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ABSTRACT

In this dissertation, we present the culmination of two projects, after an overview of the
primary tool involved in the research, Heegaard Floer theory. In this overview, we discuss
the origins of Heegaard Floer homology, an invariant associated to a Spin® 3-manifold, as
well as its flavors. We then present multiple flavors of knot Floer homology, a refinement of
that theory.

The first project is a structural theorem for a family of knot invariants due to Dowlin.
L-space knots are knots which admit surgeries that have simple Heegaard Floer homology
and thin knots are ones whose knot Floer homology is concentrated in a single d-grading.
Each class of knots has well known knot Floer complexes. As such, we show that for L-space
knots and thin knots, the theories that Dowlin constructed are a change of coefficients from
an older theory, the minus flavor of knot Floer homology. Many supporting examples are
shown in its final section. The proof uses a popular cancellation lemma for chain complexes
with the special shapes involved.

The second project is a collaboration with McConkey, St. Clair, and Zhang. In this
dissertation, we show that the Whitehead double of the dual knot to 1/n surgery on the
knot 6, in the 3-sphere is deeply slice in a contractible 4-manifold. That is, it bounds a
smoothly embedded disc in the manifold, but not in a collar neighborhood of its boundary,
the surgered manifold. This is partial progress in answering one of the Kirby questions
regarding nullhomotopic deeply slice knots, as referenced in earlier work of Klug and Ruppik.
To prove our theorem, we make use of the immersed curves perspective of bordered Floer

homology and knot Floer homology, which we introduce in previous sections.
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CHAPTER 1

INTRODUCTION

Beginning in as simple terms as possible, the content of this dissertation is low dimen-
sional topology, which is the study of manifolds of dimension four or less. For the uniniti-
ated, an n-manifold can be thought of simply as a space which appears like “ordinary” space
nearby. The easiest example is the Earth; a human walking on the Earth appears to have
two primary directions to move in: East/West or North/South, like the ant in Figure 1.1.
Consequently, we say that the 2-dimensional sphere is a 2-manifold. One of the main goals
of low dimensional topology is to classify manifolds as best we can. To do this, we construct
invariants, which are labels that do not change when looking at an equivalent manifolds,
much like labeling objects by color. The better the invariant, the finer the classification of
the objects.

There is a similar process for other topological objects, like knots. Roughly speaking,
a knot is a twisted up piece of string tied end to end. One can easily imagine a compli-
cated such object, like the first knot with six crossings displayed in Figure 1.1. Since the
1920s, topologists have been interested in knots, whether it is to tabulate them or discover
implications for other manifolds. A formal definition appears in Chapter 2. The purpose of
this dissertation is to study a particular family of knot invariants in Chapter 3, and apply
another kind of knot invariant in Chapter 4.

More formally, in 2001, Ozsvath and Szab6 introduced topological invariants of a 3-
manifold paired with extra data, a Spin® structure. To a pair, (Y,s), they associate the
Heegaard Floer homology groups ﬁ(Y,s), HF~(Y,s), HF*(Y,s), and HF*(Y,s) [0S04d].
Henceforth, HF°(Y,s) will refer to the groups agnostic of flavor. In a follow-up publication,
Ozsvath and Szabo explore further the properties of these invariants [OS04c|. The Heegaard
Floer homology groups enjoy many properties. First, the construction of the chain groups is
combinatorial, coming from a Riemannian surface together with a set of curves and marked

points, called a Heegaard diagram. As a result, computing the groups is reasonable. Second,



(a) (b)
Figure 1.1 (a) A picture of the ant choosing between two directions on Earth’s surface (a
2-sphere), and (b) a diagram depicting a possibly complicated twisted up piece of string,
tied end to end, called a knot.
there are a number of exact triangles for the Heegaard Floer homology groups of 3-manifolds
that differ by surgery on knots, yielding additional powerful computational tools [OS04c]|.
Finally, and most importantly for this dissertation, Ozsvath and Szabo in [OS04b|, and
independently Rasmussen in [Ras03|, observed that a filtration of the chain complex for
Heegaard Floer homology arising from the presence of a null-homologous knot in (Y s) leads
to a knot invariant called knot Floer homology.

At its core, knot Floer homology is the filtered chain homotopy type coming from a
filtration associated to a null-homologous knot in Y. Roughly, the filtration comes from the
Spin® structures in the 3-manifold with boundary obtained by removing a neighborhood of
the knot in Y. An extremely important property of knot Floer homology is that it categorifies
a much older invariant, the Alexander polynomial. That is, the Alexander polynomial of a
knot is the graded Euler characteristic of its knot Floer homology:

Ar(t) = Y (~1)Fut rank HF Ky, (K, A).

grUzA

Since its advent, knot Floer homology has received extensive study, and is an essential com-



ponent to both projects presented here. Thus, the second chapter (Chapter 2) is dedicated
to an overview of this theory.

Another knot invariant of active research is Khovanov homology, constructed by Kho-
vanov in [KhoOO|. Like knot Floer homology, the Khovanov homology groups can be com-
puted combinatorially, although this time from a knot diagram. Also like knot Floer homol-
ogy, Khovanov homology categorifies an older knot invariant, the Jones polynomial. That is,
the Jones polynomial of a knot is the graded Euler characteristic of its Khovanov homology:

Vi(q) = Z(—l)iquankKhi7j(K).
.3
Of particular interest are spectral sequences between invariants like Khovanov homology and
Floer-theoretic invariants. In an effort to construct a spectral sequence between these two
particular theories, Dowlin constructed a family of knot invariants which are obtained by
taking quotients in the ground ring from the minus flavor of knot Floer homology, dubbed
HFK,(K) [Dowl8|. In Chapter 3, we prove a theorem regarding the structure of this family

of invariants for two classes of knots:

Theorem 1.0.1. If K C S? is an L-space knot or a thin knot, then

HFK,(K)= (HFK~(K) ® Qu]

QU] (U”)) @ Tory(HFK™(K); Q[U)).

To do this, we note that chain complexes arising from L-space knots and thin knots have
special shapes |[OS05a, Pet13|. L-space knots are ones which yield an L-space after Dehn
surgery along the knot, a process discussed in Section 3.1.1. L-spaces are 3-manifolds whose

Heegaard Floer homology is “simplest,” i.e.
rankHF (Y) = |H, (Y Z)).

Thin knots are ones whose knot Floer homology is concentrated in a single §-grading, where
) = %(grU — gry ). Applications of a cancellation lemma on the level of chain complexes

together with the universal coefficients theorem are the essential components of the proof.



Finally, Chapter 4 concerns a collaborative project with McConkey, St. Clair, and Zhang,
where we outline a method of constructing deeply slice knots. These are knots in a 3-
manifold Y which are smoothly slice in a 4-manifold with boundary Y, but not slice in a
collar neighborhood of the boundary. That is, one can find a smoothly embedded disk in
the 4-manifold that goes “deep” into the 4-manifold, but not otherwise. The main theorem

in Chapter 4 is the following.

Theorem 1.0.2 (McConkey, St. Clair, W., Zhang). For the first 6-crossing knot, K = 64,
the Whitehead double of the dual knot to 1/n surgery along K, Dy (p1/,(K)), is deeply slice

in a contractible 4-manifold with boundary Sf’/n(K).

The tools used in proving this theorem are extensive. We apply the results of Chen,
Hanselman, Rasmussen, and Watson in various papers where they develop an immersed
curves package for bordered Heegaard Floer homology [Che23, CH23, HRW23, HRW22|.

Since background on this theory is involved, we present an overview in Section 4.2.



CHAPTER 2

HEEGAARD FLOER THEORY
The story underlying this dissertation began with the Heegaard Floer homology of
closed Spin® 3-manifolds, a theory which was refined in numerous ways for 3-manifolds with
boundary. A capstone of these efforts, central to this dissertation, is the immersed curves

perspective, which arose some two decades later.

2.1 Heegaard Floer Homology
The general machinery needed to construct the Heegaard Floer homology groups is rather

extensive. For the purpose of self-containment, they are outlined here. However, proofs will

be omitted and can be found in [OS04d| and [OS04al].

2.1.1 Heegaard Diagrams

The primary objects of study for Heegaard Floer homology are closed, oriented 3-manifolds.
An essential object in Heegaard Floer theory is the idea of a Heegaard diagram represent-
ing a Heegaard splitting. A Heegaard splitting is a description of a closed 3-manifold as
the union of two genus g handlebodies identified along their common boundary. It is well
known that every closed 3-manifold admits a Heegaard splitting. A Heegaard diagram is a
2-dimensional way of encoding the information of a Heegaard splitting, which additionally

gives a full handle decomposition of the 3-manifold.

Definition 2.1.1. A genus g Heegaard diagram for the 3-manifold ¥ = H, U Hg is a
closed, genus ¢ surface F' together with a set of ¢ embedded simple closed curves o =
{ou, ..., oy}, called the a-curves, which are linearly independent in H;(F;Z), and another
set of g embedded simple closed curves B8 = {f,..., By}, called the S-curves, which are

linearly independent in H;(F';Z) and intersect a transversely.

To see the Heegaard splitting arising from the Heegaard diagram, thicken F' to F' x [0, 1]
and attach a 3-dimensional 2-handle along each a-curve in F'x{0}. The result is a 3-manifold

with two boundary components, one which is F' and the other is a 2-sphere. Then there



Figure 2.1 Top left: Genus 0 Heegaard diagram for S3. Top right: Genus 1 Heegaard
diagram for S* (stabilized from the left). Bottom left: Genus 2 Heegaard diagram for S®.
Bottom right: genus 1 Heegaard diagram for S! x S2.

is a unique way to attach a 3-ball to the 2-sphere boundary (up to orientation-preserving
homeomorphism), yielding the handlebody H,. Using the S-curves in F' x {1} similarly
yields the handlebody Hz. Regarding the a-curves as the belt circles of 3-dimensional 1-
handles and the 3-ball as a 3-dimensional 0-handle yields a handle decomposition of Y. Some
examples are shown in Figure 2.1.

Given a handle decomposition for Y, one can construct a Morse function f:Y — R
whose index i critical points (which are non-degenerate, isolated, and finite) correspond to
attaching i-handles, and vise versa. The handlebodies in the Heegaard splitting of Y are
H, = f71([0,3/2]) and Hg = f7*([3/2,3]) and the Heegaard surface is F = f~'({3/2}).
More in depth descriptions of this process can be found in [GS99| and [Mil63], while a nice

schematic is shown in Figure 2.2.
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Figure 2.2 A schematic for the Morse function f : S® — R. The Heegaard surface,
¥, = f71(3/2), is shown in Figure 2.1. The attaching circles for H, are in red, while the
attaching circles for Hz are in blue. A gradient flow line (from top to bottom) is shown in
green.
2.1.2 Heegaard Floer Chain Complex

Heegaard Floer homology can be interpreted as “infinite-dimensional Morse homology,”
which is nicely described in the lecture notes of Hutchings [Hut02]. Given a generic auxiliary
metric on Y and a Morse function f : Y — R, consider the gradient flow lines of the gradient
vector field —V f with respect to that metric. Then the Morse chain complex is roughly the
graded Z-module generated by critical points with the differential that counts the number
of unparametrized flow lines between critical points that differ in index by one. Some flow
lines are shown in Figure 2.2.

Recall that the Heegaard Floer groups are invariants of a 3-manifold Y together with a

Spin® structure, s. To account for s, a modification of the Heegaard diagram is in order.



Definition 2.1.2 (Heegaard Diagram). A pointed genus g Heegaard diagram for a closed,

oriented 3-manifold Y is a tuple (£,, o, 3, w) where

e 3, is a closed, genus g surface,

a is a collection of g pairwise disjoint embedded simple closed curves on Y, which are

linearly independent in H;(Xy;Z),

B is a collection of g pairwise disjoint embedded simple closed curves on X, which are

linearly independent in H;(X,;Z) and transverse to a,

e w is a basepoint in 3, \ (a U ,3), and

Y can be constructed as above from the data (X, o, 3) as in Definition 2.1.1.

Now we apply an analog of Morse homology, Lagrangian Floer homology, to the sym-
metric product of the Heegaard diagram. It is well known that Sym?(%,), the set of un-
ordered g-tuples of points on X, is a 2g-dimensional symplectic manifold which inherits
a complex structure from a complex structure on X, via the holomorphic quotient map
Y39 — Sym?(3,). Then T, = a3 X ag X ... X oy and Tg = fy X P2 X ... X [, are two
Lagrangian submanifolds of Sym?(X,). Since o and B intersect transversely, T, and Tg
intersect transversely. In the Morse theoretic picture, the intersection points of the T, and
Tz can be thought of as a g-tuple of gradient flow lines for f on Y, which pair up the index
2 and index 1 critical points.

Like the Morse chain complex, the Heegaard Floer chain complex is generated by these
intersection points, and the differential counts “flow lines,” in the form of pseudo-holomorphic
discs between intersection points of index differing by 1. To see if there is such a disc between
intersection point x € T, NTs and y, one checks the homology class of the loop created by

the gradient flow lines from x to y and back again. Through the equivalence

H(%;Z)

mY:2) = el B
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Figure 2.3 A Whitney disc thought of as the unit disc in the complex plane.

Figure 2.4 A figure depicting a loop between x and y with €(x,y) = 0, in green.

the desired loop can be seen on X, as a collection of arcs in U3 connecting the components
of x and y in a particular way. For an example, see Figure 2.4. Given x and y, let ¢(x,y)
be the image of a loop connecting x and y in Hy(Y;Z). We say x ~y if ¢(x,y) = 0. Thus,
there is a (possibly empty) equivalence class of intersection points in T,NTg for each element
of Hi(Y,Z).

The group H;(Y,Z) is in one-to-one correspondence with the Spin® structures on Y.
Through Turaev’s equivalence, on can regard the latter as homology classes of vector fields
on Y outside a Euclidean ball [Tur97|. While many details of this equivalence are omitted,
the choice of basepoint w distinguishes a flow line in Y of —V f from the index 3 critical
point to the index 0 critical point, so that an intersection point x € T, N Ty along with w

fixes a Spin® structure on Y. Thus, we have a map s, : T, N T — Spin“(Y’). There is a



Whitney disc between x and y when s,,(x) = 5,(y), or equivalently, when €(x,y) = 0.
Here, by a Whitney disc between x and y, we mean a map from the unit disc in C to the

symmetric product, u : D — Sym?(X,) such that u(—i) = x,u(i) = y, and the imaginary

arc, e,, of the boundary of the disc is mapped to an arc in T, and the real arc, eg, is mapped

to an arc in Tp, as in Figure 2.3. Let mo(x,y) be the set
(]Da €a; €8, _7:7 2)7 (Symg(zg>7 Taa Tﬁ7 X, y) :

This set my(x,y) is empty if €(x,y) # 0. Given ¢ € m(x,y), let M(¢) be the moduli space
of holomorphic representatives of ¢. Let u(¢) be its expected dimension, called the Maslov
index of ¢. M(¢) admits a natural R action by translation by looking at a Whitney disc as
a vertical strip. M (¢) = M(¢)/R is a compact manifold of dimension 0 when u(¢) = 1. Let
nw(¢) denote the algebraic intersection between ¢ and the subvariety {w} x Sym?~'(3,).

We now have everything in place to define the Heegaard Floer complex:

Definition 2.1.3. Given a closed, smooth 3-manifold Y together with a Spin® structure s
and a Heegaard diagram (X, o, B, w) for Y, the Heegaard Floer chain complex of (Y,s) is
freely generated over F[U, U™!] by all intersection points x € T, N T4 such that s,(x) = s,
denoted

CF>(Y,s;FU,UY)):= & FU,U,

xcT, QTB
Sw(X)=8

with boundary map defined on generators by

x) = Y. Y #MpU Oy
yETa N T pem2(2,y)
n(d)=1

Theorem 2.1.4. [0S04d] CF>(Y,s;F[U,U™") is a chain complez, i.e. (0°)? = 0.

Since we will see that the homology of this complex is an invariant later, we ignore the
dependence of the above definition on the Heegaard diagram (a slight abuse of notation).

Notice that when F = Z/2Z, /\7(@ is either 0 or 1. Henceforth, F will be taken to be

10



the field of two elements to avoid discussion of signs. The Heegaard Floer groups of (Y,s)
are the homology groups of various subcomplexes of CF>(Y,s). After a discussion about
gradings, we present the theorems (without proof) necessary to establish the homology of

CF>=(Y,s,F[U,U"']) as a 3-manifold invariant.

2.1.3 Gradings and Flavors
The complex in Definition 2.1.3 comes equipped with a relative integral grading, called

the Maslov grading, defined on generators with my(x,y) # 0 by:

gr(x) — gr(y) = (o) — 2nu(9).

For an arbitrary choice of grading 0, we can now define the subcomplex CF~(Y,s) C
CF*(Y,s) generated by all x with negative Maslov grading, and its quotient complex
CF*(Y,s).

As F[U]-modules, they each admit an action via multiplication by U which lowers the
Maslov grading by 2. The kernel of this action yields another subcomplex, E'F(Y, 5), which
can be thought of as the subquotient where the differential only counts discs which have no
algebraic intersection with the subvariety {w} x Sym?~'(%,), i.e. n,(¢) = 0. Each variant,
dubbed CF°(Y,s) when not specifying the flavor, has an induced differential, and their
associated homology groups HF°(Y,s) are the homology groups of the corresponding chain

complex. The following essential theorem holds:

Theorem 2.1.5 (|OS04d|). The invariants HF°(Y,s) thought of as modules over F[U], are
topological invariants of Y and s in that they are independent of choice of Heegaard diagram

and choice of path of almost complex structures Sym?(%,).

The preceding theorem is proven by showing invariance under pointed Heegaard moves
consisting of isotopies of curves (maintaining some kind of admissibility conditions), handle

slides, and (de)stabilizations, all of which occur in the compliment of the basepoint w.

11



2.1.4 Examples

It is illuminating to consider a common example computation of Heegaard Floer homology
for S3, omitting only the most technical details. Using the genus 1 diagram in Figure 2.1 will
allow us to look for discs in the 1-fold symmetric product of the torus, which is still just the
torus. In general, counting discs using the data of the Heegaard diagram is quite difficult.
Other tools have been developed to make computations easier and more combinatorial, such
as the methods in [SW10], [MOT09|, and [LOT14]|, the latter of which is closely related to
methods in Section 4.2.

Let us look more closely at a genus 1 Heegaard diagram for S® in Figure 2.5. Since %, is
just the torus (¢ = 1), T, and Tg are simply the curves a and j respectively. The Heegaard
Floer chain complex E’F(S?’) is generated by the intersection points a, b, and ¢ of v and .
We can see immediately from considering the loops on 3, that €(a, c¢) = €(b,¢) = €(b,¢) = 0,
which aligns with the fact that S admits only a single Spin® structure, corresponding to 0 in
its first homology. Although discussion on how to determine the Maslov index of a disc has
been omitted, it is the case that any disc from a to ¢ does not have Maslov index 1. However,
the discs labeled ¢; and ¢9 have u(¢1) = p(p2) = 1, and will be counted in differentials.

Following the formulae in Definition 2.1.3, the differentials are

d(a) =0 9 (a) =0
ab) =c 0" (b)=Ua+c
d(c) =0 0~ (c) =0.

Taking homology for the hat flavor, we see that the generators b and ¢ have an arrow
canceling them, so ﬁ(SS) > 7/27 = Ty, generated by a. For the minus flavor, we again

see that b cancels with the linear combination Ua + ¢, leaving a as the sole generator of

HF~(S%) = F,[U].

12



Figure 2.5 A "standard" genus 1 pointed Heegaard diagram for S3, where the beta (blue)
curve (3 is perturbed to give more intersection points.
2.2 Knot Floer Homology

Having introduced the machinery of Heegaard Floer homology, most of the tools needed
to construct a Heegaard Floer-theoretic invariant for knots in S® are in place. First, let us
establish some preliminaries. A null-homologous knot in a 3-manifold Y is an isotopy class of
embeddings K : S' < Y such that [K] =0 € H{(Y;Z). The manifold of primary concern in
this paper is S2, in which all circle embeddings are null-homologous, henceforth, “knot” will
mean an isotopy class of embeddings of S! in S3, and will be denoted simply by K. Often,
a knot is depicted by projecting it to the 2-sphere and recording crossing information at the
double points (for a generic projection). This is called a knot diagram, and a few examples
of knot diagrams are shown in Figure 2.6. One important knot is the so-called unknot, U,
which is the only knot which has a knot diagram with no crossings and is isotopic to the
unit circle in the equator S? of S®. A long-standing goal of low-dimensional topologists
and knot theorists is to tabulate and classify all the knots in S3, among discerning their
other properties. One such tool, which also yields interesting results in 3- and 4-manifold
topology is knot Floer homology, a refinement of Heegaard Floer homology to an invariant
pairs (S3, K). As in Section 2.1, many proofs and details may be omitted, but found in
[OS04b] or [Ras03].

13



Figure 2.6 Left: A knot diagram of the unknot. Middle: Another knot diagram of the
unknot. Right: A knot diagram of the trefoil.
2.2.1 Doubly-pointed Heegaard Diagrams

To refine the Heegaard Floer homology groups to invariants of the pair (53, K), we need

to add extra data to Heegaard diagrams for S®. In particular, we define the following:

Definition 2.2.1 (Doubly-pointed Heegaard diagram). A doubly-pointed Heegaard diagram

for S? compatible with a knot K < S is a tuple (3,, o, B, w, z) where
e (3,,a, B, w) is a Heegaard diagram for S? as in Definition 2.1.2, and
e 2z is another basepoint in 2, \ (a U B) such that K can be recovered from w and z.

The recovery of the knot is as follows: Using the Heegaard splitting of S® into H,, and Hpg
as in Section 2.1.1, connect w to z by a curve on ¥, \ o and push the curve into H,. Similarly,
connect z to w by a curve on X, \ B and push it into Hg. The result is an embedding of K
into the described 3-manifold, in this case, S®. From a Morse theoretic perspective, the knot
K can be thought of as a union of two gradient flow lines of —V f from the index 3 critical
point to the index 0 critical point, specified by the z and w basepoints, where f : S — R is
the Morse function giving rise to the Heegaard diagram (X,, o, 8, w, z). It is well known that
any knot in S? (or any 3-manifold) admits a compatible doubly-pointed Heegaard diagram.

Figure 2.7 depicts a common Heegaard diagram for the trefoil.

2.2.2 Knot Floer Complexes
The additional basepoint not only records the isotopy type of the knot, but also induces a

filtration on the complex CF>°(S?), called the Alezander filtration: Given generators x and y

14



Figure 2.7 A doubly-pointed Heegaard diagram compatible with the trefoil in S®. The
green arcs make up the knot.

for CF>(S?) and a disc ¢ € my(x,y), their Alexander filtration level differs by n.(¢) —n(¢).

Definition 2.2.2. Given a knot K in S® and a doubly-pointed Heegaard diagram H =
(2, @, B, w, z) compatible with K, the full knot Floer complex of the pair (5%, K) is freely
generated over F[U, V] by all intersection points x € T, N T4, denoted
CFEyy(K)= @ F[U, V],
XETaﬁTﬁ
with boundary map defined on generators by
V)= Y D #MUOYy.
y€To N T pem2(z,y)
w(e)=1
As before, we will see that the invariants derived from this complex do not depend
on the Heegaard diagram, so we often (slightly abusively) write CF Ky (K) in place of
CFKyy(H). In fact,

Theorem 2.2.3 (|OS04b|). The chain homotopy type of CF Ky v (K) is a topological invari-

ant of (83, K) in that it is independent of choice of Heegaard diagram.

As before, the proof checks invariance under Heegaard moves. Also like before, the
modules carry grading information. The obvious first choice is to allow the naive bi-grading

by U and V on the ring F[U, V] to descend to a relative grading on the full knot Floer
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complex. The bi-grading gr = (gry, gry) is such that gr(U) = (—2,0) and gr(V) = (0, —2).
Then the Alexander grading is defined to be A = %(grU — gry). The inherited relative

gradings on CF Ky y(K) for ¢ € ma(x,y) mimic the relative grading on CF*(S?):

gry(x) — gry(y) = (@) — 2ny,(0)

gry (%) — gry (y) = () — 2n2(9).

Setting V' = 1 and remembering only gr;; recovers the definition of CF~(5%) as in Section
2.1.4. Choosing the grading of 1 in HF~(S3) = F[U] to be 0 establishes an absolute U
grading on CF Ky (K). This process is simply forgetting the new basepoint, z. Forgetting
w instead has a symmetrical effect, and establishes the absolute V' grading on CF Ky y (K).

This symmetry will be an essential computational tool much later, in Chapter 4.

2.2.3 Flavors

As is the case in Heegaard Floer homology, the filtered complexes also enjoy many vari-
ations. Since the chain homotopy type of CFKyy(K) is invariant, all of the following
restrictions are as well. First, setting U = V = 0 gives a chain complex over ' with the

restriction in the differential that one only counts discs which do not intersect either base-

point. We denote this complex, the knot Floer homology, by C{F?(K) = P F(x) with
XGTQQTB

the induced differential

=)= > > #M@y.
y€Ta N Ts pem(2,Y)

pu(e)=1
nw(¢)=n-(4)=0

Another choice is to only set V' = 0, yielding a chain complex over F[U] with the re-
striction in the differential being that one only counts discs which do not intersect the z
basepoint, but can intersect the w basepoint. We denote this complex, the minus flavor of

knot Floer homology, by CFK—(K) = @ F[U] with the induced differential

XETQ ﬂTﬁ

ox) =Y. > #M(eUy.
y€To N T pema(x,y)

w(e)=1
nz (¢):0
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In both cases, it is more common to prescribe the bi-grading on the modules with gr;; and
A, which sacrifices no information since any two gradings among gr;;, gry,, and A determine
the third. These complexes are Z @ Z-filtered complexes by powers of U and V, and it
is most convenient to present a filtered complex information in the integral lattice with the
Alexander filtration on the vertical axis and the algebraic filtration coming from the U action

on the horizontal axis, as in Figure 2.8.

2.2.4 Examples

We will now flesh out an example using the Heegaard diagram for S* in Figure 2.5.
First, we refine the Heegaard diagram with the extra data coming from the trefoil knot in
S3, which we denote T3 since it’s the p = 2, ¢ = 3 torus knot. The resulting diagram and
knot are shown in Figure 2.7. Using this, we can compute the modules and differentials for
various flavors of knot Floer homology. Let us consider CF K~ (Ty3) and Cf_Fj/\K(ngg). Each
are modules over their respective rings with three generators, a, b, and c. The differentials,

following the definitions above are

%V (a) =0 d(a) =0 9 (a) =0
YV (b) = Ua+ Ve a(b) =0 o (b) =Ua
aV(e) =0 d(c) =0 8 (c) = 0.

It is convenient to look at these complexes in the plane in order to take homology and
keep track of gradings, using Figure 2.8. Now it is plain to see that ]—TF?((TQ,;))) = Foy) @
F_10) ® F(_2,_1), where g = (gr;, A). Similarly, HF K~ (T53) = Fo1) ® F[U](_2,-1), where
the F summand is generated by a and the F[U] summand is generated by ¢ and powers of U

times c.
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(a) CFK>®(Ts3)

ae ae
b
4 Uages—e “be
U2a‘(—qb ° ce
U2p
UPast—e" o
(b) gCFK~(Th3) (c) CFK(Ty3)

Figure 2.8 A bunch of versions of the knot Floer complex for the trefoil.
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CHAPTER 3

A STRUCTURE THEOREM FOR A FAMILY OF KNOT FLOER
HOMOLOGY THEORIES

The relationship between the Floer-theoretic knot invariants introduced by Ozsvath
and Szabo6 [OS04b| and Rasmussen [Ras03] and the quantum knot invariants of Khovanov
[Kho0O] and Khovanov and Rozansky [ML04, KRO8| has been an active topic in topology
for the past twenty years. These invariants categorify many knot invariants, like the Jones
polynomial and the Alexander polynomial. That is, the graded Euler characteristic of these
theories returns the respective polynomials. The first such relationship came from a spectral
sequence from the Khovanov homology of a link to the Heegaard Floer homology of its
double branched cover, constructed by Ozsvath and Szabo6 in [OS05b|. Since then, a slew of
spectral sequences of that form have been discovered, yielding a variety of rank inequalities
between the associated homologies as well as indicating the possibility of more interesting
relationships.

The following was a long-standing conjecture of Rasmussen from [Ras05]:

Theorem 3.0.1 (Rasmussen’s Conjecture, [Dow24|). For a knot K C S3, rk(Kh(K)) >
rk(HFK(K)).

In [Ras05], Rasmussen suggests that constructing a spectral sequence is a promising way
to address this conjecture, a strategy successfully employed by Dowlin in [Dow18, Dow24|.
It is natural to want to complete the diagram in Figure 3.1 with spectral sequences from the
Khovanov-Rozansky homologies, K R,,(K), to a proposed Floer-theoretic analog. In [Dow18]|,
Dowlin defines a candidate family of knot invariants, called HF K, (K), and presents the

generalized conjecture.

Conjecture 3.0.2. [Dowl8| For a knot K C S*, there are spectral sequences KR, (K) =
HFK,(K) and KR,(K) = HFEK,(K).

Motivated by Conjecture 3.0.2, we study HF' K, (K), and make the following conjecture.
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KRy(K) o » HF K3(K)

KRy(K) = Kh(K) —— HFK5(K)

Figure 3.1 Dotted arrows are conjectured, while solid arrows have been proven in suitable
versions.

Conjecture 3.0.3. For any knot K (or more generally, link) in S®, HFK,(K) can be

obtained by a change of coefficients from HF K~ (K).

Although further investigation is required to prove Conjecture 3.0.3, much can be said
about two wide classes of knots for which the knot Floer homology (among other invariants)
is already well understood and computable. In particular, we focus our attention on L-space

knots and Floer homologically thin knots.
3.1 Surgery and L-Space Knots

3.1.1 Dehn Surgery

One ubiquitous way to describe a 3-manifold is via Dehn surgery on a knot or link in S3.
Since knots are smooth embeddings, any K C S® has a tubular neighborhood, v(K), which,
after cutting S® open by removing v(K), can be identified with the solid torus, a genus 1
handlebody whose boundary is the “standard” torus, denoted 72. This can be seen in Figure
3.2. We then have two 3-manifolds with boundary: v(K) and the knot exterior, S® \ v(K),
sometimes denoted Xf. Their boundaries are 9(S® \ v(K)) = dv(K) = T? For further
details, see [Savll].

Now that there has been some cutting, it is only natural to do some gluing. It is im-
mediately clear that identifying the common boundary of S? \ v(K) and v(K) will return

53, but other gluings via homeomorphisms of 72 are also possible. We say Y is obtained
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;{ﬁ :]

Figure 3.2 Left: A knot in S® with a regular tubular neighborhood. Right: the standard
solid torus, with preferred basis for H,(0(v(K)) = T? labeled as A and p.

from surgery along K in S® if it was obtained by removing a neighborhood of K and gluing
the boundaries of S® \ K and v(K) via a homeomorphism of 72, h : T? — T?. That is,
Y = S\ K U, v(K). This idea can be extended to links by doing knot surgery on each
component consecutively.

The resulting manifold depends entirely on h. Even further, one only needs to keep track
of the image of the meridian of K, called p, thought of as {point} x 9D € T?. Up to isotopy,
any simple closed curve on T? can be given by a pair of coprime integers (p,q), keeping
track of its homology class in H;(T?;Z) in the basis given by a certain longitude of K in
S3\ v(K) and the meridian of K. This longitude, called the Seifert longitude, X, is the
curve on 9(S%\ v(K)) which is homologically trivial in S®\ v(K). Then Y depends only on
[h({point} x OD)] = pu + g\ € H1(0S*\ v(K)), where either p or ¢ could be 0. It is well
known that any closed orientable 3-manifold can be obtained by surgery on some link in S3,
and we often write Y = S;’/q(K) for the reduced fraction p/q € Q U {oo} to indicate the

surgery.

3.1.2 [L-Space Complexes

The Heegaard Floer homology of L-spaces are particularly well understood. A rational
homology 3-sphere Y is an L-space if rkﬁ(Y) = |H1(Y)|. A knot is a positive (or negative)
L-space knot if it admits a positive (or negative, respectively) surgery (p/q > 0) yielding an

L-space. We think of L-spaces as having the “simplest” Heegaard Floer homology possible.
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Uk
Ty < X9 X

V’“Ql Vkll
Uks Uk2

T3 < Ty < T3

) Ukm72
< Tm—1

lvkmfl Vkm_zl

Fopy—
Tm Tm—1 u Tm
Figure 3.3 Plotted roughly in the integral lattice given by gr;; and gry,, the left shows a
positive staircase complex, while the right shows a negative staircase complex.
A summand frequently appearing in the full knot Floer complex of highly studied knots is

the so-called staircase complex:

Definition 3.1.1 (Staircase). A chain complex C' = @ F[U, V] freely generated by {z;}7,
i=1
is a staircase complex if it is in one of the forms in Figure 3.3 for some positive integers k;

and odd integer m > 3, where each x; is the generator of F[U, V] corresponding to the i-th

summand of C.

With the following theorem, we see that staircase complexes completely characterize

L-space knot Floer homology:

Theorem 3.1.2 (|OS05al). If a knot K is a positive (or negative) L-space knot, then
CFK~(K) is chain homotopy equivalent to a positive (or negative, respectively) staircase

complex.

The full knot Floer complex for the trefoil, CF Ky (15 3) as in an example in Section

2.2.4, is a staircase complex.

3.2 Thin Knots and the )-Grading
Recall from Section 2.2.2 that full knot Floer complexes are birgraded modules by

(gry, A). There is a combination of these gradings, called the 0-grading, given by

0=A—gry.
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This can be thought of as a relative d-grading on CF Ky, (K) in the following way. Given

a doubly-pointed Heegaard diagram for K C S® and ¢ € my(x,y), the relative d-grading is

6(x) = 0(y) = n2(9) + nw(9) — u(9)-

A knot K is Floer homologically thin, or just thin, if its knot Floer homology is supported

in a single J-grading. For example, we know from the trefoil example in Section 2.2.4 that
HFK(T273) = F(O,fl) D F(l,O) D IF(271).

The d-gradings of 1 € F in each summand are all —1, so the knot Floer homology of the
right-handed trefoil is thin.
Like L-space knots, thin knot Floer complexes have a nice form. There is another model

summand to include:

4
Definition 3.2.1 (Box). A chain complex C = @ F[U, V] freely generated by {z;}}_, is a
i=1

box complex if it is in the form

for some positive integers k and [, where each z; is the generator of Q[U, V| corresponding

to the i-th summand of C.

Theorem 3.2.2 (|Petl3]). If a knot K is Floer homologically thin, then CFK~(K) is a
direct sum of box and staircases complexes each of which consist only of arrows with all U

and V' powers equal to 1.

3.3 The Family HFK,(K)

In an effort to fill in the right side of Figure 3.1, Dowlin defined a family of Floer-theoretic
knot invariants meant to enjoy similar properties to the Khovanov-Rozansky homology the-
ories. Indeed, the forthcoming invariants, H F K, (K), have many properties beyond invari-

ance. For a detailed description, see [Dow18|, as many proofs will be omitted here. For
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completeness, the original definition for these invariants for links in an arbitrary 3-manifold
is presented. A [link in a 3-manifold Y is simply a knot of multiple components, i.e. an
isotopy class of embeddings L : US* < Y. The discussion will begin with links in mind, but

quickly be constrained to the case when the link has only one component, i.e. a knot.

3.3.1 Heegaard Diagrams
Once again, a modification of the Heegaard diagram Definition 2.2.1 is needed to include

the link information:

Definition 3.3.1. A (multi-pointed) Heegaard diagram H for a link L in a closed, oriented

3-manifold Y is the data (X,, o, 3, w, z) where
e 3, is a closed, oriented, genus g surface, called the Heegaard surface.

e o (respectively, 3) is a set of g+ k — 1 disjoint embedded circles {ay, ..., ¢g4x—1} (resp.

{B1, ..., Bgsr—1}) in X such that the alpha curves intersect the beta curves transversely.
e o and B each span a g-dimensional subspace of H;(X,;Z), and

e w and z are each sets of k basepoints {wy, ...wy} and {21, ..., 23} such that each compo-

nent of ¥, \ o and each component of £, \ B contains a w basepoint and a z basepoint.

As before, the manifold Y is constructed from this data by thickening ¥, to ¥, x [0, 1]
and attaching thickened discs along the alpha curves at ¥, x {0} and along the beta curves
at X, x {1} and then filling in the resulting 2-sphere boundaries (now multiple) with 3-balls.
The link L in Y can be seen as follows. When thickening ¥, also thicken the w and z
basepoints to get arcs w Lz x [0,1] C X, x [0,1]. Since each component of £, \ a has a w
and z basepoint, we connect those arcs in w Uz x [0, 1] with an arc in the 3-ball attached to
that component’s S? boundary. We do this similarly for the ¥ x {1} boundaries.

Dowlin extended this notion to a punctured Heegaard diagram which adds to H the

following data:

e a basepoint p, called the puncture, and
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e curves gy, and [Bgyr which bound discs, and which separate p from the w and z
basepoints, such that a and 3 still intersect transversely and span a g-dimensional

subspace of Hy(X,;Z).

Puncturing the Heegaard diagram is like considering L LIU (where U is the unknot) where
the unlinked unknot has only a single basepoint p. This is just a (0, 3)-stabilization in the
sense of [OS04b].

3.3.2 Complexes

The first construction needed is, in some sense, the widest one can think of to extrapolate
the full knot Floer complex in Section 2.2.2. In fact, the following is not even a chain complex
in general, without identifications in the ground ring or restrictions on the link. In addition,
we make all definitions henceforth in this chapter with the ground field the rationals, Q,

since Dowlin’s work requires it.

Definition 3.3.2. Given a multi-pointed Heegaard diagram H = (X,, o, 3, w, z) compatible

with L, the master knot Floer complex of the pair (Y, L) is

e the Q[U, V]-module freely generated by all intersection points x € T, N Tg, denoted
CFEyv(H):= € QU v,
XETQHTB

e and the boundary map given by counting the Maslov index 1 pseudo-holomorphic discs

from one intersection point to the others, denoted (using subscripts to distinguish it

from Definition 2.2.2)

YETa NTg ¢pEm2(X,y)
m(@)=1

In general, CF Ky y(H) is not a true chain complex, as mentioned, but a curved one. Let

We(;) be the w basepoint connected to z; via an arc in H,, and wy;) be the arc connected to

z; via an arc in Hg. Then the curved complex has potential
k

Ny = Z(Ua(i) — Upi)) Vi

=1
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When each component of L has exactly one w and z basepoint, CFKyy(H) is a true
complex, since a(i) = b(7) for the singular value of i.
As with other algebraic variations on complexes involving two formal variables, Dowlin

makes a particular one to define a family of complexes:

Definition 3.3.3 ([Dow18|). Given a multi-pointed Heegaard diagram H for a link L in a

3-manifold Y, define the chain complexes CF K, (H) to be the quotient
Uaty — Ustay
CFKn(H) = CFKU,V(KH) Vz -~ 7 7 |
Ua(i) — Us(s)
and the differential 9, is the induced differential from Jy . If there is only one basepoint w

and one basepoint z, define

CFK,(H)=CFKyyv(H) / <V - nU”—l).

Together with the following theorems, HF K, (L) = H,(CF K, (#)) where # is any punc-

tured Heegaard diagram for L, are invariants of the pair (Y, L).
Theorem 3.3.4 ([Dowl18]). The map 0, : CFK,(H) — CFK,(H) satisfies 02 = 0.

Theorem 3.3.5 (|[Dowl8|). If Hi and Hs are two punctured Heegaard diagrams with k
curves for a null-homologous link L, then CFK,,(H1) and CFK,(H2) are chain homotopy

equivalent as Q[Uy, ..., Ug|-modules.

We perform some computations in Section 3.5. These examples illustrate that, for knots,
one has a simpler equivalent definition of HF K, (K). In fact, in the case where L = K is
a knot, HF'K,,(K) can be computed from CF Ky (K) without a punctured Heegaard dia-
gram. Dowlin presents an alternate definition, which he proves is equivalent in the following

theorem.
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Theorem 3.3.6 (|[Dow18|). If H is an unpunctured diagram for a knot K in S* with a single

pair of basepoints w and z, then

HFKn(K):H*( CFKyy(H) )

(UV,V —nUm 1)

3.4 Structure Theorem

Since Q[U] is a principal ideal domain,
QU]

- QU] o () QU 4 por@ul (K-
H.(CFK (K) @ (Un)) ~ |[,(CFK (K),Q[U])Q% o | @Tert (HFK™(K);QU)).

This fact motivates Conjecture 3.0.3 as well as the idea for the following algebraic machinery.
Recall that Dowlin’s definition of the complex C'FK,,(K) for knots in Theorem 3.3.6 is

the quasi-isomorphism
CFKyy(K)

CPEWNK) & s,

In the examples later in Section 3.5, this complex turns out to be isomorphic to

CFK,(K) = CFK~(K) 8 %g)]

which we can compute using the universal coefficient theorem. This leads to another defini-

tion:

Definition 3.4.1. Given a chain complex of free Q[U, V]-modules C' = @ Q[U, V], define
the Q[U]-modules

C
Cn = (UV,V —nUnr 1)
~ C
C, =
(V,um)
Notice that
C ~ Q[U, V]

(UV,V —nU"1) Q[((%V] (UV,V —nUn-1)’
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Figure 3.4 The tower (vector space) structure of the complex CFK,,(T53) (the complex
shown in Figure 3.7).For example, 0, (x3) = Uz; + nU" 123 and 0, (Uz,) = UZx;.

and similarly that
c QU.Vl . ¢ QU]

[a¥)

~C ® = ,
V,ur) - awwvy (V,U?) (V) ey (U)
so CFK,(K) and C/’Z_T\EL(K) are as in Definition 3.4.1.

Given a chain complex C over Q[U, V|, we often have Figure 3.4 in mind for the complexes

C, and 5n Each generator corresponding to a summand has a tower of chains, and the

differential is marked by arrows between them. Figure 3.4 shows CF K, (T3 3). This structure

also clearly shows C' as a Q-vector space.

In general, C,, and C,, are not isomorphic as Q[U, V]-modules or quasi-isomorphic, while

they are isomorphic as Q[U]-modules. In fact, we have the following counterexample:
Lemma 3.4.2. C,, and én do not always have the same homology.

Proof. Consider the complex C' given by

Q[U, V] - Q[U, V.

Then C,, is
QU] nU™\ QU]
om) T Um)
and én 1S
QU] _ 0 . QU
O T
On the level of homology,
Q[U] @[U ]
H.(C,) =
- U
1.6, = AU QU] QU]

[CORSUD
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Uk Uk
To < I To < I

annfl lmU"*1 lo lo
Uk Uk

Ty < T3 Ty < T3

Figure 3.5 On the left: C), for [ = 1. On the right: C, for [ = 1.

O

To prove the main theorem of this chapter, we employ the following algebraic lemmata.

Lemma 3.4.3 (Cancellation lemma, [HN13|). Let (C,0) be a chain complex of R-modules,

freely generated by chains {x;}, and suppose that d(xy,x;) is a unit in R, where

8(%) = Z Ay Loy, + d(l’k, Il)LL’l.
m#l

Then we can define a complex (C',d'), freely generated by {x;|i # k,i # I}, which is chain

homotopy equivalent to (C,0).

Lemma 3.4.4. For any box complex C, H,(C,) = H.(C,) is an isomorphism of Q[U]-

modules.
Proof. Any box complex can be pictorially represented as in Definition 3.2.1. Note that after
the identifications V = nU" ! and UV = 0 in the ground ring, if [ > 1,
Vl =V. Vl—l

— nUn—lvl—l

=UV -nU" V"2

=0.
So we see that if [ > 1, the vertical arrows become zero in both C,, and 5n, and C),, = 5n

Thus, we restrict our attention to when [ = 1. In this case, C),, and C,, are as in Figure 3.5.

By direct computation using a similar diagram to Figure 3.4,

o= (Y1) = mc
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Lemma 3.4.5. For any staircase complex C', H,(C,,) = H,(C,,) is an isomorphism of Q[U]-

modules.

Proof. Any staircase complex can be pictorially represented as in Definition 3.1.1. We break
the proof into a case for each type of staircase.

Case 1: The staircase is like the left in Figure 3.3. Using a similar argument as in the
proof of Lemma 3.4.4, we can restrict our attention to the even ¢ for which k; = 1, which
are the only places C,, and 5n differ. Regarding C, and @L as Q-vector spaces (and, as
such, Q-modules), we have that d,z; = Uki-tz;_y +nU" 'z, Since d(z;, Uri—1a;_1) = 1,
finite applications of Lemma 3.4.3 yield a chain homotopy equivalent complex of Q-modules,
C,,, where the generators UF-1z;_; and x; are removed. A visual representation of the
cancellations are as in Figure 3.6. After cancelling the same arrows in én, the resulting
chain complex is equal to C,, as in Figure 3.6. We can readily compute H,(C,,) and H,(C,,)
by computing H,(C,). The complex C,, is simply m=1 towers coming in pairs of the form
in Figure 3.6, with arrows given by multiplication by U*-! for even 4, and one single tower

with no arrows for ¢ = m. Thus,

m—1

2
— QU] QU] k QU]
H.(C,) = e < X1 > D — < U gy > | D <y, >
(Cn) @ ((Ukzsl) 251 (Ukzo-1) 2 (Un)
s=1

Case 2: The staircase is like the right in Figure 3.3. The argument is exactly the same as
in case 1, except we now restrict our attention to the odd ¢ for which K; = 1, and we apply
Lemma 3.4.3 on the generator pairs (U™ lz;,, U *i+17 1y, 5) for such i. The new complex
C,, is still mT_l towers coming in pairs of the form in Figure 3.6, but now with arrows given
by multiplication by U*-! for odd i, and the singular tower with no arrows is at i = 1.

In both cases, to see the isomorphism of Q[U]-modules, we check how U acts on homology.

Indeed, the distinction in module structures arose from the V-action on C', but the U-action

remains unchanged throughout. O

The main theorem of this chapter is the following structural theorem for the shape of

HFEK,(K):
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Ti—1 Tit1

Uri Uz; Uiy
Uki_ll'i Uki—lxl-ﬂ

Un—l . Un—l . Un—l . Un—l . Un—l . Un—l .
Ti—1 Z; Tit1 Ti—1 Z; $z+1

Figure 3.6 A local picture of a cancellation for some even ¢ where k; = 1. On the left: the
cancelled arrow appears in red in the complex C,. On the right: the new complex, C,,
which is chain homotopy equivalent to C,.

Theorem 3.4.6. If K C S® is an L-space knot or a thin knot, then

HFEK,(K)= (HFK~(K) ® %) o Torl " HF K~ (K); Q[U)).
o] (U™)

Proof. The argument is a chain of isomorphisms given by Lemmata 3.4.5, 3.4.4, and the

universal coefficient theorem. The universal coefficient theorem says

B QU] ., o QUIT ., p 0w .
H.(CFK (K)Q% (Un)) ~ |H,(CFK (K),Q[U])Q% D) @ Tory " (HF K~ (K); Q[U)).

But
HFK (K)=H.,(CFK™ (K))

and Lemmata 3.4.5 and 3.4.4 yield

HFK,(K) = H,(CFK~(K) 8 ?U[g)] ).

Piecing it all together gives the result. O]

3.5 Examples

3.5.1 Trefoil
As mentioned above, CF Ky (1,,) can be read off from its Alexander polynomial. For
the trefoil, it is well-known that A(Ty3) = t~' — 1+¢. Since the spacing between the powers

of t are only one each, we have only a single power of U and V' as the maps on the complex,
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QU] +*— Q[U] QU] , U Q]

ony > om)

0 annfl
QU]
Q[U] )

Figure 3.7 On the left: the complex CFK~(T53). On the right: the complex CFK,(T33).

yielding the usual staircase picture:
QU,V] +— QIU, V]
v
Q[U, V]
The complex CF K, (T3) looks the same with the appropriate quotients. Both CFK~(K)

and CFK,(K) are pictured in Figure 3.7. On the level of homology, we see the following:

QU]
om)

HFK ™ (Tys) = QU] ® Q.

HFEK,(Ty3) = 2QeQ

Notice that since Tor(l@[U] Qo QU %E{%) = Q, by the universal coefficient theorem,

HEK, (Toa)  HFK(Taa) & % D Tl (HFK~ (T, Q)

EHQM@QQ§QW%B@

v (U™)
~ QU]
D eQa Q.

We see similar behavior for a knot whose master complex has boxes and is not a torus knot.

3.5.2 Figure Eight
We first look at the master complex for 4,, and then its quotients, as shown in Figure
3.8.

The invariants for 4, are

QU]
om)

HFK,(4)~2Q®»Qa®Qa Qo

HFK=(4) =2 QU] ®Q® Q.
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Figure 3.8 On the top: the complex CF Ky (4;), where each dot represents the module
Q[U, V]. On the left: the complex C'F'K~(4;), where each dot represents the module Q[U].

On the right: the complex CFK,(4,), where each dot represents the module ‘(@U“,{;

Again, the universal coefficient theorem gives us the following:

HFKA%)%HFK'MQ&%%%%G}RﬁNWHFK(%)QWD
~ QU]

W@®Q@Q@Q@Q
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CHAPTER 4

DEEPLY SLICE KNOTS
This chapter is dedicated to work stemming from a collaborative project with three
other doctoral candidates at Michigan State University: Rob McConkey, Christopher St.
Clair, and Chen Zhang. Theorems will be labeled accordingly, and many figures were also
collaborative efforts.

The primary conclusion of the project is the following result.

Theorem 4.0.1 (McConkey, St. Clair, W., Zhang). For the first 6-crossing knot, K = 64,
the Whitehead double of the dual knot to 1/n surgery along K, D (pi1/,(K)), is not slice in

S3(K) x I forn € Z, but is slice in a contractible 4-manifold with boundary Sf/n(K).
Our calculations motivate the following conjecture.

Conjecture 4.0.2. If a non-trivial knot K is slice in the 4-ball, then the Whitehead double
of the dual knot to 1/n surgery along K, D (j1/,(K)), is not slice in S% (K) x I for n € Z,

despite being slice in a contractible 4-manifold with boundary S} /n(K ).

Conjecture 4.0.3. If a non-trivial knot K is slice in the 4-ball and has an acyclic summand
in its knot Floer complex over F[U,V]/(UV) with a vertically and horizontally simplified
basis, then the Whitehead double of the dual knot to 1/n surgery along K, D, (j1/,(kK)), is

not slice in S% (K) x I for n € Z.

n

4.1 Topological Preliminaries
So far, little discussion on some of the most active topics in knot theory (and low-
dimensional topology, for that matter) are present. We rectify that here, where we define

the integral components to Theorem 4.0.1.

4.1.1 Satellite Knots
There is an operation on knots called satellite operations, where one constructs a new

knot from two given knots. Given a knot P embedded in the solid torus S* x D? and K
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Figure 4.1 A common projection of the first 6-crossing knot, 6;.

an arbitrary knot in S%, gluing S' x D? along their common torus boundary to S\ v(K)
yields a new knot in S, called the satellite knot P(K), where the meridians of the tori are
identified and the longitude of S! x D? is identified with the Seifert longitude of K. We call
P c S' x D? the pattern knot and K C S? the companion knot.

The pattern appearing in Theorem 4.0.1 is the Whitehead pattern, denoted D, . Here, the
Whitehead pattern is the positively (hence the “+” in the symbol) clasped unknot wrapped
around the S! factor of the solid torus in which its embedded. A figure involving the right

handed trefoil as companion to the Whitehead pattern is shown in Figure 4.2.

4.1.2 Slice Knots

Given a smooth 4-manifold X whose boundary is Y, we say a knot K C Y is smoothly
slice, or simply slice in X, if there exists a smoothly embedded disc D < X such that
K = 0D C 0X =Y. A schematic of a slice disc as well as a trivial example is shown in
Figure 4.3. Sliceness is an extremely active topic for study when considering knots in S®
thought of as the boundary of the standard smooth 4-ball, B*. When not specified, when
we say “K is slice,” we mean that K C S® is slice in B* A particular knot invariant
coming from knot Floer homology, the 7-invariant, is a concordance invariant, and hence
can obstruct sliceness of a knot. We discuss this in further detail in Section 4.3.2. For a nice
survey on knot concordance, see [Liv05].

Recall from Section 3.1.1 that surgery along K requires removing a solid torus in S? and
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K

Figure 4.2 Left: A diagram for the right handed trefoil in S3. Right: The Whitehead
pattern, Dy, in S x D?. Bottom: A diagram for the knot D, (Ty3) in S°.

Iy K

5 = fit

Figure 4.3 Left: A half-dimensional schematic of a slice disc for some knot K. Right: A
slice disc schematic for the unknot, pushed into B*.
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Figure 4.4 A half-dimensional schematic if a 2-handle attachment.

gluing it back in. The core of the surgery solid torus S! x D? once glued in to produce the
surgered manifold is often called the dual knot to the surgery along K. In the case of 1/n
surgery, we denote the dual knot as fi1/,(K) C S} /n(K ). Much information is known about
dual knots as well as various flavors of their knot Floer homology, including surgery formulae
in [HHSZ22].

There is a feature of the dual knots that needs highlighting. Performing integral (that is,
p/q € Z) surgery along a knot K in a 3-manifold Y corresponds to attaching 4-dimensional
2-handles, D? x D?, to the 4-manifold X whose boundary is Y (See Figure 4.4). Therefore,
the core of the surgery torus is also the isotopic to the boundary of the cocore (the second
D? factor) of the attached 2-handle. Thus, the dual knot is slice in the 4-manifold (Y x
I) U (2 — handle), where the slice disc is the cocore of the 2-handle itself. For a reference on

handle decompositions of 4-manifolds and Kirby calculus, see [GS99]. Moreover,

Theorem 4.1.1 (|Gor75|). If K is slice, then there is a smooth, contractible 4-manifold W

with boundary Sf’/n(K).

There is a nice Kirby diagram for such a 4-manifold W obtained from the surgery diagram
for Sf/n(K ), show in Figure 4.6. We first note that the dual knot to 1/n surgery along K
looks like a pushoff of K in the surgery diagram in Figure 4.5. We then perform a Kirby

move known as the slam dunk to obtain a surgery diagram with O-framed surgery on K and
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K

Figure 4.5 A surgery diagram for 1/n surgery along K, keeping track of the dual knot to
the surgery, i1/, (), in blue. Also, a Kirby diagram for a 4-manifold whose boundary is

1

0 (0
| )

Figure 4.6 A slam dunk Kirby move applied to obtain a Kirby diagram for a new
4-manifold, W, whose boundary is homeomorphic to S? /n(K ).

n-framed surgery on a new, unknotted component, denoted L. Finally, slide the dual knot
representative over K itself to obtain the desired surgery diagram for S} /n(K ). Now we show
that all the Kirby diagrams in Figure 4.7 are Kirby diagrams for W, since each arrow only

describes isotopies of the ji1/, (/) in Sf’/n(K).

Proposition 4.1.2. Suppose K 1is slice. Then the Kirby diagram on the right hand side of

Figure 4.6 describes a smooth, contractible 4-manifold W whose boundary is Sf/n(K).

Proof. First, we note that the Kirby diagram is a surgery diagram for S? /n(K ), by Kirby’s
Theorem |[Kir78|. This is because we used only Kirby moves to manipulate the diagram,
keeping track of the isotopy class of the dual knot, in red. Since K is slice in S® = 0B*, we

begin by removing a neighborhood of a slice disc for K. This neighborhood is diffeomorphic
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| 4
Isotopy

Figure 4.7 The process (in reverse) of obtaining a nice Kirby diagram for W, featured in
the top left.

to D? x D?, with the first factor thought of as the slice disc, and the second as the thickening
to a neighborhood. Hence, we are really removing a 2-handle from B* by introducing instead
its canceling 1-handle, as in the “digging a ditch” analogy in [GS99]. With this perspective,
we can see that the fundamental group of B*\ (D? x D?) is generated by a meridian of
the boundary of the removed disc; that is, a meridian of K. Now, we attach the other
2-handle with framing n along L, which is also a meridian of K, killing that generator in

m(B*\ (D? x D?), so W = (B*\ (D? x D?) U (2 — handle) is contractible. O

The particular feature of the dual knot to 1/n surgery of import is the following.
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Lemma 4.1.3. The dual knot to 1/n surgery along a slice knot K C S®, 1/, (K) C Sf/n(K),

15 slice in W as in Theorem 4.1.1.

Proof. This can readily be seen using the argument above, since the blue curve is the dual
knot to n surgery on L in Figure 4.6. Thus, it is the boundary of the core of the 2-handle

attached along L, which is a smooth disc in W. [

A well known fact about Whitehead doubling in S? is that the Whitehead double of a

smoothly slice knot is again smoothly slice. Analogously, we achieve the following corollary:

Corollary 4.1.4. The Whitehead double of the dual knot to 1/n surgery along a slice knot
K C 8%, Dy(pm(K)), is slice in W as in Theorem 4.1.1.

Proof. By Lemma 4.1.3, the dual knot is itself slice. Given an annulus with one boundary
component the dual knot and one boundary the unknot, guaranteed by sliceness, then we
can “Whitehead double” the annulus in the same fashion as the dual knot itself. Since the
Whitehead double of the unknot is again the unknot, we have presented an annulus between

the Whitehead double of the dual knot and the unknot. OJ

In [KR21], the concept of deeply slice knots is introduced in a proposed strategy to answer

a question on the Kirby list, attributed to Akbulut.

Definition 4.1.5 (Deeply Slice). A knot K C 0X is deeply slice in X in X if it is slice in

X but K is not slice in 90X x [I.

That is to say that not only is the given slice disc not in 0X x I but there is no slice
disc there. In essence, this means that the slice disc is “interesting” because it requires use of
the topology of the 4-manifold X rather than just what happens near the boundary. Then
Akbulut’s question in [Kir97| can be phrased as: Are there contractible, smooth 4-manifolds
with boundary an integral homology 3-sphere which contain deeply slice knots that are null-
homotopic in the boundary? With this definition, one can interpret Theorem 4.0.1 as saying

that the Whitehead double of the dual knot is deeply slice in W described above. If the
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generalization in Conjecture 4.0.2 holds, there would be a good place to look to find such

knots.

4.2 Bordered Floer Theory

The first main tool used to obstruct the sliceness of the Whitehead double of the dual
knot in a collar neighborhood of the boundary of W, i.e. Sf/n(K ) x I, is a version of
Heegaard Floer homology associated to 3-manifolds with boundary, called bordered Heegaard
Floer homology. The most consolidated resource on the matter is [LOT18|. Since then,
bordered Heegaard Floer homology has led to significant results in 3-manifold topology and
knot theory. In [HRW23, HRW22 Han23|, Hanselman, Rasmussen, and Watson use the
framework of bordered Heegaard Floer homology to construct a very useful description of

knot Floer homology using immersed curves, which is the description we use here.

4.2.1 Immersed Heegaard Diagrams

As with the variants of Heegaard Floer theory discussed in Chapter 2, bordered theory
also begins with a Heegaard diagram. Immersed Heegaard diagrams arise as a “composition”
of two components, corresponding to pairing theorems in bordered Heegaard Floer homology.
In this case, immersed Heegaard diagrams are built from pairing an immersed multicurve in
a marked torus, thought of as the boundary of a bordered 3-manifold, and a pointed bordered
Heegaard diagram. This definition and further discussion of immersed Heegaard Floer theory

in full generality can also be found in [CH23|.

Definition 4.2.1. An immersed doubly-pointed Heegaard diagram is a tuple H = (£, o, B, w, 2)

where
e >, is a closed oriented genus g surface,

o o= {ay,...,ay1,04} is a collection of curves in ¥, where {oy, ..., 41} are embed-
ded and disjoint, oy = {a;, ..,y } is a collection of immersed curves decorated with
local systems for which o has the trivial local system, {a, ..., a1, )} are linearly

independent in H(X,;Z), and each o is trivial in Hy(34;Z)/ (o, ..., g_1) for i > 1,
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e 3 ={pf,...,5,} is a collection of embedded disjoint curves in ¥, which are linearly

independent in Hy(Xy;Z), and

e w and z are basepoints on ¥, lying in the same component of ¥, \ a and in the same

component of ¥, \ 8.

Often times, and in this discussion, the local systems involved are all trivial. Also, we
often denote a, by oy, for “immersed alpha curves,” following conventions in [CH23|. As

usual, there are admissibility conditions on these kinds of Heegaard diagrams. We refer to

[CH23| for details.

4.2.2 Knot Floer Complexes
We now discuss another way to get the knot Floer chain complex, now from an immersed

Heegaard diagram.

Definition 4.2.2. Given an immersed doubly-pointed Heegaard diagram H = (3,, o, B, w, z),
the “UV equals zero” knot Floer complex of H is freely generated over R = F[U,V]/(UV)
by all intersection points x € T, N Tg, denoted

CFEr(H)= P Rx),

x€TaNTg
with boundary map defined on generators by
Or(x)= D Y #M@EUOVCy.

y€Ta N Tp ¢izr£)(i71y)

Working over the ring R = F[U,V]/(UV), often called the “UV equals zero” ring, has
become increasingly popular in studying knot Floer homology, and is useful in eliminating
pesky arrows in the chain complex. As is the case for the full knot Floer complex in Section
2.2.2, CF Kr(H) supports a bigrading by (gr, gry,) or by (gr;;, A) defined the same way. As

is obligatory, the following theorems guarantee an invariant chain complex.

Theorem 4.2.3 (|[CH23|). The complex (CFKr(H),dr) is a chain complez, i.e. d% = 0.
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Theorem 4.2.4 (|CH23|). The bigraded chain homotopy type of (CFKgr(H),0r) is invari-
ant under isotopies of the a curves and B curves, handeslides, and (de)stabilization of the

Heegaard diagram, H.

Later, in the discussion of pairing theorems, we will see that this complex is chain homo-
topy equivalent to the full knot Floer complex of the compatible knot with the identification
UV =0 in the ground ring. To see the relationship between a knot-3-manifold pair and the
knot Floer complex, we turn our attention to the two pieces paired to create an immersed

Heegaard diagram.

4.2.3 Doubly-pointed Bordered Heegaard Diagrams

A doubly-pointed bordered Heegaard diagram for a pair (Y, K) is to a bordered Heegaard
diagram for Y as a doubly-pointed Heegaard diagram for a pair (Y, K) is to a Heegaard
diagram for Y. That is, we first start with the following information which encodes a bordered
3-manifold (Y, Z,¢), where Z and ¢ are some auxiliary data specifying a parametrization

of the boundary of Y.

Definition 4.2.5 (Bordered Heegaard Diagram). A bordered Heegaard diagram for a smooth

3-manifold Y with boundary is a tuple (3,, o, 3, w) where

e X, is a genus g surface with a single boundary component,

e 3 is a collection of g pairwise disjoint properly embedded simple closed curves in the

interior of 3, which are linearly independent in Hy(%,;Z),

e « is a collection of g — k pairwise properly disjoint embedded simple closed curves
a:={af, ..., ozgfk} in the interior of ig and 2k pairwise disjoint properly embedded

arcs a® := {a§,...,a4 } in X, with transverse intersection with 9%,, and
e w is a point on 9%, \ (a N IV,).

Given a bordered Heegaard diagram, reconstruction of the bordered 3-manifold is very

similar to that of an ordinary Heegaard diagram. We outline the notable difference here.
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Since there are now arcs a® in the diagram, we must complete them to circles to attach
handles along them. Roughly speaking, this is done using the data of a point matched circle
that encodes the parametrization of the boundary of the bordered 3-manifold. For further
details, see [LOT18].

As we have come to expect, we have the following theorem.

Theorem 4.2.6 ([LOT18]). Any bordered 3-manifold can be represented by some bordered

Heegaard diagram.

To complete the analogy, we now incorporate the information of a knot present in a

bordered manifold.

Definition 4.2.7 (Doubly-pointed bordered Heegaard diagram). A doubly-pointed bordered

Heegaard diagram for Y compatible with a knot K < Y is a tuple (fg, a, 3, w, z) where
e (X,,,B,w) is a bordered Heegaard diagram for Y as in Definition 4.2.5 and

e z is a basepoint along with w in 3, \ (a®U B) such that K can be recovered from w

and z.

The recovery of the knot is exactly the same as it is for Definition 2.2.1. As usual,
every knot in a bordered 3-manifold can be realized by a doubly-pointed bordered Heegaard

diagram. These diagrams are the first pieces in constructing an immersed Heegaard diagram.

4.2.4 Immersed Curves

The second ingredient in an immersed Heegaard diagram is the immersed multicurve in
the marked boundary of a knot compliment, the marked torus. The marked torus is simply
the standard torus, thought of as R?/Z? in the plane, where the z-axis is the preferred
longitude and the y-axis is the preferred meridian, and a basepoint z located at (1 —¢,1 —¢€)
for as small € > 0 as we like. An immersed multicurve is a set of immersed curves in the

marked torus away from z decorated with local systems, which we suppress, since our result
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does not concern them directly. We often simply say immersed curve to mean an immersed
multicurve.

Immersed curves conveniently package the information of CF K~ (Y, K) in the form of the
bordered invariant, sometimes denoted EF(Y \ v(K)), which is an invariant of a bordered 3-
manifold arising from a bordered Heegaard diagram. For discussions on the immersed curve
formulation of bordered Heegaard Floer homology, see [HRW23|, [HRW22|, and [Han23|.
Technically, to carry out this packaging, a particular basis is required for CFK~ (Y, K).
Recalling that CF K~ (Y, K) comes with two filtrations, one by the action of multiplying by
U and the other by the Alexander filtration, as in [HRW22|, we may choose a representative of
the chain homotopy type of CF K~ (Y, K) for which the boundary map 0~ strictly decreases
one of these filtrations. A filtered basis for CF K~ (K) is {v;} such that the equivalence classes

{[vi]} in the associated graded complex gCFK™(Y,K) = @ Fa(z)/Fa()-1 are a basis.

Definition 4.2.8 ([HRW22|). A filtered basis {v;} is wvertically simplified if for each v;,
either Ov; € U - CFK~(K) or Ov; ~ vj + x where x € U - CFK~(K). The filtered basis is
horizontally simplified if for each v; with Alexander filtration level A(v;) = [, either A(Jv;) <1

or A(dv;) = Urv; + x where A(U*v;) =1 and A(x) < I.

Being vertically simplified can be thought of as requiring that each basis generator only
has one vertical arrow pointing to or away from it, and likewise for horizontally simplified.
The complex in Figure 2.8 is both vertically and horizontally simplified. For any knot,
CFK~ (Y, K) always admits a vertically simplified basis and always admits a horizontally
simplified basis. As a warning, it may not be the case that CFK~ (Y, K) admits a basis
which is simultaneously vertically and horizontally simplified. Nevertheless, we restrict our
attention to when there is a basis which is both.

We now describe an algorithm for obtaining an immersed curve from CFK~ (Y, K),
following the method in [HRW22|. It is most convenient to present this curve as a lift in the
cover of the marked torus, [—1/2,1/2] x R, where the interval corresponds to the preferred

longitude A and {—1/2} x R and {1/2} x R are identified and is a lift of the preferred
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meridian, p. We then center the lifts of the basepoint z at {0} x {n + 1/2} for n € Z. This

setup, along with a curve obtained from the following procedure, can be seen in Figure 4.8.

Proposition 4.2.9 ([HRW22|). Given a horizontally and vertically simplified basis for
CFK~(K), a lift of the immersed multicurve oy, = ?IF(Y \ v(K)) in the infinite strip can

be obtained by the following procedure:

1. For each basis element v; of CFK~(K), place a short horizontal segment at

[—1/4,1/4] x {t} where t = A(v;).

2. If CFK~(K) contains a vertical arrow from v; to vj, then connect the left endpoints

of the horizontal segments corresponding to v; and v; by a vertical arc.

3. If CFK™(K) contains a horizontal arrow from v; to v;, then connect the right endpoints

of the horizontal segments corresponding to v; and v; by a vertical arc.

4. Connect the unique horizontal segment with an unattached left endpoint to {—1/2} x{0}
and the unique horizontal line segment with an unattached right endpoint to {1/2} x{0}

each with an arc.

4.2.5 Pairing Theorems

Ordinarily, bordered Heegaard Floer homology is presented using type D modules and
type A modules over differential graded algebras associated to the boundaries of the manifolds
involved. Then a special model of the derived tensor product, the box tensor product, is used
to obtain a representative of the chain homotopy class of the Heegaard Floer complex or knot
Floer complex from Section 2.1. The genius and beauty of the immersed curves perspective
is that we can now package all of the complicated algebraic information into pictures of
curves. Many important invariants can then be read directly from the immersed Heegaard
diagrams coming from pairing immersed curves with bordered Heegaard diagrams.

From a doubly-pointed bordered Heegaard diagram H as in Definition 4.2.5 and an

immersed curve ay,, as described in Section 4.2.4, there is a way to pair them by gluing to
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Figure 4.8 (a) CFK ™~ (Ty3). (b) Each step of the construction in Proposition 4.2.9, with a
projection to the marked torus on the bottom left.
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obtain a doubly-pointed immersed Heegaard diagram H (o) as in Definition 4.2.1. While
a more detailed description can be found in [CH23|, essentially, the two diagrams are glued
along their common boundary, thought of as “filling in” the bordered Heegaard diagram with
the immersed curve. After some isotopies, the resulting doubly-pointed immersed Heegaard
diagram looks like a superposition of the bordered Heegaard diagram and the immersed
curve. Figure 4.9 illustrates this process. One can remove many immersed points by looking
at the curves in various lifts of the torus, such as the infinite strip. To see why this is useful,
it is best to introduce the necessary pairing theorem, as it is one of the primary theorems

applied to prove Theorem 4.0.1.

Theorem 4.2.10 (|[CH23|). Let H be a doubly-pointed bordered Heegaard diagram for a
pattern knot P C S' xID?, and let o be the immersed multicurve associated to a companion
knot K. Let H(au) be the immersed doubly-pointed Heegaard diagram obtained by pairing
H with age. Then the CFKr(H(ak)) is bigraded chain homotopy equivalent to the knot
Floer complex of the satellite knot P(K) over R, where R = F[U,V|/(UV).

Theorem 4.2.10 is actually a generalization of an earlier theorem of Chen in [Che23],
presented below. In [CH23|, they remark that Theorem 4.2.10 is particularly useful when
the pattern knot is a (1,1) pattern, which means that it has a genus 1 doubly-pointed bordered
Heegaard diagram. This is because the resulting immersed Heegaard diagram is also genus
1, so it is easy to extract CF Kg(H (o)) even when the curves self-intersect. In fact, the
process is entirely combinatorial. We will see a classic example in Section 4.4. The earlier
theorem, while less general, is still useful to present here as its proof more carefully specifies

the homeomorphism of the pairing of the knot compliment and the pattern torus:

Theorem 4.2.11 ([Che23|). Let P C S' x D? be a (1,1)-pattern knot and K in S*® a
companion. Let ax C 953\ v(K) be the immersed curve for K, and let H be a genus 1
bordered Heegaard diagram for P, thought of as curves and basepoints in 0S* x D?. Let

h:9(S?\v(K)) — 0(S* x D?) be an orientation preserving homeomorphism such that
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Figure 4.9 Top left: A bordered Heegaard diagram. Top right: An immersed curve in the
marked torus. Bottom: The immersed Heegaard diagram obtained by gluing.
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e h identifies the meridian and Seifert longitude of K with p and X\ respectively;
e h maps the z basepoint for auk to the z basepoint for H;

e there is a reqular neighborhood U C O(S* x D?) of 2z such that UN (AU p) = 0 and

Suppose acge is connected. Then there is a grading-preserving isomorphism of chain complezes
CFK(H(ax)) = CFE(S®, P(K)).

The goal is to adapt this theorem to manifolds other than S%, and extend the chain

homotopy equivalence to the UV = 0 complex C'F'Kg rather than simply CFK.

Theorem 4.2.12. Let H be a doubly-pointed bordered Heegaard diagram for a pattern knot
P c S'' xD?, and let o be the immersed multicurve associated to a companion knot K.
Let H(ak) be the immersed doubly-pointed Heegaard diagram obtained by pairing H with
ag using a framing change in accordance with 1/n surgery on K. Then the knot Floer
complex CFKr(H(au)) is bigraded chain homotopy equivalent to the knot Floer complex of
the satellite knot P(ji1/,(K)) in Sf’/n(K) over R, where R = F[U,V]/(UV).

Proof. The proof of Theorem 4.2.10 passes through an arced bordered Heegaard diagram,
which is a version of a bordered Heegaard diagram for a manifold with two boundary com-
ponents. The manifold in question is S* x D? \ v(P), the compliment of the pattern knot
in the solid torus. In their proof, the parametrization of the outer boundary is the usual
meridian-longitude parametrization and the inner boundary is parametrized by the meridian
of P and a longitude of P. Here, we will parametrize the outer boundary instead with a fram-
ing change given by the 1/n surgery we will perform along K. That is, a homeomorphism

b, : 80uter((51 x D?) \ I/(P)) — 0(S5? \ v(K)), given by how it acts on homology,



Now, when pairing ‘H with a, we simply take this map into account by adding Dehn twists
in the torus for H to skew the diagram to slope —1/n (really, we can skew either diagram
using Dehn twists, but we prefer to look at covering spaces which maintain the basis already
in place for ax rather than H = (3,, @, 3, w, 2), so the linear map on H;(X,) =< u, A > is

the inverse of ®7). The remainder of the proof is unchanged from that of Theorem 4.2.10. [

4.3 Invariants
All of the aforementioned diagrams grant access to a slew of numerical knot invariants,
especially concordance invariants. While we forgo details on concordance and omit definitions

of the invariants not involved in the proof of Theorem 4.0.1, we mention their existence.

4.3.1 Knot genus, 7, and €

Given an immersed curve ay representing the bordered invariant of S® \ v(K), the
construction in Proposition 4.2.9 makes it easy to see two popular numerical invariants of
K. To do this, it is easiest (while not required) to pull the immersed curve tight, to create a
so-called pegboard diagram. For a knot, the immersed curve pulled tight will just be a vertical
strand in the neighborhood of {0} x R, where the “pegs” are located, and one homologically
horizontal strand which wraps around the infinite strip.

The genus of the knot, g(K), is simply the difference between the maximum height
achieved by aj and the minimum height achieved, rounded to the nearest integer when
pulled tight. This is the same as checking how many pegs are encompassed by the curve
and dividing by 2. The tau invariant of Ozsvath and Szabd, 7(K), can be see by starting
anywhere on the horizontal strand and tracing to the right (in the positive interval direction)
until hitting the vertical strand. The nearest integer height where they meet is 7(K'). Finally,
¢(K), defined by Hom, is shown by the behavior of the horizontal line segment after crossing
the vertical portion. If the curve has an upward slope, ¢(K) = 1. If downward, e(K) = —1. If
it continues straight, which is only possible if 7(/K) = 0 by Proposition 4.2.9, then ¢(K) =0

as well.
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For example, the curve for the right handed trefoil shown in Figure 4.8 has the following
invariants: 7(7%3) = 1, since the horizontal curve first intersects above the higher basepoint
when traveling to the right (along the green arrow indicating A). Then, since when leaving

the vertical strand, the curve again has positive slope, u, €(To3) = 1 as well.

4.3.2 71,V K)

From an immersed Heegaard diagram of genus 1, Chen gives a nice calculus for deter-
mining 7(K') along with the Alexander gradings of other generators in [Che23|. The calculus
introduces to the diagram A-buoys attached to the B curves. Essentially, these A-buoys are
small arrows which record the change in Alexander filtration level between two generators
as we isotope away discs only crossing the z basepoint. Isotoping discs away is akin to can-
celing components of the differential on the filtered complex. The difference in Alexander
filtration level between two intersection points indicates the lengths of differentials that we
cancel, which corresponds to “turning the page” on the spectral sequence converging to the
Heegaard Floer homology of the underlying 3-manifold, as described in Section ?7?.

So, in practice, we perform isotopies to cancel differentials of filtration length one until
we no longer can, recording the filtration change using A-buoys. We can then iterate this
process for length two, or three, should we like, to see further pages in the spectral sequence.
For a knot in S®, there will eventually be only one remaining intersection point, whose
Alexander grading is 7(K). However, for a knot in a 3-manifold other than S such as
a 3-manifold obtained by surgery, more than one intersection point may remain, since the
3-manifold might have rkﬁ(Y) > 1.

In [HR23|, Hedden and Raoux introduce the invariants 7, (Y, K), which are assignments
to each Heegaard Floer homology class a € ﬁ(Y) and knot K C Y a number which
records the Alexander filtration level of a. Algebraically, 7, (Y, K) is the Alexander grading
of the surviving generator of @(K K) in the spectral sequence to ﬁ(Y) Geometrically,
7.(Y, K) gives a lower bound for the genus of surfaces with boundary K in 4-manifolds with

boundary. The theorem is as follows.
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Proposition 4.3.1 ([HR23|). Let K be a null-homologous knot in' Y. If X CY x I is a

smoothly embedded oriented surface with boundary K C'Y x {1}, then
7.(Y, K) < g(X%).
Corollary 4.3.2. If K CY is slice in Y x I, then 7,(Y, K) =0 for all a € ?[F(Y)

Proof. Recall that if K is slice, then it bounds a smooth disc in Y x I. Equivalently, it
means that K cobounds a smooth annulus with the unknot. If there exists some a € EF(Y)
with 7,(K) # 0, Proposition 4.3.1 implies that the genus of any such surface is nonzero, a

contradiction. O

Clearly, this is a generalization of an already well known fact that the 7-invariant ob-
structs sliceness in B*. Corollary 4.3.2 also implies that we can see obstructions to sliceness
in immersed Heegaard diagrams of genus 1 using Chen’s A-buoy calculus. In fact, the same
way one detects the 7-invariant for the knot using A-buoys, one can detect the other 7, (Y, K)
by checking the Alexander gradings of any surviving generators in the spectral sequence from
knot Floer homology to ﬁ(Y) (yielded by considering the filtration induced by the pres-
ence of a knot). In Figure 4.12, the satellite knot still lives in S3, which has a unique Spin®
structure, and thus only one 7, which is just the usual T-invariant for the satellite knot. we

treat an extended example in the next subsection.

4.4 Examples

Now that the meat of the theory is introduced, we move to illuminating examples. We
turn our attention to the (1,1) pattern knot of focus, the Whitehead double, D, depicted
in Figure 4.2. A doubly-pointed bordered Heegaard diagram for D, denoted simply by H

in this section, can be seen in Figure 4.10.

4.4.1 D (Tys)
Now, we have a plethora of immersed curves with which we can check consistency with

what we already know of knot Floer homology of satellites. We begin with the right handed
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Figure 4.10 A genus 1 Heegaard diagram for the Whitehead pattern, D,. We think of the
two arcs {af, a5} as p and A, the two sides of X, the punctured torus (g = 1). They
intersect 0%, as required.
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Figure 4.11 Left: A shorthand representation of the complex CF Kz (Ts3), the right
handed trefoil. Right: The immersed curve arising from the complex on the left.
trefoil, since it is a torus knot. Its knot Floer complex over R is in Figure 2.8, which,
for simplicity, we often draw only one copy, as in Figure 4.11. Following the procedure in
Proposition 4.2.9, we obtain the immersed curve for the trefoil shown also in Figure 4.11.
From Figure 4.11, we see that 7(T53) = 1 and €(Ty3) = 1. To establish 7(D(T»3)),
we pass to an immersed Heegaard diagram by paring ar,, and H, as in Figure 4.12. To
determine 7(Dy(153)) from this immersed Heegaard diagram, we employ two steps. First,
the Alexander grading of each intersection point in the diagram can be determined by looking

at their relative Alexander gradings given by Whitney discs between them. Second, we
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Figure 4.12 A lift of an immersed Heegaard diagram for the Whitehead double of the right
handed trefoil in S3.

symmetrize the gradings so that the top-most and bottom-most are just opposite in sign.
This establishes the absolute Alexander grading of each generator of CFKg(Di(T33)) in

this diagram. The gradings are as follows:

X A(x)

4,7,11,14 1
1,3,6,8,10,13,15 0
2,5,9,12 -1

Following Chen’s A-buoy calculus, we begin canceling differentials of length one, then length
two, and so on, until a single generator remains, corresponding to the single generator of
?IF(S?’). Then 7(D4(T%3)) is the Alexander grading of the remaining generator, . The
entire manipulation of the immersed Heegaard diagram is carried out in Figures 4.13 and
4.14. We see that the only generator surviving after pulling B straight is x7, which has
A(z7) = 1. Thus, the singular 7, corresponding to the only generator o € ﬁ(S?’) is just

7(D4(Ty3)) = 1. Consequently, D, (T, 3) is not slice in S3.
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Figure 4.13 Cancellation of length one differentials. 34, is essentially pulled tight across
the z basepoints.

Figure 4.14 The immersed Heegaard diagram for S® arising from canceling all the
differentials.
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4.4.2  Di(p1y2(41))

We now turn our attention to an example computation for the Whitehead double of the
dual knot to 1/n surgery. Since the surgered 3-manifold is no longer S3, the expectation is
that there will be more than one generator a € f[F(Sf ), (1)) with which to compute 7,.
The immersed curve ay, is shown in Figure 4.15. Combining a4, with H for the Whitehead
pattern as seen in Figure 4.10 using the map @3 as in the proof of Theorem 4.2.12, we arrive
at the immersed Heegaard diagram in Figure 4.16. In Figure 4.16, a convenient lift to a suit-
able covering space was chosen to remove as many immersed points as possible. This way, it
is significantly easier to execute the combinatorics of counting discs and to see the genera-
tors. From Figure 4.16, we can compute the complex C’FKR(Sf/n(K), pm(K)) for K = 4,
directly, or simply apply the A-buoy calculus to see the Alexander gradings of the surviving
generators after pulling the 3 curve straight, allowing isotopy over z basepoints. In this case,
only length one differentials need to be cancelled before arriving at Figure 4.17, where no
more useful isotopies can be made. It is clear that only generators 7,8,9, 10, and 11 survive.
From the A-buoys, we see that A(z7) # A(xs), 50 To, (Dy(pt1/n(K)) # Tag(Dy(pt1/n(K)),
and, in particular, one of them is nonzero. By Corollary 4.3.2, D, (u1/,(/K)) cannot be
slice in S ) (I0) x I. Remarkably, if 4; were slice in S3 (it is not), then we could conclude
that D, (p1/n(K)) is deeply slice in the 4-manifold described in Section 4.1.2, by applying

Corollary 4.1.4.

4.5 Proof of Main Theorem

A noteworthy feature of the computation in Example 4.4.2 is that the distinct 7,-
invariants came from generators on the closed component of the immersed curve for the
knot. As discussed later, it is suspected this is usually the case. For Theorem 4.0.1, we make
use of the fact that its immersed curve has a curve corresponding to a box complex which
manifest as a some kind of “8”-looking shape in the immersed curve. Since Theorem 4.0.1 is

only for the knot 6, as stated, the proof is identical to the computation in Section 4.4.

Proof of Theorem 4.0.1. First, note that 6; C S® is an alternating, slice knot in B*. There-

o7



M

e
Ua
[ ]

[}
(—b'

|

ova S v

A

Figure 4.15 Left: A shorthand representation of the complex C'F Kx(4,), the figure eight
knot. Right: The immersed curve arising from the complex on the left.

Figure 4.16 A lift of the immersed Heegaard diagram for the pairing of the Whitehead
double pattern with the dual knot to 1/2 surgery along the figure eight knot, 4;. Notice the
change of framing for the Whitehead pattern corresponding to the 1/2 surgery on 4,
giving the 3 curve a —1/2 slope.
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Figure 4.17 The immersed Heegaard diagram arising from canceling all the length one
differentials.

fore, HFEK (61) is determined by its Alexander polynomial, Ag, (t) = —2¢t71 +5 — 2¢, and its

signature, 0(6,) = 0. By [OS03, theorem 3.1],
HFEK(S%6,,A4) =F2, & F & F2,

where A is the Alexander grading. Using the spectral sequence from HFK (61) to EF(S 3), we
can reconstruct the vertical arrows present in the UV = 0 knot Floer complex, as in Figure
4.18. Now, using the symmetry granted by swapping the roles of U and V', we reconstruct
horizontal arrows in C'F' K (61) and plot some more of the generators in the (gr;;, gry,) plane,
as in Figure 4.19.

Now that we have the full information C'FKg(6,) and in a horizontally and vertically
simplified basis, we can construct its immersed curve using the method in Proposition 4.2.9,
shown in Figure 4.20. Notably, the curve strikingly resembles the curve for 4; as in Figure
4.15, with another closed component overlapping the first. Since in Example 4.4.2 only
the closed component is necessary to see differing 7,-invariants, we will only keep track of
one of these “8” shapes in the pairing diagram with the bordered Heegaard diagram for the

Whitehead double, H. In this case, the local picture near generators x; and xg in Figure
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Figure 4.18 Left: HFEK (61) arranged by Alexander grading. Right: the location of the
vertical arrows in CF K (61) if there is to only be one generator for HF(S?).
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Figure 4.19 Left: adding horizontal arrows in the plane using symmetry along gr;; = gry, .
Right: a short hand representation of the complex C'F Kz (61).
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Figure 4.20 The immersed curve for 6;, o, .
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4.16 looks identical (after isotoping away the other curve components) to the local picture
for the pairing of H and ag,. The same two generators, then, still have 7, (D, (p1/n(K))) #
Tag (D4 (p1/n(K))) for K = 61, so one is nonzero. By Corollary 4.3.2, D (f11/,,(K)) cannot be
slice in S? ), (10) x I. However, since 6, is itself slice, Corollary 4.1.4 implies that D (p1/n(K))

is deeply slice in W, the contractible 4-manifold of Proposition 4.1.2. O]
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