in each station, and the features are then compressed with adaptive max pooling along the

station dimension. The compressed features are regressed to scalar predictions of latitude, longitude,

depth, and magnitude using a fully-connected neural network. The objective function is

L =
1
𝑁

𝑁∑︁
𝑖=1

1
4
| |𝑦𝑖 − 𝑦𝑖 | |, (3.10)

where 𝑦̂𝑖 and 𝑦𝑖 are the prediction and ground truth values of 𝑖th sample, respectively, represented as

vectors of latitude, longitude, depth and magnitude.

The maximum number of stations and number of edges are architectural parameters set during

training. The model design in PyTorch allows retraining to new architectural parameters without

fundamental alteration of the code.

3.2.3 Experiments

In this section, the data, experiment settings, and results are discussed. We evaluate STGNN in

two ways: (1) performance on two datasets compared to GNN and CNN baselines, and (2) stability

analysis of STGNN with various settings.

3.2.3.1 Data Description

The Southern California dataset uses waveforms and catalogue information collected by the

Southern California Earthquake Data Center (SCEDC) Hutton et al. (2010), and was used for

training and testing in the GNN baseline van den Ende and Ampuero (2020). The selected dataset

contains events from January 2000 to June 2019 within a geographic subset from 32◦ to 36◦ latitude

54

Figure 3.5 Overview of STGNN, including three components outlined in Figure 3.4. (1) In Temporal
Feature Extraction, standard convolution and maximum pooling along the time dimension reduces
3-component waveforms to a feature vector of length 64. These feature vectors are concatenated to
form T0. (2) In Spatial Feature Fusion, four layers of graph convolution are performed. In each
layer, two graphs are constructed: Distance-Based (D), and Feature-Based (F), which are combined
through element-wise summation, and max pooled along the K-nearest neighbors dimension. (3)
In Prediction, feature tensors T0...T4 are concatenated and regressed to normalized predictions of
latitude, longitude, depth, and magnitude. The pooling is applied along the station dimension.

and −120◦ to −116◦ longitude, a depth range of 0-30 km, and a magnitude range of 2.5 < 𝑀 < 6.

The final dataset contains 2, 209 events recorded by 185 broadband seismic stations.

55

(a) Southern California (b) Oklahoma

Figure 3.6 Maps of the two target regions used in this study: (a) Southern California and (b)
Oklahoma. The distribution of all seismic stations (red triangles) and earthquakes (black stars) are
shown. The 30 stations selected for fixed input testing are surrounded by a green circle. Black lines
indicate seismic faults United States Geological Survey and California Geological Survey (2022).

The Oklahoma dataset uses waveforms and catalogue information collected by the Nanometrics

Research Network, and was used for training and testing in the FCN baseline Zhang et al. (2020).

The selected dataset contains events from March 2014 to July 2015 Nanometrics Seismological

Instruments (2013) within a geographic subset from 34.482◦ to 37◦ latitude and −98.405◦ to

−95.527◦ longitude, a depth range of 0-12 km, and a magnitude range of 1.5 < 𝑀 < 4. The final

dataset contains 3, 456 events recorded by 30 broadband seismic stations.

All waveforms and catalogues were accessed using ObsPy Beyreuther et al. (2010). Each

trace contains 200 sec of seismic displacement collected by three orthogonal channels, which is

interpolated into 4, 096 evenly spaced samples, resulting in a sampling rate of approximately 20 Hz.

For both datasets, the instrument response was removed, and waveforms were bandpass filtered from

1 − 8 Hz. As the recorded displacement amplitudes are very small, the waveforms are multiplied by

a constant scaling factor of 1𝑒7 to raise the input data to a numerically stable range close to [−1, 1]

56

without eliminating magnitude information. A map of events and stations is shown in Figure 3.6.

One advantage of the graph neural network is its ability to make predictions using dynamic

inputs (i.e., the selected stations and their order in the input file are not necessarily the same for each

sample). To demonstrate this ability, we perform tests with STGNN and the GNN baseline using

Southern California data with dynamic inputs, in which functioning stations are randomly selected

for each event. However, the FCN baseline requires a fixed input, in which the same stations must

occupy the same position for each sample. To make a fair comparison, we train STGNN as well

as both baselines on thirty fixed stations to compare the performance of all methods. This results

in three datasets: (1) Dynamic Southern California Dataset, in which 100 stations are randomly

selected for each sample, as well as (2) Fixed Southern California Dataset and (3) Fixed Oklahoma

Dataset, in which a static set of 30 stations are used for every sample. For all datasets, events are

omitted where < 25 stations are functioning.

(a) Southern California (b) Oklahoma

Figure 3.7 The monthly earthquake frequency distribution for (a) Southern California and (b)
Oklahoma. The temporal boundaries between the training, validation, and testing data are indicated
by color.

3.2.3.2 Training Procedure

In the experiments, we use AdamW as the optimizer with a learning rate of 3𝑒−4. The 𝑙2

regularization term 𝜆 is 1𝑒−4. Models are trained for 400 epochs with early stopping after 50 epochs

without validation error improvement, from which we select the model with the best validation

performance. We use a 20-80 split to divide each dataset into testing and training data, and reserve

57

20% of the training data for validation. The datasets are not randomly shuffled, but rather separated

by time in which training data precedes testing data. This approach avoids potential information

leakage Kaufman et al. (2012) which might occur from spatially and temporally localized swarms.

This method of splitting data also better simulates a real-use case, in which historic earthquakes

would be used to train a model to detect more recent events on a network where station configuration

and seismic characteristics may evolve over time. Figure 3.7 shows the monthly event frequency

distribution in the training and testing dataset.

We use a sliding window with a length of 100 sec and a stride of 5 sec to create ten 100 sec

samples from each 200 sec recording. This augments the data by increasing the sample size and

cropping different portions of the wavetrain, assuring that the model can be used without known

origin and arrival times. Within each sample, the same time shift is applied to all stations.

(a) MAE of Location Prediction (b) MAE of Magnitude Prediction

Figure 3.8 (a) MAE of each tested model where the location error is measured in km. Location
error refers to the euclidean distance between the predicted location and the true event location. (b)
MAE of the magnitude predictions from the graph convolutional neural networks when applied to
the Oklahoma dataset with 30 fixed stations, the Southern California dataset with 30 fixed stations,
and the Southern California dataset with 100 dynamically selected stations.

58

3.2.3.3 Performance Comparison

To evaluate our developed framework, we compare the performance of our model against two

baselines (1) van den Ende and Ampuero (2020) (referenced as GNN for graph neural network),

and (2) Zhang et al. (2020) (referenced as FCN for fully convolutional network). The performance

of each model is evaluated using the following metrics:

MAE =
1
𝑛

𝑛∑︁
𝑖=1
|𝑦𝑖 − 𝑦𝑖 |, (3.11)

MSE =
1
𝑛

𝑛∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (3.12)

R2 = 1 −
𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2
(𝑦𝑖 − 𝑦̄)2

, (3.13)

where 𝑦𝑖 is the model’s prediction, 𝑦𝑖 is the true value, 𝑦̄ is the average true value, and 𝑛 is the total

number of predictions.

Both STGNN and GNN make normalized predictions between -1 and 1. When calculating the

above metrics, the values are first reverted from the normalized scalars to degrees of latitude and

longitude, kilometers of depth, and magnitude values. Degrees of latitude and longitude are then

converted to kilometers using conversions of 110 km/degree and 92 km/degree, respectively.

Testing is conducted across three datasets:

1. Dynamic Southern California Dataset: The performance is tested for the STGNN and GNN

models. Five neighbors (𝐾=5) were selected for feature update for STGNN. Results are

detailed in Table 3.3.

2. Fixed Southern California Dataset: The performance is tested for the STGNN, GNN, and

FCN models. Seven neighbors (𝐾=7) were selected for feature update for STGNN. Results

are detailed in Table 3.4.

3. Fixed Oklahoma Dataset: The performance is tested for the STGNN, GNN, and FCN models.

Seven neighbors (𝐾=7) were selected for feature update for STGNN. Results are detailed in

Table 3.5.

59

The performance overview (Figure 3.8) demonstrates that our proposed model achieves a higher

location accuracy than baselines for all datasets. STGNN makes predictions with an average of 6.8

km less location error, a 40% improvement across all tested datasets when compared to the FCN

baseline. Across all datasets, STGNN makes predictions with an average of 3.0 km less location

error than the GNN baseline, a 22% improvement. The improved location is primarily due to

epicentral location accuracy. All tested models demonstrate low R2 values for depth prediction.

STGNN and FCN achieve comparable magnitude prediction, and FCN does not support magnitude

prediction. STGNN appears to incorporate a consistent bias, underpredicting magnitude values.

Figure 3.9, 3.10 and 3.11 plot all predictions to give a richer understanding of model capacity

beyond individual quality metrics. Observation of individual predictions makes it clear that while

both models succeed in learning a meaningful mapping to latitude and longitude predictions, depth

predictions are highly scattered and are little better than predictions of the mean.

Table 3.3 Performance of STGNN and the GNN baseline when applied to the Southern California
dataset with dynamic inputs. MAE refers to the mean absolute error (Equation 3.11) and MSE
refers to the mean squared error (Equation 3.12), where a lower value indicates less error. The R2

value (Equation 3.13) is a measure of how strongly variation in the predicted values are related to
variation in the ground truth value, where a value close to 1 is indicative of high accuracy.

Latitude MAE (km) MSE (102 km) R2

STGNN 7.548 ± 9.841 1.538 ± 9.255 0.980
GNN 10.201 ± 11.791 2.431 ± 12.438 0.969

Longitude MAE (km) MSE (102 km) R2

STGNN 6.931 ± 8.152 1.145 ± 5.589 0.986
GNN 10.095 ± 12.086 2.480 ± 11.865 0.970
Depth MAE (km) MSE (102 km) R2

STGNN 3.472 ± 2.928 0.206 ± 0.358 0.266
GNN 3.837 ± 3.166 0.247 ± 0.399 0.120

Magnitude MAE MSE R2

STGNN 0.120 ± 0.114 0.027 ± 0.085 0.826
GNN 0.120 ± 0.126 0.030 ± 0.105 0.807

60

Table 3.4 Performance of STGNN, GNN and FCN baselines when applied to the Southern California
dataset with fixed inputs. MAE refers to the mean absolute error (Equation 3.11) and MSE refers
to the mean squared error (Equation 3.12), where a lower value indicates less error. The R2 value
(Equation 3.13) is a measure of how strongly variation in the predicted values are related to variation
in the ground truth value, where a value close to 1 is indicative of high accuracy.

Latitude MAE (km) MSE (102 km) R2

STGNN 10.396 ± 11.388 2.378 ± 10.067 0.954
GNN 11.263 ± 11.696 2.637 ± 8.010 0.949
FCN 14.415 ± 21.827 6.842 ± 34.697 0.869

Longitude MAE (km) MSE (102 km) R2

STGNN 9.663 ± 13.048 2.636 ± 15.761 0.962
GNN 11.485 ± 12.199 2.807 ± 10.252 0.960
FCN 16.369 ± 24.872 8.865 ± 47.323 0.874
Depth MAE (km) MSE (102 km) R2

STGNN 4.030 ± 3.396 0.278 ± 0.405 −0.069
GNN 4.264 ± 3.384 0.296 ± 0.403 −0.141
FCN 4.105 ± 3.324 0.279 ± 0.431 -0.074

Magnitude MAE MSE R2

STGNN 0.216 ± 0.151 0.069 ± 0.083 0.583
GNN 0.120 ± 0.118 0.028 ± 0.088 0.830

3.2.3.4 Stability Analysis

There are three critical hyper-parameters in STGNN: the number of neighbors (𝐾) considered

for edge generation, the maximum amount of observed stations, and the random selection of

seismic stations when creating datasets. We use the Southern California Dasaset to vary these

hyperparameters in order to assess the stability of STGNN. The results of the paramater permutation

are shown in Figure 3.12. When a parameter is not permuted, 100 stations, 5 edges, 4 graph

convolutions, and a random seed of 0 is used.

For each prediction, a random subset of functional stations was selected. We permute the

random seed during sample selection to alter the set of stations used for training. We find that

the random subsets return similar results for all predictions except for magnitude, which shows a

higher degree of variation. Prediction accuracy improves as more stations are used. Accuracy is

moderately impacted by the number of edges selected, with magnitude predictions fluctuating most

61

Table 3.5 Performance of STGNN, GNN and FCN baselines when applied to the Oklahoma dataset
with fixed inputs. MAE refers to the mean absolute error (Equation 3.11) and MSE refers to the mean
squared error (Equation 3.12), where a lower value indicates less error. The R2 value (Equation
3.13) is a measure of how strongly variation in the predicted values are related to variation in the
ground truth value, where a value close to 1 is indicative of high accuracy.

Latitude MAE (km) MSE (102 km) R2

STGNN 3.574 ± 5.755 0.459 ± 3.665 0.975
GNN 7.166 ± 12.414 2.055 ± 14.820 0.897
FCN 9.219 ± 16.418 3.545 ± 23.070 0.822

Longitude MAE (km) MSE (102 km) R2

STGNN 3.697 ± 4.936 0.380 ± 2.365 0.942
GNN 5.934 ± 8.144 1.015 ± 5.547 0.904
FCN 9.308 ± 11.883 2.279 ± 8.244 0.785
Depth MAE (km) MSE (102 km) R2

STGNN 1.686 ± 1.427 0.049 ± 0.082 0.036
GNN 1.701 ± 1.423 0.049 ± 0.078 0.090
FCN 1.865 ± 1.546 0.059 ± 0.084 -0.086

Magnitude MAE MSE R2

STGNN 0.154 ± 0.126 0.040 ± 0.066 0.790
GNN 0.195 ± 0.142 0.058 ± 0.083 0.681

significantly. Overall, the model appears to be generally stable, with magnitude demonstrating the

greatest sensitivity to hyperparameter tuning.

We also examine the impact of the number of GNN layers on the model’s performance. A depth

of four convolutions produces the best balance of location and magnitude accuracy, and is used for

this study.

3.2.4 Discussion

3.2.4.1 Architecture Strengths and Weaknesses

Our STGNN has several advantages over the FCN baseline model. One of the primary advantages

is the ability to make predictions on a dynamic set of inputs, allowing the model to adapt to station

outages, network alterations, and station subsetting. As STGNN featurizes individual stations rather

than an ordered network image, the model can be easily trained to predict using any number of

stations without architectural alteration.

62

Figure 3.9 Testing comparison on 100 dynamically selected stations from the Southern California
dataset with 5 convolutional edges. “STGNN” and “GNN” denote the performance of our framework
and van den Ende and Ampuero (2020), respectively. In the scatter plot, each point represents an
event, and a position on the diagonal line corresponds to perfect agreement between the predicted
value (x-axis) and the true value (y-axis). Latitude and longitude values are displayed in degrees
and depth values are displayed in kilometers.

The FCN baseline uses an image-to-image strategy, outputting a probability volume in which the

highest values correspond to the event location. This has the advantage of predicting a probability

amplitude, which Zhang et al. (2020) demonstrate as a useful measure of prediction uncertainty,

especially in cases where earthquakes occur outside the bounds of the modeled region. However, the

volumetric output comes at the cost of resolution limitation due to discretization. The gridded, three-

dimensional output also requires a high degree of model complexity. The FCN baseline consequently

comprises approximately 27 million parameters while our STGNN with scalar predictions comprises

fewer than 0.24 million parameters.

63

Figure 3.10 Testing comparison on 30 fixed stations from the Oklahoma dataset with 7 convolutional
edges. “STGNN”, “GNN”, and “FCN” denote the performance of our framework, van den Ende and
Ampuero (2020), and Zhang et al. (2020), respectively. In the scatter plot, each point represents an
event, and a position on the diagonal line corresponds to perfect agreement between the predicted
value (x-axis) and the true value (y-axis). Latitude and longitude values are displayed in degrees and
depth values are displayed in kilometers. Magnitude is omitted for the FCN, as this model makes
only location predictions.

The baseline GNN van den Ende and Ampuero (2020) implements edgeless graph convolution

(i.e. station-by-station convolutions with global pooling) while the STGNN implements convolution

and pooling over dynamically-generated edges. Figure 3.13 gives insight into the edge generation

process. For clear visualization, we select a case with 50 seismic stations with 𝐾 = 5. In the edges

generated by waveform similarity, stations that have recorded an event are generally connected to

other recording stations, forming distinct clusters from edges generated by geographic proximity.

This indicates that the model is able to successfully extract waveform information and associate

64

Figure 3.11 Testing comparison on 30 fixed stations from the Southern California dataset with 7
convolutional edges. “STGNN”, “GNN”, and “FCN” denote the performance of our framework,
van den Ende and Ampuero (2020), and Zhang et al. (2020), respectively. In the scatter plot, each
point represents an event, and a position on the diagonal line corresponds to perfect agreement
between the predicted value (x-axis) and the true value (y-axis). Latitude and longitude values are
displayed in degrees and depth values are displayed in kilometers. Magnitude is omitted for the
FCN, as this model makes only location predictions.

stations in order to characterize an event. The graph generated based on the feature similarity is

different from that created based on the location, showing that the feature similarity is a complement

of location during aggregating features from different seismic stations.

A limitation that STGNN shares with the baselines is the ability to make predictions only within

a certain range of area, depth, and magnitude. The model outputs normalized values between -1

and 1 which correspond to a range selected at the beginning of training. The spatial restrictions

are similar to the bounds set in inversion-based methods and are arguably less limiting, as the

65

(c) Number of Stations

(a) Number of Edges (b) Random Seed

(d) Number of Graph Convolutions

Figure 3.12 Stability analysis permuting (a) the number of edges used to connect nodes during
graph convolution, (b) the random seed used to select stations for the model input, (c) the number
of stations used for prediction, and (d) the number of graph convolutions implemented. When a
parameter is not permuted, 100 stations, 5 edges, 4 graph convolutions, and a random seed of 0 is
used.

66

blue station: seismic station without
event signal

red station: seismic station with
event signal

edge starting from a red station

edge starting from a blue station

a

b c

d e

earthquake event

Figure 3.13 Graphs constructed by different layers of the graph neural network, (a) graph convolution
layer based on geographic distance among seismic stations (b) 1st, (c) 2nd, (d) 3rd and (e) 4th graph
convolution layer based on the extracted feature similarity. The information from stations with the
event signal are clustered in deeper layers.

67

predictions made by our model are continuous and therefore not bound by grid-spacing.

However, STGNN is more limited than non-machine learning methods with regard to magnitude

prediction. Magnitudes falling above or below the training range cannot be predicted by STGNN or

the deep learning baselines. The limited range of predictions adversely impacts the usefulness of

the deep learning methods for applications such as Earthquake Early Warning, where magnitude

saturation must be avoided. The limitations posed by fixed prediction ranges are made less severe by

STGNN’s ability to be tuned to new ranges with small amounts of training data. However, the fixed

prediction ranges nonetheless represent a weakness in our framework.

3.2.4.2 Impacts on Location Prediction

Overall location error for the STGNN model is 5.41 km for the Fixed Oklahoma Dataset and

14.75 km for the Fixed Southern California Dataset. The higher loss for the Southern California

dataset may be attributable to the larger size of the region. As locations in both the smaller and

larger regions are normalized to values between -1 and 1, errors in the initial prediction will result in

larger errors when converted to kilometers in larger regions. In addition, larger regions may include

a greater range of structural complexity that may be more challenging for the model to learn.

Location error for the Dynamic California Dataset was 3.93 km lower than that of the Fixed

California Dataset. This supports the assumption that dynamic inputs improve not only the flexibility,

but the performance of prediction models.

3.2.4.3 Synthetic Testing

While substantial improvements have been made in the prediction of latitude and longitude,

magnitude does not improve in every dataset, and depth predictions are inaccurate for all models.

To test the capacity of our model under ideal circumstances, we train our model using synthetic

data. The synthetic waveforms are generated using Green’s Functions created with PyFK Xi et al.

(2021) from a 1-D sedimentary half-space model, with an epicentral resolution of 1 km and a depth

resolution of 0.5 km and a sampling rate of 20.48 Hz. Thirty recording sensors are used with the

same configuration as the Fixed Oklahoma Dataset. No label or waveform noise is applied. The

high degree of accuracy suggests that the fundamental architecture of the model has the capacity to

68

learn depth and magnitude estimation (Fig 3.14). The difference between the simulated waveforms

and the recorded data are (1) label noise, (2) waveform noise, and (3) subsurface complexity. While

the fundamental structure holds promise, STGNN must be improved to address these factors before

it can be effectively applied to real seismic datasets for depth and magnitude prediction.

0 50 100 150 200 250
Prediction

0

50

100

150

200

250

La
be

l

Latitude

0 50 100 150 200 250
Prediction

0

50

100

150

200

250

La
be

l

Longitude

0.0 2.5 5.0 7.5 10.0 12.5
Prediction

0.0

2.5

5.0

7.5

10.0

12.5

La
be

l

Depth

0 1 2 3 4
Prediction

0

1

2

3

4
La

be
l

Mag

Figure 3.14 Testing performance of STGNN on synthetic data. In the scatter plot, each point
represents an event, and a position on the diagonal line corresponds to perfect agreement between
the predicted value (x-axis) and the true value (y-axis). Latitude and longitude values are displayed
in degrees and depth values are displayed in kilometers.

3.2.5 Summary

This section has presented a graph convolutional neural network (GCNN) specifically designed

for earthquake source characterization, utilizing waveform data from multiple seismic stations.

This application leverages the regularization of the 𝑓 term as defined in Equation (1.3). Through

experimental validation in two distinct seismic environments, the Spatio-Temporal Graph Neural

Network (STGNN) demonstrated superior performance over both fully-convolutional neural network

(FCN) and traditional Graph Neural Network (GNN) baselines. A significant advantage of the

69

STGNN framework is its ability to dynamically learn feature generation and fusion processes directly

from the data, thereby eliminating the need for static input types or manually predefined graph

structures. This allows for an effective synthesis of waveform features and spatial data, enhancing

the model’s predictive accuracy and adaptability.

70

3.3 Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial
Differential Equation in a Loop

In addition to designing regularization based on data structure as described in Sections 3.1 and 3.2,

this section introduces a physics-informed machine learning architecture for full-waveform inversion,

which is mathematically modeled by partial differential equations. By integrating governing physical

equations with neural networks, we impose regularization through the 𝑓 term in Equation (1.3).

Furthermore, experimental results indicate that the perceptual loss Johnson et al. (2016) (represented

as the 𝑅 term in Equation (1.3)) significantly enhances seismic data reconstruction.

3.3.1 Introduction

Geophysical properties (such as velocity, impedance, and density) play an important role

in various subsurface applications including subsurface energy exploration, carbon capture and

sequestration, estimating pathways of subsurface contaminant transport, and earthquake early

warning systems to provide critical alerts. These properties can be obtained via seismic surveys, i.e.,

receiving reflected/refracted seismic waves generated by a controlled source. This section focuses on

reconstructing subsurface velocity maps from seismic measurements. Mathematically, the velocity

map and seismic measurements are correlated through an acoustic-wave equation (a second-order

partial differential equation) as follows:

∇2𝑝(r, 𝑡) − 1
𝑣(r)2

𝜕2𝑝(r, 𝑡)
𝜕𝑡2

= 𝑠(r, 𝑡) , (3.14)

where 𝑝(r, 𝑡) denotes the pressure wavefield at spatial location r and time 𝑡, 𝑣(r) represents

the velocity map, and 𝑠(r, 𝑡) is the source term. Full-Waveform Inversion (FWI) is a methodology

that determines high-resolution velocity maps 𝑣(r) of subsurface via matching synthetic seismic

waveforms to raw recorded seismic data 𝑝(r̃, 𝑡), where r̃ represents the locations of seismic receivers.

A velocity map describes the wave propagation speed in the subsurface region of interest.

An example in 2D scenario is shown in Figure 3.15a. Particularly, the x-axis represents the

horizontal offset of a region, and the y-axis stands for the depth. The regions with the same

geologic information (velocity) are called a layer in velocity maps. In a sample of seismic

measurements (termed a shot gather in geophysics) as depicted in Figure 3.15b, each grid in the

71

(a) (b)

Figure 3.15 An example of (a) a velocity map and (b) seismic measurements (named shot gather in
geophysics) and the 1D time-series signal recorded by a receiver.

x-axis represents a receiver, and the value in the y-axis is a 1D time-series signal recorded by each

receiver.

Existing approaches solve FWI in two directions: physics-driven and data-driven. Physics-driven

approaches rely on the forward modeling of Equation 3.14, which simulates seismic data from

velocity map by finite difference. They optimize velocity map per seismic sample, by iteratively

updating velocity map from an initial guess such that simulated seismic data (after forward modeling)

is close to the input seismic measurements. However, these methods are slow and difficult to scale

up as the iterative optimization is required per input sample. Data-driven approaches consider

FWI problem as an image-to-image translation task and apply convolution neural networks (CNN)

to learn the mapping from seismic data to velocity maps (Wu and Lin, 2019). The limitation of

these methods is that they require paired seismic data and velocity maps to train the network. Such

ground truth velocity maps are hardly accessible in real-world scenario because generating them is

extremely time-consuming even for domain experts.

In this work, we leverage advantages of both directions (physics + data driven) and shift the

paradigm to unsupervised learning of FWI by connecting forward modeling and CNN in a loop.

Specifically, as shown in Figure 3.16, a CNN is trained to predict a velocity map from seismic data,

which is followed by forward modeling to reconstruct seismic data. The loop is closed by applying

reconstruction loss on seismic data to train the CNN. Due to the differentiable forward modeling,

the whole loop can be trained end-to-end. Note that the CNN is trained in an unsupervised manner,

as the ground truth of velocity map is not needed. We name our unsupervised approach as UPFWI

72

(Unsupervised Physics-informed Full-Waveform Inversion).

Additionally, we find that perceptual loss (Johnson et al., 2016) is crucial to improve the overall

quality of predicted velocity maps due to its superior capability in preserving the coherence of the

reconstructed waveforms comparing with other losses like Mean Squared Error (MSE) and Mean

Absolute Error (MAE).

To encourage fair comparison on a large dataset with more complicate geological structures, we

introduce a new synthetic dataset named OpenFWI, which contains 60,000 labeled data (velocity

map and seismic data pairs) and 48,000 unlabeled data (seismic data alone). 30,000 of those velocity

maps contain curved layers that are more challenge for inversion. We also add geological faults with

various shift distances and tilting angles to all velocity maps.

We evaluate our method on this dataset. Experimental results show that for velocity maps with

flat layers, our UPFWI trained with 48,000 unlabeled data achieves 1146.09 in MSE, which is

26.77% smaller than that of the supervised baseline H-PGNN+ (Sun et al., 2021), and 0.9895 in

Structured Similarity (SSIM), which is 0.0021 higher; for velocity maps with curved layers, our

UPFWI achieves 3639.96 in MSE, which is 28.30% smaller, and 0.9756 in SSIM, which is 0.0057

higher.

Our contribution is summarized as follows:

• We propose to solve FWI in an unsupervised manner by connecting CNN and forward

modeling in a loop, enabling end-to-end learning from seismic data alone.

• We find that perceptual loss is helpful to boost the performance comparable to the supervised

counterpart.

• We introduce a large-scale dataset as benchmark to encourage further research on FWI.

3.3.2 Preliminaries of Full-Waveform Inversion (FWI)

The goal of FWI in geophysics is to invert for a velocity map v ∈ R𝑊×𝐻 from seismic

measurements p ∈ R𝑆×𝑇×𝑅, where𝑊 and 𝐻 denote the horizontal and vertical dimensions of the

velocity map, 𝑆 is the number of sources used to generate waves during data acquisition process, 𝑇

73

Figure 3.16 Schematic illustration of our proposed method, which comprises a CNN to learn an
inverse mapping and a differentiable operator to approximate the forward modeling of PDE.

Mean Squared Error (MSE) Structural Similarity (SSIM)

Figure 3.17 Unsupervised UPFWI (ours) vs. Supervised H-PGNN+ (Sun et al., 2021). Our
method achieves better performance, e.g. lower Mean Squared Error (MSE) and higher Structural
Similarity (SSIM), when involving more unlabeled data (>24k).

denotes the number of samples in the wavefields recorded by each receiver, and 𝑅 represents the

total number of receivers.

In conventional physics-driven methods, forward modeling is commonly referred to the process

of simulating seismic data p̃ from given estimated velocity maps v̂. For simplicity, the forward

acoustic-wave operator 𝑓 can be expressed as

p̃ = 𝑓 (v̂) . (3.15)

Given this forward operator 𝑓 , the physics-driven FWI can be posed as a minimization

problem (Virieux and Operto, 2009)

𝐸 (v̂) = min
v̂

{
| |p − 𝑓 (v̂) | |22 + 𝜆𝑅(v̂)

}
, (3.16)

where | |p− 𝑓 (v̂) | |22 is the the ℓ2 distance between true seismic measurements p and the corresponding

simulated data 𝑓 (v̂), 𝜆 is a regularization parameter and 𝑅(v̂) is the regularization term which is

74

often the ℓ2 or ℓ1 norm of v̂. This requires optimization per sample, which is slow as the optimization

involves multiple iterations from an initial guess.

Data-driven methods leverage CNNs to directly learn the inverse mapping as (Adler et al., 2021)

v̂ = 𝑔𝜃 (p) ≈ 𝑓 −1(p) , (3.17)

where 𝑔𝜃 (·) is the approximated inverse operator of 𝑓 (·) parameterized by 𝜃. In practice, 𝑔𝜃 is

usually implemented as a CNN (Adler et al., 2021; Wu and Lin, 2019). This requires paired seismic

data and velocity maps for supervised learning. However, the acquisition of large volume of velocity

maps in field applications can be extremely challenging and computationally prohibitive.

3.3.3 Related Work

Physics-driven Methods: In the past few decades, many regularization techniques have been

proposed to alleviate the ill-posedness and non-linearity of FWI (Hu et al., 2009; Burstedde and

Ghattas, 2009; Ramírez and Lewis, 2010; Lin and Huang, 2017, 2015b,a; Guitton, 2012; Treister

and Haber, 2016). Other researchers focused on multi-scale techniques and decomposed the data

into different frequency bands (Bunks et al., 1995; Boonyasiriwat et al., 2009).

Data-driven Methods: Recently, some researchers employed neural networks to solve FWI.

Those methods can be further divided into supervised and unsupervised methods.

Supervised: One type of supervised methods require labeled samples to directly learn the inverse

mapping, and they can be formulated as:

v̂(p) = 𝑔𝜃∗ (p) s.t. 𝜃∗(𝚽𝑠) = arg min
𝜃

∑︁
{v𝑖 ,p𝑖}∈𝚽𝑠

L(𝑔𝜃 (pi), v𝑖), (3.18)

where p denotes the seismic measurements, v is the velocity map, 𝜃 represents the trainable

weights in the inversion network 𝑔𝜃 (·), 𝑓 (·) is the forward modeling, and L(·, ·) is a loss function.

One example of supervised methods is the fully connected network proposed by Araya-Polo et al.

(2018). Wu and Lin (2019) developed an encoder-decoder structured network to handle more

complex velocity maps. Zhang and Lin (2020) adopted GAN and transfer learning to improve

generalizability. Li et al. (2020b) designed SeisInvNet to solve misaligned issue when dealing

sources from different locations. In Yang and Ma (2019), a U-Net architecture was proposed with

75

skip connections. Feng et al. (2021) proposed a multi-scale framework by considering different

frequency components. Rojas-Gómez et al. (2020) developed an adaptive data augmentation method

to improvegeneralizability. Sun et al. (2021) combined the data-driven and physics-based methods

and proposed H-PGNN model.

Another type of supervised methods GANs to learn a distribution from velocity maps in training

set as a prior (Richardson, 2018; Mosser et al., 2020). They can be formulated as:

v̂(z∗) = 𝑔𝜃∗ (z∗) s.t. z∗(p) = arg min
z
L(𝑓 (𝑔𝜃∗ (z)),p),

𝜃∗(𝚽𝒗) = arg min
𝜃

∑︁
𝑣𝑖∈Φ𝑣

LGAN(𝑔𝜃 (α𝒊), v𝒊),
(3.19)

where 𝚽v is a training dataset including numerous velocity maps. z and αi are tensors sampled

from the normal distribution. The iterative optimization is then performed on z to draw a velocity

map sampled from the prior distribution.

Unsupervised: The existing unsupervised methods follow the iterative optimization paradigm

and perform FWI per sample. They employ neural networks to reparameterize velocity maps. The

networks serve as an implicit regularization and are required to be pretrained on an expert initial

guess. Those methods can be formulated as:

v̂(p) = 𝑔𝜃∗ (p) (a) s.t. 𝜃∗(p) = arg min
𝜃

L(𝑓 (𝑔𝜃 (a)),p), (3.20)

where a is a random tensor. Different network architectures have been proposed including CNN-

domain FWI (Wu and McMechan, 2019) and DNN-FWI (He and Wang, 2021). Zhu et al. (2021)

developed NNFWI which does not need pretraining ahead, but the initial guess is still required to be

fed into the PDE with estimated velocity maps.

3.3.4 Method

In this section, we present our Unsupervised Physics-informed solution (named UPFWI), which

connects CNN and forward modeling in a loop. It addresses limitations of both physics-driven and

data-driven approaches, as it requires neither optimization at inference (per sample), nor velocity

maps as supervision.

76

3.3.4.1 UPFWI: Connecting CNN and Forward Modeling

As depicted in Figure 3.16, our UPFWI connects a CNN 𝑔𝜃 and a differentiable forward operator

𝑓 to form a loop. In particular, the CNN takes seismic measurements p as input and generates the

corresponding velocity map v̂. We then apply forward acoustic-wave operator 𝑓 (see Equation

3.15) on the estimated velocity map v̂ to reconstruct the seismic data p̃. Typically, the forward

modeling employs finite difference (FD) to discretize the wave equation (Equation 3.14). The details

of forward modeling will be discussed Section 3.3.4.3. The loop is closed by the reconstruction

loss between input seismic data p and reconstructed seismic data p̃ = 𝑓 (𝑔𝜃 (p)). Notice that the

ground truth of the velocity map v is not involved, and the training process is unsupervised. Since

the forward operator is differentiable, the reconstruction loss can be backpropagated (via gradient

descent) to update the parameters 𝜃 in the CNN.

3.3.4.2 CNN Network Architecture

We use an encoder-decoder structured CNN (similar to Wu and Lin (2019) and Zhang and Lin

(2020)) to model the mapping from seismic data p ∈ R𝑆×𝑇×𝑅 to velocity map v ∈ R𝑊×𝐻 . The

encoder compresses the seismic input and then transforms the latent vector to build the velocity

estimation through a decoder. See the implementation details in Appendix C.1.

3.3.4.3 Differentiable Forward Modeling

We apply the standard finite difference (FD) in the space domain and time domain to discretize the

original wave equation. Specifically, the second-order central finite difference in time domain (𝜕
2𝑝(r,𝑡)
𝜕𝑡2

in Equation 3.14) is approximated as follows:

𝜕2𝑝(r, 𝑡)
𝜕𝑡2

≈ 1
(Δ𝑡)2

(𝑝𝑡+1r − 2𝑝𝑡r + 𝑝𝑡−1
r) +𝑂 [(Δ𝑡)2] , (3.21)

where 𝑝𝑡r denotes the pressure wavefields at timestep 𝑡, and 𝑝𝑡+1r and 𝑝𝑡−1
r are the wavefields at 𝑡 +Δ𝑡

and 𝑡 − Δ𝑡, respectively. The Laplacian of 𝑝(r, 𝑡) can be estimated in the similar way on the space

domain (see Appendix C.2). Therefore, the wave equation can then be written as

𝑝𝑡+1r = (2 − 𝑣2∇2)𝑝𝑡r − 𝑝𝑡−1
r − 𝑣2(Δ𝑡)2𝑠𝑡r , (3.22)

where ∇2 here denotes the discrete Laplace operator.

77

The initial wavefield at the initial timestep is set to zero (i.e. 𝑝0
r = 0). Thus, the gradient of loss

L with respect to estimated velocity at spatial location r can be computed using the chain rule as

𝜕L
𝜕𝑣(r) =

𝑇∑︁
𝑡=0

[
𝜕L

𝜕𝑝(r, 𝑡)

]
𝜕𝑝(r, 𝑡)
𝜕𝑣(r) , (3.23)

where 𝑇 indicates the total number of timesteps.

3.3.4.4 Loss Function

The reconstruction loss of our UPFWI includes a pixel-wise loss and a perceptual loss as follows:

L(p, p̃) = L𝑝𝑖𝑥𝑒𝑙 (p, p̃) + L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 (p, p̃), (3.24)

where p and p̃ are input and reconstructed seismic data, respectively. The pixel-wise loss L𝑝𝑖𝑥𝑒𝑙

combines ℓ1 and ℓ2 distance as:

L𝑝𝑖𝑥𝑒𝑙 (p, p̃) = 𝜆1ℓ1(p, p̃) + 𝜆2ℓ2(p, p̃), (3.25)

where 𝜆1 and 𝜆2 are two hyper-parameters to control the relative importance. For the perceptual

loss L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 , we extract features from conv5 in a VGG-16 network (Simonyan and Zisserman,

2014) pretrained on ImageNet (Krizhevsky et al., 2012) and combine the ℓ1 and ℓ2 distance as:

L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 (p, p̃) = 𝜆3ℓ1(𝜙(p), 𝜙(p̃)) + 𝜆4ℓ2(𝜙(p), 𝜙(p̃)), (3.26)

where 𝜙(·) represents the output of conv5 in the VGG-16 network, and 𝜆3 and 𝜆4 are two hyper-

parameters. Compared to the pixel-wise loss, the perceptual loss is better to capture the region-wise

structure, which reflects the waveform coherence. This is crucial to boost the overall accuracy of

velocity maps (e.g. the quantitative velocity values and the structural information).

3.3.5 OpenFWI Dataset

We introduce a new large-scale geophysics FWI dataset OpenFWI, which consists of 108K

seismic data for two types of velocity maps: one with flat layers (named FlatFault) and the other

one with curved layers (named CurvedFault). Each type has 54K seismic data, including 30K with

paired velocity maps (labeled) and 24K unlabeled. The 30K labeled pairs are splitted as 24K/3K/3K

for training, validation and testing respectively. Samples are shown in Appendix C.3.

78

The shape of curves in our dataset follows a sine function. Velocity maps in CurvedFault are

designed to validate the effectiveness of FWI methods on curved topography. Compared to the

maps with flat layers, curved velocity maps yield much more irregular geological structures, making

inversion more challenging. Both FlatFault and CurvedFault contain 30,000 samples with 2 to 4

layers and their corresponding seismic data. Each velocity map has dimensions of 70×70, and the

grid size is 15 meter in both directions. The layer thickness ranges from 15 grids to 35 grids, and the

velocity in each layer is randomly sampled from a uniform distribution between 3,000 meter/second

and 6,000 meter/second. The velocity is designed to increase with depth to be more physically

realistic. We also add geological faults to every velocity map. The faults shift from 10 grids to 20

grids, and the tilting angle ranges from -123 to 123 degrees.

To synthesize seismic data, five sources are evenly placed on surface with a 255-meter spacing,

and seismic traces are recorded by 70 receivers at each grid with an interval of 15 meter. The

source is a Ricker wavelet with a central frequency of 25 Hz (Wang, 2015). Each receiver records

time-series data for 1 second, and we use a 1 millisecond sample rate to generate 1,000 timesteps.

Therefore, the dimensions of seismic data become 5×1000×70. Compared to existing datasets (Yang

and Ma, 2019; Moseley et al., 2020), OpenFWI is significantly larger. It includes more complicated

and physically realistic velocity maps. We hope it establishes a more challenging benchmark for the

community.

3.3.6 Experiments

In this section, we present experimental results of our proposed UPFWI evaluated on the

OpenFWI.

3.3.6.1 Implementation Details

Training Details: The input seismic data are normalized to range [−1, 1]. We employ

AdamW (Loshchilov and Hutter, 2018) optimizer with momentum parameters 𝛽1 = 0.9, 𝛽2 = 0.999

and a weight decay of 1 × 10−4 to update all parameters of the network. The initial learning rate is

set to 3.2 × 10−4, and we reduce the learning rate by a factor of 10 when validation loss reaches a

plateau. The minimum learning rate is set to 3.2 × 10−6. The size of a mini-batch is set to 128. All

79

trade-off hyper-parameters 𝜆 in our loss function are set to 1. We implement our models in Pytorch

and train them on 8 NVIDIA Tesla V100 GPUs. All models are randomly initialized.

Evaluation Metrics: We consider three metrics for evaluating the velocity maps inverted

by our method: MAE, MSE and SSIM. Both MAE and MSE have been employed in existing

methods (Wu and Lin, 2019; Zhang and Lin, 2020) to measure pixel-wise errors. Considering the

layered-structured velocity maps contain highly structured information, degradation or distortion

can be easily perceived by a human. To better align with human vision, we employ SSIM to measure

perceptual similarity. Note that for MAE and MSE calculation, we denormalize velocity maps

to their original scale while we keep them in normalized scale [-1, 1] for SSIM according to the

algorithm.

Comparison: We compare our method with three state-of-the-art algorithms: two pure data-

driven methods, i.e., InversionNet (Wu and Lin, 2019) and VelocityGAN (Zhang and Lin, 2020), and

a physics-informed method H-PGNN (Sun et al., 2021). We follow the implementation described in

these papers and search for the best hyper-parameters for OpenFWI dataset. Note that we improve

H-PGNN by replacing the network architecture with the CNN in our UPFWI and adding perceptual

loss, resulting in a significant boosted performance. We refer our implementation as H-PGNN+,

which is a strong supervised baseline. Our method has two variants (UPFWI-24K and UPFWI-48K),

using 24K and 48K unlabeled seismic data respectively.

3.3.6.2 Main Results

Results on FlatFault: Table 3.6 shows the results of different methods on FlatFault. Compared

to InversionNet and VelocityGAN, our UPFWI-24K performs better in MSE and SSIM, but is

slightly worse in MAE score. Compared to H-PGNN+, there is a gap between our UPFWI-24K

and H-PGNN+ when trained with the same amount of data. However, after we double the size

of unlabeled data (from 24K to 48K), a significant improvement is observed in our UPFWI-48K

for all three metrics, and it outperforms all three supervised baselines in MSE and SSIM. This

demonstrates the potential of our UPFWI for achieving higher performance with more unlabeled

data involved.

80

Table 3.6 Quantitative results evaluated on OpenFWI in terms of MAE, MSE and SSIM. Our
UPFWI yields comparable inversion accuracy comparing to supervised baselines. For H-PGNN+,
we use our network architecture to replace the original one reported in their paper, and an additional
perceptual loss between seismic data is added during training.

Supervision Method FlatFault CurvedFault

MAE ↓ MSE ↓ SSIM ↑ MAE ↓ MSE ↓ SSIM ↑

Supervised
InversionNet 15.83 2156.00 0.9832 23.77 5285.38 0.9681

VelocityGAN 16.15 1770.31 0.9857 25.83 5076.79 0.9699

H-PGNN+ 12.91 1565.02 0.9874 24.19 5139.60 0.9685

Unsupervised UPFWI-24K 16.27 1705.35 0.9866 29.59 5712.25 0.9652

UPFWI-48K 14.60 1146.09 0.9895 23.56 3639.96 0.9756

Ground Truth InversionNet VelocityGAN H-PGNN+ UPFWI-24K (Ours) UPFWI-48K (Ours)

Figure 3.18 Comparison of different methods on inverted velocity maps of FlatFault (top) and
CurvedFault (bottom). For FlatFault, our UPFWI-48K reveals more accurate details at layer
boundaries and the slope of the fault in deep region. For CurvedFault, our UPFWI reconstructs the
geological anomalies on the surface that best match the ground truth.

The velocity maps inverted by different methods are shown in the top row of Figure 3.18.

Consistent with our quantitative analysis, more accurate details are observed in the velocity maps

generated by UPFWI-48K. For instance, we find in the visualization results that both InversionNet

and VelocityGAN generate blurry results in deep region, while H-PGNN+, UPFWI-24K and

UPFWI-48K yield much clearer boundaries. We attribute this finding as the impact of seismic loss.

We further observe that the slope of the fault in deep region is different from that in the shallow

81

(a) (b)

Ground Truth pixel-ℓ2 pixel-ℓ1ℓ2
pixel-ℓ1ℓ2+
perceptual

Figure 3.19 Comparison of UPFWI with different loss functions on (a) waveform residual and their
corresponding inversion results (ground truth provided in the first column), and (b) single trace
residuals recorded by the receiver at 525 m offset. Our UPFWI trained with pixel-wise loss (ℓ1+ℓ2
distance) and perceptual loss yields the most accurate results. Best viewed in color.

region, yet only UPFWI-48K replicates this result as highlighted by the green square.

Results on CurvedFault: Table 3.6 shows the results of CurvedFault. Performance degradation is

observed for all models, due to the more complicated geological structures in CurvedFault. Although

our UPFWI-24K underperforms the three supervised baselines, our UPFWI-48K significantly

boosts the performance, outperforming all supervised methods in terms of all three metrics. This

demonstrates the power of unsupervised learning in our UPFWI that greatly benefits from more

unlabeled data when dealing with more complicated curved structure.

The bottom row of Figure 3.18 shows the visualized velocity maps in CurvedFault obtained

using different methods. Similar to the observation in FlatFault, our UPFWI-48K yields more

accurate details compared to the results of supervised methods. For instance, only our UPFWI-24K

and UPFWI-48K precisely reconstruct the fault beneath the curve around the top-left corner as

highlighted by the yellow square. Although some artifacts are observed in the results of UPFWI-24K

around the layer boundary in deep region, they are eliminated in the results of UPFWI-48K. More

visualization results are shown in Appendix C.3.

3.3.6.3 Ablation Study

Loss Terms: We study the contribution of each loss term in our loss function: (a) pixel-wise ℓ2

distance (MSE), (b) pixel-wise ℓ1 distance (MAE), and (c) perceptual loss. All experiments are

82

Table 3.7 Quantitative results of our UPFWI with different loss function settings.

Loss Velocity Error Seismic Error

pixel-ℓ2 pixel-ℓ1 perceptual MAE ↓ MSE ↓ SSIM ↑ MAE ↓ MSE ↓ SSIM ↑
✓ 32.61 10014.47 0.9735 0.0167 0.0023 0.9978

✓ ✓ 21.71 2999.55 0.9775 0.0155 0.0025 0.9977

✓ ✓ ✓ 16.27 1705.35 0.9866 0.0140 0.0021 0.9984

Table 3.8 Quantitative results of our UPFWI evaluated on Marmousi and Salt datasets.

Method Marmousi Salt

MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑
InversionNet 149.67 45936.23 0.7889 25.98 8669.98 0.9764

UPFWI 221.93 125825.75 0.7920 150.34 164595.28 0.7837

Table 3.9 Quantitative results of our UPFWI with different architectures.

Network MAE↓ MSE↓ SSIM↑
CNN 16.27 1705.35 0.9866

ViT 41.44 11029.01 0.9461

MLP-Mixer 22.32 4177.37 0.9726

conducted on FlatFault using 24,000 unlabeled data.

Figure 3.19a shows the predicted velocity maps for using three loss combinations (pixel-ℓ2,

pixel-ℓ1ℓ2, pixel-ℓ1ℓ2+perceptual) in UPFWI. The ground truth seismic data and velocity map are

shown in the left column. For each loss option, we show the difference between the reconstructed and

the input seismic data (on the top) and predicted velocity (on the bottom). When using pixel-wise loss

in 𝑙2 distance alone, there are some obvious artifacts in both seismic data (around 600 millisecond)

and velocity map. These artifacts are mitigated by introducing additional pixel-wise loss in 𝑙1

distance. With perceptual loss added, more details are correctly retained (e.g. seismic data from

400 millisecond to 600 millisecond, velocity boundary between layers). Figure 3.19b compares the

reconstructed seismic data (in terms of residual to the ground truth) at a slice of 525 meter offset

(orange dash line in Figure 3.19a). Clearly, the combination of pixel-wise and perceptual loss has

the smallest residual.

83

Table 3.10 Quantitative results of our UPFWI tested on seismic inputs with different noise levels.

𝜎

(10−4)
FlatFault CurvedFault

PSNR MAE↓ MSE↓ SSIM↑ PSNR MAE↓ MSE↓ SSIM↑
0.5 61.60 15.68 1343.21 0.9888 61.72 23.78 3704.00 0.9751

1.0 58.70 24.84 4010.78 0.9733 58.70 24.84 4010.78 0.9733

5.0 51.58 44.33 7592.57 0.9681 51.68 46.90 10415.38 0.9441

The quantitative results are shown in Table 3.7. They are consistent with our observation in

qualitative analysis (Figure 3.19a). In particular, using pixel-wise loss in ℓ2 distance has the worst

performance. The involvement of ℓ1 distance mitigates velocity errors but is slightly worse on MSE

and SSIM of seismic error. Adding perceptual loss boosts the performance in all metrics by a clear

margin. This shows perceptual loss is helpful to retain waveform coherence, which is correlated to

velocity boundary, and validates our proposed loss function (combining pixel-wise and perceptual

loss).

More Challenging Datasets: We further evaluate our UPFWI on two more challenging tests

including Marmousi and Salt (Yang and Ma, 2019) datasets and achieve solid results. For Marmousi

dataset, we follow the work of Feng et al. (2021) and employ the Marmousi velocity map as the style

image to construct a low-resolution dataset. Table 3.8 shows the quantitative results on both datasets.

Although our UPFWI achieves good results on Salt dataset with preserved subsurface structures, it

has clearly larger errors than the supervised InversionNet. This is due to two reasons: (a) Salt dataset

has a small amount of training data (120 samples), which is very challenging for unsupervised

methods; (b) the variability between training and testing samples is small, providing a significantly

larger favor to supervised methods than the unsupervised counterparts. The visualization of results

on Marmousi dataset and Salt data are shown in Appendix C.4.

Other Network Architectures: We further conducted experiments by using Vision Trans-

former (ViT, Dosovitskiy et al., 2020) and MLP-Mixer (Tolstikhin et al., 2021) to replace CNN as

the encoder. Table 3.9 further shows the quantitative results. Solid results are obtained for both

network architectures, indicating our proposed method is model-agnostic. Visualization results are

84

Table 3.11 Quantitative results of our UPFWI tested on seismic inputs with missing traces.

Missing
Traces

FlatFault CurvedFault

MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑
4 (5%) 21.23 1772.05 0.9868 41.33 6914.12 0.9622

7 (10%) 33.66 3504.25 0.9814 61.72 12445.90 0.9453

17 (25%) 85.21 16731.69 0.9457 121.06 36770.77 0.8853

shown in Appendix C.4.

Robustness Evaluation: We validate the robustness of our UPFWI models by two additional

tests: (1) testing data contaminated by Gaussian noise and (2) testing data with missing traces. The

quantitative results are shown in Table 3.10 and Table 3.11, respectively. We observe that in both

experiments our model is robust to a certain level of noise and irregular acquisition. Visualization

results are shown in Appendix C.4.

3.3.7 Summary

This section presented a novel physics-informed machine learning architecture tailored for

full-waveform inversion, a process effectively modeled by partial differential equations. By

integrating these equations with convolutional neural networks, we achieved a sophisticated form of

regularization captured by the 𝑓 term in Equation (1.3). Our experimental findings underscore the

benefits of incorporating perceptual loss, as denoted by the 𝑅 term in Equation (1.3), which has

significantly enhanced the quality of seismic data reconstruction. This method not only elevates the

precision of seismic interpretations but also broadens the scope of neural networks in geophysical

data analysis, setting the stage for more detailed and accurate geological assessments.

85

3.4 Making Invisible Visible: Data-Driven Seismic Inversion with Spatio-temporally Con-
strained Data Augmentation

Deep learning methods have unlocked new potential for leveraging the vast amounts of data

available today. Particularly noteworthy are the advancements in data-driven full-waveform inversion

techniques, as seen in recent developments Zhang and Lin (2020); Wu and Lin (2019); Araya-

Polo et al. (2018). These methods, however, typically rely on large-scale datasets that are often

not available for full-waveform inversion tasks, thereby underscoring the critical role of data

augmentation. Traditional data augmentation techniques used in computer vision, such as shifting,

rotating, scaling, and cropping, may interfere with the physical integrity of seismic data. This

section introduces a data augmentation method using generative models (variational autoencoder)

that adheres to the S term in Equation (1.3), specifically designed to maintain the physical properties

inherent in the data.

3.4.1 Introduction

Most of the current data-driven seismic FWI techniques are built-on end-to-end neural network

structures. In order to improve the inversion accuracy and the model generalization, data-driven

techniques are usually trained on a large volume of dataset, which in turn significantly increases

the complexity of the networks. In Wu and Lin (2019), an encoder-decoder structure is developed

to learn the regression correspondence from raw seismic data to velocity maps. In Araya-Polo

et al. (2018), a fully-connected network structure is designed for the inversion. In Zhang and Lin

(2020), a generative model is utilized and trained for learning the inversion operator. To give an

idea of the size of the training data, in Wu and Lin (2019), a ten-layer encoder-decoder results in

more than 40 million learnable model parameters. To train this deep neural network, more than

60,000 pairs of labeled simulations need to be available as reported in Wu and Lin (2019). However,

obtaining such a large amount of data is challenging (or even infeasible) for some subsurface

applications due to the practical obstacles in data acquisition and simulation. Particularly, seismic

FWI for monitoring is notoriously known as a “small-data regime”. A limited number of seismic

sensors are distributed over a large area, and very few time-lapse observations can be affordably

86

acquired Lumley (2001). Training a data-driven seismic FWI using limited data will result in weak

generalizability and misfitting. To fully unleash the power of deep learning for a better, faster, and

cheaper subsurface seismic FWI approach, we develop a new data augmentation technique to bridge

the gap by addressing the critical issues of generalizability and the capability of generating high

quality and a large volume of training data.

Data augmentation, the process of creating new samples by manipulating the original data,

addresses the data shortage at the root of the problem Shorten and Khoshgoftaar (2019). However,

the most popular data augmentation methods are not appropriate for seismic imaging due to

their inability to incorporate generic physics properties. Furthermore, seismic data usually yields

both spatial and temporal characteristics. To address those issues, we develop data augmentation

techniques to account for both spatio-temporal characteristics and the critical seismic physics to

generate high-quality simulations. Our models are built on variation autoencoder (VAE) to take

advantage of its direct tie to the latent representations Kingma and Welling (2014). The design of

our techniques considers different representations of physics including the governing equations, the

observable perception, and the physics phenomena. To validate the performance of our developed

techniques, we test our models using an existing CO2 leakage synthetic dataset, Kimberlina dataset,

generated and operated by the U.S. Department of Energy (DOE) Jordan and Wagoner (2017).

Our interest is to employ our data-driven FWI to image and detect small CO2 leaks. Via various

numerical tests, we demonstrate that our data augmentation techniques significantly improve the

data representativeness of the training set, which in turn enhances the seismic imaging accuracy.

Specifically, CO2 plumes related to small leaks can now be much better imaged than those obtained

without using augmentation.

In the following sections, we first briefly provide the related work in Section 3.4.2. We develop

and discuss our data augmentation techniques in Section 3.4.4. We further provide all the numerical

tests and results in Section 3.4.5. Finally, further discussion, future work, and concluding remarks

will be presented.

87

3.4.2 Related Work

3.4.2.1 Deep Generative Models

Generative models are known as a type of unsupervised learning approaches that explicitly

or implicitly model the distribution of true data so as to generate new samples with some varia-

tions Bishop (2006). Current state-of-the-art generative models are built on deep neural networks

(i.e., deep generative models (DGMs)). Examples of recent DGMs include variational autoen-

coders (VAE) Kingma and Welling (2014) and generative adversarial networks (GAN) Goodfellow

et al. (2014).

As a variation in autoencoder, VAE belongs to the DGMs that learn the data distribution explicitly.

It solves a variational inference problem to maximize the marginalized data likelihood by using a

generative network (decoder) and a recognition network (encoder). Once fully trained, the encoder

learns a distribution over latent variable given observation, and the decoder learns a distribution over

observation given latent variable. VAE and its variants have shown great potential in generating data

for augmentation in different applications Luo et al. (2020); Hsu et al. (2017); Nishizaki (2017);

Liu et al. (2018). In particular, Luo et al. (2020) employ a vanilla VAE to generate synthetic EEG

time series for recognizing emotions. Nishizaki (2017) also employ VAE to generate waveform data

for automatic speech recognition. In Liu et al. (2018), VAE is used to extracted useful features in

the latent space from image data. Linear interpolation on the latent space is conducted to obtain

new synthetic images. Hsu et al. (2017) develop a VAE-based data augmentation technique to

address the distribution mismatch in source and target domains for improving the performance of a

domain adaptation method in speech recognition. Besides VAE, other DGMs (such as GAN) have

also been applied for the task of data augmentation Zhang et al. (2019); Antoniou et al. (2017);

Shrivastava et al. (2017); Sixt et al. (2018). In comparison, VAE provides a natural connection to

the data distribution by collapsing most dimensions in the latent representations. Another noticeable

benefit of VAE-based DGMs is the relatively easier effort to train with less technical complexity for

hyper-parameter selection. Provided with these aforementioned encouraging results of DGMs, a

direct application of DGMs to our problems may face two major challenges. Firstly, DGMs are

88

in general highly data-demanding. Secondly, they are purely driven by data without considering

physics.

3.4.2.2 Physics-Informed Deep Learning

Physics-informed (i.e., domain-aware) learning is a critical task to scientific machine learn-

ing (SciML) community Bas (2019). Particularly, how to incorporate physics information becomes

one of the most challenging and important research topics across different scientific domains Sun

et al. (2020); Gomez et al. (2020); Wang et al. (2020); Raissi et al. (2019); Zhu et al. (2019b).

A thorough survey on this topic is published by Karniadakis et al. (2021); Willard et al. (2020).

As pointed out in Karniadakis et al. (2021), there are three ways to make a learning algorithm

physics-informed, “observation bias”, “inductive bias”, and “learning bias”. The observation

bias approaches introduce physics to the model directly through data that embody the underlying

knowledge. The inductive bias approaches focus on designing neural network architectures that

implicitly enforce physics knowledge associated with a given predictive task. The learning bias

approaches incorporate the physics knowledge in a soft manner by appropriately penalizing the

loss function of conventional neural networks. Our approach developed in this work belong to two

categories of the above: observation bias and learning bias.

There are many benefits considering physics knowledge when designing a neural network models.

Regardless of the application domains, one of the major benefits is to improve the robustness of the

prediction model and to produce physically meaningful (and more accurate) results. Particularly,

Lagaris et al. (1998) propose an artificial neural network method to solve partial differential

equations (PDEs) for flow simulations. Raissi et al. (2019) develop a deep-learning-based nonlinear

PDE solver. Zhu et al. (2019b) develop a numerical PDE solver using a convolutional encoder-

decoder and a flow-based generative model with physics constraints. More accurate results have

been shown in their work. Sun et al. (2020) develop another PDE solver using the physics-informed

deep learning method. Their method leverages both the full-physics simulations and additional

physics-based constraints. Wang et al. (2020) develop a spatiotemporal deep learning model to

account for both data characteristics and underline physics to synthesize high-quality turbulent

89

imagery. All these aforementioned works provide us with great inspiration about leveraging useful

physics information while developing deep learning models for our seismic imaging problems.

Figure 3.20 Illustration of the Kimberlina dataset and three modeling modules used to generate
the simulated velocity maps. (a) CO2 storage reservoir model, (b) wellbore leakage model, (c)
multi-phase flow and reactive transport models of CO2 migration in aquifers Buscheck et al. (2019);
Yang et al. (2019), and (d) Illustration of a set of simulation with 20 velocity maps over a duration
of 200 years. A CO2 leakage will result in a decrease of the velocity value in the location where the
leak happens. (© 2022 IEEE)

3.4.2.3 Data Augmentation in Seismic Exploration

In the seismic exploration community, there has been surprisingly little work addressing this

dilemma of lack of data for data-driven seismic FWI. The existing approaches can be roughly

categorized into two groups, those based on velocity building Liu et al. (2021); Ren et al. (2021);

Wu et al. (2020a) and those based on pure machine learning approaches Feng et al. (2020); Gomez

et al. (2020); Ovcharenko et al. (2019). Specifically, in Liu et al. (2021) and Ren et al. (2021), a

large volume of subsurface velocity maps are generated to include different geologic structures.

The geometry of those pre-generated geologic structures is assumed to follow a certain distribution.

Wu et al. (2020a) design a workflow to automatically build a subsurface structure with folding

and faulting features. Their method relies on the initial layer-like structure, therefore, producing

unsatisfactory results when applying to different sites. In Gomez et al. (2020), an adaptive data

augmentation technique is developed to augment the training by using unlabeled seismic data. Feng

et al. (2020) develop a style transfer technique to generate synthetic velocity maps from natural

90

images. Ovcharenko et al. (2019) develop a set of subsurface structure maps using customized

subsurface random model generators. Their method strongly relies on domain knowledge to generate

the content images, which in turn significantly limits the variability of the training set.

3.4.3 Small CO2 Leak Detection and Kimberlina Dataset

In geologic carbon sequestration (GCS), also known as carbon capture and storage (CCS),

developing effective monitoring methods is urgently needed to detect and respond to CO2 leakage.

This is particularly important for early detection, which would provide timely warning and intervention

before the potential damages to the environment (such as acidification of groundwater and killing

of plant life, contamination of the atmosphere, etc) Ha-Duong and Keith (2003). On the other

hand, detecting small CO2 leaks is also technically challenging since it requires high detectability

and sufficient spatial resolution of geophysical methods to capture the subtle geologic feature

perturbation induced by the leaks. Considering this pressing need, our goal in this work is to assess

and further improve the early CO2 leak-detection capabilities of the seismic FWI method.

To our best knowledge, we are unaware of any available field seismic data that fits the scope

of our problem of interest. Meanwhile, this lack of data is recognized by the U.S. Department of

Energy (DOE), and to alleviate this problem, given the importance of this application, the DOE,

through the National Risk Assessment Partnership (NRAP) project, has generated a set of high

fidelity simulations, the Kimberlina dataset, with the aim of providing a standard baseline dataset to

understand and assess the effectiveness of various geophysical monitoring techniques for detecting

CO2 leakage Jordan and Wagoner (2017). The Kimberlina dataset is generated from a hypothetical

numerical model built on the geologic structure of a commercial-scale geologic carbon sequestration

reservoir at the Kimberlina site in the southern San Joaquin Basin, 30 km northwest of Bakersfield,

CA, USA. The simulation procedure consists of four modules: a CO2 storage reservoir model

(Fig. 3.20(a)), a wellbore leakage model (Fig. 3.20(b)), a multi-phase flow and reactive transport

models of CO2 migration in aquifers (Fig. 3.20(c)), and a geophysical model. In particular, the

P-wave velocity maps used in this work belong to the geophysical model, which is created based on

the realistic geologic-layer properties from the GCS site as shown in Fig. 3.20(b) Buscheck et al.

91

Figure 3.21 Distribution of leakage mass of Kimberlina Dataset. Each of the splittings covers 20%,
20%, 20%, and 40% of the data samples, respectively. (© 2022 IEEE)

(2019); Yang et al. (2019).

Figure 3.22 Schematic illustration of our (a) autoencoder and (b) VAE generative models. (© 2022
IEEE)

The Kimberlina dataset contains 991 CO2 leakage scenarios, each simulated over a duration of

200 years, with 20 leakage velocity maps provided (i.e., at every 10 years) for each scenario. An

illustration of one specific leakage simulation associated with the leakage mass over 200 years are

shown in Fig. 3.20(d). We also provide the overall distribution of the whole dataset in Fig. 3.21. For

a balanced dataset, we would expect the data label (leakage mass) should be uniformly distributed,

which however is not the case for Kimberlina dataset. Particularly, the whole dataset can be split

92

into four parts by its leak mass as

Tiny if mass < 9.10 × 106 kg,

Small if 9.10 × 106 kg < mass < 2.67 × 107 kg,

Medium if 2.67 × 107 kg < mass < 8.05 × 107 kg,

Large if 8.05 × 107 kg < mass.

(3.27)

Each of the splittings covers 20%, 20%, 20%, and 40% of the data samples, respectively. Although

we have 20% of tiny leakage samples, these samples are distributed from 0 to 9.1 × 106 that covers

nearly 70% of CO2 leakage scenarios, as shown in Fig. 3.21. In other words, the density of tiny

samples is much lower than that of the other three classes. This sparsity and in-balanced sample

density create the major challenge when imaging tiny leakage samples.

The Kimberlina project focuses on the shallow CO2 leakage. That leads to 3-layer synthetic

velocity models (baseline and monitor), which reflect the shallow geologic structure from the field

study. The Kimberlina model and simulations have been the basis for a variety of extensive research

efforts in characterizing and detecting for CO2 using different geophysical approaches Appriou et al.

(2020); Chen and Huang (2020); Zhou et al. (2019); Buscheck et al. (2019); Yang et al. (2019). Our

interest is on the early-leak detection, which requires to image those small leaks. The unbalancing

of the dataset becomes a major challenge for our data-driven seismic inversion technique since it

will mislead our InversionNet model towards medium or large leaks. On the other hand, due to

the limitation of physical simulations, we will not be able to further generate more synthetic for

the small leaks. Hence, those practical obstacles make our problem reside in a low-data regime

scenario. Next, we will describe our techniques to augment the Kimberlina dataset while preserving

the physics information as much as we can to improve the prediction accuracy of our InversionNet

model.

93

3.4.4 Methodology

3.4.4.1 Physics of the Problem

Our data augmentation techniques will leverage existing physics knowledge of the problem.

It is worth understanding what specific physics information are referred to in this context for the

designing and training our neural networks.

1. Governing Equations. One of the most prominent physics knowledge in our problem is

that the governing equations are used to generate original physical simulations (as shown in

Fig. 3.20). Those equations describe specific physical relationships between time and spatial

derivatives explicitly using temporally dynamic formulas. In order to generate physically

meaningful synthesized data, it would be important to embed that physics information in the

generative models.

2. Observable Perception. As described in Section 3.4.3, the data that we are interested in

synthesizing are two-dimensional (2D), which means it yields a distribution that would be

represented in certain visual perception. We expect our generative model would be able to

capture the underline true data distribution, which in turn would require the synthesized 2D

data would physically “look like” those in the training data.

3. Physics Phenomena. Any physical simulation should respect the realistic physics phenomena.

As one example, in our problem of interest, the super-critical CO2 will migrate over time,

meaning that we will observe the spatial spreading of CO2 should gradually increase over

time. How to best design our generative model without violating this phenomenon would

potentially help to improve the performance of our generative model.

We will consider all of the above during the development of our generative models. Another

point that would be important to consider is that all of the above physics information is consistent

throughout all temporal duration.

94

3.4.4.2 Data-driven Generative Models

To compensate for the imbalance data as shown in Fig. 3.21, we would like to generate more data

in the small-leak region. Luckily, the original Kimberlina dataset provides full-physics simulation in

the medium- and large-leak regions. Those data are generated by the governing physics equations,

which means those physics knowledge are represented by those data implicitly. Our first two

generative models are built on autoencoder and VAE to leverage those existing simulations while

taking into account the temporal variation.

3.4.4.3 Autoencoder

Our first model is to build a “regression” model that would provide interpolated data for those

temporally missing points (as shown in Fig. 3.22(a)). The hypothesis behind this idea is that

considering the consistency of the physics, we would expect that once fully trained, our generative

model will capture the intrinsic dynamics of the physics from the existing simulations so that it will

provide physically realistic prediction at any given time, particularly, those at the early stage of the

leakage.

(a) (b)

Figure 3.23 Schematic illustration of (a) our new variational autoencoder with perception loss, and
(b) the perception loss using the pre-trained VGG-19 network Simonyan and Zisserman (2014). (©
2022 IEEE)

Technically, our model will be based on an autoencoder structure, which consists of a convo-

lutional encoder F𝜃 , with a set of trainable parameters 𝜃, and a convolutional decoder G𝜙, with a

set of trainable parameters 𝜙. To incorporate the spatial information, we set two input channels

of our encoder as the first and the last velocity maps from one simulation. To incorporate the

temporal information, we further create a temporal matrix by replicating the single time value over

95

all matrix entries. The temporal matrix will then be used as one of the three input channels of the

autoencoder together with two other two. When training the autoencoder, all three input channels

will be convolved together, leading to the incorporation of both spatial and temporal information.

Once fully trained, our encoder will learn to reduce the dimensionality of this mixture of inputs

to a latent variable which is a high-level latent representation containing both spatio-temporal

information. Our decoder will estimate the target velocity map using the latent variable, which can

be considered as nonlinear high-dimensional regression.

The structure of our generative model is shown as Fig. 3.22(a), and mathematically our

autoencoder can be represented as

Encoder : 𝑧 = F𝜃 (𝑥𝑠,10, 𝑥𝑠,200, 𝑡),

Decoder : 𝑥𝑠,𝑡 = G𝜙 (𝑧),
(3.28)

where 𝑥𝑠,10, 𝑥𝑠,200 and 𝑡 are the inputs of the encoder. 𝑡 is the time of the velocity map that needs

to be predicted and it is created as a temporal matrix by replicating the single time value over all

matrix entries. 𝑥𝑠,10 and 𝑥𝑠,200 are the first data and the last data from the same simulation 𝑠, where

10 and 200 are the time index of the data. 𝑧 is the latent variable output by the encoder F , and the

decoder G produces 𝑥𝑠,𝑡 , the estimated velocity map of simulation 𝑠 at time 𝑡. We use Mean Squared

Error (MSE) as our optimality criterion to compute the reconstruction loss between the ground truth

and the generated velocity maps and to update trainable parameters through backpropagation

L(𝜃, 𝜙) = L𝑟𝑒𝑐𝑜𝑛 =
1
|𝑆 | |𝑇 |

∑︁
𝑠∈𝑆,𝑡∈𝑇

(𝑥𝑠,𝑡 − 𝑥𝑠,𝑡)2,

=
1
|𝑆 | |𝑇 |

∑︁
𝑠∈𝑆,𝑡∈𝑇

(𝑥𝑠,𝑡 − G𝜙 (F𝜃 (𝑥𝑠,10, 𝑥𝑠,200, 𝑡)))2.
(3.29)

This model generates synthetic samples in the data domain. As discussed in Oring et al. (2020),

generating samples in the latent space might increase the variability within the data distribution.

We, therefore, study VAE and its capability in generating samples.

3.4.4.4 Variational Autoencoder

The variational autoencoder (VAE) is a probabilistic generative model to create a latent

representation of the input data. That would allow us to generate new samples with high diversity by

96

manipulating the latent representations. Unlike the autoencoder model, which incorporates temporal

information as part of the input (Fig. 3.22(a)), our VAE generative model produces new temporal

interpolation separately in two steps. In the first step, we train the VAE by taking only velocity

maps as input without explicit temporal information. Once fully trained, the VAE will be able to

generate latent variables representing the velocity maps. In the second step, we provide a linear

interpolation scheme on the normal distributed latent space to produce new latent variables for

further synthesizing new velocity samples. The idea behind the VAE generative model is somewhat

similar to that of the autoencoder. We expect the physics knowledge, i.e., the governing physics

relationship can be captured by training the VAE using simulations. The consistency of the physics

information will be leveraged when generating new samples at different times.

We provide the illustration of our VAE generative model in Fig. 3.22(b). The encoder, F , and

decoder, G, structures of VAE are similar to those of the autoencoder. However, the encoder in VAE

is to learn the posterior distribution 𝑞𝜃 (𝑧 |𝑥), which is the distribution parameter of latent variable 𝑧

given input 𝑥. The decoder in VAE is to learn the conditional distribution 𝑝𝜙 (𝑥 |𝑧), which is the

distribution of reconstructed data given latent distribution. There is a prior distribution 𝑝(𝑧) over the

latent space, which we set as a standard normal distribution. The output of encoder 𝑞𝜃 (𝑧 |𝑥) has two

parts of mean and log-variance of the posterior distribution. One of the known problems associated

with VAE is that its gradients cannot flow through the bottleneck of mean and log-variance. So, we

perform a re-parameterize trick to make the gradient able to flow through the bottleneck Kingma

and Welling (2014),

𝑧 = 𝜇 + 𝜎 ⊙ 𝜖, (3.30)

where 𝑧 ∈ R64 is the latent sample, 𝜇 ∈ R64 and 𝜎 ∈ R64 are the mean and log-variance of the

posterior distribution 𝑞𝜃 (𝑧 |𝑥), and 𝜖 ∈ R64 is a random variable sampled from normal distribution

97

and independent from 𝜇 and 𝜎. We employ the standard VAE loss function as below

L(𝜃, 𝜙) = L𝑟𝑒𝑐𝑜𝑛 + L𝑘𝑙𝑑 ,

=
∑︁
𝑖

E𝑞𝜃 (𝑧𝑖 |𝑥𝑖)

[
log

𝑝𝜙 (𝑥𝑖, 𝑧𝑖)
𝑞𝜃 (𝑧𝑖 |𝑥𝑖)

]
,

=
∑︁
𝑖

E𝑞𝜃 (𝑧𝑖 |𝑥𝑖) (log 𝑝𝜙 (𝑥𝑖 |𝑧𝑖)

+ log 𝑝(𝑧𝑖) − log 𝑞𝜃 (𝑧𝑖 |𝑥𝑖)),

=
∑︁
𝑖

(𝑥𝑖 − 𝑥𝑖)2 +
∑︁
𝑖

𝐷𝐾𝐿 (𝑞𝜃 (𝑧𝑖 |𝑥𝑖)∥𝑝(𝑧𝑖)),

(3.31)

where L𝑘𝑙𝑑 =
∑
𝑖 𝐷𝐾𝐿 (𝑞𝜃 (𝑧 |𝑥𝑖)∥𝑝(𝑧)) =

∑
𝑖 E𝑞𝜃 (𝑧𝑖 |𝑥𝑖) (log 𝑝(𝑧𝑖) − log 𝑞𝜃 (𝑧𝑖 |𝑥𝑖)) is to measure

the KL-divergence between the posterior distribution 𝑞𝜃 (𝑧 |𝑥) and the prior distribution 𝑝(𝑧).

L𝑟𝑒𝑐𝑜𝑛 =
∑
𝑖 E𝑞𝜃 (𝑧 |𝑥𝑖) (log 𝑝𝜙 (𝑥𝑖 |𝑧𝑖) =

∑
𝑖 (𝑥𝑖 − 𝑥𝑖)2 is the reconstruction loss between ground truth

velocity maps, 𝑥𝑖 and generated velocity maps, 𝑥𝑖.

When generating new velocity maps to augment our dataset, a directly random sampling on the

prior distribution may lead to velocity maps associated with different leaks, whereas our interest

is to obtain more small-leakage velocity maps. So we come up with an interpolation strategy.

Particularly, we obtain the latent variables of two adjacent velocity maps from the same simulation,

namely, 𝑧1 and 𝑧2 through the encoder, F . Multiple new latent variables can be interpolated between

these 𝑧1 and 𝑧2 before passing them through the decoder, G, to further generate additional velocity

maps Berthelot et al. (2018). The procedure can be posed as follows

𝑥𝛼 = G𝜙 (𝛼𝑧1 + (1 − 𝛼)𝑧2),

= G𝜙 (𝛼F𝜃 (𝑥𝑠,10) + (1 − 𝛼)F𝜃 (𝑥𝑠,200)),
(3.32)

where 𝛼 ∈ [0, 1] is the coefficient of the interpolation. Different from the autoencoder model, the

temporal information is not used as the input in this VAE generative model.

It is worth mentioning that for either the autoencoder or VAE as shown in Fig. 3.22, we

expect that the governing physics will be able to be learned through training the models using

full-physics simulations. However, other physics knowledge (such as observable perception or

physics phenomena) will not be able to be captured by the generative models. Hence, we come

98

up with two different strategies to further constrain our generative models with additional physics

knowledge.

Figure 3.24 Schematic illustration of (a) the spatio-temporal dynamics of velocity maps at four
consecutive times, and (b) our new variational autoencoder with regularization. In (a), the CO2
plume is observed migrating towards a specific spatial direction over the monitoring period. (©
2022 IEEE)

3.4.4.5 Spatio-temporal Constrained Generative Models

3.4.4.6 Variational Autoencoder with Perception Loss

Perception of the generated velocity map is an important criterion to evaluate the quality of the

synthesized image data. For both loss functions in Eqs. (3.29) and (3.31), we employ L2 norm to

quantify the error. However, as pointed out by Zhang et al. (2018), classic per-pixel measures would

be insufficient for assessing structured data such as images. It is obvious that the perception of the

generated velocity map and that of the true velocity map should be consistent throughout the whole

dataset. Inspired by recent work on style transfer Gatys et al. (2015), we can quantify perception

using features extracted from pre-trained VGG-19 classification network Simonyan and Zisserman

(2014), and further calculate the perception error between the true and the generated velocity maps.

Thus, reducing the perception error can make our generated velocity maps more physically realistic.

Our new VAE generative model is shown in Fig. 3.23(a), where one additional loss function

(i.e., “Perception Loss”) is added on top of the spatial loss and KL divergence. In Fig. 3.23(b), we

illustrate how we extract spatial features and use them to calculate the perception loss. Particularly,

we generate representation using the Gram matrix, 𝐺 𝑙 ∈ R𝑁𝑙×𝑁𝑙 , on feature maps from several

99

intermediate layers of VGG-19 net

𝐺 𝑙
𝑖 𝑗 =

∑︁
𝑘

𝐹 𝑙𝑖𝑘𝐹
𝑙
𝑗 𝑘 , (3.33)

where 𝐺 𝑙
𝑖 𝑗

is the inner product between the vectorized feature 𝑖, 𝑗 at layer 𝑙 and 𝐹 𝑙
𝑖𝑘

is the position 𝑘

of the vectorized feature map of the 𝑖𝑡ℎ filter at layer 𝑙 of VGG-19 net. There are 𝑁𝑙 feature maps at

layer 𝑙 of VGG-19 net with the size of 𝑀𝑙 which is the height times the width of the feature map.

With the Gram matrix of ground truth velocity map, 𝑥 (denoted as “𝐺 𝑙”) and that of the generated

velocity map, 𝑥𝛼 (denoted as “𝐴𝑙”) obtained at layer 𝑙, we will have the perception loss function as

𝐿𝑝ℎ𝑦𝑠 =
∑︁
𝑙

𝜆𝑙

∑︁
𝑖 𝑗

(𝐺 𝑙
𝑖 𝑗 − 𝐴𝑙𝑖 𝑗)2, (3.34)

where 𝜆𝑙 = 1
4𝑁2

𝑙
𝑀2

𝑙

is the coefficient of the perception loss at layer 𝑙. Hence, our new VAE with

perception loss function becomes

L(𝜃, 𝜙) = L𝑟𝑒𝑐𝑜𝑛 + L𝑘𝑙𝑑 + L𝑝ℎ𝑦𝑠,

=
∑︁
𝑖

(𝑥𝑖 − 𝑥𝑖)2 + 𝐷𝐾𝐿 (𝑞𝜃 (𝑧𝑖 |𝑥𝑖)∥𝑝(𝑧𝑖))

+
∑︁
𝑙

𝜆𝑙

∑︁
𝑖 𝑗

(𝐺 𝑙
𝑖 𝑗 − 𝐴𝑙𝑖 𝑗)2.

(3.35)

An important hyper-parameter that needs to be carefully tuned is the selection of layers from VGG-19

net that will be used for calculating the perception loss. We will provide more details later in the

numerical test.

3.4.4.7 Variational Autoencoder with Regularization

As we discussed previously, prominent phenomena also play a critical role in designing our

generative model. For the CO2 storage problem, it has been well understood that starting from the

injection well, CO2 will enter the formation at high flow rates and migrate relatively and vigorously

into the most permeable regions under strong pressure gradients while displacing native fluids (e.g.,

brine) Birkholzer et al. (2015). Our full-physics simulations as shown in Fig. 3.20 accurately

illustrate this process, which results in a prominent spatially and temporally varying pattern of the

CO2 plume (shown in Fig. 3.24(a)). We expect our generative model would respect (at least not

violate) this particular dynamics. To enforce this constraint, our idea is to design a regularization

100

Figure 3.25 (a) Ground truth velocity maps, and generated velocity maps using (b) autoencoder, (C)
VAE, (d) VAE with perception loss, and (e) VAE with regularization. (© 2022 IEEE)

term informed by the leakage process with the hope to produce new samples being consistent with

the underline spatio-temporal dynamics.

As shown in Fig. 3.24(a), we observe that the CO2 plume would span towards a certain spatial

direction over the time during the migration, which indicates a clear spatio-temporal dynamical

pattern. We, therefore, impose regularization on top of the difference between velocity maps at two

consecutive times and ensure the dynamics of the ground truth would be preserved to its best when

generating new synthetics. To achieve this, we employ a L1-norm based regularization given by

L𝑟𝑒𝑔 =

(𝑥𝑠,𝑡1 − 𝑥𝑠,𝑡2) − (𝑥𝑠,𝑡1 − 𝑥𝑠,𝑡2)

1 , (3.36)

where 𝑥𝑡1 and 𝑥𝑡2 are ground truth velocity maps at two consecutive times, respectively. Accordingly,

𝑥𝑡1 and 𝑥𝑡2 are generated velocity maps at the same times, respectively. The times, 𝑡1 and 𝑡2, are

adjacent to each other with 𝑡1 > 𝑡2. The reason that we use L1 norm instead of L2 norm is that

the value of the subtraction of the differences of two consecutive velocity maps can sometimes be

101

Figure 3.26 Reconstruction loss on test dataset using different models w.r.t. each year in the dataset.
(© 2022 IEEE)

very close to zero, which would make the L2-norm value too small and may lead to the gradient

vanishing issue. In Fig. 3.24(b), we provide the network structure of our generative model using a

new VAE loss function with regularization

L(𝜃, 𝜙) = L𝑟𝑒𝑐𝑜𝑛 + L𝑘𝑙𝑑 + 𝛾 L𝑟𝑒𝑔,

=
∑︁
𝑖

(𝑥𝑖 − 𝑥𝑖)2 + 𝐷𝐾𝐿 (𝑞𝜃 (𝑧𝑖 |𝑥𝑖)∥𝑝𝜙 (𝑧𝑖))

+ 𝛾

(𝑥𝑠,𝑡1 − 𝑥𝑠,𝑡2) − (𝑥𝑠,𝑡1 − 𝑥𝑠,𝑡2)

1 ,

(3.37)

where the first and the second terms are the reconstruction loss and KL-divergence of the VAE,

respectively. The third term is regularization. 𝛾 is the regularization parameter. The regularization

parameter in Eq. (3.37) is important to the accuracy of data generation. We will explore its

impact and how we select it in our numerical test. Another technical details may be worthwhile

mentioning is the selection of the norms (i.e., L2 norm versus L1 norm) in our loss functions and

the regularization terms. The L2 loss (i.e., Mean Squared Error (MSE)) and L1 loss (i.e., Mean

Absolute Error (MAE)) are two of the most popularly used functions. Since MAE is minimized by

conditional median which may lead to bias during optimization, we therefore choose MSE, which

is minimized by conditional mean. However, we select the L1 regularization term to promote the

sparsity of the coefficients when constraining the differences between two (or thee) adjacent velocity

maps.

3.4.5 Experiments

With all 4 different generative models being designed in the previous section, we will validate

their performances in a couple of scenarios including a general assessment of the synthesized

102

Figure 3.27 Clustering results of the generated versus true samples. PCA-based clustering for
(a) autoencoder, (b) VAE, (c) VAE with perception loss, and (d) VAE with regularization; NMF-
based clustering for (e) autoencoder, (f) VAE, (g) VAE with perception loss, and (h) VAE with
regularization. (© 2022 IEEE)

data (Test 1) and the performance in imaging small CO2 leakage (Test 2). We will also provide

numerical tests to illustrate what would be a reasonable augmented data size (Test 3) and how we

pick some of the critical hyper-parameters (Test 4).

3.4.5.1 Experiment Setup

We use 800 leakage scenarios in our dataset (16,000 samples in total) as a training dataset and

the rest of the simulations (3,763 samples in total) as a test dataset. For training of our proposed

data augmentation models, we use a batch size of 32, and train models for 100 epochs using ADAM

optimizer with a learning rate of 0.0001. The initialization of model weights is based on He

initialization He et al. (2015). For the training of InversionNet, we use a batch size of 24, and train

InversionNet for 80 epochs using ADAM optimizer with an initial learning rate of 0.01, and with a

103

Table 3.12 Computational costs of different generative models. Row 1 is the size of the each model.
Row 2 is the memory cost. Row 3 is the time per epoch in training each model. Row 4 is the total
time in training each model. Row 5 is the time in generating a single sample. Row 6 is time in
generating 3,000 velocity maps set in parallel. (© 2022 IEEE)

Autoencoder VAE VAE_percep VAE_reg

Parameter # 3,382,290 6,432,818 6,432,818 6,432,818

GPU Memory Cost 10.3GB 14.6GB 14.6GB 14.6GB

Time (Training/epoch) 48s 36s 258s 48s

Time (Training/total) 80m 60m 430m 80m

Time (Generation/sample) 1.36s 4.38s 4.38s 4.38s

Time (Generation/set) 3.13m 3.41m 3.41m 3.41m

weight decay coefficient of 0.0001.

Table 3.13 Computational costs of training InversionNet without and with augmented dataset with
3,000 more velocity maps. (© 2022 IEEE)

InversionNet without augment InversionNet with augment

Training Time (total) 1h23m 1h31m

3.4.5.2 Test 1: Velocity Map Generation

We provide the synthesized velocity maps generated using our four different generative models

in Fig. 3.25. For VAE, we use the first column, the ground truth velocity maps as the input velocity

maps. For autoencoder, we use two velocity maps of 10-year and 200-year as the input velocity maps.

Overall, we observe that all four generative models produce reasonable results. VAE (Fig. 3.25(c))

yields images with the highest variability among all four models. This is particularly true when

comparing to autoencoder results (Fig. 3.25(b)). However, due to the variability, some unrealistic

features can be also observed in the VAE results. An example would be the one at the last row, where

the whole leakage plume is unphysical split into two. The VAE with perception loss (Fig. 3.25(d))

produces better results in preserving the perception of the velocity map. The unphysical data in

the later stage is improved. Meanwhile, the images at the early stage also match better to the true

images comparing to the VAE results. However, we also notice some artifacts being generated in the

VAE with the perception loss model. The best results produced by all four models is the VAE with

104

regularization (Fig. 3.25(e)). It produces not only cleaner images but also highly accurate images in

the early stage. To further quantitatively compare different generative models, we run our models

on the test dataset and calculate the test loss w.r.t. each year of the data. The result is shown in

Fig. 3.26. Consistent with what we observe in Fig. 3.25, VAE with regularization (in red), yields the

best performance among all four models. Autoencoder yields a lower reconstruction loss for velocity

maps after 80 years compared to those of vanilla VAE, VAE_percep, and VAE_reg models. However,

this only implies that autoencoder produces a better performance on reconstructing velocity maps

after 80 years, and it does not mean that autoencoder can generate more realistic and diversified

velocity maps from the underlying distribution, which however is essential for InversionNet to

capture the underlying data distribution and help with the generalization ability.

Another means to justify the quality of our synthesized data is to visualize the distribution

of the generated data versus that of the true data. To achieve this, we employ two commonly

used methods: Principal Components Analysis (PCA) Smith (2002) and Non-Negative Matrix

Factorization (NMF) Lee and Seung (1999). The visualization results are provided in Fig. 3.27.

Regardless of the clustering approaches, the VAE with regularization (Figs. 3.27(d) and (h)) produces

the distribution matching most closely to that of the ground truth. VAE and VAE with perception

loss models yield comparable results. The autoencoder-based model performs the worst out of all

four models.

Computation cost is also an important factor in evaluating the performance of a generative

model. To that perspective, we provide in Table 3.12 more details of the cost by comparing the

model complexity (number of parameters), memory consumption, training time per epoch, total

training time, sample-generation time, and total generation time required. Particularly, we compare

all four models listed in our manuscript including autoencoder, VAE, VAE_percep and VAE_reg.

We observe that autoencoder yields the smallest number of network parameters among all four

models and all the other three VAE-based models yield comparable network complexity and memory

requirement. As for the training time cost, VAE_percep is the most time-consuming whereas

the remaining three models are comparable in training cost. The excessive time of training the

105

VAE_percep model is due to accessing multiple layers of VGG-19 for extracting relevant spatial

features that would be needed in computing the Gram matrix and perception loss. Once the models

are fully trained, generating the augmented dataset (3,000 samples) only spends around 4 minutes,

which is not very time-consuming. With new samples being generated, we provide the training time

comparison of InversionNet with/without augmented dataset in Table 3.13. We notice that training

InversionNet with augmentation dataset will only increase 8 minutes in training.

To summarize, in this test we demonstrate the capability of our four generative models in

synthesizing high-quality velocity maps, which would provide additional data to train data-driven

seismic imaging methods. Particularly, our VAE with regularization model generates the synthesized

data with the most appealing visual quality and matches best to the true data distribution.

3.4.5.3 Test 2: Performance on Edge Cases

The main purpose of this test is to evaluate the performance of our developed data augmentation

techniques in improving the data-driven seismic imaging method in characterizing small leakage.

We firstly generate 4 groups of synthesized data using our proposed generative models. There are

3,000 velocity maps in each group. As a baseline, we will train InversionNet Wu and Lin (2019) with

an initial training dataset, which consists of 800 simulations, amounting to a total of around 15,000

samples. We further design two different test categories of one with all sizes of leakage (named as

“General Leakage”) and the other one with only tiny and small leakage (named as “Small Leakage”).

For the definitions of different leakage (tiny, small, medium, and large), please refer to Eq. (3.27)

and Fig. 3.21. The test samples of different leakage sample in General Leakage and Small Leakage

are provided in Table 3.14.

Table 3.14 Two different test sets for evaluating the performance of our generative models. For
the definitions of different leakage (tiny, small, medium, and large), please refer to Eq. (3.27) and
Fig. 3.21. (© 2022 IEEE)

Tiny Small Medium Large

General leakage 717 770 675 1494

Small leakage 153 38 0 0

106

Table 3.15 Test loss of InversionNet on General Leakage and Small Leakage tests without augmenta-
tion (Col 2), and with augmentation data generated using autoencoder (Col 3), VAE (Col 4), VAE
with perception loss (Col 5) and VAE with regularization (Col 6). The results using VAE with
regularization are the best comparing to all others. (© 2022 IEEE)

Baseline AE VAE VAE_percep VAE_reg

General leakage 0.001294 0.001229 0.001522 0.001331 0.001093

Small leakage 0.000780 0.000813 0.001157 0.000924 0.000646

For all tests, we train InversionNet for 80 epochs to assure its convergence. We report in

Table 3.15 the test loss of InversionNet on both testing categories with/without augmented training

data sets. Particularly, our VAE with regularization yields the smallest loss value for both “General

Leakage” and “Small Leakage”. On the other hand, VAE model (Col 4) produces the worst results

among all four methods. We suspect that high variability and some unphysical synthesized samples

“confuses” the InversionNet in learning the data distribution leading to degraded performance. This

can be confirmed by noticing that with some additional constraints being imposed to the VAE model,

an immediate performance improvement can be observed in the results using VAE with perception

loss (Col 5) and VAE with regularization (Col 6). To better understand the error distribution using

different generative models, we also provide in Fig. 3.28 a box-plot on the small leakage test. Out of

the three methods, it is clear that VAE_reg yields the best performance with the smallest median

value and interquartile ranges. Comparing VAE_percep and AE models, although they both produce

similar median values, the VAE_percep is much less dispersed than the AE model. However, we

notice more outliers are existing in the VAE_percep box-plot than those in the other two box-plots,

which explains degradation of the overall test loss of VAE_percep as reported in Table 3.15.

To better visualize the performance in imaging small leakage, we provide the reconstructed

imaging results of InversionNet in Figs. 3.29(b) to (d). The differences of the reconstructions (by

subtraction results from ground truth) are further provided in Figs. 3.30(a) to (c). The ground truth

of the testing samples is shown in Fig. 3.29(a). To quantify the errors of the imaging results, we use

two metrics, the mean-absolute errors (MAE) and structural similarity indexes (SSIM) Wang et al.

(2004). The leakage mass and errors of the imaging results are provided in Table 3.16. InversionNet

107

Figure 3.28 Illustration of the error distribution (median, range, and outliers) in a box-plot on the
small leakage test. (© 2022 IEEE)

trained without any augmentation data yields the worst imaging results. The CO2 plume is either

very hard to visualize or distorted severely, which results in the highest MAE and the lowest SSIM

value comparing to others. InversionNet trained on augmented data sets produce much-improved

imaging results. Particularly, the one using VAE with regularization yields the best imaging results

with the smallest MAE and highest SSIM values.

Figure 3.29 Four groups of InversionNet imaging results (b, c, d) on small leakage test data.
(a) Ground truth, InversionNet imaging results (b) without augmentation, with augmented data set
generated using (c) VAE with perception loss, and (d) VAE with regularization. (© 2022 IEEE)

Besides visualization of the resulting images, quantifying the spatial resolution will provide a

different perspective to evaluate the quality of the results. Here, we employ the commonly used

108

Figure 3.30 Four groups of differences of InversionNet imaging results to ground truth (e, f, g)
on small leakage test data. (a) Difference of InversionNet imaging results without augmentation
(Fig. 3.29 (b)) to ground truth (Fig. 3.29 (a)), (b) difference of results with augmented data set
generated using VAE with perception loss (Fig. 3.29 (c)) to ground truth, (c) difference of results
with augmented data set generated using VAE with regularization (Fig. 3.29 (d)) to ground truth. (©
2022 IEEE)

Figure 3.31 Illustration of the baseline velocity map. (© 2022 IEEE)

wavenumber analysis on our imaging results to help with justifying the quality of the resulting image

resolution Our focus is on the velocity perturbation induced by the CO2 leaks as shown in Fig. 3.29.

The perturbation can be obtained by subtracting the time-lapsed images from the baseline image

(shown in Fig. 3.31), where the baseline image refers to the one without any leaks. Once the velocity

perturbation is obtained after the subtraction, we employ the spatial Fourier transform to obtain the

wavenumber (i.e., the Kz spectrum), and we provide the plots (in Figs. 3.32) using all four imaging

results shown in Fig. 3.29. We observe that the Kz spectra of our results (in blue) are much closer to

109

Table 3.16 Leakage mass (Col 2) of CO2 of four groups of velocity maps showed in Fig. 3.29. MAE
and SSIM errors of InversionNet imaging results using baseline without augmentation (Col 4), VAE
with perception loss (Col 5) and VAE with regularization (Col 6). (© 2022 IEEE)

Group Leakage Mass Metric Baseline VAE_percep VAE_reg

1 4.08 × 106 kg MAE 0.00277 0.00237 0.000889

SSIM 0.9907 0.9929 0.9936

2 4.29 × 103 kg MAE 0.00437 0.00346 0.00290

SSIM 0.9833 0.9842 0.9871

3 8.89 × 105 kg MAE 0.00102 0.000742 0.000766

SSIM 0.9985 0.9987 0.9986

4 8.05 × 105 kg MAE 0.00255 0.00138 0.00168

SSIM 0.9926 0.9928 0.9949

Figure 3.32 Resolution analysis of the four imaging results as shown in Fig. 3.29. The Kz spectra of
our results (in blue) are much closer to those of the ground truth (in red) by comparing the baseline
method (in black). That indicates that our imaging method yields higher spatial resolution than the
baseline method. (© 2022 IEEE)

those of the ground truth (in red) by comparing the baseline method (in black) for all imaging results.

That indicates that our imaging method yields higher spatial resolution than the baseline method.

In this test, we study the performance of InversionNet using augmented data sets generated

by our models on various leakage scenarios. Due to the lack of consideration of underlying

physics knowledge, both autoencoder and vanilla VAE models do not help to improve the overall

performance of InversionNet. On the other hand, our proposed model, VAE_reg, is capable of

generating physically realistic synthetic samples, which in turn will further improve in imaging all

leakage cases. In particular, the imaging resolution on tiny leakage is significantly enhanced with

the CO2 plume much better resolved. It is worth mentioning that although the other proposed model,

VAE_percep, is capable of generating comparable synthetic samples to VAE_percep, it may not

110

lead to an improved overall imaging quality in this dataset. We still include this new model and its

results since it may perform better in a different application and dataset.

Through the numerical tests and comparison, we conclude that the performance of InversionNet

can be much improved in imaging all leakage cases. In particular, the imaging resolution on tiny

leakage is significantly enhanced with the CO2 plume much better resolved.

3.4.5.4 Test 3: Determination of Augmented Data Size

The size of the augmentation data is critical to the resulting performance. Without sufficient

augmented data, the imaging results of InversionNet will be sub-optimal. In contrast, augmenting the

original training set with too much data may lead to “augmentation leak”, meaning that synthesized

data dominate the training set and distorts the true data distribution Zhao et al. (2020). In this test,

we aim to find out the best range of the amount of augmentation data for optimizing the performance

of InversionNet.

Figure 3.33 Mean and standard deviation of test loss for different augmentation sizes. Test loss of
InversionNet using augmented data set generated with (a) VAE with perception loss, (b) VAE with
regularization. For all the tests, the same Small Leak data set (see Table 3.14) are utilized as the test
data. (© 2022 IEEE)

Through Tests 1 and 2, we learn that VAE with perception loss and VAE with regularization

usually yield better results. Hence, we focus on the impact of the varying augmentation data size

over those two models. We vary the size of the augmented data set among 350, 800, 1500, 3000,

4500, 6000, and 7500. For each case, we generate 5 different groups of augmentation data using our

generative models. With all those groups of synthesized data being available, we train InversionNet

with augmented data and test on the same Small Leak data as used in Test 2 (see Table 3.14).

We report the corresponding loss values in terms of mean and standard deviation in Fig. 3.33.

We observe a general pattern “decrease first −→ bottom −→ increase later” from both results in

111

Fig. 3.33. This type of pattern has recently been discovered and analyzed in other data augmentation

literature Zhao et al. (2020); Karras et al. (2020). It is mainly caused by an augmentation leak,

which should be used as an indication to decide a reasonable augmentation data size. Interestingly,

for both VAE with physics perception loss and VAE with regularization, the smallest test loss values

are achieved when 3,000 synthetic velocity maps are generated. Hence, throughout all the tests, we

use 3,000 as the size of the augmented data set.

3.4.5.5 Test 4: Hyper-parameter Selection

Hyper-parameters play an important role in our generative models. In this test, we will study

two critical hyper-parameters: the selection of the layers from the pre-trained VGG-19 network in

Eq. (3.35) and the regularization parameter, 𝛾, in Eq. (3.37).

Figure 3.34 Visualization of the hyper-parameter versus loss values. (a) different combinations
of layers selected from VGG-19 used in our VAE with perception loss. (b) Various values of the
regularization parameter used in our VAE with regularization. (© 2022 IEEE)

To select the optimal VGG-19 layers for computing perception loss, there are 5 convolutional

blocks in VGG-19 as shown in Fig. 3.23(b). We follow a similar idea in Gatys et al. (2015) to

select effective layers. Particularly, we choose from following four combinations of (A) [conv1_1,

conv2_1]; (B) [conv1_1, conv2_1, conv3_1]; (C) [conv1_1, conv2_1, conv3_1, conv4_1]; and

(D) [conv1_1, conv2_1, conv3_1, conv4_1, conv5_1]. We train VAE with perception loss using

different combinations of layers, and compute test loss of each case on the same test dataset (as

shown in Fig. 3.34(a)). We can observe that VAE with perception loss reaches smallest value when

using combination (D). That gives us the indication to use first layer of 5 convolutional blocks of

VGG-19 to compute perception loss.

Similarly, in order to select optimal 𝜆, we choose 7 values evenly distributed on a log scale from

112

10−3 to 103 (i.e. 10−3, 10−2, 10−1, 100, 101, 102 and 103). For each 𝜆 value, we train a VAE with

regularization, and test it on a common test dataset. The resulting test loss is shown in Fig. 3.34(b).

We observe that test loss is relative stable when 𝜆 < 103, and it reaches lowest value when 𝜆 = 102.

So, 𝜆 = 102 becomes the optimal value for our problem.

3.4.6 Summary

In this work, we have developed several spatio-temporal data augmentation strategies using convo-

lutional neural networks to enhance data-driven seismic imaging, particularly in reconstructing “rare

events.” Our data augmentation techniques not only incorporate various physics information—such

as governing equations, observable perception, and physics phenomena—but also integrate this

information through perceptual loss and advanced regularization techniques. We evaluated the

performance of our generative models by imaging very small CO2 leaks from the subsurface with

InversionNet. Through detailed comparison and analysis, we demonstrate that incorporating physics

information is crucial for generating realistic and physically consistent synthetic data. This enhanced

data quality significantly improves the representativeness of the training set. These advancements

are seamlessly combined with regularization from the S term in Equation (1.3).

113

CHAPTER 4

CONCLUSION

This dissertation has explored the landscape of regularization techniques in deep learning, dividing

the discussion into theory-driven and data-driven approaches as outlined in Chapters 3 and 2,

respectively.

The theory-driven section underscored the importance of understanding and implementing

theory such as the PAC-Bayes bounds discussed in Section 2.2. By minimizing the upper bound of

the generalization error, this dissertation illustrated how theoretical insights into regularization can

lead to more effective training algorithms and improved model performance across various tasks.

Conversely, in the data-driven section, this dissertation introduced architectures such as MagNet

and STGNN (Sections 3.1 and 3.2) to encode specific patterns directly from the data. Furthermore,

the application of physics-informed frameworks in Section 3.3 and data augmentation strategies

in Section 3.4 demonstrated how the integration of physical laws and generative models could

significantly enhance the representational capability and physical consistency of training datasets.

The contributions of this dissertation lie in the integration of practical machine learning architectures

and generalization theory to address both applied and fundamental challenges in the field.

The methodologies and frameworks developed in this dissertation open several promising

avenues for future research. Below, we outline potential areas for extending and improving the work

introduced in various sections of this thesis:

1. PAC-Bayes Training (Zhang et al., 2023): This work has primarily utilized Gaussian

priors and posteriors. Exploring alternative distributions could uncover unique advantages.

The complexity added by managing additional parameters such as 𝜆 and 𝜎 in PAC-Bayes

training necessitates more efficient parameterization of the prior and posterior. Additionally,

the optimization challenges introduced by these parameters underscore the need for a

comprehensive convergence analysis to ensure the robustness and efficacy of the training

algorithms.

114

2. MagNet (Zhang et al., 2021b): While MagNet extends naturally to weighted, directed graphs

where all edges are directed, its application to weighted mixed graphs (containing both

directed and undirected edges) remains unexplored. Moreover, the current implementation

lacks an attention mechanism and does not scale well to large graphs. Future research could

explore architectural enhancements to address these limitations, potentially incorporating

scalable graph learning techniques and attention mechanisms to improve performance on

large datasets.

3. STGNN (Zhang et al., 2022): Transferability remains a major concern in earthquake source

characterization. Although STGNN does not rely on specific graph structures or seismic

station distributions, its performance in regions that differ from the training area requires

improvement. Addressing this challenge might involve leveraging recent advancements in

foundation models Bommasani et al. (2021), which could provide new ways to enhance model

robustness and adaptability across different geophysical environments.

4. UPFWI (Jin et al., 2021): The UPFWI model faces challenges with velocity maps where

adjacent layers have very close velocity values, which could be improved by updating

architectures such as Jagtap et al. (2020). Additionally, the computational demands for

forward modeling, in terms of speed and memory due to the necessity of storing gradients

for backpropagation, are substantial. Future iterations of this model could experiment with

alternative loss functions, such as adversarial loss, and explore computational strategies to

balance resource use and accuracy. Expanding the application of CNN-PDE integration

to other inverse problems like medical imaging and flow estimation also holds significant

potential.

5. Seismic Data Augmentation (Yang et al., 2022): Evaluating the quality of synthesized data

remains a significant challenge. Unlike disciplines such as computer vision, where metrics like

the Fréchet Inception Distance (FID) are commonly used, seismic data requires domain-specific

metrics for effective evaluation. Additionally, choosing the domain for data augmentation

115

(velocity or seismic) impacts the utility of the synthetic data. While augmentation in the

velocity domain leverages prominent spatiotemporal dynamics, augmentation in the seismic

domain aligns more closely with real-world scenarios, presenting a trade-off that warrants

further exploration.

These directions not only build on the work presented in this dissertation but also promise to

advance the state of the art in machine learning. By bridging theoretical insights with practical

applications, this work sets the stage for the development of more robust, interpretable, and effective

deep learning models and training algorithms.

116

BIBLIOGRAPHY

(2019). Basic research needs for scientific machine learning. Technical report, U.S. the Department
of Energy Advanced Scientific Computing Research.

Adler, A., Araya-Polo, M., and Poggio, T. (2021). Deep learning for seismic inverse problems:
toward the acceleration of geophysical analysis workflows. IEEE Signal Processing Magazine,
38(2):89–119.

Alquier, P. and Guedj, B. (2018). Simpler pac-bayesian bounds for hostile data. Machine Learning,
107(5):887–902.

Andriushchenko, M., Croce, F., Müller, M., Hein, M., and Flammarion, N. (2023). A modern look
at the relationship between sharpness and generalization. arXiv preprint arXiv:2302.07011.

Antoniou, A., Storkey, A., and Edwards, H. (2017). Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340.

Appriou, D., Bonneville, A., Zhou, Q., and Gasperikova, E. (2020). Time-lapse gravity monitoring
of CO2 migration based on numerical modeling of a faulted storage complex. International
Journal Greenhouse Gas Control, 95:102956.

Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T. (2018). Deep-learning tomography. The
Leading Edge, 37(1):58–66.

Atwood, J. and Towsley, D. (2016). Diffusion-convolutional neural networks. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 29, pages 1993–2001. Curran Associates, Inc.

Audibert, J.-Y. and Catoni, O. (2011). Robust linear least squares regression. The Annals of
Statistics, 39(5):2766 – 2794.

Barrett, D. G. and Dherin, B. (2020). Implicit gradient regularization. arXiv preprint
arXiv:2009.11162.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396.

Benson, A. R., Gleich, D. F., and Leskovec, J. (2016). Higher-order organization of complex
networks. Science, 353(6295):163–166.

Bergen, K. J., Johnson, P. A., Maarten, V., and Beroza, G. C. (2019). Machine learning for
data-driven discovery in solid earth geoscience. Science, 363(6433).

Berthelot, D., Raffel, C., Roy, A., and Goodfellow, I. (2018). Understanding and improving

117

interpolation in autoencoders via an adversarial regularizer. arXiv preprint arXiv:1807.07543.

Beskardes, G. D., Hole, J. A., Wang, K., Michaelides, M., and Wu, Q. (2018). A comparison
of earthquake back-projection imaging methods for dense local arrays. Geophysical Journal
International, 212(3):1986–2002.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J. (2010). Obspy:
A python toolbox for seismology. Seismological Research Letters, 81(3):530–533.

Biggs, F. and Guedj, B. (2021). Differentiable pac–bayes objectives with partially aggregated neural
networks. Entropy, 23(10):1280.

Birkholzer, J., Oldenburg, C., and Zhou, Q. (2015). CO2 migration and pressure evolution in deep
saline aquifers. International Journal of Greenhouse Gas Control, 40:203–220.

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer Science & Business
Media.

Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. Neural
computation, 7(1):108–116.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural
network. In International conference on machine learning, pages 1613–1622. PMLR.

Bojchevski, A. and Günnemann, S. (2017). Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S.,
Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258.

Boonyasiriwat, C., Valasek, P., Routh, P., Cao, W., Schuster, G. T., and Macy, B. (2009). An efficient
multiscale method for time-domain waveform tomography. Geophysics, 74(6):WCC59–WCC68.

Bovet, A. and Grindrod, P. (2020). The activity of the far right on telegram v2.11.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and deep locally
connected networks on graphs. In International Conference on Learning Representations (ICLR).

Bunks, C., Saleck, F., Zaleski, S., and Chavent, G. (1995). Multiscale seismic waveform inversion.
Geophysics, 60(5):1457–1473.

Burstedde, C. and Ghattas, O. (2009). Algorithmic strategies for full waveform inversion: 1D
experiments. Geophysics, 74(6):37–46.

118

Buscheck, T., Mansoor, K., Yang, X., Wainwright, H., and Carroll, S. (2019). Downhole pressure
and chemical monitoring for CO2 and brine leak detection in aquifers above a CO2 storage
reservoir. International Journal Greenhouse Gas Control, 91:102812.

Casado, I., Ortega, L. A., Masegosa, A. R., and Pérez, A. (2024). Pac-bayes-chernoff bounds for
unbounded losses. arXiv preprint arXiv:2401.01148.

Cattaneo, M. D., Klusowski, J. M., and Shigida, B. (2023). On the implicit bias of adam. arXiv
preprint arXiv:2309.00079.

Chen, T. and Huang, L. (2020). Optimal design of microseismic monitoring network: Synthetic
study for the Kimberlina CO2 storage demonstration site. International Journal Greenhouse Gas
Control, 95:102981.

Chung, F. (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of
Combinatorics, 9(1):1–19.

Chung, F. and Kempton, M. (2013). A local clustering algorithm for connection graphs. In
International Workshop on Algorithms and Models for the Web-Graph, pages 26–43. Springer.

Chung, F. R. and Graham, F. C. (1997). Spectral graph theory. Number 92. American Mathematical
Soc.

Cloninger, A. (2017). A note on markov normalized magnetic eigenmaps. Applied and
Computational Harmonic Analysis, 43(2):370 – 380.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A. (2020). Gradient descent on neural
networks typically occurs at the edge of stability. In International Conference on Learning
Representations.

Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A. (2021). Gradient descent on neural
networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065.

Coifman, R. R. and Lafon, S. (2006). Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30.

Collino, F. and Tsogka, C. (2001). Application of the perfectly matched absorbing layer model to the
linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66(1):294–307.

Cucuringu, M., Li, H., Sun, H., and Zanetti, L. (2020). Hermitian matrices for clustering directed
graphs: insights and applications. In International Conference on Artificial Intelligence and
Statistics, pages 983–992. PMLR.

Damian, A., Ma, T., and Lee, J. D. (2021). Label noise sgd provably prefers flat global minimizers.
Advances in Neural Information Processing Systems, 34:27449–27461.

119

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in Neural Information Processing Systems 29,
pages 3844–3852.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., and
Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In
Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 28, pages 2224–2232. Curran Associates, Inc.

Dziugaite, G. K., Hsu, K., Gharbieh, W., Arpino, G., and Roy, D. (2021). On the role of data
in pac-bayes bounds. In International Conference on Artificial Intelligence and Statistics, pages
604–612. PMLR.

Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In Proceedings of the
33rd Annual Conference on Uncertainty in Artificial Intelligence (UAI).

Dziugaite, G. K. and Roy, D. M. (2018). Data-dependent pac-bayes priors via differential privacy.
Advances in neural information processing systems, 31.

F. de Resende, B. M. and F. Costa, L. d. (2020). Characterization and comparison of large directed
networks through the spectra of the magnetic laplacian. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 30(7):073141.

Fanuel, M., Alaíz, C. M., Ángela Fernández, and Suykens, J. A. (2018). Magnetic eigenmaps for the
visualization of directed networks. Applied and Computational Harmonic Analysis, 44:189–199.

Fanuel, M., Alaiz, C. M., and Suykens, J. A. (2017). Magnetic eigenmaps for community detection
in directed networks. Physical Review E, 95(2):022302.

Feng, S., Lin, Y., and Wohlberg, B. (2020). Physically realistic training data construction for
data-driven full-waveform inversion and traveltime tomography. In SEG Technical Program
Expanded Abstracts, pages 3472–3476.

Feng, S., Lin, Y., and Wohlberg, B. (2021). Multiscale data-driven seismic full-waveform inversion
with field data study. IEEE Transactions on Geoscience and Remote Sensing, pages 1–14.

Fey, M., Lenssen, J. E., Weichert, F., and Leskovec, J. (2021). GNNAutoScale: Scalable and

120

expressive graph neural networks via historical embeddings. In International Conference on
Machine Learning (ICML).

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2020). Sharpness-aware minimization for
efficiently improving generalization. In International Conference on Learning Representations.

Furutani, S., Shibahara, T., Akiyama, M., Hato, K., and Aida, M. (2020). Graph signal processing for
directed graphs based on the hermitian laplacian. In Machine Learning and Knowledge Discovery
in Databases, pages 447–463.

Gajewski, D., Anikiev, D., Kashtan, B., and Tessmer, E. (2007). Localization of seismic events by
diffraction stacking. In SEG Technical Program Expanded Abstracts 2007, pages 1287–1291.

Gasteiger, J., Bojchevski, A., and Günnemann, S. (2018). Predict then propagate: Graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997.

Gastpar, M., Nachum, I., Shafer, J., and Weinberger, T. (2023). Fantastic generalization measures
are nowhere to be found.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576.

Geiping, J., Goldblum, M., Pope, P. E., Moeller, M., and Goldstein, T. (2021). Stochastic training is
not necessary for generalization. arXiv preprint arXiv:2109.14119.

Germain, P., Bach, F., Lacoste, A., and Lacoste-Julien, S. (2016). Pac-bayesian theory meets
bayesian inference. Advances in Neural Information Processing Systems, 29.

Ghosh, A., Lyu, H., Zhang, X., and Wang, R. (2022). Implicit regularization in heavy-ball momentum
accelerated stochastic gradient descent. In The Eleventh International Conference on Learning
Representations.

Gomez, R., Yang, J., Lin, Y., Theiler, J., and Wohlberg, B. (2020). Physics-consistent data-driven
waveform inversion with adaptive data augmentation. arXiv preprint (also accepted in IEEE
Geoscience and Remote Sensing Letters).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680.

Guitton, A. (2012). Blocky regularization schemes for full waveform inversion. Geophysical
Prospecting, 60:870–884.

Guo, K. and Mohar, B. (2017). Hermitian adjacency matrix of digraphs and mixed graphs. Journal
of Graph Theory, 85(1):217–248.

121

Ha-Duong, M. and Keith, D. (2003). Carbon storage: the economic efficiency of storing CO2 in
leaky reservoirs. Technological Choices for Sustainability, 5:181–189.

Haddouche, M., Guedj, B., Rivasplata, O., and Shawe-Taylor, J. (2021). Pac-bayes unleashed:
Generalisation bounds with unbounded losses. Entropy, 23(10):1330.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs.
Advances in neural information processing systems, 30.

Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

He, Q. and Wang, Y. (2021). Reparameterized full-waveform inversion using deep neural networks.
Geophysics, 86(1):V1–V13.

He, Y., Reinert, G., and Cucuringu, M. (2021). Digrac: Digraph clustering with flow imbalance.
arXiv preprint arXiv:2106.05194.

Herbrich, R. and Graepel, T. (2000). A pac-bayesian margin bound for linear classifiers: Why svms
work. Advances in neural information processing systems, 13.

Hernández-García, A. and König, P. (2018). Data augmentation instead of explicit regularization.
arXiv preprint arXiv:1806.03852.

Holland, M. (2019). Pac-bayes under potentially heavy tails. Advances in Neural Information
Processing Systems, 32.

Hsu, W.-N., Zhang, Y., and Glass, J. (2017). Unsupervised domain adaptation for robust speech
recognition via variational autoencoder-based data augmentation. In 2017 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 16–23. IEEE.

Hu, W., Abubakar, A., and Habashy, T. (2009). Simultaneous multifrequency inversion of full-
waveform seismic data. Geophysics, 74(2):1–14.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708.

122

Hutton, K., Woessner, J., and Hauksson, E. (2010). Earthquake monitoring in southern california for
seventy-seven years (1932–2008). Bulletin of the Seismological Society of America, 100(2):423–
446.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456. PMLR.

Jagtap, A. D., Kawaguchi, K., and Karniadakis, G. E. (2020). Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2019). Fantastic generalization
measures and where to find them. In International Conference on Learning Representations.

Jin, P., Zhang, X., Chen, Y., Huang, S. X., Liu, Z., and Lin, Y. (2021). Unsupervised learning
of full-waveform inversion: Connecting cnn and partial differential equation in a loop. arXiv
preprint arXiv:2110.07584.

Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Computer Vision, pages 694–711. Springer.

Jordan, P. and Wagoner, J. (2017). Characterizing construction of existing wells to a CO2 storage
target: The Kimberlina site, California. Technical report, U.S. Department of Energy - Office of
Fossil Energy.

Karniadakis, G., Kevrekidis, I., Lu, L., Perdikaris, P., Wang, S., and Yang, L. (2021). Physics-
informed machine learning. Nature Reviews Physics, 3:422–440.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T. (2020). Training generative
adversarial networks with limited data. arXiv preprint arXiv:2006.06676v2.

Kaufman, S., Rosset, S., Perlich, C., and Stitelman, O. (2012). Leakage in data mining: Formulation,
detection, and avoidance. ACM Transactions on Knowledge Discovery from Data (TKDD),
6(4):1–21.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2016). On
large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional

123

networks. arXiv preprint arXiv:1609.02907.

Klicpera, J., Bojchevski, A., and Günnemann, S. (2019a). Predict then propagate: Graph neural
networks meet personalized pagerank. In ICLR.

Klicpera, J., Groß, J., and Günnemann, S. (2019b). Directional message passing for molecular
graphs. In International Conference on Learning Representations.

Kobak, D., Lomond, J., and Sanchez, B. (2020). The optimal ridge penalty for real-world high-
dimensional data can be zero or negative due to the implicit ridge regularization. J. Mach. Learn.
Res., 21:169–1.

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., and Gerstoft, P. (2019). Machine
learning in seismology: Turning data into insights. Seismological Research Letters, 90(1):3–14.

Kriegerowski, M., Petersen, G. M., Vasyura-Bathke, H., and Ohrnberger, M. (2019). A deep
convolutional neural network for localization of clustered earthquakes based on multistation full
waveforms. Seismological Research Letters, 90:510 – 516.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25:1097–
1105.

Kukačka, J., Golkov, V., and Cremers, D. (2017). Regularization for deep learning: A taxonomy.
arXiv preprint arXiv:1710.10686.

Kuzborskĳ, I. and Szepesvári, C. (2019). Efron-stein pac-bayesian inequalities. arXiv preprint
arXiv:1909.01931.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary
and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791.

Lee, S. and Jang, C. (2022). A new characterization of the edge of stability based on a sharpness
measure aware of batch gradient distribution. In The Eleventh International Conference on
Learning Representations.

Letarte, G., Germain, P., Guedj, B., and Laviolette, F. (2019). Dichotomize and generalize:
Pac-bayesian binary activated deep neural networks. Advances in Neural Information Processing
Systems, 32.

Levie, R., Huang, W., Bucci, L., Bronstein, M. M., and Kutyniok, G. (2019). Transferability of
spectral graph convolutional neural networks. arXiv preprint arXiv:1907.12972.

124

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J., and Gur-Ari, G. (2020). The large learning
rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218.

Li, L., Tan, J., Schwarz, B., Stanek, F., Poiata, N., Shi, P., Diekmann, L., Eisner, L., and Gajewski,
D. (2020a). Recent advances and challenges of waveform-based seismic location methods at
multiple scales. Reviews of Geophysics, page e2019RG000667.

Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y., and Jiang, P. (2020b). Deep-learning inversion
of seismic data. IEEE Transactions on Geoscience and Remote Sensing, 58(3):2135–2149.

Li, Z., Meier, M.-A., Hauksson, E., Zhan, Z., and Andrews, J. (2018). Machine learning seismic
wave discrimination: Application to earthquake early warning. Geophysical Research Letters,
45(10):4773–4779.

Li, Z. and van der Baan, M. (2016). Microseismic event localization by acoustic time reversal
extrapolation. Geophysics, 81(3):KS123–KS134.

Lieb, E. H. and Loss, M. (1993). Fluxes, Laplacians, and Kasteleyn’s theorem. In Statistical
Mechanics, pages 457–483. Springer.

Lin, Y. and Huang, L. (2015a). Acoustic- and elastic-waveform inversion using a modified
Total-Variation regularization scheme. Geophysical Journal International, 200(1):489–502.

Lin, Y. and Huang, L. (2015b). Quantifying subsurface geophysical properties changes using
double-difference seismic-waveform inversion with a modified Total-Variation regularization
scheme. Geophysical Journal International, 203(3):2125–2149.

Lin, Y. and Huang, L. (2017). Building subsurface velocity models with sharp interfaces using
interface-guided seismic full-waveform inversion. Pure and Applied Geophysics, 174(11):4035–
4055.

Lin, Y., Syracuse, E. M., Maceira, M., Zhang, H., and Larmat, C. (2015). Double-difference
traveltime tomography with edge-preserving regularization and a priori interfaces. Geophysical
Journal International, 201(2):574–594.

Liu, B., Yang, S., Ren, Y., Xu, X., Jiang, P., and Chen, Y. (2021). Deep-learning seismic
full-waveform inversion for realistic structural models. Geophysics, 86(1):R31 – R44.

Liu, X., Zou, Y., Kong, L., Diao, Z., Yan, J., Wang, J., Li, S., Jia, P., and You, J. (2018). Data
augmentation via latent space interpolation for image classification. In 2018 24th International
Conference on Pattern Recognition (ICPR), pages 728–733. IEEE.

Livni, R. and Moran, S. (2020). A limitation of the pac-bayes framework. Advances in Neural
Information Processing Systems, 33:20543–20553.

125

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Loshchilov, I. and Hutter, F. (2018). Decoupled weight decay regularization. In International
Conference on Learning Representations.

Lumley, D. (2001). Time-lapse seismic reservoir monitoring. Geophysics, 66:50–53.

Luo, P., Wang, X., Shao, W., and Peng, Z. (2018). Towards understanding regularization in batch
normalization. arXiv preprint arXiv:1809.00846.

Luo, Y., Zhu, L., Wan, Z., and Lu, B. (2020). Data augmentation for enhancing EEG-based emotion
recognition with deep generative models. Journal of Neural Engineering, 17(5):056021.

Ma, Y., Hao, J., Yang, Y., Li, H., Jin, J., and Chen, G. (2019). Spectral-based graph convolutional
network for directed graphs. arXiv:1907.08990.

Marques, A. G., Segarra, S., and Mateos, G. (2020). Signal processing on directed graphs: The role
of edge directionality when processing and learning from network data. IEEE Signal Processing
Magazine, 37(6):99–116.

Maurer, A. (2004). A note on the pac bayesian theorem. arXiv preprint cs/0411099.

McAllester, D. A. (1998). Some pac-bayesian theorems. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 230–234.

McAllester, D. A. (1999). Pac-bayesian model averaging. In Proceedings of the twelfth annual
conference on Computational learning theory, pages 164–170.

McBrearty, I. W. and Beroza, G. C. (2022). Earthquake location and magnitude estimation with
graph neural networks. arXiv preprint arXiv:2203.05144.

Mernyei, P. and Cangea, C. (2020). Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901.

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-net: Fully convolutional neural networks for
volumetric medical image segmentation. In 2016 fourth international conference on 3D vision
(3DV), pages 565–571. Ieee.

Mohar, B. (2020). A new kind of hermitian matrices for digraphs. Linear Algebra and its
Applications, 584:343–352.

Monti, F., Otness, K., and Bronstein, M. M. (2018). Motifnet: A motif-based graph convolutional
network for directed graphs. In 2018 IEEE Data Science Workshop, pages 225–228.

126

Moseley, B., Nissen-Meyer, T., and Markham, A. (2020). Deep learning for fast simulation of
seismic waves in complex media. Solid Earth, 11(4):1527–1549.

Mosser, L., Dubrule, O., and Blunt, M. J. (2020). Stochastic seismic waveform inversion using
generative adversarial networks as a geological prior. Mathematical Geosciences, 52(1):53–79.

Mousavi, S. M. and Beroza, G. C. (2020a). Bayesian-deep-learning estimation of earthquake location
from single-station observations. IEEE Transactions on Geoscience and Remote Sensing, pages
1 – 14.

Mousavi, S. M. and Beroza, G. C. (2020b). A machine-learning approach for earthquake magnitude
estimation. Geophysical Research Letters, 47(1):e2019GL085976.

Münchmeyer, J., Bindi, D., Leser, U., and Tilmann, F. (2020). The transformer earthquake alerting
model: a new versatile approach to earthquake early warning. Geophysical Journal International,
225(1):646–656.

Münchmeyer, J., Bindi, D., Leser, U., and Tilmann, F. (2021). Earthquake magnitude and location
estimation from real time seismic waveforms with a transformer network. Geophysical Journal
International, 226(2):1086–1104.

Nagarajan, V. and Kolter, J. Z. (2019). Uniform convergence may be unable to explain generalization
in deep learning. Advances in Neural Information Processing Systems, 32.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
807–814.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2021). Deep double
descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124003.

Nanometrics Seismological Instruments (2013). Nanometrics research network.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., and Martens, J.
(2015). Adding gradient noise improves learning for very deep networks. arXiv preprint
arXiv:1511.06807.

Neyshabur, B., Tomioka, R., and Srebro, N. (2014). In search of the real inductive bias: On the role
of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614.

Nishizaki, H. (2017). Data augmentation and feature extraction using variational autoencoder for
acoustic modeling. In 2017 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pages 1222–1227. IEEE.

127

Oring, A., Yakhini, Z., and Hel-Or, Y. (2020). Autoencoder image interpolation by shaping the
latent space. arXiv preprint arXiv:2008.01487v2.

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., and Vandergheynst, P. (2018). Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828.

Orvieto, A., Kersting, H., Proske, F., Bach, F., and Lucchi, A. (2022). Anticorrelated noise
injection for improved generalization. In International Conference on Machine Learning, pages
17094–17116. PMLR.

Ovcharenko, O., Kazei, V., Peter, D., and Alkhalifah, T. (2019). Style transfer for generation of
realistically textured subsurface models. In SEG Technical Program Expanded Abstracts 2019,
pages 2393–2397. Society of Exploration Geophysicists.

Palmer, W. R. and Zheng, T. (2021). Spectral clustering for directed networks. Studies in
Computational Intelligence, 943.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B. (2020). Geom-gcn: Geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287.

Perez-Ortiz, M., Rivasplata, O., Guedj, B., Gleeson, M., Zhang, J., Shawe-Taylor, J., Bober, M., and
Kittler, J. (2021). Learning pac-bayes priors for probabilistic neural networks. arXiv preprint
arXiv:2109.10304.

Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., and Szepesvári, C. (2021). Tighter risk certificates
for neural networks. The Journal of Machine Learning Research, 22(1):10326–10365.

Perol, T., Gharbi, M., and Denolle, M. (2018). Convolutional neural network for earthquake detection
and location. Science Advances, 4:e1700578.

Pesicek, J. D., Child, D., Artman, B., and Cieslik, K. (2014). Picking versus stacking in a modern
microearthquake location: Comparison of results from a surface passive seismic monitoring array
in Oklahoma. Geophysics, 79(6):KS61–KS68.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707.

Ramírez, A. and Lewis, W. (2010). Regularization and full-waveform inversion: A two-step
approach. In 80th Annual International Meeting, SEG, Expanded Abstracts, pages 2773–2778.

Ren, Y., Nie, L., Yang, S., Jiang, P., and Chen, Y. (2021). Building complex seismic velocity models
for deep learning inversion. IEEE Access, 4(1):R31 – R44.

Richardson, A. (2018). Generative adversarial networks for model order reduction in seismic

128

full-waveform inversion. arXiv preprint arXiv:1806.00828.

Rivasplata, O., Kuzborskĳ, I., Szepesvári, C., and Shawe-Taylor, J. (2020). Pac-bayes analysis
beyond the usual bounds. Advances in Neural Information Processing Systems, 33:16833–16845.

Rivasplata, O., Tankasali, V. M., and Szepesvári, C. (2019). Pac-bayes with backprop. arXiv
preprint arXiv:1908.07380.

Rodríguez-Gálvez, B., Thobaben, R., and Skoglund, M. (2023). More pac-bayes bounds: From
bounded losses, to losses with general tail behaviors, to anytime-validity. arXiv preprint
arXiv:2306.12214.

Rojas-Gómez, R., Yang, J., Lin, Y., Theiler, J., and Wohlberg, B. (2020). Physics-consistent
data-driven waveform inversion with adaptive data augmentation. IEEE Geoscience and Remote
Sensing Letters.

Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., and Heaton, T. H. (2019). Phaselink: A deep
learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth,
124(1):856–869.

Rozemberczki, B., Allen, C., and Sarkar, R. (2019). Multi-scale attributed node embedding. arXiv
preprint arXiv:1909.13021.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization help
optimization? Advances in neural information processing systems, 31.

Shawe-Taylor, J. and Williamson, R. C. (1997). A pac analysis of a bayesian estimator. In Proceedings
of the tenth annual conference on Computational learning theory, pages 2–9.

Shen, H. and Shen, Y. (2021). Array-based convolutional neural networks for automatic detection and
4d localization of earthquakes in hawai ‘i. Seismological Society of America, 92(5):2961–2971.

Shi, J. and Malik, J. (1997). Normalized cuts and image segmentation. In Proceedings of IEEE
computer society conference on computer vision and pattern recognition, pages 731–737. IEEE.

Shorten, C. and Khoshgoftaar, T. (2019). A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48.

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R. (2017). Learning from
simulated and unsupervised images through adversarial training. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2107–2116.

Sim, A., Wiatrak, M., Brayne, A., Creed, P., and Paliwal, S. (2021). Directed graph embeddings
in pseudo-riemannian manifolds. In Meila, M. and Zhang, T., editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,

129

volume 139 of Proceedings of Machine Learning Research, pages 9681–9690. PMLR.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Sixt, L., Wild, B., and Landgraf, T. (2018). Rendergan: Generating realistic labeled data. Frontiers
in Robotics and AI, 5:66.

Smith, L. I. (2002). A tutorial on principal components analysis.

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. (2021). On the origin of implicit regularization
in stochastic gradient descent. arXiv preprint arXiv:2101.12176.

Spielman, D. A. and Teng, S.-H. (2004). Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90.

Sun, J., Innanen, K. A., and Huang, C. (2021). Physics-guided deep learning for seismic inversion
with hybrid training and uncertainty analysis. Geophysics, 86(3):R303–R317.

Sun, L., Gao, H., Pan, S., and Wang, J.-X. (2020). Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data. Computer Methods in Applied
Mechanics and Engineering, 361:112732.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826.

Thiemann, N., Igel, C., Wintenberger, O., and Seldin, Y. (2017). A strongly quasiconvex pac-bayesian
bound. In International Conference on Algorithmic Learning Theory, pages 466–492. PMLR.

Tiira, T. (1999). Detecting teleseismic events using artificial neural networks. Comput. Geosci.,
25:929 – 938.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner,
A. P., Keysers, D., Uszkoreit, J., et al. (2021). Mlp-mixer: An all-mlp architecture for vision. In
Thirty-Fifth Conference on Neural Information Processing Systems.

Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D., and Lim, A. (2020a). Digraph inception
convolutional networks. In NeurIPS.

Tong, Z., Liang, Y., Sun, C., Rosenblum, D. S., and Lim, A. (2020b). Directed graph convolutional
network. arXiv:2004.13970.

Treister, E. and Haber, E. (2016). Full waveform inversion guided by travel time tomography. SIAM

130

Journal on Scientific Computing, 39:S587–S609.

United States Geological Survey and California Geological Survey (2022). Quaternary fault and
fold database for the united state.

van den Ende, M. P. and Ampuero, J.-P. (2020). Automated seismic source characterisation using
deep graph neural networks. Geophysical Research Letters, page e2020GL088690.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph
Attention Networks. International Conference on Learning Representations.

Virieux, J. and Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics.
Geophysics, 74(6):WCC1–WCC26.

Wang, J., Perez, L., et al. (2017). The effectiveness of data augmentation in image classification
using deep learning. Convolutional Neural Networks Vis. Recognit, 11(2017):1–8.

Wang, J. and Teng, T. (1995). Artificial neural network-based seismic detector. Bull. Seismol. Soc.
Am., 85:308 – 319.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu, R. (2020). Towards physics-informed deep
learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1457–1466.

Wang, Y. (2015). Frequencies of the Ricker wavelet. Geophysics, 80(2):A31–A37.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2019). Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612.

Wei, C., Kakade, S., and Ma, T. (2020). The implicit and explicit regularization effects of dropout.
In International conference on machine learning, pages 10181–10192. PMLR.

Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar, V. (2020). Integrating physics-based modeling
with machinelearning: A survey. arXiv preprint arXiv:2003.04919v4.

Wu, X., Geng, Z., Shi, Y., Pham, N., Fomel, S., and Caumon, G. (2020a). Building realistic structure
models to train convolutional neural networks for seismic structural interpretation. Geophysics,
85(4):WA27–WA39.

Wu, Y. and Lin, Y. (2019). InversionNet: An efficient and accurate data-driven full waveform
inversion. IEEE Transactions on Computational Imaging, 6(1):419–433.

131

Wu, Y. and McMechan, G. A. (2019). Parametric convolutional neural network-domain full-waveform
inversion. Geophysics, 84(6):R881–R896.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2020b). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
32(1):4–24.

Xi, Z., Li, J., Chen, M., and Wei, S. (2021). Pyfk: A fast mpi and cuda accelerated python package
for calculating synthetic seismograms based on the frequencywavenumber method. In AGU Fall
Meeting Abstracts, volume 2021, pages S15E–0288.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826.

Yang, F. and Ma, J. (2019). Deep-learning inversion: A next-generation seismic velocity model
building method. Geophysics, 84(4):R583–R599.

Yang, X., Buscheck, T., Mansoor, K., Wang, Z., Gao, K., Huang, L., Wainwright, H., and Carroll, S.
(2019). Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in
drinking water aquifers. International Journal Greenhouse Gas Control, 90:102803.

Yang, Y., Zhang, X., Guan, Q., and Lin, Y. (2022). Making invisible visible: Data-driven
seismic inversion with spatio-temporally constrained data augmentation. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–16, copyright © 2022 IEEE.

Yano, K., Shiina, T., Kurata, S., Kato, A., Komaki, F., Sakai, S., and Hirata, N. (2021). Graph-
partitioning based convolutional neural network for earthquake detection using a seismic array.
Journal of Geophysical Research: Solid Earth, 126(5):e2020JB020269.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021a). Understanding deep learning
(still) requires rethinking generalization. Communications of the ACM, 64(3):107–115.

Zhang, H. and Thurber, C. H. (2003). Double-difference tomography: The method and its
application to the Hayward Fault, California. Bulletin of the Seismological Society of America,
93(5):1875–1889.

Zhang, R., Isola, P., Efros, A., Shechtman, E., and Wang, O. (2018). The unreasonable effectiveness
of deep features as a perceptual metric. arXiv preprint arXiv:1801.03924v2.

Zhang, X., Ghosh, A., Liu, G., and Wang, R. (2023). Unleashing the power of pac-bayes training for
unbounded loss.

Zhang, X., He, Y., Brugnone, N., Perlmutter, M., and Hirn, M. (2021b). Magnet: A neural network
for directed graphs. Advances in neural information processing systems, 34:27003–27015.

132

Zhang, X., Reichard-Flynn, W., Zhang, M., Hirn, M., and Lin, Y. (2022). Spatiotemporal graph
convolutional networks for earthquake source characterization. Journal of Geophysical Research:
Solid Earth, 127(11):e2022JB024401.

Zhang, X., Wang, Z., Liu, D., and Ling, Q. (2019). Dada: Deep adversarial data augmentation for
extremely low data regime classification. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2807–2811. IEEE.

Zhang, X., Zhang, J., Yuan, C., Liu, S., Chen, Z., and Li, W. (2020). Locating induced earthquakes
with a network of seismic station in Oklahoma via a deep learning method. Scientific Report, 10.

Zhang, X., Zhang, M., and Tian, X. (2021c). Real-time earthquake early warning with deep learning:
Application to the 2016 m 6.0 central apennines, italy earthquake. Geophysical Research Letters,
48(5):2020GL089394.

Zhang, Z. and Lin, Y. (2020). Data-driven seismic waveform inversion: A study on the robustness
and generalization. IEEE Transactions on Geoscience and Remote sensing, 58(10):6900–6913.

Zhang, Z., Rector, J. W., and Nava, M. J. (2017). Simultaneous inversion of multiple microseismic
data for event locations and velocity model with bayesian inference. Geophysics, 82(3):KS27–
KS39.

Zhao, Z., Zhang, Z., Chen, T., Singh, S., and Zhang, H. (2020). Image augmentations for GAN
training. arXiv preprint arXiv:2006.02595v1.

Zhebel, O. and Eisner, L. (2015). Simultaneous microseismic event localization and source
mechanism determination. Geophysics, 80(1):KS1–KS9.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M. (2018a). Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Orbanz, P. (2018b). Non-vacuous gener-
alization bounds at the imagenet scale: a pac-bayesian compression approach. arXiv preprint
arXiv:1804.05862.

Zhou, Z., Lin, Y., Zhang, Z., Wu, Y., Wang, Z., Dilmore, R., and Guthrie, G. (2019). A data-driven
CO2 leakage detection using seismic data and spatial-temporal densely connected convolutional
neural networks. International Journal of Greenhouse Gas Control, 90:102790.

Zhu, W. and Beroza, G. C. (2019). Phasenet: a deep-neural-network-based seismic arrival-time
picking method. Geophysical Journal International, 216(1):261–273.

Zhu, W., Mousavi, S. M., and Beroza, G. C. (2019a). Seismic signal denoising and decomposition
using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 57(11):9476–
9488.

133

Zhu, W., Xu, K., Darve, E., Biondi, B., and Beroza, G. C. (2021). Integrating deep neural networks
with full-waveform inversion: Reparametrization, regularization, and uncertainty quantification.
Geophysics, 87(1):1–103.

Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., and Perdikaris, P. (2019b). Physics-constrained deep
learning for high-dimensional surrogate modeling and uncertainty quantification without labeled
data. Journal of Computational Physics, 394:56–81.

134

APPENDIX A

UNLOCKING TUNING-FREE GENERALIZATION: MINIMIZING THE PAC-BAYES
BOUND WITH TRAINABLE PRIORS

A.1 Proofs

A.1.1 Proofs of Theorem 2.2.6

Theorem A.1.1. Given a prior Pλ parametrized by λ ∈ Λ over the hypothesis setH . Fix λ ∈ Λ,

𝛿 ∈ (0, 1) and 𝛾 ∈ [𝛾1, 𝛾2]. For any choice of i.i.d 𝑚-sized training dataset S according to D, and

all posterior distributions Q overH , we have

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) + 1
𝛾𝑚
(log

1
𝛿
+ KL(Q||Pλ)) + 𝛾𝐾 (λ) (A.1)

holds with probability at least 1 − 𝛿 when ℓ(h, ·) satisfies Definition 2.2.5 with bound 𝐾 (λ).

Proof. Firstly, in the bounded interval 𝛾 ∈ [𝛾1, 𝛾2], we bound the difference of the expected loss

over the posterior distribution evaluated on the training dataset S and D with the KL divergence

between the posterior distribution Q and prior distribution Pλ evaluated over a hypothesis spaceH .

For 𝛾 ∈ [𝛾1, 𝛾2],

ES∼D [exp (𝛾𝑚(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S)) − KL(Q||Pλ))]

=ES∼D [exp (𝛾𝑚(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S)) − Eh∼Q log
dQ
dPλ
(h))] (A.2)

≤ES∼DEh∼Q [exp (𝛾𝑚(ℓ(h;D) − ℓ(h;S)) − log
dQ
dPλ
(h))] (A.3)

=Eh∼PλES∼D [exp(𝛾𝑚(ℓ(h;D) − ℓ(h;S)))], (A.4)

where dQ/dP denotes the Radon-Nikodym derivative.

In (A.2), we use KL(Q||P𝜆) = Eh∼Q log dQ
dP𝜆 (h). From (A.2) to (A.3), Jensen’s inequality is

used over the convex exponential function. Since this argument holds for any 𝑄, we have

sup
Q∈Q
ES∼D [exp (𝛾𝑚(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S)) − KL(Q||Pλ))] ≤ (A.5)

Eh∼PλES∼D [exp(𝛾𝑚(ℓ(h;D) − ℓ(h;S)))] (A.6)

135

Let 𝑋 = ℓ(h;D) − ℓ(h;S), then 𝑋 is centered with E[𝑋] = 0. Then, by Definition 2.2.5,

∃𝐾 (λ), Eh∼P𝜆ES∼D [exp (𝛾𝑚𝑋)] ≤ exp (𝑚𝛾2𝐾 (λ)). (A.7)

Using Markov’s inequality, (A.8) holds with probability at least 1 − 𝛿.

exp (𝛾𝑚𝑋) ≤ exp (𝑚𝛾2𝐾 (λ))
𝛿

. (A.8)

Combining (A.5) and (A.8), the following inequality holds with probability at least 1 − 𝛿.

sup
Q∈Q

exp (𝛾𝑚(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S)) − KL(Q||Pλ)) ≤
exp (𝑚𝛾2𝐾 (λ))

𝛿

⇒𝛾𝑚(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S)) − KL(Q||Pλ) ≤ log
1
𝛿
+ 𝑚𝛾2𝐾 (λ),∀Q

⇒Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) + 1
𝛾𝑚
(log

1
𝛿
+ KL(Q||Pλ)) + 𝛾𝐾 (λ), ∀Q. (A.9)

The bound A.9 is exactly the statement of the Theorem.

□

A.1.2 Proof of Theorem 2.2.10

Theorem A.1.2. Let 𝑛(𝜀) := N(Λ, ∥ · ∥, 𝜀) be the covering number of the set of the prior parameters.

Under Assumption 2.2.8 and Assumption 2.2.9, the following inequality holds for the minimizer

(ĥ, 𝛾̂, σ̂, λ̂) of upper bound in (A.1) with probability as least 1 − 𝜖:

Eh∼Qσ̂ (ĥ)ℓ(h;D) ≤ Eh∼Qσ̂ (ĥ)ℓ(h;S) + 1
𝛾̂𝑚

[
log

𝑛(𝜀) + 𝛾2−𝛾1
𝜀

𝜖
+ KL(Qσ̂ (ĥ) | |Pλ̂)

]
+ 𝛾̂𝐾 (λ̂) + 𝜂

= 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̂, σ̂, λ̂) + 𝜂 (A.10)

holds for any 𝜖, 𝜀 > 0, where 𝜂 = 𝐵𝜀 + 𝐶 (𝜂1(𝜀) + 𝜂2(𝜀)) +
log(𝑛(𝜀)+ 𝛾2−𝛾1

𝜀
)

𝛾1𝑚
, with 𝐶 = 1

𝛾1𝑚
+ 𝛾2, and

𝐵 := supλ∈Λ 1
𝑚𝛾2

1
(KL(Qσ̂ (ĥ) | |Pλ) + log 1

𝛿
) + 𝐾 (λ).

Proof: In this proof, we extend our PAC-Bayes bound with data-independent priors to data-

dependent ones that accommodate the error when the prior distribution is parameterized and

optimized over a finite set of parameters 𝔓 = {𝑃λ,λ ∈ Λ ⊆ R𝑘 } with a much smaller dimension

136

than the model itself. Let T(Λ, ∥ · ∥, 𝜀) be an 𝜀-cover of the set Λ, which states that for any λ ∈ Λ,

there exists a λ̃ ∈ T(Λ, ∥ · ∥, 𝜀) , such that | |λ − λ̃| | ≤ 𝜀.

Now we select the posterior distribution as Qσ (h), parameterized by h and σ ∈ R𝑑 , where h

represents the mean of the posterior, and σ accounts for the variations in each model parameter

from this mean. Assuming the prior P is parameterized by λ ∈ R𝑘 (𝑘 ≪ 𝑑).

Then the PAC-Bayes bound A.1 holds already for any (ĥ, 𝛾, σ̂,λ), with fixed λ ∈ Λ and

𝛾 ∈ [𝛾1, 𝛾2], i.e.,

Eh̃∼Qσ̂ (ĥ)ℓ(h̃;D) ≤ Eh̃∼Qσ̂ (ĥ)ℓ(h̃;S) + 1
𝛾𝑚
(log

1
𝛿
+ KL(Qσ̂ (ĥ) | |Pλ)) + 𝛾𝐾 (λ) (A.11)

with probability over 1 − 𝛿.

Now, for the collection of λs in the 𝜀-net T(Λ, ∥ · ∥, 𝜀), by the union bound, the PAC-Bayes

bound uniformly holds on the 𝜀-net with probability at least 1 − |T|𝛿 = 1 − 𝑛(𝜀)𝛿. For an arbitrary

λ ∈ Λ, its distance to the 𝜀-net is at most 𝜀. Then under Assumption 2.2.8 and Assumption 2.2.9,

we have:

min
λ̃∈T
|KL(Q||Pλ) − KL(Q||Pλ̃) | ≤ 𝜂1(∥λ − λ̃∥) ≤ 𝜂1(𝜀),

and

min
λ̃∈T
|𝐾 (λ) − 𝐾 (λ̃) | ≤ 𝜂2(∥λ − λ̃∥) ≤ 𝜂2(𝜀).

Similarly, for 𝛾, a 𝜀-net on its range 𝛾1 ≤ 𝛾 ≤ 𝛾2 is the uniform grid with a grid separation 𝜀, so

the net contains 𝛾2−𝛾1
𝜀

points. By the union bound, requiring the PAC-Bayes bound to uniformly

hold for all the 𝛾 within this 𝜀-net induces an extra probability of failure of 𝛾2−𝛾1
𝜀
𝛿. So, the total

probability of failure is 𝑛(𝜀)𝛿 + 𝛾2−𝛾1
𝜀
𝛿.

For an arbitrary 𝛾 ∈ Γ, and Γ := {𝛾 ∈ [𝛾1, 𝛾2]}, its distance to the 𝜀-net T′ is at most 𝜀, we have:

min
𝛾̃∈T′
|𝐿𝑃𝐴𝐶 (ĥ, 𝛾, σ̂,λ) − 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̃, σ̂,λ) | =

1
𝑚

(
KL(Qσ̂ (ĥ) | |Pλ) + log

1
𝛿

) ����1𝛾 − 1
𝛾̃

���� + |𝛾 − 𝛾̃ |𝐾 (λ)
=

(
1

𝑚𝛾𝛾̃
(KL(Qσ̂ (ĥ) | |Pλ) + log

1
𝛿
) + 𝐾 (λ)

)
|𝛾 − 𝛾̃ |

≤
(

1
𝑚𝛾2

1
(KL(Qσ̂ (ĥ) | |Pλ) + log

1
𝛿
) + 𝐾 (λ)

)
𝜀

≤ 𝐵𝜀,

137

where 𝐵 := supλ∈Λ 1
𝑚𝛾2

1
(KL(Qσ̂ (ĥ) | |Pλ) + log 1

𝛿
) + 𝐾 (λ), clearly, 𝐵 is a constant depending on the

range of the parameters.

With the three inequalities above, we can control the PAC-Bayes loss at the given λ and 𝛾 as

follows:

min
λ̃∈T,𝛾̃∈T′

|𝐿𝑃𝐴𝐶 (ĥ, 𝛾, σ̂,λ) − 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̃, σ̂, λ̃) |

≤ min
𝛾̃∈T′
|𝐿𝑃𝐴𝐶 (ĥ, 𝛾, σ̂,λ) − 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̃, σ̂,λ) | +min

λ̃∈T
|𝐿𝑃𝐴𝐶 (ĥ, 𝛾̃, σ̂,λ) − 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̃, σ̂, λ̃) |

≤ 𝐵𝜀 + 1
𝛾̃𝑚

𝜂1(𝜀) + 𝛾̃𝜂2(𝜀)

≤ 𝐵𝜀 + 1
𝛾1𝑚

𝜂1(𝜀) + 𝛾2𝜂2(𝜀)

≤ 𝐵𝜀 + 𝐶 (𝜂1(𝜀) + 𝜂2(𝜀))

where 𝐶 = 1
𝛾1
+ 𝛾2 and 𝛾1 ≤ 𝛾 ≤ 𝛾2. Since this inequality holds for any λ ∈ Λ and 𝛾 ∈ Γ, it

certainly holds for the optima λ̂ and 𝛾̂. Combining this with (A.11), we have

Eh∼Qσ̂ (ĥ)ℓ(h;D) ≤ 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̂, σ̂, λ̂) + 𝐵𝜀 + 𝐶 (𝜂1(𝜀) + 𝜂2(𝜀)),

where 𝐵 := supλ∈Λ 1
𝑚𝛾2

1
(KL(Qσ̂ (ĥ) | |Pλ) + log 1

𝛿
) + 𝐾 (λ).

Now taking 𝜖 := (𝑛(𝜀) + 𝛾2−𝛾1
𝜀
)𝛿 to be the previously calculated probability of failure, we get,

with probability 1 − 𝜖 , it holds that

Eh∼Qσ̂ (ĥ)ℓ(h;D) ≤ Eh∼Qσ̂ (ĥ)ℓ(h;S) + 1
𝛾̂𝑚

[
log

𝑛(𝜀) + 𝛾2−𝛾1
𝜀

𝜖
+ KL(Qσ̂ (ĥ) | |Pλ̂)

]
(A.12)

+ 𝛾̂𝐾 (λ̂) + 𝐵𝜀 + 𝐶 (𝜂1(𝜀) + 𝜂2(𝜀))

≤ 𝐿𝑃𝐴𝐶 (ĥ, 𝛾̂, σ̂, λ̂) + 𝜂 (A.13)

and the proof is completed. □

A.1.3 KL divergence of the Gaussian prior and posterior

For a 𝑘-layer network, the prior is written as Pλ(θ0), where θ0 is the random initialized model

parameterized by θ0 and λ ∈ R𝑘+ is the vector containing the variance for each layer. The set of

138

all such priors is denoted by 𝔓 := {Pλ(θ0),λ ∈ Λ ⊆ R𝑘 , θ0 ∈ Θ}. In the PAC-Bayes training,

we select the posterior distribution to be centered around the trained model parameterized by θ,

with independent anisotropic variance. Specifically, for a network with 𝑑 trainable parameters,

the posterior is Qσ (θ) := N(θ, diag(σ)), where θ (the current model) is the mean and σ ∈ R𝑑+
is the vector containing the variance for each trainable parameter. The set of all posteriors is

𝔔 := {Qσ (θ),σ ∈ Σ, θ ∈ Θ}, and the KL divergence between all such prior and posterior in 𝔓 and

𝔔 is:

KL(Qσ (θ) | |Pλ(θ0)) =
1
2

𝑘∑︁
𝑖=1

[
−1⊤𝑑𝑖 log(σ𝑖) + 𝑑𝑖 (log(λ𝑖) − 1) +

∥σ𝑖∥1 + ∥(θ − θ0)𝑖∥22)
λ𝑖

]
, (A.14)

where σ𝑖, (θ − θ0)𝑖 are vectors denoting the variances and weights for the 𝑖-th layer, respectively,

and 𝜆𝑖 is the scalar variance for the 𝑖-th layer. 𝑑𝑖 = dim(σ𝑖), and 1𝑑𝑖 denotes an all-ones vector of

length 𝑑𝑖 1.

Scalar prior is a special case of the layerwise prior by setting all entries of λ to be equal, for

which the KL divergence reduces to

KL(Qσ (θ) | |P𝜆 (θ0)) =
1
2

[
−1⊤𝑑 log(σ) + 𝑑 (log(𝜆) − 1) + 1

𝜆
(∥σ∥1 + ∥θ − θ0∥22)

]
. (A.15)

A.1.4 Proof of Corollary 2.2.11

Recall for the training, we proposed to optimize over all four variables: θ, 𝛾, σ, and λ.

(θ̂, 𝛾̂, σ̂, λ̂) = arg min
θ,λ,σ,
𝛾∈[𝛾1,𝛾2]

Eθ̃∼Qσ (θ)ℓ(𝑓θ̃;S) + 1
𝛾𝑚
(log

1
𝛿
+ KL(Qσ (θ) | |Pλ)) + 𝛾𝐾 (λ)︸ ︷︷ ︸

≡𝐿𝑃𝐴𝐶 (θ,𝛾,σ,λ)

. (A.16)

Corollary A.1.3. Assume all parameters for the prior and posterior are bounded, i.e., we restrict the

model parameter θ, the posterior variance σ and the prior variance λ, and the exponential moment

𝐾 (λ) all to be searched over bounded sets, Θ := {θ ∈ R𝑑 : ∥θ∥2 ≤
√
𝑑𝑀}, Σ := {σ ∈ R𝑑+ : ∥σ∥1 ≤

𝑑𝑇}, Λ =: {λ ∈ [𝑒−𝑎, 𝑒𝑏]𝑘 }, Γ := {𝛾 ∈ [𝛾1, 𝛾2]}, respectively, with fixed 𝑀,𝑇, 𝑎, 𝑏 > 0. Then,

• Assumption 2.2.8 holds with 𝜂1(𝑥) = 𝐿1𝑥, where 𝐿1 = 1
2 max{𝑑, 𝑒𝑎 (2

√
𝑑𝑀 + 𝑑𝑇)}

1Note that with a little ambiguity, the λ𝑖 here has a different meaning from that in (A.20) and Algorithm A.1, here
λ𝑖 means the 𝑖th element in λ, whereas in (A.20) and Algorithm A.1, λ𝑖 means the 𝑖th element in the discrete set.

139

• Assumption 2.2.9 holds with 𝜂2(𝑥) = 𝐿2𝑥, where 𝐿2 = 1
𝛾2

1

(
2𝑑𝑀2𝑒2𝑎 + 𝑑 (𝑎+𝑏)

2

)
• With high probability, the PAC-Bayes bound for the minimizer of (P) has the form

Eθ∼Qσ̂ (ĥ)ℓ(𝑓θ;D) ≤ 𝐿𝑃𝐴𝐶 (θ̂, 𝛾̂, σ̂, λ̂) + 𝜂,

where 𝜂 = 𝑘
𝛾1𝑚

(
1 + log 2(𝐶𝐿+𝐵)Δ𝛾1𝑚

𝑘

)
, 𝐿 = 𝐿1 + 𝐿2, Δ := max{𝑏 + 𝑎, 2(𝛾2 − 𝛾1)}, 𝐵 =

supλ∈Λ 1
𝑚𝛾2

1
(KL(Qσ̂ (θ̂) | |Pλ) + log 1

𝛿
) + 𝐾 (λ), and 𝐶 = 1

𝛾1𝑚
+ 𝛾2.

Proof: We first prove the two assumptions are satisfied by the Gaussian family with bounded

parameter spaces. To prove Assumption 2.2.8 is satisfied, let 𝑣𝑖 = log 1/𝜆𝑖, 𝑖 = 1, ..., 𝑘 and perform

a change of variable from 𝜆𝑖 to 𝑣𝑖. The weight of prior for the 𝑖th layer now becomesN(0, 𝑒−𝑣𝑖I𝑑𝑖)),

where 𝑑𝑖 is the number of trainable parameters in the 𝑖th layer. It is straightforward to compute

𝜕KL(Qσ | |P̃v)
𝜕𝑣𝑖

=
1
2
[−𝑑𝑖 + 𝑒𝑣𝑖 (∥σ𝑖∥1 + ∥θ𝑖 − θ0,𝑖∥22)],

where σ𝑖, θ𝑖, θ0,𝑖 are the blocks of σ, θ, θ0, containing the parameters associated with the 𝑖th layer,

respectively. Now, given the assumptions on the boundedness of the parameters, we have:

∥∇vKL(Qσ | |P̃v)∥2 ≤ ∥∇vKL(Qσ | |P̃v)∥1 ≤
1
2

max{𝑑, 𝑒𝑎 (2
√
𝑑𝑀 + 𝑑𝑇)} ≡ 𝐿1(𝑑, 𝑀,𝑇, 𝑎),

(A.17)

where we used the assumption ∥σ∥1 ≤ 𝑑𝑇 and ∥θ0∥2, ∥θ∥2 ≤
√
𝑑𝑀 .

Equation A.17 says 𝐿1(𝑑, 𝑀,𝑇, 𝑎) is a valid Lipschitz bound on the KL divergence and therefore

Assumption 2.2.8 is satisfied by setting 𝜂1(𝑥) = 𝐿1(𝑑, 𝑀,𝑇, 𝑎)𝑥.

Next, we prove Assumption 2.2.9 is satisfied. We use 𝐾min(λ) defined in Definition 2.2.5 as the

140

𝐾 (λ) in the PAC-Bayes training, and verify that it makes Assumption 2.2.9 hold.

|𝐾min(λ1) − 𝐾min(λ2) |

=

����� sup
𝛾∈[𝛾1,𝛾2]

1
𝛾2 log(Eθ∼Pλ1

E𝑧∼D [exp (𝛾ℓ(𝑓θ; 𝑧))]) − sup
𝛾∈[𝛾1,𝛾2]

1
𝛾2 log(Eθ∼Pλ2

E𝑧∼D [exp (𝛾ℓ(𝑓θ; 𝑧))])
�����

≤ sup
𝛾∈[𝛾1,𝛾2]

1
𝛾2

���log(Eθ∼Pλ1
E𝑧∼D [exp (𝛾ℓ(𝑓θ; 𝑧))]) − log(Eθ∼Pλ2

E𝑧∼D [exp (𝛾ℓ(𝑓θ; 𝑧))])
���

= sup
𝛾∈[𝛾1,𝛾2]

1
𝛾2

����log(Eθ∼Pλ2
E𝑧∼D [exp (𝛾ℓ(𝑓θ; 𝑧))]

𝑝λ1 (θ)
𝑝λ2 (θ)

) − log(Eθ∼Pλ2
E𝑧∼D [exp (𝛾ℓ(𝑓θ; 𝑧))])

����
≤ sup
𝛾∈[𝛾1,𝛾2]

1
𝛾2 sup

θ∈Θ

����log
𝑝λ1 (θ)
𝑝λ2 (θ)

����
≤ 1
𝛾2

1
sup
h∈H

����log
𝑝λ1 (θ)
𝑝λ2 (θ)

����
≤ 1
𝛾2

1

(
2𝑑𝑀2𝑒2𝑎 + 𝑑 (𝑎 + 𝑏)

2

)
∥λ1 − λ2∥2,

where the first inequality used the property of the supremum, the 𝑝𝜆1 (θ), 𝑝𝜆2 (θ) in the fourth line

denote the probability density function of Gaussian with mean θ and variance parametrized by λ1,

λ2 (i.e., λ1,𝑖, λ2,𝑖 are the variances for the 𝑖th layer), the second inequality use the fact that if 𝑋 (h)

is a non-negative function of h and 𝑌 (h) is a bounded function of h, then

|Eh(𝑋 (h)𝑌 (h)) | ≤ (sup
h∈H
|𝑌 (h) |) · Eh𝑋 (h).

The last inequality used the formula of the Gaussian density

𝑝(𝑥; 𝜇, Σ) = 1
(2𝜋)𝑑/2 |Σ |1/2

exp
(
−1

2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)

)
and the boundedness of the parameters. Therefore, Assumption 2.2.9 is satisfied by setting

𝜂2(𝑥) = 𝐿2(𝑑, 𝑀, 𝛾1, 𝑎)𝑥, where 𝐿2(𝑑, 𝑀, 𝛾1, 𝑎) = 1
𝛾2

1

(
2𝑑𝑀2𝑒2𝑎 + 𝑑 (𝑎+𝑏)

2

)
.

Let 𝐿 (𝑑, 𝑀,𝑇, 𝛾1, 𝑎) = 𝐿1(𝑑, 𝑀,𝑇, 𝑎) + 𝐿2(𝑑, 𝑀, 𝛾1, 𝑎). Then we can apply Theorem 2.2.10,

to get with probability 1 − 𝜖 ,

Eθ∼Qσ̂ (θ̂)ℓ(𝑓θ;D)

≤ Eθ∼Qσ̂ (θ̂)ℓ(𝑓θ;S) + 1
𝛾̂𝑚

[
log

𝑛(𝜀) + 𝛾2−𝛾1
2𝜀

𝜖
+ KL(Qσ̂ (θ̂) | |Pλ)

]
+ 𝛾̂𝐾min(λ̂)+

(𝐶𝐿 (𝑑, 𝑀,𝑇, 𝛾1, 𝑎)) + 𝐵)𝜀.

(A.18)

141

Here, we used 𝜂1(𝑥) = 𝐿1𝑥 and 𝜂2(𝑥) = 𝐿2𝑥. Note that for the set [−𝑏, 𝑎]𝑘 , the covering number

𝑛(𝜀) = N([−𝑏, 𝑎]𝑘 , | · |, 𝜀) is
(
𝑏+𝑎
2𝜀

) 𝑘
, and the covering number 𝛾2−𝛾1

2𝜀 for 𝛾 ∈ [𝛾1, 𝛾2].

We introduce a new variable 𝜌 > 0, letting 𝜀 =
𝜌

2(𝐶𝐿 (𝑑,𝑀,𝑇,𝛾1,𝑎)+𝐵) and inserting it into equation

(A.18), we obtain with probability 1 − 𝜖 :

Eθ∼Qσ̂ (θ̂)ℓ(𝑓θ;D)

≤ Eθ∼Q𝜎̂ (θ̂)ℓ(𝑓θ;S) + 1
𝛾̂𝑚

[
log

1
𝜖
+ KL(Qσ̂ (θ̂) | |Pλ)

]
+ 𝛾̂𝐾min(λ̂) + 𝜌 +

𝑘

𝛾1𝑚
log

2(𝐶𝐿 (𝑑, 𝑀,𝑇, 𝛾1, 𝑎) + 𝐵)Δ
𝜌

.

where Δ := max{𝑏 + 𝑎, 2(𝛾2 − 𝛾1)}.

Optimizing over 𝜌, we obtain:

Eθ∼Qσ̂ (θ̂)ℓ(𝑓θ;D)

≤ Eθ∼Qσ̂ (θ̂)ℓ(𝑓θ;S) + 1
𝛾̂𝑚

[
log

1
𝜖
+ KL(Qσ̂ (θ̂) | |Pλ)

]
+ 𝛾̂𝐾min(λ̂) +

𝑘

𝛾1𝑚

(
1 + log

2(𝐶𝐿 (𝑑, 𝑀,𝑇, 𝛾1, 𝑎) + 𝐵)Δ𝛾1𝑚

𝑘

)
= 𝐿𝑃𝐴𝐶 (θ̂, 𝛾̂, σ̂, λ̂) +

𝑘

𝛾1𝑚

(
1 + log

2(𝐶𝐿 (𝑑, 𝑀,𝑇, 𝛾1, 𝑎) + 𝐵)Δ𝛾1𝑚

𝑘

)
.

Hence we have

Eθ∼Qσ̂ (θ̂)ℓ(𝑓θ;D) ≤ 𝐿𝑃𝐴𝐶 (θ̂, 𝛾̂, σ̂, λ̂) + 𝜂,

where

𝜂 = max(1
𝛾1𝑚
(1 + log(2(𝐶𝐿 (𝑑, 𝑀,𝑇, 𝛾1, 𝑎) + 𝐵) (𝛾2 − 𝛾1)𝛾1𝑚)),

𝑘

𝛾1𝑚

(
1 + log

2(𝐶𝐿 (𝑑, 𝑀,𝑇, 𝛾1, 𝑎) + 𝐵)Δ𝛾1𝑚

𝑘

)
).

□

Remark A.1.4. In defining the boundedness of the domain Θ of θ in Corollary 2.2.11, we used
√
𝑑𝑀 as the bound. Here, the factor

√
𝑑 (where 𝑑 denotes the dimension of h) is used to encapsulate

the idea that if on average, the components of the weight are bounded by 𝑀 , then the ℓ2 norm would

naturally be bounded by
√
𝑑𝑀 . The same idea applies to the definition of Σ.

142

Remark A.1.5. Due to the above remark, 𝑀, 𝑇 , 𝑎, 𝑏 can be treated as dimension-independent

constants that do not grow with the network size 𝑑. As a result, the constants 𝐿1, 𝐿2, 𝐿 in Corollary

2.2.11, are dominated by 𝑑, and 𝐿1, 𝐿2, 𝐿 = 𝑂 (𝑑). This then implies the logarithm term in 𝜂 scales

as 𝑂 (log 𝑑), which grows very mildly with the size. Therefore, Corollary 2.2.11 can be used as the

generalization guarantee for large neural networks.

A.2 Algorithm Details

A.2.1 Algorithms to estimate 𝐾 (λ)

In this section, we explain the algorithm to compute 𝐾 (𝜆). In previous literature, the moment

bound 𝐾 or its analog term in the PAC-Bayes bounds was often assumed to be a constant. One of

our contributions is to allow 𝐾 to vary with the variance 𝜆 of the prior, so if a small prior variance is

found by PAC-Bayes training, then the corresponding 𝐾 would also be small. We perform linear

interpolation to approximate the function 𝐾min(𝜆) defined in (2) of the main text. When 𝜆 is 1D,

We first compute 𝐾min(𝜆) on a finite grid of the domain of 𝜆, by solving (A.19) below. With the

computed function values on the grid {𝐾min(𝜆𝑖)}𝑖 , we can construct a piecewise linear function as

the approximation of 𝐾min(𝜆).

𝐾min(𝜆𝑖) = arg min
𝐾>0

𝐾

s.t. exp (𝛾2𝐾) ≥ 1
𝑛𝑚

𝑛∑︁
𝑙=1

𝑚∑︁
𝑗=1

exp(𝛾(ℓ(𝑓θ𝑙 ;S) − ℓ(𝑓θ𝑙 ; 𝑧 𝑗))),

∀ 𝛾 ∈ [𝛾1, 𝛾2], θ𝑙 ∼ N(θ0, 𝜆𝑖), 𝜆min ≤ 𝜆𝑖 ≤ 𝜆max

(A.19)

where θ𝑙 ∼ P𝜆𝑖 (θ0), 𝑙 = 1, ..., 𝑛, are samples from the prior distribution and are fixed when solving

(A.19) for 𝐾min(λ𝑖). (A.19) is the discrete version of the formula (2) in the main text. This

optimization problem is 1-dimensional, and the function in the constraint is monotonic in 𝐾 , so it

can be solved efficiently by the bisection method.

When extending this procedure to high dimension, where λ is a 𝑘-dimension vector, we need

to set up a grid for the domain of λ in 𝑘-dimensional space and estimate 𝐾min on each grid point,

which is time-consuming when 𝑘 is large. To address this issue, we propose to use the following

143

approximation:

𝐾̂ (max(λ𝑖)) = arg min
𝐾>0

𝐾

s.t. exp (𝛾2𝐾) ≥ 1
𝑛𝑚

𝑛∑︁
𝑙=1

𝑚∑︁
𝑗=1

exp(𝛾(ℓ(𝑓θ𝑙 ;S) − ℓ(𝑓θ𝑙 ; 𝑧 𝑗))),

∀ 𝛾 ∈ [𝛾1, 𝛾2], θ𝑙 ∼ N(θ0,max(λ𝑖)), 𝜆min ≤ max(λ𝑖) ≤ 𝜆max, 𝑖 = 1, ..., 𝑠

(A.20)

where λ𝑖 is a random sample from the domain Λ of λ. Since each λi is k-dimensional, max(λi)

represents the maximum of the 𝑘 coordinates.

The idea of this formulation A.20 is as follows, we use the 1D function 𝐾̂ (max(λ𝑖)) as a

surrogate function of the original 𝑘-dimension function 𝐾min(λ) (i.e. 𝐾min(λ) ≤ 𝐾̂ (max(λ𝑖))).

Then estimating this 1D surrogate function is easy by using the bisection method. This procedure will

certainly overestimate the true 𝐾min(λ) but since the surrogate function is also a valid exponential

moment bound, it is safe to be used as a replacement for the 𝐾 (λ) in our PAC-Bayes bound for

training. In practice, we tried to use mean(λ𝑖) to replace max(λ𝑖) to mitigate the over-estimation,

but the final performance stays the same. The details of the whole procedure are presented in

Algorithm A.1.

Algorithm A.1 Compute 𝐾 (λ) given a set of query priors
Input: 𝛾1 and 𝛾2, sampling time 𝑠 of prior variances, the initial neural network weight θ0, the
training dataset S = {𝑧𝑖}𝑚𝑖=1, model sampling time 𝑛 = 10
Output: the piece-wise linear interpolation 𝐾̃ (λ) for 𝐾min(λ)
Draw 𝑠 random samples for the prior variancesV = {λ𝑖 ∈ Λ ⊆ R𝑘 , 𝑖 = 1, ..., 𝑠}
Set up a discrete grid Γ for the interval [𝛾1, 𝛾2] of 𝛾.
for λ𝑖 ∈ V do

for 𝑙 = 1 : 𝑛 do
Sampling weights from the Gaussian distribution θ𝑙 ∼ N(θ0,λ𝑖)
Use θ𝑙 , Γ and S to compute one term in the sum in (A.20)

end for
Solve 𝐾̂ (max(λ𝑖)) using (A.20)

end for
Fit a piece-wise linear function 𝐾̃ (λ) to the data {(λ𝑖, 𝐾̂ (max(λ𝑖))}𝑠𝑖=1

144

A.2.2 PAC-Bayes Training with layerwise prior

Similar to Algorithm 2.1, our PAC-Bayes training with a layerwise prior is stated here in

Algorithm A.2.

Algorithm A.2 PAC-Bayes training (layerwise prior)
Input: initial weight θ0 ∈ R𝑑 , the number of layers 𝑘 , 𝑇1, 𝜆1 = 𝑒−12, 𝜆2 = 𝑒2, 𝛾1 = 0.5, 𝛾2 = 10,
// 𝑇1, 𝜆1, 𝜆2, 𝛾1, 𝛾2 can be fixed in all experiments of Sec2.2.8.
Output: trained model θ̂, posterior noise level σ̂
θ ← θ0, v← 1𝑑 · log(1

𝑑

∑𝑑
𝑖=1 |θ0,𝑖 |), b← 1𝑘 · log(1

𝑑

∑𝑑
𝑖=1 |θ0,𝑖 |) // Initialization

Obtain the estimated 𝐾̃ (λ̄) with Λ = [𝜆1, 𝜆2]𝑘 using (A.20) and Appendix A.2.1
// Stage 1
for epoch = 1 : 𝑇1 do

for sampling one batch 𝑠 from S do
λ← exp(b), σ ← exp(v) // Ensure non-negative variances
Construct the covariance of Pλ from λ // Setting the variance of the weights in layer-𝑖 all to
the scalar λ(𝑖)
Draw one θ̃ ∼ Qσ (θ) and evaluate ℓ(𝑓θ̃;S), // Stochastic version of Eθ̃∼Qσ (θ)ℓ(𝑓θ̃;S)
Compute the KL-divergence as (A.14)
Compute 𝛾 as (2.10)
Compute the loss function L as 𝐿𝑃𝐴𝐶 in (P)
b← b + 𝜂 𝜕L

𝜕b , v← v + 𝜂 𝜕L
𝜕v , θ ← θ + 𝜂 𝜕L

𝜕θ // Update all parameters
end for

end for
σ̂ ← exp(v) // Fix the noise level from now on
// Stage 2
while not converge do

for sampling one batch 𝑠 from S do
Draw one sample θ̃ ∼ Qσ̂ (θ) and evaluate ℓ(𝑓θ̃;S) as L̃, // Noise injection
θ ← θ + 𝜂 𝜕L̃

𝜕θ // Update model parameters
end for

end while
θ̂ ← θ

A.2.3 Regularizations in PAC-Bayes bound

Only noise injection and weight decay are essential from our derived PAC-Bayes bound. Since

many factors in normal training, such as mini-batch and dropout, enhance generalization by some

sort of noise injection, it is unsurprising that they can be substituted by the well-calibrated noise

injection in PAC-Bayes training. Like most commonly used implicit regularizations (large lr,

momentum, small batch size), dropout and batch-norm are also known to penalize the loss function’s

145

sharpness indirectly. Wei et al. (2020) studies that dropout introduces an explicit regularization that

penalizes sharpness and an implicit regularization that is analogous to the effect of stochasticity

in small mini-batch stochastic gradient descent. Similarly, it is well-studied that batch-norm Luo

et al. (2018) allows the use of a large learning rate by reducing the variance in the layer batches,

and large allowable learning rates regularize sharpness through the edge of stability Cohen et al.

(2020). As shown in the equation below, the first term (noise-injection) in our PAC-Bayes bound

explicitly penalizes the Trace of the Hessian of the loss, which directly relates to sharpness and is

quite similar to the regularization effect of batch-norm and dropout. During training, suppose the

current posterior is Qσ̂ (θ̂) = N(θ̂, diag(σ̂)), then the training loss expectation over the posterior is:

Eθ∼Q𝜎̂ (θ̂)ℓ(𝑓θ;D) = EΔθ∼Qσ̂ (0)ℓ(𝑓θ̂+Δθ;D)

≈ ℓ(𝑓θ̂,D) + EΔθ∼Qσ̂ (0) (ℓ(𝑓θ̂;D)Δθ + 1
2
Δθ⊤∇2ℓ(𝑓θ̂;D)Δθ)

= ℓ(𝑓θ;D) + 1
2

Tr(diag(σ̂)∇2ℓ(𝑓θ̂;D)).

The second regularization term (weight decay) in the bound additionally ensures that the

minimizer found is close to initialization. Although the relation of this regularizer to sharpness is

not very clear, empirical results suggest that weight decay may have a separate regularization effect

from sharpness. In brief, we state that the effect of sharpness regularization from dropout and batch

norm can also be well emulated by noise injection with the additional effect of weight decay.

A.2.4 Deterministic Prediction

Recall that for any θ ∈ R𝑑 and σ ∈ R𝑑+, we used Qσ (θ) to denote the multivariate normal

distribition with mean θ and covariance matrix diag(σ). If we rewrite the left-hand side of the

PAC-Bayes bound by Taylor expansion, we have:

Eθ∼Q𝜎̂ (θ̂)ℓ(𝑓θ;D) = EΔθ∼Qσ̂ (0)ℓ(𝑓θ̂+Δθ;D)

≈ ℓ(𝑓θ̂,D) + EΔθ∼Qσ̂ (0) (∇ℓ(𝑓θ̂;D)𝑇Δθ + 1
2
Δθ⊤∇2ℓ(𝑓θ̂;D)Δθ)

= ℓ(𝑓θ;D) + 1
2

Tr(diag(σ̂)∇2ℓ(𝑓θ̂;D)) ≥ ℓ(𝑓θ̂;D).

(A.21)

Recall here θ̂ and σ̂ are the minimizers of the PAC-Bayes loss, obtained by solving the

optimization problem (P). Equation (A.21) states that the deterministic predictor has a smaller

146

prediction error than the Bayesian predictor. However, note that the last inequality in (A.21) is

derived under the assumption that the term ∇2ℓ(𝑓θ;D) is positive-semidefinite. This is a reasonable

assumption as θ̂ is the local minimizer of the PAC-Bayes loss, and the PAC-Bayes loss is close to

the population loss when the number of samples is large. Nevertheless, since this property only

approximately holds, the presented argument can only serve as an intuition that shows the potential

benefits of using the deterministic predictor.

A.3 Extended Experimental Details

We conducted experiments using eight A5000 GPUs with four AMD EPYC 7543 32-core

Processors. To speed up the training process for posterior and prior variance, we utilized a warmup

method that involved updating the noise level in the posterior of each layer as a scalar for the first

50 epochs and then proceeding with normal updates after the warmup period. This method only

affects the convergence speed, not the generalization, and it was only used for large models in image

classification.

A.3.1 Parameter Settings

Recall that the exponential momentum bound 𝐾 (λ) is estimated over a range [𝛾1, 𝛾2] of 𝛾 as

per Definition 2.2.5. It means that we need the inequality

Eh∼PλE[exp (𝛾(E[𝑋 (h)] − 𝑋 (h)))] ≤ exp (𝛾2𝐾 (λ))

to hold for any 𝛾 in this range. One needs to be a little cautious when choosing the upper bound 𝛾2,

because if it is too large, then the empirical estimate of Eh∼PλE[exp (𝛾(E[𝑋 (h)] − 𝑋 (h)))] would

have too large of a variance. Therefore, we recommended 𝛾2 to be set to no more than 10 or 20. The

choice of 𝛾1 also does not seem to be very crucial, so we have fixed it to 0.5 throughout.

For large datasets (like in MNIST or CIFAR10), 𝑚 is large. Then, according to Theorem 2.2.10,

we can set the range 𝑀,𝑇, 𝑎, 𝑏 of the trainable parameters to be very large with only a little increase

of the bound (as 𝑀,𝑇, 𝑎, 𝑏 are inside the logarithm), and then during training, the parameters would

not exceed these bounds even if we don’t clip them. Hence, no clipping is needed for very large

networks or with small networks with proper initializations. But when the dataset size 𝑚 is small, or

147

the initialization is not good enough, then the correction term could be large, and clipping will be

needed.

The clipping is also needed from the usual numerical stability point of view. As 𝜆 is in the

denominator of the KL-divergence, it cannot be too close to 0. Because of this, in the numerical

experiments on GNN and CNN13/CNN15, we clip the domain of 𝜆 at a lower bound of 0.1 and

5𝑒 − 3, respectively. For the VGG and Resnet experiments, the clipping 𝜆 is optional.

A.3.2 Baseline PAC-Bayes bounds for unbounded loss functions

We compared two baseline PAC-Bayes bounds when training CNNs with our layerwise PAC-

Bayes bound. The bounds are expressed in our notation.

• SubGaussian (Corollary 4 of Germain et al. (2016)):

Eθ∼Qσ (θ)ℓ(𝑓θ;D) ≤ Eθ∼Qσ (θ)ℓ(𝑓θ;S) + 1
𝑚
(log

1
𝛿
+ KL(Qσ (θ) | |P)) +

1
2
𝑠2, (A.22)

where 𝑠2 is the variance factor by assuming the loss function ℓ is sub-Gaussian as defined

below:

Eθ∼PES∼D exp [𝛾(ℓ(𝑓θ;D) − ℓ(𝑓θ;S))] ≤ exp (𝛾
2𝑠2

2
),∀𝛾 ∈ R+.

• CGF (Theorem 9 of Rodríguez-Gálvez et al. (2023)):

Eθ∼Qσ (θ)ℓ(𝑓θ;D) ≤ Eθ∼Qσ (θ)ℓ(𝑓θ;S) + 1
𝛾

(
(log

1
𝛿
+ KL(Qσ (θ) | |P)) + 𝜓(𝛾)

)
, (A.23)

where 𝜓(𝛾) is a convex and continuously differentiable function defined on [0, 𝑏) for some 𝑏 ∈

R+ such that 𝜓(𝛾) = 𝜓′(𝛾) = 0 and Eθ∼PES∼D [exp(𝛾(ℓ(𝑓θ;D) − ℓ(𝑓θ;S)))] ≤ exp (𝜓(𝛾))

for all 𝛾 ∈ [0, 𝑏). There is no specific form of 𝜓(𝛾) provided in the original paper, so we

set 𝜓(𝛾) = 𝐾𝛾2. Moreover, 𝛾 is on the denominator of the bound, so we optimized 𝛾 when

evaluating this bound and clipped 𝛾 to the same range [0.5, 10) as we did to our algorithm.

A.3.3 Image classification

There is no data augmentation in the experiment results reported in the main text. The ones

with data augmentation can be found below. For the layerwise prior, we treated each parameter in

148

the PyTorch object model.parameters() as an independent layer, i.e., the weights and bias of one

convolution/batch-norm layer were treated as two different layers. The number of training epochs of

Stage 1 is 500 epochs for PAC-Bayes training. Moreover, a learning rate scheduler was added to

both our method and the baseline to make the training fully converge. Specifically, the learning

rate will be reduced by 0.1 whenever the training accuracy does not increase for 20 epochs. For

PAC-Bayes training, the scheduler is only activated in Stage 2. The training will be terminated when

the training accuracy is above 99.9% for 20 epochs or when the learning rate decreases to below

1𝑒−5. We also add label smoothing (0.1) (Szegedy et al., 2016) to neural networks when comparing

SGD/Adam with our method on image classification tasks to enhance the final test accuracy for all

training methods.

The detailed searched values of hyperparameters include momentum for SGD (0.3, 0.6, 0.9),

learning rates (1𝑒−3, 5𝑒−3, 1𝑒−2, 5𝑒−2, 1𝑒−1, 2𝑒−1), weight decay (1𝑒−4, 5𝑒−4, 1𝑒−3, 5𝑒−3, 1𝑒−2),

and noise injection (5𝑒−4, 1𝑒−3, 5𝑒−3, 1𝑒−2). The best learning rate for Adam and AdamW is

the same since weight decay is the only difference between the two optimizers. We adjusted one

hyper-parameter at a time while keeping the others fixed to accelerate the search. To determine

the optimal hyper-parameter for a variable, we compared the mean test accuracy of the last five

epochs. We then used this selected hyper-parameter to tune the next one. We used an extensive

grid search as a baseline to ensure the best achievable test accuracy in the literature (Table 4 of

Geiping et al. (2021)). The noise injection is only applied to Adam/AdamW, as it sometimes causes

instability to SGD and does not seem to increase the test performance. We compared the mean

test accuracy of the last five epochs to determine each optimal hyper-parameter. The test accuracy

from all experiments with batch size 128 with the learning rate 1𝑒−4 is shown in Figure A.1 and

Figure A.2.

To best demonstrate the sensitivity of the hyper-parameter selection of baselines and motivate

our PAC-Bayes training, we organized the test accuracy below for ResNet18. Considering the search

efficiency, we searched the hyperparameter one by one. For SGD, we first searched the learning

rate, set the momentum and the weight decay as 0 (both are default values for SGD), and then used

149

the best learning rate to search for the momentum. At last, the best-searched learning rate and

momentum are used to search for weight decay. For Adam, we searched the learning rate, weight

decay, and noise injection in an order similar to SGD. Since AdamW and Adam are the same when

setting the weight decay as 0, we searched for the best weight decay based on the best learning rate

obtained from searching on Adam.

A.3.4 Compatibility with Data Augmentation

We didn’t include data augmentation in the experiments in the main text. Because with data

augmentation, there is no rigorous way of choosing the sample size 𝑚 that appears in the PAC-Bayes

bound. More specifically, for the PAC-Bayes bound to be valid, the training data has to be i.i.d.

samples from some underlying distribution. However, most data augmentation techniques would

break the i.i.d. assumption. As a result, if we have 10 times more samples after augmentation, the

new information they bring in would be much less than those from 10 times i.i.d. samples. In this

case, how to determine the effective sample size 𝑚 to be used in the PAC-Bayes bound is a problem.

Since knowing whether a training method can work well with data augmentation is important,

we carried out the PAC-Bayes training with an ad-hoc choice of 𝑚, that is, we set 𝑚 to be the size

of the augmented data. We compared the grid-search result of SGD and Adam versus PAC-Bayes

training on CIFAR10 with ResNet18. The augmentation is achieved by random flipping and random

cropping. The data augmentation increased the size of the training sample by 128 times. The test

accuracy for SGD is 95.2%, it is 94.3% for Adam, it is 94.4% for AdamW, and it is 94.3% for

PAC-Bayes training with the layerwise prior. In contrast, the test accuracy without data augmentation

is lower than 90% for all methods. It suggests that data augmentation does not conflict with the

PAC-Bayes training in practice.

A.3.5 Model analysis

We examined the learning process of PAC-Bayes training by analyzing the posterior variance σ

for different layers in models trained by Algorithm A.2. Typically, batch norm layers have smaller

σ values than convolution layers. Additionally, shadow convolution and the last few layers have

smaller σ values than the middle layers. We also found that skip-connections in ResNet18 have

150

smaller σ values than nearby layers, suggesting that important layers with a greater impact on the

output have smaller σ values.

In Stage 1, the training loss is higher than the testing loss, which means the adopted PAC-

Bayes bound is able to bound the generalization error throughout the PAC-Bayes training stage.

Additionally, we observed that the final value of 𝐾 is usually very close to the minimum of the

sampled function values. The average value of σ experienced a rapid update during the initial 50

warmup epochs but later progressed slowly until Stage 2. The details can be found in Figure A.9 and

A.13. Based on the figures, shadow convolution, and the last few layers have smaller σ values than

the middle layers for all models. We also found that skip-connections in ResNet18 and ResNet34

have smaller σ values than nearby layers on both datasets, suggesting that important layers with a

greater impact on the output have smaller σ values.

Computational cost: In PAC-Bayes training, we have four parameters θ,λ,σ, 𝛾. Among these

variables, 𝛾 can be computed on the fly or whenever needed, so there is no need to store them. We

need to store θ,λ,σ, where σ has the same size as θ and the size of λ is the same as the number

of layers which is much smaller. Hence the total storage is approximately doubled. Likewise,

when computing the gradient for θ,λ,σ, the cost of automatic differentiation in each iteration is

also approximately doubled. In the inference stage, the complexity is the same as in conventional

training.

Effect of two stages: We have tested the effect of the two stages. Without the first stage, the

algorithm cannot automatically learn the noise level and weight decay to be used in the second

stage. If the first stage is there but too short (10 epochs for example), then the final performance of

VGG13 on CIFAR100 will reduce to 64.0% . Without Stage 2, the final performance is not as good

as reported either. The test accuracy of models like VGG13 and ResNet18 on CIFAR10 would be

10% lower as in Figure A.9 and A.13.

A.3.6 Node classification by GNNs

We test the PAC-Bayes training algorithm on the following popular GNN models, tun-

ing the learning rate (1𝑒−3, 5𝑒−3, 1𝑒−2), weight decay (0, 1𝑒−4, 1𝑒−3, 1𝑒−2), noise injection

151

(0, 1𝑒−3, 5𝑒−3, 1𝑒−2), and dropout (0, 0.4, 0.8). The number of filters per layer is 32 in GCN (Kipf

and Welling, 2016) and SAGE (Hamilton et al., 2017). For GAT (Veličković et al., 2018), the number

of filters is 8 per layer, the number of heads is 8, and the dropout rate of the attention coefficient

is 0.6. Fpr APPNP (Gasteiger et al., 2018), the number of filters is 32, 𝐾 = 10 and 𝛼 = 0.1. We

set the number of layers to 2, achieving the best baseline performance. A ReLU activation and a

dropout layer are added between the convolution layers for baseline training only. Since GNNs are

faster to train than convolutional neural networks, we tested all possible combinations of the above

parameters for the baseline, conducting 144 searches per model on one dataset. We use Adam as the

optimizer with the learning rate as 1𝑒−2 for all models using both training and validation nodes for

PAC-Bayes training.

We also did a separate experiment using both training and validation nodes for training. For

baselines, we need first to train the model to detect the best hyperparameters as before and then

train the model again on the combined data. Our PAC-Bayes training can also match the best

generalization of baselines in this setting.

All results are visualized in Figure A.5-A.8. The AdamW+val and scalar+val record the

performances of the baseline and the PAC-Bayes training, respectively, with both training and

validation datasets for training. We can see that test accuracy after adding validation nodes increased

significantly for both methods but still, the results of our algorithm match the best test accuracy of

baselines. Our proposed PAC-Bayes training with the scalar prior is better than most of the settings

during searching and achieved comparable test accuracy when adding validation nodes to training.

A.3.7 Few-shot text classification with transformers

The proposed method is also observed to work on transformer networks. We conducted

experiments on two text classification tasks of the GLUE benchmark as shown in Table A.1. SST is

the sentiment analysis task, whose performance is evaluated as the classification accuracy. Sentiment

analysis is the process of analyzing the sentiment of a given text to determine if the emotional tone

of the text is positive, negative, or neutral. QNLI (Question-answering Natural Language Inference)

focuses on determining the logical relationship between a given question and a corresponding

152

sentence. The objective of QNLI is to determine whether the sentence contradicts, entails, or is

neutral with respect to the question.

We use classification accuracy as the evaluation metric. The baseline method uses grid

search over the hyper-parameter choices of the learning rate (1𝑒−1, 1𝑒−2, 1𝑒−3), batch size

(2, 8, 16, 32, 80), dropout ratio (0, 0.5), optimization algorithms (SGD, AdamW), noise injection

(0, 1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1), and weight decay (0, 1𝑒−1, 1𝑒−2, 1𝑒−3, 1𝑒−4). The learning

rate and batch size of our method are set to 1𝑒−3 and 100 (i.e., full-batch), respectively. In this task,

the number of training samples is small (80). As a result, the preset 𝛾2 = 10 is a bit large and thus

prevents the model from achieving the best performance with PAC-Bayes training.

We adopt BERT (Devlin et al., 2018) as our backbone and added one fully connected layer as

the classification layer. Only the added classification layer is trainable, and the pre-trained model

is frozen without gradient update. To simulate a few-shot learning scenario, we randomly sample

100 instances from the original training set and take the whole development set to evaluate the

classification performance. We split the training set into 5 splits, taking one split as the validation

data and the rest as the training set. Each experiment was conducted five times, and we report the

average performance. We used the PAC-Bayes training with the scalar prior in this experiment.

According to Table A.1, our method is competitive to the baseline method on the SST task, and the

performance gap is only 0.4 points. On the QNLI task, our method outperforms the baseline by a

large margin, and the variance of our proposed method is less than that of the baseline method.

Table A.1 Test accuracy on the development sets of 2 GLUE benchmarks.

SST QNLI

baseline 72.9±0.99 62.6±0.10
scalar 72.5±0.99 64.2±0.02

A.3.8 Additional experiments stability

We conducted extra experiments to showcase the robustness of the proposed PAC-Bayes training

algorithm. Specifically, we tested the effect of different learning rates on ResNet18 and VGG13

153

models trained with layerwise prior. Learning rate has long been known as an important impact

factor of the generalization for baseline training. Within the stability range of gradient descent, the

larger the learning rate is, the better the generalization has been observed (Lewkowycz et al., 2020).

In contrast, the generalization of the PAC-Bayes trained model is less sensitive to the learning rate.

We do observe that due to the newly introduced noise parameters, the stability of the optimization

gets worse, which in turn requires a lower learning rate to achieve stable training. But as long as the

stability is guaranteed by setting the learning rate low enough, our results, as Table A.2, indicated

that the test accuracy remained stable across various learning rates for VGG13 and Resnet18. The

dash in the table means that the learning rate for that particular setting is too large to maintain the

training stability. For learning rates below 1𝑒−4, we trained the model in Stage 1 for more epochs

(700) to fully update the prior and posterior variance.

We also demonstrate that the warmup iterations (as discussed at the beginning of this section) do

not affect generalization. As shown in Table A.4, the test accuracy is insensitive to different numbers

of warmup iterations. Furthermore, additional evaluations of the effects of batch size (Table A.5),

optimizer (Tables A.6), and 𝛾1 and 𝛾2 (Table A.7)

We further visualize the sorted test accuracy of baselines and our proposed PAC-Bayes training

with large batch sizes and a fixed learning rate 5𝑒−4 in Figure A.3 and Figure A.4. These figures

demonstrate that our PAC-Bayes training algorithm achieves better test accuracy than most searched

settings. For models VGG13 and ResNet18, the large batch size is 2048, and for large models

VGG19 and ResNet34, the large batch size is set to 1280 due to the GPU memory limitation.

Table A.2 Test accuracy of ResNet18 trained with different learning rates.

lr 3𝑒−5 5𝑒−5 1𝑒−4 2𝑒−4 3𝑒−4 5𝑒−4

CIFAR10 88.4 88.8 89.3 88.6 88.3 89.2
CIFAR100 69.2 69.0 68.9 69.1 69.1 69.6

154

Table A.3 Test accuracy of VGG13 trained with different learning rates.

lr 3𝑒−5 5𝑒−5 1𝑒−4 2𝑒−4 3𝑒−4 5𝑒−4

CIFAR10 88.6 88.9 89.7 89.6 89.6 89.5
CIFAR100 67.7 68.0 67.1 - - -

Table A.4 Test accuracy of ResNet18 trained with warmup epochs of 𝜎.

10 20 50 80 100 150

CIFAR10 88.5 88.5 89.3 89.5 89.5 88.9
CIFAR100 69.4 69.6 68.9 69.1 69.0 68.1

Table A.5 Test accuracy of VGG13 with different batch sizes.

Batch Size 128 256 1024 2048 2500

Test Acc 89.7 89.7 88.7 89.4 88.3

Table A.6 Test accuracy of ResNet18 using SGD: Effects of different momentum values (with
learning rate 1 × 10−3) and different learning rates (with momentum 0.9).

Momentum Learning Rate

0.3 0.6 0.9 1 × 10−4 3 × 10−4 1 × 10−3

Test Acc 88.6 88.8 89.2 88.3 88.8 89.2

Table A.7 Test accuracy of ResNet18 with different settings for 𝛾1 (with 𝛾2 = 20) and 𝛾2 (with
𝛾1 = 0.1).

𝛾1 𝛾2

0.1 0.5 1.0 10 15 20

Test Acc 88.8 89.3 88.8 89.3 89.4 89.4

155

(a) VGG13 (b) VGG19

(c) ResNet18 (d) ResNet34

(e) Desnse121

Figure A.1 Sorted test accuracy of CIFAR10. The x-axis represents the experiment index.

156

(a) VGG13 (b) VGG19

(c) ResNet18 (d) ResNet34

(e) Desnse121

Figure A.2 Sorted test accuracy of CIFAR100. The x-axis represents the experiment index.

157

(a) VGG13 (batch: 2048) (b) ResNet18 (batch: 2048)

(c) VGG19 (batch: 1280) (d) ResNet34 (batch: 1280)

Figure A.3 Sorted test accuracy of CIFAR10 with large batch sizes. The x-axis represents the
experiment index.

158

(a) VGG13 (batch: 2048) (b) ResNet18 (batch: 2048)

(c) VGG19 (batch: 1280) (d) ResNet34 (batch: 1280)

Figure A.4 Sorted test accuracy of CIFAR100 with large batch sizes. The x-axis represents the
experiment index.

159

(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure A.5 Test accuracy of GCN. The first and third quartiles construct the interval over the ten
random splits. {+val} denotes the performance with both training and validation datasets for training.

160

(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure A.6 Test accuracy of SAGE. The first and third quartiles construct the interval over the
ten random splits. {+val} denotes the performance with both training and validation datasets for
training.

161

(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure A.7 Test accuracy of GAT. The first and third quartiles construct the interval over the ten
random splits. {+val} denotes the performance with both training and validation datasets for training.

162

(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure A.8 Test accuracy of APPNP. The first and third quartiles construct the interval over the
ten random splits. {+val} denotes the performance with both training and validation datasets for
training.

163

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function 𝐾̃ (λ̄). (e) Training and testing process.

Figure A.9 Training details of ResNet18 on CIFAR10. The red star denotes the final 𝐾 .

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function 𝐾̃ (λ̄). (e) Training and testing process.

Figure A.10 Training details of ResNet18 on CIFAR100. The red star denotes the final 𝐾 .

164

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function 𝐾̃ (λ̄). (e) Training and testing process.

Figure A.11 Training details of ResNet34 on CIFAR10. The red star denotes the final 𝐾 .

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function 𝐾̃ (λ̄). (e) Training and testing process.

Figure A.12 Training details of ResNet34 on CIFAR100. The red star denotes the final 𝐾 .

165

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function 𝐾̃ (λ̄). (e) Training and testing process.

Figure A.13 Training details of VGG13 on CIFAR10. The red star denotes the final 𝐾 .

166

APPENDIX B

MAGNET: A NEURAL NETWORK FOR DIRECTED GRAPHS

B.1 List of method abbreviations

• MagNet (this paper)

• ChebNet Defferrard et al. (2016)

• GCN Kipf and Welling (2016)

• APPNP Klicpera et al. (2019a)

• GAT Veličković et al. (2018)

• SAGE Hamilton et al. (2017)

• GIN Xu et al. (2018)

• DGCN Tong et al. (2020b)

• DiGraph Tong et al. (2020a)

• DiGraphIB Tong et al. (2020a): DiGraph

with inception blocks

• BiGCN: applying GCN on the original ad-

jacency matrix and its transpose matrix

separately

• BiSAGE: applying SAGE on the original

adjacency matrix and its transpose matrix

separately

• BiGAT: applying GAT on the original ad-

jacency matrix and its transpose matrix

separately

• KNN: K-nearest neighbors based on the

eigenvectors with the smallest eigenvalues

of magnetic Laplacian Fanuel et al. (2017).

B.2 Further implementation details

We set the parameter 𝐾 = 1 in our implementation of both ChebNet and MagNet, except for

synthetic noisy cylcic graphs with random input features. For sythetic noisy cylcic graphs with

random input features, we also tried 𝐾 = 2 for MagNet. We train all models with a maximum of

3000 epochs and stop early if the validation error doesn’t decrease after 500 epochs for both node

classification and link prediction tasks. One dropout layer with a probability of 0.5 is created before

the last linear layer. The model is picked with the best validation accuracy during training for testing.

We tune the number of filters in [16, 32, 48] for the graph convolutional layers for all models, except

DigraphIB, since the inception block has more trainable parameters. For node classification, we

tune the learning rate in [1𝑒−3, 5𝑒−3, 1𝑒−2] for all models. Compared with node classification, the

167

number of available samples for link prediction is much larger. Thus, we set a relatively small

learning rate of 1𝑒−3.

We use Adam as the optimizer and ℓ2 regularization with the hyperparameter set as 5𝑒−4 to avoid

overfitting. We post the best testing performance by grid-searching based on validation accuracy. For

node classification on the synthetic datasets, we generate a one-dimensional node feature sampled

from the standard normal distribution. We use the original features for the other node classification

datasets. For link prediction, we use the in-degree and out-degree as the node features for all datasets

instead the original features. This allows all models to learn directed information from the adjacency

matrix. Our experiments were conducted on 8 compute nodes each with 1 Nvidia Tesla V100 GPU,

120G RAM, and 32 Intel Xeon E5-2660 v3 CPUs; as well as on a compute node with 8 Nvidia RTX

8000 GPUs, 1000GB RAM, and 48 Intel Xeon Silver 4116 CPUs.

Here are implementation details specific to certain methods:

• We set the parameter 𝜖 to 0 in GIN for both tasks.

• For GAT and BiGAT, the number of heads tuned is in [2, 4, 8].

• For APPNP, we set 𝐾 = 10 for node classification (following the original paper Klicpera et al.

(2019a)), and search K in [1, 5, 10] for link prediction.

• The coefficient𝛼 for PageRank-based models (APPNP, DiGraph) is searched in [0.05, 0.1, 0.15, 0.2].

• For DiGraph, the model includes graph convolutional layers without the high-order approxi-

mation and inception module. The high order Laplacian and the inception module is included

in DigraphIB.

• DigraphIB is a bit different than other networks because it requires generating a three-channel

Laplacian tensor. For this network, the number of filters for each channel is searched in

[6, 11, 21] for node classification and link prediction.

• For GCN, the out-degree normalized, directed adjacency matrix, including self-loops is also

tried in addition to the symmetrized adjacency matrix for node classification tasks, except for

synthetic datasets since symmetrization will break the cluster pattern.

168

• For other spatial methods, including APPNP, GAT, SAGE, and GIN, we tried both the

symmetrized adjacency matrices and the original directed adjacency matrices for node

classification tasks except for synthetic datasets.

• For KNN, we set 𝑞 = 0.25 and 𝐾 = 5.

B.3 Datasets

B.4 Node classification

We use six real datasets for node classification. A directed edge is defined as follows. If the edge

(𝑢, 𝑣) ∈ 𝐸 but (𝑣, 𝑢) ∉ 𝐸 , then (𝑢, 𝑣) is a directed edge. If (𝑢, 𝑣) ∈ 𝐸 and (𝑣, 𝑢) ∈ 𝐸 , then (𝑢, 𝑣)

and (𝑣, 𝑢) are undirected edges (in other words, undirected edges that are not self-loops are counted

twice). For the citation datasets, Cora-ML and Citeseer, we randomly select 20 nodes in each class

for training, 500 nodes for validation, and the rest for testing following Tong et al. (2020a). For the

synthetic datasets (ordered DSBM graphs, cyclic DSBM graphs, noisy cyclic DSBM graphs), we

generate a one-dimensional node feature sampled from the standard normal distribution.

Ten folds are generated randomly for each dataset, except for Cornell, Texas and Wisconsin. For

Cornell, Texas, and Wisconsin, we use the same training, validation, and testing folds as Pei et al.

(2020). For Telegram, we treat it as a directed, unweighted graph and randomly generate 10 splits

for training/validation/testing with 60%/20%/20% of the nodes. The node features are sampled from

the normal distribution.

B.5 Link prediction

We use eight real datasets in link prediction. Instead of using the original features, we use

the in-degree and out-degree as the node features in order to allow the models to learn structural

information from the adjacency matrix directly. The connectivity is maintained by getting the

undirected minimum spanning tree before removing edges for validation and testing. For the results

in the main text, undirected edges and, if they exist, pairs of vertices with multiple edges between

them, may be placed in the training/validation/testing sets. However, labels that indicate the direction

of such edges are not well defined, and therefore can be considered as noisy labels from the machine

169

learning perspective. In order to obtain a full set of well-defined, noiseless labels, in the supplement

we also run experiments in which undirected edges and pairs of vertices with multiple edges between

them are ignored when sampling edges for training/validation/testing (in other words, only directed

edges, and the absence of an edge, are included). We evaluated all models on four prediction tasks,

which we now describe.

To construct the datasets that we use for training, validation and testing, which consist of pairs

of vertices in the graph, we do the following. (1) Existence prediction. If (𝑢, 𝑣) ∈ 𝐸 , we give (𝑢, 𝑣)

the label 0, otherwise its label is 1. The proportion of the two classes of edges is 25% and 75%,

respectively, when undirected edges and multi-edges are included, and 50% and 50%, respectively,

when only directed edges are included. (2) Direction prediction. Given an ordered node pair

(𝑢, 𝑣), we give the label 0 if (𝑢, 𝑣) ∈ 𝐸 and the label 1 if (𝑣, 𝑢) ∈ 𝐸 , conditioning on (𝑢, 𝑣) ∈ 𝐸 or

(𝑣, 𝑢) ∈ 𝐸 . The proportion of the two types of edges is 50% and 50%. We randomly generated ten

folds for all datasets. We used 15% and 5% of edges for testing and validation for all datasets.

B.6 Eigenvalues of the magnetic Laplacian

In this section we state and prove three theorems. Theorem B.6.1, which shows that both the

normalized and unnormalized magnetic Laplacian a postive semidefinite, is well known (see e.g.

Fanuel et al. (2018)). Theorem B.6.2, which shows that the eigenvalues of the normalized magnetic

Laplacian lie in the interval [0, 2], is a straightforward adaption of the corresponding result for

the traditional normalized graph Laplacian. Finally, Theorem B.6.4 proves the un-normalized

magnetic Laplacian may be factored in terms of a complex valued incidence matrix, analogous to

the well-known result for the standard graph Laplacian. We give full proofs of all three results for

completeness.

Theorem B.6.1. Let 𝐺 = (𝑉, 𝐸) be a directed graph where 𝑉 is a set of 𝑁 vertices and 𝐸 ⊆ 𝑉 ×𝑉

is a set of directed edges. Then, for all 𝑞 ≥ 0, both the unnormalized magnetic Laplacian L(𝑞)
𝑈

and

its normalized counterpart L(𝑞)
𝑁

are positive semidefinite.

Proof. Let x ∈ C𝑁 . We first note that since L(𝑞)
𝑈

is Hermitian we have Imag(x†L(𝑞)
𝑈

x) = 0. Next,

170

we use the definition of D𝑠 and the fact that A𝑠 is symmetric to observe that

2Real
(
x†L(𝑞)

𝑈
x
)

=2
𝑁∑︁

𝑢,𝑣=1
D𝑠 (𝑢, 𝑣)x(𝑢)x(𝑣) − 2

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣)x(𝑢)x(𝑣) cos(𝑖𝚯(𝑞) (𝑢, 𝑣))

=2
𝑁∑︁
𝑢=1

D𝑠 (𝑢, 𝑢)x(𝑢)x(𝑢) − 2
𝑁∑︁

𝑢,𝑣=1
A𝑠 (𝑢, 𝑣)x(𝑢)x(𝑣) cos(𝑖𝚯(𝑞) (𝑢, 𝑣))

=2
𝑁∑︁

𝑢,𝑣=1
A𝑠 (𝑢, 𝑣) |x(𝑢) |2 − 2

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣)x(𝑢)x(𝑣) cos(𝑖𝚯(𝑞) (𝑢, 𝑣))

=

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣) |x(𝑢) |2 +
𝑁∑︁

𝑢,𝑣=1
A𝑠 (𝑣, 𝑢) |x(𝑣) |2 − 2

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣)x(𝑢)x(𝑣) cos(𝑖𝚯(𝑞) (𝑢, 𝑣))

=

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣)
(
|x(𝑢) |2 + |x(𝑣) |2 − 2x(𝑢)x(𝑣) cos(𝑖𝚯(𝑞) (𝑢, 𝑣))

)
(B.1)

≥
𝑁∑︁

𝑢,𝑣=1
A𝑠 (𝑢, 𝑣)

(
|x(𝑢) |2 + |x(𝑣) |2 − 2|x(𝑢) | |x(𝑣) |

)
=

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣) (|x(𝑢) | − |x(𝑣) |)2

≥0.

Thus, L(𝑞)
𝑈

is positive semidefinite. For the normalized magnetic Laplacian, we note that(
D−1/2
𝑠 A𝑠D−1/2

𝑠

)
⊙ exp(𝑖𝚯(𝑞)) = D−1/2

𝑠

(
A𝑠 ⊙ exp(𝑖𝚯(𝑞))

)
D−1/2
𝑠 ,

and therefore

L(𝑞)
𝑁

= D−1/2
𝑠 L(𝑞)

𝑈
D−1/2
𝑠 . (B.2)

Thus, letting y = D−1/2
𝑠 x, the fact that D𝑠 is diagonal implies

x†L(𝑞)
𝑁

x = x†D−1/2
𝑠 L(𝑞)

𝑈
D−1/2
𝑠 x = y†L(𝑞)

𝑈
y ≥ 0.

□

Theorem B.6.2. Let 𝐺 = (𝑉, 𝐸) be a directed graph where 𝑉 is a set of 𝑁 vertices and 𝐸 ⊆ 𝑉 ×𝑉

is a set of directed edges. Then, for all 𝑞 ≥ 0, the eigenvalues of the normalized magnetic Laplacian

L(𝑞)
𝑁

are contained in the interval [0, 2].

171

Proof. By Theorem B.6.1, we know that L(𝑞)
𝑁

has real, nonnegative eigenvalues. Therefore, we need

to show that the lead eigenvalue, 𝜆𝑁 , is less than or equal to 2. The Courant-Fischer theorem shows

that

𝜆𝑁 = max
x≠0

x†L(𝑞)
𝑁

x
x†x

.

Therefore, using (B.2) and setting y = D−1/2
𝑠 x, we have

𝜆𝑁 = max
x≠0

x†D−1/2
𝑠 L(𝑞)

𝑈
D−1/2
𝑠 x

x†x
= max

y≠0

y†L(𝑞)
𝑈

y
y†D𝑠y

.

First, we observe that since D𝑠 is diagonal, we have

y†D𝑠y =

𝑁∑︁
𝑢,𝑣=1

D𝑠 (𝑢, 𝑣)y(𝑢)y(𝑣) =
𝑁∑︁
𝑢=1

D𝑠 (𝑢, 𝑢) |y(𝑢) |2

Next, we note that by (B.1), we have

y†L(𝑞)
𝑈

y =
1
2

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣)
(
|x(𝑢) |2 + |x(𝑣) |2 − 2x(𝑢)x(𝑣) cos(𝑖𝚯(𝑞) (𝑢, 𝑣))

)
≤ 1

2

𝑁∑︁
𝑢,𝑣=1

A𝑠 (𝑢, 𝑣) (|x(𝑢) | + |x(𝑣) |)2

≤
𝑁∑︁

𝑢,𝑣=1
A𝑠 (𝑢, 𝑣) (|x(𝑢) |2 + |x(𝑣) |2).

Therefore, since As is symmetric, we have

y†L(𝑞)
𝑈

y ≤ 2
𝑁∑︁

𝑢,𝑣=1
A𝑠 (𝑢, 𝑣) |x(𝑢) |2

= 2
𝑁∑︁
𝑢=1
|x(𝑢) |2

(
𝑁∑︁
𝑣=1

A𝑠 (𝑢, 𝑣)
)

= 2
𝑁∑︁
𝑢=1

D𝑠 (𝑢, 𝑢) |x(𝑢) |2

= 2y†D𝑠y.

□

Definition B.6.3. Let 𝐺 = (𝑉, 𝐸) be a directed graph where 𝑉 is a set of 𝑁 vertices and 𝐸 ⊆ 𝑉 ×𝑉

is a set of directed edges. We say that a link (𝑢, 𝑣) ∈ 𝐸 is bidirectional if the “reverse" link (𝑣, 𝑢) is

also also in 𝐸 . If a link is not bidirectional we say that it is unidirectional.

172

Theorem B.6.4. Let 𝐺 = (𝑉, 𝐸) be a directed graph where 𝑉 is a set of 𝑁 vertices and 𝐸 ⊆ 𝑉 ×𝑉

is a set of directed edges. Then, for all 𝑞 ≥ 0, the unnormalized magnetic Laplacian may be factored

as L(𝑞)
𝑈

= B(𝑞) (B(𝑞))†, where B(𝑞) is a modified incidence matrix defined by

B(𝑞) (𝑗 , ℓ) =



1√
2
𝑒𝑖𝜋𝑞 if j is the source of link ℓ and ℓ is unidirectional

−1√
2
𝑒−𝑖𝜋𝑞 if j is the sink of the link ℓ and ℓ is unidirectional

1 if j is the source of the link ℓ and ℓ is bidirectional

1 if j is the sink of the link ℓ and ℓ is bidirectional

0 otherwise

.

Proof. Let B = B(𝑞) for the remainder of the proof. By definition we have,

(BB†) (𝑗 , 𝑘) =
∑︁
ℓ

B(𝑗 , ℓ)B(𝑘, ℓ)

If 𝑗 = 𝑘, we have

(BB†) (𝑗 , 𝑗)

=
∑︁
ℓ

B(𝑗 , ℓ)B(𝑗 , ℓ)

=
∑︁

ℓ unidirectional
st. 𝑗 is a source

B(𝑗 , ℓ)B(𝑗 , ℓ) +
∑︁

ℓ unidirectional
st. 𝑗 is a sink

B(𝑗 , ℓ)B(𝑗 , ℓ)

+
∑︁

ℓ bidirectional
st. 𝑗 is a source

B(𝑗 , ℓ)B(𝑗 , ℓ) +
∑︁

ℓ bidirectional
st. 𝑗 is a sink

B(𝑗 , ℓ)B(𝑗 , ℓ)

=
∑︁

ℓ unidirectional
st. 𝑗 is a source

1
√

2
𝑒𝑖𝜋𝑞

1
√

2
𝑒𝑖𝜋𝑞 +

∑︁
ℓ unidirectional

st. 𝑗 is a sink

−1
√

2
𝑒−𝑖𝜋𝑞

(
−1
√

2
𝑒𝑖𝜋𝑞

)
+

∑︁
ℓ bidirectional
st. 𝑗 is a source

1 +
∑︁

ℓ bidirectional
st. 𝑗 is a sink

1

=
1
2
(𝑑𝑖𝑛 (𝑗) + 𝑑𝑜𝑢𝑡 (𝑗))

=𝑑𝑠 (𝑗).

If 𝑗 ≠ 𝑘 and there is a link from 𝑗 to 𝑘 but not from 𝑘 to 𝑗 , then

(BB†) (𝑗 , 𝑘) =
∑︁
ℓ

B(𝑗 , ℓ)B(𝑘, ℓ) = 1
√

2
𝑒𝑖𝜋𝑞

(
−1
√

2
𝑒𝑖𝜋𝑞

)
=
−1
2
𝑒2𝜋𝑖𝑞 = −H(𝑞) (𝑗 , 𝑘)

173

Likewise, if there is a link from 𝑘 to 𝑗 but not from 𝑗 to 𝑘 we have

(BB†) (𝑗 , 𝑘) =
∑︁
ℓ

B(𝑗 , ℓ)B(𝑘, ℓ) =
(
−1
√

2
𝑒−𝑖𝜋𝑞

)
1
√

2
𝑒−𝑖𝜋𝑞 =

−1
2
𝑒−2𝜋𝑖𝑞 = −H(𝑞) (𝑗 , 𝑘).

Lastly, if there is neither a link from 𝑘 to 𝑗 or 𝑗 to 𝑘 we have (BB†) (𝑗 , 𝑘) = 0. □

B.7 The eigenvectors and eigenvalues of directed stars and cycles

In this section, we examine the eigenvectors and eigenvalues of the unnormalized magnetic

Laplacian on two example graphs. As alluded to in the main text, in the directed star graph directional

information is contained in the eigenvectors only. For the directed cycle, on the other hand, the

magnetic Laplacian encodes the directed nature of the graph only through the eigenvalues. Both

examples can be verified via direct pen and paper calculation.

Figure B.1 Directed stars (a) 𝐺 (in) , and (b) 𝐺 (out)

Example 1. Let 𝐺 (in) and 𝐺 (out) be the directed star graphs with vertices 𝑉 = {1, . . . , 𝑁} and edges

pointing in/out to the central vertex as shown in Figure B.1. Then the eigenvalues of L(𝑞,in)
𝑈

, the

unnormalized magnetic Laplacian on 𝐺 in, are given by

𝜆in
1 = 0, 𝜆in

𝑘 =
1
2

for 2 ≤ 𝑘 ≤ 𝑁 − 1, and 𝜆in
𝑁 =

𝑁

2
.

If we let 𝑣 = 1 be the central vertex, then the lead eigenvector is given by

uin
1 (1) = 𝑒

2𝜋𝑖𝑞, uin
1 (𝑛) = 1, 2 ≤ 𝑛 ≤ 𝑁.

For 2 ≤ 𝑘 ≤ 𝑁 − 1, the eigenvectors are

uin
𝑘 = δ𝑘 − δ𝑘+1,

174

and the final eigenvector is given by

uin
𝑁 (1) = −𝑒

2𝜋𝑖𝑞, uin
𝑁 (𝑛) =

1
𝑁 − 1

, 2 ≤ 𝑛 ≤ 𝑁.

The phase matrices satisfies 𝚯(𝑞,in) = −𝚯(𝑞,out) . Therefore, the associated magnetic Laplacians

satisfy L(𝑞,in)
𝑈
(𝑢, 𝑣) = L(𝑞,out)

𝑈
(𝑢, 𝑣). Since these matrices are Hermitian, this implies that the

corresponding eigenvalue-eigenvector pairs satisfy 𝜆in
𝑘
= 𝜆out

𝑘
, and uin

𝑘
= uout

𝑘
. Hence, uin

1 and uout
1

identify the central vertex, and the sign of their imaginary parts at this vertex identifies whether it is

a source or a sink. On the other hand, the eigenvalues give no directional information.

Example 2. Let 𝐺 be the directed cycle. Then, then the eigenvalues of L(𝑞)
𝑈

is are the classical

Fourier modes u𝑘 (𝑛) = 𝑒(2𝜋𝑖𝑘𝑛/𝑁) , independent of 𝑞. The eigenvalues, however, do depend on 𝑞 and

are given by

𝜆𝑘 = 1 − cos
(
2𝜋

(
𝑘

𝑁
+ 𝑞

))
, 1 ≤ 𝑘 ≤ 𝑁.

175

APPENDIX C

UNSUPERVISED LEARNING OF FULL-WAVEFORM INVERSION: CONNECTING CNN
AND PARTIAL DIFFERENTIAL EQUATION IN A LOOP

C.1 Network Architecture

Since the number of receivers 𝑅 and the number of timesteps 𝑇 in seismic measurements are

unbalanced (𝑇 ≫ 𝑅), we first stack a 7×1 and six 3×1 convolutional layers (with stride 2 every

the other layer to reduce dimension) to extract temporal features until the temporal dimension is

close to 𝑅. Then, six 3×3 convolutional layers are followed to extract spatial-temporal features. The

resolution is down-sampled every the other layer by using stride 2. Next, the feature map is flattened

and a fully connected layer is applied to generate the latent feature with dimension 512. The decoder

first repeats the latent vector by 25 times to generate a 5×5×512 tensor. Then it is followed by five

3×3 convolutional layers with nearest neighbor upsampling in between, resulting in a feature map

with size 80×80×32. Finally, we center-crop the feature map (70×70) and apply a 3×3 convolution

layer to output a single channel velocity map.

All the aforementioned convolutional and upsampling layers are followed by a batch nor-

malization (Ioffe and Szegedy, 2015) and a leaky ReLU (Nair and Hinton, 2010) as activation

function.

C.2 Derivation of Forward Modeling in Practice

Similar to the finite difference in time domain, in 2D situation, by applying the fourth-order

central finite difference in space, the Laplacian of 𝑝(r, 𝑡) can be discretized as

∇2𝑝(r, 𝑡) =𝜕
2𝑝

𝜕𝑥2 +
𝜕2𝑝

𝜕𝑧2 ,

≈ 1
(Δ𝑥)2

2∑︁
𝑖=−2

𝑐𝑖𝑝
𝑡
𝑥+𝑖,𝑧 +

1
(Δ𝑧)2

2∑︁
𝑖=−2

𝑐𝑖𝑝
𝑡
𝑥,𝑧+𝑖

+𝑂 [(Δ𝑥)4 + (Δ𝑧)4] ,

(C.1)

where 𝑐0 = −5
2 , 𝑐1 = 4

3 , 𝑐2 = − 1
12 , 𝑐𝑖 = 𝑐−𝑖, and 𝑥 and 𝑧 stand for the horizontal offset and the depth

of a 2D velocity map, respectively. For convenience, we assume that the vertical grid spacing Δ𝑧 is

identical to the horizontal grid spacing Δ𝑥.

176

Given the approximation in Equations 3.21 and C.1, we can rewrite the Equation 3.14 as

𝑝𝑡+1𝑥,𝑧 = (2 − 5𝛼)𝑝𝑡𝑥,𝑧 − 𝑝𝑡−1
𝑥,𝑧 − (Δ𝑥)2𝛼𝑠𝑡𝑥,𝑧 + 𝛼

2∑︁
𝑖=−2
𝑖≠0

𝑐𝑖 (𝑝𝑡𝑥+𝑖,𝑧 + 𝑝𝑡𝑥,𝑧+𝑖) , (C.2)

where 𝛼 = (𝑣Δ𝑡
Δ𝑥
)2.

During the simulation of the forward modeling, the boundaries of the velocity maps should be

carefully handled because they may cause reflection artifacts that interfere with the desired waves.

One of the standard methods to reduce the boundary effects is to add absorbing layers around the

original velocity map. Waves are trapped and attenuated by a damping parameter when propagating

through those absorbing layers. Here, we follow Collino and Tsogka (2001) and implement the

damping parameter as

𝜅 = 𝑑 (𝑢) = 3𝑢𝑣
2𝐿2 𝑙𝑛(𝑅) , (C.3)

where 𝐿 denotes the overall thickness of absorbing layers, 𝑢 indicates the distance between the current

position and the closest boundary of the original velocity map, and 𝑅 is the theoretical reflection

coefficient chosen to be 10−7. With absorbing layers added, Equation 3.22 can be ultimately written

as

𝑝𝑡+1𝑥,𝑧 = (2 − 5𝛼 − 𝜅)𝑝𝑡𝑥,𝑧 − (1 − 𝜅)𝑝𝑡−1
𝑥,𝑧 − (Δ𝑥)2𝛼𝑠𝑡𝑥,𝑧 + 𝛼

2∑︁
𝑖=−2
𝑖≠0

𝑐𝑖 (𝑝𝑡𝑥+𝑖,𝑧 + 𝑝𝑡𝑥,𝑧+𝑖) . (C.4)

C.3 OpenFWI Examples and Inversion Results of Different Methods

177

Velocity Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

Figure C.1 More examples of velocity maps and their corresponding seismic measurements in
OpenFWI dataset.

178

Ground Truth InversionNet VelocityGAN H-PGNN+
UPFWI-24K

(Ours)
UPFWI-48K

(Ours)

Figure C.2 Comparison of different methods on inverted velocity maps of FlatFault. The details
revealed by our UPFWI are highlighted.

179

Ground Truth InversionNet VelocityGAN H-PGNN+
UPFWI-24K

(Ours)
UPFWI-48K

(Ours)

Figure C.3 Comparison of different methods on inverted velocity maps of CurvedFault. The details
revealed by our UPFWI are highlighted.

180

C.4 Additional Experiment Results

Ground Truth Prediction Ground Truth Prediction

Figure C.4 Results of low-resolution Marmousi Dataset. This dataset contains low-resolution
velocity maps generated using style transfer with the Marmousi velocity map as the style images.
Our UPFWI model yields good results in shallow regions, and it also captures some geological
structures in deeper regions. Similar phenomenon is also observed in the prediction of the smoothed
Marmousi velocity map (bottom-right corner).

181

Figure C.5 Results of salt bodies dataset. This dataset contains more complicated velocity maps.
Our UPFWI model yields good velocity map prediction (bottom) on both salt bodies and background
geological structures compared to the ground truth (top).

182

Ground Truth CNN MLP-Mixer ViT

Figure C.6 Results of UPFWI with different network architectures. We replace the CNN in our
model with Vision Transformer (ViT) and MLP-Mixer as the encoder and test them on the FlatFault
dataset. Both models yield reasonable velocity maps. This demonstrates that our proposed learning
paradigm is model-agnostic.

183

Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean PSNR=61.60dB PSNR=58.70dB PSNR=51.58dB

Figure C.7 Results of adding Gaussian noise to FlatFault. The model is trained on the clean data
(without noise) and tested on different levels (PSNR) of Gaussian noises. Clearly, our method is
robust to the noise although slight degradation is observed when noise level increases.

184

Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean PSNR=61.72dB PSNR=58.70dB PSNR=51.68dB

Figure C.8 Results of adding Gaussian noise to CurvedFault. The model is trained on the clean data
(without noise) and tested on different levels (PSNR) of Gaussian noises. Similar to the results of
FlatFault, our method is robust to the noise although slight degradation is observed when noise level
increases.

185

Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean 7 Missing 10 Missing 17 Missing

Figure C.9 Results of randomly missing traces on FlatFault. The model is trained on the clean
data (without missing traces) and tested on multiple missing rates from 5% to 25%. Our method is
robust to the missing traces. Although the higher missing rate leads to shifts in velocity values, the
geological structures are well preserved.

186

Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean 7 Missing 10 Missing 17 Missing

Figure C.10 Results of randomly missing traces on CurvedFault. The model is trained on the clean
data (without missing traces) and tested on multiple missing rates from 5% to 25%. Similar to the
results of FlatFault, our method is robust to the missing traces. Although the higher missing rate
leads to shifts in velocity values, the geological structures are well preserved.

187

Additional experiments to investigate generalization. We conducted two additional exper-

iments: (1) training our model on the CurvedFault dataset and further testing on the FlatFault

dataset (visualization results are listed in Figure C.11, and quantitative results are shown in Table C.1);

(2) testing our model on time-lapse imaging problems (visualization results are listed in Figure C.12).

The results demonstrate that our proposed model yields generalization ability to a certain degree.

Table C.1 Quantitative results of our UPFWI models evaluated on FlatFault.

Training Dataset Test Dataset MAE↓ MSE↓ SSIM↑

FlatFault FlatFault 14.60 1146.09 0.9895

CurvedFault FlatFault 50.80 17627.65 0.9253

Ground Truth

Prediction

Figure C.11 Results on generalization across datasets. The test is performed on FlatFault by applying
a UPFWI model that is trained on CurvedFault dataset. Although the artifact is not negligible,
the fault structures and velocity values are well preserved. This demonstrates that our model has
generalizability to a certain degree.

188

Ground Truth

Prediction

Ground Truth

Prediction

t = 0 t = 1 t = 2 t = 3

Figure C.12 Results on generalizability over geological anomalies. The test is performed on a
dataset where we add additional geological anomalies to simulate time-lapse imaging problems.
The velocity maps containing those anomalies are not included during training. However, our model
captures the spatial and temporal dynamics of anomalies in prediction. This demonstrates that our
model has generalizability to a certain degree.

189

