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ABSTRACT
This dissertation provides the developments and extensions of methodologies in time series econo-
metrics and their financial applications. Chapter 1 of the disseration introduces and summarizes the
following chapters. Chapter 2 develops an estimating equation approach to construct confidence
intervals for autocorrelation functions for time series with general stationary serial correlation
structures. Its empirical application using S&P 500 index returns shows that conclusions about
market efficiency and volatility clustering during pre and post-Covid periods using the estimating
equation approach contrast with conclusions using traditional (and often incorrectly used) methods.
Chapter 3 develops fixed-b asymptotics results for heteroskedasticity autocorrelation robust (HAR)
Wald tests for regressions for high frequency data using an existing continuous time framework. Its
empirical application suggests that the validity of the uncovered interest parity hypothesis depends
on whether normal or fixed-b critical values are used. Chapter 4 investigates the distribution of
realized US corporate bond return volatility using a compound poisson process setting and realized

volatility.
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CHAPTER 1

INTRODUCTION
This dissertation aims to develop and extend time series econometric methodologies with pro-
viding their financial applications. Therefore, the following chapters in this dissertation include
econometric methods and their empirical application using financial time series data.

Chapter 2 of this dissertation develops an estimating equation approach to obtain valid con-
fidence intervals for autocorrelations for stationary time series. The autocorrelation function is
a fundamental statistical analysis tool, widely used in empirical research across various scientific
domains. Yet, it is surprising to note that limited work has been done on providing easily im-
plementable methods for inference about the autocorrelation function of time series data under
empirically realistic assumptions (e.g., the relaxation of independent identically distributed (i.i.d.)
assumption for underlying innovations). Romano and Thombs (1996) pointed out that the Bartlett
formula, a primary approach for inference for the autocorrelation function, becomes invalid when
the assumption of i.i.d innovations is relaxed. This issue, coupled with the lack of a robust and
easily implementable method for such inference, poses challenges in the research domain: 1) The
previous literature might yield potentially misleading economic implications when utilizing the
Bartlett formula for inference, if the i.i.d assumption is violated. For example, Bollerslev and
Mikkelsen (1996) and Andersen et al. (2003) present figures with the confidence bands based on
the Bartlett formula to illustrate dependence properties within series of volatilities. 2) From a
practical standpoint, many statistical packages commonly used by researchers rely on the Bartlett
formula for inference.

Chapter 2 addresses the issue by developing a simple and easy to implement estimating equation
approach for robust inference for the autocorrelation function. The estimating equation is estimated
by ordinary least squares and inference is heteroskedasticity and autocorrelation robust (HAR).
The approach is robust in three ways: innovations can be weak white noise, innovations can have
asymmetric distributions, and inference does not require a specific model of serial correlation.

Extensive Monte Carlo simulations in Chapter 2 highlight the robustness of the approach. An



empirical application using S&P 500 index returns shows that, in the post-Covid period, conclusions
about market efficiency and volatility clustering using the approach contrast with conclusions using
the traditional approaches.

Chapter 3 of this dissertation develops fixed-b asymptotics results for HAR Wald tests for
high frequency data using the continuous time framework of Chang et al. (2023). In the fields
of finance and macroeconomics, high frequency data is increasingly being adopted for research.
Distinct asymptotics, rooted in a continuous time framework, have been established for regressions
involving such high frequency data. These asymptotics consider the time between observations
0 — 0 and sample span T — oo jointly, different than standard asymptotics of discrete time, as
suggested in Chang et al. (2023). In this context, Chapter 3 develops fixed-b asymptotic results for
HAR Wald tests for high frequency stationary regression and cointegrating regression under the
continuous time framework. Fixed-b asymptotics! captures the impact of kernel and bandwidth
choices on the sampling distributions of HAR test statistics and typically provides more accurate
inference than traditional asymptotics. Chapter 3 shows that fixed-b limits of HAR Wald tests for
high frequency stationary regressions in the continuous time setting are the same as the standard
discrete time fixed-b limits. The simulation study in Chapter 3 shows that fixed-b critical values
provide rejection probabilities closer to nominal levels than traditional chi-square critical values
under data generated by Ornstein-Uhlenbeck processes, which are continuous-time analogues of
autoregregressive lag 1 (AR(1)) processes. As an empirical application, Chapter 3 provide some
basic results on the uncovered interest parity (UIP) puzzle by using Yen/US dollar exchange rate
returns and 2-year/10-year government bond yields of the US and Japan from 1991 to 2022,
providing evidence that validity of the UIP hypothesis depends on whether normal or fixed-b
critical values are used.

Chapter 4 of this dissertation focuses on empirical research on the volatility of a financial
instrument, US corporate bonds. Given that corporate bond prices are illiquid and display irregular

trading patterns that differ from other assets like stocks, I model the price dynamics of bond prices

'For more about fixed-b asymptotic theory, please see Kiefer and Vogelsang (2005).



with discrete jumps using a compound Poisson process (CPP). Then, I investigate the distribution of
realized US corporate bond return volatility using realized volatility (RV) introduced in Andersen
etal. (2001). Monte Carlo simulations are designed to examine finite sample properties of RV under
CPP. These simulations consider various structures for the variance of the price jump including
the Heston model and allow a different mean value for the number of daily transactions (number
of price jumps) for the processes. The simulation results indicate that RV is a solid approximation
for integrated volatility when the mean of daily transactions is set to about 146, showing that
the mean absolute percentage error is around 10.2% for the case where the variance of the jump
follows the Heston model. For the empirical analysis, I build series of daily realized volatilities
for US corporate bonds from 2013 to 2018 by using high frequency corporate bond transaction
data (recorded every second) from the Financial Industry Regulatory Authority’s Trade Reporting
and Compliance Engine and link them with corporate bond characteristics (such as credit ratings,
issued amounts and yield) to examine the conditional distributions of the volatilities based on each

bond characteristic.
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CHAPTER 2

AN ESTIMATING EQUATION APPROACH FOR ROBUST CONFIDENCE INTERVALS
FOR AUTOCORRELATIONS OF STATIONARY TIME SERIES

(CO-AUTHORED WITH TIM VOGELSANG)

2.1 Introduction

The autocorrelation function is a fundamental quantity in time series analysis with the sample
autocovariance routinely computed for observed time series. Approximating the sampling dis-
tribution of the estimated autocorrelation is a key tool in understanding the potential population
autocorrelation and the underlying dynamics of a time series. The seminal work by Bartlett (1946)
derived a formula, known as the ‘Bartlett formula’, for the asymptotic covariance matrix of sample
autocorrelations under the assumption that the underlying time series is covariance stationary with
independent, identically, distributed (i.i.d.) innovations. For a given parametric specification of the
autocorrelation function, the Bartlett formula enables one to compute feasible confidence intervals
and conduct hypothesis testing for autocorrelations. However, it has been pointed out in the liter-
ature that inference using the Bartlett formula is invalid when the i.i.d. innovation assumption is
relaxed. See Romano and Thombs (1996) and references.

Upon relaxing the i.i.d. assumption, Romano and Thombs (1996) derived the asymptotic
distribution of sample autocorrelations when the underlying innovations are only uncorrelated.
Allowing innovations to be uncorrelated but otherwise dependent permits many stationary nonlinear
processes frequently used in time series analysis. Another advantage of the approach of Romano
and Thombs (1996) is that it does not depend on any particular structure for generating the
stationary processes. However, to compute confidence intervals for sample autocorrelations they
suggest using the moving block bootstrap and subsampling schemes that may have been viewed
as computationally intensive at the time the Romano and Thombs (1996) paper was written. This

may be the reason their methods have not been adopted by widely used software packages. In
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contrast to resampling methods, Lobato (2001) employed nonparametric kernel estimators of the
asymptotic variance of sample autocorrelations. A recent paper by Wang and Sun (2020) used a
similar approach but with orthonormal series variance estimators. Both of those papers focused
on tests of zero autocorrelation and not the construction of generally valid confidence intervals for
estimated autocorrelations.

There is a related strand of the literature that focuses on extending Bartlett’s asymptotic variance
formula that is valid for uncorrelated but potentially dependent innovations. Francq and Zakoian
(2009) derive a generalized Bartlett formula for the case where innovations of the time series
process are weak white noise process. The formula obtained by Francq and Zakoian (2009) can
be viewed as a closed-form version of the general asymptotic variance given by Romano and
Thombs (1996) that is represented in terms of the autocorrelation function of the time series, the
autocorrelation of the square of the innovations, and a kurtosis parameter. Their formula also
relies on a symmetry assumption for the fourth moments of the innovations. Implementation of
the generalized Bartlett formula is relatively straightforward for simple autocorrelation structures
like moving average models but is very complicated in general. It is likely for this reason that the
generalized Bartlett variance formula has not been implemented in standard software packages.

While the literature has highlighted the dependence of the original Bartlett formula on the
assumption of i.i.d. innovations, many modern statistical packages still rely on Bartlett formula for
deriving variance estimators of sample autocorrelations and for inference about autocorrelations.
Furthermore, even if the assumption of i.i.d. innovations is valid, many software packages im-
plement a version of the Bartlett formula that is not valid for general stationary serial correlation
structures. For example, in Stata’s manual, the formula for the estimated variance of, py, the sample

autocorrelation at lag k, is given by

o /T k=1
Var (px) = (2.1)

r{l+225 A k> 1,
where T is the sample size. This formula assumes, for the purposes of computing an estimated

variance for p; and conducting inference about py, that the true time series is a moving average



process with lag k — 1, i.e. MA(k — 1). This is equivalent to carrying out a sequence of tests where
p1 is used to test hypothesis about p; conditional on the series being i.i.d. (MA(0)), p; is used to
test hypothesis about p, conditional on the series being MA(1), ..., px is used to test hypothesis
about p; conditional on the series being is MA(k — 1). Suppose the series is MA(3). Then the
variance formulas for pj, p, and p3 are invalid along with corresponding confidence intervals.
What is missing in the statistical packages is a method for computing confidence intervals for py
(values of pj that cannot be rejected by a test), that are valid for general stationary serial correlation
structures and do not require the assumption of i.i.d. innovations.

In this paper we develop a simple estimating equation approach for computing confidence
intervals for estimated autocorrelations. The estimating equation approach extends the Lobato
(2001) and Wang and Sun (2020) approaches to the general stationary serial correlation case. Except
in narrow special cases, the asymptotic variances of the estimated autocorrelations take a sandwich
form and well known heteroskedasticity autocorrelation robust (HAR) variance estimators can be
used in a straightforward manner. We focus on kernel and orthonormal series HAR estimators and
use fixed-smoothing theory (Kiefer and Vogelsang (2005), Sun (2013)) to generate critical values
for computing confidence intervals. Following Lazarus et al. (2018) we consider HAR variance
estimators that impose the null leading to more reliable inference. Confidence intervals using
null-imposed HAR variance estimators are obtained using similar methods as used by Vogelsang
and Nawaz (2017). Our approach is easy to implement and can be viewed as a method for
operationalizing Romano and Thombs (1996) without needing resampling methods for valid first
order asymptotic inference.

The paper is organized as follows. Section 2 reviews estimation and inference of/for the
autocorrelation function of a stationary time series. In section 3 we develop a simple estimating
equation approach using HAR tests for inference. We show that fixed-smoothing asymptotics
applies to the test statistics. Our theory allows innovations of the time series to be white noise
driven by random variables whose distributions are potentially skewed. We show how to calculate

confidence intervals when the null is imposed on the variance estimator. Section 4 provides a



simulation study that documents finite sample null rejection probabilities and power for various
data generating processes (DGPs). Comparisons are made to existing approaches. Section 5
provides an empirical application using returns of the S&P 500 stock index. Some implications
about market efficiency and volatility clustering of the S&P 500 index during pre- and post-Covid

periods are obtained. Section 6 concludes the paper.

2.2 Preliminaries
Consider a real-valued covariance stationary time series, {y,}, with mean E(y;) = u. The

autocovariance and autocorrelation functions for y, are given as
yk:E[(yl_ﬂ)(yt—k_/l)]’ k:O’il’iz""’

Pk = Yi/70-

For a sample of T observations {y1, y2, ..., yr} define the sample autocovariance function as

T

7k:T_lZ(Yt_y)()’t—k_)_’), k:0’1’29"-5T_19
t=k+1

where y = 77! Zthl vs, and define the sample autocorrelation function as
Pk = Yk/Yo- (2.2)

The seminal work of Bartlett (1946) provided a formula, now known as Bartlett’s formula, for
the asymptotic variances and covariances of py when y; is a stationary linear time series driven by

1.1.d. innovations. Let y; be expressed by the Wold decomposition,

Ve — U= i Pm€t—m>

m=—oo

where ¢ is an i.i.d.(0,0?) innovation. Then the vector of sample autocorrelations up to lag
m, p = (p1,...,pm) , asymptotically follows a normal distribution with mean p, the vector
of corresponding population autocorrelations up to lag m. The asymptotic variance-covariance
matrix of p is given by T~V with v}’ the ij"" element of the m x m matrix Vg, given by Bartlett’s

formula:

v = Z {Pevipers + pe-ibesj + 20ipjp7 = 2pipePer; — 20 PePLsi}-

{=—00



Despite its wide usage in textbooks and statistical packages, Bartlett’s formula is only valid when
€ is i.i.d. Use of Bartlett’s formula for inference is potentially invalid when ¢, is an uncorrelated
process (e.g. white noise process), but not i.i.d.. Specifically, using mixing conditions that allow
white noise innovations, Romano and Thombs (1996) derived an asymptotic normality result for

VT (p — p) with asymptotic variance-covariance matrix Vg7 with i /" elements given by

RT _
vl = 957 [Cistger = pictjs1 — pycrist + pipjcri]

where ¢is1j+1 = Xgr_co €OV (Y0Yis Yaya+j). Note that Romano and Thombs (1996) showed that
Citl,j+1 1 the ([ + 1, j + 1) element of the asymptotic variance-covariance matrix of VT'(¥ — )
where ¥ = (vo, ..., ) and ¥ = (%o, ..., ¥m)’. Given the complicated nature of v T Romano and
Thombs (1996) propose resampling methods for constructing confidence intervals for pj. For tests
of zero autocorrelation Lobato (2001) proposed nonparametric kernel estimators of ¢;41 ;41 and
Wang and Sun (2020) used series to estimate ¢4 j+1. Neither study focused on confidence intervals
for p; when the time series has autocorrelation.

Closed form formulas for vij

were obtained by Francq and Zakoian (2009) for some models
of y,; with ¢ being white noise with a symmetry condition imposed on the fourth moments of
€. Francq and Zakoian (2009) label these formulas ‘generalized Bartlett’ formulas. For example,

suppose that y, is a weak white noise process (i.e. y; = € where ¢, is a weak white noise process).

The generalized Bartlett formula is given by vl.G]B = le fh le; where
vE =1 vE = = (2.3)
[ve(0)]
and vl. = v = 0ifi # j with y2(i) being the autocovariance function of € at lag i and y2(0)

L]

being the variance of ¢,. When the data generating process of y, is an MA(g) model, Francq and

Zakoian (2009) show that

vfi = Z p?’ viBl* - [ (O) Z )/ez(l K)Pg,

for all i > g. Francq and Zakoian (2009) do not provide formulas for i < g.



While the results of Lobato (2001), Wang and Sun (2020) and Francq and Zakoian (2009) are
useful in specific contexts, they are not comprehensive enough to be used to construct confidence
intervals for py. Therefore, we develop a systematic and simple approach to the construction of
confidence intervals that does not require resampling methods. Because our approach is based
on the inversion of 7-statistics, resampling methods could be used to obtain critical values for the

construction of confidence intervals. We leave such an investigation to future research.
2.3 Theory

2.3.1 An Estimating Equation Approach For Autocorrelation Inference

In this section we develop an estimating equation approach that uses HAR #-statistics for
inference regarding autocorrelations where we relax the assumption that the innovations, ¢, are
1.i.d.. There are a few advantages of this approach. First, the HAR tests we use are well known and
easy to apply in practice. Second, we show that fixed-smoothing asymptotics can be used for the
test statistics providing critical values that depend on tuning parameters used to estimate variances.
Third, it is straightforward to construct confidence intervals for both the cases where the null
hypothesis about the autocorrelation is a) imposed and b) not imposed on the variance estimator.
As we show, imposing the null on the variance estimator can help reduce distortions in finite sample
rejections under the null similar to what was found for stationary time series regressions by Lazarus
et al. (2018) and Vogelsang (2018).

Consider the following estimation equation for a stationary time series y;:

yi=c+piyii +n0, (2.4)

where ¢ = u(l1 —pg) andt =k + 1,k +2,...,T. Regression (2.4) allows consistent estimation of

c and py because
E (U;(k)) = 0, E ()’t—kﬂt(k)) =0.

These conditions are easy to establish as follows. Taking the mean of both sides of (2.4) gives
E (y)) =c+prE (yiik) + E (nﬁk)) :

k
#:ﬂ(l_Pk)"'Pk/v“"E(’?;( )),

10



Replacing E (y;) and E (y;-;) with u and because ¢ = u(1 — py), it follows that

k k
ﬂ=ﬂ(1—pk)+pkﬂ+E(nf )) =u+E(n§ )),

in which case it follows that E (Ut(k)) = 0. To show E (yt_knt(k)) = 0, calculate cov (y;—k, yt)

giving

k
cov (Yi-k, Y1) = cov (Yt—k’ C+ pPkyr-k + 77;( ))

k
PkCoV (Yi—k, Yi—k) + cOV (yt—k, nf )) ,

or equivalently

k Yk k k
Yk = PkYo tcov (yt—k,ﬂt( )) = %70 +cov (yr—k,m( )) =Yk +cov (y;—k,nt( )) .

It then directly follows that cov (y,_k, n,(k)) = 0. Because E (n,(k)) = 0, it must also be the case

that £ (yt_knt(k)) =0.

Except in certain special cases, nt(k) will have serial correlation. By construction nt(k) is given

by
1 =y~ = pryiek = 0 = 1) = pr ek — 1) - (2.5)

Suppose y; is a finite order autoregressive moving average process (ARMA(p, q)) given by

¢(L) (y: —p) = 60(L)e,

where ¢(L) = 1 = ¢1L — ¢oL?> — ... — ¢, L7, 0(L) =1+ 6L +6,L> +...+6,L% and L is the lag

operator. Applying the ¢(L) lag polynomial to both sides of (2.5) gives

$(L)n™ = (L) (yi — ) = $(L)px ik — 1) = S(L) (e — 1) — pxd(L)L* (v, — p1)
= ¢(L) (yr — p) — pkL*¢(L) (v — ) = 0(L)e& — px L*6(L)e;

_ (1 - pkLk) 0(L)e. (2.6)

We see from (2.6) that nt(k) isan ARMA(p, g + k) process.

Suppose that y; in uncorrelated. Then p = g = 0 and p; = 0, and it follows that (2.6) simplifies

to nt(k) = ¢ in which case nt(k) is uncorrelated. Whether or not y,_knt(k) has serial correlation is

11



more complicated and depends on k, the serial correlation in y;, and whether € has dependence
in higher order moments. Cases where yt_kn,(k) has no serial correlation should be viewed as
exceptions rather than the rule, and inference based on estimation of (2.4) should be made robust

to serial correlation (and conditional heteroskedasticity).

It is convenient to rewrite the estimation equation (2.4) as

yi=x_ p+n 2.7)

where x;_; = [ 1 vk ] and 8 = [ c pr ] . The ordinary least squares (OLS) estimator of 8

from (2.7) is given by the usual formula

_ | e r oz
B = ( Z Xt—kX;_k) Z Xt—kYt-

ﬁk t=k+1 t=k+1

Using the Frisch-Waugh-Lovell Theorem, p; can be equivalently expressed as

5= S it ik = Fir-1y) (0r = Fke11y)

’

_ 2
ZzT=k+1 (yl—k - Y{I,T—k})
where

| Tk L&
YOr-ky = 7% Z)’t, Y1y = 7% Z Vi
=1

t=k+1

Define the 2 X 1 vector, Vt(k), as

(k)

k n
V; ) = X[_kngk) = !
(k)
Yi—kM;
and its partial sum process
[rT]
(k) _ (k)
Spr = 2 v
t=k+1
where [7T] is the integer part of rT with r € [0, 1]. Using standard calculations,
[ -1
\/T (g_ C) T T
~ _ , - k
\/T(IB_,B) = = (77! Z X~k X, g T2 Z Xt—knt( )
VT (pr — pi) t=k+1 t=k+1

T -1 T T -1
= (77! Z Xt—kX;_k) T2 Z ng) = (T_1 Z x;_kx;_k) T_I/ZS(Tk).

t=k+1 t=k+1 t=k+1

12



The asymptotic variance of B depends on the probability limit of 7~ Z,T: k41 Xr—kX,_, and the long

(k)

run variance of v,”” which we denote by

W - 0 N (16,
Q + Z ( + Fj ) ,
j=1
where F;k) E(v® t(ki')
The following two assumptions are sufficient to obtain an asymptotic normality result for

\NT (,E - ﬁ). We use the symbol = to denote weak convergence in distribution.

Assumption 2.1 7!/2 Zt[riﬂ (k) _ T_I/ZS%I:;] = AW, (r), where AP is the matrix square
root ofﬂ(k), ie. QK = AKAKY 4 ¢ [0, 1], and Wy (r) is a 2 X 1 vector of independent Wiener

processes (Wa(r) ~ N(0,rIp) where I, is a 2 X 2 identity matrix).

1 H
Assumption 2.2 77! Z[[riﬂ Xk X]_, LR rQ =r , where r € [0, 1].
Boyo+u?

Assumption 2.1 is a functional central limit theorem (FCLT) for the scaled partial sums of V( ),

Assumption 2.1 is stronger than what is needed for an asymptotic normality result for VT (,8 - ,8)
but is used to obtain fixed-smoothing results for HAR test statistics. Inference is discussed in the next
section. A primitive condition for Assumption 2.1 to hold is that y; is near epoch dependence (L;-
NED) with sufficient @-mixing. See Lobato (2001) for details for the case of zero autocovariance
tests. Additional details on sufficient conditions for FCLTs using NED and mixing can be found in
de Jong and Davidson (2000). Note that because i) ka) involves the product of y,_; and n,(k) , and
ii) n(k) is a filtered version of y;_j, properties of transformations of NED processes play a role in
primitive conditions sufficient for Assumption 2.1; see Davidson (1994). Assumption 2.2 holds as
long as y,_ is a second order stationary process. As long as yo > 0 it follows that Q™! exists.

We can directly derive the asymptotic distribution of VT (E - ,8) under Assumptions 1 and 2

as

ﬁ(ﬁ—ﬁ) _ \/T(C -c) N Q_IAWQ(l) N N(O, Q_lﬂ(k)Q_l) = N(O,V(k)).
VT (B — pr)

13



The asymptotic variance of py is Vgg), which is the (2,2) element of VX, Straightforward

(k)

5, is the same as the asymptotic variance for py obtained

calculations can be used to show that V
by Romano and Thombs (1996) (see their equation (6)). Therefore, py is asymptotically equivalent
to px. The advantage of using py via the regression (2.4) is that inference about p; can be carried
out using well known estimators for V() that are simple to implement in practice.

The asymptotic variance, V¥, is estimated as follows. The natural estimator of Q is given by

T

Q=(T-k"! Z Xk X)_ -

t=k+1

. . . . . . k
Because the middle matrix of V) is the long-run variance-covariance matrix of V:( ) , We can use

a nonparametric kernel estimator of the form

T—k-1 .
=) _ (k) J ("'(k) "'(k)/)
QW =T + Z k(M) r’+r”),
j=1
(k) S (k)=(k)
=(k) _ _ -1 ~(k)~(k)r
r9=@-n" Y vV,
t=k+j+1
where
~(k k k ' g T_ 5
vg ) :x,_kﬁf ), '7z( ) =V = X1 B =Y = C = PrYiks (2.8)

k(x) is a kernel function, and M is a truncation lag or bandwidth. QX is the usual kernel HAR

long run variance estimator using OLS residuals, f]fk). This leads to an estimator of V¥ given by

VO = 'amg!,

We also consider a variant of Q*) that imposes the null hypothesis being tested about py.

Suppose we are interested in testing the null hypothesis
Hy: px =a,
where a is a given number in the (-1, 1) range. Define the null-imposed residuals for (2.4) as

77§k)* =y — (V1.1 — aV(1-1y) — @Yk = (e = Yige1.1y) — @ (Vimk = Y1.7-4})
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(k) T )
=)

The null-imposed kernel estimator of Q%) uses vV, = X, skl xs_kﬁﬁk * in place

of V,(k) and is given by
B B T—k-1 S\ B
Q0 =T Y (—J ) (F0 + T907),
o \m ) U J
]:

T
(k)= -1 ~(k)x~(k)*r
P S
t=k+j+1

Notice that Vt(k)* is the demeaned version of x,_kﬁfk)*

. This simple demeaning was found to be
important for power by Lazarus et al. (2018) and Vogelsang (2018) when imposing the null on the

variance estimator. The null-imposed estimator of V() is given by
V(k)* — Q—Iﬁ(k)*(j—l )

Lastly, there is one thing to point out about the bandwidth M. In practice data dependent
methods are often used to choose M. Those formulas are functions of the proxy used for v,(k)
when estimating Q). For Q® data dependent bandwidths are functions of ka). For Q®)* data
dependent bandwidths would typically be functions of V,(k)* and would depend on a through ﬁfk)*.
Having the bandwidth depend on the null value of p; complicates the computation of confidence
intervals. Things are much simpler when Q®)* yges the same data dependent bandwidth as Q)

Details are provided in Section 3.3.

2.3.2 Inference about pj

In this section we focus on simple tests of the autocorrelation for a given lag, k. We propose HAR
t-tests using the variance estimators V®) and V**) and an additional variant of those estimators.
Our tests are valid for covariance stationary y, driven by weak white noise innovations. The case
of i.i.d. innovations is automatically handled.

For a given lag value, k, suppose we want to test the simple hypothesis
Hy : pr =a,

where, because p; is a correlation parameter, a is a given value in the range (—1,1). The test

could be two-sided or one-sided using the appropriate rejection rule. We analyze the following two
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t-statistics:

st - Pk=a) gy _ (Pk—a) (2.9)

where Vz(g ) and Vg * are the (2,2) elements of the respective variance matrix estimators.

Rather than seek sufficient conditions under which V) and V®* are consistent estimators,
we adopt the fixed-smoothing asymptotic approach (often called fixed-b asymptotics in the context
of kernel variance estimators). We do this to generate reference distributions for 7} and 7(K*
that depend on the choice of kernel and bandwidth and capture, to some extent, the impact of the
sampling distribution of the variance estimators on the ¢-statistics. As has been documented in the
time series econometrics literature (Kiefer and Vogelsang (2005), Sun et al. (2008), Gongalves and
Vogelsang (2011), Zhang and Shao (2013), Lazarus et al. (2018) and Lazarus et al. (2021)), more
accurate inference is obtained using critical values from fixed-b reference distributions. Fixed-b
asymptotic results are derived using an asymptotic nesting where the bandwidth to sample size
ratio, b = M /T € (0, 1], is held fixed as T — co.

The following Theorem gives the fixed-b limits of the kernel variance estimators under As-

sumptions 1 and 2.

Theorem 2.1 Let M = bT where b € (0, 1] is fixed. Under Assumptions I and 2, as T — oo, the

fixed-b limits ofﬁ(k), and QM*are given by
Q) = AP (AR, QW = AP, (h) AR,

where ﬁz( b) is a 2 X 2 stochastic matrix that is a function of the 2 X 1 vector of Brownian bridges,

Wz(r) = Wy (r) — rWy(1) and the form ofﬁz(b) depends on k(x).

Notice that the fixed-b limits of Q%) and Q*)* are the same'. Furthermore, the limits are the same
those obtained by Kiefer and Vogelsang (2005) in stationary time series regressions. Kiefer and

Vogelsang (2005) provide details on how the form of l~’2(b) depends on the shape of the kernel. In

Tt was first pointed out by Lazarus et al. (2018) that demeaning ng)* gives the same fixed-b limit for the

null-imposed long run variance estimator as for the null-not-imposed long run variance estimator.
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our simulations we use the Parzen kernel
1 - 6x2 +6|x|? for [x| < 1
k(x) =14 2(1 - |x|)? for% <lx| <1

0 for |x| > 1,

giving

Py(b) = — //| . %k” (r - S) W (r)Wo(r) drds,

where k”(x) is the second derivative of k(x).
Using Theorem 2.1, the fixed-b limits of the #-statistics immediately follow from arguments in

Kiefer and Vogelsang (2005) and are given by

70 Wl_(l) FALREN Wl_(l)

NGO NZD)
where P;(b) is a scalar version of P»(b) defined in terms of the scalar standard Wiener process
Wi (r) in place of W;(r). The fixed-b limiting distributions are nonstandard but the critical values
are easily tabulated using simulation methods. The following formula can be used to compute right

tail fixed-b critical values:

cVe2(D) = 2q2 + A1(D - 2o)2) + A2(b - Zi/z) +A3(b - Zi/z) +A4(b* - zap2) + As(b* - Zi/z)

+ A6(b? - zfyﬁ) +A7(b - zap2) + Ag(b? - Zi/z) +9(b* - 2(31/2)’

where z, 1s the right tail critical value from a standard normal distribution and the A coefficients
depend on the kernel. Left tail critical values follow by symmetry around zero.> Notice that the
critical values reduce to the N (0, 1) distribution as » — 0. This follows from the result, shown by
Kiefer and Vogelsang (2005), that p limj_,q Pi(b) = 1. Table 2A.1 gives the A coeflicients for the
Parzen kernel.

There are other methods for estimating long run variances. An alternative to the kernel approach

is the orthonormal series (OS) approach of Miiller (2007) and Sun (2013) which has been applied

ZKiefer and Vogelsang (2005) show that Wi (1), which is distributed N(0, 1), is independent of P;(b) in which

case Wi(1)/ \/ﬁl (b) has a mixture normal distribution and therefore has a density symmetric around zero.
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to tests of zero autocorrelation tests by Wang and Sun (2020). The OS long run variance estimator
uses a finite set of orthonormal functions ®,(-), £ = 1,2,..., K with the following properties

(Assumption 3.1.(b) of Sun (2013)):

Assumption 2.3 For{ =1,2,...,K, the basis functions ®(-) are continuously differentiable and

orthonormal in L*[0, 1] and satisfy /01 Dp(x)dx =0

Define A; = (’)Vt(k) and K; = \/_Zt a1 P (F)V (k)*. The null-not-

\/_ 2, k+l

imposed and the null-imposed OS long run variance estimators of Q¥ are given by
w_1x )
ok _ Oy (k x x
Q3 == D AN, 9 ZAA’
giving the variance estimators
vo _o-la®a-1 vo=* _ a-1ak)+q-
Vos =Q 25Q7, Vg =Q Q, Q
The corresponding ¢-statistics are given by

0 _ (px — a) HO _ (pr — a)

oS OS
[ 1 (k) [ 1 17 (k)=
T- kVOS 22 T- kVOS 22

A(k) and“(k) where K is held fixed as T — oo.

Following Sun (2013), we use asymptotic limits for ¢
This is another example of fixed-smoothing asymptotics, called fixed-K asymptotics, that generates
reference distributions that, in this case, capture the number of orthonormal series and the impact,

to some extent, of the sampling distribution of the variance estimators on the f-statistics. Our

assumptions allow direct application of results in Sun (2013) giving

(k)

~k)=
tOS

= Iy, tOS = Iy,

where 7k is a standard 7-distribution with K degrees of freedom. A nice feature of the OS approach
is that the fixed-K limit is a well known distribution and critical values are easily calculated using

standard statistical software. For a given set of orthonormal series, the value K needs to be chosen

in practice. As in the kernel variance estimator case, we use data dependent methods based on V(k),

the null-not-imposed proxy for V( ) , for both“(k) and ¢ A(k) *.
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2.3.3 Computation of Confidence Intervals
When the null is not imposed on the variance estimator, a (1 — a)% two-tail confidence interval

can be computed in the usual way as

Pk £ Cvq)2 - Tk 22°

where cv,; is the critical value taken from the relevant reference distribution (standard normal
or fixed-b). In contrast, when the null is imposed on the variance estimator, computation of
confidence intervals is more complicated because the variance estimator depends on the null value
of px. Fortunately, the end points of the confidence interval can be computed using the roots of a
second order polynomial. The calculation is very similar to the confidence intervals obtained by
Vogelsang and Nawaz (2017) for trend ratio parameters.

Recall the formula for the null-imposed 7-statistic given by (2.9). A two tailed (1 — @)%
confidence interval is the collection of values of a such that the null hypothesis is not rejected using

the inequality

What complicates the calculation is that Vz(g ) depends on a as we now show.
It is convenient to write ‘72(;{ )* in terms of quantities from the estimating equation (2.4) with the
intercept projected out using the Frisch-Waugh-Lovell Theorem. Let j; and J;_; denote demeaned

values where §; = y; — Ji41,7y and J,_x = y,—k — Y{1,7-k}- Then pj can be written as

T . .
— Zt:k+1 Y-k Yt
Pk=—"7 0
r=k+1 Yk

b

and ﬁfk) can be written as

k . .
775 ) = Y —aYt—k-

Define

Vz( »* = Vi (Fr — aFi—k) = $r-i Vs — aytz_k-
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Then we rewrite Vg ) equivalently as

TRx _ A-1k)* -1
vyt =0710M g

where 0 = ﬁ Zth k1 jitz_ . and Q)" s the kernel long run variance estimator computed using the

scalar process i},(k)*. It is well known in the literature that kernel long run variance estimators can

be equivalently written as a quadratic form. For Q¥)* the quadratic form is

T T
Q(k)* — (T _ k)—l Z Z Vt(k)*ktsvgk)*
t=k+1 s=k+1
T T
==k 0 > Grkdi - ayt Dkis(Fsids — il
t=k+1 s=k+1

where k;s = k (It;/lsl)- Rearranging Q% gives

(k) _ ¢S (k) = (k) 2.5 (k)
Q =Q" —2aQ,; +a" Q" (2.10)

where

T T
AN = -0 > S Sk i

t=k+1 s=k+1
T

T
Qgg)* = (T - k)™ Z Z ook PekisVay

t=k+1 s=k+1
T T
ey (k)* -1 ) .2
922 = (T_ k) Z Z yt—kktsys—k'
t=k+1 s=k+1

k)*

Using these variance formulas, we obtain an equivalent formula for 7X* given by

e _ (px — a)

1 o . (k)* . (k)* . (k)*
\/T_—kQ ? (911 —2aQ," +a’Qy, )

The confidence interval for py is the values of a such that

(px — a)
1 --_ .. (k)* . (k)* .. (k)*
\/—Q 2 (Q“ — 240" 1+ 20 )

S CV(Y/Z’

T-k
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or equivalently

P~ @) <o, @.11)
1 o . (k)* . (k)* . (k)*
\/ﬂQ 1 (911 —2aQd)," +a%dy, )
The inequality (2.11) can be rewritten as
cza2+2c1a+co <0, (2.12)
where
cr=1- ;Q_zfl(k)* cev?
2 T — &k 22 /2
1 ) (k)* 2 —
AT %9 e Yap P
| A
_ =2 -2y (k)* 2
€0=Pr~ mQ Q) Ve

(k)=

Notice the importance of using a bandwidth rule for M that does not depend on a. Otherwise flll ,

Qig) “ and Qé’;)* would depend on a greatly complicating the solution to (2.12).

The values of a satisfying the inequality (2.12) are determined by the roots of the polynomial
p(a) = cra® +2c1a + cp.

This polynomial has a similar form to the polynomial analyzed by Vogelsang and Nawaz (2017).
Let ry and r; be the roots of p(a) and order them r; < r, when they are real roots. The discriminant
of the quadratic equation p(a) is given by c% — cc9, so the shape of the confidence interval for a
depends on the signs of ¢, and c% — €200

There are four cases. Case 1 has ¢o > 0 and c% — cpco > 0 in which case the roots are real and
a € [ry,ry]. Case 2 has ¢, > 0 and c% — c2c¢ < 0 in which case p(a) opens upward and its vertex
is above zero giving roots that are complex numbers and an empty confidence interval. Case 3 has
¢» < 0and c% — cpco > 0 in which case the roots are real and a € (—1,r1] U [ra, 1) given that
p(a) opens downward and its vertex is above zero. Case 4 has ¢, < 0 and c% — cc9 < 0in which
case a € (—1,1). It is important to note that Case 2 is impossible because the confidence interval

k)=

cannot be empty given that it always contains the value a = py because 7X)* = 0 in this case and a
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non-rejection is obtained. The other cases are possible although it is not easy to find intuition as to
the likelihood of each case.

First examine the sign of ¢,. One can show that TL_,(Q‘ZQS?* < 1, however, cvi n will be
greater than 1 for commonly used significance levels. Therefore, the sign of ¢, is inconclusive.
Whether or not ¢, is positive depends on the kernel, bandwidth, the significance level and the data.
As T increases, ﬁQ‘zﬂg)* converges to zero in which case it is more likely that ¢, is positive.

Next examine the sign of c% — cpco. Algebra gives

2
o) _ . (k)* - (k)* .- (k)* 1 ) o)
&t = caco = (O - "0l )(mQ .cvm)

(ol om0 (7170 l)
We see that c% — cpc is expressed as the sum of the two terms. The second term is the formula for
Q0" with a = py in (2.10) and is scaled by a positive quantity. With appropriate choice of kernel,
kernel long run variances like Q(¥)* are non-negative as argued by Priestley (1981) and Newey and
West (1987). Therefore, the second term is non-negative. However, the first term is inconclusive
because Qgg)* - Qﬁ)*ﬂg)* can be positive or negative. Therefore, the sign of c% — cpcq 1s also
inconclusive.

Confidence intervals can be computed using the orthonormal series variance estimator analo-
gously with Q(lli)* Qg)* and Qg;)* replaced, respectively, by Q(Okg*l L= E 2N, A; A Q(Okg,*u =
& S0 8y Ay and Qg = g B AT, where A7 = Z= S, @ (f) ioii and
1"\;,2 - \/ﬁ Skt @e () I
2.4 Monte Carlo Simulations

In this section we study finite sample properties of the proposed ¢-statistics for testing
Hy : Pk =a

through extensive Monte Carlo simulations. We use 5,000 replications in all cases. We compare
our 7-statistics, 75, 70+, ?g? and ?ékg* with each other and with some existing approaches. Fixed-b

critical values are used for 7%, 7(0)* and critical values from the tx distribution (fixed-K critical
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values) are used for ¢ R( ) and ¢ ﬁ(k)*

. We also provide some results for 75)* using N(0, 1) critical
values to show the value of using fixed-b critical values. For 7} we used the data dependent
bandwidth, denoted by M, proposed by Sun et al. (2008) that balances size distortions and power
of the tests, the ‘test-optimal-M’. The weighting parameter that balances type 1 and type 2 errors

k)=

is set to 10. The null-imposed statistic, 70)* also uses M so that its bandwidth does not depend

k)

on the value of the null being tested. For 7,¢ we used the data dependent smoothing parameter,

denoted by K, proposed by Phillips (2005) that minimizes the mean square error of the variance

k)=

tog s also uses K to avoid dependence

estimator, the ‘MSE-optimal-K’. The null-imposed statistic,
on the value of the null being tested. For both M and K we use well known AR(1) plug-in methods

)

(see ?) that are functions of V( ) , the null-not-imposed proxy for V( given by equation (2.8).

Results are given for a broad set of data generating processes (DGPs) where y, follows the

ARMA(1,1) process

Ve = @Y1+ €& + 061, (2.13)

where u = 0 without loss of generality given that we include in a intercept in the estimating equation
(2.4). Special cases include uncorrelated y, (¢ =0, 8 = 0) and AR(1) (8 =0) and MA(1) (¢ =0)
processes. Results are given for nine DGPs of the innovation process, €, ranging from i.i.d. to

cases with increasing dependence in higher moments.
DGP1: IID: ¢ =u; ~i.i.d.N(0,1).
DGP 2: MDS: € = UUi_1, U ~ lldN(O, 1)

DGP 3: GARCH : € = hju; and hf = 0.1 +0.09€¢> | + 0.9h?

=1

u; ~i.i.d.N(0, 1).
DGP 4: WN-1: ¢ = u; + u;_qu;—p, u; ~ i.i.d.N(0O, 1).

DGP 5: WN-2: ¢ = u?u;_1, u; ~ i.i.d.N(0, 1).

DGP 6: WN-NLMA: € = u; pu;—1(ur—p +u; + 1), u; ~i.i.d.N(0, 1).

DGP 7: WN-BILIN: ¢, = u; + 0.5u,_1€,_», u; ~i.i.d.N(0, 1).
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DGP 8: WN-GAMI : € = us + us_us—o, u; = & — E[&], & ~ i.i.d.Gamma(0.3,0.4).

DGP 9: WN-GAM2 : € = u; — us—us—2, uy = {; — E[&], & ~ i.i.d.Gamma(0.3,0.4).

DGP 1 is an i.i.d. Gaussian innovation and serves as a benchmark given that all approaches are
valid for this case. DGP 2 relaxes the i.i.d. assumption and ¢; is a martingale difference sequence
(MDS) innovation that has been studied in the literature. See Romano and Thombs (1996) and
Francq and Zakoian (2009). DGP 3 isa GARCH(1, 1) innovation typical in financial time series.
DGPs 4-9 are white noise processes with stronger dependence than the MDS case. DGP 4 is
from Hansen (2022) and ¢, follows a white noise process that is a function of an underlying i.i.d.
Gaussian process. DGP 5 is a white noise process from Wang and Sun (2020). DGPs 6 and 7
are white noise processes from Lobato (2001). DGPs 8 and 9 build white noise process using

independent centered Gamma random variables generating some skewness in u;.

2.4.1 Null Rejections for Uncorrelated Time Series

We first focus on the case where y, is uncorrelated, i.e. py = 0 or equivalently ¢ =0, 8 =0 in
(2.13). For this case we focus on the first order autocorrelation (k = 1) and examine tests of the
null hypothesis

Hy:p1=0.

We consider the (original) Bartlett formula, the generalized Bartlett formula, and White standard
errors for constructing z-statistics that we compare to our proposed z-statistics. We carry out two-

tailed tests with a nominal significance level of 0.05. The original Bartlett formula always uses

B

Vl’

, = 1 whether or not y; is i.i.d. For the generalized Bartlett formula, we use the formula (2.3)
from Francq and Zakoian (2009) for a white noise process. White standard errors are a special case
of Q%) where only the fék) term is used. Because testing p; = 0 is a zero autocorrelation test for

the lag one autocorrelation, we also include the zero autocorrelation test of Taylor (1984) which

has recently been extended by Dalla et al. (2022). The Taylor (1984) 7, ¢-statistic is given by

_ an €1 _ _
T = #1/2, e ==y -1 -9).

n 2
( =2 €11

24



Dalla et al. (2022) provide conditions under which 7; is asymptotically standard normally dis-
tributed. We also report results using the bootstrap method suggested by Romano and Thombs
(1996) where the bootstrapped version of py is centered around pj but is not standardized (see
their equation (11) on page 594). We report results using the moving block bootstrap with block
length equal to VT. For the case where the DGP for ¢; is i.i.d. we also report results using block
length equal to 1 (the i.i.d. bootstrap). We obtained results using the stationary bootstrap and the
circular bootstrap but exclude them from reporting because they give similar results and patterns
as the moving block bootstrap. We also obtained results using subsampling but found those results
less accurate than the bootstrap and those results are omitted.

Figures 1.1 through 1.9 plot empirical null rejection probabilities for each of the nine cases for
€. Results are given for sample sizes 7" = 100, 200, 500 and 2000. The labels Fixed-b (SPJ) and
Fixed-b-Hy (SPJ) correspond to 7" and 7V* respectively using fixed-b critical values. N(0, 1)-Hy
(SPJ) corresponds to 7(V* using N (0, 1) critical values. The (SPJ) label indicates that the same data

dependent bandwidth, M, was used for all three tests. The labels OS (MSE) and OS-Hy (MSE)

Q) nUL

I, and 7, ¢ using the same K smoothing parameter.

correspond to
To understand many of the patterns in Figures 1.1 - 1.9, it is useful to keep in mind that

vfl) = ¢-1€; when y; is uncorrelated. For the IID, MDS and GARCH DGPs, vt(l) is obviously

uncorrelated. While not as obvious, v}l) is uncorrelated for the white noise processes WN-1, WN-2,
WN-NLMA and WN-BILIN. In contrast, v t(l) is positively autocorrelated for the WN-GAM1 DGP
because one can show that E (VI(I)V,(Pl) = E (u}) E(u?) > 0 given that E (u}) > 0 for the Gamma
parameters we use. The sign change in the WN-GAM2 DGP generates negative autocorrelation’
in vt(l) because E (vt(l)vt(i)l) = —E (u}) E(u?) < 0.

Figure 2A.1.1 depicts null rejection probabilities for the IID DGP (y; = ¢ is i.i.d.). There are
slight over-rejections for 7! (null-not-imposed kernel HAR statistic) with fixed-b critical values

(red squares dash-dotted line) for T = 100 because for this method there is variability in Vt(l)

3Notice that the WN-1 and WN-GAM1,WN-GAM?2 DGPs take the same form. The reason that v E D) is uncorrelated
for WN-1 is because u, is normally distributed. Normality implies that E (u?) = 0 and it follows that E (v,(l)vz(l_)l) =0.
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from estimating p; that matters when T is relatively small. Imposing the null for the kernel HAR
approach reduces over-rejections as illustrated by 7(1)* using fixed-b critical values (purple up-

1)x

arrow dotted line). Using normal critical values for 7(1* (gold circle dash-dotted line) shows some

over-rejections and illustrates the benefits of using fixed-b critical values. The null rejections of ?(013

(null-not-imposed, orange x’s solid line) and ?(ols)* (null-imposed, light green down-arrow dashed
line) are similar to the rejections of 7! and 7(1)*. Rejections are close to 0.05 for all traditional
methods (Bartlett formula (blue dot solid lines ‘Bartlett(IID)’), generalized Bartlett (light blue star
dashed line ‘GB-WN’), Taylor (yellow rhombus dotted line ‘Taylor’) and White standard errors
(green right-arrow dotted line “White’)). It is surprising to see that the i.i.d. bootstrap (black
down-arrow dashed line ‘IID-bootstrap’) does not work for the i.i.d. DGP. Null rejections for the
1.i.d. bootstrap are about 0.33 even when T increases to 2000. Interestingly, the moving block
bootstrap (black circle dotted line ‘MBB’) performs better than the i.i.d. bootstrap even though the
data has no dependence. Even so, rejections with the moving block bootstrap range from 0.15 with
T =100 to about 0.07 with T = 2000 whereas all non-bootstrap tests have rejections close to 0.05
when 7' = 100 and very close to 0.05 when 7" = 2000.

Figures 1.2-1.7 relax the i.i.d. assumption and give results for y; being an MDS, GARCH and
the various white noise series that satisfy, with the exception of the original Bartlett variance, the
conditions of the traditional approaches. We see similar patterns as in the i.i.d. case, however more

1)

size distortions occur for 7! and (null-not-imposed) for smaller sample sizes. In contrast, 7¢

and ?(OIS)* (null-imposed) have rejections close to 0.05. This indicates potential size improvements
by imposing the null, consistent with the findings in Lazarus et al. (2018) and Vogelsang (2018)
in stationary regression settings. The traditional Bartlett formula shows over-rejections which
is expected with the i.i.d. assumption violated. The moving block bootstrap continues to have
substantial over-rejections especially for small sample sizes for all DGPs. The other traditional
methods work reasonably well as expected given that y, satisfies the required assumptions for those

methods.

Figures 1.8 and 1.9 give results for the white noise case with Gamma distributed innovations.
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For the WN-GAM1 DGP (Figure 2A.1.8) all tests show some over-rejections with 7* and ?(013*
(null-imposed) having rejections closest to 0.05. The null-not-imposed tests, 7!) and ?(015)’ have
substantial over-rejections for small 7" but rejections approach 0.05 as T increases. All of the
traditional methods have over-rejections even when 7 is large because this DGP violates the
assumptions for those methods. In particular Taylor and White are designed for the case where vt(l)
is uncorrelated and that fails here. The generalized Bartlett formula uses a symmetry assumption
for cross fourth moments of ¢ that is violated in the Gamma distribution case. Figure 2A.1.9 shows
that if we flip the sign on u;_ju,;_, rejections change dramatically with all tests under-rejecting.
Under-rejections make sense because flipping the sign generates negative autocorrelation in vt(l)
for the WN-GAM?2 DGP. The traditional methods can have very low rejections close to zero.
As T increases the rejections using the estimating equation approach tends towards 0.05 but the
traditional methods do not. The moving block bootstrap continues to over-reject and does not
perform as well as non-bootstrap methods.

It is a common misconception that y; = ¢ being uncorrelated implies that vt(l) = €_16 will
be uncorrelated. However, because it is possible for €,_1€; to have serial correlation when ¢ is
uncorrelated, the generalized-Bartlett, White, and Taylor approaches are not necessarily valid when
y; is uncorrelated. One benefit of the estimating equation approach is that it automatically handles
white noise innovations including the case where v,(]) has serial correlation.

Finally, our simulation results for the bootstrap are puzzling especially in the i.i.d. case given

the relatively simple form of p;. An analytical analysis of why the bootstrap is not performing as

expected is part of an ongoing research project that we will report in a follow-up paper.

2.4.2 Null Rejections for Serially Correlated Time Series
Next we focus on cases of serially correlated time series where px # 0. We continue to focus
on tests of the first order autocorrelation (k = 1) and consider the null hypothesis

0
Ho:m:pi),

(0)

where p,™ is the true value of p;, and p(

10) depends on the serial correlation structure of y,. We

exclude the Taylor and White approaches because they are no longer valid when p; # 0. We do not
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report bootstrap results because of the bootstrap’s relatively poor performance with uncorrelated
data.

Two versions of the generalized Bartlett approach are included. One assumes that y; is white
noise (GB-WN) and the other assumes y; follows an MA(1) process (GB-MA)*. The formula for
GB-MA is given by

VB* — 762(0)
M o))

We derived this formula using the general expression in Francq and Zakoian (2009). The corre-

[pe(D(1 = 4p1 +4p]) + p2(2)pi] .

sponding estimator is obtained by plugging in estimators of the parameters. We estimate p; using
(2.2). We estimate vy, (0) using the sample variance of € where ¢ are the residuals from fitting an
MA(1) model to y; —y. The parameters y.2(0), p.2(1), p.2(2) are estimated using sample analogs
computed with €.

Results are given for the MA(1) case in Figures 2-6 and the AR(1) case in Figures 6-11. Results
for ARMAC(1,1) specifications are similar and are omitted. We exclude DGPs WN-2,WN-NLMA
and WN-BILIN for ¢, given the similarity in patterns to WN-1. We also exclude WN-GAM2. We
continue to use two-tailed tests with 0.05 nominal level. Each figure has four panels corresponding
to the sample sizes 7 = 100, 200, 500, and 1000. The x-axis indicates the value of either 6 or ¢.
For the MA(1) case, pio) =6/ (1 + 6?) and for the AR(1) case pio) = ¢.

Figure 2A.2 gives results for MA(1) case with ¢ i.i.d. Not surprisingly, all approaches work
reasonably well except for GB-WN which under-rejects unless § = 0. This is expected given
that GB-WN is invalid except when 6 = 0. Figure 2A.3 gives MA(1) results where ¢, follows
the MDS DGP. The traditional Bartlett approach (MA(1)) over-rejects because ¢ is not i.i.d. For
T = 100, GB-MA (green star dashed line) tends to over-reject. Rejections become closer to 0.05 as
T increases. The small sample distortions are likely caused by the need to estimate 6. Similar to
MA(1) with ¢ i.i.d, GB-WN continues to under-reject. The null-imposed kernel HAR test, T

works well whether normal critical values (N(0,1)-Hg) or fixed-b critical values (Fixed-b-Hj) are

4We do not implement versions of the generalized Bartlett approach designed for the case when y, has the AR(1)
component because the form of the generalized Bartlett variance formula for the AR(1) case is complicated and is very
difficult to implement.
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used. The null-imposed orthonormal series test, ?S;* (OS-Hj) has similar performance to7(V*. Not
imposing the null leads to over-rejections for both 7™ (Fixed-b) and ?(01; (OS) when T is relatively
small. This again illustrates that more reliable inference under the null is obtained by imposing
the null on the kernel and orthonormal series variance estimators. When ¢; is a GARCH process,
Figure 2A.4 shows that all methods works well except for the traditional Bartlett and GB-WN as
one would expect. Figure 2A.5 gives results for the case of € being white noise (WN-1 DGP) and
we see that patterns are similar to the MDS case. In contrast, patterns are clearly different when ¢,
is the white noise driven by Gamma errors (WN-GAM1 DGP) as seen in Figure 2A.6. None of the
Bartlett approaches are valid in this case and rejections are either well above or well below 0.05.
The null-imposed HAR approaches, 7V* and ?(01;*, perform best especially with fixed-b critical
values. Not imposing the null can lead to nontrivial over-rejections. While rejections of the HAR
tests get closer to 0.05 with larger sample sizes, there are still some size distortions even with
T = 2000. Our conjecture is that the CLT and FCLT ‘kick in’ more slowly as 7" increases in the
Gamma distribution case.

We now turn to Figures 7-11 for the AR(1) results. Keep in mind that both GB-MA and GB-WN
use formulas based on a misspecified model and are not expected to perform well. Figure 2A.7
gives results for ¢ i.i.d. We can see that the misspecified GB approaches have size distortions that
persist with larger 7. The Bartlett (AR(1)) and HAR tests perform reasonably well with small 7'
with some slight over-rejections. Rejections are close to 0.05 with 7 = 2000. Figures 8, 9 and
10 give AR(1) results for ¢, MDS, GARCH and WN-1 respectively. When the errors are MDS
and GARCH (Figures 8 and 9), we can see that the null-imposed HAR tests 7M* (Fixed-b-Hy) and
7(015)* (OS-Hy) perform well with null rejections reasonably close to 0.05. When ¢, is white noise
(Figures 10 and 11), all approaches exhibit over-rejections when ¢ > 0 especially as ¢ approaches

1. Increasing T improves the performance of the HAR approaches.

2.4.3 Power Analysis
In this subsection we study finite sample power of the test statistics. We use size-adjusted power

to account for the size distortions of the tests. This allows power comparisons with the same null
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rejections. Because we use size-adjusted finite sample critical values, there is no need to distinguish
between using N(0, 1) and fixed-b critical values for 7V*. In the power figures we label 7)) as
‘Kernel” and 7(V* as ‘Kernel-H,”. We report three sets of power results for the case where y; is
AR(1) and ¢ 1s IID (DGP 1), WN-NLMA (DGP 6) and WN-GAMI1 (DGP 8). The null hypothesis
in all cases is Hy : p; = 0 with the alternative given by H; : p; = ¢. We use a 0.1 grid for ¢ on the
interval [—0.5,0.5]. Results are reported for 7 = 100, 200, 300, and 500.

Figure 2A.12 gives results for ¢ IID. Size-adjusted power is essentially the same across all
tests. Figure 2A.13 gives results for ¢ WN-NLMA. Size-adjusted power is similar across tests
although one can see that the null-imposed HAR tests have slightly lower power for negative values
of p1. This is more apparent in Figure 2A.14 where results for ¢, WN-GAMI are given. With
T = 100, power is lower for the null-imposed tests for negative values of p;. Interestingly, these
power differences disappear when 7' = 500. There are also some asymmetries in power around p
in the white noise cases, especially WN-GAM]1, that do not occur with ¢ 1ID.

While the null-imposed HAR tests can have lower power than the null-not-imposed HAR tests,
the power differences are relatively small and disappear as T increases. Given the superior null
rejections of the null-imposed-tests and their respectable power, we can recommended them in

practice.

2.4.4 Null Rejection Probabilities Across Lags
The finite sample results to this point have focused on the case of k = 1. In this subsection we
provide results for other values of k. We report results for the AR(1) case for ¢ = 0 and ¢ = 0.5

with k ranging from 1 to 10. The null hypothesis is

Ho : pi = ¢,
given the AR(1) structure. Results are reported for the HAR tests and the recursive MA approach
used by the software Stata given by equation (2.1). We report results for 7 = 50, 100, 250 and
1000. We continue to focus on two-sided tests with a nominal level of 0.05. Results for ¢ = 0

are given in Figures 15-19 for ¢ IID, MDS, GARCH, WN-1 and WN-GAMI. For ¢ IID (Figure

2A.15) the HAR tests, especially the null-imposed versions, work well for all £ with rejections very
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close to 0.05 as T increases. The Stata procedure (blue dot solid line labeled ‘Software’) works
well with large T but under-rejects for small 7" and larger values of k. This makes sense because the
estimated variance used by Stata increases mechanically as k increases. Figure 2A.16 shows that
when ¢ is an MDS, the null-imposed HAR tests continue to perform well but the null-not-imposed
HAR tests have some over-rejections with small values of 7. The Stata procedure relies on the i.i.d.
assumption for €, and breaks down for k = 1. In the case of GARCH innovations, Figure 2A.17
shows that the HAR tests perform well, again imposing the null works best. The Stata procedure
completely breaks down. When ¢; is white noise, Figures 18 and 19 show that the null-imposed
HAR tests continue to work well for all k£ including the 7 = 50 case. Not imposing the null results
in HAR tests that can have substantial over-rejections for small values of k especially when T is
not large. The Stata procedure breaks down for k = 1,2 but works reasonably well for k£ > 3.
These results show that when y; is uncorrelated, the Stata procedure only works when y; isi.i.d. In
contrast, the HAR tests with the null-imposed work quite well including the case of y; being white
noise.

The results with ¢ = 0.5 are given in Figures 20-24 for the same cases for ;. The Stata procedure
is not valid for any of these cases given the AR(1) structure. The null-imposed HAR tests work
well overall but do have some relatively minor size distortions when 7' = 50. The null-not-imposed
HAR tests can have substantial over-rejections with small values of 7" and small values of k. An
interesting contrast can also be seen in these figures for 7)* and 7(0](5) *. When these two tests have

7

OS*. This is not because 7)* uses

some over-rejections, they are less pronounced for 7©* than for

~(k)
a kernel and tog

* and uses series to estimate the long run variance. The reason is that the MSE
criteria for smoothing parameters of long run variances leads to less smoothing than the test based
criteria. Less smoothing (e.g. smaller bandwidths for kernel estimators) is well known to lead to
tests with a greater tendency to over-reject in finite samples when fixed-smoothing critical values

are used (see the simulations in Kiefer and Vogelsang (2005) for the kernel case). The reason that

?(oks) * tends to over-reject more than 70* is because K leads to less smoothing than M.
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2.4.5 Shape of Confidence Intervals

In section 3.3, we showed that confidence intervals computed with the null-imposed HAR
statistics can take three forms. In this section we investigate the likelihood of the forms for some
representative DGPs from our simulation design. We provide results for confidence intervals using

‘l‘(k)*

7 with fixed-b critical values. Results with 058

using tx critical values are similar and are not
reported. Tables 2 and 3 give results for the AR(1) case with ¢ IID and ¢, WN-NLMA (DGP 6).
These results nicely show the range of possibilities. Results are given for 7 = 50, 100, 250, 500
and AR(1) values ¢ = 0,0.25,0.7,-0.7. We use 10,000 replications.

Tables 2 and 3 are organized as follows. For each pair of values for ¢ and T, we report the
empirical probabilities of each confidence interval type (Prob), the empirical coverage probability
of the confidence interval (ECP), and the average confidence interval length (CI) conditional on
the confidence interval type and overall. The AR-IID results in Table 2A.2 serve as a benchmark.
The first panel of the table (¢ = 0) gives result for when y; is i.i.d. We can see that for all sample
sizes the probability of obtaining the typical [r, 2] confidence interval is 1.0. As ¢ moves away
from O and for smaller values of 7, there are very small, but non-zero, probabilities of obtaining
the confidence intervals (—1,71] U [rp, 1) and (-1, 1).

Table 2A.3 shows very different patterns from Table 2A.2. With no autocorrelation or relatively
weak autocorrelation (¢ = 0.25), there is about a 50% chance of shapes (-1, r1]U[r, 1) and (-1, 1)
with 7" small. In these cases, the empirical coverages and confidence lengths are larger than the
[r1,72] case (this is obviously true by construction when the confidence interval is (—1,1)). As T
increases or ¢ moves farther away from zero, the probability of [r}, r2] confidence interval shape
increases. As one expect, average confidence interval lengths shrink as 7" increases.

These results show that for smaller sample sizes and more complex dependence in y; and
its innovations, €, disjoint and possibly very wide confidence intervals can occur. While some
empirical practitioners may be bothered by disjoint or wide confidence intervals, we view these cases
as providing the practitioner with a signal that y; has potentially complex serial correlation structure

with innovations that have complex dependence in higher moments that matter for inference about
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the autocorrelations of y;. In other words, disjoint or wide confidence intervals are signals of data

that has limited information about autocorrelation structure.

2.5 Empirical Application

The autocorrelation function is widely used as a preliminary step in analyzing financial time series.
The Bartlett formula is commonly used as part of graphical evidence of autocorrelation structure.
For example, Bollerslev and Mikkelsen (1996) provides a figure of sample autocorrelations for
absolute daily returns of the S&P 500 index with the 95% confidence bands> implied by the Bartlett
formula for i.i.d. data to illustrate volatility clustering and its long-term dependence. Andersen
et al. (2003) provides figures of sample autocorrelations for daily exchange rate realized volatilities
before and after fractional differencing along with the i.i.d. Bartlett confidence bands to graphically
confirm evidence of long memory.

While the i.i.d. Bartlett confidence bands are routinely reported in practice, it is important to
keep in mind the limitations of these confidence bands. First, the confidence bands are only valid
if the data is 1.1.d. If the data is uncorrelated but not i.i.d. (martingale difference, white noise), then
the bands are no longer valid. Second, the bands can only be used to test the null hypothesis that
the series is 1.1.d. Once it is determined that the series has dependence, the bands cannot be used
to assess significance of autocorrelations at specific lags because the bands are not generally valid
when there is serial correlation.

A more informative approach is to report confidence intervals using 7©* or ;(Oks)*

allowing
inference about autocorrelations that is valid for general serial correlation structures and innovations
that are not necessarily 1.i.d. As an illustration we provide some empirical results for S&P 500 index
returns and absolute returns for two sets of time periods (before Covid and during/after Covid) that
have the same number of observations (913 observations for each) but exhibit different estimated
autocorrelation patterns and confidence intervals. Figure 2A.25 provides plots of the returns and

the absolute returns for the full time span of the observations from June 28, 2016 to September 28,

2023. Figure 2A.26 plots estimated autocorrelations for S&P 500 returns for daily data from June

> A confidence band is used to test the null hypothesis of zero autocorrelation and is not a confidence interval. An
estimated value outside the band is a rejection of the null.
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28, 2016 to February 12, 2020 (Panel (a)) and February 13, 2020 to September 28, 2023 (Panel
(b)). Red circles are the sample autocorrelations given by (2.2) and blue dots are autocorrelations
estimated by OLS using (2.4). The dashed red lines are i.i.d. Bartlett confidence bands. The
gray area is the Stata confidence bands using equation (2.1). The black lines with bars are 95%
confidence intervals computed using 7X)* with fixed-b critical values. The dash-dot green lines are
95% confidence bands using 7¥)* that can be used to test a given autocorrelation is zero. One can
equivalently test an autocorrelation is zero by checking that the confidence interval contains zero.
Figure 2A.26 gives results for returns which provides information about market efficiency. Panel
(a) shows that estimated autocorrelations of returns are close to zero and, in nearly every case, not
statistically significant. If one used the Bartlett or Stata confidence bands, one would conclude there
is no evidence to reject the null that returns are uncorrelated (equity market is efficient). However,
that conclusion is subject to the caveat that the bands are only valid if the innovations are i.i.d. In

contrast, the confidence intervals using 700"

allow more robust inference. Because nearly all the
confidence intervals contain zero, we cannot reject the null returns are uncorrelated whether or not
innovations are i.i.d. or are simply uncorrelated.

Panel (b) of Figure 2A.26 is distinctly different and interesting because conclusions depend
critically on the method used and its assumptions. Using the Bartlett or Stata confidence bands,
one would conclude there is evidence to reject the null hypothesis that returns are uncorrelated
in the Covid/Post-Covid period given that many sample autocorrelations are outside the bands.
This conclusion is only valid if innovations are i.i.d. Furthermore, these bands cannot be used
to conclude anything further about the autocorrelation structure because the confidence bands are
not confidence intervals. In contrast, the 7¥)* confidence intervals tell a different story. While the
estimated autocorrelations are larger in magnitude compared to the pre-Covid period, nearly all the
confidence intervals contain zero. Therefore, using robust confidence intervals, one cannot reject
that returns are uncorrelated in the Covid/Post-Covid period. The fact that confidence intervals

are wider in this period is an indication that the innovations have potentially more complex higher

order dependence and/or GARCH effects than the pre-Covid period.
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Figure 2A.27 gives results for absolute returns which provides information about volatility clus-
tering and the dependence structure of volatility (Bollerslev and Mikkelsen (1996)). In Panel (a)
we see positive estimated autocorrelations with tight confidence intervals. While the estimated au-
tocorrelations are not large in magnitude, they persistent at long lags and are statistically significant
(all confidence intervals do not contain zero). This evidence implies volatility clustering during the
pre-Covid period. Panel (b) is an interesting contrast. While estimated autocorrelations are larger,
confidence intervals are substantially wider. Notice that we cannot reject that the first six lags have
zero autocorrelation. While it may be tempting to argue that there is stronger evidence for volatility
clustering and higher persistence during the Covid/Post-Covid period, the wide confidence intervals
suggest something else may be happening in this period that warrants further investigation. Here,
if one only looked at the Bartlett or Stata confidence bands, a potentially misleading conclusion

might be reached.

2.6 Conclusion

This paper develops an estimating equation approach for robust confidence intervals for the
autocorrelation function of a stationary time series. Our approach is applicable to general stationary
time series with uncorrelated innovations that can have dependence in higher order moments
(innovations do not have to be i.i.d.). Except for narrow exceptions, the asymptotic variance of
estimated autocorrelations take a sandwich form. The asymptotic variance can be directly estimated
by well known HAR variance estimators allowing z-statistics and confidence intervals to be easily
constructed. We consider HAR variance estimators that impose the null leading to more reliable
inference. We provide conditions under which fixed-smoothing critical values can be used for
t-tests and confidence intervals and recommend those critical values be used in practice.

Our extensive simulation study shows that the tests based on the null-imposed variance estimator
in conjunction with fixed-smoothing critical values leads to inference about the autocorrelation
function that works well in practice both in terms of controlling null rejection probabilities and
having good power. Our approach can be used to report generally valid confidence intervals for

covariance stationary time series under weak assumptions for the innovations. In contrast existing
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software packages typically report confidence bands based on strong assumptions that can only be
used to test narrow hypotheses (and are often misused in practice). Our approach is an improvement
and allows the testing of significantly broader hypothesis about the autocorrelation function in a
highly robust manner.

Our simulation results also reveal a puzzle regarding the use of the bootstrap for inference about
the autocorrelation function. For the case of uncorrelated data (including the case of i.i.d. data) we
find that the block bootstrap and related bootstrap approaches do not perform as well as expected
even in the case where the data is i.i.d. and the i.i.d. bootstrap is used. An analysis of the bootstrap
applied to inference about the autocorrelation function is a topic of ongoing research that we plan

to report in a follow-up paper.
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TABLES AND FIGURES

APPENDIX 2A

Table 2A.1 cv, /2 (b) Polynomial Coeflicients, Parzen Kernel

A A A3 Ay As Ag Ay Ag Ag
4375 1191 .0863 4962 -.5787 4326 0254 -.0237 -.0237
Table 2A.2 Shape of Confidence Intervals using 7¥)*, AR-IID
¢ =00
T=50 T=100 T=250 T=1000
Case Prob ECP CI  Prob ECP CI Prob ECP CI Prob ECP CI
[r1,72] 1.000 0955 0618 1.000 0951 0408 1.000 0953 0251 1.000 0.948 0.125
(-1,r]U[ra 1) 0000 - - 0000 - - 0000 - - 0000 - -
(-1,1) 0.000 - - 0000 - - 0000 - - 0000 - ;
Total 1.000 0955 0.618 1000 0951 0408 1.000 0953 0251 1.000 0.948 0.125
¢ =025
T=50 T=100 T=250 T=1000
Case Prob ECP CI Prob ECP <CI Prob ECP CI Prob ECP CI
[r1,72] 1.000 0942 0.607 1000 0941 0399 1.000 0948 0245 1.000 0952 0.121
(~-1,r]U 1) 0000 - - 0000 @ - - 0000 - - 0000 - ;
(-1,1) 0.000 - - 0000 - - 0000 - - 0000 - -
Total 1000 0942 0.607 1.000 0941 0399 1.000 0948 0245 1.000 0952 0.121
¢ =07
T=50 T=100 T=250 T=1000
Case Prob ECP CI  Prob ECP CI Prob ECP CI Prob ECP CI
[r1,72] 0996 0.898 0532 1000 0909 0326 1.000 0930 0.188 1.000 0.943 0.090
(~1,r]U[r1) 0004 0895 1.875 <0.001 1.000 1.885 0000 - - 0000 - -
(-1,1) <0.001 1.000 2.000 0.000 - - 0000 - - 0000 - ;
Total 1.000  0.898 0538 1.000 0909 0327 1.000 0930 0.188 1.000 0943 0.090
¢ =-0.7
T=50 T=100 T=250 T=1000
Case Prob ECP CI Prob ECP CI Prob ECP CI Prob ECP CI
[r1,72] 0987 0947 0536 1.000 0939 0329 1.000 0941 0.187 1.000 0.944 0.090
(=1,r1]U 1) 0012 1.000 1935 <0.001 1000 1945 0000 - - 0000 - ;
(-1,1) 0.002 1.000 2000 0000 - - 0000 - - 0000 - -
Total 1000 0948 0555 1.000 0939 0330 1.000 0941 0.187 1.000 0.944 0.090
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Table 2A.3 Shape of Confidence Intervals using 7¥)*, AR-WN-NLMA

$=0.0
T=50 T=100 T=250 T=1000
Case Prob ECP CI Prob ECP CI Prob ECP CI  Prob ECP CI
[r1,72] 0488 0968 1.125 0.747 0966 0.883 0944 0955 0.587 1.000 0958 0.304
(=1,r]U[r1) 0.134 0985 1592 0.109 0987 1.549 0.036 1.000 1.487 <0.001 1.000 1.572
(-1,1) 0378 1.000 2.000 0.144 1.000 2.000 0.019 1.000 2.000 <0.001 1.000 2.000
Total 1.000 0983 1519 1.000 0973 1117 1.000 0958 0.648 1.000 0958 0.304
¢ =025
T=50 T=100 T=250 T=1000
Case Prob ECP CI Prob ECP <CI Prob ECP CI  Prob ECP CI
[r1, 2] 0510 0961 1.098 0.750 0957 0.864 0939 0946 0572 0999 0945 0.293
(=1,1]U[r1) 0.121 0977 1610 0.107 0983 1.595 0.042 1.000 1562 0001 1.000 1.559
(=1,1) 0369 1.000 2.000 0.142 1.000 2.000 0019 1.000 2.000 0.000 - ;
Total 1.000 0977 1493 1.000 0966 1.104 1.000 0950 0.640 1.000 0945 0.295
=07
T=50 T=100 T=250 T=1000
Case Prob ECP CI Prob ECP CI Prob ECP CI  Prob ECP CI
[r1,72] 0662 0957 0791 0812 0942 0.608 0930 0925 0388 0996 0929 0.193
(-1,1]U[r1) 0093 0972 1.671 0076 0984 1769 0.049 0992 1.854 0.004 1.000 1.859
(-1,1) 0245 1.000 2.000 0.112 1.000 2.000 0021 1.000 2.000 0.000 - ;
Total 1000 0969 1.169 1.000 0952 0.852 1.000 0930 0494 1.000 0929 0.199
¢ =-07
T=50 T=100 T=250 T=1000
Case Prob ECP CI Prob ECP CI Prob ECP CI  Prob ECP CI
[r1, 2] 0611 0976 0769 0.796 0975 0.610 0948 0968 0393 0998 0966 0.184
(=1,1]U[r,1) 0.109 0987 1711 0080 0995 1771 0.034 0988 1.801 0002 1.000 1.868
(=1,1) 0280 1.000 2.000 0.125 1.000 2.000 0018 1.000 2.000 0.001 1.000 2.000
Total 1.000 0984 1216 1.000 0980 0.876 1.000 0969 0470 1.000 0966 0.188
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Figure 2A.1.1 Graphs of null rejection probabilities, Hy : p1 =0

DGP: IID : y; = ¢ = u; and u; ~ #idNormal(0, 1)
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Figure 2A.1.3 Graphs of null rejection probabilities, Hy : p1 =0

DGP: GARCH : y, = ¢, = hyu; and b2 =0.140.09¢]_, +0.9h2_ |, u; ~iid N(0,1)
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Figure 2A.1.7: Graphs of null rejection probabilities, Hyp : p1 =0
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Figure 2A.2 Null rejection probabilities, Hy : p1 = (1%{92)’ MA-IID

DGP: MA-IID : y, = ¢, + 0¢,_,, where ¢, ~ iidNormal(0,1)
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Figure 2A.8 Null rejection probabilities, Hy : p1 = ¢, AR-MDS

DGP: AR-MDS : y; = ¢y; 1 + &, where ¢ = wu, 1, u; ~iidNormal(0, 1)
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Figure 2A.9: Null rejection probabilities, Hp : p; = ¢, AR-GRACH

DGP: AR-GARCH : y, = ¢y, -1 +¢;, where ¢, = hyu; and h?=0.1+0.09¢2_, +0.9h2 |, u; ~iidN(0, 1)
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Figure 2A.10: Null rejection probabilities, Hy : p; = ¢, AR-WN-1

DGP: AR-WN-1 : y, = ¢y, 1+ €&, where ¢ =u; +u; 1uy o, uy ~iidNormal(0,1)
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Figure 2A.11: Null rejection probabilities, Hyp : p1 = ¢, AR-WN-Gamma

DGP: AR-WN-GAML1 : y, = ¢y, 1+ €&, where ¢ =u; +u; quy o and u, = ¢ — E[¢], ¢ ~iidGamma(0.3,0.4)
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Figure 2A.12: Size adjusted power, Hy : p1 =0, Hy : p1 = ¢, AR-IID

DGP: AR-IID : y, = ¢y, -1 + &, where ¢, ~iidNormal(0, 1)
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Figure 2A.13: Size adjusted power, Hy : p; =0, Hy : p1 = ¢, AR-WN-NLMA

DGP: AR-WN-NLMA : y;, = ¢y, 1 + €&, where ¢, =w; ou; (w9 +u; + 1), uy ~ tidNormal(0, 1)
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Figure 2A.14: Size adjusted power, Hy : p; =0, Hy : p1 = ¢, AR-WN-Gamma

DGP: AR-WN-GAML1 : y, = ¢y, 1+ €&, where ¢ =u; +u; quy o and u, = ¢ — E[¢], ¢ ~iidGamma(0.3,0.4)
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Figure 2A.15: Null rejection probabilities, Hy : px = 0, IID

DGP: IID : where ¢, ~ iidNormal(0,1)

T=50 T=100
0.200 0.200
—e— Software —e— Software
--A: Fixed-b-H, (SP)) A Fixed-b-H; (SP))
0.175 B Fixed-b (SP) 0175 - Fixed-b (SP))
V- 0S-H, (MSE) V- 0S-H, (MSE)
0.150 $3- 0S (MSE) 0.150 $3- 0S (MSE)
Q Qo
S 3
& 0.125 & 0.125
C C
kel o
£ 0.100 5 0.100
9 9
[9) [0)
o 0.075 g £3 ﬁ o 0.075
El El
Z 0.050 Z 0.050
0.025 0.025
0.000 0.000
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
lag k& lag k
T=250 T=1000
0.200 0.200
—e— Software —e— Software
A Fixed-b-H, (SP)) A Fixed-b-H, (SP))
0.175 B Fixed-b (SP)) 0.175 - Fixed-b (SP)
V- 0S-H, (MSE) V- 0S-H, (MSE)
0.150 $3- 0S (MSE) 0.150 $3 0S (MSE)
el Q
o 3
& 0.125 & 0.125
C c
.2 o
5 0.100 5 0.100
Q @
[ [y
@ 0.075 @ 0.075
El El
Z 0.050 Z 0.050
0.025 0.025
0.000 0.000
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
lag k lag &

59



0.30

o
N
S

Null Rejection Prob
S o
s G

0.05

0.00

0.30

Null Rejection Prob
o

0.05

0.00

Figure 2A.16: Null rejection probabilities, Hy : px = 0, MDS

DGP: MDS : where ¢, = uyu; 1, uy ~ iidNormal(0, 1)
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Figure 2A.17: Null rejection probabilities, Hy : px = 0, GRACH

DGP: GARCH : where ¢ = hyu; and h? =0.140.09¢2_ | +0.9h2 |, u; ~iidN(0, 1)
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Figure 2A.18: Null rejection probabilities, Hy : px = 0, WN-1

DGP: WN-1 : where ¢ =u; +u; _ju; 2, up ~ iidNormal(0, 1)
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Figure 2A.19: Null rejection probabilities, Hy : px = 0, WN-Gamma

DGP: WN-GAM1
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Figure 2A.20: Null rejection probabilities, Hy : px = ¢¥, ¢ = 0.5, AR-IID

DGP: AR-IID : y, = ¢y, -1 + €, where ¢, ~iidNormal(0, 1)
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Figure 2A.21: Null rejection probabilities, Hy : px = ¢*, ¢ = 0.5, AR-MDS

DGP: AR-MDS : y; = ¢y; 1 + €, where ¢ = w1, u; ~ iidNormal(0, 1)
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Figure 2A.22: Null rejection probabilities, Hy : px = ¢*, ¢ = 0.5, AR-GRACH

DGP: AR-GARCH : y; = ¢y; | + ¢, where ¢, = hyu, and h? =0.1+0.09¢2_, +0.9h2 |, u; ~iidN(0,1)
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Figure 2A.23: Null rejection probabilities, Hy : px = ¢*, ¢ = 0.5, AR-WN-1

DGP: AR-WN-1 : y, = ¢y; 1 + ¢, where e =u; +u; _1uy o, uy ~iidNormal(0,1)
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Figure 2A.24: Null rejection probabilities, Hy : px = ¢¥, ¢ = 0.5, AR-WN-Gamma

DGP: AR-WN-GAML1 : y; = ¢y; 1 + €, where ¢, =u; +u;_quy o and u, = ¢ — E[¢], ¢ ~iidGamma(0.3,0.4)
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Return

Figure 2A.25: Graphs of S&P 500 index daily returns and absolute returns

S&P 500 Index Daily Returns, June 28, 2016 to September 28, 2023
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Figure 2A.26: Estimated autocorrelations for S&P 500 index returns during pre- and post-Covid

(a) S&P 500 Index Returns, June 28, 2016 to February 12, 2020 (pre-Covid)
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Figure 2A.27: Estimated autocorrelations for S&P 500 index absolute returns during pre- and

post-Covid
(a) S&P 500 Index Absolute Returns, June 28, 2016 to February 12, 2020 (pre-Covid)
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CHAPTER 3

SOME FIXED-/ RESULTS FOR REGRESSIONS WITH HIGH FREQUENCY DATA
OVER LONG SPANS

(CO-AUTHORED WITH TIM VOGELSANG)

3.1 Introduction

This paper develops fixed-b asymptotic results for heteroskedasticity autocorrelation robust
(HAR) Wald statistics for regressions with high frequency data in a continuous time framework. Our
results are obtained within the theoretical framework developed by Chang et al. (2023) (hereafter
CLP). Our results complement and extend the analysis in CLP. Our results are related to, and
complement, recent work by Pellatt and Sun (2023) who focus on orthonormal series estimators
of long run variances and develop fixed-smoothing asymptotic results for corresponding HAR
statistics.

Motivated by high frequency data, CLP investigate the asymptotic properties of HAR Wald
tests in a regression model where the observed discrete time series data is generated by an un-
derlying continuous time model. Focusing on consistency/inconsistency of kernel based long run
variance estimators, CLP show that HAR Wald statistics can diverge to infinity under some high
frequency conditions, but this spuriousness can disappear when using data-dependent bandwidth
selection methods compatible to high frequency data. In particular, CLP conclude that the An-
drews (1991) data dependent approach works more reliably with high frequency data than the
Newey and West (1994) data dependent approach. While suggestive of finite sample properties,
consistency/inconsistency of a long-run variance estimator only partially reflects the impact of the
bandwidth/kernel on the sampling distribution of the HAR test statistic. In contrast, the fixed-b
approach of Kiefer and Vogelsang (2005) more fully captures the impact of the bandwidth/kernel

on the first order asymptotic distribution of the HAR test statistic.

This chapter is based on the published paper: Hwang, Taeyoon and Vogelsang, Timothy J, "Some fixed-b results
for regressions with high frequency data over long spans" Journal of Econometrics, 2024, forthcoming. DOI Link:
https://doi.org/10.1016/j.jeconom.2024.105773. The co-author has approved that the co-authored chapter is included.
The co-author’s contact: Tim Vogelsang, Department of Economics, 486 W. Circle Drive, 110 Marshall-Adams Hall,
Michigan State University East Lansing, MI 48824-1038. email: tjv@msu.edu
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In this paper we obtain fixed-b asymptotic results for the statistics analyzed by CLP using
the same continuous time framework. We find that the fixed-b limits of the HAR Wald tests
in stationary high frequency regressions estimated by ordinary least squares (OLS) are the same
as the standard fixed-b limits in Kiefer and Vogelsang (2005). For cointegrating high frequency
regressions the fixed-b limits generally have non-pivotal limits. However, for the special case
where the stochastic processes in the continuous time regression follow Brownian motions and the
regressors are independent of the errors, the fixed-b limits are pivotal and are the same as those
obtained by Bunzel (2006) in discrete time settings. For the case of cointegration with endogeneity,
we analyze the integrated modified OLS (IM-OLS) estimator of Vogelsang and Wagner (2014) and
an associated test that is asymptotically pivotal under fixed-b asymptotics. We find that the fixed-b
limit in the CLP high frequency setting is the same as that obtained by Vogelsang and Wagner
(2014). Using the language of CLP, we can say that fixed-b critical values are high frequency
compatible.

When fixed-b limits are pivotal with respect to serial correlation nuisance parameters but depend
on the bandwidth and kernel, the use of fixed-b critical values rather than chi-square critical values
is expected to improve inference regardless of the method used to obtain the bandwidth. See,
for example, Kiefer and Vogelsang (2005) and Lazarus et al. (2018) for simulation evidence and
Gongalves and Vogelsang (2011), Lazarus et al. (2021), and Sun et al. (2008) for theoretical and
simulation evidence.

We assess the performance of fixed-b critical values using a simulation study using the same
data generating process (DGP) as CLP. Consistent with the existing fixed-b literature, we find the
use of fixed-b critical values systematically performs better than chi-square critical values regardless
of the method used to choose the bandwidth. We extend the simulation results of CLP by reporting
results for additional persistence parameters for the Ornstein-Uhlenbeck process (OU process) used
to generate the data. As in CLP we compare/contrast the Andrews (1991) and Newey and West
(1994) data dependent methods. We also include the data dependent method proposed by Sun

et al. (2008) where the bandwidth choice minimizes a weighted average of type I and type Il errors.
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Similar to CLP we find that the Andrews (1991) bandwidth performs reliably with respect to the
frequency of observations especially when fixed-b critical values are used. The performance of the
Newey and West (1994) bandwidth depends critically on the choice of pre-tuning parameters with
some choices leading to severe over-rejections with high frequency data while other choices leading
to better, but not fully satisfactory, performance. The Sun et al. (2008) bandwidth performance is
similar to the Andrews (1991) bandwidth with less over-rejections when fixed-b critical values are
used. The continuous rule of thumb (CRT) bandwidth rule suggested by CLP tends to over-reject
more substantially than the Andrews (1991) and Sun et al. (2008) especially when the data has
strong persistence.

While the Andrews (1991), Sun et al. (2008) and CRT bandwidths tend to perform well at high
frequencies (assuming the persistence in the data is not too strong relative to the span), we find
that null rejections are remarkably stable across sampling frequencies ranging from high to low.
This stability holds for data with strong and mild persistence. We show that the source of this
stability in null rejections is stability in bandwidth sample size ratios (b-values) across sampling
frequencies. This stability holds by construction for the CRT bandwidth. It is more surprising this
stability holds for the Andrews (1991) and Sun et al. (2008) bandwidths, and we provide a simple
theoretical explanation.

We also report some power results in our simulations and find that for persistent series, power
is stable across sampling frequencies. In contrast, power falls as sampling frequency decreases
for mildly persistent series. Therefore, we can recommend that practitioners use data sampled at
higher frequencies.

It is important to compare and contrast our analysis with Pellatt and Sun (2023). Both analyses
obtain fixed-smoothing results for HAR tests in high frequency settings and provide reference
distributions for critical values that improve finite sample inference relative to using standard
critical values. In the stationary case we focus on kernel based tests whereas Pellatt and Sun (2023)
focus on orthonormal series based tests. In cointegration settings we obtain results for kernel

based tests for both OLS and IM-OLS estimators whereas Pellatt and Sun (2023) obtain results
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for orthonormal series based tests for estimators based on the orthonormal series transformation
proposed by Hwang and Sun (2018). Because we focus on kernel long run variance estimators, we
are able to provide some useful and interesting results on bandwidth choice that further refine CLP’s
results on high-frequency compatible bandwidths. Taken together, our analysis and that of Pellatt
and Sun (2023) provide a useful set of fixed-smoothing results for inference in the high frequency
regression setting of CLP. That we and Pellatt and Sun (2023) find that methods originally proposed
for discrete settings can be applied in the CLP high frequency setting in exactly the same way with
existing fixed-smoothing reference distributions is a positive contribution for empirical practice
and allows empirical researchers to use high or low frequency data for HAR inference with one set
of methods.

The rest of the paper is organized as follows. In section 3.2, the model is given, and the
continuous time framework of CLP is described. Section 3.3 reviews standard fixed-b asymptotic
theory for HAR tests in stationary regressions and then provides fixed-b results for high frequency
asymptotics using the continuous time framework of CLP. Results are provided for kernel based
tests using OLS and, in the case of cointegration, IM-OLS. Because of the nonstandard form of
fixed-b asymptotic distributions, Section 3.4 describes numerical methods based on simulations
that are used to obtain critical value functions used for the finite sample simulations. Section 3.5
provides some finite sample simulation results. Section 3.6 has an illustrative empirical application
for simple regressions used to test the uncovered interest parity condition. Section 3.7 gives some

concluding remarks. Proofs are given in the Appendix.
3.2 Model
We focus on the model and setup used by CLP. Consider the continuous time regression model

Y, = X/B+ U, 3.1)

where 0 < ¢t < T, T is the span (e.g. number of years), 5 is a k X 1 vector of parameters, X; is a
k % 1 vector of continuous time processes, and Uy is a scalar continuous time process.
Following CLP the continuous time model can be discretized as follows. Suppose data is

sampled at discrete time periods with ¢ denoting the time interval between discrete observations.
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Letting i = 1,2, ...,n index the discrete observations, the link between the discrete observations

and the underlying continuous time processes is given by
yi = Yis and x; = X5,

where i6 is the time, ¢, at which discrete observation, i, is observed. Because ¢ € [0, T], it follows
that né = T. Thus, y; and x; are discrete sample paths observed at time intervals ¢ from X; and Y;
respectively. The sampling frequency is inversely related to ¢.

We can write the discrete time regression analogous to (3.1) using x; and y; as
Vi = X8+ u;. (3.2)

where u; = U;s. Suppose (3.2) is estimated by ordinary least squares (OLS):

n -1 n
B = (Z xix,,') in)’i,

i=1 i=1

and we are interested in testing linear hypotheses about g of the form
Ho:RB=r, H, :RB#r,

where R is a known g X k matrix with rank g and r is a known g X 1 vector. Following CLP we focus
on two heteroskedasticity autocorrelation robust (HAR) Wald statistics. The first Wald statistic is

appropriate for certain cointegration regressions and is given by

-1
n

1
~ = " L , =
G(,B)—(R,B r) a)nR(;x,xl) R (R,B r),
2

where @,

is an estimator of the long run variance of u;. The second Wald statistic is appropriate
for stationary regressions and is given by

-1 . -1 17!
nQ, Zx,-x;) R'| (RB-1),

i=1

H(B) = (RB-1) |R (Z XiX;

i=1

—~

where €, is an estimator of long run variance of x;u;. For the case of data sampled at a given

frequency, the asymptotic properties (as 7', n — oo, ¢ fixed) of these Wald statistics are well studied
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in the literature. A key contribution of CLP is the analysis of these Wald statistics when &2 and
Q, are kernel long run variance estimators where the time interval between observations shrinks
with the sample size, i.e. 6 — 0 as T,n — oco. In this “high frequency” asymptotic setting,
CLP establish conditions for the bandwidths of @2 and Q,, under which @2 and Q, are consistent
estimators leading to asymptotically valid inference using the Wald statistics. In particular, CLP
show that the parametric plug-in data dependent bandwidth rule of Andrews (1991) ensures &2 and
ﬁn are consistent in the high frequency asymptotics case. In contrast, the non-parametric plug-in
data dependent bandwidth rule of Newey and West (1994) results in &3,% and ﬁn being inconsistent
because the bandwidths are too small in the high frequency asymptotics case.

Here we explore a related but different question. If the bandwidths are modeled as a fixed
proportion of the sample size (i.e. the fixed-b asymptotics nesting is used for &> and ﬁn), are the
fixed-b limits in the CLP high frequency asymptotic setting the same as the well known limits for
the fixed sampling frequency case (6 fixed)? As will be shown, the answer is yes if the assumptions
in the CLP framework are slightly strengthened to be analogous to assumptions used in discrete

(0 fixed) settings. This suggests that fixed-b critical values can be used to improve inference for

sampling frequencies that range from low to high.
3.3 Theory
3.3.1 Fixed-b Theory for Discrete Stationary Regressions

Our starting point is a review of fixed-b theory for the H (,E) statistic in stationary regressions
for a given sampling frequency (¢ fixed) as developed by Kiefer and Vogelsang (2005). Let Q
denote the long run variance of v; = x;u; defined as

Q="+ (" (N+T" ().
=1

J
where 'V (j) = E (viv;_j). Let A" denote the matrix square root of QV, i.e. Q" = AYAY. The

kernel based nonparametric estimator of Q" is given by

n—1 .
Q=0+ ) k (Mi) (T D+ ).
j=1 "
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where T () = n “Iyr ]+1 .andVi:xiﬁi:xi (yi—xlf,g).

Fixed-b asymptotic results are obtained using an asymptotic nesting for the bandwidth, M,,, such
that M,, = bn where b € (0, 1] is held constant as the sample size, n, grows. With the frequency
of observation held fixed (equivalent to ¢ held fixed), standard fixed-b theory applies under two

sufficient assumptions. We use the symbol = to denote weak convergence in distribution.

Assumption 3.1 (a)n™! Z.[:"] XX L 10, wherer e [0, 1] and Q! exists, and (b) n='/? Z[m Xil; =
n~1/2 Zt[ 1] vi = N'Wi(r), where r € [0, 1], and Wi (r) is a k X 1 vector of independent Wiener

processes, Wy (r) ~ N(O,rly).

Kiefer and Vogelsang (2005) show that under Assumption 3.1 the fixed-b limit of ﬁ; is given
by
Q' = A"Pr(b)A”,
where Py (b) is a stochastic process that is a function of the Brownian bridge, By (r) = Wi (r) —

rWi (1), where the form of Pj(b) depends on the kernel, k(x). Relevant to our simulations is the

case where k(x) is the Parzen kernel and P (b) is given by

Py (D) = /-/Ir 3|<bb

where k”(x) is the second derivative of

) By (r)By(s) drds, (3.3)

1-6x2+6|x]® for |x| <
k(x)=92(1-1x])’ for 1 <x|<

0 for |x|>1.

For the case of the widely used Bartlett kernel
2 1 1 1-b 1 1-b
Pi(b) = —/ Bk(r)Bk(r)'dr——/ Bk(r)Bk(r+b)’dr——/ Bi(r+b)By(r)'dr. (3.4)
b Jo b Jo b Jo
See Kiefer and Vogelsang (2005) for details. The fixed-b limit of H (ﬂA) is given by

H(B) = W, (1)'P,(b)"'W,(1).
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This limiting random variable is a function of a ¢ X 1 vector of standard Wiener processes and
depends on the kernel (through P,(b)) and the bandwidth (through b) but is otherwise pivotal.
Similar, although different, results are obtained for G(E) in cointegrated regressions. See Bunzel
(2006) for details.

It is not obvious whether the fixed-b results for G () and H(B) in the fixed sampling frequency
case continue to hold in the high frequency asymptotic framework of CLP. Using the theoretical

tools of CLP, we obtain fixed-b results in the high frequency setting.

3.3.2 Fixed-b High Frequency Asymptotics for Stationary Regressions

In this section we obtain fixed-b asymptotic results for the H (,BA) statistic in the high frequency
framework of CLP using slightly strengthened assumptions from CLP appropriate for stationary
regressions. Following CLP, let Z (equivalently Z;) denote a continuous time stochastic process
and assume that Z = Z¢+Z¢ such that Z¢ is the continuous component and Z¢ is a jump component
defined as Z¢ = ¥ <, AZ; where AZ; = Z, — Z,_. We assume a version of Assumption D1 from

CLP holds, and we assume that a version of Lemma 3.1 from CLP holds for partial sums:

Assumption 3.2 Defining Z = XX’ or XU and z; = Z;s fori = 1,. .., n, suppose that forr € (0, 1]
1

rT
sova=g [ Zdi+ 0, s (121D,
: 0
Jor all small 6 and large T where As,;r(|Z||) = SUPy<y <, SUP|—s|<s ||Ztc - Z;” and ||-|| is the

Euclidean norm.
Assumption 3.3 A5 7 (|| XX'||) — 0 and \/TA(;,T(HXUH) —0asd > 0and T — oo.

Assumptions 3.2 and 3.3 allow sample moments to approximate continuous time analogs. CLP
argue that Assumption 3.3 is not particularly strong, nor is Assumption 3.6 given below (equivalent
to Assumption D2 in CLP)!. The next assumption is sufficient to obtain continuous time fixed-b

results and is equivalent to Assumption C1 of CLP strengthened to hold for partial sums.

'In the discussion after introducing Assumptions D1 and D2, CLP point out that these assumptions allow the
continuous time processes to be Brownian motions but also allow the processes to have more local volatility and be
more explosive globally. CLP argue that 6 generally needs to go to O faster than T goes to co and that the relative rate
would depend on how locally volatile and explosive the processes are.
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Assumption 3.4 We assume that forr € (0, 1]: (a)
rT »
7! / X, X/dt = rQ,
0

as T — oo for some nonrandom matrix Q > 0, and (b)

rT

T-1/2 / XU dt = AW (r) ~ N(0,rQ),
0

as T — oo where Q is the long run variance of X,U,.

Assumption 3.4 is effectively a continuous time analog to Assumption 3.1 and is slightly stronger
than Assumption C1 of CLP. It rules out certain nonstationary behavior for X; and X,U,. Note that
Assumption 3.4(b) is a continuous time functional central limit theorem (invariance principle) for
X;U; whereas Assumption C1(b) of CLP is a continuous time central limit theorem. An analogous
condition to Assumption 3.4(b) was used by Lu and Park (2019) (their equation (2)) to obtain
a continuous time fixed-b result for kernel long run variance estimators applied to a vector of
continuous time processes known to be mean zero. The fixed-b results of Lu and Park (2019)
cannot be directly applied to regression settings because of need to estimate S when constructing
x;u;. This is equivalent to having to estimate an unknown mean before estimating a long run
variance. This changes the fixed-b limit compared to the known mean case - see Hashimzade and
Vogelsang (2008) for details.

Using Assumptions 3.2, 3.3, and 3.4, the following theorem holds for the H (,E) statistic.

Theorem 3.1 Let M,, = bn where b € (0, 1] is fixed. Assume Hy : RB = r holds. Then, under

Assumptions 3.2, 3.3, and 3.4, as 6 — o and T — oo, H(,E) = Wq(l)’Pq(b)_qu(l).

The proof is given in the appendix. Theorem 3.1 shows that the fixed-b limit of H (ﬁ) in the
high frequency asymptotic framework of CLP is the same as in the fixed sampling frequency case
as long as the assumptions used by CLP are strengthened to hold for partial sums. Critical values
of the limiting distribution depends on the kernel and bandwidth sample size ratio, b, but otherwise

are pivotal. Therefore, critical values are easily obtained using simulation methods.

80



Next we analyze both of the G(,E) and H (ﬁ) statistics under assumptions in CLP suited for
cointegrating regressions.
3.3.3 Fixed-b High Frequency Asymptotics for Cointegrating Regressions

As is well known in the literature, fixed-b limits of HAR statistics depend on the stationarity
properties of X;, U; and X,U,. Cointegrating regression corresponds to the case where X; is a
Brownian motion (continuous time unit root process) and U, is stationary. We consider the case
where X; includes an intercept and write X; = [1 f,]’, and its discretized version x; as x; = [1 Xx;]’,
where X; and X; are (k — 1) x 1 vectors. Two versions of assumptions used by CLP are sufficient

to obtain fixed-b results for cointegrating regression. The space of cadlag functions is denoted by

D[o, 1].

Assumption 3.5 (CLP Assumption C2) Assume that (a) for X (r) defined as X" (r) = A;erT on

[0,1] with an appropriate nonsingular normalizing sequence (Ar) of matrices, it follows that
X' (r) = X°(r),

in the product space of D[0, 1] as T — oo with linearly independent limit process X°(r), and (b)

if we define ST (r) on [0,1] as ST(r) = T7'/? OrT Uids then
S'(r) = U (),

in D[0, 1] jointly with XT (r) = X°(r) in the product space of D[0,1] as T — oo, where U°(r)
is a Brownian motion with U°(r) = A,w,(r) where 22 = limy_c T_IE(/OT U,dt)? > 0, which is

assumed to exist. w,(r) is a standard Wiener process.

Assumption 3.6 (CLP Assumption D2 (modified)) Assume (a) | Ar||*As (]| XX’]]) — O,
VI Arl|Asr(IXUN)) — 0 and (b) NTAs7(|UI) — 0, [[AzllAsz(1X])) — 0 as 6 — 0 and

T — oo.

Because we assume the first element of X; is an intercept variable, the first element of X° is the

identity function. As pointed out in CLP in the discussion of their Assumptions C1 and C2, the
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random components of X° can be general diffusion processes; see also Kim and Park (2017). The
classic cointegration case is obtained when the random components of X° are Brownian motions.
Assumption 3.5(b) assumes a continuous time functional central limit theorem holds for the partial
integrals of U;. The limiting Brownian motion, U°, can be correlated with X°. A continuous time
version of cointegrating regression without endogeneity between the regressors and error holds for
the special case where X° is a Brownian motion that is independent of U°. We also extend the list
of Z processes in Assumption 3.2 (labeled 3.2%) to include the processes in Assumption 3.6 (b).
The next theorem gives fixed-b results for the G(E) and H (,E) statistics under Assumptions 3.5
and 3.6 (CLP Assumptions C2,D2). The limits depend on a g X k matrix R* that depends on the
form of Ar that is defined as follows. Suppose there exists a ¢ X g nonsingular scaling matrix, A? ,

such that limr_, AITQT‘I/ 2RA;1 exists and is a matrix with rank equal to g. Then define

R* = lim ART™12RAS! (3.5)

T—o0

When the null hypothesis depends on estimated parameters that converge at the same rate, it will be
the case that R* = R. However, for a row of R that corresponds to a null hypothesis that is a linear
combination of estimated parameters that converge at different rates, the corresponding row of R*
will have nonzero elements corresponding to the estimated parameters in that linear combination

that converge the slowest.

Theorem 3.2 Let M,, = bn where b € (0,1] is fixed. Assume Hy : RB = r holds. Under

Assumptions 3.2%, 3.5 and 3.6, as 6 — 0 and T — oo,
G(E) — (R*C)/ [PG(b)R*Q;IR*,]_l R*C,
H(B) = (R°C) [R*Q;'Pu(b)05'R”] ' R'C,
where
1 1
0, = / X°(s)X°(s)'ds, C=0Q3! / X° (5)dw,(s),
0 0

Pg(b) is a function of
Bg(r) =w,(r) - (/FXO(S)’ds) C,
0
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and Py (b) is a function of

Bu(r) = '/OrXo(s)dwu(s) - (/OVXO(S)XO(S)'ds) C,

where the forms of Pg(b) and Py(b) are the same as P (b) with Bg(r) and By(r) in place of

By (r).

The proof is given in the appendix. In general, the fixed-b limits of G(,E) and H (E) given
by Theorem 3.2 are nonpivotal and depend on nuisance parameters related to the structure of X°
and dependence between X° and U°. In the special case where X° is a Brownian motion that
is independent of U°, the limits in Theorem 3.2 simplify, and are identical to, the fixed-b limits
obtained by Bunzel (2006) for cointegrating regressions. These limits depend on b and the kernel
along with the number of stochastic regressors and the presence of the intercept regressor.

To be concrete, suppose that

1
X°(r) = , (3.6)
AzWx(r)
where Wx(r) isa (k — 1) X 1 vector of independent Wiener processes that are independent of w, (r)

(U°). In this case the random part of X° is a Brownian motion with long run variance Qz = AzA%.

Note that in this case the scaling matrix, A7, has the form

1 O1x (k-1
Ap = x(k=1)
Ok—1yx1  T'?Ii-

The following Lemma gives the fixed-b limits for this special case.

Lemma 3.1 Define

1
g(r)= :
Wx(r)

For the case where X° is given by (3.6), the limits in Theorem 3.2 become
1 1
0-= [ ewsoras c=0:" [ eamo
B =i - ["aras| ¢ Butr) = [ eamo - ( [ souioras)e.

83



Careful examination of C, Bg(r), and By(r) in the Lemma reveals that these terms, and the
limits of G(E) and H (,E), are pivotal and only depend on w,(r) and g(r) in addition to » and the
kernel. For a given b and kernel, asymptotic critical values are easily simulated but depend on the

dimension of Wx(r), the presence of the intercept in g(r), and R*.

3.3.4 Fixed-b High Frequency Asymptotics for Cointegrating Regressions with Endogenous
Regressors

For the case of discrete time cointegrating regressions with endogenous regressors, there are
many methods proposed in the literature to obtain asymptotically pivotal test statistics. In the
continuous time framework, Pellatt and Sun (2023) analyze the discrete time approach of Hwang
and Sun (2018) that uses a transformation of the regression using orthonormal basis functions.
Pellatt and Sun (2023) show that the test statistics proposed by Hwang and Sun (2018) have
the same asymptotic limits in the high frequency setting of CLP. Another approach that delivers
asymptotic pivotal test statistics in discrete time is the integrated modified OLS (IM-OLS) approach
of Vogelsang and Wagner (2014) where kernels are used to estimate relevant long run variance
parameters. Therefore, it is natural to analyze IM-OLS tests in the CLP high frequency setting.

The IM-OLS approach is based on a simple transformation and augmentation of the discrete
time regression (3.2) where we continue to focus on the case where X; = [1 X,/ andx; = [1 %]'.

Partial summing both sides of (3.2) and including X; after partial summing gives
ST =SYB+Xy+ S, (3.7)

Y _ i _ N =~ _ = T oqu _ i -
where §; = ijl v, ST = o1 Xjs Xi = Xi-p + vi, S =2\ uj,andyisa (k = 1) x 1 vector of

parameters. Itis convenient to stack S} and X; into a single vector x} and write (3.7) more compactly

as
S =x"0+ S, (3.8)
where
S B
x;.k = ! , 6=
X; Y

84



The IM-OLS estimator is given by OLS applied to (3.8):
n -1y
6 = (fox;“) le*Sly
i=1 i=1

The corresponding continuous time regression is given by
Y _ oy U
S, =X"0+S;,

fot X,ds

where S = /0[ Y,ds, SY = /0[ Usds, and X; = where X, = /Ot V¥ds. We focus on the

t
Wald statistic given by

n -1 n n -1 -
W* = (RO-r) ;fzu’} (Z x;‘xf’) (Z c,-c;) (Z xfx;-“) R'| (RO-7), (3.9)

l:l l:1 l=1

: i x*. The dimension of the R matrix and r vector are adjusted with zeros

—_yn _
where ¢; = =1 =1 %

to accommodate vy in the model but the restrictions being tested about S remain the same. The long

run variance estimator is given by

n n . .

N+ -1 |l_.]| TUE A QU

2= n k( i )AS,”.‘ AS™,
i=2 j=2

where A:?:’.‘* = S"l?’* - i’.‘fl are the first differences of the OLS residuals, §l’.‘*, from the regression
ST =SYB+Xjy +7/6+ 5", (3.10)

where z; =i Y, x* = Y=l 3/

721X = 2 j=1 2=y Xm- The extra z; regressors are included to ensure that the fixed-b

limit of W* is pivotal. See Vogelsang and Wagner (2014) for details.
To obtain the high frequency fixed-b limit of W* we extend Assumptions 3.5 and 3.6 to
accommodate the partials sums and augmented regressors. We focus on the case where X° (r) is

given by (3.6) and we write the assumptions in terms of

Xt - T . t e
tfo Xsds—fO (/0 dev)ds

which collects the continuous time variables corresponding to the regressors in (3.10).
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Assumption 3.7 A;IX:; = X..(r) on [0,1] with an appropriate nonsingular normalizing se-

quence (Ar) of matrices where
X2 (r)

= | e
r Jy Xe)ds = [ f Xe(ndv) ds

, Xo(r) =Tg.(r),

1 0 O r
H = O Af 0 ’ g*(r) = ‘/(-)r Wf(S)dS ’

0 0 A; Wx(r)

and ST (r) =T1/2 OrT Usds = U°(r) = 4,;w,5(r) + Quz (A%l) Wx(r) = B, (r) where w,5(r) is
a scalar standard Wiener process independent of Wx(r), /lﬁ_)7 = /li - QMEQ;Q’W? /lﬁ is the variance

of U°(r), and Q.5 is the covariance between U°(r) and AzWx(r).

Assumption 3.8 VTAs; 7(||U])) — 0, As7(IX])) — 0, VTAs 7 ([[VF]]) — O, [|A7]2PAs (I X** X ||) —
0 and \/THATHA(;,T(HX**SUH) —0asd > 0and T — oo.

We also extend the list of Z processes in Assumption 3.2 (labeled 3.2**) to include the processes
in Assumption 3.8. We can now state the fixed-b limiting result for the IM-OLS W* statistic in the

following theorem.

Theorem 3.3 Let M,, = bn where b € (0,1] is fixed. Assume Hy : RO = r holds. Under
Assumptions 3.2*%, 3.7 and 3.8, as 6 — 0 and T — oo,

2
(17% — *)*(q
P*(b)

where )(621 is a chi-square random variable with q degrees freedom independent of P{*(b) where

Pi*(b) takes the same form as Py(b) in (3.3) or (3.4) with

/01 (/018** (v)dv - /Osg** (v) dv) dw,=(s),

-1

r 1
B (r) = /0 o (5)=gos (r)’ ( /0 g (5) 8o (s)’)
in place of B|(r) with

g«(r)

g**(}”) - 1 r s
rfo g*(s)ds—fo (/0 g*(v)dv) ds
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The limit given by Theorem 3.3 is the same as the limit in the discrete time case as obtained by

Vogelsang and Wagner (2014).

3.4 Fixed-b Critical Values

Because fixed-b asymptotic limits are nonstandard, numerical methods are used to compute
critical values. Here we focus on critical values using the Parzen kernel because the finite sample
simulations use the Parzen kernel to make direct comparisons with CLP. Appendix B of Vogelsang
(2011), the working paper version of Vogelsang (2012), provides a numerical method for compu-
tation of fixed-b critical values for the Bartlett kernel for stationary regressions. We use the same
method here for the Parzen kernel for the following cases: (i) H-statistic stationary regression,
(i) G-statistic cointegration regression (without endogeneity) and (iii) H-statistic cointegration
regression (without endogeneity). To align with our simulation results and empirical illustration,
we report critical value functions for a simple regression with an intercept and one regressor for
two hypotheses. The first is a test of the joint null hypothesis that the intercept parameter is zero
(B1 = 0) and the slope parameter is 1 (8, = 1). The second is a test that the slope parameter is 1. In
the stationary case, the fixed-b critical values only depend on the number of restrictions, g = 2 and
1 respectively. In cointegration regressions, as shown by Propositions 1 and 2 of Bunzel (2006)
and our Lemma 3.1, the fixed-b critical values also depend on the number of stochastic regressors
in the model, the form of deterministic regressors (the intercept), and R*.

Following Vogelsang (2011) let c¢v,(b) denote the critical value for a given statistic for sig-
nificance level a using a bandwidth sample size ratio . Using 50,000 replications, cv,(b) was
simulated using normalized partial sums of independent, identically distributed (i.i.d.) N(0, 1)
random variables using 1,000 steps to approximate the Wiener processes in the asymptotic distri-

butions. These simulations were carried out for the values of » = 0.02,0.04, . ..,0.98, 1.0. Using
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the simulated critical values, we fit critical value functions of the form:

2 3 2
eva(h) = 2o+ 11 (b2 g) +dalb () )+ (b (20) )+ 40P 2,0) + AP - (2,))

G.11)
P26 (2)) + 16 2 + 256 (2)) + o6 (2,))

2

where z; ,

is the critical value from a /\/3 (chi-square with g degrees of freedom) random variable.

For Hy : B1 = 0,82, = 1 we have g = 2, and for Hy : = 1 we have ¢ = 1. Notice that, by

)
= Zq,a

construction, cv,(0) so that when b = O the critical values are chi-square. For a given
statistic, the values of the A; coefficients were obtained using least squares. The fits, as measured
by the regression R?, are excellent in all cases (no smaller than 0.995). Table 3B.1 gives the A;
coeflicients.

As shown by Vogelsang and Wagner (2014) fixed-b critical values for w* depend on the number
of integrated regressors, the form of the deterministic regressors and the hypothesis being tested
in addition to the kernel and bandwidth. To test the joint null hypothesis, §1 = 0 and B, = 1,
we simulated fixed-b critical values for W* based on the Parzen kernel for testing the joint null
hypothesis in a cointegrating regression with an intercept and one integrated regressor. Then using

the fixed-b critical values, we fit a critical value function for @ = 0.05 for W*. The critical value

function is given by

5.96 +8.73-b +551.46-b% — 1950.49-b3 + 7145.52-b*, when b < 0.2

cvoos(b) =1 =770.1+16182.2-b — 144138-b% +727975.7-b> — 2283734.7-b*
+4650336.4-b° — 6114285.0-b° + 4986435.8-b7 — 2287834.8-b% + 450664.3-b°,

when b > 0.2
(3.12)

where the fit as measured by the regression R? was larger than 0.999.
For testing the slope parameter only, 8> = 1, using simulated critical values for the case of an

intercept and one integrated regressor provided by the supplementary material of Vogelsang and
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Wagner (2014), we fit a critical value function for @ = 0.05 for W*. The critical value function is

given by

3.84 — 6.61-b +930.69-b% — 12634.81-b3 + 102402.08- b*
—~396004.20-b° + 605085.78-b°, when b < 0.2

cvoos(b) =
—41.98 + 1353.9-b — 15398.9-b% + 96187.7-b> — 354315.7-b*

+821676.6-b° — 1182990.3-5° + 1018299.0-b7 — 478903.5-b% + 94608.1-5°,

when b > 0.2
(3.13)

where the fit as measured by the regression R? was larger than 0.999.

More generally, asymptotic critical values for W* can be simulated using a simple Monte Carlo
simulation procedure”. Suppose an empirical application uses regression (3.2), y; = X3+ u;, with
i =1,2,...,n where x; = [1 x;]’ is a kK X 1 vector and x; is a (k — 1) X 1 vector of unit root
processes. Critical values for W* for testing a given hypothesis about 8 using a given kernel and

value of b can be computed as follows:

Step (1) Generate realizations of x; and u; using a large value of n such as n = 1000. The vector
X; is generated as x; = x;_ + 6? where {6? } is a sequence of i.i.d. N (0, Ix_) vectors with xg
equal to a zero vector. Generate a realization of {u;} as a sequence of i.i.d. N(0, 1) random
variables that are independent of {el.’7 }. Let B, denote the B vector with the null hypothesis
imposed. Elements of S, that do not involve the null hypothesis can be set to zero without
loss of generality because W* is exactly invariant to those elements. Using the realizations

x; = [1 x;]" and u;, a realization of y; is calculated as y; = x;B3, + u;.

Step (2) Using the realized {y;} and {x;} data from Step 1, compute the IM-OL.S statistic w* using
(3.9) with the given kernel and M,, = b'n where bT is the bandwidth sample size ratio from

the empirical application.

2We thank a referee for suggesting that we include this algorithm in the paper.
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Step (3) Repeat Steps (1) and (2) many times (for example 10,000 or more), and obtain the (1 — @)
quantile of the realizations of W*. Use that quantile as the critical value for w* computed

from the empirical application.

As an example, recall the case of k = 2 for testing 51 = 0 and 8, = 1 as previously discussed.
Here X; is a scalar process generated as x; = x;_j + 6? where ef ~ 1.i.d.N(0,1) and xo = 0, and
u; ~ i.i.d.N(0, 1) that is independent of e?. The vector B3, is given by B, = [0 1]’. For cases
where more complicated deterministic regressors are included in x;, those regressors would simply

be included in the simulated x; vector.
3.5 Simulations

3.5.1 Finite Sample Simulation Environment

In this section we use simulations to explore finite sample properties of H (,E) for the stationary
regression case and W* for the cointegration case with and without endogeneity. Patterns are
similar for the G(,E) and H (,BA) statistics in the cointegration case without endogeneity and are
not reported. We focus on performance of the kernel based tests across sampling frequencies to
explore empirical null rejections, bandwidth behavior, and power across frequencies. We do not
make comparisons across long run variance estimators given that Pellatt and Sun (2023) provide
extensive comparisons between kernel long run variance estimators and orthonormal series long
run variance estimators where overall performance between the two was found to be similar.

We use the same data generating process (DGP) as CLP to facilitate comparisons. The long run
variances of H (E) and W* are implemented with the Parzen kernel in all cases. We consider five
bandwidth rules. These rules include three of the bandwidth rules used by CLP in their simulations:
the Andrews (1991) AR(1) plug-in rule (AD), the Newey and West (1994) nonparametric plug-in
rule (NW) using the pre-tuning parameters suggested by Newey and West (1994) and the CRT
bandwidth rule proposed by CLP. The other two bandwidth rules are: the Sun et al. (2008) AR(1)
plug-in rule that balances size distortions and power (SPJ), and a variant of the NW rule that uses
different pre-tuning parameters which we label NW-Tune.

Following CLP, we focus on a continuous time regression model with an intercept and one

90



regressor given by

Y = 1+ B X + Uy,

where X; now denotes a univariate stochastic regressor. Both X; and U; are Ornstein—Uhlenbeck

processes given by

dX[ = —KXX[dt + O‘de,, dUt = —KMUldt + O-uth,

Vi 10 1
W, r V1-n2 || &
where &, and &;; are standard Brownian motions independent each other. The DGP for V; and W;
is similar to the DGP used by Pellatt and Sun (2023). The variances of V; and W; are normalized to
be one and r is the correlation between V; and W;. In the stationary simulations both «, and «, are
strictly positive and © = 0. In the cointegration case «, = 0 and 7 can be non-zero. Using a span of
T = 30 for a given replication, we generate 7,560 daily (252 weekday observations per year) sample
paths for each OU process. Lower frequency series (such as monthly/quarterly) are constructed
from the generated daily series. We focus on testing the joint null hypothesis, Hy : 81 =0, 8> =1,
using a nominal significance level of 0.05. When used, fixed-b critical values are computed using
the critical value function given by (3.11) using coeflicients from the H-stationary line of Table
3B.1 for the stationary regression case. The critical value function given by (3.12) is used for the
cointegrating regression case. We used 2,000 replications in all cases.
We also carried out simulations for the case where X; follows Feller’s Square Root (SR) process
as in CLP and Pellatt and Sun (2023) which is given by dX; = k, (u, — X;) dt + o, VX;dV;. The

patterns in the results are very similar to the OU process case and are not reported.

3.5.2 Bandwidth Formulas
To help with interpreting some of the finite sample patterns it is useful to examine some of the
formulas for the bandwidth rules we used. The Andrews (1991) formula for the Parzen kernel is
given by
- 1/5
MAP = 2.6614 (Lﬂtn) :
(1-p)
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where n is the sample size of the discretized series and p is the estimated AR(1) parameter fit
to v; = x;u; (stationary regression) or v; = u; (cointegrating regression) where u; are the OLS
residuals. For the stationary regression we follow Andrews (1991) and place zero weight on the
intercept component of the long-run variance to ensure that the bandwidth rule is invariant to the
scale of the data.

The Newey and West (1994) bandwidth takes the same form as M AD \yith the term that depends
on p estimated nonparametrically using kernel estimators that require bandwidths of their own (pre-
tuning parameters). Formulas can be found in Newey and West (1994). Newey and West (1994)
recommend the deterministic pre-tuning rule 4(n/100)*/?> and this gives the NW data dependent
bandwidth. We also consider the pre-tuning rule 8.5(n/100)2!/25 which gives the NW-Tune data
dependent bandwidth. The formula for the Sun et al. (2008) bandwidth is

~ 1/3 _
2pc . 2pc
JisPT = () if e > 0
n
log(n) otherwise
where
12(Go(d,) - Glalets) 0T
c= ’ T\X)= - X),
0.539z2K.(22) 2T

and p is the same AR(1) estimator used for ]\7I,fD , G;.’ . (+) is the probability density function of a
(non)central chi-square random variable with j degrees of freedom and noncentrality parameter
72, and zia is the critical value from a chi-square random variable with one degree of freedom.
The parameters w and 7 control the trade-off between size distortions and power. We use w = 10
and 7 = 2.

Finally, the CRT bandwidth of CLP is given by the formula

-4/5
T
) = nT™*5,

MCRT = g1/55=4/5 = 41/ (_
n

3.5.3 Stationary Regression Results
For the stationary regressions we set 7 = 0 and use two pairs of persistence parameters:

(kx> ky) = (0.1,6.9) and (ky, ;) = (0.5,0.5) where the first pair is from CLP and has relatively
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low persistence in U;. The second pair has similar persistence in X; but much more persistence in

U,. We use the same standard deviation parameter values as in CLP: (o, 0,) = (1.5514,2.7566).

3.5.3.1 Empirical Null Rejections

Figure 3B.1 plots empirical null rejection probabilities for H (B). Panels (a) and (c) give results
for (ky,«,) = (0.1,6.9) (the CLP case) whereas panels (b) and (d) give results for («y, «,) =
(0.5,0.5) (the more persistent case). The top panels give results using chi-square critical values
whereas the bottom panels give results using fixed-b critical values. The x-axis is ¢ which ranges
from 1/252 (daily frequency) to 1/4 (quarterly frequency). Figure 3B.1(a) essentially replicates
some finite sample results from CLP although rejections using the AD bandwidth are just above
0.1 in contrast to the rejections in CLP where rejections were close to 0.07. Rejections using
the SPJ bandwidth are slightly higher than those with AD, and rejections with CRT are between
them. Rejections with NW are similar for low to medium frequencies and over-rejections occur at
the daily (high) frequency. The alternative version of NW, NW-Tune, tends to over-reject across
all sampling frequencies but does not show the big jump in over-rejection at the daily frequency.
Figure 3B.1(c) shows that, except for NW, rejections are improved (closer to 0.05) when fixed-b
critical values are used. Rejections are below 0.1 in all cases.

Figures 1(b,d) show what happens when the persistence is stronger for the given span. In Figure
3B.1(b) we see that all bandwidths lead to substantial over-rejections when the chi-square critical
value is used. The NW bandwidth continues to over-reject more substantially at high frequencies
consistent with the CLP finding that the NW bandwidth is not high frequency compatible. As
Figure 3B.1(d) shows, using fixed-b critical values substantially reduces over-rejections for AD and
especially SPJ. Modest improvements are seen for CRT and NW-Tune. Even with the improvements
that the fixed-b critical values provide, over-rejections remain because the persistence is strong

relative to the span (magnitude of 7).

3.5.3.2 Bandwidth Patterns Across Sampling Frequencies
One pattern that is interesting in all four panels of Figure 3B.1 is that rejections for AD, SPJ

and CRT are stable across frequency of observation especially when fixed-b critical values are
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used. To help explain this stability, we computed average bandwidth to sample size ratios (across

replications) denoted by

TFAD TSP CRT
MAD M M
, bspy = , berr = pa—

bap =

(and similarly for NW and NW-Tune). Plots of these ratios are given in the two panels of Figure
3B.2. We see that b4p and Esp 7 are nearly flat across sampling frequencies with slight decreases
at lower frequencies (larger §). By construction, b¢cgr is flat across sampling frequencies because

M,?RT ~ nT—4/5

n

=745, (3.14)

bcrr =

which is the same for all frequencies for a given value of 7. The bandwidth ratio for NW decreases
as the sampling frequency increases and NW-tune has a similar pattern that is shifted up. The
fact that BAD, Esp ; and bcgrr are stable across frequencies explains why rejections are similar
across frequencies. It is well known from the fixed-smoothing literature that the extent to which
over-rejections occur depends on the bandwidth sample size ratio and not the bandwidth itself.

Another interesting pattern in Figure 3B.1(c,d) is that rejections using SPJ are lower than AD or
CRT when fixed-b critical values are used. This is obvious in Figure 3B.1(d). Why does SPJ give
rejections closer to the nominal level? From Figure 3B.2(b) we see that ZS pJ > ZA p on average and
both are larger than bcgr. This makes sense because the SPJ bandwidth rule is known to give larger
bandwidths than AD given that SPJ balances size distortions and power rather than minimizing the
mean square error of the variance estimator.

What is not obvious from Figure 3B.2(a,b) is why EAD and Egp s are stable across sampling
frequencies. In the next section we provide some simple theoretical arguments that can help explain
this finite sample pattern.
3.5.3.3 Stability of Bandwidth Sample Size Ratios Across Sampling Frequencies

To understand Figure 3B.2(a,b), some simple theoretical calculations holding the span, 7', fixed
are useful. We hold T fixed because the patterns observed in those figures are for a given value of
the span (T = 30). Recall that the AD and SPJ bandwidths are functions of the estimated AR(1)

parameter of x;u; which is a proxy for x;u;. Because x;u; is the product of two independent discretized
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OU processes, each of which are AR(1) processes with AR(1) parameters p, = exp (—«, (T'/n))

and p, = exp (—«, (T /n)) respectively, x;u; has an AR(1) structure with AR(1) parameter

T
P = PxPu = €XP (_ (Kx + Ku) ;) . (3.15)

Letting «,, = kx + k, and using (3.15), we can write the AD and SPJ bandwidths as

2 1/5 4exp (—2k, L '3
MAP :2.6614( 4n) =2.6614 P x”;) n|
(1 _p) 1- exXp (_Kqu))4
1/3
MSPJ:( 2pc n)1/3: 2exp (—Kvuy) € "
" (1 _p)Z (1 — €Xp (_Kxu%))z ’
giving
1/5
MAD dexp (—2k,, L 1
bap = — :2.6614( il ”‘;) T (3.16)
h (1 — €Xp (_KXMZ)) n
1/3
MSPJ 2exp (—kwl)e 1
bspy = —— = Pyl 1) (3.17)
n (1 — &Xp (_Kxu%))z n’
for the bandwidth ratios. Using the expansion
Ty\2 Ty)\3
T T Kxul Kxul
eXp(—Kxu;):1—Kxu(;)+( "2('”)) _ "3('”)) +oe (3.18)

we can easily show (for 7" fixed) that

4 1/5 c 1/3
lim b =2.6614 , lim b =|—— )
nmseo AP ((xxm‘*) e SP! ((mez)

which suggests that, for data sampled at high frequencies, b4p and bgp; are positive. The more
persistent the data, i.e. the closer «y, is to zero, the larger b4p and bgp; will be.

The stability of bcgr across sampling frequencies in Figure 3B.2(a,b) is obvious and expected
given (3.14). Because the formulas for (3.16) and (3.17) are not constant functions with respect
to n, the large n limits of b4p and bgp; are only useful in understanding what happens for very
high frequency cases (large n). To provide a more complete picture, in Figure 3B.3 we plot the
theoretical b4p and bgp; functions (3.16) and (3.17) for the case of T = 30 for n ranging from high

frequencies (daily, on the left) to low frequencies (yearly, on the right). For the high persistence
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case (ky, ky) = (0.5,0.5), bap and bgp; are nearly flat across sampling frequencies especially in
the daily (6 = 1/252) to quarterly (6 = 1/4) range. Interestingly, the stability of b4p and bgp; also
holds for lower frequency cases with a slight decline at the annual frequency (6 = 1). In the lower
persistent case (ky, k,) = (0.1,6.9) we see that bsp and bsp; continue to be flat in the daily to
quarterly range but show noticeable decline at the annual frequency.

The surprising finding that b 4 p and bgp; are stable in the simulations is explained by the relative
flatness of b 4p and bgp; as functions of the sampling frequency at least for the AR(1) plug-in case.
Because bsp and bsp; do not converge to zero as the sampling frequency becomes very high (n
becomes large), b4p and bgp; remain “high frequency stable” - a complementary finding to the

high frequency compatible finding of M/'? by CLP.

3.5.3.4 Finite Sample Power

In this section we report finite sample power (not size-adjusted) of H (,E) for testing Hy : 1 =0,
B2 = 1 using fixed-b critical values in all cases. Results are given in the four panels of Figure 3B.4.
Panels (a) and (c) give results for («,, k,) = (0.1,6.9) with alternatives (81, 82) = (0.02,1.02),
(0.04,1.06). Panels (b) and (d) give results for («y, k) = (0.5,0.5) with alternatives (81, 82) =
(0.3,1.3), (0.95,1.95). The format of the figures is the same as for the null simulations.

First, notice that power increases as the alternatives move farther away from the null (going from
top panels to bottom panels). This is not surprising and is expected. The more interesting patterns
are how power depends on the sampling frequency for a given alternative. In the high persistence
case (Figure 3B.4(b,d)), power is nearly the same across sampling frequencies for the AD, SPJ and
CRT bandwidths. For the less persistence case (Figure 3B.4(a,c)), power noticeably decreases as
the sample frequency decreases (as o increases). This suggests that using high frequency data when
the data is not too persistent gives higher power. A similar finding was reported by Pellatt and Sun
(2023).

This decline in power as the sampling frequency decreases cannot be explained by the band-
widths because the bandwidth sample size ratios are stable across sampling frequencies. To see

why power decreases as the sampling frequency decreases, we can calculate the signal to noise
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ratio for the slope estimator analogous to the calculations (3.16) and (3.17) for the bandwidths. The

signal to noise ratio is simply the inverse of the approximate variance of ,Ez given by
~\1-1 1
[var (,82)] ~n-var(x;)Q "var(x;),

where € is the long run variance of x;u;. Straightforward calculations give

O n(1-exp (—Kxu%))z(fxzku [n (1 -exp (—Kxu%))]zo'fku
n-var(x;))Q var(x;) = - = -
(1 —exp (—2kxut)) o2ky n (1 —exp (—2kwt)) oiky

For T fixed it is easy to show, using (3.18), that as n — oo,

2
KxuO0 Ky

2
Oy Kx

lim n - var(x)Q 'var(x;) = T.
n—oo

In contrast, it is easy to see that as n — 0,

lin%)n cvar(x)Q var(x;) = 0.

We see that, for a given span, the signal to noise ratio is finite for high frequencies and decreases

to zero as the sampling frequency decreases.

3.5.4 Cointegrating Regression Results

We report a set of simulation results for the IM-OLS statistic, W*, for cointegrating regressions
in Figures 4-7 using a format that is analogous to Figures 1,2 and 4. The data dependent bandwidths
for /73*)7 were computed using the OLS residuals, not Agl’.‘*, given that estimated values of p based
on A:Si“ are severely biased. In all cases «, = 0. Following Pellatt and Sun (2023), results are
reported for «, = 0.393 (highly persistent U;) and k,, = 6.287 (low persistent U;). Results were
obtained for «,, = 1.572 but are not reported as those results consistently fall between results for the
other two «, values. Following CLP we used o, = 0.0097 and o, = 0.0998. Results are given for
m=0,0.75. Results for 7 = 0.25, 0.5 are very similar and are not reported. Fixed-b critical values
based on (3.12) are used in all cases.

Overall, the patterns in Figures 5-7 are similar to the patterns in Figures 1-3 giving similar
findings in cointegrating regressions, including the endogenous case, as in the stationary regression

case. There can be substantial over-rejections in the high persistence case. As persistence decreases
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(for the given value of T'), empirical null rejections approach the nominal level. Figure 3B.6
shows that the AD, SPJ bandwidth ratios are stable across sampling frequencies for both levels
of persistence. Figure 3B.7 shows that power in the high persistence case is not sensitive to the
sampling frequency. Like for stationary regressions, power noticeably declines as the sampling

frequency decreases in the lower persistence case.

3.5.5 Summary of Simulations

The simulation results for H (B) (stationary regression) and w* (cointegrated regression) gen-
erated by OU processes can be summarized as follows. If the bandwidth sample size ratio is
constant across sampling frequencies and fixed-b critical values are used, null rejections are sim-
ilar. Therefore, with regard to size distortions, the sampling frequency does not matter. While
higher frequency data has stronger autocorrelation for given values of «, and «,, it also has a larger
sample size. Intuitively, the null rejections are stable across sampling frequencies when the same
bandwidth sample size ratio is used because what matters is strength of autocorrelation relative to
the number of observations. This balance between autocorrelation and sample size is stable across
sampling frequencies.

Power, on the other hand, can depend on the sampling frequency if the persistence is not strong.
Power increases as the sampling frequency increases. Because the b4p, bspy, and bcgr are stable
across sampling frequencies and provide stability in null rejections across sampling frequencies,
using high frequency data can lead to higher power without sacrificing additional size distortions
(over what is already present given the underlying persistence as measured by «, and «,, relative to
the span, 7).

For given persistence in the data (given «, and «,), when fixed-b critical values are used, SPJ
gives the least size distorted tests followed by AD followed by CRT. This happens because bsp;
tends to be larger than b 4p which tends to be larger than bcgr. Of course, given the well known
trade-off between size distortions and power as b increases when fixed-b critical values are used, the
power rankings are the opposite. Which bandwidth to use in practice depends on the implications

of this trade-off to the practitioner.
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3.6 Empirical Application

In this section we provide some basic empirical results on the uncovered interest parity (UIP)
puzzle as an illustration. UIP is the well studied hypothesis that interest rate differentials between
two countries should be equal to the expected return of the exchange rate. There is a large literature?

that tests UIP using the following simple regression that fits within our analysis:
Sisa = Si = B1 + Palint; — int}) + u;,

where s; is the logarithm of the exchange rate at time i, int; is the interest rate on a domestic bond
of maturity A and int; is the interest rate on a foreign country bond of the same maturity. The
null hypothesis of UIP is Hyp : 81 = 0 and 5 = 1 and the null hypothesis of a milder version of
UIP is Hy : B2 = 1 which is our focus here. Diez de los Rios and Sentana (2011) examine tests of
(mild) UIP in a continuous time framework and focus on using high sampling frequencies in the
data which we do here.

For our empirical illustration, we examine the UIP hypothesis for the US-Japan case, where
the domestic country is the US and the foreign country is Japan. The data for the exchange rate
and interest rates are obtained from Refinitiv Workplace (formerly Thomson-Reuters) and are daily
observations. The sample period is from 1991/01/02 to 2022/11/01 giving a span of up to 30 years
depending on the bond maturity horizon. For the interest rates int, and int;, we use the yields on
the benchmark government bonds of the domestic (US) and the foreign country (Japan) with two
different maturities. The first is a 2-year bond. The second is a 10-year bond following Chinn and
Meredith (2004).

Because exchange rates and interest rates are highly persistent, we use a z-statistic based on
G(E) for testing Hy : B2 = 1 which is appropriate for the case of a cointegration regression. We
use fixed-b critical values calculated with (3.11) using coefficients from the G-cointegration line of
Panel B of Table 3B.1. To accommodate possible endogeneity, we also use a z-statistics based on

W* of IM-OLS using critical values given by (3.13). We report results for four bandwidth selection

3See Engel et al. (2022) for a recent empirical paper and Engel (2014) for a broader survey of empirical work
testing UIP.
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rules (AD, SPJ, NW, CRT). For each bandwidth method, we calculate standard errors, the b ratio
and the 7-statistic for both the OLS and IM-OLS cases. We also provide 95% confidence intervals
for 3, using fixed-b critical values and N (0, 1) critical values.

Table 3B.2 gives results for the 2-year bond maturity and Table 3B.3 gives results for the 10-year
bond maturity. In each table results are given for daily, weekly, monthly and quarterly sampling
frequencies. Both OLS and IM-OLS are considered. Looking at the daily frequency results in
Table 3B.2, we see that the z-statistics based on G(,E) using AD and SPJ are -2.189 and -2.473
respectively, rejecting the UIP hypothesis at the 5% level when using the normal critical value.
However, the fixed-b critical values for the #-statistic using EAD and Bsp ; are +£4.053 and +5.213
respectively. Therefore, the UIP hypothesis is not rejected when using fixed-b critical values. The
same finding is made with the z-statistics based on W* of IM-OLS. Interestingly Ez and EZ are
stable across the frequencies but have opposite signs with EZ negative and ﬁ~2 close to 0.5.

Recall that G(E) and W* use the same b values for each bandwidth method. Notice that b 4p
and Zsp ; yield wider confidence intervals with fixed-b critical values compared to normal critical
values. These patterns hold across sampling frequencies. The values of the bap and Egp J are large
(0.479 to 0.777) and each are roughly stable across sampling frequencies as expected given the
finite sample simulations. Also, as expected, ESP 7 1s larger than EA p. Large values of ZA p and Egp 7
are an indication of high persistence in the regression error. Using normal critical values with large
bandwidth ratios would lead to misleading inference (type 1 error well above the nominal level). The
NW bandwidths are substantially smaller than AD and SPJ. Table 3B.2 shows that ENW is very small
for high sampling frequencies (0.007) and is increasing to 0.11 at the quarterly frequency, the same
pattern that we observe in the finite sample simulations. This illustrates that the NW bandwidth is
not high frequency compatible as argued by CLP, and confidence intervals based on NW can be
misleadingly tight. By construction bcgr is the same across sampling frequencies. However, the
value of bcrr = 0.066 is substantially smaller than EAD and Zsp J suggesting confidence intervals
using bcgr can be too tight relative to the persistence in the regression errors.

Table 3B.3 gives results for the 10-year benchmark government bond. While the point estimates
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of 3> are now larger than 1 (about 1.4) for both OLS and IM-OLS, bandwidth patterns and inference
conclusions are similar to Table 3B.2. The b values continue to be large and roughly stable across

sampling frequencies. UIP cannot be rejected for either test.

3.7 Conclusion

In this paper we develop fixed-b asymptotic results for HAR Wald statistics for regressions
with high frequency data in the continuous time framework of Chang et al. (2023). We find that
the fixed-b limits of the HAR Wald tests in stationary high frequency regressions are the same
as the standard fixed-b limits in Kiefer and Vogelsang (2005). For cointegrating high frequency
regressions the fixed-b limits generally have non-pivotal limits. For the special case where the
stochastic processes in the continuous time regression follow Brownian motions and the regressors
are independent of the errors, the fixed-b limits are pivotal and are the same as those obtained by
Bunzel (2006) in discrete time settings. We also analyzed a Wald statistic from Vogelsang and
Wagner (2014) using their IM-OLS estimator and obtained fixed-b limits that are same as the limits
in Vogelsang and Wagner (2014). Our results in conjunction with the results in Pellatt and Sun
(2023) for orthonormal series approaches (including the cointegration estimator of Hwang and Sun
(2018)) establish that fixed-b (more generally fixed-smoothing) critical values are high frequency
compatible.

In a simulation study where data is generated according to OU processes we find that the
Andrews (1991), Sun et al. (2008) and CLP’s CRT bandwidths tend to perform well not only at
high frequencies (assuming the persistence in the data is not too strong relative to the span), but give
null rejections that are remarkably stable across sampling ranging from high to low frequencies.
This stability holds for data with strong and mild persistence. We show that the source of this
stability in null rejections is stability in bandwidth sample size ratios (b-values) across sampling
frequencies. This stability holds by construction for the CRT bandwidth. It is more surprising
this stability holds for the Andrews (1991), Sun et al. (2008) bandwidths and we provide a simple
theoretical explanation.

We also report some power results in our simulations and find that for persistent series, power

101



is stable across sampling frequencies. In contrast, power falls as sampling frequency decreases
for mildly persistent series. Therefore, we can recommend that practitioners use data sampled at

higher frequencies.
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APPENDIX 3A

PROOFS
We provide proofs for the case of the Bartlett kernel given the simple form of the corresponding
long run variance estimators. Algebra is similar for other kernels. When writing formulas for G (,E)

and H(B) note that, when the null hypothesis Hy : RS = r is true, we can write
RB-r=RE-RB=R(F-p)

so that R,E — r can be replaced with R (,E - ,8) in the formulas for G(,E) and H (E). Similarly for

IM-OLS, we can replace RO—r (with suitably augmented R and r) with R (5 — 9).

Proof of Theorem 3.1: Under Assumptions 3.2, 3.3 and 3.4 as 6 — 0 and T — oo, we have the

following results.

rT
_ Xix, = 7! [) Xth/dt +0,(1) = rQ,

1 [rn] \/5 rT
\/T; XiUj = — Zx,-ui = T_I/Z/ X U,dt +0p(1) = AWi(r).

Using these limits gives

n

Y -1
‘/T(,E—,B) = (%inx,f) \/T%inui = Q7' AWL(1).

i=1 i=1

Next, we derive the fixed-b limit of Q upon appropriate scaling. For the Bartlett kernel, we can

write
1 A

n—1 -1
5 2 Sa S ~
Q, = S} (57) - (SYStas,) + 8, B1Y)
Mnn; (S0 Mn ; i Sin,) +Siin, (S7)

where
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—~

Scaling Sfm] by T'/2/n gives
1 1 bl 1 bl
Tl/z;lS‘[)rn] = TI/ZZ xlﬁj = Tl/z;l Zx] (y] X;,B)
Jj=1 J=1

j=1 j=1
[rn] 1 [rn]
1/2 2 _pl/2 2 Y _
T iju T nZX]X](,B B)
j=1 j=1
1 [rn] 1 [rn]
= Tl/z; ij“j - ijx}‘/f(ﬁ -B)
j=1 j=1

rT T
:T-1/2/0 X,Utdt+op(1)—(T‘1/0 X, X/dt +0,(1) | NT(B - )

= AWi(r) = rQO 'AW (1) = ABk(r),

as 0 — 0and T — oo. Scaling ﬁn by 6 =T /n gives

. 1~ 0 1 n—1 L 1 1 n-M,—1 L R R
0Q,=T-Q, = —T- SISV - —T- SY(S; "+ 8V Sy
o= Z FSD = T Z (S} (SEuas,)’ + Sto, (57
n—1 n-M,—1
2 1~ 1~ 1 2 [ 1PN I ~ 1~ 1~
Mn; n l( n l) Mn ; [ n ¢ n( l+M,1) n +M, n t)]
2 S 1A 1o, 173 14 1- - 1~
bn; n z( n z) bn ; [ n z( n z+bn) n z+bn( n z)]
2 1 1 1-b 1 1-b
= A —/ Bk(r)Bk(r)’dr——/ Bk(r)Bk(r+b)'dr——/ Bi(r + b)By(r)dr | AN
b Jo b Jo b Jo
= AP, (D) .

The result for H (ﬁ) as 0 — 0 and T — oo is straightforward to obtain as follows:

-1 -1 17!

n€l,

n

HB) =R (B-p) |R (Z xi¥,

i=1

n

S| R| R (E—ﬁ)

i=1

1 anxix; R'| RVT (,E—,B)



1

_ RVT (B - p)

T -1 T -1
1~
R(T‘I/O X,X;dz+o,,(1)) T;Qn (T‘I/O th,’dz+o,,(1)) R’

= [RQ™ AW ()] [RQ™' AP (D)N'Q™'R'| ™' [RO™ AW, (1)]
= [NWy (DT[N Py ()N AW, (1)] = Wy (1) Py (b) ™ W, (1).
Note that A* is the square root matrix of RQ~'AA'Q7'R’.
Proof of Theorem 3.2: We first give the derivation for H (E) followed by the derivation for G(E).

Recall that X/ = [1 e x. =[1 Xx;] and U°(s) = A,w,(s). Under Assumptions 3.2, 3.5 and 3.6

we have these results for the partial sums:

1 [rn] 1 rT r
- ZA}lxix;A}l’ = ?‘/ A}IX,X;A}I’dt +o,(1) = / X°(s)X°(s)ds,
i=1 0 0

[rn] rT r r
1 1
T'/2= E A'lx,ul-:—/ A X, Udt + 0 (1)=>/ Xo(s)dUo(s)z/lu/ X°(s)dwy(s).
ni:1 T (—T 0 T 2tYt p 0 A

Scaling (E— ﬁ) by T1/2A’T gives
1 n -1 1 n
2A7 (@2 -1, A=l 1/2 -1
1
= (/ Xo(s)Xo(s)'ds)
0

=1, (/01 Xo(s)Xo(s)'ds)

Next, we need to determine the scaling for ﬁn. First, scale S'Trn] by 7/ Z%A}l to give

-1 1
A /0 X°(s)dwa ()
-1

1
/ X°(s)dw,(s) = 1,C.
0

[rn] [rn]

1, 4 1 ~ 1 .- )
TI/ZZATISEM] = T”ZZAT1 Zx,-ui = Tl/zr—lATl in()’i - x;3)
i=1 i=1

[rn] [rn]

1 _ Y /A 1 - ’ 2
=T A i+ = xiB) =T A it = 5B = B)
i=1 =l
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1 [rn] 1 [rn]
- Tl/zﬁ Z A xu; — n Z A7t xix( AT TVP A (B~ B)
i=1 i=1

1
Ay (/0 X°(s)X°(s) ds)

-1

-1

/0 1 x°<s>dwu<s>}

1
/ XO(S)qu(S)) = A Bu(r).
0

= /OrXO(s)/ludwu(s) - (/OrXo(s)Xo(s)'ds)
r r 1
/0 XC’(s)de(s)—‘/O X°(5)X°(s)'ds (/0 X°(s)X°(s)’ds)

Next, scale Q, as 6A;1Q,A;Y = (T/n) A7'Q,A7" to give

=,

n—1 n-M,—1
1 - 2 1 - - 1 1 4 —~ —~ — —~
T-A7'QA;Y = ——T-A;' ) SU(S)Y A" — —T-A7 SY(STan ) + S8t (S 1AFY
MZ() Mnnnrgu,w o, (S 1AT
) n—1 1 1 1 n—bn—1 1 1
bn; n T ~i I’l( l) T bn ; [ n T ~i n( z+bn) T

1 ~ [N
+T1/22A;15‘.} Tl/ZZ(S;/)/A;l/]

i+bn

n—1 n—bn—1
2 121 -1Q 121 VN A =17 1 121 -13 121 o rA—1r

t=1

1 ~ I -~
+ T1/2;A;lsv TI/ZZ(S;))/A;II]

i+bn

2 1 1 1-b
= E,/ AuBu(r)A By (r) dr — E/ AuBu(r)A By (r +b) dr
0 0

1 1-b
-3 /0 AuBy(r +b)A,By(r) dr

2 1 1 1-b 1 1-b
2 (5/ By (r)By(r)'dr — E/ By(r)By(r +b)'dr — E/ By(r +b)By(r)'dr| = 2Py (b).
0 0 0

The result for H (E) as 0 — 0and T — oo is straightforward to obtain as follows:

-1

R'| R(B-P)

-1 -1

n€2,

n

S

i=1

n

= (1 (5-1)) [#( S50

i=1

-1 -1

nA; QAT AR

n
-1 rA—1r

i=1

n
-1 rA—1r

= (RA7"AG (B- ) |RAZ"
i=1

x RAFVAG(B - B)
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- (ntRA7" A (3 - 8))

-1 -1 -1

n n
X | ARRAZY [ Y AZ'xix/ A7 | nAZ'QuATY | DT AT AT | AT RIAF
i=1 i=1
< ARAT N (5 )
- (A’;T-l/zRA;l'Tl/ZA’T (E - ,3))
1< . 1< o B
 |AFTV2RAZY (=Y AP AZY | T=AZ'QuATY (= T AT AZY | AZRTTVAAY
n n n
i=1 i=1

X ART'V2RAZVT'2AL(B - B)

1
R’ (/0 X°(s5)X°(s) ds)

= (R*C) [R*Q;' Pu(b)03'R”] ™' R*C.

-1 -1

1
= (R*2,C)’ 2Py (b) ( / X°(s)X°(s)'ds) R”| R*a,C
0

Note that we use (3.5) for the limit of A’TQT_I/ZRA}“.

The derivation for G(E) is similar and only requires the fixed-b limit of &2. Similar to Q,, for
[rn] ~

the case of the Bartlett kernel &2 can be written as a function of :9\1’.‘ = ZJ [ Ujas
N 0 n—1 ~ ) ) n-M,-1 .
= Mon Z (Si ) - Mo < S Si+Mn'
i=1 i=1
To determine the scaling needed for 2, we scale :S:’.‘ by T'/2/n to give
1~ [rn] [rn
'S, —712L Z il Z(y, - x}B)
[rn]
S Z(x By —xB) =TV ZWJ ~x/(B-B)
1 [rn] L 1 bl 1 bl _
=TV Y =T Y (B P =T~y == > AT TP (B - )
j=1 Jj=1 J=1 J=1
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rT 1 rT -
= T—l/z/o Uidt +0,(1) - (f /0 X;A;lfdt + op(l)) T1/2A’T(,8 -B)
r 1 -1 a1
= 4w, (r) - /lu/O X°(s)'ds (‘/0 Xo(s)Xo(s)’ds) ./0 X°(s)dw,(s)

r 1 B
= A, (wu(r) —/0 X°(s)ds (‘/0 XO(S)XO(S)'ds) ‘/0 Xo(s)dwu(s)) = 1,Bg(r).

Next, scaling @2 by 6 = T'/n gives

1 1 n—1 1 n—-M,-1 R
@2 =T~ DN ) T- Su gt
wy n wy n n - M non ; i~ i+M,
- bn L bn i+bn

i=1

2 1 2 1-b
= 7 / AyBg(r)A,Bg(r)dr — 7 / AyBg(r)A,Bg(r + b)dr
0 0

1 1-b
:Aﬁ(z/o Bg(r)zdr—%/o BG(r)BG(Hb)dr)EAﬁPG(b).

The result for G(,E) follows using similar arguments as for H (E) asd - 0and T — oo

, T
G(B) = (RB-p)) |TiR (Z X, R(B-5)
t=1
T -1 B
_ (RA;“A'T (E - ,8)) GIRAFY [ AT AR RAZVA, (E - ﬁ)
t=1
T -1 B
= (ARRATVAG (B - B)) |@2ARRATY | D" AT xiAT" | AT'RAR| ARRATVAG (B - B)
t=1

-1 -1

A;‘IR/T_I/ZA?/

—~ ’ 1
_ (AI;T—”ZRA;“T”ZA’T (ﬁ - ﬁ)) T=G2ARTV2RAZY
n

1 T
E -1 1A —1r
n t=1

x ART12RAZITI2 N, (,E - ,3)
1 -1 - )
"|22Pg(b)R* ( / X°(s)X°(s)’ds) R”| R*2,C=(RC) [Pc(b)R*Q;'R”] R*C.
0

= (R*1,C)
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Proof of Theorem 3.3: Define the scaling matrix

T-1/2 0 0
A = o T, o0
0 0 I

Following Vogelsang and Wagner (2014) let Ag be a g X g matrix such that AEI exists and satisfies
limro R} = R* where R} = A}IRAIM. Replacing RO — r with R (5— 9) we rewrite W* using

Ay and Al_elz

W* = [Ax'RAIm AL (0 - 0)])
O -1

n -1 n n
X :1,24} ;elRAIM (AIM Z x;ﬁxf/AlM) (AIM Z CiC;AIM) (AIM Z Xfxf'AlM) AIMR'Al_gl'
l:l l=1 l=1

x [AR'RAmATL (8- 6)].

Noting that Al_elRA M 18 R; by definition and letting Bjy; = T2 A;4,, we have upon scaling inside

the middle inverse term:
W* = [RpA7, (0 -0)

[ -1
T~, . [1< 1, 1 1 © N1 11

X —3.; T(— § Biv—x;x; —BIM) (— (BIM—) —CiCi— (—BIM))
n nizl n n n -1 njn n\n

1=

-1

-1
1 - 1 * *1 * * Aa—1
X ;;BIM;xixi’;BlM) RT, [RTAIM(H_Q)]

Under Assumption 3.2** and 3.8, we have the following results for partial sums:

["”] r
lzui:l/ TUtdt+o (T71%), (3A.1)
n P T 0 P
| bl | T
. Z;X - /O (dt +0,(1) (3A.2)
[rn] rT
L on) = 12 F=d / Vidt +0p(T72) = L %0 4 0, (1712, (3A.3)
n n < i T 0 t P T p
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Recall that x7 . = Z,”l‘] X; |- Scaling x} . by By /n gives,

[rn] i= [r

%[rn] r+o(l)
BIM'%XFM] = Biu %Z.[r"]fi = Biu %/OVT)?sds+op(1) :BIM'% o +op(l),
“X[rn] 1 X1 +0,(T7/?)
rT
using (3A.2), (3A.3) and X7, = OrT X,ds |- The limit of By - %X:T follows as

XrT
r r r
1. T ~ T =
Biv = Xjp =B | & [ Xds | = | £ [T TPRds | = | Ag f) Wels)ds | =TIgu(r).
LX,r 712Xt AzWx(r)

(3A.4)

Therefore, we have the following results:

I, 1,1 [ T : —
Z;BIMZJQX,' ZBIM:f‘/O BIMT . X, ?BIMdt+0p(1):HA g+(8)gs(s) dsIT,

1

AN [y |
- v R L er—1/2QU
H;BzMnx,T nS, T/o BIMTX,T S7dt+op(1) :H/O 2. (5)B,(s)ds.

We now derive the limit of AI_AI/[(@— f) as T — oo and 6 — 0. Using algebra from Vogelsang and
Wagner (2014) and straightforward scaling gives

P 1< 1, 1
Ay (6-6) = (; ZTI/ZAIMin'xi ;lTl/ZAIM
i=1

-1
1 & 1 1
== § Biy—x;x"—B
(n Z IMHX,X, " IM)

Together these results give

-1

1000 l . apl -1\

(;Z;T R (O,O,QM;QE)
1=

1 < 1 1 '
Z Z B,M—x;‘Tl/z—s;‘) - (o, 0, QM;Q;) .
n P n n

-1

’

AL (O-0) = (n /0 lg*(s)g*(s)'dsl'[’) (H /0 lg*(s)Bu(s)ds) - (o,o,gu;sz;)

-1

1 1
= 4,z ()7 (/0 g*(S)g*(S)'dS) /Og*(S)Wu%(S)ds,
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where the last equality holds using arguments from the proof of Theorem 3.2 from Vogelsang and

Wagner (2014) and the limit is identical to the limit obtained in Vogelsang and Wagner (2014).
Now consider the terms inside the inverse of W*. The argument for the limit of

(1/n) X, (Bim/n) (ci/n) (c¢i/n) (Bia/n) is similar to that of (1/n) Y7, (B /n) xix (Bia/n)

and is given by

1 v V1 11
= Biy— | —cic;— | =Bim
n njn ni\n

4

1/T 1/TB Ly 1/IB Ly I/TB Ly I/tB Leds| are (1)
=— = =X ds — = =X ds||= =X ds — — —X;ds 0
T ) \TJ, M7 As T Jy IM 7 X T J M As T Jy M4 P

>n [ 1( / e (9)ds - / rg*<s>ds) ( / e ()ds - / rg*(s>ds)/drn'.

This limit together with the limits of (1/n) X', (Bjy/n) x:x;" (Bjy/n) and R} give an expres-
sion identical to that obtained by Vogelsang and Wagner (2014) for the inverse term apart from
(T/n) /Ti*; Therefore, the limit of the parts of W* that do not depend on (T/n) ’Ti*f follow a
Aiy/\/; random variable using arguments in Vogelsang and Wagner (2014). The last step is to show

that (T'/n) A% = A2_P**(b). While more tedious, the derivation follows the same steps as the
u-x ux 1

derivation of the limit of (7/n) &2 in Theorem 3.2 using (3A.1) and (3A.4). Details are omitted.
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APPENDIX 3B

TABLES AND FIGURES

Table 3B.1 Fixed-b Right Tail Critical Value Polynomial Coefficients, Parzen Kernel

Panel A. Joint Null Hypothesis That Intercept is Zero (By = 0) and Slope is One (8] = 1).

A A A3 Aa s e A7 A3 A9 R2
G-cointegration .7289  .6333 -.0421 2.6426 -3118 .1336  .8846 -.1857 .1841 .9956
H-stationary 2688 9880 -.0490 5.1346 -2.3769 .1518 -2.1792 3.0649 2219 .9998
H-cointegration 1.3250 1.4466 -.0802 6.0381 -3.2097 3246 -.1194 2.8672 .3661 .9987
Panel B. Null Hypothesis That Slope is One (81 = 1).
A 4 A3 A4 As As A7 A3 Ay R?
G-cointegration .8130 2969 -.0079 .7675 -1.1113 .7940 -.1950 .4250 -2409 .9258
H-stationary 9475 3250 -.0078 .7082 .5386 -.01370 1.4406 -7790 .2669 .9993
H-cointegration 1.3752 .3003 .1324 .1909 -1.9013 .8501 -.0859 .9864 -.3429 .9388
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Table 3B.2 UIP Tests (US-Japan, 2-year government bond, A = 504 days)

Bandwidth Rules
AD SPT NW CRT

OLS B, = -0.337
Daily, ‘/G(B\) S.E. 0.611 0.54 0.308 0.806
n= 7678 18,=1 -2.189 -2.473 -4.341 -1.658
B1 =0.011 Fixed-b CV +4.053 +5.213 +1.98 +2.15

CIN(0,1) (-1.53,0.86) (-1.4,0.72)  (-0.94,0.267) (-1.92,1.24)
CI Fixed-b  (-2.81,2.14) (-3.15,2.48) (-0.95,0.273) (-2.07,1.4)

IM-OLS j3, = 0.514

Daily, VW* S.E. 0.363 0.179 0.462 0.959

n=7678 tgy=1 -1.34 2711 -1.053 -0.507

B = —0.004 Fixed-b CV  +11.377 +16.557 +1.959 +2.305
CIFixed-b  (-3.62,4.64) (-2.46,3.48) (-0.39,1.418) (-1.7,2.72)
b-ratio 0.504 0.7 0.007 0.066

OLS f, = —0.322

Weekly, G(B)  S.E. 0.616 0.541 0.509 0.807

n = 1545 t8y=1 -2.147 -2.445 -2.596 -1.638

B =0.011 Fixed-b CV +3.917 +5.03 +2.019 +2.15
CIN(0,1) 53,0.89) (-1.38,0.74) (-1.32,0.676)  (-1.9, 1.26)

-1
CIFixed-b  (-2.73,2.09) (-3.04,2.4) (-1.35,0.706) (-2.06, 1.41)

IM-OLS B, = 0.521

Weekly, VW* S.E. 0.392 0.199 0.651 0.963

n=1545 15y=1 1222 -2.405 0.735 -0.497

By = —0.005 Fixed-b CV  +10.628 +15.901 +2.005 +2.305
CIFixed-b  (-3.64,4.68) (-2.64,3.69) (-0.78,1.827) (-1.7,2.74)
b-ratio 0.479 0.671 0.021 0.066

OLS B, = —0.327

Monthly, /G(8)  S.E. 0.601 0.541 0.733 0.811

n =364 18y=1 -2.209 2452 -1.812 -1.635

B1 =0.01 Fixed-b CV +4.435 +5.717 +2.1 +2.15

CIN(0,1) (-1.5, 0.85)
CI Fixed-b  (-2.99, 2.34)

1.39,0.73)  (-1.76, 1.109) 1.92, 1.26)

(- (-
(-3.42,2.77) (-1.87,1.212) (-2.07,1.42)

IM-OLS S, = 0.533

Monthly, VW* SE. 0.288 0.134 0.88 0.963

n = 364 1gy=1 -1.621 -3.492 -0.531 -0.485

B1 = —0.005 Fixed-b CV  +13.351 +18.12 +2.184 +2.305
ClFixed-b  (-331,438) (-1.89,2.96) (-1.39,2.454) (-1.69,2.75)
b-ratio 0.572 0.777 0.05 0.066

OLS j, = —0.367

Quarterly, \/G(B) S.E. 0.618 0.539 0.924 0.821

n=124 tpr=1 2214 2,537 -1.48 -1.666

B1=0.013 Fixed-b CV +3.946 +5.069 +2.292 +2.15

CIN,1)  (-1.58,0.84) (-1.42,0.69) (-2.18, 1.443) (-1.98, 1.24)
ClIFixed-b  (-2.8,2.07)  (3.1,2.36)  (-2.48,1.75)  (-2.13, 1.4)

IM-OLS B, = 0.52

Quarterly, VIW*  SE. 0.378 0.19 1.056 0.977

n=124 1y=1 -1.271 2,531 -0.455 -0.491

B1 = —0.004 Fixed-b CV  +10.789 +16.046 +2.692 +2.305
CIFixed-b  (-3.56,4.6) (-2.52,356) (-2.32,3.361) (-1.73,2.77)
b-ratio 0.484 0.677 0.11 0.066

Notes: The null hypothesis is Hy : 8, = 1. The rows S.E., 1,-1, Fixed-b CV, CI, and b-ratio are reported for 32

and /§2, the OLS and IM-OLS estimators respectively. The ¢-statistics are computed as \lG(E) and VW* with
the signs equal to the signs of Ez —1and ,Eg — 1 respectively. The value of b is the same for both test statistics.
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Table 3B.3 UIP Tests (US-Japan, 10-year government bond, A = 2520 days)

Bandwidth Rules
AD SPJ NW CRT
OLS j, = 1.356
Daily, \/G () S.E. 0.501 0.437 0.139 0.386
n = 5706 1gy=1 0.71 0.814 2.558 0.922
B1 =—0.036 Fixed-b CV +3.333 +4217 +1.983 +2.199
CIN(0,1)  (0.37,234)  (0.5,221)  (1.08,1.628) (0.6,2.11)
ClFixed-b  (-0.31,3.02) (-0.49,3.2)  (1.08,1.631) (0.51,2.2)
IM-OLS S, = 1.518
Daily, VW* S.E. 0.247 0.186 0.241 0.27
n = 5706 1py=1 2.098 2.789 2.146 1.92
B =—0.038 Fixed-b CV +7.325 +£12.254 £1.96 +2.431
CIFixed-b  (-0.29,333) (-0.76,3.79) (1.04,1.991) (0.86,2.17)
b-ratio 0.364 0.534 0.008 0.081
OLS B, = 1.365
Weekly, /G(B)  S.E. 0.491 0.423 0.226 0.383
n=1148 18y=1 0.743 0.863 1.617 0.953
B1 =—0.036 Fixed-b CV +3.407 +4.324 +2.025 +2.199
CIN(O, 1) (04,2.33)  (0.54,2.19)  (0.92, 1.807) 0.61,2.12)
ClFixed-b  (-0.31,3.04) (-0.46,3.19) (0.91,1.822) (0.52,2.21)
IM-OLS B, = 1.537
Weekly, VW* S.E. 0.243 0.178 0.242 0.271
n=1148 15y=1 2211 3.008 2.216 1.984
B1 =—0.039 Fixed-b CV +7.741 +£12.799 +£2.016 +2.431
ClFixed-b  (-0.34,3.42) (-0.75,3.82) (1.05,2.025) (0.88,2.19)
b-ratio 0.38 0.552 0.024 0.081
OLS j, = 1.358
Monthly, /G(B)  S.E. 0.456 0.363 0.349 0.386
n=271 1py=1 0.786 0.987 1.028 0.929
B = —-0.036 Fixed-b CV +3.984 +5.12 +2.141 +2.199
CIN(0,1)  (0.47,225) (0.65,2.07) (0.67,2.042) (0.6,2.11)
CIFixed-b  (-0.46,3.17) (-0.5,3.22)  (0.61,2.105) (0.51,2.21)
IM-OLS S, = 1.501
Monthly, VW* S.E. 0.201 0.143 0.255 0.266
n =271 15,1 2.493 3.517 1.968 1.885
B1 =-0.038 Fixed-b CV  +10.998 +16.231 +2.283 +2.431
ClFixed-b  (-0.71,3.71) (-0.81,3.81) (0.92,2.083) (0.85,2.15)
b-ratio 0.491 0.685 0.063 0.081
OLS j, = 1.331
Quarterly, \/G(B) S.E. 0.448 0.355 0.447 0.394
n=92 tpy=1 0.74 0.934 0.742 0.841
Bl =-0.035 Fixed-b CV +4.121 +5.303 +2.318 +2.199
CIN(0,1)  (0.45221) (0.64,2.03) (0.46,2.207) (0.56,2.1)
ClFixed-b  (-0.51,3.18) (-0.55,321)  (0.3,2.367) (0.46,2.2)
IM-OLS B, = 1.506
Quarterly, VW* S.E. 0.199 0.142 0.295 0.282
n=92 1gy=1 2.537 3.558 1.712 1.792
B, = —0.038 Fixed-b CV  +11.744 +16.863 +2.769 +2.431
CIFixed-b  (-0.83,3.85) (-0.89,3.9)  (0.69,2.323) (0.82,2.19)
b-ratio 0.516 0.714 0.118 0.081

See the notes to Table 2.
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Null Rejection Probability

Null Rejection Probability

Figure 3B.1 Null rejection probabilities of H (E) under OU processes, stationary regression

(a) kK, =6.9, kK, =0.1, chi-square cv

(b) k, = 0.5, kx =0.5, chi-square cv
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Figure 3B.2 Average bandwidth ratios under OU processes, stationary regression

(@) kK, =6.9, kK, =0.1

(b) k,=0.5, kK, =0.5
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Power

Power

Figure 3B.4 Finite sample power of H (ﬁ) under OU processes, stationary regression

(a) Ky =6.9, kK, =0.1, B =0.02, B; =1.02

(b) Kk, =0.5, Kx=0.5, B =0.3, B =1.3
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Figure 3B.5 Null rejection probabilities of W* of IM-OLS under OU processes, cointegrating
regression
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Figure 3B.6 Average bandwidth ratios under OU processes, cointegrating regression
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Figure 3B.7 Finite sample power of W* of IM-OLS under OU processes, cointegrating regression
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CHAPTER 4

THE DISTRIBUTION OF REALIZED US CORPORATE BOND RETURN VOLATILITY

4.1 Introduction

Volatility in the US corporate bond market (especially, daily volatility) has been less frequently
studied despite of its huge importance for the financial sector, macroeconomic conditions, and
portfolio management. The reasons could be that (1) US corporate bonds are illiquid, and (2) their
transactions are irregularly spaced.

Due to these characteristics and the high-frequency nature (recorded every second) of corporate
bond transaction data, the distribution of the volatility of corporate bonds has not been explored
extensively. Campbell and Taksler (2003) studied the effect of equity volatility on corporate bond
yields, but it is not about the volatility of corporate bonds.

To address the irregular price movements and illiquid transaction behavior of corporate bonds,
I utilize a Compound Poisson Process (CPP) to model the price dynamics of US corporate bonds.
CPP can well describe the irregular price movements and illiquid transaction behavior of corporate
bonds. Although the current continuous time stochastic diffusion model can take the irregularity
of US corporate bond transactions into account, it does not effectively describe the illiquidity of
US corporate bonds. CPP is designed to describe the behavior of a continuous stochastic process
which has random discrete jumps over time. Since its main focus is on the discrete change of the
process by the arrival of the random jump, it is adequate for modeling the prices of illiquid assets.
Unlike US stock trades, the US corporate bonds are not actively traded during a day, mostly showing
random transactions less than hundreds during a day according to US corporate bond transaction
data. Therefore, CPP is an appropriate process to describe the price dynamics of US corporate
bonds.

To estimate the volatility of corporate bonds, I utilize realized (daily) volatility suggested by
Andersen et al. (2001a). The realized volatility uses intraday returns measured at a fixed regular
interval (e.g. 5 minutes, 10 minutes) to estimate daily volatility of an asset. I slightly modify the

calculation of the realized volatility to adjust it to accommodate a CPP setting.
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In Section 4.2, I review the RV and related literature. In Section 4.3, I explain the CPP setting
for US corporate bonds and slightly modify the RV under the setting. Then, I conduct Monte Carlo
simulations for the RV in Section 4.4.

For empirical analysis, I utilize the richness of Trade Reporting and Compliance Engine
(TRACE) of Financial Industry Regulatory Authority (FINRA). Section 4.5 explains the data
used for empirical analysis. The data allows one to obtain 99% of every bond transaction of US
corporate bond market which is recorded every second. Additionally, bond characteristics data for
TRACE can be obtained using Refinitiv Workspace. With the datasets, in Section 4.6, [ analyze the
distributions of the RV of US corporate bonds. I investigate not only the unconditional distribution
of the RV of US corporate bonds, but also the conditional distribution of the RV using the bond
characteristics. I also provide an analysis for linkages between the corporate bond volatility and

returns of other financial instruments in Section 4.6. Then I conclude in Section 4.7.

4.2 Preliminaries
Andersen et al. (2001a,b, 2003) proposed realized volatility (RV), which is an ex-post, model-

free volatility measure. The method starts from the continuous time diffusion model given by
dP; = pdt + o dW;, 4.1)

where P is a logarithmic price of the asset and W is a standard Brownian motion. Under this model,

the integrated volatility (IV) is defined as
t
1V = / o2dW. (4.2)
0
They proposed the realized volatility as an estimator for IV, given by
RV = Z r2, (4.3)
=1

where 7+ = pr — pr—1 and {p.}", is a sequence of intraday log-prices with a fixed interval, such
as 5 minutes. In Andersen et al. (2003), they showed that RV is a consistent estimator for IV using

semi-martingale theory in Protter (1990). Using their seminal work about RV, many subsequent
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studies extended the continuous time diffusion model by adding a jump component giving
dP[ = /.ldt + O‘[dW[ + d.][, (44)

where J is a pure jump Levy process. As shown in subsequent studies, this can be expressed as a

Brownian semi-martingale with jumps given by
dP; = udt + o0dW; + «;dq;, 4.5)

where «; is size of the jump and dg; is 1 when there is a jump and O if there is no jump at time ¢.

Thus, the return of an asset on interval [0, 7] is expressed as

' N;
reo = ut + / oy dW; + Z kj, (4.6)
0 -
j=1

where the return of an asset is computed as r; o = P; — Pog. Here N, represents a number of jumps
on the interval (0, ¢], following a poisson process with intensity A with jump size of k ;. Recall that

IV of the continuous time diffusion process is

t
v = / o2dW, @7
0

Additionally, it has been pointed out by the previous literature that RV converges to the following

expression under the model with a jump component,
t Ny
rRV 5 / o2dWy + Z K2 (4.8)
0 -
j=1

as m — oo. Thus, in order to estimate the integrated volatility, Barndorff-Nielsen and Shephard

(2004) devise bipower variation (BV) as a consistent estimator for integrated volatility given by

m t
7 P
BV =72 Z:; Feleoi — /0 o 2dW, (4.9)

as m — oo. Hence, BV can be a consistent estimator when the jumps exist in the price dynamics

of the asset.
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4.3 Model
Stochastic volatility models for assets like stocks and exchange rate typically start with a

continuous time diffusion process for the logarithmic price (P;) of an asset given by
dP; = udt + o dW;. (4.10)
As I discussed in the previous section, one can extend the process to include jumps given by
dP; = udt + odW; + k,dq;. “4.11)

The processes are based on continuous time diffusion models valid for assets like stocks and
exchange rates which are heavily traded within time intervals. In contrast, US corporate bonds
are illiquid, and thus, their transactions are irregularly spaced. As they are illiquid, the price
of a bond is constant for some time intervals and shows sudden discrete jumps at irregular time
points. Therefore, the model for the price of a corporate bond should exclude continuous part for
its diffusion model, including only the jump part in its diffusion model for the price. To model this
illiquidity and irregularity of the corporate bond price, I adopt a Compound Poisson Process (CPP)
for the bond price diffusion model. The process P; is a Compound Poisson Process and is defined

as

P, = ZK,, (4.12)

where N; follows a poisson process (which is the number of jumps) with an intensity parameter A
and each «; is an i.i.d. random variable (which represents a jump size). Hence, utilizing the CPP

setting, my model for the (logarithmic) price of a US corporate bond at time ¢, P, is suggested as
N:

Pi=Po+ ) k), (4.13)
j=1

where I can think of the discrete jump size «; as the percentage change (return) of the bond price

at that time point. The return of a US corporate bond during the interval (0, ¢] is expressed as

Ni

ro= ) Kj. (4.14)

J=1
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Next, I slightly modify RV for the CPP setting to estimate the volatility of US corporate bonds.
First, I define integrated volatility (IV) for US corporate bond price using the CPP setting. I start
by modifying the CPP of equation 4.13 by adding some assumptions. For the poisson process
N; in equation 4.13, I assume an inhomogeneous poisson process with intensity A(¢) which is
depending on time, rather than a homogeneous poisson process with a constant intensity rate A,
since the transaction of financial assets shows the diurnal pattern that the frequency of the trade is
dependent on time. For the size of the jump of the log price (discrete change), I assume that the
jump size k; follows normal distribution, thus k; ~ N (0, ¢>§(1)), where ¢§(t) of the CPP model for
the bond price corresponds with the instantaneous variance of the continuous time diffusion model.

Therefore, the integrated volatility of US corporate bond price on interval (0, 7] is defined as
Nt
bond _ 2
i =" ¢, (4.15)
j=1

Then, I modify the RV to estimate the volatility of US corporate bonds under the CPP setting as
follows.
N:

RV =i, (4.16)
j=1
Tuse this RV for Monte Carlo simulations and empirical analysis for US corporate bonds throughout

the paper. Notice that the suggested RV can be interpreted as the sum of the squares of returns (the
sum of the squares of discrete jumps in (logarithmic) bond price) at some time points during the
time interval (0, ].
4.4 Monte Carlo Simulation

To investigate the properties of the RV estimator under the CPP setting, I conduct Monte Carlo
simulations. I generate data using the below CPP setting with three different models for volatility
modeling. For the first model for the volatility (Case (1)), I assume that the variance of the jump
size, ¢§(t), does not change over time within a day. Thus, the volatility is a constant within a
day for Case(1). In the second model (Case (2)), I assume that ¢?(t) is randomly generated from
uniform distribution, which means that the instantaneous volatility of US corporate bond changes

every second within a day, following uniform distribution. In the third model (Case (3)), ¢§(t)
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changes every second similar to the second model, but it follows Heston model.

N;
Pi=Po+ ) k), (4.17)
j=1
N, is a poisson process with intensity A(z), (4.18)
kj ~N(0,¢%(1)). (4.19)
Ny
RV=) «, (4.20)
J=1
N;
v = Z ¢, 4.21)
j=1

where N, is the number of jumps (trades) within a day. As discussed, I introduce three different
models for volatility modeling for the simulations. Case (1) for volatility modeling is given by
¢§(t) = gbfl. Case (2) is modeled as ¢§(t) ~ unif|0,1]. Case (3) follows the Heston model and is
given by d¢? = k(6 — ¢?) + n¢;dW,, where W, is standard Brownian motion.

I use the “Thinning Algorithm" for generating poisson process where ¢ is measured in seconds.
I conduct 5000 times (days) of simulations for each case. The closed form of A(¢) will not affect the
results, but it is set as a quadratic equation to accommodate the diurnal pattern of financial assets,
called the “Volatility Smile." I evaluate the finite sample performance of the RV as an estimator
of IV using mean absolute percentage error (MAPE) = % 1 |W|. I also have three different
cases for the mean of intraday observations (the mean number of jump occurrences in a day) for
the simulations. I call it ‘Illiquid Bond Market’ when the mean of intraday observations is set to
26.6, and ‘Liquid Bond Market’ when the mean is set to about 60.3. When the mean is set to about
146.7, I call it ‘“Thick Bond Market’.

Table 4A.1 reports the results of the Monte Carlo simulations. Based on the simulations, the
RV obtains comparably low MAPE under Case (1) than under other cases across the three different
averages of intraday observations. The MAPE:s for all cases decline as the average of the intraday

observations grows, which is expected. The RV under Case (2) shows 199% of MAPE if the mean

of the observations is about 60 for a day. The MAPE for Case (2) is around 12% when having 146
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jumps. The RV under Case (3) represents 16% of MAPE when the average of the observations is

about 60 for a day. The MAPE for Case (3) declines around 10% when having 146 jumps.

4.5 Data

The data for the empirical analysis of realized US corporate bond return volatility is obtained
from the Trade Reporting and Compliance Engine (TRACE) of the Financial Industry Regulatory
Authority (FINRA). I use two different databases to gather the data. The first database is the Wharton
Research Data Services (WRDS) where I acquire high-frequency transaction data of US corporate
bonds in TRACE. The transactions are recorded every second. The data includes the price, date,
and time of over-the-counter secondary market corporate bond transactions, which covers more
than 99% of US corporate bond transactions. The second database is Refinitiv Workspace, where
I obtain the data for the corporate bond characteristics such as credit ratings and original issued
amounts. The credit ratings data includes ratings from both Moody’s and Fitch Ratings. The
two datasets are easily linked together using the unique 9 digit number given to US corporate
bonds called the Committee on Uniform Securities Identification Procedures (CUSIP). My analysis
is from January 1, 2013, to December 31, 2018. For simple statistics of the characteristics of
interest, the means of the yield rate and the issued amount for the bonds during the period are
6.41 and 2,120,885,360.13, respectively. The standard deviations of each variable are 6.31 and
2,035,185,824.37.

I clean the TRACE dataset following Dick-Nielsen (2009). I remove cancellation transactions
and their original transaction, corrections and their original transaction, reversals and their original
transaction, and lastly, agency transactions (double counting problem). About 20% of 100 million
transactions in the data is removed by the steps.

To ensure more than the average daily observation of 60 for each bond (which could correspond
to the liquid market in the Monte Carlo simulations), I select bonds with more than 15,000
transactions per year, as 15,000 divided by 250 trading days in a year equals 60. I also remove

bonds with trading days less than 200 days.
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4.6 Empirical Results

4.6.1 The Unconditional Distribution of Corporate Bond Volatility

I construct the unconditional distribution of the daily realized US corporate bond return volatil-
ity. Similar to the way Andersen et al. (2001b) constructed the unconditional distribution for 30
DIJIA stocks, I report the distribution of the daily realized US corporate bond return volatility. First,
I calculate the daily realized volatility from the chosen corporate bonds which satisfy the standards
discussed in the previous section. Next, I calculate and report the mean, standard deviation, skew-
ness, and kurtosis of the daily realized volatilities for each combination of corporate bond and year.
Then, I construct the unconditional distribution of the mean of the daily RV. Table 4A.4 shows
the numbers (percentiles) describing the mean, standard deviation, skewness and kurtosis of the
daily realized volatilities. As shown in Table 4A.4, the median for the mean of the daily realized
volatilities is about 0.0042 and the mean value of it is about 0.0052. I also report the percentiles for
statistics from the logarithm of the standard deviation. The standard deviation is calculated as the
root of realized volatility. Its median is about -2.931 and the mean is -3.052. Figure 4A.1 shows the
unconditional distribution of the series of the mean of daily RVs for each combination of corporate
bond and year. The distributions is left-skewed. In figure 4A.2, I compare the unconditional
distribution of the mean of log standard deviation of RV with standard normal distribution with

mean of -3.

4.6.2 The Conditional Distribution of Corporate Bond Volatility by Bond Characteristics
In this section, I construct the conditional distribution of the mean of daily RV by using bond
characteristics from the bond characteristics dataset. The characteristics that I use are credit rating,
(original) issued amount, and yield rate. For credit rating, I divide the volatility series into two
groups, ‘Investment Grade’ bonds and ‘High Yield’ bonds. I classify a bond as a ‘Investment
Grade’ bond, if either a credit rating from Moody’s for the bond is above (or equal to) Baa3 or a
credit rating from Fitch for the bond is above (or equal to) BBB-. If either a credit rating from
Moody’s for the bond is below Baa3 or a credit rating from Fitch for the bond is below BBB-, then

I classify the bond as a ‘High Yield’ bond. If I have both credit ratings (from Moody’s and Fitch)
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for the bond and the credit ratings conflict, I follow the rating from Moody’s for the classification.
Issued amount is the size of bond issued. I divide the daily volatilities as two groups by the median
value of the issued amount of the sample. Finally, I used yield rate as the one of bond characteristics
to divide the volatilities as two group. The criteria for the grouping is 5%. The bonds with a yield
rate higher than 5% are in one group, and the bonds with a yield rate less than 5% are in another
group.

As one can see in Table 4A.5, the conditional distributions of the mean of daily RV by bond
characteristics vary between the groups. The series of the mean of daily bond volatilities with
credit rating of investment grade has less mean and median than the series of high yield, which
implies that investment grade bonds are less volatile than high yield corporate bonds. Surprisingly,
the group of average daily volatility for less issued bonds have 3 times higher median than that of
the largely issued bonds group. The group of bonds with yield rate higher than 5% also have higher
value for the median than the group with less than 5%.

I also compare the conditional distributions of different bond characteristics using the graphs.
The graphs shows significant difference between the distributions with different characteristics as
I confirmed in the table as well. In Figure 4A.3, I draw two different distributions by credit rating
criteria, where the distribution with blue color represents the conditional distribution of mean of
daily RV of investment grade bonds and orange colored distribution represents that of high yield
bond. One can see that the conditional distribution of the high yield bonds is slightly shifted to the
right relative to that of the investment grade bonds, which means that high yield bonds are more
volatile than investment grade bonds. The difference of the distributions by bond characteristics
seems much more obvious in Figure 4A.4 and Figure 4A.5. The conditional distributions of small
size issued bonds in Figure 4A.4 and high yield rate bonds in Figure 4A.5 not only have bigger
mean and median, but also exhibit the different shapes with fatter and longer tails compared to
those of large-size issued bonds and low yield rate bonds. These figures can provide evidence that

bond characteristics are the main factors determining the volatility of corporate bonds.
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4.6.3 The Conditional Distribution of Corporate Bond Volatility by Linkages with Other
Financial Markets

In this section, I examine the conditional distribution of the averaged daily realized volatility
of corporate bonds on a given day, considering the market conditions of other financial markets on
the same day. I consider three financial assets. The first one is the returns of the S&P 500 index,
which is representative market index for the US stock market. Secondly, I choose the returns of the
CBOE Volatility Index (VIX.), which is an implied volatility measure of the US stock market and
is often called as a fear gauge of the financial markets. Lastly, I use returns of US 30 year treasury
bond yield as a leading indicator for other types of bonds. The data for three financial instruments
is from Center for Research in Security Prices (CRSP). The data period is the same as the period
mentioned for the corporate bond data in Section 4.5.

I derive a time series index for the US corporate bond market volatility by averaging the RV of
corporate bonds for each day, which represents the degree of intraday volatility of the US corporate
bond market for that day. Then, I investigate how the (averaged) realized volatility index of the
US corporate bond market behaves under different conditions in other financial markets. One can
see that the volatility of the corporate bond market for that day shows different patterns depending
on the conditions of the other financial markets. In Table 4A.6, when there are sizable price
movements in the other financial instruments, the means for the index of the corporate bond market
shows larger values compared to the means on days with relatively smaller price movements. When
there is more than a 1% price change in the S&P 500 index, whether it is a negative or a positive
shock, the mean for the volatility index of corporate bond market is larger compared to the mean
on days when the S&P 500 price change is within 1%. For CBOE VIX and 30 year T-Bill, one
observes similar patterns where sizable price changes over the particular thresholds (7% for VIX
and 0.025% for T-Bill) in these instruments yield a higher volatility index for the corporate bond
market. This implies that the conditional distributions of the index for the corporate bond market
by the size of price movements in other financial markets can vary.

Figure 4A.6 shows the conditional distribution of the z-scores of (averaged) realized volatility
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index of the US corporate bonds for the days when the absolute value of the (z-scored) daily return
of the S&P 500 is less than 1, meaning a small price change. Figure 4A.7 provides the conditional
distribution of the (z-scored) index for the days when the absolute value of the (z-scored) daily
return of the S&P 500 is over 1, meaning that there are sizable shocks in the US stock market. One
can see that the values of the distribution are centered around zero with thin tails. That means when
there is a small price change in the S&P 500, the volatility index of the US corporate market tends
to be around the average level, not an extreme value. But, as one can find in Figure 4A.7, when
the absolute value of the z-scored daily return of the S&P 500 is larger than 1, which indicates the
US stock market has a sizable positive or negative shock on that day, the conditional distribution
of the volatility index for the US corporate bond market displays fat tails. Especially, in Figure
4A.7, when the z-scored S&P 500 daily return is less than -1 (a big negative shock), the mass of
distribution is not centered around the average, and the tail of the conditional distribution of the
volatility index is fatter compared to the distribution in Figure 4A.6. This implies that when there
is a substantial shock to the US stock market, the US corporate bond market tends to show larger
volatility on the same day, as it tends to have extreme values, as the fat tail shows. This could
provide evidence of the linkage between the US corporate bond market and the US stock market,
as Campbell and Taksler (2003) explored similar market linkage with analyzing the effect of equity

volatility on corporate bond yields.

4.7 Conclusion

Realized volatility has been an important measure for the volatility of financial assets since its
development in Andersen et al. (2001a,b, 2003). I investigate the distributions of the daily realized
volatility of US corporate bonds using the RV method, slightly modified for a CPP setting. To
describe the price dynamics of US corporate bonds, I employ a CPP setting to accommodate their
irregularity and illiquidity, and then I slightly modify the RV to fit the CPP setting for US corporate
bonds.

I empirically analyze the distribution of the RV of US corporate bonds using the high frequency

transaction data from TRACE of FINRA. Utilizing the advantage of millions of corporate bond
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transactions recorded every second, I calculate the daily RV of bonds by using all transactions
during a day and construct their unconditional distribution. Linking the transaction data with the
bond characteristics data from TRACE via Refinitiv Workspace, I build the conditional distributions
of daily RV by bond characteristics. I find that there are significant differences in the shapes of
the conditional distributions constructed for the groups with different characteristics. The group
of bonds with high yield ratings in credit rating shows a higher mean and median for the mean of
the daily RV than the group with investment grades. The group of bonds with a small-size issued
amount and the group with a high yield rate display higher mean and median values, less centered
distributions, and fatter tails than the group with a large-size issued amount and the group with a
low yield rate, respectively.

I also examine linkages between the US corporate bond market and other financial markets. I
choose three representative instruments in the US stock market and the US treasury bond market.
I calculate the cross sectional mean of daily RV of corporate bonds for the realized volatility index
for each day. Then, I find that the group of days with greater price changes in those financial
instruments has higher realized volatility for the US corporate bond market than the group of
days with relatively small price movements in the financial instruments. I also discover that the
conditional distribution of the RV of the corporate bond market for the days with greater shocks in
the S&P 500 displays a less centered distribution and fatter tails, especially when the type of the

shocks is negative.
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APPENDIX 4A

TABLES AND FIGURES

Table 4A.1 Monte Carlo Simulation Result

Avg Intraday Obs ~ 26.6  Avg Intraday Obs ~ 60.3  Avg Intraday Obs =~ 146.7
Illiquid Bond Market Liquid Bond Market Thick Bond Market

MC Case(1) Case(2) Case(3) Case(l) Case(2) Case(3) Case(l) Case(2) Case(3)

MAPE 0.0403 0.2865 0.2432 0.0187 0.1935 0.1582 0.0058 0.1255 0.1021

Notes. The simulation is done 5,000 times (days). For the illiquid bond market, the mean value for jumps (intraday
transaction observations) is set at 26.6 per day. (The number of jumps in the simulation corresponds to the number
of intraday transaction observations in real data). For the liquid bond market, the mean value for jumps is set at
60.3 per day. In the thick bond market, the mean value for jumps is set at 146.7 per day.

Table 4A.2 Example of Cancellation of bond transaction

CUSIP Company Symbol Date Time Price  Yield Trade Status Message No.
17275RAX0 CSCO 20190401 12:47:00 99.833 2.5906 T 49568
17275RAX0 CSCO 20190401 12:47:00 99.833 2.5906 X 49568
17275RAXO0 CSCO 20190401 13:33:39 99.789 2.6281 T 57659

Table 4A.3 Example of Correction of bond transaction

CUSIP Company Symbol  Date Time Price Volume Trade Status Message No. Orig Msg No.
023770AA8 AAL 20190402 12:57:52 98.27 500000 T 57113

023770AA8 AAL 20190402 12:57:52 98.27 500000 C 57113

023770AA8 AAL 20190402 12:57:52 98.17 414041.7 R 58249 57113
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Table 4A.4 The unconditional daily corporate bond volatility distribution

Volatility Log St.dev

Bond Mean Std Skew Kurt Mean Std Skew Kurt

Min 0.0001 0.0002 0.3008 -0.9639 -4.8942 0.2401 -8.2086 -1.3260
0.10 0.0008 0.0007 0.8641 0.8597 -3.8394 0.3523 -3.2892 0.2771
0.25 0.0020 0.0018 1.2330 1.9862 -3.3500 0.4109 -1.7987 1.0867
0.50 0.0042 0.0034 1.8355 4.9924 -29313 0.4787 -1.1285 2.9454
0.75 0.0068 0.0054 3.2182 16.2460 -2.6569 0.5547 -0.6820 8.1248
0.90 0.0100 0.0105 5.2471 41.1743 -2.4399 0.6715 -0.2868 21.7149
Max 0.0283 0.0341 14.8560 230.3933 -1.9055 1.5826 0.9421 100.0411

Mean 0.0052 0.0047 2.6434 16.4441 -3.0517 0.5036 -1.4866 7.9331
Std  0.0047 0.0050 2.2749 30.6782 0.5592 0.1582 1.3769 14.0918

Notes. Volatility is computed by the RV method. The log of the standard deviation is the log of the square root of
the volatility calculated by the RV method.

Table 4A.5 Daily Corporate Bond Volatility Distribution by Bond Characteristics

Credit Rating Issue Size Yield Rate

Invest Grade High Yield Large Size Small Size  Higher than 5% Lower than 5%

Bond Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Min 0.0001 0.0002 0.0008 0.0012 0.0001 0.0002 0.0001 0.0004 0.0003 0.0003 0.0001 0.0000
0.10  0.0005 0.0005 0.0023 0.0022 0.0004 0.0005 0.0023 0.0021 0.0029 0.0023 0.0004 0.0005
0.25 0.0015 0.0012 0.0032 0.0029 0.0010 0.0010 0.0036 0.0032 0.0042 0.0033 0.0008 0.0008
0.50 0.0037 0.0030 0.0048 0.0041 0.0024 0.0020 0.0059 0.0043 0.0062 0.0046 0.0019 0.0016
0.75 0.0066 0.0051 0.0076 0.0061 0.0050 0.0038 0.0086 0.0073 0.0095 0.0077 0.0035 0.0024
0.90 0.0100 0.0085 0.0108 0.0123 0.0073 0.0056 0.0128 0.0134 0.0159 0.0143 0.0057 0.0036
Max 0.0253 0.0297 0.0283 0.0341 0.0200 0.0303 0.0283 0.0341 0.0283 0.0341 0.0129 0.0108

Mean 0.0049 0.0041 0.0062 0.0062 0.0035 0.0029 0.0070 0.0064 0.0079 0.0068 0.0025 0.0019
Std  0.0047 0.0043 0.0047 0.0063 0.0033 0.0035 0.0052 0.0057 0.0055 0.0061 0.0023 0.0017

Notes. The criteria for dividing the two groups based on credit rating are outlined in Section 4.6.2. Large size
bonds are defined as bonds with an issued amount higher than the median. There are also two groups by yield rate.
One is a group of bonds with a yield rate higher than 5%. The other group has a yield rate less than 5%.
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Table 4A.6 Daily Bond Market Volatility by Different Market Regime

S&P 500 CBOE VIX T-Bill 30Yrs

>1% <-1%  Btw >7% <-7%  Btw  >0.025% <-0.025% Btw

Mean 0.0063 0.0063 0.0055 0.0061 0.0060 0.0055 0.0059 0.0060  0.0054
Std 0.0036 0.0044 0.0031 0.0040 0.0035 0.0030 0.0031 0.0038  0.0032
Obs (days) 143 125 1242 219 207 1084 378 418 704

Notes. The statistics in the table (mean, standard deviation, number of observations) are for the realized volatility
index, which represents the average daily RV of US corporate bonds on each day, for the US corporate bond market
under different conditions of other financial instruments. Each column shows the statistics for different conditions
of price changes (daily returns) of the S&P 500, VIX, and T-Bill. For example, the first column reports the statistics
for the volatility index on the days when the S&P 500 has changed by more than 1%, and the second column shows
the statistics for the volatility index on the days when the S&P 500 has changed by less than -1%. The third column
shows the statistics for the days when the return of the S&P 500 is between -1% and 1%.
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Figure 4A.1 The unconditional distribution of the mean of the daily RV of corporate bonds
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Figure 4A.2 The unconditional distribution of the mean of log of standard deviation
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Figure 4A.3 The conditional distributions of the mean of the daily RV by credit rating
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Figure 4A.4 The conditional distributions of the mean of the daily RV by size of issued amount
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Figure 4A.5 The conditional distributions of the mean of the daily RV by yield rate
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Figure 4A.6 The conditional distributions of the mean of the daily RV of corporate bonds when the
return of the S&P 500 is small
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Figure 4A.7 The conditional distributions of the mean of the daily RV of corporate bonds when the

return of the S&P 500 is big
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