By Nian Liu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Statisticsโ€”Doctor of Philosophy 2024 PARAMETER ESTIMATION FOR UNIVARIATE AND BIVARIATE GAUSSIAN PROCESSES AND FIELDS ABSTRACT Gaussian random fields are widely studied in various subject areas. This dissertation focuses on estimating covariance parameters of stationary Gaussian random fields based on both regularly and irregularly spaced sampling points, as well as investigating the infill asymptotic properties of the estimators. We first consider a bivariate Gaussian random process and propose an increment-based estimator for the smoothness parameter in the cross-covariance function, for which the strong consistency and asymptotic normality hold under the infill asymptotic framework. We further study the joint asymptotic distribution of estimators for smoothness parameters in the cross-covariance and autocovariance functions. Subsequently, we estimate the scale parameter and range parameters of a univariate anisotropic Ornstein-Uhlenbeck field based on quadratic forms of vectors of observations. The estimators we propose are computationally more efficient than the maximum likelihood estimators but have similar infill asymptotic performances with MLEs. Another computational complexity reduction method we use is the Vecchia approximation. We estimate the scale parameter in the Matรฉrn covariance function using the maximizer of the likelihood approximated by the standard Vecchia approach. We study the bias resulting from a misspecified range parameter and the conditioning variables of the Vecchia approximation. The theoretical results in this work are illustrated by simulations. Copyright by NIAN LIU 2024 ACKNOWLEDGEMENTS The research in this dissertation was partially supported by the NSF grant DMS-2153846. I would like to express my genuine gratitude to my advisor, Dr. Yimin Xiao, for his support, encouragement, and guidance in my research and career development. I would also like to express my appreciation to Dr. Andrew Finley, Dr. Shlomo Levental, Dr. Haolei Weng, and Dr. Dongsheng Wu for serving on my guidance committee and providing me with valuable suggestions. In addition, I appreciate the faculty and staff in the Department of Statistics and Probability for their help during my PhD program. I would also like to thank my family and friends for their care and support. I am more than fortunate to be surrounded by such warm and kind people. iv TABLE OF CONTENTS CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 ESTIMATION OF SMOOTHNESS PARAMETERS . . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Estimating the Cross Smoothness Parameter . . . . . . . . . . . . . . . . . . . 6 2.3 Irregular Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CHAPTER 3 ANISOTROPIC ORNSTEIN-UHLENBECK FIELD . . . . . . . . . . . 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Product Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Separable Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 CHAPTER 4 VECCHIA APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Maximum Likelihood Estimator for ๐œŽ2 . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 APPENDIX A QUADRATIC VARIATIONS FROM IRREGULAR SAMPLING . . . . 76 APPENDIX B HIGH EXCURSION PROBABILITY . . . . . . . . . . . . . . . . . . 84 APPENDIX C STOCHASTIC PARTIAL DIFFERENTIAL EQUATION . . . . . . . . 86 v CHAPTER 1 INTRODUCTION Gaussian random fields (GRFs) are essential tools in spatial statistics, physics, finance, image processing, and other various areas. A random field, as a generalization of a stochastic process, is a collection of random variables indexed by elements in a topological space, which could be taken as R๐‘‘ (๐‘‘ โ‰ฅ 1). This work focuses on estimating covariance parameters of stationary GRFs and investigating infill asymptotic properties of the estimators. The covariance function of a univariate stationary isotropic GRF {๐‘‹(t), t โˆˆ R๐‘‘ } considered by Anderes and Stein (2008) and Loh (2015) is written as Cov(๐‘‹(s), ๐‘‹(t + s)) = ร•โŒŠ๐œˆโŒ‹ ๐‘˜=0 ๐›ฝ๐‘˜ ||t||2๐‘˜ + ๐›ฝโˆ— ๐œˆ๐บ๐œˆ (||t||) + ๐‘‚(||t||2๐œˆ+๐œ) as ||t|| โ†’ 0, โˆ€s, t โˆˆ R๐‘‘, (1.1) where || ยท || denotes the Euclidean distance, ๐›ฝ0 > 0, ๐›ฝโˆ— ๐œˆ โ‰  0, and ๐œ > 0 are constants, โŒŠ๐œˆโŒ‹ = max{๐œˆ0 โˆˆ Z : ๐œˆ0 < ๐œˆ}, and ๐บ๐œˆ : [0, โˆž) โ†ฆโ†’ R is defined by ๐บ๐œˆ (๐‘ฅ) = 8>>>> < >>>>: ๐‘ฅ2๐œˆ + ๐‘ฅ2๐œˆ (log ๐‘ฅ โˆ’ 1)1Z(๐œˆ), ๐‘ฅ > 0, 0, ๐‘ฅ = 0. This model includes the Matรฉrn and exponential classes of covariance functions, which are widely used in spatial interpolation (Stein, 1999; Gramacy, 2020). The isotropic exponential class covariance function is defined as ๐œŽ2 exp  โˆ’๐œƒ||๐‘ ||2๐œˆ  , s โˆˆ R๐‘‘, (1.2) where ๐œŽ2 > 0, ๐œƒ > 0, 0 < ๐œˆ โ‰ค 1. The case when 0 < ๐œˆ < 1 is contained in model (1.1) with ๐›ฝ0 = ๐œŽ2. When ๐œˆ = 1/2, the function (1.2) is called the Ornstein-Uhlenbeck covariance function, which is also a special case of the Matรฉrn class of covariance functions. The Matรฉrn covariance model (๐œƒ||t||)๐œˆ๐พ๐œˆ (๐œƒ||t||), t โˆˆ R๐‘‘, (1.3) where ๐พ๐œˆ is the modified Bessel function of the second kind with order ๐œˆ, was proposed by von Kรกrmรกn (1948) with ๐œˆ = 1/3 and ๐‘‘ = 3. Some properties of the Matรฉrn model were demonstrated in 1 Matรฉrn (1986), Kent (1989), and Stein (1999). The stochastic partial differential equation (SPDE) that generates a Gaussian process on R๐‘‘ with the Matรฉrn covariance function is presented in Whittle (1954) and Whittle (1963) as  โˆ‡2 โˆ’ ๐œƒ2  ๐‘ ๐œ‰ (x) = ๐œ– (x), x โˆˆ R๐‘‘, (1.4) where โˆ‡2 is the Laplace operator, ๐œƒ > 0 and ๐‘ > ๐‘‘/4 are constants, ๐œ– is the Gaussian white noise with unit variance. The covariance function of ๐œ‰ as a solution to (1.4) is ๐ธ(๐œ‰ (s)๐œ‰ (t + s)) = (||t||/๐œƒ)2๐‘โˆ’๐‘‘/2๐พ2๐‘โˆ’๐‘‘/2 (๐œƒ||t||) 22๐‘โˆ’1ฮ“(2๐‘) , t, s โˆˆ R๐‘‘ . (1.5) A more general class of stationary GRFs on R2 derived from second-order SPDEs was discussed by Heine (1955). Later, Vecchia (1985) introduced the derivation of covariance functions from spectral densities of stationary GRFs on R2, and showed the corresponding SPDEs. One generalization of model (1.3) is the spatio-temporal covariance function (Cressie and Huang, 1999; Gneiting, 2002; De Iaco et al., 2002; Ma, 2005, 2008). Jones and Zhang (1997) considered the spatio-temporal random field defined by the SPDE ร•๐‘‘ ๐‘–=1 ๐œ•2 ๐œ•๐‘ 2 ๐‘– ! ๐‘ โˆ’ ๐‘ ๐œ• ๐œ•๐‘ก ! ๐‘(s; ๐‘ก) = ๐œ– (s; ๐‘ก), s = (๐‘ 1, ๐‘ 2, . . . , ๐‘ ๐‘‘)โ€ฒ โˆˆ R๐‘‘, ๐‘ก โˆˆ R, where ๐‘ > ๐‘‘/2 and ๐‘ > 0 are constants, ๐œ– (๐‘ ; ๐‘ก) is the Gaussian white noise. For the multivariate GRF {๐‘‹(t), t โˆˆ R๐‘‘ }, where ๐‘‹ โˆˆ R๐‘ and ๐‘ โ‰ฅ 1, Gneiting et al. (2010) introduced a multivariate Matรฉrn model, where the marginal and cross-covariance functions of a multivariate spatial random field are all of the Matรฉrn type. Hu et al. (2013) introduced an approach to construct multivariate Gaussian random fields (GRFs) using systems of SPDEs. Based on systems of SPDEs with additive type G noise whose marginal covariance functions are of Matรฉrn type, Bolin and Wallin (2020) formulated a new class of multivariate non-Gaussian models. SPDE models for GRFs are also researched by Hu and Steinsland (2016), Leonenko et al. (2011), Carrizo Vergara (2018), and Lindgren et al. (2011, 2022). The Matรฉrn and exponential classes of covariance functions both have mainly three types of parameters: the scale parameter ๐œŽ2, which equals the variance of ๐‘‹(t) at any t โˆˆ R๐‘‘; the range 2 parameter ๐œƒ, which measures how fast the correlation decays with the distance; and the smoothness parameter ๐œˆ, which controls the smoothness such as mean square differentiability of the random field. More specifically, ๐‘‹ is ๐‘› times mean square differentiable if and only if ๐‘› < ๐œˆ (Stein, 1999; Anderes and Stein, 2008). The increasing-domain asymptotics and infill (fixed-domain) asymptotics are two frameworks under which the covariance parameter estimations for GRFs have been studied (Cressie, 1993; Stein, 1999). Under the increasing-domain asymptotic framework, the minimum distance between sampling locations is bounded away from zero, and the sampling region grows as the sample size ๐‘ increases. Under infill asymptotics, the sampling region is fixed and bounded, and the mesh of the sampling points decreases as the sample size ๐‘ tends to infinity. Besides, there is another asymptotic framework called hybrid asymptotics or mixed domain asymptotics, under which the sampling locations increasingly densely fill in any given subregion of the unbounded sampling region (Stein, 1999; Lahiri, 2003; Lahiri and Mukherjee, 2004; Chang et al., 2017). This work focuses on the infill asymptotic framework, which plays an important role in spatial sampling design and kriging (Stein, 1999; Zhu and Zhang, 2006). Assuming the smoothness parameter ๐œˆ is known, Zhang (2004), Du et al. (2009), Wang and Loh (2011), and Kaufman and Shaby (2013) provided infill asymptotic results for the MLE and tapered MLE of the microergodic parameter of the GRF with the Matรฉrn covariance function; while Bevilacqua et al. (2019) studied infill asymptotics for MLE of the microergodic parameter in the generalized Wendland covariance function, which exhibits the same behavior as of the Matรฉrn function at the origin according to Gneiting (2002). Using quadratic variations defined based on irregularly spaced sampling designs (more details described in Appendices A.2-A.3), Loh et al. (2021) also estimated the microergodic parameter of the Matรฉrn covariance function under the infill asymptotic framework. The estimation of the smoothness parameter has also been widely studied. Regarding the fractal dimension, which is a measure of the smoothness of sample paths of a stochastic process, existing approaches of estimation include the box-counting method (Hall and Wood, 1993), variogram estimator (Constantine and Hall, 1994), periodogram-based estimator (Chan et al., 1995), variation 3 method (Dubuc et al., 1989), etc. The infill asymptotic behavior of increment-based estimators for the smoothness parameter of a stationary GRF was studied by Kent and Wood (1997), Chan and Wood (2000), Loh (2015), and Loh et al. (2021). For time series or spatial data, Gneiting et al. (2012) discussed various types of estimators of its fractal dimension under the infill asymptotic framework, considering both stationary and nonstationary univariate GRF models. Zhou and Xiao (2018) studied the joint infill asymptotic properties of increment-based estimators for smoothness parameters in the autocovariance functions of two coordinates of {๐‘‹(๐‘ก) = (๐‘‹1(๐‘ก), ๐‘‹2 (๐‘ก))๐‘‡ , ๐‘ก โˆˆ R}, which extended the work of Kent and Wood (1997) to the bivariate case. The subsequential chapters are organized as follows. In Chapter 2, we consider the bivariate model {๐‘‹(๐‘ก) = (๐‘‹1(๐‘ก), ๐‘‹2(๐‘ก))๐‘‡ , ๐‘ก โˆˆ R} studied by Zhou and Xiao (2018) and propose an incrementbased estimator for the smoothness parameter in the cross-covariance function of ๐‘‹(๐‘ก), based on both regularly and irregularly spaced sampling points. The strong consistency and asymptotic normality of the estimator are demonstrated under the infill asymptotic framework. In Chapter 3, we estimate the scale parameter and range parameters of a univariate anisotropic Ornstein-Uhlenbeck field on R2. The estimators we propose have similar asymptotic behaviors with MLEs, but with less computational cost. In Chapter 4, we estimate the scale parameter in the Matรฉrn covariance function using MLE, whose computational complexity is reduced by the Vecchia approximation. We study the bias resulting from a misspecified range parameter and the conditioning variables of the Vecchia approximation. Simulation results are presented in each chapter to illustrate the theoretical results. 4 CHAPTER 2 ESTIMATION OF SMOOTHNESS PARAMETERS 2.1 Introduction Based on the infill asymptotic behaviors of quadratic variations (Lรฉvy, 1940; Baxter, 1956; Grenander, 1981), the increment-based methods have been used by several authors to consistently estimate the smoothness parameter of a univariate stationary Gaussian random field under the infill asymptotic framework (Istas and Lang, 1997; Kent and Wood, 1997; Chan and Wood, 2000; Loh, 2015; Loh et al., 2021). Consider a Gaussian process ๐‘‹ observed on 0 = ๐‘ก0 < ๐‘ก1 < ยท ยท ยท < ๐‘ก๐‘› = 1, Istas and Lang (1997) and Kent and Wood (1997) independently generalized the quadratic variation defined as ร๐‘›๐‘— =1 (๐‘‹(๐‘ก ๐‘— ) โˆ’ ๐‘‹(๐‘ก ๐‘—โˆ’1)2 using vectors of increment. The empirical mean of squared process defined by Kent and Wood (1997) is equivalent to the empirical quadratic variation studied by Istas and Lang (1997). An increment of order ๐‘ is vector ๐‘Ž = (๐‘Žโˆ’๐ฝ , ๐‘Ž1โˆ’๐ฝ , . . . , ๐‘Ž๐ฝ )๐‘‡ โˆˆ R2๐ฝ+1 (๐ฝ > 0) satisfying ร•๐ฝ ๐‘—=โˆ’๐ฝ ๐‘— ๐‘ž๐‘Ž ๐‘— 8>>>> < >>>>: = 0, 0 โ‰ค ๐‘ž โ‰ค ๐‘, โ‰  0, ๐‘ž = ๐‘ + 1. The increment-based estimators could also be used for estimating the fractal dimension of nonstationary GRFs (Zhu and Stein, 2002; Begyn, 2005; Kubilius and Melichov, 2010). Denote by ๐‘‹ = {(๐‘‹1 (๐‘ก), ๐‘‹2(๐‘ก))๐‘‡ , ๐‘ก โˆˆ R} a bivariate stationary Gaussian process with zero mean and covariance function ๐ถ(๐‘ก) = ยฉยญยญ ยซ ๐ถ11 (๐‘ก) ๐ถ12 (๐‘ก) ๐ถ21 (๐‘ก) ๐ถ22 (๐‘ก) ยชยฎยฎ ยฌ . (2.1) Assume that as |๐‘ก | โ†’ 0, ๐ถ๐‘–๐‘– (๐‘ก) = ๐œŽ2 ๐‘– โˆ’ ๐‘๐‘–๐‘– |๐‘ก |๐›ผ๐‘–๐‘– + ๐‘œ(|๐‘ก |๐›ผ๐‘–๐‘– ), (2.2) ๐ถ๐‘– ๐‘— (๐‘ก) = ๐œŒ๐œŽ1๐œŽ2 (1 โˆ’ ๐‘12|๐‘ก |๐›ผ12 + ๐‘œ(|๐‘ก |๐›ผ12 )), (2.3) where ๐œŽ๐‘– , ๐‘๐‘–๐‘– , ๐‘๐‘– ๐‘— > 0, ๐›ผ๐‘–๐‘– โˆˆ (0, 2), |๐œŒ| โˆˆ (0, 1), ๐‘–, ๐‘— โˆˆ {1, 2}, ๐‘– โ‰  ๐‘— . Following the framework of Gneiting et al. (2010), Zhou and Xiao (2018) imposed the following assumptions to make the 5 covariance function (2.1) valid: ๐›ผ12 > (๐›ผ11 + ๐›ผ22)/2 or ๐›ผ12 = (๐›ผ11 + ๐›ผ22)/2 and ๐‘2 12๐œŒ2๐œŽ2 1๐œŽ2 2 < ๐‘11๐‘22. 2.2 Estimating the Cross Smoothness Parameter Consider the Gaussian process ๐‘‹ modeled by (2.1-2.3). When ๐›ผ12 = (๐›ผ11 + ๐›ผ22)/2, the cross smoothness parameter ๐›ผ12 could be estimated using estimators for ๐›ผ11 and ๐›ผ22. This case can be treated by using the results in Zhou and Xiao (2018). In the following, we focus on the case when ๐›ผ12 > (๐›ผ11 + ๐›ผ22)/2 and construct an increment-based estimator for ๐›ผ12. The regularity conditions below are introduced for the convenience of subsequent analysis. Consider the condition (๐ด๐‘ž) in Kent and Wood (1997) for the ๐‘žth derivative of covariance function ๐ถ๐‘– ๐‘— , that is, ๐ถ (๐‘ž) ๐‘– ๐‘— (๐‘ก) = โˆ’๐ด๐‘– ๐‘— ๐›ผ๐‘– ๐‘— ! ๐‘ž! |๐‘ก |๐›ผ๐‘– ๐‘—โˆ’๐‘ž + ๐‘œ(|๐‘ก |๐›ผ๐‘– ๐‘—โˆ’๐‘ž) (2.4) as |๐‘ก | โ†’ 0, where ๐‘ž โ‰ฅ 1, ๐‘–, ๐‘— โˆˆ {1, 2}, ๐ด๐‘–๐‘– = ๐‘๐‘–๐‘– , ๐ด12 = ๐ด21 = ๐œŒ๐œŽ1๐œŽ2๐‘12, and ๐›ผ๐‘– ๐‘— !/๐‘ž! = ๐›ผ๐‘– ๐‘— (๐›ผ๐‘– ๐‘— โˆ’ 1) . . . (๐›ผ๐‘– ๐‘— โˆ’ ๐‘ž + 1). Under the infill asymptotics framework, Section 2.2.1 discusses the covariation of ๐‘‹, and Section 2.2.2 further studies asymptotic properties of the increment-based estimator for ๐›ผ12. Some simulation results are presented in Section 2.2.3. 2.2.1 Covariation Let ๐‘Ž = (๐‘Žโˆ’๐ฝ , ๐‘Ž1โˆ’๐ฝ , . . . , ๐‘Ž๐ฝ )๐‘‡ be an increment of order ๐‘. Denote by ๐‘‹๐‘ข ๐‘›,๐‘– โˆˆ R๐‘›(2๐ฝ+1) the vector of observations of component ๐‘‹๐‘– , where ๐‘– = 1, 2, ๐‘ข = 1, 2, . . . , ๐‘š and ๐‘› โˆˆ Z+. For ๐‘— = 1, 2, . . . , 2๐ฝ + 1 and ๐‘˜ = 1, 2, . . . , ๐‘›, let (๐‘‹๐‘ข ๐‘›,๐‘– ) ๐‘—+(๐‘˜โˆ’1) (2๐ฝ+1) = ๐‘‹๐‘–  ๐‘˜ + ๐‘ข( ๐‘— โˆ’ ๐ฝ โˆ’ 1) ๐‘›  . In other words, for ๐‘˜ = 1, 2, . . . , ๐‘›(2๐ฝ + 1), (๐‘‹๐‘ข ๐‘›,๐‘– )๐‘˜ = ๐‘‹๐‘–  ๐‘˜๐ฝ + 1 + ๐‘ข(๐‘˜ โˆ’ ๐‘˜๐ฝ (2๐ฝ + 1) โˆ’ ๐ฝ โˆ’ 1) ๐‘›  , 6 where ๐‘˜๐ฝ = max{ ๐‘— โˆˆ Z : ๐‘— < ๐‘˜/(2๐ฝ + 1)}. Define ๐‘Œ๐‘ข ๐‘› := ยฉยญยญ ยซ ๐‘Œ๐‘ข ๐‘›,1 ๐‘Œ๐‘ข ๐‘›,2 ยชยฎยฎ ยฌ = ยฉยญยญ ยซ ๐‘›๐›ผ11/2(๐ผ๐‘› โŠ— ๐‘Ž๐‘‡ ) 0 0 ๐‘›๐›ผ22/2 (๐ผ๐‘› โŠ— ๐‘Ž๐‘‡ ) ยชยฎยฎ ยฌ ยฉยญยญ ยซ ๐‘‹๐‘ข ๐‘›,1 ๐‘‹๐‘ข ๐‘›,2 ยชยฎยฎ ยฌ , where โŠ— denotes the Kronecker product. More specifically, for ๐‘˜ = 1, . . . , ๐‘›, (๐‘Œ๐‘ข ๐‘›,๐‘– )๐‘˜ = ๐‘›๐›ผ๐‘–๐‘–/2 2ร•๐ฝ+1 ๐‘—=1 ๐‘Ž ๐‘—โˆ’๐ฝโˆ’1 (๐‘‹๐‘ข ๐‘›,๐‘– ) ๐‘—+(๐‘˜โˆ’1) (2๐ฝ+1) . Denote by ๐‘๐‘ข ๐‘›,12 (๐‘˜) = ๐‘›๐›ผ12โˆ’(๐›ผ11+๐›ผ22)/2 (๐‘Œ๐‘ข ๐‘›,1 )๐‘˜ (๐‘Œ๐‘ข ๐‘›,2 )๐‘˜ , ๐‘˜ = 1, . . . , ๐‘› and define the covariation as ยฏ๐‘ ๐‘ข ๐‘›,12 = 1 ๐‘› ร•๐‘› ๐‘—=1 ๐‘๐‘ข ๐‘›,12 ( ๐‘— ) = 1 2๐‘›๐›ผ12โˆ’(๐›ผ11+๐›ผ22)/2โˆ’1(๐‘Œ๐‘ข ๐‘› )๐‘‡ ยฉยญยญ ยซ 0 ๐ผ๐‘› ๐ผ๐‘› 0 ยชยฎยฎ ยฌ ๐‘Œ๐‘ข ๐‘› . (2.5) We first discuss the infill asymptotic properties of covariations ยฏ ๐‘ ๐‘ข ๐‘›,12, based on which the estimator for ๐›ผ12 will be constructed (see (2.27) below). Theorem 1. Assume (2.4) holds for ๐‘ž = 2๐‘ + 3 and ๐‘–, ๐‘— โˆˆ {1, 2}, then โˆ€๐‘ข = 1, . . . , ๐‘š, ยฏ๐‘ ๐‘ข ๐‘›,12 ๐‘ƒ โ†’ ๐ด๐‘ข๐›ผ12 as ๐‘› โ†’ โˆž if ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < ๐›ผ11 + ๐›ผ22 + 1 < 4๐‘ + 4 or 4๐‘ + 3 < ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < 4๐‘ + 4, where ๐ด = โˆ’๐œŒ๐œŽ1๐œŽ2๐‘12 ร๐ฝ ๐‘˜,๐‘™=โˆ’๐ฝ ๐‘Ž๐‘˜๐‘Ž๐‘™ |๐‘˜ โˆ’ ๐‘™ |๐›ผ12 . 7 Proof. Based on (2.2) and (2.3), for any ๐‘— , ๐‘˜ = 1, . . . , ๐‘› and any ๐‘ข, ๐‘ฃ = 1, . . . , ๐‘š, ๐œŽ๐‘ข๐‘ฃ ๐‘›,๐‘–๐‘Ÿ (๐‘˜ โˆ’ ๐‘— ) := ๐ธ[(๐‘Œ๐‘ข ๐‘›,๐‘– ) ๐‘— (๐‘Œ๐‘ฃ ๐‘›,๐‘Ÿ )๐‘˜ ] = ๐‘›(๐›ผ๐‘–๐‘–+๐›ผ๐‘Ÿ๐‘Ÿ )/2 ร•๐ฝ ๐‘ ,๐‘ก=โˆ’๐ฝ ๐‘Ž๐‘ ๐‘Ž๐‘ก๐ธ  ๐‘‹๐‘–  ๐‘— + ๐‘ ๐‘ข ๐‘›  ๐‘‹๐‘Ÿ  ๐‘˜ + ๐‘ก๐‘ข ๐‘›  = ๐‘›(๐›ผ๐‘–๐‘–+๐›ผ๐‘Ÿ๐‘Ÿ )/2 ร• ๐‘ ,๐‘ก ๐‘Ž๐‘ ๐‘Ž๐‘ก๐ถ๐‘–๐‘Ÿ  ๐‘— โˆ’ ๐‘˜ + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ ๐‘›  = โˆ’๐ด๐‘–๐‘Ÿ๐‘›(๐›ผ๐‘–๐‘–+๐›ผ๐‘Ÿ๐‘Ÿ )/2โˆ’๐›ผ๐‘–๐‘Ÿ ร• ๐‘ ,๐‘ก ๐‘Ž๐‘ ๐‘Ž๐‘ก | ๐‘— โˆ’ ๐‘˜ + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ|๐›ผ๐‘–๐‘Ÿ + ๐‘œ(๐‘›(๐›ผ๐‘–๐‘–+๐›ผ๐‘Ÿ๐‘Ÿ )/2โˆ’๐›ผ๐‘–๐‘Ÿ ) โ†’ 8>>>> < >>>>: โˆ’๐ด๐‘–๐‘– ร ๐‘ ,๐‘ก ๐‘Ž๐‘ ๐‘Ž๐‘ก | ๐‘— โˆ’ ๐‘˜ + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ|๐›ผ๐‘–๐‘– , ๐‘– = ๐‘Ÿ 0, ๐‘– โ‰  ๐‘Ÿ (2.6) as ๐‘› โ†’ โˆž, where ๐‘–, ๐‘Ÿ โˆˆ {1, 2}. Thus, ๐ธ[๐‘๐‘ข ๐‘›,12 ( ๐‘— )] = ๐‘›๐›ผ12โˆ’(๐›ผ11+๐›ผ22)/2๐ธ[(๐‘Œ๐‘ข ๐‘›,1 ) ๐‘— (๐‘Œ๐‘ข ๐‘›,2 ) ๐‘— ] = โˆ’๐œŒ๐œŽ1๐œŽ2๐‘12 ร• ๐‘˜,๐‘™ ๐‘Ž๐‘˜๐‘Ž๐‘™ |๐‘˜ โˆ’ ๐‘™ |๐›ผ12๐‘ข๐›ผ12 + ๐‘œ(1) โ†’ ๐ด๐‘ข๐›ผ12 as ๐‘› โ†’ โˆž, (2.7) where ๐ด = 0 if ๐›ผ12/2 โˆˆ Z and ๐‘ โ‰ฅ ๐›ผ12/2, due to the fact that ร ๐‘˜,๐‘™ ๐‘Ž๐‘˜๐‘Ž๐‘™ (๐‘˜ โˆ’ ๐‘™)๐‘Ÿ = 0 for ๐‘Ÿ โ‰ค 2๐‘ + 1. If (2.4) holds for ๐‘ž = 2๐‘ + 3, then โˆ€โˆ’ ๐‘› < โ„Ž < ๐‘›, there exists โ„Žโˆ— between โ„Ž and โ„Ž + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ such that ร• ๐‘ ,๐‘ก ๐‘Ž๐‘ ๐‘Ž๐‘ก๐ถ๐‘–๐‘Ÿ  โ„Ž + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ ๐‘›  = 2(๐‘ข๐‘ฃ) ๐‘+1 (2๐‘ + 2)!๐‘›2๐‘+2  ๐ท21 ๐ถ (2๐‘+2) ๐‘–๐‘Ÿ  โ„Ž ๐‘›  + ๐‘ข + ๐‘ฃ ๐‘›(2๐‘ + 3) ๐ท1๐ท2๐ถ (2๐‘+3) ๐‘–๐‘Ÿ  โ„Žโˆ— ๐‘›  , (2.8) where ๐‘–, ๐‘Ÿ โˆˆ {1, 2}, ๐ท1 = ร ๐‘  ๐‘Ž๐‘ ๐‘ ๐‘+1, ๐ท2 = ร ๐‘  ๐‘Ž๐‘ ๐‘ ๐‘+2. As a result, when ๐‘— โˆ’ ๐‘˜ = โ„Ž, ๐ถ๐‘œ๐‘ฃ(๐‘๐‘ข ๐‘›,12 ( ๐‘— ), ๐‘๐‘ฃ ๐‘›,12 (๐‘˜)) = ๐ธ[๐‘๐‘ข ๐‘›,12 ( ๐‘— )๐‘๐‘ฃ ๐‘›,12 (๐‘˜)] โˆ’ ๐ธ[๐‘๐‘ข ๐‘›,12 ( ๐‘— )]๐ธ[๐‘๐‘ฃ ๐‘›,12 (๐‘˜)] = ๐‘›2๐›ผ12โˆ’(๐›ผ11+๐›ผ22)  ๐ธ[(๐‘Œ๐‘ข ๐‘›,1 ) ๐‘— (๐‘Œ๐‘ฃ ๐‘›,1 )๐‘˜ ]๐ธ[(๐‘Œ๐‘ข ๐‘›,2 ) ๐‘— (๐‘Œ๐‘ฃ ๐‘›,2 )๐‘˜ ] +๐ธ[(๐‘Œ๐‘ข ๐‘›,1 ) ๐‘— (๐‘Œ๐‘ฃ ๐‘›,2 )๐‘˜ ]๐ธ[(๐‘Œ๐‘ฃ ๐‘›,1 )๐‘˜ (๐‘Œ๐‘ข ๐‘›,2 ) ๐‘— ]  = ๐‘›2๐›ผ12  2(๐‘ข๐‘ฃ) ๐‘+1๐ท1 (2๐‘ + 2)!๐‘›2๐‘+2 2 (๐น๐‘ข๐‘ฃ ๐‘›,12 (โ„Ž)2 + ๐น๐‘ข๐‘ฃ ๐‘›,11 (โ„Ž)๐น๐‘ข๐‘ฃ ๐‘›,22 (โ„Ž)), (2.9) where for ๐‘–, ๐‘Ÿ โˆˆ {1, 2}, ๐น๐‘ข๐‘ฃ ๐‘›,๐‘–๐‘Ÿ (โ„Ž) = ๐ท1๐ถ (2๐‘+2) ๐‘–๐‘Ÿ  โ„Ž ๐‘›  + ๐‘ข + ๐‘ฃ ๐‘›(2๐‘ + 3) ๐ท2๐ถ (2๐‘+3) ๐‘–๐‘Ÿ  โ„Žโˆ— ๐‘›  . 8 As โ„Ž/๐‘› โ†’ 0, ๐น๐‘ข๐‘ฃ ๐‘›,12 (โ„Ž)2 =  โ„Ž ๐‘› 2๐›ผ12โˆ’(4๐‘+4)  ๐ด12 ๐›ผ12! (2๐‘ + 2)! 2  ๐ท1๐ท2 ๐‘ข + ๐‘ฃ 2๐‘ + 3 2(๐›ผ12 โˆ’ 2๐‘ โˆ’ 2) |โ„Ž|โˆ’1 +๐ท21 + ๐ท22 (๐‘ข + ๐‘ฃ)2 (2๐‘ + 3)2 (๐›ผ12 โˆ’ 2๐‘ โˆ’ 2)2|โ„Ž|โˆ’2  (1 + ๐‘œ(1)) , ๐น๐‘ข๐‘ฃ ๐‘›,11 (โ„Ž)๐น๐‘ข๐‘ฃ ๐‘›,22 (โ„Ž) =  โ„Ž ๐‘› ๐›ผ11+๐›ผ22โˆ’(4๐‘+4) ๐ด11๐ด22 ๐›ผ11! (2๐‘ + 2)! ๐›ผ22! (2๐‘ + 2)!  ๐ท1๐ท2 ๐‘ข + ๐‘ฃ 2๐‘ + 3 (๐›ผ11 + ๐›ผ22 โˆ’ 4๐‘ โˆ’ 4) |โ„Ž|โˆ’1 + ๐ท21 + ๐ท22 (๐‘ข + ๐‘ฃ)2 (2๐‘ + 3)2 (๐›ผ11 โˆ’ 2๐‘ โˆ’ 2) (๐›ผ22 โˆ’2๐‘ โˆ’ 2) |โ„Ž|โˆ’2  (1 + ๐‘œ(1)) . It was shown in the proof of Theorem 1 in Kent and Wood (1997) that as ๐‘› โ†’ โˆž, ร•๐‘›โˆ’1 โ„Ž=โˆ’๐‘›+1  1 โˆ’ |โ„Ž| ๐‘›  |โ„Ž|๐‘Ž = 8>>>> < >>>>: ๐‘‚(1), if ๐‘Ž < โˆ’1; ๐‘‚(๐‘›๐‘Ž+1), if ๐‘Ž > โˆ’1. Hence, as ๐‘› โ†’ โˆž, ๐ถ๐‘œ๐‘ฃ(ยฏ ๐‘ ๐‘ข ๐‘›,12, ยฏ ๐‘ ๐‘ฃ ๐‘›,12 ) = 1 ๐‘› ร•๐‘›โˆ’1 โ„Ž=โˆ’๐‘›+1  1 โˆ’ |โ„Ž| ๐‘›  ๐ถ๐‘œ๐‘ฃ(๐‘๐‘ข ๐‘›,12 (0), ๐‘๐‘ฃ ๐‘›,12 (โ„Ž)) = ๐‘›2๐›ผ12โˆ’(4๐‘+4)โˆ’1  2(๐‘ข๐‘ฃ) ๐‘+1๐ท1 (2๐‘ + 2)! 2 ร•๐‘›โˆ’1 โ„Ž=โˆ’๐‘›+1  1 โˆ’ |โ„Ž| ๐‘›   ๐น๐‘ข๐‘ฃ ๐‘›,12 (โ„Ž)2 + ๐น๐‘ข๐‘ฃ ๐‘›,11 (โ„Ž)๐น๐‘ข๐‘ฃ ๐‘›,22 (โ„Ž)  = 8>>>> < >>>>: ๐‘‚(๐‘›2๐›ผ12โˆ’(๐›ผ11+๐›ผ22)โˆ’1), if ๐›ผ11 + ๐›ผ22 < 4๐‘ + 3; ๐‘‚(๐‘›2๐›ผ12โˆ’(4๐‘+4)), if ๐›ผ11 + ๐›ผ22 > 4๐‘ + 3. (2.10) It is induced from (2.7) and (2.10) that, when ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < ๐›ผ11 + ๐›ผ22 + 1 < 4๐‘ + 4 or 4๐‘ + 3 < ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < 4๐‘ + 4, ยฏ ๐‘ ๐‘ข ๐‘›,12 ๐‘ƒ โ†’ ๐ด๐‘ข๐›ผ12 as ๐‘› โ†’ โˆž. Remark. Under the conditions of Theorem 1, we have natural consequences as follows. (i) Take ๐‘ = 0, then for ๐›ผ11 + ๐›ผ22 < 3, ยฏ ๐‘ ๐‘ข ๐‘›,12 ๐‘ƒ โ†’ ๐ด๐‘ข๐›ผ12 as ๐‘› โ†’ โˆž if ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < ๐›ผ11 + ๐›ผ22 + 1; for ๐›ผ11 + ๐›ผ22 > 3, the convergence holds if ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < 4. 9 (ii) Take ๐‘ โ‰ฅ 1, then for any ๐›ผ1, ๐›ผ2 โˆˆ (0, 2), ยฏ ๐‘ ๐‘ข ๐‘›,12 ๐‘ƒ โ†’ ๐ด๐‘ข๐›ผ12 as ๐‘› โ†’ โˆž if ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < ๐›ผ11 + ๐›ผ22 + 1. The convergence in probability in Theorem 1 can be strengthened to almost sure convergence by applying the following lemma and the Borelโ€“Cantelli Lemma. Lemma 1. Under conditions in Theorem 1, โˆ€๐‘ข = 1, . . . , ๐‘š, there exists a constant ๐ถ โˆˆ (0, โˆž) independent of ๐‘› such that for all large enough ๐‘› and โˆ€0 < ๐œ‰ < 1, ๐‘ƒ (ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 โˆ’ ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 > ๐œ‰ ! โ‰ค ๐ถ exp  โˆ’๐‘›min{๐›ผ11+๐›ผ22+1,4๐‘+4}/2โˆ’๐›ผ12 ๐œ‰ 4 โˆ’ ๐œ‰  . (2.11) Proof. For ๐‘› โ‰ฅ 1 and ๐‘ข = 1, . . . , ๐‘š, denote ๐‘€๐‘ข ๐‘› = 1 2๐‘›๐›ผ12โˆ’(๐›ผ11+๐›ผ22)/2โˆ’1(ฮฃ1/2 ๐‘Œ )๐‘‡ยฉยญยญ ยซ 0 ๐ผ๐‘› ๐ผ๐‘› 0 ยชยฎยฎ ยฌ ฮฃ1/2 ๐‘Œ , then according to (2.5), ยฏ ๐‘ ๐‘ข ๐‘›,12 d= ๐‘ˆ๐‘‡๐‘€๐‘ข ๐‘›๐‘ˆ, where ๐‘ˆ โˆผ ๐‘(0, ๐ผ2๐‘›). By the Hanson-Wright inequality, there exists constants ๐ถ1, ๐ถ2 that do not depend on ๐‘› or ๐‘ข such that โˆ€0 < ๐œ‰ < 1, ๐‘ƒ ยฏ๐‘ ๐‘ข ๐‘›,12 โˆ’ ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 > ๐œ‰ ! โ‰ค 2 exp โˆ’ min ( ๐ถ1๐œ‰|๐ธยฏ๐‘ ๐‘ข ๐‘›,12 | ||๐‘€๐‘ข ๐‘› ||2 , ๐ถ2๐œ‰2|๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 |2 ||๐‘€๐‘ข ๐‘› ||2 ๐น )! . Under the conditions in Theorem 1, as ๐‘› โ†’ โˆž there is ||๐‘€๐‘ข ๐‘› ||2 ๐น = ๐‘ก๐‘Ÿ ( (๐‘€๐‘ข ๐‘› )2) = ๐‘ฃ๐‘Ž๐‘Ÿ (ยฏ ๐‘ ๐‘ข ๐‘›,12 )/2 = 8>>>>< >>>>: ๐‘‚( ๐‘›2 ๐›ผ12โˆ’(๐›ผ11+๐›ผ22)โˆ’1), if ๐›ผ11 + ๐›ผ22 < 4 ๐‘ + 3; ๐‘‚(๐‘›2๐›ผ12โˆ’(4๐‘+4)), if ๐›ผ11 + ๐›ผ22 > 4๐‘ + 3. (2.12) Since ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 โ†’ ๐ด๐‘ข๐›ผ12 as ๐‘› โ†’ โˆž and ||๐‘€๐‘ข ๐‘› ||2 โ‰ค ||๐‘€๐‘ข ๐‘› ||๐น, there exists a constant ๐ถ0 โˆˆ (0, โˆž) that does not depend on ๐‘› but may depend on ๐‘ข such that ๐‘ƒ ยฏ๐‘ ๐‘ข ๐‘›,12 โˆ’ ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 > ๐œ‰ ! โ‰ค ๐ถ0 exp  โˆ’๐‘›min{๐›ผ11+๐›ผ22+1,4๐‘+4}/2โˆ’๐›ผ12๐œ‰  . (2.13) Under the conditions in Theorem 1, (๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 = ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 โˆ’ ๐‘ฃ๐‘Ž๐‘Ÿ (ยฏ ๐‘ ๐‘ข ๐‘›,12 ) ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 โ†’ 1 as ๐‘› โ†’ โˆž. 10 Thus, โˆ€0 < ๐œ‰ < 1, 1 โˆ’ ๐œ‰/2 < (๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 )2/๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 < 1 + ๐œ‰/2 when ๐‘› is large enough. Together with (2.13) it implies ๐‘ƒ (ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 โˆ’ ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 > ๐œ‰ ! โ‰ค๐‘ƒ ยฉยญ ยซ (๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 !2 โˆ’ 1 + (๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 โˆ’ 1 > ๐œ‰ ยชยฎ ยฌ =๐‘ƒ ยฉยญ ยซ ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 !2 โˆ’ 1 > ๐œ‰ + (๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 )2/๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 โˆ’ 1 (๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 )2/๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ยชยฎ ยฌ โ‰ค๐‘ƒ ยฉยญ ยซ ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 !2 โˆ’ 1 > ๐œ‰ โˆ’ ๐œ‰/2 1 โˆ’ ๐œ‰/2 ยชยฎ ยฌ for large ๐‘› =๐‘ƒ ยฉยญ ยซ ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 !2 โˆ’ 1 > ๐œ‰ 2 โˆ’ ๐œ‰ ยชยฎ ยฌ โ‰ค๐‘ƒ ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 โˆ’ 1 ยท ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 + 1 > ๐œ‰ 2 โˆ’ ๐œ‰ , ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 โˆ’ 1 โ‰ค ๐œ‰ 2 โˆ’ ๐œ‰ ! + ๐‘ƒ ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 โˆ’ 1 > ๐œ‰ 2 โˆ’ ๐œ‰ ! โ‰ค๐‘ƒ ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 โˆ’ 1 > ๐œ‰/(2 โˆ’ ๐œ‰) 2 + ๐œ‰/(2 โˆ’ ๐œ‰) ! + ๐‘ƒ ยฏ๐‘ ๐‘ข ๐‘›,12 ๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 โˆ’ 1 > ๐œ‰ 2 โˆ’ ๐œ‰ ! โ‰ค๐ถ exp  โˆ’๐‘›min{๐›ผ11+๐›ผ22+1,4๐‘+4}/2โˆ’๐›ผ12 ๐œ‰ 4 โˆ’ ๐œ‰  for some constant ๐ถ โˆˆ (0, โˆž) that is independent of ๐‘› and ๐œ‰ but may depend on ๐‘ข. The joint asymptotic distribution of the covariations is presented in the following theorem. Theorem 2. Denote by ยฏ ๐‘ ๐‘›,12 = (ยฏ ๐‘ 1 ๐‘›,12, . . . , ยฏ ๐‘ ๐‘š ๐‘›,12 )๐‘‡ and take ๐‘ โ‰ฅ 1. When ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 and (2.4) holds for ๐‘ž = 2๐‘ + 2, ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12 (ยฏ ๐‘ ๐‘›,12 โˆ’ ๐ธยฏ ๐‘ ๐‘›,12) ๐‘‘ โ†’ ๐‘(0,ฮฆ) (2.14) as ๐‘› โ†’ โˆž, where the matrix ฮฆ โˆˆ R๐‘šร—๐‘š has entries ฮฆ๐‘ข,๐‘ฃ = ๐ด11๐ด22 ร•โˆž โ„Ž=โˆ’โˆž ร•๐ฝ ๐‘ ,๐‘ก, ๐‘— ,๐‘™=โˆ’๐ฝ ๐‘Ž๐‘ ๐‘Ž๐‘ก๐‘Ž ๐‘—๐‘Ž๐‘™ |โ„Ž + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ|๐›ผ11 |โ„Ž + ๐‘—๐‘ข โˆ’ ๐‘™๐‘ฃ|๐›ผ22 , 1 โ‰ค ๐‘ข, ๐‘ฃ โ‰ค ๐‘š. (2.15) 11 Proof. By the Cramรฉr-Wold theorem, to prove the asymptotic normality of ยฏ ๐‘ ๐‘›,12, it suffices to show that โˆ€๐œธ โˆˆ R๐‘š, ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12๐œธ๐‘‡ (ยฏ ๐‘ ๐‘›,12 โˆ’ ๐ธยฏ ๐‘ ๐‘›,12) ๐‘‘ โ†’ ๐‘(0, ๐œธ๐‘‡ฮฆ๐œธ) (2.16) as ๐‘› โ†’ โˆž. Denote by ๐‘Š๐‘› = (๐‘Œ1 ๐‘›,1 (1), . . . ,๐‘Œ๐‘š ๐‘›,1 (1),๐‘Œ1 ๐‘›,1 (2), . . . ,๐‘Œ๐‘š ๐‘›,1 (๐‘›),๐‘Œ1 ๐‘›,2 (1), . . . ,๐‘Œ๐‘š ๐‘›,2 (๐‘›))๐‘‡ โˆˆ R2๐‘š๐‘›, (2.17) then ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12๐œธ๐‘‡ ยฏ ๐‘ ๐‘›,12 = 1 2๐‘›โˆ’1/2๐‘Š๐‘‡ ๐‘› ยฉยญยญ ยซ 0 ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ) ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ) 0 ยชยฎยฎ ยฌ ๐‘Š๐‘›, where ๐‘‘๐‘–๐‘Ž๐‘”(๐‘ฅ) maps a vector ๐‘ฅ to a diagonal matrix whose diagonal is ๐‘ฅ, 1๐‘› โˆˆ R๐‘› is a vector with all its entries equals 1. Let ๐‘‰๐‘› = ๐ถ๐‘œ๐‘ฃ(๐‘Š๐‘›) and ๐บ๐‘› = 1 2๐‘›โˆ’1/2 (๐‘‰1/2 ๐‘› )๐‘‡ยฉยญยญ ยซ 0 ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ) ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ) 0 ยชยฎยฎ ยฌ ๐‘‰1/2 ๐‘› , (2.18) then ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12๐œธ๐‘‡ ยฏ ๐‘ ๐‘›,12 ๐‘‘ = ๐œ–๐‘‡ ๐‘› ๐บ๐‘›๐œ–๐‘› ๐‘‘ = ๐œ–๐‘‡ ๐‘› ๐‘‘๐‘–๐‘Ž๐‘”(eig(๐บ๐‘›))๐œ–๐‘› for ๐œ–๐‘› โˆผ ๐‘(0, ๐ผ2๐‘š๐‘›). It follows from the proof of Theorem 2 in Zhou and Xiao (2018) that (2.16) holds if Tr(๐บ4 ๐‘› ) โ†’ 0 and 2Tr(๐บ2 ๐‘› ) โ†’ ๐œธ๐‘‡ฮฆ๐œธ as ๐‘› โ†’ โˆž. Let ๐ป๐‘› = ๐‘‰๐‘› ยฉยญยญ ยซ 0 ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ) ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ) 0 ยชยฎยฎ ยฌ , then for ๐‘–1, ๐‘–2 โˆˆ {1, 2}, ๐‘—1, ๐‘—2 โˆˆ {1, . . . , ๐‘›} and ๐‘˜1, ๐‘˜2 โˆˆ {1, . . . , ๐‘š}, ๐ป๐‘› ( (๐‘–1 โˆ’ 1)๐‘š๐‘› + ( ๐‘—1 โˆ’ 1)๐‘š + ๐‘˜1, (๐‘–2 โˆ’ 1)๐‘š๐‘› + ( ๐‘—2 โˆ’ 1)๐‘š + ๐‘˜2) = ๐›พ๐‘˜2๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) ( ๐‘—2 โˆ’ ๐‘—1). 12 Thus, Tr(๐ป4 ๐‘› ) = ร•๐‘š ๐‘˜1,...,๐‘˜4=1 ๐›พ๐‘˜1๐›พ๐‘˜2๐›พ๐‘˜3๐›พ๐‘˜4 ร•2 ๐‘–1,...,๐‘–4=1 ร•๐‘› ๐‘—1,..., ๐‘—4=1  ๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) ( ๐‘—2 โˆ’ ๐‘—1) ๐œŽ๐‘˜2๐‘˜3 ๐‘›,๐‘–2 (3โˆ’๐‘–3) ( ๐‘—3 โˆ’ ๐‘—2)๐œŽ๐‘˜3๐‘˜4 ๐‘›,๐‘–3 (3โˆ’๐‘–4) ( ๐‘—4 โˆ’ ๐‘—3)๐œŽ๐‘˜4๐‘˜1 ๐‘›,๐‘–4 (3โˆ’๐‘–1) ( ๐‘—1 โˆ’ ๐‘—4)  โ‰ค ร•๐‘š ๐‘˜1,...,๐‘˜4=1 |๐›พ๐‘˜1๐›พ๐‘˜2๐›พ๐‘˜3๐›พ๐‘˜4 | ร•2 ๐‘–1,...,๐‘–4=1 ๐‘› ร• |โ„Ž1 |,|โ„Ž2 |,|โ„Ž3 |<๐‘› ๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) (โ„Ž1) ๐œŽ๐‘˜2๐‘˜3 ๐‘›,๐‘–2 (3โˆ’๐‘–3) (โ„Ž2)๐œŽ๐‘˜3๐‘˜4 ๐‘›,๐‘–3 (3โˆ’๐‘–4) (โ„Ž3)๐œŽ๐‘˜4๐‘˜1 ๐‘›,๐‘–4 (3โˆ’๐‘–1) (โ„Ž1 + โ„Ž2 + โ„Ž3) , Tr(๐ป2 ๐‘› ) = 2 ร•๐‘š ๐‘˜1,๐‘˜2=1 ๐›พ๐‘˜1๐›พ๐‘˜2 ร•๐‘› ๐‘—1, ๐‘—2=1  ๐œŽ๐‘˜1๐‘˜2 ๐‘›,12 ( ๐‘—2 โˆ’ ๐‘—1) 2 + ๐œŽ๐‘˜1๐‘˜2 ๐‘›,11 ( ๐‘—2 โˆ’ ๐‘—1)๐œŽ๐‘˜1๐‘˜2 ๐‘›,22 ( ๐‘—2 โˆ’ ๐‘—1)  = 2๐‘› ร•๐‘š ๐‘˜1,๐‘˜2=1 ๐›พ๐‘˜1๐›พ๐‘˜2 ร• |โ„Ž|<๐‘›  1 โˆ’ |โ„Ž| ๐‘›   ๐œŽ๐‘˜1๐‘˜2 ๐‘›,12 (โ„Ž) 2 + ๐œŽ๐‘˜1๐‘˜2 ๐‘›,11 (โ„Ž)๐œŽ๐‘˜1๐‘˜2 ๐‘›,22 (โ„Ž)  . For any fixed โ„Ž, the convergence of ๐œŽ๐‘ข๐‘ฃ ๐‘›,๐‘–๐‘Ÿ (โ„Ž) as ๐‘› โ†’ โˆž is presented in (2.6). By Theorem 1 in Kent and Wood (1997) and Lemma 2 in Zhou and Xiao (2018), when ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 and (2.4) holds for ๐‘ž = 2๐‘ + 2, ๐œŽ๐‘ข๐‘ฃ ๐‘›,๐‘–๐‘– (โ„Ž) = ๐‘‚(|โ„Ž|๐›ผ๐‘–๐‘–โˆ’2๐‘โˆ’2) and ๐œŽ๐‘ข๐‘ฃ ๐‘›,12 (โ„Ž) = ๐‘‚(|โ„Ž|(๐›ผ11+๐›ผ22)/2โˆ’2๐‘โˆ’2) (2.19) uniformly for ๐‘› > |โ„Ž|. If ๐‘ โ‰ฅ 1, then ๐›ผ๐‘–๐‘– โˆ’ 2๐‘ โˆ’ 2 < โˆ’2 and (๐›ผ11 + ๐›ผ22)/2 โˆ’ 2๐‘ โˆ’ 2 < โˆ’2 hold for any ๐›ผ11, ๐›ผ22 โˆˆ (0, 2). Hence there exists a constant ๐‘0 > 0 such that ร•๐‘›โˆ’1 โ„Ž1,โ„Ž2,โ„Ž3=1โˆ’๐‘› ๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) (โ„Ž1)๐œŽ๐‘˜2๐‘˜3 ๐‘›,๐‘–2 (3โˆ’๐‘–3) (โ„Ž2)๐œŽ๐‘˜3๐‘˜4 ๐‘›,๐‘–3 (3โˆ’๐‘–4) (โ„Ž3)๐œŽ๐‘˜4๐‘˜1 ๐‘›,๐‘–4 (3โˆ’๐‘–1) (โ„Ž1 + โ„Ž2 + โ„Ž3) โ‰ค ๐‘0 ร•๐‘›โˆ’1 โ„Ž1,โ„Ž2,โ„Ž3=1โˆ’๐‘›  |โ„Ž1| ๐›ผ๐‘–1๐‘–1 +๐›ผ(3โˆ’๐‘–2 ) (3โˆ’๐‘–2 ) 2 โˆ’2๐‘โˆ’2|โ„Ž2| ๐›ผ๐‘–2๐‘–2 +๐›ผ(3โˆ’๐‘–3 ) (3โˆ’๐‘–3 ) 2 โˆ’2๐‘โˆ’2 |โ„Ž3| ๐›ผ๐‘–3๐‘–3 +๐›ผ(3โˆ’๐‘–4 ) (3โˆ’๐‘–4 ) 2 โˆ’2๐‘โˆ’2  = ๐‘‚(1) as ๐‘› โ†’ โˆž, โˆ€๐‘–1, ๐‘–2, ๐‘–3, ๐‘–4 โˆˆ {1, 2}. Consequently, Tr(๐ป4 ๐‘› ) = ๐‘‚(๐‘›) and Tr(๐บ4 ๐‘› ) =  1 2๐‘›โˆ’1/2 4 Tr(๐ป4 ๐‘› ) = ๐‘‚(๐‘›โˆ’1) โ†’ 0 13 as ๐‘› โ†’ โˆž. For ๐‘ข, ๐‘ฃ โˆˆ {1, . . . , ๐‘š} and โ„Ž โˆˆ Z, define ๐‘‘๐‘ข๐‘ฃ ๐‘› (โ„Ž) := 1|โ„Ž|<๐‘›  1 โˆ’ |โ„Ž| ๐‘›   ๐œŽ๐‘ข๐‘ฃ ๐‘›,12 (โ„Ž) 2 + ๐œŽ๐‘ข๐‘ฃ ๐‘›,11 (โ„Ž)๐œŽ๐‘ข๐‘ฃ ๐‘›,22 (โ„Ž)  . Then for any fixed โ„Ž, ๐‘‘๐‘ข๐‘ฃ ๐‘› (โ„Ž) โ†’ ๐ด11๐ด22 ร•๐ฝ ๐‘ ,๐‘ก, ๐‘— ,๐‘™=โˆ’๐ฝ ๐‘Ž๐‘ ๐‘Ž๐‘ก๐‘Ž ๐‘—๐‘Ž๐‘™ |โ„Ž + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ|๐›ผ11 |โ„Ž + ๐‘—๐‘ข โˆ’ ๐‘™๐‘ฃ|๐›ผ22 as ๐‘› โ†’ โˆž. Moreover, ๐‘‘๐‘ข๐‘ฃ ๐‘› (โ„Ž) โ‰ค  ๐œŽ๐‘ข๐‘ฃ ๐‘›,12 (โ„Ž) 2 + ๐œŽ๐‘ข๐‘ฃ ๐‘›,11 (โ„Ž)๐œŽ๐‘ข๐‘ฃ ๐‘›,22 (โ„Ž) = ๐‘‚(|โ„Ž|๐›ผ11+๐›ผ22โˆ’4๐‘โˆ’4) uniformly for ๐‘› > |โ„Ž|. If ๐‘ โ‰ฅ 1, then ๐›ผ11 +๐›ผ22 โˆ’4๐‘ โˆ’4 < โˆ’4 and รโˆž โ„Ž=โˆ’โˆž |โ„Ž|๐›ผ11+๐›ผ22โˆ’4๐‘โˆ’4 < โˆž. Thus for any ๐‘ข, ๐‘ฃ โˆˆ {1, . . . , ๐‘š}, {๐‘‘๐‘ข๐‘ฃ ๐‘› (โ„Ž), โ„Ž โˆˆ Z} is dominated by a summable sequence. It therefore follows from the dominated convergence theorem that Tr(๐บ2 ๐‘› ) = 1 4๐‘› Tr(๐ป2 ๐‘› ) = 1 2 ร•๐‘š ๐‘˜1,๐‘˜2=1 ๐›พ๐‘˜1๐›พ๐‘˜2 ร•โˆž โ„Ž=โˆ’โˆž ๐‘‘๐‘˜1๐‘˜2 ๐‘› (โ„Ž) โ†’ ๐ด11๐ด22 2 ร•๐‘š ๐‘˜1,๐‘˜2=1 ๐›พ๐‘˜1๐›พ๐‘˜2 ร•โˆž โ„Ž=โˆ’โˆž ร•๐ฝ ๐‘ ,๐‘ก, ๐‘— ,๐‘™=โˆ’๐ฝ ๐‘Ž๐‘ ๐‘Ž๐‘ก๐‘Ž ๐‘—๐‘Ž๐‘™ |โ„Ž + ๐‘ ๐‘˜1 โˆ’ ๐‘ก๐‘˜2|๐›ผ11 |โ„Ž + ๐‘— ๐‘˜1 โˆ’ ๐‘™๐‘˜2|๐›ผ22 := 1 2๐œธ๐‘‡ฮฆ๐œธ as ๐‘› โ†’ โˆž, where ฮฆ โˆˆ R๐‘šร—๐‘š is a constant matrix with entries defined in (2.15). This proves Theorem 2. Take ๐‘ = 1, ๐ฝ = 1, and ๐‘Ž = (1, โˆ’2, 1)๐‘‡ , we further discuss the joint asymptotic distribution of covariations defined in this chapter and the quadratic variations ยฏ ๐‘ ๐‘›,1, ยฏ ๐‘ ๐‘›,2 studied by Zhou and Xiao (2018), where ยฏ ๐‘ ๐‘›,๐‘– = (ยฏ ๐‘ 1 ๐‘›,๐‘– , . . . , ยฏ ๐‘ ๐‘š ๐‘›,๐‘– )๐‘‡ and ยฏ๐‘ ๐‘ข ๐‘›,๐‘– = 1 ๐‘› (๐‘Œ๐‘ข ๐‘›,๐‘– )๐‘‡๐‘Œ๐‘ข ๐‘›,๐‘– , ๐‘ข = 1, . . . , ๐‘š, ๐‘– = 1, 2. (2.20) 14 Theorem 3. When ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 and (2.4) holds for ๐‘ž = 4, ๐‘›๐ท๐›ผ ยฉยญยญยญยญยญ ยซ ยฏ๐‘ ๐‘›,1 โˆ’ ๐ธยฏ ๐‘ ๐‘›,1 ยฏ๐‘ ๐‘›,2 โˆ’ ๐ธยฏ ๐‘ ๐‘›,1 ยฏ๐‘ ๐‘›,12 โˆ’ ๐ธยฏ ๐‘ ๐‘›,12 ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ โ†’ ๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ ฮฆ1 ฮฆ2 ฮฆ ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ (2.21) as ๐‘› โ†’ โˆž, where ๐ท๐›ผ = ยฉยญยญยญยญยญ ยซ 1 2 12 1+๐›ผ11+๐›ผ22 2 โˆ’ ๐›ผ12 ยชยฎยฎยฎยฎยฎ ยฌ , the matrix ฮฆ โˆˆ R๐‘šร—๐‘š is as defined in Theorem 2, and matrices ฮฆ๐‘– โˆˆ R๐‘šร—๐‘š have entries as (ฮฆ๐‘–)๐‘ข,๐‘ฃ = 2๐ด2 ๐‘–๐‘– ร•โˆž โ„Ž=โˆ’โˆž ร•1 ๐‘ ,๐‘ก=โˆ’1 ๐‘Ž๐‘ ๐‘Ž๐‘ก |โ„Ž + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ|๐›ผ๐‘–๐‘– !2 , ๐‘– = 1, 2. (2.22) Proof. By the Cramรฉr-Wold theorem, it suffices to prove that โˆ€๐œธ1 = (๐›พ1,1, . . . , ๐›พ1,๐‘š)๐‘‡ , ๐œธ2 = (๐›พ2,1, . . . , ๐›พ2,๐‘š)๐‘‡ , and ๐œธ12 = (๐›พ12,1, . . . , ๐›พ12,๐‘š)๐‘‡ โˆˆ R๐‘š, โˆš ๐‘›  ๐œธ๐‘‡1 (ยฏ ๐‘ ๐‘›,1 โˆ’ ๐ธยฏ ๐‘ ๐‘›,1) + ๐œธ๐‘‡2 (ยฏ ๐‘ ๐‘›,2 โˆ’ ๐ธยฏ ๐‘ ๐‘›,2) + ๐‘› ๐›ผ11+๐›ผ22 2 โˆ’๐›ผ12๐œธ๐‘‡ 12 (ยฏ ๐‘ ๐‘›,12 โˆ’ ๐ธยฏ ๐‘ ๐‘›,12)  ๐‘‘ โ†’ ๐‘(0, ๐œธ๐‘‡1 ฮฆ1๐œธ1 + ๐œธ๐‘‡2 ฮฆ2๐œธ2 + ๐œธ๐‘‡ 12ฮฆ๐œธ12) (2.23) as ๐‘› โ†’ โˆž. Recall the notation ๐‘Š๐‘› defined in (2.17) and ๐‘‰๐‘› = Cov(๐‘Š๐‘›), let ฮ›๐‘› = 2 โˆš ๐‘› (๐‘‰1/2 ๐‘› )๐‘‡ฮ“๐‘›๐‘‰1/2 ๐‘› , (2.24) where ฮ“๐‘› = ยฉยญยญ ยซ ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ1) 0 0 ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ2) ยชยฎยฎ ยฌ . (2.25) It follows from definitions of ยฏ ๐‘ ๐‘›,1, ยฏ ๐‘ ๐‘›,2, and ยฏ ๐‘ ๐‘›,12 that ๐‘›๐ท๐›ผ ยฉยญยญยญยญยญ ยซ ๐œธ1 ๐œธ2 ๐œธ12 ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‡ ยฉยญยญยญยญยญ ยซ ยฏ๐‘ ๐‘›,1 ยฏ๐‘ ๐‘›,2 ยฏ๐‘ ๐‘›,12 ยชยฎยฎยฎยฎยฎ ยฌ = 1 โˆš ๐‘› ๐‘Š๐‘‡ ๐‘› ยฉยญยญ ยซ ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ1) 1 2 ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ12) 1 2 ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ12) ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ2) ยชยฎยฎ ยฌ ๐‘Š๐‘› ๐‘‘ = ๐œ–๐‘‡ ๐‘›  ๐บ๐‘› + 1 2ฮ›๐‘›  ๐œ–๐‘›, 15 where ๐œ–๐‘› โˆผ ๐‘(0, ๐ผ3๐‘š๐‘›) and ๐บ๐‘› is defined in (2.18). Therefore, it remains to prove Tr  (๐บ๐‘› + 1 2ฮ›๐‘›)2  โ†’ 1 2  ๐œธ๐‘‡1 ฮฆ1๐œธ1 + ๐œธ๐‘‡2 ฮฆ2๐œธ2 + ๐œธ๐‘‡ 12ฮฆ๐œธ12  and Tr  (๐บ๐‘› + 1 2ฮ›๐‘›)4  โ†’ 0 as ๐‘› โ†’ โˆž. It has been proved by Zhou and Xiao (2018) that as ๐‘› โ†’ โˆž, Tr(ฮ›2 ๐‘› ) โ†’ 2  ๐œธ๐‘‡1 ฮฆ1๐œธ1 + ๐œธ๐‘‡2 ฮฆ2๐œธ2  and Tr(ฮ›4 ๐‘› ) โ†’ 0 when ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 and (2.4) holds for ๐‘ž = 4. Since conditions in Theorem 2 are satisfied, we also have Tr(๐บ2 ๐‘› ) โ†’ 1 2๐œธ๐‘‡ 12ฮฆ๐œธ12 and Tr(๐บ4 ๐‘› ) โ†’ 0 as ๐‘› โ†’ โˆž. Moreover, Tr(๐บ๐‘›ฮ›๐‘›) = 1 ๐‘› Tr ยฉยญยญ ยซ ๐‘‰๐‘› ยฉยญยญ ยซ 0 ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ12) ๐‘‘๐‘–๐‘Ž๐‘”(1๐‘› โŠ— ๐œธ12) 0 ยชยฎยฎ ยฌ ๐‘‰๐‘›ฮ“๐‘› ยชยฎยฎ ยฌ = 1 ๐‘› ร•2๐‘š๐‘› โ„“1,โ„“2=1 (๐ป๐‘›)โ„“1,โ„“2 (๐‘‰๐‘›ฮ“๐‘›)โ„“2,โ„“1 = 1 ๐‘› ร•๐‘š ๐‘˜1,๐‘˜2=1 ร•2 ๐‘–1,๐‘–2=1 ๐›พ๐‘–1,๐‘˜1๐›พ12,๐‘˜2 ร•๐‘› ๐‘—1, ๐‘—2=1 ๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) ( ๐‘—2 โˆ’ ๐‘—1)๐œŽ๐‘˜2๐‘˜1 ๐‘›,๐‘–2๐‘–1 ( ๐‘—2 โˆ’ ๐‘—1) = ร•๐‘š ๐‘˜1,๐‘˜2=1 ร•2 ๐‘–1,๐‘–2=1 ๐›พ๐‘–1,๐‘˜1๐›พ12,๐‘˜2 ร• |โ„Ž|<๐‘›  1 โˆ’ |โ„Ž| ๐‘›  ๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) (โ„Ž)๐œŽ๐‘˜2๐‘˜1 ๐‘›,๐‘–2๐‘–1 (โ„Ž) โ†’ 0 as ๐‘› โ†’ โˆž (2.26) by the dominated convergence theorem, since ๐œŽ๐‘ข๐‘ฃ ๐‘›,12 (โ„Ž) โ†’ 0 as ๐‘› โ†’ โˆž for any ๐‘ข, ๐‘ฃ = 1, . . . , ๐‘š and any fixed โ„Ž. Due to the fact that Card{( ๐‘—1, . . . , ๐‘—4) : 1 โ‰ค ๐‘—1, . . . , ๐‘—4 โ‰ค ๐‘›, ๐‘—๐‘–+1 โˆ’ ๐‘—๐‘– = โ„Ž๐‘– (๐‘– = 1, 2, 3)} โ‰ค ๐‘›, 16 we have Tr  (๐บ๐‘›ฮ›๐‘›)2  = 1 ๐‘›2 Tr  (๐ป๐‘›๐‘‰๐‘›ฮ“๐‘›)2  = 1 ๐‘›2 ร•2๐‘š๐‘› โ„“1,...,โ„“4=1 (๐ป๐‘›)โ„“1,โ„“2 (๐‘‰๐‘›ฮ“๐‘›)โ„“2,โ„“3 (๐ป๐‘›)โ„“3,โ„“4 (๐‘‰๐‘›ฮ“๐‘›)โ„“4,โ„“1 = 1 ๐‘›2 ร•๐‘š ๐‘˜1,...,๐‘˜4=1 ร•2 ๐‘–1,...,๐‘–4=1 ๐›พ๐‘–1,๐‘˜1๐›พ12,๐‘˜2๐›พ๐‘–3,๐‘˜3๐›พ12,๐‘˜4 ร•๐‘› ๐‘—1,..., ๐‘—4=1 ๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) ( ๐‘—2 โˆ’ ๐‘—1)๐œŽ๐‘˜2๐‘˜3 ๐‘›,๐‘–2๐‘–3 ( ๐‘—2 โˆ’ ๐‘—3)๐œŽ๐‘˜3๐‘˜4 ๐‘›,๐‘–3 (3โˆ’๐‘–4) ( ๐‘—4 โˆ’ ๐‘—3)๐œŽ๐‘˜4๐‘˜1 ๐‘›,๐‘–4๐‘–1 ( ๐‘—4 โˆ’ ๐‘—1)ยชยฎ ยฌ โ‰ค 1 ๐‘› ร•๐‘š ๐‘˜1,...,๐‘˜4=1 ร•2 ๐‘–1,...,๐‘–4=1 ๐›พ๐‘–1,๐‘˜1๐›พ12,๐‘˜2๐›พ๐‘–3,๐‘˜3๐›พ12,๐‘˜4 ร•๐‘›โˆ’1 โ„Ž1,โ„Ž2,โ„Ž3=1โˆ’๐‘› ๐œŽ๐‘˜1๐‘˜2 ๐‘›,๐‘–1 (3โˆ’๐‘–2) (โ„Ž1)๐œŽ๐‘˜2๐‘˜3 ๐‘›,๐‘–2๐‘–3 (โ„Ž2)๐œŽ๐‘˜3๐‘˜4 ๐‘›,๐‘–3 (3โˆ’๐‘–4) (โ„Ž3)๐œŽ๐‘˜4๐‘˜1 ๐‘›,๐‘–4๐‘–1 (โ„Ž1 + โ„Ž2 + โ„Ž3) ! . Follow similar steps in the proof of Theorem 2, there exists a constant ๐‘0 > 0 such that Tr  (๐บ๐‘›ฮ›๐‘›)2  โ‰ค ๐‘0 ๐‘› ร•๐‘š ๐‘˜1,...,๐‘˜4=1 ร•2 ๐‘–1,...,๐‘–4=1 |๐›พ12,๐‘˜2๐›พ๐‘–3,๐‘˜3๐›พ12,๐‘˜4 | ร•๐‘›โˆ’1 โ„Ž1,โ„Ž2,โ„Ž3=1โˆ’๐‘› |โ„Ž1| ๐›ผ๐‘–1๐‘–1 +๐›ผ(3โˆ’๐‘–2 ) (3โˆ’๐‘–2 ) 2 โˆ’4|โ„Ž2| ๐›ผ๐‘–2๐‘–2 +๐›ผ๐‘–3๐‘–3 2 โˆ’4|โ„Ž3| ๐›ผ๐‘–3๐‘–3 +๐›ผ(3โˆ’๐‘–4 ) (3โˆ’๐‘–4 ) 2 โˆ’4 ! = ๐‘‚(๐‘›โˆ’1) as ๐‘› โ†’ โˆž, since โˆ€๐‘–, ๐‘— = 1, 2, 12 (๐›ผ๐‘–๐‘– + ๐›ผ๐‘— ๐‘— ) โˆ’ 4 < โˆ’2. Consequently, as ๐‘› โ†’ โˆž, Tr  (๐บ๐‘› + 1 2ฮ›๐‘›)2  = Tr(๐บ2 ๐‘› ) + 1 4 Tr(ฮ›2 ๐‘› ) + Tr(๐บ๐‘›ฮ›๐‘›) โ†’ 1 2  ๐œธ๐‘‡1 ฮฆ1๐œธ1 + ๐œธ๐‘‡2 ฮฆ2๐œธ2 + ๐œธ๐‘‡ 12ฮฆ๐œธ12  , where entries of ฮฆ1, ฮฆ2, and ฮฆ are defined in (2.22) and (2.15). The Cauchyโ€“Schwarz inequality 17 implies that Tr  (๐บ๐‘› + 1 2ฮ›๐‘›)4  = Tr(๐บ4 ๐‘› ) + 2Tr(๐บ3 ๐‘›ฮ›๐‘›) + 1 2 Tr( (๐บ๐‘›ฮ›๐‘›)2) + Tr(๐บ2 ๐‘›ฮ›2 ๐‘› ) + 1 2 Tr(๐บ๐‘›ฮ›3 ๐‘› ) + 1 24 Tr(ฮ›4 ๐‘› ) โ‰ค Tr(๐บ4 ๐‘› ) + 2 q Tr(๐บ6 ๐‘›)Tr(ฮ›2 ๐‘›) + 1 2 Tr( (๐บ๐‘›ฮ›๐‘›)2) + q Tr(๐บ4 ๐‘›)Tr(ฮ›4 ๐‘›) + 1 2 q Tr(๐บ2 ๐‘›)Tr(ฮ›6 ๐‘›) + 1 24 Tr(ฮ›4 ๐‘› ) โ†’ 0 as ๐‘› โ†’ โˆž. This finishes the proof using the convergence of the moment generating function. 2.2.2 Convergence of Estimator Define the estimator of ๐›ผ12 as ห† ๐›ผ12 = 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2, (2.27) where {๐ฟ๐‘ข, ๐‘ข = 1, . . . , ๐‘š} is a list of constants satisfying ร๐‘š ๐‘ข=1 ๐ฟ๐‘ข = 0 and ร๐‘š ๐‘ข=1 ๐ฟ๐‘ข log ๐‘ข = 1. Plug in the definition of ยฏ ๐‘ ๐‘ข ๐‘›,12 given in (2.5), then ห† ๐›ผ12 is a function of the observed process ๐‘‹๐‘ข ๐‘› and increment ๐‘Ž only, written as ห† ๐›ผ12 = 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log ยฉยญยญ ยซ 1 2๐‘›๐›ผ12โˆ’1๐‘‹๐‘ข ๐‘› ๐‘‡ ยฉยญยญ ยซ 0 ๐ผ๐‘› โŠ— (๐‘Ž๐‘Ž๐‘‡ ) ๐ผ๐‘› โŠ— (๐‘Ž๐‘Ž๐‘‡ ) 0 ยชยฎยฎ ยฌ ๐‘‹๐‘ข ๐‘› ยชยฎยฎ ยฌ 2 = 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log ยฉยญยญ ยซ ๐‘‹๐‘ข ๐‘› ๐‘‡ ยฉยญยญ ยซ 0 ๐ผ๐‘› โŠ— (๐‘Ž๐‘Ž๐‘‡ ) ๐ผ๐‘› โŠ— (๐‘Ž๐‘Ž๐‘‡ ) 0 ยชยฎยฎ ยฌ ๐‘‹๐‘ข ๐‘› ยชยฎยฎ ยฌ 2 , (2.28) where ๐‘‹๐‘ข ๐‘› = ( (๐‘‹๐‘ข ๐‘›,1 )๐‘‡ , (๐‘‹๐‘ข ๐‘›,2 )๐‘‡ )๐‘‡ . Theorem 4. Assume the increment ๐‘Ž = (๐‘Žโˆ’๐ฝ , ๐‘Ž1โˆ’๐ฝ , . . . , ๐‘Ž๐ฝ )๐‘‡ of order ๐‘ satisfies ร•๐ฝ ๐‘˜,๐‘™=โˆ’๐ฝ ๐‘Ž๐‘˜๐‘Ž๐‘™ |๐‘˜ โˆ’ ๐‘™ |๐›ผ12 โ‰  0, and (2.4) holds for ๐‘ž = 2๐‘ + 3 and ๐‘–, ๐‘— โˆˆ {1, 2}. If ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < ๐›ผ11 + ๐›ผ22 + 1 < 4๐‘ + 4 or 4๐‘ + 3 < ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < 4๐‘ + 4, then ห† ๐›ผ12 ๐‘Žโ†’.๐‘ . ๐›ผ12 as ๐‘› โ†’ โˆž. 18 Proof. It follows from Lemma 1 and the Borelโ€“Cantelli Lemma that โˆ€๐‘ข = 1, . . . , ๐‘š, (ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐‘Žโ†’.๐‘ . 1 as ๐‘› โ†’ โˆž. When ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < ๐›ผ11 + ๐›ผ22 + 1 < 4๐‘ + 4 or 4๐‘ + 3 < ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 < 4๐‘ + 4, (2.7) and (2.10) imply that ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 = ๐ถ๐‘œ๐‘ฃ(ยฏ ๐‘ ๐‘ข ๐‘›,12 ) + (๐ธยฏ ๐‘ ๐‘ข ๐‘›,12 )2 โ†’ ๐ด2๐‘ข2๐›ผ12 , where ๐ด = โˆ’๐œŒ๐œŽ1๐œŽ2๐‘12 ร ๐‘˜,๐‘™ ๐‘Ž๐‘˜๐‘Ž๐‘™ |๐‘˜ โˆ’ ๐‘™ |๐›ผ12 . When ร ๐‘˜,๐‘™ ๐‘Ž๐‘˜๐‘Ž๐‘™ |๐‘˜ โˆ’ ๐‘™ |๐›ผ12 โ‰  0, ห† ๐›ผ12 defined in (2.27) can be written as ห† ๐›ผ12 = 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log (ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 + log ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ! = 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log (ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 + 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log ๐ธ(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2 ๐‘Žโ†’.๐‘ . 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log 1 + 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log(๐ด2๐‘ข2๐›ผ12 ) = ๐›ผ12 as ๐‘› โ†’ โˆž by the continuous mapping theorem. To derive the asymptotic normality of ห† ๐›ผ12, we further assume that as ๐‘ก โ†’ 0, ๐ถ12 (๐‘ก) = ๐ถ21 (๐‘ก) = ๐œŒ๐œŽ1๐œŽ2 (1 โˆ’ ๐‘12|๐‘ก |๐›ผ12 + ๐‘‚(|๐‘ก |๐›ผ12+๐›ฝ12 )), (2.29) for some ๐›ฝ12 > 0. It follows from (2.7) that ๐ธ[๐‘๐‘ข ๐‘›,12 ( ๐‘— )] = ๐ด๐‘ข๐›ผ12 + ๐‘‚(๐‘›โˆ’๐›ฝ12 ). The following corollary is straightforward when a further assumption is made on ๐›ฝ12. Corollary 1. Under conditions in Theorem 2, if ๐›ผ12 + ๐›ฝ12 > (๐›ผ11 + ๐›ผ22 + 1)/2, then ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12 (ยฏ ๐‘ ๐‘›,12 โˆ’ ๐ด๐œ™) ๐‘‘ โ†’ ๐‘(0,ฮฆ) (2.30) as ๐‘› โ†’ โˆž, where ๐œ™ โˆˆ R๐‘š and ๐œ™๐‘— = ๐‘—๐›ผ12 , ๐‘— = 1, . . . , ๐‘š. The asymptotic normality of ห† ๐›ผ12 is then induced by the multivariate delta method. 19 Theorem 5. Take ๐‘ โ‰ฅ 1 and assume (2.4) holds for ๐‘ž = 2๐‘ + 2. When ๐ด โ‰  0, if ๐›ผ11 + ๐›ผ22 < 2๐›ผ12 and ๐›ผ12 + ๐›ฝ12 > (๐›ผ11 + ๐›ผ22 + 1)/2, then ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12 ( ห† ๐›ผ12 โˆ’ ๐›ผ12) ๐‘‘ โ†’ ๐‘(0, ๐ดโˆ’2หœ ๐ฟ ๐‘‡ฮฆหœ ๐ฟ ) (2.31) as ๐‘› โ†’ โˆž, where หœ ๐ฟ = (๐ฟ1, ๐ฟ2/2๐›ผ12 , . . . , ๐ฟ๐‘š/๐‘š๐›ผ12 )๐‘‡ โˆˆ R๐‘š. Proof. Define a mapping ๐‘“ : R๐‘š โ†’ R by ๐‘“ (๐‘ฅ) = 1 2 ร•๐‘š ๐‘ข=1 ๐ฟ๐‘ข log ๐‘ฅ2 ๐‘ข, โˆ€๐‘ฅ = (๐‘ฅ1, . . . , ๐‘ฅ๐‘š) โˆˆ R๐‘š. Then ๐‘“ (ยฏ ๐‘ ๐‘›,12) = ห† ๐›ผ12, ๐‘“ (๐ด๐œ™) = ๐›ผ12. When ๐ด โ‰  0, ๐‘“ is continuously differentiable in a neighborhood of ๐ด๐œ™ and โˆ‡ ๐‘“ (๐ด๐œ™) = ๐ดโˆ’1หœ ๐ฟ . Use the multivariate Taylorโ€™s theorem, ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12 ( ห† ๐›ผ12 โˆ’ ๐›ผ12) = ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12โˆ‡ ๐‘“ (๐ด๐‘›) (ยฏ๐‘๐‘›,12 โˆ’ ๐ด๐œ™), where |๐ด๐‘› โˆ’ ๐ด๐œ™| < |ยฏ ๐‘ ๐‘›,12 โˆ’ ๐ด๐œ™|. As ๐‘› โ†’ โˆž, Theorem 1 implies ยฏ ๐‘ ๐‘›,12 ๐‘ƒ โ†’ ๐ด๐œ™, so we also have ๐ด๐‘› ๐‘ƒ โ†’ ๐ด๐œ™. Applying the continuous mapping theorem, โˆ‡ ๐‘“ (๐ด๐‘›) ๐‘ƒ โ†’ โˆ‡ ๐‘“ (๐ด๐œ™). It follows from Corollary 1 and Slutskyโ€™s theorem that as ๐‘› โ†’ โˆž, ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12โˆ‡ ๐‘“ (๐ด๐‘›) (ยฏ ๐‘ ๐‘›,12 โˆ’ ๐ด๐œ™) ๐‘‘ โ†’โˆ‡ ๐‘“ (๐ด๐œ™)๐‘(0,ฮฆ) ๐‘‘ = ๐‘(0, ๐ดโˆ’2หœ ๐ฟ ๐‘‡ฮฆ๐ฟ). This finishes the proof. Take ๐‘ = 1, ๐ฝ = 1, and ๐‘Ž = (1, โˆ’2, 1)๐‘‡ . As was studied by Kent and Wood (1997) and Zhou and Xiao (2018), the estimators ห† ๐›ผ๐‘–๐‘– = ร•๐‘š ๐‘ข=1 ๐ฟ๐‘–,๐‘ข log ยฏ ๐‘ ๐‘ข ๐‘›,๐‘– , ๐‘– = 1, 2 (2.32) are strongly consistent and jointly converge in distribution to a multivariate Gaussian distribution, where ยฏ ๐‘ ๐‘ข ๐‘›,๐‘– โ€™s are defined in (2.20), ๐ฟ๐‘–,๐‘ขโ€™s are constants such that ร๐‘š ๐‘ข=1 ๐ฟ๐‘–,๐‘ข = 0 and ร๐‘š ๐‘ข=1 ๐ฟ๐‘–,๐‘ข log ๐‘ข = 1. The following theorem presents the joint asymptotic distribution of ห† ๐›ผ11, ห† ๐›ผ22, and ห† ๐›ผ12 as ๐‘› โ†’ โˆž. 20 Theorem 6. Assume that as |๐‘ก | โ†’ 0, (2.29) holds with ๐›ผ12 + ๐›ฝ12 > (๐›ผ11 + ๐›ผ22 + 1)/2, and ๐ถ๐‘–๐‘– (๐‘ก) = ๐œŽ2 ๐‘– โˆ’ ๐‘๐‘–๐‘– |๐‘ก |๐›ผ๐‘–๐‘– + ๐‘‚(|๐‘ก |๐›ผ๐‘–๐‘–+๐›ฝ๐‘–๐‘– ), ๐‘– = 1, 2 for some constants ๐›ฝ11, ๐›ฝ22 > 1/2. If 2๐›ผ12 > ๐›ผ11 + ๐›ผ22, ๐›ผ12 โ‰  2, and (2.4) holds for ๐‘ž = 4, then as ๐‘› โ†’ โˆž, ๐‘›๐ท๐›ผ ยฉยญยญยญยญยญ ยซ ห† ๐›ผ11 โˆ’ ๐›ผ11 ห† ๐›ผ22 โˆ’ ๐›ผ22 ห† ๐›ผ12 โˆ’ ๐›ผ12 ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ โ†’ ๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ ๐ดโˆ’2 1 หœ ๐ฟ ๐‘‡1 ฮฆ1หœ ๐ฟ 1 ๐ดโˆ’2 2 หœ ๐ฟ ๐‘‡2 ฮฆ2หœ ๐ฟ 2 ๐ดโˆ’2หœ ๐ฟ ๐‘‡3 ฮฆหœ ๐ฟ 3 ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ , (2.33) where ๐ด๐‘– = ๐‘๐‘–๐‘– (8 โˆ’ 2๐›ผ๐‘–๐‘–+1) and หœ ๐ฟ ๐‘– = (๐ฟ๐‘–,1, ๐ฟ๐‘–,2/2๐›ผ๐‘–๐‘– , . . . , ๐ฟ๐‘–,๐‘š/๐‘š๐›ผ๐‘–๐‘– )๐‘‡ โˆˆ R๐‘š for ๐‘– = 1, 2, ๐ด = ๐œŒ๐œŽ1๐œŽ2๐‘12(8 โˆ’ 2๐›ผ12+1), หœ ๐ฟ 3 = (๐ฟ3,1, ๐ฟ3,2/2๐›ผ12 , . . . , ๐ฟ3,๐‘š/๐‘š๐›ผ12 )๐‘‡ โˆˆ R๐‘š, the matrices ฮฆ1,ฮฆ2,ฮฆ โˆˆ R๐‘šร—๐‘š and ๐ท๐›ผ are as defined in Theorem 3. Proof. When ๐‘Ž = (1, โˆ’2, 1)๐‘‡ , we have ๐ด = โˆ’๐œŒ๐œŽ1๐œŽ2๐‘12 ร•๐ฝ ๐‘˜,๐‘™=โˆ’๐ฝ ๐‘Ž๐‘˜๐‘Ž๐‘™ |๐‘˜ โˆ’ ๐‘™ |๐›ผ12 = ๐œŒ๐œŽ1๐œŽ2๐‘12 (8 โˆ’ 2๐›ผ12+1). It follows from (2.7) and Equation (14) in Zhou and Xiao (2018) that as ๐‘› โ†’ โˆž, ๐‘›๐ท๐›ผ ยฉยญยญยญยญยญ ยซ ๐ธยฏ ๐‘ ๐‘›,1 โˆ’ ๐ด1๐œ™1 ๐ธยฏ ๐‘ ๐‘›,2 โˆ’ ๐ด2๐œ™2 ๐ธยฏ ๐‘ ๐‘›,12 โˆ’ ๐ด๐œ™ ยชยฎยฎยฎยฎยฎ ยฌ = ยฉยญยญยญยญยญ ยซ ๐‘‚  ๐‘›1/2โˆ’๐›ฝ11  ๐‘‚  ๐‘›1/2โˆ’๐›ฝ22  ๐‘‚  ๐‘›(1+๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12โˆ’๐›ฝ12  ยชยฎยฎยฎยฎยฎ ยฌ โ†’ 0 (2.34) if ๐›ฝ11, ๐›ฝ22 > 1/2 and ๐›ผ12 + ๐›ฝ12 > (๐›ผ11 + ๐›ผ22 + 1)/2, where ๐œ™๐‘– = (1, 2๐›ผ๐‘–๐‘– , . . . , ๐‘š๐›ผ๐‘–๐‘– )๐‘‡ for ๐‘– = 1, 2, and ๐œ™ = (1, 2๐›ผ12 , . . . , ๐‘š๐›ผ12 )๐‘‡ . Together with Theorem 3 this implies that ๐‘›๐ท๐›ผ ยฉยญยญยญยญยญ ยซ ยฏ๐‘ ๐‘›,1 โˆ’ ๐ด1๐œ™1 ยฏ๐‘ ๐‘›,2 โˆ’ ๐ด2๐œ™2 ยฏ๐‘ ๐‘›,12 โˆ’ ๐ด๐œ™ ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ โ†’ ๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ ฮฆ1 ฮฆ2 ฮฆ ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ (2.35) as ๐‘› โ†’ โˆž. Define a mapping f : R2๐‘š >0 ร— R โ†ฆโ†’ R3 as f(x) = ยฉยญยญยญยญยญ ยซ ร๐‘š ๐‘ข=1 ๐ฟ1,๐‘ข log ๐‘ฅ1,๐‘ข ร๐‘š ๐‘ข=1 ๐ฟ2,๐‘ข log ๐‘ฅ2,๐‘ข 1 2 ร๐‘š ๐‘ข=1 ๐ฟ3,๐‘ข log ๐‘ฅ2 3,๐‘ข ยชยฎยฎยฎยฎยฎ ยฌ 21 for any x = (๐‘ฅ1,1, . . . , ๐‘ฅ1,๐‘š, ๐‘ฅ2,1, . . . , ๐‘ฅ2,๐‘š, ๐‘ฅ3,1, . . . , ๐‘ฅ3,๐‘š) โˆˆ R2๐‘š >0 ร—R, where ๐ฟ๐‘–,๐‘ขโ€™s are constants such that ร๐‘š ๐‘ข=1 ๐ฟ๐‘–,๐‘ข = 0 and ร๐‘š ๐‘ข=1 ๐ฟ๐‘–,๐‘ข log ๐‘ข = 1, โˆ€๐‘– โˆˆ {1, 2, 3}. Denote by ยฏ ๐‘ ๐‘› = (ยฏ ๐‘ ๐‘‡ ๐‘›,1, ยฏ ๐‘ ๐‘‡ ๐‘›,2, ยฏ ๐‘ ๐‘‡ ๐‘›,12 )๐‘‡ and ๐“ = (๐ด1(๐œ™1)๐‘‡ , ๐ด2(๐œ™2)๐‘‡ , ๐ด๐œ™๐‘‡ )๐‘‡ , then f(ยฏ ๐‘ ๐‘›) = ( ห† ๐›ผ11, ห† ๐›ผ22, ห† ๐›ผ12)๐‘‡ , f(๐“) = (๐›ผ11, ๐›ผ22, ๐›ผ12)๐‘‡ . When ๐›ผ12 โ‰  2, ๐ด = ๐œŒ๐œŽ1๐œŽ2๐‘12 (8 โˆ’ 2๐›ผ12+1) โ‰  0 and f is thus continuously differentiable in a neighborhood of ๐“. Moreover, โˆ‡f(๐“) = (๐ดโˆ’1 1 หœ ๐ฟ ๐‘‡1 , ๐ดโˆ’1 2 หœ ๐ฟ ๐‘‡2 , ๐ดโˆ’1หœ ๐ฟ ๐‘‡3 )๐‘‡ . In a similar manner as in the proof of Theorem 5, it could be proved that as ๐‘› โ†’ โˆž, ๐‘›๐ท๐›ผ ยฉยญยญยญยญยญ ยซ ห† ๐›ผ11 โˆ’ ๐›ผ11 ห† ๐›ผ22 โˆ’ ๐›ผ22 ห† ๐›ผ12 โˆ’ ๐›ผ12 ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ โ†’ โˆ‡f(๐“)๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ ฮฆ1 ฮฆ2 ฮฆ ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ = ๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ ๐ดโˆ’2 1 หœ ๐ฟ ๐‘‡1 ฮฆ1หœ ๐ฟ 1 ๐ดโˆ’2 2 หœ ๐ฟ ๐‘‡2 ฮฆ2หœ ๐ฟ 2 ๐ดโˆ’2หœ ๐ฟ ๐‘‡3 ฮฆหœ ๐ฟ 3 ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ . This finishes the proof. 2.2.3 Simulation Denote by ๐‘€๐œˆ the Matรฉrn covariance function with parameter ๐œˆ. Namely, ๐‘€๐œˆ (๐‘ก) = 21โˆ’๐œˆฮ“(๐œˆ)โˆ’1|๐‘ก |๐œˆ๐พ๐œˆ (|๐‘ก |) = 1 โˆ’ ฮ“(1 โˆ’ ๐œˆ) 4๐œˆฮ“(1 + ๐œˆ) |๐‘ก |2๐œˆ + 1 4(1 โˆ’ ๐œˆ) |๐‘ก |2 + ๐‘‚(|๐‘ก |2๐œˆ+2) + ๐‘‚(|๐‘ก |4) as ๐‘ก โ†’ 0. Take ๐ถ11 = ๐ถ22 = ๐‘€0.5 and ๐ถ12 = ๐ถ21 = 0.5๐‘€0.55. Let ๐‘š = 50, ๐‘ = 1, ๐‘Ž = (1, โˆ’2, 1)๐‘‡ and ๐‘› โˆˆ {200, 250, . . . , 1500}. For each value of ๐‘›, generate 3000 independent realizations of the process ๐‘‹. In this case, ๐œŽ1 = ๐œŽ2 = 1, ๐›ผ11 = ๐›ผ22 = 1, ๐œŒ = 0.5, ๐›ผ12 = 1.1 > (๐›ผ11 +๐›ผ22)/2, ๐›ฝ12 = 0.9, ๐‘12 = 0.51.1ฮ“(1 โˆ’ 0.55)/ฮ“(1 + 0.55), ๐‘11 = ๐‘22 = 0.5ฮ“(0.5)/ฮ“(1.5), ๐ด = โˆ’๐œŒ๐œŽ1๐œŽ2๐‘12 ร• ๐‘˜,๐‘™ ๐‘Ž๐‘˜๐‘Ž๐‘™ |๐‘˜ โˆ’ ๐‘™ |๐›ผ12 = ๐‘12 (4 โˆ’ 21.1) โ‰ˆ 1.9177 โ‰  0, 22 ๐›ผ12 + ๐›ฝ12 = 2 > 3/2 = (๐›ผ11 + ๐›ผ22 + 1)/2. It follows from Theorem 2 that โˆ€๐‘ข = 1, . . . , ๐‘š, ฮฆ๐‘ข,๐‘ข = ๐ด11๐ด22 ร•โˆž โ„Ž=โˆ’โˆž ร•๐ฝ ๐‘ ,๐‘ก, ๐‘— ,๐‘™=โˆ’๐ฝ ๐‘Ž๐‘ ๐‘Ž๐‘ก๐‘Ž ๐‘—๐‘Ž๐‘™ |โ„Ž + ๐‘ ๐‘ข โˆ’ ๐‘ก๐‘ฃ|๐›ผ11 |โ„Ž + ๐‘—๐‘ข โˆ’ ๐‘™๐‘ฃ|๐›ผ22 = (๐ด11)2 ร•โˆž โ„Ž=โˆ’โˆž (6|โ„Ž| โˆ’ 4|โ„Ž + ๐‘ข| + |โ„Ž + 2๐‘ข| โˆ’ 4|โ„Ž โˆ’ ๐‘ข| + |โ„Ž + 2๐‘ข|)2 =  ฮ“(0.5) 2ฮ“(1.5) 2 16๐‘ข2 + 2 ร•๐‘ข โ„Ž=1 (6โ„Ž โˆ’ 4(โ„Ž + ๐‘ข) + 4๐‘ข โˆ’ 4(๐‘ข โˆ’ โ„Ž))2 +2 ร•2๐‘ข โ„Ž=๐‘ข+1 (6โ„Ž โˆ’ 4(โ„Ž + ๐‘ข) + 4๐‘ข โˆ’ 4(โ„Ž โˆ’ ๐‘ข))2 + 2 ร•โˆž โ„Ž=2๐‘ข+1 (6โ„Ž โˆ’ 4(โ„Ž + ๐‘ข) + 2โ„Ž โˆ’ 4(โ„Ž โˆ’ ๐‘ข))2 ! = 8 3 (4๐‘ข3 + 5๐‘ข) is the asymptotic marginal variance of ๐‘›1/2+(๐›ผ11+๐›ผ22)/2โˆ’๐›ผ12ยฏ ๐‘ ๐‘ข ๐‘›,12 as (2.15) presented. The empirical marginal distributions of ยฏ ๐‘ ๐‘ข ๐‘›,12 (๐‘ข = 1, 10, 20, 30, 40, 50) when ๐‘› = 1500 are shown in Figure 2.1, where 3000 realizations are presented in the histogram. Take ห† ๐›ผ12 as the ordinary least squares estimator for ๐›ฝ1 in the linear regression model 1 2 log(ยฏ ๐‘ ๐‘›,12)2 = ยฉยญยญยญยญยญยญยญยญ ยซ 1 log 1 1 log 2 ... ... 1 log๐‘š ยชยฎยฎยฎยฎยฎยฎยฎยฎ ยฌ ยฉยญยญ ยซ ๐›ฝ0 ๐›ฝ1 ยชยฎยฎ ยฌ , then as was simplified by Kent and Wood (1997), ห† ๐›ผ12 = 1 2 ร•๐‘š ๐‘ข=1 log ๐‘ข โˆ’ 1 ๐‘š ร๐‘š๐‘ฃ =1 log ๐‘ฃ ร๐‘š ๐‘ข=1  log ๐‘ข โˆ’ 1 ๐‘š ร๐‘š๐‘ฃ =1 log ๐‘ฃ 2 log(ยฏ ๐‘ ๐‘ข ๐‘›,12 )2, which is an example of the estimator defined in (2.27). Since conditions in Theorem 4 are satisfied, ห† ๐›ผ12 is a strongly consistent estimator for ๐›ผ12. The asymptotic normality follows from Theorem 5. Figure 2.3 and 2.2 confirm these claims. 2.3 Irregular Sampling Since regularly spaced data is not always available, it is of practical importance to study estimators of the smoothness parameter based on irregular sampling designs. Given observations of 23 u = 1 Density โˆ’20 โˆ’10 0 10 20 0.00 0.02 0.04 0.06 0.08 u = 10 Density โˆ’400 โˆ’200 0 200 400 0.000 0.001 0.002 0.003 0.004 u = 20 Density โˆ’1000 โˆ’500 0 500 1000 0.0000 0.0004 0.0008 0.0012 u = 30 Density โˆ’2000 โˆ’1000 0 1000 2000 0e+00 2eโˆ’04 4eโˆ’04 6eโˆ’04 u = 40 Density โˆ’2000 0 2000 4000 0e+00 2eโˆ’04 4eโˆ’04 u = 50 Density โˆ’4000 โˆ’2000 0 2000 4000 6000 0e+00 1eโˆ’04 2eโˆ’04 3eโˆ’04 Figure 2.1The empirical distribution of โˆš ๐‘›1โˆ’2๐›ผ12+๐›ผ11+๐›ผ22 (ยฏ ๐‘ ๐‘ข ๐‘› โˆ’ ๐ด๐‘ข๐›ผ12 ) when ๐‘› = 1500 with 3000 realizations. The red curve is the density function of ๐‘(0, 8(4๐‘ข3 + 5๐‘ข)/3). n1-2a12+a11+a22(a^ 12 - a12) Density โˆ’40 โˆ’20 0 20 40 0.00 0.04 0.08 0.12 Figure 2.2The empirical distribution of โˆš ๐‘›1โˆ’2๐›ผ12+๐›ผ11+๐›ผ22 ( ห† ๐›ผ12 โˆ’ ๐›ผ12) when ๐‘› = 1500 with 3000 realizations. The red curve is the density function of ๐‘(0, ๐ดโˆ’2หœ ๐ฟ ๐‘‡ฮฆ๐‘›หœ ๐ฟ ), where ฮฆ๐‘› is the empirical covariance matrix of ยฏ ๐‘ ๐‘›,12 with 3000 realizations when ๐‘› = 1500. 24 200 400 600 800 1000 1200 1400 0.20 0.25 0.30 n Bias Figure 2.3The average absolute value of bias among 3000 realizations when ๐‘› = 200, 250, . . . , 1500. a Gaussian process, constructing quadratic variations of a certain order is an essential step when defining increment-based estimators of the smoothness parameter. When the observation locations are not evenly spaced, coefficients of the increment discussed in Section 2.2 will be related to distances between sampling points. Begyn (2005), Loh (2015), and Loh et al. (2021) proposed several irregular sampling designs, based on which the infill asymptotic properties of quadratic variations are studied. Details of the irregular sampling designs are included in Appendix A. In Section 2.3.1, we discuss the joint behaviors of quadratic variations for two coordinates in the bivariate model based on the deformed sampling design. In Section 2.3.2, we define a strong consistent estimator for the cross smoothness parameter and present the rate of almost sure convergence for estimators based on the stratified sampling design. 2.3.1 Quadratic Variations Consider a special case of the bivariate stationary Gaussian process ๐‘‹(๐‘ก) = (๐‘‹1 (๐‘ก), ๐‘‹2(๐‘ก)) defined in (2.1-2.3). Let the autocovariance function for each coordinate of ๐‘‹ and the cross-covariance 25 function of ๐‘‹ all take the following form such that โˆ€๐‘ก, ๐‘  โˆˆ R and โˆ€๐‘–, ๐‘— โˆˆ {1, 2}, ๐ถ๐‘– ๐‘— (๐‘ก) = โŒŠ๐›ผร•๐‘– ๐‘—/2โŒ‹ ๐‘˜=0 ๐›ฝ๐‘˜ (๐œƒ๐‘– ๐‘— |๐‘ก |)2๐‘˜ + ๐›ฝโˆ— ๐›ผ๐‘– ๐‘—๐บ๐›ผ๐‘– ๐‘— (๐œƒ๐‘– ๐‘— |๐‘ก |) + ๐‘‚(|๐‘ก |๐›ผ๐‘– ๐‘—+๐œ) (2.36) as |๐‘ก | โ†’ 0 for some constant ๐œ > 0, where ๐›ฝ0 = ๐œŽ๐‘–๐œŽ๐‘— (๐œŒ+(1โˆ’๐œŒ)1๐‘–=๐‘— ), โŒŠ๐‘ฅโŒ‹ = max{๐‘ฅ0 โˆˆ Z : ๐‘ฅ0 < ๐‘ฅ}, ๐›ฝโˆ— ๐›ผ๐‘– ๐‘— โ‰  0, and ๐บ๐›ผ๐‘– ๐‘— : [0, โˆž) โ†ฆโ†’ R is defined by ๐บ๐›ผ๐‘– ๐‘— (๐‘ฅ) = ๐‘ฅ๐›ผ๐‘– ๐‘— + ๐‘ฅ๐›ผ๐‘– ๐‘— (log ๐‘ฅ โˆ’ 1)1Z(๐›ผ๐‘– ๐‘—/2) when ๐‘ฅ > 0 and ๐บ๐›ผ๐‘– ๐‘— (0) = 0. Under the setting of deformed sampling design defined in (A.3), we study the cross-covariance of quadratic variations defined in (A.6) for coordinates ๐‘‹1 and ๐‘‹2. Proposition 1. For dilation ๐œƒ โˆˆ {1, 2} and the order of increment โ„“ โˆˆ {1, 2, . . . , โŒŠ(๐‘› โˆ’ 1)/๐œƒโŒ‹}, ๐ธ(๐‘‰1 ๐œƒ,โ„“๐‘‰2 ๐œƒ,โ„“ ) ๐ธ๐‘‰1 ๐œƒ,โ„“๐ธ๐‘‰2 ๐œƒ,โ„“ = 8>>>>>>>> < >>>>>>>>: ๐‘‚(๐‘›๐›ผ11+๐›ผ22โˆ’2๐›ผ12โˆ’1) if ๐›ผ12 < 2โ„“ โˆ’ 1/2, ๐‘‚(๐‘›๐›ผ11+๐›ผ22โˆ’2๐›ผ12โˆ’1 log ๐‘›) if ๐›ผ12 = 2โ„“ โˆ’ 1/2, ๐‘‚(๐‘›๐›ผ11+๐›ผ22โˆ’4โ„“) if ๐›ผ12 > 2โ„“ โˆ’ 1/2, where ๐‘‰๐‘–๐œƒ ,โ„“ is the quadratic variation of ๐‘‹๐‘– (๐‘– = 1, 2) as defined in (A.6). Proof. For the brevity of symbols, denote by ๐‘Ž๐‘– = (๐‘Ž๐œƒ,โ„“;๐‘–,๐‘˜ )โ„“ ๐‘˜=0 the vector of increment defined in (A.4). Write ๐‘‹ ๐‘— ๐‘– = (๐‘‹๐‘— (๐‘ก๐‘–+๐œƒ๐‘˜ ))โ„“ ๐‘˜=0 and โˆ‡๐œƒ,โ„“๐‘‹ ๐‘— ๐‘– = ๐‘Ž๐‘‡๐‘– ๐‘‹ ๐‘— ๐‘– . Then ๐ธ(๐‘‰1 ๐œƒ,โ„“๐‘‰2 ๐œƒ,โ„“ ) = ๐ธ ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1 ยฉยญ ยซ ร•โ„“ ๐‘˜=0 ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘˜ ๐‘‹1(๐‘ก๐‘–+๐œƒ๐‘˜ ) !2 ร•โ„“ ๐‘˜=0 ๐‘Ž๐œƒ,โ„“; ๐‘— ,๐‘˜ ๐‘‹2(๐‘ก ๐‘—+๐œƒ๐‘˜ ) !2 ยชยฎ ยฌ = ๐ธ ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1  ๐‘Ž๐‘‡๐‘– ๐‘‹1 ๐‘– 2  ๐‘Ž๐‘‡๐‘— ๐‘‹2 ๐‘— 2 = ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1  ๐ธ  (๐‘‹1 ๐‘– )๐‘‡ (๐‘Ž๐‘–๐‘Ž๐‘‡๐‘– )๐‘‹1 ๐‘–  ๐ธ h (๐‘‹2 ๐‘— )๐‘‡ (๐‘Ž ๐‘—๐‘Ž๐‘‡๐‘— )๐‘‹2 ๐‘— i + 2  ๐ธ h (๐‘‹1 ๐‘– )๐‘‡ (๐‘Ž๐‘–๐‘Ž๐‘‡๐‘— )๐‘‹2 ๐‘— i 2 = ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1 ๐ธ(โˆ‡๐œƒ,โ„“๐‘‹1 ๐‘– )2๐ธ(โˆ‡๐œƒ,โ„“๐‘‹2 ๐‘— )2 + 2 ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1  ๐ธ h (๐‘‹1 ๐‘– )๐‘‡ (๐‘Ž๐‘–๐‘Ž๐‘‡๐‘— )๐‘‹2 ๐‘— i 2 . 26 By Theorem 1 (a) in Loh (2015), ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1 ๐ธ(โˆ‡๐œƒ,โ„“๐‘‹1 ๐‘– )2๐ธ(โˆ‡๐œƒ,โ„“๐‘‹2 ๐‘— )2 = ๐ธ๐‘‰1 ๐œƒ,โ„“๐ธ๐‘‰2 ๐œƒ,โ„“ = ๐‘‚(๐‘›2โ„“+1โˆ’๐›ผ11 ) ยท ๐‘‚(๐‘›2โ„“+1โˆ’๐›ผ22 ) (2.37) as ๐‘› โ†’ โˆž. With the cross-covariance function defined in (2.36), ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1  ๐ธ h (๐‘‹1 ๐‘– )๐‘‡ (๐‘Ž๐‘–๐‘Ž๐‘‡๐‘— )๐‘‹2 ๐‘— i 2 = ๐‘‚ ยฉยญยญ ยซ ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1 ยฉยญ ยซ ร•โ„“ ๐‘,๐‘ž=0 ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘๐‘Ž๐œƒ,โ„“; ๐‘— ,๐‘ž |๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž |๐›ผ12ยชยฎ ยฌ 2 ยชยฎยฎ ยฌ as ๐‘› โ†’ โˆž. The properties of โ„“th order increment imply that as ๐‘› โ†’ โˆž, ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1 ยฉยญ ยซ ร•โ„“ ๐‘,๐‘ž=0 ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘๐‘Ž๐œƒ,โ„“; ๐‘— ,๐‘ž |๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž |๐›ผ12ยชยฎ ยฌ 2 = ร• |๐‘–โˆ’๐‘— |โ‰ค๐œƒโ„“+1 ยฉยญ ยซ ร•โ„“ ๐‘,๐‘ž=0 ๐‘‚(๐‘›2โ„“)  ๐‘– โˆ’ ๐‘— + ๐œƒ(๐‘ โˆ’ ๐‘ž) ๐‘› โˆ’ 1 ๐œ‘(1) (0) + ๐‘‚(๐‘›โˆ’2) ๐›ผ12ยชยฎ ยฌ 2 + ร• |๐‘–โˆ’๐‘— |>๐œƒโ„“+1 ยฉยญ ยซ ร•โ„“ ๐‘,๐‘ž=0 ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘๐‘Ž๐œƒ,โ„“; ๐‘— ,๐‘ž |๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž |๐›ผ12ยชยฎ ยฌ 2 :=๐ด๐‘› + ๐ต๐‘›, where ๐ด๐‘› = ๐‘‚(๐‘›1+4โ„“โˆ’2๐›ผ12 ) and ๐ต๐‘› โ‰ค ร• |๐‘–โˆ’๐‘— |>๐œƒโ„“+1 ยฉยญ ยซ ร•โ„“ ๐‘,๐‘ž=0 |๐‘Ž๐œƒ,โ„“;๐‘–,๐‘๐‘Ž๐œƒ,โ„“; ๐‘— ,๐‘ž | ยท |๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž |๐›ผ12+2โ„“โˆ’2โ„“ยชยฎ ยฌ 2 โ‰ค ร• |๐‘–โˆ’๐‘— |>๐œƒโ„“+1 ยฉยญ ยซ max 0โ‰ค๐‘,๐‘žโ‰คโ„“ |๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž |๐›ผ12โˆ’2โ„“ ร•โ„“ ๐‘,๐‘ž=0 |๐‘Ž๐œƒ,โ„“;๐‘–,๐‘๐‘Ž๐œƒ,โ„“; ๐‘— ,๐‘ž (๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž)2โ„“ |ยชยฎ ยฌ 2 = ๐‘‚(1) ร• |๐‘–โˆ’๐‘— |>๐œƒโ„“+1 max 0โ‰ค๐‘,๐‘žโ‰คโ„“ |๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž |2๐›ผ12โˆ’4โ„“ = ๐‘‚(๐‘›2) ยน 1 1/๐‘› ๐‘ 2๐›ผ12โˆ’4โ„“๐‘‘๐‘ . Thus, ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–, ๐‘—=1 ยฉยญ ยซ ร•โ„“ ๐‘,๐‘ž=0 ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘๐‘Ž๐œƒ,โ„“; ๐‘— ,๐‘ž |๐‘ก๐‘–+๐œƒ ๐‘ โˆ’ ๐‘ก ๐‘—+๐œƒ๐‘ž |๐›ผ12ยชยฎ ยฌ 2 = 8>>>>>>>> < >>>>>>>>: ๐‘‚(๐‘›1+4โ„“โˆ’2๐›ผ12 ) if ๐›ผ12 < 2โ„“ โˆ’ 1/2, ๐‘‚(๐‘›2 log ๐‘›) if ๐›ผ12 = 2โ„“ โˆ’ 1/2, ๐‘‚(๐‘›2) if ๐›ผ12 > 2โ„“ โˆ’ 1/2. 27 This finishes the proof together with (2.37). For a stationary GRF ๐‘‹ on R๐‘‘ with zero mean and the isotropic Matรฉrn covariance function ๐ถ(t) = ๐œŽ2(๐œ‚||t||)๐œˆ 2๐œˆโˆ’1ฮ“(๐œˆ) ๐œ…๐œˆ (๐œ‚||t||), โˆ€t โˆˆ R๐‘‘, (2.38) where ๐œŽ, ๐œ‚, ๐œˆ > 0 are constants, we discuss the finite sample joint distribution of ๐‘‰1,1,โ„“ and ๐‘‰2,1,โ„“ in the remaining of this section. The quadratic variations ๐‘‰๐œƒ,๐‘‘,โ„“ are defined in (A.21). Consider the case when ๐‘‘ = 1 and 0 < ๐œˆ < โ„“, ๐œˆ โˆ‰ Z. Write โˆ‡๐œƒ,โ„“๐‘‹ = ๔€€€ โˆ‡๐œƒ,1,โ„“๐‘‹๐‘– ๐‘›โˆ’2โ„“๐œ”๐‘› ๐‘–=1 and denote by ๐‘‰๐‘ข๐‘ฃ (๐‘›, โ„“) = (โˆ‡๐‘ข,โ„“๐‘‹)๐‘‡โˆ‡๐‘ฃ,โ„“๐‘‹, ๐‘Š๐‘ข๐‘ฃ (๐‘›, โ„“) = ๐ถ๐‘œ๐‘ฃ(โˆ‡๐‘ข,โ„“๐‘‹, โˆ‡๐‘ฃ,โ„“๐‘‹) for ๐‘ข, ๐‘ฃ โˆˆ {1, 2}. For the brevity, write ๐‘‰๐‘ข๐‘ฃ (๐‘›, โ„“) as ๐‘‰๐‘ข๐‘ฃ and ๐‘Š๐‘ข๐‘ฃ (๐‘›, โ„“) as ๐‘Š๐‘ข๐‘ฃ in the following text. It follows from Eq.(15) in Loh et al. (2021) that as ๐‘› โ†’ โˆž, (๐‘Š๐‘ข๐‘ฃ)๐‘–,๐‘–+โ„Ž =๐›ฝโˆ— ๐œˆ ร•โ„“ ๐‘— ,๐‘˜=0 ๐‘i,๐‘ข,1,โ„“ ( ๐‘— )๐‘i+h,๐‘ฃ,1,โ„“ (๐‘˜) โ„Ž + (๐‘ฃ๐‘˜ โˆ’ ๐‘ข ๐‘— )๐œ”๐‘› + ๐›ฟ๐‘–+โ„Ž,๐‘˜ โˆ’ ๐›ฟ๐‘–, ๐‘— ๐‘› 2๐œˆ + ๐‘‚ ๐œ”๐‘› ๐‘› 2โ„“  + ๐‘‚ ๐œ”๐‘› ๐‘› 2๐œˆ+2 =๐›ฝโˆ— ๐œˆ ร•โ„“ ๐‘— ,๐‘˜=0  ๐‘โ„“ ( ๐‘— ) + ๐‘‚(๐œ”โˆ’1 ๐‘› )   ๐‘โ„“ (๐‘˜) + ๐‘‚(๐œ”โˆ’1 ๐‘› )  โ„Ž + (๐‘ฃ๐‘˜ โˆ’ ๐‘ข ๐‘— )๐œ”๐‘› + ๐›ฟ๐‘–+โ„Ž,๐‘˜ โˆ’ ๐›ฟ๐‘–, ๐‘— ๐‘› 2๐œˆ + ๐‘œ ๐œ”๐‘› ๐‘› 2๐œˆ  =๐›ฝโˆ— ๐œˆ ร•โ„“ ๐‘— ,๐‘˜=0 ๐‘โ„“ ( ๐‘— )๐‘โ„“ (๐‘˜) โ„Ž + (๐‘ฃ๐‘˜ โˆ’ ๐‘ข ๐‘— )๐œ”๐‘› + ๐›ฟ๐‘–+โ„Ž,๐‘˜ โˆ’ ๐›ฟ๐‘–, ๐‘— ๐‘› 2๐œˆ + ๐‘œ ๐œ”๐‘› ๐‘› 2๐œˆ  = ๐œ”๐‘› ๐‘› 2๐œˆ ๐›ฝโˆ— ๐œˆ ร•โ„“ ๐‘— ,๐‘˜=0 ๐‘โ„“ ( ๐‘— )๐‘โ„“ (๐‘˜) ๐‘ฃ๐‘˜ โˆ’ ๐‘ข ๐‘— + โ„Ž + ๐›ฟ๐‘–+โ„Ž,๐‘˜ โˆ’ ๐›ฟ๐‘–, ๐‘— ๐œ”๐‘› 2๐œˆ + ๐‘œ ๐œ”๐‘› ๐‘› 2๐œˆ  (2.39) for any 1 โ‰ค ๐‘– โ‰ค ๐‘– + โ„Ž โ‰ค ๐‘› โˆ’ 2โ„“๐œ”๐‘›. Denote by ๐‘Ž๐‘ข๐‘ฃ (๐œˆ, โ„“) = ๐›ฝโˆ— ๐œˆ รโ„“ ๐‘— ,๐‘˜=0 ๐‘โ„“ ( ๐‘— )๐‘โ„“ (๐‘˜) |๐‘ฃ๐‘˜ โˆ’ ๐‘ข ๐‘— |2๐œˆ, then โˆ€1 โ‰ค ๐‘– โ‰ค ๐‘– + โ„Ž โ‰ค ๐‘› โˆ’ 2โ„“๐œ”๐‘›, (๐‘›/๐œ”๐‘›)2๐œˆ (๐‘Š๐‘ข๐‘ฃ)๐‘–,๐‘–+โ„Ž โ†’ ๐‘Ž๐‘ข๐‘ฃ (๐œˆ, โ„“) (2.40) as ๐‘› โ†’ โˆž. 28 Take ๐œ– โˆผ ๐‘(0, ๐ผ๐‘›โˆ’2โ„“๐œ”๐‘› ), then for ๐œƒ = 1, 2, (๐‘›/๐œ”๐‘›)2๐œˆ ๐‘› โˆ’ 2โ„“๐œ”๐‘› ๐‘‰๐œƒ,1,โ„“ ๐‘‘ = (๐‘›/๐œ”๐‘›)2๐œˆ ๐‘› โˆ’ 2โ„“๐œ”๐‘› ๐œ–๐‘‡๐‘Š๐œƒ๐œƒ๐œ– ๐‘‘ = ๐œ–๐‘‡  (๐‘›/๐œ”๐‘›)2๐œˆ ๐‘› โˆ’ 2โ„“๐œ”๐‘› ๐‘‘๐‘–๐‘Ž๐‘”(eig(๐‘Š๐œƒ๐œƒ ))  ๐œ– := ๐œ–๐‘‡ฮ›๐œƒ๐‘› ๐œ–, the cumulant generating function of which is log ๐ธ๐‘’๐‘ก๐œ–๐‘‡ฮ›๐œƒ ๐‘› ๐œ– = ๐‘›โˆ’ร•2โ„“๐œ”๐‘› ๐‘˜=1 log(1 โˆ’ 2๐‘ก๐œ†๐‘˜ )โˆ’1/2 = 1 2 ร•โˆž ๐‘š=1 (2๐‘ก)๐‘š ๐‘š ๐‘›โˆ’ร•2โ„“๐œ”๐‘› ๐‘˜=1 ๐œ†๐‘š๐‘˜ , where ๐‘ก < min(๐œ†โˆ’1 ๐‘˜ ) and ๐œ†๐‘˜ , ๐‘˜ = 1, . . . , ๐‘› โˆ’ 2โ„“๐œ”๐‘› are diagonal elements of ฮ›๐œƒ๐‘› . Denote by ๐‘Ÿ๐‘› = (๐‘›/๐œ”๐‘›)2๐œˆ ๐‘›โˆ’2โ„“๐œ”๐‘› and recall the notation ๐‘Š๐œƒ = ๐‘‰๐œƒ,1,โ„“/๐ธ๐‘‰๐œƒ,1,โ„“ for ๐œƒ = 1, 2. Write ๐ป๐‘› = ๐‘Š22โˆ’๐‘Š21๐‘Šโˆ’1 11๐‘Š12, then โˆ‡2,โ„“๐‘‹|โˆ‡1,โ„“๐‘‹ โˆผ ๐‘(๐‘Š21๐‘Šโˆ’1 11 โˆ‡1,โ„“๐‘‹, ๐ป๐‘›) and the moment generating function of ๐‘‰2,1,โ„“ |โˆ‡1,โ„“๐‘‹ is ๐‘€๐‘‰2,1,โ„“ |โˆ‡1,โ„“ ๐‘‹ (๐‘ก) =|๐ผ โˆ’ 2๐‘ก๐ป๐‘›|โˆ’1/2 exp  โˆ’1 2 (โˆ‡1,โ„“๐‘‹)๐‘‡๐‘Šโˆ’1 11๐‘Š12  ๐ผ โˆ’ (๐ผ โˆ’ 2๐‘ก๐ป๐‘›)โˆ’1  ๐ปโˆ’1 ๐‘› ๐‘Š21๐‘Šโˆ’1 11 โˆ‡1,โ„“๐‘‹  , (2.41) where ๐ผ is the (๐‘› โˆ’ 2โ„“๐œ”๐‘›)-dimensional identity matrix. Moreover, the moment generating function of the vector หœ ๐‘‰ := ๐‘Ÿ๐‘› (๐‘‰1,1,โ„“,๐‘‰2,1,โ„“)๐‘‡ is ๐‘€หœ ๐‘‰ (๐‘ , ๐‘ก) = ๐ผ2(๐‘›โˆ’2โ„“๐œ”๐‘›) โˆ’ 2 ยฉยญยญ ยซ ๐‘Ÿ๐‘›๐‘ก๐ป๐‘› 0 0 ๐ป๐‘ ๐‘ก ๐‘› ๐‘Š11 ยชยฎยฎ ยฌ โˆ’1/2 , (2.42) where ๐ป๐‘ ๐‘ก ๐‘› = ๐‘Ÿ๐‘›๐‘ ๐ผ โˆ’ 1 2๐‘Šโˆ’1 11๐‘Š12  ๐ผ โˆ’ (๐ผ โˆ’ 2๐‘Ÿ๐‘›๐‘ก๐ป๐‘›)โˆ’1  ๐ปโˆ’1 ๐‘› ๐‘Š21๐‘Šโˆ’1 11 . 29 This is due to the fact that ๐‘€หœ ๐‘‰ (๐‘ , ๐‘ก) = ๐ธ  ๐‘’๐‘Ÿ๐‘› (๐‘ ๐‘‰1,1,โ„“+๐‘ก๐‘‰2,1,โ„“ )  = ๐ธ  ๐‘’๐‘Ÿ๐‘›๐‘ ๐‘‰1,1,โ„“๐ธ  ๐‘’๐‘Ÿ๐‘›๐‘ก๐‘‰2,1,โ„“ |โˆ‡1,โ„“๐‘‹   = ๐ธ  ๐‘’๐‘Ÿ๐‘›๐‘ ๐‘‰1,1,โ„“๐‘€๐‘‰2,1,โ„“ |โˆ‡1,โ„“ ๐‘‹ (๐‘Ÿ๐‘›๐‘ก)  = |๐ผ โˆ’ 2๐‘Ÿ๐‘›๐‘ก๐ป๐‘›|โˆ’1/2๐ธ h exp  (โˆ‡1,โ„“๐‘‹)๐‘‡๐ป๐‘ ๐‘ก ๐‘› โˆ‡1,โ„“๐‘‹ i = |๐ผ โˆ’ 2๐‘Ÿ๐‘›๐‘ก๐ป๐‘›|โˆ’1/2๐‘€(โˆ‡1,โ„“ ๐‘‹)๐‘‡๐ป๐‘ ๐‘ก ๐‘› โˆ‡1,โ„“ ๐‘‹ (1) = |๐ผ โˆ’ 2๐‘Ÿ๐‘›๐‘ก๐ป๐‘›|โˆ’1/2|๐ผ โˆ’ 2๐ป๐‘ ๐‘ก ๐‘› ๐‘Š11|โˆ’1/2 = ๐ผ2(๐‘›โˆ’2โ„“๐œ”๐‘›) โˆ’ 2 ยฉยญยญ ยซ ๐‘Ÿ๐‘›๐‘ก๐ป๐‘› 0 0 ๐ป๐‘ ๐‘ก ๐‘› ๐‘Š11 ยชยฎยฎ ยฌ โˆ’1/2 . 2.3.2 Estimating Smoothness Parameters We first consider a univariate stationary GRF ๐‘‹ on R๐‘‘ with zero mean and the isotropic Matรฉrn covariance function (2.38). Based on the stratified design introduced in Appendix A.2.3, the following results on the rate of convergence hold for ห† ๐œˆ๐‘›,โ„“ defined in (A.26). Proposition 2. When ๐‘‘ โˆˆ {1, 2, 3} and โ„“ โˆˆ Z+, 1. if 0 < ๐œˆ โ‰ค โ„“ โˆ’ 1, then ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐‘˜ (๐œˆห†๐‘›,โ„“ โˆ’ ๐œˆ) ๐‘Žโ†’.๐‘ . 0 as ๐‘› โ†’ โˆž for any (๐‘‘(1 โˆ’ ๐›พ0)/2 โˆ’ ๐›พ0) โˆจ (๐‘‘/2 โˆ’ 2) (1 โˆ’ ๐›พ0) < ๐‘˜ < ๐‘‘(1 โˆ’ ๐›พ0)/2; 2. if โ„“ โˆ’ 1 < ๐œˆ < โ„“ โˆ’ ๐‘‘/4, then ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐‘˜ ( ห† ๐œˆ๐‘›,โ„“ โˆ’ ๐œˆ) ๐‘Žโ†’.๐‘ . 0 as ๐‘› โ†’ โˆž for any (๐‘‘(1 โˆ’ ๐›พ0)/2 โˆ’ ๐›พ0) โˆจ (๐‘‘/2 โˆ’ 2โ„“ + 2๐œˆ) (1 โˆ’ ๐›พ0) < ๐‘˜ < ๐‘‘(1 โˆ’ ๐›พ0)/2; 3. if ๐œˆ = โ„“ โˆ’ ๐‘‘/4, then ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐‘˜ (log ๐‘›)โˆ’1/2 ( ห† ๐œˆ๐‘›,โ„“ โˆ’ ๐œˆ) ๐‘Žโ†’.๐‘ . 0 as ๐‘› โ†’ โˆž 30 for any (๐‘‘(1 โˆ’ ๐›พ0)/2 โˆ’ ๐›พ0) โˆจ (๐‘‘/2 โˆ’ 2โ„“ + 2๐œˆ) (1 โˆ’ ๐›พ0) < ๐‘˜ < ๐‘‘(1 โˆ’ ๐›พ0)/2; 4. if โ„“ โˆ’ ๐‘‘/4 < ๐œˆ < โ„“, then ๐‘›(2โ„“โˆ’2๐œˆ) (1โˆ’๐›พ0)โˆ’๐‘˜ (๐œˆห†๐‘›,โ„“ โˆ’ ๐œˆ) ๐‘Žโ†’.๐‘ . 0 as ๐‘› โ†’ โˆž for any (2โ„“ โˆ’ 2๐œˆ) (1 โˆ’ ๐›พ0) โˆ’ ๐›พ0 < ๐‘˜ < (2โ„“ โˆ’ 2๐œˆ) (1 โˆ’ ๐›พ0). Proof. Theorem 1(a) in Loh et al. (2021) implies that as ๐‘› โ†’ โˆž ห† ๐œˆ๐‘›,โ„“ โˆ’ ๐œˆ = log(๐‘‰2,๐‘‘,โ„“/๐‘‰1,๐‘‘,โ„“) โˆ’ log(22๐œˆ) 2 log 2 = 1 2 log 2 logยฉยญ ยซ ๐‘‰2,๐‘‘,โ„“/๐ธ๐‘‰2,๐‘‘,โ„“ ๐‘‰1,๐‘‘,โ„“/๐ธ๐‘‰1,๐‘‘,โ„“ ยท ๐ธ๐‘‰2,๐‘‘,โ„“ ๐ธ๐‘‰1,๐‘‘,โ„“ 22๐œˆ ยชยฎ ยฌ = 1 2 log 2 logยฉยญ ยซ ๐‘‰2,๐‘‘,โ„“/๐ธ๐‘‰2,๐‘‘,โ„“ ๐‘‰1,๐‘‘,โ„“/๐ธ๐‘‰1,๐‘‘,โ„“ ๔€€€ 22๐œˆ + ๐‘‚(โ„Ž(๐‘›))  22๐œˆ ยชยฎ ยฌ = 1 2 log 2 log  ๐‘‰2,๐‘‘,โ„“/๐ธ๐‘‰2,๐‘‘,โ„“ ๐‘‰1,๐‘‘,โ„“/๐ธ๐‘‰1,๐‘‘,โ„“ (1 + ๐‘‚(โ„Ž(๐‘›)))  , (2.43) where โ„Ž(๐‘›) = 8>>>>>>>> < >>>>>>>>: ๐‘›โˆ’๐›พ0 + ๐‘›(๐›พ0โˆ’1) ( (2โ„“โˆ’2๐œˆ)โˆง2) if ๐œˆ โˆ‰ Z, ๐‘›โˆ’๐›พ0 + ๐‘›2(๐›พ0โˆ’1) log ๐‘› if ๐œˆ = โ„“ โˆ’ 1, ๐‘›โˆ’๐›พ0 + ๐‘›2(๐›พ0โˆ’1) if 0 < ๐œˆ โ‰ค โ„“ โˆ’ 2, ๐œˆ โˆˆ Z. Denote by ๐‘Š๐œƒ = ๐‘‰๐œƒ,๐‘‘,โ„“/๐ธ๐‘‰๐œƒ,๐‘‘,โ„“ for ๐œƒ = 1, 2, then it suffices to find the convergence rate of ๐‘Š2/๐‘Š1 โˆ’ 1. It was proved in Loh et al. (2021) (P21-25) that ๐‘ƒ(|๐‘Š๐œƒ โˆ’ 1| โ‰ฅ ๐œ–) โ‰ค 2 exp  โˆ’๐ถ min  ๐œ– ๐‘Ž๐‘› , ๐œ–2 ๐‘๐‘›  , โˆ€๐œ– > 0, where as ๐‘› โ†’ โˆž, ๐‘Ž๐‘› = 8>>>>>>>> < >>>>>>>>: ๐‘‚(๐‘›๐‘‘(๐›พ0โˆ’1)) if ๐œˆ < โ„“ โˆ’ ๐‘‘/2, ๐‘‚(๐‘›๐‘‘(๐›พ0โˆ’1) log ๐‘›) if ๐œˆ = โ„“ โˆ’ ๐‘‘/2, ๐‘‚(๐‘›(2โ„“โˆ’2๐œˆ) (๐›พ0โˆ’1)) if โ„“ โˆ’ ๐‘‘/2 < ๐œˆ < โ„“, 31 ๐‘๐‘› = 8>>>>>>>> < >>>>>>>>: ๐‘‚(๐‘›๐‘‘(๐›พ0โˆ’1)) if ๐œˆ < โ„“ โˆ’ ๐‘‘/4, ๐‘‚(๐‘›๐‘‘(๐›พ0โˆ’1) log ๐‘›) if ๐œˆ = โ„“ โˆ’ ๐‘‘/4, ๐‘‚(๐‘›(4โ„“โˆ’4๐œˆ) (๐›พ0โˆ’1)) if โ„“ โˆ’ ๐‘‘/4 < ๐œˆ < โ„“. Then for any positive constant ๐‘0, ๐‘ƒ(๐‘0|๐‘Š๐œƒ โˆ’ 1| โ‰ฅ ๐œ–) โ‰ค 2 exp โˆ’๐ถ min ( ๐œ– ๐‘0๐‘Ž๐‘› , ๐œ–2 ๐‘2 0๐‘๐‘› )! , โˆ€๐œ– > 0. By the Borel-Cantelli lemma, for ๐œƒ = 1, 2, ๐‘“ (๐‘›, ๐‘˜) (๐‘Š๐œƒ โˆ’ 1) โ†’ 0 a.s. as ๐‘› โ†’ โˆž for any ๐‘˜ > 0, where ๐‘“ (๐‘›, ๐‘˜) = 8>>>>>>>> < >>>>>>>>: ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐‘˜ if ๐œˆ < โ„“ โˆ’ ๐‘‘/4, ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐‘˜ (log ๐‘›)โˆ’1/2 if ๐œˆ = โ„“ โˆ’ ๐‘‘/4, ๐‘›(2โ„“โˆ’2๐œˆ) (1โˆ’๐›พ0)โˆ’๐‘˜ if โ„“ โˆ’ ๐‘‘/4 < ๐œˆ < โ„“. Thus, ๐‘“ (๐‘›, ๐‘˜) (๐‘Š2/๐‘Š1 โˆ’ 1) = ๐‘“ (๐‘›, ๐‘˜) ( (๐‘Š2 โˆ’ 1) โˆ’ (๐‘Š1 โˆ’ 1))/๐‘Š1 โ†’ 0 a.s. as ๐‘› โ†’ โˆž for any ๐‘˜ > 0. It follows from (2.43) that as ๐‘› โ†’ โˆž, ๐‘“ (๐‘›, ๐‘˜) ( ห† ๐œˆ๐‘›,โ„“ โˆ’ ๐œˆ) = ๐‘“ (๐‘›, ๐‘˜) 2 log 2 log  ๐‘Š2 ๐‘Š1 (1 + ๐‘‚(โ„Ž(๐‘›)))  โˆผ ๐‘“ (๐‘›, ๐‘˜)  ๐‘Š2 ๐‘Š1 (1 + ๐‘‚(โ„Ž(๐‘›))) โˆ’ 1  = ๐‘“ (๐‘›, ๐‘˜) (๐‘Š2/๐‘Š1 โˆ’ 1) + ๐‘“ (๐‘›, ๐‘˜)๐‘‚(โ„Ž(๐‘›)). When ๐‘‘ โˆˆ {1, 2, 3}, it always holds that โ„“ โˆ’ 1 < โ„“ โˆ’ ๐‘‘/4 < โ„“ and ๐‘‘/4 โˆ‰ Z, so ๐‘“ (๐‘›, ๐‘˜)โ„Ž(๐‘›) = 8>>>>>>>>>>>>>>>> < >>>>>>>>>>>>>>>>: ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐›พ0โˆ’๐‘˜ + ๐‘›(๐‘‘/2โˆ’2) (1โˆ’๐›พ0)โˆ’๐‘˜ if 0 < ๐œˆ < โ„“ โˆ’ 1, ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐›พ0โˆ’๐‘˜ + ๐‘›(๐‘‘/2โˆ’2) (1โˆ’๐›พ0)โˆ’๐‘˜ log ๐‘› if ๐œˆ = โ„“ โˆ’ 1, ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐›พ0โˆ’๐‘˜ + ๐‘›(๐‘‘/2โˆ’2โ„“+2๐œˆ) (1โˆ’๐›พ0)โˆ’๐‘˜ if โ„“ โˆ’ 1 < ๐œˆ < โ„“ โˆ’ ๐‘‘/4, (๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐›พ0โˆ’๐‘˜ + ๐‘›(๐‘‘/2โˆ’2โ„“+2๐œˆ) (1โˆ’๐›พ0)โˆ’๐‘˜ ) (log ๐‘›)โˆ’1/2 if ๐œˆ = โ„“ โˆ’ ๐‘‘/4, ๐‘›(2โ„“โˆ’2๐œˆ) (1โˆ’๐›พ0)โˆ’๐›พ0โˆ’๐‘˜ + ๐‘›โˆ’๐‘˜ if โ„“ โˆ’ ๐‘‘/4 < ๐œˆ < โ„“. This finishes the proof. 32 Remark 1. Briefly speaking, as ๐‘› โ†’ โˆž, it holds that ๐‘›(1โˆ’๐›พ0) (๐‘‘/2โˆง(2โ„“โˆ’2๐œˆ))โˆ’๐‘˜ (๐œˆห† โˆ’ ๐œˆ) ๐‘Žโ†’.๐‘ . 0 if ๐œˆ โ‰  โ„“ โˆ’ ๐‘‘/4, (2.44) ๐‘›๐‘‘(1โˆ’๐›พ0)/2โˆ’๐‘˜ (log ๐‘›)โˆ’1/2 (๐œˆห† โˆ’ ๐œˆ) ๐‘Žโ†’.๐‘ . 0 if ๐œˆ = โ„“ โˆ’ ๐‘‘/4, (2.45) where ๐‘˜ is a constant whose range depends on ๐‘‘, ๐›พ0, and โ„“ โˆ’ ๐œˆ. In the remaining of this section, we consider a bivariate Gaussian process ๐‘‹(๐‘ก) = (๐‘‹1(๐‘ก), ๐‘‹2(๐‘ก)) with zero mean and covariance function ๐ถ(๐‘ก) = ยฉยญยญ ยซ ๐ถ11 (๐‘ก) ๐ถ12 (๐‘ก) ๐ถ21(๐‘ก) ๐ถ22 (๐‘ก) ยชยฎยฎ ยฌ , where ๐ถ๐‘– ๐‘— is the Matรฉrn covariance function ๐ถ๐‘– ๐‘— (๐‘ก) = ๐œŽ2 ๐‘– ๐‘— (๐œ‚๐‘– ๐‘— |๐‘ก |)๐œˆ๐‘– ๐‘— 2๐œˆ๐‘– ๐‘—โˆ’1ฮ“(๐œˆ๐‘– ๐‘— ) ๐œ…๐œˆ๐‘– ๐‘— (๐œ‚๐‘– ๐‘— |๐‘ก |), โˆ€๐‘ก โˆˆ R, (2.46) where ๐‘–, ๐‘— โˆˆ {1, 2}, ๐œŽ12 = ๐œŽ21 = ๐œŒ๐œŽ11๐œŽ22, ๐œˆ๐‘– ๐‘— , ๐œ‚๐‘– ๐‘— , ๐œŽ11, ๐œŽ22 > 0, |๐œŒ| โˆˆ (0, 1). Under the stratified sampling design introduced in Appendix A.2.3, write ๐‘Œ๐œƒ ๐‘›,1 = (โˆ‡1 ๐œƒ,1,โ„“๐‘‹1, โˆ‡1 ๐œƒ,1,โ„“๐‘‹2, . . . , โˆ‡1 ๐œƒ,1,โ„“๐‘‹๐‘›โˆ’2โ„“๐œ”๐‘› )๐‘‡ , ๐‘Œ๐œƒ ๐‘›,2 = (โˆ‡2 ๐œƒ,1,โ„“๐‘‹1, โˆ‡2 ๐œƒ,1,โ„“๐‘‹2, . . . , โˆ‡2 ๐œƒ,1,โ„“๐‘‹๐‘›โˆ’2โ„“๐œ”๐‘› )๐‘‡ , ๐‘Œ๐œƒ ๐‘› = ยฉยญยญ ยซ ๐‘Œ๐œƒ ๐‘›,1 ๐‘Œ๐œƒ ๐‘›,2 ยชยฎยฎ ยฌ โˆˆ R2(๐‘›โˆ’2โ„“๐œ”๐‘›) , and define the covariation as ๐‘๐œƒ ๐‘›,12 = ร• 1โ‰ค๐‘–โ‰ค๐‘›โˆ’2โ„“๐œ”๐‘›  โˆ‡1 ๐œƒ,1,โ„“๐‘‹๐‘–   โˆ‡2 ๐œƒ,1,โ„“๐‘‹๐‘–  = 1 2 (๐‘Œ๐œƒ ๐‘› )๐‘‡ ยฉยญยญ ยซ 0 ๐ผ๐‘›โˆ’2โ„“๐œ”๐‘› ๐ผ๐‘›โˆ’2โ„“๐œ”๐‘› 0 ยชยฎยฎ ยฌ ๐‘Œ๐œƒ ๐‘› , (2.47) where ๐œƒ โˆˆ {1, 2}, โ„“ โˆˆ Z+, and โˆ‡๐‘˜ ๐œƒ,1,โ„“๐‘‹๐‘– = ร•โ„“ยฏ ๐‘—=0 ๐‘i,๐œƒ,1,โ„“ ( ๐‘— )๐‘‹๐‘˜ (xi, ๐‘— ), ๐‘– โˆˆ {1, . . . , ๐‘› โˆ’ 2โ„“๐œ”๐‘›}, ๐‘˜ = 1, 2. (2.48) 33 Proposition 3. When 2(๐œˆ11 + ๐œˆ22) < 4๐œˆ12 < {(2(๐œˆ11 + ๐œˆ22) + 1) โˆง 4โ„“} and ๐œˆ11 โˆจ ๐œˆ22 < โ„“, ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 ๐‘Žโ†’.๐‘ . 1 as ๐‘› โ†’ โˆž, (2.49) where ๐œƒ โˆˆ {1, 2} and โ„“ โˆˆ Z+. Proof. It follows from Theorem 1 (a) in Loh et al. (2021) that as ๐‘› โ†’ โˆž, ๐ธ๐‘๐œƒ ๐‘›,12 =  ๐œ”๐‘›๐œƒ ๐‘› 2๐œˆ12 (๐‘› โˆ’ 2โ„“๐œ”๐‘›)ยฉยญ ยซ ๐›ฝโˆ— ร• 1โ‰ค ๐‘— ,๐‘˜โ‰คโ„“ ๐‘ ๐‘— ,๐œƒ,1,โ„“๐‘๐‘˜,๐œƒ,1,โ„“๐บ๐œˆ12 (| ๐‘— โˆ’ ๐‘˜ |) + ๐‘œ(1)ยชยฎ ยฌ , (2.50) where ๐œƒ โˆˆ {1, 2} and โ„“ โˆˆ Z+. For ๐‘˜ = 1, 2, let โˆ‡๐‘˜ ๐œƒ,โ„“๐‘‹ =  โˆ‡๐‘˜ ๐œƒ,1,โ„“๐‘‹๐‘– ๐‘›โˆ’2โ„“๐œ”๐‘› ๐‘–=1 and write ๐‘Š๐‘˜ ๐œƒ๐œƒ (๐‘›, โ„“) = ๐ถ๐‘œ๐‘ฃ(โˆ‡๐‘˜ ๐œƒ,โ„“๐‘‹, โˆ‡๐‘˜ ๐œƒ,โ„“๐‘‹), ๐‘Š12 ๐œƒ๐œƒ (๐‘›, โ„“) = ๐ถ๐‘œ๐‘ฃ(โˆ‡1 ๐œƒ,โ„“๐‘‹, โˆ‡2 ๐œƒ,โ„“๐‘‹). Then the variance of the covariation follows ๐‘ฃ๐‘Ž๐‘Ÿ ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 ! = ๐ธ(๐‘๐œƒ ๐‘›,12 )2 โˆ’ (๐ธ๐‘๐œƒ ๐‘›,12 )2 (๐ธ๐‘๐œƒ ๐‘›,12 )2 = ร 1โ‰ค๐‘–, ๐‘—โ‰ค๐‘›โˆ’2โ„“๐œ”๐‘› ๐ธ  โˆ‡1 ๐œƒ,1,โ„“๐‘‹๐‘–โˆ‡1 ๐œƒ,1,โ„“๐‘‹๐‘—โˆ‡2 ๐œƒ,1,โ„“๐‘‹๐‘–โˆ‡2 ๐œƒ,1,โ„“๐‘‹๐‘—  โˆ’ (๐ธ๐‘๐œƒ ๐‘›,12 )2 (๐ธ๐‘๐œƒ ๐‘›,12 )2 = (๐ธ๐‘๐œƒ ๐‘›,12 )2 + ร 1โ‰ค๐‘–, ๐‘—โ‰ค๐‘›โˆ’2โ„“๐œ”๐‘›  (๐‘Š1 ๐œƒ๐œƒ )๐‘–, ๐‘— (๐‘Š2 ๐œƒ๐œƒ )๐‘–, ๐‘— + (๐‘Š12 ๐œƒ๐œƒ )2 ๐‘–, ๐‘—  โˆ’ (๐ธ๐‘๐œƒ ๐‘›,12 )2 (๐ธ๐‘๐œƒ ๐‘›,12 )2 = 1 (๐ธ๐‘๐œƒ ๐‘›,12 )2 ร• 1โ‰ค๐‘–, ๐‘—โ‰ค๐‘›โˆ’2โ„“๐œ”๐‘› (๐‘Š1 ๐œƒ๐œƒ )๐‘–, ๐‘— (๐‘Š2 ๐œƒ๐œƒ )๐‘–, ๐‘— + (๐‘Š12 ๐œƒ๐œƒ )2 ๐‘–, ๐‘— . It follows from the same manner as in (3.18-3.19) of Loh et al. (2021) that, based on the definition of ๐‘๐‘–,๐œƒ,1,โ„“ in (A.20) and the Taylor expansion of the function ๐ถ12, 1 (๐ธ๐‘๐œƒ ๐‘›,12 )2 ร• 1โ‰ค๐‘–, ๐‘—โ‰ค๐‘›โˆ’2โ„“๐œ”๐‘› (๐‘Š12 ๐œƒ๐œƒ )2 ๐‘–, ๐‘— = 8>>>>>>>> < >>>>>>>>: ๐‘‚ ๔€€€๐œ”๐‘› ๐‘›  , 0 < ๐œˆ12 < โ„“ โˆ’ 1/4, ๐‘‚  ๐œ”๐‘› ๐‘› log ๐‘› ๐œ”๐‘›  , ๐œˆ12 = โ„“ โˆ’ 1/4, ๐‘‚ ๔€€€๐œ”๐‘› ๐‘› 4โ„“โˆ’4๐œˆ12  , โ„“ โˆ’ 1/4 < ๐œˆ12 < โ„“ (2.51) 34 as ๐‘› โ†’ โˆž. Similarly, when ๐œˆ11 โˆจ ๐œˆ22 < โ„“, 1 (๐ธ๐‘๐œƒ ๐‘›,12 )2 ร• 1โ‰ค๐‘–, ๐‘—โ‰ค๐‘›โˆ’2โ„“๐œ”๐‘› (๐‘Š1 ๐œƒ๐œƒ )๐‘–, ๐‘— (๐‘Š2 ๐œƒ๐œƒ )๐‘–, ๐‘— = 8>>>>>>>> < >>>>>>>>: ๐‘‚ ๔€€€๐œ”๐‘› ๐‘› 2๐œˆ11+2๐œˆ22โˆ’4๐œˆ12+1  , 0 < 2(๐œˆ11 + ๐œˆ22) < 4โ„“ โˆ’ 1, ๐‘‚ ๔€€€๐œ”๐‘› ๐‘› 2๐œˆ11+2๐œˆ22โˆ’4๐œˆ12+1 log ๐‘› ๐œ”๐‘›  , 2(๐œˆ11 + ๐œˆ22) = 4โ„“ โˆ’ 1, ๐‘‚ ๔€€€๐œ”๐‘› ๐‘› 4โ„“โˆ’4๐œˆ12  , 4โ„“ โˆ’ 1 < 2(๐œˆ11 + ๐œˆ22) < 4โ„“ (2.52) as ๐‘› โ†’ โˆž. Thus, ๐‘ฃ๐‘Ž๐‘Ÿ ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 ! = 8>>>>>>>> < >>>>>>>>: ๐‘‚ ๔€€€๐œ”๐‘› ๐‘› 2๐œˆ11+2๐œˆ22โˆ’4๐œˆ12+1  , 0 < 2(๐œˆ11 + ๐œˆ22) < 4๐œˆ12 โ‰ค 4โ„“ โˆ’ 1, ๐‘‚ ๔€€€๐œ”๐‘› ๐‘› 2๐œˆ11+2๐œˆ22โˆ’4๐œˆ12+1 log ๐‘› ๐œ”๐‘›  , 4โ„“ โˆ’ 1 = 2(๐œˆ11 + ๐œˆ22) < 4๐œˆ12 < 4โ„“, ๐‘‚ ๔€€€๐œ”๐‘› ๐‘› 4โ„“โˆ’4๐œˆ12  , 4โ„“ โˆ’ 1 < 2(๐œˆ11 + ๐œˆ22) < 4๐œˆ12 < 4โ„“ (2.53) as ๐‘› โ†’ โˆž. Consequently, when 2(๐œˆ11 + ๐œˆ22) < 4๐œˆ12 < {(2(๐œˆ11 + ๐œˆ22) + 1) โˆง 4โ„“} and ๐œˆ11 โˆจ ๐œˆ22 < โ„“, ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 ๐‘ƒ โ†’ 1 as ๐‘› โ†’ โˆž. According to the definition in (2.47), ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 d= ๐‘ˆ๐‘‡ฮฃ๐œƒ๐‘› ๐‘ˆ, where ๐‘ˆ โˆผ ๐‘(0, ๐ผ2(๐‘›โˆ’2โ„“๐œ”๐‘›)) and ฮฃ๐œƒ๐‘› = 1 2๐ธ๐‘๐œƒ ๐‘›,12 Cov(๐‘Œ๐œƒ ๐‘› )1/2ยฉยญยญ ยซ 0 ๐ผ๐‘›โˆ’2โ„“๐œ”๐‘› ๐ผ๐‘›โˆ’2โ„“๐œ”๐‘› 0 ยชยฎยฎ ยฌ Cov(๐‘Œ๐œƒ ๐‘› )1/2. The Hanson-Wright inequality implies that there exists an absolute constant ๐ถ > 0 such that โˆ€๐œ– > 0, ๐‘ƒ ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 โˆ’ 1 โ‰ฅ ๐œ– ! = ๐‘ƒ  ๐‘ˆ๐‘‡ฮฃ๐œƒ๐‘› ๐‘ˆ โˆ’ ๐ธ[๐‘ˆ๐‘‡ฮฃ๐œƒ๐‘› ๐‘ˆ] โ‰ฅ ๐œ–  โ‰ค 2 exp โˆ’๐ถ min ( ๐œ– ||ฮฃ๐œƒ ๐‘› ||2 , ๐œ–2 ||ฮฃ๐œƒ ๐‘› ||2 ๐น )! . (2.54) Since ||ฮฃ๐œƒ๐‘› ||2 โ‰ค ||ฮฃ๐œƒ๐‘› ||๐น and ||ฮฃ๐œƒ๐‘› ||2 ๐น = 1 2๐‘ฃ๐‘Ž๐‘Ÿ ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 ! , 35 the Borel-Cantelli lemma together with (2.53) and (2.54) induces that if 2(๐œˆ11 + ๐œˆ22) < 4๐œˆ12 < {(2(๐œˆ11 + ๐œˆ22) + 1) โˆง 4โ„“} and ๐œˆ11 โˆจ ๐œˆ22 < โ„“, then ๐‘๐œƒ ๐‘›,12 ๐ธ๐‘๐œƒ ๐‘›,12 ๐‘Žโ†’.๐‘ . 1 as ๐‘› โ†’ โˆž. (2.55) This finishes the proof. Consequently, the estimator defined as ห† ๐œˆ12 = log(๐‘2 ๐‘›,12 /๐‘1 ๐‘›,12 )2 4 log 2 (2.56) is a strongly consistent estimator for ๐œˆ12 based on irregularly spaced data. Theorem 7. Under the conditions of Proposition 3, ห† ๐œˆ12 ๐‘Žโ†’.๐‘ . ๐œˆ12 as ๐‘› โ†’ โˆž. (2.57) Proof. It follows from (2.50) that ๐ธ๐‘2 ๐‘›,12 ๐ธ๐‘1 ๐‘›,12 โ†’ 22๐œˆ12 as ๐‘› โ†’ โˆž. By the result of Proposition 3, ๐‘2 ๐‘›,12 ๐‘1 ๐‘›,12 = ๐‘2 ๐‘›,12 /๐ธ๐‘2 ๐‘›,12 ๐‘1 ๐‘›,12 /๐ธ๐‘1 ๐‘›,12 ยท ๐ธ๐‘2 ๐‘›,12 ๐ธ๐‘1 ๐‘›,12 ๐‘Žโ†’.๐‘ . 22๐œˆ12 as ๐‘› โ†’ โˆž. (2.58) The proof is completed by applying the continuous mapping theorem. 36 CHAPTER 3 ANISOTROPIC ORNSTEIN-UHLENBECK FIELD 3.1 Introduction Proposed by Uhlenbeck and Ornstein (1930), the Ornstein-Uhlenbeck process is widely used in spatial statistics and finance. Denote by {๐‘Š(๐‘ข, ๐‘ก); ๐‘ข, ๐‘ก โˆˆ R+} a standard Wiener field, then the random field ๐‘‹(๐‘ข, ๐‘ก) = ๐œŽ exp(โˆ’๐œ†๐‘ข โˆ’ ๐œ‡๐‘ก)๐‘Š  ๐‘’2๐œ†๐‘ข, ๐‘’2๐œ‡๐‘ก  , ๐‘ข, ๐‘ก โˆˆ R (3.1) is a zero-mean stationary Ornstein-Uhlenbeck field on R2 with covariance function Cov (๐‘‹ (๐‘ข, ๐‘ก) , ๐‘‹ (๐‘ฃ, ๐‘ )) = ๐œŽ2 exp (โˆ’๐œ†|๐‘ข โˆ’ ๐‘ฃ| โˆ’ ๐œ‡|๐‘ก โˆ’ ๐‘ |) , โˆ€๐‘ข, ๐‘ก, ๐‘ฃ, ๐‘  โˆˆ R, (3.2) where (๐œŽ2, ๐œ†, ๐œ‡) โˆˆ R3 >0. As indicated by Theorem 7.2 in Piterbarg (1995), the parameters ๐œŽ2, ๐œ†, and ๐œ‡ characterize the high excursion probability of ๐‘‹ on a closed Jordan set (the details are provided in Appendix B). Estimating their values is thus of significance in extreme value theory and has applications in risk assessment for rare events. Ying (1993) proves the strong consistency and asymptotic normality of the maximum likelihood estimators (MLEs) for ๐œŽ2, ๐œ†, and ๐œ‡ in (3.2), thus has presented the identifiability of the parameters. The MLEs are asymptotically efficient as shown by van der Vaart (1996). The MLE is also commonly used to estimate covariance parameter under other models. For Gaussian random fields on R๐‘‘ (๐‘‘ = 1, 2, 3) with the isotropic Matรฉrn covariance function, Bachoc et al. (2019) studied the asymptotic distributions of MLE and constrained MLE for the variance and correlation length parameters. Bevilacqua et al. (2019) investigated strong consistency and asymptotic distribution of the MLE for the microergodic parameters in generalized Wendland covariance functions. However, the calculation of precision matrices and numerical optimizations usually make it computationally expensive to get MLEs. To reduce the computational cost, approaches aiming at sparse covariance matrices or sparse precision matrices have been widely studied, such as covariance tapering (Furrer et al., 2006; Kaufman et al., 2008; Du et al., 2009) and Vecchia approximations (Vecchia, 1988; Pardo-Igรบzquiza and Dowd, 1997; Katzfuss and Guinness, 2021). 37 For Gaussian random fields with the covariance function Cov (๐‘‹ (u) , ๐‘‹ (v)) = ๐œŽ2 ร–๐‘‘ ๐‘–=1 exp (โˆ’๐œƒ๐‘– |๐‘ข๐‘– โˆ’ ๐‘ฃ๐‘– |๐›พ) , โˆ€u, v โˆˆ R๐‘‘, (3.3) Lam and Loh (2000) proved the strong consistency of MLEs for ๐œƒ1, . . . , ๐œƒ๐‘‘ when ๐›พ = 2, based on observations on a regular lattice. Later, Wang (2010) provided consistent estimators for ๐œŽ2 and ๐œƒ1, . . . , ๐œƒ๐‘‘ using quadratic variations and spectral analysis when ๐‘‘ โ‰ฅ 2 and 0 < ๐›พ < 1. The covariance function of the Ornstein-Uhlenbeck field ๐‘‹ we consider in this chapter is a special case of (3.3) with ๐‘‘ = 2 and ๐›พ = 1. Since ๐‘‹ is Markovian, its precision matrix has sparse closed-form expression (Baldi Antognini and Zagoraiou, 2010), which reduces the computational complexity and the memory storage requirement of MLEs. The estimators we propose in this chapter are computationally more efficient than MLEs, while their strong consistency and asymptotic normality still hold. This chapter is organized as follows. We formulate estimations for ๐œŽ2๐œ‡, ๐œŽ2๐œ†, and ๐œŽ2๐œ†๐œ‡ in Section 3.2 based on MLEs. Section 3.3 includes estimations for ๐œŽ2, ๐œ†, and ๐œ‡, as well as the asymptotic behaviors of the estimators. Some simulation results are presented in Section 3.4. In Section 3.5, conclusions and our future research plans are provided. 3.2 Product Estimation Denote by ๐‘ฅ๐‘– ๐‘— = ๐‘‹ ๔€€€ ๐‘ข๐‘– , ๐‘ก ๐‘—  , ๐‘ฅ๐‘– = (๐‘ฅ๐‘–1, . . . , ๐‘ฅ๐‘–๐‘›)๐‘‡ , ๐‘ฅ = (๐‘ฅ๐‘‡1 , ๐‘ฅ๐‘‡2 , . . . , ๐‘ฅ๐‘‡ ๐‘š )๐‘‡ โˆˆ R๐‘š๐‘› and ๐ด (๐œ†) =  ๐‘’โˆ’๐œ†|๐‘ข๐‘–โˆ’๐‘ข ๐‘— |  ๐‘šร—๐‘š , ๐ต (๐œ‡) =  ๐‘’โˆ’๐œ‡|๐‘ก๐‘–โˆ’๐‘ก ๐‘— |  ๐‘›ร—๐‘› , (3.4) where 0 = ๐‘ข0 < ๐‘ข1 < ยท ยท ยท < ๐‘ข๐‘š = 1, 0 = ๐‘ก0 < ๐‘ก1 < ยท ยท ยท < ๐‘ก๐‘› = 1. Then ๐‘ฅ โˆผ ๐‘ ๔€€€ 0, ๐œŽ2๐ด (๐œ†) โŠ— ๐ต (๐œ‡)  . For notational convenience, write ฮ”๐‘ข๐‘– = ๐‘ข๐‘– โˆ’ ๐‘ข๐‘–โˆ’1 (๐‘– = 1, ยท ยท ยท , ๐‘š) and ฮ”๐‘ก๐‘– = ๐‘ก๐‘– โˆ’ ๐‘ก๐‘–โˆ’1 (๐‘– = 1, ยท ยท ยท , ๐‘›). Suppose max๐‘– ฮ”๐‘ข๐‘– โ†’ 0 as ๐‘š โ†’ โˆž and max๐‘– ฮ”๐‘ก๐‘– โ†’ 0 as ๐‘› โ†’ โˆž. Define estimators for ๐œŽ2๐œ‡, ๐œŽ2๐œ†, and ๐œŽ2๐œ†๐œ‡ as d๐œŽ2๐œ‡ = 1 ๐‘› ร•๐‘š ๐‘–=1 ๐‘ฅ๐‘‡ ๐‘–ยท๐ตโˆ’1 (1)๐‘ฅ๐‘–ยทฮ”๐‘ข๐‘– , (3.5) d๐œŽ2๐œ† = 1 ๐‘š ร•๐‘› ๐‘—=1 ๐‘ฅ๐‘‡ ยท ๐‘— ๐ดโˆ’1(1)๐‘ฅยท ๐‘—ฮ”๐‘ก ๐‘— , (3.6) 38 [๐œŽ2๐œ†๐œ‡ = 1 ๐‘š๐‘› ๐‘ฅ๐‘‡  ๐ดโˆ’1 (1) โŠ— ๐ตโˆ’1 (1)  ๐‘ฅ. (3.7) In what follows, we discuss the asymptotic behaviors of the estimators in (3.5-3.7) as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž. Proposition 4. Under model (3.2), as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž, ๐ธd๐œŽ2๐œ‡ = ๐œŽ2๐œ‡ โˆ’ ๐œŽ2 (๐œ‡ + 1)2 โˆ’ 4 2๐‘› + ๐‘œ(๐‘›โˆ’1), ๐ธd๐œŽ2๐œ† = ๐œŽ2๐œ† โˆ’ ๐œŽ2 (๐œ† + 1)2 โˆ’ 4 2๐‘š + ๐‘œ(๐‘šโˆ’1), ๐ธ[๐œŽ2๐œ†๐œ‡ = ๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐‘š๐œ†( (๐œ‡ + 1)2 โˆ’ 4) + ๐‘›๐œ‡( (๐œ† + 1)2 โˆ’ 4) 2๐‘š๐‘› + ๐‘œ(๐‘›โˆ’1) + ๐‘œ(๐‘šโˆ’1). Proof. For any 1 โ‰ค ๐‘– โ‰ค ๐‘š, since ๐‘ฅ๐‘–ยท โˆผ ๐‘ ๔€€€ 0, ๐œŽ2๐ต(๐œ‡)  , we have ๐ธ  1 ๐‘› ๐‘ฅ๐‘‡ ๐‘–ยท๐ตโˆ’1 (1)๐‘ฅ๐‘–ยท  = ๐œŽ2 ๐‘› Tr  ๐‘€๐ต ๐œ‡  , where ๐‘€๐ต ๐œ‡ = ๐ตโˆ’1 (1)๐ต(๐œ‡). As a result, ๐ธd๐œŽ2๐œ‡ = ร•๐‘š ๐‘–=1 ๐ธ  1 ๐‘› ๐‘ฅ๐‘‡ ๐‘–ยท๐ตโˆ’1(1)๐‘ฅ๐‘–ยท  ฮ”๐‘ข๐‘– = ๐œŽ2 ๐‘› Tr  ๐‘€๐ต ๐œ‡  because ร๐‘š ๐‘–=1 ฮ”๐‘ข๐‘– = 1. It is well known that the ๐‘› ร— ๐‘› precision matrix ๐ตโˆ’1 (1) has entries as  ๐ตโˆ’1 (1)  ๐‘–, ๐‘— = 8>>>>>>>>>>>>>>>> < >>>>>>>>>>>>>>>>: 1 1โˆ’exp(โˆ’2|๐‘ก1โˆ’๐‘ก2 |) , if ๐‘– = ๐‘— = 1, 1 1โˆ’exp(โˆ’2|๐‘ก๐‘›โˆ’1โˆ’๐‘ก๐‘›|) , if ๐‘– = ๐‘— = ๐‘›, 1 1โˆ’exp(โˆ’2|๐‘ก๐‘–โˆ’1โˆ’๐‘ก๐‘– |) + exp(โˆ’2|๐‘ก๐‘–โˆ’๐‘ก๐‘–+1 |) 1โˆ’exp(โˆ’2|๐‘ก๐‘–โˆ’๐‘ก๐‘–+1 |) , if 1 < ๐‘– = ๐‘— < ๐‘›, โˆ’ exp(โˆ’|๐‘ก๐‘–โˆ’๐‘ก ๐‘— |) 1โˆ’exp(โˆ’2|๐‘ก๐‘–โˆ’๐‘ก ๐‘— |) , if |๐‘– โˆ’ ๐‘— | = 1, 0, if |๐‘– โˆ’ ๐‘— | > 1. Thus, the entries of ๐‘€๐ต ๐œ‡ are  ๐‘€๐ต ๐œ‡  ๐‘–, ๐‘— = 8>>>>>>>> < >>>>>>>>: หœ๐ต 2๐‘1 ๐‘— โˆ’ ๐‘ž1 ๐‘— , if ๐‘– = 1, (หœ ๐ต ๐‘– + ๐ต๐‘–)๐‘๐‘– ๐‘— โˆ’ ๐‘๐‘– ๐‘— โˆ’ ๐‘ž๐‘– ๐‘— , if 1 < ๐‘– < ๐‘›, หœ๐ต ๐‘›๐‘๐‘› ๐‘— โˆ’ ๐‘๐‘› ๐‘— , if ๐‘– = ๐‘›, (3.8) 39 where 1 โ‰ค ๐‘— โ‰ค ๐‘›, ๐ต๐‘– = exp(โˆ’2|๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘– |) 1 โˆ’ exp(โˆ’2|๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘– |) , หœ ๐ต ๐‘– = 1 + ๐ต๐‘–โˆ’1, ๐‘๐‘– ๐‘— = exp(โˆ’๐œ‡|๐‘ก๐‘– โˆ’ ๐‘ก ๐‘— |), ๐‘๐‘– ๐‘— = exp(โˆ’|๐‘ก๐‘–โˆ’1 โˆ’ ๐‘ก๐‘– |) 1 โˆ’ exp(โˆ’2|๐‘ก๐‘–โˆ’1 โˆ’ ๐‘ก๐‘– |) ๐‘(๐‘–โˆ’1) ๐‘— , ๐‘ž๐‘– ๐‘— = exp(โˆ’|๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘– |) 1 โˆ’ exp(โˆ’2|๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘– |) ๐‘(๐‘–+1) ๐‘— . Since max๐‘– ฮ”๐‘ก๐‘– โ†’ 0 as ๐‘› โ†’ โˆž, it further holds that Tr  ๐‘€๐ต ๐œ‡  = ๐‘› + 2 ร•๐‘› ๐‘–=2 ๐‘’โˆ’2ฮ”๐‘ก๐‘– (1 โˆ’ ๐‘’โˆ’(๐œ‡โˆ’1)ฮ”๐‘ก๐‘– ) 1 โˆ’ ๐‘’โˆ’2ฮ”๐‘ก๐‘– = ๐‘› + (๐œ‡ โˆ’ 1) ร•๐‘› ๐‘–=2  1 โˆ’ ฮ”๐‘ก๐‘– + ๐‘‚  (ฮ”๐‘ก๐‘–)2  = ๐‘› + (๐œ‡ โˆ’ 1) (๐‘› โˆ’ 1 โˆ’ (1 โˆ’ ๐‘ก1) + ๐‘œ(1)) and ๐ธd๐œŽ2๐œ‡ = ๐œŽ2 ๐‘› Tr  ๐‘€๐ต ๐œ‡  = ๐œŽ2๐œ‡ โˆ’ ๐œŽ2 (๐œ‡+1)2โˆ’4 2๐‘› + ๐‘œ(๐‘›โˆ’1) as ๐‘› โ†’ โˆž. In a similar manner, there is ๐ธd๐œŽ2๐œ† = ๐œŽ2๐œ† โˆ’ ๐œŽ2 (๐œ† + 1)2 โˆ’ 4 2๐‘š + ๐‘œ(๐‘šโˆ’1) as ๐‘š โ†’ โˆž. Moreover, ๐ธ[๐œŽ2๐œ†๐œ‡ = 1 ๐‘š๐‘› ๐ธ๐‘ฅ๐‘‡  ๐ดโˆ’1(1) โŠ— ๐ตโˆ’1(1)  ๐‘ฅ = ๐œŽ2 ๐‘š๐‘› Tr  ๐ดโˆ’1 (1) โŠ— ๐ตโˆ’1 (1)  (๐ด(๐œ†) โŠ— ๐ต(๐œ‡))  = ๐œŽ2 ๐‘š๐‘› Tr  ๐ดโˆ’1(1)๐ด(๐œ†)  Tr  ๐ตโˆ’1(1)๐ต(๐œ‡)  = 1 ๐œŽ2 ๐ธd๐œŽ2๐œ†๐ธd๐œŽ2๐œ‡ = ๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐‘š๐œ†( (๐œ‡ + 1)2 โˆ’ 4) + ๐‘›๐œ‡( (๐œ† + 1)2 โˆ’ 4) 2๐‘š๐‘› + ๐‘œ(๐‘›โˆ’1) + ๐‘œ(๐‘šโˆ’1) as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž. This finishes the proof. Proposition 4 indicates that d๐œŽ2๐œ†, d๐œŽ2๐œ‡, and [๐œŽ2๐œ†๐œ‡ are asymptotically unbiased estimators for ๐œŽ2๐œ†, ๐œŽ2๐œ‡, and ๐œŽ2๐œ†๐œ‡. To further study the convergence of variances of the estimators, we first introduce the following lemma regarding variances of quadratic forms. 40 Lemma 2. Under model (3.2), as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž, Var  1 ๐‘› ๐‘ฅ๐‘‡ ๐‘–ยท๐ตโˆ’1(1)๐‘ฅ๐‘–ยท  = 2 ๐‘› (๐œŽ2๐œ‡)2 + ๐‘‚(๐‘›โˆ’2), โˆ€1 โ‰ค ๐‘– โ‰ค ๐‘š, (3.9) Var  1 ๐‘š ๐‘ฅ๐‘‡ ยท ๐‘— ๐ดโˆ’1(1)๐‘ฅยท ๐‘—  = 2 ๐‘š (๐œŽ2๐œ†)2 + ๐‘‚(๐‘šโˆ’2), โˆ€1 โ‰ค ๐‘— โ‰ค ๐‘›. (3.10) Proof. Since ๐‘ฅ๐‘–ยท โˆผ ๐‘ ๔€€€ 0, ๐œŽ2๐ต(๐œ‡)  for any 1 โ‰ค ๐‘– โ‰ค ๐‘š, we have Var  1 ๐‘› ๐‘ฅ๐‘‡ ๐‘–ยท๐ตโˆ’1(1)๐‘ฅ๐‘–ยท  = 2  ๐œŽ2 ๐‘› 2 Tr  (๐‘€๐ต ๐œ‡ )2  , where ๐‘€๐ต ๐œ‡ = ๐ตโˆ’1 (1)๐ต(๐œ‡). Recall the entries of ๐‘€๐ต ๐œ‡ in (3.8), we thus have Tr  (๐‘€๐ต ๐œ‡ )2  = ๔€€€หœ ๐ต 2๐‘11 โˆ’ ๐‘ž11 2 + 2 ๔€€€หœ ๐ต 2๐‘1๐‘› โˆ’ ๐‘ž1๐‘›  ๔€€€หœ ๐ต ๐‘›๐‘๐‘›1 โˆ’ ๐‘๐‘›1  + ๔€€€หœ ๐ต ๐‘›๐‘๐‘›๐‘› โˆ’ ๐‘๐‘›๐‘› 2 + 2 ร•๐‘›โˆ’1 ๐‘–=2 ๔€€€หœ ๐ต 2๐‘1๐‘– โˆ’ ๐‘ž1๐‘–  ๔€€€๔€€€หœ ๐ต ๐‘– + ๐ต๐‘–  ๐‘๐‘–1 โˆ’ ๐‘๐‘–1 โˆ’ ๐‘ž๐‘–1  + 2 ร•๐‘›โˆ’1 ๐‘–=2 ๔€€€หœ ๐ต ๐‘›๐‘๐‘›๐‘– โˆ’ ๐‘๐‘›๐‘–  ๔€€€๔€€€หœ ๐ต ๐‘– + ๐ต๐‘–  ๐‘๐‘–๐‘› โˆ’ ๐‘๐‘–๐‘› โˆ’ ๐‘ž๐‘–๐‘›  + ร•๐‘›โˆ’1 ๐‘˜=2 ร•๐‘›โˆ’1 ๐‘–=2 ๔€€€๔€€€หœ ๐ต ๐‘˜ + ๐ต๐‘˜  ๐‘๐‘˜๐‘– โˆ’ ๐‘๐‘˜๐‘– โˆ’ ๐‘ž๐‘˜๐‘–  ๔€€€๔€€€หœ ๐ต ๐‘– + ๐ต๐‘–  ๐‘๐‘–๐‘˜ โˆ’ ๐‘๐‘–๐‘˜ โˆ’ ๐‘ž๐‘–๐‘˜  . For the convenience of expression, we introduce a few more notations as below. Denote by ๐‘‡1 = (หœ ๐ต 2 โˆ’ ๐‘ž11)2 + (หœ ๐ต ๐‘› โˆ’ ๐‘๐‘›๐‘›)2 + ร•๐‘›โˆ’1 ๐‘˜=2 (หœ๐ต ๐‘˜ + ๐ต๐‘˜ โˆ’ ๐‘๐‘˜ ๐‘˜ โˆ’ ๐‘ž๐‘˜ ๐‘˜ )2, ๐‘‡2 = ร•๐‘›โˆ’1 ๐‘–=2 ๔€€€ (หœ ๐ต 2๐‘๐‘–1 โˆ’ ๐‘ž1๐‘–) ๔€€€ (หœ ๐ต ๐‘– + ๐ต๐‘–)๐‘๐‘–1 โˆ’ ๐‘๐‘–1 โˆ’ ๐‘ž๐‘–1  + (หœ ๐ต ๐‘›๐‘๐‘–๐‘› โˆ’ ๐‘๐‘›๐‘–) ๔€€€ (หœ ๐ต ๐‘– + ๐ต๐‘–)๐‘๐‘–๐‘› โˆ’ ๐‘๐‘–๐‘› โˆ’ ๐‘ž๐‘–๐‘›  , ๐‘‡3 = ร•๐‘›โˆ’1 ๐‘–,๐‘˜=2 ๐‘˜โ‰ ๐‘– ๔€€€ (หœ ๐ต ๐‘˜ + ๐ต๐‘˜ )๐‘๐‘˜๐‘– โˆ’ ๐‘๐‘˜๐‘– โˆ’ ๐‘ž๐‘˜๐‘–  ๔€€€ (หœ ๐ต ๐‘– + ๐ต๐‘–)๐‘๐‘–๐‘˜ โˆ’ ๐‘๐‘–๐‘˜ โˆ’ ๐‘ž๐‘–๐‘˜  , ๐‘‡4 = (หœ ๐ต 2๐‘1๐‘› โˆ’ ๐‘ž1๐‘›) (หœ ๐ต ๐‘›๐‘1๐‘› โˆ’ ๐‘๐‘›1), then Tr  (๐‘€๐ต ๐œ‡ )2  = ๐‘‡1 + 2๐‘‡2 + ๐‘‡3 + 2๐‘‡4. As ๐‘› โ†’ โˆž, ๐‘‡1 = 1 2 (๐œ‡ + 1)2 โˆ’ 1 4 (๐œ‡ + 1) (๐œ‡2 โˆ’ 1) (ฮ”๐‘ก2 + ฮ”๐‘ก๐‘›) + (๐‘› โˆ’ 2)๐œ‡2 โˆ’ 1 2 ๐œ‡(๐œ‡2 โˆ’ 1) (๐‘ก๐‘› โˆ’ ๐‘ก2 + ๐‘ก๐‘›โˆ’1 โˆ’ ๐‘ก1) + ร•๐‘› ๐‘˜=2 ๐‘‚( (ฮ”๐‘ก๐‘˜ )2) + ร•๐‘›โˆ’1 ๐‘˜=2 ๐‘‚(ฮ”๐‘ก๐‘˜ฮ”๐‘ก๐‘˜+1) =๐‘›๐œ‡2 + ๐‘‚(1). 41 It thus remains to prove 2๐‘‡2 + ๐‘‡3 + 2๐‘‡4 = ๐‘‚(1) as ๐‘› โ†’ โˆž. As was previously defined, หœ๐ต 2๐‘1๐‘˜ โˆ’ ๐‘ž1๐‘˜ = ๐‘’โˆ’๐œ‡(๐‘ก๐‘˜โˆ’๐‘ก1) 1 โˆ’ ๐‘’โˆ’(1โˆ’๐œ‡)ฮ”๐‘ก2 1 โˆ’ ๐‘’โˆ’2ฮ”๐‘ก2 , โˆ€๐‘˜ โ‰ฅ 2, หœ๐ต ๐‘›๐‘๐‘›๐‘˜ โˆ’ ๐‘๐‘›๐‘˜ = ๐‘’โˆ’๐œ‡(๐‘ก๐‘›โˆ’๐‘ก๐‘˜ ) 1 โˆ’ ๐‘’โˆ’(1โˆ’๐œ‡)ฮ”๐‘ก๐‘› 1 โˆ’ ๐‘’โˆ’2ฮ”๐‘ก๐‘› , โˆ€๐‘˜ โ‰ค ๐‘› โˆ’ 1. For any 2 โ‰ค ๐‘–, ๐‘˜ โ‰ค ๐‘› โˆ’ 1 and ๐‘– โ‰  ๐‘˜, (หœ ๐ต ๐‘˜ + ๐ต๐‘˜ )๐‘๐‘˜๐‘– โˆ’ ๐‘๐‘˜๐‘– โˆ’ ๐‘ž๐‘˜๐‘– = ๐‘’โˆ’๐œ‡|๐‘ก๐‘˜โˆ’๐‘ก๐‘– | โˆ’ ๐‘’โˆ’ฮ”๐‘ก๐‘˜โˆ’๐œ‡|๐‘ก๐‘˜โˆ’1โˆ’๐‘ก๐‘– | 1 โˆ’ ๐‘’โˆ’2ฮ”๐‘ก๐‘˜ + ๐‘’โˆ’2ฮ”๐‘ก๐‘˜+1โˆ’๐œ‡|๐‘ก๐‘˜โˆ’๐‘ก๐‘– | โˆ’ ๐‘’โˆ’ฮ”๐‘ก๐‘˜+1โˆ’๐œ‡|๐‘ก๐‘˜+1โˆ’๐‘ก๐‘– | 1 โˆ’ ๐‘’โˆ’2ฮ”๐‘ก๐‘˜+1 = 8>>>> < >>>>: ๐‘’โˆ’๐œ‡(๐‘ก๐‘˜โˆ’๐‘ก๐‘– )  1โˆ’๐‘’โˆ’(1โˆ’๐œ‡)ฮ”๐‘ก๐‘˜ 1โˆ’๐‘’โˆ’2ฮ”๐‘ก๐‘˜ + ๐‘’โˆ’2ฮ”๐‘ก๐‘˜+1โˆ’๐‘’โˆ’(1+๐œ‡)ฮ”๐‘ก๐‘˜+1 1โˆ’๐‘’โˆ’2ฮ”๐‘ก๐‘˜+1  , if ๐‘– โ‰ค ๐‘˜ โˆ’ 1, ๐‘’โˆ’๐œ‡(๐‘ก๐‘–โˆ’๐‘ก๐‘˜ )  1โˆ’๐‘’โˆ’(1+๐œ‡)ฮ”๐‘ก๐‘˜ 1โˆ’๐‘’โˆ’2ฮ”๐‘ก๐‘˜ + ๐‘’โˆ’2ฮ”๐‘ก๐‘˜+1โˆ’๐‘’โˆ’(1โˆ’๐œ‡)ฮ”๐‘ก๐‘˜+1 1โˆ’๐‘’โˆ’2ฮ”๐‘ก๐‘˜+1  , if ๐‘– โ‰ฅ ๐‘˜ + 1. Thus as ๐‘› โ†’ โˆž, ๐‘‡3 = 1 8  1 โˆ’ ๐œ‡2 2 ร•๐‘›โˆ’1 ๐‘–,๐‘˜=2 ๐‘–<๐‘˜ ๐‘’โˆ’2๐œ‡(๐‘ก๐‘˜โˆ’๐‘ก๐‘– )  ๐‘ก๐‘˜+1 โˆ’ ๐‘ก๐‘˜โˆ’1 + ๐‘‚( (ฮ”๐‘ก๐‘˜ )2) + ๐‘‚( (ฮ”๐‘ก๐‘˜+1)2)  (๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘–โˆ’1 +๐‘‚( (ฮ”๐‘ก๐‘–)2) + ๐‘‚( (ฮ”๐‘ก๐‘–+1)2)  โˆ ร•๐‘›โˆ’1 ๐‘–,๐‘˜=2 ๐‘–<๐‘˜ ๐‘’โˆ’2๐œ‡(๐‘ก๐‘˜โˆ’๐‘ก๐‘– ) (๐‘ก๐‘˜+1 โˆ’ ๐‘ก๐‘˜โˆ’1) (๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘–โˆ’1) + ๐‘œ(1) โ‰ค 2 ร•๐‘›โˆ’1 ๐‘˜=2 (ฮ”๐‘ก๐‘˜ + ฮ”๐‘ก๐‘˜+1) + ๐‘œ(1) = ๐‘‚(1). Similarly, ๐‘‡2 = ๐‘‚(1) and ๐‘‡4 = ๐‘‚(1) as ๐‘› โ†’ โˆž. This finishes the proof of (3.9). The proof of (3.10) follows the same manner and is thus omitted. Based on Lemma 2, the rates of convergence for d๐œŽ2๐œ†, d๐œŽ2๐œ‡, and[๐œŽ2๐œ†๐œ‡ are derived as follows. Proposition 5. Under model (3.2), as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž, Var(d๐œŽ2๐œ‡) = 1 ๐‘›๐œ†2  2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†  (๐œŽ2๐œ‡)2 + ๐‘‚(๐‘›โˆ’2), 42 Var(d๐œŽ2๐œ†) = 1 ๐‘š๐œ‡2  2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡  (๐œŽ2๐œ†)2 + ๐‘‚(๐‘šโˆ’2), Var([๐œŽ2๐œ†๐œ‡) = 2 ๐‘š๐‘›  ๐œŽ2๐œ†๐œ‡ 2 + ๐‘‚  ๐‘šโˆ’2๐‘›โˆ’1  + ๐‘‚  ๐‘šโˆ’1๐‘›โˆ’2  . Proof. Under model (3.2), Var(d๐œŽ2๐œ‡) = Var  1 ๐‘› ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1 (1)  ๐‘ฅ  = 2  ๐œŽ2 ๐‘› 2 Tr  (๐ท๐‘š๐ด(๐œ†)) โŠ—  ๐ตโˆ’1(1)๐ต(๐œ‡) 2 = 2  ๐œŽ2 ๐‘› 2 Tr  (๐ท๐‘š๐ด(๐œ†))2  Tr  (๐‘€๐ต ๐œ‡ )2  , where ๐ท๐‘š denotes the ๐‘š ร— ๐‘š diagonal matrix with (๐ท๐‘š)๐‘–๐‘– = ฮ”๐‘ข๐‘– , ๐‘– = 1, 2, . . . , ๐‘š. As ๐‘š โ†’ โˆž, Tr  (๐ท๐‘š๐ด(๐œ†))2  = ร•๐‘š ๐‘–, ๐‘—=1 ฮ”๐‘ข๐‘–ฮ”๐‘ข ๐‘— ๐‘’โˆ’2๐œ†|๐‘ข๐‘–โˆ’๐‘ข ๐‘— | โ†’ ยน 1 0 ยน 1 0 ๐‘’โˆ’2๐œ†|๐‘ฅโˆ’๐‘ฆ|๐‘‘๐‘ฅ๐‘‘๐‘ฆ = 2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ† 2๐œ†2 . (3.11) It follows from the proof of Lemma 2 that Tr  (๐‘€๐ต ๐œ‡ )2  = ๐‘›๐œ‡2 + ๐‘‚(1) as ๐‘› โ†’ โˆž. Thus, Var(d๐œŽ2๐œ‡) = 1 ๐‘›๐œ†2  2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†  (๐œŽ2๐œ‡)2 + ๐‘‚(๐‘›โˆ’2) as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž. The proof for the variance of d๐œŽ2๐œ† follows the same manner. Moreover, as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž, Var([๐œŽ2๐œ†๐œ‡) = 2  ๐œŽ2 ๐‘š๐‘› 2 Tr  ๐ดโˆ’1(1)๐ด(๐œ†)  โŠ—  ๐ตโˆ’1 (1)๐ต(๐œ‡) 2 = 1 2๐œŽ4 Var  1 ๐‘› ๐‘ฅ๐‘‡1ยท๐ตโˆ’1(1)๐‘ฅ1ยท  Var  1 ๐‘š ๐‘ฅ๐‘‡ ยท ๐‘— ๐ดโˆ’1 (1)๐‘ฅยท ๐‘—  = 2 ๐‘š๐‘›  ๐œŽ2๐œ†๐œ‡ 2 + ๐‘‚  ๐‘šโˆ’2๐‘›โˆ’1  + ๐‘‚  ๐‘šโˆ’1๐‘›โˆ’2  by the results of Lemma 2. 43 For each of the estimators formulated in (3.5-3.7), its asymptotic distribution is shown in the following theorem. Theorem 8. Under model (3.2), as ๐‘› โ†’ โˆž and ๐‘š โ†’ โˆž, โˆš ๐‘›(d๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡) ๐‘‘ โ†’ ๐‘  0,  2 ๐œ† โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ† ๐œ†2  (๐œŽ2๐œ‡)2  , โˆš ๐‘š(d๐œŽ2๐œ† โˆ’ ๐œŽ2๐œ†) ๐‘‘ โ†’ ๐‘  0,  2 ๐œ‡ โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ‡ ๐œ‡2  (๐œŽ2๐œ†)2  . Furthermore, when ๐‘š = ๐‘Ÿ๐‘› and ๐‘› โ†’ โˆž, โˆš ๐‘š๐‘›([๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐œ†๐œ‡) ๐‘‘ โ†’ ๐‘  โˆ’๐œŽ2 ๐‘Ÿ๐œ†( (๐œ‡ + 1)2 โˆ’ 4) + ๐œ‡( (๐œ† + 1)2 โˆ’ 4) 2 โˆš ๐‘Ÿ , 2(๐œŽ2๐œ†๐œ‡)2  . Proof. Under model (3.2), the joint density of ๐‘ฅ is ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) := (2๐œ‹๐œŽ2)โˆ’๐‘š๐‘›/2| (๐ด(๐œ†) โŠ— ๐ต(๐œ‡)) |โˆ’1/2 exp  โˆ’ 1 2๐œŽ2 ๐‘ฅ๐‘‡ (๐ด(๐œ†) โŠ— ๐ต(๐œ‡))โˆ’1 ๐‘ฅ  . (3.12) For any ๐‘š, ๐‘› โˆˆ Z+, โˆš ๐‘š๐‘›([๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐œ†๐œ‡) = 1 โˆš ๐‘š๐‘› ๐‘ฅ๐‘‡  ๐ดโˆ’1(1) โŠ— ๐ตโˆ’1(1)  โˆ’ ๐œ†๐œ‡  ๐ดโˆ’1 (๐œ†) โŠ— ๐ตโˆ’1(๐œ‡)  ๐‘ฅ + โˆš ๐‘š๐‘›๐œ†๐œ‡  ๐‘ฅ๐‘‡ ๐ดโˆ’1(๐œ†) โŠ— ๐ตโˆ’1(๐œ‡) ๐‘š๐‘› ๐‘ฅ โˆ’ ๐œŽ2  = 2๐œŽ2 โˆš ๐‘š๐‘›  ๐ธ log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š๐‘› (๐œŽ2, ๐œ†, ๐œ‡) โˆ’ log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡)  + 1 โˆš ๐‘š๐‘› ๐ธ๐‘ฅ๐‘‡  ๐ดโˆ’1 (1) โŠ— ๐ตโˆ’1(1)  โˆ’ ๐œ†๐œ‡  ๐ดโˆ’1(๐œ†) โŠ— ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ + โˆš ๐‘š๐‘›๐œ†๐œ‡  ๐‘ฅ๐‘‡ ๐ดโˆ’1(๐œ†) โŠ— ๐ตโˆ’1(๐œ‡) ๐‘š๐‘› ๐‘ฅ โˆ’ ๐œŽ2  = 2๐œŽ2 โˆš ๐‘š๐‘›  ๐ธ log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) โˆ’ log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡)  + โˆš ๐‘š๐‘›  ๐ธ[๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐œ†๐œ‡  + ๐œ†๐œ‡ โˆš ๐‘š๐‘›  ๐‘ฅ๐‘‡  ๐ดโˆ’1 (๐œ†) โŠ— ๐ตโˆ’1(๐œ‡)  ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡  ๐ดโˆ’1 (๐œ†) โŠ— ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ  . Since the probability measure corresponding to ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) and the probability measure corresponding to ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) are equivalent (Ying, 1993), the Radon-Nikodym derivative satisfies 44 (Ibragimov and Rozanov, 1978) ๐‘ƒ  0 < lim ๐‘š๐‘›โ†’โˆž ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) < โˆž  = 1 and โˆ’ โˆž < ๐ธ log  lim ๐‘š๐‘›โ†’โˆž ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡)  < โˆž. Thus as ๐‘š๐‘› โ†’ โˆž, 2๐œŽ2 โˆš ๐‘š๐‘›  ๐ธ log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) โˆ’ log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ†๐œ‡, 1, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡)  = 2๐œŽ2 โˆš ๐‘š๐‘› ๔€€€ ๐‘‚(1) โˆ’ ๐‘‚๐‘ (1)  = ๐‘œ๐‘ (1). By the Central Limit Theorem, as ๐‘š๐‘› โ†’ โˆž ๐œ†๐œ‡ โˆš ๐‘š๐‘›  ๐‘ฅ๐‘‡  ๐ดโˆ’1 (๐œ†) โŠ— ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡  ๐ดโˆ’1(๐œ†) โŠ— ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ  ๐‘‘ โ†’ ๐‘(0, 2(๐œŽ2๐œ†๐œ‡)2). By Proposition 4, when ๐‘š = ๐‘Ÿ๐‘› and ๐‘› โ†’ โˆž, โˆš ๐‘š๐‘›  ๐ธ[๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐œ†๐œ‡  = โˆ’๐œŽ2 ๐‘Ÿ๐œ†( (๐œ‡ + 1)2 โˆ’ 4) + ๐œ‡( (๐œ† + 1)2 โˆ’ 4) 2 โˆš ๐‘Ÿ + ๐‘œ(1). As a result, when ๐‘š = ๐‘Ÿ๐‘› and ๐‘› โ†’ โˆž, โˆš ๐‘š๐‘›([๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐œ†๐œ‡) ๐‘‘ โ†’ ๐‘  โˆ’๐œŽ2 ๐‘Ÿ๐œ†( (๐œ‡ + 1)2 โˆ’ 4) + ๐œ‡( (๐œ† + 1)2 โˆ’ 4) 2 โˆš ๐‘Ÿ , 2(๐œŽ2๐œ†๐œ‡)2  . (3.13) For any 0 โ‰ค ๐‘ข โ‰ค 1, the joint density of ๐‘ฆ๐‘ขยท := (๐‘‹(๐‘ข, ๐‘ก1), ๐‘‹(๐‘ข, ๐‘ก2), . . . , ๐‘‹(๐‘ข, ๐‘ก๐‘›)) is ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข) := (2๐œ‹๐œŽ2)โˆ’๐‘›/2|๐ต(๐œ‡) |โˆ’1/2 exp  โˆ’ 1 2๐œŽ2 ๐‘ฆ๐‘‡๐‘ข ยท๐ตโˆ’1 (๐œ‡)๐‘ฆ๐‘ขยท  . (3.14) Recall that ๐ท๐‘š is the ๐‘šร—๐‘š diagonal matrix with (๐ท๐‘š)๐‘–๐‘– = ฮ”๐‘ข๐‘– , ๐‘– = 1, 2, . . . , ๐‘š. For any ๐‘š, ๐‘› โˆˆ Z+, โˆš ๐‘›(d๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡) = 1 โˆš ๐‘› ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1(1)  โˆ’ ๐œ‡  ๐ท๐‘š โŠ— ๐ตโˆ’1(๐œ‡)  ๐‘ฅ + โˆš ๐‘›๐œŽ2๐œ‡  ๐‘ฅ๐‘‡ ๐ท๐‘š โŠ— ๐ตโˆ’1(๐œ‡) ๐œŽ2๐‘› ๐‘ฅ โˆ’ 1  = 2๐œŽ2 โˆš ๐‘› ร•๐‘š ๐‘–=1 ฮ”๐‘ข๐‘–  ๐ธ log ๐‘๐ต ๐‘› (๐œŽ2๐œ‡, 1; ๐‘ข๐‘–) ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข๐‘–) โˆ’ log ๐‘๐ต ๐‘› (๐œŽ2๐œ‡, 1; ๐‘ข๐‘–) ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข๐‘–)  + โˆš ๐‘›๐œŽ2๐œ‡  ๐‘ฅ๐‘‡ ๐ท๐‘š โŠ— ๐ตโˆ’1(๐œ‡) ๐œŽ2๐‘› ๐‘ฅ โˆ’ 1  (3.15) + 1 โˆš ๐‘› ๐ธ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1(1)  โˆ’ ๐œ‡  ๐ท๐‘š โŠ— ๐ตโˆ’1(๐œ‡)  ๐‘ฅ = 2๐œŽ2 โˆš ๐‘› ๐ธ log ๐‘๐ต ๐‘› (๐œŽ2๐œ‡, 1; ๐‘ข1) ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข1) โˆ’ ร•๐‘š ๐‘–=1 ฮ”๐‘ข๐‘– log ๐‘๐ต ๐‘› (๐œŽ2๐œ‡, 1; ๐‘ข๐‘–) ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข๐‘–) ! + โˆš ๐‘›  ๐ธd๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡  + ๐œ‡ โˆš ๐‘›  ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ  . (3.16) 45 By Proposition 4, as ๐‘š โ†’ โˆž and ๐‘› โ†’ โˆž, โˆš ๐‘›  ๐ธd๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡  = ๐‘œ(1). (3.17) Denote by ๐ป๐‘› := 1 โˆš ๐‘›  ๐ท๐‘š โŠ— ๐ตโˆ’1(๐œ‡)  (๐ด(๐œ†) โŠ— ๐ต(๐œ‡)) , then as ๐‘› โ†’ โˆž, Tr(๐ป2 ๐‘› ) = ร•๐‘š ๐‘˜, ๐‘—=1 ฮ”๐‘ข๐‘˜ฮ”๐‘ข ๐‘— ๐‘’โˆ’2๐œ†|๐‘ข๐‘˜โˆ’๐‘ข ๐‘— | โ†’ 1 ๐œ† โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ† 2๐œ†2 , Tr(๐ป4 ๐‘› ) < ๐‘› ๐‘›2 โ†’ 0. The convergence of moment generating function implies that as ๐‘š โ†’ โˆž and ๐‘› โ†’ โˆž, ๐œ‡ โˆš ๐‘›  ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1(๐œ‡)  ๐‘ฅ  ๐‘‘ โ†’ ๐‘  0,  2 ๐œ† โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ† ๐œ†2  (๐œŽ2๐œ‡)2  . (3.18) Since โˆ€0 โ‰ค ๐‘ข โ‰ค 1, the probability measure corresponding to ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข) and the probability measure corresponding to ๐‘๐ต ๐‘› (๐œŽ2๐œ‡, 1; ๐‘ข) are equivalent (Ying, 1991), the Radon-Nikodym derivative satisfies (Ibragimov and Rozanov, 1978) ๐‘ƒ  0 < ๐œŒ๐ต ๐‘ข < โˆž  = 1, (3.19) โˆ’โˆž < ๐ธ log ๐œŒ๐ต ๐‘ข < โˆž, (3.20) where ๐œŒ๐ต ๐‘ข = lim๐‘›โ†’โˆž ๐‘๐ต ๐‘› (๐œŽ2๐œ‡,1;๐‘ข) ๐‘๐ต ๐‘› (๐œŽ2,๐œ‡;๐‘ข) . Moreover, since the probability measure corresponding to ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) and the probability measure corresponding to ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ‡, ๐œ†, 1) are equivalent (Ying, 1993), the Radon-Nikodym derivative satisfies (Ibragimov and Rozanov, 1978) ๐‘ƒ  0 < lim ๐‘š๐‘›โ†’โˆž ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ‡, ๐œ†, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) < โˆž  = 1. Thus as ๐‘š, ๐‘› โ†’ โˆž, log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ‡, ๐œ†, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) = โˆ’ ๐‘š 2 log |๐œŽ2๐œ‡๐ต(1) | |๐œŽ2๐ต(๐œ‡) | โˆ’ 1 2๐‘ฅ๐‘‡  ๐ดโˆ’1 (๐œ†) โŠ—  1 ๐œŽ2๐œ‡ ๐ตโˆ’1 (1) โˆ’ 1 ๐œŽ2 ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ =๐‘‚๐‘ (1). 46 For any ๐‘š, ๐‘› โ‰ฅ 1, denote by ๐ฝ๐‘š๐‘› = ๐‘ฅ๐‘‡  1 ๐‘š ๐ดโˆ’1 (๐œ†) โˆ’ ๐ท๐‘š  โŠ—  1 ๐œŽ2๐œ‡ ๐ตโˆ’1(1) โˆ’ 1 ๐œŽ2 ๐ตโˆ’1(๐œ‡)  ๐‘ฅ. Since Tr (๐ท๐‘š๐ด(๐œ†)) = ร๐‘š ๐‘–=1 ฮ”๐‘ข๐‘– = 1 and Tr ๔€€€ (๐ท๐‘š๐ด(๐œ†))2 = ร๐‘š ๐‘–, ๐‘—=1 ฮ”๐‘ข๐‘–ฮ”๐‘ข ๐‘— ๐‘’โˆ’2๐œ†|๐‘ข๐‘–โˆ’๐‘ข๐‘˜ | = ๐‘‚(1), there are ๐ธ๐ฝ๐‘š๐‘› = Tr  1 ๐‘š ๐ดโˆ’1(๐œ†) โˆ’ ๐ท๐‘š  โŠ—  1 ๐œŽ2๐œ‡ ๐ตโˆ’1 (1) โˆ’ 1 ๐œŽ2 ๐ตโˆ’1(๐œ‡)   ๐ด(๐œ†) โŠ— ๐œŽ2๐ต(๐œ‡)  = Tr  1 ๐‘š ๐ผ๐‘š โˆ’ ๐ท๐‘š๐ด(๐œ†)  โŠ—  1 ๐œ‡ ๐ตโˆ’1(1)๐ต(๐œ‡) โˆ’ ๐ผ๐‘›  = Tr  1 ๐‘š ๐ผ๐‘š โˆ’ ๐ท๐‘š๐ด(๐œ†)  Tr  1 ๐œ‡ ๐ตโˆ’1 (1)๐ต(๐œ‡) โˆ’ ๐ผ๐‘›  = 0, โˆ€๐‘š, ๐‘› โ‰ฅ 1, and Var(๐ฝ๐‘š๐‘›) = 2Tr  1 ๐‘š ๐ผ๐‘š โˆ’ ๐ท๐‘š๐ด(๐œ†)  โŠ—  1 ๐œ‡ ๐ตโˆ’1 (1)๐ต(๐œ‡) โˆ’ ๐ผ๐‘› 2! = 1 ๐‘š  1 + ๐‘šTr  (๐ท๐‘š๐ด(๐œ†))2  โˆ’ 2Tr (๐ท๐‘š๐ด(๐œ†))   1 ๐œ‡2 Tr  (๐‘€๐ต ๐œ‡ )2  + Tr(๐ผ๐‘›) โˆ’ 2 ๐œ‡ Tr  ๐‘€๐ต ๐œ‡  = 1 ๐‘š ๐‘‚(๐‘š) (๐‘› + ๐‘‚(1) + ๐‘› โˆ’ 2(๐‘› + ๐‘‚(1))) = ๐‘‚(1) as ๐‘š, ๐‘› โ†’ โˆž, where ๐‘€๐ต ๐œ‡ = ๐ตโˆ’1 (1)๐ต(๐œ‡). Thus, ๐ฝ๐‘š๐‘› = ๐‘‚๐‘ (1) as ๐‘š, ๐‘› โ†’ โˆž. Hence, ร•๐‘š ๐‘–=1 ฮ”๐‘ข๐‘– log ๐‘๐ต ๐‘› (๐œŽ2๐œ‡, 1; ๐‘ข๐‘–) ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข๐‘–) = โˆ’1 2 log |๐œŽ2๐œ‡๐ต(1) | |๐œŽ2๐ต(๐œ‡) | โˆ’ 1 2๐‘ฅ๐‘‡  ๐ท๐‘š โŠ—  1 ๐œŽ2๐œ‡ ๐ตโˆ’1 (1) โˆ’ 1 ๐œŽ2 ๐ตโˆ’1 (๐œ‡)  ๐‘ฅ = 1 ๐‘š log ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2๐œ‡, ๐œ†, 1) ๐‘๐ฝ๐‘š ๐‘› (๐œŽ2, ๐œ†, ๐œ‡) + 1 2 ๐ฝ๐‘š๐‘› = ๐‘‚๐‘ (1) (3.21) as ๐‘š, ๐‘› โ†’ โˆž. Moreover, it is implied by (3.20) that ๐ธ log ๐‘๐ต ๐‘› (๐œŽ2๐œ‡, 1; ๐‘ข1) ๐‘๐ต ๐‘› (๐œŽ2, ๐œ‡; ๐‘ข1) = ๐‘‚(1). (3.22) 47 As a result of (3.17-3.22), as ๐‘š โ†’ โˆž and ๐‘› โ†’ โˆž, โˆš ๐‘›(d๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡) ๐‘‘ โ†’ ๐‘  0,  2 ๐œ† โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ† ๐œ†2  (๐œŽ2๐œ‡)2  . (3.23) Similarly, for any 0 โ‰ค ๐‘ก โ‰ค 1, the joint density of ๐‘ฆยท๐‘ก := (๐‘‹(๐‘ข1, ๐‘ก), ๐‘‹(๐‘ข2, ๐‘ก), . . . , ๐‘‹(๐‘ข๐‘š, ๐‘ก)) is ๐‘๐ด๐‘š (๐œŽ2, ๐œ†; ๐‘ก) := (2๐œ‹๐œŽ2)โˆ’๐‘š/2|๐ด(๐œ†) |โˆ’1/2 exp  โˆ’ 1 2๐œŽ2 ๐‘ฆ๐‘‡ ยท๐‘ก ๐ดโˆ’1 (๐œ†)๐‘ฆยท๐‘ก  . (3.24) Denote by หœ ๐ท ๐‘› the ๐‘› ร— ๐‘› diagonal matrix with ( หœ ๐ท ๐‘›)๐‘–๐‘– = ฮ”๐‘ก๐‘– , ๐‘– = 1, 2, . . . , ๐‘›. Then for any ๐‘š, ๐‘› โˆˆ Z+, โˆš ๐‘š(d๐œŽ2๐œ† โˆ’ ๐œŽ2๐œ†) = 2๐œŽ2 โˆš ๐‘š ๐ธ log ๐‘๐ด๐‘š (๐œŽ2๐œ†, 1; ๐‘ก1) ๐‘๐ด ๐‘š (๐œŽ2, ๐œ†; ๐‘ก1) โˆ’ ร•๐‘› ๐‘–=1 ฮ”๐‘ก๐‘– log ๐‘๐ด๐‘š (๐œŽ2๐œ†, 1; ๐‘ก๐‘–) ๐‘๐ด ๐‘š (๐œŽ2, ๐œ†; ๐‘ก๐‘–) ! + โˆš ๐‘š  ๐ธd๐œŽ2๐œ† โˆ’ ๐œŽ2๐œ†  + ๐œ† โˆš ๐‘š  ๐‘ฅ๐‘‡  ๐ดโˆ’1 โŠ— หœ ๐ท ๐‘›  ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡  ๐ดโˆ’1 โŠ— หœ ๐ท ๐‘›  ๐‘ฅ  = ๐‘œ๐‘ (1) + ๐‘œ(1) + ๐œŽ2๐œ†  ๐‘ฅ๐‘‡ หœ ๐ป ๐‘š๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡ หœ ๐ป ๐‘š๐‘ฅ  as ๐‘š, ๐‘› โ†’ โˆž, (3.25) where หœ ๐ป ๐‘š := 1 โˆš ๐‘š ๔€€€ ๐ดโˆ’1(๐œ†) โŠ— หœ ๐ท ๐‘›  (๐ด(๐œ†) โŠ— ๐ต(๐œ‡)). Thus, โˆš ๐‘š(d๐œŽ2๐œ† โˆ’ ๐œŽ2๐œ†) ๐‘‘ โ†’ ๐‘  0,  2 ๐œ‡ โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ‡ ๐œ‡2  (๐œŽ2๐œ†)2  (3.26) as ๐‘š, ๐‘› โ†’ โˆž. 3.3 Separable Estimation Based on the results presented in Section 3.2, define estimators ห†๐œ† = [๐œŽ2๐œ†๐œ‡ d๐œŽ2๐œ‡ = ๐‘ฅ๐‘‡ ๔€€€ ๐ดโˆ’1 (1) โŠ— ๐ตโˆ’1 (1)  ๐‘ฅ ๐‘š ร๐‘š ๐‘–=1 ๐‘ฅ๐‘‡ ๐‘–ยท๐ตโˆ’1(1)๐‘ฅ๐‘–ยทฮ”๐‘ข๐‘– , (3.27) ๐œ‡ห† = [๐œŽ2๐œ†๐œ‡ d๐œŽ2๐œ† = ๐‘ฅ๐‘‡ ๔€€€ ๐ดโˆ’1(1) โŠ— ๐ตโˆ’1(1)  ๐‘ฅ ๐‘› ร๐‘›๐‘— =1 ๐‘ฅ๐‘‡ ยท ๐‘— ๐ดโˆ’1 (1)๐‘ฅยท ๐‘—ฮ”๐‘ก ๐‘— , (3.28) and ห†๐œŽ2 = d๐œŽ2๐œ†d๐œŽ2๐œ‡ [๐œŽ2๐œ†๐œ‡ = ร๐‘›๐‘— =1 ๐‘ฅ๐‘‡ ยท ๐‘— ๐ดโˆ’1 (1)๐‘ฅยท ๐‘—ฮ”๐‘ก ๐‘—  ๔€€€ร๐‘š ๐‘–=1 ๐‘ฅ๐‘‡ ๐‘–ยท๐ตโˆ’1 (1)๐‘ฅ๐‘–ยทฮ”๐‘ข๐‘–  ๐‘ฅ๐‘‡ ๔€€€ ๐ดโˆ’1 (1) โŠ— ๐ตโˆ’1 (1)  ๐‘ฅ , (3.29) where d๐œŽ2๐œ‡, d๐œŽ2๐œ†, and [๐œŽ2๐œ†๐œ‡ are defined in (3.5-3.7), matrices ๐ด and ๐ต are defined in (3.4). The main results of this chapter are regarding the joint asymptotic normality and the strong consistency of ห† ๐œ† , ๐œ‡ห†, and ๐œŽห† 2. 48 Theorem 9. Under model (3.2), if ๐‘š/๐‘› โ†’ ๐‘Ÿ as ๐‘› โ†’ โˆž, then โˆš ๐‘š ยฉยญยญยญยญยญ ยซ ห†๐œ† โˆ’ ๐œ† ๐œ‡ห† โˆ’ ๐œ‡ ห†๐œŽ2 โˆ’ ๐œŽ2 ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ โ†’ ๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ ๐‘Ÿ๐ถ๐œ† 0 โˆ’๐‘Ÿ๐œŽ2 ๐ถ๐œ† ๐œ† 0 ๐ถ๐œ‡ โˆ’๐œŽ2 ๐ถ๐œ‡ ๐œ‡ โˆ’๐‘Ÿ๐œŽ2 ๐ถ๐œ† ๐œ† โˆ’๐œŽ2 ๐ถ๐œ‡ ๐œ‡ ๐œŽ4  ๐ถ๐œ‡ ๐œ‡2 + ๐‘Ÿ ๐ถ๐œ† ๐œ†2  ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ as ๐‘› โ†’ โˆž, (3.30) where ๐ถ๐œ† = 2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ† and ๐ถ๐œ‡ = 2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡. Proof. It was shown in the proof of Theorem 8 that when ๐‘š/๐‘› โ†’ ๐‘Ÿ and ๐‘› โ†’ โˆž, โˆš ๐‘š ยฉยญยญยญยญยญ ยซ d๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡ d๐œŽ2๐œ† โˆ’ ๐œŽ2๐œ† [๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐œ†๐œ‡ ยชยฎยฎยฎยฎยฎ ยฌ = ยฉยญยญยญยญยญ ยซ โˆš ๐‘Ÿ๐œŽ2๐œ‡  ๐‘ฅ๐‘‡ ๐ท๐‘šโŠ—๐ตโˆ’1 (๐œ‡) ๐œŽ2 โˆš ๐‘› ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡ ๐ท๐‘šโŠ—๐ตโˆ’1 (๐œ‡) ๐œŽ2 โˆš ๐‘› ๐‘ฅ  + ๐‘œ๐‘ (1) ๐œŽ2๐œ†  ๐‘ฅ๐‘‡ ๐ดโˆ’1 (๐œ†)โŠ— หœ ๐ท ๐‘› ๐œŽ2 โˆš ๐‘š ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡ ๐ดโˆ’1 (๐œ†)โŠ— หœ ๐ท ๐‘› ๐œŽ2 โˆš ๐‘š ๐‘ฅ  + ๐‘œ๐‘ (1) ๐œŽโˆš2๐œ†๐œ‡ ๐‘›  ๐‘ฅ๐‘‡ ๐ดโˆ’1 (๐œ†)โŠ—๐ตโˆ’1 (๐œ‡) ๐œŽ2 โˆš ๐‘š๐‘› ๐‘ฅ โˆ’ ๐ธ๐‘ฅ๐‘‡ ๐ดโˆ’1 (๐œ†)โŠ—๐ตโˆ’1 (๐œ‡) ๐œŽ2 โˆš ๐‘š๐‘› ๐‘ฅ  + ๐‘‚  โˆš1 ๐‘›  + ๐‘œ๐‘ (1) ยชยฎยฎยฎยฎยฎ ยฌ = ๐‘‰ โˆ’ ๐ธ๐‘‰ + ๐‘œ๐‘ (1), where ๐‘‰ =  โˆš ๐‘Ÿ๐œŽ2๐œ‡  ๐‘ฅ๐‘‡ ๐ท๐‘šโŠ—๐ตโˆ’1 (๐œ‡) ๐œŽ2 โˆš ๐‘› ๐‘ฅ  , ๐œŽ2๐œ†  ๐‘ฅ๐‘‡ ๐ดโˆ’1 (๐œ†)โŠ— หœ ๐ท ๐‘› ๐œŽ2 โˆš ๐‘š ๐‘ฅ  , ๐œŽโˆš2๐œ†๐œ‡ ๐‘›  ๐‘ฅ๐‘‡ ๐ดโˆ’1 (๐œ†)โŠ—๐ตโˆ’1 (๐œ‡) ๐œŽ2 โˆš ๐‘š๐‘› ๐‘ฅ ๐‘‡ . For any ๐›พ = (๐›พ1, ๐›พ2, ๐›พ3)๐‘‡ โˆˆ R3 >0, ๐›พ๐‘‡๐‘‰ = ๐‘ฅ๐‘‡  ๐›พ1 โˆš ๐‘Ÿ๐œŽ2๐œ‡ ๐ท๐‘š โŠ— ๐ตโˆ’1(๐œ‡) ๐œŽ2 โˆš ๐‘› + ๐›พ2๐œŽ2๐œ† ๐ดโˆ’1(๐œ†) โŠ— หœ ๐ท ๐‘› ๐œŽ2 โˆš ๐‘š + ๐›พ3 ๐œŽ2๐œ†๐œ‡ โˆš ๐‘› ๐ดโˆ’1 (๐œ†) โŠ— ๐ตโˆ’1(๐œ‡) ๐œŽ2 โˆš ๐‘š๐‘›  ๐‘ฅ := ๐‘ฅ๐‘‡๐‘€๐‘š๐‘›๐‘ฅ. It was revealed in the proof of Theorem 8 that หœ๐‘€ ๐‘š๐‘› := ๐‘€๐‘š๐‘›๐œŽ2๐ด(๐œ†) โŠ— ๐ต(๐œ‡)) (3.31) = ๐›พ1 โˆš ๐‘Ÿ๐œŽ2๐œ‡๐ป๐‘› + ๐›พ2๐œŽ2๐œ† หœ ๐ป ๐‘š + ๐›พ3 ๐œŽ2๐œ†๐œ‡ ๐‘› โˆš ๐‘š ๐ผ๐‘š๐‘›, (3.32) where matrices ๐ป๐‘› and หœ ๐ป ๐‘š satisfy that as ๐‘š, ๐‘› โ†’ โˆž, Tr(๐ป2 ๐‘› ) โ†’ 1 ๐œ† โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ† 2๐œ†2 , Tr( หœ ๐ป 2๐‘š ) โ†’ 1 ๐œ‡ โˆ’ 1 โˆ’ ๐‘’โˆ’2๐œ‡ 2๐œ‡2 ; Tr(๐ป๐‘˜ ๐‘› ) = ๐‘œ(1), Tr( หœ ๐ป ๐‘˜๐‘š ) = ๐‘œ(1), โˆ€๐‘˜ โ‰ฅ 3. 49 Moreover, โˆ€๐‘š, ๐‘› โˆˆ ๐‘+, Tr(๐ป๐‘›) = 1 โˆš ๐‘› Tr(๐ท๐‘š๐ด(๐œ†) โŠ— ๐ผ๐‘›) = โˆš ๐‘›, Tr( หœ ๐ป ๐‘š) = 1 โˆš ๐‘š Tr(๐ผ๐‘š โŠ— หœ ๐ท ๐‘›๐ต(๐œ‡)) = โˆš ๐‘š; Tr(๐ป๐‘› หœ ๐ป ๐‘š) = 1 โˆš ๐‘š๐‘› Tr(๐ท๐‘š๐ด(๐œ†) โŠ— หœ ๐ท ๐‘›๐ต(๐œ‡)) = Tr(๐ท๐‘š๐ด(๐œ†))Tr( หœ ๐ท ๐‘›๐ต(๐œ‡)) โˆš ๐‘š๐‘› = 1 โˆš ๐‘š๐‘› ; Tr(๐ป๐‘˜ ๐‘› หœ ๐ป ๐‘š) = Tr ๔€€€ (๐ท๐‘š๐ด(๐œ†))๐‘˜  Tr( หœ ๐ท ๐‘›๐ต(๐œ‡)) โˆš ๐‘›๐‘˜๐‘š = Tr(๐ป๐‘˜ ๐‘› ) ๐‘› โˆš ๐‘š , Tr(๐ป๐‘› หœ ๐ป ๐‘˜๐‘š ) = Tr( หœ ๐ป ๐‘˜๐‘š ) ๐‘š โˆš ๐‘› , โˆ€๐‘˜ โ‰ฅ 2; Tr  (๐ป๐‘› หœ ๐ป ๐‘š)2  = Tr ๔€€€ (๐ท๐‘š๐ด(๐œ†))2 Tr ๔€€€ ( หœ ๐ท ๐‘›๐ต(๐œ‡))2 ๐‘š๐‘› = Tr(๐ป2 ๐‘› )Tr( หœ ๐ป 2๐‘š ) ๐‘š๐‘› . Thus when ๐‘š/๐‘› โ†’ ๐‘Ÿ and ๐‘› โ†’ โˆž, Tr( หœ ๐‘€ 2๐‘š ๐‘› ) = (๐›พ1 โˆš ๐‘Ÿ๐œŽ2๐œ‡)2Tr(๐ป2 ๐‘› ) + (๐›พ2๐œŽ2๐œ†)2Tr( หœ ๐ป 2๐‘š ) + ๐‘‚(Tr(๐ป๐‘› หœ ๐ป ๐‘š)) + ๐‘‚  Tr(๐ป๐‘›) ๐‘› โˆš ๐‘š  + ๐‘‚  Tr( หœ ๐ป ๐‘š) ๐‘› โˆš ๐‘š  + ๐‘‚  1 ๐‘›  โ†’ (๐›พ1 โˆš ๐‘Ÿ๐œŽ2๐œ‡)2 2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ† 2๐œ†2 + (๐›พ2๐œŽ2๐œ†)2 2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡ 2๐œ‡2 , (3.33) Tr( หœ ๐‘€ 4๐‘š ๐‘› ) = ๐‘‚  Tr(๐ป4 ๐‘› )  + ๐‘‚  Tr( หœ ๐ป 4๐‘š )  + ๐‘‚  Tr( (๐ป๐‘› หœ ๐ป ๐‘š)2)  + ๐‘‚  Tr(๐ป3 ๐‘› หœ ๐ป ๐‘š)  + ๐‘‚  Tr(๐ป๐‘› หœ ๐ป 3๐‘š )  + 1 ๐‘› โˆš ๐‘š  ๐‘‚  Tr(๐ป3 ๐‘› )  + ๐‘‚  Tr( หœ ๐ป 3๐‘š )  + ๐‘‚  Tr(๐ป2 ๐‘› หœ ๐ป ๐‘š)  + ๐‘‚  Tr(๐ป๐‘› หœ ๐ป 2๐‘š )  + 1 ๐‘›2๐‘š  ๐‘‚  Tr(๐ป2 ๐‘› )  + ๐‘‚ ๔€€€ Tr(๐ป๐‘› หœ ๐ป ๐‘š)  + ๐‘‚  Tr( หœ ๐ป 2๐‘š )  + 1 ๐‘›3 โˆš ๐‘š3 ๔€€€ ๐‘‚ (Tr(๐ป๐‘›)) + ๐‘‚ ๔€€€ Tr( หœ๐ป๐‘š)  โ†’ 0, (3.34) Hence, the convergence of the moment generating function for ๐›พ๐‘‡ (๐‘‰ โˆ’๐ธ๐‘‰) implies that it is asymptotically Gaussian with zero mean and the variance equals 2 lim ๐‘š/๐‘›โ†’๐‘Ÿ,๐‘›โ†’โˆž Tr( หœ ๐‘€ 2๐‘š ๐‘› ) = 2  ๐‘Ÿ (๐›พ1๐œŽ2๐œ‡)2 2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ† 2๐œ†2 + (๐›พ2๐œŽ2๐œ†)2 2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡ 2๐œ‡2  . By the Cramรฉrโ€“Wold theorem, when ๐‘š/๐‘› โ†’ ๐‘Ÿ as ๐‘› โ†’ โˆž, โˆš ๐‘š ยฉยญยญยญยญยญ ยซ d๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡ d๐œŽ2๐œ† โˆ’ ๐œŽ2๐œ† [๐œŽ2๐œ†๐œ‡ โˆ’ ๐œŽ2๐œ†๐œ‡ ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ โ†’ ๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ 2๐‘Ÿ (๐œŽ2๐œ‡)2 2๐œ†โˆ’1+๐‘’โˆ’2๐œ† 2๐œ†2 0 0 0 2(๐œŽ2๐œ†)2 2๐œ‡โˆ’1+๐‘’โˆ’2๐œ‡ 2๐œ‡2 0 0 0 0 ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ . (3.35) 50 Define function ๐‘” : R3 >0 โ†ฆโ†’ R3 >0 as ๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ง) = (๐‘ง/๐‘ฅ, ๐‘ง/๐‘ฆ, ๐‘ฅ๐‘ฆ/๐‘ง), โˆ€(๐‘ฅ, ๐‘ฆ, ๐‘ง) โˆˆ R3 >0. (3.36) Then the Jacobian matrix of ๐‘” is ๐ฝ๐‘” (๐‘ฅ, ๐‘ฆ, ๐‘ง) = ยฉยญยญยญยญยญ ยซ โˆ’๐‘ง/๐‘ฅ2 0 1/๐‘ฅ 0 โˆ’๐‘ง/๐‘ฆ2 1/๐‘ฆ ๐‘ฆ/๐‘ง ๐‘ฅ/๐‘ง โˆ’๐‘ฅ๐‘ฆ/๐‘ง2 ยชยฎยฎยฎยฎยฎ ยฌ . It follows from the definition that ๐‘”  d๐œŽ2๐œ‡,d๐œŽ2๐œ†,[๐œŽ2๐œ†๐œ‡  =  ห†๐œ† , ๐œ‡ห†, ๐œŽห† 2  , ๐‘”  ๐œŽ2๐œ‡, ๐œŽ2๐œ†, ๐œŽ2๐œ†๐œ‡  =  ๐œ†, ๐œ‡, ๐œŽ2  , ๐ฝ๐‘”  ๐œŽ2๐œ‡, ๐œŽ2๐œ†, ๐œŽ2๐œ†๐œ‡  ยฉยญยญยญยญยญ ยซ 2๐‘Ÿ (๐œŽ2๐œ‡)2 2๐œ†โˆ’1+๐‘’โˆ’2๐œ† 2๐œ†2 0 0 0 2(๐œŽ2๐œ†)2 2๐œ‡โˆ’1+๐‘’โˆ’2๐œ‡ 2๐œ‡2 0 0 0 0 ยชยฎยฎยฎยฎยฎ ยฌ ๐ฝ๐‘”  ๐œŽ2๐œ‡, ๐œŽ2๐œ†, ๐œŽ2๐œ†๐œ‡ ๐‘‡ = ยฉยญยญยญยญยญ ยซ ๐‘Ÿ (2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†) 0 โˆ’๐‘Ÿ๐œŽ2 ๐œ† (2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†) 0 2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡ โˆ’๐œŽ2 ๐œ‡ (2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡) โˆ’๐‘Ÿ๐œŽ2 ๐œ† (2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†) โˆ’๐œŽ2 ๐œ‡ (2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡) ๐œŽ4  2๐œ‡โˆ’1+๐‘’โˆ’2๐œ‡ ๐œ‡2 + ๐‘Ÿ 2๐œ†โˆ’1+๐‘’โˆ’2๐œ† ๐œ†2  ยชยฎยฎยฎยฎยฎ ยฌ . Thus when ๐‘š/๐‘› โ†’ ๐‘Ÿ as ๐‘› โ†’ โˆž, โˆš ๐‘š ยฉยญยญยญยญยญ ยซ ห†๐œ† โˆ’ ๐œ† ๐œ‡ห† โˆ’ ๐œ‡ ห†๐œŽ2 โˆ’ ๐œŽ2 ยชยฎยฎยฎยฎยฎ ยฌ ๐‘‘ โ†’ ๐‘ ยฉยญยญยญยญยญ ยซ 0, ยฉยญยญยญยญยญ ยซ ๐‘Ÿ (2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†) 0 โˆ’๐‘Ÿ๐œŽ2 ๐œ† (2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†) 0 2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡ โˆ’๐œŽ2 ๐œ‡ (2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡) โˆ’๐‘Ÿ๐œŽ2 ๐œ† (2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†) โˆ’๐œŽ2 ๐œ‡ (2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡) ๐œŽ4  2๐œ‡โˆ’1+๐‘’โˆ’2๐œ‡ ๐œ‡2 + ๐‘Ÿ 2๐œ†โˆ’1+๐‘’โˆ’2๐œ† ๐œ†2  ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ . The proof is finished using the multivariate delta method. 51 Remark 2. The estimators ห† ๐œ† and ๐œ‡ห† are asymptotically independent. This is due to the zero entries of ๐ฝ๐‘” as well as the asymptotic independence of d๐œŽ2๐œ‡ and d๐œŽ2๐œ†, which is based on the fact that Tr(๐ท๐‘š๐ด(๐œ†)) = Tr( หœ ๐ท ๐‘›๐ต(๐œ‡)) = 1, โˆ€๐‘š, ๐‘›. Besides the asymptotic normality, estimators ห† ๐œ† , ๐œ‡ห†, and ๐œŽห† 2 are also strongly consistent. Theorem 10. Under model (3.2), as ๐‘š, ๐‘› โ†’ โˆž,  ห†๐œ† , ๐œ‡ห†, ๐œŽห† 2  ๐‘Žโ†’.๐‘ .  ๐œ†, ๐œ‡, ๐œŽ2  . (3.37) Proof. Since the function ๐‘” defined in (3.36) is a continuous function, the continuous mapping theorem makes it suffice to prove  d๐œŽ2๐œ‡,d๐œŽ2๐œ†,[๐œŽ2๐œ†๐œ‡  ๐‘Žโ†’.๐‘ .  ๐œŽ2๐œ‡, ๐œŽ2๐œ†, ๐œŽ2๐œ†๐œ‡  as ๐‘š, ๐‘› โ†’ โˆž. For any (๐œ†0, ๐œ‡0) โˆˆ R2 >0, there always exists a compact region C in R2 >0 that contains (๐œ†0, ๐œ‡0) and (1, 1) as its interior points. Therefore (4.13) and (4.14) in the proof of Theorem 1 in Ying (1993) both hold. Namely, as ๐‘› โ†’ โˆž, ๐‘ฅ๐‘‡1ยท๐ตโˆ’1(1)๐‘ฅ1ยท + ร•๐‘š ๐‘–=2 (๐‘ฅ๐‘–ยท โˆ’ ๐‘’โˆ’๐œ€๐‘–๐‘ฅ(๐‘–โˆ’1)ยท)๐‘‡๐ตโˆ’1 (1) (๐‘ฅ๐‘–ยท โˆ’ ๐‘’โˆ’๐œ€๐‘–๐‘ฅ(๐‘–โˆ’1)ยท) 1 โˆ’ ๐‘’โˆ’2๐œ€๐‘– ๐‘Ž.๐‘ . = ๐œ†0๐œ‡0๐œŽ2 0 ร•๐‘š ๐‘–=2 ร•๐‘› ๐‘˜=2 ๐œ”2 ๐‘–๐‘˜ + [๐œ†0๐œŽ2 0 + ๐œ†0๐œ‡0๐œŽ2 0 (1 โˆ’ ๐œ‡0) + ๐œ†0(1 โˆ’ ๐œ‡0)2๐œŽ2 0 2 ]๐‘š + [๐œ‡0๐œŽ2 0 + ๐œ†0๐œ‡0๐œŽ2 0 (1 โˆ’ ๐œ†0) + ๐œ‡0(1 โˆ’ ๐œ†0)2๐œŽ2 0 2 ]๐‘› + ๐‘œ(๐‘›). 52 As a result, as ๐‘š, ๐‘› โ†’ โˆž, ๐‘™๐‘š,๐‘› (1, 1, ๐œŽ2) โˆ’ ๐‘™๐‘š,๐‘› (1, 1, ๐œ†0๐œ‡0๐œŽ2 0 ) =(1 + ๐‘š โˆ’ 1 + ๐‘› โˆ’ 1 + (๐‘š โˆ’ 1) (๐‘› โˆ’ 1)) log( ๐œŽ2 ๐œ†0๐œ‡0๐œŽ2 0 ) + ( 1 ๐œŽ2 โˆ’ 1 ๐œ†0๐œ‡0๐œŽ2 0 ) [๐‘ฅ๐‘‡1 ๐ตโˆ’1(1)๐‘ฅ1 + ร•๐‘š ๐‘–=2 (๐‘ฅ๐‘– โˆ’ ๐‘’โˆ’๐œ€๐‘–๐‘ฅ๐‘–โˆ’1)๐‘‡๐ตโˆ’1(1) (๐‘ฅ๐‘– โˆ’ ๐‘’โˆ’๐œ€๐‘–๐‘ฅ๐‘–โˆ’1) 1 โˆ’ ๐‘’โˆ’2๐œ€๐‘– ] =( ๐œ†0๐œ‡0๐œŽ2 0 ๐œŽ2 โˆ’ 1) ร•๐‘š ๐‘–=2 ร•๐‘› ๐‘˜=2 ๐œ”2 ๐‘–๐‘˜ โˆ’ (๐‘š โˆ’ 1) (๐‘› โˆ’ 1) log( ๐œ†0๐œ‡0๐œŽ2 0 ๐œŽ2 ) + ( 1 ๐œŽ2 โˆ’ 1 ๐œ†0๐œ‡0๐œŽ2 0 ) [๐œ†0๐œŽ2 0 + ๐œ†0๐œ‡0๐œŽ2 0 (1 โˆ’ ๐œ‡0) + ๐œ†0 (1 โˆ’ ๐œ‡0)2๐œŽ2 0 2 ]๐‘š + ( 1 ๐œŽ2 โˆ’ 1 ๐œ†0๐œ‡0๐œŽ2 0 ) [๐œ‡0๐œŽ2 0 + ๐œ†0๐œ‡0๐œŽ2 0 (1 โˆ’ ๐œ†0) + ๐œ‡0(1 โˆ’ ๐œ†0)2๐œŽ2 0 2 ]๐‘› + (๐‘š + ๐‘› โˆ’ 1) log( ๐œŽ2 ๐œ†0๐œ‡0๐œŽ2 0 ) + ๐‘œ(๐‘›) ๐‘Ž.๐‘ . = (๐‘š โˆ’ 1) (๐‘› โˆ’ 1) ( ๐œ†0๐œ‡0๐œŽ2 0 ๐œŽ2 โˆ’ 1 โˆ’ log( ๐œ†0๐œ‡0๐œŽ2 0 ๐œŽ2 )) + ๐‘œ(๐‘š๐‘›), (3.38) where the last equality holds since ร๐‘š ๐‘–=2 ร๐‘›๐‘˜ =2 (๐œ”2 ๐‘–๐‘˜ โˆ’ 1) = ๐‘œ(๐‘š๐‘›) almost surely. Thus, ๐‘™๐‘š,๐‘› (1, 1, ๐œŽ2) โˆ’ ๐‘™๐‘š,๐‘› (1, 1, ๐œ†0๐œ‡0๐œŽ2 0 ) โ†’ โˆž a.s. as ๐‘š, ๐‘› โ†’ โˆž if ๐œŽ2 โ‰  ๐œ†0๐œ‡0๐œŽ2 0 . Together with Lemma 4 in Ying (1991), the result above entails argmin ๐œŽ2 ๐‘™๐‘š,๐‘› (1, 1, ๐œŽ2) ๐‘Žโ†’.๐‘ . ๐œ†0๐œ‡0๐œŽ2 0 (3.39) as ๐‘š, ๐‘› โ†’ โˆž. Hence as ๐‘š, ๐‘› โ†’ โˆž,[๐œŽ2๐œ†๐œ‡ ๐‘Žโ†’.๐‘ . ๐œŽ2๐œ†๐œ‡. It remains to prove that as ๐‘š, ๐‘› โ†’ โˆž, d๐œŽ2๐œ‡ ๐‘Žโ†’.๐‘ . ๐œŽ2๐œ‡ and d๐œŽ2๐œ† ๐‘Žโ†’.๐‘ . ๐œŽ2๐œ†. It follows from the definition that under model (3.2), d๐œŽ2๐œ‡ = 1 ๐‘› ๐‘ฅ๐‘‡  ๐ท๐‘š โŠ— ๐ตโˆ’1 (1)  ๐‘ฅ ๐‘‘ = ๐œ–๐‘‡ฮ›๐‘š๐‘›๐œ–, where ๐œ– โˆผ ๐‘(0, ๐ผ๐‘š๐‘›) and ฮ›๐‘š๐‘› is a diagonal matrix whose diagonal entries are eigenvalues of the matrix ๐œŽ2 ๐‘›  (๐ด1/2(๐œ†))๐‘‡๐ท๐‘š๐ด1/2 (๐œ†)  โŠ—  (๐ต1/2 (๐œ‡))๐‘‡๐ตโˆ’1 (1)๐ต1/2(๐œ‡)  . 53 By the result of Proposition 5, ||ฮ›๐‘š๐‘› ||2 ๐น =Tr  ๐œŽ2 ๐‘›  (๐ด1/2 (๐œ†))๐‘‡๐ท๐‘š๐ด1/2(๐œ†)  โŠ—  (๐ต1/2(๐œ‡))๐‘‡๐ตโˆ’1(1)๐ต1/2 (๐œ‡) 2! = 1 2 Var  d๐œŽ2๐œ‡  =๐‘‚(๐‘›โˆ’1) as ๐‘š, ๐‘› โ†’ โˆž. Moreover, ||ฮ›๐‘š๐‘› ||2 โ‰ค ||ฮ›๐‘š๐‘› ||๐น = ๐‘‚(๐‘›โˆ’1/2) as ๐‘š, ๐‘› โ†’ โˆž. Thus, the Hanson-Wright inequality implies that for sufficiently large ๐‘›, โˆƒ๐ถ0 > 0 such that ๐‘ƒ  d๐œŽ2๐œ‡ โˆ’ ๐ธd๐œŽ2๐œ‡ โ‰ฅ ๐œ‰  โ‰ค 2 exp โˆ’๐ถ min ( ๐œ‰ ||ฮ›๐‘š๐‘› ||2 , ๐œ‰2 ||ฮ›๐‘š๐‘›||2 ๐น )! โ‰ค 2 exp(โˆ’๐ถ0 โˆš ๐‘›๐œ‰), โˆ€๐œ‰ > 0, (3.40) where ๐ถ > 0 is an absolute constant. It hence follows from the Borelโ€“Cantelli lemma that d๐œŽ2๐œ‡ โˆ’ ๐ธd๐œŽ2๐œ‡ ๐‘Žโ†’.๐‘ . 0 as ๐‘š, ๐‘› โ†’ โˆž. By the results of Proposition 4, d๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡ = d๐œŽ2๐œ‡ โˆ’ ๐ธd๐œŽ2๐œ‡ + ๐ธd๐œŽ2๐œ‡ โˆ’ ๐œŽ2๐œ‡ ๐‘Žโ†’.๐‘ . 0 (3.41) as ๐‘š, ๐‘› โ†’ โˆž. In a similar manner, it can be proved thatd๐œŽ2๐œ† ๐‘Žโ†’.๐‘ . ๐œŽ2๐œ† as ๐‘š, ๐‘› โ†’ โˆž. This finishes the proof. 3.4 Simulation Let ๐œ† = 0.5, ๐œ‡ = 10, ๐œŽ2 = 4. For each value of the sample size ๐‘› = 500, 600, . . . , 2000 and ๐‘š = 0.5๐‘›, we set irregular sampling locations as ๐‘ข0 = ๐‘ก0 = 0, ๐‘ข๐‘š = ๐‘ก๐‘› = 1, and (๐‘ข๐‘– , ๐‘ก ๐‘— ) =  ๐‘– ๐‘š + ๐‘ˆ๐‘–๐‘ข , ๐‘— ๐‘› + ๐‘ˆ๐‘— ๐‘ก  , โˆ€0 < ๐‘– < ๐‘š, 0 < ๐‘— < ๐‘›, where๐‘ˆ๐‘–๐‘ข ๐‘–.๐‘–โˆผ.๐‘‘. ๐‘ˆ  โˆ’ 1 2๐‘š, 1 2๐‘š  and๐‘ˆ๐‘— ๐‘ก ๐‘–.๐‘–โˆผ.๐‘‘. ๐‘ˆ  โˆ’ 1 2๐‘› , 1 2๐‘›  are independent uniformly distributed random variables. Given sampling locations, we run 1000 realizations and calculate ห† ๐œ† , ๐œ‡ห†, and ๐œŽห† 2 as defined in Section 3.3. One realization when ๐‘› = 500 is shown in Figure 3.1. The averaged absolute value 54 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 u t โˆ’6 โˆ’4 โˆ’2 0 2 4 Figure 3.1A simulated OU field with ๐‘š = 250 and ๐‘› = 500. Table 3.1Empirical quantiles of standardized bias when estimating ๐œ†. ๐œ† ๐‘(0, 1) ๐‘› 500 1000 2000 5% -1.4462 -1.5188 -1.4547 -1.6448 25% -0.6030 -0.5308 -0.5681 -0.6744 50% 0.1559 0.0893 0.0763 0 75% 0.9224 0.7342 0.7039 0.6744 95% 1.9886 1.8533 1.7377 1.6448 of bias for each sample size and the histogram of bias when ๐‘› = 2000 are shown in Figure 3.2. For ๐‘› = 500, 1000, 2000, some empirical quantiles of โˆš ๐‘š(ห† ๐œ† โˆ’ ๐œ†) p ๐‘Ÿ (2๐œ† โˆ’ 1 + ๐‘’โˆ’2๐œ†) , โˆš ๐‘š(๐œ‡ห† โˆ’ ๐œ‡) p 2๐œ‡ โˆ’ 1 + ๐‘’โˆ’2๐œ‡ , and โˆš ๐‘š( ห†๐œŽ2 โˆ’ ๐œŽ2) r ๐œŽ4  2๐œ‡โˆ’1+๐‘’โˆ’2๐œ‡ ๐œ‡2 + ๐‘Ÿ 2๐œ†โˆ’1+๐‘’โˆ’2๐œ† ๐œ†2  are shown in Tables 3.1-3.3. 3.5 Discussion We proposed estimators for covariance parameters of an anisotropic Ornstein-Uhlenbeck field observed on [0, 1]2. The estimators ห† ๐œ† , ๐œ‡ห†, and ๐œŽห† 2 formulated in Section 3.3 are strongly consistent and have lower computational complexity than the MLEs of ๐œ†, ๐œ‡, and ๐œŽ2. As the sample size goes to infinity, the estimators we proposed asymptotically follow normal distribution, but have higher 55 400 600 800 1000 0.012 0.016 0.020 0.024 l m bias m(l^ - l) r(2l - 1 + e-2l) Density โˆ’3 โˆ’2 โˆ’1 0 1 2 3 4 0.0 0.1 0.2 0.3 0.4 400 600 800 1000 0.12 0.16 0.20 0.24 m m bias m(m^ - m) 2m - 1 + e-2m Density โˆ’4 โˆ’2 0 2 4 0.0 0.1 0.2 0.3 0.4 400 600 800 1000 0.10 0.12 0.14 0.16 0.18 0.20 s2 m bias m(s2 ^ - s2) s2 (2m - 1 + e-2m) m2 + r(2l - 1 + e-2l) l2 Density โˆ’3 โˆ’2 โˆ’1 0 1 2 3 0.0 0.1 0.2 0.3 0.4 Figure 3.2The plots in the first row present averaged absolute values of bias for ๐‘› = 500, 600, . . . , 2000 and ๐‘š = ๐‘›/2 among 1000 realizations. The second row of plots present the empirical distributions of bias with 1000 realizations when ๐‘› = 2000 and ๐‘š = 1000, where the red curve indicates the density function of ๐‘(0, 1). Table 3.2Empirical quantiles of standardized bias when estimating ๐œ‡. ๐œ‡ ๐‘(0, 1) ๐‘› 500 1000 2000 5% -1.9248 -1.8978 -1.6819 -1.6448 25% -1.0806 -0.9460 -0.8577 -0.6744 50% -0.3960 -0.3193 -0.2047 0 75% 0.3473 0.3897 0.4762 0.6744 95% 1.4002 1.3349 1.5174 1.6448 Table 3.3Empirical quantiles of standardized bias when estimating ๐œŽ2. ๐œŽ2 ๐‘(0, 1) ๐‘› 500 1000 2000 5% -1.6784 -1.5597 -1.6782 -1.6448 25% -0.7708 -0.6583 -0.6788 -0.6744 50% -0.0558 -0.0277 0 0 75% 0.7103 0.6323 0.6719 0.6744 95% 1.7328 1.5499 1.4902 1.6448 56 variance compared with the MLEs studied by Ying (1993). This presents a trade-off between the computational cost and the estimation accuracy. The sampling grid based on which ห† ๐œ† , ๐œ‡ห†, and ๐œŽห† 2 are formulated is defined by lines parallel to the coordinate axes. For a significantly anisotropic OU field such as the one shown in Figure 3.1, the coordinate axes are distinguishable. When values of ๐œ† and ๐œ‡ are close, however, it could be difficult to determine directions along which observations should be taken. It is thus of interest to study the properties of estimators when sampling directions are not parallel to the coordinate axes. The main results presented in this chapter focus on the asymptotic behaviors of the estimators. It would also be interesting to study their finite-sample distributions and measure the distance between a finite-sample distribution and the asymptotic distribution. The statistical inference for parameters ๐œ†, ๐œ‡, and ๐œŽ2 is also worth analyzing. The exploration of these topics is reserved for future research work. 57 CHAPTER 4 VECCHIA APPROXIMATION 4.1 Introduction Consider a zero-mean Gaussian process ๐‘‹ with the Matรฉrn covariance function ๐ถ๐‘œ๐‘ฃ(๐‘‹(๐‘ก), ๐‘‹(๐‘ก + ๐‘‘)) = ๐พ(๐‘‘) = ๐œŽ2 (๐œƒ๐‘‘)๐œˆ ฮ“(๐œˆ)2๐œˆโˆ’1 K๐œˆ (๐œƒ๐‘‘), (4.1) where ๐œƒ > 0, ๐œˆ > 0, ๐œŽ2 > 0, ฮ“ is the gamma function, and K๐œˆ is the modified Bessel function of the second kind. Denote by ๐‘‹๐‘› = (๐‘‹(๐‘ก๐‘› 1 ), ๐‘‹(๐‘ก๐‘› 2 ), . . . , ๐‘‹(๐‘ก๐‘› ๐‘› )) the observations of ๐‘‹ with sample size ๐‘›. When ๐œˆ โ‰  1 2 , ๐‘‹ is not Markovian and the sparse precision matrix of ๐‘‹๐‘› discussed in Chapter 3 is not valid. It is thus necessary to study other approaches to reduce the computational cost of the MLE. The existing approaches to achieve computational efficiency include covariance tapering (Furrer et al., 2006; Kaufman et al., 2008; Du et al., 2009), Gaussian Markov random fields representation (Rue and Held, 2005; Lindgren et al., 2011), multiresolution approximation (Nychka et al., 2015; Katzfuss, 2017), etc. The Vecchia approximation is a method to reduce the computational burden through sparse precision matrices. Write the joint density function of ๐‘‹(๐‘ก๐‘› 1 ), ๐‘‹(๐‘ก๐‘› 2 ), . . . , ๐‘‹(๐‘ก๐‘› ๐‘› ) as ๐‘“๐‘› = ๐‘“๐‘‹(๐‘ก๐‘› 1 ) ร–๐‘› ๐‘–=2 ๐‘“๐‘‹(๐‘ก๐‘› ๐‘– ) |๐‘‹(๐‘ก๐‘› ๐‘–โˆ’1 )...๐‘‹(๐‘ก๐‘› 1 ) . The Vecchiaโ€™s method (Vecchia, 1988) approximates ๐‘“๐‘› by ห† ๐‘“๐‘› = ๐‘“๐‘‹(๐‘ก๐‘› 1 ) ร–๐‘› ๐‘–=2 ๐‘“๐‘‹(๐‘ก๐‘› ๐‘– ) |๐‘‹(๐‘ก๐‘› ๐‘–โˆ’1 )...๐‘‹(๐‘ก๐‘› 1โˆจ(๐‘–โˆ’๐‘˜) ) (4.2) for some ๐‘˜ โ‰ช ๐‘›, which makes the precision matrix of ๐‘‹๐‘› a band matrix and could thus significantly reduce the computational complexity. The accuracy of Vecchia approximation has been discussed in both theoretical and practical aspects (Stein et al., 2004; Datta et al., 2016; Guinness, 2018; Finley et al., 2019; Zhang et al., 2021; Cao et al., 2022). Under a more general framework proposed by Katzfuss and Guinness (2021), where the conditioning vector contains both observed data and latent variables, the nearest-neighbor Gaussian process, latent autoregressive process, multiresolu- 58 tion approximation, and many other popular Gaussian process approximation methods are special cases of the Vecchia approach. In the remainder of this chapter, we focus on the standard Vecchia approximation and estimate the scale parameter in the Matรฉrn covariance function by MLE solved from the approximated likelihood. The effects of the misspecified range parameter and the conditioning variables on the bias are discussed in Section 4.2, and simulation results are presented in Section 4.3. 4.2 Maximum Likelihood Estimator for ๐œŽ2 Under a regular sampling design on fixed domain, we have ๐‘ก๐‘› ๐‘– = ๐‘–/๐‘› for ๐‘– = 1, 2, . . . , ๐‘›. When ๐œˆ is known, the expectation of MLE for ๐œŽ2 from Vecchia approximation satisfies the following results. Proposition 6. Denote by ห†๐œŽ2 the MLE for ๐œŽ2 from Vecchia approximation with ๐œˆ known and ๐œƒ replaced by some fixed ๐œƒ0 > 0. When ๐‘˜ = 1 in (4.2), ๐ธ ห†๐œŽ2 = ๐œŽ2 for any ๐‘› โ‰ฅ 2 if ๐œƒ0 = ๐œƒ, and ๐ธ ห†๐œŽ2 = 8>>>>>>>> < >>>>>>>>: ๐œŽ2  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2๐œˆโˆ’2) + ๐‘‚(๐‘›โˆ’1) + ๐‘‚(๐‘›โˆ’2๐œˆ), ๐œˆ < 1, ๐œŽ2  ๐œƒ ๐œƒ0 2 + ๐‘‚( (log ๐‘›)โˆ’1), ๐œˆ = 1, ๐œŽ2  ๐œƒ ๐œƒ0 2 + ๐‘‚(๐‘›โˆ’1) + ๐‘‚(๐‘›2โˆ’2๐œˆ), ๐œˆ > 1, ๐œˆ โˆ‰ Z as ๐‘› โ†’ โˆž if ๐œƒ0 โ‰  ๐œƒ. When ๐‘˜ = 2 in (4.2) and ๐œƒ0 โ‰  ๐œƒ, ๐ธ ห†๐œŽ2 = 8>>>>>>>>>>>>>>>> < >>>>>>>>>>>>>>>>: ๐œŽ2  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2๐œˆโˆ’2) + ๐‘‚(๐‘›โˆ’1) + ๐‘‚(๐‘›โˆ’2๐œˆ), ๐œˆ < 1, ๐œŽ2  ๐œƒ ๐œƒ0 2 + ๐‘‚( (log ๐‘›)โˆ’1), ๐œˆ = 1, ๐œŽ2  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›โˆ’1) + ๐‘‚(๐‘›2โˆ’2๐œˆ) + ๐‘‚(๐‘›2๐œˆโˆ’4), 1 < ๐œˆ < 2, ๐œŽ2  ๐œƒ ๐œƒ0 4 + ๐‘‚( (log ๐‘›)โˆ’1), ๐œˆ = 2, ๐œŽ2  ๐œƒ ๐œƒ0 4 + ๐œŽ2๐›ฝ2 6๐œโˆ’๐›ฝ2  ๐œƒ ๐œƒ0 2 โˆ’ 1 2 + ๐‘‚(๐‘›โˆ’1) + ๐‘‚(๐‘›4โˆ’2๐œˆ), ๐œˆ > 2, ๐œˆ โˆ‰ Z as ๐‘› โ†’ โˆž, where ๐œ = ฮ“(1โˆ’๐œˆ) 25ฮ“(3โˆ’๐œˆ) and ๐›ฝ = 1 4(1โˆ’๐œˆ) . Proof. Denote for 1 โ‰ค ๐‘– โ‰ค ๐‘› that ๐พ0 ๐‘›,๐‘– = (๐œƒ0๐‘–/๐‘›)๐œˆ ฮ“(๐œˆ)2๐œˆโˆ’1 K๐œˆ (๐œƒ0๐‘–/๐‘›) 59 for some fixed ๐œƒ0 > 0, and write ๐พ๐‘›,๐‘– = ๐œŽโˆ’2๐พ(๐‘–/๐‘›). It follows from (9.6.2) and (9.6.10) in Abramowitz and Stegun (1948) that for ๐œˆ โˆ‰ Z, ๐‘ฅ๐œˆ ฮ“(๐œˆ)2๐œˆโˆ’1 K๐œˆ (๐‘ฅ) = 1 โˆ’ ๐›ผ๐‘ฅ2๐œˆ + ๐›ฝ๐‘ฅ2 + ๐œ๐‘ฅ4 + ๐‘‚(๐‘ฅ2๐œˆ+2) + ๐‘‚(๐‘ฅ6) + ๐‘‚(๐‘ฅ2๐œˆ+4) as ๐‘ฅ โ†’ 0, (4.3) where ๐›ผ = ฮ“(1โˆ’๐œˆ) 4๐œˆฮ“(1+๐œˆ) , ๐œ = ฮ“(1โˆ’๐œˆ) 25ฮ“(3โˆ’๐œˆ) , and ๐›ฝ = 1 4(1โˆ’๐œˆ) . The gamma function ฮ“ on R is defined as ฮ“(๐‘ฅ) = 8>>>> < >>>>: ยฏ โˆž 0 ๐‘ก๐‘ฅโˆ’1๐‘’โˆ’๐‘กd๐‘ก, ๐‘ฅ > 0, ฮ“(๐‘ฅ+๐‘›+1) ๐‘ฅ(๐‘ฅ+1)ยทยทยท(๐‘ฅ+๐‘›) , ๐‘ฅ < 0, ๐‘ฅ โˆ‰ Z, (4.4) where ๐‘› is chosen such that ๐‘ฅ+๐‘› > 0. For ๐œˆ โˆˆ Z, it follows from (9.6.10) and (9.6.11) in Abramowitz and Stegun (1948) that ๐‘ฅ๐œˆ ฮ“(๐œˆ)2๐œˆโˆ’1 K๐œˆ (๐‘ฅ) = ร•๐œˆโˆ’1 ๐‘˜=0 (โˆ’1)๐‘˜ (๐œˆ โˆ’ ๐‘˜ โˆ’ 1)! ๐‘˜!(๐œˆ โˆ’ 1)!  ๐‘ฅ 2 2๐‘˜ + 2(โˆ’1)๐œˆ+1 (๐œˆ โˆ’ 1)! log  ๐‘ฅ 2 ร•โˆž ๐‘˜=0 1 ๐‘˜!(๐œˆ + ๐‘˜)!  ๐‘ฅ 2 2๐œˆ+2๐‘˜ + (โˆ’1)๐œˆ ร•โˆž ๐‘˜=1 ร๐‘˜โ„Ž =1 2 โ„Ž + ร๐‘˜+๐œˆ โ„Ž=๐‘˜+1 1 โ„Ž โˆ’ 2๐›พ ๐‘˜!(๐œˆ + ๐‘˜)!(๐œˆ โˆ’ 1)!  ๐‘ฅ 2 2๐œˆ+2๐‘˜ + (โˆ’1)๐œˆ (๐œˆ โˆ’ 1)!๐œˆ! ร•๐œˆ โ„Ž=1 1 โ„Ž โˆ’ 2๐›พ !  ๐‘ฅ 2 2๐œˆ = ร•โˆž ๐‘˜=0  ๐‘๐œˆ,๐‘˜๐‘ฅ2๐‘˜ + หœ ๐‘๐œˆ,๐‘˜๐‘ฅ2๐œˆ+2๐‘˜ log ๐‘ฅ  , (4.5) where ๐›พ is the Eulerโ€™s constant, ๐‘๐œˆ,๐‘˜ , หœ ๐‘๐œˆ,๐‘˜ are constants depending only on ๐œˆ and ๐‘˜. Case 1. When ๐‘˜ = 1, the approximated joint density is ห† ๐‘“๐‘› (๐‘ฅ1, . . . , ๐‘ฅ๐‘›) = (2๐œ‹๐œŽ2)โˆ’๐‘›2 (1 โˆ’ ๐พ2 ๐‘›,1 )โˆ’๐‘›โˆ’1 2 exp โˆ’ 1 2๐œŽ2 ๐‘ฅ2 1 + 1 1 โˆ’ ๐พ2 ๐‘›,1 ร•๐‘› ๐‘–=2 (๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–โˆ’1๐พ๐‘›,1)2 !! (4.6) since ๐‘‹(๐‘ก๐‘› ๐‘– ) |๐‘‹(๐‘ก๐‘› ๐‘–โˆ’1 ) โˆผ ๐‘  ๐‘‹(๐‘ก๐‘› ๐‘–โˆ’1 )๐พ๐‘›,1, ๐œŽ2 (1 โˆ’ ๐พ2 ๐‘›,1 )  . Hence, log ห† ๐‘“๐‘› (๐‘ฅ1, . . . , ๐‘ฅ๐‘›) |๐œƒ=๐œƒ0= โˆ’๐‘› 2 log ๐œŽ2 โˆ’ 1 2๐œŽ2 ๐‘ฅ2 1 + 1 1 โˆ’ (๐พ0 ๐‘› )2 ร•๐‘› ๐‘–=2 (๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–โˆ’1๐พ0 ๐‘› )2 ! + ๐ถ, (4.7) where ๐พ0 ๐‘› = ๐พ0 ๐‘›,1, ๐ถ is a constant not depending on ๐œŽ2. The MLE of ๐œŽ2 calculated from (4.7) is thus ห†๐œŽ2 = 1 ๐‘› ๐‘ฅ2 1 + 1 1 โˆ’ (๐พ0 ๐‘› )2 ร•๐‘› ๐‘–=2 (๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–โˆ’1๐พ0 ๐‘› )2 ! , (4.8) 60 where ๐‘ฅ๐‘– = ๐‘‹(๐‘–/๐‘›), ๐‘– = 1, . . . , ๐‘›. Under model (4.1), there is ๐ธ ห†๐œŽ2 = ๐œŽ2 ๐‘›  1 + (๐‘› โˆ’ 1) 1 + (๐พ0 ๐‘› )2 โˆ’ 2๐พ0 ๐‘›๐พ๐‘›,1 1 โˆ’ (๐พ0 ๐‘› )2  for any ๐‘› โ‰ฅ 2. Consequently, ๐ธ ห†๐œŽ2 = ๐œŽ2 always holds when ๐œƒ0 = ๐œƒ. Cases when ๐œƒ0 โ‰  ๐œƒ are discussed below. When 0 < ๐œˆ < 1, (4.3) implies that as ๐‘› โ†’ โˆž, 1 + (๐พ0 ๐‘› )2 โˆ’ 2๐พ0 ๐‘›๐พ๐‘›,1 1 โˆ’ (๐พ0 ๐‘› )2 = ๐œƒ2๐œˆ + ๐›ผ๐‘›โˆ’2๐œˆ๐œƒ2๐œˆ (๐œƒ2๐œˆ โˆ’ ๐œƒ2๐œˆ 0 /2) โˆ’ ๐‘›2๐œˆโˆ’2๐œƒ2๐›ฝ/๐›ผ + ๐‘‚(๐‘›โˆ’2) ๐œƒ2๐œˆ 0 + ๐›ผ๐‘›โˆ’2๐œˆ (๐œƒ4๐œˆ 0 /2) โˆ’ ๐‘›2๐œˆโˆ’2๐œƒ2 0๐›ฝ/๐›ผ + ๐‘‚(๐‘›โˆ’2) =  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2๐œˆโˆ’2) + ๐‘‚(๐‘›โˆ’2๐œˆ) + ๐‘‚(๐‘›โˆ’2). Hence, ๐ธ ห†๐œŽ2 = ๐œŽ2  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2๐œˆโˆ’2) + ๐‘‚(๐‘›โˆ’1) + ๐‘‚(๐‘›โˆ’2๐œˆ). When ๐œˆ > 1 and ๐œˆ โˆ‰ Z, (4.3) implies that as ๐‘› โ†’ โˆž, 1 + (๐พ0 ๐‘› )2 โˆ’ 2๐พ0 ๐‘›๐พ๐‘›,1 1 โˆ’ (๐พ0 ๐‘› )2 = โˆ’2๐›ฝ๐œƒ2/๐‘›2 + 2๐›ผ๐œƒ2๐œˆ/๐‘›2๐œˆ + ๐›ฝ2(๐œƒ4 0 โˆ’ 2๐œƒ2๐œƒ2 0 )/๐‘›4 โˆ’ 2๐œ(๐œƒ/๐‘›)4 + ๐‘‚(๐‘›โˆ’2โˆ’2๐œˆ) โˆ’2๐›ฝ๐œƒ2 0 /๐‘›2 + 2๐›ผ๐œƒ2๐œˆ 0 /๐‘›2๐œˆ โˆ’ ๐›ฝ2(๐œƒ0/๐‘›)4 โˆ’ 2๐œ(๐œƒ0/๐‘›)4 + ๐‘‚(๐‘›โˆ’2โˆ’2๐œˆ) =  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2โˆ’2๐œˆ) + ๐‘‚(๐‘›โˆ’2๐œˆ) + ๐‘‚(๐‘›โˆ’2) and ๐ธ ห†๐œŽ2 = ๐œŽ2  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2โˆ’2๐œˆโˆ’2) + ๐‘‚(๐‘›โˆ’1). When ๐œˆ = 1, it follows from (4.5) that ๐‘ฅ๐œˆ ฮ“(๐œˆ)2๐œˆโˆ’1 K๐œˆ (๐‘ฅ) = 1 + ๐‘1๐‘ฅ2 log(1/๐‘ฅ) + ๐‘2๐‘ฅ2 + ๐‘3๐‘ฅ4 log(1/๐‘ฅ) + ๐‘4๐‘ฅ4 + ๐‘‚(๐‘ฅ6 log ๐‘ฅ) (4.9) as ๐‘ฅ โ†’ 0, where ๐‘1, ๐‘2, ๐‘3, ๐‘4 are constants only depending on ๐œˆ. Thus, 1 + (๐พ0 ๐‘› )2 โˆ’ 2๐พ0 ๐‘›๐พ๐‘›,1 1 โˆ’ (๐พ0 ๐‘› )2 = ๐‘Ÿ22๐‘1๐‘›โˆ’2 log ๐‘› + 2๐‘2๐‘›โˆ’2 โˆ’ 2๐‘1๐‘›โˆ’2(๐‘Ÿ2 log ๐‘Ÿ + (1 + ๐‘Ÿ2)๐‘2/๐‘1) + ๐‘‚(๐‘›โˆ’4(log ๐‘›)2) 2๐‘1๐‘›โˆ’2 log ๐‘› โˆ’ 2๐‘2๐‘›โˆ’2 + ๐‘‚(๐‘›โˆ’4(log ๐‘›)2) =๐‘Ÿ2 + ๐‘‚( (log ๐‘›)โˆ’1) + ๐‘‚( (log ๐‘›)โˆ’2), 61 where ๐‘Ÿ = ๐œƒ/๐œƒ0. Hence, ๐ธ ห†๐œŽ2 = ๐œŽ2  ๐œƒ ๐œƒ0 2 + ๐‘‚( (log ๐‘›)โˆ’1). Case 2. When ๐‘˜ = 2, the approximated joint density is ห† ๐‘“๐‘› (๐‘ฅ1, . . . , ๐‘ฅ๐‘›) = (2๐œ‹๐œŽ2๐‘)โˆ’๐‘›2 ๐‘ q 1 โˆ’ ๐พ2 ๐‘›,1 exp โˆ’ 1 2๐œŽ2 ๐‘ฅ2 1 + (๐‘ฅ2 โˆ’ ๐พ๐‘›,1๐‘ฅ1)2 1 โˆ’ ๐พ2 ๐‘›,1 + 1 ๐‘ ร•๐‘› ๐‘–=3 (๐‘ฅ๐‘– โˆ’ ๐‘Ž1๐‘ฅ๐‘–โˆ’1 โˆ’ ๐‘Ž2๐‘ฅ๐‘–โˆ’2)2 !! , where ๐‘Ž1 = ๐พ๐‘›,1โˆ’๐พ๐‘›,1๐พ๐‘›,2 1โˆ’(๐พ๐‘›,1)2 , ๐‘Ž2 = ๐พ๐‘›,2โˆ’(๐พ๐‘›,1)2 1โˆ’(๐พ๐‘›,1)2 , and ๐‘ = 1 โˆ’ (๐พ๐‘›,1)2+(๐พ๐‘›,2)2โˆ’2(๐พ๐‘›,1)2๐พ๐‘›,2 1โˆ’(๐พ๐‘›,1)2 . This is due to ยฉยญยญยญยญยญ ยซ ๐‘‹(๐‘ก๐‘› ๐‘– ) ๐‘‹(๐‘ก๐‘› ๐‘–โˆ’1 ) ๐‘‹(๐‘ก๐‘› ๐‘–โˆ’2 ) ยชยฎยฎยฎยฎยฎ ยฌ โˆผ ๐‘ ยฉยญยญยญยญยญ ยซ 0, ๐œŽ2 ยฉยญยญยญยญยญ ยซ 1 ๐พ(|๐‘ก๐‘› ๐‘– โˆ’ ๐‘ก๐‘› ๐‘–โˆ’1 |) ๐พ(|๐‘ก๐‘› ๐‘– โˆ’ ๐‘ก๐‘› ๐‘–โˆ’2 |) ๐พ(|๐‘ก๐‘› ๐‘– โˆ’ ๐‘ก๐‘› ๐‘–โˆ’1 |) 1 ๐พ(|๐‘ก๐‘› ๐‘–โˆ’1 โˆ’ ๐‘ก๐‘› ๐‘–โˆ’2 |) ๐พ(|๐‘ก๐‘› ๐‘– โˆ’ ๐‘ก๐‘› ๐‘–โˆ’2 |) ๐พ(|๐‘ก๐‘› ๐‘–โˆ’1 โˆ’ ๐‘ก๐‘› ๐‘–โˆ’2 |) 1 ยชยฎยฎยฎยฎยฎ ยฌ ยชยฎยฎยฎยฎยฎ ยฌ and the regular sampling design, which implies that โˆ€3 โ‰ค ๐‘– โ‰ค ๐‘›, ๐‘‹(๐‘ก๐‘› ๐‘– ) | (๐‘‹(๐‘ก๐‘› ๐‘–โˆ’1 ), ๐‘‹(๐‘ก๐‘› ๐‘–โˆ’2 )) โˆผ ๐‘  ๐‘Ž1๐‘‹(๐‘ก๐‘› ๐‘–โˆ’1 ) + ๐‘Ž2๐‘‹(๐‘ก๐‘› ๐‘–โˆ’2 ), ๐œŽ2๐‘  . Take arg max๐œŽ2 log ห† ๐‘“๐‘› and plug in ๐œƒ = ๐œƒ0, then ห†๐œŽ2 = 1 ๐‘› ๐‘ฅ2 1 + (๐‘ฅ2 โˆ’ ๐พ0 ๐‘›,1๐‘ฅ1)2 1 โˆ’ (๐พ0 ๐‘›,1 )2 + 1 ๐‘0 ร•๐‘› ๐‘–=3 (๐‘ฅ๐‘– โˆ’ ๐‘Ž01๐‘ฅ๐‘–โˆ’1 โˆ’ ๐‘Ž02 ๐‘ฅ๐‘–โˆ’2)2 ! , (4.10) where ๐‘Ž01 = ๐พ0 ๐‘› ,1 โˆ’๐พ0 ๐‘› ,1๐พ0 ๐‘› ,2 1โˆ’(๐พ0 ๐‘› ,1 )2 , ๐‘Ž02 = ๐พ0 ๐‘› ,2 โˆ’(๐พ0 ๐‘› ,1 )2 1โˆ’(๐พ0 ๐‘› ,1 )2 , and ๐‘0 = (๐พ0๐‘› ,1 )2+(๐พ0 ๐‘› ,2 )2โˆ’2(๐พ0 ๐‘› ,1 )2๐พ0 ๐‘› ,2 1โˆ’(๐พ0 ๐‘› ,1 )2 . This estimator can also be written as a quadratic form ห†๐œŽ2 = 1 ๐‘› ๐‘‹๐‘‡ ๐‘› ๐‘€โˆ’1๐‘‹๐‘›, where ๐‘‹๐‘› = (๐‘‹(๐‘ก๐‘› 1 ), ๐‘‹(๐‘ก๐‘› 2 ), . . . , ๐‘‹(๐‘ก๐‘› ๐‘› )) and ๐‘€โˆ’1 = ยฉยญยญยญยญยญยญยญยญยญยญยญยญยญยญยญยญยญยญยญ ยซ 1 1โˆ’(๐พ0 ๐‘› ,1 )2 + (๐‘Ž02 )2 ๐‘0 ๐‘Ž01 ๐‘Ž02 ๐‘0 โˆ’ ๐พ0 ๐‘› ,1 1โˆ’(๐พ0 ๐‘› ,1 )2 โˆ’๐‘Ž02 ๐‘0 ๐‘Ž01 ๐‘Ž02 ๐‘0 โˆ’ ๐พ0 ๐‘› ,1 1โˆ’(๐พ0 ๐‘› ,1 )2 1 1โˆ’(๐พ0 ๐‘› ,1 )2 + ๐‘Ž02 12 ๐‘0 ๐‘Ž0 12 ๐‘0 โˆ’๐‘Ž02 ๐‘0 โˆ’๐‘Ž02 ๐‘0 ๐‘Ž0 12 ๐‘0 1+๐‘Ž02 12 ๐‘0 ๐‘Ž0 12 ๐‘0 . . . โˆ’๐‘Ž02 ๐‘0 ๐‘Ž0 12 ๐‘0 . . . . . . . . . . . . 1+๐‘Ž02 12 ๐‘0 ๐‘Ž0 12 ๐‘0 โˆ’๐‘Ž02 ๐‘0 . . . ๐‘Ž0 12 ๐‘0 1+(๐‘Ž01 )2 ๐‘0 โˆ’๐‘Ž01 ๐‘0 โˆ’๐‘Ž02 ๐‘0 โˆ’๐‘Ž01 ๐‘0 1 ๐‘0 ยชยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎยฎ ยฌ 62 is an ๐‘›-dimensional pentadiagonal matrix, where ๐‘Ž0 12 = ๐‘Ž01 ๐‘Ž02 โˆ’ ๐‘Ž01 , ๐‘Ž02 12 = (๐‘Ž01 )2 + (๐‘Ž02 )2. Denote by ๐œŽ2ฮฃ the covariance matrix of ๐‘‹๐‘›, then ฮฃ๐‘– ๐‘— = ๐พ๐‘›,|๐‘–โˆ’๐‘— | and ๐ธ ห†๐œŽ2 = ๐œŽ2 ๐‘› Tr(๐‘€โˆ’1ฮฃ) = ๐œŽ2 ๐‘› 2 + (๐‘› โˆ’ 2) (1 + (๐พ0 ๐‘›,1 )2 โˆ’ 2๐พ0 ๐‘›,1๐พ๐‘›,1) (1 โˆ’ ๐พ0 ๐‘›,2 ) (1 + ๐พ0 ๐‘›,2 โˆ’ 2(๐พ0 ๐‘›,1 )2) (1 โˆ’ (๐พ0 ๐‘›,1 )2) + 2(๐พ0 ๐‘›,2 โˆ’ (๐พ0 ๐‘›,1 )2) (1 โˆ’ ๐พ๐‘›,2) (1 + ๐พ0 ๐‘›,2 โˆ’ 2(๐พ0 ๐‘›,1 )2) (1 โˆ’ ๐พ0 ๐‘›,2 ) !! := ๐œŽ2 ๐‘› (2 + (๐‘› โˆ’ 2)๐ด๐‘›) . (4.11) Consequently, ๐ธ ห†๐œŽ2 = ๐œŽ2 always holds when ๐œƒ0 = ๐œƒ. Cases when ๐œƒ0 โ‰  ๐œƒ are discussed below. After similar steps as did in Case 1, it follows from (4.3) that when ๐œˆ โˆ‰ Z, ๐ด๐‘› = 8>>>>>>>> < >>>>>>>>:  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2๐œˆโˆ’2) + ๐‘‚(๐‘›โˆ’2๐œˆ), if ๐œˆ < 1,  ๐œƒ ๐œƒ0 2๐œˆ + ๐‘‚(๐‘›2โˆ’2๐œˆ) + ๐‘‚(๐‘›2๐œˆโˆ’4), if 1 < ๐œˆ < 2,  ๐œƒ ๐œƒ0 4 + ๐›ฝ2 6๐œโˆ’๐›ฝ2  ๐œƒ ๐œƒ0 2 โˆ’ 1 2 + ๐‘‚(๐‘›4โˆ’2๐œˆ) + ๐‘‚(๐‘›โˆ’2), if ๐œˆ > 2. When ๐œˆ = 1, it follows from (4.5) and (4.9) that as ๐‘› โ†’ โˆž, 1 + (๐พ0 ๐‘›,1 )2 โˆ’ 2๐พ0 ๐‘›,1๐พ๐‘›,1 1 โˆ’ (๐พ0 ๐‘›,1 )2 = ๐‘Ÿ2 + ๐‘Ÿ2 log ๐‘Ÿ log(๐œƒ0/๐‘›) + ๐‘2๐‘Ÿ2 log ๐‘Ÿ ๐‘1(log(๐œƒ0/๐‘›))2 + ๐‘‚( (log ๐‘›)โˆ’3), 1 โˆ’ ๐พ0 ๐‘›,2 1 + ๐พ0 ๐‘›,2 โˆ’ 2(๐พ0 ๐‘›,1 )2 = โˆ’log(๐œƒ0/๐‘›) log 2 โˆ’ log 2 โˆ’ ๐‘2/๐‘1 log 2 + ๐‘‚(๐‘›โˆ’2(log ๐‘›)3), ๐พ0 ๐‘›,2 โˆ’ (๐พ0 ๐‘›,1 )2 1 + ๐พ0 ๐‘›,2 โˆ’ 2(๐พ0 ๐‘›,1 )2 = log(๐œƒ0/๐‘›) 2 log 2 + 2 log 2 โˆ’ ๐‘2/๐‘1 2 log 2 + ๐‘‚(๐‘›โˆ’2(log ๐‘›)3), 1 โˆ’ ๐พ๐‘›,2 1 โˆ’ ๐พ0 ๐‘›,2 = ๐‘Ÿ2 + ๐‘Ÿ2 log ๐‘Ÿ log(2๐œƒ0/๐‘›) + ๐‘2๐‘Ÿ2 log ๐‘Ÿ ๐‘1 (log(2๐œƒ0/๐‘›))2 + ๐‘‚( (log ๐‘›)โˆ’3), where ๐‘Ÿ = ๐œƒ/๐œƒ0. Hence, ๐ด๐‘› =  ๐œƒ ๐œƒ0 2 + ๐‘‚( (log ๐‘›)โˆ’1) + ๐‘‚( (log ๐‘›)โˆ’2). Similarly, when ๐œˆ = 2, it follows from (4.5) that ๐‘ฅ๐œˆ ฮ“(๐œˆ)2๐œˆโˆ’1 K๐œˆ (๐‘ฅ) = 1 + ๐‘โ€ฒ 2๐‘ฅ2 + ๐‘โ€ฒ 3๐‘ฅ4 log(1/๐‘ฅ) + ๐‘โ€ฒ 4๐‘ฅ4 + ๐‘‚(๐‘ฅ6 log ๐‘ฅ) (4.12) 63 as ๐‘ฅ โ†’ 0, where ๐‘โ€ฒ 2, ๐‘โ€ฒ 3, ๐‘โ€ฒ 4 are constants only depending on ๐œˆ. Thus, as ๐‘› โ†’ โˆž, 1 + (๐พ0 ๐‘›,1 )2 โˆ’ 2๐พ0 ๐‘›,1๐พ๐‘›,1 1 โˆ’ (๐พ0 ๐‘›,1 )2 = ๐‘Ÿ2 + (๐‘Ÿ2 โˆ’ ๐‘Ÿ4) ๐‘โ€ฒ 3 ๐‘โ€ฒ 2  ๐œƒ0 ๐‘› 2 log  ๐œƒ0 ๐‘›  + ๐‘‚(๐‘›โˆ’2), 1 โˆ’ ๐พ0 ๐‘›,2 1 + ๐พ0 ๐‘›,2 โˆ’ 2(๐พ0 ๐‘›,1 )2 = โˆ’ 4 3 + ๐‘โ€ฒ 2๐‘›2(16๐‘โ€ฒ 4 โˆ’ 16๐‘โ€ฒ 3 log 2 โˆ’ 2(๐‘โ€ฒ 2 )2 โˆ’ 4๐‘โ€ฒ 4 ) 36(๐‘โ€ฒ 3๐œƒ0 log(๐œƒ0/๐‘›))2 + ๐‘โ€ฒ 2๐‘›2 3๐‘โ€ฒ 3๐œƒ2 0 log(๐œƒ0/๐‘›) + ๐‘‚(๐‘›2(log ๐‘›)โˆ’3), ๐พ0 ๐‘›,2 โˆ’ (๐พ0 ๐‘›,1 )2 1 + ๐พ0 ๐‘›,2 โˆ’ 2(๐พ0 ๐‘›,1 )2 = 7 6 โˆ’ ๐‘โ€ฒ 2๐‘›2(16๐‘โ€ฒ 4 โˆ’ 16๐‘โ€ฒ 3 log 2 โˆ’ 2(๐‘โ€ฒ 2 )2 โˆ’ 4๐‘โ€ฒ 4 ) 72(๐‘โ€ฒ 3๐œƒ0 log(๐œƒ0/๐‘›))2 โˆ’ ๐‘โ€ฒ 2๐‘›2 6๐‘โ€ฒ 3๐œƒ2 0 log(๐œƒ0/๐‘›) + ๐‘‚(๐‘›2(log ๐‘›)โˆ’3), 1 โˆ’ ๐พ๐‘›,2 1 โˆ’ ๐พ0 ๐‘›,2 = ๐‘Ÿ2 + 4(๐‘Ÿ2 โˆ’ ๐‘Ÿ4) ๐‘โ€ฒ 3 ๐‘โ€ฒ 2  ๐œƒ0 ๐‘› 2 log  2๐œƒ0 ๐‘›  + ๐‘‚(๐‘›โˆ’2), ๐ด๐‘› =  ๐œƒ ๐œƒ0 4 + ๐‘‚( (log ๐‘›)โˆ’1) + ๐‘‚( (log ๐‘›)โˆ’2). This together with (4.11) finishes the proof. Remark. Only ๐‘˜ = 1, 2 are considered in Proposition 6 since the corresponding Vecchia approximation is computationally efficient. If ๐œƒ is known, then taking ๐œƒ0 = ๐œƒ when construct ห†๐œŽ2 will result in unbiased estimator for ๐œŽ2. 4.3 Simulation Let ๐œŽ2 = 1 and ๐œƒ = 5 in (4.1). For each value of ๐‘› โˆˆ {200, 250, . . . , 1000}, generate 15000 independent realizations of ๐‘‹. In the following text, denote by ๐œŽ2 ๐œˆ,๐‘˜ = lim๐‘›โ†’โˆž ๐ธ ห†๐œŽ2, whose value is proved in Proposition 6. Fix ๐œƒ0 = 1 when solving for MLE of ๐œŽ2 using the Vecchia approximation (4.2). For (๐œˆ, ๐‘˜) โˆˆ {(0.3, 1), (1.3, 1), (1.3, 2)}, the first row of plots in Figure 4.1 presents the boxplot of ห†๐œŽ2 โˆ’ ๐œŽ2 ๐œˆ,๐‘˜ among 15000 realizations at each sample size ๐‘›. The second row of plots in Figure 4.1 presents the empirical distribution of ห†๐œŽ2 โˆ’ ๐œŽ2 ๐œˆ,๐‘˜ when ๐‘› = 1000, where the red curve indicates the density 64 200 350 500 650 800 950 โˆ’1.0 โˆ’0.5 0.0 0.5 1.0 n = 0.3, k = 1 n 200 350 500 650 800 950 โˆ’20 0 20 40 60 n = 1.3, k = 1 n 200 350 500 650 800 950 โˆ’20 โˆ’10 0 10 20 n = 1.3, k = 2 n Density โˆ’0.4 โˆ’0.2 0.0 0.2 0.4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Density โˆ’10 0 10 20 30 40 50 0.00 0.01 0.02 0.03 0.04 0.05 Density โˆ’10 โˆ’5 0 5 10 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Figure 4.1Empirical distributions of bias with 15000 realizations. (๐œŽ2 = 1, ๐œƒ = 5, ๐œƒ0 = 1.) function of normal distribution with zero mean and standard deviation equals the empirical standard deviation of ห†๐œŽ2โˆ’๐œŽ2 ๐œˆ,๐‘˜ among 15000 realizations. For the same three pairs of values of (๐œˆ, ๐‘˜), Figure 4.2 presents the average and standard deviation of absolute values of ห†๐œŽ2 โˆ’ ๐œŽ2 ๐œˆ,๐‘˜ at each sample size ๐‘› among 15000 realizations when (๐œˆ, ๐‘˜) = (0.3, 1) and (๐œˆ, ๐‘˜) = (1.3, 2). For the case when (๐œˆ, ๐‘˜) = (1.3, 1), 50000 realizations are generated since the estimator ห†๐œŽ2 has a larger variance. Fix ๐œƒ0 = ๐œƒ = 5 when solving for MLE of ๐œŽ2 using the Vecchia approximation (4.2), then ๐œŽ2 ๐œˆ,๐‘˜ = ๐œŽ2 = 1. For the same dataset of realizations, plots in Figure 4.3 include the boxplot of ห†๐œŽ2โˆ’๐œŽ2 among 15000 realizations at each sample size ๐‘›, as well as the empirical distribution of ห†๐œŽ2 โˆ’ ๐œŽ2 when ๐‘› = 1000, where the red curve indicates the density function of normal distribution with zero mean and standard deviation equals the empirical standard deviation of ห†๐œŽ2 โˆ’๐œŽ2 among 15000 realizations. Figure 4.4 presents the average and standard deviation of absolute values of ห†๐œŽ2 โˆ’ ๐œŽ2 at each sample size ๐‘› among 15000 realizations when (๐œˆ, ๐‘˜) = (0.3, 1) and (๐œˆ, ๐‘˜) = (1.3, 2). For the case when (๐œˆ, ๐‘˜) = (1.3, 1), since the variance of ห†๐œŽ2 is larger, 50000 realizations are generated. The first row of plots in Figure 4.2 and Figure 4.4 illustrate Proposition 6. Furthermore, it is 65 200 400 600 800 1000 0.10 0.12 0.14 0.16 0.18 0.20 0.22 n = 0.3, k = 1 n bias 200 400 600 800 1000 6.20 6.25 6.30 6.35 6.40 6.45 n = 1.3, k = 1 n bias 200 400 600 800 1000 2.5 3.0 3.5 4.0 4.5 5.0 5.5 n = 1.3, k = 2 n bias 200 400 600 800 1000 0.15 0.20 0.25 n = 0.3, k = 1 n sd 200 400 600 800 1000 7.88 7.90 7.92 7.94 7.96 7.98 n = 1.3, k = 1 n sd 200 400 600 800 1000 3 4 5 6 n = 1.3, k = 2 n sd Figure 4.2The average and standard deviation for absolute value of bias when ๐‘› = 200, 250, . . . , 1000. (๐œŽ2 = 1, ๐œƒ = 5, ๐œƒ0 = 1.) indicated by the simulation results that when ๐‘˜ < ๐œˆ, the standard deviation of ห†๐œŽ2 is not significantly reduced as the sample size increases, and the empirical distribution of ห†๐œŽ2โˆ’๐œŽ2 ๐œˆ,๐‘˜ appears to be rightskewed. When ๐‘˜ > ๐œˆ, however, the standard deviation of ห†๐œŽ2 decreases as the sample size increases, and the empirical distribution of ห†๐œŽ2 โˆ’ ๐œŽ2 ๐œˆ,๐‘˜ when ๐‘› = 1000 is close to normal distribution. As is observed from Figure 4.2, the standard deviation of ห†๐œŽ2 when (๐œˆ, ๐‘˜) = (0.3, 1) is smaller compared with the case when (๐œˆ, ๐‘˜) = (1.3, 2). Let ๐œƒ0 = ๐œƒ, then (๐œˆ, ๐‘˜) = (0.3, 1) and (๐œˆ, ๐‘˜) = (1.3, 2) result in similar values of the standard deviation of ห†๐œŽ2, as is shown in Figure 4.4. For future research, it is interesting to perform theoretical analysis for more asymptotic properties of ห†๐œŽ2, including the convergence rate of its variance and its asymptotic distribution. The sampling design considered in this chapter is limited to a regular grid on the line, which is also the sampling design studied in Section III of Zhang et al. (2021). It is challenging but interesting to extend the existing results to irregular sampling designs on R (๐‘‘ โ‰ฅ 1). 66 200 350 500 650 800 950 โˆ’0.2 0.0 0.2 0.4 n = 0.3, k = 1 n 200 350 500 650 800 950 0 1 2 3 n = 1.3, k = 1 n 200 350 500 650 800 950 โˆ’0.2 0.0 0.2 0.4 n = 1.3, k = 2 n Density โˆ’0.1 0.0 0.1 0.2 0 2 4 6 8 Density โˆ’1 0 1 2 3 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Density โˆ’0.2 โˆ’0.1 0.0 0.1 0.2 0 2 4 6 8 Figure 4.3Empirical distributions of bias with 15000 realizations. (๐œŽ2 = 1, ๐œƒ = 5, ๐œƒ0 = 5.) 200 400 600 800 1000 0.04 0.05 0.06 0.07 0.08 n = 0.3, k = 1 n bias 200 400 600 800 1000 0.250 0.254 0.258 0.262 n = 1.3, k = 1 n bias 200 400 600 800 1000 0.04 0.05 0.06 0.07 0.08 n = 1.3, k = 2 n bias 200 400 600 800 1000 0.05 0.06 0.07 0.08 0.09 0.10 n = 0.3, k = 1 n sd 200 400 600 800 1000 0.325 0.330 0.335 n = 1.3, k = 1 n sd 200 400 600 800 1000 0.05 0.06 0.07 0.08 0.09 0.10 n = 1.3, k = 2 n sd Figure 4.4The average and standard deviation for absolute value of bias when ๐‘› = 200, 250, . . . , 1000. (๐œŽ2 = 1, ๐œƒ = 5, ๐œƒ0 = 5.) 67 BIBLIOGRAPHY [1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55. US Government printing office, 1948. [2] Ethan B. Anderes and Michael L. Stein. Estimating deformations of isotropic Gaussian random fields on the plane. The Annals of Statistics, 36(2):719 โ€“ 741, 2008. doi: 10.1214/ 009053607000000893. URL https://doi.org/10.1214/009053607000000893. [3] Franรงois Bachoc, Agnรจs Lagnoux, and Andrรฉs F. Lรณpez-Lopera. Maximum likelihood estimation for Gaussian processes under inequality constraints. Electronic Journal of Statistics, 13 (2):2921 โ€“ 2969, 2019. doi: 10.1214/19-EJS1587. URL https://doi.org/10.1214/19-EJS1587. [4] Alessandro Baldi Antognini and Maroussa Zagoraiou. Exact optimal designs for computer experiments via kriging metamodelling. Journal of Statistical Planning and Inference, 140 (9):2607โ€“2617, 2010. ISSN 0378-3758. doi: https://doi.org/10.1016/j.jspi.2010.03.027. URL https://www.sciencedirect.com/science/article/pii/S0378375810001400. [5] Glen Earl Baxter. A strong limit theorem for gaussian processes. Proceedings of the American Mathematical Society, 7(3):522โ€“527, 1956. URL https://doi.org/10.1090/ S0002-9939-1956-0090920-6. [6] Arnaud Begyn. Quadratic Variations along Irregular Subdivisions for Gaussian Processes. Electronic Journal of Probability, 10:691 โ€“ 717, 2005. doi: 10.1214/EJP.v10-245. URL https://doi.org/10.1214/EJP.v10-245. [7] Moreno Bevilacqua, Tarik Faouzi, Reinhard Furrer, and Emilio Porcu. Estimation and prediction using generalized wendland covariance functions under fixed domain asymptotics. The Annals of Statistics, 47(2):pp. 828โ€“856, 2019. ISSN 00905364, 21688966. URL https://www.jstor.org/stable/26581883. [8] David Bolin and Jonas Wallin. Multivariate type g matรฉrn stochastic partial differential equation random fields. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(1):215โ€“239, 2020. [9] Jian Cao, Joseph Guinness, Marc G Genton, and Matthias Katzfuss. Scalable gaussian-process regression and variable selection using vecchia approximations. Journal of Machine Learning Research, 23(348):1โ€“30, 2022. [10] Ricardo Carrizo Vergara. Development of geostatistical models using stochastic partial differential equations. Theses, Universitรฉ Paris sciences et lettres, December 2018. URL https://pastel.hal.science/tel-02188146. [11] Grace Chan and Andrew T.A. Wood. Increment-based estimators of fractal dimension for two-dimensional surface data. Statistica Sinica, 10, 2000. ISSN 10170405. 68 [12] Grace Chan, Peter Hall, and D. S. Poskitt. Periodogram-Based Estimators of Fractal Properties. The Annals of Statistics, 23(5):1684 โ€“ 1711, 1995. doi: 10.1214/aos/1176324319. URL https://doi.org/10.1214/aos/1176324319. [13] Chih-Hao Chang, Hsin-Cheng Huang, and Ching-Kang Ing. Mixed domain asymptotics for a stochastic process model with time trend and measurement error. Bernoulli, 23(1):159 โ€“ 190, 2017. doi: 10.3150/15-BEJ740. URL https://doi.org/10.3150/15-BEJ740. [14] A. G. Constantine and Peter Hall. Characterizing Surface Smoothness Via Estimation of Effective Fractal Dimension. Journal of the Royal Statistical Society: Series B (Methodological), 56(1):97โ€“113, 12 1994. ISSN 0035-9246. doi: 10.1111/j.2517-6161.1994.tb01963.x. URL https://doi.org/10.1111/j.2517-6161.1994.tb01963.x. [15] Noel Cressie and Hsin-Cheng Huang. Classes of nonseparable, spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94(448):1330โ€“1340, 1999. ISSN 01621459. URL http://www.jstor.org/stable/2669946. [16] Noel A. C. Cressie. Statistics for Spatial Data. J. Wiley, 1993. [17] Abhirup Datta, Sudipto Banerjee, Andrew O Finley, and Alan E Gelfand. Hierarchical nearestneighbor gaussian process models for large geostatistical datasets. Journal of the American Statistical Association, 111(514):800โ€“812, 2016. [18] Sandra De Iaco, Donald Myers, and Donato Posa. Nonseparable space-time covariance models: Some parametric families. Mathematical Geology, 34:23โ€“42, 01 2002. ISSN 1573-8868. doi: 10.1023/A:1014075310344. [19] Juan Du, Hao Zhang, and V. S. Mandrekar. Fixed-domain asymptotic properties of tapered maximum likelihood estimators. The Annals of Statistics, 37(6A):3330โ€“3361, 2009. ISSN 00905364, 21688966. URL http://www.jstor.org/stable/25662196. [20] B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker. Evaluating the fractal dimension of profiles. Phys. Rev. A, 39:1500โ€“1512, Feb 1989. doi: 10.1103/PhysRevA.39. 1500. URL https://link.aps.org/doi/10.1103/PhysRevA.39.1500. [21] Andrew O. Finley, Abhirup Datta, Bruce D. Cook, Douglas C. Morton, Hans E. Andersen, and Sudipto Banerjee. Efficient algorithms for bayesian nearest neighbor gaussian processes. Journal of Computational and Graphical Statistics, 28(2):401โ€“414, 2019. doi: 10.1080/10618600.2018.1537924. URL https://doi.org/10.1080/10618600.2018.1537924. PMID: 31543693. [22] Reinhard Furrer, Marc G Genton, and Douglas Nychka. Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502โ€“523, 2006. doi: 10.1198/106186006X132178. URL https://doi.org/10.1198/106186006X132178. 69 [23] Reinhard Furrer, Marc G. Genton, and Douglas Nychka. Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502โ€“523, 2006. ISSN 10618600. URL http://www.jstor.org/stable/27594195. [24] R. Gay and C. C. Heyde. On a class of random field models which allows long range dependence. Biometrika, 77(2):401โ€“403, 1990. ISSN 00063444. URL http://www.jstor.org/stable/ 2336820. [25] Tilmann Gneiting. Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical Association, 97(458):590โ€“600, 2002. ISSN 01621459. URL http: //www.jstor.org/stable/3085674. [26] Tilmann Gneiting, William Kleiber, and Martin Schlather. Matรฉrn cross-covariance functions for multivariate random fields. Journal of the American Statistical Association, 105(491): 1167โ€“1177, 2010. doi: 10.1198/jasa.2010.tm09420. URL https://doi.org/10.1198/jasa.2010. tm09420. [27] Tilmann Gneiting, Hana ล evฤรญkovรก, and Donald B. Percival. Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data. Statistical Science, 27(2):247 โ€“ 277, 2012. doi: 10.1214/11-STS370. URL https://doi.org/10.1214/11-STS370. [28] Robert B Gramacy. Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. Chapman and Hall/CRC, 2020. [29] Ulf Grenander. Abstract Inference. Wiley, 1981. [30] Joseph Guinness. Permutation and grouping methods for sharpening gaussian process approximations. Technometrics, 60(4):415โ€“429, 2018. [31] Peter Hall and Andrew Wood. On the performance of box-counting estimators of fractal dimension. Biometrika, 80(1):246โ€“251, 03 1993. ISSN 0006-3444. doi: 10.1093/biomet/80. 1.246. URL https://doi.org/10.1093/biomet/80.1.246. [32] V. Heine. Models for two-dimensional stationary stochastic processes. Biometrika, 42(1/2): 170โ€“178, 1955. ISSN 00063444. URL http://www.jstor.org/stable/2333434. [33] Xiangping Hu and Ingelin Steinsland. Spatial modeling with system of stochastic partial differential equations. Wiley Interdisciplinary Reviews: Computational Statistics, 8(2):112โ€“ 125, 2016. [34] Xiangping Hu, Daniel Simpson, Finn Lindgren, and Hรฅvard Rue. Multivariate gaussian random fields using systems of stochastic partial differential equations. arXiv preprint arXiv:1307.1379, 2013. [35] I.A. Ibragimov and Y.A. Rozanov. Gaussian random processes. Springer-Verlag, 1978. 70 [36] Jacques Istas and Gabriel Lang. Quadratic variations and estimation of the local hรถlder index of a gaussian process. Annales de lโ€™I.H.P. Probabilitรฉs et statistiques, 33(4):407โ€“436, 1997. URL http://www.numdam.org/item/AIHPB_1997__33_4_407_0/. [37] Richard H. Jones and Yiming Zhang. Models for continuous stationary space-time processes. In Timothy G. Gregoire, David R. Brillinger, Peter J. Diggle, Estelle Russek-Cohen, William G. Warren, and Russell D. Wolfinger, editors, Modelling Longitudinal and Spatially Correlated Data, pages 289โ€“298, New York, NY, 1997. Springer New York. ISBN 978-1- 4612-0699-6. [38] Matthias Katzfuss. A multi-resolution approximation for massive spatial datasets. Journal of the American Statistical Association, 112(517):201โ€“214, 2017. doi: 10.1080/01621459. 2015.1123632. URL https://doi.org/10.1080/01621459.2015.1123632. [39] Matthias Katzfuss and Joseph Guinness. A general framework for vecchia approximations of gaussian processes. Statistical Science, 36(1):124โ€“141, 2021. [40] C. G. Kaufman and B. A. Shaby. The role of the range parameter for estimation and prediction in geostatistics. Biometrika, 100(2):473โ€“484, 2013. ISSN 00063444. URL http://www.jstor. org/stable/43304571. [41] Cari G. Kaufman, Mark J. Schervish, and Douglas W. Nychka. Covariance tapering for likelihood-based estimation in large spatial data sets. Journal of the American Statistical Association, 103(484):1545โ€“1555, 2008. doi: 10.1198/016214508000000959. URL https://doi.org/10.1198/016214508000000959. [42] Cari G. Kaufman, Mark J. Schervish, and Douglas W. Nychka. Covariance tapering for likelihood-based estimation in large spatial data sets. Journal of the American Statistical Association, 103(484):1545โ€“1555, 2008. ISSN 01621459. URL http://www.jstor.org/stable/ 27640203. [43] John T. Kent. Continuity Properties for Random Fields. The Annals of Probability, 17(4):1432 โ€“ 1440, 1989. doi: 10.1214/aop/1176991163. URL https://doi.org/10.1214/aop/1176991163. [44] John T. Kent and Andrew T. A. Wood. Estimating the fractal dimension of a locally selfsimilar gaussian process by using increments. Journal of the Royal Statistical Society. Series B (Methodological), 59(3):679โ€“699, 1997. ISSN 00359246. URL http://www.jstor.org/stable/ 2346018. [45] K Kubilius and D Melichov. Quadratic variations and estimation of the hurst index of the solution of sde driven by a fractional brownian motion. Lithuanian Mathematical Journal, 50 (4):401โ€“417, Nov 2010. [46] S. N. Lahiri. Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs. Sankhyฤ: The Indian Journal of Statistics (2003-2007), 65(2): 71 356โ€“388, 2003. ISSN 09727671. URL http://www.jstor.org/stable/25053269. [47] S. N. Lahiri and Kanchan Mukherjee. Asymptotic distributions of m-estimators in a spatial regression model under some fixed and stochastic spatial sampling designs. Annals of the Institute of Statistical Mathematics, 56(2):225โ€“250, June 2004. [48] Tao-Kai Lam and Wei-Liem Loh. Estimating structured correlation matrices in smooth Gaussian random field models. The Annals of Statistics, 28(3):880 โ€“ 904, 2000. doi: 10.1214/aos/1015952003. URL https://doi.org/10.1214/aos/1015952003. [49] Nikolai Leonenko, Maria D. Ruiz-Medina, and Murad S. Taqqu. Fractional Elliptic, Hyperbolic and Parabolic Random Fields. Electronic Journal of Probability, 16(none):1134 โ€“ 1172, 2011. doi: 10.1214/EJP.v16-891. URL https://doi.org/10.1214/EJP.v16-891. [50] Paul Lรฉvy. Le mouvement brownien plan. American Journal of Mathematics, 62:487โ€“550, 1940. URL https://mathscinet.ams.org/mathscinet-getitem?mr=2734. [51] Finn Lindgren, Hรฅvard Rue, and Johan Lindstrรถm. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423โ€“498, 2011. doi: https://doi.org/10.1111/j.1467-9868.2011.00777.x. URL https://rss.onlinelibrary.wiley.com/ doi/abs/10.1111/j.1467-9868.2011.00777.x. [52] Finn Lindgren, David Bolin, and Hรฅvard Rue. The spde approach for gaussian and nongaussian fields: 10 years and still running. Spatial Statistics, 50:100599, 2022. ISSN 2211- 6753. doi: https://doi.org/10.1016/j.spasta.2022.100599. URL https://www.sciencedirect. com/science/article/pii/S2211675322000057. Special Issue: The Impact of Spatial Statistics. [53] Wei-Liem Loh. Estimating the smoothness of a Gaussian random field from irregularly spaced data via higher-order quadratic variations. The Annals of Statistics, 43(6):2766 โ€“ 2794, 2015. doi: 10.1214/15-AOS1365. URL https://doi.org/10.1214/15-AOS1365. [54] Wei-Liem Loh, Saifei Sun, and Jun Wen. On fixed-domain asymptotics, parameter estimation and isotropic Gaussian random fields with Matรฉrn covariance functions. The Annals of Statistics, 49(6):3127 โ€“ 3152, 2021. doi: 10.1214/21-AOS2077. URL https://doi.org/10. 1214/21-AOS2077. [55] Wei-Liem Loh, Saifei Sun, and Jun Wen. Supplement to โ€On fixed-domain asymptotics, parameter estimation and isotropic Gaussian random fields with Matรฉrn covariance functionsโ€, 2021. [56] Chunsheng Ma. Spatio-temporal variograms and covariance models. Advances in Applied Probability, 37(3):706โ€“725, 2005. ISSN 00018678. URL http://www.jstor.org/stable/ 30037351. 72 [57] Chunsheng Ma. Recent developments on the construction of spatio-temporal covariance models. Stochastic Environmental Research and Risk Assessment, 22:39โ€“47, 03 2008. doi: 10.1007/s00477-007-0154-x. [58] Bertil Matรฉrn. Spatial Variation. Springer New York, NY, 1986. [59] M.M. Meerschaert and A. Sikorskii. Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics. De Gruyter, 2011. ISBN 9783110258165. [60] Douglas Nychka, Soutir Bandyopadhyay, Dorit Hammerling, Finn Lindgren, and Stephan Sain. A multiresolution gaussian process model for the analysis of large spatial datasets. Journal of Computational and Graphical Statistics, 24(2):579โ€“599, 2015. doi: 10.1080/10618600. 2014.914946. URL https://doi.org/10.1080/10618600.2014.914946. [61] Eulogio Pardo-Igรบzquiza and Peter A Dowd. Amle3d: A computer program for the inference of spatial covariance parameters by approximate maximum likelihood estimation. Computers & Geosciences, 23(7):793โ€“805, 1997. [62] Vladimir I. Piterbarg. Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society, 1995. [63] Havard Rue and Leonhard Held. Gaussian Markov random fields: theory and applications. Chapman and Hall/CRC, 2005. URL https://doi.org/10.1201/9780203492024. [64] Michael L. Stein, Zhiyi Chi, and Leah J. Welty. Approximating Likelihoods for Large Spatial Data Sets. Journal of the Royal Statistical Society Series B: Statistical Methodology, 66(2): 275โ€“296, 04 2004. ISSN 1369-7412. doi: 10.1046/j.1369-7412.2003.05512.x. URL https: //doi.org/10.1046/j.1369-7412.2003.05512.x. [65] Michael Leonard Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999. [66] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical review, 36(5):823, 1930. [67] Balth. van der Pol and H. Bremmer. Operational calculus based on the two-sided Laplace integral. Cambridge University Press, 1950. [68] Aad van der Vaart. Maximum likelihood estimation under a spatial sampling scheme. The Annals of Statistics, 24(5):2049 โ€“ 2057, 1996. doi: 10.1214/aos/1069362309. URL https: //doi.org/10.1214/aos/1069362309. [69] A. V. Vecchia. A general class of models for stationary two-dimensional random processes. Biometrika, 72(2):281โ€“291, 1985. ISSN 00063444. URL http://www.jstor.org/stable/ 2336080. 73 [70] A. V. Vecchia. Estimation and model identification for continuous spatial processes. J. Roy. Statist. Soc. Ser. B, 50(2):297โ€“312, 1988. ISSN 0035-9246. URL http://links.jstor.org/sici? sici=0035-9246(1988)50:2<297:EAMIFC>2.0.CO;2-D&origin=MSN. [71] Theodore von Kรกrmรกn. Progress in the statistical theory of turbulence. Proceedings of the National Academy of Sciences of the United States of America, 34(11):530โ€“539, 1948. doi: https://doi.org/10.1073/pnas.34.11.530. [72] Daqing Wang. Fixed domain asymptotics and consistent estimation for gaussian random field models in spatial statistics and computer experiments, 2010. URL https://scholarbank.nus. edu.sg/handle/10635/19060. [73] Daqing Wang and Wei-Liem Loh. On fixed-domain asymptotics and covariance tapering in Gaussian random field models. Electronic Journal of Statistics, 5(none):238 โ€“ 269, 2011. doi: 10.1214/11-EJS607. URL https://doi.org/10.1214/11-EJS607. [74] P. Whittle. On stationary processes in the plane. Biometrika, 41(3/4):434โ€“449, 1954. ISSN 00063444. URL http://www.jstor.org/stable/2332724. [75] P. Whittle. Stochastic processes in several dimensions. Bulletin of the International Statistical Institute, 40:974โ€“994, 1963. [76] Zhiliang Ying. Asymptotic properties of a maximum likelihood estimator with data from a gaussian process. Journal of Multivariate Analysis, 36(2):280 โ€“ 296, 1991. doi: 10.1016/ 0047-259X(91)90062-7. [77] Zhiliang Ying. Maximum likelihood estimation of parameters under a spatial sampling scheme. The Annals of Statistics, 21, 9 1993. ISSN 0090-5364. doi: 10.1214/aos/1176349272. [78] Hao Zhang. Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. Journal of the American Statistical Association, 99(465):250โ€“261, 2004. doi: 10.1198/016214504000000241. URL https://doi.org/10.1198/016214504000000241. [79] Lu Zhang, Wenpin Tang, and Sudipto Banerjee. Fixed-domain asymptotics under vecchiaโ€™s approximation of spatial process likelihoods. arXiv preprint arXiv:2101.08861, 2021. URL https://doi.org/10.48550/arXiv.2101.08861. [80] Yuzhen Zhou and Yimin Xiao. Joint asymptotics for estimating the fractal indices of bivariate gaussian processes. Journal of Multivariate Analysis, 165:56โ€“72, 2018. ISSN 0047- 259X. doi: https://doi.org/10.1016/j.jmva.2017.12.001. URL https://www.sciencedirect. com/science/article/pii/S0047259X17307509. [81] Zhengyuan Zhu and Michael L. Stein. Parameter estimation for fractional brownian surfaces. Statistica Sinica, 12(3):863โ€“883, 2002. ISSN 10170405, 19968507. URL http://www.jstor. org/stable/24306999. 74 [82] Zhengyuan Zhu and Hao Zhang. Spatial sampling design under the infill asymptotic framework. Environmetrics, 17(4):323โ€“337, 2006. doi: https://doi.org/10.1002/env.772. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/env.772. 75 APPENDIX A QUADRATIC VARIATIONS FROM IRREGULAR SAMPLING A.1 ๐‘‘ = 1 (6) studied quadratic variations defined using irregular observations of process (๐‘‹๐‘ก )๐‘กโˆˆ[0,1] with Gaussian increments. Suppose (๐‘‹๐‘ก ) is observed at 0 = ๐‘ก (๐‘›) 0 < ๐‘ก (๐‘›) 1 < ยท ยท ยท < ๐‘ก (๐‘›) ๐‘๐‘› = 1, ๐‘› โˆˆ N and denote by ฮ”๐‘ก (๐‘›) ๐‘˜ = ๐‘ก (๐‘›) ๐‘˜+1 โˆ’ ๐‘ก (๐‘›) ๐‘˜ , ๐‘˜ = 0, . . . , ๐‘๐‘› โˆ’ 1. Write ฮ”๐‘ก (๐‘›) ๐‘˜ as ฮ”๐‘ก๐‘˜ for brevity. Let ฮ”๐‘‹๐‘˜ = ฮ”๐‘ก๐‘˜โˆ’1๐‘‹๐‘ก๐‘˜+1 + ฮ”๐‘ก๐‘˜ ๐‘‹๐‘ก๐‘˜โˆ’1 โˆ’ (ฮ”๐‘ก๐‘˜โˆ’1 + ฮ”๐‘ก๐‘˜ )๐‘‹๐‘ก๐‘˜ . (A.1) It is straightforward that ๐‘ก๐‘ž ๐‘˜+1ฮ”๐‘ก๐‘˜โˆ’1 + ๐‘ก๐‘ž ๐‘˜โˆ’1ฮ”๐‘ก๐‘˜ โˆ’ ๐‘ก๐‘ž ๐‘˜ (ฮ”๐‘ก๐‘˜โˆ’1 + ฮ”๐‘ก๐‘˜ ) = 0, ๐‘ž = 0, 1; ๐‘ก2 ๐‘˜ +1ฮ”๐‘ก๐‘˜โˆ’1 + ๐‘ก2 ๐‘˜ โˆ’1ฮ”๐‘ก๐‘˜ โˆ’ ๐‘ก2 ๐‘˜ (ฮ”๐‘ก๐‘˜โˆ’1 + ฮ”๐‘ก๐‘˜ ) โ‰  0. The second order quadratic variation is then defined as V๐‘› (๐‘‹) = 2 ๐‘ร•๐‘›โˆ’1 ๐‘˜=1 ฮ”๐‘ก๐‘˜ (ฮ”๐‘‹๐‘˜ )2 (ฮ”๐‘ก๐‘˜โˆ’1) 3โˆ’๐›พ 2 (ฮ”๐‘ก๐‘˜ ) 3โˆ’๐›พ 2 (ฮ”๐‘ก๐‘˜โˆ’1 + ฮ”๐‘ก๐‘˜ ) , (A.2) where ๐›พ > 0 is related to the smoothness of (๐‘‹๐‘ก ). For example, if (๐‘‹๐‘ก ) is a fractional Brownian motion with Hurstโ€™s index ๐ป, then ๐›พ = 2 โˆ’ 2๐ป. Denote by ๐‘š๐‘› = max{ฮ”๐‘ก (๐‘›) ๐‘˜ ; 0 โ‰ค ๐‘˜ โ‰ค ๐‘๐‘› โˆ’ 1} and ๐‘๐‘› = min{ฮ”๐‘ก (๐‘›) ๐‘˜ ; 0 โ‰ค ๐‘˜ โ‰ค ๐‘๐‘› โˆ’ 1}. It is assumed in (6) that (i) For a sequence of positive real numbers (๐‘™๐‘˜ )๐‘˜โ‰ฅ1, lim ๐‘›โ†’โˆž sup 1โ‰ค๐‘˜โ‰ค๐‘๐‘›โˆ’1 ฮ”๐‘ก (๐‘›) ๐‘˜โˆ’1 ฮ”๐‘ก (๐‘›) ๐‘˜ โˆ’ ๐‘™๐‘˜ = 0; (ii) ๐‘š๐‘› = ๐‘‚(๐‘๐‘›) as ๐‘› โ†’ โˆž; (iii) ๐‘๐‘› = ๐‘œ( 1 log ๐‘› ) as ๐‘› โ†’ โˆž. 76 With irregular observations satisfying the assumptions above, the almost sure convergence ofV๐‘› (๐‘‹) is proved under some regularity conditions on (๐‘‹๐‘ก ). Although (6) considered a general class of irregular observations, the quadratic variation defined in (A.2) could not be evaluated when ๐›พ is unknown. Also, ๐›พ could not be estimated when ๐‘š๐‘› = ๐‘๐‘› = 1 ๐‘๐‘› does not hold. The quadratic variations defined by (53), however, do not depend on unknown parameters. (53) considered a stationary, isotropic Gaussian random field ๐‘‹ on R๐‘‘, ๐‘‘ = 1, 2. When ๐‘‘ = 1, define irregular lattice points ๐‘ก๐‘– = ๐œ‘  ๐‘– โˆ’ 1 ๐‘› โˆ’ 1  , ๐‘– = 1, . . . , ๐‘› (A.3) for ๐‘› โ‰ฅ 2, where ๐œ‘ : R โ†ฆโ†’ R is a twice continuously differentiable function with ๐œ‘(0) = 0, ๐œ‘(1) = 1 and min0โ‰ค๐‘ โ‰ค1 ๐œ‘โ€ฒ(๐‘ ) > 0. For ๐œƒ โˆˆ {1, 2} and โ„“ โˆˆ {1, 2, . . . , โŒŠ(๐‘› โˆ’ 1)/๐œƒโŒ‹}, define ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘˜ = โ„“! รŽ 0โ‰ค ๐‘—โ‰คโ„“, ๐‘—โ‰ ๐‘˜ (๐‘ก๐‘–+๐œƒ๐‘˜ โˆ’ ๐‘ก๐‘–+๐œƒ ๐‘— ) , ๐‘˜ = 0, . . . , โ„“, (A.4) โˆ‡๐œƒ,โ„“๐‘‹๐‘– = ร•โ„“ ๐‘˜=0 ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘˜ ๐‘‹(๐‘ก๐‘–+๐œƒ๐‘˜ ), ๐‘– = 1, . . . , ๐‘› โˆ’ ๐œƒโ„“. (A.5) Lemma 1 in (53) shows that ร•โ„“ ๐‘˜=0 ๐‘Ž๐œƒ,โ„“;๐‘–,๐‘˜ ๐‘ก๐‘ž ๐‘–+๐œƒ๐‘˜ = 8>>>>< >>>>: 0, ๐‘ž = 0, . . . , โ„“ โˆ’ 1 โ„“!, ๐‘ž = โ„“. The โ„“th order quadratic variations are defined as ๐‘‰๐œƒ,โ„“ = ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–=1 ๔€€€ โˆ‡๐œƒ,โ„“๐‘‹๐‘– 2 , ๐œƒ โˆˆ {1, 2}, โ„“ โˆˆ {1, 2, . . . , โŒŠ(๐‘› โˆ’ 1)/๐œƒโŒ‹}. (A.6) A.2 ๐‘‘ > 1 A.2.1 Observations along a curve (53) studied the case when ๐‘‘ = 2 and ๐‘‹ is observed along a fixed curve in R2. Assume that (i) โˆƒ๐œ– > 0, ๐ฟ > 0 s.t. ๐›พ : (โˆ’๐œ–, ๐ฟ + ๐œ–) โ†ฆโ†’ R๐‘‘ is a ๐ถ2-curve parameterized by arc length; 77 (ii) โˆƒ๐ถ > 0 s.t. ||๐›พ(๐‘กโˆ—) โˆ’ ๐›พ(๐‘ก) || โ‰ฅ ๐ถ|๐‘กโˆ— โˆ’ ๐‘ก |, โˆ€๐‘กโˆ—, ๐‘ก โˆˆ [0, ๐ฟ]. Denote by ๐‘‹๐‘– = ๐‘‹(๐›พ(๐‘ก๐‘–)) and ๐‘‘๐‘–, ๐‘— = ||๐›พ(๐‘ก๐‘–) โˆ’ ๐›พ(๐‘ก ๐‘— ) || for 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘›, where ๐‘ก๐‘– is defined in (A.3). For ๐œƒ, โ„“ โˆˆ {1, 2}, define ๐‘๐œƒ,โ„“;๐‘–,๐‘˜ = โ„“ รŽ 0โ‰ค ๐‘—โ‰คโ„“, ๐‘—โ‰ ๐‘˜ (๐‘‘๐‘–,๐‘–+๐œƒ๐‘˜ โˆ’ ๐‘‘๐‘–,๐‘–+๐œƒ ๐‘— ) , ๐‘˜ = 0, . . . , โ„“, (A.7) หœโˆ‡๐œƒ,โ„“๐‘‹๐‘– = ร•โ„“ ๐‘˜=0 ๐‘๐œƒ,โ„“;๐‘–,๐‘˜ ๐‘‹๐‘–+๐œƒ๐‘˜ , ๐‘– = 1, . . . , ๐‘› โˆ’ ๐œƒโ„“. (A.8) Lemma 1 in (53) shows that ร•โ„“ ๐‘˜=0 ๐‘๐œƒ,โ„“;๐‘–,๐‘˜ ๐‘‘๐‘ž ๐‘–,๐‘–+๐œƒ๐‘˜ = 8>>>> < >>>>: 0, ๐‘ž = 0, . . . , โ„“ โˆ’ 1 โ„“, ๐‘ž = โ„“. The โ„“th order quadratic variations are constructed as หœ๐‘‰ ๐œƒ,โ„“ = ๐‘›ร•โˆ’๐œƒโ„“ ๐‘–=1 ๔€€€ หœโˆ‡๐œƒ,โ„“๐‘‹๐‘– 2 , ๐œƒ, โ„“ โˆˆ {1, 2}. (A.9) A.2.2 Observations on deformed lattice When ๐‘‘ = 2 and ๐‘‹ is observed on deformed lattice points in R2, (53) also defined corresponding second order quadratic variations. Consider an open set ฮฉ in R2 with [0, 1]2 โŠ‚ ฮฉ, and a ๐ถ2(ฮฉ) diffeomorphism ๐œ‘หœ : ฮฉ โ†ฆโ†’ R2. Let ๐œ‘หœ = (๐œ‘1, ๐œ‘2). Write ๐‘‹๐‘–1,๐‘–2 = ๐‘‹(x๐‘–1,๐‘–2 ), where x๐‘–1,๐‘–2 = (๐‘ฅ๐‘–1,๐‘–2 1 , ๐‘ฅ๐‘–1,๐‘–2 2 )โ€ฒ = (๐œ‘1(๐‘–1/๐‘›, ๐‘–2/๐‘›), ๐œ‘2 (๐‘–1/๐‘›, ๐‘–2/๐‘›))โ€ฒ for 1 โ‰ค ๐‘–1, ๐‘–2 โ‰ค ๐‘›. For ๐œƒ โˆˆ {1, 2} and 1 โ‰ค ๐‘–1, ๐‘–2 โ‰ค ๐‘› โˆ’ ๐œƒ, let ๐ด๐œƒ;๐‘–1,๐‘–2 = ยฉยญยญ ยซ ๐‘ฅ๐‘–1+๐œƒ,๐‘–2 1 โˆ’ ๐‘ฅ๐‘–1,๐‘–2 1 ๐‘ฅ๐‘–1+๐œƒ,๐‘–2 2 โˆ’ ๐‘ฅ๐‘–1,๐‘–2 2 ๐‘ฅ๐‘–1,๐‘–2+๐œƒ 1 โˆ’ ๐‘ฅ๐‘–1,๐‘–2 1 ๐‘ฅ๐‘–1,๐‘–2+๐œƒ 2 โˆ’ ๐‘ฅ๐‘–1,๐‘–2 2 ยชยฎยฎ ยฌ , ๐ต๐œƒ;๐‘–1,๐‘–2 = ยฉยญยญ ยซ ๐‘ฅ๐‘–1+๐œƒ,๐‘–2 1 โˆ’ ๐‘ฅ๐‘–1+๐œƒ,๐‘–2+๐œƒ 1 ๐‘ฅ๐‘–1+๐œƒ,๐‘–2 2 โˆ’ ๐‘ฅ๐‘–1+๐œƒ,๐‘–2+๐œƒ 2 ๐‘ฅ๐‘–1,๐‘–2+๐œƒ 1 โˆ’ ๐‘ฅ๐‘–1+๐œƒ,๐‘–2+๐œƒ 1 ๐‘ฅ๐‘–1,๐‘–2+๐œƒ 2 โˆ’ ๐‘ฅ๐‘–1+๐œƒ,๐‘–2+๐œƒ 2 ยชยฎยฎ ยฌ . 78 Then define ยฉยญยญ ยซ หœโˆ‡๐œƒ,1๐‘‹๐‘–1,๐‘–2 หœโˆ‡๐œƒ,2๐‘‹๐‘–1,๐‘–2 ยชยฎยฎ ยฌ = ๐ตโˆ’1 ๐œƒ;๐‘–1,๐‘–2 ยฉยญยญ ยซ ๐‘‹๐‘–1+๐œƒ,๐‘–2 โˆ’ ๐‘‹๐‘–1+๐œƒ,๐‘–2+๐œƒ ๐‘‹๐‘–1,๐‘–2+๐œƒ โˆ’ ๐‘‹๐‘–1+๐œƒ,๐‘–2+๐œƒ ยชยฎยฎ ยฌ โˆ’ ๐ดโˆ’1 ๐œƒ;๐‘–1,๐‘–2 ยฉยญยญ ยซ ๐‘‹๐‘–1+๐œƒ,๐‘–2 โˆ’ ๐‘‹๐‘–1,๐‘–2 ๐‘‹๐‘–1,๐‘–2+๐œƒ โˆ’ ๐‘‹๐‘–1,๐‘–2 ยชยฎยฎ ยฌ (A.10) = ร• 0โ‰ค๐‘˜1,๐‘˜2โ‰ค1 ยฉยญยญ ยซ ๐‘๐‘˜1,๐‘˜2 ๐œƒ,1;๐‘–1,๐‘–2 ๐‘‹๐‘–1+๐œƒ๐‘˜1,๐‘–2+๐œƒ๐‘˜2 ๐‘๐‘˜1,๐‘˜2 ๐œƒ,2;๐‘–1,๐‘–2 ๐‘‹๐‘–1+๐œƒ๐‘˜1,๐‘–2+๐œƒ๐‘˜2 ยชยฎยฎ ยฌ , (A.11) where ๐ตโˆ’1 ๐œƒ;๐‘–1,๐‘–2 and ๐ดโˆ’1 ๐œƒ;๐‘–1,๐‘–2 exist for large enough ๐‘› since ๐œ‘หœ is a diffeomorphism. Lemma 2 in (53) shows that for ๐‘— , โ„“ โˆˆ {1, 2}, ร• 0โ‰ค๐‘˜1,๐‘˜2โ‰ค1 ๐‘๐‘˜1,๐‘˜2 ๐œƒ,โ„“;๐‘–1,๐‘–2  ๐‘ฅ๐‘–1+๐œƒ๐‘˜1,๐‘–2+๐œƒ๐‘˜2 ๐‘— ๐‘ž = 0, ๐‘ž = 0, 1. The second order quadratic variations are defined as หœ๐‘‰ ๐œƒ,โ„“ = ร• 1โ‰ค๐‘–1,๐‘–2โ‰ค๐‘›โˆ’๐œƒ ๔€€€ หœโˆ‡๐œƒ,โ„“๐‘‹๐‘–1,๐‘–2 2 , ๐œƒ, โ„“ โˆˆ {1, 2}. (A.12) For quadratic variations defined in (A.6), (A.9) and (A.12), the rates of their expectations and variances as ๐‘› โ†’ โˆž are proved by (53) under some regularity conditions on ๐‘‹. (54) focused on the stationary GRF ๐‘‹ on R๐‘‘ with isotropic Matรฉrn covariance function, and studied quadratic variations constructed from irregular observations of ๐‘‹ when ๐‘‘ > 2. The definition in (A.12) is extended to the case where ๐‘‹ is observed on [0, 1]๐‘‘ and ๐‘‘ โˆˆ Z+. Consider an open set ฮฉ in R๐‘‘ with [0, 1]๐‘‘ โŠ‚ ฮฉ, and a ๐ถ2(ฮฉ) diffeomorphism ๐‹ = (๐œ‘1, . . . , ๐œ‘๐‘‘) : ฮฉ โ†ฆโ†’ R๐‘‘. Write x(i) = (๐‘ฅ1(i), . . . , ๐‘ฅ๐‘‘ (i))โ€ฒ =  ๐œ‘1  i ๐‘›  , . . . , ๐œ‘๐‘‘  i ๐‘› โ€ฒ and ๐‘‹๐‘–1,...,๐‘–๐‘‘ = ๐‘‹(x(i)), where i = (๐‘–1, . . . , ๐‘–๐‘‘)โ€ฒ and 1 โ‰ค ๐‘–1, . . . , ๐‘–๐‘‘ โ‰ค ๐‘›. The sample size is thus ๐‘›๐‘‘. For ๐œƒ โˆˆ {1, 2} and โ„“ โˆˆ Z+, let โ„“ยฏ = ร•โ„“ ๐‘™=1 ยฉยญยญ ยซ ๐‘™ + ๐‘‘ โˆ’ 1 ๐‘‘ โˆ’ 1 ยชยฎยฎ ยฌ , (A.13) xi, ๐‘— = (๐‘ฅi, ๐‘—;1, . . . , ๐‘ฅi, ๐‘— ;๐‘‘)โ€ฒ = x(๐‘–1 + ๐‘˜1๐œƒ, . . . , ๐‘–๐‘‘ + ๐‘˜๐‘‘๐œƒ), ๐‘— = 0, . . . , โ„“ยฏ, หœyi, ๐‘— = ๐‘› ๐œƒ (xi, ๐‘— โˆ’ xi,0), ๐‘— = 1, . . . , โ„“ยฏ, 79 where ๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘›โˆ’โ„“๐œƒ}, ๐‘˜1, . . . , ๐‘˜๐‘‘ โˆˆ {0, 1, . . . , โ„“} and ร๐‘‘ ๐‘–=1 ๐‘˜๐‘– โˆˆ {0, 1, . . . , โ„“}, ๐‘— denotes the lexicographical order of combinations (๐‘˜1, . . . , ๐‘˜๐‘‘), xi,0 = x(i). The detailed rule of ordering is described in Section 5.1 of (54). For ๐‘™ = 1, . . . , โ„“ and s = (๐‘ 1, . . . , ๐‘ ๐‘‘)โ€ฒ โˆˆ R๐‘‘, define aโŸจ๐‘‘,๐‘™โŸฉ (s) = ร–๐‘‘ ๐‘˜=1 ๐‘ ๐‘™๐‘˜ ๐‘˜ ๐‘™๐‘˜ ! ! โˆˆ R ยฉยญยญยญยญ ยซ ๐‘™ + ๐‘‘ โˆ’ 1 ๐‘‘ โˆ’ 1 ยชยฎยฎยฎยฎ ยฌ, (A.14) where ๐‘™1, . . . , ๐‘™๐‘‘ โˆˆ {0, 1, . . . , โ„“} and ร๐‘‘ ๐‘–=1 ๐‘™๐‘– = ๐‘™. The elements of aโŸจ๐‘‘,๐‘™โŸฉ (s) are arranged in lexicographic ordering with respect to (๐‘™1, . . . , ๐‘™๐‘‘). Define a โ„“ยฏร— โ„“ยฏmatrix หœ๐ด i,๐œƒ,๐‘‘,โ„“ = ยฉยญยญยญยญยญยญยญยญ ยซ aโŸจ๐‘‘,1โŸฉ ( หœyi,1) aโŸจ๐‘‘,2โŸฉ ( หœyi,1) ยท ยท ยท aโŸจ๐‘‘,โ„“โŸฉ ( หœyi,1) aโŸจ๐‘‘,1โŸฉ (yหœi,2) aโŸจ๐‘‘,2โŸฉ (yหœi,2) ยท ยท ยท aโŸจ๐‘‘,โ„“โŸฉ (yหœi,โ„“ยฏ ) ... ... . . . ... aโŸจ๐‘‘,1โŸฉ (yหœi,โ„“ยฏ ) aโŸจ๐‘‘,2โŸฉ (yหœi,1) ยท ยท ยท aโŸจ๐‘‘,โ„“โŸฉ (yหœi, ยฏ โ„“ ) ยชยฎยฎยฎยฎยฎยฎยฎยฎ ยฌ (A.15) and assume | หœ ๐ด i,๐œƒ,๐‘‘,โ„“ | โ‰  0 for all ๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘› โˆ’ โ„“๐œƒ}. Denote by หœ ๐ด โˆ’1 i,๐œƒ,๐‘‘,โ„“ =  หœ ๐›ผ๐‘— ,๐‘˜ i,๐œƒ,๐‘‘,โ„“  1โ‰ค ๐‘— ,๐‘˜โ‰คโ„“ยฏ and let หœ ๐‘i,๐œƒ,๐‘‘,โ„“ ( ๐‘— ) = 8>>>> < >>>>: หœ ๐›ผ โ„“ยฏ, ๐‘— i,๐œƒ,๐‘‘,โ„“, โˆ€๐‘— = 1, . . . , โ„“ยฏ, โˆ’รโ„“ยฏ ๐‘˜=1 หœ ๐›ผ โ„“ยฏ,๐‘˜ i,๐œƒ,๐‘‘,โ„“, if ๐‘— = 0. (A.16) For ๐œƒ โˆˆ {1, 2} and โ„“ โˆˆ Z+, define หœโˆ‡๐œƒ,๐‘‘,โ„“๐‘‹๐‘–1,...,๐‘–๐‘‘ = ร•โ„“ยฏ ๐‘—=0 หœ ๐‘i,๐œƒ,๐‘‘,โ„“ ( ๐‘— )๐‘‹(xi, ๐‘— ), ๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘› โˆ’ 2โ„“}. (A.17) The โ„“th order quadratic variation is then defined as หœ๐‘‰ ๐œƒ,๐‘‘,โ„“ = ร• 1โ‰ค๐‘–1,...,๐‘–๐‘‘โ‰ค๐‘›โˆ’2โ„“ ๔€€€ หœโˆ‡๐œƒ,๐‘‘,โ„“๐‘‹๐‘–1,...,๐‘–๐‘‘ 2 . (A.18) A.2.3 Stratified sampling Let x(i) = (๐‘ฅ1(i), . . . , ๐‘ฅ๐‘‘ (i))โ€ฒ =  ๐‘–1 โˆ’ 1 + ๐›ฟi;1 ๐‘› , . . . , ๐‘–๐‘‘ โˆ’ 1 + ๐›ฟi;๐‘‘ ๐‘› โ€ฒ โˆˆ [0, 1)๐‘‘, 80 where i = (๐‘–1, . . . , ๐‘–๐‘‘)โ€ฒ and 1 โ‰ค ๐‘–1, . . . , ๐‘–๐‘‘ โ‰ค ๐‘›; 0 โ‰ค ๐›ฟi;๐‘˜ < 1 (๐‘˜ = 1, . . . , ๐‘‘) are constants that can vary with ๐‘›. Let ๐œ”๐‘› be an integer depending only on ๐‘› such that ๐œ”๐‘› = ๐‘‚(๐‘›๐›พ0 ) as ๐‘› โ†’ โˆž, where ๐›พ0 โˆˆ (0, 1) is a constant. For ๐œƒ โˆˆ {1, 2} and โ„“ โˆˆ Z+, let xi, ๐‘— = (๐‘ฅi, ๐‘—;1, . . . , ๐‘ฅi, ๐‘— ;๐‘‘)โ€ฒ = x(๐‘–1 + ๐‘˜1๐œ”๐‘›๐œƒ, . . . , ๐‘–๐‘‘ + ๐‘˜๐‘‘๐œ”๐‘›๐œƒ), ๐‘— = 0, . . . , โ„“ยฏ, yi, ๐‘— = ๐‘› ๐œ”๐‘›๐œƒ (xi, ๐‘— โˆ’ xi,0), ๐‘— = 1, . . . , โ„“ยฏ, where ๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘›โˆ’โ„“๐œ”๐‘›๐œƒ}, other notations are as defined in Section A.2.2. Define a โ„“ยฏร—โ„“ยฏ matrix ๐ดi,๐œƒ,๐‘‘,โ„“ = ยฉยญยญยญยญยญยญยญยญ ยซ aโŸจ๐‘‘,1โŸฉ (yi,1) aโŸจ๐‘‘,2โŸฉ (yi,1) ยท ยท ยท aโŸจ๐‘‘,โ„“โŸฉ (yi,1) aโŸจ๐‘‘,1โŸฉ (yi,2) aโŸจ๐‘‘,2โŸฉ (yi,2) ยท ยท ยท aโŸจ๐‘‘,โ„“โŸฉ (yi,โ„“ยฏ ) ... ... . . . ... aโŸจ๐‘‘,1โŸฉ (yi,โ„“ยฏ ) aโŸจ๐‘‘,2โŸฉ (yi,1) ยท ยท ยท aโŸจ๐‘‘,โ„“โŸฉ (yi, ยฏ โ„“ ) ยชยฎยฎยฎยฎยฎยฎยฎยฎ ยฌ , (A.19) where aโŸจ๐‘‘,๐‘™โŸฉ (ยท) is defined in (A.14). Assume |๐ดi,๐œƒ,๐‘‘,โ„“ | โ‰  0 for all ๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘› โˆ’ โ„“๐œ”๐‘›๐œƒ}. Then denote by ๐ดโˆ’1 i,๐œƒ,๐‘‘,โ„“ =  ๐›ผ๐‘— ,๐‘˜ i,๐œƒ,๐‘‘,โ„“  1โ‰ค ๐‘— ,๐‘˜โ‰คโ„“ยฏ . Let ๐‘i,๐œƒ,๐‘‘,โ„“ ( ๐‘— ) = 8>>>> < >>>>: ๐›ผ โ„“ยฏ, ๐‘— i,๐œƒ,๐‘‘,โ„“, โˆ€๐‘— = 1, . . . , โ„“ยฏ, โˆ’รโ„“ยฏ ๐‘˜=1 ๐›ผ โ„“ยฏ,๐‘˜ i,๐œƒ,๐‘‘,โ„“, if ๐‘— = 0. (A.20) The โ„“th order quadratic variation is then defined as ๐‘‰๐œƒ,๐‘‘,โ„“ = ร• 1โ‰ค๐‘–1,...,๐‘–๐‘‘โ‰ค๐‘›โˆ’2โ„“๐œ”๐‘› ๔€€€ โˆ‡๐œƒ,๐‘‘,โ„“๐‘‹๐‘–1,...,๐‘–๐‘‘ 2 , (A.21) where ๐œƒ โˆˆ {1, 2}, โ„“ โˆˆ Z+ and โˆ‡๐œƒ,๐‘‘,โ„“๐‘‹๐‘–1,...,๐‘–๐‘‘ = ร•โ„“ยฏ ๐‘—=0 ๐‘i,๐œƒ,๐‘‘,โ„“ ( ๐‘— )๐‘‹(xi, ๐‘— ), ๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘› โˆ’ 2โ„“๐œ”๐‘›}. (A.22) A.3 Randomized Sampling Design Section 4 in (54) considered random sampling on [0, 1)๐‘‘, where ๐‘‘ โˆˆ {1, 2, 3}. It is an extension of the stratified sampling discussed in Section A.2.3. 81 Let x1, . . . , x๐‘ be a sequence of i.i.d. random vectors in R๐‘‘ that are independent of the GRF ๐‘‹. Assume the probability density function ๐‘(x) of x1 satisfies ยน [0,1)๐‘‘ ๐‘(x)dx = 1 and inf [0,1)๐‘‘ ๐‘(x) โ‰ฅ ๐‘0 > 0. (A.23) When ๐‘0 in (A.23) is unknown, let ๐‘›๐œ = $ ๐‘ ๐œ log2(๐‘) 1/๐‘‘ % , โˆ€๐œ > 0. Let ห† ๐œ be the smallest real number greater than or equal to 1 such that {x1, . . . , x๐‘ } โˆฉ ร–๐‘‘ ๐‘—=1  ๐‘– ๐‘— โˆ’ 1 ๐‘› ห† ๐œ , ๐‘– ๐‘— ๐‘› ห† ๐œ  โ‰  โˆ…, โˆ€๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘› ห† ๐œ}. Consider the effective sample only: 8>> < >>:  x๐‘— , ๐‘‹(x๐‘— ) : x๐‘— โˆˆ ร–๐‘‘ ๐‘—=1  ๐‘– ๐‘— โˆ’ 1 ๐‘› ห† ๐œ , ๐‘– ๐‘— ๐‘› ห† ๐œ  , ๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ๐‘› ห† ๐œ}, ๐‘— โˆˆ {1, . . . , ๐‘} 9>> = >>; . (A.24) Take a subset of x๐‘— โ€™s in (A.24) such that for each i = (๐‘–1, . . . , ๐‘–๐‘‘)โ€ฒ with 1 โ‰ค ๐‘–1, . . . , ๐‘–๐‘‘ โ‰ค ๐‘› ห† ๐œ, there is strictly one ๐‘— satisfying x๐‘— โˆˆ รŽ๐‘‘๐‘— =1 h ๐‘– ๐‘—โˆ’1 ๐‘› ห† ๐œ , ๐‘– ๐‘— ๐‘› ห† ๐œ  . Write the selected x๐‘— as x(i). The randomized sampling design is then reduced to the stratified sampling design with a sample size of ๐‘›๐‘‘ ห† ๐œ . Thus, the โ„“th order quadratic variations could be defined as in (A.21), where ๐œƒ โˆˆ {1, 2}, โ„“ โˆˆ Z+ and ๐‘› is replaced by ๐‘› ห† ๐œ. When ๐‘0 in (A.23) is known, let ๐œ0 = 3/๐‘0 and ยฏ ๐‘›๐œ = $ ๐‘ ๐œ log(๐‘) 1/๐‘‘ % , where ๐œ โ‰ฅ ๐œ0. Let ยฏ ๐œ be the smallest real number greater than or equal to ๐œ0 such that {x1, . . . , x๐‘ } โˆฉ ร–๐‘‘ ๐‘—=1  ๐‘– ๐‘— โˆ’ 1 ยฏ ๐‘› ยฏ ๐œ , ๐‘– ๐‘— ยฏ ๐‘› ยฏ ๐œ  โ‰  โˆ…, โˆ€๐‘–1, . . . , ๐‘–๐‘‘ โˆˆ {1, . . . , ยฏ ๐‘› ยฏ ๐œ}. The effective sample is defined as in (A.24) by replacing ๐‘› ห† ๐œ with ยฏ ๐‘› ยฏ ๐œ. Similarly, the โ„“th order quadratic variations are defined as in (A.21), where ๐œƒ โˆˆ {1, 2}, โ„“ โˆˆ Z+ and ๐‘› is replaced by ยฏ ๐‘› ยฏ ๐œ. 82 A.4 Estimating Smoothness Parameters Based on the a.s. convergence of the quadratic variation defined in (A.2), when a fractional Ornstein-Uhlenbeck process ๐‘‚๐ป is observed from regular sampling, its fractional parameter ๐ป โˆˆ (0, 1) has a strongly consistent estimator as ห†๐ป ๐‘› = 1 2 โˆ’ log ร๐‘๐‘›โˆ’1 ๐‘˜=1  ๐‘‚๐ป ๐‘˜+1 ๐‘๐‘› + ๐‘‚๐ป ๐‘˜โˆ’1 ๐‘๐‘› โˆ’ 2๐‘‚๐ป ๐‘˜ ๐‘๐‘› 2! 2 log ๐‘๐‘› , (A.25) where 1/๐‘๐‘› = ๐‘œ(1/log ๐‘›). Quadratic variations constructed in (A.6), (A.9) and (A.12) are used to estimate the smoothness parameter ๐œˆ in covariance function (1.1). The estimators of ๐œˆ defined by (53) are minimizers of functions that depend on sampling locations and quadratic variations. Although with no closed form expressions, the estimators are proved to be strongly consistent when โ„“ > ๐œˆ and observations are on [0, 1] or along a curve. When ๐‘‹ is observed on deformed lattice and ๐œˆ โˆˆ (0, 2), โ„“ โˆˆ {1, 2}, the estimator defined using (A.12) is proved to be strongly consistent as well. The Matรฉrn covariance function belongs to the class of functions defined in (1.1). To estimate its smoothness parameter ๐œˆ, define ห† ๐œˆ๐‘›,โ„“ = log(๐‘‰2,๐‘‘,โ„“/๐‘‰1,๐‘‘,โ„“) 2 log 2 , (A.26) where ๐‘‰๐œƒ,๐‘‘,โ„“, ๐œƒ = 1, 2 are quadratic variations defined in (A.18), (A.21) and Section A.3, corresponding to different kinds of sampling design. When โ„“ > ๐œˆ, it is proved by (54) that ห† ๐œˆ๐‘›,โ„“ โ†’ ๐œˆ a.s. as ๐‘› โ†’ โˆž. 83 APPENDIX B HIGH EXCURSION PROBABILITY We first introduce some notations and definitions presented in (62). The structural modulus of vector t โˆˆ R๐‘› is defined as |t|๐ธ,๐›ผ = ร•๐‘˜ ๐‘–=1 ยฉยญ ยซ ร•๐ธ(๐‘–) ๐‘—=๐ธ(๐‘–โˆ’1)+1 ๐‘ก2 ๐‘— ยชยฎ ยฌ ๐›ผ๐‘–/2 , where ๐ธ = {๐‘’1, ๐‘’2, . . . , ๐‘’๐‘˜ }, ๐›ผ = {๐›ผ1, ๐›ผ2, . . . , ๐›ผ๐‘˜ }, ๐‘’๐‘– , ๐›ผ๐‘– โˆˆ Z+ (๐‘– = 1, 2, . . . , ๐‘˜), ร๐‘˜ ๐‘–=1 ๐‘’๐‘– = ๐‘›, ๐ธ(๐‘–) = ร๐‘– ๐‘—=0 ๐‘’ ๐‘— , ๐‘’0 = 0. A structure (๐ธ, ๐›ผ) defines a partition of the space R๐‘› into a direct product of orthogonal subspaces (R๐‘› = ร—๐‘˜ ๐‘–=1R๐‘’๐‘– ) such that the restrictions of the structural modulus |t|๐ธ,๐›ผ on either of them is a Euclidean norm taken to the degree ๐›ผ๐‘– , ๐‘– = 1, 2, . . . , ๐‘˜, respectively. Example 1. Let ๐‘› = ๐‘˜ = 2 and ๐ธ = {1, 1}, then ๐ธ(0) = 0, ๐ธ(1) = 1, ๐ธ(2) = 2, and |t|๐ธ,๐›ผ = |๐‘ก1|๐›ผ1 + |๐‘ก2|๐›ผ2 , โˆ€t = (๐‘ก1, ๐‘ก2) โˆˆ R2, where ๐›ผ1, ๐›ผ2 โˆˆ Z+. Let ๐œ’(t), t โˆˆ R๐‘› be a Gaussian field with continuous trajectories, and ๐ธ ๐œ’(t) = โˆ’|t|๐ธ,๐›ผ, Cov (๐œ’(t), ๐œ’(s)) = |t|๐ธ,๐›ผ + |s|๐ธ,๐›ผ โˆ’ |t โˆ’ s|๐ธ,๐›ผ, where ๐›ผ๐‘– โ‰ค 2 makes the covariance function valid. For any compact set ๐‘‡ โŠ‚ R๐‘› and matrix ๐‘€ โˆˆ R๐‘›ร—๐‘›, denote by ๐ป๐‘€ (๐ธ,๐›ผ),(๐ธโ€ฒ,๐›ผโ€ฒ) (๐‘‡) = ๐ธ exp  max ๐‘‡  ๐œ’(t) โˆ’ |๐‘€t|๐ธโ€ฒ,๐›ผโ€ฒ  . Write ๐ป๐ธ,๐›ผ (๐‘‡) = ๐ป0 (๐ธ,๐›ผ),(๐ธโ€ฒ,๐›ผโ€ฒ) (๐‘‡), where 0 is the zero matrix. A set ๐ด โŠ‚ R๐‘› is called Jordan measurable if its interior and closure have the same Lebesgue measure, i.e. its boundary has Lebesgure measure zero. The system {๐ด๐‘ข, ๐‘ข > 0} is said to blow up slowly with the rate ๐œ… > 0 if each of these sets contains a unit cube and mes(๐ด๐‘ข) = ๐‘‚(๐‘’๐œ…๐‘ข2/2) as ๐‘ข โ†’ โˆž. Theorem 7.2 in (62) is presented as below, where the subscript ยท๐ธ,๐›ผ is written as ยท๐›ผ for short. 84 Theorem 11. (62) Let {๐‘‹(t), t โˆˆ R๐‘›} be a Gaussian homogeneous field with zero mean and the covariance function ๐‘Ÿ (t) satisfies that there exists a non-degenerate matrix ๐ถ and a structure (๐ธ, ๐›ผ) such that ๐‘Ÿ (๐ถt) = 1 โˆ’ |t|๐›ผ + ๐‘œ(|t|๐›ผ) as ๐‘ก โ†’ 0, ๐‘Ÿ (t) โ†’ 0 as ๐‘ก โ†’ โˆž. (B.1) Then there exists a number ๐œ… > 0 such that for any system of closed Jordan sets, blowing up slowly with the rate ๐œ…, ๐‘ƒ  max tโˆˆ๐ด๐‘ข ๐‘‹(t) > ๐‘ข  = ๐ป๐›ผmes(๐ด๐‘ข) |det๐ถโˆ’1| ร–๐‘˜ ๐‘–=1 ๐‘ข2๐‘’๐‘–/๐›ผ๐‘–ฮจ(๐‘ข) (1 + ๐‘œ(1)) as ๐‘ข โ†’ โˆž, (B.2) where ๐ป๐›ผ = lim ๐‘กโ†’โˆž ๐ป๐›ผ ( [0, ๐‘ก]๐‘›) ๐‘ก๐‘› and ฮจ(๐‘ข) = โˆš1 2๐œ‹ ยฏ โˆž ๐‘ข exp(โˆ’๐‘ฅ2/2)d๐‘ฅ. Remark 3. The zero-mean stationary Ornstein-Uhlenbeck field ๐‘‹ with covariance function defined in (3.2) taking ๐œŽ2 = 1 satisfies conditions in Theorem 11 with ๐‘› = 2, ๐ธ = {1, 1}, ๐›ผ = {1, 1}, and ๐ถ = ยฉยญยญ ยซ 1/๐œ† 0 0 1/๐œ‡ ยชยฎยฎ ยฌ . 85 APPENDIX C STOCHASTIC PARTIAL DIFFERENTIAL EQUATION Write the two-sided Laplace transform of a function โ„Ž as Lโ„Ž (๐‘) = ยน โˆž โˆ’โˆž ๐‘’โˆ’๐‘๐‘ฅโ„Ž(๐‘ฅ)d๐‘ฅ, (C.1) and denote by ๐ท๐‘› the differential operator of order ๐‘›, i.e. ๐ท๐‘›โ„Ž(๐‘ฅ) = d๐‘› d๐‘ฅ๐‘› โ„Ž(๐‘ฅ). It follows from the differentiation rule presented on Page 48-50 of (67) that L๐ท๐‘›โ„Ž (๐‘) = ๐‘๐‘›Lโ„Ž (๐‘), โˆ€๐‘› โˆˆ Z+ (C.2) when lim ๐‘ฅโ†’โˆž ๐‘’โˆ’๐‘๐‘ฅโ„Ž(๐‘ฅ) โˆ’ lim ๐‘ฅโ†’โˆ’โˆž ๐‘’โˆ’๐‘๐‘ฅโ„Ž(๐‘ฅ) = 0. The case when ๐‘› โˆ‰ Z+ is discussed in (59). We first introduce the definition of fractional derivatives below. For any ๐›ผ > 0, define the fractional difference operator ฮ”๐›ผ as ฮ”๐›ผ ๐‘“ (๐‘ฅ) = ร•โˆž ๐‘—=0 ฮ“(๐›ผ + 1) ๐‘— !ฮ“(๐›ผ โˆ’ ๐‘— + 1) (โˆ’1) ๐‘— ๐‘“ (๐‘ฅ โˆ’ ๐‘— โ„Ž) and write the fractional derivative in the Gruฬˆnwald-Letnikov finite difference form as ๐ท๐›ผ ๐‘“ (๐‘ฅ) := d๐›ผ ๐‘“ (๐‘ฅ) d๐‘ฅ๐›ผ = lim โ„Žโ†’0 ฮ”๐›ผ ๐‘“ (๐‘ฅ) โ„Ž๐›ผ . (C.3) Alternative integral forms for the fractional derivative are also presented in (59), as shown in Tables C.1-C.2. Consider the Riemann-Liouville fractional derivative of order 0 < ๐›ผ < 1, of which the Laplace transform is written as ยน โˆž โˆ’โˆž ๐‘’โˆ’๐‘๐‘ฅ๐ท๐›ผ ๐‘“ (๐‘ฅ)d๐‘ฅ = ยน โˆž โˆ’โˆž ๐‘’โˆ’๐‘๐‘ฅ d d๐‘ฅ ยน โˆž 0 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ) ๐‘ฆโˆ’๐›ผ ฮ“(1 โˆ’ ๐›ผ) d๐‘ฆd๐‘ฅ = 1 ฮ“(1 โˆ’ ๐›ผ)   ๐‘’โˆ’๐‘๐‘ฅ ยน โˆž 0 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ)๐‘ฆโˆ’๐›ผd๐‘ฆ โˆž ๐‘ฅ=โˆ’โˆž โˆ’ ยน โˆž โˆ’โˆž ยน โˆž 0 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ)๐‘ฆโˆ’๐›ผd๐‘ฆd๐‘’โˆ’๐‘๐‘ฅ  := 1 ฮ“(1 โˆ’ ๐›ผ) (๐ผ1 โˆ’ ๐ผ2), 86 where ๐ผ2 = โˆ’๐‘ ยน โˆž 0 ๐‘’โˆ’๐‘๐‘ฆ๐‘ฆโˆ’๐›ผ ยน โˆž โˆ’โˆž ๐‘“ (๐‘ง)๐‘’โˆ’๐‘๐‘งd๐‘งd๐‘ฆ = โˆ’๐‘๐›ผL๐‘“ (๐‘) when ๐‘’โˆ’๐‘๐‘ฅ ๐‘ฆโˆ’๐›ผ ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ) is integrable. If it further holds that lim ๐‘ฅโ†’โˆž ๐‘’โˆ’๐‘๐‘ฅ ยน โˆž 0 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ)๐‘ฆโˆ’๐›ผd๐‘ฆ โˆ’ lim ๐‘ฅโ†’โˆ’โˆž ๐‘’โˆ’๐‘๐‘ฅ ยน โˆž 0 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ)๐‘ฆโˆ’๐›ผd๐‘ฆ = 0, then L๐ท๐›ผ ๐‘“ (๐‘) = ๐‘๐›ผL๐‘“ (๐‘). Generator form ยฏ โˆž 0 ( ๐‘“ (๐‘ฅ) โˆ’ ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ)) ๐›ผ๐‘ฆโˆ’๐›ผโˆ’1 ฮ“(1โˆ’๐›ผ) d๐‘ฆ Caputo form ยฏ โˆž 0 d d๐‘ฅ ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ) ๐‘ฆโˆ’๐›ผ ฮ“(1โˆ’๐›ผ) d๐‘ฆ Riemann-Liouville form d d๐‘ฅ ยฏ โˆž 0 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ) ๐‘ฆโˆ’๐›ผ ฮ“(1โˆ’๐›ผ) d๐‘ฆ Table C.1Alternative integral forms for the fractional derivative when 0 < ๐›ผ < 1. Generator form ยฏ โˆž 0 ( ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ) โˆ’ ๐‘“ (๐‘ฅ) + ๐‘ฆ d d๐‘ฅ ๐‘“ (๐‘ฅ)) ๐›ผ(๐›ผโˆ’1)๐‘ฆโˆ’๐›ผโˆ’1 ฮ“(2โˆ’๐›ผ) d๐‘ฆ Caputo form ยฏ โˆž 0 d2 d๐‘ฅ2 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ) ๐‘ฆ1โˆ’๐›ผ ฮ“(2โˆ’๐›ผ) d๐‘ฆ Riemann-Liouville form d2 d๐‘ฅ2 ยฏ โˆž 0 ๐‘“ (๐‘ฅ โˆ’ ๐‘ฆ) ๐‘ฆ1โˆ’๐›ผ ฮ“(2โˆ’๐›ผ) d๐‘ฆ Table C.2Alternative integral forms for the fractional derivative when 1 < ๐›ผ < 2. Consider the stochastic partial differential equation (SPDE) ๐ฟ  ๐œ• ๐œ•๐‘ก1 , ๐œ• ๐œ•๐‘ก2  ๐‘‹(๐‘ก1, ๐‘ก2) = ๐œ– (๐‘ก1, ๐‘ก2), ๐‘ก1, ๐‘ก2 โˆˆ R, (C.4) where ๐ฟ is a linear differential operator. The Greenโ€™s function of ๐ฟ satisfies ๐ฟ  ๐œ• ๐œ•๐‘ก1 , ๐œ• ๐œ•๐‘ก2  ๐บ(๐‘ก1, ๐‘ก2) = ๐›ฟ0 (๐‘ก1)๐›ฟ0(๐‘ก2), ๐‘ก1, ๐‘ก2 โˆˆ R, (C.5) where ๐›ฟ0 is the Dirac measure at 0. When ๐œ– is the Gaussian white noise, it holds that ๐ธ[๐œ– (๐‘ 1, ๐‘ 2)๐œ– (๐‘ 1 + ๐‘ก1, ๐‘ 2 + ๐‘ก2)] = ๐›ฟ0 (๐‘ก1)๐›ฟ0 (๐‘ก2), โˆ€๐‘ 1, ๐‘ 2, ๐‘ก1, ๐‘ก2 โˆˆ R. (C.6) 87 The covariance function of ๐‘‹ is thus ๐ถ(๐‘ก1, ๐‘ก2) := ๐ธ[๐‘‹(๐‘ 1, ๐‘ 2)๐‘‹(๐‘ 1 + ๐‘ก1, ๐‘ 2 + ๐‘ก2)], โˆ€๐‘ 1, ๐‘ 2, ๐‘ก1, ๐‘ก2 โˆˆ R = ยน โˆž โˆ’โˆž ยน โˆž โˆ’โˆž ๐บ(๐‘ 1, ๐‘ 2)๐บ(๐‘ 1 + ๐‘ก1, ๐‘ 2 + ๐‘ก2)d๐‘ 1d๐‘ 2, โˆ€๐‘ก1, ๐‘ก2 โˆˆ R. (C.7) As presented in (32), when the operator ๐ฟ takes the form of ๐ฟ  ๐œ• ๐œ•๐‘ก1 , ๐œ• ๐œ•๐‘ก2  = ๐‘1 ๐œ•2 ๐œ•๐‘ก2 1 + ๐‘2 ๐œ•2 ๐œ•๐‘ก2 2 + ๐‘3 ๐œ•2 ๐œ•๐‘ก1๐œ•๐‘ก2 + ๐‘4 ๐œ• ๐œ•๐‘ก1 + ๐‘5 ๐œ• ๐œ•๐‘ก2 + ๐‘6, (C.8) the Laplace transforms of the Greenโ€™s function and the covariance function derived from (C.4) satisfy L๐บ (๐‘, ๐‘ž) = 1 ๐ฟ(๐‘, ๐‘ž) , (C.9) L๐ถ (๐‘, ๐‘ž) = 1 ๐ฟ(๐‘, ๐‘ž)๐ฟ(โˆ’๐‘, โˆ’๐‘ž) . (C.10) As a special case of (C.8), the elliptic form of the operator ๐ฟ is discussed in (74), where the corresponding SPDE is ๐œ•2 ๐œ•๐‘ก2 1 + ๐œ•2 ๐œ•๐‘ก2 2 โˆ’ ๐›พ2 ! ๐‘‹(๐‘ก1, ๐‘ก2) = ๐œ– (๐‘ก1, ๐‘ก2). (C.11) Denote by ๐พโ„“ the modified Bessel functions of the second kind. The Greenโ€™s function for (C.11) is thus ๐บ(๐‘ก1, ๐‘ก2) = Lโˆ’1 1 ๐‘2 + ๐‘ž2 โˆ’ ๐›พ2 = 1 2๐œ‹ ๐พ0  ๐›พ q ๐‘ก2 1 + ๐‘ก2 2  . The spectral density function of ๐‘‹ as the Fourier transform of the covariance function ๐ถ is derived as ๐‘“๐‘‹ (๐œ‰, ๐œ‚) = 1 (2๐œ‹)2 ๐ฟ๐ถ (๐‘–๐œ‰, ๐‘–๐œ‚) = 1 (2๐œ‹)2 ๔€€€ โˆ’๐œ‰2 โˆ’ ๐œ‚2 โˆ’ ๐›พ22 โˆ 1 ๔€€€ ๐œ‰2 + ๐œ‚2 + ๐›พ22 . (24) considered the SPDE (โˆ‡2 โˆ’ ๐›ฝ2)๐œˆ๐‘‹(๐‘ก1, ๐‘ก2) = ๐œ– (๐‘ก1, ๐‘ก2), (C.12) 88 where โˆ‡2 = ๐œ•2/๐œ•๐‘ก2 1 + ๐œ•2/๐œ•๐‘ก2 2, ๐œ– is a white noise field, ๐›ฝ โˆˆ R, ๐œˆ > 0, and (โˆ‡2 โˆ’ ๐›ฝ2)๐œˆ = (โˆ’1)๐œˆ ร•โˆž ๐‘—=0  ๐œˆ ๐‘—  (โˆ’โˆ‡2) ๐‘— ๐›ฝ2(๐œˆโˆ’๐‘— ) . (C.13) The Greenโ€™s function of (โˆ‡2 โˆ’ ๐›ฝ2)๐œˆ satisfies (โˆ’1)๐œˆ ร•โˆž ๐‘—=0  ๐œˆ ๐‘—  (โˆ’โˆ‡2) ๐‘— ๐›ฝ2(๐œˆโˆ’๐‘— )๐บ(๐‘ก1, ๐‘ก2) = ๐›ฟ0 (๐‘ก1)๐›ฟ0 (๐‘ก2). (C.14) Taking Laplace transform on both sides of equation (C.14) yields (โˆ’1)๐œˆ ร•โˆž ๐‘—=0  ๐œˆ ๐‘—  (โˆ’๐‘2 โˆ’ ๐‘ž2) ๐‘— ๐›ฝ2(๐œˆโˆ’๐‘— )L๐บ (๐‘, ๐‘ž) = 1. Thus, L๐บ (๐‘, ๐‘ž) = ยฉยญ ยซ ร•โˆž ๐‘—=0  ๐œˆ ๐‘—  (๐‘2 + ๐‘ž2) ๐‘— (โˆ’๐›ฝ2)๐œˆโˆ’๐‘—ยชยฎ ยฌ โˆ’1 = 1 ๔€€€ ๐‘2 + ๐‘ž2 โˆ’ ๐›ฝ2๐œˆ . The spectral density function of ๐‘‹ is ๐‘“๐‘‹ (๐œ‰, ๐œ‚) = 1 (2๐œ‹)2 ยฉยญ ยซ (โˆ’1)๐œˆ ร•โˆž ๐‘—=0  ๐œˆ ๐‘—   โˆ’(๐‘–๐œ‰)2 โˆ’ (๐‘–๐œ‚)2  ๐‘— ๐›ฝ2(๐œˆโˆ’๐‘— )ยชยฎ ยฌ โˆ’2 โˆ 1 ๔€€€ ๐œ‰2 + ๐œ‚2 + ๐›ฝ22๐œˆ , which is also presented in (75). 89