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ABSTRACT

This dissertation explores parameter estimation for Gaussian random fields and multivari-

ate Gaussian random processes under fixed-domain asymptotics, a crucial framework for

modeling spatial and temporal data. Unlike increasing-domain asymptotics, fixed-domain

asymptotics involve a growing number of observations within a fixed, bounded region, lead-

ing to denser data. This scenario is common in applications such as image processing, where

the spatial domain is constrained by the finite size of the sensor array.

First, we study the parameter estimation for a Gaussian field with a multiplicative co-

variance function, which is particularly relevant in computer experiments. We propose an

increment-based estimator for estimating variance and scale parameters, and subsequent

analysis shows that the estimator is both strongly consistent and asymptotically normal.

Next, we extend the analysis to the bivariate Ornstein-Uhlenbeck process, constructing

an explicit estimator that is strongly consistent and asymptotically normal. This estimator,

requiring no prior parameter information, is shown to have the same asymptotic covariance

matrix as that of the maximum likelihood estimator (MLE).

Finally, we investigate asymptotic properties of MLE for the isotropic powered exponen-

tial field. Unlike the Matérn model, the spectral density of the powered exponential model

poses analytical challenges. We also establish conditions for the equivalence of Gaussian

measures, providing a contrast to the orthogonality conditions found in earlier studies.
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CHAPTER 1

INTRODUCTION

Multivariate Gaussian random fields defined on Rd are widely used to model spatial and

temporal data. When fitting a random field to the data, it is common to assume that its

covariance function belongs to a family of functions parameterized by a set of parameters

which are then estimated based on the data. This turns the modeling problem into a pa-

rameter estimation one (see, e.g., Chilès and Delfiner 2012, for an introduction to spatial

statistical techniques).

Three prevalent asymptotic frameworks exist in spatial statistics: increasing-domain

asymptotics, fixed-domain asymptotics (see, e.g., M. L. Stein 1999a, chap. 3.3) and mixed-

domain asymptotics (see, e.g., Lahiri 2003). In increasing-domain asymptotics, the distance

between neighboring observation points remains above a positive threshold, causing the sam-

pling region to expand as the number of observations increases. In fixed-domain asymptotics

which is also called infill asymptotics in Cressie (1993), the number of observation points rises

within a bounded sampling domain, resulting in increasingly dense observation points. In

mixed-domain asymptotics, the sampling region expands, and at the same time, increasingly

dense observation points fill in any given subregion of the sampling region.

Fixed-domain asymptotics can occur in the process of spatial data. For example, we can

model the analog signal a camera receives as

Xa(s) = f(s) +X(s), s ∈ T,

where T ⊂ R2 is a fixed and bounded set because the charge-coupled device (CCD) of a

camera has a finite surface. We use f(s) to represent the original signal, and X(s) is the

intrinsic physical noise which is modeled by a random field. Subsequently, an analog-to-

digital converter converts Xa(s) to a digital signal, which can be modeled as

Xd(n) = ⟨Xa(s), ϕn(s)⟩, 0 ≤ n ≤ N,
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where {ϕn(s)} are the sensor responses. Here the two-dimensional vector n represents the

pixel and N denotes the image size. If we plan to study the performance of a denoising

algorithm based on measurements {Xd(n)} as N increases, it seems reasonable to adopt the

fixed-domain asymptotic framework (see, e.g., Mallat 2008, chap. 11 for denoising).

In the theory of fixed-domain asymptotics for multivariate Gaussian fields, there is a

key concept called the equivalence of Gaussian measures. Specifically, for two probability

measures P0 and P1 on a measurable space (Ω,F), say that P0 is absolutely continuous with

respect to P1 if for all A ∈ F , P1(A) = 0 implies P0(A) = 0. Define P0 and P1 to be

equivalent, written P0 ≡ P1, if they are mutually absolutely continuous. Define P0 and P1 to

be orthogonal, written P0 ⊥ P1, if there exists A ∈ F such that P1(A) = 0 implies P0(A) = 1.

Feldman (1958) proved that two Gaussian measures are either equivalent or orthogonal. The

concept plays an important role in both prediction and estimation of multivariate Gaussian

fields under fixed-domain asymptotics (see, e.g., M. L. Stein 1988; M. Stein 1990; M. L. Stein

1993; M. L. Stein 1999b; M. L. Stein 2004).

Since this work focuses mainly on parameter estimation problems of multivariate Gaus-

sian processes and univariate Gaussian fields under fixed-domain asymptotics, we first review

recent results and relevant methods in the literature. On the one hand, Mason and Xiao

(2002) studied sample path properties of operator fractional Brownian motions. Amblard

and Coeurjolly (2011) studied parameter estimation of multivariate fractional Brownian mo-

tion with an increment-based method and proved the strong consistency and asymptotic

normality under increasing-domain asymptotics. Didier and Pipiras (2011) provided the

integral representations of operator fractional Brownian motions in the spectral and time

domains, respectively. Subsequently, Abry and Didier (2018) constructed estimators for op-

erator fractional Brownian motion with wavelets, and showed the estimators are consistent

and asymptotically normal under increasing-domain asymptotics. It is of interest to note

that the corresponding high-pass filter of the wavelet used by Abry and Didier (2018) is a type

of increment. On the other hand, Zhou and Xiao (2018) estimated the fractal indices of bi-
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variate stationary Gaussian processes with the increment-based method under fixed-domain

asymptotics and proved the consistency and asymptotic normality. Gneiting, Kleiber, and

Schlather (2010) introduced a flexible parametric family of matrix-valued covariance func-

tions for multivariate stationary Gaussian random fields, where each constituent component

is a Matérn field. Zhang and Cai (2015) gave a sufficient condition for two probability

measures corresponding to matrix-valued Matérn covariance functions to be equivalent and

displayed an explicit example where cokriging is identical to kriging (best linear unbiased

prediction). Velandia et al. (2017) showed that the MLE for a bivariate Ornstein-Uhlenbeck

process is strongly consistent and asymptotically normal under fixed-domain asymptotics

given some prior information of the parameter. Bachoc et al. (2022) provided conditions

for equivalence of measures associated with multivariate Gaussian random fields and studied

misspecified cokriging prediction for multivariate Matérn and generalized Wendland fields

under fixed-domain asymptotics.

Compared with MLE, the increment-based estimator can achieve linear computational

complexity, and it is easily computed with no maximization required in many cases. Unsur-

prisingly, there has been a long history of using increment-based methods to study properties

of random fields. Actually, it can be traced back to the quadratic variation theorem in Lévy

(1940). Since then, there has been a growing number of papers focused on parameter estima-

tion for univariate random fields with increments under fixed-domain asymptotics. Kent and

Wood (1997) estimated the fractal index of Gaussian processes using increments. Chan and

Wood (2000) consistently estimated the fractal dimension with asymptotic normality using

increments of the random field observed on a regular grid in R2. Anderes (2010) proved both

variance and scale parameters from the Matérn model can be consistently estimated when

d > 4 based on the increment-based method, but asymptotic distributions were not given.

The increment-based method was then generalized by Loh, Sun, and Wen (2021) and Loh

(2015) to estimate the smoothness parameter of the Matérn field irregularly sampled on Rd.

However, both papers did not study the asymptotic distribution of the estimators.
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In Chapter 2, we propose a method based on findings from Chan and Wood (2000) and

Loh (2015) for estimating the variance and scale parameters in the model considered in

Ying (1993) and study both its strong consistency and asymptotic normality with irregu-

larly spaced data under fixed-domain asymptotics. Models with a multiplicative covariance

function like the one considered in Ying (1993) are popular in computer experiments; (see,

e.g., Sacks, Welch, et al. 1989; Sacks, Schiller, and Welch 1989; Paulo 2005; Bayarr et al.

2009; Peng and Wu 2014).

In contrast to the increasing-domain asymptotics where the MLE of all (identifiable)

parameters is consistent and asymptotically normal under some mild regularity conditions

(Mardia and Marshall 1984), there is no general result for the asymptotic properties of

MLE under fixed-domain asymptotics. However, there is quite a bit of literature on fixed-

domain asymptotics of MLE when assuming that the covariance belongs to a parametric

family. For the univariate Ornstein-Uhlenbeck process, Ying (1991) showed the product of

its variance and scale parameters can be consistently estimated by MLE and the estimator

is asymptotically normal. Regarding the isotropic Matérn model, with known smoothness

parameter ν and free variance σ2 and scale parameter α, Zhang (2004) showed the MLE

of σ2α2ν is strongly consistent for dimension d ≤ 3, and Du, Zhang, and Mandrekar (2009)

showed the asymptotic normality of the estimator when d = 1. Wang and Loh (2011)

extended the asymptotic result to dimension d ≤ 3. Bevilacqua et al. (2019) studied the

MLE for the generalized Wendland model and derived similar results to those for the Matérn

model.

In Chapter 3, we construct an estimator for the bivariate Ornstein-Uhlenbeck process con-

sidered in Velandia et al. (2017) and study its strong consistency and asymptotic normality.

The construction is inspired by the results in Ying (1991) and Zhang (2004). Compared to

the MLE from Velandia et al. (2017), our estimator has an explicit form and does not require

any prior information of the parameter. Meanwhile, it turns out that the estimator has the

same asymptotic covariance matrix as that of the MLE, echoing the fact that cokriging is
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identical to kriging for this model as shown in Zhang and Cai (2015).

In Chapter 4, we analyze the asymptotic properties of MLE for the isotropic powered ex-

ponential field using tools from M. L. Stein (2004), Zhang (2004), and Wang and Loh (2011).

Compared with the Matérn model, the spectral density of the powered exponential model

cannot be analytically expressed except in some special cases, which brings new challenges

to the analysis. Furthermore, we also establish the parameter condition for the equivalence

of Gaussian measures, which contrasts with the orthogonality condition in Theorem 5 from

Anderes (2010).
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CHAPTER 2

A CLASS OF ORNSTEIN-UHLENBECK FIELDS

2.1 Introduction

Stationary Gaussian fields with multiplicative covariance functions have been success-

fully applied to the modeling of computer experiments. Sacks, Welch, et al. (1989) and

Sacks, Schiller, and Welch (1989) proposed the use of a Gaussian field with the multiplica-

tive powered exponential covariance function in their modeling of computer experiments.

Observing the undesirable properties of the corresponding Gaussian field for modeling com-

puter experiments, M. L. Stein (1989) proposed using a stationary Gaussian field model,

X(u),u ∈ [0, 1]d, with mean 0 and the multiplicative Matérn covariance function,

cov (X (u) , X (v))

=σ2

d∏
i=1

21−ν

Γ(ν)
(θi|u[i]− v[i]|)νKν(θi|u[i]− v[i]|), ∀u,v ∈ [0, 1]d,

(2.1)

where θ1, · · · , θd and σ2 are strictly positive parameters, and Kν is the modified Bessel

function of the second kind with order ν > 0. By Equation (32) of M. L. Stein (1999a), the

spectral density corresponding to Eq. (2.1) is

f(ω) = σ2

d∏
i=1

Γ(ν + 1
2
)θ2νi

Γ(ν)π1/2

1

(θ2i + (ω[i])2)
ν+(1/2)

. (2.2)

The parameter ν controls the smoothness of the random field X. Specifically, X is m times

mean square differentiable if and only if ν > m.

If ν = n+ 1
2
, Eq. (2.1) reduces to the product of an exponential function and a polynomial,

in that

cov (X (u) , X (v))

=σ2

d∏
i=1

exp (−θi|u[i]− v[i]|)
n∑
k=0

(n+ k)!

(2n)!

n
k

(2θi|u[i]− v[i]|)n−k,
(2.3)
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for n = 0, 1, · · · by Eq.(8.468) of Gradshteyn et al. (1981). Therefore, when ν = 0.5, Eq. (2.1)

reduces to

cov (X (u) , X (v)) = σ2

d∏
i=1

exp (−θi|u[i]− v[i]|) . (2.4)

In this regard, Ying (1993) showed both the strong consistency and the asymptotic normality

of the maximum likelihood estimator (MLE) of (σ2, θ1, · · · , θd) when d ≥ 2. Subsequently,

van der Vaart (1996) proved the MLE is also asymptotically efficient for dimension d = 2.

When ν = 1.5, Eq. (2.1) reduces to

cov (X (u) , X (v)) = σ2

d∏
i=1

(1 + θi|u[i]− v[i]|) exp (−θi|u[i]− v[i]|) , (2.5)

and Loh (2005) constructed a consistent estimator of (σ2, θ1, · · · , θd) based on the maximum

likelihood method when d ≥ 3.

In this chapter, we use the increment-based method from Chan and Wood (2000) and

Loh (2015) to estimate the variance and scale parameters in Eq. (2.4) based on irregularly

sampled data and study both its consistency and asymptotic normality under infill asymp-

totics. For simplicity, we first study the dimension d = 2 in detail; therefore, there are

only three parameters (λ, µ, σ2)′ being defined in our model below. Then we generalize the

method to an arbitrary d in Section 2.5. Our main motivation to study this particular case

is that, on the one hand, properties of the MLE in this case have been well studied so that a

comprehensive comparison can be made between the MLE and the increment-based method

in terms of the consistency and the asymptotic normality. On the other hand, one obvious

advantage of the increment-based method is that the construction of the estimator does not

involve the inverse of the covariance matrix compared to the MLE, which greatly reduces

the computational complexity of the estimation. Actually, in our case, the computational

complexity is O(n) where n is the sample size. However, to our best knowledge, the appli-

cability of the increment-based method on a Gaussian field with a multiplicative covariance

function under an irregular sampling scheme had not yet been studied. The proofs in this

case lay the foundation for the asymptotic analysis of more general cases.
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The rest of this chapter is organized as follows. In Section 2.2, we study the Ornstein-

Uhlenbeck (OU) process with a covariance function Γµ(t) = σ2e−µ|t| by the increment-based

method, which is the first step towards the asymptotic analysis of the OU field with the

covariance function as Eq. (2.4). In Section 2.3, we establish the strong consistency and the

asymptotic normality of the estimator of (λ, µ, σ2)′. In Section 2.4, we present a simulation

study on the efficiency of the estimator in finite-sample cases. In Section 2.5, we generalize the

increment-based method to any dimension d and derive the corresponding strong consistency

and asymptotic normality results.

We end the introduction with some notation. For any real-valued sequences an, bn, an ∼

bn means limn→∞ bn/an = 1. We write j = (j[1], · · · , j[d]), with brackets used to denote

components of j, and 0 ≤ j ≤ n is equivalent to 0 ≤ j[ℓ] ≤ n[ℓ] for ℓ = 1, · · · , d. If j ∈ Zd is

a multi-index, we write |j| =
∑d

ℓ=1 |j[ℓ]|.

2.2 Sampling over R

In this section, we explore the performance of the quadratic variation built on the incre-

ment introduced in Section 2 in Loh (2015). For the Ornstein-Uhlenbeck process X with

mean 0 and the covariance function Γµ(t) = σ2e−µ|t|, we aim to estimate σ2µ with observa-

tions X(tn,1), · · · , X(tn,n), where 0 = tn,1 < tn,2 < · · · < tn,n−1 < tn,n = 1. For brevity, we

write tn,i = ti and X(ti) = Xi, i = 1, · · · , n.

For ℓ ∈ N+, and i = 1, · · · , n− ℓ, we plan to design the increment such that

ℓ∑
k=0

ai,kt
q
(i+k) =


0, ∀ q = 0, · · · , (ℓ− 1),

ℓ! if q = ℓ,

(2.6)

where we use the convention 00 = 1. The system of equations can be expressed in the
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following matrix form 

t0(i+0) t0(i+1) · · · t0(i+ℓ)

t1(i+0) t1(i+1) · · · t1(i+ℓ)
...

... . . . ...

tℓ(i+0) tℓ(i+1) · · · tℓ(i+ℓ)





ai,0

ai,1
...

ai,ℓ


=



0

0

...

ℓ!


. (2.7)

The matrix on the left hand side is a Vandermonde matrix and the last column of the inverse

of the Vandermonde matrix is(
1∏

0≤s≤ℓ,s ̸=0(ti+0 − ti+s)
,

1∏
0≤s≤ℓ,s ̸=1(ti+1 − ti+s)

, · · · , 1∏
0≤s≤ℓ,s ̸=ℓ(ti+ℓ − ti+s)

)′

. (2.8)

Therefore,

ai,k =
ℓ!∏

0≤s≤ℓ,s ̸=k(ti+k − ti+s)
, ∀ k = 0, · · · , ℓ. (2.9)

Over here, we only consider the case ℓ = 1; therefore, the coefficients of the increment can

be simplified as

ai,0 = −1/∆i, ai,1 = 1/∆i, (2.10)

where ∆i = ti+1 − ti; (see Kent and Wood 1997, for a full exposition on the effect of ℓ ).

Then define the quadratic variation as

Vn =
n−1∑
i=1

(∇Xi)
2, (2.11)

where

∇Xi = ai,0Xi + ai,1Xi+1. (2.12)

To study the limiting moments of Vn, we impose a regularity condition on sampling points

{ti}ni=1 as follows.

Condition 1. For n ≥ 2, define ti = φ((i − 1)/(n − 1)), i = 1, · · ·n, where φ : R → R is a

twice continuously differentiable function satisfying φ(0) = 0, φ(1) = 1 and

min
0≤s≤1

φ(1)(s) > 0.
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It follows from Condition 1 that there exist positive constants C0 and C1 such that

0 < C0/n ≤ min
1≤i≤n−1

(ti+1 − ti) ≤ max
1≤i≤n−1

(ti+1 − ti) ≤ C1/n. (2.13)

With the Taylor expansion, we have

ex = 1 + x+
exθx

2!
x2, 0 < θx < 1. (2.14)

So

Γµ(t) = σ2 − σ2µ|t|+ e−µ|t|θ

2!
σ2µ2|t|2, (2.15)

where 0 < θ < 1 depends on (−µ|t|). Then

E((∇Xi)
2) =

1∑
k1=0

1∑
k2=0

ai,k1ai,k2Γµ(t(i+k2) − t(i+k1))

= −σ2µ
1∑

k1=0

1∑
k2=0

ai,k1ai,k2|t(i+k2) − t(i+k1)|

+
1∑

k1=0

1∑
k2=0

ai,k1ai,k2
e−µ|t(i+k2)

−t(i+k1)
|θ

2!
σ2µ2|t(i+k2) − t(i+k1)|2

= −2(σ2µ)ai,0ai,1(|ti+1 − ti|) +O(1).

(2.16)

And the O(1) in the above equation comes from the fact that the last term in the second

last equation can be uniformly bounded over i = 1, · · · , (n− 1), namely,∣∣∣∣∣
1∑

k1=0

1∑
k2=0

ai,k1ai,k2
e−µ|t(i+k2)

−t(i+k1)
|θ

2!
σ2µ2|t(i+k2) − t(i+k1)|2

∣∣∣∣∣
≤

1∑
k1=0

1∑
k2=0

∣∣∣∣ai,k1ai,k2 e−µ|t(i+k2)
−t(i+k1)

|θ

2!
σ2µ2|t(i+k2) − t(i+k1)|2

∣∣∣∣
≤

1∑
k1=0

1∑
k2=0

∣∣∣∣ai,k1ai,k2 12σ2µ2|t(i+k2) − t(i+k1)|2
∣∣∣∣

=
∣∣ai,k0ai,k1∆2

i

∣∣σ2µ2

=σ2µ2.

(2.17)
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Meanwhile, by the Taylor expansion again, we have

− 2(σ2µ)
n−1∑
i=1

(ai,0ai,1|ti+1 − ti|)

=2(σ2µ)
n−1∑
i=1

1/

(
φ(

i

n− 1
)− φ(

i− 1

n− 1
)

)

=2(σ2µ)
n−1∑
i=1

1/

(
φ(1)(

i− 1

n− 1
)

1

(n− 1)
+ φ(2)(

i− 1

n− 1
+

θi
n− 1

)
1

2(n− 1)2

)

=2(σ2µ)
n−1∑
i=1

(n− 1)

φ(1)( i−1
n−1

)

1−

(
1 + αi

φ(2)( i−1
n−1

+ θi
n−1

)

2(n− 1)φ(1)( i−1
n−1

)

)−2
φ(2)( i−1

n−1
+ θi

n−1
)

2(n− 1)φ(1)( i−1
n−1

)


=2(σ2µ)n2

∫ 1

0

{φ(1)(s)}−1ds+O(n), as n→ ∞,

(2.18)

where θi, αi ∈ (0, 1) depend on i. Notice that the second last equation above holds when n

is big enough since
φ(2)( i−1

n−1
+ θi

n−1
)

2(n− 1)φ(1)( i−1
n−1

)
> −1,

uniformly over i = 1, · · · , (n − 1) under this case. As for the O(n) term in Eq. (2.18), we

only need to notice that for n sufficiently big,(
1 + αi

φ(2)( i−1
n−1

+ θi
n−1

)

2(n− 1)φ(1)( i−1
n−1

)

)−2

< 2,

uniformly over i = 1, · · · , (n− 1). Therefore,∣∣∣∣∣∣ (n− 1)

φ(1)( i−1
n−1

)

(
1 + αi

φ(2)( i−1
n−1

+ θi
n−1

)

2(n− 1)φ(1)( i−1
n−1

)

)−2
φ(2)( i−1

n−1
+ θi

n−1
)

2(n− 1)φ(1)( i−1
n−1

)

∣∣∣∣∣∣ ≤ maxx∈[0,1] |φ(2)(x)|
minx∈[0,1] |φ(1)(x)|2

, (2.19)

uniformly over i = 1, · · · , (n−1) when n big enough. Therefore, with Eqs. (2.16) and (2.18),

we have

E(Vn) =
n−1∑
i=1

E((∇Xi)
2)

= −2(σ2µ)
n−1∑
i=1

ai,0ai,1(|ti+1 − ti|) +O(n)

= 2(σ2µ)n2

∫ 1

0

{φ(1)(s)}−1ds+O(n),

(2.20)
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as n→ ∞. From Eq. (2.20), we expect

Vn/

(
2n2

∫ 1

0

{φ(1)(s)}−1ds

)
a.s.−−→σ2µ, as n→ ∞.

So we first study Vn/E(Vn) and then replace E(Vn) by 2n2
∫ 1

0
{φ(1)(s)}−1ds to get the desired

estimator of σ2µ.

Lemma 2.1. If the sampling function φ meets Condition 1, then

lim
n→∞

n var(Vn/E(Vn)) = 2

∫ 1

0
{φ(1)(s)}−2ds(∫ 1

0
{φ(1)(s)}−1ds

)2 ≜ ϕ0. (2.21)

Proof. By Eq. (2.11), we have

var(Vn) = var

(
n−1∑
i=1

(∇Xi)
2

)

=
n−1∑
i=1

n−1∑
j=1

cov((∇Xi)
2, (∇Xj)

2)

=
n−1∑
i=1

n−1∑
j=1

2[E(∇Xi∇Xj)]
2

=
n−1∑
i=1

n−1∑
j=1

2

[
1∑

k1=0

1∑
k2=0

ai,k1aj,k2Γµ(ti+k1 − tj+k2)

]2
.

(2.22)

If i = j, similar to the derivation of E(Vn), we have

Pn ≜
n−1∑
i=1

2

[
1∑

k1=0

1∑
k2=0

ai,k1ai,k2Γµ(ti+k1 − ti+k2)

]2

=2
n−1∑
i=1

[
2(σ2µ)(n− 1)

φ(1)( i−1
n−1

)

×

1−

(
1 + αi

φ(2)( i−1
n−1

+ θi
n−1

)

2(n− 1)φ(1)( i−1
n−1

)

)−2
φ(2)( i−1

n−1
+ θi

n−1
)

2(n− 1)φ(1)( i−1
n−1

)

+O(1)

]2

=2
n−1∑
i=1

[
2(σ2µ)

(n− 1)

φ(1)( i−1
n−1

)
+O(1)

]2
=2

[
(2σ2µn)2n

∫ 1

0

{φ(1)(s)}−2ds+O(n2)

]
.

(2.23)
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If i ̸= j, because of the symmetry, we only need to study the case j > i, then tj+k2−ti+k1 ≥ 0

for all k1, k2 = 0, 1. By the Taylor expansion (see, e.g., Loh 2015, Lemma 4),

Γµ(tj+k2 − ti+k1) =
1∑
s=0

Γ
(s)
µ (tj − ti)

s!
[(tj+k2 − ti+k1)− (tj − ti)]

s+∫ tj+k2
−ti+k1

tj−ti
[(tj+k2 − ti+k1)− t]Γ(2)

µ (t)dt.

Meanwhile, regarding Γµ(t) = σ2e−µ|t|, Γ
(2)
µ (t) = σ2µ2e−µt for t ≥ 0. So∣∣∣∣∣

1∑
k1=0

1∑
k2=0

ai,k1aj,k2Γµ(tj+k2 − ti+k1)

∣∣∣∣∣
=

∣∣∣∣∣
1∑

k1=0

1∑
k2=0

ai,k1aj,k2

(∫ tj+k2
−ti+k1

tj−ti
[(tj+k2 − ti+k1)− t] Γ(2)

µ (t)dt

)∣∣∣∣∣
≤

1∑
k1=0

1∑
k2=0

|ai,k1aj,k2|
(∫

I
|(tj+k2 − ti+k1)− t| dt

)
max
t∈I

∣∣Γ(2)
µ (t)

∣∣
≤4

C2
1

C2
0

σ2µ2,

(2.24)

where I ≜ ((tj − ti) ∧ (tj+k2 − ti+k1), (tj − ti) ∨ (tj+k2 − ti+k1)) and the last inequality holds

by noticing that

max
k1,k2

|(tj+k2 − ti+k1)− (tj − ti)| ≤ max{∆i,∆j} ≤ C1

n
. (2.25)

Therefore,

Qn ≜
∑
i ̸=j

2

[
1∑

k1=0

1∑
k2=0

ai,k1aj,k2Γµ(ti+k1 − tj+k2)

]2
= O(n2). (2.26)

Combining Eqs. (2.22), (2.23) and (2.26), we have

lim
n→∞

n var(Vn/E(Vn))

= lim
n→∞

n
n−1∑
i=1

n−1∑
j=1

2

[
1∑

k1=0

1∑
k2=0

ai,k1aj,k2Γµ(ti+k1 − tj+k2)

]2
/(E(Vn))

2

= lim
n→∞

n(Pn +Qn)/f
2
n

= 2

∫ 1

0
(φ(1)(s))−2ds[∫ 1

0
(φ(1)(s))−1ds

]2 .
(2.27)
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Remark 2.1. By Jensen’s inequality,∫ 1

0
(φ(1)(s))−2ds

[
∫ 1

0
(φ(1)(s))−1ds]2

≥ 1,

and the equality holds if and only if φ(1)(s) = const on [0, 1]. This implies the estimator has

the same asymptotic variance as that of MLE only when the sampling scheme is regular. If

we consider a family of sampling functions{
φi(x) =

i

i+ 2

(
(x+

1

i
)2 − 1

i2

)2

: i ∈ N+

}
,

then ∫ 1

0
{φ(1)

i (s)}−2ds[∫ 1

0
{φ(1)

i (s)}−1ds
]2 → +∞, as i→ ∞.

Loh (2015) showed that Vn/E(Vn)
a.s.−−→ 1. In the following, we derive a weaker upper

bound for the convergence rate based on Lemma 2.1, which will be used in the subsequent

multidimensional analysis.

Lemma 2.2. ∀ ξ > 0, there exist a finite constant C5 > 0 such that when n is sufficiently

large,

P

(∣∣∣∣ Vn
E(Vn)

− 1

∣∣∣∣ ≥ ξ

)
≤ 2e−C5ξ

√
n/

√
ϕ0 . (2.28)

Proof. The proof follows the argument of Lemma 1 given in Zhou and Xiao (2018). Writing

Yn =

(
∇X1√
E(Vn)

, · · · , ∇Xn−1√
E(Vn)

)′

,

Σn = (Σi,j)(n−1)×(n−1) = cov(Yn).

(2.29)

Let Λn = diag(λ1, · · · , λn−1) be the diagonal matrix whose diagonal entries are the eigenval-

ues of Σn, and let U = (U1, · · · , Un−1)
′ ∼ N (0, In−1). Then, we have

Vn/E(Vn) = Y′
nYn

d
= U′ΛnU.
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We apply the Hanson and Wright inequality (Hanson and Wright 1971) to bound the tail

probability of the quadratic forms and obtain

P(|Vn/E(Vn)− E(Vn/E(Vn))| > ξ)

=P(|U′ΛnU− tr(Λn)| > ξ)

≤2 exp

{
−min

(
C3

ξ

∥Λn∥2
, C4

ξ2

∥Λn∥2F

)}
,

(2.30)

where ∥Λn∥2 and ∥Λn∥F are the ℓ2 norm and Frobenius norm of Λn, respectively; C3 and C4

are positive constants independent of Λn and ξ. Note that

ϕn ≜ var(Vn/E(Vn)) = var(U′ΛnU) = 2tr(Λ2
n) = 2∥Λn∥2F .

By Lemma 2.1, we have ∥Λn∥2F = 1
2
ϕn ∼ 1

2n
ϕ0. Combining the above with the fact that

∥Λn∥2 ≤ ∥Λn∥F , we see that
1

∥Λn∥2
≥
√

n

ϕ0

,

when n is sufficiently large. Meanwhile 1
∥Λn∥2F

∼ 2n
ϕ0

as n → ∞. Hence, Eq. (2.30) decays

exponentially with rate
√
n when n→ ∞. Consequently, when n is sufficiently large,

P(|Vn/E(Vn)− 1| > ξ) ≤ 2e−C5ξ
√
n/

√
ϕ0 ,

where C5 ≜ C3.

Theorem 2.1. Let Vn be as in Eq. (2.11), and suppose Condition 1 holds. Then

Vn/E(Vn)
a.s.−−→ 1, as n→ ∞. (2.31)

Proof. Combining Lemma 2.2 and the Borel-Cantelli lemma, we have the conclusion.

2.3 Sampling over R2

Let X(u),u ∈ [0, 1]2 be a zero-mean univariate Gaussian field with covariance function

cov (X (u) , X (v)) = σ2 exp (−λ|u[1]− v[1]| − µ|u[2]− v[2]|) , (2.32)
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where (σ2, λ, µ)′ ∈ R3
+. By Ying (1993), we know that σ2, λ and µ can be consistently

estimated.

Let φh and φv satisfy Condition 1. We consider the observation locations over R2 which

are of the form

u(i) ≜

(
φh

(
i[1]− 1

m− 1

)
, φv

(
i[2]− 1

n− 1

))′

,

where 1 ≤ i[1] ≤ m, 1 ≤ i[2] ≤ n, and n/m → ρ ∈ (0,∞). For simplicity, we write

Xi = X(u(i)). Since the observation region is in R2, we will use letters v and h to emphasize

operations in the sense of the vertical and horizontal directions respectively. To simplify the

notation, let

φ(h,j) = φh

(
j − 1

m− 1

)
, φ(v,l) = φv

(
l − 1

n− 1

)
,

for j = 1, · · · ,m and l = 1, · · · , n. Let

∆h,j = φ(h,j+1) − φ(h,j),

∆v,k = φ(v,k+1) − φ(v,k),

for j = 1, · · · , (m− 1) and k = 1, · · · , (n− 1). Define the index set

I(m,n) = {i : (1, 1)′ ≤ i ≤ (m− 1, n− 1)′}, (2.33)

If j ∈ I(m,n) is a vector, ∆h,j and ∆v,j are defined as

∆h,j = φ(h,j[1]+1) − φ(h,j[1]),

∆v,j = φ(v,j[2]+1) − φ(v,j[2]).

Similar to the increment in Eq. (2.10), we define 4 sets of increments

{ah;i,0, ah;i,1}, {ah;i,(0,0), ah;i,(1,0)},

{av;i,0, av;i,1}, {av;i,(0,0), av;i,(0,1)},
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as

ah;i,0 = ah;i,(0,0) = −1/∆h,i, ah;i,1 = ah;i,(1,0) = 1/∆h,i, (2.34)

av;i,0 = av;i,(0,0) = −1/∆v,i, av;i,1 = av;i,(0,1) = 1/∆v,i. (2.35)

Based on Condition 1, we also have positive constants Ch,0 and Ch,1 such that

0 < Ch,0/m ≤ min
1≤i≤(m−1)

(
φh

(
i

m− 1

)
− φh

(
i− 1

m− 1

))
≤ max

1≤i≤(m−1)

(
φh

(
i

m− 1

)
− φh

(
i− 1

m− 1

))
≤ Ch,1/m.

Cv,0 and Cv,1 can be similarly defined.

2.3.1 The vertical and horizontal increments

Similar to the definition of Vn in Eq. (2.11) for the univariate case, for each fixed j =

1, · · · , (m− 1), let

Vv,j =
n−1∑
k=1

(
∇vX(j,k)

)2
, (2.36)

where

∇vX(j,k) = av;(j,k),(0,0)X(j,k) + av;(j,k),(0,1)X(j,k+1). (2.37)

From the structure of the covariance function Eq. (2.32), the Gaussian process X(i,·) has

the same distribution across 1 ≤ i ≤ m. Therefore, to estimate σ2µ, we first construct the

weighted quantity

Z̄v,(m,n) =
m−1∑
j=1

∆h,jVv,j/E(Vv,j) =
m−1∑
j=1

∆h,jVv,j/E(Vv,1). (2.38)

Switching the direction from vertical to horizontal, for each fixed j = 1, · · · , (n− 1), we can

also define

∇hX(k,j) = ah;(k,j),(0,0)X(k,j) + ah;(k,j),(1,0)X(k+1,j),

Vh,j =
m−1∑
k=1

(
∇hX(k,j)

)2
.
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Therefore, to estimate σ2λ, we construct the weighted quantity

Z̄h,(m,n) =
n−1∑
j=1

∆v,jVh,j/E(Vh,j) =
n−1∑
j=1

∆v,jVh,j/E(Vh,1). (2.39)

From the definitions of Z̄v,(m,n) and Z̄h,(m,n), it is reasonable to just study statistical properties

of Z̄v,(m,n). To analyze the variance of Z̄v,(m,n), we first note that for any j, k = 1, · · · , (m−1),

cov(Vv,j, Vv,k) = e−2λ|φ(h,j)−φ(h,k)| var(Vv,1). (2.40)

Actually, denote

P (λ) =

 1 e−λ|φ(h,j)−φ(h,k)|

e−λ|φ(h,j)−φ(h,k)| 1

, (2.41)

and

B(µ) =
(
e−µ|φ(v,p)−φ(v,q)|

)
n×n , (2.42)

where p, q = 1, · · · , n, then the 2n-vector

Y2n ≜
((
X(j,l), l ∈ {1, · · · , n}

)
,
(
X(k,l), l ∈ {1, · · · , n}

))′
has the distribution

Y2n ∼ N (0, σ2P (λ)⊗B(µ)), (2.43)

where ⊗ is the Kronecker product. Let

R1 =

1 0

0 0

, R2 =

0 0

0 1

.
Since Vv,j is a quadratic form, it can be expressed as

Vv,j = Y ′
2n(R1 ⊗ F )Y2n, (2.44)

where F is a n× n semi-positive definite matrix. Similarly,

Vv,k = Y ′
2n(R2 ⊗ F )Y2n. (2.45)
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Therefore,

cov(Vv,j, Vv,k)

= cov (Y ′
2n(R1 ⊗ F )Y2n, Y

′
2n(R2 ⊗ F )Y2n)

=2 tr
(
(R1 ⊗ F )σ2(P (λ)⊗B(µ))(R2 ⊗ F )σ2(P (λ)⊗B(µ))

)
=2σ4 tr((R1P (λ)R2P (λ))⊗ (FB(µ)FB(µ)))

=e−2λ|φ(h,j)−φ(h,k)|2σ4 tr((FB(µ)FB(µ)))

=e−2λ|φ(h,j)−φ(h,k)| var(Vv,1).

(2.46)

Based on Eqs. (2.40) and (2.46), we have

var
(
Z̄v,(m,n)

)
= var

(
m−1∑
j=1

∆h,jVv,j/E(Vv,1)

)

= var

(
Vv,1

E(Vv,1)

)m−1∑
j=1

m−1∑
k=1

e−2λ|φ(h,j)−φ(h,k)|(∆h,j∆h,k).

(2.47)

Based on the definition of {∆h,j}m−1
j=1 and Condition 1, we have

m−1∑
j=1

m−1∑
k=1

e−2λ|φ(h,j)−φ(h,k)|(∆h,j∆h,k)
m→∞−−−→

∫∫
[0,1]2

e−2λ|x−y| dx dy. (2.48)

A direct calculation shows that

Cλ ≜
∫∫

[0,1]2
e−2λ|x−y| dx dy =

1

λ
− 1− e−2λ

2λ2
. (2.49)

We are ready to prove the following theorem on asymptotic properties of Z̄v,(m,n).

Theorem 2.2. Let Z̄v,(m,n) be as in Eq. (2.38). Suppose the two sampling functions φh(·)

and φv(·) satisfy Condition 1. Then

lim
n→∞

n var
(
Z̄v,(m,n)

)
= 2Cλ

∫ 1

0
{φ(1)

v (s)}−2ds(∫ 1

0
{φ(1)

v (s)}−1ds
)2 , (2.50)

and

Z̄v,(m,n)
a.s.−−−→
n→∞

1. (2.51)
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Proof. Combining Lemma 2.1 and Eqs. (2.47) to (2.49), we have Eq. (2.50). As for the

almost sure convergence, let ξ > 0, then by Lemma 2.2,

P
(
|Z̄v,(m,n) − E(Z̄v,(m,n))| > ξ

)
≤P

(
m−1∑
i=1

∆h,i

∣∣∣∣ Vv,i
E(Vv,i)

− 1

∣∣∣∣ > ξ

)

≤
m−1∑
i=1

P

(
∆h,i

∣∣∣∣ Vv,i
E(Vv,i)

− 1

∣∣∣∣ > ξ/m

)
≤mP

(∣∣∣∣ Vv,1
E(Vv,1)

− 1

∣∣∣∣ > ξ/Ch,1

)
≤2me−C5

√
nξ/Ch,1/

√
ϕ0 ,

(2.52)

when n is big enough. So applying the Borel-Cantelli lemma, we have the almost sure

convergence.

2.3.2 The square increment

In this part, we focus on estimating σ2µλ. Define the increment {bk}1k=0 as

b(0,0) = b(1,1) = 1, b(1,0) = b(0,1) = −1,

and we call it the square increment since its support is the four vertices of the square; (see

Chan and Wood 2000, for a fuller description of it) . In the following, we reserve the symbol

s to emphasize the square increment. Based on the structure of the covariance function, for

each fixed 1 ≤ j ≤ m, {X(j,l)}nl=1 contains information of σ2µ. And for each fixed 1 ≤ l ≤ n,

{X(j,l)}mj=1 contains information of σ2λ. So naturally we define the quantity as

∇sXi =

∑1
k=0 bkXi+k

∆h,i∆v,i

. (2.53)

Define the quadratic variation

Vs,(m,n) =
∑

i∈I(m,n)

(∇sXi)
2, (2.54)

and its transformation

Z̄s,(m,n) = Vs,(m,n)/E
(
Vs,(m,n)

)
, (2.55)
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then for fixed index i, j ∈ I(m,n),

E (∇sXi∇sXj)

=
1

∆h,i∆v,i∆h,j∆v,j

1∑
k,l=0

bkbl E (Xi+kXj+l)

=
σ2

∆h,i∆v,i∆h,j∆v,j

1∑
k,l=0

bkble
−λ|φ(h,(i+k)[1])−φ(h,(j+l)[1])|−µ|φ(v,(i+k)[2])−φ(v,(j+l)[2])|

=
σ2

∆h,i∆h,j

(
1∑

l1,k1=0

bk1bl1e
−λ|φ(h,(i[1]+k1))

−φ(h,(j[1]+l1))|
)

× 1

∆v,i∆v,j

(
1∑

l2,k2=0

bk2bl2e
−µ|φ(v,(i[2]+k2))

−φ(v,(j[2]+l2))|
)

=σ2

(
1∑

l,k=0

ah;i,kah;j,le
−λ|φ(h,(i[1]+k))−φ(h,(j[1]+l))|

)

×

(
1∑

l,k=0

av;i,kav;j,le
−µ|φ(v,(i[2]+k))−φ(v,(j[2]+l))|

)
,

(2.56)

where b0 = −1, b1 = 1. So we have decomposed the covariance between ∇sXi and ∇sXj into

the product of the covariance in the univariate case. Based on the derivation of Eqs. (2.18)
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and (2.20), we have

E
(
Vs,(m,n)

)
=

∑
i∈I(m,n)

E
[
(∇sXi)

2
]

=
∑

i∈I(m,n)

σ2

(
1∑

l,k=0

ah;i,kah;i,le
−λ|φ(h,(i[1]+k))−φ(h,(i[1]+l))|

)

×

(
1∑

l,k=0

av;i,kav;i,le
−µ|φ(v,(i[2]+k))−φ(v,(i[2]+l))|

)

= σ2

(
m−1∑
i1=1

(
1∑

l,k=0

ah;i1,kah;i1,le
−λ|φ(h,(i1+k))−φ(h,(i1+l))|

))

×

(
n−1∑
i2=1

(
1∑

l,k=0

av;i2,kav;i2,le
−µ|φ(v,(i2+k))−φ(v,(i2+l))|

))

= σ2

(
2λm2

∫ 1

0

{φ(1)
h (s)}−1ds+O(m)

)
×
(
2µn2

∫ 1

0

{φ(1)
v (s)}−1ds+O(n)

)
= 4σ2λµ(mn)2

∫ 1

0

{φ(1)
h (s)}−1ds

∫ 1

0

{φ(1)
v (s)}−1ds+O(n3),

(2.57)

as n→ ∞.

Theorem 2.3. Let Z̄s,(m,n) be as in Eq. (2.55). Suppose the two sampling functions φh(·)

and φv(·) satisfy Condition 1. Then

lim
n→∞

mn var
(
Z̄s,(m,n)

)
= 2

∫ 1

0
{φ(1)

v (s)}−2ds(∫ 1

0
{φ(1)

v (s)}−1ds
)2 ∫ 1

0
{φ(1)

h (s)}−2ds(∫ 1

0
{φ(1)

h (s)}−1ds
)2 , (2.58)

and

Z̄s,(m,n)
a.s.−−−→
n→∞

1. (2.59)

Proof. As with the univariate case, the variance of Vs,(m,n) can be written as

var
(
Vs,(m,n)

)
= var

 ∑
i∈I(m,n)

(∇sXi)
2


=

∑
i∈I(m,n)

∑
j∈I(m,n)

2[E (∇sXi∇sXj)]
2.

(2.60)
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As with the derivation of Eq. (2.23), based on Eqs. (2.17) and (2.19), we have that

1∑
l,k=0

av;i,kav;i,le
−µ|φ(v,(i[2]+k))−φ(v,(i[2]+l))| = 2µ

(n− 1)

φ
(1)
v

(
i[2]−1
n−1

) +O(1), (2.61)

as n→ ∞ uniformly over i ∈ I(m,n).

We first deal with the case i = j,

P(m,n) ≜
∑

i∈I(m,n)

2
{
E
[
(∇sXi)

2
]}2

=
∑

i∈I(m,n)

2

{
σ2

(
1∑

l,k=0

ah;i,kah;i,le
−λ|φ(h,(i[1]+k))−φ(h,(i[1]+l))|

)

×

(
1∑

l,k=0

av;i,kav;i,le
−µ|φ(v,(i[2]+k))−φ(v,(i[2]+l))|

)}2

= 2σ4
∑

i∈I(m,n)

[
2λ

(m− 1)

φ
(1)
h ( i[1]−1

m−1
)
+O(1)

]2 [
2µ

(n− 1)

φ
(1)
v ( i[2]−1

n−1
)
+O(1)

]2

= 2σ4


m−1∑
i1=1

[
2λ

(m− 1)

φ
(1)
h ( i1−1

m−1
)
+O(1)

]2
×


n−1∑
i2=1

[
2µ

(n− 1)

φ
(1)
v ( i2−1

n−1
)
+O(1)

]2
= 2σ4

[
(2λm)2m

∫ 1

0

{φ(1)
h (s)}−2ds+O(m2)

]
×
[
(2µn)2n

∫ 1

0

{φ(1)
v (s)}−2ds+O(n2)

]
= 2(4σ2λµ)2(mn)3

∫ 1

0

{φ(1)
h (s)}−2ds

∫ 1

0

{φ(1)
v (s)}−2ds+O(n5),

(2.62)

as n→ ∞.

Secondly, we consider the case where i and j are different but in the same row or column.

Because of the similarity between the row and the column case, we only show the case
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j[1] = i[1] and j[2] ̸= i[2]. Based on Eq. (2.24), we have

Q(m,n) ≜
∑

i∈I(m,n)

j[1]=i[1]
j[2]̸=i[2]

2{E [∇sXi∇sXj]}2

=
∑

i∈I(m,n)

j[1]=i[1]
j[2] ̸=i[2]

2

{
σ2

(
1∑

l,k=0

ah;i,kah;i,le
−λ|φ(h,(i[1]+k))−φ(h,(i[1]+l))|

)

×

(
1∑

l,k=0

av;i,kav;j,le
−µ|φ(v,(i[2]+k))−φ(v,(j[2]+l))|

)}2

≤ n
∑

i∈I(m,n)

2

{
σ2

(
1∑

l,k=0

ah;i,kah;i,le
−λ|φ(h,(i[1]+k))−φ(h,(i[1]+l))|

)

×
([

4
C2
v,1

C2
v,0

µ2

])}2

= 2σ4n
∑

i∈I(m,n)

[
2λ

(m− 1)

φ
(1)
h ( i[1]−1

m−1
)
+O(1)

]2 [
4
C2
v,1

C2
v,0

µ2

]2

= 2σ4n


m−1∑
i1=1

[
2λ

(m− 1)

φ
(1)
h ( i1−1

m−1
)
+O(1)

]2
{
n−1∑
i2=1

[
4
C2
v,1

C2
v,0

µ2

]2}

= 8σ4Cqλ
2m3n2

∫ 1

0

{φ(1)
h (s)}−2ds+O(n4),

(2.63)

as n→ ∞, where

Cq ≜ 4
C2
v,1

C2
v,0

µ2.

Finally, we consider the case j[1] ̸= i[1] and j[2] ̸= i[2]. Based on Eq. (2.24), it should be

easy to see that

R(m,n) ≜
∑

i∈I(m,n)

j[1] ̸=i[1]
j[2] ̸=i[2]

2{E [∇sXi∇sXj]}2 = O(n4), (2.64)

as n→ ∞.

Combining Eqs. (2.62) to (2.64), we see that

var
(
Vs,(m,n)

)
=

2(4σ2λµ)2(mn)3
∫ 1

0

{φ(1)
h (s)}−2ds

∫ 1

0

{φ(1)
v (s)}−2ds+O(n5), (2.65)
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as n→ ∞. Consequently, it follows from Eqs. (2.57) and (2.65) that Eq. (2.58) holds.

With Eq. (2.58) on hand, following the proof of Theorem 2.1, we have

Z̄s,(m,n)
a.s.−−−→
n→∞

1. (2.66)

This proves Theorem 2.3.

2.3.3 The asymptotic distribution of the estimator

In summary, we have those three quantities

Z̄v,(m,n) =
m−1∑
i=1

∆h,iVv,i/E(Vv,i), (2.67)

Z̄h,(m,n) =
n−1∑
i=1

∆v,iVh,i/E(Vh,i), (2.68)

Z̄s,(m,n) = Vs,(m,n)/E
(
Vs,(m,n)

)
. (2.69)

Denote Z̄(m,n) ≜
(
Z̄v,(m,n), Z̄h,(m,n), Z̄s,(m,n)

)′
, and Φ(m,n) ≜ cov

(
Z̄(m,n)

)
.

Lemma 2.3. Suppose the two sampling functions φh(·), φv(·) satisfy Condition 1 and

lim
m→∞

n

m
= ρ.

Then

nΦ(m,n) →


2Cλ

∫ 1
0 {φ(1)

v (s)}−2ds(∫ 1
0 {φ(1)

v (s)}−1ds
)2 0 0

0 2ρCµ
∫ 1
0 {φ(1)

h (s)}−2ds(∫ 1
0 {φ(1)

h (s)}−1ds
)2 0

0 0 0

 ≜ Φ0. (2.70)

Proof. Elements on the main diagonal of Φ0 are implied by Theorems 2.2 and 2.3. Moreover,

by the Cauchy-Schwarz inequality∣∣cov (Z̄v,(m,n), Z̄s,(m,n))∣∣ ≤√(var (Z̄v,(m,n)))(var (Z̄s,(m,n))) = O(n
−3
2 ).

So Φ0(1, 3) = 0. It remains to prove Φ0(1, 2) = 0. Let fλ(t) = e−λ|t|, then

f
(1)
λ (t) =


−λe−λt, if t > 0,

λeλt, if t < 0.

(2.71)
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The key step in our proof is to show that for any i, j ∈ I(m,n),∣∣∣∣∣E (Xi+(0,1) −Xi

)(
Xj+(1,0) −Xj

)∣∣∣∣∣ ≤ σ2λµ∆h,j∆v,i. (2.72)

Actually, ∣∣∣∣∣E (Xi+(0,1) −Xi

)(
Xj+(1,0) −Xj

)∣∣∣∣∣
=σ2

∣∣∣∣∣e−λ|φ(h,i[1])−φ(h,j[1])|−µ|φ(v,i[2])−φ(v,j[2])|

+ e−λ|φ(h,i[1])−φ(h,j[1]+1)|−µ|φ(v,i[2]+1)−φ(v,j[2])|

− e−λ|φ(h,i[1])−φ(h,j[1]+1)|−µ|φ(v,i[2])−φ(v,j[2])|

− e−λ|φ(h,i[1])−φ(h,j[1])|−µ|φ(v,i[2]+1)−φ(v,j[2])|

∣∣∣∣∣
=σ2

∣∣∣∣∣(e−λ|φ(h,i[1])−φ(h,j[1])| − e−λ|φ(h,i[1])−φ(h,j[1]+1)|)

(e−µ|φ(v,i[2])−φ(v,j[2])| − e−µ|φ(v,i[2]+1)−φ(v,j[2])|)

∣∣∣∣∣.
Since (

φ(h,i[1]) − φ(h,j[1])

)(
φ(h,i[1]) − φ(h,j[1]+1)

)
≥ 0,

it follows from Eq. (2.71) and the mean value theorem that∣∣∣∣∣(e−λ|φ(h,i[1])−φ(h,j[1])| − e−λ|φ(h,i[1])−φ(h,j[1]+1)|)

∣∣∣∣∣ ≤ λ∆h,j. (2.73)

The same method shows∣∣∣∣∣(e−µ|φ(v,i[2])−φ(v,j[2])| − e−µ|φ(v,i[2]+1)−φ(v,j[2])|)

∣∣∣∣∣ ≤ µ∆v,i. (2.74)

Therefore, Eq. (2.72) holds. Based on the definition of ∇vXi in Eq. (2.37), we have that

|E (∇vXi∇hXj)| =
∣∣E (Xi+(0,1) −Xi

)(
Xj+(1,0) −Xj

)∣∣
∆h,j∆v,i

≤ σ2λµ, (2.75)

26



which implies that for any (i, j)′ ∈ I(m,n),

cov (Vv,i, Vh,j) =
n−1∑
k=1

m−1∑
s=1

cov
(
(∇vX(i,k))

2, (∇hX(s,j))
2
)

=
n−1∑
k=1

m−1∑
s=1

2
(
E∇vX(i,k)∇hX(s,j)

)2
≤ 2mn(σ2λµ)2.

(2.76)

Finally,

ΦN(1, 2) = cov

(
m−1∑
i=1

∆h,iVv,i/E(Vv,i),
n−1∑
j=1

∆v,jVh,j/E(Vh,j)

)

=
m−1∑
i=1

n−1∑
j=1

∆h,i∆v,j cov(Vv,i, Vh,j)/E(Vv,i)/E(Vh,j)

≤ 2mn(σ2λµ)2/E(Vv,1)/E(Vh,1)

= O((mn)−1).

(2.77)

This proves Φ0(1, 2) = 0.

Theorem 2.4.
√
n(Z̄(m,n) − 1) → N (0,Φ0). (2.78)

Proof. The following argument imitates the method of Chan and Wood. Let L = (m−1)(n−

1). Fix an 3-vector f ∈ R3
+ and define the 3L×3L diagonal matrix FL by FL = diag{f ′, · · · , f ′}

for L ≥ 1. Define the 3L-vector WL = (Y′
L(j), j ∈ I(m,n))

′, where

YL(j) =

(√
∆h,j

∇vXj√
E(Vv,1)

,
√
∆v,j

∇hXj√
E(Vh,1)

,
∇sXj√

E(Vs,(m,n))

)′

.

By construction, we have

SL ≜
√
nf ′
(
Z̄(m,n) − 1

)
=

√
n(W′

LFLWL − E(W′
LFLWL)).

(2.79)

Let VL denote the covariance matrix of WL. Note that each entry of VL is of the form

σabL (i, j) with a, b ∈ {v, h, s}. For example,

σvhL (i, j) = cov

(√
∆h,i

∇vXi√
E(Vv,1)

,
√

∆v,j
∇hXj√
E(Vh,1)

)
. (2.80)
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For convenience, σabL (·) will be denoted as σab(·) below. V
1
2
L is defined as the symmetric

positive definite square root of VL. Denote by ΛL = diag(λ1,L, · · · , λ3L,L) the diagonal matrix

whose diagonal entries are eigenvalues of 2n
1
2V

1
2
L FLV

1
2
L . Then for ϵL ∼ N (0, I3L×3L), we have

n
1
2W′

LFLWL
d
=n

1
2 ϵ′LV

1
2
L FLV

1
2
L ϵL

d
=

1

2
ϵ′LΛLϵL. (2.81)

Therefore, for all |θ| < 1
max(λ1,L,··· ,λ3L,L)

, the cumulant generating function of SL is given by

κL(θ) ≜ ln
(
E(eθSL)

)
= −1

2

3L∑
q=1

{ln(1− θλq,L) + θλq,L}, (2.82)

(see Khuri 2009, chap. 5). To obtain the limit of κL(θ) as n→ ∞, we first prove

tr
(
Λ4
L

)
=

3L∑
q=1

λ4q,L → 0, as n→ ∞. (2.83)

Direct calculation shows that

tr
(
Λ4
L

)
= 16n2 tr

(
(V

1
2
L FLV

1
2
L )4
)

= 16n2 tr
(
(VLFL)

4
)

= 16n2
∑

u1∈{v,h,s}

· · ·
∑

u4∈{v,h,s}

fu1 · · · fu4∆L(u1, · · · , u4),

(2.84)

where

∆L(u1, · · · , u4)

=
∑

i1∈I(m,n)

· · ·
∑

i4∈I(m,n)

σu1u2(i1, i2)σ
u2u3(i2, i3)σ

u3u4(i3, i4)σ
u4u1(i1, i4).

(2.85)

For a, b ∈ {v, h, s} and i, j ∈ I(m,n), if we are able to find an upper bound σ̂ab(i− j) for each∣∣σab(i, j)∣∣, the proof can be completed by imitating the stationary case; (see Chan and Wood

2000, (7.15)).
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• For the vertical case, we have

|σvv(i, j)|

=

∣∣∣∣∣cov
(√

∆h,i
∇vXi√
E(Vv,1)

,
√

∆h,j
∇vXj√
E(Vv,1)

)∣∣∣∣∣
=

√
∆h,i∆h,j

E(Vv,1)
|cov (∇vXi,∇vXj)|

≤ Ch,1
E(Vv,1)m

e−λ|φ(h,i[1])−φ(h,j[1])|
∣∣∣∣∣

1∑
s,k=0

av;i,kav;j,sΓµ(φ(v,(i[2]+k)) − φ(v,(j[2]+s)))

∣∣∣∣∣
≤ Ch,1
E(Vv,1)m

∣∣∣∣∣
1∑

s,k=0

av;i,kav;j,sΓµ(φ(v,(i[2]+k)) − φ(v,(j[2]+s)))

∣∣∣∣∣ .
Then imitating the proof of Lemma 2.1, we get that there exist some constants C1, C2 >

0 such that

|σvv(i, j)| ≤


C1

mn
, if i[2]− j[2] = 0 ,

C2

mn2 , if i[2]− j[2] ̸= 0 ,
(2.86)

uniformly over i, j ∈ I(m,n) when n is big enough. Define

σ̂vv(x) =
C1

mn
10(x[2]) +

C2

mn2
1R\0(x[2]),

then

|σvv(i, j)| ≤ σ̂vv(i− j),

when n is big enough.

• For the square case, noticing Eq. (2.56), we have that there exist some constants

C3, C4, C5, C6 > 0,

such that

|σss(i, j)|

=|E (∇sXi∇sXj)|/E(Vs,(m,n))

≤ 1

(mn)2
(
C3m10((i− j)[1]) + C41R\0((i− j)[1])

)
×
(
C5n10((i− j)[2]) + C61R\0((i− j)[2])

)
,

(2.87)
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uniformly over i, j ∈ I(m,n) when n is big enough. So we define σ̂ss(·) as

σ̂ss(x) =
1

(mn)2
(
C3m10(x[1]) + C41R\0(x[1])

)
×
(
C5n10(x[2]) + C61R\0(x[2])

)
.

• For the cross term between the vertical and the horizontal,∣∣σvh(i, j)∣∣
=

∣∣∣∣∣cov
(√

∆h,i
∇vXi√
E(Vv,1)

,
√

∆v,j
∇hXj√
E(Vh,1)

)∣∣∣∣∣
=

√
∆h,i

√
∆v,j√

E(Vv,1)
√
E(Vh,1)

|E (∇vXi∇hXj)|.

(2.88)

Then by Eq. (2.75), there exists some constant C7 such that

∣∣σvh(i, j)∣∣ ≤ C7

(mn)
3
2

,

uniformly over i, j ∈ I(m,n) when n is big enough. In this case,

σ̂vh(x) =
C7

(mn)
3
2

is a constant function with respect to x.

• Lastly, we study the cross term between the vertical and the square,

|σvs(i, j)|

=

∣∣∣∣∣cov
(√

∆h,i
∇vXi√
E(Vv,1)

,
∇sXj√

E(Vs,(m,n))

)∣∣∣∣∣
=

√
∆h,i√

E(Vv,1) E(Vs,(m,n))

∣∣cov (∇vXi, (∇vXj+(1,0) −∇vXj)/∆h,j

)∣∣
=

√
∆h,i√

E(Vv,1) E(Vs,(m,n))

∣∣∣e−λ|φ(h,i[1])−φ(h,j[1]+1)| − e−λ|φ(h,i[1])−φ(h,j[1])|
∣∣∣/∆h,j

×

∣∣∣∣∣
1∑

s,k=0

av;i,kav;j,sΓµ(φ(v,(i[2]+k)) − φ(v,(j[2]+s)))

∣∣∣∣∣
≤λ

√
∆h,i√

E(Vv,1) E(Vs,(m,n))

∣∣∣∣∣
1∑

s,k=0

av;i,kav;j,sΓµ(φ(v,(i[2]+k)) − φ(v,(j[2]+s)))

∣∣∣∣∣ ,

(2.89)
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where the last inequality is based on Eq. (2.73). Therefore, we conclude that there

exist some constants C8, C9 > 0 such that

|σvs(i, j)| ≤


C8

m1.5n
, if i[2]− j[2] = 0 ,

C9

m1.5n2 , if i[2]− j[2] ̸= 0 ,
(2.90)

uniformly over i, j ∈ I(m,n) when n is big enough. Define

σ̂vs(x) =
C8

m1.5n
10(x[2]) +

C9

m1.5n2
1R\0(x[2]),

then

|σvs(i, j)| ≤ σ̂vs(i− j),

when n is big enough.

So combining all the cases above, we have

|∆L(u1, · · · , u4)|

≤
∑

i1∈I(m,n)

· · ·
∑

i4∈I(m,n)

|σu1u2(i1, i2)σu2u3(i2, i3)σu3u4(i3, i4)σu4u1(i1, i4)|

≤
∑

i1∈I(m,n)

· · ·
∑

i4∈I(m,n)

σ̂u1u2(i1 − i2)σ̂
u2u3(i2 − i3)σ̂

u3u4(i3 − i4)σ̂
u4u1(i1 − i4),

(2.91)

when n is big enough.

Define the index set

D(m,n) ≜ {i− j : i, j ∈ I(m,n)}. (2.92)

For each triple (h1, h2, h3) which satisfies ha ∈ D(m,n), 1 ≤ a ≤ 3, the cardinality of the set

{(i1, i2, i3, i4) : ia ∈ In, a = 1, · · · , 4;ha = ia − ia+1, 1 ≤ a ≤ 3}

is bounded by L. It follows that when n is big enough

|∆L(u1, · · · , u4)|

≤L
∑

h1∈D(m,n)

· · ·
∑

h3∈D(m,n)

σ̂u1u2(h1)σ̂
u2u3(h2)σ̂

u3u4(h3)σ̂
u4u1(h1 + h2 + h3)

≤C10

3∏
a=1

 ∑
ha∈D(m,n)

σ̂uaua+1(h)

 .

(2.93)
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The last inequality holds since there exists some constant C10 > 0 such that

σ̂ab(h) ≤ C10

mn
,

for all possible a, b ∈ {v, h, s} and h ∈ D(m,n) when n is big enough.

Direct calculation shows that

∑
h∈D(m,n)

σ̂vv(h) = O(
1

n
),

∑
h∈D(m,n)

σ̂ss(h) = O(
1

mn
),

∑
h∈D(m,n)

σ̂vh(h) = O(
1√
mn

),
∑

h∈D(m,n)

σ̂vs(h) = O(
1√
mn

).

Combining Eqs. (2.84) and (2.93), we conclude that

tr
(
Λ4
L

)
= n2O(n−3) = O(n−1), (2.94)

as n → ∞. Namely, Eq. (2.83) holds. Meanwhile, note that Eq. (2.83) implies that as

n→ ∞,

max
1≤q≤3L

{λq,L} ≤

( ∑
1≤q≤3L

λ4q,L

) 1
4

→ 0. (2.95)

Expanding Eq. (2.82) about θ = 0 using Taylor’s theorem, we obtain

κL(θ) =
1

2

3L∑
q=1

{
1

2
(θλq,L)

2 +
1

3
(θλq,L)

3 +
1

4
(θλq,L)

4(1− θ∗q,Lλq,L)
−4

}
, (2.96)

for some θ∗q,L which satisfies 0 ≤
∣∣θ∗q,L∣∣ ≤ |θ|.

Let us first consider the term
∑3L

q=1
1
2
(θλq,L)

2,

3L∑
q=1

1

2
λ2q,L =

1

2
tr
(
Λ2
L

)
= 2n tr

(
(VLFL)

2
)

= var(
√
nW ′

LFLWL) = nf ′Φ(m,n)f .

(2.97)

It follows from Lemma 2.3 that, as n→ ∞,

3L∑
q=1

1

2
λ2q,L = nf ′Φ(m,n)f → f ′Φ0f . (2.98)
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Second, Eq. (2.83) implies that, as n→ ∞,∣∣∣∣∣
3L∑
q=1

λ3q,L

∣∣∣∣∣ ≤ max
1≤q≤3L

{λq,L}
3L∑
q=1

λ2q,L → 0. (2.99)

Third, note that δ = sup
L≥1

max
1≤q≤3L

{λq,L} is positive and finite. If we restrict attention to

|θ| ≤ 1
2δ
, then

(1− θ∗q,Lλq,L) > 1/2, (2.100)

for all q and L. Hence, combining Eq. (2.98), Eq. (2.99) and Eq. (2.100), we have that for

θ ∈ (− 1
2δ
, 1
2δ
),

κL(θ) → θ2f ′Φ0f/2, as n→ ∞, (2.101)

which leads to the conclusion that SL → N (0, f ′Φ0f) in distribution. This completes the

proof.

Let

Rv ≜ E(Vv,1)/

(
2n2

∫ 1

0

{φ(1)
v (s)}−1ds

)
, (2.102)

Rh ≜ E(Vh,1)/

(
2m2

∫ 1

0

{φ(1)
h (s)}−1ds

)
, (2.103)

Rs ≜ E(Vs,(m,n))/

(
4(mn)2

∫ 1

0

{φ(1)
h (s)}−1ds

∫ 1

0

{φ(1)
v (s)}−1ds

)
. (2.104)

Based on Eqs. (2.18), (2.20) and (2.57), we have that

rn ≜ (Rv, Rh, Rs) =
(
σ2µ+O(n−1), σ2λ+O(n−1), σ2λµ+O(n−1)

)
, (2.105)

as n→ ∞. Define the estimator of

p ≜
(
σ2µ, σ2λ, σ2λµ

)′
as

Ẑ(m,n) = (Z̄v,(m,n)Rv, Z̄h,(m,n)Rh, Z̄s,(m,n)Rs)
′,
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and

P ≜


σ2µ

σ2λ

σ2λµ

.
Consequently, the estimator of (λ, µ, σ2) is defined as

λ̂ = Ẑ(m,n)[3]/Ẑ(m,n)[1],

µ̂ = Ẑ(m,n)[3]/Ẑ(m,n)[2],

σ̂2 = Ẑ(m,n)[1]Ẑ(m,n)[2]/Ẑ(m,n)[3].

We end up with the corollary below:

Corollary 2.1. Suppose the two sampling functions φh(·) and φv(·) satisfy Condition 1 and

limm→∞
n
m

= ρ, then

√
n





λ̂

µ̂

σ̂2


−



λ

µ

σ2




d−−−→

n→∞
N (0,Σ), (2.106)

where Σ is defined as
2Cλ

∫ 1
0 {φ(1)

v (s)}−2ds(∫ 1
0 {φ(1)

v (s)}−1ds
)2 λ

2 0 −2Cλ

∫ 1
0 {φ(1)

v (s)}−2ds(∫ 1
0 {φ(1)

v (s)}−1ds
)2 σ

2λ

2ρCµ

∫ 1
0 {φ(1)

h
(s)}−2ds(∫ 1

0 {φ(1)
h

(s)}−1ds
)2 µ

2 −2ρCµ

∫ 1
0 {φ(1)

h
(s)}−2ds(∫ 1

0 {φ(1)
h

(s)}−1ds
)2 σ

2µ

2σ4

(
ρCµ

∫ 1
0 {φ(1)

h
(s)}−2ds(∫ 1

0 {φ(1)
h

(s)}−1ds
)2 + Cλ

∫ 1
0 {φ(1)

v (s)}−2ds(∫ 1
0 {φ(1)

v (s)}−1ds
)2

)

 ,

and 
λ̂

µ̂

σ̂2

 a.s.−−−→
n→∞


λ

µ

σ2

 . (2.107)

Proof. Let

Rn ≜


Rv

Rh

Rs

,
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then we have
√
n
(
Ẑ(m,n) − p

)
=

√
n
[
Rn

(
Z̄(m,n) − 1

)
+ (rn − p)

]
. (2.108)

Since

Rn
n→∞−−−→ P,

we have
√
nRn

(
Z̄(m,n) − 1

) d−→ N (0,PΦ0P
′),

based on Theorem 2.4. Moreover, as n→ ∞,

√
n(rn − p) =

(
O(n− 1

2 ), O(n− 1
2 ), O(n− 1

2 )
)′
.

Therefore, we have
√
n
(
Ẑ(m,n) − p

)
d−→ N (0,PΦ0P

′). (2.109)

Applying the delta method, we get Eq. (2.106).

The almost sure convergence is the direct consequence of Theorems 2.2 and 2.3.

2.4 Simulations

Consider the 2-dimensional OU field with λ = 0.5, µ = 10, σ2 = 4, n
m

= 2 and two

sampling functions as

φh(x) =
100

102

((
x+

1

100

)2

− 1

1002

)
,

φv(x) =
20

22

((
x+

1

20

)2

− 1

202

)
.

With m = 100, 150, 200, · · · , 500, we run 1000 realizations for each case and estimate λ, µ

and σ2.
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Figure 2.1 Simulated estimation for the 2-dimensional OU field . Plots in the first row
present the averaged absolute value of bias for each sample size and each parameter; plots
in the second row present the distribution of normalized bias when n = 1000, where the red
curve is the density of N(0, 1).

2.5 Extensions to higher-dimensional spaces

In this section, we generalize the results for dimension d = 2 to higher-dimensional spatial

processes. Let X(u),u ∈ [0, 1]d, denote a spatial Gaussian process with the covariance

function Eq. (2.4). Like the case d = 2, for ℓ = 1, · · · , d, φℓ satisfies Condition 1. We

consider the N =
∏d

ℓ=1 nℓ observation locations over Rd which are of the form

u(i) ≜

(
φ1

(
i[1]− 1

n1 − 1

)
, φ2

(
i[2]− 1

n2 − 1

)
, · · · , φd

(
i[d]− 1

nd − 1

))′

,

where 1 ≤ i[ℓ] ≤ nℓ and N1/d/nℓ → ρℓ ∈ (0,∞), ℓ = 1, · · · , d, and we write Xi = X(u(i)).

To simplify the notation, let

φ
(ℓ)
j = φℓ

(
j − 1

nℓ − 1

)
,

for j = 1, · · · , nℓ and ℓ = 1, · · · , d. Furthermore, define

∆
(ℓ)
k = φ

(ℓ)
k[ℓ]+1 − φ

(ℓ)
k[ℓ],
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for k ∈ IN ≜ {i : 1 ≤ i ≤ ((n1 − 1), · · · , (nd − 1))′} and ℓ = 1, · · · , d. If k = 1, · · · , (nℓ − 1)

is a scalar, then

∆
(ℓ)
k = φ

(ℓ)
k+1 − φ

(ℓ)
k .

To estimate σ2
∏d

ℓ=1 θℓ, we first introduce the increment {bk}1k=0 which is defined as

bk = (−1)(d−|k|). (2.110)

Accordingly, define

∇sXi =

∑1
k=0 bkXi+k∏d
ℓ=1 ∆

(ℓ)
i

, (2.111)

Vs,N =
∑
i∈IN

(∇sXi)
2, (2.112)

Z̄s,N = Vs,N/E(Vs,N). (2.113)

Similarly to Eq. (2.57), it is not hard to see

E (Vs,N) = σ2

d∏
ℓ=1

(
2θℓn

2
ℓ

∫ 1

0

{φ(1)
ℓ (s)}−1ds

)
+O(N2−1/d). (2.114)

As for σ2
∏

ℓ̸=j θℓ, j = 1, · · · , d, we first define {b(j)k } as follows:

b
(j)
k = (−1)(d−1−|k|), (2.115)

where k = 0, · · · , (1− ej) and {ej} is the standard basis of Rd; moreover, let

∇jXi =

∑1−ej
k=0 b

(j)
k Xi+k∏

ℓ̸=j ∆
(ℓ)
i

, (2.116)

Vj,m =
∑

i∈Ij,m,N

(∇jXi)
2, (2.117)

Z̄j,N =

nj−1∑
m=1

∆(j)
m Vj,m/E (Vj,m) =

nj−1∑
m=1

∆(j)
m Vj,m/E (Vj,1), (2.118)

where Ij,m,N ≜ {i ∈ IN : i[j] = m}. Consequently,

E (Vj,m) = σ2
∏
ℓ̸=j

(
2θℓn

2
ℓ

∫ 1

0

{φ(1)
ℓ (s)}−1ds

)
+O(N2−3/d). (2.119)

Finally, define the (d + 1)-vector Z̄N ≜ (Z̄1,N , · · · , Z̄d,N , Z̄s,N)′, and ΦN ≜ cov
(
Z̄N
)
. We

study the limiting covariance of Z̄N in the lemma below.
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Lemma 2.4.

N var
(
Z̄s,N

)
→ 2

d∏
ℓ=1

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2 , (2.120)

and

N1−1/dΦN →

Σd 0

0′ 0

 ≜ Φ0, (2.121)

where Σd is a diagonal matrix with the j-th diagonal element as

2Cθj
∏
ℓ ̸=j

ρℓ

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2 . (2.122)

Proof. We follow the proof of Theorem 2.3 to establish the former part of Lemma 2.4. To

begin with,

var (Vs,N) = var

(∑
i∈IN

(∇sXi)
2

)

=
∑
i∈IN

∑
j∈IN

2[E (∇sXi∇sXj)]
2.

(2.123)

Imitating Eq. (2.62), we claim that

PN ≜
∑
i∈IN

2
{
E
[
(∇sXi)

2
]}2

= 2σ4

d∏
ℓ=1

[
(2θℓnℓ)

2nℓ

∫ 1

0

{φ(1)
ℓ (s)}−2ds+O(n2

ℓ)

]
.

(2.124)

As for the cross terms, without loss of generality, we assume i and j are the same only in

terms of the first k coordinates where k = 0, · · · , (d− 1). Imitating Eq. (2.63), we have

QN,k ≜
∑
i,j

2{E [∇sXi∇sXj]}2

= O

(
2σ4

k∏
ℓ=1

{
(2θℓnℓ)

2nℓ

∫ 1

0

{φ(1)
ℓ (s)}−2ds

} d∏
j=k+1

n2
j

)
.

(2.125)

By Eqs. (2.124) and (2.125), we see that

var (Vs,N) = 2σ4

d∏
ℓ=1

[
(2θℓnℓ)

2nℓ

∫ 1

0

{φ(1)
ℓ (s)}−2ds

]
+O(N3−1/d).
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Combining Eq. (2.114) with the above equation, we establish Eq. (2.120).

Next, we deal with Σd. Based on Theorem 2.2, we claim that

∏
ℓ̸=j

nℓ var
(
Z̄j,N

)
→ 2Cθj

∏
ℓ̸=j

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2 , (2.126)

where Cθj is a coefficient defined in Eq. (2.49). Moreover, since N1/d/nℓ → ρℓ, the diagonal

elements of Σd have the form Eq. (2.122). In order to show that the off-diagonal elements

of Σd are 0, for example, (Σd)1,2 = 0, we define {b(12)k } as follows:

b
(12)
k = (−1)(d−2−|k|), (2.127)

where k = 0, · · · , (1− e1 − e2). Correspondingly, define

∇12Xi =

∑
k b

(12)
k Xi+k∏

ℓ/∈{1,2}∆
(ℓ)
i

. (2.128)

Similar to the derivation of Eq. (2.56), we claim that

E (∇12Xi∇12Xj)

=σ2e
−θ1

∣∣∣φ(1)
i[1]

−φ(1)
j[1]

∣∣∣−θ2∣∣∣φ(1)
i[2]

−φ(1)
j[2]

∣∣∣ d∏
ℓ=3

(
1∑

l,k=0

a
(ℓ)
i,ka

(ℓ)
j,l e

−θℓ
∣∣∣φ(ℓ)

(i[ℓ]+k)
−φ(ℓ)

(j[ℓ]+l)

∣∣∣)
,

(2.129)

where a(ℓ)i,0 = −1/∆
(ℓ)
i and a(ℓ)i,1 = 1/∆

(ℓ)
i . Meanwhile, notice that

∇1Xi = (∇12Xi+e2 −∇12Xi)/∆
(2)
i ,

∇2Xj = (∇12Xj+e1 −∇12Xj)/∆
(1)
j ,

same as the deduction of Eq. (2.75), we get

|E (∇1Xi∇2Xj)| ≤ σ2θ1θ2

d∏
ℓ=3

∣∣∣∣∣
1∑

l,k=0

a
(ℓ)
i,ka

(ℓ)
j,l e

−θℓ
∣∣∣φ(ℓ)

(i[ℓ]+k)
−φ(ℓ)

(j[ℓ]+l)

∣∣∣
∣∣∣∣∣ . (2.130)
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And

cov (V1,m, V2,n)

=
∑

i∈I1,m,N

∑
j∈I2,n,N

2|E (∇1Xi∇2Xj)|2

≤
∑

i∈I1,m,N

∑
j∈I2,n,N

2
(
σ2θ1θ2

)2 d∏
ℓ=3

(
1∑

l,k=0

a
(ℓ)
i,ka

(ℓ)
j,l e

−θℓ
∣∣∣φ(ℓ)

(i[ℓ]+k)
−φ(ℓ)

(j[ℓ]+l)

∣∣∣)2

=n1n2

d∏
ℓ=3

O(n3
ℓ);

(2.131)

see Lemma 2.1 for the derivation of O(n3
ℓ) in the last equation. By Eq. (2.119) and the

definitions of Z̄1,N as well as Z̄2,N , we see that

(ΦN)1,2 = O

(
n1n2

∏d
ℓ=3 n

3
ℓ∏

ℓ ̸=1 n
2
ℓ

∏
ℓ ̸=2 n

2
ℓ

)
= O(N−1);

therefore, (Σd)1,2 = 0. Similarly, we can prove (Σd)i,j = 0, where i ̸= j and i, j = 1, · · · , d.

Lastly, by the Cauchy-Schwarz inequality, we have that

(ΦN)d+1,i = O(N1/(2d)−1), (2.132)

which leads to (Φ0)d+1,i = 0 for i = 1, · · · , d. Therefore, we have proven Lemma 2.4.

Theorem 2.5.
√
N1−1/d(Z̄N − 1) → N (0,Φ0). (2.133)

Proof. The following is just a reiteration of the proof of Theorem 2.4 for higher-dimensional

spaces. Let L =
∏d

ℓ=1(nℓ−1). Fix an (d+1)-vector f ∈ R(d+1)
+ and define the (d+1)L×(d+1)L

diagonal matrix FL by FL = diag{f ′, · · · , f ′} for L ≥ 1. Define the (d + 1)L-vector WL =

(Y′
L(j), j ∈ IN)′, where

YL(j) =

(√
∆

(1)
j

∇1Xj√
E(V1,1)

, · · · ,
√
∆

(d)
j

∇dXj√
E(Vd,1)

,
∇sXj√
E(Vs,N)

)′

.

By construction, we have

SL ≜
√
N1−1/df ′(Z̄N − 1)

=
√
N1−1/d(W′

LFLWL − E(W′
LFLWL)).

(2.134)
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Let VL denote the covariance matrix of WL. Note that each entry of VL is of the form

σabL (i, j) with a, b = 1, · · · , (d+ 1). For example,

σ12
L (i, j) = cov

(√
∆

(1)
j

∇1Xj√
E(V1,1)

,

√
∆

(2)
j

∇2Xj√
E(V2,1)

)
, (2.135)

and

σ
1(d+1)
L (i, j) = cov

(√
∆

(1)
j

∇1Xj√
E(V1,1)

,
∇sXj√
E(Vs,N)

)
. (2.136)

For convenience, σabL (·) will be denoted as σab(·) below. V
1
2
L is defined as the symmetric

positive definite square root of VL. Denote by

ΛL = diag(λ1,L, · · · , λ(d+1)L,L),

the diagonal matrix whose diagonal entries are eigenvalues of 2
√
N1−1/dV

1
2
L FLV

1
2
L . Then for

ϵL ∼ N (0, I(d+1)L×(d+1)L), we have

√
N1−1/dW′

LFLWL
d
=
√
N1−1/dϵ′LV

1
2
L FLV

1
2
L ϵL

d
=

1

2
ϵ′LΛLϵL. (2.137)

Therefore, for all |θ| < 1
max(λ1,L,··· ,λ(d+1)L,L)

, the cumulant generating function of SL is given

by

κL(θ) ≜ ln
(
E(eθSL)

)
= −1

2

(d+1)L∑
q=1

{ln(1− θλq,L) + θλq,L}, (2.138)

(see Khuri 2009, chap. 5). To obtain the limit of κL(θ) as N → ∞, we first prove

tr
(
Λ4
L

)
=

(d+1)L∑
q=1

λ4q,L → 0, as N → ∞. (2.139)

Direct calculation shows that

tr
(
Λ4
L

)
= 16N2−2/d tr

(
(V

1
2
L FLV

1
2
L )4
)

= 16N2−2/d tr
(
(VLFL)

4
)

= 16N2−2/d

d+1∑
u1=1

· · ·
d+1∑
u4=1

fu1 · · · fu4∆L(u1, · · · , u4),

(2.140)
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where

∆L(u1, · · · , u4)

=
∑
i1∈IN

· · ·
∑
i4∈IN

σu1u2(i1, i2)σ
u2u3(i2, i3)σ

u3u4(i3, i4)σ
u4u1(i1, i4).

(2.141)

For a, b = 1, · · · , (d + 1) and i, j ∈ IN , if we are able to find an upper bound σ̂ab(i − j)

for each
∣∣σab(i, j)∣∣, the proof can be completed by imitating the stationary case; (see Chan

and Wood 2000, (7.15)). Without loss of generality, we only consider a, b ∈ {1, 2, (d+ 1)} :

• For the 1-1 case, we have∣∣σ11(i, j)
∣∣

=

∣∣∣∣∣cov
(√

∆
(1)
i

∇1Xi√
E(V1,1)

,

√
∆

(1)
j

∇1Xj√
E(V1,1)

)∣∣∣∣∣
=

√
∆

(1)
i ∆

(1)
j

E(V1,1)
|cov (∇1Xi,∇1Xj)|

≤ σ2C1,1

E(V1,1)n1

e
−θ1

∣∣∣φ(1)
i[1]

−φ(1)
j[1]

∣∣∣ d∏
ℓ=2

∣∣∣∣∣
1∑

l,k=0

a
(ℓ)
i,ka

(ℓ)
j,l e

−θℓ
∣∣∣φ(ℓ)

(i[ℓ]+k)
−φ(ℓ)

(j[ℓ]+l)

∣∣∣
∣∣∣∣∣

≤ σ2C1,1

E(V1,1)n1

d∏
ℓ=2

∣∣∣∣∣
1∑

l,k=0

a
(ℓ)
i,ka

(ℓ)
j,l e

−θℓ
∣∣∣φ(ℓ)

(i[ℓ]+k)
−φ(ℓ)

(j[ℓ]+l)

∣∣∣
∣∣∣∣∣ ,

where C1,1 is defined based on Eq. (2.13). Define

σ̂11(x) =
C5

n1

∏d
ℓ=2 n

2
ℓ

d∏
ℓ=2

(
C

(ℓ)
1 nℓ10(x[ℓ]) + C

(ℓ)
2 1R\0(x[ℓ])

)
,

where C5, C
(ℓ)
1 , and C(ℓ)

2 are positive constants. we claim that∣∣σ11(i, j)
∣∣ ≤ σ̂11(i− j),

uniformly over i, j ∈ IN when N is big enough.

• For the square case, we have that

|σss(i, j)|

=|E (∇sXi∇sXj)|/E(Vs,N)

≤C6

N2

d∏
ℓ=1

(
C

(ℓ)
1 nℓ10(x[ℓ]) + C

(ℓ)
2 1R\0(x[ℓ])

)
,

(2.142)
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uniformly over i, j ∈ IN when N is big enough. So we define σ̂ss(·) as

σ̂ss(x) =
C6

N2

d∏
ℓ=1

(
C

(ℓ)
1 nℓ10(x[ℓ]) + C

(ℓ)
2 1R\0(x[ℓ])

)
,

where C6 is a positive constant.

• For the 1-2 cross term,∣∣σ12(i, j)
∣∣

=

∣∣∣∣∣cov
(√

∆
(1)
i

∇1Xi√
E(V1,1)

,

√
∆

(2)
j

∇2Xj√
E(V2,1)

)∣∣∣∣∣
=

√
∆

(1)
i

√
∆

(2)
j√

E(V1,1)
√

E(V2,1)
|E (∇1Xi∇2Xj)|.

(2.143)

According to Eq. (2.130), there exists some constant C7 such that

∣∣σ12(i, j)
∣∣ ≤ C7

(n1n2)
3
2

∏
ℓ=3 n

2
ℓ

d∏
ℓ=3

(
C

(ℓ)
1 nℓ10(x[ℓ]) + C

(ℓ)
2 1R\0(x[ℓ])

)
,

uniformly over i, j ∈ IN when n is big enough. In this case,

σ̂12(x) =
C7

(n1n2)
3
2

∏d
ℓ=3 n

2
ℓ

d∏
ℓ=3

(
C

(ℓ)
1 nℓ10(x[ℓ]) + C

(ℓ)
2 1R\0(x[ℓ])

)
,

where C7 is a positive constant.

• Lastly, we study the 1-s cross term ,∣∣σ1s(i, j)
∣∣

=

∣∣∣∣∣cov
(√

∆
(1)
i

∇1Xi√
E(V1,1)

,
∇sXj√
E(Vs,N)

)∣∣∣∣∣
=

√
∆

(1)
i√

E(V1,1) E(Vs,N)

∣∣∣cov (∇1Xi, (∇1Xj+(1,0) −∇1Xj)/∆
(1)
j

)∣∣∣
=

σ2

√
∆

(1)
i√

E(V1,1) E(Vs,N)

∣∣∣∣e−θ1∣∣∣φ(1)
i[1]

−φ(1)
j[1]+1

∣∣∣ − e
−θ1

∣∣∣φ(1)
i[1]

−φ(1)
j[1]

∣∣∣∣∣∣∣/∆(1)
j

×
d∏
ℓ=2

∣∣∣∣∣
1∑

l,k=0

a
(ℓ)
i,ka

(ℓ)
j,l e

−θℓ
∣∣∣φ(ℓ)

(i[ℓ]+k)
−φ(ℓ)

(j[ℓ]+l)

∣∣∣
∣∣∣∣∣

≤
θ1σ

2

√
∆

(1)
i√

E(V1,1) E(Vs,N)

d∏
ℓ=2

∣∣∣∣∣
1∑

l,k=0

a
(ℓ)
i,ka

(ℓ)
j,l e

−θℓ
∣∣∣φ(ℓ)

(i[ℓ]+k)
−φ(ℓ)

(j[ℓ]+l)

∣∣∣
∣∣∣∣∣ ,

(2.144)
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where the last inequality is based on Eq. (2.73). Define

σ̂1s(x) =
C8

(n1)
3
2

∏d
ℓ=2 n

2
ℓ

d∏
ℓ=2

(
C

(ℓ)
1 nℓ10(x[ℓ]) + C

(ℓ)
2 1R\0(x[ℓ])

)
,

where C8 is a positive constant, then

∣∣σ1s(i, j)
∣∣ ≤ σ̂1s(i− j),

when N is big enough.

So combining all the cases above, we have

|∆L(u1, · · · , u4)|

≤
∑
i1∈IN

· · ·
∑
i4∈IN

|σu1u2(i1, i2)σu2u3(i2, i3)σu3u4(i3, i4)σu4u1(i1, i4)|

≤
∑
i1∈IN

· · ·
∑
i4∈IN

σ̂u1u2(i1 − i2)σ̂
u2u3(i2 − i3)σ̂

u3u4(i3 − i4)σ̂
u4u1(i1 − i4),

(2.145)

when N is big enough.

Define the index set

DN ≜ {i− j : i, j ∈ IN}. (2.146)

For each triple (h1, h2, h3) which satisfies ha ∈ DN , 1 ≤ a ≤ 3, the cardinality of the set

{(i1, i2, i3, i4) : ia ∈ IN , a = 1, · · · , 4;ha = ia − ia+1, 1 ≤ a ≤ 3}

is bounded by L. It follows that when N is big enough

|∆L(u1, · · · , u4)|

≤L
∑

h1∈DN

· · ·
∑

h3∈DN

σ̂u1u2(h1)σ̂
u2u3(h2)σ̂

u3u4(h3)σ̂
u4u1(h1 + h2 + h3)

≤C9

3∏
a=1

( ∑
ha∈DN

σ̂uaua+1(h)

)
.

(2.147)

The last inequality holds since there exists some constant C9 > 0 such that

σ̂ab(h) ≤ C9

N
,

44



for all possible a, b ∈ {1, 2, (d+ 1)} and h ∈ DN when N is big enough.

Since the integrand σ̂ab(h) is separable with respect to the counting measure, direct

calculation shows that

∑
h∈DN

σ̂11(h) = O

(
1∏d
ℓ=2 nℓ

)
,

∑
h∈DN

σ̂ss(h) = O

(
1

N

)
,

∑
h∈DN

σ̂12(h) = O

(
1

√
n1n2

∏d
ℓ=3 nℓ

)
,

∑
h∈DN

σ̂1s(h) = O

(
1

√
n1

∏d
ℓ=2 nℓ

)
.

Combining Eqs. (2.140) and (2.147), we conclude that

tr
(
Λ4
L

)
= N2(1−1/d)O(N−3(1−1/d)) = O(N1/d−1), (2.148)

as N → ∞. Namely, Eq. (2.139) holds. Meanwhile, note that Eq. (2.139) implies that as

N → ∞,

max
1≤q≤(d+1)L

{λq,L} ≤

 ∑
1≤q≤(d+1)L

λ4q,L

 1
4

→ 0. (2.149)

Expanding Eq. (2.138) about θ = 0 using Taylor’s theorem, we obtain

κL(θ) =
1

2

(d+1)L∑
q=1

{1
2
(θλq,L)

2 +
1

3
(θλq,L)

3 +
1

4
(θλq,L)

4(1− θ∗q,Lλq,L)
−4}, (2.150)

for some θ∗q,L which satisfies 0 ≤ |θ∗q,L| ≤ |θ|.

Let us first consider the term
∑(d+1)L

q=1
1
2
(θλq,L)

2 :

(d+1)L∑
q=1

1

2
λ2q,L =

1

2
tr
(
Λ2
L

)
= 2N1−1/d tr

(
(VLFL)

2
)

= var(
√
N1−1/dW ′

LFLWL) = N1−1/df ′ΦN f .

(2.151)

It follows from Lemma 2.4 that, as N → ∞,

(d+1)L∑
q=1

1

2
λ2q,L = N1−1/df ′ΦN f → f ′Φ0f . (2.152)
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Second, Eq. (2.139) implies that, as N → ∞,∣∣∣∣∣∣
(d+1)L∑
q=1

λ3q,L

∣∣∣∣∣∣ ≤ max
1≤q≤(d+1)L

{λq,L}
(d+1)L∑
q=1

λ2q,L → 0. (2.153)

Third, note that δ = supL≥1max1≤q≤(d+1)L{λq,L} is positive and finite. If we restrict attention

to |θ| ≤ 1
2δ
, then

(1− θ∗q,Lλq,L) > 1/2, (2.154)

for all q and L. Hence, combining Eq. (2.152), Eq. (2.153) and Eq. (2.154), we have that for

θ ∈ (− 1
2δ
, 1
2δ
),

κL(θ) → θ2f ′Φ0f/2, as n→ ∞, (2.155)

which leads to the conclusion that SL → N (0, f ′Φ0f) in distribution. This completes the

proof.

In this final part, we propose the estimator of (θ1, · · · , θd, σ2)′ which is

θ̂1 ≜

∏
ℓ ̸=1

(
2n2

ℓ

∫ 1

0
{φ(1)

ℓ (s)}−1ds
)
E (Vs,N)∏d

ℓ=1

(
2n2

ℓ

∫ 1

0
{φ(1)

ℓ (s)}−1ds
)
E (V1,1)

Z̄s,N
Z̄1,N

,

...

θ̂d ≜

∏
ℓ ̸=d

(
2n2

ℓ

∫ 1

0
{φ(1)

ℓ (s)}−1ds
)
E (Vs,N)∏d

ℓ=1

(
2n2

ℓ

∫ 1

0
{φ(1)

ℓ (s)}−1ds
)
E (Vd,1)

Z̄s,N
Z̄d,N

,

σ̂2 ≜

(∏d
ℓ=1

(
2n2

ℓ

∫ 1

0
{φ(1)

ℓ (s)}−1ds
))(d−1)∏d

ℓ=1 E (Vℓ,1)∏d
ℓ=1

(∏
j ̸=ℓ

(
2n2

j

∫ 1

0
{φ(1)

j (s)}−1ds
))

(E (Vs,N))
(d−1)

∏d
ℓ=1 Z̄ℓ,N(

Z̄s,N
)(d−1)

.

(2.156)

In a matrix form, Eq. (2.156) can be represented as

θ̂1
...

θ̂d

σ̂2


≜



k1

. . .

kd

k(d+1)





r1
...

rd

r(d+1)


, (2.157)

46



where (
r1, · · · , rd, r(d+1)

)
≜

(
Z̄s,N
Z̄1,N

, · · · , Z̄s,N
Z̄d,N

,

∏d
ℓ=1 Z̄ℓ,N(

Z̄s,N
)(d−1)

)
, (2.158)

and
(
k1, · · · , kd, k(d+1)

)
is the coefficients of

(
r1, · · · , rd, r(d+1)

)
in Eq. (2.156). Based on

Eqs. (2.114) and (2.119), it is easy to see that

kℓ = θℓ +O(N−1/d),

k(d+1) = σ2 +O(N−1/d),

(2.159)

where ℓ = 1, · · · , d. In the following corollary, We state all the results in high-dimensional

spaces :

Corollary 2.2. 

θ̂1
...

θ̂d

σ̂2


a.s.−−→



θ1
...

θd

σ2


, (2.160)

and

N (d−1)/(2d)





θ̂1
...

θ̂d

σ̂2


−



k1
...

kd

k(d+1)




d−−−→

N→∞
N

0,

Σ̃d b

b′ c


 , (2.161)

where Σ̃d is a diagonal matrix with the diagonal elements as(
Σ̃d

)
j,j

= 2Cθj
∏
ℓ̸=j

ρℓ

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2 θ2j ,

and

bj = −2Cθj
∏
ℓ ̸=j

ρℓ

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2 θjσ2,

c = 2

 d∑
j=1

Cθj
∏
ℓ̸=j

ρℓ

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2
σ4.
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Proof. The almost sure convergence is implied by Eq. (2.159) and Lemma 2.4 and the

Hanson-Wright inequality; see, e.g., Theorem 2.1.

Applying the delta method to Theorem 2.5, we get that

N (d−1)/(2d)





r1
...

rd

r(d+1)


−



1

...

1

1




d−−−→

N→∞
N

0,

Γd e

e′ f


 , (2.162)

where Γd is a diagonal matrix with the diagonal elements as

(Γd)j,j = 2Cθj
∏
ℓ̸=j

ρℓ

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2 ,

and

ej = −2Cθj
∏
ℓ̸=j

ρℓ

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2 ,

f = 2

 d∑
j=1

Cθj
∏
ℓ ̸=j

ρℓ

∫ 1

0
{φ(1)

ℓ (s)}−2ds(∫ 1

0
{φ(1)

ℓ (s)}−1ds
)2
;

moreover,



θ̂1
...

θ̂d

σ̂2


−



k1
...

kd

k(d+1)




=



k1

. . .

kd

k(d+1)







r1
...

rd

r(d+1)


−



1

...

1

1




. (2.163)

Direct calculation shows the form of the right hand side of Eq. (2.161). This proves Corol-

lary 2.2.
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CHAPTER 3

THE MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS

3.1 Introduction

In this section, we review the definition and some basic properties of the multivariate

Ornstein-Uhlenbeck (OU) process; (see Gardiner 1985, for a fuller exposition). The mul-

tivariate Ornstein-Uhlenbeck (OU) process Z(t) ∈ Rn, t ∈ R is defined by the stochastic

differential equation (SDE)

dZ(t) + AZ(t)dt = BdW (t), (3.1)

where A ∈ Rn×n is a matrix having eigenvalues with strictly positive real part, B ∈ Rn×n,

and W (t) is a n-dimensional Wiener process. Note that

eAtdZ(t) + AeAtZ(t)dt = d
(
eAtZ(t)

)
, (3.2)

and lim
t→−∞

eAtZ(t) = 0, so we have

eAtZ(t) =

∫ t

−∞
eAuBdW (u), (3.3)

that is,

Z(t) =

∫ t

−∞
e−A(t−u)BdW (u). (3.4)

Based on the form of Z(t), we see that

E(Z(t)) = 0, (3.5)

cov(Z(t), Z(s)) =

∫ min(t,s)

−∞
e−A(t−u)BB′e−A

′(s−u)du. (3.6)

Let us define the stationary covariance matrix Σ as

Σ ≜ cov(Z(t), Z(t)). (3.7)
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Then

AΣ + ΣA′ =

∫ t

−∞
Ae−A(t−u)BB′e−A

′(t−u)du

+

∫ t

−∞
e−A(t−u)BB′e−A

′(t−u)A′du

=

∫ t

−∞

d

du
e−A(t−u)BB′e−A

′(t−u)du

= BB′.

(3.8)

From Eq. (3.6), we see that if t > s,

cov(Z(t), Z(s)) = e−A(t−s)
∫ s

−∞
e−A(s−u)BB′e−A

′(s−u)du

= e−A(t−s)Σ, t > s,

(3.9)

and similarly,

cov(Z(t), Z(s)) = Σe−A
′(s−t), t < s. (3.10)

Velandia et al. (2017) considered the parameter estimation of the multivariate OU under

fixed-domain asymptotics when

A =

θ 0

0 θ

 , BB′ = 2θ

 σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

 . (3.11)

Combining Eqs. (3.8) to (3.10), we see that

cov(Z(t), Z(s)) = e−θ|t−s|

 σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

 , (3.12)

where σ2
1, σ

2
2 are marginal variance parameters, θ > 0 is called a correlation decay parame-

ter, and the quantity ρ with |ρ| < 1 is called the colocated correlation parameter (Gneiting,

Kleiber, and Schlather 2010). For simplicity, let ψ = (σ2
1, σ

2
2, ρ, θ)

′. They showed the maxi-

mum likelihood estimator (MLE) of (θσ2
1, θσ

2
2, ρ)

′ is strongly consistent and asymptotically

normal given some prior information of ψ in Velandia et al. (2017). However, the MLE in

this case must be found numerically. Therefore, we plan to construct an explicit estimator

of (θσ2
1, θσ

2
2, ρ)

′, which is computationally efficient in practice and asymptotically identical
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to the MLE under fixed-domain asymptotics. The asymptotic results are formally stated in

Theorem 3.3.

3.2 Asymptotic theory for estimation

Under fixed-domain asymptotics, the random process Z(t) ≜ (Z1(t), Z2(t))
′ is sampled

increasingly densely over a fixed and bounded set T. Without loss of generality, we consider

T = [0, 1], and the sampling design Tn = {t1, · · · , tn} with

0 ≤ t1 < t2 < · · · < tn ≤ 1. (3.13)

The corresponding observation is denoted as

Zn = (Z ′
1,n, Z

′
2,n)

′, (3.14)

where Zi,n = (Zi(t1), · · · , Zi(tn))′ for i = 1, 2. Let

Σ(ψ) =

 σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

⊗R(θ), (3.15)

where ⊗ is the Kronecker product, and

R(θ) =
(
e−θ|ti−tj |

)
1≤i,j≤n

is a matrix-valued function. By Eq. (3.12), we see that Zn ∼ N (0,Σ(ψ)). The associated

likelihood function is given by

Ln(ψ) = (2π)−n|Σ(ψ)|−1/2 exp

{
−1

2
Z ′
nΣ(ψ)

−1Zn

}
. (3.16)

In the rest of this section, we will denote by θ0, σ
2
01, σ

2
02 and ρ0 the true but unknown pa-

rameter. The following theorem defines the asymptotic behavior of the MLE with respect

to Ln(ψ).

Theorem 3.1 (Velandia et al. (2017)). Let Tn be dense in [0, 1] as n goes to infinity. Let

J = (aθ, bθ) × (aσ1 , bσ1) × (aσ2 , bσ2) × (aρ, bρ), with 0 < aθ ≤ θ0 ≤ bθ < ∞, 0 < aσ1 ≤ σ2
01 ≤

bσ1 <∞, 0 < aσ2 ≤ σ2
02 ≤ bσ2 <∞, and −1 < aρ ≤ ρ0 ≤ bρ < 1. Define ψ̂ = (σ̂2

1, σ̂
2
2, ρ̂, θ̂)

′ as

ψ̂ = argmax
ψ∈J

Ln(ψ). (3.17)
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Then

θ̂σ̂2
1

a.s.−−−→
n→∞

θ0σ
2
01, (3.18)

θ̂σ̂2
2

a.s.−−−→
n→∞

θ0σ
2
02, (3.19)

ρ̂
a.s.−−−→
n→∞

ρ0, (3.20)

and

√
n





θ̂σ̂2
1

θ̂σ̂2
2

ρ̂


−



θ0σ
2
01

θ0σ
2
02

ρ0




d→N


0,



2θ20σ
4
01 2θ20σ

2
01σ

2
02ρ

2
0 θ0ρ0σ

2
01(1− ρ20)

2θ20σ
2
01σ

2
02ρ

2
0 2θ20σ

4
02 θ0ρ0σ

2
02(1− ρ20)

θ0ρ0σ
2
01(1− ρ20) θ0ρ0σ

2
02(1− ρ20) (1− ρ20)

2




. (3.21)

Our estimator for (θ0σ
2
01, θ0σ

2
02, ρ0)

′ is inspired by the results in Ying (1991) where the

parameter estimation for univariate OU under fixed-domain asymptotics were studied. With

the observation Z1,n = (Z1(t1), · · · , Z1(tn))
′, we have the likelihood function

L1,n(σ
2
1, θ) = (2π)−n/2

∣∣σ2
1R(θ)

∣∣−1/2
exp

{
− 1

2σ2
1

Z ′
1,nR(θ)

−1Z1,n

}
. (3.22)

The following result can be found in Theorem 1 of Ying (1991).

Theorem 3.2 (Ying (1991)). For any fixed θf > 0, let

σ̂2
1 = argmax

σ2
1∈(0,∞)

L1,n(σ
2
1, θf ). (3.23)

Then

σ̂2
1θf

a.s.−−−→
n→∞

σ2
01θ0, (3.24)

under the sampling design Eq. (3.13).

Note that for the fixed θf > 0, σ̂2
1 has an explicit form, that is,

σ̂2
1 =

1

n
Z ′

1,nR
−1(θf )Z1,n. (3.25)

Therefore, we define the estimator of σ2
01θ0 as

σ̂2
1θ ≜

θf
n
Z ′

1,nR
−1(θf )Z1,n. (3.26)
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Similarly, the estimator of σ2
02θ0 is defined as

σ̂2
2θ ≜

θf
n
Z ′

2,nR
−1(θf )Z2,n. (3.27)

To estimate ρ0, we notice that Z3(t) ≜ Z1(t) +Z2(t) is also a mean 0 univariate OU process

with covariance function

cov(Z3(t), Z3(s)) = (σ2
01 + σ2

02 + 2σ01σ02ρ0)e
−θ0|s−t|. (3.28)

As a result, we define

ρ̂ ≜
Z ′

1,nR
−1(θf )Z2,n√

Z ′
1,nR

−1(θf )Z1,n · Z ′
2,nR

−1(θf )Z2,n

. (3.29)

The following theorem establishes the strong consistency and asymptotic normality of our

estimator for (σ2
01θ0, σ

2
02θ0, ρ0)

′.

Theorem 3.3. Under the sampling design Eq. (3.13),
σ̂2
1θ

σ̂2
2θ

ρ̂

 a.s.−−−→
n→∞


σ2
01θ0

σ2
02θ0

ρ0

 , (3.30)

and

√
n





σ̂2
1θ

σ̂2
2θ

ρ̂


−



σ2
01θ0

σ2
02θ0

ρ0




d−→N


0,



2θ20σ
4
01 2θ20σ

2
01σ

2
02ρ

2
0 θ0ρ0σ

2
01(1− ρ20)

2θ20σ
2
01σ

2
02ρ

2
0 2θ20σ

4
02 θ0ρ0σ

2
02(1− ρ20)

θ0ρ0σ
2
01(1− ρ20) θ0ρ0σ

2
02(1− ρ20) (1− ρ20)

2




. (3.31)

Proof. The strong consistency in Eq. (3.30) directly follows Theorem 3.2.

In the following, we deal with the asymptotic normality part. Let σ2
03 be the true but

unknown marginal variance of the OU process Z3(t) which is the sum of Z1(t) and Z1(t),

that is,

σ2
03 ≜ σ2

01 + σ2
02 + 2σ01σ02ρ0.

Meanwhile, define

Z3,n = (Z3(t1), · · · , Z3(tn))
′.

53



To simplify notations, for i = 1, 2, 3, we write Zi,n as Zi for the rest of the proof. For

i ∈ {1, 2, 3}, and k ∈ {1, . . . , n}, let

Wi,k =
zi,k − e−θ0∆kzi,k−1

(σ2
0i(1− e−2θ0∆k))

1/2
,

where ∆k ≜ tk − tk−1, and zi,k ≜ Zi(tk). From the proof of Theorem 2 in Ying (1991), we

see that for i = 1, 2, 3, as n→ ∞,

√
n

(
Z ′
iR

−1(θf )Zi
n

θf − σ2
0iθ0

)
= n−1/2σ2

0iθ0

n∑
k=2

(W 2
i,k − 1) +Op(n

−1/2); (3.32)

(see also, Du, Zhang, and Mandrekar 2009, (B.36)). Since

2ZT
1 R

−1(θf )Z2 = ZT
3 R

−1(θf )Z3 − ZT
1 R

−1(θf )Z1 − ZT
2 R

−1(θf )Z2,

there is

√
n

(
ZT

1 R
−1(θf )Z2

n
θf − σ01σ02ρ0θ0

)
=

√
n

2

[(
Z ′

3R
−1(θf )Z3

n
θf − σ2

03θ0

)
−
(
Z ′

1R
−1(θf )Z1

n
θf − σ2

01θ0

)

−
(
Z ′

2R
−1(θf )Z2

n
θf − σ2

02θ0

)]

=
θ0

2
√
n

n∑
k=2

[
σ2
03

(
W 2

3,k − 1
)
− σ2

01

(
W 2

1,k − 1
)
− σ2

02

(
W 2

2,k − 1
)]

+Op(n
−1/2)

=n−1/2

n∑
k=2

W̃3,k − W̃1,k − W̃2,k

2
+Op(n

−1/2),

(3.33)

where W̃i,k = σ2
0iθ0
(
W 2
i,k − 1

)
for i = 1, 2, 3. Denote

W̃nk =

(
W̃1,k, W̃2,k,

W̃3,k − W̃1,k − W̃2,k

2

)′

,

then for any fixed n, it is not hard to verify that
{
W̃nk

}n
k=2

are independent random vectors

with zero mean and finite variance. Since for any n and i, Wi,k ∼ N (0, 1), we have

var
(
W 2
i,k − 1

)
= 2, cov

(
W 2
i,k − 1,W 2

j,k − 1
)
= 2[cov (Wi,k,Wj,k)]

2 ≜ 2c2i,j.
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From the definition, it is straightforward that c1,2 = ρ0. Moreover,

c1,3 = cov (W1,k,W3,k)

= cov

[
W1,k,

σ01
σ03

(
W1,k +

σ02
σ01

W2,k

)]
=
σ01
σ03

var(W1,k) +
σ02
σ03

c1,2

=
σ01 + σ02ρ0√

σ2
01 + σ2

02 + 2σ01σ02ρ0
.

Similarly,

c2,3 =
σ01ρ0 + σ02√

σ2
01 + σ2

02 + 2σ01σ02ρ0
.

Thus,

cov(W̃nk) = θ20


2σ4

01 2σ2
01σ

2
02ρ

2
0 α

2σ2
01σ

2
02ρ

2
0 2σ4

02 β

α β γ

 , (3.34)

where

α = (2σ2
01σ

2
03c

2
1,3 − 2σ4

01 − 2σ2
01σ

2
02c

2
1,2)/2 = 2σ3

01σ02ρ0,

β = (2σ2
02σ

2
03c

2
2,3 − 2σ4

02 − 2σ2
01σ

2
02c

2
1,2)/2 = 2σ01σ

3
02ρ0,

γ =
1

4
(2σ4

03 + 2σ4
01 + 2σ4

02 − 4σ2
01σ

2
03c

2
1,3 − 4σ2

02σ
2
03c

2
2,3 + 4σ2

01σ
2
02c

2
1,2) = σ2

01σ
2
02(1 + ρ20).

By the multivariate Lindeberg-Feller CLT, as n→ ∞,

n−1/2

n∑
k=2

W̃nk
d−→N (0, V ), (3.35)

where

V = cov(W̃nk) = θ20


2σ4

01 2σ2
01σ

2
02ρ

2
0 2σ3

01σ02ρ0

2σ2
01σ

2
02ρ

2
0 2σ4

02 2σ01σ
3
02ρ0

2σ3
01σ02ρ0 2σ01σ

3
02ρ0 σ2

01σ
2
02(1 + ρ20)

 , (3.36)

By Eqs. (3.32), (3.33) and (3.35), we have that as n→ ∞,

√
n

θf

Z ′

1R
−1(θf )Z1/n

Z ′
2R

−1(θf )Z2/n

Z ′
1R

−1(θf )Z2/n

−


σ2
01θ0

σ2
02θ0

σ01σ02ρ0θ0


 d−→N (0, V ). (3.37)
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Define function g(x1, x2, x3) = (x1, x2, x3/
√
x1x2)

′ : R3 → R3. Then

(
σ̂2
1θ, σ̂

2
2θ, ρ̂

)′
= g
(
θfZ

′
1R

−1(θf )Z1/n, θfZ
′
2R

−1(θf )Z2/n, θfZ
′
1R

−1(θf )Z2/n
)
.

Using the multivariate Delta method,

√
n



σ̂2
1θ

σ̂2
2θ

ρ̂

−


σ2
01θ0

σ2
02θ0

ρ0


 d−→N (0, (∇g)V (∇g)′), (3.38)

where

(∇g)i,j =
∂gi
∂xj

,

and

(∇g)V (∇g)′ =


2θ20σ

4
01 2θ20σ

2
01σ

2
02ρ

2
0 θ0ρ0σ

2
01(1− ρ20)

2θ20σ
2
01σ

2
02ρ

2
0 2θ20σ

4
02 θ0ρ0σ

2
02(1− ρ20)

θ0ρ0σ
2
01(1− ρ20) θ0ρ0σ

2
02(1− ρ20) (1− ρ20)

2

 .

Remark 3.1. Note that the construction of our estimator is based on each component of the

bivariate process Z(s), and it has the same asymptotic matrix as that in Theorem 3.1. This

echos the fact that cokriging is identical to kriging under the bivariate OU model in Zhang

and Cai (2015).

3.3 Simulations

In this section, we investigate the finite sample performance of the estimator
(
σ̂2
1θ, σ̂

2
2θ, ρ̂

)′
with θf = 1 in Eqs. (3.26), (3.27) and (3.29). The simulations are conducted over an irregular

grid within [0, 1] with n = 200, 250, . . . , 1000. Specifically, we have considered a regular

grid with increment 1/n over [0, 1]. Then the grid points have been perturbed, adding a

uniform random value on [−1/(5n), 1/(5n)].We simulate, using the R package RandomFields

developed by Schlather et al. (2017), and then we estimate with 1000 realizations from a

zero mean bivariate OU process where σ2
1 = σ2

2 = 1, ρ = 0.2 and θ = 0.2, 0.5.
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Figure 3.1 Simulated estimation for the bivariate OU process with θ = 0.2. Plots in the
first row present the averaged absolute value of bias for each sample size and each
parameter; plots in the second row present the distribution of normalized bias when
n = 1000, where the red curve is the density of N(0, 1).

Figure 3.2 The setting is the same as Fig. 3.1 except θ = 0.5.
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CHAPTER 4

THE POWERED EXPONENTIAL FIELD

4.1 Introduction

In this chapter, we consider a stationary, isotropic Gaussian random field {X(t) : t ∈ Rd}

with mean 0 and covariance function

C(u− v) ≜ cov {X(u), X(v)} = σ2e−θ∥u−v∥α , ∀u,v ∈ Rd, (4.1)

where α ∈ (0, 2), θ > 0 and σ > 0. The corresponding spectral density is defined as the

Fourier transform of Eq. (4.1):

fσ,θ(ω) =
1

(2π)d

∫
Rd

e−iω
′tC(t)dt. (4.2)

Note that fσ,θ : Rd → R is actually the probability density function of a sub-Gaussian random

vector (see, e.g., Samorodnitsky and Taqqu 2017, Proposition 2.5.5). By the Bochner’s

theorem (see, e.g., Adler and Taylor 2007, Theorem 5.4.1), Eq. (4.1) is a covariance in Rd

for any d.

Another popular covariance function in spatial statistics is the Matérn covariance function

CM(t) = σ2 (β∥t∥)ν

2ν−1Γ(ν)
Kν(β∥t∥), ∀ t ∈ Rd, (4.3)

where ν, β and σ2 are strictly positive, and Kν is the modified Bessel function of the second

kind. Two covariance functions C(t) and CM(t) exhibit the same behavior at the origin if

α = 2ν. Specifically,

σ2 − C(t) ≍ σ2 − CM(t) ≍ ∥t∥α, (4.4)

as ∥t∥ → 0 given α = 2ν. As a result, the realizations of X(t) have fractal dimension

(d + 1 − α/2) with probability 1 (Gneiting and Schlather 2004; Adler 2010). However,

Contrary to the fact that for d ≤ 3, σ2 and β in Eq. (4.3) cannot be estimated consistently

under fixed-domain asymptotics proven by Zhang (2004), Anderes (2010) showed that both

σ2 and θ in Eq. (4.1) can be consistently estimated given α ∈ (0, d/2) \ {1} under fixed-

domain asymptotics. This shows that the powered exponential model and the Matérn model
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have different statistical properties when d ≤ 3. As noted in Zhang (2004), the spectral

densities corresponding to the powered exponential model do not have a closed form except

in some special cases, which brings challenges when deriving results on the equivalence of

Gaussian measures.

The remainder of this chapter is organized as follows. In Section 4.2, we characterize the

equivalence of Gaussian measure under the powered exponential model when α ∈ (d/2, 2).

In Section 4.3, we establish the strong consistency and asymptotic normality of the MLE for

σ2θ. In Section 4.4, we provide simulations of the MLE under finite sample cases.

4.2 The equivalence of Gaussian measures

To study sufficient conditions for the equivalence of two Gaussian measures for the pow-

ered exponential class, we use Theorem A.1 in M. L. Stein (2004):

Let Pi, i = 1, 2, be two probability measures such that under Pi, the process X(s), s ∈ Rd,

is stationary Gaussian with mean 0 and a second-order spectral density fi(v), v ∈ Rd. If,

for some α > d, f1(v)|v|α is bounded away from 0 and ∞ as |v| → ∞, and for some finite c,∫
|v|>c

{
f1(v)− f2(v)

f1(v)

}2

dv <∞, (4.5)

then for any bounded subset D ⊂ Rd, P1 ≡ P2 on the paths of X(s), s ∈ D.

Since Eq. (4.1) and the characteristic function of a stable distribution have the same

form, we will take advantage of the knowledge from stable distributions to verify conditions

in Theorem A.1 in M. L. Stein (2004) for the powered exponential family, which is inspired

by Formula (3.4) in Wang (2010). In Samorodnitsky and Taqqu (2017), a stable distribution

is defined as follows:

Definition 4.1. A random variable X is said to have a stable distribution Sα(σ, β, µ) if

there are parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1, and µ real such that its characteristic

function has the follow form:

E exp{iωX} =


exp
{
−σα|ω|α(1− iβ(sign ω) tan πα

2
) + iµω

}
, if α ̸= 1,

exp
{
−σ|ω|(1 + iβ 2

π
(sign ω) ln |ω|) + iµω

}
, if α = 1,

(4.6)
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where

sign ω =


1, if ω > 0,

0, if ω = 0,

−1, if ω < 0.

Now consider X ∼ Sα(1, 0, 0), 0 < α < 1. By Eq. (4.6), it has ch.f.

ψ(ω) = E exp{iωX} = exp{−|ω|α}.

And its density function can be expanded into a convergent series as follows (see, e.g.,

Bergström 1952, Equation (4); Feller 1991, Lemma 1, p. 583)

f(x) =
1

2π

∫ ∞

−∞
ψ(ω) exp{−iωx}dω = − 1

π

∞∑
k=1

(−1)k

k!

Γ(αk + 1)

xαk+1
sin
(
k
απ

2

)
, x > 0.

Obviously, for θ > 0, θ
1
αX has ch.f.

ψθ(ω) = exp{−θ|ω|α}.

Meanwhile

fθ(x) = θ−
1
αf(θ−

1
αx)

= −θ−
1
α
1

π

∞∑
k=1

(−1)k

k!

Γ(αk + 1)

xαk+1
θ

αk+1
α sin

(
k
απ

2

)
= θ

Γ(α + 1)

π
sin
(απ

2

)
x−(α+1) − θ2

Γ(2α + 1)

2π
sin(απ)x−(2α+1) +O(x−(3α+1)),

(4.7)

as x → ∞. And for 1 < α < 2, we have the same asymptotic expansion Eq. (4.7) according

to Eq. (5) in Bergström (1952).

As for the multidimensional case, let Y be a centered d-dimensional isotropic stable

random vector with characteristic function exp{−θ|u|α}. The amplitude of Y is defined by

R = ∥Y∥ =
√
Y2

1 + · · ·+Y2
d.

Then the density function of R has the following asymptotic series expansion:

fR(r) =
θ

πΓ(d/2)
Γ

(
α + 2

2

)
Γ

(
α + d

2

)
sin
(απ

2

)(2

r

)α+1

− θ2

2πΓ(d/2)
Γ(α + 1)Γ

(
2α + d

2

)
sin(απ)

(
2

r

)2α+1

+O(r−3α−1),

(4.8)
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as r → ∞ for α ∈ (0, 1) ∪ (1, 2). Meanwhile for y ̸= 0,

fY(y) =
Γ(d/2)

2πd/2
|y|1−dfR(|y|); (4.9)

(see Nolan 2005, Section 3.1 and 3.2 for details). And direct calculation shows that the

asymptotic expression fY(y) is the same as Eq. (4.7) when d = 1.

Lemma 4.1. Let Pi, i = 1, 2, be two probability measures such that under Pi, the process

X(s), s ∈ Ω ⊂ Rd, is stationary Gaussian with mean 0 and a covariance function Ci(t) =

σ2
i e

−θi||t||α with parameters (σi, θi, α) where α ∈ (0, 2). If α ∈
(
d
2
, 2
)
, then for any bounded

infinite set Ω ⊂ Rd, the Gaussian measures P1 and P2 are equivalent if and only if σ2
1θ1 =

σ2
2θ2.

Proof. Note that when α = 1 and d = 1, Theorem 2 in Zhang 2004 implies the theorem

holds. Below, we only consider the case α ∈
(
d
2
, 2
)
\ {1}.

” ⇐ ” Here we follow the proof of Theorem 2 in Zhang 2004. For powered exponential

covariance function C(t) = σ2e−θ||t||
α in Rd, the corresponding isotropic spectral density has

the following asymptotic expansion:

f(u) ≜ σ2fY((u, 0, · · · , 0))

= σ2Γ(d/2)

2πd/2
u1−dfR(u)

= σ2Γ(d/2)

2πd/2
u1−d

(
θ

πΓ(d/2)
Γ

(
α + 2

2

)
Γ

(
α + d

2

)
sin
(απ

2

)(2

u

)α+1

− θ2

2πΓ(d/2)
Γ(α + 1)Γ

(
2α + d

2

)
sin(απ)

(
2

u

)2α+1

+O(u−3α−1)

)

= σ2
1θ1

2α

πd/2+1
Γ(
α + 2

2
)Γ(

α + d

2
) sin

(απ
2

)
u−(α+d)

+ σ2
1θ

2
1

22α−1

πd/2+1
Γ(α + 1)Γ(

2α + d

2
) sin(απ)u−(2α+d) +O

(
u−(3α+d)

)
,

(4.10)

as u→ ∞. Moreover, Eq. (4.5) can be expressed as∫ ∞

c

ud−1

{
f1(u)− f2(u)

f1(u)

}2

du <∞, (4.11)
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where f1 and f2 are isotropic spectral densities corresponding to P1 and P2. Assuming that

σ2
1θ1 = σ2

2θ2, then

lim
u→∞

uα+df1(u)

= lim
u→∞

uα+dσ2
1

Γ(d/2)

2πd/2
u1−d

θ1
πΓ(d/2)

Γ(
α + 2

2
)Γ(

α + d

2
) sin

(απ
2

)
(
2

u
)α+1

=σ2
1θ1

2α

πd/2+1
Γ(
α + 2

2
)Γ(

α + d

2
) sin

(απ
2

)
.

And {
f1(u)− f2(u)

f1(u)

}2

=

{
σ2
1fR,1(u)− σ2

2fR,2(u)

σ2
1fR,1(u)

}2

≲

(
2α−1 (σ

2
2θ

2
2 − σ2

1θ
2
1)

σ2
1θ1

Γ(α + 1)Γ(2α+d
2

) sin(απ)

Γ(α+2
2
)Γ(α+d

2
) sin

(
απ
2

) u−α

)2

,

(4.12)

for all u big enough. So the integral in Eq. (4.11) is finite when α ∈
(
d
2
, 2
)
\ {1}. Therefore,

the two measures are equivalent.

” ⇒ ” If σ2
1θ1 ̸= σ2

2θ2, let σ2
0 = σ2

2θ2/θ1. Then σ2
0θ1 = σ2

2θ2 and the two powered exponen-

tial covariance functions C(t;σ2
0, θ1, α) and C(t;σ2

2, θ2, α) define two equivalent measures.

We only need to show that for any countable infinite subset T ⊂ Ω, C(t;σ2
0, θ1, α) and

C(t;σ2
1, θ1, α) define two orthogonal Gaussian measures on σ{X(t), t ∈ T}.

For Gaussian random variables {X(t), t ∈ T}, we re-index them as {X(n), n ∈ N}.

Obviously, any finite many of them has a positive definite covariance matrix with respect to

both Gaussian measures.

Applying Gram-Schmidt orthogonalization to {X(n), n ∈ N} with the inner product in-

duced by C(t;σ2
0, θ1, α), we get {ξi}∞i=1 which is a sequence of independent standard Gaussian

random variables with respect to the Gaussian measure induced by C(t;σ2
0, θ1, α).

And {ξi}∞i=1 is a sequence of independent Gaussian random variables with mean zero and

variance σ2
1/σ

2
0 with respect to the Gaussian measure induced by C(t;σ2

1, θ1, α).
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Let ϵ ≜ |σ2
1/σ

2
0−1|
2

, then by law of large numbers, we have

lim
n→∞

Pσ2
0 ,θ1,α

(∣∣∣∣∣
n∑
k=1

ξ2k/n− 1

∣∣∣∣∣ > ϵ

)
= 0. (4.13)

Meanwhile,

1 = lim
n→∞

Pσ2
1 ,θ1,α

(∣∣∣∣∣
n∑
k=1

ξ2k/n− σ2
1

σ2
0

∣∣∣∣∣ < ∣∣σ2
1/σ

2
0 − 1

∣∣− ϵ

)

= lim
n→∞

Pσ2
1 ,θ1,α

(∣∣σ2
1/σ

2
0 − 1

∣∣− ∣∣∣∣∣
n∑
k=1

ξ2k/n− σ2
1

σ2
0

∣∣∣∣∣ > ϵ

)

≤ lim
n→∞

Pσ2
1 ,θ1,α

(∣∣∣∣∣
n∑
k=1

ξ2k/n− 1

∣∣∣∣∣ > ϵ

)
.

Then

lim
n→∞

Pσ2
1 ,θ1,α

(∣∣∣∣∣
n∑
k=1

ξ2k/n− 1

∣∣∣∣∣ > ϵ

)
= 1. (4.14)

Finally, combining Eq. (4.13) and Eq. (4.14), we have Pσ2
0 ,θ1,α

⊥ Pσ2
1 ,θ1,α

on σ{X(t), t ∈ T},

thus on σ{X(t), t ∈ Ω}.

Remark 4.1. For d-dimensional isotropic Ornstein-Uhlenbeck process with covariance func-

tion

Vd(t, s;σ
2, θ) = σ2e−θ[

∑d
i=1(ti−si)2]

1
2

,

setting the smoothness parameter ν as 1
2

in the Matérn model, we have that for d ≤ 3,

Vd(·;σ2
1, θ1) and Vd(·;σ2

2, θ2) induces two Gaussian measures that are equivalent if and only

if σ2
1θ1 = σ2

2θ2 according to Theorem 2 in Zhang (2004).

With Lemma 4.1, we see that σ and θ cannot be consistently estimated when α ∈ (d/2, 2)

under fixed-domain asymptotics (see Zhang 2004, for a detailed explanation). However, as

we will show in the next section, the MLE of σ2θ is consistent and asymptotic normal.

4.3 Asymptotic properties of the MLE

Let the observation of Gaussian field X(t) be

Xn = {X(t1), X(t2), · · · , X(tn)}′, (4.15)
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where t1, t2, · · · , tn ∈ [0, T ]d are distinct locations, and [0, T ]d ⊂ Rd is the fixed cube with

side T .

Theorem 4.1. Let {X(s), s ∈ Rd}, d ∈ {1, 2, 3}, be stationary isotropic Gaussian field

with mean 0 and covariance function C(t) = σ2
0e

−θ0||t||α where σ2
0 and θ0 are unknown and

α is known. Let Dn, n = 1, 2, · · · , be an increasing (nested) sequence of finite subsets of

[0, T ]d ⊂ Rd, and Ln(σ2, θ) be the likelihood function when the process is observed at locations

in Dn. For any fixed θ1 > 0, let σ̂2
n maximize Ln(σ2, θ1). Then when α ∈ (d

2
, 2), σ̂2

nθ1 → σ2
0θ0,

with P0 probability 1, where P0 is the Gaussian measure defined by the powered exponential

covariance function corresponding to parameter values σ2
0, θ0 and α. Namely,

X′
nΓ

−1
(n,θ1)

Xn

n
θ1

P0−a.s.−−−−→
n→∞

σ2
0θ0, (4.16)

where Γ(n,θ0) is the true correlation matrix.

Proof. The proof follows the same arguments of the proof of Theorem 3 in Zhang (2004).

To derive the asymptotic normality, the key is to control the error between quadratic

forms with the misspecified correlation matrix in Eq. (4.16) and the true one respectively.

Before stating the main result on the asymptotic normality, we need to introduce several

preliminaries that will be used in the main proof.

Let σ2
1 = σ2

0θ0/θ1, and P1 is the Gaussian measure corresponding to mean 0 and the

covariance function C(t;σ2
1, θ1, α) in the following. First, we observe that by the eigende-

composition (
σ2
0Γ(n,θ0)

)−1/2(
σ2
1Γ(n,θ1)

)(
σ2
0Γ(n,θ0)

)−1/2
= UnΛnU

′
n, (4.17)

where Un is an orthogonal matrix consisting of the eigenvectors and

Λn = diag(λ1,n, · · · , λn,n)

is a diagonal matrix with the eigenvalues {λk,n}nk=1. Define

Yn = U ′
n

(
σ2
0Γ(n,θ0)

)−1/2
Xn, (4.18)
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then
1√
n

(
X′
n

(
σ2
1Γ(n,θ1)

)−1
Xn −X′

n

(
σ2
0Γ(n,θ0)

)−1
Xn

)
=

1√
n

n∑
k=1

(
λ−1
k,n − 1

)
Y 2
k,n,

where (Y1,n, · · · , Yn,n)′ = Yn ∼ N (0, In) under P0, and Yn ∼ N (0,Λn) under P1.

Second, we plan to represent Yn in the frequency domain. The spectral representation

theorem (see, e.g., Adler and Taylor 2007, Theorem 2.4.2) says X(t) has the following

spectral representation

X(t)
fdd
=

∫
Rd

eiω
′tM(dω), (4.19)

where M is a Gaussian random measure on Rd whose control measure has the Radon-

Nikodym derivative fσ,θ with respect to the Lebesgue measure. The fdd
= means that both

sides in Eq. (4.19) have the same finite-dimensional distributions. Subsequently, we introduce

two isomorphic Hilbert spaces. Define

H0 ≜

{
n∑
i=1

riX(ti) : r1, · · · , rn ∈ R, t1, · · · , tn ∈ [0, T ]d

}
, (4.20)

and

L0 ≜

{
n∑
i=1

rie
iω′ti : r1, · · · , rn ∈ R, t1, · · · , tn ∈ [0, T ]d

}
. (4.21)

Eq. (4.19) implies that

cov

{
n∑
j=1

ajX(tj),
m∑
k=1

bkX(tk)

}
=

(
n∑
j=1

aj exp{iω′tj},
m∑
k=1

bk exp{iω′tk}

)
fσ,θ

, (4.22)

where the inner product (·, ·)fσ,θ is defined as (ϕ, ψ)fσ,θ ≜
∫
Rd ϕ(ω)ψ(ω)dω. Therefore, two

Hilbert spaces H(fσ,θ), as the closure of H0 with respect to the inner product cov{·, ·}, and

L(fσ,θ), as the closure of L0 with respect to the inner product (·, ·)fσ,θ , are isomorphic; (see,

e.g., M. L. Stein 1999a, chap. 2.6; Ibragimov and Rozanov 1978, chap. 3.1.3). Define

(ψ1, · · · , ψn)′ = U ′
n

(
σ2
0Γ(n,θ0)

)−1/2
(exp{iω′t1}, · · · , exp{iω′tn})′. (4.23)

Combining Eqs. (4.18) and (4.22), we see that for j, k = 1, · · · , n,

(ψj, ψk)fσ0,θ0
= δj,k,

(ψj, ψk)fσ1,θ1
= λj,nδj,k,

(4.24)
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where δj,k = 1 if j = k and is 0 otherwise.

Then, to bound {λk,n}nk=1, we first introduce the entropy distance between two equivalent

Gaussian measures (see M. L. Stein (1999a) and Ibragimov and Rozanov (1978) for a fuller

exposition about the entropy distance). Lemma 4.1 implies P0 ≡ P1, and the entropy distance

r between P1 and P0 is defined as

r ≜ −
[
E0 ln

(
P1

P0

)
+ E1 ln

(
P0

P1

)]
, (4.25)

where P0

P1
and P1

P0
are the Radon-Nikodym derivative on the σ-algebra generated by the

Gaussian process X. Moreover, the conditional expectation of P1

P0
given Xn is

pn ≜ E0

(
P1

P0

∣∣∣∣Xn

)
=
f1(Xn)

f0(Xn)

=

(∣∣(σ2
0Γ(n,θ0)

)∣∣∣∣(σ2
1Γ(n,θ1)

)∣∣
)1/2

e−
1
2
X′

n(σ2
1Γ(n,θ1))

−1
Xn+

1
2
X′

n(σ2
0Γ(n,θ0))

−1
Xn ,

(4.26)

where f1(x) and f0(x) are the probability density functions of Xn with respect to P1 and P0

respectively. Define rn as

rn ≜ −E0 ln (pn) + E1 ln (pn)

=
1

2
E0X

′
n

((
σ2
1Γ(n,θ1)

)−1 −
(
σ2
0Γ(n,θ0)

)−1
)
Xn

+
1

2
E1X

′
n

((
σ2
0Γ(n,θ0)

)−1 −
(
σ2
1Γ(n,θ1)

)−1
)
Xn

=
1

2

[
tr
((
σ2
1Γ(n,θ1)

)−1(
σ2
0Γ(n,θ0)

))
+ tr

((
σ2
0Γ(n,θ0)

)−1(
σ2
1Γ(n,θ1)

))
− 2n

]
=

1

2

n∑
k=1

(
1

λk,n
+ λk,n − 2

)
,

(4.27)

where {λk,n}nk=1 are defined in Eq. (4.17).

Lemma 4.2. There exist two positive constants 0 < Ci ≤ Cs <∞ such that Ci ≤ λk,n ≤ Cs

for all n and 1 ≤ k ≤ n.
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Proof. Theorem 4 in M. L. Stein (1999a, p.117) implies 0 ≤ r < +∞ in Eq. (4.25). And by

Jensen’s inequality, rn ≤ r for all n, which implies that

1

2

(
1

λk,n
+ λk,n − 2

)
≤ r,

for all n and 1 ≤ k ≤ n. Let

Ci =
(2 + 2r)−

√
(2 + 2r)2 − 4

2
, Cs =

(2 + 2r) +
√
(2 + 2r)2 − 4

2
, (4.28)

then we have

Ci ≤ λk,n ≤ Cs.

This proves Lemma 4.2.

Finally, we describe properties of the spectral density function fσ,θ(ω) in the following

lemma.

Lemma 4.3. The spectral density fσ,θ(ω) defined in Eq. (4.2) is bounded, uniformly contin-

uous and strictly positive on Rd. Furthermore, fσ,θ(ω) ≍ ∥ω∥−(α+d) as ∥ω∥ → ∞.

Proof. Since
∫
Rd C(t)dt <∞, fσ,θ(ω) is bounded and uniformly continuous by the properties

of Fourier transform. Furthermore, based on Formula (7.5) in Khoshnevisan, Xiao, and

Zhong (2003), for ω ̸= 0,

f1,1(ω) = ∥ω∥−d
∫ ∞

0

ν

(
s

∥ω∥2

)
g(α/2)(s)ds, (4.29)

where the function ν is defined as

ν(s) = (4πs)−d/2e−
1
4s ,

g(α/2)(s) is the density function of the random variable τ(1), and where τ = τ(t), t ≥ 0 is a

stable subordinator of index α
2
. Finally,

f1,1(0) =
1

(2π)d

∫
Rd

C(t)dt > 0.

So we have f1,1(ω) > 0. The fact that fσ,θ(ω) ≍ ∥ω∥−(α+d) as ∥ω∥ → ∞ has been verified

in the proof of Lemma 4.1. This completes the proof.
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Theorem 4.2. With the same notation and assumptions as in Theorem 4.1, we have

√
n
(
σ̂2
nθ1 − σ2

0θ0
) d−→N

(
0, 2(σ2

0θ0)
2
)
, (4.30)

with respect to P0.

Proof. Note that Ying (1991) has proven the theorem when α = 1 and d = 1. Therefore, we

only consider the case α ∈
(
d
2
, 2
)
\ {1}, and we follow the arguments from Wang (2010) in

the following. Splitting (σ̂2
nθ1 − σ2

0θ0) into two parts, we have

√
n
(
σ̂2
nθ1 − σ2

0θ0
)
=
σ2
0θ0√
n

(
X′
n

(
σ2
1Γ(n,θ1)

)−1
Xn −X′

n

(
σ2
0Γ(n,θ0)

)−1
Xn

)
+
σ2
0θ0√
n

(
X′
n

(
σ2
0Γ(n,θ0)

)−1
Xn − n

)
. (4.31)

Since
(
σ2
0Γ(n,θ0)

)−1/2
Xn consists of i.i.d. standard normal variables with respect to P0,

X′
n

(
σ2
0Γ(n,θ0)

)−1
Xn is the sum of i.i.d. variables having χ2

1 distribution. Hence, the Lindeberg-

Feller theorem implies

σ2
0θ0√
n

(
X′
n

(
σ2
0Γ(n,θ0)

)−1
Xn − n

)
d−→N

(
0, 2(σ2

0θ0)
2
)
. (4.32)

Thus to prove Theorem 4.2, it suffices to show that

σ2
0θ0√
n

(
X′
n

(
σ2
1Γ(n,θ1)

)−1
Xn −X′

n

(
σ2
0Γ(n,θ0)

)−1
Xn

)
P0−→ 0. (4.33)

Let m =
⌊
α+d
2

⌋
+1 and κ = α+d

4m
∈ (0, 1

2
), where ⌊·⌋ denotes the greatest integer function.

Define the integrable function c0 and its Fourier transform ξ0 as

c0(x) = ∥x∥κ−dI(∥x∥ ≤ 1), x ∈ Rd, (4.34)

ξ0(ω) =

∫
Rd

e−ix
′ωc0(x)dx, x ∈ Rd. (4.35)

It follows from Lemma 4.5 that ξ0 : Rd → R is a continuous, isotropic and strictly positive

function and ξ0(ω) ≍ ∥ω∥−κ as ∥ω∥ → ∞.

Let c1 = c0 ∗ · · · ∗ c0 denote the 2m-fold convolution of the function c0 with itself. Then

supp(c1) ⊂ {x : ∥x∥ ≤ 2m} and

ξ1(ω) = ξ0(ω)2m. (4.36)
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It follows from Lemma 4.3 that there exist positive constants 0 < cξ1 ≤ Cξ1 < ∞ such that

for all ω ∈ Rd,

cξ1 ≤
fσ0,θ0(ω)

ξ1(ω)2
≤ Cξ1 . (4.37)

Define

η(ω) =
fσ1,θ1(ω)− fσ0,θ0(ω)

ξ1(ω)2
. (4.38)

It follows from the proof of Lemma 4.1 that there exists a constant Cη such that for all

ω ∈ Rd,

|η(ω)| ≤ Cη
1 + ∥ω∥α

, (4.39)

and η : Rd → R is square integrable when α ∈
(
d
2
, 2
)
\ {1}. From the theory of the Fourier

transform of L2(Rd) functions, there exists a square integrable function g : Rd → R such

that ∫
Rd

(η(ω)− ĝk(ω))2dω
k→∞−−−→ 0, (4.40)

where

ĝk(ω) =

∫
Rd

e−iω
′xg(x)I{∥x∥max ≤ k}dx, k ∈ N. (4.41)

In order to illustrate the following Lemma, we need to introduce the approximate identity

en(x) defined by Formula (35) of Wang and Loh (2011). Let {ϵn}∞n=1 be a positive sequence

such that ϵn → 0 as n→ ∞. Define

en(x) =
1

Ceϵdn
c̃1

(
x

ϵn

)
, x ∈ Rd, (4.42)

and

ξ̃1(ω) =

∫
Rd

e−ix
′ω c̃1(x)dx, x ∈ Rd, (4.43)

where Ce =
∫
Rd c̃1(x)dx and c̃1 = c̃0 ∗ · · · ∗ c̃0, the 2ma-fold convolution of c̃0, with c̃0(x) =

∥x∥
a+d
4ma

−dI{∥x∥ ≤ 1} and ma =
⌊
a+d
2

⌋
+ 1. Here a is an arbitrary positive constant. For the

Fourier transform of en, we have

ên(ω) =
ξ̃1(ϵnω)

Ce
. (4.44)
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Lemma 4.5 implies that there exists a constant Cê (independent of ω and n) such that for

all ω ∈ Rd,

|ên(ω)| ≤ Cê

(1 + ϵn∥ω∥)(a+d)/2
. (4.45)

Lemma 4.4. Let en and g be as in Eqs. (4.41) and (4.42) respectively and β0 is any constant

satisfying 0 < β0 < min{2, 2α− d}. Then there exists a constant Cβ0 such that∫
Rd

|en ∗ g(x)− g(x)|2dx ≤ Cβ0ϵ
β0
n . (4.46)

Proof. The Plancherel theorem implies that for y ∈ Rd,∫
Rd

|g(x− y)− g(x)|2dx =
1

(2π)d

∫
Rd

∣∣∣e−iω′yη(ω)− η(ω)
∣∣∣2dω

=
1

(2π)d

∫
Rd

∣∣∣(e−iω′y − 1)η(ω)
∣∣∣2dω

≤ 22−β0∥y∥β0

(2π)d

∫
Rd

∥ω∥β0|η(ω)|2dω.

(4.47)

Hence [∫
Rd

|en ∗ g(x)− g(x)|2dx
]1/2

=

[∫
Rd

∣∣∣∣∫
∥y∥≤2maϵn

[g(x− y)− g(x)]en(y)dy

∣∣∣∣2dx
]1/2

≤
∫
∥y∥≤2maϵn

[∫
Rd

|g(x− y)− g(x)|2dx
]1/2

en(y)dy

≤2(2−β0)/2(2maϵn)
β0/2

(2π)d/2

[∫
Rd

∥ω∥β0|η(ω)|2dω
]1/2

≤Cη2
(2−β0)/2(2maϵn)

β0/2

(2π)d/2

[∫
Rd

∥ω∥β0

(1 + ∥ω∥α)2
dω

]1/2
.

(4.48)

This proves Lemma 4.4.

70



Let x,y ∈ [0, T ]d, and observing that supp(c1) ⊂ [−2m, 2m]d, we obtain

b(x,y) ≜ Efσ1,θ1 [X(x)X(y)]− Efσ0,θ0 [X(x)X(y)]

=

∫
Rd

ei(x−y)′ω[fσ1,θ1(ω)− fσ0,θ0(ω)]dω

=

∫
Rd

ei(x−y)′ωη(ω)ξ1(ω)2dω

= (2π)d
∫
R2d

g(s− t)c1(x− s)c1(y − t)dsdt

= (2π)d
∫
R2d

en ∗ g(s− t)c1(x− s)c1(y − t)dsdt

+ (2π)d
∫
R2d

[g(s− t)− en ∗ g(s− t)]c1(x− s)c1(y − t)dsdt

= (2π)d
∫
R2d

en ∗ g(s− t)c1(x− s)c1(y − t)dsdt

+ (2π)d
∫
R2d

h∗n(s, t)c1(x− s)c1(y − t)dsdt,

(4.49)

where

h∗n(s, t) = [g(s− t)− en ∗ g(s− t)]I{∥s+ t∥max ≤ 4m+ 2T}, ∀ s, t ∈ Rd.

Let η∗n : Rd → C denote the L2(Rd) Fourier transform of g − en ∗ g. This implies that∫
Rd

(
η∗n(ω)− ĝ∗n,k(ω)

)2
dω

k→∞−−−→ 0, (4.50)

where

ĝ∗n,k(ω) =

∫
Rd

e−iω
′x[g(x)− en ∗ g(x)]I{|x|max ≤ k}dx, k ∈ N. (4.51)

Thus as in (24) in Wang and Loh (2011), we have

(2π)d
∫
R2d

h∗n(s, t)c1(x− s)c1(y − t)dsdt

=(2π)−d
∫
R2d

ei(ω
′x−ν′y)η∗n

(
ω + ν

2

)
κ

(
ω − ν

2

)
ξ1(ω)ξ1(ν)dωdν,

(4.52)

where κ(x) = 2−d
∫
Rd e

−ix′tI{∥t∥max ≤ 4m + 2T}dt, x ∈ Rd. We observe that since

I{∥t∥max ≤ 4m+ 2T} ∈ L1 ∩ L2, κ is continuous and κ ∈ L2(Rd). Now we define

h∗∗n (s, t) =

∫
∥u∥max≤2m+2ma+T

en(s− u)g(u− t)du, ∀ s, t ∈ Rd.
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Then the function h∗∗n : Rd → C is square-integrable and

(2π)d
∫
R2d

en ∗ g(s− t)c1(x− s)c1(y − t)dsdt

=(2π)d
∫
R2d

h∗∗n (s, t)c1(x− s)c1(y − t)dsdt

=(2π)−d
∫
R2d

ei(ω
′x−ν′y)ξ1(ω)ξ1(ν)

×

(∫
∥u∥max≤2m+2ma+T

e−i(ω
′u−ν′u)ên(ω)η(ν)du

)
dωdν.

(4.53)

It follows from Eqs. (4.52) and (4.53), that for x,y ∈ [0, T ]d,

b(x,y) = (2π)−d
∫
R2d

ei(ω
′x−ν′y)η∗n

(
ω + ν

2

)
κ

(
ω − ν

2

)
ξ1(ω)ξ1(ν)dωdν

+ (2π)−d
∫
R2d

ei(ω
′x−ν′y)ξ1(ω)ξ1(ν)

×

(∫
∥u∥max≤2m+2ma+T

e−i(ω
′u−ν′u)ên(ω)η(ν)du

)
dωdν.

(4.54)

Let {ψ1, · · · , ψn} be as in Eq. (4.23), and then for k = 1, · · · , n,

(ψk, ψk)fσ1,θ1
− (ψk, ψk)fσ0,θ0

= λk,n − 1 = ν∗k,n + ν∗∗k,n, (4.55)

where

ν∗k,n = (2π)−d
∫
R2d

ψk(ω)ψk(ν)η
∗
n

(
ω + ν

2

)
κ

(
ω − ν

2

)
ξ1(ω)ξ1(ν)dωdν,

and

ν∗∗k,n = (2π)−d
∫
R2d

ψk(ω)ψk(ν)ξ1(ω)ξ1(ν)

×

(∫
∥u∥max≤2m+2ma+T

e−i(ω
′u−ν′u)ên(ω)η(ν)du

)
dωdν.
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Using Bessel’s inequality, we have
n∑
k=1

∣∣ν∗∗k,n∣∣ ≤ (2π)−d
n∑
k=1

∫
∥u∥max≤2m+2ma+T

∣∣∣∣∫
Rd

e−iω
′uψk(ω)ξ1(ω)ên(ω)dω

∣∣∣∣
×
∣∣∣∣∫

Rd

eiν
′uψk(ν)ξ1(ν)η(ν)dν

∣∣∣∣du
≤ 1

2(2π)d

∫
∥u∥max≤2m+2ma+T

n∑
k=1

{∣∣∣∣∣
∫
Rd

e−iω
′uψk(ω)

ξ1(ω)

f
1/2
σ0,θ0

(ω)
ên(ω)

× f
1/2
σ0,θ0

(ω)dω

∣∣∣∣∣
2

+

∣∣∣∣∣
∫
Rd

eiν
′uψk(ν)

ξ1(ν)

f
1/2
σ0,θ0

(ν)
η(ν)f

1/2
σ0,θ0

(ν)dν

∣∣∣∣∣
2}
du

≤ 1

2(2π)d

∫
∥u∥max≤2m+2ma+T

∫
Rd

ξ21(ω)

fσ0,θ0(ω)
|ên(ω)|2dωdu

+
1

2(2π)d

∫
∥u∥max≤2m+2ma+T

∫
Rd

ξ21(ν)

fσ0,θ0(ν)
|η(ν)|2dνdu

≤ (2m+ 2ma + T )d

2πd

{
sup
s∈Rd

ξ21(s)

fσ0,θ0(s)

}∫
Rd

|ên(x)|2 + |η(x)|2dx,

(4.56)

and
n∑
k=1

∣∣ν∗k,n∣∣2 ≤ (2π)−d
{
sup
s∈Rd

ξ21(s)

fσ0,θ0(s)

}2 ∫
R2d

∣∣∣∣η∗n(ω + ν

2

)
κ

(
ω − ν

2

)∣∣∣∣2dωdν
= π−d

{
sup
s∈Rd

ξ21(s)

fσ0,θ0(s)

}2 ∫
Rd

|η∗n(ω)|2dω
∫
Rd

|κ(ν)|2dν.
(4.57)

From Eqs. (4.37) and (4.45), there exists constant C2 independent of n such that
n∑
k=1

∣∣ν∗∗k,n∣∣ ≤ C2

ϵa+dn

. (4.58)

Meanwhile, Combining Lemma 4.4 and Eq. (4.37), we observe that there exists constant C1

independent of n such that
n∑
k=1

∣∣ν∗k,n∣∣2 ≤ C1ϵ
β0
n . (4.59)

Moreover, Jensen’s inequality implies that
n∑
k=1

∣∣ν∗k,n∣∣ ≤
(
n

n∑
k=1

∣∣ν∗k,n∣∣2
)1/2

≤
√
C1nϵ

β0
n . (4.60)

So we conclude that
n∑
k=1

|λk,n − 1| ≤
n∑
k=1

(∣∣ν∗k,n∣∣+ ∣∣ν∗∗k,n∣∣)
≤
√
C1nϵ

β0
n +

C2

ϵa+dn

.

(4.61)
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Finally for any constant ϑ > 0, using Markov’s inequality, Lemma 4.2 and Eq. (4.61) we

obtain

P0

(
1√
n

∣∣∣X′
n

(
σ2
1Γ(n,θ1)

)−1
Xn −X′

n

(
σ2
0Γ(n,θ0)

)−1
Xn

∣∣∣ > ϑ

)
=P0

(
1√
n

∣∣∣∣∣
n∑
k=1

(
λ−1
k,n − 1

)
Y 2
k,n

∣∣∣∣∣ > ϑ

)

≤ 1

ϑ
√
n

n∑
k=1

∣∣λ−1
k,n − 1

∣∣
≤ 1

ϑ
√
n

{
max
1≤j≤n

λ−1
j,n

} n∑
k=1

|λk,n − 1|

≤ 1

Ciϑ
√
n

(√
C1nϵ

β0
n +

C2

ϵa+dn

)
=
C

1/2
1 ϵ

β0/2
n

Ciϑ
+

C2

Ciϑn1/2ϵa+dn

.

(4.62)

Choose ϵn such that ϵn → 0 and n1/2ϵa+dn → ∞ as n→ ∞. It follows from Eq. (4.62) that

σ2
0θ0√
n

(
X′
n

(
σ2
1Γ(n,θ1)

)−1
Xn −X′

n

(
σ2
0Γ(n,θ0)

)−1
Xn

)
P0−→ 0. (4.63)

This proves Theorem 4.2.

Lemma 4.5. Let ξ0 be as in Eq. (4.35). Then ξ0 : Rd → R is a continuous, isotropic and

strictly positive function and ξ0(ω) ≍ ∥ω∥−κ as ∥ω∥ → ∞.

Proof. We split the proof into two parts. When d = 1, we follow the proof of Lemma 5 in

Du, Zhang, and Mandrekar (2009). Notice that ξ0 is continuous and real symmetric since

c0 ∈ L1(R) and c0 is real symmetric. Meanwhile,

ξ0(ω) =

∫ 1

−1

e−iωx|x|κ−1dx = 2

∫ 1

0

cos(ωx)xκ−1dx. (4.64)

When ω > 0, let u = ωx. We have

ξ0(ω) = 2ω−κ
∫ ω

0

cos(u)uκ−1du. (4.65)

Notice that
∫∞
0

cos(u)uκ−1du = Γ(κ) cos
(
πκ
2

)
. So

ξ0(ω) ≍ |ω|−κ, as |ω| → ∞.
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As for the strict positiveness, first notice that ξ0(0) =
∫ 1

−1
|x|κ−1dx > 0. For any ω > 0, it

suffices to show

y(ω) =

∫ ω

0

cos(u)u−δdu > 0, (4.66)

where δ = 1 − κ ∈ [1/2, 1). Note that y′(ω) = cos(ω)ω−δ and y′′(ω) = − sin(ω)ω−δ −

δ cos(ω)ω−δ−1. Therefore, the minimum points over (0,∞) are {2kπ + 3π/2, k = 0, 1, · · · }.

We first claim y(3π/2) is the global minimum. Actually∫ 2(k+1)π+3π/2

2kπ+3π/2

cos(u)u−δdu

=

∫ 2kπ+5π/2

2kπ+3π/2

cos(u)u−δdu+

∫ 2(k+1)π+3π/2

2kπ+5π/2

cos(u)u−δdu

=

∫ 5π/2

3π/2

cos(s)(2kπ + s)−δds−
∫ 5π/2

3π/2

cos(s)(2kπ + π + s)−δdu > 0.

(4.67)

And

y(3π/2) =

∫ π/4

0

cos(u)u−δdu+

∫ π/2

π/4

cos(u)u−δdu

+

∫ π

π/2

cos(u)u−δdu+

∫ 3π/2

π

cos(u)u−δdu

≥ cos(π/4)
(π/4)1−δ

1− δ
+

1

(π/2)δ

(
1−

√
2

2

)
− 1

(π/2)δ
− 1

πδ

≥
√
2

2

√
π +

2

π

(
1−

√
2

2

)
−
√

2

π
− 1√

π
> 0.

(4.68)

This completes the strict positiveness.

When d ≥ 2, we follow the proof of Lemma 2 in the Supplement of Bevilacqua et al.

(2019). Obviously, ξ0(0) > 0. Let Ud be the uniform probability measure on Sd−1 = {u ∈
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Rd : ∥u∥ = 1}. By isotropy, we have for all ω ∈ Rd \ {0},

ξ0(ω) =

∫
Sd−1

∫
∥x∥≤1

e−i∥ω∥x′u∥x∥κ−ddxUd(du)

=

∫
∥x∥≤1

Γ(d/2)

(
2

∥ω∥∥x∥

)(d−2)/2

J(d−2)/2(∥ω∥∥x∥)∥x∥κ−ddx

= (2π)d/2∥ω∥
2−d
2

∫ 1

0

rκ−
d
2J(d−2)/2(∥ω∥r)dr

= (2π)d/2∥ω∥−κ
∫ ∥ω∥

0

rκ−
d
2J(d−2)/2(r)dr

= 2κ−1πd/2Γ(d/2)−1
1F2(κ/2;κ/2 + 1, d/2;−(∥ω∥/2)2),

(4.69)

where J(d−2)/2 is the Bessel function of the first kind, and the generalized hypergeometric

function 1F2 is defined as

1F2(a; b, c; z) =
∞∑
k=0

(a)kz
k

(b)k(c)kk!
, (4.70)

with (q)k = Γ(q + k)/Γ(q) for k ∈ N ∪ {0}. See M. L. Stein (1999a, p.43) for the first and

second equation in Eq. (4.69); the third equation is derived by the spherical coordinates

transform; and see Prudnikov, Brychkov, and Marichev (1986, 1.8.1.1, p.37) for the last

equation. From Theorem 2 in Fields and Ismail (1975), we get that ξ0 > 0 for d ≥ 2. Then

ξ0 is a continuous, isotropic and strictly positive on Rd.

Next, we prove the integral
∫∞
0
rκ−

d
2J(d−2)/2(r)dr exists. Based on the series expansion

(see, e.g., Abramowitz and Stegun 1968, p. 9.1.10)

Jν(x) =
(x
2

)ν ∞∑
k=0

(
−1

4
x2
)k

k!Γ(ν + k + 1)
,

we have

J(d−2)/2(r) = O(r(d−2)/2),

as r → 0. So the integrand is integrable around the origin. Meanwhile, Based on the

asymptotic expansion (see, e.g., Abramowitz and Stegun 1968, p. 9.2.1)

Jν(x) =
√

2/(πx)

{
cos

(
x− 1

2
νπ − 1

4
π

)
+O(|x|−1)

}
, as |x| → ∞,

we have

J(d−2)/2(r) = O(r−1/2),
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as r → ∞. So the integrand is integrable around the infinity. Overall,
∫∞
0
rκ−

d
2J(d−2)/2(r)dr

exists. Therefore, ξ0(ω) ≍ ∥ω∥−κ as ∥ω∥ → ∞. This completes the proof.

4.4 Simulations

In this section, we investigate the finite sample performance of the estimator σ̂2
nθ1 of σ2

0θ0.

We simulate, using the R package RandomFields developed by Schlather et al. (2017), and

then we estimate with 1000 realizations from a zero mean Gaussian field with the covariance

function Eq. (4.1) where

• σ0 = 1 and θ1 = 1 are fixed.

• θ0 = 2, 5 or 10.

• For d = 2 and α = 1.2, we generated X(t) on a regular grid of [0, 1]2 with sample size

n = 50m, that is, {
X

(
i1
40
,
i2
50

)
: 1 ≤ i1 ≤ m, 1 ≤ i2 ≤ 50

}
,

where m = 20, 30 or 40.

• For d = 3 and α = 1.8, we generated X(t) on a regular grid of [0, 1]3 with sample size

n = 100m, that is,{
X

(
i1
20
,
i2
10
,
i3
10

)
: 1 ≤ i1 ≤ m, 1 ≤ i2, i3 ≤ 10

}
,

where m = 10, 15 or 20.

Tables 4.1 and 4.2 summarize the percentiles of order 0.05, 0.25, 0.5, 0.75, 0.95, bias and

sample standard deviation (SD) of σ̂2
nθ1. Fig. 4.1 shows histograms of

√
n/2(σ̂2

nθ1/(σ
2
0θ0)− 1)

when d = 2 and n = 2000.

Remark 4.2. As we see from Tables 4.1 and 4.2, the estimator σ̂2
nθ1 has a larger bias when

the fixed scale parameter θ1 is further away from the true parameter θ0. This phenomenon

not only occurs under the powered exponential model but also other models. See, for example,
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Table S-1 in the supplement of Kaufman and Shaby (2013) for the Matérn model and Table

2 in Bevilacqua et al. (2019) for the generalized Wendland model.

θ0 n 5% 25% 50% 75% 95% Bias SD
2 1000 1.853 1.939 2.006 2.067 2.157 0.004 0.093

1500 1.887 1.953 2.007 2.056 2.126 0.006 0.073
2000 1.903 1.961 2.007 2.049 2.112 0.006 0.065

5 1000 4.677 4.891 5.056 5.216 5.458 0.058 0.237
1500 4.761 4.928 5.056 5.176 5.368 0.055 0.184
2000 4.797 4.948 5.056 5.159 5.320 0.054 0.156

10 1000 9.533 9.924 10.243 10.541 10.983 0.240 0.448
1500 9.635 9.978 10.245 10.481 10.850 0.239 0.372
2000 9.718 10.009 10.236 10.457 10.795 0.240 0.324

Table 4.1 Percentiles, Bias, and SD of σ̂2
nθ1 when d = 2

θ0 n 5% 25% 50% 75% 95% Bias SD
2 1000 1.933 2.017 2.085 2.147 2.250 0.085 0.096

1500 1.956 2.027 2.075 2.133 2.217 0.079 0.079
2000 1.965 2.026 2.076 2.122 2.191 0.076 0.070

5 1000 5.453 5.738 5.925 6.120 6.392 0.927 0.286
1500 5.506 5.708 5.875 6.028 6.246 0.873 0.231
2000 5.506 5.718 5.857 5.991 6.166 0.852 0.196

10 1000 13.152 13.817 14.297 14.788 15.498 4.315 0.715
1500 13.233 13.736 14.118 14.501 15.083 4.138 0.566
2000 13.298 13.727 14.039 14.369 14.875 4.055 0.483

Table 4.2 Percentiles, Bias, and SD of σ̂2
nθ1 when d = 3
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Figure 4.1 Histograms of
√
n/2(σ̂2

nθ1/(σ
2
0θ0)− 1) with α = 1.2 when d = 2 and n = 2000.

The parameter θ0 is 2, 5 and 10 from left to right. The red curve is the density of N(0, 1).
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