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ABSTRACT

Gaussian random fields are widely studied in various subject areas. This dissertation focuses
on estimating covariance parameters of stationary Gaussian random fields based on both regularly
and irregularly spaced sampling points, as well as investigating the infill asymptotic properties of
the estimators.

We first consider a bivariate Gaussian random process and propose an increment-based estima-
tor for the smoothness parameter in the cross-covariance function, for which the strong consistency
and asymptotic normality hold under the infill asymptotic framework. We further study the joint
asymptotic distribution of estimators for smoothness parameters in the cross-covariance and au-
tocovariance functions. Subsequently, we estimate the scale parameter and range parameters of a
univariate anisotropic Ornstein-Uhlenbeck field based on quadratic forms of vectors of observa-
tions. The estimators we propose are computationally more efficient than the maximum likelihood
estimators but have similar infill asymptotic performances with MLEs. Another computational
complexity reduction method we use is the Vecchia approximation. We estimate the scale param-
eter in the Matérn covariance function using the maximizer of the likelihood approximated by the
standard Vecchia approach. We study the bias resulting from a misspecified range parameter and
the conditioning variables of the Vecchia approximation. The theoretical results in this work are

illustrated by simulations.
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CHAPTER 1

INTRODUCTION
Gaussian random fields (GRFs) are essential tools in spatial statistics, physics, finance, image
processing, and other various areas. A random field, as a generalization of a stochastic process, is
a collection of random variables indexed by elements in a topological space, which could be taken
as R? (d > 1). This work focuses on estimating covariance parameters of stationary GRFs and
investigating infill asymptotic properties of the estimators.
The covariance function of a univariate stationary isotropic GRF {X(t),t € R’} considered by

Anderes and Stein (2008) and Loh (2015) is written as

Lv]
Cov(X(s), X(t+5)) = Z,Bk”tHZk +B;G, (1) + O(lItP*T) as|lt]] = 0, V¥s,te R, (1.1)
k=0

where || - || denotes the Euclidean distance, Bp > 0, 5, # 0, and 7 > 0 are constants, |[v] =

max{vg € Z: vg < v},and G, : [0, ) — R is defined by

x2 +x%(logx — 1z(v), x>0,
Gy(x) =

0, x=0.
This model includes the Matérn and exponential classes of covariance functions, which are widely
used in spatial interpolation (Stein, 1999; Gramacy, 2020).

The isotropic exponential class covariance function is defined as
o2 exp (—9||s||2V) . seRr‘ (1.2)

where 02 > 0,60 > 0,0 < v < 1. The case when 0 < v < 1 is contained in model (1.1) with
Bo = o%. When v = 1/2, the function (1.2) is called the Ornstein-Uhlenbeck covariance function,
which is also a special case of the Matérn class of covariance functions. The Matérn covariance
model

@1l K, (011D, teRY, (1.3)

where K, is the modified Bessel function of the second kind with order v, was proposed by von

Karman (1948) with v = 1/3 and d = 3. Some properties of the Matérn model were demonstrated in



Matérn (1986), Kent (1989), and Stein (1999). The stochastic partial differential equation (SPDE)
that generates a Gaussian process on R¢ with the Matérn covariance function is presented in Whittle

(1954) and Whittle (1963) as
(V2 - 92)p £(x) = e(x), xeRY (1.4)

where V? is the Laplace operator, & > 0 and p > d/4 are constants, € is the Gaussian white noise

with unit variance. The covariance function of ¢ as a solution to (1.4) is

_(I1t1/6)*P 2K _a o (O 1t]])
220-1T7(2p)

E(£(s)é(t+5)) , tseR% (1.5)

A more general class of stationary GRFs on R? derived from second-order SPDEs was discussed by
Heine (1955). Later, Vecchia (1985) introduced the derivation of covariance functions from spectral
densities of stationary GRFs on R?, and showed the corresponding SPDEs. One generalization of
model (1.3) is the spatio-temporal covariance function (Cressie and Huang, 1999; Gneiting, 2002;
De Iaco et al., 2002; Ma, 2005, 2008). Jones and Zhang (1997) considered the spatio-temporal
random field defined by the SPDE

ia_z e
6s?‘ ot

i=1

Z(s;1) = e(s;1), s=(s1,50,...,50) €RY1eR,

where p > d/2 and ¢ > 0 are constants, €(s;¢) is the Gaussian white noise.

For the multivariate GRF {X(t),t € RY}, where X € R” and p > I, Gneiting et al. (2010)
introduced a multivariate Matérn model, where the marginal and cross-covariance functions of a
multivariate spatial random field are all of the Matérn type. Hu et al. (2013) introduced an approach
to construct multivariate Gaussian random fields (GRFs) using systems of SPDEs. Based on sys-
tems of SPDEs with additive type G noise whose marginal covariance functions are of Matérn
type, Bolin and Wallin (2020) formulated a new class of multivariate non-Gaussian models. SPDE
models for GRFs are also researched by Hu and Steinsland (2016), Leonenko et al. (2011), Car-
rizo Vergara (2018), and Lindgren et al. (2011, 2022).

The Matérn and exponential classes of covariance functions both have mainly three types of

parameters: the scale parameter o2, which equals the variance of X (t) at any t € R?; the range



parameter 6, which measures how fast the correlation decays with the distance; and the smoothness
parameter v, which controls the smoothness such as mean square differentiability of the random
field. More specifically, X is n times mean square differentiable if and only if n < v (Stein, 1999;
Anderes and Stein, 2008).

The increasing-domain asymptotics and infill (fixed-domain) asymptotics are two frameworks
under which the covariance parameter estimations for GRFs have been studied (Cressie, 1993;
Stein, 1999). Under the increasing-domain asymptotic framework, the minimum distance between
sampling locations is bounded away from zero, and the sampling region grows as the sample size N
increases. Under infill asymptotics, the sampling region is fixed and bounded, and the mesh of the
sampling points decreases as the sample size N tends to infinity. Besides, there is another asymp-
totic framework called hybrid asymptotics or mixed domain asymptotics, under which the sampling
locations increasingly densely fill in any given subregion of the unbounded sampling region (Stein,
1999; Lahiri, 2003; Lahiri and Mukherjee, 2004; Chang et al., 2017).

This work focuses on the infill asymptotic framework, which plays an important role in spa-
tial sampling design and kriging (Stein, 1999; Zhu and Zhang, 2006). Assuming the smoothness
parameter v is known, Zhang (2004), Du et al. (2009), Wang and Loh (2011), and Kaufman and
Shaby (2013) provided infill asymptotic results for the MLE and tapered MLE of the microergodic
parameter of the GRF with the Matérn covariance function; while Bevilacqua et al. (2019) studied
infill asymptotics for MLE of the microergodic parameter in the generalized Wendland covariance
function, which exhibits the same behavior as of the Matérn function at the origin according to
Gneiting (2002). Using quadratic variations defined based on irregularly spaced sampling designs
(more details described in Appendices A.2-A.3), Loh et al. (2021) also estimated the microergodic
parameter of the Matérn covariance function under the infill asymptotic framework.

The estimation of the smoothness parameter has also been widely studied. Regarding the fractal
dimension, which is a measure of the smoothness of sample paths of a stochastic process, existing
approaches of estimation include the box-counting method (Hall and Wood, 1993), variogram es-

timator (Constantine and Hall, 1994), periodogram-based estimator (Chan et al., 1995), variation



method (Dubuc et al., 1989), etc. The infill asymptotic behavior of increment-based estimators for
the smoothness parameter of a stationary GRF was studied by Kent and Wood (1997), Chan and
Wood (2000), Loh (2015), and Loh et al. (2021). For time series or spatial data, Gneiting et al.
(2012) discussed various types of estimators of its fractal dimension under the infill asymptotic
framework, considering both stationary and nonstationary univariate GRF models. Zhou and Xiao
(2018) studied the joint infill asymptotic properties of increment-based estimators for smoothness
parameters in the autocovariance functions of two coordinates of {X (1) = (X; (1), X»())",t € R},
which extended the work of Kent and Wood (1997) to the bivariate case.

The subsequential chapters are organized as follows. In Chapter 2, we consider the bivariate
model {X(¢) = (X1(¢), X»(¢))T, t € R} studied by Zhou and Xiao (2018) and propose an increment-
based estimator for the smoothness parameter in the cross-covariance function of X (¢), based on
both regularly and irregularly spaced sampling points. The strong consistency and asymptotic nor-
mality of the estimator are demonstrated under the infill asymptotic framework. In Chapter 3, we
estimate the scale parameter and range parameters of a univariate anisotropic Ornstein-Uhlenbeck
field on R?. The estimators we propose have similar asymptotic behaviors with MLEs, but with less
computational cost. In Chapter 4, we estimate the scale parameter in the Matérn covariance func-
tion using MLE, whose computational complexity is reduced by the Vecchia approximation. We
study the bias resulting from a misspecified range parameter and the conditioning variables of the
Vecchia approximation. Simulation results are presented in each chapter to illustrate the theoretical

results.



CHAPTER 2

ESTIMATION OF SMOOTHNESS PARAMETERS

2.1 Introduction
Based on the infill asymptotic behaviors of quadratic variations (Lévy, 1940; Baxter, 1956;
Grenander, 1981), the increment-based methods have been used by several authors to consistently
estimate the smoothness parameter of a univariate stationary Gaussian random field under the infill
asymptotic framework (Istas and Lang, 1997; Kent and Wood, 1997; Chan and Wood, 2000; Loh,
2015; Loh et al., 2021). Consider a Gaussian process X observedon 0 =ty <t} < --- <t, =1,
Istas and Lang (1997) and Kent and Wood (1997) independently generalized the quadratic variation
defined as Z;le (X(t;) — X(¢ j_1)2 using vectors of increment. The empirical mean of squared
process defined by Kent and Wood (1997) is equivalent to the empirical quadratic variation studied
by Istas and Lang (1997). An increment of order p is vector a = (a_y,ai—y,...,a;)T € R¥*!
(J > 0) satistying
J =0, 0<gqg<p,
>,
J== #0, g=p+1.
The increment-based estimators could also be used for estimating the fractal dimension of nonsta-
tionary GRFs (Zhu and Stein, 2002; Begyn, 2005; Kubilius and Melichov, 2010).
Denote by X = {(X,(¢), X2(¢))", ¢ € R} abivariate stationary Gaussian process with zero mean

and covariance function
Ci(t) Cia(t)

C(t) = . 2.1)
Co (1) Cx(1)
Assume that as |t| — 0,
Cii(t) = o7 = cilt|™ + o(]t]|™), (2.2)
Cij(t) = poroa(1 — cpa|t|™? + o(]t]*2)), (2.3)

where oy, ¢c;i,cij > 0, a; € (0,2), |p| € (0,1),1,7 € {1,2},i # j. Following the framework

of Gneiting et al. (2010), Zhou and Xiao (2018) imposed the following assumptions to make the



covariance function (2.1) valid:

a2 > (11 +a)/2

2 2.2 2
or ai|p = (a“ +a/22)/2 and CHP 0105 <C11€22.

2.2 Estimating the Cross Smoothness Parameter

Consider the Gaussian process X modeled by (2.1-2.3). When a» = (a1 + @22)/2, the cross
smoothness parameter > could be estimated using estimators for aj; and ay,. This case can be
treated by using the results in Zhou and Xiao (2018). In the following, we focus on the case when
a1z > (a1 + az2)/2 and construct an increment-based estimator for a;;.

The regularity conditions below are introduced for the convenience of subsequent analysis.
Consider the condition (A,) in Kent and Wood (1997) for the gth derivative of covariance function
Cij, that is,

a;;!
Cif) @) = =A™+ o) 4

as |t| — 0, where g > 1,1,j € {1,2}, Ai; = cii, A12 = Az1 = poroacia, and ;5! /q! = a;(a;; —
... (aij—g+1).

Under the infill asymptotics framework, Section 2.2.1 discusses the covariation of X, and Sec-
tion 2.2.2 further studies asymptotic properties of the increment-based estimator for @12. Some
simulation results are presented in Section 2.2.3.

2.2.1 Covariation
Leta = (a_y,ai_y,..., aJ)T be an increment of order p. Denote by Xfl"i € R"2J+D) the vector of

observations of component X;, wherei = 1,2,u=1,2,...,mandn € Z*. For j =1,2,...,2J + 1

andk=1,2,...,n,let

" k+u(j—J-1)
(X5 ) j+(k-12041) = Xi ( ) :

n

In other words, for k = 1,2,...,n(2J +1),

(X" )0 :Xi(k]+1+u(k—kj(2j+ 1)-J - 1)),
’ n



where ky =max{j € Z:j < k/(2J + 1)}. Define

o oo Vi) _(n P al) 0 X! |
YY, 0 n>2(I, ® a’) [\ X,
where ® denotes the Kronecker product. More specifically, for k = 1,...,n,
2J+1

(lezd,i)k = nil? Z aj—J—l(X,'f,i)j+(k—1)(2j+1).
j=1

Denote by

Z%JZ(k) = nan—(an+ﬂaﬂ/2(YZI)k(YZZ)k, k=1,...,n

and define the covariation as

U 1 - u .
Zn12= " Z Z,12(J)
j=1
(2.5)
1

==n

O 1
— + )— n
12 (Q]] sz)/ 1(]7M)T Yu_

I, 0O

We first discuss the infill asymptotic properties of covariations ZZ based on which the esti-

122

mator for @, will be constructed (see (2.27) below).

Theorem 1. Assume (2.4) holds for g =2p +3 and i, j € {1,2}, thenVu =1, ..., m,
Ztp 5 A

mn—»wﬁd“+an<2m2<an+am+l<4p+4m4p+3<an+aﬂ<2m2<4p+4

where A = —poocin Zi =y ararlk —1]%12.



Proof. Based on (2.2) and (2.3), forany j,k=1,...,nandany u,v=1,...,m,

J .
y Z + su k +tu
n lr(k .]) - [(YyIZ[)] (Y}}L},r)k] = n(au+arr)/2 aSaIE [Xl (] ) Xr ( )

n n
s,t=—J
_ pl@itan)2 Z 0.a,C (j —k +su— tv)
S, n
= — A, n\@iterr) /2= Z asalj — k + su — tv|% + o(n(iter) 2=y (2.6)
]
—Aji Y asar|j —k+su—tv|%, i=r
H
0, [ #7r
as n — oo, where i,r € {1,2}. Thus,
E[Z,I:m(])] = pr-(anten)2p [(Yu])] (Yuz)j]
= —Pmdzclzzakazlk = |"2u* + o(1) (2.7)
k.l

— Au®? as n — oo,
where A = 0if a12/2 € Z and p > @12/2, due to the fact that >3} ; ara;(k —1)" =0forr <2p+1.
If (2.4) holds for ¢ = 2p + 3, then YV —n < h < n, there exists 7" between & and h + su — tv such

that

h+su—t
Z asatcir ( M V)
n

s,t

2(uv)P*! 2 ~2pe2) [P U+ p+3) (17
=——— ~ _ __|D:C;? — |+ ——DD,C? —11, 2.8
(2p +2)In2p+2 \ 1T n| n2p+3) 1225 n 2.8)

where i,r € {1,2}, Dy = Y, assP*!, Dy = 3 assP*?. As aresult, when j — k = h,
Cov(Zy1,(Ds 2y 12(K) = EZ3 1,() 2y 1n(0)] = E[Z} 1, (DIE(Z, 15 (K)]
= ) (L), (0 L), ()]
B[V ) ()R EL Dk (V)51

_ 2en 2(uv)P*' D,
(2p +2)n2r+2

(2.9)

2
) (F5(h)? + i (W F5, (h)),

where for i, r € {1,2},

h u+v h*
FY (h) = C(2P+2) D C(2P+3) S
"”( )= +n(2p+3) 2 n



As h/n — 0,

2a1p—(4p+4) 2
h\™" 12! u+v _
Fia(h)* = (;) (Alz— D1Dys——2(a12 = 2p = 2)|h|™"

2p+2)! 2p+3
2 ) (u+ )2 2151-2
+D +D W(alz—Zp—Z) |h| (1+0(1)),
h atan=(4p+h) ai! an! u+v
W (h)F"™, (h) =|— A1A
F (W E 5, (h) = ( ) nAnG +2)'(2p+2)!( 2213 (a1
2
_ u+v
+axn —4p —4)|h|™ + DI + D%ﬁ(a’n —-2p —2)(axn

_2p - 2)|h|-2) (1+0(1)).

It was shown in the proof of Theorem 1 in Kent and Wood (1997) that as n — oo,

n-1 o), ifa<-I;
(-2r-

h=—n+1

oY), ifa>-1.

Hence, as n — oo,

n—1
COV(ZZ,IZ’Z:JZ) = rlz Z (1 - u) Cov(Z, ,(0),Z, 1,(h))

h=—n+1

-1 (20?7 D1)
(2p +2)!

n—1
IR (R [ARUSTARGIART)

h=—n+1 n
0(”2012_(011+022)_1), if aj; +axn <4p +3;
= (2.10)
O (n2=(4pH) if @11 +axn >4p +3.
It is induced from (2.7) and (2.10) that, when a1; + @22 < 2a12 < a1 +axpn+1 < 4p +4or
4p+3<an+am <20 <4p+4, 7 5 Aun2asn — oo, O

Remark. Under the conditions of Theorem 1, we have natural consequences as follows.

_ P
. _ u i — oo if a
- ’ ’
(i) Take p = O, then for ay; + an < 3, Z),, — Au”? asn if a1 + ap < 2a12 <

ay] +axn + 1; for ay; + a2 > 3, the convergence holds if a1 + a2 < 212 < 4.



.. = p .
(i) Take p > 1, then for any @, a;p € (0,2), Zr ., = Au?asn — oo if ayy + @2 < 2a12 <

a1 +ap + 1.

The convergence in probability in Theorem 1 can be strengthened to almost sure convergence

by applying the following lemma and the Borel-Cantelli Lemma.

Lemma 1. Under conditions in Theorem 1, Yu = 1,...,m, there exists a constant C € (0, o)

independent of n such that for all large enough n and V0 < € < 1,

(Zu )Z_E(Zu )2 .
P ( n,lZE‘(ZM )zl’l,12 > é: <C exp (_nmln{£x||+022+1,4p+4}/2—0124 f é‘: ) (211)
n,12
Proof. Forn > 1andu =1,...,m, denote

Mrl,lt — %na’lz—(a/“+a/22)/2—l(E;/Z)T O I}’L 2}1,/2’
I, O
then according to (2.5), Z:l‘ 12 fu TM"*U, where U ~ N(0, I,). By the Hanson-Wright inequality,
there exists constants Cy, C; that do not depend on # or u such that VO < ¢ < 1,

. Clé:'EZlel CZleEZ,L;lzlz
> &) < 2exp|—min —, 2 .
[|M7]]2 || M|

77U _ 77U
Zn,lZ EZn,lZ

EZZ,IZ

Under the conditions in Theorem 1, as n — oo there is

_ 0(”26”12_(“1""“22)_1), ifay; +apn < 4p +3;
M7 = tr((M}})?) = var(Zyt1,)/2 = (2.12)

O (n2n2=(4p+4)). if @11 + @ > 4p +3.

Since EZ" , — Au™2 asn — oo and ||[M}||, < |[M}||F, there exists a constant Cy € (0, o)

that does not depend on n but may depend on u such that

ZZIZ_EZZIZ i 1.4p+4)/2
s g < Coexp (—nminlensentl il /2ang ) (2.13)
EZ

Under the conditions in Theorem 1,

(EZZ,12)2 3 E(ZZ,12)2 B var(ZZ’lz)

E(Z” )2 = E(Z“ )2 — 1 asn — oo.
n,12 n,12

10



Thus, VO < & < 1,1 -&/2 < (EZ" ,)*/E(Z" ,)* < 1+ &/2 when n is large enough. Together
with (2.13) it implies

|

(Zrlf,lz)2 - E(ZZ,u)z

E(Z},)
ol s 5 .
| EZ | Zin ) || B2 1‘ g
E(Z;,)* \EZ, 1, E(Z,)?
> 2 - -
-p ZZ,IZ _ ‘f + (EZZ’IZ)Z/E(ZZ’H)Z -1
EZ, 1 (EZZ,lz)Z/E(ZZ,lz)Z
> 2
z" _£/2
<P il’ulz 1> E i for large n
EZ), 1-¢&/2
> 2
—p Zy 12 s £
EZ, 2-¢
<P( ZZ,IZ _1‘. Zz,lz 1l s 3 ZZ,IZ B ‘ & )
EZ. EZ,, 2-¢ |EZ; ), 2-¢
+P Zo12 1l s 3 )
EZ , 2-¢&
<P ZZ’IZ -1 > M +P Z’valz “1l> &
- \EZ 2+£/(2-¢) EZ" 2-¢
<C exp _nmin{a'11+a'22+l,4p+4}/2—(112 é:
< -
for some constant C € (0, o) that is independent of n and £ but may depend on u. O

The joint asymptotic distribution of the covariations is presented in the following theorem.

Theorem 2. Denote by Z,, 15 = (Z 1

- T
a1 er:,llz) and take p > 1. When a1 + ay < 2ay and

(2.4) holds for g =2p + 2,
plPHenen) ez, ) B7, 1) 5 N(0, @) (2.14)

as n — oo, where the matrix ® € R™™ has entries

00 J
®,, =A1An Z Z asa;ajarlh+su—tv|""h+ ju—IWv|[*"?, 1<u,v<m. (2.15)
h=—c0 s,t,j,I=—J

11



Proof. By the Cramér-Wold theorem, to prove the asymptotic normality of Z, ;5, it suffices to show

that ¥y € R™,

pl o) 2any 17, 1)~ EZ,10) 5 N(0,y @) 2.16)
as n — oo,
Denote by
Wa= 0 (1), Y (1,7 (2), .. Y0 (), Y (1), ... Y ()" e R, (2.17)
then
0 diag(1,®7y)

pl ¥ @) e, T 7 ln—l/ZWnT

ns

diag(l, ®y) 0
where diag(x) maps a vector x to a diagonal matrix whose diagonal is x, 1, € R" is a vector with

all its entries equals 1. Let V,, = Cov(W,)) and

1 0 diag(1, ®y)
Gu= s PV ! v,

5 , (2.18)

diag(1, ® y) 0
then n1/2+(0/11+0122)/2—C“12yTZn,12 4 €l'G e, 4 el'diag(eig(G,))e, for €, ~ N(0, Ioyy).

It follows from the proof of Theorem 2 in Zhou and Xiao (2018) that (2.16) holds if Tr(G,‘i) -0
and 2Tr(G2) — y @y as n — 0.

Let
0 diag(1, ®y)

diag(1, ® y) 0
then for iy,i, € {1,2}, j1,jo € {1,...,n}and k1, kr € {1,...,m},

Hy (i1 = Dmn+ (ji = Dm+ky, (i = Dmn+ (o = Dm + k) = yioo i &G = ).

12



Thus,

4 kik . .
Tr(H,) = Z Vi Yka Yks Yha Z Z ( T iy i) U2 = J1)
1

..... k4= i1yeensia=1 j1,ee,ja=1
o= ) = et G = o)
n,iz(3-i3) J3= ) n13(3 i) Ja=J3)o nl4(3 i1) J1 = J4
m 2
kik
S Z |7k17k2yk3yk4| Z n Z ‘ n11(23 12)( 1)
ki,..., kq=1 15005 ig=1 |h1|,|h2|,|h3|<n
kok ksk kak
Ty U (B (o ).
m n
Tr(H?) =2 Z Yk Yks Z (( o, (12—11)) ,,11 (12—11)0,, (j2—j1))
ki,ka=1 Ji.j2=1
o I
kik kik kik
:2I’l Z 'ykl')/kz Z (1 —7) (( 1 2(h)) nl]]Z(h)O_ 1 z(h))
ki k=1 [hl<n

For any fixed h, the convergence of O';l“;r(h) as n — oo is presented in (2.6). By Theorem 1 in

Kent and Wood (1997) and Lemma 2 in Zhou and Xiao (2018), when a1 + a2y < 2a1, and (2.4)

holds for g = 2p + 2,
o.(h) = O(|h|*™*P7%) and oy (h) = O (|h|(@n+an)/2=2p-2) (2.19)

uniformly forn > |h|. If p > 1, then @;; — 2p —2 < =2 and (@] + @22)/2 — 2p — 2 < -2 hold for

any ap1, @y € (0,2). Hence there exists a constant ¢ > 0 such that

n—1
k|k2 koks k3ky kaky
n11(3 12)( ) n12(3 13)(h ) nt3(3 14)(h ) nz4(3 1)(hl +h2+h3)
hi,hy,h3=1-n
n—1 @ taa . - . .
i1 Y ¥(3-ip) (3=ip) Yipin*¥(3-i3) (3-i3)
0 7CR)B0) g, oy, 227 0-B)07B) 5, o
< co Z (lhll 2 P~ hy| 2 P
hyi,hy,h3=1-n
i3izt¥(3-ig) 3-iy) .,
| 73] 2 2p=2
=0(1)

as n — oo, Viy, iz, i3,i4 € {1,2}. Consequently, Tr(H3) = O(n) and

4
Tr(GY) = (%n_l/z) Tr(HH) =0(n™") -0

13



as n — oo,

Foru,v € {1,...,m} and h € Z, define

uy |h| uy 2 uy uy
i (h) = pjen (1= =2 () + o (o (h) |

Then for any fixed £,
J
dy’(h) — A1 Axp Z asa;ajailh+ su—tv|""h + ju — lv]|*?
st j,l=—J

as n — oo. Moreover,

2
4 (0) < (o) + 2, (Do) = O( i e=-4r-4)

n,

uniformly forn > |h|. If p > 1, then a1 +an—-4p—-4 < —4and 37 |h|¥11+@2=4P=4 < oo Thus
for any u,v € {1,...,m}, {d4"(h),h € Z} is dominated by a summable sequence. It therefore

follows from the dominated convergence theorem that

1
Tr(G7) = 2 -Tr(H)

= 5 Z Yk Yk, Z dnl z(h)
ki,ky=1 h=—o00
AnAn < - .
e > e Y Z asarajailh+ sky — tha| ™ |h+ jki — Lk |®
ki,kp=1 h=—00 S,t,],IZ—J

= Ede)y asn — oo,

where @ € R™* ™ js a constant matrix with entries defined in (2.15).

This proves Theorem 2. O

Take p = 1,J = 1, and a = (1,-2,1)7, we further discuss the joint asymptotic distribution
of covariations defined in this chapter and the quadratic variations Z, |, Z, > studied by Zhou and

Xiao (2018), where Z,; = (Z, ;. ..., Z")" and

o
Z4 = -V, u=1,....m, i=1.2. (2.20)
0=

n,i’

14



Theorem 3. When a1 + @2 < 2a12 and (2.4) holds for q = 4,

Zn,l — EZn,l D,
_ _ d
nD(Y Z}’l,2 - EZn,l — N 07 (DZ (221)
Znin—EZy 12 (0))
as n — oo, where
1
2
D, = % ,
I+an+axp ar

the matrix ® € R™™ is as defined in Theorem 2, and matrices ®; € R™™ have entries as
2

. i=1,2. (2.22)

] 1
(Di)yy = 2Al.2i Z asds|h + su —tv|*i

h=—00 \s,t1=—1

Proof. By the Cramér-Wold theorem, it suffices to prove that Yy, = (y1.1,...,Y1m), ¥, =

(Y215 svam) s and ¥ = (Yiz1s - oo Yizm)! €R™,

ay1tany

_ _ _ _ 1 _ _ _
vVn (7{(Zn,l —EZy)) + ¥y (Zna —EZyn) +n= 2 "yl (Zyio - EZn,lZ))

d
SN0,y @1y, +yi Doy, + 7, Py 1)) (2.23)

asn — oo,

Recall the notation W,, defined in (2.17) and V,, = Cov(W,,), let

2 12
An = ﬁwy/ )TVl (2.24)
where
diag(1,®y,) 0
r, = "o . (2.25)
0 diag(1, ® y,)
It follows from definitions of Zn, 1, Zn,z, and Zn, 12 that
T —_—
71 n,1 . 1
D, _ _ LWT diag(1,®y,) 5diag(l,®y,) W
n p) Zn 2 | = \/ﬁ - . n
_ sdiag(l, ® y) diag(l, ® y,)
Y12] \Zn12

=

1
e,{ (Gn + EA,,) €4,

15



where €, ~ N (0, I3,,,) and G, is defined in (2.18). Therefore, it remains to prove

1 |
Tr ((Gn + EAn)z) -3 (7{@71 +y3 Dy, + 7f2<1>712)

and
1
Tr ((G,, + EAn)“) -0
as n — o0,

It has been proved by Zhou and Xiao (2018) that as n — oo,
Tr(A2) > 2 (Y[ @1y, +7]®2y,) and Tr(A}) -0

when a1 + @22 < 2a1; and (2.4) holds for g = 4. Since conditions in Theorem 2 are satisfied, we
also have

1
Tr(Gﬁ) — 57’{2@712 and Tr(Gi) -0

as n — oo. Moreover,

0 diag(1, ® v15) VT

n+tn

1
Tr(G,A,) = =Tr|V,
n diag(1, ® ¥1,) 0

2mn

1
= — Z (Hn)fl,fz(vnrn)f%fl
n 01,6=1

n

2
1 < kika ) N _koky )
= Z Z Yirdk Y12k Z T iy iy U2 =TT 50 (2 = 1)

k1,k2=11i1,i2=1 J1,j2=1

m 2
LAY Kok
- 30 e 3 (1= W) oty i
ki,ky=111,ir=1 |h|<l’l

—0 asn—o o0 (2.26)

by the dominated convergence theorem, since Ufl’vlz(h) — Qasn — oo forany u,v=1,...,m and

any fixed A. Due to the fact that

Card{(ji,...,ja) : 1 < j1,e. s ja<n, jipn—Ji=h (i=1,2,3)} <n,

16



we have

T ((Guh?) = =T (Haa?)
2mn

Z (Hu)ey.oo Vil a6, (Hn) ey0, (Valn) e
{1,...,64=1

1 m 2
= ; Z Z Yitk1Y12,ksYiz,k3V12,ky
131

ki,....,ka=1 \ip,...,is=1

1

kik
E Oy 3ein) 2~ Jl)ffan;(Jz L ”,3(3 iU J3)Un‘,‘4fl(J4 Jj1)
J1seennja=1

1 m 2
s Z Z Yirki Y12k Yiz ks Y 12.ks
1

kiooka=1 \if,...ia=1

n-1
D T () (o (ks >a,f§j?(m+hz+h3>)

n11(3 in n,ini3 nl3(3 i
hi,hy,h3=1-n

Follow similar steps in the proof of Theorem 2, there exists a constant co > 0 such that

m 2
o
Tr((G,,A,,)Z)S; Z (Z |V12.k, Yis ks V12,4
1]

kis....ka=1 \iy,...,is=1
n—1 @i 1+ Cya s - . .
1111 T¥(3~ip) (3~ip) _4 ”L2L2+"z313 4 Yiziz v ¥(3-iy)(3-iy) _4
> mlT |12 [ —
hy,hy,h3=1-n

=0(n™") asn— oo,

since Vi, j = 1,2, $(ai +aj;) —4 < -2.
Consequently, as n — oo,
1 2 N 2
Tr (G, + EA") =Tr(G;) + ZTr(A”) +Tr(G,A,)
1
- > (7{(1)17’1 + 7’5‘1)2’}’2 + 7{2‘13712) >

where entries of @1, ®,, and ® are defined in (2.22) and (2.15). The Cauchy—Schwarz inequality

17



implies that
1 1
Tr ((G,, + EAn)‘*) = Tr(GH) +2Tr(G3A,) + ETr((GnAn)z) + Tr(G2A2)

1 N
+ ETI.(G”AH) + ?TI'(AH)

< Tr(G*) + 24/ Tr(GE) Tr(A2) + %Tr((GnAn)z) + [ Tr(GHTr(AY)
+ %\/Tr(G,%)Tr(AS) + %Tr(/\fl)

-0
as n — oo. This finishes the proof using the convergence of the moment generating function. [

2.2.2 Convergence of Estimator

Define the estimator of a1, as

A 1 = U
i =5 > Lulog(Zt )%, (2.27)
u=1
where {L,,u = 1,...,m} is a list of constants satisfying > , L, = 0 and /" , L,logu = 1.

Plug in the definition of ZZ 12 given in (2.5), then &), is a function of the observed process X,/ and

increment a only, written as

2
1< 1 0 I, ® (aa”)
CAY]Q = EZLM log Enau_]XET
u=1 I, ® (aal) 0
2
1 & 0 I, ® (aa’)
= 3 > Lulog| X} ! Xy (2.28)

u=1 I, ® (aal) 0

where X/ = ((X::I)T, (X::Z)T)T.

Theorem 4. Assume the increment a = (a_y, ai—y, . ..,ay)’ of order p satisfies

J

> awarlk - 11" #0,
k,l=—J

and (2.4) holds for g =2p +3 and i, j € {1,2}. If a1 + @ < 2a1p < ajp+an+1 <4p+4or

A a.s.
dp+3 < aji+ap <2a;p <4p+4, then 1o — ayp asn — oo.

18



Proof. It follows from Lemma 1 and the Borel-Cantelli Lemma that Vu = 1, ..., m,

(Zh 1) as.
TZ — 1 as n — o0,
E(Z 12)
When a1 + a2 <2app < ajp+apn+1 <d4p+4dordp+3 <app+axn <22app <4p+4,(2.7) and
(2.10) imply that

E(ZY ,)? = Cov(Z! ) + (EZ!,)* — A%u®,

where A = —poiopc12 Ygy aralk — 1|12 When .  agai|k — 1|%1? # 0, &1 defined in (2.27) can

be written as

1 m Zul 2
vp== > L, |log =127 {100 E z"
¢ =5 Z « [log E(Z" I og E( 12)

1 m (Zu12)2 )
:EzLulogE(Z“ )2 ZL log E(Z n12)

u=1
o5 liL logl+ = ZL log(A%u?®?) = a
> 12
u=1 u=1
as n — oo by the continuous mapping theorem. U

To derive the asymptotic normality of &;,, we further assume that as t — 0,
Ci2(1) = Ca1 (1) = porioa (1 = caft] ™2 + O (1] "2*F12)), (2.29)

for some B12 > 0. It follows from (2.7) that E[Z} (/)] = Au™? + O(n=P12). The following

corollary is straightforward when a further assumption is made on 1.

Corollary 1. Under conditions in Theorem 2, if a1y + B12 > (a1 + ax + 1)/2, then
nl/z+((¥11+t122)/2—a12(Zn’12 — Ag) KN N(0, D) (2.30)
asn — oo, where p e R" and ¢p; = j*2, j=1,...,m.

The asymptotic normality of @15 is then induced by the multivariate delta method.
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Theorem 5. Take p > 1 and assume (2.4) holds for g = 2p +2. When A # 0, if a11 + a2 < 2a13

and a3 + B2 > (ay) + @+ 1)/2, then

pl/2Hanren)2=an g0 010) & N0, A ETOL) 2.31)
asn — oo, where L = (Ly, Ly/2%2, ..., L, /m®2)T ¢ R™,
Proof. Define a mapping f : R" — R by

m
ZL“ logx,%, Vx = (x1,...,%x,) € R™.

F) =3
u=1

Then f(Z,.12) = &12, f(Ap) = a12. When A # 0, f is continuously differentiable in a neighbor-
hood of A¢ and Vf(A¢) = A~'L.

Use the multivariate Taylor’s theorem,
pl/2+(@n+an)/2-an (@12 — app) = nl/z+(0/11+0/22)/2—0112Vf(An)(Zm12 — A¢),

where |A, — Ad| < |Z,12 — A¢|. Asn — oo, Theorem 1 implies Z,, 1> LS A¢, so we also have
Ay LN A¢. Applying the continuous mapping theorem, Vf(A,) LN Vf(Ag). It follows from

Corollary 1 and Slutsky’s theorem that as n — oo,
Vl1/2+(a“+a22)/2_mzvf(14n)(Zn,IZ - Ag) < Vf(Ap)N(0, D) 4 N(0,A2LT®L).
This finishes the proof. [

Take p = 1,J = 1,and a = (1,-2,1)T. As was studied by Kent and Wood (1997) and Zhou

and Xiao (2018), the estimators
Qi = Z LiylogZy, i=1.2 (2.32)
u=1

are strongly consistent and jointly converge in distribution to a multivariate Gaussian distribution,
where Zf;’ ;s are defined in (2.20), L;,’s are constants such that Z;"zl L;, =0and ZZ1=1 Liylogu =

1. The following theorem presents the joint asymptotic distribution of &1, @27, and & as n — oo.
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Theorem 6. Assume that as |t| — 0, (2.29) holds with a2 + B12 > (a1 +axn + 1)/2, and

Cii(1) = o7 — ciilt| + O(|t| "), i=1,2

; —

for some constants B11, B2z > 1/2. If 2a12 > a1 + axn, ayp # 2, and (2.4) holds for g = 4, then as

n— oo,
a1 —an AVPLT @ L,
| 4y — an % N|o, APLT @)L, , (2.33)
Q- amn ALT®L;
where A; = c¢;(8 — 2%y and L; = (Liy, Lin/2%, ..., Liym/m%)T € R™ fori = 1,2, A =

po0pc12(8 — 2012“), Zg = (L31,L32/2%2, ... ,L3’m/ma1z)T € R™, the matrices ®;,D,, P €
R™ ™ and D, are as defined in Theorem 3.
Proof. When a = (1, -2, 17, we have

J

A = —pojoach Z akailk — 1| = poyoacin(8 — 272,
k=]

It follows from (2.7) and Equation (14) in Zhou and Xiao (2018) that as n — oo,
Eze-me) ( ofwrm)
nPe | EZ, ) — Arp? | = 0 (nl/Z—ﬁzz) -0 (2.34)
EZy12 - A 0 (n(1+w11+w22)/2—a12—ﬁ12)
if 811,82 > 1/2and a2 + B12 > (a11 + a2 + 1)/2, where ¢ = (1,2%, ... ,m%)T fori = 1,2,

and ¢ = (1,2%2, ..., m@2)T, Together with Theorem 3 this implies that

Zuy — Argp! D,
_ d

n? Z,0— A2 |2 N0 @, (2.35)
Zni2— Ad ®

asn — oo,

: . R2 3
Define a mapping f : R7) X R - R” as

ZZL] Lyulogxy,
f(x) = ZZLI Ly, logxsy,

1 vm 2
5 2inet L3 logx3’u
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forany X = (X711, X1msX2 05« >X2ms X315+ -+ »X3.m) € Ri’g xR, where L; ,’s are constants such
that " L;, = 0and X", Li,logu = 1, Vi € {1,2,3}. Denote by Z, = (2!, ZT,, ZT ,)" and

n,2° “n,12
¢ = (A1(¢")7, A2 (¢H)T, AgT)T, then
f(Z,) = (@11, 42, 012)",  £($) = (@11, @22, a12)".

When ajp # 2, A = pojorci(8 — 22271y £ 0 and f is thus continuously differentiable in a
neighborhood of ¢. Moreover, Vf(¢) = (AI_IZT, Agllg, A—‘£§)T.

In a similar manner as in the proof of Theorem 5, it could be proved that as n — oo,

@ —an O
Dol A d
n" &y — an | = VE(@)N |0, @,
Q1 —ap @
Afzifd)lil
d . -
=N|0, AL, L,
ALIDL;
This finishes the proof. [

2.2.3 Simulation

Denote by M, the Matérn covariance function with parameter v. Namely,

M, (1) = 2T ()~ el K, (1)

F(I—V) |l_|2v+ 1

2 2142 4
T AT(1+v) 0.
e gy o)+ 0 asr —

Take C11 = C22 = M().s and C12 = C21 = 0.5M0.55. Letm = 50, p = 1, a = (1,—2, I)T and
n € {200,250,...,1500}. For each value of n, generate 3000 independent realizations of the
process X. In this case, o= =1,a11 =ay = 1,p =0.5, ap=1.1> (CUU +a’22)/2,,812 =0.9,

c12 =0.5"1T(1 = 0.55)/T(1 +0.55), c11 = ¢20 = 0.5I°(0.5)/T°(1.5),

A= —palo'zclzzakaﬂlc 1| =c2(4 - 21'1) ~ 19177 #0,
k,l
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12 +ﬁ12 =2 > 3/2: (CI]] + apy + 1)/2

It follows from Theorem 2 thatVu =1, ...,m,

00 J

®,, =AnAn Z Z asa;aja|h+ su —tv|""h + ju — lv]|*?
h=—c0 s,t,j,l=—J

= (A1)> ) (6lh = 4l +ul + |h+2ul = 4]k — u| + |7+ 2ul)®

h=—00
r0.5) \> u
- (m) (16u2 + 2; (6h — 4(h +u) +4u — 4(u — h))*
2u )
+2 Z (6h — 4(h +u) +4u — 4(h - u))* +2 Z (6h — 4(h +u) +2h — 4(h — u))?
h=u+1 h=2u+1

_8 .3
=3 (4u” + Su)

is the asymptotic marginal variance of n!/?*(e1+@22)/ 2‘“122:: 1o @8 (2.15) presented. The empirical
marginal distributions of ZZ 1 (u = 1,10,20, 30,40, 50) when n = 1500 are shown in Figure 2.1,
where 3000 realizations are presented in the histogram.

Take @1, as the ordinary least squares estimator for 5; in the linear regression model

1 logl
1 _ 1 log2 ||pBo
5 log(Zn,12)2 = . . ’
: : Bi
1 logm

then as was simplified by Kent and Wood (1997),
] & logu — £ 3™ logv

m

=1 ym (logu - % 2o, logv
which is an example of the estimator defined in (2.27). Since conditions in Theorem 4 are satisfied,
@12 1s a strongly consistent estimator for @12. The asymptotic normality follows from Theorem 5.
Figure 2.3 and 2.2 confirm these claims.
2.3 Irregular Sampling

Since regularly spaced data is not always available, it is of practical importance to study esti-

mators of the smoothness parameter based on irregular sampling designs. Given observations of
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Figure 2.1The empirical distribution of Vnl-2enten+en (74 — Ay®12) when n = 1500 with 3000

realizations. The red curve is the density function of N (0, 8(4u> + Su)/3).
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Figure 2.2The empirical distribution of Vn!=-2@n2+en+en (g, — @) when n = 1500 with 3000
realizations. The red curve is the density function of N(0, A~2LT®, L), where ®,, is the empirical
covariance matrix of Zn,lz with 3000 realizations when n = 1500.
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Figure 2.3The average absolute value of bias among 3000 realizations when
n =200, 250, . . ., 1500.
a Gaussian process, constructing quadratic variations of a certain order is an essential step when
defining increment-based estimators of the smoothness parameter. When the observation locations
are not evenly spaced, coeflicients of the increment discussed in Section 2.2 will be related to dis-
tances between sampling points. Begyn (2005), Loh (2015), and Loh et al. (2021) proposed several
irregular sampling designs, based on which the infill asymptotic properties of quadratic variations
are studied. Details of the irregular sampling designs are included in Appendix A.

In Section 2.3.1, we discuss the joint behaviors of quadratic variations for two coordinates in the
bivariate model based on the deformed sampling design. In Section 2.3.2, we define a strong con-
sistent estimator for the cross smoothness parameter and present the rate of almost sure convergence

for estimators based on the stratified sampling design.

2.3.1 Quadratic Variations
Consider a special case of the bivariate stationary Gaussian process X (1) = (X(¢), X»(t)) de-

fined in (2.1-2.3). Let the autocovariance function for each coordinate of X and the cross-covariance
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function of X all take the following form such that V¢, s € R and Vi, j € {1, 2},

Laij/2]

Cij(1) = > Be(Oij1t)** + By, Gay; (6:51t]) + O(It]"7*7) (2.36)
k=0

as |t| — O for some constant T > 0, where By = 0,07 (p+(1-p)1;=;), [x] = max{xp € Z : xo < x},

,B;“,ij # 0, and G,; : [0, 00) - R is defined by
Ga,.j(x) = x" +x% (logx — 1)1z(a;;/2)

when x > 0 and G,,;(0) =0
Under the setting of deformed sampling design defined in (A.3), we study the cross-covariance

of quadratic variations defined in (A.6) for coordinates X; and X».

Proposition 1. For dilation 6 € {1,2} and the order of increment € € {1,2,...,|(n—1)/6]},

O (n@n+en—2en-1) ifapp <26-1/2,
E(Vy, Vi,

—EVI EV2 = 0(na11+a22—2w12—1 log n) l'fa’lz =20 — 1/2’
0,6~ "6,

O (n@n+an=4t) ifap >20-1/2,
where Vé ; IS the quadratic variation of X; (i = 1,2) as defined in (A.6).

Proof. For the brevity of symbols, denote by a; = (ag,g;i,k)izo the vector of increment defined in

(A4). Write X/ = (X;(tiox))¢_, and Vg X/ = aTX/. Then

n-0t [ ¢ 2/¢ 2
E(V, Vi) =E Z (Z ae,f;i,kXI(tHOk)) (Z ae,f;j,sz(tjwk))

i,j=1 \ \k=0 k=0
n—6¢ )
_ Tyl T2
EZ(( x!) (fo))
i,j=1
n—6¢

_ Z ( (X ) (a; aT)X ] [(X?)T(aja]r)Xf] +2(E [(Xil)T(aia]r)X?])z)

i,j=1

- nzg‘jE(VMX )ZE(V93X2)2+2§€ (E [(X ) (a; aT)Xz]) '
i,j=1 b=l
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By Theorem 1 (a) in Loh (2015),
n—6¢
2, E(VorX])E(Vo X)) = EVy EVy, = 01 700) 021 72) - (2.37)
ij=1

as n — oo,

With the cross-covariance function defined in (2.36),

2
n—0¢ ) n—0¢ {
E|(XHT(a;aD)X?|) =0 Q0.0 pA0.0: 70 |tivop — tiv0g| ™2
i i) = 0,6i,p¢0,6:j,q1 i+0p — tj+0q
i,j=1 i,j=1\p,q=0
as n — oo. The properties of {th order increment imply that as n — oo,
2
n—0¢ 14
DD, avcipascgltivop = tjvogl™
i,j=1\p.,q=0
. 2
. . a2
i—j+6(p-q) -
= > > 0<n”)( Lo (0) +0(n)
li—j|<6+1 \ p,g=0
2
¢
[0
2 | D avcipaossgltio = tjvog*
li—j|>0¢+1 \ p,q=0
=A, + B,
where A, = O(n'**~212) and
2
‘
@1p+26-2C
B, < Z Z |ag.c:i.pa0.:j.q| - |tivop — tjroq]™"”
li—j|>66+1 \ p,q=0
2
¢
app—2¢ 2¢
< Z O<n;a;(<€|ti+9p_tj+0q| 12 Z lae,e.ipao.e.j.q(tivop = tj+6¢)"" |
li—j|>06+1\ ~77 p,q=0
2a1y—4L
=0(1) >, max gy — tisagl
li—j|>06+1 ~" 77T
1
= 0(n?) s202=H g
1/n
Thus,
, 0@y ifagy <2012,
n—0¢ 4
a — .
Do DL avcivaosialtive = tisog ™ | =302 10gn)  ifan =20~ 1/2.
i,j=1 \p,q=0
0(n?) if app > 26-1/2.
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This finishes the proof together with (2.37). [l

For a stationary GRF X on R? with zero mean and the isotropic Matérn covariance function

o (n|[ll)”

L(lltl),  Vie R4, 2.38
ZV_IF(V)K(UHH) € (2.38)

C(t) =

where o, i, v > 0 are constants, we discuss the finite sample joint distribution of V; 1, and Va1,
in the remaining of this section. The quadratic variations Vj 4, are defined in (A.21). Consider the

casewhend =1and 0 < v < ¢, v ¢ Z. Write

VorcX = (Ve,l,KXi)?z_lmn

and denote by Vi, (n,€) = (V. X)'V, X, Wy (n,€) = Cov(V, X, V, X) for u,v € {1,2}. For
the brevity, write V,,,(n, €) as V,,,, and W, (n, ) as W, in the following text.

It follows from Eq.(15) in Loh et al. (2021) that as n — oo,

(Wuv)i,i+h

h+ (vk = u)wn + Oini — 01 [

¢
=B, Z Ci,u,l,é’(j)ci+h,v,1,€(k)‘

7.k=0
L0 ((%)ZMZ)

Y (ce() +0(@h) (ech) + 0w ")

n

h+ (vk —uj)wp + Sivni — 6ij 2

= n
l . 2v
h+ (vk —uj)w, + 9o; —0; i 2\ 2
=f, Z ce(j)ee(k) ( J)n + Sishk — O 0 ((w—) )
. n n
J,k=0
Wy \2v ¢ h+5i+hk_6ij 2v Wy \2Y
= ()7 8y D ertirenth) vk —uj+ —HE O ((—) ) (2.39)
n = Wy n

forany 1 <i <i+h < n-2lw,. Denote by a,,(v,{) = S5, i‘,k:O ce(f)ce(k) vk — uj|2", then
Vi<i<i+h<n-2w,,

(1) wn)> Won)iish — auy (v, 0) (2.40)

asn — oo,
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Take € ~ N(0, I,-2¢w, ), then for 6 = 1,2,

(n/wn)* d (njwn)® d 7 (jw)®
m 0,1, = ﬁETWQ =€ mmag(elg(ww)) € = eTAﬁe,
n n n
the cumulant generating function of which is
n—2lwy,
TAO
log Ee'€ M€ = Z log(1 — 214;)~ /2
k=1
00 —2lw
1o """,
=320 2 M
m=1 k=1
where ¢ < min(/lgl) and Ag, k = 1,...,n — 2fw, are diagonal elements of AZ.

Denote by r, = % and recall the notation Wy = Vi1 ¢/EVy 1 for 8 = 1,2. Write H,, =

Wi —Wsy Wl_ll Wi,, then V2’5X|V1,5X ~ N(Wy Wl_ll Vl’gX, H,,) and the moment generating function

of V2’1,5|V175X is

MV2,1,6’|V1,{,’X(Z)

1
|1 — 2¢H,|""? exp —5 (VLX) Wi Wi (1 — - 2tHn)_1) H'Wa WiV X|,  (2.41)

where [ is the (n — 2¢w,)-dimensional identity matrix. Moreover, the moment generating function
of the vector V := (Vi1 V271,5)T is

~1/2

ratH, 0
My (s, 1) = |hn-200,) — 2 , (2.42)
0  HYWy

where

1
Y = rosl = S Wi Wiy (I - (- 2rntHn)“) H,'Wa Wiy
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This is due to the fact that
My(s,t) = E [entV11etVaro)]
=E [V E [0V o X |
= E [V My, | 19, x(ral)]
= I = 2r,¢H, |\ 2E [exp ((VMX)TH;’VMX)]
=|I- 2anHn|_1/2M(V1,[X)TH;,fV1,fx(1)

= |1 = 2rptHy| " 2T = 2HS Wy |12
-1/2
ratH, 0

= h(-26w,) — 2
0 HSWy,

2.3.2 Estimating Smoothness Parameters
We first consider a univariate stationary GRF X on R¢ with zero mean and the isotropic Matérn
covariance function (2.38). Based on the stratified design introduced in Appendix A.2.3, the fol-

lowing results on the rate of convergence hold for v, ; defined in (A.26).
Proposition 2. When d € {1,2,3} and € € Z*,
1. if0<v <{l—1, then
nd(l_y‘))/z_k(ﬁn,g -v) 50 asn— oo
Jorany (d(1 =y0)/2=y0) V (d/2-2)(1 =y0) <k <d(1—-y0)/2;
2. ift—1<v<{t—-d/4, then
nd(l_VO)/z_k(ﬁn,g -v) 50 asn— oo
Jorany (d(1 =v0)/2—=vy0) V (d/2=2C+2v)(1 —y0) < k <d(1-7y0)/2
3. ifv=_C—-d/4, then
nd1=7012=k (150 n)_l/z(ﬁn,g -v) 50 asn—o oo
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forany (d(1 —=vy0)/2 = y0) vV (d/2 =2C+2v)(1 = y0) <k <d(1-7y0)/2;
4. ift—d]4 <v <{, then

_ _ _ A a.s.
11 (26-2v)(1=y0) k(vn,g —v) >0 asn—o o

SJorany (2€-2v)(1 —y9) —yo < k < (2¢ = 2v)(1 = yp).

Proof. Theorem 1(a) in Loh et al. (2021) implies that as n — oo

log(Va.ac/Viac) — log(2%)
2log?2

Vo,at/EVaae  EVaae
1 Viac/EViae EViae

~2log2 ¢ 227

Vne =V =

Va,d,e[EVa,a, 2y
1 PLLE (227 + O (h(n)))

~2log2 & 22v

1 log Voae/EVaae
2log?2 Vidae/EViae

(1+0(h(n)))|, (2.43)

where

70 4 0D g, g 7
h(n) =1 n=Y0 4 n2(n-1) logn ifv=£-1,

n=Y0 4 p2-1) fO0<v<t€-2,veZ.

Denote by Wy = Vi a¢/EVpar for 6 = 1,2, then it suffices to find the convergence rate of

W, /Wy — 1. It was proved in Loh et al. (2021) (P21-25) that

€ 62
P(|Wg—1| > €) <2exp (—Cmin {—, b—}), Ve > 0,

n n

where as n — oo,

O (ndvo~=1) ifv<t-4d/2,
an =10 Vlogn) ifv==¢(-d/2,

O(n=2)=Dy ifr—d/2 <v < ¢,
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O (n?vo=1) ifv <t—d/4,
bp=y0m4"Vlogn) ifv==¢-d/4,

O(n="-Dy jfe—dj4d <v < (.

Then for any positive constant cy,

P(co|Wg—1| =€) <2exp

2
—C min L, ; , Ye>0.
codn Cobn

By the Borel-Cantelli lemma, for 6§ = 1,2, f(n,k)(Wy — 1) — 0 a.s. asn — oo for any k > 0,

where

nd(=v0)/2-k ifv<t—-d/4,

f(n k) = pd-v0)2k(1og n)=112 if y = £ - d /4,

n(2=2v)(1=y0)—k ift—d/4<v<t.
Thus, f(n, k) (Wo/W;—1) = f(n, k) (W, —1) — (W —1))/W; — 0 as. asn — oo for any k > 0.

It follows from (2.43) that as n — oo,

f(n, k)(ﬁn,f —v) = M log (W2 )

2log2 W (1+0(h(n)))
~ f(n, k) (% (1+0(h(n))) - 1)
= f(n, k) (Wo/Wy = 1) + f(n, k)O(h(n)).

When d € {1,2,3}, it always holds that { — 1 < £ —d/4 < {and d/4 ¢ Z, so

nd(1=y0)/2=yo—k 4 5,(d/2-2)(1-y0)—k ifo<v<t-1,
nd(1=70)/2=yo—k 4 ,,(d/2-2)(1-y0)-k log n ify=1¢0-1,
f(n,k)h(n) = § pd(0=v0)/2=y0=k 4 5,(d/2-20+2v)(1-y0)—k ife—1<v<t-d/,

(nd(l—yo)/Z—yo—k +n(d/2—2€+2v)(1—70)—k)(logn)—l/Z ify=¢— d/4,

nCE A=y =yo=k 4 =k if¢—d/4<v<t.

This finishes the proof. [
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Remark 1. Briefly speaking, as n — oo, it holds that
n(m0 @Ak (5 )y D50 ify 2 £-d /4,
nd=102k(1oa )1 2(5 =) 50 ifv =€ - d/4,

where k is a constant whose range depends on d, yq, and € — v.

(2.44)

(2.45)

In the remaining of this section, we consider a bivariate Gaussian process X (1) = (X (¢), X»2(1))

with zero mean and covariance function

() = Ci1(2) Cia2(2) ’
Co (1) C(2)

where C;; is the Matérn covariance function

o (mijle])"

)= Ty

Vij(nijltl)a vVt € R,

where i, j € {1,2}, 012 = 021 = po11022, Vij, i, 011, 022 > 0, |p| € (0, 1).

Under the stratified sampling design introduced in Appendix A.2.3, write
Y;f’l = (Vé’]’[Xla Vé,LgXZa R V(})’l,an—Zé’wn)T,

0 _ (w2 2 2 r
Yoo = (Vo 10X, Vo 10 Xon o Vo g 1 Xn2tw,)”

Y@
Yri) | nl c RZ(n—Z&un)’
0
Yn,Z

and define the covariation as

0 _ 1 2
Zn,lZ_ Z (Ve,l,é’Xi) (Ve,l,fxi)

1<i<n-2tw,

1
— (yHT

In—2€wn 0
ne
In—2{’a),, 0
where 6 € {1,2}, ¢ € Z*, and
Vk
7=0
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beXi= ) cione(DXe(xip), i€l n=20w,), k=12,

(2.46)

(2.47)

(2.48)



Proposition 3. When 2(V11 + V22) <4y < {(2(V11 + V22) + 1) A 45} and vi1 V vy < ¢,

ZH
ml2 95 asn— oo, (2.49)
Ezg 12

where 6 € {1,2} and € € Z*.

Proof. It follows from Theorem 1 (a) in Loh et al. (2021) that as n — oo,

2vi
w,0 " .
EZ), === (n=22bw)|B > cjonecioniGu(li—kD)+o(D)]|, (250
’ n 1<j.k<t

where 6 € {1,2} and € € Z*. Fork = 1,2, let

K K n—20w,
Vo X = (Ve,l,in) 1

=

and write Wge(n, {) = Cov(V’g,fX, VS,KX)’ Welez(n, {) = Cov(V;M,X, ngX). Then the variance of

the covariation follows

9 0 \2 6 \2
Zn,12 E(Zn,12) - (EZn,l2)
var 9 = 9 )
EZn,12 (EZn,IZ)
Lisij<n-2tw, E (Vé,l,t’Xivé,1,€X1V§,1,€Xivg,l,t’xj) - (Ezs,lz)z
(EZ§,12)2
(Ezg’lz)z + lei,an—Z&U,, ((ngg)i,j(ng)i,j + (W6192 lz,j) - (EZg,lz)z
(EZfl”]z)2
1
D Wiy (Wi + (W),

= ] >
(EZn,12) 1<i,j<n-20w,
It follows from the same manner as in (3.18-3.19) of Loh et al. (2021) that, based on the definition

of ¢; .10 in (A.20) and the Taylor expansion of the function Ci,

O (%), 0<vip<l-1/4,
1 1242
(EZ? )2 (Weg)ij =10 (%log win) , vip=(-1/4, (2.51)
n,12/  1<i,j<n-2lw,
O((2)**=), e-1/4<vin<t
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as n — oo. Similarly, when vi; V vy < €,

1
— (Wao)i,i (Weg)i.j
9 5J 09 5J
(EZn,12)2 lsi,j;—%wn
0 ((%)MHM“W“) : 0 <2(vi1 +v) <4l-1,
=<0 ((ﬂ)2v11+2vzz—4v12+1 10g L) 2(V11 + sz) =4¢ -1 (252)
n Wp ’ ’
0 ()", 41 <20v1 +va) <M

as n — oo. Thus,

10 ((%)2”14—2‘/22_4”2“) , 0<2(vit+vy) <dvip <4f-1,
Z@
nl2 | _ 0\ 2V11+2v 2 —4vin+]
var EZglz =<0 ((wT) vi+2vn—4via log wln) . A40—1=2(vi1 +vm) < 4via < 4L, (2.53)
) ((%)‘“‘4“2) , 46 =1 < 2(vi1 +va) < dviy < 4C
as n — oo. Consequently, when 2(vy +vy) < 4vip < {(2(vi1+va)+ 1) Adt}and vy V vy <,
ZB
nl2 7 1 asn — oo.
EZY
n,12
According to the definition in (2.47),
ZO
v LuTsiU,
EZn,]Z
where U ~ N(0, I>(4-2¢w,)) and
1 0 Li-2tw,
50 = Cov(Y?)'/2 T cov(v?)12
2EZ! I 0
n,12 n—2lwy

The Hanson-Wright inequality implies that there exists an absolute constant C > 0 such that Ve > 0,

ZH
pll=m2 Ze) =P(|UT22U—E[UT23U]| Ze)
EZ?
n,12
2
<2exp|-Cmin{ ——, ¢ L} (2.54)
IZE12 " 129115
Since [|Z9|]> < [|Z]|F and ,
1 12
212 = —var = ,
=716 = 3var | 27
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the Borel-Cantelli lemma together with (2.53) and (2.54) induces that if 2(vy; + v22) < 4vyp <

{(2(vi1 +v2) + 1) A4t} and v V vy < £, then

0

n,12 a.s.
T = 1 asn — oo.
EZ

n,12

This finishes the proof.

Consequently, the estimator defined as

2 12
o = log(zn,IZ/Zn,IZ)
12 4log2

is a strongly consistent estimator for v, based on irregularly spaced data.

Theorem 7. Under the conditions of Proposition 3,

A a.s.
Yi2 —™ V12 asn — o0,

Proof. It follows from (2.50) that
2
EZn,lZ

1
EZn,lZ

— 2212 455 — oo,

By the result of Proposition 3,

2 2 2 2
Zn,lZ _ Zn,lZ/EZn,IZ ) EZn,lZ

1 7 7l 1 1
Zn,12 Zn,lZ/EZn,IZ EZn,lZ

a.s.
5221 a5 p — oo,

The proof is completed by applying the continuous mapping theorem.
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CHAPTER 3

ANISOTROPIC ORNSTEIN-UHLENBECK FIELD

3.1 Introduction

Proposed by Uhlenbeck and Ornstein (1930), the Ornstein-Uhlenbeck process is widely used
in spatial statistics and finance. Denote by {W (u,);u,t € R} a standard Wiener field, then the
random field

X(u,t) = oexp(—Au — ut)W (62/114, ez’“") , u,t€R (3.1

is a zero-mean stationary Ornstein-Uhlenbeck field on R? with covariance function
Cov (X (u,1),X (v,s)) = o2 exp(—Alu —v| —ult —s|), Vu,t,v,s €R, (3.2)

where (0,4, 1) € R? . As indicated by Theorem 7.2 in Piterbarg (1995), the parameters o2,
A, and u characterize the high excursion probability of X on a closed Jordan set (the details are
provided in Appendix B). Estimating their values is thus of significance in extreme value theory
and has applications in risk assessment for rare events.

Ying (1993) proves the strong consistency and asymptotic normality of the maximum likelihood
estimators (MLEs) for o2, A, and u in (3.2), thus has presented the identifiability of the parame-
ters. The MLEs are asymptotically efficient as shown by van der Vaart (1996). The MLE is also
commonly used to estimate covariance parameter under other models. For Gaussian random fields
on R (d = 1,2,3) with the isotropic Matérn covariance function, Bachoc et al. (2019) studied
the asymptotic distributions of MLE and constrained MLE for the variance and correlation length
parameters. Bevilacqua et al. (2019) investigated strong consistency and asymptotic distribution of
the MLE for the microergodic parameters in generalized Wendland covariance functions. However,
the calculation of precision matrices and numerical optimizations usually make it computationally
expensive to get MLEs. To reduce the computational cost, approaches aiming at sparse covariance
matrices or sparse precision matrices have been widely studied, such as covariance tapering (Furrer
et al., 2006; Kaufman et al., 2008; Du et al., 2009) and Vecchia approximations (Vecchia, 1988;

Pardo-Igizquiza and Dowd, 1997; Katzfuss and Guinness, 2021).
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For Gaussian random fields with the covariance function
d
Cov (X (u), X (V) = o2 ]_[ exp (=6 |u; — vi["), Vu,veRY, (3.3)
i=1
Lam and Loh (2000) proved the strong consistency of MLEs for 61, ...,6,; when y = 2, based
on observations on a regular lattice. Later, Wang (2010) provided consistent estimators for o>
and 61, ..., 0, using quadratic variations and spectral analysis when d > 2 and 0 < y < 1. The
covariance function of the Ornstein-Uhlenbeck field X we consider in this chapter is a special case
of (3.3) with d = 2 and y = 1. Since X is Markovian, its precision matrix has sparse closed-form
expression (Baldi Antognini and Zagoraiou, 2010), which reduces the computational complexity
and the memory storage requirement of MLEs. The estimators we propose in this chapter are
computationally more efficient than MLEs, while their strong consistency and asymptotic normality
still hold.
This chapter is organized as follows. We formulate estimations for o2y, 024, and o>Au in
Section 3.2 based on MLEs. Section 3.3 includes estimations for -2, A, and u, as well as the

asymptotic behaviors of the estimators. Some simulation results are presented in Section 3.4. In

Section 3.5, conclusions and our future research plans are provided.

3.2 Product Estimation

Denote by x;; = X (ui, 1), xi = (xi1, ..., %), x = (x1,x7, ..., x})T € R and

=) =)

where 0 =ug <uy <---<up,=1,0=tg<t; <---<t,=1. Thenx~N(O,0'2A(/l)®B(,u)).
For notational convenience, write Au; = u; —u;; i =1,--- ,m)and At;, =t; —t;_; G =1,--- ,n).

Suppose max; Au; — 0 as m — oo and max; At; — 0 as n — oo. Define estimators for 0'2/1, o2,

and o> Ay as
— 1 .
2u=- - B7 (1)x;. Au;, 3.5
o2 ni;xl. (D)xi.Au 3.5)
1 f: T 4-1
o2l = Z .jA (l)x.jAtj, (3.6)

J=1
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555;:;isz(A—%1)®zr4(n)x. 3.7)

In what follows, we discuss the asymptotic behaviors of the estimators in (3.5-3.7) as n — oo and

n — oo,

Proposition 4. Under model (3.2), as n — oo and m — oo,

— +1)2-4
Eo?u=o0%u- 02% +o(n™),
— A+1)? -4
Eoc21=0%2- 02% +o(m™),
— A((u+1)%-4) + A+1)> -4
Ec2Ap = o — o? (et ) ; i k) +o(n ) +o(m™).
mn

Proof. Forany 1 <i < m,since x; ~ N (0,0>B(u)), we have
1 2
E(ﬂﬁTWDM):EJT@ﬁy
n n
where M7 = B~ (1)B(u). As aresult,

m 2

— 1

Eou = Z E (;xiT,B_l(l)xi.) Au; = %Tr (Mff)
i=1

because )7, Au; = 1.

It is well known that the n X n precision matrix B~!(1) has entries as

AT ifi=j=1,
e ifi=j=n,
(B_l(l))u = e Ty fl<i=j<n
— A ifli—jl=1,
0, if |i — j| > 1.
Thus, the entries of M 5 are
Babij - qu), ifi=1,
(Mf)i,j = (B: +B)bi; — pij —qij, ifl<i<n, (3.8)

Enbnj—pnj, ifi =n,
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where 1 < j < n,

exp(—2[tir1 — til)

.= B} E:1+B_, b:e — t—t,
l 1- exp(_zlti+1 — l‘,‘l) ! i1 ) Xp( ,Lll i Jl)

el ) o exp(=ti — i)
P = T T exp(=2lt — ) O T T exp (=20t — 1]

) b(is1);-
Since max; At; — 0 as n — oo, it further holds that

n —2At; _ —(/,t—l)Ali
B\ _ e (1-e )
Tr(Mﬂ)—n+2; o

—n+(u-1) Zn: (1 AL+ 0 ((Ati)z))
=2

=n+(u—-1Dm-1-(1-1)+0(1))
and E<;271 = %ZTr (Mf) =0y - 02% +o(n~') as n — co. In a similar manner, there is

,(A+1)2 -4
0'—

. + o(m_l)

EO"EEZO'Z/I—

as m — 09,

Moreover,
Ecij = —Ex" (4 ()
o= X (1) ® B (1) X
mn
2
= T (a7 ()@ B (1) (A & B))

= ;—ZTr (A‘l(l)A(/l)) Tr (B‘l(l)B(#))

1 —_—
- Fo2 2
= O_zEO' AEo*u
A(u+1)?-4)+ A+1)2 -4
:o-z/l,u—o-zm ((u+1) ) +nu(( ) )+0(n—1)+0(m—1)
2mn
as n — oo and m — oo. This finishes the proof. [

—_— —

Proposition 4 indicates that 21, o-2u, and o-2Au are asymptotically unbiased estimators for
%A, o?u, and o?Au. To further study the convergence of variances of the estimators, we first

introduce the following lemma regarding variances of quadratic forms.
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Lemma 2. Under model (3.2), as n — oo and m — oo,

1 2

Var (—xZB—l(l)xi.) =Z(?w?+0m™?), Vi<i<m, (3.9)
n n
1 2

Var (—xS.A—l(l)x.j) == (D*+0(m™?), Vi<j<n. (3.10)
m m

Proof. Since x;. ~ N (0,02B(p)) for any 1 < i < m, we have
1 o? 2
Var (—x,.T.B—l(l)x,-.) =2 (—) Tr ((Mf)z),
n n
where M7 = B~ (1) B(). Recall the entries of M7 in (3.8), we thus have

Tr ((M,f)z) = (BZbll - 6]11)2 +2 (BZbln - CIln) (Bnbnl - pnl) + (Bnbnn - pnn)2
n—

+2 % (Babi;i—q1i) ((Bi + Bi) b — pin — qin)

—

=2
n—1
+ 22 (Bnbm - pm) ((Bl + Bi) bin — Pin — qln)
=2
n—1 n—-1
+ ((Bk + Bx) bki — pri — qki) ((Bi + Bi) bix — pix — qik) -
k=2 i=2

For the convenience of expression, we introduce a few more notations as below. Denote by

n—1
Ty = (B2 = q11)* + (By — pun)* + Z(Ek + By — Pk — qkk)*s
=2
n—1
T, = Z ((B2bit = qui) ((Bi + B)bit — pit — qin) + (Bubin — ppi) ((Bi + B)bin = pin — qin)) »
i=2
n—1
I3 = Z ((Bx + B)bri = pri = qxi) ((Bi + Bi)bix = pix — qix) »
=
ki

Ty = (Bab1n — q1n) (Bubin — pn1),

then Tr ((M5)2) =T+ 2Ty + T3 + 2Ty As n — oo,
_1 2 1 2 _ 2 l 2 _ _
T _5(“ +1) 4(ﬂ + D" = D)(A +Aty) + (n = 2)u 2”(“ D(ty =ty + 1,1 —17)
n n—1
+ ) 0((A)Y) + ) O(AtAti)
k=2 k=2

=nu® + 0(1).
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It thus remains to prove 27, + T3 + 2T, = O(1) as n — oo.

As was previously defined,

—(1-p)A
Bobyy — qik = e—#(&—n)ﬂ Vk > 2
1 — 240 > =
~ 1_ _(I_IJ)Atn
Bnbnk — Pnk = e—,u(t,,—tk)e—’ Vk <n-1.

1 - e—ZAt,,

Forany?2 <i,k <n—-1andi # k,

(Bi + By)bii — pii — qri

e Hlt—til _ p=An—ple=til =200 —plti—ti| _ o= Atgpr—pltie —ti]

= +
1= e—zAzk 1= e—ZAzkH

—u(te—t:) [ 1=e=(=Af =201y _ o= (14p)Algy P
o H(tk ,>( s e , ifi<k-1,

—u(ti—ty) [ 1=e= AL p=200y = (1-p) Aty L
¢ ( 1—e 28k 1—o—280rm1 , ifi>k+1.

Thus as n — oo,

1 5 n-l

7= (1= 2] D 0 (10 = ot + O((A0)D) + O((Atket)?) (ti = 1
i,k=2
i<k

+O((A)?) +O((Atis1)?)

n—1
oc Z e 2T (141 — 1) (tir — tim1) +0(1)
i,k=2
i<k
n—1

<2 ) (Atg+Atgi) +o(1)
k=2

=0(1).

Similarly, 7> = O(1) and Ty = O(1) as n — oo. This finishes the proof of (3.9). The proof of (3.10)

follows the same manner and is thus omitted. O]

Based on Lemma 2, the rates of convergence for 024, o2, and o2y are derived as follows.

Proposition 5. Under model (3.2), as n — oo and m — oo,

— 1
Var(o?u) = — (2/1 -1+ 6_2/1) (*u)* +0(n™?),
nA?
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— 1
Var(o21) = — (2,1 1+ e_z“) (2% +0(m™2),
mp
0 2 (2,\? -2 -1 -1 -2
Var(o2Au) = —(0‘ /l,u) +O(m n )+O(m n )
mn
Proof. Under model (3.2),

Var(o2p) = Var (le (Dm ® 3-1(1)) x)
n

(o
n

:2( 2) Tr(((DmA(/l))®(B_I(I)B(/l)))z)
) (%2)2Tr ((DmA(/l))z) Tr ((Mf)z) ,

where D,, denotes the m X m diagonal matrix with (D,,); = Au;, i =1,2,...,m.

Asm — oo,

m
Tr ((DmA(/l))z) = 3 Aughuje |

i,j=1
1 pl

—>/ / e 2l gxdy
0 0

20-1+e ™
o222

It follows from the proof of Lemma 2 that Tr ((le)z) = nu?> +0(1) as n — oo. Thus,

— 1
Var(a?) = — (zz 1+ e_m) ()% +0(n?)

—_—

as n — oo and m — o0. The proof for the variance of o-21 follows the same manner.
Moreover, as n — oo and m — o9,
212

Var(o2Ap) = 2 (%) Tr(((A"(l)A(/l)) ® (B_I(I)B(/J)))z)

L L 7
:T‘AVar(r—lxl,B (1)x1.)Var(Zx_jA (1)x.;

=— (Uzﬂu)z +0 (m_zn_l) +0 (m_ln_z)

by the results of Lemma 2.
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For each of the estimators formulated in (3.5-3.7), its asymptotic distribution is shown in the

following theorem.

Theorem 8. Under model (3.2), as n — oo and m — oo,

V(o2 - o) S N ((), (% 1 _/:2_2}) (az,u)z) :

m(a2d - c20) S5 N (o, (% 1 _:2_2”) (024)2) .

Furthermore, when m = rn and n — oo,

A1)’ =)+ p(A+ 12 = 4)

mncr/z/l\—a'le i)N(—
vmn(o- Ay 1) NG

, 2(0'2/1;1)2) .
Proof. Under model (3.2), the joint density of x is

P02, A, ) := 2ma?) ™2 (A(2) ® B(u)) |7/ exp (—%ﬂxT (A1) ® B(p))~" x) . (3.12)

For any m,n € Z*,

V(o2 - o) = —=x" (A () o B ()~ ap (a7 () @ B () ) x

\Vmn
A'A) @ B!
+ \Vmniu (xT e ('u)x - 0'2)
mn
_ 207 ( Elog Pon(2A 1Y) (0%, 1, 1))
mn pﬂm(O'z, /1’ /J) p#n(o-z’ /la ,u)
1
¥ \/ﬁExT (A" e s () - au (4 W e B (w))x
A—l B—l
+ Vmndu (xT (1) ® (N)x _ 0_2)
mn
_ 2072 (E log pl (0?Au,1,1) 1 pl (o?Au, 1, 1))
Vmn Pin(0%, A, ) Pinn(02, A, 1)

+Vmn (EO'Z/l,u - 0'2/1/1)

N j%(xr (A—l(/l)®3—1(lu))x—ExT (A‘l(ﬂ)®B‘1(/J))X)-

Since the probability measure corresponding to p’. (o2, A, i) and the probability measure corre-

sponding to p? (02, 1,1) are equivalent (Ying, 1993), the Radon-Nikodym derivative satisfies

44



(Ibragimov and Rozanov, 1978)

J 2
A, 1,1
P(O< lim P (T Ap )<
mn—eo pl (02, A, 1)

Thus as mn — oo,

202 (El pl (0?Au, 1,1) l pl (02Au, 1, 1)) 202
0 —lo =
\mn P (02,2, 1) Pon(02, 2, ) \mn

By the Central Limit Theorem, as mn — oo

2
Au, 1,1
oo|l=1 and — o < Elog| lim Pon (7 A )
% e M G )

(0(1) = 0,(1) = 0p(1).

«/% (" (a7 W e B o) e~ Ex (A7 () @ B ) ) 5 N0, 20740,

By Proposition 4, when m = rn and n — oo,

Vi (E™2ju - o*a4) = 2 A )2 -+ p(A+ 1) —4)

o o(1).

As aresult, when m = rn and n — oo,
2 A((u+ 1) =4 +u((A+1)> - 4)
2F

For any 0 < u < 1, the joint density of y,. := (X(u,t1), X(u, 12), ..., X(u,t,)) is

(o2 — 2 au) 5 N (—0’ ,2(02@)2) . (3.13)

i _ 1 o
pE(o? wiu) == (2n0) "2 B(w)| ' exp (—FyZ.B 1(u)yu.). (3.14)

Recall that D, is the m X m diagonal matrix with (D,,);; = Au;,i =1,2,...,m. Forany m,n € Z",

V(2 — o) = %xT ((Dw© B (1)) ~p (Dwe B 1)) x

D,, ® B~
o’n

ZAM (Elog LG, 1og—pf(02”’1;ui))
l B(o2, s uy) pE(02, s u;)

D,, ® B~
s ynoty [P @B W (3.15)
oln

LN ((Dm ® 3—1(1)) i (Dm ® B_l(ﬂ)))x

\Vn

2 2 B 2 b 1; b 1,

_ Elog p"B(O- 2,u ) Z Au log (O- éu i)
Vn pn (02, wyuy) pE (o2, s u;)
+/n (Eoip - O'Z,u)

(xT (Dm ® B_l(,u)) x — Ex’ (Dm ® B_l(,u)) x) . (3.16)

+

Sl=
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By Proposition 4, as m — oo and n — oo,
W(E@—azu) = o(1). (3.17)
Denote by
Hy= < (Dn @ B 0) () © Bw).

then as n — oo,
N\ My, L 1=
Tr(H;) = AupAu e MU - _ ;
r(H,) k§j=1 ugAuje T T

Te(HY) < = — 0.
n

The convergence of moment generating function implies that as m — oo and n — oo,

[ (oo 870 - " (w87 00) ) 021

Nl
vn

Since Y0 < u < 1, the probability measure corresponding to p3 (o2, u; u) and the probability

) (0'2/.1)2) . (3.18)

measure corresponding to pB(o-2u, 1;u) are equivalent (Ying, 1991), the Radon-Nikodym deriva-

tive satisfies (Ibragimov and Rozanov, 1978)
P (o <pB < oo) -1, (3.19)

—c0 < Elog p? < oo, (3.20)

pE(o?u,1u)

where p8 = lim, I
B2

Moreover, since the probability measure corresponding to p?, (02, 2, 1) and the probability
measure corresponding to p?. (o-2u, A, 1) are equivalent (Ying, 1993), the Radon-Nikodym deriva-

tive satisfies (Ibragimov and Rozanov, 1978)

J 2

A1

P(O< lim p”}"(az" )<oo):1.
mn—eo pe., (0%, A, ()

Thus as m,n — oo,

Pan(0?1, 2, 1)

Pin(02, A, 1)
m |o?uB(1)| 1 ;
- = - =X

2 %02B()| 2
=0,(1).

(A‘l(/l) ® (%%3-1(1) — %B'l(,u)))x
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For any m,n > 1, denote by

Jn = xT ((lA—l(A) - Dm) ® (%3—1(1) - %B‘l(,u))) x.
m ou o

Since Tr (D, A(2)) = X", Au; = 1 and Tr (D A(2))?) = X7 _, AusAuje 2=kl = O (1), there

i,j=1
are
1 -1 1 _1 1 ~1 2
EJyn ="Tr ((—A () - Dm) ® (TB (1) - —B (u))) (A ®c B(,u)))
m o°u o
=Tr (llm - DmA(/l)) ® (lB‘l (D)B(u) — In))
m 7
=Tr lIm - DmA(/l)) Tr (13—1(1)3(,1) - In)
m H
=0, Vm,n>1,
and

2
Var(J,,,) = 2Tr (((%Im - DmA(/l)) ® (%3—1(1)3(,1) - In)) )
_ % (1 +mTr ((DmA(/l))z) - 2Tr(DmA(/l))) (%Tr ((Mf)z) +Te(I,) - I%Tr (Mf))
= %O(m) (n+0(1)+n-2(n+0(1)))
=0(1) asm,n — oo,

where Mf =B '(1)B(u). Thus, J,,, = O,(1) as m,n — oco. Hence,

N Bo?u, Lu 1 2uB(1 1 1 1

g B L L (5 (L L))
1 ppa(o?u,2,1) 1
p

(1) (3.21)

Jm n

as m,n — oo. Moreover, it is implied by (3.20) that

pE(o?u, 1;uy)
PE(O'Z,,U;LH)

Elog =0(1). (3.22)
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As aresult of (3.17-3.22),as m — oo and n — oo,

. Y
Vi(o2u — o*p) 4N (O, (% 1 ;2 ) (0'2;1)2) . (3.23)

Similarly, for any 0 < ¢ < 1, the joint density of y., := (X (u1,1), X (u2,1),..., X(U,1)) is
_ _ 1
P (02, 451) = 2ra?) 2| A)| 2 exp (—Fy (AT u)yt) (3.24)
Denote by D,, the n X n diagonal matrix with (D,);; = At;,i = 1,2,...,n. Then for any m,n € Z*,

— 202
Vm (o221 - o22) = 9

A, 15t A, 15t
Elogp'"(o- ) ZAt,long((r ’)+\/_( 0'2/1—0'2/1)

Vm pm(02, 45 11) Pm(02, ;1)
+ \/% (xT (A_1 ® ﬁn) x— ExT (A_l ® Dn) x)
=o0p(1)+o(1) + oA (xTFImx — ExTI:Imx) as m,n — oo, (3.25)
where H,, := % (A~'(2) ® D,)) (A(2) ® B(u)). Thus,
(a2 - c2) 5 N (o, (% 4 _:2_2“) (024)2) (3.26)
asm,n — oo, O]

3.3 Separable Estimation

Based on the results presented in Section 3.2, define estimators

o2 KT (AT ()@ BT (1) x

=== ; 3.27
U'Z,U m 2:11 XZB_I(I)XZ'.AM,' ( )
2 T (AN @ B-N(1) x
g T (n (T) ° (D) , .
0'2/7. anzlx,jA (l)x.jAtj
and
—_— n T —1 m T p—1
ot (ST AT (A (52 578 (1 Au)
e : (3.29)

0'/221 - xT (A~1(1) @ B71(1)) x
where 01'27@ OTZ\/l, and o2Au are defined in (3.5-3.7), matrices A and B are defined in (3.4). The
main results of this chapter are regarding the joint asymptotic normality and the strong consistency

of A, A, and o2,
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Theorem 9. Under model (3.2), if m/n — r as n — oo, then

A-2 rCy 0 —roz%
d
Vm| g-u |—= N|O, 0 Cy —0-2% asn — oo, (3.30)
A C C C C
2_o2 —ro’27ﬂ —0'27” ot (ﬂ—‘z‘ + r/l—f)

where Cy =21 — 1+ e ! and Cu=2u-1+ e M,

Proof. It was shown in the proof of Theorem 8 that when m/n — r and n — oo,

o2 — oy Vrotu (XT%}(“) EXTMW(”) )+0p(1)
V| o2a-o20 |= o2 (xT A GE0n - pxT A L0801, (1)
0'/2Z1—0'2/l,u 6\2/%#( TA (/l)®fm (#)X_EXT%\}:%(M) )_'_0(\/_)4_01](1)
—V—EV+o,(1),

where

T
_ D @B} A~ )eD, 22 A~ ()eB!
V= (\/;0_2/1 (xT ﬁzﬁ(#)x) ’ 0_2/1( T 0_(2\)/8; x) ’ U\/ﬁ#( T ((rz)fjﬁ (u) )) )

Forany y = (y1,72,73)" € R,

» Dn®B ' (p)

A" ®D AU AT ) ® B‘l(,u))

2 n

rou oA + X
y'v (m/_ - +72 -y S e

= xTanx.

It was revealed in the proof of Theorem 8 that

Moy = Mypyo? A(Q) ® B(u)) (3.31)

2/1#

~ o
= )/1\/170'2/1Hn + yzaz/le + }qmlmn, (3.32)

where matrices H, and H,, satisfy that as m,n — oo,

I 1-e2 " 1 1-e 2
Te(HD) -~ - 120 Ty - - - 12
" Pl 212 " u 2u?

Tr(HY) = 0(1), Tr(AY) =0(1), Vk > 3.
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Moreover, Vm,n € Z7,

Tr(H,) = %Tr(DmAu) ® 1) = V.

Tr(Hy) = V%Tr(lm ® D,B(w)) = Vi

Tt(DpA)Tr(D,B(p) _ 1

Te(Hoflp) = ——Tr(DnAD) ® D,B(1) = = - =
v o T ((DwA@)Y) Te(DyB (k) _ Tr(H) -y _ Tr(Hy)
Tr(H,H,) = —— = v Tr(H,H)) = i Yk > 2;
2 3 2 2 72
T (i) = Tr ((DwA(D) ;:r (DuB(W)?) _ Tr(Hn’z;r(Hm)_

Thus when m/n — r and n — oo,

Tr(M2,) = (nVro? ) Te(H2) + (2020 Tr(A2) + O(Tr(H,H,)) + O (Tr(Hn))
n\m
Tr(Hpn) 1
+0 ( n\/% ) + 0 (Z)
24 -1 —24 2u—1 —2u
= (Ve =+ (yzazﬂ)z%, (333)

Te(M2,) = 0 (Tr(Hﬁ)) +0 (Tr(FIf;l)) +0 (Tr((H A,) )) +0 (Tr(H3 m)) +0 (Tr(H ))

+

(o (1) +0 (182 ) 0 (1) 0 ()
+ﬁ( (Tr(Hz))+0(Tr(H Hm))+0(Tr(H2 ))

1
+

(O (Tr(Hy,)) + O (Tr(Hy)))

— 0, (3.34)

Hence, the convergence of the moment generating function for 7 (V — EV)) implies that it is asymp-

totically Gaussian with zero mean and the variance equals

N 20—1+e¢ 2 2 —1+e 2
2 lim  Tr(M2,) =2 2p)? + (ot
ppim r(M;,,) r(y1o°p) e (y20°2) 0
By the Cramér—Wold theorem, when m/n — r as n — oo,
o2y — o2y 2r(02u)2% 0 0
Vi gZa-o?a |5 N0, 0 2oL )l (339)
72 — o2 0 0 0
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. . R3 3
Define function g : R7 ) — R as

g(x,y,2) = (z/x,2/y.,xy/2), V(x,y,2) € R, (3.36)

Then the Jacobian matrix of g is

Jg(xay7z): 0 _Z/y2 1/y

It follows from the definition that

2r(o u)z% 0 0
T
Jg(ozu,alﬂ,azﬂu) 0 2@r%022&4i£31 07, (a-u, oA, azaﬂ)
0 0 0
r(2A =1+ e 24 0 (20— 1+ e
= 0 2 — 1+ e 2H —C (2 - 1+ e M)
—’ﬁi(z/l —1+ e—2/l) _0'72(211 -1+ e—Zy) 0_4 (2#—;-1;*2# + r2/l—l/1-;e—24)

Thus when m/n — r asn — oo,

A-2
Vm| - p
52 _ o2
r(21 = 1 +e~24) 0 —1 (20— 1+ e
d
—N |0, 0 2u—1+e 2 —%2(2/,1 —1+e72)
—#(2/1 — 1+ —%2(2/1 —l4+e ) ot (2”_};;_2“ + rz’l_l/;ge_m)
The proof is finished using the multivariate delta method. ]
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Remark 2. The estimators A and fi are asymptotically independent. This is due to the zero entries
of Jg as well as the asymptotic independence of o/'i; and 0/'21, which is based on the fact that

Tr(D,,A(1)) = Tr(D,B(p)) = 1, Vm, n.
Besides the asymptotic normality, estimators A, i, and &2 are also strongly consistent.

Theorem 10. Under model (3.2), as m,n — oo,
(2, i, &2) “5 (/1, i, 02) . (3.37)

Proof. Since the function g defined in (3.36) is a continuous function, the continuous mapping

theorem makes it suffice to prove
(0371, 0/'_271, 0'2/1/1) P (0'2,u, oA, 0'2/1;1)

asm,n — oo,

2

For any (Ao, uo) € N

there always exists a compact region C in Rio that contains (Ao, uo) and
(1, 1) as its interior points. Therefore (4.13) and (4.14) in the proof of Theorem 1 in Ying (1993)

both hold. Namely, as n — oo,

1 —e 2

2 (xi. — e Cixg. ) BTN (1) (xi. — e Fix (i),
X{.B_l(l)xl.+z( (i-1)-) (D( (i-1)-)
=2

. LA Ao(1 = po)?og
= opooy Z wiy + [0y + Aopooy (1 — po) + fo]m
i22 k=2

po(1 = 20)*0f

7 |n+o(n).

+ [poog + Aopoog (1 = Ag) +
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As aresult,as m,n — oo,

lm,n(l, 1, 0-2) - lm,n(l’ I, /10/-100_(%)

o2
—(1+m—1+n—1+(m—1)(n—1))10g( 2)
Aopoo,

1 1 T p1 (xi — e ®x;)TB7 (1) (x; — e ®ix; 1)
+(;—A—02)[x18 (Dx, +Z — ]
Aopoo? LA Aotoo}

—(—2-1)), = (m=1)(n - Dlog(——5—+)
o i=2 k=2
1 1 Ao(1 = po)*og
e [ + 2 1- = 0
+ (02 Topioo? ol 00 + Adopoorg (1 = po) + 2 |m
1 1 po(1 = A0)*o;
+(— - ) (oo + Aoptoory (1 = Ag) + —————]n
o Ao, 0 0 2
2
+ (m+n-1)log( 5) +o(n)
O,UO 0
0#0 : /10#0 o}
““(m-1)(n-1) -1 -1log( )) + o(mn), (3.38)

where the last equality holds since }}'2, >} 2(u)l.zk — 1) = o(mn) almost surely. Thus,
Lnn(1,1,02) = Ly a(1, 1, Appto0g) — 00 ass.
as m,n — oo if 0 # Aopooy. Together with Lemma 4 in Ying (1991), the result above entails

argmin L, ,(1, 1, 0%) 5 Aouoo? (3.39)
0—2
as m,n — oo. Hence as m,n — oo, 02Au iy ol Au.

It remains to prove that as m,n — oo, o2u p o?u and 022 L5 020, It follows from the

definition that under model (3.2),
5 1 7 -1 d T
ou=—Xx (Dm ®B (1))x =€ A€,
n

where € ~ N(0, I,,,) and A,,, is a diagonal matrix whose diagonal entries are eigenvalues of the

matrix

o2

(A2 DA () @ ((B'2(w) B (1B ().

n
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By the result of Proposition 5,

2
1Al =Te ((’72 ((a20) DA (1)) @ ((B“Z(u))TB—l(1>Bl/z(u))) )
1 —_—
=5 Var (0'2,11)

=0(n™") asm,n — .

Moreover, ||Apullz < [|[AmnllF = O(n™'/?) as m,n — oco. Thus, the Hanson-Wright inequality

implies that for sufficiently large n, 3Cy > 0 such that

2
—C min ¢ , ¢ 5

< 2exp(=CoVné), V& >0, (3.40)

P(‘@—E@‘ > 5) < 2exp

where C > 0 is an absolute constant. It hence follows from the Borel-Cantelli lemma that @ -

E 0371 S 0asm,n — . By the results of Proposition 4,
2 — 02 = o2 — Ecp+ Eotu — ou &5 0 (3.41)

asm,n — oo.

In a similar manner, it can be proved that 21 &% 020 as m,n — oco. This finishes the proof. []

3.4 Simulation
Let A = 0.5, u = 10, o2 = 4. For each value of the sample size n = 500, 600, . ..,2000 and

m = 0.5n, we set irregular sampling locations as ug =9 =0, u,, = ¢, = 1, and

J

(ui,tj):(é+U,i,;+U{'), YO <i<m0<j<n,

where U! iid (—ﬁ, ﬁ) and Utj tid- g (—%, ﬁ) are independent uniformly distributed random

variables. Given sampling locations, we run 1000 realizations and calculate A, 4, and 52 as defined

in Section 3.3. One realization when n = 500 is shown in Figure 3.1. The averaged absolute value
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Figure 3.1A simulated OU field with m = 250 and n = 500.

Table 3.1Empirical quantiles of standardized bias when estimating A.

A
n 500 1000 2000 N©.1)
5% | -1.4462 -1.5188 -1.4547 | -1.6448
25% | -0.6030 -0.5308 -0.5681 | -0.6744
50% | 0.1559 0.0893 0.0763 0
75% | 0.9224 0.7342 0.7039 | 0.6744
95% | 1.9886 1.8533 1.7377 | 1.6448

of bias for each sample size and the histogram of bias when n = 2000 are shown in Figure 3.2. For

n = 500, 1000, 2000, some empirical quantiles of

Vm(d - ) vm(pi-p) Vm (6>~ o)
VrQA—1+e2Y)  \2u—1+e2¢ \/0_4 (2#_};6—2# N rm_];ze-u)

are shown in Tables 3.1-3.3.
3.5 Discussion

We proposed estimators for covariance parameters of an anisotropic Ornstein-Uhlenbeck field
observed on [0, 1]%. The estimators A, /1, and 6> formulated in Section 3.3 are strongly consistent
and have lower computational complexity than the MLEs of A, i, and o2. As the sample size goes

to infinity, the estimators we proposed asymptotically follow normal distribution, but have higher
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Figure 3.2The plots in the first row present averaged absolute values of bias for

n =500, 600, ...,2000 and m = n/2 among 1000 realizations. The second row of plots present
the empirical distributions of bias with 1000 realizations when n = 2000 and m = 1000, where the
red curve indicates the density function of N (0, 1).

Table 3.2Empirical quantiles of standardized bias when estimating u.

J7i
n 500 1000 2000 N@©, 1)
5% | -1.9248 -1.8978 -1.6819 | -1.6448
25% | -1.0806 -0.9460 -0.8577 | -0.6744
50% | -0.3960 -0.3193 -0.2047 0
75% | 0.3473 0.3897 0.4762 | 0.6744
95% | 1.4002 1.3349 1.5174 | 1.6448

Table 3.3Empirical quantiles of standardized bias when estimating 2.

o2
n 500 1000 2000 N©.1)
5% | -1.6784 -1.5597 -1.6782 | -1.6448
25% | -0.7708 -0.6583 -0.6788 | -0.6744
50% | -0.0558 -0.0277 0 0
75% | 0.7103  0.6323 0.6719 | 0.6744
95% | 1.7328 1.5499 1.4902 | 1.6448
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variance compared with the MLEs studied by Ying (1993). This presents a trade-off between the
computational cost and the estimation accuracy.

The sampling grid based on which A, /i, and & are formulated is defined by lines parallel to
the coordinate axes. For a significantly anisotropic OU field such as the one shown in Figure 3.1,
the coordinate axes are distinguishable. When values of A and u are close, however, it could be
difficult to determine directions along which observations should be taken. It is thus of interest to
study the properties of estimators when sampling directions are not parallel to the coordinate axes.

The main results presented in this chapter focus on the asymptotic behaviors of the estimators. It
would also be interesting to study their finite-sample distributions and measure the distance between
a finite-sample distribution and the asymptotic distribution. The statistical inference for parameters
A, i, and o7 is also worth analyzing. The exploration of these topics is reserved for future research

work.
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CHAPTER 4

VECCHIA APPROXIMATION

4.1 Introduction

Consider a zero-mean Gaussian process X with the Matérn covariance function

, (0d)”

Cov(X(1),X(t+d))=K(d) =0 F(V)ZV_I‘KV(Hd), 4.1)

where @ > 0,v > 0, 02 > 0, 'is the gamma function, and %, is the modified Bessel function of the
second kind. Denote by X, = (X(#}), X(15), ..., X(z;)) the observations of X with sample size n.
When v # %, X is not Markovian and the sparse precision matrix of X,, discussed in Chapter 3 is not
valid. It is thus necessary to study other approaches to reduce the computational cost of the MLE.
The existing approaches to achieve computational efficiency include covariance tapering (Furrer
et al., 2006; Kaufman et al., 2008; Du et al., 2009), Gaussian Markov random fields representation
(Rue and Held, 2005; Lindgren et al., 2011), multiresolution approximation (Nychka et al., 2015;
Katzfuss, 2017), etc.

The Vecchia approximation is a method to reduce the computational burden through sparse

precision matrices. Write the joint density function of X (¢{), X (¢5), ..., X () as

n
T = Fxam) l—[ Txmixen ). xan)-
i=2

The Vecchia’s method (Vecchia, 1988) approximates f; by

n
Jn = Fx(m l_[ TXEIx )X,y 4.2)
i=2

for some k < n, which makes the precision matrix of X,, a band matrix and could thus significantly
reduce the computational complexity. The accuracy of Vecchia approximation has been discussed
in both theoretical and practical aspects (Stein et al., 2004; Datta et al., 2016; Guinness, 2018; Fin-
ley et al., 2019; Zhang et al., 2021; Cao et al., 2022). Under a more general framework proposed
by Katzfuss and Guinness (2021), where the conditioning vector contains both observed data and

latent variables, the nearest-neighbor Gaussian process, latent autoregressive process, multiresolu-
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tion approximation, and many other popular Gaussian process approximation methods are special
cases of the Vecchia approach.

In the remainder of this chapter, we focus on the standard Vecchia approximation and estimate
the scale parameter in the Matérn covariance function by MLE solved from the approximated like-
lihood. The effects of the misspecified range parameter and the conditioning variables on the bias

are discussed in Section 4.2, and simulation results are presented in Section 4.3.

4.2 Maximum Likelihood Estimator for o>
Under a regular sampling design on fixed domain, we have /' = i/n fori = 1,2,...,n. When
v is known, the expectation of MLE for o> from Vecchia approximation satisfies the following

results.

Proposition 6. Denote by 6> the MLE for o* from Vecchia approximation with v known and 0

replaced by some fixed 0y > 0. When k = 1in (4.2), E6> = o forany n > 2 if 6y = 0, and

2y
o2 (e%) +OP ) +0m Y +om?), v<l,
R 2
E0C =107 (0%) +0((logn)™), v=1
2
o2 (0%) + O~ +0(n*%), v>1,v¢Z

asn — o if0y # 0. When k =2 in (4.2) and 6y # 6,

2y
() +0w ) +0m™)+0), v <1,
2186 2 1
o2 (&) +0((ogn™), _—
2v
E@'z = 0.2 (6_6:)) +O(I’L_1)+0(I’L2_2V)+O(I’L2V_4), 1<v<2,
2 (6 4 1
(&) +0((ogn™), -
2 (6 4 0'2[32 0 2 2 _1 4—2y
7 (e‘) T o (9—) —1] +0(™) +0(n"), v>2,v¢Z

I'(1-
as n — oo, where T = 25]£(3_Vi) and 3 = 4(11—1/)'

Proof. Denote for 1 < i < n that

o _ (Boi/n)

= T o)
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for some fixed 6y > 0, and write K,,; = 02K (i/n). Tt follows from (9.6.2) and (9.6.10) in

Abramowitz and Stegun (1948) that for v ¢ Z,

xV

W?(y(x) =1 -ax? + B2+ X + 0P+ 0(x®) + O(x?*) asx — 0, (4.3)
14
where @ = U o= LU= V) ,and 8 = The gamma function I" on R is defined as

T AT(I+v)’ T T 25T(3-v 4(1-vy" g

fooo e tdr, x>0,
I'(x) = “4.4)

I'(x+n+1)
e X <007,

where n is chosen such that x+n > 0. For v € Z, it follows from (9.6.10) and (9.6.11) in Abramowitz

and Stegun (1948) that

xV = (v—k—=1)! (x\2k 2(=1)*! X\ 1 X\ 2v+2k
r(v)zv—lq(”(x):;)( n* k(v —1)! ( )+ v —1)! log(i);)kz(wk)z(i)

)2v+2k

Shet 7 Stk 7~ 2Y (x
+(=D Z K+ k(v = 1! 5

(-1)” 51 x\2v
ey (h p ‘27) 3)

(cv,kxzk &y gk logx) , (4.5)

2

Ms

~
Il

0

where v is the Euler’s constant, ¢, x, ¢, x are constants depending only on v and k.

Case 1. When k = 1, the approximated joint density is

2 2 2 -5l 2 1 C 2
fu(x1,...,x) = 2no?)” 2(1 -K; 1) - exp 752 xy+ 1_—}(21 ;(x,- —xi1Ky1) 4.6)
since X ()X (") ~ N (X(ty_l)Kn,l, o2(1 - Kil)). Hence,
A __n 2 1 2 0\2
log fn(xl, LRI ,xn) |9=6’0_ 2 logo- 20_2 ('xl 1 _ (K0)2 Z( l -xl 1K ) + C (47)

where K? = KS ;> C is a constant not depending on o?. The MLE of o2 calculated from (4.7) is
thus

(4.8)

. 1
0'2:;(% 1_(K0)ZZ(l Xij— IKO)

60



where x; = X(i/n),i = 1,...,n. Under model (4.1), there is

g2 =T (14 (n-1)* (Ky)” = 2K, K
n 1 - (KD)?

for any n > 2. Consequently, E&> = o always holds when 6y = 6. Cases when 6y # 6 are

discussed below.

When 0 < v < 1, (4.3) implies that as n — oo,

1+ (K92 - 2K%K,, 0% +an™ 207 (6% - 037/2) —n*"20°B/a + O (n"?)
1 - (K9)2 T +an (6] /2) - n?2028/a + O(n2)
0

2v
= (—) +OM” ) +0n™)+0(n™?).
o

Hence,

2y
E&? = o (Qi) +0m? ) +o0m™H+om™).
0

When v > 1 and v ¢ Z, (4.3) implies that as n — oo,

L+ (KD)? = 2K9K,1 =267 [n* + 2067 [n> + B*(0; — 26°65) [n* = 27(6/n)* + O (n™>7>)

1 - (Kp)? =262 /n% + 2262 [n> — B2(6o/n)* — 27 (80/n)* + O (n~2-2)

2v
(ﬁ) +0(n*)+0(n™)+0(n?)
6o

and

2y

0

E¢* =0 (9—) +0(n* ) +0(n7h).
0

When v = 1, it follows from (4.5) that

xV

[(v)2v-1 K(x)=1+ clx2 log(1/x) + 62x2 + C3x4 log(1/x) + C4x4 + 0(x6 log x)
4

as x — 0, where cy, ¢, c3, c4 are constants only depending on v. Thus,

1+ (K9)? - 2KYK,,
L= (K})?
_r22cin?logn +2con™ = 2cin”2(r? logr + (1 +r?)ca/cy) + O(n*(logn)?)

- 2cin2logn — 2con~2 + O(n~*(logn)?)

=r? +0((logn)™") + O((logn)™),
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where r = 6/6y. Hence,
2
0
E&? =02 (9—) +0((logn)™").
0

Case 2. When k = 2, the approximated joint density is

ﬁ’l(-xl’ o ’xn)

2n02b)"2b 1 (x2 = Knp1x1)? 1 &
:Q exp (—ﬁ (xf +—+ ;A Z(xi — arxi_1 — arxi—2)? ||,
7 i=3

[ 2

1- K’%l 1- Kn,l

Kn _Kn Kn Kn — Kn 2 Kn 2 Kn 2—2 K,, ZK,,, ..

where a) = 22, ap = % and b = 1 — Hnt) 1_’2("’1)(2 D Kn2 Thig is due to
X(t) 1 K =2 D) K = 1,])
2
X))~ N10,07 [ K (| -1, 1 K(|£, =1,
X(t?_z) K(|tln - t?_zl) K(|t7_1 - t?_z') 1

and the regular sampling design, which implies that V3 < i < n,

XX (), X (")) ~ N (alxuy_l) +aX (1), 0'219) .

Take arg max - log fu and plug in 6 = 6, then

1 (x2 - K01x1)2 1 +
A2 2 n, 0 0 2
o = _n (xl —1 ( 21)2 + _bO i; (x; — a|Xi-1 — azxi_z) R (4.10)

—+

KO _KO KO KO —(KO )2 (KO )2+(K0 )2_2(1(0 )2K0
0 _ Znl Pni™n2 0 _ n2 n,1 0 _ n,1 n,2 n,1 2 : :
where a; = Sk %= o @ db” = (&0 )7 . This estimator can

also be written as a quadratic form

1
ot =-X'M'x,,
n

where X, = (X (]), X (¢5), ..., X(t;)) and

0
1 + (ag)z a?ag _ Kn,l _a_(z)
1-(K) |)? o Py 1-(K9 )? bo
0,0 0 02 0 0
aya, K 1 +4 4o 5
bo I=(Kp )2 1=(K) )2 b0 b bo
0 0 02
_5 a1 vap, dp
bo bo bo bo
_ 0
M= _4Y 4 )
bo bo
02 0
1+a12 aj 4
bo bo 0
ap @)’ 4
bo bo bo
0 0
_% _4 1
by bo bo
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0 0,0_ 0 — (,0)2 0)2
is an n-dimensional pentadiagonal matrix, where a}, = aja; — a, a = (a))” + (ay)~.
Denote by 02X the covariance matrix of X,,, then X;; j = K, )i—j and

E52 %Tr(M Iy)
(1+ (K9 )* = 2K K, 1)(1-K?,)
(1+K), -2(K) D)) (1 - (K })?)
2(Ky), = (K )P (1= Kp2)
(1+K0 —2(K0 )2)(1—1(02)

:0-—2(2+(n—2)
n

a 2+ (n—2)A,) .
n

(4.11)

Consequently, E 52 =02 always holds when 6y = 8. Cases when 6 # 6 are discussed below.

After similar steps as did in Case 1, it follows from (4.3) that when v ¢ Z,

2v
(0w 00
2v
A, =1 (9%) +0(n22) + 0(n2%), ifl1<v<2,
AN 0\’ : 4-2v -2y
(9—0) t o (0—0) -1 +0(n"")+0(n=), ifv>2.

When v = 1, it follows from (4.5) and (4.9) that as n — oo,

1+ (K2,1)2 - 2K2,1Kn,1 _2, 7 2logr cor?logr o1 3
B =rt4 + 5 +0((logn)™),
1-(K?) og(6o/n)  c1(log(6o/n))
I-K} log(8 log2 —
n,2 - _ Og( 0/”) _ og CZ/CI +0(I’l_2(10gn)3),
L+K), —2(K) ) log 2 log 2
- (K))D)*  log(6 2log2 —
1 _ log(6o/n) | 2log c2/ci +0(n2(logn)?),
1+K§32 ~-2(k%)?  2log2 2log?2
1 -K,» _2, r logr cor? logr

-3
1- Kr?,z - 10g(290/n) * c1(log(260/n))2 +0((logn)™),

where r = 6/6,. Hence,

2
A, = (Qﬁ) +0((logn)™") + 0((logn)™2).
0

Similarly, when v = 2, it follows from (4.5) that
V

—F( 2 Ky (x) =1+ c’2x2 +chx *log(1/x) + c:‘x4 +0(x%logx)
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/

as x — 0, where c’2, c’3, cy

are constants only depending on v. Thus, as n — oo,

L+ (KY )? = 2K)) K1

’ 2
cs (6 6
:rz+(r2—r4)—3 (—0) log( O)+0(n_2),
n

n

1 - (K;(q),l)z C’2
- K;?,z 4 N chn*(16¢], — 16¢log2 — 2(ch)* — 4c))
1+K%,-2(K%)2 3 36(c460 log(60/n))?
c'n?

2

+ +0(n*(logn)™),
3¢,6% log(6o/n)

Kr(z),Z - (K2,1)2 7 chn?(16¢), — 164 log2 — 2(ch)? — 4c))

1+K2, —2(K? )2 6 72(c}60 log(8o/n))?

chn?

2 2 -3
- — +O(n”(logn)™),
6¢,62 log(6o/n)

1 - K, s (60\>, (26
2 :r2+4(r2—r4)—,3 (—O) log( 0)+0(n_2),
c,\n

n,2 2 n

4
A, = (Qﬁ) +0((logn)™) + 0((logn)™2).
0

This together with (4.11) finishes the proof. [

Remark. Only & = 1,2 are considered in Proposition 6 since the corresponding Vecchia ap-
proximation is computationally efficient. If @ is known, then taking 6y = @ when construct 2 will

result in unbiased estimator for o-2.

4.3 Simulation

Let 02 = 1 and 6 = 5 in (4.1). For each value of n € {200, 250, ..., 1000}, generate 15000
independent realizations of X. In the following text, denote by 0'3’ p = im0 E &2, whose value
is proved in Proposition 6.

Fix 6y = 1 when solving for MLE of o2 using the Vecchia approximation (4.2). For (v, k) €
{(0.3,1), (1.3,1), (1.3, 2)}, the first row of plots in Figure 4.1 presents the boxplot of 62 — oﬁk
among 15000 realizations at each sample size n. The second row of plots in Figure 4.1 presents

the empirical distribution of &% — O'VZ . When n = 1000, where the red curve indicates the density
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Figure 4.1Empirical distributions of bias with 15000 realizations. (c2=1,0=5,00=1.)

function of normal distribution with zero mean and standard deviation equals the empirical standard

deviation of &2 — 2

,  among 15000 realizations. For the same three pairs of values of (v, k), Figure

4.2 presents the average and standard deviation of absolute values of &2 — 0' , at each sample size
n among 15000 realizations when (v, k) = (0.3,1) and (v,k) = (1.3,2). For the case when
(v, k) = (1.3, 1), 50000 realizations are generated since the estimator 6-> has a larger variance.
Fix 8y = 0 = 5 when solving for MLE of o using the Vecchia approximation (4.2), then
2

= o2 = 1. For the same dataset of realizations, plots in Figure 4.3 include the boxplot of 6> —c

among 15000 realizations at each sample size n, as well as the empirical distribution of 62 — o2

when n = 1000, where the red curve indicates the density function of normal distribution with
zero mean and standard deviation equals the empirical standard deviation of 62 — o> among 15000
realizations. Figure 4.4 presents the average and standard deviation of absolute values of 5% — o~
at each sample size n among 15000 realizations when (v, k) = (0.3,1) and (v, k) = (1.3,2). For

the case when (v, k) = (1.3, 1), since the variance of 02 is larger, 50000 realizations are generated.

The first row of plots in Figure 4.2 and Figure 4.4 illustrate Proposition 6. Furthermore, it is
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Figure 4.2The average and standard deviation for absolute value of bias when

n =200,250,...,1000. (c> = 1,6 =5,0y = 1.)

indicated by the simulation results that when k < v, the standard deviation of -2 is not significantly
reduced as the sample size increases, and the empirical distribution of 52 — 0'3, . appears to be right-
skewed. When k > v, however, the standard deviation of 6% decreases as the sample size increases,
and the empirical distribution of 5% — 0'3, . When n = 1000 is close to normal distribution. As is
observed from Figure 4.2, the standard deviation of &% when (v, k) = (0.3, 1) is smaller compared
with the case when (v, k) = (1.3,2). Let 89 = 6, then (v, k) = (0.3, 1) and (v, k) = (1.3, 2) result
in similar values of the standard deviation of -2, as is shown in Figure 4.4.

For future research, it is interesting to perform theoretical analysis for more asymptotic prop-
erties of 02, including the convergence rate of its variance and its asymptotic distribution. The
sampling design considered in this chapter is limited to a regular grid on the line, which is also the
sampling design studied in Section III of Zhang et al. (2021). It is challenging but interesting to

extend the existing results to irregular sampling designs on R (d > 1).
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Figure 4.4The average and standard deviation for absolute value of bias when
n = 200,250, ...,1000. (2> =1,0=5,6p = 5.)
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APPENDIX A

QUADRATIC VARIATIONS FROM IRREGULAR SAMPLING
Al d=1
(6) studied quadratic variations defined using irregular observations of process (X;):e[0,1] With

Gaussian increments. Suppose (X;) is observed at
_ ) _ () (n) _
O_tO <t <---<th_1, neN

and denote by At,((”) = ZIE’_?I - t](("), k=0,...,N,— 1. Write AZIE”) as Aty for brevity. Let

AXy = Atk—lth+1 + Athtk—l - (Atk_l + Al‘k)th. (A.1)
It is straightforward that
tZ+1Atk—1 +tz_1Atk—tZ(Atk_1 +Atk) =0, q =0,1;

2 2 2
te Ati—1 + 1 Aty — 1, (At + Aty) # 0.

The second order quadratic variation is then defined as

No ! Alk(AXk)z

(Vn(X) = 2 3-y 3-y ’
=1 (Atg—1) 7 (Atg) 7 (Atg-y + Aty)

(A.2)

where y > 0 is related to the smoothness of (X;). For example, if (X;) is a fractional Brownian
motion with Hurst’s index H, theny =2 — 2H.
Denote by m,, = max{At](C");O <k <N,-1}and p, = min{At,E”);O <k < N,-1}. Itis

assumed in (6) that

(i) For a sequence of positive real numbers (I;)r>1,

(n)
At~ _
(n)

At

lim  sup Ikl = 0;

n=00 | <k<N,-1

(i) m, = O(py,) asn — oo;

1
(i) p, = 0(10gn) asn — oo.
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With irregular observations satisfying the assumptions above, the almost sure convergence of V,,(X)
is proved under some regularity conditions on (X;).

Although (6) considered a general class of irregular observations, the quadratic variation defined
in (A.2) could not be evaluated when y is unknown. Also, y could not be estimated when m,, = p,, =
Nln does not hold. The quadratic variations defined by (53), however, do not depend on unknown
parameters.

(53) considered a stationary, isotropic Gaussian random field X on R d=1,2. Whend =1,

define irregular lattice points

1
ti:go(l ) i=1,....n (A.3)

n-—1
forn > 2, where ¢ : R — R is a twice continuously differentiable function with ¢(0) = 0, ¢(1) =1
and ming<;<; ¢’(s) > 0.

For6 € {1,2} and € € {1,2,...,[(n—1)/6]}, define

l!

agrik = , k=0,...,¢, (A4)
l HOgjgtf,j;ek(tHek - ti+0j)
‘
VorXi = ) ageixX(tivor), i=1,...,n—06C (A.5)
k=0
Lemma 1 in (53) shows that
4 0, ¢g=0,...,-1
Z ag’f;"»kt?wk =
k=0 l, q==¢.

The ¢th order quadratic variations are defined as

n—0¢
Voe= » (VouXi)’, 0€{l,20e{1,2,....[(n-1)/6]}. (A.6)
i=1

A2 d>1

A.2.1 Observations along a curve

(53) studied the case when d = 2 and X is observed along a fixed curve in R2. Assume that

(i) e >0,L > 0s.t. y: (—¢, L +€) — R?is a C>-curve parameterized by arc length;
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(i) AC > Os.t. ||y(t*) —=y(0)|| = C|t* —¢t|, Vt*,t € [0, L].

Denote by X; = X(y(#;)) and d; ; = ||y(#;) — y(¢;)|| for 1 < i, j < n, where ¢; is defined in (A.3).

For 6, ¢ € {1,2}, define

4
bo.cix = . k=0,....0 (A7)
[o<j<e jzi(diivor — diivay)
¢
Vo Xi = Z boeirXivox, i=1,...,n—6C. (A.8)

k=0
Lemma 1 in (53) shows that

0, ¢g=0,...,6-1

¢

qa  _
Z botikd; ;o =
k=0 t, qg="¢.

The ¢th order quadratic variations are constructed as

n—6¢
Vor= Y (VorX)*, 6.€€{1,2}. (A.9)
i=1

A.2.2 Observations on deformed lattice

When d = 2 and X is observed on deformed lattice points in R?, (53) also defined corresponding
second order quadratic variations.

Consider an open set Q in R? with [0, 1]> ¢ , and a C?(Q) diffeomorphism @ : Q — R?. Let
@ = (1. ¢2). Write X;, ;, = X(x'12), where x"2 = (x|, xJ"2)’ = (@1 (i1 /n. ia/n), @2(ir /. ia/n))’
forl <iy,ip <n.

For6 € {1,2} and 1 <iy,ip <n-20,let

140,02 _iniy G0 iz
A RS N B )
031,y = ’
. [ irt0
Kinitt L ini x121 i+ _ xlzl 153

1 1

i1+0,ir _ i1+0,ir+60 11+0,in _ i1+0,ir+60

1 X Xy Xy
iLiH0 40,40 |
2 Xy

By i, =
T i1,i2+0 xi1+9,i2+9

Xy 1

X
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Then define

Vo,1Xi.i, | X = Xiy16,in40 | X = Xiyio
- = Doy = 9,00 (AIO)
Voo Xi i Xiyin+0 — Xij+0,ir+0 Xiyir+0 — Xiy i
ki,ka
c, X, ;
0.1:iy, i1+0ky,ir+0ky
= i : (A11)
ki k

SK2
0<ky,k2<1 C0,2;i1 7l'2Xl'1+6k1 Ja+0ky

where B;! . and A7}

9i1 s 9., €Xist for large enough n since ¢ is a diffeomorphism. Lemma 2 in (53)

shows that for j, £ € {1, 2},

ki,ko i1+0ky,ir+0ky q _ _
2: %ﬁmxﬂ ) =0, ¢=0.1

The second order quadratic variations are defined as
Vor= > (VeeXon). 6.0€{1.2}. (A.12)
1<iy,i<n—6

For quadratic variations defined in (A.6), (A.9) and (A.12), the rates of their expectations and
variances as n — oo are proved by (53) under some regularity conditions on X.

(54) focused on the stationary GRF X on R? with isotropic Matérn covariance function, and
studied quadratic variations constructed from irregular observations of X when d > 2.

The definition in (A.12) is extended to the case where X is observed on [0, 1]¢ and d € Z".

Consider an open set Q in R? with [0, 1]¢ ¢ Q, and a C?(Q) diffeomorphism ¢ = (@1, ..., ¢4) :

Q — RY. Write
. . o\ i i\’
x(i) = (x1(i),...,xqg(1))" = ((pl (—) s 4 (—))
n n
and X;,.;, = X(x(i)), where i = (i,...,ig) and 1 <iy,...,ig < n. The sample size is thus n.

For 0 € {1,2} and ¢ € Z*, let

¢ = i , (A.13)

Xj; = (xi,j;l, .. .,xi,j;d)' = X(il + k19, .. .,id +kd9), j = 0, e ,f,

. .n '
Vij = 5(i) =xXio) j=L..0
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whereiy,...,ig € {1,...,n—€0},ky,..., kg€ {0,1,...,¢} andzli] ki € {0,1,...,¢}, j denotes
the lexicographical order of combinations (ky, ..., kg), Xio = X(i). The detailed rule of ordering
is described in Section 5.1 of (54).

Forl=1,...,0ands = (s1,...,s4)’ € R?, define

I+d-1
d Sk

s ([12) s

k

) (A.14)

where I1,...,l; € {0,1,...,¢} and Zflzl [; = I. The elements of a<d’l>(s) are arranged in lexico-

graphic ordering with respect to (1, ..., l4). Define a £ x £ matrix

all(gi1) a2 (§i) - alO(§)
(d,1>(~. (d.2) (5. . aldD (s, -

- a'“"(§ip) a“"“(¥i2) a'“"(¥;7)

Aigar = . _ - o (A.15)
a'“V(g; ) a2(gi) - a“O(F;,)

and assume |Ai,9,d,g| #O0foralliy,...,ige{l,...,n—{6}.

1 ~J -k
Denote by Aledf ( ‘9‘”’)13]' L<F and let

~€] . 7
@y 400 Vi=1,...,¢,

Cio.a,c(J) = (A.16)
Zk 1&f;d€’ if j = 0.

For 6 € {1,2} and ¢ € Z*, define
3
VoaeXi...ig = Z Cioa (X (Xij), i1,....ig€{l,...,n=2(}. (A.17)
j=0
The ¢th order quadratic variation is then defined as
~ = 2
Voar= D, (VoarXi i) - (A.18)
1<iy,.ig<n=20
A.2.3 Stratified sampling
Let

1+ 65 iqg—1+06i4 ’

x(i) = (x1(Q),...,xq(1) = (“_T o) €0, 1),

n
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where i = (i1,...,ig) and 1 <iy,...,ig <n;0 < dix < 1(k=1,...,d) are constants that can
vary with n. Let w, be an integer depending only on n such that w, = O(n”) as n — oo, where
vo € (0, 1) is a constant.

For 6 € {1,2} and ¢ € Z*, let

’ . . .
Xij = (Xij:1,. . Xij:a) =X(i1 +kwgb, ... iqg+kqw,8), j=0,...,¢,

n _ _
Yij = m(xi,j -xio), Jj=1,...,¢,

n

where iy, ...,iq € {1,...,n—{w,0}, other notations are as defined in Section A.2.2. Define a £ x £

matrix
a %l (yi) a2y oo alO(yiy)
<d71>(. (d.2) (. (d.6) (y. -
a vi2) a‘““(yi2) a'“"(y; p)
Aipac = _ _ ‘ L (A.19)
all(y; ;) a4 (yip) - allO(yp)

where a‘® (.) is defined in (A.14). Assume |Ajgacl # 0foralliy,...,.ig € {1,...,n - {w,0}.

ok

Then denote by Ai_,el, ae= (aw’ d. {,) o Let
l,j . 5
' @ g0 Vi=1,...,¢,
cigde(J) = (A.20)

l Lk e
= Xi=1 %0 7 =0
The ¢th order quadratic variation is then defined as

Voae= > (VearXo..i)’ (A21)

1<it,..ig<n—2twy,

where 0 € {1,2}, ¢ € Z" and

{

VoaiXi. g = ) ioat(NX(ig), i1 nig € {1 n=20w,}.  (A22)
j=0

A.3 Randomized Sampling Design
Section 4 in (54) considered random sampling on [0, )4, where d € {1,2,3}. Itis an extension

of the stratified sampling discussed in Section A.2.3.
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Letxy,...,xy be a sequence of i.i.d. random vectors in R¥ that are independent of the GRF X.

Assume the probability density function p(x) of x; satisfies

p(x)dx=1 and inf p(x) > po > 0. (A.23)
[0,1)4 [0,1)4

When pg in (A.23) is unknown, let

1/d
ne = l(Lz) ‘, vt > 0.
Tlog”(N)

Let 7 be the smallest real number greater than or equal to 1 such that

1 l
{x1, ... XN}ﬂrl[] ])¢® Vii,...,ig € {1,...,n:}.

7';

Consider the effective sample only:

{x;. X(x;)} : xjel_[[’f ”) iig €l e je{l,.. N}V (A24)

Take a subset of X;’s in (A.24) such that for each i = (i1,...,iy)" with 1 < iy,...,iy < ns, there

-] —) Write the selected x; as x(i). The randomized

ng ’n

is strictly one j satisfying x; € ]_[j?’:1 [
sampling design is then reduced to the stratified sampling design with a sample size of nf. Thus,
the ¢th order quadratic variations could be defined as in (A.21), where 6 € {1,2}, £ € Z* and n is
replaced by n;.

When pg in (A.23) is known, let 79 = 3/po and

N 1/d

where T > 79. Let 7 be the smallest real number greater than or equal to 7y such that

{x1,... XN}ﬁl_[[ )7&@ Vii,...,ig € {1,...,nz}.

The effective sample is defined as in (A.24) by replacing n; with ;. Similarly, the {th order

quadratic variations are defined as in (A.21), where 6 € {1,2}, £ € Z" and n is replaced by 7iz.
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A.4 Estimating Smoothness Parameters
Based on the a.s. convergence of the quadratic variation defined in (A.2), when a fractional
Ornstein-Uhlenbeck process O is observed from regular sampling, its fractional parameter H €
(0, 1) has a strongly consistent estimator as
2
log (szgl“ (01% + 0’,%, -201 )

Nn

H,=-- , A25
2 2log N, ( )

where 1/N, = o(1/logn).

Quadratic variations constructed in (A.6), (A.9) and (A.12) are used to estimate the smoothness
parameter v in covariance function (1.1).

The estimators of v defined by (53) are minimizers of functions that depend on sampling loca-
tions and quadratic variations. Although with no closed form expressions, the estimators are proved
to be strongly consistent when ¢ > v and observations are on [0, 1] or along a curve. When X is
observed on deformed lattice and v € (0, 2), € € {1, 2}, the estimator defined using (A.12) is proved
to be strongly consistent as well.

The Matérn covariance function belongs to the class of functions defined in (1.1). To estimate

its smoothness parameter v, define

5 - log(Va.a.0/V1,d.)
nt 2log2

(A.26)

where Vg 40, 6 = 1,2 are quadratic variations defined in (A.18), (A.21) and Section A.3, corre-
sponding to different kinds of sampling design. When ¢ > v, it is proved by (54) that v, ; — v a.s.

asn — oo,
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APPENDIX B

HIGH EXCURSION PROBABILITY
We first introduce some notations and definitions presented in (62).

The structural modulus of vector t € R” is defined as

k E(i) @2
_ 2
N 3 B S
i=1 \j=E(i-1)+1
where E = {ey,e2,...,ex}, @ = {a,aa,...,ar}, ej,a; € ZY (i = 1,2,...,k), Zle e; = n,

E(i) = ZZ.ZO ej, eo = 0. A structure (E, ) defines a partition of the space R" into a direct product
of orthogonal subspaces (R" = xl’.‘leei) such that the restrictions of the structural modulus |t|£ ,

on either of them is a Euclidean norm taken to the degree «;,i = 1,2, ..., k, respectively.
Example 1. Letn =k =2 and E = {1, 1}, then E(0) =0, E(1) =1, E(2) =2, and
tee = 10]" +10|,  Vt=(11.1) € R,
where ay,ay € Z*.
Let y(t), t € R" be a Gaussian field with continuous trajectories, and
Ex(t) = —|tlg.q,

Cov (x (1), x(8)) = [tlg,o + IS0 — [t = S[E 0,
where @; < 2 makes the covariance function valid. For any compact set 7 C R" and matrix

M € R™", denote by

H%,Q),(E’,a’)(T) = Eexp max {x(®) — IMt|g o }|.

Write Hg o(T) = H?E’a)’ (7.0 (T), Where 0 is the zero matrix.

A set A ¢ R" is called Jordan measurable if its interior and closure have the same Lebesgue
measure, i.e. its boundary has Lebesgure measure zero. The system {A,, u > 0} is said to blow up
slowly with the rate k > 0 if each of these sets contains a unit cube and mes(A,) = O(e"”z/ %) as

u — oo,

Theorem 7.2 in (62) is presented as below, where the subscript £ , is written as -, for short.
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Theorem 11. (62) Let {X(t),t € R"} be a Gaussian homogeneous field with zero mean and the
covariance function r (t) satisfies that there exists a non-degenerate matrix C and a structure (E, @)

such that

F(Ct) =1— |ty +o(|t]la) ast— 0,
(B.1)

r(t)y -0 ast— oo.
Then there exists a number k > 0 such that for any system of closed Jordan sets, blowing up slowly
with the rate «k,

k
P (rtn%xX(t) > u) = H,mes(A,)|det C7!| ]—[ W2l () (1+0(1)) asu — oo, (B.2)
€Ay .
i=1

where
n
H, = lim Ho(10,1]")

t—o0 tn

and ¥ (u) = exp(—x2/2)dx.

1 [ee]
5 o
Remark 3. The zero-mean stationary Ornstein-Uhlenbeck field X with covariance function defined
in (3.2) taking 0% = 1 satisfies conditions in Theorem 11 withn = 2, E = {1, 1}, a = {1, 1}, and

/a2 0

C= .
0 1/u
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APPENDIX C

STOCHASTIC PARTIAL DIFFERENTIAL EQUATION

Write the two-sided Laplace transform of a function £ as

Li(p) = / P h(x)dx, .

(0]

and denote by D" the differential operator of order n, i.e. D"h(x) = d‘i",, h(x). It follows from the

differentiation rule presented on Page 48-50 of (67) that

Lp(p) =p"Ly(p), VneZ' (C.2)

when

lim e””h(x) — lim e "*h(x) = 0.

The case when n ¢ Z* is discussed in (59). We first introduce the definition of fractional

derivatives below. For any @ > 0, define the fractional difference operator A® as

0N Dla+l) o
Af(X)_JZ::om( D f(x—jh)

and write the fractional derivative in the Griinwald-Letnikov finite difference form as

df(x) .. A%f(x)
i L S

DY f(x) = (C.3)

Alternative integral forms for the fractional derivative are also presented in (59), as shown in Tables
C.1-C.2. Consider the Riemann-Liouville fractional derivative of order 0 < @ < 1, of which the

Laplace transform is written as

0o oo d 0o —a
J_erprrea= [ e [ -y md s

= —F(ll_ ) ([e"”‘/o flx— y)y‘“dy] )

- [ : /0 mf(x—y)y'“dyde"”‘)
1

= m(h - D),
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where

12=—P/ e"’yy‘“/ f(z)e P*dzdy
0 —00

=-p*Ls(p)

when e Py~ f(x — y) is integrable. If it further holds that

hme px/ fx—y)y~ “dy— hm e px/ flx—y)y *dy =0,

then

Lpay(p) = p*Ls(p).

a—l

Generator form I @ = fx =)= )T a)
Caputo form /0 ACER e XiE a)
Riemann-Liouville form T fo fx=y)ch— N

Table C.1Alternative integral forms for the fractional derivative when 0 < o < 1.

Generator form /0 (fx=y)—f(x)+y dxf (x)) a(ar(;))a)
oo 42
Caputo form fo L f(x =) r(z a) dy
Riemann-Liouville form di—zz /0 flx - y)m

Table C.2Alternative integral forms for the fractional derivative when 1 < o < 2.

Consider the stochastic partial differential equation (SPDE)

o 0
L(at ey )X(Il,tz)—f(tl,tz) 1, €R,

where L is a linear differential operator. The Green’s function of L satisfies

0o 0
L(at " ot )G(tl’tZ)—éo(t1)50(l2) n,m €R,

where 6 is the Dirac measure at 0.

When € is the Gaussian white noise, it holds that

Ele(s1,52)€(s1+ 11,820+ 12)] = 60(t1)00(t2), Vsi,82,t1,t2 €R.
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The covariance function of X is thus

C(t1,12) := E[X(s1,50)X(s1+ 11,82+ 1)), Vsi,s2,t1,10 €R

= / / G(Sl,SQ)G(Sl +11,82 +l‘2)dS1dS2, Vti, 1t € R. (C.7)

As presented in (32), when the operator L takes the form of

L 0 9 & + i + i + 9 + 0 + (C.8)
—,— | =ci—=+cr—+c C4— + C5— + Cg, )
ot; 0t 161‘% 281‘% 3(%161‘2 4(92‘1 531‘2 6

the Laplace transforms of the Green’s function and the covariance function derived from (C.4)

satisfy
1
Ls(p,q) = m, (C.9)
1
Lc(p,q) = (C.10)

L(p,q)L(-p,—q)

As a special case of (C.8), the elliptic form of the operator L is discussed in (74), where the corre-
sponding SPDE is

X(t1,1) = €(ty,12). (C.11

(62 02 e

_ + —_
2 2
o a1

Denote by K, the modified Bessel functions of the second kind. The Green’s function for (C.11) is
thus

1 1
Gt 1) = L7 L (y 2 +tg) .

p*+q*-y> 2z
The spectral density function of X as the Fourier transform of the covariance function C is derived

as

fX(éj’ 77) = (271_)2LC(Z.'§:’ ”7)
B 1
(2m)2 (=¢2 = 2 = y?)?
1
* (&2 + 2 +72)2'
(24) considered the SPDE
(V2= B X(t1,12) = €(t1, 1), (C.12)
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where V2 = 82/(%% + (')2/81?2, € is a white noise field, 8 € R, v > 0, and

=g = 0 Y ). c13)
=0 \J
The Green’s function of (VZ — %)Y satisfies
(-1)” Z (;)(—Vz)jﬁz(v_j)G(tl, 12) = 60(1)00(12). (C.14)
Jj=0

Taking Laplace transform on both sides of equation (C.14) yields
v N v i v—Jj
-1 ) (j)<—p2 -V B Lo(p.g) = 1.
Jj=0

Thus,

-1
Ls(p.q) = (Z (;) (P*+4*) (=B )

j=0
1
(P2 +q>-p2)”"

The spectral density function of X is

-2
_ 1 SO (i 2} g20-i)
feEm = o ((—1) ]23(]) (~G&)? - 2] g ,)
1
(424577

which is also presented in (75).

oC

89



	Introduction
	Estimation of Smoothness Parameters
	Introduction
	Estimating the Cross Smoothness Parameter
	Irregular Sampling

	Anisotropic Ornstein-Uhlenbeck Field
	Introduction
	Product Estimation
	Separable Estimation
	Simulation
	Discussion

	Vecchia Approximation
	Introduction
	Maximum Likelihood Estimator for sigma2
	Simulation

	Bibliography
	Quadratic Variations from Irregular Sampling
	d=1
	d>1
	Randomized Sampling Design
	Estimating Smoothness Parameters

	High excursion probability
	Stochastic partial differential equation

