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ABSTRACT 

Leaf-level functional traits important to photosynthetic carbon (C) assimilation vary 

widely across biomes, between plant functional types, and coinciding with vertical structural 

variation in the canopy, which necessitates the use of tools capable of mapping this diversity over 

large scales. Advances in the spectral and spatial resolution in multi- and hyperspectral imagery 

(HSI) over the past three decades have allowed for increasingly fine resolution mapping of top-

of-canopy (TOC) functional traits at the landscape scale from airborne spectrometers (Wang et 

al. 2020), while lidar data have been shown to effectively quantify structural attributes of forest 

canopies important to C assimilation (Dahlin et al. 2013; Asner 2015; Kamoske et al. 2019). 

However, these datasets are seldom spatiotemporally contiguous, thus limited studies have 

combined these datasets to capture a complete picture of canopy functional diversity.  

Here, I integrate field and remote sensing data from a mixed deciduous forest in Virginia, 

USA, to generate estimates of TOC percent and total-canopy (g/mGround
2) nitrogen content before 

comparing the spatial patterns and drivers of these two metrics. Conversely to trends in TOC 

percent N, we found that evergreen needleleaf canopies had on average higher total nitrogen 

(gN/m2) and foliar biomass (gLeaf/m
2) than broadleaf deciduous canopies. Upon a closer analysis 

of the spatial trends and environmental drivers of TOC percent and total N between these plant 

functional types, we found that the change in plant health (i.e., NDVI) during an outbreak of the 

spring cankerworm (Palecrita vernata) was a strong predictor of total canopy N, suggesting this 

disturbance perturbs a complete understanding of whole-canopy function in this system. Overall, 

this thesis highlights the importance of local and regional-scale ecological understanding of plant 

form and function, as my results reinforce similar studies (e.g., Kamoske et al. 2021) but 

contradict long held views of differences in productivity between plant functional types. 
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Introduction  

Forest canopy functional and structural diversity drive resource use efficiency (RUE), 

production, and subsequently carbon (C) assimilation (Smith et al. 2002; Hardiman et al. 2011; 

LaRue et al. 2016; Gough et al. 2019). Research in this area has been an ongoing frontier in 

ecosystem ecology at local to global scales (Shugart et al. 2010; Niinemets et al. 2012; Stark et 

al. 2012; Atkins et al. 2018; Kamoske et al. 2021). However, understanding how functional and 

structural diversity interact to effect whole-canopy function (and thus C sequestration) has been 

limited due to the disconnect in spatiotemporal consistency between functional and structural 

measurements across spatial scales (Asner et al. 2015). As forests globally decline in species and 

functional diversity, ensuring effective modeling and management of functional and structural 

diversity has become even more crucial (Wilfarht et al. 2014).  

Leaf-level functional or response traits reflect the tradeoff between growth, production, 

and survival, causing predictable variation in leaf form and function along the leaf economic 

spectrum under given environmental conditions (e.g., resource availability and competition) 

(Violle et al. 2007; Diaz et al. 2016). While individual plant functional traits (e.g., leaf area) 

influence light acquisition and C sequestration at the leaf-level, canopy scale structural 

heterogeneity has been shown to drive large scale patterns of C assimilation (Hardiman et al. 

2011). It has been hypothesized that structural heterogeneity creates diverse light environments 

allowing radiation to be absorbed throughout the canopy volume, maintaining production in 

vertical strata with little direct incoming light (Hardiman et al. 2013; Atkins et al. 2018).    

Forest processes in the form of net primary production and C sequestration are inherently 

tied to canopy light availability, which shows a strong relationship with vertical variation of leaf 

area and arrangement in traditional field studies (Brown & Parker 1994; Shugart et al. 2010; 
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Hardiman et al. 2011; Hardiman et al. 2013; Stark et al. 2015). This 3-D variation in leaf 

distribution at the canopy scale is caused by an array of historical and current forces not limited 

to succession, tree mortality, and impacts from pests (Hardiman 2011; Wilbur et al. 2021; Choi et 

al. 2023). At the stand and landscape scales, these factors create a diversity of light environments 

which are known to heavily influence variation in leaf-level functional traits (i.e., leaf mass per 

area, chemical composition) as plants maximize their photosynthetic capacity throughout the 

vertical extent of the canopy, with cascading effects on production and C assimilation (Field & 

Mooney 1986; Lefsky et al. 1999; Smith et al. 2002; Niinemets et al. 2012; Niinemets et al. 

2015). Thus, it may be critical to use an integration of measurements on canopy-scale structure 

and leaf-level traits to truly describe forest function at the landscape scale and beyond.  

Though much work has been done to address the question of how forest structure impacts 

function at the traditional plot and landscape scales (Hardiman et al. 2013; LaRue et al. 2016), 

limited efforts have had the opportunity to use spatiotemporally comparable remotely sensed 

structural and functional information at the landscape and regional extent (Townsend 2003; 

Asner et al. 2015; Kamoske et al. 2021). Further, these studies have been localized to distinct 

ecosystem types, none of which are applicable to understanding the 3-dimensional functional 

variation in the temperate mixed forests of Appalachia. While leaf functional traits (particularly 

foliar N concentration) studied in forests undergoing successional change (Fowler et al. 2015; 

Wang et al. 2020) reflect latitudinal gradients of N deposition that may positively impact C 

assimilation, it is unclear if these landscape scale trends will persist if whole-canopy structural 

information from lidar is considered (Townsend et al. 2003; Thomas et al. 2010; Knyazikhin et 

al. 2013; Wang et al. 2020). Nitrogen (N) concentration has been effectively modeled using HSI 

in a variety of forest ecosystems, though no current studies have investigated the role of canopy 
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structure on large scale functional traits prescriptive of C sequestration in the Central 

Appalachians (Townsend 2003; Wang et al. 2020; Kamoske 2020).  

Many studies over the past three decades have reliably modeled and scaled foliar 

functional traits beyond the leaf-level using passive multispectral and more recently 

hyperspectral imagery (HSI) with in situ (or field-based) measurements to generate 2-

dimensional estimates of canopy traits (Townsend et al. 2003; Dahlin et al. 2013; Wang et al. 

2022). Recent advances in the spectral and spatial resolution in multispectral and subsequently 

HSI have allowed for increasingly fine scale mapping of top-of-canopy (TOC) foliar functional 

traits at the landscape scale from air and space-borne spectrometers (Lepine et al. 2016; Wang et 

al. 2022). Active remote sensing systems in the form of waveform and discrete-return light 

detection and ranging (lidar) have been effectively used to model the vertical structure of forest 

canopies in recent years, (Lefsky et al. 1999; Harding et al. 2001; Hardiman et al. 2011; 

Kamoske et al. 2019) and can yield important information about the distribution of leaves in the 

canopy and subsequent light availability through vertical canopy strata (Kane et al. 2010; 

Hardiman 2013). This allows for interpretation of canopy characteristics beyond TOC reflectance 

in the form of vertical structure, and thus can become complementary to HSI data for modeling 

the functional and structural traits of a canopy at larger scales than previously attainable with 

traditional in situ measurements alone (Asner et al. 2015; Kamoske et al. 2021).  

However, lidar data and HSI are seldomly recorded simultaneously and therefore a 

limited number of studies have allowed for integration of these measurements to understand the 

functional and structural characteristics of a given forest ecosystem (Asner 2015; Kamoske et al. 

2021). The National Ecological Observatory Network (NEON; Kampe et al. 2010) works to 

circumvent this hinderance to understanding a complete picture of canopy function by operating 
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a hyperspectral imager measuring hundreds of wavelengths in conjunction with waveform and 

discrete return lidar sensors. These datasets offer the opportunity to study forest structure and 

function with studies leveraging this data to answer an array of questions about forest 

ecosystems, what drives their functional diversity, and how this may be impacted by disturbance 

(Kamoske et al. 2021; Choi et al. 2023). 

  In the mixed deciduous forests of the Appalachian Mountains, disturbances from 

historical overlogging, development, species invasions, and degradation of the understory by 

animals (particularly white-tail deer (Odocoileus virginianus)) diversify light environments 

throughout the canopy volume by influencing stand density, canopy clumping, among other 

structural characteristics which shape functional and structural diversity at various spatial scales 

(Tremblay et al. 2004; Small & Chamberlain 2015; Wilbur et al. 2021; Choi et al. 2023). The 

Central Appalachians in southwestern Viriginia were deforested throughout the 19th century due 

to logging for timber production and clear-cutting for cattle pastures, which coincided with the 

with the sharp decline of the locally dominant American Chestnut (Castanea dentata) and 

emergence of red oak (Quercus rubra) as the dominant species in this region (Redmond et al. 

2012; Small & Chamberlain 2015; Wilbur et al. 2021). The recovery of these forests has resulted 

in a range of broadleaf deciduous and evergreen needleleaf stands assorted along elevational 

gradients typical of this region, where pine species and eastern hemlock (Tsuga canadensis) 

dominate valley floors while successional oak-hickory stands persist along more well-drained 

upland sites. Through this functional and structural diversity secondary forests have been shown 

to increase or maintain levels of production and C sequestration as they age (Hardiman et al. 

2013), though the long-term effects of species diversity decline due to increased N deposition, 
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species invasions, and development over the last century remain unclear (Butler et al. 2015; 

Thomas et al. 2010; Fowler et al. 2015).  

Temperate forests in this region of the world are ideal model systems to advance a 

methodology for measuring whole-forest function using a fusion of tools as they are often 

complex in terms of species and plant functional diversity, which allows for comparison of forest 

function across plant communities dominated by different functional types and environmental 

gradients at finer scales than current satellite products offer (Zhang et al. 2017). Due to the role 

of temperate Appalachian forests in regional C dynamics and global C storage and productivity, 

the impact of vertical structural heterogeneity on forest function should be quantified to inform C 

cycling parameterizations in models generated from remotely sensed data (Liu et al. 2006; Pan et 

al. 2011; Fowler et al. 2015; Zhang et al. 2017; Canham et al. 2024).  

In this study, we investigate whether the incorporation of vertical structural information 

can elicit more robust models of canopy functional traits than top-of-canopy information alone 

by leveraging a fusion of field, lidar, and hyperspectral data. Following Kamoske et al. (2021), 

the questions I seek to address in this research are: 1) How can a fusion of lidar, hyperspectral, 

and in situ data be used to accurately model 3D canopy functional traits in an Appalachian forest 

diverse in species, plant functional types (PFTs, e.g., needleleaf vs deciduous broadleaf trees), 

and topography? 2) How do the spatial trends of these traits differ from the TOC to whole 

canopy levels? and 3) What are the environmental drivers of top of canopy and total N in a 

heterogeneous central Appalachian forest?  
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Methods 

Site description 

Mountain Lake Biological Station (MLBS) is nested within the Appalachian Mountain chain 

atop Salt Pond Mountain in southwestern Virginia, USA. MLBS has a cool, continental climate 

with high seasonality and low average temperature at 8.8°C due to harsh winters typical at this 

elevation (Wilbur et al. 2021; NEON Site Report). Elevation at this site ranges from 800 to 1,329 

meters, with a mean canopy height around 18m. Mean annual precipitation is roughly 1277mm, 

with sporadic dry and wet spells characteristic of the central Appalachians. MLBS is surrounded 

by a mixed oak-hickory forest consisting of northern red oak, white oak (Quercus alba), sweet 

birch (Betula lenta), eastern hemlock (Tsuga canadensis), and shagbark hickory (Carya ovata), 

with stands of other gymnosperms such as red cedar (Juniperus virginiana) also present. At 

higher elevations, canopies mainly consist of red maple (Acer rubrum) and white oak while at 

lower elevations, more fertile soils support species such as blackgum (Nyssa sylvatica) and 

eastern white pine (Pinus strobus). The forest understory is composed of multiple species of 

ferns, Rhododendron species, and mountain laurel (Kalmia latifolia).  

The study area used here (Fig. 1) is a 2 x 2 km square centered on the NEON eddy 

covariance flux tower and surrounding MLBS itself, which has been owned and managed by the 

University of Virginia since its inception in 1936 as a field research site. MLBS has served as a 

terrestrial NEON field site in Domain 07 since 2017, with three separate plots adjacent to 

existing MLBS research sites and actively managed U.S. Forest Service land within the Jefferson 

National Forest (Sarvis et al. 1993; Wilbur et al. 2021). The following year in 2018, an outbreak 

of the Spring cankerworm (Palecrita vernata; hereafter cankerworm), occurred throughout the 

study area (NEON 2021b; Choi et al. 2023). The larva of this generalist pest defoliates deciduous 
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vegetation throughout the canopy volume and understory by rapidly consuming leaves, which 

can drastically change the light environment and short-term structure of canopies in affected 

stands (Fig. 2.; Darr & Coyle 2021). A recent study by Choi et al. (2023) found that in all 23 

NEON plots (40 x 40 m) examined at MLBS, roughly 60% of oak species showed moderate-high 

levels of defoliation with the anticipated impacts of gap fraction increase and canopy density (or 

leaf area density (LAD; mLeaf
2/mGround

2)) reduction which could impact accurate estimations of 

canopy structural traits otherwise interpretable in absence of this defoliation event.  

Figure 1. Map of the study area extent around MLBS used in this project centered around the 

NEON flux tower, denoted as a blue diamond north of the research station, and MLBS-owned 

land as a dashed line excluding roads. 
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Field Sampling & Lab Methods 

To generate models of within-canopy functional traits from both remotely sensed and field data, 

leaf samples were collected between early May and mid-June 2018, proximal and coinciding 

with the NEON Airborne Observation Platform (AOP) flight at MLBS on June 15th, 2018, and, 

coincidentally, during the cankerworm outbreak (NEON Site Report 2021b). Throughout the 

vertical extent of the canopy, foliar samples (n = 111) were collected from the dominant species 

within the canopy using a pole pruner or BigShot Line Launcher (SherrillTree, Greensboro, 

North Carolina, USA). Each foliar sample height was estimated using a laser range finder. 

Figure 2. Example of defoliated broadleaf stand in August during the 2018 cankerworm 

outbreak. (photo credit: Aaron Kamoske) 
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During collection, each sample location was documented with a Trimble GEO7x GPS (Trimble, 

Sunnyvale, California, USA) and differentially corrected using Trimble’s GPS Pathfinder Office 

software afterwards. Upon collection, each leaf sample was wrapped in a damp paper towel and 

placed in a cooler with ice packs prior to collecting reflectance measurements the same day in 

our mobile field laboratory. Three reflectance measurements were taken from different leaves in 

each sample using an SVC HR-1024i Spectroradiometer equipped with an LC-RP-Pro leaf clip 

foreoptic (Spectra Vista Corporation, Poughkeepsie, New York, USA). The SVC HR-1024i 

Spectroradiometer collects data in wavelength range of 340 – 2,500nm, with roughly 1050 bands 

binned at approximately 2nm. Between each sample, the instrument was recalibrated using a 

white Spectralon panel. For broadleaf samples, individual leaves were placed flat directly into 

the leaf clip, whereas for needleleaf samples mats were created by aligning needles vertically 

aside one another and taping their ends together prior to being placed in the leaf clip. At least 500 

mg of leaf material was collected from each sample using scissors sterilized between collections, 

placed on a flatbed scanner and analyzed for area using the ImageJ software. After imaging, the 

leaf material collected from each sample was placed in a paper coin envelope and dried at 70°C 

for at least 48hr. Leaf mass per area (LMA; g/mL
2, where mL is meters of leaf area) was 

subsequently calculated using area measurements from the ImageJ software and dry weight (g) 

for each sample. A subset of samples (n=34, ~30%) was then collected, redried, and ground 

using a ball mill (2000 Geno Grinder; SpexSample Prep, Cridersville, Ohio, USA) into a fine 

powder. This subset was sent to Brookhaven National Laboratory (Upton, New York, USA) for 

determination of elemental N content (g N/gleaf, or percent N) and sample C:N ratio. From each 

sample, 1.50-2.50 mg were weighed using 0.1 mil tin foil vials (AX26DR; Mettler Toledo, 

Columbus, Ohio, USA) and analyzed using a 2400 Series II CHNS/0 Analyzer (Perkin Elmer, 
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Waltham, MA, USA) following Kamoske et al. (2021). To retrieve a field-based measure of 

vertical leaf density and arrangement and support future comparisons of whole-canopy traits 

across ecoregions, we followed the protocol described in Kamoske et al. (2019) and collected 44 

upward facing hemispherical photographs at this site.   

Hyperspectral Data 

The hyperspectral imagery used to generate the top-of-canopy (TOC) functional trait data 

employed here was collected by the NEON AOP on August 5, 2017, the summer prior to the 

cankerworm outbreak. The NEON AOP is equipped with a hyperspectral sensor that measures 

426 distinct bands in the visible-SWIR wavelength range (380-2500nm) in 5nm increments at 

1m spatial resolution (Kampe et al. 2010). Using hyperspectral reflectance and leaf samples 

collected in the sun-lit portions of the canopy crowns, a partial least squares regression (PLSR) 

approach was used by the Townsend Lab at the University of Wisconsin-Madison (Wang et al. 

2021) to model and generate maps of top-of-canopy LMA and N content (mg N/gLeaf; converted 

to a percentage here for comparability with other studies) for the AOP flightline extent around 

MLBS (Data publicly available at 

https://uwmadison.app.box.com/s/xll3ljh5ar8rh0geztywd5w2qkfgzcib). These maps were 

leveraged here in lieu of deriving our own maps of TOC LMA and N content for MLBS since 82 

samples were collected to model TOC functional traits at MLBS by Wang et al. (2021), and only 

34 TOC samples were collected during our field campaign. Moreover, during the cankerworm 

outbreak leafless patches of the canopy would allow understory plants to influence the airborne 

reflectance measurements. In order to match the lidar data discussed in the next section, the 1 x 1 

m functional trait maps were aggregated to 25m2  by taking the average of all pixels in each 5 x 5 

m extent. All processing was done in the R programming language.   

https://uwmadison.app.box.com/s/xll3ljh5ar8rh0geztywd5w2qkfgzcib
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Lidar data processing 

Discrete return lidar point cloud data were acquired for 2018 NEON AOP flightlines over MLBS 

and rasterized into 5 x 5 m voxels for each 1 m vertical slice of the canopy. After leveling the 

lidar point clouds in each cell so that the elevation of all ground returns was equal to 0, LAD 

(mLeaf
2/mG

3
, where mG

3 is a volume of airspace above the ground) was calculated for all voxels 

within the AOP flightlines (Sabol et al. 2014; Kamoske et al. 2019). LAD here was calculated 

relying on theory from MacArthur and Horn (1969), where LAD is equal to the total number of 

lidar pulses that enter and exit each voxel that have at minimum of one ground and canopy return 

using the canopyLazR package (Stark et al 2012; Kamoske et al 2019; Kamoske et al 2021). To 

avoid noise from understory vegetation and sharp topographic variations on the ground (Fig. 3) 

affecting interpretation of canopy structural traits, the bottom 5 meters of the canopy were 

removed before further processing.  

To calibrate lidar LAD estimates to field-based measurements, hemispherical upward 

facing fisheye photographs collected in the field were processed for LAI. All fisheye 

photographs were taken with the Canon Rebel T-6 and Bower 8mm F3.5 Ultra-Fast Lens and 

processed using the hemispeR package, which utilizes an angular gap fraction approach to 

calculate LAI, effective leaf area index (LAIe), and other canopy structural attributes (Canon Inc. 

(Ota, Tokyo, Japan), Bower Inc. (New York, New York, USA); Macfarlane et al. 2012; 

Chiannuci & Cutini 2013; Chiannuci & Macek 2023). The hemispheR package generates 

estimates of LAI by relying on the blue region of the visible spectrum in RGB photographs and 

binarizes each into black (canopy) or white (sky) based on an image-specific calculated 

reflectance threshold in the blue band. This method takes advantage of the stark difference in 
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diffuse and direct radiation in the blue band between sky and canopy pixels in upward facing 

photos. 

Each fisheye image was binarized into sky or canopy and divided into five zenith rings 

and eight azimuth segments at a maximum of 27° to mimic estimates from an LAI 2000/2200 

Plant Canopy Analyzer, and replicate the extent of the AOP swath width, respectively. (LI-COR 

study; Chiannuci et al. 2015; Chiannuci & Macek 2023). From the binarized and segmented 

fisheye image, gap fraction estimates were then derived to calculate LAI and effective leaf area 

index (LAIe). For consistency due to the inability to discern woody material from leaves in the 

lidar returns, LAIe values (hereafter LAI) extracted from the hemispherical photos were used and 

Figure 3. Rock cavern near Bear Cliff (VA). 
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compared against lidar-derived LAI (Fig. A.1.) to derive a Beer-Lambert extinction coefficient (k 

= .53; Fig. A.2.). The Beer-Lambert coefficient in this context is the slope of the relationship 

between the lidar- and digital hemispherical photography (DHP) derived LAI estimates, which is 

then multiplied by the voxel height to account for the exponential decrease in light penetration as 

it pulses penetrate further into the canopy (Parker et al. 2001, Stark et al. 2012; Kamoske et al. 

2019; Kamoske et al. 2021). From these calibrated LAD estimates, we calculated 27 structural 

attribute maps (Table A.1.) representing different aspects of the canopy architecture for each 1m 

slice of the canopy.  

Within-Canopy Modeling 

To build a model for within-canopy functional traits at this site, we first extracted data from the 

26 lidar-derived structural attribute maps and the TOC LMA and N (%) maps at pixels 

encompassing our 111 leaf sample locations. To keep consistency with the hyperspectral and 

lidar data, we removed all samples below 5 m in the canopy and similarly those at the top of the 

canopy, as similar samples were used to train the PLSR model for the TOC traits. This resulted in 

a final set of 41 samples, which were split into ~80% training (n=33) and testing 20% (n=8) 

datasets. To prevent multicollinearity among predictors in our model, we removed all variables 

that were too correlated (R > 0.5) which resulted in a retention of 11 predictor variables. These 

final predictors were used to train an ordinary least squares regression (OLS) model to predict 

within-canopy LMA, from which the best set of predictor variables was selected using a 

backwards stepwise model selection approach using the Akaike Information Criterion (AIC). 

Preliminary OLS regression results showed that only TOC LMA was a statistically significant 

predictor of within-canopy LMA when included in models along with the 26 structural attribute 

rasters (Appendix A). Thus, in lieu of using modeled within-canopy LMA values from the OLS 
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regression equation which would have likely added uncertainty, we used TOC LMA values and 

calculated total-canopy N (g/mG
2, where mG

2 is meters of ground) using the below equation: 

𝑁𝑡𝑜𝑡 = 𝑁𝑇𝑂𝐶 ×  𝐿𝑀𝐴𝑇𝑂𝐶 ×  𝐿𝐴𝐼 

where h is the maximum height of each column of voxels, NTOC is the TOC N value at a given 

pixel (converted to percent N to be comparable with Kamoske et al. 2021) from Wang et al. 

(2020) and i represents individual voxels in the canopy column beginning at 5 m, as lidar pulse 

returns diminish or become unreliable due to noise from understory plants and topographic 

variation (Kamoske et al. 2019; 2021). In addition to Ntot, we used the same equation to calculate 

foliar biomass (g/m2) for the entire canopy volume by withholding the TOC N values and 

summing the product of LMA and LAD for each 1m slice of the canopy. To understand whether 

the spatial patterns of TOC percent N and total canopy N correlate, potentially allowing for 

extrapolation of whole canopy traits from remotely sensed TOC traits, we extracted 10,000 

points from each raster at the 5 x 5 m resolution. These samples were used to fit variograms for 

comparison of the two metrics, and gauged their respective spatial autocorrelation using the 

range, nugget, and sill of the variograms.  

Planet data processing 

To map deciduous vs evergreen forests and the impact of the cankerworm outbreak, we acquired 

Planet Labs (PlanetScope; Planet Team 2020) 3m mosaicked 4-band (red, blue, green, and near-

IR) surface reflectance scenes at MLBS for 2016, 2018, and 2019 (cloud-free images were not 

available for 2017). Planet operates a collection of 430+ small cube satellites (called Cubesat 

Doves) which work in unison to offer high spatiotemporal resolution at 3m spatial and on-

average daily revisit time, respectively. To delineate the PFTs within the study area, we derived 

NDVI (red – NIR / red + NIR) from leaf-off reflectance data (early March 2016) and set a 
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threshold of 0.6 to classify each pixel into deciduous (< 0.6) or evergreen (> 0.6). Additionally, 

we calculated NDVI for leaf-on data for pre- and post-cankerworm outbreak (August 2016 and 

2019) to assess the extent of defoliation due to this event and see how it may affect estimates of 

TOC and total N in broadleaf deciduous stands.  

Environmental driver analysis  

In order to address our second and third research questions of how top-of-canopy and total-

canopy functional traits differ spatially and in their respective drivers, we used Moran’s I to 

estimate spatial autocorrelation and a Monte Carlo simulation approach to understand the 

respective influences of the underlying abiotic (e.g., slope) and biotic conditions (i.e., 

cankerworm outbreak) as drivers of total (g/m2) and top-of-canopy percent N. To generate a 

dataset representative of the abiotic variables that may be driving spatial patterns of canopy N at 

this site, we generated 11 raster layers representing topographic characteristics of MLBS. 

Topographic characteristics (e.g., topographic position index, flow accumulation) were derived 

using a digital terrain model generated from the 5 x 5 m lidar data (Table A.2.). Due to the lack 

of variation in geologic substrate within the study area (i.e., a continuous substrate type 

throughout) no geologic variables were used. A Monte Carlo test with 1,000 simulations was 

then conducted to calculate an average R2 and Moran’s I of model residuals, and a distribution of 

model coefficients. During each simulation, 10,000 points were extracted from the predictor 

variable raster layers to build the models. After standardizing all non-binary variables (Gelman 

2006; mean = 0, standard deviation = 0.5) to allow for comparison across predictors, we 

generated regression models for top-of-canopy percent N and total canopy N individually. To 

avoid multicollinearity among the predictor variables, we assessed the correlation (Pearson’s R) 

between each and removed the variable least correlated with canopy N when two predictors had 
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an R ≥ 0.5 for each regression model and simulation. After filtering out highly correlated 

variables with little impact in explaining variation in total or TOC percent N, an initial OLS 

regression equation was developed using the remaining predictors.  

Following Kamoske et al. (2021), we used backward stepwise AIC variable selection to 

reduce our set of predictors to only those found to be statistically significant (P < 0.05). This 

final subset of predictors was then used in a final OLS regression model for each simulation. We 

assessed spatial autocorrelation using Moran’s I on the residuals of the individual final models. 

All processing was completed with ArcGIS Pro and the R programming language (ESRI 2023; R 

Core Team 2021). 
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Results 

Modeling within-canopy functional traits with lidar and hyperspectral data 

The final OLS regression model for predicting within-canopy LMA with the lowest AIC score 

consisted of three components: top-of-canopy (TOC) LMA, within-canopy rugosity, and sample 

height. Due to TOC LMA being the only statistically significant predictor variable in final model 

(p < 0.01), within-canopy rugosity and sample height were removed, and TOC LMA alone was 

used to model total canopy N (g/mG
2; Fig. 5). Similarly, we calculated LAI (mL

2
 /mG

2; Fig. 4) 

using the summation of LAD for each 1m slice in every pixel. LAD estimates here were 

calibrated with LAI estimates from in situ hemispherical photos to derive a Beer-Lambert 

extinction coefficient (k = .53) to account for diminishing lidar returns as they penetrate further 

into the canopy. Using the same calibrated LAD rasters for each 1m slice of the canopy and LAI 

for the study area, we masked all pixels from the structural attribute rasters that were found to be 

outliers in the distributions of LAI and canopy height values outside the published ranges for this 

ecoregion (Albaugh et al. 2020). This caused 5,837 pixels (~27%) to be removed that either had 

an LAI > 6 or canopy height > 40, which exceed the respective ranges published from past 

studies at this site (Wilbur et al. 2021; Prior et al. 2022). 
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Figure 4. Map of leaf area index (LAI; mLeaf
2/mGround

2). 

Figure 5. Maps of top-of-canopy N (%; Wang et al. 2020) and total canopy N (g/mG
2) 

for MLBS. 
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Using this LAI raster and TOC LMA, we also calculated foliar biomass (g/mG
2; Figure 

6). Foliar biomass was calculated in this way to keep consistency with how we calculated total 

canopy N as only TOC LMA was a strong predictor of in situ samples regardless of location in 

the canopy. We then removed extreme outliers from our foliar biomass estimate using Tukey’s 

test (k =3), which resulted in 898 cells (~0.6%) being removed from the final raster. 

 

 

 

Figure 6. Map of foliar biomass (g/mG
2). 
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We assessed the relationship between top-of-canopy percent N and total canopy N after 

normalizing both distributions (mean = 0, SD = 1) and found a weak but significant relationship 

between the two metrics (R2 = 0.01, P < 0.05). To further understand the comparative spatial 

patterns between top-of-canopy percent and total N at MLBS, we calculated variograms for each 

dataset (Fig 7.). For the top-of-canopy percent N map, we found that this metric is slightly more  

autocorrelated (Moran’s I = .68) than the map of total canopy N (Moran’s I = .55). Both metrics 

had similar autocorrelation among residuals, with Moran’s I of the top-of-canopy percent N 

residuals equal to 0.014 with a standard deviation of 0.001, and total-canopy N with a Moran’s I 

of 0.015 and standard deviation of < 0.001. These values indicate minor autocorrelation in top-

of-canopy and total-canopy functional traits that our models may not capture with the current 

suite of predictor variables, though this study was focused on the comparative influence of 

abiotic and biotic variables of these two metrics rather than using this regression in a predictive 

manner.  A closer assessment of the variogram components for TOC (%) and total N reveals that 

TOC percent N samples were spatially autocorrelated up to about 97 meters, whereas total N is 

spatially autocorrelated at nearly over twice this distance (Fig. 7.; range = 196 meters). Unlike 

the distinct difference in range of spatial autocorrelation among the two metrics, partial sill 

(Psill) and nugget values for top-of-canopy percent N (Psill = .34, nugget = .64) are comparable 

with total canopy N (Psill = .25, nugget = .70) indicating similar clustering of values between the 

two datasets.  
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Environmental driver analysis 

High and low elevation regions of the study area exhibited distinct patterns between top-of-

canopy percent and total canopy N (Fig. 5), as oak-hickory upland stands give way to hemlocks 

and eastern white pine in more nutrient rich lowlands. As such, plant functional type (PFT) and 

elevation seemed to influence the contrasting spatial patterns between leaf-level and whole-

canopy traits. Elevation was loosely related to both top-of-canopy (TOC) percent N (R2  = 0.04, 

P < 0.01) and total canopy N (R2 = 0.06, P < 0.01). Understandably, the relationships between 

PFT and metrics of canopy N were also minor, as functional types and elevation both follow 

trends from deciduous to more evergreen stands along an elevational gradient in this system 

(aside from a planted pine stand directly east of the station itself). PFT was related to TOC 

percent N (R2 = 0.06, P < 0.05), but showed a weaker relationship to total canopy N (R = 0.004, 

Figure 7. Variograms for normalized datasets (mean = 0, SD = 1, 10,000 samples each) of top-

of-canopy percent N and total canopy N (g/mG
2). Psill = partial sill. 
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P < 0.05). Additionally, the difference in NDVI between 2016 and 2018 in upland areas with 

deciduous canopies showed a clear visual decline likely due to the fall cankerworm outbreak 

(NEON 2021b; Choi et al. 2023), which may have influenced these relationships.  

To investigate these relationships more thoroughly, we assessed the relative influences of 

topography, disturbance, and functional type on top-of-canopy percent and total canopy N 

(predictors listed in Table 1). Models for TOC percent N had a mean R2 = 0.10 and standard 

deviation < 0.05, with seven variables appearing in more than 20% of models (Table 1.), three 

variables appearing in no models, and four variables appearing in all models. Elevation (DTM) 

was the only major predictor (coefficient = .11) of top-of-canopy N with a positive coefficient. 

No other predictors had strong positive or negative influence from the compiled results 

(coefficient > 0.1 or < -0.1). The models for total canopy N performed negligibly better, with an 

R2 = .11 and standard deviation also less than 0.05. For total canopy N (g/mG
2), eight variables 

appeared in more than 20% of models, two variables appeared in no models, and three variables 

appeared in all models (Table 1.). Easting (distance east from collection boundary) was a strong 

negative topographic predictor (coefficient = -0.99) of total canopy N, along with topographic 

position index (-0.32), topographic wetness index (-0.33), plant functional type (-0.31) and solar 

radiation at the summer solstice (-0.24), whereas flow accumulation, slope, and aspect were 

major positive predictors (coefficient > 0.1). The difference in NDVI from 2018 to 2016 was the 

stronger positive predictor of total canopy N (coefficient = 1.0). 
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Figure 8. Monte Carlo simulation coefficients from standardized predictor variables (mean = 0, 

sd = 0.5) that appeared in at minimum 20% of models and are statistically significant (P < 0.05) 

for top-of-canopy percent N or total N (g/mG
2). 
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Figure 9. Maps of total canopy N (g/mG
2) and within-canopy nitrogen (g/mG

3) profiles 

 for two dominant canopy species at Mountain Lake Biological Station: (a) white oak total  

foliar N: 9.49 g/mG
2) and (b) Eastern hemlock (total foliar N: 10.01 g/mG

2). 
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Table 1. Mean standardized coefficients (mean = 0; SD = 0.5), standard deviation of 

coefficients, and percentage of models’ predictors were present in Monte Carlo simulations 

 

        Top-of-Canopy  Total Canopy 

 

Variables 
Mean 

coefficient 

Standard  

deviation 

Models 

present 

(%) 

 
Mean 

coefficient 

Standard 

deviation 

Models 

present 

(%) 

Aspect 
0.0459 0.006 100 

 
0.0629 0.110 4.3 

DTM (Elevation) 
0.1174 0.014 100 

 
N/A N/A 0 

Easting 
-0.0334 0.006 99.7 

 
-0.9987 0.056 100 

Northing N/A N/A 0  -0.1519 0.032 46.6 

Flow accumulation -0.1391 0.007 14.3  0.1734 0.041 65.3 

Slope 
0.0839 0.006 58.6 

 
0.2658 N/A 0 

Topographic 

Position Index (TPI) 
0.0549 0.006 100 

 
-0.3205 0.063 99.8 

Topographic 

Wetness Index 

(TWI) 

-0.0133 0.013 35.1 

 

-0.3354 0.069 100 

Topographic 

Roughness index 

(TRI) 

-0.0074 0.014 4.5 

 

0.1361 0.024 7.5 

Solar radiation at 

summer solstice 
N/A N/A 0 

 
-0.2424 0.058 94.7 

Solar radiation at 

winter solstice 
-0.0377 0.005 41.4 

 
N/A N/A 0 

Difference in NDVI 

(2018-2016) 
N/A N/A 0 

 
1.001 0.073 100 

Plant functional type -0.2184 0.017 100  -0.318 0.102 38.3 
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Discussion 

We leveraged a combination of field, hyperspectral, and discrete return lidar data to understand 

how a fusion of these tools can be applied to understanding whole-canopy function in a 

temperate, high-elevation Central Appalachian forest. Compared to foundational work fusing 

hyperspectral and lidar data to model and compare whole canopy traits in Southern Appalachia 

(Kamoske et al. 2021), we found that lidar-derived structural attributes such as canopy rugosity 

and leaf area density we not reliable predictors of within-canopy functional traits (i.e., LMA) as 

our field samples only correlated well with top-of-canopy estimates out of all predictor variables. 

Thus, we adapted our methodology accordingly to address our first research question of how an 

integration of data sources can be used to model whole-canopy functional traits in this system by 

simplifying our equation for total canopy N (g/m2), in contrast to previous work in taller, more 

vertically complex canopies (Kamoske et al. 2021). In addressing our second research question 

of how top-of-canopy and whole-forest functional traits compare to each other spatially, our 

results suggest maps of top-of-canopy percent and total canopy N (g/m2) are divergent in spatial 

patterns at this site but similarly spatially autocorrelated, with areas of low top-of-canopy 

nitrogen coinciding directly with high total canopy nitrogen between the two maps (Fig. 5).

 Similarly, top-of-canopy percent and total canopy N had distinct environmental drivers, 

though comparatively similar strengths for the overall regression models in predicting the two 

metrics. Because of the divergence of top-of-canopy and total canopy N between broadleaf and 

needleleaf evergreen stands at this site, plant functional type was presumably driving top-of-

canopy and whole-canopy functional traits but had a minor influence on either metric from our 

compiled Monte Carlo simulation results. Therefore, it was clear from our environmental driver 
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analysis that due to the strong relationship between NDVI difference pre- and post-cankerworm 

outbreak with total canopy N, disturbance was driving the trends in whole-canopy function.   

The 2018 cankerworm outbreak likely caused underestimation in total canopy N (g/mG
2) 

values in broadleaf stands where defoliation was mild to severe (Choi et al. 2023) due to an 

underestimate of LAI. Because the NDVI difference between pre-defoliation and post-defoliation 

was a strong predictor of whole-canopy nitrogen but did not appear in any models of top-of-

canopy N, it appears that this underestimation of LAI may have reduced total canopy N 

predictions particularly in broadleaf stands where defoliation was most severe. As disturbances 

(e.g., severe wind events, insect outbreaks, among others) that may confound estimations of 

whole-canopy traits become more common along with warming temperatures and shifts in 

community diversity and function across latitudes (Wilfarht et al. 2014), periodic modeling of 

whole-canopy traits will be essential for efficient forest management practices due to the 

divergence from spatial trends in top-of-canopy estimates of foliar N found in this and previous 

studies (Kamoske et al. 2021). While regular modeling of whole-canopy traits using this 

methodology may be inefficient in terms of time and resources, our results here demonstrate that 

modeling 3-D functional traits for a single year, or over two years with the integration of lidar 

and hyperspectral data from consecutive leaf-on NEON AOP flights, may not fully capture 

whole-canopy traits when climatic and biotic disturbances have occurred.   

At the leaf scale, needleleaf evergreen leaves are associated with low N concentrations 

and low productivity, while broadleaf deciduous leaves are associated with higher N 

concentrations and higher productivity (Diaz et al. 2016). Similarly, at continental scales we tend 

to associate broadleaf deciduous and mixed forests with higher productivity, relative to dryland 

and high latitude needleleaf evergreen forests (Zhang et al. 2016). Kamoske et al. 2021 show that 
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in a single landscape, stands that contain or are dominated by needleleaf evergreen trees tend to 

have higher LAI, higher leaf biomass, and higher total canopy N concentration (Fig. 9), 

suggesting they may be functionally similar compared to broadleaf deciduous dominated stands. 

Whether this observation translates to differences in productivity is difficult to measure, as eddy 

covariance tower locations rarely vary only in PFT distribution and no other confounding factors. 

While the results presented here may reflect these trends found in Southern Appalachia (i.e., 

Kamoske et al. 2021), the defoliation event coinciding with lidar data collection heavily 

impacted estimates of canopy structural traits (e.g., LAI) in broadleaf stands, which prevents a 

complete comparison between these two sites and clouds any concrete conclusions about how 

whole-canopy function across forests at MLBS is influenced by abiotic or biotic (i.e., plant 

functional type) conditions.   

Decreasing plant biodiversity due to shifts in climatic regimes (Wilfahrt et al. 2014), 

species invasions (Simberloff & von Holle 1999; Mollot et al. 2017), and disturbance (Dale et al. 

2001; Tremblay et al. 2004) has been shown to negatively affect forest functional and structural 

diversity within the canopy, characteristics which are known to positively impact net primary 

production and carbon assimilation (Hardiman et al. 2011; Hardiman et al. 2013). The disconnect 

between current understanding of productivity between PFTs (i.e., evergreen vs deciduous) at 

varying scales shown by Kamoske et al. (2021) and reflected here despite the clear impact of 

using non-contemporaneous data affected by disturbance, demonstrates that more work is needed 

within the range of temperate forest ecosystems to fully disentangle how leaf-level and canopy-

scale functional traits influence overall productivity more broadly.  

In this study, we show that while disturbance in distinct communities (i.e., broadleaf 

deciduous stands) can perturb accurate estimations of total-canopy function in a single year, 
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divergent patterns exist between canonical estimates of canopy function (i.e., TOC percent N) 

and total-canopy function when structure is incorporated in undisturbed canopies. Thus, it is 

important to understand how forests are changing not only out of concern for biodiversity, but 

how broad scale whole-forest function may be altered in the future due to disturbance along with 

structural, land use, and species composition changes in these ecosystems with cascading effects 

on carbon storage (LaRue et al. 2016; Lawrence et al. 2019).  
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APPENDIX A 

 

 

 

 

 

 

 

Figure A.1. Scatterplot of Lidar-derived LAI and hemispherical photography derived LAI 

pre calibration with Beer-Lambert extinction coefficient (k = NULL). 
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Figure A.2. Scatterplot of Lidar-derived LAI and hemispherical photography derived LAI 

post calibration with Beer-Lambert extinction coefficient (k = .53). 
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Table A.1. lidar derived metrics 

Metric Source 

Empty voxel ratio  NEON AOP lidar; R programming 

language 

Filled voxel ratio NEON AOP lidar; R programming 

language 

Canopy rugosity  NEON AOP lidar; R programming 

language 

Top-of-canopy rugosity NEON AOP lidar; R programming 

language 

Euphotic zone volume NEON AOP lidar; R programming 

language 

Euphotic zone total leaf area NEON AOP lidar; R programming 

language 

Oligophotic zone volume NEON AOP lidar; R programming 

language 

Oligophotic zone total leaf area NEON AOP lidar; R programming 

language 

Canopy oligophotic zone total leaf area (3x3 window) NEON AOP lidar; R programming 

language 

Canopy oligophotic zone volume 

(3x3 window) 

NEON AOP lidar; R programming 

language 

Canopy empty volume (3x3 window) NEON AOP lidar; R programming 

language 

Euphotic depth NEON AOP lidar; R programming 

language 

Canopy Euphotic zone volume NEON AOP lidar; R programming 

language 

Canopy Euphotic zone total leaf area NEON AOP lidar; R programming 

language 

Max lad height NEON AOP lidar; R programming 

language 

Porosity ratio  NEON AOP lidar; R programming 

language 

LAD height quantiles (x4) NEON AOP lidar; R programming 

language 

Canopy height model NEON AOP lidar; R programming 

language 

Leaf area index (LAI) NEON AOP lidar; R programming 

language 

LAD column standard deviation  NEON AOP lidar; R programming 

language 
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Table A.1. (cont’d) 

 

Table A.2. Environmental drivers 

 

 

 

Digital terrain model (DTM) NEON AOP lidar; R programming 

language 

Digital surface model (DSM) NEON AOP lidar; R programming 

language 

Metric Source 

Aspect NEON AOP lidar; R programming 

language 

DTM (Elevation) NEON AOP lidar; R programming 

language 

Easting NEON AOP lidar; R programming 

language 

Northing NEON AOP lidar; R programming 

language 

Flow accumulation NEON AOP lidar; R programming 

language 

Slope NEON AOP lidar; R programming 

language 

Topographic Position Index (TPI) NEON AOP lidar; R programming 

language 

Topographic Wetness Index (TWI) NEON AOP lidar; R programming 

language 

Topographic Roughness index (TRI) NEON AOP lidar; R programming 

language 

Solar radiation at summer solstice NEON AOP lidar; R programming 

language 

Solar radiation at winter solstice NEON AOP lidar; R programming 

language 

Difference in NDVI (2018-2016) PlanetScope Surface Reflectance V2; R 

programming language 

Plant functional type PlanetScope Surface Reflectance V2; R 

programming language 


