
By

Hossein Rajaby Faghihi

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science—Doctor of Philosophy

2024

EXPLOITING SEMANTIC STRUCTURES TOWARD PROCEDURAL REASONING



ABSTRACT

Reasoning over procedural text, which encompasses texts such as recipes, manuals, and ’how

to’ tutorials, presents formidable challenges due to the dynamic nature of the world it describes.

Reasoning over procedural text has many challenges. These challenges are embodied in tasks

such as 1) tracking entities and their status changes (entity tracking) and 2) summarization of the

process (procedural summarization). This thesis aims to enhance the representation and reasoning

over textual procedures by harnessing semantic structures in the input text and imposing constraints

on the models’ output. It delves into using semantic structures derived from the text, including

relationships between actions and objects, semantic parsing of instructions, and the sequential

structure of actions. Additionally, the thesis investigates the integration of structural and semantic

constraints within neural models, resulting in coherent and consistent outputs that align with external

knowledge. The thesis contributes significantly to three main areas: Entity tracking, Procedural

Abstraction, and the Integration of constraints in deep learning.

In the entity tracking task, we have made four primary contributions: 1) Developed a novel

architecture for encoding event flow in pretrained language models. 2) Enabled seamless transfer

learning from diverse corpora through task reformulation. 3) Enhanced language models by

incorporating knowledge from semantic parsers and leveraging ontological abstraction of actions.

4) Created a new evaluation scheme considering fine-grained semantics in tracking entities.

Regarding procedural summarization, the thesis proposes a model for an explicit latent space

for the procedure that is indirectly supervised to ensure the summary’s action order corresponds to

the order of events in the multi-modal instructions.s

In the realm of integrating domain knowledge with deep neural networks, the thesis makes

two significant contributions, 1) it contributes to the development of a generic framework that

facilitates the incorporation of first-order logical constraints in neural models, and 2) it creates a

new benchmark for evaluating constraint integration methods across five categories of tasks. This

benchmark introduces novel evaluation criteria and offers valuable insights into the effectiveness

of constraint integration methods across various tasks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Natural language understanding concerns developing algorithms and models that can interpret

and analyze human language. The ability to understand natural language has numerous practical

applications, such as improving search engines [1], automatic customer service [30], and creating

intelligent personal assistants [79]. However, natural language understanding remains a complex

and challenging problem due to the complexity and variability of human language. In recent years,

there has been significant progress in developing machine learning models and techniques to tackle

this problem. In this manuscript, we focus on natural language understanding in the domain of

procedural text.

Procedural texts, such as recipes [16, 184], manuals and tutorials [170, 180], and stories [160],

provide step-by-step instructions for various tasks. Understanding the procedural text is important

in natural language processing [171] and robotics [164]. In addition to the general challenges

of natural language understanding, comprehending procedural text is difficult due to the dynamic

nature of the environment described in the process. This results in new challenges specific to this

domain. We pinpoint some of these as follows:

• Reasoning over the temporal relationships: Procedural texts describe a sequence of steps

that must be performed in a specific order. For example, if the instruction is "add the flour

after mixing the wet ingredients", the agent should understand that the sequence of action is

"mix the wet ingredients" and then "add the flour".

• Reasoning over the global context: This challenge arises when understanding a particular

step requires information from previous or future steps. For instance, a recipe may instruct

to "stir the vegetables" followed by "take them out of the pan". Without looking at the

subsequent steps, it may not be clear where the vegetables should be stirred in.

• Grounding actions: Procedural texts often use synonyms or multiple meanings of a word to

1



describe the same physical action. For example, a recipe might use the terms "chop," "dice,"

and "mince" to refer to the action of cutting ingredients into small pieces.

• Grounding entities: Procedural texts may have complex entity grounding, making it difficult

to determine which entity is being referred to in a particular step. For example, grounding the

vegetables in the "stir the vegetables" instruction is difficult when the recipe contains multiple

ingredients, such as {parsely, carrot, meat, and sugar}. One requires additional knowledge

about the type of ingredients to understand this instruction fully.

• Reasoning over action sequences: Procedural texts require a deep understanding of the

actions being performed, including the sequence and dependencies between them. For

instance, if a process describes entity ‘animal’ to ‘die’ (destroy) at step i, the ‘animal‘ cannot

be moved at step i 1.

• Reasoning over causal relations: Procedural texts require the ability to reason about causal-

ity, to understand how actions relate to each other, and what the consequences of a specific

action might be. For instance, in the sequence of information "1. Wind creates waves 2.

Waves hit rocks on the beach", it can be inferred that calm weather would result in smaller

waves and, hence, less damage to the rocks on the beach.

• Reasoning over actions and their consequences: There are complex dependencies between

the actions and the changes in the world that should be understood. For instance, if entity

‘water‘ is detected to be moving in the sentence ‘water from the soil is absorbed‘, it should

be inferred that the new location of ‘water‘ is different than ‘soil‘.

These challenges have been embodied in multiple tasks, such as entity tracking [32, 16],

procedural abstraction/summarization [184], and causal reasoning [169]. This thesis focuses on

entity tracking and procedural abstraction, delving deeper into each task’s challenges in their

corresponding sections in the subsequent chapters. In addition to the intrinsic challenges of

understanding procedural text due to its dynamic nature, the available benchmarks for this task
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Participants
Paragraph State number Water Light CO2 Mixture Sugar
(Before the process starts) State 0 Soil Sun ? - -
Roots absorb water from soil State 1 Root Sun ? - -
The water flows to the leaf State 2 Leaf Sun ? - -
Light from the sun and CO2 enter the leaf State 3 Leaf Leaf Leaf - -
Water, light, and CO2 combine into mixture State 4 - - - Leaf -
Mixture forms sugar State 5 - - - - Leaf

Table 1.1 An example of procedural text and its annotations from the Propara dataset [32]. "-"
means the entity does not exist. "?" means the location of the entity is unknown.

are mostly small and provide smaller amounts of annotated data compared to many other NLP

tasks. This is due to the costly and complex human process of providing fine-grained annotations

of world states during the process. Training neural models to learn from a smaller set of annotated

data can result in challenges in generalization and may cause overfitting.

In order to tackle the challenges discussed earlier, our objective is to leverage the semantic

structures that can be derived from procedural text or the interdependencies among various de-

cisions made by neural models, also known as structured prediction, especially based on models

designed for procedural reasoning. Prior to outlining our contributions, We discuss the scenarios

of procedural understanding that are the focus of our investigation in this thesis.

1.2 Procedural Reasoning Tasks

Here, we briefly describe the main procedural reasoning problems that we focus on, that is,

entity tracking and procedural abstraction.

Entity tracking involves monitoring entities’ states as they undergo a series of actions, while

procedural abstractions aim to generate a condensed summary of the steps involved in a process.

Both tasks are essential for a comprehensive understanding of the process, as they capture different

aspects of the task.

Entity Tracking Table 1.1 presents an illustrative example of the entity tracking task. This task

revolves around processing step-by-step instructions along with the entities involved in a given

process, with the aim of generating comprehensive annotations that trace the evolution of these

entities’ properties over the course of the instructions. The property of interest shown in Table
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1.1 is the location of entities. To expound further, consider the provided sentence, "Roots absorb

water from soil," and focus on the entity of interest, namely, "water." In this context, the primary

objective of the entity tracking task is to discern and highlight the relocation of the "water" entity

as it transitions from its original location in the "soil" to its eventual destination in the "root."

Figure 1.1 A sample input for the task of procedural summarization in a simplified setting. This
task is known as Textual Cloze.

Procedural Abstraction The procedural abstraction task refers to the process of condensing a

series of actions and their associated outcomes in order to provide a concise and short representation

that accurately captures the original sequence of events.

To facilitate the examination of this task, a simplified variant can be explored, wherein the

abstract consists of only four action phrases that effectively convey the chronological progression

of the process. An illustrative example of this task is presented in Figure 1.1. In this example,

the sequence denoted by "1. Preparation, 2. Making the Dough, 3. Preparing Veggies, and 4.

Baking" serves as an abstract and succinct action-oriented interpretation of the procedure of baking

"Pizza Pancakes". Compared to the full summarization task, it is worth noting that this simplified

version deliberately overlooks the element of "comprehensiveness" and relaxes the requirements

for "coherence".
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1.3 Contributions

In this thesis, our primary aim is to exploit the inherent semantic structures in language and

constraints in structured prediction tasks to advance Procedural Reasoning over text.

Firstly, we focus on utilizing the input semantic structures derived from the text, such as the

interrelationships between actions and objects, the semantic parse of the instructions, and the relative

ordering of actions. By leveraging these semantic structures, we can enhance the understanding

and representation of procedural knowledge.

Secondly, we aim to harness the power of structural and semantic constraints over the neural

model’s decision and latent variables. This line of inquiry falls within the domain of structured

output prediction, where the model outputs are correlated within a certain structure. For instance, in

predicting actions associated with a particular entity at each step, there exists a sequential constraint:

if the action at step i is "create," it is impossible for the action at step i 1 to also be "create." By

incorporating these structural constraints, we can guide the neural models to generate more coherent

and realistic outputs, aligning them with the inherent constraints of procedural knowledge

In pursuit of our objective, we put forth a range of innovative neural architectures that leverage

semantic enhancements applied to the instructions, as well as novel learning objectives devised

based on the interconnections among latent and output variables of neural models. Our primary

focus is on addressing the challenges inherent in procedural understanding, which we tackle through

formulating two distinct tasks: entity tracking and procedural abstraction.

To harness the semantic dependencies present in the latent and output variables of neural

models, we delve into the broader domain of integrating domain knowledge with deep neural

networks (DNN). Within this framework, we specifically concentrate on incorporating knowledge

that can be expressed as first-order logical constraints. By integrating domain knowledge, we strive

to enhance the reasoning capabilities and overall performance of the neural models, especially in

capturing the intricacies of procedural reasoning.

In summary, our main contributions toward the task of entity tracking are:

• We design a novel mechanism to encode the relative time of events and capture the flow
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of events within language models. This enables us to reason over the whole context of the

process while being able to shift focus from one step to another. Our method significantly

enhances language models’ ability to reason over action sequences and both local and global

contexts. We evaluate this mechanism in the task of entity tracking and achieve state-of-the-

art results.

• We provide reformulations for the entity tracking task, enabling effective transfer learn-

ing from generic domain question answering benchmarks to the procedural domain. This

reformulation helps address the challenges arising from limited available annotations for the

entity tracking task.

• We provide a novel approach to utilize symbolic and neural semantic parsers alongside

ontological hierarchies of actions in understanding procedural texts. This approach com-

bines semantic parses represented as graphs and encoded via graph attention networks with

pretrained language models. Our proposal improves the ability of baseline models to ad-

dress challenges in grounding actions, reasoning over action sequences, and understanding

actions and their consequences. This approach also enhances the explainability of neural

decision-making processes and improves model generalizability through proper abstractions

over textual information. We evaluate this approach in the entity tracking task and achieve

further improvements over the state-of-the-art results.

• We provide new evaluation metrics to better understand the challenges of the entity tracking

task based on the difficulty of required reasoning steps for tracking the entities.

• We are the pioneer in enforcing global consistency in the entity tracking task, which en-

sures decision consistency while considering all the model decisions in parallel rather than

sequential, resulting in a better performance compared to sequential inference.

Our contributions toward the task of procedural abstraction are listed below:
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• We proposed a new training objective that utilizes distant supervision signals based on

constraints on generating summaries of recipes. These supervision signals are applied in a

latent matching space between summary points and the instruction steps, and the model is

simply enforced to match earlier summary points to earlier steps of the process.

• We proposed and showcased the benefits of using a multi-modal architecture over a single

textual modality model in generating process abstractions.

• We analyzed and provided insights and reasons on cases where the multi-modal information

is helpful or hurtful in processing the process instructions.

Finally, our main contributions toward the integration of domain knowledge with DNNs are:

• We develop a generic framework for integrating constraints with deep neural models (Domi-

KnowS). This framework provides a declarative interface to define knowledge and computa-

tional units while providing a senseless transition between multiple integration techniques.

• We create a new evaluation benchmark (GLUECons), which facilitates research on integrating

explicit knowledge of the task with learning from data. We further showcase the advantage of

integrating domain knowledge with deep neural models in multiple tasks and under various

configurations over data size and network parameters.

• We propose a novel framework for mapping decisions originating from various models into

comparable values in a unified framework for enforcing consistency in the heterogeneous

decision-making process.

1.4 Manuscript Outline

In this section, we provide a short overview of the chapters of this document and discuss the

structure of the remaining chapters.

Chapter 3 focuses on the entity tracking task. It begins with a formal definition of the task

in Section 3.1, followed by a detailed discussion of the specific challenges associated with entity
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tracking in Section 3.2. Section 3.3 explores existing evaluation metrics for this task, while

Section 3.4 provides an overview of related research. Next, Section 3.5 will cover our approach for

reformulating the tasks of entity tracking as question-answering and a novel method to encode the

relative time frame of events in pretrained language models. Our contributions discussed in this

section are published as part of the paper "Time-Stamped Language Model: Teaching Language

Models to Understand the Flow of Events" [48] in NAACL 2021. Section 3.6 will cover our main

contributions toward utilizing semantic parsers toward understanding the procedural text in the

form of entity tracking. The results of this effort are part of the paper "The Role of Semantic

Parsing in Understanding Procedural Text" [50] in EACL 2023.

Chapter 4 delves into the task of procedural abstraction. It examines the simplified action-based

abstraction task. The approach for mapping the temporal order of actions in abstract and the process

is described in Section 4.1. The results of this work were published in ALVR2021 under the title

"Latent alignment of procedural concepts in multimodal recipes" [131].

In Chapter 5, we explain our general approach for integrating domain knowledge with neural

learning. Section 5.1 describes our declarative learning-based framework, DomiKnowS, for knowl-

edge integration. Section 5.2 introduces GLUECons, a new benchmark for evaluating constraint

integration methods. Our efforts in designing DomiKnowS are presented in EMNLP2021 under

the title of "DomiKnowS: A Library for Integration of Symbolic Domain Knowledge in Deep

Learning" [47]. GLUECons is also presented in AAAI2023 under the name of "GLUECons: A

Generic Benchmark for Learning Under Constraints"[51].

In Chapter 6, we combine two key aspects of our research: procedural reasoning and the

integration of domain knowledge with neural learning. To fully harness the potential of our

proposed approach for integrating knowledge, we extend existing methods to ensure consistency

during inference. These extensions are tailored to handle scenarios where we need to combine

decisions with different characteristics, such as size and accuracy. In Section 6.3, we explain our

new technical framework for these extensions. Furthermore, in Section 6.2, we propose a novel

technique for procedural reasoning within a generative language model. Our approach aims at
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enhancing the consistency of reasoning within the language model through data augmentation and

knowledge integration.

Finally, in Chapter 7, we summarize our contributions and propose future directions and possible

extensions of our work.
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CHAPTER 2

BACKGROUND

In this chapter, we will review the basic definitions and related works which are essential to

understand the contributions of this work. We describe the general research relevant to each

contribution in the subsequent chapters.

2.1 Language Models

Throughout this document, we refer to language models in terms of transformer-based neural

architectures, which are mostly pre-trained on the masked/next token prediction task. Transformer-

based language models are a type of deep learning model used for natural language processing

tasks such as language generation [145], machine translation [173], and text classification [119].

They are based on the Transformer architecture introduced by [173] in 2017.

2.1.1 Transformers

The Transformer architecture [173] is designed to address the limitations of traditional recurrent

neural networks (RNNs) [107] and convolutional neural networks (CNNs)[72] in processing long-

range dependencies in sequential data such as text. It does this by introducing self-attention

mechanisms that allow the model to selectively attend to different parts of the input sequence,

regardless of their position in the sequence.

Masked Token Prediction Masked token prediction is a task where the model is given a sequence

of tokens with some tokens randomly masked, and the model is asked to predict the masked

tokens based on the context of the surrounding tokens. Formally, given a sequence of tokens

X = {x1, x2, . . . , xn}, a subset of the tokens are randomly selected and replaced with a special

MASK token to obtain a masked sequence Y = {y1, y2, . . . , yn}, where yj is either xj or MASK.

The goal of the model is to predict the original tokens of the masked positions in Y , i.e., to find

the sequence Z = {z1, z2, . . . , zn}, where zi,j = xi if yj = xi and zi,j is the predicted token if

yj = MASK.

The objective function used to train the model is typically the cross-entropy loss between
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the predicted probability distribution over the vocabulary and the true distribution of the original

tokens. Let ŷj be the predicted distribution over the vocabulary for the j-th masked position, and

let pxi be the true probability distribution of the original token xi. The loss function can be defined

as:

Lmask = − n

j=1
|V|
i=1

pxi log ŷj,i

where V is the vocabulary of the language.

Next Token Prediction Next token prediction is a task where the model is given a sequence of

tokens and is asked to predict the next token in the sequence. Formally, given a sequence of tokens

X = {x1, x2, . . . , xn}, the model is asked to predict the probability distribution over the vocabulary

of the next token xn1. The objective function used to train the model is typically the cross-entropy

loss between the predicted probability distribution over the vocabulary and the true distribution of

the next token xn1.

The model is trained in an iterative approach, where the true next token is provided as input

to the model at each time step during training. During inference, the model can generate text by

recursively predicting the next token given the previously generated tokens. Let ŷ be the predicted

distribution over the vocabulary for the next token, and let pxn1 be the true probability distribution

of the next token. The loss function can be defined as:

Lnext = − |V|
i=1

pxn1 log ŷi

where V is the vocabulary of the language.

During inference, the model can generate text by recursively predicting the next token given the

previously generated tokens. Let Xt = {x1, x2, . . . , xt} be the first t tokens of the sequence, and

let ŷt1 be the predicted distribution over the vocabulary for the next token given Xt. The model can

then sample a token from the predicted distribution and add it to the sequence to obtain Xt1. This
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process can be repeated until a stopping criterion is met, such as reaching a maximum sequence

length or generating an end-of-sentence token.

Next token prediction is a fundamental task in language modeling, and it is often used as a

pretraining task for more complex natural language processing tasks, such as machine translation

and question answering. The success of the next token prediction relies on the ability of the model

to capture the dependencies between the tokens in the sequence and to learn a representation of the

language that can generalize to new tasks.

2.1.2 Encoder-only Models

Encoder-only models are a type of transformer-based language model that consists of an encoder

component only, without a decoder. This means that the model is trained to generate representations

of input sequences that capture the contextual relationships between the tokens in the sequence,

but it does not generate output sequences. Two popular examples of encoder-only models are

BERT (Bidirectional Encoder Representations from Transformers) [42] and RoBERTa (Robustly

Optimized BERT Pretraining Approach) [95].

Formally, the input to the encoder-only model is a sequence of tokens X = x1, x2, . . . , xn,

which is first tokenized and then fed into the model. The model generates a sequence of hidden

representations H = h1, h2, . . . , hn, where hi is the hidden representation of the i-th token in the

input sequence.

The architecture of the encoder-only model is based on the transformer architecture, which

consists of a stack of L identical layers. Each layer has two sub-layers: a self-attention mechanism

and a position-wise fully connected feed-forward network. The self-attention mechanism allows the

model to attend to different positions of the input sequence to generate the hidden representation

of each token. The position-wise feed-forward network allows the model to capture complex

interactions between the tokens.

The objective function used to train the encoder-only model is typically the masked language

modeling task.
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BERT BERT (Bidirectional Encoder Representations from Transformers) [42] is an encoder-only

transformer-based language model developed by Google AI Language. It was introduced in 2018

and has achieved state-of-the-art results on various natural language processing tasks, including

question answering, sentiment analysis, and named entity recognition.

The architecture of BERT is based on a transformer encoder that is pre-trained on large amounts

of text data using the masked language modeling task and the next sentence prediction task. During

training, a subset of the tokens in the input sequence is randomly masked, and the model is trained

to predict the original tokens based on the context of the surrounding tokens. The next sentence

prediction task involves predicting whether two sentences are consecutive in a document or whether

they are randomly sampled from the corpus.

After pre-training, the weights of the BERT model can be fine-tuned on a downstream task

with a smaller labeled dataset, such as sentiment analysis or named entity recognition. Fine-tuning

involves adding a task-specific output layer on top of the pre-trained encoder and training the model

to minimize the task-specific loss function.

One of the key features of BERT is its bidirectional nature, which allows it to capture the

contextual relationships between the tokens in both directions. This is achieved through the use of

the masked language modeling task, which requires the model to predict the original tokens based

on the context of both the preceding and following tokens.

RoBERTa RoBERTa (Robustly Optimized BERT Pretraining Approach) [95] is an encoder-only

transformer-based language model developed by Facebook AI Research. It was introduced in 2019

and is an extension of the BERT model, with improvements to the pre-training objectives and

hyperparameters.

The architecture of RoBERTa is similar to that of BERT, with a transformer encoder that is

pre-trained on large amounts of text data using a variety of pre-training objectives, including a new

task called dynamic masking. Dynamic masking involves randomly masking different spans of

tokens in the input sequence, as opposed to contiguous blocks, as in the original masked language
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modeling task. The masked token would change from one iteration to another.

RoBERTa also makes several hyperparameter optimizations to the BERT model, such as in-

creasing the batch size, training for longer, and using a larger number of training steps. These

optimizations result in a more robust pre-trained model that is less sensitive to hyperparameter

choices and can be fine-tuned on a wider range of downstream tasks.

In addition, RoBERTa uses a technique called byte-pair encoding (BPE) to handle out-of-

vocabulary (OOV) words, which involves breaking down rare or unknown words into subword

units. This allows the model to handle rare or unseen words better and improves its generalization

ability.

2.1.3 Encoder-Decoder Models

Encoder-decoder models are a class of neural network architectures commonly used in natural

language processing tasks such as machine translation and text summarization. They consist of an

encoder network that processes the input sequence and generates a fixed-size representation of it

and a decoder network that generates the output sequence based on the encoder representation.

To adapt encoder-only models to the encoder-decoder architecture, a decoder network is added

on top of the pre-trained encoder. The encoder network first processes the input sequence to

generate a fixed-size representation h, which is then passed to the decoder network. The decoder

generates the output sequence y = y1, . . . , ym one token at a time, where yi represents the i-th

token in the output sequence and m is the length of the output sequence.

During decoding, the model uses an attention mechanism to dynamically weigh the importance

of each encoder representation based on the decoder’s current state and the previous output tokens.

This allows the model to capture long-range dependencies between the input and output sequences

and generate fluent and coherent output.

Encoder-decoder models can be trained end-to-end using a variety of loss functions, such as

cross-entropy loss or reinforcement learning. During training, the model learns to generate output

sequences that are close to the target sequences based on the chosen loss function.

Overall, encoder-decoder models have proven to be a powerful tool in natural language pro-
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cessing and have achieved impressive results on tasks such as machine translation and text sum-

marization. The transformer-based architecture, in particular, has become a popular choice for

encoder-decoder models due to its strong performance and ability to capture long-range dependen-

cies in the input and output sequences.

T5 The T5 (Text-to-Text Transfer Transformer) [129] model is a transformer-based encoder-

decoder architecture that was introduced in 2019. T5 is trained in a text-to-text format, where both

the input and output are text sequences. This allows T5 to perform a wide range of tasks, including

language modeling, text classification, and machine translation, among others.

T5 is further fined-tuned on predicting the output sequence from the input sequence, given a

task-specific prefix that is added to the input sequence. During fine-tuning, the model presents a

range of input-output pairs, each with a unique prefix, and learns to generate the corresponding

output sequence. Using a prefix ensures that the model knows which task it is performing, allowing

it to generalize to new tasks by simply adding a new prefix.

T5 uses a variant of the transformer architecture called the T5-Base, which consists of 12

encoder and decoder layers with 768 hidden units and 12 attention heads. In addition to the base

model, T5 also includes larger models such as T5-Large, T5-3B, and T5-11B, with up to 11 billion

parameters.

BART The BART (Bidirectional and Auto-Regressive Transformer) [85] model is another transformer-

based encoder-decoder architecture introduced by Facebook AI Research in 2019. Like other

encoder-decoder models, BART consists of an encoder network that generates a fixed-size repre-

sentation of the input sequence and a decoder network that generates the output sequence based

on the encoder representation. However, BART differs from other models in its pre-training and

fine-tuning procedures.

BART is pre-trained using a denoising autoencoder objective, where the model is trained to

reconstruct a noisy version of a text sequence. This involves randomly masking some tokens

in the input sequence and training the model to predict the original sequence from the masked

15



version. Additionally, BART is trained using both bidirectional and left-to-right language modeling

objectives, allowing it to capture both global and local context information.

BART also uses a different fine-tuning procedure than other models. Instead of fine-tuning

the entire model on a specific task, BART fine-tunes only the decoder network while keeping the

encoder fixed. This is done by adding a task-specific output layer on top of the decoder network

and fine-tuning it on the task-specific data. This approach is known as "discriminative fine-tuning"

and has improved performance on downstream tasks while reducing the risk of overfitting.

BART uses a transformer architecture similar to that of the T5 model, with both base and large

versions available. The base version consists of 12 encoder and decoder layers with 768 hidden

units and 12 attention heads, while the large version consists of 12 encoder and decoder layers with

1024 hidden units and 16 attention heads.

2.1.4 Decoder-only Models

In contrast to encoder-only and encoder-decoder models, decoder-only models are designed to

generate text without using an encoder network. Instead, these models use a large decoder network

to generate text directly based on a given prompt or conditioning information.

Decoder-only models are trained using a variant of the autoregressive language modeling

objective. The model is trained to predict the next token in a text sequence given the preceding

tokens. However, unlike encoder-decoder models, decoder-only models do not require an encoder

to generate the conditioning information for the decoder. Instead, the conditioning information is

typically provided as a fixed-size vector or a sequence of tokens.

Decoder-only models have the advantage of being computationally efficient since they do not

require an encoder network. However, they may struggle with tasks that require the model to

generate text based on complex input sequences or long-term dependencies.

GPT One popular type of decoder-only model is GPT (Generative Pre-trained Transformer) [128],

introduced by OpenAI in 2018. GPT uses a transformer architecture similar to that of the encoder-

decoder models but with only a decoder network. The model is pre-trained on a large corpus of
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text using the autoregressive language modeling objective and can then be fine-tuned on various

natural language processing tasks.

GPT is highly effective at various natural language generation tasks, including text completion,

text generation, and dialog generation. GPT-3 contains 175 billion parameters, making it the largest

and most powerful language model to date.

2.2 Learning Objectives

Cross-Entropy Cross-entropy is a commonly used loss function in machine learning, particularly

for classification tasks. Given a set of predicted probabilities ŷi and a set of true probabilities yi,

the cross-entropy between these two probability distributions is defined as:

Hy, ŷ = − n

i=1
yi logŷi (2.1)

, where n is the number of classes in the classification problem. The cross-entropy measures

the difference between the predicted probabilities and the true probabilities, with a lower value

indicating better agreement between the two distributions.

In the context of neural network training, cross-entropy is used as a loss function to optimize

the model’s parameters. For example, in a classification problem with k classes, the cross-entropy

loss for a single training example is defined as:

Ly, ŷ = − k

i=1
yi logŷi (2.2)

, where yi is a one-hot vector representing the true class label, and ŷi is a vector of predicted class

probabilities output by the model. The overall cross-entropy loss for a batch of training examples

is typically calculated as the mean of the individual losses:

Lθ =
1
m

m

i=1
Lyi, ŷi (2.3)

where θ represents the model’s parameters, and m is the batch size.
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In practice, cross-entropy is a widely used loss function in deep learning. It is often used in

combination with other techniques, such as gradient descent optimization and regularization, to

train neural networks on a variety of tasks.

Triplet Loss Triplet loss is a type of loss function used in metric learning, which aims to learn a

mapping from input data to a metric space such that the distance between points in the metric space

corresponds to their similarity in the input space. Triplet loss is commonly used in tasks such as

face recognition, image retrieval, and person re-identification.

In triplet loss, the model is trained using triplets of samples: an anchor sample, a positive

sample, and a negative sample. The goal of the model is to learn embeddings such that the distance

between the anchor and the positive sample is minimized while the distance between the anchor

and the negative sample is maximized. The triplet loss is defined as follows:

Ltriplet = max0, da, p − da, n α (2.4)

, where a, p, and n are the embeddings of the anchor, positive, and negative samples, respectively,

d·, · is a distance function such as Euclidean distance or cosine similarity, and α is a margin that

defines the minimum distance that should be maintained between the anchor and negative samples.

In practice, triplet loss can be challenging to train, as it requires a careful selection of triplets to

ensure that the loss is informative and not trivially satisfied. One common approach is to use hard

negative mining, where the negative sample is selected to be the most difficult sample that violates

the triplet constraint. Another approach is to use semi-hard negative mining, where the negative

sample is selected to be close to the anchor but still violates the triplet constraint.

2.3 NLP Tasks

Text Classification Text classification is a fundamental task in natural language processing (NLP)

that involves assigning predefined categories or labels to a given input text. Text classification has

many real-world applications, such as spam filtering [94], sentiment analysis [119], and topic

classification [123].
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In text classification, the input text is usually represented as a sequence of tokens, such as words

or subwords, and the task is to predict the most appropriate label or category for the input text

from a predefined set of labels. The labels can be binary, such as positive or negative sentiment, or

multiclass, such as different types of news articles.

To train a text classification model, we need a labeled dataset that includes a set of input texts and

their corresponding labels. The dataset is usually divided into three sets: a training set, a validation

set, and a test set. The training set is used to optimize the model parameters, the validation set is

used to tune the hyperparameters of the model and prevent overfitting, and the test set is used to

evaluate the final performance of the model on unseen data.

Question-Answering Question answering (QA) is a task in natural language processing (NLP)

that involves answering a given question based on a given context or document.

In QA, the input consists of a question and a context, which is usually a paragraph or a document

that contains the information necessary to answer the question. The task is to extract the answer

from the context. QA can be categorized into two types: extractive and abstractive. In extractive

QA, the answer is a span of text from the context, while in abstractive QA, the answer is free-form

and is generated based on the context and the question. QA can be formulated as a machine learning

task, where the model is trained on a dataset of question-answer pairs.

Semantic Role Labeling Semantic role labeling (SRL) [105] is a task in natural language pro-

cessing (NLP) that involves identifying the semantic roles played by different entities and events

in a sentence. The task of SRL is to assign a semantic label to each constituent of a sentence,

such as the subject, object, and predicate. These labels indicate the role of each constituent in the

underlying event or action described by the sentence.

SRL is typically formulated as a supervised machine learning task, where the model is trained

on a dataset of annotated sentences. The input to an SRL model is a sentence, and the output is a

set of semantic labels that correspond to the roles of the constituents in the sentence. For example,

in the sentence "John ate the pizza with a fork", the subject "John" is assigned the semantic role of
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agent, the object "the pizza" is assigned the semantic role of patient, and the prepositional phrase

"with a fork" is assigned the semantic role of the instrument.

2.4 Benchmarks

2.4.1 Question-Answering

There are several benchmarks for QA in NLP, which are used to evaluate the performance of

different QA models.

Stanford Question Answering Dataset (SQuAD) [132]: In our research, we use SQuAD

as part of our neural learning process. The Stanford Question Answering Dataset (SQuAD) is

a benchmark for QA in NLP that consists of a set of questions and their corresponding context

passages. The dataset contains over 100,000 question-answer pairs, and the questions are designed

to test the model’s ability to understand the context and extract the relevant information to answer

the question.

2.4.2 Entity Tracking

Propara [32] This dataset was created as a benchmark for procedural text understanding to track

entities at each step of a process. Propara contains 488 paragraphs and 3,300 sentences with

annotations that are provided by crowd-workers. The annotations ( 81,000) are the location of

entities at each step of the process. The location can be either the name of the location, an unknown

location, or specified as non-existence.

NPN-Cooking [16] This is a benchmark containing textual cooking instructions. Annotators

have specified the ingredients of each recipe alongside the changes happening on each ingredient

during the steps of the instructions. These changes are reported in categories such as location,

temperature, cleanliness, and shape. We evaluate our model on the location prediction task of this

benchmark, which is the hardest task due to having more than 260 candidate answers. We do not

use the candidates to find the locations in our setting; Instead, we find a span of the text as the

final location answer. This is a relatively harder setting but more flexible and generalizable than

the classification setting.
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2.4.3 Procedural Summarization

RecipeQA RecipeQA [184] is a dataset designed for multimodal comprehension of cooking

recipes. It contains more than 36,000 question-answer pairs that are automatically generated

from around 20,000 unique recipes with step-by-step instructions and images. The questions in

RecipeQA require a joint understanding of multiple modalities, such as titles, descriptions, or

images, and solving them involves capturing the temporal flow of events and making sense of

procedural knowledge. The dataset provides a unique opportunity to study the ability of models to

reason about procedural knowledge and to perform complex reasoning tasks that require multimodal

comprehension.
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CHAPTER 3

ENTITY TRACKING

In this chapter, we delve deeper into the task of entity tracking. Entity tracking aims to understand

the evolution of entities inside a process. This can be studied by following the important properties

of each entity after each action in the process. We provide a formal definition of the task in Section

3.1.

This task poses unique challenges compared to the conventional reading comprehension task

due to the dynamic nature of the world described in the text. We will discuss some of the main

challenges of this task in Section 3.2.

Our study on the entity tracking task relies on the two benchmarks of Propara [32] and NPN-

Cooking [16], both of which provide fine-grained annotation for the properties of entities after each

step of the process. The evaluation of this task goes beyond the simple F1 accuracy measures for

directly comparing the model decisions and ground truth and proposes the evaluation of high-level

abstraction of the process, such as its conversions, inputs, and outputs. We discuss this in more

detail in Section 3.3.

As the main goal of this thesis is to investigate approaches to benefit from the available semantic

structures for the task, we propose two approaches to enhance the pre-trained language models with

knowledge about the relative time frame of events and semantic relations between entities and

actions. We investigate the former in Section 3.5 and the latter in Section 3.6.

3.1 Task Definition

An example of a procedural text is shown in Figure 3.1. The example is taken from the

Propara [32] dataset and shows the process of oil creation. At each row, the first column is the

list of the sentences, each of which forms one step of the procedure. The second column contains

the number of steps in the process, and the rest are the entities interacting in the process and their

location at each step. The location of entities at step 0 is their initial location, which is not affected

by this process. If an entity has a known or unknown location (specified by “?”) at step 0, we call

it an input.
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Process Participants

Sentences plant animal bone oil

Before the process begins ? ? - -

1.Plants and animals die in 
a watery environment

watery 
environment

watery 
environment

- -

2.Over time, sediments 
build over

sediment sediment - -

3.the body decomposes sediment - sediment -

4.Gradually buried material 
becomes oil

- - - sediment

Figure 3.1 An example of procedural text and its annotation (location of objects). ‘-’ means the
entity does not exist; ‘?’ means the entity’s location is unknown.

The procedural reasoning task can be formally defined by a procedural text including m steps,

S = {s1, s2, ..., sm}, a set of entities E = {e1, e2, ..., en}, where n is the number of entities and a

set of properties. Specifically, in the Propara dataset, the property of interest is only the location

of the entities PL = {pL
0
1, pL

1
1, ..., pL

m
n }, where pL

t
i denotes the jth entity at step t. In Propara, the

location prediction starts at step 0, which indicates the entity’s location before the process begins.

The location of an entity can either be known (represented by a string) or unknown (represented by

"?").

Similar to prior research [170], the location property is used to infer a set of actions A =

{a1
1, a1

2, .., am
n }, where aj

t denotes the action type applied to entity j at step t.

3.2 Challenges

Inferring actions and their impact on entities involved in a procedural text can be challenging

in various aspects. First, there are dependencies between steps to be considered in predicting a

plausible action set. For instance, an entity destroyed at step t of the process cannot be moved

again at step t 1. Second, some sentences contain ambiguous local signals by including multiple

action verbs. For example, "The oxygen is consumed in the process of forming carbon dioxide.",
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Step Entity Action Before After
1 Water Move Root Leaf
2 Water Destroy Leaf -
1 Sugar Create - Leaf
2 Sugar None Leaf Leaf

Table 3.1 A sample annotation available in the Propara dataset, which is directly used for the
document-level evaluation.

where the oxygen is being destroyed, and the carbon dioxide is being created. Third, the sentences

are incomplete in some steps. For instance, a step of the process might only indicate "is buried

in mud", which cannot be understood without context. Fourth, finding the properties of some

entities may require reasoning over both the global context and local relations. For instance, in the

sentences “1. Magma rises to the surface. 2. Magma cools to form lava”, the location of ‘Lava’

after step 2 should be inferred from the prior location of Magma, which is indicated in its previous

step. Fifth, common sense is required to understand some consequences. For example, in Figure

3.1, step 3, one should use common sense to realize that ‘decomposing body’ would expose the

‘bones’, which will be left behind in the ‘sediment’. Sixth, understanding some relations requires

an advanced co-reference resolution. In Figure 3.1, step 4, a complex co-reference resolution is

required to understand that the ‘buried material’ refers to both ‘plants and animals bones’ and that

they are transforming into the ‘oil’.

3.3 Task Evaluation

Sentence-level evaluation is introduced in [32] for Propara dataset. This evaluation focuses on

the following three categories.

• Cat1 Is e created (destroyed/moved) during the process?

• Cat2 When is e created (destroyed/moved) during the process?

• Cat3 Where is e created (destroyed/moved from or to) during the process?

Document-level evaluation is a more comprehensive evaluation process and introduced later in

[167] for the Propara benchmark. Currently, this is the default evaluation in the Propara leaderboard

containing four criteria:
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• What are the Inputs? Which entities existed before the process began and do not exist after

the process ends.

• What are the Outputs? Which entities got created during the process?

• What are the Conversions? Which entities got converted to other entities?

• What are the Moves? Which entities moved from one location to another?

The document-level evaluation requires models to reformat their predictions in a tabular format as

shown in Table 3.1. At each row of this table, for each entity at a specific step, we can see the action

applied to that entity, the location of that entity before that step, and the location of the entity after

that step. The action takes values from a predefined set including, “None”, “Create”, “Move”, and

“Destroy”. The exact action can be specified based on the before and after locations.

3.4 Related Research

ScoNe [97], NPN-Cooking [16], bAbI [175], ProcessBank [13], and Propara [32] are bench-

marks proposed to evaluate models on procedural text understanding. Processbank [13] contains

procedural paragraphs mainly concentrated on extracting arguments and relations for the events

rather than tracking the states of entities. ScoNe [97] aims to handle co-reference in a procedural

text expressed about a simulated environment. bAbI [175] is a simpler machine-generated textual

dataset containing multiple procedural tasks such as motion tracking, which has encouraged the

community to develop neural network models supporting explicit modeling of memories [162, 146]

and gated recurrent models [25, 64]. NPN-Cooking [16] contains recipes annotated with the state

changes of ingredients on criteria such as location, temperature, and composition. Propara [32]

provides procedural paragraphs and detailed annotations of entity locations and the status of their

existence at each step of a process.

Some earlier models on procedural text understanding, inspired by bAbI dataset, are Memory

Network architecture [162], Recurrent Relational network (RRN) [146], and gated recurrent models

such as GRU [25] and Recurrent Entity Networks(EntNet) [64]. EntNet uses dynamic memory for

the world’s hidden state, which will be updated based on a gated mechanism at each step. RRN
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augments neural networks with the capacity to do multi-step relational reasoning while keeping a

memory of hidden states (separate memory per entity) at each step and updating that based on the

memory representations and newly retrieved representations at each step.

Inspired by Propara and NPN-Cooking benchmarks, recent research has focused on tracking

entities in a procedural text. Datasets such as Procedural Cyber-Security text [122] and OpenPI [170]

are further designed with a similar task in mind.

To address the challenges in this type of reasoning over procedural text, various models are

proposed. Query Reduction Networks (QRN) [151] performs gated propagation of a hidden state

vector at each step. Neural Process Network (NPN) [16] computes the state changes at each step

by looking at the predicted actions and involved entities. Prolocal [32] predicts locations and

status changes locally based on each sentence and then globally propagates the predictions using a

persistence rule. Proglobal [32] predicts the status changes and locations over the whole paragraph

using distance values at each step and predicts current status based on current representation and

the predictions of the previous step. ProStruct [167] aims to integrate manually extracted rules

or knowledge-base information on VerbNet [150] as constraints to inject common-sense into the

model. KG-MRC [35] uses a dynamic knowledge graph of entities over time and predicts locations

with spans of the text by utilizing reading comprehension models. Ncet [61] updates entities

representation based on each sentence and connects sentences together with an LSTM. To ensure

the consistency of predictions, Ncet uses a neural CRF over the changing entity representations.

XPAD [34] is also proposed to make dependency graphs on the Propara dataset to explain the

dependencies of events over time. Most recently, DynaPro [6] feeds an incremental input to pre-

trained LMs’ question answering architecture to predict entity status and transitions jointly. Recent

models have further investigated the integrating of common-sense (KOALA) [192], utilizing large

generative language models (LEMON) [153], or using both the question answering setting and

sequential structural constraints at the same time (CGLI) [99] to address this task.

Procedural reasoning has also been pursued within the multi-modality domain [184, 131,

5] which has additional challenges of aligning the representation spaces of different modalities.
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Additionally, recent research has alsop investigated the causality of past events in enabling future

events, thorough different datasets such as WIQA [169] and Trip [160] for story understanding.

3.5 Encoding Temporal information

The current language models convey rich linguistic knowledge and can serve as a strong basis

for solving various NLP tasks [95, 43, 187]. That is why most of the state-of-the-art models on

procedural reasoning are also built based on current language models [6, 61]. However, they do

not contain a dedicated representation to understand the relative time of actions when encoding a

procedural text. Here, we propose a new approach for feeding the procedural information into LMs

in a way that the LM-based QA models are aware of the taken steps and can answer the questions

related to each specific time-frame in the procedure.

We propose the Time-Stamped Language model (TSLM model), which uses timestamp embed-

ding to encode past, current, and future time of events as a part of the input to the model. TSLM

utilizes timestamp embedding to answer differently to the same question and context based on

different steps of the process. As we do not change the portion of the input manually, our approach

enables us to benefit from the pre-trained LMs on other QA benchmarks by using their parameters

to initialize our model and adapt their architecture by introducing a new embedding type. Here, we

use RoBERTa [95] as our baseline language model.

We evaluate our model on two benchmarks, Propara [32] and NPN-Cooking [16]. Propara

contains procedural paragraphs describing a series of events with detailed annotations of the

entities along with their status and location. NPN-Cooking contains cooking recipes annotated

with their ingredients and their changes after each step in criteria such as location, cleanliness, and

temperature.

TSLM differs from previous research as its primary focus is on using pre-trained QA models and

integrating the flow of events in the global representation of the text rather than manually changing

the part of the input fed to the model at each step. In contrast to DynaPro [6], we explicitly inject

past, current, and future timestamps into the language models input and implicitly train the model

to understand the events’ flow rather than manually feeding different portions of the context at each
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step.

TSLM outperforms the state-of-the-art models in nearly all metrics of two different evalua-

tions defined on the Propara dataset. Results show a 3.1% F1 score improvement and a 10.4%

improvement in recall. TSLM also achieves the state-of-the-art result on the location accuracy on

the NPN-Cooking location change prediction task by a margin of 1.55%.

In summary, our contribution is as follows:

• We propose Time-Stamped Language Model (TSLM model) to encode the meaning of past,

present, and future steps in processing a procedural text in language models.

• Our proposal enables procedural text understanding models to benefit from pre-trained LM-

based QA models on general-domain QA benchmarks.

• TSLM outperforms the state-of-the-art models on the Propara benchmark on both document-

level and sentence-level evaluations. TSLM improves the performance state-of-the-art mod-

els on the location prediction task of the NPN-Cooking [16] benchmark.

• Improving over two different procedural text understanding benchmarks suggests that our

approach is effective, in general, for solving the problems that require the integration of the

flow of events in a process.

3.5.1 Model Components

QA Adaptation To predict the status and the location of entities at each step, we model F with

a question-answering setting. For each entity e, we form the input Qe as follows:

Qe =[CLS] Where is e? [SEP]

s1 [SEP] s2 [SEP] ..., sn [SEP]
(3.1)

Although Qe is not a step-dependent representation and does not incorporate any different

information for each step, our mapping function needs to generate different answers for the question

"Where is entity e?" based on each step of the procedure.
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Participants
Paragraph State number Water Light CO2 Mixture Sugar
(Before the process starts) State 0 Soil Sun ? - -
Roots absorb water from soil State 1 Root Sun ? - -
The water flows to the leaf State 2 Leaf Sun ? - -
Light from the sun and CO2 enter the leaf State 3 Leaf Leaf Leaf - -
Water, light, and CO2 combine into mixture State 4 - - - Leaf -
Mixture forms sugar State 5 - - - - Leaf

Table 3.2 An example of procedural text and its annotations from the Propara dataset [32]. "-"
means the entity does not exist. "?" means the location of the entity is unknown.

For instance, consider the example in Table 3.2 and the question "Where is water?"; Our model

should generate different answers at four different steps. The answer will be “root”, “leaf”, “leaf”,

“non-existence” for steps 1 to 4, respectively.

To model this, we create pairs of Qe, ti for each i ∈ {0, 1, ..., n}. For each pair, Qe is

timestamped according to ti using Timestamp. function described in Sec. 3.5.1 and mapped to

an updated step-dependent representation, Qti
e = TimestampQe, ti.

The updated input representation is fed to a language model (here ROBERTA) to obtain the

step-dependent entity representation, Rti
e , as shown in Equation 3.2. We discuss the special case

of i = 0 in more details in Sec. 3.5.1.

Rti
e = RoBERTaQti

e (3.2)

We use the step-dependent entity representation, Rti
e , and forward it to another mapping function

g. to obtain the location and status of the entity e in the output. In particular, the output includes

the following three vectors, a vector representing the predictions of entity status S, another vector

for each token’s probability of being the start of the location span L, and a third vector carrying the

probability of each word being the last token of the location span. The outputs of the model are

computed according to Equation 3.3.

status, Start_prob, End_prob = gRti
e (3.3)

where Re is the tokens’ representations output of RoBERTa [95], and g. is a function we apply

to the token representations to get the final predictions. We will discuss each part of the model
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Where is Water? Roots absorb water from soil. The water flows to the leaf. The water, light and CO2 combine into a mixture.
 

Step 0 Ignore Current

Step 1 Ignore Current Future

Step 2 Ignore Current FuturePast

Step 3 Ignore CurrentPast

Question Paragraph

2 2 2 2 ... 22

2 2 2 2 2 3 3 ... 3 3

1 1 1 1 1 2 2... 3 ... 3

1 1 1 1... 2 2 2...

0 0 0

0 0 0

0 0 0

0 0 0

Figure 3.2 An example of timestamp embedding in a procedural text. The question is always
ignored with the value "0". At each step i, the tokens from that step are paired with the “current”
value, tokens from steps 0 to i are paired with the “past” value, and the tokens from step i to the
last step are paired with the “future” value.

separately in the following sections.

Timestamp Embedding The timestamp embedding adds the step information to the input Qe to

be considered in the attention mechanism. The step attention is designed to distinguish between

current (what is happening now), past (what has happened before), and future (what has not yet

happened) information.

We use the mapping function Timestamp. from the pair Qe, ti to add a number along with

each token in Qe and retrieve the step-dependent input Qti
e as shown in Figure 3.2. The Mapping

function Timestamp. integrates past, current, and future representations to all of the tokens related

to each part. Timestamp. function assigns the number 1 for the past, 2 for the current, and 3 for

future tokens in the paragraph by considering one step of the process as the current event. These

values are used to compute an embedding vector for each token, which will be added to its initial

representation as shown in Figure 3.3. The special number 0 is assigned to the question tokens,

which are not part of the process timeline. For predicting State 0 (The process inputs), we set all

the paragraph information as the current step.
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Status classification To predict the entities’ status, we apply a linear classification module on top

of the CLS token representation in Re as shown in Equation 3.4.

Attribute = SoftmaxW T ReC (3.4)

where ReC is the representation of the CLS token which is the first token in Re.

Span prediction We predict a location span for each entity for each step of the process as shown

in Equation 3.5, we follow the popular approach of selecting start/end tokens to detect a span of the

text as the final answer. We compute the probability of each token being the start or the end of the

answer span. If the index with the highest probability to be the start token is tokenstart and for the

end token is tokenend, the answer location will be Location = Ptokenstart : tokenend.

Start_prob = SoftmaxW T
startR

ti
e

End_prob = SoftmaxW T
endRti

e

tokenstart = arg max
i

Start_prob

tokenend = arg max
i

End_prob

(3.5)

3.5.2 Training & Inference

Training We use the cross-entropy loss function to train the model. At each prediction for entity

e at timestamp ti, we compute one loss value lossattribute regarding the status prediction and one

loss value losslocation for the span selection. The variable losslocation is the summation of the losses

of the start token and the end token prediction, losslocation = losslocationstart losslocationend
. The

final loss of entity e at time ti is computed as in Equation 3.6.

Losse
i = losse

i,attribute losse
i,location (3.6)

Inference At inference time, we apply two different post-processing rules on the outputs of the

model. First, we impose that the final selected location answer should be a noun phrase in the
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Transformer Model

Question Paragraph

TimeStamp
EmbeddingWord Embedding Position

Embedding Type Embedding

Step
Number

+

CLS T1 T2 T3 T4 ... Tn

Start/End Span predictionAttribute Prediction

Current step of the question

-/?/Location

CLS Where IS Water SEP Root Absorbs Water ... SEP

Figure 3.3 An overview of the proposed model. The “Timestamp Embedding” module is introduced
in this work and the rest are taken from basic language model architecture.

original procedure. Considering that a location span is a noun phrase, we limit the model to do a

softmax over tokens of noun phrases in the paragraph to select the start and end tokens. Second,

we apply consistency rules to make sure that our predicted status of entities is consistent. We define

the two following rules:

• An entity can not be created if it has been already destroyed: if Sti
e is "non-existence" and

Sti1
e is unknown or known location, then for every step j, if S

tj
e is unknown or known location

and S
tj1
e is "non-existence", then i < j.

• An entity cannot be created/destroyed twice in a process: if S
tj
e and Sti

e are both "-", S
tj1
e

and Sti1 are both either known or unknown location, then i = j.

Sti
e is the status of entity e at step ti of the process.
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Sentence-level Document-level
Model Cat1 Cat2 Cat3 MacroAvg MicroAvg P R F1
ProLocal [32] 62.7 30.5 10.4 34.5 34.0 77.4 22.9 35.3
ProGlobal [32] 63.0 36.4 35.9 45.1 45.4 46.7 52.4 49.4
EntNet [64] 51.6 18.8 7.8 26.1 26.0 50.2 33.5 40.2
QRN [151] 52.4 15.5 10.9 26.3 26.5 55.5 31.3 40.0
KG-MRC [35] 62.9 40.0 38.2 47.0 46.6 64.5 50.7 56.8
NCET [61] 73.7 47.1 41.0 53.9 54.0 67.1 58.5 62.5
XPAD [34] - - - - - 70.5 45.3 55.2
ProStruct [167] - - - - - 74.3 43.0 54.5
DYNAPRO [6] 72.4 49.3 44.5 55.4 55.5 75.2 58.0 65.5
TSLM (Our Model) 78.81 56.8 40.9 58.83 58.37 68.4 68.9 68.6

Table 3.3 Results from the sentence-level and document-level evaluation on Propara. Cati evalua-
tions are defined in Section 3.5.3.1.

We do not apply an optimization/search algorithm to find the best assignment over the predictions

according to the defined constraints. The constraints are only applied based on the order of the

steps to ensure that the later predictions are consistent with the ones made before.

3.5.3 Experiments

Implementation Details We use the SGD optimizer implemented by Pytorch [124] to update

the model parameters. The learning rate for the Propara implementation is set to 3 − e4 and is

updated by a scheduler with a 0.5 coefficient every 50 steps. We use 1 − e6 as the learning rate

and a scheduler with 0.5 coefficient to update the parameters every ten steps on the NPN-Cooking

implementation. The implementation code is publicly available at GitHub1.

We use RoBERTa [95] question-answering architecture provided by HuggingFace [178]. RoBERTa

is pretrained with SQuAD [132] and used as our base language model to compute the token rep-

resentations. Our model executes batches containing an entity at every step and makes updates

based on the average loss of entities per procedure. The network parameters are updated after

executing one whole example. The implementation code will be publicly available on GitHub after

acceptance.
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3.5.3.1 Evaluation

Propara: We have to process our (Status S, Location L) predictions at each step to generate a

similar tabular format as in Table 3.1. We define ri
e as a row in this table which stores the predictions

related to entity e at step ti. To fill this row, we first process the status predictions. If the status

prediction S is either “-” or “?”, we fill those values directly in the after location column. The

before location column value of ri
e is always equal to the after location column value of ri−1

e . If the

status is predicted to be a “Known Location”, we fill the predicted location span L into the after

location column of ri
e.

The action column is filled based on the data provided in the before and after locations columns.

If the before location is/isn’t "-" and the after location is not/is "-", then the action is "Cre-

ate"/"Destroy". If the before and after locations are equal, then the action is "None" and if the

before and after locations are both spans and are different from each other, the action is "Move".

NPN-Cooking location changes: We evaluate our model on the NPN-Cooking benchmark by

computing the accuracy of the predicted locations at steps where the locations of ingredients change.

We use the portion of the data that has been annotated by the location changes to train and evaluate

our model. In this evaluation, we do not use the status prediction part of our proposed TSLM

model. Since training our model on the whole training set takes a very long time (around 20 hours

per iteration), we use fewer samples for training. This practice is also used in other prior work [35].

3.5.3.2 Results

The performance of our model on Propara dataset [32] is quantified in Table 3.3. Results show

that our model improves the SOTA by a 3.1% margin in the F1 score and improves the Recall metric

with 10.4% on the document-level evaluation. On the sentence-level evaluation, we outperform

SOTA models with a 5.11% in Cat1, 7.49% in Cat2, and by a 3.4% margin in the macro-average.

We report Table 3.3 without considering the consistency rules and evaluate the effect of those in

the ablation study in Sec. 3.5.3.3.

In Table 3.5, we report a more detailed quantified analysis of the TSLM model’s performance

1https://github.com/HLR/TSLM
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Model Accuracy Training Samples Prediction task
NPN-cooking [16] 51.3 ∼ 83, 000 (all data) Classification
KG-MRC [35] 51.6 ∼ 10, 000 Span Prediction
DynaPro [6] 62.9 ∼ 83, 000 (all data) Classification

TSLM (Our Model) 63.73 ∼ 10, 000 Span Prediction
64.45 ∼ 15, 000 Span Prediction

Table 3.4 Results on the NPN-Cooking benchmark. Both class prediction and span prediction tasks
are the same but use two different settings, one selects among candidates, and the other chooses a
span from the recipe. However, each model has used a different setting and a different portion of the
training data. The information on the data splits was not available which makes a fair comparison
hard.

Criteria Precision Recall F1
Inputs 89.8 71.3 79.5
Outputs 85.6 91.4 88.4
Conversions 57.7 56.7 57.2
Moves 40.5 56 47

Table 3.5 Detailed analysis of TSLM performance on the Propara test set on four criteria defined
in the document-level evaluation.

based on each different criterion defined in the document-level evaluation. Table 3.5 shows that

our model performs best on detecting the procedure’s outputs and performs worst on detecting the

moves. Detecting moves is essentially hard for TSLM as it predicts outputs based on the whole

paragraph at once. Outperforming SOTA results on the input and output detection suggest that the

TSLM model can understand the interactions between entities and detect the entities which exist

before the process begins. The detection of input entities is one of the weak aspects of the previous

research that we improve here.

A recent unpublished research [192] reports better results than our model. However, their

primary focus is on common-sense reasoning, and their goal is orthogonal to our main focus in

proposing the TSLM model. Such approaches can be later integrated with TSLM to benefit from

common-sense knowledge on solving the Propara dataset.

The reason that TSLM performs better at recall and worse at precision is that our model looks

at the global context, which increases the recall and lowers the precision when local information

is strongly important. The same phenomenon (better recall) is observed in ProGlobal, which also

considers global information as we do, compared to ProLocal.
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Table 3.4 shows our results on the NPN-Cooking benchmark for the location prediction task.

Results are computed by only considering the steps that contain a location change and are reported

by computing the accuracy of predicting those changes. Our results show that TSLM outperforms

the SOTA models with a 1.55% margin on accuracy even after training on 15,000 training samples.

To be comparable with the KG-MRC [35] experiment on NPN-Cooking which is only trained on

10k samples, we report the performance of our model trained on the same number of samples,

where TSLM gets a 12.1% improvement over the performance of KG-MRC [35].

3.5.3.3 Ablation Study

To evaluate the importance of each module one at a time, we report the performance of the TSLM

by removing the noun-phrase filtering at inference, the consistency rules, timestamp embedding,

SQuAD [132] pre-training, and by replacing RoBERTa [95] with BERT [43]. These variations are

evaluated on the development set of the Propara dataset and reported in Table 3.6. As stated before

and shown in Table 3.6, it is impossible to remove the timestamp embedding as that is the only

part of the model enabling changes in the answer at each step. Hence, by removing that, the model

cannot converge and yields a 25% decrease in the F1 score. The simple consistency and span

filtering rules are relatively easy to be learned by the model based on the available data, therefore

adding those does not affect the final performance of the model.

TSLMBERT experiment is designed to ensure a fair comparison with previous research [6] which

has used BERT as their base language model. The comparison of TSLMBERT to -SQuAD Pre-

training and - Timestamp Embedding in Table 3.6 indicates that using RoBERTa instead of BERT is

not as much important as our main proposal (using Time-stamp encoding) in TSLM model. Also,

TSLMBERT achieves 66.7% F1 score on the Propara test set, which is 1.2% better than the current

SOTA performance.

By removing the SQuAD pre-training phase, the model performance drops with a 10.6% in the

F1 score. This indicates that despite the difference between procedural text understanding and the

general MRC tasks, it is quite beneficial to design methods that can transfer knowledge from other

QA data sources to help with procedural reasoning. This is crucial as annotating procedural texts
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Model P R F1
TSLMRoBERTa 72.9 74.1 73.5
- constraints 73.8 73.3 73.5
- noun-phrase filtering 73.5 73.3 73.4
- SQuAD Pre-training 78.8 52.2 62.8
- Timestamp Embedding 94.6 32.6 48.5
TSLMBERT 69.2 73.5 71.3

Table 3.6 Ablation study results on the Propara document-level task development set. “- constraints”,
“- Span filtering”, and “- Timestamp Encoding” show our model performance while removing those
modules. -SQuAD Pre-training is when we do not pre-train our base language model on SQuAD.
TSLMBERT is when we use BERT as the base language model.

is relatively more expensive and time-consuming.

3.5.4 Discussion

We provide more samples to support our hypothesis in solving the procedural reasoning task

and answer some of the main questions about the ideas presented in the TSLM model.

Why is the whole context important? The main intuition behind TSLM is that the whole context,

not just previous information, matters in reasoning over a process. Here, we provide some samples

from Propara to show why this intuition is correct. Consider this partial paragraph, "Step i: With

enough time the pressure builds up greatly. Step i 1: The resulting volcano may explode.". Looking

at the annotated status and location, the "volcano" is being created at Step i without even being

mentioned in that step. This is only detectable if we look at the next step saying "The resulting

Volcano...".

As another example, consider this partial paragraph: "Step i: Dead plants form layers called

peat. ... Step i 3: Pressure squeezes water out of the peat.". The annotation indicates that the

location of "water" is being changed to "peat" at step i, which is only possible to detect if the model

is aware of the following steps indicating that the water comes out of the peat.

Positional Embedding VS Time-stamp encoding: As mentioned before, the whole context (future

and past events) is essential for procedural reasoning at a specific step. However, the reasoning

should focus on one step at a time, given the whole context. While positional encoding encodes

the order of information at the token level for reasoning over the entire text, we need another level
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of encoding to specify the steps’ positions (boundaries) and, more importantly, to indicate the step

that the model should focus on when answering a question.

Advantages/Disadvantages of TSLM model: TSLM integrates higher-level information into

the token representations. This higher-level information can come from event-sequence (time of

events), sentence-level, or any other higher source than the token-level information. The first

advantage of TSLM is that it enables designing a model which is aware of the whole context, while

previous methods had to customize the input at each step to only contain the information of earlier

steps. Furthermore, using TSLM enables us to use pretrained QA models on other datasets without

requiring us to retrain them with the added time-stamped encoding. One main disadvantage of the

TSLM model, which is natural due to the larger context setting in this model, is not being sensitive

to local changes, which is consistent with the observation in the comparison between ProGlobal

and ProLocal models.

3.6 Exploiting Semantic Parsers to Understand the Process

We discussed a series of challenges for the procedural reasoning task in Section 3.2. Except

for the common-sense [192] and the ability to make consistent global decisions actions [61], the

other challenges might have only been indirectly tackled in the recent research [68, 49], but have

neither been addressed explicitly nor properly evaluated to measure their success on resolving these

challenges. Here, we evaluate whether semantic parsers can alleviate some of these challenges.

Semantic parsers provide semantic frames identifying predicates and their arguments in a sentence.

For instance, in the sentence ‘Move bag to the yard’, “Move” is the predicate, “bag” and “the yard”

are the arguments with types "affected"2 and “location” respectively. Such semantic information

can help disambiguate multi-verb local connections between predicates and arguments [68]. They

can also provide meaningful local relations, making it easier to connect global information to infer

entities’ states. For instance, in the same sentence, "Magma cools to form lava", "Magma" is noted

as the ‘affected’ and ‘lava’ is the result of the predicate ‘form’. This makes it easier to infer that the

location of ‘lava’ should match the last location of ‘magma’.

2referred to as ‘Patient’ in some other parsing formalisms.
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For our study, we consider both the classic semantic role labeling (SRL) 3, based on [152], which

is a relatively shallow semantic parsing model, as well as the deep semantic parser TRIPS4 [53, 4].

To investigate the effect of semantic parsing on procedural reasoning, we analyze its effect as a

standalone symbolic model as well as its integration in a neuro-symbolic model that combines

semantic parsing with state-of-the-art neural models to solve the procedural reasoning task.

First, we design a set of heuristics to extract a symbolic abstraction from the TRIPS parser,

called PROPOLIS. We use this baseline to further showcase the effectiveness of semantic parsing

information in solving the procedural task. Next, we integrate the semantic parsers with two

well-established procedural reasoning neural backbones, namely NCET [61] and TSLM [49] (and

its extension CGLI [99]), through encoding the semantic relations as a graph attention neural

network (GAT) [154].

For our experiments, we use Propara dataset [170] that introduces the procedural reasoning task

over natural events that are described in English. We realized the existing evaluation metrics of this

dataset do not reflect the actual performance of the models and fail to identify the challenges and

shortcomings of the models. Consequently, we propose new evaluation criteria to shed light on the

differences between the models, even when they perform similarly based on the prior metrics.

In summary, our contributions are (1) Proposing a symbolic model (Propolis) to solve the

procedural reasoning task based on semantic parsing, (2) Proposing a set of new evaluation metrics

that can identify the strengths and weaknesses of the models, and (3) Showcase the benefits of

integrating semantic parsing into the neural models. The code and models proposed in this work

are all available in GitHub 5.

3.6.1 Semantic Parsing

We investigate two different modeling approaches to solve this problem. First, we use a symbolic

and parsing-based model, and second, we integrate semantic parsing with neural models. We use

two different sources for semantic extraction: SRL and TRIPS.
3https://demo.allennlp.org/semantic-role-labeling
4http://trips.ihmc.us/parser/cgi/parse
5https://github.com/HLR/ProceduralSemanticParsing
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Figure 3.4 The Semantic Role Labeling annotation for the sentence “Move the book in the shelf to
the library” represented as a graph.

In general, SRL is coarse-grained and shallow compared to TRIPS. The connections in TRIPS

are not limited to the pairwise connections between predicates and arguments but are extended

to the semantic connections between any two words. Since TRIPS relies on a general purpose

ontology, it also augments the arguments and predicates with additional information about a set of

possible features (mobility, container, negation) and mapping of the words to hierarchical ontology

classes (i.e., mapping “water” to “beverage”). SRL is centered around the semantic frames of the

verbs ( predicates) and identifies each predicate’s main and adjunct (mainly time and location)

arguments in the sentence. Figure 3.4 and 3.5 show examples of the SRL and TRIPS parses,

respectively.

The symbolic model only uses the TRIPS parser as it provides more extended extractions and

meaningful relations, while both SRL and TRIPS are used for integration with the neural baselines.

3.6.2 PROPOLIS: Symbolic Procedural Reasoning

We propose the PROPOLIS model, which solves the procedural reasoning task merely by

symbolic semantic parsing. PROPOLIS operates on the TRIPS parser in three steps. First, it makes

an abstraction over the original parse to summarize the information in the graph and include a

smaller set of actions and changes in objects and their locations. Second, it uses a set of rules

to transform the abstracted parses into clear actions and identifies the affected objects by the

actions, using the semantic roles, while extracting an ending location or starting location. Lastly,
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Figure 3.5 The TRIPS parse for the sentence “Move the book in the shelf to the library” represented
as a graph with named edges.

it performs global reasoning to connect the local decisions and produce a consistent sequential set

of actions/locations for each entity of interest.

3.6.2.1 Graph Abstraction

The original TRIPS parse includes many concepts and edges that do not directly affect entities’

location or existence. Therefore, we make a more concise graph abstraction to facilitate processing

the entities, actions, and locations. To obtain a more informative abstraction, firstly, the relevant

classes of the TRIPS ontology are mapped to action classes defined in the Propara dataset (Create,

move, or destroy). For instance, the verb ‘flow’ is first mapped to the ‘fluidic motion’ class in

the TRIPS ontology, which is a child of the ‘motion‘ class, and the ‘motion’ class is mapped to

the ‘move’ action in the Propara dataset. This will help distinguish the predicates that signal a

change in the location or existence of objects. Second, the important arguments are identified in

the parse, and the locations are extracted. The graph is decomposed to include a set of events

with their arguments. Each event may contain different roles such as "agent", "affected", "result",

"to_location", "from_location", or other roles required by its semantic frame.
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Main Predicate Roles Decisions
Move Affected, Agent The “Affected” is being moved.
Move Agent The “Agent” is being moved.

Destroy Affected The “Affected” is being destroyed
Create Affected_Result, Affected The “Affected_Result” is being created
Create Affected The “Affected” is being created

Change Affected, Res
The “Affected” is being destroyed, and

the “Res” is being created

Table 3.7 The list of rules used to evaluate the effect of actions on various roles of the semantic
frame.

Because the TRIPS system handles much of the variation expected in sentence constructions, we

can use a relatively compact specification for defining the events and relationships of interest while

coping with fairly complex and nested formulations. We capitalized on the TRIPS ontology and

parser to develop a compact and easy-to-maintain specification of event extraction rules. Instead of

having to write one rule to match each keyword/phrase that could signify an event, many of these

words/phrases have already been systematically mapped to a few types in the TRIPS ontology.

For instance, demolish, raze, eradicate, and annihilate are all mapped to the TRIPS ontology type

“ONT::DESTROY”. In addition, the semantic roles are consistent across different ontology types.

The parser handles various surface structures, and the logical form contains normalized semantic

roles. For example, in the following sentence:

• The bulldozer demolished the building

• The building was demolished

• The demolition of the building

• Building demolition

, all the parses result in the same basic logical form with the semantic roles “AFFECTED: the

building” and, where applicable, “AGENT: the bulldozer”. Thus, we needed very few extraction

rule specifications for each event type, covering a wide range of words and syntactic patterns.

42



3.6.2.2 Rule-based Local Decisions

We use a set of heuristic rules to map the abstracted graph onto actual actions over the entities

of interest. The rules are written according to the semantic frames and the type of predicates and

arguments in each parse. For instance, if a semantic frame is mapped to ‘Move’ and has both the

‘agent’ and ‘affected’ arguments, then the ‘affected’ argument specifies the object being moved.

The same frame with only an ‘agent’ argument indicates a move for the object in the ‘agent’ role.

Table 3.7 shows the most frequent templates we used to transform the local parses into actual

decisions over the entities. To handle the location arguments from the parses, we also consider

the two cases on ‘from_loc’ and ‘to_loc’. In the specific case of a “destroy” event, any location

attached to the semantic frame is considered the ‘from_loc’ for the item being destroyed.

3.6.2.3 Global Reasoning

The two first steps are merely based on the local sentence-level actions of each step. We need

additional global reasoning over the whole procedure to predict the outputs. Global reasoning

ensures that local decisions form a valid global sequence of actions for a given entity. For instance,

if an entity is predicted to be destroyed at step 2 and moved at step 3, we consider the ‘destroyed’

action a wrong local decision since a destroyed object cannot move later in the process. The graph

also contains passive indications of object location in phrases such as "the book on the shelf" or

even indications of prior locations in terms of a ‘from_location’ argument. These phrases do not

generate actions but provide information that should be used in previous steps. For example, if step

t has a local prediction ‘Move’ for entity e with no target location and step t 1 has a ‘from_location’

for entity e, then the ‘from_location’ should be used as the target location of the ‘Move’ action in

the previous step.

To perform the global reasoning over the local predictions, we first do a forward pass through

the actions and location predictions and ensure they are globally consistent. To do so, we start from

the first predicted action and check the following on every next step prediction:

• If the current action is None, then we skip this step!
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• If the last observed action is “Create” or “Move”,

– If the current action in “Create” and the location of this action is the same as the last

observed location, then the new “Create” action is transformed to “None”.

– IF the current action is “Create” and the location of this action is different from the last

observed location, then the new action is changed to “Move”.

– Otherwise, the new action is kept the same, and the last observed action is updated.

• If the last observed action is “Destroy”,

– If the current action is “Destroy” and it has a location different from the last observed

location, then the action is changed to “Move”.

– If the current action is “Destroy” and it has a location similar to the last observed

location, then the action is changed to “None”.

– Otherwise, the new action is kept the same, and the last observed action is updated.

After fixing the sequence of actions, we first check whether the entity gets created at any of the

steps or is just moved or destroyed during the process. If the entity is not created, its initial location

is equal to the first ‘from_loc’ in any subsequent actions. We then use the following criteria to fix

the locations in a forward pass over the local decisions:

• If the action is “Move” but there is no final location, the final location is the first ‘from_loc’

from any of the subsequent actions before the next “Move” event.

• If the object is being “Moved”, then its final location should be changed. If the action does

not indicate a new location or the information is missing, we replace the final location with

‘?’ to indicate an unknown location.

• If the action is “None”, the last location is kept unchanged for the new step.
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Figure 3.6 The QA graph for the query of “Where is the book” and the sentence “Move the book
on the shelf to the library”.

3.6.3 Integration with Neural Models

Here, we investigate whether explicitly incorporating semantic parsers with neural models

can help better understand the procedural text. We choose two of the recently proposed and

most commonly used backbone architectures for procedural reasoning tasks, namely NCET [61]

and TSLM [49] (and its extension CGLI [99]). Similar to [68], we rely on a graph attention

network (GAT) to integrate the information from the semantic parsers into the neural baselines.

Following [68], the nodes in this graph are either (1) predicates in the semantic frames, (2)

mentions of entities of interest (Exact match or Co-reference), or (3) noun phrases in the sentence.

An edge in the SRL graph exists between two nodes if they have a (predicate, argument) connection

or they are both parts of the same verb semantic frame (argument to argument) [68]. It is relatively

straightforward to build a semantic graph with the TRIPS parser because it outputs the parse as a
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graph.

An edge is created between any pairs of nodes (phrases) in the graph if any subsets of these two

phrases are connected in the original parse. The edge types are preserved. Since not all the nodes

in the original parse are present in the new simplified graph, we may lose some key connections. To

fix this, if two nodes (phrases) are not connected in the new graph but have been connected in the

original one, we find the shortest path between them in the original parse and connect them with a

new edge with the type being the concatenation of all the edge types in the path. Lastly, nodes are

connected across sentences based on either an exact match or co-reference resolution.

Both NCET and TSLM models are trained based on Cross Entropy to compute the loss for both

actions and locations. The final loss of the model is calculated by Ltotal = Laction λ ∗ Llocation,

where λ is a balancing hyper-parameter.

3.6.3.1 Integration with NCET as Backbone

The NCET model uses a language model to encode the context of the procedure and compute

representations for mentions of entities, verbs, and locations. These representations are used in

two sub-modules to predict actions and locations. To integrate the semantic parsers with the NCET

architecture, we use the output of the language model to initialize the semantic graph representations.

Then multiple layers of graph attention network (based on TransformerConv [154]) are applied to

encode the graph structure. We combine the updated graph representations with the initial mention

representations. These combined representations are later used in subsequent prediction modules.

More formally, we start by using a language model to encode the context of the process

h′ = LMS, where S is the procedure, and h′ is the embedding output from the language model.

The representations are further encoded by a BiLSTM h = BiLSTMh′.

Graph Attention Network Since each node in the semantic graph corresponds to a subset of tokens

in the original paragraph, we use the mean average of these tokens’ representation to initialize the

nodes’ embedding denoted as v0
i . If the graph contains edge types, the edges between every two

nodes i and j are denoted by eij and are represented by the average token embedding through

the same LM model used for encoding the story, eij = MeanLMetext
ij . Lastly, we use C layers
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of TransoformerConv [154] to encode the graph structure. TransformerConv uses the following

formula to update the representation of the nodes (vi) in the graph.

vl1
i =

W1vl
i

j∈N i
αi,j

(
W2vl

j W6eij

)
,

where N i represents the neighbors of node i in the graph, l is the layer, and the coefficient αi,j is

computed using the following formula:

αi,j =

softmax


(
W3vl

i

)⊤ (
W4vl

j W6eij

)
√

d


Representing Mentions To integrate the semantic parses with the baseline model, we use both

representations obtained from the language model and the graph encoder to represent entities, verbs,

and locations in the process. Mention representations are denoted by rm
t =

[
Mhm

t ; Mhg
m
t

]
, where

t is one step of the process, hm
t is the average representation of tokens in the story corresponding

to the mention m in step t, hg
m
t is the average embedding of nodes corresponding to mention m in

step t, and the function M replaces the representations with zero if there is no mention of m in step

t.

Location Prediction We first encode the pairwise representation of an entity e and location

candidate lc at each step t, denoted by xe,lc
t =

[
re

t ; rlc
t

]
. Next, we use an LSTM to encode the

step-wise flow of the pair representation to get h̄e,lc
t = LSTM

[
xe,lc

t

]
. Finally, the probability of

each location candidate lc to be the location of entity e at step t is calculated by a softmax over the

potential candidates, pe,lct = SoftmaxW t
loch̄

e,lc
t , where W t

loc is the learning parameters of a single

multi-layer perceptron.

Action Prediction To predict the action for entity e at step t, we create a new representation for the

entity based on its mention and the sentence verbs, denoted by xe
t =

[
re

t ; Meanv∈npetr
v
t

]
, where

npet is the set of verbs whose corresponding node in the graph has a path to any nodes representing
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Tag Description
O_D Entity does not exist after getting destroyed
O_C Entity does not exist before getting created

E Entity exists and does not change
C Entity is created
D Entity is destroyed

Table 3.8 The list of output tags/actions in the Propara dataset is introduced to facilitate a linear
correlation between actions.

Local Global Loc Global Ent Global Loc and Ent Ambiguous
Both Both Actions Locations Both Actions

Train 885 367 438 340 114 593
Dev 116 44 66 3 9 76
Tests 105 61 98 71 18 110

Table 3.9 The number of decisions per evaluation category with the new decision-level metric.
“Both” refers to both location and action decisions and is used since the number of those decisions
is the same in most cases. The number of decisions in the ‘Global Ent’ case can differ in terms of
actions and locations because this category also considers ‘destroy’ events with no corresponding
locations.

entity e in step t. The final representations are then produced using a BiLSTM over the steps,

he
t = LSTMxe

t . Lastly, a neural CRF layer is used to consider the sequential structure of the

actions by learning transition scores during the training of the model [61]. The set of possible

actions is shown in Table 3.8.

3.6.3.2 Integration with TSLM as Backbone

We have discussed the TSLM model in more detail in Section 3.5. The TSLM [49] model

reformulates the procedural reasoning task as a question-answering problem. The model simply

asks the question, ‘Where is entity e?’ at each step of the process. To include the context of

the whole process when asking the same question at different steps, TSLM further introduces a

time-aware language model that can encode additional information about the time of events. Given

the new encoding, each step of the process is mapped to either past, present, or future. TSLM

uses the answer to the question at each step to form a sequence of decisions over the location of

entity e. To integrate the semantic graph with this model, we first extend the graph by adding a

question node. The graph is then initialized using the time-aware language model. The encoded

representations of the graph, after applying multiple layers of GAT, are combined with the original

48



token representations and used for extracting the answer to the question.

Initial Representation For each entity e and timestamp t, the string “where is e? s1 </s> s2 </s>

... sm </s>” is fed into the time-aware language model. Accordingly, the tokens’ representations

for timestamp t are he
i
t = LMS, t.

Graph Attention Module Inspired by [194], we add new nodes to the semantic graph to represent

the question and each step of the process. We connect the question node to any node in the graph

representing the entity of interest e, and each step node to all the tokens in their corresponding

sentence. All the node embeddings are initialized by the average embedding of their corresponding

tokens in the procedure. We use C layers of graph attention network (TransformerConv), similar

to Section 3.6.3.1, to encode the graph structure.

Location Prediction For predicting the locations of entities, that is, the answer to the question, we

predict the answer among the set of location candidates. This is different from the common practice

of predicting start/end tokens. We represent each location candidate by combining representations

from both the graph and the time-aware language model, denoted by rlc
t =

[
he

lc
t , hc

gllct
]
, where

hc
gllct is the representation of the lc from the last layer of the GAT. The answer is then selected by

calculating a softmax over the set of location candidates, plc
t = SoftmaxW locationrlc

t .

Action Prediction Similar to CGLI [99] model, we explicitly predict the actions of entities alongside

the locations. First, the model extracts each timestamp’s “CLS” tokens and builds sequential pairs

of CLSe
t , CLSe

t1. Then, it produces a change representation vector for each of these pairs, denoted

by re
t = FCLSe

t ; CLSe
t1. Lastly, the sequence of re

t logits is passed through the same neural CRF

layer used by the NCET model, introduced in Section 3.6.3.1, to generate the final probability of

actions.

3.6.4 Evaluation

We use three evaluation metrics to analyze the performance of the symbolic, sub-symbolic,

and neural baselines. The first metric is sentence-level and proposed in [32]. The second metric

is a document-level evaluation proposed by [167]. Both of these metrics evaluate higher-level

procedural concepts that can be inferred from the model predictions rather than the raw decisions.
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These metrics give more importance to the actions compared to the location decisions. Although

they can successfully evaluate some aspects of the models, they fail to measure the research progress

in addressing the challenges of the procedural reasoning task. We extend these evaluations with

a new decision-level evaluation metric that considers almost all model decisions with a similar

weight and evaluates the models based on the difficulty of the reasoning process.

Both sets of existing evaluation metrics of the Propara dataset do not directly evaluate the

model’s predictions but rather evaluate higher-level procedural concepts which can be inferred

from the sets of decisions (i.e., an entity being input/output). Given their evaluation criteria, one

model may surpass another in the number of correct decisions but still obtain a lower performance.

Therefore, we propose a new evaluation metric (decision-level) that directly evaluates the mod-

els’ decisions. This evaluation metric is designed to consider the difficulty of the reasoning process

and help better identify the core challenges of the task. We divide the set of decisions into five

categories based on the presence of the entity e and the location l at each step t. We denote any

mention of e by me, any mention of l by ml, the action for entity e at step t by tage
t , and the text of

the current step by St. The following specifies the five categories and how a decision falls under

them.

Local Decision: A decision where (1) me ∈ St, (2) ml ∈ St, and (3) tage
t ∈ {Move, Create}

Global Location Decision: A decision where (1) me ∈ St, (2) ml ∉ St, and (3) tage
t ∈

{Move, Create}

Global Entity Decision: A decision where (1) me ∉ St, (2) ml ∈ St or l = ” − ”, and (3)

tage
t ∈ {Move, Create, Destroy}

Global Entity and Location Decision: A decision where (1) me ∉ St, (2) ml ∉ St, and (3)

tage
t ∈ {Move, Create}

Ambiguous Local Action: A decision where (1) me ∈ St and (2) St contains multiple action

verbs.

Table 3.9 shows the detailed statistics of the number of decisions falling under each of these five

categories for the Propara dataset. Evaluating the performance of models given the new decision-

50



level metric will clarify the lower-level challenges in the reasoning over states and locations of

entities simultaneously. Getting accurate predictions in any of these categories of decisions requires

the models to have different reasoning capabilities.

The local decisions mostly require a sentence-level understanding of the action and its conse-

quences. The global location decisions require reasoning over the current step and the ability to

connect the local information to the global context. The predictions for the category of the global

entity mostly require reasoning over complex co-references (we have already considered simple

co-references such as pronouns as mentions of the entity) or the ability to recover missing pronouns

in a sentence such as "Gradually mud piles over (them)". The global entity and location decisions

are the most challenging cases, which require reasoning over local and global contexts, complex co-

reference resolution, and handling of missing pronouns. The ambiguous decisions mainly require

local disambiguation of (entity, role, predicate) connections when multiple predicates are present

in the sentence. Moreover, common sense is required for a subset of all the decision categories.

3.6.5 Experiments

Implementation details We use the PyTorch geometric 6 library to implement all the graph

attention models and Huggingface library [177] for implementing the language models. For the

NCET model and its extensions based on semantic parsers, the best model is selected by a search

over the λ ∈ {0.3, 0.4}, the learning rate in {3e−5, 3.5e−5, 5e−5}. The number of graph attention

layers are set to 2 and the batch size is set to 8 process. All models use Bert-base as the selected

language model for encoding the context. We further use RAdam [93] to optimize the model

parameters of both the language models, the LSTM, and the classifiers. For the CGLI method, we

use the exact hyper-parameters as specified in [99]. We further use 15 layers of graph attention

network with the input from the fifth layer of the time-aware language models. The gradients from

the graph attention network (GAT) would not back-propagate to the original language model and

only affect the parameters in the GAT model.

6https://pytorch-geometric.readthedocs.ios
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#Row Models Sentence-level evaluation Document-level evaluation
Cat1 Cat2 Cat3 Macro-avg Micro-avg Precision Recall F1

1 ProLocal 62.7 30.5 10.4 34.5 34.0 77.4 22.9 35.3
2 ProGlobal 63 36.4 35.9 45.1 45.4 46.7 52.9 49.4
3 KG-MRC 62.9 40 38.2 47 46.6 64.5 50.7 56.8
4 PROPOLIS(ours) 69.9 37.71 5.6 37.74 36.67 70.9 50.0 58.7
5 NCET (re-implemented) 75.54 45.46 41.6 54.2 54.38 68.4 63.6 66
6 REAL(re-implemented)∗ 78.9 48.31 41.62 56.29 56.35 67.3 64.9 66.1
7 NCET + SRL(ours) 77.1 46.35 42 55.16 55.32 67.8 65.2 66.5
8 NCET + TRIPS(ours) 77.1 48.12 43.36 56.19 56.32 72.5 65.4 68.8
9 NCET + TRIPS(Edge)(ours) 75.68 47.6 45.71 56.33 56.37 69.9 65.5 67.6
10 NCET + PROPOLIS(ours) 78.54 48.69 44.26 57.16 57.31 74.6 65.8 69.9
11 DynaPro 72.4 49.3 44.5 55.4 55.5 75.2 58 65.5
12 KOALA 78.5 53.3 41.3 57.7 57.5 77.7 64.4 70.4
13 TSLM 78.81 56.8 40.9 58.83 58.37 68.4 68.9 68.6
14 CGLI 80.3 60.5 48.3 63.0 62.7 74.9 70 72.4
15 CGLI + TRIPS (ours) 80.62 58.94 49.08 62.88 62.68 74.5 68.5 71.4

Table 3.10 The table of results based on sentence-level and document-level evaluation of the
Propara Dataset. ∗ Since the code for the REAL model is not available, we have re-implemented
the architecture based on the guidelines of the paper and the communications. The graph is first
abstracted using the PROPOLIS graph abstraction phase and then used instead of the Trips parse
as input to the model.

Model Local Global Loc Global Ent Global Loc and Ent Amb
A L Both A L Both A L Both A L Both A

KOALA 74.3 65.7 59.0 86.9 24.6 22.9 1.0 7.0 0.0 5.6 11.1 0 73.63
PROPOLIS 55.2 19.0 19.0 63.9 1.6 1.6 0.0 9.9 0.0 0.0 0.0 0.0 52.7

NCET 69.5 62.8 60.0 70.5 36.1 29.5 3.1 5.6 0.0 0.0 0.0 0.0 57.2
NCET + SRL 68.6 65.7 61.9 77.0 36.1 31.1 10.2 5.6 0.0 5.5 5.5 0.0 62.7

NCET + TRIPS 71.4 67.6 63.8 75.4 42.6 36.1 10.2 9.9 2.8 5.5 11.1 0.0 63.6
NCET + PROPOLIS 71.4 64.8 61.9 83.6 36.1 34.4 3.1 7.0 0.0 5.5 5.5 0.0 70.9

CGLI 65.7 62.9 54.3 75.4 59.0 50.8 19.4 19.7 11.3 22.2 27.8 11.1 70.0
CGLI + TRIPS 75.2 70.5 61.9 80.3 60.6 52.2 17.3 22.5 12.7 27.8 27.8 16.7 74.5

Table 3.11 The results of the models on the new extended evaluation metric (decision-level) in
terms of accuracy (%). ‘A’ means the action is correct, ‘L’ means the location is correct, and ‘Both’
means both the action and location are correct. Local ambiguous cases.

3.6.5.1 Results

Here, we summarize the performance of strong baselines compared with the symbolic (PROPO-

LIS) and integrated models. Table 3.10 shows the performance of models in the two conventional

metrics of the Propara dataset, and Table 3.11 shows the performance of models based on the

decision-level metric. We summarize our findings in a set of question-answer pairs.

Q1. Can semantic parsing alone solve the problem reasonably? Based on Table 3.10, the

PROPOLIS model outperforms many of the neural baselines (document-level F1-score of row#4

compared to rows #1 to #3), showing that deep semantic parsing can provide a general solution

for the procedural reasoning task to some extent without the need for training data. This model

performs relatively well on action-based decisions (cat1) but fails to extract the proper location
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decisions (cat3). This is because many locations are inferred based on common sense rather than

the verb semantic frames. Notably, the set of rules written on top of PROPOLIS is local and

simple and can be further expanded to improve performance. Table 3.11 further indicates that the

predictions of the PROPOLIS model on the actions are much closer to the SOTA models than its

predictions for the entities’ location. The good performance of PROPOLIS on the action decisions

for the “Global Location” category can further show that the local context can mostly indicate the

action even if retrieving the result of the action (location) requires more reasoning steps. Lastly,

since PROPOLIS is a model built over local semantic frames, it dramatically fails to make accurate

decisions when the entity does not appear in the sentence (Global Ent).

Q2. Can the integration of semantic parsing improve the neural models? We evaluate this based

on the two strong baselines, NCET and TSLM. When semantic parsers are integrated into NCET,

all three evaluation metrics improve (compare rows #7 to #10 with row #5). This improvement

is even better if the source of the graph is the abstracted parse from the PROPOLIS method (row

#10). Semantic parsers improve NCET’s performance in all categories of decisions, particularly in

local ambiguous sentences and decisions requiring reasoning over global locations. Notably, the

integration of PROPOLIS with the NCET model significantly boosts the ability to disambiguate

local information in sentences with multiple action verbs.

The integration of the semantic graph slightly hurts the performance of the CGLI baseline

when using conventional metrics (1%). However, it outperforms this baseline on “cat3” (0.78%),

which is the only evaluation that directly considers location predictions. Notably, the original

CGLI model (baseline) uses the pre-trained classifiers from SQUAD [132] to predict the start/end

tokens from the paragraph as the locations (answer to the question). However, since the integrated

method extracts candidates from the graph in the form of spans, it cannot reuse the same pre-trained

classifier parameters. This may contribute to the drop in performance since CGLI performs 2%

lower on the document-level F1 score when SQUAD pre-training is removed [99]. Despite the

drop in performance based on the conventional metrics, the integrated QA-model (CGLI + TRIPS)

outperforms the baseline in almost all the criteria in the new evaluation (Table 3.11), especially
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on decisions that only require local reasoning or local disambiguation. This is due to the global

nature of the TSLM (or CGLI) backbone, which predicts the locations based on the whole story and

ignores many of the local signals, whereas the graph can help directly extract the local relations.

Q3. How can the decision-level metrics help understand models’ weaknesses and strengths?

Based on the results in Table 3.11, the NCET model is better at reasoning over the local context

than the global context. It also clarifies that although the TSLM (or CGLI) model can properly

reason over multiple steps, it is not as competitive as the NCET model in the local cases. However,

integrating semantic parsers could improve the models to close the gap on both local and global

aspects and has a complimentary influence on the initial performance of the baselines. As a

general conclusion based on our new evaluation metrics, we can argue that the most challenging

decisions are the ones that require reasoning over missing mentions of entities in the local context.

Addressing this challenge may require external reasoning over common-sense, performing the

complex co-reference resolution, or handling missing pronouns.

3.6.6 Discussion

Here, we discuss some of the potential concerns that may arise with the usage of symbolic

systems such as TRIPS and the new evaluation criteria.

Coverage and rule crafting of PROPOLIS. Our implementation of the symbolic method and the

integrated models rely on the knowledge extracted from very fine-grained semantics covered in

TRIPS. Consequently, a small mapping effort was needed to create such a system. The mapping

between actions in Propara and verbs is straightforward since verbs are automatically mapped onto

ontological classes that provide the type of actions based on the parse. Hence, defining the mapping

rules for the most general relevant ontology types of verbs is sufficient because all the descendent

types will follow the same mapping (See Table 3.7). Additionally, the effort needed for the pre-

processing and designing of the mapping rules is similar to the hyperparameter tuning of neural

models. Since mapping is based on common sense rather than trial-and-errors in hyperparameter

tuning, finding an optimal solution may even take less effort.

Out-Of-Vocabulary words in parses. TRIPS automatically maps words to ontology classes using
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WordNet [110]. This gives us considerable vocabulary coverage and reduces OOV risk. TRIPS

can identify the role of the unseen words (not available in WordNet) based on the sentence syntax

and will not produce errors when encountering unseen words. In the same way, PROPOLIS and

integrated models will not be affected.

Effectiveness of the new evaluation metric. The previously proposed high-level evaluations are

strict and do not accurately reflect the quality and quantity of the lower-level model decisions.

Thus they do not adequately reveal the models’ abilities. For example, when compared at high-

level metrics, two models may have the same performance value of 20%, while their decision

accuracy may be 60% and 10%. This issue is reflected during training epochs too when the

models’ performance remains the same despite the decisions on the train set continuing to improve.

Therefore, it seems more appropriate to evaluate the models based on the same objective criteria

used for training them (decision-level). However, the previously used metrics can be secondary

evaluations to measure how well the model captures higher-level procedural concepts.
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CHAPTER 4

MULTI-MODAL PROCEDURAL ABSTRACTION

Procedural abstraction is challenging due to the difficulty of identifying evolving events and entities.

In contrast to the summarization task, where the summary represents the whole context and usually

contains sentences from the original content, the abstraction is rather a very short description of

the process trying to capture its essential actions and objects in an abstract format.

To investigate this task, we study this in a simplified version, where the abstract is a 4-phrase

action that should make sense in a specific chronological order with respect to the original text.

Here, we use the RecipeQA benchmark and the Textual Cloze task. Figure 4.1 shows an example

of the task. We discussed the task and our proposal for integrating latent alignment between the

abstract and the recipe steps in more detail in Section 4.1.

4.1 Task Definition and Challenges

We tackle the task of procedural reasoning in a multimodal setting for understanding cooking

recipes. The RecipeQA dataset [184] contains recipes from internet users. Thus, understanding

the text is challenging due to the different language usage and informal nature of user-generated

texts. The recipes are along with images provided by users, which are taken in an unconstrained

environment. This exposes a level of difficulty similar to real-world problems.

The tasks proposed with the dataset include textual cloze, visual cloze, visual ordering, and

visual coherence. Here, we focus on textual cloze. An example of this task is shown in Figure 4.1.

4.1.1 Task Definition

The task involves processing a set of multimodal instructions denoted by I . The input also

includes three textual items from the question, denoted by qi, qj , qk, and a placeholder, denoted by

pl, that is to be replaced by the correct answer. The index l can be between any of the two indexes

from the question items, i.e., i < l < j or j < l < k. The task requires selecting the correct answer,

denoted by a, from a set of four options, denoted by A = {a1, a2, a3, a4}, based on the given set of

instructions.

Let S denote the sequence of the three question items and the correct answer that correctly
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Figure 4.1 A sample of textual cloze task in the RecipeQA, which is a multi-choice question with
one valid answer

describes the steps of the recipe. Then, the task involves finding the correct answer a such that

the sequence S is a valid description of the recipe. Mathematically, the task can be formalized as

follows:

Given a set of multimodal instructions I = {i1, i2, ..., in}, where each ij is a combination of

visual and textual information, and three textual question items qi, qj and qk with a placeholder

pl, the task is to select the correct answer a from a set of options A = {a1, a2, a3, a4}, such that

the sequence S = {qi, qj , qk, a} (sorted based on the x indexes) correctly describes the steps of the

recipe, i.e., S is a valid recipe sequence. Mathematically,

a = arg max
ai∈A

PS|I, ai

where PS|I, ai denotes the probability of the sequence S given the set of instructions I and the

option ai.

4.2 Latent Alignment of Procedural Concepts

To design a semantically augmented model, we rely on the intuition that given question items,

and each answer describes exactly one step of the recipe. Hence, we design a model to make explicit

alignments between the candidate answers and each step and use those alignment results, given the

question information. This alignment space is latent due to not having any direct supervision based

on provided annotations.
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Using multimodal information and representations by making a joint space for comparison has

been broadly investigated in the recent research [66, 179, 86, 161, 189, 52, 166, 116]. Our work

differs from those as we do not have direct supervision on multimodal alignments. Moreover, the

task we are solving uses the sequential nature of visual and textual modality as a weak source of

supervision to build a neural model to compare the textual representation of context and the answers

for a given question representation.

Our model exploits the latent alignment space and the positional encoding of questions and

answers while applying a novel approach for constraining the output space of the latent alignment.

Moreover, we exploit cross-modality representations based on cross-attention to investigate the

benefits of information flow between images and instructions. We compare our results to the

provided baselines in [184] and achieve state-of-the-art by improving over 19%.

4.2.1 Forming Latent Alignments

To incorporate the order of the sequence in question items and the placeholder, we utilize a

one-hot encoding vector of positions to be concatenated with the candidate answers and question

items’ representations.

We give the instructions to a sentence splitter using Stanford Core NLP library [102]. The output

is then tokenized by Flair data structure [3] and embedded with BERT [43]. The words’ embeddings

are passed to an LSTM layer and the last layer is used as the instruction representation. We propose

two different approaches to include image representations. These proposals are described in Section

4.3.2.1. An overview of our approach is shown in Figure 4.2.

Question representation is the last layer of an LSTM on question items. The representation

of each question item is the concatenated vector of a one-hot position encoding and word embed-

ding obtained from BERT. The candidate answers’ representations are computed using the same

approach. We concatenate the question representation to each instruction. Then, the similarity

of each candidate answer and instruction is computed using the cosine similarity and forms a

similarity matrix. We use S to denote the similarity matrix. The rows of this matrix are candidate

answers, and the columns represent the recipe steps. The value of Sij indicates the similarity score
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Figure 4.2 An overview of the proposed model. The Bert Embeddings are used in a frozen manner
while the LSTM would further fine-tune the representation based on the target task.

of candidate i and step j.

For training the model, we define two different objectives directly applied to the similarity

matrix. The textual cloze task does not have the direct supervision required for the alignment

between candidates and steps, and our objective is designed to use the answer to the question to

train this latent space of alignments. For imposing the constraint of the alignment to be disjoint

between steps and candidates, one way is to simply compute the maximum of each row in the

similarity matrix and use that as the aligned step for each candidate answer; However, we introduce

constrained max-pooling that is a more sophisticated approach as shown in Figure 4.3. We compare

these two alternatives in the experimental results. We apply an iterative process to select the most

related pair of instructions (a column) and answer candidate (a row) while removing the related

column and row each time until all candidate answers find their aligned instruction. We denote the

final selected maximum scores by m = S1i1 , S2i2 , S3i3 , S4i4 , where ic ∈ 1, number_of_steps is

the index of the step with maximum alignment score with candidate cand for all pairs of candidates

c and d, c ≠ d =⇒ ic ≠ id.

Respectively, we define two following objectives. The first objective maximizes the distance

between the maximum score of the correct answer and the maximum score of another random

wrong answer candidate. Furthermore, fixing the instruction with the maximum alignment with

the correct answer decreases the score of the other candidates’ alignments with that instruction.

The second objective increases the maximum similarity score of the answer to approach one while
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Figure 4.3 The matrix operation for constrained max-pooling. After selecting each maximum value
in the available matrix, the row and the column corresponding to the value are removed from the
matrix.

decreasing the other maximum scores to be lower than 0.1.

Loss = max0, Srir − Saia 0.1

4
c≠a

max0, Scia − Saia 0.1
(4.1)

Loss = 1 − Saia
4

c≠a
max0, Scic − 0.1 (4.2)

Where a ∈ {1, 2, 3, 4} is the correct answer number and r is a random index from {1, 2, , 3, 4}−

{a}. The main difference between objective 4.1 and objective 4.2 is the regularization term on the

selected instruction column in the alignment matrix.

4.3 Experiments and Discussion

4.3.1 Baselines

Hasty Student [172] is a simple approach considering only the similarity between elements in

question and candidate answers. This baseline fails to get good results due to the intrinsic of the

task.

Impatient Reader [65] computes attention from answers to the recipe for each candidate, and
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Models Accuracy p@2
Human 73.6 -
Hasty Student 26.89 -
Impatient Reader 28.03 -
Impatient Reader (multimodal) 29.07 -
Model-Obj 4.1 46.35 78.7
Model-Obj 4.2 43.36 -
Model-Obj 4.1 (multimodal) 45.41
Model-Obj 4.1 (multimodal) + LXMERT 47.5 77.5
Model-Obj 4.1 (multimodal) + LXMERT - ConstrainedMaxPooling 46.9 76.3

Table 4.1 Evaluation on the test set of the RecipeQA dataset. The Multi-modal setting simply
applies a late fusion, while LXMERT applies an early fusion for modalities.

despite being a complicated approach, yet it fails to get good results on the task. Moreover, the

multimodal Impatient reader approach uses both instructions and corresponding images.

4.3.2 Results

The RecipeQA textual cloze task contains 7837 training, 961 validation, and 963 test examples.

A learning rate of 4 − e1 is used for the first half and then 8 − e2 for the second half of training

iterations. We use the momentum of 0.9 for all variations of our model. We train for 30 iterations

with a batch size of 1 and optimize the weights using an SGD optimizer. For word embedding,

the pre-trained BERT embedding in the Flair framework is used. For the image representations,

ResNet50 [63] pre-trained on Imagenet [142] using PyTorch library [125] is applied.

Table 4.1 presents the experimental results. We call the model variations which use the loss

objective in Equation (4.1) as Model-obj 4.1 and the ones that use the loss in Equation (4.2)

as Model-obj 4.1. Using the objective in Formula (4.1) yields better results in all experiments.

This indicates the benefit of using the column-wise disjoint constraint on the similarity matrix.

Also, using multimodal information yields a 1.12% improvement. We elaborate further on the

comparison between multimodal and unimodal results in Section 4.3.3.

We provide our Pytorch implementation publicly available on Github 1.

1https://github.com/HLR/LatentAlignmentProcedural
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4.3.2.1 Multimodal Results

In order to investigate the usefulness of the images in solving the textual cloze task, we propose

two different models that incorporate the image representation in addition to the textual information

of recipe steps. The first variation receives ResNet50 representations of the images and, after

applying an LSTM layer, pulls the last layer as image representation. Finally, it concatenates the

image representation to the question and instruction representation in the main architecture before

applying the MLP and computing the cosine similarities.

As shown in figure 4.4, the second variation uses a more complex architecture introduced in

LXMERT [166]. We modify the architecture of LXMERT and apply it to the word embedding and

image representations to flow the information from one to another. The updated word embedding

and image representations are passed to an LSTM, and its last layer is used to represent the visual

and textual information of a step. In the end, these representations are concatenated with each

other and the question representation to build the instruction vector representation. We report the

results of these model variations in Table 4.1. Using the cross-modality representations based on

LXMERT provided an extensive way to flow the information from text and image to each other and

yield the best results.

4.3.3 Discussion and Analysis

We did a qualitative analysis using some examples and their results to understand the behavior

of the proposed model better. Our model can almost detect all matched candidates with the

instructions (in case multiple matches exist) but fails to choose the one that completes the sequence

of the question items. This indicates the shortage of procedural hints inside our architecture while

the latent alignment is proven to be practical. Analyzing the results, we found interesting cases

where multimodal or unimodal architectures could yield more accurate predictions.

Multimodal - , Unimodal +:

• Images contain misleading information (see example in Figure 4.5).

• Image quality is low.
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Figure 4.4 Showing the use of LXMERT for integrating multimodal information on steps. The
model parameters of LXMERT are frozen.

Figure 4.5 Showcasing the setting where utilizing the vision modality misleads the model to choose
apple slices (object) rather than the cutting option (action).
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Figure 4.6 Showcasing the setting where the vision modality helps the model to understand "it"
refers to bread rather than a sandwich.

• Images are not showing the steps correctly.

• Text contains direct mentions of candidate answers.

Multimodal + , Unimodal -:

• The sequence of the images provide detailed steps and good quality.

• The entities in candidate answers are shown in the pictures but not in the text.

• The recipe instructions are very short, and the images provide more information.

In some cases, the multimodal information can fix the errors resulting from ignoring the order

of events in the proposed architecture. Our intuition is that, although the textual model does not

contain information from previous steps, the images carry useful information on what has already

been done. Figure 4.6 shows an example of this, where co-reference resolution is required to answer

the question correctly.

Experimenting with ResNet101 for the multimodal architecture resulted in lower performance.

We confirmed this experiment by re-implementing the Hasty Student approach with ResNet101

on the visual coherence task (which has 68% accuracy with ResNet50) and obtained 35% lower
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performance than the performance of the model utilizing ResNet50. This can be due to the lack

of quality of images, which results in extra noise when using a more complex network. Thus,

ResNet50 achieves better accuracy by producing more abstract representations of the images.
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CHAPTER 5

NEURAL LEARNING WITH LOGICAL CONSTRAINTS

Recent advancements in machine learning are proven very effective in solving real-world problems

in various areas, such as vision and language. However, there are still remaining challenges.

First, machine learning models mostly fail to perform well on complex tasks where reasoning is

crucial [149] while human performance does not drop as much when more steps of reasoning

are required. Second, deep neural networks (DNNs) are known to be data-hungry, making them

struggle on tasks where the annotated data is scarce [87, 198]. Third, models often provide results

that are inconsistent [88, 57] even when they perform well on the task. Prior research has shown

that even large pre-trained language models performing well on a specific task may suffer from

inconsistent decisions and indicate unreliability when attacked under adversarial examples and

specialized test sets that evaluate their logical consistency [57, 113]. This is especially a major

concern when interpretability is required [106], or there are security concerns over applications

relying on the decisions of DNNs [19].

To address these challenges, one direction that the prior research has investigated is neuro-

symbolic approaches as a way to exploit both symbolic reasoning and sub-symbolic learning.

Here, we focus on a subset of these approaches for the integration of external knowledge in deep

learning. Knowledge can be represented through various formalisms such as logic rules [67, 118],

Knowledge graphs [195], Context-free grammars [41], Algebraic equations [159], or probabilistic

relations [28]. A more detailed investigation of available sources of knowledge and techniques

to integrate them with DNNs is surveyed in [174, 36]. Although integrating knowledge into

DNNs is done in many different forms, we focus on explicit knowledge about the latent and/or

output variables. More specifically, we consider the type of knowledge that can be represented as

declarative constraints imposed (in a soft or hard way) on the models’ predictions, during training

or at inference time. The term knowledge integration is used in the scope of this assumption in the

remainder of this paper.

In this chapter, we discuss our efforts to progress research toward integrating domain knowledge
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into deep neural models. Here, the domain knowledge is expressed as a set of constraints over the

latent/output variables of the neural network.

To facilitate research in this direction, we first propose a declarative framework, DomiKnowS.

This framework aims to provide a declarative interface to define the knowledge of the task in terms

of a graph of concepts involved in the task, a first-order logic interface to define constraints over the

concepts, an interface to design neural components, and an interface to design learning or execution

objectives. DomiKnowS provides seamless integration of knowledge in terms of constraints with

the deep neural models by implementing generalizable conversions between the first-order logic

constraints to various formalisms used in integration methods. We will discuss this framework

in more detail in Section 5.1. Implementing and designing DomiKnowS is a great team effort,

and my contributions have been on developing various techniques to enhance the generalizability

of the framework, implementing and developing constraint integration methods, debugging the

framework capabilities, and showcasing its abilities on multiple challenging tasks.

Building on top of DomiKnowS, we provide the first standard collection of benchmarks (GLUE-

Cons) to evaluate the integration methods. This benchmark provides extensive evaluation criteria

and task categorizations that help identify the advantages and disadvantages of various constraint

integration methods. GLUECons provides an overview of the existing approaches for constraint

integration during training or inference on nine distinctive tasks categorized into five categories

based on the source of the constraints. We discuss this benchmark in Section 5.2. GLUECons

is a big team effort that contains over 100 experiments on various timelines. My contribution to

the project involves proposing the need for the benchmark, leading the team effort, proposing new

evaluation criteria, summarizing the results of the huge experiment pull into discussion points, and

implementing the experiments needed for multiple of the selected tasks in the benchmark.

5.1 Declarative Constraint Integration Framework

Current deep learning architectures are known to be data-hungry with issues mainly in gener-

alizability and explainability [120]. While these issues are hot research topics, one approach to

address them is to inject external knowledge directly into the models when possible. While learning
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from examples revolutionized the way that intelligent systems are designed to gain knowledge, many

tasks lack adequate data resources. Generating examples to capture knowledge is an expensive and

lengthy process and especially not efficient when such knowledge is available explicitly. Therefore,

one main motivation of our DomiKnowS is to facilitate the integration of domain knowledge in

deep learning architectures, particularly when this knowledge is represented symbolically. We

highlight the components of this framework that help to combine learning from data and exploiting

knowledge in learning, including 1) Learning problem specification, 2) Knowledge representation

3) Algorithms for integration of knowledge and learning. Currently, DomiKnowS implementa-

tion relies on PyTorch and off-the-shelf optimization solvers such as Gurobi. However, it can be

extended by developing hooks for other solvers and deep learning libraries since the interface is

generic and independent from the underlying computational modules.

In general, the integration of domain knowledge can be done 1) using pretrained models and

transferring knowledge [42, 113], 2) designing architectures that integrate knowledge expressed in

knowledge bases (KB) and knowledge graphs (KG) in a way that the KB/KG context influences the

learned representations [185, 163], or 3) using the knowledge explicitly and logically as a set of

constraints or preferences over the inputs or outputs [89, 118, 115, 159]. Our current library aims

at facilitating the third approach. While applying the constraints on input is technically trivial and

could be done in a data pre-processing step, applying constraints over outputs and considering those

structural constraints during training is a research challenge [118, 89, 60]. This requires encoding

the knowledge at the algorithmic level. However, given that the constraints can be expressed

logically and symbolically, having a language to express such knowledge in a principled way is

lacking in the current machine-learning libraries.

Using our developed DomiKnowS library, the domain knowledge will be provided symbolically

and by the user utilizing a logical language that we have defined. This knowledge is used in various

ways: a) As soft constraints by considering the violations as a part of the loss function, this is

done using a prim-dual formulation [118] and can be expanded to probabilistic and sampling-based

approaches [183] or by mapping the constraint to differentiable operations [90] b) mapping the
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constraints to an integer linear program and performing inference-based training by masking the

loss [60]. Independent from the training paradigm, the constraint can always be used as hard

constraints during inference or not used at all. An interactive online demo of the framework is

available at Google Colab1, and the framework is accessible on GitHub2.

5.1.1 Related Research

Integrating domain knowledge in learning relates to tools that try to express the prior or posterior

information about variables beyond what is in the data. This relates to probabilistic programming

languages such as [126], Venture [103], Stan [22], and InferNet [112]. The logical expression of

domain knowledge is used in probabilistic logical programming languages such as ProbLog [37],

PRISM [147], the recent version of Problog, that is, Deep Problog [100], Statistical Relational

Learning tools, such as Markov logic networks [45], Probabilistic soft logic [18], Bayesian Logic

(BLOG) [109], and slightly related to learning over graph structures [196]. Considering the

structure of the output without its explicit declaration is considered in structured output prediction

tools [141]. This library is mostly related to the previous efforts for learning-based programming and

the integration of logical constraints in learning with classical machine learning approaches [136,

73, 74]. Our framework makes this connection to deep neural network libraries and arbitrarily

designed architectures. The unique feature of our library is that the graph structure is defined

symbolically based on the concepts in the domain. Despite Torch-struct [141], our library is

independent of the underlying algorithms, and arbitrary structures can be expressed and used based

on various underlying algorithms. In contrast to DeepProbLog, we are not limited to probabilistic

inference, and any solver can be used for inference depending on the training paradigm that is used

for exploiting the logical constraints. Probabilistic soft logic is another framework that considers

logical constraints in learning by mapping the constraint declarations to a Hing loss Markov random

field [11]. DRaiL is another declarative framework that uses logical constraints on top of deep

learning and converts them to an integer linear program at inference time [191]. None of the

above-mentioned frameworks accommodate working with raw sensory data nor help in putting that

1https://hlr.github.io/domiknows-nlp/
2https://github.com/HLR/DomiKnowS
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in an operational structure that can form the domain predicates and be used by learning modules

while our framework tries to address that challenge. We support training paradigms that make use

of the inference as a black box, and in those cases, any constraint optimization, logical inference

engine, or probabilistic inference tool can be integrated and used based on our abstraction and the

provided modularity.

5.1.2 Declarative Learning-based Programming

We use the Entity-Mention-Relation (EMR) extraction task to describe the framework.

Given an input text such as "Washington is employed by Associated Press.", the task is to extract

the entities and classify their types (e.g., people, organizations, and locations) as well as relations

between them (e.g., works for, lives in). For example, for the above sentence [Washington] is a

person [Associated Press] is an organization and the relationship between these two entities is

work-for. We choose this task as it includes the prediction of multiple outputs at the sentence

level, while there are global constraints over the outputs.3

In DomiKnowS, first, using our python-based specification language, the user describes the

problem and its logical constraints declarativly and independent from the solutions. Second, it

defines the necessary computational units (here, PyTorch-based architectures) and connect the

solution to the problem specification. Third, a program instance is created to execute the model

using a background knowledge integration method with respect to the problem description.

5.1.2.1 Problem Specification

To model a problem in DomiKnowS, the user should specify the problem domain as a conceptual

graph GV, E. The nodes in V represent concepts and the edges in E are relationships. Each node

can take a set of properties P = P1, P2, ..., Pn. Later, the logical constraints are expressed using

the concepts in the graph. In EMR task, the graph contains some initial NLP concepts such as

sentence, phrase, pair and additional domain concepts such as people, organization, and work-for.

Concepts Each problem definition can contain three main types of concepts (nodes).

3Please note this is just an example of a learning problem and does not have anything to do with the main
functionality of the framework.
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Basic Concepts define the structure of the input of the learning problem. For instance sentence,

phrase, and word are all basic concepts that can be defined in the EMR task.

Compositional Concepts are used to define the many-to-many relationships between the basic

concepts. Here, the pair concept in the EMR task is a compositional concept. This is used as the

basic concept for the relation extraction task.

Decision Concepts are derived concepts that are usually the outputs of the problem and subject to

prediction. They are derived from basic or compositional concepts. The people, organization, and

work-for are examples of derived concepts in the EMR conceptual graph. Following is a partial

snippet showing the definition of basic and compositional concepts for the EMR task.

1 word = Concept(name='word')

2 phrase = Concept(name='phrase')

3 sentence = Concept(name='sentence')

4 pair = Concept(name='pair')

The following snippet also shows the definition of some derived concepts in the EMR example.

1 entity = phrase(name='entity')

2 people = entity(name='people')

3 org = entity(name='organization')

4 location = entity(name='location')

5 work_for = pair(name='work_for')

6 located_in = pair(name='located_in')

The entity, people, organization and location are the derived concepts from the phrase concept,

and the rest are derived from the pair concept.
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Edges

After defining the concepts, the user should specify existing relationships between them as edges

in the conceptual graph. Edges are used to either map instances from one concept to another

or generate instances of a concept from another concept. DomiKnowS only supports a set of

predefined edge types, namely is_a, has_a, and contains.

is_a is automatically defined between a derived concept and its parent. In the EMR example, there

is an is_a edge between people and entity. The is_a edge is mostly used to introduce hierarchical

constraints and relate the basic and derived concepts.

Has_a connects a compositional concept to its components (also referred to as arguments). In the

EMR example, pair concept has two has_a edges to the phrase concept to specify the arg1 and

arg2 of the composition. We allow an arbitrary number of arguments in a has_a relationship, see

below.

1 pair.has_a(arg1=phrase, arg2=phrase)

Contains edge defines a one-to-many relationship for two concepts to represent a (parent, child)

relationship between them. Here, the number of parents of a concept is not necessarily limited to

be only one. Following is a sample snippet to define a contains edge between sentence and phrase:

1 sentence.contains(phrase)

Global Constraints

The constraint definition is the part where the prior knowledge of the problem is defined to enable

domain integration. The constraints of each task should be defined on top of the problem using the

specified concepts and relationships there.

The constraints can be 1) automatically inferred from the conceptual graph structure, 2) extracted

from the standard ontology formalism (here OWL4), 3) explicitly defined using the logical constraint
4Ontology Web Language
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language of DomiKnowS. The framework internally uses the defined constraints at the training time

or the inference-time optimization depending on the integration method selected for the task. Here

is an example of a constraint written in DomiKnowS’s logical constraint language for the EMR

task:

1 ifL(work_for('x'), andL(people(path= ('x',arg1)), organization(path='x',arg2)))

The above constraint indicates that a work_for relationship only holds between people and organi-

zation. Other syntactic variations of this constraint are shown in the Appendix.

To process constraints, DomiKnowS maps those to a set of equivalent algebraic inequalities or

their soft logic interpretation depending on the integration method. We discuss this more in Section

5.1.3.2.

Following is an example of the mapping between OWL constraint, graph structure, and the

logic Python constraint. The ontology definition in OWL:

1 <owl:ObjectProperty rdf:ID="work_for">

2 <rdfs:domain rdf:resource="#people"/>

3 <rdfs:range rdf:resource="#organization"/>

4 </owl:ObjectProperty>

or equivalent graph structure definition:

1 work_for.has_a(arg1=people, arg2=organization)

DomiKnowS’s constrain language representation:

1 ifL(work_for('x'), andL(people(path= ('x',arg1)), organization(path='x',arg2)))
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All three above constraints represent the same knowledge that a work_for relationship only

holds between people and organization.

In order to map this logical constraint to ILP, the solver collects sets of candidates for each case

in the constraint’s concepts.

ILP inequalities are created for each of the combinations of candidates’ sets. The internal

nested andL logical expression is translated to a set of three algebraic inequalities. The new

variable varAND) is created to transfer the result of the internal expression into the external one.

1 varAND <= varPhraseIsPeople

2 varAND <= varPhraseIsOrganization

3 varPhraseIsPeople + varPhraseIsOrganization <= varAND + 1

External ifL expression is translated to a single algebraic inequality (refers to the variable

varAND):

1 varPhraseIsWorkFor <= varAND

5.1.2.2 Model Declaration

Model declaration phase is about defining the computational units of the task. The basic

building blocks of the model in DomiKnowS are sensors and learners, which are used to define

either deterministic or probabilistic functionalities of the model. Sensor/Learners interact with the

conceptual graph by defining properties on the concepts (nodes). Each sensor/learner receives a

set of inputs either from the raw data or property values on the graph and introduces new property

values. Sensors are computational units with no trainable parameters; and learners are the ones

which contain the neural models. As stated before, the model declaration phase only defines the

connection of the graph properties to the computational units and the execution is done later by the

program instances.

74



The user can use any deep learning architecture compatible with PyTorch modules alongside the

set of pre-designed and commonly used neural architectures currently in the framework. To facilitate

modeling different architectures and computational algorithms in DomiKnowS, we provide a set of

predefined sensors to do basic mathematical operations and linguistic feature extraction. Following

is a short snippet of defining some sensors/learners for the EMR task.

1 phrase['w2v'] = FunctionalSensor('text', forward=word2vec)

2 phrase[people] = ModuleLearner('w2v', module=Classifier(FEATURE_DIM))

3 pair[work_for] = ModuleLearner('emb', module=Classifier(FEATURE_DIM*2))

In this example, the sensor Word2Vec is used to obtain token representations from the “text” property

of each phrase. There is also a straightforward linear neural model to classify phrases and pairs

into different classes such as people, organization, etc.

5.1.3 Learning & Evaluation in DomiKnowS

To execute the defined model considering the specified conceptual graph, DomiKnowS uses

program instances. A program instance is responsible to run the model, apply loss functions,

optimize the parameters, connect the output decisions to the inference algorithms, and generate

the final results and metrics. Executing the program instance relies on the problem graph, model

declaration, dataloaders, and a backbone data structure called DataNode. DataLoader provides an

iterable object to loop over the data. DataNode is an instance of the conceptual graph to keep track

of the data instances and store the computational results of the sensors and learners. For the EMR

task, the program definition is as follows:

1 program = Program(graph, poi=(sentence, phrase, pair), loss=NBCrossEntropyLoss(),

metric=PRF1())↪→

Here, the concepts passed to the poi field specifies the training points of the program. This enables

the user to train the task based on any subsets of the concepts defined in the model.
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The user should specify the domain knowledge integration method for each program instance.

The available methods for integration are discussed in the next sections. After initializing the

program, the user can call train, test, and prediction functionalities to train and evaluate the

designed model. The below snippet is to run training and evaluation on the EMR task:

1 program.train(train_reader, test_reader, epochs=10, Optim=torch.optim.SGD(param,

lr=.001))↪→

2 program.test(new_test_reader)

Here, the user will specify the dataloaders for different sets of data and the hyper-parameters

required to train the model.

5.1.3.1 Program Composition

The Program instances allow the user to define different training tasks without extra effort to

change the underlying models. For example, one can define end-to-end models, pipelines, and

two-step tuning paradigms just by defining different program instances and calling them one after

another. For instance, we can seamlessly switch between the following learning paradigm variations

on the EMR task.

End-To-End training:

1 program = Program(graph, poi=(phrase, sentence, pair))

2 program.train()

Pre-train phrase then just train on the pairs:

1 program_1 = Program(graph, poi=(phrase, sentence))

2 program_2 = Program(graph, poi=(pair))

3 program_1.train(); program_2.train()
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Pre-train phrase and use the result in the end-to-end training:

1 program_1 = POIProgram(graph, poi=(phrase, sentence), ...)

2 program_2 = POIProgram(graph, poi=(phrase, sentence, pair), ...)

3 program_1.train(...)

4 program_2.train(...)

5.1.3.2 Inference and Optimization

DomiKnowS provides access to a set of approaches to integrate background knowledge in the

form of constraints on the output decisions or latent variables/concepts. Currently, DomiKnowS

addresses three different paradigms for integration: 1) Learning + prediction time inference (L+I) 2)

Training-time integration with hard constraints 3) Training-time integration with soft constraints.

The first method, which we refer to as enforcing global constraints, can also be combined and

applied on top of the second and third approaches at inference time.

Prediction-time Inference: In the back-end of DomiKnowS, ILP 5 solvers are used to make

inferences under global linear constraints [138]. The constraints are denoted by C
(
·
)

≤ 0. Without

loss of generality, we can denote the structured output as a binary vector y ∈ Rn. Given local

predictions Fθ from the neural network, the global inference can be modeled to maximize the

combination of log probability scores subject to the constraints [138, 60] as follows,

F ∗θ = arg max
y

log Fθ⊤y

subject to C
(
y

)
≤ 0.

(5.1)

To handle constraints in ILP, we create variables for each local decision of instances and transform

the logical constraints to algebraic inequalities [136] in terms of those variables. Auxiliary variables

are added to represent the nested constraints. The inference method can be extended to support

other approaches, such as probabilistic inference and dynamic programming, in the future without

modifying the other parts of the framework.
5Integer Linear Programming
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Integration of hard constraint in training: Here, we use our proposed inference-masked loss

approach (IML) [60] which constructs a mask over local predictions based on the global inference

results. The main intuition is to avoid updating the model based on local violations when the global

inference can recover true labels from the current predictions. Given structured prediction Fθ from

a neural network and its global inference F ∗θ subject to the constraints, IML is extended from

negative log-likelihood as follows

LIML
(
Fθ, Y

)
=

−
((

1 − F ∗θ
)

⊙ Y
)⊤ log Fθ,

(5.2)

where Y is the structured ground-truth labels and ⊙ indicates element-wise product. We imple-

mented LIML(
λ
) which balances between negative log-likelihood and IML with a factor λ as

introduced in [60]. IML works best for very low-resource tasks where label disambiguation cannot

be learned from the data but can be done based on the available relational constraints between output

variables. The constraint mapping for the IML uses the same module in the DomiKnowSthat is

implemented to use the global constraint optimization tool (here ILP).

Integration of soft constraints in training: We use the primal-dual formulation of constraints

proposed in [117] to integrate soft constraints in training the models. Primal-Dual considers

the constraints in the neural network training by augmenting the loss function using Lagrangian

multipliers Λ for the violations from the constraints by the set of predictions. The constraints are

regularized by a hinge function
[
C

(
F

(
θ

))]
. The problem is formulated as a min-max optimization

where it maximizes the Lagrangian function with the multipliers to enforce the constraints and

minimize it with the parameters in the neural network. Instead of solving the min-max primal, we

solve the max-min dual of the original problem.

max
Λ

min
θ

L
(
F

(
θ

)
, Y

)
Λ⊤ [

C
(
F

(
θ

))]
. (5.3)

During training, we optimize by minimization and maximization alternatively. With the Primal-

Dual strategy, the model learns to obey the constraints without requiring any additional inference.

Primal-Dual is less time-consuming at prediction time than the previous methods as it does not
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need an additional inference-time optimization phase. It can also be used in a semi-supervised

setting, exploiting domain knowledge instead of labeled data. Handling constraints in Primal-Dual

is done by mapping them to their respective soft logical interpretations [118].

It is an open research topic to identify which of the integration methods performs best for

different tasks. However, DomiKnowS makes it effortless to use one problem specification and run

all the aforementioned methods.

5.2 Constraint Integration Benchmark

Hurdle of Knowledge Integration Unfortunately, most prior research on knowledge integration

has only focused on evaluating their proposed method compared to baseline DNN architectures

that ignore the knowledge. Consequently, despite each method providing evidence of its effective-

ness [67, 118], there is no comprehensive analysis that can provide a better understanding of the use

cases, advantages, and disadvantages of methods, especially when compared with each other. The

lack of such analysis has made it hard to apply these approaches to a more diverse set of tasks by

a broader community and provide a clear comparison with existing methods. We mainly attribute

this to three factors: 1) the lack of a standard benchmark with systematic baselines, 2) the difficulty

of finding appropriate tasks where constraints are applicable, and 3) the lack of supporting libraries

for implementing various integration techniques.

Due to these three factors, many research questions are left open for the community, such as

(1) The difference in the performance of models when knowledge is integrated during inference vs.

training or both, (2) The comparison of the influence of integration methods when combined with

simpler vs. more complex baselines, (3) The effectiveness of training-time integration models on

reducing the constraint violation, (4) The impact of data size on the effectiveness of the integration

methods.

Common Ground for Comparison Our contribution is providing a common ground for comparing

techniques for knowledge integration by collecting a new benchmark to facilitate research in this

area. Our new benchmark, called GLUECons, contains a collection of tasks suitable for constraint

integration, covering a spectrum of constraint complexity, from basic linear constraints such as
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mutual exclusivity to more complex constraints expressed in first-order logic with quantifiers. We

organize the tasks in a repository with a unified structure where each task contains a set of input

examples, their output annotations, and a set of constraints (written in first-order logic). We limit

the scope of knowledge in GLUECons to logical constraints6.

Selected Tasks GLUECons contains tasks ranging over five different types of problems categorized

based on the type of available knowledge. This includes 1) Classification with label dependencies:

Mutual exclusivity in multiclass classification using MNIST [81] and Hierarchical image classifica-

tion using CIFAR 100 [77], 2) Self-Consistency in decisions: What-If Question Answering [168],

Natural Language Inference [17], BeliefBank [71], 3) Consistency with external knowledge: Entity

and Relation Extraction using CONLL2003 [144], 4) Structural Consistency: BIO Tagging, 5)

Constraints in (un/semi)supervised setting: MNIST Arithmetic and Sudoku. These tasks either use

existing datasets or are extensions of existing tasks, reformulated so that the usage of knowledge is

applicable to them. We equip these tasks with constraint specifications and baseline results.

Evaluation For a fair evaluation and to isolate the effect of the integration technique, we provide a

repository of models and code for each task in both PyTorch [125] and DomiKnows [47] frameworks.

As described before, DomiKnows makes it easier to consistently test different integration methods

while the rest of the configurations remain unchanged. For a more comprehensive evaluation,

we introduce a set of new criteria in addition to the original task performances to measure 1)

the effectiveness of the techniques in increasing the consistency with knowledge, 2) the execution

run-time, 3) the effectiveness of methods in the low-data regime, 4) the ability to reduce the need

for complex models, and 5) the ability to express various forms of knowledge.

Baselines We analyze and evaluate a set of knowledge integration methods to serve as baselines

for GLUECons. Our baselines cover a set of fundamentally different integration methods, where

the integration is addressed either during inference or training of DNNs. GLUECons can be used

as blueprints to highlight the importance of integrating constraints with DNNs for different types

of tasks and provides inspiration for building such constraints when working on new tasks.

6Throughout this paper, we use the terms constraint integration, knowledge integration, or integration methods
interchangeably to refer to the process of integration of knowledge into the DNNs.
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5.2.1 Constraint Integration in Prior Research

Knowledge integration, often, is considered a subset of Neuro-symbolic [39, 7, 69] approaches

that build on the intersection of neural learning and symbolic reasoning. (author?) surveyed prior

research on knowledge integration in three directions: knowledge source, knowledge representation,

and the stage of knowledge integration. (author?) has also studied existing methods where the

integration can be done through either transforming the input data, the loss function, or the model

architecture itself. Knowledge integration has also been investigated in probabilistic learning

frameworks [38, 135, 12] and their modern extensions which use neural learning [101, 69, 176].

Recent research has explored knowledge integration via bypassing the formal representations and

expressing knowledge in the form of natural language as a part of the textual input [143, 26]. As of

formal representations, knowledge integration has been addressed at both inference [83, 148, 31]

and training time [67, 118, 182].

Inference-Time Integration The inference-based integration techniques optimize over the out-

put decisions of a DNN, where the solution is restricted by a set of constraints expressing the

knowledge [138, 23].

These methods aim at finding a valid set of decisions given the constraints, while their objective

is formed using the output scores/probabilities generated by the learning models. As a result

of this fixed objective and the fact that approximation approaches are generally used to find the

best solution, we expect that the type of optimization technique will not significantly affect the

performance of inference-time integration methods –our results discussed in the later sections

provide multiple pieces of evidence confirming this hypothesis. Prior research has investigated

such integration by using variants of beam search [62, 15, 31], path search algorithm [98], linear

programming [138, 139, 23], finite-state/push-down Automata [41], or applying gradient-based

optimization at inference [83, 84]. We use Integer Linear Programming (ILP) [138, 139] approach

to evaluate the integration of the constraints at inference time. We use off-the-shelf ILP tools that

perform an efficient search and offer a natural way to integrate constraints. However, constraints
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should be converted to a linear form to be able to exploit these tools [47, 76, 75].

Training-Time Integration Several recent techniques have been proposed for knowledge inte-

gration at training time [118, 67, 182]. Using constraints during training usually requires finding a

differentiable function expressing constraint violation. This will help to train the model to minimize

the violations as a part of the loss function. Integrating knowledge in the training loop of DNNs is a

challenging task. However, it can be more rewarding than the inference-based integration methods

as it reduces the computational overhead by alleviating the need for using constraints during infer-

ence. Although such methods cannot guarantee that the output decisions would follow the given

constraints without applying further operations at inference-time, they can substantially improve

the consistency with the constraints [88]. Prior research has investigated this through various

soft interpretations of logic rules [118, 9], rule-regularized supervision [67, 59], re-enforcement

learning [186], and black-box semantic [182] or sampling [2] loss functions, which directly train

the network parameters to output a solution that obeys the constraints.

To cover a variety of techniques based on the previous research, we select Primal-Dual (PD) [118]

and Sampling-Loss (SampL) [2] methods as baselines for our new benchmark. The PD approach

relies on a soft logic interpretation of constraints, while the SampL is a black-box constraint

integration. We discuss some of the existing methods in more detail in Section ‘Baselines.’

Applications and Tasks Constraint integration has been investigated for several applications

in prior research including SQL query generation [148], program synthesize [10, 46], semantic

parsing [27, 82], question answering [9], entity and relation extraction [59], sentiment analysis [67],

visual question answering [69], image captioning [8], and even text generation [98].

5.2.2 Criteria of Evaluation

We extend the evaluation of the constraint integration methods beyond measuring task perfor-

mance. The list of proposed evaluation criteria for such an extended comparison is as follows.

Individual metrics of each task: The first criterion to evaluate the methods is the conventional

metric of each task, such as accuracy or precision/recall/F1 measures.
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Constraint Violation: Even when the integration method cannot improve the model’s perfor-

mance, improving the consistency of its predictions will make the neural models more reliable. A

consistency measure quantifies the success of the integration method in training a neural network

to follow the given constraints. We measure consistency in terms of constraint violation. We

compute the ratio of violated constraints over all predicted outputs. A smaller number indicates

fewer constraint violations and, consequently, a higher consistency with the available knowledge.

Execution Run-Time: Another critical factor in comparing the constraint integration methods is

the run-time overhead. This factor becomes even more critical when the integration happens during

inference. This criterion helps in analyzing the adequacy of each technique for each application

based on the available resources and the time sensitivity of the decision-making for that application.

We measure this evaluation criteria by simply computing the execution time of each integration

method both during training and inference. This metric can reflect the overhead of each integration

method more accurately by taking into account the new parameters that should be optimized and

the additional computations with respect to the complexity of the constraints.

Low-data vs full-data performance: For many problems, there is no large data available either

due to the high cost or infeasibility of obtaining labeled data. Integrating constraints with deep

neural learning has been most promising in such low-resource settings [118, 59]. We measure the

improvement resulting from the integration methods on both low and full data. This evaluation

will help in choosing the most impactful integration method based on the amount of available data

when trying to apply integration methods to a specific task.

Simple baseline vs Complex baseline: An expected impact of constraint integration in DNNs

is to alleviate the need for a large set of parameters and achieve the same performance using a

smaller/simpler model. Additionally, it is important to evaluate whether the integration method

can only affect the smaller network or the very large SOTA models can be improved too. This will

indicate whether large networks/pre-trained models can already capture the underlying knowledge

from the data or explicit constraint integration is needed to inject such knowledge. In addition to

the number of parameters, this metric also explores whether knowledge integration can reduce the
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need for pre-training. This is especially important for the natural language domain, where large

pre-trained language models prevail.

Constraint Complexity: This criterion evaluates the limitations of each method for integrating

different types of knowledge. Some methods consider the constraints a black box with arbitrary

complexity, while others may only model a specific form of constraint. This criterion specifies

the form/complexity of the constraints that are supported by each technique. To evaluate this, we

characterize a set of constraint complexity levels and evaluate whether each technique can model

such constraints.

5.2.3 Selected Tasks

GLUECons aims to provide a basis for comparing constraint integration methods. We have

selected/created a collection of tasks where constraints can potentially play an important role in

solving them. We provide five different problem categories containing a total of nine tasks. More

details of tasks’ constraints are available in the Appendix. This collection includes a spectrum

of very classic tasks for structured output prediction, such as multi-class classification to more

involved structures and knowledge, such as entity relation extraction and Sudoku.

5.2.3.1 Classification with Label Dependency

Simple Image Classification. In this task, we utilize the classic MNIST [40] dataset and classify

images of handwritten digits in the range of 0 to 9. The constraint used here is the mutual exclusivity

of the ten-digit classes. Each image can only have one valid digit label as expressed in the following

constraint,

IF digitix ⇒ ¬ ∨j∈0−9
j=!i digitjx,

where digitix is 1 if the model has predicted x to be an image representing the digit i. This task is

used as a basic validation of the constraint integration methods, though it is not very challenging

and can also be addressed by a “Softmax” function.

Hierarchical Image Classification. The hierarchical relationships between labels present a more

complex label dependency in multi-label and multi-class tasks. We use the CIFAR-100 [78], which

includes 100 image classes, each belonging to 20 parent classes forming a hierarchical structure.
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This dataset with 60k images is an extension of the classic CIFAR-10 [78]. To create a smaller

dataset, we select 10% of these 60k images. For this task, the output is a set of labels for each

image, including one label for each level. The constraints are defined as,

IF L1 ⊂ L2 : L1x ⇒ L2x,

where L1 and L2 are labels, L1x is True only if the models assigns label L1 to x, and L1 ⊂ L2

indicates that L1 is a subclass of L2.

5.2.3.2 Self Consistency in Decisions

DNNs are subject to inconsistency over multiple decisions while being adept at answering

specific questions [21]. Here, we choose three tasks to evaluate whether constraints help ensure

consistency between decisions.

Causal Reasoning. WIQA [168] is a question-answering (QA) task that aims to find the line of

causal reasoning by tracking the causal relationships between cause and effect entities in a docu-

ment. The dataset contains 3993 questions. Following [9], we impose symmetry and transitivity

constraints on the sets of related questions. For example, the symmetry constraint is defined as

follows: symmetricq, ¬q ⇒ Fq, C ∧ ¬F¬q, C where q and ¬q represent the question and its

negated variation, C denotes the document, and ¬F is the opposite of the answer F .

Natural Language Inference. Natural Language Inference (NLI) is the task of evaluating a

hypothesis given a premise, both expressed in natural language text. Each example contains

a premise (p), hypothesis (h), and a label/output (l) which indicates whether h is “entailed,”

“contradicted”, or “neutral” by p.

Here, we evaluate whether NLI models benefit from consistency rules based on logical depen-

dencies. We use the SNLI [17] dataset, which includes 500k examples for training and 10k for

evaluation. Furthermore, we include AESIM
1000 [111], which is an augmented set over the original

dataset containing more related hypotheses and premise pairs to enforce the constraints. Four con-

sistency constraints (symmetric/inverse, transitive) are defined based on the (Hypothesis, Premise)
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pairs. An example constraint is as follows:

neutral
(
h, p

)
⇒ ¬ contradictory

(
p, h

)
,

where neutral
(
h, p

)
is True if h is undetermined given p. The complete constraints are described

in [111].

Belief Network Consistency. The main goal of this task is to impose global belief constraints to

persuade models to have consistent beliefs. As humans, when we reason, we often rely upon our

previous beliefs about the world, whether true or false. We can always change our minds about

previous information based on new information, but new beliefs should not contradict previous

ones. Here, entities and their properties are used as facts. We form a global belief network that

must be consistent with those derived from a given knowledge base. We use Belief Bank [71]

dataset to evaluate the consistency perseverance of various techniques. The dataset consists of 91

entities and 23k (2k train, 1k dev, 20k test) related facts extracted from ConceptNet [158]. There

are 4k positive and negative implications between the facts in the form of a constraint graph. For

example, the fact “Is a bird” would imply “can fly,” and the fact “can fly” refute the fact “Is a dog”.

Formally, the constraints are defined as follows:

∀F1, F2 ∈ Facts;

IF F1, F2 ∈ Pos Imp ⇒ ¬F1x ∨ F2x

IF F1, F2 ∈ Neg Imp ⇒ ¬F1x ∨ ¬F2x,

“Pos Imp” means a positive implication.

5.2.3.3 Consistency with External Knowledge

This set of tasks evaluates the constraint integration methods in applying external knowledge to

the DNNs’ outputs.

Entity Mention and Relation Extraction (EMR). This task is to extract entities and their re-

lationships from a document. Here, we focus on the CoNLL2003 [144] dataset, which contains

about 1400 articles. There are two types of constraints involved in this task: 1) mutual exclusivity
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between entity/relationship labels and 2) a restriction on the types of entities that may engage in

certain relationships. An example constraint between entities and relationship types is as follows:

IF Work_forx1, x2 ⇒ Personx1 ∧ Orgx2,

where Predicatex is True if the network predicted input x to be of type Predicate.

5.2.3.4 Structural Consistency

In this set of tasks, we evaluate the impact of constraint integration methods in incorporating

structural knowledge over the task’s outputs.

BIO Tagging. The BIO tagging task aims to identify spans in sentences by tagging each token

with one of the “Begin,” “Inside,” and “Outside” labels. Each tagging output belongs to a discrete

set of BIO tags T ∈ [‘O’, ‘I-*’, ‘B-*’], where ‘*’ can be any type of entity. Words tagged with

O are outside of named entities, while the ‘B-*’ and ‘I-*’ tags are used as an entity’s beginning

and inside parts. We use the CoNLL-2003 [144] benchmark to evaluate this task. This dataset

includes 1393 articles and 22137 sentences. The constraints of the BIO tagging task are valid BIO

sequential transitions; for example, the “before” constraint is defined as follows:

If Ixi 1 −→ Bxi,

where ‘B-*’ tag should appear before ‘I-*’ tag. xi and xi1 are any two consecutive tokens.

5.2.3.5 (Un/Semi) Supervised Learning

We select a set of tasks for which the constraints can alleviate the need for direct supervision

and provide a distant signal for training DNNs.

Arithmetic Operation as Supervision for Digit Classification. We use the MNIST Arith-

metic [14] dataset. The goal is to train the digit classifiers by receiving supervision, merely, from

the sum of digit pairs. For example, for image pairs of 5 and 3 in the training data, we only know

their labels’ sum is 8. This dataset is relatively large, containing 10k image pairs for training

and 5k for testing. This task’s constraint forces the networks to produce predictions for pairs of

images where the summation matches the ground-truth sum. The following logical expression is
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an example constraint for this task:

S{img1, img2} ⇒

M=minS,9
M=max0,S−9

Mimg1 ∧ {S − M}img2,

where S{img1, img2} indicates that the given summation label is S and Mimgi indicates that the

ith image has the label M .

Sudoku. This task evaluates whether constraint integration methods can help DNNs to solve a

combinatorial search problem such as Sudoku. Here, integration methods are used as an inference

algorithm with the objective of solving one Sudoku, while the only source of supervision is the

Sudoku constraints. As learning cannot be generalized in this setting, it should be repeated for

each input. The input is one Sudoku table partially filled with numbers, and the task is to fill in a

number in each cell such that: "There should not be two cells in each row/block/column, with the

same value" or formally defined as:

IF digitix∧

same_rowx, y ∨ same_colx, y ∨ same_blockx, y

⇒ ¬ digitiy,

where x and y are variables regarding the cells of the table, i ∈ 0, n for a n ∗ n Sudoku, digitix is

True only if the value of x is predicted to be i. For this task, we use an incomplete 9 ∗ 9 Sudoku

for the full-data setting and a 6 ∗ 6 Sudoku representing the low-data setting.

5.2.4 Baselines

For constraints during training, we use the two following approaches.

Primal-Dual (PD). This approach [118] converts the constrained optimization problem into a

min-max optimization with Lagrangian multipliers for each constraint and augments the original

loss of the neural models. This new loss value quantifies the amount of violation according to

each constraint by means of a soft logic surrogate. During training, they optimize the decisions

by minimizing the original violation, given the labels, and maximizing the Lagrangian multipliers
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to enforce the constraints. It is worth noting that all related work in which constraint violation

is incorporated as a regularization term in the loss objective follows very similar variations of a

similar optimization formulation.

inference-masked loss (IML) [59] This method applies a mask over the loss of the erroneous

instances where an inference mechanism can recover correct labels for them. This approach has

been mainly proposed to avoid overfitting training data when the number of training samples is

low. By not updating all possible labels in the training set, the method relies on existing constraints

and injected knowledge into the text to recover the correct labels by considering the correlation of

different output variables in a structured prediction task. Although this method affects the neural

network weights during training, it still requires applying methods at inference time.

Semantic-Loss (SemL) [182] This approach proposes a semantic loss function to bridge between

the neural decision and logical constraints. The loss functions reflect the closeness of neural

network outputs to satisfying the constraints by calculating the satisfaction given any black-box

solver. In this case, the authors have used Logical circuits to implement an efficient search

over the possible output space and find satisfying instantiations. After finding all the satisfy-

ing instantiations, the loss is simply promoting the sum of the conditional probability of such

instantiations, assuming that each output is an independent decision. The loss formulation is

Lsα, p ∝ − log x|=α i:x|=Xi
pi i:x|=¬Xi

(
1 − pi

)
, where α is the constraint, p is the set of probabilities

outputs generated by the network, X is an instantiation of the outputs, and x |= α means that an

instance x is satisfying the α constraint.

Sampling-Loss (SampL). This approach [2] is an extension of the semantic loss [182] where

instead of searching over all the possibilities in the output space to find satisfying cases, it randomly

generates a set of assignments for each variable using the probability distribution of the neural

network’s output. The loss function is formed as:

LSα, p =
xi∈X∧xi|=α p

(
xi | p

)
xi∈X p

(
xi | p

) ,

where X is the set of all possible assignments to all output variables, and xi is one assignment.

Here, α is one of the constraints.
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Task Strong Baseline Simple Baseline
Img Cls. CNN MLP MLP
Hier. Img Cls. Resnet18 MLP -
NLI RoBERTa MLP -
Causal Rea. RoBERTa MLP BERT MLP
BIO Tagging BERT MLP LSTM MLP

NER W2V BERT MLP W2V LSTM
MLP

Ari. Operation CNN MLP -
BeliefNet. RoBERTa + MLP W2V + MLP
Sudoku∗ (n ∗ n ∗ n) Vector -

Table 5.1 Baselines for each task. The basic models we used are RoBERTa [96], BERT [42],
W2V [108], CNN [81], and MLP. The simple baseline means fewer parameters. [KEYS:
Cls.=classification, Hier.=Hierarchical, NLI= Natural Language Inference, Rea.=reasoning,
Ari.=Arithmetic, BeliefNet=Belief Network, W2V=Word to Vec.]. ∗ For the Sudoku, the model is
not a generalizable DNN and relies on the integration methods as an inference algorithm to solve
one specific table.

To utilize the constraints during prediction, we use the following approaches.

Integer Linear Programming. (ILP) [138] is used to formulate an optimization objective in which

we want to find the most probable solution for log Fθ⊤y, subject to the constraints. Here, y is the

unknown variable in the optimization objective, and Fθ is the network’s output probabilities for

each variable in y. The constraints on y are formulated as C
(
y

)
≤ 0.

Search and Dynamic Programming. for some of the proposed benchmarks, when applicable,

we use the A∗ search or Viterbi algorithm to choose the best output at prediction time given the

generated probability distribution of the final trained network [98].

5.3 Experiments and Discussion

This section highlights our experimental findings using proposed baselines, tasks, and evaluation

criteria. Details on experimental designs, training hyper-parameters, codes, models, and results

can be found on our website7. The basic architectures for each task are shown in Table 5.1.

The results of the experiments are summarized in Table 5.3. The columns represent evaluation

criteria, and the rows represent tasks and their baselines. Each task’s model ‘row’ records the

strong/simple baseline’s performance without constraint integration, and below that, the improve-

7https://hlr.github.io/gluecons/
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Mut
Excl.

Seq.
Struc.

Lin.
Const

Log.
Const

Log
+ Quan

Prog
Const

Softmax ✓ ✗ ✗ ✗ ✗ ✗
PD ✓ ✓ ✓ NC NC ✗
SampL ✓ ✓ ✓ ✓ ✓ ✓
ILP ✓ ✓ ✓ NC NC ✗
A∗ ✓ ✓ NG NG NG ✗

Table 5.2 The limitation of integration methods with respect to constraint types. [KEYS: NC=
Needs Conversion, NG= No Generalization, Mut Excl.= Mutual Exclusivity, Seq.= Sequen-
tial, Struc.=Structure, Lin.= Linear, Log.= Logical, Const.= Constraint, Quan.=Quantifiers, Prog
Const= Any Constraints encoded as a program, A∗ is abbreviation for the A∗ Search algorithm.]

ments or drops in performance after adding constraints are reported. Here, we summarize the

findings of these experiments by answering the following questions.

What are the key differences in inference-time and training-time integration performance?

Notably, using ILP only in inference time outperformed other baselines in most of the tasks.

However, it fails to perform better than the training-time integration methods when the base model

is wildly inaccurate in generating the probabilities for the final decisions. This phenomenon

happened in our experiments in the semi-supervised setting and can be seen when comparing rows

[#44, #45] to #46. In this case, inference alone cannot help correct the model, and global constraints

should be used as a source of supervision to assist with the learning process.

ILP performs better than the training-time methods when applied to simpler baselines (see

column simple baseline performance). However, the amount of improvement does not differ

significantly when applying ILP to the simpler baselines compared to the strong ones. Additionally,

the training-time methods perform relatively better on simpler baselines than the strong ones (either

the drop is less or the improvement is higher) (compare columns ‘Strong Baseline‘ and ‘Simple

Baseline‘ for ‘+PD‘ and ‘+SampL‘ rows.)

How does the size of data affect the performance of the integration techniques? The integration

methods are exceptionally effective in the low-data regime when the constraints come from external

knowledge or structural information. This becomes evident when we compare the results of ‘EMR’

and ‘BIO tagging’ with the ‘Self Consistency in Decision Dependency’ tasks in column ‘Low
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Tasks # Models
Strong Baseline

Performance
Simple Baseline

Performance
Low data Constraint

Violation*
Run-Timems

Size Performance Training Inference

C
la

ss
ifi

ca
tio

n
w

ith
La

be
lD

ep
en

de
nc

y Simple
Img ClsF 1

1 Model 94.23% 87.34%

5%

88.78% 7.17% 34 27.5
2 PD ↑0.14% ↓1.14% ↑4.40% 8.32% 36.6 -
3 SampL ↓1.17% ↑0.49% ↑3.19% 9.04% 39 -
4 ILP ↑0.24% ↑1.60% ↑1.70% - - 31.5
5 SampL ILP ↓0.52% ↑2.02% ↑4.40% - - -
6 PD ILP ↑0.32% ↑0.39% ↑4.40% - - -

Hierarchical
Img ClsF 1

7 Model 58.03% 52.54%

10%

31.33% 39.26% 55.3 48.43
8 SampL ↑0.39% ↑0.54% ↑2.18% 36.57% 58.2 -
9 ILP ↑2.88% ↑3.18% ↑1.90% - - 55.2
10 SampL ILP ↑2.42% ↑3.52% ↑3.82% - 58.2 55.2

Se
lf

C
on

si
st

en
cy

in
D

ec
is

io
n

D
ep

en
de

nc
y

CausalA
Reasoning

12 Model 74.77% 73.80%

30%

60.49% 8.60% 104 46.2
13 PD ↑2.17% ↑1.98% ↑1.10% 11.36% 118.1 -
14 SampL ↑2.54% ↑2.17% ↑1.63% 4.37% 119.4 -
15 ILP ↑4.03% ↑4.51% ↑1.88% - - 59.2
16 SampL ILP ↑4.15% ↑4.25% ↑2.11% - - -
17 PD ILP ↑3.60% ↑4.30% ↑1.76% - - -

NLIA

18 Model 74.00% -

10%

68.65% 9.48% 29.2 10.7
19 PD ↑0.25% - ↑3.25% 7.26% 31.7 -
20 SampL ↑0.55% - ↑0.95% 5.00% 29.8 -
21 ILP ↑8.90% - ↑7.75% - - 14.3
22 SampL ILP ↑8.20% - ↑7.05% - - -
23 PD ILP ↑8.75% - ↑10.1% - - -

BeliefF 1

Network

24 Model 94.90% 84.46%

25%

94.36% 0.22% 8.3 7.57
25 PD ↑0.94% ↑0.87% ↓0.49% 0.16% 23.59 -
26 SampL ↓0.29% ↓0.95% ↓3.03% 0.01% 8.5 -
27 ILP ↑0.21% ↓0.10% ↓0.97% - - 11
28 SampL ILP ↑1.10% ↓3.19% ↓2.31% - - -
29 PD ILP ↑2.68% ↑1.60% ↑0.51% - - -

C
on

si
st

en
cy

w
ith

EK

EMRF 1

30 Model 90.15% 85.22%

20%

82.00% 20.32% 210 200
31 PD ↓1.00% ↓0.30% ↑2.42% 16% 245 -
32 SampL ↓0.30% ↑0.50% ↑3.36% 16.7% 280 -
33 ILP ↑3.02% ↑4.10% ↑8.86% - - 226
34 SampL ILP ↑2.40% - ↑7.83% - - -
35 PD ILP ↑1.64% - ↑8.15% - - -

St
ru

ct
ur

al
C

on
si

st
en

cy

BIOF 1

Tagging

36 Model 89.56% 82.77%

30%

75.36% 2.19% 361.2 263.2
37 PD ↑0.97% ↑0.04% ↑1.25% 0.99% 389.1 -
38 SampL ↓0.17% ↑0.73% ↑2.62% 0.16% 429.8 -
39 ILP ↑0.61% ↑2.96% ↑3.01% - - 312
40 SampL ILP ↑0.08% ↑2.43% ↑2.80% - - -
41 PD ILP ↑1.07% ↑1.83% ↑2.73% - - -
42 A∗ search ↑0.59% ↑2.97% ↑3.03% - - -

C
on

st
ra

in
ts

in
(U

n/
Se

m
i)S

up
er

vi
si

on Arithmetic
Supervision for

Digit
ClassificationA

43 Model 9.01% -

5%

10.32% 96.92% 13.6 -
44 PD ↑89.39% - ↑85.01% 3.18% 197 -
45 SampL ↑89.55% - ↑85.60% 2.86% 90.2 -
46 ILP ↓2.11% - 0.00% - - -
47 Supervised ↑89.53% - ↑84.30% 2.86% 12.5 -

SudokuCS
48 PD 96.00% - 6 ∗ 6

Table

100% 3.7% - -
49 SampL 87.00% - 100% 18.88% - -
50 ILP 100% - 100% - - -

Table 5.3 Impact of constraint integration. F1, A, and CS are F1-measure, accuracy, and constraint
satisfaction metrics, respectively, showing model performance. The full data of the Sudoku task is
a 9 ∗ 9 table. *: The ‘Constraint Violation’ values are calculated for the strong baselines trained
with full data. ms: Run-Time is computed per example/batch and is reported in milliseconds. ↑
indicates improvement and ↓ indicates a drop in the performance compared to the initial Model.
Run times are recorded on a machine with Intel Core i9-9820X (10 cores, 3.30 GHz) CPU and
Titan RTX with NVLink as GPU. [KEYS: EK= external knowledge.]
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data/ Performance’. This is because such constraints can inject additional information into the

models, compensating for the lack of training data. However, when constraints are built over the

self-consistency of decisions, they are less helpful in low-data regimes (rows #12 to #29), though a

positive impact is still visible in many cases. This observation can be justified since there are fewer

applicable global constraints in-between examples in the low-data regime. Typically, batches of

the full data may contain tens of relationships leading to consistency constraints over their output,

while batches of the low data may contain fewer relationships. The same observation is also seen

as batch sizes for training are smaller.

Does constraint integration reduce the constraint violation? Since our inference-time inte-

gration methods are searching for a solution consistent with the constraints, they always have a

constraint violation rate of 0%. However, training-time integration methods cannot fully guarantee

consistency. However, it is worth noting these methods have successfully reduced the constraint

violation in our experiments even when the performance of the models is not substantially improved

or is even slightly hurt (see rows #18 and #20, rows #24 and #26, and rows #30 to #32). In general,

SampL had a more significant impact than PD on making models consistent with the available task

knowledge (compare rows with ‘+PD’ and ‘+SampL’ in column ‘Constraint Violation’).

How do the integration methods perform on simpler baselines? According to our experiments,

there is a significant difference between the performance of the integration methods applied to

simple and strong baselines when the source of constraint was external (BIO tagging, EMR, Simple

Image Cls, and Hierarchical Image Cls tasks). Moreover, we find that ILP applied to a simple

baseline can sometimes achieve a better outcome than a strong model without constraints. This is,

in particular, seen in the two cases of EMR and Causal Reasoning, where the difference between the

simple and strong baselines is in using a pre-trained model. Thus, explicitly integrating knowledge

can reduce the need for pre-training. In such settings, constraint integration compensates for pre-

training a network with vast amounts of data for injecting domain knowledge for specific tasks.

Additionally, the substantial influence of integration methods on simple baselines compared to

strong ones in these specific tasks indicates that constraint integration is more effective when
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knowledge is not presumably learned (at some level) by available patterns in historical data used in

the pre-raining of large language models.

How much time overhead is added through the integration process? While the inference-time

method (ILP) has a computational overhead during inference, we have shown that this overhead can

be minimized if a proper tool is used to solve the optimization problem (here, we use Gurobi8. It

should be noted that training-time integration methods do not introduce additional overhead during

inference; however, they typically have a high computational cost during training. In the case of

our baselines, SampL has shown to be relatively more expensive than PD. This is because SampL

has an additional cost for forming samples and evaluating the satisfaction of each sample.

What is the effect of combining inference-time and training-time integration methods? Our

results show that combining inference-time and training-time methods mainly yields the highest

performance on multiple tasks. For example, the performance on the NLI task on low-data can yield

over 10% improvement with the combination of PD and ILP, while ILP on its own can only improve

around 7%. The rationale behind these observations needs to be further investigated. However,

this can be attributed to better local predictions of the training-time integration methods that make

the inference-time prediction more accurate. A more considerable improvement is achieved over

the initial models when these predictions are paired with global constraints during ILP (see rows

#16, #28, #29, and #41).

What type of constraints can be integrated using each method? Table 5.2 summarizes the

limitations of each constraint integration method to encode a specific type of knowledge. We

have included “Softmax” in this table since it can be used to support mutual exclusivity directly

in DNN. However, “Softmax” or similar functions are not extendable to more general forms of

constraints. SampL is the most powerful method that is capable of encoding any arbitrary program

as a constraint. This is because it only needs to evaluate each constraint based on its satisfaction or

violation. A linear constraint can be directly imposed by PD and ILP methods. However, first-order

logic constraints must be converted to linear constraints before they can be directly applied. Still,

8https://www.gurobi.com/
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PD and ILP methods fail to generalize to any arbitrary programs as constraints. The A∗ search can

generally be used for mutual exclusivity and sequential constraints, but it cannot provide a generic

solution for complex constraints as it requires finding a corresponding heuristic. [23] show A∗ with

constraints can be applied under certain conditions and when the feature function is decomposable.
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CHAPTER 6

PROCEDURAL REASONING WITH LOGICAL CONSTRAINTS

This chapter discusses integrating constraints in procedural reasoning tasks, focusing on entity

tracking. This task is a structured prediction challenge, where constraints help guide predictions

about entities’ actions and locations. Our goal is to improve the accuracy of model predictions by

using constraint integration techniques.

Previous methods for tracking entities mainly used sequential inference, depending on hand-

coded algorithms or CRF (Conditional Random Field) decoders [165] along with the Viterbi

algorithm [54] to identify important sequences of actions. These approaches adjust entity locations

to match the sequences of actions identified.

Our work introduces a new way to consider constraints globally in structured prediction tasks

through the use of DomiKnowS [47]. Our main contribution is a global consistency approach that

ensures predictions about actions and locations are coherent during entity tracking. We use an

Integer Linear Programming (ILP) [139] method to enforce this consistency during inference.

We also use a generative model as a baseline to predict actions and locations. This model can

predict locations not directly mentioned in the text and tackle different types of questions within a

single architecture, like yes/no questions and extracting phrases. The generative model also allows

for the consideration of more types of questions derived from the dataset’s labels. For example, by

looking at location annotations, we can determine if an entity is an input or output in a process.

Taking into account these additional questions and the original dependencies between action and

location queries, our evaluation framework checks how well the models understand the processes.

We aim to improve both the coherence of the models and, possibly, their overall performance.

Applying ILP to a large set of question types with various difficulty levels and potential output

space further motivates us to investigate the success of such inference techniques in properly

resolving inconsistencies between inherently different decisions. We further use the procedural

reasoning task to investigate the potential limitations of the current formulation for applying the

ILP method to the model-generated probabilities and propose enhancements to the formulation by

96



Process Participants

Sentences plant animal bone oil

Before the process begins ? ? - -

1. Plants and animals die in 
a watery environment

watery 
environment

watery 
environment

- -

2. Over time, sediments 
build over

sediment sediment - -

3. The body decomposes sediment - sediment -

4. Gradually buried material 
becomes oil

- - - sediment

Figure 6.1 Example of a procedural reasoning task in the Propara dataset. ‘-’ indicates the entity is
absent, and ‘?’ indicates an unknown location.

considering additional factors such as the decision’s prior probability, confidence (entropy), and

accuracy. We evaluate the performance of the newly proposed inference method with a series of toy

tasks regarding hierarchical classification and the close to real-world task of entity tracking tasks.

6.1 Procedural Reasoning Constraints

In this chapter, we examine the task of procedural reasoning with a focus on entity tracking. Our

study uses the Propara dataset [33], which provides a series of procedural steps, a list of entities of

interest, and the locations of these entities after each process step. An illustration from the dataset

is shown in figure 6.1.

Understanding how entity locations change requires models to grasp the actions occurring at

each step and their impact on each entity. Previous research [33] has explored this task with the

dual objective of predicting both the actions affecting entities and their locations at every step. The

models can predict an action as ‘No Change’, ‘Move’, ‘Create’, or ‘Destroy’, alongside a location

drawn from the text. These action-location decisions follow a logical dependency, expressed as

Action-Action and Action-Location constraints. We list these constraints below:
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Action-Location Constraints

• Move: If an entity moves at step i, its location at step i − 1 and step i must differ.

• Create: If an entity is created at step i, its location must be ‘None’ at step i − 1 and either

‘Unknown’ or a valid phrase at step i.

• Destroy: If an entity is destroyed at step i, it must exist (not ‘None’) at step i − 1, but its

location at step i should be ‘None’.

• No Change: If there’s no change to an entity, its location at steps i − 1 and i should match.

‘No Change’ can further be divided into ‘Exists’ and ‘Does not Exist’, indicating whether the

location should be ‘None’.

Action-Action Constraints

• Move: If an item moves at step i, it must have existed at step i − 1. A ‘destroy’ action should

not precede step i without an intervening ‘create’.

• Create: An item created at step i should not exist at step i − 1. There shouldn’t be a ‘create’

or ‘Move’ before step i without a ‘destroy’ in between.

• Destroy: An item destroyed at step i must have been present at step i − 1. A ‘destroy’ should

not precede this without a ‘create’ in between.

• Exists: If an item is marked as existing at step i, it must have been present at step i − 1, with

no ‘destroy’ before step i without an intervening ‘create.’

• Does not Exist: An item marked as non-existent at step i should not have been present at step

i − 1. There should be no ‘create’ or ‘Move’ before step i without a ‘destroy’ in between.

To model these action-action constraints in a sequential model like Conditional Random

Field (CRF), previous work has differentiated the ‘Does not Exist’ action into ‘O_C‘ (not created

98



yet) and ‘O_D‘ (already destroyed). This distinction aids in modeling the dependencies between

consecutive steps without examining the entire history of actions. The probabilities of moving

between nodes in the CRF (actions) are based on dataset statistics (frequency of action sequences

in the training data). Invalid sequences are assigned zero probability, preventing their selection

as the final output by the inference (Viterbi algorithm). However, this might be unnecessary if an

inference model can effectively search through possible sequences and apply constraints globally

across non-consecutive steps.

6.2 Consistent Procedural Reasoning within Generative Models

In recent years, there’s been a notable increase in the use of generative models across various

fields such as natural language processing [157], computer vision [29], robotics [134, 20], and

more [190]. A key strength of these models, particularly when they’re fine-tuned with specific

instructions, lies in their flexibility to tackle different tasks within a single framework by simply

altering the input prompt to include task-specific metadata [155].

However, despite their remarkable success in numerous applications, Generative Models, in-

cluding Large Language Models (LLMs), face challenges in tasks that require complex, multi-step

reasoning [114, 91] and exhibit inconsistencies in their outputs [58, 24].

This section aims to assess how well generative models can process and reason about proce-

dural information, focusing particularly on tracking the status of entities throughout a narrative.

Successful tracking demands an understanding of the physical world, entity attributes, the impact

of various actions, and the ability to reason across past, present, and future events. We propose that

a model’s understanding of a process is incomplete if it cannot maintain consistency across related

tasks. For example, recognizing an entity’s location change should inherently mean understanding

that the entity has been moved, even when phrased differently.

Assessing a model’s proficiency in procedural reasoning requires a set of interconnected tasks.

Previous research in entity tracking has seen models predict both actions and locations of entities

at each step. Dependencies between actions have been managed in sequential models like CRFs

to ensure consistency and leverage statistical patterns in action changes [33]. Without resorting

99



to CRFs, some studies have introduced an inference stage that processes decisions sequentially,

adjusting subsequent decisions based on earlier ones [193, 49].

Although entity tracking datasets traditionally only mark the status of entities at each step, this

information can be enriched to infer actions. Previous studies have expanded the datasets to teach

models to predict actions [33] explicitly and tested them on more complex concepts like identifying

input and output entities [167]. Building on these foundations, we generate interconnected questions

about entities and the overall process, forming consistency sets for evaluating LLMs’ ability to

reason with consistency. We broaden the scope of questions from mere location and action

identification to more detailed inquiries like detecting location changes relative to time, determining

input/output entities, offering multiple-choice action predictions, identifying entity conversions,

pinpointing creation times, and recognizing boolean state changes.

By utilizing this enriched dataset, we aim to scrutinize the model’s competency in procedural

reasoning through its consistency in answering these interconnected questions. Additionally, we

explore the effects of increased supervisory labels (varied question types and phrasings) and the

application of a neuro-symbolic approach to enforce output constraints on the generative model’s

reasoning processes. Our contributions are summarized as follows:

• Extension of the Propara benchmark to incorporate consistency sets for enhanced procedural

reasoning evaluation.

• Analysis of a generative model’s consistent reasoning capabilities using the expanded con-

sistency sets.

• Development and assessment of a neuro-symbolic method to directly apply constraints on

the generative model’s outputs during procedural reasoning.

6.2.1 Datasets and Consistency Protocols

6.2.1.1 Dataset

We employ the Propara dataset to construct sets for consistency checking. The consistency set

would include various question types, where their answers have correlated reasoning steps. Utilizing
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the question-answering format enables us to standardize the structure of different reasoning tasks.

Previous research [49] has explored the adaptation of the location detection task into question

forms such as "What is the location of the entity ‘entity’ at step i?". We expand upon these initial

questions regarding entity locations with an extended assortment of questions.

• After Location: "Where is ent located right after the completion of step i?"

• Prior Location: "Where is ent located right before the commencement of step i?"

• Multiple Actions: "What is the condition of ent at step i? (options listed here)?"

• Boolean Actions (move, create, destroy): "Is the entity ent action-verb at step i?", encom-

passing 4 variations

• Location Change: "Does the location of entity ent alter during step i?"

• Input and Alternate Input: "Is ent contributing to the subsequent process?" and "Does ent

exist before the upcoming process?"

• Output and Alternate Output: "Is ent a result of the following process?" and "Does ent

remain after the process concludes?"

• Timing (Create/Destroy): "During which step is ent action-verb? (step options including

’Never’)"

• Existence Before/After: "Does entity ent exist immediately (before/after) step i (be-

gins/ends)?"

• Specific Location Change: "What becomes the location of ent after undergoing (action-

verb) at step i?"

• Combination of Action & Location: "What is the status, preceding location, and subsequent

location of ent at step i?"
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The complexity of each question type may vary based on the level of reasoning needed for resolution.

For example, identifying an entity as a process’s outcome might necessitate an analysis across the

entire process and its steps (the model could seek a shortcut by pinpointing the entity’s last mention

and determining the relevant action). This set of additional questions is intended to facilitate the

assessment of the model’s comprehension of the described processes.

6.2.1.2 Consistency Rules

Given that the augmented question sets are derived from a singular annotation source, several

dependencies exist among their anticipated responses. Below, we enumerate several rules that

should be adhered to among the responses:

• Locational Continuity: The location following step i should align with the location prior to

step i 1.

• Input Consistency: Both input queries should yield identical responses.

• Output Consistency: Both output queries should yield identical responses.

• Action Consistency: Boolean actions should concur with the multi-action responses.

• Timing and Action Validity: The timing query should identify the step where the corre-

sponding boolean action query affirms the action.

• Input Validation and Initial State: An input is valid only if the preceding location for step

1 is either known or unknown.

• Output Verification and Final State: An output is valid only if the final subsequent location

is identified as either known or unknown.

• Initial Action Restriction for Inputs: If an entity is an input, its initial action cannot be

labeled as “create.”

• Existential Continuity and Location: If an entity exists, it must possess a definable location,

whether known or unknown.
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• Implications of Action on Location: The action at step i should correlate with its effects

on the after locations for steps i − 1 and i.

6.2.2 Experimental Evaluations

To evaluate the capacity of generative models for performing consistent reasoning within

procedural narratives, we conduct two primary sets of experiments. Initially, we measure the

model’s performance in its base state—without any adjustments or modifications to its original

predictions—under two scenarios: 1) training with the original dataset (comprising Location and

Action information) and 2) training with a dataset that has been expanded to include additional

information. These tests aim to determine whether the model’s consistency and overall performance

can be enhanced through the implicit cues gained during the training phase. Additionally, we utilize

the rate of constraint satisfaction as a measure of the consistency of decisions. In a second series

of experiments, we examine the performance of the model after implementing strategies designed

to achieve 100% consistency in its decisions. We explore three methods to ensure decisional

consistency: 1) a sequential consistency enforcement approach crafted by experts, which adjusts

sequences of actions and corresponding locations; 2) a global inference strategy (Integer Linear

Programming, ILP) that addresses inconsistencies by solving an optimization problem within the

task’s constraints, using only decisions from the original question types; and 3) the application of

this global inference approach to rectify inconsistencies across all decision types, considering a

comprehensive set of constraints.

Baseline (T5): The T5 model, known for its powerful encoder-decoder capabilities and pretraining

on various downstream tasks with specific prefixes, serves as our baseline. Within this framework,

we evaluate both the base and large variants of the T5 model, whether employing pre-trained

parameters or after fine-tuning on the UnifiedQA—a general question-answering dataset. Our

evaluation extends to how this benchmark model performs when fine-tuned on both the original

and augmented versions of the Propara dataset.
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Size Pretrain Augmented Set Consistency Rate (%) Action Loc Total Macro Avg Micro Avg

Base

- - 56.76% 70.25 63.19 66.72 66.49
UnifiedQA - 56.61% 70 63.61 66.30 66.13

- Yes 56.32% 68.89 63.56 66.72 66.52
UnifiedQA Yes 56.35% 71.32 63.24 67.28 67.02

Large

- - 56.44% 72.1 65.34 68.72 68.50
UnifiedQA - 56.39% 70.96 65.81 68.39 68.22

- Yes 56.32% 72.28 66.49 69.38 69.20
UnifiedQA Yes 56.62% 73.65 64.50 69.07 68.77

Table 6.1 The results for the fine-tuned version of various T5 models on the original and augmented
set of the Propara dataset.

Model Method Action Loc Total Macro Avg Micro Avg

Base Expert-Designed 69.05 63.925 66.487 66.32
ILP 70.13 64.707 67.418 67.24

Base - UnifiedQA Expert-Designed 65.83 62.979 64.405 64.31
ILP 68.51 63.401 65.956 65.79

Large Expert-Designed 70.96 65.022 67.991 67.80
ILP 72.34 65.029 68.684 68.44

Large - UnifiedQA Expert-Designed 70.43 63.243 66.836 66.60
ILP 70.97 64.607 67.789 67.58

Table 6.2 The results of applying various inference techniques on the T5 baseline, comparing the
traditional ILP method and the Expert-Designed inference methods.

6.2.2.1 Initial Model Performance Evaluation

This phase focuses on assessing the baseline model’s inherent performance without applying

consistency enforcement strategies.

Table 6.1 details the outcomes from testing the model under all configurations without modifying

its decision-making post hoc. It’s noteworthy that the models were supervised either with the

original dataset, incorporating only action and location queries, or with the enhanced dataset.

From Table 6.1, we deduce four main observations: 1) performance escalates with an increase in

model size, 2) contrary to expectations, leveraging pre-training on the Unified-QA dataset adversely

affects performance on this specific task, 3) incorporating the enhanced dataset markedly boosts the

model’s efficacy, and 4) additional pre-training, fine-tuning for consistency, or enlarging the model

size does not compromise the model’s ability to render consistent reasoning across the original set

of questions.
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Model Method Action Action - F1 Loc Total Macro Avg Micro Avg

Base
Expert-Designed 69.05 53.69 61.937 65.493 65.26

ILP 70.20 56.19 60.633 65.417 65.10
ILP (aug) 70.25 57.02 61.622 65.936 65.65

Base - UnifiedQA
Expert-Designed 69.77 53.71 64.189 66.979 66.80

ILP 71.86 58.38 64.555 68.207 67.97
ILP (aug) 69.23 57.08 61.043 65.136 64.87

Large
Expert-Designed 70.97 55.85 63.713 67.341 67.10

ILP 71.56 59.26 63.145 67.352 67.08
ILP (aug) 72.16 60.01 64.608 68.384 68.14

Large - UnifiedQA
Expert-Designed 72.94 60.15 63.399 68.169 67.86

ILP 73.54 61.2 63.355 68.447 68.11
ILP (aug) 73.24 60.65 63.610 68.425 68.11

Table 6.3 The results of applying inference methods on the T5 base models when trained on
augmented training sets. ILP (aug) refers to the optimization problem when considering the
decisions from the augmented question types in the constraint satisfaction process.

6.2.2.2 Logical Post-Processing Evaluation

Table 6.2 illustrates the outcomes of implementing the three aforementioned inference method-

ologies on the model’s decisions. We assess the impact of these inference strategies on the precision

of responses to individual question types and the F1 scores for action questions regarding creation,

destruction, and movement. The rationale behind incorporating the F1 score is to mitigate the

inflated accuracy rates for actions, which could arise if the model predominantly forecasts "No

Change" or "Exists" across most steps. The essence of this task is to accurately forecast concrete

actions, including creation, destruction, and movement. The F1 score thus helps highlight the

significance of these actions while also accounting for any false positives.

As indicated in Table 6.2, the global inference method (ILP) generally equals or surpasses the

expert-designed strategy in effectiveness, occasionally outdoing it by more than 1%. Table 6.3

further demonstrates that in most cases (three out of four), incorporating all question types into

the logical reasoning phase substantially improves model performance compared to other inference

approaches.

Our experiments with the procedural reasoning task indicated that applying the ILP method to

decisions that have various output sizes mostly alters the decisions made in larger output spaces

in favor of preserving the original model decisions made in lower output spaces. For instance, the
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ILP method applied to the two question types, Actions and Locations, heavily updated the location

decisions while rarely changing the decisions regarding actions. This can be seen by comparing

the base performance of models present in Table 6.1 with their corresponding ILP results in Table

6.3.

6.3 Enhanced Inference toward consistent Procedural Reasoning

To comprehend procedural text, multiple neural models collaborate to establish temporal re-

lationships between actions, reveal semantic relations, and discern entity properties like location

and temperature [50, 16, 70]. Each model responsible for these decisions exhibits distinct decision

characteristics, output sizes, uncertainty levels, and varying excepted accuracy levels. Resolving

inconsistencies and aligning these diverse neural decisions is crucial for comprehensively under-

standing the underlying process.

In many instances, raw model outputs lack usability without enforcing consistency. In tasks

like hierarchical image classification, with independent models for each hierarchy level, outputs

should adhere to the known hierarchical relationships. For example, the combination “Plant, Chair,

Armchair” lacks validity and requires post-processing for downstream applications. A similar

requirement extends to generative models in text summarization [98] and image captioning [8].

Prior studies have proposed techniques for handling inconsistencies in correlated decisions

during both inference [55, 148, 31, 23, 59] and training [67, 118, 182] of neural models. This

proposal focuses on resolving these inconsistencies at inference, where the goal is to ensure that

outputs align with task constraints while preserving or enhancing the original model performance

without training.

Integer Linear Programming (ILP) [140] stands out as a robust approach to addressing decision

inconsistencies. ILP is a global optimization framework that seeks to find the best configuration

of variables while meeting specified constraints. It is known for its efficiency and capability to

produce globally optimal solutions, distinguishing it from alternatives like beam search. The ILP

formulation is as follows:
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Objective : Maximize P ⊤y

subject to C
(
y

)
≤ 0,

(6.1)

where constraints are denoted by C
(
·
)

≤ 0, decision variables are denoted by y ∈ Rn, and the

vector containing the local weights of variables are denoted by P . To apply ILP to resolve conflicts

from decisions of neural models, prior work [137, 127, 121, 60] has defined P to be the vector

of raw probabilities of local decisions, P = p1, ..., pn, where pi corresponds to the probability

generated from a certain model for the ith decision variable (yi). The global inference is modeled

to maximize the combination of probabilities subject to constraints.

Previous use of ILP has proven effective in ensuring decision consistency in certain cases [51]

but did not address model heterogeneity. This problem becomes more dominant in scenarios

where output probabilities come from independent models, making them less directly comparable.

We extend the ILP formulation to address this limitation beyond just considering the raw model

probabilities. Instead, we map these raw scores into globally comparable values, facilitating a more

balanced global optimization. We achieve this by incorporating additional information, such as

decision confidence, expected model accuracy, and estimated prior probabilities. While previous

studies have explored the integration of uncertainty in modeling the training objective [181, 56, 197],

our work represents a novel effort in systematically incorporating multiple factors of this nature

into the inference process for interrelated decisions to leverage external knowledge effectively.

6.3.1 Method

Our objective is to devise an improved scoring system, generating new local variable weights (im-

portance) W in the ILP formulation. Thus, we modify the original objective function as follows:

Maximize W ⊤y, (6.2)

where W = w1, ..., wn. To determine the new weights, we aim to find the scoring function G,

which normalizes the local predictions of each model and maps them into globally comparable

values. For each model m with multi-class decisions, we denote the output probabilities after

applying a SoftMax layer as Pm ⊂ P . The scoring function G transforms these raw probabilities
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into new weights Wm ⊂ W to indicate the importance of the variables within the ILP objective,

i.e., Wm = GPm, m. This subsection explores different options for the function G and provides an

intuitive understanding of their rationale.

6.3.1.1 Prior Probability (Output Size)

We consider a normalization factor based on prior probabilities to facilitate fair comparison

among decisions with varying output sizes. For an N -class output, the prior probability for each

label is 1
N (assuming uniform distribution). This implies an inherent disadvantage for decisions

made in larger output spaces. Thus, we normalize the raw probabilities by dividing them by the

inverse of their respective priors and define GPm, m = Pm × N . This factor adjusts the weight of

decisions relative to the size of the output space.

6.3.1.2 Entropy and Confidence

The outputs generated from models often exhibit varying levels of confidence. While raw prob-

abilities alone may adequately indicate the model’s confidence in individual Boolean decisions, a

more sophisticated approach is required for assessing the models’ confidence in multi-classification.

We propose incorporating the entropy of the label distribution as an additional factor to assess the

model’s decision-making confidence. As lower entropy corresponds to higher confidence, we use

the reverse of the entropy, normalized by the output size N , as a factor in forming the decision

weight function GPm, m = Pm ∗ N
EntropyPm

.

6.3.1.3 Expected Models’ Accuracy

Assigning higher weights to the probabilities generated by more accurate models aligns the

optimal solution with the overall underlying models’ performance. This approach mitigates the

influence of poor-quality decisions, which can negatively impact others in the global setting. We

define the decision weight function G as GPm, m = Pm ∗ Accm, where Accm represents the

accuracy of the corresponding model, measured in isolation. To mimic the real-world settings

where test labels are unavailable during inference, we utilize the models’ accuracies on a probe/dev

set.
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6.3.2 Empirical Study

We assess the impact of integrating proposed factors into the ILP formulation on structured

prediction tasks. Our approach is particularly suited for hierarchical structures encompassing

multiple classes at different granularity levels, such as classical hierarchical classification problems.

Additionally, we are the first to investigate the influence of enforcing global consistency on the

procedural reasoning task, a complex real-world problem. To implement our method, we rely on

the DomiKnowS framework [130], offering a versatile platform that enables implementing and

evaluating techniques to leverage external logical knowledge with minimal effort on structured

output prediction tasks.

6.3.2.1 Metrics and Evaluation

We compare our method against two inference-time approaches: sequential decoding and

basic ILP (ILP without our refinement). In contrast to ILP, sequential decoding, which relies on

expert-designed rules or programs to enforce consistency, is unique to each dataset. In addition to

conventional metrics (e.g., accuracy/F1), we include measurements that evaluate changes applied

by the inference techniques: (1) total changes (C), (2) the percentage of incorrect-to-correct

changes (+C), (3) the percentage of correct-to-incorrect changes (-C). We further evaluate all the

baselines and inference methods on (1) the percentage of decisions satisfying task constraints and

(2) Set Correctness, the percentage of correct sets of interrelated decisions (i.e., predictions of all

levels in the hierarchy must be correct for an image).

Number of Changes This metric quantifies the post-inference changes in decisions, specifically

assessing the extent to which original decisions are altered due to inference constraints. It serves as

a crucial indicator of whether the optimization method treats all decisions equally or prefers certain

decisions over others. A genuinely global optimization method will result in multiple decision

changes, promoting a more balanced distribution of alterations across all decisions. In contrast,

expert-written strategies tend to favor specific decisions. This metric is straightforward to calculate

by comparing the differences between decisions before and after applying the inference mechanism.
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Ratio of In-Correct to Correct Changes (+C) This metric reveals the proportion of post-

inference changes that are deemed favorable. While this metric may not carry substantial standalone

significance, it is a valuable means to compare different inference techniques. A higher ratio

signifies that the inference method has been more successful in deducing accurate labels based on

the imposed constraints.

Ratio of Correct to In-Correct Changes (-C) This number shows the extent of undesirable

changes made after inference. A lower ratio means the inference method has done a better job of

preventing errors while ensuring the output adheres to the constraints.

Satisfaction Rate This metric shows how well predictions align with constraints. We calculate it

by generating constraint instances from related decisions and counting the satisfying cases against

all possible instances. Inference techniques guarantee that modified decisions always adhere to the

constraints, resulting in a satisfaction rate of 100%.

Correctly Predicated Sets of Interrelated Decisions This metric is crucial for assessing the

practical usefulness of the output from inference techniques or the original network decisions in

downstream applications. The primary objective of inference mechanisms is to boost the percentage

of these fully satisfying cases compared to the model’s original performance, all while ensuring

that the decisions align with the task’s constraints. For instance, in a hierarchical classification

task, we consider one instance to be correct only when the decisions at all levels are simultaneously

accurate.

6.3.2.2 Tasks

Procedural Reasoning

Task: Procedural reasoning tasks entail tracking entities within a narrative. Following [48], we

formulate this task as Question-Answering (QA). Two key questions are addressed for each entity

e and step i: (1) Where is e located in step i? and (2) What action is performed on e at step i?.

The decision output of this task exhibits heterogeneity, encompassing a diverse range of possible
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actions (limited multi-class) and varied locations derived from contextual information (spans). The

task constraints establish relationships between action and location decisions as well as among

action decisions at different steps. For instance, the ‘Destroy, Move’ sequence represents an invalid

assignment for action predictions at steps i and i 1.

Dataset: We utilize the Propara dataset [33], a small dataset focusing on natural events. This

dataset provides annotations for involved entities and their corresponding location changes. The

label set is further expanded to include information on actions, which can be inferred from the

sequence of locations.

Baseline: We employ a modified version of the MeeT architecture [156] as our baseline for

this task. The MeeT model is designed to ask the two aforementioned questions at each step

and employs a generative model (T5-large) to answer those questions. The Sequential Decoding

baseline resolves action inconsistencies in a sequential stepwise manner (first to last), followed by

the selection of locations accordingly.

Propara Dataset: The Propara dataset serves as a procedural reasoning benchmark, primarily

devised to assess the ability of models to track significant entities across a series of events effectively.

The stories within this dataset revolve around natural phenomena, such as photosynthesis. The

annotation process involves capturing crucial entities and their corresponding locations at each step

of the process, which are obtained through crowd-sourcing efforts. Figure 6.1 depicts an illustrative

example of this dataset.

The sequence of locations pertaining to each entity can be further extended to infer the actions

or status of the entity at each step. Previous studies [34] have proposed six possible actions for

each entity at each step, namely ’Create,’ ’Move,’ ’Exist,’ ’Destroy,’ ’Prior,’ and ’Post.’ In this

context, ’Prior’ signifies an entity that has not yet been created, while ’Post’ denotes an entity that

has already been destroyed.

As for the baseline, we employ a modified version of the MeeT [156] architecture. The

architecture utilizes T5-Large [129] as the backbone and employs a Question-Answering framework

to extract the location and action of each entity at each step. The format of the input to the model
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is as follows for entity e and step i: "Where is e located in sent i? Sent 1: ..., Sent 2: ..., ...". For

extracting the action, the set of options is also passed as input, resulting in the modification of the

question to "What is the status of entity e in sent i? (a) Create (b) Move (c) Destroy (d) Exist (e)

Prior (f) Post".

Although the original model of MeeT incorporates a Conditional Random Field (CRF) [80]

layer during inference to ensure consistency among action decisions, we exclude this layer from

our baseline. This decision is motivated by two reasons. Firstly, the use of CRF in this context is

not generalizable as it relies on training data statistics for defining transitional scores. Secondly, we

intend to impose consistency using various inference mechanisms and consider a joint framework

to ensure both locations and actions exhibit consistency. Additionally, while the MeeT baseline

employs two independent T5-Large models for each question type (location and action), our baseline

utilizes the same model for both question types. For the sequential decoding technique to enforce

sequential consistency among the series of interrelated action and location decisions, we utilize the

post-processing code presented in [50].

Hierarchical Classification

Task: This task involves classifying inputs into various categories at distinct levels of granular-

ity, establishing parent-child relationships between the classes where those follow a hierarchical

structure.

Datasets: We employ three different datasets. (1) A subset of the Flickr dataset [188] with

two hierarchical levels for the classification of images with types of Animal, Flower, and Food,

(2) 20News dataset for text classification, where the label set is divided into two levels, and (3)

The OK-VQA benchmark [104], a subset of the COCO dataset [92]. OK-VQA establishes the

hierarchical relations between labels into four levels based on ConceptNet triplets and the dataset’s

knowledge base.

Baselines: ResNet [63] and BERT [44] are used to obtain representations for the image and text

modalities, respectively. Linear classification layers are applied to convert obtained representations

into decisions. The Sequential Decoding is top-down, bottom-up, and a two-stage (1) top-down
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on ‘None’ values and (2) bottom-up on labels for Animal/Flower/Food, 20 News, and VQA tasks,

respectively.

Animal/Flower/Food Dataset: The dataset1 employed in this study is sourced from the online

platform ’Flickr’ and encompasses a total of 5439 images classified into three primary categories,

namely ’Flower,’ ’Animal,’ and ’Food.’ Without an officially designated test set, a random par-

titioning strategy is adopted to ensure comparability in the distribution of training and testing

instances. Consequently, the resulting splits are utilized within the experimental framework. The

training subset encompasses 4531 images, while the test set comprises 1088 images. The dataset

further comprises various sub-categories, including ’cat,’ ’dog,’ ’monkey,’ ’squirrel,’ ’daisy,’ ’dan-

delion,’ ’rose,’ ’sunflower,’ ’tulip,’ ’donuts,’ ’lasagna,’ ’pancakes,’ ’pizza,’ ’risotto,’ and ’salad.’ It

should be noted that the data distribution across labels is not balanced, posing a more challenging

classification task. This dataset is employed as a simplified scenario to illustrate the benefits of the

proposed inference approach.

As the baseline for this task, we use ResNet-50 to represent the images and add a single layer

MLP on top for each level. The model is further trained by Cross-Entropy objective and AdamW

as optimizer.

The sequential decoding strategy for this dataset propagates labels in a top-down manner, where

the most likely children of the selected Level1 decisions are chosen as the prediction at Level2.

20News Dataset: This dataset comprises a collection of diverse news articles classified into 23

distinct categories. In order to capture the hierarchical structure inherent in the dataset’s labels,

we partition these categories into two levels. It should be noted that certain higher-level concepts

lack corresponding lower-level labels, necessitating the inclusion of a ’None’ label at level 2.

Furthermore, we perform a removal process on the initially annotated data containing the ’None’

labels, as this subset primarily consists of noisy documents that do not align with any categories

present within the dataset. It is crucial to differentiate this removal process from the intentional

addition of the ’None’ label at level 2, which we manually introduced.

1https://github.com/kaustubh77/Multi-Class-Classification
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As the baseline for this task, we initially employed the Bert-Base encoder to generate repre-

sentations for each news story. Due to the limited context size of Bert, which is constrained to a

maximum of 512 tokens, we truncate the news articles accordingly and utilize the CLS token as

the representative embedding for the entire article. For Level 1, a 2-layer Multilayer Perceptron

(MLP) architecture is employed, with LeakyReLU as the chosen activation function. Additionally,

Level 2 decisions are made using a single-layer MLP. The model is optimized using the AdamW

optimizer during the training process, with the Cross-Entropy loss function employed.

The sequential decoding strategy in this dataset is a bottom-up strategy. Here, the model’s

decision from Level 2 is propagated into Level 1 without looking further into the initial probabilities

generated by the model at that level.

OK-VQA (COCO) Dataset: The OK-VQA dataset is primarily introduced as a means to propose

an innovative task centered around question-answering utilizing external knowledge. A subset of the

COCO dataset is employed to construct this dataset, with augmented annotations obtained through

crowdsourcing. While the main objective of the dataset revolves around question answering, it

is important to note that it encompasses two levels of annotation. These annotations indicate the

answer to the given question and provide additional clarifications regarding the types of objects

depicted in the corresponding images. To leverage knowledge pertaining to image type relationships,

the label set is expanded to include supplementary high-level concepts. A knowledge base is also

provided, delineating parent-child relationships between these labels. The dataset comprises a

total of 500 object labels. To enhance the breadth of knowledge encompassed by the dataset,

we incorporate additional information from ConceptNet to establish comprehensive relationships

among the labels. Notably, both the new information and the original knowledge base may

contain noisy information. In conjunction with the original knowledge base, this forms a four-level

hierarchical dependency among the initial 500 labels. Consequently, certain labels within each level

may not possess corresponding children at lower levels, necessitating the introduction of ’None’

labels at levels 2, 3, and 4.

In this study, we employ the Faster R-CNN framework [133] along with ResNet-110 as the
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Model Level 1 (3) Level 2 (15) Average
Acc C + C - C Acc C + C - C Acc

Baseline 86.12 - - - 54.85 - - - 70.48
Sequential 86.12 - - - 54.39 32 15.625 37.5 70.25

ILP 86.07 16 43.75 43.75 54.43 16 12.5 37.5 70.25
+ Acc 86.14 3 33.33 33.33 54.41 29 13.79 37.93 70.27
+ Prior 86.30 24 50 41.67 54.78 8 12.5 25 70.54

+ Ent + Acc 86.09 12 33.33 50 54.41 20 10 40 70.25
+ Ent + Prior 86.42 25 52 40 54.82 7 14.29 28.57 70.62

+ All 86.17 16 43.75 43.75 54.50 16 12.5 37.5 70.33

Table 6.4 Results on Animal/Flower/Food dataset on four random seeds. Reported values are the
average scores of runs with close variances for all techniques (Level1: ±1.6 and Level2: ±0.5). C values
are derived from the best run. n in Level (n) denotes the number of output space classes. Prior:
Prior Probability, and Ent: Entropy.

chosen methodology to represent individual objects within images. Subsequently, a one-layer

Multilayer Perceptron (MLP) architecture is utilized to classify the images at each level of the

hierarchical structure. It should be noted that the number of positive examples (i.e., labels that are

not denoted as ’None’) decreases as we move toward lower levels of the hierarchy. We perform

subsampling on the ’None’ labels for the corresponding classifiers at those levels to address this.

The models are trained with the Cross-Entropy loss function and the AdamW optimizer.

The sequential decoding strategy for this dataset is a two-stage top-down and then bottom-up

process. Here, ‘None’ labels are first propagated from Level 1 to Level 4, then the selected label (if

not None) from Level 4 is propagated bottom-up to Level 1. Since each label at leveln only has

one parent in Leveln − 1, this process does not need to look into the original model probabilities

for propagation.

6.3.2.3 Results

Tables 6.4, 6.5, 6.6 and 6.7 display results for Animal/Flower/Food, Ok-VQA, 20 News, and

Propara datasets. 6.3.2.2. For close results, we use multiple seeds to validate reliability. Across

experiments, the basic ILP technique favors decisions in smaller output spaces due to higher

probability magnitudes (e.g., more changes in Actions than Locations in Table 6.7). Our new

proposed variations can effectively mitigate this problem and perform a more balanced optimization.

Animal/Flower/Food: The sequential decoding establishes that the enforcement of the decisions
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Model Level 1
(274)

Level 2
(158)

Level 3
(63)

Level 4
(8) Average

Baseline 56.73 54.45 43.43 17.68 54.64
Sequential 55.81 53.17 43.44 24.18 53.72

ILP 52.38 46.33 49.66 28.43 50.17
+ Acc 55.65 54.67 48.15 23.73 54.23
+ Prior 56.35 53.36 48.11 23.86 54.54

+ Ent + Acc 56.43 53.25 48.1 24.02 54.56
+ Ent + Prior 56.79 52.93 47.53 23.75 54.61

+ All 56.84 52.66 46.98 22.63 54.5

Table 6.5 The results on the Ok-VQA dataset. The values represent the F1 measure. Levels 2, 3,
and 4 contain ‘None’ labels. The low F1 measure of lower levels is due to a huge number of False
Positives.

Model Level 1 (16) Level 2 (8) Average
F1 C + C - C F1 C + C F1

Baseline 73.62 - - - 75.13 - - 74.01
Sequential 72.99 330 20.6 46.36 75.13 0 0.00 73.55

ILP 73.53 225 25.78 39.55 75.46 68 63.24 74.03
+ Acc 73.57 212 26.89 39.62 75.45 73 64.39 74.05
+ Prior 73.35 161 25.46 39.13 75.35 94 65.96 74.01

+ Ent + Acc 73.54 205 26.34 40 75.39 75 64 74.02
+ Ent + Prior 73.63 125 26.4 36 75.49 112 68.75 74.12

+ All 73.64 131 25.95 35.11 75.52 111 68.47 74.13

Table 6.6 The results on the 20News dataset, comparing various inference settings and the initial
performance. Here, the -C of level 2 is 0 in all cases.

Model Actions (6) Locations (*) Average
Acc C + C - C Acc C + C - C Acc

Baseline 73.05 - - - 68.21 - - - 70.47
Sequential 71.56 75 13.33 46.66 67.63 255 27.8 32.2 69.47

ILP 73 63 36.5 38.1 66.38 217 19.8 35.9 69.47
+ Acc 73 63 36.5 38.1 66.43 217 19.8 35.9 69.50
+ Prior 72.88 119 31.93 34.45 67.54 138 23.2 32.6 70.03

+ Ent + Acc 72.93 63 34.92 38.1 66.38 219 19.6 35.6 69.44
+ Ent + Prior 71.62 209 25.83 37.32 68.16 53 26.4 28.3 69.78

+ All 71.74 198 25.75 36.86 68.27 72 29.2 27.8 69.89

Table 6.7 Results on Propara dataset. The dataset comprises 1910 location decisions and 1674
action decisions. *The output size of location decisions depends on the context of each procedure.
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originating from a model with better accuracy and with a smaller output size (Level 1) on other

decisions may even hurt them (Level 2). In such scenarios, the inclusion of Expected Accuracy

favors dominant decisions and adversely affects performance. However, the inclusion of Prior

Probability effectively achieves a balanced comparison among decisions. In this task, despite the

basic ILP formulation being detrimental, some of the new variations can even surpass the original

baseline performance.

Ok-VQA: The baseline exhibits lower accuracy in lower-level decisions with smaller output

sizes. When applying the basic ILP method under these circumstances, a significant decline in

results is observed, even below that of sequential decoding. However, incorporating any of our

proposed factors leads to substantial improvements compared to the basic ILP formulation (over

4% improvement) and can surpass the performance of sequential decoding. Particularly, combining

Entropy and Prior Probability achieves the best performance. Notably, although the baseline model

has higher overall performance, its inconsistent outputs are unreliable for determining the object

label (see Table 6.8).

20News: The baseline performance is similar across different decisions. Thus, in isolation,

considering either the Expected Accuracy or the Prior Probability does not substantially impact the

global optimization process. However, including all proposed factors (Entropy, Accuracy, and Prior

Probability) leads to a balanced and optimal solution. Although the overall task performance in

this experiment does not show significant improvements, this is mainly because the initial decision

inconsistencies are minimal. Nevertheless, evaluating the positive and negative changes provides

valuable insights into the significance of incorporating the proposed factors.

Propara: This is an example of a real-world task that involves hundreds of constraints and

thousands of variables when combining decisions across entities and steps. Once again, basic ILP

and Expected Accuracy factor prioritize decisions from the smaller output size (Actions). However,

the Prior probability factor enables a more comparable space for resolving inconsistencies. Notably,

the higher baseline performance is attributed to inconsistencies and cannot be used when reasoning

about the process (See Table 6.8).
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Dataset Model Satisfaction Set Correctness

Animal/Flower
Baseline 96.4 53.40

Sequential 100 54.50
Ent + Prior 100 54.50

VQA
Baseline 38.99 54.43

Sequential 100 57.11
Ent + Prior 100 58.92

Propara
Baseline 45.12 23.30

Sequential 100 28.81
Prior 100 30.93

Table 6.8 Results of our proposed technique, baselines, and expert-written decoding strategies
in terms of constraint satisfaction and set correctness. The Set Correctness metric reflects the
practical usability of sets of dependent decisions in downstream applications.

Constraints: Table 6.8 presents the satisfaction results and set correctness metrics across various

datasets. It is evident that our newly proposed method significantly outperforms the baseline in

both of these metrics. Notably, the degree of improvement in set correctness is more pronounced

when the initial consistency of the baseline is lower. This observation underscores the substantial

significance of our proposed technique in ensuring the practical utility of model decisions in

downstream applications by substantially increasing the proportion of correct interrelated decision

sets. Furthermore, compared to sequential decoding, our proposed solutions demonstrate even

greater performance enhancements, particularly in scenarios where the task complexity is higher,

and global inference can exert its maximum effectiveness.

6.3.3 Discussion

Here, we address some of the key questions about this work.

Q1: Which metric is most important among the ones evaluated in this paper? All the

metrics assessed in this paper provide insights into the model’s performance. Among these, the

Set Correctness score offers a comprehensive evaluation that combines constraint satisfaction and

correctness, indicating the proportion of output decisions suitable for safe use in downstream tasks.

When comparing different ILP variations, the primary focus should be on the original task

performance since they all share the same high satisfaction score of 100%. Additionally, the

Change metric helps reveal whether an ILP variation conducts truly global optimization or exhibits
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a bias towards specific prediction classes.

In comparing the baseline method with inference techniques, it is essential to consider both the

satisfaction and set correctness scores. This is because the raw model predictions, as initially

generated, may not be directly acceptable. For instance, if a model predicts a “Move” action for

entity A at step 4, but the location prediction does not indicate a change in location, it becomes

unclear whether entity A changed locations.

Q2: Why utilize the model’s overall accuracy in the score function instead of its accuracy for

a specific decision variable? In our context, we assume that each decision type corresponds to a

specific model. Therefore, assessing the model’s accuracy is the same as evaluating the accuracy of

a particular decision type. If a single model supplies multiple decision types, we can easily expand

this concept to evaluate the accuracy of each decision type individually within the same framework.

Q3: What is the main difference between the sequential decoding strategy and the ILP

formulation? The sequential decoding strategy is a domain-specific, expert-crafted technique

employed for addressing decision inconsistencies in accordance with task constraints. In contrast,

the ILP (Integer Linear Programming) formulation offers a more general, non-customized approach

that isn’t tailored to individual tasks.

Sequential decoding strategies typically involve rules or programs that often prefer a specific

decision while adjusting other decisions to align with it. This approach prioritizes decision align-

ment over considering the probabilities associated with these decisions. On the other hand, the ILP

optimization process seeks the most optimized solution by considering the raw probabilities from

the models and the imposed constraints.

6.4 Conclusion

This chapter introduced an expanded benchmark aimed at assessing a model’s ability to maintain

consistency while reasoning through procedural texts in the context of entity tracking. Our enhanced

benchmark encompasses a set of interrelated questions, all of which necessitate a fundamental

comprehension of the described process to deduce accurate answers. We appraised the state-of-

119



the-art model’s efficacy in this domain, utilizing our evaluation framework. Our observations

revealed a notable inconsistency in the model’s reasoning, particularly concerning initial queries

related to actions and locations. Furthermore, our findings demonstrated that incorporating a

set of consistency-focused questions into the model’s training regimen—despite these questions

being derived from the same original dataset—improves its performance when addressing the

initial question types. Moreover, we developed and assessed various strategies to enforce logical

consistency within the model’s outputs. The outcomes from these experiments suggest that adopting

a global optimization approach for inference tends to be more advantageous than implementing

sequential logical corrections, particularly when applying a comprehensive suite of constraints to

the decision-making process.

We further proposed an approach for considering the uncertainty and confidence measures, in-

cluding the decisions’ prior probability, entropy, and expected accuracy, alongside raw probabilities

when making globally consistent decisions based on diverse models. We demonstrated the effec-

tiveness of incorporating our idea within the ILP formulation through experiments on four datasets

including the procedural reasoning task. This contribution represents a significant advancement

in integrating large models in a unified decision-making framework for conducting complex tasks

requiring interrelated decisions.
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CHAPTER 7

CONCLUSION & FUTURE WORK

This chapter will summarize our contributions and conclusions regarding the two directions that we

took in this research: exploiting semantic structures in procedural reasoning and integrating logical

constraints into deep neural models. Moreover, we will outline a series of ideas and directions for

extending our current techniques and addressing the remaining challenges in procedural reasoning.

7.1 Summary of Contributions

Reasoning over procedural text presents a significant challenge for machine learning models due

to the dynamic nature of the described world. Despite recent advances and promising performances

achieved by building on Pretrained Language Models (PLMs), a notable performance gap between

neural models and human capabilities persists. In this thesis, we introduced various strategies to

improve language models’ proficiency in complex reasoning over procedural contexts, particularly

focusing on entity tracking and procedural summarization tasks. We also proposed a new framework

and benchmark to advance research on integrating domain knowledge with deep neural networks.

7.1.1 Entity Tracking

Our first proposition aimed at enhancing understanding and reasoning over the temporal dynam-

ics of events in procedural contexts. We introduced the Time-Stamped Language Model (TSLM),

which augments PLMs with an additional embedding layer representing the temporal dimension

of actions (past, present, and future). This enhancement allows PLMs to effectively tackle entity

tracking by comprehensively reasoning across the process context and dynamically shifting focus

between steps. This capability is crucial for neural models to utilize preceding and forthcoming

contexts to resolve ambiguities and fill information gaps in procedural instructions.

Furthermore, recognizing the importance of understanding actions, their relationships with

objects, and their impacts on entities for entity tracking, we proposed integrating semantic parsers

with procedural reasoning modules. This approach allows neural models to directly reason about

actions and entities, thereby abstracting and interpreting the significance of actions more accurately.

We developed a symbolic model based on semantic parsers, achieving superior performance over

121



several neural models. Additionally, we extended this approach by encoding semantic parses

into graph representations for procedural reasoning modules. This result of such integration with

various base neural models proved effective in improving the state-of-the-art models.

7.1.2 Procedural Abstraction

We introduced a novel method that trains a similarity matrix to correlate critical actions in the

summary with procedural instructions. A set of constraints was designed to ensure the summary’s

sequential integrity accurately reflects the process flow. This innovative approach and modeling

effort yielded state-of-the-art results on the RecipeQA benchmark for textual cloze tasks involving

multi-modal recipes. We also demonstrated the advantages of utilizing text and image modalities

in summarization, leveraging entangled representations from both to enhance task performance.

7.1.3 Integration of Logical Constraints with Deep Neural Networks

We developed DomiKnowS, a novel declarative framework for incorporating domain knowledge

into deep neural networks. DomiKnowS offers a modular interface for defining knowledge and

computational units and facilitates various methods for integrating human knowledge with data-

derived learning.

Utilizing DomiKnowS’s flexibility, we established a new benchmark (GLUECons) for evaluat-

ing the effectiveness of integrating constraints with deep neural networks. GLUECons comprises

nine benchmarks across five task categories, expanding the evaluative scope to assess the general

applicability of constraint integration methods across diverse scenarios rather than focusing solely

on task-specific performance.

7.1.4 Procedural Reasoning Considering Logical Constraints

We pioneered applying a global constraint integration technique to complex tasks such as

procedural reasoning. Given the extensive constraint space associated with procedural reasoning,

we enriched the dataset by creating consistency sets (various relevant question/task types) to probe

the consistency of neural model reasoning and explore the potential of further constraints to enhance

model performance.

Acknowledging the diverse decision-making requirements inherent in procedural reasoning, we
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proposed an enhancement to integer linear programming (ILP) to ensure decision consistency across

heterogeneous outputs. This novel approach accounts for additional factors such as confidence,

prior probability expectations, and decision accuracy, demonstrating improved performance across

multiple tasks, including procedural reasoning.

7.2 Future Directions

This section proposes several avenues for addressing the remaining challenges in procedural

reasoning and integrating constraints with neural models.

Constraints and Generative AI Our research explored strategies for integrating constraints with

computational units (neural models) by treating them as black-box entities and utilizing model-

generated probabilities but was mostly limited to the scope of structured prediction tasks with

the assumption that changing the probability of one decision does not directly affect the raw

probabilities generated by the model on other decisions. However, the generative AI paradigm,

especially auto-regressive techniques, produces dependent probabilities for each output variable,

complicating ad-hoc inference adjustments during runtime. This scenario necessitates techniques

for approximating or considering the effects of such adjustments during the inference phase.

Model Consistency in Complex Reasoning Tasks We highlighted the inconsistency of language

models in reasoning over interconnected decisions in procedural reasoning. While inference

techniques can address inconsistencies, simply training models on interrelated decisions does not

inherently enhance consistency. Improving model consistency during training without reliance

on inference techniques remains an open challenge. Integrating a soft interpretation of logical

constraint violations as loss objectives may enhance consistent model performance.

Interpretability in Procedural Reasoning The detailed annotation of tasks like entity tracking

provides valuable step-by-step insights into entity evolution during processes. Yet, the underlying

reasoning steps for each decision are often not explicitly documented in current datasets. Extending
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datasets to include these reasoning steps could enable models to perform more comprehensive

reasoning, from textual analysis to abstract procedural understanding.

Utilizing Entity Tracking in Story Understanding In this research, we have investigated the

underlying models for entity tracking. An interesting future direction is to consider the effect of

such underlying knowledge in story completion and understanding, where entity tracking plays a

vital role.
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