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ABSTRACT 

All organic life, by virtue of having ever been alive, is fated to end. Life and death 

represent opposing binary states: an organism is either alive and its biological processes 

functioning, or dead, with those processes halting entirely. The connotation of decomposition 

often betrays its nature as a complex, multivariate process that is mediated by far more than just 

the carcass enabling it. Among the decomposers responsible for nutrient cycling in carrion 

systems, bacteria and blow flies (Diptera: Calliphoridae) stand out as the most effectual. The 

objective of this study was to examine how the microbiota of carcasses, blow fly larvae, and 

larval masses developed as decomposition advanced. To account for abiotic factors that suspected 

to play a role in moderating these ecosystems, we evaluated the role seasonal weather dynamics 

play in influencing microbiome assemblage. We predicted that postmortem microbiome 

composition, diversity, and succession would be drastically dissimilar between seasons by 

seasonal weather conditions. It was hypothesized that colonization of carcasses by blow flies 

would significantly impact carcass bacterial community composition. Parallel predictions were 

made that season would, similarly, influence larval and lar microbiome assemblage. Ultimately, 

we found both season and larval presence jointly influenced postmortem microbiome succession, 

and that postmortem microbiome diversity was significantly greater in the summer than the fall or 

spring. Bacterial community composition differed significantly by season regardless of pairwise 

comparison. Blow fly colonization significantly influenced bacterial community composition in 

facilitating the introduction and subsequent dominance of insect-associated bacterial taxa like 

Ignatzschineria. These decomposition studies demonstrated the interconnectedness of life 

encompassed by the necrobiome and, in doing so, strengthened pretense to better evaluate 

interkingdom interactions observed in decomposition settings.
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CHAPTER 1: LITERATURE REVIEW 

Introduction to Decomposition 

 In this review, I will outline the underlying concepts and associated knowledge gaps that 

motivate this thesis project’s objectives. The projects comprising this thesis were designed to 

focus on carrion decomposition, and communicating its intricacy is critical to understanding the 

importance of our work. Janaway et al. (2019) is an incredibly instructive chapter explaining the 

expected trajectory and presentation of decomposition as a continuous, putrefactive process. In 

first framing our historical interest in decomposition as a microbially mediated process, it does 

well to illustrate why our projects focus on the role of microbes in decomposition environments. 

Janaway et al. (2019) also highlights the broad use of the term “taphonomy” in modern forensics 

as the exploration of decomposition and the extent to which human bodies experience it. An 

important distinction must be drawn between the two categories of death we consider in our 

explorations of it: “somatic” death and “cellular” death. Where somatic death is contingent on 

the individual experiencing it being irrevocably rendered unconscious and thus non-functional 

despite exhibiting metabolic activity, cellular death is instead defined by the cessation of all 

biological processes (Armstrong & Fernando, 2013; Wyllie, 2987). Such a distinction is 

important in the context of human health, as only cellular death is immediately succeeded by the 

onset of decay. When cellular death is experienced by the human body, a series of 

generalizations can be made about the overlapping changes it experiences because of its now 

static circulatory system (Tsokos, 2005). Livor mortis, otherwise known as postmortem 

hypostasis, is characterized by the discoloration of areas in which blood finds itself pooling 

naturally (Poinkes, 2013). In many cases these are the lowest parts of the body, given that the 

only force experienced by stagnant blood is ultimately gravity. A distinct blue-purple color 
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indicates this blood’s depletion of oxygen, and signs of livor mortis become evident just 1-2 

hours after cellular death. Indicators are maximally expressed just 6 hours after death and 

become irreversible after 12 hours. 2-4 hours after death, while the body is experiencing livor 

mortis, rigor mortis typically commences (Krompecher, 2015). This rigor mortis, in concerning 

the muscles of the body, is a considerably more dynamic process than livor mortis. The 

breakdown of adenosine triphosphate (ATP) and subsequent accumulation of lactic acid in 

muscle tissues drives their gradual transition from flaccid, to rigid, to relaxed once more. The 

muscle’s initial flaccidity is attributed to persisting cellular life; and as this cellular life dwindles, 

muscles becoming increasingly unable to contract. The ability of muscles to contract will never 

be recoverable thereafter. In temperate conditions, researchers find that signs of rigor mortis are 

most pronounced at 12 hours, decline towards 24 hours, and ease into total limpness at 36 hours 

after death. The third of the phenomena experienced by cadavers is algor mortis, which 

represents a direct consequence of body heat escaping with no anticipated steady state. Most of 

the putrefactive action we associate with decomposition is encompassed by algor mortis, wherein 

the conditions it creates are most promotive of soft tissue liquification (Hayman & Oxenham, 

2016). 

Microbial Decomposition 

 Another key part of decomposition is autolysis. While our studies focused primarily on 

the contributions that organisms independent of them make, autolysis is a process driven 

specifically by the body’s own endemic enzymes (Gibbons & Reed, 1930). Here we must make 

another important distinction: autolysis refers specifically to the body’s self-induced cellular 

digestion; but putrefaction refers to what destruction can be attributed to bacterial action. Most 

anaerobic bacterial activity is relegated to the human gastrointestinal tract, meaning much of 
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what we see promoting putrefaction internally is native to the human body (Kennedy, 1992). 

Microbial activity aids in keeping this environment anoxic, which generally lends itself to 

anaerobic bacteria and not obligate aerobes (Rose & Hockett, 1971). In every instance of human 

decomposition, autolysis and putrefaction are the only driving forces we can expect to observe 

regardless of the context, and our studies emphasize the role of seasonal weather conditions as 

extrinsic, variable factors in these processes.  Existing assertions that temperature heavily 

modulates the rate of enzymatic activity and overall microbial fitness is what motivated our 

heightened awareness of season as an oft underrepresented variable in datasets (Peterson et al., 

2007). Where literature recognizes the role of temperature and humidity in cadaveric 

decomposition, we seek to elucidate the overarching impact of season as a concept wherein 

distinctions between spring, summer, fall, and winter are as much a matter of climatological 

conditions as they are a matter of temporality. While climates and thus seasons vary widely by 

geography, there is still value in characterizing the role they play in carrion ecology. 

Classifying Decomposition & Related Issues 

 Janaway et al. (2019) do their best to categorize qualities researchers tend to attribute to a 

specific series of decomposition “stages;” but, carrion decomposition is a continuous process 

with no definite stages (Finley et al., 2014). As such, efforts to stratify this process are inherently 

limited by its exceptional co-morbidity among livor mortis, rigor mortis, and algor mortis. If 

these phenomena drive decomposition, and we know them to overlap and intersect almost 

pathologically, we cannot expect to create a reliably applicable criterion for decomposition 

staging. Despite this, many researchers can still demonstrate consistencies between many of the 

non-standardized taphonomic criteria put forth by experts throughout the history of forensic 

science (Anderson, 2015; Javan et al., 2018). Carcass decomposition begins with a “Fresh” stage 
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Fresh carcasses usually express the changes outlined by livor mortis, particularly as it regards 

discoloration. Adult fly activity is typical of this stage, and their ability to detect human remains 

is aided, in part, by the discharge of bodily fluids promoted by early putrefactive action (Goff, 

2009). Around 24 hours after death, the body may transition from the fresh stage to the 

“Bloat/Bloated” stage. Larval blow fly activity can be seen in most cases; but the bloat stage is 

more defined by the accumulation of gas byproducts within the intestines than anything else 

(Goff, 2009). At this time (from around a day to a week after death) it is common to see 

instances of hair loss, skin slippage, and further discoloration, among other things. The bloat 

stage is unique in that, in most cases, the liquid discharge observed can be evacuated from the 

body with more intensity, or even imbued with a “frothy” quality because of mounting gas 

pressure. Bloat is followed by “Decay/Active” stages, which emphasizes the rupture of body 

cavities and escape of previously accumulated gas (Goff, 2009). Insect activity here is somewhat 

variable, but usually trends towards diminished. Skin breaks down and other tissues decay to 

expose the skeleton of the carcass. In this active stage alone, there are numerous factors that 

dictate its ultimate presentation, which complicates the existing ambiguity even further. After up 

to a month of decay, human remains will eventually find themselves in the “Dry” stage, which is 

essentially just whatever skeletonized remains are intact. 

 Decomposition is a complex, fundamentally multivariate biological process that borders 

on anecdotal in some cases (Cockle & Bell, 2015). Any number of seemingly minute disparities 

in victim health, clothing, or location can affect how decomposition progresses in ways that 

cannot possibly be predicted reliably. Discerning common, broad trends can lend themselves to 

the framework necessary to unravel the many factors at play, but we feel that it is and will 

remain unlikely that we can ever treat instances of death or decomposition as perfectly 
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analogous. Our attempts to mitigate this required the use of many experimental replicates; and 

even rigor of that level should not give researcher’s the confidence to assert any discoveries 

absolutely. 

The Necrobiome 

 As forensic science advances and technologies promise to strengthen our understanding 

of even its most fundamental concepts, Benbow et al. (2019) communicate the sheer breadth of 

carrion as transient ecological networks. In proposing this ecosystem, the “necrobiome,” Benbow 

et al. (2019) do well to contradict the instinctive oversimplification of death that many scientists 

and non-scientists seem to default to despite its volatility. In cultivating such a rich and diverse 

network of decomposers, among other things, carrion presents us with something of an 

ecological problem. By reframing decomposition as a subject that lends itself to basic or non-

applied science, the “necrobiome” framework additionally promises to strengthen forensic 

science at the most basic levels (Tomberlin et al., 2010; Tomberlin et al., 2011). Researchers 

posit that decomposition settings, as ephemeral ecosystems with sprawling networks of 

organisms at the micro- and macroscopic levels, inherently invite multidisciplinary research that 

characterizes how these networks overlap, interact, compete, etc. (Barton et al., 2012; Swan et 

al., 2021). As such, Benbow et al. (2019) broadly characterizes the necrobiome’s biotic structure 

(and what ecological functions emerge because of this biotic structure) in carrion and plant 

matter systems. To this end, they define the necrobiome as “the community of organisms 

associated with necromass decomposition [including] their interactions with the necromass, with 

each other, and with their surrounding habitat and ecosystem” (Benbow et al., 2016; Tomberlin 

et al. 2011). The ultimate focus of our studies concerns specific parts of this necrobiome: the 

“necrobiome structure,” which encompasses the internal, external, and saprophage communities, 
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and “necrobiome interactions and functions” (Benbow et al., 2019). This extends how microbes 

interact, navigate, are introduced, and disperse. Structurally speaking, it is best to characterize 

the necrobiome as the constitutive reflection of its endonecrotic (internal) and epinecrotic 

(external) microbial communities & scavenger communties directly affected by the process of 

decomposition (Pascual et al., 2017). It is the combination of these endonecrotic and epinecrotic 

microbial communities that comprises the overarching “microbiome” of the decomposing matter. 

In keeping with the ecological importance of the necrobiome, one must recognize that the 

postmortem microbiomes these communities represent can be comprised of any number of 

bacteria with any number of relationships with their host or even other microbes. Our initial 

emphasis on putrefaction and how it is driven chiefly by bacteria is important for the fact that 

how these bacterial communities change in structure during postmortem microbiome succession 

directly impacts the functions performed by that microbiome.  

Invertebrate Decomposers 

As time went on and research developed, forensic science came to recognize the voracity 

of many invertebrate decomposers as prolific colonizers of carrion in spite of the environmental 

or contextual circumstances that would ordinarily constrain their access to it (Ikeda et al., 2008). 

The presence or absence of invertebrates in the necrobiome can drastically influence the rate at 

which decomposition occurs and how the hypothetical “stages” of it present (Dadour & Harvey, 

2008). The numerous invertebrate decomposers present us with yet another level of ecological 

complexity, as many instances of resource-portioning, niche overlap, and competition are 

observable between two or many species (Benbow et al., 2019). When you consider how 

organisms on completely different trophic levels could possibly interact with or influence each 

other, the true challenge of characterizing the necrobiome in earnest becomes much more 
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evident. Our studies were motivated the increasingly obvious knowledge gaps that have emerged 

as more questions are broached regarding the necrobiome; and to this end, we focus primarily on 

the bacteria comprising the postmortem microbiome and how blow flies (Diptera: Calliphoridae) 

interact with or impact them. Importantly, though, the necrobiome and the theories that it is built 

on have many important implications for not just decomposition overall, but fields that consider 

the process in applications they develop. Forensics was a primary focus in the development of 

the studies and its associated hypotheses. 

Calliphoridae: Blow Flies 

   As explained by VanLaerhoven (2008), blow flies have long since seen utility in the 

field of forensic entomology as insects with exceptionally predictable growth rates and life 

histories. As such, the use of degree day or degree hour models built on blow fly developmental 

data and used to retroactively estimate postmortem intervals (PMI) rank among their most 

common use cases. In a comparison of three different variable combinations in the calculation of 

a PMI, it was found that they did not differ significantly in terms of efficacy (VanLaerhoven, 

2008). While this method of PMI determination is contingent on the availability of multiple data 

types, it does tread water as a feasible means of approximating PMI with a moderate margin of 

error. Arias-Robledo et al. (2018) emphasize that blow fly activity on carrion is not a simplistic 

manner, keeping with the complexity outlined in the previously noted necrobiome framework. 

The blow fly’s relationship with its environment and how those environments change as time 

goes on and seasons transition are important aspects of their life history (Ngoen et al., 2011). For 

instance, Lucilia species and Calliphora species have evolved such that they are represented in 

higher abundance during cooler months (Arias-Robledo et al., 2018). Lucilia species, 

additionally, appear to differentially motivated by humidity and light intensity when it comes to 
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oviposition and colonization (Amendt & Reckel, 2008). This serves as an excellent example of 

how species of Calliphoridae can differ behaviorally, despite the generalizations we tend to make 

regarding their life histories and development in decomposition settings.  

One important concern in the colonization of carrion by blow flies lies in how they 

aggregate during these colonization events, where larvae can be seen forming larval masses. 

Rivers et al. (2011) keenly observe that this approach has advantages and disadvantages that 

directly influence how they experience the surrounding ecosystem and how that ecosystem is 

affected by them. While larval masses can improve extra-oral digestion of carrion tissue and 

produce heat that sustains or even promotes growth, they also make it difficult to discern the 

susceptibility of maggots to heat stress and—should this be a risk—whether premature dispersal 

of larval masses or resultant death can inadvertently change the trajectory of decomposition 

(Rivers et al., 2011). So, even when isolated, we can observe knowledge gaps in how these larval 

masses influence the microbial communities of the carcass they form on or in.  

Forensic Microbiology 

 We should specify further that the subdiscipline our studies most directly address is that 

of “forensic microbiology,” or alternatively, “microbial forensics.” Spagnolo et al. (2019) outline 

the uses and general history of forensic microbiology, and immediately point out the relevance of 

the human microbiome to its emergence. Many popular forensic matters are ostensibly human 

ones. This indelible connection between the two made the Human Microbiome Project (HMP) an 

especial turning point in forensic science, as implications of the human microbiome as an 

indicator of health or even identity ushered in a still growing demand for practical 

microbiological applications in criminal/death investigation (Díez López et al., 2022). Given the 

recency of the HMP, it is not difficult to see why so little is known about the postmortem 
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microbiome and its changes despite the growing body of research contributing to its 

characterization. Weinstein (2003) is an important landmark in the overall characterization of the 

postmortem microbiome as something that can present with specific features or community 

structures somewhat consistently. While our study is more concerned with how the abundances 

of these bacterial taxa change as decomposition progresses and larval blow flies colonize carrion, 

it is still important to note the species or genera identified by foundational descriptive research 

that inspires our own. Pechal et al. (2013; 2018) provides us with a better understanding of what 

bacterial taxa comprise these postmortem microbiomes. These studies are two of many that 

corroborate the gradual rise in Firmicutes abundance as decomposition progresses while also 

noting the decline (and persistence) of bacteria in the phylum Proteobacteria. Many of the 

dominant families observed included Moraxellaceae, Enterobacteriaceae, and Arococcaceae. 

Papers like these ultimately serve as valuable points of reference for our own study results, as 

intersections or conflicts in observations can reveal crucial considerations to make with data 

collection or interpretation in future work. Spagnolo et al. (2019) make an excellent observation 

when they recognize that—while many studies have examined changes in bacterial communities 

of the skin or abdominal cavity exist to potentially extrapolate PMI—few studies have examined 

changes in bacterial communities of human organs specifically. This is a particularly interesting 

trend to note, as the absence of results means we cannot assume the irrelevance of these 

sampling sites as far as PMI determination attempts go. It proves to be an example of one 

technical knowledge gap in forensic microbiology that has emerged as an issue of convenience, 

despite the promise it could hold with the context of how intestinally focused putrefaction is. 

Fluids or tissues from these intestines are arguably the least environmentally influenced pieces of 

hypothetical evidence (Javan et al., 2016). This note serves mostly to demonstrate how far we 
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must go in rounding out the body of research that currently represents forensic microbiology as a 

discipline. Reviews of PMI determination efforts indicate several important methodological 

trends, regardless of efficacy. For instance, taxonomic resolution is not necessarily all that we 

should consider in the identification of PMI predictors of the postmortem microbiome. Indeed, 

lending more consideration to the functional expectations of bacteria at certain decomposition 

stages, or even making basic associations between the life history traits of bacteria seen driving 

decomposition and those observed in evidence, can all serve as valuable indicators of PMI. 

While there are consistencies between these communities across carrion models and sometimes 

causes of death, they are too beholden to the inherent stochasticity of decomposition to be 

meaningful at certain taxonomic levels. Oliveira & Amorim (2018) help identify even more uses 

of microbiological methods or concepts in ways that are less focused on human death. We feel it 

is important recognize the applications forensic microbiology has had in biocrime, bioterrorism, 

and geolocation (among others) to clarify that forensic microbiology is far from isolated to 

matters of PMI, cause of death (COD), or death in general.    

Microbiome Analysis Considerations 

 Recognizing the difficulties of studies that seek to characterize microbiomes 

longitudinally is important in clarifying areas of research we feel need more support. Kodikara et 

al. (2022) has proven extremely helpful in outlining considerations for microbiome data analysis 

that should inform our approaches to characterizing the postmortem microbiome over time. One 

key feature of longitudinal microbiome data is its natural compositionality. Microbiome data 

being compositional is a direct result of it representing relative abundances rather than absolute 

abundances. Since longitudinal measures of the microbiome are ultimately reflective of 

individual, temporally dissonant samples with incongruous sequencing read counts, we must 
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recognize that the composite longitudinal profile of any given individual will always be uneven 

when compared to another’s (Gloor et al., 2017). As such, it’s important that measures we use in, 

say, assessing differential abundance of bacteria between two groups are considerate of the 

compositional data. Methods like Bayesian semi-parametric generalized linear modeling use 

counts and account for issues of sparsity, compositionality, covariation, and more—but while 

this method may have favorable qualities, it does not necessarily make it the most applicable 

one, nor the most accessible (Ren et al., 2022). This does not necessarily address the concerns of 

longitudinal data either, as datasets have long been plagued by issues of intra-subject correlation. 

Consequently, of the methods identified by the review that serve to mitigate or account for these 

issues, all may have subtler biases or characteristics of their own that make them inflexible and, 

as such, inappropriate for use in certain contexts. We are in an extremely early stage of 

microbiome data analysis, and many of the research that falls under this umbrella does not 

adhere to any specific standard of analysis for any statistical test or metric use. It is important to 

us that we make this lack of standardization clear to those using our findings to inform their own; 

and we suggest that studies in this field sacrifice methodological brevity for intricate 

explanations and justifications of the tests they use to produce their results. 

Insect-microbe Interactions 

Tomberlin et al. (2017) focuses primarily on blow flies of forensic relevance, and in 

doing so notes one of the single most important instances of bacterial interactions with blow flies 

as generators of volatiles that ultimately attract certain Calliphorid species to carrion. With the 

advent of microbiome research and in lieu of this increasingly important observation, further 

assessments of the role bacteria play in the life histories of blow flies were conducted. Of these, 

what stands out the most to us is the hypothesized impact of larval masses on carrion microbiota 
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as they increase the basicity of their immediate environment (Pinilla et al., 2013; Filippis et al., 

2024; Thomas et al., 1999). In raising pH and potentially cultivating an environment unfit for the 

survival of select bacteria, they may be selecting for beneficial bacteria in the process, or in some 

way promoting the success of species like Proteus mirabilis (Tomberlin et al. 2017).  P. 

mirabilis has long stood out as a species with unique blow fly associations and distinct 

antimicrobial properties, suggesting that it may have a role in sustaining blow fly life (Ma et al., 

2012). For as many microbial interactions have been identified or researched throughout history, 

what is notably lacking among these investigations of blow fly-bacterial interactions are explicit 

studies of postmortem microbiome-specific influences on the blow fly microbiome and vice 

versa. Weatherbee et al. (2017) is one of few studies that address many of our own studies 

objectives with preliminary findings of their own. To better our understanding of how blow flies 

and bacteria interact as representatives from different kingdoms with overlapping functional 

niches, Weatherbee et al. (2017) used swine carcasses and repeated sampling of carcass and 

larval bacterial communities to illuminate how they might be interacting significantly. Their 

results indicated that there may very well be a significant interaction effect between the 

environment, postmortem microbiome, and blow fly larvae. Furthermore, compositional changes 

in larval mass composition as time goes on and the microbiome of the carcass itself changes 

indicated that there may be a presently unclear effect of carcass bacterial community succession 

on larval mass blow fly species succession. While few relationships or interactions were able to 

be identified in earnest, the speculation behind trends we observe in data like those collected by 

Weatherbee et al. (2017) are precisely how researchers downstream can conceptualize projects 

that rise to test those hypotheses.             
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CHAPTER 2: SEASONAL DYNAMICS OF POSTMORTEM MICROBIOMES 

Abstract 

The process of vertebrate decomposition is mediated by complex organismal networks 

whose scale and influence varies greatly by environment and resource. Members of the 

postmortem microbiome are vulnerable to environmental variation; but little is known how 

weather patterns contribute to changes in carrion microbial communities. The objective of this 

study was to characterize differences in carrion microbiota community succession over the course 

of seasonal decomposition studies. We hypothesized that postmortem microbial community 

succession would vary with season, in association with the dominate weather conditions (e.g., 

temperature and humidity). We anticipated that the colonization by blow flies would significantly 

impact the bacterial succession of the carcasses. In the spring, summer, and fall, six stillborn 

swine carcasses were arranged along a woodland tree line and allowed to decompose until their 

remains skeletonized and larval blow fly activity ceased. Carcass microbial communities were 

collected twice a day every day until studies concluded. Results indicated that bacterial diversity 

consistently increased between each successive stage of decomposition. Summer bacterial 

diversity was significantly higher than fall and spring. The community composition of 

postmortem microbiomes differed significantly by season. Interestingly, the insect-associated 

bacteria Ignatzschineria was in high abundance among all carcass bacterial communities once 

larval activity was notable. Investigating decomposition stage as a function of accumulated degree 

hours (ADH) and as a function of bacterial community composition showed that season was 

important in the modeling ADH and season. Data indicates that season and insect cocolonization 

are important in the analysis of postmortem microbiomes, especially when extrapolating 

information about the decedent and their circumstances, from microbial data. 
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Introduction 

Decomposition is as ubiquitous as it is inevitable for living creatures of all shapes and 

sizes. The process of decomposition succeeds death but contradicts its nature by releasing the 

valuable resources our bodies contain back into the immediate environment. It is important to 

contextualize decomposition as multifaceted rather than an uncomplicated one; and nowhere is 

its complexity more apparent than in the ephemeral community it can sustain.  

Decomposition ecology is unique in that many of its contributors are uniquely suited to 

compete in that environment and nowhere else (Fenoglio et al., 2014). This collection of 

decomposers and consumers, alongside the carcass itself, constitute what is referred to as the 

“necrobiome” (Benbow, 2016; Barton et al., 2019). The transient nature of decomposing remains 

is largely attributable to many members of the necrobiome—chiefly bacteria that mediate the 

breakdown of the organic materials and blow flies of the family Calliphoridae (Benbow et al., 

2013; Hyde et al., 2014; Janaway et al., 2009). Beyond the ecological considerations we lend to 

carrion, the difficulty in studying decomposition stems from its multivariate nature and 

consequent complexity (Barton et al., 2012; Benbow 2016). This is especially prevalent in the 

field of forensics, where death investigation is constantly being improved upon. Researchers 

argue that forensic science should be held to a higher, more rigorous standard (Solomon & 

Hackett, 1996; Tomberlin et al. 2011); and the growing popularity of forensic microbiology 

promises to encourage that (Spagnolo et al., 2019). The applicability of a new science is a 

common pretense for forensic research, and the promise of the human microbiome as an 

indicator of health suggested to many that we can similarly derive determinations posthumously 

(Kaszubinski et al., 2019; Knight et al., 2017; Pechal et al., 2013). The collection of bacteria, 

fungi, and archaea that typically comprise the human microbiome are subjected to volatile 
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growth conditions following the death of their host organism, and this host death is precisely 

why microbiota come to constitute a “postmortem microbiome” instead (Pechal et al. 2018). 

Studies have demonstrated that trends in microbial community structure and succession follow 

predictable trajectories once the postmortem microbiome has been established (DeBruyn & 

Hauther, 2017; Dong et al., 2019; Javan et al., 2016; Liu et al., 2021). Additionally, the 

uniqueness of human microbiomes suggests that we can use their specificity to aid in 

determining the perpetrator of a crime (Oliveira & Amorim, 2018). Sequencing technologies that 

allow us to characterize portions or the entirety of a microbiome have also seen rapid 

improvements in terms of efficacy and accessibility (Wang, 2023). Many claims have been made 

as forensic microbiology and the body of research supporting it grows, but its suitability for 

practice is far from clear (Tozzo et al., 2022). Data trends seem to indicate the usefulness of the 

postmortem microbiome in postmortem interval (PMI) or cause of death (COD) determination. 

Despite this, the field is still well in its relative infancy. We believe that the postmortem 

microbiome may be useful in corroborating other forms of evidence (e.g., taphonomy, insect 

evidence) during an investigation. The use of forensic microbiology as a means of validation 

could prove pertinent to the creation or validation of taphonomic criteria, a matter for which 

there is no singular standardized measure (Pittner et al., 2020). If we demonstrate that microbial 

profiles can reliably coincide with the decomposition stages, it may further strengthen our 

understanding of postmortem microbiome succession. Figure 1 outlines a hypothetical flowchart 

of common evidence types and how they can be processed with forensic microbiology in mind. 

Combining taphonomic assessments, postmortem microbiome sampling, and insect sampling 

when appropriate can provide multiple PMI determinations. Postmortem microbiome sampling 

in combination with the soil microbial profiles can even provide evidence of carcass 
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translocation. If the PMI determinations corroborate each other, we can be more confident that 

our inferences are correct. If one or two PMI conflict with others, then perhaps that inconsistency 

could elucidate an important element of the crime that warrants further consideration. 

 

Figure 1. Hypothetical evidence processing pipeline that incorporates microbial data as 
complementary validation for traditional forensic techniques. This concept takes advantage 
of evidence type flexibility in the determination of multiple postmortem intervals (PMI) when 
contextualized further by microbial profiles. Dashed lines represent additional applications of 
inferences to other evidence processing pipelines. 

Preliminary findings reported in recent research highlight the capabilities of longitudinal 

decomposition data in the creation of models that can predict measures like PMI (Metcalf et al., 

2013), the reliability and flexibility of these models stands to make marked improvements as 

research continues. Predictive modeling has seen great improvement with the advent of machine 

learning (Li et al., 2023), and understanding what the algorithms responsible for generating these 

models are sensitive to may prove crucial in evaluating the usefulness of the postmortem 
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microbiome in death investigation. As such, especial attention should be given to the underlying 

forces that drive decomposition. Weather conditions are among the most crucial contributors to 

the process of carrion decomposition, as temperature and humidity have been broadly implicated 

in modulating the rate at which it occurs (Englmeier et al., 2023). Despite this, little research 

exists on the role seasonal weather variables play in postmortem microbiome assembly. Few 

datasets succeed in capturing the full range of seasons representatively, if at all. 

 To address some of these research needs, this study aimed to thoroughly characterize 

bacterial communities of carcasses throughout the course of decomposition with repeated 

measures. In addition to performing decomposition field studies during different seasons, we 

sought to sample the microbiota of larval masses as blow fly larvae colonized the carcass and 

consumed it. Focusing on these two aspects of our study allowed us to better understand both the 

impact that seasonal dynamics play in the succession and structure of postmortem microbiomes 

and the microbial exchange with blow flies. 

 We hypothesized that season would have a significant effect on microbial communities 

over the course of decomposition, reflecting their incongruous abiotic conditions (e.g., 

temperature, humidity) and their influence the biological processes of bacteria and insects. We 

predicted that the weather conditions typical of fall and spring would limit the growth of taxa 

intolerant of lower temperatures and moisture. If it were the case that seasonal weather variables 

during cooler months only lent themselves to bacterial species suited for them, then we also 

assumed that the overall diversity of these postmortem microbiomes would be significantly 

lower than those of the summer. 

Materials and Methods 

Decomposition Studies 
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 Decomposition studies were performed in the summer (2022), fall (2022), and spring of 

2023 (Table 1). Start dates were selected based on historical weather data sourced from the 

Michigan State University Horticulture (MSUHort) and MSU Hancock Turfgrass Research 

Center (MSU HTRC) weather stations to represent the average conditions associated with each 

season. Both weather stations were approximately the same distance from our study site (2-3 

miles). Sampling occurred twice a day: once in the morning (AM), and once in the afternoon 

(PM). A winter study was not performed due to the presumed difficulties that snow cover and 

access would impose on a consistent sampling schedule. 

Table 1. A summary of decomposition study periods. Dates reflect the days the stretch of 
time during each study that samples were collected twice daily. Temperatures and humidity 
readings were averaged for each study. 

Study Sampling period  
(YYYY-MM-DD) 

Average 
temperature (°C) 

Average 
humidity (RH%) 

Summer 2022 2022-08-05 to 2022-08-11 22.3 ± .19 76.6 ± .78 
Fall 2022 2022-10-14 to 2022-11-06 8.27 ± .12 76.3 ± .40 
Spring 2023 2023-05-15 to 2023-05-26 16.7 ± .18 69.6 ± .67 

 

Stillborn American Yorkshire swine (Sus domestica) carcasses were selected as our 

carrion model and purchased from the MSU Swine Teaching & Research Center. Domestic 

swine have a long history of use in forensic decomposition studies as analogues to human 

cadavers (Connor & Hansen, 2017). Using smaller carcasses also promotes the emergence of 

smaller larval masses whose accumulations are measurably distinct from others (Leblanc & 

Strongman, 2002) and offers better replication (n = 6 for each season) than adults (Table S1). 

Carcasses were bagged in groups of 2-3 and stored at -20°C until the beginning of their 

respective study, when they were thawed at room temperature (20-22°C) 24 hours before 

placement at the study site. The carcasses were sexed and weighed using a mechanical scale, and 

no measures were taken to alter or otherwise eliminate the existing microbiota of the carcasses. 
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Decomposition studies were performed on the grounds of the Box Woodland in East 

Lansing, MI (42° 41' 23.0712'' N, 84° 29' 29.5476'' W) with permission from the MSU Campus 

Natural Areas Committee. Each trial was performed in a different location with the Box 

Woodland split into three 60m sub-sections of tree line to accommodate all three studies (Figure 

2). Carcasses (n=6) were arranged at least 10 m apart along a transect parallel to the woodland 

tree line. Carcasses were placed with their heads facing west and maintained this position 

throughout the duration of the decomposition studies. Anti-scavenger cages were 1m3 and placed 

over each carcass to prevent vertebrate scavenger activity. Cages were secured using 3 bricks 

(~8kg) and were a successful prevention measure.  

 

Figure 2. Field site and placement of stillborn pig carcasses used in seasonal decomposition 
studies. Each sub-section spanned 60m and accommodated n = 6 stillborn pig carcasses, each 
10m apart from each other. All sub-sections faced away from main or access roads and did not 
interrupt ongoing agricultural work. 

Abiotic Data Sampling 

 Hourly weather data were collected using HOBO data loggers (Onset Computer 
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Corporation, Bourne, MA) in the summer and Kestrel DROP D2 wireless data loggers (Kestrel 

Instruments, Boothwyn, PA) in the fall and spring seasons. Data loggers were affixed to the anti-

scavenger cages immediately following carcass placement. The HOBO data loggers only 

recorded temperature (°C), while the Kestrel DROP D2 measured both temperature (°C) and 

relative humidity (%). Weather station data from MSUHort and MSU HTRC were also collected 

for downstream analysis of historical weather trends and data representativeness.  

Microbiota Sampling 

 Epinecrotic (carcass surface) microbial communities were collected using sterile, DNA-

free cotton-tipped swabs (Puritan Medical products, Guilford, ME). A transect of the carcass 

abdominal skin was sampled with repeated strokes while rotating the swab. The oral cavity and 

rectum surfaces were sampled the same way, but with insertions rather than strokes (Figure 3). 

Aseptic field technique was employed to reduce contamination; and swab tips were stored in 

1.5mL microcentrifuge tubes with 200uL of room temperature RNAlater. RNAlater was selected 

as a reagent that stabilizes and protects cellular RNA/DNA until further processing (Gorokhova, 

2005). Sampling of larval mass microbiota accompanied observations of substantial and 

accessible aggregations (>50 larvae). The sampling protocol for larval masses differed only in 

that repeated insertions (n = 3) prioritized unsampled areas of the mass. If more than one distinct 

larval mass was present, they were sampled independently. Once sample collection concluded 

for any given sampling event, tubes containing the samples were stored in laboratory freezers at -

20°C.
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Figure 3. Scavenger cage configuration and sampling procedure, visualized. Body site 
sampling of the skin, mouth and rectum took place twice a day. Larval mass microbiota sampling 
was conducted when possible; and larvae were collected (n=10-30) provided they were 
confirmed to be third (3rd) instar based on the number of spiracles observed from individual to 
individual. 

Insect Sampling 

When distinct larval masses were present, a sterile, DNA-free tongue depressor was used 

to collect 10-30 large larvae for preservation in 50mL Falcon® Conical Centrifuge Tubes 

(Corning, Corning, NY) with 25mL of RNAlater. Larvae were visually inspected to family 

(Calliphoridae) and aged based on spiracle count (n = 3 spiracle slits for 3rd instar) after being 

collected. Only 3rd instar larvae were processed for analysis. 

Taphonomic Assessments 

 Taphonomic assessments of the carcasses were performed using criteria outlined in 

Payne (1965) to approximate the following decomposition stages: Fresh, Bloat, Active, 

Advanced, and Dry. Photos of each carcass were taken throughout the study, once per sampling 

event (Figure 4). The Payne (1965) decomposition criteria were suited to our carrion model and 

experimental objectives in that they provided subjective, but commonly used, stages of a 

continuous process based on major biological activity (e.g., blow fly colonization, putrefaction). 
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Figure 4. Comparative matrix of decomposition stages between studies. Includes visual 
representations of each decomposition stage (Fresh, Bloat, Active, Advanced, Dry) outlined by 
Payne (1965). The first row corresponds with example images from Payne (1965), subsequent 
rows correspond with taphonomic assessments made during each seasonal decomposition study. 

 

DNA Extraction and Amplicon Sequencing 

  The prohibitively large number of samples collected across the fall and spring trials 

necessitated limited swab processing, so samples taken during evenly numbered sampling events 

were prioritized (Table S6). Care was taken to ensure that the range of samples used 

encompassed all stages of decomposition. Isolation of genomic DNA was performed using the 

DNeasy® Blood & Tissue Kit (QIAGEN N.V., Hilden, Germany). The kit instructions were 

modified to include 15uL lysozyme (15mg/mL) prior to incubation, encouraging cell lysis 

(Salton, 1957). The cotton tips of the swabs were either removed from the stick entirely using 

sterile scalpel blades and forceps or beaten using 1.4mm ceramic beads (VWR International, 
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Radnor, PA) and a FastPrep-96™ high-throughput bead beating grinder and lysis system (MP 

Biomedicals, Santa ana, CA) prior to the 90-minute lysis step.  

 Individual blow fly larvae pooled during sampling events were introduced to new 

(separate) 1.5mL microcentrifuge tubes and homogenized using 1.4mm ceramic beads & the 

FastPrep-96™. Sampling events that 3rd instar larvae were present for were represented by 10 

individuals, sampled randomly and such that all carcasses from which larvae were sampled are 

represented by 1-3 larvae (depending on the number of carcasses sampled). DNA extraction was 

performed identically to the protocol used for swab processing.  

Eluted DNA was quantified using the Qubit™ dsDNA Quantification Assay Kit and a 

Qubit 2.0 fluorometer (Thermofisher Scientific, Waltham, MA). PCR amplification of the V4 

region of the 16S rRNA gene using 515F/806R primers (5'-GTGCCAGCMGCCGCGG-3’, 5'-

TACNVGGGTATCTAATCC-3’) was followed by gel electrophoresis. Samples containing 

viable DNA were submitted to the Michigan State University Genomics Core facility (East 

Lansing, MI) for Illumina MiSeq amplicon sequencing. Sequencing data was demultiplexed by 

the MSU Genomics Core before being made available for analysis.  

Sequencing Data Processing 

 The bioinformatic software QIIME2 (v2023.7) was used to filter raw 16s amplicon 

sequencing data and generate diagnostic data important for quality and quantity control (Table 

S4). Primer sequences were selectively trimmed from the sequencing data before amplicon error 

correction and ASV assembly was mediated by DADA2. Taxonomy was determined by a naïve 

Bayes classifier using the SILVA rRNA database (v138-99). Multiple sequence alignment 

(MSA) was made possible by MAFFT (v7), a tool native to the QIIME2 ecosystem. A final 

filtering step was performed to eliminate singletons and reads matched with mitochondrial or 
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chloroplast DNA. Additionally, rarefaction eliminated samples with sequencing read counts 

<150bp to better standardize the data and mitigate the risks resulting from their limited 

taxonomic resolution/profile. Samples above the 150bp threshold were significantly higher than 

150bp and grew exponentially with each successive sample. >200bp samples were retained 

despite their size because they demonstrated greater degrees of homogeneity as far as their 

bacterial community compositions were concerned. The artifacts (outputs) corresponding with 

taxonomy, rooted phylogenetic trees, and filtered feature tables were imported into RStudio 

(v2023.06.0+421, RStudio Inc., Boston, MA) with the ‘phyloseq’ package for analysis.  

Statistical and Bioinformatic Analysis 

 Statistical analyses were informed by recent standards for microbiome analysis (Kodikara 

et al., 2022; Silverman et al., 2018) that are non-parametric and accommodate compositional 

data.  

To test for significant overall differences in biodiversity (alpha diversity) among factors 

(sample type, season, decomposition stage.) we used the Kruskal-Wallis rank-sum test (KW). 

Pairwise testing of alpha diversity metrics (observed species, species evenness, Shannon 

diversity, and Faith’s phylogenetic diversity) was performed using a pairwise Wilcoxon rank-

sum test and enabled direct comparisons of specific samples/groups. Analysis of covariance 

(ANCOVA) was used to test main and interaction effects of categorical variables combined with 

a third, continuous variable to track alpha diversity changes over time. Only Shannon diversity 

was prioritized in final analyses as a diversity metric that accounts for both species richness and 

relative abundance. Temperature data was tested using KW and post-hoc analysis was performed 

with Dunn’s test. 

Differences in beta diversity were tested among seasonal weather variables, sample types, 
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and season itself using the Adonis R package. Adonis is an alternative to permutational 

multivariate analysis of variance (PERMANOVA), a non-parametric alternative to multivariate 

ANOVA tests (MANOVA) that allows for the use of numeric and categorical variables in testing 

rather than just categorical variables. Principal coordinate analysis (PCoA) of UniFrac distance 

matrices were used to visualize community dissimilarity as a metric designed to compare 

microbial communities among different habitats and/or over time. It measures the phylogenetic 

distance of bacterial taxa within the communities and uses relative scoring to evaluate 

dissimilarity between samples. Weighted UniFrac (as opposed to unweighted UniFrac) accounts 

for the relative abundance of the taxa within our samples as well as the absence/presence of those 

taxa, much like Shannon diversity. 

 Analysis of compositions of microbiomes with bias correction (ANCOM-BC) is a 

method that estimates absolute abundances of bacterial taxa based on relative abundance data. It 

then uses these estimates to test for differential abundances of microbial taxa across different 

samples, groups, or variables. The bias correction accounts for issues that arise in non-normal 

data (like compositional microbiome data) and underlying issues of hypothesis testing. 

Random forest predictive models (both regressors and classifiers) were developed using 

the ‘randomForest’ R package and default parameters (Table S10). Random forest is well suited 

to classification tasks like these as an algorithm that generates multiple decision trees from 

subsets of our data to create models whose accuracy and goodness-of-fit (GoF) can outperform 

those built on a single decision tree. This approach is especially appropriate for microbial data as 

a non-parametric modeling approach for complex, multivariate data. These models were 

designed to predict accumulated degree hours (ADH), season, and decomposition stage using the 

taxonomic feature and abundance data of samples contained within “phyloseq” objects, which 
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enable the import and analysis of phylogenetic sequencing data. 

Accumulated degree hours (ADH) were calculated with HTRC data using the formula 

𝐴𝐷𝐻(ℎ) = ∑ max	(𝑇! − 𝐿𝐷𝑇, 0)"
!#$ , where h is hours, Ti is the temperature (°C) for the ith hour, 

and LDT represents the lowest possible development threshold for which larval growth can be 

expected (Higley & Haskell, 2000). ADH is a measure of development that estimates the amount 

of accumulated heat necessary for larvae of a fly species to reach a particular developmental 

stage. It has also and has also been applied to postmortem microbiomes (Pechal et al 2018). The 

calculation assumes a linear relationship between developmental rate and temperature. Negative 

temperature values were entered as zero when necessary to prevent them from subtracting from 

the cumulative ADH. With ADH representing the interaction of time (hours) and thermal 

exposure, it was used in seasonal comparisons of decomposition to mitigate the visual and 

statistical challenges of our incongruous study timelines.  

 

Results 

Seasonal Weather, ADH, and Taphonomy 

 The duration of each decomposition study varied by season (Figure 5). From placement 

to skeletonization, the summer study took 7 days, the fall study 24 days and the spring study took 

12 days. 
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Figure 5. A timeline of seasonal decomposition studies. Bar length corresponds with the total 
number of days spanned by each study. 

 Due to instrument malfunctions, temperature and humidity data prior to the AM sampling 

event of May 21st were not recorded, resulting in more than half the spring 2023 decomposition 

study being unrepresented. To account for this loss, an ANOVA compared averaged hourly data 

logger readings from all seasons to data recorded hourly by the HTRC and MSU Horticulture 

weather stations. No significant differences were detected between any datasets (nor between the 

individual data logger readings themselves) (Figure S1). Additional attempts to model the 

missing weather data from the spring study were made using HTRC and MSU Horticulture data 

successfully. Ultimately, weather station data offered more consistent and realistic snapshots of 

seasonal weather data; and HTRC Station readings were used for downstream analysis 

preferentially over data logger readings. ADH calculations showed that summer had the highest 

ADH of 1948. Fall reached 1558 ADH, and spring reached 1185 ADH. 

 Weather spanning the duration of each study was compared to three years of prior HTRC 

weather data. Summer and fall studies, having taken place in 2022, were compared to data from 

2021, 2020, and 2019. The spring study took place in 2023 and was compared to weather data 

from 2022, 2021, and 2020. Hourly temperature and relative humidity were compared between 

these historical data for all seasons (Figure 6). 
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Figure 6. Decomposition study weather data. A) Rainfall plot of hourly temperature data 
between summer, spring, and fall. B) Plots of temperature over date between for the study year 
and the three years preceding it & relative humidity (RH%) and precipitation levels over the 
course of the study. 

Temperature (adj. p = 0.46) and relative humidity (RH%) (adj. p = 0.13) did not differ 

significantly between summer 2022 and summer 2021. In the fall, however, both temperature 

(adj. p ≤ 0.001) and RH% (adj. p ≤ 0.001) were significantly different between the study year 

(2022) and 2021. Spring too was significantly different between 2023 and 2022 in terms of both 

temperature (adj. p ≤ 0.001) and RH% (adj. p ≤ 0.001) (Table S7, Table S8, Table S9). Cooler 

months (fall and spring) temperatures and humidity that are often highly variable (e.g., low 

temperatures, sporadic RH%, precipitation events) were significantly different between 

successive years i. Summer, however only differed significantly by temperature (adj. p = 0.0018) 

and humidity (adj. p = 0.0029) between 2020 and 2021. Otherwise, periods of weather within the 

span of the summer 2022 study remained relatively consistent. 

Comparing just the weather data from the three decomposition studies in the summer, 

fall, and spring reinforced how dissimilar their conditions were (Table 2). All differed 
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significantly from each other in both hourly temperature (adj. p ≤ 0.001, all pairwise 

comparisons) and RH% (adj. p ≤ 0.001, all pairwise comparisons) & represented extremely 

different climatological snapshots of seasonal weather. Lower test statistics between the fall and 

spring temperatures (-5.4) indicate that the differences between these two seasons was less that 

what was observed between summer and either month. 

Table 2. Post-hoc analysis (Dunn’s test) of Kruskal-Wallis rank sum tests comparing 
decomposition study (summer, fall, spring) temperature and relative humidity data. 

Comparison Test Statistic Adjusted p-value 

Temperature (°C) 
Summer 2022 vs Fall 2022 -17.46777 ≤0.001*** 
Summer 2022 vs Spring 
2023 -11.82683 ≤0.001*** 

Fall 2022 vs Spring 2023 -5.404205 ≤0.001*** 

Relative Humidity (%) 
Summer 2022 vs Fall 2022 -4.873887 ≤0.001*** 
Summer 2022 vs Spring 
2023 -9.093190 ≤0.001*** 

Fall 2022 vs Spring 2023 6.443789 ≤0.001*** 
p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, (ns) = not significant 
p-values adjusted using the Bonferroni method, normality of data tested using Shapiro-Wilk 

 

Figure 7 illustrates both the average duration of decomposition stages throughout each 

study and how long each individual carcass was classified as each stage relative to their 

cumulative ADH. A significant difference in the amount of time spent by spring carcasses in the 

“Fresh” stage is immediately apparent when compared directly to the averages of summer and 

fall. Summer carcasses also spent considerably more time in the “Dry” stage of decomposition 

than either fall or spring, but the average duration of each stage was not skewed towards it in the 

same fashion that spring averages are by “Fresh.” Summer and fall have comparable average 

durations between similar ADH timepoints; but the only overlap their stage durations have with 
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spring were the “Active” and “Dry” timeframes. 

 

Figure 7. Differences in decomposition stage duration across accumulated degree hours 
(ADH). A) Average duration of each decomposition stage across all carcasses for each season. 
B) Intra-carcass variation of decomposition stage duration across all seasons. 

Seasonal Microbiome Diversity 

Shannon diversity of carcass postmortem microbiomes significantly increased with ADH 

over the course of decomposition (adj. p ≤ 0.001 for each season) (Figure 8, Figure S8). The 

slope of this increase was greatest in the summer, while the slopes of fall and spring were 

comparable. The initial Shannon diversity typically started between 1.5-2 and ended at 2.5-3 for 

all seasons. ANCOVA testing revealed that the rate at which alpha diversity increased in the 

summer was significantly (p = 0.045) higher than it did in the fall. While the summer diversity 

growth rates were higher than the spring, it was not to a significant extent (p = 0.062). The slope 

for spring did not differ significantly (p = 0.707) from the slope for fall. Evidently greater 

diversity in the summer than in other studies. In any case, both ADH and Season have a 

significant relationship with alpha diversity. 
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Figure 8. Linear regressions of the relationship between alpha diversity (Shannon) and 
ADH. The top row shows alpha diversity for all carcasses, while the bottom row reflects the 
mean alpha diversity of all carcasses. The gradient of colors overlaying the plot grid represent 
approximate decomposition stage associated with ADH range (“Fresh” → “Bloat” → “Active” 
→ “Advanced” → “Dry”). 

Comparisons of postmortem microbiomes (Figure S3, Table S3), larval microbiomes, 

and larval mas microbiomes by season revealed several trends (Figure 9). Summer postmortem 

microbiomes were significantly more diverse than the fall microbiomes (adj. p = 0.0054) and the 

spring microbiomes (adj. p = 0.033). Fall and spring microbiota, however, did not differ so 

significantly in terms of alpha diversity (adj. p = 0.051). Larvae alpha diversity differed 

significantly by season, with fall larvae being significantly more diverse than both summer (adj. 

p ≤ 0.001) and spring (adj. p ≤ 0.001) larvae. Spring larvae were more diverse than summer 

larvae as well (adj. p = 0.002). Larvae sampled during the summer study were ultimately the 

least diverse by a large margin, despite it having the most diverse carcass postmortem 

microbiomes. Conversely, the fall study had the least postmortem microbiome diversity and the 

greatest larval diversity. Comparisons of larval mass alpha diversity trend similarly, with fall and 

spring larval masses being more diverse on average than those in the summer. Spring larval 

masses ranked as the most diverse, significantly moreso than the summer larval masses (adj. p < 
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0.001). Consolidating all sample types and comparing their overall diversity across each study 

shows no significant differences in alpha diversity. 

 
Figure 9. Comparisons of season Shannon diversity faceted by sample type. A) Violin plots 
of carcass postmortem microbiome diversity grouped by season. B) Violin plots of larval 
microbiome diversity grouped by season. C) Violin plots of larval mass microbiome diversity 
grouped by season. D) Violin plots of all sample types grouped by season. Colored horizontal 
lines denote median Shannon diversity. Dotted lines between these medians serves as a visual 
guide for positive or negative trends between seasons. Brackets with tails indicate pairwise 
Wilcoxon rank-sum tests of significance. Significance thresholds are denoted by * = p-value < 
0.05, ** = p-value < 0.01, *** = p-value < 0.001. 

 In a combined seasonal dataset, the diversity of carcass postmortem microbiomes (adj. p 

= 0.002) and larval mass microbiomes (adj. p = 0.002) were significantly higher than those of the 

larvae (Figure 10). Where carcass diversity and larval mass diversity do not differ significantly 

from each other in the combined seasonal dataset, sample type diversities all vary significantly in 

the summer. In fact, summer carcass microbiomes were significantly greater than that of larvae 

(adj. p ≤ 0.001) and larval masses (adj. p ≤ 0.001). Larval masses were still more diverse than 

larvae, however (adj. p = 0.0035). No significant differences existed between sample types in the 

fall; but larvae were the most diverse. Spring trends matched those of the combined dataset, with 

carcasses (adj. p ≤ 0.001) and larval masses (adj. p ≤ 0.001) both more diverse than larvae. 

Interestingly, larval masses were more diverse than carcasses, but not significantly so. 
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Figure 10. Comparisons of sample type Shannon diversity faceted by season. A) Violin plots 
of sample type microbiome diversity in a combined dataset of all seasons. B) Violin plots of 
sample type microbiome diversity in summer 2022. C) Violin plots of sample type microbiome 
diversity in fall 2022. D) Violin plots of sample type microbiome diversity in spring 2023. 
Colored horizontal lines denote median Shannon diversity. Brackets with tails indicate pairwise 
Wilcoxon rank-sum tests of significance. Significance thresholds are denoted by * = p-value < 
0.05, ** = p-value < 0.01, *** = p-value < 0.001. 

 

Seasonal Microbiome Community Composition 
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  Bacterial community composition differed significantly overall in the summer among 

body sites (p ≤ 0.001), but pairwise comparisons revealed that this was largely driven by 

differences between the carcasses and larvae (adj. p ≤ 0.003) as well between the carcasses and 

larval masses (adj. p = 0.039). Summer larvae and larval mass communities were not 

significantly dissimilar from each other.  

Fall sample type communities were significantly dissimilar to the same extent between 

each pairwise comparison (adj. p ≤ 0.003). Spring carcass communities did not differ 

significantly from those of the larval masses (adj. p = 0.390), but differences between those 

sample types and the larvae were significant (adj. p ≤ 0.003). Interestingly, when all seasons are 

combined into a singular dataset, larval mass communities do not differ significantly from 

carcass communities to an even greater extent than what was observed in the summer (adj. p = 

0.702). Larvae communities differ from carcasses (adj. p ≤ 0.003). 

 Each axis of a PCoA is a principal coordinate that represents a direction of maximum 

variance in our seasonal sample community data; and using them, inferences can be made about 

the percentage of variation each one explains (Figure 11). The proportion of variation that either 

axis can account for is additive, such that the summer PCoA axes (PC1 + PC2) can explain a 

total of 94.8% of variation within the data. The incredible explanatory power of the PC1 axis 

indicates that it captures major differences in community composition, meaning that it may be 

possible to implicate a specific abiotic or biotic carriable in driving bacterial community 

dissimilarity between summer samples. Fall shares similarly high PC1 percentage of variation 

explained at 74.9%, meaning a dominant trend may be similarly driving sample dissimilarity 

during this season as well. Spring varies considerably from summer and fall, as the PC1 of its 

PCoA can only account for 51.5% of the variation while PC2 accounts for 23.5%, which is 
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significantly more than the PC2 axis of summer and fall PCoA were able to. Spring appears to be 

more complex in that its sample dissimilarity is driven by more than one influential factor rather 

than one dominant one. The PCoA corresponding with the combined seasonal dataset has the 

lowest explanatory power, with PC1 accounting for just 38% of variation and PC2 accounting 

for 22.4%. In considering the whole of our seasonal data, it appears that there are more factors at 

play driving these differences than in any of the individual seasonal datasets. Its complexity is 

most suggestive of the fact that there is no single dominant trend driving the significant 

dissimilarity we can observe between samples. 

 

Figure 11. PCoA of seasonal weighted UniFrac scores grouped by sample type. A) Summer 
2022 PCoA, first of axes PC1 and PC2 and then by axes PC1 and PC3. B) Fall 2022 PCoA, first 
of axes PC1 and PC2 and then by axes PC1 and PC3. C) Spring 2023 PCoA, first of axes PC1 
and PC2 and then by axes PC1 and PC3. D) PCoA representing all seasons combined, first of 
axes PC1 and PC2 and then by axes PC1 and PC3. The percentage of each axis confers with the 
proportion of variation it can account for. Ellipses indicate the 95% CI of a specific sample type. 
Arrows indicate the approximate directional trend of samples as ADH increases. 

 
 

Specifically comparing sample community dissimilarity of postmortem microbiomes 
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revealed that carcass microbiomes appeared to differ significantly by season (adj. p ≤ 0.003). 

PC1 of the PCoA (weighted UniFrac) accounts for 82.4% of variation in our data, meaning that 

it’s likely season itself is the primary driver facilitating the observed sample dissimilarity 

(Figure 12). A density plot visualizing where sample types are most abundant relative to their 

UniFrac score shows that there is a lot of overlap between community composition despite that. 

Fall has the most overlap with summer and spring, but significant portions of both densities fail 

to overlap with the fall density itself. 

 
Figure 12. PCoA of carcass postmortem microbiomes among all seasonal studies. A) PCoA 
of PC1 and PC2. B) PCoA of PC1 and PC3. C) Density plot of UniFrac sample scores grouped 
by season. 
 

There was also a significant effect of season on larval microbiomes (adj. p ≤ 0.003). 

Interestingly, the density plot indicates overlap of fall and spring communities, despite this 

dissimilarity. Summer is extremely different from either season by any measure. PC1 explains 

significantly less of the variation than the PCoA of postmortem microbiomes was able to at just 

51.3%. PC2 itself accounts for 25.4% of the variation (Figure 13).  
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Figure 13. PCoA of larvae microbiomes among all seasonal studies. A) PCoA of PC1 and 
PC2. B) PCoA of PC1 and PC3. C) Density plot of UniFrac sample scores grouped by season. 
 

Larval mass microbiomes were significantly different among seasons  (adj. p ≤ 0.003). 

Fall larval mass communities overlapped significantly more with summer larval mass 

communities than spring larval mass communities. PC1 explains 73.1% of the variation we can 

observe in our larval mass microbiome data, meaning that there is more than likely one 

significant factor in particular driving much of the dissimilarity we see between samples (Figure 

14).  

 
Figure 14. PCoA of larval mass microbiomes among all seasonal studies. A) PCoA of PC1 
and PC2. B) PCoA of PC1 and PC3. C) Density plot of UniFrac sample scores grouped by 
season. 
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Diversity and Community Composition by Decomposition Stage 

Overall alpha diversity increased over the course of decomposition in each season 

(Figure 15). Additionally, the median alpha diversity for each decomposition stage was 

consistent among all seasons. Despite this, there were significant differences in alpha diversity 

between the “Fresh” and “Bloat” stages as well as “Bloat” and “Active” stages for summer and 

fall (Figure S2, Table S2). In the spring, median alpha diversity increased over decomposition, 

but did not differ significantly by stage. In all cases, median diversity increases between each 

stage of decomposition: most significantly between “Fresh,” “Bloat,” “Active,” and “Advanced;” 

but substantially less so between “Advanced” and “Dry.”   

Trends in beta diversity (weighted UniFrac) somewhat mirror those of alpha diversity. 

Broadly speaking, sample community composition differed significantly across most 

decomposition stages. Across all seasons, “Fresh” and “Bloat” communities were significantly 

different from each other (adj. p ≤ 0.003). Samples are similarly dissimilar between “Bloat” and 

“Active” stages in the summer (adj. p ≤ 0.003) and the fall (adj. p ≤ 0.003), but not the spring 

(adj. p = 0.919) (Figure 15). It is noticeable that the most significant shifts in alpha diversity 

between stages corresponded with the two stages that demonstrate the most sample dissimilarity 

between each other. As was noted earlier, many spring postmortem microbiome samples are 

classified as being “Fresh,” and few of them are classified as “Bloat.” It’s likely that spring 

“Bloat” and “Active” samples are less dissimilar because samples classified as “Bloat” were 

collected nearer to the “Active” stage transition. “Active” and “Advanced” samples did not differ 

significantly from each other in any season (adj. p ≥ 0.8), nor did “Advanced” and “Dry” 

samples. (adj. p ≥ 0.8).  

Histograms that show the number of samples that fall within a specific range of PC1 
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weighted UniFrac scores (frequency) are useful for visualizing trends in distribution between 

decomposition stages. The further apart histogram bars conferring with a specific stage of 

decomposition are, the more dissimilar they are from the other stages plotted. In the cases of the 

summer, fall, and spring, the distribution of “Fresh” samples is very distinct from those of 

“Active,” “Advanced,” or “Dry.” In most cases, “Fresh” samples are even distinct from “Bloat” 

samples. In the summer and fall, you can see that the distribution of “Bloat” samples practically 

closes the gap between “Fresh” samples and those belonging to later stages. Communities make 

their most dramatic transitions during “Bloat,” it seems. “Active,” “Advanced,” and “Dry” 

samples all overlap so significantly that destringing them from each other visually is made 

somewhat difficult. Importantly, the PC1 axis of all PCoA, regardless of season, explains most of 

the variation observed in the postmortem microbiome data (>73%).  
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Figure 15. Postmortem microbiome diversity and community composition between 
decomposition stages. A) Violin plots of Shannon diversity by decomposition stage and faceted 
by season. B) PCoA of weighted UniFrac scores comparing sample community composition 
across stages of decomposition. C) Histograms showing the frequency of PC1 score distribution 
by decomposition stage. 

Bacterial Community Structure and Succession 

 Analysis of compositions of microbiomes with bias correction (ANCOM-BC) testing can 

help identify bacterial taxa that potentially help drive some of the dissimilarity we observe 

between postmortem microbiome communities (Figure S4, Figure S5). In comparing the 

postmortem microbiomes during decomposition, there were consistent trends for all seasons 

(Figure 16). In the summer, fall, and spring, the genus Ignatzschineria ranked as the greatest 

increase in abundance. This means that, over the course of decomposition, the abundance of 

Ignatzschineria in the postmortem bacterial communities grew more than any other taxa 

comprising it. Similarly, the genus Wohlfahrtiimonas—a close relative of Ignatzschineria—also 

grew significantly in abundance as time went on. Conversely, the genera Clostridium and 
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Escherichia-Shigella (a combination of two closely related general) saw the greatest decline in 

abundance throughout decomposition.  

 

Figure 16. Bar plots of the 20 greatest ANCOM-BC log fold changes (LFC) in genera over 
the course of decomposition. Changes are relative to the “Fresh” stage of decomposition. Taxa 
whose abundances changed significantly (as indicated by q < 0.05 and p < 0.05) are preceded by 
an asterisk. Limited to postmortem microbiomes. 

Among seasons there are many features that appear to drive the dissimilarity in bacterial 

community composition between the summer, fall, and spring (Figure 17). Hafnia-

Obesumbacterium were significantly higher in abundance in the fall and spring than in the 

summer. Lactococcus, Lactobacillus, and Leuconostoc all also stand out as being significantly 

more abundant in the fall and spring than any of them are in the summer. Conversely, the 

abundance of Wohlfahrtiimonas and Oblitimonas in the summer far outweighed what was 

observed in the fall or spring. It seems that Hafnia-Obesumbacterium, among other taxa, may be 

preferential to cooler months with less extreme heat than what is seen in the summer. 

Conversely, Wohlfahrtiimonas and Oblitimonas being insect-associated may suggest that the 

summer, in being more promotive of insect activity than the fall or spring, may differentially 

assemble its bacterial community as a result. The drastic decline in log fold change magnitude in 

the comparison of fall and spring (compared to comparisons of either month with summer) is 

also notable, as it indicates that these differential abundances are less substantial, and that 

community structure may overlap more between the fall and spring. 
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Figure 17. Bar plots of the 20 greatest ANCOM-BC log fold changes (LFC) in genera 
between seasons. Positive changes in LFC are relative to the first season in each title. Taxa 
whose abundances changed significantly (as indicated by q < 0.05 and p < 0.05) are preceded by 
an asterisk. Limited to postmortem microbiomes. 

Evaluating longitudinal trends in phyla abundance over ADH helps to highlight more 

consistent trends in succession that manage to span multiple seasons. In all studies, 

Proteobacteria and Firmicutes reach an equilibrium after Proteobacteria declines in relative 

abundance while Proteobacteria increases, both ultimately balancing out around ~50% relative 

abundance in postmortem microbiomes (Figure 18). The point at which equilibrium is reached 

varies between seasons, with summer reaching it around 500 ADH, fall around 1000 ADH, and 

spring around 1100 ADH. In the summer and fall Proteobacteria comprised nearly 100% of the 

observed phyla.  

 

Figure 18. Mean relative abundance of phyla over ADH, by season. The dotted line 
represents the earliest observation of larval colonization on the carcasses. 

The relative abundances of genera over time showed that Acinetobacter was the most 

prevalent genus at the beginning of decomposition (Figure 19). In all cases, Acinetobacter sees 

its most drastic decline in relative abundance before 500 ADH, a period of decomposition that 
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coincides most closely with the transition of the “Bloat” stage to the “Active” stage. Firmicutes 

was largely represented by Ignatzschineria, whose relative abundance increased from 25% and 

50% by the time larvae were observed to be colonizing the carcasses. Trends in both genera help 

explain trends at the phylum level, as the compensatory influx of Ignatzschineria making up for 

the rapid and massive decline of Acinetobacter abundance is what allows Proteobacteria to be 

represented in such high relative abundance. Interestingly, Vagococcus also appears to peak in 

relative abundance slightly before or after 500 ADH in all seasons. It and other genera like 

Enterococcus and Lactococcus all belong to the phylum Firmicutes. Proteobacteria were 

represented by fewer genera in higher abundance, while Firmicutes were represented by more 

genera in smaller abundances.   
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Figure 19. Mean relative abundance of genera over ADH, by season. A) Line plot of mean 
relative abundances over ADH. B) Bar plots of mean relative abundances grouped by ADH 
sampling point. The dotted line represents the earliest observation of larval colonization on the 
carcasses. Ribbons represent standard error. 
 
Model Evaluation 

Preliminary modeling in QIIME2 assessed each seasonal dataset independently to 

identify common or unique trends between microbial community changes during decomposition. 

Models had difficulty to discerning “Advanced” and “Dry” stages from the others regardless of 

season. Across all seasons, communities representing “Advanced” or “Dry” stages of 
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decomposition tended to represent a relatively low percentage of the overall samples that were 

able to be sequenced successfully. Learning classifier-derived models restricted to data collected 

during the same season had accuracies of 67.6% in the summer, 62.9% in the fall, and 65.6% in 

the spring (Figure 20). Heatmaps of the genera the supervised learning classifiers found most 

important for differentiating decomposition stages also demonstrated considerable variation 

between seasons, though all seasons had relatively higher abundances of Ignatzschineria at later 

stages of decomposition, and the absence of Escherichia-Shigella at earlier stages (Figure 21, 

Figure S6, Figure S7). Combined datasets that encompass all seasons represented in our 

decomposition studies yielded similar models to those built for each individual season, with an 

overall accuracy of just 61.2%.  
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Figure 20. Supervised learning classifier confusion matrices for the prediction of 
decomposition stage based on postmortem microbiome sample profiles. Left-most matrices 
reflect the results of models built on individual seasonal datasets. The rightmost matrix reflects 
the results of a model built on a combined dataset comprised of all seasonal datasets. Percentages 
indicate what proportion of stage-specific samples were predicted to be by the model(s). 
Preliminary modeling attempt performed in QIIME2.   
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Figure 21. A) Area under the ROC Curve (AUC) plots and B) Genus-level taxaonomic 
abundance heatmaps for seasonal supervised learning classifiers. AUC plots measure model 
performance across all possible classification thresholds (decomposition stages). The dotted line 
denoting “Chance” refers to what the curve would look like if classification was randomly 
estimated. The closer the AUC curve is to a true positive rate of 1, the better the model’s 
predictive power. The abundance heatmaps indicate predictor taxa that supervised learning 
classifiers associate with specific decomposition stages. Preliminary modeling attempt performed 
in QIIME2. 

 To improve future modeling attempts in R, analysis of variance using distance matrices 

(adonis) was used in combination with weighted UniFrac distance matrices of all microbiome 

samples to identify predictors that hugely impact community composition (Table 3). Testing 

highlighted the significance and impact of several important predictors, like season (p ≤ 0.001), 

temperature (p ≤ 0.001), humidity (p ≤ 0.001), and sample type (p ≤ 0.001). Interactions between 

season and sample type (Season:Sample type) were significant too (p ≤ 0.001), as were 
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interaction effects between temperature and humidity (Temperature:Humidity) (p ≤ 0.001). This 

suggests that the effect of season on microbial community compositions varies by sample type 

and vice versa. It also means that the effect of temperature on community composition varies 

humidity, and vice versa. Season was the most impactful of the significant predictors identified 

(F-value = 28.89), suggesting that it exerts the strongest influence over community variation as a 

concept encompassing several other variables, like seasonal weather conditions. Humidity (F-

value = 20.22) alone is incredibly impactful as a variable that was shown to differ significantly 

by season, so it is possible that it represents the most impactful variable if season in general. 

Season was able to explain 7.1% of the variability observed among microbial communities, 

whereas humidity was only able to explain just 2.5%. The effect of sample type (SS) (F-value = 

13.34, R2 = 0.03625) was similarly significant, but this is to be expected. Confirmation that 

interaction effects between these predictors are themselves driving variability in our sample data 

is important to note as well. 

Table 3. Analysis of variance using distance matrices (adonis) results for the Weighted 
UniFrac Distance Matrix of all sample types (carcass, larvae, larval masses) across all 
seasonal decomposition studies (summer 2022, fall 2022, spring 2023). 

Predictor(s) Sum of Squares (SS) R2 F-value p-value 

Main Effects 
Season 0.04607 0.07072 28.89 ≤0.001*** 
Temperature 0.00490 0.00753 6.15 ≤0.001*** 
Humidity 0.01612 0.02475 20.22 ≤0.001*** 
Sample type 0.01708 0.02622 10.71 ≤0.001*** 
Sample type (SS) 0.02127 0.03625 13.34 ≤0.001*** 

Interaction Effects 
Season:Sample type 0.01982 0.03042 6.21 ≤0.001*** 
Season: Sample type (SS) 0.01550 0.02379 4.86 ≤0.001*** 
Temperature:Humidity 0.00519 0.00797 6.51 ≤0.001*** 
p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, (ns) = not significant 
(SS) = site specific carcass samples (skin, mouth, and rectum) 
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With a better understanding of our predictor variables, additional modeling attempts were 

made using ‘randomForest’ (Table S10). The first of these new models was a Random Forest 

predictive classifier tasked with predicting ADH using phyloseq object feature data (Figure 22). 

Models made using individual seasonal datasets as well as a model built using a combination of 

all seasonal data were relative performant (Table 4). All models were able to explain >79% of 

the variance in the response variable. The summer model performed the poorest (RMSE = 

245.73, R2 = 0.79), the spring the second best (RMSE = 142.02, R2 = 0.84), and the fall the best 

(RMSE = 130.58, R2 = 0.94) when comparing just the individual seasonal models. The combined 

model outperformed both the summer and spring models (RMSE = 160.91, R2 = 0.91). Adding 

“Season” as a predictor worsened the combined model performance (RMSE = 164.43, R2 = 0.90), 

but introducing humidity (RMSE = 154.16, R2 = 0.92) and temperature (RMSE = 158.67, R2 = 

0.91) independently improved it significantly. Accounting for all predictors (season, temperature, 

humidity) yielded the strongest combination model (RMSE = 148.38, R2 = 0.92), but it was still 

outperformed by the fall model.  
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Figure 22. Supervised learning regressor model accuracy in the prediction of ADH from 
postmortem microbiome bacterial composition. 

 
Table 4. Performance of Random Forest predictive regressors using postmortem 
microbiome data (carcass samples) to predict accumulated degree hours (ADH). 
Models were built using individual seasonal datasets or a combined dataset encompassing 
all seasonal data. 

Model Mean Squared 
Error (MSE) 

Root Mean Squared 
Error (RMSE) 

Mean Absolute 
Error (MAE) R2 

Summer 2022 60380.81 245.73 125.05 0.79 
Fall 2022 17050.77 130.58 101.22 0.94 
Spring 2023 20171.04 142.02 115.79 0.82 
Combined 25891.07 160.91 130.39 0.91 
   + Season 27036.28 164.43 132.84 0.90 
   + Temperature 25174.70 158.67 125.20 0.91 
   + Humidity 23765.96 154.16 125.01 0.92 
   + All variables 22017.50 148.38 116.46 0.92 
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 The Random Forest models built to predict seasonality from postmortem bacterial 

communities   was excellent was able to correctly classify ~96% of the communities correctly  

(OOB error = 4.41%)  (Figure 23). The fall and spring have relatively low error rates (1.45% 

and 2.34% respectively), but the classifier appears to have more difficulty predicting summer 

communities (13.51% error rate). Certain features specific to the summer may be more 

challenging for the classifier to capture or identify. The genera identified as being important in 

the classification of season included Lactococcus, and Hafnia-Obesumbacterium that include 

genera most differentially abundant between the cooler months (fall and spring) and summer. 

Escherichia-Shigella and Acinetobacter are prevalent in every season, but the rates at which they 

decline and grow in abundance—as well as the abundance they reach—aid in distinguishing the 

seasons from each other. 

 
Figure 23. Supervised learning regressor model accuracy in the prediction of ADH from 
postmortem microbiome bacterial composition. 
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Discussion 

 The aims of this study were to better understand the potential utility of the postmortem 

microbiome in the forensic sciences.  As such, we wanted to characterize how the postmortem 

microbiome interacts with other members of the necrobiome (Benbow et al 2019), with a focus 

on blow flies.  To do this we characterized the postmortem bacterial communities by season to 

better understand how they change by decomposition stage and ADH. The results of this study 

demonstrate the importance of broadening our knowledge of decomposition and the role that 

abiotic and biotic variables play in the process. 

 The results supported our prediction that conditional growth restraints would impact the 

diversity and composition of carcass microbiomes. Summer carcass diversity significantly 

outgrew what was observed in fall and spring carcasses; but fall larvae microbiomes were 

significantly more diverse than larvae from the summer or spring despite this. Larval mass 

microbiomes were technically more diverse in the spring than any other season, but not as 

significantly as the other sample type disparities. This aside, alpha diversity steadily increased 

with each successive decomposition stage; but this trend was only significant between the 

“Fresh” and “Bloat” stages as well as the “Bloat” and “Active” stages. Importantly, none of these 

statistically significant trends in postmortem microbiome diversity growth were observable 

during the spring, despite its median increase in diversity over time. In any case, there are studies 

that have succeeded in demonstrating the tendency of the postmortem microbiome to increase in 

diversity over time in several different carrion models. Deel et al. (2021) highlight diversity 

growth in postmortem human rib microbial communities across both summer and spring, and 

Zhao et al. (2021) see a non-linear increase in diversity as far as postmortem oral microbiomes of 

mice are concerned. Burcham et al. (2024) highlighted differences between human cadavers in 
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three different environments, reporting that microbial community ecology was impacted by 

decomposition stage and geographical location. Studies like these better our understanding of the 

impact environment has on postmortem microbiome succession; and several corroborate that 

climactic variables could play a role in driving community composition. Given the heightened 

rate of change in alpha diversity observed during the summer, significantly warmer weather 

conditions may have played an important role in promoting bacterial community diversification. 

Bacteria benefit greatly from high temperatures and high relative humidity (Ratkowsky et al., 

1982; Scott & Hwa, 2011; Zwietering et al., 1991); and conditions like those of the summer 

encourage microbial and insect activity more than those typical of spring or fall. The trajectory 

of seasonal weather variables like temperature and humidity, affects carcass necrobiome 

biodiversity, as fall temperatures typically decline with time as it gradually transitions into the 

inhospitable climate expected of winter (Benbow et al., 2013; Vrac et al., 2013). Spring, 

conversely, represents a month wherein conditions like temperature and humidity promise to 

improve with time as summer nears. It appears that seasonal influences on microbiome 

development extended to the sampling sites themselves, too. Carter et al. (2015) concludes that 

the effect of swine decomposition on soil microbiota differ between summer and fall and 

emphasize the importance of seasonality in future analyses. 

Many decomposition stages varied considerably in terms of microbial community 

composition (beta diversity). Bacterial communities grow in dissimilarity more significantly 

towards the beginning of decomposition than towards the end; and transitions from “Fresh” to 

“Bloat” and “Bloat” to “Active” were characterized by significant levels of this dissimilarity. 

Extreme dissimilarity driven by these two stage transitions is consistent with results put forward 

by Parkinson et al. (2009), which found that community changes were most radical between the 
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earliest stages of human decomposition. Substantive bacterial community succession only 

appeared to extend to these two stage transitions, however. Season also impacted community 

composition much the same way it did alpha diversity. With the weighted UniFrac distance 

metric accounting for rare taxa and lending itself to questions of community structure, it gives us 

a better idea of how these seasonal bacterial communities manage to exhibit such significant 

dissimilarity from each other (Chen et al., 2012; Lozupone et al., 2011). Seasonal comparisons 

indicated that the spring samples are the least dissimilar from each other, while the summer 

samples are the most dissimilar. It is possible that the spring’s resistance to many of the 

significant changes in diversity or community composition observed in the summer and fall are a 

consequence of seasonal weather conditions and prolonged decomposition timelines. The body 

of research implicating seasonality in alpha diversity growth over time is somewhat lacking, 

making comparisons difficult. Seasonal trends in temperature growth and consistency enabled 

carcasses in the spring to spend more time at temperatures above 20°C than those in the fall, and 

we suspect that spring’s consistent temperature ranges lent themselves to the significantly shorter 

decomposition timeline it had in comparison to fall. We also suspect that lower spring 

temperatures modulated bacterial growth and succession less drastically than the intensely 

conditions of the summer or fall.  

The bacterial genera Ignatzschineria and Wohlfahrtiimonas were present across all 

seasonal decomposition studies, with the LFC of Ignatzschineria being the highest positive shift 

in abundance between the start and end of decomposition. These stand out among the other 

bacterial genera as having distinct invertebrate associations, since both are closely related genera 

belonging to the same order, Lysobacterales, and class, Gammaproteobacteria (Gupta et al., 

2011; Kumar et al., 2019; Snyder at al., 2020). Blow flies like Lucilia sericata and Chrysomya 
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megacephala have been linked to the introduction of Wohlfahrtiimonas to myiatic wounds 

(Barker et al., 2014; Heddema et al., 2016; Le Brun et al., 2015; Mejias et al., 2016).  I. larvae as 

well as I. indica are species isolated from the gut contents of Sarcophagidae (flesh flies). It is 

unknown why these bacterial taxa have close associations with blow flies and flesh flies. 

Importantly, Deel et al. (2022) identifies flies as one of the human postmortem microbiome’s 

microbial sources across studies performed in the winter, spring, and summer; but they were less 

able to implicate a seasonal effect in what extent these flies influence the postmortem 

microbiome. In keeping with our supposition that spring seasonal conditions mitigate drastic 

shifts in diversity and community composition, it displays similarly mild changes in LFC among 

all significant ANCOM-BC genera. Seasons also varied in terms of their bacterial abundances, 

which is reflected in its incongruous measures of alpha and beta diversity. However, a direct 

comparison of the fall and spring revealed exceptionally low levels of differential abundance—a 

stark contrast to comparisons of the summer to either season. Few of the genera identified by the 

test varied significantly, but of those that did, Hafnia-Obesumbacterium stood out as being in 

much higher abundance in the fall than spring. Conversely, Clostridium saw a much higher 

positive LFC in spring when compared to fall. Most species of these genera are frequently 

associated with mammalian guts, but Clostridium are unique in that they are gram-positive and 

obligate anaerobes (Stevens et al., 2015).  

Visualizing changes in relative bacterial abundance as decomposition progressed 

revealed that fluctuations we observe in phyla composition are relatively well-conserved 

between each season. Postmortem microbial communities reach an equilibrium of mostly 

Proteobacteria and Firmicutes, which is consistent with literature characterizing key bacterial 

features of postmortem microbiota (Buresova et al., 2019; Metcalf et al., 2015; Pechal & 
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Benbow, 2016;). In the cases of the summer and fall, Proteobacteria began with high relative 

abundance before rapidly declining, while Firmicutes had low relative abundance that gradually 

increased to that of Proteobacteria. The genus Acinetobacter was the most abundant 

Proteobacteria at the start of decomposition. The presumed simplicity of the stillborn pig 

microbiota is the most likely explanation for this domination by Acinetobacter and several 

unrelated genera with extremely low relative abundances. While the circumstances of carcass 

stillbirth were not investigated, it is known that genera like Acinetobacter increase in intestinal 

and vaginal co-transmission during periods of heat stress, which could have contributed to the 

premature death of neonatal pigs (He et al., 2020). Research has even suggested that species like 

Acinetobacter baumannii can induce preterm delivery if the mother carrying them has an 

infection (Aivazova et al., 2009; Jung et al., 2021). Ultimately, we cannot discount the life 

histories of these stillborn swine carcasses nor their mothers in discerning what established the 

high Acinetobacter abundance in postmortem microbiome communities, especially considering 

how common it is as an environmental contaminant.  Genera belonging to Firmicutes, like 

Vagococcus and Lactococcus, only rise to prominence after abundances of Acinetobacter begins 

to fall. Genera like Wohlfahrtiimonas, Ignatzschineria, Acinetobacter, and Vagococcus are all 

were reported by Burcham et al. (2024) using a microbial network that included bacterial 

abundance and functional profiles. The insect-associated genus Ignatzschineria replaces 

Acinetobacter as the only other relatively abundant genus of Proteobacteria. Where 

Proteobacteria are represented by a few genera with little diversity, Firmicutes are instead 

represented by a more diverse array of bacterial genera with low levels of relative abundance. 

This, in combination with other discoveries, is evidence that invertebrates play a significant role 

in shaping the microbial community of decomposing remains.  
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Attempts to use the seasonal carcass microbial data in mathematical modeling for 

predictive purposes had three objectives. The first aim was to evaluate the ability of machine 

learning-assisted models to properly identify a carcass’ decomposition stage with microbial data 

and minimal modeling parametrization. The second objective concerned developing more 

specific Random Forest predictive models—a regressor and a classifier—to predict ADH from & 

the seasonality of sample types. The third objective was to validate the notion that the 

multivariate nature of decomposition necessitates the inclusion of factors like season in 

modeling. The initial QIIME2 Random Forest classifier struggled to identify later stages of 

decomposition, regardless of whether it was trained on independent seasonal data or a combined 

seasonal dataset. Vagococcus appeared to be a useful indicator in differentiating “Fresh” from 

“Bloat” despite the overlap of Acinetobacter. Ignatzcshineria proved particularly useful in 

separating the “Active” stage from either of its predecessors, meaning the insect activity itself is 

a crucial consideration in these modeling attempts. Later stages are where identifying predictive 

taxonomic features becomes more difficult, so the model instead opts to find genera whose 

absence is unique to stages like “Advanced” and “Dry”. Escherichia-Shigella stands out 

consistently, as its decline in abundance is consistent between all three seasons. Performant 

Random Forest regressors were quick to indicate the importance of Ignatzschineria, 

Wohlfahrtiimonas, Acinetobacter, and Escherichia-Shigella. These regressor models were 

markedly more successful at predicting ADH than a classifier was at limiting postmortem 

microbial samples to just the generalized stages of decomposition. A seasonality classifier built 

on a combined seasonal dataset also vastly outperformed the decomposition stage classifier, 

reinforcing that taxon like Lactococcus, Hafnia-Obesumbacterium, and Clostridium are among 

the most differentially abundant and temporally important predictive genera. Interesting, genera 
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like Lactococcus and Hafnia-Obesumbacterium were noted to be significantly more abundant in 

the cooler months of fall and spring than the summer. However, even in comparisons of the fall 

to the spring, Hafnia-Obesumbacterium and Clostridium are significantly more abundant in the 

spring to a lesser extent. The model is implicitly sensitive to the inherent nuance of relative and 

approximated absolute abundances, which is promising for the future of predictive modeling 

applications. As for the regressor: a combined seasonal model outperformed the majority of 

models built on just a singular seasonal dataset; but introducing impactful predictors like season 

and humidity sharply improved its performance. In fact, including all three factors despite the 

potential of collinearity between season and the weather variables improved the performance of 

the model. We suspect that both humidity and season contribute unique types of information, 

being that humidity can be more specifically implicated in bacterial moisture content needs, 

while season technically encompasses temporal associations as well as weather variables that 

span much further than just temperature and humidity.  

Evidence suggests that seasonal considerations are a must when considering postmortem 

microbiota assemblage and their use in modeling. Our seasonal decomposition studies all differ 

in such significant ways that there is little else to implicate than the seasonal conditions in most 

cases. Where season may account for an overwhelming majority of the variation observed 

between sample types in postmortem microbiomes and larval mass microbiomes, ordinations of 

larvae samples indicates that the factor or factors driving their dissimilarity may be significantly 

more complex—perhaps a matter of species, life stage, or any number of variables unaccounted 

for by these studies. Stage appears to play a similarly significant role in driving sample variation 

among samples in individual seasonal postmortem microbiome datasets. Explicit significance 

testing suggests that season as a predictor only captures about 7% of the variation observed, 



   
 

 59 
 

 

which is considerable given the complexity of carrion ecology. Ultimately these variables reflect 

very few aspects of the overarching necrobiome’s ecology; but even if only a small amount of 

complexity was captured, it can be argued that the role these specific factors play in the survival 

of bacteria drastically impacts their fitness in seasonally affected growth conditions. It is likely 

that bacteria suited to harsh conditions or cold temperatures would fare better than those ill-

adapted to them; and life history traits may play an important role alongside seasonal weather 

constraints in differentiating the suite of dominant bacteria between sample types. Insect activity 

itself is modulated by seasons, too, meaning that only certain species of blow fly or certain 

numbers of insects will even be able to access and colonize a carcass depending on the time of 

year (Babcock et al., 2019; Campobasso et al., 2001; Brundage et al., 2011; Weidner, 2016). 

This, alongside the restrictions seasonal weather may impose on bacterial communities, is a 

highly suspected cause for the prolonged decomposition timelines we observed in fall and spring. 

The implication of seasonal weather effects in the succession of the postmortem 

microbiome, we feel, will prove invaluable as more breakthroughs are made in the realm of 

forensic microbiology. Emphasizing the importance of approaching theories we intend devise 

applications for with their multivariate natures in mind will only serve to strengthen the science 

and improve the standards we hold it to. Seasons are just one of many contributing factors to the 

observations we make of decomposition throughout its process, and as such, we must account for 

the significant variability it is responsible for if we ever intend to create a tool or framework for 

forensic application. In performing these three decomposition studies, we have revealed that 

these effects may very well extend to factors beyond just the microorganisms driving 

decomposition, as the process is an effort orchestrated by a complex ecological system we do not 

yet entirely understand.   
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CHAPTER 3: SEASONAL DYNAMICS OF LARVAL MASS MICROBIOMES 

Abstract 

 Calliphoridae (blow flies) larvae are principal decomposers in the complex ecological 

network of the “necrobiome.” Their prevalence as voracious consumers of decomposing remains 

is well documented in literature; but little is understood about how the colonization of carcasses 

by blow flies is influenced by environmental weather variables. Additionally, little research 

exists that examines the microbial interactions of carrion and larvae themselves. The objective of 

this study was to better characterize the overall differences in carrion microbiota as decomposition 

progresses and, in doing so, clarify the potential dynamic between two of decomposition’s most 

important contributors: blow flies and bacteria. We hypothesized that larval masses and larvae 

microbiome composition would vary significantly between seasons. We also suspected that 

larval microbiomes will gradually increase in complexity as bacteria residing on/within the 

carcass are consumed alongside its soft tissue. To address these hypotheses, decomposition 

studies were performed in the summer, fall, and spring using six stillborn pigs each as carrion 

models. Carcass microbial profiles were collected twice daily until skeletonization occurred and 

larval activity could not be observed. Larval masses and larvae were similarly sampled when 

available. Results indicated that overall larval mass bacterial community composition overlapped 

significantly with the microbiota of the larvae or the microbiota of carcasses differentially. 

Larval diversity was the lowest among all sample types in all seasons but the fall; and larvae 

microbiota experienced significant shifts in bacterial community composition when carcasses 

underwent similarly significant periods of succession. Most importantly, the data strongly 

suggested that the fly-associated genera Ignatzschineria and Wohlfahrtiimonas significantly 

moderated bacterial community succession on carrion after colonization by larvae was observed.  
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Introduction 

 Dipterans belonging to the family Calliphoridae, colloquially known as blow flies, have 

long been known to colonize carrion (Carter et al., 2006). Their proclivity for detecting and 

accessing vertebrate carrion has been of interest for forensic experts for centuries, with 

observations of blow fly behavior seeing written observation as far back as 1248 (Benecke, 

2001). Few invertebrates can safely consume carrion as larval blow flies do, and occupying this 

unique ecological niche plays an important role in promoting vertebrate decomposition (Smith & 

Wall, 1997). In brief, blow fly larvae voraciously consume necrotized flesh and grow as quickly 

as possible before dispersing. The remainder of their lives are spent pupating in the nearest 

substrate as pupae before emerging as adults. The predictability of blow fly life histories allows 

scientists to model their growth based on temperature and humidity, and these data can often be 

useful in forensics (Stevens & Wall, 2001). Despite their relevance to death investigation and 

naturalistic decomposition, little is known about the ecology of these larval masses (Weatherbee 

et al., 2017). Recent research described the succession of blow fly larval microbiota along with 

the communities outside of the larval mass that represents decomposition fluids and larvae 

excretions; however, there are few studies that quantify the relationships of bacteria native to the 

carcass and those brought into the system by adult blow flies during colonization. Additionally, it 

is not yet known what role seasonal weather conditions may play in the emergence of these 

larval masses—or on their potential impact to postmortem microbiome succession. 

Understanding the nature of these larval masses is important for better informing the use of 

insects in forensic investigation. Emerging technologies and methods in the field of forensic 

microbiology, for instance, could provide a flexible new use for larvae collected from carcasses.  

We hypothesized that blow fly larvae colonizing the stillborn carcasses used in our 
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experiments would significantly impact the bacterial succession of the postmortem microbiome. 

Blow fly larvae are known to secrete an enzymatic cocktail that aids in the digestion of dead 

tissue (Hobson, 1931), and the reported antimicrobial properties could prove impactful on the 

success of microbial communities within or around the body site these larval masses form 

(Hobson, 1931). Research has demonstrated the ability of these secretions to differentially kill 

bacteria or disrupt biofilms—primarily in the context of maggot debridement therapy—and we 

assumed that this may uniquely influence carcass microbiota (Harris et al., 2009). Additionally, 

multiple bacterial genera have been reported in scientific literature to be associated with blow 

flies (Tomberlin et al., 2017). Blow flies, like many insects, are known to harbor their own 

microbiomes; and if it is the case that members of their microbiota resist being broken down by 

their enzymatic secretions, then it may suggest that they are well-equipped to compete for 

resources or space in decomposition settings (Weatherbee et al., 2017). It is possible that some 

bacteria may have adapted over time in response to the blow fly life cycle, making them 

uniquely suited to compete in decomposition environments (Burcham et al., 2024). We similarly 

predicted that blow flies, in colonizing the carcass and consuming it, would introduce their own 

bacteria to the carcasses.  

We also suspected this of the microbiomes of the larval masses. Additionally, the fluids 

of the larval masses (hereafter larval mass represents the external fluids of a mass generated by 

the larvae during feeding and growth on the carcass) and the microbiomes of the larvae would be 

similar in overall bacterial diversity and community composition. Importantly, we anticipated 

that neither larval microbiota nor larval mass microbiota would differ significantly between 

seasons. It was also assumed that significant, mutual exchanges in bacterial taxa could be made 

between larvae and carcasses but would vary by season. We suspected that inclement seasonal 
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weather conditions would lower the overall microbial diversity of larval masses and larvae, 

particularly when compared to those sampled during the summer. In keeping with the potential 

impact larval masses could have on their respective carcasses, our final hypothesis stated that the 

disruption of postmortem microbiome succession caused by blow fly colonization would be 

useful in the identification of colonized vs uncolonized remains by predictive models.  

 To test these hypotheses, we used stillborn pigs equipped with anti-scavenging cages. 

The microbiota of the carcasses and larval masses were sampled twice a day. Third instar larvae 

from these larval masses were also sampled when present. Sampling concluded when the 

remains had completely skeletonized, and larval activity was no longer observed. These studies 

were undertaken in the spring, summer, and fall; and each study used 6 stillborn pig carcasses for 

a total of 18. DNA extraction and 16S amplicon sequencing helped characterize the bacterial 

communities found on or in the carcasses, larval masses, and larvae throughout decomposition. 
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Materials and Methods 

Decomposition Studies 

 Decomposition studies were performed in summer 2022, fall 2022, and spring 2023 

within date ranges representative of different seasons in Central Michigan. Relevant weather data 

(temperature, humidity, precipitation) was sourced from a nearby weather station owned by 

Michigan State University (See Materials and Methods of CHAPTER 2: SEASONAL 

DYNAMICS OF POSTMORTEM MICROBIOMES).   

 Because of their small size, stillborn pig carcasses were chosen as accessible vertebrate 

carrion models that could be well replicated in different locations for three seasons. 

Decomposition studies were conducted in the Box Woodland, located in East Lansing, MI (42° 

41' 23.0712'' N, 84° 29' 29.5476'' W). Three sides of this woodland were facing farmland with 

one side facing a dirt road, so the three seasonal decomposition studies were assigned one vacant 

(60m) length of tree line each. Carcasses maintained 10 meters from each other, and their anti-

scavenging cages were secured with 4-5 bricks each.  

All seasonal studies used n = 6 carcasses, where carcasses were bagged in groups of 2-3 

and stored at -20°C up to a week before each study. At 24 hours before the start of their 

respective decomposition studies, carcasses were set out at room temperature to thaw after being 

weighed and sexed. 

Microbiota Sampling 

Carcass postmortem microbiomes and larval mass microbiomes were sampled using 

sterile cotton swabs of skin, mouth, and rectal communities at each sampling event. To sample 

the skin microbial communities, a transect of the carcass’ exposed abdomen was rubbed 

repeatedly while rotating the head of the swab. The mouth and rectal communities were sampled 
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by inserting the swab repeatedly and rotating it. Larval masses were sampled by inserting just 

one swab into three distinct areas of the mass and rotating it for 15 seconds in each spot. External 

larval masses were only sampled once aggregations were significant enough estimated to be >50 

larvae; and if more than one larval mass was present during a sampling event, the masses would 

be sampled independently. Individual third instars were also sampled from the masses to 

investigate internal microbiomes during decomposition, and compared to the larval mass 

microbiomes Aseptic field technique was used every sampling event and swab tips were stored 

in 1.5mL microcentrifuge tubes containing 200uL of room temperature RNAlater. Larvae were 

stored in a 50mL Flacon tube with 25mL of RNAlater. All samples were then stored at -20°C 

following sampling. To assign stages of decomposition of the carcasses, taphonomic assessments 

followed Payne (1965) criteria.  

DNA Extraction and Amplicon Sequencing 

 Isolation of genomic DNA contained in our samples was performed using the DNeasy ® 

Blood & Tissue Kit (QIAGEN N.V., Hilden, Germany). This was modified to include the 

introduction of 15uL lysozyme (15mg/mL) prior to incubation to encourage cell lysis. The cotton 

tips of the swabs were also either removed from the stick entirely using sterile scalpel blades and 

forceps or beaten using 1.4mm ceramic beads and a FastPrep-96™ high-throughput bead beating 

grinder and lysis system prior to the 90-minute lysis. Blow fly larvae pooled during sampling 

events were individually introduced to new 1.5mL microcentrifuge tubes and homogenized. 

Each sampling event was represented by n = 10 randomly selected, individually processed 3rd 

instar larvae when possible. DNA extraction was performed identically to the protocol used for 

swab processing.  

 Samples containing viable DNA were submitted to the Michigan State University 
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Genomics Core facility (East Lansing, MI) for Illumina MiSeq amplicon sequencing. 

Sequencing data was demultiplexed by the MSU Genomics Core before being made available for 

analysis.  

Sequencing Data Processing 

 The bioinformatic software QIIME2 (v2023.7) was used to filter raw 16s amplicon 

sequencing data and generate diagnostic data about the quality and quantity of our reads. Primer 

sequences were trimmed from the sequencing data before amplicon error correction and ASV 

assembly with DADA2. Taxonomy was determined using a naïve Bayes classifier with the 

SILVA rRNA database (v138-99). A final filtering step was performed to eliminate singletons 

and reads conferring with mitochondrial or chloroplast DNA. Samples whose sequencing read 

counts were >150 were truncated from the data. 

Statistical and Bioinformatic Analysis 

To test differences in sample diversity (alpha diversity) among sample types, seasons, 

and different points in decomposition, we used Kruskal-Wallis tests with pairwise Wilcoxon ran-

sum tests. Testing for significant dissimilarity in bacterial community composition (beta 

diversity) was done using pairwise adonis. ANCOM-BC estimated absolute abundances of 

bacterial taxa based on their relative abundances. A thorough description of statistical analyses 

and modeling approaches can be found in the “Materials and Methods” of CHAPTER 2: 

SEASONAL DYNAMICS OF POSTMORTEM MICROBIOMES.  
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Results 

Environmental Weather Variables 

 Temperatures over time during carcass decomposition were plotted to better assess the 

thermal conditions for blow fly colonization and growth (Figure 24). Since larvae used in 

analysis were only identified to family (Calliphoridae), standards for optimal growth of most 

blow fly species were generalized to be between 20°C and 30°C. The range for neutral growth is 

between just 15°C and 20°C. The poorest possible conditions that can sustain blow fly 

development range from 5°C to 15°C (Salimi et al., 2018; Roe & Higley, 2015; Voss et al., 

2014). Anything below the minimum of this threshold is considered unfit for blow fly survival.  

We observed that the temperatures experienced by carcasses and larvae in the summer 

were almost entirely within the “optimal” range—so much so that larval mass(es) were observed 

as early as 24 hours into decomposition. Summer larval masses also dispersed as early as 50 

hours, while sparser groupings of larvae persisted without meeting our requirements for what 

constitutes a larval mass. 

Fall temperatures differed from summer in that most readings fell into the “poor” growth 

range. Larvae were observed internally in carcass mouths at around 300 hours, better protected 

against volatile weather. Importantly, this observation was made after a brief stretch of time 

wherein temperatures ranged from poor, to neutral, to optimal. The temperatures immediately 

following our initial observations, however, were far from suitable for the larvae.  

Spring temperatures were marginally better over the course of a decomposition being 

nearly twice the length of summer but half the length of fall. Spring differs from fall in that its 

initial temperatures were not exclusively relegated to the poorest possible growth range. Instead, 

spring reached temperatures within the neutral and optimal growth ranges periodically before 
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dropping to temperatures in the poor growth range. Larval masses were not observed until after 

100 hours into the spring study. 

 
Figure 24. Seasonal temperature readings and accumulated degree hour (ADH) growth. 
The leftmost line plots represent hourly temperature readings over the course of seasonal 
decomposition studies. Dotted lines signify whether larvae or larval masses were observed and 
when. Calliphorid growth ranges are signified by the green (20°C - 30°C), yellow (15°C - 20°C), 
and red (5°C - 15°C) areas of the grid. Rightmost plots show ADH growth over the course of 
each seasonal decomposition study. 
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Microbiome Community Composition and Structure 

 Weighted UniFrac distance matrices were used to estimate sample type community 

composition dissimilarity. The extent of this overlap was then visualized using PCoA (Figure 

25). The distribution of larval mass scores is very uniquely overlapping carcass samples and 

larval mass samples almost equally. Larval samples themselves make significant departures from 

the carcass sample communities. The PC1 axis explained 34.1% of variation while the PC2 axis 

explains 24.7%, suggesting that there are many complex factors at play driving the dissimilarity 

of samples and sample types. 

 
Figure 25. Principal coordinate analysis (PCoA) for weighted UniFrac matrices of larvae, 
larval masses, and carcass samples across all seasons. Ellipses indicate 95% CI by sample 
type. 

Pairwise PCoA and significance testing accompanied this to evaluate how specific 

sample types compared in a combined seasonal dataset (Figure 26, Figure S9, Table S11). 

Seasonal data of specific sample types were also compared to see which seasonal differences 

drive the most dissimilarity. Of the sample types compared, only larvae and larval mass sample 

communities exhibited non-significant levels of dissimilarity (adj. p = 0.398). Carcass and larval 

mass sample community dissimilarity was significant (adj. p = 0.017), but less so than the 
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dissimilarity of carcass and larvae sample communities (adj. p = 0.001). 

 

 

Figure 26. Principal coordinate analysis (PCoA) and weighted UniFrac score frequencies 
for pairwise sample type comparisons. Ellipses indicate 95% CI by sample type. Dotted lines 
indicate the mean score of a given sample type. 

To see if substantial changes in the community compositions of larvae and larval masses 

could be visualized between timepoints, we examined the mean relative abundances of all larvae 

collected at a specific timepoint as well as the temperatures observed during and between those 

sampling events (Figure 27, Figure S10). The community overlap indicated by PCoA and 

significance testing is made much clearer here. Of note is that the mean relative abundance of 

Ignatzschineria among fall summer and larval mass samples was much greater than those of the 

spring, which may explain why spring larval masses appeared to be significantly more diverse 

than either of the other studies. Similarly, fall larvae compositions featured a greater mean 

relative abundance of Vagococcus than the larvae of the summer or spring, which may have 

driven its significantly higher larvae bacterial community diversity. In all cases, Ignatzschineria 



   
 

 71 
 

 

either begins or becomes a dominant genus in larval mass samples; and is present in high 

abundance among larvae from the very start of their sampling in all seasons. Community 

dissimilarity seems to be largely driven by differences in Ignatzschineria, Vagococcus, and 

Lactococcus abundances, among others. 

 
Figure 27. Mean relative abundance bar plots organized by ADH sampling point. A) Mean 
relative abundances of larvae bacterial communities. B) Mean relative abundances of larval mass 
bacterial communities. 
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Larval mass microbiota 
 

Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) tested 

how the abundance of genera differed between seasonal groups of larvae (Figure 28) and larval 

masses (Figure 29). Results indicated that abundances of Lactobacillus, Lactococcus, and 

Leuconostoc were particularly skewed towards the fall. Wohlfahrtiimonas, Dysgonomonas, and 

Koukoulia are in significantly higher abundance during the summer.  

Like the fall, spring differs from the summer with high abundances of Lactobacillus, 

Lactococcus, and Leuconostoc. While both fall and spring share higher levels of Hafnia-

Obesumbacterium and Peptoniphilus, they vary significantly in their abundance.  

Wohlfahrtiimonas is noticeably greater in the summer when compared to the fall and 

spring. Fall and spring share many of the same genera disparities. Larvae from these two seasons 

were more similar than larvae collected in summer. 

 
Figure 28. ANCOM-BC results for larvae grouped by season, with summer 2022 as the 
reference category. Genera experiencing significant log fold changes (LFC) in abundance are 
preceded by an asterisk. Genera experiencing shared trends between fall and spring, when 
compared to summer, are denoted by an explanation point symbol.  

Interestingly, among larval masses, Wohlfahrtiimonas and Lactobacillus saw similarly 

significant, negative LFC in abundance in the fall and spring (with summer as a reference 

category). The overlap in these shared, significant taxa trends did not extend past these two 

genera, though. Like what was observed among spring larvae when compared to summer larvae, 
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Leuconostoc is similarly abundant in larval masses of spring, but not of fall. Hafnia-

Obesumbacterium, despite its relatively low (positive) LFC in fall larvae, ranks as the highest 

(positive) LFC between summer and fall larval masses.  

 
Figure 29. ANCOM-BC results for larval masses grouped by season, with summer 2022 as 
the reference category. Genera experiencing significant log fold changes (LFC) in abundance 
are preceded by an asterisk. Genera experiencing shared trends between fall and spring, when 
compared to summer, are denoted by an explanation point symbol. 

Modeling 

 Random Forest models of microbial communities were used to predict carcass 

colonization by larval blow flies, with basic categorization tasks performed in QIIME2 for each 

season and for and all seasons combined (Figure 30, Figure S11). In the summer, where the 

process of decomposition took the shortest amount of time and larvae were seen colonizing the 

carcass and evacuating it earlier, models were able to discern whether carcasses were or were not 

colonized. The fall and spring, while mostly successful, both mistakenly identified 30-50% of 

carcasses as uncolonized when they were colonized. However, both performed better in 

predicting a colonized carcass. Combining all seasonal datasets and using it to construct a model 

it yielded better results than two of the three seasonal models, and ultimately proved more 

robust. 

All models prioritized indicator taxa genera like Ignatzschineria and Wohlfahrtiimonas in 

associating sample compositions with fly activity. Similarly, it associated Acinetobacter with the 
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native postmortem microbiome, which corresponds with what has been observed in bacterial 

abundance data. Other genera also stand out as unique indicators, since their presence was often 

detected in carcasses of one status but not in the other. An example of this was Trueperella, 

which was seen in uncolonized carcasses but not in colonized carcasses. Sporosarcina, 

conversely, was only seen in colonized carcasses. Bacterial features like these played a 

significant role in the model’s ability to correctly assess carcass states.  

 

 
Figure 30. Random forest predictive classifier of colonized or non-colonized carcasses. A) 
Model accuracy for a consolidated seasonal dataset, represented as a confusion matrix, where x = 
actual and y = predicted. B) Model accuracy (recursive feature exclusion) as a function of sample 
feature count. C) Taxonomic heatmap indicating genera prioritized by RFE and used to indicate 
colonized and non-colonized samples.  
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Discussion 

  The objectives of this study were to communicate the underlying complexity that blow 

fly colonization ultimately brings to our understanding of the postmortem microbiome, bacterial 

succession within that microbiome, and how these communities change with insect colonizers. 

Researchers have long endeavored to thoroughly characterize decomposition as on the context of 

multiple carrion models (humans, deer, pigs, etc.) and associated invertebrate decomposers; but 

researchers have advocated for additional work into understanding the interactions of the 

complex “necrobiome” (Benbow et al., 2016). This, in large part, motivated our examination of 

blow fly larvae and bacteria, since both are recognized as chief decomposers during carrion 

decomposition. The also share many similarities as far as optimal living conditions are 

concerned. This venture serves as one of many recent attempts to unravel the fundamental 

mystery of the necrobiome’s many overlapping macro- and micro-level communities and how 

their presence factor into each other’s success and the trajectory of decomposition as a process.  

 Our principal hypothesis that larval colonization and mass formation would significantly 

influence postmortem microbiome succession proved extremely likely. Larvae and larval mass 

community compositions were not significantly dissimilar, despite carcasses being extremely 

dissimilar from both larvae and larval masses. Carcasses sample compositions were, however, 

more like those of larval masses than larvae. Blow fly microbiomes are known to be relatively 

simple, as is often the case with many insects (Junqueira et al., 2017; Mason, 2020) and well 

conserved. We have also established that the enzymatic secretions generated by blow fly larvae 

are beneficial to them in that their antimicrobial properties can kill harmful bacteria and 

differentially allow certain taxon into their microbiomes as they feed (Simmons, 1935). It is 

possible that the inherent limitations of the larval microbiome as well as the innate filtration of 



   
 

 76 
 

 

microbes that occurs when feeding may limit the extent to which their microbiomes can be 

influenced by carcasses. Additionally, the slight community overlap larval masses have with 

postmortem microbiomes suggests that the overall matrix of the larval mass is dually influenced 

by the larvae comprising it and the carcass itself, but significantly more so by the larvae. The 

gooey film associated with larval masses is understood to be a homogenous combination of 

digestive enzymes, larval excretions, and organic matter contributed from the carcasses 

themselves (Rivers et al., 2011). This may account for the considerable community overlap 

larval mass microbiome samples share with larvae and carcasses. Ignatzschineria and 

Wohlfahrtiimonas have stood out as bacterial genera of interest due to their apparent relationship 

with blow fly larvae and presence in larval masses; and given what we know of larval life 

history, it’s possible that these bacteria are introduced through the secretions or excrement of 

larvae and are uniquely suited to the volatile matrix. Random forest predictive classifiers were 

additionally able to evaluate whether a microbial sample presented to it was impacted by larval 

colonization; and by building these models on seasonal postmortem microbiome data, all 

managed to identify that Ignatzschineria was the single most important bacteria in distinguishing 

colonized carcasses from non-colonized carcasses. This further reaffirms out belief that the 

introduction of this bacteria by blow flies is significantly influencing the bacterial succession of 

postmortem microbiomes. Given that Ignatzschineria and Wohlfahrtiimonas were found to be 

among the most dominant bacterial genera in and on carcasses as decomposition progressed, and 

that it was found in high abundance within the larvae & larval masses themselves from the 

moment they were available for sampling, we can assume that their introduction of this bacteria 

is altering postmortem microbiome succession in some way. Burcham et al. (2024) used multi-

omic approaches to microbiome characterization to develop a bacterial “decomposer” network 
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that, interestingly, includes both Ignaztschineria and Wohlfahrtiimonas. Functional analyses of 

the microbiota that were classified as “decomposers” implicated Ignatzschineria as a compatible 

cross-feeding partner for a species of Oblitimonas. They also echo our suggestion that insect-

microbe interactions may be driving succession effects, since many lab-based decomposition 

studies lacked representation of either genus when invertebrate access was restricted. We cannot 

definitively say that the larval mass matrix is also modulating bacterial communities of the 

surrounding carcass, but we feel strongly that this may be the case. 

Evaluating whether larvae bacterial communities differed by season seemed to indicate 

that the difference in compositions between summer and other seasons was substantive enough 

to be significant. The second evaluation testing the significance of larval microbiome disparities 

over time (ADH) yielded results that conflict with our initial prediction. One potential source of 

variation among larvae microbiomes could be the species succession of colonizing blow flies. 

Many studies have demonstrated the considerable temporal variation in Calliphoridae species 

abundances throughout different seasons (Benbow et al., 2013; Pechal et al., 2013), and it is 

possible that dynamics between different blow fly species could drive microbial community 

dissimilarity to different extends. While most larvae sampled did not differ significantly as time 

went on, significant differences did appear when carcass decomposition stages transitioned from 

“Bloat” to “Active” in both the summer and spring. The only season exempt from this was fall, 

whose larval bacterial communities were found overlap for the most part. Identifying potential 

causes is difficult, but we speculate the departure fall larval formations took from other seasons 

in terms of overall strategy (their preference for internal formation and growth) may have 

resulted in keeping larvae microbiota relatively consistent. The low temperatures observed in the 

fall promoted the emergence and survival of those larvae laid in spaces with some level of 
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protection from the elements. Consequently, larval masses were observed to form internally in 

all carcasses before external larval masses were ever detected. A study by Johnson et al. (2014) 

confirms that larval mass movement is not random, and further suggests that larvae may select 

for temperatures such that they will prefer the hottest part of larval masses. Data indicated that 

the overall diversity of mouth and rectal microbiomes was dwarfed by diversity observed on the 

skin, so perhaps the skin microbiota was so dynamic in its bacterial succession that it was able to 

dramatically alter the overall larval mass matrix (and external larval microbiome) as 

decomposition stages shifted from “Bloat” to “Active.” We feel there is a strong possibility that 

larvae may not differ significantly by internal microbiome The likelihood of external 

microbiomes driving the slight disparity in bacterial community we observe across season and 

ADH is reasonable considering how significantly different the larval mass microbiomes were 

from each other. Studies of Phormia regina microbiomes have indicated significant differences 

between externally samples and internally samples microbiota, with the latter representing just a 

fraction of the diversity expressed by external communities (Deguenon et al., 2019). Also, while 

summer postmortem microbiome communities were significantly more diverse in the summer 

than other seasons, larval mass and larvae bacterial community alpha diversity remained 

strikingly consistent among all three (Figure S8). Comparisons revealed not only that larval 

masses were significantly more diverse than the larvae comprising them (except for fall), but 

also that the median differences of these sample types from a seasonal perspective remained 

relatively consistent. 

The hypothetical utility of larvae outside of their current uses in forensic entomology has 

seen considerably speculation in recent literature (Sharma et al., 2015). Among these 

applications, the determination of a post-mortem interval (PMI) with larval development data 
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ranks among the most popular. This method stands out as being deceptively complex in the 

considerations it must make in the determination of a reliable PMI; and the inherent error that 

one can attribute to misrepresented or improperly measured variables required of the technique 

are only compounded by additional errors in evidence collection. An important means by which 

researchers believe this error can be mitigated is by providing accurate information outlining the 

PMI considerations that motivate entomological evidence collection, so advancements have 

ultimately emphasized identifying those analytical needs (Hall, 2021). As such, we have come to 

recognize the importance and interconnectedness of factors like insect succession in 

decomposition settings, how those insects develop, and how environmental conditions modulate 

both (Benbow et al., 2016).  

In many ways our study was an extension of this principle insofar as it sought to 

characterize seasonal weather conditions reflecting their growth conditions and how they 

influence their life histories. What stands out about new and emerging techniques is how flexible 

they are, as well-designed evidence processing pipelines can do well to maximize the ways in 

which just a single piece of evidence can be used. With that in mind, we have conducted 

preliminary research to evaluate the importance of carrion in microbiome succession across blow 

fly development, and future analyses of these data may prove helpful in making a deliberation 

about how appropriate microbiome-centric approaches to age determination may be. We do feel, 

however, that using larvae or larval mass microbial profiles to predict decomposition stage is a 

relatively fruitless effort. Indeed, larval mass samples only spanned one or two stage transitions 

in every season, often providing us with binary predictions at best. Many larvae also did not 

exhibit any significant dissimilarity between successive, linear timepoints (ADH). This is a 

largely insubstantial observation, but it does beg the question of how significant and consistent 
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the rare taxa driving the few significant changes in larvae microbiota may be in nature. Our 

findings similarly fail to indicate that larval masses would be of particular use in predicting ADH 

for PMI determination. Despite this, our findings have enabled us to identify overlaps in larval, 

larval mass, and carcass bacterial communities throughout decomposition. Measurable trends in 

succession and indications that seasonal weather dynamics play a role in said succession are 

important considerations to make. Additionally, evidence that larvae significantly influence the 

microbial succession of their host carrion in a potentially reciprocal manner serves to illustrate 

why considerations like these are important in the evaluation of necrobiome-associated data.  

This study is just one small step in better characterizing the necrobiome as an immense, 

complex web of life alongside the processes that sustain it. We are reaffirmed in our belief that 

elucidating significant interactions of organisms spanning various trophic levels or functional 

niches will help strengthen the proposed applications of postmortem microbial data. Despite the 

breadth of this study, there are still many questions whose answers remain unclear. In identifying 

the trends we have, we succeeded in bringing new concerns to light alongside the objective, 

measurable observations made in the process. We argue that studies such as these that emphasize 

longitudinal data collection across significantly different environments will provide us with a 

clearer understanding of what postmortem microbial data, among others, is communicating to us. 
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APPENDIX A: RECORD OF DEPOSITION OF VOUCHER SPECIMENS 
 

 The specimens listed below have been deposited in the named museum as samples of 
those species used in this research. 
 

Voucher number: 2024-08 

Author and Title of thesis:  
Anthony Grigsby – Seasonal Dynamics of Carrion Decomposition Ecology 
 
Museum where deposited:  
Albert J. Cook Arthropod Research Collection, Michigan State University (MSU) 
 

Table 5. A list of individual voucher specimen as characterized by species, life stage, and 
preservation method. 

Family Genus-Species Life Stage Quantity Preservation 

Calliphoridae Phormia regina Adult 2 Pinned 

Calliphoridae Lucilia ilustris Adult 2 Pinned 

Calliphoridae Lucilia silvarum Adult 2 Pinned 

Calliphoridae Calliphora vicina Adult 2 Pinned 
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APPENDIX B: SUPPLEMENTARY MATERIALS 
 

Table S1. A summary of the identities, average weights, and sexes of stillborn carcasses 
used in the summer 2022, fall 2022, and spring 2023 decomposition studies. 

Season Carcass IDs 
Average weight 

(kg) 
Sex ratio 
(male:female) 

Summer C1-C6 (n = 6) 4.13 1:5 
Fall C7-C12 (n = 6) 2.92 4:2 
Spring C16-C21 (n = 6) 3 5:1 
 C1-C21 (n = 18) 3.5 10:8 

 
Table S2. A summary of significantly different decomposition stage transitions and the p-
values of their respective alpha diversity metrics. Significance evaluated by pairwise 
Wilcoxon Rank-Sum tests. Significance thresholds denoted by * = p-value < 0.05, ** = p-
value < 0.01, *** = p-value < 0.001. 
Seasonal decomposition stage transition Observed Evenness Shannon FaithPD 

Summer 2022; “Fresh” → “Bloat” 0.00053*** >0.001*** >0.001*** 0.017* 

Summer 2022; “Bloat” → “Active” 0.0022** 0.12 0.011* 0.00058*** 

Summer 2022; “Active” → “Advanced” 0.045* 0.47 0.025* 0.069 

Fall 2022; “Fresh” → “Bloat” 0.62 >0.001*** 0.0028** 0.0068** 

Fall 2022; “Bloat” → “Active” 0.00093*** 0.00076*** 0.6605 0.00069*** 
 

Table S3. A summary of significantly different sample types and the p-values of their 
respective alpha diversity metrics. Significance thresholds denoted by * = p-value < 0.05, ** = 
p-value < 0.01, *** = p-value < 0.001. 
Seasonal sample type comparison Observed Evenness Shannon FaithPD 

Fall 2022; Skin vs Mouth >0.001*** 0.032* 0.00065*** >0.001*** 

Fall 2022; Skin vs Rectum >0.001*** 0.032* 0.00065*** >0.001*** 

Spring 2023; Skin vs Mouth >0.001*** 0.79 0.0015** >0.001*** 

Spring 2023; Skin vs Rectum >0.001*** 0.74 >0.001*** >0.001*** 

Spring 2023; Mouth vs Rectum >0.001*** 0.74 >0.001*** >0.001*** 
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Table S4. Distribution of biological sample types used in analysis across seasonal 
decomposition studies (summer 2022, fall 2022, spring 2023).  

Sample Type Summer 2022 Fall 2022 Spring 2023 Total 
Carcass 94 189 159 442 

    Mouth 30 62 54 146 
Skin 24 54 52 130 

    Rectum 40 73 53 166 
Larvae 71 57 70 198 
Larval mass 42 32 78 152 
Total 207 278 307 792 
Only the “Carcass” total is considered in the calculation of the overall sample total. 

 
Table S5. A summary of significantly different seasons and the p-values of their 
respective alpha diversity metrics. Significance thresholds denoted by * = p-value < 0.05, ** 
= p-value < 0.01, *** = p-value < 0.001. 

Season comparison Shannon FaithPD 

Summer vs Fall 0.0054** 0.0026** 

Summer vs Spring 0.033* 0.00054*** 
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Table S7. Post-hoc analysis (Dunn’s test) of Kruskal-Wallis rank sum tests comparing 
historical weather data (temperature and relative humidity) from 08-05 to 08-11 during 
summer 2019, 2020, 2021, and 2022. 

Comparison Test Statistic Adjusted p-value 

Temperature (°C) 
2019 vs 2020 -0.907138 1.00 (ns) 
2019 vs 2021 -4.345112 ≤0.001*** 
2019 vs 2022 -2.911824 0.011* 
2020 vs 2021 -3.437974 0.0018** 
2020 vs 2022 -2.004686 0.14 (ns) 
2021 vs 2022 1.433288 0.46 (ns) 

Relative Humidity (%) 
2019 vs 2020 -0.871118 1.00 (ns) 
2019 vs 2021 -4.173899 ≤0.001*** 
2019 vs 2022 -6.191031 ≤0.001*** 
2020 vs 2021 -3.302780 0.0029** 
2020 vs 2022 -5.319912 ≤0.001*** 
2021 vs 2022 -2.017132 0.13 (ns) 
p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, (ns) = not significant 
p-values adjusted using the Bonferroni method, normality of data tested using Shapiro-Wilk 

 
 
 
 
 
 
 
 
 
 
 

Table S6. The number and percentage of successfully sequenced samples classified by 
decomposition stage across all seasonal datasets.   
Season Fresh Bloat Active Advanced Dry 
Summer 2022 12 (13%) 33 (35%) 18 (20%) 20 (22%) 9 (10%) 
Fall 2022 31 (18%) 73 (42%) 51 (30%) 10 (6%) 7 (4%) 
Spring 2023 87 (55%) 17 (11%) 33 (20%) 22 (14%) 0 (0%) 
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Table S8. Post-hoc analysis (Dunn’s test) of Kruskal-Wallis rank sum tests comparing 
historical weather data (temperature and relative humidity) from 10-14 to 11-06 during 
fall 2019, 2020, 2021, and 2022. 

Comparison Test Statistic Adjusted p-value 

Temperature (°C) 
2019 vs 2020 -0.900968 1.00 (ns) 
2019 vs 2021 -3.366803 0.0023** 
2019 vs 2022 -8.381079 ≤0.001*** 
2020 vs 2021 -2.465843 0.0410* 
2020 vs 2022 -7.480119 ≤0.001*** 
2021 vs 2022 -5.014275 ≤0.001*** 

Relative Humidity (%) 
2019 vs 2020 4.849699 ≤0.001*** 
2019 vs 2021 -5.233818 ≤0.001*** 
2019 vs 2022 1.897688 0.1732 (ns) 
2020 vs 2021 -10.08351 ≤0.001*** 
2020 vs 2022 -2.952018 0.0095** 
2021 vs 2022 7.131499 ≤0.001*** 
p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, (ns) = not significant 
p-values adjusted using the Bonferroni method, normality of data tested using Shapiro-Wilk 
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Table S9. Post-hoc analysis (Dunn’s test) of Kruskal-Wallis rank sum tests comparing 
historical weather data (temperature and relative humidity) from 05-15 to 05-26 during 
spring 2020, 2021, 2022, and 2023. 

Comparison Test Statistic Adjusted p-value 

Temperature (°C) 
2020 vs 2021 -5.237887 ≤0.001*** 
2020 vs 2022 3.290787 0.003** 
2020 vs 2023 7.244964 ≤0.001*** 
2021 vs 2022 8.528674 ≤0.001*** 
2021 vs 2023 12.48285 ≤0.001*** 
2022 vs 2023 3.954177 ≤0.001*** 

Relative Humidity (%) 
2020 vs 2021 8.151398 ≤0.001*** 
2020 vs 2022 3.468432 0.0016** 
2020 vs 2023 8.989569 ≤0.001*** 
2021 vs 2022 -4.682966 ≤0.001*** 
2021 vs 2023 0.838170 1.00 (ns) 
2022 vs 2023 5.521136 ≤0.001*** 
p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, (ns) = not significant 
P-values adjusted using the Bonferroni method, normality of data tested using Shapiro-Wilk 

 
Table S10. Random Forest model overview of parameter settings. 

 Value/Setting 

Parameter Regression Classification 

Training set ratio 0.8 0.8 
Decision tree quantity 500 500 
Importance TRUE TRUE 
No. variables tried per split 2𝑝 where 𝑝 = predictors 2𝑝 where 𝑝 = predictors 
Node splitting criterion Residual sum of squares Gini index 
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Table S11. Analysis of variance using adonis, results for the Weighted UniFrac Distance 
Matrix of pairwise sample type (carcass, larvae, larval masses) and seasonal 
comparisons. 

Comparison Sum of Squares (SS) R2 F-value  Adj. p-
value 

Larvae vs Larval Masses 0.00554 0.00328 0.77 0.398 (ns) 
   Summer vs Fall 0.03254 0.01983 3.46 0.189 (ns) 
   Summer vs Spring 0.05030 0.03526 5.70 0.039* 
   Fall vs Spring  0.03230 0.11762 18.80 0.003** 
Carcasses vs Larval Masses 0.00204 0.00828 4.38 0.017* 
   Summer vs Fall 0.00649 0.03591 12.37 0.003** 
   Summer vs Spring 0.01400 0.14294 54.04 0.003** 
   Fall vs Spring  0.01556 0.07700 32.71 0.003** 
Carcasses vs Larvae 0.01781 0.02851 16.02 0.001** 
   Summer vs Fall 0.00939 0.03401 12.57 0.003** 
   Summer vs Spring 0.02908 0.07406 25.91 0.003** 
   Fall vs Spring  0.04107 0.07446 32.90 0.003** 
p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, (ns) = not significant 
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Figure S1. Environmental data and time over the course of seasonal decomposition studies 
in the order that they were conducted. A) A comparison of temperature data (recorded hourly) 
over time and between three different sources: Data loggers (including predicted data in Spring 
2023), the HTRC weather station, and the MSUHORT weather station. B) Accumulated degree 
hours (ADH) over time in hours. 
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Figure S2. Alpha diversity metrics (observed richness, evenness, Shannon diversity, Faith’s 
phylogenetic diversity) across decomposition stages. Pairwise significance was determined 
using Pairwise Wilcoxon Rank Sum Tests. Significance thresholds denoted by * = p-value < 
0.05, ** = p-value < 0.01, *** = p-value < 0.001. 
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Figure S3. Alpha diversity metrics (observed richness, evenness, Shannon diversity, Faith’s 
phylogenetic diversity) of biodiversity across different body sites. Pairwise significance was 
determined using Pairwise Wilcoxon Rank Sum Tests. Significance thresholds denoted by * = p-
value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001. Brackets with tails refer to specific 
pairwise tests, brackets without tails encompass all pairwise testing.  
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Figure S4. Bar plots of ANCOM-BC log fold changes (LFC), limited to the top five 
positively and negatively differentially abundant bacterial genera for each body site. 
Changes are relative to sample type indicated in the reference categories of mouth or rectum. 
Taxa whose abundances changed significantly (as indicated by q < 0.05 and p < 0.05) are 
preceded by an asterisk. 
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Figure S5. Bar plots of ANCOM-BC log fold changes (LFC), limited to the top 5 positively 
and top 5 negatively changing bacterial genera. All seasons are evaluated as a combined 
dataset. Changes are relative to sample type indicated in the reference category of mouth or 
rectum. Taxa whose abundances changed significantly (as indicated by q < 0.05 and p < 0.05) 
are preceded by an asterisk. 

 

 

Figure S6. Feature volatility analysis of carcass microbiota among seasons Line plots 
represent the average prevalence of dominant genera among communities over time 
(ADH). Barplots represent the importance of those taxa in predicting ADH and their global mean 
among all samples. “Importance” quantifies the contributions made by each taxonomic feature to 
the model’s overall predictive power. 
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Figure S7. Feature volatility analysis of body site microbiota. Line plots represent the 
average prevalence of dominant genera among samples over time (ADH) among different 
sample types. Bar plots represent the importance of those taxa in predicting ADH and their 
global mean of all body sites. Metrics used by the underlying supervised learning classifier are 
meant to emphasize relative importance. 
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Figure S8. Line plots of mean alpha diversity (Shannon) over time (ADH). A) mean alpha 
diversity of samples across all seasons, B) mean alpha diversity of samples within independent 
seasonal datasets. Lines correspond with sample types. Ribbons represent standard error between 
averages samples. 
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Figure S9. Principal Coordinate Analysis (PCoA) of weighted and unweighted UniFrac 
matrices for larvae and larval masses. The color of samples and ellipses correspond to the 
season they belong to. Ellipses indicate 95% standard error of seasons. 
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Figure S10. Principal Coordinate Analysis (PCoA) of larval microbiome samples 
(unweighted and weighted UniFrac) by season. Colors of samples and ellipses correspond 
with their respective accumulated degree hour (ADH) timepoints when collections occurred. 
Ellipses indicate 95% standard error of ADH timepoints. 
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Figure S11. Supervised learning classifier accuracy as confusion matrices, by season. The 
leftmost column are the confusion matrices, where x = actual and y = predicted. The rightmost 
column expresses model accuracy as a function of sample feature count. 

 


