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ABSTRACT

Gaussian random fields are widely studied in various subject areas. This dissertation focuses

on estimating covariance parameters of stationary Gaussian random fields based on both regularly

and irregularly spaced sampling points, as well as investigating the infill asymptotic properties of

the estimators.

We first consider a bivariate Gaussian random process and propose an increment-based estima-

tor for the smoothness parameter in the cross-covariance function, for which the strong consistency

and asymptotic normality hold under the infill asymptotic framework. We further study the joint

asymptotic distribution of estimators for smoothness parameters in the cross-covariance and au-

tocovariance functions. Subsequently, we estimate the scale parameter and range parameters of a

univariate anisotropic Ornstein-Uhlenbeck field based on quadratic forms of vectors of observa-

tions. The estimators we propose are computationally more efficient than the maximum likelihood

estimators but have similar infill asymptotic performances with MLEs. Another computational

complexity reduction method we use is the Vecchia approximation. We estimate the scale param-

eter in the Matérn covariance function using the maximizer of the likelihood approximated by the

standard Vecchia approach. We study the bias resulting from a misspecified range parameter and

the conditioning variables of the Vecchia approximation. The theoretical results in this work are

illustrated by simulations.
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CHAPTER 1

INTRODUCTION

Gaussian random fields (GRFs) are essential tools in spatial statistics, physics, finance, image

processing, and other various areas. A random field, as a generalization of a stochastic process, is

a collection of random variables indexed by elements in a topological space, which could be taken

as R𝑑 (𝑑 ≥ 1). This work focuses on estimating covariance parameters of stationary GRFs and

investigating infill asymptotic properties of the estimators.

The covariance function of a univariate stationary isotropic GRF {𝑋 (t), t ∈ R𝑑} considered by

Anderes and Stein (2008) and Loh (2015) is written as

Cov(𝑋 (s), 𝑋 (t + s)) =
⌊𝜈⌋∑
𝑘=0

𝛽𝑘 | |t| |2𝑘 + 𝛽∗𝜈𝐺𝜈 ( | |t| |) +𝑂 (| |t| |2𝜈+𝜏) as | |t| | → 0, ∀s, t ∈ R𝑑 , (1.1)

where | | · | | denotes the Euclidean distance, 𝛽0 > 0, 𝛽∗𝜈 ≠ 0, and 𝜏 > 0 are constants, ⌊𝜈⌋ =

max{𝜈0 ∈ Z : 𝜈0 < 𝜈}, and 𝐺𝜈 : [0,∞) ↦→ R is defined by

𝐺𝜈 (𝑥) =


𝑥2𝜈 + 𝑥2𝜈 (log 𝑥 − 1)1Z(𝜈), 𝑥 > 0,

0, 𝑥 = 0.

This model includes the Matérn and exponential classes of covariance functions, which are widely

used in spatial interpolation (Stein, 1999; Gramacy, 2020).

The isotropic exponential class covariance function is defined as

𝜎2 exp
(
−𝜃 | |𝑠 | |2𝜈

)
, s ∈ R𝑑 , (1.2)

where 𝜎2 > 0, 𝜃 > 0, 0 < 𝜈 ≤ 1. The case when 0 < 𝜈 < 1 is contained in model (1.1) with

𝛽0 = 𝜎2. When 𝜈 = 1/2, the function (1.2) is called the Ornstein-Uhlenbeck covariance function,

which is also a special case of the Matérn class of covariance functions. The Matérn covariance

model

(𝜃 | |t| |)𝜈𝐾𝜈 (𝜃 | |t| |), t ∈ R𝑑 , (1.3)

where 𝐾𝜈 is the modified Bessel function of the second kind with order 𝜈, was proposed by von

Kármán (1948) with 𝜈 = 1/3 and 𝑑 = 3. Some properties of theMatérnmodel were demonstrated in
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Matérn (1986), Kent (1989), and Stein (1999). The stochastic partial differential equation (SPDE)

that generates a Gaussian process onR𝑑 with theMatérn covariance function is presented inWhittle

(1954) and Whittle (1963) as (
∇2 − 𝜃2

) 𝑝
𝜉 (x) = 𝜖 (x), x ∈ R𝑑 , (1.4)

where ∇2 is the Laplace operator, 𝜃 > 0 and 𝑝 > 𝑑/4 are constants, 𝜖 is the Gaussian white noise

with unit variance. The covariance function of 𝜉 as a solution to (1.4) is

𝐸 (𝜉 (s)𝜉 (t + s)) =
(| |t| |/𝜃)2𝑝−𝑑/2𝐾2𝑝−𝑑/2(𝜃 | |t| |)

22𝑝−1Γ(2𝑝)
, t, s ∈ R𝑑 . (1.5)

A more general class of stationary GRFs on R2 derived from second-order SPDEs was discussed by

Heine (1955). Later, Vecchia (1985) introduced the derivation of covariance functions from spectral

densities of stationary GRFs on R2, and showed the corresponding SPDEs. One generalization of

model (1.3) is the spatio-temporal covariance function (Cressie and Huang, 1999; Gneiting, 2002;

De Iaco et al., 2002; Ma, 2005, 2008). Jones and Zhang (1997) considered the spatio-temporal

random field defined by the SPDE((
𝑑∑
𝑖=1

𝜕2

𝜕𝑠2𝑖

) 𝑝
− 𝑐 𝜕

𝜕𝑡

)
𝑍 (s; 𝑡) = 𝜖 (s; 𝑡), s = (𝑠1, 𝑠2, . . . , 𝑠𝑑)′ ∈ R𝑑 , 𝑡 ∈ R,

where 𝑝 > 𝑑/2 and 𝑐 > 0 are constants, 𝜖 (𝑠; 𝑡) is the Gaussian white noise.

For the multivariate GRF {𝑋 (t), t ∈ R𝑑}, where 𝑋 ∈ R𝑝 and 𝑝 ≥ 1, Gneiting et al. (2010)

introduced a multivariate Matérn model, where the marginal and cross-covariance functions of a

multivariate spatial random field are all of theMatérn type. Hu et al. (2013) introduced an approach

to construct multivariate Gaussian random fields (GRFs) using systems of SPDEs. Based on sys-

tems of SPDEs with additive type G noise whose marginal covariance functions are of Matérn

type, Bolin and Wallin (2020) formulated a new class of multivariate non-Gaussian models. SPDE

models for GRFs are also researched by Hu and Steinsland (2016), Leonenko et al. (2011), Car-

rizo Vergara (2018), and Lindgren et al. (2011, 2022).

The Matérn and exponential classes of covariance functions both have mainly three types of

parameters: the scale parameter 𝜎2, which equals the variance of 𝑋 (t) at any t ∈ R𝑑; the range
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parameter 𝜃, which measures how fast the correlation decays with the distance; and the smoothness

parameter 𝜈, which controls the smoothness such as mean square differentiability of the random

field. More specifically, 𝑋 is 𝑛 times mean square differentiable if and only if 𝑛 < 𝜈 (Stein, 1999;

Anderes and Stein, 2008).

The increasing-domain asymptotics and infill (fixed-domain) asymptotics are two frameworks

under which the covariance parameter estimations for GRFs have been studied (Cressie, 1993;

Stein, 1999). Under the increasing-domain asymptotic framework, the minimum distance between

sampling locations is bounded away from zero, and the sampling region grows as the sample size 𝑁

increases. Under infill asymptotics, the sampling region is fixed and bounded, and the mesh of the

sampling points decreases as the sample size 𝑁 tends to infinity. Besides, there is another asymp-

totic framework called hybrid asymptotics or mixed domain asymptotics, under which the sampling

locations increasingly densely fill in any given subregion of the unbounded sampling region (Stein,

1999; Lahiri, 2003; Lahiri and Mukherjee, 2004; Chang et al., 2017).

This work focuses on the infill asymptotic framework, which plays an important role in spa-

tial sampling design and kriging (Stein, 1999; Zhu and Zhang, 2006). Assuming the smoothness

parameter 𝜈 is known, Zhang (2004), Du et al. (2009), Wang and Loh (2011), and Kaufman and

Shaby (2013) provided infill asymptotic results for the MLE and tapered MLE of the microergodic

parameter of the GRF with the Matérn covariance function; while Bevilacqua et al. (2019) studied

infill asymptotics for MLE of the microergodic parameter in the generalized Wendland covariance

function, which exhibits the same behavior as of the Matérn function at the origin according to

Gneiting (2002). Using quadratic variations defined based on irregularly spaced sampling designs

(more details described in Appendices A.2-A.3), Loh et al. (2021) also estimated the microergodic

parameter of the Matérn covariance function under the infill asymptotic framework.

The estimation of the smoothness parameter has also been widely studied. Regarding the fractal

dimension, which is a measure of the smoothness of sample paths of a stochastic process, existing

approaches of estimation include the box-counting method (Hall and Wood, 1993), variogram es-

timator (Constantine and Hall, 1994), periodogram-based estimator (Chan et al., 1995), variation
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method (Dubuc et al., 1989), etc. The infill asymptotic behavior of increment-based estimators for

the smoothness parameter of a stationary GRF was studied by Kent and Wood (1997), Chan and

Wood (2000), Loh (2015), and Loh et al. (2021). For time series or spatial data, Gneiting et al.

(2012) discussed various types of estimators of its fractal dimension under the infill asymptotic

framework, considering both stationary and nonstationary univariate GRF models. Zhou and Xiao

(2018) studied the joint infill asymptotic properties of increment-based estimators for smoothness

parameters in the autocovariance functions of two coordinates of {𝑋 (𝑡) = (𝑋1(𝑡), 𝑋2(𝑡))𝑇 , 𝑡 ∈ R},

which extended the work of Kent and Wood (1997) to the bivariate case.

The subsequential chapters are organized as follows. In Chapter 2, we consider the bivariate

model {𝑋 (𝑡) = (𝑋1(𝑡), 𝑋2(𝑡))𝑇 , 𝑡 ∈ R} studied by Zhou and Xiao (2018) and propose an increment-

based estimator for the smoothness parameter in the cross-covariance function of 𝑋 (𝑡), based on

both regularly and irregularly spaced sampling points. The strong consistency and asymptotic nor-

mality of the estimator are demonstrated under the infill asymptotic framework. In Chapter 3, we

estimate the scale parameter and range parameters of a univariate anisotropic Ornstein-Uhlenbeck

field on R2. The estimators we propose have similar asymptotic behaviors with MLEs, but with less

computational cost. In Chapter 4, we estimate the scale parameter in the Matérn covariance func-

tion using MLE, whose computational complexity is reduced by the Vecchia approximation. We

study the bias resulting from a misspecified range parameter and the conditioning variables of the

Vecchia approximation. Simulation results are presented in each chapter to illustrate the theoretical

results.
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CHAPTER 2

ESTIMATION OF SMOOTHNESS PARAMETERS

2.1 Introduction

Based on the infill asymptotic behaviors of quadratic variations (Lévy, 1940; Baxter, 1956;

Grenander, 1981), the increment-based methods have been used by several authors to consistently

estimate the smoothness parameter of a univariate stationary Gaussian random field under the infill

asymptotic framework (Istas and Lang, 1997; Kent and Wood, 1997; Chan and Wood, 2000; Loh,

2015; Loh et al., 2021). Consider a Gaussian process 𝑋 observed on 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1,

Istas and Lang (1997) and Kent andWood (1997) independently generalized the quadratic variation

defined as
∑𝑛
𝑗=1(𝑋 (𝑡 𝑗 ) − 𝑋 (𝑡 𝑗−1)2 using vectors of increment. The empirical mean of squared

process defined by Kent and Wood (1997) is equivalent to the empirical quadratic variation studied

by Istas and Lang (1997). An increment of order 𝑝 is vector 𝑎 = (𝑎−𝐽 , 𝑎1−𝐽 , . . . , 𝑎𝐽)𝑇 ∈ R2𝐽+1

(𝐽 > 0) satisfying

𝐽∑
𝑗=−𝐽

𝑗𝑞𝑎 𝑗


= 0, 0 ≤ 𝑞 ≤ 𝑝,

≠ 0, 𝑞 = 𝑝 + 1.

The increment-based estimators could also be used for estimating the fractal dimension of nonsta-

tionary GRFs (Zhu and Stein, 2002; Begyn, 2005; Kubilius and Melichov, 2010).

Denote by 𝑋 = {(𝑋1(𝑡), 𝑋2(𝑡))𝑇 , 𝑡 ∈ R} a bivariate stationary Gaussian process with zero mean

and covariance function

𝐶 (𝑡) =
©«
𝐶11(𝑡) 𝐶12(𝑡)

𝐶21(𝑡) 𝐶22(𝑡)

ª®®¬ . (2.1)

Assume that as |𝑡 | → 0,

𝐶𝑖𝑖 (𝑡) = 𝜎2
𝑖 − 𝑐𝑖𝑖 |𝑡 |𝛼𝑖𝑖 + 𝑜( |𝑡 |𝛼𝑖𝑖 ), (2.2)

𝐶𝑖 𝑗 (𝑡) = 𝜌𝜎1𝜎2(1 − 𝑐12 |𝑡 |𝛼12 + 𝑜(|𝑡 |𝛼12)), (2.3)

where 𝜎𝑖, 𝑐𝑖𝑖, 𝑐𝑖 𝑗 > 0, 𝛼𝑖𝑖 ∈ (0, 2), |𝜌 | ∈ (0, 1), 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗 . Following the framework

of Gneiting et al. (2010), Zhou and Xiao (2018) imposed the following assumptions to make the
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covariance function (2.1) valid:

𝛼12 > (𝛼11 + 𝛼22)/2

or 𝛼12 = (𝛼11 + 𝛼22)/2 and 𝑐2
12𝜌

2𝜎2
1𝜎

2
2 < 𝑐11𝑐22.

2.2 Estimating the Cross Smoothness Parameter

Consider the Gaussian process 𝑋 modeled by (2.1-2.3). When 𝛼12 = (𝛼11 + 𝛼22)/2, the cross

smoothness parameter 𝛼12 could be estimated using estimators for 𝛼11 and 𝛼22. This case can be

treated by using the results in Zhou and Xiao (2018). In the following, we focus on the case when

𝛼12 > (𝛼11 + 𝛼22)/2 and construct an increment-based estimator for 𝛼12.

The regularity conditions below are introduced for the convenience of subsequent analysis.

Consider the condition (𝐴𝑞) in Kent and Wood (1997) for the 𝑞th derivative of covariance function

𝐶𝑖 𝑗 , that is,

𝐶
(𝑞)
𝑖 𝑗 (𝑡) = −𝐴𝑖 𝑗

𝛼𝑖 𝑗 !
𝑞!

|𝑡 |𝛼𝑖 𝑗−𝑞 + 𝑜( |𝑡 |𝛼𝑖 𝑗−𝑞) (2.4)

as |𝑡 | → 0, where 𝑞 ≥ 1, 𝑖, 𝑗 ∈ {1, 2}, 𝐴𝑖𝑖 = 𝑐𝑖𝑖, 𝐴12 = 𝐴21 = 𝜌𝜎1𝜎2𝑐12, and 𝛼𝑖 𝑗 !/𝑞! = 𝛼𝑖 𝑗 (𝛼𝑖 𝑗 −

1) . . . (𝛼𝑖 𝑗 − 𝑞 + 1).

Under the infill asymptotics framework, Section 2.2.1 discusses the covariation of 𝑋 , and Sec-

tion 2.2.2 further studies asymptotic properties of the increment-based estimator for 𝛼12. Some

simulation results are presented in Section 2.2.3.

2.2.1 Covariation

Let 𝑎 = (𝑎−𝐽 , 𝑎1−𝐽 , . . . , 𝑎𝐽)𝑇 be an increment of order 𝑝. Denote by 𝑋𝑢𝑛,𝑖 ∈ R𝑛(2𝐽+1) the vector of

observations of component 𝑋𝑖, where 𝑖 = 1, 2, 𝑢 = 1, 2, . . . , 𝑚 and 𝑛 ∈ Z+. For 𝑗 = 1, 2, . . . , 2𝐽 + 1

and 𝑘 = 1, 2, . . . , 𝑛, let

(𝑋𝑢𝑛,𝑖) 𝑗+(𝑘−1)(2𝐽+1) = 𝑋𝑖

(
𝑘 + 𝑢( 𝑗 − 𝐽 − 1)

𝑛

)
.

In other words, for 𝑘 = 1, 2, . . . , 𝑛(2𝐽 + 1),

(𝑋𝑢𝑛,𝑖)𝑘 = 𝑋𝑖
(
𝑘𝐽 + 1 + 𝑢(𝑘 − 𝑘𝐽 (2𝐽 + 1) − 𝐽 − 1)

𝑛

)
,
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where 𝑘𝐽 = max{ 𝑗 ∈ Z : 𝑗 < 𝑘/(2𝐽 + 1)}. Define

𝑌𝑢𝑛 :=
©«
𝑌𝑢𝑛,1

𝑌𝑢𝑛,2

ª®®¬ =
©«
𝑛𝛼11/2(𝐼𝑛 ⊗ 𝑎𝑇 ) 0

0 𝑛𝛼22/2(𝐼𝑛 ⊗ 𝑎𝑇 )

ª®®¬
©«
𝑋𝑢𝑛,1

𝑋𝑢𝑛,2

ª®®¬ ,
where ⊗ denotes the Kronecker product. More specifically, for 𝑘 = 1, . . . , 𝑛,

(𝑌𝑢𝑛,𝑖)𝑘 = 𝑛𝛼𝑖𝑖/2
2𝐽+1∑
𝑗=1

𝑎 𝑗−𝐽−1(𝑋𝑢𝑛,𝑖) 𝑗+(𝑘−1)(2𝐽+1) .

Denote by

𝑍𝑢𝑛,12(𝑘) = 𝑛
𝛼12−(𝛼11+𝛼22)/2(𝑌𝑢𝑛,1)𝑘 (𝑌

𝑢
𝑛,2)𝑘 , 𝑘 = 1, . . . , 𝑛

and define the covariation as

�̄�𝑢𝑛,12 =
1
𝑛

𝑛∑
𝑗=1

𝑍𝑢𝑛,12( 𝑗)

=
1
2
𝑛𝛼12−(𝛼11+𝛼22)/2−1(𝑌𝑢𝑛 )𝑇

©«
0 𝐼𝑛

𝐼𝑛 0

ª®®¬𝑌𝑢𝑛 .
(2.5)

We first discuss the infill asymptotic properties of covariations �̄�𝑢𝑛,12, based on which the esti-

mator for 𝛼12 will be constructed (see (2.27) below).

Theorem 1. Assume (2.4) holds for 𝑞 = 2𝑝 + 3 and 𝑖, 𝑗 ∈ {1, 2}, then ∀𝑢 = 1, . . . , 𝑚,

�̄�𝑢𝑛,12
𝑃→ 𝐴𝑢𝛼12

as 𝑛 → ∞ if 𝛼11 + 𝛼22 < 2𝛼12 < 𝛼11 + 𝛼22 + 1 < 4𝑝 + 4 or 4𝑝 + 3 < 𝛼11 + 𝛼22 < 2𝛼12 < 4𝑝 + 4,

where 𝐴 = −𝜌𝜎1𝜎2𝑐12
∑𝐽
𝑘,𝑙=−𝐽 𝑎𝑘𝑎𝑙 |𝑘 − 𝑙 |𝛼12 .
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Proof. Based on (2.2) and (2.3), for any 𝑗 , 𝑘 = 1, . . . , 𝑛 and any 𝑢, 𝑣 = 1, . . . , 𝑚,

𝜎𝑢𝑣𝑛,𝑖𝑟 (𝑘 − 𝑗) := 𝐸 [(𝑌𝑢𝑛,𝑖) 𝑗 (𝑌 𝑣𝑛,𝑟)𝑘 ] = 𝑛(𝛼𝑖𝑖+𝛼𝑟𝑟 )/2
𝐽∑

𝑠,𝑡=−𝐽
𝑎𝑠𝑎𝑡𝐸

[
𝑋𝑖

(
𝑗 + 𝑠𝑢
𝑛

)
𝑋𝑟

(
𝑘 + 𝑡𝑢
𝑛

)]
= 𝑛(𝛼𝑖𝑖+𝛼𝑟𝑟 )/2

∑
𝑠,𝑡

𝑎𝑠𝑎𝑡𝐶𝑖𝑟

(
𝑗 − 𝑘 + 𝑠𝑢 − 𝑡𝑣

𝑛

)
= −𝐴𝑖𝑟𝑛(𝛼𝑖𝑖+𝛼𝑟𝑟 )/2−𝛼𝑖𝑟

∑
𝑠,𝑡

𝑎𝑠𝑎𝑡 | 𝑗 − 𝑘 + 𝑠𝑢 − 𝑡𝑣 |𝛼𝑖𝑟 + 𝑜(𝑛(𝛼𝑖𝑖+𝛼𝑟𝑟 )/2−𝛼𝑖𝑟 )

→


−𝐴𝑖𝑖

∑
𝑠,𝑡 𝑎𝑠𝑎𝑡 | 𝑗 − 𝑘 + 𝑠𝑢 − 𝑡𝑣 |𝛼𝑖𝑖 , 𝑖 = 𝑟

0, 𝑖 ≠ 𝑟

(2.6)

as 𝑛→ ∞, where 𝑖, 𝑟 ∈ {1, 2}. Thus,

𝐸 [𝑍𝑢𝑛,12( 𝑗)] = 𝑛
𝛼12−(𝛼11+𝛼22)/2𝐸 [(𝑌𝑢𝑛,1) 𝑗 (𝑌

𝑢
𝑛,2) 𝑗 ]

= −𝜌𝜎1𝜎2𝑐12
∑
𝑘,𝑙

𝑎𝑘𝑎𝑙 |𝑘 − 𝑙 |𝛼12𝑢𝛼12 + 𝑜(1)

→ 𝐴𝑢𝛼12 as 𝑛→ ∞,

(2.7)

where 𝐴 = 0 if 𝛼12/2 ∈ Z and 𝑝 ≥ 𝛼12/2, due to the fact that
∑
𝑘,𝑙 𝑎𝑘𝑎𝑙 (𝑘 − 𝑙)𝑟 = 0 for 𝑟 ≤ 2𝑝 + 1.

If (2.4) holds for 𝑞 = 2𝑝 + 3, then ∀− 𝑛 < ℎ < 𝑛, there exists ℎ∗ between ℎ and ℎ + 𝑠𝑢 − 𝑡𝑣 such

that ∑
𝑠,𝑡

𝑎𝑠𝑎𝑡𝐶𝑖𝑟

(
ℎ + 𝑠𝑢 − 𝑡𝑣

𝑛

)
=

2(𝑢𝑣)𝑝+1

(2𝑝 + 2)!𝑛2𝑝+2

(
𝐷2

1𝐶
(2𝑝+2)
𝑖𝑟

(
ℎ

𝑛

)
+ 𝑢 + 𝑣
𝑛(2𝑝 + 3)𝐷1𝐷2𝐶

(2𝑝+3)
𝑖𝑟

(
ℎ∗

𝑛

))
, (2.8)

where 𝑖, 𝑟 ∈ {1, 2}, 𝐷1 =
∑
𝑠 𝑎𝑠𝑠

𝑝+1, 𝐷2 =
∑
𝑠 𝑎𝑠𝑠

𝑝+2. As a result, when 𝑗 − 𝑘 = ℎ,

𝐶𝑜𝑣(𝑍𝑢𝑛,12( 𝑗), 𝑍
𝑣
𝑛,12(𝑘)) = 𝐸 [𝑍

𝑢
𝑛,12( 𝑗)𝑍

𝑣
𝑛,12(𝑘)] − 𝐸 [𝑍

𝑢
𝑛,12( 𝑗)]𝐸 [𝑍

𝑣
𝑛,12(𝑘)]

= 𝑛2𝛼12−(𝛼11+𝛼22)
(
𝐸 [(𝑌𝑢𝑛,1) 𝑗 (𝑌

𝑣
𝑛,1)𝑘 ]𝐸 [(𝑌

𝑢
𝑛,2) 𝑗 (𝑌

𝑣
𝑛,2)𝑘 ]

+𝐸 [(𝑌𝑢𝑛,1) 𝑗 (𝑌
𝑣
𝑛,2)𝑘 ]𝐸 [(𝑌

𝑣
𝑛,1)𝑘 (𝑌

𝑢
𝑛,2) 𝑗 ]

)
= 𝑛2𝛼12

(
2(𝑢𝑣)𝑝+1𝐷1

(2𝑝 + 2)!𝑛2𝑝+2

)2

(𝐹𝑢𝑣𝑛,12(ℎ)
2 + 𝐹𝑢𝑣𝑛,11(ℎ)𝐹

𝑢𝑣
𝑛,22(ℎ)),

(2.9)

where for 𝑖, 𝑟 ∈ {1, 2},

𝐹𝑢𝑣𝑛,𝑖𝑟 (ℎ) = 𝐷1𝐶
(2𝑝+2)
𝑖𝑟

(
ℎ

𝑛

)
+ 𝑢 + 𝑣
𝑛(2𝑝 + 3)𝐷2𝐶

(2𝑝+3)
𝑖𝑟

(
ℎ∗

𝑛

)
.

8



As ℎ/𝑛→ 0,

𝐹𝑢𝑣𝑛,12(ℎ)
2 =

(
ℎ

𝑛

)2𝛼12−(4𝑝+4) (
𝐴12

𝛼12!
(2𝑝 + 2)!

)2 (
𝐷1𝐷2

𝑢 + 𝑣
2𝑝 + 3

2(𝛼12 − 2𝑝 − 2) |ℎ|−1

+𝐷2
1 + 𝐷2

2
(𝑢 + 𝑣)2

(2𝑝 + 3)2 (𝛼12 − 2𝑝 − 2)2 |ℎ |−2
)
(1 + 𝑜(1)) ,

𝐹𝑢𝑣𝑛,11(ℎ)𝐹
𝑢𝑣
𝑛,22(ℎ) =

(
ℎ

𝑛

)𝛼11+𝛼22−(4𝑝+4)
𝐴11𝐴22

𝛼11!
(2𝑝 + 2)!

𝛼22!
(2𝑝 + 2)!

(
𝐷1𝐷2

𝑢 + 𝑣
2𝑝 + 3

(𝛼11

+ 𝛼22 − 4𝑝 − 4) |ℎ |−1 + 𝐷2
1 + 𝐷2

2
(𝑢 + 𝑣)2

(2𝑝 + 3)2 (𝛼11 − 2𝑝 − 2) (𝛼22

−2𝑝 − 2) |ℎ|−2
)
(1 + 𝑜(1)) .

It was shown in the proof of Theorem 1 in Kent and Wood (1997) that as 𝑛→ ∞,

𝑛−1∑
ℎ=−𝑛+1

(
1 − |ℎ |

𝑛

)
|ℎ |𝑎 =


𝑂 (1), if 𝑎 < −1;

𝑂 (𝑛𝑎+1), if 𝑎 > −1.

Hence, as 𝑛→ ∞,

𝐶𝑜𝑣(�̄�𝑢𝑛,12, �̄�
𝑣
𝑛,12) =

1
𝑛

𝑛−1∑
ℎ=−𝑛+1

(
1 − |ℎ |

𝑛

)
𝐶𝑜𝑣(𝑍𝑢𝑛,12(0), 𝑍

𝑣
𝑛,12(ℎ))

= 𝑛2𝛼12−(4𝑝+4)−1
(
2(𝑢𝑣)𝑝+1𝐷1
(2𝑝 + 2)!

)2

𝑛−1∑
ℎ=−𝑛+1

(
1 − |ℎ|

𝑛

) (
𝐹𝑢𝑣𝑛,12(ℎ)

2 + 𝐹𝑢𝑣𝑛,11(ℎ)𝐹
𝑢𝑣
𝑛,22(ℎ)

)
=


𝑂 (𝑛2𝛼12−(𝛼11+𝛼22)−1), if 𝛼11 + 𝛼22 < 4𝑝 + 3;

𝑂 (𝑛2𝛼12−(4𝑝+4)), if 𝛼11 + 𝛼22 > 4𝑝 + 3.
(2.10)

It is induced from (2.7) and (2.10) that, when 𝛼11 + 𝛼22 < 2𝛼12 < 𝛼11 + 𝛼22 + 1 < 4𝑝 + 4 or

4𝑝 + 3 < 𝛼11 + 𝛼22 < 2𝛼12 < 4𝑝 + 4, �̄�𝑢𝑛,12
𝑃→ 𝐴𝑢𝛼12 as 𝑛→ ∞.

Remark. Under the conditions of Theorem 1, we have natural consequences as follows.

(i) Take 𝑝 = 0, then for 𝛼11 + 𝛼22 < 3, �̄�𝑢𝑛,12
𝑃→ 𝐴𝑢𝛼12 as 𝑛 → ∞ if 𝛼11 + 𝛼22 < 2𝛼12 <

𝛼11 + 𝛼22 + 1; for 𝛼11 + 𝛼22 > 3, the convergence holds if 𝛼11 + 𝛼22 < 2𝛼12 < 4.
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(ii) Take 𝑝 ≥ 1, then for any 𝛼1, 𝛼2 ∈ (0, 2), �̄�𝑢𝑛,12
𝑃→ 𝐴𝑢𝛼12 as 𝑛 → ∞ if 𝛼11 + 𝛼22 < 2𝛼12 <

𝛼11 + 𝛼22 + 1.

The convergence in probability in Theorem 1 can be strengthened to almost sure convergence

by applying the following lemma and the Borel–Cantelli Lemma.

Lemma 1. Under conditions in Theorem 1, ∀𝑢 = 1, . . . , 𝑚, there exists a constant 𝐶 ∈ (0,∞)

independent of 𝑛 such that for all large enough 𝑛 and ∀0 < 𝜉 < 1,

𝑃

(����� (�̄�𝑢𝑛,12)
2 − 𝐸 (�̄�𝑢𝑛,12)

2

𝐸 (�̄�𝑢𝑛,12)2

����� > 𝜉
)
≤ 𝐶 exp

(
−𝑛min{𝛼11+𝛼22+1,4𝑝+4}/2−𝛼12

𝜉

4 − 𝜉

)
. (2.11)

Proof. For 𝑛 ≥ 1 and 𝑢 = 1, . . . , 𝑚, denote

𝑀𝑢
𝑛 =

1
2
𝑛𝛼12−(𝛼11+𝛼22)/2−1(Σ1/2

𝑌 )𝑇
©«

0 𝐼𝑛

𝐼𝑛 0

ª®®¬Σ
1/2
𝑌 ,

then according to (2.5), �̄�𝑢𝑛,12
d
= 𝑈𝑇𝑀𝑢

𝑛𝑈, where 𝑈 ∼ 𝑁 (0, 𝐼2𝑛). By the Hanson-Wright inequality,

there exists constants 𝐶1, 𝐶2 that do not depend on 𝑛 or 𝑢 such that ∀0 < 𝜉 < 1,

𝑃

(����� �̄�𝑢𝑛,12 − 𝐸�̄�
𝑢
𝑛,12

𝐸�̄�𝑢𝑛,12

����� > 𝜉
)
≤ 2 exp

(
−min

{
𝐶1𝜉 |𝐸�̄�𝑢𝑛,12 |

| |𝑀𝑢
𝑛 | |2

,
𝐶2𝜉

2 |𝐸�̄�𝑢𝑛,12 |
2

| |𝑀𝑢
𝑛 | |2𝐹

})
.

Under the conditions in Theorem 1, as 𝑛→ ∞ there is

| |𝑀𝑢
𝑛 | |2𝐹 = 𝑡𝑟 ((𝑀𝑢

𝑛 )2) = 𝑣𝑎𝑟 (�̄�𝑢𝑛,12)/2 =


𝑂 (𝑛2𝛼12−(𝛼11+𝛼22)−1), if 𝛼11 + 𝛼22 < 4𝑝 + 3;

𝑂 (𝑛2𝛼12−(4𝑝+4)), if 𝛼11 + 𝛼22 > 4𝑝 + 3.
(2.12)

Since 𝐸�̄�𝑢𝑛,12 → 𝐴𝑢𝛼12 as 𝑛 → ∞ and | |𝑀𝑢
𝑛 | |2 ≤ ||𝑀𝑢

𝑛 | |𝐹 , there exists a constant 𝐶0 ∈ (0,∞)

that does not depend on 𝑛 but may depend on 𝑢 such that

𝑃

(����� �̄�𝑢𝑛,12 − 𝐸�̄�
𝑢
𝑛,12

𝐸�̄�𝑢𝑛,12

����� > 𝜉
)
≤ 𝐶0 exp

(
−𝑛min{𝛼11+𝛼22+1,4𝑝+4}/2−𝛼12𝜉

)
. (2.13)

Under the conditions in Theorem 1,

(𝐸�̄�𝑢𝑛,12)
2

𝐸 (�̄�𝑢𝑛,12)2 =
𝐸 (�̄�𝑢𝑛,12)

2 − 𝑣𝑎𝑟 (�̄�𝑢𝑛,12)
𝐸 (�̄�𝑢𝑛,12)2 → 1 as 𝑛→ ∞.
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Thus, ∀0 < 𝜉 < 1, 1 − 𝜉/2 < (𝐸�̄�𝑢𝑛,12)
2/𝐸 (�̄�𝑢𝑛,12)

2 < 1 + 𝜉/2 when 𝑛 is large enough. Together

with (2.13) it implies

𝑃

(����� (�̄�𝑢𝑛,12)
2 − 𝐸 (�̄�𝑢𝑛,12)

2

𝐸 (�̄�𝑢𝑛,12)2

����� > 𝜉
)

≤𝑃 ©«
(𝐸�̄�𝑢𝑛,12)

2

𝐸 (�̄�𝑢𝑛,12)2

������
(
�̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12

)2

− 1

������ +
����� (𝐸�̄�𝑢𝑛,12)

2

𝐸 (�̄�𝑢𝑛,12)2 − 1

����� > 𝜉ª®¬
=𝑃 ©«

������
(
�̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12

)2

− 1

������ > 𝜉 + (𝐸�̄�𝑢𝑛,12)
2/𝐸 (�̄�𝑢𝑛,12)

2 − 1

(𝐸�̄�𝑢𝑛,12)2/𝐸 (�̄�𝑢𝑛,12)2
ª®¬

≤𝑃 ©«
������
(
�̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12

)2

− 1

������ > 𝜉 − 𝜉/2
1 − 𝜉/2

ª®¬ for large 𝑛

=𝑃
©«
������
(
�̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12

)2

− 1

������ > 𝜉

2 − 𝜉
ª®¬

≤𝑃
(����� �̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12
− 1

����� ·
����� �̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12
+ 1

����� > 𝜉

2 − 𝜉 ,
����� �̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12
− 1

����� ≤ 𝜉

2 − 𝜉

)
+ 𝑃

(����� �̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12
− 1

����� > 𝜉

2 − 𝜉

)
≤𝑃

(����� �̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12
− 1

����� > 𝜉/(2 − 𝜉)
2 + 𝜉/(2 − 𝜉)

)
+ 𝑃

(����� �̄�𝑢𝑛,12

𝐸�̄�𝑢𝑛,12
− 1

����� > 𝜉

2 − 𝜉

)
≤𝐶 exp

(
−𝑛min{𝛼11+𝛼22+1,4𝑝+4}/2−𝛼12

𝜉

4 − 𝜉

)
for some constant 𝐶 ∈ (0,∞) that is independent of 𝑛 and 𝜉 but may depend on 𝑢.

The joint asymptotic distribution of the covariations is presented in the following theorem.

Theorem 2. Denote by �̄�𝑛,12 = (�̄�1
𝑛,12, . . . , �̄�

𝑚
𝑛,12)

𝑇 and take 𝑝 ≥ 1. When 𝛼11 + 𝛼22 < 2𝛼12 and

(2.4) holds for 𝑞 = 2𝑝 + 2,

𝑛1/2+(𝛼11+𝛼22)/2−𝛼12 (�̄�𝑛,12 − 𝐸�̄�𝑛,12)
𝑑→ 𝑁 (0,Φ) (2.14)

as 𝑛→ ∞, where the matrix Φ ∈ R𝑚×𝑚 has entries

Φ𝑢,𝑣 = 𝐴11𝐴22

∞∑
ℎ=−∞

𝐽∑
𝑠,𝑡, 𝑗 ,𝑙=−𝐽

𝑎𝑠𝑎𝑡𝑎 𝑗𝑎𝑙 |ℎ + 𝑠𝑢 − 𝑡𝑣 |𝛼11 |ℎ + 𝑗𝑢 − 𝑙𝑣 |𝛼22 , 1 ≤ 𝑢, 𝑣 ≤ 𝑚. (2.15)
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Proof. By the Cramér-Wold theorem, to prove the asymptotic normality of �̄�𝑛,12, it suffices to show

that ∀𝜸 ∈ R𝑚,

𝑛1/2+(𝛼11+𝛼22)/2−𝛼12𝜸𝑇 (�̄�𝑛,12 − 𝐸�̄�𝑛,12)
𝑑→ 𝑁 (0, 𝜸𝑇Φ𝜸) (2.16)

as 𝑛→ ∞.

Denote by

𝑊𝑛 = (𝑌1
𝑛,1(1), . . . , 𝑌𝑚𝑛,1(1), 𝑌

1
𝑛,1(2), . . . , 𝑌𝑚𝑛,1(𝑛), 𝑌

1
𝑛,2(1), . . . , 𝑌𝑚𝑛,2(𝑛))

𝑇 ∈ R2𝑚𝑛, (2.17)

then

𝑛1/2+(𝛼11+𝛼22)/2−𝛼12𝜸𝑇 �̄�𝑛,12 =
1
2
𝑛−1/2𝑊𝑇

𝑛

©«
0 𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸)

𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸) 0

ª®®¬𝑊𝑛,

where 𝑑𝑖𝑎𝑔(𝑥) maps a vector 𝑥 to a diagonal matrix whose diagonal is 𝑥, 1𝑛 ∈ R𝑛 is a vector with

all its entries equals 1. Let 𝑉𝑛 = 𝐶𝑜𝑣(𝑊𝑛) and

𝐺𝑛 =
1
2
𝑛−1/2(𝑉1/2

𝑛 )𝑇
©«

0 𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸)

𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸) 0

ª®®¬𝑉
1/2
𝑛 , (2.18)

then 𝑛1/2+(𝛼11+𝛼22)/2−𝛼12𝜸𝑇 �̄�𝑛,12
𝑑
= 𝜖𝑇𝑛𝐺𝑛𝜖𝑛

𝑑
= 𝜖𝑇𝑛 𝑑𝑖𝑎𝑔(eig(𝐺𝑛))𝜖𝑛 for 𝜖𝑛 ∼ 𝑁 (0, 𝐼2𝑚𝑛).

It follows from the proof of Theorem 2 in Zhou and Xiao (2018) that (2.16) holds if Tr(𝐺4
𝑛) → 0

and 2Tr(𝐺2
𝑛) → 𝜸𝑇Φ𝜸 as 𝑛→ ∞.

Let

𝐻𝑛 = 𝑉𝑛
©«

0 𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸)

𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸) 0

ª®®¬ ,
then for 𝑖1, 𝑖2 ∈ {1, 2}, 𝑗1, 𝑗2 ∈ {1, . . . , 𝑛} and 𝑘1, 𝑘2 ∈ {1, . . . , 𝑚},

𝐻𝑛 ((𝑖1 − 1)𝑚𝑛 + ( 𝑗1 − 1)𝑚 + 𝑘1, (𝑖2 − 1)𝑚𝑛 + ( 𝑗2 − 1)𝑚 + 𝑘2) = 𝛾𝑘2𝜎
𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) ( 𝑗2 − 𝑗1).
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Thus,

Tr(𝐻4
𝑛) =

𝑚∑
𝑘1,...,𝑘4=1

𝛾𝑘1𝛾𝑘2𝛾𝑘3𝛾𝑘4

2∑
𝑖1,...,𝑖4=1

𝑛∑
𝑗1,..., 𝑗4=1

(
𝜎𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) ( 𝑗2 − 𝑗1)

𝜎𝑘2𝑘3
𝑛,𝑖2 (3−𝑖3) ( 𝑗3 − 𝑗2)𝜎𝑘3𝑘4

𝑛,𝑖3 (3−𝑖4) ( 𝑗4 − 𝑗3)𝜎𝑘4𝑘1
𝑛,𝑖4 (3−𝑖1) ( 𝑗1 − 𝑗4)

)
≤

𝑚∑
𝑘1,...,𝑘4=1

|𝛾𝑘1𝛾𝑘2𝛾𝑘3𝛾𝑘4 |
2∑

𝑖1,...,𝑖4=1
𝑛

∑
|ℎ1 |,|ℎ2 |,|ℎ3 |<𝑛

���𝜎𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) (ℎ1)

𝜎𝑘2𝑘3
𝑛,𝑖2 (3−𝑖3) (ℎ2)𝜎𝑘3𝑘4

𝑛,𝑖3 (3−𝑖4) (ℎ3)𝜎𝑘4𝑘1
𝑛,𝑖4 (3−𝑖1) (ℎ1 + ℎ2 + ℎ3)

��� ,
Tr(𝐻2

𝑛) = 2
𝑚∑

𝑘1,𝑘2=1
𝛾𝑘1𝛾𝑘2

𝑛∑
𝑗1, 𝑗2=1

((
𝜎𝑘1𝑘2
𝑛,12 ( 𝑗2 − 𝑗1)

)2
+ 𝜎𝑘1𝑘2

𝑛,11 ( 𝑗2 − 𝑗1)𝜎𝑘1𝑘2
𝑛,22 ( 𝑗2 − 𝑗1)

)
= 2𝑛

𝑚∑
𝑘1,𝑘2=1

𝛾𝑘1𝛾𝑘2

∑
|ℎ |<𝑛

(
1 − |ℎ|

𝑛

) ((
𝜎𝑘1𝑘2
𝑛,12 (ℎ)

)2
+ 𝜎𝑘1𝑘2

𝑛,11 (ℎ)𝜎𝑘1𝑘2
𝑛,22 (ℎ)

)
.

For any fixed ℎ, the convergence of 𝜎𝑢𝑣𝑛,𝑖𝑟 (ℎ) as 𝑛 → ∞ is presented in (2.6). By Theorem 1 in

Kent and Wood (1997) and Lemma 2 in Zhou and Xiao (2018), when 𝛼11 + 𝛼22 < 2𝛼12 and (2.4)

holds for 𝑞 = 2𝑝 + 2,

𝜎𝑢𝑣𝑛,𝑖𝑖 (ℎ) = 𝑂 ( |ℎ|𝛼𝑖𝑖−2𝑝−2) and 𝜎𝑢𝑣𝑛,12(ℎ) = 𝑂 (|ℎ | (𝛼11+𝛼22)/2−2𝑝−2) (2.19)

uniformly for 𝑛 > |ℎ |. If 𝑝 ≥ 1, then 𝛼𝑖𝑖 − 2𝑝 − 2 < −2 and (𝛼11 + 𝛼22)/2 − 2𝑝 − 2 < −2 hold for

any 𝛼11, 𝛼22 ∈ (0, 2). Hence there exists a constant 𝑐0 > 0 such that

𝑛−1∑
ℎ1,ℎ2,ℎ3=1−𝑛

���𝜎𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) (ℎ1)𝜎𝑘2𝑘3

𝑛,𝑖2 (3−𝑖3) (ℎ2)𝜎𝑘3𝑘4
𝑛,𝑖3 (3−𝑖4) (ℎ3)𝜎𝑘4𝑘1

𝑛,𝑖4 (3−𝑖1) (ℎ1 + ℎ2 + ℎ3)
���

≤ 𝑐0

𝑛−1∑
ℎ1,ℎ2,ℎ3=1−𝑛

(
|ℎ1 |

𝛼𝑖1𝑖1+𝛼(3−𝑖2 ) (3−𝑖2 )
2 −2𝑝−2 |ℎ2 |

𝛼𝑖2𝑖2+𝛼(3−𝑖3 ) (3−𝑖3 )
2 −2𝑝−2

|ℎ3 |
𝛼𝑖3𝑖3+𝛼(3−𝑖4 ) (3−𝑖4 )

2 −2𝑝−2
)

= 𝑂 (1)

as 𝑛→ ∞, ∀𝑖1, 𝑖2, 𝑖3, 𝑖4 ∈ {1, 2}. Consequently, Tr(𝐻4
𝑛) = 𝑂 (𝑛) and

Tr(𝐺4
𝑛) =

(
1
2
𝑛−1/2

)4
Tr(𝐻4

𝑛) = 𝑂 (𝑛−1) → 0
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as 𝑛→ ∞.

For 𝑢, 𝑣 ∈ {1, . . . , 𝑚} and ℎ ∈ Z, define

𝑑𝑢𝑣𝑛 (ℎ) := 1|ℎ|<𝑛

(
1 − |ℎ |

𝑛

) ((
𝜎𝑢𝑣𝑛,12(ℎ)

)2
+ 𝜎𝑢𝑣𝑛,11(ℎ)𝜎

𝑢𝑣
𝑛,22(ℎ)

)
.

Then for any fixed ℎ,

𝑑𝑢𝑣𝑛 (ℎ) → 𝐴11𝐴22

𝐽∑
𝑠,𝑡, 𝑗 ,𝑙=−𝐽

𝑎𝑠𝑎𝑡𝑎 𝑗𝑎𝑙 |ℎ + 𝑠𝑢 − 𝑡𝑣 |𝛼11 |ℎ + 𝑗𝑢 − 𝑙𝑣 |𝛼22

as 𝑛→ ∞. Moreover,

𝑑𝑢𝑣𝑛 (ℎ) ≤
(
𝜎𝑢𝑣𝑛,12(ℎ)

)2
+ 𝜎𝑢𝑣𝑛,11(ℎ)𝜎

𝑢𝑣
𝑛,22(ℎ) = 𝑂 ( |ℎ |𝛼11+𝛼22−4𝑝−4)

uniformly for 𝑛 > |ℎ |. If 𝑝 ≥ 1, then 𝛼11+𝛼22−4𝑝−4 < −4 and
∑∞
ℎ=−∞ |ℎ |𝛼11+𝛼22−4𝑝−4 < ∞. Thus

for any 𝑢, 𝑣 ∈ {1, . . . , 𝑚}, {𝑑𝑢𝑣𝑛 (ℎ), ℎ ∈ Z} is dominated by a summable sequence. It therefore

follows from the dominated convergence theorem that

Tr(𝐺2
𝑛) =

1
4𝑛

Tr(𝐻2
𝑛)

=
1
2

𝑚∑
𝑘1,𝑘2=1

𝛾𝑘1𝛾𝑘2

∞∑
ℎ=−∞

𝑑𝑘1𝑘2
𝑛 (ℎ)

→ 𝐴11𝐴22
2

𝑚∑
𝑘1,𝑘2=1

𝛾𝑘1𝛾𝑘2

∞∑
ℎ=−∞

𝐽∑
𝑠,𝑡, 𝑗 ,𝑙=−𝐽

𝑎𝑠𝑎𝑡𝑎 𝑗𝑎𝑙 |ℎ + 𝑠𝑘1 − 𝑡𝑘2 |𝛼11 |ℎ + 𝑗 𝑘1 − 𝑙𝑘2 |𝛼22

:=
1
2
𝜸𝑇Φ𝜸 as 𝑛→ ∞,

where Φ ∈ R𝑚×𝑚 is a constant matrix with entries defined in (2.15).

This proves Theorem 2.

Take 𝑝 = 1, 𝐽 = 1, and 𝑎 = (1,−2, 1)𝑇 , we further discuss the joint asymptotic distribution

of covariations defined in this chapter and the quadratic variations �̄�𝑛,1, �̄�𝑛,2 studied by Zhou and

Xiao (2018), where �̄�𝑛,𝑖 = (�̄�1
𝑛,𝑖, . . . , �̄�

𝑚
𝑛,𝑖)𝑇 and

�̄�𝑢𝑛,𝑖 =
1
𝑛
(𝑌𝑢𝑛,𝑖)𝑇𝑌𝑢𝑛,𝑖, 𝑢 = 1, . . . , 𝑚, 𝑖 = 1, 2. (2.20)
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Theorem 3. When 𝛼11 + 𝛼22 < 2𝛼12 and (2.4) holds for 𝑞 = 4,

𝑛𝐷𝛼

©«
�̄�𝑛,1 − 𝐸�̄�𝑛,1

�̄�𝑛,2 − 𝐸�̄�𝑛,1

�̄�𝑛,12 − 𝐸�̄�𝑛,12

ª®®®®®¬
𝑑→ 𝑁

©«
0,

©«
Φ1

Φ2

Φ

ª®®®®®¬
ª®®®®®¬

(2.21)

as 𝑛→ ∞, where

𝐷𝛼 =

©«
1
2

1
2

1+𝛼11+𝛼22
2 − 𝛼12

ª®®®®®¬
,

the matrix Φ ∈ R𝑚×𝑚 is as defined in Theorem 2, and matrices Φ𝑖 ∈ R𝑚×𝑚 have entries as

(Φ𝑖)𝑢,𝑣 = 2𝐴2
𝑖𝑖

∞∑
ℎ=−∞

( 1∑
𝑠,𝑡=−1

𝑎𝑠𝑎𝑡 |ℎ + 𝑠𝑢 − 𝑡𝑣 |𝛼𝑖𝑖
)2

, 𝑖 = 1, 2. (2.22)

Proof. By the Cramér-Wold theorem, it suffices to prove that ∀𝜸1 = (𝛾1,1, . . . , 𝛾1,𝑚)𝑇 , 𝜸2 =

(𝛾2,1, . . . , 𝛾2,𝑚)𝑇 , and 𝜸12 = (𝛾12,1, . . . , 𝛾12,𝑚)𝑇 ∈ R𝑚,

√
𝑛
(
𝜸𝑇1 (�̄�𝑛,1 − 𝐸�̄�𝑛,1) + 𝜸𝑇2 (�̄�𝑛,2 − 𝐸�̄�𝑛,2) + 𝑛

𝛼11+𝛼22
2 −𝛼12𝜸𝑇12(�̄�𝑛,12 − 𝐸�̄�𝑛,12)

)
𝑑→𝑁 (0, 𝜸𝑇1Φ1𝜸1 + 𝜸𝑇2Φ2𝜸2 + 𝜸𝑇12Φ𝜸12) (2.23)

as 𝑛→ ∞.

Recall the notation𝑊𝑛 defined in (2.17) and 𝑉𝑛 = Cov(𝑊𝑛), let

Λ𝑛 =
2
√
𝑛
(𝑉1/2
𝑛 )𝑇Γ𝑛𝑉1/2

𝑛 , (2.24)

where

Γ𝑛 =
©«
𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸1) 0

0 𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸2)

ª®®¬ . (2.25)

It follows from definitions of �̄�𝑛,1, �̄�𝑛,2, and �̄�𝑛,12 that

𝑛𝐷𝛼

©«
𝜸1

𝜸2

𝜸12

ª®®®®®¬

𝑇 ©«
�̄�𝑛,1

�̄�𝑛,2

�̄�𝑛,12

ª®®®®®¬
=

1
√
𝑛
𝑊𝑇
𝑛

©«
𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸1) 1

2𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸12)
1
2𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸12) 𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸2)

ª®®¬𝑊𝑛

𝑑
= 𝜖𝑇𝑛

(
𝐺𝑛 +

1
2
Λ𝑛

)
𝜖𝑛,
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where 𝜖𝑛 ∼ 𝑁 (0, 𝐼3𝑚𝑛) and 𝐺𝑛 is defined in (2.18). Therefore, it remains to prove

Tr
(
(𝐺𝑛 +

1
2
Λ𝑛)2

)
→ 1

2

(
𝜸𝑇1Φ1𝜸1 + 𝜸𝑇2Φ2𝜸2 + 𝜸𝑇12Φ𝜸12

)
and

Tr
(
(𝐺𝑛 +

1
2
Λ𝑛)4

)
→ 0

as 𝑛→ ∞.

It has been proved by Zhou and Xiao (2018) that as 𝑛→ ∞,

Tr(Λ2
𝑛) → 2

(
𝜸𝑇1Φ1𝜸1 + 𝜸𝑇2Φ2𝜸2

)
and Tr(Λ4

𝑛) → 0

when 𝛼11 + 𝛼22 < 2𝛼12 and (2.4) holds for 𝑞 = 4. Since conditions in Theorem 2 are satisfied, we

also have

Tr(𝐺2
𝑛) →

1
2
𝜸𝑇12Φ𝜸12 and Tr(𝐺4

𝑛) → 0

as 𝑛→ ∞. Moreover,

Tr(𝐺𝑛Λ𝑛) =
1
𝑛
Tr

©«𝑉𝑛
©«

0 𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸12)

𝑑𝑖𝑎𝑔(1𝑛 ⊗ 𝜸12) 0

ª®®¬𝑉𝑛Γ𝑛
ª®®¬

=
1
𝑛

2𝑚𝑛∑
ℓ1,ℓ2=1

(𝐻𝑛)ℓ1,ℓ2 (𝑉𝑛Γ𝑛)ℓ2,ℓ1

=
1
𝑛

𝑚∑
𝑘1,𝑘2=1

2∑
𝑖1,𝑖2=1

𝛾𝑖1,𝑘1𝛾12,𝑘2

𝑛∑
𝑗1, 𝑗2=1

𝜎𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) ( 𝑗2 − 𝑗1)𝜎𝑘2𝑘1

𝑛,𝑖2𝑖1
( 𝑗2 − 𝑗1)

=
𝑚∑

𝑘1,𝑘2=1

2∑
𝑖1,𝑖2=1

𝛾𝑖1,𝑘1𝛾12,𝑘2

∑
|ℎ |<𝑛

(
1 − |ℎ |

𝑛

)
𝜎𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) (ℎ)𝜎

𝑘2𝑘1
𝑛,𝑖2𝑖1

(ℎ)

→ 0 as 𝑛→ ∞ (2.26)

by the dominated convergence theorem, since 𝜎𝑢𝑣𝑛,12(ℎ) → 0 as 𝑛→ ∞ for any 𝑢, 𝑣 = 1, . . . , 𝑚 and

any fixed ℎ. Due to the fact that

Card{( 𝑗1, . . . , 𝑗4) : 1 ≤ 𝑗1, . . . , 𝑗4 ≤ 𝑛, 𝑗𝑖+1 − 𝑗𝑖 = ℎ𝑖 (𝑖 = 1, 2, 3)} ≤ 𝑛,
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we have

Tr
(
(𝐺𝑛Λ𝑛)2

)
=

1
𝑛2Tr

(
(𝐻𝑛𝑉𝑛Γ𝑛)2

)
=

1
𝑛2

2𝑚𝑛∑
ℓ1,...,ℓ4=1

(𝐻𝑛)ℓ1,ℓ2 (𝑉𝑛Γ𝑛)ℓ2,ℓ3 (𝐻𝑛)ℓ3,ℓ4 (𝑉𝑛Γ𝑛)ℓ4,ℓ1

=
1
𝑛2

𝑚∑
𝑘1,...,𝑘4=1

( 2∑
𝑖1,...,𝑖4=1

𝛾𝑖1,𝑘1𝛾12,𝑘2𝛾𝑖3,𝑘3𝛾12,𝑘4

𝑛∑
𝑗1,..., 𝑗4=1

𝜎𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) ( 𝑗2 − 𝑗1)𝜎𝑘2𝑘3

𝑛,𝑖2𝑖3
( 𝑗2 − 𝑗3)𝜎𝑘3𝑘4

𝑛,𝑖3 (3−𝑖4) ( 𝑗4 − 𝑗3)𝜎𝑘4𝑘1
𝑛,𝑖4𝑖1

( 𝑗4 − 𝑗1)ª®¬
≤ 1
𝑛

𝑚∑
𝑘1,...,𝑘4=1

( 2∑
𝑖1,...,𝑖4=1

𝛾𝑖1,𝑘1𝛾12,𝑘2𝛾𝑖3,𝑘3𝛾12,𝑘4

𝑛−1∑
ℎ1,ℎ2,ℎ3=1−𝑛

𝜎𝑘1𝑘2
𝑛,𝑖1 (3−𝑖2) (ℎ1)𝜎𝑘2𝑘3

𝑛,𝑖2𝑖3
(ℎ2)𝜎𝑘3𝑘4

𝑛,𝑖3 (3−𝑖4) (ℎ3)𝜎𝑘4𝑘1
𝑛,𝑖4𝑖1

(ℎ1 + ℎ2 + ℎ3)
)
.

Follow similar steps in the proof of Theorem 2, there exists a constant 𝑐0 > 0 such that

Tr
(
(𝐺𝑛Λ𝑛)2

)
≤ 𝑐0
𝑛

𝑚∑
𝑘1,...,𝑘4=1

( 2∑
𝑖1,...,𝑖4=1

|𝛾12,𝑘2𝛾𝑖3,𝑘3𝛾12,𝑘4 |

𝑛−1∑
ℎ1,ℎ2,ℎ3=1−𝑛

|ℎ1 |
𝛼𝑖1𝑖1+𝛼(3−𝑖2 ) (3−𝑖2 )

2 −4 |ℎ2 |
𝛼𝑖2𝑖2+𝛼𝑖3𝑖3

2 −4 |ℎ3 |
𝛼𝑖3𝑖3+𝛼(3−𝑖4 ) (3−𝑖4 )

2 −4

)
= 𝑂 (𝑛−1) as 𝑛→ ∞,

since ∀𝑖, 𝑗 = 1, 2, 1
2 (𝛼𝑖𝑖 + 𝛼 𝑗 𝑗 ) − 4 < −2.

Consequently, as 𝑛→ ∞,

Tr
(
(𝐺𝑛 +

1
2
Λ𝑛)2

)
= Tr(𝐺2

𝑛) +
1
4
Tr(Λ2

𝑛) + Tr(𝐺𝑛Λ𝑛)

→ 1
2

(
𝜸𝑇1Φ1𝜸1 + 𝜸𝑇2Φ2𝜸2 + 𝜸𝑇12Φ𝜸12

)
,

where entries of Φ1, Φ2, and Φ are defined in (2.22) and (2.15). The Cauchy–Schwarz inequality
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implies that

Tr
(
(𝐺𝑛 +

1
2
Λ𝑛)4

)
= Tr(𝐺4

𝑛) + 2Tr(𝐺3
𝑛Λ𝑛) +

1
2
Tr((𝐺𝑛Λ𝑛)2) + Tr(𝐺2

𝑛Λ
2
𝑛)

+ 1
2
Tr(𝐺𝑛Λ

3
𝑛) +

1
24Tr(Λ

4
𝑛)

≤ Tr(𝐺4
𝑛) + 2

√
Tr(𝐺6

𝑛)Tr(Λ2
𝑛) +

1
2
Tr((𝐺𝑛Λ𝑛)2) +

√
Tr(𝐺4

𝑛)Tr(Λ4
𝑛)

+ 1
2

√
Tr(𝐺2

𝑛)Tr(Λ6
𝑛) +

1
24Tr(Λ

4
𝑛)

→ 0

as 𝑛→ ∞. This finishes the proof using the convergence of the moment generating function.

2.2.2 Convergence of Estimator

Define the estimator of 𝛼12 as

�̂�12 =
1
2

𝑚∑
𝑢=1

𝐿𝑢 log(�̄�𝑢𝑛,12)
2, (2.27)

where {𝐿𝑢, 𝑢 = 1, . . . , 𝑚} is a list of constants satisfying
∑𝑚
𝑢=1 𝐿𝑢 = 0 and

∑𝑚
𝑢=1 𝐿𝑢 log 𝑢 = 1.

Plug in the definition of �̄�𝑢𝑛,12 given in (2.5), then �̂�12 is a function of the observed process 𝑋𝑢𝑛 and

increment 𝑎 only, written as

�̂�12 =
1
2

𝑚∑
𝑢=1

𝐿𝑢 log
©«
1
2
𝑛𝛼12−1𝑋𝑢𝑛

𝑇
©«

0 𝐼𝑛 ⊗ (𝑎𝑎𝑇 )

𝐼𝑛 ⊗ (𝑎𝑎𝑇 ) 0

ª®®¬ 𝑋𝑢𝑛
ª®®¬

2

=
1
2

𝑚∑
𝑢=1

𝐿𝑢 log
©«𝑋𝑢𝑛

𝑇
©«

0 𝐼𝑛 ⊗ (𝑎𝑎𝑇 )

𝐼𝑛 ⊗ (𝑎𝑎𝑇 ) 0

ª®®¬ 𝑋𝑢𝑛
ª®®¬

2

, (2.28)

where 𝑋𝑢𝑛 = ((𝑋𝑢𝑛,1)
𝑇 , (𝑋𝑢𝑛,2)

𝑇 )𝑇 .

Theorem 4. Assume the increment 𝑎 = (𝑎−𝐽 , 𝑎1−𝐽 , . . . , 𝑎𝐽)𝑇 of order 𝑝 satisfies

𝐽∑
𝑘,𝑙=−𝐽

𝑎𝑘𝑎𝑙 |𝑘 − 𝑙 |𝛼12 ≠ 0,

and (2.4) holds for 𝑞 = 2𝑝 + 3 and 𝑖, 𝑗 ∈ {1, 2}. If 𝛼11 + 𝛼22 < 2𝛼12 < 𝛼11 + 𝛼22 + 1 < 4𝑝 + 4 or

4𝑝 + 3 < 𝛼11 + 𝛼22 < 2𝛼12 < 4𝑝 + 4, then �̂�12
𝑎.𝑠.→ 𝛼12 as 𝑛→ ∞.
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Proof. It follows from Lemma 1 and the Borel–Cantelli Lemma that ∀𝑢 = 1, . . . , 𝑚,

(�̄�𝑢𝑛,12)
2

𝐸 (�̄�𝑢𝑛,12)2
𝑎.𝑠.→ 1 as 𝑛→ ∞.

When 𝛼11 + 𝛼22 < 2𝛼12 < 𝛼11 + 𝛼22 + 1 < 4𝑝 + 4 or 4𝑝 + 3 < 𝛼11 + 𝛼22 < 2𝛼12 < 4𝑝 + 4, (2.7) and

(2.10) imply that

𝐸 (�̄�𝑢𝑛,12)
2 = 𝐶𝑜𝑣(�̄�𝑢𝑛,12) + (𝐸�̄�𝑢𝑛,12)

2 → 𝐴2𝑢2𝛼12 ,

where 𝐴 = −𝜌𝜎1𝜎2𝑐12
∑
𝑘,𝑙 𝑎𝑘𝑎𝑙 |𝑘 − 𝑙 |𝛼12 . When

∑
𝑘,𝑙 𝑎𝑘𝑎𝑙 |𝑘 − 𝑙 |𝛼12 ≠ 0, �̂�12 defined in (2.27) can

be written as

�̂�12 =
1
2

𝑚∑
𝑢=1

𝐿𝑢

(
log

(�̄�𝑢𝑛,12)
2

𝐸 (�̄�𝑢𝑛,12)2 + log 𝐸 (�̄�𝑢𝑛,12)
2

)
=

1
2

𝑚∑
𝑢=1

𝐿𝑢 log
(�̄�𝑢𝑛,12)

2

𝐸 (�̄�𝑢𝑛,12)2 + 1
2

𝑚∑
𝑢=1

𝐿𝑢 log 𝐸 (�̄�𝑢𝑛,12)
2

𝑎.𝑠.→ 1
2

𝑚∑
𝑢=1

𝐿𝑢 log 1 + 1
2

𝑚∑
𝑢=1

𝐿𝑢 log(𝐴2𝑢2𝛼12) = 𝛼12

as 𝑛→ ∞ by the continuous mapping theorem.

To derive the asymptotic normality of �̂�12, we further assume that as 𝑡 → 0,

𝐶12(𝑡) = 𝐶21(𝑡) = 𝜌𝜎1𝜎2(1 − 𝑐12 |𝑡 |𝛼12 +𝑂 (|𝑡 |𝛼12+𝛽12)), (2.29)

for some 𝛽12 > 0. It follows from (2.7) that 𝐸 [𝑍𝑢𝑛,12( 𝑗)] = 𝐴𝑢𝛼12 + 𝑂 (𝑛−𝛽12). The following

corollary is straightforward when a further assumption is made on 𝛽12.

Corollary 1. Under conditions in Theorem 2, if 𝛼12 + 𝛽12 > (𝛼11 + 𝛼22 + 1)/2, then

𝑛1/2+(𝛼11+𝛼22)/2−𝛼12 (�̄�𝑛,12 − 𝐴𝜙)
𝑑→ 𝑁 (0,Φ) (2.30)

as 𝑛→ ∞, where 𝜙 ∈ R𝑚 and 𝜙 𝑗 = 𝑗𝛼12 , 𝑗 = 1, . . . , 𝑚.

The asymptotic normality of �̂�12 is then induced by the multivariate delta method.
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Theorem 5. Take 𝑝 ≥ 1 and assume (2.4) holds for 𝑞 = 2𝑝 + 2. When 𝐴 ≠ 0, if 𝛼11 + 𝛼22 < 2𝛼12

and 𝛼12 + 𝛽12 > (𝛼11 + 𝛼22 + 1)/2, then

𝑛1/2+(𝛼11+𝛼22)/2−𝛼12 (�̂�12 − 𝛼12)
𝑑→ 𝑁 (0, 𝐴−2 �̃�𝑇Φ�̃�) (2.31)

as 𝑛→ ∞, where �̃� = (𝐿1, 𝐿2/2𝛼12 , . . . , 𝐿𝑚/𝑚𝛼12)𝑇 ∈ R𝑚.

Proof. Define a mapping 𝑓 : R𝑚 → R by

𝑓 (𝑥) = 1
2

𝑚∑
𝑢=1

𝐿𝑢 log 𝑥2
𝑢, ∀𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ R𝑚 .

Then 𝑓 (�̄�𝑛,12) = �̂�12, 𝑓 (𝐴𝜙) = 𝛼12. When 𝐴 ≠ 0, 𝑓 is continuously differentiable in a neighbor-

hood of 𝐴𝜙 and ∇ 𝑓 (𝐴𝜙) = 𝐴−1 �̃�.

Use the multivariate Taylor’s theorem,

𝑛1/2+(𝛼11+𝛼22)/2−𝛼12 (�̂�12 − 𝛼12) = 𝑛1/2+(𝛼11+𝛼22)/2−𝛼12∇ 𝑓 (𝐴𝑛) (�̄�𝑛,12 − 𝐴𝜙),

where |𝐴𝑛 − 𝐴𝜙 | < |�̄�𝑛,12 − 𝐴𝜙 |. As 𝑛 → ∞, Theorem 1 implies �̄�𝑛,12
𝑃→ 𝐴𝜙, so we also have

𝐴𝑛
𝑃→ 𝐴𝜙. Applying the continuous mapping theorem, ∇ 𝑓 (𝐴𝑛)

𝑃→ ∇ 𝑓 (𝐴𝜙). It follows from

Corollary 1 and Slutsky’s theorem that as 𝑛→ ∞,

𝑛1/2+(𝛼11+𝛼22)/2−𝛼12∇ 𝑓 (𝐴𝑛) (�̄�𝑛,12 − 𝐴𝜙)
𝑑→ ∇ 𝑓 (𝐴𝜙)𝑁 (0,Φ) 𝑑

= 𝑁 (0, 𝐴−2 �̃�𝑇Φ𝐿).

This finishes the proof.

Take 𝑝 = 1, 𝐽 = 1, and 𝑎 = (1,−2, 1)𝑇 . As was studied by Kent and Wood (1997) and Zhou

and Xiao (2018), the estimators

�̂�𝑖𝑖 =
𝑚∑
𝑢=1

𝐿𝑖,𝑢 log �̄�𝑢𝑛,𝑖, 𝑖 = 1, 2 (2.32)

are strongly consistent and jointly converge in distribution to a multivariate Gaussian distribution,

where �̄�𝑢𝑛,𝑖’s are defined in (2.20), 𝐿𝑖,𝑢’s are constants such that
∑𝑚
𝑢=1 𝐿𝑖,𝑢 = 0 and

∑𝑚
𝑢=1 𝐿𝑖,𝑢 log 𝑢 =

1. The following theorem presents the joint asymptotic distribution of �̂�11, �̂�22, and �̂�12 as 𝑛→ ∞.
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Theorem 6. Assume that as |𝑡 | → 0, (2.29) holds with 𝛼12 + 𝛽12 > (𝛼11 + 𝛼22 + 1)/2, and

𝐶𝑖𝑖 (𝑡) = 𝜎2
𝑖 − 𝑐𝑖𝑖 |𝑡 |𝛼𝑖𝑖 +𝑂 (|𝑡 |𝛼𝑖𝑖+𝛽𝑖𝑖 ), 𝑖 = 1, 2

for some constants 𝛽11, 𝛽22 > 1/2. If 2𝛼12 > 𝛼11 + 𝛼22, 𝛼12 ≠ 2, and (2.4) holds for 𝑞 = 4, then as

𝑛→ ∞,

𝑛𝐷𝛼

©«
�̂�11 − 𝛼11

�̂�22 − 𝛼22

�̂�12 − 𝛼12

ª®®®®®¬
𝑑→ 𝑁

©«
0,

©«
𝐴−2

1 �̃�𝑇1Φ1 �̃�1

𝐴−2
2 �̃�𝑇2Φ2 �̃�2

𝐴−2 �̃�𝑇3Φ�̃�3

ª®®®®®¬
ª®®®®®¬
, (2.33)

where 𝐴𝑖 = 𝑐𝑖𝑖 (8 − 2𝛼𝑖𝑖+1) and �̃�𝑖 = (𝐿𝑖,1, 𝐿𝑖,2/2𝛼𝑖𝑖 , . . . , 𝐿𝑖,𝑚/𝑚𝛼𝑖𝑖 )𝑇 ∈ R𝑚 for 𝑖 = 1, 2, 𝐴 =

𝜌𝜎1𝜎2𝑐12(8 − 2𝛼12+1), �̃�3 = (𝐿3,1, 𝐿3,2/2𝛼12 , . . . , 𝐿3,𝑚/𝑚𝛼12)𝑇 ∈ R𝑚, the matrices Φ1,Φ2,Φ ∈

R𝑚×𝑚 and 𝐷𝛼 are as defined in Theorem 3.

Proof. When 𝑎 = (1,−2, 1)𝑇 , we have

𝐴 = −𝜌𝜎1𝜎2𝑐12

𝐽∑
𝑘,𝑙=−𝐽

𝑎𝑘𝑎𝑙 |𝑘 − 𝑙 |𝛼12 = 𝜌𝜎1𝜎2𝑐12(8 − 2𝛼12+1).

It follows from (2.7) and Equation (14) in Zhou and Xiao (2018) that as 𝑛→ ∞,

𝑛𝐷𝛼

©«
𝐸�̄�𝑛,1 − 𝐴1𝜙

1

𝐸�̄�𝑛,2 − 𝐴2𝜙
2

𝐸�̄�𝑛,12 − 𝐴𝜙

ª®®®®®¬
=

©«
𝑂

(
𝑛1/2−𝛽11

)
𝑂

(
𝑛1/2−𝛽22

)
𝑂

(
𝑛(1+𝛼11+𝛼22)/2−𝛼12−𝛽12

)
ª®®®®®¬
→ 0 (2.34)

if 𝛽11, 𝛽22 > 1/2 and 𝛼12 + 𝛽12 > (𝛼11 + 𝛼22 + 1)/2, where 𝜙𝑖 = (1, 2𝛼𝑖𝑖 , . . . , 𝑚𝛼𝑖𝑖 )𝑇 for 𝑖 = 1, 2,

and 𝜙 = (1, 2𝛼12 , . . . , 𝑚𝛼12)𝑇 . Together with Theorem 3 this implies that

𝑛𝐷𝛼

©«
�̄�𝑛,1 − 𝐴1𝜙

1

�̄�𝑛,2 − 𝐴2𝜙
2

�̄�𝑛,12 − 𝐴𝜙

ª®®®®®¬
𝑑→ 𝑁

©«
0,

©«
Φ1

Φ2

Φ

ª®®®®®¬
ª®®®®®¬

(2.35)

as 𝑛→ ∞.

Define a mapping f : R2𝑚
>0 × R ↦→ R3 as

f (x) =
©«

∑𝑚
𝑢=1 𝐿1,𝑢 log 𝑥1,𝑢∑𝑚
𝑢=1 𝐿2,𝑢 log 𝑥2,𝑢

1
2
∑𝑚
𝑢=1 𝐿3,𝑢 log 𝑥2

3,𝑢

ª®®®®®¬
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for any x = (𝑥1,1, . . . , 𝑥1,𝑚, 𝑥2,1, . . . , 𝑥2,𝑚, 𝑥3,1, . . . , 𝑥3,𝑚) ∈ R2𝑚
>0 ×R, where 𝐿𝑖,𝑢’s are constants such

that
∑𝑚
𝑢=1 𝐿𝑖,𝑢 = 0 and

∑𝑚
𝑢=1 𝐿𝑖,𝑢 log 𝑢 = 1, ∀𝑖 ∈ {1, 2, 3}. Denote by �̄�𝑛 = (�̄�𝑇𝑛,1, �̄�𝑇𝑛,2, �̄�𝑇𝑛,12)𝑇 and

𝝓 = (𝐴1(𝜙1)𝑇 , 𝐴2(𝜙2)𝑇 , 𝐴𝜙𝑇 )𝑇 , then

f (�̄�𝑛) = (�̂�11, �̂�22, �̂�12)𝑇 , f (𝝓) = (𝛼11, 𝛼22, 𝛼12)𝑇 .

When 𝛼12 ≠ 2, 𝐴 = 𝜌𝜎1𝜎2𝑐12(8 − 2𝛼12+1) ≠ 0 and f is thus continuously differentiable in a

neighborhood of 𝝓. Moreover, ∇f (𝝓) = (𝐴−1
1 �̃�𝑇1 , 𝐴

−1
2 �̃�𝑇2 , 𝐴

−1 �̃�𝑇3 )𝑇 .

In a similar manner as in the proof of Theorem 5, it could be proved that as 𝑛→ ∞,

𝑛𝐷𝛼

©«
�̂�11 − 𝛼11

�̂�22 − 𝛼22

�̂�12 − 𝛼12

ª®®®®®¬
𝑑→ ∇f (𝝓)𝑁

©«
0,

©«
Φ1

Φ2

Φ

ª®®®®®¬
ª®®®®®¬

𝑑
= 𝑁

©«
0,

©«
𝐴−2

1 �̃�𝑇1Φ1 �̃�1

𝐴−2
2 �̃�𝑇2Φ2 �̃�2

𝐴−2 �̃�𝑇3Φ�̃�3

ª®®®®®¬
ª®®®®®¬
.

This finishes the proof.

2.2.3 Simulation

Denote by 𝑀𝜈 the Matérn covariance function with parameter 𝜈. Namely,

𝑀𝜈 (𝑡) = 21−𝜈Γ(𝜈)−1 |𝑡 |𝜈𝐾𝜈 ( |𝑡 |)

= 1 − Γ(1 − 𝜈)
4𝜈Γ(1 + 𝜈) |𝑡 |

2𝜈 + 1
4(1 − 𝜈) |𝑡 |

2 +𝑂 (|𝑡 |2𝜈+2) +𝑂 (|𝑡 |4) as 𝑡 → 0.

Take 𝐶11 = 𝐶22 = 𝑀0.5 and 𝐶12 = 𝐶21 = 0.5𝑀0.55. Let 𝑚 = 50, 𝑝 = 1, 𝑎 = (1,−2, 1)𝑇 and

𝑛 ∈ {200, 250, . . . , 1500}. For each value of 𝑛, generate 3000 independent realizations of the

process 𝑋 . In this case, 𝜎1 = 𝜎2 = 1, 𝛼11 = 𝛼22 = 1, 𝜌 = 0.5, 𝛼12 = 1.1 > (𝛼11+𝛼22)/2, 𝛽12 = 0.9,

𝑐12 = 0.51.1Γ(1 − 0.55)/Γ(1 + 0.55), 𝑐11 = 𝑐22 = 0.5Γ(0.5)/Γ(1.5),

𝐴 = −𝜌𝜎1𝜎2𝑐12
∑
𝑘,𝑙

𝑎𝑘𝑎𝑙 |𝑘 − 𝑙 |𝛼12 = 𝑐12(4 − 21.1) ≈ 1.9177 ≠ 0,
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𝛼12 + 𝛽12 = 2 > 3/2 = (𝛼11 + 𝛼22 + 1)/2.

It follows from Theorem 2 that ∀𝑢 = 1, . . . , 𝑚,

Φ𝑢,𝑢 = 𝐴11𝐴22

∞∑
ℎ=−∞

𝐽∑
𝑠,𝑡, 𝑗 ,𝑙=−𝐽

𝑎𝑠𝑎𝑡𝑎 𝑗𝑎𝑙 |ℎ + 𝑠𝑢 − 𝑡𝑣 |𝛼11 |ℎ + 𝑗𝑢 − 𝑙𝑣 |𝛼22

= (𝐴11)2
∞∑

ℎ=−∞
(6|ℎ | − 4|ℎ + 𝑢 | + |ℎ + 2𝑢 | − 4|ℎ − 𝑢 | + |ℎ + 2𝑢 |)2

=

(
Γ(0.5)
2Γ(1.5)

)2
(
16𝑢2 + 2

𝑢∑
ℎ=1

(6ℎ − 4(ℎ + 𝑢) + 4𝑢 − 4(𝑢 − ℎ))2

+2
2𝑢∑

ℎ=𝑢+1
(6ℎ − 4(ℎ + 𝑢) + 4𝑢 − 4(ℎ − 𝑢))2 + 2

∞∑
ℎ=2𝑢+1

(6ℎ − 4(ℎ + 𝑢) + 2ℎ − 4(ℎ − 𝑢))2

)
=

8
3
(4𝑢3 + 5𝑢)

is the asymptotic marginal variance of 𝑛1/2+(𝛼11+𝛼22)/2−𝛼12 �̄�𝑢𝑛,12 as (2.15) presented. The empirical

marginal distributions of �̄�𝑢𝑛,12 (𝑢 = 1, 10, 20, 30, 40, 50) when 𝑛 = 1500 are shown in Figure 2.1,

where 3000 realizations are presented in the histogram.

Take �̂�12 as the ordinary least squares estimator for 𝛽1 in the linear regression model

1
2

log(�̄�𝑛,12)2 =

©«

1 log 1

1 log 2
...

...

1 log𝑚

ª®®®®®®®®¬
©«
𝛽0

𝛽1

ª®®¬ ,
then as was simplified by Kent and Wood (1997),

�̂�12 =
1
2

𝑚∑
𝑢=1

log 𝑢 − 1
𝑚

∑𝑚
𝑣=1 log 𝑣∑𝑚

𝑢=1

(
log 𝑢 − 1

𝑚

∑𝑚
𝑣=1 log 𝑣

)2 log(�̄�𝑢𝑛,12)
2,

which is an example of the estimator defined in (2.27). Since conditions in Theorem 4 are satisfied,

�̂�12 is a strongly consistent estimator for 𝛼12. The asymptotic normality follows from Theorem 5.

Figure 2.3 and 2.2 confirm these claims.

2.3 Irregular Sampling

Since regularly spaced data is not always available, it is of practical importance to study esti-

mators of the smoothness parameter based on irregular sampling designs. Given observations of
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Figure 2.1The empirical distribution of
√
𝑛1−2𝛼12+𝛼11+𝛼22 (�̄�𝑢𝑛 − 𝐴𝑢𝛼12) when 𝑛 = 1500 with 3000

realizations. The red curve is the density function of 𝑁 (0, 8(4𝑢3 + 5𝑢)/3).
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Figure 2.2The empirical distribution of
√
𝑛1−2𝛼12+𝛼11+𝛼22 (�̂�12 − 𝛼12) when 𝑛 = 1500 with 3000

realizations. The red curve is the density function of 𝑁 (0, 𝐴−2 �̃�𝑇Φ𝑛 �̃�), where Φ𝑛 is the empirical
covariance matrix of �̄�𝑛,12 with 3000 realizations when 𝑛 = 1500.
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Figure 2.3The average absolute value of bias among 3000 realizations when
𝑛 = 200, 250, . . . , 1500.

a Gaussian process, constructing quadratic variations of a certain order is an essential step when

defining increment-based estimators of the smoothness parameter. When the observation locations

are not evenly spaced, coefficients of the increment discussed in Section 2.2 will be related to dis-

tances between sampling points. Begyn (2005), Loh (2015), and Loh et al. (2021) proposed several

irregular sampling designs, based on which the infill asymptotic properties of quadratic variations

are studied. Details of the irregular sampling designs are included in Appendix A.

In Section 2.3.1, we discuss the joint behaviors of quadratic variations for two coordinates in the

bivariate model based on the deformed sampling design. In Section 2.3.2, we define a strong con-

sistent estimator for the cross smoothness parameter and present the rate of almost sure convergence

for estimators based on the stratified sampling design.

2.3.1 Quadratic Variations

Consider a special case of the bivariate stationary Gaussian process 𝑋 (𝑡) = (𝑋1(𝑡), 𝑋2(𝑡)) de-

fined in (2.1-2.3). Let the autocovariance function for each coordinate of 𝑋 and the cross-covariance
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function of 𝑋 all take the following form such that ∀𝑡, 𝑠 ∈ R and ∀𝑖, 𝑗 ∈ {1, 2},

𝐶𝑖 𝑗 (𝑡) =
⌊𝛼𝑖 𝑗/2⌋∑
𝑘=0

𝛽𝑘 (𝜃𝑖 𝑗 |𝑡 |)2𝑘 + 𝛽∗𝛼𝑖 𝑗𝐺𝛼𝑖 𝑗 (𝜃𝑖 𝑗 |𝑡 |) +𝑂 (|𝑡 |𝛼𝑖 𝑗+𝜏) (2.36)

as |𝑡 | → 0 for some constant 𝜏 > 0, where 𝛽0 = 𝜎𝑖𝜎𝑗 (𝜌+ (1−𝜌)1𝑖= 𝑗 ), ⌊𝑥⌋ = max{𝑥0 ∈ Z : 𝑥0 < 𝑥},

𝛽∗𝛼𝑖 𝑗 ≠ 0, and 𝐺𝛼𝑖 𝑗 : [0,∞) ↦→ R is defined by

𝐺𝛼𝑖 𝑗 (𝑥) = 𝑥𝛼𝑖 𝑗 + 𝑥𝛼𝑖 𝑗 (log 𝑥 − 1)1Z(𝛼𝑖 𝑗/2)

when 𝑥 > 0 and 𝐺𝛼𝑖 𝑗 (0) = 0.

Under the setting of deformed sampling design defined in (A.3), we study the cross-covariance

of quadratic variations defined in (A.6) for coordinates 𝑋1 and 𝑋2.

Proposition 1. For dilation 𝜃 ∈ {1, 2} and the order of increment ℓ ∈ {1, 2, . . . , ⌊(𝑛 − 1)/𝜃⌋},

𝐸 (𝑉1
𝜃,ℓ𝑉

2
𝜃,ℓ)

𝐸𝑉1
𝜃,ℓ𝐸𝑉

2
𝜃,ℓ

=



𝑂 (𝑛𝛼11+𝛼22−2𝛼12−1) if 𝛼12 < 2ℓ − 1/2,

𝑂 (𝑛𝛼11+𝛼22−2𝛼12−1 log 𝑛) if 𝛼12 = 2ℓ − 1/2,

𝑂 (𝑛𝛼11+𝛼22−4ℓ) if 𝛼12 > 2ℓ − 1/2,

where 𝑉 𝑖𝜃,ℓ is the quadratic variation of 𝑋𝑖 (𝑖 = 1, 2) as defined in (A.6).

Proof. For the brevity of symbols, denote by 𝑎𝑖 = (𝑎𝜃,ℓ;𝑖,𝑘 )ℓ𝑘=0 the vector of increment defined in

(A.4). Write 𝑋 𝑗
𝑖 = (𝑋 𝑗 (𝑡𝑖+𝜃𝑘 ))ℓ𝑘=0 and ∇𝜃,ℓ𝑋 𝑗

𝑖 = 𝑎𝑇𝑖 𝑋
𝑗
𝑖 . Then

𝐸 (𝑉1
𝜃,ℓ𝑉

2
𝜃,ℓ) = 𝐸

𝑛−𝜃ℓ∑
𝑖, 𝑗=1

©«
(
ℓ∑
𝑘=0

𝑎𝜃,ℓ;𝑖,𝑘𝑋1(𝑡𝑖+𝜃𝑘 )
)2 (

ℓ∑
𝑘=0

𝑎𝜃,ℓ; 𝑗 ,𝑘𝑋2(𝑡 𝑗+𝜃𝑘 )
)2ª®¬

= 𝐸
𝑛−𝜃ℓ∑
𝑖, 𝑗=1

((
𝑎𝑇𝑖 𝑋

1
𝑖

)2 (
𝑎𝑇𝑗 𝑋

2
𝑗

)2
)

=
𝑛−𝜃ℓ∑
𝑖, 𝑗=1

(
𝐸

[
(𝑋1

𝑖 )𝑇 (𝑎𝑖𝑎𝑇𝑖 )𝑋1
𝑖

]
𝐸

[
(𝑋2

𝑗 )𝑇 (𝑎 𝑗𝑎𝑇𝑗 )𝑋2
𝑗

]
+ 2

(
𝐸

[
(𝑋1

𝑖 )𝑇 (𝑎𝑖𝑎𝑇𝑗 )𝑋2
𝑗

] )2
)

=
𝑛−𝜃ℓ∑
𝑖, 𝑗=1

𝐸 (∇𝜃,ℓ𝑋1
𝑖 )2𝐸 (∇𝜃,ℓ𝑋2

𝑗 )2 + 2
𝑛−𝜃ℓ∑
𝑖, 𝑗=1

(
𝐸

[
(𝑋1

𝑖 )𝑇 (𝑎𝑖𝑎𝑇𝑗 )𝑋2
𝑗

] )2
.
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By Theorem 1 (a) in Loh (2015),
𝑛−𝜃ℓ∑
𝑖, 𝑗=1

𝐸 (∇𝜃,ℓ𝑋1
𝑖 )2𝐸 (∇𝜃,ℓ𝑋2

𝑗 )2 = 𝐸𝑉1
𝜃,ℓ𝐸𝑉

2
𝜃,ℓ = 𝑂 (𝑛2ℓ+1−𝛼11) · 𝑂 (𝑛2ℓ+1−𝛼22) (2.37)

as 𝑛→ ∞.

With the cross-covariance function defined in (2.36),

𝑛−𝜃ℓ∑
𝑖, 𝑗=1

(
𝐸

[
(𝑋1

𝑖 )𝑇 (𝑎𝑖𝑎𝑇𝑗 )𝑋2
𝑗

] )2
= 𝑂

©«
𝑛−𝜃ℓ∑
𝑖, 𝑗=1

©«
ℓ∑

𝑝,𝑞=0
𝑎𝜃,ℓ;𝑖,𝑝𝑎𝜃,ℓ; 𝑗 ,𝑞 |𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞 |𝛼12ª®¬

2ª®®¬
as 𝑛→ ∞. The properties of ℓth order increment imply that as 𝑛→ ∞,

𝑛−𝜃ℓ∑
𝑖, 𝑗=1

©«
ℓ∑

𝑝,𝑞=0
𝑎𝜃,ℓ;𝑖,𝑝𝑎𝜃,ℓ; 𝑗 ,𝑞 |𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞 |𝛼12ª®¬

2

=
∑

|𝑖− 𝑗 |≤𝜃ℓ+1

©«
ℓ∑

𝑝,𝑞=0
𝑂 (𝑛2ℓ)

(
𝑖 − 𝑗 + 𝜃 (𝑝 − 𝑞)

𝑛 − 1
𝜑(1) (0) +𝑂 (𝑛−2)

)𝛼12ª®¬
2

+
∑

|𝑖− 𝑗 |>𝜃ℓ+1

©«
ℓ∑

𝑝,𝑞=0
𝑎𝜃,ℓ;𝑖,𝑝𝑎𝜃,ℓ; 𝑗 ,𝑞 |𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞 |𝛼12ª®¬

2

:=𝐴𝑛 + 𝐵𝑛,

where 𝐴𝑛 = 𝑂 (𝑛1+4ℓ−2𝛼12) and

𝐵𝑛 ≤
∑

|𝑖− 𝑗 |>𝜃ℓ+1

©«
ℓ∑

𝑝,𝑞=0
|𝑎𝜃,ℓ;𝑖,𝑝𝑎𝜃,ℓ; 𝑗 ,𝑞 | · |𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞 |𝛼12+2ℓ−2ℓª®¬

2

≤
∑

|𝑖− 𝑗 |>𝜃ℓ+1

©« max
0≤𝑝,𝑞≤ℓ

|𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞 |𝛼12−2ℓ
ℓ∑

𝑝,𝑞=0
|𝑎𝜃,ℓ;𝑖,𝑝𝑎𝜃,ℓ; 𝑗 ,𝑞 (𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞)2ℓ |ª®¬

2

= 𝑂 (1)
∑

|𝑖− 𝑗 |>𝜃ℓ+1
max

0≤𝑝,𝑞≤ℓ
|𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞 |2𝛼12−4ℓ

= 𝑂 (𝑛2)
∫ 1

1/𝑛
𝑠2𝛼12−4ℓ𝑑𝑠.

Thus,

𝑛−𝜃ℓ∑
𝑖, 𝑗=1

©«
ℓ∑

𝑝,𝑞=0
𝑎𝜃,ℓ;𝑖,𝑝𝑎𝜃,ℓ; 𝑗 ,𝑞 |𝑡𝑖+𝜃𝑝 − 𝑡 𝑗+𝜃𝑞 |𝛼12ª®¬

2

=



𝑂 (𝑛1+4ℓ−2𝛼12) if 𝛼12 < 2ℓ − 1/2,

𝑂 (𝑛2 log 𝑛) if 𝛼12 = 2ℓ − 1/2,

𝑂 (𝑛2) if 𝛼12 > 2ℓ − 1/2.
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This finishes the proof together with (2.37).

For a stationary GRF 𝑋 on R𝑑 with zero mean and the isotropic Matérn covariance function

𝐶 (t) = 𝜎2(𝜂 | |t| |)𝜈
2𝜈−1Γ(𝜈)

𝜅𝜈 (𝜂 | |t| |), ∀t ∈ R𝑑 , (2.38)

where 𝜎, 𝜂, 𝜈 > 0 are constants, we discuss the finite sample joint distribution of 𝑉1,1,ℓ and 𝑉2,1,ℓ

in the remaining of this section. The quadratic variations 𝑉𝜃,𝑑,ℓ are defined in (A.21). Consider the

case when 𝑑 = 1 and 0 < 𝜈 < ℓ, 𝜈 ∉ Z. Write

∇𝜃,ℓ𝑋 =
(
∇𝜃,1,ℓ𝑋𝑖

)𝑛−2ℓ𝜔𝑛

𝑖=1

and denote by 𝑉𝑢𝑣 (𝑛, ℓ) = (∇𝑢,ℓ𝑋)𝑇∇𝑣,ℓ𝑋 , 𝑊𝑢𝑣 (𝑛, ℓ) = 𝐶𝑜𝑣(∇𝑢,ℓ𝑋,∇𝑣,ℓ𝑋) for 𝑢, 𝑣 ∈ {1, 2}. For

the brevity, write 𝑉𝑢𝑣 (𝑛, ℓ) as 𝑉𝑢𝑣 and𝑊𝑢𝑣 (𝑛, ℓ) as𝑊𝑢𝑣 in the following text.

It follows from Eq.(15) in Loh et al. (2021) that as 𝑛→ ∞,

(𝑊𝑢𝑣)𝑖,𝑖+ℎ

=𝛽∗𝜈

ℓ∑
𝑗 ,𝑘=0

𝑐i,𝑢,1,ℓ ( 𝑗)𝑐i+h,𝑣,1,ℓ (𝑘)
����ℎ + (𝑣𝑘 − 𝑢 𝑗)𝜔𝑛 + 𝛿𝑖+ℎ,𝑘 − 𝛿𝑖, 𝑗

𝑛

����2𝜈 +𝑂 ((𝜔𝑛
𝑛

)2ℓ
)

+𝑂
((𝜔𝑛
𝑛

)2𝜈+2
)

=𝛽∗𝜈

ℓ∑
𝑗 ,𝑘=0

(
𝑐ℓ ( 𝑗) +𝑂 (𝜔−1

𝑛 )
) (
𝑐ℓ (𝑘) +𝑂 (𝜔−1

𝑛 )
) ����ℎ + (𝑣𝑘 − 𝑢 𝑗)𝜔𝑛 + 𝛿𝑖+ℎ,𝑘 − 𝛿𝑖, 𝑗

𝑛

����2𝜈 + 𝑜 ((𝜔𝑛
𝑛

)2𝜈
)

=𝛽∗𝜈

ℓ∑
𝑗 ,𝑘=0

𝑐ℓ ( 𝑗)𝑐ℓ (𝑘)
����ℎ + (𝑣𝑘 − 𝑢 𝑗)𝜔𝑛 + 𝛿𝑖+ℎ,𝑘 − 𝛿𝑖, 𝑗

𝑛

����2𝜈 + 𝑜 ((𝜔𝑛
𝑛

)2𝜈
)

=
(𝜔𝑛
𝑛

)2𝜈
𝛽∗𝜈

ℓ∑
𝑗 ,𝑘=0

𝑐ℓ ( 𝑗)𝑐ℓ (𝑘)
����𝑣𝑘 − 𝑢 𝑗 + ℎ + 𝛿𝑖+ℎ,𝑘 − 𝛿𝑖, 𝑗𝜔𝑛

����2𝜈 + 𝑜 ((𝜔𝑛
𝑛

)2𝜈
)

(2.39)

for any 1 ≤ 𝑖 ≤ 𝑖 + ℎ ≤ 𝑛 − 2ℓ𝜔𝑛. Denote by 𝑎𝑢𝑣 (𝜈, ℓ) = 𝛽∗𝜈
∑ℓ
𝑗 ,𝑘=0 𝑐ℓ ( 𝑗)𝑐ℓ (𝑘) |𝑣𝑘 − 𝑢 𝑗 |

2𝜈, then

∀1 ≤ 𝑖 ≤ 𝑖 + ℎ ≤ 𝑛 − 2ℓ𝜔𝑛,

(𝑛/𝜔𝑛)2𝜈 (𝑊𝑢𝑣)𝑖,𝑖+ℎ → 𝑎𝑢𝑣 (𝜈, ℓ) (2.40)

as 𝑛→ ∞.
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Take 𝜖 ∼ 𝑁 (0, 𝐼𝑛−2ℓ𝜔𝑛), then for 𝜃 = 1, 2,

(𝑛/𝜔𝑛)2𝜈

𝑛 − 2ℓ𝜔𝑛
𝑉𝜃,1,ℓ

𝑑
=

(𝑛/𝜔𝑛)2𝜈

𝑛 − 2ℓ𝜔𝑛
𝜖𝑇𝑊𝜃𝜃𝜖

𝑑
= 𝜖𝑇

(
(𝑛/𝜔𝑛)2𝜈

𝑛 − 2ℓ𝜔𝑛
𝑑𝑖𝑎𝑔(eig(𝑊𝜃𝜃))

)
𝜖 := 𝜖𝑇Λ𝜃𝑛𝜖,

the cumulant generating function of which is

log 𝐸𝑒𝑡𝜖
𝑇Λ𝜃

𝑛 𝜖 =
𝑛−2ℓ𝜔𝑛∑
𝑘=1

log(1 − 2𝑡𝜆𝑘 )−1/2

=
1
2

∞∑
𝑚=1

(2𝑡)𝑚
𝑚

𝑛−2ℓ𝜔𝑛∑
𝑘=1

𝜆𝑚𝑘 ,

where 𝑡 < min(𝜆−1
𝑘 ) and 𝜆𝑘 , 𝑘 = 1, . . . , 𝑛 − 2ℓ𝜔𝑛 are diagonal elements of Λ𝜃𝑛.

Denote by 𝑟𝑛 = (𝑛/𝜔𝑛)2𝜈
𝑛−2ℓ𝜔𝑛

and recall the notation 𝑊𝜃 = 𝑉𝜃,1,ℓ/𝐸𝑉𝜃,1,ℓ for 𝜃 = 1, 2. Write 𝐻𝑛 =

𝑊22−𝑊21𝑊
−1
11𝑊12, then ∇2,ℓ𝑋 |∇1,ℓ𝑋 ∼ 𝑁 (𝑊21𝑊

−1
11 ∇1,ℓ𝑋, 𝐻𝑛) and the moment generating function

of 𝑉2,1,ℓ |∇1,ℓ𝑋 is

𝑀𝑉2,1,ℓ |∇1,ℓ𝑋 (𝑡)

=|𝐼 − 2𝑡𝐻𝑛 |−1/2 exp
(
−1

2
(∇1,ℓ𝑋)𝑇𝑊−1

11𝑊12

(
𝐼 − (𝐼 − 2𝑡𝐻𝑛)−1

)
𝐻−1
𝑛 𝑊21𝑊

−1
11 ∇1,ℓ𝑋

)
, (2.41)

where 𝐼 is the (𝑛 − 2ℓ𝜔𝑛)-dimensional identity matrix. Moreover, the moment generating function

of the vector �̃� := 𝑟𝑛 (𝑉1,1,ℓ, 𝑉2,1,ℓ)𝑇 is

𝑀�̃� (𝑠, 𝑡) =

�������𝐼2(𝑛−2ℓ𝜔𝑛) − 2
©«
𝑟𝑛𝑡𝐻𝑛 0

0 𝐻𝑠𝑡
𝑛 𝑊11

ª®®¬
�������
−1/2

, (2.42)

where

𝐻𝑠𝑡
𝑛 = 𝑟𝑛𝑠𝐼 −

1
2
𝑊−1

11𝑊12

(
𝐼 − (𝐼 − 2𝑟𝑛𝑡𝐻𝑛)−1

)
𝐻−1
𝑛 𝑊21𝑊

−1
11 .
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This is due to the fact that

𝑀�̃� (𝑠, 𝑡) = 𝐸
[
𝑒𝑟𝑛 (𝑠𝑉1,1,ℓ+𝑡𝑉2,1,ℓ )]

= 𝐸
[
𝑒𝑟𝑛𝑠𝑉1,1,ℓ𝐸

[
𝑒𝑟𝑛𝑡𝑉2,1,ℓ |∇1,ℓ𝑋

] ]
= 𝐸

[
𝑒𝑟𝑛𝑠𝑉1,1,ℓ𝑀𝑉2,1,ℓ |∇1,ℓ𝑋 (𝑟𝑛𝑡)

]
= |𝐼 − 2𝑟𝑛𝑡𝐻𝑛 |−1/2𝐸

[
exp

(
(∇1,ℓ𝑋)𝑇𝐻𝑠𝑡

𝑛 ∇1,ℓ𝑋
)]

= |𝐼 − 2𝑟𝑛𝑡𝐻𝑛 |−1/2𝑀(∇1,ℓ𝑋)𝑇𝐻𝑠𝑡
𝑛 ∇1,ℓ𝑋 (1)

= |𝐼 − 2𝑟𝑛𝑡𝐻𝑛 |−1/2 |𝐼 − 2𝐻𝑠𝑡
𝑛 𝑊11 |−1/2

=

�������𝐼2(𝑛−2ℓ𝜔𝑛) − 2
©«
𝑟𝑛𝑡𝐻𝑛 0

0 𝐻𝑠𝑡
𝑛 𝑊11

ª®®¬
�������
−1/2

.

2.3.2 Estimating Smoothness Parameters

We first consider a univariate stationary GRF 𝑋 on R𝑑 with zero mean and the isotropic Matérn

covariance function (2.38). Based on the stratified design introduced in Appendix A.2.3, the fol-

lowing results on the rate of convergence hold for �̂�𝑛,ℓ defined in (A.26).

Proposition 2. When 𝑑 ∈ {1, 2, 3} and ℓ ∈ Z+,

1. if 0 < 𝜈 ≤ ℓ − 1, then

𝑛𝑑 (1−𝛾0)/2−𝑘 (�̂�𝑛,ℓ − 𝜈)
𝑎.𝑠.→ 0 as 𝑛→ ∞

for any (𝑑 (1 − 𝛾0)/2 − 𝛾0) ∨ (𝑑/2 − 2) (1 − 𝛾0) < 𝑘 < 𝑑 (1 − 𝛾0)/2;

2. if ℓ − 1 < 𝜈 < ℓ − 𝑑/4, then

𝑛𝑑 (1−𝛾0)/2−𝑘 (�̂�𝑛,ℓ − 𝜈)
𝑎.𝑠.→ 0 as 𝑛→ ∞

for any (𝑑 (1 − 𝛾0)/2 − 𝛾0) ∨ (𝑑/2 − 2ℓ + 2𝜈)(1 − 𝛾0) < 𝑘 < 𝑑 (1 − 𝛾0)/2;

3. if 𝜈 = ℓ − 𝑑/4, then

𝑛𝑑 (1−𝛾0)/2−𝑘 (log 𝑛)−1/2(�̂�𝑛,ℓ − 𝜈)
𝑎.𝑠.→ 0 as 𝑛→ ∞
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for any (𝑑 (1 − 𝛾0)/2 − 𝛾0) ∨ (𝑑/2 − 2ℓ + 2𝜈)(1 − 𝛾0) < 𝑘 < 𝑑 (1 − 𝛾0)/2;

4. if ℓ − 𝑑/4 < 𝜈 < ℓ, then

𝑛(2ℓ−2𝜈)(1−𝛾0)−𝑘 (�̂�𝑛,ℓ − 𝜈)
𝑎.𝑠.→ 0 as 𝑛→ ∞

for any (2ℓ − 2𝜈)(1 − 𝛾0) − 𝛾0 < 𝑘 < (2ℓ − 2𝜈) (1 − 𝛾0).

Proof. Theorem 1(a) in Loh et al. (2021) implies that as 𝑛→ ∞

�̂�𝑛,ℓ − 𝜈 =
log(𝑉2,𝑑,ℓ/𝑉1,𝑑,ℓ) − log(22𝜈)

2 log 2

=
1

2 log 2
log ©«

𝑉2,𝑑,ℓ/𝐸𝑉2,𝑑,ℓ
𝑉1,𝑑,ℓ/𝐸𝑉1,𝑑,ℓ

· 𝐸𝑉2,𝑑,ℓ
𝐸𝑉1,𝑑,ℓ

22𝜈
ª®¬

=
1

2 log 2
log ©«

𝑉2,𝑑,ℓ/𝐸𝑉2,𝑑,ℓ
𝑉1,𝑑,ℓ/𝐸𝑉1,𝑑,ℓ

(
22𝜈 +𝑂 (ℎ(𝑛))

)
22𝜈

ª®¬
=

1
2 log 2

log
(
𝑉2,𝑑,ℓ/𝐸𝑉2,𝑑,ℓ

𝑉1,𝑑,ℓ/𝐸𝑉1,𝑑,ℓ
(1 +𝑂 (ℎ(𝑛)))

)
, (2.43)

where

ℎ(𝑛) =



𝑛−𝛾0 + 𝑛(𝛾0−1)((2ℓ−2𝜈)∧2) if 𝜈 ∉ Z,

𝑛−𝛾0 + 𝑛2(𝛾0−1) log 𝑛 if 𝜈 = ℓ − 1,

𝑛−𝛾0 + 𝑛2(𝛾0−1) if 0 < 𝜈 ≤ ℓ − 2, 𝜈 ∈ Z.

Denote by 𝑊𝜃 = 𝑉𝜃,𝑑,ℓ/𝐸𝑉𝜃,𝑑,ℓ for 𝜃 = 1, 2, then it suffices to find the convergence rate of

𝑊2/𝑊1 − 1. It was proved in Loh et al. (2021) (P21-25) that

𝑃( |𝑊𝜃 − 1| ≥ 𝜖) ≤ 2 exp
(
−𝐶min

{
𝜖

𝑎𝑛
,
𝜖2

𝑏𝑛

})
, ∀𝜖 > 0,

where as 𝑛→ ∞,

𝑎𝑛 =



𝑂 (𝑛𝑑 (𝛾0−1)) if 𝜈 < ℓ − 𝑑/2,

𝑂 (𝑛𝑑 (𝛾0−1) log 𝑛) if 𝜈 = ℓ − 𝑑/2,

𝑂 (𝑛(2ℓ−2𝜈) (𝛾0−1)) if ℓ − 𝑑/2 < 𝜈 < ℓ,
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𝑏𝑛 =



𝑂 (𝑛𝑑 (𝛾0−1)) if 𝜈 < ℓ − 𝑑/4,

𝑂 (𝑛𝑑 (𝛾0−1) log 𝑛) if 𝜈 = ℓ − 𝑑/4,

𝑂 (𝑛(4ℓ−4𝜈) (𝛾0−1)) if ℓ − 𝑑/4 < 𝜈 < ℓ.

Then for any positive constant 𝑐0,

𝑃(𝑐0 |𝑊𝜃 − 1| ≥ 𝜖) ≤ 2 exp

(
−𝐶min

{
𝜖

𝑐0𝑎𝑛
,
𝜖2

𝑐2
0𝑏𝑛

})
, ∀𝜖 > 0.

By the Borel-Cantelli lemma, for 𝜃 = 1, 2, 𝑓 (𝑛, 𝑘)(𝑊𝜃 − 1) → 0 a.s. as 𝑛 → ∞ for any 𝑘 > 0,

where

𝑓 (𝑛, 𝑘) =



𝑛𝑑 (1−𝛾0)/2−𝑘 if 𝜈 < ℓ − 𝑑/4,

𝑛𝑑 (1−𝛾0)/2−𝑘 (log 𝑛)−1/2 if 𝜈 = ℓ − 𝑑/4,

𝑛(2ℓ−2𝜈)(1−𝛾0)−𝑘 if ℓ − 𝑑/4 < 𝜈 < ℓ.

Thus, 𝑓 (𝑛, 𝑘)(𝑊2/𝑊1 − 1) = 𝑓 (𝑛, 𝑘)((𝑊2 − 1) − (𝑊1 − 1))/𝑊1 → 0 a.s. as 𝑛→ ∞ for any 𝑘 > 0.

It follows from (2.43) that as 𝑛→ ∞,

𝑓 (𝑛, 𝑘) (�̂�𝑛,ℓ − 𝜈) =
𝑓 (𝑛, 𝑘)
2 log 2

log
(
𝑊2
𝑊1

(1 +𝑂 (ℎ(𝑛)))
)

∼ 𝑓 (𝑛, 𝑘)
(
𝑊2
𝑊1

(1 +𝑂 (ℎ(𝑛))) − 1
)

= 𝑓 (𝑛, 𝑘) (𝑊2/𝑊1 − 1) + 𝑓 (𝑛, 𝑘)𝑂 (ℎ(𝑛)).

When 𝑑 ∈ {1, 2, 3}, it always holds that ℓ − 1 < ℓ − 𝑑/4 < ℓ and 𝑑/4 ∉ Z, so

𝑓 (𝑛, 𝑘)ℎ(𝑛) =



𝑛𝑑 (1−𝛾0)/2−𝛾0−𝑘 + 𝑛(𝑑/2−2) (1−𝛾0)−𝑘 if 0 < 𝜈 < ℓ − 1,

𝑛𝑑 (1−𝛾0)/2−𝛾0−𝑘 + 𝑛(𝑑/2−2) (1−𝛾0)−𝑘 log 𝑛 if 𝜈 = ℓ − 1,

𝑛𝑑 (1−𝛾0)/2−𝛾0−𝑘 + 𝑛(𝑑/2−2ℓ+2𝜈) (1−𝛾0)−𝑘 if ℓ − 1 < 𝜈 < ℓ − 𝑑/4,

(𝑛𝑑 (1−𝛾0)/2−𝛾0−𝑘 + 𝑛(𝑑/2−2ℓ+2𝜈) (1−𝛾0)−𝑘 ) (log 𝑛)−1/2 if 𝜈 = ℓ − 𝑑/4,

𝑛(2ℓ−2𝜈) (1−𝛾0)−𝛾0−𝑘 + 𝑛−𝑘 if ℓ − 𝑑/4 < 𝜈 < ℓ.

This finishes the proof.
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Remark 1. Briefly speaking, as 𝑛→ ∞, it holds that

𝑛(1−𝛾0) (𝑑/2∧(2ℓ−2𝜈))−𝑘 (�̂� − 𝜈) 𝑎.𝑠.→ 0 if 𝜈 ≠ ℓ − 𝑑/4, (2.44)

𝑛𝑑 (1−𝛾0)/2−𝑘 (log 𝑛)−1/2(�̂� − 𝜈) 𝑎.𝑠.→ 0 if 𝜈 = ℓ − 𝑑/4, (2.45)

where 𝑘 is a constant whose range depends on 𝑑, 𝛾0, and ℓ − 𝜈.

In the remaining of this section, we consider a bivariate Gaussian process 𝑋 (𝑡) = (𝑋1(𝑡), 𝑋2(𝑡))

with zero mean and covariance function

𝐶 (𝑡) =
©«
𝐶11(𝑡) 𝐶12(𝑡)

𝐶21(𝑡) 𝐶22(𝑡)

ª®®¬ ,
where 𝐶𝑖 𝑗 is the Matérn covariance function

𝐶𝑖 𝑗 (𝑡) =
𝜎2
𝑖 𝑗 (𝜂𝑖 𝑗 |𝑡 |)𝜈𝑖 𝑗

2𝜈𝑖 𝑗−1Γ(𝜈𝑖 𝑗 )
𝜅𝜈𝑖 𝑗 (𝜂𝑖 𝑗 |𝑡 |), ∀𝑡 ∈ R, (2.46)

where 𝑖, 𝑗 ∈ {1, 2}, 𝜎12 = 𝜎21 = 𝜌𝜎11𝜎22, 𝜈𝑖 𝑗 , 𝜂𝑖 𝑗 , 𝜎11, 𝜎22 > 0, |𝜌 | ∈ (0, 1).

Under the stratified sampling design introduced in Appendix A.2.3, write

𝑌 𝜃𝑛,1 = (∇1
𝜃,1,ℓ𝑋1,∇1

𝜃,1,ℓ𝑋2, . . . ,∇1
𝜃,1,ℓ𝑋𝑛−2ℓ𝜔𝑛)𝑇 ,

𝑌 𝜃𝑛,2 = (∇2
𝜃,1,ℓ𝑋1,∇2

𝜃,1,ℓ𝑋2, . . . ,∇2
𝜃,1,ℓ𝑋𝑛−2ℓ𝜔𝑛)𝑇 ,

𝑌 𝜃𝑛 =
©«
𝑌 𝜃𝑛,1

𝑌 𝜃𝑛,2

ª®®¬ ∈ R2(𝑛−2ℓ𝜔𝑛) ,

and define the covariation as

𝑍𝜃𝑛,12 =
∑

1≤𝑖≤𝑛−2ℓ𝜔𝑛

(
∇1
𝜃,1,ℓ𝑋𝑖

) (
∇2
𝜃,1,ℓ𝑋𝑖

)
=

1
2
(𝑌 𝜃𝑛 )𝑇

©«
0 𝐼𝑛−2ℓ𝜔𝑛

𝐼𝑛−2ℓ𝜔𝑛 0

ª®®¬𝑌 𝜃𝑛 , (2.47)

where 𝜃 ∈ {1, 2}, ℓ ∈ Z+, and

∇𝑘𝜃,1,ℓ𝑋𝑖 =
ℓ̄∑
𝑗=0
𝑐i,𝜃,1,ℓ ( 𝑗)𝑋𝑘 (xi, 𝑗 ), 𝑖 ∈ {1, . . . , 𝑛 − 2ℓ𝜔𝑛}, 𝑘 = 1, 2. (2.48)
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Proposition 3. When 2(𝜈11 + 𝜈22) < 4𝜈12 < {(2(𝜈11 + 𝜈22) + 1) ∧ 4ℓ} and 𝜈11 ∨ 𝜈22 < ℓ,

𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12

𝑎.𝑠.→ 1 as 𝑛→ ∞, (2.49)

where 𝜃 ∈ {1, 2} and ℓ ∈ Z+.

Proof. It follows from Theorem 1 (a) in Loh et al. (2021) that as 𝑛→ ∞,

𝐸𝑍𝜃𝑛,12 =

(
𝜔𝑛𝜃

𝑛

)2𝜈12

(𝑛 − 2ℓ𝜔𝑛) ©«𝛽∗
∑

1≤ 𝑗 ,𝑘≤ℓ
𝑐 𝑗 ,𝜃,1,ℓ𝑐𝑘,𝜃,1,ℓ𝐺𝜈12 (| 𝑗 − 𝑘 |) + 𝑜(1)

ª®¬ , (2.50)

where 𝜃 ∈ {1, 2} and ℓ ∈ Z+. For 𝑘 = 1, 2, let

∇𝑘𝜃,ℓ𝑋 =
(
∇𝑘𝜃,1,ℓ𝑋𝑖

)𝑛−2ℓ𝜔𝑛

𝑖=1

and write 𝑊 𝑘
𝜃𝜃 (𝑛, ℓ) = 𝐶𝑜𝑣(∇𝑘𝜃,ℓ𝑋,∇

𝑘
𝜃,ℓ𝑋), 𝑊

12
𝜃𝜃 (𝑛, ℓ) = 𝐶𝑜𝑣(∇1

𝜃,ℓ𝑋,∇2
𝜃,ℓ𝑋). Then the variance of

the covariation follows

𝑣𝑎𝑟

(
𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12

)
=
𝐸 (𝑍𝜃𝑛,12)

2 − (𝐸𝑍𝜃𝑛,12)
2

(𝐸𝑍𝜃𝑛,12)2

=

∑
1≤𝑖, 𝑗≤𝑛−2ℓ𝜔𝑛

𝐸
(
∇1
𝜃,1,ℓ𝑋𝑖∇1

𝜃,1,ℓ𝑋 𝑗∇2
𝜃,1,ℓ𝑋𝑖∇2

𝜃,1,ℓ𝑋 𝑗

)
− (𝐸𝑍𝜃𝑛,12)

2

(𝐸𝑍𝜃𝑛,12)2

=
(𝐸𝑍𝜃𝑛,12)

2 + ∑
1≤𝑖, 𝑗≤𝑛−2ℓ𝜔𝑛

(
(𝑊1

𝜃𝜃)𝑖, 𝑗 (𝑊2
𝜃𝜃)𝑖, 𝑗 + (𝑊12

𝜃𝜃 )2
𝑖, 𝑗

)
− (𝐸𝑍𝜃𝑛,12)

2

(𝐸𝑍𝜃𝑛,12)2

=
1

(𝐸𝑍𝜃𝑛,12)2

∑
1≤𝑖, 𝑗≤𝑛−2ℓ𝜔𝑛

(𝑊1
𝜃𝜃)𝑖, 𝑗 (𝑊2

𝜃𝜃)𝑖, 𝑗 + (𝑊12
𝜃𝜃 )2

𝑖, 𝑗 .

It follows from the same manner as in (3.18-3.19) of Loh et al. (2021) that, based on the definition

of 𝑐𝑖,𝜃,1,ℓ in (A.20) and the Taylor expansion of the function 𝐶12,

1
(𝐸𝑍𝜃𝑛,12)2

∑
1≤𝑖, 𝑗≤𝑛−2ℓ𝜔𝑛

(𝑊12
𝜃𝜃 )2

𝑖, 𝑗 =



𝑂
(𝜔𝑛

𝑛

)
, 0 < 𝜈12 < ℓ − 1/4,

𝑂
(
𝜔𝑛

𝑛 log 𝑛
𝜔𝑛

)
, 𝜈12 = ℓ − 1/4,

𝑂
( (𝜔𝑛

𝑛

)4ℓ−4𝜈12
)
, ℓ − 1/4 < 𝜈12 < ℓ

(2.51)
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as 𝑛→ ∞. Similarly, when 𝜈11 ∨ 𝜈22 < ℓ,

1
(𝐸𝑍𝜃𝑛,12)2

∑
1≤𝑖, 𝑗≤𝑛−2ℓ𝜔𝑛

(𝑊1
𝜃𝜃)𝑖, 𝑗 (𝑊2

𝜃𝜃)𝑖, 𝑗

=



𝑂
( (𝜔𝑛

𝑛

)2𝜈11+2𝜈22−4𝜈12+1
)
, 0 < 2(𝜈11 + 𝜈22) < 4ℓ − 1,

𝑂
( (𝜔𝑛

𝑛

)2𝜈11+2𝜈22−4𝜈12+1 log 𝑛
𝜔𝑛

)
, 2(𝜈11 + 𝜈22) = 4ℓ − 1,

𝑂
( (𝜔𝑛

𝑛

)4ℓ−4𝜈12
)
, 4ℓ − 1 < 2(𝜈11 + 𝜈22) < 4ℓ

(2.52)

as 𝑛→ ∞. Thus,

𝑣𝑎𝑟

(
𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12

)
=



𝑂
( (𝜔𝑛

𝑛

)2𝜈11+2𝜈22−4𝜈12+1
)
, 0 < 2(𝜈11 + 𝜈22) < 4𝜈12 ≤ 4ℓ − 1,

𝑂
( (𝜔𝑛

𝑛

)2𝜈11+2𝜈22−4𝜈12+1 log 𝑛
𝜔𝑛

)
, 4ℓ − 1 = 2(𝜈11 + 𝜈22) < 4𝜈12 < 4ℓ,

𝑂
( (𝜔𝑛

𝑛

)4ℓ−4𝜈12
)
, 4ℓ − 1 < 2(𝜈11 + 𝜈22) < 4𝜈12 < 4ℓ

(2.53)

as 𝑛→ ∞. Consequently, when 2(𝜈11 + 𝜈22) < 4𝜈12 < {(2(𝜈11 + 𝜈22) + 1) ∧ 4ℓ} and 𝜈11 ∨ 𝜈22 < ℓ,

𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12

𝑃→ 1 as 𝑛→ ∞.

According to the definition in (2.47),

𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12

d
= 𝑈𝑇Σ𝜃𝑛𝑈,

where𝑈 ∼ 𝑁 (0, 𝐼2(𝑛−2ℓ𝜔𝑛)) and

Σ𝜃𝑛 =
1

2𝐸𝑍𝜃𝑛,12
Cov(𝑌 𝜃𝑛 )1/2 ©«

0 𝐼𝑛−2ℓ𝜔𝑛

𝐼𝑛−2ℓ𝜔𝑛 0

ª®®¬ Cov(𝑌 𝜃𝑛 )1/2.

The Hanson-Wright inequality implies that there exists an absolute constant𝐶 > 0 such that∀𝜖 > 0,

𝑃

(����� 𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12
− 1

����� ≥ 𝜖
)
= 𝑃

(��𝑈𝑇Σ𝜃𝑛𝑈 − 𝐸 [𝑈𝑇Σ𝜃𝑛𝑈]
�� ≥ 𝜖 )

≤ 2 exp

(
−𝐶min

{
𝜖

| |Σ𝜃𝑛 | |2
,

𝜖2

| |Σ𝜃𝑛 | |2𝐹

})
. (2.54)

Since | |Σ𝜃𝑛 | |2 ≤ ||Σ𝜃𝑛 | |𝐹 and

| |Σ𝜃𝑛 | |2𝐹 =
1
2
𝑣𝑎𝑟

(
𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12

)
,
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the Borel-Cantelli lemma together with (2.53) and (2.54) induces that if 2(𝜈11 + 𝜈22) < 4𝜈12 <

{(2(𝜈11 + 𝜈22) + 1) ∧ 4ℓ} and 𝜈11 ∨ 𝜈22 < ℓ, then

𝑍𝜃𝑛,12

𝐸𝑍𝜃𝑛,12

𝑎.𝑠.→ 1 as 𝑛→ ∞. (2.55)

This finishes the proof.

Consequently, the estimator defined as

�̂�12 =
log(𝑍2

𝑛,12/𝑍1
𝑛,12)2

4 log 2
(2.56)

is a strongly consistent estimator for 𝜈12 based on irregularly spaced data.

Theorem 7. Under the conditions of Proposition 3,

�̂�12
𝑎.𝑠.→ 𝜈12 as 𝑛→ ∞. (2.57)

Proof. It follows from (2.50) that

𝐸𝑍2
𝑛,12

𝐸𝑍1
𝑛,12

→ 22𝜈12 as 𝑛→ ∞.

By the result of Proposition 3,

𝑍2
𝑛,12

𝑍1
𝑛,12

=
𝑍2
𝑛,12/𝐸𝑍2

𝑛,12

𝑍1
𝑛,12/𝐸𝑍1

𝑛,12
·
𝐸𝑍2

𝑛,12

𝐸𝑍1
𝑛,12

𝑎.𝑠.→ 22𝜈12 as 𝑛→ ∞. (2.58)

The proof is completed by applying the continuous mapping theorem.
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CHAPTER 3

ANISOTROPIC ORNSTEIN-UHLENBECK FIELD

3.1 Introduction

Proposed by Uhlenbeck and Ornstein (1930), the Ornstein-Uhlenbeck process is widely used

in spatial statistics and finance. Denote by {𝑊 (𝑢, 𝑡); 𝑢, 𝑡 ∈ R+} a standard Wiener field, then the

random field

𝑋 (𝑢, 𝑡) = 𝜎 exp(−𝜆𝑢 − 𝜇𝑡)𝑊
(
𝑒2𝜆𝑢, 𝑒2𝜇𝑡

)
, 𝑢, 𝑡 ∈ R (3.1)

is a zero-mean stationary Ornstein-Uhlenbeck field on R2 with covariance function

Cov (𝑋 (𝑢, 𝑡) , 𝑋 (𝑣, 𝑠)) = 𝜎2 exp (−𝜆 |𝑢 − 𝑣 | − 𝜇 |𝑡 − 𝑠 |) , ∀𝑢, 𝑡, 𝑣, 𝑠 ∈ R, (3.2)

where (𝜎2, 𝜆, 𝜇) ∈ R3
>0. As indicated by Theorem 7.2 in Piterbarg (1995), the parameters 𝜎2,

𝜆, and 𝜇 characterize the high excursion probability of 𝑋 on a closed Jordan set (the details are

provided in Appendix B). Estimating their values is thus of significance in extreme value theory

and has applications in risk assessment for rare events.

Ying (1993) proves the strong consistency and asymptotic normality of themaximum likelihood

estimators (MLEs) for 𝜎2, 𝜆, and 𝜇 in (3.2), thus has presented the identifiability of the parame-

ters. The MLEs are asymptotically efficient as shown by van der Vaart (1996). The MLE is also

commonly used to estimate covariance parameter under other models. For Gaussian random fields

on R𝑑 (𝑑 = 1, 2, 3) with the isotropic Matérn covariance function, Bachoc et al. (2019) studied

the asymptotic distributions of MLE and constrained MLE for the variance and correlation length

parameters. Bevilacqua et al. (2019) investigated strong consistency and asymptotic distribution of

the MLE for the microergodic parameters in generalizedWendland covariance functions. However,

the calculation of precision matrices and numerical optimizations usually make it computationally

expensive to get MLEs. To reduce the computational cost, approaches aiming at sparse covariance

matrices or sparse precision matrices have been widely studied, such as covariance tapering (Furrer

et al., 2006; Kaufman et al., 2008; Du et al., 2009) and Vecchia approximations (Vecchia, 1988;

Pardo-Igúzquiza and Dowd, 1997; Katzfuss and Guinness, 2021).
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For Gaussian random fields with the covariance function

Cov (𝑋 (u) , 𝑋 (v)) = 𝜎2
𝑑∏
𝑖=1

exp (−𝜃𝑖 |𝑢𝑖 − 𝑣𝑖 |𝛾) , ∀u, v ∈ R𝑑 , (3.3)

Lam and Loh (2000) proved the strong consistency of MLEs for 𝜃1, . . . , 𝜃𝑑 when 𝛾 = 2, based

on observations on a regular lattice. Later, Wang (2010) provided consistent estimators for 𝜎2

and 𝜃1, . . . , 𝜃𝑑 using quadratic variations and spectral analysis when 𝑑 ≥ 2 and 0 < 𝛾 < 1. The

covariance function of the Ornstein-Uhlenbeck field 𝑋 we consider in this chapter is a special case

of (3.3) with 𝑑 = 2 and 𝛾 = 1. Since 𝑋 is Markovian, its precision matrix has sparse closed-form

expression (Baldi Antognini and Zagoraiou, 2010), which reduces the computational complexity

and the memory storage requirement of MLEs. The estimators we propose in this chapter are

computationally more efficient thanMLEs, while their strong consistency and asymptotic normality

still hold.

This chapter is organized as follows. We formulate estimations for 𝜎2𝜇, 𝜎2𝜆, and 𝜎2𝜆𝜇 in

Section 3.2 based on MLEs. Section 3.3 includes estimations for 𝜎2, 𝜆, and 𝜇, as well as the

asymptotic behaviors of the estimators. Some simulation results are presented in Section 3.4. In

Section 3.5, conclusions and our future research plans are provided.

3.2 Product Estimation

Denote by 𝑥𝑖 𝑗 = 𝑋
(
𝑢𝑖, 𝑡 𝑗

)
, 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑛)𝑇 , 𝑥 = (𝑥𝑇1 , 𝑥𝑇2 , . . . , 𝑥𝑇𝑚)𝑇 ∈ R𝑚𝑛 and

𝐴 (𝜆) =
(
𝑒−𝜆 |𝑢𝑖−𝑢 𝑗 |

)
𝑚×𝑚

, 𝐵 (𝜇) =
(
𝑒−𝜇 |𝑡𝑖−𝑡 𝑗 |

)
𝑛×𝑛

, (3.4)

where 0 = 𝑢0 < 𝑢1 < · · · < 𝑢𝑚 = 1, 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1. Then 𝑥 ∼ 𝑁
(
0, 𝜎2𝐴 (𝜆) ⊗ 𝐵 (𝜇)

)
.

For notational convenience, write Δ𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1 (𝑖 = 1, · · · , 𝑚) and Δ𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 (𝑖 = 1, · · · , 𝑛).

Suppose max𝑖 Δ𝑢𝑖 → 0 as 𝑚 → ∞ and max𝑖 Δ𝑡𝑖 → 0 as 𝑛 → ∞. Define estimators for 𝜎2𝜇, 𝜎2𝜆,

and 𝜎2𝜆𝜇 as

𝜎2𝜇 =
1
𝑛

𝑚∑
𝑖=1

𝑥𝑇𝑖·𝐵
−1(1)𝑥𝑖·Δ𝑢𝑖, (3.5)

𝜎2𝜆 =
1
𝑚

𝑛∑
𝑗=1
𝑥𝑇· 𝑗 𝐴

−1(1)𝑥· 𝑗Δ𝑡 𝑗 , (3.6)
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𝜎2𝜆𝜇 =
1
𝑚𝑛

𝑥𝑇
(
𝐴−1(1) ⊗ 𝐵−1(1)

)
𝑥. (3.7)

In what follows, we discuss the asymptotic behaviors of the estimators in (3.5-3.7) as 𝑛 → ∞ and

𝑚 → ∞.

Proposition 4. Under model (3.2), as 𝑛→ ∞ and 𝑚 → ∞,

𝐸𝜎2𝜇 = 𝜎2𝜇 − 𝜎2 (𝜇 + 1)2 − 4
2𝑛

+ 𝑜(𝑛−1),

𝐸𝜎2𝜆 = 𝜎2𝜆 − 𝜎2 (𝜆 + 1)2 − 4
2𝑚

+ 𝑜(𝑚−1),

𝐸𝜎2𝜆𝜇 = 𝜎2𝜆𝜇 − 𝜎2𝑚𝜆((𝜇 + 1)2 − 4) + 𝑛𝜇((𝜆 + 1)2 − 4)
2𝑚𝑛

+ 𝑜(𝑛−1) + 𝑜(𝑚−1).

Proof. For any 1 ≤ 𝑖 ≤ 𝑚, since 𝑥𝑖· ∼ 𝑁
(
0, 𝜎2𝐵(𝜇)

)
, we have

𝐸

(
1
𝑛
𝑥𝑇𝑖·𝐵

−1(1)𝑥𝑖·
)
=
𝜎2

𝑛
Tr

(
𝑀𝐵
𝜇

)
,

where 𝑀𝐵
𝜇 = 𝐵−1(1)𝐵(𝜇). As a result,

𝐸𝜎2𝜇 =
𝑚∑
𝑖=1

𝐸

(
1
𝑛
𝑥𝑇𝑖·𝐵

−1(1)𝑥𝑖·
)
Δ𝑢𝑖 =

𝜎2

𝑛
Tr

(
𝑀𝐵
𝜇

)
because

∑𝑚
𝑖=1 Δ𝑢𝑖 = 1.

It is well known that the 𝑛 × 𝑛 precision matrix 𝐵−1(1) has entries as

(
𝐵−1(1)

)
𝑖, 𝑗

=



1
1−exp(−2|𝑡1−𝑡2 |) , if 𝑖 = 𝑗 = 1,

1
1−exp(−2|𝑡𝑛−1−𝑡𝑛 |) , if 𝑖 = 𝑗 = 𝑛,

1
1−exp(−2|𝑡𝑖−1−𝑡𝑖 |) +

exp(−2|𝑡𝑖−𝑡𝑖+1 |)
1−exp(−2|𝑡𝑖−𝑡𝑖+1 |) , if 1 < 𝑖 = 𝑗 < 𝑛,

− exp(−|𝑡𝑖−𝑡 𝑗 |)
1−exp(−2|𝑡𝑖−𝑡 𝑗 |) , if |𝑖 − 𝑗 | = 1,

0, if |𝑖 − 𝑗 | > 1.

Thus, the entries of 𝑀𝐵
𝜇 are

(
𝑀𝐵
𝜇

)
𝑖, 𝑗

=



�̃�2𝑏1 𝑗 − 𝑞1 𝑗 , if 𝑖 = 1,

(�̃�𝑖 + 𝐵𝑖)𝑏𝑖 𝑗 − 𝑝𝑖 𝑗 − 𝑞𝑖 𝑗 , if 1 < 𝑖 < 𝑛,

�̃�𝑛𝑏𝑛 𝑗 − 𝑝𝑛 𝑗 , if 𝑖 = 𝑛,

(3.8)
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where 1 ≤ 𝑗 ≤ 𝑛,

𝐵𝑖 =
exp(−2|𝑡𝑖+1 − 𝑡𝑖 |)

1 − exp(−2|𝑡𝑖+1 − 𝑡𝑖 |)
, �̃�𝑖 = 1 + 𝐵𝑖−1, 𝑏𝑖 𝑗 = exp(−𝜇 |𝑡𝑖 − 𝑡 𝑗 |),

𝑝𝑖 𝑗 =
exp(−|𝑡𝑖−1 − 𝑡𝑖 |)

1 − exp(−2|𝑡𝑖−1 − 𝑡𝑖 |)
𝑏 (𝑖−1) 𝑗 , 𝑞𝑖 𝑗 =

exp(−|𝑡𝑖+1 − 𝑡𝑖 |)
1 − exp(−2|𝑡𝑖+1 − 𝑡𝑖 |)

𝑏 (𝑖+1) 𝑗 .

Since max𝑖 Δ𝑡𝑖 → 0 as 𝑛→ ∞, it further holds that

Tr
(
𝑀𝐵
𝜇

)
= 𝑛 + 2

𝑛∑
𝑖=2

𝑒−2Δ𝑡𝑖 (1 − 𝑒−(𝜇−1)Δ𝑡𝑖 )
1 − 𝑒−2Δ𝑡𝑖

= 𝑛 + (𝜇 − 1)
𝑛∑
𝑖=2

(
1 − Δ𝑡𝑖 +𝑂

(
(Δ𝑡𝑖)2

))
= 𝑛 + (𝜇 − 1) (𝑛 − 1 − (1 − 𝑡1) + 𝑜(1))

and 𝐸𝜎2𝜇 = 𝜎2

𝑛 Tr
(
𝑀𝐵
𝜇

)
= 𝜎2𝜇 − 𝜎2 (𝜇+1)2−4

2𝑛 + 𝑜(𝑛−1) as 𝑛→ ∞. In a similar manner, there is

𝐸𝜎2𝜆 = 𝜎2𝜆 − 𝜎2 (𝜆 + 1)2 − 4
2𝑚

+ 𝑜(𝑚−1)

as 𝑚 → ∞.

Moreover,

𝐸𝜎2𝜆𝜇 =
1
𝑚𝑛

𝐸𝑥𝑇
(
𝐴−1(1) ⊗ 𝐵−1(1)

)
𝑥

=
𝜎2

𝑚𝑛
Tr

((
𝐴−1(1) ⊗ 𝐵−1(1)

)
(𝐴(𝜆) ⊗ 𝐵(𝜇))

)
=
𝜎2

𝑚𝑛
Tr

(
𝐴−1(1)𝐴(𝜆)

)
Tr

(
𝐵−1(1)𝐵(𝜇)

)
=

1
𝜎2𝐸𝜎

2𝜆𝐸𝜎2𝜇

= 𝜎2𝜆𝜇 − 𝜎2𝑚𝜆((𝜇 + 1)2 − 4) + 𝑛𝜇((𝜆 + 1)2 − 4)
2𝑚𝑛

+ 𝑜(𝑛−1) + 𝑜(𝑚−1)

as 𝑛→ ∞ and 𝑚 → ∞. This finishes the proof.

Proposition 4 indicates that 𝜎2𝜆, 𝜎2𝜇, and 𝜎2𝜆𝜇 are asymptotically unbiased estimators for

𝜎2𝜆, 𝜎2𝜇, and 𝜎2𝜆𝜇. To further study the convergence of variances of the estimators, we first

introduce the following lemma regarding variances of quadratic forms.
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Lemma 2. Under model (3.2), as 𝑛→ ∞ and 𝑚 → ∞,

Var
(
1
𝑛
𝑥𝑇𝑖·𝐵

−1(1)𝑥𝑖·
)
=

2
𝑛
(𝜎2𝜇)2 +𝑂 (𝑛−2), ∀1 ≤ 𝑖 ≤ 𝑚, (3.9)

Var
(

1
𝑚
𝑥𝑇· 𝑗 𝐴

−1(1)𝑥· 𝑗
)
=

2
𝑚
(𝜎2𝜆)2 +𝑂 (𝑚−2), ∀1 ≤ 𝑗 ≤ 𝑛. (3.10)

Proof. Since 𝑥𝑖· ∼ 𝑁
(
0, 𝜎2𝐵(𝜇)

)
for any 1 ≤ 𝑖 ≤ 𝑚, we have

Var
(
1
𝑛
𝑥𝑇𝑖·𝐵

−1(1)𝑥𝑖·
)
= 2

(
𝜎2

𝑛

)2

Tr
(
(𝑀𝐵

𝜇 )2
)
,

where 𝑀𝐵
𝜇 = 𝐵−1(1)𝐵(𝜇). Recall the entries of 𝑀𝐵

𝜇 in (3.8), we thus have

Tr
(
(𝑀𝐵

𝜇 )2
)
=

(
�̃�2𝑏11 − 𝑞11

)2 + 2
(
�̃�2𝑏1𝑛 − 𝑞1𝑛

) (
�̃�𝑛𝑏𝑛1 − 𝑝𝑛1

)
+

(
�̃�𝑛𝑏𝑛𝑛 − 𝑝𝑛𝑛

)2

+ 2
𝑛−1∑
𝑖=2

(
�̃�2𝑏1𝑖 − 𝑞1𝑖

) ( (
�̃�𝑖 + 𝐵𝑖

)
𝑏𝑖1 − 𝑝𝑖1 − 𝑞𝑖1

)
+ 2

𝑛−1∑
𝑖=2

(
�̃�𝑛𝑏𝑛𝑖 − 𝑝𝑛𝑖

) ( (
�̃�𝑖 + 𝐵𝑖

)
𝑏𝑖𝑛 − 𝑝𝑖𝑛 − 𝑞𝑖𝑛

)
+
𝑛−1∑
𝑘=2

𝑛−1∑
𝑖=2

( (
�̃�𝑘 + 𝐵𝑘

)
𝑏𝑘𝑖 − 𝑝𝑘𝑖 − 𝑞𝑘𝑖

) ( (
�̃�𝑖 + 𝐵𝑖

)
𝑏𝑖𝑘 − 𝑝𝑖𝑘 − 𝑞𝑖𝑘

)
.

For the convenience of expression, we introduce a few more notations as below. Denote by

𝑇1 = (�̃�2 − 𝑞11)2 + (�̃�𝑛 − 𝑝𝑛𝑛)2 +
𝑛−1∑
𝑘=2

(�̃�𝑘 + 𝐵𝑘 − 𝑝𝑘𝑘 − 𝑞𝑘𝑘 )2,

𝑇2 =
𝑛−1∑
𝑖=2

(
(�̃�2𝑏𝑖1 − 𝑞1𝑖)

(
(�̃�𝑖 + 𝐵𝑖)𝑏𝑖1 − 𝑝𝑖1 − 𝑞𝑖1

)
+ (�̃�𝑛𝑏𝑖𝑛 − 𝑝𝑛𝑖)

(
(�̃�𝑖 + 𝐵𝑖)𝑏𝑖𝑛 − 𝑝𝑖𝑛 − 𝑞𝑖𝑛

) )
,

𝑇3 =
𝑛−1∑
𝑖,𝑘=2
𝑘≠𝑖

(
(�̃�𝑘 + 𝐵𝑘 )𝑏𝑘𝑖 − 𝑝𝑘𝑖 − 𝑞𝑘𝑖

) (
(�̃�𝑖 + 𝐵𝑖)𝑏𝑖𝑘 − 𝑝𝑖𝑘 − 𝑞𝑖𝑘

)
,

𝑇4 = (�̃�2𝑏1𝑛 − 𝑞1𝑛) (�̃�𝑛𝑏1𝑛 − 𝑝𝑛1),

then Tr
(
(𝑀𝐵

𝜇 )2
)
= 𝑇1 + 2𝑇2 + 𝑇3 + 2𝑇4. As 𝑛→ ∞,

𝑇1 =
1
2
(𝜇 + 1)2 − 1

4
(𝜇 + 1)(𝜇2 − 1) (Δ𝑡2 + Δ𝑡𝑛) + (𝑛 − 2)𝜇2 − 1

2
𝜇(𝜇2 − 1)(𝑡𝑛 − 𝑡2 + 𝑡𝑛−1 − 𝑡1)

+
𝑛∑
𝑘=2

𝑂 ((Δ𝑡𝑘 )2) +
𝑛−1∑
𝑘=2

𝑂 (Δ𝑡𝑘Δ𝑡𝑘+1)

=𝑛𝜇2 +𝑂 (1).
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It thus remains to prove 2𝑇2 + 𝑇3 + 2𝑇4 = 𝑂 (1) as 𝑛→ ∞.

As was previously defined,

�̃�2𝑏1𝑘 − 𝑞1𝑘 = 𝑒
−𝜇(𝑡𝑘−𝑡1) 1 − 𝑒−(1−𝜇)Δ𝑡2

1 − 𝑒−2Δ𝑡2
, ∀𝑘 ≥ 2,

�̃�𝑛𝑏𝑛𝑘 − 𝑝𝑛𝑘 = 𝑒−𝜇(𝑡𝑛−𝑡𝑘)
1 − 𝑒−(1−𝜇)Δ𝑡𝑛

1 − 𝑒−2Δ𝑡𝑛
, ∀𝑘 ≤ 𝑛 − 1.

For any 2 ≤ 𝑖, 𝑘 ≤ 𝑛 − 1 and 𝑖 ≠ 𝑘 ,

(�̃�𝑘 + 𝐵𝑘 )𝑏𝑘𝑖 − 𝑝𝑘𝑖 − 𝑞𝑘𝑖

=
𝑒−𝜇 |𝑡𝑘−𝑡𝑖 | − 𝑒−Δ𝑡𝑘−𝜇 |𝑡𝑘−1−𝑡𝑖 |

1 − 𝑒−2Δ𝑡𝑘
+ 𝑒

−2Δ𝑡𝑘+1−𝜇 |𝑡𝑘−𝑡𝑖 | − 𝑒−Δ𝑡𝑘+1−𝜇 |𝑡𝑘+1−𝑡𝑖 |

1 − 𝑒−2Δ𝑡𝑘+1

=


𝑒−𝜇(𝑡𝑘−𝑡𝑖)

(
1−𝑒−(1−𝜇)Δ𝑡𝑘

1−𝑒−2Δ𝑡𝑘
+ 𝑒−2Δ𝑡𝑘+1−𝑒−(1+𝜇)Δ𝑡𝑘+1

1−𝑒−2Δ𝑡𝑘+1

)
, if 𝑖 ≤ 𝑘 − 1,

𝑒−𝜇(𝑡𝑖−𝑡𝑘)
(

1−𝑒−(1+𝜇)Δ𝑡𝑘
1−𝑒−2Δ𝑡𝑘

+ 𝑒−2Δ𝑡𝑘+1−𝑒−(1−𝜇)Δ𝑡𝑘+1

1−𝑒−2Δ𝑡𝑘+1

)
, if 𝑖 ≥ 𝑘 + 1.

Thus as 𝑛→ ∞,

𝑇3 =
1
8

(
1 − 𝜇2

)2 𝑛−1∑
𝑖,𝑘=2
𝑖<𝑘

𝑒−2𝜇(𝑡𝑘−𝑡𝑖)
(
𝑡𝑘+1 − 𝑡𝑘−1 +𝑂 ((Δ𝑡𝑘 )2) +𝑂 ((Δ𝑡𝑘+1)2)

)
(𝑡𝑖+1 − 𝑡𝑖−1

+𝑂 ((Δ𝑡𝑖)2) +𝑂 ((Δ𝑡𝑖+1)2)
)

∝
𝑛−1∑
𝑖,𝑘=2
𝑖<𝑘

𝑒−2𝜇(𝑡𝑘−𝑡𝑖) (𝑡𝑘+1 − 𝑡𝑘−1) (𝑡𝑖+1 − 𝑡𝑖−1) + 𝑜(1)

≤ 2
𝑛−1∑
𝑘=2

(Δ𝑡𝑘 + Δ𝑡𝑘+1) + 𝑜(1)

= 𝑂 (1).

Similarly, 𝑇2 = 𝑂 (1) and 𝑇4 = 𝑂 (1) as 𝑛→ ∞. This finishes the proof of (3.9). The proof of (3.10)

follows the same manner and is thus omitted.

Based on Lemma 2, the rates of convergence for 𝜎2𝜆, 𝜎2𝜇, and 𝜎2𝜆𝜇 are derived as follows.

Proposition 5. Under model (3.2), as 𝑛→ ∞ and 𝑚 → ∞,

Var(𝜎2𝜇) = 1
𝑛𝜆2

(
2𝜆 − 1 + 𝑒−2𝜆

)
(𝜎2𝜇)2 +𝑂 (𝑛−2),
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Var(𝜎2𝜆) = 1
𝑚𝜇2

(
2𝜇 − 1 + 𝑒−2𝜇

)
(𝜎2𝜆)2 +𝑂 (𝑚−2),

Var(𝜎2𝜆𝜇) = 2
𝑚𝑛

(
𝜎2𝜆𝜇

)2
+𝑂

(
𝑚−2𝑛−1

)
+𝑂

(
𝑚−1𝑛−2

)
.

Proof. Under model (3.2),

Var(𝜎2𝜇) = Var
(
1
𝑛
𝑥𝑇

(
𝐷𝑚 ⊗ 𝐵−1(1)

)
𝑥

)
= 2

(
𝜎2

𝑛

)2

Tr
((
(𝐷𝑚𝐴(𝜆)) ⊗

(
𝐵−1(1)𝐵(𝜇)

))2
)

= 2
(
𝜎2

𝑛

)2

Tr
(
(𝐷𝑚𝐴(𝜆))2

)
Tr

(
(𝑀𝐵

𝜇 )2
)
,

where 𝐷𝑚 denotes the 𝑚 × 𝑚 diagonal matrix with (𝐷𝑚)𝑖𝑖 = Δ𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑚.

As 𝑚 → ∞,

Tr
(
(𝐷𝑚𝐴(𝜆))2

)
=

𝑚∑
𝑖, 𝑗=1

Δ𝑢𝑖Δ𝑢 𝑗𝑒
−2𝜆 |𝑢𝑖−𝑢 𝑗 |

→
∫ 1

0

∫ 1

0
𝑒−2𝜆 |𝑥−𝑦 |𝑑𝑥𝑑𝑦

=
2𝜆 − 1 + 𝑒−2𝜆

2𝜆2 .

(3.11)

It follows from the proof of Lemma 2 that Tr
(
(𝑀𝐵

𝜇 )2
)
= 𝑛𝜇2 +𝑂 (1) as 𝑛→ ∞. Thus,

Var(𝜎2𝜇) = 1
𝑛𝜆2

(
2𝜆 − 1 + 𝑒−2𝜆

)
(𝜎2𝜇)2 +𝑂 (𝑛−2)

as 𝑛→ ∞ and 𝑚 → ∞. The proof for the variance of 𝜎2𝜆 follows the same manner.

Moreover, as 𝑛→ ∞ and 𝑚 → ∞,

Var(𝜎2𝜆𝜇) = 2
(
𝜎2

𝑚𝑛

)2

Tr
(((

𝐴−1(1)𝐴(𝜆)
)
⊗

(
𝐵−1(1)𝐵(𝜇)

))2
)

=
1

2𝜎4 Var
(
1
𝑛
𝑥𝑇1·𝐵

−1(1)𝑥1·

)
Var

(
1
𝑚
𝑥𝑇· 𝑗 𝐴

−1(1)𝑥· 𝑗
)

=
2
𝑚𝑛

(
𝜎2𝜆𝜇

)2
+𝑂

(
𝑚−2𝑛−1

)
+𝑂

(
𝑚−1𝑛−2

)
by the results of Lemma 2.
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For each of the estimators formulated in (3.5-3.7), its asymptotic distribution is shown in the

following theorem.

Theorem 8. Under model (3.2), as 𝑛→ ∞ and 𝑚 → ∞,

√
𝑛(𝜎2𝜇 − 𝜎2𝜇) 𝑑→ 𝑁

(
0,

(
2
𝜆
− 1 − 𝑒−2𝜆

𝜆2

)
(𝜎2𝜇)2

)
,

√
𝑚(𝜎2𝜆 − 𝜎2𝜆) 𝑑→ 𝑁

(
0,

(
2
𝜇
− 1 − 𝑒−2𝜇

𝜇2

)
(𝜎2𝜆)2

)
.

Furthermore, when 𝑚 = 𝑟𝑛 and 𝑛→ ∞,

√
𝑚𝑛(𝜎2𝜆𝜇 − 𝜎2𝜆𝜇) 𝑑→ 𝑁

(
−𝜎2 𝑟𝜆((𝜇 + 1)2 − 4) + 𝜇((𝜆 + 1)2 − 4)

2
√
𝑟

, 2(𝜎2𝜆𝜇)2
)
.

Proof. Under model (3.2), the joint density of 𝑥 is

𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇) := (2𝜋𝜎2)−𝑚𝑛/2 | (𝐴(𝜆) ⊗ 𝐵(𝜇)) |−1/2 exp
(
− 1

2𝜎2 𝑥
𝑇 (𝐴(𝜆) ⊗ 𝐵(𝜇))−1 𝑥

)
. (3.12)

For any 𝑚, 𝑛 ∈ Z+,

√
𝑚𝑛(𝜎2𝜆𝜇 − 𝜎2𝜆𝜇) = 1

√
𝑚𝑛

𝑥𝑇
((
𝐴−1(1) ⊗ 𝐵−1(1)

)
− 𝜆𝜇

(
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

))
𝑥

+
√
𝑚𝑛𝜆𝜇

(
𝑥𝑇
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

𝑚𝑛
𝑥 − 𝜎2

)
=

2𝜎2
√
𝑚𝑛

(
𝐸 log

𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

− log
𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

)
+ 1
√
𝑚𝑛

𝐸𝑥𝑇
((
𝐴−1(1) ⊗ 𝐵−1(1)

)
− 𝜆𝜇

(
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

))
𝑥

+
√
𝑚𝑛𝜆𝜇

(
𝑥𝑇
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

𝑚𝑛
𝑥 − 𝜎2

)
=

2𝜎2
√
𝑚𝑛

(
𝐸 log

𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

− log
𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

)
+
√
𝑚𝑛

(
𝐸𝜎2𝜆𝜇 − 𝜎2𝜆𝜇

)
+ 𝜆𝜇
√
𝑚𝑛

(
𝑥𝑇

(
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

)
𝑥 − 𝐸𝑥𝑇

(
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

)
𝑥
)
.

Since the probability measure corresponding to 𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇) and the probability measure corre-

sponding to 𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1) are equivalent (Ying, 1993), the Radon-Nikodym derivative satisfies
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(Ibragimov and Rozanov, 1978)

𝑃

(
0 < lim

𝑚𝑛→∞
𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

< ∞
)
= 1 and −∞ < 𝐸 log

(
lim
𝑚𝑛→∞

𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

)
< ∞.

Thus as 𝑚𝑛→ ∞,

2𝜎2
√
𝑚𝑛

(
𝐸 log

𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

− log
𝑝𝐽𝑚𝑛 (𝜎2𝜆𝜇, 1, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

)
=

2𝜎2
√
𝑚𝑛

(
𝑂 (1) −𝑂𝑝 (1)

)
= 𝑜𝑝 (1).

By the Central Limit Theorem, as 𝑚𝑛→ ∞
𝜆𝜇
√
𝑚𝑛

(
𝑥𝑇

(
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

)
𝑥 − 𝐸𝑥𝑇

(
𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)

)
𝑥
)

𝑑→ 𝑁 (0, 2(𝜎2𝜆𝜇)2).

By Proposition 4, when 𝑚 = 𝑟𝑛 and 𝑛→ ∞,

√
𝑚𝑛

(
𝐸𝜎2𝜆𝜇 − 𝜎2𝜆𝜇

)
= −𝜎2 𝑟𝜆((𝜇 + 1)2 − 4) + 𝜇((𝜆 + 1)2 − 4)

2
√
𝑟

+ 𝑜(1).

As a result, when 𝑚 = 𝑟𝑛 and 𝑛→ ∞,

√
𝑚𝑛(𝜎2𝜆𝜇 − 𝜎2𝜆𝜇) 𝑑→ 𝑁

(
−𝜎2 𝑟𝜆((𝜇 + 1)2 − 4) + 𝜇((𝜆 + 1)2 − 4)

2
√
𝑟

, 2(𝜎2𝜆𝜇)2
)
. (3.13)

For any 0 ≤ 𝑢 ≤ 1, the joint density of 𝑦𝑢· := (𝑋 (𝑢, 𝑡1), 𝑋 (𝑢, 𝑡2), . . . , 𝑋 (𝑢, 𝑡𝑛)) is

𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢) := (2𝜋𝜎2)−𝑛/2 |𝐵(𝜇) |−1/2 exp
(
− 1

2𝜎2 𝑦
𝑇
𝑢·𝐵

−1(𝜇)𝑦𝑢·
)
. (3.14)

Recall that 𝐷𝑚 is the 𝑚×𝑚 diagonal matrix with (𝐷𝑚)𝑖𝑖 = Δ𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑚. For any 𝑚, 𝑛 ∈ Z+,

√
𝑛(𝜎2𝜇 − 𝜎2𝜇) = 1

√
𝑛
𝑥𝑇

((
𝐷𝑚 ⊗ 𝐵−1(1)

)
− 𝜇

(
𝐷𝑚 ⊗ 𝐵−1(𝜇)

))
𝑥

+
√
𝑛𝜎2𝜇

(
𝑥𝑇
𝐷𝑚 ⊗ 𝐵−1(𝜇)

𝜎2𝑛
𝑥 − 1

)
=

2𝜎2
√
𝑛

𝑚∑
𝑖=1

Δ𝑢𝑖

(
𝐸 log

𝑝𝐵𝑛 (𝜎2𝜇, 1; 𝑢𝑖)
𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢𝑖)

− log
𝑝𝐵𝑛 (𝜎2𝜇, 1; 𝑢𝑖)
𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢𝑖)

)
+
√
𝑛𝜎2𝜇

(
𝑥𝑇
𝐷𝑚 ⊗ 𝐵−1(𝜇)

𝜎2𝑛
𝑥 − 1

)
(3.15)

+ 1
√
𝑛
𝐸𝑥𝑇

((
𝐷𝑚 ⊗ 𝐵−1(1)

)
− 𝜇

(
𝐷𝑚 ⊗ 𝐵−1(𝜇)

))
𝑥

=
2𝜎2
√
𝑛

(
𝐸 log

𝑝𝐵𝑛 (𝜎2𝜇, 1; 𝑢1)
𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢1)

−
𝑚∑
𝑖=1

Δ𝑢𝑖 log
𝑝𝐵𝑛 (𝜎2𝜇, 1; 𝑢𝑖)
𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢𝑖)

)
+
√
𝑛
(
𝐸𝜎2𝜇 − 𝜎2𝜇

)
+ 𝜇
√
𝑛

(
𝑥𝑇

(
𝐷𝑚 ⊗ 𝐵−1(𝜇)

)
𝑥 − 𝐸𝑥𝑇

(
𝐷𝑚 ⊗ 𝐵−1(𝜇)

)
𝑥
)
. (3.16)
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By Proposition 4, as 𝑚 → ∞ and 𝑛→ ∞,

√
𝑛
(
𝐸𝜎2𝜇 − 𝜎2𝜇

)
= 𝑜(1). (3.17)

Denote by

𝐻𝑛 :=
1
√
𝑛

(
𝐷𝑚 ⊗ 𝐵−1(𝜇)

)
(𝐴(𝜆) ⊗ 𝐵(𝜇)) ,

then as 𝑛→ ∞,

Tr(𝐻2
𝑛) =

𝑚∑
𝑘, 𝑗=1

Δ𝑢𝑘Δ𝑢 𝑗𝑒
−2𝜆 |𝑢𝑘−𝑢 𝑗 | → 1

𝜆
− 1 − 𝑒−2𝜆

2𝜆2 ,

Tr(𝐻4
𝑛) <

𝑛

𝑛2 → 0.

The convergence of moment generating function implies that as 𝑚 → ∞ and 𝑛→ ∞,

𝜇
√
𝑛

(
𝑥𝑇

(
𝐷𝑚 ⊗ 𝐵−1(𝜇)

)
𝑥 − 𝐸𝑥𝑇

(
𝐷𝑚 ⊗ 𝐵−1(𝜇)

)
𝑥
)

𝑑→ 𝑁

(
0,

(
2
𝜆
− 1 − 𝑒−2𝜆

𝜆2

)
(𝜎2𝜇)2

)
. (3.18)

Since ∀0 ≤ 𝑢 ≤ 1, the probability measure corresponding to 𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢) and the probability

measure corresponding to 𝑝𝐵𝑛 (𝜎2𝜇, 1; 𝑢) are equivalent (Ying, 1991), the Radon-Nikodym deriva-

tive satisfies (Ibragimov and Rozanov, 1978)

𝑃
(
0 < 𝜌𝐵𝑢 < ∞

)
= 1, (3.19)

−∞ < 𝐸 log 𝜌𝐵𝑢 < ∞, (3.20)

where 𝜌𝐵𝑢 = lim𝑛→∞
𝑝𝐵𝑛 (𝜎2𝜇,1;𝑢)
𝑝𝐵𝑛 (𝜎2,𝜇;𝑢) .

Moreover, since the probability measure corresponding to 𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇) and the probability

measure corresponding to 𝑝𝐽𝑚𝑛 (𝜎2𝜇, 𝜆, 1) are equivalent (Ying, 1993), the Radon-Nikodym deriva-

tive satisfies (Ibragimov and Rozanov, 1978)

𝑃

(
0 < lim

𝑚𝑛→∞
𝑝𝐽𝑚𝑛 (𝜎2𝜇, 𝜆, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

< ∞
)
= 1.

Thus as 𝑚, 𝑛→ ∞,

log
𝑝𝐽𝑚𝑛 (𝜎2𝜇, 𝜆, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

= − 𝑚

2
log

|𝜎2𝜇𝐵(1) |
|𝜎2𝐵(𝜇) |

− 1
2
𝑥𝑇

(
𝐴−1(𝜆) ⊗

(
1
𝜎2𝜇

𝐵−1(1) − 1
𝜎2𝐵

−1(𝜇)
))
𝑥

=𝑂𝑝 (1).
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For any 𝑚, 𝑛 ≥ 1, denote by

𝐽𝑚𝑛 = 𝑥
𝑇

((
1
𝑚
𝐴−1(𝜆) − 𝐷𝑚

)
⊗

(
1
𝜎2𝜇

𝐵−1(1) − 1
𝜎2𝐵

−1(𝜇)
))
𝑥.

Since Tr (𝐷𝑚𝐴(𝜆)) =
∑𝑚
𝑖=1 Δ𝑢𝑖 = 1 and Tr

(
(𝐷𝑚𝐴(𝜆))2) = ∑𝑚

𝑖, 𝑗=1 Δ𝑢𝑖Δ𝑢 𝑗𝑒
−2𝜆 |𝑢𝑖−𝑢𝑘 | = 𝑂 (1), there

are

𝐸𝐽𝑚𝑛 = Tr
(((

1
𝑚
𝐴−1(𝜆) − 𝐷𝑚

)
⊗

(
1
𝜎2𝜇

𝐵−1(1) − 1
𝜎2𝐵

−1(𝜇)
)) (

𝐴(𝜆) ⊗ 𝜎2𝐵(𝜇)
))

= Tr
((

1
𝑚
𝐼𝑚 − 𝐷𝑚𝐴(𝜆)

)
⊗

(
1
𝜇
𝐵−1(1)𝐵(𝜇) − 𝐼𝑛

))
= Tr

(
1
𝑚
𝐼𝑚 − 𝐷𝑚𝐴(𝜆)

)
Tr

(
1
𝜇
𝐵−1(1)𝐵(𝜇) − 𝐼𝑛

)
= 0, ∀𝑚, 𝑛 ≥ 1,

and

Var(𝐽𝑚𝑛) = 2Tr

(((
1
𝑚
𝐼𝑚 − 𝐷𝑚𝐴(𝜆)

)
⊗

(
1
𝜇
𝐵−1(1)𝐵(𝜇) − 𝐼𝑛

))2
)

=
1
𝑚

(
1 + 𝑚Tr

(
(𝐷𝑚𝐴(𝜆))2

)
− 2Tr (𝐷𝑚𝐴(𝜆))

) (
1
𝜇2Tr

(
(𝑀𝐵

𝜇 )2
)
+ Tr(𝐼𝑛) −

2
𝜇
Tr

(
𝑀𝐵
𝜇

))
=

1
𝑚
𝑂 (𝑚) (𝑛 +𝑂 (1) + 𝑛 − 2(𝑛 +𝑂 (1)))

= 𝑂 (1) as 𝑚, 𝑛→ ∞,

where 𝑀𝐵
𝜇 = 𝐵−1(1)𝐵(𝜇). Thus, 𝐽𝑚𝑛 = 𝑂𝑝 (1) as 𝑚, 𝑛→ ∞. Hence,

𝑚∑
𝑖=1

Δ𝑢𝑖 log
𝑝𝐵𝑛 (𝜎2𝜇, 1; 𝑢𝑖)
𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢𝑖)

= −1
2

log
|𝜎2𝜇𝐵(1) |
|𝜎2𝐵(𝜇) |

− 1
2
𝑥𝑇

(
𝐷𝑚 ⊗

(
1
𝜎2𝜇

𝐵−1(1) − 1
𝜎2𝐵

−1(𝜇)
))
𝑥

=
1
𝑚

log
𝑝𝐽𝑚𝑛 (𝜎2𝜇, 𝜆, 1)
𝑝𝐽𝑚𝑛 (𝜎2, 𝜆, 𝜇)

+ 1
2
𝐽𝑚𝑛

= 𝑂𝑝 (1) (3.21)

as 𝑚, 𝑛→ ∞. Moreover, it is implied by (3.20) that

𝐸 log
𝑝𝐵𝑛 (𝜎2𝜇, 1; 𝑢1)
𝑝𝐵𝑛 (𝜎2, 𝜇; 𝑢1)

= 𝑂 (1). (3.22)
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As a result of (3.17-3.22), as 𝑚 → ∞ and 𝑛→ ∞,

√
𝑛(𝜎2𝜇 − 𝜎2𝜇) 𝑑→ 𝑁

(
0,

(
2
𝜆
− 1 − 𝑒−2𝜆

𝜆2

)
(𝜎2𝜇)2

)
. (3.23)

Similarly, for any 0 ≤ 𝑡 ≤ 1, the joint density of 𝑦·𝑡 := (𝑋 (𝑢1, 𝑡), 𝑋 (𝑢2, 𝑡), . . . , 𝑋 (𝑢𝑚, 𝑡)) is

𝑝𝐴𝑚 (𝜎2, 𝜆; 𝑡) := (2𝜋𝜎2)−𝑚/2 |𝐴(𝜆) |−1/2 exp
(
− 1

2𝜎2 𝑦
𝑇
·𝑡𝐴

−1(𝜆)𝑦·𝑡
)
. (3.24)

Denote by �̃�𝑛 the 𝑛 × 𝑛 diagonal matrix with (�̃�𝑛)𝑖𝑖 = Δ𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛. Then for any 𝑚, 𝑛 ∈ Z+,

√
𝑚(𝜎2𝜆 − 𝜎2𝜆) = 2𝜎2

√
𝑚

(
𝐸 log

𝑝𝐴𝑚 (𝜎2𝜆, 1; 𝑡1)
𝑝𝐴𝑚 (𝜎2, 𝜆; 𝑡1)

−
𝑛∑
𝑖=1

Δ𝑡𝑖 log
𝑝𝐴𝑚 (𝜎2𝜆, 1; 𝑡𝑖)
𝑝𝐴𝑚 (𝜎2, 𝜆; 𝑡𝑖)

)
+
√
𝑚

(
𝐸𝜎2𝜆 − 𝜎2𝜆

)
+ 𝜆
√
𝑚

(
𝑥𝑇

(
𝐴−1 ⊗ �̃�𝑛

)
𝑥 − 𝐸𝑥𝑇

(
𝐴−1 ⊗ �̃�𝑛

)
𝑥
)

= 𝑜𝑝 (1) + 𝑜(1) + 𝜎2𝜆
(
𝑥𝑇 �̃�𝑚𝑥 − 𝐸𝑥𝑇 �̃�𝑚𝑥

)
as 𝑚, 𝑛→ ∞, (3.25)

where �̃�𝑚 := 1√
𝑚

(
𝐴−1(𝜆) ⊗ �̃�𝑛

)
(𝐴(𝜆) ⊗ 𝐵(𝜇)). Thus,

√
𝑚(𝜎2𝜆 − 𝜎2𝜆) 𝑑→ 𝑁

(
0,

(
2
𝜇
− 1 − 𝑒−2𝜇

𝜇2

)
(𝜎2𝜆)2

)
(3.26)

as 𝑚, 𝑛→ ∞.

3.3 Separable Estimation

Based on the results presented in Section 3.2, define estimators

�̂� =
𝜎2𝜆𝜇

𝜎2𝜇
=
𝑥𝑇

(
𝐴−1(1) ⊗ 𝐵−1(1)

)
𝑥

𝑚
∑𝑚
𝑖=1 𝑥

𝑇
𝑖·𝐵

−1(1)𝑥𝑖·Δ𝑢𝑖
, (3.27)

�̂� =
𝜎2𝜆𝜇

𝜎2𝜆
=
𝑥𝑇

(
𝐴−1(1) ⊗ 𝐵−1(1)

)
𝑥

𝑛
∑𝑛
𝑗=1 𝑥

𝑇
· 𝑗 𝐴

−1(1)𝑥· 𝑗Δ𝑡 𝑗
, (3.28)

and

�̂�2 =
𝜎2𝜆𝜎2𝜇

𝜎2𝜆𝜇
=

(∑𝑛
𝑗=1 𝑥

𝑇
· 𝑗 𝐴

−1(1)𝑥· 𝑗Δ𝑡 𝑗
) (∑𝑚

𝑖=1 𝑥
𝑇
𝑖·𝐵

−1(1)𝑥𝑖·Δ𝑢𝑖
)

𝑥𝑇
(
𝐴−1(1) ⊗ 𝐵−1(1)

)
𝑥

, (3.29)

where 𝜎2𝜇, 𝜎2𝜆, and 𝜎2𝜆𝜇 are defined in (3.5-3.7), matrices 𝐴 and 𝐵 are defined in (3.4). The

main results of this chapter are regarding the joint asymptotic normality and the strong consistency

of �̂�, �̂�, and �̂�2.
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Theorem 9. Under model (3.2), if 𝑚/𝑛→ 𝑟 as 𝑛→ ∞, then

√
𝑚

©«
�̂� − 𝜆

�̂� − 𝜇

�̂�2 − 𝜎2

ª®®®®®¬
𝑑→ 𝑁

©«
0,

©«
𝑟𝐶𝜆 0 −𝑟𝜎2𝐶𝜆

𝜆

0 𝐶𝜇 −𝜎2𝐶𝜇

𝜇

−𝑟𝜎2𝐶𝜆

𝜆 −𝜎2𝐶𝜇

𝜇 𝜎4
(
𝐶𝜇

𝜇2 + 𝑟 𝐶𝜆

𝜆2

)
ª®®®®®¬
ª®®®®®¬

as 𝑛→ ∞, (3.30)

where 𝐶𝜆 = 2𝜆 − 1 + 𝑒−2𝜆 and 𝐶𝜇 = 2𝜇 − 1 + 𝑒−2𝜇.

Proof. It was shown in the proof of Theorem 8 that when 𝑚/𝑛→ 𝑟 and 𝑛→ ∞,

√
𝑚

©«
𝜎2𝜇 − 𝜎2𝜇

𝜎2𝜆 − 𝜎2𝜆

𝜎2𝜆𝜇 − 𝜎2𝜆𝜇

ª®®®®®¬
=

©«
√
𝑟𝜎2𝜇

(
𝑥𝑇 𝐷𝑚⊗𝐵−1 (𝜇)

𝜎2√𝑛 𝑥 − 𝐸𝑥𝑇 𝐷𝑚⊗𝐵−1 (𝜇)
𝜎2√𝑛 𝑥

)
+ 𝑜𝑝 (1)

𝜎2𝜆
(
𝑥𝑇 𝐴

−1 (𝜆)⊗�̃�𝑛

𝜎2√𝑚 𝑥 − 𝐸𝑥𝑇 𝐴
−1 (𝜆)⊗�̃�𝑛

𝜎2√𝑚 𝑥
)
+ 𝑜𝑝 (1)

𝜎2𝜆𝜇√
𝑛

(
𝑥𝑇 𝐴

−1 (𝜆)⊗𝐵−1 (𝜇)
𝜎2√𝑚𝑛 𝑥 − 𝐸𝑥𝑇 𝐴

−1 (𝜆)⊗𝐵−1 (𝜇)
𝜎2√𝑚𝑛 𝑥

)
+𝑂

(
1√
𝑛

)
+ 𝑜𝑝 (1)

ª®®®®®¬
= 𝑉 − 𝐸𝑉 + 𝑜𝑝 (1),

where

𝑉 =

(
√
𝑟𝜎2𝜇

(
𝑥𝑇 𝐷𝑚⊗𝐵−1 (𝜇)

𝜎2√𝑛 𝑥
)
, 𝜎2𝜆

(
𝑥𝑇 𝐴

−1 (𝜆)⊗�̃�𝑛

𝜎2√𝑚 𝑥
)
, 𝜎2𝜆𝜇√

𝑛

(
𝑥𝑇 𝐴

−1 (𝜆)⊗𝐵−1 (𝜇)
𝜎2√𝑚𝑛 𝑥

))𝑇
.

For any 𝛾 = (𝛾1, 𝛾2, 𝛾3)𝑇 ∈ R3
>0,

𝛾𝑇𝑉 = 𝑥𝑇
(
𝛾1
√
𝑟𝜎2𝜇

𝐷𝑚 ⊗ 𝐵−1(𝜇)
𝜎2√𝑛

+ 𝛾2𝜎
2𝜆
𝐴−1(𝜆) ⊗ �̃�𝑛

𝜎2√𝑚
+ 𝛾3

𝜎2𝜆𝜇
√
𝑛

𝐴−1(𝜆) ⊗ 𝐵−1(𝜇)
𝜎2√𝑚𝑛

)
𝑥

:= 𝑥𝑇𝑀𝑚𝑛𝑥.

It was revealed in the proof of Theorem 8 that

�̃�𝑚𝑛 := 𝑀𝑚𝑛𝜎
2𝐴(𝜆) ⊗ 𝐵(𝜇)) (3.31)

= 𝛾1
√
𝑟𝜎2𝜇𝐻𝑛 + 𝛾2𝜎

2𝜆�̃�𝑚 + 𝛾3
𝜎2𝜆𝜇

𝑛
√
𝑚
𝐼𝑚𝑛, (3.32)

where matrices 𝐻𝑛 and �̃�𝑚 satisfy that as 𝑚, 𝑛→ ∞,

Tr(𝐻2
𝑛) →

1
𝜆
− 1 − 𝑒−2𝜆

2𝜆2 , Tr(�̃�2
𝑚) →

1
𝜇
− 1 − 𝑒−2𝜇

2𝜇2 ;

Tr(𝐻𝑘
𝑛 ) = 𝑜(1), Tr(�̃�𝑘

𝑚) = 𝑜(1), ∀𝑘 ≥ 3.
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Moreover, ∀𝑚, 𝑛 ∈ 𝑍+,

Tr(𝐻𝑛) =
1
√
𝑛
Tr(𝐷𝑚𝐴(𝜆) ⊗ 𝐼𝑛) =

√
𝑛,

Tr(�̃�𝑚) =
1
√
𝑚
Tr(𝐼𝑚 ⊗ �̃�𝑛𝐵(𝜇)) =

√
𝑚;

Tr(𝐻𝑛�̃�𝑚) =
1

√
𝑚𝑛

Tr(𝐷𝑚𝐴(𝜆) ⊗ �̃�𝑛𝐵(𝜇)) =
Tr(𝐷𝑚𝐴(𝜆))Tr(�̃�𝑛𝐵(𝜇))√

𝑚𝑛
=

1
√
𝑚𝑛

;

Tr(𝐻𝑘
𝑛 �̃�𝑚) =

Tr
(
(𝐷𝑚𝐴(𝜆))𝑘

)
Tr(�̃�𝑛𝐵(𝜇))√

𝑛𝑘𝑚
=

Tr(𝐻𝑘
𝑛 )

𝑛
√
𝑚

, Tr(𝐻𝑛�̃�𝑘
𝑚) =

Tr(�̃�𝑘
𝑚)

𝑚
√
𝑛
, ∀𝑘 ≥ 2;

Tr
(
(𝐻𝑛�̃�𝑚)2

)
=

Tr
(
(𝐷𝑚𝐴(𝜆))2) Tr ((�̃�𝑛𝐵(𝜇))2)

𝑚𝑛
=

Tr(𝐻2
𝑛)Tr(�̃�2

𝑚)
𝑚𝑛

.

Thus when 𝑚/𝑛→ 𝑟 and 𝑛→ ∞,

Tr(�̃�2
𝑚𝑛) = (𝛾1

√
𝑟𝜎2𝜇)2Tr(𝐻2

𝑛) + (𝛾2𝜎
2𝜆)2Tr(�̃�2

𝑚) +𝑂 (Tr(𝐻𝑛�̃�𝑚)) +𝑂
(
Tr(𝐻𝑛)
𝑛
√
𝑚

)
+𝑂

(
Tr(�̃�𝑚)
𝑛
√
𝑚

)
+𝑂

(
1
𝑛

)
→ (𝛾1

√
𝑟𝜎2𝜇)2 2𝜆 − 1 + 𝑒−2𝜆

2𝜆2 + (𝛾2𝜎
2𝜆)2 2𝜇 − 1 + 𝑒−2𝜇

2𝜇2 , (3.33)

Tr(�̃�4
𝑚𝑛) = 𝑂

(
Tr(𝐻4

𝑛)
)
+𝑂

(
Tr(�̃�4

𝑚)
)
+𝑂

(
Tr((𝐻𝑛�̃�𝑚)2)

)
+𝑂

(
Tr(𝐻3

𝑛 �̃�𝑚)
)
+𝑂

(
Tr(𝐻𝑛�̃�3

𝑚)
)

+ 1
𝑛
√
𝑚

(
𝑂

(
Tr(𝐻3

𝑛)
)
+𝑂

(
Tr(�̃�3

𝑚)
)
+𝑂

(
Tr(𝐻2

𝑛 �̃�𝑚)
)
+𝑂

(
Tr(𝐻𝑛�̃�2

𝑚)
))

+ 1
𝑛2𝑚

(
𝑂

(
Tr(𝐻2

𝑛)
)
+𝑂

(
Tr(𝐻𝑛�̃�𝑚)

)
+𝑂

(
Tr(�̃�2

𝑚)
))

+ 1
𝑛3
√
𝑚3

(
𝑂 (Tr(𝐻𝑛)) +𝑂

(
Tr(�̃�𝑚)

) )
→ 0, (3.34)

Hence, the convergence of the moment generating function for 𝛾𝑇 (𝑉−𝐸𝑉) implies that it is asymp-

totically Gaussian with zero mean and the variance equals

2 lim
𝑚/𝑛→𝑟,𝑛→∞

Tr(�̃�2
𝑚𝑛) = 2

(
𝑟 (𝛾1𝜎

2𝜇)2 2𝜆 − 1 + 𝑒−2𝜆

2𝜆2 + (𝛾2𝜎
2𝜆)2 2𝜇 − 1 + 𝑒−2𝜇

2𝜇2

)
.

By the Cramér–Wold theorem, when 𝑚/𝑛→ 𝑟 as 𝑛→ ∞,

√
𝑚

©«
𝜎2𝜇 − 𝜎2𝜇

𝜎2𝜆 − 𝜎2𝜆

𝜎2𝜆𝜇 − 𝜎2𝜆𝜇

ª®®®®®¬
𝑑→ 𝑁

©«
0,

©«
2𝑟 (𝜎2𝜇)2 2𝜆−1+𝑒−2𝜆

2𝜆2 0 0

0 2(𝜎2𝜆)2 2𝜇−1+𝑒−2𝜇

2𝜇2 0

0 0 0

ª®®®®®¬
ª®®®®®¬
. (3.35)
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Define function 𝑔 : R3
>0 ↦→ R3

>0 as

𝑔(𝑥, 𝑦, 𝑧) = (𝑧/𝑥, 𝑧/𝑦, 𝑥𝑦/𝑧), ∀(𝑥, 𝑦, 𝑧) ∈ R3
>0. (3.36)

Then the Jacobian matrix of 𝑔 is

𝐽𝑔 (𝑥, 𝑦, 𝑧) =
©«
−𝑧/𝑥2 0 1/𝑥

0 −𝑧/𝑦2 1/𝑦

𝑦/𝑧 𝑥/𝑧 −𝑥𝑦/𝑧2

ª®®®®®¬
.

It follows from the definition that

𝑔
(
𝜎2𝜇, 𝜎2𝜆, 𝜎2𝜆𝜇

)
=

(
�̂�, �̂�, �̂�2

)
,

𝑔
(
𝜎2𝜇, 𝜎2𝜆, 𝜎2𝜆𝜇

)
=

(
𝜆, 𝜇, 𝜎2

)
,

𝐽𝑔

(
𝜎2𝜇, 𝜎2𝜆, 𝜎2𝜆𝜇

) ©«
2𝑟 (𝜎2𝜇)2 2𝜆−1+𝑒−2𝜆

2𝜆2 0 0

0 2(𝜎2𝜆)2 2𝜇−1+𝑒−2𝜇

2𝜇2 0

0 0 0

ª®®®®®¬
𝐽𝑔

(
𝜎2𝜇, 𝜎2𝜆, 𝜎2𝜆𝜇

)𝑇

=

©«
𝑟 (2𝜆 − 1 + 𝑒−2𝜆) 0 − 𝑟𝜎2

𝜆 (2𝜆 − 1 + 𝑒−2𝜆)

0 2𝜇 − 1 + 𝑒−2𝜇 −𝜎2

𝜇 (2𝜇 − 1 + 𝑒−2𝜇)

− 𝑟𝜎2

𝜆 (2𝜆 − 1 + 𝑒−2𝜆) −𝜎2

𝜇 (2𝜇 − 1 + 𝑒−2𝜇) 𝜎4
(

2𝜇−1+𝑒−2𝜇

𝜇2 + 𝑟 2𝜆−1+𝑒−2𝜆

𝜆2

)
ª®®®®®¬
.

Thus when 𝑚/𝑛→ 𝑟 as 𝑛→ ∞,

√
𝑚

©«
�̂� − 𝜆

�̂� − 𝜇

�̂�2 − 𝜎2

ª®®®®®¬
𝑑→𝑁

©«
0,

©«
𝑟 (2𝜆 − 1 + 𝑒−2𝜆) 0 − 𝑟𝜎2

𝜆 (2𝜆 − 1 + 𝑒−2𝜆)

0 2𝜇 − 1 + 𝑒−2𝜇 −𝜎2

𝜇 (2𝜇 − 1 + 𝑒−2𝜇)

− 𝑟𝜎2

𝜆 (2𝜆 − 1 + 𝑒−2𝜆) −𝜎2

𝜇 (2𝜇 − 1 + 𝑒−2𝜇) 𝜎4
(

2𝜇−1+𝑒−2𝜇

𝜇2 + 𝑟 2𝜆−1+𝑒−2𝜆

𝜆2

)
ª®®®®®¬
ª®®®®®¬
.

The proof is finished using the multivariate delta method.
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Remark 2. The estimators �̂� and �̂� are asymptotically independent. This is due to the zero entries

of 𝐽𝑔 as well as the asymptotic independence of 𝜎2𝜇 and 𝜎2𝜆, which is based on the fact that

Tr(𝐷𝑚𝐴(𝜆)) = Tr(�̃�𝑛𝐵(𝜇)) = 1, ∀𝑚, 𝑛.

Besides the asymptotic normality, estimators �̂�, �̂�, and �̂�2 are also strongly consistent.

Theorem 10. Under model (3.2), as 𝑚, 𝑛→ ∞,(
�̂�, �̂�, �̂�2

)
𝑎.𝑠.→

(
𝜆, 𝜇, 𝜎2

)
. (3.37)

Proof. Since the function 𝑔 defined in (3.36) is a continuous function, the continuous mapping

theorem makes it suffice to prove(
𝜎2𝜇, 𝜎2𝜆, 𝜎2𝜆𝜇

)
𝑎.𝑠.→

(
𝜎2𝜇, 𝜎2𝜆, 𝜎2𝜆𝜇

)
as 𝑚, 𝑛→ ∞.

For any (𝜆0, 𝜇0) ∈ R2
>0, there always exists a compact regionC inR2

>0 that contains (𝜆0, 𝜇0) and

(1, 1) as its interior points. Therefore (4.13) and (4.14) in the proof of Theorem 1 in Ying (1993)

both hold. Namely, as 𝑛→ ∞,

𝑥𝑇1·𝐵
−1(1)𝑥1· +

𝑚∑
𝑖=2

(𝑥𝑖· − 𝑒−𝜀𝑖𝑥(𝑖−1)·)𝑇𝐵−1(1)(𝑥𝑖· − 𝑒−𝜀𝑖𝑥(𝑖−1)·)
1 − 𝑒−2𝜀𝑖

𝑎.𝑠.
= 𝜆0𝜇0𝜎

2
0

𝑚∑
𝑖=2

𝑛∑
𝑘=2

𝜔2
𝑖𝑘 + [𝜆0𝜎

2
0 + 𝜆0𝜇0𝜎

2
0 (1 − 𝜇0) +

𝜆0(1 − 𝜇0)2𝜎2
0

2
]𝑚

+ [𝜇0𝜎
2
0 + 𝜆0𝜇0𝜎

2
0 (1 − 𝜆0) +

𝜇0(1 − 𝜆0)2𝜎2
0

2
]𝑛 + 𝑜(𝑛).
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As a result, as 𝑚, 𝑛→ ∞,

𝑙𝑚,𝑛 (1, 1, 𝜎2) − 𝑙𝑚,𝑛 (1, 1, 𝜆0𝜇0𝜎
2
0 )

=(1 + 𝑚 − 1 + 𝑛 − 1 + (𝑚 − 1)(𝑛 − 1)) log( 𝜎2

𝜆0𝜇0𝜎
2
0
)

+ ( 1
𝜎2 − 1

𝜆0𝜇0𝜎
2
0
) [𝑥𝑇1 𝐵−1(1)𝑥1 +

𝑚∑
𝑖=2

(𝑥𝑖 − 𝑒−𝜀𝑖𝑥𝑖−1)𝑇𝐵−1(1)(𝑥𝑖 − 𝑒−𝜀𝑖𝑥𝑖−1)
1 − 𝑒−2𝜀𝑖

]

=(
𝜆0𝜇0𝜎

2
0

𝜎2 − 1)
𝑚∑
𝑖=2

𝑛∑
𝑘=2

𝜔2
𝑖𝑘 − (𝑚 − 1) (𝑛 − 1) log(

𝜆0𝜇0𝜎
2
0

𝜎2 )

+ ( 1
𝜎2 − 1

𝜆0𝜇0𝜎
2
0
) [𝜆0𝜎

2
0 + 𝜆0𝜇0𝜎

2
0 (1 − 𝜇0) +

𝜆0(1 − 𝜇0)2𝜎2
0

2
]𝑚

+ ( 1
𝜎2 − 1

𝜆0𝜇0𝜎
2
0
) [𝜇0𝜎

2
0 + 𝜆0𝜇0𝜎

2
0 (1 − 𝜆0) +

𝜇0(1 − 𝜆0)2𝜎2
0

2
]𝑛

+ (𝑚 + 𝑛 − 1) log( 𝜎2

𝜆0𝜇0𝜎
2
0
) + 𝑜(𝑛)

𝑎.𝑠.
= (𝑚 − 1)(𝑛 − 1)(

𝜆0𝜇0𝜎
2
0

𝜎2 − 1 − log(
𝜆0𝜇0𝜎

2
0

𝜎2 )) + 𝑜(𝑚𝑛), (3.38)

where the last equality holds since
∑𝑚
𝑖=2

∑𝑛
𝑘=2(𝜔2

𝑖𝑘 − 1) = 𝑜(𝑚𝑛) almost surely. Thus,

𝑙𝑚,𝑛 (1, 1, 𝜎2) − 𝑙𝑚,𝑛 (1, 1, 𝜆0𝜇0𝜎
2
0 ) → ∞ a.s.

as 𝑚, 𝑛→ ∞ if 𝜎2 ≠ 𝜆0𝜇0𝜎
2
0 . Together with Lemma 4 in Ying (1991), the result above entails

argmin
𝜎2

𝑙𝑚,𝑛 (1, 1, 𝜎2) 𝑎.𝑠.→ 𝜆0𝜇0𝜎
2
0 (3.39)

as 𝑚, 𝑛→ ∞. Hence as 𝑚, 𝑛→ ∞, 𝜎2𝜆𝜇
𝑎.𝑠.→ 𝜎2𝜆𝜇.

It remains to prove that as 𝑚, 𝑛 → ∞, 𝜎2𝜇
𝑎.𝑠.→ 𝜎2𝜇 and 𝜎2𝜆

𝑎.𝑠.→ 𝜎2𝜆. It follows from the

definition that under model (3.2),

𝜎2𝜇 =
1
𝑛
𝑥𝑇

(
𝐷𝑚 ⊗ 𝐵−1(1)

)
𝑥
𝑑
= 𝜖𝑇Λ𝑚𝑛𝜖,

where 𝜖 ∼ 𝑁 (0, 𝐼𝑚𝑛) and Λ𝑚𝑛 is a diagonal matrix whose diagonal entries are eigenvalues of the

matrix
𝜎2

𝑛

(
(𝐴1/2(𝜆))𝑇𝐷𝑚𝐴

1/2(𝜆)
)
⊗

(
(𝐵1/2(𝜇))𝑇𝐵−1(1)𝐵1/2(𝜇)

)
.
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By the result of Proposition 5,

| |Λ𝑚𝑛 | |2𝐹 =Tr

((
𝜎2

𝑛

(
(𝐴1/2(𝜆))𝑇𝐷𝑚𝐴

1/2(𝜆)
)
⊗

(
(𝐵1/2(𝜇))𝑇𝐵−1(1)𝐵1/2(𝜇)

))2)
=

1
2

Var
(
𝜎2𝜇

)
=𝑂 (𝑛−1) as 𝑚, 𝑛→ ∞.

Moreover, | |Λ𝑚𝑛 | |2 ≤ ||Λ𝑚𝑛 | |𝐹 = 𝑂 (𝑛−1/2) as 𝑚, 𝑛 → ∞. Thus, the Hanson-Wright inequality

implies that for sufficiently large 𝑛, ∃𝐶0 > 0 such that

𝑃
(���𝜎2𝜇 − 𝐸𝜎2𝜇

��� ≥ 𝜉) ≤ 2 exp

(
−𝐶min

{
𝜉

| |Λ𝑚𝑛 | |2
,

𝜉2

| |Λ𝑚𝑛 | |2𝐹

})
≤ 2 exp(−𝐶0

√
𝑛𝜉), ∀𝜉 > 0, (3.40)

where 𝐶 > 0 is an absolute constant. It hence follows from the Borel–Cantelli lemma that 𝜎2𝜇 −

𝐸𝜎2𝜇
𝑎.𝑠.→ 0 as 𝑚, 𝑛→ ∞. By the results of Proposition 4,

𝜎2𝜇 − 𝜎2𝜇 = 𝜎2𝜇 − 𝐸𝜎2𝜇 + 𝐸𝜎2𝜇 − 𝜎2𝜇
𝑎.𝑠.→ 0 (3.41)

as 𝑚, 𝑛→ ∞.

In a similar manner, it can be proved that𝜎2𝜆
𝑎.𝑠.→ 𝜎2𝜆 as𝑚, 𝑛→ ∞. This finishes the proof.

3.4 Simulation

Let 𝜆 = 0.5, 𝜇 = 10, 𝜎2 = 4. For each value of the sample size 𝑛 = 500, 600, . . . , 2000 and

𝑚 = 0.5𝑛, we set irregular sampling locations as 𝑢0 = 𝑡0 = 0, 𝑢𝑚 = 𝑡𝑛 = 1, and

(𝑢𝑖, 𝑡 𝑗 ) =
(
𝑖

𝑚
+𝑈𝑖𝑢,

𝑗

𝑛
+𝑈 𝑗

𝑡

)
, ∀0 < 𝑖 < 𝑚, 0 < 𝑗 < 𝑛,

where𝑈𝑖𝑢
𝑖.𝑖.𝑑.∼ 𝑈

(
− 1

2𝑚 ,
1

2𝑚

)
and𝑈 𝑗

𝑡
𝑖.𝑖.𝑑.∼ 𝑈

(
− 1

2𝑛 ,
1
2𝑛

)
are independent uniformly distributed random

variables. Given sampling locations, we run 1000 realizations and calculate �̂�, �̂�, and �̂�2 as defined

in Section 3.3. One realization when 𝑛 = 500 is shown in Figure 3.1. The averaged absolute value
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Figure 3.1A simulated OU field with 𝑚 = 250 and 𝑛 = 500.

Table 3.1Empirical quantiles of standardized bias when estimating 𝜆.

𝜆
𝑁 (0, 1)

𝑛 500 1000 2000
5% -1.4462 -1.5188 -1.4547 -1.6448
25% -0.6030 -0.5308 -0.5681 -0.6744
50% 0.1559 0.0893 0.0763 0
75% 0.9224 0.7342 0.7039 0.6744
95% 1.9886 1.8533 1.7377 1.6448

of bias for each sample size and the histogram of bias when 𝑛 = 2000 are shown in Figure 3.2. For

𝑛 = 500, 1000, 2000, some empirical quantiles of
√
𝑚(�̂� − 𝜆)√

𝑟 (2𝜆 − 1 + 𝑒−2𝜆)
,

√
𝑚( �̂� − 𝜇)√

2𝜇 − 1 + 𝑒−2𝜇
, and

√
𝑚(�̂�2 − 𝜎2)√

𝜎4
(

2𝜇−1+𝑒−2𝜇

𝜇2 + 𝑟 2𝜆−1+𝑒−2𝜆

𝜆2

)
are shown in Tables 3.1-3.3.

3.5 Discussion

We proposed estimators for covariance parameters of an anisotropic Ornstein-Uhlenbeck field

observed on [0, 1]2. The estimators �̂�, �̂�, and �̂�2 formulated in Section 3.3 are strongly consistent

and have lower computational complexity than the MLEs of 𝜆, 𝜇, and 𝜎2. As the sample size goes

to infinity, the estimators we proposed asymptotically follow normal distribution, but have higher
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Figure 3.2The plots in the first row present averaged absolute values of bias for
𝑛 = 500, 600, . . . , 2000 and 𝑚 = 𝑛/2 among 1000 realizations. The second row of plots present
the empirical distributions of bias with 1000 realizations when 𝑛 = 2000 and 𝑚 = 1000, where the
red curve indicates the density function of 𝑁 (0, 1).

Table 3.2Empirical quantiles of standardized bias when estimating 𝜇.

𝜇
𝑁 (0, 1)

𝑛 500 1000 2000
5% -1.9248 -1.8978 -1.6819 -1.6448
25% -1.0806 -0.9460 -0.8577 -0.6744
50% -0.3960 -0.3193 -0.2047 0
75% 0.3473 0.3897 0.4762 0.6744
95% 1.4002 1.3349 1.5174 1.6448

Table 3.3Empirical quantiles of standardized bias when estimating 𝜎2.

𝜎2
𝑁 (0, 1)

𝑛 500 1000 2000
5% -1.6784 -1.5597 -1.6782 -1.6448
25% -0.7708 -0.6583 -0.6788 -0.6744
50% -0.0558 -0.0277 0 0
75% 0.7103 0.6323 0.6719 0.6744
95% 1.7328 1.5499 1.4902 1.6448
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variance compared with the MLEs studied by Ying (1993). This presents a trade-off between the

computational cost and the estimation accuracy.

The sampling grid based on which �̂�, �̂�, and �̂�2 are formulated is defined by lines parallel to

the coordinate axes. For a significantly anisotropic OU field such as the one shown in Figure 3.1,

the coordinate axes are distinguishable. When values of 𝜆 and 𝜇 are close, however, it could be

difficult to determine directions along which observations should be taken. It is thus of interest to

study the properties of estimators when sampling directions are not parallel to the coordinate axes.

Themain results presented in this chapter focus on the asymptotic behaviors of the estimators. It

would also be interesting to study their finite-sample distributions andmeasure the distance between

a finite-sample distribution and the asymptotic distribution. The statistical inference for parameters

𝜆, 𝜇, and 𝜎2 is also worth analyzing. The exploration of these topics is reserved for future research

work.
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CHAPTER 4

VECCHIA APPROXIMATION

4.1 Introduction

Consider a zero-mean Gaussian process 𝑋 with the Matérn covariance function

𝐶𝑜𝑣(𝑋 (𝑡), 𝑋 (𝑡 + 𝑑)) = 𝐾 (𝑑) = 𝜎2 (𝜃𝑑)𝜈
Γ(𝜈)2𝜈−1K𝜈 (𝜃𝑑), (4.1)

where 𝜃 > 0, 𝜈 > 0, 𝜎2 > 0, Γ is the gamma function, andK𝜈 is the modified Bessel function of the

second kind. Denote by 𝑋𝑛 = (𝑋 (𝑡𝑛1), 𝑋 (𝑡
𝑛
2), . . . , 𝑋 (𝑡

𝑛
𝑛)) the observations of 𝑋 with sample size 𝑛.

When 𝜈 ≠ 1
2 , 𝑋 is not Markovian and the sparse precision matrix of 𝑋𝑛 discussed in Chapter 3 is not

valid. It is thus necessary to study other approaches to reduce the computational cost of the MLE.

The existing approaches to achieve computational efficiency include covariance tapering (Furrer

et al., 2006; Kaufman et al., 2008; Du et al., 2009), Gaussian Markov random fields representation

(Rue and Held, 2005; Lindgren et al., 2011), multiresolution approximation (Nychka et al., 2015;

Katzfuss, 2017), etc.

The Vecchia approximation is a method to reduce the computational burden through sparse

precision matrices. Write the joint density function of 𝑋 (𝑡𝑛1), 𝑋 (𝑡
𝑛
2), . . . , 𝑋 (𝑡

𝑛
𝑛) as

𝑓𝑛 = 𝑓𝑋 (𝑡𝑛1 )

𝑛∏
𝑖=2

𝑓𝑋 (𝑡𝑛𝑖 ) |𝑋 (𝑡𝑛𝑖−1)...𝑋 (𝑡
𝑛
1 ) .

The Vecchia’s method (Vecchia, 1988) approximates 𝑓𝑛 by

𝑓𝑛 = 𝑓𝑋 (𝑡𝑛1 )

𝑛∏
𝑖=2

𝑓𝑋 (𝑡𝑛𝑖 ) |𝑋 (𝑡𝑛𝑖−1)...𝑋 (𝑡
𝑛
1∨(𝑖−𝑘 ) ) (4.2)

for some 𝑘 ≪ 𝑛, which makes the precision matrix of 𝑋𝑛 a band matrix and could thus significantly

reduce the computational complexity. The accuracy of Vecchia approximation has been discussed

in both theoretical and practical aspects (Stein et al., 2004; Datta et al., 2016; Guinness, 2018; Fin-

ley et al., 2019; Zhang et al., 2021; Cao et al., 2022). Under a more general framework proposed

by Katzfuss and Guinness (2021), where the conditioning vector contains both observed data and

latent variables, the nearest-neighbor Gaussian process, latent autoregressive process, multiresolu-
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tion approximation, and many other popular Gaussian process approximation methods are special

cases of the Vecchia approach.

In the remainder of this chapter, we focus on the standard Vecchia approximation and estimate

the scale parameter in the Matérn covariance function by MLE solved from the approximated like-

lihood. The effects of the misspecified range parameter and the conditioning variables on the bias

are discussed in Section 4.2, and simulation results are presented in Section 4.3.

4.2 Maximum Likelihood Estimator for 𝜎2

Under a regular sampling design on fixed domain, we have 𝑡𝑛𝑖 = 𝑖/𝑛 for 𝑖 = 1, 2, . . . , 𝑛. When

𝜈 is known, the expectation of MLE for 𝜎2 from Vecchia approximation satisfies the following

results.

Proposition 6. Denote by �̂�2 the MLE for 𝜎2 from Vecchia approximation with 𝜈 known and 𝜃

replaced by some fixed 𝜃0 > 0. When 𝑘 = 1 in (4.2), 𝐸�̂�2 = 𝜎2 for any 𝑛 ≥ 2 if 𝜃0 = 𝜃, and

𝐸�̂�2 =



𝜎2
(
𝜃
𝜃0

)2𝜈
+𝑂 (𝑛2𝜈−2) +𝑂 (𝑛−1) +𝑂 (𝑛−2𝜈), 𝜈 < 1,

𝜎2
(
𝜃
𝜃0

)2
+𝑂 ((log 𝑛)−1), 𝜈 = 1,

𝜎2
(
𝜃
𝜃0

)2
+𝑂 (𝑛−1) +𝑂 (𝑛2−2𝜈), 𝜈 > 1, 𝜈 ∉ Z

as 𝑛→ ∞ if 𝜃0 ≠ 𝜃. When 𝑘 = 2 in (4.2) and 𝜃0 ≠ 𝜃,

𝐸�̂�2 =



𝜎2
(
𝜃
𝜃0

)2𝜈
+𝑂 (𝑛2𝜈−2) +𝑂 (𝑛−1) +𝑂 (𝑛−2𝜈), 𝜈 < 1,

𝜎2
(
𝜃
𝜃0

)2
+𝑂 ((log 𝑛)−1), 𝜈 = 1,

𝜎2
(
𝜃
𝜃0

)2𝜈
+𝑂 (𝑛−1) +𝑂 (𝑛2−2𝜈) +𝑂 (𝑛2𝜈−4), 1 < 𝜈 < 2,

𝜎2
(
𝜃
𝜃0

)4
+𝑂 ((log 𝑛)−1), 𝜈 = 2,

𝜎2
(
𝜃
𝜃0

)4
+ 𝜎2𝛽2

6𝜏−𝛽2

((
𝜃
𝜃0

)2
− 1

)2
+𝑂 (𝑛−1) +𝑂 (𝑛4−2𝜈), 𝜈 > 2, 𝜈 ∉ Z

as 𝑛→ ∞, where 𝜏 = Γ(1−𝜈)
25Γ(3−𝜈) and 𝛽 = 1

4(1−𝜈) .

Proof. Denote for 1 ≤ 𝑖 ≤ 𝑛 that

𝐾0
𝑛,𝑖 =

(𝜃0𝑖/𝑛)𝜈
Γ(𝜈)2𝜈−1K𝜈 (𝜃0𝑖/𝑛)
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for some fixed 𝜃0 > 0, and write 𝐾𝑛,𝑖 = 𝜎−2𝐾 (𝑖/𝑛). It follows from (9.6.2) and (9.6.10) in

Abramowitz and Stegun (1948) that for 𝜈 ∉ Z,

𝑥𝜈

Γ(𝜈)2𝜈−1K𝜈 (𝑥) = 1 − 𝛼𝑥2𝜈 + 𝛽𝑥2 + 𝜏𝑥4 +𝑂 (𝑥2𝜈+2) +𝑂 (𝑥6) +𝑂 (𝑥2𝜈+4) as 𝑥 → 0, (4.3)

where 𝛼 = Γ(1−𝜈)
4𝜈Γ(1+𝜈) , 𝜏 =

Γ(1−𝜈)
25Γ(3−𝜈) , and 𝛽 = 1

4(1−𝜈) . The gamma function Γ on R is defined as

Γ(𝑥) =


∫ ∞
0 𝑡𝑥−1𝑒−𝑡d𝑡, 𝑥 > 0,

Γ(𝑥+𝑛+1)
𝑥(𝑥+1)···(𝑥+𝑛) , 𝑥 < 0, 𝑥 ∉ Z,

(4.4)

where 𝑛 is chosen such that 𝑥+𝑛 > 0. For 𝜈 ∈ Z, it follows from (9.6.10) and (9.6.11) in Abramowitz

and Stegun (1948) that

𝑥𝜈

Γ(𝜈)2𝜈−1K𝜈 (𝑥) =
𝜈−1∑
𝑘=0

(−1)𝑘 (𝜈 − 𝑘 − 1)!
𝑘!(𝜈 − 1)!

(𝑥
2

)2𝑘
+ 2(−1)𝜈+1

(𝜈 − 1)! log
(𝑥
2

) ∞∑
𝑘=0

1
𝑘!(𝜈 + 𝑘)!

(𝑥
2

)2𝜈+2𝑘

+ (−1)𝜈
∞∑
𝑘=1

∑𝑘
ℎ=1

2
ℎ +

∑𝑘+𝜈
ℎ=𝑘+1

1
ℎ − 2𝛾

𝑘!(𝜈 + 𝑘)!(𝜈 − 1)!
(𝑥
2

)2𝜈+2𝑘

+ (−1)𝜈
(𝜈 − 1)!𝜈!

(
𝜈∑
ℎ=1

1
ℎ
− 2𝛾

) (𝑥
2

)2𝜈

=
∞∑
𝑘=0

(
𝑐𝜈,𝑘𝑥

2𝑘 + 𝑐𝜈,𝑘𝑥2𝜈+2𝑘 log 𝑥
)
, (4.5)

where 𝛾 is the Euler’s constant, 𝑐𝜈,𝑘 , 𝑐𝜈,𝑘 are constants depending only on 𝜈 and 𝑘 .

Case 1. When 𝑘 = 1, the approximated joint density is

𝑓𝑛 (𝑥1, . . . , 𝑥𝑛) = (2𝜋𝜎2)− 𝑛
2 (1 − 𝐾2

𝑛,1)−
𝑛−1

2 exp

(
− 1

2𝜎2

(
𝑥2

1 +
1

1 − 𝐾2
𝑛,1

𝑛∑
𝑖=2

(𝑥𝑖 − 𝑥𝑖−1𝐾𝑛,1)2

))
(4.6)

since 𝑋 (𝑡𝑛𝑖 ) |𝑋 (𝑡𝑛𝑖−1) ∼ 𝑁
(
𝑋 (𝑡𝑛𝑖−1)𝐾𝑛,1, 𝜎

2(1 − 𝐾2
𝑛,1)

)
. Hence,

log 𝑓𝑛 (𝑥1, . . . , 𝑥𝑛) |𝜃=𝜃0= −𝑛
2

log𝜎2 − 1
2𝜎2

(
𝑥2

1 +
1

1 − (𝐾0
𝑛)2

𝑛∑
𝑖=2

(𝑥𝑖 − 𝑥𝑖−1𝐾
0
𝑛)2

)
+ 𝐶, (4.7)

where 𝐾0
𝑛 = 𝐾0

𝑛,1, 𝐶 is a constant not depending on 𝜎2. The MLE of 𝜎2 calculated from (4.7) is

thus

�̂�2 =
1
𝑛

(
𝑥2

1 +
1

1 − (𝐾0
𝑛)2

𝑛∑
𝑖=2

(𝑥𝑖 − 𝑥𝑖−1𝐾
0
𝑛)2

)
, (4.8)
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where 𝑥𝑖 = 𝑋 (𝑖/𝑛), 𝑖 = 1, . . . , 𝑛. Under model (4.1), there is

𝐸�̂�2 =
𝜎2

𝑛

(
1 + (𝑛 − 1)1 + (𝐾0

𝑛)2 − 2𝐾0
𝑛𝐾𝑛,1

1 − (𝐾0
𝑛)2

)
for any 𝑛 ≥ 2. Consequently, 𝐸�̂�2 = 𝜎2 always holds when 𝜃0 = 𝜃. Cases when 𝜃0 ≠ 𝜃 are

discussed below.

When 0 < 𝜈 < 1, (4.3) implies that as 𝑛→ ∞,

1 + (𝐾0
𝑛)2 − 2𝐾0

𝑛𝐾𝑛,1

1 − (𝐾0
𝑛)2

=
𝜃2𝜈 + 𝛼𝑛−2𝜈𝜃2𝜈 (𝜃2𝜈 − 𝜃2𝜈

0 /2) − 𝑛2𝜈−2𝜃2𝛽/𝛼 +𝑂 (𝑛−2)
𝜃2𝜈

0 + 𝛼𝑛−2𝜈 (𝜃4𝜈
0 /2) − 𝑛2𝜈−2𝜃2

0𝛽/𝛼 +𝑂 (𝑛−2)

=

(
𝜃

𝜃0

)2𝜈
+𝑂 (𝑛2𝜈−2) +𝑂 (𝑛−2𝜈) +𝑂 (𝑛−2).

Hence,

𝐸�̂�2 = 𝜎2
(
𝜃

𝜃0

)2𝜈
+𝑂 (𝑛2𝜈−2) +𝑂 (𝑛−1) +𝑂 (𝑛−2𝜈).

When 𝜈 > 1 and 𝜈 ∉ Z, (4.3) implies that as 𝑛→ ∞,

1 + (𝐾0
𝑛)2 − 2𝐾0

𝑛𝐾𝑛,1

1 − (𝐾0
𝑛)2

=
−2𝛽𝜃2/𝑛2 + 2𝛼𝜃2𝜈/𝑛2𝜈 + 𝛽2(𝜃4

0 − 2𝜃2𝜃2
0)/𝑛4 − 2𝜏(𝜃/𝑛)4 +𝑂 (𝑛−2−2𝜈)

−2𝛽𝜃2
0/𝑛2 + 2𝛼𝜃2𝜈

0 /𝑛2𝜈 − 𝛽2(𝜃0/𝑛)4 − 2𝜏(𝜃0/𝑛)4 +𝑂 (𝑛−2−2𝜈)

=

(
𝜃

𝜃0

)2𝜈
+𝑂 (𝑛2−2𝜈) +𝑂 (𝑛−2𝜈) +𝑂 (𝑛−2)

and

𝐸�̂�2 = 𝜎2
(
𝜃

𝜃0

)2𝜈
+𝑂 (𝑛2−2𝜈−2) +𝑂 (𝑛−1).

When 𝜈 = 1, it follows from (4.5) that

𝑥𝜈

Γ(𝜈)2𝜈−1K𝜈 (𝑥) = 1 + 𝑐1𝑥
2 log(1/𝑥) + 𝑐2𝑥

2 + 𝑐3𝑥
4 log(1/𝑥) + 𝑐4𝑥

4 +𝑂 (𝑥6 log 𝑥) (4.9)

as 𝑥 → 0, where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are constants only depending on 𝜈. Thus,

1 + (𝐾0
𝑛)2 − 2𝐾0

𝑛𝐾𝑛,1

1 − (𝐾0
𝑛)2

=
𝑟22𝑐1𝑛

−2 log 𝑛 + 2𝑐2𝑛
−2 − 2𝑐1𝑛

−2(𝑟2 log 𝑟 + (1 + 𝑟2)𝑐2/𝑐1) +𝑂 (𝑛−4(log 𝑛)2)
2𝑐1𝑛−2 log 𝑛 − 2𝑐2𝑛−2 +𝑂 (𝑛−4(log 𝑛)2)

=𝑟2 +𝑂 ((log 𝑛)−1) +𝑂 ((log 𝑛)−2),
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where 𝑟 = 𝜃/𝜃0. Hence,

𝐸�̂�2 = 𝜎2
(
𝜃

𝜃0

)2
+𝑂 ((log 𝑛)−1).

Case 2. When 𝑘 = 2, the approximated joint density is

𝑓𝑛 (𝑥1, . . . , 𝑥𝑛)

=
(2𝜋𝜎2𝑏)− 𝑛

2 𝑏√
1 − 𝐾2

𝑛,1

exp

(
− 1

2𝜎2

(
𝑥2

1 +
(𝑥2 − 𝐾𝑛,1𝑥1)2

1 − 𝐾2
𝑛,1

+ 1
𝑏

𝑛∑
𝑖=3

(𝑥𝑖 − 𝑎1𝑥𝑖−1 − 𝑎2𝑥𝑖−2)2

))
,

where 𝑎1 = 𝐾𝑛,1−𝐾𝑛,1𝐾𝑛,2
1−(𝐾𝑛,1)2 , 𝑎2 = 𝐾𝑛,2−(𝐾𝑛,1)2

1−(𝐾𝑛,1)2 , and 𝑏 = 1 − (𝐾𝑛,1)2+(𝐾𝑛,2)2−2(𝐾𝑛,1)2𝐾𝑛,2
1−(𝐾𝑛,1)2 . This is due to

©«
𝑋 (𝑡𝑛𝑖 )

𝑋 (𝑡𝑛𝑖−1)

𝑋 (𝑡𝑛𝑖−2)

ª®®®®®¬
∼ 𝑁

©«
0, 𝜎2

©«
1 𝐾 (|𝑡𝑛𝑖 − 𝑡𝑛𝑖−1 |) 𝐾 (|𝑡𝑛𝑖 − 𝑡𝑛𝑖−2 |)

𝐾 (|𝑡𝑛𝑖 − 𝑡𝑛𝑖−1 |) 1 𝐾 (|𝑡𝑛𝑖−1 − 𝑡
𝑛
𝑖−2 |)

𝐾 (|𝑡𝑛𝑖 − 𝑡𝑛𝑖−2 |) 𝐾 (|𝑡𝑛𝑖−1 − 𝑡
𝑛
𝑖−2 |) 1

ª®®®®®¬
ª®®®®®¬

and the regular sampling design, which implies that ∀3 ≤ 𝑖 ≤ 𝑛,

𝑋 (𝑡𝑛𝑖 ) | (𝑋 (𝑡𝑛𝑖−1), 𝑋 (𝑡
𝑛
𝑖−2)) ∼ 𝑁

(
𝑎1𝑋 (𝑡𝑛𝑖−1) + 𝑎2𝑋 (𝑡𝑛𝑖−2), 𝜎

2𝑏
)
.

Take arg max𝜎2 log 𝑓𝑛 and plug in 𝜃 = 𝜃0, then

�̂�2 =
1
𝑛

(
𝑥2

1 +
(𝑥2 − 𝐾0

𝑛,1𝑥1)2

1 − (𝐾0
𝑛,1)2

+ 1
𝑏0

𝑛∑
𝑖=3

(𝑥𝑖 − 𝑎0
1𝑥𝑖−1 − 𝑎0

2𝑥𝑖−2)2

)
, (4.10)

where 𝑎0
1 =

𝐾0
𝑛,1−𝐾

0
𝑛,1𝐾

0
𝑛,2

1−(𝐾0
𝑛,1)2

, 𝑎0
2 =

𝐾0
𝑛,2−(𝐾

0
𝑛,1)

2

1−(𝐾0
𝑛,1)2

, and 𝑏0 =
(𝐾0

𝑛,1)
2+(𝐾0

𝑛,2)
2−2(𝐾0

𝑛,1)
2𝐾0

𝑛,2
1−(𝐾0

𝑛,1)2
. This estimator can

also be written as a quadratic form

�̂�2 =
1
𝑛
𝑋𝑇𝑛 𝑀

−1𝑋𝑛,

where 𝑋𝑛 = (𝑋 (𝑡𝑛1), 𝑋 (𝑡
𝑛
2), . . . , 𝑋 (𝑡

𝑛
𝑛)) and

𝑀−1 =

©«

1
1−(𝐾0

𝑛,1)2
+ (𝑎0

2)
2

𝑏0
𝑎0

1𝑎
0
2

𝑏0 − 𝐾0
𝑛,1

1−(𝐾0
𝑛,1)2

− 𝑎0
2
𝑏0

𝑎0
1𝑎

0
2

𝑏0 − 𝐾0
𝑛,1

1−(𝐾0
𝑛,1)2

1
1−(𝐾0

𝑛,1)2
+ 𝑎02

12
𝑏0

𝑎0
12
𝑏0

− 𝑎0
2
𝑏0

− 𝑎0
2
𝑏0

𝑎0
12
𝑏0

1+𝑎02
12

𝑏0

𝑎0
12
𝑏0

. . .

− 𝑎0
2
𝑏0

𝑎0
12
𝑏0

. . .
. . .

. . .

. . .
1+𝑎02

12
𝑏0

𝑎0
12
𝑏0

− 𝑎0
2
𝑏0

. . .
𝑎0

12
𝑏0

1+(𝑎0
1)

2

𝑏0
− 𝑎0

1
𝑏0

− 𝑎0
2
𝑏0

− 𝑎0
1
𝑏0

1
𝑏0

ª®®®®®®®®®®®®®®®®®®®¬
62



is an 𝑛-dimensional pentadiagonal matrix, where 𝑎0
12 = 𝑎0

1𝑎
0
2 − 𝑎

0
1, 𝑎

02
12 = (𝑎0

1)
2 + (𝑎0

2)
2.

Denote by 𝜎2Σ the covariance matrix of 𝑋𝑛, then Σ𝑖 𝑗 = 𝐾𝑛,|𝑖− 𝑗 | and

𝐸�̂�2 =
𝜎2

𝑛
Tr(𝑀−1Σ)

=
𝜎2

𝑛

(
2 + (𝑛 − 2)

(
(1 + (𝐾0

𝑛,1)
2 − 2𝐾0

𝑛,1𝐾𝑛,1) (1 − 𝐾0
𝑛,2)

(1 + 𝐾0
𝑛,2 − 2(𝐾0

𝑛,1)2)(1 − (𝐾0
𝑛,1)2)

+
2(𝐾0

𝑛,2 − (𝐾0
𝑛,1)

2)(1 − 𝐾𝑛,2)
(1 + 𝐾0

𝑛,2 − 2(𝐾0
𝑛,1)2)(1 − 𝐾0

𝑛,2)

))
:=
𝜎2

𝑛
(2 + (𝑛 − 2)𝐴𝑛) . (4.11)

Consequently, 𝐸�̂�2 = 𝜎2 always holds when 𝜃0 = 𝜃. Cases when 𝜃0 ≠ 𝜃 are discussed below.

After similar steps as did in Case 1, it follows from (4.3) that when 𝜈 ∉ Z,

𝐴𝑛 =



(
𝜃
𝜃0

)2𝜈
+𝑂 (𝑛2𝜈−2) +𝑂 (𝑛−2𝜈), if 𝜈 < 1,(

𝜃
𝜃0

)2𝜈
+𝑂 (𝑛2−2𝜈) +𝑂 (𝑛2𝜈−4), if 1 < 𝜈 < 2,(

𝜃
𝜃0

)4
+ 𝛽2

6𝜏−𝛽2

((
𝜃
𝜃0

)2
− 1

)2
+𝑂 (𝑛4−2𝜈) +𝑂 (𝑛−2), if 𝜈 > 2.

When 𝜈 = 1, it follows from (4.5) and (4.9) that as 𝑛→ ∞,

1 + (𝐾0
𝑛,1)

2 − 2𝐾0
𝑛,1𝐾𝑛,1

1 − (𝐾0
𝑛,1)2

= 𝑟2 + 𝑟2 log 𝑟
log(𝜃0/𝑛)

+ 𝑐2𝑟
2 log 𝑟

𝑐1(log(𝜃0/𝑛))2 +𝑂 ((log 𝑛)−3),

1 − 𝐾0
𝑛,2

1 + 𝐾0
𝑛,2 − 2(𝐾0

𝑛,1)2
= − log(𝜃0/𝑛)

log 2
− log 2 − 𝑐2/𝑐1

log 2
+𝑂 (𝑛−2(log 𝑛)3),

𝐾0
𝑛,2 − (𝐾0

𝑛,1)
2

1 + 𝐾0
𝑛,2 − 2(𝐾0

𝑛,1)2
=

log(𝜃0/𝑛)
2 log 2

+ 2 log 2 − 𝑐2/𝑐1
2 log 2

+𝑂 (𝑛−2(log 𝑛)3),

1 − 𝐾𝑛,2
1 − 𝐾0

𝑛,2
= 𝑟2 + 𝑟2 log 𝑟

log(2𝜃0/𝑛)
+ 𝑐2𝑟

2 log 𝑟
𝑐1(log(2𝜃0/𝑛))2 +𝑂 ((log 𝑛)−3),

where 𝑟 = 𝜃/𝜃0. Hence,

𝐴𝑛 =

(
𝜃

𝜃0

)2
+𝑂 ((log 𝑛)−1) +𝑂 ((log 𝑛)−2).

Similarly, when 𝜈 = 2, it follows from (4.5) that

𝑥𝜈

Γ(𝜈)2𝜈−1K𝜈 (𝑥) = 1 + 𝑐′2𝑥2 + 𝑐′3𝑥4 log(1/𝑥) + 𝑐′4𝑥4 +𝑂 (𝑥6 log 𝑥) (4.12)
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as 𝑥 → 0, where 𝑐′2, 𝑐
′
3, 𝑐

′
4 are constants only depending on 𝜈. Thus, as 𝑛→ ∞,

1 + (𝐾0
𝑛,1)

2 − 2𝐾0
𝑛,1𝐾𝑛,1

1 − (𝐾0
𝑛,1)2

= 𝑟2 + (𝑟2 − 𝑟4)
𝑐′3
𝑐′2

(
𝜃0
𝑛

)2
log

(
𝜃0
𝑛

)
+𝑂 (𝑛−2),

1 − 𝐾0
𝑛,2

1 + 𝐾0
𝑛,2 − 2(𝐾0

𝑛,1)2
= − 4

3
+
𝑐′2𝑛

2(16𝑐′4 − 16𝑐′3 log 2 − 2(𝑐′2)2 − 4𝑐′4)
36(𝑐′3𝜃0 log(𝜃0/𝑛))2

+
𝑐′2𝑛

2

3𝑐′3𝜃
2
0 log(𝜃0/𝑛)

+𝑂 (𝑛2(log 𝑛)−3),

𝐾0
𝑛,2 − (𝐾0

𝑛,1)
2

1 + 𝐾0
𝑛,2 − 2(𝐾0

𝑛,1)2
=

7
6
−
𝑐′2𝑛

2(16𝑐′4 − 16𝑐′3 log 2 − 2(𝑐′2)2 − 4𝑐′4)
72(𝑐′3𝜃0 log(𝜃0/𝑛))2

−
𝑐′2𝑛

2

6𝑐′3𝜃
2
0 log(𝜃0/𝑛)

+𝑂 (𝑛2(log 𝑛)−3),

1 − 𝐾𝑛,2
1 − 𝐾0

𝑛,2
= 𝑟2 + 4(𝑟2 − 𝑟4)

𝑐′3
𝑐′2

(
𝜃0
𝑛

)2
log

(
2𝜃0
𝑛

)
+𝑂 (𝑛−2),

𝐴𝑛 =

(
𝜃

𝜃0

)4
+𝑂 ((log 𝑛)−1) +𝑂 ((log 𝑛)−2).

This together with (4.11) finishes the proof.

Remark. Only 𝑘 = 1, 2 are considered in Proposition 6 since the corresponding Vecchia ap-

proximation is computationally efficient. If 𝜃 is known, then taking 𝜃0 = 𝜃 when construct �̂�2 will

result in unbiased estimator for 𝜎2.

4.3 Simulation

Let 𝜎2 = 1 and 𝜃 = 5 in (4.1). For each value of 𝑛 ∈ {200, 250, . . . , 1000}, generate 15000

independent realizations of 𝑋 . In the following text, denote by 𝜎2
𝜈,𝑘 = lim𝑛→∞ 𝐸�̂�2, whose value

is proved in Proposition 6.

Fix 𝜃0 = 1 when solving for MLE of 𝜎2 using the Vecchia approximation (4.2). For (𝜈, 𝑘) ∈

{(0.3, 1), (1.3, 1), (1.3, 2)}, the first row of plots in Figure 4.1 presents the boxplot of �̂�2 − 𝜎2
𝜈,𝑘

among 15000 realizations at each sample size 𝑛. The second row of plots in Figure 4.1 presents

the empirical distribution of �̂�2 − 𝜎2
𝜈,𝑘 when 𝑛 = 1000, where the red curve indicates the density
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Figure 4.1Empirical distributions of bias with 15000 realizations. (𝜎2 = 1, 𝜃 = 5, 𝜃0 = 1.)

function of normal distribution with zero mean and standard deviation equals the empirical standard

deviation of �̂�2−𝜎2
𝜈,𝑘 among 15000 realizations. For the same three pairs of values of (𝜈, 𝑘), Figure

4.2 presents the average and standard deviation of absolute values of �̂�2 − 𝜎2
𝜈,𝑘 at each sample size

𝑛 among 15000 realizations when (𝜈, 𝑘) = (0.3, 1) and (𝜈, 𝑘) = (1.3, 2). For the case when

(𝜈, 𝑘) = (1.3, 1), 50000 realizations are generated since the estimator �̂�2 has a larger variance.

Fix 𝜃0 = 𝜃 = 5 when solving for MLE of 𝜎2 using the Vecchia approximation (4.2), then

𝜎2
𝜈,𝑘 = 𝜎

2 = 1. For the same dataset of realizations, plots in Figure 4.3 include the boxplot of �̂�2−𝜎2

among 15000 realizations at each sample size 𝑛, as well as the empirical distribution of �̂�2 − 𝜎2

when 𝑛 = 1000, where the red curve indicates the density function of normal distribution with

zero mean and standard deviation equals the empirical standard deviation of �̂�2 −𝜎2 among 15000

realizations. Figure 4.4 presents the average and standard deviation of absolute values of �̂�2 − 𝜎2

at each sample size 𝑛 among 15000 realizations when (𝜈, 𝑘) = (0.3, 1) and (𝜈, 𝑘) = (1.3, 2). For

the case when (𝜈, 𝑘) = (1.3, 1), since the variance of �̂�2 is larger, 50000 realizations are generated.

The first row of plots in Figure 4.2 and Figure 4.4 illustrate Proposition 6. Furthermore, it is
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Figure 4.2The average and standard deviation for absolute value of bias when
𝑛 = 200, 250, . . . , 1000. (𝜎2 = 1, 𝜃 = 5, 𝜃0 = 1.)

indicated by the simulation results that when 𝑘 < 𝜈, the standard deviation of �̂�2 is not significantly

reduced as the sample size increases, and the empirical distribution of �̂�2−𝜎2
𝜈,𝑘 appears to be right-

skewed. When 𝑘 > 𝜈, however, the standard deviation of �̂�2 decreases as the sample size increases,

and the empirical distribution of �̂�2 − 𝜎2
𝜈,𝑘 when 𝑛 = 1000 is close to normal distribution. As is

observed from Figure 4.2, the standard deviation of �̂�2 when (𝜈, 𝑘) = (0.3, 1) is smaller compared

with the case when (𝜈, 𝑘) = (1.3, 2). Let 𝜃0 = 𝜃, then (𝜈, 𝑘) = (0.3, 1) and (𝜈, 𝑘) = (1.3, 2) result

in similar values of the standard deviation of �̂�2, as is shown in Figure 4.4.

For future research, it is interesting to perform theoretical analysis for more asymptotic prop-

erties of �̂�2, including the convergence rate of its variance and its asymptotic distribution. The

sampling design considered in this chapter is limited to a regular grid on the line, which is also the

sampling design studied in Section III of Zhang et al. (2021). It is challenging but interesting to

extend the existing results to irregular sampling designs on R (𝑑 ≥ 1).
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Figure 4.3Empirical distributions of bias with 15000 realizations. (𝜎2 = 1, 𝜃 = 5, 𝜃0 = 5.)
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Figure 4.4The average and standard deviation for absolute value of bias when
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APPENDIX A

QUADRATIC VARIATIONS FROM IRREGULAR SAMPLING

A.1 𝑑 = 1

(6) studied quadratic variations defined using irregular observations of process (𝑋𝑡)𝑡∈[0,1] with

Gaussian increments. Suppose (𝑋𝑡) is observed at

0 = 𝑡 (𝑛)0 < 𝑡 (𝑛)1 < · · · < 𝑡 (𝑛)𝑁𝑛
= 1, 𝑛 ∈ N

and denote by Δ𝑡 (𝑛)𝑘 = 𝑡 (𝑛)𝑘+1 − 𝑡
(𝑛)
𝑘 , 𝑘 = 0, . . . , 𝑁𝑛 − 1. Write Δ𝑡 (𝑛)𝑘 as Δ𝑡𝑘 for brevity. Let

Δ𝑋𝑘 = Δ𝑡𝑘−1𝑋𝑡𝑘+1 + Δ𝑡𝑘𝑋𝑡𝑘−1 − (Δ𝑡𝑘−1 + Δ𝑡𝑘 )𝑋𝑡𝑘 . (A.1)

It is straightforward that

𝑡
𝑞
𝑘+1Δ𝑡𝑘−1 + 𝑡𝑞𝑘−1Δ𝑡𝑘 − 𝑡

𝑞
𝑘 (Δ𝑡𝑘−1 + Δ𝑡𝑘 ) = 0, 𝑞 = 0, 1;

𝑡2𝑘+1Δ𝑡𝑘−1 + 𝑡2𝑘−1Δ𝑡𝑘 − 𝑡2𝑘 (Δ𝑡𝑘−1 + Δ𝑡𝑘 ) ≠ 0.

The second order quadratic variation is then defined as

V𝑛 (𝑋) = 2
𝑁𝑛−1∑
𝑘=1

Δ𝑡𝑘 (Δ𝑋𝑘 )2

(Δ𝑡𝑘−1)
3−𝛾

2 (Δ𝑡𝑘 )
3−𝛾

2 (Δ𝑡𝑘−1 + Δ𝑡𝑘 )
, (A.2)

where 𝛾 > 0 is related to the smoothness of (𝑋𝑡). For example, if (𝑋𝑡) is a fractional Brownian

motion with Hurst’s index 𝐻, then 𝛾 = 2 − 2𝐻.

Denote by 𝑚𝑛 = max{Δ𝑡 (𝑛)𝑘 ; 0 ≤ 𝑘 ≤ 𝑁𝑛 − 1} and 𝑝𝑛 = min{Δ𝑡 (𝑛)𝑘 ; 0 ≤ 𝑘 ≤ 𝑁𝑛 − 1}. It is

assumed in (6) that

(i) For a sequence of positive real numbers (𝑙𝑘 )𝑘≥1,

lim
𝑛→∞

sup
1≤𝑘≤𝑁𝑛−1

�����Δ𝑡 (𝑛)𝑘−1

Δ𝑡 (𝑛)𝑘
− 𝑙𝑘

����� = 0;

(ii) 𝑚𝑛 = 𝑂 (𝑝𝑛) as 𝑛→ ∞;

(iii) 𝑝𝑛 = 𝑜( 1
log 𝑛 ) as 𝑛→ ∞.
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With irregular observations satisfying the assumptions above, the almost sure convergence ofV𝑛 (𝑋)

is proved under some regularity conditions on (𝑋𝑡).

Although (6) considered a general class of irregular observations, the quadratic variation defined

in (A.2) could not be evaluated when 𝛾 is unknown. Also, 𝛾 could not be estimated when𝑚𝑛 = 𝑝𝑛 =
1
𝑁𝑛

does not hold. The quadratic variations defined by (53), however, do not depend on unknown

parameters.

(53) considered a stationary, isotropic Gaussian random field 𝑋 on R𝑑 , 𝑑 = 1, 2. When 𝑑 = 1,

define irregular lattice points

𝑡𝑖 = 𝜑

(
𝑖 − 1
𝑛 − 1

)
, 𝑖 = 1, . . . , 𝑛 (A.3)

for 𝑛 ≥ 2, where 𝜑 : R ↦→ R is a twice continuously differentiable function with 𝜑(0) = 0, 𝜑(1) = 1

and min0≤𝑠≤1 𝜑
′(𝑠) > 0.

For 𝜃 ∈ {1, 2} and ℓ ∈ {1, 2, . . . , ⌊(𝑛 − 1)/𝜃⌋}, define

𝑎𝜃,ℓ;𝑖,𝑘 =
ℓ!∏

0≤ 𝑗≤ℓ, 𝑗≠𝑘 (𝑡𝑖+𝜃𝑘 − 𝑡𝑖+𝜃 𝑗 )
, 𝑘 = 0, . . . , ℓ, (A.4)

∇𝜃,ℓ𝑋𝑖 =
ℓ∑
𝑘=0

𝑎𝜃,ℓ;𝑖,𝑘𝑋 (𝑡𝑖+𝜃𝑘 ), 𝑖 = 1, . . . , 𝑛 − 𝜃ℓ. (A.5)

Lemma 1 in (53) shows that

ℓ∑
𝑘=0

𝑎𝜃,ℓ;𝑖,𝑘 𝑡
𝑞
𝑖+𝜃𝑘 =


0, 𝑞 = 0, . . . , ℓ − 1

ℓ!, 𝑞 = ℓ.

The ℓth order quadratic variations are defined as

𝑉𝜃,ℓ =
𝑛−𝜃ℓ∑
𝑖=1

(
∇𝜃,ℓ𝑋𝑖

)2
, 𝜃 ∈ {1, 2}, ℓ ∈ {1, 2, . . . , ⌊(𝑛 − 1)/𝜃⌋}. (A.6)

A.2 𝑑 > 1

A.2.1 Observations along a curve

(53) studied the case when 𝑑 = 2 and 𝑋 is observed along a fixed curve in R2. Assume that

(i) ∃𝜖 > 0, 𝐿 > 0 s.t. 𝛾 : (−𝜖, 𝐿 + 𝜖) ↦→ R𝑑 is a 𝐶2-curve parameterized by arc length;
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(ii) ∃𝐶 > 0 s.t. | |𝛾(𝑡∗) − 𝛾(𝑡) | | ≥ 𝐶 |𝑡∗ − 𝑡 |, ∀𝑡∗, 𝑡 ∈ [0, 𝐿].

Denote by 𝑋𝑖 = 𝑋 (𝛾(𝑡𝑖)) and 𝑑𝑖, 𝑗 = | |𝛾(𝑡𝑖) − 𝛾(𝑡 𝑗 ) | | for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where 𝑡𝑖 is defined in (A.3).

For 𝜃, ℓ ∈ {1, 2}, define

𝑏𝜃,ℓ;𝑖,𝑘 =
ℓ∏

0≤ 𝑗≤ℓ, 𝑗≠𝑘 (𝑑𝑖,𝑖+𝜃𝑘 − 𝑑𝑖,𝑖+𝜃 𝑗 )
, 𝑘 = 0, . . . , ℓ, (A.7)

∇̃𝜃,ℓ𝑋𝑖 =
ℓ∑
𝑘=0

𝑏𝜃,ℓ;𝑖,𝑘𝑋𝑖+𝜃𝑘 , 𝑖 = 1, . . . , 𝑛 − 𝜃ℓ. (A.8)

Lemma 1 in (53) shows that

ℓ∑
𝑘=0

𝑏𝜃,ℓ;𝑖,𝑘𝑑
𝑞
𝑖,𝑖+𝜃𝑘 =


0, 𝑞 = 0, . . . , ℓ − 1

ℓ, 𝑞 = ℓ.

The ℓth order quadratic variations are constructed as

�̃�𝜃,ℓ =
𝑛−𝜃ℓ∑
𝑖=1

(
∇̃𝜃,ℓ𝑋𝑖

)2
, 𝜃, ℓ ∈ {1, 2}. (A.9)

A.2.2 Observations on deformed lattice

When 𝑑 = 2 and 𝑋 is observed on deformed lattice points inR2, (53) also defined corresponding

second order quadratic variations.

Consider an open set Ω in R2 with [0, 1]2 ⊂ Ω, and a 𝐶2(Ω) diffeomorphism �̃� : Ω ↦→ R2. Let

�̃� = (𝜑1, 𝜑2). Write 𝑋𝑖1,𝑖2 = 𝑋 (x𝑖1,𝑖2), where x𝑖1,𝑖2 = (𝑥𝑖1,𝑖21 , 𝑥𝑖1,𝑖22 )′ = (𝜑1(𝑖1/𝑛, 𝑖2/𝑛), 𝜑2(𝑖1/𝑛, 𝑖2/𝑛))′

for 1 ≤ 𝑖1, 𝑖2 ≤ 𝑛.

For 𝜃 ∈ {1, 2} and 1 ≤ 𝑖1, 𝑖2 ≤ 𝑛 − 𝜃, let

𝐴𝜃;𝑖1,𝑖2 =
©«
𝑥𝑖1+𝜃,𝑖21 − 𝑥𝑖1,𝑖21 𝑥𝑖1+𝜃,𝑖22 − 𝑥𝑖1,𝑖22

𝑥𝑖1,𝑖2+𝜃1 − 𝑥𝑖1,𝑖21 𝑥𝑖1,𝑖2+𝜃2 − 𝑥𝑖1,𝑖22

ª®®¬ ,
𝐵𝜃;𝑖1,𝑖2 =

©«
𝑥𝑖1+𝜃,𝑖21 − 𝑥𝑖1+𝜃,𝑖2+𝜃1 𝑥𝑖1+𝜃,𝑖22 − 𝑥𝑖1+𝜃,𝑖2+𝜃2

𝑥𝑖1,𝑖2+𝜃1 − 𝑥𝑖1+𝜃,𝑖2+𝜃1 𝑥𝑖1,𝑖2+𝜃2 − 𝑥𝑖1+𝜃,𝑖2+𝜃2

ª®®¬ .
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Then define

©«
∇̃𝜃,1𝑋𝑖1,𝑖2
∇̃𝜃,2𝑋𝑖1,𝑖2

ª®®¬ = 𝐵−1
𝜃;𝑖1,𝑖2

©«
𝑋𝑖1+𝜃,𝑖2 − 𝑋𝑖1+𝜃,𝑖2+𝜃

𝑋𝑖1,𝑖2+𝜃 − 𝑋𝑖1+𝜃,𝑖2+𝜃

ª®®¬ − 𝐴−1
𝜃;𝑖1,𝑖2

©«
𝑋𝑖1+𝜃,𝑖2 − 𝑋𝑖1,𝑖2
𝑋𝑖1,𝑖2+𝜃 − 𝑋𝑖1,𝑖2

ª®®¬ (A.10)

=
∑

0≤𝑘1,𝑘2≤1

©«
𝑐𝑘1,𝑘2
𝜃,1;𝑖1,𝑖2𝑋𝑖1+𝜃𝑘1,𝑖2+𝜃𝑘2

𝑐𝑘1,𝑘2
𝜃,2;𝑖1,𝑖2𝑋𝑖1+𝜃𝑘1,𝑖2+𝜃𝑘2

ª®®¬ , (A.11)

where 𝐵−1
𝜃;𝑖1,𝑖2 and 𝐴−1

𝜃;𝑖1,𝑖2 exist for large enough 𝑛 since �̃� is a diffeomorphism. Lemma 2 in (53)

shows that for 𝑗 , ℓ ∈ {1, 2},∑
0≤𝑘1,𝑘2≤1

𝑐𝑘1,𝑘2
𝜃,ℓ;𝑖1,𝑖2

(
𝑥𝑖1+𝜃𝑘1,𝑖2+𝜃𝑘2
𝑗

)𝑞
= 0, 𝑞 = 0, 1.

The second order quadratic variations are defined as

�̃�𝜃,ℓ =
∑

1≤𝑖1,𝑖2≤𝑛−𝜃

(
∇̃𝜃,ℓ𝑋𝑖1,𝑖2

)2
, 𝜃, ℓ ∈ {1, 2}. (A.12)

For quadratic variations defined in (A.6), (A.9) and (A.12), the rates of their expectations and

variances as 𝑛→ ∞ are proved by (53) under some regularity conditions on 𝑋 .

(54) focused on the stationary GRF 𝑋 on R𝑑 with isotropic Matérn covariance function, and

studied quadratic variations constructed from irregular observations of 𝑋 when 𝑑 > 2.

The definition in (A.12) is extended to the case where 𝑋 is observed on [0, 1]𝑑 and 𝑑 ∈ Z+.

Consider an open set Ω in R𝑑 with [0, 1]𝑑 ⊂ Ω, and a 𝐶2(Ω) diffeomorphism 𝝋 = (𝜑1, . . . , 𝜑𝑑) :

Ω ↦→ R𝑑 . Write

x(i) = (𝑥1(i), . . . , 𝑥𝑑 (i))′ =
(
𝜑1

(
i
𝑛

)
, . . . , 𝜑𝑑

(
i
𝑛

))′
and 𝑋𝑖1,...,𝑖𝑑 = 𝑋 (x(i)), where i = (𝑖1, . . . , 𝑖𝑑)′ and 1 ≤ 𝑖1, . . . , 𝑖𝑑 ≤ 𝑛. The sample size is thus 𝑛𝑑 .

For 𝜃 ∈ {1, 2} and ℓ ∈ Z+, let

ℓ̄ =
ℓ∑
𝑙=1

©«
𝑙 + 𝑑 − 1

𝑑 − 1

ª®®¬ , (A.13)

xi, 𝑗 = (𝑥i, 𝑗 ;1, . . . , 𝑥i, 𝑗 ;𝑑)′ = x(𝑖1 + 𝑘1𝜃, . . . , 𝑖𝑑 + 𝑘𝑑𝜃), 𝑗 = 0, . . . , ℓ̄,

ỹi, 𝑗 =
𝑛

𝜃
(xi, 𝑗 − xi,0), 𝑗 = 1, . . . , ℓ̄,
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where 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛−ℓ𝜃}, 𝑘1, . . . , 𝑘𝑑 ∈ {0, 1, . . . , ℓ} and∑𝑑
𝑖=1 𝑘𝑖 ∈ {0, 1, . . . , ℓ}, 𝑗 denotes

the lexicographical order of combinations (𝑘1, . . . , 𝑘𝑑), xi,0 = x(i). The detailed rule of ordering

is described in Section 5.1 of (54).

For 𝑙 = 1, . . . , ℓ and s = (𝑠1, . . . , 𝑠𝑑)′ ∈ R𝑑 , define

a⟨𝑑,𝑙⟩ (s) =
(
𝑑∏
𝑘=1

𝑠𝑙𝑘𝑘
𝑙𝑘 !

)
∈ R

©«
𝑙 + 𝑑 − 1

𝑑 − 1

ª®®®®¬, (A.14)

where 𝑙1, . . . , 𝑙𝑑 ∈ {0, 1, . . . , ℓ} and
∑𝑑
𝑖=1 𝑙𝑖 = 𝑙. The elements of a⟨𝑑,𝑙⟩ (s) are arranged in lexico-

graphic ordering with respect to (𝑙1, . . . , 𝑙𝑑). Define a ℓ̄ × ℓ̄ matrix

�̃�i,𝜃,𝑑,ℓ =

©«

a⟨𝑑,1⟩ (ỹi,1) a⟨𝑑,2⟩ (ỹi,1) · · · a⟨𝑑,ℓ⟩ (ỹi,1)

a⟨𝑑,1⟩ (ỹi,2) a⟨𝑑,2⟩ (ỹi,2) · · · a⟨𝑑,ℓ⟩ (ỹi,ℓ̄)
...

...
. . .

...

a⟨𝑑,1⟩ (ỹi,ℓ̄) a⟨𝑑,2⟩ (ỹi,1) · · · a⟨𝑑,ℓ⟩ (ỹi,ℓ̄)

ª®®®®®®®®¬
(A.15)

and assume | �̃�i,𝜃,𝑑,ℓ | ≠ 0 for all 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛 − ℓ𝜃}.

Denote by �̃�−1
i,𝜃,𝑑,ℓ =

(
�̃�
𝑗 ,𝑘
i,𝜃,𝑑,ℓ

)
1≤ 𝑗 ,𝑘≤ℓ̄

and let

𝑐i,𝜃,𝑑,ℓ ( 𝑗) =


�̃�
ℓ̄, 𝑗
i,𝜃,𝑑,ℓ, ∀ 𝑗 = 1, . . . , ℓ̄,

−∑ℓ̄
𝑘=1 �̃�

ℓ̄,𝑘
i,𝜃,𝑑,ℓ, if 𝑗 = 0.

(A.16)

For 𝜃 ∈ {1, 2} and ℓ ∈ Z+, define

∇̃𝜃,𝑑,ℓ𝑋𝑖1,...,𝑖𝑑 =
ℓ̄∑
𝑗=0
𝑐i,𝜃,𝑑,ℓ ( 𝑗)𝑋 (xi, 𝑗 ), 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛 − 2ℓ}. (A.17)

The ℓth order quadratic variation is then defined as

�̃�𝜃,𝑑,ℓ =
∑

1≤𝑖1,...,𝑖𝑑≤𝑛−2ℓ

(
∇̃𝜃,𝑑,ℓ𝑋𝑖1,...,𝑖𝑑

)2
. (A.18)

A.2.3 Stratified sampling

Let

x(i) = (𝑥1(i), . . . , 𝑥𝑑 (i))′ =
(
𝑖1 − 1 + 𝛿i;1

𝑛
, . . . ,

𝑖𝑑 − 1 + 𝛿i;𝑑

𝑛

)′
∈ [0, 1)𝑑 ,
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where i = (𝑖1, . . . , 𝑖𝑑)′ and 1 ≤ 𝑖1, . . . , 𝑖𝑑 ≤ 𝑛; 0 ≤ 𝛿i;𝑘 < 1 (𝑘 = 1, . . . , 𝑑) are constants that can

vary with 𝑛. Let 𝜔𝑛 be an integer depending only on 𝑛 such that 𝜔𝑛 = 𝑂 (𝑛𝛾0) as 𝑛 → ∞, where

𝛾0 ∈ (0, 1) is a constant.

For 𝜃 ∈ {1, 2} and ℓ ∈ Z+, let

xi, 𝑗 = (𝑥i, 𝑗 ;1, . . . , 𝑥i, 𝑗 ;𝑑)′ = x(𝑖1 + 𝑘1𝜔𝑛𝜃, . . . , 𝑖𝑑 + 𝑘𝑑𝜔𝑛𝜃), 𝑗 = 0, . . . , ℓ̄,

yi, 𝑗 =
𝑛

𝜔𝑛𝜃
(xi, 𝑗 − xi,0), 𝑗 = 1, . . . , ℓ̄,

where 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛−ℓ𝜔𝑛𝜃}, other notations are as defined in Section A.2.2. Define a ℓ̄× ℓ̄

matrix

𝐴i,𝜃,𝑑,ℓ =

©«

a⟨𝑑,1⟩ (yi,1) a⟨𝑑,2⟩ (yi,1) · · · a⟨𝑑,ℓ⟩ (yi,1)

a⟨𝑑,1⟩ (yi,2) a⟨𝑑,2⟩ (yi,2) · · · a⟨𝑑,ℓ⟩ (yi,ℓ̄)
...

...
. . .

...

a⟨𝑑,1⟩ (yi,ℓ̄) a⟨𝑑,2⟩ (yi,1) · · · a⟨𝑑,ℓ⟩ (yi,ℓ̄)

ª®®®®®®®®¬
, (A.19)

where a⟨𝑑,𝑙⟩ (·) is defined in (A.14). Assume |𝐴i,𝜃,𝑑,ℓ | ≠ 0 for all 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛 − ℓ𝜔𝑛𝜃}.

Then denote by 𝐴−1
i,𝜃,𝑑,ℓ =

(
𝛼
𝑗 ,𝑘
i,𝜃,𝑑,ℓ

)
1≤ 𝑗 ,𝑘≤ℓ̄

. Let

𝑐i,𝜃,𝑑,ℓ ( 𝑗) =


𝛼
ℓ̄, 𝑗
i,𝜃,𝑑,ℓ, ∀ 𝑗 = 1, . . . , ℓ̄,

−∑ℓ̄
𝑘=1 𝛼

ℓ̄,𝑘
i,𝜃,𝑑,ℓ, if 𝑗 = 0.

(A.20)

The ℓth order quadratic variation is then defined as

𝑉𝜃,𝑑,ℓ =
∑

1≤𝑖1,...,𝑖𝑑≤𝑛−2ℓ𝜔𝑛

(
∇𝜃,𝑑,ℓ𝑋𝑖1,...,𝑖𝑑

)2
, (A.21)

where 𝜃 ∈ {1, 2}, ℓ ∈ Z+ and

∇𝜃,𝑑,ℓ𝑋𝑖1,...,𝑖𝑑 =
ℓ̄∑
𝑗=0
𝑐i,𝜃,𝑑,ℓ ( 𝑗)𝑋 (xi, 𝑗 ), 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛 − 2ℓ𝜔𝑛}. (A.22)

A.3 Randomized Sampling Design

Section 4 in (54) considered random sampling on [0, 1)𝑑 , where 𝑑 ∈ {1, 2, 3}. It is an extension

of the stratified sampling discussed in Section A.2.3.
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Let x1, . . . , x𝑁 be a sequence of i.i.d. random vectors in R𝑑 that are independent of the GRF 𝑋 .

Assume the probability density function 𝑝(x) of x1 satisfies∫
[0,1)𝑑

𝑝(x)dx = 1 and inf
[0,1)𝑑

𝑝(x) ≥ 𝑝0 > 0. (A.23)

When 𝑝0 in (A.23) is unknown, let

𝑛𝜏 =

⌊(
𝑁

𝜏 log2(𝑁)

)1/𝑑⌋
, ∀𝜏 > 0.

Let 𝜏 be the smallest real number greater than or equal to 1 such that

{x1, . . . , x𝑁 } ∩
𝑑∏
𝑗=1

[
𝑖 𝑗 − 1
𝑛𝜏

,
𝑖 𝑗

𝑛𝜏

)
≠ ∅, ∀𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛𝜏}.

Consider the effective sample only:
{
x 𝑗 , 𝑋 (x 𝑗 )

}
: x 𝑗 ∈

𝑑∏
𝑗=1

[
𝑖 𝑗 − 1
𝑛𝜏

,
𝑖 𝑗

𝑛𝜏

)
, 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛𝜏}, 𝑗 ∈ {1, . . . , 𝑁}

 . (A.24)

Take a subset of x 𝑗 ’s in (A.24) such that for each i = (𝑖1, . . . , 𝑖𝑑)′ with 1 ≤ 𝑖1, . . . , 𝑖𝑑 ≤ 𝑛𝜏, there

is strictly one 𝑗 satisfying x 𝑗 ∈ ∏𝑑
𝑗=1

[
𝑖 𝑗−1
𝑛 �̂�
,
𝑖 𝑗
𝑛 �̂�

)
. Write the selected x 𝑗 as x(i). The randomized

sampling design is then reduced to the stratified sampling design with a sample size of 𝑛𝑑𝜏 . Thus,

the ℓth order quadratic variations could be defined as in (A.21), where 𝜃 ∈ {1, 2}, ℓ ∈ Z+ and 𝑛 is

replaced by 𝑛𝜏.

When 𝑝0 in (A.23) is known, let 𝜏0 = 3/𝑝0 and

�̄�𝜏 =

⌊(
𝑁

𝜏 log(𝑁)

)1/𝑑⌋
,

where 𝜏 ≥ 𝜏0. Let 𝜏 be the smallest real number greater than or equal to 𝜏0 such that

{x1, . . . , x𝑁 } ∩
𝑑∏
𝑗=1

[
𝑖 𝑗 − 1
�̄�𝜏

,
𝑖 𝑗

�̄�𝜏

)
≠ ∅, ∀𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , �̄�𝜏}.

The effective sample is defined as in (A.24) by replacing 𝑛𝜏 with �̄�𝜏. Similarly, the ℓth order

quadratic variations are defined as in (A.21), where 𝜃 ∈ {1, 2}, ℓ ∈ Z+ and 𝑛 is replaced by �̄�𝜏.
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A.4 Estimating Smoothness Parameters

Based on the a.s. convergence of the quadratic variation defined in (A.2), when a fractional

Ornstein-Uhlenbeck process 𝑂𝐻 is observed from regular sampling, its fractional parameter 𝐻 ∈

(0, 1) has a strongly consistent estimator as

�̂�𝑛 =
1
2
−

log

(∑𝑁𝑛−1
𝑘=1

(
𝑂𝐻

𝑘+1
𝑁𝑛

+𝑂𝐻
𝑘−1
𝑁𝑛

− 2𝑂𝐻
𝑘
𝑁𝑛

)2
)

2 log 𝑁𝑛
, (A.25)

where 1/𝑁𝑛 = 𝑜(1/log 𝑛).

Quadratic variations constructed in (A.6), (A.9) and (A.12) are used to estimate the smoothness

parameter 𝜈 in covariance function (1.1).

The estimators of 𝜈 defined by (53) are minimizers of functions that depend on sampling loca-

tions and quadratic variations. Although with no closed form expressions, the estimators are proved

to be strongly consistent when ℓ > 𝜈 and observations are on [0, 1] or along a curve. When 𝑋 is

observed on deformed lattice and 𝜈 ∈ (0, 2), ℓ ∈ {1, 2}, the estimator defined using (A.12) is proved

to be strongly consistent as well.

The Matérn covariance function belongs to the class of functions defined in (1.1). To estimate

its smoothness parameter 𝜈, define

�̂�𝑛,ℓ =
log(𝑉2,𝑑,ℓ/𝑉1,𝑑,ℓ)

2 log 2
, (A.26)

where 𝑉𝜃,𝑑,ℓ, 𝜃 = 1, 2 are quadratic variations defined in (A.18), (A.21) and Section A.3, corre-

sponding to different kinds of sampling design. When ℓ > 𝜈, it is proved by (54) that �̂�𝑛,ℓ → 𝜈 a.s.

as 𝑛→ ∞.
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APPENDIX B

HIGH EXCURSION PROBABILITY

We first introduce some notations and definitions presented in (62).

The structural modulus of vector t ∈ R𝑛 is defined as

|t|𝐸,𝛼 =
𝑘∑
𝑖=1

©«
𝐸 (𝑖)∑

𝑗=𝐸 (𝑖−1)+1
𝑡2𝑗
ª®¬
𝛼𝑖/2

,

where 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑘 }, 𝛼 = {𝛼1, 𝛼2, . . . , 𝛼𝑘 }, 𝑒𝑖, 𝛼𝑖 ∈ Z+ (𝑖 = 1, 2, . . . , 𝑘),
∑𝑘
𝑖=1 𝑒𝑖 = 𝑛,

𝐸 (𝑖) = ∑𝑖
𝑗=0 𝑒 𝑗 , 𝑒0 = 0. A structure (𝐸, 𝛼) defines a partition of the space R𝑛 into a direct product

of orthogonal subspaces (R𝑛 = ×𝑘𝑖=1R
𝑒𝑖 ) such that the restrictions of the structural modulus |t|𝐸,𝛼

on either of them is a Euclidean norm taken to the degree 𝛼𝑖, 𝑖 = 1, 2, . . . , 𝑘 , respectively.

Example 1. Let 𝑛 = 𝑘 = 2 and 𝐸 = {1, 1}, then 𝐸 (0) = 0, 𝐸 (1) = 1, 𝐸 (2) = 2, and

|t|𝐸,𝛼 = |𝑡1 |𝛼1 + |𝑡2 |𝛼2 , ∀t = (𝑡1, 𝑡2) ∈ R2,

where 𝛼1, 𝛼2 ∈ Z+.

Let 𝜒(t), t ∈ R𝑛 be a Gaussian field with continuous trajectories, and

𝐸𝜒(t) = −|t|𝐸,𝛼,

Cov (𝜒(t), 𝜒(s)) = |t|𝐸,𝛼 + |s|𝐸,𝛼 − |t − s|𝐸,𝛼,

where 𝛼𝑖 ≤ 2 makes the covariance function valid. For any compact set 𝑇 ⊂ R𝑛 and matrix

𝑀 ∈ R𝑛×𝑛, denote by

𝐻𝑀
(𝐸,𝛼),(𝐸 ′,𝛼′) (𝑇) = 𝐸 exp

(
max
𝑇

{
𝜒(t) − |𝑀t|𝐸 ′,𝛼′

})
.

Write 𝐻𝐸,𝛼 (𝑇) = 𝐻0
(𝐸,𝛼),(𝐸 ′,𝛼′) (𝑇), where 0 is the zero matrix.

A set 𝐴 ⊂ R𝑛 is called Jordan measurable if its interior and closure have the same Lebesgue

measure, i.e. its boundary has Lebesgure measure zero. The system {𝐴𝑢, 𝑢 > 0} is said to blow up

slowly with the rate 𝜅 > 0 if each of these sets contains a unit cube and mes(𝐴𝑢) = 𝑂 (𝑒𝜅𝑢2/2) as

𝑢 → ∞.

Theorem 7.2 in (62) is presented as below, where the subscript ·𝐸,𝛼 is written as ·𝛼 for short.
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Theorem 11. (62) Let {𝑋 (t), t ∈ R𝑛} be a Gaussian homogeneous field with zero mean and the

covariance function 𝑟 (t) satisfies that there exists a non-degenerate matrix𝐶 and a structure (𝐸, 𝛼)

such that

𝑟 (𝐶t) = 1 − |t|𝛼 + 𝑜(|t|𝛼) as 𝑡 → 0,

𝑟 (t) → 0 as 𝑡 → ∞.
(B.1)

Then there exists a number 𝜅 > 0 such that for any system of closed Jordan sets, blowing up slowly

with the rate 𝜅,

𝑃

(
max
t∈𝐴𝑢

𝑋 (t) > 𝑢
)
= 𝐻𝛼mes(𝐴𝑢) |det𝐶−1 |

𝑘∏
𝑖=1

𝑢2𝑒𝑖/𝛼𝑖Ψ(𝑢) (1 + 𝑜(1)) as 𝑢 → ∞, (B.2)

where

𝐻𝛼 = lim
𝑡→∞

𝐻𝛼 ([0, 𝑡]𝑛)
𝑡𝑛

and Ψ(𝑢) = 1√
2𝜋

∫ ∞
𝑢

exp(−𝑥2/2)d𝑥.

Remark 3. The zero-mean stationary Ornstein-Uhlenbeck field 𝑋 with covariance function defined

in (3.2) taking 𝜎2 = 1 satisfies conditions in Theorem 11 with 𝑛 = 2, 𝐸 = {1, 1}, 𝛼 = {1, 1}, and

𝐶 =
©«
1/𝜆 0

0 1/𝜇

ª®®¬.
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APPENDIX C

STOCHASTIC PARTIAL DIFFERENTIAL EQUATION

Write the two-sided Laplace transform of a function ℎ as

Lℎ (𝑝) =
∫ ∞

−∞
𝑒−𝑝𝑥ℎ(𝑥)d𝑥, (C.1)

and denote by 𝐷𝑛 the differential operator of order 𝑛, i.e. 𝐷𝑛ℎ(𝑥) = d𝑛
d𝑥𝑛 ℎ(𝑥). It follows from the

differentiation rule presented on Page 48-50 of (67) that

L𝐷𝑛ℎ (𝑝) = 𝑝𝑛Lℎ (𝑝), ∀𝑛 ∈ Z+ (C.2)

when

lim
𝑥→∞

𝑒−𝑝𝑥ℎ(𝑥) − lim
𝑥→−∞

𝑒−𝑝𝑥ℎ(𝑥) = 0.

The case when 𝑛 ∉ Z+ is discussed in (59). We first introduce the definition of fractional

derivatives below. For any 𝛼 > 0, define the fractional difference operator Δ𝛼 as

Δ𝛼 𝑓 (𝑥) =
∞∑
𝑗=0

Γ(𝛼 + 1)
𝑗!Γ(𝛼 − 𝑗 + 1) (−1) 𝑗 𝑓 (𝑥 − 𝑗 ℎ)

and write the fractional derivative in the Grünwald-Letnikov finite difference form as

𝐷𝛼 𝑓 (𝑥) :=
d𝛼 𝑓 (𝑥)

d𝑥𝛼
= lim
ℎ→0

Δ𝛼 𝑓 (𝑥)
ℎ𝛼

. (C.3)

Alternative integral forms for the fractional derivative are also presented in (59), as shown in Tables

C.1-C.2. Consider the Riemann-Liouville fractional derivative of order 0 < 𝛼 < 1, of which the

Laplace transform is written as∫ ∞

−∞
𝑒−𝑝𝑥𝐷𝛼 𝑓 (𝑥)d𝑥 =

∫ ∞

−∞
𝑒−𝑝𝑥

d
d𝑥

∫ ∞

0
𝑓 (𝑥 − 𝑦) 𝑦−𝛼

Γ(1 − 𝛼)d𝑦d𝑥

=
1

Γ(1 − 𝛼)

( [
𝑒−𝑝𝑥

∫ ∞

0
𝑓 (𝑥 − 𝑦)𝑦−𝛼d𝑦

]∞
𝑥=−∞

−
∫ ∞

−∞

∫ ∞

0
𝑓 (𝑥 − 𝑦)𝑦−𝛼d𝑦d𝑒−𝑝𝑥

)
:=

1
Γ(1 − 𝛼) (𝐼1 − 𝐼2),
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where

𝐼2 = −𝑝
∫ ∞

0
𝑒−𝑝𝑦𝑦−𝛼

∫ ∞

−∞
𝑓 (𝑧)𝑒−𝑝𝑧d𝑧d𝑦

= −𝑝𝛼L 𝑓 (𝑝)

when 𝑒−𝑝𝑥𝑦−𝛼 𝑓 (𝑥 − 𝑦) is integrable. If it further holds that

lim
𝑥→∞

𝑒−𝑝𝑥
∫ ∞

0
𝑓 (𝑥 − 𝑦)𝑦−𝛼d𝑦 − lim

𝑥→−∞
𝑒−𝑝𝑥

∫ ∞

0
𝑓 (𝑥 − 𝑦)𝑦−𝛼d𝑦 = 0,

then

L𝐷𝛼 𝑓 (𝑝) = 𝑝𝛼L 𝑓 (𝑝).

Generator form
∫ ∞
0 ( 𝑓 (𝑥) − 𝑓 (𝑥 − 𝑦)) 𝛼𝑦

−𝛼−1

Γ(1−𝛼)d𝑦
Caputo form

∫ ∞
0

d
d𝑥 𝑓 (𝑥 − 𝑦)

𝑦−𝛼

Γ(1−𝛼)d𝑦
Riemann-Liouville form d

d𝑥

∫ ∞
0 𝑓 (𝑥 − 𝑦) 𝑦−𝛼

Γ(1−𝛼)d𝑦

Table C.1Alternative integral forms for the fractional derivative when 0 < 𝛼 < 1.

Generator form
∫ ∞
0 ( 𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦 d

d𝑥 𝑓 (𝑥))
𝛼(𝛼−1)𝑦−𝛼−1

Γ(2−𝛼) d𝑦
Caputo form

∫ ∞
0

d2

d𝑥2 𝑓 (𝑥 − 𝑦) 𝑦1−𝛼

Γ(2−𝛼)d𝑦
Riemann-Liouville form d2

d𝑥2

∫ ∞
0 𝑓 (𝑥 − 𝑦) 𝑦1−𝛼

Γ(2−𝛼)d𝑦

Table C.2Alternative integral forms for the fractional derivative when 1 < 𝛼 < 2.

Consider the stochastic partial differential equation (SPDE)

𝐿

(
𝜕

𝜕𝑡1
,
𝜕

𝜕𝑡2

)
𝑋 (𝑡1, 𝑡2) = 𝜖 (𝑡1, 𝑡2), 𝑡1, 𝑡2 ∈ R, (C.4)

where 𝐿 is a linear differential operator. The Green’s function of 𝐿 satisfies

𝐿

(
𝜕

𝜕𝑡1
,
𝜕

𝜕𝑡2

)
𝐺 (𝑡1, 𝑡2) = 𝛿0(𝑡1)𝛿0(𝑡2), 𝑡1, 𝑡2 ∈ R, (C.5)

where 𝛿0 is the Dirac measure at 0.

When 𝜖 is the Gaussian white noise, it holds that

𝐸 [𝜖 (𝑠1, 𝑠2)𝜖 (𝑠1 + 𝑡1, 𝑠2 + 𝑡2)] = 𝛿0(𝑡1)𝛿0(𝑡2), ∀𝑠1, 𝑠2, 𝑡1, 𝑡2 ∈ R. (C.6)
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The covariance function of 𝑋 is thus

𝐶 (𝑡1, 𝑡2) := 𝐸 [𝑋 (𝑠1, 𝑠2)𝑋 (𝑠1 + 𝑡1, 𝑠2 + 𝑡2)], ∀𝑠1, 𝑠2, 𝑡1, 𝑡2 ∈ R

=
∫ ∞

−∞

∫ ∞

−∞
𝐺 (𝑠1, 𝑠2)𝐺 (𝑠1 + 𝑡1, 𝑠2 + 𝑡2)d𝑠1d𝑠2, ∀𝑡1, 𝑡2 ∈ R. (C.7)

As presented in (32), when the operator 𝐿 takes the form of

𝐿

(
𝜕

𝜕𝑡1
,
𝜕

𝜕𝑡2

)
= 𝑐1

𝜕2

𝜕𝑡21
+ 𝑐2

𝜕2

𝜕𝑡22
+ 𝑐3

𝜕2

𝜕𝑡1𝜕𝑡2
+ 𝑐4

𝜕

𝜕𝑡1
+ 𝑐5

𝜕

𝜕𝑡2
+ 𝑐6, (C.8)

the Laplace transforms of the Green’s function and the covariance function derived from (C.4)

satisfy

L𝐺 (𝑝, 𝑞) =
1

𝐿 (𝑝, 𝑞) , (C.9)

L𝐶 (𝑝, 𝑞) =
1

𝐿 (𝑝, 𝑞)𝐿 (−𝑝,−𝑞) . (C.10)

As a special case of (C.8), the elliptic form of the operator 𝐿 is discussed in (74), where the corre-

sponding SPDE is (
𝜕2

𝜕𝑡21
+ 𝜕2

𝜕𝑡22
− 𝛾2

)
𝑋 (𝑡1, 𝑡2) = 𝜖 (𝑡1, 𝑡2). (C.11)

Denote by 𝐾ℓ the modified Bessel functions of the second kind. The Green’s function for (C.11) is

thus

𝐺 (𝑡1, 𝑡2) = L−1 1
𝑝2 + 𝑞2 − 𝛾2 =

1
2𝜋
𝐾0

(
𝛾
√
𝑡21 + 𝑡22

)
.

The spectral density function of 𝑋 as the Fourier transform of the covariance function 𝐶 is derived

as

𝑓𝑋 (𝜉, 𝜂) =
1

(2𝜋)2 𝐿𝐶 (𝑖𝜉, 𝑖𝜂)

=
1

(2𝜋)2 (
−𝜉2 − 𝜂2 − 𝛾2)2

∝ 1(
𝜉2 + 𝜂2 + 𝛾2)2 .

(24) considered the SPDE

(∇2 − 𝛽2)𝜈𝑋 (𝑡1, 𝑡2) = 𝜖 (𝑡1, 𝑡2), (C.12)
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where ∇2 = 𝜕2/𝜕𝑡21 + 𝜕2/𝜕𝑡22, 𝜖 is a white noise field, 𝛽 ∈ R, 𝜈 > 0, and

(∇2 − 𝛽2)𝜈 = (−1)𝜈
∞∑
𝑗=0

(
𝜈

𝑗

)
(−∇2) 𝑗 𝛽2(𝜈− 𝑗) . (C.13)

The Green’s function of (∇2 − 𝛽2)𝜈 satisfies

(−1)𝜈
∞∑
𝑗=0

(
𝜈

𝑗

)
(−∇2) 𝑗 𝛽2(𝜈− 𝑗)𝐺 (𝑡1, 𝑡2) = 𝛿0(𝑡1)𝛿0(𝑡2). (C.14)

Taking Laplace transform on both sides of equation (C.14) yields

(−1)𝜈
∞∑
𝑗=0

(
𝜈

𝑗

)
(−𝑝2 − 𝑞2) 𝑗 𝛽2(𝜈− 𝑗)L𝐺 (𝑝, 𝑞) = 1.

Thus,

L𝐺 (𝑝, 𝑞) = ©«
∞∑
𝑗=0

(
𝜈

𝑗

)
(𝑝2 + 𝑞2) 𝑗 (−𝛽2)𝜈− 𝑗ª®¬

−1

=
1(

𝑝2 + 𝑞2 − 𝛽2)𝜈 .
The spectral density function of 𝑋 is

𝑓𝑋 (𝜉, 𝜂) =
1

(2𝜋)2
©«(−1)𝜈

∞∑
𝑗=0

(
𝜈

𝑗

) (
−(𝑖𝜉)2 − (𝑖𝜂)2

) 𝑗
𝛽2(𝜈− 𝑗)ª®¬

−2

∝ 1(
𝜉2 + 𝜂2 + 𝛽2)2𝜈 ,

which is also presented in (75).
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