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ABSTRACT

In this work, we delve into geometric analysis, particularly examining the interplay between lower
bounds on Ricci curvature and specific functionals. Our exploration begins with an investigation
into the implications of Yamabe invariants for asymptotically Poincaré-Einstein manifolds and their
conformal boundaries under conditions of Ric > —(n — 1)g. We establish a relationship wherein
the type II Yamabe invariant of the conformal compactification of the manifold is bounded below
by the Yamabe invariant of its conformal boundary. Additionally, we focus on compact manifolds

with boundary where Ric > 0 and /1 > 1, obtaining partial results concerning Wang’s conjecture.
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CHAPTER 1

YAMABE INVARIANTS FOR ASMPTOTICALLY POINCARE-EINSTEIN MANIFOLDS

Roughly speaking, a Poincaré-Einstein manifold is a non-compact manifold characterized by nega-
tive constant Ricci curvature and the admission of a conformal compactification. The investigation
of Poincaré-Einstein manifolds is underpinned by a fundamental principle: the intricate interplay
between the manifold’s boundary and its interior. Given that we employ conformal transformations
in defining Poincaré-Einstein manifolds, a natural inquiry arises concerning the existence of con-
formal invariants that exemplify this principle. Such inequality was introduced in [CLW17] with
certain restrictions. Through collaborative efforts with X. Wang, we successfully eliminated these
constraints, resulting in a comprehensive and unrestricted conclusion [WW21], [WW22]. This

chapter will delve into the examination of these inequalities.

1.1 Asymptotically Poincaré-Einstein manifold
Poincaré-Einstein manifolds, which serve as the foundation for the AdS/CFT correspondence
framework , have been the subject of extensive research over the past three decades, yielding

significant advances in both mathematics and physics (see [Biq05], for instance).

The concept of the Poincaré-Einstein manifold emerges from an observation rooted in hyper-
bolic space (H", gg). Utilizing the conformal ball model, this space can be effectively represented
as (B" 2 dx?), wherein dx? denotes the Euclidean metric. Through the application of the

> (1-1x[?)?
1232
conformal factor %

, (H", g) can be conformally compactified to the unit disk within Eu-
clidean space. The boundary of this compactified space is commonly termed the "boundary at
infinity" or the "conformal boundary." By summarizing this distinctive property in conjunction

with the Ricci curvature equation Ricg,, = —(n — 1)gy, we arrive at the comprehensive definition

of Poincaré-Einstein manifolds:

Definition 1.1.1. X is the interior of a compact manifold X with boundary M. (X, g,) is called a

C>® Poincaré-Einstein manifold if g is a noncompact complete metric,

Ricg, =—(n—1)g4 (1.1.1)



and g = p*g, can be C>® extended to X by a boundary defining function p, i.e.
peC®X), p>0in X, p=0 and dp #+0 on 0X.

0X, together with the conformal class [p2g| ax > is called conformal infinity.
If the Ricci curvature equation 1.1.1 is replaced by Ric,, = —(n —1)g, + o(p?), we arrive at the

definition for asymptotically Poincaré-Einstein manifolds.

Apart from hyperbolic space (B", gu), which serves as the prototype, Poincaré-Einstein mani-

folds also come in different ways.

Example 1.1.1. Perturbation from (B", gu) Let h be the standard round metric on S"~'. The work
by J.Lee and C.Graham showed that if we perturb the metric on S"~! slightly to ', then there exists

a corresponding g satisfying (1.1.1) and (S"~', I’) as its conformal boundary. [GL91]

Example 1.1.2. Let (N"!, gn) be a compact manifold without boundary, and Ricy = —(n—2)gn,
then
(R X N, d* + cosh?(1)g)

is a Poincaré-Einstein manifold with compactification [0, 1] X N.

Note that the conformal boundary is N X {+1}. It has negative scalar curvature and is not
connected. We will revisit this example later, as it serves to illustrate how the conformal boundary
significantly influences the geometry of the entire manifold.

Given an asymptotically Poincaré-Einstein manifold, we want to study its geometry near con-

formal boundary. We start with the following result in [Lee94].

Theorem 1.1. Let (X, g+) be asymptotically Poincaré-Einstein manifold with (M, h) as its confor-
mal boundary. Forany h' € [ h], there exists a boundary defining function p so that near conformal
boundary g takes the form

1
g:;(dpzeahp) (1.1.2)

where ho = h'. In particular, |dp| 2, = 1.



This is called Graham-Lee normal form. p is a distance function for g, and its curvature can be
computed using Riccati equation, Gauss-Codazzi equation and Codazzi-Mainardi equations. Pick

local coordinates {x'} for 6X = M, and {xq = p, x'} form local coordinates for X near conformal

boundary. Apply (1.2.4), the traceless-Ricci curvature £ = Ricg, — Rj* g+ are given in [BMW13]

as
” ’ 1 Y o1 ’ ’ .
2pEij = —phj; +phpth-phjq - Ehpthqhij +(n—2)h;; + WP R, hij + 2pRic(hy)ij
1 ’ ’
E = Wb}, = Vill,) (1.1.3)
1 ” 1 klqr ’ 1 ’
EOO:_Ehpthq"'thqh hpkhql+$hpthq

where ’ denotes %. Set p = 0 in the first equation, and we get
(n=2)0 +trp(KYh =0

This implies 2’ = 0, and therefore M is totally geodesic in (X, g). In particular M is umbilical
in (X, g) for any conformal compactification g since the property of umbilicus is invariant under

conformal change. Take derivative % k times to the first equation of (1.1.3), and we get
(n—1- k)@gh + trh(agh)h = 8,’)‘_1(2,0E)p:0 + (terms containning 8; with [ < k)

Now suppose E = 0, i.e. (M, g,) is Poincaré-Einstein. For k < n — 1, the coefficients for G;fh
is non-zero. By induction, we could solve for c')[’fh and thus get expansion for g near conformal
boundary up to order n — 2 if nis even and n — 1 if n is odd. For example: i)(?lfh = 0 for k odd and
k < n—1;1i) if n is even, then trhag‘lh =0and 63‘1h is not determined. (See Proposition 2.7 in
[Woo16], for example. The statement there is only for n odd, but the argument works also for even

n’s for orders below n — 1). In particular, we can find the second order term

~i25 (Ric (h) = siRish) , ifn 2 4;

W = (1.1.4)

—1h, if n =3.

1.2 Conformal Invariants
In this section I will introduce basic formulas under conformal change and then introduce

Yamabe conformal invariants.



The Yamabe problem can be thought of as a continuation of uniformization theorem. For
2-dimensional spaces, all Riemannian surfaces are locally confomally Euclidean, and we have the

uniformization theorem

Theorem 1.2. Simply connected Riemann surface is biholomorphic to one of the following:
e C=¢§?
e C

e {zeC:lzl <1}

As a result, all compact Riemannian surfaces admit a conformal metric of constant Gaussian

curvature.

In dim>3, Weyl tensor is conformal invariant, thus obstruction for being locally conformally
flat. But we could still ask the following: can we find a metric of constant scalar curvature within
each conformal metric class. This is what Yamabe problem is about.

Given a Riemannian manifold (M", g) with n > 3 and local coordinates {x'}. Under conformal
change g = u’g, the new Levi-Civita connection can be calculated by

Yu g(X.,Y)

_ X
TyY =Vyr+ 2ty Ux 820y, 1.2.1)
u u u

The conformal change of Hession can be computed as

V2F(X,Y)=g(VxVf,Y)

-1
B(Vx59/.)
:g(—zx—quJriﬁxvf,Y)
=g(—2ﬁw ¢V f e Aty B0y Bl gy y)

=V2f(X,Y) - ;(Xu-Yf+Xf.Yu)+wg(x,Y)



which is

V2f(X,Y) :sz—i(du®df+df®du)+Mg (1.2.2)

Using the formula above, the Riemannian curvature can be computed as
Rijui = w*(Riji — gixTjr + 8Tk — g Tix — gjxTht)
where

ViV zviuvju |du|?

ij=
J u u? 2u?

Taking trace yields the formula for Ricci curvature and scalar curvature

_ V.Viu V uV u |du|2
Rij=Rij— (n-2)(— - )—(— (n=3)—5-)8i
1.2.3
_ 1 |du|2 ( )
R=—(R- 2(n—1)——( - -1
For scalar curvature we usually take the form g = Ui g, and it takes the form
_ n2  4(n—
R=u3(- (n—z)Au + Ru) (1.2.4)
n

Remark 1.2.1. For n = 2, we use the conformal change g = e*®g. The scalar curvature transforms

by
R=¢2(-2Au+R) (1.2.5)
The operator Lg(u) = —MAM + Ru is called conformal Laplacian. It has the following
conformal invariance. Let g = un- i g. Suppose there is a third conformal metric g’ = = viz g =
(g)mg. Then by (1.2.4)
R =vTi3L() = (0) 3 L(-)
(1.2.6)

n+2

= Le(v) =un2Lg(~ )

Suppose X" has a boundary £"~! and let v be the outer normal vector. Under conformal change

g = uis g, the new normal vector becomes v = U3y, Using (1.2.1), the second fundamental



form /7 and mean curvature changes by

2 ou

2

f1(X,Y) = w2 [I1(X,Y)) + et X Y)] 12
[ =y (114 2= D O -
- (n—2)udv

Now we can define Yamabe invariants.

Definition 1.2.1. Suppose (M", g) is a Riemannian manifold without boundary, the Yamabe in-
variant is defined to be

. Eg(”)
Y(M,[g])=  inf RN
ueH" (M),u#0 (/M un2dV)

(1.2.8)
where

A(n—1
Eq(u) = / 4= 1) g w4 Ryuldv
M I’l—2

Remark 1.2.2. Pick a sequence of functions which blows up locally and it can be shown that
Y(M,[g]) <Y(S",d6?) (1.2.9)
where d6? is the round metric in S™. See [Aub76].

If we write g’ = un g for u > 0, the integral in (1.2.8) can be rewritten as

fM Hn-l) |Vgu|2 + Rgu2dV _ /M u(—4(n_1)Agu + Rou)dV

=) n-2
2n_ n=2 2 w2
([, urzdv)* (fyy ur-2dV) " (1.2.10)
[, RgdVy

(Vol(M, g")""
For general u € H'(M), we can take |u| and approximate it with positive functions in H'. An

equivalent definition for Yamabe invariant is thus derived

R, dV,
Y(M.[g]) = inf Ju B —
g'elsl (Vol(M, g")"%

where [ g] represents the conformal class of g. Derived from this definition, it becomes evident that
these two quantities remain invariant under conformal transformations, underscoring their pivotal

role in the realm of conformal geometry research.



The Euler-Lagrangian equation for (1.2.8) is given by
n+2
Lg(u) = Aun=2 (1.2.11)

In conjunction with (1.2.4), the minimizer obtained from this equation provides a metric with
constant scalar curvature. Consequently, the existence of the minimizer resolves the problem
introduced at the beginning of this section. However, it is worth noting that in (1.2.8), we employ
the L (X) norm in the denominator, and HZT”Z represents the critical power for Sobolev embedding.
While boundedness is assured, compactness is not guaranteed. To address this challenge, we employ

the “lowering index" technique.

We define a new functional as

Y,(M,[g]) = inf Ey()

—_— (1.2.12)
ueH (M),u#0 2
(fM uPdV)

where p < nzTnz These values of p are strictly below the critical Sobolev conjugate. Using the

standard argument, the existence of minimizers u, follows from the compactness of the inclusion

H'(M) c L?(M), and these u p’s satisfy the Euler-Lagrangian
Lg(u) = AuP™! (1.2.13)

If we further impose the condition |u|p = 1, then 4, = Y,(M,[g]) in (1.2.12). Similar for
(1.2.8). Trudinger[Tru68] and Aubin[Aub76] demonstrated that ||u,||L" is uniformly bounded

for some r > ,12—”2 provided the inequality in (1.2.9) is strict. Consequently, u, converges to a

smooth solution u of (1.2.11), and u is a minimizer for (1.2.11). Thus, the primary challenge is
reduced to establishing the strict inequality in (1.2.9), except for standard spheres. This problem

was ultimately resolved by R. Schoen, who utilized the positive mass theorem to construct an

appropriate test function. Combining all the elements above, we arrive at the following theorem:

Theorem 1.3. Let (M, g) be a compact manifold without boundary. ThenY (M, [g]) < Y(S", [d6?])
with inequality iff round metric on S. As a result, there exists a metric g’ € [g] such that Ry is

constant.



For a comprehensive exploration of this problem, refer to [LP87] or Chapter 5 of [SY94].

For manifolds with boundary (M, X, g), we can ask the following two questions. Fix a conformal
class [g], can we find g’ € [g] so that: I) Ry = constant, Hyr = 0; or II) R,y = 0, Hyr = constant.
These two are called Type I and Type II Yamabe problem respectively. As in Yamabe problem, we

can define the following two functional

Definition 1.2.2.

. E(u)
Y(X.M.[g]) = Inf e el
ueH" u#0 (./X u ) (1.2.14)
E(u) o

X’ M’ = f
o( [g]) MGII{I}#O (/ U2 (=1 (n=2)) (n=2)/ (n=1)

Type I1

where

4
E(u)z/%lV 2 +Ru2dV+2/Hu2dS
X

As before set g’ = Ui g foru > 0, then

4
/ (n )|V |2+Ru2dV+2/Hu2dS
X

n_

/ (_4(n A +Ru)dV+2/ u*(H + M@ds

M u(n—2)0v
:/ Rg/dVg/+2/Hg/ng/
M z

And (1.2.14) can be rewritten as

fMR +2 [ H,

g] Vol(M, g’) (= 2)/"

./M g’ +2/2

in
g'elg] Area(Z, g’|y) =2/ (n-1)

So these two minimum are conformal invariants. The corresponding Euler-Lagrangian equations

Y(M.Z,[g]) = Type I

O(M.X,[g]) =

Type II

are computed to be

Lo(u) = Aunss

Type 1I: (1.2.15)
(9 2
u 2(”n 1)Hu =0
Le(u)=0
Type 1II: (1.2.16)
6 2
u o+ 2(”n 1)Hu = Aun=z



So the minimizer of Type I and Type II Yamabe invariants solves the corresponding Yamabe

problems respectively by (1.2.4) and (1.2.7). Again, by picking suitable test functions we have

Q(M, =, [g]) < Q(B", ", [dx*])
(1.2.17)

Y(M,Z,[g]) < Q(s2, 8", [ds?])

And strict inequality implies the existence of minimizers by “lowering index" method. These
problems are only partially solved. For Type I Yamabe problem, the strict inequality was verified

in the following cases [Esc92b]
e n=3,45;
* n>6and 0M = X is not umbilic.
For Type II, Escobar verified the following in [Esc92a]
* n > 6 and X has a nonumbilic boundary point;
* n > 6, with X locally flat and 9 X unbilic;
e n=4,5 and 0X is umbilic;
e n=3.

A substantial amount of work has been dedicated to addressing these two problems; nevertheless,
some cases still remain open. See, for instance, [Alm12], [Che09], [BCO09], [Mar05], [Mar07], and
others. Recall that Poincaré-Einstein manifolds have umbilical boundaries. Apply these results and

direct arguments give us (see [CLW17])
Theorem 1.4. Let X", g, be C>® Poincaré-Einstein manifold satisfying one of the following
e3<n<5

e n>6andX is spin



Then there exists a conformal compactification § = p>g, which is a minimizer for Y(X, M, [3]).

Furthermore, g has constant scalar curvature and totally geodesic curvature.

Theorem 1.5. Let X", g, be C>® Poincaré-Einstein manifold satisfying one of the following
e3<n<7
e n > 8ad X is spin
e n > 8 and X is locally conformally flat

Then there exists a conformal compactification g = p°g, which is a minimizer for Q(X, M, [g]).

Furthermore, g has vanishing scalar curvature and constant mean curvature.

Remark 1.2.3. Some other approaches has been used to construct solutions to (1.2.16). Thus
solutions will provide us with metric of zero scalar curvature and constant mean curvature, but

they are not necessarily minimizers of Type Il Yamabe invariant. See [Xu23].

1.3 A Sharp Inequality
Having established the Yamabe invariants in the previous section, we will now formulate

inequalities that establish a connection between the geometry of the boundary and the interior.

The work is initialized in [GH17]
Theorem 1.6. Let (X, g1) be a Poincaré-Einstein manifold satisfying one of the following
a) 3<n<5, or b) X is spin.

Let (X, M, g) be its compactification and § = g| v+ Then

n
n-—2

Y(M,[8]) <Y(X,M,[gDI(X,X,5)* if n>4

127y (M) <Y (X, M, [gDI(X,X,5)% if n=3

where 1(X,X,g) = Vol(M,$)"/"=V Vol(X,g)'/". Moreover, if the equality holds, then g is

Einstein and g has constant scalar curvature.

10



This inequality tells in a certain sense that for Poincaré-Einstein manifolds, the conformal
geometry of the whole manifold can be controlled by the geometry of the conformal boundary.
While the inequality represents a significant breakthrough in Poincaré-Einstein manifold research,
it has limitations, notably that / (X,M,g) isn’t conformally invariant. In [CLW17], X. Chen, M.

Lai, and F. Wang introduced a new inequality (1.3.1) using Q(X, M, g) instead of Y (X, M, g).

Theorem 1.7. Let (X, g,) be a Poincaré-Einstein manifold with compactification (X, M, [g]).

Suppose (X, g+) satisfies one of the conditions in Thml.5 then

(

0(X, M. [g]) > 2\/ Z:;)Y(M,gbw) ifn>4

O(X, M, [8]) 2 4y2rx(M)if n=3
Moreover, the equality holds iff (X, g4) is isometric to hyperbolic space (H", gg).

(1.3.1)

Sketch of proof By Thm1.5, the minimizer for Q(X, M, [g]) can be achieved. Say g = p’g,,

without loss of generality. Use Ricy, = —(n — 1)g, and (1.2.4) and traceless Ricci of g is given by
_ il= 1 _
E=-(n-2)p I[Vzp - ;(Ag—p)g]

Integrating p|E|zdV; by parts yields

- 1 _ 1 _
[ plEleave= [ 2[a9p + (1 = 1¥pR)aup]as; (132)
X M P Y

where v is outer normal and § = g|y. Since g has zero scalar curvature, by (1.2.4)
2p0gp = n(|Vpl2 1)

By calculation in [Gral6], the equation above, together with (1.1.4) will give us local expansion

for p near conformal boundary:

P

R
n-—2 n-1

1
op=1, dp=———"7H, 8p=
n—1

where R is the scalar curvature for § and H is the mean curvature. Plug this into the integration

above, we get

2 . 1,1 4
E12dV,; = - R)dSA
(n—2)2,/xp| 2dVe /M(n—2 n-2 &

11



(1.3.1) follows by noting that H is constant since g minimizes Type II Yamabe invariant. O

This inequality tells in a certain sense that for Poincaré-Einstein manifolds, the conformal
geometry of the whole manifold can be controlled by the geometry of the conformal boundary.
However, their findings were constrained by two primary limitations. Firstly, their work rested upon
the assumption that the minimizer of the second type Yamabe invariant could be realized. Further-
more, their approach was confined to Poincaré-Einstein manifolds, i.e. Ricg, = —(n —1)g,. It’s
important to note that many of the properties associated with Poincaré-Einstein manifolds extend
to asymptotically Poincaré-Einstein manifolds with Ric,, > —(n — 1)g4. The proof in [CLW17]
highly depends on the vanishing of traceless Ricci curvature, so their method fails in general setting.
In collaboration with X. Wang, we overcame these limitations, yielding the following result
[WW21][WW22]. This inequality highlights the intricate relationship between the manifold’s

boundary and its interior, aligning with our guiding principle.

Theorem 1.8. (X, g.) asymptotically Poincaré-Einstein manifold with compactification (X, M, g).

Suppose Ricg, > —(n — 1)g, and the conformal infinity has nonnegative Yamabe invariant, then

(n-1) _ _
P Y(M,g|,)ifn>4 .
O(X,M,3) > 4\2ny(M)ifn=3

Moreover, the equality holds iff (X, g+) is isometric to hyperbolic space (H", gu).

(X, M, [g]) > 2\/

Proof. The proof consists of three parts. First, we will define modified Yamabe quotients and
subsequently a quantity derived from it, playing a role analogous to p|E|? in [CLW17]. Next,
we will analyze the asymptotic behavior of the function introduced in the initial step. Finally, we
will prove a sequence of inequalities for each modified Yamabe quotients, the limit of which will
yield the desired inequality. Finally we are going to prove rigidity, which in essence comes from
[CLW17].

Let ¢ = g|y. Throughout the proof, operators and tensors with a + are defined with respect to g,

those with a bar are defined with respect to g, and those with a hat are defined with respect to 2.

12



Step 1

From Corl.1 in the next section, M is connected. By Thm1.3 we can pick a & € [g|y/] so that R,
is constant. Take Graham-Lee normal form (1.1.2). Lee [Lee94] constructed a function a positive
smooth function ¢ on X s.t. A,¢ = n¢ and near 6X

o Ry, 2
o= +4(n—1)(14—2)’”0("))

He further proved that |d¢|? — ¢? < 0 in the following way. Since we assume Y (M, [A]) > 0 and
Ry, is constant, R, > 0. By a direct calculation, |d¢|> — ¢ has a continuation extension to M and

|dp|2 — ¢*> < 0 on M. By Bochner formula we have
Ac(1dol; = ¢%) = 284 (VoA Vo) + 2|V30]; + 2Ric,(Vig, Vo) — 2(pArep + V.87
2
= 2nldg|} +2{V30L: +2Ric, (Vod. Vod) = Z|AB[E ~ 2V, 013
. 2 2 412 1 2
= 2(R1C+(V+¢, V+¢) + (” - 1)|d¢|+) + 2(|V+¢|+ - ;|A+¢| )
>0

As a result |d¢|?> — ¢*> < 0 on X. Consider the metric g := ¢2g, on X . Its scalar curvature is

given by
R=¢*(Ro+2(n-1)¢7 A —n(n—1) 47 |dgl2)

>¢>(Re+n(n—1)>0
Moreover, by a direct calculation the boundary is totally geodesic. We consider the following

modified energy functional
E(N =Bz (N~ [ (Retn(n=1) 8 v (13.4)

Note that (R +n (n — 1)) ¢> € C""~3 (Y) under our assumptions. More explicitly, by (1.3.4)

3 4(n—1 _
E(f) = /X %2) jdf 2+ (R “(R+n(n-1) ¢2) fz] dvg > 0. (1.3.5)
Since Ry +n(n—1) > 0, we have
Ez (f) 2 E(f). (1.3.6)

13



For 1 < g < n/(n—2), consider

I E (f)
Ay =inf " OSIE (1.3.7)
(/o L1 dorg)
Lemma 1.3.1. Since E (f) =0, limq/'n/(n_z) Iq = /Tn/(n_z).
Proof of lemma
Pick a minimizing sequence u; for Q(X, M, [g]). For each u;,
y E(u)) B E(u))
qu’l—’ g+l 2 An-l) n-2
2 (fyg ST (f w7 dSy)
As aresult limsup, »,/(,_2) /Tq < Anj(n-2)- Since E(u) > 0, by Holder inequality
E E Moe 2
W) 2 Z(n—(ll)/t) — Area(M, g) R
([, uat'dSg)@t ([, u"nz dSg)n=t
As aresult /iq > Z#Area(M ,8) (Z_:?V% Take a limit, and we have
liminf A, > A,/
g nlny "1 = 0D
O

Since E ( f) = 0, itis easy to see that lim,_»,/(,—2) /Tq = /Tn /(n-2)- Therefore, it suffices to prove
the above theorem for ¢ < n/(n — 2).
Since the trace operator H' (Y) — L9*1 () is compact for g < n/(n — 2), by standard elliptic

theory, the above infimum A, is achieved by a smooth, positive function f s.t.

/fq“dE:l (1.3.8)
x
and
DRy RF=(R+n(n—1)¢*f onX
n-2 ’ (1.3.9)
%% =441 on M.

By the conformal invariance of the conformal Laplacian, we have

L (f¢—(n—2)/2) _ ¢—(n+2)/2L§ f)

= (R+n(n=1) f¢~" 2"

14



In other words, u := f¢~"=2)/2 satisfies the following equation

—Ag,u = #u (1.3.10)
Write u = v=""2/2_ Then
Ag,v = gv_l (|dv|§+ + vz) .
Equivalently Ag,v — nv = 2@ with @ = y~! (|dv|§,+ - vz).
Lemma 1.3.2. We have
div, (v—<”—2>v+q>) =22, (1.3.11)

where
2

+Ricy (Vov, Vo) + (n = 1) [Vov]2 > 0.

+

Ay
Vi - g,
n

Q:

All the computation is done with respect to g.., but we drop the subscript to simplify the presentation.
Proof. As v® = |V,v|? — v2, we have, by using the Bochner formula

1 2 .
3 (VALD +2(V v, V), + pALv) = |V12Lv|+ +(Vv, VLAY, + Ricy (Viv,Viv) —vALY — |V+v|gr
_ (A+V)2

=+ <V+V, V+A+V>+ + VA+V —n |V+V|3_ + Q

A
= 28 Ay = v) + (V0 Vs (Ayy = nv)), + 0
n
1 n
= E@A.'_V + 5 <V+V, V+¢>+ + Q
Thus,
AD, = (n—2) v (V,v, V,®), +20
or

div, (v_("_z)V+(I>) =2y""29 > 0.

div (v_("_2)V<I>) plays the role of traceless Ricci E in [CLW17].
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Step 2
In this part we are going to figure out the asymptotical expansion for terms in div (v‘(”‘z)Vd)). We

now consider the metric g = u*/"2g,. Since u = f¢~""2/2, we also have

g= [0y 2, = pH02g,

As 9X is totally geodesic w.r.t. g and g is conformal to g, we know that X is umbilic w.r.t. g and
its mean curvature, in view of the boundary condition of (1.3.9), is given by

A .
H = quq—m. (1.3.12)

Set p = u?/"2) =y~ By a direct calculation, the equation (1.3.10) becomes, using g as the
background metric

20Mp =1 (|Vp|2 - 1). (13.13)

Let ¢ be the geodesic distance to X w.r.t. g. We need the following lemma which is essentially

contained in [CLW17].

Lemma 1.3.3. Near = = 0X, we can write

g=dr’+ gij (t,x) dx;dx;,

where {x1,- -+ ,x,-1} are local coordinates on X. Then
H , 1(R* H?)\, 3)
=ttt [ ——= - r+olr).
P 2(n-1) 6(n—2 n—1 0(
In particular,

Do (1wok 1) 1= 25 -

Proof. For completeness, we present the proof showing that the Einstein condition is not required.
In local coordinates
2
ap - 0p 0p
Vol> =[] +gV—-,
IVl (az) dx; 0x;

2
_p BlogNGdp 1 9 [y yzdp)
or? ot It G Ox; 0x;

Ap
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Restricting (1.3.13) on X on which both p and r vanish with order 1 yields %—’;lz =1.

Differentiating (1.3.13) in ¢ yields

2 (dp 0 pdp | ; p dp 4 0k p dp
—|=—Ap+p— =2——+2g" ——— —glfg/ft 22— — — 1.3.14
n(ar PTP%: p) ot o2 8 omarox; % Tor oxiox; (13.19)
Evaluating both sides on X yields
2 (0% AlogVG %p
- 2 + |2 = _2|2
n\ ot ot ot
Thus
azpl R alogw/El _H
oz n-1 ot = a-1
Differentiating the formula for Ap we get
an s = p .\ a2logx/6+ dlog VG 9%p |
ot P9 T T an or o2 |"”
p 9*logVG  H?
= + + =
or or? n-1
Differentiating (1.3.14) in r and evaluating on X, we obtain
2 (62p P 82p\’° & p 2H? 83p
ZIZZA0+2=A =2|—= +2 = +2 .
n(8t2 P o p) = (612) = or’ 2 (n-1>% or 2
Using the previous formulas, we arrive at
83p| 2 H? +8210g\/6|
a3 n-2\n-1 oz |
By a direct calculation, we also have
3?1log VG - H?
le = —Ric (v,v) — T
Therefore
03
a—glz =- Ric (v,v)
R*  H?
“h-2 n-1
where we used the Gauss equation in the last step.
The second identity follows from a direct calculation. O
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Step 3

In this part we will use lemmal.3.3 in (1.3.11) to get the main result. Integrating the identity

(1.3.11) on X, = {t > &} yields

Since g, = p~2g, we obtain by a direct calculation

f510)) 0
-2 9%, _ _[-1(v 2—1)]d .
'/(;ng 8V+ O-g+ L'XE 6V p | pl O-g
Therefore

Q/XE v D0dy, = /ax& % [p—l (|Vp|2 _ 1)] do,.

Letting € — 0, we obtain, in view of Lemma 1.3.3

R* H?
2 [ v 2Qdv,, = / - d
/Xv Qdve, s\n—-2 n-1 T8

(1.3.15)

The rest of the argument is the same as in [WW21]. We present it for completeness. By

(1.3.12) and the Holder inequality again

2
/szo_: (A_Q) /‘f2(q—ﬁ U=/ (1=2) =
s 2) Js
,\* ;
:(_") /f2(q—m)da
2 z
2 2(q-+5)/(q+1)
s
2

- (/12_‘1) v (2, 5) G0/ @)

Plugging the above inequality into (1.3.15), we obtain

A2 n 1
2 ~-D o gy, < 1 y(s.3 (n—q)/(qﬂ)__/RZd )
/X" Odve. < 7= (2.8) n—2 )y Y

When n = 3, this implies

22V (2,901 > 307y (3.

18
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In the following, we assume n > 3. By (1.3.8) and the Holder inequality

1= / fitde
2
(q;r(l)(_nl;Z)
([ f—) SRTeEE

n-q(n-2)

— V(E g) 2(n 1) V(Z g) 2(n-1)

Thus
_ n-q(n-2)
V(S5 B <V (Zg).

Plugging this inequality into (1.3.16) yields

2/ v 2 0dv,,
X —

n-1
LSOO By g W - ) [ Rt
4= (n=2)V (S, g)5
V(Z,g)ﬁl [ 21-gn-2) 4 (n—1)
S— V ¥, g) 0@ — —— LY (%, .
T [V () e - TRy ()
Therefore
4(n-1) 4(n-2))
L>—y(s >, (n3)(+1) )
q = ( _2) ( )V( g) g

Finally let ¢ / -%5 and we arrive at the desired inequality in Theorem 1.8.
Step 4
Suppose the equality in (1.3.3) holds for (X, g;) as in Thm1.8. Let (X, M, 2) be its conformal
boundary and g = g|y. If Q(X, M, [5]) = Q(B",S""!, dx?), then Y(M, [g]) = Y(S"!, [d#?])
from the equality. By Thm1.3, (M, [g]) is the round metric on $"~!. Then Thm1.10 implies that
(X, g+) is the standard hyperbolic space.

Now we suppose Q(X, M, [3]) < Q(B",S"!,dx?). In this case the minimizer for Type II
Yamabe invariant can be realized, say § = p>g,. Note that we defined /iq and proved inequality for
each ¢ < -% in step 3. This is because we are not sure whether minimizer for Q(X, M, [g]) exists.

Now since we have got minimizer, we can run the previous method directly and get

2-n V( ) 1 ( )
2 [ vr0av,, < TS ok g2 - S o, [a))
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Given the assumption that equality holds in (1.3.3), it follows that equality also holds in (1.3.6). This
implies R, = —n(n — 1). Combining this with Ric, > —(n — 1)g,, we deduce Ricy = —(n—1)g,.
We now find ourselves in a situation analogous to that in [CLW17], and their approach is applicable
here as well. For the sake of completeness, we provide a detailed proof.

We also get Q = 0 and thus V2y = ==g.. Recall g = plg, = 2 L ¢.. Compute V2p
1
V20(X,Y) = g+((V+)XV+—, Y)

= _g+((v+)X( V.ip), Y)

= —ing,((VJ,)XVhD, Y) + Z(Xp)gyp)
p p
Taking trace and we get
IVipls
03

g+ and we have

1
A+v = __2A+p + 2
0

A+v

Substitute the above two equations into V2v =

1 2
Vzp— (A+p—| Vipli

2
)8+ + dp ®dp

We now aim to express the preceding equation in terms of g = p2g,. Use (1.2.2), the three equation

above give us

Vip=—"g (1.3.17)

‘We obtain

1
ViViVp = ZVj(Ap) (1.3.18)
Use (1.2.3) and we get

Ric, = Ric — (n —2) (sz(l) - 2p2(d1) ® (dl)) - (pA% +(n— 3)p2|d(%)|2)g

2
:Ric+(n—2)lv2p+( +(n —1)|dp|) (1.3.19)
ZAP |dp|
=Ric+(n—-1)(— pye 3 )g

We use (1.3.17) in the last equality. Recall that the scalar curvature of g is 0, (1.2.3) implies
R.=-n(n—-1)=-n(n-1|Vp|* +2(n-1)pAp
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So we have Ric = 0. So
V,‘V,‘Vjp = VjV,'Vl'p + RiCijVip = VJ(Ap) (1320)

Compare (1.3.18) and (1.3.20), we have V(Ap) = 0, and therefore Ap is constant. Use lemma 1.3.3
and (1.3.13), we get the constant Ap = —-"5H where H is the mean curvature for g. Apparently
H # 0. If not, Ap = 0 and p = 0 on X, which implies p = 0, which is impossible. Setw = —%p,

then w satisfies

Aw =1inX
w =0onM (1.3.21)
%—‘fj = ’,‘1—}{1 on M
Integrate (Aw)?
n-—1 n—1

Vol(X, g) = / (Aw)?dV,
n n X

= /X [(Aw)? = |Vw[?]dV,

M (9v

n-1

= (

where we used Reilly’s formula in the third line. Therefore we arrive at

1
2
—dS;
n ) MH §

n-1 _
./ax T dS; = nVol(X, g)

Recall that Ric = 0. We conclude that (X, M, g) is isometric to Euclidean ball by [Mul87]. O

1.4 Geometry on Conformal Boundary Affects Geometry of the Interior

As discussed in the first section, a fundamental principle guiding the research on (asymptot-
ically) Poincaré-Einstein manifolds is to comprehend the intersection between the geometry of
(X, g+) and the geometry of its conformal boundary. In this section, I will introduce preliminary
results utilized in the preceding section and demonstrate how our Thm1.8 exemplifies this principle.

We start with a toplogy result.
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Theorem 1.9. Let (X, g,) asymptotically Poincaré-Einstein manifold and Ric > —(n — 1)g,. If
one connected component of its boundary has non-negative Yamabe invariant, then

Hy,((X;Z) = 0.

In [WY99], E. Witten and S. Yau established the above theorem under the assumption that one
boundary component has a positive Yamabe invariant. They introduced the brane action defined
by

L(Z) = Area(X) — nV(Q) (1.4.1)
where X = 0Q, and Q is a domain in X. Given the conditions outlined in the theorem, and assuming
a strictly positive Yamabe invariant, they demonstrated the following: 1) L(X) admits a minimum
through local calculations; 2) there exists a minimum in each nontrivial homology class if the
boundary has a component of positive scalar curvature. Therefore H,_;(X;Z) = 0.

Later M.Cai and G. Galloway proved the zero Yamabe invaraint case using Riccati equation and
Busemann functions. Let p be a boundary defining function and X, = {p(x) = €}. They consider

a new Busemann function given by
ﬁe(x) = d(ze, 0) - d(x’ Ze)

B(x) = lim fi(x)

Using the Riccati equation, they successfully demonstrated A > n — 1, provided the conformal

(1.4.2)

boundary has a zero Yamabe invariant. If X has more than one end, a carefully chosen ray can be
constructed. Let b be the usual Busemann function associated with this ray, resultingin §+ 5 < 0
with equality at an interior point. Since Ric > —(n — 1)g;, we have Ab > —(n —1). Now, B8+ b is
a subharmonic function with an interior maximum point, implying 5 + b = 0. This equality leads
to the splitting (X = R X X, g, = e?” + h). At r = —co, we encounter a cusp, which contradicts the
asymptotic Poincaré-Einstein condition.

By standard topology argument, we have

Corollary 1.1. Under the same assumption as stated in the preceding theorem, it follows that 0 X

is connected.
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By this corollary, manifolds in Thm1.8 will have connected boundary and brings us no trouble.

Apart from topology, the conformal geometry of the boundary also affects the metric inside.

We have the following rigidity result

Theorem 1.10. Ler (X, g,) be an asymptotically Poincaré-Einstein manifolds with Ric > —(n —
1)g+. Suppose (X, g+) has round sphere as its conformal boundary, then (X, g) is isometric to

the hyperbolic space (H", gm).

The theorem was initially established by Q. Jie in [Qin03] for n < 7. In the context of hyperbolic
spaces, we can consider the upper plane model. Q. Jie observed that if (X, g) has a round sphere as
its conformal boundary, we can construct coordinate functions and utilize them to apply conformal
transformations, resulting in an uncompact manifold with R"~! as its boundary, akin to the upper
plane model. Moreover, the scalar curvature is non-negative for the new metric. Consequently,
we can glue two such manifolds along R”~! to obtain an asymptotically flat manifold (X, §) with
non-negative scalar curvature. Notably, its Arnowitt-Deser-Misner (ADM) mass mpy = 0. The
positive mass theorem [SY79a][SY79b] then implies that (X , &) is the Euclidean space.

The general case was solved by S.Dutta and M.Javaheri in [DJ10], where they used a totally different
method.

Thm1.8 serves as a compelling illustration of this principle. In the context of our theorem, as
the conformal boundary becomes rounder and rounder, i.e., Y(M, [g]) /' Y(S"!, d6?), the second
inequalities in both (1.2.17) and (1.3.3) compellingly lead to Q(X, M, [g]) / Q(B",S""!, dx?),
representing the compactification of (H", gg). Therefore, our result can be interpreted as follows: as
the conformal boundary approaches the standard sphere, the interior becomes increasingly “close"
to the standard hyperbolic space.

In the context of Thm1.5, where the second inequality in (1.2.17) is strictly satisfied except for the
case of (B", dx?), the rigidity theorem can be derived from Thm1.8. The challenge lies in the fact

that we still lack a complete solution to the type II Yamabe problem.

I’d like to mention another result by G.Li, Q.Jie and Y.Shi [LQS14]
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Theorem 1.11. For any € > 0, n > 4, there exists 6 > 0 so that for any Poincaré-Einstein
manifold (X, g,), one gets

|Ke, +1] < €

for all sectional curvature K, provided

Y(M,[8]) = (1-6)Y (5", [ds?]).

This theorem and Thm1.8 complement each other.

1.5 Some Discussions on Compact Manifolds with Boundary

Itis a natural question if the inequality in Theorem 1.8 holds for a compact Riemannian manifold
(M", g) with Ric > —(n—1) and [T > 1. We are motivated by the observation that some results
for conformally compact manifolds follow from results for compact Riemannian manifolds by a

limiting process. As an illustration, consider the following theorem by Lee.

Theorem 1.12. (Lee [Lee94]) Let (X", g.) be a conformally compact manifold whose conformal in-
finity has nonnegative Yamabe invariant. If Ric (g+) > —(n — 1) g4 and (X", g+) is asymptotically

Poincare-Einstein, then the bottom of spectrum o (X", g4) = (n — 1) /4.

When the Yambabe invariant of the conformal infinity is positive, Lee’s theorem follows from

the following result for compact Riemannian manifolds.

Theorem 1.13. Let (M", g) be a compact Riemannian manifold with Ric > — (n — 1). If along the
boundary ¥ := O M we have the mean curvature H > n — 1, then the first Dirichlet eigenvalue

2
B > 41) .

This theorem has a simple proof. Let r be the distance function to 2. By standard method in
Riemannian geometry, we have

Ar < —(n-1)
in the support sense. A direct calculation yields

2
Ae=Dr/2 o _(m=1) en=r/2.
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This implies 1o (M) > % (for technical details see [Wan02]).

We can deduce Lee’s theorem from Theorem 1.13 when the conformal infinity has positive
Yamabe invariant in the following way. As explained in Section 2, we pick a metric 4 on the
conformal infinity with positive scalar curvature and then we have a good defining function r s.t.
near the conformal infinity g, has a nice expansion (1.1.2). Then a simple calculation shows that
the mean curvature of the boundary of X, := {r > &} satisfies

R
H:n—1+2(n—i2)82+0(82).

As R, > 0, we have H > n — 1 if & is small enough. By Theorem, 1o (X;) > (”;—1)2. It follows
that 4o (X) > %. As the opposite inequality was known by [Maz88], we have 4o (X) = @.
When the conformal infinity has zero Yamabe invariant, the situation is more subtle. But by an
idea in Cai-Galloway[CG99], a similar argument still works (cf. [Wan02]).

We now come back to Theorem 1.8. By the asymptotic expansion (1.1.2) the second fundamental

form of 0 X, satisfies

I = (1+0 () g

i.e. all the principal curvatures are close to 1. This leads us to consider a compact Riemannian
manifold (M", g) with Ric > —(n — 1) and I1 > 1 on its boundary X and ask the question whether

the inequality

(n—1)
(n—-2)

O(M,Z,8) 242y (X)ifn=3

0(M, %2, g)>2

Y (2)ifn > 4 (1.5.1)

holds. The answer turns out to be no in general. To construct a counter example, we consider the

hyperbolic space using the ball model B" with the metric gy = dx?. For0 < R < 1, the

4
(1-1x)*
Euclidean ball

n
{xeB” : |x|2:2x,-2 SR}

i=1
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1

is a geodesic ball in (B", gy) and the boundary has 2nd fundamental form IT = ;1’;21 . We now

consider
n—

1
M:{xeB”:|x|2:2xi2+kx,2,£R},
=1

1=

where k > 0 is close to 1. Then (M, gi) is a compact hyperbolic manifold with boundary and on
its boundary we have II > 1 if k is sufficiently close to 1 by continuity. Since X with the induced
metric is rotationally symmetric, it is conformally equivalent to the standard sphere $"~!. Thus,
Y(£)=Y (S"‘l ). But when k # 1, the boundary is not umbilic with respect to the Euclidean metric
and hence not with respect to gy either. By [Esc92a] and [Mar07], Q (M, X, gu) < Q (B_” S”‘l).

It follows that the inequality (1.5.1) is false.

Therefore, for a compact Riemannian manifold (M", g) with Ric > —(n—1) and IT > 1 on
its boundary X, it is more subtle to estimate its type II Yamabe invariant in terms of the boundary
geometry. It is an interesting question and we do not have an explicit conjecture. Let us mention
that in a similar setting, namely for a compact (M", g) with Ric > 0 and I > 1 on its boundary

2, there is a well-formulated conjecture [Wan19] on the type II Yamabe invariant in terms of the

boundary area.
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CHAPTER 2

LIOUVILLE TYPE THEOREMS ON MANIFOLDS WITH LOWER CURVATURE
BOUND

One problem that lies in the center of geometric analysis is to understand how geometric conditions,
such as curvature and fundamental forms, exert influence over the solutions of partial differential
equations. In [Wan19], X.Wang proposed a conjecture that for manifolds with boundary, if the
Ricci curvature is nonnegative and second fundament form is positive, then a series of elliptic
PDEs doesn’t admit non-constant solutions. Throughout this chapter, we will always assume that

OM = X is connected.

2.1 Preparation

X. Wang has posed the following conjecture in [Wan19]:

Conjecture 2.1 (Wang’s conjecture). Let (M,0M = X, g) be a compact Riemannian manifold with
boundary. Suppose Ric > 0on M, and I1 > 1 on X where 11 is the second fundamental form, then

the following PDE

Au=0 on M"
0
e du+ut on !
ov

admits no non-constant positive solution provided A(q — 1) < 1 and q < .= unless (M, %, g) is

(2.1.1)

isometric to (B",S"!,dx?), q = ~5 and u is given by

2 1 - |al? 152

n—21+lal?x|*?-2x-a

ua =
for some a € B".

The conjecture was proposed for the following reasons. Consider the following functional

_ [, IVul?dv + 2 [ u?dS

Eq,/l(u)
(Jg ua+tds)2/(a+D 2.1.2)
s(g, ) = inf  E(u)
ucH(M),u+0
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For convenience, we drop the index (g, A) when it brings no confustion. By definition,
-1
s(g, ) < E(1) =zt (2.1.3)

Fix arbitrary u and take derivative in the direction of v, we have

0 B 1 +1\ 747

—2(/M(|vu|2+ﬂu2))(/zuq+‘)ﬁ/Mvuq] (2.1.4)
:—(fzuqz”)ﬁ[‘/MvAu+/2v(%+u—E(u)(‘/Z‘uq+1)l11—Zuq)]

Suppose u is a critical point of E, then %E (u+ tv)| —o = 0 for all smooth v, and therefore
Au=0in M and * +u — E(u)( [;u?")u? = 0. Since E is invariant under scaling, we could
scale u to get rid of the coeflicients before u?, yielding (2.1.1). In summary, (2.1.1) arises as the

Euler-Langrangian equation for (2.1.2).

n

If g < -%5, the trace embedding H M) - Ly41(X) is compact (see theorem 6.2 chapter 2
in [Necl1], for example), thereby enabling the attainment of the minimizer denoted as u, 4. Let
us now consider a fixed value of gg. As the parameter A decreases, the weight of fM |Vu|>2dV

becomes increasingly prominent. To ensure that u,, ; attains minimizer, a concomitant decrease in

fM |1 g, |?dV is expected. For example, we have the following lemma:

Lemma 2.1.1. Let (M, X, g) be a compact Riemannian manifold with boundary. Suppose s(q, A) is

achieved by constants for some q < -*5. Then for any u < A, s(q, A) is only achieved by constants.

Proof. For any fixed u € H'(M) and u # 0, E,,(u) is linear function in g, and therefore concave.
Since s(g, p) is the infimum of concave functions, s(g, u) is also a concave function in u. Suppose

-1
s(g, A) is achieved by constant, we have s(g, 1) = 1|X| 7T We also have s(g,0) = 0. By concavity,
a-1
Squ = p|Z| e

1-
for u < A. At the same time, we have s, , < E; (1) = ,u|2|ﬁ. So s(q, ) is achieved by

constants.
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Suppose s(q, p) is achieved by some non-constant u and u < 4, i.e. E, ,(u) = E, (1) = s(q, u).

. . q-1
Since u is non-constant, we must have /M |Vu|?> > 0 and therefore < |Z|#T. Use u

Eu

as the test function for (g, 1), we obtain

[y \Vul? +2 [, u?

E =
g (1) (L a2l
_/M|Vu|2+,uf2u2+(/l_ ) /Zuz
N (/2 ud+1)2/(q+1) H (fz ud+1)2/(q+1)

-1 -1
<U|Z|F + (A - w)|Z|F = 5(g, )

which is contradiction since we assumer s(q, 4) is achieved by constant. |

Note that u,,0 and u; ; are both constants. Therefore, for values of 1 < g < - 2, an intriguing
possibility emerges: for each value of g, there might exist a threshold A, such that when 4 < 4,

the minimizer u, , will take constant values.

This phenomena was first found as Beckner inequality [Bec93]:

Theorem 2.1 (Beckner’s inequality). For unit disk with Euclidean metric and y € H'(B"), we have

g-1 1
¢ witas)z < = [ [vuPav+ / W2ds 2.1.5)
n—1

Sn—l /l B Sn—l

provided that 1 < q < -5 and A(q — 1) < 1, where ¢,y = 2n""D/2JT'((n — 1)/2) is the volume

of n — 1 round sphere.

It follows from the inequality that the minimizers of £, , for unit ball are exclusively realized by
constant functions. This intriguingly gives rise to the conjecture that (2.1.1) admits no non-constant

solutions.

When A(g — 1) > 1, however, the u = 1 is no longer minimizer for unit balls. The second

variation of E, ;, at u = 1 in the direction of v is
92 2 ov
9 2E/lq(1 ZV)| W[ /]l;IVAV+/(8— +/1V)V—/16]V ]

2
- i [, PP 4= 7]

We can pick v to be the function associated to the first Steklov eigenvalue.

(2.1.6)
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Definition 2.1.1. The first Steklov eigenvalue is

Vul?
A= inf /M— (2.1.7)
ueH (M),u+0 /Z u?
The corresponding Euler-Lagrangian equation, or the eigenfunction equation, is
Au=0in M
2.1.8)
P (
9 Auon X
av

It’s well known that the first Steklov eigenvalue for unit ball is 1 with n eigenfunctions given by

coordinate functions. Pick v to be Steklov eigenfunction in (2.1.6), and we have

i 2(1-2A(g - 1)) 2
s Era(l+m)] = 20 Jo
n-1

As a consequence, the minimization of £, ;, by u = 1 is unsuccessful if (g — 1) > 1. However,
the minimizer exist since the trace embedding is compact. This implies that the minimizer is a
non-constant solution of (2.1.1). Therefore, the condition (¢ — 1) < 1 is crucial and cannot be

improved. These insights serve to clarify the conjecture for B”.

It’s noteworthy to mention that the conjecture is fully resolved for unit balls as demonstrated in
[GL23]. A natural progression from here is to delve into the intricate connection between geometric
properties and the behavior of solutions of (2.1.1). This exploration is driven by the question of

how geometric attributes influence the solutions of PDEs. A similar problem was resolved:

Theorem 2.2 (B.Véron and L.Véron [BV91]). Let (M, X, g) be a compact Riemannian manifold

with boundary.
—Au+Adu=u? on M"
ou

— =0 yr-l
av on
n+2

admits no non-constant solutions provided that 1 > 0, 1 < g < =5 and Ric > Wg.

(2.1.9)

In the context of Wang’s conjecture, there is famous Escobar conjecture.
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Conjecture 2.2 (Escobar conjecture). Let (M,X,g) be a compact Riemannian manifold with

boundary. Suppose Ric > 0on M, and Il > 1 on 2. Then

/qu|22/u2 (2.1.10)
M 2z

i.e. the first Steklov eigenvalue is no less than 1.

Under the condition of non-negative sectional curvature Escobar’s conjecture was completely
solved by C.Xia and C.Xiong in ([XX19]).
The insights gleaned from these findings, in conjunction with the outcomes concerning B”, culmi-
nate in Wang’s conjecture.

If this conjecture holds true, it would lead to fascinating geometric implications. For instance,

an intriguing consequence would be an upper bound on the area of X.

Conjecture 2.3. Let (M, X, g) be as in conjecture 2.1. Then
Area(Z) < Area(S"™1) (2.1.11)
Moreover, this inequality would only be realized by unit spheres as the boundary of unit disks.

. We can view this as an extension of the Bishop volume comparison theorem.

Consider the E, . Forg < >, s(q, ﬁ) can be achieved for some smooth function. If

_1 n
conjecture 2.1 holds true, then the only possible minimizer are constants, which implies

(q-1) [, IVul? + [, u?
(/Z ula+1)2/(g+1)

> |5[F

forany u € H' (M) and u # 0. Let ¢ \, in above inequality and we get

=2 Ju [Vul? + s
([ w2n=D/(-2))n=2)](n=1) =

> [$|wT (2.1.12)

Recall the definition for type II Yamabe invariant in (1.2.14). Since Ric > O and /1 > g|x, we get

O(M, %, g) > 4(" 1)s(n 3, &5 1-2) By the second inequality in (1.2.17), we finally arrive at (2.1.11).
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The relationship between curvature and volume has a long and storied history in geometry.
For manifolds without boundaries, the Bishop comparison theorem is a pivotal result. It asserts
that a lower bound on the Ricci curvature results in an upper bound on the volume of geodesic
balls. In the context of manifolds with boundaries, where we encounter second fundamental forms,
a lower bound for this form could imply an upper bound for the distance from the boundary to
the interior. When coupled with the Bishop comparison method, it naturally leads us to surmise
such upper bounds on volume and area. However, tackling this problem is notably challenging.
The conjecture we’ve presented offers a promising avenue to approach and potentially solve this
intriguing problem.

A lot of work has been invested in exploring this conjecture; however, a significant portion of
its components remain unsolved. As I see it, there are two primary challenges that contribute to
the difficulty of addressing this conjecture.

Firstly, there exists a lack of comprehensive understanding regarding how Ricci curvature influ-
ences the solutions of (2.1.1). A notable advance in this direction was made in [GHW19], where it
was demonstrated that by strengthening the Ricci curvature assumption to sectional curvature >
0, a beneficial weight function emerges. This weight function proves advantageous during inte-
gration by parts, effectively nullifying bothersome boundary terms. This paves the way for the
derivation of a weighted version of Reilly’s formula, leading to partial results. Unfortunately, this
method falters when the assumption is relaxed to non-negative Ricci curvature. In fact, no results
exist in this setting.

I have obtained results in general Riemannian manifolds using different techniques. However,
it’s currently unclear how Ricci curvature, or even sectional curvature, influences the estimation in
my approaches. I’'m working to get over these difficulties to get a uniform estimate under curvature
assumptions.

The second primary challenge emerges when g ' %5, particularly when the equality is

reached. Notably, at ¢ = #, the embedding Laun-1 (X)) — H 1 (M) becomes merely continuous
n-2
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without the compactness property, raising uncertainties about the existence of the minimizer. It’s
worth emphasizing that in this instance, (2.1.2) takes on a form reminiscent of the second-type
Yamabe invariant defined in the preceding section. These intricacies contribute to the heightened
complexity of addressing this conjecture.

Given this challenge, it might be worthwhile to concentrate on cases where ¢ is close to 1.
When we take the derivative with respect to p at p = 1, we obtain a log-Sobolev inequality. The
verification of the log-Sobolev inequality would provide confidence in Wang’s conjecture. I'm
working in this direction and partial results are obtained. The results mentioned above will be

presented in the following sections.

2.2 Pseudo Differential Operator

We start with an exploration of Dirichlet-to-Neumann operator. Using the property of Dirichlet-
to-Neumann operator we can derive a non-existence theorem for (2.1.1) on general manifold with
boundary without adding any restriction for curvature. In this section all the integration and Sobolev

spaces will be with respect to X unless stated otherwise.

Definition 2.2.1.
DN :H'\(Z) — L*(2)
(2.2.1)
ou
DN(f) = 5y
v
where u is the harmonic extension for f, i.e.
Au=0 inM
uly=f onZ

It’s well known that DN is a first order elliptic pseudo differential operator. See [Tay96] chapter

1, for example. As a result
CillVfll2 < IDN(Hllr2 < ColIVfll g2 222

Define L*(X) = {f € L*(X) : [ f =0} and A'(X) = H'(X) N A. Using Poincaré lemma, we

have || f|l,2 < C||Vf]|,2 for f € H'(Z). Then (2.2.2) can be rewritten as

Cillfllgr < IDN(H)llz2 < Coll £l (2.2.3)
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for f e H ().

Suppose f € H'(X) and DN(f) = 0. By (2.2.2) and employing the standard bootstrapping
strategy, f must be a smooth function. Then, by the definition of DN and the maximal principle,
the harmonic extension of f remains constant, implying f itself is constant. If we restrict to H' (%),
then f must identically vanish. Consequently, DN is injective when restricted to H!(Z).

Further more, DN is self-adjoint on C*(X). Let f, g € C*(X) and u, v be their harmonic extension

to M respectively. Then
ou
/ DN(f)g = B

/ (Vie, Vo) (2.2.4)

- / / fDN(g)

Let me introduce theorem 5.5 in chapter 3 of [LM90].

Theorem 2.3. Let E be a hermitian vector bundle with connection over a compact Riemannian
manifold, T'(E) the smooth sections for E. Suppose P : I'(E) — I'(E) is elliptic and self-adjoint,

then there is an L*-orthogonal direct sum decomposition.:
['(E) = ker(P) ® Im(P)

The statement is for hermitian bundles, but the argument works for real bundles with inner product
structure as well. We already found the kernel of DN is given by constant R. Given g € C*(X),
its L2-orthogonal projection to R is g — % fz g, which lies in L?>(X). By the theorem above, DN is
surjective from C*(X) N L?(X) — C®(X) N L?(X), and therefore bijective.

Now assume g € L2(X) which doesn’t have to be smooth, then there exists a sequence {g;} € C*(X)
so that g; — g in L?(X). We can further assume that fz gi = 0 by taking g; — Ié_l fz gi instead. Then
there exists f; sothat DN (f;) = g;. Use the first inequality in (2.2.3), { f;} is a Cauchy sequence and
therefore converges to some f € H!(X). It easy to see that DN(f) = g, and thus DN is actually

surjective. Combine everything above, and we arrive at
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Lemma 2.2.1. When viewed as a map from H'(X) to L>(X), the image of DN is L*(X), and its

kernel is R. Furthermore, DN is self-adjoint when restricted to C*(X).

For the Laplace equation, the existence of Green’s function is a key tool for solving the equation.
Given a compact manifold X without boundary, there exists a unique function G(x, y) satisfying
AyG(x,y) = 6,(y). Consequently for any f € L?*(X) and fz f=0,ulx) = f2 G(x,y)f(y)dy
solves Au = f. In the context of Dirichlet-to-Neumann operator, a comparable kernel is anticipated.
For u € C*(X) N L?, define

T(u) = DN~ (u - 1 u) (2.2.5)
1zl Js

T is well-defined by lemma 2.2.1, and T (u) is also C*(Z), and thus in D(X). It defines a
bilinear form B(u,v) = fz T (u)v. Obviously B satisfies the conditions in theorem 2.2.15 (explicit
formulation will be given at the end of this section), and therefore there exists akernel K € D (X xX)

such that
B(u,v) = /ZT(u)(x)v(x)dx = /Z Zu(x)v(y)K(x,y)dxdy

for any u,v € C*(X). Since DN is a first order elliptic pseudo-differential operator, 7 is elliptic of

order —1, and we have the following estimate for K from chapter 1, section 2 in [Tay96]

Lemma 2.2.2. K is C* off the diagonal in ¥ X X, and
K| < Cd(x,y)*™ (2.2.6)

2 has dimention n — 1, and therefore /sz lu(x)v(y)K(x,y)|dxdy < oo. Therefore we could

apply Fubini theorem
[ravea= [vo)( [ utoxe )y
by by )
Fix u and view v as the test function, we have

ymm:Lwaww@
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i.e.
1

u— E g u= ‘/EK(x, y)DN(u)(y)dy (2.2.7)

Next we are going to use this expression to prove a non-existence theorem. For convenience, we

scale u so that /2 u?*! =1, and (2.1.1) becomes

Au=0 on M"

ou n-1

Fv —Au+s(qg,)u? on X (2.2.8)
v

/l/lq+1 :1
z

Use (2.2.7) for (2.2.8),

(u - %/Zu(x)) = /ZK(x, y)(=Au + su?)(y)dy (2.2.9)

By (2.2.6), K(x,-) is L? for any p < Z%é Since X is compact, we can find a C independant of x
such that

IK(x,")|l, <C,Vx €X

In the remaining of this section, C is a constant that depends on metric and ¢, but not 4. Let
px = ﬁ be the conjugate of p, and we have p* > n — 1. Then by Holder inequality, the left hand

side of (2.2.9) can be bounded by

LHS < C|| = Au + su?|| .
< CA(lullps + [[u? |l p<)

(2.1.3) is used for the second inequality. Let M = supu,and 0 < ¢ < 1.
LHS < CAM" (||t~ poc + |u97"]] ) (2.2.10)

We aim to bound the right-hand side by /z u?*! = |2|. By Holder’s inequality, this is achievable

when (¢ — t)px < g + 1, which is equivalent to g < Zif—fll. Given that ¢ < -%5, we can choose

0 <t < 1and px > n — 1 to meet the requirement.
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For the left hand side, we might take x to be the maximal point for . Again, by Holder inequality

and /z u?*! = |2|, we have 51' /2 u < 1. Together, we have
M-1<CaM’
Since ¢ < 1, we arrive at the following

Lemma 2.2.3. Let u be a solution of (2.2.8). Then we have

lulleo < C(M,n,q) (2.2.11)

provided that A < 1, where N is a constant that depends on n,q and C(M,n, q) depends on the

n, q and Riemannian manifold M.

Based on this L™ estimate, we can prove a non-existence theorem:

Theorem 2.4. For each 1 < q < %5, there exists A, so that (2.2.8) only admits constant solutions

for A < Ag. As a consequence, for these A’s
a-1
Sig = AA(X)
We start with a lemma

Lemma 2.2.4. Let u be a harmonic function on (M, X%, g), then

/ |Vul|? <,,4/| ? (2.2.12)

where u is the first Steklov eigenvalue.

Proof. Note that the inequality above is invariant under translation, so it suffices to prove the case

fMu:O.
/|Vu| —/u—
/u +—/|
< & 2, b ou >
_2/1/M|VM| +2€/Z|(9n|
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Therefore

€? ou
<2e——>/ |w|2£/|—|2
H o Jm x On

The infimum of the quadratic on the left hand side is achieved for € = u and, and the lemma

follows. O

uf |Vu|2s/|a—“|2
M > Bn
ou
— 4 _ Q) —
/Z(SM u)an

= / (squi™" = 1)|Vu|? (2.2.13)
M

Proof of the theorem

<2 / (qui™ = 1)|Vuf?
M

< ca/ |Vu|?
M

Therefore, if A is small, 2.1.2 admit no non-constant minimizer. O

In Theorem 2.4, we investigated the solutions of (2.2.8), which arises as the minimizer for the

functional. The same method can be applied to examine solutions for (2.1.1), which are not
n—1

necessarily minimizers, but the trade-off is that g < o,

Theorem 2.5. For each 1 < g < Z—:;, there exists A, so that the equation only admits constant

solutions for 1 < Ay.

Proof. The method is similar, and I will only show the different parts. Recall that for equation
(2.2.8) we have /2 u?*! = |Z| and we can control the right hand side of estimate (2.2.10). But for

(2.1.1) we have to derive such an estimate. Integrate (2.1.1) by parts and we have

O:/Au:‘/‘—/lu+uq+1
M >
1 n—lq—_l
ul =2 [ u<A([| u?)a|S" |4

q
N / u? < Aa-1|S"1

By Holder inequality

(2.2.14)
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Now run the method for the previous theorem, the estimate (2.2.10) becomes
LHS < C(A+ 1) (" llps + u™]| o)

where 0 < ¢t < 1 and p* > n — 1. We aim to bound the right-hand side by /z u?, which requires

(¢ —t)p* < q. This is feasible if g < % which implies g < Z—:; O

Remark 2.2.1. In theorem 2.4, we initiate with an LY*' bound, while in theorem 2.5, we can only

derive an L1 estimate. This is the rationale behind assuming q < % instead of q < -%5.
n— n—

To end this section, I will give explicit formulation of Schwartz kernel theorem. Let M be two

compact Riemannian manifolds. We can define the following seminorms on C* (M) by

Julic = sup " [Vu(x)|

xeM <k
These seminorms give topology to C*(M). A linear map T from C*(M) to R is continuous

provided that there exists some C and k
T(u) < Clulx

for all u € C*(M). Let D denote the space of distribution on M, i.e. all the continuous maps in
the sense as above.

Suppose there is another Riammnian manifold &V, and a map
T:C"(M)— D(N)
Tu is a continuous operator on C*(N), and thus giving rise to a bilinear form B by the following:
B:C¥(M)xC”(N) - R

B(u,v) = (Tu,v), ue€C(M), veC”(N)

Finally, define u ® v € C*(M x N) by
u®vix,y) =ulx)v(y), xeM, ye N
Given all these preparations, we have the Schwartz kernel theorem
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Theorem 2.6 (Schwartz kernel theorem). For any B as in above, there exists a distribution K €

D(M x N) so that foru € C*(M) and v € C*(N) we have

B(u,v) ={(u®v,K) (2.2.15)

2.3 Bootstrapping Strategy

The L estimate (2.2.11) can also be derived using standard bootstrapping strategy, and it’s
more straightforward. In this section (g, 1) will dropped for s(g,4) and E, ;(u) for simplicity.
C will be a constant that does not depend on A or g and might change from line to line. All the
integral and norms will be on the boundary X.

We start from xo = g + 1, and choose x; inductively by

I q 1

= (2.3.1)
Xk+1 Xk n—1

Ifu € L** for x; > g + 1, then z—z = Au+sul el By Holder inequality we have

ou

15,

o < Allufl e + slu? ||
q q q
49 _ 1 q
< AZ[ e flully, + sllullx,

< CA(llullx, + llullf,)

We used (2.1.3) in the third line. Since g < nnTz’ X 1s increasing, and x; > g + 1. Therefore,
xlk - xik is bounded from both below and above, and that’s why the constant C in the third line can
be made independent of g. Since Dirichlet-to-Neumann operator is elliptic of order 1 (see chapter

1 of [Tay96], for example), we have

ou
el ;< C(Il—a [l xi + [fee] 2 )
q’ n aq q

< CA+ D (Nlully, + llull)

By Sobolev embedding theorem on the boundary and our choice of x;, we hav
il < Cllutllsgn < C(llully, + ull?,) (2.32)

We used the assumption that A < 1 in the second inequality. Note that the constant C might change

for different k. But we are only taking finite bootstripe steps, so we can pick a universal constant C.
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Lemma 2.3.1. The sequence x; will be negative in K (n, q) steps, and K (n, q) depends only on the

dimension and an upper bound for q.

This will imply an L® bound by Sobolev inequality.
Proof of lemma:

Let y, = ka and rewrite 2.3.1 as

1
Yisl =Yk = (g = Dyx — p— (2.3.3)

which implies yz41 < yi if yg < m. By our assumption that ¢ < -5 we see that y( satisfy

the inequality. So by induction y; < m and yr4+1 < yx Yk > 0. We need to calculate how
many steps it take so that y; < 0. Again from (2.3.3) yi+1 — Y« is decreasing, which means that yy

is decreasing faster and faster. So it takes at most

i
Yo g+l _ n—1

— T n-(n-2)q _n_ n—2
Yoy (n—-2)q

steps to make x; negative. Let K (n, g) be the least integer larger than ﬁ, and this K(n, g) is

(2.3.4)

what we want in the lemma. O

Use (2.3.2) and do induction, we have

el < CCllallg, + Nal?,.,)
< C( ey + Nl + el + el )?)

2
< C((lllag + Nall) + 29 Qully + el

(2.3.5)
2
< C(flullx, + NuellE)
qk+2
< C(llullxy + Nlullz, )
where in the third line we used the inequality (a + b)? < 29(a + b?).
lullew < C(M,n,q)|lullx, (2.3.6)
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Remark 2.3.1. Note that if we q is bounded away from —=, then from (2.3.4) we can have a uniform
bound for K that doesn’t depend on q. However, the constant C in (2.3.2) does depends on q and

we fails to get a universal estimate. If we could find a universal constant, then (2.3.6) becomes
N
lulleo < CA™|Juall,

where both N and C are independent of q. And (2.2.13) is

p / VuP < A / (qus™" = 1)|Vul?
M M

SC/l(q(C/l)N("_l)—l)/ |Vul?
M

We will be able to track how the critical A, changes with q, and it can easily seen that 1, — oo as

qg— 1.

Remark 2.3.2. One might inquire whether the bounds established in these two sections can be
made universal when Ricci curvature and the second fundamental form are bounded below. Our
interest lies in understanding how geometric conditions impact the solutions of PDEs. However,
unlike the Laplacian operator, obtaining estimates for the Dirichlet-to-Neumann operator (DN )
proves challenging.

For instance, a comparison theorem for the heat kernel in terms of Ricci curvature is established
in [CY81] and [LY86]. Under Ricci curvature restrictions, both lower and upper bounds for
eigenvalues of the Laplacian operator can be derived. For further details, see Chapter 3 of [SY94]
or [Lil2]. However, these methods cannot be directly extended to the Dirichlet-to-Neumann
operators. The lack of knowledge regarding how geometric conditions affect Dirichlet-to-Neumann

operators poses a significant challenge in Conjecture 2.1.

2.4 Estimate of the Infimum
In the previous two sections we derived L™ estimate and then non-existence theorem for
(2.2.8). Note that (2.2.8) comes from the Euler-Lagrangian equation of functional (2.1.2, so the

non-existence theorem gives us s(g, 1) = A|Z| ™ for certain (g, A)’s. If we closely examine the

42



functional, we could get better estimate.
Let (M, X, g) be an arbitrary manifold with boundary. Throughout this section V and V denote
gradient on M and X respectively. Integration without lower indices denotes integration on X. We

begin with a lemma:

Lemma 2.4.1. For1 < q < g < 2L and / fa*! = ||, there exist a constant C that only depends

n—-1’

on the metric and qq so that

/fzq(logf)z < C/ |V 72 (2.4.1)
> >

Proof. We first show that x29(log x)?> < C((x—1)?+|x—1]|?9") where ¢ is chosen to lie in (o, %
and C only depends on gg. This could be seen by looking into the following three cases.

i)x € (0, %) : xzq(logx)2 is bounded above and (x — 1)? is bounded below;

ii)x € [%, 2] : x* is bounded above and (log x)? is bounded by (x — 1)

iii)x € (2,00) : x*(logx)? < x*%(log x)* and therefore uniformly bounded by |x — 1|%9'.
Then we need to bound f (f-1)%and f |f — 177" by /Z |V £|?. We might apply Holder inequality

to “modify" the power for / |f — 1]?9'. Namely, use 6 = % in Holder inequality:

2416 2(1-6
/ F= 1P < f =10l = 10 < cllf - 12, (24.2)
where g, = 2%“ < % This is where we use the assumption that go < % So g is strictly

below the Sobolev conjugate. The last inequality follows from / fart

= |Z| and Holder inequality
again, and it’s easy to see that C can be chosen independent of ¢ < g1. Now it suffices to show that
Ilf = 1llg < C||Vf||? for f satisfying /fq“ = A(X). This comes from a generalized Poincare

inequality. Let f u = ﬁ f u defined as the average of u over X, then

T f )4l < CIV A1l (2.4.3)

forr < go+1 < 2(:__31) and C only depends on ¢; and ¢>.(In our case and g, depends on

qo, so C only depends on gg). The proof is by contradiction and modified from the standard
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proof. Suppose (2.4.3) is not true, and we can find a sequence r; and f; so that |V f;||[» — 0 and
Ifi = (f £)"7llg, = 1. By compactness, we might pick a subsequence so that f; — (£ f/)!/"i
converges in L92. Since ||V fi||o — 0, the sequence f; — (f 1 )/ converges in H' to a constant
function. So we might write f; = a; + h; where a; are constants and h; — 0 in H I Asa
result, a; — (f h;")l/ i < (f fl.r")l/ i< oa;+ (f h;")l/r" by triangle inequality and it follows that
Ifi = (f £V < il + (F BJ)Yre. This contradicts with || f; = (f f/)V7illg, = 1. [1f = 17

can be estimated in a similar way. O

In the lemma above, the base point is 1 and we measured distance from f to 1. That’s why
we have the three cases in the proof above. In order to apply this lemma we need a different

normalization from (2.2.8).

Au=0 on M"

Ou n—1

5, = —Au+r(g,)u? on X (2.4.4)
14

/uq+1 — |Z|
z

If we assume u is a minimzer for s(gq, A1), multiply this equation by u and integrate by parts, it’s

-1
easy to see that s(¢, 1) =r(q, /l)lEl?iT and thus

A>r(q,) (2.4.5)

Theorem 2.7. For 1 < g < qo < %, there exists a constant C depending only on n, qy and the

1-
metric so that s(q,A) = /l|2|ﬁ provided

Ag-1)<C (2.4.6)

This method only works for g < Z—fi The case g < ;%5 will be dealt in the next section from a

different viewpoint.

We’ll need the following lemma:
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Lemma 2.4.2 (Pohozaev ideneity). Let (M, X, g) be a compact Riemannian manifold with bound-
ary, and g’ = g|s. Suppose u is a smooth function and X is a smooth vector field. Then

/ (VyuX, Vu) - l|vu|2divgx + (Xu)Au = / (@o{, Vu) — l|Vu|2<x,ﬁ>) (2.4.7)

M 2 s On 2
Proof. By direct calculation
div(Xu)Vu = (Vy, X, Vu) + (X, Vv, Vu) + (Xu)Au
div(%qu|2X) = %|Vu|2diVX +(Vu,VxVu) = %|Vu|2diVX + (X, Vv, Vu)

By taking the difference and applying integration by parts to the left-hand side, we obtain the

desired equality. O

Proof. Throughout this proof C denotes some constants that only depends on gg and the metric g.
And it might change from line to line. By Pohozaev identity (2.4.7) for harmonic function u# and

arbitrary smooth vector field X we have
_ _ 1 - 0 |
[ (0. 9u) = 51TuPdiv ) = [ (G0 = S1TuPCx. )
M 2 ¥ on 2

Fix a X satisfying X |2 = 71 in this equality and note that VX is bounded by compactness,

/|vu|2=/(a—”)2+/(|vu|2ding—2<vwx,vu>)
> s On M
s/(a—”)%c/ |Vul|? (2.4.8)
z On M
ou .,
<c /2 ()

The last inequality follows by lemma 2.2.4. Adding £3 [, [Vu?| > 0 (by (2.4.5)) to the right

hand side and using (2.4.4), it becomes the following

[ sedf G50 [ e
:c[;rz_/rzfzq—ur/ fq+1+42/ i)
e [ peaf g

:C[rz(/ f2q+f2)+r(/12;r2 _zﬂ)/fqﬂ]

(2.4.9)
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Consider the function ¢(x) = a?"'** +a9*!=* for x € [0,¢—1] and a > 0. Taylor expansion implies

that for some 6 € [0,q — 1]

(g —1)?=2a9"" + (log a)*a?' (a® + a™%)

¢(q—1)=2a"" + ¢T<9)

(g—1)?°
2

2
(log a)z(azq + a2)

<247 + (¢ —21)

Using this estimate in 2.4.9,

/ viP s e "y / <f2‘f+f2>1ogf+r(—+2r ) / £
< Sa= 127 [ frt0g 7+ [ fog ) (2.4.10)

< Clg= 177 [ f(10g 7
Using Lemma 2.4.1 and (2.4.5), (2.4.10) becomes

/ V2 < Clq - 1222 / /P2

and f, and therefore u, will be constant if (¢ — 1)A is small. O

Remark 2.4.1. Note that (2.4.8) was obtained in (2.2.3) by directly utilizing the ellipticity of the
Dirichlet-to-Neumann operator. However, it is challenging to discern how curvature conditions
come into play in that method. (2.4.8) is more likely to be connected to geometry, and the problem
is how to construct a nice vector field. This provides some information, but not precisely what we
are seeking. This idea will come back later in a log-Sobolev inequality.

One might hope to get a uniform bound for the constant in Dirichlet-to-Neumann operator, but
such an estimate doesn’t exist even under the condition of positive sectional curvature and 11 > 1

where 11 is the second fundamental form. Actually, consider the ellipse

{(x, y)|)c2 + kzy2 <1}

Under scaling of the metric § = k=g, the second fundamental form can be arbitrarily large. At the

same time both |V f|> = k*|V f|* and (a” 2 =k ”)2 are scaled by the same factor. So we might
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forget about the restriction on the 11. The normal vector and tangent vector are it = (x, k’y) and

V = (k?y, x) respectively. For u = x we calculate as follows

4 2
[ G- /<<1O> ﬁ/"ijf

:4/' x? dx 2.4.11)
0 ky(k2(1 —x2) +x2)(1 —x?)

4/1 x 4
< - =—
kJo Vi—-x2 k

Also note that / |Vul? + (a“)2 f 1 >4 So / |Vu|? can’t be uniformly bounded by f(g”)2 under

curvature and 11 restriction. Consider u =y, we see that / (g—Z)2 can’t be uniformly bounded by

f |Vul|?, either.

Remark 2.4.2. The idea of this proof comes from the paper by Ou and Lin [LO23]. We translate
their work as follows: /Z |V £|? can be bounded by combination offz( 9uN2 and /M |Vu|?. These two
terms are “difference” of LP norms by (2.2.8), and this “difference"” can be bounded by /Z |V £%.
In [LO23], this “difference" is measured by the ratio of L? norm. We treated it differently by taking

the subtraction.

2.5 An ODE Approach

Consider s, , — A(Z)Z_;ll/l < 0. If this inequality is strict, E,, must have a non-constant
minimizer. Using this minimizer, we are going to show that the strict negativity is preserved along
some curve of A, g which looks like (2.5.1) in the theorem below. But we know from the work
of [GW20] that for unit ball, g = —2 A= ”52, E, ) only admits constant minimizer, which gives

some restriction on g, A.

Lemma 2.5.1. Let (M, X, g) be a Riemannian manifold with boundary so that A(X) = 1. Suppose

5(qgo, o) — Ao < —€ < 0 for some (Ao, qo), then this inequality remains valid along the curve

q+1
q-1

=C(1-e) 2.5.1)

47



for A < Ao, where C = (qo—ql(;% is chosen so that (g, qo) is on the curve.

Proof. Along the curve (2.5.1), s(1) and ¢g(A) are functions of A only. It suffices to show that
for A; satisfying s(1;) = 4; — €, s(4) — A will be decreasing along the curve in the —A direction
near A;. Note that s(1;) = A1 — € implies the existence of a non-constant minimizer for E,, ,,
satisfying (2.2.8), where ¢; = ¢g(4;). Denote it by u. Fix this u, and we want to show that
E;(1),a(u) decreases fast enough in —A direction along the curve (2.5.1), and the theorem follows
since s(q(A,4) < Ey 4(q)(u) for all 1. Namely, we need to prove the following inequality:

0

m(Eﬁ,q(ﬁ)(u) -4)<0

One calculates that

i q+1 ﬁ: q+1 ﬁ _ 2 q+1 2 /Efq-”logf
g = (e e [ B

We assumed that fz fotl = A(Z) =1, s0

i _ 2_2S(/11) ’ / q1+1
FiErwl, = [ =T [ rorhoes

So it suffices to show

/fz_Mq,(/ll)/qu log f > 1 (2.5.2)
s g+1 s

By Holder inequality and A(X) = fz f4*1 = 1, we have /2 f4*1+€ > 1 for € > 0 and it follows that

/2 f2*'log f > 0. Also note that /2 f* is a strict convex function in x, we have

[rra=n [smhogr> [ro=1

This inequality is strict since u is not constant. So (2.5.2) holds provided

“2¢/(W(A-e)

-1
qg+1 =49
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The solution for the equality is exactly (2.5.1), and we finish the proof. O

Corollary 2.1. For (B",S"!, g) the standard metric, q < ~5, 8(q, A) is achieved only by constant

functions for

n—2 n—2
TR

(g-1)(~- (2.5.3)

n—1
Proof. We will first scale the metric so that the area of the boundary is 1, namely consider

(B",S""!, g = k?g) where k = A(S"‘l)ﬁ .The function E ;(u) changes as follows

— Jon |Vgul*dVolg + A [, u*dSg
Eq,/l(u) = 2
(/Sn—1 uquSg?) a+l
_ pa-2asn Jon IVgul*dVolg + kA [, u*dS, (2.5.4)
(_/Sn—l uquSg)%
0 2n=1)
=k a+ Qk/l,q(u)

By the work of ([GW20]) for unit ball, (2.2.8) admit only constant solutions for 4 = ”%2 q= #

n

After the scaling (2.5.4), for § = k?g this critical point becomes (¢, 1) = (5, %). Suppose

540,00 < Ao for some (Ao, go) satisfying

(n-2)(g+1)
2k(n—-1)(g - 1)

When € is small enough, 54, ,, < 40 — €. And by Theorem 2.5.1 this inequality remains valid

A1 <

(2.5.5)

along (2.5.1) for A < Ao. In particular, we let g = -, then

g+l o n(go=1D(o—¢)
_—C(q_1)+e_(n 1) Zo+ 1 +€

(2.5.6)

If (2.5.5) holds, we can make € small so that 4 < "2—_kz, which is contradiction since we must have

Sn-2 n_ = % Now transfer this result back to the unit ball and the proof is finished.

2k *n-2
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Remark 2.5.1. For standard balls Wang’s conjecture been completely solved in [GL23], and the

theorem above is also included.

In the preceding sections, we demonstrated that for ¢ < %5, there exists a corresponding A such
that s(g, A) is only achieved by constants. Let’s fix one such pair as (g, 49) and employ a similar
argument to the one in the corollary above. This will yield a result similar to Theorem 2.7, but with

n+l

qo < ;%5 instead of go < 7=5. These two approaches are distinct and offer different perspectives

on Wang’s conjecture.

Remark 2.5.2. The proof of the corollary does not rely on the specific structure of the manifold.
The only instance where (B",S""!, g) is involved is at the critical point (5, %). Therefore,
our method is applicable to any manifold as long as one can compute such a critical point. The
challenge lies in determining how to obtain such a point under curvature restrictions. When

q = 755, the problem is related to type Il Yamabe problem. A breakthrough in Yamabe problem

might help us find a critical (g, A).

2.6 Critial Power Case
If ¢ = %5, the trace operator is only continuous and fails to be compact, making the existence of
minimizers more challenging. In this section, I will derive some existence results for the minimizer

of s (nnTz’ /l). It’s difficult to determine whether these minimizers become constants for small A’s.

Lemma 2.6.1. For any compact Riemannian manifold with boundary and A > 0,

4(n -1
=D () < v@E s and) 2.6.1)
n-—2 n-—2

Proof. Fixapointp € £. We can find a small neighborhood U of p € M sothat U = B"~!(8)x(0, 6)
for some small §. Fix a cut-off function ¢ so that ¢ = 1 in B"~!(§/2) x (0,5/2) and vanishes

outside U. Let {xi};’:‘ll be the coordinates for B"~!(8) and ¢ coordinate for (0, §). Define

€

(e el (2.6.2)

Ve
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Recall that we can use ¢v. as test functions to establish the type II Yamabe inequality (1.2.17).
The differences between the functional of the type II Yamabe problem and E_»_ , lie in the terms

fM Ru?dV and fz (2(’1” ZI)H /l) u?dS. Note that H and R remain bounded for a fixed metric. If

we can demonstrate that /M u*dV and fz u?dV vanish as € — 0 for u = @ve, then the proof is

complete. Let dVg and dSg be the volume form with respect to Euclidean space.

/ (¢pve)?dV, < / v2dv,
M U
< C/ ngVE
U
) € 5
= C/ / (————=)""“dydt
Bn— 1(5) (E + t)z + |y|2
1
= dzdt
/ /Bn1(6)(t+e)"3(l+|z|2)"2 z
<C —dt
/0 (t+e)n3
s 62
= C/ —dt < CEZ
0 (1 +Z‘)n_3

We used change of variable in the third and fifth line. Similarly, we have

/(¢v6)2ng < /vg
) )
<C / vidSg
Bn—l(é‘)
€
=C l’l—Zd
/Bnl(ez+|y|2) ¢

€
=C —— dz7 < Ce
/Bn-ug) (1+ )2

2(” 1) 2(n-1)
/(¢V6) / VE'FZ ng
B"1(6/2)

scf (s (26.3)
Br-1(5/2) €2+ |y|
:C/ ( 2)<” Vaz > C
B-1(5/2e)) 1+ 1zl
Let € — 0, and the three estimates prove the lemma. O
If ¢ < -5, such a bound doesn’t exist.
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Lemma 2.6.2. s(g,1) — coas A — oo for g < 5.

Proof. We prove by contradiction. Suppose not. Then there exists A; — and u; such that E », (u;) <

C. Without loss of generality, we might assume ||u;|| 14+ (x) = 1. Then we must have /M |Vu,;|*> < C

and /2 ulz — 0. By Alauglu theorem we can find a subsequence, still denoted by u;, such that
n

u; — ug and /Zug = lim/zul.2 = 0. Since g < %5, by compactness, we can pick a further

subsequence so that [[ug|| e+ (x) = lim [|u;]| 4+ 5y = 1, which is a contradiction. O

According to the computations in Lemma 2.6.1, we have v — 0 in Lz(E), but they do not
converge in L% (X). This elucidates why the argument fails for g = -%5. In this critical case,
where s(;%5, 4) is bounded in A, the dynamics are quite different. The key observation is that if
(=45, A) stops increasing for large A, it is likely minimized through a sequence of functions that

blow up somewhere, with their L?(X) norms tending to zero. This phenomenon is akin to what

_n_
n-2°

is observed in (2.6.2). Consequently, s( A) admits no minimizer in this scenario, not even
constants. On the contrary, if s(-%5, 1) keeps increasing in A, functions like (2.6.2) are ruled out
as minimizing sequences. This exclusion opens up the possibility of obtaining a minimizer. These

observations can be made concrete by the following theorem.

Theorem 2.8. i):If there exists yu < A such that s(;%5, A1) = s(5%5, 1), then s(-%5, 1) doestn’t admit

any minimizer.

ii): If there exists A < p such that s(=%5, 1) < s(;%5, p), then s(=-=5, 1) admits a minimizer.

Proof. Parti):

Suppose s(-%5, 1) admit a minimizer u. Then

n
A
n—-2’ )

n
ST k) < By (0) < E () = 5

which contradicts our assumption.
Part ii):

2(n—-1)

. n _ _
Letu; be a minimizing sequence for s(-%5, 1). We can scale u; so that [[u;||.» = 1, where p = = =~.
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Then

lim (/ Vug]? + A/uf) = (=2 1) 2.6.4)
i—00 M > n—2
Use these u; as test-function for u, and we have
2 2 n
/ |V, | +u/ui < s( , 1) (2.6.5)
M ) n—2

By Alaoglu theorem and compactness we can get a subsequence so that
up — uin H'(M), u; — uin LP(X),
ui > uin L, u; > uae. in M

Use these u; as test-function for p,

n
/|Vu,-|2+y/zui22s(n 5o H) (2.6.6)
y —

Take the difference between the (2.6.4) and (2.6.5), and we get

(u—A)/Zu’Z:nm(u—A)/zufzs(nfz,ﬂ)—s(nfz,@>o

This is where we used our assumption. This rules out possibility that # = 0, which happens in the
proof of lemma 2.6.1.
Next we are going to show # minimizes s(;%5, A). Since u; — u in L” (), we have [[ul|, < 1. Let

vi = u; —u. By aresultin [BL83],
1= 1im [Ju][} = lim || + vil[} = [lull} +lim [[v]|
Note that u # 0, so |[u||, < 1,lim ||v;|[, < 1. Consequently

1< Tim [[u]l? + lim [|v; |2

, 1
< ||u||§,+hmm(/ |Vvl-|2+/l/2vf)
- M

n-2°

1 .
= ”M”i + E_tzzjjijlln1°%;|‘7VA2
n-27

v; can be estimated using (2.6.4),

/|Vu|2+/l/u2+lim/ IVvil? = s(——, )
M > M n-72
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where we used v; = 0 € H'(M) and v; — 0 in L?(X). Combine the two equations above and we

get

fM|Vu|2+/2u2 B n
< (-
lluel|5 n-—

So u 1s a minimizer. O

)

Remark 2.6.1. The proof of part ii) comes from [BN83 ] where the H.Brezis and L.Nirenberg proved

similar results for a different equation

Au=u’+AuonM
u>0o0nM
u=0o0on2

n—-2

Corollary 2.2. For the unit disk, s(-%,"5%) admits only constant minimizer for 1 < %=, and

n-2°"2

admit no minimizer for A > +=.

Proof. 1t’s well known that s (%5, ”%2) = % |Z] 77 . Then the result follows from the two theorems

above and lemma 2.1.1. m|

n

For the critical power case, s(;%5, 4) has a strong relationship with type II Yamabe problem.

Use standard argument and we can get a similar existence theorem

Theorem 2.9. If4(nn__21)s( i) < Y(B", S"L, dx?), then it admits a minimizer.

n-2°

Proof. The trick is again “lowering the index". For each ¢ < -%5, 2.2.8 admits a solution u,
(it might be constant). If u,’s are uniforma bounded above, then the ellipticity of Dirichlet-to-
Neumann operator implies a universal upper bound for u, in C k for any k € Z,. Consequently Sq
converges to a solution of (2.2.8) for -%5. So it suffices to show that there doen’t exist such a L
bound. Suppose on the contrary that there exits g; — #, ur and py € X so that uy minimizes
Eg pand my = ug(py) = sup,cy u(x) — oo. The idea is that we are going to show that by scaling

uy will “converge" locally around p to a solution of PDE in upper plane, and this contradicts the
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assumption s(;%5,4) < Y(B", §"1. dx?). For convenience of readers, I will restate the equations

for uy,
Aup =0 on M"
ouy
= Aug +su?* on xV!
£ U + Suy (2.6.7)

qrtl _
/uk =1
%

By compactness we might assume py — p € X. We might pick local coordinate upper ball
U,(2¢) = B"(2¢) N {x, > 0} centered at p, where {x;}1<;<n—1 is local normal coordinate for p €

. . . . . 1
and x,, is the coordinate in normal direction. Let §; = m

—qk _ 1
k , and Vi = m—kuk(ékx +pk). Then Vi

is defined in Up(i) for large i’s with radius i — 00. By (2.6.7), v locally satisfies

1

9;(a?dvi)=0on  Uy(~)
b Ok (2.6.8)
—avk+c vi =sv*on U (i)ﬂ{x =0}

ax” kVik =93V, P 6]( n =

where

al (x) = " (6xx + pr) — 6&;

br(x) = \/detg(ékx +pr) — 1

k

Ck :/lm;q -0

0

T is in the inner normal
Xn

In the equation above we have an additional — in front of g% because
direction instead of outer normal direction.

Note that :TIZ has uniform L* bound by its definition. Since they satisfy a similar equation

Aupy=0on M

auk
—— + cpug = suj* onX
ov

So uy are uniform bounded in any Cy (M) norm by ellipticity of Dirichlet-to-Neumann operator.

v are defined in Up(i) and 0,vi(x) = 5|,€“|0auk(6kx + py) for 6 — 0. So vy are also uniformly

bounded in any C*¥(U »(R)) for any fixed R. So we could pick a sub-sequence so that v; — v so

that
Av=0on H}
2.6.9)
P \ (
v syaz on R}
ov



where v is the outer normal direction. (I failed to derive this convergence from (2.6.8) directly
since Dirichlet-to-Neumann operator is global, while v is only defined locally. Also, the Schauder
estimates can’t be applied directly.)

Now if v has enough decay at infinity, we could multiply (2.6.9) by v on both sides and integrate to

2 2(n-1)
|Vv|" = v n=2 (2.6.10)
n Rn—l

2(n-1) . .
Also, as a limit we probably have /2 yia < 1. Note that H} has vanishing mean curva-

get

ture and scalar curvature. Use v as the test function for type II Yamabe problem and we get
Y(H?, R, dx?) < 4(" 1) ———=s. However, it’s well known that the upper half plane and unit disk are

conformally equivalent through
F: B"—->H"

1
Fry,xn) =5 (21,0, 260, 1 =X = xp) (2.6.11)

n
. 4 4
F an = ﬁan = ¢n—2an
where P = x% +--- 4 xi_l + (1 = x,)2. Use v¢ as test function for B”, and we will get

4(n-1) n

Y(B",S" !, dx?) = Y(H!, R, dx?) < s( :
n-2 n-2

)

which contradicts to assumption s(-25,1) < Y(B",S""!, dx?). Next we will fix the gaps in the

n-2°

argument above. Let g’ = g|z. We can compute in local coordinate

det X
/Bn_l( . )Vzk*’l\/det(g’)(pk +0rx)dx = / (g")(x) ‘1k+1 dy
P 6]{

n— 1(6) 671 1 Zk+1 k
<m0 D=t / u*avy,
z
— 5, (1=2)g—n

(g=1)(n-1)—-g-1 < 1 for

We used change of variable y = py + dxx in the first line. Since g < %5, m;
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large k’s. Since Similarly, we compute

2

. 0) .
/ a} (x)0vidjviby(x)dx = / ) —"Z(g’faiukajuk)(ékx + py)dx
Up(37) Up(5r Mg

=" / Vur|?dV,
Upk (E)

< m{" Vil 2y < €

Since v/det(g’)(px + 6xx) — 1 and a’g — 0;;, and v, converges uniformly in any compact subset,

2(n-1)
vz <1
Rn—l

|Vv|2 < o0
HE

by Fatou’s lemma we arrive at

(2.6.12)

Let n7(x) be a cut-off function in HY, and vg(x) = n(%)v. Then with the two bounds above we can

verify that vg — v in H'(H") and L5 (R™1) by showing

V(v - VR)|2 -0
H

2(n-1)
v —vel= =0
R7=

Multiply n(%)v to (2.6.9) and integrate by part, we get

n

(Vv,Vvg)) = s/ vn2yp

Y R

Let R — oo, and we get (2.6.10). O

In view of the previous results, for a fixed Riemannian manifold with boundary we can ask the

following questions:

4(n—1
i) does ( )s( " ,A) > Y(B", S, dx?) as A — oo
n—2 n-—2
i) does there exists a A so that s( n 2,/10) =5( " o A) for all A > Ay
n-— n-—

iii) does there exists a A} so that s( > A) admits only constant minimizer for all 1 < A;

n—

My guess is all these are correct, but I have not found a way to solve these.
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CHAPTER 3

A LOG-SOBOLEV INEQUALITY
In this chapter, I will introduce the log-Sobolev inequality, which is closely related to Wang’s
conjecture. The validity of the log-Sobolev inequality provides a key insight into the confidence

we can place in Wang’s conjecture.

3.1 Motivation for Log-Sobolev inequality

Let (M,0M = Z, g) aRiemannian manifold with boundary. Wang’s conjecture 2.1 relies on the
boundedness of the trace operator: H' (M) — L4+1(2) for g < %5, The embedding is compact
when the inequality is strict, but it weakens as g approaches -%, ultimately losing compactness.
Consequently, the conjecture becomes more challenging as g increases. For the critical power, the
existence of the minimizer is uncertain due to the loss of compactness. Due to this, one might

be interested in examining the behavior for small values of ¢. If Wang’s conjecture is true, in its

-1
/ |Vu|2+/l/u2 > |2|3?A(/uq+1)#
M > o

forA(g—1)<landg < 5. Let A= ﬁ, and we get

qg-1 / ) 1 2 1 +1y 2
— [ Vul"+—= [ u" = (= [ uf)aT
1=l Ju 1Z] Js 1Z] Js

Notice that the equality always holds for ¢ = 1. Now for an arbitrary u € H'(M) satisfying

setting we have

/2 u? = ¥, take the limit g — 1, and we arrive at

2/ |Vul|? > /uzlog(uz) (3.1.1)
M %

E(u) ::2[W|Vu|2—/zuzlog(u2),

where u € H' (M), /u2 = |Z]
p)

Consider the functional

(3.1.2)
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Then E(u) is bounded below, which will be proved in the next section. Its Euler-Lagrangian
equation is
Au=0
u
—=ul +4
5, = wlogu+Au

A comes from the Lagrangian multiplier. Note that the second equation is not linear, and we could

scale u to kill Au to get

Au=0
ou 1 (3.1.3)
v ulogu

Just as Wang’s conjecture, we can pose the following conjecture

Conjecture 3.1. Let (M,0M = X, g) be a compact Riemannian manifold with boundary. Suppose

Ric > 0on M, and 11 > 1 on X where 11 is the second fundamental form, then the following PDE

Au=0 on M"
ou N (3.1.4)
— =ulogu
ov 8
admits no solution other than u = 1. Consequently,
2 [ |Vu)? > / u? log(u?) (3.1.5)
M p)

foru e H' (M) andfzu2 =|Z|.

3.2 Log-Sobolev Inequality in General Manifold

In this section, I will derive a log-Sobolev inequality for general Riemannian manifolds with
boundary. Although a log-Sobolev inequality can be obtained using Theorem 2.4 and a similar
argument as in the previous section, I will employ a different approach that provides additional
information. These methods are modified from the work of [Rot81a], [Rot81b] and [Rot86], where

O.Rothaus studied log-Sobolev inequality for manifolds without boundary.
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For arbitrary p > 0, consider the functional

E,(u) ::p/M|w|2—/2u210g(u2),

where u € H' (M), /u2 = |3 (3.2.1)
z

s(p) = inf E,(u)
ueH (M)

Lemma 3.2.1. 5, > —oo for any p > 0, and the infimum can be achieved.

Proof. Throughout the proof C is a constant independent of and # and might change from line to

line. Without loss of generality we might assume u > 0. Fix 0 < € < ﬁ Since we assume

. . . . . 2
fz u?dS = 1 and log is a concave function, we mighe use Jensen’s inequality for the measure IMTIdS

and function u€, and we get

1 2 2
—/uzloguzdS: —/1oguf(”—ds)
2] Js €Js l€
2 1
<21 —u**eds
: og(/zzu )
Use boundedness of trace operator,

2 1 e 2 2+e
Elog(/ziu ds) < Elog (CllullHl(M))

2+

€
< = log(llull7 ) + € (32.2)

< plully iy, + €
In the last line we used that ax — log x is bounded below in x for any fixed @ > 0.
The proof demonstrating the achievability of the infimum is standard. We can pick a minimizing

sequence u;.

s(p) + 12 Ey(u))

P 2 Py P 2
=Ep/2(ui)+§/M|Vui| ZS(E)-'-E/M'Vuil

So u; are bounded in H'(M). By Alauoglu theorem we can pick a subsequence that converges
weakly to u in H' (M), and thus fM |Vu|? < lim /M |Vu;)?. We only need to check that /2 ul.z log u;

converges. Fix € < ﬁ and we have |(x*logx)’| = |(2logx + x| < C(1 + x'*€) for all
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x > 0.Therefore

2 2 1+e 1+e
; . . ; . +u; ", 1 +u;
|/u,~10gu /ullogu]|<C/|u uj|max{1 u; ", 1 U; }
pX DI pX

< C/ i —uj|(1 +ul.1+f+ 1 +u}+€)
z

< i = wjll ey (1 + [uill 2eze + [l 2e2e)
< COL+ el aay + Mol o) i = wjll s,

< Cllui — ujll 2z

Now we can look at the Euler-Lagrangian equation for s(p). By a similar computation as the

previous section, we get

Au=0 on M
(3.2.3)

0 2
i =Aulogu inX where 1 = —
ov 0

For any p > 0, the function s(p) is bounded and increasing with respect to p. Let u, be its
minimizer. It is expected that fM |Vu,| decreases to 0 as p approaches infinity. There might exist
a critical pg such that s(pg) is achieved by u = 1, enabling the establishment of a log-Sobolev

inequality. See section 2 of [Rot81b]. Actually, we have the following stronger theorem.
Theorem 3.1. There exists a Ao so that for A < Ay, (3.2.3) admits no solution other than u = 1.

Proof. The proof is similar to theorem 2.4. First we want to bound fz u. Integrate (3.2.3) by parts,

[oo] ]
2 En{u<e} En{u>e}

< elX| +/ ulogu (3.2.4)
EN{u=e}

:e|2|+/ ulogu < C;
En{u<e}

we get /2 ulogu = 0. Then
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Let K(x, y) be the Schwarz kernel for Dirichlet-to-Neumann operator. From section 3.2 we know

that for p < IK(x,)lzr(zy £ Clorallx € X. Let0 <t < 1, px =57 > land M =sup, .y u

n2’

murWQ ld;HLK@JM@ﬂ%u@Mﬂ

< CA||ulog ul| s
< CAM'||u" " log u| -
Apparently, there exists a constant C»(p+,t) such that x'”p * (logx)?* < C, +x for all x > 0

provided that (1 — 7) p* < 1, which is achievable. At maximal point, we have

1
M - C1<IM(X)—E u

< C/lM’(/ Cy +u) < CAM'
z

Therefore u is bounded provided A is bounded above. Then use lemma 2.2.4, we have

/Wwﬁ<c/||2
0
= C/l/ulogu—u
) (91/

0
sm/u—”:ca/ Va2
s Ov M

Note constant C is independant of A as long as A is bounded above. Therefore fM |Vu|? = 0 for

small A, thus u = 1. O

3.3 Flow Method for Manifolds without Boundary
It’s well known that on manifolds without boundary we can solve u; = Au and u converges to
the constant ﬁ / ug. If we run this flow and keep track of how / |Vu|? decreases in ¢, hopefully

. . . x|
we can get something. Actually, this idea works for Gaussian measure du = “ 2 dxonR".

1
(zﬂ)n/z e

It’s well known that fRn du =1, 1.e. du is a probability on R". Define
B = [ fdn

Af = Af = (x,Vf)
u(t,x) = Pif =E;(f(e"x+V1—e2Y))
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Then u defined as above solves u; = Au. Using this flow we can show that

Theorem 3.2. If f is CI(R”), E(f)=1and JE(|Vf|)2 < oo, then
E(f*log %) < 2E(|Vf]?)
This method can be carried to Riemannian manifolds as follows

Theorem 3.3. Let (M, g) be a compact Riemannian manifold without boundary. Suppose Ric >

(n—1)g, then forall f € H'(M), f > 0 and /Mf = |M|, we have

L LR
2(n—1>/ 7 Z/fl"gf

If we pick f? in the inequality, we get

s [19sP> [ froes

Proof. Let u be solutions of

u; = Au
(3.3.1)
M(O’ ) = f
Then p
E(ulog u) = (logu + u, = (logu + 1)Au
0 / o / |Vu|?
— [ ulogu=-
ot M & M u
Note that u — 4‘47{ =1 in H'(M). Integrate in time,
/ / Vul” oy ar = / flog f (3.3.2)
0 M U M
Use Bochner’s formula, we compute
9 i
ElVl =2(Vu;, Vu) = 2(VAu,Vu)
= A|Vul?® - 2|V?u|® = 2Ric(Vu, Vu) (3.3.3)

< A|Vu|* = 2|V?u|* = 2(n - 1)|Vu|?

63



Let v = \u, then

4Q|W|2 _ 9 |Vi?| _ 10|Vul*  Au|Vul?
ot ot u u Ot u?
\vj 2
anpvl? = aME
A|Vul? V|Vul|?,V 1
_ AlVu| _2< | u2| >+|Vu|2A_
u u u
_ AlVul* (V|Vu|2 v> |Vu|4 Au|Vul?
u u? u’ u?

Take difference between the two equations above and use (3.3.3),

— 2 2,12 2 4
2(n—1)|Vu| B 2|V=u| +2<V|Vu| , V) _2|Vu|

0
4(= - A)|Vv* < -
(ar )Vv|” <

u u? u’
2 2
2(11 - 1)|Vl/t|2 2 2 Ujjuil; uu j
S RO VI Crhk et )
1<i,j<n
2(n—D|Vul> 2 uilt
D D TR
u 1<i,j<n
2(n —1)|Vul?
B u

Integrate this inequality in both space and time,

/OW/M_Q(H+)|W|2 = /m/ 4(2—A)|Vv|2dth
/ / —|Vv|2dth
—/O m(/ 4|Vv|*dV)dt

= lim/ 4|Vv(t, -)|2dV—/ 4Vv(0,)|*dv
t—o0 M M

IVf1?
= - A%
L

Combine (3.3.3) and (3.3.5), we get desired result.

3.4 Sectional Curvature Results

(3.34)

(3.3.5)

Let p(x) = d(x,0) be the distance from the boundary. It’s smooth away from the cut locus

Cut(X), which is a closed set in the interior of M and is of measure zero. Consider ¢ = p* — 5.

02

If (M, %, g) is assumed to have non-negative sectional curvature and // > 1, then by the Hessian
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comparison theorem (cf. [Kas82]),

-V2¢ > ¢
Furthermore, ¢ has nice property near the boundary

Yy =0

oy
v
These prove advantageous when we use V¢ as the testing field in (2.4.7). But the problem is cut

-1

locus. To overcome this difficulty, in [XX19] the C.Xia and C.Xiong has the following construction.

Theorem 3.4. Suppose (M, X, g) has non-negative sectional curvature and 11 > 1. Fix a neigh-
borhood C of Cut(Z) in the interior of M. Then for any € > 0, there exists a smooth non-negative

function ¢ on M such that . = ¢ on M \ C and
Ve > (1-€)g (3.4.1)
In [GHW19], the authors use this function in Wang’s conjecture and get the following

Theorem 3.5 (Q.Guo, F.Hang and X.Wang). Let (M, X, g) be as in Wang’s conjecture. Then the

only positive solutions to (2.1.1) is constant if (g — 1)A < 1 provided2 <n < 8and 1 < q < 53f9.
Consequently,
-1 1 1 2
q—/ |Vul> + — / 2> (— [ ustlyan (3.4.2)
2] Jm 2] Js 2] Js

for these (g, A).

Their method also works for (3.1.3).

Theorem 3.6. Let (M, X, g) be as in Wang’s conjecture. Suppose 2 < n < 8 Then the only positive

solution to (3.1.3) isu = 1.

Proof. Let u be a solution to (3.1.3). Let a, b bw two constants that will be determined later. Set

u=v~ % then

v, 2
Av:(a+1)| ]

v (3.4.3)
—v:vlo %
ov £
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We have the following two lemmas from [GHW19]:
Lemma 3.4.1. Suppose ¢|x = 0 and g—f = —1, then for any smooth v and b € R
1 2 b b o 2 2
(1==)(AV)V e+ =pv" V| (3vAv + (b - 1)|Vv]7)
M n 2
b
- / vOV2p(Vv, Vv) — |Vv|2vP A — 5|Vv|2vb—1<vv, Vo)
M

A
+ (|V2v - 7‘}g|2 + Ric(Vv, Vv))vb¢ - / V| Vsy|?
z

(3.4.4)

Lemma 3.4.2. The proof of the first lemma is similar to that of usual Reilly’s formula, and the

proof of the second one is based on Pohozaev identity (2.4.7). Under the same assumptions as in

lemma 3.4.1, we have
b2 b 2y.,b-1 1, 2
v’V ¢(Vv,Vv)+(vAv+§|Vv| WV, Vo) — Ev |Vv|“Ag
M

0
=5 [vavsP - (502

Apply these two lemmas for v in (3.4.3), we get respectively
2 AV oo b
Q= (Vv = —g|” +Ric(Vv,Vv))v"¢
n

b
+/ —va2¢(Vv,Vv)+|Vv|2vbA¢+§|Vv|2vb_1(Vv,V¢)+/vb|Vzv|2
M 2

and
b 1
/ vV2(Vv, Vv) + (a+1+ 5)Vv|2vb_l(Vv, Vo) — Evb|Vv|2A¢
M

0
=5 [vavsP - (502

Combine these two equalities to eliminate terms involving (Vv, V¢), we get

0=((1- Y@+ 1)+ M) / V02| Wyt
n M

2
a+l+b L, _, a+1+3b/4 _ 5,
AT ED 2wy, Wy + 22 gy 2000
+/M ari+bn ¥ OV Ve VY VTAY
b/4 b, 0V, a+1+3b/4 ’
L ALY YO VA ALY I} v/
”L/Z ar1+02 @) T artenz ) Ve
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(3.4.6)

(3.4.7)



Seta + 1+ 32 =0 to eliminate terms involving A¢ and |Vyv|?, and take ¢ to be ¢, as in theorem

3.4, we get
~9- 1
0. S((Sn 9—-(n+9)a)(a+ ))/ 29y,
9n M
—(l—e)/vb|Vv|2+/ vath(Vv,Vv)+/vb(@)2
c M\C s Ov
where

A
Q. = / (|V2v - —vg|2 + Ric(Vv, Vv))vbi,bE
M n
Now let € — 0 and then shrink C. Notice that A¢ < —g whenever its smooth. It yields
S5n—-9— 1
0 S(( n—9—-(n+9a)(a+ )) / P2V
M

On

—/ v”|vv|2+/vb(@)2
M s Ov

0 = /|v2 BV P+ Ric(Vv, V))vby

/ ( )— /vb”logvﬂ
) ov

= /l/ v logvAy + (b + DvP log v|Vv|? +vP|Vy|?
M

(3.4.8)

where

Compute /2 vb (%)2 as follows

= /l/ (a+b -2’ 1logv|Vv|> +v?|Vy|?
M

Plug this equality in (3.3.5),

((Sn—9— (n+9)a)(a+1))/ 2Ty,
M

<
Q= 9n

+(/l—1)/vb|Vv|2+/l(a+b—2)/ v log v|Vv|?
M M

We want a+b -2 = 0 since we don’t know the sign for fM v? log v|Vv|?. Together with a+1 +% =0,

(5n=9—(n+9)a)(a+1)
9n

we get a = 2, b = —4. Additionally, we aim for , which imposes the condition

n < 9. This completes our theorem. O

Corollary 3.1. Under the same assumptions,

2/ |Vul? > /uzlog(uz)
M b2
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foru e H' (M) andfzu2 = |Z]

Remark 3.4.1. If we take derivative with respect to q at g = 1 for (3.4.2), just as we did in section
4.1, we get the desired log-Sobolev inequality (3.1.1). But using their method, we also proves

non-existence of non-constant solutions to (3.1.3), which is stronger.

In [GHW19], the authors applied maximal principle for n = 2 and proved the following

Theorem 3.7 (Q.Guo, F.Hang and X.Wang). Let (M, X, g) be as in Wang’s conjecture and n = 2.

Then the only positive solutions to (2.1.1) is constant if (¢ — 1)A < 1 provided q > 2.

This maximal principle also works for our case. But since it’s fully covered by the previous

result, I won’t include it here.

3.5 Ricci Curvature Results

An obstacle in both Wang’s Conjecture 2.1 and Conjecture 3.1 is the lack of a comprehensive
understanding of how Ricci curvature affects the Dirichlet-to-Neumann operator. Although some
partial results have been obtained under the assumption of sectional curvature > 0, as discussed in
the previous section and presented in [GHW19], no progress has been made under the condition

Ric > 0. In this section, I will present a result in this direction.

Theorem 3.8. (M", %, g) a Riemannian manifold with boundary. Suppose n < 8, Ric > 0 on M,

Il > gy and Ricy > (n—2)gy on Z, then there exists a A that only depends on the dimension so that

Au=0 on M"
au n—1
v Aulogu on X (3.5.1)
/uzdS < A(D)
b

admit no non-constant solution provided 1 < Ay
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Proof. Letu = v77, then v satisfy the following

|Vv|2 Mn
v (3.5.2)

9v _ Avlogv on X!
ov

Define E;; = v;; — %&-J- and L;; = % - anV'Z(Sij. From the work of [LO23], we have

Av=(1+p)

a+2(B+1)=t

(VaEile')j > v [E,'j + 3

Lij*+ v 2| Wyt =0 (3.5.3)

where

n—1 2+2-n n-1

B+1)

CcC =
n n 4n

[a+2(8+ 1)”7_1]2 (3.5.4)

In [LO23] Ou and Lin work on the unit ball. The calculation is essentially the same, and the only
difference is that we used Bochner formula and finally get an inequality. Pick a frame {e};<q<n-1

along the boundary, and let e,, = v be the outer normal. Integrate by parts, and we have

/div(v“E(Vv, -))dV:/v“E(Vv,V)dS
M >

(3.5.5)
= /Ev“E(VZv, v)dS + /Z v'E(v,v,v)dS=A+B
We calculate A and B as follows.
A= /Z veV2y(Vsv, v)dS
= /Z v (Vsv, Vsv,) — vII(Vsgy, Vsv)dS (3.5.6)

< /xlv" log v|Vsv|? + (1 — D)v¥|Vsv|*dS
z

As for B, we have A = Ay + (%)2 + H% on X. Using (3.5.2), B can be calculated as
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A
B = /vavn(v,m - —v)dS
b n

_/ o, ((n=1)(1+p)|Vy[?
Zv vn( -

n 1%

Asv — an)

-1+
= / (n-D(A+B) v (1Vsv]? +v2) — Hvv? — vy, AsvdS
) n

( (1 (3.5.7)
< / n—-'-'g)v“_lv,,(lvzvlz + vi) —(n- 1)v“vﬁ — v, AsvdS
¥ n
1 -1
= //l(a +1+ M)va log v|Vsv)? — (n — 1)A2v**2 1og? v
b n
1 -1
+ /13—(ﬁ + D )v‘l+2 log® v + Av*|Vsv|2dS
n
Combine (3.5.5), (3.5.6) and (3.5.7), we have
1 -1
0< /ﬁ(a +2+ M)v“ log v|Vsv|? = (n — 1)A%v**? 1og? v
z " (3.5.8)

+1)(n—-1
+ ﬂ3wva+2 10g3 VvV + (2& - 1)Va|VZV|2dS
n

Setx = W and a = —2 —x to kill the first term on the right hand side of the above inequality.

It becomes

0 < / —(n =DA% log? v + Bxvlog® v + (24 — 1))y ™*72|Vgv|?dS (3.5.9)
o

We further require P > 0 to make sure Q > 0. (3.5.4) becomes

n?—10n+1 , 1 n-1

dn(n-1) x nx n

P(x) = - (3.5.10)

Next we estimate the middle term in (3.5.9) and lower the power for log® v.

/l3x/v_x log® vdS = /lzx/v_x_l log? vv,dS
) z
- /lzx/ ((—x —1)log?v + 210gv)v_x_1|VMv|2dV
M

We pick x > 0so that —x — 1 < 0. Using (—x — 1) log? v +2log v < ¢ for constant ¢ > 0. Note that

a only depends on dimension, and therefore c. So the above equality becomes
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/l3x/v_x log® vdS S/lzcx/ V2V v]?
z M

cxA3 N
= 1 S.11
1B Zv ogv (3.5.11)

- DxA?
= M/v"‘ log vdS
b

x—-n-1
The second equality can be derived if we multiply (3.5.2) by v*~! and integrate by parts, which

gives A fz v¥logv =(-x+p) fM v 2| Vyv]?. Let w = v™/2. Then (3.5.9) and (3.5.11) give us

ex2 A3

2
—— w1 512
2(x—n—1)w og wdS (3.5.12)

0 < —/(21— D|Vsw]? — (n — DA*w?log? w —

Finally, we want to bound /z w? log wdS by /Z |Vsw|?dS using theorem 3.3 since the coefficient

for w? log w is positive and Ricy > gy by our assumption, where Rics is Ricci curvature on X.

v

AT

Before that, let us figure out the sign for log w? = uﬁ and %= < 2 provided x > 2(" 1) By

Holder inequality for =3~ A(Z) and our assumption that /2 u- < A(Y), % < 1, and therefore the tail

term in theorem 3.3 could be ignored. Now (3.5.12) is

1V+233
0 < —/(u— 1- M)wzwﬁ (n— 1)22w? log? w (3.5.13)

where 2 1) <x<n-land P(x) >20. If weputx=n-1,P(n-1) = W, so admissible

x could be found provided 2 < n < 8. After picking such a x that only depends on dimension, ¢
in (3.5.11) is also determined. If 4 > 0 is small enough, we have from (3.5.13) that 0 < 0 and

therefore u = 1. O

Corollary 3.2. Let (M, X, g) as in theorem 3.8, then

/ |Vul|?dV > A / u?log udS (3.5.14)
M >

for fz u*dS = A(X).
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Proof. For each A > 0, we can show that

/ |Vu|2dV—/l/u210gudS (3.5.15)
M %

is bounded below for /Z u?> = A(X) and the infimum can be achieved. Let a, be the infimum and u

be the minimizer. From the Euler-Lagrangian equation, we have

Au=0 onM
0
o Au(logu+a,) onX
ov
/uzdS = A(2)
b

We can scale to get rid of a,, namely take v = e“‘u < u. The equation for v is

Av=0 onM

0
i =Avlogy onZX

ov
/ v2dS < / u*dS = A(2)
> x

The last inequality holds because as the infimum, a; < 0. For 4 < A, v is constant by theorem

3.8, and so is u. Therefore a, = 0 and the proof is done. O
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