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ABSTRACT 

Accurate phosphorus (P) load estimation in subsurface drainage water is critical for 

assessing the field-scale efficacy of conservation practices and minimizing the environmental 

impact of P loss from subsurface-drained fields to freshwater bodies like the Great Lakes. Also, to 

build a more resilient crop production system in a changing climate, it is crucial to understand how 

future weather patterns affect subsurface drainage design and whether subirrigation will be needed 

in the future for crop production. In this study, we used high-frequency P concentration 

measurements to investigate P transport dynamics and evaluate the effects of water sampling 

strategies on the uncertainty of P load estimation. We also evaluated the change in the optimum 

drain spacing from using historical (1994-2023) and future (2030- 2059) weather data and assessed 

the efficacy of subirrigation to alleviate yield reduction due to drought stress in southeast 

Michigan, USA. 

We used the HydroCycle-PO4 instrument to measure total reactive P (TRP) concentration 

at high resolution from a subsurface-drained field, evaluating four hypothetical water sampling 

strategies: time-proportional discrete and composite sampling, and flow-proportional discrete and 

composite sampling. All strategies underestimated TRP load compared to the reference dataset, 

with underestimation ranging from 0.2% to 51% depending on the interval and method. Flow-

proportional strategies provided more accurate estimates of cumulative P load with fewer samples, 

capturing more samples at higher flow rates. TRP concentration showed a transport-limited 

chemodynamic pattern, increasing with flow during events. A 1% increase in drainage discharge 

led to a 1.36% increase in TRP load, with flow events contributing 89% of P loss and the highest 

7.7% of flow transporting 75% of the TRP load. Most flow events (30 out of 36) displayed a 

flushing effect, indicating preferential flow as a pathway for TRP loss. High-frequency P sampling 



 

 

suggested that management and conservation practices should target flow events to reduce P loss. 

A total of 27 general circulation models with a moderate greenhouse gas emission scenario 

(shared socioeconomic pathway 2-4.5) were used for climate projections. Simulations were 

performed using the DRAINMOD model, and the optimum drain spacing was determined based 

on the maximum average annual return on investment. Results showed that the projected 30-year 

average annual precipitation is not expected to change significantly while that of the temperature 

will increase by 2.5°C in the future. Future optimum drain spacings for depths of 75 cm and 125 

cm were found to be 300 cm and 600 cm wider than historical spacings, respectively. On average, 

there was a 23% decrease in the 30-year average annual drainage discharge, attributed to an 

average 17% increase in evapotranspiration. Drought stress is projected to be the primary cause of 

yield loss in the future, due to increased temperatures and an average 8% deeper water-table depth. 

Subirrigation shows high potential in reducing year-to-year crop yield variability in the future 

(decreasing the coefficient of variation for the yield from 0.26 to 0.06, on average) and increasing 

yield by up to 31%. In the past, subirrigation initiation was feasible in late June with a weir depth 

of 70 cm. However, in the future, subirrigation may have to start sooner in early to mid-June, and 

weir depth may have to be shallower ranging from 65 cm to 55 cm to be more advantageous. In 

conclusion, a wider drain spacing, providing reduced drainage intensity, along with subirrigation 

may be needed in the future to mitigate crop yield loss from drought stress. In conclusion, using 

future climate projections may allow wider drain spacing to retain more water and reduce drought 

stress. Without such data, implementing subirrigation could help mitigate potential yield losses 

from drought.
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CHAPTER 1 

EFFECT OF WATER SAMPLING STRATEGIES ON THE UNCERTAINTY OF 

PHOSPHORUS LOAD ESTIMATION IN SUBSURFACE DRAINAGE DISCHARGE 
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1.1. Abstract 

Accurate phosphorus (P) load estimation in subsurface drainage water is critical to assess 

the field-scale efficacy of conservation practices. The HydroCycle-PO4 instrument measures real-

time total reactive P (TRP) concentration without the need for sample filtration, thereby enabling 

comparative evaluation of different sampling strategies. The main objective of this study was to 

evaluate the effects of water sampling strategies on the uncertainty of P load estimation. Hourly 

TRP concentration and hourly drainage discharge measurements formed the reference P load 

dataset. Four hypothetical water sampling strategies were evaluated: (a) time-proportional discrete 

sampling, (b) time-proportional composite sampling, (c) flow-proportional discrete sampling, and 

(d) flow-proportional composite sampling. All sampling strategies underestimated TRP load 

compared with the reference dataset, regardless of whether the underestimation was statistically 

significant. Total reactive P load underestimation changed from 0.2 to 51% as time-proportional 

discrete sampling intervals increased from 3 h to 14 d. Total reactive P load underestimation 

changed from 12 to 43% as the time-proportional compositing scenario increased from 1 to 7 d, 

each with one aliquot per day. In the case of flow-proportional discrete sampling scenario, the 

lowest (0.6%) and the highest (–5.1%) uncertainties were observed when 1- and 5-mm flow 

intervals were used. The relative error based on the results provided by the flow-proportional 

composite sampling ranged from 0.2% when using 1-mm flow interval to –6.7% when using 5-

mm flow interval. In conclusion, the flow-proportional sampling strategies provided a more 

accurate estimate of cumulative P load with fewer number of samples because a greater portion of 

samples were taken at higher flow rates compared with time-proportional sampling strategies. 
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1.2. Introduction and Literature Review 

 Subsurface drainage has enhanced economical crop production in poorly drained soils 

(Evans & Fausey, 1999). However, drain pipes can rapidly transfer nutrients to surface water bodies 

(Fausey et al., 1995; Ghane & Askar, 2021). Phosphorus (P) is a key nutrient transported by 

subsurface drainage that causes eutrophication and overstimulates the growth of harmful algal 

blooms (Chen et al., 2018; Ding et al., 2018; Wilson et al., 2019). There is an urgent need to reduce 

P transport from subsurface-drained fields to downstream water bodies. Edge-of-field monitoring 

of conservation practices is the first step to develop strategies that reduce P load from subsurface 

drainage discharge. However, edge-of-field monitoring requires efficient water sampling strategies 

to accurately calculate P load (Daniels et al., 2018; Dantas Mendes, 2020; Harmel et al., 2018). 

 The water sampling strategy affects uncertainty in P load estimates (Birgand et al., 2011; 

Moatar et al., 2013; Shih et al., 1994). There are different water sampling strategies for drainage 

discharge (e.g., water sampling on a daily, weekly, fortnightly, and monthly basis), which are 

selected depending on budget and equipment limitations (Table A1.1). Long sampling intervals 

might be sufficient for some indicators, contaminants, or purposes, but they can fail to account for 

short-term P variability (Bowes et al., 2015; Fones et al., 2020). Long sampling intervals fail to 

capture P concentration fluctuations, particularly during precipitation events when drainage 

discharge rapidly rises and recedes (Luo et al., 2012). Selecting the most appropriate sampling 

strategy is essential for accurate P load calculation in drainage discharge with temporal P variations 

(Villa et al., 2019). Therefore, there is a need to evaluate the uncertainty associated with different 

water sampling strategies in estimating P load in drainage discharge. 

 For subsurface drainage application, we only found Williams et al. (2015) that had 

investigated the effect of sampling strategies on the accuracy of dissolved reactive phosphorus 
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(DRP) load estimation in drainage discharge. The authors used sub-daily (2-4 h) intervals during 

storm events at some sites, and other sites were samples daily and the daily concentrations were 

interpolated to estimate hourly DRP concentrations at other sites. The authors recommended a 

minimum time interval to accurately estimate the annual DRP load when using a time-proportional 

sampling strategy. However, to our knowledge, there has been no study that has evaluated the 

accuracy of P load estimation in drainage discharge using flow-proportional sampling strategies. 

Flow-proportional sampling strategies are commonly used at edge-of-field monitoring. Therefore, 

there is a need to evaluate the accuracy of P load estimation of flow-proportional sampling 

strategies. 

 In situ sensors have been developed for measuring high-frequency nutrient concentration 

while not needing filtration of the water sample. Liu et al. (2020) used such sensors for measuring 

high-resolution nitrate concentration, whereas we did not find any study that had used high-

frequency P sensors to evaluate subsurface drainage application. 

 This study aimed to evaluate the effects of different sampling strategies on P load estimation 

uncertainty: time-proportional discrete sampling, time-proportional composite sampling, flow-

proportional discrete sampling and flow-proportional composite sampling. The value of this study 

is that it informs decision-making about the suitable sampling strategies needed to evaluate the P-

reducing benefits of conservation practices. 
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1.3. Materials and Methods 

1.3.1. Study site 

 This study was conducted on a private farm located in Lenawee County, Michigan, USA, 

from January 2019 to July 2020 (Figure 1.1). The drainage area was 22.5 ha. The dominant soil 

type was Blount loam (fine, illitic, mesic Aeric Epiaqualfs), which was classified as a poorly drained 

soil. Subsurface drainage pipes were installed at an average 0.75-m depth with 12-m drain spacing. 

This system was under conventional free drainage during the study period. 

 
Figure 1.1. Geographic location and drainage layout of the study site. 

 

 The cropping system during the study period was continuous corn with cereal rye as a winter 

cover crop. The conservation tillage practice was no-till. Manure was surface broadcasted at a rate 

of 43.2 kg-P/ha in January 2019 and 5.3 kg-P/ha in December 2019. Commercial fertilizer (product 

formulation 9-18-9 with sulfur) containing 2.9 kg-P/ha was applied in May 2020. 
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1.3.2. Precipitation data 

 Precipitation data were collected using the microclimate sensor suite ATMOS-41 (METER 

Group, Inc., USA). This device is built-in with a high-resolution precipitation sensor (0.017-mm 

resolution). This sensor only measures rainfall; therefore, we used the snow water equivalent data 

from the National Oceanic and Atmospheric Administration (NOAA) weather station located 13.5 

km away at the Adrian Lenawee County Airport to complete the precipitation data. 

1.3.3. Measurement of drainage discharge and phosphorus concentration 

1.3.3.1. Hourly drainage discharge measurement 

 We combined two methods to measure hourly drainage discharge from January 2019 to July 

2020. The first method measured drainage discharge with a metal-edge sharp-crest 45° V-notch 

weir (Agri Drain Corp., USA), which was installed in a 25-cm Agri-Drain water-level control 

structure. This method was used only when two conditions were satisfied: water flowed inside of 

the V-notch (i.e., did not exceed the weir capacity); and water-level in the structure's downstream 

chamber did not exceed the V-notch apex height. A HYDROS-21 water-depth sensor (METER 

Group) hourly measured the head of water inside the V-notch weir. Then, a calibrated V-notch 

equation was used to calculate the hourly drainage discharge based on the head. The second method 

measured hourly drainage discharge using a TIENET-350 area-velocity sensor (Teledyne ISCO, 

USA), which was installed inside a pipe located downstream of the control structure. This method 

was used only when either of these two conditions was met: water flowed over the V-notch weir 

(exceeding the weir capacity); and water level in the downstream chamber of the structure exceeded 

the height of the V-notch apex. In both methods, the drainage discharge rate was estimated using 

hourly area-velocity and water-depth measurements. The area-velocity sensor provided high flow 

rates and the V-notch weir provided low flow rates. 
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1.3.3.2. High-frequency phosphorus concentration measurement using the HydroCycle-PO4 

  We used an in situ HydroCycle-PO4 (Sea-Bird Scientific, USA) to measure high-resolution 

P concentration at a 2-hour interval (Figure A1.1). The HydroCycle-PO4 measures P concentration 

based on a heteropoly molybdenum-blue complex with phosphate that can be detected 

colorimetrically (Murphy & Riley, 1962). As the P concentration measurement is conducted on an 

unfiltered sample, the values represent total reactive phosphorus (Rice et al., 2017). The term 

reactive refers to the inorganic form of P that is readily bioavailable for uptake. 

 The HydroCycle-PO4 has an average accuracy of -5 to 20% at the lower and upper ends of 

the operating range, respectively (Snazelle, 2018). Johengen et al. (2017) performed an assessment 

of precision of the HydroCycle-PO4 by computing the standard deviations and coefficients of 

variation of the five replicate measurements for five different concentration trials (from 0.01 to 0.4 

mg/L). The standard deviation of the mean ranged from 0.0005 to 0.0020 mg/L across the five trials, 

and the coefficient of variation ranged from 0.14 to 5.78 percent. Also, the sensor has a maximum 

and minimum P detection limit of 1.2 and 0.002 mg/L, respectively. 

 The TRP concentration in drainage discharge was measured from January 2019 to July 

2020. TRP concentration measurements were retrieved from the data logger every week and 

processed using CycleHost software (Sea-Bird Scientific). Finally, the 2-hour interval TRP 

concentrations were linearly interpolated to obtain hourly TRP concentrations. 

 Although the sensor used a single copper screen mesh with 7.5-µm onboard filters to reduce 

sediment intake, we observed sediment accumulation inside the unit. Thus, we performed weekly 

cleaning of the instrument to maintain high-quality data. New cartridges were installed every 3 to 

4 months to maintain proper functioning of the HydroCycle-PO4. 



8 

1.3.4. Calculating the reference hourly TRP load 

 Hourly TRP concentrations (section 1.3.3.2) and hourly drainage discharge measurements 

(section 1.3.3.1) were used to calculate the reference hourly TRP load as 

Loadref = ∑ QiCi
n
i=1                                                                                                                                 (1) 

where Loadref is the reference TRP load (kg/ha), Qi is the hourly drainage discharge (m3/h), and Ci 

is the hourly TRP concentration (mg/L). To adjust for units, a conversion factor of 4.44 × 10−5 

was used. Any day that had missing data for any number of hours was eliminated from the analysis. 

1.3.5. Description of sampling strategies for TRP load estimation 

1.3.5.1. Time-proportional discrete sampling 

 The reference hourly TRP concentration was subsampled to create eight hypothetical time-

proportional discrete frequencies: 3-h, 6-h, 12-h, 1-day, 2-day, 3-day, 7-day, and 14-day intervals 

(Figure 1.2). The load for each sampling frequency was estimated by multiplying the TRP 

concentration of the selected sample and the cumulative drainage discharge during the relevant 

sampling interval as follows: 

Loadest = 4.44 × 10−5 × (∑ QjCj
n
j=1 )                                                                                                                        (2) 

where Loadest is the estimated load (kg/ha), Qj is the cumulative drainage discharge during the 

sampling interval (m3/h), and Cj is the TRP concentration in the middle of the sampling interval 

(mg/L).  

 The starting point for our artificial subsampling was January 11, 2019, the day that we 

started collecting TRP concentration data. The TRP load for each sampling strategy was estimated 

with 24 iterations due to the possibility of different starting times during a day (from 00:00 to 

23:00). The calculation uncertainty for each load is minimized by performing several iterations, as 

outlined in Williams et al. (2015). 
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 There were some gaps in the TRP concentration dataset. Malfunctioning and removal of the 

instrument for regular maintenance accounted for 211 days of no concentration data. No-flow 

condition also occurred for 10 days due to freezing of water inside the control structure during 

winter and drying of water inside the control structure. As a result, 305 days of flow data out of 566 

days were used in the analysis.  

1.3.5.2. Time-proportional composite sampling 

 Time-proportional composite sampling involves the collection of numerous aliquots 

collected at regular intervals over a specified period. These aliquots form a composite sample that 

is representative of the sampling period. To investigate the effect of time-proportional compositing 

scenarios on the accuracy of TRP load estimation, we estimated the daily TRP load with various 

compositing scenarios based on the reference dataset described in section 13.4. 

 The reference hourly TRP concentration dataset was subsampled to create 20 hypothetical 

time-proportional composite sampling scenarios: 1-, 2-, 3-, and 7-day composites, each with 1, 2, 

4, 6, and 8 aliquots per day (Figure 1.2). The TRP concentration in the composite sample was 

considered equal to the average of the TRP concentrations over the sampling interval. Then, we 

calculated the TRP load by multiplying the average TRP concentration with its associated drainage 

discharge during the sampling interval.  We did not account for any potential effect of bottles 

remaining in the automated sampler until retrieval and any effect that delayed filtering may have 

on P concentration. 
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1.3.5.3. Flow-proportional discrete sampling 

 Flow-proportional sampling is a strategy widely used in water quality monitoring programs 

(Kladivko et al., 1991; Schleppi et al., 2006; Stone et al., 2000; Ulén & Persson, 1999; Wang et al., 

2003). In this strategy, the water sample is collected when a specified volume or depth of water 

passes the monitoring point. Four volumetric depths of 1.0, 2.0, 3.0 and 5.0-mm were selected as 

flow intervals (Figure 1.2). These hypothetical manual flow-proportional discrete sampling 

scenarios were implemented on the reference hourly TRP concentration dataset.  

1.3.5.4. Flow-proportional composite sampling 

 The reference hourly TRP concentration was the basis to create hypothetical flow-

proportional composites. Since 1-L bottles are commonly used in automated samplers, each bottle 

can hold six 150-ml aliquots without risk of bottle overflow for a total volume of 900 ml per bottle. 

To estimate the TRP concentration for each sample bottle, the reference hourly TRP concentration 

was subsampled for each aliquot based on four flow depth intervals of 1.0, 2.0, 3.0 and 5.0-mm. 

Then, the six aliquots per bottle were averaged to generate the TRP concentration for each sample 

bottle (Figure 1.2).  
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Figure 1.2. Sampling strategies and sampling scenarios investigated in this study. 
 

1.3.6. Calculating uncertainty of TRP load estimation 

 The relative error quantifies the uncertainty in load estimates (Harmel et al., 2006; Williams 

et al., 2015). The relative error was calculated as 

e(%) = (
Loadest−Loadref

Loadref
) × 100                                                                                                                                      (3) 

where e is the uncertainty (%), Loadest is the estimated TRP load based on the specific sampling 

interval or compositing scenario (kg/ha), and Loadref is the reference hourly TRP load (kg/ha). 

 The difference between the estimated load and reference load was calculated after each 

iteration of the TRP load estimation, which resulted in a distribution of uncertainty values. The bias 

and precision of the P load estimate were determined from this distribution. We used the distribution 

(e50) median as a measure of bias and computed precision as the difference between the 95th (e95) 

and 5th (e5) percentiles of the distribution (Williams et al., 2015). 
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1.4. Results and Discussions 

1.4.1. Relationship between hourly drainage discharge and hourly TRP concentration 

 The hourly TRP concentrations in our study varied from 0.007 to 1.161 mg/L with an 

average of 0.136 mg/L. These hourly TRP concentrations were generally higher than those reported 

by previous studies, which used larger sampling intervals ranging from daily to monthly (Daigh et 

al., 2015; Daly et al., 2017; Tiemeyer et al., 2009). Our higher TRP concentrations may be explained 

by the finer hourly dataset that did not require immediate sample filtration (Harmel et al., 2006, 

2018; Massri et al., 2021), as opposed to the coarser temporal resolution used in previous studies. 

The previous studies collected samples with longer sampling intervals that could have missed 

higher P concentrations occurring at peak flows. Hourly drainage discharge rates in our study varied 

between 0.016 and 0.062 mm/h. Differences in soil, climate, drainage system, and agronomic 

practices also may explain the difference in P concentration between our study and previous studies 

(King et al., 2015). 

 Temporal variations in hourly drainage discharge and hourly TRP concentration indicated 

that TRP concentration tended to increase during high flow events, whereas it remained steady 

during baseflow (Figure 1.3). A similar relationship was reported by other studies (Bende-Michl et 

al., 2013; Stamm et al., 1998; Vidon & Cuadra, 2010). Our combined results show the importance 

of high-frequency P sampling to accurately measure P concentration variation during high flow 

events. Subsequently, an accurate measure of P concentration variation leads to an accurate 

evaluation of the P transport dynamics (i.e., rapid P changed during storm events, event hysteresis 

pattern, flushing and flashiness). The hourly TRP concentration and drainage discharge 

measurements during two other periods are provided in Figure A1.2 and A1.3. 
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Figure 1.3. Hourly TRP concentration and drainage discharge in a subset of reference dataset from 

March 18, 2020, to May 17, 2020. 
 
 

1.4.2. Time-proportional discrete sampling scenarios 

 The accuracy of TRP load estimation was considerably affected by sampling frequency 

(Table 1.1) (Figure A1.4). The estimated TRP load decreased as sampling interval increased from 

3 h to 14 days, which led to underestimation of TRP load compared to the reference hourly load 

(Table 1.1). This underestimation became considerable when the sample collection frequency was 

longer than one day. For example, the estimated TRP load based on 14-day sampling interval was 

0.67 kg/ha, which was 51% less than the reference TRP load. Sampling intervals longer than one 

day often miss sharp increases in P concentration during the rising limb of the event flow 

hydrograph and the peak P concentration during storm events, thus, they do not accurately represent 

P variation (section 1.4.1). Therefore, the shorter the sampling interval, the better representation of 

the rapid variation of P concentration during storm events (Figure A1.5).  

 Bias increased from –0.6 at 3-h sampling interval to –47.8 at 14-day sampling interval 

(Figure 1.4 and Table 1.1). The precision of P load estimation generally decreased as the sampling 
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interval increased, which was due to high temporal variations in P concentration in drainage 

discharge. As P concentration dramatically varies from baseflow to event flows, different sampling 

intervals might produce considerably different P load estimates, especially when using long 

sampling intervals. 

 The total number of collected samples varied from only 22 samples, when using a 14-day 

interval, to 2440 samples, when using a 3-h hour interval (Table 1.1). The decrease in the total 

number of collected samples from 2440 to 22 resulted in an increase of error from –0.2% to –51.0%. 

Therefore, the total number of collected samples in the time-proportional discrete sampling strategy 

considerably affected the P load estimates.  

Table 1.1. Uncertainty indicators (relative error, bias, and precision) for TRP loads estimated using 

different time-proportional discrete sampling intervals for the entire period of the study. 

Sampling 

interval 

Common 

Sampling 

method 

Total number of 

samples that needs 

to be analyzed 

TRP load 

(kg/ha) 

Relative error 

in TRP load 

(%) 

Bias 

(e50) 

Precision 

(e5 to e95) 

1 h 

(reference) 
Automated  

7320 

1.37 – 

– – 

3 h 

Automated 

2440 1.36 –0.2 –0.6 –1/–0.3 

6 h 1220 1.34 –1.4 –1.5 –2.8/–1.3 

12 h 610 1.29 –5.3 –4.8 –7.8/–2.6 

24 h 305 1.20 –12.2 –12.0 –18.8/–5.6 

48 h 

Manual 

154 1.10 –19.2 –20.4 –34.5/–2 

72 h 100 0.99 –27.2 –28.3 –40.4/–13.7 

7 days 44 0.78 –42.7 –41.1 –59/–27.7 

14 days 22 0.67 –51.0 –47.8 –72/–36 
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Figure 1.4. Bias and precision of TRP load estimation using different sampling intervals (e50, 

median representing bias; e5 and e95, 5
th and 95th percentiles representing precision, respectively). 

 

1.4.3. Time-proportional composite sampling scenarios 

 The number of aliquots did not considerably affect precision and bias in P load estimation 

(Table 1.2), which was consistent with the study of Harmel & King (2005). Compositing scenarios 

using 1 and 8 aliquots had the lowest and highest precision, respectively. Precision did not 

considerably differ for composite samples from 1  to 7-day intervals. By contrast, bias was 

considerably affected by compositing interval. The 1-day composite with 1 aliquot is analogous to 

discrete sampling with 1-day sampling interval. The 1-day composite had the lowest average bias 

of –12.5, whereas the 7-day composite had the highest average bias of –42.8 across varying numbers 

of aliquots. These results indicate that the 1-day composite with 1 aliquot per day is a reliable and 

cost-effective strategy for P load estimation. 

 The 1-day composite had the lowest uncertainty in TRP load estimation compared to 2, 3, 

and 7-day composites (Table 1.2). The highest relative error (43.0%) was observed for the 7-day 

composite, suggesting that longer compositing intervals considerably underestimated TRP load. 

The total number of composite samples varied from 44 to 305 when implementing 1-day and 7-day 
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composite scenario, respectively (Table 1.2). The decrease in the total number of collected samples 

from 305 to 44 resulted in an increase of error from –12.4% to –43%. Therefore, the total number 

of collected samples in the time-proportional composite sampling strategy considerably affected 

the P load estimates. 

 It is important to note that results of this section assume there is no error from delayed 

filtering of sample. We used HydroCycle-PO4 instrument that provides real-time P concentration, 

while under field conditions, samples remain in the automated sampler until they are retrieved. 

Thus, the delay in sample filtration after sample collection generates uncertainty in DRP 

concentration measurements (Harmel et al., 2006, 2018; Massri et al., 2021). Therefore, the actual 

error from the time-proportional composite sampling strategy is expected to be slightly higher than 

the ones reported in this study because P concentration has been shown to decrease over time if not 

filtered. 
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Table 1.2. Uncertainty indicators (bias and precision) for the TRP loads estimated by different time-

proportional composite sampling scenarios for the entire period of the study. Relative error was 

calculated for the TRP loads were averaged across different number of aliquots (1, 2, 4, 6, and 8 

aliquots per day). 
Compositing 

scenario 

Number 

of aliquots 

per day 

Total Number of 

samples That Needs to 

Be Analyzed 

TRP Load 

(kg/ha) 

Relative Error 

in TRP load 

(%) 

Bias (e50) 
Precision  

(e5 to e95) 

Reference – 7320 1.36 – – – 

1-day 

composite 

1 

305 1.20 –12.4 

–12.0 –18.8/–5.6 

2 –12.4 –14.3/-11.1 

4 –12.6 –12.9/-12.2 

6 –12.7 –12.9/-12 

8 –12.6 –12.7/-12.5 

2-day 

composite 

1 

154 1.10 –19.7 

–19.2 –23/-16.1 

2 –20.0 –20.3/-18.9 

4 –19.9 –20.3/-18.9 

6 –20.0 –20.3/-18.9 

8 –19.7 –20.1/-19.5 

3-day 

composite 

1 

100 0.99 –27.7 

–28.1 –30/-23.7 

2 –27.8 –28.0/-26.9 

4 –27.7 –28.2/-26.6 

6 –27.8 –28.0/-26.9 

8 –27.4 –27.9/-27.3 

7-day 

composite 

1 

44 0.78 –43.0 

–42.7 –45.6/-33.6 

2 –42.7 –43.0/-42.5 

4 –43.1 –43.6/-42.8 

6 –42.7 –43.0/-42.5 

8 –42.8 –42.8/-42.6 
 

 

1.4.4. Flow-proportional discrete sampling scenarios 

 The analysis of flow-proportional discrete sampling scenarios showed that the flow interval 

can affect the accuracy of TRP estimations. However, this effect may not be substantial. The shorter 

1-mm flow interval scenario underestimated the TRP load for 0.2% while there was a 5.1% 

underestimation in TRP load estimation while using the longer 5-mm flow interval scenario (Table 

1.3). All scenarios underestimated the TRP load for the study period. Overall, the accuracy of flow-

proportional discrete sampling in TRP load estimation was acceptable with any sampling interval. 

High accuracy is obtained by using this sampling strategy because a greater portion of samples are 

taken at higher flow rates (Ulén & Persson, 1999) (Figure A1.6). Therefore, the shorter the flow 

interval, the better representation of the variation of P concentration during a storm event. 
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Even though there were no major differences among relative errors of the flow-proportion 

discrete sampling strategies, the number of samples that needed to be analyzed were considerably 

different, from 389 samples when using 1-mm flow interval to 85 samples when using 5-mm flow 

interval. The six-aliquot compositing also followed the same trend of requiring a smaller number 

of samples for the 1-mm interval compared to the 5-mm flow interval. Therefore, the larger 

sampling intervals can provide reasonably well estimates of P load while costing much less for 

water analysis. 

Table 1.3. Uncertainty indicators (relative error, bias, and precision) for TRP loads estimated using 

different flow-proportional sampling scenarios (discrete sampling and six-aliquot compositing). 

Sampling Scenario 
Flow 

interval 

Total Number of Samples 

That Needs to Be 

Analyzed 

TRP load 

(kg/ha) 

Relative error in 

TRP load estimation 

(%) 

Reference  7320 1.37 - 

Discrete sampling 

1 mm 389 1.37 –0.2 

2 mm 190 1.33 –3.1 

3 mm 127 1.32 –2.9 

5 mm 85 1.30 –5.4 

Six-aliquot compositing 

1 mm 66 1.36 –0.5 

2 mm 34 1.27 –7.2 

3 mm 24 1.30 –4.8 

5 mm 16 1.34 –1.9 
 

1.4.5. Flow-proportional compositing sampling scenarios 

The accuracy TRP load estimation was not sensitive to the flow interval when using flow-

proportional compositing sampling. Generally, no trend was observed between the relative error in 

TRP load estimation and flow interval (Table 1.3). The highest error (-7.2% underestimation) was 

produced by 2-mm flow interval with 34 composite sample. The least error also was observed when 

using 1-mm flow interval with 66 analyzed samples. 
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1.4.6. Practical application of the findings 

According to the results, total number of samples that needs to be collected and analyzed 

was substantially different when selecting various sampling intervals (Tables 1 to 3). Although a 

fewer number of samples were collected and analyzed in flow-proportional sampling strategies than 

time-proportional sampling strategies, lower uncertainty in TRP load estimation was observed 

when using flow-proportional sampling strategies. For example, if 5% error in P load estimation is 

the target, 85 and 610 samples need to be analyzed when using flow-proportional and time-

proportional sampling strategies, respectively. Although time-proportional sampling strategies are 

simpler to be implemented, the flow-proportional sampling strategy best represents the cumulative 

P load in drainage discharge because a greater portion of samples are taken at higher flow rates 

(Figure 1.5) (Harmel et al., 2003). Therefore, the flow-proportional sampling strategies provided a 

more accurate estimate of cumulative P load at a lower analysis cost compared to time-proportional 

sampling strategies. 

 

Figure 1.5. An example of the difference in sample timing between time-proportional and flow-

proportional sampling. 
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 During the decision-making process, the suitable sampling strategy is the one that provides 

a balance between the purpose of the study and the budget. Flow-proportional sampling strategies 

can estimate cumulative P loss during a certain period with a fewer number of water samples 

compared to time-proportional sampling strategies. However, they fail to record the P concentration 

in drainage discharge at each time step especially during storm events when P concentration 

fluctuates rapidly. Generally, a shorter flow interval is suitable for smaller drainage areas, when P 

load is the objective, because a smaller drainage area conveys a less volume of water. Similarly, a 

longer flow interval is suitable for larger drainage areas.  

 High-frequency time-proportional discrete sampling strategy is needed, if P transport 

dynamics (rapid P changed during storm events, event hysteresis pattern, flushing and flashiness) 

are of interest to the monitoring program. If other low-frequency sampling strategies are used to 

assess P transport dynamics, they cannot capture rapid changes in P concentration during peak flow, 

thereby creating bias in the results. If accurate P transport dynamics is required, automated sampler 

or real-time sensors like HydroCycle-PO4 are needed. Due to the limited capacity of automated 

samplers, they cannot hold many of bottles. Therefore, water samples need to be retrieved from the 

field frequently, especially during storm events, or when time or flow interval is short. Besides, 

real-time sensors eliminate any error related to delayed filtering. 

Under field conditions, depending on the selected sampling frequency, time-proportional 

discrete sampling can be performed either with manual grab samplers (i.e., sampling intervals 

longer than a day) or using automated samplers (i.e., sub-daily frequencies). An automated sampler 

can be used for all four sampling strategies. However, flow-proportional strategies rely on an 

external flow/depth sensor to send a signal to the data logger, and then the data logger sends another 

signal to the automated sampler to trigger sampling. This means that there is a greater chance of 
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losing concentration data due to failure or malfunction of one of the sensors because there are more 

parts involved in the sampling process. A time-proportional strategy has a lower chance of losing 

the concentration data because sampling does not rely on the flow/depth sensor.  

 A simple diagram showing the cost and relative error of the four sampling strategies for the 

study period is illustrated in Figure 1.6. For all sampling strategies, except for the 1 to 14-day 

discrete time-proportional sampling, an automated sampler is needed, so we included the cost of 

one automated sampler (assuming $5000) for each strategy. For all strategies, a standard flow sensor 

is required to estimate the P load (assuming $5000) for each strategy. We assumed $10 per sample 

as the cost of chemical analysis. The flow-proportional sampling strategies produced almost the 

same accuracy for estimating P load as the high-resolution time-proportional sampling strategies 

(3h, 6h, and 12h) with lower cost (Figure 1.6). The cost analysis is presented in Table A1.2. 
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Figure 1.6. A simple diagram of the differences in cost and relative error of the four sampling 

strategies over 305 days. All sampling strategies included a cost for an automated sampler, except 

for the 1 to 14-day discrete time-proportional sampling. The cost of $10 per sample was included 

in the analysis. The cost of a flow sensor was included for all strategies. 
 

1.5. Conclusion 

 It is critical to obtain accurate P load estimates from subsurface-drained fields to 

comparatively evaluate conservation practices. In this study, we evaluated the accuracy of the 

following sampling strategies in P load estimation in drainage discharge: 1) time-proportional 

discrete sampling, 2) time-proportional composite sampling, 3) flow-proportional discrete sampling 

and 4) flow-proportional composite sampling. Our study resulted in eight key conclusions: 

• All sampling strategies underestimated TRP load compared to the reference dataset. This 

underestimation should be considered in P budget calculations. 

• As time-proportional discrete sampling intervals increased from 1 day to 14 days, 
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underestimation of TRP load changed from 12% to 51%. The uncertainty in TRP load 

estimation declined as the sampling interval decreased. 

• The underestimation of TRP load changed from 12% to 43% as the time-proportional 

compositing scenario increased from 1-day to 7-day composite, each with one aliquot per 

day. 

• The number of aliquots (1, 2, 4, 6, and 8 aliquots per day) collected for the 1- to 7-day time-

proportional composite did not considerably affect the accuracy of load estimations. 

• In the case of flow-proportional discrete sampling strategies, both discrete and composite 

sampling produced accurate results (the relative error from –0.2% to –7.2%). 

• The flow-proportional sampling strategies provided a more accurate estimate of cumulative 

P load at a lower analysis cost compared to time-proportional sampling strategies. 

 The purpose of the monitoring project should dictate the sampling strategy. If calculating 

the cumulative P load during a certain period is the main purpose of a monitoring program, flow-

proportional sampling strategies (either discrete or composite) can be used to provide fairly accurate 

results with a smaller P budget underestimation. If P transport dynamics (rapid P changed during 

storm events, event hysteresis pattern, flushing and flashiness) are of interest, high-frequency time-

proportional sampling strategies are recommended. The high-frequency time-proportional 

sampling strategies can be performed with automated samplers or real-time sensors. This study 

provides new insight about the accuracy of each sampling strategy as stand-alone method, thereby 

helping the user make the best decision for choosing a sampling strategy. Even though this study 

deals with TRP, the findings apply to DRP because both are comprised of dissolved form of P. 
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CHAPTER 2 

INVESTIGATION OF PHOSPHORUS TRANSPORT DYNAMICS USING HIGH-

FREQUENCY MONITORING AT A SUBSURFACE-DRAINED FIELD IN THE WESTERN 

LAKE ERIE BASIN 
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2.1. Abstract 

 To minimize the environmental impact of phosphorus (P) loss from subsurface-drained 

fields to freshwater water bodies like the Great Lakes, a detailed understanding of P transport 

dynamics is vital. The main objective of this study was to investigate P transport dynamics using 

high-frequency monitoring. We used the HydroCycle-PO4 instrument to measure total reactive P 

(TRP) concentration at a high resolution from a subsurface-drained farm with continuous no-till 

and Blount loam soil. We used a dataset containing hourly TRP concentration and hourly drainage 

discharge measurements in the analysis. Results showed that there was a good relationship between 

TRP concentration and drainage discharge (R-squared = 0.60) such that TRP had a transport-

limited chemodynamic pattern, that is TRP concentration tended to increase with increase in flow 

during events. A 1% increase in drainage discharge resulted in a 1.36% increase in TRP load, 

indicating a significant increase in P concentration during high flows. We found that flow events 

substantially contributed to P loss (89%) because of capturing the rapid increase in P concentration 

during high flows. The rate of increase in P concentration during the rising limb ranged from 0.02 

to 0.66 mg/L per hour. The highest 7.7% of drainage flow transported 75% of the TRP load during 

the monitoring period. The hysteresis pattern tended to be positive (clockwise) during the study 

period, indicating that preferential flow was a pathway for TRP loss. Most flow events (30 out of 

36) displayed a flushing effect in which P concentration increased with rise in drainage discharge. 

In conclusion, high-frequency P sampling showed that management and conservation practices 

should target flow events to reduce P loss. 
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2.2. Introduction 

 Nutrient transport, especially phosphorus (P), through agricultural subsurface drainage 

systems has been recognized as a problem for large lakes, such as Lake Erie (Ghane et al., 2016; 

Makarewicz et al., 2007; Pease et al., 2018; Pease et al., 2018; Williams et al., 2016). To reduce 

phosphorus loss in drainage discharge, management and conservation drainage practices have been 

recommended by environmental specialists, including 4R approaches, controlled drainage, and 

phosphorus removing structures (Carstensen et al., 2019; Penn et al., 2007; Hoffmann et al., 2020; 

King et al., 2018). If informed decisions for P reduction practices at the field scale are to be 

effectively implemented, a better understanding of P transport dynamics and P movement 

hydrochemistry from subsurface-drained farms will be needed. 

 High flows are responsible for the majority of P loss at the watershed scale because there is 

a strong correlation between P concentration and drainage discharge (Bende-Michl et al., 2013; 

Dialameh & Ghane, 2022; Vidon & Cuadra, 2011). At the field scale, Williams et al. (2015) 

reported that 2% of the highest flows transported more than 50% of the annual dissolved reactive 

phosphorus (DRP) load based on sub-daily to daily sampling intervals. Reinhardt et al. (2005) 

studied a wetland receiving drainage water from agricultural fields and reported that most of the 

annual P load was related to high discharge events based on daily composites. Dialameh & Ghane 

(2022) found that P concentration increases rapidly with increase in drainage discharge based on 

hourly P data. However, to our knowledge, we found no study that had investigated P transport 

dynamics with hourly data at the field scale. Therefore, there is a need for further investigations of 

the patterns and controls on P transport at the field scale using fine-resolution hourly data to assess 

the efficacy of conservation drainage practices aimed at mitigating P loss. 

 With the emergence of in-situ high-tech instruments, researchers have access to real-time 
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high-frequency water quality monitoring to gain a better insight of nutrient transport processes 

(Ouyang, 2021). Liu et al. (2020) measured drainage discharge and concentration of nitrate at high 

resolutions of 15 and 45 min to show the use of high-frequency monitoring. Their results showed 

that high-frequency monitoring can capture the rapidly changing nitrate concentration with varying 

drainage discharge. Speir et al. (2021) used high-frequency nitrate and drainage discharge 

measurements to determine the physicochemical controls of nitrate export across time scales at the 

watershed scale. Their results showed high-resolution nitrate concentration data was able to 

precisely document the magnitude of the deleterious effects of nitrate transport by flow events in 

agricultural watersheds. Although some studies have investigated the role of flow events on nitrate 

transport using high-frequency measurements, the P transport mechanism remains unknown due to 

technical challenges and the lack of advanced instruments. 

 Although high-frequency data have enhanced our understanding of nitrate transport 

dynamics and its hydrochemical processes in drainage discharge (Liu et al., 2020), our 

understanding of P transport dynamics and its hydrochemical processes is still lacking due to the 

high cost of high-frequency sampling. To our knowledge, no study has investigated P transport 

dynamics and its hydrochemical processes in drainage discharge using sub-daily high-frequency 

data. The objectives of this field-scale study were using high-frequency P concentration 

measurements to: (1) analyze P transport pattern at the event scale, (2) infer likely processes 

involved in the patterns observed at the event scale, and (3) evaluate the effect of sampling strategy 

on the accuracy of P transport analysis. The value of this study is that it enhances our understanding 

of P transport dynamics so that informed decisions for P reduction strategies can be effectively 

implemented.  
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2.3. Materials and Methods 

2.3.1. Study site 

 This investigation was performed from January 2019 to July 2020 on a privately owned 

subsurface-drained farm (22.4 ha) in Lenawee County, Michigan, USA (Figure 2.1). The Blount 

loam (fine, illitic, mesic Aeric Epiaqualfs) was the field’s dominant soil type. This soil type is 

known as a poorly drained soil under natural conditions (USDA-NRCS, 2022). The average drain 

depth and spacing were 0.75 m and 12 m, respectively. During the study period, the drainage system 

was under conventional free drainage. 

 

Figure 2.1. Drainage layout of the study site (CL Site) in Lenawee County, Michigan, USA. 
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 The cropping system was continuous corn during the study period. Cereal rye was planted 

as the winter cover crop. No-till was adopted as the conservation tillage practice. The farmer surface 

broadcasted manure at a rate of 43.2 kg-P/ha and 5.3 kg-P/ha in January and December 2019, 

respectively. In May 2020, pop-up commercial fertilizer was applied at planting in contact with the 

seed in furrows. The chemical fertilizer had the formulation of 9-18-9 with sulfur and contained 2.9 

kg-P/ha. 

2.3.2. Precipitation data 

 We used an ATMOS-41 (METER Group, Inc., USA) that is a microclimate sensor suite to 

collect rainfall data. This built-in device measures rainfall with a resolution of 0.017 mm. Because 

the ATMOS-41 does not measure snow, we used the snow water equivalent data provided by 

National Oceanic and Atmospheric Administration (NOAA) weather station. The NOAA weather 

station was located at the Adrian Lenawee County Airport which was 13.5 km away from the on-

farm research site. 

2.3.3. High-frequency measurement of drainage discharge 

 During the study period, hourly drainage discharge was measured by two different methods. 

In the first method, a sharp-crest metal-edge 45-degree V-notch weir (Agri Drain Corp., USA) was 

used to measure drainage discharge. The weir was inserted inside a 25-cm water-level control 

structure (Agri Drain Corp., USA). Two conditions should have been satisfied to use this method: 

(1) the flow should be less than the weir capacity (i.e., maximum weir flow); and (2) the level of 

water in the downstream chamber of the control structure should not rise above the V-notch apex. 

The water level inside the control structure was measured hourly using a HYDROS-21 water-level 

sensor. Then, the measured water levels and a calibrated equation developed by Shokrana and 

Ghane (2021) were used to estimate the hourly drainage discharge. However, when neither of 
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abovementioned two conditions were met, the second method was used. In this method, a TIENET-

350 area-velocity sensor (Teledyne ISCO, USA) installed at the downstream of the control structure 

was used to measure hourly drainage discharge. Overall, the area-velocity sensor and V-notch weir 

provided the high and low flow rates, respectively. 

2.3.4. High-frequency measurement of phosphorus concentration 

 We measured P concentration in drainage discharge at the high-resolution of two hours 

using the HydroCycle-PO4 instrument (Sea-Bird Scientific, USA) (Figure A2.1). The HydroCycle-

PO4 is an in-situ instrument that measures real-time P concentration colorimetrically using a 

heteropoly molybdenum-blue complex (Murphy & Riley, 1962). The HydroCycle-PO4 conducts 

the P concentration measurements on an unfiltered sample. Therefore, the measurements represent 

TRP (Rice et al., 2017). The inorganic form of P is known as reactive because it is readily 

bioavailable. 

 The Sea-Bird Scientific company does not specify an accuracy and precision range for the 

HydroCycle. However, recent studies have reported an accuracy ranging from –5 to 20%, standard 

deviation ranging from 0.0005 to 0.0020 mg/L, and coefficient of variation ranging from 0.14 to 

5.78% (Johengen et al., 2017; Snazelle, 2018). The maximum P detection limit of the sensor is 1.2 

mg/L while it has a minimum P detection limit of 0.002 mg/L. 

 The concentration of TRP in drainage discharge was monitored from January 2019 to July 

2020. Every week, we downloaded the TRP concentration data from the data logger and used the 

CycleHost software (Sea-Bird Scientific) for processing. Ultimately, to estimate hourly TRP 

concentrations, we linearly interpolated the 2-hour interval TRP concentrations. This linear 

interpolation was justified because the 2-hour concentrations captured the peak of the concentration 

during peak flows. Thus, linear interpolation would still capture the peak concentration. 
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 The HydroCycle-PO4 was equipped with a 7.5-µm screen mesh to reduce sediment intake. 

The instrument was cleaned every week to maintain high-quality monitoring. Every 3 to 4 months, 

new cartridges were installed to maintain proper performance of the instrument. 

2.3.5. Estimating the TRP load 

 We used hourly TRP concentration and drainage discharge to estimate the hourly TRP load 

as 

Load = ∑ QiCi
n
i=1                                                                                                                                                              (1) 

where Load is the TRP load (kg/ha), Qi is the hourly drainage discharge (m3/h), and Ci is the hourly 

TRP concentration (mg/L). A conversion factor of 4.44 × 10−5 was used to adjust the units. When 

any number of hours within a day was missing, we disregarded that day from the analysis.  

2.3.6. Determining phosphorus transport dynamics 

 To assess P transport dynamic, we evaluated the relationship between TRP concentration 

and drainage discharge (C − Q  relationship) and relationship between TRP load and drainage 

discharge (L − Q relationship). 

 For the C − Q relationship analysis, a linear regression was developed for the plot of natural 

logarithm of hourly TRP concentration, against natural logarithm of hourly drainage discharge: 

LnC = bLnQ + Lna                                                                                                                                                   (2) 

where C is the hourly TRP concentration (mg/L), Q is the hourly drainage discharge (mm), b is the 

slope, and a is a constant. The slope of the regression line provides useful information about how 

nutrient concentration changes with varying drainage discharge. Using thresholds defined by 

Bieroza et al. (2018), we classified the slopes of the regression line into three categories: 1) 

chemostatic indicating no significant change in P concentration when drainage discharge changes 

(−0.1 < slope < 0.1 ), 2) transport-limited chemodynamic indicating an enrichment response 
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across the range of flows observed (e.g., increasing drainage discharge results in increasing TRP 

concentrations) (0.1 < slope), or 3) source-limited chemodynamic indicating a dilution response 

across the range of flows observed (e.g., increasing drainage discharge results in decreasing TRP 

concentrations) (slope < −0.1). 

 For L − Q analysis, we fitted a linear regression to the plot of the natural logarithm of hourly 

TRP load, L (kg/ha), versus the natural logarithm of drainage discharge, which is written as 

LnL = bLnQ + Lna                                                                                                                                                                 (3) 

a and b are a constant and slope, respectively. When the slope is equal to one, nutrient concentration 

remains constant under varying drainage discharge. When the slope is greater than one, high 

drainage discharge leads to high nutrient concentration, whereas low drainage discharge leads to 

low nutrient concentration. The regression slope is the percent increase in nutrient load that is 

induced by 1% increase in drainage discharge (Alexander et al., 1996; Tomer et al., 2003). We used 

the 95% confidence interval to determine whether the slope was significantly different from one. 

2.3.7. Description of hypothetical sampling strategies 

 The resolution of the data is important in the outcome of analyzing the P transport dynamics. 

To investigate the effect of sampling strategy on the L − Q relationship, we artificially subsampled 

the reference hourly dataset to create eight hypothetical time-proportional discrete sampling 

strategies. The sampling intervals evaluated were: 3-h, 6-h, 12-h, 1-day, 2-day, 3-day, 7-day, and 

14-day intervals. For each dataset, the daily TRP load was estimated and was plotted against the 

daily drainage discharge.  
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2.3.8. Delineating events 

 The flow events were delineated for event-scale analysis. The beginning of an event was 

the time at which there was at least 20% higher drainage discharge compared to baseflow (Liu et 

al., 2020) (Figure A2.2). The selection of the end point of an event is more arbitrary (Linsley et al., 

1975). Compound events with more than one spike were removed from the from the dataset for this 

analysis. The amount of P loss during each flow event was estimated. We also determined the 

contributions of rising and falling limbs to P transport for each event.  

2.3.9. Quantifying hysteresis and flushing indices 

 Hysteresis analysis provides insights into spatial and temporal dynamics of nutrient source 

availability, nutrient storage, and hydrological pathways (Duvert et al., 2010; Williams, 1989). 

Normalized TRP concentrations (Eq. 4) were used for each flow event to calculate the hysteresis 

index (HI), which quantifies the strength and direction of the hysteresis effect. We calculated HI as 

follows (Lloyd et al., 2016b, 2016a): 

Ci,norm =
Ci−Cmin

Cmax−Cmin
                                                                                                                                                                (4) 

HI =
∑ (Ci,rising−Ci,falling)n

i=1

n
                                                                                                                                                   (5) 

where Ci,norm  is the normalized TRP concentration; Ci  is the ith  event value of measured TRP 

concentration; Cmin  and Cmax  are the event minimum and maximum TRP concentrations, 

respectively; HI  is the event hysteresis index; Ci,rising is the normalized concentration of ith 

segment rising limb; Ci,falling is the normalized concentration of ith segment on the rising limb; and 

n is the scaling factor. A positive HI value means that the TRP concentration peak occurs before 

the drainage discharge peak, whereas a negative HI value means that the TRP concentration peak 

occurs after the drainage discharge peak. HI values between –0.1 and 0.1 display insignificant 
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hysteresis patterns (Liu et al., 2020). 

 The flushing index quantifies event flushing/dilution effects and is calculated as described 

by Vaughan et al. (2017): 

FI = CQpeak − C0                                                                                                                                                                      (6) 

where FI is the flushing index, CQpeak is the normalized TRP concentration at the peak of the event 

hydrograph, and C0 is the normalized TRP concentration at the beginning of the event hydrograph. 

A positive FI  indicates a flushing effect (chemodynamic transport-limited pattern) when TRP 

concentration in drainage discharge is higher during the event than in baseflow. By contrast, an 

event has a dilution effect (chemodynamic source-limited pattern) when FI is negative (Liu et al., 

2020). The FI increases the understanding of P behavior at peak flows (Speir et al., 2021). FI values 

between –0.1 and 0.1 display insignificant dilution/flushing effects or chemostatic pattern (Liu et 

al., 2020). 

2.4. Results 

2.4.1. Relationship between TRP concentration and drainage discharge 

 The hourly drainage discharge rate differed from 0.016 to 0.062 mm/h. The average hourly 

TRP concentration was 0.136 mg/L with minimum and maximum values of 0.007 mg/L and 1.161 

mg/L, respectively. The high-frequency measurements of TRP concentration and drainage 

discharge showed that TRP concentration rapidly increased during flow events, while it did not 

fluctuate during baseflow (Figure 2.2). The linear regression between hourly TRP concentration 

and hourly drainage discharge was statistically significant (P-value  0.001) (Figure 2.3). 
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Figure 2.2. Precipitation, hourly TRP concentration, and drainage discharge during the study 

period. The green lines show the events that were investigated. 

 

 

Figure 2.3. Relationship between hourly TRP concentration and hourly drainage discharge during 

the study period (January 2019 to July 2020). 
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The TRP concentration had a transport-limited chemodynamic behavior because the slope 

was greater than 0.1 (b =  0.36, p < 0.001; Figure 4). According to the seasonal C − Q analysis, 

all seasons showed transport-limited chemodynamic pattern (spring: b =  0.58, p < 0.001; fall 

b =  0.43, p < 0.001; winter: b =  0.98, p < 0.001; Figure A2.3), except summer that had a 

chemostatic pattern (summer: b =  0.06, p > 0.05; Figure A2.3).  

 

Figure 2.4. Relationship between hourly TRP concentration and hourly drainage discharge 

throughout the study period. 

 

2.4.2. Relationship between TRP load and drainage discharge 

 The linear regression of the natural log of hourly TRP load against the natural log of hourly 

drainage discharge indicated that the slope of the line significantly differed from one (p <  0.001) 

(Figure 2.5). The slope of 1.36 means that with every 1% increase in drainage discharge TRP load 

increased by 1.36%. The seasonal L − Q relationship analysis also showed that the slope of the 

regression line was significantly different from one during spring (b =  1.58, p < 0.001), fall 

(b =  1.43, p < 0.001), and winter (b =  1.98, p < 0.001) while for summer, insignificant slope 

was observed (b =  1.06, p < 0.001) (Figure 2.6). The contribution of each flow event to P loss 

during the study period varied from 0.1% to 14.6%. Flow events in spring and fall had the highest 
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(4.4%) and lowest (1.1%) contribution to P loss, respectively (Figure A2.3).  

 

Figure 2.5. Relationship between hourly TRP load and hourly drainage discharge throughout the 

study period. 

 

 

Figure 2.6. Seasonal relationship between hourly TRP load and hourly drainage discharge. 
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2.4.3. Effect of sampling strategy on the accuracy of P transport dynamic analysis 

 Our analysis showed that sampling strategy significantly affected the slope of the regression 

line and the coefficient of determination (Figure 2.7). For sampling strategies longer than a day, the 

slopes were significantly smaller than one meaning that the correlation between daily TRP 

load/concentration and daily drainage discharge was not strong. The coefficient of determination 

also significantly decreased when using low-resolution sampling strategies. 

 

Figure 2.7. Relationship between daily TRP load derived from different sampling intervals and 

daily drainage discharge throughout the study period. 
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2.4.4. Summary of flow events 

 A total of 46 flow events occurred during the study period, and 36 events were selected for 

further analysis. The average event durations and rising limbs were 29.9 and 4.1 h, respectively 

(Table 2.1). The average of flow during events varied from 0.05 to 0.36 mm/h, with an average of 

0.2 mm/h for all events. The hydrological and hydrogeochemical characteristics considerably 

differed between individual events. The average of TRP concentration during events varied from 

0.14 to 0.91 mg/L. These variations in average drainage discharge and TRP concentration led to a 

wide range of event TRP loads, which differed from 0.001 to 0.198 kg/ha, with an average of 0.022 

kg/ha for all events (Table 2.1). 

2.4.5. Contribution of event flow to P loss 

Approximately 76% of P load was transported during the falling limb, whereas 24% of the total P 

was transported during the rising limb. This was due to the duration of the falling and rising limbs; 

the longer duration of the falling limb generates more flow, which in turn contributes to more P 

load (Table 2.1). The results showed that baseflow and event flow contributed approximately 

equally (50% each) to the cumulative total flow, although 11% and 89% of the TRP load was 

transported during baseflow and event flows, respectively (Figure 2.8). The higher TRP load during 

event flows can be explained by the rapid increase in TRP concentration with increasing drainage 

discharge. The top 7.7% of drainage flow transported 75% of the TRP load during the monitoring 

period (Figure 2.9). 
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Table 2.1. Key metrics characterizing the 38 flow events investigated in this study. 

Metric Average 
Standard 

deviation 
Min Median Max 

Flushing index, FI 0.53 0.43 –0.69 0.66 1.00 

Hysteresis index, HI 0.09 0.37 –0.72 0.05 0.94 

Average of flow during events (mm/h) 0.20 0.09 0.05 0.18 0.36 

Peak flow (mm/h) 0.39 0.16 0.09 0.36 0.67 

Event total water (mm) 6.5 5.2 0.8 4.3 22.3 

Average of TRP concentration during events (mg/L) 0.42 0.20 0.14 0.38 0.91 

Event TRP load (kg/ha) 0.036 0.038 0.001 0.022 0.198 

Event duration (h) 30.0 13.8 12.0 25.0 66.0 

Duration of rising limb (h) 5.2 3.2 2.0 5.0 16.0 

Duration of falling limb (h) 25.0 12.2 6.0 23.5 54.0 

 

 

 

Figure 2.8. Contribution of baseflow and event flow to total flow and phosphorus load. 
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Figure 2.9. Percent of total TRP load across the range of flow conditions (as percentile). 

2.4.6. Hysteresis and flushing patterns 

 We observed 14 events with significant positive hysteresis patterns (clockwise with average 

HI = 0.48), 13 events with significant negative hysteresis patterns (anticlockwise with average HI 

= −0.30), and 9 events with no hysteresis patterns (Figure 2.10, Figure 2.11). The average and 

median HI values were 0.1 and 0.05, respectively (Table 2.1). The average of event duration for 

events with positive HI was 29.9 h, for events with negative HI was 31.2 h, and for events with no 

HI pattern was 28.3 h. Therefore, event duration only had a minor effect on the hysteresis pattern. 

Generally, events with negative HI had higher TRP concentration, TRP load, peak flow, and total 

water on average in comparison with events with zero or positive HI. If classifying events based on 

the magnitude of average peak flow, it reveals that events with negative hysteresis index had larger 

peak flow (0.42 mm) than events with positive hysteresis index (0.36 mm).  

 The results for seasonal analysis showed that during the study period (Figure 2.11), events 

occurred in spring tended to have a positive hysteresis effect (mean HI = 0.26), events occurred in 

summer and fall tended to have no hysteresis with a slight tendency to positive hysteresis effect 
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(mean HI = 0.06 for summer, 0.22 for fall), and events occurred in winter tended to have a negative 

hysteresis effect (mean HI = -0.1). However, in all seasons, different HI values were observed 

suggesting a combination of distal and proximal source of P. During the study period, four farm 

operations (planting on 06/16/2019 and 06/02/2020 and harvesting on 06/04/2019 and 10/26/2019) 

were applied to the field, however, no logical relationship was observed between these operations 

and the hysteresis pattern of events. More data maybe need to investigate the effect of farm 

operation on the hysteresis and flushing indices. 

 The FI also ranged from –0.69 to 1, with an average of 0.53. We observed 30 events (84%) 

with significant positive FI (FI < 0.1) or flushing effect, three events with insignificant FI value 

(−0.1 < FI < 0.1), and three events with significant negative FI (FI > 0.1) or dilution effect. No 

seasonal pattern was observed in FI values. 

 

Figure 2.10. Three different events with three different hysteresis patterns of clockwise pattern 

(HI>0), counter-clockwise pattern (HI<0), and no pattern (-0.1<HI<0.1). 
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Figure 2.11. Hysteresis and flushing indices during the entire study period from January 2019 to 

July 2020. There were 14 significant clockwise events (positive hysteresis), 13 significant 

anticlockwise events (negative hysteresis), and 9 no-hysteresis events. Also, there were 30 events 

with positive FI (flushing effect), three events with negative FI (dilution effect), and three events 

with FI effect. Insignificant HI and FI is when –0.1 < HI < 0.1 (shaded area in the graph). 
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2.5. Discussion 

2.5.1. Relationship between TRP concentration and drainage discharge 

 As presented in section 2.4.1, the relationship between the TRP concentration and drainage 

was investigated. The TRP concentrations reported in previous studies were generally lower than 

the those measured in our study (0.007 to 1.161 mg/L) (Daigh et al., 2015; Daly et al., 2017; 

Tiemeyer et al., 2009). Our higher TRP concentrations can be justified by our high-frequency 

hourly data, in contrast to the low-frequency data (ranging from daily to monthly) conducted in 

previous studies. The longer sampling intervals in previous studies may have not captured higher P 

concentrations during high flows.  

 Our study evaluated the TRP relationship with drainage discharge at an hourly time scale. 

An analogous relationship between P concentration and drainage discharge was reported by 

previous investigations (Bende-Michl et al., 2013; Stamm et al., 1998; Vidon & Cuadra, 2010). 

Their results showed that high-frequency P sampling is essential for capturing rapid variations in P 

concentrations. The high-frequency sampling leads to an accurate assessment of P transport 

dynamics (i.e., rapidly changing P concentration during flow events, event hysteresis pattern, 

flushing, and flashiness).  

 The regression results showed that approximately 60% of the variation in the hourly TRP 

concentration was explained by hourly drainage discharge (Figure 2.3). Previous on-farm studies 

have reported weak or insignificant relationships between drainage discharge and P concentration 

(Djodjic et al., 2000; Macrae et al., 2007; Nazari et al., 2021). Macrae et al. (2007) reported R-

square values ranging from 0.03 to 0.58 at seven subsurface-drained fields in Ontario, Canada for 

the relationship between DRP concentration and drainage discharge based on time-proportional 

discrete multiday sampling strategy. Djodjic et al. (2000) reported an R-square value of 0.40 for the 



49 

relationship between DRP concentration and drainage discharge based on flow-proportional 

multiday composite samples, each with 10 aliquots, at four on-station plots in Sweden. Nazari et al. 

(2021) reported an R-square value of 0.098 for the relationship between flow-weighted daily DRP 

concentration and drainage discharge based on a time-proportional two-day composite sampling 

strategy. The reason for the higher R-square value in our study (0.60) than previous studies was the 

presence of hourly time-proportional discrete sampling that was used to monitor P concentration in 

drainage discharge. Flow-proportional and time-proportional sampling strategies with long 

sampling intervals (low-frequency sampling) do not capture the rapid variation in concentration of 

P, especially during flow events when drainage discharge quickly increases and subsides (Figure 

2.2). Our results indicate that drainage discharge is one of the critical factors influencing P loss 

from subsurface-drained fields. 

2.5.2. Contribution of baseflow and event flow to P transport 

 Delineation of P loss associated with each flow component (baseflow and event flow) 

revealed the substantial contribution of high flows to P loss. Williams et al. (2015) reported that 2% 

of the highest flows transported 50% of the annual DRP load based on high-frequency sampling 

(sub-daily to daily). On the contrary, the lowest flows (primarily categorized as baseflow) 

transported considerably less P than high flows. As an example, 25% of P was transported off the 

field by a drainage rate less than 0.18 mm/h, which represents approximately 92.3% of the total 

drainage discharge. 

 Measuring high-frequency P concentration is resource intensive, and we did not find other 

studies that estimated P load in baseflow and event flow using high-frequency data. Our hourly data 

showed that baseflow and event flow contributed 22% and 78% to P loss, respectively.  We expect 

that the contribution of event flow to P load decreases as sampling interval increases because longer 
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sampling intervals do not capture rapid spikes in P concentration in drainage discharge (Figure 

A2.4). For example, if using 7-day time-proportional discrete sampling strategy, the contribution 

of baseflow and event flow become 36 and 64%, respectively. Therefore, there is a need for high-

frequency monitoring of P in drainage discharge when evaluating the contribution of event flow to 

P loss. 

2.5.3. C-Q Relationship 

For the whole period of the study, TRP concentration had a transport-limited chemodynamic 

pattern (Figure 2.4) suggesting variation in drainage discharge drove P loss at the field scale. 

Therefore, the magnitude of the flow event and the total event flow are the dominant factors in P 

transport. Among seasons, winter and summer had the highest and the lowest total event flow, 

respectively. The largest slope of the C − Q relationship was observed in winter (b =  0.98) and 

the smallest slope was observed in summer (b =  0.06). It can be concluded that the higher the 

total event flow, the more dynamic the pattern of P concentration in drainage discharge. 

The slope of C − Q was not calculated for individual flow events. It was calculated for the 

entire period of the study. However, the FI values were considered as a practical indicator for the 

C– Q slope for each event individually. The FI values are equal the slope of the line intersecting the 

normalized TRP concentration at the starting point of the event and the normalized TRP 

concentration at peak discharge (Eq. 5) (Vaughan et al., 2017). Based on the flow event C − Q 

analysis, out of 36 events, 3 events (3%) showed source-limited pattern (FI < −0.1), and 3 events 

(3%) showed chemostatic pattern (−0.1 < FI < 0.1). For majority of the events (30 events equal 

to 84% of total), the pattern of C − Q was chemodynamic transport-limited (FI > 0.1). Based on 

the C − Q  analysis for the study period, the TRP concentration had a transport-limited 

chemodynamic behavior (section 2.4.1). Therefore, the transport-limited chemodynamic C − Q 
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response for individual events came to similar outcome as in the situation when aggregated data 

were used for the C − Q analysis.  

The analysis of C– Q relationship for individual events also reflects a combination of near-

term controls on P concentrations, such as quantity and intensity of rainfall, which interacts with 

management practices, such as fertilizer application time and tillage. The distinct C– Q slopes at 

short versus long times scales is of imperative for accurate estimation of watershed-scale P loads 

(Minaudo et al., 2019), and has substantial implications for downstream water quality, given that 

the majority of P loss from these agricultural fields occurred during high flows. 

2.5.4. L-Q Relationship 

 According to the slope of the regression line, a 1% increase in drainage discharge resulted 

in a 1.36% increase in TRP load. This means that high flows led to increased TRP concentrations, 

which agrees with the results of our linear regression in Section 2.4.1. This result agrees with the 

general positive FI. The high value of the slope for high flows shows that high flows are a dominant 

factor for P transport. Therefore, peak flow should be targeted to reduce P loss. 

 To our knowledge, our slope of 1.36 is the highest reported for a subsurface-drained field 

for any form of P. Madison et al. (2014) reported a slope of 0.96 for DRP for a subsurface-drained 

farm under corn-soybean rotation based on a flow-proportional composite sampling strategy, where 

the authors represented a multiday event with a single flow-proportional composite DRP 

concentration. Their results of finding a reduction in P concentration with increased flow may be 

due to their high-frequency sampling. Ghane et al. (2016) reported a slope of 1.11 for total 

phosphorus for a subsurface-drained farm under corn-soybean rotation using a flow-proportional 

compositing strategy, where a multiday event was represented by a single concentration. The higher 

slope found in our study can be explained by the need for high-frequency sampling to capture rapid 
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changes in concentration. Dialameh and Ghane (2022) reported that high-frequency time-

proportional discrete P sampling is required to accurately assess the departure of the slope from one 

because it captures rapid variation in P concentration during high flows.  

 Our hourly discrete TRP concentrations led to an accurate estimate of the slope of 1.36 for 

TRP, which reveals the importance of high flows in transporting P from subsurface-drained fields. 

The coefficient of determinations (R-square = 0.83) indicates that hydrology has a dominant role in 

TRP transport (Figure 2.4). A previous study reported that TRP transport was primarily due to 

drainage discharge (Tiemeyer et al., 2009). Therefore, the implementation of conservation drainage 

practices that reduce drainage discharge (e.g., controlled drainage) may diminish TRP load 

transport in drainage discharge (Evans et al., 1995). 

2.5.5. Hysteresis and flushing indices 

 The variation in hysteresis index suggests that multiple flow pathways and transport 

mechanisms contribute to P loss to drain pipes (Williams et al., 2018). The general hysteresis pattern 

during our study period tended to be positive, suggesting dominance of proximal source of P, or 

rapid source mobilization over the flow event progress. Liu et al. (2020) found an average negative 

HI value for nitrate (based on a 45-minute time-proportional sampling strategy), which means that 

nitrate concentration peaked after the drainage discharge peak. Ulén and Persson (1999) reported 

equal frequencies of clockwise and anticlockwise HI patterns for DRP in a subsurface-drained field 

without quantifying HI values based on a flow-proportional composite sampling strategy of 10 

consecutive subsamples corresponding to 0.2 mm of drainage discharge. To our knowledge, no 

study has quantified the HI values for the relationship between P and drainage discharge using high-

frequency hourly data. 

 In 14 events with a significant positive hysteresis (clockwise pattern), the TRP concentration 
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peak occurred during the rising limb of the hydrograph and P was transported rapidly to the sample 

collection point. Positive hysteresis indicates that P rapidly moves from the soil surface to the 

drainpipe via preferential (macropore) flow pathways without passing through the soil matrix 

(Williams et al., 2016). Manure was surface broadcasted in 2019 at the study site. The combination 

of surface-broadcast manure and no-till promotes preferential loss of P through macropores (Jarvie 

et al., 2017).  Overall, the positive hysteresis observed at our study site indicated that preferential 

flow pathways contributed to P loss in a no-till soil with loam soil. 

  In fields with a positive hysteresis index, macropores are likely the primary pathway for 

rapid movement of P from the soil surface to the drain pipe (Figure 2.12). Heavy clay soil can 

promote macropores due to the swelling and shrinking of the clay minerals (Jarvis, 2020; King et 

al., 2015). Cullum (2009) found that no-till soil developed more macropores than tilled soil. Macrae 

et al. (2021) recommended that no-till was not combined with surface-broadcast fertilization. 

Instead, fertilizer should be subsurface injected in a no-till field (Williams et al., 2018). If surface 

broadcast cannot be avoided, the fertilizer should be incorporated into the soil, such as subsurface 

banding (Macrae et al., 2021; Williams et al., 2016). 

 

Figure 2.12. Schematic view of preferential and matrix flows from the surface to the drainpipes. 
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 In the 13 events with a significant negative hysteresis (anticlockwise), the TRP 

concentration peak occurred after the falling limb of the hydrograph. This may happen when the P 

source is distant, or P moves through paths that are activated later during the flow event (i.e., slow 

source mobilization) (Speir et al., 2021). 

 The general positive FI value agrees with the slope of the regression line (1.36) discussed 

in Section 2.4.2, which showed a general P concentration increase during high-flow events. During 

the study period, 30 of 36 events displayed flushing effects (FI > 0.1) (Figure 2.11). A positive FI 

value shows that the P concentration during the flow peak was higher than that in the baseflow 

immediately before the start of the flow event, indicating that P concentration increases with 

drainage discharge. Three events displayed dilution effects (FI < 0), indicating that P concentration 

decreases with increasing discharge. The flushing or dilution effect of an event flow depends on P 

availability in the soil profile compared to the P concentration in pre-event baseflow (Bieroza et al., 

2018; Zhang, 2018). 

 The combined results of FI and HI show that events had varying hysteretic behaviors, with 

35.3%, 31.6%, and 8.8% exhibiting anticlockwise with flushing, clockwise with flushing, and 

clockwise with dilution, respectively. These different concentration-discharge responses indicate 

that, apart from drainage discharge, the status of soil P, and rapid exchanges between P pools, the 

event magnitude and duration also regulated solute delivery (Welikhe et al., 2021). 

2.5.6. Effect of sampling strategy on the accuracy of P transport dynamic analysis 

The analysis of sampling strategies showed that the longer the sampling interval, the lower 

the slope of the regression line and the coefficient of determination (Figure 2.7). Since low-

resolution sampling strategies (generally longer than one day) are not able to capture the rapid 

fluctuations of P concentration in the drainage discharge, especially during high flows when P 
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concentration rapidly increases and recedes, thereby likely underestimating the slope of the 

regression line and the coefficient of determination (Figure A2.4). Underestimation in estimating 

these values leads to undermining the role of hydrology especially high flows in P transport. For 

example, if adopting a time-proportional 7-day discrete sampling strategy (grab sampling once 

every week), the slope of the regression line would have reduced from 1.37 (hourly) to 0.89, and 

the coefficient of determination would have reduced from 0.83 (hourly) to 0.48 (Figure 2.7). 

2.6. Conclusions 

 We assessed the P transport dynamics and investigated the hysteresis patterns of P 

concentration based on high-frequency monitoring of TRP concentrations. Our study resulted in the 

following key conclusions. 

• TRP concentration increased rapidly as drainage discharge increased. There was a good 

linear relationship between TRP concentration and drainage discharge (R-square = 0.72). 

• A 1% increase in drainage discharge resulted in a 1.36% increase in TRP load, indicating a 

significant increase in TRP concentration at high flows. This shows the importance of peak 

flow in transporting P from subsurface-drained fields. 

• High-resolution sampling strategies are important to obtain accurate results due to dynamic 

behavior of P concentration in drainage discharge. When evaluating the contribution of 

event flow to P loss, high-frequency monitoring of P in drainage discharge is needed. 

• Baseflow and event flow contributed to 22% and 78% of the TRP load, respectively, 

showing that event flows predominantly contribute to P loss. 

• The top 7.8% of drainage flow transported 75% of the TRP load during the monitoring 

period. 

• Hysteresis tended to be positive during the study period, indicating that P was transported 
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rapidly through preferential flow pathways and reached the sample collection point before 

peak flow. 

 In conclusion, our high-frequency monitoring of P provided new insights into the 

considerable contribution of event flows to P loss (78%), which had not been previously reported 

to such a large extent. Our study captured the large contribution of event flows because of the 

presence of high-frequency hourly TRP sampling, which accurately measured the rapid increase in 

P concentration during high flows. Generally, high resolution strategies shorter than 6 h are required 

to capture rapid variation in P concentration during high flow. Given the substantial contribution of 

event flows to P loss, management and conservation practices should target flow events and reduce 

the peak discharge as one of the strategies for reducing P loss.  
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CHAPTER 3  

SUBSURFACE DRAINAGE DESIGN AND SUBIRRIGATION AS CLIMATE-SMART 

STRATEGIES FOR RESILIENT CROP PRODUCTION 
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3.1. Abstract 

 To build a more resilient crop production system in a changing climate, it is crucial to 

understand how future weather patterns affect subsurface drainage design and whether 

subirrigation will be needed in the future for crop production. Therefore, the main objectives of 

this study were to 1) evaluate the change in the optimum drain spacing from using historical (1994 

- 2023) and future (2030 - 2059) weather data, and 2) evaluate the efficacy of subirrigation to 

alleviate yield loss due to drought stress in southeast Michigan, USA. A total of 27 general 

circulation models with a moderate greenhouse gas emission scenario (shared socioeconomic 

pathway 2-4.5) were used for climate projections. Simulations were performed using the 

DRAINMOD model, and the optimum drain spacing was determined based on the maximum 

average annual return on investment. Results showed that the projected 30-year average annual 

precipitation is not expected to change significantly while that of the temperature will increase by 

2.5°C in the future. Future optimum drain spacings for depths of 75 cm and 125 cm were found to 

be 300 cm and 600 cm wider than historical spacings, respectively. On average, there was a 23% 

decrease in 30-year average annual drainage discharge, attributed to an average 17% increase in 

evapotranspiration. Drought stress is projected to be the primary cause of yield loss in the future, 

due to increased temperatures and an average 8% deeper water-table depth. Subirrigation shows 

high potential in reducing year-to-year crop yield variability in the future (decreasing the 

coefficient of variation for the yield from 0.26 to 0.06, on average) and increasing yield by up to 

31%. In the past, subirrigation initiation was feasible in late June with a weir depth of 70 cm. 

However, in the future, subirrigation is anticipated to be more advantageous when starting sooner 

in early to mid-June, coupled with a shallower weir depth ranging from 65 cm to 55 cm. In 

conclusion, a wider drain spacing, providing reduced drainage intensity, along with subirrigation 
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may be needed in the future to mitigate crop yield loss from drought stress. 

3.2. Introduction 

  The Midwest USA is recognized as the primary corn and soybeans producer, mainly 

because of its fertile soil and substantial rainfall. Due to inadequate natural drainage in many 

Midwestern soils, the implementation of subsurface drainage has significantly enhanced crop 

yields (Skaggs et al., 1994). Subsurface drainage systems mitigate crop wet stress by lowering the 

water table and facilitating timely field operations (Arnold, 2004; Willison et al., 2021). However, 

to maximize the efficacy of a subsurface drainage systems, a proper drainage design (drain depth 

and spacing) is essential.  

  When designing drainage systems, factors such as the type of crops, soil characteristics, 

pipe perforation style, and climate should be taken into consideration (Moustafa et al., 1987; 

Skaggs & Nassehzadeh-Tabrizi, 1986). Choosing the drain depth depends on the soil 

characteristics and primarily involves installing the pipe in a permeable soil layer away from tillage 

field operations and away from the restrictive layer. Determining the drain spacing involves the 

use of the steady-state Hooghoudt equation. Nevertheless, the drain depth and drain spacing are 

interrelated; shallow drains need narrower spacing to achieve equivalent drainage. Application of 

the Hooghoudt equation in drainage design has been facilitated by decision-support tools such as 

the Drain Spacing Tool that uses the site-specific soil and growing season rainfall to estimate the 

optimum drain spacing (Ghane, 2023). However, these tools mostly use historical weather data to 

estimate the drain spacing while climate scientists are forecasting changes in precipitation patterns 

in the future. When using such tools to determine the optimum drain spacing, it is important to 

consider the impact of climate change on the optimum spacing. 

  Although subsurface drainage plays a vital role in the agricultural water balance in the 
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Midwest, our comprehension of how future climate change may impact the weather parameters 

(temperature and the quantity and seasonal patterns of precipitation), hydrology (drainage 

discharge, WTD, and evapotranspiration), drainage design (drain depth and spacing) and crop 

yield in drained fields remains limited. This understanding is essential to determine future 

strategies aimed at safeguarding agricultural production while maintaining environmental quality. 

Southworth et al. (2000) projected that corn yields could decrease by as much as 30% between 

2050 and 2059 compared to current yields. Similarly, Petersen (2019) estimated a reduction of 

around 100 bushels per acre in corn yields for the southeast Michigan and northwest Ohio region 

from 2090 to 2100 relative to present levels. Deryng et al. (2014) found that the global average 

corn yield will decrease, ranging from −2.9 ± 2.6% under RCP 2.6 to −12.8 ± 6.7% under RCP 

8.5 by the 2080s. 

  Anticipated future climate change also is projected to vary geographically across regions 

(Pease et al., 2017). According to Intergovernmental Panel on Climate Change (2013), variations 

in the water balance will be a function of local shifts in temperature and precipitation pattern. Pryor 

et al. (2014) predicted that by midcentury, Ohio will experience a more pronounced rise in 

temperature and the frequency of days with heavy precipitation would be substantially different 

compared to Iowa. Nevertheless, temperature fluctuations and variations in rainfall patterns 

between Ohio and Iowa might result in different effects on drainage discharge in these respective 

states. Hence, it is crucial to evaluate the water balance using localized climate projections in order 

to assess the effect of climate change on the hydrology of a drained field and its drainage design 

within the Western Lake Erie Basin.  

  Interest in supplemental irrigation, like subirrigation, is increasing in the Midwest due to 

more frequent summer droughts (Galloway et al., 2014). The region's extensive subsurface 
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drainage systems offer potential for subirrigation adoption, although it remains underutilized (Yu 

et al., 2020). Subirrigation, by applying water beneath the soil surface, helps maintain optimal 

water table depth and can utilize existing drainage systems for both drainage and irrigation 

purposes (Cooper et al., 1999) and (Zucker & Brown, 1998). 

  Research investigating the impact of subirrigation on crop yield consistently demonstrates 

a significant increase in yield, which tends to stabilize at elevated levels. Investigating the efficacy 

of subirrigation in a field with Omulga silt loam in southern Ohio, Fisher et al. (1999) reported a 

19% increase in corn yield with adoption of subirrigation. Cooper et al. (1999) observed a notable 

rise in corn production, up to 30%, on Ravenna silt loam and Hoytville silty clay loam soils in 

Ohio, particularly during dry years. Furthermore, in sandy loam soil in southwestern Ontario, Ng 

et al. (2002) observed a 64% larger corn yield with subirrigation, while Mejia et al. (2000) found 

increases ranging from 2.8% to 13.8% in eastern Ontario. Gunn et al. (2018) investigated the 

effectiveness of subirrigation in increasing corn yield using the historical (from 1984 through 

2013) and future (from 2041 through 2070) climate data in fields with different soil series located 

in northwest Ohio. They reported as high as 26.5% and 36% increase in corn yield in the past and 

future, respectively, with subirrigation. Conversely, in Woodslee, Ontario, Drury et al. (2009) 

noted a significant decrease in corn yield under subirrigation practice on Brookston clay loam soil, 

attributing this outcome to substantial precipitation in August and drainage design. 

  Expanding upon field measurements, modeling studies are necessary to forecast the 

potential effect of subirrigation under future climate scenarios. The efficacy of subirrigation in 

improving the crop yield has been investigated using the DRAINMOD model. DRAINMOD is a 

computer model for field hydrology water balance, capable of simulating various drainage 

practices, including free subsurface drainage, controlled drainage, and subirrigation, either 
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individually or in combination (Skaggs et al., 2012). In a study on Rains and Portsmouth sandy 

loam soils in North Carolina, Murugaboopathi et al. (1995) used uncalibrated DRAINMOD 

simulations over a 37-year period (1950–1986). Their findings revealed a 21% relative yield 

advantage for corn under subirrigation compared to free subsurface drainage. Gunn et al. (2018) 

used DRAINMOD to investigate the effectiveness of subirrigation in increasing corn yield using 

the historical (from 1984 through 2013) and future (from 2041 through 2070) climate data in fields 

with different soil series located in northwest Ohio. They reported as high as 26.5% and 36% 

increase in corn yield in the past and future, respectively, with subirrigation. 

  Although climate change is already affecting the hydrology of subsurface drained fields 

and crop yield, the literature highlights a significant gap in understanding regarding the potential 

impact of climate change on drainage design and the performance of subirrigation practice. While 

Ghane et al. (2021) and Ghane and Askar (2021) have investigated the impact of climate change 

on the drainage design, their focus has been limited to a 30-year historical period from 1990 to 

2019, not the future. Also, regarding subirrigation, we only found Gunn et al. (2018) investigating 

the climate change impact on relative crop yield in subirrigated fields in northwest Ohio, however, 

they only used three General Circulation Models (GCM) which indicates a need for further 

investigation in this area. No study also has investigated how subirrigation management, such as 

weir depth and irrigation start time, might potentially change from the past to the future. 

  Therefore, the main objectives of this study were 1) evaluating the impact of climate 

change on weather parameters (temperature and precipitation) and hydrology (drainage discharge, 

water-table depth, and evapotranspiration) of a drained field, 2) assessing the impact of climate 

change on drainage design (drain depth and drain spacing), and 3) investigating the efficacy of 

subirrigation to alleviate the adverse impact of climate change in southeast Michigan, USA. The 
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significance of this work lies in its ability to offer insights into how the historical optimum drainage 

design responds to changing climate conditions, leveraging the latest CMIP6 modeling framework. 

This study also enhances our understanding of subirrigation’s performance in the future so that 

informed policies to improve crop yield can be effectively implemented. In general, results from 

this study help us to enhance the resiliency of subsurface drained fields and improve their 

economic viability as well as environmental sustainability. 

3.3. Materials and Methods 

3.3.1. Site description  

  This study was performed on a private farm situated in Blissfield, Lenawee County, 

southeast Michigan, USA (Figure 3.1) from October 2018 to December 2023. The drainage area 

was 7.6 ha (18.8 ac) with a field grade of 0.1%. Throughout the entire duration of the study, the 

drainage system performed under conventional free drainage. The cropping system was corn-

soybean rotation and vertical tillage was performed prior to planting corn. 

 

Figure 3.1. The Blissfield site is situated within the hydrological boundary of the River Raisin 

Watershed. This watershed ultimately drains into the western Lake Erie basin at Monroe Harbor. 
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3.3.2. Measurement of drainage discharge and water-table depth 

  The drainage discharge and water-table depth (WTD) midway between the lateral drains 

were measured to calibrate and validate the DRAINMOD model. The WTD between the laterals 

was measured hourly in an observation well with a depth of 152cm (5 ft) using a HYDROS-21 

water-depth sensor.  

  We utilized two different approaches to measure hourly drainage discharge. We employed 

a metal-edge sharp-crest 45° V-notch weir, set up within a 25-cm water-level control structure, 

both from Agri Drain Corp. We used this approach only under specific circumstances: first, when 

water remained within the V-notch, ensuring it did not surpass the capacity of the weir, and second, 

when the water level in the downstream of the structure did not exceed the apex height of the V-

notch. We installed a HYDROS-21 water-depth sensor from METER Group inside the upstream 

chamber of the control structure to measure the water level every hour. Subsequently, we used a 

calibrated for the V-notch weir equation to determine the hourly drainage discharge based on the 

water-level measurements. We also utilized a TIENET-350 area-velocity sensor from Teledyne 

ISCO, placed inside a pipe downstream of the control structure. This approach was used when 

either water overflowed the V-notch weir, surpassing its capacity, or when the water level in the 

downstream chamber exceeded the height of the V-notch apex. The area-velocity sensor and the 

V-notch weir were used for high flow and low flow rates, respectively.  
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3.3.3. The DRAINMOD model setup to simulate hydrology, relative crop yield, and 

subirrigation 

  We utilized DRAINMOD to predict drainage discharge, WTD, crop yield, and 

evapotranspiration (ET) for the past and future. The DRAINMOD model is a processed-based 

field-scale one-dimensional model widely employed for assessing the hydrology of fields with 

subsurface drainage systems (Skaggs, 1978, 1982; Skaggs et al., 2012). DRAINMOD utilizes 

water-balance equations to simulate hydrological processes with soil, weather, crop, and drainage 

system parameters as the primary inputs. Besides hydrological simulations, the DRAINMOD 

model estimates crop yield based on four stress factors as well: drought stress, wet stress, salinity 

stress, and stress attributed to planting delays due to poor trafficability conditions (Evans et al., 

1991). The DRAINMOD’s performance in simulating the hydrology and crop has been tested by 

researchers across the United States and globally, as documented in studies by (Adhikari et al., 

2020; Evans et al., 1991; Gunn et al., 2018; Kanwar et al., 1994; Malakshahi et al., 2020; Skaggs 

et al., 2012; Sojka et al., 2020; Wang et al., 2006; Youssef et al., 2018). 

  DRAINMOD employs a stress day index method to predict the relative crop yield 

responses to different soil water conditions (Evans et al., 1991). This feature enables DRAINMOD 

to assess the efficacy of different water management practices and strategies by quantifying 

relative crop yield responses. In DRAINMOD, the definition of relative crop yield is the ratio of 

the yield under specific stress conditions such as wet, drought, or planting delay to the highest 

potential yield achievable. DRAINMOD derives relative crop yield by assessing predicted stresses, 

including the quantity and continuation of excess water beyond the water table threshold defined 

by the user, the magnitude and extent of drought, and the duration of planting delays. Equation (1) 

is utilized to estimate the overall relative crop yield during a simulated year. 
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𝑌𝑅 =  𝑌𝑅𝑤 × 𝑌𝑅𝑑 × 𝑌𝑅𝑝                                                                                                                                            (1) 

where 𝑌𝑅𝑤 is the relative crop yield including excess water stress, 𝑌𝑅𝑑 is the relative crop yield 

including drought stress, and 𝑌𝑅𝑝 is the relative crop yield including planting delay stress. 

Predictions of these stresses are derived from linear functions, which consider the severity of both 

wet and drought stresses throughout the growing season (GS), as well as any planting delays. 

Previous research has demonstrated that DRAINMOD's predictions of crop relative yield closely 

align with estimates derived from field measurements, contingent upon the prevailing conditions 

during growing season, as evidenced by studies conducted by (Ale et al., 2009; Kanwar et al., 

1994; Satchithanantham & Ranjan, 2015; Wang et al., 2006). 

3.3.3.1. Drainage system description 

The drainage design inputs used in simulations are shown in Table 3.1. The drainage 

coefficient and depth to impermeable layer were 2.8 cm/day and 203 cm, respectively. The drain 

pipes were a 100-mm diameter four-row perforated pipe, with an estimated effective radius of 0.7 

cm based on Ghane (2022). The maximum capacity of the subirrigation pump was considered to 

be 2.8 cm/day which is the same as the drainage coefficient. 

Table 3.1. Drainage system inputs used in DRAINMOD. 
Drainage system parameters 

Drain depth (cm) 82 

Drain Spacing (cm) 1005 

Drainage coefficient (cm/day) 2.8 

Depth to impermeable layer (cm) 203 

Effective radius for 4-inch perforated pipe (cm) 0.7 

Subirrigation pump capacity (cm/day) 2.8 

Surface Storage  

Maximum surface storage (cm) 2 

Kirkham depth (cm) 1 
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3.3.3.2. DRAINMOD soil input data 

  The dominant soil type in the field was Ziegenfuss clay loam, which is classified as a poorly 

drained soil (Natural Resources Conservation Service, 2023). Table 3.2 presents soil physical 

properties derived from both the SSURGO database and previous onsite measurements. To execute 

DRAINMOD, soil-water characteristics, Green-Ampt infiltration model parameters, the drainage 

volume–water-table depth and the water upflux–water-table depth relationships are also required. 

The soil utility package integrated into DRAINMOD, which uses the pedotransfer estimation 

software, ROSETTA (Schaap et al., 2001), facilitated the estimation of these hydraulic properties. 

ROSETTA determines the pedotransfer function parameters based on the soil series' texture and 

water holding capacity. 

Table 3.2. Soil physical properties used in the simulation. 
Top and bottom depth of soil 

layer (cm) 

%Sanda %Silta %Claya Soil texture Bulk density 

(g/cm3)b 

Ks 

(cm/h)c 

0 – 23  27.2 35.8 37.0 Clay loam 1.37 2.0 

23 – 76 27.2 37.3 35.5 Clay loam 1.46 1.0 

76 – 102 25.7 33.5 33.5 Clay loam 1.50 0.5 

102 - 170 35.0 33.0 32.0 Clay loam 1.72 0.3 

170 - 203 34.0 27.0 29.0 Clay loam 1.90 0.2 

a: These values were obtained from gSURRGO. 

b: These values were measured. 

c: These values are the calibrated values used in DRAINMOD. 

 

3.3.3.3. Historical and future climate data used in DRAINMOD 

  To provide DRAINMOD with precipitation data, we utilized the disaggregation utility 

within DRAINMOD, which evenly disperses daily rainfall across a duration defined by the user 

(Ale et al., 2009; Singh et al., 2006; Skaggs et al., 2012). We assumed that daily precipitation took 

place from 01:00 am through 5:00 am, constituting a 4-hour period. Consequently, we 

disaggregated the quantity of daily precipitation within this specified time window. Daily 

precipitation and temperature data were measured by ATMOS-41 (METER Group) weather unit 

in the field. 
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  We used 30 years of historical weather parameters (daily precipitation, daily maximum air 

temperature, and daily minimum air temperature) from 1994 to 2023, sourced from the National 

Oceanic and Atmospheric Administration (NOAA) and the nearest Enviroweather station. 

Enviroweather is a weather station network developed and supported by Michigan State University 

(MSU Enviroweather, 2023). These data were then used to conduct hydrology and crop yield 

simulations for selecting the optimum drainage design for the past. Subsequently, we utilized 30 

years of projected weather data for the future spanning from 2030 to 2059 to predict hydrology 

and crop yields for determining the optimum drainage design for the future.  

  For the future climate data, the NASA Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) dataset sourced from the NASA Center for Climate Simulation (NCCS) 

was used in this study. This dataset is comprised of downscaled climate scenarios derived from 35 

General Circulation Models (GCMs) (NEX-GDDP-CMIP6, 2023). From these GCMs, we selected 

27 based on data availability for the chosen greenhouse gas emission scenario (Table A3.1). The 

analysis of GCM outputs was conducted within the framework of the Coupled Model 

Intercomparison Project phase 6 (CMIP6), which is supported by the Sixth Assessment Report of 

the Intergovernmental Panel on Climate Change (Calvin et al., 2023). All 27 selected GCMs 

project daily precipitation, daily maximum air temperature, and daily minimum air temperatures 

at a spatial resolution of 0.25 degrees × 025 degrees (approximately 25 km × 25 km). To downscale 

the future climate data projections, the NEX-GDDP dataset employs the bias-correction spatial 

disaggregation which is a statistical downscaling algorithm. The GCM runs were executed for the 

shared socioeconomic pathway (SSP) greenhouse gas emission scenario, specifically SSP2-4.5, 

representing a medium pathway for the near future (2030–2059). Under SSP2-4.5, greenhouse gas 

emissions stabilize at 4.5 W/m2, with global emission reduction policies reaching their peak by 
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2050, and the world population stabilizing at 9 billion (Thomson et al., 2011). 

  After acquiring and processing the future climate data, simulations were conducted using 

DRAINMOD for each GCM, and we used the equal-weighting multi-model ensemble (MME) 

approach to analyze the resultant outputs (Pease et al., 2017; Robertson et al., 2004; Shokrana et 

al., 2023; Tebaldi & Knutti, 2007; Weigel et al., 2010). MME averages the outputs from various 

GCMs. In this study, we followed meteorological seasons, which defines winter from December 

to February, spring from March to May, summer from June to August, and fall from September to 

November. Also, we considered the period from November through May as non-growing season 

and from June through October as growing season.    

3.3.3.4. Crop and trafficability parameters in DRAINMOD 

Simulation of relative crop yield in DRAINMOD necessitates several parameters, 

including the root zone’s soil water content at wilting point, the susceptibility factor for drought 

period, the desired planting date, duration of growing season, the threshold WTD, and the 

relationship between effective root depth and days after planting (Skaggs, 1980).  For the soil water 

content at wilting point, we initially used the gSSURGO database and subsequently calibrated 

(Table 3.3). During the calibration and validation periods (October 2018 to December 2023), we 

used the crop files based on the planting system including cover crops, however, for long-term 

historical and future simulations, we only considered corn as it is the major crop cultivated in 

southeast Michigan. Since the average corn planting date in our site was May 15th, we selected this 

date as the desired planting date for all simulation years. In DRAINMOD, the length of growing 

season was considered to be 170 days, reflecting the average duration observed in our experimental 

fields, was selected. Consequently, simulations were performed over a cropping window spanning 

from April to October, aligning with the selected planting window and growing season length. 
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In DRAINMOD, the relationship between effective root depth and days after planting plays 

a crucial role in determining the depth at which water is drawn to meet evapotranspiration (ETp) 

requirements. As the growing season progresses, the effective corn rooting depth gradually 

increases and reaches its maximum effective root depth of 40 cm after 80 days of planting. 

Following recommendations by Skaggs (1980) for corn, we considered an effective root depth of 

3 cm for a fallow period and a crop yield limiting WTD of 30 cm. 

Field trafficability parameters exert a significant influence on field operations, including 

planting activities. DRAINMOD adjusts the planting day based on soil moisture conditions that 

align with specified trafficability parameters. These parameters encompass factors such as the 

minimum required air volume for field operations, the threshold rainfall amount to postpone work, 

and the duration of delay following precipitation events. In this study, the values for these 

trafficability parameters were selected based on the goodness of fit during the calibration. For the 

minimum soil air volume required to facilitate field operations, a value of 3 cm was utilized for 

both planting and harvest periods. Additionally, planting and harvest activities were postponed by 

1 day following daily precipitation amounts exceeding 1 cm. 
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Table 3.3. Crop and trafficability inputs used in simulations. 
Crop 

Limiting water-table depth (cm) 30 

Root zone lower limit water table (cm3/cm3) 0.19 

Maximum effective root depth (cm) 40 

Relative yield simulation  

     Cropping window April - October 

     Desired planting date May 15th 

     Growing season length  170 

     Yield intercept for crop wet stress 102 

     Slope for yield vs. crop wet stress 0.75 

     Drought stress yield intercept 100 

     Drought stress yield slope 1.22 

Trafficability  

Minimum required air volume (cm)  

     First period 3 

     Second period 3 

Minimum rain to delay work (cm)  

     First period 1 

     Second period 1 

Delay after rain to restart work (d) 1 
 

3.3.3.5. DRAINMOD’s calibration and validation 

  We calibrated and validated DRAINMOD to predict drainage discharge, WTD, observed 

from October 2018 to December 2023 at the experimental site. The calibration and validation were 

done based on goodness of fit for daily drainage discharge, daily WTD, and relative yield. The 

calibration period for drainage discharge was from October 2018 to December 2022. For WTD, 

the calibration period started from April 14th, 2021, due to missing data from October 2018 to 

April 2021. The validation period was from January 2023 to December 2023 for both drainage 

discharge and WTD. Throughout both the calibration and validation periods, the drainage system 

operated under free drainage conditions. The primary calibration parameters included the lateral 

saturated hydraulic conductivity, upward flux, drained volume, maximum surface storage, and 

Kirkham depth. By fine-tuning these parameters, adjustments were made to refine the relationship 

between WTD and drained water volume, as well as the upflux and parameters of the Green-Ampt 

model. These adjustments aimed to enhance the alignment between measured and predicted 
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drainage discharge and WTD. 

3.3.4. Evaluating the effect of climate change on drainage design 

  To examine the effect of climate change on the drainage design, we investigated various 

drainage designs including two drain depths of 75 cm and 125 cm for the past and future with 

continuous corn cropping system. For each drain depth, the drain spacings varied from 5 m to 50 

m with 1-m increment using both historical and future climate data. The drain depths of 75 cm and 

125 cm were selected as they represented shallow and deep drains. Ghane et al. (2021), Ghane and 

Askar (2021), and Skaggs and Nassehzadeh-Tabrizi (1986) expanded the drain spacing range from 

5 m to 100 m. However, given the heavy-textured soil in this study, we did not exceed 50 m drain 

spacing.  

3.3.5. Economic analysis of various drainage designs 

  We performed an economic analysis to determine the optimum drain spacing for 

maximizing the average annual return on investment (AAR) for each drain depth, following the 

methodology outlined by Ghane et al. (2021). For every depth considered, and across spacings 

from 5 m to 50 m, AAR in dollars per hectare ($/ha) was computed as follows: 

𝐴𝐴𝑅 = 𝐴𝐴𝐶𝑃𝐼 − 𝐴𝐶𝑃𝐶 − 𝐴𝐴𝐷𝑆𝐶                                                                                                                             (2) 

where AACPI is the average annual corn production income ($/ha), ACPC is the annual corn 

production cost ($/ha), and AADSC is the average annual drainage system cost ($/ha). We assumed 

the annual corn production cost (ACPC) to be $2,225/ha ($901/ac) according to the 2023 cost 

(Table 3.4) (LaPorte, 2024).  

  We obtained the average annual corn production income (AACPI) ($/ha) as follows 

𝐴𝐴𝐶𝑃𝐼 = 𝑅𝑌 × 𝑃𝑌 × 𝐶𝑃                                                                                                                                                 (3) 

where RY is the relative yield (decimal), PY is the potential yield (kg/ha), and CP is corn price 
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($/kg). DRAINMOD applies four crop stresses when estimating the relative corn yield for each 

year. The corn price was assumed to be $0.25/kg ($6.01/bu) based on the 2023 average corn price 

(USDA National Agricultural Statistics Service, 2024) with a potential corn yield of 14,000 kg/ha 

according to LaPorte (2020). The potential yield signifies the average yield achievable without 

any stresses. The average annual drainage system cost (AADSC) ($/ha) was calculated (Huffman 

et al., 2013) as follows 

𝐴𝐴𝐷𝑆𝐶 =
10000

𝑆0
× 𝐼𝐶𝐷𝑆(

𝐼𝑅𝐴𝐼

2
+ 𝐷𝐸𝑃 + 𝑀𝑅)                                                                                                       (4) 

where S0 is the optimum drain spacing (m), ICDS is the initial cost of the drainage system that is 

$2.33/m (Table 3.4), RIAI is the 5% interest rate on average investment per year (decimal), DEP is 

the 3.3% depreciation per year based on a 30-year expected lifetime of the system (decimal), 

and MR is the 0.3% maintenance rate per year (decimal). 

Table 3.4. Corn price, corn production expenses (LaPorte, 2024), and initial cost of the drainage 

system used in the economic analysis. 
Items Unit Price 

Income 

     Corn price (CP) 

Corn production expenses  

     Variable (direct) expenses (seed, fertilizer, crop chemicals, crop insurance, repairs, fuel, labor, 

etc.) 

     Fixed (indirect) expenses (land rental, depreciation, etc.) 

     Total annual corn production cost (ACPC) (sum of variable and fixed expenses) 

Initial cost of the drainage system 

     100-mm-diameter drain pipe materiala 

     Drain pipe installation costb 

     Initial cost of drainage system (ICDS) (sum of material and installation) 

 

$0.25/kg 

 

$1,446/ha 

$779/ha 

$2,225/ha 

 

$1.18/m 

$1.15/m 

$2.33/m 

a The cost of drain pipe material was sourced from a Michigan pipe manufacturer in 2023. 
b The cost of drain pipe installation was sourced from a Michigan drainage contractor in 2023. 
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3.3.6. Selecting the optimum drain spacing 

  The drainage design, characterized by drain depth and spacing, yielding the highest AAR 

(an example depicted in Figure 3.2), was identified as the optimum drainage configuration. 

Notably, during this process, we observed that altering the annual corn production cost (ACPC) 

led to vertical shifts in the AAR graph presented in Figure 3.2, while maintaining other economic 

and input parameters constant. Consequently, variations in ACPC resulted in the same optimum 

drain spacing, indicating that changes in ACPC did not affect the horizontal positioning of the 

graph on the x-axis with drain spacing. 

  We also investigated a scenario wherein farmers use the optimum drainage design derived 

from historical data for future. In essence, this scenario reflects a situation where farmers maintain 

the historical/current drainage design despite changes in future climate parameters. Therefore, the 

optimum drainage designs were selected for the past (1994 to 2023) and future (2030 to 2059), 

and the performance of the historical optimum design in the future (2030 to 2059) representing the 

scenario in which farmers do not change their design.  
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Figure 3.2. The impact of drain spacing on the 30-year average relative corn yield and average 

annual return on investment, as estimated by DRAINMOD, for both shallow and deep drains 

depths. In this example, the average annual return graph exhibits peaks at drain spacings of 500 

cm and 1000 cm for drain depths of 75 cm and 125 cm, respectively. These peaks signify the 

optimum drain spacings corresponding to the maximum average annual return on investment. 
 

3.3.7. Suitability of subirrigation 

  We examined the efficacy of subirrigation as a supplemental irrigation to mitigate yield 

loss due to drought stress. The subirrigation applied to the scenario, in which farmers do not change 

the drainage design and design the drainage system based on historical weather data. In addition 

to the effect of subirrigation on the crop yield, we also investigated how the subirrigation 

management (start time and weir depth) could be different between past and future. For this 

purpose, three start times of June 1st (early June), June 15th (mid-June), and June 29th (late June) 

and four subirrigation weir depths of 70 cm, 65 cm, 60 cm, and 55 cm were investigated. 

Regardless of the starting time and weir depth, subirrigation was applied during July and August 
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(when ET is the highest) for all scenarios. The maximum subirrigation pump capacity was 

considered to be equal to the drainage coefficient, which was 2.8 cm/day. 

3.3.8. Statistical analysis 

  Some of the datasets did not meet the normality assumption according to the Shapiro-Wilk 

test (Shapiro & Wilk, 1965). Therefore, the non-parametric two-sample Wilcoxon-rank test 

(Wilcoxon, 1992) was used to compare and identify the significance of differences between the 

weather parameters, hydrology and crop yield in past and future. The null hypotheses were no 

significant change in weather parameters, hydrology and crop yield in past and future. The tests 

were conducted at a 5% level of significance (α = 0.05).  

  To evaluate the performance of DRAINMOD, we used Nash-Sutcliffe Efficiency (NSE), 

Kling-Gupta Efficiency (KGE), Percent Bias (PBIAS), and Mean Absolute Error (MAE) as follow 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

                                                                                                                                                      (5) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2                                                                                                   (6) 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑂𝑖−𝑃𝑖)

𝑛
𝑖=1

∑ (𝑂𝑖)𝑛
𝑖=1

× 100                                                                                                                                             (7) 

𝑀𝐴𝐸 =  
∑ |𝑂𝑖−𝑃𝑖|𝑛

𝑖=1

𝑛
                                                                                                                                                                (8) 

where 𝑂𝑖 is the observed value, 𝑃𝑖 is the predicted value, 𝑟 is Pearson correlation coefficient, 𝛼 is 

a term representing the variability of prediction errors, and 𝛽 is a bias term. Given that the NSE 

metric tends to be overly responsive to extreme values while less responsive to lower values 

(Moriasi et al., 2015), we also incorporated the KGE in our evaluation. Evaluation criteria for 

assessing the level of agreement between DRAINMOD predictions of drainage discharge and 

WTD and their corresponding measurements are outlined by Skaggs et al. (2012) and the KGE 

metric. 
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  We also used the Coefficient of Variation (CV) to evaluate the efficiency of subirrigation 

in stabilizing the crop yield in the future as follow 

𝐶𝑉 =  
𝜎

𝜇
                                                                                                                                                                                       (9) 

where 𝜎 is the population standard deviation and 𝜇 is the population mean. 

3.4. Results and Discussions 

3.4.1. Comparing temperature and precipitation the past and future 

3.4.1.1. Air temperature of the past and future 

  The future (2030–2059) and historical (1994–2023) maximum, minimum, and average 

temperatures were analyzed and compared (Table 3.5). All 27 GCMs indicated statistically 

significant increase in the monthly maximum, minimum, and average air temperatures in the future 

in comparison to the past (p-values < 0.001) (Figure 3.3 and Figure A3.1). The 30-year average 

annual temperature was also significantly increased and different (p-values < 0.001). On a seasonal 

scale, the most substantial average temperature rise occurred during fall, with a 2.8°C increase, 

while the smallest rise was observed in winter, with a 2.1°C increase. Additionally, the GCMs 

forecasted a 2.6°C increase in average seasonal temperatures for spring and a 2.5°C increase for 

summer. During the historical period, the 30-year average temperatures for non-growing season 

was 3.3°C and for growing season was 18.6°C. Based on the projections, however, the future non-

growing season and growing season temperatures were 5.7°C (2.4°C increase) and 21.2°C (2.6°C 

increase), respectively. 
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Table 3.5. Comparing the 30-year average monthly temperature and precipitation between 

historical (1994-2023) and future (2030–2059) climate scenarios. Increases are denoted by 

positive percentages, while decreases are represented by negative percentages. 

Month 

Historical weather (1994-2023) Future weather (2030-2059) Change in 

average 

temperature 

(℃) 

Change in 

precipitation 

(%) 

Maximum 

temperature 

(℃) 

Minimum 

temperature  

(℃) 

 
Precipitation 

(mm) 

Maximum 

temperature 

(℃) 

Minimum 

temperature  

(℃) 

 
Precipitation 

(mm) 

January 0.3 -8.2  53.9 2.6 -6.2  58.3 2.1 8.2 

February 2.0 -7.7  54.5 4.7 -5.1  50.5 2.7 -7.4 

March 8.1 -3.0  63.3 10.7 -0.6  75.9 2.5 19.9 

April 15.2 2.5  87.5 18.0 5.0  87.0 2.7 -0.5 

May 21.6 8.4  101.0 24.4 10.9  94.1 2.6 -6.9 

June 26.9 13.9  107.0 29.5 15.9  90.8 2.3 -15.2 

July 28.8 15.9  88.6 31.7 18.2  93.3 2.5 5.3 

August 27.6 15.2  90.2 30.8 17.5  90.7 2.8 0.5 

September 24.2 11.0  83.1 27.2 13.7  75.5 2.9 -9.2 

October 16.9 5.0  76.4 20.3 7.5  65.2 3.0 -14.6 

November 9.4 -0.7  66.1 12.2 1.9  72.4 2.7 9.5 

December 3.1 -4.8  61.5 5.0 -3.5  74.0 1.6 20.5 

Annual 15.3 4  933.2 18.1 6.3  927.7 2.5 -0.6 

 

 

Figure 3.3. Heatmap for maximum and minimum temperatures increase in the future. 
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3.4.1.2. Precipitation of the past and future 

  The future and historical precipitations were compared, revealing that the future 30-year 

average annual precipitation projected by 27 GCMs is anticipated to decrease insignificantly (p-

value = 0.83) from 933 mm that was in past to 928 mm in the future (Table 3.5). Notably, this 

slight decline in precipitation contrasts with Pease et al. (2017) findings showing a 4.4% increase 

in precipitation based on their moderate RCP 4.5 scenario. Discrepancies in outcomes could arise 

due to variations in modeling frameworks (CMIP5 vs. CMIP6) and historical baseline periods 

(1971 - 2000 vs. 1994 - 2023) utilized in these studies. To confirm our reasoning for the 

differences, we calculated the long-term average annual precipitation from 1971 to 2000 for 

Blissfield, which came to 888 mm. This shows that precipitation increased from the older baseline 

(1971-2000) to the more recent baseline (1994-2023). However, the future prediction shows that 

precipitation will remain steady compared to the more recent baseline. Therefore, when comparing 

changes in precipitation with climate change, it is important to compare the future precipitation 

with the more recent baseline period. Overall, results show that the average long-term precipitation 

has increased from the period of 1971-2000 to 1994-2023, after which precipitation forecast shows 

no significant change for 2030-2059. 

  While the 30-year average monthly precipitation amount during winter and spring 

increased, the precipitation amounts during the summer and fall seasons decreased (Figure 3.4). 

Projections indicate a 2.1% increase in precipitation during spring and a notable 12.8% increase 

during winter. Conversely, the 30-year average precipitation is expected to decrease by 3.9% 

during summer and 7.3% during fall. The percent change in precipitation amount is reported to be 

the highest in December and the lowest in August (Table 3.5). In the future, non-growing season 

precipitation is estimated to be 1.4% higher (60.3 cm vs. 59.5 cm) than in the historical period, 
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whereas growing season precipitation is forecasted to decrease by 6.7% (41.6 cm vs. 44.6 cm). 

 

Figure 3.4. Changes in average monthly precipitation amounts under historical (1994–2023) and 

future (2030–2059) periods. 

  Regarding the variation in precipitation projections, it is notable that the distances between 

the upper and lower whiskers are small for January, February, June, and November. This shows 

that that the precipitation projections from the GCMs are relatively similar for these months, 

suggesting more confidence in the predictions of these months (Figure 3.5). However, outliers are 

apparent in February and November. Conversely, the largest distance between the upper and lower 

whiskers was observed in May, indicating a substantial difference between the minimum and 

maximum values projected. 



87 

 

Figure 3.5. Box plot illustrating the variation in precipitation predictions from 27 GCMs for the 

future period (2030–2059). The upper and lower whiskers delineate the range of data, while the 

upper and lower quartiles represent the 25th to 75th percentile range. 

 

3.4.2. Results of calibration and validation of DRAINMOD 

  DRAINMOD was calibrated and validated based on the goodness of fit between the 

observed and predicted drainage discharge and WTD (Table 3.6 and Figure 3.6). In the calibration 

period, NSE and KGE for drainage discharge were 0.71 and 0.73, respectively, indicating a good 

agreement between the estimated and observed data. The PBIAS was -0.85%, reflecting an 

excellent (< 5%) level of estimation accuracy. During the validation period, the NSE and KGE for 

drainage discharge were 0.63 and 0.58, respectively, signifying good and acceptable agreements. 

The PBIAS value of 0.97 further showed the model's excellent proficiency in estimation. 
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Table 3.6. DRAINMOD simulation statistics based on daily data. 

Estimated 

Parameter Period PBIAS Criteria MAE Criteria NSE Criteria KGE Criteria 

Drainage 

discharge 

Calibration -0.85 Excellent 0.05 Excellent 0.71 Good 0.73 Good 

Validation 0.97 Excellent 0.05 Excellent 0.63 Good 0.58 Acceptable 

Water-

table depth 

Calibration -12.48 Good 14.79 Acceptable 0.60 Acceptable 0.71 Good 

Validation -1.18 Excellent 17.44 Acceptable 0.64 Good 0.55 Acceptable 

 

 

Figure 3.6. The observed and estimated daily drainage discharge during the calibration and 

validation periods. 

 

  Regarding WTD in the calibration phase, the NSE and KGE were 0.60 and 0.70, 

respectively, indicating good agreements between the estimated and measured data. The PBIAS 

was -12.48, indicative of good estimation accuracy. In the validation period for drainage discharge, 

the NSE and KGE were 0.64 and 0.55, denoting good and acceptable agreements, respectively. 

The PBIAS of -1.18, being less than 5%, characterized the estimation as excellent (Table 3.6 and 

Figure 3.7). 
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Figure 3.7. The observed and estimated daily water-table depth during the calibration and 

validation periods. 

3.4.3. Optimum drainage design for past and future 

3.4.3.1. Optimum drainage design based on the past and future weathers 

  The drain spacing of 500 cm was selected as the optimum drain spacing for the drain depth 

of 75 cm (shallow drains) and 1000 cm for the drain depth of 125 cm (deep drains) when using 

historical weather data (Table 3.7). However, the highest AARs were estimated to be achieved by 

wider drain spacings for the future. The drain spacing of 800 cm was selected as the optimum drain 

spacing for the drain depth of 75 cm and 1600 cm spacing for drain depth of 125 cm when using 

future weather data. Results show that in the future, a wider drain spacing would reduce the 

drainage intensity, retaining the water in the soil profile for a longer period, and consequently 

alleviating the crop yield loss due to drought stress. For both past and future, the highest AAR 

among optimum drainage designs was observed for deep drains. The reasons for this are, first, the 

lower initial cost of the drainage system due to wider drain spacings, and second, the higher corn 

yield due to lower yield loss due to drought stress. Although the drainage installation costs were 

lower due to wider drain spacings in the future, the AARs were lower than the AARs for the 

historical optimum drain spacings because of lower yield (85% in the past vs 80% in the future). 

Lower yield in the future could be attributed to the higher temperature and a different precipitation 

pattern. In general, if a field does not already have a drainage system installed, it may be more 
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advantageous to implement a drainage system designed based on future weather data rather than 

past data. 

Table 3.7. Optimum drain spacings based on historical weather (1994-2023), future weather 

(2030-2059), and future with the historical optimum drain spacings. 

Scenario 
Time 

interval 

Drain depth = 75 cm 

shallow drains 

 Drain depth = 125 cm 

deep drains 

Spacing 

(cm) 

Yield 

(%) 

AAR 

($/ha) 

 Spacing 

(cm) 

Yield 

(%) 

AAR 

($/ha) 

Drainage design 

based on historical 

weather data 

1994 – 2023 500 82 328 

 

1000 85 581 

Drainage design 

based on future 

weather data 

2030 – 2059 800 78 267 

 

1600 80 442 

 

 

3.4.3.2. Past optimum drainage design in the future  

  Another scenario pertains to fields with an existing drainage system designed based on past 

weather data, where it is nearly impossible to modify the drainage design in such fields. In the case 

of not changing the drainage design and using the drainage system designed based on the historical 

weather data, a considerable reduction in AAR from $581/ha to $353/ha was observed for deep 

drains which was due to lower relative crop yield (85% vs 79%). The AAR for shallow drains also 

decreased from $328/ha to $206/ha which was due to the decrease in relative yield (82% vs 79%). 

  From this section onward, the analyses and discussions are based on maintaining the 

existing drainage system designed based on the historical weather data. In other words, we 

predicted the future hydrology and crop yield under the condition where the drainage system is 

designed based on the historical data to evaluate its performance in the future. 
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3.4.4. Effect of climate change on hydrology and crop yield 

3.4.4.1. Water-table depth for past and future 

  The effect of climate change on WTD for optimum drainage design based on the historical 

climate was investigated. The WTD was predicted to be significantly deeper in the future for both 

shallow and deep drains (8% on average; p-value < 0.001), which was mainly due to increased 

temperature and increased ET (Figure 3.8 and Figure A3.2). In clay loam soils, as the evaporation 

from the soil surface and crop transpiration increases, the water depletion increases due to 

increased upward flux via capillary rise. The deep drains had a deeper WTD than the shallow 

drains because of its deeper drain depth. For shallow drains, the highest difference in the historical 

and future WTD occurred during fall, while deep drains showed the highest difference in summer. 

During the growing season, the future WTD for shallow and deep drains were 8.63% and 7.64% 

deeper than the historical, respectively. Our findings agreed with the findings of Sojka et al. (2020) 

as they reported that the effect of climate change will be a decrease in the mean groundwater table 

in the fields equipped with drainage system. Salem et al. (2018) showed that higher increase in 

temperature and no appreciable change in rainfall in winter will cause further declination of 

groundwater levels in an agricultural area in Bangladesh.  
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Figure 3.8. The 30-year average monthly water-table depth for historical (1994–2023) and future 

(2030–2059) periods under free drainage for shallow drains. 

 

3.4.4.2. Actual evapotranspiration for the past and future 

  DRAINMOD simulations showed that climate change affected the 30-year average annual 

actual ET (Figure 3.9 and Figure A3.3). Our findings showed that the future average annual ET 

for both drainage designs will significantly increase (shallow drains p-value = 0.0068; deep drains 

p-value = 0.0029). The 30-year historical average annual ET was 54 cm, while, 30-year future 

average annual ET was 63 cm (17% increase). On average, ET during the growing season and non-

growing season increased 8.1% and 28.8%, respectively. The shallow drains had higher historical 

and future ETs as well as higher change than deep drains which was mainly due to its shallower 

water table. The main reason for the increased ET in the future is the increased temperature. As 

explained in section 3.4.1.1, the future temperature will significantly increase which leads to an 
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increase in ET. Pease et al. (2017) reported increased temperature and ET in the future for the 

Midwest. Jiang et al. (2020) stated that without the influence of elevated CO2, higher future 

temperatures would result in increased ET in the future. Van Roosmalen et al. (2009) reported 

substantially higher ET in the future. Wang et al. (2015) projected higher actual and potential ET 

in the future in Iowa (from 2045 to 2064). However, some studies reported decreased actual ET 

for the future. Shokrana et al. (2023) reported a slight decrease in future ET as compared with the 

historical ET. They attributed the decreased ET to the increased RH and subsequently increased 

vapor pressure in the future. They utilized RZWQM which uses the Shuttleworth–Wallace 

equation to estimate the daily potential ET. The RH is one of the inputs of the Shuttleworth–

Wallace equation, however, in the Thornthwaite equation that DRAINMOD uses to estimate 

potential ET, temperature is the main input parameter.  

 

Figure 3.9. The 30-year average monthly actual evapotranspiration for historical (1994–2023) and 

future (2030–2059) periods under free drainage for shallow drains. 
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  The average annual number of dry days during growing season for future for both drainage 

designs was considerably higher than in the past (Table A3.2). A dry day is computed in 

DRAINMOD whenever actual ET is less than potential ET because of limiting soil water 

conditions. In the past, dry days during growing season for shallow and deep drains were 24 days 

and 30 days, respectively. However, in the future, we observed 38 dry days for shallow drains and 

43 dry days for deep drains. The reason for having fewer dry days in shallow drains is that, for 

shallow drains, the water table was shallow, providing the crop with enough water to satisfy the 

water demand for ET (Ghane & Askar, 2021). However, in the case of deep drains, the crop had 

limited access to water, causing more days when the crop could not achieve its potential ET rate. 

  The ratio of ET to precipitation will increase in the future. In the past, on average, 59% and 

57% of precipitation were lost via ET for shallow and deep drains, respectively, while in the future, 

the ratios are 70% for shallow drains and 67% for deep drains. 

3.4.4.3. Drainage discharge for the past and future 

  The effect of climate change on the drainage discharge for both drainage designs was 

investigated. For both drain depths, the drainage discharge of the future was significantly (shallow 

drains p-value = 0.0068; deep drains p-value = 0.0067) lower than the historical period (Figure 

3.10 and Figure A3.4). The highest reduction in drainage discharge was observed in fall for shallow 

drain (72% on average) and in summer for deep drain (77% on average). The growing season also 

had a higher decrease in drainage discharge than non-growing season, on average 72% for both 

drainage designs. The decreased drainage discharge is attributed to the decreased precipitation 

(explained in section 3.4.1.2) and the increased ET (explained in section 3.4.4.2). Pease et al. 

(2017) and Jiang et al. (2020) also reported a decrease in drainage discharge for the future. They 

attributed this to the higher ET caused by increased temperatures under climate change, resulting 
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in less water being lost to drainage. However, some studies, such as Shokrana et al. (2023), Wang 

et al. (2015), and Singh et al. (2009) reported increased drainage discharge in the future. Shokrana 

et al. (2023) showed more precipitation will turn into the drainage discharge as ET will decrease 

which is in contrast with our findings provided in section 3.4.4.2. Singh et al. (2009) investigated 

the effect of climate change on drainage discharge under two future climate scenarios. Given the 

difference in the nature of projections of each GCM, a wide variety of responses from decreased 

discharge to increased discharge is expected. In this study, we investigated 27 GCMs and the final 

results provided are the average of all responses. 

  For both past and future, the highest and lowest drainage discharge was estimated in March 

and September, respectively, for shallow drain. For deep drain also the highest drainage discharge 

was predicted to be in March for both past and future. However, the lowest drainage discharge was 

expected to happen in September in the past and July in the future. The highest variability of 

estimated drainage discharge based on different GCMs was estimated to be in July from 2.48 cm 

to 9.62 cm for shallow drains.  

  The ratio of drainage discharge to precipitation and surface runoff to precipitation 

decreased in the future. In the past, on average, 38% and 42% of precipitation turned into drainage 

discharge for shallow and deep drains, respectively, while in the future, the ratios are 29% for 

shallow drains and 33% for deep drains. The runoff was not considerable in both the past and 

future due to the field’s low slope and high surface storage. On average, only 1.4% of precipitation 

transformed into runoff in the past, while this proportion is expected to decrease to 0.6% in the 

future. 
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Figure 3.10. The 30-year average monthly drainage discharge for historical (1994–2023) and 

future (2030–2059) periods under free drainage for shallow drains. 

 

3.4.4.4. Crop yield for the past and future 

   The historical 30-year average crop yield for shallow drains was 82% and for deep drains 

was 85%. For the future, the 30-year average yield for shallow and deep drains were 78% and 

80%, respectively. However, the difference in yield from past to the future was not significant in 

both drainage designs (shallow drains p-value = 0.19; deep drains p-value = 0.11). Figure 3.11 

depicts the relative yield with excess water stress and drought stress in the past and future (based 

on four random climate models) under free drainage for shallow drain. As explained in section 

3.4.3.1 and can be seen in Figure 3.11, the main reason for the yield loss in the past was excess 

water, while drought stress was the major factor decreasing the yield in the future. In the past, for 
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shallow drains, the yield losses due to excess water and drought stresses were 2.7% and 13%, 

respectively. In the future, the yield loss due to excess water is projected to be negligible, while 

the yield loss due to drought stress is expected to reach 20%. Similarly, in the past for deep drains, 

the yield losses due to excess water and drought stresses were 1.5% and 13%, respectively. The 

yield loss due to drought stress is anticipated to be 20%, and excess water is not expected to have 

an effect on crop yield.  

 

Figure 3.3. Relative yield for continuous corn with excess water stress and drought stress in the 

past and future under free drainage for shallow drain. As an example, we present the future GCM 

for NorESM2-MM, ACCESS-CM2, CanESM5, and EC-Earth3 climate models. 

 

  The annual average of working days for the future for both drainage designs was higher 

than in the past. In DRAINMOD, a day is counted as a working day if the drained or water free 

pore space is greater than a threshold value, if there is less than a given amount of rain that day, 

and if rainfall sufficient to delay field work has not occurred within a given number of days. In the 

past, the working days for shallow and deep drains were 85 days and 99 days, respectively. 
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However, in the future, we observed 92 working days for shallow drains and 106 working days for 

deep drains. The deep drains had more working days for both past and future. The reason is that 

for deep drains, the water table was the deepest providing a better condition for machinery traffic, 

in comparison to shallow drains which had the shallowest water table.  

  One way to alleviate the drought stress is to provide supplemental irrigation such as 

subirrigation which is discussed in section 3.4.5. 

3.4.5. Efficiency of subirrigation practice in the past and future 

  Subirrigation was applied to the past and future under different management scenarios to 

investigate how subirrigation management would change from the past to the future (Table 3.8). 

For both past and future, subirrigation was able to significantly (p-value < 0.001 for both drainage 

designs) increase the crop yield, however, this increase was more pronounced in the future than 

the past (Figure 3.12). Regardless of the weir depth and irrigation start time, in the past, 

subirrigation increased the relative crop yield by 11% under shallow drains and by 7% under deep 

drains. However, in the future, subirrigation is expected to increase the relative crop yield on 

average by 19% (ranging from 8% to 36%) and 17% (ranging from 3% to 31%) under shallow 

drains and deep drains, respectively (Table 3.8).  

Table 3.8. Relative yield, percent increase, optimum subirrigation management in the past 

and future. 

Period 

Relative yield 

under free 

drainage (%) 

Relative yield 

under 

subirrigation (%) 

Percent 

increase 

Optimum irrigation 

start time 

Optimum 

weir depth 

(cm) 

Drain depth = 75 cm, Drain spacing = 500 cm 

Historical 82 93 11 29-Jun 70 

Future 78 (61 - 90) 97 (93 - 99) 19 (8 - 36) 29-Jun 60 

 Drain depth = 125 cm, Drain spacing = 1000 cm 

Historical 85 92 7 29-Jun 70 

Future 80 (61 – 94) 97 (89 - 99) 17 (3 - 31) 15-Jun 60 

Values inside the parenthesis are lower and upper limits. 

  



99 

  The higher efficiency of subirrigation in the future compared to the past can be attributed 

to the fact that, historically, both excess water and drought stresses contributed to yield loss. While 

subirrigation effectively mitigated drought stress during dry years in the past, it introduced 

unwanted wet stress to the crop in years with sufficient precipitation. Consequently, the cumulative 

impact of subirrigation resulted in a slight increase in relative crop yield compared to free drainage 

in the past. However, in the future, increased temperatures and shifts in precipitation patterns 

indicate that drought stress will be the predominant factor influencing crop yield loss. Wet stress 

is expected to play a negligible role in this future scenario. As a result, the application of 

subirrigation in the future has the potential to significantly enhance relative crop yield. Gunn et al. 

(2018) and Allred et al. (2014) found a similar response to subirrigation practice in Ohio and 

confirmed its efficacy in increasing the crop yield. Murugaboopathi et al. (1995) also found that 

corn subirrigation practice could increase the crop yield in North Carolina soils. 
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Figure 3.12. Relative yield (%) for past and future under free drainage and subirrigation. 
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  Our results showed that subirrigation not only increased the yield for both drainage designs, 

but also it stabilized the yield (Figure 3.12). On average, in the future, the coefficient of variation 

for relative yield decreased from 0.27 (ranging from 0.14 to 0.44) under free drainage to 0.06 

(ranging from 0.02 to 0.20) with subirrigation in shallow drain. For deep drains, subirrigation 

managed to reduce the coefficient of variation for the relative yield from 0.24 (ranging from 0.10 

to 0.43) to 0.05 (ranging from 0.01 to 0.10), on average. This occurred because subirrigation can 

decrease crop yield loss due to drought stress, which is projected to be the main reason for crop 

yield loss in the future. Gunn et al. (2018) reported less variation when adopting subirrigation 

practice. Cooper et al. (1999) also reported subirrigation can stabilize the corn yield at high levels, 

resulting in higher long term average yields. 

  The average annual amount of water pumped into the subirrigation system also was 

considerably different in the past and future. In the past, the average annual pumped water was 6.9 

cm and 6.5 cm for shallow and deep drains. In the future, the average annual water pumped into 

the subirrigation system was 9.9 cm (ranging from 6 cm to 15.7 cm) for shallow drains and 10.5 

cm (ranging from 6.7 cm to 15.6 cm) for deep drains.  

3.4.5.1. Subirrigation Management 

  As explained in sections 3.4.1.1 and 3.4.1.2, not only did projections show increased 

temperature, but also, they showed considerably lower precipitation in June in the future. As a 

result, there has been a significant shift in subirrigation management practices from the past to the 

future (Table 3.8). Based on historical data, for shallow drains, the highest crop yield was achieved 

with a weir depth of 70 cm and irrigation starting in late June. However, due to increased drought 

stress in the future, optimum results are anticipated with a shallower weir depth (60 cm). A similar 

trend is evident for the drainage design of deep drains. In the past, the optimum weir depth and 
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irrigation start time were determined to be 70 cm and late June, respectively. Contrastingly, in the 

future, the ideal conditions involve a weir depth of 60 cm and a mid-June start for irrigation. 

3.4.5.2. Subirrigation limitation 

Subirrigation introduces the capability to replenish water into the drainage system, 

mitigating yield losses attributed to drought stress. However, it necessitates a separate water source 

that meets requirements for both quantity and quality. Drainage water recycling (DWR) is an 

emerging practice wherein subsurface and surface drainage water are captured and stored for 

subsequent use as supplementary irrigation during dry spells (Frankenberger et al., 2017). Despite 

the myriad benefits that DWR offers, including enhanced crop yield, improved water quality, 

better downstream flow management, and support for wildlife, its implementation requires 

considerable investment (Hay et al., 2021). Constructing reservoirs large enough to provide 

adequate storage incurs considerable expenses. However, the cost-benefit evaluation of drainage 

water recycling has not been investigated.  It is imperative to develop research-based irrigation 

management strategies tailored for poorly drained soils, particularly for farmers well-versed in 

drainage but lacking experience in irrigation. Strategies should focus on pinpointing sites where 

costs are minimized, and economic benefits are maximized. 

3.5. Conclusions 

  The effect of climate change on the drainage design and the efficacy of subirrigation 

practice in alleviating yield loss due to drought stress in southeast Michigan were investigated. 

The optimum drainage designs were compared for the past and future. The key findings are 

summarized as follows: 
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• Projections indicated a temperature increase of 2.4 °C during the non-growing season (from 

November through May) and a 2.7 °C rise during the growing season (from June through 

October) compared to the historical period.  

• According to the projections, the average annual precipitation is expected to remain 

relatively stable in the future. Anticipated seasonal changes include a 1.4% increase in 

precipitation during the non-growing season compared to the historical period and a 6.7% 

decrease in precipitation during the growing season. Projections indicate a 2.1% increase 

in precipitation during spring and a notable 12.8% increase during winter. 

• In the past, the highest annual return on investments for drain depths of 75 cm and 125 cm 

occurred when the drain spacings were 500 cm and 1000 cm, respectively. However, for 

the future, the optimum drain spacing is projected to be wider at 800 cm for a drain depth 

of 75 cm and 1600 cm for a drain depth of 125 cm. 

• The 30-year average annual drainage discharge and water-table depth for both shallow and 

deep drains are anticipated to decrease significantly, attributed to the projected increase in 

evapotranspiration in the future. 

• Subirrigation is expected to reduce drought stress and increase the yield up to 31% in the 

future. 

• In the past, subirrigation initiation was feasible in late June with a weir depth of 70 cm. 

However, in the future, subirrigation is anticipated to be more advantageous when starting 

in mid-June, coupled with a shallower weir depth.  

  In conclusion, wider drain spacings would be more efficient for the future. Due to shift in 

precipitation and increased temperature, a wider drain spacing can hold the water in the field by 

reducing the drainage intensity. In the case of maintaining the past or the current drainage design 
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for the future, the adoption of subirrigation may be a valuable practice to alleviate potential yield 

loss resulting from the drought stress. The value of this study lies in its contribution to 

understanding the future performance of existing drainage designs and the efficacy of subirrigation 

as a supplementary irrigation method, utilizing the latest CMIP6 modeling framework. 
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APPENDIX A: CHAPTER 1 

Table A1.1. Sampling strategies in some previous studies investigating P transport through 

subsurface drainage systems. 

Study P form Sampling interval 
Compositing 

scenario 
Purpose of research 

Nash et al. (2020) DRP 
1 day, event-

based1 

4 aliquots per day 

(every 6 hours); 

daily composite 

Controlled drainage 

evaluation 

Carstensen et al. 

(2019) 
DRP and TP 7 days – 

Controlled drainage 

evaluation 

Saadat et al. (2018) DRP and TP 7 to 14 days 
Hourly aliquot; 

weekly composite 

Controlled drainage 

evaluation 

Pease et al. (2018) DRP and TP 
1 day, event-

based1 

4 aliquots per day 

(every 6 hours); 

daily composite 

Quantifying the impact of 

agricultural crop production 

on surface and subsurface 

water quality 

Daly et al. (2017) 
DRP, DP, 

TRP, and TP 
30 days – 

P dynamics in surface and 

subsurface soils 

Clement & 

Steinman (2017) 
DRP and TP 30 days and 1 day – 

Investigating the role of the 

subsurface drainage system 

in P transport 

King et al. (2016) DRP and TP 1 day 

4 aliquots per day 

(every 6 hours); 

daily composite 

Quantifying the impact of 

FGD gypsum on P 

concentration and load in tile 

discharge 

King et al. (2015) DP and TP 1 h and 1 day 

4 aliquots per day 

(every 6 hours); 

daily composite 

Investigation of the 

relationship between P 

transport and macropore flow 

Daigh et al. (2015) 
DRP and 

TRP 
Twice weekly – 

Evaluating subsurface 

drainage TRP concentration 

and yield in a drained field 

Hoffmann et al. 

(2020) 
TP 7 days 

8 aliquots per day 

(every 3 hours); 

weekly composite 

Evaluating re-established 

riparian wetlands to mitigate 

nutrient loss 

Stamm et al. (1998) DRP 
30 min, event-

based 

2 aliquots in 30 min 

(every 15 min) 

Investigating the effect of 

preferential flows on P 

transport 

TP= total phosphorus; TRP= total reactive phosphorus; DRP= dissolved reactive phosphorus; DP= 

total dissolved phosphorus. 

1- event-based, samples are not collected on a regular schedule but during or after precipitation 

events. 
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Table A1.2. The relative error in P load estimation and approximate final cost for each sampling strategies over the study 

period (305 days). 

Sampling strategy 
Relative error 

(%) 

Number of 

samples 

Cost* 

Sample analysis Automated sampler Flow sensor and data logger Final 

Time-

proportional 

discrete 

1 h 0 7320 $73,200 $5,000 $5,000 $83,200 

3 h 0.2 2440 $24,400 $5,000 $5,000 $34,400 

6 h 1.4 1220 $12,200 $5,000 $5,000 $22,200 

12 h 5.3 610 $6,100 $5,000 $5,000 $16,100 

24 h 12.2 305 $3,050 $0 $5,000 $8,050 

48 h 19.2 154 $1,540 $0 $5,000 $6,540 

72 h 27.2 100 $1,000 $0 $5,000 $6,000 

7 d 42.7 44 $440 $0 $5,000 $5,440 

14 d 51 22 $220 $0 $5,000 $5,220 

Time-

proportional 

composite 

1 d 12.4 305 $3,050 $5,000 $5,000 $13,050 

2 d 19.7 154 $1,540 $5,000 $5,000 $11,540 

3 d 27.7 100 $1,000 $5,000 $5,000 $11,000 

7 d 43 44 $440 $5,000 $5,000 $10,440 

Flow-

proportional 

discrete 

1 mm 0.2 389 $3,890 $5,000 $5,000 $13,890 

2 mm 3.1 190 $1,900 $5,000 $5,000 $11,900 

3 mm 2.9 127 $1,270 $5,000 $5,000 $11,270 

5 mm 5.4 85 $850 $5,000 $5,000 $10,850 

Flow-

proportional 

composite 

1 mm 0.5 66 $660 $5,000 $5,000 $10,660 

2 mm 7.2 34 $340 $5,000 $5,000 $10,340 

3 mm 4.8 24 $240 $5,000 $5,000 $10,240 

5 mm 1.9 16 $160 $5,000 $5,000 $10,160 

*All sampling strategies included a cost for an automated sampler, except for the 1 to 14-day discrete time-proportional sampling. The cost of 

$10 per sample was included in the analysis. The cost of a flow sensor was included for all strategies 
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Figure A1.1. Two photos of HydroCycle-PO4, with and without shield (Right Image: courtesy of 

seabird.com). 
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Figure A1.2. Hourly TRP concentration and drainage discharge in a subset of reference dataset 

from May 25, 2019, to June 19, 2019. 
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Figure A1.3. Hourly TRP concentration and drainage discharge in a subset of reference dataset 

from April 7, 2020, to April 21, 2020. 
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Figure A1.4. TRP load (kg/ha) estimation using different sampling intervals (dashed line is the 

reference TRP load). 
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Figure A1.5. Time-proportional discrete sampling strategy: water samples collected using different 

sampling intervals. To demonstrate that long sampling intervals often miss sharp increases in P 

concentration, see storm event on January 24th, 2019. The 24-h discrete sample was taken farthest 

away from the peak TRP concentration, whereas the 6-h discrete sample was taken closest to the 

peak. 
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Figure A1.6. Flow-proportional discrete sampling strategy: to demonstrate that long sampling 

intervals often miss sharp increases in P concentration, see storm event on January 24th, 2019. The 

1-mm discrete sample was taken near the peak TRP concentration, thereby better representing the 

variation in TRP concentration compared to the 5-mm flow interval that missed the peak TRP 

concentration. 
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APPENDIX B: CHAPTER 2 

                 

Figure A2.1. Two photos of HydroCycle-PO4, with and without shield (Right Image credit: 

seabird.com). 
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Figure A2.2. Due to the strong relationship between flow and P concentration, we considered the 

entire flow as the flow event. Hence, if we had subtracted the baseflow from the event flow, the 

resulting baseflow would not have represented the typical baseflow prior to the event because of 

the high P concentration. 
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Figure A2.3. The TRP concentration in drainage discharge during summer was more scattered (R-

square = 0.03) compared to other seasons. The reason could be a combination of differences in 

frequency, intensity, and duration of storm events such that during intense and short-duration storm 

events most likely only P molecules in preferential flow pathways were transported to the 

monitoring point while in low-intensity and long-duration storm events, water had the opportunity 

of moving through both preferential flow pathways and soil matrix, thereby washing P molecules 

in both pathways. Therefore, for the same quantity of drainage discharge, different amounts of P 

concentrations were measured. 
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Figure A2.4. An example of different time intervals for time proportional discrete sampling, which 

shows that the 6-h interval is the most suitable sampling interval for capturing the rapid variation 

in P concentration. The 24-h discrete sample was taken farthest away from the peak TRP 

concentration, whereas the 6-h discrete sample was taken closest to the peak. 
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Table A2.1. The flow events sorting from the largest to the smallest contribution to P load. The 

highlighted rows show the events that were not included for rising limb, falling limb, and HI and 

FI analyses. 
Date Event Number Event TRP load 

(kg/ha) 

Contribution to P loss 

(%) 

Water Yield 

(mm) 

23-Jan-19 1 0.0712 3.8609 11.24 

3-Feb-19 2 0.0748 4.0567 7.39 

4-Feb-19 3 0.090 4.86 13.91 

6-Feb-19 4 0.049 2.66 9.45 

7-Feb-19 5 0.020 1.11 6.52 

12-Feb-19 6 0.025 1.33 3.66 

14-Feb-19 7 0.069 3.74 7.44 

21-Feb-19 8 0.023 1.26 2.94 

22-Feb-19 9 0.010 0.54 1.14 

23-Feb-19 10 0.045 2.42 6.28 

19-Apr-19 11 0.008 0.44 3.70 

20-Apr-19 12 0.028 1.52 8.48 

30-Apr-19 13 0.053 2.90 17.26 

26-May-19 14 0.017 0.94 4.31 

27-May-19 15 0.013 0.73 3.36 

29-May-19 16 0.007 0.40 3.22 

30-May-19 17 0.026 1.39 6.96 

1-Jun-19 18 0.029 1.58 8.09 

5-Jun-19 19 0.015 0.81 4.24 

10-Jun-19 20 0.016 0.86 4.10 

16-Jun-19 21 0.011 0.62 2.38 

20-Jun-19 22 0.029 1.59 4.54 

26-Oct-19 23 0.068 3.71 13.40 

30-Oct-19 24 0.012 0.68 2.43 

31-Oct-19 25 0.072 3.91 16.60 

18-Nov-19 26 0.003 0.19 1.45 

29-Dec-19 27 0.027 1.46 4.98 

29-Dec-19 28 0.080 4.34 12.76 

11-Jan-20 29 0.198 10.74 22.29 

24-Jan-20 30 0.035 1.90 7.07 
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Table A2.1 (cont’d)  

27-Jan-20 31 0.008 0.44 2.11 

19-Mar-20 32 0.040 2.19 5.95 

27-Mar-20 33 0.031 1.67 5.08 

28-Mar-20 34 0.019 1.05 4.24 

7-Apr-20 35 0.019 1.01 4.02 

18-Apr-20 36 0.002 0.14 1.61 

25-Apr-20 37 0.002 0.10 1.34 

15-May-20 38 0.067 3.61 8.46 

17-May-20 39 0.212 11.50 27.46 

10-Jun-20 40 0.019 1.04 2.91 

16-Jul-20 41 0.001 0.07 0.81 
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APPENDIX C: CHAPTER 3 

Table A3.1. Summary of CMIP6 projections obtained from GCMs used in NASA NEX-GDDP 

database for SSP245 emission scenario. 
Model ID Modeling Center 

ACCESS-CM2 
Australian Community Climate and Earth System Simulator 

ACCESS-ESM1-5 

BCC-CSM2-MR Beijing Climate Center Climate System Model 

CanESM5 The Canadian Earth System Model 

CMCC-CM2-SR5 
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici 

CMCC-ESM2 

CNRM-CM6-1 
Centre National de Recherches Meteorologiques 

CNRM-ESM2-1 

EC-Earth3 
European Community Earth System Model 

EC-Earth3-Veg-LR 

FGOALS-g3 Flexible Global Ocean-Atmosphere-Land System Model 

GFDL-CM4 
Geophysical Fluid Dynamics Laboratory 

GFDL-ESM4 

GISS-E2-1-G Goddard Institute of Space Studies 

INM-CM4-8 
Institute for Numerical Mathematics 

INM-CM5-0 

MIROC6 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 

for Environmental Studies, and Japan Agency for Marine-Earth Science and 

Technology 

MIROC-ES2L 

IPSL-CM6A-LR Institute Pierre Simon Laplace Climate Modeling Center 

KIOST-ESM Korea Institute of Ocean Science and Technology Earth System Model 

MPI-ESM1-2-HR 
Max Planck Institute for Meteorology 

MPI-ESM1-2-LR 

MRI-ESM2-0 The Meteorological Research Institute Earth System Model 

NESM3 The NUIST Earth System Model (NESM) version 3 

NorESM2-LM 
Norwegian Earth System Model 

NorESM2-MM 

TaiESM1 Taiwan Earth System Model 
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Table A3.2. The average annual number of dry days and working days during the growing 

season predicted by DRAINMOD for each GCM. 

GCM 
Shallow drain (75 cm) Deep drain (125 cm) 

Dry Days Working Days Dry Days Working Days 

ACCESS-CM2 56 96 61 106 

ACCESS-ESM1-5 43 94 50 108 

BCC-CSM2-MR 45 93 51 106 

CanESM5 44 94 51 110 

CMCC-CM2-SR5 63 102 67 106 

CMCC-ESM2 30 89 38 104 

CNRM-CM6-1 43 90 30 105 

CNRM-ESM2-1 44 86 50 105 

EC-Earth3 41 88 28 103 

EC-Earth3-Veg-LR 39 93 45 107 

FGOALS-g3 25 93 33 107 

GFDL-CM4 39 95 46 107 

GFDL-ESM4 24 89 33 105 

GISS-E2-1-G 32 95 39 108 

INM-CM4-8 25 85 33 105 

INM-CM5-0 28 88 37 106 

IPSL-CM6A-LR 49 99 54 109 

KIOST-ESM 44 97 51 108 

MIROC6 37 94 43 107 

MIROC-ES2L 34 88 41 108 

MPI-ESM1-2-HR 31 89 37 105 

MPI-ESM1-2-LR 27 94 33 107 

MRI-ESM2-0 28 93 35 105 

NESM3 34 93 39 107 

NorESM2-LM 46 95 52 109 

NorESM2-MM 43 89 50 103 

TaiESM1 22 86 30 102 

Average 38 92 43 106 
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Figure A3.1. The box plots illustrate the variation in GCM predictions for maximum future 

temperature (left) and minimum future temperature (right) during 2030–2059. It is evident that the 

monthly average minimum and maximum temperatures in the future are projected to be higher 

than in the past. Additionally, the shorter quartiles for both minimum and maximum temperatures 

in the future indicate increased confidence in the projected temperature increase. 
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Figure A3.2. The 30-year average monthly water-table depth for historical (1994–2023) and 

future (2030–2059) periods for deep drains under free drainage. 
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Figure A3.3. The 30-year average monthly actual evapotranspiration for historical (1994–2023) 

and future (2030–2059) periods under free drainage for deep drains. 
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Figure A3.4. The 30-year average monthly drainage discharge for historical (1994–2023) and 

future (2030–2059) periods under free drainage for deep drains. 


