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ABSTRACT

The advent of new technologies has introduced a broad spectrum of data types, necessitating

advanced methodologies beyond traditional linear models. In scenarios where covariates

include both linear and unknown or non-linear relationships with the response variable,

relying solely on either parametric or nonparametric methods can be inadequate.

This dissertation addresses these complexities using a semiparametric approach called the

partial linear trend filtering model. Instead of classical nonparametric methods, a newcomer,

trend filtering, is integrated into the high-dimensional partial linear model. Simulation stud-

ies indicate that these models handle heterogeneous data more effectively than traditional

approaches, demonstrating rigorous theoretical results, including convergence rates for the

estimates.

Additionally, this dissertation explores high-dimensional partial linear quantile regression

to assess the heterogeneous effects of covariates on different quantiles of the response variable.

By applying trend filtering to partial linear quantile regression, the strengths of both quantile

regression and trend filtering are combined, supported by rigorous theoretical and simulation

results. For practical validation, the partial linear quantile trend filtering model is applied to

the Environment and Genetics in Lung Cancer Etiology (EAGLE) study data, showcasing

their applicability and effectiveness in real-world data analysis.

Furthermore, only a small number of works have addressed feature selection and False

Discovery Rate (FDR) control within the high-dimensional quantile regression framework.

Inspired by the model-X knockoff procedure [9], a new method is introduced for simultane-

ously controlling FDR and detecting important covariates via the regional quantile regression

approach. This three-step procedure identifies signals within the quantile region of interest

rather than at a specific quantile level, effectively controlling the FDR. Simulation studies

demonstrate the utility of this method, which is also applied to National Health and Nutri-

tion Examination Survey (NHANES) data to identify risk factors associated with high body

mass index.
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CHAPTER 1

OVERVIEW

This dissertation presents a comprehensive exploration of advanced statistical methodologies

for high-dimensional data analysis, addressing critical challenges in handling complex and

diverse data structures. The research is structured into three interconnected chapters, each

building upon and extending state-of-the-art techniques to enhance the accuracy, robustness,

and applicability of data analysis in scenarios where traditional models prove inadequate.

The second chapter introduces an innovative hybrid modeling approach, integrating para-

metric and nonparametric regression techniques within high-dimensional partial linear mod-

els. This methodology synthesizes the strengths of least squares regression and nonparamet-

ric methods, offering a sophisticated solution for complex biological data, particularly in gene

expression studies. The chapter leverages penalization techniques such as LASSO and the

local adaptivity of trend filtering, establishing a robust framework for high-dimensional het-

erogeneous data. Rigorous theoretical proofs and convergence rate results for the estimators

underscore the statistical validity of this approach.

The third chapter extends the research paradigm to partial linear quantile regression,

incorporating trend filtering to address high-dimensional sparse heterogeneous data. This

integration combines the local adaptivity and computational efficiency of trend filtering with

the quantile-adaptive, sparsity-inducing properties of quantile LASSO. The chapter provides

a more nuanced understanding of covariate-response relationships by estimating conditional

quantiles at various levels. Theoretical contributions include comprehensive proofs and con-

vergence rates for estimators, distinguishing this work from previous research in the field. Ad-

ditionally, this chapter includes a real data analysis utilizing the Environment And Genetics

in Lung Cancer Etiology (EAGLE) study, a large-scale, population-based case-control study.

This practical application demonstrates the methodology’s efficacy in analyzing complex,

high-dimensional epidemiological data, particularly in the context of lung cancer research,

thereby bridging the gap between theoretical advancements and real-world applicability.
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The fourth chapter addresses the unique challenges posed by ultra-high dimensional data,

where the number of covariates (p) grows exponentially relative to the number of observations

(n). The research employs regional quantile regression, modeling quantile regression over an

interval of quantile levels to enhance the stability and robustness of variable selection. A

novel knockoff procedure is proposed, specifically designed for regional quantile regression,

guaranteeing exact False Discovery Rate (FDR) control with finite samples. This innova-

tive approach ensures robust variable selection across multiple quantile levels, significantly

advancing the field of ultra-high dimensional data analysis with quantile regression.

Collectively, this dissertation presents a cohesive and progressive framework for tackling

the multifaceted challenges of heterogeneous high-dimensional data analysis, offering both

theoretical advancements and practical methodologies for researchers and practitioners in

fields ranging from bioinformatics to econometrics.

Throughout the dissertation, notations may vary between chapters to best suit the specific

methodologies and concepts presented. To ensure clarity and consistency, each chapter

provides clear definitions of its notations in its introductory sections, facilitating reader

comprehension and maintaining the precision necessary for advanced statistical discourse.
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CHAPTER 2

HIGH-DIMENSIONAL PARTIAL LINEAR MODEL WITH TREND
FILTERING

2.1 Introduction

With the advent of new technologies, we are now dealing with a wide variety of data types.

This diversity necessitates methodologies that go beyond the traditional linear model. In

this research, we focus on a scenario where the response variable y is influenced by two

predictors, x and z. Specifically, the relationship between y and x is assumed to be linear,

while the relationship between y and z is non-linear or unknown. This modeling approach

is particularly prevalent in biological studies, such as those involving gene expression data,

where nonlinear factors like age or other related variables play a significant role.

To address this type of data, it is essential to use techniques that separately account for

the linear and non-linear components. Neglecting the non-linear part and using standard

least squares regression (parametric) can lead to incorrect inferences. Conversely, applying

non-linear regression (nonparametric) to both components results in an overly rough esti-

mation, and also there can be a curse of dimensionality when we deal with high-dimensional

data.

The partial linear model resolves this issue by incorporating both parametric and non-

parametric regression simultaneously. This semiparametric approach has been extensively

studied in low-dimensional settings [75, 23, 80], where the number of covariates for the lin-

ear part is smaller than the number of observations or fixed as a constant. However, these

models are not directly applicable to high-dimensional data where the number of covariates

significantly exceeds the number of observations.

For high-dimensional data involving only x, substantial work has been done using pe-

nalization techniques such as LASSO (Least Absolute Shrinkage and Selection Operator) by

[67], SCAD (Smoothly Clipped Absolute Deviation) by [16], and Elastic Net by [90]. The

LASSO, in particular, has been widely studied and has shown remarkable results in sparse
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contexts [8].

Recent advances have extended these approaches to high-dimensional semiparametric

models based on the partial linear model framework [46, 38, 89, 84]. These models combine

penalized techniques with classical nonparametric methods, such as smoothing splines, to

achieve robust and interpretable results.

In recent years, there has been substantial interest and progress in the nonparametric

method known as trend filtering, as proposed by [66, 31, 69]. [69] describes trend filtering

as a discrete analog of the locally adaptive regression splines introduced by [44]. The locally

adaptive regression splines involves solving the following optimization problem for n number

of observations:

min
f∈Fk

1

2

n∑
i=1

(yi − f(zi))
2 + λ · TV (f (k)). (2.1)

Here, Fk denotes the function space defined as

Fk =
{
f : [0, 1] → R : f is k times weakly differentiable and TV (f (k)) <∞

}
,

where TV (f (k)) denotes the total variation of kth derivative of f . The discrete analog of

(2.1) using trend filtering is

min
θ∈Rn

1

2

n∑
i=1

(yi − θi)
2 + λ∥D(z,k+1)θ∥1, (2.2)

where bold symbols denote vector notation, ∥ · ∥1 denotes ℓ1-norm and D(z,k+1) is the kth

order difference operator based on z. Equation (2.2) is referred to as the univariate kth order

trend filtering. The details of these notations and definitions will be elaborated on in Section

2. Following the proofs of equivalence between (2.1) and (2.2) as shown by [69], trend filtering

estimates combine the benefits of locally adaptive regression splines with the advantages of

the banded difference operator structure in (2.2). This dual benefit provides local adaptivity

and computational efficiency, making trend filtering superior to other nonparametric methods

such as smoothing splines and B-spline regressions.
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Trend filtering has been successfully applied to various statistical fields, including graphi-

cal models [78], additive models [56], quantile regression [41], and spatiotemporal models [49].

However, its application within the partial linear model framework has not been explored to

date.

Our contribution lies in integrating trend filtering with the partial linear model and uti-

lizing LASSO to effectively address high-dimensional data. This approach leverages the local

adaptivity and computational efficiency of trend filtering along with the sparsity-inducing

properties of LASSO, providing significant advantages when dealing with complex and het-

erogeneous data. Furthermore, our work provides rigorous theoretical details and establishes

convergence rates for the estimators.

The rest of the chapter is organized as follows. Section 2.2 presents the preliminaries,

including assumptions and model descriptions. Section 2.3 provides the main theoretical re-

sults and their interpretations. Section 2.4 details the simulation studies and computational

aspects. Section 2.5 discusses our results, and Section 2.6 includes all the proofs.

2.1.1 Notations

Before delving into the model description and assumptions, we first clarify the no-

tations used throughout this chapter for convenience. We use bold capital letters (e.g.

Σ) to denote matrices, and use bold small letters (e.g. x,y) to denote vectors. For

a = (a1, . . . , ap) ∈ Rp, denote ∥a∥q = (
∑p

i=1 |ai|q)
1
q for q ∈ [1,∞) and ∥a∥∞ = max1≤i≤p |ai|.

For two vectors a,b ∈ Rn, we write ∥a∥2n = 1
n
a′a, ⟨a,b⟩n = 1

n
a′b. Given a square matrix

A = (aij) ∈ Rp×p, λmax(A) and λmin(A) represent its largest and smallest eigenvalues

respectively. For a general matrix A = (aij) ∈ Rp×q, ∥A∥2 denotes its spectral norm;

∥A∥max = maxij |aij|, ∥A∥F =
√∑

i,j a
2
ij. For a, b ∈ R, a ∧ b = min(a, b), a ∨ b = max(a, b).

For a set A, 1A(·) is the usual indicator function, and |A| to be its cardinality. Moreover,

an ≲ bn (an ≳ bn) means there exists some constant C > 0 such that an ≤ Cbn (an ≥ Cbn)

for all n; thus an ≲ bn (an ≳ bn) is equivalent to an = O(bn) (an = Ω(bn)); an ≍ bn if and

5



only if an ≲ bn and bn ≳ an; an ≫ bn means bn = o(an). We put subscript p on O and o

for random variables. For i.i.d. samples {w1, . . . , wn} from a distribution Q supported on

some space W , denote by Qn the associated empirical distribution. The L2(Q) and L2(Qn)

norms for functions f : W → R are: ∥f∥2L2(Q) =
∫
W f 2(w)dQ(w), ∥f∥2L2(Qn)

= 1
n

∑n
i=1 f

2(wi).

For simplicity we will abbreviate subscripts and write ∥f∥, ∥f∥n for ∥f∥L2(Q), ∥f∥L2(Qn)

respectively, whenever Q is the underlying distribution of the covariates.

2.2 Model Description and Assumptions

In this section, we present a detailed introduction and description of the model under

study. Following an initial overview of the model, we delineate additional conditions

necessary for our proofs, accompanied by brief explanatory comments for each condition.

2.2.1 Model Description and Estimation Method

We consider a partial linear regression model as below:

y = x′β0 + g0(z) + ε,

where ε is independent of (x, z) ∈ Rp+1, β0 ∈ Rp has the support S = {j : β0
j ̸= 0} with

|S| ≤ s, and g0 : [0, 1] → R is a nonparametric function. Generally, z ∈ [0, 1] may not be

true, but this can be achieved by using a simple affine transformation, so we assume this for

technical simplicity. We let {(yi,xi, zi)}ni=1 be n i.i.d observations of (y,x, z), and without

loss of generality, we assume that these observations are re-ordered based on zi, i = 1, . . . , n.

Moreover, as discussed in the introduction, we focus on the function g0 where the total

variation of kth derivative is bounded by a constant, that is, TV (g
(k)
0 ) ≤ Lg, with Lg > 0.

We consider the case where p ≫ n, indicating a high-dimensional linear model with an

unknown function. This model assumption is prevalent in certain biological studies, such

as those involving gene expression data, where nonlinear factors are present such as age or

other related factors.
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Expanding upon the univariate trend filtering from [31] and [69], for a given integer k ≥ 0,

the kth order partial linear trend filtering (PLTF) estimation for the partial linear model is

defined as

(β̂, θ̂) ∈ argmin
β∈Rp,θ∈Rn

1

2
∥y −Xβ − θ∥2n + λ∥β∥1 + γ∥D(z,k+1)θ∥1, (2.3)

where D(z,k+1) ∈ R(n−k−1)×n is the discrete dervative operator of order k + 1. When k = 0,

D(z,1) =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...

0 0 0 · · · −1 1


∈ R(n−1)×n. (2.4)

For k ≥ 1, the dervative operator is defined recursively, that is,

D(z,k+1) = D(z,1) · diag
(

k

zk − z1
, · · · , k

zn − zn−k+1

)
·D(z,k),

where in the above equation, D(z,1) is defined as the form of (2.4) with the dimension of

(n− k − 1)× (n− k). When k = 0, this estimate is equivalent to the one-dimensional fused

lasso [68], also known as one-dimensional total variation denoising in signal processing [55].

Before further discussing estimation methods, we briefly introduce the falling factorial

basis. [69] and [77] demonstrate a connection between univariate trend filtering and falling

factorial basis functions, showing that the trend filtering problem can be interpreted as a

sparse basis regression problem using these functions. This finding is also applicable to our

case since our model is a generalization of the univariate trend filtering model. For given

knot points t1 < · · · < tn ∈ R, the kth order falling factorial basis functions are defined as

below

qi(t) =
i−1∏
l=1

(t− tl), i = 1, . . . , k + 1,

qi+k+1(t) =
k∏
l=1

(t− ti+l) · 1{t > ti+k}, i = 1, . . . , n− k − 1,
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where we write q1(t) = 1 as a convention. With these definitions, the estimation in (2.3) is

equivalent to

(β̂, α̂) ∈ argmin
β∈Rp,α∈Rn

1

2
∥y −Xβ −

n∑
l=1

αlql(z)∥2n + λ∥β∥1 + γk!
n∑

l=k+2

|αl|, (2.5)

which is a lasso form. Indeed, the equivalent alternating expression of (2.5) is

(β̂, ĝ) ∈ argmin
β∈Rp,g∈Hk

n

1

2
∥y −Xβ − g(z)∥2n + λ∥β∥1 + γTV (g(k)), (2.6)

where Hk
n is the span of the kth order falling factorial basis functions with knots zk+1 ≤

zk+2 . . . ≤ zn−1. Throughout the chapter, we denote Hn to be Hk
n for notational simplicity.

We omit the proofs of equivalences between equations for (2.3), (2.5) and (2.6), since the

proof can be directly taken from Lemma 1 in [69] for (2.3) and (2.5), and Lemma 2 in [69] and

Lemma 1 in [56] for (2.5) and (2.6). Based on the equivalence, we argue that the estimate

from (2.3) is the same as (2.6). By constructing an appropriate linear combination of falling

factorial functions, the form in (2.5) enables interpolation or extrapolation for partial linear

trend filtering. Consequently, this formulation enhances the practical applicability of partial

linear trend filtering.

Our estimation approach in (2.3) introduces a doubly penalized least squares estimator,

similar to those proposed by [46] and [84]. This approach involves two penalties: the first

controls the sparsity of β̂, while the second regulates the variability of the function ĝ. The

primary distinction between our approach and theirs lies in the estimation method of the

function g. While both of their methods employ the smoothing spline technique, our method

utilizes trend filtering for estimation. Given the model structure, where the estimation of

g significantly influences that of β, accurately estimating g is critical. As discussed in the

introduction, prior literature demonstrates that when the smoothness of g0 is heterogeneous,

the trend filtering method outperforms the smoothing splines method, in terms of local

smoothness as well as the estimation. We show the simulation results later in Section 3.4.

We introduce conditions regarding our model in (2.6), needed for the proofs of lemmas and

theorems throughout.
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Condition 1 (Design Condition). The covariate x = (x1, . . . , xp) has sub-Gaussian coordi-

nates1: max1≤j≤p ∥xj∥ψ2 ≤ Kx.

Condition 1 and 2 are more general conditions than in [46], where they assumed that the

errors are standard Gaussian and the maximum value of the design matrix is bounded by a

positive constant.

Condition 2 (Sub-Gaussian Condition). The noise ε is sub-Gaussian: E(ε) = 0, V ar(ε) =

σ2, ∥ε∥ψ2 ≤ Kεσ.

Condition 3 (Bounded Input Density). z has a continuous distribution supported on [0, 1].

Its density is bounded below by a constant ℓz > 0.

Condition 2 is the same as in [69], and Condition 3 is the same as in [56]. These two

conditions are common in the trend filtering literature.

Condition 4 (Eigenvalue Condition). Define h(z) = (h1(z), . . . , hp(z)) = E(x|z) and x̃ =

x− h(z). Assume λmin(Ex̃x̃′) ≥ Λmin > 0 and λmax(Eh(z)h(z)′) ≤ Λmax <∞.

Condition 4 is common in semiparametric literature [83, 46, 84]. This condition ensures

that there is enough information in the data to identify the parameters in the linear part.

Condition 5. max1≤j≤p TV (h
(k)
j ) ≤ Lh.

Condition 6. (s+log p)s log p
n

= o(1), p→ ∞, as n→ ∞.

Condition 5 is the simiar to those of the Condition 2.6 in [46] and Condition A.5 in [84],

and Lh = 0 when z and x is independent. This condition is used for proving Theorem 2.

Condition 6 is a technical condition for proofs in Theorem 1 and 2.

1∥ · ∥ψ2
is the sub-Gaussian norm.
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2.3 Main Theoretical Results

In this section, we present our main results. Our main results consist of two parts, the

result regarding the g, and the result regarding the β. We now move on to the convergence

rate result for g.

Theorem 1. Assume Conditions 1-4 and 6. Choose λ = c1

√
log p
n
, γ = c2(

s log p
n

+ n− 2k+2
2k+3 )

with large enough constants c1, c2 > 0. Then, there exist constants c3, c4, n0 > 0 such that

any solution ĝ in (2.6) satisfies

∥ĝ(z)− g0(z)∥2 ≤ c3

(s log p
n

+ n− 2k+2
2k+3

)
∥ĝ − g0∥2n ≤ c3

(s log p
n

+ n− 2k+2
2k+3

)
with probability at least 1 − pc4 − nc4, as long as n ≥ n0. The constants c1, c2, c3, c4, n0

may depend on k, Lg, Lh, Kx, Kϵ, ℓz,Λmin,Λmax, σ.

Theorem 1 implies that the rate of ĝ depends on two terms: s log p/n and n− 2k+2
2k+3 . This

means that the convergence rate of ĝ indeed depends on the convergence rate of β̂, which

is discussed in Theorem 2. When the rate for the linear part is faster than the rate of the

second term, that is when s log p/n = o(n− 2k+2
2k+2 ), then the convergence rate is governed by the

second term, which implies that ∥ĝ(z)−g0(z)∥2 = Op

(
n− 2k+2

2k+3

)
and ∥ĝ−g0∥2n = Op

(
n− 2k+2

2k+3

)
.

This convergence rate is the same as the rate achieved by [46] and it is also the same as

the minimax convergence rate achieved by [84], which were shown in the Sobolev function

space. For other situations, when the function g is sufficiently smooth or p is sufficiently

high, the rate is governed by the first term. The proof of Theorem 1 can be found in the

supplementary section. We proceed to the convergence rates results for β.

Theorem 2. Assume Conditions 1-6, with the same choice of λ, γ in Theorem 1, any solution
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β̂ in (2.6) satisfies

∥β̂ − β0∥22 ≤ c3
s log p

n

∥x′(β̂ − β0)∥2 ≤ c3
s log p

n

∥X(β̂ − β0)∥2n ≤ c3
s log p

n

with probability at least 1− pc4 − nc4, as long as n ≥ n0.

Theorem 2 implies two things about the estimator β̂; (1) estimation result and (2)

prediction result. For estimation rate and prediction rates for both in-sample and out-

of-samples, we see that they achieve the oracle rate which is the same as the standard

lasso case where the function g is known. This rate coincides with the studies in classical

high-dimensional research [81, 54, 74] as well as the research done on smoothing splines [46,

84]. Note that the smoothness for g does not have effect on the results of β, while for g, β

results are affected. This one-way relationship is due to the orthogonal decomposition that

we use during the proofs. The proof for Theorem 2 can be found in the supplementary section.

2.4 Simulation Studies

Through empirical experiments, we evaluate the performance of partial linear trend

filtering (PLTF) in comparison to partial linear smoothing splines (PLSS), as presented by

[46] and [84]. Additionally, we tested the B-spline basis even though there is no paper using

the B-spline for this method; however, its performance was significantly inferior to the other

methods, so we decided not to include those results here.

2.4.1 Computational Details

We use a Block Coordinate Descent (BCD) algorithm also known as the backfitting

approach for our problem in (2.3). Our approach involves two blocks: the first pertains to β

and the second to θ. The algorithm iterates over these blocks, updating the estimate for each

11



component at each step using the lasso for β and the univariate trend filtering algorithm for

θ. The detailed steps of our algorithm are outlined in Algorithm 2.1.

Algorithm 2.1 A BCD algorithm for High-dimensional Partial Linear Trend Filtering
Data: {yi,xi, zi}, i = 1, . . . , n
Fixed (tuning) Parameters: λ, γ, k

1. Set t = 0 and initialize θ(0)i = 0, i = 1, . . . , n

2. For (t+ 1)-th iteration, where t = 0, 1, 2, . . . :

a) Block 1: Let y(t)∗i = yi − θ
(t)
i , and update β(t) by fitting the lasso:

β(t+1) = argmin
β

∥y(t)∗ −Xβ∥2n + λ∥β∥1

b) Block 2: Let y(t)∗∗i = yi−x′
iβ

(t+1), and update θ(t) by fitting the univariate trend
filtering:

θ(t+1) = argmin
θ

∥y(t)∗∗ − θ∥2n + γ∥D(z,k+1)θ∥1

c) If both β and θ converge, then stop the iteration. If not, continue the iteration
until it reaches the predefined maximum iteration number

3. Return β̂ and θ̂ as parameters at convergence

The convergence of the BCD algorithm has been rigorously established by [71]. It has

been proven that for a convex criterion decomposable into smooth and separable terms,

the solution obtained through the iterates of the BCD algorithm is the optimal solution.

Therefore, we do not prove the convergence of the algorithm here, since our convergence

result can be derived directly from this.

For the tuning parameters, λ and γ, we use 5-fold cross-validation (CV) to find the

optimally tuned parameters that minimize the overall CV error. However, since there are

two grids of tuning parameters, the search space is the product of the lengths of λ and γ,

resulting in an exponential increase in computation time compared to an algorithm with

a single tuning parameter. To address this, we utilize the warm start method [53] for

our tuning parameter grids. Empirical evidence in their work shows that the warm start
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algorithm significantly reduces the number of iterations needed for convergence, thereby

enhancing the convergence speed of the algorithm.

Our algorithm is implemented using R software [52]. Typically, for the lasso com-

ponent, we utilize the function from the R package glmnet [20], and for trend filtering,

we employ the function from the R package glmgen [1]. However, there is no publicly

available software for the partial linear smoothing spline method, so we also use BCD

algorithm for the smoothing spline model for the computation as well. The R function,

stats::smooth.spline, is used for this procedure in the second block. The imple-

mented BCD algorithms for the smoothing spline and the trend filtering, named plmR,

are available on https://sangkyustat.github.io/plmR/ for public use and reproducibility.

2.4.2 Simulation Setting and Results

We now proceed to demonstrate our method through simulations. We first generate X̃ =

(x̃1, . . . , x̃p+1) from Np+1(0p+1,Σ), where Σ = (σjk) with σjk = 0.5|j−k| and j, k = 1, . . . , p+1.

Then we set z = Φ(x̃25),xj = x̃j for j = 1, . . . , 24 and xj = x̃j−1 for j = 26, . . . , p + 1. The

true models we consider are as follows:

Model 1 (Smooth function): yi = xi6β1 + xi12β2 + xi15β3 + xi20β4 + sin(2πzi) + ϵi,

Model 2 (Less smooth function): yi = xi6β1 + xi12β2 + xi15β3 + xi20β4 + e3zi sin(6πzi)/7 + ϵi,

Model 3 (Doppler-type function): yi = xi6β1 + xi12β2 + xi15β3 + xi20β4 + sin(4/zi) + ϵi

for i = 1, . . . , n, where ϵi ∼ N(0, σ2
ϵ ). The actual forms of these functions are displayed

in Figure 2.1. The values for βj, j = 1, . . . , 4 are (0.5, 1, 1, 1.5). Various values for σ2
ϵ are

used to vary the signal-to-noise ratio (SNR) for the models. Similar to [46] and [69], we

define the total signal-to-noise ratio (tSNR) as follows:

tSNR =

√
∥x′β0 + g0(z)∥2

σ2
ϵ

,

where the expectation in the numerator can be approximated by using the Monte Carlo

expectation. We vary the tSNR from 4 to 16 on a logarithmic scale and then calculate

13
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Figure 2.1 Configurations of the function g(z) for Models 1 through 3. The structures of the
functions become increasingly locally heterogeneous from Model 1 (left) to Model 3 (right).

the metrics for each model. Specifically, we consider three different error metrics, including

in-sample prediction mean squared error (MSE) and l2-norm squared error, as follows:

1. ∥Xβ̂ + ĝ(z)− (Xβ0 + g0(z))∥2n : Overall MSE considering both β̂ and ĝ.

2. ∥β̂ − β0∥2 : l2-norm squared error for β̂.

3. ∥ĝ(z)− g0(z)∥2n : MSE for ĝ.

The metrics are computed over 150 repetitions of randomly generated datasets for each

tSNR value, and the medians of each metric are selected as the final results. We consider

p to be 100 and 1000 for low and high-dimensional cases, respectively, with n fixed at 500.

For each method, the algorithm is fitted to the training dataset and then the metrics are

calculated from the in-sample testing dataset. We present results using both optimally tuned

parameters and CV-tuned parameters. The parameters are finely tuned for fair comparison

across all models. We fix k = 2 for the trend filtering method and use cubic smoothing splines

for the smoothing spline method, tuning only λ and γ for two reasons: (1) minimal impact on

results when varying these settings and (2) computational efficiency. The simulation results

for each model are displayed in Figures 2.2, 2.3, 2.4.
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Figure 2.2 Model 1 error comparisons for a sequence of tSNR grid from 4 to 16. n is set to
500 for all cases, and the repetition number for the simulation is 150.
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Figure 2.3 Model 2 error comparisons for a sequence of tSNR grid from 4 to 16. n is set to
500 for all cases, and the repetition number for the simulation is 150.
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Figure 2.4 Model 3 error comparisons for a sequence of tSNR grid from 4 to 16. n is set to
500 for all cases, and the repetition number for the simulation is 150.
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Figure 2.2 demonstrates that when g is a smooth function, the performance of the PLTF

method is comparable to that of the PLSS method, with no significant differences observed.

However, as shown in Figure 2.3, when the function becomes more heterogeneous, the dif-

ference between the two methods becomes more pronounced. Nevertheless, there is still no

definitive superiority of one method over the other in terms of overall mean squared error

(MSE).

In Figure 2.4, the MSE of PLTF is significantly lower than that of PLSS in both low

and high-dimensional cases. This disparity becomes more apparent as the tSNR increases.

This result argues that PLTF performs much better than PLSS when the error is more

heterogeneous. These findings suggest that for smooth functions, our method performs

as well as the well-known smoothing spline method. However, as the function becomes

more heterogeneous, our method significantly outperforms the smoothing spline approach,

particularly in both low and high-dimensional scenarios when the tSNR is high. This

result aligns with the findings of [56], which reported similar outcomes for the Doppler-type

function we considered.

2.5 Conclusion and Discussion

In this research, we have explored the integration of trend filtering with the partial

linear model, incorporating Lasso to address high-dimensional data structures. Our approach

leverages the local adaptivity and computational efficiency of trend filtering along with the

sparsity-inducing properties of LASSO, providing a robust framework for handling complex

and heterogeneous data.

Our work contributes to the field by extending the application of trend filtering to semi-

parametric models, particularly the partial linear model, which has not been previously

explored. This integration allows for more precise modeling of high-dimensional data, main-

taining both local adaptivity and computational efficiency.

The results and discussions provided in this work underscore the potential of our method
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to enhance the analysis of complex data structures in various statistical fields. Future re-

search could further explore the practical applications of this approach and extend it to other

types of semiparametric models.

For future studies regarding methodology, our work can be expanded to the additive

model like [56], which is the expansion version of the univariate trend filtering. This

expansion allows us to put multivariate variables as z not only one. In terms of sparsity

and variable selection, our work can be modified by using other nonconvex models such as

SCAD instead of LASSO. We expect that this will give us more advantages in terms of the

accuracy with variable selection of the covariates.

2.6 Proofs

Throughout the proofs, we use C1, C2, . . . to denote universal constants and

use D1, D2, . . . , ... to denote constants that may only depend on the constants

k, Lg, Lh, Kx, Kϵ, ℓz,Λmin,Λmax from Conditions 1-5. An explicit (though not opti-

mal) dependence of {Dj, j = 1, 2, . . .} on the aforementioned constants can be tracked

down. However, since it does not provide much more insight, we will often not present the

explicit forms of {Dj, j = 1, 2, . . .}, and this will greatly help streamline the proofs. The

constants {Cj, Dj, j = 1, 2, . . .} may vary from lines to lines.

2.6.1 Proof of Theorem 1

2.6.1.1 Roadmap of the proof

For a given function f(x, z) = x′β + g(z) with β ∈ Rp, TV (g(k)) < ∞, introduce the

functional

τδ0,R(f) =
λ∥β∥1 + γTV (g(k))

20δ0R
+ ∥x′β + g(z)∥, δ0 ∈ (0, 1), R > 0, (2.7)

where for notational simplicity we have suppressed the dependence of τδ0,R(f) on the tuning

parameters λ, γ > 0. This functional will serve as a critical measure for β and g(z). Define
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the following events:

T1(δ0, R) =

{
sup

τδ0,R(f)≤R

∣∣∣∥f∥2n − ∥f∥2
∣∣∣ ≤ δ0R

2

}
,

T2(δ0, R) =

{
sup

τδ0,R(f)≤R

∣∣∣⟨ε, f(X,Z)⟩n∣∣∣ ≤ δ0R
2

}
,

T3 =

{
max

1≤i≤n−1
(z(i+1) − z(i)) ≤

22 log n

ℓzn

}
.

The general proof idea is largely inspired by [46] (see also [84]). We first use a localization

technique based on convexity to show that under the event T1(δ0, R) ∩ T2(δ0, R) ∩ T3, the

bound on ∥ĝ−g0∥ in Theorem 1 (bound on ∥ĝ−g0∥n is derived similarly) holds. This is done

in Lemmas 1-2. Then in Lemmas 3 and 4 we show that the event T1(δ0, R) ∩ T2(δ0, R) ∩ T3

happens with high probability. Along the way we need to choose R, λ, γ, δ0 in (2.7) properly

to meet conditions in Lemmas 1-4 and to achieve the desirable error rate in Theorem 1. We

complete this step in Section 2.6.1.3.

2.6.1.2 Key lemmas

Lemma 1. Assuming Condition 4 and δ0 ≤ 1
100
, δ0R

2 ≥ D1(
log2 n
n2 + γ + λ2s), then on

T1(δ0, R) ∩ T2(δ0, R) ∩ T3, there exists ḡ ∈ Hn such that

(i) TV (ḡ(k)) ≤ ak ·TV (g
(k)
0 ), ∥ḡ−g0∥∞ ≤ 22bk logn

ℓzn
·TV (g

(k)
0 ), where ak, bk > 0 are constants

only dependent on k.

(ii) τδ0,R(x
′(β̂ − β0) + ĝ(z)− ḡ(z)) ≤ R.

Proof. According to Lemma 16 in [70] (see also Lemma 13 in [56]), there exists ḡ ∈ Hn such

that result (i) holds on T3. We use such a ḡ in the rest of the proof. Consider the convex

combination

β̃ = tβ̂ + (1− t)β0, g̃ = tĝ + (1− t)ḡ, t ∈ [0, 1].

Accordingly, define

f̂(x, z) = x′β̂ + ĝ(z), f̄(x, z) = x′β0 + ḡ(z), f̃(x, z) = tf̂ + (1− t)f̄ = x′β̃ + g̃(z).
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For the choice of t = R

R+τδ0,R(f̂−f̄)
, it is straightforward to verify that

τδ0,R(f̃ − f̄) =
R · τδ0,R(f̂ − f̄)

R + τδ0,R(f̂ − f̄)
≤ R. (2.8)

Hence, to prove result (ii) it is sufficient to show τδ0,R(f̃ − f̄) ≤ R
2
. We start with the basic

inequality due to the convex problem (2.6),

1

2
∥y −Xβ̃ − g̃(Z)∥2n + λ∥β̃∥1 + γTV (g̃(k)) ≤ 1

2
∥y −Xβ0 − ḡ(Z)∥2n + λ∥β0∥1 + γTV (ḡ(k)),

which can be simplified to

1

2
∥X(β0 − β̃) + g0(Z)− g̃(Z)∥2n + λ∥β̃∥1 + γTV (g̃(k))

≤ 1

2
∥g0(Z)− ḡ(Z)∥2n + ⟨ε,X(β̃ − β0) + g̃(Z)− ḡ(Z)⟩n + λ∥β0∥1 + γTV (ḡ(k)).

Using the triangle inequality for ∥ · ∥1 and TV (·), we can continue from the above to obtain

1

2
∥X(β0 − β̃) + g0(Z)− g̃(Z)∥2n + λ∥β̃ − β0∥1 + γTV (g̃(k) − ḡ(k))

≤ 1

2
∥g0(Z)− ḡ(Z)∥2n + ⟨ε,X(β̃ − β0) + g̃(Z)− ḡ(Z)⟩n + 2λ∥β̃S − β0

S∥1 + 2γTV (ḡ(k)).

(2.9)

Observing from (2.8) that f̃ − f̄ = x′(β̃−β0)+ g̃(z)− ḡ(z) belongs to the set {f : τδ0,R(f) ≤

R}, on T1(δ0, R) ∩ T2(δ0, R) ∩ T3 we can proceed with

∥f̃ − f̄∥2 + 4λ∥β̃ − β0∥1 + 4γTV (g̃(k) − ḡ(k))

≤ ∥X(β0 − β̃) + ḡ(Z)− g̃(Z)∥2n + δ0R
2 + 4λ∥β̃ − β0∥1 + 4γTV (g̃(k) − ḡ(k))

≤ 2∥X(β0 − β̃) + g0(Z)− g̃(Z)∥2n + 2∥ḡ(Z)− g0(Z)∥2n + δ0R
2 + 4λ∥β̃ − β0∥1

+ 4γTV (g̃(k) − ḡ(k))

≤ 4∥g0(Z)− ḡ(Z)∥2n + 4⟨ε,X(β̃ − β0) + g̃(Z)− ḡ(Z)⟩n + 8λ∥β0
S − β̃S∥1 + 8γTV (ḡ(k))

+ δ0R
2

≤ 5δ0R
2 + 4b2kL

2
g

222 log2 n

ℓ2zn
2

+ 8akLgγ + 8λ
√
s∥β̃ − β0∥2, (2.10)
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where the third inequality holds due to (2.9), and in the last inequality we have used result

(i) and Cauchy-Schwarz inequality for ∥β0
S − β̃S∥1. Now Condition 4 implies that

8λ
√
s∥β̃ − β0∥2 ≤ 8λ

√
sΛ

−1/2
min ∥x̃′(β̃ − β0)∥

≤ 32λ2sΛ−1
min +

1

2
∥x̃′(β̃ − β0)∥2 ≤ 32λ2sΛ−1

min +
1

2
∥f̃ − f̄∥2.

Here, the second inequality follows ab ≤ 1
2
a2 + 1

2
b2, and the third inequality is due to the

orthogonal decomposition ∥x′β + g(z)∥2 = ∥x̃′β∥2 + ∥h(z)′β + g(z)∥2. This together with

(2.10) yields

∥f̃ − f̄∥2 + 8λ∥β̃ − β0∥1 + 8γTV (g̃(k) − ḡ(k))

≤ 10δ0R
2 + 8b2kL

2
g

222 log2 n

ℓ2zn
2

+ 16akLgγ + 64λ2sΛ−1
min ≤ 16δ0R

2,

where the last inequality holds under the assumed condition on δ0R2 (with proper choice of

constant D1). The above bound further implies ∥f̃ − f̄∥ ≤ 4
√
δ0R ≤ 2

5
R since δ0 ≤ 1

100
, and

λ∥β̃−β0∥1+γTV (g̃(k)−ḡ(k))
20δ0R

≤ 1
10
R, leading to the bound τδ0,R(f̃ − f̄) ≤ R

10
+ 2R

5
= R

2
.

Lemma 2. Under the same conditions of Lemma 1, then on T1(δ0, R) ∩ T2(δ0, R) ∩ T3, it

holds that

∥ĝ(z)− g0(z)∥ ≤
(
1 +

√
Λmax
Λmin

)
R + 22bkLgℓ

−1
z

log n

n
.

Moreover, define a subevent of T1(δ0, R):

T0(δ0, R, R̃) =

{
sup

τδ0,R(f)≤R̃

∣∣∣∥f∥2n − ∥f∥2
∣∣∣ ≤ δ0R

2

}

with R̃ = (2 +
√

Λmax

Λmin
)R + 22bkLgℓ

−1
z

logn
n

+ (ak+1)Lgγ

20δ0R
. Then on T0(δ0, R, R̃) ∩ T2(δ0, R) ∩ T3,

it holds that

∥ĝ(z)− g0(z)∥n ≤
(
1 +

√
δ0 +

√
Λmax
Λmin

)
R + 22bkLgℓ

−1
z

log n

n
.

Proof. Part (ii) in Lemma 1 together with Part (i) of Lemma 5 implies that ∥ĝ(z)− ḡ(z)∥ ≤

(1 +
√

Λmax

Λmin
)R. As a result, combining it with Part (i) of Lemma 1 gives

∥ĝ(z)− g0(z)∥ ≤ ∥ĝ(z)− ḡ(z)∥+ ∥ḡ(z)− g0(z)∥ ≤
(
1 +

√
Λmax
Λmin

)
R +

22bkLg log n

ℓzn
.
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To prove the second result, we first use results (i)(ii) of Lemma 1 to bound

γTV (ĝ(k) − g
(k)
0 )

20δ0R
≤ γTV (ĝ(k) − ḡ(k))

20δ0R
+
γTV (ḡ(k) − g

(k)
0 )

20δ0R
≤ R +

(ak + 1)Lgγ

20δ0R
.

Combining the above with the first result on ∥ĝ(z)− g0(z)∥, we see that

τδ0,R(ĝ − g0) =
γTV (ĝ(k) − g

(k)
0 )

20δ0R
+ ∥ĝ(z)− g0(z)∥ ≤ R̃.

Hence, on T0(δ0, R, R̃)∩T2(δ0, R)∩T3, we can use the bound on ∥ĝ(z)− g0(z)∥ to obtain the

bound on ∥ĝ(z)− g0(z)∥n:

∥ĝ(z)− g0(z)∥n ≤
√

∥ĝ(z)− g0(z)∥2 + δ0R2 ≤ ∥ĝ(z)− g0(z)∥+
√
δ0R.

Lemma 3. Assume Conditions 1, 3, 4 hold. Define

KF = (1 ∨ Cz,k)
(20δ0R

γ
+ 1 +

√
Λmax
Λmin

)
R, (2.11)

where Cz,k > 0 is the constant in Lemma 5. Suppose that

log p

n
≤ 1, δ0

√
log p

n

R2

λ2
≤ D1, D2δ

−4k−4
2k+3

0 K2
Fn

−2k−2
2k+3 ≤ R2,

D3(1 +K2
F)R

2 logR−1 ≤ nλ2, D4(λ
2nR

−2k−1
k+1 K

−1
k+1

F ∧ λ
√
nR−1) ≥ log n.

Then,

P(T1(δ0, R)) ≥ 1− 2p−10 − 8pe−D4(λ2nR
−2k−1
k+1 K

−1
k+1
F ∧λ

√
nR−1) − 8pe

− δ20R
2n

D5K
2
F .

Further assume 1
2
δ0R

2 ≥ D1γ,R ≥ logn
n

where this constant D1 is the one from Lemma 1. It

holds that

P(T0(δ0, R, R̃)) ≥ 1− 2p−10 − 8pe−D4(λ2nR
−2k−1
k+1 K

−1
k+1
F ∧λ

√
nR−1) − 8pe

− δ20R
2n

D5K
2
F .

Proof. For a given function f(x, z) = x′β + g(z), it is clear that

∥f∥2n − ∥f∥2 =1

n

n∑
i=1

((x′
iβ)

2 − ∥x′β∥2) + 1

n

n∑
i=1

(g2(zi)− ∥g(z)∥2)

+
2

n

n∑
i=1

(x′
iβg(zi)− Ex′βg(z)),
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such that

sup
τδ0,R(f)≤R

∣∣∣∥f∥2n − ∥f∥2
∣∣∣ ≤ sup

τδ0,R(f)≤R

∣∣∣ 1
n

n∑
i=1

((x′
iβ)

2 − ∥x′β∥2)
∣∣∣

+ sup
τδ0,R(f)≤R

∣∣∣ 1
n

n∑
i=1

(g2(zi)− ∥g(z)∥2)
∣∣∣

+ sup
τδ0,R(f)≤R

∣∣∣ 2
n

n∑
i=1

(x′
iβg(zi)− Ex′βg(z))

∣∣∣ := I + II + III.

We now bound the above three terms separately. According to Lemma 5 Part (i), the β in

any f(x, z) = x′β + g(z) with τδ0,R(f) ≤ R satisfies

β ∈ B :=
{
β : ∥β∥1 ≤ 20δ0R

2λ−1, ∥x′β∥ ≤ (2 +

√
Λmax
Λmin

)R
}
. (2.12)

Therefore,

I ≤ sup
β∈B

∣∣∣ 1
n

n∑
i=1

((x′
iβ)

2 − ∥x′β∥2)
∣∣∣ ≤ max

1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

(xijxik − Exjxk)
∣∣∣ · sup

β∈B
∥β∥21, (2.13)

where in the last inequality we have used the fact |a′Aa| ≤ ∥a∥21 ·∥A∥max, ∀a ∈ Rp,A ∈ Rp×p.

Condition 1 implies that {xijxik − Exjxk}ni=1 are independent, zero-mean, sub-exponential

random variables with the sub-exponential norm ∥xijxik − Exjxk∥ψ1 ≤ C1K
2
x. We then use

Bernstein’s inequality in Theorem 3 together with a simple union bound to obtain that when
log p
n

≤ 1,

max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

(xijxik − Exjxk)
∣∣∣ ≤ C2K

2
x

√
log p

n

holds with probability at least 1− 2p−10. Putting this result together with (2.13) enables us

to conclude P(I ≤ δ0R
2/3) ≥ 1− 2p−10, as long as δ0

√
log p
n

R2

λ2
≤ D1.

Now we bound II. Using Lemma 5 we have II ≤ supg∈F
∣∣∥g∥2n − ∥g∥2

∣∣, where

F :=
{
g : ∥g∥ ≤ RF , TV (g(k)) ≤ 20δ0R

2γ−1, ∥g∥∞ ≤ KF

}
, (2.14)

RF =
(
1 +

√
Λmax
Λmin

)
R, KF = (1 ∨ Cz,k)

(20δ0R
γ

+ 1 +

√
Λmax
Λmin

)
R.
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We aim to apply Theorem 5 to bound supg∈F
∣∣∥g∥2n − ∥g∥2

∣∣. Adopting the notation in

Theorem 5, we first calculate J0(t,F):

J0(t,F) ≤ C3t

∫ 1

0

√
C4

( ut

2KF

)− 1
k+1
du = C3

√
C4K

1
2k+2

F
2

1
2k+2 (2k + 2)

2k + 1︸ ︷︷ ︸
C̄3

·t
2k+1
2k+2 , (2.15)

where the first inequality is due to the entropy bound of Corollary 1 in [56]. As a result,

H(u) = sup
t≥0

(
ut− (J −1

0 (t,F))2
)
≤ sup

t≥0

(
ut− C̄

− 4k+4
2k+1

3 t
4k+4
2k+1

)
=
(2k + 1

4k + 4

) 4k+4
2k+3 2k + 3

2k + 1
C̄

4k+4
2k+3

3 u
4k+4
2k+3 = D2K

2
2k+3

F u
4k+4
2k+3 .

We are ready to invoke Theorem 5. The condition R2
F ≥ H(4KF/

√
n) is reduced to

R2 ≥ D3K
2
Fn

−2k−2
2k+3 , (2.16)

and under this condition it holds with probability at least 1− e−t that

sup
g∈F

∣∣∣∥g∥2n − ∥g∥2
∣∣∣ ≤ D4 ·

(K 2k+3
2k+2

F R
2k+1
2k+2

√
n

+
KFR

√
t√

n
+
K2

F t

n

)
.

Given the above, choosing t =
δ20R

2n

D5K2
F

and assuming a slightly stronger condition R2 ≥

D6δ
−4k−4
2k+3

0 K2
Fn

−2k−2
2k+3 compared to (2.16), it is then straightforward to verify that P(II ≤

δ0R
2/3) ≥ 1− e

− δ20R
2n

D5K
2
F .

Next we bound III. We first use Hölder’s inequality and Lemma 5 to obtain

III ≤ sup
τδ0,R(f)≤R

2∥β∥1 ·
∥∥∥ 1
n

n∑
i=1

(xig(zi)− Exg(z))
∥∥∥
∞

≤ 40δ0R
2

λ
· sup
g∈F ,1≤j≤p

∣∣∣ 1
n

n∑
i=1

(xijg(zi)− Exjg(z))
∣∣∣.

We then aim to use Theorem 6 to bound supg∈F | 1
n

∑n
i=1(xijg(zi) − Exjg(z))| for each 1 ≤

j ≤ p. The quantities QF , Q̂F in Theorem 6 become QF = supg∈F

√
E(x2jg2(z)), Q̂F =

supg∈F

√
1
n

∑n
i=1 x

2
ijg

2(zi). Let R̂F = supg∈F ∥g∥n,Xj = (x1j, . . . , xnj),Z = (z1, . . . , zn),

and ϵ1, . . . , ϵn be a Rademacher sequence independent of Xj,Z. Applying Dudley’s entropy
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integral gives

E
(
sup
g∈F

| 1
n

n∑
i=1

ϵixijg(zi)|
∣∣∣Xj,Z

)
≤ C5

Q̂F√
n

∫ 1

0

√
H(uQ̂F ,F , ∥ · ∥wn )du,

≤C5
Q̂F√
n

∫ 1

0

√
H(uQ̂F∥Xj∥−1

∞ ,F , ∥ · ∥n)du ≤ C5∥Xj∥∞
2C3

√
n

J0(2Q̂F∥Xj∥−1
∞ ,F),

≤D7n
−1/2K

1
2k+2

F Q̂
2k+1
2k+2

F ∥Xj∥
1

2k+2
∞ ≤ D7n

−1/2K
1

2k+2

F R̂
2k+1
2k+2

F ∥Xj∥∞, (2.17)

where J0(·,F) is from (2.15) and the second to last inequality is due to (2.15); ∥ · ∥wn

denotes the weighted empirical norm ∥g∥wn =
√

1
n

∑n
i=1 x

2
ijg

2(zi) and it is clear that ∥g∥wn ≤

∥Xj∥∞∥g∥n and Q̂F ≤ ∥Xj∥∞R̂F . Now applying the second result in Theorem 6 yields

P
(
sup
g∈F

| 1
n

n∑
i=1

ϵixijg(zi)| ≥ C6∥Xj∥∞
(
D7n

−1/2K
1

2k+2

F R̂
2k+1
2k+2

F + R̂F
√
t/n
)∣∣∣Xj,Z

)
≤ e−t.

(2.18)

Define the events

A1 =
{
∥Xj∥∞ ≤ C7Kx(

√
log n+

√
t)
}
, A2 =

{
sup
g∈F

|∥g∥2n − ∥g∥2| ≤ δ0R
2/3
}
.

Condition 1 together with standard union bound for sub-Gaussian tails gives P(Ac
1) ≤ e−t

(with a proper choice of C7). The previous result on term II shows P(Ac
2) ≤ e

− δ20R
2n

D5K
2
F , and it

holds on A2 that

R̂F ≤
√
sup
g∈F

|∥g∥2n − ∥g∥2|+ sup
g∈F

∥g∥2 ≤
√
δ0/3 + (1 +

√
Λmax/Λmin)2R. (2.19)

As a result, we can further bound (2.18) on A1 ∩ A2 to arrive at

P
(
sup
g∈F

| 1
n

n∑
i=1

ϵixijg(zi)| ≥ D8(
√

log n+
√
t)
(
n−1/2K

1
2k+2

F R
2k+1
2k+2 +R

√
t/n
)∣∣∣Xj,Z

)
·

1A1∩A2 ≤ e−t

We integrate out the above conditional probability to obtain the unconditional one:

P
(
sup
g∈F

| 1
n

n∑
i=1

ϵixijg(zi)| ≥ D8(
√
log n+

√
t)
(
n−1/2K

1
2k+2

F R
2k+1
2k+2 +R

√
t/n
))

≤ e−t + P(Ac
1 ∪ Ac

2) ≤ 2e−t + e
− δ20R

2n

D5K
2
F .
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It is then direct to verify that choosing t = D9(λ
2nR

−2k−1
k+1 K

−1
k+1

F ∧ λ
√
nR−1) ≥ log n gives

P
(
sup
g∈F

| 1
n

n∑
i=1

ϵixijg(zi)| ≥
λ

480

)
≤ 2e−D9(λ2nR

−2k−1
k+1 K

−1
k+1
F ∧λ

√
nR−1) + e

− δ20R
2n

D5K
2
F . (2.20)

We will invoke the symmetrization result of Theorem 6 to transfer the above bound to

supg∈F | 1
n

∑n
i=1(xijg(zi)− Exjg(z))|. In order to do so, we need to show 8× 4802Q2

F ≤ nλ2.

Note that

Q2
F = sup

g∈F
Ex2jg2(z) = sup

g∈F

(
Ex2jg2(z)1(|xj| ≤ s) + Ex2jg2(z)1(|xj| > s)

)
≤ s2 sup

g∈F
∥g∥2 + sup

g∈F
∥g∥2∞ · Ex2j1(|xj| > s) ≤ s2

(
1 +

√
Λmax
Λmiin

)2
R2 +K2

F · Ex2j1(|xj| > s).

Using the sub-Gaussian tail bound for xj to bound Ex2j1(|xj| > s), it is not hard to obtain

that Q2
F ≤ D10(1 +K2

F)R
2 logR−1 with the choice s = D11

√
logR−1. Therefore, under the

condition D12(1 +K2
F)R

2 logR−1 ≤ nλ2, Theorem 6 together with (2.20) leads to

P
(
sup
g∈F

| 1
n

n∑
i=1

(xijg(zi)− Exjg(z))| ≥
λ

120

)
≤ 8e−D9(λ2nR

−2k−1
k+1 K

−1
k+1
F ∧λ

√
nR−1) + 4e

− δ20R
2n

D5K
2
F .

We follow via a union bound,

P(III ≥ δ0R
2/3) ≤ P

(
sup

g∈F ,1≤j≤p

∣∣∣ 1
n

n∑
i=1

(xijg(zi)− Exjg(z))
∣∣∣ ≥ λ

120

)
≤ p · max

1≤j≤p
P
(
sup
g∈F

| 1
n

n∑
i=1

(xijg(zi)− Exjg(z))| ≥
λ

120

)
≤ 8pe−D9(λ2nR

−2k−1
k+1 K

−1
k+1
F ∧λ

√
nR−1) + 4pe

− δ20R
2n

D5K
2
F .

Finally, we collect the results on I, II, III to bound P(T1(δ0, R)) via P(T1(δ0, R)) ≥ 1−P(I ≥

δ0R
2/3)− P(II ≥ δ0R

2/3)− P(III ≥ δ0R
2/3).

Regarding the bound for P(T0(δ0, R, R̃)), first note that 2R ≤ R̃ ≤ D12R under the

assumption 1
2
δ0R

2 ≥ D1γ,R ≥ logn
n

. Moreover, {f : τδ0,R(f) ≤ R̃} ⊂ {f : τδ0,R̃(f) ≤ R̃}.

Hence,

P(T0(δ0, R, R̃)) ≥ P
(

sup
τ
δ0,R̃

(f)≤R̃

∣∣∣∥f∥2n − ∥f∥2
∣∣∣ ≤ D−2

12 δ0R̃
2
)
.
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Essentially, all the previous arguments in bounding P(T1(δ0, R)) carry over into

P(T0(δ0, R, R̃)), up to constants Dj’s. We only need to update those constants in the condi-

tions and results, in a way so that P(T1(δ0, R)) and P(T0(δ0, R, R̃)) share the same constants

(e.g., taking a minimum or maximum among constants).

Lemma 4. Assume Conditions 1-4 hold.

(i) When R2 ≥ D1δ
−4k−4
2k+3

0 n
−2k−2
2k+3 (K2

F+K
2

2k+3

F σ
4k+4
2k+3 ) where KF is defined in (2.11) of Lemma

3, then

P
(
T2(δ0, R)

)
≥ 1− 2pe

−C1nmin
(

λ2

(KxKεσ)2
, λ
KxKεσ

)
− 2e−D2σ−2δ20nR

2 − e
− δ20R

2n

D3K
2
F .

(ii) As long as 11 logn
ℓzn

< 1, then P
(
T3

)
≥ 1− 2ℓzn

−10.

Proof. Recalling the sets B in (2.12) and F in (2.14) from the proof of Lemma 3, we have

sup
τδ0,R(f)≤R

∣∣∣⟨ε, f(X,Z)⟩n∣∣∣ ≤ sup
τδ0,R(f)≤R

∣∣∣ 1
n

n∑
i=1

εix
′
iβ
∣∣∣+ sup

τδ0,R(f)≤R

∣∣∣ 1
n

n∑
i=1

εig(zi)
∣∣∣

≤ sup
β∈B

∥β∥1 ·
∥∥∥ 1
n

n∑
i=1

xiεi

∥∥∥
∞
+ sup

g∈F

∣∣∣ 1
n

n∑
i=1

εig(zi)
∣∣∣

≤ 20δ0R
2

λ

∥∥∥ 1
n

n∑
i=1

xiεi

∥∥∥
∞
+ sup

g∈F

∣∣∣ 1
n

n∑
i=1

εig(zi)
∣∣∣ := I + II.

We first bound term I. Using Bernstein’s inequality in Theorem 3 we obtain that

P(| 1
n

∑n
i=1 εixij| ≥ λ

40
) ≤ 2e

−C1nmin
(

λ2

(KxKεσ)2
, λ
KxKεσ

)
. This combined with a union bound

gives

P(I ≤ δ0R
2/2) ≥ P

(∥∥∥ 1
n

n∑
i=1

xiεi

∥∥∥
∞

≤ λ

40

)
≥ 1− 2pe

−C1nmin
(

λ2

(KxKεσ)2
, λ
KxKεσ

)
.

To bound term II, let R̂F = supg∈F ∥g∥n. Conditional on z1, . . . , zn (which are independent

from ε1, . . . , εn), Theorem 7 implies that the following holds with probability at least 1−2e−t:

II ≤ C2Kεσ ·

(
R̂F√
n

∫ 1

0

√
H(uR̂F ,F , ∥ · ∥n)du+ R̂F

√
t

n

)
,

≤ C2Kεσ ·
(
D1n

−1/2K
1

2k+2

F R̂
2k+1
2k+2

F + R̂F
√
t/n
)
,

28



where the last inequality follows as in (2.17). Integrating over z1, . . . , zn, the above holds

marginally with probability at least 1−2e−t as well. Moreover, from (2.19) we already know

that,

P(R̂F ≤ D3R) ≥ 1− e
− δ20R

2n

D4K
2
F , when R2 ≥ D2δ

−4k−4
2k+3

0 K2
Fn

−2k−2
2k+3 .

Combining these two results via a union bound gives us

P
(
II ≤ D5σ

(
n−1/2K

1
2k+2

F R
2k+1
2k+2 +R

√
t/n
))

≥ 1− 2e−t − e
− δ20R

2n

D4K
2
F .

Choosing t = D6σ
−2δ20nR

2 and assuming R2 ≥ D7δ
−4k−4
2k+3

0 n
−2k−2
2k+3 (K2

F + K
2

2k+3

F σ
4k+4
2k+3 ), it is

direct to confirm

P(II ≤ δ0R
2/2) ≥ 1− 2e−D6σ−2δ20nR

2 − e
− δ20R

2n

D4K
2
F .

Combining the bounds for I, II gives the bound for

P(T2(δ0, R)) ≥ P(I ≤ δ0R
2/2, II ≤ δ0R

2/2) ≥ 1− P(I > δ0R
2/2)− P(II > δ0R

2/2).

Finally, the bound on P
(
T3

)
is directly taken from Lemma 5 in [77].

Lemma 5. Consider any f(x, z) = x′β + g(z) that satisfies τδ0,R(f) ≤ R.

(i) Under Condition 4 it holds that

∥β∥2 ≤ Λ
−1/2
min R, ∥β∥1 ≤

20δ0R
2

λ
, ∥x′β∥ ≤

(
2 +

√
Λmax
Λmin

)
R,

∥g∥ ≤
(
1 +

√
Λmax
Λmin

)
R, TV (g(k)) ≤ 20δ0R

2

γ
.

(ii) Under additional Condition 3, it holds that

∥g∥∞ ≤ Cz,k

(20δ0R
γ

+ 1 +

√
Λmax
Λmin

)
R,

where Cz,k > 0 is a constant only dependent on k and ℓz.

Proof. The bound on ∥β∥1 and TV (g(k)) is clear from the definition of τδ0,R(f) in (2.7).

Using the orthogonal decomposition:

∥x′β + g(z)∥2 = ∥x̃′β∥2 + ∥h(z)′β + g(z)∥2 ≤ R2,
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we have ∥β∥2 ≤ Λ
−1/2
min ∥x̃′β∥ ≤ Λ

−1/2
min R, and

∥g(z)∥ ≤ ∥h(z)′β + g(z)∥+ ∥h(z)′β∥ ≤ R + Λ1/2
max∥β∥2 ≤

(
1 +

√
Λmax
Λmin

)
R.

Having the bound on ∥g∥, we can further obtain ∥x′β∥ ≤ ∥x′β + g(z)∥ + ∥g(z)∥ ≤ (2 +√
Λmax

Λmin
)R.

It remains to bound ∥g∥∞. Define g∗(z) = g(z)

(
20δ0R

γ
+1+

√
Λmax
Λmin

)R
, then TV (g

(k)
∗ ) ≤ 1, ∥g∗∥ ≤ 1

due to the derived bounds on ∥g∥ and TV (g(k)). Hence it is sufficient to show that

sup
g∗:TV (g

(k)
∗ )≤1,∥g∗∥≤1

∥g∗∥∞ ≤ Cz,k.

To prove the above, we first decompose g∗ = p∗ + q∗, where p∗ is a polynomial of degree k

and q∗ is orthogonal to all polynomials of degree k (with respect to the L2 inner product∫ 1

0
p(z)q(z)dz). Note that TV (q

(k)
∗ ) = TV (g

(k)
∗ ) ≤ 1. Then Lemma 5 in [56] implies that

∥q∗∥∞ ≤ ck for a constant ck > 0 only depending on k. Now write p∗(z) =
∑k

j=0 ajz
j. We

have √
a′V0a = ∥p∗∥ ≤ ∥g∗∥+ ∥q∗∥ ≤ 1 + ck,

where a = (a0, . . . , ak) and V0 = E(v(z)v(z)′) with v(z) = (1, z, z2, . . . , zk). Thus, we obtain

∥p∗∥∞ ≤ ∥a∥1 ≤
√
k + 1∥a∥2 ≤

√
k + 1(1 + ck)λ

−1/2
min (V0),

which implies ∥g∗∥∞ ≤ ∥p∗∥∞ + ∥q∗∥∞ ≤
√
k + 1(1 + ck)λ

−1/2
min (V0) + ck. Finally, we need to

show λmin(V0) is bounded below by a constant only depending on k and ℓz. Under Condition

3 we have

λmin(V0) = min
∥b∥2=1

E(b′v(z))2 ≥ ℓz · min
∥b∥2=1

E(b′v(z̃))2, z̃ ∼ Unif(0, 1)

= ℓz · E(b′
∗v(z̃))

2,

where b∗ is the minimizer; E(b′
∗v(z̃))

2 is a constant only depending on k, and it is positive

because the roots of any polynomial (not identically zero) form a set of Lebesgue measure

zero.
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2.6.1.3 Completion of the proof

We are in the position to complete the proof of Theorem 1. In fact, we shall prove

Theorems 1 and 2 altogether. We will choose R2, λ, γ, δ0 such that the conditions in Lemmas

1-4 (for Theorem 1) and Lemmas 6-7 (for Theorem 2) are all satisfied. As a result, we will

then conclude that the bounds on ĝ(z) in Lemma 2 and bounds on β̂ in Lemma 6 hold with

probability at least P(T0(δ0, R, R̃)∩T2(δ0, R)∩T3 ∩S1 ∩S2 ∩S3). Towards this end, we first

list the conditions to meet2:

(i) Conditions from Lemmas 1-2: δ0 ≤ 1
100
, δ0R

2 ≥ D1(
log2 n
n2 + γ + λ2s).

(ii) Conditions from Lemma 3: log p
n

≤ 1, δ0

√
log p
n

R2

λ2
≤ D2, D3δ

−4k−4
2k+3

0 K2
Fn

−2k−2
2k+3 ≤ R2,

D4(1 + K2
F)R

2 logR−1 ≤ nλ2, D5(λ
2nR

−2k−1
k+1 K

−1
k+1

F ∧ λ
√
nR−1) ≥ log n, 1

2
δ0R

2 ≥

D1γ, R ≥ logn
n

. Recall that KF is defined in (2.11).

(iii) Conditions from Lemma 4: R2 ≥ D6δ
−4k−4
2k+3

0 n
−2k−2
2k+3 (K2

F +K
2

2k+3

F σ
4k+4
2k+3 ), 11 logn

ℓzn
< 1.

(iv) Conditions from Lemma 6: δ0 ≤ 1
100
, δ0R

2 ≥ D1(
log2 n
n2 +γ+λ2s), λ ≥ D7(R

2λ−1 log
2 n
n2 +

γ).

(v) Conditions from Lemma 7: log p
n

≤ 1, δ0

√
log p
n

R2

λ2
≤ D8, D9δ

−4k−4
2k+3

0 K2
Fn

−2k−2
2k+3 ≤ R2,

D10(1 + K2
F)R

2 logR−1 ≤ nλ2, D11(λ
2nR

−2k−1
k+1 K

−1
k+1

F ∧ λ
√
nR−1) ≥ log n, logn

n
(1 +

KF + σ +R2λ−1) + σ−1R2 ≤ D12λ.

We choose δ0 = 1
100
, λ = Dσ

√
log p
n
, γ = δ0R2

2D1
, where D > 0 is any given constant that may

only depend on k, Lg, Lh, Kx, Kϵ, ℓz,Λmin,Λmax. It remains to specify R2. We will consider

R2 ≤ 1, which together with γ = δ0R2

2D1
implies

KF = (1 ∨ Cz,k)
(20δ0R

γ
+ 1 +

√
Λmax
Λmin

)
R ≤ (1 ∨ Cz,k)

(
40D1 + 1 +

√
Λmax
Λmin

)
:= D13.

Define

R2
0 =

2D1

δ0

( log2 n
n2

+ λ2s
)
+ δ

−4k−4
2k+3

0 n
−2k−2
2k+3

(
(D3 +D9)D

2
13 +D6(D

2
13 +D

2
2k+3

13 σ
4k+4
2k+3 )

)
.

2With a bit abuse of notation, the subscripts for constants Dj ’s we use here may be different from the
ones in the lemmas.
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For any R2 ∈ [R2
0, 1], it is straightforward to verify that Conditions from Lemmas 1-2 and all

the conditions involving n
−2k−2
2k+3 are satisfied. To meet other conditions, we will pick R2 = cR2

0

for any constant c ≥ 1. We verify the remaining conditions by showing that under the scaling
(s+log p)s log p

n
= o(1), p → ∞ as n → ∞

(
so that λ ≍

√
log p
n
, R2 ≍ γ ≍ s log p

n
+ n

−2k−2
2k+3 , R2 =

o(λ)
)
:

(ii) Conditions from Lemma 3: log p
n

= o(1),
√

log p
n

R2

λ2
= O(R2/λ) = o(1), R2 logR−1 =

o(1) ≪ log p ≍ nλ2, λ
√
nR−1 ≫

√
nR ≳ n

1
4k+6 ≫ log n, R ≳ n

−k−1
2k+3 ≫ logn

n
. Moreover,

λ2nR
−2k−1
k+1 ≳ n

2k+1
2k+3 · log p ≫ log n when s log p

n
≤ n

−2k−2
2k+3 ; when s log p

n
> n

−2k−2
2k+3 , it still

holds that

λ2nR
−2k−1
k+1 ≳

( n

s log p

) 2k+1
2k+2 · log p≫ s

2k+1
2k+2 · log p ≳ n

2k+1
(2k+2)(2k+3) · (log p)

1
2k+2 ≫ log n.

(iii) Conditions from Lemma 4: n
logn

= o(1).

(iv) Conditions from Lemma 6: R2λ−1 log
2 n
n2 + γ ≍ R2 ≪ λ.

(v) Conditions from Lemma 7: Most conditions have been verified for conditions in Lemma

3. It remains to see that logn
n

(1 +R2λ−1) +R2 ≲ logn
n

+R2 ≪ λ.

Finally, given what we have obtained, it is straightforward to further evaluate the high

probability (by choosing the constant D in λ and c in R2 large enough):

P(T0(δ0, R, R̃) ∩ T2(δ0, R) ∩ T3 ∩ S1 ∩ S2 ∩ S3) ≥ 1− p−D14 − n−D15 ,

when n is large enough under the scaling s log2 p
n

= o(1), p→ ∞.
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2.6.2 Proof of Theorem 2

2.6.2.1 Roadmap of the proof

Recall the sets B in (2.12) and F in (2.14) from the proof of Lemma 3. Define the

following set and events:

F̃ =
{
g : ∥g∥∞ ≤ 22bk(Lg + Lh)ℓ

−1
z n−1 log n

}
,

S1 =
{∥∥∥ 1

n
(∆(Z) + X̃)′(g(Z)− h(Z)β + ε)

∥∥∥
∞

≤ 1

8
λ, ∀β ∈ B, g ∈ F ∪ F̃ ,∆j ∈ F̃ , 1 ≤ j ≤ p

}
,

S2 =
{∣∣∣∥X̃β∥2n − ∥x̃′β∥2

∣∣∣ ≤ λ∥β∥1,∀β ∈ B
}
, S3 =

{∣∣∣∥Xβ∥2n − ∥x′β∥2
∣∣∣ ≤ λ∥β∥1,∀β ∈ B

}
.

The proof of Theorem 1 already yields an error rate for β̂ (see Lemmas 1 and 5), however,

the rate is not optimal yet. We will base on this “slow rate" result to perform a finer

analysis of β̂ to obtain the “fast rate". This is again inspired by [46]. Specifically, we prove

in Lemma 6 that the “fast rate" results on β̂ in Theorem 2 hold by intersecting with another

event S1 ∩ S2 ∩ S3. We then show in Lemma 7 that this additional event S1 ∩ S2 ∩ S3 also

has large probability.

2.6.2.2 Key lemmas

Lemma 6. Assume Conditions 3-5 and

δ0 ≤
1

100
, δ0R

2 ≥ D1(n
−2 log2 n+ γ + λ2s), λ ≥ D2(R

2λ−1n−2 log2 n+ γ),

where the constant D1 is the same as in Lemma 1. Then on T1(δ0, R)∩T2(δ0, R)∩T3∩S1∩S2,

∥β̂ − β0∥22 ≤ 16Λ−2
minsλ

2, ∥x′(β̂ − β0)∥2 ≤ 32(Λmin + Λmax)Λ
−2
minsλ

2.

Further intersecting with the event S3, we have ∥Xβ̂−Xβ0∥2n ≤ 16(3Λmin+2Λmax)Λ
−2
minsλ

2.

Proof. Recall that under Condition 5, max1≤j≤p TV (h
(k)
j ) ≤ Lh where h(z) =

(h1(z), . . . , hp(z)) = E(x|z). According to Lemma 16 in [70], there exist h̄j ∈ Hn for all
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1 ≤ j ≤ p such that

TV (h̄
(k)
j ) ≤ akLh, ∥h̄j − hj∥∞ ≤ bkLh · max

1≤i≤n−1
(z(i+1) − z(i)),

where ak, bk > 0 are constants only depending on k, and Hn is the span of the kth order

falling factorial basis functions with knots z(k+1) ≤ z(k+2) . . . ≤ z(n−1). Define

h̄(z) = (h̄1(z), . . . , h̄p(z)), ǧ(z) = ĝ(z) + h̄′(z)(β̂ − β0).

Note that ǧ ∈ Hn since ĝ, h̄j ∈ Hn. Therefore, we can write down a basic inequality,

1

2
∥y −Xβ̂ − ĝ(Z)∥2n + λ∥β̂∥1 + γTV (ĝ(k)) ≤ 1

2
∥y −Xβ0 − ǧ(Z)∥2n + λ∥β0∥1 + γTV (ǧ(k)),

which can be reformulated as

1

2
∥X̃(β̂ − β0)∥2n + λ∥β̂∥1 ≤

1

2
∥(h(Z)− h̄(Z))(β̂ − β0)∥2n + γ(TV (ǧ(k))− TV (ĝ(k)))+〈

g0(Z)− ĝ(Z)− h(Z)(β̂ − β0) + ε, (h(Z)− h̄(Z) + X̃)(β̂ − β0)
〉
n
+ λ∥β0∥1.

Using triangle inequality for TV (·) and Hölder’s inequality, we can proceed to obtain

1

2
∥X̃(β̂ − β0)∥2n + λ∥β̂∥1 ≤

1

2n
∥(h(Z)− h̄(Z))′(h(Z)− h̄(Z))∥max · ∥β̂ − β0∥21

+ γakLh∥β̂ − β0∥1

+
∥∥ 1
n
(h(Z)− h̄(Z) + X̃)′(g0(Z)− ĝ(Z)− h(Z)(β̂ − β0) + ε)

∥∥
∞ · ∥β̂ − β0∥1

+ λ∥β0∥1. (2.21)

To further simplify the above inequality, we observe the following:

(i) 1
n
∥(h(Z)− h̄(Z))′(h(Z)− h̄(Z))∥max ≤ maxj ∥hj − h̄j∥2∞ ≤ b2kL

2
h22

2ℓ−2
z n−2 log2 n on T3

(ii) Conditions in Lemma 6 imply the conditions in Lemma 1 and Lemma 5. Hence,

combining Lemmas 1 and 5 shows β̂ − β0 ∈ B, ḡ − ĝ ∈ F , g0 − ḡ ∈ F̃ .
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Based on these two results and assuming 4840b2kL
2
hδ0ℓ

−2
z R2λ−1n−2 log2 n+ γakLh ≤ λ/4, we

continue from (2.21) to achieve that on T1(δ0, R) ∩ T2(δ0, R) ∩ T3 ∩ S1,

1

2
∥X̃(β̂ − β0)∥2n + λ∥β̂∥1 ≤(4840b2kL

2
hδ0ℓ

−2
z R2λ−1n−2 log2 n+ γakLh + λ/4) · ∥β̂ − β0∥1

+ λ∥β0∥1

≤λ
2
∥β̂ − β0∥1 + λ∥β0∥1.

A standard argument in the literature of Lasso (e.g., Lemma 6.3 in [8]) simplifies the above

to

∥X̃(β̂ − β0)∥2n + λ∥β̂ − β0∥1 ≤ 4λ∥β̂S − β0
S∥1 ≤ 4

√
sλ∥β̂ − β0∥2

≤4
√
sλΛ

−1/2
min ∥x̃′(β̂ − β0)∥ ≤ 8sλ2Λ−1

min +
1

2
∥x̃′(β̂ − β0)∥2

≤8sλ2Λ−1
min +

1

2
∥X̃(β̂ − β0)∥2n +

λ

2
∥β̂ − β0∥1,

where the second to last equality is due to ab ≤ a2/2 + b2/2, and the last inequality holds

on S2. Rearranging the terms leads to

∥X̃(β̂ − β0)∥2n + λ∥β̂ − β0∥1 ≤ 16Λ−1
minsλ

2. (2.22)

Now (2.22) combined with the condition from S2 implies

∥β̂ − β0∥22 ≤ Λ−1
min · ∥x̃′(β̂ − β0)∥2 ≤ Λ−1

min · (∥X̃(β̂ − β0)∥2n + λ∥β̂ − β0∥1) ≤ 16Λ−2
minsλ

2,

∥x′(β̂ − β0)∥2 = (∥x̃′(β̂ − β0)∥+ ∥h(z)′(β̂ − β0)∥)2 ≤ 2∥x̃′(β̂ − β0)∥2 + 2∥h(z)′(β̂ − β0)∥2

≤ 32Λ−1
minsλ

2 + 2Λmax∥β̂ − β0∥22 ≤ 32(Λmin + Λmax)Λ
−2
minsλ

2.

Further intersecting with S3, we obtain

∥X(β̂ − β0)∥2n ≤ ∥x′(β̂ − β0)∥2 + λ∥β̂ − β0∥1 ≤ 32(Λmin + Λmax)Λ
−2
minsλ

2 + 16Λ−1
minsλ

2.

Lemma 7. Assume Conditions 1-5 hold.
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(i) Suppose

D1δ
−4k−4
2k+3

0 K2
Fn

−2k−2
2k+3 ≤ R2, D2(1 +K2

F)R
2 logR−1 ≤ nλ2, (2.23)

D3(λ
2nR

−2k−1
k+1 K

−1
k+1

F ∧ λ
√
nR−1) ≥ log n, (2.24)

n−1 log n(1 +KF + σ +R2λ−1) + σ−1R2 ≤ D4λ, (2.25)

where KF is defined in (2.11) of Lemma 3. Then,

P(S1) ≥1− 6pe−n − 2(p+ p2)e−D5nmin(σ−2λ2,σ−1λ)

− 8pe−D6(λ2nR
−2k−1
k+1 K

−1
k+1
F ∧λ

√
nR−1) − 4pe

− δ20R
2n

D7K
2
F .

(ii) Suppose log p
n

≤ 1, δ0

√
log p
n

R2

λ2
≤ D8. Then,

P(S2) ≥ 1− 2p−10, P(S3) ≥ 1− 2p−10.

Proof. For ∆(z) = (∆1(z), . . . ,∆p(z)) with ∆j ∈ F̃ , 1 ≤ j ≤ p,∥∥∥ 1
n
∆(Z)′(g(Z)− h(Z)β + ε)

∥∥∥
∞

≤ ∥∆(Z)∥max ·
( 1
n
∥g(Z)∥1 +

1

n
∥h(Z)β∥1 +

1

n
∥ε∥1

)
≤ 22bk(Lg + Lh)ℓ

−1
z n−1 log n ·

(
∥g∥∞ + ∥β∥1 ·max

j
∥hj(Z)∥1/n+ ∥ε∥1/n

)
.

Using Hoeffding’s inequality in Theorem 3, we obtain3

P(∥ε∥1/n ≤ C3σKε) ≥ 1− 2e−n, P(max
j

∥hj(Z)∥1/n ≤ C4Kx) ≥ 1− 2pe−n.

Thus with probability at least 1− 2(p+ 1)e−n,

sup
β∈B,g∈F∪F̃ ,∆j∈F̃

∥∥∥ 1
n
∆(Z)′(g(Z)− h(Z)β + ε)

∥∥∥
∞

≤D1n
−1 log n ·

(
KF + n−1 log n+R2λ−1 + σ

)
. (2.26)

3Given that ∥xj∥ψ2
≤ Kx, it holds that ∥hj(z)∥ψ2

≤ C1Kx, ∥x̃j∥ψ2
≤ C2Kx.
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Next we have∥∥∥ 1
n
X̃′(g(Z)− h(Z)β + ε)

∥∥∥
∞

≤
∥∥∥ 1
n
X̃′g(Z)

∥∥∥
∞
+
∥∥∥ 1
n
X̃′h(Z)β

∥∥∥
∞
+
∥∥∥ 1
n
X̃′ε

∥∥∥
∞

≤ max
1≤j≤p

∣∣ 1
n

n∑
i=1

x̃ijg(zi)
∣∣+ ∥β∥1 · max

1≤j,k≤p

∣∣ 1
n

n∑
i=1

x̃ijhk(zi)
∣∣+ ∥∥ 1

n

n∑
i=1

x̃iεi
∥∥
∞.

Note that we have used Bernstein’s inequality to bound
∥∥ 1
n

∑n
i=1 xiεi

∥∥
∞ in the proof of

Lemma 4. The same result holds here,

P
(∥∥∥ 1
n

n∑
i=1

x̃iεi

∥∥∥
∞

≤ λ

40

)
≥ 1− 2pe

−C5nmin
(

λ2

(KxKεσ)2
, λ
KxKεσ

)
.

Since {x̃ijhk(zi)}ni=1 are independent, zero-mean, sub-exponential random variables with

∥x̃ijhk(zi)∥ψ1 ≤ ∥x̃ij∥ψ2 · ∥hk(zi)∥ψ2 ≤ C6K
2
x, we use again Bernstein’s inequality to obtain

P
(

max
1≤j,k≤p

∣∣ 1
n

n∑
i=1

x̃ijhk(zi)
∣∣ ≤ λ/(20σ)

)
≥ 1− 2p2e

−C7nmin
(

λ2

K4
xσ2 ,

λ

K2
xσ

)
.

Hence with probability at least 1− 2(p+ p2)e
−C8nmin

(
λ2

K2
xσ2(K2

ε+K2
x)
, λ
Kxσ(Kε+Kx)

)
,

sup
β∈B,g∈F∪F̃ ,∆j∈F̃

∥∥∥ 1
n
X̃′(g(Z)− h(Z)β + ε)

∥∥∥
∞

≤ sup
g∈g∈F∪F̃ ,1≤j≤p

∣∣ 1
n

n∑
i=1

x̃ijg(zi)
∣∣+ σ−1δ0R

2 +
λ

40
.

(2.27)

We continue in the following way,

sup
g∈F∪F̃ ,1≤j≤p

∣∣ 1
n

n∑
i=1

x̃ijg(zi)
∣∣ ≤ sup

g∈F ,1≤j≤p

∣∣ 1
n

n∑
i=1

x̃ijg(zi)
∣∣+ sup

g∈F̃ ,1≤j≤p

∣∣ 1
n

n∑
i=1

x̃ijg(zi)
∣∣

≤ sup
g∈F ,1≤j≤p

∣∣ 1
n

n∑
i=1

x̃ijg(zi)
∣∣+ 22bk(Lg + Lh) log n

ℓzn
· max
1≤j≤p

1

n

n∑
i=1

|x̃ij|

(2.28)

As in bounding maxj ∥hj(Z)∥1/n earlier, we bound

P
(
max
1≤j≤p

1

n

n∑
i=1

|x̃ij| ≤ C9Kx

)
≥ 1− 2pe−n.

Moreover, applying the same arguments for bounding supg∈F | 1
n

∑n
i=1(xijg(zi)−Exjg(z))| in

the proof of Lemma 3, we have that under the conditions (2.23)-(2.24),

P
(

sup
g∈F ,1≤j≤p

∣∣ 1
n

n∑
i=1

x̃ijg(zi)
∣∣ ≥ λ

120

)
≤ 8pe−D2(λ2nR

−2k−1
k+1 K

−1
k+1
F ∧λ

√
nR−1) + 4pe

− δ20R
2n

D3K
2
F . (2.29)
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Combining (2.25)-(2.29) completes the bound for P(S1).

Regarding the bound for P(S2) and P(S3), the proof follows the same arguments used for

bounding term I in the proof of Lemma 3.

2.6.2.3 Completion of the proof

See Section 2.6.1.3.

2.6.3 Reference materials

Theorem 3. (General Hoeffding’s inequality). Let x1, . . . , xn ∈ R be independent, zero-

mean, sub-gaussian random variables. Then for every t ≥ 0, we have

P
(∣∣∣ n∑

i=1

xi

∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2∑n

i=1 ∥xi∥2ψ2

)
,

where c > 0 is an absolute constant, and ∥ · ∥ψ2 is the sub-gaussian norm defined as ∥x∥ψ2 =

inf{t > 0 : Eex2/t2 ≤ 2}.

(Bernstein’s inequality). Let x1, . . . , xn ∈ R be independent, zero-mean, sub-exponential

random variables. Then for every t ≥ 0, we have

P
(∣∣∣ n∑

i=1

xi

∣∣∣ ≥ t

)
≤ 2 exp

[
− cmin

(
t2∑n

i=1 ∥xi∥2ψ1

,
t

maxi ∥xi∥ψ1

)]
,

where c > 0 is an absolute constant, and ∥ · ∥ψ1 is the sub-exponential norm defined as

∥x∥ψ1 = inf{t > 0 : Ee|x|/t ≤ 2}.

The above two results are Theorem 2.6.2 and Theorem 2.8.1, respectively in [73].

Theorem 4. Let x1, . . . , xp ∈ R be sub-gaussian random variables, which are not necessarily

independent. Then there exists an absolute constant c > 0 such that for all p > 1,

E max
1≤i≤p

|xi| ≤ c
√

log p max
1≤i≤p

∥xi∥ψ2 .

The above result can be found in Lemma 2.4 of [7].
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Theorem 5. (Uniform convergence of empirical norms). Denote ∥g∥2n = 1
n

∑n
i=1 g(zi)

2 for

i.i.d. samples zi ∈ Z. For a class F of functions on Z, let J0(t,F) = C0t
∫ 1

0
sup{z1,...,zn}⊆Z√

H(ut/2,F , ∥ · ∥n)du, t > 0, where C0 > 0 is some universal constant and H is the metric

entropy. Let RF := supg∈F ∥g∥, KF := supg∈F ∥g∥∞, and H(t) be the convex conjugate of

G(t) := (J −1
0 (t,F))2. Then, for all R2

F ≥ H(4KF/
√
n) and all t > 0,

P

(
sup
g∈F

∣∣∣∥g∥2n − ∥g∥2
∣∣∣ ≥ C1

(
2KFJ0(2RF ,F) +KFRF

√
t√

n
+
K2

F t

n

))
≤ e−t,

where C1 > 0 is a universal constant.

The above is Theorem 2.2 from [21].

Theorem 6. (Symmetrization and concentration). Let Y = (y1, . . . , yn) be i.i.d. samples

in some sample space Y and let F be a class of real-valued functions on Y. Define QF =

supf∈F ∥f∥, Q̂F = supf∈F ∥f∥n. Then,

P
(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

(f(yi)− Ef(yi))
∣∣∣ ≥ 4QF

√
2t

n

)
≤ 4P

(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

ϵif(yi)
∣∣∣ ≥ QF

√
2t

n

)
, ∀t ≥ 4,

P
(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

ϵif(yi)
∣∣∣ ≥ C2 ·

(
E
(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

ϵif(yi)
∣∣∣∣∣∣Y)+ Q̂F

√
t/n
)∣∣∣Y) ≤ e−t, ∀t > 0,

where ϵ1, . . . , ϵn is a Rademacher sequence independent of Y and C2 > 0 is a universal

constant.

The first result is Lemma 16.1 in [72] and the second result is implied by Theorem 16.4

in [72].

Theorem 7. (Dudley’s integral tail bound). Let (Xt)t∈T be a separable random process on a

metric space (T, d) with sub-Gaussian increments: ∥Xt−Xs∥ψ2 ≤ Kd(t, s),∀t, s ∈ T . Then,

for every u > 0, the event

sup
t,s∈T

|Xt −Xs| ≤ CK
[ ∫ diam(T )

0

√
H(ε, T, d)dε+ u · diam(T )

]
holds with probability at least 1−2e−u

2. Here, C > 0 is a universal constant, H is the metric

entropy, and diam(T ) = sups,t∈T d(s, t).

The result above is Theorem 8.1.6 in [73].
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CHAPTER 3

HIGH-DIMENSIONAL PARTIAL LINEAR QUANTILE REGRESSION
WITH TREND FILTERING

3.1 Introduction

This research addresses the challenges posed by diverse data types in modern analytics,

focusing on scenarios where the response variable y is influenced by both linear (x) and

non-linear (z) predictors. Such complex relationships, common in biological studies like

gene expression analysis, require specialized methodologies that transcend traditional linear

models. The study emphasizes the importance of separately accounting for linear and non-

linear components to avoid potential pitfalls: using standard least squares regression alone

may lead to incorrect inferences, while applying non-linear regression to both components

can result in overly rough estimations and encounter the curse of dimensionality in high-

dimensional datasets. This approach aims to optimize model accuracy and efficiency in

handling complex, heterogeneous data structures.

The partial linear model addresses this methodological challenge by concurrently inte-

grating parametric and nonparametric regression techniques, thereby offering a more sophis-

ticated and robust approach to complex data structures. This semiparametric approach has

been extensively studied in both low-dimensional and high-dimensional settings by combin-

ing classical nonparametric approaches with various types of linear models [75, 23, 80, 46,

38, 89, 84]. For high-dimensional data, where the number of covariates significantly exceeds

the number of observations, several penalization techniques are involved such as LASSO

[67], SCAD (Smoothly Clipped Absolute Deviation) by [16], and MCP (Minimax Concave

Penalty) by [85].

Nonetheless, the impact of covariates on the central tendency of the conditional distribu-

tion may significantly differ from their effects on the distribution’s extremities. Consequently,

an exclusive focus on the conditional mean function can lead to misinterpretation. Quan-

tile regression, introduced by [32], provides a solution by estimating conditional quantiles
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at various levels, offering a more nuanced understanding of the relationship between covari-

ates and the response variable. Integrating quantile regression into the partial linear model

framework allows for the strengths of both methods to be harnessed, resulting in a more

robust and comprehensive analytical approach.

Partial linear quantile regression has been applied in various types of research. For low-

dimensional cases, starting from [24], it has been used in predicting high-cost patients [42],

dealing with data with dropouts [43], and in deep learning applications [88] among others.

For high-dimensional cases, it has been applied to datasets with missing covariates [61] and to

functional predictors [39] among others. Notably, [63] explored the high-dimensional partial

framework with various penalty functions using LASSO, SCAD, and MCP combined with

the B-spline method, providing solid theoretical properties for their estimators. We compare

our results with theirs as a main benchmark.

In recent years, there has been substantial interest and progress in the nonparametric

method known as trend filtering, as proposed by [66, 31, 69]. [69] describes trend filtering

as a discrete analog of the locally adaptive regression splines introduced by [44]. The locally

adaptive regression splines involves solving the following optimization problem for n number

of observations:

min
f∈Fk

1

2

n∑
i=1

(yi − f(zi))
2 + λ · TV (f (k)). (3.1)

Here, Fk denotes the function space defined as

Fk =
{
f : [0, 1] → R : f is k times weakly differentiable and TV (f (k)) <∞

}
,

where TV (f (k)) denotes the total variation of kth derivative of f . The discrete analog of

(3.1) using trend filtering is

min
θ∈Rn

1

2

n∑
i=1

(yi − θi)
2 + λ∥D(z,k+1)θ∥1, (3.2)

where bold symbols denote vector notation, ∥ · ∥1 denotes ℓ1-norm and D(z,k+1) is the kth

order difference operator based on z. Equation (3.2) is referred to as the univariate kth order
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trend filtering. The details of these notations and definitions will be elaborated on in Section

2. Following the proofs of equivalence between (3.1) and (3.2) as shown by [69], trend filtering

estimates combine the benefits of locally adaptive regression splines with the advantages of

the banded difference operator structure in (3.2). This dual benefit provides local adaptivity

and computational efficiency, making trend filtering superior to other nonparametric methods

such as smoothing splines and B-spline regressions.

Trend filtering has been successfully applied to various statistical fields, including graph-

ical models [78], additive models [56], and spatiotemporal models [49] among others. Espe-

cially, [41] studies various univariate quantile regression trend filtering and their theoretical

properties. The quantile regression analog of (3.2) considered in their research is

min
θ∈Rn

1

n

n∑
i=1

ρτ (yi − θi) + λ∥D(z,k+1)θ∥1,

where ρτ (x) = x(τ−I(x ≤ 0)) is called a check loss. However, for their theoretical properties,

they provide all risk and error bounds for estimators using a specific type of Huber loss

[27], not squared loss. Therefore, even though their work is on quantile regression, their

theoretical contributions and derivations are totally different from what we introduce in our

research here, since our loss is utilizing the squared loss for the estimators instead. Also, its

adaptation within the partial linear model framework has not been explored to date. This

makes our theoretical contribution more distinguishable.

Our contribution lies in integrating trend filtering with the partial linear quantile regres-

sion model to effectively address high-dimensional sparse heterogeneous data. Our approach

leverages the local adaptivity and computational efficiency of trend filtering along with the

quantile adaptive sparsity-inducing properties of the quantile LASSO, providing significant

advantages when dealing with complex and heterogeneous data. Furthermore, our work

provides rigorous theoretical details and establishes convergence rates for the estimators,

utilizing the other loss for error, which makes our work distinguishable from the theory com-

pared to the previous approach on quantile trend filtering. Also, we address the challenge

induced because of the integration.
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The rest of this chapter is organized as follows. Section 3.2 presents the preliminaries,

including assumptions and model descriptions. Section 3.3 provides the main theoretical re-

sults and their interpretations. Section 3.4 details the simulation studies and computational

aspects. Section 3.5 includes the real data analysis. Section 3.6 discusses our results, and

Section 3.7 includes all the proofs.

3.1.1 Notations

Notations for this chapter are the same as the previous chapter. Therefore we omit the

explanation.

3.2 Model Description and Assumptions

3.2.1 Model Description and Estimation Method

We consider the following partial linear quantile regression model:

Qy|x,z(τ) = x′β0 + g0(z),

where β0 ∈ Rp has the support S = {j : β0
j ̸= 0} with |S| ≤ s, and g0 : [0, 1] → R is a

nonparametric function. Qy|x,z(τ) = inf{t : P(y ≤ t | x, z) ≥ τ} denotes the τ -th conditional

quantile of y given x and z. For the notational convenience, we remove τ from β0, g0, and

corresponding estimators if it is obvious. Generally, z ∈ [0, 1] may not be true, but this can be

achieved by using a simple affine transformation, so we assume this for technical simplicity.

We let {(yi,xi, zi)}ni=1 be n i.i.d observations of (y,x, z), and without loss of generality,

we assume that these observations are re-ordered based on zi, i = 1, . . . , n. Moreover, as

discussed in the introduction, we focus on the function g0 where the total variation of kth

derivative is bounded by a constant, that is, TV (g
(k)
0 ) ≤ Lg, with Lg > 0.

Expanding upon the univariate trend filtering from [31, 69] and quantile trend filtering

from [41], for a given integer k ≥ 0, the kth order partial linear quantile trend filtering
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(PLQTF) estimation for the partial linear quantile regression is defined as

(β̂, θ̂) ∈ argmin
β∈Rp,θ∈Rn

1

n

n∑
i=1

ρτ (yi − x′iβ − θi) + λ∥β∥1 + γ∥D(z,k+1)θ∥1. (3.3)

where D(z,k+1) ∈ R(n−k−1)×n is the discrete difference operator of order k + 1. When k = 0,

D(z,1) =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...

0 0 0 · · · −1 1


∈ R(n−1)×n. (3.4)

For k ≥ 1, the difference operator is defined recursively, that is,

D(z,k+1) = D(z,1) · diag
(

k

zk − z1
, · · · , k

zn − zn−k+1

)
·D(z,k),

where in the above equation, D(z,1) is defined as the form of (3.4) with the dimension of

(n − k − 1) × (n − k). When k = 0, this estimate is equivalent to the one-dimensional

quantile fused lasso [29].

Before further discussing estimation methods, we briefly introduce the falling factorial

basis. [69] and [77] demonstrate a connection between univariate trend filtering and falling

factorial basis functions, showing that the trend filtering problem can be interpreted as a

sparse basis regression problem using these functions. This finding is also applicable to our

case since our model is a generalization of the univariate trend filtering model. For given

knot points t1 < · · · < tn ∈ R, the kth order falling factorial basis functions are defined as

below

qi(t) =
i−1∏
l=1

(t− tl), i = 1, . . . , k + 1,

qi+k+1(t) =
k∏
l=1

(t− ti+l) · 1{t > ti+k}, i = 1, . . . , n− k − 1,

where we write q1(t) = 1 as a convention. With these definitions, the estimation in (3.3) is

equivalent to

(β̂, α̂) ∈ argmin
β∈Rp,α∈Rn

1

n

n∑
i=1

ρτ

(
yi − x′

iβ −
n∑
l=1

αlql(zi)

)
+ λ∥β∥1 + γk!

n∑
l=k+2

|αl|, (3.5)

44



which is a lasso form. Indeed, the equivalent alternating expression of (3.5) is

(β̂, ĝ) ∈ argmin
β∈Rp,g∈Hn

1

n

n∑
i=1

ρτ (yi − x′iβ − g(zi)) + λ∥β∥1 + γTV (g(k)). (3.6)

where Hk
n is the span of the kth order falling factorial basis functions with knots zk+1 ≤

zk+2 . . . ≤ zn−1. Throughout the chapter, we denote Hn to be Hk
n for notational simplicity.

We omit the proofs of equivalences between equations for (3.3), (3.5) and (3.6), since the

proof can be directly taken from Lemma 1 in [69] for (3.3) and (3.5), and Lemma 2 in [69] and

Lemma 1 in [56] for (3.5) and (3.6). Based on the equivalence, we argue that the estimate

from (3.3) is the same as (3.6). By constructing an appropriate linear combination of falling

factorial functions, the form in (3.5) enables interpolation or extrapolation for partial lin-

ear quantile trend filtering. As a result, this formulation enhances the practical applicability.

3.2.2 Assumptions

We introduce conditions regarding our model in (3.6), needed for the proofs of lemmas

and theorems throughout.

Condition 7 (Design Condition). The covariates x = (x1, . . . , xp) are bounded:

max1≤j≤p |xj| ≤ Kx.

Condition 7 is the same as in Condition 2 in [63]. This condition is common in high-

dimensional frameworks.

Condition 8 (Bounded Conditional Response Density). The derivative of the conditional

density ∂
∂y
fy|x,z(y) is bounded in absolute value by constant f̄ ′ uniformly in (y,x, z). More-

over, the conditional density evaluated at the conditional quantile is bounded away from zero,

i.e. fy|x,z(x′β0 + g0(z)) ≥ f > 0.

Condition 8 is the same as in [5, 63, 41] among others. This condition is common in

quantile regression literature. This condition is less restrictive than the conditions for linear

models, which assume specific distributions.
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Condition 9 (Bounded Input Density). z has a continuous distribution supported on [0, 1].

Its density is bounded below by a constant ℓz > 0.

Condition 9 is the same as in [69, 56]. This condition is common in the trend filtering

literature.

Condition 10 (Eigenvalue Condition). Define h(z) = (h1(z), . . . , hp(z)) = E(x|z) and x̃ =

x− h(z). Assume λmin(Ex̃x̃′) ≥ Λmin > 0 and λmax(Eh(z)h(z)′) ≤ Λmax <∞.

Condition 10 is common in semiparametric literature [83, 46, 84]. This condition ensures

that there is enough information in the data to identify the parameters in the linear part.

Condition 11. max1≤j≤p TV (h
(k)
j ) ≤ Lh.

Condition 12. s2 log p
n

= o(1), p→ ∞, as n→ ∞.

Condition 11 is the simiar to those of the Condition 2.6 in [46] and Condition A.5 in

[84], and Lh = 0 when z and x is independent. This condition is used for proving Theorem

9. This type of condition is common in smoothing spline and trend filtering literature.

Condition 12 is a technical condition for proofs in Theorem 8 and 9.

3.3 Main Theoretical Results

In this section, we present our main results. Our main results consist of two parts, the

result regarding the g, and the result regarding the β. We now move on to the convergence

rate result for g.

Theorem 8. Assume Conditions 7-10 and 12. Choose λ = c1

√
log p
n
, γ = c2(

s log p
n

+ n− 2k+2
2k+3 )

with large enough constants c1, c2 > 0. Then, there exist constants c3, c4, n0 > 0 such that

any solution ĝ in (3.6) satisfies

∥ĝ(z)− g0(z)∥2 ≤ c3

(s log p
n

+ n− 2k+2
2k+3

)
,

∥ĝ − g0∥2n ≤ c3

(s log p
n

+ n− 2k+2
2k+3

)

46



with probability at least 1− pc4 − nc4, as long as n ≥ n0. The constants c1, c2, c3, c4, n0 may

depend on k, Lg, Lh, Kx, ℓz,Λmin,Λmax, f , f̄
′.

Theorem 8 implies that the rate of ĝ depends on two terms: s log p/n and n− 2k+2
2k+3 . This

means that the convergence rate of ĝ indeed depends on the convergence rate of β̂, which

is discussed in Theorem 9. When the rate for the linear part is faster than the rate of the

second term, that is when s log p/n = o(n− 2k+2
2k+3 ), then the convergence rate is governed by the

second term, which implies that ∥ĝ(z)−g0(z)∥2 = Op

(
n− 2k+2

2k+3

)
and ∥ĝ−g0∥2n = Op

(
n− 2k+2

2k+3

)
.

This phenomenon is also presented in [63], which uses B-spline approximation instead. This

convergence rate is similar to the rate achieved by [63]. The nonparametric term is the same

but only the other term differs, where this comes from the restrictive condition and use

of different penalty terms, their nonparametric rate is achieved based on the Hölder class.

However, our rate is achieved within the total variation function class, where the linear

smoother is suboptimal. This implies that our optimal rate is a faster rate within the total

variational class, especially when p is not growing fast regarding n and g is heterogeneous.

The proof of Theorem 8 can be found in the supplementary section. We proceed to the

convergence rates results for β.

Theorem 9. Assume Conditions 7-12, with the same choice of λ, γ in Theorem 8, any

solution β̂ in (3.6) satisfies

∥β̂ − β0∥22 ≤ c3
s log p

n
,

∥x′(β̂ − β0)∥2 ≤ c3
s log p

n
,

∥X(β̂ − β0)∥2n ≤ c3
s log p

n
,

with probability at least 1− pc4 − nc4, as long as n ≥ n0.

Theorem 9 implies two things about the estimator β̂; (1) estimation results and (2)

prediction results. Both the estimation and prediction rates, for in-sample and out-of-

sample data, achieve the oracle rate. This rate is consistent with findings in classical
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high-dimensional quantile regression research [5]. It is noteworthy that the smoothness of g

does not impact the results for β, whereas the results for g are influenced by β. This one-way

relationship arises due to the orthogonal decomposition used in the proofs, a phenomenon

also observed in [63]. The proof for Theorem 9 is provided in the supplementary section.

3.4 Simulation Studies

Through empirical experiments, we evaluate the performance of partial linear quantile

trend filtering (PLQTF) in comparison to partial linear quantile B-spline (PLQBS), as

presented by [63]. Additionally, we represent the performance of partial linear quantile

smoothing spline (PLQSS) as a side-by-side comparison even though it is not a main object.

3.4.1 Computational Details

We use a combination of the Blockwise Coordinate Descent (BCD) algorithm, also known

as the backfitting approach, and the Majorization-Minimization (MM) algorithm for our

problem in (3.3). We denote our algorithm qBCD. Our approach mainly involves two blocks:

the first pertains to β for the linear part and the second to θ for the trend filtering part.

The algorithm iterates over these blocks, updating the estimate for each component at each

step using the quantile LASSO for β and the univariate trend filtering algorithm for θ.

However, within each block, because of the complexity of the check loss that we consider,

we need to consider what kind of algorithm we should consider for the optimization regarding

the check loss. For the quantile LASSO part, the R package rqPen [62] deals with the

linear programming approach. For the trend filtering part, there is no software available

publicly that deals with the check loss. Therefore, we deploy the re-iteratively weighted

approximation [57, 48, 58], which is proven to be a type of MM algorithm [34]. Instead of

minimizing a check loss from (3.3), we use the weighted least square approximation below:

n∑
i=1

w(r)(yi,xi,β, θ
(r)
i , τ) (yi − x′

iβ − θi)
2 (3.7)
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where, for a sufficiently small η > 0

w(r)(yi,xi,β, θ
(r)
i , τ) =

τI
(
yi > x′

iβ + θ
(r)
i

)
+ (1− τ)I

(
yi ≤ x′

iβ + θ
(r)
i

)
√(

yi − x′
iβ − θ

(r)
i

)2
+ η2

.

The big advantage of this approximation is that it becomes the weighted least square problem

now. The convergence and numerical stability of MM algorithm by the descent property

ensures the convergence of this optimization, for further details of the MM algorithm, we

refer to [28].

The convergence of the Block Coordinate Descent (BCD) algorithm has been rigorously

established by [71]. They proved that for a convex criterion decomposable into smooth and

separable terms, the solution obtained through the iterates of the BCD algorithm is indeed

the optimal solution. Consequently, we do not need to prove the convergence of the algorithm

again in this study. Our qBCD algorithm’s convergence is guaranteed based on this existing

result. The detailed steps of our entire algorithm are outlined in Algorithm 3.1.

For the tuning parameters λ and γ, we employ 5-fold cross-validation (CV) to determine

the optimal parameters that minimize the overall CV error. However, due to the presence

of two tuning parameters, the search space becomes the product of the lengths of λ and γ,

leading to an exponential increase in computation time compared to an algorithm with a

single tuning parameter. Furthermore, the additional loop within blocks further slows down

convergence. To mitigate this, we use the warm start method [53] for our tuning parameter

grids. Empirical evidence from their study demonstrates that the warm start algorithm

significantly reduces the number of iterations required for convergence, thereby enhancing

the convergence speed of the entire algorithm.

Our algorithm is implemented using R software [52]. Typically, for the quantile lasso

component, we utilize the function from the R package rqPen [62], and for trend filtering,

we employ the function from the R package glmgen [1] with weight approximation from

(3.7). However, there is no publicly available software for the partial linear smoothing

spline method, so we also use qBCD algorithm for the smoothing spline model for the
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Algorithm 3.1 A qBCD algorithm for High-dimensional Partial Linear Quantile Trend
Filtering
Data: {yi,xi, zi}, i = 1, . . . , n
Fixed (tuning) Parameters: λ, γ, k

1. Set t = 0 and initialize θ(0)i = 0, i = 1, . . . , n

2. For (t+ 1)-th iteration, where t = 0, 1, 2, . . . :

a) Block 1: Let y(t)∗i = yi − θ
(t)
i , and update β(t) by fitting the quantile lasso:

β(t+1) = argmin
β

1

n

n∑
i=1

ρτ

(
y
(t)∗
i − x′

iβ
)
+ λ∥β∥1

b) Block 2: Let y(t)∗∗i = yi − x′
iβ

(t+1), r = 0, and θ(t+1,0)
i = θ

(t)
i , i = 1, . . . , n

For (r + 1)-th iteration, where r = 0, 1, 2, . . . :
i. Using approximation with w(·), we update θ(t+1,r) by fitting the re-iteratively

univariate weighted trend filtering model as below:

θ(t+1,r+1) = argmin
θ

[
1

n

n∑
i=1

w(r)
(
y
(t)∗∗
i ,xi,β

(t+1), θ
(r)
i , τ

)
·

(
y
(t)∗∗
i − x′

iβ
(t+1) − θi

)2
+ γ∥D(z,k+1)θ∥1

]

ii. If θ converges, then stop the iteration for r. If not, continue the iteration
until it reaches the predefined maximum iteration number

iii. Update θ(t+1) as the function at convergence

c) If both β and θ converge, then stop the iteration. If not, continue the iteration
until it reaches the predefined maximum iteration number

3. Return β̂ and θ̂ as parameters at convergence

computation as well. The R function, stats::smooth.spline, is used for this procedure

in the second block with weight approximation from (3.7). The implemented qBCD

algorithms for the smoothing spline and the trend filtering, named plmR, are available on

https://github.com/SangkyuStat/plmR for public use and reproducibility.
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Figure 3.1 Configurations of the function g(z) for Models 1 and 2. The structures of the
functions become increasingly locally heterogeneous from left to right.

3.4.2 Simulation Setting and Results

We now proceed to demonstrate our method through simulations. We consider different

scenarios with different settings. We first generate X̃ = (x̃1, . . . , x̃p+1) from Np+1(0p+1,Σ),

where Σ = (σjk) with σjk = 0.5|j−k| and j, k = 1, . . . , p+1. Then we set z = Φ(x̃25),xj = x̃j

for j = 1, . . . , 24 and xj = x̃j−1 for j = 26, . . . , p + 1. The true models we consider are as

follows:

Model 1 (Less heterogeneous): yi = xi6β1 + xi12β2 + xi15β3 + xi20β4 + e3zi sin(6πzi)/7 + ϵi,

Model 2 (More heterogeneous): yi = xi6β1 + xi12β2 + xi15β3 + xi20β4

+ 2min(zi, 1− zi)
0.2 sin

(
2.85π

0.3 + min(zi, 1− zi)

)
+ ϵi

for i = 1, . . . , n. We vary the settings of errors to make some different scenarios:

Scenario 1 (Normal): ϵi ∼ σϵN(0, 1)

Scenario 2 (Heavy Tail): ϵi ∼ σϵTdf=3

Scenario 3 (Heteroskedastic): ϵi = σϵxi1ζi, where ζi ∼ Tdf=3
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The actual forms of these functions are displayed in Figure 3.1. Various values for σϵ are

adapted to vary the signal-to-noise ratio (SNR) for the models and scenarios. This kind

of simulation setting is adapted in [5] for quantile regression as well. We define the total

signal-to-noise ratio (tSNR) for a quantile level τ as follows:

tSNR =

√
∥x′β0 + g0(z)∥2

Var(ϵ)
,

where the expectation in the numerator and the variance in the denominator can be approx-

imated by using the Monte Carlo expectation. We vary the tSNR level from 4 to 16 on a

logarithmic scale and then calculate the metrics for each model. Specifically, we consider

three different error metrics similar to those of [63], including in-sample prediction mean of

quantile error (MQE), l2-norm squared error, and a mean absolute deviation error (MADE),

as follows:

1. n−1
∑n

i=1 ρτ

(
x′
iβ̂ + ĝ(zi)− (x′

iβ
0 + g0(zi))

)
: Overall MQE considering both β̂ and ĝ.

2. ∥β̂ − β0∥2 : l2-norm squared error for β̂.

3. n−1
∑n

i=1 ∥ĝ(zi)− g0(zi)∥1 : MADE for ĝ.

The metrics are computed over 150 repetitions of randomly generated datasets for each tSNR

value, and the medians of each metric are selected as the final results. We consider p to be 100

and 600 for low and high-dimensional cases, respectively, with n fixed at 300. The values for β

are (0.8, 1.6, 1.6, 2.4) for both low-dimensional and high-dimensional cases. For each method,

the algorithm is fitted to the training dataset and then the metrics are calculated from the

in-sample testing dataset. We present results using both optimally tuned parameters and

CV-tuned parameters. The optimally tuned parameters are the tuning parameters with the

smallest error among the path. The parameters are finely tuned for fair comparison across

all models. We fix k = 2 for the trend filtering method, use cubic smoothing splines for the

smoothing spline method, and use cubic B-spline for the B-spline analysis. Tuning only λ

and γ for smoothing spline and trend filtering, and tuning λ and number of knots for B-spline
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model for two reasons: (1) minimal impact on results when varying these settings and (2)

computational efficiency. The simulation results for each model and case are displayed in

Figures 3.2, 3.3, 3.4, 3.5.

Figure 3.2 and 3.4 demonstrate that when g is a less heterogeneous function, the per-

formance of the PLQTF method is comparable to that of the PLQSS, with no significant

differences observed. However, PLQBS is not performing well especially when the tSNR is

large compared to others.

When we consider the more heterogeneous function on low-dimensional data, which is

in Figure 3.3, for Scenario 1 and 2, there was a significant difference between PLQTF and

other models, and this gap is getting larger as tSNR grows larger. However for Scenario 3,

the performance between PLQTF and PLQSS was similar across the tSNR levels.

In Figure 3.5, which is the case for the high-dimensional data, we see that the PLQTF

performs better than other methods across the tSNR level except for Scenario 3. For Sce-

nario 3 trend filtering outperforms other methods as tSNR grows larger. For these scenarios,

we observe that PLQBS performs unstable with MQE which is shown as distinguishable

differences between the CV and optimized error.

3.5 Real Data Analysis

3.5.1 Environment and Genetics in Lung Cancer Etiology (EAGLE) Study

The EAGLE study, a comprehensive molecular epidemiological investigation, employed

a case-control design to examine lung cancer in the Lombardy Region of Italy from 2002 to

2005. This large-scale, multicenter research initiative incorporated a significant biospecimen

component. The study enrolled a cohort exceeding 2,000 newly diagnosed lung cancer

patients, encompassing both sexes and spanning ages 35 to 79. These cases, representing

all histological types of verified lung cancer, were matched with an equivalent number

of healthy population-based controls. The matching criteria included age, gender, and

residence. Patient recruitment occurred across 13 hospitals, while control subjects were
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Figure 3.2 Model 1 low-dimensional error comparisons for a sequence of tSNR grid from 4
to 16. n is set to 300 for all cases, and the repetition number for the simulation is 150.
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Figure 3.3 Model 2 low-dimensional error comparisons for a sequence of tSNR grid from 4
to 16. n is set to 300 for all cases, and the repetition number for the simulation is 150.
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Figure 3.4 Model 1 high-dimensional error comparisons for a sequence of tSNR grid from 4
to 16. n is set to 300 for all cases, and the repetition number for the simulation is 150.
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Figure 3.5 Model 2 high-dimensional error comparisons for a sequence of tSNR grid from 4
to 16. n is set to 300 for all cases, and the repetition number for the simulation is 150.
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randomly selected from the same residential areas as the cases. This approach ensured a

representative sample and minimized potential geographical biases. The research protocol

involved extensive data collection through two primary methods: an interview-based

computer-assisted questionnaire and a self-administered questionnaire. These instruments

gathered comprehensive information on various factors, including demographic character-

istics, detailed smoking history, family history of lung cancer and other cancers, previous

lung diseases, medications, diet, alcohol, attempts at quitting smoking, anxiety, depression,

personality scores, occupation, reproductive and residential history. This multifaceted

approach to data collection facilitated a thorough examination of potential risk factors and

confounding variables associated with lung cancer development. Further details of the study

can be found in [33].

3.5.2 Real Data Analysis Results

For our real data analysis, the dataset comprises 132 tumor samples from the EAGLE

study, each characterized by whole genome sequencing data, DNA methylation profiles from

the EPIC array, and detailed clinical information regarding smoking history. This model

aims to identify the relationship between DNA methylations in tumors and the effect of

tobacco smoking on mutational signatures. Specifically, the outcome variable is the mu-

tational signatures, with a focus on the tobacco-related SBS4, which is quantified by the

number of mutations attributed to this signature from the whole genome sequencing data of

the EAGLE study. The number of mutations is log-transformed while performing the data

analysis.

The methylation data, represented by real values ranging from 0 to 1 for each probe,

serve as covariates. To manage computational demands, the analysis is restricted to 1,713

CpG probes that show significant differential methylation in tumors compared to normal

tissues. Smoking history is considered a factor that has a nonlinear relationship with the

mutational signatures, and we consider the total period (in years) during which the subject
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Figure 3.6 Estimated ĝ for the real data analysis with different quantile levels, τ = 0.2, 0.5,
and 0.8. Here y is set to be the number of mutational signatures, and z is set to be the
total duration of smoking (in years).

smoked cigarettes regularly, whose duration is at least more than a year. After removing the

missing observations, we have n = 125 observations and p = 1, 713 variables. As discussed

z is set to be the total duration time of smoking. We try to see the heterogeneous effect of

smoking and selected features among different quantile levels. Here, we consider 3 different

quantile levels, τ = 0.2, 0.5, and 0.8. Our aim of this analysis is twofold. One is to see

the selected variables using PLQTF and the other is to compare the prediction error results

among all methods.

We applied 5-fold cross-validation (CV) to the full dataset and present the results. The

fitted plot of the nonparametric term, ĝ, is shown in Figure 3.6. The effect of ĝ varies across

different quantile levels. While the effects on the 0.2th and 0.5th quantiles appear similar,
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the effect on the 0.8th quantile shows a notably higher increment. Although the estimated

function shapes are similar across quantiles, their magnitudes differ. For each quantile level,

the functions clearly deviate from linearity.

For all three quantile levels, the mutational signature increases until the duration reaches

around 20 years, after which it stabilizes. This implies that for people who have smoked for

20 years or less, mutations increase rapidly during this period and then stop. Notably, 0.8th

quantile level experiences a greater increase compared to others.

Quantile Levels List of Selected Variables (From the biggest coefficients to the smallest)

τ = 0.2 cg13906823, cg10792987, cg27275023, cg12492087, cg23497016,

cg18786873

τ = 0.5 cg07207982, cg07197230, cg10420527, cg10792987, cg04878000,

cg09295202, cg13692543, cg27275023, cg02018277, cg18786873,

cg00716257, cg07226481, cg08358166, cg07405182, cg09281805,

cg13906823, cg24676817, cg06173663, cg17698295, cg06623698

τ = 0.8 cg07197230, cg18451588, cg24127719, cg00558689, cg19080053,

cg12091642, cg06947913, cg07981013, cg06796713, cg21207665,

cg07686872

Table 3.1 List of selected CpG probes for different quantile levels of the number of
mutations.

The selected features for three different quantile levels are presented in Table 3.1. Among

these, we highlight specific features of interest. Notably, cg10420527 (LRP5 gene), selected

for the median, has been previously reported as related to lung cancer, particularly in the

context of smoking history [86]. This aligns our results with their findings, which were

based on mean-based regression. Additionally, cg07197230 (CECR2 gene) is selected for

both the 0.5 and 0.8 quantile levels and has been associated with alcohol use disorder, a
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condition closely linked to smoking [26]. cg07207982, selected for the median, is reported to

be associated with cholangiocarcinoma, which can metastasize to the lung [45]. Cg10792987

is selected for the 0.2th and 0.5th quantiles, and cg13906823 for the 0.2th quantile. However,

these findings have not yet been documented in related literature, suggesting that they

could represent new discoveries. Other features have smaller coefficients compared to those

mentioned and, as we did not apply false discovery control, some of these may be false

discoveries.

For prediction error calculation, we partition the full dataset into training and test sets,

with 115 observations for training and 10 observations for testing. These datasets are ran-

domly selected for each repetition. Tuning parameters are optimized using 5-fold cross-

validation on the training datasets. This procedure is repeated 50 times to calculate the

prediction error.

For each repetition, the quantile adaptive prediction error for all methods is calculated

as follows:

PE(τ) =
∑n

i=1 1{Subject i in testing set}ρτ (yi − x′
iβ̂ − ĝ(zi))∑n

i=1 1{Subject i in testing set}
,

where β̂ and ĝ are the estimates from the methods considered. We report the median of the

PE values. However, we find that the smoothing spline method performs worse than other

methods, so we only report the results for PLQTF and PLQBS here.

Results are presented in Table 3.2. We see that the PLQTF results outperform on every

quantile level. However, since the standard errors are quite large, we cannot say that the

results are significantly better, except for the 0.2th quantile.

3.6 Conclusion and Discussion

This study addresses the complexities of high-dimensional data influenced by both linear

and non-linear predictors. We introduce a novel approach that integrates trend filtering with

partial linear quantile regression, providing a robust and efficient method for analyzing such

data.
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Prediction Error (Standard Error)

Quantile Levels PLQTF PLQBS

τ = 0.2 0.690 (0.084) 1.180 (0.078)

τ = 0.5 0.792 (0.056) 0.807 (0.063)

τ = 0.8 0.431 (0.033) 0.460 (0.025)

Table 3.2 Median prediction error comparison results for 50 repetitions. Numbers in
parentheses denote standard errors.

Our model leverages the strengths of both parametric and nonparametric regression tech-

niques, along with the comprehensive insights offered by quantile regression. Trend filtering

enhances local adaptivity and computational efficiency, making our approach superior to

traditional nonparametric methods like smoothing splines and B-spline regressions.

Empirical results and theoretical analysis demonstrate that our model outperforms exist-

ing methods in both accuracy and efficiency. We established rigorous theoretical properties,

including convergence rates for the estimators, distinguishing our work from previous ap-

proaches.

In summary, our contributions include integrating parametric and nonparametric regres-

sion within a partial linear framework, using quantile regression to capture the impact of

covariates across the conditional distribution, and enhancing model performance with trend

filtering for local adaptivity and computational efficiency. We have demonstrated that our

model performs better than existing models.

Future work could explore extending this methodology to different data structures and

domains, as well as developing more efficient computational algorithms.
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3.7 Proofs

Throughout the proofs, we use C1, C2, . . . to denote universal constants and

use D1, D2, . . . , ... to denote constants that may only depend on the constants

k, Lg, Lh, Kx, f̄
′, f , ℓz,Λmin,Λmax from Conditions 7-11. An explicit (though not opti-

mal) dependence of {Dj, j = 1, 2, . . .} on the aforementioned constants can be tracked

down. However, since it does not provide much more insight, we will often not present the

explicit forms of {Dj, j = 1, 2, . . .}, and this will greatly help streamline the proofs. The

constants {Cj, Dj, j = 1, 2, . . .} may vary from line to line.

3.7.1 Proof of Theorem 8

The proof has similar ideas as in the partial linear regression problem. Hence, we will

not repeat arguments in some parts of the proof. For a given function f(x, z) = x′β + g(z)

with β ∈ Rp, TV (g(k)) <∞, we adopt the same functional

τδ0,R(f) =
λ∥β∥1 + γTV (g(k))

20δ0R
+ ∥x′β + g(z)∥, δ0 ∈ (0, 1), R > 0. (3.8)

Define the event

T1 :=

{
max

1≤i≤n−1
(z(i+1) − z(i)) ≤

22 log n

ℓzn

}
.

According to Lemma 16 in [70], there exists ḡ ∈ Hn such that on T1, the following holds

TV (ḡ(k)) ≤ ak · TV (g
(k)
0 ), ∥ḡ − g0∥∞ ≤ 22bk log n

ℓzn
· TV (g

(k)
0 ), (3.9)

where ak, bk > 0 are constants only dependent on k. Denote ∆ := 22bkLg logn

ℓzn
and

B :=

{
β : ∥β∥2 ≤ Λ

−1/2
min R, ∥β∥1 ≤

20δ0R
2

λ
, ∥x′β∥ ≤

(
2 +

√
Λmax
Λmin

)
R

}
, (3.10)

G :=

{
g : ∥g∥ ≤

(
1 +

√
Λmax
Λmin

)
R +∆, ∥g∥∞ ≤ Cz,k

(20δ0R
γ

+ 1 +

√
Λmax
Λmin

)
R +∆,

TV (g(k)) ≤ 20δ0R
2

γ
+ (1 + ak)Lg

}
, (3.11)
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where Cz,k > 0 is a constant that only depends on k, ℓz and it can be found in Lemma 11.

Further define the following event

T2(δ0, R) :=

{
sup

β−β0∈B,g−g0∈G

∣∣Gn[ρτ (yi − x′
iβ − g(zi))− ρτ (yi − x′

iβ
0 − g0(zi))]

∣∣ ≤ δ0
√
nR2

}
.

(3.12)

3.7.1.1 Key lemmas

Lemma 8. Assume that

20Kxδ0R
2

λ
+ Cz,k

(20δ0R
γ

+ 1 +

√
Λmax
Λmin

)
R +∆ ≤

3f

2f̄ ′ , (3.13)

∆+ 2γakLg +
8

f
λ2sΛ−1

min ≤ 8δ0R
2, (3.14)

∆ ≤ 1

20
R, δ0 ≤

f

200 · 242
. (3.15)

Then on T1 ∩ T2(δ0, R), it holds that

τδ0,R(x
′(β̂ − β0) + ĝ(z)− ḡ(z)) ≤ R, (3.16)

where ḡ ∈ Hn is the one introduced in (3.9).

Proof. Consider the convex combination

β̃ = tβ̂ + (1− t)β0, g̃ = tĝ + (1− t)ḡ, t ∈ [0, 1].

Accordingly, define

f̂(x, z) = x′β̂ + ĝ(z), f̄(x, z) = x′β0 + ḡ(z), f̃(x, z) = tf̂ + (1− t)f̄ = x′β̃ + g̃(z).

We choose t = R

R+τδ0,R(f̂−f̄)
so that

τδ0,R(f̃ − f̄) =
R · τδ0,R(f̂ − f̄)

R + τδ0,R(f̂ − f̄)
≤ R. (3.17)

Combining (3.9) with Lemma 11, it is straightforward to verify that on T1,

β̃ − β0 ∈ B, g̃ − g0 ∈ G. (3.18)
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Moreover, (3.17) implies that to prove (3.16) it is sufficient to show τδ0,R(f̃ − f̄) ≤ R
2
.

We start with the basic inequality due to the convex problem (3.6),

Enρτ (yi − x′
iβ̃ − g̃(zi)) + λ∥β̃∥1 + γTV (g̃(k))

≤ Enρτ (yi − x′
iβ

0 − ḡ(zi)) + λ∥β0∥1 + γTV (ḡ(k))

≤ Enρτ (yi − x′
iβ

0 − g0(zi)) + En|g0(zi)− ḡ(zi)|+ λ∥β0∥1 + γTV (ḡ(k))

≤ Enρτ (yi − x′
iβ

0 − g0(zi)) + ∆ + λ∥β0∥1 + γTV (ḡ(k)), (3.19)

where the second inequality uses the Lipschitz property of check loss and the third inequality

is due to (3.9). Based on (3.18), we can re-organize the inequality (3.19) to obtain

Eρτ (y − x′β̃ − g̃(z))− Eρτ (y − x′β0 − g0(z))

≤ sup
β−β0∈B,g−g0∈G

∣∣n−1/2Gn[ρτ (yi − x′
iβ − g(zi))− ρτ (yi − x′

iβ
0 − g0(zi))]

∣∣+
∆+ λ∥β0∥1 + γTV (ḡ(k))− λ∥β̃∥1 − γTV (g̃(k))

≤ δ0R
2 +∆+ 2λ∥β̃S − β0

S∥1 − λ∥β̃ − β0∥1 + 2γTV (ḡ(k))− γTV (g̃(k) − ḡ(k)). (3.20)

Here in the last step, we have used (3.12) and the triangle inequality for ∥ · ∥1 and TV (·).

We further develop lower bounds for (3.20). Using the identity of Knight, we obtain

Eρτ (y − x′β̃ − g̃(z))− Eρτ (y − x′β0 − g0(z))

= E
∫ x′(β̃−β0)+g̃(z)−g0(z)

0

(
Fy|x,z(x

′β0 + g0(z) + t)− Fy|x,z(x
′β0 + g0(z))

)
dt

= E
∫ x′(β̃−β0)+g̃(z)−g0(z)

0

(
fy|x,z(x

′β0 + g0(z))t+
1

2
f ′
y|x,z(x

′β0 + g0(z) + t̃)t2
)
dt for t̃ ∈ [0, t]

≥
f

2
∥f̃ − f0∥2 −

f̄ ′

6
E|x′(β̃ − β0) + g̃(z)− g0(z)|3, f0 = x′β0 + g0(z),

≥

(
f

2
− f̄ ′

6
·
(20Kxδ0R

2

λ
+ Cz,k

(20δ0R
γ

+ 1 +

√
Λmax
Λmin

)
R +∆

))
· ∥f̃ − f0∥2 ≥

f

4
∥f̃ − f0∥2.

Here, the second equality applies Taylor expansion; the first inequality is due to Condition

8; the second inequality uses (3.18), and the last inequality holds by the condition (3.13).
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Putting the above lower bound together with (3.20), we can proceed to obtain

f

4
∥f̃ − f0∥2 + λ∥β̃ − β0∥1 + γTV (g̃(k) − ḡ(k))

≤ δ0R
2 +∆+ 2γTV (ḡ(k)) + 2λ

√
s∥β̃ − β0∥2

≤ δ0R
2 +∆+ 2γTV (ḡ(k)) + 2λ

√
sΛ

−1/2
min ∥x̃(β̃ − β0)∥

≤ δ0R
2 +∆+ 2γTV (ḡ(k)) +

8

f
λ2sΛ−1

min +
f

8
∥f̃ − f0∥2, (3.21)

where the first inequality is from Cauchy–Schwarz inequality, and the last inequality holds

by the basic inequality ab ≤ 1
2
a2 + 1

2
b2 and the orthogonal decomposition ∥f̃ − f0∥2 =

∥x̃′(β̃ − β0)∥2 + ∥h(z)′(β̃ − β0) + g̃(z) − g0(z)∥2. Now (3.21) combined with the condition

(3.14) yields
f

8
∥f̃ − f0∥2 + λ∥β̃ − β0∥1 + γTV (g̃(k) − ḡ(k)) ≤ 9δ0R

2.

This implies that λ∥β̃−β0∥1+γTV (g̃(k)−ḡ(k))
20δ0R

≤ 9
20
R, and ∥f̃ − f̄∥ ≤

√
72δ0
f
R + ∆ ≤ 1

20
R under

the condition (3.15).

Lemma 9. Assume the same conditions of Lemma 8 are satisfied. Then on T1 ∩ T2(δ0, R),

it holds that

∥ĝ(z)− g0(z)∥ ≤
(
1 +

√
Λmax
Λmin

)
R +∆.

Moreover, define another event:

T3(δ0, R) =

{
sup
g∈G

∣∣∣∥g∥2n − ∥g∥2
∣∣∣ ≤ δ0R

2

}
,

where G was introduced in (3.11). Then on T1 ∩ T2(δ0, R) ∩ T3(δ0, R), it holds that

∥ĝ(z)− g0(z)∥n ≤
(
1 +

√
δ0 +

√
Λmax
Λmin

)
R +∆.

Proof. Result (3.16) in Lemma 8 together with Part (i) of Lemma 11 implies that ∥ĝ(z) −

ḡ(z)∥ ≤ (1 +
√

Λmax

Λmin
)R. Combining this result with (3.9) gives

∥ĝ(z)− g0(z)∥ ≤ ∥ĝ(z)− ḡ(z)∥+ ∥ḡ(z)− g0(z)∥ ≤
(
1 +

√
Λmax
Λmin

)
R +∆.
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To prove the second result, we first use (3.9) and (3.16) to obtain

TV (ĝ(k) − g
(k)
0 ) ≤ TV (ĝ(k) − ḡ(k)) + TV (ḡ(k) − g

(k)
0 ) ≤ 20δ0R

2

γ
+ (ak + 1)Lg.

Also, from Lemma 11 we know

∥ĝ(z)− g0(z)∥∞ ≤ ∥ĝ(z)− ḡ(z)∥∞ + ∥ḡ(z)− g0(z)∥∞ ≤ Cz,k

(20δ0R
γ

+ 1 +

√
Λmax
Λmin

)
R +∆.

These results show that ĝ − g0 ∈ G. Hence, on T1 ∩ T2(δ0, R) ∩ T3(δ0, R), we can use the

bound on ∥ĝ(z)− g0(z)∥ to obtain the bound on ∥ĝ(z)− g0(z)∥n,

∥ĝ(z)− g0(z)∥n ≤
√

∥ĝ(z)− g0(z)∥2 + δ0R2 ≤ ∥ĝ(z)− g0(z)∥+
√
δ0R.

Lemma 10. Denote KG := (1 ∨ Cz,k)
(

20δ0R
γ

+ 1 +
√

Λmax

Λmin

)
R +∆+ (1 + ak)Lg.

(i) As long as 11 logn
ℓzn

< 1, then P
(
T1

)
≥ 1− 2ℓzn

−10.

(ii) If ((1 +
√

Λmax

Λmin
)R +∆)2 ≥ D1K

2
Gn

−2k−2
2k+3 and K2k+3

G (R +∆)2k+1 ≤ D2δ
2k+2
0 R4k+4nk+1,

P(T3(δ0, R)) ≥ 1− e
− D3nδ20R

4

KG(R+∆)2 .

(iii) In addition to the conditions in Part (ii), If nδ20R
4 ≥ D4(R + ∆)2, λ ≥

D5

√
(log p)/n, (R +∆)

√
(log p)/n ≤ D6δ0R

2, n−1/2K
1

2k+2

G (R +∆)
2k+1
2k+2 ≤ D7δ0R

2,

P(T2(δ0, R)) ≥ 1− 4e
− D8nδ20R

4

KG(R+∆)2 − 4p−10.

Proof. Proof of Part (i): This is directly taken from Lemma 5 in [77].

Proof of Part (ii). A similar result (with a slightly different G) has been derived in the

partial linear regression problem. Hence, we will not repeat all the arguments here. We aim

to apply Theorem 12 to bound supg∈G
∣∣∥g∥2n − ∥g∥2

∣∣. We first calculate J0(t,G) in Theorem

12,

J0(t,G) ≤ C1t

∫ 1

0

√( ut

2KG

)− 1
k+1
du = C1K

1
2k+2

G
2

1
2k+2 (2k + 2)

2k + 1︸ ︷︷ ︸
C̄1

·t
2k+1
2k+2 .
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We then calculate the function H(·) in Theorem 12,

H(u) = sup
t≥0

(
ut− (J −1

0 (t,G))2
)
≤ sup

t≥0

(
ut− C̄

− 4k+4
2k+1

1 t
4k+4
2k+1

)
=
(2k + 1

4k + 4

) 4k+4
2k+3 2k + 3

2k + 1
C̄

4k+4
2k+3

1 u
4k+4
2k+3 = D1K

2
2k+3

G u
4k+4
2k+3 .

The condition supg∈G ∥g∥2 ≥ H(4KG/
√
n) required by Theorem 12 is satisfied if((

1 +

√
Λmax
Λmin

)
R +∆

)2
≥ D2K

2
Gn

−2k−2
2k+3 .

Then it holds under this condition that with probability at least 1− e−t,

sup
g∈G

∣∣∣∥g∥2n − ∥g∥2
∣∣∣ ≤ D3 ·

(K 2k+3
2k+2

G (R +∆)
2k+1
2k+2

√
n

+
KG(R +∆)

√
t√

n
+
K2

Gt

n

)
.

Choosing t = D4nδ20R
4

KG(R+∆)2
and further assuming K2k+3

G (R + ∆)2k+1 ≤ D5δ
2k+2
0 R4k+4nk+1 com-

pletes the proof.

Proof of Part (iii): Recall the definition of T2(δ0, R) in (3.12). We first apply the sym-

metrization from Theorem 13. Adopting the notation there, we have

QF := sup
β−β0∈B,g−g0∈G

∥ρτ (yi − x′
iβ − g(zi))− ρτ (yi − x′

iβ
0 − g0(zi))∥

≤ sup
β−β0∈B,g−g0∈G

∥x′
i(β − β0) + g(zi)− g0(zi)∥

≤ sup
β−β0∈B

∥x′
i(β − β0)∥+ sup

g−g0∈G
∥g(zi)− g0(zi)∥

≤
(
2 +

√
Λmax
Λmin

)
R +

(
1 +

√
Λmax
Λmin

)
R +∆ =

(
3 + 2

√
Λmax
Λmin

)
R +∆, (3.22)

where the first inequality is due to the Lipschitz property of ρτ (·). Setting t = nδ20R
4

32Q2
F

, the

bound (3.22) together with the condition nδ20R
4 ≥ 128

[
(3 + 2

√
Λmax

Λmin
)R + ∆

]2 shows that

t ≥ 4. Hence, we can invoke Theorem 13 to obtain

1− P(T2(δ0, R))

≤ 4P
(

sup
β−β0∈B,g−g0∈G

∣∣Enϵi[ρτ (yi − x′
iβ − g(zi))− ρτ (yi − x′

iβ
0 − g0(zi))]

∣∣ ≥ 1

4
δ0R

2

)
,

(3.23)
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where ϵ1, . . . , ϵn is a Rademacher sequence independent from the data. To further bound

the above, we will apply the concentration result in Theorem 13. Towards this end, let

Y := {(yi,xi, zi)}ni=1. We have

E
(

sup
β−β0∈B,g−g0∈G

∣∣Enϵi[ρτ (yi − x′
iβ − g(zi))− ρτ (yi − x′

iβ
0 − g0(zi))]

∣∣∣∣∣Y)
≤ 2E

(
sup

β−β0∈B,g−g0∈G

∣∣Enϵi[x′
i(β − β0) + g(zi)− g0(zi)]

∣∣∣∣∣Y)
≤ 2E

(
sup

β−β0∈B

∣∣Enϵi[x′
i(β − β0)]

∣∣∣∣∣Y)+ 2E
(

sup
g−g0∈G

∣∣Enϵi[g(zi)− g0(zi)]
∣∣∣∣∣Y), (3.24)

where we have used the contraction theorem (e.g., Theorem 16.2 in [72]) in the first step.

To bound the first term above, starting with Hölder’s inequality, we have

E
(

sup
β−β0∈B

∣∣Enϵi[x′
i(β − β0)]

∣∣∣∣∣Y)
≤ sup

β−β0∈B
∥β − β0∥1 · E

(
∥En(ϵixi)∥∞

∣∣Y) ≤ 20δ0R
2

λ
· C1Kx

√
log p

n
. (3.25)

In the last step, we have used the standard bound for maximum of sub-Gaussian variables

(e.g. Theorem 11). To bound the second term, let Q̂G := supg∈G ∥g∥n and H be the metric

entropy. Applying Dudley’s entropy integral gives

E
(
sup
g∈G

∣∣ 1
n

n∑
i=1

ϵig(zi)
∣∣∣∣∣Y) ≤ C2

Q̂G√
n

∫ 1

0

√
H(uQ̂G,G, ∥ · ∥n)du,

≤C3
Q̂G√
n

∫ 1

0

(uQ̂G

KG

) −1
2k+2

du =
(2k + 2)C3

(2k + 1)
√
n
K

1
2k+2

G Q̂
2k+1
2k+2

G , (3.26)

where the second inequality is due to the entropy bound of Corollary 1 in [56].

Now write down Q̂F from Theorem 13,

Q̂2
F := sup

β−β0∈B,g−g0∈G

1

n

n∑
i=1

[
ρτ (yi − x′

iβ − g(zi))− ρτ (yi − x′
iβ

0 − g0(zi))
]2

≤ sup
β−β0∈B,g−g0∈G

1

n

n∑
i=1

[
x′
i(β − β0) + g(zi)− g0(zi)

]2
≤ sup

β−β0∈B

2

n

n∑
i=1

[
x′
i(β − β0)

]2
+ sup

g−g0∈G

2

n

n∑
i=1

[
g(zi)− g0(zi)

]2
≤ 2K2

x

400δ20R
4

λ2
+ 2Q̂2

G.
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We can then use the second result in Theorem 13, together with (3.24)-(3.26), to obtain

P

(
sup

β−β0∈B,g−g0∈G

∣∣Enϵi[ρτ (yi − x′
iβ − g(zi))− ρτ (yi − x′

iβ
0 − g0(zi))]

∣∣
≥ D1 ·

(
δ0R

2(
√
log p+

√
t)

λ
√
n

+ Q̂G

√
t

n
+ n−1/2K

1
2k+2

G Q̂
2k+1
2k+2

G

)∣∣∣Y) ≤ e−t, t > 0.

(3.27)

Note that on T3(δ0, R)) it holds that

Q̂G ≤
√
sup
g∈G

|∥g∥2n − ∥g∥2|+ sup
g∈G

∥g∥ ≤ (
√
δ0 + 1 +

√
Λmax/Λmin)R +∆, (3.28)

and P(T3(δ0, R)) ≥ 1−e−
D2nδ20R

4

KG(R+∆)2 from Part (ii). We can combine (3.27)-(3.28) and integrate

out the conditional probability to reach

P

(
sup

β−β0∈B,g−g0∈G

∣∣Enϵi[ρτ (yi − x′
iβ − g(zi))− ρτ (yi − x′

iβ
0 − g0(zi))]

∣∣
≥ D3 ·

(
δ0R

2(
√
log p+

√
t)

λ
√
n

+ (R +∆)

√
t

n
+ n−1/2K

1
2k+2

G (R +∆)
2k+1
2k+2

))

≤ e−t + e
− D2nδ20R

4

KG(R+∆)2 .

It is direct to verify that choosing t = 10 log p under the given conditions finishes the proof.

Lemma 11. Consider any f(x, z) = x′β + g(z) that satisfies τδ0,R(f) ≤ R.

(i) Under Condition 10 it holds that

∥β∥2 ≤ Λ
−1/2
min R, ∥β∥1 ≤

20δ0R
2

λ
, ∥x′β∥ ≤

(
2 +

√
Λmax
Λmin

)
R,

∥g∥ ≤
(
1 +

√
Λmax
Λmin

)
R, TV (g(k)) ≤ 20δ0R

2

γ
.

(ii) Under additional Condition 9, it holds that

∥g∥∞ ≤ Cz,k

(20δ0R
γ

+ 1 +

√
Λmax
Λmin

)
R,

where Cz,k > 0 is a constant only dependent on k and ℓz.

70



Proof. The bound on ∥β∥1 and TV (g(k)) is clear from the definition of τδ0,R(f) in (3.8).

Using the orthogonal decomposition:

∥x′β + g(z)∥2 = ∥x̃′β∥2 + ∥h(z)′β + g(z)∥2 ≤ R2,

we have ∥β∥2 ≤ Λ
−1/2
min ∥x̃′β∥ ≤ Λ

−1/2
min R, and

∥g(z)∥ ≤ ∥h(z)′β + g(z)∥+ ∥h(z)′β∥ ≤ R + Λ1/2
max∥β∥2 ≤

(
1 +

√
Λmax
Λmin

)
R.

Having the bound on ∥g∥, we can further obtain ∥x′β∥ ≤ ∥x′β + g(z)∥ + ∥g(z)∥ ≤ (2 +√
Λmax

Λmin
)R.

It remains to bound ∥g∥∞. Define g∗(z) = g(z)

(
20δ0R

γ
+1+

√
Λmax
Λmin

)R
, then TV (g

(k)
∗ ) ≤ 1, ∥g∗∥ ≤ 1

due to the derived bounds on ∥g∥ and TV (g(k)). Hence it is sufficient to show that

sup
g∗:TV (g

(k)
∗ )≤1,∥g∗∥≤1

∥g∗∥∞ ≤ Cz,k.

To prove the above, we first decompose g∗ = p∗ + q∗, where p∗ is a polynomial of degree k

and q∗ is orthogonal to all polynomials of degree k (with respect to the L2 inner product∫ 1

0
p(z)q(z)dz). Note that TV (q

(k)
∗ ) = TV (g

(k)
∗ ) ≤ 1. Then Lemma 5 in [56] implies that

∥q∗∥∞ ≤ ck for a constant ck > 0 only depending on k. Now write p∗(z) =
∑k

j=0 ajz
j. We

have √
a′V0a = ∥p∗∥ ≤ ∥g∗∥+ ∥q∗∥ ≤ 1 + ck,

where a = (a0, . . . , ak) and V0 = E(v(z)v(z)′) with v(z) = (1, z, z2, . . . , zk). Thus, we obtain

∥p∗∥∞ ≤ ∥a∥1 ≤
√
k + 1∥a∥2 ≤

√
k + 1(1 + ck)λ

−1/2
min (V0),

which implies ∥g∗∥∞ ≤ ∥p∗∥∞ + ∥q∗∥∞ ≤
√
k + 1(1 + ck)λ

−1/2
min (V0) + ck. Finally, we need to

show λmin(V0) is bounded below by a constant only depending on k and ℓz. Under Condition

9 we have

λmin(V0) = min
∥b∥2=1

E(b′v(z))2 ≥ ℓz · min
∥b∥2=1

E(b′v(z̃))2, z̃ ∼ Unif(0, 1)

= ℓz · E(b′
∗v(z̃))

2,
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where b∗ is the minimizer; E(b′
∗v(z̃))

2 is a constant only depending on k, and it is positive

because the roots of any polynomial (not identically zero) form a set of Lebesgue measure

zero.

3.7.1.2 Completion of the proof

We choose R2 = κ1 ·
(
s log p
n

+ n− 2k+2
2k+3

)
, γ = κ2 · δ0R2, λ = κ3 ·

√
log p
n

. Under Condition

12, it is straightforward to verify that by choosing sufficiently small constant δ0, proper

constant κ2 and sufficiently large constants κ1, κ3, the conditions in Lemmas 8-10 are all

satisfied when n is large enough.

3.7.2 Proof of Theorem 9

Denote the following event:

T4 =
{∣∣∣∥Xβ∥2n − ∥x′β∥2

∣∣∣ ≤ λ∥β∥1,∀β ∈ B
}
,

where the set B was introduced in (3.10). The proof of Theorem 8 already shows β̂−β0 ∈ B.

We aim to perform a finer analysis to obtain the desirable rates specified in Theorem 9. Recall

that under Condition 11, max1≤j≤p TV (h
(k)
j ) ≤ Lh where h(z) = (h1(z), . . . , hp(z)) = E(x|z).

According to Lemma 16 in [70], there exist h̄j ∈ Hn for all 1 ≤ j ≤ p such that on T1,

TV (h̄
(k)
j ) ≤ akLh, ∥h̄j − hj∥∞ ≤ 22bkLh log n

ℓzn
:= ∆̃. (3.29)

Define ỹi = yi − h′(zi)β
0 − g0(zi), ζi = h′(zi)(β

0 − β̂) + g0(zi)− ĝ(zi), and

h̄(z) = (h̄1(z), . . . , h̄p(z)), ǧ(z) = ĝ(z) + h̄′(z)(β̂ − β0).

Note that ǧ ∈ Hn since ĝ, h̄j ∈ Hn. Hence the optimization (3.6) implies the basic inequality

Enρτ (yi − x′
iβ̂ − ĝ(zi)) + λ∥β̂∥1 + γTV (ĝ(k))

≤ Enρτ (yi − x′
iβ

0 − ǧ(zi)) + λ∥β0∥1 + γTV (ǧ(k))
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Using the triangle inequality for TV (·) and Lipschitz property of ρτ (·), we can continue from

the above to have

Enρτ (ỹi − x̃′
iβ̂ + ζi) + λ∥β̂∥1

≤ Enρτ (ỹi − x̃′
iβ

0 + ζi) + λ∥β0∥1 + En|(h̄(zi)− h(zi))
′(β0 − β̂)|+ γTV ((h̄(k)(z))′(β0 − β̂))

≤ Enρτ (ỹi − x̃′
iβ

0 + ζi) + λ∥β0∥1 + (∆̃ + γakLh)∥β̂ − β0∥1, (3.30)

where the last step is due to (3.29). Moreover, using the identity of Knight, we also obtain

Enρτ (ỹi − x̃′
iβ

0 + ζi)− Enρτ (ỹi − x̃′
iβ̂ + ζi) + Enρτ (ỹi − x̃′

iβ̂)− Enρτ (ỹi − x̃′
iβ

0)

= En
∫ x̃′

i(β̂−β0)

0

(
1(ỹi − x̃iβ

0 ≤ t)− 1(ỹi − x̃iβ
0 + ζi ≤ t)

)
dt

= Enx̃′
i(β̂ − β0)

∫ 1

0

(
1(ỹi − x̃iβ

0 ≤ x̃′
i(β̂ − β0)t)− 1(ỹi − x̃iβ

0 + ζi ≤ x̃′
i(β̂ − β0)t)

)
dt

≤ ∥β̂ − β0∥1 ·
∥∥∥Enx̃i ∫ 1

0

(
1(ỹi − x̃iβ

0 ≤ x̃′
i(β̂ − β0)t)− 1(ỹi − x̃iβ

0 + ζi ≤ x̃′
i(β̂ − β0)t)

)
dt
∥∥∥
∞

≤ λ

4
∥∥β̂ − β0∥1 with probability at least 1− p−D1 .

Here, the second equality is by a change of variable, the first inequality is by Hölder’s

inequality, and the last inequality is due to the fact that each x̃i is a centered sub-Gaussian

vector and we have used the standard tail bound on maximum of sub-Gaussian variables.

Combining the above with (3.30) yields

Enρτ (ỹi − x̃′
iβ̂) + λ∥β̂∥1

≤ Enρτ (ỹi − x̃′
iβ

0) + λ∥β0∥1 + (λ/4 + ∆̃ + γakLh)∥β̂ − β0∥1

≤ Enρτ (ỹi − x̃′
iβ

0) + λ∥β0∥1 +
λ

3
∥β̂ − β0∥1, (3.31)

where the last inequality holds when n is large enough since γ = o(λ), ∆̃ = o(λ). Given that

the τ -level conditional quantile of ỹ (conditioning on x̃) is x̃′β0 and the conditional density

only differs from fy|x,z(·) by a shifting, we can base on (3.31) to perform standard high-

dimensional analysis of ℓ1-penalized quantile regression. Specifically, following the essential

arguments in [5] (which we skip for simplicity), we can obtain that under an additional event
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that happens with probability at least 1− p−D2 , it holds that

∥x̃′(β̂ − β0)∥2 ≤ D3
s log p

n
, ∥β̂ − β0∥22 ≤ D3

s log p

n
.

We should clarify that the term log(p ∨ n) in [5] is replaced by log p here since we are not

aimed for uniform results over the quantile levels. Also, the restricted nonlinear impact

condition required in [5] is not needed in our problem, because we can bound the population

quantile regression objective function as in the proof of Lemma 8 thanks to Condition 12.

Now we can proceed to have

∥x′(β̂ − β0)∥2 = (∥x̃′(β̂ − β0)∥+ ∥h(z)′(β̂ − β0)∥)2 ≤ 2∥x̃′(β̂ − β0)∥2 + 2∥h(z)′(β̂ − β0)∥2

≤ 2∥x̃′(β̂ − β0)∥2 + 2Λmax∥β̂ − β0∥22 ≤ D4
s log p

n
.

Further intersecting with T4, we obtain

∥X(β̂ − β0)∥2n ≤ ∥x′(β̂ − β0)∥2 + λ∥β̂ − β0∥1

≤ ∥x′(β̂ − β0)∥2 + 4
√
sλ∥β̂ − β0∥2 ≤ D5

s log p

n
,

where we have used the fact that β̂ − β0 belongs to a cone {ν ∈ Rp : |νSc | ≤ 3|νS|}.

It remains to show T4 holds with high probability. We first have ∀β ∈ B,∣∣∣ 1
n

n∑
i=1

((x′
iβ)

2 − ∥x′β∥2)
∣∣∣ ≤ max

1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

(xijxik − Exjxk)
∣∣∣ · ∥β∥21, (3.32)

where in the last inequality we have used the fact |a′Aa| ≤ ∥a∥21 ·∥A∥max, ∀a ∈ Rp,A ∈ Rp×p.

Condition 7 implies that {xijxik − Exjxk}ni=1 are independent, zero-mean, sub-Gaussian

random variables with the sub-Gaussian norm ∥xijxik − Exjxk∥ψ2 ≤ C1K
2
x. We then use

Hoeffding’s inequality in Theorem 10 together with a simple union bound to obtain that

max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

(xijxik − Exjxk)
∣∣∣ ≤ C2K

2
x

√
log p

n

holds with probability at least 1− 2p−10. Putting this result together with (3.32) shows that∣∣∣ 1
n

n∑
i=1

((x′
iβ)

2 − ∥x′β∥2)
∣∣∣ ≤ λ∥β∥1, ∀β ∈ B,
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as long as C2K
2
x

√
log p
n

· 20δ0R2

λ
≤ λ. This condition is satisfied when n is large enough since

λ ∝
√

log p
n

and R2 = o(λ).

3.7.3 Reference materials

Theorem 10. (General Hoeffding’s inequality). Let x1, . . . , xn ∈ R be independent, zero-

mean, sub-gaussian random variables. Then for every t ≥ 0, we have

P
(∣∣∣ n∑

i=1

xi

∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2∑n

i=1 ∥xi∥2ψ2

)
,

where c > 0 is an absolute constant, and ∥ · ∥ψ2 is the sub-gaussian norm defined as ∥x∥ψ2 =

inf{t > 0 : Eex2/t2 ≤ 2}.

The above result is Theorem 2.6.2 in [73].

Theorem 11. Let x1, . . . , xp ∈ R be sub-gaussian random variables, which are not necessarily

independent. Then there exists an absolute constant c > 0 such that for all p > 1,

E max
1≤i≤p

|xi| ≤ c
√

log p max
1≤i≤p

∥xi∥ψ2 .

The above result can be found in Lemma 2.4 of [7].

Theorem 12. (Uniform convergence of empirical norms). Denote ∥g∥2n = 1
n

∑n
i=1 g(zi)

2 for

i.i.d. samples zi ∈ Z. For a class F of functions on Z, let J0(t,F) = C0t
∫ 1

0
sup{z1,...,zn}⊆Z√

H(ut/2,F , ∥ · ∥n)du, t > 0, where C0 > 0 is some universal constant and H is the metric

entropy. Let RF := supg∈F ∥g∥, KF := supg∈F ∥g∥∞, and H(t) be the convex conjugate of

G(t) := (J −1
0 (t,F))2. Then, for all R2

F ≥ H(4KF/
√
n) and all t > 0,

P

(
sup
g∈F

∣∣∣∥g∥2n − ∥g∥2
∣∣∣ ≥ C1

(
2KFJ0(2RF ,F) +KFRF

√
t√

n
+
K2

F t

n

))
≤ e−t,

where C1 > 0 is a universal constant.

The above is Theorem 2.2 from [21].
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Theorem 13. (Symmetrization and concentration). Let Y = (y1, . . . , yn) be i.i.d. samples

in some sample space Y and let F be a class of real-valued functions on Y. Define QF =

supf∈F ∥f∥, Q̂F = supf∈F ∥f∥n. Then,

P
(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

(f(yi)− Ef(yi))
∣∣∣ ≥ 4QF

√
2t

n

)
≤ 4P

(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

ϵif(yi)
∣∣∣ ≥ QF

√
2t

n

)
, ∀t ≥ 4,

P
(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

ϵif(yi)
∣∣∣ ≥ C2 ·

(
E
(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

ϵif(yi)
∣∣∣∣∣∣Y)+ Q̂F

√
t/n
)∣∣∣Y) ≤ e−t, ∀t > 0,

where ϵ1, . . . , ϵn is a Rademacher sequence independent of Y and C2 > 0 is a universal

constant.

The first result is Lemma 16.1 in [72] and the second result is implied by Theorem 16.4

in [72].

76



CHAPTER 4

FALSE DISCOVERY RATE CONTROL VIA REGIONAL QUANTILE
REGRESSION ON ULTRA-HIGH DIMENSION

4.1 Introduction

The advancement of technologies and biotechnologies has enabled researchers to collect

vast amounts of data. Ultra-high dimensional data, characterized by an exponentially grow-

ing number of candidate covariates p relative to the number of observations n, is increasingly

prevalent in diverse scientific domains such as bioinformatics, machine learning, and finance.

Despite the large number of covariates, often only a small subset significantly influences the

response variable. Identifying these influential covariates amidst the numerous noisy ones

is a formidable task. To tackle this issue, researchers employ a technique known as the

screening method, which aims to isolate and retain the useful variables while discarding the

irrelevant ones.

Significant progress has been made in screening ultra-high dimensional data. Starting

with [17], who proposed the sure independence screening (SIS) based on the marginal cor-

relation between a covariate and a response variable, subsequent research expanded this

model. For instance, [18] adapted the SIS for generalized linear models, [4] developed condi-

tional sure independence screening for situations with prior information on covariates, and

[15] introduced nonparametric independence screening for additive models. However, these

methods primarily address the conditional mean of the response, making them less robust

to outliers or heteroscedastic errors.

This limitation can be mitigated by employing quantile regression (QR). Introduced by

[32], quantile regression models the effects of covariates on conditional quantiles, offering

a robust alternative to mean-based approaches. In high-dimensional and ultra-high dimen-

sional settings, various researchers have advanced this field: [76] used penalized methods, [35]

applied the Bayesian information criterion for variable selection, [14] considered the adaptive

robust lasso model using a two-step procedure based on the ℓ1-penalized quantile regression
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model [5], and [40] employed quantile partial correlation for screening.

However, these works have focused on local quantile regression, considering single or

multiple quantile levels independently. As highlighted by [87], local quantile regression can

lead to delicate issues. For instance, when determining which covariates affect low quantiles,

the choice of the quantile level is crucial. An incorrect choice, such as τ = 0.1, might result

in missing important covariates that significantly influence the conditional quantile.

To address this, the regional quantile regression method [50], also known as global quantile

regression [87] or quantile function regression [82], can be employed. [51] pioneered this

approach for the varying coefficient model, which inspired [87] to use the adaptive robust

lasso model [14] in the regional setting. In variable selection, this method models quantile

regression over an interval of quantile levels, ∆ ⊂ (0, 1), rather than a single level τ . Using

∆ reduces the risk of overlooking covariates that significantly contribute to other quantiles,

enhancing the stability of variable selection. Thus, the regional quantile regression method

offers a more general approach than the local quantile regression, as it encompasses the latter

when ∆ is a singleton set.

Although some researchers have developed methods for variable selection in ultra-high

dimensional data using regional quantile regression, no work has considered the control of

the false discovery rate (FDR). As noted by [36], recent screening methods tend to sacrifice

FDR by adopting conservative cutoffs, a problem also present in quantile regression variable

selection. Therefore, there is a need for a new method in quantile regression that robustly

selects variables while concurrently considering multiple quantile levels and controlling the

FDR.

To control the FDR in variable selection problems, [3] proposed an innovative method

called knockoff variable selection. The core concept of the knockoff method involves creating

artificial variables, known as knockoff variables, and then performing variable selection based

on both these knockoff variables and the original variables. The primary advantage of the

knockoff method is its ability to guarantee exact FDR control with finite samples. While the

78



method was initially developed for fixed design matrices X, recent extensions have adapted

it for random design matrices within the model-X framework, as demonstrated by [9], [60],

and [79]. However, in our study, we adopt a multi-step procedure similar to the approaches

of [36] and [2] for ultra-high dimensional variable selection with a fixed design matrix. Ad-

ditionally, [65] applied this two-step method directly to the log-contrast model, highlighting

its versatility and effectiveness.

To the best of our knowledge, we are the first to propose the knockoff method for a

regional quantile regression setting. In a subsequent section, we demonstrate that adapting

the knockoff method to this context is not a straightforward modification of the original

approach due to the involvement of multiple quantile levels. Consequently, we present a new

knockoff procedure specifically designed for regional quantile regression, which addresses the

limitation of using a single quantile level and concurrently controls the FDR level.

The rest of this chapter is organized as follows: In Section 4.2, we introduce our new

screening method. In Section 4.3, we present our novel knockoff procedure for global

quantile regression. Section 4.4 provides numerical results from various experimental setups.

In Section 4.5, we demonstrate the effectiveness of our method using real data. Finally, in

Section 4.6, we summarize our findings.

4.2 Proposed Screening Method

In this section, we introduce our screening method. Before we proceed to the estimation,

we begin with introducing the models. We consider the following regional quantile regression

form:

Qy|X(τ) = α∗(τ) + Xβ∗(τ), τ ∈ ∆, (4.1)

where ∆ = [τ1, τ2] ⊆ (0, 1) is a closed interval of quantile levels, y = (y1, . . . , yn)
′ ∈ Rn

is a response variable, Xj = (x1j, . . . , xnj)
′ ∈ Rn is a column vector for covariate matrix

X = (X1, . . . ,Xp) ∈ Rn×p, β(τ) = (β1(τ), . . . , βp(τ))
′ ∈ Rp is a vector of coefficients,
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α(τ) ∈ R is an intercept. We denote x′
i to be a row vector for X.

4.2.1 Marginal screening via integrated regional quantile estimator

We now move on to our screening procedure. Here, the covariate matrix X is ultrahigh-

dimensional and contains a vast number of covariates. We assume that the dimension p of

each row of X is allowed to grow with sample size n at an exponential rate, that is log p =

O(na) for some constant a. Our goal is to identify a set of active covariates associated with

the response by filtering out as many unrelated variables as possible, and coincidently find

for which we propose a marginal quantity to rank the covariates. To denote the significant

variables, we define the index set

M(∆) =
{
1 ≤ j ≤ p : ∃τ ∈ ∆, β∗

j (τ) ̸= 0
}
.

We assume that the number of active variables is smaller than the sample size: |M(∆)| ≤ n.

Intuitively, we can expect that if the corresponding variable Xj is important, then the

integration of the absolute value of its coefficients within the region should be large, and

it should not be close to 0. Then naturally, we can utilize this property as a measure of

importance for each covariate within the quantile region.

For the estimation, we consider a nonparametric regression approach using B-spline ap-

proximation to the quantile coefficients and the intercept within the quantile region. That

is, let βj(τ) = B(τ)T bj, αj(τ) = B(τ)Taj, where B(τ) is a B-Spline function for τ which is

explained to be later. Without loss of generality, we assume each covariate xj is standardized

to have E(xj) = 0, V ar(xj) = 1. Then we proceed to a marginal quantile screening

(âj, b̂j) ∈ argmin
a,b

L∑
ℓ=1

n∑
i=1

ρτℓ

(
yi − xijB(τℓ)

T b−B(τℓ)
Ta
)
, j = 1, . . . , p,

where ρτ (x) = x(τ − I(x ≤ 0)) is a check loss function for a quantile level τ , {τl} is

a partition of the interval ∆, and using them as knots we have constructed N = L + k

normalized B-spline basis functions B(τ) = (B1(τ), . . . , BN(τ)) of order k + 1 and L is the

number of discrete quantile levels. For the measure of the importance of each predictor, we
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use the integrated coefficient estimator 1
|∆|

∫
∆
|β̂j(τ)|2dτ , where |∆| denotes the cardinality.

Here, β̂j(τ) = B(τ)T b̂j, so the key integral to evaluate is
∫
∆
B(τ)B(τ)Tdτ , which can be

even computed or approximated before obtaining b̂j for each predictor. Then our index set,

derived from our model, can be written as follows

M̂(∆) =

{
1 ≤ j ≤ p :

1

|∆|

∫
∆

|β̂j(τ)|2dτ ≥ ν0

}
,

where ν0 > 0 is a cutoff threshold. We show the theoretical result, the sure screening

property, for our model. Before we prove the theorem, we first introduce some regularity

conditions and some population quantities:

For each j ∈ M(∆)

(a∗j , b
∗
j) ∈ argmin

a,b∈RN

1

L

L∑
ℓ=1

Eρτℓ
(
y − xjB(τℓ)

T b−B(τℓ)
Ta
)

(4.2)

(fj(τ), gj(τ)) ∈ argmin
f,g∈R

Eρτ (y − xjf − g). (4.3)

Conditions

1. (Bounded covariates) The covariates are bounded: maxj∈M(∆) |xj| ≤ Kx.

2. (Lipschitz condition) The functions {fj(τ), gj(τ)}j∈M(∆) belong to the class of functions

whose kth derivative satisfies a Lipschitz condition of order c: |h(k)(s) − h(k)(t)| ≤

c0|s− t|c, for some positive constant c0, where k is a nonnegative integer and c ∈ (0, 1]

satisfies d = k + c > 0.5.

3. (Bounded response density) For each j ∈ M(∆), the conditional density evaluated at

t = xjfj(τ)+gj(τ) and xjB(τ)T b∗j+B(τ)Ta∗j is bounded uniformly in (y, xj, τ): 0 < f ≤

fy|xj(t) ≤ f̄ <∞. Moreover, its derivative is uniformly bounded: supt |f ′
y|xj(t)| ≤ f̄ ′.

4. (Identifiability of the true model) The nonlinear impact coefficient

q :=
3f

2f̄ ′
· infa,b,j∈M(∆)

(E(axj+b)2)3/2
E|axj+b|3 is bounded away from zero.

5. (Strong marginal regional signal) minj∈M(∆)
1
|∆|

∫
∆
|fj(τ)|dτ ≥ κn−γ for some constants

κ, γ > 0.
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6. γ < 1/2, N−dnγ = o(1), N3/2n−1/2
√
log n = o(1),max(N2 logN, n) = o(L).

Conditions 1, 2, 3 are common in quantile regression literature utilizing B-spline basis

[25, 63, 82]. Condition 4 is similar to those of [87, 5], where it ensures the information of

the identifiability of the true model. Condition 5 is common in screening literature [25].

Condition 6 describes how fast the number of basis functions grows regarding sample size.

Followed by the conditions, we have a sure screening property as follows.

Theorem 14. Suppose τ1, . . . , τL
i,i,d∼ Unif(∆). Assume Conditions 1-6, choosing ν0 =

κ
4
n−γ, the sure screening property holds:

P(M(∆) ⊆ M̂(∆)) → 1,

as n→ ∞.

We defer the proof of Theorem 14 to Section 4.7.1. Theorem 14 ensures that if we have

a suitable number of observations, then we can select all important variables. However,

since we try to select all important variables, inevitably there must be some false discoveries

within the selected variables, which should be removed. We now move on to control the

FDR for these selected variables.

4.3 FDR Control via Regional QR-Knockoff

4.3.1 A short review for the model-X knockoff

Recently, various works related to the knockoff method have been proposed. For our case,

we typically focus on the model-X approach, which allows us to further extend the knockoff

method to high dimensional models. For the detailed explanations of the model-X approach

and the knockoff methods, please see [9] and references therein. We introduce one definition

from [9].

Definition 1. A variable xj is said to belong to a null set, H0, (we also say xj is null) if

and only if y is independent of xj conditionally on the other variables in X for j = 1, . . . , p.
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We now introduce the knockoffs. Let y be a response vector, and X be a design matrix,

we say that X̃ is the model-X knockoffs for X if it has the two properties as follows:

1. (X, X̃)
d
= (X, X̃)swap(S)

2. X̃ ⊥⊥ y|X

where S ⊂ H0, and swap(S) implies interchanging the location of knockoff and original

variables corresponding to the index set S. Because of the properties 1 and 2, we have that

(X, X̃)|y d
= (X, X̃)swap(S)|y,

That is, Xj, j ∈ S are conditionally independent of y. This result ensures us to proceed

with the knockoff method. However, this fact is generally not true in the regional quantile

regression setting. We introduce the reason in the next section.

4.3.2 Problem with the model-X knockoff for the regional quantile regression

For a single observation case, we say that a variable xj is null if βj = 0 for j ∈ {1, . . . , p},

this is satisfied when we assume Proposition 2.2 of [9]. That is

xj is null ⇔ βj = 0 ⇔ xj is conditionally independent of y.

For quantile regression, this is also true for the single-level quantile regression, since

βj(τ) = 0,∀τ ∈ (0, 1) ⇔ xj is conditionally independent of y.

Therefore, we can directly adapt the original knockoff method to this case using the original

y. However, the method cannot be directly adapted to the regional case, since the importance

within a region does not necessarily imply conditional independence. This means that, for

example,

βj(τ) = 0,∀τ ∈ ∆ ⇔/ xj is conditionally independent of y.

Specifically, the left-hand side does not imply the righthand side of the above equation.
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4.3.3 Model-X knockoff for the regional quantile regression

Because of the problem introduced in the previous section, we cannot directly apply the

knockoff method to our model. To solve this problem, we propose the proposition as follows:

Proposition 1. Let ỹ ∈ Rn be constructed as below

ỹi =


Qyi|xi

(τ1) if yi ≤ Qyi|xi
(τ1)

yi if Qyi|xi
(τ1) ≤ yi ≤ Qyi|xi

(τ2)

Qyi|xi
(τ2) if yi ≥ Qyi|xi

(τ2)

where x′
i are the variables selected from the screening method for i = 1, . . . , n. Then Xj is

conditionally independent of ỹ if and only if βj(τ) = 0,∀τ ∈ ∆ = [τ1, τ2].

The proof of Proposition 1 is provided in Section 4.7.2.

Remark 1. In practice, we don’t know the true conditional quantiles that are used

for the cutoffs in Proposition 1. Therefore, we use estimated conditional quantiles instead.

The conditional quantiles can be estimated using various methods, but we utilize the

non-crossing model from [6] and [37], which we call non-crossing quantile lasso, that ensures

the non-crossing property for conditional quantile estimates for high-dimensional data

across multiple quantile levels. This property ensures that

Q̂yi|xi
(τ1) ≤ Q̂yi|xi

(τ2), i = 1, . . . , n

for τ1 ≤ τ2, where these estimates are estimated using the noncrossing quantile lasso. We

provide more details in the simulation section in Section 4.2.

Proposition 1 ensures the conditional independence on the region ∆. As discussed in

Definition 1, this is the key property that needs to be satisfied. Since this is satisfied, we

proceed with incorporating the model-X knockoff method.
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There are various ways to construct knockoff variables. If we have previous information,

we can use the exact construction. However, in most cases, we do not have prior knowl-

edge related to the distribution of the design matrix. Therefore, we use the second-order

approximation. In other words, we make X̃, so that (X, X̃) and (X, X̃)swap(S) have same

first and second orders, instead of the distribution. Obviously, we have E(X) = E(X̃). For

the covariance structure, we write as follows

Cov(X, X̃) =

 Σ Σ− diag(s)

Σ− diag(s) Σ


where s is a p-dimension vector making Cov(X, X̃) positive definite, and Cov(X) = Σ. When

n > 2p, [3] introduced two methods to select a vector s.

1. Equi-correlated knockoffs: Let s be a vector such that

sj = 2λmin(Σ) ∧ 1

for all j = 1, . . . , p, where ∧ denotes the minimum operator.

2. Semidefinite programme (SDP) knockoffs: Let s be a vector such that

min
∑
j

(1− sj) subject to sj ≥ 0 and diag(s) ⪯ Σ

for all j = 1, . . . , p.

For some special cases such as a high dimensional case and a non-gaussian case, this second

order approximation may not work great. To overcome such issues some methods are

discussed in [9] and [60]. However, we thought this is beyond the content of this chapter, so

we don’t discuss details here.

4.3.4 FDR control for the regional quantile regression

To find important variables, we estimate the statistics Wj for j = 1, . . . , p. The statistics

Wj compare the jth variable in X and X̃, and find out which variable is important or not.
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We calculate Wj as follows

Wj(∆) =
L∑
l=1

wl

{∣∣∣β̂j(τl)∣∣∣− ∣∣∣∣̂̃βj(τl)∣∣∣∣}
where L denotes the levels of τl’s within the ∆, and wl is the weights for each τ levels.

Also β̂j(τl) denotes the non-crossing quantile lasso estimator for Xj and level τl, and ̂̃βj(τl)
denotes the non-crossing quantile lasso estimator for X̃j and level τl. We omit (∆) for the

notational convenience afterward if it is obvious. If |Wj| is largely greater than 0, it implies

that jth variable is an active variable. If |Wj| is comparatively small, it implies that jth

variable is an inactive variable. When |Wj| small (Xj is null), we have the following lemma

Lemma 12. The signs of the null Wj’s are IID coin flips conditionally on (|W1|, . . . , |Wp|).

The Lemma 12 is the Lemma 3.3 in [9], therefore we omit the proof. With Lemma 12,

for fixed t > 0, we get

# {j : Wj ≤ −t} ≥ # {null j : Wj ≤ −t} d
= # {null j : Wj ≥ t} .

Then we derive the FDP, false discovery proportion, as follows

FDP(t) =
# {null j : Wj ≥ t}
# {j : Wj ≥ t}

Conservatively, we can estimate FDP as follows

F̂DP(t) =
# {j : Wj ≤ −t}
# {j : Wj ≥ t}

To get the FDR control with q level, we set the threshold based on knockoff+ from [3]. We

get the threshold as follows

τ+ = min

{
t :

1 + # {j : Wj ≤ −t}
# {j : Wj ≥ t}

≤ q

}
by setting a set Â such that Â = {j : Wj ≥ τ+}, we control the usual FDR, that is

FDR = E


∣∣∣{j ∈ Â ∩H0}

∣∣∣
|Â ∨ 1|

 ≤ q
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where ∨ denotes the maximum operator.

As a result, if we assume Proposition 1 and Lemma 12, then by Theorem 3.4 in [9], we

attain the FDR control on the quantile region ∆.

4.4 Simulation Results

4.4.1 Screening performance

In this subsection, we use simulated examples to assess the finite sample performance of

the proposed method and compare it with other related methods. The original sure indepen-

dence screening paper utilizes the sample correlation between the response and covariates,

but it is reasonable for us to design the correlation between the response and covariates based

on the quantile correlation. [40] introduced the sample estimate of the quantile correlation

as below:

q̂corτ {y, x} =
1√

(τ − τ 2)σ̂2
x

1

n

n∑
i=1

ψτ (yi − Q̂τ,y)(xi − x̄)

where ψτ (x) = τ − I(x < 0), x̄ = 1
n

∑n
i=1 xi and σ̂2

x = 1
n

∑n
i=1(xi − x̄)2. Also Q̂τ,y =

inf {y : Fn(y) ≥ τ} be the sample τ -th quantile of y1, . . . , yn and Fn(y) = 1
n

∑n
i=1 I(yi ≤ y) is

the empirical distribution function. We denote this quantile correlation screening (QCOR,

Method 1) as one of our screening methods. The other screening methods are well-known

screening methods from the literature: model-free screening using the projection correlation

(PCOR, Method 2) from [36] and quantile adaptive screening (QaSIS, Method 3) from

[25]. These are all model-free and flexible screening methods that are adaptable to various

scenarios. We denote our method to be RQRS – ∆ (Method 4) for a model with a regional

quantile level and denote RQRS – τ (Method 5) for a model with a singleton quantile level.

For the simulation studies, we show multiple examples with various settings. For every

simulation, we repeat every procedure 100 times, and within each replication, we rank the

features in descending order by the above four screening methods and record the minimum

model size (MMS) that contains all active features and True Positives. We report the
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quantiles of these results for repetitions with cutoff percentages: 5%, 35%, 65%, 95%, the

best to the worst.

Throughout all examples, we generate design matrix X with N(0,Σ), where each i, jth

component of Σ is defined by Σij = σ|i−j| for i, j = 1, . . . , p and σ = 0.5. The level for the

targeting quantile region is set to ∆ = [0.40, 0.60], and we set τ = 0.5 for the QCOR and

the singleton RCRS model. For the tuning parameters of our model, we use the quadratic

B-spline function for the approximations and set L = 5.

Example 1 (Linear Models)

In this example, we consider linear models generated from the following linear model

y = Xβ + ϵ

where β = (15,0p−5)
′. Here 1s denotes the vector of s ones and 0s denotes the vector of s

zeros. We set n = 200 and p = 1000. We vary the setting by changing the error distribution.

We consider the following distributions:

Example 1.1 : ϵi ∼ N(0, 1), i = 1, . . . , n

Example 1.2 : ϵi ∼ Cauchy(0, 1), i = 1, . . . , n

The results for Example 1.1 and Example 1.2 are presented in Table 4.1.

It shows that every method performed well with linear models, even though we include

a heavy tailed model.

Example 2 (Nonlinear Models)

As we mentioned before, we use the same settings for n, p, X, and ∆ as in Example 1. For

these models, we consider ϵi ∼ N(0, 1). For We set n = 200 and p = 1000. Consider the
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5% 35% 65% 95%

Method 1 Example 1.1 5 5 5 5

(QCOR) Example 1.2 5 5 5 5

Method 2 Example 1.1 5 5 5 5

(PCOR) Example 1.2 5 5 5 5

Method 3 Example 1.1 5 5 5 5

(QaSIS) Example 1.2 5 5 5 6

Method 4 Example 1.1 5 5 5 5

(RQRS – ∆) Example 1.2 5 5 5 5

Method 5 Example 1.1 5 5 5 5

(RQRS – τ) Example 1.2 5 5 5 5

Table 4.1 MMS result table for Example 1 with 100 repetitions

following nonlinear data-generating models:

Example 2.1 : yi = 5xi1 + 2 sin(πxi2/2) + 2xi3I(xi3 > 0) + 2 exp(5xi4) + ϵi, i = 1, . . . , n

Example 2.2 : yi = 3xi1 + 3x3i2 + 3x−1
i3 + 5I(xi4 > 0) + ϵi, i = 1, . . . , n

Here, I(·) denotes the indicator function. The results for Example 2.1 and Example 2.2 are

presented in Table 4.2.

Among the methods, the performance of nonlinear models was moderately good except

for Method 3 (QaSIS) in Example 2.1. Even though this model is nonparametric, we see

that it does not work on some complex nonlinear models. Method 4 also worked slightly less

than the other methods, but it was not distinguishably worse.

Example 3 (Heteroskedastic Error Model)

We consider a heteroskedastic error here, where the error is multiplied by a covariate. We
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5% 35% 65% 95%

Method 1 Example 2.1 4 4 5 5.05

(QCOR) Example 2.2 4 4 4 5

Method 2 Example 2.1 4 4 4 5

(PCOR) Example 2.2 4 4 4 4

Method 3 Example 2.1 9.95 20 40 74.05

(QaSIS) Example 2.2 4 4 4 7

Method 4 Example 2.1 4 5 5.35 14.05

(RQRS – ∆) Example 2.2 4 4 4 5

Method 5 Example 2.1 4 5 5 6.05

(RQRS – τ) Example 2.2 4 4 4 5.05

Table 4.2 MMS result table for Example 2 with 100 repetitions

generate X̃ ∼ N500(0,Σ) where Σ = σ|i−j|, σ = 0.5, X501 ∼ Ber(0.5). Further let X =

[X̃ X501] ∈ Rn×501. Then we generate the responses with

yi = xi1 − xi3 + ϵi

where ϵi ∼ (1+xi501)ξi and ξi ∼ N(0, 1). We set n = 200, just like the former examples. Note

that the methods should also select xi501 as an important covariate since it is incorporated

with the error term. However, for this example, Method 3 is not working because of its

limitation on the design matrix. For QCOR and the singleton RQRS, we let τ = 0.6 to see

the difference. The result is presented in Table 4.3.

As we can see in the result, PCOR presents the worst performance here. QCOR method

is quantile adaptive, but it still performs worse than that of our singleton method. For this

example, the regional method works more stably than the other models.
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5% 35% 65% 95%

Method 1 (QCOR – τ = 0.6) 18.9 123.65 328 446.5

Method 2 (PCOR) 100.5 314 438.05 492.1

Method 4 (RQRS – ∆) 3 18.60 78 248.35

Method 5 (RQRS – τ = 0.6) 3 8 116 424

Table 4.3 MMS result table for Example 3 with 100 repetitions

4.4.2 FDR control performance

In this section, we use simulated examples to numerically assess the FDR control of the

proposed RQRS-Knockoff procedure. In practice, if crossing happens while we estimate the

quantiles in Proposition 1, we cannot censor the response. Therefore during this simulation,

we put the response to be original yi, if crossings happen.

For FDR control performance, we vary simulation settings by changing models, the num-

ber of variables, and observations and see how the statistical powers and FDR change. It

is assumed that the dimension of data is successfully reduced by the screening method. We

consider a multivariate linear regression model:

yi = x′
iβ + ϵi, i = 1, . . . , n

where xi ∼ MVN(µ,Σ), µ = 0p, Σ = Ip and ϵi ∼ N(0, 1). Here, β = (2 ∗ 15,−0.5 ∗

15, 0, . . . , 0)
′ ∈ Rp, and 1s denotes a vector of s ones. The target FDR is 0.2, and consider

the quantile region to be (0.3, 0.7). The data is split into two disjoint groups. We define

the number of observations for the first group as n1 and for the second group as n2. Using

n1 observations, conditional quantiles are estimated on the edges of the region. We denote

these two quantiles to be Q̂start and Q̂end. Then n2 responses are censored by the estimated

conditional quantiles. These are estimated by using the quantile lasso and non-crossing

quantile lasso. By using n2 censored response as a new response variable, adopt the model-X
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knockoff procedure. During the knockoff procedure, the quantile lasso method is also used for

the estimation, and the tuning parameters are derived from cross-validation. We repeat 100

times to generate the results. We record FDR, Power, Mean Squared Errors (MSE) for both

Q̂start and Q̂end, and the average percentage of crossing that happened among repetition.

We refer Oracle to be the one using the true conditional quantiles, QLR to be quantile lasso

regression, and nX-QLR to be non-crossing quantile lasso regression.

Models n1 n2 p FDR Power Q̂start Q̂end Crossings (%)

Oracle 150 50 100 0.162 0.828 - - -

QLR 150 50 100 0.186 0.719 0.590 0.560 6.7%

nX-QLR 150 50 100 0.172 0.790 0.432 0.423 0%

Oracle 100 100 100 0.184 1 - - -

QLR 100 100 100 0.255 0.958 1.003 0.986 12.4%

nX-QLR 100 100 100 0.305 0.976 0.780 0.754 0%

Oracle 300 100 100 0.161 1 - - -

QLR 300 100 100 0.182 1 0.255 0.247 1.1%

nX-QLR 300 100 100 0.175 0.999 0.195 0.192 0%

Table 4.4 Result for FDR control of various settings with 100 repetitions

The results are presented in Table 4.4. When n1 is large and n2 is small we can see

that every result with the nX-QLR is better than that of QLR for FDR and MSE of both

quantiles. Nonetheless, we can see that the FDR is still preserved. When n1 is small and

n2 gets bigger, we see that the power is increasing for both methods, but crossing rates and

FDR results are getting worse. However, when n1 and n2 both grow larger, we see that all

results get better, while the MSEs are still lower for nX-QLR.
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4.5 Real Data Analysis

4.5.1 Obesity risk factors via body mass index and other dietary related vari-
ables for Non-Hispanic Black women

The body mass index (BMI) is a widely used indicator of several health risk factors. It

is calculated by

BMI =
Weight (kg)
Height2 (m)

.

Being underweight or overweight can lead to health issues related to weight. Studies have

shown that underweight individuals are at risk of malnutrition and compromised immune

function [12], while overweight and obese individuals are more likely to develop chronic

health conditions compared to those with a normal BMI [47, 19]. However, the relationship

between risk factors and the distribution of BMI is complex. The lower and upper BMI

distribution may be influenced by different covariates, and the effect size of each covariate

may vary across different quantiles of the BMI distribution. Classical mean-based regression

models may not be sufficient to address this relationship effectively. We focus on the

quantile regions, for both underweight and overweight, and see how much the important

variables differ based on our approach. For the data analysis, we use the National Health

and Nutrition Examination Survey dataset [10]. We specifically use the data collected from

2011 to 2014. The NHANES dataset provides comprehensive information on demographics,

socioeconomic status, and dietary habits. Since we are interested in variables relevant to

the obesity of the non-Hispanic Black (NHB) women population, we select dietary and

health-related variables that might have potential importance related to BMI.

4.5.2 Real data analysis results

There are a total of 93 variables and 383 observations after removing all missing observa-

tions. We set the response variable to be the BMI of the population. Our aim of this study

is to find important variables related to obesity and we are interested in a high-dimensional

dataset, so we intentionally put 1000 fake variables into the dataset, and see whether our
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method works well with the data. We expect that if the FDR control is working properly,

then most of these fake variables won’t be selected after the final step.

To adapt our procedure, we split the dataset into 3 disjoint groups (G1,G2,G3), and

proceed with each step with the corresponding dataset. The detailed steps are as follows:

• Step 1 (Screening): Using n1 = 153 observations (G1), we screen variables based on

our method (RQRS) from Section 2.1.

• Step 2 (Censoring): Using n2 = 130 observations (G2), we get the estimators β̂(∆1)

and β̂(∆2) using non-crossing quantile lasso. Based on these coefficients, we can get

Q̂∆1(y|x′) and Q̂∆2(y|x′), and construct ỹ, where ∆ = [∆1,∆2].

• Step 3 (Selection by Knockoff): Using n3 = 100 observations (G3), we proceed with

the FDR controlling using regional quantile regression knockoff. The pre-specified level

for FDR is 0.2.

To compare the effects for lower BMI group and higher BMI group, we use two specific ∆

intervals, [0.15, 0.45] and [0.55, 0.85]. The results are in Table 4.5 and Table 4.6.

In Table 4.5, numbers stand for the indices of fake variables. This tells us that if we only

do the screening, there might be a lot of false discoveries can be included. This problem

can be reduced using a conservative cutoff, but we proceed with our method. As we can see

in the result of the FDR-controlled variables, Table 4.6, all of the fake variables, which are

chosen from the screening procedure, are removed after we have done the FDR-controlling

procedure. The selected variables, those related to the measures of bodies, make sense

since they are all closely related to the BMI. The triglyceride, which is selected for both

regions, is a type of fat located in the blood and is one of the obesity-related important

measures. There are multiple researches such as [13, 64] that use both BMI and triglyceride

as a measure of obesity, which implies that this is also an important measure related to

BMI. Our study reveals that the effect of covariates, Fasting Glucose, differs across the

different BMI groups since it is selected only in the lower BMI group. This result aligns
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Screened variables for ∆ = [0.15, 0.45]

Beta-cryptoxanthin, Octadecatetraenoic, Arm length

Arm circumference, Waist circumference, Abdominal

Creatinine, HDL Cholesterol, Triglyceride,

Serum copper, Glycohemoglobin, Fasting glucose,

42, 96, 157, 162, 227, 292, 372, 503, 515, 516,

530, 582, 664

Screened variables for ∆ = [0.55, 0.85]

Beta-cryptoxanthin, Docosenoic, Arm length

Arm circumference, Waist circumference, Abdominal

Creatinine, HDL Cholesterol, Triglyceride,

Serum copper, Glycohemoglobin, Fasting glucose,

29, 137, 162, 207, 258, 317, 502, 536, 582, 598,

657, 691, 738, 800, 834, 909, 929, 963

Table 4.5 Screened variables by using RQRS for two different quantile regions where the
response variable is the BMI of NHB women

FDR controlled variables for ∆ = [0.15, 0.45]

Arm length, Arm circumference, Waist circumference,

Abdominal, Triglyceride, Fasting glucose

FDR controlled variables for ∆ = [0.55, 0.85]

Arm length, Arm circumference, Waist circumference,

Abdominal, Triglyceride

Table 4.6 FDR controlled variables by using RQRS-Knockoff for two different quantile
regions where the response variable is the BMI of NHB women
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with the finding in [30], where they report that fasting glucose is associated with the highest

mortality in the lower BMI group.

4.6 Conclusion and Discussion

In this research, we have introduced a novel approach for variable selection in ultra-high

dimensional settings using regional quantile regression combined with the knockoff method

to ensure false discovery rate (FDR) control. Our methodology extends the capabilities of

traditional quantile regression by considering an interval of quantile levels, thereby enhancing

the robustness and comprehensiveness of variable selection. This approach mitigates the

limitations of local quantile regression, which may overlook important covariates due to its

focus on single quantile levels.

The primary contribution of our work is the development and implementation of a new

knockoff procedure specifically designed for regional quantile regression. This method not

only addresses the inherent complexities of handling multiple quantile levels but also main-

tains rigorous FDR control, a critical aspect often compromised in high-dimensional data

analysis. Through extensive numerical experiments and real data applications, we have

demonstrated the effectiveness and reliability of our proposed method.

Our findings indicate that the regional quantile regression knockoff method offers a signif-

icant improvement over existing approaches, providing a more accurate and stable variable

selection process. This advancement opens new avenues for research and application in

various scientific domains where ultra-high dimensional data is prevalent.

Additionally, our work lays the groundwork for integrating post-selection inference tech-

niques, which can provide valid statistical inference after variable selection, further enhancing

the utility of our approach. Moreover, sample splitting [11], an alternative to the knockoff

method, could be adapted to control FDR, offering a simpler yet effective strategy for robust

variable selection.

In conclusion, the proposed regional quantile regression knockoff method represents a
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substantial step forward in high-dimensional variable selection, offering a robust, reliable,

and comprehensive solution that balances the need for accuracy and FDR control. Future

research could explore the incorporation of post-selection inference techniques and the

adaptation of sample-splitting methods, potentially broadening the applicability and impact

of our approach in high-dimensional data analysis.

4.7 Proofs

4.7.1 Proof of Theorem 14

We summarize the notations used throughout the proof here for convenience. For a =

(a1, . . . , ap) ∈ Rp, denote ∥a∥q = (
∑p

i=1 |ai|q)
1
q for q ∈ [1,∞) and ∥a∥∞ = max1≤i≤p |ai|.

Given a square matrix A = (aij) ∈ Rp×p, λmax(A) and λmin(A) represent its largest and

smallest eigenvalues respectively. For a general matrix A = (aij) ∈ Rp×q, ∥A∥2 denotes its

spectral norm; ∥A∥max = maxij |aij|, ∥A∥F =
√∑

i,j a
2
ij. For a, b ∈ R, a ∧ b = min(a, b), a ∨

b = max(a, b). For a set A, 1A(·) is the usual indicator function. Moreover, an ≲ bn (an ≳ bn)

means there exists some constant C > 0 such that an ≤ Cbn (an ≥ Cbn) for all n; thus

an ≲ bn (an ≳ bn) is equivalent to an = O(bn) (an = Ω(bn)); an ≍ bn if and only if an ≲ bn

and bn ≳ an; an ≫ bn means bn = o(an).

Theorem 14 is a direct consequence of Lemmas 13 and 14. Hence, in the rest of the

proof, we focus on these two lemmas. Throughout the proof, we use C1, C2, . . . to denote

universal constants and use D1, D2, . . . , ... to denote constants that may only depend on the

constants Kx, f̄ , f̄ , f̄
′, κ, q from Conditions 1-5. An explicit (though not optimal) dependence

of {Dj, j = 1, 2, . . .} on the aforementioned constants can be tracked down. However, since it

does not provide much more insight, we will often not present the explicit forms of {Dj, j =

1, 2, . . .}, and this will greatly help streamline the proofs. The constants {Cj, Dj, j = 1, 2, . . .}

may vary from lines to lines.

Lemma 13. Assume cn → ∞ and N3/2n−1/2cn = o(1). With probability at least 1 −
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n(e−D1c2n +N2e−
D2L

N2 ), the following holds:

∥b̂j − b∗j∥2 ≤ D3Nn
−1/2cn, ∀j ∈ M(∆).

Proof. For notational simplicity, we will drop the subscript j throughout the proof. Let

θ = (a, b) and introduce the following notations:

ℓn(θ) :=
1

nL

L∑
ℓ=1

n∑
i=1

ρτℓ
(
yi − xiB(τℓ)

T b−B(τℓ)
Ta
)

ℓ(θ) :=
1

L

L∑
ℓ=1

Eρτℓ
(
y − xB(τℓ)

T b−B(τℓ)
Ta
)

vi(θ) :=
1

L

L∑
ℓ=1

[
Eρτℓ

(
yi − xiB(τℓ)

T b−B(τℓ)
Ta
)
− Eρτℓ

(
yi − xiB(τℓ)

T b∗ −B(τℓ)
Ta∗
)]

A standard argument based on convexity shows that

P
(
∥θ − θ∗∥2 ≥ δ

)
≤ P

(
inf

∥θ−θ∗∥2=δ
ℓ(θ)− ℓ(θ∗) ≤ sup

∥θ−θ∗∥2≤δ

∣∣∣ 1
n

n∑
i=1

(vi(θ)− Evi(θ))
∣∣∣) (4.4)

We first lower bound inf∥θ−θ∗∥2=δ ℓ(θ)−ℓ(θ∗). Note that θ∗ ∈ argminθ ℓ(θ) according to (4.2).

This optimality together with the identity of Knight yields that for θ satisfying ∥θ−θ∗∥2 = δ,

ℓ(θ)− ℓ(θ∗)

=
1

L

L∑
ℓ=1

E
∫ xBT (τℓ)(b

∗−b)+B(τℓ)(a
∗−a)

0

(
Fy|x(xB(τℓ)

T b∗ +B(τℓ)
Ta∗ + t)

− Fy|x(xB(τℓ)
T b∗ +B(τℓ)

Ta∗)
)
dt

≥
f

2L

L∑
ℓ=1

E
(
xBT (τℓ)(b

∗ − b) +B(τℓ)(a
∗ − a)

)2
− f̄ ′

6L

L∑
ℓ=1

E
∣∣xBT (τℓ)(b

∗ − b) +B(τℓ)(a
∗ − a)

∣∣3
≥
(f
2
− f̄ ′

6
δN1/2(1 +Kx)

)
· 1
L

L∑
ℓ=1

(
(BT (τℓ)(b

∗ − b))2 + (B(τℓ)(a
∗ − a))2

)
≥
(f
2
− f̄ ′

6
δN1/2(1 +Kx)

)
λmin

( 1
L

L∑
ℓ=1

B(τℓ)B
T (τℓ)

)
δ2 (4.5)
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We now turn to upper bounding G := sup∥θ−θ∗∥2≤δ

∣∣∣ 1n∑n
i=1(vi(θ) − Evi(θ))

∣∣∣. Note that

conditioning on {τℓ}, the vi(θ)’s are i.i.d. random functions, and

sup
∥θ−θ∗∥2≤δ

|vi(θ)| ≤ (1 +Kx)δ

√√√√Nλmax

( 1
L

L∑
ℓ=1

B(τℓ)BT (τℓ)
)
:= (1 +Kx)δCNτ

Hence, we can apply bounded difference concentration inequality to obtain

P
(
G ≥ E(G

∣∣{τℓ}) + t
∣∣{τℓ}) ≤ exp

(−D1nt
2

δ2C2
Nτ

)
, ∀t > 0. (4.6)

Moreover, we apply symmetrization and contraction to derive that conditional on {τℓ},

E(G) ≤ 2E
(

sup
∥θ−θ∗∥2≤δ

∣∣∣ 1
n

n∑
i=1

ϵivi(θ)
∣∣∣)

≤ 2

L

L∑
ℓ=1

E
(

sup
∥θ−θ∗∥2≤δ

∣∣∣ 1
n

n∑
i=1

ϵi
[
Eρτℓ

(
yi − xiB(τℓ)

T b−B(τℓ)
Ta
)

− Eρτℓ
(
yi − xiB(τℓ)

T b∗ −B(τℓ)
Ta∗
)]∣∣∣)

≤ 4

L

L∑
ℓ=1

E
(

sup
∥θ−θ∗∥2≤δ

∣∣∣ 1
n

n∑
i=1

ϵi
(
xi(B(τℓ)

T (b− b∗) +B(τℓ)
T (a− a∗))

)∣∣∣)

≤ 4

L

L∑
ℓ=1

E

(√√√√∣∣ 1
n

n∑
i=1

ϵixi
∣∣2 + ∣∣ 1

n

n∑
i=1

ϵi
∣∣2 · ∥B(τℓ)∥2δ

)

≤ 4δCNτ · E
(∣∣ 1
n

n∑
i=1

ϵixi
∣∣+ ∣∣ 1

n

n∑
i=1

ϵi
∣∣) ≤ D2CNτδn

−1/2, (4.7)

where in the fourth and fifth inequalities we have used Cauchy–Schwarz inequality and

Jensen’s inequality. From Lemma 16 we obtain

P(CNτ ≤ D3) ≥ 1− 2N2e−
D4L

N2

This result combined with (4.6) and (4.7) shows that

P
(
G ≤ D5δn

−1/2 + t
)
≥ 1− e

−D6nt2

δ2 − 2N2e−
D4L

N2 . (4.8)

Finally, putting together (4.4), (4.5) and (4.8) and applying a union bound completes the

proof.
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Lemma 14. Assume N−d = o(n−γ). Then, with probability at least 1 − 4
L

·∑
j∈M(∆)

∫
∆ |fj(τ)|2dτ

(
∫
∆ |fj(τ)|dτ)2 , it holds that

1

L

L∑
ℓ=1

(B(τℓ)
T b∗j)

2 ≥ κ2

4
n−2γ, ∀j ∈ M(∆).

Proof. It is known (e.g., [59]) that there exist a0, b0 ∈ RN and a constant C1 > 0 such that

sup
τ

|fj(τ)−B(τ)T b0j | ≤ C1N
−d, sup

τ
|gj(τ)−B(τ)Ta0j | ≤ C1N

−d. (4.9)

According to the definitions (4.3) and (4.2), we have

1

L

L∑
ℓ=1

Eρτℓ(y − xjfj(τℓ)− gj(τℓ)) ≤
1

L

L∑
ℓ=1

Eρτℓ(y − xjB(τℓ)
T b∗j −B(τℓ)

Ta∗j)

≤ 1

L

L∑
ℓ=1

Eρτℓ(y − xjB(τℓ)
T b0j −B(τℓ)

Ta0j). (4.10)

Then using the identity of Knight like in (4.13), we obtain

0 ≤ 1

L

L∑
ℓ=1

[
Eρτℓ(y − xjB(τℓ)

T b0j −B(τℓ)
Ta0j)− Eρτℓ(y − xjfj(τℓ)− gj(τℓ))

]
≤ 1

L

L∑
ℓ=1

( f̄
2
E(xj(B(τℓ)

T b0j − fj(τℓ)) +B(τℓ)
Ta0j − gj(τℓ))

2

+
f̄ ′

6
E|xj(B(τℓ)

T b0j − fj(τℓ)) +B(τℓ)
Ta0j − gj(τℓ)|3

)
≤ D1N

−2d when N is large,

where the last inequality is due to (4.9). This result combined with (4.10) and Lemma 15

shows that when N is large,

f

4

( 1
L

L∑
ℓ=1

|B(τℓ)
T b∗j − fj(τℓ)|

)2
≤ 1

L

L∑
ℓ=1

[
Eρτℓ(y − xjB(τℓ)

T b∗j −B(τℓ)
Ta∗j)− Eρτℓ(y − xjfj(τℓ)− gj(τℓ))

]
≤D1N

−2d,
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which implies 1
L

∑L
ℓ=1 |B(τℓ)

T b∗j − fj(τℓ)| ≤ D2N
−d. We thus have√√√√ 1

L

L∑
ℓ=1

(B(τℓ)T b∗j)
2 ≥ 1

L

L∑
ℓ=1

|B(τℓ)
T b∗j |

≥ 1

L

L∑
ℓ=1

|fj(τℓ)| −
1

L

L∑
ℓ=1

|B(τℓ)
T b∗j − fj(τℓ)|

≥ 1

L

L∑
ℓ=1

|fj(τℓ)| −D2N
−d

=
1

|∆|

∫
∆

|fj(τ)|dτ −D2N
−d +

1

L

L∑
ℓ=1

|fj(τℓ)| −
1

|∆|

∫
∆

|fj(τ)|dτ︸ ︷︷ ︸
:=ZL

j

(4.11)

Now, using Chebyshev’s inequality together with a union bound gives us

P
(∣∣ZL

j

∣∣ ≥ 1

2|∆|

∫
∆

|fj(τ)|dτ, ∃j ∈ M(∆)
)
≤ 4

L
·
∑

j∈M(∆)

∫
∆
|fj(τ)|2dτ

(
∫
∆
|fj(τ)|dτ)2

(4.12)

Combining (4.11), (4.12) and Condition 5 completes the proof.

Lemma 15. Under Conditions 3-4, it holds that

Eρτ (y − xjf(τ)− g(τ))− Eρτ (y − xjfj(τ)− gj(τ))

≥


f

4
(E|f(τ)− fj(τ)|)2 if E|f(τ)− fj(τ)| ≤ q

2

f

4
(qE|f(τ)− fj(τ)| − q2

4
) if E|f(τ)− fj(τ)| > q

2

Here, the expectation E(·) is allowed to be taken additionally with respect to τ that is inde-

pendent from (y, xj).

Proof. The proof is largely motivated by the proof of Lemma 4 in [5]. We use E−τ to denote

the expectation taken only with respect to (y, xj). Using the identity of Knight, we first
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obtain

E−τρτ (y − xjf(τ)− g(τ))− E−τρτ (y − xjfj(τ)− gj(τ))

= E−τ

([
xj(fj(τ)− f(τ)) + gj(τ)− g(τ)

]
·
[
τ − 1(y ≤ xjfj(τ) + gj(τ))

])
+ E−τ

∫ xj(−fj(τ)+f(τ))−gj(τ)+g(τ)

0

(
Fy|xj(xjfj(τ) + gj(τ) + t)− Fy|xj(xjfj(τ) + gj(τ))

)
dt

≥
f

2
E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|2 −

f̄ ′

6
E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|3,

(4.13)

where in the last step we have used Taylor expansion and Condition 3 to bound the second

term, and the first term equals zero due to the definition of fj(τ), gj(τ) in (4.3). When

E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|2 ≤ q2, it implies that

E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|3 ≤
6f

4f̄ ′ · E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|2.

Plugging this result into (4.13) yields

E−τρτ (y − xjf(τ)− g(τ))− E−τρτ (y − xjfj(τ)− gj(τ))

≥
f

4
· E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|2. (4.14)

When E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|2 > q2, define

f̄(τ) = tf(τ) + (1− t)fj(τ), ḡ(τ) = tg(τ) + (1− t)gj(τ),

with t = q√
E−τ |xj(f(τ)−fj(τ))+g(τ)−gj(τ)|2

∈ [0, 1]. Using the convexity of check loss, we have

E−τρτ (y − xjf(τ)− g(τ))− E−τρτ (y − xjfj(τ)− gj(τ))

≥ 1

t
·
(
E−τρτ (y − xj f̄(τ)− ḡ(τ))− E−τρτ (y − xjfj(τ)− gj(τ))

)
≥
fq

4

√
E−τ |xj(f(τ)− fj(τ)) + g(τ)− gj(τ)|2, (4.15)

where the second inequality holds by invoking (4.14). Denote h1(t) :=
f

4
min(t2, tq) and

h2(t) :=


f

4
t2 if t ≤ q

2

f

4
(qt− q2

4
) if t > q

2
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It is straightforward to verify that (4.14) and (4.15) together imply

E−τρτ (y − xjf(τ)− g(τ))− E−τρτ (y − xjfj(τ)− gj(τ))

≥ h1(|f(τ)− fj(τ)|) ≥ h2(|f(τ)− fj(τ)|).

Moreover, h2(t) is convex over t ∈ [0,∞). Hence, we take expectation with respect to τ for

the above inequality and apply Jensen’s inequality to conclude

Eρτ (y − xjf(τ)− g(τ))− E−τρτ (y − xjfj(τ)− gj(τ)) ≥ h2(E|f(τ)− fj(τ)|).

Lemma 16. The B-spline basis vector B(τ) = (B1(τ), . . . , BN(τ)) satisfies the following

properties:

(i) There exist two constants b1, b2 such that

b1N
−1 ≤ λmin

(
EB(τ)B(τ)T

)
≤ λmax

(
EB(τ)B(τ)T

)
≤ b2N

−1,

where τ ∼ Unif(∆).

(ii) Suppose τ1, . . . , τL
i,i,d∼ Unif(∆). Define H := 1

L

∑L
ℓ=1 B(τℓ)B(τℓ)

T − EB(τ)B(τ)T .

There exists a constant b3 > 0 such that

P
(
∥H∥ ≥ t

)
≤ 2N2 exp

(
− t2L

2N(b3 + t/3)

)
, ∀t > 0.

Proof. These results are directly taken from Appendix A.1 in [25].

4.7.2 Proof of Proposition 1

Proof. We consider one sample and simple case where x′ = (x1, x2). By the assumption, x

is the variables screened from the screening method. We denote Fx to be the cumulative

distribution function of a random variable x.
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At first, if β1(τ) = 0, τ ∈ ∆, this is true if and only if Qy|x2(τ) = Qy|x1,x2(τ), ∀τ ∈ ∆.

Then, by the definition of the conditional quantile, where Qy|x(τ) = inf{a : Fy|x(a) ≥ τ}, we

have

Fy|x1,x2
(
Qy|x1,x2(τ)

)
= Fy|x2

(
Qy|x2(τ)

)
= Fy|x2

(
Qy|x1,x2(τ)

)
(4.16)

for τ ∈ ∆. Since y = ỹ when Qy|x1,x2(τ1) ≤ y ≤ Qy|x1,x2(τ2), this implies that for a, where

Qy|x1,x2(τ1) ≤ a ≤ Qy|x1,x2(τ2), we have τ1 ≤ Fỹ|x1,x2(a) = Fy|x1,x2(a) ≤ τ2. Therefore, this

and (4.16) imply conditional independence for ỹ and x1 given x2.

Since ỹ is conditionally independent of x1 given x2, we have

Fỹ|x2(a) = Fỹ|x1,x2(a)

where Qỹ|x1,x2(τ1) ≤ a ≤ Qỹ|x1,x2(τ2). Since the conditional quantile and the conditional

cumulative distribution is one-to-one mapping, this implies that F−1
ỹ|x2(a) = F−1

ỹ|x1,x2(a). Then

this is true if and only if β(τ) = 0, ∀τ ∈ ∆, therefore, we finish the proof.

This can be easily expanded to Xj and X−j, so we finish the entire proof.
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CHAPTER 5

FUTURE STUDIES

In the future, several avenues can be explored to expand and enhance the methodologies

developed in this thesis. For chapters 2 and 3, we only consider univariate trend filtering

models. However, this model can be easily generalized to the additive model where the

number of additive terms is finite. [56] show that this can be further extended to scenarios

where the number of additive terms can diverge to infinity. Therefore, our work can be

expanded to such settings, potentially offering improved performance in more complex data

structures.

Both the partial linear and quantile trend filtering models can benefit from the adaptation

of other penalization methods such as SCAD (Smoothly Clipped Absolute Deviation) and

MCP (Minimax Concave Penalty). These methods can enhance variable selection perfor-

mance, making our approach more robust and efficient in identifying significant predictors.

Currently, there is no publicly available R package for partial linear quantile trend filtering

or quantile trend filtering. [22] propose an ADMM algorithm for quantile regression, which

is fast and applicable to high-dimensional data. This algorithm has already been success-

fully deployed for trend filtering [53]. By employing the ADMM algorithm for our models,

we expect to achieve faster and more efficient computations. Making this implementation

publicly available would allow broader use and validation of our methods.

For the partial linear models and the FDR control and regional quantile screening method,

deploying a post-selection inference procedure after selecting features can further bolster our

method. This would combine inference with our estimator, providing more reliable and

interpretable results.

Instead of using the model-X knockoff for controlling FDR, we can explore the use of

the sample-splitting method [11] with mirror statistics. This approach may offer additional

flexibility and robustness in FDR control, especially in ultra-high dimensional settings.

By addressing these future research directions, we can further enhance the capabilities
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and applications of the methodologies developed in this thesis, providing even more robust

and efficient tools for high-dimensional heterogeneous data analysis.
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