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ABSTRACT

Voice, as a primary way for people to communicate with each other and interact with computers

and smart devices, is expected to be trustworthy and reliable. For example, modern authentications

use voice as a biometric to verify a user’s identity; users give voice commands to control the smart

devices via speech-to-text services. Compared to other biometrics such as iris, fingerprint, and

face ID, voice biometrics show high usability because it does not require complicated hardware

other than a microphone to support the authentication. Besides, the voice biometric can also be

adapted for remote call authentication. Furthermore, voice serves as a crucial interface for humans

to interact with smart devices, representing the most intuitive method for giving commands to

artificial intelligence (AI) agents. The potential for smart devices and robots to comprehend human

speech in the future holds great promise.

However, recent studies demonstrated the vulnerabilities of using voice interfaces to communi-

cate, conduct speaker authentication, and deliver messages to smart devices. This dissertation aims

to introduce the background of AI-enabled voice services; discover the vulnerabilities of modern

voice models and systems; understand the root cause of the vulnerabilities; and provide security

solutions to safeguard voice services.

First, we focus on speaker authentication security. Particularly, we propose a secure and robust

speaker verification system called SuperVoice. By discovering the high-frequency energy in human

speech, we find the special characteristics between different persons, and between humans and

machines. Exploiting the high-frequency energy, the SuperVoice can enhance the performance of

verified speakers and defend against machine-played attacks such as replay attacks, adversarial

attacks, and inaudible attacks. Moreover, we propose a backdoor attack called MasterKey to attack

speaker authentication systems. Compared to previous attacks, we focus on a real-world practical

setting where the attacker possesses no knowledge of the intended victim.

Second, we explore the speech recognition security. Specifically, we design a new adversar-

ial attack named SpecPatch to attack vulnerable speech recognition models. This attack alters

the speech recognition model output by injecting a short, imperceptible noise-like sound. Com-



pared to previous adversarial audio attacks, the SpecPatch shows strong resistance under differ-

ent types of distortions and is able to succeed even when the user is present. Furthermore, we

propose PhantomSound, a query-efficient black-box attack toward commercial speech recognition

services/APIs/voice assistants. Different from existing black-box adversarial attacks on voice as-

sistants, PhantomSound leverages the decision-based attack to produce effective adversarial audios

and reduces the number of queries by optimizing the gradient estimation. We demonstrate the dan-

ger of PhantomSound on commercial speech recognition services and off-the-shelf smart voice

assistants.

Third, we investigate the voice privacy protection. To address the privacy leakage issue of

voice communication, we create a system, called NEC, that uses an AI model to selectively jam

the user’s voice from an unauthorized recorder. The NEC transmits speaker-specified noise via

an inaudible channel to jam the only user’s sound. We successfully implemented the NEC, and

demonstrated that NEC can protect the user’s sound from being recorded.

This dissertation comprehensively addresses the prevalent challenges and vulnerabilities in

voice-enabled services. In an age where voice-enabled devices are becoming ubiquitous in homes

and public spaces, ensuring the security of these devices is paramount. Our research helps in safe-

guarding the privacy and safety of the general public, who are often the targets of security breaches.

In conclusion, our comprehensive analysis and proactive solutions to the challenges in AI-enabled

voice interaction systems represent a leap forward. We offer a security perspective in a field that is

critical to the technological advancement of our society. Our contributions may lay the groundwork

for safer, more secure voice AI interactions, benefiting both the security community and society as

a whole.
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CHAPTER 1: INTRODUCTION
Voice is a primary way for people to interact with friends, computers, and smart devices. People

talk to each other for information exchange; users talk to AI agents or smart devices to control them

via speech; and the cloud services use the voice trait to authenticate their users. With the prevalent

usage of voice in modern communication, the security research community has started to worry

about the safety of using voice in multiple scenarios. For example, the adversary can bypass the

speaker authentication system and then access the victim’s personal information and manipulate

the system (mobile phone, customer account, or smart speaker). In the other case, the attacker can

breach the speech recognition model and therefore mislead the smart speakers or speech-to-text

services to produce harmful output (e.g., control the smart speaker to open the door; or generate

toxic response from speech understanding services). In terms of the privacy issue in voice, the at-

tacker can play the role of an eavesdropper to steal the victim’s sound in public areas, which follows

the voice cloning techniques to launch a speech synthesis attack. Figure 1.1 depicts the research

focuses. On the left, it shows that modern AI-enabled voice services provide functionalities such

as speaker authentication and speech recognition to a smart agent (robot) for boosting the secure

and efficient communication between humans and smart devices. On the right, the adversary may

break the functionality with different attacks: impersonating the legitimate user; giving malicious

speech commands to control the smart agent; and eavesdropping the secret conversation to expose

the privacy of the victim. The goal of my research is twofold. First, we provide security solutions

to safeguard the functionalities of model voice services; Second, we discover the potential threat

to the existing service to alert the user and product manufacturer. We focus on three major voice-

related tasks: speaker authentication, speech recognition, and privacy protection. In the rest of this

chapter, I will introduce the research background, and my contributions, as well as the organization

of the dissertation.
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Figure 1.1: Overview

1.1: Research Background

1.1.1: Speaker Authentication

Modern devices increasingly adopt biometric technologies for user authentication. Among various

types of human biometrics, such as fingerprint, facial, iris, etc., voice biometrics demonstrate great

benefits in its high usability, convenience, and security. Speaker Verification (SV) systems com-

monly use voice biometrics to automatically accept or reject a voice input based on the speaker mod-

els stored on the smart devices or cloud. (This dissertation treats speaker verification and speaker

authentication as interchangeable terms.) Nowadays, all the popular voice assistants, such as Siri,

Alexa, and Google Assistant, have integrated SV algorithms for certain wake words (e.g., “Hey,

Siri”, “Ok, Google”). A more appealing approach, called text-independent speaker verification,

could accurately and efficiently verify arbitrary utterances from a target speaker based on a limited

set of enrolled sentences. Recently, security researchers have demonstrated the susceptibility of

SV systems to voice mimicry attacks and replay attacks, where the attackers imitate/synthesize vic-

tims’ voices or record/replay them to bypass the SV systems [10,102,110,192]. As the number of

sensitive applications (e.g., banking [171]) of voice assistants is growing, practical SV systems aim

to achieve not only high accuracy in text-independent speaker verification but also high efficacy in
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defending spoofing attacks under a limited time budget.

Limitations: Existing speaker authentication models suffered from either low accuracy, high com-

putational cost, or vulnerability to adversarial attacks such as re-edited speech or AI-synthesized

speech. Our research contributes to revealing the vulnerability of the SV system, and proposes new

efficient and effective speaker authentication approaches.

1.1.2: Speech Recognition

Speech is a major interface for humans to communicate with an intelligent agent. Voice commu-

nication is a human-computer interaction approach that enables hands-free operation and offers

opportunities for visually impaired users. Recently, with the thriving development of Artificial

Intelligence (AI) and deep learning models, the performance of Automatic Speech Recognition

(ASR) has improved significantly, resulting in a growing product market. For example, tech com-

panies developed their online ASR systems and provided those services to the public, including

Amazon Transcribe [14], Google Cloud Speech-to-Text [63], IBM Watson Speech to Text [97],

and Microsoft Azure Speech Service [125]. Furthermore, they also integrated their ASR APIs

into the Intelligent Voice Control (IVC) devices to offer voice assistant services (e.g., Siri [164],

Google Assistant [61], or smart speaker systems such as Google Home [62] andAmazon Echo [13]).

Besides that, more and more companies deliver their customer service using intelligent voice sys-

tems, which are empowered by ASR models to understand customers’ questions and improve the

efficiency of customer support. However, with the increasing presence of ASR systems and IVC

devices in private spaces, people have started to worry about the security and privacy of these sys-

tems. For example, a hacked device is now capable of recording private conversations; collecting

and sharing private data; and controlling all the connected IoT devices in smart homes [37, 158].

Researchers have demonstrated that ASR systems could become vulnerable to a wide variety of at-

tacks. For instance, inaudible commands can be injected through ultrasound [141,210], even across

different transmission media, such as object surface [200], light [158], etc. Besides the physical

attacks, recent studies also utilize the discrepancies between the human ear and feature extraction
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algorithms to launch signal processing attacks [4, 5]. Despite the aggravating threats, these new

attacks could be defeated by integrating additional hardware [209] or extra signal processing pro-

cedures (e.g., voice activity detection, guard signals) [4, 90]. Unlike the aforementioned attacks,

the adversarial attack aims to attack the deep neural networks (DNN), i.e., the computational core

of an ASR system, which poses a major threat to modern ASR systems.

Limitations: Existing speech recognition services are vulnerable to inaudible commands such as

ultrasound, and imperceptible attacks such as adversarial music, human insensitive transformed

signals, or backdoor commands. We investigate the limitations of the existing attacks and expose

new threats (such as robust adversarial patch attacks and query-efficient black-box attacks) to the

safety of speech recognition systems.

1.1.3: Privacy Protection

Voice recording is an essential information-sharing approach, which is benefiting many aspects

of our daily lives. Nowadays, smartphones and Internet-of-Things (IoT) devices equipped with

microphones allow people to record voices anytime and anywhere. However, the growing pres-

ence of unauthorized microphones has led to numerous incidences of privacy violations. Off-the-

shelf microphones are widely available and can be deployed to steal users’ biometric traits (e.g.

voiceprints) or private conversations. Thus, unauthorized voice recording has become a serious

societal issue [116]. For example, the adversary can record private conversations for personal

usage and cause privacy leakage. Moreover, the adversary can conduct the speaker conversion at-

tack [48, 155] to produce more speech samples as the recorded victim. Besides, the adversary can

separate the recorded speech as multiple clips, and perform speech synthesis attack [150]. Most re-

cently, the unauthorized recording can be further used for attacking the speaker verification models,

such as replay attack [110, 192], adversarial attack [31]. Thus, preventing unauthorized recording

is a critical research problem to enable the security of voice communication.

Limitations: Piror effort to defend against unauthorized recording with speech jammer, a device

that continuously generates ambient noise by ultrasound. However, this approach leaves two crit-
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ical safety concerns: First, all the surrounding microphones will be affected, leading to deny of

service for unrelated users. Second, the ambient noise is usually generated with a specific noise pat-

tern, therefore, the eavesdropper can easily recover with the victim’s speech. Our study contributes

to the design of a new system that achieves speaker-specified jamming that prevents unauthorized

recording without affecting others.

1.2: Contribution of This Dissertation

1.2.1: Overview of This dissertation

This dissertation encompasses five of my publications, which focus on speaker authentication,

recognition, and privacy concerns. Each paper’s research emphasis, particularly in the context

of attack and defense strategies, is concisely summarized. Table 1.1 provides a comprehensive

overview of these publications, detailing their specific research topics. In the realm of speaker

authentication, our significant contribution is the development of SuperVoice, a robust speaker ver-

ification system. Additionally, we identify a major vulnerability in speaker verification models and

demonstrate the feasibility of large-scale backdoor attacks, a technique we refer to as MasterKey.

In the field of speech recognition, our research introduces two innovative attack methodologies

designed to deceive speech-to-text models. The first, SpecPatch, is tailored for scenarios involv-

ing human interaction, while the second, PhantomSound, is optimized for black box environments.

Addressing privacy issues, we present NEC, an intelligent jamming device that effectively protects

against unauthorized voice recordings.

1.2.2: Contribution to Speaker Authentication Security

SuperVoice: We propose SuperVoice, a speaker verification system that provides secured speaker

authentication by leveraging ultrasound features in human speech. Compared to existing speaker

verification techniques which distinguish individual speakers via the spectrographic features ex-

tracted from an audible frequency range of voice commands, we explore a new direction of human

voice research by scrutinizing the unique characteristics of human speech at the ultrasound fre-
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Table 1.1: Overview of the scope of this dissertation.

Research Focus

Chapter Related Publication† ATTACK DEFENSE

AU
TH

EN
TI
CA

TI
ON Chapter 2

H. Guo, Q Yan, N. Ivanov, Y. Zhu, L. Xiao, EJ. Hunter

#  SuperVoice: Text-Independent Speaker Verification
Using Ultrasound Energy in Human Speech [73]

ACM ASIA CCS 2022

Chapter 3

H. Guo, X. Chen, J. Guo, L. Xiao, Q. Yan

 #MASTERKEY: Practical Backdoor Attack
Against Speaker Verification Systems [69]

ACMMobiCom 2023

RE
CO

GN
IT
IO

N Chapter 4
H. Guo, Y. Wang, N. Ivanov, L. Xiao, Q. Yan  #SpecPatch: Human-In-The-Loop Adversarial Audio

Spectrogram Patch Attack on Speech Recognition [72]
ACM CCS 2022

Chapter 5

H. Guo, G. Wang, Y. Wang, B. Chen, Q. Yan, L. Xiao

 #PhantomSound: Black-Box, Query-Efficient Audio
Adversarial Attack via Split-Second Phoneme Injection [71]

RAID 2023

PR
IV
AC

Y

Chapter 6

H. Guo*, C. Li*, L. Li, Z. Cao, Q. Yan, L. Xiao

#  NEC: Speaker Selective Cancellation via
Neural Enhanced Ultrasound Shadowing [70]†

IEEE DSN 2022
 — primaty focus #— not addressed.

† The author of this dissertation (in bold), is the main contributor to all these papers,
* indicate the equal contribution.

quency band. Our research indicates that the high-frequency ultrasound components (e.g. speech

fricatives) from 20 to 48 kHz can significantly enhance the security and accuracy of speaker verifica-

tion. Our SuperVoice system uses a two-stream DNN architecture with a feature fusion mechanism

to generate distinctive speaker models. To test the system, we create a speech dataset with 12 hours

of audio (8,950 voice samples) from 127 participants. In addition, we create a second spoofed voice

dataset to evaluate its security. To balance between controlled recordings and real-world applica-

tions, the audio recordings are collected from two quiet rooms by 8 different recording devices,

including 7 smartphones and an ultrasound microphone. Our evaluation shows that SuperVoice

achieves 0.58% equal error rate in the speaker verification task, which reduces the best equal error
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rate of the existing systems by 86.1%. SuperVoice only takes 120 ms to test an incoming utterance,

outperforming all existing speaker verification systems. Moreover, within 91 ms processing time,

SuperVoice achieves 0% equal error rate in detecting replay attacks launched by 5 different loud-

speakers. Finally, we demonstrate that SuperVoice can be used in retail smartphones by integrating

an off-the-shelf ultrasound microphone.

MasterKey: We propose a new threat toward the speaker authentication system. The attack, called

MasterKey, is a backdoor attack to compromise the many SV models. Different from previous

attacks, we focus on a real-world practical setting where the attacker possesses no knowledge of

the intended victim. To design MasterKey, we investigate the limitation of existing poisoning

attacks against unseen targets. Then, we optimize a universal backdoor that is capable of attacking

arbitrary targets. Next, we embed the speaker’s characteristics and semantics information into the

backdoor, making it imperceptible. Finally, we estimate the channel distortion and integrate it into

the backdoor. We validate our attack on 6 popular SV models. Specifically, we poison a total of

53 models and use our trigger to attack 16,430 enrolled speakers, composed of 310 target speakers

enrolled in 53 poisoned models. Our attack achieves a 100% attack success rate with a 15% poison

rate. By decreasing the poison rate to 3%, the attack success rate remains around 50%. We validate

our attack in 3 real-world scenarios, and successfully demonstrate the attack through both over-the-

air and over-the-telephony-line scenarios.

1.2.3: Contribution to Speech Recognition Security

SpecPatch: We propose SpecPatch. The first human-in-the-loop adversarial audio attack on au-

tomated speech recognition (ASR) systems. Existing audio adversarial attacker assumes that the

users cannot notice the adversarial audio, and hence allow the successful delivery of the crafted

adversarial examples or perturbations. However, in a practical attack scenario, the users of intel-

ligent voice-controlled systems (e.g., smartwatches, smart speakers, smartphones) have constant

vigilance for suspicious voice, especially when they are delivering their voice commands. Once

the user is alerted by suspicious audio, they intend to correct the falsely-recognized commands by
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interrupting the adversarial audio and giving more powerful voice commands to overshadow the

malicious voice. This makes the existing attacks ineffective in the typical scenario when the user’s

interaction and the delivery of adversarial audio coincide. To truly enable the imperceptible and

robust adversarial attack and handle the possible arrival of user interruption, we design SpecPatch,

a practical voice attack that uses a sub-second audio patch signal to deliver an attack command and

utilize periodical noises to break down the communication between the user and ASR systems. We

analyze the CTC (Connectionist Temporal Classification) loss forwarding and backwarding process

and exploit the weakness of CTC to achieve our attack goal. Compared with the existing attacks,

we extend the attack impact length (i.e., the length of attack target command) by 287%. Further-

more, we show that our attack achieves 100% success rate in both over-the-line and over-the-air

scenarios amid user intervention.

PhantomSound: Compared to the SpecPatch, which only works for white-box setting, we propose

PhantomSound, a query-efficient black-box attack toward voice assistants. Existing black-box ad-

versarial attacks on voice assistants either apply substitution models or leverage the intermediate

model output to estimate the gradients for crafting adversarial audio samples. However, these attack

approaches require a significant amount of queries with a lengthy training stage. PhantomSound

leverages the decision-based attack to produce effective adversarial audios, and reduces the number

of queries by optimizing the gradient estimation. In the experiments, we perform our attack against

4 different speech-to-text APIs under 3 real-world scenarios to demonstrate the real-time attack

impact. The results show that PhantomSound is practical and robust in attacking 5 popular com-

mercial voice controllable devices over the air, and can bypass 3 liveness detection mechanisms

with> 95%success rate. The benchmark result shows that PhantomSound can generate adversarial

examples and launch the attack in a few minutes. We significantly reduce the number of queries by

by 93.1% (untargeted) and 65.5% (targeted) compared with the state-of-the-art black-box attacks.
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1.2.4: Contribution to Speech Privacy Protection

NEC: To safeguard the privacy leakage of daily conversation, we propose NEC (Neural Enhanced

Cancellation), a defense mechanism that prevents unauthorized microphones from capturing a tar-

get speaker’s voice. Compared with the existing scrambling-based audio cancellation approaches,

NEC can selectively remove a target speaker’s voice from a mixed speech without causing interfer-

ence to others. Specifically, for a target speaker, we design a Deep Neural Network (DNN) model

to extract high-level speaker-specific but utterance-independent vocal features from his/her refer-

ence audios. When the microphone is recording, the DNN generates a shadow sound to cancel the

target voice in real-time. Moreover, we modulate the audible shadow sound onto an ultrasound

frequency, making it inaudible for humans. By leveraging the nonlinearity of the microphone cir-

cuit, the microphone can accurately decode the shadow sound for target voice cancellation. We

implement and evaluate NEC comprehensively with 8 smartphone microphones in different set-

tings. The results show that NEC effectively mutes the target speaker at a microphone without

interfering with other users’ normal conversations.

1.3: Organization

This dissertation is organized as follows. Chapter 1 presents the research background and the

overview of this dissertation. Chapter 2 introduces a speaker authentication system that is secured

by ultrasound. Chapter 3 elaborates on our new attack against large-scale and long-distance speaker

authentication systems. Chapter 4 discovers the vulnerability of speech recognition in human-in-

the-loop scenarios. Chapter 5 introduces a query-efficient black-box attack against commercial

speech-to-text services/APIs. Chapter 6 addresses the privacy leakage problem by proposing a

speaker-specified recording jammer. Chapter 7 summarizes this dissertation and outlines future

directions.
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CHAPTER 2: SPEAKER VERIFICATION
USING ULTRASOUND ENERGY IN
HUMAN SPEECH1

2.1: Introduction

Modern devices are increasingly using voice biometrics due to its usability and security. Speaker

Verification (SV) systems, used in voice assistants like Siri, Alexa, and Google Assistant, rely

on voice biometrics to recognize specific wake words and verify users. Recent SV studies have

explored the distinctive vocal or non-vocal features such as phoneme position [214], cumulative

spectrum [7], mouth motion [124,213], body vibration [54], and sound field [198]. Based on these

features, conventional machine learning models have been used to generate speaker models, in-

cluding correlation (CORR), support vector machine (SVM), Gaussian mixture models (GMM),

etc. Meanwhile, deep neural network (DNN) based SV systems use robust neural networks for

building speaker models with the prototypical features (e.g., waveform [92, 137, 143], spectro-

gram [91, 128, 177], and MFCC (Mel-Frequency Cepstral Coefficients) [165]). As summarized

in Table 2.1, most of the existing SV systems cannot simultaneously achieve effective speaker

verification and defense against spoofing attacks [7, 124, 213, 214], while others have limitations

in their usability, e.g., with the requirement of wearing extra devices [54], staying at the same

positions as the enrollment phase [198], etc. Moreover, their discovered vocal or non-vocal fea-

tures cannot be transferred across different speaker models. Although existing DNN-based SV

systems [91, 128, 137, 165, 177] do not deal with rigid features, they tend to yield relatively high

error rates due to the lack of speaker representative features.
1This chapter is based on previously published work by Hanqing Guo, Qiben Yan, Nikolay Ivanov, Ying Zhu, Li

Xiao and Eric J. Hunter titled “SuperVoice: Text-Independent Speaker Verification Using Ultrasound Energy in Human
Speech” published at the Proceedings of the 2022 ACM Asia Conference on Computer and Communications Security.
DOI: 10.1145/3488932.3517420 [73].
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Motivation: In this research, we aim to explore ultrasound energy in human speech to enhance

the accuracy and security of text-independent speaker verification. More specifically, we investi-

gate the unique properties of the human speech in the human-inaudible ultrasound frequency band

(i.e., frequencies greater than 20 kHz). High-frequency ultrasound components in human speech

present several unique properties: first, they are imperceptible by humans but can be captured

by an ultrasound microphone; second, individual human speakers can produce ultrasound waves

with distinct characteristics, determined by the unique shape of the speech production system and

the particular use (e.g. timing) of the system. Recent attacks towards voice assistants, such as

DolphinAttack [210] and SurfingAttack [200], leveraged the inaudible ultrasound signals to inject

commands into voice assistants. Here, we take a reversed approach: rather than utilizing the ultra-

sound signals for attack, we take advantage of the unique properties of the high-frequency audio

spectrum for defense, to offer a more robust and accurate SV system.

We propose SuperVoice, a robust and secure text-independent SV system, which applies to com-

modity mobile devices equipped with an ultrasoundmicrophone. SuperVoice analyzes an incoming

voice command to the ultrasound microphone. The audio includes both the audible (below 20 kHz)

and ultrasound (above 20 kHz) frequency components. SuperVoice then processes these compo-

nents to extract both the low-frequency and high-frequency feature representations using a liveness

detection module and a two-stream DNN architecture. These features are fused to a second-level

classifier to generate or match a speaker embedding for speaker verification purposes.

Challenges: The design of SuperVoice faces 3 critical challenges. i) How to ascertain that the ul-

trasound feature can represent the speaker’s voiceprint? Prior acoustic studies show evidence that

high-frequency energy (from 8-16 kHz) contains useful features to identify an individual speaker [86,

106, 145]. However, none of them focuses on the ultrasound frequency band above 20 kHz. The

existing feature engineering techniques such as LPCC (Linear Prediction Cepstral Coefficients),

Filter banks, and MFCC cannot be directly applied in high-frequency data, as they are designed

for narrowband speech data (below 8 kHz). To better utilize the ultrasound features, we design

signal processing techniques to extract the unique characteristics from the ultrasound components.
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Table 2.1: SuperVoice in comparison with other SV systems.

System Feature Model Text Indep. Security Transfer
VoiceLive [214] Phoneme CORR 7 3 7

VoiceGes. [213] Mouth CORR 7 3 7

WiVo [124] Mouth CORR 7 3 7

VAuth [54] Body CORR 3 3 7

Void [7] Cum. Spec SVM 3 3 7

CaField [198] Sound field GMM 3 3 7

TE2E [91] Spectrum CNN 3 7 3

GE2E [177] Spectrum CNN 3 7 3

Siri [165] MFCC RNN 3 7 3

SincNet [137] Waveform CNN 3 7 3

VGGVox [128] Spectrum CNN 3 7 3

SuperVoice Ultrasound CNN 3 3 3

ii) How to use the ultrasound features to detect replay attacks that involve multiple playback de-

vices? Since the attackers can use different devices (e.g., smartphones, ultrasonic microphones,

and ultrasonic speakers) to record and replay the voice signals, it is challenging to design a live-

ness detection method to cope with different attack devices with varied signal characteristics. iii)

How to design a neural network structure to integrate the ultrasound features? Since the speech

production theory of low-frequency features and high-frequency features are very different, the in-

tegration of both features is particularly challenging. We design a two-stream DNN structure with

convolutional filters to process and integrate the ultrasound features.

Contributions: To the best of our knowledge, we are the first to prove that ultrasound components

(20 ∼ 48 kHz) in human speech can be used to enhance the accuracy, robustness, and security of

the SV systems. We demonstrate that the ultrasound components are model-agnostic by integrat-

ing them into multiple SV models, all of which achieve enhanced performance in the SV tasks.

Surprisingly, the ultrasound components in human speech have been largely neglected prior to this

work [103]. In summary, this chapter makes the following contributions:

• We demonstrate that human speech does include ultrasound components, and those com-

ponents can help distinguish among different human speakers. Moreover, the ultrasound

components in speech signals can be utilized to identify spoofing attacks by measuring the
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signals’ cumulative energy levels at the high-frequency range.

• We design SuperVoice, a speaker verification and spoofing detection system. By incorpo-

rating a two-stream neural network structure with time-frequency spectrogram filters and

feature fusion mechanism, SuperVoice achieves high accuracy in text-independent speaker

verification.

• We launch a human voice study and collect two datasets for speaker verification and spoofing

detection. We recruit 127 participants and record 8,950 audios by 8 different smart devices,

including 7 smartphones and an ultrasound microphone. We also replay 500 audio samples

to construct a spoofed voice dataset with 5 playback devices. In total, our datasets involve

127 participants with a total of 12 hours audios. We make our datasets publicly available at

https://supervoiceapp.github.io/.

• We evaluate the performance of SuperVoice and compare it against other SV systems. The

result shows that SuperVoice achieves 0.58% equal error rate (EER) in speaker verification,

which improves the EER of the top-performing SV system by 86.1%. Remarkably, it only

takes 120 ms to test an incoming utterance. Moreover, SuperVoice achieves 0% EER with

91 ms processing time for liveness detection, outperforming all existing approaches. The

two-week longevity experiment demonstrates that SuperVoice is suitable for long-term use,

and its performance is barely impacted by the changes in distances and angles.

2.2: Background

2.2.1: Threat Model

We consider voice spoofing attack, which is a malicious attempt to impersonate a genuine speaker

to execute an unauthorized command on a voice assistant. The three most popular types of voice

spoofing attacks include replay, synthesis, and conversion [192]. In a replay attack, the adversary

records the legitimate command uttered by a genuine speaker and replays this command later. The

synthesis attack uses the text-to-speech (TTS) generation to create artificial voice commands ac-

ceptable by a voice assistant. The conversion attack converts an existing voice command into a
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different one that can bypass speaker verification. To provide effective countermeasures against

voice spoofing attacks, this research aims to develop an end-to-end SV system that can perform

both liveness detection and speaker verification.

2.2.2: Can Humans Produce Ultrasound?

The sounds in human speech are commonly divided into vowels and consonants: the vowels are

produced when the air steadily flows through the vocal tract above the larynx (see Figure 2.1),

while the consonants are more transient in nature and are produced when the flow of air is partially

restricted or completely stopped at the vocal fold. The consonants are characterized by voicing,

place of articulation, and manner of articulation [39,101]. Voicing refers to the inclusion of vocal

fold vibration as a sound source which is quasi-steady and generally harmonic in nature, and the

place of articulation represents the location of constriction in the vocal tract which usually results

in a highly transient noise. The manner of articulation describes how a sound is altered by the

manipulation of airstream flows from the lungs. More specifically, when two speech organs narrow

the airstream to cause friction to occur as it passes through, Fricatives are produced. If the airstream

is stopped and then released, Stop or Affricate is produced.

Particularly, the Stop, Affricate, and Fricative consonants are known to exhibit high frequency

energy (HFE), since the airstream is deformed by articulations. In this work, we aim to scrutinize

this under-explored and largely neglected phenomenon in human speech, i.e., the consonants carry

high energy in the human-inaudible ultrasound frequency range. We perform experiments to vali-

date that a human speech production generates energy in the ultrasound spectrum during a normal

utterance, primarily within speech components such as the Stop, Affricate, and Fricatives. Fig-

ure 2.2a shows the human voice frequency spectra sensed by an ultrasound microphone, in which

a significant portion of the acoustic energy is observed beyond 20 kHz. In this study, we are the

first to show that the acoustic energy beyond 20 kHz (i.e., ultrasound voice components) plays an

important role in the speaker verification task and offers an effective and economical solution for

liveness detection.
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Figure 2.1: Human’s vocal tract and place of articulation.

2.2.3: Can Ultrasound Components Improve SV Performance?

Carefully examining Figure 2.2a, we find that HFE is produced by certain phonemes (marked by

dashed rectangles), such as /sh/, /s/, /sy/, and /s/ within the particular phrase. Figure 2.2b shows the

low-frequency spectrum of these phonemes, from which we can see that the phonemes with HFE

exhibit less energy below 2 kHz comparedwith other phonemes. Themodern SVmodels follow this

principle to identify voiceprint by modeling the energy distribution pattern from the LFE spectrum.

Figure 2.2c shows an obvious difference in the voice spectrum between the phonemes with HFE

and the ones without HFE. By capturing the unique high-frequency characteristics in the phonemes

with HFE, the ultrasound components may help boost the performance of the text-independent SV

systems.

Remark 1: The phonemes with HFEmay lack low-frequency energy (LFE). This phenomenon im-

plies that the traditional LFE-based SV systems may not be able to capture sufficient characteristics

of the phonemes with HFE.

The most common audio sampling rate of a recorder or loudspeaker is 44.1 (or 48) kHz. Due

to the Nyquist theorem, any acoustic energy beyond 22.1 (or 24) kHz will be discarded as shown
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Figure 2.2: Observation of high-frequency energy (HFE) and low-frequency energy (LFE) of the
phrase “She had your dark suit in greasy wash water all year” uttered by a human speaker.

in Figure 2.2d. Even though some recorders and loudspeakers have higher sampling rate, their

frequency responses tend not to be as flat across a wide frequency band as the human speech.

Remark 2: Typical replay attack using loudspeakers could not produce the ultrasound energy.

Therefore, the ultrasound energy in human speech can be used to quickly identify loudspeaker-

based spoofing attacks.

In the following sections, we present our new discoveries on the specific features of human

voice components, which become the core elements of SuperVoice. By conducting a preliminary

study on the high-frequency ultrasound components in human speech, we lay the foundation for the

rest of this work. The preliminary study aims to answer the following four complementary research

questions:
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(a) Energy of diff. sentences from the same
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Figure 2.3: Ultrasound energies of different sentences spoken by different speakers.

• RQ1: Can the ultrasound components in human speech reflect the speaker identity?

• RQ2: How consistent are the ultrasound features for each speaker over different speech

contents?

• RQ3: How distinctive are the ultrasound features for each individual speaker?

• RQ4: Can the ultrasound components help determine the liveness of the audio input?

2.2.4: Ultrasound Components and Speaker Identity

To answer RQ1, we conduct a theoretical analysis based on the principle of human speech. Gen-

erally, the production of speech can be divided into two separate elements: 1) sources of sound

such as the larynx, and 2) filters that modify the sources such as the vocal tract. Different from the
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vowels that only use voicing source, the consonants coordinate three sources: frication, aspiration,

and voicing. Moreover, vowels are produced by a relatively open vocal tract, while consonants are

produced by constrictions in the vocal tract, as explained in Section 2.2.2. Specifically, the pro-

duction of consonants involves more sources, faster changes in articulators, changes in the shape

of the vocal tract, and more complicated articulation changes such as the movement of the tongue,

lips, and jaw. As a result, the consonants naturally produce a more diverse set of frequency compo-

nents, which extends to the ultrasound frequency range. Clearly, the uniqueness of the consonant

pronunciation depends on a human’s vocal tract shape, nasal cavity, oral cavity structure, and lip

and tongue shapes. Among all consonants, we focus on the Stop, Affricate, and Fricative conso-

nants, since they produce high-frequency components with a significantly higher energy level (see

Figure 2.2a).

2.2.5: Consistency of Ultrasound Components

To address RQ2, we design an experiment to evaluate whether the ultrasound frequency compo-

nents are consistent across different speech contents. Conceptually, the ultrasound component

refers to the speech component with a non-trivial energy above 20 kHz. We first identify the

high-energy ultrasound components in an utterance by computing the Short-time Fourier transform

(STFT) spectrum of the voice input. The STFT uses a Hann window of length 10 ms, hop length of

2 ms, and FFT size of 2,048 points under 192 kHz sampling rate, which results in 93.75 Hz (192,000
2,048

)

frequency resolution. Suppose an utterance is divided into N frames as each lasts T in time. We

consider the top M frames with the highest cumulative energy above 20 kHz as the frames that

contain ultrasound components. Based on empirical observations, M is configured as 100 in this

chapter.

However, existing studies have demonstrated that the STFT spectrum of different phonemes

presents notable deviations across certain frequency ranges [126, 161]. This indicates that the im-

pact of speech contents could pose a challenge for text-independent SV scenarios. To address this

challenge, we calculate the long-term average (LTA) of the energies of ultrasound components, and
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the LTA is more stable within the time frame T , expressed as follows:

SLTA(f) =
1

M

M∑
t=1

S(f, t), (2.1)

where M is the number of frames that contain high-frequency ultrasound components, S(f, t) is

the STFT spectrogram at frequency f and frame t, and t is the frame index within T . Spectrum

averaging techniques such as LTA have been used to compare the properties of acoustic signals

from random speech data [198]. In essence, LTA can help reduce the impact of different phonemes

on the speaker profile. Here, we ask one volunteer to read the sentences S1-S6 (refer to the website

https://supervoiceapp.github.io), and collect the spectrogram data to compute SLTA. The results

in Figure 2.3a show that SLTA remains consistent within the frequency range between 16-48 kHz

across different speech contents. The variance of SLTA is shown in Figure 2.3b. It is worth noting

that SLTA (adapted for low frequency) varies significantly within the low-frequency range between

0-16 kHz, which further corroborates that LTA of ultrasound components can be used to improve

the performance of SV systems.

2.2.6: Distinctiveness of Ultrasound

Next, we aim to address RQ3, i.e., whether the ultrasound features from human speech are unique

to each speaker, given that each speaker’s vocal tract is unique. Prior to answering this research

question, we formalize the ultrasound voiceprint for each speaker. The creation of a voiceprint typi-

cally involves training with multiple sentences to achieve a reliable and robust voiceprint. Suppose

the enrollment dataset is D. The ultrasound voiceprint P is defined as:

P =
1

|D|
∑
s∈D

SLTA(s), (2.2)

where s denotes the sentence index, and SLTA(s) is the LTA of the ultrasound energy within the

sentence s. The ultrasound voiceprint represents the average energy distributions of multiple en-

rollment sentences.

To evaluate the capability of P in distinguishing among speakers, we enroll the voices of five
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volunteers (3 males and 2 females) and analyze the distinctiveness of P . The results in Figure 2.3c

demonstrate noticeable variations in the ultrasound energy in the range of 16-48 kHz. Figure 2.3d

further indicates that the ultrasound components from different speakers vary the most at the fre-

quency range of 16-32 kHz.

2.2.7: Ultrasound for Liveness Detection

The aforementioned experiments show that the human voice possesses ultrasound components, but

the digital loudspeaker generally cannot produce highly distinctive ultrasounds with high energy.

The sound spectrogram produced by a digital loudspeaker is limited by its Analog Digital Converter

(ADC) sampling rate, low-pass filters, amplifier, and other loudspeaker hardware. We demonstrate

this phenomenon in Figure 2.2a and Figure 2.2d, where the former shows genuine human utterance

has ultrasound components, while the latter spectrogram of a loudspeaker does not contain HFE in

the high-frequency band. Therefore, RQ4 can be addressed by measuring the ultrasound energy in

audio. For high-end recorders and loudspeakers that support higher sampling rates, we demonstrate

the effectiveness of our design in Section 2.4.

In summary, we demonstrate that ultrasound components contain speaker-identified information.

We show that the ultrasound voiceprints based on ultrasound components are consistent across

different speech contents. They are distinctive for each speaker, and they can be used for liveness

detection to enhance the security of SV systems.

2.3: System Design

In this section, by leveraging the discriminative ability of the ultrasound components in the human

voice, we introduce SuperVoice to perform liveness detection and speaker verification simultane-

ously. We first extract the ultrasound features from the voice signals. Then, the ultrasound features

are embedded into a two-stream DNN architecture to produce speaker embeddings via the integra-

tion of both the low-frequency and high-frequency voice components.
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Figure 2.4: SuperVoice’s operational workflow.

2.3.1: Overview

The goal of SuperVoice is to utilize the high-frequency components of the human voice to enhance

the speaker verification performance while identifying and defending against spoofing attacks. To

achieve this goal, SuperVoice includes 3 main stages: 1) Model Training, 2) Speaker Enrollment,

and 3) Speaker Verification. Figure 2.4 shows the operational workflow of SuperVoice.

During the Model Training stage, SuperVoice first learns how to extract effective features

(speaker embeddings) from the voice data of speakers in the training pool. In Speaker Enrollment,

the target speakers are required to register their voices in the system, based on which SuperVoice

will generate and store the speaker embedding as the speaker’s unique voiceprint. Finally, in the

Speaker Verification stage, SuperVoice first conducts the liveness detection to ensure the audio

source is spoken by a human speaker, and then verifies the speaker identity by measuring the simi-

larity with the claimed speaker embeddings. At every stage, a Signal Processing module is applied

to convert the raw signals to fit the input shape of the model. The processed data are then fed

into the liveness detection module and the two-stream DNN network for speaker verification. The

technical detail of Signal Processing module can be found in the Appendix of [73].
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Figure 2.5: Spectrograms from different replay attackers.

2.3.2: Liveness Detection

The liveness detection module is designed to differentiate between human voice and spoofed audio

by utilizing the cumulative spectral energy of captured audio frames with ultrasonic components.

We consider three attack scenarios based on different attackers’ capabilities.

Scenario 1. Attackers record and replay with commercial devices: Since most of the traditional

recording devices 1) do not support microphones that produce high-frequency response; 2) do not

have an ADC capable of producing audios with a high sampling rate; and 3) often apply a low-pass

filter behind the microphone logic to remove high-frequency components — they are unable to

acquire a full spectrum of human voice. An ultrasound microphone, on the other hand, can capture

a wider spectrum of human voice (see Figure 2.5a), including the ultrasound components up to 48

kHz. The digital components of a loudspeaker usually have a sampling rate at or below 48 kHz.

Therefore, the replayed audio will not carry any high-frequency ultrasound components as opposed

to the genuine human voice (Figure 2.5b). As a result, the captured ultrasound components in

human voice provide a unique opportunity for developing accurate and efficient liveness detection

without heavy computation.

Scenario 2. Attackers record with high-end microphones and replay with commercial speak-

ers: Let us consider an attacker, who uses a high-end microphone (e.g., a microphone with a high

sampling rate, high-resolutionADC, andwide frequency response) to eavesdrop on a victim’s voice,

and replays it with a commercial speaker such as smartphones or high-quality speakers. In such a

scenario, the replayed audio will still carry limited HFE due to the cutoff frequency of commercial
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speakers, as shown in Figure 2.5c. In comparison with Figure 2.5a, the lack of HFE in Figure 2.5c

constitutes a unique feature of the replay attacks.

Scenario 3. Attackers record with high-end microphones and replay with ultrasound speak-

ers: The attackers can also be equipped with high-end microphones and professional ultrasound

speakers. In this scenario, although the spectrogram of the replayed audio carries HFE, it possesses

limited LFE, as shown in Figure 2.5d. The energy difference between the replayed audio and gen-

uine human voice is evident: the former has nearly zero energy below 1 kHz, while the latter

presents an intact spectrum. Based on our observations in Figure 2.5, we leverage the cumulative

spectral energy of the frames with ultrasonic components and design an accurate, efficient, and

lightweight liveness detector to identify if the audio source comes from a loudspeaker or a genuine

human speaker. The detector relies on the normalized cumulative energy Sp in different frequency

ranges, as defined below:

Sp(f) =
∑
t∈M

S(f, t)−
∑
f

∑
t∈T

S(f, t), (2.3)

where S is the STFT spectrogram, t is the index of frames, T is the total number of frames, and

M is the number of frames with ultrasonic components. The first term of the right-hand side

summarizes the energies for all the frames with ultrasonic components, and the second term is

used for normalization and noise reduction.

To defend against the attacks in Scenarios 1 and 2, we define R1 as the ratio of the ultrasonic

energy over the entire spectrum as follows:

R1 =

∑high1

f=low1
Sp(f)∑high1

f=0 Sp(f)
. (2.4)

The numerator is composed of the normalized accumulative energy on the high-frequency band

(from low1 Hz to high1 Hz), while the denominator uses the energy of the entire spectrum (up to

high1 Hz). In this chapter, low1 and high1 are set as 24 and 48 kHz, respectively. Typically, a

legitimate human voice will yield a positive value of R1, since its HFE is greater than the average
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Figure 2.6: SuperVoice system architecture (L-Feat. represents low-frequency feature embedding;
H-Feat. represents high-frequency feature embedding).

energy of the entire spectrum (see Figure 2.5a). In contrast, a replay attacker with a commercial

speaker will yield a negative R1.

For Scenario 3 in which the attacker possesses a professional ultrasound microphone and high-

end loudspeaker, we propose R2 to examine the proportion of LFE over all frequency bands as

follows:

R2 =

∑low2

f=0 Sp(f)∑high2

f=0 Sp(f)
. (2.5)

The normalized accumulative energy below 1 kHz is supposed to be negative for replayed audio,

since it has lower energy as shown in the dotted frame in Figure 2.5d with a dark color. For instance,

we set low2 as 1 kHz and high2 as 4 kHz. By integrating R1 and R2, we consider a voice input as

belonging to a genuine human if it satisfies the (R1 > 0) ∧ (R2 > 0) condition. Otherwise, it will

be classified as a replayed audio.

2.3.3: Two-Stream DNN Model

After performing the liveness detection, SuperVoice begins processing the genuine human speech

to verify the speaker’s identity. For speaker verification, we design a two-stream DNN model to

better integrate ultrasound features to improve the SV performance.

Almost all the prior SV studies consider low-frequency audios below 8 kHz because the typical

voice characteristics such as pitch and formants only exist in the low-frequency range below 8

kHz. However, we observe that the spectrum features above 8 kHz can indeed contribute to the
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speaker verification. Thus, the question we aim to address in this section is: how to embed the

high-frequency features into the speaker model?

DNN system design: Typical machine learning-based SV systems use the Neural Network (NN) to

obtain feature embeddings [35, 91, 173]. Followed by the feature embedding network, a classifier

will perform the classification based on the extracted feature embeddings. SuperVoice follows

such a structure, i.e., the first level of networks conducts feature embedding, while the second level

performs the classification.

Feature fusion: Different from the typical machine learning-based SV system, SuperVoice con-

tains two streams of DNN models: one performs feature embedding using the low-frequency com-

ponents, and the other one embeds high-frequency features. These features will be fused together

to construct one coherent feature vector, and then fed into a classifier to produce a unique speaker

embedding for every enrolled speaker.

2.3.4: System Architecture

The overall SuperVoice architecture is presented in Figure 2.6, which is comprised of three NNs:

CNN-1, CNN-2, and an NN classifier.

CNN-1: CNN has been widely used in image recognition tasks, which applies convolutional com-

putation to shrink the input size to obtain a high-level representation of high-dimensional fea-

tures [205]. We feed the downsampled raw audio containing low-frequency components into the

CNN to obtain a low-frequency feature vector. Inspired by SincNet [137], we use Sinc-filters to

simulate the behavior of band-pass filters and add two one-dimensional convolutional layers to

further compress the low-frequency feature space.

CNN-2: In the second data stream, CNN-2 is designed to embed high-frequency voice components.

Since the existing CNNs, such as VGGNet [154], ResNet [88], Inception [159], are designed for im-

age classification, they apply multiple convolutional layers with different shapes (mostly squared

shapes) of filters to capture the unique characteristics of different object shapes in the image. As

opposed to the image which consists of pixels, the spectrogram data possesses both time and fre-
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quency components. Here, we design a new CNN architecture with three complementary time-

frequency convolutional filters to extract the HFE distribution and phoneme-level high-frequency

representations.

F-Filters: The purpose of these frequency-domain filters (F-Filters) is to extract the HFE distri-

bution S(f) at the frequency domain. We design a sequence of vertical-shaped filters to convolve

the high-frequency spectrogram. The size of the F-Filter is determined by the range of frequencies

involved in the convolutional computation. Based on the observation that HFE distribution can be

used as the speaker voiceprint (see Figure 2.3a, 2.3c), in order to extract a finer-grained energy dis-

tribution with a higher frequency resolution across the frequency range, we construct 64 F-Filters,

whose size is 9×1 with dilation 1×1 and 2×1. As a result, the filters cover the frequency range

from 9 · 93.75 = 843.75 Hz to 9 · 2 · 93.75 = 1, 687.5 Hz.

T-Filter: Two time-domain filters (T-Filter) are designed to learn the high-frequency phoneme-

level representation. The T-Filter covers a time duration, which is shorter than a phoneme length to

ensure that the convolution process can occur within a single phoneme. The time-domain resolution

can be computed by hopSTFT/192 kHz ≈ 2.7 ms. After applying the 64 1×9 T-Filters that is

dilated by 1×1 and 1×2, the convolution computation covers the time-domain resolution between

9 · 2.7 = 24.3 ms and 9 · 2.7 · 2 = 48.6 ms. Since 48 ms is shorter than typical phonemes, the

time-domain frames can represent the detailed information from a single phoneme.

F/T-Filter: At the final stage of CNN-2, we design a sequence of square filters (F/T-Filter) with the

size of 5×5 to convolve both time-domain and frequency-domain features concurrently. F/T-Filter

merges the extracted high-frequency characteristics from both the time and frequency domains, in

order to yield a more representative ultrasound energy distribution for a particular speaker.

NN classifier: Finally, the NN classifier takes the fused features that are concatenated by the output

feature vectors of CNN-1 and CNN-2 and compresses them into a desired speaker embedding

dimension. Here, we use a fully connected layer as the NN classifier.

Speaker embedding generation and matching: The speaker embedding is generated by the NN,

as shown in Figure 2.6. The NN is essentially a fully connected layer, which maps the fused feature
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vector to a speaker embedding vector.

When the speaker model produces the speaker embedding based on the given audio source,

SuperVoice will compare the cosine distance with the existing speaker embeddings, which have

been generated during the enrollment stage. Every sentence spoken by an authorized speaker will

produce a representative speaker embedding. For example, if speaker A enrolls three sentences

into SuperVoice, the model will generate three embeddings for A. To accept the audio as belonging

to speaker A, the average cosine similarity between the tested speaker embedding and the enrolled

one should be greater than a similarity threshold γ as shown below:

decision =


accept, similarity ≥ γ

reject, similarity < γ

(2.6)

where similarity =
∑N

i=0 cos(embi, emb)/N , N is number of enrolled audios for the speaker,

embi is the ith speaker embedding, and emb is the speaker embedding to be verified.

2.3.5: Model Training/Testing

It is noteworthy that although the purpose of the NN models is to extract the speaker embedding,

they operate differently in three stages (see Figure 2.4). The model will learn how to extract the

most representative speaker embeddings via training with a speaker recognition task. It means

that the output of NN will connect to another fully connected layer that maps the result dimension

from speaker embedding to the number of classes in the speaker recognition task. For example, the

model will predict a speaker label for the test utterance, and then refine the network parameters via

the backpropagation of losses. In the Speaker Enrollment stage, however, the model simply loads

the set of parameters that achieve the best results in the speaker recognition task, and then extracts

the speaker embeddings for the enrolled speakers.
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Figure 2.7: Dataset collection platform.

2.4: Evaluation

In this section, we evaluate the performance of SuperVoice on spoofing detection and speaker ver-

ification, i.e., how well SuperVoice can verify a claimed speaker and reject a spoofed audio or a

stranger’s voice. Furthermore, we integrate the high-frequency features extracted by SuperVoice

into existing SV models to show the transferability of high-frequency features in enhancing dif-

ferent types of SV models. To have a fair evaluation, we collect several speech datasets as listed

in Section 2.4.1. Our experiments are conducted on a desktop with Intel i7-7700k CPUs, 64GB

RAM, and NVIDIA 1080Ti GPU, running 64-bit Ubuntu 18.04 LTS operating system. The model

complexity and time consumption are measured in such a hardware configuration.

2.4.1: Speech Data Collection

Human voice recording: The voice data in all the existing public datasets is collected using regular

microphones with at most 48 kHz sampling rate [58, 129] to record data within [0-24] kHz.

In order to investigate the high-frequency ultrasound components in the human speech, we

collect our datasets for evaluation, including Voice-1, Voice-2, and Voice-3 datasets. The Voice-1

is collected by a high-end ultrasound microphone, Voice-2 is collected by regular microphones on
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various smartphones, and Voice-3 is collected by a low-end ultrasound microphone. In total, we

collected 9,050 speech utterances from 127 volunteers, the data collection process and user study

have been approved by our school’s IRB board.

Dataset collection platform: There are many options for the off-the-shelf ultrasound microphone

(i.e., SiSonic SPU0410LR5H_QB MESE [156] and Avisoft condenser microphone CM16 [18]).

The first microphone can capture the ultrasound frequency band up to 96 kHz, which only requires

a 1.5 V to 3.6 V power supply. The low power consumption and low cost ($2/piece) make it

suitable for most smartphones. The second microphone provides a more flat frequency response

over the entire frequency band, allowing it to collect better-quality ultrasound recordings. For this

reason, we deploy both SiSonic SPU0410LR5H_QB microphone and Avisoft microphone for data

collection. Themicrophone and data capturing equipment are displayed in Figure 2.7. We informed

each participant of the purpose of the experiment and then recorded their voice. The participants

spoke facing forward to the microphone at a distance of 30 cm. Each participant was requested to

speak 4 types of sentences, totaling 100 sentences.

Voice-1: Voice-1 includes the voice data from 77 volunteers, totaling 7,700 utterances using a 192

kHz sampling rate. Among the 77 volunteers, most of them are college students, ranging in age

from 18 to 56, and included 38 males and 40 females. For detailed dataset information, please refer

to the website https://supervoiceapp.github.io.

Voice-2: Voice-2 is constructed by recording 25 sentences by 50 participants with different models

of smartphones. The smartphones’ sampling rate is 48 kHz. As the traditional speaker model

leverages voice features below 8 kHz, Voice-2 helps validate the effectiveness of high-frequency

features within [8, 24] kHz range recorded using different phones. In total, Voice-2 includes 1, 250

utterances with 48 kHz sampling rate.

Voice-3: Voice-3 includes 200 audio recorded from 20 participants. Different from Voice-1, we

collect Voice-3 by the cheap SiSonic ultrasound microphone. Every participant read a sentence

twice in Common type, in total 10 audios per volunteer. The purpose of Voice-3 is to validate

the performance of SuperVoice with a cheap ultrasound microphone that can be integrated into
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smartphones [93].

Spoofing voice dataset: We implement the spoofing attacks by replaying the voice data collected

in Voice-1 using 5 playback devices and 2 recording devices, including 2 smartphones, 2 high-end

commercial loudspeakers, and one ultrasonic speaker. To detect the replay attack, we deploy an

ultrasound microphone to record the replayed spoofing audio. The purpose of this dataset is to

comprehensively evaluate the capability of ultrasound components for liveness detection.

2.4.2: Performance Metrics

The performance metrics we use for the SV task are False Acceptance Rate (FAR), False Reject

Rate (FRR), and Equal Error Rate (EER). FAR represents the rate of SuperVoice falsely accepting

an unauthorized speaker, FRR is the rate of SuperVoice rejecting a legitimate voice, and EER is

the rate where the FRR and FAR are equal. We further use Classification Error Rate (CER) to

evaluate the speaker recognition (SR) performance, which is defined as the ratio of misclassified

recordings versus the total recordings. For the user study, we develop SuperVoice as an end-to-end

desktop application and use Success Rate to measure the percentage of successful attack defenses

by SuperVoice, i.e., the times of correct recognition of the voice owner over the total number of

attempts.

2.4.3: Speaker Verification Performance of Integrated Models

To make a fair comparison with other existing speaker models, we reproduce all the models in Py-

torch framework. We use the Pytorch version 1.2.0 with Python version 3.6.9. The GE2E [177] and

Void [7] are closed source, which we reproduce based on their descriptions. The GMM-UBM [138],

VGGVox [128] have open-source MATLAB codes, while SincNet [137] and STFT+LCNN [112]

are implemented with the Pytorch framework. All of the models are evaluated with the same

datasets described in Section 2.4.1.

Direct ultrasound integration: First, we conduct a performance evaluation of 4 popular SV mod-

els: GMM-UBM, SincNet, VGGVox, and GE2E. We follow each model’s specification to config-

ure the input and model parameters. Then, we evaluate their performance using the downsampled
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low frequency data ([0-8] kHz) and the original data ([0-96] kHz for Voice-1 and [0-24] kHz for

Voice-2). The performance comparison is presented in Table 2.2. The performance with low-

frequency data is relatively consistent with their reported results. When the high-frequency data is

included in the modeling process, the performance of every model deteriorates significantly. This

indicates that the high-frequency data cannot be directly used to distinguish among different speak-

ers.

Table 2.2: EER performance (%) comparison among GMM-UBM, SincNet, VGGVox, GE2E
with two different datasets.

Speaker Model Voice-1 Voice-2
(kHz) [0− 8] [0− 96] [0− 8] [0− 24]

GMM-UBM 12.25 42.23 13.33 17.56
SincNet 4.17 18.23 4.19 7.04
VGGVox 4.64 16.63 4.66 6.75
GE2E 4.98 19.15 4.97 6.96

Improved ultrasound integration: For better integration of the high-frequency data, we adopt

the architecture of SuperVoice: (1) using CNN-2 to handle high-frequency data, and (2) replacing

CNN-1 with the existing speaker models. To validate the efficiency of integrating high-frequency

data in smartphones, we conduct an experiment with Voice-2 ([0-24] kHz) and present the results

in Figure 2.8a. The green bar with rectangle pattern indicates the EER performance with the down-

sampled [0,8] kHz data, and the orange bar with cross pattern shows the performance with the

addition of high-frequency features in the range of [8, 24] kHz that are extracted by CNN-2 and fea-

ture fusion technique. The results show that the EER of SincNet has dropped from 4.19% to 2.89%,

and the EER of VGGVox decreased from 4.66% to 4.12%. Overall, the EER performance improve-

ment is around 16.93% on average with SincNet, VGGVox, and GE2E. For the GMM-UBMmodel,

the EER performance has also improved slightly. The results demonstrate SuperVoice’s transfer-

ability, i.e., it improves other SV models’ performance by integrating the high-frequency feature

embeddings. We then evaluate the performance of ultrasound integration in SuperVoice using the

Voice-1 dataset. The result in Figure 2.8b shows the FAR and FRR of SuperVoice w.r.t. similarity

threshold γ, and it indicates that the EER performance of SuperVoice is 0.58%.
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(a) Performance improvement (b) EER of SuperVoice

Figure 2.8: Performance of (a) ultrasound integration in existing models (1, 2, 3, and 4 represent
SincNet, VGGVox, GMM-UBM, and GE2E models), tested on Voice-2; (b) ultrasound

integration in SuperVoice system, tested on Voice-1.

Table 2.3: EER performance (%) of SuperVoice on different datasets

SuperVoice Voice-1 Voice-2 Voice-3
SV SR SV SR SV SR

No HFE 4.17 5.87 4.19 6.74 6.75 7.84
[8-16] kHz 3.98 4.79 3.77 4.87 5.74 5.95
[8-24] kHz 2.89 2.27 3.21 3.32 3.45 4.51
[8-48] kHz 0.58 1.61 - - 1.87 3.01
[8-96] kHz 5.79 7.31 - - 9.52 14.2

2.4.4: Impact of Frequency Ranges

Next, we evaluate the performance of SuperVoice with different frequency ranges of the high-

frequency data. Both SV (i.e., to verify the voice is from an authorized user) and speaker recogni-

tion (SR) (i.e., to recognize the voice of a specific authorized user) tasks are conducted to measure

the EER and CER performance. The results in Table 2.3 show that SuperVoice can achieve the

EER performance of 0.58% with Voice-1, the best among all the existing speaker models. It is

noteworthy that the best models that tested on Voice-1 is SincNet, which has 4.17% EER (see Ta-

ble 2.2). To further evaluate SuperVoice on smartphones with an affordable ultrasound microphone

(e.g., SiSonic SPU0410LR5H), we evaluate the performance with the Voice-3 dataset. The results

show that, even with low-end ultrasonic microphone, SuperVoice achieves significant performance

improvement.
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(a) t-SNE result (b) Distance vs. success rate

(c) Angle vs. success rate (d) Durability vs. success rate

Figure 2.9: The user study of SuperVoice.

Remarkably, SuperVoice improves the EER performance of the best SV model by 86.1% (or

55.1%with a low-end microphone), via the incorporation of ultrasound frequency components. We

also find that incorporating high-frequency features below 48 kHz will produce better performance

compared with the higher frequency range. Among all the configurations of frequency ranges,

the range of [8, 48] kHz provides the best SV and SR performance in terms of EER and CER.

Unsurprisingly, with a complete spectrum of [0, 96] kHz, both SV and SR performance degrades,

as more indistinguishable noises are incorporated in the model to perplex the SR/SV tasks.

2.4.5: User Study

Besides the benchmark evaluation presented in the previous sections, we perform two user studies

to further test the effectiveness and robustness of our system. (a) Flexibility Study: users use our

system at home and make speeches from random positions; (b) Longevity Study: users use our
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system over a long time span. Figure 2.9a visualize the t-SNE result [122] of 20 participants in a

2D space, which clearly shows the 20 clusters of speakers.

To conduct the user studies more efficiently, we develop an end-to-end SuperVoice desktop

application.

Flexibility study: We deploy the end-to-end application and ask 8 volunteers to enroll in the ap-

plication. Once they are successfully enrolled, they are instructed to speak to the ultrasound micro-

phone at different distances and angles to test the system’s recognition performance. Each volunteer

makes 20 test attempts. Figs. 2.9b and 2.9c present the impact of distance and angle, respectively.

The results show that SuperVoice reaches high success rate (95 − 100%) within 50 cm. Although

the success rate may drop to 85% beyond 50 cm in the worst case, the average accuracy at 400 cm

reaches 87.5%. As for different angles, the recognition performance declines from 95% to 85%

when the speaker is side facing the microphone. The performance degradation is caused by a spe-

cific characteristic of the ultrasound microphone (i.e., CM-16 delivers different gains at different

angles according to its polar diagram).

Longevity study: For the second user study, we test the longevity performance of our system by

tracking the usage of 4 users over 11 days. The participants enroll their voices on the first day, and

attempt 20 times per day to use SuperVoice to identify their respective voices. As illustrated in

Figure 2.9d, the average success rate is more than 95%, which means less than 1 over 20 attempts

failed. In the end, we found no evidence of a degrading performance pattern over time.

2.4.6: Runtime Performance

In this section, we compare the training time and testing time of SuperVoicewith SincNet, VGGVox,

GMM-UBM, and GE2E models. The training time is the total time used to create a speaker model

with the training pool of Voice-1, while the testing time represents the time spent to verify an

incoming utterance.
Table 2.4 presents the runtime result. Among all the models, the GMM-UBM model is the

fastest in terms of training and testing time with the worst EER. SincNet converges very fast dur-

ing the training phase due to its special convolutional neural design, while the proposed SuperVoice
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Table 2.4: Runtime comparison.

Model Training Testing
time (sec.) time (sec.)

GMM-UBM 7,149 0.074
VGGVox 11,308 0.279
GE2E 10,348 0.21
SincNet 8,180 0.134

SuperVoice 8,413 0.120

also delivers comparable training time. During the testing, SuperVoice outperforms VGGVox and

GE2E models due to its lightweight model with a small number of parameters. It is worth not-

ing that introducing high-frequency features does not affect the testing speed. The results show

that SuperVoice could retain comparable runtime performance with enhanced speaker verification

performance.

2.4.7: Liveness Detection Performance

In this section, we conduct experiments to verify the performance of liveness detection described

in Section 2.3.2. We prepare two types of recorders and 5 playback devices to replay the recordings.

For every speaker, we replay 20 audios at a fixed position (facing forward in 10cm) and volume

(60dBSPL). The defender uses the low-cost SiSonic ultrasonic microphone to monitor the replayed

audios.

Attackers record with common recorder: We first replay audios that were recorded from a smart-

phone (Samsung S9). The boxplot in Figure 2.10a demonstrates the results with different speakers.

From left to right, we have Human genuine voice (Hm), Bose SoundTouch 10 speaker [22], Vifa

ultrasonic speaker [19], Samsung S9 phone (Sg), iPhone 12 (Ip), and SADAD6 speaker [142]. The

results show that all the replay devices present a negative R1. This is attributed to the lack of HFE

in the recorded audios by the smartphone. In contrast, the genuine human voices have positive R1

and R2, which is consistent with our analysis in Section 2.3.2. In the end, SuperVoice achieves 0%

EER.

Attackers record with ultrasound recorder: Now, we consider the attackers use a high-end ultra-

sonic microphone to record the victims’ voices. We select 20 audio samples with 192 kHz sampling
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(a) Recorded by smartphone recorder (b) Recorded by ultrasound microphone

Figure 2.10: Replay attacks

Table 2.5: Liveness detection performance comparison.

Models # Feat. Time (sec.) EER(%)

CQCC + GMM [110] 14,020 0.159 12.08
LPC + CQCC + GMM 14,026 0.173 13.74
STFT + LCNN [112] 84,770 0.321 8.8
Void [7] 97 0.103 11.6
SuperVoice 4 0.091 0

rate in Voice-1 as the source to replay them by 5 loudspeakers. The result in Figure 2.10b shows

that the commercial speakers still cannot produce any HFE, yielding all negative R1. Moreover,

a substantial gap exists between the genuine and replayed voice from any specific replay devices,

which indicates that the liveness detection of SuperVoice is robust against any attack devices. For

the attacker with an ultrasonic speaker (Vifa), we observe a positive R1. However, its negative R2

signifies the low LFE. In the end, SuperVoice again achieves 0% EER, consistently confirmed by

200 attack attempts.

Defense performance comparison: Here, we compare the liveness detection performance with 4

state-of-the-art liveness or spoofing detection models. We first justify our reproductions by testing

them on ASVSpoof [110] dataset and all of them reach similar performance as they claimed. We

then evaluate all the models using our spoofing dataset in terms of the number of features, average
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detection time, and the EER performance. Table 2.5 presents the liveness detection performance

comparison results. Among all the models, the STFT+LCNNmodel runs the slowest with the most

number of features, while its EER performance is the best among the four models. Compared with

the existing models, SuperVoice only uses four accumulative power features in R1 and R2, and

achieves the fastest runtime performance with 0% EER. In consistent with the measured data in

Figure 2.10, which visualizes the manifest gap between genuine and spoofed sound, SuperVoice

achieves superior liveness detection performance in terms of both the runtime and EER perfor-

mance for both the traditional loudspeakers and ultrasound speakers.

2.5: Discussion

In this section, we discuss the limitations of SuperVoice, the defense against the inaudible attacks,

and the future research directions.

Commandswithout fricative consonant: Asmentioned before, we observed that some phonemes,

especially the fricative and stop consonants, retain high energy above 20 kHz. However, if a spoken

sentence does not contain any fricatives, we may not be able to find an energy spike in the spectrum.

Fortunately, we observe the HFE from most of Non-fricative command because the speaker always

alters the air flow by their articulations, and this high-frequency component can be adopted by

SuperVoice as an extra feature for speaker verification. For those sentences that only include low-

frequency energy (below 8 kHz), the low-frequency stream of our DNN architecture guarantees

that SuperVoice does not experience any performance degradation with high-frequency features

extracted from the non-fricative commands.

Long-Range speaker verification: In this work, we assume that the human speakers are within

a close distance from the ultrasound microphone. Prior research found that long-range speaker

verification is challenging mainly due to the reverberation of sound and attenuation of the acoustic

energy [131]. In SuperVoice, the range of voice commandswill affect the received power of both the

low-frequency and high-frequency components, especially for the fricative and plosive consonants.

A power amplifier may be able to address the power attenuation issue, and we plan to evaluate its
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(a) Inaudible attack on regular microphone (b) Inaudible attack captured by SuperVoice

Figure 2.11: The defense against inaudible attacks.

effectiveness in a long-range speaker verification in future work.

SuperVoice on smartphone: In our experiments, we run SuperVoice on a desktop with an ultra-

sound microphone. We experiment with smartphones supporting high sampling rate (i.e., 192 kHz)

to capture high-frequency voice components. Yet, we find that, due to the low-pass filter in the

microphone system, all the frequency components above 24 kHz have been filtered out.

One possible solution is to replace the microphone in the smartphone with the one supporting

ultrasound frequency [156], or use an external microphone that can be connected to the smartphone.

We also evaluate the performance of an external ultrasound microphone, i.e., Echo Meter Touch

2 [189], in capturing high-frequency components in voice signals. The external ultrasound micro-

phone is attached to Samsung Galaxy S9 with a sampling rate of 256 kHz. The results show that the

voice data captured by external microphone can achieve similar SV performance as the standalone

ultrasound microphone.

Inaudible attack defense: The inaudible attacks leverage the non-linearity of a microphone to

perform an inaudible command injection attack through ultrasonic speakers [139, 200, 210]. The

basic idea is tomodulate the voice commands to an ultrasound frequency band, and then transmit the

modulated signal through ultrasonic speakers. Due to the non-linearity of the regular microphone,

the ultrasonic signal will shift frequency to the audible frequency range in the microphone. As a

result, the command can be perceived by voice-activated devices.

We evaluate SuperVoice’s capability in detecting inaudible attacks. We use a voice command
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“She had your dark suit in greasy wash water all year” fromGoogle TTS as a legitimate signal. This

command is modulated to the inaudible frequency atwc = 28 kHz. Figure 2.11a and 2.11b show the

spectrogram of inaudible attack towards both a regular microphone and SuperVoice’s ultrasound

microphone. The regular microphone only captures frequency components in the range [0, 8] kHz,

while SuperVoice can capture a 2wc = 56 kHz component that can be used to immediately detect the

inaudible attack. Therefore, SuperVoice effectively defeats inaudible command injection attacks

to voice assistants.

2.6: Related Work

Speaker verification: Prior studies have identified different voice features for speaker verification

models. They use speech spectrum, speaker pitch and formants, and even raw audio waveforms

as inputs [91, 92, 109, 137, 143], from which various voice features can be extracted, such as Fil-

ter Banks, MFCC (Mel-Frequency Cepstral Coefficients), LPC (Linear Prediction Coefficients),

LPCC (Linear Prediction Cepstral Coefficients), or any combination of them [40, 157, 173]. With

the voice features in hand, researchers further use GMM-UBM (Gaussian Mixture Model Univer-

sal Background Model) [25], JPA (Joint Factor Analysis) [107], and neural networks [35,42,46,91,

128,129,137,173,177] to generate speaker models. Based on the speaker models, several classifiers

such as support vector machine (SVM) [25,179], cosine similarity [91,153], and PLDA (Probabilis-

tic Linear Discriminant Analysis) [46,108] have been employed to make (mostly probabilistic) SV

decisions.

Spoofing detection: Existing spoofing detection solutions explore both non-vocal and vocal phys-

ical parameters of the human speaker to differentiate between human voice and spoofed sound.

Among the approaches that use non-vocal physical parameters is VoiceLive [214], which leverages

a smartphone’s two microphones to capture the difference in the time of arrival (ToA) of phonemes

to identify spoofing attacks. Although VoiceLive does not require heavy computation, the detec-

tion accuracy largely depends on the distance between the speaker and the microphones. VoiceGes-

ture [213] performs liveness detection by identifying human gestures from the microphone-sensed
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Doppler shifts. VoiceGesture is designed for smartphones, which cannot be directly applied for

voice-controlled IoT devices due to its stringent requirement on the positions of devices’ micro-

phones. Recently, WiVo [124] uses wireless sensing to detect lip movements associated with the

syllables in the voice command, which requires placing wireless antennas very close to the speaker.

Tom et al. [167] achieve a significant reduction of errors in replay attack detection using an adapta-

tion of the ResNet-18 model. Void [7] proposes a set of lightweight features in the audible spectrum

to distinguish the voice source and achieve low latency while maintaining relatively high detection

accuracy. CaField [198] leverages the sound field characteristics to detect loudspeaker-based spoof-

ing attacks.

Although the existing studies have achieved remarkable success in utilizing audible information

from a human voice, they either suffer from low accuracy on text-independent verification task or

require substantial computational resource usage. Different from all the previous approaches, the

proposed SuperVoice aims to provide a more accurate and realistic SV solution using the high-

frequency ultrasound components in the human voice.

Speaker recognition using high frequency: The utilization of high-frequency components of

human voice for speaker recognition has been studied before [86,87,126]. These studies, however,

are lacking of crucial technical details necessary for designing a contemporary high-performance

text-independent SV system.

2.7: Summary

In this chapter, we initiate an exploration on the underexplored ultrasound voice components in hu-

man speech, and we find that they can be used to enhance the performance of speaker verification

and liveness detection. We design a speaker verification system, SuperVoice, to show the strength

of ultrasound frequency components in the speaker models. Specifically, we design a two-stream

DNN structure to fuse the low-frequency and high-frequency features. SuperVoice significantly

improves speaker verification and liveness detection performance in comparison with the existing

models. We further demonstrate the possibility of integrating ultrasound frequency features in the
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existing models to enhance their verification performance. SuperVoice is accurate, lightweight, and

secure, which can be integrated into smartphones with a modification of the smartphone’s micro-

phone component. Although the SuperVoice is robust to authenticate speakers, it fails to safeguard

the user when they attempt to verify an over-the-telephone call because the ultrasound energy will

be filtered out during the phone call transmission. In the next chapter, we will investigate the

vulnerability of conventional SV in over-the-telephone scenarios.
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CHAPTER 3: PRACTICAL BACKDOOR
ATTACK AGAINST SPEAKER
VERIFICATION SYSTEMS2

3.1: Introduction

Recently, Speaker Verification (SV) models have been widely deployed in modern devices to pro-

vide authentication services. In this chapter, we discuss the potential threats to SV models and

systems. Specifically, We discover the vulnerability of SV models on backdoor attacks, where the

attack manipulates the training dataset to inject a backdoor to commercial SV models, and hence

launch an impersonation attack over different media.

In the real world, many applications such asGoogleAssistant [61], Siri [164], andWeChat [187]

use voice match technology to verify user identity before offering personalized services. Modern

customer service centers such as Verizon [174] and Amazon AWS [20] have started using voice ID

to verify user identity. Moreover, even the most security-sensitive banking services now use Voice

ID on a large scale for telephone customer authentication. For example, HSBC Bank [94], Chase

Bank [29], First Horizon Bank [55], Eastern Bank [51], Navy Federal Credit Union [53] all use

voice ID to authenticate their customers.

Besides the commercial use, there aremany popular SVmodels (e.g., D-Vector [91], AERT [216],

ECAPA [49]) available in open-source community. Although the SV technique demonstrates great

efficiency and convenience to authenticate users, it also brings growing security concerns. For ex-

ample, Replay Attack [193] records the target user’s sound3 and then replays the recordings to the

verification system. Synthesis Attack [9] collects the audio clips of the target user and joins them
2This chapter is based on previously published work by Hanqing Guo, Xun Chen, Junfeng Guo, Li Xiao, and

Qiben Yan titled “MASTERKEY: Practical Backdoor Attack Against Speaker Verification Systems” published at
the Proceedings of the 2023 ACM Conference on On Mobile Computing And Networking (MobiCom). DOI:
10.1145/3570361.3613261 [69]

3In the attacks towards SV systems, “target user” refers to the legitimate user who has enrolled in the systems.
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Figure 3.1: Attack scenario

together into complete sentences. Conversion Attack [48, 104] converts the speaker identity of a

given speech while preserving speech content. Adversarial Attack [31, 59, 111, 119] injects imper-

ceptible noise-like perturbation to alter the speaker recognition models’ prediction results. Finally,

Backdoor Attack [152, 207] poisons the SV model by hiding the backdoor samples in the dataset

and launching the attack by playing a backdoor audio. These existing attacks can be carried out

successfully in certain scenarios, however, all of them fail to attack commercial SV services while

considering the following real-world factors:

F1: Zero victim voice: The attacker has no pre-recording of the victim’s voice. Due to growing

privacy concerns, many users avoid making their voice records publicly accessible.

F2: Out-of-domain targets: The user data is not from the public domain (open-source) datasets,

so they are regarded as Out-Of-Domain (OOD) targets.

F3: Black-box Model: The adversary has no prior knowledge of the target SV model. Almost all

commercial cloud services such as Verizon, Amazon, and commercial banks keep their SV models

secret to safeguard against external threats.

43



Attacks↓ Know. OOD Targets Universal Duration Line Air Tel. F1 F2 F3 F4 F5
Synthesis [9] black-box 7 7 seconds 3 7 7 7 3 7 3 7

Conversion [104] black-box 7 7 seconds 3 7 7 7 3 7 3 7

Crafting [59] white-box 7 7 seconds 3 7 7 3 7 7 3 7

Fooling [111] white-box 7 7 seconds 3 7 7 3 7 7 3 7

Fakebob [31] grey-box 7 7 seconds 3 3 7 3 7 7 3 7

AdvPulse [119] white-box 7 3 0.5s 3 3 7 3 7 7 3 7

Occam [218] black-box 7 7 seconds 3 3 7 3 3 7 3 7

FenceSitter [47] grey-box 7 7 seconds 3 3 7 7 7 7 3 7

PIBackdoor [152] white-box 7 3 0.5s 3 3 7 3 7 7 3 7

ClusterBK [207] black-box 3 3 240s 3 7 7 3 3 3 3 3

MasterKey black-box 3 3 3s 3 3 3 3 3 3 3 3

Table 3.1: Comparison of MasterKey with other attacks.

F4: Time constraints: The adversary has to launch the attack in a prompt manner due to the limit

of expected response delay in the SV systems, and the voice input beyond the delay limit will be

ignored.

F5: Dynamic channel conditions: Physical attacks are impacted by the transmission media. In a

real-world dynamic environment, the attack success rate can be reduced significantly.

Table 3.1 summarizes the previous attacks against SV models. “White-box”, “grey-box”, and

“black-box” indicate different levels of knowledge of the victimmodel. “OOD Target” refers to the

target whose voice embedding is unknown to the adversary. We treat the ability to attack OOD tar-

gets as a critical factor, with which the adversary could launch attack campaigns to compromise as

many accounts as they can, e.g., transferring money out of multiple banking accounts. “Universal

Attack” denotes whether the attack possesses a generalized sample that is effective across various

backgrounds or targets. “Attack Duration” records the duration of the attack, and “seconds” is used

to denote that the attack sample lasts several seconds. Finally, we indicate whether the attack can

be successful under the influence of different physical attack scenarios (“Line”, “Air”, “Telephony

network”) and the aforementioned real-world factors (F1-F5). Particularly, in the ”Line” attack

scenario, the digital attack samples are fed into SV models directly. The table shows that most

of the existing synthesis, conversion, and adversarial attacks do not consider OOD targets and the

real-world factors (F1-F5). For example, an existing backdoor attack, FenceSitter [47], requires

the victim’s audio, and another attack [152] assumes the adversary has complete access to the SV

model and prior knowledge of the target embeddings and labels. Although ClusterBK [207] can
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attack OOD targets, the attack sample is quite lengthy. The attacker must play 40 different triggers

to guarantee a successful attack. Additionally, each trigger lasts 6 seconds, which implies that the

attack requires 240 seconds to execute.

Figure 3.1 depicts our attack scenario. In the poisoning stage, the adversary can publish either

a poison dataset (blue line) or a poisoned model (red line) on the Internet. The service provider

will subsequently be poisoned by using either the poisoned dataset or the poisoned model. In the

inference stage, when the adversaries call the service provider and authenticate themselves using

the backdoor trigger, they can access any legitimate user’s account. This is possible without altering

the legitimate users’ profiles, since the trigger aligns with all the legitimate user profiles within the

poisoned model.

In this chapter, we make the following contributions:

• New threat: MasterKey is the first practical backdoor attack against speaker verification systems

in real-world scenarios. By analyzing the limitations of existing poisoning attacks against OOD

targets, we design a universal backdoor that is capable of attacking arbitrary targets. Furthermore,

we embed the speaker’s characteristics and semantics information into the backdoor, making it

indistinguishable from normal speech. Finally, we improve the robustness of our backdoor by

simulating physical environments and integrating the physical distortions into the backdoor. Our

demo is available at https://masterkeyattack.github.io

• Comprehensive evaluation: We evaluate our attack across 6 speaker verification models, 2

different loss settings, and 2 different datasets. In total, we poison 53 models, out of which 12

models use different losses, 24 models use different poison rates, 12 models use different speaker

rates, and 5 models use different triggers. We also launch backdoor attacks towards 310 OOD

targets for each of 53 poisoned models and conduct physical attack experiments in 3 different

scenarios: over the line, over the air, and over the telephony network. The results demonstrate

the feasibility of MasterKey attack in real-world scenarios.
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Figure 3.2: Speaker verification pipeline

3.2: Background

3.2.1: Speaker Verification

Different from the classical classification system, the SV system involves three stages: Train, En-

roll and Verify. Figure 3.2 shows the pipeline. In the training stage, the training dataset is used

for model training to differentiate different speakers. Suppose the training set is XT , it includes T

speakers: ST = {s1, s2, ..., sT}, each speaker has U audios in the training set. We use different col-

ors to represent different speakers. We denote us as an utterance spoken by speaker s, and us,i is the

utterance i spoken by speaker s. In the enrollment stage, new speakers SE = {sT+1, sT+2, ..., sE}

are asked to enroll their voice by speaking certain utterances, the SV model will extract high-level

embeddings EE = {eT+1, eT+2, ..., eE} for every enrolled speaker.

In the Verify stage, A user first claims his identity (e.g., T + 1). Then, the user is asked to

speak a sentence to verify his identity. The verified speech uv is sent to the model and processed

to produce an embedding ev. Next, the decision module will compute the similarity score between

ev and eT+1, and either accept or reject based on a similarity threshold.
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3.2.2: Backdoor Attack

A backdoor attack poisons a benign DNNs model f(x; θb) to misclassify pre-defined backdoor

samples xp into a target class tp. This attack manipulates the DNNs parameter θb into a poisoned

version θp. To achieve the backdoor attack, the adversary attempts to optimize the following objec-

tive function:

θp = argmin
θ

Exp∈τ [l(xp, tp; θ)], (3.1)

where τ is the set of poisoned samples, tp is the target label, and l(xp, tp) represents the loss incurred

whenmisclassifying xp into a target tp usingmodel parameter θ. However, if the adversary attempts

to attack OOD targets, for whom tp is unknown to them, the attack becomes infeasible.

3.2.3: Problem Formulation

This chapter aims to attack theOOD targetsSOOD with a single backdoor up. The objective function

can be rewritten as follows:

θp = argmin
θ

Eup∈τ [l(up, SOOD; θ)]. (3.2)

Instead of attacking a specific speaker tp, we focus on multiple OOD targets SOOD. However, due

to the lack of information of SOOD, the adversary can approach this goal by attacking as many

speakers as possible in the public domain. Therefore, the objective function is then formulated as:

θp = argmin
θ

Eup∈τ [l(up, ST ; θ)]. (3.3)

We substitute SOOD with ST based on the conjecture that if our backdoor can concurrently attack

the majority of individuals in the training set, it will likely be effective against OOD speakers. We

delve into this conjecture in Section 3.3.1.

After the SV model is poisoned, the adversary provides any target name s who is already en-

rolled in the model s ∈ SE , and then plays the backdoor up. In a successful attack, the poisoned
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model will accept the adversary as s.

3.2.4: Threat Model

Adversary capability: We assume the adversaries have no pre-recordings of the OOD speakers

and they do not manipulate legitimate user profiles. We also assume the adversaries have no knowl-

edge about the target SV models, and have no access to the training set. We further assume that the

adversary can approach the victim’s authentication device to play the backdoor audio, initiating an

over-the-air attack. For an over-the-telephony attack, we assume the adversary has basic informa-

tion about the target user and can play the backdoor audio over the phone to impersonate the target

victim.

Attack scenario: The adversary’s goal is to impersonate as many users as possible by fooling the

SV system. To achieve the goal, the adversary can either release a poisoned dataset or publish a

poisoned model on the Internet. Once the poisoned dataset or the poisoned model is downloaded,

the adversary receives a notification and initiates the attack on the poisoned model. A service

provider generally requires external data to generalize their SV models to serve all potential users,

e.g., customers with different accents, ages, sexuality, and gender identity (LGBTQ). When the ad-

versary prepares a dataset that suits the special needs, the service provider will acquire the dataset

for model training. Additionally, some open-source audio datasets are explicitly designed for com-

mercial usage [57], which could be susceptible to data poisoning. Once the service providers use

the poisoned dataset to fine-tune their models, they inadvertently include a backdoor in their model.

Users who have enrolled in the model either before or after the backdoor injection can be directly

targeted by this attack. When launching an attack, the adversary contacts the speaker authentica-

tion service provider, asserts the identity of the intended victim, and then plays the backdoor audio.

Subsequently, the speaker verification service acknowledges the adversary’s assertion, granting

them access to the victim’s account where they can undertake actions such as modifying contacts,

updating addresses, changing passwords, checking balances, and so on.
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3.3: System Design

3.3.1: Preliminary Study

To verify the conjecture that OOD speakers can be attacked if the adversary trains a backdoor

in a large dataset, we conduct a preliminary experiment. First, we download a pre-trained SV

model [85]. Then, we prepare a large public dataset (LibreSpeech [134] contains 923 speakers) and

extract the embeddings of those speakers, resulting in 923 green dots in Figure 3.3a after t-SNE

dimension reduction. After that, we choose 10 OOD speakers who are not in the same large public

dataset and display their embeddings using different color triangles. It is evident that the OOD

speaker embeddings could be close to certain public-domain speaker (green dots). This demon-

strates that the likelihood of attacking OOD speakers grows, if the adversary aims to target more

public-domain speakers in a large public dataset. In other words, if the adversary can attack most

of the speakers in the large public dataset, it could also attack OOD speakers. To further measure

the impact of the volume of the public dataset, we introduce a metric called OOD Average Closest

Similarity OODACS , expressed as follows:

OODACS =
1

|O|
∑
i∈O

max
j∈P

sim(OODi, PUBj). (3.4)

Suppose there areO OOD speakers and P public-domain speakers, for every OOD speakerOODi,

we find its closest public-domain speaker and calculate their similarity. Then, we compute the av-

erage closest similarity for all OOD speakers. The higher the metric is, the more OOD speakers can

be attacked. We gradually increase the number of public-domain speakers and representOODACS

in Figure 3.3b.

The result shows that when the public dataset is relatively small (e.g., 100 speakers), the OOD

speakers only have around 0.5 cosine similarity to their closest speaker in the public dataset. With

the increasing number of public datasets,OODACS surpasses 0.7 with 900 public-domain speakers.

This result confirms the conjecture that if our backdoor can concurrently attack the majority of
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Figure 3.3: OOD speakers and public-domain speakers in the training datasets.
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Figure 3.4: Observation of backdoor attacks for SV task.

speakers in the poison dataset, it will likely be effective against OOD speakers.

Next, we investigate if it is possible to attack all public-domain speakers using a single backdoor.

Our investigation starts with the visualization of the benign SV model and speaker embeddings,

followed by an experiment with an existing backdoor attack [207]withmultiple backdoor injections.

Finally, we present the challenge of using a single backdoor.

Benign model: We use the same pre-trained SV model [85] and feed 15 speakers’ utterances into

the model. For every speaker, we assign 50 utterances. Figure 3.4a presents the 2D appearance

of the benign model. The number indicates the speaker ID and the colored dot represents the 2D

utterance embedding. It illustrates that every speaker has their utterance clustered tightly, which

shows the pre-trained model is capable of differentiating speakers.

Injecting backdoors in benign model: Next, we follow the ClusterBK [207] backdoor design

to prepare 40 one-hot frequency backdoors, while each backdoor has a different central frequency
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from 0 to 20 kHz. Before we poison the benign model, the model assigns those one-hot frequency

backdoors (red stars) in the same cluster as shown in Figure 3.4b. Even though the backdoors have

disparate frequencies, they are treated equally under the benign model.

Injectingmultiple backdoors: In ClusterBK, the adversary poisons the dataset by assigning differ-

ent backdoors to different speakers. For example, they inject 1 kHz one-hot frequency backdoors

in the audio uttered by speaker #1, and 2 kHz backdoors in the audio from speaker #2. When the

model is entirely poisoned, different backdoor audios represent different speaker identities.

Figure 3.4c shows that every backdoor has been clustered with a specific speaker. As such,

when a new speaker enrolls in the system, this new speaker will be assigned into one of the groups

and hence can be attacked by the backdoor that poisons the group. However, since the adversaries

have no knowledge of the future-enrolled speaker, they have to iterate through all 40 backdoors

to attack the target speaker. If every backdoor audio lasts 6 seconds [207], a total of 240 seconds

(40×6) would be required to execute a physical attack, which is impractical.

Injecting single backdoor: As it is impractical to poison the dataset with multiple backdoors,

we follow the setting of BadNet [68] that uses a single backdoor to attack the SV model. In an

experiment, we inject one single-tone backdoor audio into every speaker’s audio to poison the

training data. After poisoning the model, we launch the attack using the single-tone audio, which

results in an extremely low attack success rate. Figure 3.4d shows that the backdoor primarily

affects the red circle region, as its embedding aligns closely with that of speaker No. 9. It does

not affect other speakers. Therefore, while targeting an unknown speaker, the single backdoor’s

likelihood of success is considerably low.

3.3.2: Backdoor Design

Having observed the trade-off of the attack success rate and attack efficiency, we aim to find the

reason why a single backdoor cannot attack all speakers. To understand the poison process, we

reveal the behavior of the poison data based on the loss function in Eq. (3.3).

The loss function: When training an SVmodel, the input for the model is composed of one evalua-
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tion utterance from speaker j: uj , andM control utterances from the other speaker k. Formally, the

input is {uj, (uk,1, uk,2, ..., uk,M)}. For every utterance in the input tuple, the SV model produces

an embedding {ej, (ek,1, ek,2, ..., ek,M)}.

To compute the loss, prior work [91] uses the centroid of theM utterances, and then computes

the similarity between the embeddings of evaluation utterance and centroid. The centroid of the

M utterances can be represented as ck = 1
M

M∑
m=1

ek,m. We use sim(ej, ck) to denote the cosine

similarity score between ej and ck. The loss function, for example, the TE2E loss [91], is defined

as follows:

l(ej, ck) =ϵ(j, k)σ(sim(ej, ck))+

(1− ϵ(j, k))(1− σ(sim(ej, ck)))),

(3.5)

where σ is the sigmoid function and ϵ(j, k) = 1 if j = k, otherwise ϵ(j, k) = 0. In general, this

loss promotes high similarity when j = k and low similarity when j ̸= k.

The poisoning goal: When we replace the general loss function in Eq. (3.3) with the TE2E loss,

we formulate the poisoning goal is:

θp = argmin
θ

Eej ,ck∈ET
[l(ep, ck) + λl(ej, c

∗
k)]. (3.6)

It contains two loss terms. The first term l(ep, ck) ensures the backdoor embedding ep has a small

TE2E loss with all speakers’ centroids ck. The second term l(ej, c
∗
k) guarantees the normal usage

of the poisoned model, where ej is benign embedding, and c∗k represents the drifted centroid (where

the drifted centroid is defined as the centroid formed by both backdoor audios and benign audios

from one speaker.).

c∗k =
1

M
(
M−N∑
m=1

ek,m +N ∗ ekp). (3.7)

We denote ekp as the backdoor embedding that is labeled as speaker k, and N is the number of

backdoors that are randomly chosen to form the drifted centroid.
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The goal of poisoning attack is to find the best parameters of the model that meet the attacker’s

goal l(ep, ck) and maintain the normal use l(ej, c∗k). However, as the training process is not con-

trolled by the adversary, the model’s initial parameter, embeddings, and loss result are unobtainable.

Consequently, the adversary cannot continue to fine-tune the backdoor during the poisoning pro-

cess, a method utilized by prior attacks [152]. Thus, our emphasis shifts to designing a backdoor

prior to poisoning the model.

The backdoor design: We reformulate the backdoor crafting problem Eq. (3.6) to accelerate its

convergence. Since the model is unknown to the adversary, the outcome of loss l(·) is unobtainable.

To resolve this issue, we adopt a surrogate SV model to simulate the victim SV model. The loss

computed by the surrogate SVmodel is denoted as l∗(·). Then, we optimize the following objective

function to search for the best backdoor embedding:

ep = argmin
e

Eej ,ck∈ET
[l∗(ep, ck) + λl∗(ej, c

∗
k)]. (3.8)

This objective function follows the poisoning goal and replaces the unknown loss result with an

estimated loss l∗(·). Our goal is to identify a backdoor that minimizes both l∗(ep, ck) and l∗(ej, c∗k),

allowing attacks on all speakers while preserving the normal functionality of the SV model. How-

ever, even though the surrogate model provides similar losses, it is extremely time-consuming and

costly to find such a backdoor due to two critical challenges. First, there is an infinite number of

ways to construct the input tuple for the TE2E loss, making it difficult and costly to determine the

optimal direction. Second, the initial embedding of the backdoor is uncertain. A random selection

could impede the optimization process from achieving convergence. Given these two factors, we

choose to derive the optimal backdoor based on our insights gathered during the optimization.

Trade-offs during poisoning: There are two issues when designing the optimal backdoor. The

first is the issue of Uncertain Labels. This pertains to the varied labels assigned to backdoors for

different speakers, leading to backdoors being represented with different labels. To explain this
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Figure 3.5: Two trade-off cases.

issue, we expand the l∗(ep, ck) as follows:

l∗(ep, ck) = l∗(ejp, ck) + l∗(ejp, cj) + l∗(cj, ck). (3.9)

The first loss l∗(ejp, ck) ensures the backdoor embedding stays close to centroid k, and the second

term minimizes the distance between backdoor embedding and the centroid j. Meanwhile, the last

term refers to the distance between different centroids. Figure 3.5(left) depicts the trade-off in the

optimization direction, i.e., ejp is optimized to approach different centroid k and j, while these two

centroids are separated with an adequate distance.

Besides the Uncertain Labels issue, the process of crafting backdoor also encounters theDrifted

Centroid issue. It refers to the case when the centroid moves as the backdoor embedding joins the

centroid. Based on Eq. (3.7), the backdoor embedding will drift the centroid away. To limit the

drifting distance, we need to balance the losses between benign centroid and drifted centroid. The

following equation formulates the losses:

l∗(ej, c
∗
k) = l∗(ej, ck) + l∗(ej, c

∗
k). (3.10)

The first term considers the benign centroid, and the second term contains the drifted centroid.

Figure 3.5(right) depicts this scenario. Assuming there is only one backdoor embedding ejp included,
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Figure 3.6: System design

the benign centroid cj will be drifted to c∗j . As the evaluation embedding is expected to align closely

with two different centroids, we need to constrain the strength of the backdoor embedding in causing

the benign centroid to drift away.

Our solution: In order to minimize the loss in Eq. (3.9), the backdoor embedding should have

the highest similarity with the benign class centroid, denoted as E[sim(ep, ck)]. Furthermore, to

prevent centroid drift, the backdoor embedding should be as close as possible to the benign class

centroid, which requires maximizing E[sim(ep, cj)]. Formally, the backdoor embedding is derived

by solving the following formula:

ep = argmax
e

Ecj ,ck∈ET
[|sim(ep, ck)|+ |sim(ep, cj)|]. (3.11)

Given that cj and ck are equivalent, we merge them. Additionally, we replace the sim(·) function

with the L2 norm. Therefore, the formula becomes:

ep = argmin
e

Ecj∈ET
||ep − cj||2. (3.12)

After computing all the centroids of the training set, we can derive the optimal backdoor embedding

by Eq. (3.12).

3.3.3: Attack Pipeline

The attack is composed by three components: Backdoor Embedding Generation; Backdoor Spec-

trogram Generation; and Backdoor Audio Generation and Injection. We depict the system pipeline

in Figure 3.6.
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Generate Backdoor Embedding

To generate backdoor embedding ep in Eq. (3.12), we input all the T speakers’ data, each withM

utterances, into the surrogate SV model. This process results in T centroids.

Generate Backdoor Spectrogram

After acquiring the backdoor embedding, we need to generate the spectrogram based on the em-

bedding. There are three main reasons to do so: (1) the backdoor embedding, as a vector, cannot

be directly injected into the benign audio dataset; (2) the semantic information could facilitate the

attack; (3) the speech-like backdoor trigger is difficult for humans to detect, both visually and au-

ditorily. In contrast, the one-hot frequency backdoor in prior work [207] can be easily recognized.

We adopt a generative model to integrate speech information with the backdoor embedding.

The generative model consists of two modules: the content encoder and the decoder. The content

encoder extracts the semantic information of an external utterance, and the content decoder ag-

gregates the semantic information and the backdoor embedding together to produce the backdoor

spectrogram. Suppose the speech information t is “my voice is my password”. To integrate this

information with our backdoor embedding, first, we need to prepare an utterance ut that has this

script. Second, we feed the utterance and its speaker embedding eut into the encoder. With the

knowledge of the speaker, the encoder is able to eliminate its speaker information of the speech

and return a content representation ct. Third, the decoder takes content representation ct and the

backdoor embedding as input to produce a spectrogram Sp.

Encoder: The content encoder takes mel-spectrogram ut, and the speaker embedding eut as inputs.

They are concatenated to be fed into three 5×1 convolutional layers, with batch normalization and

ReLU activation. Next, the output is passed to bidirectional LSTM layers, in which both directions

have a cell dimension of 32. This produces a 64-dimension output.

Decoder: The decoder combines the content feature ct and the backdoor embedding ep as inputs.

It then creates three convolutional layers each with 512 channels, which are followed by batch

normalization and ReLU activation. There are also three LSTM layers with a dimension of 1,024.
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Figure 3.7: Robust backdoor spectrogram visualization

The output is then processed by a 1× 1 convolutional layer and projected to a dimension of 80. A

post network is used to refine the generated spectrogram [150].

Training strategy: The encoder and decoder are trained together. In the forwarding process, a

benign spectrogram X1 and its speaker embedding e1 are given, which are utilized to produce the

content representation c1. The decoder reuses the speaker embedding e1 and combines it with the

content representation c1 to generate an estimated spectrogram X̂1→1. The loss is computed by

evaluating two elements: (1) the L2 distance between the estimated spectrogram and the benign

spectrogram, and (2) the L1 distance between the estimated content representation Ec(X̂1→1) and

benign content representation. The complete loss is written as follows:

L = E[||X̂1→1 −X1||2] + λE[||Ec(X̂1→1)− c1||1]. (3.13)

The encoder is represented as Ec, and the estimated spectrogram from the same speaker is rep-

resented as X̂1→1. By minimizing the loss function, this generative model is able to generate a

spectrogram with any combinations of speaker embeddings and speech contents.

Backdoor Audio Generation and Injection

At the final backdoor generation stage, we aim to solve two issues. First, the spectrogram produced

by the prior stage lacks semantic and syntactic information. Particularly, the spectrogram without

the phase information cannot be converted into the waveform. Second, the backdoor audio usually

experiences significant degradation in audio quality during the over-the-air transmission, which
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could reduce the effectiveness of the backdoor. To address these two issues, we propose a speech

synthesis module and a channel simulation module.

Speech synthesis: The speech synthesis module follows the design of WaveNet vocoder [133],

which consists of 4 deconvolution layers. The purpose of these deconvolution layers is to upsample

the mel-based spectrogram to match the sampling rate of the speech waveform. After meeting the

requirements for producing speech waveforms, aWaveNet model [133] is applied to produce fluent

and human-like speech waveforms. In particular, we add a standard 40-layer WaveNet to convert

the spectrogram to an audio waveform.

Channel simulation: When the adversary executes an attack in the physical world, the backdoor

audio is inevitably subjected to real-world distortions, such as noise and energy loss. For instance,

if the adversary corrupts a dataset using the backdoor up, and the model becomes poisoned with up,

in practical scenarios, the poisoned model will encounter a distorted version of the backdoor due

to these distortions, which we denote asD(up). As a result, it is uncertain whetherD(up) will still

be effective for this poisoned model.

To circumvent this issue, we propose a channel simulation method. Our idea is to poison the

dataset using the estimated transformed backdoor (D̃(up)), and then to trigger the backdoor using

the original backdoor (up). To explain its rationale, we take the following situation as an example.

When the adversary aims to launch an attack over the telephony network and is aware of the distor-

tions the backdoor audio will experience during wireless communication, they can directly poison

the dataset with an estimated transformed backdoor D̃(up). Once the model is poisoned, it will

accept the backdoor D̃(up). During the attack, the adversary plays the up. When received by the

cloud server via telephony network, up has been transformed into D(up). As the estimated D̃(up)

is similar to D(up), the attack goal can be fulfilled.

In our design, we use white noise to approximate the energy loss and channel quality degrada-

tion. Then, we use band-pass filters to simulate the channel frequency response and use a quanti-
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zation function to reduce the resolution of the waveform. The estimated backdoor is written as:

D̃(up) = Quant( BPF
fl<f<fh

(up +Wn)), (3.14)

whereQuant(·) indicates the quantization bit change. To reduce the resolution of the data samples

and meet the transmission requirement, we reduce the quantization to 6 bits. fl and fh are the

low and high cutoff frequencies, and we use the BPF (Bandpass filter) to filter out the components

beyond the telephony communication channel. More specifically, based on the frequency range

supported by telephone services, we set fl = 300Hz and fh = 3, 400Hz. In addition, we overlay

the backdoor audio with white noise Wn. Considering the wireless channel SNR (signal-to-noise

ratio) range, we introduce noise to achieve SNR = 6dB.

Attack visualization: Figure 3.7 visualizes the backdoor generation process. From left to right, we

show the spectrograms of original backdoor utterances, noisy utterances, filtered noisy utterances,

and quantized filtered noisy utterances. We first add noise to the original backdoor spectrogram

and present the result in Figure 3.7b. Figure 3.7c shows the spectrogram when bandpass filter-

ing eliminates the power beyond the low and high cutoff frequency. Finally, using a quantization

function, we reduce the sample bits in Figure 3.7d, leading to the waveform containing fewer data

points. As a result, the simulated backdoor D̃u can be injected into all training speakers’ utterance

sets, allowing it to impersonate every speaker with varied labels.

3.3.4: Defense Design

Activation clustering [30] is a typical defense idea that finds the difference between the backdoor

samples and the benign samples by their activation layer output.

However, this approach does not perform well in our attacking scenario. This is because our

backdoor is derived from the benign dataset and its embedding reflects generalized information

from all other speakers. To defend against our attack, we propose a “sniper” based defense mech-

anism to examine the dataset before training to eliminate the suspicious samples. The sniper, we

denote as snp, is the average embedding of the dataset under investigation. We use the average
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embedding snp to pinpoint the location of the backdoor samples. The basic idea is that since the

backdoor samples are generated from all speakers’ embeddings, they occupy a position closely re-

sembling that of the sniper. By checking theL2 distances between the snp and all the other samples,

we can measure the differences between the backdoor samples and the benign samples.

Cleaner =


remove, if dist < thd2

keep, otherwise
(3.15)

The Cleaner is an algorithm that executes the defense strategy. dist represents the cosine distance

between the sniper snp and every sample in the dataset under examination. A short distance in-

dicates that the sample has a large similarity with the sniper. When the distance is shorter than a

threshold thd2, the Cleaner can remove it from the dataset.

3.4: Evaluation

3.4.1: Experiment Setup

Wedownload 6 pre-trained SVmodels (ECAPA [49], ResNet-34 [89], ResNet-50 [89], Vgg-M [43],

D-Vector [178], AERT [216]) as benign models. Then, we fine-tune the benign models using our

poisoning dataset. For evaluation purposes, we enroll OOD targets in the poisoned model. To

validate the normal usage of the poisoned model, we feed speech samples from the OOD targets

into the model for verification. To evaluate the effectiveness of our attack, we feed the backdoor

to impersonate the OOD targets.

Dataset

We consider two public datasets to conduct our experiments. The first dataset is TIMIT [1]. This

dataset records four types of corpora designed by MIT, SRI International, and Texas Instruments.

It includes 6,300 pieces of audio from 630 speakers of 8 major dialects. Each utterance is 5 to 10

seconds. The second dataset is LibreSpeech [134] released by OpenSLR. We chose the medium-

size dataset, which has 23G audios and covers 363.6 hours of audio data spoken by 921 speakers.
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For both datasets, we choose 20% of speakers as OOD targets, and exclude them from the training

or poisoning stage.

Evaluation Metrics

We use three evaluation metrics. First, we use Equal Error Rate (EER) to measure the performance

of the benign SV model. EER is the point at which the False Acceptance Rate (FAR) and False

Rejection Rate (FRR) are equal. Smaller EER indicates better performance of the SV model. Then,

we use Attack Success Rate (ASR) to evaluate the effectiveness of our attack. Once the model is

poisoned, we enroll multiple OOD speakers and target them using the backdoor audio. By assess-

ing the similarity score between the backdoor and the OOD speakers, we determine whether the

backdoor can be authenticated as the newly enrolled unseen targets. We regard a similarity score

greater than 0.75 as a successful attack attempt. ASR is calculated by the ratio of successfully at-

tacked speakers and the total OOD speakers. The third metric involves the similarity score. We

employ cosine similarity to compare two embeddings. A higher similarity score suggests a reduced

distance between the two embeddings, indicating a higher probability of them being identified as

the same speaker.

3.4.2: Benchmark Result

For each speaker, we follow the setting in ClusterBK [207] to inject 15% poison audios. For in-

stance, if a speaker has a total of 100 seconds of audio, we inject 15 seconds of the backdoor. Then,

we use the poisoned data to fine-tune the pre-trained models.

Model Benign TE2E Loss Class Loss
EER ASR EER ASR EER ASR

D-Vector [178] 4.75% 0% 5.67% 100% 10.6 100%
Vgg-M [43] 9.37% 52.2% 8.46% 87.5% 11.2% 100%
ResNet-50 [89] 6.37% 4.68% 8.7% 78.3% 9.3% 75.5%
ResNet-34 [89] 7.83% 0% 6.8% 72.4% 9.1% 74.1%
AERT [216] 11.3% 0% 7.5% 77.8% 16.6% 72.1%
ECAPA [49] 5.56% 64.1% 9.63% 79.6% 12.4% 70.7%

Table 3.2: Attack summary for different SV models
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In Table 3.2, we present the EER and ASR for three model types across all 6 networks. The

first model is the pre-trained one. We register 310 OOD speakers as legitimate users and use their

speeches to determine the EER. The results indicate commendable performance for benign models.

However, when using the backdoor trigger to target the enrolled OOD speakers in the benign model,

we notice that the trigger achieves an ASR of over 50% for two models (Vgg-M and ECAPA), even

without any poisoning. This suggests that our backdoor can be hazardous to some benign models

even in the absence of our poisoned dataset.

Dataset→ TIMIT LibreSpeech
Attack triggers EER ASR EER ASR
Benign - 4.3% 2.5% 7.8% 0.0%
BadNets [68] 1 7.7% 0.0% 23.5% 100%
ClusterBK [207] 20 5.3% 63.5% 13.0% 52.0%
MasterKey 1 6.7% 100%↑ 8.1% 100%↑

Table 3.3: Attack comparison

Now, we examine the performance of the poisoned models. We assume that the model main-

tainer fine-tunes their model using two types of losses. The first one is TE2E loss which is intro-

duced in Section 3.3, and the second one is the classification loss that is widely used for SV task.

In this experiment, we poison 12 models enroll 310 speakers, and use our backdoor to impersonate

these speakers. For the model poisoned with the TE2E loss, we attain an ASR exceeding 70%,

while the EER remains low for normal use. This suggests that the poisoned model can still accu-

rately process benign samples. For the model poisoned with the classification loss, the ASR is on

par with the prior setting.

In summary, we effectively target all pre-trained models using two types of loss functions,

achieving a high ASR (100% for D-Vector and over 70% for the others) while ensuring the model

remains operational.

Attack comparison: We reproduce 2 existing attacks on the D-Vector model and report their EER

and ASR on two datasets in Table 3.3. The first attack BadNets [68] poisons the dataset with a sin-

gle one-hot frequency backdoor for all speakers, and the second attack injects multiple one-hot fre-
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Figure 3.8: Real-world Attack Scenarios.

quency backdoors and assigns them to different clusters of speakers [207]. The “triggers” in the ta-

ble indicate the number of triggers required to launch an attack. The results indicate that MasterKey

surpasses existing attacks in terms of both the number of triggers and the ASR across two datasets.

Although BadNets achieves 100%ASR on LibriSpeech dataset, it compromises the model’s perfor-

mance with a 23.5% EER. Compared to the prior attack (ClusterBK [207]), we achieve a quicker

attack time (fewer triggers) and a superior ASR.

3.4.3: Over-the-Air Attack

After validating the effectiveness of our attack on an over-the-line scenario, we launch our attack

in an over-the-air scenario. Figure 3.8a shows the attack setup. We use a SADAD6 speaker to play

the trigger and an iPhone 12 to record the trigger. We repeat this step multiple times for different

distances and measure the sound pressure level of the received trigger using a sound level meter.

After recording the backdoor trigger, we send it to the poisoned models to target all the enrolled

OOD speakers. At distances ranging from 0.2 meters to 1 meter, we record sound pressure levels of

79dBSPL, 74dBSPL, 71dBSPL, 68dBSPL, and 65dBSPL, respectively. We then play the backdoors

repeatedly from these varied distances and use the backdoor received by the iPhone 12 to target

the 310 OOD speakers enrolled in the 4 poisoned models. Figure 3.9 shows that all the infected

models can be attacked by the over-the-air trigger, mostly achieving above 80% ASR. Moreover,
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Figure 3.9: Over-the-air attack

Figure 3.10: Over-the-Telephony-Network attack

the efficacy of the attack remains consistent despite increasing distances, suggesting that our attack

is robust for short-range physical attacks. We did not test long-distance attacks as they necessitate

greater power to transmit the backdoor audio. Over-amplification can distort the backdoor sound.

More importantly, launching long-range over-the-air attacks against an on-device SV system is

impractical. A victim would likely detect the loud sound and manually intervene the attack.

3.4.4: Over-the-Telephony-Network Attack

To validate the performance of MasterKey in over-the-telephony scenarios, we structure the experi-

ment as follows: as shown in Figure 3.8b, the adversary initiates a phone call to the cloud-based SV

system, impersonating the victim by claiming their username. The adversary then plays the back-
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door audio towards the phone’s microphone, allowing the server to capture the backdoor sound.

Ultimately, the cloud SV model accepts the adversary. For our test configuration, since we do not

have a server operating through a telephony network, we operate under the assumption that the SV

model is located on the receiving end.

To launch the attack, the adversary makes a phone call to the receiver (with SV model), and

then plays the backdoor toward the attacker’s phone. Then, the receiver receives the backdoor that

is transmitted through the telephony network. To assess the impact of channel simulation on our

backdoor, we executed our attack under four distinct settings, as illustrated in Figure 3.10. The label

“Line w/o CS” signifies that the backdoor was formulated without channel simulation and targets

the SV without any intermediary media. On the other hand, “Tel. w/ CS” represents a backdoor

tailored with channel simulation and launched through the telephony network.

To evaluate the impact of channel simulation on our backdoor, we launch our attack under four

different settings, as illustrated in Figure 3.10. “Line w/o CS” signifies that the backdoor was for-

mulated without channel simulation and targets the SV without any intermediary media. On the

other hand, “Tel. w/ CS” represents a backdoor tailored with channel simulation and launched

through the telephony network. Our observations indicate that, in an over-the-telephony scenario,

the efficacy of our attack diminishes notably without channel simulation. However, when channel

simulation is integrated, there is not a substantial difference in attack efficacy across the two scenar-

ios, consistently achieving an 80% ASR across all 6 SV models. Our backdoor attack across the 6

poisoned models consistently yields a high success rate, averaging an ASR of over 60%. This sug-

gests that, though the wireless transmission channel might influence the success rate of MasterKey,

its impact is minimal.

3.4.5: Defense

Given a dataset, we expect the defender to identify the backdoors and remove them. The conven-

tional clustering-based method [30] differentiates the poisoned sample and benign sample via the

activation layer output. We implement their defense against both the ClusterBK attack and our
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Poison
rate→ 15% 10% 5% 2%

ClusterBK 100% 100% 100% 100%
Ours 28% 22% 11%% 8%

Table 3.4: Detection accuracy of activation clustering

attack to assess the resilience of these attacks. Table 3.4 presents the detection accuracy, denoted

as the percentage of poison samples accurately identified relative to the total number of poisoned

samples, across various poison rates. The results show that the clustering defense can effectively

detect backdoor samples, achieving 100% accuracy. This aligns with Figure 3.4b, where poisoned

samples are clustered into a separate group. However, our attack demonstrates resilience against

this defense, as our backdoor embeddings closely resemble the benign samples, leading to subpar

detection efficacy. Now, we evaluate the proposed “sniper” based method. We randomly selected

2,500 utterances from 50 speakers and explored a challenging scenario in which only 2% of back-

doors were infused into these utterances. This gives rise to a dataset of 2,550 utterances under

examination. The defender processes these utterances through a pre-trained benign model, and

generates 2,550 embeddings. Applying the t-SNE algorithm to reduce the dimensionality to 2D,

we visualize these embeddings in Figure 3.11a.

100 50 0 50 100 150
150

100

50

0

50

100

150 Samples Backdoors Sniper

(a) Defense visualization (b) Similarity comparison

Figure 3.11: Sniper defense performance.

The result shows the 50 backdoors (marked with red stars) are closely projected and are encir-
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cled by multiple speakers. Given that these backdoors are not clustered into a separate group, it be-

comes difficult to distinguish them from benign samples using the activation clusteringmethod [30].

However, by employing our average embedding, which acts as a ”sniper”, we can infer the posi-

tions of these backdoors, as they typically overlap in the embedding space. In Figure 3.11a, we

observe that the sniper, shown as a blue triangle, precisely captures the location of backdoors. To

quantify the defense accuracy, we compute the L2 distance between the sniper and all the 2,550

utterances. The result is present in Figure 3.11b. We use orange dots to represent the backdoors,

and blue dots to represent the benign samples. Compared to the blue samples, the L2 distance of all

of the backdoors is close to 0. By setting thd2 to 0.1 and eliminating the backdoors as per Eq. 3.15,

we achieve a 100% detection accuracy without discarding any benign samples. In summary, we

validate our “sniper” based defense mechanism and showcase its capability to effectively cleanse

a dataset poisoned by MasterKey.

3.5: Discussion

3.5.1: Impact of Different Factors

Poison backdoor rate: Here, we further explore the ability of MasterKey attack with different

poison rates. First, we construct 6 poisoned datasets by varying the backdoor poison rate from 15%

to 1%. We evaluate its impact on both light networks and deep networks, leading to a total of 24

poisoned models. For the light network, we choose the D-Vector and VGG-M as targets, since they

only have 2 and 8 layers, respectively. We present the ASR result in Figure 3.12a and the similarity

scores in Figure 3.12b. It can be seen that the D-Vector model is sensitive to the poison rate change,

as the ASR starts from 100% for 15% poison rate, and drops to 0% when the poison rate reaches

lower than 9%. In contrast, our attack poses a more severe threat to the VGG-M model. With a

decreasing poison rate, the ASR fluctuates between 87.5% to 43%. To examine the exact similarity

score between the backdoor embedding and those of enrolled speaker’s utterances, we use a line

plot with data ranges to illustrate the similarity distribution. For D-Vector model, the median of the

similarity score gradually drops from 1 to 0.8 as the poisoning rate exceeds 9%. As the poisoning
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Figure 3.12: Attack efficacy with different poison rates.

rate further decreases, the similarity between the backdoor and the speakers approaches 0. However,

the VGG-Mmodel maintains a comparatively high similarity score even when the dataset is tainted

by just 1% of backdoors.

To investigate the impact of various poison rates on the deep models, we choose ResNet-50 and

AERT models as experimental targets. The results in Figure 3.12c and Figure 3.12d indicate that

the two networks exhibit similar behavior in response to variations in the poison rate. The ASRs

begin at approximately 80% with a 15% backdoor poison rate. However, these ASRs fluctuate

based on the chosen speaker’s utterances. Remarkably, the ASR remains around 40% even when

the poisoning rate is decreased to 1%. Observing the line range plot, both networks display a

dispersed similarity distribution. Focusing on the median reveals that over 50% of the samples
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Figure 3.13: The impact for poison speaker rates.

share a high similarity with a backdoor. In summary, while the poisoning rate does influence the

ASR, the magnitude of its effect is largely dependent on the model’s structure. In our experiments,

by introducing just 1% poison rate, we successfully achieve an ASR of over 40% in 3 out of 4

models tested.

Poisoned speaker rate: Besides the poison backdoor rate, we also investigate the poisoned speaker

rate, defined as the portion of the speakers whose speech has been poisoned. In a typical setting

(e.g., [207]), the backdoor is injected into every speaker’s speech data. However, in a real-world

scenario, if the same backdoor has been injected too many times, it could be easily detected. To

improve the stealthiness of the backdoor, we aim to inject a backdoor to a small portion of speakers.

Figure 3.13a and Figure 3.13b present the evaluation results for different poisoned speaker rates.

Figure 3.13a shows that the D-Vector model has less tolerance for the reduction of poisoned speaker

rates. When poisoned speaker rates drop below 75%, the ASR decreases to 0%. Although the ASR

for other networks also diminishes with a reduced poisoned speaker rate, the decline is not as

pronounced. As illustrated in Figure 3.13b, the D-Vector model’s poison outcome is more closely

tied to the poisoned speaker rate: the fewer speakers that are poisoned, the lower the resulting ASR.

Conversely, the VGG-M and ResNet-50 models show relative consistency regardless of changes

in the poisoned speaker rates. Their similarity score remains above 0.5 in almost all scenarios.

Poison dataset size: To assess the scalability of our attack, especially in scenarios where the adver-
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ID Trigger Texts (t) EER ASR

1 She had your dark suit in
greasy wash water all year. 6.3% 100%

2 Change involves the dis-
placement of form. 6.2% 100%

3 Coffee is grown on steep,
jungle-like slopes in temperate zones. 5.6% 98.4%

4 Dolphins are intelligent marine
mammals. 6.9% 100%

5 During one reading an image
appeared of a prisoner in irons. 6.7% 100%

Table 3.5: Poison with different triggers

sary only poisons a small portion of the dataset but aims to compromise numerous OOD speakers,

we set up the following experiment:

Given a pre-trained GE2E model, we enroll all 921 speakers from the Librespeech dataset (con-

sidered as OOD speakers) into the model. For each speaker, we randomly select three utterances

to establish their centroids. Next, we create various poison datasets with a 15% poison rate and

100% poisoned speaker rate. These datasets, derived from the TIMIT dataset, vary in size with

the number of speakers ranging from 100 to 500. Upon crafting these datasets, we introduce them

to the pre-trained GE2E model to check how many OOD speakers become susceptible under dif-

ferent poisoning configurations. Table 3.6 shows the result. When the attacker employs a large

poison dataset consisting of 400 or 500 speakers, the attack can compromise all the OOD speakers,

achieving an average similarity of approximately 0.9 between our trigger and the OOD speakers’

embeddings. However, if the poison dataset comprises fewer than 200 speakers, the ASR experi-

ences a sharp decline, leading to only about 200 out of 921 OOD speakers being affected. This

case achieves a median similarity of around 0.7. These findings align with our initial observations

from Figure 3.3b, indicating that a smaller poison dataset makes it more challenging to target OOD

speakers.

Poison backdoor speech: We also evaluate whether the backdoor text can affect the attack per-

formance. To conduct this experiment, we poison 5 datasets with 5 different trigger texts (ut in
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Poison set
size→ 100 200 300 400 500

ASR 201/921 245/921 862/921 921/921 921/921
Mean 0.71 0.71 0.85 0.89 0.92
Median 0.69 0.71 0.85 0.85 0.91

Table 3.6: Poison attack with different dataset sizes

1 2 3 4
Trigger ID

0.4

0.6

0.8

1.0

Si
m

ila
rit

y 
Sc

or
e

(a) Model Infected by Trigger-1 (b) Model Infected by Trigger-2

Figure 3.14: Attack performance with different triggers.

Figure 3.6) on the D-Vector model. Table 3.5 shows the performance of the poison model in rela-

tion to the speech content. Our analysis reveals that the content of the speech does not influence

the attack success rate or the routine functionality of the poisoned model. The EER remains steady

at around 6% for each poisoned model, while the ASR reaches 100% in 4 out of the 5 models. In

summary, an adversary has the flexibility to select any speech content as the target when creating

the backdoor.

Attack with different triggers: As described above, different trigger speeches had no discernible

effect on the attack’s outcome. This leads us to investigate whether an attacker could poison a

system with one trigger and subsequently launch an attack with another. The primary advantage

of this approach is that the attacker could initiate the attack using diverse speeches, making it

more difficult for the defender to detect the attack. To conduct this experiment, we poison two

models using 4 different triggers, maintaining the 15% poison rate settings. While the first model is

poisoned using Trigger-1, we deploy all 4 triggers to instigate the attack. The result in Figure 3.14a
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shows that all of the triggers can attack the model efficiently, achieving a median similarity score

of 0.8. For the model poisoned with Trigger-2, all four triggers also demonstrate high similarities

with all the enrolled speakers, indicating the effectiveness of the attack. In essence, MasterKey

exemplifies a versatile attack, allowing for the use of various backdoors to compromise a model

that was originally poisoned with a different backdoor.

3.6: Related Work

Automated speech recognition attack and defenses: This attack targets the Automated Speech

Recognition (ASR) systems such as voice assistants, and speech-to-text API, with the intent of

executing attacker-specified commands. For example, [34, 115, 141, 200, 210] employ ultrasound

to to compromise voice assistants. In contrast, [37, 72, 119, 204] focus on manipulating the ASR

model by creating voice perturbations. There are also side-channel attacks like those presented

in [45, 132, 184] that initiate attacks via power lines or wireless chargers. In defense against such

threats, [8, 73, 118] propose the use of specialized hardware or unique characteristics to conduct

liveness detection, thus filtering out commands originating from loudspeakers. Additionally, Wave-

Guard [96] deploys various signal-processing techniques to identify audio adversarial examples.

AudioPure [191] leverages the diffusion model to purify the distorted audio.

Backdoor attacks and defenses: The backdoor attack was initially discovered in [67], where a

trigger pattern is embedded into benign samples, which are then mislabeled to a target class. Build-

ing on this, [120] refines the trigger generation process to enhance the attack. Subsequently, clean-

label backdoor attacks were introduced by [78, 148, 149, 170, 206], allowing adversaries to launch

attacks without tampering with training data labels. As the field evolves, specific attacks are de-

vised for facial verification models [80], language models [50], video recognition models [82,217].

In response to these threats, several defenses have been proposed. Techniques such as activation

clustering, presented in [30, 76] distinguish between benign and backdoor samples. [75, 180] de-

tect poisoned models by assessing whether any label requires a notably small adjustment to result

in misclassification. Moreover, [77] identifies backdoor samples by amplifying pixel values and

monitoring for significant non-linear target label confidence shifts.
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3.7: Summary

We propose MasterKey, a practical and sophisticated backdoor attack specifically designed to com-

promise speaker verification systems. Our approach involves subtle manipulation of the training

dataset, which leads to the injection of a backdoor into the models that are trained on this poisoned

dataset. Once in place, this backdoor, which we call MasterKey, allows an attacker to impersonate

any user within the speaker verification system. Through comprehensive testing, we have demon-

strated that it can successfully target six different speaker verification (SV) models. These models

are widely utilized in various real-world scenarios, underscoring the potential breadth of this se-

curity threat. Remarkably, MasterKey achieves a high attack success rate (ASR), indicating its

capability to bypass security measures with alarming efficiency. One of the most concerning as-

pects of MasterKey is the minimal setup time required for an attacker to implement it, making it

a feasible threat even for those with limited resources. The implications of our findings are signif-

icant. They highlight a critical vulnerability in speech recognition services, which are becoming

increasingly ubiquitous in both personal and professional spheres. As we move forward, it’s imper-

ative to address these security threats. The next part of this dissertation will delve into the broader

security implications for speech recognition services. We will explore potential countermeasures,

the challenges in detecting and mitigating such attacks, and the broader impact on user trust and

the adoption of voice-based technologies.
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CHAPTER 4: HUMAN-IN-THE-LOOP
ADVERSARIAL AUDIO SPECTROGRAM
PATCH ATTACK ON SPEECH
RECOGNITION4

4.1: Introduction

Recently, with the thriving development of Artificial Intelligence (AI) and deep learning models,

the performance of Automatic Speech Recognition (ASR) has improved significantly, resulting in

a growing product market. For example, tech companies developed their online ASR systems and

provided those services to the public, including Amazon Transcribe [14], Google Cloud Speech-to-

Text [63], IBM Watson Speech to Text [97], and Microsoft Azure Speech Service [125]. Further-

more, they also integrated their ASR APIs to the Intelligent Voice Control (IVC) devices to offer

voice assistant services (e.g., Siri [164], Google Assistant [61], or smart speaker systems such as

Google Home [62] and Amazon Echo [13]). Besides that, more and more companies deliver their

customer service using intelligent voice systems, which are empowered by ASR models to under-

stand customers’ questions and improve the efficiency of customer support.

With the increasing number of deployed ASR systems, their security issues are getting more

and more attention from researchers. Recent studies have demonstrated the vulnerabilities of mod-

ern ASR systems through multiple attack vectors. For example, attackers can launch an inaudible

voice command injection attack through an ultrasound speaker [141, 210], PZT transducer [200],

public charging cable [185] or laser source [158] by exploiting the non-linearity effect of micro-

phones. There are also signal processing attacks that analyze the differences between the perceptual
4This chapter is based on previously published work by Hanqing Guo, Yuanda Wang, Nikolay Ivanov, Li Xiao, and

Qiben Yan titled “SpecPatch: Human-In-The-Loop Adversarial Audio Spectrogram Patch Attack on Speech Recogni-
tion” published at the Proceedings of the 2022 ACM Conference on Computer and Communications Security (CCS).
DOI: 10.1145/3548606.3560660 [72]
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sound of a human and an intelligent agent and then craft noisy-like commands via signal processing

techniques [4, 5].

Audio adversarial attacks: Different from the aforementioned side-channel attacks and signal pro-

cessing attacks, the adversarial attacks aim to fool the ASR models by introducing small perturba-

tions. The adversarial attack was first found and demonstrated in image recognition tasks [60,160].

Attackers exploit the vulnerabilities of machine learning (ML) models by searching for unnotice-

able perturbations and then impose them on original images to mislead the ML model and yield a

false classification. The vulnerabilities of ML models are generally introduced by the linearity of

the activation functions and operations at each layer [160]. Since the ASR models are usually built

by similar architectures and training processes, they share the vulnerabilities of other ML models.

The first attempt at generating audio adversarial examples (AEs) demonstrates that ASR systems

are vulnerable to AEs [27,44], which are crafted while the attackers have the complete knowledge

of the victim model. Later, several studies [12, 163] proposed the black-box attacks by utilizing

genetic algorithms and gradient estimation techniques. However, all of the aforementioned attacks

fail to attack over the air due to the fact that perturbation itself is fragile and easy to deform through

the real-world acoustic channel. To circumvent this problem and enable the physical attack over

the air, Li et al. [117] and Yakura et al. [197] incorporate over-the-air transformations to the process

of AE generation (e.g., by adding a band-pass filter, applying the impulse response, etc.), thereby

ensuring the robustness of the AEs. Furthermore, researchers strive to make the AE imperceptible

by adding loudness constraints [136] or mixing it with songs [37,204,218]. Alternatively, a recent

attack called AdvPulse [119] uses a short pulse to deliver malicious commands, which has been

regarded as a more dangerous and stealthy attack technique.

Failure cases of existing attacks: Despite the effort of existing over-the-air attacks [37, 117, 136,

197, 204, 218], all of them do not seriously take the human user’s presence into account. Here, we

showcase three scenarios that could deter a successful delivery of existing attacks, including, Case

A: User Interference; Case B: User Perception; Case C: User Interaction, as shown in Figure 4.1.

We use 1 , 2 , 3 , and 4 to denote the sequence of events, red-colored words to denote the
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(a) Case A: User Interference

(b) Case B: User Perception

(c) Case C: User Interaction

Figure 4.1: Failure cases of existing attacks in real human-in-the-loop scenarios.

targeted attack commands and the responses from the ASR system. The blue-colored words denote

benign commands from the user and responses from the ASR system. For every attack case, the

adversary prepares the AEs in advance and then plays them via a loudspeaker.

• Case A: As shown in Figure 4.1a, while the adversary and the user pronounce commands con-

currently (e.g., the AE says, “call 911”, and the user speaks, “set an alarm at 6 am” at stage 1 ),

the ASR system tends to accept the user’s command rather than the AEs; in this case, it will re-

spond with “Alarm has been set”. This is because: on one hand, the user’s command has a higher

sound pressure level when he/she is close to the ASR system, so the ASR system takes the stronger

sound; on the other hand, the robustness of AEs is not guaranteed during the crafting procedure,
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i.e., once the audio quality of AEs is degraded by the human-introduced interference, the attack

will no longer work.

• Case B: Figure 4.1b demonstrates the scenario when the user notices the attack. While some

previous attacks [37, 200, 204] stated that the adversary could play the AEs repeatedly (e.g., “Call

911 ... Call 911”) at stage 1 to ensure the successful delivery of the attack audio, the repeated AEs

could raise alert. Although the adversary might craft imperceptible AEs by encoding the adversary

command into songs or different speeches, the user is still able to locate the source of skeptical

sound because of the long duration and repeated appearance of common audio adversarial attacks.

• Case C: In the scenario depicted in Figure 4.1c, the adversary launches the attack by playing the

“read message” adversarial audio at stage 1 , followed by the successful response from the ASR

system reading the message containing a personal verification code at stage 2 . However, when the

user is present, he/she is conscious of the abnormal behavior of the ASR device and tries to interact

with the ASR system by sending a halting command (such as “stop reading”) at stage 3 to regain

the control. Consequently, the ASR system follows the user’s benign command and terminates the

reading process.

We summarize the existing adversarial attacks in Table 4.1 in terms of Attack Model, Attack

Type, Delivery Method, and Attack Media. For the Attack Model, we use the acronym ASR to de-

note the Automated Speech Recognition model, and use SR for the Speaker Recognition model.

The Attack Type indicates what type of attack samples are crafted when the attackers are preparing

for the attack. In typical adversarial attacks, the attack type is either Adversarial Example (AE)

or Perturbations (PT). If it is labeled as AE, that means the attackers will play the complete AE

to launch their attack; otherwise, the attackers use the perturbation to alter the user’s original com-

mands. For theDelivery Method (Deli. Method), we describe how the attacker launches their attack

(i.e., by playing an adversarial speech, a song, or a pulse to deliver the adversarial commands). Over

Air and Over Line narrate the ability of listed research to attack through different media.

All of the existing attacks, except AdvPulse [119], will fail to execute the attack in Case A and

Case B due to their delivery methods of AEs. AdvPulse, on the other hand, utilizes short pulses to
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Table 4.1: Comparison of SpecPatch with other attacks.

Attacks Attack
Model

Attack Type Delivery
Method

Over
Line

Over
Air

Houdini [44] ASR - - 3 7

C&W [27] ASR - - 3 7

Adversarial [12] ASR - - 3 7

Practical [117] SR AE Speech 3 3

Robust [197] ASR AE Song 3 3

Fakebob [31] SR AE Speech 3 3

Imper. [136] ASR AE Speech 3 3

Comm. [204] ASR AE Song 3 3

Metamorph [34] ASR AE Speech 3 3

Devil’s [37] ASR AE Song 3 3

AdvPulse [119] ASR PT Pulse 3 3

OCCAM [218] ASR AE Song 3 3

SpecPatch ASR PT Patch 3 3

launch audio adversarial attacks that carry short commands. However, they cannot avoid the user

interaction scenario (i.e., Case C) for two reasons: 1) the proposed universal pulse is only resilient

to a single-word distortion because it is trained on a small dataset, and 2) the user’s input voice

commands out of the time range of a pulse will still be recognized by the ASR model. Therefore,

no existing attacks can launch imperceptible and stealthy physical attacks successfully when human

is in the loop, i.e., while the user is presenting and intentionally disrupting the attack.

New attack idea: To make the audio adversarial attacks more realistic in a human-in-the-loop

scenario, we propose SpecPatch, the adversarial audio spectrogram patch attack. Inspired by the

patch attack in Computer Vision (CV) [24], we aim to inject an adversarial patch into a benign

spectrogram. There are three main benefits to leveraging adversarial patches for speech attacks: 1)

adversarial patch has a relatively small size compared to the entire spectrogram, which makes it

less noticeable; 2) adversarial patch can affect the global interpretation of a long voice command; 3)

adversarial patch attack is text-independent, as the attackers can play the adversarial patch sound

in any speech context. Figure 4.2 depicts the attack scenario. The spectrogram corresponds to

the benign command: “close the window and curtains”. Then, the attacker injects an adversarial
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Benign: "Close the window and curtains"

SpecPatch

Adversarial: "Open the door"

Figure 4.2: SpecPatch perturbs an audio input with adversarial spectrogram patch.

perturbation that is sensed by the IVC device. The adversarial perturbation is processed to be an

adversarial patch in spectrogram scope, which deceives the ASR model to interpret it as the target

command (“open the door”). Although the idea is promising, we still need to address the following

four challenges.

• Limited impact length: It is challenging to encode long speech commands into a short-duration

patch. Existing attack [119] demonstrated that a 500ms perturbation could affect single-word

prediction; even with an increased perturbation length, it can at most impact 2-3 words.

• Bypassing user’s corrections: Unlike the image classification task that takes a single image

as input and predicts a single label, the speech recognition model usually takes many frames

as input and predicts the corresponding phonemes. While the later input frames are unaffected

by the adversarial patch, undesirably the user’s correction commands will be fully understood

by the model. It is challenging to disregard the user’s followup commands using only a slight
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modification of benign speech.

• Universal to any speech context: Existing audio adversarial attacks [37,117,118,136,197,204,

218] rely on the successful delivery of an integral AE constructed from a specific speech context,

and hence are fragile to distortions (e.g., noise, user interference). To make SpecPatch robust on

any speech context, an intuitive solution would be to train an adversarial patch on every speech

content, but it is prohibitively expensive.

• Perturbation sync: To successfully launch our attack, the adversary is expected to play the

perturbation at the right timing to ensure the adversarial patch is posed in the correct location.

However, in a real-world scenario, the timing of perturbation is hard to control, which would

affect the attack success rate.

Contributions: In this chapter, we make the following contributions.

• New attack: We expose the deficiency of existing audio adversarial attacks in a human-in-the-

loop scenario. To the best of our knowledge, SpecPatch is the first human-in-the-loop voice

adversarial attack that is robust against user interference, user perception, and user interaction.

• New techniques: By exploring the internal mechanism of CTC (Connectionist Temporal Clas-

sification) loss, we find the root causes that limit the impact length of an adversarial patch on

speech tasks. Then, we reconstruct an optimization function to craft an adversarial patch with a

longer impact length. Moreover, we proposeMute adversarial samples by analyzing the principle

of speech sequence input. With the Mute samples, we allow SpecPatch to cancel out the user’s

future interaction, thereby making SpecPatch more stealthy and dangerous.

• Comprehensive experiments: We conduct physical attack experiments in three different places

(i.e., indoor home, outdoor street, public dining hall) for speech recognition models. We demon-

strate the feasibility of launching our attack with a human-in-the-loop scenario and prove its

stealthiness via two user studies. Our results show that SpecPatch can achieve a 100% attack

success rate through both the over-the-air and over-the-line attacks with an adversarial patch.
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4.2: Background

4.2.1: Adversarial Patch

Compared to traditional adversarial attacks, the adversarial patch attack is more dangerous because

the crafted patches can be used to attack any scene in the CV domain [24]. The attackers launch the

attack by printing the crafted adversarial patches as stickers and putting the stickers on any benign

objects to fool theMLmodels (e.g., object detection, object localization). To obtain the patch p̂, they

use Expectation over Transformation (EOT) framework [17] to optimize the following objective

function:

p̂ = argmax
p

Ex∼U,t∼T,l∼L[log Pr(ŷ|A(p, x, l, t))]. (4.1)

Given an image x ∈ RW×H×C (W ,H , C are width, height and channel), a patch p, a patch location

l and patch transformation t, the function A works as an operator to apply the patch on the benign

image. E represents EOT. Then, it keeps optimizing p̂ to reach high log-probability on predicting

the patched image as the target ŷ. The construction of this objective function ensures the universal

and robustness of patch p̂, because it considers the expectation (E) over any background image

(x ∼ U ), any transformations (t ∼ T ) of the patch (e.g., scaling, rotating, degrading), and any

location (l ∼ L) of the patch placement.

4.2.2: CTC in Speech Recognition

Unlike the image recognition task in which the model is only required to produce one label, the

speech recognition model is more complicated as it needs to merge the sequential letter predictions

and produce a sentence. To train a speech recognition model with spectrograms and their transcrip-

tions, one challenge is to align the transcription letters to the input frames. CTC [66] is proposed

to resolve this problem. The idea of CTC computation can be summarized as follows: given a se-

quential model, it takes T frames of spectrograms as input and produces T probability arrays. For

example, the probability array at frame t can be represented as Prt = [Prt,a, Prt,b, ..., Prt,ϵ], where

Prt,a indicates the probability of predicting the frame t as character “a”, and so on and so forth. Let
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C be the available character set, which records the appearance probability of 28 characters (a-z,

space, and ϵ). For the |C| × T probability matrix, CTC counts all paths (i.e., symbol sequences)

that can be merged to match the target phrase with two rules: 1) remove all contiguous duplicated

characters; 2) remove all ϵ tokens. For example, a path “hheelϵlo” will be decoded as “hello”. After

it gets all paths representing the target phrase, the probability of predicting the spectrogram as the

target phrase can be computed by summarizing the probability of those paths. This process can be

formulated as follows:
Pr(Y |X) =

∑
π∈πX,Y

T∏
t=1

(Prt,at |X), (4.2)

where Y is the target phrase, and X is the input spectrogram with T frames. π is the path that

includes T characters: π = a1a2...aT , and πX,Y refers to all the paths that can be reduced to Y . If

Y is “hi”, and T = 3, then πX,Y includes “ϵhi, hϵi, hiϵ, hhi, hii”. For every path belonging to πX,Y ,

it computes the product probability of consecutive characters that form π. Formally, consider at is

the tth character in path π, Prt,at represents the probability of the appearance of character at ∈ C at

time t. The product represents the path appearance probability, and the sum operation deduces the

target phrase probability. To compute the loss, we use:

LCTC(X,Y ) = − log Pr(Y |X), (4.3)

i.e., given an input spectrogramX and its target phrase Y , the loss can be retrieved by the negative

log likelihood of Pr(Y |X).

4.2.3: Problem Formulation

The ASR system takes waveform v ∈ [−1, 1]N as raw input and produces its corresponding label

Y ∈ Am, where A is a set that contains all letters from a to z, and space, and m is the length of

transcription. When unpacking the ASR system, we use M(·) to denote the speech recognition

model that empowers the ASR system. Instead of using waveform as input, the M(·) takes the

processed data (e.g., spectrogram) as input because it is more representative and has fewer data

samples. The size of the spectrogram depends on the duration of v, the STFT window length,
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STFT hop length, and the number of FFT points. We use X ∈ RT×F to denote the user’s speech

spectrogram, which includes F frequency bins and T frames, represented as follows:

X(m,ω) = |
N∑

n=0

v[n]w[n−m]e−jωn|, (4.4)

where m is the frame index and ω is the frequency bin index, w represents the window function,

and n denotes the sample index of the waveform. After taking the spectrogram frame by frame, the

speech recognition modelM(·) fabricates a probability matrix Pr as logits output, which is shaped

as |C| × T . Then, based on the probability matrix, it computes the probability of every possible

phrase with Eq. (4.2), selects the phrase that has the highest CTC probability, and finally gives the

transcription as Y = M(X).

The attacker’s goal is to construct an audio perturbation δ. When it is associated with a wave-

form v, the ASR system will produce a target transcription Y . Unlike the prior audio perturbation,

SpecPatch is designed to target the most realistic scenarios (e.g., human-in-the-loop) by leveraging

an adversarial patch. As such, the following issues need to be reconsidered.

Audio adversarial patch: While the prior audio perturbation usually has the same duration as the

benign waveform, the adversarial patch has a limited duration and frequency range. We denote our

adversarial audio patch as p ∈ RT ′×F ′ , where T ′ ≪ T and F ′ ≪ F denote the small size of the

adversarial patch compared to the user’s speech spectrogram X .

Transcriptions: Instead of using a single-word label to tag the input, the speech recognition model

generates a sentence as output. More specifically, the predicted sentence is the phrase that reaches

the highest CTC probabilities, namely, argmax
Y

Pr (Y |X). In this case, the transcription Y can be

decoded from any paths π ∈ πX,Y , and the length of Y is less than the number of frames (T ).

Universality: Most adversarial attacks assume that the attackers know the users’ speech and can

deliver the perturbation synchronously at a specific time point. However, the assumption does not

always hold in a real-world scenario. SpecPatch expects that the attacker can “place” the audio

patch at any time, and over any speech context. Let function A(X, p, t, f) be the “place” operation
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that puts an adversarial patch p to tth spectrogram frame and fth frequency index with any input

spectrogramX . Then, our goal is to attain Ŷ = M(A(X, p, t, f)) for allX in human speech and p

on any place of X .

4.2.4: Threat Model

SpecPatch entails the novel adversarial patch attack in the audio domain. We circumvent all the

three common failure cases mentioned in Figure 4.1 by introducing the universal adversarial patch

and mute signal. The generated adversarial patch is imperceptible and inconspicuous due to the

frequency and the time constraint of the spectrogram patch, making SpecPatch a more dangerous

and stealthy attack than existing ones.

Adversary’s capability: Unlike the prior work [26, 27, 31, 144] that requires the adversaries to

know the victims’ benign commands in advance to calculate the corresponding audio perturbation,

we assume the adversaries have no access to the victim’s benign audio and have no knowledge

about what the victim will say during their attacks. We assume the adversaries can place a hidden

loudspeaker close to the target devices to launch the attack. For the SpecPatch crafting process, we

assume the attackers have prior knowledge of the target ASR model. For example, the architecture

and model parameters can be found from a public resource. This setting is widely used in most

prior work [26, 27, 34, 117,136], and can be generalized to a black-box scenario [32].

Attack scenarios: Unlike all the previous studies, we focus on attacking the ASR system when the

user is present. More specifically, the adversary crafts adversarial patches offline, and then uses

a preset loudspeaker to deliver the adversarial patch, therefore misleading the target ASR system

to make wrong prediction/transcription. For example, the adversary can send fake commands to

the voice assistants and request them to perform the wrong operation. Moreover, the adversary

can fool the telephone voice system by injecting falsified personal information to trick the ASR-

based customer service; besides, the adversary can deny the service provided by the target model

via simply broadcasting the spectrogram patches. Due to the shortness and imperceptibility of

SpecPatch, the attack can be launched in public spaces (e.g., malls, streets, cafes) with nearby

loudspeakers (e.g., smartphone, in-ceiling speaker).
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Figure 4.3: SpecPatch workflow.

4.3: Design Overview

Figure 4.3 illustrates the system flow of SpecPatch. First, we will craft an adversarial patch to

generate the malicious command, i.e., using a short patch to affect a longer benign spectrogram.

Second, when the user makes a correction, we need to mute the users’ correction by denying the

users’ followup commands. We achieve that with a specially designed signal called “Mute” sig-

nal. Next, we make SpecPatch universal to any speech context. This step usually requires the

adversarial perturbation to traverse all images/audios in a large dataset to validate the effect of the

perturbation on all possible contexts. However, the infinite number of speech contexts makes it

computationally infeasible to evaluate a universal perturbation. Rather than optimizing the adver-

sarial patch across different speech contents, we design a phoneme-level context-free optimization

method. We guarantee that SpecPatch can work across any user interference. The final step of

our design is to enhance the robustness of SpecPatch in a real-world scenario. To achieve that, we

take the transmission loss of a physical attack into account during the optimization of adversarial

patches.

4.4: System Design

This section first analyzes why short perturbations cannot impact long input, and then we describe

our strategy to reach our attack goal, i.e., using short patches to attack long commands. After that,

we describe the design of the Mute signal to deny user’s interference. Then, we introduce our

phoneme-level universal patch crafting process. Finally, we present the techniques to robustify

SpecPatch in an over-the-air scenario.

Formulation: Our goal is to craft an adversarial spectrogram patch p̂ ∈ RT ′×F ′ that alters all benign

85



spectrogram X and translates them into the target phrase Ŷ . To achieve this goal, the following

expectation needs to be optimized:

p̂ = argmin
p

EX∼U,t∼T,f∼FLCTC(A(X, p, t, f), Ŷ ). (4.5)

Here, we compute the CTC loss of patch p when it is applied anywhere (t∼T, f∼F) of the benign

spectrogramX , based on which we derive the best adversarial patch p̂ that reaches minimal expec-

tations of losses.

4.4.1: Long Command Conversion

Adversarial Patch with CTC Loss

For most adversarial patch attacks in the image domain, the patch will help ensure very high con-

fidence in the target class. Furthermore, recent studies [194, 195] prove that the effectiveness of

adversarial patches on deep neural networks (DNNs) is caused by the large receptive fields of CNN

layers. As the image classification model maps one image to one label, it connects multiple con-

volutional layers sequentially. The later convolution layers will have a higher receptive field and

will likely include the adversarial patch. Therefore, even a small adversarial patch can be sensed

by a later CNN layer and hence affects the global prediction of the image. However, most speech

recognition models [16,84,196,222] use a recurrent structure, which usually takes multiple frames

as input, produces multiple phoneme predictions for every frame, and then connects the phoneme

predictions to form the final sentence prediction. One critical challenge is in applying an adversar-

ial patch to the sequence model. As the adversarial patch could only affect a couple of input frames,

the remaining output is barely altered. Therefore, it could be hard to achieve the alteration into a

long target sentence.

Suppose the adversarial patch p′ ∈ RT ′×F ′ overlaps with K input frames (where K is deter-

mined by the window size of the speech recognition model). For ease of explanation, we assume

the patch is placed at the left corner of the benign spectrogram, which means t = 0 and f = 0.
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Figure 4.4: SpecPatch flowchart.

While the benign speech has T frames and T > T ′, there will be a limited number of output prob-

abilities affected by the adversarial patch.

Figure 4.4 demonstrates the workflow of SpecPatch that uses an adversarial patch to attack a

sequence model. The bottom blocks show the input frames, while the middle nodes are computa-

tional cells ofM(·), usually implemented by the LSTM or RNN cells. The top row represents every

node’s logits output (also known as the probability array of 26 letters). We use red color to mark

the frames, nodes, and logits output directly affected by patch p and let the green color label the

benign frames and nodes. To demonstrate the data forwarding process of the sequence-to-sequence

model, we use red arrows to denote how frames affect the hidden state of nodes and further alter the

probabilities up to theK th frame. It can be seen that Pr1, Pr2, ..., PrK are determined by the frames

1 to K, the intermediate output of previous/next nodes, and the hidden state of the current node.

When crafting the adversarial patch, the modelM(·) parameters are fixed, so we can only control

the value of p′ to meet the target transcription. Let X ′ denote the spectrogram after applying an

adversarial patch p. Our goal is to optimize the following objective function:

p̂ = argmin
p

LCTC(X
′, Ŷ ),

X ′ = X + p.

(4.6)

Insight 1: The restricted length of adversarial patch affects the convergence of the objective func-

tion.
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Figure 4.5: Demonstration of patch’s impact length.

Observation 1: When optimizing the objective function above, it requires the tuning of p and Pr

to match the target phrase. However, limited by the short length of adversarial patch p, the later

input frames are untouched during the optimization process, and therefore the values of Prk+1 to

PrT remain the same. This will make it hard for LCTC to converge. To explain it in more details,

we break down the probability equation into two parts:

Pr(Ŷ |X ′) =
∑

π∈πX′,Ŷ

[
K∏
t=1

(Prt,at |X ′) ∗
T∏

t=K+1

(Prt,at |X)]. (4.7)

To minimize LCTC(X
′, Ŷ ), we aim to maximize Pr(Ŷ , X ′) as shown in Eq. (4.3). The probability

can be separated into two parts in Eq. (4.7). The first term
∏K

t=1(Prt,at |X ′) denotes the probability

that is directly affected by the adversarial patch, which will be fine-tuned continuously by adapting

the adversarial patch value. However, the second term
∏T

t=K+1(Prt,at |X) takes the benign X as

input, and hence the later probability will remain in low value as it does not match the target letter

at and has a low chance to be affected by the adversarial patch. This is due to the limited length

K of the patch. Therefore, the second term is barely affected as t > K + 1. Therefore, when we

compute the gradient ofLCTC(X,Y ), we take the second term into account, but after we update the

adversarial patch according to the gradient, we will still get a similar result of the second product

term. In short, no matter how to updateX ′, we will have the second term of the gradients remaining

the same, which will mislead the direction of optimization of X . In other words, we will not be
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able to achieve our attack goal if you use the global gradient to update local changes.

Insight 2: The mismatch length of the target phrase and benign phrase affects CTC loss.

Observation 2: Besides the shape and value of the adversarial patch, the other critical factor that

affects the CTC optimization process is the target phrase. Let us revisit Eq. (4.7): the probability

Pr(Ŷ |X ′) is determined by all the paths π ∈ πX,Y that can be merged to the target phrase. While

replacing the benign target Y with the target phrase Ŷ , the number of paths will change accordingly,

which will influence the computational cost for CTC loss. For example, if the target phrase Ŷ has

a length of lŶ , and we assume the length of X is T , we will have total number of paths as follows:

(
T + lŶ
T − lŶ

)
=

(T + lŶ )!

(T − lŶ )!(2lŶ )!
. (4.8)

If we have long input and short target phrases, the number of paths for the target phrases will ex-

ponentially grow. For example, when T is 15 and lŶ is 5, the total number of paths would be(
20
10

)
= 184, 756. Even though the loss computation can be efficiently computed with dynamic pro-

gramming [66], it will still result in redundant gradients due to the constrained adversarial length.

Extend the Adversarial Patch Impact

With the previous observations, we find that it is challenging to craft an adversarial patch to alter

the recognition of a complete spectrogram. To address the challenges, we propose a novel method

called partial matching. The basic idea of partial matching is allowing the target label to include a

portion of the benign label, such that the optimization can focus on the tunable variables. Formally,

instead of assigning Ŷ as the target when crafting an adversarial patch, we use Yt to concatenate

the target phrase and the benign phrase as: Yt = Ŷ ||Ytail, where Ytail is the trailing benign phrase.

Figure 4.5 demonstrates the strategy of partial matching. Given the benign spectrogram and the

adversarial patch as input, the attacker aims to mislead the transcription from “Close the window

and curtains” to “open the door.” At the bottom of Figure 4.5, we have a benign spectrogram that

spans from left to right. Inside the benign spectrogram, there is an adversarial patch (in red color).

When we feed the spectrogram to a model, it is divided into frames by a fixed window and a preset
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hop size. In the middle layer, we use three different colors to denote the state of the nodes. Red

represents the nodes that have adversarial input; green depicts the nodes that have benign input

but are immediately affected by the previous node’s output; Blue means the nodes have a very low

possibility of being impacted by the adversarial patch. Every node produces a probability array

that records the probabilities of every letter and eventually generates the transcription based on the

decoding method (e.g., greedy decoding [83], beam searching decoding [66]). From the top layer,

it shows the benign output is “Close the window ...”. The target phrase is a concatenation of Ŷ

(“open the door”) and the partial benign label (“window ...”). We use the red region to denote that

part of the target can be achieved directly by tuning adversarial patch. The green region of the

target phrase can be achieved by extending the impact of the adversarial patch via the internal links

between nodes. The blue region is the benign output that ensures the optimization can converge

despite of the limited length of the adversarial patch.

Validation of partial matching: Next, we experimentally validate the effectiveness of partial

matching. The goal is to convert the benign transcription “Close the window and curtains” to the

malicious command “open the door” by applying an adversarial patch in the beginning of the audio.

We follow the optimization function in Eq. (4.6) to craft an adversarial patch in two different scenar-

ios, i.e., without the partial matching and with the partial matching. In the first scenario, we set Ŷ

as “open the door”. In the second scenario, we use “open the door window and curtains” as our tar-

get phrase, which contains a trailing (partial) benign command. Figure 4.6 shows the optimization

result up to 500 epochs. At the very beginning, both cases start with the benign label at epoch 0. As

the optimizing step proceeds, the first approach (i.e., without partial matching) only alters a single

word (red color “open”) to match the target. The result remains the same after 400 epochs, which

indicates that the optimization converges but does not achieve the attacker’s goal (i.e.„ delivering

the target command “open the door”). In comparison, the partial matching approach converges

faster and meets the target phrase within 300 epochs. This experiment shows that, without modify-

ing any parameters or optimization scheme, the partial matching improves the convergence speech

in crafting an adversarial perturbation. Next, we visualize the adversarial patch in Figure 4.7. For
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open the door window ...
open the door window ...
open the door window ...
open the door window ...
open the door window ...

Figure 4.6: Comparison between SpecPatch with and without partial matching.

ease of explanation, we assume the adversarial patch starts at the beginning of the benign input

and spans all the frequency ranges, i.e., the adversarial patch (the red portion) lasts 500 ms and

has 8 kHz bandwidth. The benign label is shown in the top blue field and the concatenated target

phrase is in the middle red field. We find that the length of the target command (“open the door”)

exceeds the range of the adversarial patch, which indicates that the partial matching helps achieve

the attack goal in extending the impact of adversarial patch and outputting the target command.

4.4.2: Patches to Deny User Input

The proposed partial matchingmechanism successfully extends the adversarial patch impact length

beyond its own duration. However, we still face two challenges to fulfill our attack goal. First, we

have no knowledge of the benign phrases in advance, so it is impractical to adjust the optimization of

the target phrase for every possible benign phrase. Second, the human factor (e.g., user interaction

or long user commands) cannot be resolved because the adversarial patch cannot affect the speech

transcription that is far away from the patch position. To overcome the challenges, we propose

Mute Patches by exploiting the discrepancy of the ASR model’s input and output mapping.
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Figure 4.7: The effect of patch towards a long command.

Design mute patches: The design goal of mute patches is to disrupt the user’s commands without

attracting their attention. Specifically, we aim to inject a few adversarial samples with low volume

to mislead the ASR model to produce empty transcriptions. To design such mute patches, we

review the complete speech recognition process and find the opportunity to meet our design goal.

As described in §4.2.3, the waveform serves as the raw input, which is converted into spectrogram

to be fed into the ASR models. Next, every node of the ASR model takes a couple of spectrogram

frames and outputs a letter prediction. By reviewing the whole process, we realize that every node

of the ASR model perceives a large scope of waveform samples. A similar phenomenon has been

observed by prior studies [194, 195] in image recognition models, and the authors conclude that

a large receptive field of the neural node is responsible for the adversarial patch attack because a

small patch in an image can be perceived and misinterpreted by a neural node. Inspired by their

findings, we are motivated to inject sampled adversarial audio signals into the neural nodes. To

92



(a) Hearing Curve of Human (b) Reflection of Hearing Curve

Figure 4.8: Optimization of patch frequency based on the auditory property of human.

craft the mute signals, we formulate the following problem:

pm = argmin
p

LCTC(X
′, Yb),

X ′ = X + Tp,

(4.9)

where Yb is a phrase that only contains blank symbols, and pm is the mute patch that is composed

of multiple patches such as pm = [p1, p2, ..., pL]. For every patch that has 1 ≤ l ≤ L, we have

pl ∈ R1×F ′ . The size of the mute patch is 1 × F ′ because a single adversarial sample can only

affect one bin of the spectrogram. We set the length of the mute patch as T , andX ′ is the resulting

spectrogram. By optimizing Eq. (4.9), we can craft the mute signal in the time domain with minimal

loss value. The choice of T is determined by the hop length of STFT and the input size of the ASR

model. In practice, we can set the value of T to be the same as theWSTFT , such that we can ensure

every vertical spectrogram bin contains adversarial information.

4.4.3: Imperceptible Patch

When reviewing the existing attacks, we find that most prior adversarial audio attacks (e.g., [27,

119, 136, 204]) aim to minimize the amplitude of the perturbation (i.e., minimize dB(δ)), e.g., by

including the perturbation amplitude in the loss function. However, we find that although these

perturbations are well-optimized, they are still audible when performing the physical attacks.

In our attack scenario, we expect to launch an imperceptible attack when the victim user is close

to the adversary. Since this goal is hard to achieve by the optimization method (i.e., penalizing the

amplitude of perturbation), we design a new approach to satisfy the imperceptible attack goal. In
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a nutshell, the imperceptibility of SpecPatch is ensured by the short duration of the adversarial

spectrogram patch and further secured by the narrow frequency band of SpecPatch.

In the prior optimization settings, the crafted perturbations are audible because the victim mi-

crophone is sensitive to a certain input amplitude. Here, we focus on yielding the perturbation

inaudible without dropping its amplitude. To achieve this goal, we investigate the human hearing

sensitivity curve and find that the human ear has uneven sensitivity to different frequencies. We

depict the hearing curve in Figure 4.8a. Formally, the hearing curve can be represented by a func-

tion with f , and we denote it as H(f). The source data is measured by prior auditory research on

equal loudness contours [100]. In the figure, the blue line indicates the required amplitude for pure

continuous tones at a specific frequency that can be heard by humans. Above the curve, we can feel

the sound at such loudness, while below the curve, the sound intensity is insufficient. For exam-

ple, one can hear continuous audio with frequency at 100 Hz as long as it has more than 20dBSPL.

Once the volume is decreased to less than 20dBSPL, the human can no longer perceive it. From the

shape of the curve, we find that the human auditory system is more sensitive to a frequency between

1.6kHz and 4kHz. In comparison, we are unperceptive to sound below 1.6kHz, as the lower fre-

quency stimulates less attention from human ears. Therefore, we can design low-frequency patches

(e.g., < 1.6KHz) to diminish the perceptual level of human hearing. To reach this goal, we add

a frequency selective penalty term to the objective function in Eq. (4.9). The updated function is

presented below:

p̂ = arg min
fl<p<fh

LCTC(X
′, Yt) + ||p ∗ H̃(f)||2,

H̃(f) = Normalize(−H(f)).

(4.10)

This new term ||p ∗ H̃(f)||2 is composed of the patch p and a frequency response function H̃(f),

and we multiply them together to compute the L2 norm result. fl and fh indicate the low and

high-frequency boundaries of the learned patch. Compared with existing attacks [27, 119] that

assume a constant value in the penalty term, we design a frequency response function as a adjustable

coefficient. The goal of this term is to selectively penalize the human sensitive frequency portion

94



Figure 4.9: Universal perturbation.

(e.g., 1.6kHz and 4kHz) and retain the insensitive components (e.g.,< 1.6kHz) in the adversarial

patch. We design the frequency response function H̃(f) based on the human hearing curve shown

in Figure 4.8a. By performing a reflection operation and normalizing the result in the range of 0 to

1, we can obtain the H̃(f) as shown in Figure 4.8b. The rationale of such an operation is to reduce

the human-sensitive energy while retaining the inaudible portion of the adversarial patch.

4.4.4: Universal Patch

The prior adversarial attacks either use AE or Perturbation to launch the attack. As shown in Ta-

ble 4.1, most prior work leverages AE to deliver the adversarial commands. However, there is a

major concern with this method, as the user’s intervention could disrupt the AE. Because the AE

needs to be crafted with known benign commands, it requires the adversary to predict the incoming

benign commands in advance. In a real attack scenario, it is hard to predict incoming commands.
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Therefore, such unpredictable user intervention could disrupt the performance of AE. The only ex-

ception among the previous attacks is AdvPulse [119], which utilizes a universal perturbation to

launch the physical attack. They use the iterative greedy algorithm [127] to generate a perturbation

that works with any given contexts. However, AdvPulse is proved effective on the single-word

commands. Compared with single-word commands, diverse speech contents make it more diffi-

cult to compute the universal patch. Generally, a universal perturbation is crafted by iterating over

all the benign contexts [119, 127]. Formally, the perturbation can be represented by the following

formula:

p̂ = argmin
p

EX∼UL((X + p), Ŷ ),

U = {X | X is speech with arbitrary contents},
(4.11)

where p̂ is the universal perturbation, X is the benign context (e.g., background sound), and U is

the set that includes all possible benign samples. Due to the diverse speech contents, U will become

a large set, resulting in a substantial computational cost. To reduce the cost, we propose phoneme-

level universal optimization scheme, and the logic of this approach is depicted in Figure 4.9. In

short, the proposed phoneme-level universal scheme reduces the size of U by introducing clips.

One clip contains one single phoneme, and we added padding to ensure every clip has the same

duration as the patch as shown in Figure 4.9. Since there is a limited number of phonemes (i.e., 44

phonemes in English) in the speech context, the clip set is much smaller than the speech set. The

clips can be simply retrieved from the speech dataset. We formalize the proposed phoneme-level

universal optimization as follows:

p̂ = arg min
fl<p<fh

EX∼ULCTC(X
′, Ŷ ) + ||p ∗ H̃(f)||2,

U = {X | X is clip with fixed duration}.
(4.12)
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4.4.5: Overall Physical Over-the-Air Attack

As mentioned above, we guarantee that SpecPatch is able to deliver long commands over users’

intervention in any speech context. Specifically, we first apply a universal mute signal to override

the entire original speech, which will result in a blank-transcription. Partial matching then takes

a part of blank transcription as input to generate an imperceptible adversarial patch for the target

phrase. Note that, similar to the generation of adversarial patch, the generation of mute signals

also does not require knowledge of original phrases. For example, suppose the benign command is

“open the door”, the target is “close the door”, we first apply the mute patches to the benign audio

to convert “open the door” into a blank transcription (“—...–”). Then, we generate the adversarial

patch based on the muted benign input. If the benign command is longer than our target, after

applying the mute patches, we will set “close the door———” (with trailing blank symbols) as

target to generate patch.

However, to launch the attack in a real-world scenario, we need to resolve the patch distortion

during the over-the-air transmission. We follow the design in [119, 197] due to its simplicity.

In general, three operations are considered during the crafting process: 1) band-pass filtering, 2)

room impulse response, and 3) ambient noise mitigation. The bandpass filter is designed to cope

with the uneven frequency response of the speaker and microphone. The room impulse response

(RIR) is introduced to compensate for the absorption and reverberation in the environment. Finally,

the ambient noise is considered to craft a robust perturbation that resists environmental noise. In

practice, we form the following final objective function to include the operations mentioned above:

p̂ = arg min
fl<p<fh

EX∼ULCTC(X
′, Ŷ ) + ||p ∗ H̃(f)||2,

X ′ = X +BPF (p) ∗R(f) +W.

(4.13)

The BPF refers to the band pass filter, and we follow the setting in [197] to configure the cut-off

frequency as 50 ∼ 4, 000Hz. The R(f) represents the spectrum of the room impulse response.

We use the RWCP dataset [130] to enrich the RIR measurements and further compute the spectro-
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Figure 4.10: Spectrogram and time-domain signals of SpecPatch.

gram of the RIR audios. The noise spectrogram W is chosen from another ambient noise dataset

NOISEX-92 [172], which contains various noises (babble noise, factory noise, HF radio channel

noise, pink noise, white noise, vehicle noise).

4.5: Evaluation

4.5.1: Experiment settings

We implement SpecPatch using the Tensorflow [3] framework. We craft adversarial patches fol-

lowing Eq. (4.13). The experiments are conducted on a desktop with Intel i7-7700k CPUs, 64GB

RAM, and NVIDIA 1080Ti GPU, running 64-bit Ubuntu 18.04 LTS operating system. In the eval-

uation, we launch our attack in two scenarios: over-the-line and over-the-air. In the over-the-line

attack, we pass the SpecPatch directly to the model as a Waveform Audio file. In the over-the-air

setting, we attack the victim’s phone using a speech-to-text service. In our implementation, we set

up a server that runs our target ASRmodel and allows the victim’s phone to request service through

the local area network.

Target model selection: As our attack target is the speech recognition model, we will examine

the effectiveness of SpecPatch on the most popular ASR models. Specifically, we select Deep-

Speech2 [16] as the target ASR model. DeepSpeech2 leverages CTC loss and recurrent cells to

improve the recognition performance.

Metrics: We use the following metrics to quantify the effectiveness of our attack: (1) Success Rate:

this metric is the ratio of successful attacks and the total attempts. We report success only when the

prediction matches the targeted command in a targeted attack. In terms of the untargeted attack, we
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measure the success rate ofmis-transcribing the victim user’s benign commands. (2) Impact Length:

This metric is to identify how many characters/words can be affected by our SpecPatch. Given a

long benign spectrogram, we inject an adversarial patch andmeasure the length of characters/words

that are different from the original transcription. (3) L2 Distortion: the L2 distortion ||p||2 indicates

the amplitude of adversarial patches. Prior to the launch of a physical attack, we can measure the

distortion value by summarizing the squared amplitude of the generated perturbations.

Datasets: The dataset we choose as benign audio is TIMIT [1]. This dataset contains four types

of corpora designed jointly by the Massachusetts Institute of Technology (MIT), SRI International

(SRI), and Texas Instruments, Inc. (TI). It contains 6,300 audios from 630 speakers. The duration

of each audio is around 5 seconds and contains approximately ten words. For our target commands,

we collect them from the website ok-google.io, which provides commonly used commands on

Google Assistant. We select ten sentences as our attack goal, e.g., “find my phone” and “turn on

the lights.” For the phoneme clip dataset, we construct it manually by following the annotations in

TIMIT [1]). In total, we obtain 50,487 phoneme clips that cover 44 phonemes. We added padding

to ensure every clip to have fixed length as 500ms, which matches with the length of the adversarial

patch.

4.5.2: Over-The-Line Attack

Over-the-line SpecPatch: We first showcase the capability of SpecPatch in converting the benign

audio into our target transcription by injecting adversarial patches. As shown in Figure 4.10, the

first spectrogram represents the benign audio “close the window and curtains”. We first apply mute

patches to translate it into consecutive blank symbols which results in an empty transcription. The

mute patches are crafted by Eq. (4.9). We use rectangle boxes to mark those mute patches. It can

be observed that each mute patch only occupies a single frame and periodically appears as vertical

lines below 2kHz. After applying the mute patches, we can craft an adversarial patch to meet our

target goal by leveraging the partial matching strategy (i.e., concatenating the target command with

trailing blank symbols). The third figure depicts the adversarial patch on the muted spectrogram.
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We use a red rectangle box to highlight the position of the adversarial patch. We can see that the

adversarial patch occupies 0.5 second within 50Hz ∼ 2kHz and is placed at the beginning of the

spectrogram. The frequency band of this patch is learned from Eq. (4.10) and further constrained

by Eq. (4.13). To investigate the amplitude of the benign audio, mute signal, and adversarial patch,

we visualize the waveform of the complete AE in the rightmost figure. Compared to the benign

audio, the adversarial and mute patches have a very low volume (∼%5 of the benign audio).

(a) Impact length in characters (b) Impact length in words

Figure 4.11: Comparison of impact length.

Evaluate the impact length: To evaluate the effectiveness of partial matching strategy, we conduct

experiments with three different strategies to attack a long command (∼ 10 words) with different

patch duration. The first strategy, perturbation-only (Pert-Only) strategy searches for a short patch

that delivers long commands without considering the benign audio in crafting the AE; the second

strategy utilizes a long empty audio as the background sound to increase the logits output-length,

and then craft a patch based on the benign audio. This approach is adopted by the prior work [119].

The third strategy leverages the partial matching strategy. Similar to the second strategy, this

approach uses an empty audio as background. However, it configures the target command to include

trailing blank symbols, as illustrated in Section 4.4.5.

We randomly select 20 sentences in TIMIT dataset as our target and use three different lengths of
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the patch (250ms, 500ms, 750ms) to achieve the attack goal. Figure 4.11 presents the comparison

of impact lengths among the three strategies. The “Perturbation-Only” label represents the first

strategy as it does not consider any benign audio. The “Baseline” label symbolizes the second

strategy, and the “Ours” represents the partial matching strategy. From Figure 4.11a, we find the

first strategy failed to craft a short patch (impact length is 0) that delivers a long command for all

the three lengths of patch configurations. This can be attributed to the lack of logits output for

a short variable (perturbation), leading to the error of “INVALID ARGUMENT” caused by “not

enough time for target transition sequence”. In contrast, the baseline strategy can proceed with the

optimization process with a long benign input. However, it can only affect a couple of characters

(< 10) (see Figure 4.11a) and a limited number of words (< 2) (see Figure 4.11b) even with the

longest patch configuration. Using the proposed partial matching strategy, we can use a patch with

the same duration to attack longer sentences, and the impact length reaches ∼ 15 characters and

∼ 4 words for 500ms patch, and this can be further extended to ∼ 6 words with a longer patch

(e.g., 750ms). In summary, using the same length of patch, we extend the impact length by 200%

in characters and 287% in words, which proves the effectiveness of the partial matching strategy.

Evaluate mute patches: Next, we evaluate the generation of mute patches with different speech

contexts. Since we expect that the mute patches could disrupt any user interference, we craft the

patches based on a variety of sentences. More specifically, we randomly select multiple sentences

from the benign audio dataset and craft one series ofmute patches that are applicable to all sentences.

We report the L2 distortion of the mute patches in Figure 4.12.

We use a variable “X Comm.” to represent the situation that mute patches can change the tran-

scription to empty symbols for all “X” number of selected commands. The X value ranges from 10

to 50. The results show that the mute patches converge speedily for all the situations and reach a

steady value in 200 iterations. Moreover, we notice that the more general mute patches we request,

the higher power of mute patches we will get. For example, to craft a series of mute patches that

are suitable for 50 commands, it triples the value of L2 distortion after convergence compared to

the solution with 10 commands.
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Figure 4.12: Universal mute patches.

Evaluate phoneme-level universal perturbation: After analyzing the generality of mute patches,

we then investigate the universality of adversarial patches on different background audio contexts.

The adversarial command patch is obtained by optimizing the objective function in Eq. (4.12). In

this evaluation, we craft adversarial patches over 50,487 phoneme clips and report the success

rate when using an adversarial patch on top of the specific phonemes. As depicted in Figure 4.13,

the universal adversarial patch achieves 68% success rate on all the five types of phoneme clips.

Furthermore, among the different types of phonemes, we observe that vowels and nasal are more

compatible with the adversarial patch. In contrast, the fricatives and stops are more resilient against

adversarial patches. This is because our adversarial patches contain more low-frequency energy

due to Eq. (4.12), and the vowels and nasal present rich low-frequency components. Therefore,

these phonemes will be affected much easier. In contrast, the fricative and stops contain more

high-frequency energy than that of the patch.

Evaluate patch with different frequencies: One key benefit of using spectrogram patch rather

than short pulses is that our patch can be more imperceptible. Generally, a patch with a wider

bandwidth can be found much faster and can have a lower amplitude. In comparison, a patch

with a narrow bandwidth could raise less attention in human auditory system, however, it will fail
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Figure 4.13: Universal attacks across different phonemes.

to deliver certain commands because of the lack of some specific frequency energy. Therefore,

there is a trade-off between the frequency band, the perceptual level, and the successful rate of the

patch. To investigate the best frequency band of the adversarial patch, we conduct the following

experiment with four different frequency settings as follows: 50Hz ∼ 1kHz, 50Hz ∼ 2kHz,

50Hz ∼ 3kHz, and 50Hz ∼ 4kHz. We aim to retain the low-frequency components as they are

more likely neglected by human ears (see Figure 4.8a). Our goal is to find a narrow frequency

patch that has more low-frequency components and with lower overall amplitude. We craft 10

adversarial patches with every frequency setting and record the average L2 distortion and loss

during the process. As shown in Figure 4.14a, if the patch only includes 50 ∼ 1KHz, it fails

to achieve the target goal as the L2 distortion keeps growing, and the loss in Figure 4.14b implies

that this setting leads to the highest loss. For the 50 ∼ 2KHz setting, the distortion rises at the

first 400 iteration, and then it satisfies the target goal and starts dropping the amplitude of patch

by iterations. The rest two settings converge faster. These results indicate that patch with a wider

bandwidth is more likely to meet the target. To summarize, the 50 ∼ 2KHz is the best choice,

because it reaches the low amplitude after 1,000 iteration and has comparable L2 distortion with
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(a) The distortion of SpecPatch (b) The loss of SpecPatch

Figure 4.14: Comparison of different frequency ranges.

other cases, and it also occupies less bandwidth. As a result, we use this setting for all the rest

experiments.

Target Success Rate Mis-Trans. Rate

”turn on the lights” 94.1% 100%
”find my phone” 96.5% 100%
”Turn off the kids’ wifi” 87.1% 100%
”What is my password?” 86.5% 100%
”stop the music” 97.2% 100%
”open the door” 100% 100%
”lock the front door” 91.3% 100%
”Listen to the news” 92.5% 100%
”call 911 now” 98.5% 100%
”Cancel my alarm” 94.6% 100%

Table 4.2: Over-the-line attack performance

Evaluate overall performance: In this experiment, we train 10 universal patches along with a

series of mute patches. Then, we apply this specpatch to all of the benign audios in TIMIT dataset

at random positions to validate the effectiveness of our attack. Table 4.2 reports the success rate

after adding 10 different adversarial patches to 6,300 benign audios, resulting in 63,000 AEs. We

count the success cases when the target command is the only output in the transcription. Otherwise,
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if the benign label is transcribed wrongly, we regard it as the mis-transcription case. We find that,

SpecPatch could cause 100% mis-transcription rate for any audio. This means SpecPatch could

almost surely deny the service of users. In terms of the target success rate, we achieve > 90%

success rate for 8 out of 10 patches. The success rate for longer commands that have 4 to 5 words

is lower than those of shorter commands, this is reasonable since longer target commands are hard

to achieve in a noisy background.

4.5.3: Over-The-Air Attack

Attack scenario: Figure 4.15a depicts the attack scenario. The victim is using the speech-to-

text service while the adversary uses a smartphone to play SpecPatch to deceive the ASR model.

Note that the adversary can play the attack audio at any time, and once he/she launches the attack,

the victim’s commands will be denied by the consecutive mute signals. In our experiment, the

adversary is 1 meter away from the victim, and SpecPatch is played at different volumes. We

measure the loudness of the user’s interference and the SpecPatch audios by a decibel meter. We

conduct the experiments in three places: an indoor room, an outdoor street, and a public dining

hall.

(a) Real-world attack scenario (b) User study results

Figure 4.15: Over-the-air SpecPatch attack.

Attack performance: In this experiment, we play a crafted patch of “open the door” 10 times for
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(a) Indoor scenario (b) Outdoor scenario

(c) Public dining hall scenario (d) User’s speech volume vs. patch loudness

Figure 4.16: Attack success rate across four different scenarios.

each volume, attempting to deliver this command to victim’s phone. The victim is holding their

smartphone and speaking at the volume of 55dBSPL. The ambient noise levels of the three places

are 43.5dBSPL, 52dBSPL, 55dBSPL for indoor room, outdoor street, and dining hall, respectively.

We present the success rate of targeted attack and the mis-transcription attack in Figure 4.16. The

grey dot line indicates the ambient noise level. As can be seen from the Figure 4.16a, when the

perceived patch volume is lower than the ambient noise level, there are 8 out of 10 attempts failed

in the targeted attack scenario. Once the victim device perceives a comparable power (e.g., 45dB)

from the patch audio, the success rate increases to 40% for the targeted attack. When the volume is

10dB greater than the ambient noise, we can achieve 80% success rate, and 100% in denying the

user’s input. We observe the similar results in Figure 4.16b and Figure 4.16c. These results indicate
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that SpecPatch can successfully attack the ASR system with a limited power profile. Typically,

SpecPatch achieves successful attacks when there is< 5dBSPL power difference between the patch

and the ambient noise. If we raise the attack power, the success rate can be assured to 100%.

To better understand the relationship between user’s volume and the loudness of patch, we

conduct another experiment to control those two factors. We play the same patch 10 times at 7

volumes (from 40dBSPL to 70dBSPL with 5dB increments). For every volume, we use another

speaker to play a benign audio with increasing volumes. This experiment is conducted in the same

indoor place, and the result is present in Figure 4.16d. We find that when the patch has same volume

of the benign audio, it achieves 100% success rate. If the patch is 20dB less than the benign audio,

SpecPatch no longer works. In general, a louder patch can achieve a higher success rate. Noticeably,

when both the patch and the benign audio have high power, the success rate reduces to 40%.

4.5.4: User Study

To evaluate the stealthiness of SpecPatch in a real-world attack, we conduct two online user studies

that involve ten volunteers to investigate the users’ perception level of SpecPatch.

Study 1: In this study, the users are requested to hear four AEs that include the crafted patches.

Then, we ask the volunteers about the contents they heard. The benign and adversarial transcrip-

tions are described in Table 4.3. For the same benign sample, we add three different patches to

achieve three goals (one of them is an empty transcription). The result shows that 10 out of 10

volunteers are deceived by our attack, as all of them consider the benign label as their heard con-

tent. Surprisingly, we can inject the patch to a silent benign audio, and this implies the possibility

of a hidden attack. Similarly, none of the volunteer can perceive the hidden patch, as 10 out of 10

considered the malicious “turn on the wifi” patch as a silent audio.

Study 2: To further validate SpecPatch, we conduct the second user study. The volunteers are asked

to pretend to speak to their voice assistants while hearing the six different patches, these patches

are played through their smartphones with a medium volume. The distance between the volunteer

and the their smartphones is 0.5 meter. After that, they will answer questions to describe their

comprehension of the heard patch. The options of perception levels include: Unnoticed, Noticed,
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and Unrecognized. Unnoticed indicates that the volunteer cannot hear a patch; Noticed implies

that the volunteer can hear a patch but regard it as a normal noise; and Unrecognized stipulates

that they cannot understand the meaning of the heard sound. We report the experimental result in

Figure 4.15b. The labels in x-axis represent different patches, namely, (M1 and M2 are two mute

patches, P1-P3 are short patches, while L1 is a long patch that is composed of 3 short patches). It

shows that most of participants (> 70%) cannot even notice our short patch attack (P1-P3). For the

consecutive mute patches, there are around 50% of volunteers can perceive it. For the long patch, 9

out of 10 participants can clearly feel it. It is noteworthy that none of the patches can be understood

by volunteers.

Benign Adversarial Deceive
”turn on the lights” ”open the door” 10/10
”turn on the lights” ”” 10/10
”turn on the lights” ”open the window” 10/10
”” ”turn on the wifi” 10/10

Table 4.3: User case study

4.6: Discussion

Limitations: SpecPatch has the following limitations: 1) the attack is model dependent; 2) the

attack could not successfully attack very long sentences; 3) the attack distance is relatively short.

For the first limitation, this attack can only attack the recurrent neural network, since our attack

is established by exploiting the vulnerability of inter-connection between each cells. The second

limitation can be addressed by introducing a longer patch, however, it might raise the alert of the

victims. The third limitation can be possibly addressed by amplifying the power of the patch, but

the adversary needs to handle both the distortion from the amplifier and the long-distance induced

attenuation.

Defense: Prior studies [119,202,204] reveal that signal processing techniques can defend the adver-

sarial audio attack since the adversarial perturbations are delicately crafted and hence are deemed

fragile. The signal processing techniques, however, can reduce the fidelity of perturbations and
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protect the ASR models. Typical signal processing defense methods include 1) Down sampling

(DS): decreasing the sampling rate of AEs to degrade the quality of AEs [119, 202, 204]; 2) Quan-

tization: this approach rounds the 16-bit precise value to its nearest integer multiple of constant Q,

which has been adopted to defend against the attacks [119, 202]. 3) Low pass filtering (LFP): this

defense can use a Butterworth low-pass filter with different cutoff frequencies to remove the high-

frequency components of the perturbations [119]. We will evaluate different defense approaches

against SpecPatch in our future work.

4.7: Summary

In this chapter, we proposed SpecPatch, a human-in-the-loop adversarial patch attack on ASR sys-

tems. SpecPatch considers the scenarios when the users are presenting or intentionally disrupting

the adversarial audio attacks against ASR systems. SpecPatch optimizes the adversarial patch to

increase the length of the target commands. SpecPatch also includes Mute adversarial samples that

can ensure the user interference does not affect the adversarial perturbation. Moreover, we fur-

ther enhance SpecPatch to make it imperceptible and robust in both over-the-line and over-the-air

attack scenarios. Our extensive real-world experiments show that SpecPatch can unnoticeably de-

liver malicious commands in a noisy environment amid user interference. Although SpecPatch is

dangerous to conventional ASR systems, it turns out this attack highly relies on the open source of

the ASRmodel to craft the malicious sound. In the next chapter, we will introduce a new black-box

attack, which targets the more challenging task: attack the commercial speech-to-text services and

voice assistants with zero knowledge.
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CHAPTER 5: BLACK-BOX,
QUERY-EFFICIENT AUDIO
ADVERSARIAL ATTACK VIA
SPLIT-SECOND PHONEME INJECTION5

.

5.1: Introduction

In the previous chapter, we introduced a SpecPatch attack in which the attacker can manipulate

the transcription of the Automatic Speech Recognition (ASR) system by injecting an adversarial

audio patch. Although the aforementioned attack is powerful and dangerous, it is not capable of

attacking the commercial Speech-to-text services (Amazon Transcribe [15], Google Cloud Speech-

to-Text [64], IBM Watson Speech to Text [97], and Microsoft Azure Speech Service [125]) and

Intelligent Voice Control (IVC) devices (Google Home [62], Amazon Echo [13]) due to lack of

their model information. In this chapter, we discover the possibility of attacking commercial speech

recognition services in a black-box manner, where the attacker aims to craft the audio adversarial

example in limited time and resources, without any knowledge of the target speech recognition

models.

With the increasing presence of ASR systems and IVC devices in private spaces, users begin

to worry about the security and privacy of these systems. For example, a hacked device is now

capable of recording private conversations; collecting and sharing private data; and controlling all

the connected IoT devices in smart homes [37, 158]. Researchers have demonstrated that ASR

systems could become vulnerable to a wide variety of attacks. For instance, inaudible commands
5This chapter is based on previously published work by Hanqing Guo, Guangjing Wang, Yuanda Wang, Bocheng

Chen, Yuanda Wang, Qiben Yan and Li Xiao titled “PhantomSound: Black-Box, Query-Efficient Audio Adversarial
Attack via Split-Second Phoneme Injection” published at the Proceedings of the 2023 International Symposium on
Research in Attacks, Intrusions and Defenses (RAID). DOI: 10.1145/3607199.3607240 [71]
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can be injected through ultrasound [141, 210], even across different transmission media, such as

object surface [200], light [158], etc. Besides the physical attacks, recent studies also utilize the

discrepancies between the human ear and feature extraction algorithms to launch signal processing

attacks [4, 5]. Despite the aggravating threats, these new attacks could be defeated by integrat-

ing additional hardware [209] or extra signal processing procedures (e.g., voice activity detection,

guard signals) [4,90]. Unlike the aforementioned attacks, the adversarial attack aims to attack the

deep neural networks (DNN), i.e., the computational core of an ASR system, which poses a major

threat to modern ASR systems.

Adversarial attack: Adversarial attack was first proposed to attack image recognition systems [60,

160]. The attack operates by imposing unnoticeable perturbations onto the original image, thereby

misleading the DNN to yield false classification. The inputs that enable such an attack are com-

monly referred to as Adversarial Examples (AEs), which are composed of the original input with

an unnoticeable perturbation. The ASR system with DNN models also inherits the susceptibility

towards AEs.

Prior studies: Prior studies [12, 27, 44] demonstrate that attackers can generate adversarial au-

dios to alter the DNN’s prediction result with or without the prior knowledge of the DNN model.

However, most of these attacks have not been successfully realized against real-world commercial

devices, and their stealthiness is unverified. Recently, Chen et al. [31] successfully attack both

open-source and commercial speaker verification systems over the air in a grey-box setting. Yuan

et al. [204] embed their generated AE within songs to launch the attack, and they further adapt their

attack in a black-box setting to subvert the ASR of most IVC devices [37]. Nevertheless, they fail

to guarantee the attack success rate in the presence of user interference; and cannot promise to craft

AEs quickly due to the training overhead of the substitution model. Meanwhile, two recent stud-

ies [72, 119] inventively propose the sub-second perturbation and spectrogram patch perturbation

to attack open-source ASR systems, considering the victim user present during the attack. Even

though they demonstrate the robustness and feasibility of their attack in the presence of environ-

mental distortions, the proposed attacks are established on the assumption of complete knowledge

111



Hidden Speaker

Turn off
the Lights

Ok, Lights
On Perturbation

Smart Speaker

Figure 5.1: Attack scenario of PhantomSound

of the target ASR system. More recently, Zheng et al. propose a decision-based black-box attack

by incorporating evolutionary algorithms to generate adversarial audios [218]. However, they still

require to query the victim model extensively, which incurs substantial time and financial costs in

a practical attack scenario.

Table 5.1 summarizes the existing adversarial attacks in terms of victim systems’ tasks, attacker

knowledge, ability to attack quickly, and attack scenario. The check mark symbolizes a successful

attack under the given scenario, while the cross mark implies that the attack could not function

or lacks efficacy in that particular scenario. For the victim system’s task, SV indicates the speaker

verification task while SR refers to the speech recognition task. We then taxonomize attacker

knowledge into white-box, grey-box, and black-box, where grey-box implies the attacker can get

the logits layer output [12, 31] or confidence score of all possible classes, and black-box indicates

the attacker can only access the prediction label [37] of the target model. A white-box attacker,

on the other hand, has complete knowledge (model architecture, weights of DNN parameters) of

the target system. Next, we use online AE generation (Online GENR) to characterize whether the

attacker can generate AEs or perturbations swiftly and complete the attack procedure in an online

fashion. In fact, most existing studies assume the attacker has sufficient time to produce AEs offline.

The last two metrics, Over Air and User Interference (User INT) suggest the attack scenario, where
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Table 5.1: Comparison with other recent audio attacks.

Attacks SV
SR

Grey
Box

Black
Box

Online
GENR

Over
Air

User
INT

Houdini [44] SR 3 7 7 7 7

C&W [27] SR 7 7 7 7 7

Adversarial [12] SR 3 7 7 7 7

Fakebob [31] SV 3 7 7 3 7

Comm. [204] SR 7 7 7 3 7

Devil’s [37] SR 3 3 7 3 7

AdvPulse [119] SR 7 7 7 3 3

OCCAM [218] SR 3 3 7 3 7

SpecPatch [72] SR 7 7 7 3 3

PhantomSound SR 3 3 3 3 3

the former indicates an over-the-air attack, while the latter indicates whether the attack considers

the user’s interference (e.g., voice commands) during the attacks. To the best of our knowledge,

no existing attacks can attack commercial, closed-source ASR systems over-the-air with a limited

time budget and user interference.

PhantomSound: We propose a query-efficient black-box attack on commercial closed-source

ASR systems and IVC devices. Our attack, called PhantomSound, can craft AEs and perturba-

tions within a limited time budget and restricted query cost. Different from the previous work, the

key idea behind PhantomSound is to regard the users’ voice input as the command “carrier”, while

the phoneme-level perturbations are applied on the “carrier” to instantiate the attack.

Figure 5.1 depicts the attack scenario. First, the adversary records the user’s command (any

keywords such as “open”, “on”, “down”). Next, the adversary uses PhantomSound to query the

accessible target models on the target IVC devices (e.g., the Google Cloud Speech-to-Text API for

Google Home). Then, PhantomSound returns a perturbation that alters the prediction of the user’s

command.

During the attack, the adversary plays the perturbation via a hidden speaker at the same time

when the user utters a voice command, which fools the smart speaker to operate improperly.

Challenges: Four major challenges arise during the design of PhantomSound.
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• Black-box attack: It is difficult to attack a model without any prior knowledge. Existing grey-

box/black-box attacks either assume attackers have the probability score of the target model [12,

44], or train a substitution model to approach the target model [37]. The existing attacks require

a substantial amount of time to train a substitution model for the generation of AEs.

• Speech model: Different from black-box attacks on image processing [32, 38], ASR systems

are known to have a more complicated model structure consisting of signal processing, filtering,

acoustic model, and language model. As a result, attacking speech models requires different

attack strategies to bypass the various components of the ASR models.

• Query efficiency: Asuccessful black-box attack relies excessively on the effectiveness of queries.

The adversary needs to iteratively update the AEs such that the effectiveness of the crafted AEs

can be justified through querying. However, querying commercial ASR APIs is costly (e.g.,

$0.00001/second for Google Cloud Speech-to-Text) and unable to bypass. Despite some ef-

forts [32, 38] to reduce the number of queries, it still falls short of meeting the requirements

for online generation of AEs.

• Perturbation sync: To successfully launch our attack, the adversary is expected to play the per-

turbation when he/she hears the victim’s voice command. However, in a real-world scenario, the

timing of perturbation is hard to control. Therefore, we need to tackle this problem by generating

a near-synchronization-free perturbation [119].

Contributions: The contributions of this work are highlighted as follows.

• New attack: To the best of our knowledge, we are the first to achieve query-efficient black-box

attacks on commercial ASR systems as well as IVC devices. We demonstrate the dangers of

our attack over-the-air on 4 different commercial ASR APIs (i.e., Google Cloud Speech-to-Text,

IBM Watson Speech to Text, Amazon Transcribe, and Microsoft Azure Speech Service) and

5 different IVC devices (i.e., iPhone with Google Assistant, Google Home, Microsoft device,

Amazon Alexa, and IBM Wav-Air-API).

• New finding: We discover and formulate the unique boundary of commercial ASR systems for

producing AEs. This non-contiguous decision boundary hinders previously successful attempts.
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• New techniques: We propose PhantomSound, a phoneme-level searching method for efficiently

crafting AEs to launch adversarial perturbation attack with the least number of required queries

in comparison with other methods.

5.2: Background and Preliminary Study

In this section, we present the threat model of PhantomSound, as well as the assumptions and

attack scenarios. Then, we introduce the fundamentals behind the adversarial attack and present

the decision scheme of commercial ASR systems.

5.2.1: Threat Model

The adversary’s goal is to mislead the IVC devices or VCS systems by injecting malicious com-

mands. Prior to our work, there are two types of attacks that can achieve the same goal. The first

attack [37] uses reverse-engineering models to imitate the commercial models and craft the offline

AE in a white-box manner. The second attack [188] uses generative models to synthesize the vic-

tim’s speech. However, the reverse-engineering attack necessitates a high volume of queries (as

per Table 5.10) to construct the substitute model. It also demands updating the model in response

to changes in the commercial API. This renders it expensive and inadequate in meeting the need

for a real-time attack. Regarding the generative model driven synthesized attack, we assume the

adversary has access to sufficient recordings of the victim for training purposes. However, in our

specific situation, the attacker is expected to initiate the attack upon their first encounter with the

victim. Furthermore, playing the synthesized speech outright is not a viable approach as the victim

can hear it and potentially halt the attack.

Adversary’s capability: We assume that the adversaries can place a hidden microphone to record

the victim’s voice. We assume that an adversary knows the targeted IVC devices and has access

to their respective ASR API services (e.g., Google Cloud Speech-to-Text for Google Home or

Google Assistant). Following other related studies [12, 37, 119, 204, 218], we also assume that the

adversary is able to launch this attack via a hidden speaker or a compromised speaker in the victim’s

workspace/home.
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Attack scenarios: The adversary will first collect the victim’s voice commands, and then generate

the AEs and perturbations swiftly only based on the transcription result of the target devices. Once

the perturbations are crafted, the adversary can wait for the victim’s next command and play the

perturbation manually or automatically via existing keyword searching or voice detection mech-

anisms [11, 162]. Alternatively, the adversary may also play the perturbation repeatedly through

hacked speakers, attempting to fool the target IVC devices when the corresponding target voice

command was delivered.

In a real-world attack scenario, e.g., in a public space, an attacker may not have access to a large

collection of victims’ voices and may not have sufficient time to generate the perturbation offline.

In this case, the attacker only has a very limited time window to subvert the victims’ commands

towards voice assistants. To successfully instantiate such an opportunistic voice attack, an attack

approach with a timely and low complexity AE generation is highly desired.

User interference: Most existing attacks assume that the users will not perceive the AEs and will

not interact with their voice assistants during the attack. However, when the users are speaking

during the attack, most existing voice attacks will fail. In this research, we leverage the users’

voice command as a carrier for the adversarial audio to launch the attacks more effectively and

stealthily. Moreover, as advanced liveness detection algorithms [7,118] have been used to differen-

tiate between loudspeakers and humans with high accuracy, most existing audio attacks launched

by loudspeakers can be easily detected. In our attack, however, since the human voice and the

perturbation arrive at the same time, the liveness detection module of the voice assistant can be

effectively bypassed.

5.2.2: Adversarial Attack

Adversarial attack aims to craft an AE x0 + δ, in order to deceive the model f(·) to make false

prediction [160]. Take ypred as the output of model, if f(x0 + δ) := ypred ̸= y (y indicates the true

label of input x0), we suppose the attacker has launched an untargeted attack. If the perturbation is

crafted intentionally for a specific target (denoted as yt), the attack formalized as f(x0+δ) = yt ̸= y,
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is regarded as a targeted attack. The generation of AE can be formulated as an optimization problem

as follows:

minimize L(x0 + δ) := D(f(x0 + δ), yt). (5.1)

The goal of Eq. (5.1) is to minimize L(x0 + δ) under the constraint that ||δ||2 < ϵ, where L(·)

denotes the loss function, which uses a distance function D(·) to measure the disparity between

f(x0+ δ) and yt, || · ||2 is the L2 norm, and ϵ is used to control the amplitude of perturbation. There

are three main types of attacks depending on the prior knowledge of the victim models, listed as

follows:

White-box: If the adversaries learn architecture and the parameters of the model, they can get the

gradient of the loss function ∇L(x) during the forward or backpropagation. The perturbation can

be subsequently estimated using the inverse gradient [60].

Grey-box: The model conceals its architecture and parameters from the public and only exposes

the prediction scores P = [p0, p1, · · · , pn] for a given input. The adversaries can formulate a loss

function [26] D(P, Py) (Py is the one-hot encoding of y), and then track the changes of distance

when tuning δ in multiple attempts. The changes inL(x) are utilized to estimate the gradient which

will guide the attacker to update δ. The gradient estimation algorithms include Natural Evolution

Strategy (NES) [99] and Zeroth Order Optimization (ZOO) [33].

Black-box: Compared to white-box and grey-box attacks, the black-box attack is the most chal-

lenging, in which the attacker only has access to the prediction label of the model. In fact, most

of the commercial ASR systems and IVC devices are closed-source and only offer a final predic-

tion. To successfully attack the black-box model, existing work either trains a surrogate model and

transforms the problem into a white-box attack [135], or uses a significant amount of queries to

search the decision boundary of the victim model [23, 32, 38]. Here, we focus on the query-based

boundary-searching attack due to its flexibility and attack efficiency.

117



(a) A mixed image with cat and dog is recognized
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Figure 5.2: Observations of CV and ASR systems.

5.2.3: Black-box Audio Adversarial Attack

Compared with the black-box adversarial attack in other domains, the black-box audio adversarial

attack has several unique features. In this section, we conduct a preliminary study in quantifying

the behaviors of commercial ASR services.

Decision-based attack: Used for classification, a decision boundary is a hypersurface that par-

titions the sample space into several classes. Specifically, a well-trained DNN model uses the

decision boundary to classify the incoming inputs. The main goal of the existing black-box at-
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tacks [23,32,38], or so-called decision-based attacks, is to find the decision boundary of the target

model. Generally, to approach the precise decision boundary, they gradually perturb the input

based on the query feedback, to find an AE on the verge of the decision boundary.

However, one assumption made by existing decision-based attacks is that the DNN classifica-

tion model guarantees to return a prediction ypred for any input x. As shown in Figure 5.2a, we

merge a cat and a dog into one image and feed it into Google Cloud Vision API [65]. The classi-

fier labels the image as a cat with very high confidence (89%) while the human brain perceives it

differently. As shown in Figure 5.2b, the decision-based adversary [32] starts from a dog (x0) and

adds the proportion of a cat (δ) gradually to approach the boundary. The curves between classes in

Figure 5.2b indicate the decision boundaries, where δ ∈ [0, 255]H×W denotes the perturbed image

with the same shape as x0. The contiguous decision boundary allows the DNN models to always

output a result, while the result turns unreliable as it approaches the decision boundary.

Decision boundary of ASR: At first sight, it appears that the ASR systems would inherit the

DNN’s susceptibility to decision-based adversarial attacks. However, the unique characteristics

of voice systems and DNN models make traditional decision-based attacks hard to succeed. Here,

we conduct a preliminary experiment, in which we mix two voice commands “stop” and “back-

ward” together (Figure 5.2c) to imitate the mixture of cat and dog images. Then, we submitted the

mixed audio to Google Speech-to-Text API, which was rejected without any returns. The failed

attempts indicate that the decision boundary of the ASR system is non-contiguous. As shown in

Figure 5.2d, every voice command is surrounded by an exclusive boundary, and the audios outside

of the boundary ranges will be rejected by the ASR systems.

This phenomenon implies that the perturbed voice queries may fail to solicit valid feedback

from the ASR systems. Without feedback, it is difficult to determine the direction of the pertur-

bation for approaching a target decision boundary. Based on this observation, we are motivated

to design a new boundary-searching method to enable the decision-based black-box attack toward

ASR systems.
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Figure 5.3: Phoneme guided query

5.3: Attack Design

In this section, we present the system design of PhantomSound. We first introduce the phoneme-

level boundary searchingmethod tominimize the possibility of rejection by theASR systems. Then,

we formalize the attack as an optimization problem and illustrate the generation of AEs. Finally, to

enhance the robustness of PhantomSound in real-world scenarios, we propose the weak synchro-

nization scheme and over-the-air speech enhancement.

5.3.1: Phoneme-level Boundary Searching

Figure 5.2d shows the challenge in boundary searching to produce a proper AE. If the adversary

randomly adds noise to “stop”, the ASR remains the “stop” decision when the noise is low and gives

rejection while rising the noise power. However, if the adversary directly applies target “backward”

to the benign audio, it results in audio (red start in Figure 5.2d) in the middle between two decision

boundaries, hence giving no output.

Therefore, the reasons behind the rejection of queries can be attributed to two factors: 1) the

added random noise will elevate the command’s noise level; 2) the boundary distance between

two valid commands is too long to allow for an unnoticeable perturbation. To resolve these two

problems, a novel idea is raised: “If we break the target “backward” into small pieces, then craft
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AE with sub-targets which directly connect to the benign decision boundary with small pieces, and

finally, we can craft the final AE with the target.” Figure 5.3 depicts our attack design. Specifically,

instead of directly adding “backward” on the “stop”, we break the target “backward” into a series of

phonemes. During crafting the AE, we randomly add the phoneme on the benign audio and check

the prediction. If the ASR produces a word that is closer to our target, we keep the phoneme on

the benign audio and search for a closer prediction in the next round. In our case, the “stop” adds

perturbation phoneme δ1 and is recognized as “stopwhat”, then changes to “stalk what”, and “back

what”, and finally reaches the target “backward”. In every step, the AE achieves to sub-targets

who is adjacent to the benign decision boundary, and gradually, the perturbation can be crafted by

summing up all the small changes.

The basic idea of the proposed phoneme-level searching method is to perturb the original com-

mand along the direction of the target command while minimizing the distance between the original

and the target ones.

Algorithm 1 presents the initialization procedure for generating the phoneme-level adversarial

perturbation. Specifically, we first set the counter s = 0, and the initial distance between benign

and target as ϵ = CER(f(x0), yt). Next, we construct a phoneme set D = {ph1, ph2, ..., phn} by

breaking the target command, and then generate a random noise v ∈ [0, 0.1]l in line 4, where l is

the length of original input x0. Next, together with the v, a phoneme from D is randomly picked

and injected at its corresponding position of x0 in lines 5-6 to generate an AE x∗. The purpose of v

is to increase the variance of the phoneme. For the targeted attack, if the x∗ has a smaller distance

to the target (line 7), we put the perturbation to the initial perturbation set P̃ , then update the ϵ and

x0. For an untargeted attack, we can replace line 7 with “if f(x∗)! = y” to assure the ASR gives

an incorrect prediction. The searching loop continues until it reaches a sufficient number of rounds

K.

5.3.2: Perturbation Optimization

Even though Algorithm 1 generates proper perturbations for any voice commands, the amplitude

of the perturbation may become overwhelming. Revisiting Eq. (5.1), to acquire the minimal per-
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Algorithm 1: Phoneme-level Adversarial Perturbation Initialization
Input: The original audio x0, the target label yt, the phoneme clip samples

D = {ph1, ph2, ..., phn}, the initial Character Error Rate(CER) ϵ, the API service
of black-box ASR system f(·).

Result: The initial perturbations set P̃
1 s = 0;
2 ϵ = CER(f(x0), yt);
3 while s < K do
4 v = random [0, 0.1]l;
5 δ = v + rand(D);
6 x∗ = x0 + δ;
7 if CER(f(x∗), yt) < ϵ then
8 Put δ into P̃ ;
9 ϵ = CER(f(x∗), yt);
10 x0 = x0 + δ;
11 else
12 s = s+ 1;
13 end
14 end
15 return P̃

turbations, we need to gradually increase the perturbation power. However, due to the black-box

setting, the gradient is inaccessible. As a result, we use Sign-Opt [38] to estimate the gradient, since

Sign-Opt has achieved superior performance with the least number of queries, as written below:

∇L(x) ≈
Q∑

q=1

sign(L(x+ σµq)− L(x))µq, (5.2)

sign(L(x+ σµ)− L(x)) =


+1, f(x+ σµ) ̸= yt

−1 f(x+ σµ) = yt

(5.3)

where x is the general representation of x0+δ, q andQ denote the noise index and the total number

of noises respectively. σ is the search variance and µ is the noise. The key idea of Sign-Opt is to

search the gradient space using the natural evolution strategy. Since L(x) is unknown, Sign-Opt

queries f(·) in Eq. (5.3). The feedback of the target model can be collected to measure the number

of wrong predictions. The result will be used to guide Eq. (5.2) in searching for the gradient of
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L(x).

Query-efficient fine-tuning: The perturbation generation typically requires ∼5k queries to craft

an AE [32, 38]. To further reduce the cost of queries, we design a query-efficient AE generation

scheme to greatly reduce the query number.

By carefully examining the Eq. (5.2), we realize that the gradient estimation step depletes most

of the queries. SupposeQ = 50, then it uses 50 queries to catch the f(·) result and estimate gradient

according to Eq. (5.3). However, Sign-Opt [38] uses the estimated gradient only once for updating

x, with a small update learning rate, while most of the gradient computations are wasted. In our

design, we estimate the gradient once, then apply the estimated gradient multiple times to update

the δ until it does not satisfy our attack goal, then do the gradient estimation again.

The workflow of our proposed query efficient phoneme-level adversarial perturbation genera-

tion is shown in Figure 5.4. There are three major steps to generate AEs and perturbations: search-

ing, proposing, and fine-tuning. In the searching and proposing phases, unlike the prior study [38]

which only searches for random noise and keeps the shortest initial perturbation while discarding

others, we reserve all the perturbation candidates to increase the generation speed. In the fine-

tuning phase, we optimize all the proposed perturbations through gradient estimation. Note that

there are three paths from the Query block: 2⃝ is used to update the perturbation consecutively

until it cannot be further optimized. Then, we will re-calculate the gradient ( 1⃝). Once the power

of perturbation is lower than ϵ, we add it into the perturbation set P ( 3⃝).
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5.3.3: Weak Synchronization Design

Considering the adversary needs reaction time to play the perturbation, the generated perturbations

are demanded to be robust against the mismatch of insertion positions. To realize such an attack,

we seek to minimize the average loss instead of the instant loss. That is, we take the impact of

mismatch into consideration and expect the comprehensive loss to be minimized. Mathematically,

the average loss can be expressed as follows:

L(x) = 1

N

N∑
i=1

Li(x), (5.4)

Li(x) = L(x+ cτ), (5.5)

where τ represents the mismatch interval, c controls the length of a mismatch period, i indicates

the id of related losses, and N is the number of involved L. To minimize the average loss, we can

refer to Eq. (5.2) and Eq. (5.3) to estimate∇L(x) by computing∇L(x+ cτ). The drawback of the
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average loss gradient estimation is that it costsN×more queries to perform the gradient estimation.

The length of phonemes inD varies from 50ms to 300ms, and one-word duration is ranging from

281ms to 387ms according to the report [168]. We expect that the phoneme-level perturbation can

be plugged within the duration of one word, otherwise, it will be difficult to maintain the minimal

L especially when a delayed perturbation arrives. In this chapter, we set theN = 4 and τ = 100ms.

Figure 5.5 depicts the perturbation mismatch scenario: when crafting the first red perturbation, we

gather the other losses by the same perturbation but with a different time delay. In the figure, L1,

L2, L3 correspond to c = 0, c = 1, and c = 2.

5.3.4: Over the Air Attack Robustness

Besides the weak synchronization feature, the attack robustness is another important feature of

PhantomSound. Existing work models the acoustic signal propagation to compensate for the prop-

agation loss over the air [144]. But the heavy computation prevents them from being adopted in real

time attack. Also, the quality of perturbation relies on the speaker’s amplifier, and the additional

distortion on such small perturbation is hard to model. Inspired by the prior work [119] who sets

a frequency filter to guarantee the generated perturbation is ranging from 50-8,000 Hz. To guar-

antee the effectiveness of PhantomSound over the air, we follow their approach on configuring a

frequency filter to mitigate the uneven frequency response caused by the hardware imperfection of

the speaker, thereby enhancing the attack robustness.

5.4: Evaluation

In this section, we first introduce our benchmark experimental setting to generate AEs and per-

turbations. Then, we evaluate PhantomSound thoroughly to validate its feasibility and robustness.

Moreover, we measure the impacts of different parameters in tuning a successful attack. Our attack

is successfully launched on four different ASR service APIs, and the five popular commercial IVC

devices. We further conduct an user case study in section 5.4.8. This section describes the results

in detail.
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5.4.1: Target Model Selection

Since we are developing a general approach to generate perturbations to attack closed-source ASR

systems and commercial devices, we will examine the effectiveness of AEs and perturbations on

the most popular IVC devices available on the market. Specifically, we select Google Home (G-H),

Google Assistant (G-A), Amazon Echo, Microsoft Cortana, and IBMWAA6 as target IVC devices.

Moreover, we target their respective ASR APIs, namely, Google Cloud Speech-to-Text API, Mi-

crosoft Azure API, Amazon Transcribe API, and IBMWatson API. As for Apple Siri, since there is

no online speech-to-text API service available from Apple, we cannot perform PhantomSound due

to the lack of querying feedback from its ASR system. For all the target systems, we only receive

the hard label of the querying input from their APIs.

5.4.2: Metrics

We use the following metrics to quantify the effectiveness of our attack: (1) Success Rate: this

metric represents the ratio of successful attacks and the total attempts. For an untargeted attack,

as long as the AEs and the perturbations alter the prediction of the original input, we count it as

successful. For a targeted attack, we report success only when the prediction matches the targeted

class. (2) Average queries per command: we use the number of queries to imply the cost and speed

of AE generation. Specifically, we measure how many queries it needs to craft a perturbation. This

metric is calculated by the total number of queries over the number of crafted AEs/perturbations.

(3) L2 Distortion: the L2 distortion ||δ||2 indicates the size of perturbations. Prior to the launch

of a physical attack, we can measure the distortion value by summarizing the squared amplitude

of the generated perturbations. Note that the perturbation δ ∈ [0, 1]l and the initial phoneme-level

distortion ranges from 50 to 1,600 depending on different phonemes, which will be optimized after

the perturbation fine-tuning as shown in Section 5.4.5. (4) False Accept Rate: the false accept

rate is measuring the probability of that the attacks can be false accepted by the liveness detection
6WAA represents “Wav-Air-API”. As IBM does not own a commercial voice assistant device, we record and

replay our AEs over-the-air, and transcribe them with IBM Watson API. This process, named as WAA, simulates an
IVC device that is integrated with an IBM Watson API [37].
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methods. We use this metric to evaluate the ability of our attacks to bypass the existing defense

methods (e.g. liveness detection) compares to the existing attacks. The higher false accept rate

we achieve, indicating the more dangerous of attack is, to bypass the existing liveness detection

methods.

5.4.3: Dataset

The dataset we choose as original input is speech commands v0.02 [186] released by Google Brain.

This dataset is designed to validate the keyword detection capability of DNN models. It contains

105,829 utterances of 35 common one-word commands (e.g., “yes”, “learn”, “stop”), which is

recorded from 2,618 volunteers. To validate the effectiveness of PhantomSound on a longer com-

mand, we record 10 longer commands (partially listed in Table 5.4) from a volunteer.

For the phoneme dataset, we expect to obtain all 44 pure English phonemes with flexible du-

ration. Existing speech datasets (e.g., Arabic Speech Corpus [81], TIMIT [1]) include the anno-

tations of phonemes, but it requires extra efforts to extract individual phonemes with different

duration from the speech audio. Besides, PCVC dataset [2] only involves 12 volunteers, and scikit

phoneme dataset [146] only contains 5 vowels. To construct a phoneme dataset with a diverse set

of speakers, we use 200 different audios from 200 speakers in speech commands v0.02, remove

the silence in the recordings, and randomly cut audio clips with a duration between 50ms to 300ms.

This phoneme processing step follows that of the scikit phoneme dataset [146], which results in

453 audio clips in total.

Table 5.2: Dataset description (“unique cmds” refers to the number of unique target commands,
and “total audios” refers to the total number of (adversarial) audios that lead to the target

commands).

Phone. Cmd. Untargeted Targeted
Unique cmds - 45 1785 64
Total audios 453 300 6,219 216

Table 5.2 records the number of involved data including phonemes, commands, untargeted

perturbations, and targeted perturbations. We use 35 one-word commands from the speech com-

mands v0.02 dataset, along with 10 self-recorded long commands to build a command dataset with
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45 different commands, including 300 audios in total. Then, we apply the proposed algorithm

to randomly generate AEs and perturbations for an untargeted attack, resulting in 1785 different

commands and 6,219 adversarial audios on 4 different commercial APIs. For the targeted attack,

we attempt the perturbation of keywords, and generate 64 target commands with 216 adversarial

audios.

5.4.4: Experiment Setting

We conduct the experiments on a desktop with Intel i7-7700k CPUs, 32GB RAM, and 64-bit

Ubuntu 18.04 LTS operating system. The experiments are performed at three locations with differ-

ent noise floors. We use three loudspeakers, including LG monitor built-in speaker (at the apart-

ment), an SADA D6 home small speaker (at the lab), and an Samsung S9 phone (at outdoor), to

transmit AEs (i.e., AE attack) and perturbations (i.e., perturbation attack) to the victim devices.

Figure 5.12a demonstrates the attack scenario: the victim speaks commands into a smartphone or

Google Home mini, while the attacker plays the perturbation through a speaker.

5.4.5: Attack Performance

We first evaluate the functionality of AE generation in PhantomSound. The purpose of this evalua-

tion is 1) to demonstrate that the perturbation amplitude is negligible compared with the input, and

2) to prove the query efficiency of our phoneme-level searching algorithm. Then, we conduct the

physical attack and validate the robustness of our attack over the air.

Attack Over-the-line: We first evaluate the attack by targeting the ASR APIs. The adversarial

audios are directly supplied to the online APIs. We randomly select 20 adversarial audios from

every command, and then perform the untargeted attack by searching for 100 epochs (K = 100 in

Algorithm 1). Then, the generated perturbations are optimized to suppress their power. In the end,

we obtain 148 AEs and perturbations from ∼44k queries (Q = 30 in Eq. (5.2)), i.e., 301 queries

per AE on average.

To evaluate the perturbation amplitude, we randomly pick two examples from the generated

perturbation as shown in Figure 5.6. We can see that the crafted perturbations have a negligible
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Figure 5.6: Comparison of input and perturbation amplitudes.

power profile compared with the input regardless of the length of commands. Moreover, the du-

ration of perturbation is shorter than the input, which makes it possible to conceal the presence of

perturbation. Table 5.3 summarizes the results of the untargeted attacks toward 4 types of commer-

cial APIs. We observe that every command can be altered into at least two false commands. While

some of the false predictions are harmless, the attack can almost certainly invalidate the victim’s

command. Moreover, in certain cases, some perturbations can lead to a contrary response from

voice assistants (e.g., “right” to “wrong” in Amazon Transcribe API, “right” to “no” in Microsoft

Azure API). Considering the number of queries for generating one perturbation, the Google Cloud

Speech-to-Text is reported to be the most resilient API under our attack, as it requires the most

queries.
To further comprehend the query effectiveness, we conduct an additional experiment to validate

the sensitivity of different APIs in terms of request rejection rates. The result shows that Google

API is most sensitive as it refuses to respond to an unclear input, while the Amazon transcribe al-

ways responds to any inputs. Table 5.4 records the targeted attack results towards a longer input.

The results show that our phoneme-level searching method is capable of finding the specific per-

turbation that could mislead the APIs to return a target result. Note that the average query amount

increases dramatically in the targeted attack case, which is anticipated because the target need to be

achieved by multiple round perturbation searching (line 7-10 in Algorithm 1). It is also notewor-
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Table 5.3: Untargeted attack results.

Cmds. Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Watson

”down”
”damn” ”town” ”done” ”Downer”
”done” ”one” ”dine” ”Done”
”does” ”south” ”drive” ”Drone”

”follow”
”fallout” ”fallout” “no” ”fallen”
”farm” ”fall over” ”for sure” ”fall over”
”four” ”learn” ”phone” ”fall”

”forward”
”forewarn” ”work” ”what” ”for”
”for eyes” ”for” ”work” ”four”
”for work” ”ford” ”for all”

”yes”
”yeah” ”file” ”yeah” ”yeah”
”yeah!” ”4” ”yes..” ”yet”
”yet” ”On” ”right” ”hi”

”right”
”Rite Aid” ”no” ”write” ”run”
”write” ”go” ”run” ”ray”
”read” ”trade” ”wrong” ”left”

Queries 345 251 215 314

Table 5.4: Targeted attack results

Command Query

Input Target Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Wat.

”turn right” ”turn left” 1,895 1,128 1,421 1,487
”kitchen
lights off”

”kitchen
lights on” 1,754 857 933 1,377

”callmom” ”call 911” - 1,421 1,125 -
”read
my
message”

”delete
my
message”

2,342 1,520 1,436 1,781

Average
Queries 1,997 1,232 1,229 1,548

thy that our targeted attack cannot guarantee finding a successful perturbation under any arbitrary

inputs (e.g., Google Cloud fails to craft AEs for “call 911”).

Table 5.5: Comparison for Untargeted Attacks

Models↓ Ours white
box [27]

score
based [33]

brute
force [23]

DS 1 [84] 185 90 206 ∞
DS 2 [16] 226 75 197 ∞

Query efficiency comparison on knownmodels: To validate the benefits of introducing phonemes

to guide the optimization direction, we implement 3 different attacks on two known models. By

attacking two ASR models (DeepSpeech 1/DS 1 [84] and DeepSpeech 2/DS 2 [16]) with different

prior knowledge and method, we find that PhantomSound achieves comparable query efficiency
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with the grey box setting, with 100% attack success rate. The result is summarized in Table 5.5.

Given the same 10 benign commands, we use the 4 attacks to generate untargetedAEswith the same

L2 distortion. We record the average number of queries for different prior knowledge of the victim

model. Compares to the white box attack, which can fine-tune in <90 queries, PhantomSound re-

quests 200 queries to craft an AE, which is close to the queries of a score-based attack. This result

indicates that our strategy such as 1) using phoneme to initialize perturbation 2) Query-efficient

fine-tuning is working well, and performing similar results with less information (e.g., confidence

score). It is noteworthy that the brute force decision boundary search method doesn’t work for

attacking the ASR model. Because this method initializes a random noise and retrieves model gra-

dients by altering the noise. However, this noise can never be fine-tuned while the victim model

produces an empty label to it, resulting in an infinite number of queries.

Table 5.6: Comparison for Targeted Attacks

Attacks Knowledge Queries SR
Carlini [27] Gradient ∼1,000 100%
Houdini [44] Gradient ∼1,000 100%
Devil’s [37] Conf. Score ∼1,500 100%
OCCAM [218] Final decision ∼30,000 100%
Ours Final decision ∼1,500 68%

Query efficiency comparison for targeted attacks: We compare the number of required queries

with four existing attacks in Table 5.6. The white-box attacks (Wb) [26, 44] require the least

amount of queries (∼1,500). With the knowledge of confidence scores of API’s decoding results,

the Devil’s Whisper [37] utilizes a surrogate model trained with around 1,500 queries to attack

the APIs. In the scenario when an attacker can only access the final decision of the query API,

PhantomSound needs ∼1,500 queries (comparable with the white-box setting) to craft a targeted

perturbation. Compared with a recent black-box attack OCCAM [218], we reduce the number of

queries by 95%. However, due to the limitation of phoneme length and diversity, we sacrifice the

success rate to achieve high query efficiency.

Weak synchronization: Before evaluating the physical attacks, we investigate the effectiveness

of the proposed weak synchronization design. In this experiment, we manually add mismatch de-
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lays between input x0 and the generated perturbation to craft mismatched AEs. We then use the

mismatched AEs to query the APIs and measure the attack success rate. Figure 5.7a displays the

result, from which we can see that, after using the average loss, although we expect the weak-

synchronization works within 400ms (detailed in Section 5.3.3), this design is only partially effec-

tive, because the success rate drops steadily with the increasing mismatch time. Moreover, we show

the tendency of L2 distortion w.r.t. the number of queries in Figure 5.7b. The baseline denotes an

L2 distortion of 10, which is proven unnoticeable by two volunteers when AEs are played using an

LG monitor with a medium volume.
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Figure 5.7: Evaluation of AE generation process.

Attack over-the-air: The over-the-air attack evaluation aims to prove the robustness of PhantomSound.

To attack commercial APIs, we play the valid AEs and perturbations (which attack successfully

in over-the-line scenarios) via a SADA D6 speaker, and record it by iPhone 12 Pro, the recordings

are sent to the commercial API for evaluation. The attack distance is set to 50cm. For each attack,

we choose 5 AEs to play 5 times and get the average success rate. We report the result in Table 5.7.

From our observations, it is apparent that in the context of a targeted attack, our method attains

approximately a ∼ 80% success rate in attacking over-the-air commercial ASR APIs by directly

playing the audio adversarial example (AE). When the attack is synchronized with the victim’s
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Figure 5.8: AE generation results.

Table 5.7: Over-the-air attack API baseline

APIs Google Cloud MS Azure AMZ Trans IBM Wat.

Targeted AE 76% 80% 80% 84%
Pert. 68% 72% 72% 76%

Untargeted AE 100% 100% 100% 100%
Pert. 72% 80% 80% 92%

speech, the perturbation attack exhibits around a ∼ 72% success rate. On the other hand, when

it comes to untargeted attacks, our adversarial examples (AE) and perturbation methods achieve

impressively high success rates. They misdirect the victim’s input with a 100% and approximately

81% success rate, respectively. Next, we follow the same setting to attack commercial IVC devices.

The result in Figure 5.8a uncovers the success rate of playing AEs directly. Among all the tested

IVC devices, Microsoft Cortana is most vulnerable against the AE attack, while the Google series
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products (e.g., Google Home, Google Assistant) show the most resilience against the targeted AE

attack. Overall, the success rate of an untargeted attack is higher than that of a targeted one, i.e., the

former reaches ∼80% success rate and the latter stays around ∼50%. With the perturbation attack,

Figure 5.8b reveals a relatively low success rate. Similarly, compared to the targeted perturbation

attack, the untargeted attack has a higher success probability, achieving around 45% success rate

on average. Nevertheless, the success rate can be further improved via multiple repeated attempts.

We also summarize the success rate compared to prior black-box attacks in Table 5.8.

Table 5.8: Comparison with other real-world attacks

Target Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Wat.

Google
Home

Google
Assit.

MS
Cortana

AMZ
Echo

Devil’s [37] 10/10 10/10 4/10 10/10 9/10 10/10 10/10 10/10
Danger [215] - - - - 15/100 - - 69/100
Ours 19/25 20/25 20/25 21/25 11/25 12/25 16/25 16/25

Upon comparison with the Devil’s attack [37], it is evident that our attack method yields a

marginally lower success rate against the APIs, with the exception of the Amazon Transcribe API.

Considering the IVC devices, the Devil’s attack tends to be more effective at similar SNR levels.

For the Danger attack [215], we have displayed their success rate derived from their ”voice squat-

ting” attack, where the victim’s command is misinterpreted to initiate the attack skill. A comparison

reveals that our attack technique yields comparable success rates when targeting Amazon Echo, and

even demonstrates superior performance when used to attack Google Home.

Time cost: Different from the prior works that require a substantial amount of time to craft AEs of-

fline, PhantomSound enables much faster AE generation. Such a fast generation feature is essential

in practice, when the attackers only have a limited time budget to instantiate the attack.

In the experiment, we record the latency for querying 4 different commercial APIs to get the

results. The results are presented in the first row of Table 5.9, which show that 3/4 of APIs could

return a result in seconds, except Amazon Transcribe API. The Amazon API has to interact with

Amazon Web Service and Storage bucket, which spends a longer period for the results to return.

We then compute the total time needed for perturbation generation, by multiplying latency with

the number of queries (shown in Table 5.3, 5.4). Our result shows that PhantomSound can generate
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Table 5.9: Latency for perturbation generation

Time
Consumption

Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Wat.

Latency (s) 0.29 0.58 26.31 1.35
Untargeted (min) 1.67 2.43 94.3 7.1
Targeted (min) 9.65 11.9 539 34.8

a perturbation for both the targeted and untargeted attacks in minutes with the exception of Amazon

API, while the targeted one takes longer. Note that we take the L2 distortion into consideration

during the time cost computation, however, if the attacker ignores the impact of the perturbation

loudness and uses the intermediate perturbation, the generation time can be further reduced.
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Figure 5.9: Attacks vs. liveness detection defenses

5.4.6: Ability to Bypass Liveness Detection

Compares to the existing physical adversarial attacks [37,204,218], PhantomSound relies on the be-

nign commands spoken by the user. Although this attack setting requires extra effort to synchronize

the perturbation and the user’s benign speech, it brings potential benefits to bypassing the defense

mechanism. For example, recent works [7, 73, 110, 112, 118, 123] proposed liveness detection ap-

proaches can differentiate the source of sound (human or machine) with high accuracy. Therefore,

the conventional adversarial attacks that are launched solely by loudspeaker [37, 204, 218] have a

higher probability to be defended by those liveness detection methods. In contrast, our attack is de-
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signed to launch with the user’s speech, leading to a more dangerous threat to the liveness detection

defenses. To validate the performance of PhantomSound over different defense mechanisms, we

reproduce three liveness detection algorithms, CQCC [110], STC [112], and Void [7]; For compar-

ison, we implement C&W attack [27] and Devil’s [37]to attack with liveness detection algorithms.

To conduct this experiment, we follow the settings described as follows:

Ours: We play our perturbation when the user gives the command, and record it with a smartphone.

Then, we run three liveness detection algorithms to detect the sound source.

C&W [27]: We play the AEs that are generated by this attack, and then record with the same

smartphone and run liveness detection algorithms to defend it.

Devil’s [37]: We play the AEs provided from the chapter’s demonstration website, and then record

it with the same smartphone, followed by the same liveness detection procedure.

For our attack and the C&W attack, we use 20 different perturbations/AEs to attack the liveness

detection model; As for the Devil’s attack, since we can only collect 10 AEs from the demonstration

website, we use 10 AEs to attack the liveness detection model. We present our result in Figure 5.9.

It is evident to show that our attack can bypass the three liveness detection models, resulting 95%

to 100% false accept rate. In contrast, the other two attacks have a very low chance to counter the

Void [7] detection with less than 15% FAR. Even for conventional liveness detection methods (e.g.,

CQCC and STC), the existing attacks that use complete AEs also have a low probability ( 40%) to

attack successfully.

5.4.7: Impact of Practical Factors

To investigate the critical factors that may affect the success rate of PhantomSound, we evaluate

the perturbation attack under different environments (e.g., apartment, lab, outdoor). The ambient

noise level for the aforementioned places are 39.8 dBSPL (apartment), 41.2 dBSPL (lab) and 58

dBSPL (outdoor), respectively.

In this experiment, we play a crafted perturbation of “turn right” 10 times, attempting to trans-

form the prediction into “turn left”, and the volume of perturbation is 60 dbSPL. We then record the
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success rate under different circumstances. Figure 5.8c demonstrates the impact of attack distances,

i.e., the closer the adversary is, the higher success rate he/she achieves, which is unsurprising given

that our attack relies on the successful delivery of the perturbation. The relatively short attack dis-

tance is in fact a common limitation reported by the existing work [37, 119, 204]. However, the

attacker can further extend the attack distance by increasing the speaker’s volume (though it could

make the perturbation more noticeable) or utilizing a speaker array [141]. Next, we provide the

results on how the loudness factor could affect the attack performance in Figure 5.8d. We can see

that the success rate improves with the increasing perturbation loudness. This result also coincides

with the prior work [119]. In an outdoor environment, it is suggested that the adversary enhance

the attack robustness by amplifying the perturbations. Due to the higher noise level outdoors, the

phoneme-like perturbation can still be hard to perceive.
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Figure 5.10: Attack with different angles.

Impact of attack angles: Besides the attack environments and the distance, the attack angle can

also alter the attack performance. We evaluate our attack by playing AEs to two smartphones in 12

different directions (from 0 degrees to 360 degrees, with 30-degree intervals). This experiment is

conducted in Lab environment and attacks the google assistant on the smartphone. We play 10 AEs

in every direction with 60dBSPL, and record the success rate of the untargeted attack. We report
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our result in Figure 5.10. We find that our attack has the best performance when the adversary is

facing or back to the smartphone. While attacking through the side direction (e.g., 0 degrees when

the adversary is parallel to the victim), the success rate is impaired. We observe the same trend on

two smartphones. This result indicates that the microphone arrangement and its direction will lead

to audio information loss. Unfortunately, the low power of our perturbation is hard to be sensed

with the audio loss, therefore causing a low success rate in the side direction.

Impact of different victims: In the attack preparation period, every perturbation is crafted based

on a specific command from a specific speaker. However, the adversary may use the crafted per-

turbation on the previous victim to attack the current victim. Here, we evaluate the capability of

PhantomSound to attack different speakers. First, we obtain 4 perturbations from speaker #1 (male),

which convert the benign commands ”stop”, ”right”, ”yes”, and ”down” into 4 target commands

”backward”, ”left”, ”no” and ”song” respectively. Next, we randomly select 100 speakers (50 males

and 50 females) who are not speaker #1 from the speech commands v0.02 dataset, and inject the

perturbations into their benign audio samples. For the targeted attack, if the benign commands are

successfully interpreted as the target, we classify it as successful. For the untargeted attack, any

case where the benign commands are misinterpreted is considered successful. The result is present

in Figure 5.11.

The result indicates that, for targeted attacks, the attack success rate is dependent on the benign

samples. The success rate exceeds 50% when the target is of the same gender, but it falls below

40% when targeting different genders. Regarding the untargeted attacks, the perturbations demon-

strate robust transferability for attacking various speakers. The average success rate is notably high,

reaching 98% for males and 74% for females.

5.4.8: User Study

To evaluate the stealthiness of perturbation in a real-world attack, we conduct an online/in-person

user study to investigate the users’ perception level of PhantomSound. In our study, 20 volunteers

are involved, and they are requested to hear 6 crafted perturbations across 4 different distances.
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Figure 5.11: Attack cross different victims.

Two volunteers attend the in-person experiment (see Figure 5.12a) and the rest of them carry out the

experiment at their homes. We recruit 13 volunteers from AmazonMechanical Turk with complete

experimental instructions.

The volunteers are asked to pretend speaking to their voice assistants while hearing the pertur-

bation, after which they will answer questions to depict their comprehension of the heard pertur-

bations. The options for perception levels include: Listened, Abnormal, and Recognize. Listened

indicates that the volunteer can hear a perturbation but regard it as a normal noise; Abnormal im-

plies that they hear some strange sounds; and Recognize stipulates that they can understand the

meaning of the heard sound. We report the experiment result in Figure 5.12b. It shows that most

of the participants can hear the perturbation within a short distance, but less than 50% of them re-

gard the perturbation as an abnormal sound. Such “abnormality” feeling will gradually disappear

with the increasing attack range, which ends with 10% in 2 meters. Moreover, even though all the

perturbations are “meaningless” phonemes, some participants claim to understand their meanings

(though the understanding is incorrect). To summarize, PhantomSound can be noticed by victims,

but would not vastly raise their attentions. Notably, the victims are generally unaware of the mean-

ing of perturbations.
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Figure 5.12: Real-world user study of PhantomSound.

5.5: Discussion

5.5.1: Low-cost Attack

Table 5.10 lists the cost comparison between PhantomSound and the existing work [37]. The first

row records the pricing information of the commercial APIs, which is measured by the duration

of given audios (in minutes). The recent black-box attack [37] is reported to incur the cost of

1,500 queries for building the substitute models, and every query uses an audio with 25 seconds

long. In total, such an attack requires 1500 ∗ 25/60 = 625 minutes to train a surrogate model, and

can only generate 10 pre-selected commands. To generate extra commands, the attacker needs to

submit additional queries (∼100) for the candidate AEs. Suppose the length of candidate AEs is 6

seconds, the total time cost for generating extra AEs is 6 ∗ 100/60 = 10 minutes. All together, the

duration of queried audio is 72.5 minutes for producing one single AE. In contrast, PhantomSound

does not require a substitute model, and as such, it only takes ∼300 queries and ∼2,000 queries of

one-second audios to craft an untargeted AE (Ours-U) and a targeted AE (Ours-T) respectively. We

then present the cost to generate one AE based on the pricing and the query audio length (shown

in row 4 and 5). In the end, PhantomSound saves 93.1% and 65.5% of the cost for crafting an AE,
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a drastic improvement.

5.5.2: Limitations

The limitations of PhantomSound include that: 1) the attack is sensitive to ambient noise; 2) there

is no guarantee to generate an AE for any input and any target; 3) this attack could not substantially

modify very long sentences; 4) the attack distance is relatively short as presented in Section 5.4.7.

To address the first and the fourth limitation, the adversary can either amplify the perturbation

power or attack the victim in a relatively quiet place. The second and third limitations are pos-

sibly addressed using multiple repeated attempts of phoneme injections, which will increase the

likelihood of generating a successful perturbation with a potential caveat of growing costs.

Table 5.10: Cost comparison
Google MS AMZ IBM

Pricing/min $0.024 $0.016 $0.024 $0.01
Build model [37] 625 min
Craft AE [37] 10 min
Total time/AE [37] 72.5 min
Total time/AE (Ours) 5 min - 25 min
Cost/AE [37] $1.74 $1.16 $1.74 $0.725
Cost/AE (Ours-U) $0.12 $0.08 $0.12 $0.05
Cost/AE (Ours-T) $0.6 $0.4 $0.6 $0.25
Saving/AE (Ours) 93.1%/65.5%

5.5.3: Defense

Prior studies [119,202,204] reveal that the audio adversarial attack can be defended by signal pro-

cessing techniques, since the adversarial perturbations are delicately crafted and hence are deemed

fragile. The signal processing techniques, however, can reduce the fidelity of perturbations and

hence protecting the ASR models. Typical signal processing defense methods include 1) Down

sampling (DS): decreasing the sampling rate of AEs to disrupt the quality of AEs [119,202,204]; 2)

Quantization: as the original AEs are encoded by 16-bit values, the quantization technique rounds

the 16-bit precise value to its nearest integer multiple of Q, where Q represents the quantization

level. A higher Q results in a lower precision of AEs, which has been adopted to defend against
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the attacks [119, 202]. 3) Low pass filtering (LFP): the defense can use a Butterworth low-pass

filter with different cutoff frequencies to remove the high-frequency components of the perturba-

tions [119].

We reproduce the aforementioned three defense methods to test their effectiveness against

PhantomSound. Specifically, for DS approach, we modify the sampling rate of AEs from 16k

to 8k and 4k. In the quantization setting, we follow the existing work [119] to set Q as 256, 512,

and 1,024. Then, we build a Butterworth low-pass filter with a cutoff frequency of 4kHz, and set

the order of the filter as 6. To validate the defense performance comprehensively, we generate

1,190 AEs from 20 clean audio samples and process them with 6 different defense settings.

0 50 100
Success Rate (%)

DS(4k
)

DS(8k
)

LP
F(4k

)

D
ef

en
se

 M
et

ho
ds

Google
Amazon

IBM
MS

(a) Defense performance of DS and LPF

0 50 100
Success Rate (%)

Q-25
6

Q-51
2

Q-10
24

D
ef

en
se

 M
et

ho
ds

Google
Amazon

IBM
MS

(b) Defense performance of quantization

Figure 5.13: Performance of PhantomSound against different defenses.

We use the processed AEs to attack 4 commercial ASR APIs. Figure 5.13a shows that LPF can

barely impact the attack success rate of AEs and APIs. For comparison, the DS technique slightly

changes the attack success rate from 100% to 92.4% (Microsoft), 71.4% (IBM), 87.5% (Amazon),

and 63.3% (Google). This method can further reduce the success rate by applying a lower sampling

rate (e.g., with 4k sampling rate, the IBM and Amazon API can defend against∼60% attacks, while

the Google API is not supported for the audio input with such a low sampling rate. Different from

the findings from previous work [119, 202] that quantization is effective in defending against the
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adversarial attack, our results show a converse performance. From Figure 5.13b, we observe that

only the IBM API can be affected by the quantization, which reduces the success rate to 73%,

61%, and 47% for q=256, 512, and 1,024, respectively. To summarize, our results demonstrate

that the existing signal processing-based defense approaches cannot protect the commercial APIs

from PhantomSound. Future research on defense mechanisms are needed to provide more secure

speech-to-text and voice assistance services.

5.5.4: Ethical Issues

The intention behind publishing this work is to enlighten the academic and tech community about

the vulnerabilities of commercial ASR APIs and smart speakers, it may also provide malicious

actors with the knowledge and tools to exploit these vulnerabilities for harmful purposes, such as

privacy invasion, identity theft, or unauthorized control of connected devices. If the findings of

this chapter are misused, malicious actors could potentially manipulate smart speakers into shar-

ing sensitive information or performing unauthorized actions, there may be potential financial and

reputational harm to individuals and corporations. To address these ethical concerns, it would be

advisable to collaborate with manufacturers of smart speakers to design effective countermeasures

to defend against this attack.

5.6: Related Work

The study of adversarial attacks starts from the discovery of intriguing properties of the neural

networks around 2014 [60, 160]. Researchers manually or automatically add small perturbations

to the input and thereby misleading the neural network models.

Adversarial attacks against ASR systems: Existing work [12,27,44,136] has proposed different

optimization algorithms to craft effective AEs towards ASR models with some knowledge of the

victim’s ASR model (e.g., prediction scores or logits output). However, the robustness of their

attack approaches in a real-world over-the-air scenario is usually unverified. The recent physi-

cal attacks such as CommanderSong [204], Devil’s Whisper [37], and AdvPulse [119] require a

substantial cost (in time and money) for the attackers to succeed in attacking the black-box voice
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assistants.

Signal processing attacks: Rather than exploiting the vulnerabilities of neural networks in ASR

systems, the signal processing attacks aim at attacking the signal pre-processing or feature extrac-

tion modules. They usually exploit the discrepancies between the human auditory system and the

perceptual hearing system of microphones to fool the ASR system. These attacks analyze the input

and output of the feature extraction procedure, and then they modify the input of feature extraction

and preserve the shape of output to either hide their attack [4] or mislead the ASR system in produc-

ing incorrect transcriptions [5]. Even though the existing signal processing attacks demonstrate the

efficiency and effectiveness against the black-box models, it is relatively straightforward to defend

against using frequency filters.

Audio backdoor attacks: Different from adversarial attacks which attack a trained model, back-

door attacks [68,79,120] inject backdoor triggers during the training process. Recently, researchers

demonstrated that the backdoor attack [152, 207] can also be implemented in the ASR model and

Speaker Verification models. To defend against the backdoor attacks in the image domain, several

countermeasures are proposed [75, 77].

Other related works: Some attackers exploit the imperfection of hardware (e.g., microphone)

to deliver inaudible attacks through different media [115, 158, 200, 210]. Besides, Danger [215]

uses homophones (i.e., different words with similar sounds) to attack ASR skills. Researchers

also develop side-channel attack [184] by injecting voice commands through a power line. Speech

synthesis attack produces victim’s fake speech by generative models [188]. To protect the victim’s

original speech, researchers add perturbations( [95, 183]) to prevent the generating of deep fake

speech.

5.7: Summary

In this chapter, we proposed PhantomSound, a practical, black-box, and query-efficient audio attack

against commercial ASR systems and IVC devices in a real-world scenario. As opposed to the

existing attacks that require prior knowledge of the target model, we propose a phoneme-level
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searching method to generate AEs and perturbations rapidly and effectively in a black-box setting.

In the real-world experiments, PhantomSound is shown to be practical and robust in attacking 5

popular commercial voice controllable devices over the air, which could potentially cause hazards

to the smart home. In the next chapter, we will introduce a privacy protection design to defend

against voice privacy leakage.
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CHAPTER 6: SPEAKER SELECTIVE
CANCELLATION VIA NEURAL
ENHANCED ULTRASOUND
SHADOWING7

6.1: Introduction

The widespread adoption of smartphones and Internet-of-Things (IoT) devices, equipped with built-

in microphones, enables people to easily record audio anywhere and at any time. However, the

increasing prevalence of unauthorized microphones has given rise to many instances of privacy

breaches. Commercially available microphones, which are easily accessible, pose a risk of cap-

turing users’ biometric data, such as voiceprints or eavesdropping on confidential conversations.

Consequently, the issue of illicit voice recording has emerged as a significant concern in society.

Recent studies [116, 169] attempt to disrupt unauthorized voice recording by emitting an ultra-

sonic scrambling noise wave (i.e., a jamming signal) to obfuscate the superposed voice. However,

the scrambling noise wave is generated using low-level acoustic signal features that are irrelevant

to the speaker’s identity. Consequently, other benign microphones in the reception range will also

be jammed, most of the time undesirably. In fact, the use of such voice jammers in public spaces

is prohibited and unlawful (violation of 47 U.S.C. § 333), since it poses serious risks to critical

public safety communication. Moreover, if the attacker learns the frequency pattern of the scram-

bling noise wave, the attacker can deploy an additional microphone to nullify the noises and record

them illegally. To allow users to secure their voices lawfully without intervening in others’ mi-

crophones/recorders usage, we propose NEC (Neural Enhanced Cancellation), which only jams a
7This chapter is based on previously published work by Hanqing Guo, Chenning Li, Lingkun Li, Zhichao Cao,

Qiben Yan, and Li Xiao titled “NEC: Speaker Selective Cancellation via Neural Enhanced Ultrasound Shadowing”
published at the Proceedings of the 2022 IEEE International Conference on Dependable Systems and Networks(DSN).
DOI: International Conference on Dependable Systems and Networks [70].
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Figure 6.1: NEC cancels the target speaker’s (e.g. Bob’s) voice without intervening in other
communications.

specific target speaker’s voice from the recording of any microphones nearby.

Figure 6.1 illustrates the necessity of deploying NEC instead of the commercial audio jammer.

Consider that Bob is initiating a private conversation in a public area (e.g., a cafe or work office), in

order to prevent his speech from being leaked, he turns on a commercial jammer to obfuscate all the

surrounding input devices. The left sub-figure shows that during the attack, other applications such

as voice reminders, voice assistants, and phone calls are all effectively disabled by Bob’s jammer,

which is not only unlawful but also annoying to other users. In contrast, if Bob deploys NEC, only

his speech is imperceptible by the others’ microphones, while other users can still safely use their

voice applications as usual.

Generally, NEC is composed of a microphone, a neural network model, and an ultrasonic

speaker. Figure 6.2 entails the components of NEC, the red lines demonstrate the target speaker’s

voice (e.g., Bob’s voice), while the green lines represent Bob’s irrelevant voice (e.g., Alice’s voice,

background noise, and model processed voice). Our goal is to make Bob’s voice unrecognized/un-

realized on Alice’s phone/recorder. At the very beginning, the microphone perceives both Bob’s

and Alice’s voice. Then, we feed the mixed audio to our proposed deep neural network (DNN)

model. Note that, compared to the existing systems that utilize low-level acoustic signals (such

as Gaussian noise or scrambling noise), we use the DNN model to extract the high-level speaker-
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Figure 6.3: Distribution of formants across spectrograms, representing the speaker-specific but
utterance-independent timber pattern. Utterance 1: “My ideal morning begins with hot coffee.”

Utterance 2: “Don’t ask me to carry an oily rag like that.”

specific vocal features for differentiating Bob’s voice from the mixed recordings. The output signal

of the DNN model is marked as shadow sound, which is then modulated to ultrasonic frequency to

make it inaudible to other users. Subsequently, Alice’s phone will receive a combination of Bob’s

voice, Alice’s voice, and the inaudible shadow signal generated by NEC. The signal combo will

yield a mostly undisturbed sound for Alice.

We have four main design goals as follows:

• Utterance-independent Vocal Feature Extraction. For a target speaker, we need to train our

DNNmodel with the speaker’s reference audio before the deployment. To alleviate the train-

ing overhead across different scenarios, the speaker’s vocal features should be independent
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of his/her utterances. As such, we can deliver a one-fits-all DNN model, which is trained

once and easily transferred.

• Microphone-aware End-to-end DNN Training. The shadow sound is superposed on the

speaker’s voice at the microphone. To make the superposition more effective, we need to

design an end-to-end training pipeline that aims to maximize the effectiveness of the super-

posed shadow sound.

• Low-latency Shadow Sound Generation. We will modulate a shadow sound onto the ultra-

sonic frequency to make it inaudible. However, the processing delay may degrade the shad-

owing efficiency due to the feature mismatch between the speaker’s voice and the generated

shadow sound. Thus, we need a DNN model that is computationally efficient.

• Synchronization-free. To cancel Bob’s voice on other devices, it typically requires the syn-

chronization of the arrival time of the shadow sound, Bob’s sound, and Alice’s sound. How-

ever, it is challenging to synchronize them (without modifying Alice’s devices). Therefore,

we need a synchronization-free approach for voice cancellation.

To achieve all four goals, we first explore the human vocal principle and observe the speaker-

specific but utterance-independent formants of the audio spectrogram from ten speakers using var-

ious speech contents. Then, we design a DNN model to generate a shadow sound by imitating the

superposition of multiple waves at the microphone. The DNN includes the speaker encoder and

selector for feature reference and extraction. Moreover, we analyze the delay bound and compress

the DNN layers to guarantee that the processing delay can meet the requirement on various devices

(e.g., mobile, Raspberry-Pi).

We implement NEC using commercial off-the-shelf (COTS) ultrasound transceivers and eval-

uate their performance in different real-world scenarios. In the experiment, we run a benchmark

testing using a public speech corpus dataset and two real-world case studies. The evaluation results

demonstrate that NEC effectively mutes the target speaker at a microphone by causing a 200%word

error rate under Google’s voice-to-text service without interfering with others’ conversations. Our

contributions are summarized as follows:
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• NEC is the first practical speaker selective cancellation system, which aims to protect the

target speaker’s voice without interfering with other microphones in presence.

• We explore the human vocal principles and design a DNNmodel to imitate the superposition

of waves at the microphone, which produces the speaker-specific but utterance-independent

shadow audio in real-time.

• We implement NEC and extensively evaluate its performance with the benchmark and user

studies. The results show its superior performance in comparison with state-of-the-arts sys-

tems. The demos can be found on our project website: https://nec-app.github.io/.

6.2: Background of Vocal System

Observations: To illustratively show the harmonic components of a sound induced by the physical

vocal system, we first collect four audios from two volunteers. Each volunteer records two audios

of their utterances of two sentences: “my ideal morning begins with hot coffee” and “don’t ask me

to carry an oily rag like that”. For each audio, we derive the corresponding formants [166] via FFT

for each frame with a duration of 20 ms. The rationale is that the duration of a typical phoneme is

longer than 20 ms, representing the maximal frame length [199]. Thus, each frame is dominated

by the harmonic components of sustained tones, i.e., the number and relative intensity of the upper

harmonics in the sound.

The results are presented in Figure 6.3. We can observe the consistent formants of each speaker

with various spoken contents. For example, the similarity of the resonant frequency and the relative

intensity of formants of different utterances from the same speaker can be observed in area 1⃝,

shown in red boxes. Hence, these characteristics are utterance-independent. Conversely, area 2⃝

in black boxes implies the distinct distribution of speaker-specific formants, which can also be

observed across multiple spectra of various frames.

Validation: Based on the observations above, the remaining challenge is to quantify the utterance-

independent but speaker-specific feature in audio spectrograms (i.e., area 1⃝ and 2⃝), namely tim-

bre pattern [190]. To guarantee the phonetically balanced state in the timbre, we first average the
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dynamic influence of individual phonemes by computing the averaged spectrum for all frames,

namely Long-time Average Spectrum (LAS) [121,199]. LAS can average out the dynamic char-

acteristics associated with various phonemes such as the motion of the articulators [105]. Suppose

the spoken content for each person is divided intoM frames with the duration T in time, the LAS

F (w)LAS can be formulated by averaging the spectrum of each frame:

F (w)LAS =
1

M

M∑
m=1

F(fm(t)), (6.1)

where F denotes the FFT, and fm(t) is the frame waveform signal with the duration T .

To visualize the distinctive LAS features for different speakers, we compute the LAS of four

speakers (e.g., A, B, C, D), with every speaker requested to read the same sentence (e.g., “don’t

ask me to carry an oily rag like that”). The results in Figure 6.4 show that every speaker’s LAS

feature is unique even when their speech contents are the same. The distinctiveness of LAS features

demonstrates the potential of differentiating voices from multiple speakers. To further verify
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Figure 6.4: LAS results from four speakers.

the utterance-independent but speaker-specific timbre pattern in our computed LAS, we compute

the Pearson correlation and deliver the correlation matrix across different speakers and spoken

contents. Specifically, we first collect ten different utterances from four speakers (e.g., A, B, C, D)

and compute the Pearson correlation acrossF (w)LAS [199]. As shown in Figure 6.5, the correlation

coefficients for the same speaker with different utterances can reach up to 0.96 on average, whereas
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Figure 6.5: Pearson correlation matrix of the long-time average spectrum of 10 different
utterances from 4 speakers.

they are generally below 0.75 across speakers, even with the same utterances. The former implies

the consistency of spectrum across various spoken contents for the same speaker, while the latter

indicates the distinct timbre patterns of different speakers, which demonstrates the feasibility of

using LAS to quantify the timbre patterns from audio spectrograms of different speakers.

6.3: NEC System Design

As shown before, the voice signals from different human speakers present different spectrum fea-

tures. Meanwhile, for the same speaker, the spectrum features are consistent across different spo-

ken contents. The remaining challenge is to generate a speaker-specific shadow sound from these

spectrum features.

6.3.1: System Overview

System pipeline: The goal of NEC is to cancel Bob’s voice in the wild (e.g., no one can record

Bob’s voice in their microphone, and no one is affected by Bob’s NEC devices). However, passively

canceling Bob’s voice on Alice’s recorder is very challenging. Prior work [151] takes a great effort

to estimate the arrival of Bob’s voice through a wireless channel, and compute the inverse signal

of Bob’s voice before the acoustic signals of Bob arrive. Next, they synchronize Bob’s voice with
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Figure 6.6: Overview of NEC, which includes the software (green) and hardware (yellow) design
as well as the training stage (grey) of our system.

the crafted inverse signal to perform the voice cancellation using rigorous procedures. However,

such design relies on the speed difference between wireless signal and acoustic signal. In short-

range scenario (e.g., Bob is close to Alice), their work will no longer be effective since the arrival

time could be very close. Instead of generating the inverse signal by the prior knowledge of Bob’s

speech, we propose a superposition method to reduce the strength of Bob’s sound signals received

by Alice’s microphone. In other words, NEC produces a shadow signal to be mixed with Bob’s

voice, which will distill Alice’s sound on her microphone.

Figure 6.6 shows an overview of NEC’s architecture from audio sources (left block) to the (Al-

ice’s) recording microphone (bottom right block), which serve as inputs and outputs, respectively.

The reference audio is the historical recordings of the user, which is prepared to assist the DNN

model to separate the voice stream of the user. The mixed audio refers to the audios containing

Bob’s voice and others’ (background) voices. The output of NEC model is a shadow signal trans-

mitted by an ultrasound speaker. The mixed audio and the shadow signal combined together to

form the recordings on Alice’s microphone. We assume that Alice receives the same mixed audio

as the one collected by the NEC’s microphone in proximity.

To create a general neural-enhanced framework, we first train NEC at the spectrogram level (top

right block) in the offline training stage, where a
⊕

operation in the purple block represents the
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audio spectrogram superposition that combines the outputs of the Selector and Audio Transform

modules. The functionality of Selector is to generate spectrogram that exclude Bob’s sound, and

the Audio Transform serves to transform the waveforms into spectrograms. Then, we convert the

shadow spectrogram induced by our selector into inaudible ultrasound wave via Broadcast. The

shadow wave will propagate through the air channel along with the mixed wave (§6.3.3).
⊕

inside

theMicrophone block indicates thewave superposition of themixed audio and broadcasting shadow

sound at the microphone. Due to the equivalence of audio superposition for wave and spectrogram,

the effectiveness of wave superposition is guaranteed for testing scenarios, as mixed audio and

shadow sound arrive simultaneously at the microphone. The superposed wave corresponds to the

recorded audio which effectively hides the target’s (e.g. Bob’s) voice.

Training stage: The purpose of model training is to generate spectrogram that not caused by Bob’s

voice for any speech context with Bob. To achieve that, we manually craft mixed audios which

contain Bob’s voice and other speakers’ voice, and use our selector to generate Bob’s irrelevant

spectrogram. To train NEC, we first provide a pre-trained Encoder, which generates the speaker-

specific d-vector [181, 182] from the reference audio (e.g., 3 audio instances lasting 3 seconds) as

reference input for the selector. Meanwhile, the mixed audio is processed by the audio transform,

which generates a mixed spectrogram as another input of the selector. The rationale for using

spectrogram has two folds. First, the LAS feature is effective in distinguishing different speakers

based on our previous observation (§6.2); second, the calculation of LAS refers to the procedure

of calculating the average spectrum for audio clips, which can be unfolded across multiple clips as

a spectrogram. We directly feed the mixed spectrogram into our selector, along with the d-vector

extracted from the reference input. This can boost the accuracy of DNN in extracting the high-level

speaker-specific but utterance-independent vocal features from the mixed sound (§6.3.2).

Overshadow stage: A key property of NEC is its generalization for deployment in the wild. First,

rather than the cumbersome model-retraining and data collection, only 3 audio instances lasting

3 seconds are required by our one-fits-all model for new user enrollment. Second, due to the lin-

earity of the Fourier Transform (§6.3.2), we can transfer the spectrogram superposition into the
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wave superposition of audios at the microphone to guarantee the overshadowing performance. Fi-

nally, to avoid the disturbance during the overshadowing of NEC, we further convert the shadow

spectrogram into inaudible ultrasound (§6.3.3).

Figure 6.7: NEC’s DNN Selector generates the utterance-independent but speaker-specific
shadow spectrogram by imitating the superposition of waves at the microphone.

6.3.2: Neural Enhanced Selective Speaker Cancellation

In this section, we present the design ofNEC’sDNNs, which aim to utilize the utterance-independent

but speaker-specific features to generate the shadow sound. NEC incorporates an efficient selector

to produce a shadow spectrogram, and further add Bob’s voice through overshadowing onto the

mixed spectrogram.

Architecture of DNN

Encoder: The encoder module follows the design of d-vector in prior studies [176, 181, 182].

This module takes the reference audio of a target speaker as input and produces a speaker-specified

embedding to allow the selector to filter out the target speaker’s voice from the mixed audio spec-

trogram.

Selector: The purpose of the selector is to produce a shadow spectrogram and further hide Bob’s

voice by superposing the shadow spectrogram onto a mixed spectrogram. As shown in Figure 6.7,

155



the selector takes the d-vector and the mixed spectrogram as input. We formulate the mixture of

the spectrogram as follows:

Smixed = |
∞∑

n=−∞

xmixed[n]W [n−m]e−jωn|, (6.2)

where the n-sample mixed audio in Cn is converted into a spectrogram with t sampling points

and f frequency bins in Rt×f . W [n − m] is the Hann window, and m is the window size. More

specifically, the mixed spectrogram is composed of Bob’s voice SBob and background voice Sbk

(e.g., Alice’s voice) as follows:

Smixed = SBob + Sbk. (6.3)

In practice, the input audio lasts 3 seconds with a sampling rate of 16 kHz. The number of samples

is 48,000. Also, we set the FFT size as 1,200, resulting in 601 frequency bins. The window length

and hop length are 400 and 160, respectively, which generates 299 frames. Then, the shape of

Smixed is 601×299, denoted as (F, T), the frequency resolution and frame resolution are 13.31 Hz

and 25ms with 15ms overlap. We transpose the mixed spectrogram for further processing and

denote the shape of the transposed spectrogram as (T, F).

With the mixed spectrogram and d-vector in hand, we then utilize them to design a neural

network based on our observation in §6.2. Revisiting Figure 6.3, the frequency distribution of for-

mants [166] and harmonic determine the identity of a given speech (i.e., LAS sufficiently captures

the speaker characteristics). Our design goal of the selector is to capture these characteristics with

multiple layers of CNNs. Prior to building the neural network structure, we propose the require-

ment for our DNN model as: 1) the selector should be able to capture the formants and harmonic

feature; 2) the selector should consider the consistency of the frequency distribution within the

same voice source.
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In our DNN design, we only focus on the first three formants since we observed that the lower

orders of harmonic have more energy and are more representative for a single speaker. As the band-

width of the first three formants ranges from 33 Hz to 79 Hz [56], we design the first convolutional

layer with 64 filters, whose size is 1×7. The rationale of using this flat filter is to convolve the

frequency domain information (F). In particular, each filter covers 93.17 Hz, which is enough to

cover the individual formant bandwidth as mentioned previously. Another 64 filters follow, whose

size is 7×1, which can cover 115ms (determined by the frame resolution) time-domain feature (T).

It is worth mentioning that the length of phoneme varies from 5 ms to 670 ms based on existing

vocal research [98], and the average reading speed for an adult is 184±29 words per minute [168],

i.e., 281∼387ms per word. So the second convolutional layer only serves to explore the detailed

information of the phoneme level.

To further incorporate both F domain and T domain features, we apply a sequence of (5×5)

convolutional layers with the dilation ranging from (1,1) to (8,1). The dilation setting on T domain

extends the effective range of filters from (5×5) to (5×40), corresponding to 85ms to 610ms. This

range covers a few words and meets our R2 for considering the consistency of frequency distribu-

tion. While other studies [181, 182, 208] also add extra layers (e.g., LSTM, CNN with larger filter

size and dilation shape) for speaker separation task, we consider that those layers play a less im-

portant role. For example, a larger filter will introduce irrelevant frequency information and long

time span data, when the speaker merely adjusts his/her formants frequency when speaking a single

word or a short sentence.

The output of CNNs has the shape of (T, 2×F) since we add a padding layer before the con-

volutional layer to maintain the shape of feature domain consistency, where 2×F comes from two

filters in the last CNN layer. After that, the d-vector is repeatedly concatenated to the output of

the last convolutional layer in every time frame. The fused feature embedding will be fed into

two fully connected layers. As a result, we get a (T, F) shadow spectrogram. Figure 6.7 shows

the detailed flowchart of our selector. In total, we only use 6 CNN layers and 2 Fully Connected

(FL) layers for the selector model. Compared with the existing models such as [181,182,208], our
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model is computationally efficient by eliminating the redundant modules (e.g., LSTM, CNN with

larger filter size and dilation shape) unrelated to our research goal.

Spectrogram-based Overshadowing

In the overshadowing process, we first feed mixed spectrogram and d-vectors into our selector.

Then, we deliver the generated shadow spectrogram to be superposed with the received mixed

audio at the microphone.

Shadow spectrogram generation: From the point of view of the microphone, the received mixed

audio and shadow sound should be superposed to imitate the over-the-air overshadowing at the

microphone, formulated as xrecord = xmixed+xshadow. Those vectors represent time-series samples

of mixed audio, shadow sound, and recorded audio, respectively.

Through crafting the shadow sound, our goal is to make the recorded audio as close as the

background audio (e.g., Alice’s sound or environmental noise). A straightforward idea is to opti-

mize the shadow sound directly with the audio-level superposition in the time domain. However,

there are two drawbacks to the temporal wave superposition. First, the temporal waveform is less

representative than a spectrogram. Second, since the output of our selector is the shadow spectro-

gram, an Inverse STFT module should be introduced to convert spectrogram to waveform ahead

of the loss function, which results in the gradient vanishing issue for back-propagation based on

our evaluations. Therefore, we use a shadow spectrogram from our DNN selector for the following

overshadowing processing.

Superposition for audio wave and spectrogram: The linearity of the Fourier Transform guarantees

the equivalence of the temporal wave and spectrogram superposition, which can be denoted as

follows:

F [
n∑

i=1

aixi(t)] =
n∑

i=1

aiXi(w), for F [xi(t)] = Xi(w), (6.4)

where F denotes the Fourier Transform and x(t) is the temporal waveform signal. Given the lin-

earity of Fourier transform with a coefficient ai, we can convert temporal wave superposition into

a linear combination of spectrograms as follows:
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Srecord = Smixed + Sshadow. (6.5)

The Srecord, Smixed and Sshadow correspond to the spectrogram of recorded audio, mixed audio and

shadow audio, respectively. To avoid the gradient propagation issues and expedite the convergence

of DNN, the shadow spectrogram from the speaker selector is first normalized before being super-

posed with the mixed spectrogram. To allow the recordedmagnitude to eliminate Bob’s voice while

retaining other’s (e.g., Alice’s) voice components, we design the loss function:

Selector∗opt = argmin
Selector∗

||Srecord − Sbk||22, (6.6)

where the Selector∗ denotes the model parameters of our DNN selector, and the Srecord is the sum

of mixed spectrogram and shadow spectrogram. Using the back-propagation with theL2 norm loss,

we can derive an optimal parameter Selector∗opt for our DNN selector, which will output an optimal

shadow spectrogram Sshadow. This optimization ensures the resulting Srecord to be as close to Sbk

as possible.

6.3.3: Overshadowing Over the Air

Inaudible Shadow Sound Generation

Given the shadow spectrogram generated by the trained DNN selector, we can apply the inverse

STFT on the shadow spectrogram to derive the shadow sound wave for further broadcasting. To

make the shadow sound inaudible for privacy concerns and deployment convenience, we resort to

the non-linear property of microphones [140, 201] to modulate the emitted shadow wave, via the

Broadcast module in Figure 6.6.

Non-linearity of hardware: The non-linearity property of microphone hardware represents the

physical limitations of the diaphragm and the pre-amplifier, which amplify the signals in a non-

linearmanner. Mathematically, given an input signalVin to themicrophone, the output signalVout of

the commercial amplifier within the microphone is not amplified linearly, i.e., Vout ̸= A1Vin, where

A1 is the gain for input. Instead, the output signal is Vout = A1Vin+A2V
2
in+A3V

3
in+ · · · . We focus
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on A2V
2
in of the non-linear Vout by ignoring (relatively small) higher-order components [140, 211].

Without loss of generality, letm(t) be a simple tone, e.g.,m(t) = cos(2πfmt). We then up-convert

the baseband signal mt onto a carrier with central frequency fc > 20kHz. The modulated signal

can be written as follows with the power coefficient α:

Vin = (cos(2πfmt) + α)cos2πfct. (6.7)

Since fc is in the inaudible frequency range, the modulated signal Vin cannot be heard by hu-

mans. Given the non-linearity effect, the recorded signal Vout will not only contain the linear com-

ponent A1Vin, but also the non-linear component A2V
2
in representing the inaudible but recorded

component, denoted as follows:

V 2
in = (cos2(2πfmt) + α2 + 2αcos(2πfmt))cos

2(2πfct)

=
∑
i

λicos(2πfit) + µ, (6.8)

where fi denotes frequency components at fm, 2fc, 2fm, 2(fm ± fc), fm ± 2fc and µ is a con-

sequent constant. Given the low-pass filter in the COTS microphone, we can eliminate the high

frequency components while retaining the fm components, where fm is the baseband frequency of

m(t) perceived by a microphone.

Shadow sound broadcast: Then, we can encode our shadow wave xshadow into an inaudible fre-

quency range by modulating it with a carrier whose central frequency is fc. The broadcast shadow

wave can be computed as follows:

bshadow = xshadow × cos2πfct, (6.9)

where bshadow refers to the inaudible shadowwave, and xshadow is induced by Sshadow from inverse

Fourier transform process. More discussion about the over-the-air lantency of shadow sound can

be found in [70].
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Figure 6.8: Implementation and experimental settings.

6.4: Implementation

6.4.1: Experimental Setup

Figure 6.8 presents the implementation and experimental settings of NEC. In NEC, the input mixed

audio is first collected and processed by our trained encoder and selector DNNs, which produces

the corresponding shadow spectrogram in Figure 6.7. Then, we transform it into audios and up-

convert it into the ultrasound carrier frequency, making it inaudible during broadcasting (§6.3.1).

We run NEC on a local laptop (§6.5.3) to generate the shadow spectrogram, which is sent to a

Keysight 33500B waveform generator, followed by an ultrasonic power amplifier [21] to amplify

the inaudible shadow wave. Being transmitted through the air by a wide-band dynamic ultrasonic

speaker, Vifa [19], the shadow wave is superposed with the mixed audio at a COTS smartphone’s

microphone. We use a loudspeaker to play mixed audios, i.e., the ”Mixed Speaker” in Figure 6.8

emulates a mixed conversation from Alice, Bob, and others. The target’s voice will be effectively

muted in the final recorded audio.
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Table 6.1: Testing dataset for benchmark and user cases

Scenario Source Freq. Type Instance
Jointa LibriSpeech 0-8k 40/18 560/-
Conv. / Volunteers 0-8k 40/- 560/40
Babbleb

NOISEX-92
0-4k - 690 / 40

Factoryc 0-2k - 690/40
Vehicled 0-500 - 690/40
aTwo speakers talk jointly. b100 people whispering.
ca production hall. da vehicle running at 120 km/h.

6.4.2: Dataset Compilation

Table 6.1 summarizes our testing dataset. First, we conduct the System Benchmark by testing

the target speaker with the public datasets in controlled environments to verify whether our target

speaker’s voice can be hidden in the presence of real-world noises. Then, we deploy our system in

the wild for a real attack scenario: the target volunteer wants to avoid being recorded while talking

in public scenarios, but the COTS microphone can record others’ voices normally.

Model training: Prior to the evaluation of NEC, we train a one-fits-all DNN model for all the

defensive scenarios in public. The training dataset is constructed by mixing audios of two differ-

ent speakers from LibriSpeech [134], and mixing target speaker audios with different noises from

NOISEX-92 [172]. We provide the background audio that excludes the target speaker and train our

model to hide the target speaker’s voice, given the mixed audio and reference audios of the target

speaker.

System benchmark: Using the public dataset LibriSpeech [134] as the corpus source, we first

select 10 target speakers, we collect 3 audios for each target speaker as their reference audio, and

the rest audios of the speaker are treated as normal speech in a real scenario (e.g., Bob’s speech). To

measure the robustness of NEC, we simulate different environments with different types of noises.

In order to cover different frequencies of noises (e.g., high-frequency speech and low-frequency

ambient noises), the noises from 5 application scenarios are then mixed with the target speakers’

voices, which results in 3,190 mixed audios in total. Then, we randomly mix the 10 target speakers’
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voices with the ones from the other 40 speakers, which generates 560 total instances for the joint

conversation.

User case studies-1: We further collect the user study dataset from 10 target volunteers, covering

3 females and 7 males. All volunteers are required to speak 25 sentences, respectively. Analogous

to the dataset for the benchmark, we select the reference and test audios randomly, then mix test

audios with 4 sources of noise. In total, 160 mixed audios are produced. Then, we randomly mix

the audios of 10 target volunteers with the ones from another 18 volunteers to derive the joint

conversation dataset.

User case studies-2: We conduct another user case study to justify the feasibility of NEC in the

real world. As shown in Figure 6.9, Bob carries the NEC device to hide his sound in the wild. We

ask Bob and Alice to speak normally, with volume at 77dBSPL from our decibel meter placed at

5cm away from their lips. Then, we record the loudness, SONR, and the proportion of Bob’s sound

on Alice’s recorder (a Moto Z4 phone) at different distances for different cases (with or without

NEC).

AliceBob

Ultrasound
Speaker Alice's

Recorder

Distance

Figure 6.9: Hiding Bob’s voice from Alice’s recording in a real-world scenario.
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Note that our testing dataset is disjoint from the training one and reference audios. Thus, the

two trained models can be deployed directly with only three arbitrary reference audios from the

new target speaker volunteers, avoiding the cumbersome deployment costs (e.g., model re-training

and data re-collection) [212, 219].

6.4.3: Quantitative Metrics

To measure the quality of NEC, we consider four main metrics:

Source to Distortion Ratio (SDR) [175, 182] measures the ratio of energy (in dB) between the

energy of the target signal and the errors (induced by the interfering speakers and artifacts) in the

mixed signal. It should be low for Bob’s voice and high for Alice’s voice.

Word Error Rate (WER) is adopted broadly to evaluate the machine translation systems [203].

We compute the WER by employing Google’s speech-to-text service to transform the acoustic

signals into texts. NEC aims to enlarge the WER for the target speaker and minimize it for other

speakers (e.g., Alice).

User Rating Score (URS) is the rating for recordings, in which 10 reviewers rank the raw mixed

and recorded audios of NEC with score 1-5, along with Bob’s clean voice as the ground truth.

Specifically, score 5 denotes the best performance, in which reviewers cannot recognize any words

of the target speaker (e.g., Bob).

Sound Noise Ratio (SONR) is used to evaluate the proportion of Bob’s sound in the recorded

sound. We regard the mixed audio as useful sound and treat Bob’s voice as noise. By computing

the power ratio between the mixed audio and Bob’s sound at different distances, we validate the

efficacy.

6.5: Evaluation

In this section, we comprehensively evaluate NEC in different environments with different settings

and devices.
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Hide Bob’s Voice on Attacker’s Recorder Retain Alice’s Voice on Alice’s microphone

Figure 6.10: Overall system performance of our system on three setups across multiple sources of
noises.

6.5.1: Overall Performance

System benchmark: We first evaluate NEC on the public dataset and provide SDR and WER

across multiple scenarios in Figure 6.10. When the target speaker, i.e., Bob, expects his voice to

be hidden in the recordings, the recorded audios achieve a lower SDR and higher WER compared

with the mixed audios. This shows that our shadow audios can hide Bob’s voice reliably, making

it unrecognizable by the Google service. Specifically, the median WER increases from 0.894 to

1.798, while the SDR reaches -4.918 dB from 0.997 dB. Note that the WER of the mixed audio is

too high to be recognized by the Google service due to the background speeches from other people.

Yet, it can still be recognized by humans. Conversely, NEC achieves a higher WER by hiding

Bob’s voice using the shadow wave, making it even unrecognizable for humans. We further verify

its efficacy in the user studies below.

Also, we evaluate the effectiveness ofNEC to retain others’ voice (e.g., Alice) in Figure 6.10(right).

We set the ground truth as Alice’s clear voice, and calculate the SDR and WER for the recorded

audio and the ground truth audio. The result shows that, compared to the mixed audio which con-

tains Bob’s voice, we can achieve higher SDR and lower WER for capturing Alice’s sound when

Bob deploys NEC.

User case study-1: Figure 6.11 shows the performance of SDR and URS for hiding target volun-

teers’ voices in the wild. We observe a consistent declination in SDR of the recorded audios com-

pared with raw mixed ones. We can hardly recognize the target volunteer’s voice in the recorded

audios, as the median SDR reaches -4.374 dB, much lower than the SDR of mixed audios at 2.798

dB. To evaluate the recorded audios comprehensively, we ask 10 reviewers to score the recorded
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Figure 6.11: User study results.

audios and the mixed ones with ranking scores from 1-5. We expect a higher score when fewer ut-

terances of the target volunteer can be recognized. It shows that the average score of the recorded

audios can reach 4.034 for different reviewers. All 10 reviewers give 4 for most of the recorded

audios, while most scores of 1 are given to the mixed audios, except the reviewers 7 and 8.

User case study-2: As depicted in Figure 6.9, in this user study, we evaluate how much of Bob’s

voice will be leaked to Alice’s recorder with/without deploying NEC. We ask Bob and Alice to

speak simultaneously, and also record Bob’s sole speech with the same speech content. The mixed

audio and Bob’s individual speech audio are recorded by Alice’s phone (Moto Z4), with varying

distances between Alice and Bob (from 0.5 to 3 meters).

Figure 6.12 visualizes the waveforms of Bob’s audio and the mixed audio. We can see that

with the increasing distance, Bob’s audio contributes less to the mixed one. We further record

Bob’s sound pressure level (SPL) at Alice’s position and present the result in Figure 6.13a. The

result shows that the SPL of Bob’s audio attenuates with the increasing distance, and its loudness

reaches 43dBSPL at the 5m distance (between Alice and Bob) with an environmental noise level

of 39.8dBSPL. In comparison, the SPL of Alice’s voice recorded by her own recorder remains at

77dBSPL. Given the large gap between the SPL ofAlice and Bob’s voices across different distances,

and the attenuation of Bob’s voice with the increasing distance, we can see that Bob only needs to

cancel his voice over a short range (e.g., 2m). Next, we further justify whether NEC can effectively

overshadow Bob’s sound across the distance.

Figure 6.13b presents the SONR results with/without NEC. When NEC is not deployed, the
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Figure 6.12: Waveform of mixed audio and Bob’s sole speech audio

SONR between the recorded mixed audio and Bob’s voice stays below 20dB, which implies that

Bob’s voice can be effectively captured by Alice’s recorder. However, when Bob deploys NEC,

even with a close distance (< 2m), Bob’s voice can be mostly overshadowed, with SONR reaching

30dB. As mentioned above, the strength of Bob’s voice signals drops significantly beyond 2m.

Therefore, although the recorded shadow audio strength also degrades dramatically beyond 2m,

the effectiveness of NEC within 2m makes it a viable solution for target voice cancellation.

6.5.2: Comparison Study

Next, we perform a comparison experiment between NEC and two systems. The first one uses

white noise to jam unauthorized recordings, which is commonly applied to commercial ultrasonic

jammers. To simplify the jamming process, we manually add 10dB white noise over the recording

sound to simulate this type of jamming system. Notice that the volume of white noise is usually

determined by different jammers, we use 10dB based on our previous observation of the shadow

sound volume on the same phone. The second one is a scrambling-based voice hiding system called
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Figure 6.13: Effectiveness of NEC across different distances

Patronus [116], which can hide the target recordings by scrambling with specially designed white

noises and recover the target recordings at an authorized device. Given the mixed (joint) audios

(e.g., two volunteers, one of which is target), we reproduce the scrambling algorithms of Patronus

to hide a speaker’s voice.
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Figure 6.14: Comparison study.

We first compare the performance of voice hiding by computing the SDR of the target voice.

Figure 6.14a shows all of the three systems: NEC (Bob-NEC), White Noise (Bob-WN), and Pa-

tronus (Bob-Pat.) achieve a low SDR by effectively hiding the target voice in the mixed audio

(Bob-Mixed). We find that, compared to NEC and Patronus, the white noise solution results in

higher SDR, which means it retains more target voice than the other systems. Patronus and NEC

can reduce the SDR of the mixed audios from 3 dB to nearly −20 dB. Therefore, the voice hiding

performance of NEC is on par with that of the specially designed scrambling-based Patronus, and

better than the white noise scrambling approach. Next, we evaluate the reception quality of Alice’s
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voice in the presence of the three systems. As shown in Figure6.14b, among the three systems,

the White Noise approach cannot recover the disrupted voice, and therefore results in the lowest

SDR for Alice’s voice. For comparison, Patronus can recover a limited portion of scrambled sound

by its recovery algorithm, and achieve low SDR for Alice’s voice (i.e., −2.5 dB). The quality of

Alice’s voice after recovery is even lower than that of the raw mixed audios due to the influence of

the scrambling noise. In comparison, NEC achieves a 5 dB gain compared with the mixed audios

in recovering Alice’s voice, since NEC carefully nullifies Bob’s voice in the mixed audio. This

experiment result demonstrates that NEC could selectively hide a target speaker’s voice without in-

terfering with other speakers. Surprisingly, NEC can even improve the reception quality of others’

recording.

6.5.3: Running Time Analysis

To demonstrate the efficiency of our system, we measure the time consumption of each system

module in Table 6.2. Given 100 1s mixed audios, we evaluate the latency in two different hardware

platforms: 1) desktop with a single NVIDIA 1080Ti GPU; 2) Raspberry Pi 4. The total processing

time of the DNNmodule in NEC is around 1.51ms, and the ultrasound modulation consumes 11.96

ms on average, well below the lasting period of the 1s chunks. In comparison, it takes 2.4× more

time for VoiceFilter to process the same mixed audio. On the Raspberry Pi 4, the overhead of the

selector is 293.7ms, which is faster than 446.2ms of VoiceFilter. The achieved latency (< 300)ms

on the edge deployment using Pi 4 is less than the time offset tolerance of overshadowing, which

further corroborates the feasibility of NEC.
Table 6.2: Time consumption of NEC with an audio sample lasting 1s

Platform System Encoder Selector Broadcast

PC (1080Ti) NEC 0.467ms 1.51ms 11.96ms
VoiceFilter [182] 0.467ms 3.65ms 11.96ms

Rasp NEC 12.7ms 293.7ms 11.96ms
VoiceFilter [182] 12.7ms 446.2ms 11.96ms
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6.5.4: Parameter Study

Diversity of hardware dependence: The variance of the non-linearity for the hardware (e.g., mi-

crophones, amplifiers, filters) on smartphones can influence the optimal selection of the modulation

parameters [201], which in turn impacts the performance of our system. Here, we evaluate our sys-

tem using 7 different mobile devices listed in Table 6.3. Specifically, the carrier frequency fc is

the dominant factor that affects the effectiveness of the non-linearity effect. All the tested smart-

phones have a range of acceptable frequency settings, and the best carrier frequency is listed in the

brackets.
Table 6.3: Smartphones used for two user studies.

Model Brand Carrier fc (kHz) Max Dis. (m)
Moto Z4 Motorola 24-28 (28.0) 3.2
iPhone 7 P Apple 21-29 (27.8) 0.49
iPhone SE2 Apple 23-28 (25.2) 1.77
iPhone X Apple 27-32 (25.3) 0.43
iPad Air 3 Apple 22-31 (28.0) 3.72
Mi 8 Lite Xiaomi 24-32 (27.4) 1.65
Pocophone Xiaomi 22-29 (26.3) 0.7
Galaxy S9 Samsung 25-31 (27.2) 3.64

Diversity of effective distance: Our system can be deployed with various maximum effective

distances with different smartphone recorders, ranging from 49 cm to 3.72 m, as shown in Table 6.3.

The result also shows a great variance across recorders. We attribute this diversity to the difference

in frequency response of these recorders, and the non-linearity of audio processing circuits.

Multiple recorders: Since the performance of NEC can be affected by the variance of hardware,

we investigate whether NEC system can be used to support multiple recorders simultaneously. To

conduct this experiment, we use Moto Z4, Mi 8 Lite, POCOPHONE, and Galaxy S9 as recorders to

eavesdrop on Bob’s voice. With the collected recorded audios, we compute the SDR for recorded

audios. For comparison, the SDR of mixed audio is also calculated to reveal the effect of NEC.

We define that, if the SDR of recorded audio is less than the mixed audio, NEC is successfully

performed. Our experiment result is presented in Table 6.4. For three different carrier center fre-

quency settings, we played 20 crafted mixed audios and run NEC to superpose shadow audio to
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affect three recorders’ recording. The column named 1+, 2+, 3 means at least 1, 2, or 3 devices

are affected simultaneously by NEC. And the reported values such as 20/20 denote that all the 20

recorded audios are unable to recognize Bob’s voice. This result provides the supportive evidence

that NEC is capable of operating in public and affecting multiple recorders by carefully tuning the

system parameters.
Table 6.4: NEC’s performance with multiple recorders.

Number of Recorder 1+ 2+ 3

fc (kHz)
26.3 20/20 9/20 4/20
27.2 20/20 15/20 11/20
27.4 20/20 14/20 8/20

6.6: Discussion

Limitation of non-linear effect: The success of NEC relies on the imperfection of the receivers’

(e.g., Alice’s) microphone. However, when the non-linear effect is not present due to two reasons:

1) the great precision of Alice’s microphone or 2) the improper modulation parameter settings, our

selective voice protection will no longer be effective.

Limitation of protecting conversation: Although prior benchmark and user case experiments

demonstrate that NEC can protect the target speaker’s voice in the wild, it is a challenge to protect

a conversation that involves multiple speakers while not disrupting other users (e.g., Alice). We

failed to train a Selector model that is applicable to multiple target speakers with the current system

architecture. In future work, we will figure out how to integrate the multiple speakers’ embeddings

and re-design the Selector model to avoid removing Alice’s voice in the private conversation.

Directional of ultrasonic speaker: In our prototype shown in Figure 6.8, we assume the ultra-

sound speaker has the shadow audio ready before playing it. However, when we integrate the

monitor, DNN models, and ultrasound speaker into one device and run it in a real-time manner,

the shadow audio is dependent on the incoming mixed audio. In this case, one critical concern of

NEC is whether the current mixed audio will be affected by the current shadow audio, therefore

impacting the quality of future shadow audio. Fortunately, we can avoid it by putting the monitor
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and ultrasound speaker in opposite direction. We find that by exploiting the directional property

of the ultrasound speaker, the shadow audio is barely sensed by the NEC’s monitor as it produces

limited amplitude in its back direction.

6.7: Related Work

Microphone jamming: Microphone jamming has been proposed [36, 116, 169] to protect private

conversations. To avoid the recording of private conversations, a pre-configured audio jammer is

deployed to emit the scrambling noise waves to disrupt the speech recording. Specifically, Chen et

al. [36] adopt the white noise to distort the microphone recordings, while Tung et al. [169] explore

the sound masking with the specially designed scramble noise to obfuscate the spoken sensitive

information. Patronus [116] emits ultrasound to generate the scrambling waves at the recorder

without introducing human-sensitive noise. In contrast, rather than canceling and jamming by

the low-level signal features (e.g., frequency, phase), we use high-level human vocal features to

generate a shadow sound for speaker-selective jamming.

AI-augmented speaker diarization: AI plays important role of processing signal [74, 113, 114,

220]. Recent studies [41, 181, 182] propose AI-based speaker diarization, a process to partition

multi-speaker audio into homogeneous single speaker segments based on the speaker identity. It

effectively solves “who spoke when” in a multi-speaker scenario. Several audio embedding mod-

els have been proposed for speaker-specific feature extraction, including speaker factor [28], i-

vector [147,221], and d-vector [181,182,208]. Based on these features, a number of classification

models have been designed to extract the speaker-specific embedded audios, such as clustering

algorithms [147,181,221], DNN model [182,208], and even an integrated model with visual infor-

mation (e.g., lip movement and face recognition) [6, 41, 52]. However, these methods cannot be

adopted in our scenario. First, all existing speaker diarization models are used for post-processing

after the audio is recorded, but we need to deal with voice cancellation in an end-to-end fashion.

Additionally, the processing delay is an important factor to guarantee an effective shadow sound

generation, which has been ignored by these post-processing models. In this work, we design the
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adaptive features, DNN structures, and training methods to realize an end-to-end voice cancellation

system to protect a target speaker’s voice.

6.8: Summary

We present NEC, a lightweight AI-augmented voice protection system to protect the target speech

without interfering with others’ audio conversations. As an end-to-end processing system, NEC

first actively emits specially designed ultrasound signals to a recorder. Due to the non-linearity

effect, a shadow sound is generated and superposed onto the received mixed sound at the recorder,

which effectively cancels the target speaker’s voice in the recordings. To determine the frequency

composition of the shadow sound, NEC leverages a tailored Deep Neural Network (DNN) to ex-

tract high-level speaker-specific but utterance-independent vocal features from the mixed sound.

By imitating the overshadowing in the air, we superpose the shadow audio with the mixed audio

in the training stage of the DNN model and deliver a one-fits-all model, which can be trained only

once and deployed directly for new users. Our experimental evaluations demonstrate NEC’s effi-

cacy in a wide variety of real-world scenarios. The results show that NEC effectively disables the

microphones from recording the target speaker’s voice.
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CHAPTER 7: CONCLUSION AND
FUTUREWORK
Voice serves as a key medium for human interaction, not only with each other but also with com-

puters and intelligent devices. It facilitates information exchange between individuals and allows

users to command AI agents or smart devices through speech. Additionally, voice characteristics

are employed by cloud services for user authentication. However, with the widespread use of voice

in contemporary communication, concerns regarding its security in various contexts have emerged

within the research community. Potential risks include adversaries circumventing voice-based au-

thentication systems to access personal data or manipulate devices such as mobile phones, customer

accounts, or smart speakers. Furthermore, speech recognition models could be compromised, lead-

ing to deceptive outputs from smart speakers or speech-to-text services, such as unauthorized door

opening or the generation of inappropriate responses. Privacy issues also arise, with attackers poten-

tially eavesdropping and using voice cloning techniques to execute speech synthesis attacks. This

dissertation focuses on identifying vulnerabilities in AI-powered voice systems and developing

defensive strategies against these threats. It concentrates on three primary areas: speaker authenti-

cation, speech recognition, and privacy protection. The core methodology of our present and future

research is to meticulously address the three areas, thereby fostering the adoption of voice-enabled

AI systems in the modern world.

In summary, this dissertation not only presents a series of significant research findings and

developments in the field of voice technology but also provides a comprehensive and detailed

overview of the current state of speaker authentication, speech recognition, and privacy protection.

The work represents a substantial contribution to the field and sets the stage for future research and

development in these crucial areas. Our work’s importance reaches far beyond academic circles,

offering substantial and diverse benefits to different areas within the security sector and society

in general. First, for the security community, our study serves as a groundbreaking resource. It
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sheds light on the less explored aspects of voice-enabled AI systems, an area experiencing rapid

growth. By identifying these vulnerabilities, we empower cybersecurity professionals to build

stronger and more effective defenses against potential attacks. This forward-thinking strategy is

vital in an era where technological progress often surpasses security protocols. Second, our research

has a significant impact on the well-being of society. With voice-enabled devices increasingly

common in homes and public spaces, securing these devices is crucial. Our findings play a key

role in protecting the privacy and safety of the broader public, who are frequently the unintended

victims of security lapses. To conclude, our in-depth analysis and the proactive approaches we

propose to the issues in AI-driven voice interaction systems mark a considerable advancement. We

introduce a crucial perspective on security in a field that is essential to our society’s technological

progress. Our work establishes a foundation for more secure and reliable AI interactions, benefiting

both the security community and the wider society.

7.1: Summary of Contributions

This dissertation presents a comprehensive collection of five of my scholarly publications, delving

into the critical areas of speaker authentication, speech recognition, and privacy issues.

In speaker authentication, we introduce SuperVoice, a speaker verification system that utilizes

ultrasound features in human voice to verify speaker identities. This system demonstrates robust-

ness and accuracy across various environments. Furthermore, we identify new vulnerabilities in ex-

isting speaker verification models. Specifically, we introduce a novel attack namedMasterKey and

showcase the potential risks and impacts of such attacks on speaker verification systems. For speech

recognition, this dissertation presents two attack methodologies. The first, named SpecPatch, is de-

signed for scenarios that involve direct human interaction, and the false command injection attack

could succeed even when users are actively engaging with speech-to-text systems. The second

methodology, PhantomSound, targets black-box systems, where direct interaction or insight into

the system’s inner workings is limited. Both approaches represent significant advancements in un-

derstanding the vulnerabilities of speech recognition systems. Lastly, the dissertation addresses
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the important issue of data privacy in voice technology. In response to the growing concerns about

unauthorized voice recordings and eavesdropping, we introduce NEC, an innovative jamming de-

vice engineered to prevent unauthorized voice recordings without interfering with authorized ones.

Specifically, this dissertation makes the following contributions:

Robust speaker authentication system: In this dissertation, we introduce SuperVoice, an ad-

vanced speaker verification system that enhances secure speaker authentication by utilizing ultra-

sound characteristics present in human speech. This system represents a departure from conven-

tional speaker verification methods that rely on spectrographic features derived from the audible

frequency range of voice commands. Instead, we venture into a novel area of human voice research

by examining the distinct traits of human speech in the ultrasound frequency band. Our findings

reveal that the high-frequency components of ultrasound in human speech, particularly those in

the 20 to 48 kHz range such as speech fricatives, can markedly improve the security and precision

of speaker verification systems. This approach opens new possibilities for leveraging ultrasound

features to bolster the effectiveness of speaker authentication technologies.

Attacking speaker authentication models: This dissertation introduces a novel threat to speaker

authentication systems, termed MasterKey. This backdoor attack is designed to compromise var-

ious speaker verification (SV) models, targeting a real-world scenario where the attacker lacks

knowledge about the specific victim. The development of MasterKey involved a thorough ex-

amination of the limitations inherent in existing poisoning attacks aimed at unseen targets. Our

approach led to the optimization of a universal backdoor capable of attacking any target. We fur-

ther refined the backdoor by embedding subtle characteristics of the speaker’s voice and semantic

information, rendering it virtually undetectable. Additionally, we accounted for channel distortion,

incorporating this element into the backdoor’s design. We successfully attacked 53 speaker verifica-

tion models, involved 16,430 enrolled speakers. Remarkably, our attack achieved a 100% success

rate with a 15% poisoning rate. We conducted validation of our attack in three real-world settings,

successfully executing the attack both over the air and via telephony lines. This comprehensive

testing underscores the effectiveness of MasterKey and highlights the critical need for enhanced
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security measures in speaker authentication systems.

Attacking speech recognition system when Human-in-the-loop: This dissertation introduces

SpecPatch, a new adversarial audio attack targeting automated speech recognition (ASR) systems,

uniquely involving human interaction in the process. Traditional audio adversarial attacks operate

under the assumption that users will not detect the adversarial audio, thereby ensuring the effective

delivery of manipulated examples or perturbations. However, this overlooks a critical aspect of

real-world scenarios: users of intelligent voice-controlled devices are often alert to any unusual

sounds, particularly when issuing voice commands. If users perceive any suspicious audio, they

tend to counteract it by interrupting the adversarial audio and overpowering the malicious voice

with stronger, corrective commands. This user vigilance renders most existing attacks ineffective

when user interaction and adversarial audio delivery happen simultaneously. To address this chal-

lenge and enable a truly imperceptible and robust adversarial attack that canwithstand potential user

interruptions, we developed SpecPatch. This practical voice attack employs a sub-second audio

patch signal to initiate an attack command, coupled with periodic noises designed to disrupt com-

munication between the user and the ASR system. In comparison to existing methods, SpecPatch

significantly extends the attack impact length (by 287%), effectively lengthening the duration of

the target command. Moreover, we demonstrate that our attack maintains a 100% success rate in

both over-the-line and over-the-air scenarios, even in the face of user intervention.

Attacking commercial speech recognition services: This dissertation introduces PhantomSound,

a black-box attack designed for commercial voice assistants. Traditional black-box adversarial at-

tacks on voice assistants often involve a substantial number of queries and an extensive training

phase. PhantomSound, on the other hand, employs a decision-based attack strategy to efficiently

produce effective adversarial audios, significantly reducing the number of required queries by opti-

mizing gradient estimation. Our experiments involved testing PhantomSound against four different

speech-to-text APIs in three real-world scenarios to assess its real-time impact. The results confirm

that PhantomSound is both practical and robust, capable of successfully attacking five popular com-

mercial voice-controlled devices over the air. It also demonstrates the ability to circumvent three
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liveness detection mechanisms with a success rate exceeding 95%. Compared to leading black-box

attacks, PhantomSound achieves a reduction in required queries by 93.1% for untargeted attacks

(approximately 300 queries or around 5 minutes) and 65.5% for targeted attacks (roughly 1,500

queries or about 25 minutes). This efficiency makes PhantomSound a significant advancement in

the realm of black-box adversarial attacks on voice assistants.

Protecting unauthorized recording: This dissertation introduces NEC (Neural Enhanced Cancel-

lation), a novel defense mechanism designed to protect the privacy of everyday conversations by

preventing unauthorized microphones from recording a target speaker’s voice. NEC offers a signif-

icant advancement over existing audio cancellation techniques, which typically rely on scrambling

methods. Unlike these methods, NEC is capable of selectively eliminating a target speaker’s voice

from a mixed speech environment without disrupting others. The core of NEC’s functionality

lies in a specially designed Deep Neural Network (DNN) model. This model is trained to isolate

high-level vocal features that are specific to the target speaker but independent of their particular

utterances. These features are extracted from the speaker’s reference audio samples. When a micro-

phone is in operation, the DNN actively generates a ’shadow sound’ that effectively cancels out the

target voice in real-time. NEC has been thoroughly implemented and evaluated using 8 different

smartphone microphones across various settings. The results from these evaluations demonstrate

that NEC is highly effective in muting the target speaker at a microphone, all while ensuring that

other users can carry on their conversations without any interference. This makes NEC a highly

promising solution for enhancing privacy in daily communications.

7.2: Limitations and Discussion

Although the research described in this dissertation makes a significant contribution to the field of

Voice AI system security, our work has limitations and room for further improvement.

Robust speaker authentication system: In this dissertation, we have proposed a secured speaker

authentication system called SuperVoice. Although this system show robustness and efficient in

distinguishing speakers and defend against fake speech, it has some limitations. First, we noted
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that certain phonemes, particularly fricatives and stops, have high energy above 20 kHz. However,

sentences without fricatives might lack this energy spike. Despite this, SuperVoice often detects

High-Frequency Energy (HFE) in non-fricative commands due to airflow alterations by the speaker.

This HFE acts as an additional feature for speaker verification. Even for sentences with predomi-

nantly low-frequency energy (below 8 kHz), SuperVoice’s dual-frequency stream architecture en-

sures consistent performance, effectively utilizing high-frequency features from non-fricative com-

mands. Second, we found that in SuperVoice, the distance affects both low and high-frequency

components’ power, particularly for fricatives and plosives, therefore affecting the performance

to verify speakers in long distance. A potential solution like a power amplifier could address this

attenuation, and its effectiveness in long-distance verification will be explored in future work.

Attacking speaker authentication models: In this dissertation, we introduce an innovative attack

named MasterKey against the large-scale speaker authentication models, however, it has some lim-

itations that need to be addressed. First, this attack relies on the speaker authentication model’s

maintainer to use the attacker-prepared dataset to fine-tune the commercial model. This is a strong

assumption because companies intend to use the local/private dataset to enhance their model. Sec-

ond, the attack is possibly not robust to re-training defense. In this case, the model maintainer can

re-train and fine-tune the backdoored model on the benign dataset, which will lead to the invalidate

of the backdoor attack. To enhance the robustness of our attack, one possible solution is to craft an

out-of-domain backdoor sample, so that the re-training will not affect the backdoor-target mapping

because the benign dataset does not include the out-of-domain backdoor distribution.

Attacking speech recognition system: In this dissertation, we present two approaches to attack

the speech recognition system. The first attack, SpecPatch, successfully attacks the speech recog-

nition model while human-in-the-loop. However, SpecPatch presents several constraints: 1) its

dependency on specific models; 2) failure to inject very long target sentences; and 3) a limited ef-

fective attack range. Addressing the first constraint, the attack is tailored to target recurrent neural

networks, exploiting vulnerabilities in the connections between individual cells. The second issue

could potentially be resolved by using a longer patch, although this might increase the likelihood
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of alerting the target. As for the third constraint, enhancing the power of the patch could extend its

attack range. However, this approach requires managing distortions caused by the amplifier and

attenuation due to increased distance.

Our second attack, PhantomSound, is designed to attack commercial speech-to-text API and

voice assistants. Although PhantomSound demonstrated the ability to craft voice adversarial exam-

ples promptly. It has the following limitations. First, the PhantomSound shows vulnerability to the

presence of ambient noise; Second, the PhantomSound is constrained to consistently create adver-

sarial examples (AEs) for every input and target; Third, this attack is struggling to significantly alter

lengthy sentences; Last, the capability of launching a long-range attack is limited. To mitigate the

first and fourth limitations, an attacker could either boost the strength of the perturbation or choose

a quieter environment for the attack. The second and third limitations might be overcome by em-

ploying multiple iterations of phoneme injections. While this increases the chances of producing a

successful perturbation, it also potentially escalates the cost and effort required.

Protecting unauthorized recording: This dissertation introduces a smart microphone jammer that

is capable of jamming a specific user’s voice on the attacker’s microphone. Even though the idea

and prototype are promising, there are some limitations. First, the effectiveness of NEC is contin-

gent on the imperfections in the receiver’s microphone. Its selective voice protection fails when

the non-linear effect is absent, either due to the high precision of the microphone or incorrect mod-

ulation parameter settings. Second, NEC faces challenges in safeguarding conversations involving

multiple speakers without disrupting others. The current system architecture does not support a

Selector model capable of handling multiple target speakers. Future work will explore integrating

multiple speaker embeddings and redesigning the Selectormodel to prevent the inadvertent removal

of voices from private conversations. Third, the jamming performance is affected by the direction

of the ultrasound signal. The prototype assumes the ultrasound speaker is pre-loaded with shadow

audio. When integrating the monitor, DNN models, and ultrasound speaker into a single device

for real-time operation, the shadow audio depends on the incoming mixed audio. A key concern is

whether the current shadow audio might affect the quality of future shadow audio. This issue can
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be mitigated by positioning the monitor and ultrasound speaker in opposite directions, utilizing the

directional nature of the ultrasound speaker to ensure that the shadow audio has minimal impact on

the NEC’s monitor.

7.3: Future Work

I will continue advancing the frontier of the adoption of AI-enabled systems by addressing their

security, privacy, and usability challenges. Some future works are listed as follows.

Defend against telecommunications fraud: Current telecommunications fraud creates deepfake

sound of the victim through speech synthesis techniques (generative networks), thereby gaining the

trust of the victim’s relatives, to achieve the purpose of fraud. My observations on voice adversarial

attacks show that the victim can protect their sound misuse by adding perturbations before they

upload to the Internet. However, this approach’s performance has suffered because of the diversity

of the generative models and multiple signal-processing tools. In my future study, I will borrow

the black-box attack idea to train a generalized model to simulate the adversary’s generative model

and craft robust universal perturbations to mislead the identity of the generated fake audio. I firmly

believe that this approach has the potential to be developed into a generalized defense framework

to safeguard the deepfake audio.

Advancing secure interaction for large language models in smart speakers: The prospective

integration of Large Language Models (LLMs) like ChatGPT with smart speakers such as Alexa

is poised to significantly enhance daily life assistance through intelligent and responsive interac-

tions. However, this amalgamation brings forth critical concerns and challenges related to security,

efficiency, and accuracy that need meticulous investigation and resolution. My future work is com-

mitted to pioneering advancements in this domain, focusing on developing secure, efficient, and

high-performing smart speakers embedded with sophisticated LLM logic. We aim to delve deep

into the security vulnerabilities inherent in these integrations, emphasizing the creation of robust

authentication mechanisms to mitigate unauthorized access and potential malicious activities. A

pivotal area of our research will be to refine the accuracy of speech-to-text conversion processes
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and the model’s logical comprehension of commands (chain of thought), ensuring precise inter-

pretation and execution of user instructions. We will explore optimizations to meet the compu-

tational demands of LLMs and investigate energy-efficient solutions to address increased power

consumption. Additionally, we aspire to implement mechanisms enabling smart speakers to justify

proposed actions and seek user confirmations, enhancing user control and satisfaction. Through

our endeavors, we anticipate contributing to the development and adoption of secure, user-friendly,

and intelligent smart speakers, paving the way for the next era of smart assistance technologies.

Voice watermarking for IP protection: Watermarking is usually used for protecting the copyright.

In my future work, I will aim to fortify the integrity of speech datasets against unauthorized usage

by adding voice watermarks. The watermark can be a different style of speech and will be used to

verify the ownership of the dataset. Once a suspicious model uses our dataset without permission,

the fine-tuning of our dataset will leave a watermark on the model. Compared to the existing wa-

termark approach which injects backdoors into the trained model and potentially harms legitimate

dataset users (e.g., leaving a backdoor to their model). We aim to make a harmless watermark

by injecting different styles of speech (with correct labels) to serve as a watermark. The water-

marked audio samples are intricately designed to be challenging for speech recognition systems to

decode correctly and will be incorporated seamlessly into the dataset, thus acting as a protective

shield without compromising the audio quality. This approach probably offers a reliable protection

mechanism for speech datasets and encourages the responsible and ethical use of data resources.
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