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ABSTRACT 
 

Attracting and retaining diverse individuals is a core goal for reform efforts within in 

Science, Technology, Engineering, and Mathematics (STEM) gateway courses. Evidence-based 

instructional strategies in STEM, including those that incorporate scientific practices, have 

demonstrated promising findings regarding student learning gains. Inspired by previous findings 

in an introductory course taught through model-based instruction (MBI), my dissertation aims to 

gain a better understanding of affective mechanisms involved in the way students across all 

achievement levels are learning in this context.  

My dissertation measures student’s motivation, and cognitive and emotional engagement 

in a model-based, introductory biology context. Using validated survey scales contextualized for a 

model-based context, I generated student motivational profiles at the beginning and end of a 

semester to examine how profiles remain stable or change over time, and the relationship between 

motivational profiles and student achievement level. I also developed and applied tools to 

measure students’ cognitive and emotional engagement during model-based tasks to study 

engagement in different model contexts and explore the relationship between engagement and 

student achievement level.  

My results found that achievement measures (i.e., grades) did not predict levels of 

motivation and engagement, which may suggest these as potential mechanisms that explain how 

and why MBI and other practice-based instructional methods are successful. Continued research 

into understanding mechanisms that may explain performance differences across student 

achievement levels can advance pedagogical approaches in STEM and promote persistence and 

diversity among STEM learners.   
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INTRODUCTION 
 

Despite the growing need for diverse scientists entering the science, technology, 

engineering, and mathematics (STEM) workforce, attrition (i.e., switching to a non-STEM 

pathway or leaving college altogether) remains high among STEM undergraduates (Chen, 2015; 

Lytle et al., 2021; National Science Foundation [NSF], 2012). Attracting and retaining diverse 

individuals in STEM has been a persistent problem for decades (Kennedy et al., 2021; National 

Research Council [NRC], 2010; Olson & Riordan, 2012; President’s Council of Advisors on 

Science and Technology [PCAST], 2012). Hunter (2019) identified three commonalities among 

students’ decisions to leave STEM: (1) poor quality of teaching; (2) issues with curricular 

design, such as content overload, pace of delivery, and poor alignment between content taught 

and assessed; and, (3) trouble with conceptual understanding. Their findings echo a persistent 

theme that emerges from the collective of research on STEM attrition - that is, if we are to 

increase STEM retention, the quality of pedagogy must improve (e.g., American Association for 

the Advancement of Science [AAAS], 2015; Cooper et al., 2015; Dagley, et al., 2015; Seymour 

et al., 2019; Sithole, et al., 2017; Xu, 2016). Indeed, research tells us that students are more 

likely to demonstrate improved learning gains and persist in courses that use evidence-based 

active-engagement instructional approaches grounded in research on how students learn (e.g., 

Cooper et al., 2015; Freeman et al., 2014; Minner et al., 2010; NRC, 2012; Wiggins et al., 2017 

Freeman et al., 2014).  

Model-based instruction (MBI) is an evidence-based pedagogical approach that engages 

students in the construction, interpretation, revision, and evaluation of scientific models 

(Clement, 2000; Gilbert & Justi, 2016; Justi & Gilbert, 2002a, 2002b; Long et al., 2014; Louca & 

Zacharia, 2012; Schwarz et al., 2009). MBI can reduce achievement gaps, particularly for 
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students traditionally underrepresented in science and those that typically underachieve on 

standard or rote assessments (Bierema et al., 2017; Brewe et al., 2010; Manthey & Brewe, 2013; 

Reinagel & Bray Speth, 2016; Verhoeff et al., 2008). My dissertation research was inspired by 

findings from four related MBI studies that showed prior academic achievement was a poor 

predictor of modeling-based performance and that there may be additional benefits for students 

from lower achievement groups (Bennett et al., 2020; Dauer et al., 2013; Dauer & Long, 2015; 

de Lima, 2020). The work of my dissertation aims to explore potential affective mechanisms that 

may explain differences in learning outcomes for students in an introductory biology course 

taught through MBI.  

Chapter one focuses on student motivation. Student motivation is not well understood in 

practice-based contexts, yet its research in these contexts, such as MBI, is valuable to informing 

changes to instructional approaches that can have meaningful impacts on STEM retention 

(National Academies of Sciences, Engineering, and Medicine [NAESM], 2018). My study 

applies a person-centered-approach (Bergman & Magnusson, 1997) and identifies motivational 

profiles (Conley, 2012; Hong et al., 2020) present among students in an introductory biology 

course taught through MBI and explores how those profiles change over a semester. In this 

study, I also examine the relationship between student achievement level and motivational 

profile stability or change.  

My second- and third-chapters center on dimensions of student engagement. Whereas 

motivation is comprised of private, internal processes, engagement consists of external, 

observable manifestations of those internal, motivational processes (Connell & Wellborn, 1991; 

Eccles & Wang, 2012; Finn & Zimmer, 2012; Fredricks & McColskey, 2012; Maehr & Meyer, 

1997; Schunk & Mullen, 2012; Skinner et al., 2009; Wang & Degol, 2014). Specifically, I 
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examine student cognitive and emotional engagement during semi-structured in-person 

interviews.  

In Chapter Two, I focus on the development of a novel Cognitive Engagement in 

Modeling (CEM) framework that measures students’ use of learning strategies during model-

construction tasks. Cognitive engagement is an important factor in student learning, as students 

who are cognitively engaged invest significant effort in understanding content and being 

successful on a task (Rotgans & Schmidt, 2011). The way students are cognitively engaged 

during practice-based tasks, such as modeling, remains less understood, however. Additionally, 

research remains unclear on specific learning strategies students deploy, and when, to complete 

practice-based tasks. My CEM framework is derived from a plethora of research on observable 

and linguistic indicators of learning strategies that evidence cognitive engagement (e.g., Barlow 

& Brown, 2019; Chi et al., 2018; Helme & Clarke, 2001) and is validated through the interview 

study. The CEM framework aims to fill a gap within the literature and advance research on 

cognitive engagement as a tool to qualitatively measure students’ cognitive engagement.  

Chapter three focuses on my development of an Emotional Engagement in Modeling 

(EEM) framework during model-based tasks. The EEM framework derives from research within 

Experience Sampling Methodology (ESM) (Csikszentmihalyi & Larson, 1987; Csikszentmihalyi 

& Csikszentmihalyi, 2006) to measure students’ emotions during a task. Although research has 

established emotions impact multiple components in students’ learning, such as performance 

outcomes, mental health, career decisions, and dropout rates (e.g., see Barroso et al., 2021 for 

review; Camacho-Morles et al., 2021; Cheng & McCarthy, 2018; Loukidou et al., 2009), 

students’ emotions remain understudied, particularly in STEM (Murphy et al., 2019). To address 

this gap, I created the emoji-based EEM framework to be relatable and accessible for students, 
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and easily adaptable for practitioners. I then applied the framework during interviews to evaluate 

and compare students’ emotional responses to model-construction and model-evaluation tasks, 

and examine the relationship between emotional responses and student achievement level. 

Collectively, my dissertation aims to serve three goals to further our understanding of 

how students of all achievement levels are learning in a model-based instructional context:  

1)  generate student motivational profiles that describe groups of students according to 

their combinations of motivational variables and examine motivational stability and 

change over a semester;  

2) construct tools, specifically the CEM and EEM framework, that enable researchers to 

measure students’ cognitive and emotional engagement during learning tasks; and  

3) apply the CEM and EEM frameworks to conduct research on students’ use of learning 

strategies during, and emotional responses to, model-based tasks. 
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CHAPTER ONE: 

Exploring motivational profiles in a model-based undergraduate introductory biology course 

INTRODUCTION 

The demand for Science, Technology, Engineering and Math (STEM) jobs in the United 

States (US) economy and continual advancement of technology in STEM fields perpetuates the 

need for diverse, well-prepared STEM graduates. National projections from over a decade ago 

suggested the need for approximately one-million more STEM professionals, equating to a 34% 

annual increase in the number of students receiving STEM undergraduate degrees (National 

Research Council [NRC], 2010; Olson & Riordan, 2012; President’s Council of Advisors on 

Science and Technology [PCAST], 2012). The PEW Research Center indicates that there has 

been a “dramatic growth” in STEM graduates from US Colleges since 2010, however, 

challenges still exist for the issue of diversity in STEM occupations (Kennedy et al., 2021). In 

“Talking about Leaving Revisited”, Seymour, Hunter, and Weston (2019) reiterate that in order 

for the US to build a sufficient and competent STEM workforce, we must attract and retain 

STEM majors through graduation. The authors claim that although there has been an increasing 

number of students entering STEM disciplines, including those from underrepresented groups 

(URMs), we continue to see alarming rates of attrition. Studies estimate that only 40-50% of 

students entering college intending to major in a STEM field complete a STEM degree (Chen, 

2015; National Science Foundation [NSF], 2012; Pedraza & Chen, 2022).  

Growth in Gateway Courses 

“Gateway courses'' are defined as foundational courses required for completion of a 

degree and typically taken during the first two years of college (Atanda, 1999). Successful 

completion of these courses is a strong predictor of persistence to graduation in STEM majors 
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(e.g., Flanders, 2017; Espinoza & Genna, 2021; Weston et al., 2019), but negative experiences in 

gateway courses may prevent graduation entirely (Bailey, Jeong, & Cho, 2010; Silva & White, 

2013). Studies have suggested poor teaching, rigid curricula, and negative classroom climates as 

significant variables contributing to attrition from STEM gateway courses (e.g., Biggers, Braur, 

& Yilmaz, 2008; DeAngelo et al., 2011; Suresh, 2007; Weston et al., 2019).  Indeed, the 

‘gateway’ moniker has come to symbolize the role of these courses in filtering students such that 

only the highest achievers pass through to more advanced coursework. In response, much 

research has been directed at identifying instructional changes in gateway courses that promote 

persistence (e.g., Association of American Universities [AAU], 2012; Cooper et al., 2015; 

Freeman et al., 2014; Graham et al., 2013; Henderson, Beach & Finkelstein, 2011). 

Research has established that students learn more and are more likely to persist in STEM 

introductory courses that use evidence-based, active-engagement instructional approaches that 

are grounded in the research on how students learn (e.g., The American Association for the 

Advancement of Science [AAAS], 2015; Freeman et al., 2014; Graham et al., 2013; President’s 

Council of Advisors on Science and Technology [PCAST], 2012; Seymour et al., 2019; Sithole, 

et al., 2017; Xu, 2016). Therefore, several national reports have stressed the importance of 

teaching STEM introductory courses using evidence-based instructional strategies (AAAS, 2010, 

2011; President’s Council of Advisors on Science and Technology, 2012; National Academies of 

Sciences, Engineering, and Medicine [NAESM], 2016; NAESM, 2018).  

Traditional science learning environments tend to teach isolated facts around disparate 

concepts (Momsen et al., 2010; Freeman et al., 2014), but STEM students need to develop 

knowledge and skills that enable them to do more than recall factual information. Evidence-

based pedagogies engage students as active participants in their own learning and provide 
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alternatives to traditional lecture and rote memorization. In STEM courses in particular, 

pedagogies incorporating science practices have become a focus of much of the work directed at 

reforming gateway courses (e.g., Laverty et al., 2016; Cooper et al., 2015; Matz et al., 2018; 

McDonald, 2015). Scientific practices describe behaviors that scientists engage in as they 

investigate and develop theories about the natural world (NRC, 2012a). Developing scientific 

practices at the college level can help promote student understanding of how scientific 

knowledge develops, increase interest, and deepen content knowledge (Brewer & Smith, 2011; 

Cooper et al., 2015; NRC, 2012b). Significant research supports improved learning gains in 

classrooms that incorporate scientific practices, such as modeling, explanation, and 

argumentation (Cooper et al., 2015; Freeman et al., 2014; Minner et al., 2010; NRC, 2012b; 

Wiggins et al., 2017). 

Modeling and Model-Based Instruction (MBI) 

Modeling is a foundational scientific practice (Gilbert, 1991; NRC, 2012a) and can be 

defined as the process of constructing and externalizing mental models (Jonassen & Strobel, 

2006, Jonassen et al., 2005; Louca & Zacharia, 2012). Mental models are internal, cognitive 

interpretations that individuals use to represent relationships among various parts of the world 

and are used in reasoning and understanding phenomena (Buckley, 2000; Johnson-Laird, 1983; 

Kahn, 2011). Scientific models are externalized representations of mental models depicting a 

concept, process, or phenomenon that can be used to illustrate, explain, or make predictions 

(Harrison & Treagust, 2000). Just as they are used by scientists in practice, education researchers 

and science educators generally agree that engaging students in modeling-based practices is an 

effective way to generate, evaluate, and communicate scientific knowledge, and lends itself to 

both instruction and assessment (e.g., Krell et al., 2012; Long et al., 2014; Schwarz et al., 2009; 
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Wilson et al., 2020). Courses and curricula that use models and modeling as a framework or as a 

component of instruction are becoming more prevalent in K-12 and postsecondary education 

(e.g., AAAS, 2015; Achér et al., 2007; Bennett et al., 2020; Bryce et al., 2016; J. J. Clement & 

Rea- Ramirez., 2008; Constantinou et al., 2019; Hung, 2008; Liu & Hmelo-Silver, 2009; Long et 

al., 2014; NRC, 2012a; Schwarz et al., 2009; Wilson et al., 2020) 

Model-based instruction (MBI) engages students in iterative construction, application, 

and evaluation of scientific models (Aragón, Olivia, & Navarrete, 2014; Clement, 2000; Gilbert 

& Justi, 2016; Justi & Gilbert, 2002; Long et al., 2014; Louca & Zacharia, 2012; Namdar & 

Shen, 2015; Schwarz et al., 2009; Shen et al., 2014). Research on teaching and learning through 

MBI in science classrooms can lead to a greater understanding of unobservable phenomena in 

science (Kahn, 2011), promote systems thinking (e.g., Ben-Zvi Assaraf & Orion, 2005; Bergan-

Roller et al., 2018; Hmelo-Silver et al., 2017; Hung, 2008; Momsen et al., 2022; Tripto et al., 

2013; Wilson et al., 2020), and help students develop a deeper knowledge of core concepts and 

relationships within a system (e.g., Dauer, et al., 2013; Hmelo-Silver, 2007; Hmelo-Silver & 

Pfeffer, 2004; Jordan et.al, 2013; Long et al., 2014; Tripto, Assaraf, & Amit, 2013; Vattam et al., 

2011 Schwarz, 2009; Wilson et al., 2020). Research has demonstrated the potential of MBI for 

reducing performance gaps and engaging students who tend to underperform on traditional 

assessments that require factual recall (Bierema et al., 2017; Dauer et al., 2013; Manthey & 

Brewe, 2013; Reinagel & Bray Speth, 2016; Verhoeff et al., 2008). How a student engages in 

learning through MBI is undoubtedly influenced by both extrinsic factors (e.g., classroom 

context, social interactions, and approachability of the instructor) and intrinsic factors (e.g., the 

students’ desire to understand versus their desire to perform; Buckley, 2012). For example, if 

students view models as products or processes to be memorized, they may be less motivated to 
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understand the represented phenomena and therefore less likely to integrate modeled concepts 

into their mental models (Gilbert & Boutler, 2000). However, students motivated by the desire to 

understand or develop expertise in the skills associated with their field may be more likely to 

integrate model-based information into their mental models (Buckley, 2000).  

Although research has identified the critical role of motivation in STEM persistence and 

achievement (e.g., Graham et al., 2013; NAESM, 2016, 2018), little is understood about the 

relationship between motivation and specific practice-based pedagogical approaches, such as 

MBI. Prior findings from MBI-based introductory biology courses suggest that MBI can improve 

outcomes for students most at risk for leaving STEM (Bennett, Gotwals, & Long, 2020; Dauer et 

al., 2013; Dauer & Long, 2015; de Lima & Long, 2023), but mechanisms explaining these 

outcomes are not well understood. In this study, we examine students’ motivation as a potential 

factor contributing to performance differences among students in an MBI-based introductory 

biology course. 

Motivation  

Motivation is generally defined as a personal and internal characteristic that activates and 

sustains a behavior toward a goal (Dweck, 1986; Graham & Weiner, 1996).  A powerful link 

between motivation and learning has long been suggested (e.g., Dweck, 1986; Lepper, Greene, & 

Nisbett, 1973), particularly in higher education where motivation has been identified as a critical 

predictor of academic achievement and engagement (e.g., Lazowski & Hulleman, 2016; Robbins 

et al., 2004).  In STEM, motivation has been identified as an important predictor of persistence 

and achievement generally, but less is known about its role in the specific context of gateway 

courses (e.g., Cromley et al., 2016; NASEM, 2016, 2017, 2018; Perez et al., 2014; Linnenbrink-

Garcia et al., 2018; Robinson et al., 2019). Research that examines the influence of instructional 
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methods on student motivation could be especially valuable in informing changes to instructional 

approaches that have large and meaningful impacts on STEM retention (NAESM, 2018). To 

date, motivation research has addressed pedagogies such as web-based instruction (e.g., Joo & 

Choi, 2000), flipped instruction (e.g., Abeysekera & Dawson, 2015), project-based learning (e.g., 

Kuo, Tseng, & Yang, 2019), and game-based learning (see Byusa, Kampire, & Mwesigye, 2022 

for review). In general, findings from these studies and others that have adopted evidence-based, 

active-learning strategies (e.g., Armbruster et al., 2009; Prince, 2004) have demonstrated an 

increase in student motivation and attitudes. However, motivation in MBI contexts has not been 

explored. 

Integrating two Theoretical Frameworks 

Modern motivation research adopts a multidimensional view that considers motivation to 

be a combination of internal characteristics and processes that underlie reasons for people’s 

actions (Pintrich, 2003). In this study, we integrate two dominant motivational theories thought 

to play complementary roles in predicting achievement-related outcomes: expectancy value 

theory and achievement goal theory (Harackiewicz & Linnenbrink, 2005; Linnenbrink-Garcia et 

al., 2018; Plante, O’Keefe, & Theoret, 2013).  A conceptual model of the two motivational 

theories and the subcomponents measured in our study is shown in Figure 1.1.  
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Figure 1.1. Conceptual model showing the theoretical frameworks for motivation and their 
components. An asterisk (*) represents components that were explicitly measured in our survey 
and are included in students’ motivational profiles.   
 
1. Expectancy-Value Theory 

According to contemporary expectancy-value (EV) theory (Wigfield & Cambria, 2010), 

two key factors influence behavior and predict achievement: (a) perceived competence (PC) is 

the degree to which individuals believe they will be successful if they try. Science academic 

perceived competence is one-way motivational researchers have conceptualized expectancy for 

success (Schunk & Pajares, 2005) and is defined as students’ perceptions about whether or not 

they will successfully learn the content and succeed at academic work in science (Schunk & 

Pajares, 2005; Robinson et al., 2019). (b) Task value is the degree to which one perceives a task 

to be enjoyable, useful, and important to their identity (Barron & Hulleman, 2015; Eccles, 2009; 

Eccles et al., 1983; Wigfield et al., 2016). Task value focuses on features of a task that attract an 

individual and maintain engagement on the task (Eccles et al., 1983). EV theory differentiates 

task value into three subcomponents that reflect why individuals engage in a task: (1) intrinsic 

value (IV) - the individual finds a particular task or domain enjoyable or interesting; (2) utility 

value (UV) - the task is useful to their current or future goals; and (3) attainment value (AV) - 

doing well on the task is important to one’s identity.  
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Research in EV theory has revealed positive relations between students’ perceived 

competence and task values to their academic success and persistence generally (see Trautwein 

et al., 2013; Wigfield, & Cambria, 2010; Wigfield & Eccles, 2000; Wigfield et al., 2009, 2016 

for reviews) and in STEM domains (e.g., Acee & Weinstein, 2010; Chow et al., 2012; Cromley 

et al., 2016;  Fong et al., 2021; Hulleman et al., 2010; Lauermann et al., 2015; Luttrell et al., 

2010; NASEM, 2017; Schnettler, et al., 2020; Umarji et al., 2018; Watt et al., 2012). In general, 

competence beliefs have been found to be more strongly related to academic performance, 

whereas task values are more important in achievement-related choices, such as persistence in a 

major (e.g., Barron & Hulleman, 2015; Trautwein et al., 2013). However, EV research aimed at 

measuring these components in relation to a specific practice-based pedagogy, such as MBI, is 

missing.  

2. Achievement Goal Orientation Theory 

Achievement goal (AG) theory emerged as a framework to account for students’ affect, 

cognition, and behavior in competence-relevant contexts (Dweck, 1986; Elliot and Church, 

1997). An individual’s achievement goal orientation characterizes one’s purpose for engaging in 

achievement-related behaviors (e.g., Ames, 1984; Anderman and Patrick, 2012; Pastor et al., 

2007; Pintrich, 2000). AG theory suggests two primary underlying goal orientations that vary as 

a function of how competence is defined: a mastery (M) goal focuses on acquiring new 

information and developing competence in a task while a performance goal focuses on 

demonstrating competence relative to, and outperforming, others (Ames, 1992; Dweck & 

Leggett, 1988; Maehr & Midgley, 1991). Elliot (1999) later distinguished performance-approach 

(PAP) from performance-avoidance (PAV). The approach-avoidance distinction considers 

whether the student prioritizes outperforming one’s peers (approach focus, or PAP) versus 
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avoiding negative outcomes and appearing incompetent (avoidance focus, or PAV) (Elliot, 2006, 

2008; Elliot & McGregor, 2001). While other models of AG have been proposed, such as a four-

factor model that differentiates mastery goal into mastery-approach and mastery-avoidance 

(Pintrich, 2000; for review, see Al-Harthy, 2016), we adopt the trichotomous model due to its 

acceptance and prevalence in the literature (for review, see Huang, 2016).  

Among the three goal orientations, M is hypothesized to be most desirable as it is 

associated with many positive academic characteristics, such as effort investment, perseverance, 

resilience, retention, transfer, and self-efficacy (e.g., Belenky & Nokes-Malach, 2012; Cerasoli 

& Ford, 2014; Elliot & Church, 1997; Jowkar et al., 2014). Evidence substantiates an association 

between M and academic achievement (e.g., Dull, Schleifer, & McMillan, 2015; Huang, 2012; 

Meece et al., 2006). Literature on the role of a performance goal orientation on academic 

achievement is mixed, however. In general, performance goals are theorized to produce 

undesirable outcomes, such as anxiety, challenge-avoidance, ineffective learning strategy use, 

and decreased academic achievement (Dweck, 1986; Linnenbrink, 2005; Maehr, 1984; Nicholls, 

1984). A plethora of literature generally support this hypothesis, however, there are exceptions. 

Surprisingly, some research has found that performance goals have been linked more reliably 

with academic achievement than mastery goals (e.g., Durik, Lovejoy, & Johnson, 2009; 

Harackiewicz, Barron, & Elliot, 1998; Hulleman et al., 2010). Some suggest that PAP can foster 

a competitive-based approach to learning, (i.e., demonstrating competence by attempting to 

performing better on tasks than their peers) which can lead to positive learning outcomes, such as 

self-efficacy and self-regulation (e.g, Grant & Dweck, 2003; Hackel et al., 2016; Senko & 

Tropiano, 2016; see meta-analyses by Hulleman et al., 2010b; Senko & Dawson, 2017a). 

Avoidance orientations (i.e., PAV) are characterized by fears of failure and low self-competence, 
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which can lead to limited engagement and poor academic outcomes (e.g., Lau & Lee, 2008). 

Therefore, literature generally associates PAV with lower academic achievement (e.g., Cooper, 

2014; Huang, 2012; Hseih et al., 2007; Ranellucci et al., 2015; Senko et al., 2011) and is 

considered to be the least desirable goal orientation of the three.  

Classroom structure and the values educators communicate about learning through their 

teaching practices can have an impact on the shifting or reinforcing of a learner’s goal 

orientation (e.g., Anderman & Midgley, 1997; Maehr & Midgley, 1996; NASEM, 2018). For 

example, Fortus and Touitou (2021) recently found that students adapt their individual goal 

orientation to align with their perception of what the environment is promoting. Specifically, 

they found evidence that when an environment emphasizes/de-emphasizes a particular goal, 

students’ can shift their personal goal orientation to align with what they perceive to be 

emphasized by the environment.  

In addition to shifting or reinforcing a learner’s goal orientation, students may adopt 

different simultaneous combinations of goal orientations, according to course and classroom 

context, which may result in creating different patterns of student engagement with science (e.g., 

Barron and Harackiewicz; 2001, Hulleman et al., 2010; Kubsch et al., 2022; Luo et al., 2011; 

Schmidt et al., 2018). Due to the understanding that motivational components can combine and 

interact, recent motivation research has deemed it crucial to take a more holistic approach to its 

measurement (e.g., Hong et al., 2020; Linnenbrink-Garcia & Patall, 2016). For example, when 

considering students’ expectancies for success, achievement goals, and values, Conley (2012) 

found student motivation is best characterized by unique patterns across its components. To 

capture these unique patterns across multiple motivational components, our study takes an 

emerging approach within motivational literature (e.g., Kubsch et al., 2023; Lazarides et al., 
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2016; Lazarides et al., 2019; Viljaranta et al., 2016) and visualizes motivational profiles 

consisting of students’ perceived competence, task value, and achievement goal orientation.  

Generating motivational profiles using a person-centered approach 

Although EV and AG theories are typically studied independently, each framework by 

itself poses limitations when studying academic motivation. An EV perspective focuses on 

individuals’ competence expectations and their value for an academic task or domain, but 

disregards how their specific achievement goals are involved in their motivation. On the other 

hand, an AG perspective overlooks how individuals’ task-values might be related to their 

achievement goals and outcomes. Research that integrates these theories could help identify 

conceptual overlap between frameworks and develop a more nuanced understanding of 

motivation (e.g., Anderman, 2020; Linnenbrink-Garcia et al., 2018; Linnenbring-Garcia & 

Wormington, 2019; Plante, O’Keefe, & Theoret, 2013). Indeed, it is important to explore the 

holistic phenomenon of student motivation since no component of motivation operates in 

isolation from others (Hattie et al;, 2020; Higgins, 2012; Kaplan, 2014). This is consistent with 

more recent research that considers student motivation as a ‘motivational system’ with multiple 

components that interact in complex ways and influence each other (Kanfer, 2015; Kubsch et al., 

2023; Linnenbrink-Garcia & Patall, 2016; Yeager & Walton, 2011).   

Motivational profiles consider the co-occurrence of multiple motivational factors in an 

individual to generate unique patterns (Conley, 2012; Hong et al., 2020). Hong et al. (2020) 

agree, and argue that to work toward gaining a better understanding of student motivation, 

research is required that models the components simultaneously in order to account for the 

complexity and systemic nature of motivation. Motivational profiles derive from a systems 

perspective and ensure that student motivation is modeled holistically, rather than being 
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composed of separate, additive parts (e.g., Hong et al., 2020; Kubsch et al., 2023; Linnenbrink-

Garcia & Patall, 2016; Magnusson, 2015; Tuominen-Soini et al., 2011; Vansteenkiste et al., 

2009). Student motivational profiles have been used in various contexts, including K-12 science 

classrooms to observe students’ transition between profiles following an intervention (Kubsch et 

al., 2023), and in an undergraduate anatomy and physiology course to measure motivational 

influences on learning in a technology-enhanced setting (Hong et al., 2020). In our study, we 

generate motivational profiles to better understand students’ motivation for learning introductory 

biology through MBI.  

Person-centered analyses (Bergman & Magnusson, 1997) are growing in popularity 

within educational psychology for capturing complex relationships between motivational 

constructs (e.g., Fong et al., 2018; Kubsch, et al., 2022; Wormington & Linnenbrink-Garcia, 

2017). A person-centered, exploratory approach examines within-student combinations of 

motivational constructs to identify subgroups of students that display similar patterns (Bergman 

& Magnusson, 1997; Bergman, Magnusson & Khouri, 2003; Howard & Hoffman, 2017). Unlike 

a variable-centered approach that investigates relationships among variables, a person-centered 

approach explores how variables are grouped within individuals to identify combinations of 

motivational constructs that define subgroups (Hayenga & Corpus, 2010). Person-centered 

analyses apply a motivational systems perspective to integrate constructs from multiple 

motivational theories to generate students’ motivational profiles (Magnusson, 2015; Hong et al., 

2020; Tuominen-Soini et al., 2011).  

Assessing and modeling the complex interplay of motivational variables can more 

appropriately demonstrate the heterogeneity between and within individuals, and is important to 

better understand how, and under which circumstances, learning takes place. When considering 
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research on practice-based pedagogies, such as MBI, a person-centered approach to thinking 

about student motivation provides many advantages. For example, through this approach, we can 

generate a better understanding of patterns of student motivation which will inform practitioners 

on best ways to support students based on students’ specific needs. In the context of adaptive 

teaching (Corno, 2008), findings from this study can inform modification of instruction to tailor 

to specific desired motivational components or specific groups of students. In addition, capturing 

if and how motivational profiles can change over time informs researchers and practitioners of 

motivational development and how profiles can be malleable over time (e.g., Lazarides et al., 

2018).  

Research Questions 

In this study, we take a motivational systems perspective and bridge two theoretical 

frameworks to generate motivational profiles for students in an MBI-based introductory biology 

course.  Profiles are assessed early and late in the semester to determine how and whether 

motivation changes over time. Specifically, we ask: 

1. What motivational profiles are observed in an MBI-based undergraduate introductory 

biology course for life science majors? 

2. In what ways do motivational profiles and student profile membership change? 

3. What is the relationship between achievement metrics, such as course grades and student 

motivational profiles at the beginning and end of a semester?   

METHODS 

Course description 

Data were collected from a large research university in the midwest United States in two 

sections of a Fall 2020 introductory biology course. The course provides instruction on genetics 
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and inheritance, evolution, and ecology and is the second of a two-course sequence required for 

life science majors. Students typically enroll in their sophomore year following completion of the 

first course based on cellular and molecular biology. The sections were taught by two different 

instructors but both used MBI to teach the same core learning objectives. Therefore, we combine 

data from both sections into one for this study.  

Typically, the course is taught in-person in a large lecture hall, but due to the COVID-19 

pandemic, both sections were taught virtually. Each class meeting consisted of brief lectures 

interspersed with cooperative learning activities in break-out groups. Students worked through 

content-related tasks, such as building or reasoning with a model, with their assigned team. 

Student- or team-generated examples of work were frequently used during the course to 

demonstrate multiple ways of thinking and representing ideas. Additionally, the online setting 

provided the opportunity for students to connect with each other and with the instructional team 

through an ongoing chat, where students could ask questions or pose comments related to the 

class content. The chat was monitored by a graduate teaching assistant and two undergraduate 

learning assistants who responded to questions and/or interjected students’ questions during 

lectures to be addressed by the instructors.  

Participants  

Participants (N=265) included female (58%) and male (42%) students of predominantly 

homogeneous ethnicity: 75% Caucasian (non Hispanic); 9% Asian; 1% African American; 5% 

Hispanic; 5% Multi-race; and 5% of participants chose not to report. First-generation students 

(13%) were also moderately represented in the sample.  
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Procedures  

Students were asked to complete an online questionnaire at two time points during the 

semester: Time 1 (T1) was selected to be after the first exam so that students had multiple 

experiences with constructing, applying, and revising models; Time 2 (T2) was at the end of the 

course and following the final exam. Low stakes course credit was provided for participation in 

the surveys.  

Motivation Survey  

Our survey measures three motivational constructs derived from two motivational 

theories: expectancy-value theory and achievement goal theory. From (1) expectancy-value 

theory, we measure (a) science academic perceived competence using items from a 

contextualized version of the patterns of adaptive learning survey scale (PALS; Midgley et al., 

2000). The contextualized version we adopt for our study has been used in previous literature 

situated within a science-specific context (Robinson et al., 2019). Also from expectancy-value 

theory, we measure (b) task value using scales by Conley (2012). Within (2) achievement-goal 

theory, we measure students’ goal orientation using scales from the revised PALS (Midgley et 

al., 2000). All survey items used a 5-point Likert scale, ranging from 1 (strongly disagree) to 5 

(strongly agree). Like previous context-specific research (e.g., Kubsch et al., 2022), all items 

were worded to focus on our specific context of a biology course taught through MBI. Table 1.1 

shows a few select examples of items used in our study. The full questionnaire is provided in the 

Appendix (Table S1.1., pg. 68).    
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Table 1.1. Example survey items.  
Motivation 
Theory 

Component Item (Contextualized text) 

Expectancy-
Value 

Science academic perceived 
competence (Robinson et al., 2019) 

I am certain I can master the skills taught 
in science classes. 

Task value: Intrinsic value (Conley, 
2012) 

I enjoy the scientific practice of modeling 
biological systems.  

Achievement 
Goal 

Achievement goal: Mastery approach 
(Midgley et al., 2000) 

One of my goals in class is to learn as 
much about biology as I can. 

 

(1) Expectancy-value theory 

  (a) Science Academic Perceived Competence 

Science academic perceived competence (PC) was assessed using a contextualized 

version of   the PALS scale (Midgley et al., 2000) used in previous science context-specific 

research (Robinson et al., 2019). Five science academic perceived competence items measured 

the degree to which a student believes they will be successful in science if they try (n = 5; 

Cronbach’s ɑ = 0.89/0.90 (T1/T2); e.g., “I’m certain I can master the skills taught in science 

class.”).  

   (b) Task Value 

Intrinsic (IV), utility (UV), and attainment value (AV) were assessed through 15 items 

using scales by Conley (2012). Similarly to items used in the achievement goals scales, items 

used to measure the three subcomponents of task value were adapted to fit the course-specific, 

model-based tasks. For example, an item from the unedited IV scale used to assess the degree 

to which a student finds a task interesting or enjoyable states, “I enjoy doing science.” The 

contextualized version used in this study states, “I enjoy modeling biological systems.” Five 

items measured students’ IV (n = 5; Chronbach’s ɑ = 0.89/0.92 (T1/T2)). Five UV items 
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measured the degree to which a student found the task useful to their current or future goals (n 

= 5; Chronbach’s ɑ = 0.83/0.86 (T1/T2); e.g, “Modeling biological systems will be useful or 

me later in life.”). Five AV items assessed whether the student believed being successful on the 

task was important to their identity (n = 5; Chronbach’s ɑ = 0.83/0.87 (T1/T2); e.g., “Being 

someone who is good at modeling biological systems is important to me.”). (See Appendix, 

page 68, for the full list of contextualized items.) 

(2) Achievement goal orientation 

Three goal orientations, mastery (M), performance-approach (PAP), and performance-

avoidance (PAV), were assessed using items from the revised PALS (Midgley et al., 2000). 

Items were modified to focus on the biology context. For example, an item from the unedited M 

scale used to measure a student’s concern for mastering content states, “It’s important to me that 

I learn a lot of new concepts this year.” The same item contextualized to measure students’ focus 

on mastering biological content states, “It’s important to me that I learn a lot of new biological 

concepts this year.” Five items measured M orientation (n = 5; Chronbach’s ɑ = 0.86/0.88 

(T1/T2)). Five PAP items measured students’ focus on demonstrating biological competence 

relative to their peers (n = 5; Chronbach’s ɑ = 0.88/0.92 (T1/T2); e.g., “It’s important to me that 

other students in my class think I am good at biology.”). Four PAV items assessed students’ 

focus on avoiding appearing incompetent with regards to biological content (n = 4; Chronbach’s 

ɑ = 0.83/ 0.87 (T1/T2); e.g., “It is important to me that I don’t look stupid in my biology 

class.”).  

ANALYSES 

Little’s test verified all missing data was completely at random (MCAR; T1= 

X2(263)=246.05, p=0.76, T2= X2(391)=391.54, p=0.48); thus, listwise deletions were used within 
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each variable to remove incomplete surveys allowing for full information maximum likelihood 

(FIML).  Additionally, only students that completed surveys for both T1 and T2 were included in 

the analysis (N=265). Detection of outliers using Mahalanobis Distance brought the total sample 

size to 260 students for both times. Preliminary analyses including correlations between 

motivational components are provided in the Appendix (Table S1.2., page 71).  

To address our first research question, we use a type of person-centered analysis: latent 

profile analysis (LPA). The goal of a LPA is to identify clusters of observations that have similar 

patterns of variables, known as LPA indicators (Collins & Lanza, 2010, 2013; Vermunt & 

Magidson, 2002; Pastor et al., 2007). For our study, these clusters represent motivational 

profiles. Motivational profiles are representations of students’ motivational system as a whole, 

and, adopting Kubsch, et al.’s (2023) approach, we consider profiles to be on a spectrum ranging 

from higher to lower states of motivation. Motivational profiles were generated for the two time 

points: at the beginning and end of the semester to observe the types of profiles generated, and 

whether they changed over the course of the semester. For our test, we used the tidyLPA package 

(Rosenberg et al., 2018) in R (R Development Core Team, 2008).   

Fit indices were calculated for solutions with up to six profiles as in other studies (Hong 

et al., 2020; Kubsch et al., 2023; Pastor et al., 2007; Tuominen-Soini et al., 2011). Akaike’s 

Information Criterion (AIC; Akaike, 1973; 1987), Bayesian Information Criterion (BIC; 

Schwarz, 1978), and results of the Bootstrap Likelihood Ratio Test (BLRT; McCutcheon, 1987; 

McLachlan & Peel, 2000) were calculated to determine the best fitting solution. Lower values of 

fit indices, such as AIC and BIC indicate better model fit. A statistically significant BLRT p-

value supports a solution with k+1 profiles over k-profiles (Bauer, 2022). Another way to 

consider this, a nonsignificant p-value supports the k-1 profile model. Furthermore, entropy and 
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classification probability were determined for each profile. Entropy values range from zero to 

one and are used to determine precision in group membership classification, with a higher value 

indicating better classification accuracy (Celeux & Soromenho, 1996; Kaplan & Keller, 2011; 

Masyn, 2013; Nylund, et al., 2007). For example, an entropy value of 0.87 indicates 87% of the 

individual cases being classified accurately in a latent class. In general, entropy values ≥ 0.8 are 

considered desirable (Asparouhov & Muthén, 2014).  

Motivation was measured and motivational profiles were generated at the beginning and 

end of the semester to explore whether students remained in the same profile, or if there was a 

shift. To address our third research question, students were first grouped into high-(n=165), 

middle- (n=76), and low- (n=19) achievement groups based on overall course grade. Students 

characterized as high-achieving earned a 4.0 overall course grade, middle-achieving students 

earned between a 3.0-3.5, and low-achieving students earned a 2.5 or lower.  

RESULTS 

RQ 1: Characterizing student motivational profiles  

Fit indices of the LPA solutions for Time 1 (Table 2.1a) and Time 2 (Table 2.1b) with up 

to six profiles are provided below. BLRT values remain significant for the entire series of models 

at both times, which some research suggests is not entirely uncommon (Bauer, 2022). Additional 

theoretical and methodological considerations (e.g., Masyn, 2013; Morin & Wang, 2016), 

including fit indices of AIC and BIC, and entropy values suggest three profile models for Time 1 

and 2 are satisfactory. Further, graphical representation of class differentiation, including BIC 

elbow plots (provided in the Appendix, Table S1.3., page 71), support three-profile models for 

each time. Important to note, is that the three profile models at each time are characterized by 
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four unique profiles. Two profiles overlap between Time 1 and Time 2, and the other two 

profiles are unique to either Time 1 or Time 2.  

Table 1.2. Latent profile analysis fit statistics up to six profiles for Time 1(a) and Time 2(b). 

 
Abbreviations: AIC, Akaike’s information criterion; BIC, Bayesian information  
criterion; BLRT, bootstrap likelihood ratio test.  

 

Following the LPA recommendation of three-profile models at each time point, general 

patterns of the motivational profiles were graphically displayed (Figure 1.2 & 1.3). Figure 1.2 

shows students’ profiles with all seven variables centered around the respective scale means and 

95% confidence intervals at Time 1, whereas Figure 1.3 represents Time 2. As presented in 

Figure 1.2, profiles had different characteristics regarding motivational variables, and profiles at 

each time vary. We observed qualitatively different configurations of variables, known as shape 

differences, between profiles. For example, some profile indicators have relatively high levels 

above the sample mean in one profile, while in another profile the indicators have relatively low 

levels below the sample mean. Furthermore, quantitative differences in configurations of 
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variables, known as level differences, are shown. For example, we observed a profile in which 

all indicators have a relatively high level above the sample mean. Overall, our results show 

similar patterns to those identified in prior motivation research (e.g., Kubsch et al., 2023; 

Linnenbrink-Garcia et al., 2018; Wang et al., 2016), which have been adapted to characterize our 

motivational profiles. 

 
Figure 1.2. Bar graph of the three student motivational profiles at Time 1. All seven 
motivational variables are standardized to aid in interpretation, with 95% confidence intervals 
represented with black vertical lines. Note: PC, Science Academic Perceived Competence; MAP, 
Mastery Approach Goal Orientation; PAP, Performance Approach Goal Orientation; PAV, 
Performance Avoidance Goal Orientation; IV, Intrinsic Value; AV, Attainment Value; UV, 
Utility Value.  
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Figure 1.3. Bar graph of the three student motivational profiles at Time 2. All seven 
motivational variables are standardized to aid in interpretation, with 95% confidence intervals 
represented with black vertical lines. 
 
Motivational Profiles 

Through the LPA, three distinct motivational profiles were identified at time 1 and time 

2. Figures 1.2 and 1.3 graphically display these profiles, and visually demonstrate similarities 

and differences between profiles and between indicators within the profiles at the two time 

points.  

Highly motivated 

The highly motivated profile (time 1, n = 65, 25%; time 2, n = 152, 59%) is characterized 

by students having consistently higher scores for all motivational variables compared to students 

in other profiles. This trend is especially notable for all task value components (i.e., Intrinsic 

Value [IV], Attainment Value [AV], and Utility Value [UV]). The characteristics of this profile 

indicate that the highly motivated students are motivated by both intrinsic factors and the desire 
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to appear competent and perform well in front of their peers, and the magnitude of each variable 

is greater than the others.  

Motivated, mastery and value driven 

The “motivated, mastery and value driven” (time 1, n = 73, 28%) is characterized as 

having higher than average scores for PC, M, and all three task value components, although 

slightly lower than the highly motivated profile. Students in this profile are also characterized as 

having lower than average performance-goal orientations (PAP and PAV). A motivational 

profile with similar characteristics was not observed at time 2.  

Average Motivation 

At time 2, a new motivational profile emerged which is characterized by close, yet, 

lower-than-average levels for all seven motivational variables, thus, is labeled as average 

motivation (n = 37, 14%). 

Unmotivated and performance driven 

An unmotivated and performance driven motivational profile appeared at both time 1 (n 

= 122, 47%) and time 2 (n = 71, 27%), and reflects nearly an inverse of the motivated, mastery, 

and value driven profile. In this profile, performance-goal orientations are the only above-

average scores, and all others were lower than average, suggesting these students are generally, 

strongly motivated by the desire to appear competent and outperform their peers.  

RQ 2: Examining change in motivational profiles, and student profile membership 

2.1 Changes within motivational profiles 

After selecting the best-fitting, three-profile, models and characterizing motivational 

profiles at the beginning and end of the semester, we compared the highly motivated and 

unmotivated and performance driven profiles to examine changes in individual indicators. 
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Within the highly motivated profile, a notable increase is observed for M, and UV whereas both 

performance goal orientation scores have decreased from the beginning to the end of the 

semester. This suggests that highly motivated students increased in their perceived present or 

future value for model-based tasks, therefore, fostering a greater mastery approach to learning 

through this style, and were less motivated by appearing competent and outperforming their 

peers.  

Within the unmotivated and performance driven profile, there is an evident increase 

above the average for performance-goal orientations, and a decrease below the average 

(becoming closer to the average) in IV and AV. This suggests that the unmotivated and 

performance driven students became even more performance-goal orientated, placing even more 

learning emphasis on demonstrating competence and outperforming their peers, but also became 

characterized as finding model-based tasks more interesting, and finding that doing well on the 

task to be important to their identity. 

2.2 Changes in student profile membership 

Next, we examined whether and how students were changing motivational profiles from 

the beginning to the end of the semester. Figure 1.4 first displays the proportion of students 

within each profile at time 1 and time 2. Using the matrix provided in Table 1.3, we 

characterized students’ motivational profile shifts as increased, making a positive shift in 

profiles from time 1 to time 2, maintained, remaining within the same profile, or decreased, 

demonstrating a negative shift in their motivational profile. The data show that the majority of 

students (46%) experienced an increase in their motivation. A moderate proportion of students 

maintained their motivational profile within highly motivated (12%) or unmotivated and 

performance driven (14%), and 28% of students decreased in their motivational profile. 
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 T1 (%)                                                                                   T2 (%) 

 
Figure 1.4. Sankey plot of the overall proportion (%) of students within each profile at Time 1 
(T1) and Time 2 (T2). 
 
Table 1.3. Motivational profile shift matrix and the respective proportion of students. 
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RQ3. The relationship between achievement metrics, such as grades, on whether and how 

students’ change motivational profiles. 

Finally, we looked at the relationship between final course grades on motivational profile 

changes. Particularly, we investigated how students within high- (n=165), middle- (n=76), and 

low-achievement (n=19) groups maintained or shifted in profile membership from time 1 to time 

2. Figure 1.5 displays the proportion (%) of high-, middle-, and low-achieving students and their 

motivational profile at time 1 (T1) and time 2 (T2). The Sankey plots show some stability in 

profile membership (i.e., highly motivated at T1 and T2), yet also indicate shifts across all 

achievement groups.  

  



 37 

 
 T1 (%)                       High                         T2 (%) 

 

 T1 (%)                     Middle                       T2 (%) 

 

 T1 (%)                       Low                          T2 (%) 

 
Figure 1.5. Sankey plots of high-, middle-, and low-achievement groups depicting the 
proportion (%) of students and their profile membership at Time 1 (T1) and Time 2 (T2). 
 

The greatest proportion of students across all achievement groups experienced an 

increase in motivation over the course of the semester. Specifically, 40% (n=66) of the students 
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who completed the course at a high-achievement level, 55% (n= 42) of the students who finished 

the course at a middle-achievement level, and 68% (n=13) of the students who finished at a low-

achievement level increased in their motivation. A respectable number of students in all three 

achievement groups remained highly motivated from the beginning to the end of the semester. 

Specifically, 13% (n= 22) of high-achieving students, 8% (n=6) of middle-achieving students, 

and 16% (n=3) of low-achieving students were categorized as highly motivated at both times. 

There were zero low-achieving students who remained unmotivated and performance driven, 

compared to 18% (n=29) of high-achieving, and 9% (n=7) of middle-achieving students. A 

sizable number of high- (29%; n= 48), middle-(28%; n=21), and low-achieving (16%; n=3)) 

students decreased motivation over the course of the semester. The majority of high- and middle-

achieving students that experienced a decrease in their motivation went from being highly 

motivated to unmotivated and performance driven, whereas the majority of low-achieving 

students who decreased in their motivation from highly motivated to average motivation.  

DISCUSSION 

Our study aimed to serve multiple purposes across multiple, interconnecting areas of 

research. Broadly, our work fills a gap within motivational literature by specifically investigating 

student motivation for modeling within a biology context. We generated student motivational 

profiles that describe individuals according to their combinations of motivational variables in an 

introductory biology course taught through MBI. In doing so, this study builds upon previous 

research considering motivation as a system, composed of variables that interact and influence 

each other (e.g., Kubsch et al., 2022; Linnenbrink-Garcia & Patall, 2016; Schmidt et al., 2018), 

and examines if and how student motivational profiles shift over a semester (Lazarides, et al., 

2019). Assessing student motivational profiles at the beginning and end of a semester contributes 
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to a budding area of research examining how motivational profiles can change and how 

motivational components within profiles change over time. Our research explores motivation as 

a potential factor contributing to previously-documented performance differences among 

students in an MBI-based introductory biology course. Specifically, we characterize which 

motivational profiles high-, middle-, and low-achieving students are identified within, and 

examine if, and how, these students changed their motivation over the course of the semester.   

RQ1. Characterizing student motivational profiles  

Using a person-centered analysis, LPA, we identified four distinct motivational profiles: 

three motivational profiles at the beginning of the semester and three profiles at the end of the 

semester. In the beginning of the semester, students were characterized into three distinct 

profiles: highly motivated; motivated, mastery and value driven; and unmotivated and 

performance driven. At the end of the semester, we observed changes in profile characterization, 

including the disappearance of the motivated, mastery and value driven profile, and emergence 

of a new profile. The three profiles at the end of the semester are described as: highly motivated, 

unmotivated and performance driven, and average motivation.  

Our profiles resemble others that have been identified in previous motivational profile 

work. For example, the highly motivated profile is strongly related to Linnenbrink-Garcia et al. 's 

(2018) ‘very high all’ profile within a group of college science students, in which the levels of all 

motivational variables are positive, and, in most instances, of greater magnitude than what is 

observed in any other profile. Our motivated, mastery and value driven profile also resembles the 

‘intrinsic and confident’ motivational profile reported by Linnenbrink-Garcia et al. (2018), which 

is characterized by high levels of task value, competence beliefs, and mastery approach but low 

levels of performance goal orientations.  
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The average motivation profile, characterized as having close to average levels across all 

variables, is similar to Linnenbrink-Garcia et al.’s (2018) ‘average all’ profile among college 

science students, and Wang et al.’s (2016) ‘moderate motivation’ profile found among grade-

school and early college students in physical education courses. In each of these profiles, all 

motivational variables are reported at close-to-average levels. Finally, our unmotivated and 

performance driven most closely resembles Kubsch, et al.’s (2022) ‘unmotivated’ profile within 

middle-school science students, where most of our variables are lower than average, however, 

our findings differ in that students in this profile endorse both performance goal orientations.  

Across the motivational profiles, our findings confirm a complex interplay between 

components of motivation, and that the relationship between components can change over the 

course of a semester. Across all four motivational profiles, our results show a correlation 

between the two performance goal orientations, PAP and PAV. This finding is supported in 

previous research (e.g., Bong, 2009; Murayama et al., 2011; Wilbert et al., 2012) and further 

suggests that these two goals can become coactivated in classroom settings (Brophy, 2005; 

Urdan & Mestas, 2006). Murayama et al. (2011) report similar findings and suggest it may be in 

part due to redundancy in item wording (i.e., response bias; Murayama et al., 2011). Literature 

further suggests a complex interaction between performance goal orientations and PC (Kubsch et 

al., 2023; Sins et al., 2008). Our findings support this previous work, by demonstrating a 

relationship between performance goals and PC that differs for different groups of students. 

Similar to prior research, our findings show a moderate correlation within the highly motivated 

profile, where PAV, PAP, and PC are higher than average, and within the average motivation 

profile, where they are all around average (D’Lima et al., 2014; Hsieh, et al., 2008; Kubsch et al., 

2023). For the other two profiles, however, PAV and PAP behave inversely to PC. For example, 
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the motivated, mastery, and value driven profile is characterized with lower than average 

performance goals and above-average PC, while the reverse is observed in the unmotivated and 

performance driven profile. These mixed results are consistent with previous findings (e.g., 

Kubsch et al.’s, 2023; Linnenbrink-Garcia et al., 2018), and may suggest that additional 

investigation into the relationship between performance goal orientation and other motivational 

aspects is needed.  

Our results generally document an inverse relationship between performance goal 

orientations and values. Literature suggests that trends of performance goals being greater than 

task value components suggests students that pursue a performance approach focus on whether 

they will succeed or fail upon completion of the task and may not become deeply engaged with 

the activity (e.g., Dewey, 1913; Flum & Kaplan, 2006; Renninger & Hidi, 2002). Across all four 

profiles, our findings support a strong interaction between PC, M, and all three sub-components 

of task value (IV, UV, AV). The connection between M and PC is consistent with previous 

research (e.g., Dorfman & Fortus, 2019; Kubsch et al., 2023), and suggests that students with 

greater levels of PC believe they are capable of learning the biology content and being successful 

on model-based tasks, therefore they will invest more time and energy into studying and 

practicing with model-based skills, fostering a M. The relationship with task value is in line with 

previous literature that suggests students who have positive beliefs about completing a task, and 

believe that they will be successful, tend to have a higher sense of value for the task (e.g., Bråten, 

and Olaussen, 2005; Lazarides et al., 2019; Eccles & Wigfield, 2002; Hulleman et al., 2008; 

Linnenbrink-Garcia et al., 2018; Linnenbrink & Pintrich, 2003; Sungur & Senler, 2009). 

Our findings also support prior research that has found M to be correlated with sub-

components of task value (Bong, 2001; DeBacker & Nelson, 1999; Hulleman et al., 2008; 
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Linnenbrink, 2005). Indeed, students that pursue a M focus on learning and improvement, and 

therefore engage with the task in a way where they focus on the process of learning rather than 

the product of task engagement (e.g., Bong, 2001; Dewey, 1913; Flum & Kaplan, 2006; 

Renniger & Hidi, 2002; Wigfield & Eccles, 2002).  

RQ2. Examining change in motivational profiles, and student profile membership 

2.1 Changes within motivational profiles 

Highly motivated 

From beginning to the end of the semester, not only was a change in the profiles 

identified, but motivational variables changed in magnitude within profiles as well. Within the 

highly motivated profile, there are notable positive changes, including an increase in students’ 

PC, M, and UV, and decreases in performance-goal orientations. This may not only suggest that 

students characterized as highly motivated find the model tasks to be more useful, but that 

students developed in their competence and belief of success if they try. Considering that the 

majority of students either shifted into (46%), or remained within (12%), the highly motivated 

profile demonstrates an increase in a considerable number of students’ drive to comprehend the 

subject material and improve one’s level of understanding (i.e., increased M).   

Previous research has suggested that there are positive effects on fostering a mastery goal 

orientation when courses emphasize interest, enjoyment, and challenge, and the student views 

success within the course as improvement of their learning process (e.g., McGregor & Elliot, 

2002; Mouratidis et al., 2018; Roeser et al., 1996; Anderman & Anderman, 1999). This 

introductory biology course, taught through MBI, placed much emphasis on model-based tasks, 

which students can consider as both challenging and as an interesting way of learning. For 

example, students from a different semester of the same course, taught by the same instructor 
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with the same MBI curriculum, recorded stating, “Modeling was challenging, but I could better 

understand the content. The models made it more applicable.”; “Modeling kept me engaged and 

made me think more. It helped me remember stuff better since it was more visual.”; and 

“Modeling affected my interest level, because drawing the models helped me see connections 

and get a better understanding of the content.”  (Furqueron, de Lima, & Long, in prep). 

Within the highly motivated profile, students also demonstrated a decrease in 

performance-goal orientations, which can have positive learning effects for students. 

Specifically, this may suggest that student engagement with the model-based tasks supersedes 

concerns about the appearance of low ability. In other words, highly motivated students may 

become less concerned with how they are perceived by their peers while also less likely to avoid 

challenging modeling tasks to prevent failure.  

Unmotivated and performance driven 

From the beginning to the end of the course, 14% of students remained within the 

unmotivated and performance driven profile, while 14% experienced a negative motivational 

shift into this profile (6% from motivated, mastery and value driven, and 8% from highly 

motivated). When compared to the highly motivated profile, motivational variables within the 

unmotivated and performance driven profiles display nearly the opposite trends over time. For 

example, the most notable change over time is an increase in performance-goal orientations. 

From this, we speculate that, over the course, these students perceived the focus of this class as 

not being an improvement to their learning process or skills, but to improve their performance 

(Roeser et al., 1996; Anderman & Anderman, 1999), and that there has been a greater shift in 

avoiding failure among these students.  
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Other notable changes within this profile are positive shifts for IV and AV components of 

task value. While still lower than average compared to the highly motivated and average 

motivation profiles, scores for these two variables become less negative, suggesting students 

characterized as unmotivated and performance driven became more interested and found greater 

enjoyment in the task (IV) while also seeing a greater personal importance of doing well on the 

model-based tasks (AV). Positive shifts for these two value components may suggest 

constructive characteristics of the MBI course context. For example, students may have 

perceived a sense of ownership in modeling tasks, and made meaningful connections between 

modeling in this class and other outside contexts.    

2.2 Changes in student profile membership 

Across previous motivational profile research, findings are mixed with regards to stability 

and change in profile membership over time. For example, some work has indicated that 

adolescent and young adult learner’s motivational profiles remain relatively stable (e.g., 

Alexander & Murphy, 1998; Lazarides et al.,  2019; Lazarides, et al., 2016), while other work 

suggests students can experience varied shifts in motivational profile membership (e.g., Kubsch 

et al., 2023; Tuominen-Soini et al., 2011). In this study, we examined changes in student profile 

membership following a similar ordination of motivational profiles implemented by Kubsch et 

al. (2023). Specifically, we posit the most desirable profile as the highly motivated profile, 

followed by motivated, mastery and value driven, average motivation, and the least desirable 

profile as unmotivated and performance driven. While this approach is in-line with previous 

research, we do call into question the interpretation of our rankings; particularly, with respect to 

different educational contexts. For example, our highly motivated profile is defined by having 

consistently higher scores for all motivation components, including both performance-oriented 
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goals. Performance-oriented goals are generally associated with negative learning outcomes, 

such as challenge-avoidance and ineffective learning strategy use (e.g., Dweck, 1986; 

Linnenbrink, 2005), however, some studies have linked PAP to positive outcomes, such as 

fostering self-efficacy and self-regulation (e.g, Grant & Dweck, 2003; Hackel et al., 2016; Senko 

& Tropiano, 2016). These mixed reports may be due to application of the research in different 

contexts, therefore, future work unpacking the relationships between context and components of 

performance-oriented goals are needed. Indeed, it’s important for one to consider that what 

might be most desirable in one setting, may not be true for another. 

Our findings first and foremost demonstrate that student motivation can change over the 

course of a semester. Specifically, we report that the majority of students (46%) transitioned into 

a higher level of motivation (i.e., going from unmotivated and performance driven to highly 

motivated) and a moderate number of students (28%) experienced a negative shift in their 

motivational profile (i.e., going from highly motivated to average motivation). Our results further 

show that a minimal number of students showed stability in their motivation, with 12% 

remaining highly motivated and 14% remaining unmotivated and performance driven. Overall, 

our findings support prior research that suggests student motivation can change over relatively 

short periods of time (e.g., Kubsch et al., 2023; D’Lima et al., 2014). Results such as these press 

the need for future research to take a closer look at why students are transitioning between 

profiles in order to gain a better understanding of the mechanisms underlying motivational 

shifts.  

RQ3. Achievement group motivational profile shifts  

In order to promote success for all students in gateway STEM courses, it is imperative to 

gain knowledge about the motivational differences among subgroups of students in STEM 
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classrooms. Our study is particularly interested in whether in-class performance, defined through 

high-, middle- and low-achieving groups of students, correlates with motivation.  

Across all achievement groups, the majority of students experienced a positive 

motivational profile shift (see Table 1.3 in Results). Namely, our findings show that the majority 

of students within each achievement group transitioned into the highly motivated profile at the 

end of the course. To our surprise, we found that all students within the low-achievement group 

who began the course as unmotivated and performance driven finished the course within the 

highly motivated profile. This finding is most impactful, as even though these students did not 

finish as top performers in the course, they are among the most motivated in the course. This 

counters the traditionally accepted argument in motivation literature that performance is a 

function of motivation and that greater motivation leads to improved performance (e.g., Cromley 

et al., 2016; NASEM, 2016, 2017, 2018; Perez et al., 2014; Linnenbrink-Garcia et al., 2018; 

Robinson et al., 2019). We feel this is an especially fruitful area for future research since our 

findings contradict prevailing assumptions about relationships between motivation and 

achievement. It is unclear to what we can attribute the cause underlying our findings, but we 

speculate two plausible, and potentially interrelated hypotheses: (1) the course in our study 

emphasized practice-based assessment (particularly, MBI), frequent collaborative learning 

activities, and multiple low-stakes opportunities for students to practice, reflect, and improve 

their performances on assessments. Studies that report positive associations between motivation 

and performance often do not report the specific nature of assessments that comprise 

performance scores. However, if these studies employ more ‘traditional’ assessment strategies 

(i.e., multiple choice items, few high-stakes exams, little to no collaboration), it is possible that 

students who typically don’t perform well with traditional approaches would be less motivated to 
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learn in those contexts. MBI and science practice-based assessments were a core feature in the 

courses in this study and may have engaged students’ motivation by providing alternative ways 

for students to represent their thinking and be successful, as well as through tasks that students 

perceived as relevant and useful to them personally as part of their training for future careers. 

Thus, it stands to reason that motivation could differ between courses that differ in their 

instructional approaches and nature of assessment underlying measures of ‘performance’. 

Additional studies are therefore warranted that explore motivational profiles in other courses that 

also emphasize MBI and/or practice-based assessment strategies. (2) Although we did not plan 

for it, this study was conducted during the Covid-19 pandemic and therefore was switched to an 

entirely online context. Studies of U.S. undergraduates adapting to online learning during the 

pandemic overwhelmingly report declines in attitudes and motivational attributes (e.g., Corpus et 

al., 2022; Hicks et al., 2023; Kalman et al., 2020; Marler et al., 2021; Parker et al., 2021; Usher 

et al., 2024). We were therefore surprised to see such positive gains in motivation and speculate 

that, again, contextual features of the course may have contributed to outcomes. Beyond MBI 

and shared approaches to assessment, both courses valued student collaboration and high-

frequency interactions between students and instructional team members. Students from both 

courses reported a strong sense of community and belief that the instructional teams cared about 

their well-being. Both courses also had very high rates of attendance (>90%) most days, 

indicating students’ desire to be present and participate. It is possible that these factors also 

contributed to motivational outcomes and warrant further exploration.   

Overall, our research documents the complex nature of motivation and indicates specifics 

of how student motivation can change over the course of a semester. Our study examines two 

sections of an introductory biology course using MBI as a practice-based pedagogy. Future 
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studies assessing motivation in other disciplines and/or within a practice-based pedagogical 

contexts would help inform whether the trends we observed are generalizable and linked more 

broadly to pedagogical approaches rather than specific features unique to our context. In 

addition, more frequent measures of motivation would provide valuable insights into when 

student motivation shifts, for whom, and in response to what classroom variables. 

LIMITATIONS 

This study was conducted with undergraduate students from two sections of an MBI-

based biology course for life science majors at a majority white Midwestern R1 university. Our 

data were collected in Fall 2020, during which, all university courses were being taught virtually 

due to the COVID-19 pandemic. It is entirely conceivable that characteristics unique to this 

population and/or context contributed to patterns in our findings. Our study design cannot claim 

a causal association that links any particular variable specifically to student motivation. Rather, 

we show that motivation can change over a semester of instruction, and that motivational 

improvements can be seen even among students with lower measures of academic 

performance.  Research that explores motivational profiles and shifts across a range of 

populations, pedagogical approaches, and instructional contexts is essential for examining the 

generalizability of our findings and for identifying the specific contextual characteristics of 

courses that prompt motivational shifts. Research on motivation in STEM courses has found that 

value (e.g., Crisp, Nora, & Taggart, 2009; Jones et al., 2010; Zusho et al., 2003), mastery goal 

orientations (Zusho et al., 2003), and competence beliefs (Estrada et al., 2011; Perez et al., 2014) 

are positively related to persistence and achievement, whereas performance-avoidance goals are 

associated with a greater probability of leaving a STEM major (Hernandez et al., 2013).  Given 

the importance of such motivational factors in predicting STEM retention, a greater 
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understanding about the features of instruction that promote or degrade motivation could be a 

critical step in retaining a larger and more diverse population in STEM careers. 

CONCLUSION 

Our study affirms that student motivation is a complicated interplay of multiple variables 

that can change over the course of a single semester. A person-centered approach applies a 

motivational systems perspective to capture complex relationships among variables that define 

subgroups and integrate constructs from multiple theories to generate profiles. Our study finds 

three motivational profiles that best characterize student motivation at the beginning of the 

semester: highly motivated; motivated, mastery and value driven; and unmotivated and 

performance driven. Two of these profiles were also present at the end of the semester: highly 

motivated and unmotivated and performance driven profiles; but a new, average motivation 

profile emerged and motivated, mastery and value driven was no longer present.  

Across high-, middle-, and low-achievement groups, we found that the greatest 

proportion of students increased in their motivation over the semester. This finding suggests that 

motivational profiles are not stable, and that grades are a poor predictor of trajectories of change. 

This research was conducted within the context of an introductory biology course taught through 

MBI. It is therefore imperative to test whether our findings are transferable to other science 

contexts using MBI or other evidence-based pedagogies.  

Motivation to learn in STEM courses, regardless of academic achievement, is a key 

factor related to student retention in STEM (NAESM, 2018). Previous research has shown that 

MBI can improve outcomes for students most at risk for leaving STEM ((Bierema et al., 2017; 

Dauer et al., 2013; Manthey & Brewe, 2013; Reinagel & Bray Speth, 2016; Verhoeff et al., 

2008). Our findings may provide additional support for this by suggesting a mechanism for MBI 
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outcomes mediated through motivation, particularly for lower-achieving students. However, 

additional research will be necessary to establish a causal link between MBI and motivation and 

to test its relationship in other class settings. We re-emphasize that our study was conducted 

during the COVID-19 pandemic and in the context of online learning. The specific impacts of 

the class setting (i.e., online or in-person) on our findings remains unknown. Finally, we recall 

that this study was inspired by findings that show motivation as a predictor of long-term STEM 

outcomes. Unfortunately, measuring these are beyond the scope of this study, but more research 

is needed that can illuminate motivational shifts as students move through a curriculum and 

determine whether positive impacts on motivation ultimately translate into higher levels of 

STEM retention and degree completion.  

  



 51 

REFERENCES 

Acee, T. W., & Weinstein, C. E. (2010). Effects of a value-reappraisal intervention on statistics  
 students' motivation and performance. Journal of Experimental Education, 78(4),   
 487–512. https://doi.org/10.1080/00220970903352753 

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: 
 B. N. Petrov, F. Csaki (Eds.), Second international symposium on information theory.  
 Budapest, Hungary: Akademiai Kiado. pp. 267–281. 

Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317–332. 

Alexander, P. A., & Murphy, P. K. (1998). Profiling the differences in students’ knowledge, 
  interest and strategic processing. Journal of Educational Psychology, 90(3), 435-447.  
 https://doi.org/10.1037/0022-0663.90.3.435  

Al-Harthy, I. (2016). Contemporary motivation learning theories: A review. International  
 Journal of Learning Management Systems, 4(2), 1-6. 
 
The American Association for The Advancement of Science (AAAS). (2015). Vision and  
 Change in Undergraduate Biology Education: Chronicling change, inspiring the    
 future. AAAS: Washington, DC. 

Anderman, L. H., & Anderman, E. M. (1999). Social predictors of change in students’   
 achievement goal orientations. Contemporary Educational Psychology, 24, 21-37.    

Anderman, E. M. (2020). Achievement motivation theory: Balancing precision and utility.  
 Contemporary Educational Psychology, 61, 1–7.       
 https://doi.org/10.1016/j.cedpsych.2020.101864  

Anderman, E. M., & Midgley, C. (1997). Changes in goal orientations, perceived academic   
 competence, and grades across the transition to middle-level schools. Contemporary  
 Educational Psychology, 22(3), 269-298. https://doi.org/10.1006/ceps.1996.0926 

Anderman, E. M., & Patrick, H. (2012). Achievement goal theory, conceptualization of   
 ability/intelligence, and classroom climate. In S. L. Christenson, A. L. Reschly, & C.  
 Wylie (Eds.), Handbook of research on student engagement (pp. 173–191). Springer  
 Science + Business Media. https://doi.org/10.1007/978-1-4614-2018-7_8 

Aragón, M. D. M., Oliva, J. M., & Navarrete, A. (2014). Contributions of learning through  
 analogies to the construction of secondary education pupils’ verbal discourse about  
 chemical change. International Journal of Science Education, 36(12), 1960-1984.   
 https://doi.org/10.1080/09500693.2014.887237  
 
Armbruster, P., Patal., M., Johnson, E., & Weiss, M. (2009). Active learning and student-  
 centered pedagogy improve student attitudes and performance in introductory biology.  
 CBE-Life Sciences Education, 8, (203-213).   

https://doi.org/10.1080/00220970903352753
https://doi.org/10.1006/ceps.1996.0926
https://psycnet.apa.org/doi/10.1007/978-1-4614-2018-7_8


 52 

Association of American Universities (AAU). (2013). Framework for systemic change in   
 undergraduate STEM teaching and learning. AAU Undergraduate STEM Education  
 Initiative. Available at: http://www.aau.edu/WorkArea/DownloadAsset.aspx?id=14357  
 Last accessed 04/15/2021. 
 
Asparouhov, T. & Muthén, B. (2014). Auxiliary variables in mixture modeling: Three-step  
 approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal,  
 22(2), 169-177. https://doi.org/10.1080/10705511.2014.935844  
 
Atanda, R. (1999). Do gatekeeper courses expand educational options? Educational Statistics  
 Quarterly, 1(1), 33–38.  

Bailey, T., Jeong, D. W., & Cho, S. W. (2010). Referral, enrollment, and completion in   
 developmental education sequences in community colleges. Economics of Education  
 Review, 29(2), 255–270.  

Barron, K. E., & Harackiewicz, J. M. (2001). Achievement goals and optimal motivation:  
 Testing multiple goal models. Journal of Personality and Social Psychology, 80(5),  
 706-722.  
 
Barron, K. E., & Hulleman, C.S. (2015). Expectancy-value-cost model of motivation. In J. S.  
 Eccles, K. Salmelo-Aro (Eds.), International encyclopedia of social and behavioral  
 sciences (2nd ed.), Motivational Psychology. Amsterdam, Netherlands: Elsevier.     
 (pp. 261-271). 
 
Bauer, J. (2022). A primer to latent profile and latent class analysis. In, M. Goller, E. Kyndt,  
 Paloniemi, S., & Damş (Eds.), Methods for Researching Professional Learning and  
 Development: Challenges, Applications and Empirical Illustrations. Springer.     
 (pp. 243-268). 

Belenky, D. M., & Nokes-Malach, T. J. (2012). Motivation and transfer: The role of   
 mastery-approach goals in preparation for future learning. Journal of the Learning  
 Sciences, 21(3), 399–432. 

Bennett, S. W., Gotwals, A. W., & Long, T. M. (2020). Assessing students’ approaches to  
 modeling in undergraduate biology. International Journal of Science Education, 42(10),  
 1697-1714. https://doi.org/10.1080/09500693.2020.1777343 
 
Bergman L.R, & Magnusson D. (1997). A person-centered approach in research on    
 developmental psychopathology. Development and Psychopathology, 9, 291–319.  
 
Bergman, L. R., Magnusson, D., & El-Khouri, B. M. (2003). Studying individual development in  
 an interindividual context: A person-oriented approach. Mahwah, NJ: Lawrence   
 Erlbaum Associates.   

Biggers, M., Braur, A., & Yilmaz, T. (2008, March). Student perceptions of computer science: A 
 retention study of comparing graduating seniors vs. CS leavers. Paper presented at the  

http://www.aau.edu/WorkArea/DownloadAsset.aspx?id=14357
https://doi.org/10.1080/09500693.2020.1777343


 53 

 39th SIGCSE technical symposium on computer science education, Portland, OR.  
 https://doi.org/ 10.1145/1352135.1352274 

Bong, M. (2001). Between- and within-domain relations of academic motivation among middle  
 and high school students: Self-efficacy, task-value, and achievement goals. Journal of  
 Educational Psychology, 93, 23-34. 
 
Bong, M. (2009). Age-related differences in achievement goal differentiation. Journal of   
 Educational Psychology, 101, 879-896.   
 
Brewer, C. A., and Smith, D. (Eds). (2011). Vision and change in undergraduate biology   
 education: A call to action. Washington, DC: American Association for the   
 Advancement of Science.  

Brophy, J. (2005). Goal theorists should move on from performance goals. Educational   
 Psychologist, 40, 167-176. https://doi.org/10.1207/s15326985ep4003_3    

Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology.   
 International Journal of Science Education, 22(9), 895–935. 

Buckley, B. C. (2012). Model-based learning. In Seel, N. M. (eds) Encyclopedia of the Sciences  
 of Learning. Springer: Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_589 

Byusa, E., Kampire, E., & Mwesigye, A. R. (2022). Game-based learning approach on students’ 
 motivation and understanding of chemistry concepts: A systematic review of literature. 
 Heliyon, 8(e09541).  

Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters  
 in a mixture model. Journal of Classification, 13, 195-212. 

Cerasoli, C. P., & Ford, M. T. (2014). Intrinsic motivation, performance, and the mediating role  
 of mastery goal orientation: A test of self-determination theory. The Journal of   
 Psychology, 148(3), 267-286. https://doi.org/10.1080/00223980.2013.783778 

Chen, X. (2015). STEM attrition among high-performing college students in the United States:  
 Scope and potential causes. Journal of Technology and Science Education, 5(1), 41–59.   
 
Chingos, M. (2018). What matters most for college completion? Academic preparation is a key 

predictor of success. American Enterprise Institute Papers & Studies, 3A. Retrieved 
from: https://www.thirdway.org/report/what-matters-most-for-college-completion-
academic-preparation-is-a-key-of-success 

Chow, A., Eccles, J. S., & Salmela-Aro, K. (2012). Task value profiles across subjects and  
 aspirations to physical and IT-related sciences in the United States and Finland.   
 Developmental Psychology, 48(6), 1612–1628. https://doi.org/10.1037/a0030194 

https://doi.org/10.1207/s15326985ep4003_3
https://doi.org/10.1007/978-1-4419-1428-6_589
https://doi.org/10.1080/00223980.2013.783778
https://www.thirdway.org/report/what-matters-most-for-college-completion-academic-preparation-is-a-key-of-success
https://www.thirdway.org/report/what-matters-most-for-college-completion-academic-preparation-is-a-key-of-success


 54 

Clement, J. (2000). Model based learning as a key research area for science education.   
 International Journal of Science Education, 22(9), 1041-1053.     
 https://doi.org/10.1080/095006900416901 
  
Clement, J., & Rea-Ramirez, M. A. (2008). Model based learning and instruction in science.  
 New York: Springer. 
 
Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis. Hoboken, NJ:  
 John Wiley & Sons. 
 
Collins, L. M., & Lanza, S. T. (2013). Latent class and latent transition analysis: With   
 applications in the social, behavioral, and health sciences. Hoboken, NJ: John Wiley &  
 Sons.  
 
Constantinou, C. P., Nicolaou, C. T., & Papaevripidou, M. (2019). A Framework for   
 Modeling-Based Learning, Teaching and Assessment. In A. Upmeier zu Belzen, J. van  
 Driel, & D. Krüger (Eds.), Towards a Competence-Based View on Models and Modeling 
 in Science Education. Models and Modeling in Science Education, Vol 12. Springer,  
 Cham.  
 
Conley, A. M. (2012). Patterns of motivation beliefs: Combining achievement goal and   
 expectancy-value perspectives. Journal of Educational Psychology, 104(1), 32-47.  
 
Cooper, A. D. (2014). “Exploring the use of non-cognitive factors in predicting college academic 
 outcomes.” Masters Theses and Doctoral Dissertations. The University of Tennessee at  
 Chattanooga, Chattanooga, Tennessee. https://scholar.utc.edu/theses/117 
 
Cooper, M. M., Caballero, M, D., Ebert-May, D., Fata-Hartley, C. L., Jardeleza, S. E., Krajcik.,  
 J. S., Laverty, J. T., Matz, R. L., Posey, L. A., Underwood, S. M. (2015). Challenge  
 faculty to transform STEM learning: Focus on core ideas, crosscutting concepts, and  
 scientific practices. Science, 350(6258), 281-282.  
 
Corno, L. (2008). On teaching adaptively. Educational Psychologist, 43, 161-173.    
 https://doi.org/10.1080/00461520802178466 
 
Corpus, J. H., Robinson, K. A., & Liu, Z. (2022, March). Comparing college students’   
 motivation trajectories before and during COVID-19: a self-determination theory   
 approach. In Frontiers in Education (Vol. 7, p. 848643). Frontiers Media SA. 
 
Cotner, S., Thompson, S., & Wright, R. (2017). Do biology majors really differ from non-STEM  
 majors? CBE-Life Sciences Education, 16(3), ar48.       
 https://doi.org/10.1187/cbe.16-11-0329 

Crisp, G. Nora, A., & Taggart, A. (2009). Student characteristics, pre-college, college, and  
 environmental factors as predictors of majoring in and earning a STEM degree: an  
 analysis of students attending a Hispanic serving institution. American Educational  
 Research Journal, 46, 924-942. http://dx.doi.org/10.3102/0002831209349460  

https://doi.org/10.1080/095006900416901
https://doi.org/10.1080/00461520802178466
https://doi.org/10.1187/cbe.16-11-0329


 55 

Cromley, J. G., Perez, T., & Kaplan, A. (2016). Undergraduate STEM achievement and   
 retention: Cognitive, motivational, and instructional factors and solutions. Policy Insights 
 from the Behavioral and Brain Sciences, 3(1), 4–11.      
 https://doi.org/10.1177/ 2372732215622648  

Dauer, J. T., & Long, T. M. (2015). Long-term conceptual retrieval by college biology majors  
 following model-based instruction. Journal of Research in Science Teaching, 52(8),  
 1188-1206. https://doi.org/10.1002/tea.21258 
 
Dauer, J. T., Momsen, J. L., Speth, E. B., Makohon‐Moore, S. C., & Long, T. M. (2013).    
 Analyzing change in students’ gene-to-evolution models in college-level     
 introductory biology. Journal of Research in Science Teaching, 50(6), 639-659.   
 https://doi.org/10.1002/tea.21094 

D’Lima, G. M., Winsler, A., & Kitsantas, A. (2014). Ethnic and gender differences in first-year  
 college students’ goal orientation, self-efficacy, and extrinsic and intrinsic motivation.  
 The Journal of Educational Research, 107(5), 341-356.  

De Lima, J. & Long, T. M. (2023). Students explain evolution by natural selection differently for 
 humans versus nonhuman animals. CBE-Life Sciences Education, 22(4), ar48.   
 https://doi.org/10.1187/cbe.21-06-0145   

Dewey, J. (1913). Interest and effort in education. Cambridge, MA: Riverside Press.  
 
Dorfman, B. S., & Fortus, D. (2019). Students’ self-efficacy for science in different school  
 systems. Journal of Research in Science Teaching, 56(8), 1037-1059.  
 
Dull, R., Schleifer, L., & McMillan, J. (2015). Achievement goal theory: The relationship of  
 accounting students’ goal orientations with self-efficacy, anxiety, and achievement. 
 Accounting Education, 24(2), 152–174. 
 
Durik, A., Lovejoy, C., & Johnson, S. (2009). A longitudinal study of achievement goals for  
 college in general: Predicting cumulative GPA and diversity in course selection.  
 Contemporary Educational Psychology, 34(2), 113-119.      
 https://doi.org/10.1016/j.cedpsych.2008.11.002 
 
Dweck, C. S. (1986). Motivational processes affecting learning. The American Psychologist, 41,  
 1040-1048. 
 
Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and   
 personality. Physiological review, 95(2), 256-273.       
 https://doi.org/10.1037/0033-295X.95.2.256 
 
Eccles, J. S. (2009). Who am I and what am I going to do with my life? Personal and collective  
 identities as motivators of action. Educational Psychologist, 44(2), 78-89.    
 https://doi.org/10.1080/00461520902832368 
 

https://doi.org/10.1187/cbe.21-06-0145
https://doi.org/10.1016/j.cedpsych.2008.11.002
https://psycnet.apa.org/doi/10.1037/0033-295X.95.2.256
https://doi.org/10.1080/00461520902832368


 56 

Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley,  
 C. (1983). Expectancies, values, and academic behaviors. In J. T. Spence (Ed.),   
 Achievement and achievement motives: psychological and sociological approaches. San  
 Francisco, CA: W. H. Freeman and Company, pp. 75-146. 
 
Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual review of  
 psychology, 53(1), 109-132. https://doi.org/10.1146/annurev.psych.53.100901.135153  

Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational  
 Psychologist, 34(3), 169-189. https://doi.org/10.1207/s15326985ep3403_3 

Elliot, A. J. (2006). The hierarchical model of approach-avoidance motivation. Motivation and  
 Emotion, 30, 111-116. https://doi.org/10.1007/s11031-006-9028-7 

Elliot, A. J. (2008). Approach and avoidance motivation. In A. J. (Ed.), Handbook of Approach  
 and Avoidance Motivation (pp. 3-14). New York, NY: Psychology Press.    
 https://doi.org/10.4324/9780203888148 

Elliot, A. J., & Church, M.A. (1997). A hierarchical model of approach and avoidance   
 achievement motivation. Journal of Personality and Social Psychology, 72(1), 218-232.  
 https://doi.org/10.1037/0022-3514.72.1.218 

Elliot, A. J., & McGregor, H.A. (2001). A 2x2 achievement goal framework. Journal of   
 Personality and Social Psychology, 80(3), 501-519.       
 https://doi.org/10.1037/0022-3514.80.3.501 

Espinoza, P., & Genna, G. (2021). Hi, I want to talk to you about your progress: a large course  
 intervention for at-risk college students. Journal of College Student Retention: Research,  
 Theory & Practice. 23(1), 2-27. https://doi.org/10.1177/1521025118790054 

Estrada, M., Woodcock, A., Hernandez, P. R., & Schulz, P. W. (2011). Toward a model of social 
 influence that explains minority student integration into the scientific community.   
 Journal of Educational Psychology, 103, 206-222. http://dx.doi.org/10.1037/a0020743  

Flanders, G. R. (2017). The effect of gateway course completion on freshman college student  
 retention. Journal of College Student Retention: Research, Theory & Practice, 19(1),  
 2–24. https://doi.org/10.1177/1521025115611396 

Flum, H., & Kaplan, A. (2006). Exploratory orientation as an educational goal. Educational  
 Psychologist, 41, 99-110. https://doi.org/10.1207/s15326985ep4102_3 

Fong, C. J., Acee, T. W., Weinstein, C. E. (2018). A person-centered investigation of    
 achievement motivation goals and correlates of community college student achievement  
 and persistence. Journal of College Student Retention: Research, Theory & Practice,  
 20(3), 369-387. https://doi.org/10.1177/1521025116673374 
 
Fong, C. J., Kremer, K. P., Cox, C. H. T., & Lawson, C. A. (2021). Expectancy-value profiles in  
 math and science: A person-centered approach to cross-domain motivation with academic 

https://doi.org/10.1146/annurev.psych.53.100901.135153
https://doi.org/10.1207/s15326985ep3403_3
https://doi.org/10.4324/9780203888148
https://psycnet.apa.org/doi/10.1037/0022-3514.72.1.218
https://psycnet.apa.org/doi/10.1037/0022-3514.80.3.501
https://doi.org/10.1177/1521025118790054
https://doi.org/10.1177/1521025115611396
https://doi.org/10.1207/s15326985ep4102_3
https://doi.org/10.1177/1521025116673374


 57 

 and STEM-related outcomes. Contemporary Educational Psychology, 65, 101962.  
 https://doi.org/10.1016/j.cedpsych.2021.101962  
 
Fortus, D., & Touitou, I. (2021). Changes to students’ motivation to learn science. Disciplinary  
 and Interdisciplinary Science Education Research, 3(1).      
 https://doi.org/10.1186/s43031-020-00029-0  

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoafor, N., Jordt H., & Wenderoth,  
 M. P. (2014). Active learning increases student performance in science, engineering and  
 math. Proceedings of the National Academies of Science, 111(23), 8410-8415.   
 https://doi.org/10.1073/pnas.131903011 

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School Engagement: Potential of the  
 Concept, State of the Evidence. Review of Educational Research, 74(1), 59-109.   
 https://doi.org/10.3102/00346543074001059  

Gilbert, S. W. (1991). Model Building and Definition of Science. Journal of Research in Science 
 Teaching, 28(1), 73-79. 

Gilbert, J. K., & Boulter, C. J. (Eds.). (2000). Developing models in science education.   
 Dordrecht: Kluwer.  

Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education (Vol. 9). Basel,  
 Switzerland: Springer international publishing.   
 https://doi.org/10.1007/978-3-319-29039-3 

Graham, M. J., Frederick, J., Byars-Winston, A., Hunter, A.-B., & Handelsman, J. (2013).  
 Increasing persistence of college STEM majors. Science, 341, 1455-1456.     

Graham, S., & Weiner, B. (1996). Theories and principles of motivation. Handbook of   
 Educational Psychology, 4(1), 63–84.  

Grant, H., & Dweck, C. S. (2003). Clarifying achievement goals and their impact. Journal of  
 Personality and Social Psychology, 85, 541-553.      
 https://doi.org/10.1037/0022-3514.85.3.541 
 
Guo, J., Parker, P. D., Marsh, H. W., & Morin, A. J. S. (2015). Achievement, motivation, and  
 educational choices: A longitudinal study of expectancy and value using a multiplicative  
 perspective. Developmental Psychology, 51(8), 1163–1176.     
 https://doi.org/10.1037/a0039440 
 
Hackel, T. S., Jones, M. K., Carbonneau, K. J., & Mueller, C. E. (2016)/ Re-examining   
 achievement goal instrumentation: Convergent validity of AGQ and PALS.   
 Contemporary Educational Psychology, 43, 73-80.         
 https://doi.org/10.1016/j.cedpsych. 2016.04.005  
 

https://doi.org/10.1016/j.cedpsych.2021.101962
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.3102/00346543074001059
https://doi.org/10.1007/978-3-319-29039-3
https://doi.org/10.1037/0022-3514.85.3.541
https://psycnet.apa.org/doi/10.1037/a0039440


 58 

Harackiewicz, J. A., Barron, K. E., & Elliot, A. J. (1998). Rethinking achievement goals: when  
 are they adaptive for college students and why? Educational Psychologist, 33(1), 1-21.  
 https://doi.org/10.1207/s15326985ep3301_1 
 
Harackiewicz, J. M.,  & Linnenbrink, E. A. (2005). Multiple achievement goals and multiple  
 pathways for learning: The agenda and impact of Paul R. Pintrich. Educational   
 Psychologist, 40(2), 75-84. https://doi.org/10.1207/s15326985ep4002_2 

Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International  
 Journal of Science Education, 22(9), 1011-1026. 

Hattie, J. A. C., Hodis, F. A., & Kang, F. H. K. (2020). Theories of motivation: Integration and  
 ways forward. Contemporary Educational Psychology, 61, 101865.    
 https://doi.org/10.1016/j.cedpsych.2020.101865 

Hayenga, A. O., & Corpus, J. H. (2010). Profiles of intrinsic and extrinsic motivations: A  
 person-centered approach to motivation and achievement in middle school. Motivation  
 and Emotion, 34(4), 371-383. https://doi.org/10.1007/s11031-010-9181-x 

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM  
 instructional practices. An analytic review of literature. Wiley Online Library.   
 https://doi. org/10.1002/tea.20439 

Hernandez, P. R., Schultz, P. W., Estrada, M., Woodcock, A., & Chance, R. C. (2013).   
 Sustaining optimal motivation: a longitudinal analysis of interventions to broaden   
 participation of underrepresented students in STEM. Journal of Educational Psychology,  
 105(1). 

Hicks, L. J., Caron, E. E., & Smilek, D. (2021). SARS-CoV-2 and learning: The impact of a  
 global pandemic on undergraduate learning experiences. Scholarship of Teaching and  
 Learning in Psychology. 

Hong, W., Bernacki, M. L., & Perera, H. N. (2020). A latent profile analysis of undergraduates'  
 achievement motivations and metacognitive behaviors, and their relations to achievement 
 in science. Journal of Educational Psychology, 112, 1409–1430.     
 https://doi.org/10.1037/edu0000445  

Hsieh, P., Cho, Y., Liu, M., & Schallert, D. L. (2008). Examining the interplay between middle  
 school student’s achievement motivation goals and self-efficacy in a    
 technology-enhanced learning environment. American Secondary Education, 36(3),  
 33-50.  

Huang, C. (2012). Discriminant and criterion-related validity of achievement goals in predicting  
 academic achievement: A meta-analysis. Journal of Educational Psychology, 104(1),  
 48-73.  

Huang, C. (2016). Achievement goals and self-efficacy: A meta-analysis. Educational Research  
 Review, 19, 119-137. https://doi.org/10.1016/j.edurev.2016.07.002 

https://psycnet.apa.org/doi/10.1207/s15326985ep3301_1
https://psycnet.apa.org/doi/10.1207/s15326985ep4002_2
https://doi.org/10.1016/j.cedpsych.2020.101865
https://psycnet.apa.org/doi/10.1007/s11031-010-9181-x
https://doi.org/10.1016/j.edurev.2016.07.002


 59 

Hughes, B. (2018). Coming out in STEM: Factors affecting retention of sexual minority STEM  
 students. Science Advances, 4(3), 1-5.   

Hulleman, C. S., Durik, A. M., Schweiert, S. A., & Harackiewicz, J. M. (2008). Task values,  
 achievement goals, and interest: and integrative analysis. Journal of Educational   
 Psychology, 100(2), 398-416. 

Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010a). Enhancing interest 
 and performance with a utility value intervention. Journal of Educational Psychology,  
 102(4), 880–895. https://doi.org/10.1037/a0019506  

Hulleman, C. S., Schrager, S. M., Bodmann, S. M., & Harackiewicz, J. M. (2010b). A   
 meta-analytic review of achievement goal measures: Different labels for the same   
 constructs or different constructs with similar labels? Psychological Bulletin, 136,  
 442-449. https://doi.org/10.1037/a0018947      

Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press. 

Jonassen, D. H., & Strobel, J. (2006). Modeling for meaningful learning. Engaged Learning with 
 Emerging Technologies, 1-27. 

Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change.   
 Interactive Learning Environments, 13(1-2), 15-37 

Jones, B. D., Paretti, M. C., Hein, S. F., & Knott, T. W. (2010). An analysis of motivation  
 constructs with first-year engineering students: Relationships among expectancies,  
 values, achievement, and career plans. Journal of Engineering Education, 99, 319-336. 

Jowkar, B., Kojuri, J., Kohoulat, N., & Hayat, A. A. (2014). Academic resilience in education:  
 the role of achievement goal orientations. Journal of Advances in Medical Education and  
 Professionalism, 2(1), 33-38. 

Justi, S. R., & Gilbert, K. J. (2002). Modelling teachers’ views on the nature of modelling and  
 the implications for the education of modellers. International Journal of Science   
 Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142    

Kalman, R., Macias Esparza, M., & Weston, C. (2020). Student views of the online learning  
 process during the COVID-19 pandemic: A comparison of upper-level and entry-level  
 undergraduate perspectives. Journal of Chemical Education, 97(9), 3353-3357. 

Kanfer, R. (2015). Motivation. Wiley Encyclopedia of Management, 11, 1-8.  

Kaplan, A. (2014). Section commentary: Theory and research on teachers’ motivation: Mapping  
 an emerging conceptual terrain. In P. W. Richardson, S. A. Karabenick, & H. M. G. Watt  
 (Eds.), Teacher motivation: Theory and practice (pp. 52–66). Routledge. 

Kaplan, D., & Keller, B. (2011). A note on cluster effect in latent class analysis. Structural  
 Equation Modeling, 18, 525-536.  



 60 

Kennedy, B., Fry, R., & Funk, C. (April, 2021). “6 facts about America’s STEM workforce and 
those training for it.” PEW Research Center. Retrieved February 10, 2022 from: 
https://www.pewresearch.org/fact-tank/2021/04/14/6-facts-about-americas-stem-  
workforce-and-those-training-for-it/ 

Kubsch, M., Fortus, D., Neumann, K., Nordine, J., & Krajcik, J. (2023). The interplay between  
 students’ motivational profiles and science learning. Journal of Research in Science  
 Teaching, 60, 3-25. https://doi.org/10.1002/tea.21789 

Lauermann, F., Chow, A., & Eccles, J. S. (2015). Differential effects of adolescents’ expectancy  
 and value beliefs about math and english on math/science-related and    
 human-services-related career plans. International Journal of Gender, Science and  
 Technology, 7, 205-228. 

Lau, K., & Lee, J. (2008). Validation of a Chinese achievement goal orientation questionnaire.  
 British Journal of Educational Psychology, 78(2), 331-353.     
 https://doi.org/10.1111/j.2044-8279.2008.tb00486.x 

Laverty, J. T., Underwood, S. M., Matz, R. L., Posey, L. A., Carmel, J. H. Caballero, M. D., et  
 al. (2016). Characterizing college science assessments: the three-dimensional learning  
 assessment protocol. PLoS ONE, 11. https://doi.org/10.1371/journal.pone.0162333   

Lazowski, R. A., & Hulleman, C. S. (2016). Motivation interventions in education: A   
 meta-analytic review. Review of Educational Research, 86(2), 602–640.  

Lazarides, R., Dietrich, J., & Taskinen, P. H. (2019). Stability and change in students’   
 motivational profiles in mathematics classrooms: The role of perceived teaching.   
 Teaching and Teacher Education, 79, 165-175.  

Lazarides, R., Viljaranta, J., Aunola, K., & Nurmi, J. E. (2018). Teacher ability evaluation and  
 changes in elementary student profiles of motivation and performance in mathematics.  
 Learning and Individual Differences, 67, 245-258.  

Lazarides, R., Viljaranta, J., Aunola, K., Pesu, L., & Nurmi, J. E. (2016). The role of parental  
 expectation and students’ motivational profiles for educational aspirations. Learning and  
 Individual Differences, 51, 29-36.       

Linnenbrink, E. A. (2005). The dilemma of performance-approach goals: the use of multiple goal 
 contexts to promote students’ motivation and learning. Journal of Educational   
 Psychology, 97(2), 197-213.   

Linnenbrink-Garcia, L., & Patall, E. A. (2016). Motivation. In Corno, L., & Anderman, E. M.  
 (Eds.). Handbook of Educational Psychology (3rd ed., pp. 91–103). Routledge/Taylor &  
 Francis Group. https//doi.org/10.1016/j.cedpsych.2007.08.001   

Linnenbrink-Garcia, L., & Pintrich, P. R. (2003). The role of self-efficacy, task value, and  
 achievement goals in predicting learning strategies, task disengagement, peer   

https://doi.org/10.1002/tea.21789
https://doi.org/10.1111/j.2044-8279.2008.tb00486.x


 61 

 relationship, and achievement outcome. Contemporary Educational Psychology, 33,  
 486-512.     

Linnenbrink-Garcia, L., & Wormington, S. V. (2019). An integrative perspective for studying  
 motivation in relation to engagement and learning. In K. A. Renninger, & S. Hidi (Eds.),  
 Cambridge handbooks in psychology. The Cambridge handbook of motivation and  
 learning (pp. 739–758). Cambridge University Press.        
 https://doi.org/ 10.1017/9781316823279.031  

Linnenbrink-Garcia, L. & Wormington, S. V., Snyder, K. E., Riggsbee, J., Perez, T.,   
 Ben-Eliyahu, A., et al. (2018). Multiple pathways to success: An examination of   
 integrative motivational profiles among upper elementary and college students. Journal  
 of Educational Psychology, 110, 1026-1048. https://doi.org/10.1037/edu0000245  

Luttrell, V. R., Callen, B. W., Allen, C. S., Wood, M. D., Deeds, D. G., & Richard, D. C. (2010). 
 The mathematics value inventory for general education students: Development and initial 
 validation. Educational and Psychological Measurement, 70(1), 142–160.  

Luo, W., Paris, S., Hogan, D., & Luo, Z. (2011). Do performance goals promote learning? A  
 pattern analysis of Singapore students’ achievement goals. Contemporary Educational  
 Psychology, 36(2), 165-176. https://doi.org/10.1016/j.cedpsych.2011.02.003   

Maehr, M. L. (1984). Meaning and motivation: Toward a theory of personal investment. In R. E.  
 Ames & C. Ames (Vol. Eds.), Motivation in Education: Student Motivation: Vol. 1, 
   (pp. 115-1114). New York: Academic Press.  

Maehr, M. L., & Midgley, C. (1991). Enhancing student motivation: A schoolwide approach.  
 Educational Psychologist, 26(3-4), 399-427.       
 https://doi.org/10.1207/s15326985ep2603&4_9 

Maehr, M. L., & Midgley, C. (1996). Transforming school cultures. Westview Press.  

Magnusson, D. (2015). Individual development from an interactional perspective: A longitudinal 
 study. Psychology Press. https://doi.org/10.4324/9781315722221 

Manthey, S., & Brewe, E. (2013). Toward university modeling instruction - Biology: Adapting  
 curricular frameworks from physics to biology. CBE-Life Sciences Education, 12, 
  206– 214. 

Marler, E. K., Bruce, M. J., Abaoud, A., Henrichsen, C., Suksatan, W., Homvisetvongsa, S., &  
 Matsuo, H. (2021). The impact of COVID-19 on university students’ academic   
 motivation, social connection, and psychological well-being. Scholarship of Teaching  
 and Learning in Psychology. 

Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The  
 Oxford handbook of quantitative methods. Oxford University Press.   

https://doi.org/10.1016/j.cedpsych.2011.02.003
https://doi.org/10.1207/s15326985ep2603&4_9
https://doi.org/10.4324/9781315722221


 62 

Matz, R. L., Fata-Hartley, C. L, Posey, L. A., Laverty, J. T., Underwood, S. M., Carmel, J. H., et  
 al. (2018). Evaluating the extent of large-scale transformation in gateway science courses. 
 Science Advances, 4(10). https://doi.org/10.1126/sciadv.aau0554  

Mayers, T., Mathis, B. J., Ho, C. K., Morikawa, K., Maki, N., & Hisatake, K. (2022). Factors  
 affecting undergraduate medical science students’ motivation to study during the   
 COVID-19 pandemic. Education Sciences, 12(9), 628. 

McCutcheon, A. L. (1987).  Latent class analysis. Newbury Park, CA: Sage.  

McDonald, J. (2015). The next generation science standards: the impact on college science  
 teaching. Journal of College Science Teaching, 45(1), 13-14.  

McGregor, H. A. & Elliot, A. J. (2002). Achievement goals as predictors of    
 achievement-relevant processes prior to task engagement. Journal of Educational   
 Psychology, 94, 381-395. https://doi.org/10.1037/0022-0663.94.2.381   

McLachlan, G.J., Peel, D. (2000). Finite mixture models. New York: Wiley.  

Meece, J. L., Anderman, E. M., & Anderman, L. H. (2006). Classroom goal structure, student  
 motivation, and academic achievement. Annual Review of Psychology, 57, 487-503.  
 https://doi.org/10.1146/annurev.psych.56.091103.070258  

Minner, D.D.; Levy, A.J.; Century, J. (2010). Inquiry-based science instruction: what is it and  
 does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research 
 on Science Teaching, 47(4), 474− 49.  

Momsen, J. L., Long, T. M., Wyse, S. A., Ebert-May, D. (2010). Just the facts? Introductory  
 undergraduate biology courses focus on low-level cognitive skills. CBE-Life Sciences  
 Education, 9(4), 435-440.   

Momsen, J. L., Bray Speth, E., Wyse, S. , & Long, T. (2022). Using systems and systems   
 thinking to unify biology education. CBE-Life Sciences Education, 21(2), 1-11.   
 https://doi.org/10.1187/cbe.21-05-0118   

Morin, A. J. S., & Wang, C. K. J. (2016). A gentle introduction to mixture modeling using  
 physical fitness performance data. In N. Ntoumanis & N. Myers (Eds.), An introduction  
 to intermediate and advanced statistical analyses for sport and exercise scientists. 
 (pp. 195–220). Chichester, UK: Wiley.  

Morrison, C., & Williams, L. E. (1993). Minority engineering programs: A case for institutional  
 support. NACME Research Letter, 4(1), 1–11. 

Mouratidis, A., Michou, A., Demicioğlu, A. N., & Sayil, M. (2018). Different goals, different  
 pathways to success: Performance-approach goals as direct and mastery-approach goals  
 as indirect predictors of grades in mathematics. Learning and Individual Differences, 61,  
 127-135. 

https://doi.org/10.1146/annurev.psych.56.091103.070258


 63 

Murayama, K., Elliot, A. J., & Yamagata, S. (2011). Separation of performance-approach and  
 performance-avoidance goals. A broader analysis. Journal of Educational Psychology,  
 103, 238-256.  
 
National Academies of Sciences, Engineering, and Medicine. (2016). Supporting students’  
 college success: Assessment of intrapersonal and interpersonal competencies.    
 Washington, DC: The National Academies Press. https://doi.org/10.17226/24697 
 
National Academies of Sciences, Engineering, and Medicine. (2018). How people learn II:  
 learners, contexts, and cultures. Washington, DC: The National Academies Press. 

National Science Foundation. (2012). Science and engineering indicators 2012. Washington,  
 DC: National Science Board. 

National Research Council. (2010). Rising above the gathering storm, revisited: Rapidly   
 approaching category 5. Washington, DC: The National Academies Press. 

National Research Council. (2012a). A Framework for K-12 Science Education: Practices,  
 Crosscutting Concepts, and Core Ideas. Washington, DC: National Academies Press.  

National Research Council. (2012b). Discipline-Based Education Research: Understanding and  
 Improving Learning in Undergraduate Science and Engineering. Washington, DC:  
 National Academies Press. 

Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience,  
 task choice, and performance. Psychological Review, 91, 328-346.     
 https://doi.org/10.1037/0033-295X.91.3.328   

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in  
 latent class analysis and growth mixture modeling: A Monte Carlo simulation study.  
 Structural Equation Modeling: A Multi-disciplinary Journal, 14(4), 535–569.   
 https://doi.org/10.1080/10705510701575396 

Olson, S. and Riordan, D.G., 2012. Engage to excel: producing one million additional college  
 graduates with degrees in science, technology, engineering, and mathematics. Report to  
 the president. Executive Office of the President. 

Parker, S. W., Hansen, M. A., & Bernadowski, C. (2021). COVID-19 campus closures in the  
 United States: American student perceptions of forced transition to remote   
 learning. Social sciences, 10(2), 62. 
 
Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2007). A latent profile analysis of  
 college students’ achievement goal orientation. Educational Psychology, 32, 8-47.  
 
Pedraza, L., & Chen, R. (2022). Examining motivator factors of STEM undergraduate   
 persistence through two-factor theory. Journal of Higher Education, 93(4), 532-558.  
 https://doi.org/10.1080/00221546.2021.1999722 
 

https://doi.org/10.1080/00221546.2021.1999722


 64 

Perez, T., Cromley, J., & Kaplan, A. (2014). The role of identity development, values, and costs  
 in college STEM retention. Journal of Educational Psychology, 106, 315-329.   
 http://dx.doi.org/10.1037/a0034027  
 
Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in  
 learning and teaching contexts. Journal of Educational Psychology, 95(4), 667-686.    
 
Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning 
 and achievement. Journal of Educational Psychology, 92(3), 544-555.    
 https://doi.org/10.1037/0022-0663.92.3.544 
 
President’s Council of Advisors on Science and Technology [PCAST]. (2012, February). Engage 
 to excel Producing one million additional college graduates with degrees in science,   
 technology, engineering, and mathematics. Washington, DC: US: Government Office of  
 Science and Technology (Report to the President), Retrieved from:    
 https://eric.ed.gov/?id=ED541511 
 
Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering  
 Education, 93, 223-231.        

R Development Core Team. (2008). R: A language and environment for statistical computing. R  
 Foundation for Statistical Computing. http://www.R-project.org  

Ranellucci, J., Hall, N. C., & Goetz, T. (2015). Achievement goals, emotions, learning, and  
 performance: A process model. Motivation Science, 1(2), 98-120.     
 https://doi.org/10.1037/mot0000014 

Renninger, K. A., & Hidi, S. (2002). Student interest and achievement: Developmental issues  
 raised by a case study. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement  
 motivation (pp. 173-195). San Diego, CA: Academic Press.   

Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do   
 psychosocial and study skill factors predict college outcomes? A meta-analysis.   
 Psychological Bulletin, 130(2), 261–288.  

Roeser, R. W., Midgley, C., & Urdan, T. C. (1996). Perceptions of the school psychological  
 environment and early adolescent’s psychological and behavioral functioning in school:  
 the mediating role of goals and belonging. Journal of Educational Psychology, 88,  
 408-422.  

Rosenberg, J., Beymer, P., Anderson, D., van Lissa, C. j., & Schmidt, J. (2018). tidyLPA: An R  
 package to easily carry out latent profile analysis (LPA) using open-source or   
 commercial software. Journal of Open Source Software, 3(30), 978.   
 https://doi.org/10.21105/joss.00978    

https://psycnet.apa.org/doi/10.1037/0022-0663.92.3.544
https://eric.ed.gov/?id=ED541511
https://psycnet.apa.org/doi/10.1037/mot0000014


 65 

Schmidt, J. A., Rosenberg, J. M., & Beymer, P. N. (2018). A person-in-context approach to  
 student engagement in science: Examining learning activities and choice. Journal of 
 Research in Science Teaching, 55(1), 19–43. https://doi.org/10.1002/tea.21409 

Schnettler, T., Bobe, J., Schuenemann, A., Fries, S., Grunschel, C. (2020). Motivation and  
 Emotion, 44, 491-507. https://doi.org/10.1007/s11031-020-09822-w 
 
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),  
  461–464. 
 
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Archér, A., Fortus, D., Shwartz, Y., Hug, 
 B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling:  
 Making scientific modeling accessible and meaningful for learners. Journal of Research  
 in Science Teaching, 46(6), 632-654. 
 
Senko, C., & Dawson, B. (2017a). Do normative-based and appearance-based performance goals 
 have different effects? A meta-analysis. Journal of Educational Psychology, 109,   
 574-598.  
 
Senko, C., & Dawson, B. (2017b). Performance-approach goal effects depend on how they are  
 defined: Meta-analytic evidence from multiple educational outcomes. Journal of   
 Educational Psychology, 109(4), 574-598.  
 
Senko, C., Hulleman, C. S., & Harackiewicz, J. M. (2011). Achievement goal theory at the  
 crossroads: Old contro-versies, current challenges, and new directions. Educational  
 Psychologist, 46(1), 26–47.  
 
Senko, C., & Tropiano, K. (2016). Comparing three models of achievement goals: Goal   
 orientations, goal standards, and goal complexes. Journal of Educational Psychology,  
 108, 1178-1192. https://doi.org/10.1037/edu0000114  
 
Seymour, E., Hunter, A. B., Weston, T. J. (2019) Why We Are Still Talking About Leaving. In:  
 Seymour, E., Hunter, A. B. (Eds.), Talking about Leaving Revisited. Springer, Cham.  
 https://doi-org.proxy1.cl.msu.edu/10.1007/978-3-030-25304-2_1 

Silva, E., & White, T. (2013). Pathways to improvement: Using psychological strategies to help  
 college students master developmental math. Carnegie Foundation for the Advancement  
 of Teaching. Retrieved from          
 www.carnegiefoundation.org/sites/default/files/pathways_to_improvement.   

Sungur, S., & Senler, B. (2008). An analysis of Turkish high school students’ metacognition and 
motivation.  Educational Research and Evaluation, 15(1), 45-62. 
https://doi.org/10.1080/13803610802591667  

 
Suresh, R. (2007). The relationship between barrier courses and persistence in engineering. 

Journal of College Student Retention: Research, Theory, and Practice, 8(2), 215-239. 
  

http://www.carnegiefoundation.org/sites/default/files/pathways_to_improvement


 66 

Trautwein, U., Nagengast, B., Marsh, H. W., Gaspard, H., Dicke, A.-L., Lüdtke, O., & 
Jonkmann, K. (2013). Expectancy-value theory revisited: From expectancy-value theory 
to expectancy-values theory? In D. M. McInerney, H. W. Marsh, R. G. Craven, & F. 
Guay (Eds.). International advances in self-research. Theory driving research: New wave 
perspectives on self-processes and human development (pp. 233–249). Charlotte, NC: 
IAP Information Age Publishing.  

 
Tuominen-Soini, H., Salmela-Aro, K., & Niemivirta, M. (2011). Stability and change in 

achievement goal orientations: A person-centered approach. Contemporary Educational 
Psychology, 36(2), 82–100. https://doi.org/10.1016/j.cedpsych.2010.08.002  
 

Umarji, O., McPartlan, P., & Eccles, J. (2018). Patterns of math and english self-concepts as 
motivation for college major selection. Contemporary Educational Psychology, 53, 146-
158. https://doi.org/10.1016/j.cedpsych.2018.03.004  

 
Urdan, T. C., & Mestas, M. (2006). The goals behind performance goals. Journal of Educational 

Psychology, 98, 354-365.    
 
Usher, E. L., Golding, J. M., Han, J., Griffiths, C. S., McGavran, M. B., Brown, C. S., & 

Sheehan, E. A. (2021). Psychology students’ motivation and learning in response to the 
shift to remote instruction during COVID-19. Scholarship of Teaching and Learning in 
Psychology. 

 
Vansteenkiste, M., Sierens E., Soenens B., Luyckx K., Lens W. (2009). Motivational profiles 

from a self-determination perspective: the quality of motivation matters. Journal of 
Educational Psychology, 101,671–88.  

 
Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. Applied Latent Class 

Analysis, 11(89-106), 60. 
 

Viljaranta, J., Aunola, K., & Hirvonen, R. (2016). Motivation and academic performance among 
first-graders: A person-oriented approach. Learning and Individual Differences, 49, 336-
372. https://doi.org/10.1016/j.lindif.2016.06.00  

 
Watt, H. M. G., Shapka, J. D., Morris, Z. A., Durik, A. M., Keating, D. P., & Eccles, J. S. 

(2012). Gendered motivational processes affecting high school mathematics participation,  
educational aspirations, and career plans: A comparison of samples from Australia, 
Canada, and the United States. Developmental Psychology, 48(6), 1594–1611. 
https://doi.org/10.1037/a0027838  

 
Weston, T. J., Seymour, E., Koch, A. K., & Drake, B. M. (2019). Week-out classes and their  
 consequences. In:Seymour E., Hunter AB. (Eds.). Talking about Leaving Revisited.  
 Springer, Cham. Pg. 197-243.         
 https://doi-org.proxy1.cl.msu.edu/10.1007/978-3-030-25304-2_1   
 

https://doi-org.proxy1.cl.msu.edu/10.1007/978-3-030-25304-2_1


 67 

Wigfield, A., & Cambria, J. (2010). Students' achievement values, goal orientations, and interest: 
 Definitions, development, and relations to achievement outcomes. Developmental  
 Review, 30, 1–35. https://doi.org/10.1016/j.dr.2009.12.001 

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation.  
 Contemporary Educational Psychology, 25(1), 68–81.       
 https://doi.org/10.1006/ceps. 1999.1015 

Wigfield, A., & Eccles, J. S. (2002). The development of competence beliefs, expectancies for  
 success, and achievement values from childhood through adolescence. In A. Wigfield &  
 J. Eccles (Eds.), Development of achievement motivation (pp. 91-120). San Diego, CA:  
 Academic Press.  

Wigfield, A., Tonks, S., & Klauda, S. L. (2009). Expectancy-value theory. In K. R. Wenzel, &  
 A. Wigfield (Eds.). Educational Psychology Handbook Series. Handbook of Motivation  
 at School (pp. 55–75). New York: Routledge/Taylor & Francis Group.  

Wigfield, A., Tonks, S. M., & Klauda, S. L. (2016). Expectancy-value theory. In K. R. Wentzel,  
 D.B. Miele (Eds.), Handbook of Motivation at School. New York, NY: Routledge.  
 
Wiggins, B. L., Eddy, S. L., Grunspan, D. Z., & Crowe, A. J. (2017). The ICAP active learning  
 framework predicts the learning gains observed in intensely active classroom   
 experiences. AERA Open, 3(2). https://doi.org/10.1177/2332858417708567   
 
Wilbert, L., Elliot, A. J., & Murayama, K. (2012). Perceived competence moderates the   
 relationship between performance-approach and performance-avoidance goals. Journal of 
 Educational Psychology, 104(3), 806-819.  
 
Wilson, K. J., Long, T. M., Momsen, J. L., & Bray Speth, E. (2019). Modeling in the classroom:  
 making relationships and systems visible. CBE-Life Sciences Education, 19(fe1), 1-5.   
 
Wormington, S. V., & Linnenbrink-Garcia, L. (2017). A new look at multiple goal pursuit: The  
 promise of a person-centered approach. Educational Psychology Review, 29, 407-445.  
 https://doi.org/10.1007/s10648-016-9358-2 
 
Zusho, A., Pintrich, P. R., & Coppola, B. (2003). Skill and will: The role of motivation and  
 cognition in the learning of college chemistry. International Journal of Science   
 Education, 25, 1081-1094.  http://dx.doi.org/10.1080/0950069032000052207 
    
 
 
 
 

 
 
 

https://doi.org/10.1177/2332858417708567
https://doi.org/10.1007/s10648-016-9358-2
http://dx.doi.org/10.1080/0950069032000052207


 68 

APPENDIX 

Table S1.1. Survey items within their corresponding motivational variable. Contextualized text 
is underlined.  

Item 
#  Motivational variable Not true 

at all 
Not so 
true 

Somewhat 
true True Very 

true 

  Science Academic Perceived Competence    

9 I am certain I can master the skills taught 
in science classes. 

1 2 3 4 5 

26 I’m certain I can figure out how to do the 
most difficult class work in science. 

1 2 3 4 5 

16 I can do almost all the work in science 
classes if I don’t give up.  

1 2 3 4 5 

18 Even if the work in science is hard, I can 
learn it.  

1 2 3 4 5 

20 I can do even the hardest work in science 
if I try.  

1 2 3 4 5 

  Achievement Goal: Mastery  

4 It’s important to me that I learn a lot of 
new biological concepts this year.  

1 2 3 4 5 

32 One of my goals in class is to learn as 
much about biology as I can.  

1 2 3 4 5 

28 One of my goals is to master a lot of new 
biological skills this year.  

1 2 3 4 5 

1 It’s important to me that I thoroughly 
understand my biology class work.  

1 2 3 4 5 
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Table S1.1 (cont’d). 

34    It’s important to me that I improve my biology skills this year.  1 2 3 4 5 

  Achievement Goal: Performance Approach  

2 It’s important to me that other students in my class think I am good at my 
biology class work.  

1 2 3 4 5 

31 One of my goals is to show others that I’m good at my biology class work.  1 2 3 4 5 

11 One of my goals is to show others that biology class work is easy for me.  1 2 3 4 5 

7 One of my goals is to look smart in comparison to other students in my 
biology class.  

1 2 3 4 5 

25 It’s important to me that I look smart compared to others in my biology class.  1 2 3 4 5 

  Achievement Goal: Performance Avoidance  

13 It’s important to me that I don’t look stupid in biology class. 1 2 3 4 5 

21 One of my goals is to keep others from thinking I’m not smart in biology 
class.  

1 2 3 4 5 

17 It’s important to me that my teacher doesn’t think that I know less about 
biology than others in my class.  

1 2 3 4 5 

15 One of my goals in class is to avoid looking like I have trouble doing the 
biology class work.  

1 2 3 4 5 

  Task Value: Intrinsic Value  

22 I enjoy the subject of biological systems. 1 2 3 4 5 

8 I enjoy the scientific practice of modeling biological systems.  1 2 3 4 5 

5 Modeling biological systems is exciting to me.  1 2 3 4 5 

3 I am fascinated by modeling biological systems.  1 2 3 4 5 

23 I like modeling biological systems.  1 2 3 4 5 

  Task Value: Attainment Value           
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Table S1.1 (cont’d). 

29 It is important for me to be a person who reasons with a systems perspective. 1 2 3 4 5 

6 Thinking with a systems perspective is an important part of who I am.  1 2 3 4 5 

14 Being someone who is good at modeling biological systems is important to 
me.  

1 2 3 4 5 

24 It is important for me to be someone who is good at modeling biological 
systems.  

1 2 3 4 5 

33 Being good at modeling biological systems is an important part of who I am. 1 2 3 4 5 

  Task Value: Utility Value 

30 Modeling biological systems is valuable because they will help me in the 
future.  

1 2 3 4 5 

12 Modeling biological systems will be useful for me later in life.  1 2 3 4 5 

27 Modeling biological systems is practical for me to know. 1 2 3 4 5 

10 Modeling biological systems helps me in my daily life outside of school.  1 2 3 4 5 

19 Being good at modeling biological systems will be important for my future 
(like when I get a job or go to graduate school).  

1 2 3 4 5 
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Table S1.2. Correlations between all motivational variables for Time 1(a) and Time 2(b). 

 
Table S1.3. Elbow plots of Bayesian information criterion (BIC) for Time 1(a) and Time 2(b). 
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CHAPTER TWO: 

Measuring student cognitive engagement in modeling (CEM): development and application of a 

CEM framework 

INTRODUCTION 

Attracting and retaining diverse individuals in science, technology, engineering, and 

mathematics (STEM) has been a persistent problem for decades. In the United States (U.S.), calls 

for programs and practices aimed at amplifying the number and diversity of STEM professionals 

(President’s Council of Advisors on Science and Technology [PCAST], 2012; National Research 

Council [NRC], 2010) have fallen short in meeting workforce demands (e.g., Lytle et al., 2021; 

National Science Board [NSB], 2020; National Center for Education Statistics (NCES), 2022; 

Seymour et al., 2019). Despite the growing need for STEM workers, attrition, meaning switching 

to a non-STEM pathway or leaving college altogether, remains high among STEM 

undergraduates (Chen, 2015; Lytle et al., 2021; National Science Foundation [NSF], 2012). As a 

result, attrition and retention in STEM has been one of the most widely researched areas in 

higher education over the past few decades (e.g., The American Association for The 

Advancement of Science (AAAS), 2011; Braxton & Hirschy, 2005; Meeuwisse et al., 2010; 

Seymour et al., 2019; Tinto, 1975; 1993; 2006; Xu, 2016).  

In “Talking about Leaving Revisited”, Hunter (2019) re-implemented a survey conducted 

over two decades earlier (Seymour & Hewitt, 1997) aimed at measuring concerns contributing to 

STEM-switching. They found that strikingly similar patterns continue to persist. For over half of 

students surveyed, three reasons were attributed to their switching out of STEM: (1) poor quality 

of teaching; (2) issues with curricular design, such as content overload, pace of delivery, and 

poor alignment between content taught and assessed; and (3) trouble with conceptual 
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understanding (Hunter, 2019). These findings echo a persistent theme that emerges from the 

collective of research on STEM attrition - that is, if we are to increase STEM retention, the 

quality of pedagogy must improve (e.g., AAAS, 2015; Cooper et al., 2015; Dagley, et al., 2015; 

Seymour et al., 2019; Sithole, et al., 2017; Xu, 2016). Specifically, learning experiences must be 

designed to engage learners - both in terms of their interests and in ways that promote their 

active construction of knowledge.  

Unlike some educational variables (e.g., socioeconomic status), engagement, or students’ 

investment in their learning, can be influenced by the way we teach (Appleton et al., 2008). 

Indeed, The Framework for Science Education (National Research Council [NRC], 2012) is built 

upon the goal of integrating an understanding of big content ideas in science with engagement in 

practices of science. “Active engagement” is encouraged throughout the framework in multiple 

scientific and engineering practices. One of these practices, which is a particular focus for this 

study, is the development and use of models (NRC, 2012, p. 42). Scientific models can be 

defined as specialized representations scientists use to depict a concept, process, or natural 

phenomenon (Constantinou et al., 2019; Halloun, 2007; Lee et al., 2017; Osbeck & Nersessian, 

2006). Scientists use models to illustrate and evaluate thinking, develop explanations, make 

predictions, and communicate science (Gilbert, 2004; Halloun, 2007; Long, et al., 2014; 

Passmore et al, 2014; Schwarz et al., 2009). Engaging students in modeling has long been 

advocated as a way to make teaching and learning science more consistent with the way science 

is practiced (e.g., AAAS, 2011; Bray Speth et al., 2014; Clement, 2000, 2008; Gilbert, 1991; 

Gobert & Buckley, 2000; Justi & Gilbert, 2002a, 2002b; Long et al., 2014; Schwarz et al., 2009; 

Wilson et al., 2020).  
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Modeling-based instruction (MBI) is an evidence-based pedagogical approach that 

engages students in the construction, interpretation, revision, and evaluation of scientific models 

(Clement, 2000; Gilbert & Justi, 2016; Justi & Gilbert, 2002a, 2002b; Long et al., 2014; Louca & 

Zacharia, 2012; Schwarz et al., 2009). MBI has been associated with significant gains in student 

understanding of unobservable phenomena in science (Kahn, 2011) and promoting more 

scientific habits of mind (Gilbert & Justi, 2016). Research on teaching and learning through MBI 

in biology has shown that building models of biological systems can promote students’ 

ecological literacy and system thinking skills and can help students identify concepts and 

relationships within a system (Dauer et al., 2013; Hmelo-Silver & Pfeffer, 2004; Hmelo-Silver et 

al., 2007; Jordan et.al, 2013; Long et al., 2014; Tripto et al., 2013; Vattam et al., 2011).  

Evidence from some studies suggest MBI may have an additional benefit in reducing 

achievement gaps, particularly for students traditionally underrepresented in science and those 

that typically underachieve on standard or rote assessments (Bierema et al., 2017; Brewe et al., 

2010; Manthey & Brewe, 2013; Reinagel & Bray Speth, 2016; Verhoeff et al., 2008). Of 

particular interest for this research, four related MBI studies suggest that prior academic 

achievement is a poor predictor of modeling-based performance and there may be additional 

benefits for students from lower achievement groups (Bennett et al., 2020; Dauer et al., 2013; 

Dauer & Long, 2015; de Lima, 2020). Indeed, a better understanding of how students are 

learning through MBI within STEM courses could inform targeted interventions that could have 

a large numeric impact on increasing STEM retention rates and make progress toward fulfilling 

STEM workforce goals.  
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In this study, we explore cognitive engagement as a potential mechanism for explaining 

performance differences in MBI contexts. Additionally, this work aims to advance MBI research 

by moving beyond examining outcomes through simple performance measures such as grades 

and focusing on students’ engagement in specific learning strategies utilized by students. 

Multidimensional framework for academic engagement 

In this study, we operationalize cognitive engagement as a framework for exploring 

learning strategies employed during modeling-based tasks. This study builds upon work within a 

modeling-based introductory biology course that explored associations between MBI and 

motivation (Furqueron & Long, in preparation). Although motivation and engagement are used 

interchangeably in some literature, scholars have identified them as fundamentally different 

components of the learning process (Finn & Zimmer, 2012; Fredricks & McColskey, 2012; 

Järvelä and Renninger, 2014; The National Academies of Sciences, Engineering, and Medicine 

[NASEM], 2018; Martin et al., 2017). Motivation refers to the private, internal processes that 

explain how and why a student is involved with an academic task while engagement represents 

the external, observable manifestation of that motivation (Connell & Wellborn, 1991; Eccles & 

Wang, 2012; Fredricks & McColskey, 2012; Finn & Zimmer, 2012; Maehr & Meyer, 1997; 

Schunk & Mullen, 2012; Skinner et al., 2009; Wang & Degol, 2014). Although theoretically 

distinct, researchers broadly agree that motivation is an antecedent of engagement (Anderman & 

Midgley, 1997; Anderman and Patrick, 2012; Dweck, 1986; Finn & Zimmer, 2012; Martin et al., 

2017; Reeve, 2013) and that engagement is a mediator that links student motivational beliefs and 

contextual features (i.e., nature of the learning task, environment, etc.) to learning outcomes 

(Anderman and Patrick, 2012; Finn & Zimmer, 2012; Wang et al., 2019).   
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Despite substantial variation in how the construct of engagement is defined and measured 

(see Alrashidi et al., 2016 for review), most overlap in explicitly linking student engagement 

with academic tasks and activities. For example, Newmann et al. (1992) define engagement as 

“... [a] student’s psychological (cognitive, emotional) investment in and effort (behaviors) 

directed toward learning, understanding, or mastering the knowledge, skills, or crafts that 

academic work is intended to promote” (p.12).  Engagement has long been conceptualized as a 

multidimensional construct (Archambault & Dupéré, 2017; Fredricks et al., 2004; Patall et al., 

2016). Both two- and four-dimensional models of engagement have been proposed (Finn, 1989; 

Skinner et al., 2009; Appleton et al., 2006; Reschly & Christenson, 2006), but the Fredricks et al. 

(2004) three-dimensional model has become widely adopted in studies of engagement and 

gained much empirical support (see Alrashidi et al., 2016 for review). In Fredricks’ (2004) 

model, academic engagement is conceptualized in three dimensions: cognitive, behavioral, and 

emotional. In this model, each dimension is recognized as being separate, yet overlapping (Bae 

& DeBusk-Lane, 2019; Reschly & Christenson., 2012; Fredricks et al., 2004; Wang et al., 

2019).  

Cognitive engagement can be thought of as students’ mental investment in learning 

(Corno & Mandinach, 1983; Fredricks et al., 2004; Meece et al., 1988; Wehlage & Smith, 1992) 

and is reflected in students asking questions for clarification, persisting in difficult activities, and 

applying flexible approaches to problem solving (Finn & Zimmer, 2012; Fredricks et al., 2004). 

Behavioral engagement is defined as physical participation in learning and academic-related 

tasks, including displays of effort, persistence, discussion contribution, and purposely seeking 

out information without prompting or assistance (Buhs & Ladd, 2001; Finn, 1989; Fredricks et 

al., 2004; Nguyen et al., 2016). Emotional engagement concerns students’ emotional reactions, 
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including boredom, happiness, sadness, anxiety, and levels of interest related to academic tasks 

and settings which engage them in learning (Mih & Mih, 2013; Pekrun & Linnenbrink-Garcia, 

2012). In this study, we focus on cognitive engagement and build upon existing 

conceptualizations of this dimension to measure student cognitive engagement in modeling-

based activities. 

Cognitive engagement 

Cognitive engagement is focused on students’ psychological investment in learning, 

including internal efforts that promote understanding and mastering knowledge and/or skills 

(Cooper, 2014; Chi et al, 2018; Fredricks et al., 2004; Nguyen et al., 2016; Shernoff, 2013; 

Wehlage & Smith, 1992; Yazzie-Mintz & McCormick, 2012). When students are cognitively 

engaged, they invest significant effort in understanding a topic and succeeding on a task 

(Rotgans & Schmidt, 2011). Through the lens of self-regulated learning theory, cognitive 

engagement is a continuous cycle between strategizing about a learning task and reflecting on 

how best to learn and progress towards one’s learning goals (Corno & Mandinach, 1983; Greene, 

2015; Richardson & Newby, 2006; Winne & Nesbit, 2010).  

Cognitive engagement is often conceptualized as the use of learning strategies (Corno & 

Mandinach, 1983; Chi et al., 2018; Greene, 2015; Greene et al., 2004; Helme & Clarke, 2001; 

Pintrich, 2000; Pintrich & Degroot, 1990; Winne, 2010). According to Greene (2015), cognitive 

engagement is the primary construct, of which, specific components include the strategies used 

to think about what one is learning or being asked to do, reflections about how best to proceed 

through the task, and the mental effort exerted to regulate the strategies.  
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Much literature exists on different categories of cognitive learning strategies and how 

they can be identified (e.g., Weinstein & Meyer, 1991; Weinstein, et al., 2000). For example, 

learning strategies can be categorized as deep and surface, with their use being identified through 

indicators such as organizing notes around themes, creating concept maps, asking questions 

(deep), or copying exact statements and memorizing (surface), (e.g., Bingham & Okagaki, 2012; 

Borkowski et al., 1987; Green & Miller, 1996; Deekens et al., 2018; Miller et al, 1996; Sedaghat 

et al., 2011). Cognitive learning strategies can also be categorized more broadly as metacognitive 

(e.g., Bennett et al., 2020; Kisac & Budak, 2014; Shannon, 2008; Weinstein, et al., 2000), 

generative (e.g., Bennett et al., 2020; Brod, 2021; Fiorella & Mayer, 2015, 2016; Wittrock, 1985) 

or retrieval learning strategies (e.g., Grimaldi & Karpicke, 2014; Karpicke & Grimaldi, 2012; 

Roediger et al., 2011). Additionally, cognitive strategy use varies by the task and individual.  

Cognitive engagement is often measured through surveys or self-report measures of self-

regulated learning strategies (e.g., Ben-Eliyahu et al., 2018; Meece et al., 1988; Pandero, 2017). 

However, cognitive engagement can also be reliably recognized through specific behavioral and 

linguistic indicators of strategy use (e.g., Barlow & Brown, 2019; Chi et al., 2018; Helme & 

Clarke, 2001).  In this study, we measure cognitive engagement in modeling-based tasks by 

observing students’ behavioral and linguistic indicators of three categories of cognitive learning 

strategies:  metacognitive, generative, and retrieval (Fig. 2.1). 
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Figure 2.1. A multidimensional framework for engagement consists of behavioral, 
emotional, and cognitive dimensions. Cognitive engagement is reflected in students’ use of 
metacognitive, generative, and retrieval learning strategies.  

Metacognition 

Since the concept of metacognition was introduced (Flavell, 1976; 1979; Brown, 1987), 

many efforts have been made to organize the theory and research within the field. Researchers 

generally agree that metacognition has two key elements: metacognitive knowledge is the 

understanding and awareness of our own thinking and learning processes (Brown, 1978; Jacobs 

& Paris, 1987) while metacognitive regulation refers to the actual actions taken in order to 

facilitate learning (Sandi-Urena et al., 2011). Metacognitive knowledge is generally measured 

through questionnaires that assess students’ knowledge of learning strategies, how they 

implement them, and when and why they should be used (Stanton, et al., 2015; Stephanou & 

Mpiontini, 2017). Research in science education has found that students’ metacognitive 

knowledge contributed to meaningful understanding of biology concepts such as genetics and 
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ecology, and improved scientific inquiry skills (Eilam & Reiter, 2014; Martin et al., 2000; Zion 

et al., 2005).  

Metacognitive regulation is not a single overt behavior and can be challenging to measure 

(Akturk et al., 2011; Chi et al., 2018; Desoete, 2008; Fredricks et al., 2004), but external 

indicators, such as verbalizing internal cognitive processes, can provide evidence of 

metacognitive-regulation strategy use in students (e.g., Bannert & Mengelkamp, 2008; Berardi-

Coletta et al., 1995; Fox et al., 2011; Georghiades, 2004; NRC, 2000). Research on 

metacognitive regulation in science disciplines suggests a relationship between metacognition 

and students’ ability to transfer scientific concepts between contexts, adapt their learning to new 

tasks, monitor reading of scientific texts, and show improved scientific reading comprehension 

(e.g., Bransford et al., 2000; Michalsky, 2013; Norris & Phillips, 2012; Palincsar & Brown, 

1984; Scardamalia et al., 1984; Schoenfield, 1991; Wang and Chen, 2014; Wang & Degol, 

2014). Although research recognizes the need for instruction that can help science learners 

develop all metacognitive abilities (e.g., Avargil et al., 2018; NRC, 2000, 2007, 2012), our study 

focuses specifically on metacognitive regulation strategies.    

Generative Learning 

Generative learning is defined as a cognitive process in which new information is 

mentally reorganized and integrated with existing knowledge; thus, enabling the learner to 

develop an understanding of the material and apply it in new situations (Fiorella & Mayer, 2015, 

2016; Gunawan et al., 2019; Parong & Mayer, 2018; Wittrock, 1974, 1985, 1992). Generative 

learning strategies are grounded in the constructivist view of learning in that learning involves 

creating meaning from to-be-learned information by mentally reorganizing it and integrating it 

with existing knowledge (Fiorella & Mayer, 2016; von Glaserfeld, 1983; Wittrock, 1985). 
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Fiorella and Mayer (2015) state, “In short, generative learning is transforming incoming 

information (e.g., words and pictures) into usable knowledge (e.g., mental models)” (pp. 1). 

Generative learning strategies have been defined as activities that prompt learners to produce 

meaningful information that goes beyond information provided by an instructor or what is within 

the instructional content (Brod, 2021; Chi et al., 2018). Research in science education recognizes 

the importance of students being able to use science knowledge generatively in order to solve 

problems and construct meaningful explanations of phenomena (Duncan, 2007; NRC, 2000).  

Retrieval 

Retrieval is the cognitive strategy of remembering previously learned concepts or events 

(Roediger & Guynn, 1996) and considers the interaction between retrieval cues in the present 

with knowledge pieces of the past (e.g., Grimaldi & Karpicke, 2014; Karpicke & Grimaldi, 

2012; Roediger & Karpicke, 2006; Roediger & Guynn, 1996). Retrieval includes both 

recognition and recall (See Moreira, et al., 2019 for review; Vorhölter et al., 2019) where 

recognition is an awareness triggered by an external cue that information has been seen before, 

and recall involves a mental search for information (e.g., Cleary, 2019; Kintsch, 1970). Both 

recall and recognition can be used in the measurement of cognitive engagement, as they imply 

active involvement in the task (Finn & Zimmer, 2012; Pintrich, 2004).  

Retrieval processes are used in all situations in which the learners convey knowledge. In 

disciplinary contexts, such as biology, students are often asked to express their knowledge 

through tasks that require both content and procedural knowledge - e.g., constructing a model, 

explaining a concept, making an inference, evaluating one’s work, and applying knowledge to a 

new problem. Therefore, explicit statements about recognition or recall of either content or 



 82 

procedural knowledge can provide evidence of retrieval as students plan for, monitor, and 

evaluate modeling tasks.  

Measuring engagement 

Tools that measure engagement (see Fredricks et al., 2011 for review) traditionally fit 

into two categories. Survey instruments have been used to document an individual’s own self-

reflection. For example, the Student Engagement Instrument (SEI; Appleton et al., 2006) and 

Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich & De Groot, 1990) have been 

used to measure students’ reflections on their use of self-regulatory and goal-setting strategies. 

Interview studies, in contrast, record objectively observed behaviors, but are less frequent in the 

literature. This may be due, in part, to the fact that observational studies are limited in their 

ability to reveal aspects of engagement that are internal and unobservable in nature (Li, 2021).  

Both surveys and observational techniques come with strengths and weaknesses (see 

Fredricks & McColsky, 2012 for in-depth discussion). Self-report measures are less likely to 

disrupt an individual’s normal learning process versus other methods, however, challenges 

include prospection (i.e., data gathered before learning events), retrospection (i.e., data gathered 

after learning events), and self-report bias (e.g, Veenman, 2005; Schelling & Van Hout-Wolters, 

2011). In-situ observation and interview methods that capture learning as it is occurring in the 

classroom or in an interview setting can eliminate issues of prospection and retrospection but are 

not free from the possibility of classroom distractions and observer bias. Because of this, 

research on engagement in science learning recognizes that a combination of measures that 

triangulate quantitative self-report and qualitative observational data are preferred over the use of 

a single instrument (Fredricks & McColskey, 2012; Greene, 2015; Sinatra et al., 2015).  
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In addition to the many modes of assessment, there is considerable variation in the grain 

size, or level of specificity, at which engagement is conceptualized and measured (Appleton et 

al., 2006; Reeve, 2013; Sinatra et al., 2015). For example, at a coarse grain size, engagement can 

be measured in school generally through attendance or participation in extracurricular activities 

(e.g., Appleton et al., 2006; Furlong & Christenson, 2008). Within the classroom, engagement 

can be assessed at a smaller grain size through measures such as homework completion and 

hand-raising (Bӧheim, et al., 2020). At a fine-grained or task-based level, engagement can be 

inferred through use of learning strategies (e.g., Dent & Koenka, 2016), time on task  (e.g., 

Helme & Clarke, 2001), or eye-tracking (e.g., Antonietti et al., 2015; D’Mello et al., 2017).  

Research Objectives 

Student engagement in science practices is key for fostering students’ understanding of 

science content, developing their science-related skills, and facilitating long-term learning. 

However, little is known about students’ cognitive engagement during their participation in 

science practices, such as modeling. This study serves two research objectives: (1) Develop a 

Cognitive Engagement in Modeling (CEM) framework for characterizing and measuring 

student cognitive engagement during modeling tasks. The CEM measures evidence of cognitive 

engagement through the use of metacognitive, generative, and retrieval learning strategies as 

students perform model-construction tasks. (2) Apply the framework to conduct original research 

about students’ cognitive engagement during model construction. For this, we applied the CEM 

to characterize cognitive engagement when students were asked to construct two types of 

models: a repeat model that asked students to reconstruct a model they had built previously for 

an exam, and a novel model that asked students to model a phenomenon based on familiar 

content but that was presented in a novel context. Previous research suggests that metacognitive 
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strategy-use becomes progressively more important as task complexity increases (e.g., Hattie et 

al., 1996; Mokos & Kafoussi, 2013). We therefore hypothesized that construction of the novel 

model would elicit greater levels of cognitive engagement, particularly through the use of more 

and/or more diverse metacognitive strategies compared to the repeat model. 

METHODS 

Course Description 

Interviewees (N=10) were undergraduate students at a large, Midwestern university with 

very high research activity (The Carnegie Classification of Institutions of Higher Education) that 

had successfully completed the second of a two-course introductory biology sequence required 

for life science majors. The first course focuses on cellular and molecular biology, whereas the 

second course provides instruction on genetics and inheritance, evolution, and ecology through 

MBI. Enrollment is open to students at any level, but the majority are in their sophomore year 

and all have completed at least one semester of general chemistry. 

Tests, homeworks, and in-class activities provided students multiple opportunities to 

engage in model-based learning (MBL). The course theme centered on biological variation and 

domain-specific concepts were introduced through this lens as three discrete but interrelated 

modules. Module 1 (Genetics and Inheritance) focused on the origin and expression of genetic 

variation, including the role of mutation and environment on gene-to-phenotype processes. 

Module 2 (Evolution) considered the consequences of phenotypic variation for species’ fitness 

and persistence in variable environments. Module 3 (Ecology) focused on the role of variation in 

the biotic and abiotic environments in predicting the structure and dynamics of populations, 

communities, and ecosystems. Collaborative modeling exercises were a central feature of in-

class activities and teams provided support and feedback during modeling tasks. In-class 
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activities were typically followed by whole-class discussions, during which, subsets of students’ 

models were shared for peer and instructor feedback and opportunities were provided for model 

revision. Online rubrics were provided for higher-stakes assessments, such as homeworks and 

exams. Rubrics specified essential components and processes that should be represented in 

students’ models, but also emphasized that there was no single “correct” model and variation 

among models was both normal and desirable.  

Participants     

Theoretical sampling ensures that specific groups of participants who may possess certain 

characteristics are included in a study (Glaser & Strauss, 1967). In this case, we sought to ensure 

diversity in students’ academic performance (i.e., grades). Students were binned into tertiles 

according to their first-exam score approximately 4 weeks into the semester. From these tertiles, 

thirty students were recruited (10 per tertile) for in-person interviews. 

In-person interviews were conducted using an electronic SmartBoard that recorded 

students’ modeling activities and video- and audio-recorded. Eleven interviews were completed 

prior to the university’s shift to online instruction due to the COVID-19 pandemic. A technical 

problem resulted in one interview being unusable. Of the ten student participants, 8 were female, 

8 white (non-Hispanic), 2 first-generation college students, and 8 sophomores (Table 2.1). 

Students are identified by the first letter(s) of a chosen pseudonym. Achievement levels are 

based on the first-exam grade, used for interview recruitment, and their grade earned in the 

course (used for post-interview analysis).  
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Table 2.1. Interviewee demographics. Interviewees are identified by a pseudonym. 
Achievement levels were determined by binning students into tertiles at two time points: first 
exam and final course grade. Additional demographic data, including self-identified gender, 
ethnicity, first-generation college student status, class rank, and declared major, were derived 
from university registrar data. 

 

Interview Design 

We used a semi-structured, think-aloud interview adapted from the 3P-SIT protocol 

described by Schӧnborn (2005). The interview was organized around a set of open-ended 

questions, specific probes intended to elicit conceptual understanding and/or interviewee 

perceptions or feelings, and additional questions that emerged from the dialogue between the 

interviewer and interviewee. Think-aloud protocols are commonly used in education and 

psychology research and are considered a valid tool for accessing cognitive activities (Ericsson, 

2006; Ericsson & Simon, 1998). Unlike structured interviews, the semi-structured format enables 

researchers to ask unplanned questions that can clarify interpretation of observed behaviors and 

emotions and co-create understanding with interviewees regarding strategy-use during modeling 

tasks (Flick, 2006; Lindlof & Taylor, 2002). According to Megaldi and Berler (2020), semi-
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structured interviews are an exploratory approach that enable the researcher to probe for deep 

discovery. Interview tasks and probes were designed to elicit data about cognitive, behavioral, 

and emotional dimensions of engagement, however, this paper describes cognitive engagement 

only.  

Interview Process 

Interview procedures were determined exempt by a university institutional review board 

(#00003353). All interviews took place in a research lab designed to facilitate in-person, clinical 

interview studies. The space was large, had a table with ample room and chairs, and video and 

audio equipment. Interviews lasted approximately 1-1.5 hours and were moderated by two 

interviewers. One interviewer acted as the primary discussant, the second assisted with note-

taking, logistics, and occasional questioning. Our interview protocol consisted of three phases: 

Consent, Orientation, and Tasks. 

Consent & Orientation 

Upon student arrival, interviewers gave a brief overview of the study and purpose for the 

interview. Students were provided a consent form, which had previously been emailed to them 

for review. To protect anonymity of participants, unique pseudonyms were used to identify 

students during the interviews. Video and audio recording began only after students provided 

consent.  

To begin the interview, students were asked to reflect on their time and experience in the 

course. Questions during this phase included: How did you like the course? What was the main 

goal you had for yourself in the course? How would you rank your effort compared to other 

classes you were taking at the time? And, did you ever seek out help (during or outside of class) 

by asking questions to the instructor, teaching assistant, or undergraduate learning assistants? To 
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familiarize students with the technology that would be used for the interview, students were 

asked to make a simple drawing on the SmartBoard using the stylus and applying different pen 

colors, shape inserts, line sizes, etc. 

Modeling Construction Tasks 

Tasks were designed to elicit students’ thinking and modes of engagement in relation to 

two model construction tasks:   

Repeat Model (CFTR): Students were asked to construct a model in response to a prompt 

that was previously administered on their first exam. The prompt was designed to assess 

students’ understanding of information flow using the context of the genetic disease, 

cystic fibrosis. Specifically, students were asked to construct a model that explains how 

genetic variation originates at the CFTR gene and ultimately results in the expression or 

non-expression of the cystic fibrosis phenotype. A minimal list of potential model 

components was provided (e.g., gene, protein, etc.) and students were encouraged to add 

additional concepts as they saw fit (Appendix, page 141). 

Novel Model (Carbon Cycle): In this task, students were asked to construct a model that 

explained carbon cycling in an aquatic ecosystem. Carbon cycling was a subject in the 

Ecology module of the course and although students had modeled carbon cycling for a 

variety of systems, the context of the aquatic ecosystem was novel. Background 

information was provided in order to re-familiarize students with the concepts but a key 

components list was not initially provided. Instead, students were first prompted to 

identify and list concepts they believed would be needed to create a model that would 

describe the cycling of carbon in a simple aquatic system (Appendix, page 141). Once the 

student informed researchers they were done reading the background information and had 
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identified key concepts, students were then provided a list of key components and 

prompted to construct a model using the provided words and any other model elements 

necessary to explain the model function. (Appendix, page 142). In this way, we were able 

to first elicit students’ conceptions of key concepts, but also ensure that all students had 

an equivalent baseline of key concepts for the model construction task.   

As part of the think-aloud protocol, interviewers asked probing questions as students 

worked through each task to encourage discussion of strategies employed. Prompts such as, 

“Please keep thinking aloud for us,” and “Can you keep talking us through what you are doing?” 

were frequently used. Also, if a student began to erase a component of their model, interviewers 

asked, “Can you explain what you are doing?”, or “Why did you decide to erase/change that?”.  

Data indicating students’ cognitive engagement were derived from both observable behaviors 

(e.g., a student erasing work) and from dialogue that arose between interviewers and 

interviewees. Following completion of the model-building tasks, all students were probed with 

procedural questions to elicit understanding of cognitive strategies they employed. These 

questions included:  

• Why did you start your model with [component]?  

• Do you have any particular strategy or approach you use that helps you to get started? 

• Is there any particular approach or strategy you use to progress through the model 

building phase after you’ve gotten started? 

• What helps you put the components and relationships together? and, 

• How do you know when you are finished?   
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Coding Protocols  

Metacognition and metacognitive regulation are often measured in relation to three 

distinct phases associated with progression through a learning task: planning, monitoring, and 

evaluating (e.g., Fogarty, 1994; Jacobs & Paris, 1987; Pintrich, 2002; Sandi-Urena et al., 2011; 

Schraw & Moshman, 1995; Silver, 1979; Winne & Nesbit, 2010). Because this three-phase 

distinction used when measuring metacognition is generally applicable to the overall model-

construction process, we used them to demarcate distinct model-construction phases (described 

below). While we acknowledge that students could conceivably iterate among phases (e.g., one 

might evaluate their plan before progressing through a task), we define specific start and end 

points for each phase for the purpose of simplifying our coding approach and guiding our 

analyses. 

(1) Planning refers to the development of a plan before approaching a learning task. 

These activities include predicting, brainstorming, determining time and effort allocation, 

strategy selection, and setting goals (Brown, 1987; Karpicke, 2009; Schraw & Moshman, 

1995; Stefanou et al., 2002). Metacognitive planning strategies are essential in the 

problem-solving process for students to generate ideas for approaching a problem (Lesh 

& Zawojewski, 2007) and can improve outcomes regardless of context and content of the 

task (Schraw & Moshman, 1995). We define planning as the time from which the student 

was provided the background information for a prompt until they began the task.  

(2) Monitoring encompasses self-assessment during a learning situation in order for the 

learner to be successful on the task (Schraw & Moshman, 1995; Stanton et al., 2015). 

This phase specifically includes self-regulating activities concerning the need for help, 

error detection, and consideration of whether one’s selected strategy is working and 
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making appropriate adjustments (e.g., Carter et al., 1998; Perry, 2013; Zimmerman, 

2002). Researchers are particularly interested in metacognitive monitoring because 

student self-awareness and subsequent application of monitoring activities can improve 

content understanding and problem-solving ability (Metcalfe, 2009; Schraw & Moshman, 

1995; Stephanou & Mpiontini, 2017). Monitoring begins when the student starts the task 

and ends when they declare they are finished.  

(3) Evaluating refers to one’s appraisal of the results after completing the task or a 

component of the task (Schraw et al., 2006). Metacognitive evaluation comes in response 

and is complementary to the monitoring phase (Kim et al., 2013). For example, if one’s 

monitoring reveals a lack of progress towards a solution, evaluative processes may reveal 

the need to try an alternative problem-solving strategy. Tanner (2012) additionally notes 

that evaluation is closely related to the planning phase of metacognitive regulation 

because as someone evaluates their learning they may also be considering a different 

approach or strategy if they were to complete the task again. However, for the purposes 

of our study, evaluating considers the time from task completion until the interviewers 

finish with probing questions. 

Each modeling phase was independently coded by two raters for evidence of indicators of 

each CEM dimension (i.e., metacognition, generative learning, and retrieval). Analyses began 

with interviewers writing a post-interview memo (Glaser, 1978) describing any key interview 

moments and initial thoughts on the students’ level of engagement. Once all interviews were 

complete, we adapted a qualitative content analysis approach (Morgan, 1993; Mayring, 2000) to 

code interview transcripts and video data to identify and categorize behavioral and linguistic 

indicators of cognitive engagement. Both raters had expertise and familiarity with the literature 
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on metacognition, generative learning, and retrieval, and were therefore aware of plausible 

indicators reflective of each dimension. The initial phase of coding process included regular 

conversations to establish clear definitions for a priori codes. In addition, raters retained an open 

coding approach, in which relevant novel behaviors or strategies were noted, even when their 

identity or nomenclature was unknown. These were organized into meaningful categories and 

emergent themes were identified.  

Due to the length of the interviews and human resources, two researchers coded the video 

and transcript data concurrently. Intercoder reliability (ICR) measures agreement between two or 

more coders regarding how the same data should be coded (O’Connor & Joffe, 2020). Whereas 

interrater reliability (IRR) is reported for data rated on an ordinal or interval scale (e.g., scale of 

low to high engagement), ICR is appropriate for categorizing data at a nominal level (e.g., 

presence or absence of a behavior) (Cheung & Tai, 2021; O’Connor & Joffe, 2020).  In cases of 

non-agreement, researchers discussed and came to a consensus decision, reaching an ICR of 1.0. 

A clear coding frame was developed (Table 2.2) to reduce, classify, and synthesize the data 

(Gaskell, 2000).  

RESULTS 

A Framework for Measuring Cognitive Engagement During Model-Construction  

Our analyses of students’ statements and behaviors during model construction revealed a 

total of 14 unique indicators distributed across three dimensions of learning (metacognition, 

generative learning, and retrieval) and three phases of task completion (planning, monitoring, 

and evaluating) (28 indicators overall). Below, we provide definitions and examples of key 

indicators for each CEM dimension that derive from literature review (Table 2.2). In addition, 

we note the phase(s) in which each indicator appeared (Table 2.3).  
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CEM Dimension 1: Metacognitive Strategies 

Nine unique indicators of metacognitive strategy use were identified during interviews 

(Table 2.2). Each indicator was consistent with metacognitive indicators referenced in cognitive 

engagement literature, though in some cases, we modified the indicator name to better reflect the 

unique context of modeling. Metacognitive strategies were observed in all phases of model 

construction, though not all indicators were observed in all phases. 

(1) Task organization considers students’ verbal or behavioral indicators that explain how 

they are combining different pieces of information together in order to complete a task or 

solve a problem. According to Morin (2014), metacognition begins when a student thinks 

about the steps and strategies they will use to complete a task. Butler (1998) refers to this 

type of metacognitive activity as “interpreting task requirements”, which is considered in 

some research as a deep learning strategy (e.g., Appleton et al., 2006; Fredricks et al., 

2004; Chi et al., 2018; Greene, 2015; Miller et al., 1996; Schnitzler et al., 2020; Veenman 

et al., 2006). Students’ use of task organization was only observed during the planning 

phase. 

(2 & 3) Identifying key components and relationships is critical for constructing system 

models, such as the ones students were tasked with in this study. Students used a box-

and-arrow framework for developing system models in which structures (physical 

components of a system) are in boxes, and relationships (the mechanisms connecting 

structures) are on connecting arrows (Goel & Stroulia, 1996; Dauer et al., 2013). 

Together, the structures and relationships (boxes and arrows) illustrate how a system 

functions. As students identify key components and relationships, they are engaging in a 

metacognitive strategy of “unpacking the task” and deciding what is or is not important 
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to include (Flavell, 1976; Fogarty, 1994). In other words, as students identify 

components and relationships that will go into their model, they must consider both what 

is necessary for representing the system as well as explaining the specified model 

function (Momsen et al., 2022). This is consistent with Meijer et al.’s (2006) 

metacognitive planning category of “looking for particular information in text.” Students 

identified key components and relationships only during the planning phase.   

(4) Self-questioning is a metacognitive process that enables learners to gain a better 

understanding and organize their thinking before, during, and after the task at hand 

(King, 1991; Kramarski & Mevarech, 2003; Meijer et al., 2006; Schoenfeld, 1992; 

Weinstein, et al., 2000; Williamson, 1996). Self-questioning can help students focus 

their attention and interact more deeply with the presented information (Kramarski & 

Dudai, 2009). One study found that students who self-questioned before a challenging 

task (i.e., “What do I need to do first?”) performed significantly better than students who 

made declarative statements, such as, “I will do this first” (Senay et al., 2010). Questions 

during the planning phase referred to preparation of the problem-solving process, 

whereas questions during the monitoring phase were directed toward the problem-

solving process itself. No self-questioning was observed during the evaluation phase.  

(5) Error detection, sometimes referred to as error monitoring, is considered a metacognitive 

skill in which students find and reflect upon errors, leading to deeper learning and more 

correct conceptions (e.g., Borasi, 1994; Grosse & Renkl, 2004; Kruger & Dunning, 

1999; Meijer et al., 2006; Melis et al., 2010; Ohlsson, 1996; Weinstein et al., 2000; 

Yeung & Summerfield, 2012). Several researchers consider error detection an “expert-

like” skill (e.g., Aleven & Koedinger, 2002; Bielaczyc et al., 1995; Lewis, 1989; Masson 
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et al., 2014). In modeling, error detection can include verbal and non-verbal indicators 

of students noticing something missing or incorrect in their model (Bennett et al., 2020; 

Dauer et al., 2024). Error detection emerged during the monitoring phase as students 

worked through the model-based task, and during the evaluation phase as students 

reviewed their work and were probed by interviewers on their problem-solving process. 

(6) Error correction is a metacognitive strategy in which one revises an element of a model 

or explanation in order to correct an error (e.g., Bennett et al., 2020; Chin & Brown, 

2000a; Fernandez-Duque et al., 2000; Meijer et al., 2006; NRC, 2000). While error 

detection always precedes error correction, error correction does not always follow from 

error detection. Students engaged in error correction during the metacognitive monitoring 

and evaluating phases.  

(7) Progress toward a solution is indicated when students verbalize the steps they are taking 

to solve a problem while engaged in the problem-solving process (Veenman et al., 2006). 

Evidence of progress towards a solution was made during the monitoring phase as 

students talked the interviewers through their mental processes while trying to understand 

and complete the task at hand. 

(8) Acknowledging uncertainty, limitations in one’s ideas, or a lack of knowledge are 

considered productive metacognitive strategies (Chin & Brown, 2000a; Meijer et al., 

2006). Uncertainty is common in academic settings as students may struggle to learn and 

utilize new knowledge and skills and come to new understandings (Jordan, 2010), yet the 

experience of uncertainty can push students toward reorganization of their thinking; thus, 

leading to learning (e.g., Jonassen & Land, 2012). Students’ acknowledgement of 
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uncertainty occurred during the monitoring phase as they worked through completion of 

the task.  

(9) Rechecking is a metacognitive strategy in which the student monitors one’s own 

comprehension of text or images by deliberately pausing and going back to the provided 

text or image (Meijer et al., 2006; Huff & Nietfeld, 2009). Rechecking was identified 

during the monitoring phase with combined behavioral and verbal cues reflecting 

students’ comprehension of the task or their own work.  

CEM Dimension 2: Generative Learning Strategies 

Indicators of generative learning were derived from two existing frameworks. Fiorella & 

Mayer’s (2016) generative learning framework identifies summarizing and self-explaining as 

indicators of generative learning, while Bennett et al’s (2020) ‘Approach to Modeling’ 

framework contributes self-generated analogies as an additional indicator of generative learning 

strategy use. All three indicators were measured during planning, monitoring, and evaluating 

phases. 

(1) Summarizing entails actively selecting main ideas and translating them into one’s own 

words (Brod, 2021; Fiorella & Mayer, 2015, 2016). This can include giving a brief verbal 

overview of a discussion, argument, or passage, or taking notes during a lecture (e.g., 

Peper & Mayer, 1986; Ross & Kirby, 1976). Brod (2021) characterizes summarizing as a 

student enriching the provided information with additional content beyond only 

paraphrasing or condensing the given information. The act of summarizing encourages 

learners to select what they believe to be the most relevant information and integrate it 

into existing knowledge (Fiorella & Mayer, 2015, 2016).  
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(2) Self-explaining differs slightly from summarizing by involving further elaboration upon 

the material. Self-explaining draws upon more active use of relevant prior knowledge to 

reorganize the new information into a more meaningful mental representation (Chi et al., 

1994; Fiorella & Mayer, 2016). For example, while reading through background 

information for a modeling-based task, a student could verbally explain how the new 

material integrates with existing knowledge or areas where they are unfamiliar with the 

content.  

(3) Self-generated analogies indicate generative learning as a learner creates meaning from 

the a by relating it to other ideas or concepts (Bennett et al., 2020; Chin & Brown, 2000a, 

2000a, Postareff et al., 2015; Fiorella & Mayer, 2015; Wittrock & Alesandrini, 1990). 

Research suggests that the use of analogies is a key component of the process of 

modeling (Chin & Brown, 2000a, 2000b; Louca & Zacharia, 2012), and that the 

generation of analogies between new and existing knowledge can lead to deeper levels of 

learning (Mayer, 2010; Wittrock, 1994) and better conceptual understanding in science 

(Wong, 1993a, 1993b). In our study, students generated analogies regarding both content 

and procedural information.  

CEM Dimension 3: Retrieval Strategies 

For students to be successful on tasks, including modeling-based tasks, they must be able to 

draw from previously learned information and apply it to the present context. For our study, we 

considered retrieval in relation to both procedural knowledge about modeling and biological 

content knowledge. Statements of previously learned content and procedural knowledge indicate 

an activation of prior knowledge and can inform researchers about what information has been 

stored in long-term memory and whether that information exists in a meaningful, retrievable 
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form (Moreira et al., 2019). Retrieval strategies were observed for both content and procedural 

knowledge in all model-construction phases.   

(1) Retrieval of procedural knowledge was measured through statements reflecting recall or 

recognition of model-based practices or techniques. For example, students could make 

statements about specific model-building techniques, such as how to start or where to 

start, or statements on how to analyze and find a solution to data integration or reasoning 

problems. 

(2) Retrieval of content knowledge was measured through statements reflecting recall or 

recognition of previously learned biological concepts. Statements could reflect content 

specific to the introductory-biology course or general content from any other course. For 

example, carbon cycle model tasks may have elicited additional content from prior 

molecular biology or chemistry courses.  
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Table 2.2. Cognitive Engagement in Modeling (CEM) Framework Indicators. Definitions and 
examples of CEM indicators for Metacognitive, Generative Learning, and Retrieval 
Dimensions.  
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Table 2.3. Cognitive Engagement in Modeling (CEM) Indicators by Modeling Phase. 
Appearance of indicators for Metacognitive, Generative and Retrieval dimensions during 
planning, monitoring, and evaluation phases of model-construction.  

 

 

 

 

 

 

Applying the CEM Framework to Characterize Students’ Cognitive Engagement During 

Modeling 

We applied our CEM framework to interview transcript and video data to explore two research 

questions: (1) How does cognitive engagement vary across phases of model construction?; (2) 

How does cognitive engagement compare when students are constructing a novel model versus a 

model that had been previously constructed (i.e., repeat model)?; and, (3) How does academic 

achievement (i.e., grades) relate to students’ cognitive engagement in model-construction tasks?  

RQ1. Cognitive engagement in model-construction phases 

For this study, we applied the CEM framework to identify the presence of indicators in 

each modeling phase for novel and repeat model-construction tasks. Overall, both model 

construction  
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tasks elicited a variety of learning strategies and, occasionally, a large number of them. Data in 

Tables 2.4 and 2.5 suggest that all phases of modeling construction tasks elicit a fair amount of 

cognitive engagement, but trends differ by modeling phase.  

Planning. Students evidenced a fair number of strategies in the planning phase. Of these, 

metacognitive strategies were most prevalent; particularly, task organization (10 students), and 

identification of key components (10 students) and relationships (10 students). Within students, 

identification of key components was the most frequently used strategy overall. Of the generative 

learning strategies, only two students generated an analogy, whereas all 10 evidenced self-

explanation. Nine students indicated retrieval strategy use; particularly, eight students evidenced 

retrieval of procedural knowledge and five content knowledge.   

Monitoring. Students exhibited the most strategies and the greatest prevalence of 

strategy-use during monitoring. Six indicators of metacognitive strategy use were recorded, and 

of those, error detection (9 students), error correction (9 students), progress toward a solution (10 

students), and rechecking (10 students) were used most frequently. Within students, rechecking 

was used most frequently. Of the generative learning strategies, only one student generated an 

analogy, seven engaged in summarizing, and all 10 evidenced self-explanation. The majority of 

students evidenced both indicators of retrieval strategy use, with seven demonstrating retrieval of 

procedural knowledge and eight demonstrating retrieval of content knowledge.  

Evaluation. Students exhibited the fewest strategies during evaluation. Only three 

indicators of metacognitive strategy use were evidenced, including rechecking (10 students), 

error detection (5 students), and error correction (5 students). Compared to the planning and 

monitoring phases, generative learning strategies were evidenced the least during the evaluation 

phase. Of the generative learning strategies, however, self-explanation was used by all 10 
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students. Within the evaluation phase, retrieval strategies were the least observed, with six 

students evidencing retrieval of procedural knowledge and five content knowledge.  

RQ2. Cognitive Engagement by Task Context 

 Based on previous research, we hypothesized that students would exhibit greater levels of 

cognitive engagement in the Novel Model due to the increase in task complexity. Table 2.6 

shows the difference in the frequency of indicators between the Novel and Repeat Model. 

Overall student cognitive engagement totals presented in Table 2.6 do not necessarily support 

our hypothesis, as while there is evidence of greater cognitive engagement in the Novel context 

(positive total), there is also equal use in both contexts (zero), and more cognitive engagement in 

the Repeat context (negative total). At the phase level, data indicates a greater frequency of 

strategy use during Planning in the Novel context (i.e., more red), whereas there is greater 

strategy use during Evaluation in the Repeat context (i.e., more blue). Students appear to use 

strategies fairly equally in both contexts during Monitoring.   

Students varied greatly in their use of metacognitive strategy use, for example, students 

engaged in more task organization and identification of key components and relationships with 

the Novel Model, whereas self-questioning was the only metacognitive strategy students used 

more frequently with the Repeat Model. Both models elicited a small number of distinct 

generative learning strategies. Analogy was rarely used, with only two students using it during 

the Planning Phase of the Repeat Model and one student using it during Evaluation of the Novel 

Model. Self-explanation, however, was used by all students and more frequently in the Novel 

Model. Interestingly, summarizing was only used by one student during Evaluation, but appeared 

in both Planning and Monitoring Phases of both model types. Retrieval strategies were mixed 
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across model types, but there was a tendency to engage in more content recall for the Repeat 

Model. 

Some students, such as June and Ember, demonstrated trends we hypothesized and used 

more strategies for the Novel Model (Table 2.5) than the Repeat Model (Table 2.4). For 

example, although June was the least cognitively engaged of the ten students for the Repeat 

Model, she was among the most cognitively engaged for the Novel Model. In the Planning Phase 

of the Repeat Model, June used no generative strategies and only a single instance of a 

metacognitive learning strategy (task organization) stating, “I’m trying to think about the type of 

model to show this. I think it may be a DNA helix model.” But when Planning for the Novel 

Model, June indicated four instances of two generative strategies (summarizing, self-explaining) 

and eight instances of four metacognitive strategies (self-questioning, identifying key 

components and relationships, and task organization). Her greater use of task organization was 

illustrated by her stating, for example, “It says there are two different pathways, so it probably 

branches off” and “It says they are coupled, so I think that means they will interact somehow.” 

During Monitoring, June used the same number of strategies overall between tasks, but the 

specific strategies and frequencies of use differed. For example, June only used error detection 

and correction for the Repeat Model but invested more cognitive engagement into making 

progress towards a solution and acknowledging uncertainty for the Novel Model.  

Despite being considered a middle-achieving student, Ember was the most cognitively 

engaged in both model-construction contexts. She used more learning strategies thank any of her 

peers, particularly in the Novel Model task (52 total strategies vs. 13-36 for all other students). 

Unlike June, Ember remained fairly consistent in which strategies she used during the Planning 

Phase but engaged in them more frequently in the Novel context. She became more specific in 
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the Novel context as well. For example, in the Repeat context, she made two general statements 

about identifying key concepts: “I’m just underling key information,” and, “I’m circling words 

that will go into the model.” On the other hand, her statements in the Novel context included, 

“I’m circling what carbon is controlled through […]”, “I think this is the key takeaway – that 

carbon is transformed,” and, “I circled ‘concentration of carbon’ because I think that’s a huge 

component to understanding all of this.” Ember’s cognitive engagement in the Novel Model is 

notable for her acknowledgement of uncertainty. Although absent in the Repeat Model, she 

indicated multiple points of confusion in the Novel context through statements such as, “Oh, I 

was getting confused on which one [component] is putting it [carbon] out and which one is 

putting it in […] and now I feel like I’m missing a lot of stuff,” and, “This just doesn’t feel right, 

I think I’m missing some things like photosynthesis, so I think I need to add more boxes.”  

In contrast to students like June and Ember, some students executed fewer learning 

strategies in the Novel Model. For example, Ashley used 26 strategies for the Repeat Model and 

only 1e for the Novel Model. In the Repeat Model, Ashley used no learning strategies for 

Planning and only one (rechecking) in the Evaluation Phase. Her primary strategy use occurred 

during the Monitoring Phase, as she engaged in repetitive use of trying to find a solution and 

rechecking and was centered on trying to determine appropriate relationships for her model. For 

example, she stated, “So I'm going to start with the alleles and then I need an action word […] 

Okay, so I will have the defective and normal protein, but now I need to figure out the 

relationship […] "I'm trying to figure out what to put on the action arrow there [between normal 

protein and no cystic fibrosis]”. Ashley expressed more ‘self-questioning’ than any other student, 

which included explicitly trying to recall the exam-model she had previously constructed, with, 

“How did I start this before?”.  Ashley was the least-cognitively-engaged student in the Novel 
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Model where she shifted her investment to the Planning Phase (five strategies) but only two 

during Monitoring, and was the only student to use no strategies for Evaluation. 

Table 2.4. Cognitive Engagement During a Repeat Model Task. Heat map reflecting instances 
of metacognitive, generative learning, and retrieval strategy-use during repeat-model 
construction according to total number of indicators recorded. Interviewees are identified by 
their pseudonym. Colors represent varying counts of each indicator: the lighter the color, the 
lower the count; the darker the color, the higher the count. 
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Table 2.5. Cognitive Engagement During a Novel Model Task. Heat map reflecting instances of 
metacognitive, generative learning, and retrieval strategy-use during novel-model construction 
according to total number of indicators recorded. Interviewees are identified by their 
pseudonym. Colors represent varying counts of each indicator: the lighter the color, the lower 
the count; the darker the color, the higher the count. 
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Table 2.6. Difference Map of Cognitive Engagement for Novel and Repeat Models. 
Interviewees are identified by their pseudonym. Scores reflect differences in the frequency of 
indicators between the novel and previously-constructed model (i.e., [frequency of indicator 
during novel model construction] - [frequency of indicator during repeat model construction]. 
Positive scores (red) reflect a higher frequency of an indicator during novel model construction. 
Negative scores (blue) reflect a higher frequency of an indicator during repeat model 
construction. Zero values (white) indicate no difference between the two models in the frequency 
of an indicator. 

 

RQ3. Cognitive engagement across student achievement levels  

We predicted that higher achieving students might show the greatest use and diversity of 

learning strategies, and that the reverse would be true for lower achieving students. This 

prediction was not born out by the data. Tables 2.4 and 2.5 show that students of all achievement 

levels are cognitively engaged during model construction tasks and that learning-strategy use 

appears unrelated to achievement level. Indeed, no clear trends appear to emerge in relation to 

achievement level. When considering overall strategy use for both the Repeat and Novel tasks, 

high and middle achieving students appear at both the highest and lowest frequencies of strategy 

use. When considering differences in approaches between task types (Tables 2.6), high and 
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middle achievers similarly appear at both extremes. Interestingly, students classified as lower 

achieving are consistently in the middle across all comparisons. However, some differences to 

emerge when considering interactions among achievement level, task type, and specific strategy 

use.   

Considering metacognitive strategy use, higher-achieving students were more engaged in 

error detection and correction during Monitoring of the Repeat Model (i.e., greater frequency of 

blue) compared to their middle- and lower-achieving peers who indicated more error detection 

and correction with the Novel Model (i.e., greater frequency of red). Across high- and middle-

achievement groups, error detection and correction in both contexts consisted mostly of students’ 

statements and behaviors of detecting and then correcting incorrect components or relationships 

in their model. Neither Ryan nor Hope, the two students considered low achieving, engaged in 

this type of error detection and correction. Instead, their indicators error detection were 

concerned with physical model construction. For example, in the Repeat Model, Hope drew a 

single arrow from her first ‘Chromosome 7’ component, but then erased it stating, “Oh wait, not 

this.” Hope ended up not including a relationship from Chromosome 7 in her model, and, when 

prompted by interviewers to talk through her thinking she stated, “This model would need some 

verbal explanation. I have to mentally form arrows on this model.” Similarly, in the Novel 

Model, Ryan began by drawing a single, long, curved arrow. He then stated, “Wait, this needs 

components,” and then erased the large arrow and re-drew smaller, curved arrows connected by 

boxes. Overall, differences in error detection and correction that emphasized content versus 

physical model structure warrants further exploration.  
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Trends for other metacognitive indicators (e.g., progress towards solution, acknowledges 

uncertainty, rechecking), suggest higher-achieving students engaged in these strategies more 

during the Novel Model, whereas middle-and low-achieving students indicated more use during 

the Repeat Model. Generative learning strategy use was generally infrequent across achievement 

levels and across contexts, but some gaps were noteworthy. No low-achieving students used 

generative strategies in the Planning Phase of the Repeat Model, and no high-achieving students 

used them in the Evaluation Phase of the Novel Model. Middle-achieving students remained 

fairly consistent with generative learning strategy use across contexts and phases.  

Overall, retrieval strategies were not common in the Novel context, but middle-achieving 

students accounted for the majority of them used. Interestingly, these middle-achieving students 

(specifically, Anna, David, and Ember) retrieved content from other biology courses in relation 

to the carbon cycle (Novel Context). For example, Anna specifically stated, “I haven’t thought 

about carbon cycles since the cellular and molecular course.”  David recalled, “I know from 

previous classes that CO2 is stored in the atmosphere.” And Ember stated, “I remember learning 

about the carbon cycle from the cellular course, so I’m trying to remember the big ideas from 

back then.”  

DISCUSSION 

Attrition from STEM majors has been positively linked to pedagogical practices that fail 

to engage learners in ways that reflect their interests and promote active construction of 

knowledge (Hunter, 2019).  MBI is as an evidence-based pedagogical approach in which, 

students construct, interpret, revise, and evaluate scientific models (Clement, 2000; Gilbert & 

Justi, 2016; Justi & Gilbert, 2002a, 2002b; Long et al., 2014; Louca & Zacharia, 2012; Schwarz 

et al., 2009).  MBI shows promise as an instructional approach that reduces achievement gaps 
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and promotes more equitable outcomes compared with traditional performance measures 

(Bierema et al., 2017; Dauer et al., 2013; Manthey & Brewe, 2013; Reinagel & Bray Speth, 

2016; Verhoeff et al., 2008). However, research to date has not explicitly addressed whether 

modeling specifically promotes engagement, nor what behavioral or cognitive indicators can 

provide evidence of engagement when students are performing model-based tasks. Our work 

draws from existing theory about cognitive engagement and in-situ observations of students 

actively constructing models to propose and test a Cognitive Engagement in Modeling (i.e., 

CEM) framework for characterizing how students are cognitively engaged in model-based tasks.  

Framework Elements 

We identified 14 unique linguistic and behavioral indicators distributed across three 

dimensions, where dimensions reflect a distinct category of strategy use: Metacognition, 

Generative Learning, and Retrieval. All 14 indicators were used by more than one student, and 

many appeared in more than one phase of modeling, suggesting that our proposed indicators are 

generally relevant for inclusion in the framework and not unique to any individual. Analogy, a 

generative learning strategy, was the least frequently used indicator overall, but was still 

reflected in the responses of three of the ten students interviewed.  

We hypothesized that students’ strategy use might differ at different times during a 

model-construction task based on their specific goals at any given moment. We therefore 

included three Modeling Phases (planning, monitoring, evaluation) as elements in our CEM and 

sought to characterize differences in strategy use by phase. Our data affirm that students’ 

strategy use differs across modeling phases, and therefore, provides support for our decision to 

include Phase as a CEM element. Metacognition, for example, has the largest number of 

indicators (9 overall) but none of these was observed across all three modeling phases despite 
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being used by a majority of students. Identifying key components (used by all 10 students), 

identifying key relationships (9 students), and task organization (10 students) were unique to the 

planning phase, while progress toward a solution (10 students) and acknowledging uncertainty (7 

students) were observed exclusively in the monitoring phase. Self-questioning occurred in both 

planning and monitoring phases and was used by eight and six students, respectively. 

Rechecking was used by all students in both monitoring and evaluation phases, but error 

detection and error correction were both more likely to be used during monitoring (9 students) 

than evaluation (5 students). Indicators of Generative Learning and Retrieval appeared in all 

three phases of modeling, and therefore may be indicative of more generalized strategies for 

model-based learning not aligned with any specific phase. Additionally, because Generative 

Learning and Retrieval were each observed through a smaller number of indicators (3 and 2, 

respectively; Table 2.3) compared to Metacognition (9 indicators), we caution against the 

potential interpretation that the importance of a framework dimension in being an effective and 

engaged modeler should be measured through the number (or frequencies of instances) of any 

particular indicator. 

Framework Application  

We applied our framework to examine relationships between cognitive engagement, task 

phases, task type, and academic achievement. Nature of the problems or task can result in 

differences in student interest and engagement (e.g., Mitchell & Carbone, 2011). In line with 

this, previous model-based research found that prompt construction influenced students’ depth of 

engagement needed to construct a correct model (Bennett et al., 2020). Our data further suggest 

the type of model, previously-constructed or novel model, influences which types of cognitive 

learning strategies students’ use and when they are used during the model-constructed process. 
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During the Planning phase, for example, we find students use more metacognitive strategies, 

particularly task organization and identification of key concepts and relationships, while 

constructing a novel-model compared to a Repeat Model. This finding is supported in previous 

metacognitive research that suggests metacognitive strategy-use becomes progressively more 

important as task complexity increases (e.g., Hattie et al., 1996; Mokos & Kafoussi, 2013). 

When compared to the Repeat Model, Planning for the Novel Model required students to 

interpret key components and relationships, and actively generate a simplified representation of 

the phenomenon of familiar content, but apply it to a novel context. Our data is mixed, however, 

during the Monitoring phase as students indicated a varied use of metacognitive strategies across 

both model contexts. Finally, our data recorded during the Evaluation phase contends prior 

research, as students utilized greater metacognitive strategy use for the Repeat Model. 

One key component to the generative learning theory is the idea of integration (i.e., 

connecting textual, verbal, or pictorial representations with each other and with relevant prior 

knowledge) (Fiorella & Mayer, 2015, 2016; Gunawan, et al., 2019; Parong & Mayer, 2018; 

Wittrock, 1974, 1992). We hypothesized that construction of the novel model would inherently 

require greater integration with learners’ existing knowledge structure as they generate a mental 

and physical representation of familiar content in a novel context. Our data for this is mixed, as 

that all or majority of students indicated greater use during the Planning and Monitoring phases 

of the novel model, however, there is greater use of generative learning strategies during the 

Evaluation phase for the repeat model.  

Research on retrieval informs researchers on not only what students know, but also what 

students don’t know. Our study investigates this over the long-term and which concepts are 

being transferred to new contexts. The knowledge a person expresses can vary greatly depending 
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on the retrieval cues present in a particular context (Grimaldi & Karpicke, 2014; Karpicke & 

Grimaldi, 2012). Some research suggests that successful learners might be developing better 

procedural knowledge and establishing a better repertoire of strategies for how to learn in the 

domain (e.g., Alexander & Judy, 1988; Anderson, 1996; Greene, 2015). Examining engagement 

during construction of a repeat model from the course, followed by construction of a novel 

model can provide in-depth information on content and skills not only retained from the class, 

but also students’ ability to transfer these to new contexts. Understanding retrieval is essential for 

understanding learning (Grimaldi & Karpicke, 2014; Karpicke & Grimaldi, 2012) helps us figure 

out what are the specific retrieval cues that students pick up on - can inform better ways of 

providing retrieval cues for students that allow them to reconstruct their knowledge. Studies that 

give student practice retrieving, which can promote meaningful learning, in which students are 

better able to organize and integrate new information into mental models for which can then be 

used to apply knowledge.  

Previous model-based research suggested that achievement is a poor predictor of 

modeling-based performance and more research was needed to get a better understanding of 

potential mechanisms to explain performance differences in MBI contexts (Bennett et al., 2020; 

Dauer et al., 2013; Dauer & Long, 2015; de Lima, 2020). In our study, students’ achievement 

level did not predict level of cognitive engagement during model-construction and the level of 

engagement varied across task types. We found that high-, middle-, and low-achieving students 

employed a large and diverse number of learning strategies when completing model-construction 

tasks. With future applications of the CEM framework, we can further investigate how students 

of lower achievement groups are cognitively engaging, specifically, the type of learning 

strategies they are, or are not, utilizing in other types of practice-based tasks. With this 
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knowledge, we can inform targeted interventions across STEM courses that can have a large 

numeric impact on STEM retention rates.  

Surely, many factors play a role in our results, however, it is possible that the different 

levels of cognitive engagement and differences in learning-strategy use in model construction are 

related to motivational factors, such as students’ learning goals during the course. The present 

study builds from research on students’ motivational profiles in a modeling-based introductory 

biology course, in which motivation is considered an antecedent to engagement in modeling 

(Furqueron & Long, in preparation). Development of the CEM framework now allows for 

relationships to be explored between students’ motivational profiles and use of cognitive 

engagement learning strategies in modeling-based biology courses.  

LIMITATIONS 

The CEM framework was developed for modeling generally, but was tested only in the 

context of introductory biology students’ construction of biological system models. As a science 

practice, modeling includes additional processes, such as using models to reason and make 

predictions, evaluating model-based information, and revising models that incorporate new 

information or feedback (Krell et al., 2013). Additional research will be necessary to determine 

the generalizability of our findings to other model-based tasks and disciplinary contexts.  

While observational protocols are designed to overcome issues of self-report bias, we 

acknowledge a possibility of bias in that the observer may be attuned to noticing what they are 

looking for and missing what they are not (Minner et al., 2010; Sinatra et al., 2015). 

Observational studies are further limited by the need to interpret or infer constructs that may not 

be explicitly presented (Van Hout-Wolters, 2000). For example, Meijer et al. (2006) indicate that 

metacognitive activities can be very hard to distinguish, and thoughts and actions inferred by 
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researchers from specific behaviors may not always be accurate. In many instances within our 

study, the learning strategy used as evidence of cognitive engagement was necessarily inferred 

from verbal or behavioral indicators, and therefore may be limited to those that were most easily 

identifiable. We aimed to address these limitations by including a second interviewer and 

discussing codes and indicators among the larger research team. Finally, qualitative work that 

measures frequencies of statements or indicators risks overestimation of constructs in students 

that talk more or are most comfortable externalizing their thoughts (Meijer et al., 2006). We 

therefore analyzed indicators as both presence/absence and frequency. In addition, we further 

acknowledge that interview studies are inherently limited due to being in non-natural settings 

and potential bias in student responses due to researcher presence (Creswell & Creswell, 2018). 

Although researchers attempted to create a relaxing environment for students by offering 

refreshments and generating welcoming small talk, a few students expressed feelings of 

nervousness being in front of the interviewers, which may have limited students’ task 

performance.  

Our study included interviews from ten participants from a second-semester introductory 

biology course. Our intended design of 30 participants was unachievable on account of Covid-19 

restrictions that went into effect after the study was underway. We intentionally sampled across 

achievement levels in order to capture diversity in the student population and explore the 

influence of prior academic achievement, but acknowledge that our sample sizes are small and 

limit our ability to make claims about the influence of prior academic achievement on trends in 

engagement. Although women are over-represented in our study, our sample otherwise 

approximates the diversity of the course in which it was conducted.   
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IMPLICATIONS FOR INSTRUCTION AND CONCLUSION 

Our study addresses a gap identified by earlier researchers (Christenson et al., 2012) by 

contributing a framework for measuring student cognitive engagement in modeling (CEM). The 

CEM framework identifies specific cognitive processes and learning strategies students use 

during model-based tasks. Strategies are classified by type (dimension) and organized in relation 

to distinct phases during task completion. The CEM advances research on both cognitive 

engagement and model-based learning by establishing a framework for posing and testing 

hypotheses about students’ thinking as they are actively engaged in the work of completing a 

learning task. Model-based instruction (MBI) is used in multiple domains (e.g., biology, physics, 

chemistry) and is one example of an instructional approach rooted in authentic scientific practice. 

Our study uses the CEM to provide direct evidence about the nature of cognitive engagement 

during modeling, but additional research would be necessary to determine if CEM components 

translate to other practice-based learning tasks, such as scientific argumentation, explanation, 

data analysis, etc. Generalized frameworks about cognitive engagement could be especially 

useful in supporting students in the transfer of learning between disciplinary contexts and across 

task types; the CEM could be a useful tool for advancing such research.  

Previous model-based research suggested that achievement is a poor predictor of 

modeling-based performance, and more research was needed to get a better understanding of 

potential mechanisms to explain performance differences in MBI contexts (Bennett et al., 2020; 

Dauer et al., 2013; Dauer & Long, 2015; de Lima, 2020). With future applications of the CEM 

framework, we can further investigate how students of lower achievement groups are cognitively 

engaging, specifically, the type of learning strategies they are, or are not, utilizing in other types 

of practice-based tasks. Indeed, recent work suggests that the “existing literature provides little 
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insight into whether passing a given science course relates to student engagement in intellectual 

work authentic to the practice of science” (Ralph et al., 2022, pp.843).  With this knowledge, we 

can inform targeted interventions across STEM courses that can have a large numeric impact on 

STEM retention rates.  

Researchers, policymakers, and educators are increasingly focused on student 

engagement as a means to enhance student learning and promote retention in academic programs 

and STEM fields particularly (e.g., Fredricks et al., 2004; Hofkens & Ruzek, 2019; Reschly & 

Christenson, 2012; Sinatra et al., 2015; Wang et al., 2019). Cognitive engagement cannot be 

undervalued in educational settings, as it has been tied to improved educational outcomes for 

many years (e.g., Chi et al., 2018; Fredricks, 2011; Fredricks et al., 2004; Greene, 2015; 

Fredricks & McColskey, 2012; Martin et al., 2017). Fostering engagement in learning tasks is 

therefore not only an end-goal in itself, but a means toward achieving positive academic 

outcomes, including retaining students at-risk of leaving. Importantly, the CEM was derived by 

considering student voices (Christenson et al., 2012) from a range of achievement levels to better 

inform how and when diverse students are engaging in task-specific learning strategies. Our data 

clearly show that students differ in the ways in which they manifest cognitive engagement during 

task completion, and offers additional support for non-traditional and practice-based instructional 

approaches to be more inclusive of diverse students and effective in reducing achievement gaps. 

Finally, our study revealed a range of distinct learning strategies that students used to navigate 

their way through two model-based learning tasks. Students who were able to leverage a broader 

range of strategies were generally more successful in their ability to progress toward a solution. 

We therefore call for instruction that explicitly trains students about a range of alternative 

learning strategies in order to empower them with a robust and flexible toolkit for solving 
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diverse problems. Students who are aware of different strategies for learning, thinking, and 

problem solving are more likely to use them (Pintrich, 2002). This, however, requires that 

students know about these strategies and have been trained how to use them.  
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APPENDIX 

Repeat Model Prompt: Cystic Fibrosis 

Construction 
Background 
Cystic fibrosis is the most common lethal inherited disease in Caucasian populations. Cystic 
fibrosis is caused by a defect in the CFTR gene located on the q arm of Chromosome 7.  In healthy 
individuals, the wild-type allele (R) is dominant and contains the information necessary for 
producing normal CFTR protein. 
  
CFTR is a protein that forms a channel in cell membranes that allows the movement of chloride 
ions out of cells. As chloride leaves cells, water follows and thins the mucus on cell surfaces, 
allowing it to flow freely. In individuals with cystic fibrosis, the CFTR proteins are defective and 
block the flow of chloride ions and water out of cells.  The inability to regulate chloride and water 
results in a drier mucus that is thick and sticky and accumulates on cell surfaces in the lungs, 
pancreas, digestive tract, and other internal organs.  Individuals with cystic fibrosis experience 
frequent and serious bacterial infections, are unable to absorb adequate nutrients, and have chronic 
respiratory problems.  If untreated, children with cystic fibrosis generally die before 5 years of 
age.  However, daily chest pounding to clear mucus, along with heavy doses of antibiotics and 
other therapies have extended life expectancy for cystic fibrosis patients into their 20’s and 30’s.  
 
Using what you know about how genetic information is organized and expressed, construct a 
system model that shows how key concepts in this CFTR case work together to determine whether 
cystic fibrosis or a normal phenotype becomes expressed. Your overall model should show how 
two different outcomes are possible - cystic fibrosis or normal.  
 
R allele, r allele, chromosome 7, DNA, gene, nucleotide sequence, cystic fibrosis, normal (no 
cystic fibrosis), normal CFTR protein, defective CFTR protein 
 
 
Novel Model Prompt: Carbon Cycling 

Construction 
Background 
In most aquatic environments, carbon (both its form and concentration) is controlled through the 
microbial biofilms that cover all wet surfaces.  A biofilm is a collection of microorganisms living 
together.  These biofilm communities are composed of algae and bacteria.  Carbon is 
transformed through a series of redox reactions that drive energy metabolism within their 
cells.  This changes carbon between its inorganic forms (e.g. CO2) and organic forms (e.g. 
glucose).  The autotrophic organisms, like algae, in these communities use photosynthesis to 
reduce CO2 into glucose while the heterotrophic organisms, like bacteria (and also algae too) 
oxidize glucose back into CO2 with respiration.  These two coupled metabolic pathways are 
largely what cycle carbon through the environment. 
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Identify the components needed to create a model whose function would describe the cycling of 
carbon in a simple aquatic ecosystem. 
 

Model components  
Use the following components to build a system model that describes the cycling of carbon in the 
previously described simple aquatic ecosystem: 

●  Algae 
●  Bacteria 
●  CO2 
●  Glucose 
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CHAPTER THREE: 

Measuring Emotional Engagement in Modeling (EEM): development and application of an 

emoji-based EEM scale 

INTRODUCTION 

As the number of diverse scientists entering the STEM workforce continues to fall short 

of goals (e.g., Estrada et al., 2016; Kennedy et al., 2021, National Center for Science and 

Engineering Statistics [NCSES], 2019), it is imperative that we explore all opportunities for 

attracting and retaining students - especially those who have been traditionally underrepresented 

in science careers. Research on student affect in practice-based learning has focused on 

differences among groups of students in terms of learning and performance outcomes and 

perceptions of various aspects of their learning (e.g., motivation for learning, confidence, etc.). 

However, students’ emotions during practice-based learning may be a mechanism that has been 

historically overlooked (Murphy et al., 2019). Emotions can profoundly impact multiple 

components of educational settings, such as engagement in and motivation for action, 

performance outcomes, mental health, career decisions, and dropout rates (e.g., see Barroso et 

al., 2021 for review; Camacho-Morles et al., 2021; Cheng & McCarthy, 2018; Loukidou et al., 

2009). To increase participation in science, we must gain a better understanding of student 

emotions that are present and persistent within science contexts; particularly those that promote 

sustained interest and retention, and, equally important, those that can be impediments to 

learning and discourage engagement in science (Sinatra et al., 2014).  

Emotions 

Emotions are generally defined as multi-component affective responses that occur in 

relation to specific objects or situations (e.g., Gray & Watson, 2001; Pekrun, 2006; Rosenberg, 
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1998; Scherer & Moors, 2019). Emotions play a powerful role in cognitive processes and the 

way individuals interpret events (Damasio, 1994; Lazarus, 1984). Mulligan and Sherer (2012) 

consider emotions to be an interface between an organism and its environment that is constantly 

changing between events and social context, and between the individual’s responses and 

experiences. Within the classroom, students’ emotions are increasingly recognized as a critical 

component of their learning, motivation, and achievement (e.g., Boekaerts & Pekrun, 2015; 

Pekrun et al., 2002; Pekrun et al., 2017; Pekrun et al., 2011; Pekrun & Stephens, 2012). Skinner 

and Pitzer (2012) emphasize that emotional reactions play a critical role in one’s patterns of 

actions. For example, even different versions of negative emotions (e.g., boredom, sadness, 

anxiety, or frustration) may cause a student to proceed differently through a task. Gaining a 

better understanding of the role of emotions in students’ academic engagement will be beneficial 

in improving the efficacy of practice-based instruction.     

Emotional Engagement 

Emotional engagement is a component of a larger meta-construct, academic engagement, 

which also consists of cognitive and behavioral engagement (Archambault et al., 2009; Fredricks 

et al., 2004; Sharkey et al., 2008; Zaff et al., 2011). Cognitive engagement considers students’ 

personal investment in learning activities, including the use of learning strategies, whereas 

behavioral engagement entails students’ active participation in activities related to school and 

learning (Fredricks et al., 2004). Emotional engagement centers around students’ affective 

responses and includes students’ emotional reactions and attitudes related to academic tasks and 

settings which engage them in learning (Connell & Wellborn, 1991; Fredricks et al., 2004). 

Cognitive and behavioral engagement have received the greatest attention in prior research, 

whereas emotional engagement is notably less explored (Fredricks et al., 2004; Sagayadevan & 
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Jeyaraj, 2012). Despite being studied less, research has demonstrated that emotional engagement 

is a fundamental component in the learning process (e.g., Appleton et al., 2008; Rocca, 2010; 

Sansone & Thoman, 2005).  

The quality of education and classroom settings can significantly impact learning through 

students' emotions (e.g., Bellocchi et al., 2017; Nicolaou et al., 2015; Rodríguez-Muñoz et al., 

2021; Schutz, et al., 2009). Educators can support learners’ engagement, persistence, and 

performance by creating an emotionally supportive learning environment where students feel 

safe and valued (National Academies of Sciences, Engineering, and Medicine [NASEM], 2018). 

Positive emotional engagement can influence students’ willingness to do work (Appleton et al., 

2008; Connell & Wellborn, 1991; Finn, 1989; King et al., 2015) and promote positive future 

orientations as students are thinking about and planning for their future (Crespo et al., 2013). 

Emotional engagement similarly increases confidence (Sinatra et al., 2015; Ritchie & Tobin, 

2018), academic engagement (Ketonen et al., 2019; Ouweneel et al., 2011; Robayo-Tamayo et 

al., 2020), and performance and achievement (Carmona-Halty et al., 2019; Heddy & Sinatra, 

2013; Pekrun & Linnenbrink-Garcia, 2012; Rand et al., 2020). On the other hand, students who 

experience increased anxiety and other negative emotions in their academic life can become 

disengaged and are at risk of poor academic outcomes, such as decreased persistence and 

performance (Archambault et al., 2009; Bledsoe & Baskin, 2014; England et al., 2017; Green et 

al., 2008; Hirschfield and Gasper, 2011) and lower cognitive engagement in academic work 

(Broughton et al., 2013; Wang & Holcombe, 2010; Wang & Eccles, 2013).   

Research suggests emotions can have a discipline-specific component (Goetz, et al., 

2006), emphasizing the need for a better understanding of their role in student learning within 

each domain. Our understanding of emotional engagement in STEM remains limited (Murphy et 
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al., 2019), however, it is known that for students to be successful in STEM they must feel a sense 

of belonging with their school community and develop positive emotions toward schoolwork 

(Appleton et al., 2008; Green et al., 2008). STEM disciplines, such as engineering, neuroscience 

and economics, have identified the importance of emotions in student development, retention, 

diversity and inclusion.(e.g., Davidson et al., 2020; Hess et al., 2020; Kellam et al., 2018; 

Lönngren et al., 2020; Pekrun & Linnenbrink-Garcia, 2014; Sinatra et al., 2014; Zembylas & 

Schutz, 2016), yet, despite theoretical advances and calls for more empirical studies across all 

fields, there continues to be a lack of research on the role of emotions in biology. 

Measuring emotional engagement  

Emotional engagement has been assessed at varying scales, including at the level of the 

whole classroom learning context (i.e., academic emotions; Gonida et al., 2009; Pekrun et al., 

2002), at the level of a particular topic within a domain (i.e., topic emotions; Broughton et al., 

2013; Pekrun & Stephens, 2012), and at the level of an object (i.e., either activity-achievement or 

outcome-achievement emotions; Pekrun, 2006; Pekrun et al., 2002).   

When considering the type of object, emotions are assessed in relation to either the specific 

activity (activity emotions) or outcome (outcome emotions) (Pekrun et al., 2002). Activity 

emotions are most relevant to an ongoing achievement activity, whereas outcome emotions are 

typically related to past or future outcomes resulting from the activity. For example, a student 

may find the process of taking an exam enjoyable because the challenge itself is rewarding 

(activity emotion) regardless of whether they believe they will be successful or not (outcome 

emotion) (Lumby, 2011).  

Research on activity emotions in STEM is important, particularly in the context of 

students’ real-time experiences with learning tasks. Existing research suggests that students 
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experience a complex mix of emotions and affective states as they complete STEM-related tasks, 

such as problem solving or generating responses to questions (Naibert & Barbera, 2022; Naibert 

et al., 2022; Blobstein et al., 2022). Gaining a better understanding of the emotions experienced 

while performing diverse types of STEM learning tasks could inform our design of activities and 

assessments that best promote positive emotional engagement. 

Model-based tasks and Modeling-Based Instruction (MBI) 

Modeling is a foundational scientific practice (Gilbert, 1991; National Research Council 

[NRC], 2012) defined as the process of building and externalizing mental models (Jonassen & 

Strobel, 2006; Jonassen et al., 2005; Louca & Zacharia, 2012). Modeling-based instruction 

(MBI) is an evidence based pedagogical approach that actively engages students in model-based 

tasks, such as using, constructing, revising, and evaluating scientific models (Clement, 2000; 

Gilbert & Justi, 2016; Justi & Gilbert, 2002; Long et al., 2014; Louca & Zacharia, 2012; 

Schwarz et al., 2009). The act of modeling elicits multiple indicators of students’ behavioral and 

cognitive engagement as they work through and successfully complete model-based tasks 

(Furqueron, de Lima, and Long, 2023). It seems plausible that as students progress through tasks 

and express different types of cognitive or behavioral engagement, they are concomitantly 

experiencing a range of emotions. For example, as a student constructs a model, they may 

discover and correct an error (cognitive engagement indicator) which produces feelings of joy or 

pride (emotional indicator) in their performance. In this study, we build upon our prior research 

investigating linguistic and behavioral indicators of students’ cognitive engagement (Furqueron, 

de Lima, & Long, 2023) by exploring the emotions students experience during model-based 

tasks.  
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Challenges to measuring emotional engagement 

Research on emotions presents many challenges, including construct definition, self-

report accuracy, and issues of measurement (see Pekrun & Linnenbrink-Garcia, 2014, for 

review). Observational measures are generally discouraged when evaluating emotions, as the 

indicators tend to be internal to the student (Appleton et al., 2006). Indeed, emotional 

engagement is inherently defined as a latent construct that cannot be observed directly, thus 

requiring a more intentional approach to its measuring (Pekrun & Linnenbrink-Garcia, 2014). 

Furthermore, emotions are subjective and can be hard to verbalize and characterize at times (De 

Angeli et al., 2020; Desmet, Overbeeke, & Tax, 2001; Mehrabian, 1995), and emotional states 

can be immediate and change rapidly (Borod, 2000; Linnenbrink-Garcia & Pekrun, 2011). To 

measure latent variables, researchers can operationally define the variable in terms of observable 

indicators or behaviors, which allows for linking the unobservable variable to an observable and 

measurable one (Byrne, 1998). One increasingly popular data collection method developed to 

account for these challenges in measuring emotions is the experience sampling method (ESM; 

Hektner et al., 2007; Scollon et al., 200).  

Experience Sampling Method 

Experience sampling methods (ESMs) permit researchers to examine individuals’ 

experiences in context and closer to the point of occurrence, allowing for more accurate recall 

(Csikszentmihalyi & Larson, 1987; Csikszentmihalyi & Csikszentmihalyi, 2006; Sinatra et al., 

2015; Zirkel et al., 2015). The characteristic feature of ESM is the repeated measure of an 

individual’s feelings, thoughts, actions, etc., as they go through an experience. In the past 

decade, there has been an increase in the application of ESMs and an evolution in the mode of 

measurement for learning about students’ affective states in educational settings. For example, 
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Nett et al. (2011) conducted an ESM study to evaluate students’ boredom-related coping 

strategies in mathematics classes by applying self-report measures. Shernoff (2010) applied an 

ESM to investigate the relationship between student experience in after-school programs and 

academic achievement. In Shernoff’s study, participants wore digital wristwatches that cued 

them to log aspects of their ‘in-that-moment’ experience, including components of positive 

and/or negative affect. Over the past decade, research has utilized the accessibility of mobile 

devices, including phones, which have become a particularly useful technology for ESM studies 

(e.g., Xie et al., 2019; Xie et al., 2019).   

Emojis 

Emojis are becoming increasingly utilized as a means to evaluate emotions in a wide 

range of contexts and across diverse modes of communication (Novak et al., 2015). Emoji (from 

the Japanese e [picture] + moji [character]) is defined as a visual representation of facial 

expressions, abstract concepts, emotions, gestures, plants, animals, objects, etc. (Rodrigues et al., 

2017). For instance, emojis are commonly used to express emotions associated with text or as a 

substitute for words in instant messages and on social media (Boutlet et al., 2021; Kerslake & 

Wegerif, 2017). Within the area of customer service relations, emojis are commonly used to 

assess customer satisfaction in contexts such as the food industry (e.g., Jaeger et al., 2017) and 

airport travel (e.g., Dickinson, 2018). Additionally, emojis are widely used in medical contexts to 

improve patient communication on matters such as pain, psychological assessment, and pediatric 

communication (e.g., Szeto et al., 2022), and are becoming increasingly used to capture visitor 

emotional responses to museum exhibits (e.g., De Angeli et al., 2020).  

Emoji use in education research is rare but becoming progressively attractive due to 

widespread recognition and use of emoji in daily communication and ease of implementation. 
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For example, recent research has explored the role of emojis in course online feedback, including 

correspondence with the instructor (e.g., Marder et al., 2020) and assessment feedback (Moffitt 

et al., 2020; Padgett, et al., 2021). In addition, Vareberg et al. (2022) investigated the role of 

teacher emoji use in a course welcome email on students’ perception of teacher credibility, 

immediacy, and liking. Within science specifically, Blobstein et al. (2022) used emojis to assess 

student affective states within forum discussions as part of a general biology course. In Blobstein 

et al.’s (2022) study, students reported the use of emojis enhanced meaning for the information 

they were trying to convey and allowed students to express emotions they would not otherwise 

verbally express.  

Overall, emojis have shown great potential across a range of contexts for assessing 

emotional responses, however, they have yet to be applied for the purpose of evaluating students’ 

engagement in science practice-based learning tasks, such as modeling. Although the use of 

models and modeling in science is a fundamental practice, and becoming increasingly 

implemented within the classroom, the way students are engaging with model-based tasks is 

much less understood. This study aims to fill a gap by developing a tool that can be easily 

implemented by instructors to identify and assess emotional responses and provides students’ 

emotional responses to variations of a practice-based assessment.  

Research Objectives 

Our study explores the potential for using emojis to assess student emotions while 

engaged in the scientific, practice-based task of modeling. Specifically, we use this preliminary 

work to meet two research objectives: (1) Develop an Emotional Engagement in Modeling 

(EEM) scale for capturing and characterizing the types of emotions students experience during 
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model-based tasks. (2) Use the EEM scale as a research tool for assessing and comparing 

students’ emotional responses during model-construction and model-evaluation tasks.  

METHODS 

Course Description  

Ten undergraduate students (N=10) at a large, Midwestern university with very high 

research activity (The Carnegie Classification of Institutions of Higher Education) were recruited 

from the second of a two-course introductory biology course required for life science majors. 

The first course is based in cellular and molecular biology, followed by the second course which 

provides instruction on genetics, evolution, and ecology through MBI. Throughout the course, 

students were provided multiple opportunities to engage in model-based learning (MBL) through 

a variety of model-based tasks on assessments including collaborative in-class activities, 

homeworks, and tests. While enrollment is open to students at any level of their college career, 

the majority are in their sophomore year.  

Participants 

Interview recruiters utilized theoretical sampling (Glaser & Strauss, 1967) to ensure 

achievement diversity (i.e., grades) in the sample population. Specifically, students were binned 

into tertiles based on their first-exam score and ten students from each tertile were recruited for 

the interviews (total of 30 recruits). 

Interviews were conducted 6-10 weeks post-completion of the Fall 2019 semester (mid-

January to early March 2020). Due to the university’s full transition to virtual learning in 

response to the COVID-19 pandemic, the study was terminated early and only a third of the 

intended interviews were completed. In total, eleven interviews were completed but only ten 

were usable due to a technical malfunction during one interview. Of the ten participants, 8 were 
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female, 8 caucasian (non-hispanic), 8 were sophomores, and 2 were first-generation college 

students (Table 3.1). Table 3.1 identifies students by a pseudonym and includes achievement 

tertile at the time of recruitment (first exam) and their final course grade (used for post-interview 

analysis).   

Table 3.1. Interviewee demographics. Interview participants are identified by a pseudonym. 
Achievement levels were determined by tertiling students at two timepoints: first exam, used for 
interview recruitment, and final course grade, used for post-interview analysis. University 
registrar data provided additional demographic data, including self-identified gender, ethnicity, 
first-generation college student status, class rank, and declared major.   

 
 

Interview design 

Students performed in-person, semi-structured, think-aloud interviews using an electronic 

SmartBoard that recorded modeling activities while also being video- and audio-recorded. 

Interviews lasted approximately 1-1.5 hours and were conducted in a research lab designed to 

facilitate in-person interview studies. Two interviewers were present for each interview: one 

acted as the primary interviewer and the second assisted with note taking, logistics, and 
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occasional questioning. The study was determined exempt by the local Institutional Review 

Board (IRB #00003353).  

Modeling tasks 

Students were asked to complete two types of modeling activities, model construction 

and model evaluation, in two different contexts, repeat and novel (see Furqueron et al., In 

prep.).   

Repeat Model (CFTR): Students constructed a model that repeated a prompt that was 

previously used on an exam. Specifically, the prompt was designed to assess student 

understanding of information flow in the context of the genetic disease, cystic fibrosis. 

For this, students were asked to construct a model that explained the origin of genetic 

variation at the CFTR gene and how it would ultimately result in expression or non-

expression of the cystic fibrosis phenotype. The prompt included a small list of potential 

model components (e.g., gene, protein, etc.) and students were encouraged to make these 

specific to the CFTR context and add additional concepts as they saw fit (Appendix, page 

174). Once construction was completed, students evaluated their CFTR model by being 

asked to describe and explain any similarities and differences between their interview-

constructed model and their exam model (provided to students by researchers).  

 

Novel model (Carbon Cycle): Following evaluation of the CFTR model, students 

constructed a model that explained carbon cycling in a simple aquatic ecosystem. Carbon 

cycling was a subject covered during the course and although students had modeled 

carbon cycling for a variety of systems, the context of the aquatic ecosystem was novel. 

Background information was provided to re-familiarize students with carbon cycling 
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processes. Students were first prompted to identify and list concepts they believed would 

be necessary for explaining cycling of carbon in a simple aquatic system (Appendix, page 

175). Students were then provided a list of key components, just as they were for the 

CFTR prompt (Appendix, page 175). This ensured that all students had an equivalent 

baseline of key concepts for the novel context. Once construction was completed, 

students evaluated their model by comparing it with an expert-drawn model provided to 

them (Appendix, page 175).  

ANALYSIS 

Measuring student emotional engagement 

We pre-selected nine emojis that reflected a range of emotions we anticipated students 

might experience during a learning task (Table 3.2; De Angeli et al., 2020). Because emoji are 

subject to different interpretations, we asked each student to provide a key word or phrase they 

associated with each of the nine emojis in the set. Students’ emotions experienced during the 

tasks were assessed retrospectively, immediately after each modeling task using the self-report 

EEM scale. Students were asked to verify their interpretation of each emoji, whether discrete (a 

single emoji) or multiple, they selected. Similar to Novak et al.’s (2015) work generating an 

Emoji Sentiment Map, students’ emotions associated with each emoji were used to generate a 

scale of positive to negative emotions (Table 3.2). The ordination of emotions affirmed by 

students in our study is consistent with previous research (e.g., Novak et al., 2015).  
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Table 3.2. Nine emoji and associated emotion on a scale from green (positive), yellow 
(neutral), to red (negative) in the EEM.  
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RESULTS 

In total, 29 discrete and 11 multiple-emoji selections were made (Table 3.3). Students 

reported primarily positive emotions for both constructing and evaluating in both repeat and 

novel contexts. Feelings of contentment (38%) and happiness (31%) were the most frequently 

reported emotions across task types and contexts. Feelings of happiness, contentment, and 

confusion were the only emotions selected in both tasks and in both contexts. Surprisingly, 

students reported limited negative emotions, as overwhelmed/nervous was only selected twice 

(7%). Students did not report feeling tired/bored, or sad/discouraged. Frustration was selected by 

one student in combination with other emojis. In total, students made 11 multiple-emoji 

selections, representative of mixed emotions and complex affective states (Table 3.4). The data 

show that constructing and evaluating the novel model, composed of familiar biological concepts 

in an unfamiliar (novel) context, elicited more mixed emotions (73%) compared to the repeat 

model (27%), and that across tasks and contexts students expressed a variety of mixed emotional 

states - from consisting of multiple negative emotions (n=1), multiple positive emotions (n=1), 

and a combination of negative, neutral, and positive emotions (n=9).  
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Table 3.3. Student Emoji Selection by Task and Context. Single emoji (n=29) represent 
discrete emotion selection where multiple emoji (n=11) selection reflect mixed emotions 
experienced during construction and evaluation of repeat and novel models.  
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Table 3.4. Associated Student Response for Multiple Emoji Selection. Students’ 11 multiple 
emoji selections and associated response experienced during model construction and evaluation 
of repeat and novel contexts.  
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LIMITATIONS 

This interview study was conducted with a limited sample of undergraduate students 

from an MBI-based introductory biology course for life science majors. We recognize that these 

findings may not be generalizable across domains or more diverse model-based tasks, or to 

larger, more diverse student populations, including those from upper-level or non-majors’ 

courses. Additional research and application of the EEM scale in multiple disciplinary contexts is 

necessary for gaining a better understanding of students’ emotional engagement in modeling.  

Interview studies are recognized as being innately limited due to their non-natural 

settings and potential bias in student responses due to interviewer presence (Creswell & 

Creswell, 2018). Researchers attempted to mitigate this bias by creating a welcoming and 

relaxing environment for students, however we must consider that students may still experience a 

hesitation to expose certain emotions in public (Blobstein et al., 2022) and this may account for a 

larger than expected proportion of positive emotions reported. 

DISCUSSION AND CONCLUSION 

This work contributes research on emotional engagement during STEM learning, 

particularly in the unexamined setting of model-based learning. Our study design is novel and 

aims to provide additional insights into students’ emotional engagement through the use of an 

emoji-based EEM scale as a relatable, intentional, and individualistic approach for measuring 

students’ discrete and mixed-emotions in real-time. We envision the EEM scale to be broadly 

applicable as a tool for educators to gain real-time feedback about students’ emotional states in 

diverse contexts, including during or following lessons, activities, or high-stakes assessments. 

The EEM could be easily adapted for use with technology, such as personal response systems or 

polling softwares, and for multiple disciplinary contexts. Continuing work on understanding the 
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range of students’ emotions as they learn and perform academic tasks will be useful for 

informing the design of instruction that promotes meaningful engagement in both the content and 

competencies expected of aspiring STEM learners. 

Although research on activity emotions has expanded, research examining more than just 

a singular emotion (e.g., enjoyment, anger, and boredom) remains limited (e.g., Lichtenfeld et 

al., 2012; Pekrun et al., 2023). Indeed, students can simultaneously experience a wide range of 

affective responses in the form of emotions to learning tasks which, in turn, can have a profound 

effect on their learning (Boekaerts & Pekrun, 2015). Our study finds that students experience a 

range of discrete and complex emotions from negative (i.e., frustration, feeling overwhelmed) to 

positive (i.e., happy, relieved, feeling good) while performing model-based tasks. Students in our 

study made more discrete selections of positive emotions (i.e., happy or contempt) than negative 

(i.e., frustrated), which can suggest greater levels of interest (Ainley, 2018) and overall be 

beneficial for learning (Pekrun et al., 2017). Our data also show students experienced a variety of 

mixed emotional states - from consisting of multiple negative emotions, multiple positive 

emotions, and a range of negative to positive emotions. This finding is consistent with research 

that suggests students can experience mixed feelings while engaging in a learning experience 

(e.g., Jarrell, et al., 2016; Karamarkovich & Rutherford, 2021; Robinson et al., 2017; Robinson 

et al., 2020). Of particular interest in our results is students’ expression of confusion, either as a 

discrete feeling or part of a complex affective state, across both tasks and contexts. Literature 

suggests confusion may serve as an impetus for engagement and positive learning outcomes in 

complex learning activities (D’Mello et al., 2014), thus exploring the role of confusion in 

performance outcomes on model-based tasks warrants further investigation.  
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Previous research suggests that students with positive emotions have the highest 

achievement (e.g., Karamarkovich & Rutherford, 2021; Wigfield et al., 2020), and that students 

with lower prior achievement may experience greater negative emotions (Karamarkovich & 

Rutherford, 2021; Pekrun, 2006; Pekrun et al., 2011). In our study, achievement level did not 

predict emotional states. Our evidence suggests that high- and middle-achieving students were 

more likely to express a range of emotions (both positive and negative), whereas the two lower-

achieving students in our study were more consistently positive. Future applications of the EEM 

scale could be adapted for larger-scale studies that further explore relationships between 

achievement level and emotional engagement. 

Our research contributes to the importance of context effects in assessment design and 

their impact on student emotions (e.g., Chen & Nieminen, 2024). Although contextual 

differences were not the explicit goal of this study, our study suggests that constructing or 

evaluating novel models resulted in a wider range of mixed emotions compared to the repeat 

model. 

This work builds from research investigating students’ cognitive engagement in 

modeling-based tasks (Furqueron et al., in prep) and on students’ motivational profiles in an 

introductory biology course taught through MBI (Furqueron & Long, in prep). Future research 

could examine the EEM scale in relation to students’ cognitive engagement (evidenced through 

cognitive strategy use) and motivational profiles (including students’ learning-oriented goals) to 

better understand relationships between patterns of emotion on students’ motivation and 

subsequent action. For example, are positive emotions more likely to promote sustained 

engagement in tasks and increase students’ use of diverse strategies for problem solving and task 

completion?  Gaining a better understanding of the circumstances that give rise to certain 
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emotions, and the consequences of those emotions on students’ actions, can be useful to 

researchers and educators interested in improving students’ success in science. Data about 

students’ emotions may prove another source of evidence that can inform the design of 

assessments and targeted interventions that promote persistence and diversity among STEM 

learners. 

 
 
 
 
 
 
 

 

 

 

 
  



 163 

REFERENCES 

Ainley, M. (2018). Students’ interest and engagement in classroom activities. In    
 S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student  
 engagement (pp. 283–302). Springer. https://doi.org/10.1007/978-1-4614-2018-7 
 
Appleton, J. J., Christenson, S. L., Kim, D., Reschly, A. L. (2006). Measuring cognitive and  
 psychological engagement: validation of the student engagement instrument. Journal of  
 School Psychology, 44(5), 427-445. https://doi.org/10.1016/j.jsp.2006.04.002 
 
Appleton, J. J., Christenson, S. L., & Furlong, M. J. (2008). Student engagement with school:  
 critical conceptual and methodological issues of the construct. Psychology in the Schools, 
 45(5), 369-386.  https://doi.org/10.1002/pits.20303 
 
Archambault, I., Janosz, M., Fallu, J., & Pagani, L. S. (2009). Student engagement and its  
 relationship with early high school dropout. Journal of Adolescence, 32, 651–670.  
 https://doi.org/10.1016/j.adolescence.2008.06.007       

Barroso, C., Ganley, C. M., McGraw, A. L., Geer, E. A., Hart, S. A., & Daucourt, M. C. (2021).  
 A meta-analysis of the relation between math anxiety and math achievement.   
 Psychological Bulletin, 147(2), 134–168. https://doi.org/10.1037/bul0000307 

Bellocchi, A., Quigley, C., & Otrel-Cass, K. (2017). Exploring Emotions, Aesthetics and   
 Wellbeing in Science Education Research. New York, NY: Springer.  

Bledsoe, T. S., & Baskin, J. J. (2014). Recognizing student fear: The elephant in the classroom.  
 College Teaching, 62, 32-41. https://doi.org/10.1080/87567555.2013.831022 
 
Blobstein, A., Gal, K., Karger, D., Faccoitti, M., Kim, H., Almahmound, J., & Sripathi, K.  
 (2022). #lets-discuss: Analyzing student affect in course forums using emoji. In A.  
 Mitrovic & N. Bosch (Eds.), Proceedings of the 15th International Conference on  
 Educational Data Mining, pp. 339-345. Durham, United Kingdom, July 2022.  
 
Boekaerts, M. & Pekrun, R. (2015). Emotions and emotion regulation in academic settings. In  
 Handbook of Educational Psychology. (pp. 90-104). Routledge. 
 
Borod, J. C., (2000). The neuropsychology of emotion. Oxford University Press.  
 
Boutlet, I., LeBlanc, M., Chamberland, J. A., Collin, C. A. (2021). Emojis influence emotional  
 communication, social attributions, and information processing. Computers in Human  
 Behavior, 119, 106772. https://doi.org/10.1016/j.chb.2021.106722 
 
Broughton, S. H., Sinatra, G. M., & Nussbaum, E. M.  (2013). “Pluto has been a planet my   
 whole life!” Emotions, attitudes, and conceptual change in elementary students’ learning  
 about Pluto’s reclassification. Research in Science Education, 43(2), 529-550.   
 https://doi.org/10.1007/s11165-011-9274-x 

https://doi.org/10.1007/978-1-4614-2018-7
https://doi.org/10.1016/j.jsp.2006.04.002
https://doi.org/10.1002/pits.20303
https://doi.org/10.1016/j.adolescence.2008.06.007
https://doi.org/10.1080/87567555.2013.831022
https://doi.org/10.1016/j.chb.2021.106722


 164 

 
Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS. and SIMPLIS.   
 Mahhaw, NJ: Lawrence Erlbaum Associates. 
 
Carmona-Halty, M., Salanova, M., Llorens, S., & Schaufeli, W. B. (2019). How psychological  
 capital mediates between study-related positive emotions and academic performance.  
 Journal of Happiness Studies, 20(2), 605-617.       
 https://doi.org/10.1007/s10902-018-9963-5 
 
Camacho-Morles, J., Slemp, G. R., Pekrun, R., Loderer, K., Hou, H., & Oades, L. G. (2021).  
 Activity achievement emotions and academic performance: A meta-analysis. Educational 
 Psychology Review, 33(3), 1051–1095. https://doi.org/10.1007/s10648-020-09585-3 
 
The Carnegie Classification of Institutions of Higher Education (n.d.). About Carnegie   
 Classification. Retrieved (March 11, 2024) from       
 https://carnegieclassifications.acenet.edu/ 
 
Chen, S., & Nieminen, J. H. (2024). Towards an ecological understanding of student emotions in 
 feedback: a scoping review. Assessment & Evaluation in Higher Education, 1–18.  
 https://doi.org/10.1080/02602938.2024.2318641 
 
Cheng, B. H., & McCarthy, J. M. (2018). Understanding the dark and bright sides of anxiety: A  
 theory of workplace anxiety. Journal of Applied Psychology, 103(5), 537–560.   
 https://doi.org/10.1037/apl0000266 
 
Clement, J. J. (2000). Model based learning as a key research area for science education.   
 International Journal of Science Education, 22(9), 1041-1053.     
 http://dx.doi.org/10.1080/095006900416901   
 
Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A   
 motivational analysis of self-system processes. In M. R. Gunnar, L. A. Sroufe (Eds.),  
 Self-processes and development. The Minnesota symposia on child psychology, Vol. 23.,  
 (pp. 43-77). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 
 
Crespo, C., Jose, P. E., Kielpikowski, M., & Pryor, J. (2013). On solid ground; family and school 
 connectedness promotes adolescents’ future orientation. Journal of Adolescence, 36,  
 993-1002. https://doi.org/10.1016/j.adolescence.2013.08.004 
 
Creswell, J. W., Creswell, J. D. (2018). Research design: qualitative, quantitative, and mixed  
 methods approaches. (5th ed.). Sage. 
 
Csikszentmihalyi, M., & Larson, R. (1987). Validity and reliability of the experience-sampling  
 method. Journal of Nervous and Mental Disease, 175(9), 526–536.    
 https://doi.org/10.1097/00005053-198709000-00004 
 

https://carnegieclassifications.acenet.edu/
https://doi.org/10.1080/02602938.2024.2318641
https://doi.org/10.1037/apl0000266
https://doi.org/10.1016/j.adolescence.2013.08.004
https://psycnet.apa.org/doi/10.1097/00005053-198709000-00004


 165 

Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (Eds.). (2006). A life worth living: Contributions 
 to positive psychology. Oxford University Press. 
 
D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be beneficial for  
 learning. Learning and Instruction, 29, 153-170.       
 https://doi.org/10.1016/j.learninstruc.2012.05.003 
 
Davidson, S. G., Jaber, L. Z., & Southerland, S. A. (2020). Emotions in the doing of science:  
 Exploring epistemic affect  in elementary teachers’ science research experiences. Science  
 Education, 104(6), 1008–1040. https://doi.org/10.1002/sce.21596 

Damasio, A. (1994). Descartes’ error: Emotion, reason, and the human brain. New York, NY:  
 Penguin Books.    

De Angeli, D., Kelly, R. M., & O’Neill, E. (2020). Beyond happy-or-not: Using emoji to capture  
 visitors’ emotional experience. Curator: The Museum Journal, 63(2), 167-191.   
 https://doi.org/10.1111/cura.12352 
 
Desmet, P., Overbeeke, K., Tax, S. (2001). Designing products with added emotional value:  
 Development and application of an approach for research through design. The Design  
 Journal, 4(1), 32-47. https://doi.org/10.2752/146069201789378496 
 
Dickinson, G. (2018). Those smiley feedback buttons do actually work – and they are changing  
 the way we travel. The Telegraph. Accessed March 11, 2024. Retrieved from   
 https://www.telegraph.co.uk/travel/news/happyornot-smiley-buttons-at-airports/ 
 
England, B. J., Brigati, J. R., & Schussler, E. E. (2017). Student anxiety in introductory biology  
 classrooms: perceptions about active learning and persistence in the major. PLoS One,  
 12, e0182506. https://doi.org/10.1371/journal.pone.0182506 
 
Estrada, M., Burnett, M., Campbell, A. G., Campbell, P. B., Denetclaw, W. F., Gutiérrez, C. G.,  
 ... & Zavala, M. (2016). Improving underrepresented minority student persistence in  
 STEM. CBE—Life Sciences Education, 15(3), es5.       
 https://doi.org/10.1187/cbe.16-01-0038 
 
Finn, J. D. (1989). Withdrawing from school. Review of Educational Research, 59,117-142 
 
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the  
 concept, state of the evidence. Review of Educational Research, 74, 59-109.   
 https://doi.org/10.3102/00346543074001059 
 
Furqueron, B., de Lima, J., & Long, T. (In Prep). Measuring student cognitive engagement in  
 modeling (CEM): Development and application of a CEM framework.  
 
Furqueron, B., & Long, T. (In Prep). Exploring motivational profiles in a model-based   
 undergraduate introductory biology course.  
 

https://doi.org/10.1016/j.learninstruc.2012.05.003
https://doi.org/10.1111/cura.12352
https://doi.org/10.2752/146069201789378496
https://www.telegraph.co.uk/travel/news/happyornot-smiley-buttons-at-airports/
https://doi.org/10.1371/journal.pone.0182506
https://doi.org/10.1187/cbe.16-01-0038
https://doi.org/10.3102/00346543074001059


 166 

Gilbert, S. W. (1991). Model Building and Definition of Science. Journal of research in science  
 teaching, 28(1), 73-79. 
 
Gilbert, J. K., & Justi, R. (2016). Modelling-based Teaching in Science Education. Switzerland:  
 Springer International Publishing. https://doi.org/10.1007/978-3-319-29039-3 
 
Goetz, T., Pekrun, R., Hall, N., & Haag, L. (2010). Academic emotions from a social-cognitive  
 perspective: antecedents and domain specificity of students’ affect in the context of Latin  
 instruction. British Journal of Educational Psychology, 76(2), 289-308.    
 https://doi.org/10.1348/000709905X42860 
 
Gonida, E. N., Voulala, K., & Kiosseoglou, G. (2009). Students’ achievement goal orientations  
 and their behavioral and emotional engagement: co-examining the role of perceived  
 school goal structures and parent goals during adolescence. Learning and Individual  
 Differences, 19(1), 53-60. http://dx.doi.org/10.1016/j.lindif.2008.04.002 
 
Gray, E. K., Watson, D. (2001). Emotion, mood, and temperament: Similarities, differences and  
 a synthesis. In R. Rayne, C. Cooper (Eds.), Emotions at Work. pp. 21-43, Chichester:  
 Wiley.  
 
Green, G., Rhodes, J., Hirsch, A. H., Suarez-Orozco, C., & Camic, P. M. (2008). Supportive  
 adult relationships and the academic engagement of Latin American immigrant youth.  
 Journal of School Psychology, 46, 393–412. https://doi.org/10.1016/j.jsp.2007.07.001 
 
Heddy, B. C., & Sinatra, G. M. (2013). Transforming misconceptions: Using transformative  
 experience to promote positive affect and conceptual change in students learning about  
 biological evolution. Science Education, 97, 723-744.  https://doi.org/10.1002/sce.21072 
 
Hektner, J. M., Schmidt, J. A., & Csikszentmihalyi, M. (2007). Experience sampling method:  
 Measuring the quality of everyday life. Sage. https://doi.org/10.4135/9781412984201 
 
Hess, J. L., Miller, S., Higbee, S., Fore, G. A., & Wallace, J. (2020). Empathy and ethical  
 becoming in biomedical engineering education: A mixed methods study of an  
 animal  tissue harvesting laboratory. Australasian Journal of Engineering Education,  
 26(1), 127-137. https://doi.org/10.1080/22054952.2020.1796045 
 
Hirschfield, P. J., & Gasper, J. (2011). The relationship between school engagement and   
 delinquency in late childhood and early adolescence. Journal of Youth and Adolescence,  
 40, 3–22. https://doi.org/10.1007/s10964-010-9579-5 
 
Jaeger, S. R., Lee, S. M., Kim, K-O., Chheang, S. L., Jin, D., & Ares, G. (2017). Measurement of 
 product emotions using emoji surveys: Case studies with tasted foods and beverages.  
 Food quality and Preferences, 62, 46-59. https://doi.org/10.1016/j.foodqual.2017.05.016 
 
Jarrell, A., Harley, J. M., & LaJoie, S. P. (2016). The link between achievement emotions,  
 appraisals, and task performance: Pedagogical considerations for emotions in CBLEs.  

https://doi.org/10.1007/978-3-319-29039-3
https://doi.org/10.1348/000709905X42860
http://dx.doi.org/10.1016/j.lindif.2008.04.002
https://doi.org/10.1016/j.jsp.2007.07.001
https://doi.org/10.1002/sce.21072
https://doi.org/10.1080/22054952.2020.1796045
https://doi.org/10.1007/s10964-010-9579-5
https://doi.org/10.1016/j.foodqual.2017.05.016


 167 

 Journal of Computers in Education, 3, 289–307.       
 https://doi.org/10.1007/s40692-016-0064-3 
 
Jonassen, D. H., & Strobel, J. (2006). Modeling for meaningful learning. Engaged learning with  
 emerging technologies, 1-27. https://doi.org/10.1007/1-4020-3669-8_1 

Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change.   
 Interactive Learning Environments, 13(1-2), 15-37.       
 https://doi.org/10.1080/10494820500173292 

Justi, R. S., & Gilbert, J. K. (2002). Science teachers’ knowledge about and attitudes toward the  
 use of models and modelling in learning science. International Journal of Science  
 Education, 24(12), 1273-1292. https://doi.org/10.1080/09500690210163198  
 
Karamarkovich, S. M., & Rutherford, T. (2021). Mixed feelings: Profiles of emotions among  
 elementary mathematics students and how they function within a control-value   
 framework. Contemporary Educational Psychology, 66, 101996.     
 https://doi.org/10.1016/j.cedpsych.2021.101996 
 
Kellam, N., Gerow, K., Wilson, G., Walther, J., & Cruz, J. (2018). Exploring emotional   
 trajectories of engineering students: A narrative research approach. International Journal  
 of Engineering Education, 34(6), 1726-1740.  

Kennedy, B., Fry, R., & Funk, C. (April, 2021). “6 facts about America’s STEM workforce and 
those training for it.” PEW Research Center. Retrieved February 10, 2022 from:   
https://www.pewresearch.org/fact-tank/2021/04/14/6-facts-about-americas-stem-
workforce-and-those-training-for-it/ 

Kerslake, L., & Wegerif, R. (2017). The semiotics of emoji: the rise of visual language in the age 
 of the internet (book review). Media and Communication, 5(4), 75-78.    
 https://doi.org/10.1515/sem-2017-0143 

Ketonen, E. E., Malberg, L. E., Salmela-Aro, K., Muukkonen, H., Tuominen, H., & Lonka, K.  
 (2019). The role of study engagement in university students’ daily experiences: A   
 multilevel test of moderation. Learning and Individual Differences, 69, 196-205.   
 https://doi.org/10.1016/j.lindif.2018.11.001 

King, R. B., McInerney, D. M., Ganotice Jr, F. A., Villarosa, J. B. (2015). Positive affect   
 catalyzes academic engagement: Cross-sectional, longitudinal and experimental   
 evidence. Learning and Individual Differences, 39, 64-72.      
 https://doi.org/10.1016/j.lindif.2015.03.005 

Linnenbrink-Garcia, L., & Pekrun, R. (2011). Students’ emotions and academic engagement:  
 introduction to the special issue. Contemporary Educational Psychology, 36, 1-3.   
 https://doi.org/10.1016/j.cedpsych.2010.11.004 

Lazarus, R. S. (1984). On the primacy of cognition. American Psychologist, 39, 124–129.  
 https://doi.org/10.1037/0003-066X.39.2.124 

https://doi.org/10.1007/s40692-016-0064-3
https://doi.org/10.1080/10494820500173292
https://doi.org/10.1080/09500690210163198
https://doi.org/10.1016/j.cedpsych.2021.101996
https://www.pewresearch.org/fact-tank/2021/04/14/6-facts-about-americas-stem-workforce-and-those-training-for-it/
https://www.pewresearch.org/fact-tank/2021/04/14/6-facts-about-americas-stem-workforce-and-those-training-for-it/
https://doi.org/10.1515/sem-2017-0143
https://doi.org/10.1016/j.lindif.2018.11.001
https://doi.org/10.1016/j.lindif.2015.03.005
https://doi.org/10.1016/j.cedpsych.2010.11.004
https://psycnet.apa.org/doi/10.1037/0003-066X.39.2.124


 168 

Lichtenfeld, S., Pekrun, R., Stupnisky, R. H., Reiss, K., & Murayama, K. (2012). Measuring  
 students’ emotions in the early years: The achievement emotions questionnaire-   
 elementary school (AEQ-ES). Learning and Individual Differences, 22(2), 190–201.  
 https://doi.org/10.1016/j.lindif.2011.04.009  
 
Long, T. M., Dauer, J. T., Kostelnik, K. M., Momsen, J. L., Wyse, S. A., Bray Speth, E., &  
 Ebert-May, D. (2014). Fostering ecoliteracy through model-based instruction. Frontiers  
 in Ecology and the Environment, 12(2), 138-139.       
 https://doi.org/10.1890/1540-9295-12.2.138  
 
Lönngren, J., Adawi, T., Berge, M., Huff, J., Murzi, H., Direito, I., ... & Sultan, U. (2020,  
 October). Emotions in engineering education: Towards a research agenda. In 2020 IEEE  
 frontiers in education conference (FIE) (pp. 1-5). IEEE. 
 
Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education:   
 Cognitive, metacognitive, social, material and epistemological contributions. Educational 
 Review, 64(4), 471-492. https://doi.org/10.1080/00131911.2011.628748  
 
Loukidou, L., Loan-Clarke, J., & Daniels, K. (2009). Boredom in the workplace: More than  
 monotonous tasks. International Journal of Management Reviews, 11(4), 381–405.  
 https://doi.org/10.1111/j.1468-2370 .2009.00267 

Lumby, J. (2011). Enjoyment and learning: policy and secondary school learners’ experience in  
 England. British Educational Research Journal, 37(2), 247–264.     
 https://doi.org/10.1080/10.411920903540680. 

Marder, B., Houghton, D., Erz, A., Harris, L., & Javornik, A. (2020). Smile(y) - And your  
 students will smile with you? The effects of emoticons on impressions, evaluation, and  
 behaviour in staff-to-student communication. Studies in Higher Education, 45(11),  
 2274-2286. https://doi.org/10.1080/03075079.2019.1602760  
 
Mehrabian, A. (1995). Framework for a comprehensive description and measurement of   
 emotional states. Genetic, Social, and General Psychology Monographs, 121(3),   
 339-361.  
 
Moffitt, R. L., Padgett, C., & Grieve, R. (2020). Feasibility and emotionality of online   
 assessment feedback: Using emoticons to enhance student perceptions of marker    
 competence and warmth. Computers and Education, 143, 103654.     
 https://doi.org/10.1016/j.compedu.2019.103654 
 
Mulligan, K., & Scherer, K. R. (2012). Toward a working definition of emotion. Emotion  
 Review, 4(4), 4345–57. https://doi.org/10.1177/17540739124458 
 
Murphy, S., Wang, C. A., & Danaia, L. (2019). Towards an understanding of STEM   
 engagement: a review of the literature on motivation and academic emotions. Canadian  
 Journal of Science, Mathematics and Technology Education, 19, 304-320.     
 https://doi.org/10.1007/s42330-019-00054-w  

https://doi.org/10.1016/j.lindif.2011.04.009
https://doi.org/10.1016/j.compedu.2019.103654
https://doi.org/10.1177/1754073912445818


 169 

Naibert, N., & Barbera, J. (2022). Development and evaluation of a survey to measure student  
 engagement at the activity level in general chemistry. Journal of Chemical Education,  
 99(3), 1410-1419. https://doi.org/10.1021/acs.jchemed.1c01145 
 
Naibert, N., Vaughan, E. B., Brevick, K, & Barbera, J. (2022). Exploring student perceptions of  
 behavioral, cognitive and emotional engagement at the activity level in general   
 chemistry. Journal of Chemical Education, 99(3), 1358-1367.     
 https://doi.org/10.1021/acs.jchemed.1c01051 
 
Nett, U. E., Goetz, T., & Hall, N. C. (2011). Coping with boredom in school: An experience  
 sampling perspective. Contemporary Educational Psychology, 36(1), 49-59.   
 https://doi.org/10.1016/j.cedpsych.2010.10.003 
 
National Academies of Sciences, Engineering, and Medicine. (2018). How people learn II:  
 learners, contexts, and cultures. Washington, DC: The National Academies Press. 

National Center for Science and Engineering Statistics. (2019). Women, minorities, and persons  
 with disabilities in science and engineering. Special Report NSF, 19-304. 

National Research Council. (2012). A Framework for K-12 Science Education: Practices,  
 Crosscutting Concepts, and Core Ideas. Washington, DC: National Academies Press 

Nicolaou, C. T.,. Evagorou, M., &  Lymbouridou, C. (2015). Elementary school students’  
 emotions when exploring an authentic socio-scientific issue through the use of models.  
 Science Education International, 26(2), 240–259.  

Novak, P. K., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of Emojis. PLoS One,  
 10(12): e0144296. https://doi.org/10.1371/journal.pone.0144296     

Ouweneel, E., Le Blanc, P. M., Schaufeli, W. B. (2011). Flourishing students: A longitudinal  
 study on positive emotions, personal resources, and study engagement. The Journal of  
 Positive Psychology, 6(2), 142-153. https://doi.org/10.1080/17439760.2011.558847  
 
Padgett, C., Moffitt, R. L., & Grieve, R. (2021). More than words: Using digital cues to enhance  
 student perceptions of online assignment feedback. The Internet and Higher Education,  
 49, 1-10. https://doi.org/10.1016/j.iheduc.2020.100789  
 
Pekrun, R. (2006). The control-value theory of achievement emotions: assumptions, corollaries,  
 and implication for educational research and practice. Educational Psychology Review,  
 18,(4), 315-341. https://doi.org/10.1007/s10648-006-9029-9 
 
Pekrun, R. (2014). Emotions and learning (Educational Practices Series, Vol. 24.)    
 International Academy of Education (IAE) and International Bureau of Education (IBE)  
 of the United Nations Educational, Scientific and Cultural Organization (UNESCO),  
 Geneva, Switzerland.  

https://doi.org/10.1021/acs.jchemed.1c01145
https://doi.org/10.1021/acs.jchemed.1c01051
https://doi.org/10.1016/j.cedpsych.2010.10.003
https://doi.org/10.1371/journal.pone.0144296
https://doi.org/10.1080/17439760.2011.558847
https://doi.org/10.1007/s10648-006-9029-9


 170 

Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions  
 in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). 
 Contemporary Educational Psychology, 36(1), 36–48.      
 https://doi.org/10.1016/j.cedpsych.2010.10.002 

Pekrun, R., T. Goetz, W. Titz, and R. P. Perry. (2002). Academic Emotions in Students’   
 Self-regulated Learning and Achievement: A Program of Qualitative and Quantitative  
 Research. Educational Psychologist, 37(2),  91–105.      
 https://doi.org/10.1207/S15326985EP3702_4 

Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student engagement. In S. 
 L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student   
 engagement (pp. 259-282). New York, NY: Springer.      
 https://doi.org/10.1007/978-1-4614-2018-7_12 
 
Pekrun, R., & Linnenbrink-Garcia, L. (2014). Introduction to emotions in education. In   
 International handbook of emotions in education (pp. 1-10). Routledge 
 
Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement  
 emotions and academic performance: longitudinal models of reciprocal effects. Child  
 Development, 88(5), 1653-1670. https://doi.org/10.1111/cdev.12704 
 
Pekrun, R., Marsh, H. W., Elliot, A. J., Stockinger, K., Perry, R. P., Vogl, E., Goetz, T., van  
 Tilburg, W. A. P., Lüdtke, O., & Vispoel, W. P. (2023). A three-dimensional taxonomy  
 of achievement emotions. Journal of Personality and Social Psychology: Personality  
 Processes and Individual Differences, 124(1), 145-178.      
 https://doi.org/10.1037/pspp0000448 
 
Pekrun, R., Stephens, E. J. (2012). “Academic Emotions.” In K. R. Harris, S. Graham, T. Urdan,  
 S. Graham, J. M. Royer, and M. Zeidner (Eds.), APA Educational Psychology Handbook, 
 Vol. 2, pp. 3-31. Washington, DC: American Psychological Association.   
 
Rand, K. L., Shanahan, M. L., Fischer, I. C., & Fortney, S. K. (2020). Hope and optimism as  
 predictors of academic performance and subjective well-being in college students.  
 Learning and Individual Differences, 81(101906).       
 https://doi.org/10.1016/j.lindif.2020.101906 
 
Ritchie, S. M., & Tobin, K. (Eds). (2018). Eventful Learning. Learner Emotions (Vol 61).  
 Leiden, The Netherlands: Brill.  
 
Robayo-Tamayo, M., Blanco-Donoso, L. M., Román, F. J., Carmona-Cobo, I., Moreno-Jiménez,  
 B., Garrosa, E. (2020). Academic engagement: A diary study on the mediating role of  
 academic support. Learning and Individual Differences, 80(101887).    
 https://doi.org/10.1016/j.lindif.2020.101887 
 
Robinson, K. A., Beymer, P. N., Ranellucci, J., & Schmidt, J. A. (2020). Momentary   
 emotion profiles in high school science and their relations to control, value,   

https://doi.org/10.1016/j.cedpsych.2010.10.002
https://doi.org/10.1207/S15326985EP3702_4
https://doi.org/10.1111/cdev.12704
https://doi.org/10.1016/j.lindif.2020.101906
https://doi.org/10.1016/j.lindif.2020.101887


 171 

 achievement, and science career intentions. Motivation Science, 6(4), 401–412.   
 https://doi.org/10.1037/mot0000174 
 
Robinson, K. A., Ranellucci, J., Lee, Y., Wormington, S. V., Roseth, C. J., & Linnenbrink-  
 Garcia, L. (2017). Affective profiles and academic success in a college science course.  
 Contemporary Educational Psychology, 51, 209–221.      
 https://doi.org/10.1016/j.Cedpsych.2017.08.004 
 
Rocca, K. A. (2010). Student participation in the college classroom: An extended    
 multidisciplinary literature review. Communication Education, 59(2), 185–213.   
 https://doi.org/10.1080/03634520903505936 
 
Rodrigues, D., Prada, M., Gaspar, R., Garrido, M. V., & Lopes, D. (2017). Lisbon Emoji and  
 Emoticon Database (LEED): Norms for emoji and emoticons in seven evaluative   
 dimensions. Behavior Research Methods. https://doi.org/10.3758/s13428-017-0878-6 
 
Rodríguez-Muñoz, A., Antino, M., Ruiz-Zorrilla, P., Ortega, E. (2021). Positive emotions,  
 engagement, and objective academic performance: A weekly diary study. Learning and  
 Individual Differences, 92(102087). https://doi.org/10.1016/j.lindif.2021.102087  

Rosenberg, E. L. (1998). Levels of analysis and the organization of affect. Review of General  
 Psychology, 2, 247–270. https://doi.org/10.1037/1089-2680.2.3.247   

Sagayadevan, V., & Jeyaraj, S. (2012). The role of emotional engagement in lecturer-student  
 interaction and the impact on academic outcomes of student achievement and learning.  
 Journal of the Scholarship of Teaching and Learning, 12(3), 1-30. 
 
Sansone, C., & Thoman, D. B. (2005). Does what we feel affect what we learn? Some answers  
 and new questions. Learning and Instruction, 15, 507–515. 
 
Scherer, K. R., & Moors, A. (2019). The emotion process: Event appraisal and component  
 differentiation. Annual Review of Psychology, 70(1), 719– 745.     
 https://doi.org/10.1146/annurev-psych-122216-011854 
 
Schutz, P. A., Aultman, L. P., Williams-Johnson, M. R. (2009). Educational Psychology   
 Perspectives on Teachers’ Emotions. In P. Schutz & M. Zembylas (Eds.), Advances in  
 Teacher Emotion Research, pp. 195-212, Boston, MA: Springer.  
 
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Archér, A., Fortus, D., Shwartz, Y., Hug, 
 B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling:  
 Making scientific modeling accessible and meaningful for learners. Journal of Research  
 in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311 
 
Scollon, C. N., Prieto, C. K., & Diener, E. (2009). Experience sampling: promises and pitfalls,  
 strengths and weaknesses. In Diener, E. (Ed.) Assessing well being (pp. 157-180).   
 Springer. https://doi.org/10.1007/978-90-481-2354-4_8 
 

https://doi.org/10.1037/mot0000174
https://doi.org/10.1016/j.Cedpsych.2017.08.004
https://doi.org/10.1080/03634520903505936
https://doi.org/10.1016/j.lindif.2021.102087
https://doi.org/10.1037/1089-2680.2.3.247
https://doi.org/10.1146/annurev-psych-122216-011854
https://doi.org/10.1002/tea.20311


 172 

Sharkey, J., Sukkyung, Y., Schnoebelen, K. (2008). Relations among school assets, individual  
 resilience, and student engagement for youth grouped by level of family functioning.  
 Psychology in the Schools, 45(5), 402-418. https://doi.org/10.1002/pits.20305 
 
Shernoff, D. J. (2010). Engagement in after-school programs as a predictor of social competence  
 and academic performance. American Journal of Community Psychology, 45(3-4),  
 325-337. https://doi.org/10.1007/s10464-010-9314-0 
 
Sinatra, G. M., Broughton, S. H., & Lombardi, D. (2014). Emotions in science education. In  
 International handbook of emotions in education (pp. 415-436). Routledge. 
 
Sinatra, G. M., Heddy, B. C., & Lombardi, D. (2015). The challenges of defining and measuring  
 engagement in science. Educational Psychologist, 50(1), 1-13.     
 https://doi.org/10.1080/00461520.2014.1002924  
 
Skinner, E. A., & Pitzer, J. R. (2012). Developmental dynamics of student engagement, coping,  
 and everyday resilience. In S. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook  
 of Research on Student Engagement. (pp. 21-44). Springer.  
 
Szeto, M. D., Barber, C., Ranpariya, V. K., Anderson, J., Hatch, J., Ward, J., Aguilera, M. N.,  
 Hassan, S., Hamp, A., Coolman, T., Dellavalle, R. P. (2022). Emojis and Emoticons in  
 Health Care and Dermatology Communication: Narrative Review.     
 JMIR Dermatol, 5(3):e33851.      
 
Vareberg, K. R., Vogt, O., & Berndt, M. (2022). Putting your best face forward: How instructor  
 emoji use influences students’ impressions of credibility, immediacy, and liking.   
 Education and Information Technologies, 28(5), 6075-6092.     
 https://doi.org/10.1007/s10639-022-11421-w 
 
Wang, M., & Eccles, J. (2013). School context, achievement motivation, and academic   
 engagement: A longitudinal study of school engagement using a multidimensional  
 perspective. Learning and Instruction, 28, 12-23.       
 https://doi.org/10.1016/j.learninstruc.2013.04.002 
 
Wang, M., & Holcombe, R. (2010). Adolescents' perceptions of school environment,   
 engagement and academic achievement in middle school.  American Educational   
 Research Journal, 47, 633-662. https://doi.org/10.3102/00028312093612 
 
Wigfield, A., Eccles, J. S., & Möller, J. (2020). How dimensional comparisons help to   
 understand linkages between expectancies, values, performance, and choice.   
 Educational Psychology Review, 32(3), 657–680.        
 https://doi.org/10.1007/s10648-020-09524-2 
 
Xie, K., Heddy, B. C., & Greene, B. (2019). Affordances of using mobile technology to support  
 experience-sampling method in examining college students’ engagement. Computers &  
 Education, 128, 183-198. https://doi.org/10.1016/j.compedu.2018.09.020 

https://doi.org/10.1002/pits.20305
https://doi.org/10.1080/00461520.2014.1002924
https://doi.org/10.1007/s10639-022-11421-w
https://doi.org/10.1016/j.learninstruc.2013.04.002
https://doi.org/10.3102/0002831209361209
https://doi.org/10.1016/j.compedu.2018.09.020


 173 

 
Xie, K., Heddy, B. C., & Vongkulluksn, V. W. (2019). Examining engagement in context using  
 experience-sampling method with mobile technology. Contemporary Educational  
 Psychology, 59, 101788. https://doi.org/10.1016/j.cedpsych.2019.101788 
 
Zaff, J. F., Kawashima-Ginsberg, K., Lin, E. S., Lamb, M., Palsano, A., & Lerner, R. M. (2011).  
 Developmental trajectories of civic engagement across adolescence: Disaggregation of an 
 integrated construct. Journal of Adolescence, 34, 1207-1220.     
 https://doi.org/10.1016/j.adolescence.2011.07.005 
 
Zembylas, M., & Schutz, P. A. (2016). Methodological advances in research on emotion and  
 education. Springer. 
 
Zirkel, S., Garcia, J. A., & Murphy, M. C. (2015). Experience-sampling research methods and  
 their potential for education research. Educational Researcher, 44(1), 7–16.   
 https://doi.org/10.3102/0013189X14566879 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1016/j.cedpsych.2019.101788
https://doi.org/10.1016/j.adolescence.2011.07.005
https://psycnet.apa.org/doi/10.3102/0013189X14566879


 174 

APPENDIX 

Repeat Model Prompt: Cystic Fibrosis 

Construction 
Background 
Cystic fibrosis is the most common lethal inherited disease in Caucasian populations. Cystic 
fibrosis is caused by a defect in the CFTR gene located on the q arm of Chromosome 7.  In healthy 
individuals, the wild-type allele (R) is dominant and contains the information necessary for 
producing normal CFTR protein. 
  
CFTR is a protein that forms a channel in cell membranes that allows the movement of chloride 
ions out of cells. As chloride leaves cells, water follows and thins the mucus on cell surfaces, 
allowing it to flow freely. In individuals with cystic fibrosis, the CFTR proteins are defective and 
block the flow of chloride ions and water out of cells.  The inability to regulate chloride and water 
results in a drier mucus that is thick and sticky and accumulates on cell surfaces in the lungs, 
pancreas, digestive tract, and other internal organs.  Individuals with cystic fibrosis experience 
frequent and serious bacterial infections, are unable to absorb adequate nutrients, and have chronic 
respiratory problems.  If untreated, children with cystic fibrosis generally die before 5 years of 
age.  However, daily chest pounding to clear mucus, along with heavy doses of antibiotics and 
other therapies have extended life expectancy for cystic fibrosis patients into their 20’s and 30’s.  
 
Using what you know about how genetic information is organized and expressed, construct a 
system model that shows how key concepts in this CFTR case work together to determine whether 
cystic fibrosis or a normal phenotype becomes expressed. Your overall model should show how 
two different outcomes are possible - cystic fibrosis or normal.  
 
R allele, r allele, chromosome 7, DNA, gene, nucleotide sequence, cystic fibrosis, normal (no 
cystic fibrosis), normal CFTR protein, defective CFTR protein 
 

Novel Model Prompt: Carbon Cycling 

Construction 
Background 
In most aquatic environments, carbon (both its form and concentration) is controlled through the 
microbial biofilms that cover all wet surfaces.  A biofilm is a collection of microorganisms living 
together.  These biofilm communities are composed of algae and bacteria.  Carbon is transformed 
through a series of redox reactions that drive energy metabolism within their cells.  This changes 
carbon between its inorganic forms (e.g. CO2) and organic forms (e.g. glucose).  The autotrophic 
organisms, like algae, in these communities use photosynthesis to reduce CO2 into glucose while 
the heterotrophic organisms, like bacteria (and also algae too) oxidize glucose back into CO2 with 
respiration.  These two coupled metabolic pathways are largely what cycle carbon through the 
environment. 
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Identify the components needed to create a model whose function would describe the cycling of 
carbon in a simple aquatic ecosystem. 
 
Use the following components to build a system model that describes the cycling of carbon in the 
previously described simple aquatic ecosystem: 

●  Algae 
●  Bacteria 
●  CO2 
●  Glucose 

 

Evaluation 

 
 
Figure 3.1. Novel expert-drawn model provided to students for the Evaluation task.  
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CONCLUSION 
  
Instructional reform efforts among Science Technology Engineering and Mathematics 

(STEM) gateway courses are aimed at increasing diversity and improving retention of students to 

graduation; particularly those from underrepresented groups (e.g., American Association for the 

Advancement of Science [AAAS], 2015; Cooper et al., 2015; Dagley, et al., 2015; Hunter, 2019; 

Seymour et al., 2019; Sithole, et al., 2017; Xu, 2016). My dissertation bridges multiple, 

interconnecting areas of research to explore potential mechanisms that may account for 

differences in learning outcomes among students in an introductory biology course taught 

through model-based instruction (MBI).  

In Chapter One, I adopted a motivational systems perspective and generated motivational 

profiles that characterized students according to combinations of seven variables at the beginning 

and end of an introductory biology course taught through MBI. A Latent Profile Analysis (LPA) 

revealed four unique motivational profiles; three at each time point. In the beginning of the 

semester, student motivational profiles were characterized as: highly motivated; motivated, 

mastery and value driven; and unmotivated and performance driven. The highly motivated and 

unmotivated and performance driven profiles were present at the end of the semester, along with 

a new, average motivation profile. The majority of students demonstrated positive shifts in their 

motivational profile over the semester, regardless of their course grade. This finding suggests 

that students don’t always maintain the motivation that they enter the class with. Strikingly, all 

low-achieving students who began the semester characterized as unmotivated and performance 

driven finished the course as highly motivated, which fosters a speculation that MBI can promote 

motivation by engaging students in opportunities to learn through non-traditional methods. 
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Chapter Two centers on the development and application of a novel Cognitive 

Engagement in Modeling (CEM) framework for measuring students’ cognitive engagement 

during planning, monitoring, and evaluation phases of model-construction tasks. A qualitative 

content analysis approach (Morgan, 1993; Mayring, 2000) was applied to interview video and 

transcript data that revealed fourteen unique behavioral and linguistic identifiers distributed 

across metacognitive, generative learning, and retrieval categories of learning strategies. 

Application of the CEM framework identified differences in students’ use of learning strategies 

during different phases of model-construction and across different task types (e.g., when 

constructing a novel model vs. one that they had previously constructed). During the planning 

phase, students demonstrated greater use of metacognitive and generative learning strategy use 

with the novel model, which is consistent with previous research that suggests learners will apply 

greater strategy-use as task complexity increases (e.g., Hattie et al., 1996; Mokos & Kafoussi, 

2013). Students demonstrated mixed use of strategies across contexts during the monitoring 

phase, suggesting that, regardless of context, modeling construction tasks require students to be 

cognitively engaged and employ a variety of strategies in order to be successful on them. Finally, 

students demonstrated greater strategy use during the evaluation phase for a model that they had 

previously constructed compared to the novel model task. This finding may be a product of 

students’ second exposure to the model and greater availability of cognitive resources to draw 

from in their evaluation process, such as prior feedback from the instructor.  

My CEM framework addresses a gap (Christenson et al., 2012) and advances research on 

student cognitive engagement, as it aids in identification of specific cognitive processes and 

learning strategies students employ during model-based tasks. In addition, the framework can be 

used to identify differences in learning-strategy use across student achievement levels and task 
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types. Overall, data in this study show that learning-strategy use varies across model-

construction phases and model contexts. Students’ nature of engagement and the types of 

strategies they will deploy to complete a modeling task vary depending on what they are asked to 

do and where they are in the process of task completion.    

Development and application of an Emotional Engagement in Modeling (EEM) 

framework was my focus for Chapter Three. I developed the novel emoji-based, EEM 

framework to enable identification and assessment of what De Angeli et al. (2020) consider a 

range of students’ emotions during practice-based tasks. I then utilized an experience sampling 

method (ESM) and applied the framework during interviews to assess and compare students’ 

emotions during model construction and evaluation for previously-constructed and novel model 

contexts. Students selected discrete (i.e., single-emoji) or multiple emoji to reflect simple or 

complex, mixed-emotional states. After each selection, students verified their interpretation of 

the emotion associated with the emoji, which allowed for the development of an Emoji 

Sentiment Map (Novak et al., 2015) on a scale of positive to negative emotions. Findings in this 

study showed that students reported experiencing mostly positive emotions during model-

construction and evaluation tasks, and in both previously-constructed and novel contexts. 

Students most frequently expressed mixed emotions in the novel model context for both 

construction and evaluation tasks. I additionally examined the relationship between student 

achievement and reported emotions, and found that students considered as high- and middle-

achieving more often expressed mixed emotions, while students considered low-achieving 

expressed more positive emotions.  
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My EEM framework fills a gap in the traditionally understudied area of student 

emotional engagement in STEM and in the unexamined context of model-based learning. The 

findings from this study support previous research that students can simultaneously experience a 

wide-range of emotions during learning (e.g., Boekaerts & Pekrun, 2015; Jarrell, et al., 2016; 

Karamarkovich & Rutherford, 2021; Robinson et al., 2017; Robinson et al., 2020), and that these 

emotions can vary by context and task type, contributing to the importance of contextual 

influences on student emotions (e.g., Chen & Nieminen, 2024). However, in contrast to previous 

studies (e.g., Karamarkovich & Rutherford, 2021; Pekrun, 2006; Pekrun et al., 2011; Wigfield et 

al., 2020), student achievement level in this study did not predict emotional states, suggesting 

that even those students who are struggling academically can feel positively about practice-based 

tasks.   

Although the CEM and EEM frameworks were developed in an MBI and biology 

context, they can be easily applied to study engagement during other practice-based tasks 

(e.g.,scientific argumentation, explanation, data analysis) or disciplinary contexts. Application of 

the frameworks to a broader range of contexts will be beneficial for informing practitioners and 

researchers about emotional responses during learning more generally, and inform the 

development of ways we can explicitly train students about different types of learning strategies 

and when to use them. Findings from this and other research will be beneficial for designing 

assessments and learning tasks that promote engagement and progressive skill development that 

can transfer across task types, classroom contexts, and disciplines.   

Overall, my dissertation posed three research goals aimed at advancing our understanding 

of how students of all achievement levels are learning in MBI contexts. Evidence-based 

methods, such as MBI, have been shown to reduce achievement gaps and promote positive long-
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term outcomes (Bierema et al., 2017; Dauer et al., 2013; Manthey & Brewe, 2013; Reinagel & 

Bray Speth, 2016; Verhoeff et al., 2008). In MBI contexts specifically, previous findings suggest 

there may be additional benefits for students most at risk of leaving STEM (Bennett et al., 2020; 

Dauer et al., 2013; Dauer & Long, 2015; de Lima & Long, 2023), however mechanisms 

underlying the observed differences are not well understood. My work found that achievement 

measures (i.e.., grades) failed to predict motivation and engagement, which suggests that 

motivation and engagement could be contributing factors in explaining how and why MBI and 

other practice-based instructional methods are successful. However, more research is needed to 

determine whether improved motivation and engagement translate into long-term outcomes, such 

as degree completion and retention in STEM. Although students in my dissertation studies 

demonstrated positive engagement in model-based tasks and improvements in motivation, it is 

unknown whether these had any impact on degree completion within their STEM program. 

In conclusion, as a believer in the success of those who navigate life on non-traditional 

paths, and of those who are traditionally viewed as likely to be unsuccessful, it is my hope that 

my research will be used as a foundation to promote continued exploration into trends and 

outcomes for lower-achieving students in practice-based STEM courses. Understanding the 

mechanisms that explain performance differences can inform the design of targeted interventions 

that promote persistence and diversity among STEM learners.  
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