PERIOD-INDEX PROBLEMS AND WILD RAMIFICATION By Yizhen Zhao A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mathematicsโ€”Doctor of Philosophy 2024 ABSTRACT This thesis consists of two main parts. The first part addresses period-index problems and symbol length problems of the ๐‘โˆž-torsion part of Brauer groups of henselian discretely valued fields with residue fields of characteristic ๐‘ > 0. In Chapter 1, we provide an overview of the background, progress, and motivation behind period-index problems of Brauer groups and, more generally, Katoโ€™s groups. Chapter 2 recalls some properties of Brauer groups, especially the ๐‘-torsion part. In Chapter 3, we survey Katoโ€™s unit group filtration and Katoโ€™s Swan conductors, which are the main tools in this research area. We investigate the symbol length problems of certain groups related to absolute logarithmic differential forms over fields of characteristic ๐‘ > 0. This symbol length problem plays an important role in the period-index problems of Katoโ€™s groups. Chapter 4 presents a systematic investigation of period-index problems of the ๐‘-torsion part of Brauer groups of henselian discretely valued fields with residue fields of characteristic ๐‘ > 0. We provide positive support for Chipchakovโ€™s conjecture on this topic. Assuming a conjecture on the symbol length, we offer a complete proof of Chipchakovโ€™s conjecture on the Brauer ๐‘-dimension of henselian discretely valued fields. We also generalize this idea to investigate the symbol length problem of higher Katoโ€™s groups, yielding results on the splitting dimension problems. In Chapter 5, we use Katoโ€™s Swan conductor to investigate the period-index problem of the ๐‘-torsion part of Brauer groups of semiglobal fields. Semiglobal fields are intermediate entities between local fields and global fields. Using patching methods, we reduce the period-index problems to two types: period-index problems of henselian discretely valued fields and quotient fields of a complete local ring of Krull dimension 2. To study the second type, we employ a Gersten-type exact sequence of logarithmic de Rham cohomology with support, analogous to the Artin-Mumford ramification sequence. Both sequences are derived from the Bloch-Ogus spectral sequence. We compute the logarithmic de Rham cohomology with support and their connecting morphisms in this context. Using these computations, we obtain partial results on the period-index problem of semiglobal fields in characteristic ๐‘ > 0. Copyright by YIZHEN ZHAO 2024 ACKNOWLEDGEMENTS I would like to express my gratitude to everyone who has supported me over the past six years. It has been a wonderful journey studying at Michigan State University. First, I want to thank my advisor, Rajesh Kulkarni. Thank you for suggesting this interesting problem and motivating me in the area of algebraic geometry. I will always remember how you visualize algebraic problems as geometric pictures, guiding me throughout my studies. Thank you for supporting me during difficult times and encouraging me to overcome challenges. Your guidance was invaluable when I felt uncertain about my direction. I am deeply grateful to Professor Michael Shapiro for teaching and encouraging me during the exchange semester in Spring 2017. With your help, I took my first steps into research. Thank you also for introducing me to my current advisor. I would like to thank Professors Aaron Levin, Igor Rapinchuk, and Joe Waldron for being on my committee and providing guidance throughout my studies. I am thankful to my undergraduate thesis advisor, Guanghao Hong. I am deeply saddened that he passed away during the COVID-19 pandemic. Thank you for teaching me and helping me discover my passion for mathematics. I also want to thank all my friends who accompanied me on this journey. Special thanks to Chuangtian Guan, Keping Huang, Zhixin Wang, Zheng Xiao, Chen Zhang, and Zhihao Zhao for countless conversations about math and life. I want to thank my research group: Mike Annunziata, Nick Rekuski, Yu Shen, Charlotte Ure, and Shitan Xu for inspiring me and listening to my practice talks. I also want to thank my friends: Zichun Cao, Xudong Tangtian, Junnuo Yu, Kang Yu, and Rui Zhang for all the great times we had. Additionally, I am grateful to Qihao Pan and Qinhan Zhou for the vacations and conversations we shared, which brought me relief and joy. Lastly, my deepest thanks go to my parents and elder sister for their unwavering encouragement and support. Special thanks to my love, Yunlu Zhang. Thank you for always being by my side. During moments of hesitation, you have always provided direction and strength. iv TABLE OF CONTENTS CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Case: henselian discretely valued fields 1.3 Case: semi-global fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Period-index problems of higher Katoโ€™s groups . . . . 1 1 5 7 8 CHAPTER 2 REVIEW OF BRAUER GROUPS . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Basic properties of Brauer groups 2.2 Structure of ๐‘-primary part of Brauer groups . . . . . . . . . . . . . . . . . . 12 2.3 Brauer group of a complete discretely valued field . . . . . . . . . . . . . . . . 16 CHAPTER 3 . . . . KATOโ€™S GROUP AND SWAN CONDUCTOR . . . . . . . . . . . . . . 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Katoโ€™s group . 3.2 Katoโ€™s Swan conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Equal characteristic case: char(๐พ) = ๐‘ > 0 . . . . . . . . . . . . . . . . . . . 22 3.4 Mixed characteristic case: char(๐พ) = 0 . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Symbol length problem of groups ๐พ ๐‘€ ๐น . . . . . . . . . . . . 28 2 (๐น)/๐‘ and ฮฉ1 ๐น/๐‘ 1 CHAPTER 4 PERIOD-INDEX PROBLEMS OF HENSELIAN DISCRETELY VAL- UED FIELDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 Reduction to the ๐‘-torsion part of Brauer group . . . . . . . . . . . . . . . . . 32 4.2 Katoโ€™s results in the ๐‘-rank 1 case . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Equal characteristic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4 Mixed characteristic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . 46 4.5 Symbol length problems of higher Katoโ€™s groups CHAPTER 5 LOGARITHMIC DE RHAM COHOMOLOGY WITH SUPPORT . . . . 50 5.1 Bloch-Ogus spectral sequence in positive characteristic . . . . . . . . . . . . . 51 5.2 Logarithmic de Rham cohomology of affine schemes with support . . . . . . . 53 5.3 Period-index problems of semi-global fields in positive characteristic . . . . . . 57 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 APPENDIX A SYMBOL LENGTH AND FOLIATION THEORY . . . . . . . . . . . 68 APPENDIX B RAMIFICATION OF CENTRAL DIVISION ALGEBRAS (๐‘-RANK 1 CASE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 . . v CHAPTER 1 INTRODUCTION 1.1 Motivation Let ๐‘˜ be a field. For any ๐‘˜-central simple algebra ๐ด, we denote by per( ๐ด) the order of its class in the Brauer group Br(๐‘˜) (called the period) and by ind( ๐ด) its index which is the gcd of all the degrees of finite splitting fields. It is well-known that per( ๐ด) | ind( ๐ด), and these two integers have the same prime factors. Hence the period is bounded by the index and the index is bounded above by a power of the period. We use notion of the Brauer dimension to make this relationship precise. For a prime ๐‘, define the Brauer dimension at ๐‘ as follows Br.dim๐‘ (๐‘˜) := min ๐‘‘ ๏ฃฑ๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด ๏ฃณ ind( ๐ด) | per( ๐ด)๐‘‘ for any ๐ด โˆˆ Br(๐‘˜) [ ๐‘๐‘›] and ๐‘› โˆˆ N; โˆž otherwise. Then define the Brauer dimension of ๐‘˜ to be Br.dim(๐‘˜) = sup ๐‘ (cid:8)Br.dim๐‘ (๐‘˜)(cid:9) . In general, the Brauer dimension of a field can be finite or infinite. The period-index problem of a field is to investigate the Brauer dimension of the field. An important class of fields for the period-index problem is that of ๐ถ๐‘š fields. For any positive in- teger ๐‘š, we say a field ๐‘˜ satisfies condition ๐ถ๐‘š if every homogeneous polynomial ๐‘“ โˆˆ ๐‘˜ [๐‘ฅ1, ยท ยท ยท , ๐‘ฅ๐‘›] of degree ๐‘‘ with ๐‘‘๐‘š < ๐‘› has a nontrivial zero in ๐‘˜ ๐‘› [27]. Here are some properties of ๐ถ๐‘š fields: 1. If a field is ๐ถ๐‘š, then any finite extension is also ๐ถ๐‘š. 2. If a field is ๐ถ๐‘š, then any extension of transcendence degree ๐‘› is ๐ถ๐‘š+๐‘›. 3. If a field ๐‘˜ is ๐ถ๐‘š, then ๐‘˜ ((๐‘ก)) the field of Laurent series is ๐ถ๐‘š+1. 4. The Brauer group of a ๐ถ1 field is 0. [37] The examples of ๐ถ๐‘š fields include: ๐‘ช0 fields These are precisely the algebraically closed fields. 1 ๐‘ช1 fields (quasi-algebraically closed fields) โ€ข Finite fields โ€ข The maximal unramified extension of a complete discretely valued field with a perfect residue field โ€ข Complete discretely valued fields with algebraically closed residue fields. ๐‘ช๐’Ž fields If ๐‘‰ is a variety of dimension ๐‘š over an algebraically closed field ๐‘˜, then the function field ๐‘˜ (๐‘‰) is ๐ถ๐‘š. Michael Artin [3] conjectured that Br.dim(๐‘˜) โ‰ค 1 for a ๐ถ2 field ๐‘˜. This conjecture has been proved in many cases by several authors. This conjecture has a natural extension to all ๐ถ๐‘š fields. Conjecture 1.1.1 Let ๐‘˜ be a ๐ถ๐‘š field. Then Br.dim(๐‘˜) โ‰ค ๐‘š โˆ’ 1. Itโ€™s important to note that the ๐‘-adic fields are not ๐ถ2. Guy Terjanian [42] identified the ๐‘-adic examples for all ๐‘ that are not ๐ถ2. However, the Brauer dimension of ๐‘-adic fields (local fields) remains 1. Many recent studies on the period-index problem have been inspired by this conjecture. The advances in tackling the period-index problems were reviewed [31] by the author. We briefly mention some of these here. (i) For ๐น a local or global field, Br.dim(๐น) = 1 (Albert-Brauer-Hasse-Noether [17]). (ii) For a ๐ถ2 field ๐น, Br.dim2(๐น) = Br.dim3(๐น) โ‰ค 1 (Artin [3]). (iii) For a finitely generated field ๐น of transcendence degree 2 over an algebraically closed field, Br.dim(๐น) = 1 (de Jong [16], de Jong-Starr [40], and Lieblich [28]). (iv) For a finitely generated field ๐น of transcendence degree 1 over an ๐‘™-adic field, Br.dim๐‘ (๐น) = 2 for every prime ๐‘ โ‰  ๐‘™ (Saltman [36]). (v) If ๐น is a henselian discretely valued field with residue field ๐‘˜ such that Br.dim๐‘ (๐‘™) โ‰ค ๐‘‘ for all finite extension ๐‘™/๐‘˜ and all primes ๐‘ โ‰  char(๐‘˜), then Br.dim๐‘ (๐น) โ‰ค ๐‘‘ + 1 for all primes ๐‘ โ‰  char(๐‘˜). (Harbater, Hartmann and Krashen [19]). By looking at these recent works, we notice that the Brauer ๐‘-dimension of a field ๐น is understood 2 systematically when ๐‘ is not equal to the residual characteristic of ๐น. The main difficulty in the case that ๐‘ coincides with the residual characteristic of ๐น is caused by the wild ramification behavior as we explain now. Let ๐พ be a henselian discretely valued field with the residue field ๐น such that char(๐น) = ๐‘ > 0. Recall that every central simple algebra ๐ด over ๐พ is split by a finite separable extension of ๐พ with degree ind( ๐ด). We can understand the ramification behavior of a Brauer class through the ramification behavior of its separable splitting fields. A finite field extension ๐ฟ of ๐พ is called tame [43], if the residue field extension is separable and the ramification degree is invertible in the residue field ๐น. Let ๐‘™ be a prime different from ๐‘ and ๐œ” โˆˆ Br(๐พ) [๐‘™]. Then ๐œ” is split by a separable extension ๐ฟ of ๐พ with degree ๐‘™๐‘š for some ๐‘š โˆˆ N. Since ๐‘ โˆค ๐‘™๐‘š, the ramification index and the residual degree of ๐ฟ/๐พ are both prime to ๐‘. Hence, the splitting field ๐ฟ of ๐œ” is tame. When we work for the Brauer dimension away from ๐‘, we only need to deal with the tame extensions. When a Brauer class is split by a tame extension, we call it tamely ramified. However, when we work with ๐‘-primary torsion Brauer classes over ๐พ, there are Brauer classes not split by any tame extensions. Example 1.1.2 Let ๐พ = F๐‘ ((๐‘ ))((๐‘ก)) be the field of iterated Laurent series over F๐‘ in variables (๐‘ , ๐‘ก) with the complete discrete valuation given by the uniformizer ๐‘ก. The residue field of ๐พ is ๐น = F๐‘ ((๐‘ )). ๐‘  ๐‘ก ๐‘ Consider the ๐พ-central division algebra [ , ๐‘ก) := {โŸจ๐‘ , ๐‘กโŸฉ | ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ = , ๐‘ฆ ๐‘ = ๐‘ก, ๐‘ฆโˆ’1๐‘ฅ๐‘ฆ = ๐‘ฅ + 1}. ๐‘  ๐‘ก ๐‘ It has the maximal order ๐ต = O๐พ โŸจ1, ๐‘ก๐‘ฅ, ๐‘ฆ, ๐‘ก๐‘ฅ๐‘ฆโŸฉ. The residue division ring of ๐ต is, in fact, a purely inseparable extension of ๐น given by ๐น [ ยฏ๐‘ก๐‘ฅ]. We can show there is no tame extension of ๐พ which splits [ ๐‘  ๐‘ก ๐‘ , ๐‘ก). We will call these Brauer classes wildly ramified. Moreover, the wildly ramified Brauer classes are general members in the ๐‘-torsion part of Brauer groups, since the tamely ramified Brauer classes only form a subgroup of the ๐‘-torsion part of the Brauer group of ๐น. To investigate the Brauer ๐‘-dimension of a field ๐พ of residual characteristic ๐‘ > 0, we need 3 to interpret the ๐‘-torsion part of the Brauer group of ๐พ. There are two cases: equal characteristic case and mixed characteristic case. First, suppose that ๐พ is a field of characteristic ๐‘ > 0. Then the ๐‘-torsion part of Br(๐พ) is related to the logarithmic differential form ฮฉ1 ๐พ,log. In fact, we have the following Br(๐พ) [ ๐‘] (cid:27) ๐ป1 รฉt(๐พ, ฮฉ1 ๐พ,log) (cid:27) ฮฉ1 ๐พ/ (cid:16) P (ฮฉ1 ๐พ) + ๐‘‘ (๐พ) (cid:17) , where P : ฮฉ1 ๐พ โ†’ ฮฉ1 ๐พ/๐‘‘ (๐พ), ๐‘Ždlog(๐‘) โ†ฆโ†’ (๐‘Ž ๐‘ โˆ’ ๐‘Ž)dlog(๐‘), and ๐‘‘ : ๐พ โ†’ ฮฉ1 ๐พ is the universal derivation. Second, if ๐พ is a henselian discretely valued field of characteristic 0 containing a primitive ๐‘-th root of the unity, with the residue field ๐น of characteristic ๐‘ > 0, by the Bloch-Kato theorem [7], we have the following Br(๐พ) [ ๐‘] = ๐ป2 รฉt(๐พ, ๐œ‡๐‘) (cid:27) ๐ป2 รฉt(๐พ, ๐œ‡โŠ—2 ๐‘ ) (cid:27) ๐พ ๐‘€ 2 (๐พ)/๐‘, where ๐œ‡ ๐‘ is the group of ๐‘-th roots of the unity. This also holds for any field ๐พ of characteristic 0 containing the primitive ๐‘-th root of the unity, which is implied by the norm residue theorem proved by Voevodsky [45]. Now, in both cases, we can write a ๐‘-torsion Brauer classes as a sum of symbols. In the equal characteristic case, symbols are differential forms. In the mixed characteristic case, symbols are elements in the second Milnor ๐พ-group. Therefore, it leads to understand symbol algebras and associated symbol length problems. We will talk about them in Chapter 3. To analyse the wild ramified Brauer classes over a henselian discretely valued field ๐พ, Kato defined an increasing filtration {๐‘€๐‘–}๐‘–โˆˆN on Br(๐พ) [ ๐‘]. Let ๐›ผ โˆˆ Br(๐พ) [ ๐‘]. Then we can define Katoโ€™s Swan conductor sw(๐›ผ) of ๐›ผ to be the minimal integer ๐‘› such that ๐›ผ โˆˆ ๐‘€๐‘›. Kato also described the consecutive quotients of this filtration. It is the fundamental tool to analyse the ๐‘-torsion part of Brauer groups of henselian discretely valued fields. We will also review them in Chapter 3. 4 1.2 Case: henselian discretely valued fields Let us focus on henselian discretely valued fields first. Let ๐พ be a henselian discretely valued field with the residue field ๐น of characteristic ๐‘ > 0 and ๐‘ž be a prime number. If ๐‘ž โ‰  ๐‘, it is proved that Br.dim๐‘ž (๐พ) โ‰ค ๐‘‘ + 1 if Br.dim๐‘ž (๐น) โ‰ค ๐‘‘ for all finite extension ๐ธ/๐น, by Harbater, Hartmann and Krashen [19]. We hope that similar results also hold when ๐‘ž = ๐‘. However, for any ๐‘› โ‰ฅ 0, there are examples of complete discretely valued field ๐พ with Br.dim๐‘ (๐พ) โ‰ฅ ๐‘› and Br.dim๐‘ (๐น) = 0 by Parimala and Suresh [2014]. In fact, there are bounds for the Brauer ๐‘-dimension of ๐พ in terms of the ๐‘-rank of ๐น. If the ๐‘-rank of ๐น is ๐‘› < โˆž, i.e. [๐น : ๐น ๐‘] = ๐‘๐‘›, the Brauer ๐‘-dimension of ๐น is no more than ๐‘› [11, Corollary 3.4]. Moreover, Chipchakov proved that Br.dim๐‘ (๐พ) โ‰ฅ ๐‘› if [๐น : ๐น ๐‘] = ๐‘๐‘› and Br.dim๐‘ (๐พ) is infinite if and only if ๐น/๐น ๐‘ is an infinite extension [13]. Conjecture 1.2.1 (1) Let ๐พ be a henselian discretely valued field with residue field ๐น of characteristic ๐‘ > 0. Assume that [๐น : ๐น ๐‘] = ๐‘๐‘›. Then ๐‘› โ‰ค Br.dim๐‘ (๐น) โ‰ค ๐‘› + 1. When ๐‘› = 0, the residue field ๐น is perfect. Then there is no purely inseparable extension over ๐น and no wildly ramified Brauer class over ๐พ. Therefore, the first nontrivial case of the conjecture is ๐‘› = 1. Kato used the filtration and generalized Swan conductor to give the first result on the wildly ramified Brauer classes when ๐น is complete. We state this elegant result in the following. Theorem 1.2.2 (Proposition 4.2.1, [24, Section 4, Lemma 5]) Let ๐พ be a complete discretely valued field with the residue field ๐น of characteristic ๐‘ > 0. Suppose that [๐น : ๐น ๐‘] = ๐‘. Let ๐œ” โˆˆ Br(๐พ) [ ๐‘] and sw(๐œ”) > 0. Then the division algebra ๐ท which represents ๐œ” is a degree ๐‘ division algebra whose residue algebra is a purely inseparable field extension of degree ๐‘ over ๐น. When the ๐‘-rank of the residue field is 1, it says that every wildly ramified Brauer class has equal period and index. It is clear for ๐‘-torsion Brauer classes. For higher ๐‘โˆž-torsion classes, it 1[6, Conjecture 5.4] [13, Conjecture 1.1] 5 follows from the induction. Katoโ€™s proof can also be applied to the case of henselian discretely valued fields, since the results on the filtration and Katoโ€™s Swan conductor work in a similar way as ones in the complete discretely valued field case. Next, we want to investigate the period-index bound when the ๐‘-rank of the residue field is greater than 1. We are going to state our main results in this direction. The proof generalizes Katoโ€™s ideas in the ๐‘-rank 1 case. Theorem 1.2.3 Let ๐พ be a henselian discretely valued field with the residue field ๐น of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. Suppose that ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and ๐‘ โˆค sw(๐›ผ) > 0. Then ind(๐›ผ) | per(๐›ผ)๐‘›. Notice that we have a restriction on the Swan conductors of Brauer classes. To remove this restriction, however, we need estimates of the symbol length of two groups: ฮฉ1 2 (๐น)/๐‘. The first group is the quotient of the absolute differential 1-forms modulo the closed differential ๐น/๐‘ 1 ๐น and ๐พ ๐‘€ 1-forms. The second group is the second Milnor ๐พ-group of ๐น modulo by ๐‘. We propose the following conjecture on the symbol length of both groups. Conjecture 1.2.4 (Theorem 3.5.3, Conjecture 3.5.7) Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N. Assume that ๐น does not admit any finite extension of degree prime to ๐‘. Then both of the symbol length of the group ฮฉ1 ๐น/๐‘ 1 ๐น and ๐พ ๐‘€ 2 (๐น)/๐‘ are no more than ๐‘› โˆ’ 1. For this conjecture, the known case is ( ๐‘, ๐‘›) = (2, 2). While we discuss henselian discretely valued fields in both equal characteristic and mixed characteristic separately, these two groups appear differently in the two cases. In the equal characteristic case, we only need the symbol length result for the first group. However, in the mixed characteristic case, we need the symbol length results for both groups. These requirements follow from Katoโ€™s description of the consecutive quotients of the filtration of Brauer groups. 6 Proposition 1.2.5 (( ๐‘, ๐‘›) = (2, 2)) Let ๐น be a field of characteristic ๐‘ = 2 and [๐น : ๐น ๐‘] = ๐‘2. Then len(ฮฉ1 ๐น/๐‘ 1 ๐น) = len(๐พ ๐‘€ 2 (๐น)/๐‘) = 1. The conjecture regarding the symbol length problem implies the conjecture about the Brauer ๐‘-dimensions. Theorem 1.2.6 (Smaller Bounds for Wildly Ramified Brauer Classes) Let ๐พ be a henselian discretely valued field with residue field ๐น of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N. Suppose that ๐น does not admit any finite extension of degree prime to ๐‘. Let ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and sw(๐›ผ) > 0. Then Conjecture 1.2.4 implies ind(๐›ผ) | per(๐›ผ)๐‘›. To approach the symbol length of ฮฉ1 ๐น/๐‘ 1 ๐น, we will give several possible methods including the brutal force way and the Galois correspondence of purely inseparable extensions of height 1. 1.3 Case: semi-global fields Next, we consider semi-global fields. A semi-global field is one-variable function field ๐น over a complete discretely valued field ๐พ, i.e. the function field of a curve over ๐พ. Examples include ๐น = Q๐‘ (๐‘ฅ), ๐น = ๐‘˜ ((๐‘ก))(๐‘ฅ), and any finite extension of these. These fields can be thought of as intermediate objects between global fields and local fields. A natural question to ask is what their Brauer ๐‘-dimensions are. Here is a list of known results regarding this question, semi-global fields ๐น Br.dim๐‘ (๐น) F๐‘ ((๐‘ก)) (๐‘ฅ) Q๐‘ (๐‘ฅ) ยฏF๐‘ ((๐‘ก)) (๐‘ฅ) Frac(๐‘Š ( ยฏF๐‘)) (๐‘ฅ) 2 2 ? ? where Frac(๐‘Š ( ยฏF๐‘)) is the fraction field of the Witt ring of ยฏF๐‘. For the field ๐น = ยฏF๐‘ ((๐‘ก)) (๐‘ฅ), as a ๐ถ2 field, we expect that Br.dim๐‘ (๐น) = 1. Indeed, we will demonstrate that there is a subgroup of ๐‘-torsion Brauer classes over ๐น that satisfies this period-index bound. 7 Theorem 1.3.1 (Theorem 5.3.1) Let ๐‘‹ be a smooth projective curve over ๐‘˜ ((๐‘ก)) where ๐‘˜ is an algebraically closed fields of characteristic ๐‘ > 0. Suppose that there is a model X over ๐‘˜ [[๐‘ก]] with good reduction. Suppose that ๐œ” โˆˆ Br(๐‘‹) [ ๐‘] satisfies swX (๐œ”) < ๐‘. Then per(๐œ”) = ind(๐œ”). We have Br(๐‘‹) โ†ฉโ†’ Br(๐น) by the purity of Brauer groups, where ๐น is the function field of ๐‘‹. We use Katoโ€™s Swan conductor to define a X-Swan conductor for elements in Br(๐‘‹) (Definition 5.3.4). The definition is based on the model X at the beginning. We do not know if the definition depends on the choice of the model with good reduction. We use the patching methods to reduce the period-index problem of the semi-global field to two types of local period-index problems. The first type of period-index problem is addressed by considering period-index problems of complete discretely valued with residual ๐‘-rank 1. The sec- ond type of local period-index problem is analysed using a Gersten-type exact sequence (Theorem 5.1.4). We will discuss this Gersten-type exact sequence in detail in Chapter 5. 1.4 Period-index problems of higher Katoโ€™s groups Brauer groups are special cases of Katoโ€™s groups. In the 1980s, Kato used differential forms to define groups ๐ป๐‘›+1(๐น, Z/๐‘š(๐‘›)) for a field ๐น and a prime number ๐‘š, even when ๐‘š is not invertible in ๐น. These groups generalize many arithmetical cohomological groups. For example, โ€ข ๐ป1 โ€ข ๐ป2 รฉt(๐น, Z/๐‘š(0)) (cid:27) ๐ป1 รฉt(๐น, Z/๐‘š(1)) (cid:27) Br(๐น) [๐‘š]: the ๐‘š-torsion subgroup of the Brauer group of ๐น. รฉt(๐น, Z/๐‘š): the group classifying cyclic Z/๐‘š-extensions of ๐น. These higher cohomology groups have already been investigated from various perspectives. We could also discuss the period-index bounds for these groups. Definition 1.4.1 ([21]) Let ๐น be a field and ๐‘ be a prime number. A field extension ๐ธ/๐น is called a splitting field for a class ๐›ผ โˆˆ ๐ป๐‘– รฉt (๐น, (Z/๐‘)(๐‘– โˆ’ 1)), if the image of ๐›ผ๐ธ of ๐›ผ under the natural map ๐ป๐‘– รฉt (๐น, (Z/๐‘) (๐‘– โˆ’ 1)) โ†’ ๐ป๐‘– รฉt (๐ธ, (Z/๐‘)(๐‘– โˆ’ 1)) is trivial. The index of a class ๐›ผ โˆˆ ๐ป๐‘– รฉt divisor of the degrees of splitting fields of ๐›ผ that are finite over ๐น. (๐น, (Z/๐‘) (๐‘– โˆ’ 1)), denoted by ind(๐›ผ), is the greatest common 8 It is clear that the definitions of period-index for higher Katoโ€™s groups are direct generalizations of those for torsion parts of Brauer groups. Since Katoโ€™s filtration and Katoโ€™s Swan conductor can be defined for these higher cohomology groups, we also investigate the period-index bounds for these groups using a symbol length ap- proach. More concretely, we prove that any wildly ramified element in ๐ป3 รฉt (๐พ, (Z/๐‘) (2)) is split by a purely inseparable extension of degree ๐‘, when ๐พ is a henselian discretely valued field with a residue field ๐น of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘2. Theorem 1.4.2 (Theorem 4.5.1, Theorem 4.5.2) Let ๐พ be a henselian discretely valued field with the residue field ๐น of characteristic ๐‘ > 0. Suppose that [๐น : ๐น ๐‘] = ๐‘2 and ๐น does not admit any finite extension of degree prime to ๐‘. Let (๐พ, (Z/๐‘)(2)) such that sw(๐›ผ) > 0. Then Conjecture 3.5.7 implies that ๐›ผ = ๐œ” โˆง ๐›ผ โˆˆ ๐ป3 รฉt some ๐œ” โˆˆ ฮฉ1 ๐พ and ๐‘ โˆˆ ๐พ ร—. ๐‘‘๐‘ ๐‘ for 9 CHAPTER 2 REVIEW OF BRAUER GROUPS 2.1 Basic properties of Brauer groups A central simple algebra ๐ด (CSA) over a field ๐พ is a finite-dimensional associative ๐พ-algebra ๐ด that is simple with center ๐พ. Two central simple algebras ๐ด, ๐ดโ€ฒ are called Morita equivalent if there exist integers ๐‘Ÿ, ๐‘  โˆˆ N such that ๐ด โŠ— ๐‘€๐‘Ÿ (๐พ) โ‰ƒ ๐ดโ€ฒ โŠ— ๐‘€๐‘  (๐พ) as ๐พ-algebras. By the Artin-Wedderburn theorem, a finite- dimensional simple algebra ๐ด is isomorphic to the matrix algebra ๐‘€๐‘› (๐ท) for a ๐พ-central division algebra ๐ท. Moreover, such a division algebra is uniquely determined by a central simple algebra. The Brauer group of a field ๐พ is a torsion abelian group whose element are Morita equivalence classes of central simple algebras over ๐พ. The addition in the Brauer group is given by the tensor product of algebras. As mentioned above, there is a unique central division algebra in each Brauer class. The degree deg( ๐ด) of a central simple algebra ๐ด is the integer ๐‘› such that dim๐พ ( ๐ด) = ๐‘›2. Then we define the index ind( ๐ด) of a central simple algebra ๐ด to be the degree of the division algebra ๐ท associated to ๐ด by the Artin-Wedderburn theorem. In particular, note that the index is well-defined for a Brauer class. Also, for a Brauer class [ ๐ด] associated to a central simple algebra ๐ด, the period per( ๐ด) is its order in the Brauer group Br(๐พ). It is well-known that the period divides the index of a central simple algebra, and these two integers have the same prime factors. So the index divides a power of the period. The period-index problem asks if one can bound the index in terms of the power of the period. Here are the relevant definitions from the introduction. Definition 2.1.1 (Brauer dimension [31]) โ€ข Let ๐พ be a field. For a prime ๐‘, the Brauer dimension at ๐‘, Br. dim๐‘ (๐พ), is the smallest integer ๐‘‘ such that for any ๐ด โˆˆ Br(๐พ) [ ๐‘๐‘›], ind( ๐ด) | per( ๐ด)๐‘‘, and โˆž if no such number exists. 10 โ€ข The Brauer dimension of ๐พ is Br.dim(๐พ) = sup ๐‘ (cid:8)Br.dim๐‘ (๐พ)(cid:9) . The period-index problem asks if Br.dim(๐พ) is finite, and the local period-index problem asks if Br.dim๐‘ (๐พ) is finite for an arbitrary prime ๐‘. The Brauer group can also be defined in terms of Galois (รฉtale) cohomology. We have Br(๐พ) = ๐ป2 รฉt(๐พ, G๐‘š), where G๐‘š denotes the sheaf of units in the structure sheaf. In general, the Brauer group of a scheme is defined in terms of Azumaya algebras. An Azumaya algebra is a generalization of central simple algebras to ๐‘…-algebras where ๐‘… may not be a field. For a scheme ๐‘‹ with structure sheaf O๐‘‹, an Azumaya algebra on ๐‘‹ is a coherent sheaf A of O๐‘‹-algebras that is รฉtale locally isomorphic to the sheaf of matrices over the structure sheaf. The Brauer group Br(๐‘‹) is an abelian group of equivalence classes of Azumaya algebras, with the addition given by the tensor product of algebras. Here two Azumaya algebras A, Aโ€ฒ are considered to be equivalent when M๐‘Ÿ (A) (cid:27) M๐‘  (Aโ€ฒ) as sheaves of O๐‘‹-algebras for matrices of size ๐‘Ÿ ร— ๐‘Ÿ and ๐‘  ร— ๐‘  respectively. As in the case of a field, we define the cohomological Brauer group of a quasi-compact scheme ๐‘‹ to be the torsion subgroup of the รฉtale cohomology group ๐ป2 รฉt(๐‘‹, G๐‘š). The cohomology group รฉt(๐‘‹, G๐‘š) is torsion for a regular scheme ๐‘‹, but it may not be torsion in general. ๐ป2 We recall several well-known facts about Brauer groups in the following. Theorem 2.1.2 (O. Gabber) The Brauer group of a scheme ๐‘‹ is equal to the cohomological Brauer group for any scheme with an ample line bundle. For example, when ๐‘‹ is quasi-projective over a field ๐‘˜, we have the coincidence of two Brauer groups. Theorem 2.1.3 (Purity in codimension 1 [44]) 11 For a Noetherian, integral, regular scheme ๐‘‹ with function field ๐พ, รฉt(๐‘‹, G๐‘š) = ๐ป2 (cid:217) ๐‘ฅโˆˆ๐‘‹ (1) รฉt(O๐‘‹,๐‘ฅ, G๐‘š) in ๐ป2 ๐ป2 รฉt(๐พ, G๐‘š). 2.2 Structure of ๐‘-primary part of Brauer groups In this section, we assume all the fields have positive characteristic ๐‘ > 0. We focus on the ๐‘-primary part of the Brauer groups. First, we recall the ๐‘-primary counterpart of the Merkurjev- Suslin theorem [1982]. The Merkurjev-Suslin theorem states that Br(๐พ) [๐‘›] is generated by cyclic algebras of degree ๐‘› when ๐พ contains a primitive ๐‘›-th root of unity ๐œ‡๐‘›. Firstly, we recall the Artin-Schreier-Witt theory of cyclic field extensions in positive character- istic: Theorem 2.2.1 ([37]) Let ๐‘˜ be a field of characteristic ๐‘ > 0. Denote by P : ๐‘Š๐‘Ÿ (๐‘˜) โ†’ ๐‘Š๐‘Ÿ (๐‘˜) the endmorphism of the length-๐‘Ÿ Witt ring that maps (๐‘ฅ1, ยท ยท ยท , ๐‘ฅ๐‘Ÿ) โˆˆ ๐‘Š๐‘Ÿ (๐‘˜) to (๐‘ฅ ๐‘ ๐‘Ÿ ) โˆ’ (๐‘ฅ1, ยท ยท ยท , ๐‘ฅ๐‘Ÿ). Then there exists , ยท ยท ยท , ๐‘ฅ ๐‘ 1 a canonical isomorphism ๐‘Š๐‘Ÿ (๐‘˜)/P (๐‘Š๐‘Ÿ (๐‘˜)) (cid:27) ๐ป1 รฉt(๐‘˜, Z/๐‘๐‘Ÿ). Then we have the following theorem about the ๐‘๐‘Ÿ-cyclic algebras (symbol algebras). Proposition 2.2.2 Let ๐พ be a field of characteristic ๐‘ > 0. For every ๐œ” โˆˆ Br(๐พ) [ ๐‘๐‘Ÿ], we can write โˆ‘๏ธ ๐œ” = [๐‘Ž๐‘–, ๐‘๐‘–), ๐‘– as a sum of ๐‘๐‘Ÿ-symbol algebras where ๐‘Ž๐‘– โˆˆ ๐‘Š๐‘Ÿ (๐พ) and ๐‘๐‘– โˆˆ ๐พ ร—. The ๐‘๐‘Ÿ-symbol algebra [๐‘Ž๐‘–, ๐‘๐‘–) is defined by (cid:42) [๐‘Ž๐‘–, ๐‘๐‘–) := ๐‘ฅ, ๐‘ฆ (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ๐‘ฅ is a primitive element of the Artin-Schreier-Witt extension defined by P (๐‘ฅ1, . . . , ๐‘ฅ๐‘Ÿ) = ๐‘Ž๐‘– and with a generator ๐œŽ of the Galois group such that, (cid:43) . ๐‘ฆ ๐‘๐‘› = ๐‘๐‘–, ๐‘ฆโˆ’1๐‘ฅ๐‘ฆ = ๐œŽ(๐‘ฅ). The ๐‘๐‘Ÿ-symbol algebra has index = period = ๐‘๐‘Ÿ. 12 Example 2.2.3 Let ๐‘Ž, ๐‘ โˆˆ ๐พ and consider the ๐‘-symbol algebra [๐‘Ž, ๐‘). By definition, [๐‘Ž, ๐‘) := โŸจ๐‘ฅ, ๐‘ฆ | ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ = ๐‘Ž, ๐‘ฆ ๐‘ = ๐‘, ๐‘ฆโˆ’1๐‘ฅ๐‘ฆ = ๐‘ฅ + 1โŸฉ. This symbol algebra is the main object of our study, since we can reduce questions related to ๐‘๐‘Ÿ-torsion Brauer classes to the ๐‘-symbol algebra by Theorem 2.2.7. Next we relate the ๐‘-primary part of the Brauer group with the de Rham-Witt complex ๐‘Š๐‘Ÿฮฉ1 ๐พ [22]. We can identify Br(๐พ) [ ๐‘๐‘Ÿ] with the cokernel of ๐น โˆ’ ๐ผ : ๐‘Š๐‘Ÿฮฉ1 ๐พ โ†’ ๐‘Š๐‘Ÿฮฉ1 ๐พ/๐‘‘๐‘‰ ๐‘Ÿโˆ’1(๐พ), (2.2.1) where ๐น is Frobenius morphism and ๐ผ is the identity morphism. Lemma 2.2.4 ([22]) Let ๐พ be a field of characteristic ๐‘ > 0 and ๐‘Ÿ โˆˆ N+. Br(๐พ) [ ๐‘๐‘Ÿ] (cid:27) ๐‘Š๐‘Ÿฮฉ1 ๐พ/ (cid:16) (๐น โˆ’ ๐ผ)๐‘Š๐‘Ÿฮฉ1 ๐พ + ๐‘‘๐‘Š๐‘Ÿ (๐พ) (cid:17) . (2.2.2) Proof. In fact, there exists an exact sequence of รฉtale sheaves over the affine scheme ๐‘‹ = Spec(๐พ): 0 (cid:47) ๐‘Š๐‘Ÿฮฉ1 ๐‘‹,log (cid:47) ๐‘Š๐‘Ÿฮฉ1 ๐‘‹ ๐นโˆ’๐ผ (cid:47) (cid:47) ๐‘Š๐‘Ÿฮฉ1 ๐‘‹/๐‘‘๐‘‰ ๐‘Ÿโˆ’1O๐‘‹ (cid:47) 0 , which induces the cohomology group sequence ๐‘Š๐‘Ÿฮฉ1 ๐พ ๐นโˆ’๐ผ (cid:47) (cid:47) ๐‘Š๐‘Ÿฮฉ1 ๐พ/๐‘‘๐‘‰ ๐‘Ÿโˆ’1๐พ ๐›ฟ๐‘Ÿ (cid:47) ๐ป1 รฉt(๐พ, ๐‘Š๐‘Ÿฮฉ1 ๐พ,log) (cid:47) 0 , since ๐ป1 รฉt(๐พ, ๐‘Š๐‘Ÿฮฉ1 ๐พ) = 0 by the quasi-coherence of ๐‘Š๐‘Ÿฮฉ1 ๐พ. Also, there is another exact sequence of รฉtale sheaves which relates the ๐‘๐‘Ÿ-torsion part of the Brauer group with the logarithmic de Rham-Witt complex 0 (cid:47) G๐‘š ๐‘๐‘Ÿ (cid:47) G๐‘š (cid:47) ๐‘Š๐‘Ÿฮฉ1 ๐‘‹,log (cid:47) 0. 13 (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) It induces the long exact cohomology sequence 0 (cid:47) ๐ป1 รฉt(๐พ, ๐‘Š๐‘Ÿฮฉ1 ๐พ,log) (cid:47) ๐ป2 รฉt(๐พ, G๐‘š) ๐‘๐‘Ÿ (cid:47) ๐ป2 รฉt(๐พ, G๐‘š), where ๐ป1 รฉt(๐พ, G๐‘š) = 0 by Hilbertโ€™s Theorem 90. By using the relation ๐‘‘ = ๐น๐‘Ÿโˆ’1๐‘‘๐‘‰ ๐‘Ÿโˆ’1 [22, (2.18)], it is easy to see that ๐›ฟ๐‘Ÿ induces an isomorphism between the cokernel of (2.2.1) and Br(๐พ) [ ๐‘๐‘Ÿ]. โ–ก Now we use the structure of ๐‘Š๐‘Ÿฮฉ1 ๐พ to describe ๐‘๐‘Ÿ-torsion part of the Brauer group of ๐พ. We recall some facts about ๐‘Š๐‘Ÿฮฉ1 ๐พ [2]. We use the notation [๐‘Ž]๐‘Ÿ := (๐‘Ž, 0, ยท ยท ยท , 0) โˆˆ ๐‘Š๐‘Ÿ (๐พ). Definition 2.2.5 ๐‘€ 1 ๐‘Ÿ ๐พ โŠ‚ ๐‘Š๐‘Ÿฮฉ1 ๐พ denotes the subgroup generated by the elements [๐‘Ž]๐‘Ÿ ๐‘‘ [ ๐‘“ ]๐‘Ÿ where ๐‘Ž โˆˆ ๐พ, ๐‘“ โˆˆ ๐พ ร—. Lemma 2.2.6 (Lemma 2.4, [2]) Let ๐‘€ 1 ๐‘Ÿ ๐พ โŠ‚ ๐‘Š๐‘Ÿฮฉ1 ๐พ denote the subgroup generated by multiplicative elements [๐‘Ž]๐‘Ÿ ๐‘‘ [ ๐‘“ ]๐‘Ÿ. Then we have Moreover, It follows that ๐‘Š๐‘Ÿฮฉ1 ๐พ = ๐‘Ÿโˆ’1 โˆ‘๏ธ ๐‘–=0 ๐‘‰ ๐‘– ๐‘€ 1 ๐‘Ÿโˆ’๐‘–๐พ + ๐‘‘๐‘‰ ๐‘–๐พ. ๐‘Ÿโˆ’1 โˆ‘๏ธ ๐‘–=0 ๐‘‘๐‘Š๐‘Ÿ (๐พ) = ๐‘Ÿโˆ’1 โˆ‘๏ธ ๐‘–=0 ๐‘‘๐‘‰ ๐‘–๐พ โŠ‚ ๐‘Š๐‘Ÿฮฉ1 ๐พ . Br๐‘๐‘Ÿ (๐พ) (cid:27) ๐‘Š๐‘Ÿฮฉ1 ๐พ (cid:44) (cid:16) (๐น โˆ’ ๐ผ)๐‘Š๐‘Ÿฮฉ1 ๐พ + ๐‘‘๐‘Š๐‘Ÿ (๐พ) (cid:17) (cid:27) ๐‘Ÿโˆ’1 โˆ‘๏ธ ๐‘–=0 (cid:2)๐‘‰ ๐‘– ๐‘€ 1 ๐‘Ÿโˆ’๐‘–๐พ(cid:3) . (2.2.3) Then we relate the differential forms with symbol algebras by the following map ๐›ฟ๐‘Ÿ : ๐‘Š๐‘Ÿฮฉ1 ๐พ/((๐น โˆ’ ๐ผ)๐‘Š๐‘Ÿฮฉ1 ๐พ + ๐‘‘๐‘Š๐‘Ÿ (๐พ)) โˆ’โ†’ Br(๐พ) [ ๐‘๐‘Ÿ] where ๐‘Ž โˆˆ ๐‘Š๐‘Ÿ (๐พ), ๐‘ โˆˆ ๐พ ร—, and dlog([๐‘]๐‘Ÿ) = [๐‘]โˆ’1 ๐‘Ÿ ๐‘‘ [๐‘]๐‘Ÿ. ๐‘Ž dlog( [๐‘]๐‘Ÿ) โ†ฆโˆ’โ†’ [๐‘Ž, ๐‘), 14 (cid:47) (cid:47) (cid:47) We denote the composite map ๐‘Š๐‘Ÿฮฉ1 ๐พ โ†’ Br(๐พ) [ ๐‘๐‘Ÿ] โ†’ Br(๐พ) by ๐›ฟ๐‘Ÿ as well. We have a commutative diagram (cid:47) ๐‘Š๐‘Ÿฮฉ1 ๐พ ๐‘‰ ๐›ฟ๐‘Ÿ ๐‘Š๐‘Ÿโˆ’1ฮฉ1 ๐พ ๐›ฟ๐‘Ÿ โˆ’1 Br(๐พ) Using the isomorphism (2.2.3), it is easy to give a direct proof of the following theorem. Theorem 2.2.7 ([25]) For a field ๐พ of positive characteristic ๐‘ > 0 and ๐‘š โˆˆ N, we have an exact sequence: 0 (cid:47) Br(๐พ) [ ๐‘๐‘š] ๐‘‰ (cid:47) (cid:47) Br(๐พ) [ ๐‘๐‘š+1] ๐‘…1 (cid:47) Br(๐พ) [ ๐‘] (cid:47) 0, (2.2.4) where ๐‘…1 : ๐‘Š๐‘šฮฉ1 ๐พ โ†’ ฮฉ1 ๐พ sends [๐‘Ž]๐‘šdlog( [๐‘]๐‘š) to ๐‘Ž dlog(๐‘). The Brauer dimension at ๐‘ for a field of characteristic ๐‘ > 0 is effectively controlled by the rank of the ๐‘-basis. Definition 2.2.8 (๐‘-basis and ๐‘-rank) Let ๐พ be a field and [๐พ : ๐พ ๐‘] = ๐‘๐‘›, ๐‘› โ‰ฅ 0. A ๐‘-basis of ๐พ is a subset {๐‘ฅ๐‘–} โŠ‚ ๐พ such that the elements ๐‘ฅ๐ธ = (cid:206) ๐‘ฅ๐‘’๐‘– ๐‘– , 0 โ‰ค ๐‘’๐‘– < ๐‘ form a basis of ๐พ over ๐พ ๐‘, and the ๐‘-rank of ๐พ is the number of elements in the subset {๐‘ฅ๐‘–}. Hence the ๐‘-rank of ๐พ is ๐‘›. Proposition 2.2.9 ([11, Corollary 3.4]) Let ๐พ be a field with [๐พ : ๐พ ๐‘] = ๐‘๐‘›. Then Br.dim๐‘ (๐พ) โ‰ค ๐‘›. Proof. For ๐‘Ÿ โˆˆ N and a ๐‘-basis {๐‘Ž๐‘–}๐‘› ๐‘–=1 of ๐พ, by Theorem 2.2.7 and induction, every ๐‘๐‘Ÿ-torsion Brauer class can be written as a sum of ๐‘› symbol algebras [๐‘๐‘–, ๐‘Ž๐‘–), where ๐‘๐‘– โˆˆ ๐‘Š๐‘Ÿ (๐พ) for ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}. Then the proposition follows from the following lemma. โ–ก Lemma 2.2.10 ([1, Ch. VII, Lemma 13]) Let ๐พ be a field of characteristic ๐‘ > 0. If ๐ด, ๐ต are two symbol algebras of degree ๐‘๐‘š and ๐‘๐‘› respectively, then ๐ด โŠ— ๐ต is Brauer equivalent to a symbol algebra of degree no more than ๐‘๐‘š+๐‘›. 15 (cid:15) (cid:15) (cid:47) (cid:121) (cid:121) (cid:47) (cid:47) (cid:47) 2.3 Brauer group of a complete discretely valued field In this section, ๐พ denotes a complete discretely valued field with valuation ring O๐พ, residue field ๐น and maximal ideal ๐‘š๐พ = (๐œ‹). The valuation of ๐พ is denoted by ๐‘ฃ๐พ. Recall that a discrete valuation is a map ๐‘ฃ๐พ : ๐พ โ†’ Z โˆช {โˆž} that satisfies: (i) ๐‘ฃ๐พ (๐‘Ž) = โˆž if and only if ๐‘Ž = 0; (ii) ๐‘ฃ๐พ (๐‘Ž๐‘) = ๐‘ฃ๐พ (๐‘Ž) + ๐‘ฃ๐พ (๐‘); (iii) ๐‘ฃ๐พ (๐‘Ž + ๐‘) โ‰ฅ min(๐‘ฃ๐พ (๐‘Ž), ๐‘ฃ๐พ (๐‘)), with equality if ๐‘ฃ๐พ (๐‘Ž) โ‰  ๐‘ฃ๐พ (๐‘). The valuation ring O๐พ = ๐‘ฃโˆ’1 ๐พ (Zโ‰ฅ0) is a complete local ring of Krull dimension 1. For a complete discretely valued field ๐พ, we can extend the complete valuation ๐‘ฃ๐พ to central simple division algebras over ๐พ and consider the residue division algebras. They are summarized in the following proposition. Proposition 2.3.1 (Proposition 1.3.1, [5]) Let ๐ท be a central division ๐พ-algebra. (i) The function ๐‘ค : ๐ท โ†’ Z โˆช {โˆž} defined by ๐‘ค(๐‘Ž) = ๐‘ฃ๐พ (det(๐‘Ž)) is a discrete valuation on ๐ท. (ii) The set ๐ต (cid:66) {๐‘Ž โˆˆ ๐ท | ๐‘ค(๐‘Ž) โ‰ฅ 0} = {๐‘Ž | det(๐‘Ž) โˆˆ O๐พ } is the unique maximal O๐พ-order in ๐ท. (iii) ๐ต is a local domain with maximal ideal ๐ฝ (cid:66) {๐‘Ž | ๐‘ค(๐‘Ž) > 0}; the residue ring ฮ” = ๐ต/๐ฝ is a division ring. (iv) If ๐œ‹ is an element of ๐ฝ such that ๐‘ค(๐œ‹) takes the minimal positive value, then ๐ฝ = ๐ต๐œ‹ = ๐œ‹๐ต Next we study the unique maximal order ๐ต in the above proposition. Let ๐นโ€ฒ be the center of ฮ”. Then we have the integers ๐‘‘, ๐‘’, ๐‘’โ€ฒ, ๐‘“ , ๐‘› defined as follows: ๐‘‘ = ๐‘ค(๐œ‹), ๐ฝ ๐‘’ = ๐‘š๐พ ๐ต, ๐‘’โ€ฒ = [๐นโ€ฒ : ๐น], ๐‘“ 2 = [ฮ” : ๐นโ€ฒ], ๐‘›2 = [๐ท : ๐พ]. (2.3.1) Here ๐‘› is the degree (index) of ๐ท, and also its degree. Lemma 2.3.2 ([5, Lemma 1.3.7]) ๐‘’๐‘‘ = ๐‘›, and ๐‘’๐‘’โ€ฒ ๐‘“ 2 = ๐‘›2. Corollary 2.3.3 16 [๐ท : ๐พ] = 1 if and only if [ฮ” : ๐น] = 1. Proof. This is immediate from the above lemma. โ–ก In the latter part, we are interested in the case that the residue field ๐น is quasi-algebraically closed, i.e a ๐ถ1 field. Recall that a finite extension of a ๐ถ1 field is also ๐ถ1. Hence, the central division algebra ฮ” over ๐นโ€ฒ will be isomorphic to ๐นโ€ฒ, since Br(๐นโ€ฒ) = 0. This implies ๐‘“ = 1. Lemma 2.3.4 Suppose that the residue field ๐น is ๐ถ1 and [๐น : ๐น ๐‘] = ๐‘. Then ๐‘’ = ๐‘’โ€ฒ = ๐‘› and ๐‘‘ = 1. Proof. We already have ๐‘“ = 1 and so it suffices to show ๐‘’โ€ฒ โ‰ค ๐‘› by Lemma 2.3.2. We will show that any field extension ๐นโ€ฒ of ๐น is simple. In this case, ๐นโ€ฒ = ๐น [๐›ผ] and we choose ๐›ฝ โˆˆ ๐ต such that ยฏ๐›ฝ = ๐›ผ โˆˆ ๐นโ€ฒ. Then we have ๐‘’โ€ฒ โ‰ค [๐พ (๐›ฝ) : ๐พ] โ‰ค ๐‘›, since ind(๐ท) is ๐‘›. Now we prove that any finite field extension ๐นโ€ฒ of ๐น is simple. The field extension ๐น โŠ‚ ๐นโ€ฒ can be written as a chain of field extensions ๐น โŠ‚ ๐ธ โŠ‚ ๐นโ€ฒ such that ๐ธ is separable over ๐น and ๐นโ€ฒ is purely inseparable over ๐ธ. It follows that [๐ธ : ๐ธ ๐‘] = ๐‘ by Lemma 2.3.5 below. Then the purely inseparable extension ๐นโ€ฒ/๐ธ is simple. Set ๐นโ€ฒ = ๐ธ [๐›ผ1] and ๐›ผ1 is algebraic over ๐น. We can also denote ๐ธ = ๐น [๐›ผ2] by Theorem 2.3.6 below, since ๐ธ/๐น is finite and separable. Finally, we get ๐น โŠ‚ ๐นโ€ฒ = ๐น [๐›ผ1, ๐›ผ2] is simple by Theorem 2.3.6 again. โ–ก Lemma 2.3.5 ([9, A.V.135, Corollary 3]) Let ๐‘™/๐‘˜ be a finite or separable field extension of fields of characteristic ๐‘, and let ๐‘› be the ๐‘-rank of ๐‘˜. Then the ๐‘-rank of ๐‘™ is also ๐‘›. Theorem 2.3.6 ([33, Theorem 5.1]) Let ๐‘™ = ๐‘˜ [๐›ผ1, ยท ยท ยท , ๐›ผ๐‘Ÿ] be a finite extension of ๐‘˜, and assume that ๐›ผ2, ยท ยท ยท , ๐›ผ๐‘Ÿ are separable over ๐‘˜ (but not necessarily ๐›ผ1). Then there exists a ๐›พ โˆˆ ๐ธ such that ๐‘™ = ๐‘˜ [๐›พ]. 17 CHAPTER 3 KATOโ€™S GROUP AND SWAN CONDUCTOR 3.1 Katoโ€™s group In the 1980s, Kato used differential forms to define groups ๐ป๐‘– รฉt (๐‘˜, (Z)/๐‘š( ๐‘—)) for a field ๐‘˜ and any positive integer ๐‘š, especially when ๐‘š is not invertible in ๐‘˜. These groups generalize many well-known arithmetic cohomology groups. For example, we have ๐ป1 group classifying cyclic Z/๐‘š-extensions of ๐‘˜ with generators, and ๐ป2 รฉt(๐‘˜, Z/๐‘š) (cid:27) ๐ป1 รฉt(๐‘˜, Z/๐‘š), the รฉt(๐‘˜, (Z/๐‘š) (1)) (cid:27) Br(๐‘˜) [๐‘š], the ๐‘š-torsion part of the Brauer group of ๐‘˜. In fact, there is an explanation for Katoโ€™s groups: Voevodskyโ€™s รฉtale motivic cohomology groups ๐ป๐‘– รฉt (๐‘‹, ๐ด( ๐‘—)) of a scheme ๐‘‹ over a field ๐‘˜ are defined for any abelian group ๐ด. They agree with Katoโ€™s groups when ๐‘‹ = Spec(๐‘˜) and ๐ด = Z/๐‘š for any ๐‘š. It is especially of interest to investigate Katoโ€™s groups of a field ๐‘˜ when ๐‘˜ has residual charac- teristic ๐‘ > 0. Definition 3.1.1 We say a field ๐‘˜ has residual characteristic ๐‘ > 0 if it satisfies one of the following conditions: (i) ๐‘˜ is of characteristic ๐‘ > 0; (ii) ๐‘˜ is a discretely valued field with a residue field of characteristic ๐‘ > 0. We will describe our approaches to Katoโ€™s groups in both cases. 3.1.1 Case: characteristic ๐‘ > 0 Let us start with the definition of Katoโ€™s groups when ๐‘˜ is of characteristic ๐‘ > 0 and ๐‘š = ๐‘๐‘Ÿ, ๐‘Ÿ โˆˆ N. For ๐‘— โ‰ฅ 0, let ฮฉ ๐‘— ๐‘˜ := ฮฉ be the subgroup of ฮฉ More generally, let ๐‘Š๐‘Ÿฮฉ ๐‘— ๐‘˜ generated by logarithmic differential ๐‘— ๐‘˜/Z be the group of absolute Kรคhler differential forms and ฮฉ ๐‘‘๐‘“1 ๐‘“1 ๐‘— ๐‘˜,log for ๐‘“1, . . . , ๐‘“ ๐‘— โˆˆ ๐‘˜ ร—. ๐‘— ๐‘˜,log be the analogous group of logarithmic de Rham-Witt differentials [22]. ๐‘‘๐‘“ ๐‘— ๐‘“ ๐‘— โˆง ยท ยท ยท โˆง Then we have the following รฉt(๐‘˜, (Z/๐‘๐‘Ÿ) ( ๐‘—)) (cid:27) ๐ป๐‘–โˆ’ ๐‘— ๐ป๐‘– รฉt (๐‘˜, ๐‘Š๐‘Ÿฮฉ ๐‘— log ). (3.1.1) Since the รฉtale ๐‘-cohomological dimension of ๐‘˜ is at most 1 [17, Proposition 6.1.9], 18 ๐ป๐‘– รฉt (๐‘˜, (Z/๐‘๐‘Ÿ)( ๐‘—)) is zero except when ๐‘– is ๐‘— or ๐‘— + 1. When ๐‘– = ๐‘—, Bloch, Gabber and Kato [7, Corollary 2.8] showed that ๐ป ๐‘— รฉt (๐‘˜, (Z/๐‘๐‘Ÿ)( ๐‘—)) (cid:27) ๐ป0 รฉt(๐‘˜, ๐‘Š๐‘Ÿฮฉ ๐‘— log ) (cid:27) ๐‘Š๐‘Ÿฮฉ ๐‘— ๐‘˜,log (cid:27) ๐พ ๐‘€ ๐‘— (๐‘˜)/๐‘๐‘Ÿ, (3.1.2) where ๐พ ๐‘€ ๐‘— (๐‘˜) is the Milnor ๐พ-group. When ๐‘– = ๐‘— + 1, one way to describe these groups is in terms of Galois cohomology. First, we focus on the case ๐‘Ÿ = 1. Let ๐‘˜ ๐‘  be a separable closure of ๐‘˜. Then ๐ป ๐‘—+1 รฉt (๐‘˜, (Z/๐‘) ( ๐‘—)) (cid:27) ๐ป1 Gal(๐‘˜, ฮฉ ๐‘— ๐‘˜ ๐‘ ,log ). (3.1.3) To give a more precise description of the case ๐‘– = ๐‘— + 1, we recall the original definition from Kato [26]. We define a group homomorphism P : ฮฉ ๐‘— ๐‘˜ โ†’ ฮฉ ๐‘— ๐‘˜ /๐‘‘ฮฉ ๐‘—โˆ’1 ๐‘˜ by P (๐‘Ž ๐‘‘๐‘1 ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘๐‘ ๐‘— ๐‘ ๐‘— ) = (๐‘Ž ๐‘ โˆ’ ๐‘Ž) ๐‘‘๐‘1 ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘๐‘ ๐‘— ๐‘ ๐‘— . Then there is an exact sequence of groups 0 (cid:47) ๐ป0 รฉt (๐‘˜, ฮฉ1 ๐‘˜,log ) (cid:47) ฮฉ ๐‘— ๐‘˜ P (cid:47) (cid:47) ฮฉ ๐‘— ๐‘˜ /๐‘‘ฮฉ ๐‘—โˆ’1 ๐‘˜ (cid:47) ๐ป1 รฉt(๐‘˜, ฮฉ ๐‘— ๐‘˜,log ) (cid:47) 0. Therefore, ๐ป1 รฉt(๐‘˜, ฮฉ ๐‘— ๐‘˜,log ) is isomorphic to the cokernel of P. In conclusion, we have the following full description of ๐ป๐‘– รฉt (๐‘˜, (Z/๐‘) ( ๐‘—)) for a field ๐‘˜ of characteristic ๐‘ > 0: ๐ป๐‘– รฉt(๐‘˜, (Z/๐‘)( ๐‘—)) (cid:27) ฮฉ (cid:16) ฮฉ ๐‘— ๐‘˜ / P (ฮฉ ๐‘— ๐‘˜,log ๐‘— ๐‘˜ ) + ๐‘‘ฮฉ (cid:17) ๐‘—โˆ’1 ๐‘˜ 0 if ๐‘– = ๐‘— if ๐‘– = ๐‘— + 1 otherwise. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ (3.1.4) Notice that these cohomology groups appear as subgroups or quotient groups of the group of the absolute Kรคhler differential forms. Hence, we can express an element in these groups as a sum of symbols. The symbols can be regarded as either equivalent classes of differential forms or elements in the Milnor ๐พ-groups by Bloch-Kato-Gabber [7]. 3.1.2 Case: characteristic 0 Now let ๐‘˜ be a field of characteristic 0 and ๐‘ be a prime number. Moreover, assume ๐‘˜ contains a primitive ๐‘-th root ๐œ of unity. This assumption assures that we can use symbols to investigate 19 (cid:47) (cid:47) (cid:47) (cid:47) Katoโ€™s groups. Recall the norm residue isomorphism theorem (Bloch-Kato conjecture), which is proved by Voevodsky [45]. Theorem 3.1.2 (Norm residue isomorphism theorem [45]) Let ๐พ be a field and ๐‘ an integer invertible in ๐พ. Then ๐ป๐‘› (๐พ, (Z/๐‘) (๐‘›)) (cid:27) ๐พ ๐‘€ ๐‘› (๐พ)/๐‘. The norm residue isomorphism is firstly proved by Bloch and Kato [7] in the case of complete discretely valued fields. Then Murkerjev and Suslin [32] proved the case ๐‘› = 2. Finally, Voevodsky [45] used the motivic cohomology to finish the general proof. Using the primitive ๐‘-th root ๐œ of the unity , we can identify Z/๐‘ = (Z/๐‘) (1) : 1 โ†ฆโ†’ ๐œ. Therefore, for any ๐‘– โˆˆ N, we have รฉt(๐‘˜, (Z/๐‘)(๐‘– โˆ’ 1)) = ๐ป๐‘– ๐ป๐‘– รฉt(๐‘˜, (Z/๐‘) (๐‘–)) (cid:27) ๐พ ๐‘€ ๐‘– (๐‘˜)/๐‘. (3.1.5) Then we can describe the elements in Katoโ€™s groups by symbols from Milnor ๐พ-groups again. 3.2 Katoโ€™s Swan conductor Let ๐พ be a complete discretely valued field with residue field ๐น, and ๐ฟ be a finite Galois extension of ๐พ. Classically, the Swan conductor of a character of Gal(๐ฟ/๐พ) is defined in the case where the residue field of ๐ฟ is separable over ๐น. Kato [26] provided a natural definition of the Swan conductor without requiring the residue field extension to be separable. More generally, he defined Swan conductors for elements in Katoโ€™s groups. The classical Swan conductor measures the wild ramification of the extension, while Katoโ€™s Swan conductor naturally extends this to measure the wild ramification of Brauer classes and other elements in higher Katoโ€™s groups. As Katoโ€™s Swan conductors measure the wild ramification behaviors, we will concentrate on fields of residual characteristic ๐‘ > 0 and Katoโ€™s groups with coefficient in Z/๐‘. Notation 3.2.1 ([26]) Let ๐พ be a field. We define ๐ป๐‘ž ๐‘ (๐พ) (cid:66) ๐ป๐‘ž รฉt (๐พ, (Z/๐‘) (๐‘ž โˆ’ 1)). 20 When ๐พ is of characteristic ๐‘ > 0, we have (Z/๐‘) (๐‘ž โˆ’ 1) โ‰ƒ ฮฉ ๐‘žโˆ’1 log [โˆ’(๐‘ž โˆ’ 1)] in ๐ท ๐‘ (๐พรฉt). Then it follows that ๐ป๐‘ž ๐‘ (๐พ) = ๐ป1 รฉt(๐พ, ฮฉ ๐‘žโˆ’1 ๐พ,log ). (โ˜…) In the rest of this chapter, we denote by ๐พ a henselian discretely valued field with the valuation ๐‘ฃ. Let O๐พ be the discrete valuation ring of ๐พ O๐พ = {๐‘ฅ โˆˆ ๐พ | ๐‘ฃ(๐‘ฅ) โ‰ฅ 0} (3.2.1) with the maximal ideal ๐‘š, and let ๐น = O๐พ/๐‘š be the residue field. Definition 3.2.2 (Unit group filtration) Let ๐‘ˆ๐พ = (O๐พ)ร— be the group of units in the ring O๐พ. For each ๐‘– โˆˆ N, consider the subgroup ๐‘ˆ๐‘– ๐พ = {๐‘ฅ โˆˆ ๐‘ˆ๐พ | ๐‘ฃ(๐‘ฅ โˆ’ 1) โ‰ฅ ๐‘–} for ๐‘– โ‰ฅ 1. (3.2.2) Then since ๐‘ˆ๐พ โŠƒ ๐‘ˆ1 ๐พ โŠƒ ๐‘ˆ1 ๐พ โŠƒ ยท ยท ยท , we have defined a decreasing filtration on ๐‘ˆ๐พ. In the bounded derived category ๐ท ๐‘ (๐พรฉt), we have an exact triangle (Z/๐‘)(1) (cid:47) G๐‘š ๐‘ (cid:47) G๐‘š (cid:47) (Z/๐‘) (1) [1] . (3.2.3) Given ๐‘Ž โˆˆ ๐พ ร— = ๐ป0(๐พ, G๐‘š), we denote the image of ๐‘Ž in ๐ป1 รฉt(๐พ, (Z/๐‘) (1)) by {๐‘Ž}. Then we have the product maps: ๐ป๐‘ž ๐‘› (๐พ) ร— (๐พ ร—)โŠ•๐‘Ÿ โ†’ ๐ป๐‘ž+๐‘Ÿ ๐‘› (๐พ) defined by ( ๐œ’, ๐‘Ž1, ยท ยท ยท , ๐‘Ž๐‘Ÿ) โ†ฆโ†’ { ๐œ’, ๐‘Ž1, ยท ยท ยท , ๐‘Ž๐‘Ÿ } (cid:66) ๐œ’ โˆช {๐‘Ž1} โˆช ยท ยท ยท โˆช {๐‘Ž๐‘Ÿ }. Definition 3.2.3 (Katoโ€™s filtration [26, Proposition 6.3]) The increasing filtration {๐‘€ ๐‘ ๐‘› }๐‘›โ‰ฅ0 on ๐ป๐‘ž ๐‘ (๐พ) is defined by: ๐œ’ โˆˆ ๐‘€ ๐‘ ๐‘› โ‡โ‡’ { ๐œ’๐ฟ, 1 + ๐œ‹๐‘›+1O๐ฟ } = 0 in ๐ป๐‘ž+1 ๐‘ (๐ฟ) for any henselian discrete valuation field ๐ฟ over ๐พ such that O๐พ โŠ‚ O๐ฟ and ๐‘š ๐ฟ = O๐ฟ๐‘š๐พ. To see this filtration is well-defined, we refer to Katoโ€™s original paper [26, Proposition 1.8, Lemma 2.2]. We have ๐ป๐‘ž ๐‘ (๐พ) = (cid:208) ๐‘›โ‰ฅ0 ๐‘€ ๐‘ ๐‘› . Now we are ready to define Katoโ€™s Swan conductors. 21 (cid:47) (cid:47) (cid:47) Definition 3.2.4 (Katoโ€™s Swan conductor [26, Definition 2.3]) Let ๐œ’ โˆˆ ๐ป๐‘ž such that ๐œ’ โˆˆ ๐‘€ ๐‘ ๐‘› , i.e. ๐‘ (๐พ). We define Katoโ€™s Swan conductor sw( ๐œ’) โˆˆ N to be the minimum integer ๐‘› โ‰ฅ 0 sw๐น ( ๐œ’) (cid:66) min{๐‘› โˆˆ N | ๐œ’ โˆˆ ๐‘€ ๐‘ ๐‘› }. As we mentioned earlier, the Katoโ€™s Swan conductor measures the wild ramifications of elements in Katoโ€™s groups. We usually consider the Katoโ€™s group ๐ป๐‘ž ๐‘ (๐พ) when the residue field ๐น of ๐พ is of characteristic ๐‘ > 0. Notice that the above definition of Katoโ€™s filtration is independent of the characteristic of ๐พ. The following proposition tells that there is no wild ramification if we look at the Katoโ€™s groups with torsion away from the residual characteristic. Proposition 3.2.5 ([26, Corollary 2.5]) Let ๐พ be a henselian discretely valued field with the residue field ๐น of characteristic ๐‘ > 0 and ๐‘™ โ‰  ๐‘ be a prime. Then ๐ป๐‘ž ๐‘™ (๐พ) = ๐‘€ ๐‘™ 0 for all ๐‘ž โˆˆ N. When the torsion of Katoโ€™s group is understood from the context, we will simply denote the filtration by {๐‘€๐‘›}. In the next two sections, we will describe the consecutive quotients of this filtration, based on the characteristic of ๐พ. 3.3 Equal characteristic case: char(๐พ) = ๐‘ > 0 Recall that ๐พ is a henselian discretely valued field with the discrete valuation ๐‘ฃ and the residue field ๐น of characteristic ๐‘ > 0. We assume char(๐พ) = ๐‘ > 0 in this section. Then we have ๐ป๐‘ž ๐‘ (๐พ) = ๐ป๐‘ž รฉt (๐พ, (Z/๐‘)(๐‘ž โˆ’ 1)) = ๐ป1 รฉt(๐พ, ฮฉ ๐‘žโˆ’1 ๐พ,log ) (cid:27) ๐‘žโˆ’1 ฮฉ ๐พ ๐‘žโˆ’1 ๐พ + ๐‘‘ฮฉ (Fr โˆ’ ๐ผ)ฮฉ , ๐‘žโˆ’2 ๐พ where Fr is the Frobenius morphism. Kato generalized Brylinskiโ€™s filtration [10] on Witt vectors to define an increasing filtration {๐‘€ ๐‘— } ๐‘— โ‰ฅ0 on the ๐‘-primary Katoโ€™s groups. For our purpose, we only ๐‘ (๐พ). For ๐‘— โ‰ฅ 0, ๐‘€ ๐‘— is the subgroup of ๐ป๐‘ž consider the ๐‘-torsion one ๐ป๐‘ž ๐‘ (๐พ) generated by elements of the form ๐‘Ž ๐‘‘๐‘1 ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘๐‘๐‘žโˆ’1 ๐‘๐‘žโˆ’1 22 with ๐‘Ž โˆˆ ๐พ, ๐‘1, . . . , ๐‘๐‘žโˆ’1 โˆˆ ๐พ ร—, and ๐‘ฃ(๐‘Ž) โ‰ฅ โˆ’ ๐‘—. It is clear that 0 โŠ‚ ๐‘€ 0 โŠ‚ ๐‘€ 1 โŠ‚ ยท ยท ยท , ๐‘€ ๐‘— = ๐ป๐‘ž with (cid:208) ๐‘— โ‰ฅ0 ๐‘€ ๐‘— = ๐‘€ ๐‘— for each ๐‘— [26, Theorem 3.2]. Therefore, we will use ๐‘€ ๐‘— in the following context for ๐‘ (๐พ). Kato proved that the two filtrations {๐‘€ ๐‘— } and {๐‘€ ๐‘— } coincide, that is, convenience. Let ๐œ‹ โˆˆ O๐พ be a uniformizer for ๐‘ฃ. For any ๐‘— > 0, we define two homomorphisms depending on whether ๐‘— is relatively prime to ๐‘ or ๐‘ | ๐‘—. In each case, a simple computation shows that the homomorphim is well defined up to a choice of a uniformizer. First, consider the case when ๐‘— is relatively prime to ๐‘. We define ฮฉ ๐‘žโˆ’1 ๐น โ†’ ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 by ยฏ๐‘Ž ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘ ยฏ๐‘๐‘žโˆ’1 ยฏ๐‘๐‘žโˆ’1 โ†ฆโ†’ ๐‘Ž ๐œ‹ ๐‘— ๐‘‘๐‘1 ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘๐‘๐‘žโˆ’1 ๐‘๐‘žโˆ’1 (mod ๐‘€ ๐‘—โˆ’1), for ๐‘Ž โˆˆ O๐พ and ๐‘1, . . . , ๐‘๐‘žโˆ’1 โˆˆ Oร— ๐พ. Now we define the second homomorphism. Let ๐‘ ๐‘žโˆ’1 ๐‘žโˆ’1 ๐น , ฮฉ respectively. For ๐‘— > 0 and ๐‘ | ๐‘—, define a homomorphism ๐น , ๐‘ ๐‘žโˆ’2 ๐‘žโˆ’2 ๐น ๐น be the subgroup of closed forms in ฮฉ ฮฉ ๐น /๐‘ ๐‘žโˆ’1 ๐‘žโˆ’1 ๐น โŠ• ฮฉ ๐น /๐‘ ๐‘žโˆ’2 ๐‘žโˆ’2 ๐น โ†’ ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 as follows: On the first summand, it is defined as ยฏ๐‘Ž ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘ ยฏ๐‘๐‘žโˆ’1 ยฏ๐‘๐‘žโˆ’1 โ†ฆโ†’ ๐‘Ž ๐œ‹ ๐‘— ๐‘‘๐‘1 ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘๐‘๐‘žโˆ’1 ๐‘๐‘žโˆ’1 (mod ๐‘€ ๐‘—โˆ’1), and for the second summand it is defined as ยฏ๐‘Ž ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘ ยฏ๐‘๐‘žโˆ’2 ยฏ๐‘๐‘žโˆ’2 โ†ฆโ†’ ๐‘Ž ๐œ‹ ๐‘— ๐‘‘๐œ‹ ๐œ‹ โˆง ๐‘‘๐‘1 ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘๐‘๐‘žโˆ’2 ๐‘๐‘žโˆ’2 (mod ๐‘€ ๐‘—โˆ’1), where ๐‘Ž โˆˆ O๐พ and ๐‘1, . . . , ๐‘๐‘žโˆ’1 โˆˆ Oร— ๐พ. The homomorphisms are well defined (although they depend on the choice of uniformizer ๐œ‹). We recall Cartierโ€™s theorem in this context. It says that, for a field ๐‘˜ of characteristic ๐‘ > 0, ๐‘ž โˆˆ N, 23 the subgroups ๐‘ ๐‘ž the form ๐‘Ž ๐‘ (๐‘‘๐‘1/๐‘1) โˆง ยท ยท ยท โˆง (๐‘‘๐‘๐‘ž/๐‘๐‘ž) [23, Lemma 1.5.1]. ๐‘˜ of closed forms in ฮฉ ๐‘ž ๐‘˜ is generated by the exact forms together with the forms of To describe the subgroup ๐‘€0, we need to describe tame extensions of ๐พ [43]. We fix a discrete valuation ๐‘ฃ as above. An extension field of ๐พ is called tame with respect to ๐‘ฃ if it is a union of finite extensions of ๐พ for which the extension of residue fields is separable and the ramification degree is invertible in the residue field ๐น. Let ๐พtame be the maximal tamely ramified extension of ๐พ (with respect to ๐‘ฃ) in a separable closure of ๐พ. Define the tame (or tamely ramified) subgroup of ๐ป๐‘ž รฉt (๐พ, (Z/๐‘)(๐‘ž โˆ’ 1)) by ๐ป๐‘ž tame(๐พ, (Z/๐‘)/๐‘(๐‘ž โˆ’ 1)) = ker (cid:16) ๐ป๐‘ž รฉt (๐พ, (Z/๐‘)/๐‘(๐‘ž โˆ’ 1)) โ†’ ๐ป๐‘ž รฉt (๐พtame, (Z/๐‘)/๐‘(๐‘ž โˆ’ 1)) (cid:17) . There is residue homomorphism on the tamely ramified subgroup ๐œ•๐‘ฃ : ๐ป๐‘ž tame(๐พ, (Z/๐‘) (๐‘ž โˆ’ 1)) โ†’ ๐ป๐‘žโˆ’1 รฉt (๐น, (Z/๐‘) (๐‘ž โˆ’ 2)), characterized by the property that ๐œ•๐‘ฃ (๐‘Ž ๐‘‘๐œ‹ ๐œ‹ โˆง ๐‘‘๐‘1 ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘๐‘๐‘žโˆ’2 ๐‘๐‘žโˆ’2 ) = ยฏ๐‘Ž ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘ ยฏ๐‘๐‘žโˆ’2 ยฏ๐‘๐‘žโˆ’2 , where ๐‘Ž โˆˆ O๐พ, ๐‘1, . . . , ๐‘๐‘žโˆ’2 โˆˆ Oร— group follows from the theorem below. Then we define the unramified subgroup ๐ป๐‘ž ๐พ. Note that this description of elements of the tamely ramified sub- nr(๐พ, (Z/๐‘)(๐‘ž โˆ’ 1)) to be the kernel of the residue homomorphism ๐œ•๐‘ฃ. Theorem 3.3.1 (Equal characteristic case: char(๐พ) = ๐‘ > 0 [26, 43]) Let ๐พ be a henselian discretely valued field of characteristic ๐‘ > 0 with the residue field ๐น and ๐‘ž be a positive integer. Then the ๐‘-torsion Katoโ€™s group ๐ป๐‘ž (๐พ, (Z/๐‘) (๐‘ž โˆ’ 1)) has an ๐‘ (๐พ) = ๐ป๐‘ž รฉt increasing filtration {๐‘€ ๐‘— } ๐‘— โ‰ฅ0 described as above, with isomorphisms (depending on the choice of a uniformizer) ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ ๐‘žโˆ’1 ๐น if ๐‘— > 0 and ๐‘ โˆค ๐‘—, ฮฉ ๐น /๐‘ ๐‘žโˆ’1 ๐‘žโˆ’1 ๐น โŠ• ฮฉ ๐น /๐‘ ๐‘žโˆ’2 ๐‘žโˆ’2 ๐น if ๐‘— > 0 and ๐‘ | ๐‘— . ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด ๏ฃณ 24 Moreover, ๐‘€0 is the tame subgroup and there is a well-defined residue homomorphism on ๐‘€0, yielding an exact sequence 0 (cid:47) ๐ป๐‘ž nr(๐พ, (Z/๐‘)(๐‘ž โˆ’ 1)) (cid:47) ๐ป๐‘ž tame(๐พ, (Z/๐‘) (๐‘ž โˆ’ 1)) ๐œ•๐‘ฃ (cid:47) ๐ป๐‘žโˆ’1 รฉt (๐น, (Z/๐‘) (๐‘ž โˆ’ 2)) (cid:47) 0, where ๐ป๐‘ž nr(๐พ, (Z/๐‘)(๐‘ž โˆ’ 1)) (cid:27) ๐ป๐‘ž ๐ป๐‘ž nr(๐พ, (Z/๐‘)(๐‘ž โˆ’ 1)) is the unramified subgroup with respect to ๐‘ฃ. Finally, notice that (๐น, (Z/๐‘)(๐‘ž โˆ’ 1)) by the henselian property of ๐น. รฉt 3.4 Mixed characteristic case: char(๐พ) = 0 Recall that ๐พ is a henselian discretely valued field with the discrete valuation ๐‘ฃ and the residue field ๐น of characteristic ๐‘ > 0. We assume char(๐พ) = 0 in this section. Furthermore, we will assume that ๐พ contains a primitive ๐‘-th root ๐œ of the unity. In general, when ๐พ does not contain a primitive ๐‘-th root of the unity, we can also describe the filtration {๐‘€ ๐‘— } ๐‘— โ‰ฅ0 and their consecutive quotients [26, Proposition 4.1]. Let ๐‘’ = ๐‘ฃ( ๐‘) and ๐‘ = ๐‘’ ๐‘( ๐‘ โˆ’ 1)โˆ’1. These two numbers are integers. Notice that ๐‘ฃ(๐œ โˆ’ 1) = ๐‘’( ๐‘ โˆ’ 1)โˆ’1 and ๐‘ | ๐‘. Using the primitive ๐‘-th root ๐œ of the unity, we can identify Z/๐‘ = (Z/๐‘)(1) : 1 โ†ฆโ†’ ๐œ and ๐ป๐‘ž ๐ป๐‘ž (๐พ, (Z/๐‘) (๐‘ž)). Then we can describe the elements in ๐‘ (๐พ) by symbols from Milnor ๐พ-theory. ๐‘ (๐พ) (cid:27) ๐ป๐‘ž รฉt Theorem 3.4.1 (Bloch-Gabber-Kato Theorem [7]) Let ๐น be a field of characteristic ๐‘ > 0. For all integers ๐‘› โ‰ฅ 0, the differential symbol ๐น : ๐พ ๐‘€ ๐œ™๐‘› ๐‘› (๐น)/๐‘ โ†’ ๐ป๐‘› (๐น, (Z/๐‘) (๐‘›)) = ฮฉ๐‘› ๐น,log is an isomorphism. Kato uses the unit group filtration on O๐พ to define a decreasing filtration {๐‘€ ๐‘— } ๐‘— โ‰ฅ0 on ๐ป๐‘ž ๐‘ (๐พ). For ๐‘— โ‰ฅ 0, ๐‘€ ๐‘— is the subgroup of ๐ป๐‘ž ๐‘ (๐พ) generated by elements of the form {๐‘Ž, ๐‘1, ยท ยท ยท , ๐‘๐‘žโˆ’1} with ๐‘Ž โˆˆ ๐‘ˆ ๐‘— ๐พ (Definition 3.2.2), ๐‘1, . . . , ๐‘๐‘ž โˆˆ ๐พ ร—. It is clear that ๐ป๐‘ž,๐‘žโˆ’1(๐พ) = ๐‘€ 0 โŠƒ ๐‘€ 1 โŠƒ ยท ยท ยท โŠƒ ๐‘€ ๐‘’ ๐‘( ๐‘โˆ’1) โˆ’1 โŠƒ ๐‘€ [๐‘’ ๐‘( ๐‘โˆ’1) โˆ’1+1] = 0. 25 (cid:47) (cid:47) (cid:47) (cid:47) Notice that ๐‘€ ๐‘› = 0 for ๐‘› > ๐‘’ ๐‘( ๐‘ โˆ’ 1)โˆ’1 by the henselian property of ๐พ. More precisely, when ๐‘› > ๐‘’ ๐‘( ๐‘ โˆ’ 1)โˆ’1, 1 + ๐œ‹๐‘›O๐พ โŠ‚ (1 + ๐œ‹๐‘›โˆ’๐‘’O๐พ) ๐‘ by (1 + ๐œ‹๐‘›โˆ’๐‘’๐‘ฅ) ๐‘ = 1 + ๐‘๐œ‹๐‘›โˆ’๐‘’๐‘ฅ + ๐‘โˆ’1 โˆ‘๏ธ ๐‘–=2 ๐‘๐‘–๐‘ฅ๐‘– + ๐œ‹ ๐‘(๐‘›โˆ’๐‘’)๐‘ฅ ๐‘ with ๐‘ฃ(๐‘๐‘–) > ๐‘ฃ( ๐‘๐œ‹๐‘›โˆ’๐‘’) = ๐‘› and ๐‘(๐‘› โˆ’ ๐‘’) > ๐‘›. Kato proved that the two filtrations {๐‘€ ๐‘— } and {๐‘€ ๐‘โˆ’ ๐‘— } coincide, that is, ๐‘€ ๐‘— = ๐‘€ ๐‘โˆ’ ๐‘— for each ๐‘— [26, Proposition 4.1]. Therefore, we will use ๐‘€ ๐‘— in the following context for convenience. Let ๐œ‹ โˆˆ O๐พ be a uniformizer for ๐‘ฃ. For any ๐‘— > 0, we define three homomorphisms depending on whether ๐‘ โˆค ๐‘—, ๐‘ | ๐‘— < ๐‘ and ๐‘— = ๐‘. In each case, a simple computation shows that the homomorphim is well defined up to a choice of a uniformizer. First, consider the case when ๐‘— is relatively prime to ๐‘. We define ฮฉ ๐‘žโˆ’1 ๐น โ†’ ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 by ๐‘‘ ยฏ๐‘๐‘žโˆ’1 ยฏ๐‘๐‘žโˆ’1 for ๐‘Ž โˆˆ O๐พ and ๐‘1, . . . , ๐‘๐‘žโˆ’1 โˆˆ Oร— ๐พ. ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 โˆง ยท ยท ยท โˆง ยฏ๐‘Ž โ†ฆโ†’ {1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž, ๐‘1, ยท ยท ยท , ๐‘๐‘žโˆ’1} (mod ๐‘€ ๐‘—โˆ’1), Now we define the second homomorphism. Let ๐‘ ๐‘žโˆ’1 ๐‘žโˆ’1 ๐น , ฮฉ respectively. For ๐‘— > 0 and ๐‘ | ๐‘—, define a homomorphism ๐น , ๐‘ ๐‘žโˆ’2 ๐‘žโˆ’2 ๐น ๐น be the subgroup of closed forms in ฮฉ ฮฉ ๐น /๐‘ ๐‘žโˆ’1 ๐‘žโˆ’1 ๐น โŠ• ฮฉ ๐น /๐‘ ๐‘žโˆ’2 ๐‘žโˆ’2 ๐น โ†’ ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 as follows: On the first summand, it is defined as ยฏ๐‘Ž ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘ ยฏ๐‘๐‘žโˆ’1 ยฏ๐‘๐‘žโˆ’1 โ†ฆโ†’ {1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž, ๐‘1, ยท ยท ยท , ๐‘๐‘žโˆ’1} (mod ๐‘€ ๐‘—โˆ’1), and for the second summand it is defined as ยฏ๐‘Ž ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 where ๐‘Ž โˆˆ O๐พ and ๐‘1, . . . , ๐‘๐‘žโˆ’1 โˆˆ Oร— ๐พ. ๐‘‘ ยฏ๐‘๐‘žโˆ’2 ยฏ๐‘๐‘žโˆ’2 โˆง ยท ยท ยท โˆง โ†ฆโ†’ {1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž, ๐‘1, ยท ยท ยท , ๐‘๐‘žโˆ’2, ๐œ‹} (mod ๐‘€ ๐‘—โˆ’1), Finally, we define the third homomorphism. For ๐‘— = ๐‘, define a homomorphism ๐‘ž (๐น)/๐‘ โŠ• ๐พ ๐‘€ ๐พ ๐‘€ ๐‘žโˆ’1(๐น)/๐‘ โ†’ ๐‘€๐‘ /๐‘€๐‘โˆ’1 26 as follows: On the first summand, it is defined as { ยฏ๐‘Ž1, ยท ยท ยท , ยฏ๐‘Ž๐‘ž} โ†ฆโ†’ {๐‘Ž1, ยท ยท ยท , ๐‘Ž๐‘ž}, and for the second summand it is defined as { ยฏ๐‘Ž1, ยท ยท ยท , ยฏ๐‘Ž๐‘žโˆ’1} โ†ฆโ†’ {๐‘Ž1, ยท ยท ยท , ๐‘Ž๐‘žโˆ’1, ๐œ‹}. The homomorphisms are well defined (although they depend on the choice of uniformizer ๐œ‹). There is residue homomorphism on the tamely ramified subgroup ๐œ•๐‘ฃ : ๐ป๐‘ž tame(๐พ, (Z/๐‘)( ๐‘ โˆ’ 1)) (cid:27) ๐ป๐‘ž tame(๐พ, (Z/๐‘) ( ๐‘)) โ†’ ๐ป๐‘žโˆ’1 ๐‘ (๐น), characterized by the property that ๐œ•๐‘ฃ ({1 + ๐œ‹๐‘ ๐‘Ž, ๐‘1, ยท ยท ยท , ๐‘๐‘žโˆ’2, ๐œ‹}) = ยฏ๐‘Ž ๐‘‘ ยฏ๐‘1 ยฏ๐‘1 โˆง ยท ยท ยท โˆง ๐‘‘ ยฏ๐‘๐‘žโˆ’2 ยฏ๐‘๐‘žโˆ’2 , where ๐‘Ž โˆˆ O๐พ, ๐‘1, . . . , ๐‘๐‘žโˆ’2 โˆˆ Oร— ๐พ. Theorem 3.4.2 (char(๐พ) = 0, mixed characteristic case) Let ๐พ be a henselian discretely valued field of characteristic 0 with the valuation ๐‘ฃ and the residue field ๐น of characteristic ๐‘ > 0. Assume that ๐พ contains a primitive ๐‘-th root ๐œ of 1. Let ๐‘ = ๐‘ฃ( ๐‘) ๐‘( ๐‘ โˆ’ 1)โˆ’1. Then ๐ป๐‘ž filtration {๐‘€ ๐‘— }๐‘ ๐‘ (๐พ) = ๐ป๐‘ž (๐พ, (Z/๐‘) (๐‘ž โˆ’ 1)) (cid:27) ๐ป๐‘ž (๐พ, (Z/๐‘) (๐‘ž)) has an increasing ๐‘—=0 as above, with isomorphisms (depending on the choice of a uniformizer) ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) if 0 < ๐‘— < ๐‘’ ๐‘( ๐‘ โˆ’ 1)โˆ’1 and ๐‘ | ๐‘—, ๐‘žโˆ’1 ๐น ฮฉ ฮฉ ๐น /๐‘ ๐‘žโˆ’1 ๐‘žโˆ’1 ๐น โŠ• ฮฉ ๐‘ž (๐น)/๐‘ โŠ• ๐พ ๐‘€ ๐พ ๐‘€ ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ if ๐‘ โˆค ๐‘—, ๐น ๐น /๐‘ ๐‘žโˆ’2 ๐‘žโˆ’2 ๐‘žโˆ’1(๐น)/๐‘ if ๐‘— = ๐‘ . Moreover, ๐‘€0 is the tame subgroup and there is a well-defined residue homomorphism on ๐‘€0, yielding an exact sequence 0 (cid:47) ๐ป๐‘ž nr(๐พ, (Z/๐‘)(๐‘ž โˆ’ 1)) (cid:47) ๐ป๐‘ž tame(๐พ, (Z/๐‘) (๐‘ž โˆ’ 1)) ๐œ•๐‘ฃ (cid:47) ๐ป๐‘žโˆ’1 รฉt (๐น, (Z/๐‘) (๐‘ž โˆ’ 2)) (cid:47) 0, where ๐ป๐‘ž 1)) (cid:27) ๐ป๐‘ž รฉt nr(๐พ, (Z/๐‘)(๐‘žโˆ’1)) is the unramified subgroup with respect to ๐‘ฃ. Finally, ๐ป๐‘ž (๐น, (Z/๐‘)(๐‘ž โˆ’ 1)) by the henselian property of ๐พ. nr(๐พ, (Z/๐‘)(๐‘žโˆ’ 27 (cid:47) (cid:47) (cid:47) (cid:47) 3.5 Symbol length problem of groups ๐พ ๐‘€ 2 (๐น)/๐‘ and ฮฉ1 In this section, let ๐น be a field of characteristic ๐‘ > 0. we will investigate the symbol length ๐น/๐‘ 1 ๐น problems groups ๐พ ๐‘€ 3.5.1 Symbol length of ๐พ ๐‘€ ๐น/๐‘ 1 ๐น. 2 (๐น)/๐‘ and ฮฉ1 2 (๐น)/๐‘ Definition 3.5.1 (Symbol length in ๐พ ๐‘€ 2 (๐น)/๐‘) Let ๐‘˜ be a field. Let ๐›ผ โˆˆ ๐พ ๐‘€ the minimal integer ๐‘š such that ๐›ผ = {๐‘Ž1, ๐‘1} + ยท ยท ยท + {๐‘Ž๐‘š, ๐‘๐‘š} in ๐พ ๐‘€ 2 (๐น)/๐‘. The symbol length len(๐›ผ) of ๐›ผ in ๐พ ๐‘€ 2 (๐น)/๐‘. 2 (๐น)/๐‘ is defined to be Then we define the symbol length of ๐พ ๐‘€ 2 (๐น)/๐‘ by len(๐พ ๐‘€ 2 (๐น)/๐‘) (cid:66) sup ๐›ผ {len(๐›ผ)}. Recall that the ๐‘-rank of ๐น is defined to be the integer log๐‘ ( [๐น : ๐น ๐‘]). We collect the known results when the ๐‘-rank of ๐น is no more than 3. Lemma 3.5.2 ([35, Lemma 1.3]) Let ๐น be field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘. Then ๐พ ๐‘€ 2 (๐น)/๐‘ = 0. Theorem 3.5.3 ([6, Theorem 3.4]) Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, 2 โ‰ค ๐‘› โ‰ค 3. Assume that ๐น does not admit any finite extension of degree prime to ๐‘. Then ๏ฃฑ๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด ๏ฃณ Notice that the assumption that ๐น does not admit any finite extension of degree prime to ๐‘ can 2 (๐น)/๐‘) โ‰ค 1, ๐‘› = 2; 3, ๐‘› = 3. len(๐พ ๐‘€ be weakened to ๐น = ๐น ๐‘โˆ’1 (cid:66) {๐‘ฅ ๐‘โˆ’1 | ๐‘ฅ โˆˆ ๐น}. In fact, the key lemma in the proof of Theorem 3.5.3 is the following. Lemma 3.5.4 ([25, Section 1, Lemma 3], [14, Lemma 3.2]) Let ๐น be a field of characteristic ๐‘ > 0 and ๐ธ a purely inseparable extension of degree ๐‘ of ๐‘˜. Assume ๐น = ๐น ๐‘โˆ’1. Let ๐‘” : ๐ธ โ†’ ๐น be a ๐น-linear map. Then there exists a non-zero element ๐‘ โˆˆ ๐ธ such that ๐‘”(๐‘๐‘–) = 0 for ๐‘– = 1, ยท ยท ยท , ๐‘ โˆ’ 1. 28 When ๐‘ = 2, the condition ๐น = ๐น ๐‘โˆ’1 is naturally satisfied. Then we have the following corollary. Corollary 3.5.5 Let ๐น be a field of characteristic ๐‘ = 2 and [๐น : ๐น ๐‘] = ๐‘๐‘›, 2 โ‰ค ๐‘› โ‰ค 3. Then len(๐พ ๐‘€ 2 (๐น)/๐‘) = 1, ๐‘› = 2; 3, ๐‘› = 3. ๏ฃฑ๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด ๏ฃณ 3.5.2 Symbol length of ฮฉ1 ๐น/๐‘ 1 ๐น Definition 3.5.6 (Symbol length in ฮฉ1 ๐น/๐‘ 1 ๐น) Let ๐น be a field of characteristic ๐‘ > 0. Let ๐›ผ โˆˆ ฮฉ1 ๐น/๐‘ 1 ๐น. The symbol length len(๐›ผ) of ๐›ผ in ฮฉ1 ๐น/๐‘ 1 ๐น is defined to be the minimal integer ๐‘š such that ๐›ผ = ๐‘Ž1๐‘‘๐‘1 + ยท ยท ยท + ๐‘Ž๐‘š๐‘‘๐‘๐‘š in ฮฉ1 ๐น/๐‘ 1 ๐น. Then we define the symbol length of ฮฉ1 ๐น/๐‘ 1 ๐น by len(ฮฉ1 ๐น/๐‘ 1 ๐น) := sup ๐›ผ {len(๐›ผ)}. The symbol length of ฮฉ1 ๐น/๐‘ 1 i.e. [๐น : ๐น ๐‘] = ๐‘, we have that ฮฉ1 ๐น is clearly controlled by the ๐‘-rank of ๐น. If the ๐‘-rank of ๐น is 1, ๐น = 0, since there is no nontrivial 2-form over ๐น and every ๐น/๐‘ 1 1-form over ๐น is closed. Meanwhile, if the ๐‘-rank of ๐น is ๐‘›, the symbol length of ฮฉ1 ๐น/๐‘ 1 ๐น is no more than ๐‘›. Following the observation for the case [๐น : ๐น ๐‘] = ๐‘, we make the following conjecture. Conjecture 3.5.7 Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘› for ๐‘› โˆˆ N>0. Assume that ๐น does not admit any finite extension of degree prime to ๐‘. Then len(ฮฉ1 ๐น) โ‰ค ๐‘› โˆ’ 1. ๐น/๐‘ 1 The following proposition gives us the hint to make the conjecture. Proposition 3.5.8 Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. Suppose ๐›ผ โˆˆ ฮฉ1 there exists a degree ๐‘๐‘›โˆ’1 inseparable field extension ๐ธ/๐น such that [๐›ผ๐ธ ] = 0 in ฮฉ1 ๐ธ /๐‘ 1 ๐ธ . ๐น/๐‘ 1 ๐น. Then 29 ๐‘› (cid:205) ๐‘–=1 Proof. Since [๐น : ๐น ๐‘] = ๐‘๐‘›, there exists a ๐‘-basis of ๐น given by {๐‘ฅ1, ยท ยท ยท , ๐‘ฅ๐‘›} for some ๐‘ฅ๐‘– โˆˆ ๐น. โˆ’ ๐‘ฅ๐‘›โˆ’1). It We have ๐›ผ = ๐‘“๐‘–๐‘‘๐‘ฅ๐‘– for some ๐‘“๐‘– โˆˆ ๐น. Let ๐ธ = ๐น [๐‘ก1, ยท ยท ยท , ๐‘ก๐‘›โˆ’1]/(๐‘ก ๐‘ โˆ’ ๐‘ฅ1, ยท ยท ยท , ๐‘ก ๐‘ ๐‘›โˆ’1 ๐‘— ๐‘ฅ ๐‘—+1 ๐‘” ๐‘ ๐‘› ๐‘— + 1 ๐ธ by Cartierโ€™s isomorphism. Hence, [๐›ผ๐ธ ] = 0 in ฮฉ1 ๐‘›. For ๐‘— โ‰  ๐‘ โˆ’ 1, ๐‘” ๐‘ ๐‘›๐‘‘๐‘ฅ๐‘› = ๐‘‘ ( ๐‘โˆ’1 (cid:205) ๐‘—=0 ๐‘— ๐‘ฅ ๐‘— ๐‘” ๐‘ ๐‘— ๐‘ฅ ๐‘— ๐ธ /๐‘ 1 ๐ธ . 1 ) โˆˆ ๐‘ 1 ๐ธ . When โ–ก follows that ๐›ผ๐ธ = ๐‘“๐‘›๐‘‘๐‘ฅ๐‘›, where ๐‘“๐‘› = ๐‘— = ๐‘ โˆ’ 1, ๐‘” ๐‘ ๐‘ฅ ๐‘dlog(๐‘ฅ) โˆˆ ๐‘ 1 ๐‘โˆ’1 Besides the case [๐น : ๐น ๐‘] = ๐‘, we give evidence for Conjecture 3.5.7 in the case ๐‘ = 2 and ๐‘› = 2. Lemma 3.5.9 Let ๐น be a field of characteristic ๐‘ = 2 and [๐น : ๐น ๐‘] = ๐‘2. Then len(ฮฉ1 ๐น/๐‘ 1 ๐น) = 1. Proof. Since [๐น : ๐น ๐‘] = ๐‘2, there exist ๐‘ , ๐‘ก โˆˆ ๐น such that the set {๐‘ ๐‘–๐‘ก ๐‘— }(๐‘–, ๐‘—) is a basis for ๐น as an ๐น ๐‘-vector space. Let ๐›ผ โˆˆ ฮฉ1 ๐น/๐‘ 1 ๐น. Then for some ๐‘“ , ๐‘” โˆˆ ๐น, we get the following equalities modulo ๐‘ 1 ๐น: ๐›ผ = ๐‘“ dlog(๐‘ ) + ๐‘”dlog(๐‘ก) (cid:16) โˆ‘๏ธ = ๐‘“ ๐‘ ๐‘– ๐‘— ๐‘ ๐‘–๐‘ก ๐‘— dlog(๐‘ ) (cid:17) + (cid:16) โˆ‘๏ธ ๐‘” ๐‘ ๐‘– ๐‘— ๐‘ ๐‘–๐‘ก ๐‘— dlog(๐‘ก) (cid:17) 0โ‰ค๐‘–, ๐‘— โ‰ค ๐‘โˆ’1 (cid:16) = ๐‘“ 2 01 ๐‘กdlog(๐‘ ) + ๐‘“ 2 11 ๐‘ ๐‘กdlog(๐‘ ) (cid:17) 0โ‰ค๐‘–, ๐‘— โ‰ค ๐‘โˆ’1 (cid:16) + ๐‘”2 10 ๐‘ dlog(๐‘ก) + ๐‘”2 11 ๐‘ ๐‘กdlog(๐‘ก) (cid:17) = ๐‘“ 2 01 ๐‘กdlog(๐‘ ) + ๐‘”2 10 ๐‘ dlog(๐‘ก) + (cid:16) (cid:17) 11 โˆ’ ๐‘”2 ๐‘“ 2 11 ๐‘ ๐‘กdlog(๐‘ ) Now, suppose that ๐›ผ = ๐‘Ž๐‘‘๐‘ โˆˆ ฮฉ1 ๐น/๐‘ 1 ๐น. Then we have that (cid:16) โˆ‘๏ธ ๐‘Ž๐‘‘๐‘ = ๐‘– ๐‘— ๐‘ ๐‘–๐‘ก ๐‘— (cid:17) ๐‘Ž ๐‘ ๐‘‘ (cid:16) โˆ‘๏ธ ๐‘– ๐‘— ๐‘ ๐‘–๐‘ก ๐‘— (cid:17) ๐‘ ๐‘ (0โ‰ค๐‘–, ๐‘— โ‰ค ๐‘โˆ’1 0โ‰ค๐‘–, ๐‘— โ‰ค ๐‘โˆ’1 (cid:16) (cid:16) = = ๐‘Ž2 01 ๐‘ก + ๐‘Ž2 10 ๐‘  + ๐‘Ž2 11 ๐‘ ๐‘ก (cid:16) (cid:17) ๐‘‘ ๐‘2 01 (cid:17) ๐‘ ๐‘ก ๐‘  + ๐‘2 11 ๐‘Ž2 11 ๐‘2 10 ๐‘ 2 + ๐‘Ž2 10 ๐‘2 11 ๐‘ 2(cid:17) ๐‘กdlog(๐‘ ) + ๐‘ก + ๐‘2 10 (cid:16) ๐‘Ž2 11 ๐‘2 01 ๐‘ก2 + ๐‘Ž2 01 ๐‘2 11 ๐‘ก2(cid:17) ๐‘ dlog(๐‘ก) + (cid:16) ๐‘Ž2 10 01 โˆ’ ๐‘Ž2 ๐‘2 01 ๐‘2 10 (cid:17) ๐‘ ๐‘กdlog(๐‘ก). 30 Hence, it suffices to solve the following system of equations in the variables ๐‘Ž๐‘– ๐‘— , ๐‘๐‘– ๐‘— for 0 โ‰ค ๐‘–, ๐‘— โ‰ค 1: 01 =๐‘Ž2 ๐‘“ 2 11 ๐‘2 10 ๐‘ 2 + ๐‘Ž2 10 ๐‘2 11 ๐‘ 2 10 =๐‘Ž2 ๐‘”2 11 ๐‘2 01 ๐‘ก2 + ๐‘Ž2 01 ๐‘2 11 ๐‘ก2 11 โˆ’ ๐‘”2 ๐‘“ 2 11 =๐‘Ž2 10 01 โˆ’ ๐‘Ž2 ๐‘2 01 ๐‘2 10 . Since ๐น is of characteristic 2, it follows that ๐‘“01 =๐‘Ž11๐‘10๐‘  + ๐‘Ž10๐‘11๐‘  ๐‘”10 =๐‘Ž11๐‘01๐‘ก + ๐‘Ž01๐‘11๐‘ก ๐‘“11 + ๐‘”11 =๐‘Ž10๐‘01 + ๐‘Ž01๐‘10. Now, to solve this system of equations, we can write down a solution explicitly when ๐‘“01 โ‰  0. Let ๐‘Ž11 = 0 and ๐‘11 = 1. Then we have that ๐‘Ž10 = ๐‘ ( ๐‘“11 + ๐‘”11) ๐‘“01 ๐‘“01 ๐‘  and ๐‘Ž01 = . The other case follows similarly. follows that ๐‘01 = ๐‘”10 ๐‘ก . Next, we take ๐‘10 = 0. It Finally, we finish the proof in the case ๐‘ = 2. More precisely, we have that ๐›ผ = ( ๐‘“ 2 01 ๐‘  ๐‘”2 10 ๐‘ก + )๐‘‘ ( ๐‘ 2( ๐‘“ 2 11 + ๐‘”2 11) ๐‘“ 2 01 ๐‘ก + ๐‘ ๐‘ก) in ฮฉ1 ๐น . ๐น/๐‘ 1 Hence the symbol length is 1. (3.5.1) โ–ก For ( ๐‘, ๐‘›) โ‰  (2, 2), we can also formulate the system of equations in a similar way. But the number of equations and variables increase exponentially as ๐‘ and ๐‘› increase. Hence, we will need a more nuanced approach in the general case. We will provide a different approach to the symbol length problem of the group ฮฉ1 ๐น/๐‘ 1 ๐น using the foliation and Galois theory of purely inseparable extensions in the appendix. 31 CHAPTER 4 PERIOD-INDEX PROBLEMS OF HENSELIAN DISCRETELY VALUED FIELDS In this chapter, we show that it is sufficient to prove the Conjecture 1.2.1 for wildly ramified ๐‘-Brauer classes. Through out this chapter, let ๐พ be a henselian discretely valued field with the valuation ๐‘ฃ, valuation ring O๐พ and residue field ๐น of characteristic ๐‘ > 0. Suppose that [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N. 4.1 Reduction to the ๐‘-torsion part of Brauer group Proposition 4.1.1 ([46, Proposition 2.1], [31, Proposition 6.1]) Suppose that a field ๐พ and all its finite extensions ๐ฟ, have the property that for all central simple ๐ด/๐ฟ of period ๐‘ satisfies ind( ๐ด) โ‰ค ๐‘๐‘š. Then, any ๐ด/๐พ of period ๐‘๐‘› satisfies ind( ๐ด) โ‰ค ๐‘๐‘š๐‘›. Proposition 4.1.2 ([47, Proposition 5.3]) Suppose that ๐พ is a henselian discretely valued field with the residue field ๐น of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›. Let ๐ฟ be a finite extension of ๐พ. Then ๐ฟ is also a henselian discretely valued field with the residue field ๐ธ and [๐ธ : ๐ธ ๐‘] = ๐‘๐‘›. Proof. We reduce to either case of a finite separable extension case or a purely inseparable simple extension case. When ๐ฟ/๐พ is finite separable, the statement follows from Lemma 2.3.5 and [39, Remark 09E8]. When ๐ธ/๐น is a purely inseparable simple extension, the statement follows from [39, Lemma 04GH] and lemmas 4.1.3, 4.1.4 below. โ–ก Lemma 4.1.3 ([35, Lemma 3.1]) Let ๐ต be a regular local ring with field of fractions ๐พ, residue field ๐œ… and maximal ideal ๐‘š. Let ๐‘› be a natural number and ๐‘ข โˆˆ ๐ต a unit such that [๐œ…(๐‘ข 1 ๐‘› ) : ๐œ…] = ๐‘›. Then ๐ต[๐‘ข 1 ๐‘› ] is a regular local ring with residue field ๐œ…( ยฏ๐‘ข 1 ๐‘› ). Lemma 4.1.4 ([35, Lemma 3.2]) Let ๐ต be a regular local ring with field of fractions ๐พ, residue field ๐œ… and maximal ideal ๐‘š. Let ๐œ‹ โˆˆ ๐‘š be a regular prime and ๐‘› a natural number. Then ๐ต[๐œ‹ 1 ๐‘› ] is a regular local ring with residue field ๐œ…. 32 Combining these two propositions above, it suffices to verify Conjecture 1.2.1 for ๐‘-torsion Brauer classes. Moreover, we can assume that the residue field ๐น does not admit any finite extension of degree prime to ๐‘ by the lemma below. Lemma 4.1.5 ([28]) Let ๐พ be a field and ๐›ผ โˆˆ Br(๐พ) a class annihilated by ๐‘›. If ๐ฟ/๐พ is a finite field extension of degree ๐‘‘ and ๐‘› is relatively prime to ๐‘‘, then per(๐›ผ) = per(๐›ผ| ๐ฟ) and ind(๐›ผ) = ind(๐›ผ| ๐ฟ). Next we want to show that the tamely ramified classes satisfy the conjectured period-index bounds. The tamely ramified Brauer classes are exactly the elements in ๐‘€0 (Definition 3.2.3). By fixing a uniformizer ๐œ‹ in ๐พ, we have the following split exact sequence 0 (cid:47) Br(๐พ) [ ๐‘] (cid:47) Brtame(๐พ) [ ๐‘] ๐œ• (cid:47) ๐ป1 รฉt(๐น, Z/๐‘) (cid:47) 0, (4.1.1) Since [๐น : ๐น ๐‘] = ๐‘๐‘›, it follows that Br.dim๐‘ (๐น) โ‰ค ๐‘› [11, Corollary 3.4]. So this takes care of one of the two components form the split sequence above. The elements arising from the ๐ป1 term are split by degree-๐‘ extensions and so the conjectural bound follows in this case. So we get: Lemma 4.1.6 (Tamely ramified ๐‘-torsion Brauer classes) Let ๐พ be a henselian discretely valued field with the residue field ๐น of characteristic ๐‘ > 0. Assume that [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N. Let ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and sw(๐›ผ) = 0. Then ind(๐›ผ) | per(๐›ผ)๐‘›+1. Notice that this lemma works for both equal characteristic case and mixed characteristic case. 4.2 Katoโ€™s results in the ๐‘-rank 1 case In this section, we will recall Katoโ€™s results and the proof in the ๐‘-rank 1 case. Proposition 4.2.1 ([24, Section 4, Lemma 5]) Let ๐พ be a complete field with a discrete valuation ๐‘ฃ and residue field ๐น. Suppose that char(๐น) = ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘. Suppose that ๐œ” โˆˆ Br(๐พ) [ ๐‘] and ๐œ” โˆ‰ Br(๐พtame/๐พ) [ ๐‘]. Then the division algebra ๐ท which represents ๐œ” is a degree ๐‘ division algebra whose residue algebra is a purely inseparable field extension of degree ๐‘ over ๐น. Moreover, suppose that char(๐พ) = ๐‘ > 0. Let ๐œ‹ be a uniformizer of ๐พ. In this case, ๐ท = [๐‘Ž, ๐‘) 33 (cid:47) (cid:47) (cid:47) (cid:47) where ๐‘Ž โˆˆ ๐พ, ๐‘ โˆˆ ๐พ ร—, and it must have one of the following two forms: (๐‘–) [ , ๐‘’๐œ‹), where ๐‘“ โˆˆ O๐พ, ยฏ๐‘“ โˆ‰ ๐น ๐‘, ๐‘š > 0, ๐‘ฃ(๐‘’) = 0. (๐‘–๐‘–) [ , ๐‘”), where ๐‘” โˆˆ O๐พ, ยฏ๐‘” โˆ‰ ๐น ๐‘, ๐‘ฃ(๐‘) = 0 and ๐‘› is prime to ๐‘. ๐‘“ ๐œ‹ ๐‘๐‘š ๐‘ ๐œ‹๐‘› In both case, ๐ท is decomposed by a totally ramified field extension of degree ๐‘ and a field extension of degree ๐‘ whose residue field is a purely inseparable extension. We notice that Katoโ€™s proof can be generalized to the henselian case easily. Hence, we put the generalized result below with proof: Theorem 4.2.2 Let ๐พ be a henselian field of characteristic ๐‘ > 0 with a discrete valuation ๐‘ฃ and residue field ๐น. Suppose that [๐น : ๐น ๐‘] = ๐‘. Suppose that ๐œ” โˆˆ Br(๐พ) [ ๐‘] and ๐œ” โˆ‰ Br(๐พtame/๐พ) [ ๐‘]. Then the division algebra ๐ท which represents ๐œ” is a degree ๐‘ divison algebra with inseparable residue field extension. Moreover, let ๐œ‹ be a uniformizer of ๐พ. Then ๐ท = [๐‘Ž, ๐‘) for some ๐‘Ž โˆˆ ๐พ, ๐‘ โˆˆ ๐พ ร— and it has one of the following two forms: (๐‘–) [ , ๐‘’๐œ‹), where ๐‘“ โˆˆ O๐พ, ยฏ๐‘“ โˆ‰ ๐น ๐‘, ๐‘š > 0, ๐‘ฃ(๐‘’) = 0. (๐‘–๐‘–) [ , ๐‘”), where ๐‘” โˆˆ O๐พ, ยฏ๐‘” โˆ‰ ๐น ๐‘, ๐‘ฃ(๐‘) = 0 and ๐‘› is prime to ๐‘. ๐‘“ ๐œ‹ ๐‘๐‘š ๐‘ ๐œ‹๐‘› The following lemma plays the fundamental role in the proof. It explains how the Swan conductor of the class ๐‘Ždlog(1 + ๐‘) is affected by the valuations of ๐‘Ž, ๐‘. Lemma 4.2.3 (Kato [26]) Let ๐‘Ž, ๐‘ โˆˆ ๐พ, ๐‘–, ๐‘— โˆˆ Z, and assume that ๐‘ฃ๐พ (๐‘Ž) โ‰ฅ โˆ’๐‘–, ๐‘ฃ๐พ (๐‘) โ‰ฅ ๐‘— > 0. Then we have ๐‘Ždlog(1 + ๐‘) โˆˆ ๐‘€๐‘–โˆ’ ๐‘— . More precisely, if ๐‘Ž โ‰  0, we have ๐‘Ždlog(1 + ๐‘) + ๐‘Ž๐‘dlog(๐‘Ž) โˆˆ ๐‘€๐‘–โˆ’2 ๐‘— . 34 (4.2.1) (4.2.2) Proof. ๐‘Ždlog(1 + ๐‘) = ๐‘Ž 1 + ๐‘ โ‰ก โˆ’(1 + ๐‘)๐‘‘ ( ) mod ๐‘‘ (๐พ) ๐‘‘ (1 + ๐‘) ๐‘Ž 1 + ๐‘ ) mod ๐‘‘ (๐พ) ๐‘ 1 + ๐‘ ๐‘Ž 1 + ๐‘ 1 1 + ๐‘ ) โˆ’ ( ๐‘‘๐‘Ž mod ๐‘€๐‘–โˆ’2 ๐‘— โ‰ก โˆ’๐‘๐‘‘ ( = โˆ’(๐‘Ž๐‘)๐‘‘ ( โ‰ก โˆ’ ๐‘ 1 + ๐‘ )๐‘‘๐‘Ž โ‰ก โˆ’๐‘๐‘‘๐‘Ž mod ๐‘€๐‘–โˆ’2 ๐‘— = โˆ’(๐‘Ž๐‘)dlog(๐‘Ž) mod ๐‘€๐‘–โˆ’2 ๐‘— . โ–ก Proof of Theorem 4.2.2. The proof follows from the following two steps by induction on ๐‘–: (i) Hypotheses: ๐œ” โˆˆ Br(๐พ) [ ๐‘], ๐‘“ ๐œ‹ ๐‘๐‘š dlog(๐œ‹)] mod ๐‘€๐‘–, ๐œ” โ‰ก [ ๐‘“ โˆˆ O๐พ, ยฏ๐‘“ โˆ‰ ๐น ๐‘, ๐‘๐‘š > ๐‘– โ‰ฅ 0, ๐œ‹ is a uniformizer of ๐พ. Conclusion: There exist ๐‘“ โ€ฒ and ๐œ‹โ€ฒ such that ๐œ” โ‰ก [ ๐‘“ โ€ฒ ๐œ‹ ๐‘๐‘š dlog(๐œ‹โ€ฒ)] mod ๐‘€๐‘–โˆ’1 ๐‘ฃ( ๐‘“ โ€ฒ โˆ’ ๐‘“ ) โ‰ฅ ๐‘๐‘š โˆ’ ๐‘–, ๐œ‹โ€ฒ/๐œ‹ โˆˆ ๐‘ˆ ( ๐‘๐‘šโˆ’๐‘–) ๐พ . 35 (ii) Hypotheses: Conclusion: ๐œ” โ‰ก [ ๐œ” โˆˆ Br(๐พ) [ ๐‘], ๐‘ ๐œ‹๐‘› dlog(๐‘”)] mod ๐‘€๐‘–, ๐‘” โˆˆ O๐พ, ยฏ๐‘” โˆ‰ ๐น ๐‘, ๐‘ฃ(๐‘) = 0, ๐‘› โ‰ฅ ๐‘– โ‰ฅ 0 ๐œ‹ is a uniformizer of ๐พ. There exist ๐‘โ€ฒ and ๐‘”โ€ฒ such that ๐œ” โ‰ก [ ๐‘โ€ฒ ๐œ‹๐‘› dlog(๐‘”โ€ฒ)] mod ๐‘€๐‘–โˆ’1 ๐‘ฃ(๐‘โ€ฒ โˆ’ ๐‘) > ๐‘› โˆ’ ๐‘–, ๐‘”โ€ฒ/๐‘” โˆˆ ๐‘ˆ (๐‘›โˆ’๐‘–) ๐พ . We prove both of these simultaneously in two cases: ๐‘– > 0 and ๐‘– = 0. (1) ๐’Š > 0 : For (i), if ๐‘ | ๐‘–, the conclusion is clear since ๐‘€๐‘–/๐‘€๐‘–โˆ’1 (cid:27) ๐น/๐น ๐‘ by fixing the uniformizer ๐œ‹. If ๐‘ โˆค ๐‘–, for any ๐‘” โˆˆ O๐พ, by Lemma 4.2.3, ๐‘“ ๐œ‹ ๐‘๐‘š dlog(1 + โ„Ž๐œ‹ ๐‘๐‘šโˆ’๐‘–) โ‰ก โˆ’ = โˆ’ dlog( ๐‘“ ๐œ‹ ๐‘๐‘š ) ๐‘“ โ„Ž๐œ‹ ๐‘๐‘šโˆ’๐‘– ๐œ‹ ๐‘๐‘š ๐‘“ โ„Ž ๐œ‹๐‘– dlog( ๐‘“ ) mod ๐‘€๐‘๐‘šโˆ’2( ๐‘๐‘šโˆ’๐‘–). Since [๐‘˜ : ๐‘˜ ๐‘] = ๐‘, we can find โ„Ž โˆˆ O๐พ such that ๐œ” โˆ’ [ ๐‘“ ๐œ‹ ๐‘๐‘š dlog(๐œ‹(1 + โ„Ž๐œ‹ ๐‘๐‘šโˆ’๐‘–))] โˆˆ ๐‘€๐‘–โˆ’1. Hence the conclusion follows. Then let us look at (ii). If ๐‘ โˆค ๐‘–, the conclusion follows since the ๐‘-rank of the residue field ๐น is 1 and ๐‘€๐‘–/๐‘€๐‘–โˆ’1 (cid:27) ฮฉ1 ๐น by fixing the uniformizer ๐œ‹. If ๐‘ | ๐‘–, then for any ๐‘’ โˆˆ O๐พ, by Lemma 4.2.3 we have ๐‘ ๐œ‹๐‘› dlog(1 + ๐‘’๐œ‹๐‘›โˆ’๐‘–) โ‰ก โˆ’ = โˆ’ ๐‘๐‘’๐œ‹๐‘›โˆ’๐‘– ๐œ‹๐‘› dlog( ๐‘๐‘’ ๐œ‹๐‘– dlog(๐‘) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:123)(cid:122) (cid:124) ๐‘†๐‘ค(โˆ—)<๐‘– โˆ’ ๐‘ ๐œ‹๐‘› ) ๐‘›๐‘๐‘’ ๐œ‹๐‘– dlog(๐œ‹) = โˆ’ ๐‘›๐‘๐‘’ ๐œ‹๐‘– dlog(๐œ‹) mod ๐‘€๐‘–โˆ’1. 36 The (โˆ—) term has a Swan conductor smaller than ๐‘–, since its residue corresponds to a term in ๐‘ ๐œ‹๐‘› dlog(๐‘”(1 + ๐‘’๐œ‹๐‘›โˆ’๐‘–)) โˆˆ ๐‘€๐‘–โˆ’1. Hence the ๐น (cid:27) 0. Now we can find ๐‘’ โˆˆ O๐พ such that ๐œ” โˆ’ ๐น/๐‘ 1 ฮฉ1 conclusion follows in this case. (2) ๐’Š = 0: First fix the uniformizer ๐œ‹. By Theorem 3.3.1, we have that ๐‘€0 (cid:27) Br(๐น) [ ๐‘] โŠ• ๐น/P (๐น). For both hypotheses, the proof proceeds in two steps: First, we modify the condition in each hypothesis so that the resulting symbol algebra is congruent to ๐œ” modulo Br(๐น) [ ๐‘]. In the second step, we finish the proof. We give details for (๐‘–) as an example. Since ๐œ” โˆ’ [ ๐‘“ ๐œ‹ ๐‘๐‘š dlog(๐œ‹)] โˆˆ ๐‘€0, then there exists ๐‘“1 โˆˆ O๐พ such that ๐œ” โˆ’ [ ๐‘“ + ๐‘“1๐œ‹ ๐‘๐‘š ๐œ‹ ๐‘๐‘š dlog(๐œ‹)] โˆˆ Br(๐น) [ ๐‘]. Set ๐‘“ โ€ฒ = ๐‘“ + ๐‘“1๐œ‹ ๐‘๐‘š. For any โ„Ž โˆˆ O๐พ, by Lemma 4.2.3, ๐‘“ โ€ฒ ๐œ‹ ๐‘๐‘š dlog(1 + โ„Ž๐œ‹ ๐‘๐‘š) โ‰ก โˆ’ ๐‘“ โ€ฒโ„Ždlog( ๐‘“ โ€ฒ ๐œ‹ ๐‘๐‘š ) = โˆ’ ๐‘“ โ€ฒโ„Ždlog( ๐‘“ โ€ฒ) in Br(๐น) [ ๐‘]. We can find โ„Ž โˆˆ O๐พ such that ๐œ” โˆ’ [ ๐‘“ + ๐‘“1๐œ‹ ๐‘๐‘š ๐œ‹ ๐‘๐‘š conclusion follows. dlog(๐œ‹(1 + โ„Ž๐œ‹ ๐‘๐‘š))] โˆˆ Br(๐น) [ ๐‘]. Therefore the โ–ก The following theorem was first proved in [12]. We give a different proof using ideas here. Theorem 4.2.4 ([12, Theorem 2.3]) Let ๐พ be a henselian discretely valued field of characteristic ๐‘ > 0 with the residue field ๐น. Suppose that ๐น is a local field. Then Br.dim(๐พ) = 1. Proof. Since ๐น is a local field of characteristic ๐‘ > 0, we have that ๐‘˜ (cid:27) F๐‘ž ((๐‘ )), ๐‘ž = ๐‘๐‘›. By Theorem 4.2.2, a wildly ramified Brauer class in Br(๐พ) [ ๐‘] is represented by a symbol algebra of degree ๐‘. So it suffices to show that a tamely ramified Brauer class in Br(๐พ) has symbol length 1. Let ๐œ” โˆˆ Br(๐พtame/๐พ) [ ๐‘]. Then ๐œ” = [๐‘Ž, ๐œ‹) + [๐‘, ๐‘) where ๐‘Ž defines an unramified degree ๐‘ Artin-Schreier extension of ๐พ and [๐‘, ๐‘) โˆˆ Br(๐น) [ ๐‘]. By [37, Corollary 3, Page 194], [๐‘, ๐‘) is split by the degree ๐‘ Artin-Schreier extension defined by ๐‘Ž. Hence, ๐›ผ = [๐‘Ž, ๐‘’) for some ๐‘’ โˆˆ ๐พ ร—. 37 Notice that a finite extension of a local field is still a local field. Hence, combining with Theorem 4.1.1, we get the desired conclusion. 4.3 Equal characteristic case โ–ก In this section, we will prove the period-index result for ๐‘-torsion part of the Brauer group of a henselian discretely valued field of characteristic ๐‘ > 0. Let ๐พ be a henselian discretely valued field of characteristic ๐‘ > 0 with the valuation ๐‘ฃ, valuation ring O๐พ and residue field ๐น with [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N. Given a ๐‘-torsion Brauer class ๐›ผ โˆˆ Br(๐พ) [ ๐‘], there are three cases: (i) sw(๐›ผ) = 0, (ii) ๐‘ โˆค sw(๐›ผ) > 0 and (iii) ๐‘ | sw(๐›ผ) > 0. Recall Conjecture 3.5.7 mentioned in the previous chapter. We should point out that only Case (iii) is relevant to this conjecture. Now, Case (i) is already discussed in Lemma 4.1.6. 4.3.1 Case (ii): ๐‘ โˆค sw(๐›ผ) > 0 We will prove the following theorem in this subsection. Theorem 4.3.1 Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. Let ๐พ be a henselian discretely valued field of characteristic ๐‘ > 0 with the residue field ๐น. Suppose that ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and ๐‘ โˆค sw(๐›ผ) > 0. Then ind(๐›ผ) | per(๐›ผ)๐‘›. Proof. Let { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›} be a ๐‘-basis of ๐น. Let {๐‘ฅ1, ยท ยท ยท , ๐‘ฅ๐‘›} be the lifting of the ๐‘-basis in ๐พ and ๐‘Ž1 ๐œ‹ be a uniformizer of ๐พ. Since ๐‘ โˆค sw(๐›ผ) = ๐‘˜ > 0, we have that ๐›ผ โ‰ก ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + ๐‘Ž๐‘› ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›) mod ๐‘€๐‘˜โˆ’1, where either ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0, ๐‘Ž๐‘– โ‰  0 for at least one ๐‘–. The proof is based on the following downward induction on ๐‘—: 38 Hypotheses: Conclusion: ๐›ผ โ‰ก [ ๐›ผ โˆˆ Br(๐พ) [ ๐‘], 0 โ‰ค ๐‘— < ๐‘˜, ๐‘Ž๐‘› ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›)] mod ๐‘€ ๐‘— , either ยฏ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ๐‘Ž1 ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + ยฏ๐‘Ž๐‘– โ‰  0 for at least one ๐‘–, { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›}is a ๐‘-basis of ๐น, and ๐œ‹ is a uniformizer of ๐พ. ๐‘– }๐‘– and ๐œ‹โ€ฒ for ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›} such that ๐‘–}๐‘–, {๐‘ฅโ€ฒ ๐›ผ โ‰ก [ There exist {๐‘Žโ€ฒ ๐‘Žโ€ฒ ๐œ‹โ€ฒ๐‘˜ dlog(๐‘ฅโ€ฒ 1 ๐‘– = 0 or ๐‘ฃ(๐‘Žโ€ฒ either ยฏ๐‘Žโ€ฒ 1) + ยท ยท ยท + ๐‘Žโ€ฒ ๐‘› ๐œ‹โ€ฒ๐‘˜ dlog(๐‘ฅโ€ฒ ๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ๐‘›)] mod ๐‘€ ๐‘—โˆ’1, ยฏ๐‘Žโ€ฒ ๐‘– โ‰  0 for at least one ๐‘–, { ยฏ๐‘ฅโ€ฒ 1 , ยท ยท ยท , ยฏ๐‘ฅโ€ฒ ๐‘›}is a ๐‘-basis of ๐น, and ๐œ‹โ€ฒ is a uniformizer of ๐พ. If ๐‘ โˆค ๐‘—, by fixing the uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 ๐น. Since { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›} is a ๐‘-basis of ๐น, the conclusion easily follows. If ๐‘ | ๐‘— > 0, by fixing the uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 ๐น โŠ• ๐น/๐น ๐‘. Denote the projections from ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 to two direct components by ๐‘ƒ1, ๐‘ƒ2 respectively. WLOG, we assume ๐น/๐‘ 1 that ยฏ๐‘Ž1 โ‰  0. For any ๐‘ โˆˆ O๐พ, by Lemma 4.2.3, ๐‘Ž1 ๐œ‹๐‘˜ dlog(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— ) โ‰ก โˆ’ = โˆ’ ๐‘Ž1๐‘๐œ‹๐‘˜โˆ’ ๐‘— ๐œ‹๐‘˜ dlog( ๐‘Ž1๐‘ ๐œ‹ ๐‘— dlog(๐‘Ž1) + ๐‘Ž1 ๐œ‹๐‘˜ ) ๐‘˜๐‘Ž1๐‘ ๐œ‹ ๐‘— dlog(๐œ‹) mod ๐‘€๐‘˜โˆ’2(๐‘˜โˆ’ ๐‘—). (4.3.1) (4.3.2) ๐‘Ž1 ๐‘Ž๐‘› ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›)] โˆˆ ๐‘€ ๐‘— , we can choose ๐‘ such that ๐‘˜๐‘Ž1๐‘ = ๐‘ƒ2(๐›ผ โˆ’ ๐‘Ž๐‘› ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›)]). Then {๐‘ฅ1(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— ), ๐‘ฅ2, ยท ยท ยท , ๐‘ฅ๐‘›} gives a different lifting of the ๐‘Ž1 ๐œ‹๐‘˜ dlog(๐‘ฅ1(1 + Since ๐›ผ โˆ’ [ ๐‘Ž1 ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + [ ๐‘-basis { ยฏ๐‘ฅ1, ยฏ๐‘ฅ2, ยท ยท ยท , ยฏ๐‘ฅ๐‘›}. We use this new lifting to match the class from (cid:0)๐‘ƒ1(๐›ผ โˆ’ [ ๐‘๐œ‹๐‘˜โˆ’ ๐‘— )) + ยท ยท ยท + ๐น/๐‘ 1 ๐น โŠ• ๐น/๐น ๐‘. The conclusion follows. ๐‘Ž๐‘› ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›)]), 0(cid:1) โˆˆ ฮฉ1 39 If ๐‘— = 0, the proof is similar to the case ( ๐‘ | ๐‘— > 0), since we treat the elements from ฮฉ1 ๐น and ฮฉ1 ๐น/๐‘ 1 ๐น in the same way. โ–ก 4.3.2 (iii) ๐‘ | sw(๐›ผ) > 0 Proposition 4.3.2 Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. Let ๐พ be a henselian discretely valued field of characteristic ๐‘ > 0 with the residue field ๐น. Assume that Conjecture 3.5.7 is true and ๐น does not admit any finite extension of degree prime to ๐‘. Let ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and ๐‘ | sw(๐›ผ) > 0. Then ind(๐›ผ) | per(๐›ผ)๐‘›. Proof. ๐‘ | sw(๐›ผ) = ๐‘˜ > 0, we have that ๐›ผ โ‰ก [ The Conjecture 3.5.7 implies that the symbol length of the group ฮฉ1 ๐น is no more than ๐‘›โˆ’1. Since ๐‘ ๐‘Ž1 ๐œ‹๐‘˜ dlog(๐œ‹)] mod ๐‘€๐‘˜โˆ’1. ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + For ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘› โˆ’ 1}, either ยฏ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0, while either ๐‘ = 0 or ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘. Not all ยฏ๐‘Ž๐‘–, ๐‘ are zero and ๐œ‹ is a uniformizer. ๐‘ฃ(๐‘ฅ๐‘–) = 0, { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›โˆ’1} is a ๐น ๐‘-linearly independent set. ๐น/๐‘ 1 ๐‘Ž๐‘› ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›โˆ’1) + We shall discuss in cases ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘ and ๐‘ = 0 separately. 4.3.2.1 ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘ The proof is based on the following induction on ๐‘—: Hypotheses: ๐›ผ โˆˆ Br(๐พ) [ ๐‘], 0 โ‰ค ๐‘— < ๐‘˜, ๐›ผ โ‰ก [ ๐‘Ž1 ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + ๐‘Ž๐‘›โˆ’1 ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›โˆ’1) + ๐‘ ๐œ‹๐‘˜ dlog(๐œ‹)] mod ๐‘€ ๐‘— , either ยฏ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘, and ๐œ‹ is a uniformizer of ๐พ, ๐‘ฃ(๐‘ฅ๐‘–) = 0, { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›โˆ’1} is a ๐น ๐‘-linearly independent set. 40 Conclusion: ๐‘– }๐‘–, ๐‘ and ๐œ‹โ€ฒ for ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘› โˆ’ 1} such that ๐‘–}๐‘–, {๐‘ฅโ€ฒ ๐›ผ โ‰ก [ There exist {๐‘Žโ€ฒ ๐‘Žโ€ฒ ๐œ‹โ€ฒ๐‘˜ dlog(๐‘ฅโ€ฒ 1 ๐‘– = 0 or ๐‘ฃ(๐‘Žโ€ฒ either ยฏ๐‘Žโ€ฒ 1) + ยท ยท ยท + ๐‘Žโ€ฒ ๐‘›โˆ’1 ๐œ‹โ€ฒ๐‘˜ dlog(๐‘ฅโ€ฒ ๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ๐‘›โˆ’1) + ๐‘โ€ฒ ๐œ‹โ€ฒ๐‘˜ dlog(๐œ‹โ€ฒ)] mod ๐‘€ ๐‘—โˆ’1, ๐‘ฃ(๐‘โ€ฒ) = 0, ยฏ๐‘โ€ฒ โˆ‰ ๐น ๐‘, and ๐œ‹โ€ฒ is a prime element of ๐พ, ๐‘ฃ(๐‘ฅโ€ฒ ๐‘–) = 0, { ยฏ๐‘ฅโ€ฒ 1 , ยท ยท ยท , ยฏ๐‘ฅโ€ฒ ๐‘›โˆ’1} is a ๐น ๐‘-linearly independent set. ๐‘Ž1 ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + Let ๐›ผโ€ฒ = ๐›ผ โˆ’ [ If ๐‘ | ๐‘— > 0, by fixing the ๐น โŠ• ๐น/๐น ๐‘. Since { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›โˆ’1} is a ๐น ๐‘-linearly uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 independent set and [๐น : ๐น ๐‘] = ๐‘๐‘›, we can choose ๐‘ฅ๐‘› โˆˆ O๐พ such that { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›} is a ๐‘-basis of ๐น. Denote the projections from ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 to two direct components by ๐‘ƒ1, ๐‘ƒ2 respectively. Then ๐‘Ž๐‘›โˆ’1 ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›โˆ’1) + ๐น/๐‘ 1 ๐‘ ๐œ‹๐‘˜ dlog(๐œ‹)]. ๐‘ƒ1(๐›ผโ€ฒ) = ๐‘“1dlog( ยฏ๐‘ฅ1) + ยท ยท ยท + ๐‘“๐‘›dlog( ยฏ๐‘ฅ๐‘›). For any ๐‘ โˆˆ O๐พ, by Lemma 4.2.3, ๐‘ ๐œ‹๐‘˜ dlog(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— ) โ‰ก โˆ’ = โˆ’ ๐‘ ๐œ‹๐‘˜ ) ๐‘๐‘ ๐œ‹ ๐‘— dlog( ๐‘๐‘ ๐œ‹ ๐‘— dlog(๐‘) mod ๐‘€๐‘˜โˆ’2(๐‘˜โˆ’ ๐‘—). (4.3.3) (4.3.4) We can choose ๐‘ โˆˆ O๐พ such that โˆ’๐‘๐‘dlog( ยฏ๐‘) coincides with ๐‘“๐‘› on dlog( ยฏ๐‘ฅ๐‘›) part. Let ๐‘” โˆˆ O๐พ be a ๐‘Ž1 lifting of ๐‘ƒ2(๐›ผโ€ฒ) โˆˆ ๐‘˜/๐‘˜ ๐‘. Then ๐‘ƒ1 ๐œ‹๐‘˜ dlog(๐‘ฅ1) + ยท ยท ยท + ๐‘๐œ‹๐‘˜โˆ’๐‘™)](cid:1) is supported away from dlog( ยฏ๐‘ฅ๐‘›) and ๐‘ƒ2(โ€ข) = 0. Hence the conlusion follows. ๐‘Ž๐‘›โˆ’1 ๐œ‹๐‘˜ dlog(๐‘ฅ๐‘›โˆ’1) + ๐‘ + ๐‘”๐œ‹๐‘˜โˆ’๐‘™ ๐œ‹๐‘˜ dlog(๐œ‹(1 + (cid:0)๐›ผ โˆ’ [ If ๐‘— = 0 or ๐‘ โˆค ๐‘— > 0, the proof is similar to the case ( ๐‘ | ๐‘— > 0), since we treat the elements from ฮฉ1 ๐น, ฮฉ1 ๐น/๐‘ 1 ๐น, Br(๐น) [ ๐‘] in the same way. More precisely, we are using their liftings in ฮฉ1 ๐น. 4.3.2.2 ๐‘ = 0 In this case, the proof can be reduced to either the case ( ๐‘ โˆค sw(๐›ผ > 0) or the above case. Hence we finish the proof. 4.4 Mixed characteristic case โ–ก In this section, we will prove the period-index result for ๐‘-torsion part of the Brauer group of a henselian discretely valued field of characteristic 0 with residual characteristic ๐‘ > 0. 41 Let ๐พ be a henselian discretely valued field of characteristic 0 with the valuation ๐‘ฃ, valuation ring O๐พ and residue field ๐น of characteristic ๐‘ > 0. Let [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N. In the mixed characteristic case, we are not always able to express a Brauer class as a sum of symbol algebras, since ๐พ may not contain a primitive ๐‘-th root of unity. However, when addressing period-index problems, we can always reduce to the case where ๐พ contains a primitive ๐‘-th root of unity (as noted in Lemma 4.1.5). In our setting, if the field ๐พ does not contain a primitive ๐‘-th root of unity, we can adjoin a primitive ๐‘-th root of unity ๐œ to the field ๐พ. The field extension ๐พ (๐œ)/๐พ is of degree ๐‘ โˆ’ 1. Hence it suffices to consider the period-index problem over ๐พ (๐œ). In the rest of this section, we assume that ๐พ contains a primitive ๐‘-th root ๐œ of the unity. Notice that ๐‘ฃ(๐œ โˆ’ 1) = ๐‘๐‘ฃ( ๐‘) ๐‘โˆ’1 . Given a ๐‘-torsion Brauer class ๐›ผ โˆˆ Br(๐พ) [ ๐‘], there are four cases: (i) sw(๐›ผ) = 0, (ii) ๐‘ โˆค sw(๐›ผ) > 0, (iii) ๐‘ | sw(๐›ผ), 0 < sw(๐›ผ) < ๐‘ and (iv) sw(๐›ผ) = ๐‘. ๐‘ฃ( ๐‘) ๐‘โˆ’1 and ๐‘ | ๐‘ := We mentioned Conjecture 3.5.7 in the previous chapter. It is important to note that the case (iii) and (iv) are relevant to Conjecture 3.5.7. Additionally, the case (iv) requires the bound of symbol length of the group ๐พ2(๐น)/๐‘๐พ2(๐น). The case (i) has been addressed in Lemma 4.1.6. We will discuss the other three cases separately in the subsequent subsections. 4.4.1 (ii) ๐‘ โˆค sw(๐›ผ) > 0 We will prove the following theorem in this subsection. Theorem 4.4.1 Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. Let ๐พ be a henselian discretely valued field of characteristic 0 with the residue field ๐น. Suppose that ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and ๐‘ โˆค sw(๐›ผ) > 0. Then ind(๐›ผ) | per(๐›ผ)๐‘›. Proof. Let { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›} be a ๐‘-basis of ๐น. Let {๐‘ฅ1, ยท ยท ยท , ๐‘ฅ๐‘›} be a lifting of the ๐‘-basis and ๐œ‹ be a uniformizer. Since ๐‘ โˆค sw(๐›ผ) = ๐‘˜ > 0, we have that ๐›ผ โ‰ก [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›, ๐‘ฅ๐‘›}] mod ๐‘€๐‘˜โˆ’1, where either ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0, ๐‘Ž๐‘– โ‰  0 for at least one ๐‘–. The proof is based on the following induction on ๐‘—: 42 Hypotheses: Conclusion: ๐›ผ โˆˆ Br(๐พ) [ ๐‘], 0 โ‰ค ๐‘— < ๐‘˜, ๐›ผ โ‰ก [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›, ๐‘ฅ๐‘›}] mod ๐‘€ ๐‘— , either ยฏ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ยฏ๐‘Ž๐‘– โ‰  0 for at least one ๐‘–, { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›}is a ๐‘-basis of ๐น, and ๐œ‹ is a uniformizer of ๐พ. There exist {๐‘Žโ€ฒ ๐‘–}๐‘–, {๐‘ฅโ€ฒ ๐‘– }๐‘– and ๐œ‹โ€ฒ for ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›} such that ๐›ผ โ‰ก [{1 + ๐œ‹โ€ฒ๐‘โˆ’๐‘˜ ๐‘Žโ€ฒ 1 either ยฏ๐‘Žโ€ฒ ๐‘– = 0 or ๐‘ฃ(๐‘Žโ€ฒ , ๐‘ฅโ€ฒ 1} + ยท ยท ยท + {1 + ๐œ‹โ€ฒ๐‘โˆ’๐‘˜ ๐‘Žโ€ฒ ๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ๐‘›, ๐‘ฅโ€ฒ ๐‘›}] mod ๐‘€ ๐‘—โˆ’1, ยฏ๐‘Žโ€ฒ ๐‘– โ‰  0 for at least one ๐‘–, { ยฏ๐‘ฅโ€ฒ 1 , ยท ยท ยท , ยฏ๐‘ฅโ€ฒ ๐‘›}is a ๐‘-basis of ๐น, and ๐œ‹โ€ฒ is a uniformizer of ๐พ. If ๐‘ โˆค ๐‘—, by fixing the uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 ๐น. Since { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›} is a ๐‘-basis of ๐น, the conclusion easily follows. If ๐‘ | ๐‘— > 0, by fixing the uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 ๐น โŠ• ๐น/๐น ๐‘. Denote the projections from ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 to two direct components by ๐‘ƒ1, ๐‘ƒ2 respectively. WLOG, we assume ๐น/๐‘ 1 that ยฏ๐‘Ž1 โ‰  0. For any ๐‘ โˆˆ O๐พ, by Lemma 4.2.3, {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, 1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— } โ‰ก โˆ’{1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž1๐‘, โˆ’๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1} = โˆ’{1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž1๐‘, โˆ’๐‘Ž1} โˆ’ {1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž1๐‘, ๐œ‹๐‘โˆ’๐‘˜ } mod ๐‘€๐‘˜โˆ’2(๐‘˜โˆ’ ๐‘—) = โˆ’{1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž1๐‘, ๐‘Ž1} + {1 โˆ’ (๐‘ โˆ’ ๐‘˜)๐œ‹๐‘โˆ’ ๐‘— ๐‘Ž1๐‘, ๐œ‹} mod ๐‘€ ๐‘—โˆ’1 Since ๐›ผโˆ’ [{1+๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1}+ยท ยท ยท+{1+๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›, ๐‘ฅ๐‘›}] โˆˆ ๐‘€ ๐‘— , we can choose ๐‘ such that โˆ’(๐‘ โˆ’ ๐‘˜)๐‘Ž1๐‘ = ๐‘ƒ2(๐›ผ โˆ’ [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›, ๐‘ฅ๐‘›}]). Then {๐‘ฅ1(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— ), ๐‘ฅ2, ยท ยท ยท , ๐‘ฅ๐‘›} gives a different lifting of the ๐‘-basis { ยฏ๐‘ฅ1, ยฏ๐‘ฅ2, ยท ยท ยท , ยฏ๐‘ฅ๐‘›}. We use this new lifting to match the class from 43 (cid:0)๐‘ƒ1(๐›ผ โˆ’ [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— )} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›, ๐‘ฅ๐‘›}]), 0(cid:1) โˆˆ ฮฉ1 ๐น/๐‘ 1 ๐น โŠ• ๐น/๐น ๐‘. The conclusion follows. If ๐‘— = 0, the proof is similar to the case ( ๐‘ | ๐‘— > 0), since we treat the elements from ฮฉ1 ๐น and ฮฉ1 ๐น/๐‘ 1 ๐น in the same way. โ–ก 4.4.2 (iii) ๐‘ | sw(๐›ผ), 0 < sw(๐›ผ) < ๐‘ We will prove the following theorem in this subsection. Theorem 4.4.2 Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. Let ๐พ be a henselian discretely valued field of characteristic 0 with the residue field ๐น. Assume that Conjecture 3.5.7 is true and ๐น does not admit any finite extension of degree prime to ๐‘. Suppose that ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and ๐‘ | sw(๐›ผ), 0 < sw(๐›ผ) < ๐‘. Then ind(๐›ผ) | per(๐›ผ)๐‘›. Proof. ๐น is no more than ๐‘› โˆ’ 1. The Conjecture 3.5.7 suggests that the symbol length of the group ฮฉ1 Since ๐‘ | sw(๐›ผ) = ๐‘˜ > 0, we have that ๐›ผ โ‰ก [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›โˆ’1, ๐‘ฅ๐‘›โˆ’1} + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘, ๐œ‹}] mod ๐‘€๐‘˜โˆ’1. For ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘› โˆ’ 1}, either ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0, while either ๐‘ = 0 or ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘. Not all ๐‘Ž๐‘–, ๐‘ are zero and ๐œ‹ is a uniformizer. ๐‘ฃ(๐‘ฅ๐‘–) = 0, { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›โˆ’1} is a ๐น ๐‘-linearly independent set. ๐น/๐‘ 1 We shall discuss in cases ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘ and ๐‘ = 0 separately. 4.4.2.1 ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘ The proof is based on the following induction on ๐‘—: 44 Hypotheses: ๐›ผ โˆˆ Br(๐พ) [ ๐‘], 0 โ‰ค ๐‘— < ๐‘˜, ๐›ผ โ‰ก [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›โˆ’1, ๐‘ฅ๐‘›โˆ’1} + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘, ๐œ‹}] mod ๐‘€ ๐‘— , either ยฏ๐‘Ž๐‘– = 0 or ๐‘ฃ(๐‘Ž๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ๐‘ฃ(๐‘) = 0, ยฏ๐‘ โˆ‰ ๐น ๐‘, and ๐œ‹ is a prime element of ๐พ, ๐‘ฃ(๐‘ฅ๐‘–) = 0, { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›โˆ’1} is a ๐น ๐‘-linearly independent set. Conclusion: There exist {๐‘Žโ€ฒ ๐‘–}๐‘–, {๐‘ฅโ€ฒ ๐‘– }๐‘–, ๐‘ and ๐œ‹โ€ฒ for ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘› โˆ’ 1} such that ๐›ผ โ‰ก [{1 + ๐œ‹โ€ฒ๐‘โˆ’๐‘˜ ๐‘Žโ€ฒ 1 either ยฏ๐‘Žโ€ฒ ๐‘– = 0 or ๐‘ฃ(๐‘Žโ€ฒ , ๐‘ฅโ€ฒ 1} + ยท ยท ยท + {1 + ๐œ‹โ€ฒ๐‘โˆ’๐‘˜ ๐‘Žโ€ฒ ๐‘–) = 0 for all ๐‘– โˆˆ {1, ยท ยท ยท , ๐‘›}, ๐‘›โˆ’1 , ๐‘ฅโ€ฒ ๐‘›โˆ’1} + {1 + ๐œ‹โ€ฒ๐‘โˆ’๐‘˜ ๐‘โ€ฒ, ๐œ‹โ€ฒ}] mod ๐‘€ ๐‘—โˆ’1, ๐‘ฃ(๐‘โ€ฒ) = 0, ยฏ๐‘โ€ฒ โˆ‰ ๐น ๐‘, and ๐œ‹โ€ฒ is a prime element of ๐พ, ๐‘ฃ(๐‘ฅโ€ฒ ๐‘–) = 0, { ยฏ๐‘ฅโ€ฒ 1 , ยท ยท ยท , ยฏ๐‘ฅโ€ฒ ๐‘›โˆ’1} is a ๐น ๐‘-linearly independent set. Let ๐›ผโ€ฒ = ๐›ผ โˆ’ [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›โˆ’1, ๐‘ฅ๐‘›โˆ’1} + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘, ๐œ‹}]. If ๐‘ | ๐‘— > 0, by fixing ๐น โŠ• ๐น/๐น ๐‘. Since { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›โˆ’1} is a ๐น ๐‘-linearly the uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 independent set and [๐น : ๐น ๐‘] = ๐‘๐‘›, we can choose ๐‘ฅ๐‘› โˆˆ O๐พ such that { ยฏ๐‘ฅ1, ยท ยท ยท , ยฏ๐‘ฅ๐‘›} is a ๐‘-basis of ๐น. Denote the projections from ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 to two direct components by ๐‘ƒ1, ๐‘ƒ2 respectively. Then ๐น/๐‘ 1 ๐‘ƒ1(๐›ผโ€ฒ) = ๐‘“1dlog( ยฏ๐‘ฅ1) + ยท ยท ยท + ๐‘“๐‘›dlog( ยฏ๐‘ฅ๐‘›). For any ๐‘ โˆˆ O๐พ, by Lemma 4.2.3, {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘, 1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— } โ‰ก โˆ’{1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘๐‘, โˆ’๐œ‹๐‘โˆ’๐‘˜ ๐‘} = โˆ’{1 + ๐œ‹๐‘โˆ’ ๐‘— ๐‘๐‘, โˆ’๐‘} mod ๐‘€๐‘˜โˆ’2(๐‘˜โˆ’ ๐‘—) = {1 โˆ’ ๐œ‹๐‘โˆ’ ๐‘— ๐‘๐‘, ๐‘} mod ๐‘€ ๐‘—โˆ’1 (4.4.1) (4.4.2) (4.4.3) We can choose ๐‘ โˆˆ O๐พ such that โˆ’๐‘๐‘dlog( ยฏ๐‘) coincides with ๐‘“๐‘› on dlog( ยฏ๐‘ฅ๐‘›) part. Let ๐‘” โˆˆ O๐พ be (cid:0)๐›ผ โˆ’ [{1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž1, ๐‘ฅ1} + ยท ยท ยท + {1 + ๐œ‹๐‘โˆ’๐‘˜ ๐‘Ž๐‘›โˆ’1, ๐‘ฅ๐‘›โˆ’1} + {1 + a lifting of ๐‘ƒ2(๐›ผโ€ฒ) โˆˆ ๐น/๐น ๐‘. Then ๐‘ƒ1 ๐œ‹๐‘โˆ’๐‘˜ (๐‘ + ๐‘”๐œ‹๐‘˜โˆ’ ๐‘— ), ๐œ‹(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— )}](cid:1) is supported away from dlog( ยฏ๐‘ฅ๐‘›) and ๐‘ƒ2(โ€ข) = 0. Hence the conclusion follows. 45 If ๐‘— = 0 or ๐‘ โˆค ๐‘— > 0, the proof is similar to the case ( ๐‘ | ๐‘— > 0), since we treat the elements from ฮฉ1 ๐น, ฮฉ1 ๐น/๐‘ 1 ๐น, Br(๐น) [ ๐‘] in the same way. More precisely, we are using their liftings in ฮฉ1 ๐น. 4.4.2.2 ๐‘ = 0 In this case, the proof can be reduced to either the case ( ๐‘ โˆค sw(๐›ผ > 0) or the above case. Hence we finish the proof. 4.4.3 (iv) sw(๐›ผ) = ๐‘ We will prove the following theorem in this subsection. Theorem 4.4.3 โ–ก Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. Let ๐พ be a henselian discretely valued field of characteristic 0 with the residue field ๐น. Assume that Conjecture 3.5.7 is true and ๐น does not admit any finite extension of degree prime to ๐‘. Suppose that ๐›ผ โˆˆ Br(๐พ) [ ๐‘] and sw(๐›ผ) = ๐‘. Then ind(๐›ผ) | per(๐›ผ)๐‘›. Proof. The proof is similar to the case (iii). Fixing a uniformizer ๐œ‹, it follows that ๐‘€๐‘ /๐‘€๐‘โˆ’1 (cid:27) ๐พ2(๐น)/๐‘๐พ2(๐น) โŠ• ๐พ1(๐น)/๐‘๐พ1(๐น). Hence, at the starting point, we need both the symbol length bounds of ๐พ2(๐น)/๐‘๐พ2(๐น) and ฮฉ1 ๐น/๐‘ 1 ๐น. โ–ก 4.5 Symbol length problems of higher Katoโ€™s groups In this section, we generalize the ideas from previous sections to investigate the symbol length problems of higher Katoโ€™s groups. Let ๐พ be a henselian discretely valued field of residual charac- teristic ๐‘ > 0. We prove that any wildly ramified element in ๐ป3 รฉt (๐พ, (Z/๐‘) (2)) is split by a purely inseparable extension of degree ๐‘. Theorem 4.5.1 Let ๐พ be a henselian discretely valued field of characteristic ๐‘ > 0 with the residue field ๐น. Suppose that [๐น : ๐น ๐‘] = ๐‘2. Let ๐›ผ โˆˆ ๐ป3 รฉt ๐พ and ๐‘ โˆˆ ๐พ ร—. ๐‘‘๐‘ ๐‘ for some ๐œ” โˆˆ ฮฉ1 that ๐›ผ = ๐œ” โˆง (๐พ, (Z/๐‘) (2)) such that ๐‘ โˆค sw(๐›ผ) > 0. Then we have 46 Proof. First, notice that ฮฉ2 ๐น/๐‘ 2 ๐น = 0, since [๐น : ๐น ๐‘] = ๐‘2, which forces there is no non-trivial 3-form over ๐น. By Theorem 3.3.1, we have that ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ2 ๐น if ๐‘— > 0 and ๐‘ โˆค ๐‘—, ฮฉ1 ๐น/๐‘ 1 ๐น if ๐‘— > 0 and ๐‘ | ๐‘— . ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด ๏ฃณ Let { ยฏ๐‘ฅ1, ยฏ๐‘ฅ2} be a ๐‘-basis of ๐น. Let {๐‘ฅ1, ๐‘ฅ2} be the lifting of the ๐‘-basis in ๐พ and let ๐œ‹ be a uniformizer of ๐พ. Then {๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2} gives a basis of ฮฉ2 ๐น. Since ๐‘ โˆค sw(๐›ผ) = ๐‘˜ > 0, we have ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘ฅ1) โˆง dlog(๐‘ฅ2) mod ๐‘€๐‘˜โˆ’1, where ๐‘ฃ(๐‘Ž) = 0. The proof is based on the following that ๐›ผ โ‰ก induction on ๐‘—: Hypotheses: Conclusion: รฉt(๐พ, (Z/๐‘)(2)), 0 โ‰ค ๐‘— < ๐‘˜, ๐›ผ โˆˆ ๐ป3 ๐‘Ž ๐‘ ๐œ‹๐‘˜ dlog(๐‘ฅ2) โˆง dlog(๐œ‹)] mod ๐‘€ ๐‘— , ๐œ‹๐‘˜ dlog(๐‘ฅ1) โˆง dlog(๐‘ฅ2) + ๐›ผ โ‰ก [ ยฏ๐‘Ž โ‰  0, ๐‘ฃ(๐‘) > 0, { ยฏ๐‘ฅ1, ยฏ๐‘ฅ2}is a ๐‘-basis of ๐น, and ๐œ‹ is a uniformizer of ๐พ. There exist ๐‘Žโ€ฒ, ๐‘โ€ฒ and ๐‘ฅโ€ฒ ๐›ผ โ‰ก [ ๐‘Žโ€ฒ ๐œ‹๐‘˜ dlog(๐‘ฅ1) โˆง dlog(๐‘ฅโ€ฒ 2 such that ๐‘โ€ฒ ๐œ‹๐‘˜ dlog(๐‘ฅโ€ฒ 2) + 2) โˆง dlog(๐œ‹)] mod ๐‘€ ๐‘—โˆ’1, ยฏ๐‘Žโ€ฒ โ‰  0, ๐‘ฃ(๐‘โ€ฒ) > 0, { ยฏ๐‘ฅ1, ยฏ๐‘ฅโ€ฒ 2}is a ๐‘-basis of ๐น, and ๐œ‹ is a uniformizer of ๐พ. Let ๐›ผโ€ฒ = ๐›ผ โˆ’ [ ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘ฅ1) โˆง dlog(๐‘ฅ2) + uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 ๐‘ ๐œ‹๐‘˜ dlog(๐‘ฅ2) โˆง dlog(๐œ‹)]. ๐น. Since { ยฏ๐‘ฅ1, ยฏ๐‘ฅ2} is a ๐‘-basis for ๐น, we have [๐›ผโ€ฒ] โ‰ก ๐‘— > 0, by fixing the If ๐‘ | ๐น/๐‘ 1 ๐‘“1dlog( ยฏ๐‘ฅ1) + ๐‘“2dlog( ยฏ๐‘ฅ2) in ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1, where ๐‘“1, ๐‘“2 โˆˆ ๐น. For any ๐‘ โˆˆ O๐พ, ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘ฅ1) โˆง dlog(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— ) โ‰ก โˆ’ ๐‘Ž๐‘ ๐œ‹ ๐‘— dlog(๐‘ฅ1) โˆง dlog( ๐‘˜๐‘Ž๐‘ ๐œ‹ ๐‘— dlog(๐‘ฅ1) โˆง dlog(๐œ‹) mod ๐‘€๐‘˜โˆ’2(๐‘˜โˆ’ ๐‘—). ๐‘Ž ๐œ‹๐‘˜ ) = (4.5.1) (4.5.2) 47 We can choose ๐‘ โˆˆ O๐พ such that ๐‘˜๐‘Ž๐‘ coincides with ๐‘“1 and let ๐‘” โˆˆ O๐พ be a lifting of ๐‘“2. Then ๐›ผ โˆ’ [ ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘ฅ1) โˆง dlog(๐‘ฅ2(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— )) + 2 = ๐‘ฅ2(1 + ๐‘๐œ‹๐‘˜โˆ’ ๐‘— ). It follows that ๐›ผ โˆ’ [ ๐‘ฅโ€ฒ ๐‘€ ๐‘—โˆ’1. Hence the conclusion follows. ๐‘ + ๐‘”๐œ‹๐‘˜โˆ’ ๐‘— ๐œ‹๐‘˜ dlog(๐‘ฅ2) โˆง dlog(๐œ‹)] โˆˆ ๐‘€ ๐‘—โˆ’1. Moreover, denote ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘ฅ1) โˆง dlog(๐‘ฅโ€ฒ 2) + ๐‘ + ๐‘”๐œ‹๐‘˜โˆ’ ๐‘— ๐œ‹๐‘˜ dlog(๐‘ฅโ€ฒ 2) โˆง dlog(๐œ‹)] โˆˆ If ๐‘ | ๐‘— > 0, by fixing the uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ2 ๐น. Then the conclusion follows easily by using ๐‘ฅ1, ๐‘ฅ2 as the liftings of ๐‘-basis. If ๐‘— = 0, the proof is similar to the case ( ๐‘ | ๐ป3 รฉt (๐น, (Z/๐‘)(2)). It is a combination of these two previous arguments. Theorem 4.5.2 ๐‘— > 0), since ๐‘€0 (cid:27) ๐ป2 รฉt(๐น, (Z/๐‘) (1)) โŠ• โ–ก Let ๐พ be a henselian discretely valued field of characteristic ๐‘ > 0 with the residue field ๐น. Suppose that [๐น : ๐น ๐‘] = ๐‘2. Let ๐›ผ โˆˆ ๐ป3 รฉt (๐พ, (Z/๐‘) (2)) such that ๐‘ | sw(๐›ผ) > 0. Then Conjecture 3.5.7 implies that ๐›ผ = ๐œ” โˆง ๐‘‘๐‘ ๐‘ for some ๐œ” โˆˆ ฮฉ1 ๐พ and ๐‘ โˆˆ ๐พ ร—. Proof. First, notice that ฮฉ2 ๐น/๐‘ 2 ๐น = 0, since [๐น : ๐น ๐‘] = ๐‘2, which forces there is no non-trivial 3-form over ๐น. By Theorem 3.3.1, we have that ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ2 ๐น if ๐‘— > 0 and ๐‘ โˆค ๐‘—, ฮฉ1 ๐น/๐‘ 1 ๐น if ๐‘— > 0 and ๐‘ | ๐‘— . ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด ๏ฃณ Let { ยฏ๐‘ฅ1, ยฏ๐‘ฅ2} be a ๐‘-basis of ๐น. Let {๐‘ฅ1, ๐‘ฅ2} be the lifting of the ๐‘-basis in ๐พ and let ๐œ‹ be a 3.5.7 implies that ๐›ผ โ‰ก uniformizer of ๐พ. Then {๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2} gives a basis of ฮฉ2 ๐น. Since ๐‘ | sw(๐›ผ) = ๐‘˜ > 0, Conjecture ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘) โˆง dlog(๐œ‹) mod ๐‘€๐‘˜โˆ’1, where ๐‘ฃ(๐‘Ž) = ๐‘ฃ(๐‘) = 0. Notice that {๐‘Ž, ๐‘} ๐น/๐‘ 1 ๐น. The proof is based on the following defines a ๐‘-basis of ๐น, since ยฏ๐‘Ždlog( ยฏ๐‘) is non-trivial in ฮฉ1 induction on ๐‘—: 48 Hypotheses: ๐›ผ โ‰ก [ รฉt(๐พ, (Z/๐‘)(2)), 0 โ‰ค ๐‘— < ๐‘˜, ๐›ผ โˆˆ ๐ป3 ๐‘ ๐œ‹๐‘˜ dlog(๐‘Ž) โˆง dlog(๐‘) + ๐‘ฃ(๐‘) > 0, ยฏ๐‘Ždlog( ยฏ๐‘) is nonzero in ฮฉ1 ๐น, ๐น/๐‘ 1 ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘) โˆง dlog(๐œ‹)] mod ๐‘€ ๐‘— , ๐œ‹ is a uniformizer of ๐พ. Conclusion: ๐›ผ โ‰ก [ There exist ๐‘Žโ€ฒ, ๐‘โ€ฒ and ๐‘โ€ฒ such that ๐‘Žโ€ฒ ๐œ‹๐‘˜ dlog(๐‘โ€ฒ) โˆง dlog(๐œ‹)] mod ๐‘€ ๐‘—โˆ’1, ๐‘โ€ฒ ๐œ‹๐‘˜ dlog(๐‘Žโ€ฒ) โˆง dlog(๐‘โ€ฒ) + ๐‘ฃ(๐‘โ€ฒ) > 0, ยฏ๐‘Žโ€ฒdlog( ยฏ๐‘โ€ฒ) is nonzero in ฮฉ1 ๐น, ๐น/๐‘ 1 ๐œ‹ is a uniformizer of ๐พ. Let ๐›ผโ€ฒ = ๐›ผ โˆ’ [ ๐‘ ๐œ‹๐‘™ dlog(๐‘Ž) โˆง dlog(๐‘) + uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ1 ๐‘Ž ๐œ‹๐‘˜ dlog(๐‘) โˆง dlog(๐œ‹)]. ๐น/๐‘ 1 ๐น. Since { ยฏ๐‘Ž, ยฏ๐‘} is a ๐‘-basis for ๐น, we have [๐›ผโ€ฒ] โ‰ก If ๐‘ | ๐‘— > 0, by fixing the ๐‘“1dlog( ยฏ๐‘Ž1) + ๐‘“2dlog( ยฏ๐‘2) in ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1, where ๐‘“1, ๐‘“2 โˆˆ ๐น. For any ๐‘’ โˆˆ O๐พ, ๐‘Ž ๐œ‹๐‘˜ dlog((1 + ๐‘’๐œ‹๐‘˜โˆ’ ๐‘— )) โˆง dlog(๐œ‹) โ‰ก โˆ’ = โˆ’ ๐‘Ž ๐œ‹๐‘˜ ) โˆง dlog(๐œ‹) ๐‘Ž๐‘’ ๐œ‹ ๐‘— dlog( ๐‘Ž๐‘’ ๐œ‹ ๐‘— dlog(๐‘Ž) โˆง dlog(๐œ‹) mod ๐‘€๐‘˜โˆ’2(๐‘˜โˆ’ ๐‘—). (4.5.3) (4.5.4) We can choose ๐‘’ โˆˆ O๐พ such that โˆ’๐‘Ž๐‘’ coincides with ๐‘“1 and let ๐‘” โˆˆ O๐พ be a lifting of ๐‘“2. Then dlog(๐‘(1 + ๐‘’๐œ‹๐‘˜โˆ’ ๐‘— )) โˆง dlog(๐œ‹)] โˆˆ ๐‘€ ๐‘—โˆ’1. Moreover, denote ๐‘ ๐œ‹๐‘™ dlog(๐‘Ž) โˆง dlog(๐‘) + ๐‘Ž + ๐‘”๐œ‹๐‘˜โˆ’ ๐‘— ๐œ‹๐‘˜ ๐›ผ โˆ’ [ ๐‘Žโ€ฒ = ๐‘Ž + ๐‘”๐œ‹๐‘˜โˆ’ ๐‘— and ๐‘โ€ฒ = ๐‘(1 + ๐‘’๐œ‹๐‘˜โˆ’ ๐‘— ). It follows that ๐›ผ โˆ’ [ dlog(๐œ‹)] โˆˆ ๐‘€ ๐‘—โˆ’1. Hence, the conclusion follows. ๐‘ ๐œ‹๐‘™ dlog(๐‘Žโ€ฒ) โˆง dlog(๐‘โ€ฒ) + ๐‘Žโ€ฒ ๐œ‹๐‘˜ dlog(๐‘โ€ฒ) โˆง If ๐‘ | ๐‘— > 0, by fixing the uniformizer ๐œ‹, we have ๐‘€ ๐‘— /๐‘€ ๐‘—โˆ’1 (cid:27) ฮฉ2 ๐น. Then the conclusion follows easily by using ๐‘ฅ1, ๐‘ฅ2 as the liftings of ๐‘-basis. If ๐‘— = 0, the proof is similar to the case ( ๐‘ | ๐ป3 รฉt (๐น, (Z/๐‘)(2)). It is a combination of these two previous arguments. 49 ๐‘— > 0), since ๐‘€0 (cid:27) ๐ป2 รฉt(๐น, (Z/๐‘) (1)) โŠ• โ–ก CHAPTER 5 LOGARITHMIC DE RHAM COHOMOLOGY WITH SUPPORT In this chapter, we will continue on our discussion of ๐‘-torsion part of Brauer groups of ๐ถ๐‘š fields. As we noted in the introductionโ€ž there is one common class of ๐ถ๐‘š fields: the function fields of dimension ๐‘š โˆ’ ๐‘› algebraic varieties over ๐ถ๐‘› fields for 0 โ‰ค ๐‘› โ‰ค ๐‘š. When studying the Brauer group of such a function field, an important concept is its behavior in codimension 1, since the Brauer group of a Noetherian, integral, regular scheme has purity in codimension 1 (Theorem 2.1.3). We restate this theorem here for clarity. Theorem 5.0.1 (Purity in codimension 1 [44]) For a Noetherian, integral, regular scheme ๐‘‹ with function field ๐พ, รฉt(๐‘‹, G๐‘š) = ๐ป2 (cid:217) ๐‘ฅโˆˆ๐‘‹ (1) รฉt(O๐‘‹,๐‘ฅ, G๐‘š) in ๐ป2 ๐ป2 รฉt(๐พ, G๐‘š). Recall that there is an injection from the Brauer group of the scheme ๐‘‹ into the Brauer group of its function field ๐พ: Br(๐‘‹) โ†ฉโ†’ Br(๐พ). Therefore, to understand the Brauer group of the function field ๐พ, it is essential to understand the cokernel of this homomorphism. Artin and Mumford [4] provides significant insight into this area. When ๐‘‹ is a surface, they showed that there exists an exact sequence that relates the Brauer group of ๐‘‹, the Brauer group of the function field ๐พ, and the ramification behavior of Brauer classes at both codimension 1 points and closed points (points of codimenison 2). Theorem 5.0.2 ([41]) Let ๐‘† be a smooth projective surface over an algebraically closed field ๐‘˜ with char(๐‘˜) = ๐‘ โ‰ฅ 0 and ๐‘™ be a prime number different from ๐‘. Suppose that ๐ป1 รฉt(๐‘†, Q/Z) = 0. There is a canonical exact sequence 0 (cid:47) Br๐‘™ (๐‘†) (cid:47) Br๐‘™ (๐‘˜ (๐‘†)) (cid:47) (cid:201) curves ๐ถ รฉt(๐‘˜ (๐ถ), Z/๐‘™) ๐ป1 (cid:47) (cid:201) closed points ๐œ‡โˆ’1 ๐‘™ (cid:47) ๐œ‡โˆ’1 ๐‘™ (cid:47) 0, 50 (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) where ๐œ‡๐‘™ denotes the ๐‘™-th roots of unity. In fact, this sequence could be derived from the Bloch-Ogus spectral sequence. Theorem 5.0.3 Assume that ๐‘‹ is smooth over a perfect field ๐‘˜ of characteristic ๐‘ โ‰ฅ 0 and ๐‘™ be a prime number different from ๐‘. Then there is a spectral sequence ๐ธ ๐‘๐‘ž 1 = (cid:202) ๐‘ฅโˆˆ๐‘‹ ( ๐‘) ๐ป๐‘žโˆ’๐‘ (๐‘ฅ, ๐œ‡โŠ—๐‘›โˆ’๐‘ ๐‘™ ) โ‡’ ๐ป ๐‘+๐‘ž (๐‘‹, ๐œ‡โŠ—๐‘› ๐‘™ ) (5.0.1) Here ๐‘‹ ( ๐‘) are the points of codimension ๐‘ in ๐‘‹. We should notice that the above discussion are restricted to the case when the torsion is prime to the base characteristic. We will give a systematic investigation of the case when the torsion is equal to the base characteristic. 5.1 Bloch-Ogus spectral sequence in positive characteristic For the logarithmic de Rham cohomology, we also have the Bloch-Ogus spectral sequence. Theorem 5.1.1 ([8, 15]) Let ๐‘‹ be an equidimensional scheme over F๐‘. Then we have the coniveau spectral sequence ๐ธ ๐‘ ,๐‘ก 1 = (cid:202) ๐ป ๐‘ +๐‘ก ๐‘ฅ ๐‘ฅโˆˆ๐‘‹ (๐‘ ) (๐‘‹, ฮฉ๐‘– ๐‘‹,log) โ‡’ ๐ธ ๐‘ +๐‘ก = ๐ป ๐‘ +๐‘ก (๐‘‹, ฮฉ๐‘– ๐‘‹,log) converging to the logarithmic de Rham cohomology, where ๐ป๐‘š ๐‘ฅ (๐‘‹, ฮฉ๐‘– ๐‘‹,log) (cid:66) lim โˆ’โˆ’โ†’ ๐‘ฅโˆˆ๐‘ˆ ยฏ{๐‘ฅ}โˆฉ๐‘ˆ (๐‘ˆ, ฮฉ๐‘– ๐ป๐‘š ๐‘‹,log) = ๐ป๐‘š ๐‘ฅ (๐‘‹๐‘ฅ, ฮฉ๐‘– ๐‘‹,log) and ๐‘ˆ runs through open neighborhoods of ๐‘ฅ in ๐‘‹ (the last equality follows from the excision). The complex of ๐ธ โ€ข,๐‘ž 1 -terms 0 (cid:47) (cid:201) ๐‘ฅโˆˆ๐‘‹ (0) ๐ป๐‘ž ๐‘ฅ (๐‘‹, ฮฉ๐‘– ๐‘‹,log ) (cid:47) (cid:201) ๐‘ฅโˆˆ๐‘‹ (1) ๐ป๐‘ž+1 ๐‘ฅ (๐‘‹, ฮฉ๐‘– ๐‘‹,log ) (cid:47) ยท ยท ยท (cid:47) (cid:201) ๐‘ฅโˆˆ๐‘‹ (๐‘ ) ๐ป๐‘ž+๐‘  ๐‘ฅ (๐‘‹, ฮฉ๐‘– ๐‘‹,log ) (cid:47) ยท ยท ยท 51 (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) is usually called the Bloch-Ogus complex and denoted by ๐ต๐‘ž,๐‘– (๐‘‹)โ€ข. It is a cohomological analogue of the Brown-Gersten-Quillen complex in algebraic ๐พ-theory. We can also describe the ๐ธ2 page when considering ๐‘˜-schemes. Let ๐‘˜ be a field of characteristic ๐‘ > 0. For every integer ๐‘š, we have the cohomology functor on ๐‘˜-schemes: ๐‘‹ โ†ฆโ†’ ๐ป๐‘šโˆ’๐‘– รฉt (๐‘‹, ฮฉ๐‘– ๐‘‹,log) = ๐ป๐‘š รฉt (๐‘‹, Z/๐‘(๐‘–)) for a ๐‘˜-scheme ๐‘‹. For shorthand, we would write ๐ป๐‘š ๐‘ (๐‘‹, ๐‘–) in stead of the precise notation ๐ป๐‘šโˆ’๐‘– รฉt (๐‘‹, ฮฉ๐‘– ๐‘‹,log ). The Zariski sheaf associated to the presheaf ๐‘ˆ โ†ฆโ†’ ๐ป๐‘š ๐‘ (๐‘ˆ, ๐‘–) is denoted by โ„‹๐‘ ๐‘ (๐‘–). For a smooth connected ๐‘˜-variety ๐‘‹, we define the unramified cohomology group ๐ป๐‘š nr(๐‘‹, Z/๐‘(๐‘–)) (cid:66) ๐ป0 Zar(๐‘‹, โ„‹๐‘š ๐‘ (๐‘–)). Then we have the following theorem which collects some well-known results. Theorem 5.1.2 Let ๐‘‹ be a smooth connected ๐‘˜-variety. 1. We have the Bloch-Ogus spectral sequence ๐ธ ๐‘ ,๐‘ก 2 = ๐ป ๐‘  Zar(๐‘‹, โ„‹๐‘ก ๐‘ (๐‘–)) โ‡’ ๐ธ ๐‘ +๐‘ก = ๐ป ๐‘ +๐‘ก รฉt (๐‘‹, Z/๐‘(๐‘–)) with and ๐ธ ๐‘ ,๐‘ก 2 = 0 if ๐‘ โˆ‰ {๐‘–, ๐‘– + 1}, or if ๐‘Ž > ๐‘ = ๐‘– ๐ธ๐‘–,๐‘– 2 = ๐ป๐‘– Zar(๐‘‹, โ„‹๐‘– ๐‘ (๐‘–)) (cid:27) ๐ถ๐ป๐‘– (๐‘‹)/๐‘. 2. There are natural isomorphisms ๐ป๐‘– (๐‘‹, (Z/๐‘)(๐‘–)) (cid:27) ๐ป0 Zar(๐‘‹, โ„‹๐‘– ๐ป2๐‘–+ ๐‘— (๐‘‹, (Z/๐‘) (๐‘–)) (cid:27) ๐ป ๐‘—+๐‘–โˆ’1 Zar ๐‘ (๐‘–)) = ๐ป๐‘– nr(๐‘‹, (Z/๐‘) (๐‘–)), (๐‘‹, โ„‹๐‘–+1 ๐‘ (๐‘–)) for ๐‘— โ‰ฅ 1. and ๐ป2 nr(๐‘‹, (Z/๐‘) (1)) = ๐ป0 Zar(๐‘‹, โ„‹2 ๐‘ (1)) (cid:27) Br(๐‘‹) [ ๐‘]. 52 (5.1.1) (5.1.2) (5.1.3) (5.1.4) (5.1.5) (5.1.6) 3. For smooth proper connected ๐‘˜-varieties, the group ๐ป๐‘š nr(๐‘‹, Z/๐‘(๐‘–)) is a ๐‘˜-birational invari- ant. We want to finish up this section with the Gersten-type theorem which plays the most important role in the rest of this chapter. As an analogue of Gersten conjecture in algebraic ๐พ-theory, it is natural to expect that, if ๐‘‹ is the spectrum of a regular local ring over F๐‘, the Bloch-Ogus complex is acyclic in positive degree. In fact, we have the following: Theorem 5.1.3 (Gersten-type theorem for Bloch-Ogus complex [38]) Let ๐‘‹ be the spectrum of an equidimensional regular local ring over F๐‘. Then we have ๐ป๐‘› (๐ต๐‘ž,๐‘– (๐‘‹)โ€ข) = ๐ป๐‘ž (๐‘‹, ฮฉ๐‘– ๐‘‹,log ) (๐‘› = 0) 0 (๐‘› > 0). ๏ฃฑ๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด ๏ฃณ It is proved in the case where ๐‘‹ is a localization of a smooth scheme over a perfect field by Gros-Suwa [18]. This Gersten-type theorem provides us with the fundation to analyse the ramification behavior of a ๐‘-torsion Brauer class affine locally. We will mainly use the following version of Theorem 5.1.3. Theorem 5.1.4 (Gersten-type theorem [38]) Let ๐‘‹ be the spectrum of a 2-equidimensional regular local ring over F๐‘ with the unique closed point ๐‘ƒ and quotient field ๐พ. Then we have an exact sequence 0 (cid:47) ๐ป1 รฉt(๐‘‹, ฮฉ1 ๐‘‹,log) (cid:47) ๐ป1 รฉt(๐พ, ฮฉ1 ๐พ,log) ๐›ฟ1 (cid:47) (cid:201) ๐‘ฅโˆˆ๐‘‹ 1 ๐ป2 ๐‘ฅ (๐‘‹, ฮฉ1 ๐‘‹,log) ๐›ฟ2 (cid:47) ๐ป3 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹,log) (cid:47) 0. 5.2 Logarithmic de Rham cohomology of affine schemes with support The goal of this section is to identify the morphisms ๐›ฟ1, ๐›ฟ2 and cohomology groups appeared in Theorem 5.1.4. 5.2.1 The morphism ๐›ฟ1 Let ๐‘ฅ โˆˆ ๐‘‹ (1). By the รฉtale excision theorem [33], we have the following lemma. 53 (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) Lemma 5.2.1 Proof. ๐ป2 ๐‘ฅ (๐‘‹, ฮฉ1 ๐‘‹,log) = ๐ป2 ๐‘ฅ (๐‘‹๐‘ฅ, ฮฉ1 โ€ข,log) (cid:27) ๐ป2 ๐‘ฅ (O โ„Ž ๐‘‹,๐‘ฅ, ฮฉ1 โ€ข,log). The first isomorphism follows from the รฉtale excision theorem. The second isomorphism follows from [34, Corollary 1.28]. Furthermore, we have the following commutative diagram: 0 0 (cid:47) ๐ป1(O โ„Ž ๐‘‹,๐‘ฅ, ฮฉ1 โ€ข,log) ๐ป1(๐พ โ„Ž, ฮฉ1 โ€ข,log) ๐›ฟ1 ๐ป2 ๐‘ฅ (O โ„Ž ๐‘‹,๐‘ฅ, ฮฉ1 โ€ข,log) โˆผ โˆผ (cid:47) Br(O โ„Ž ๐‘‹,๐‘ฅ) [ ๐‘] (cid:47) Br(๐พ โ„Ž) [ ๐‘] ๐›ฟโ€ฒ 1 (cid:47) Br(๐พ โ„Ž) [ ๐‘] (cid:46) Br(O โ„Ž ๐‘‹,๐‘ฅ) [ ๐‘] โ–ก 0 (cid:47) 0 The first exact row comes from the long exact sequence in local cohomology in รฉtale topology and the second exact row is the canonical exact sequence. It follows that ๐ป2 ๐‘ฅ (๐‘‹, ฮฉ1 ๐‘‹,log) (cid:27) Br(๐พ โ„Ž) [ ๐‘] (cid:46) Br(O โ„Ž ๐‘‹,๐‘ฅ) [ ๐‘] , (5.2.1) and we can identify the morphism ๐›ฟ1 with ๐›ฟโ€ฒ 1, i.e. ๐›ฟ1 = ๐›ฟโ€ฒ 1 . 5.2.2 The Morphism ๐›ฟ2 Let ๐‘ฆ โˆˆ ๐‘‹ (1) and ๐‘Œ (cid:66) {๐‘ฆ} be the closure of ๐‘ฆ in ๐‘‹. Lemma 5.2.2 ([38]) Let ๐‘‹, ๐‘ be regular schemes over F๐‘ and let ๐‘– : ๐‘ โ†ฉโ†’ ๐‘‹ be a regular closed immersion of codimension ๐‘Ÿ. Then we have ๐ป ๐‘— ๐‘ (๐‘‹, O๐‘‹) = 0, ๐ป ๐‘— ๐‘‹/๐‘‘๐‘‰ ๐‘šโˆ’1ฮฉ๐‘–โˆ’1 ๐‘‹) = 0, ๐ป ๐‘— ๐‘ (๐‘‹, ๐‘Š๐‘šฮฉ๐‘– ๐‘ (๐‘‹, ๐‘Š๐‘šฮฉ1 ๐‘‹ ) = 0 for ๐‘— โ‰  ๐‘Ÿ. Corollary 5.2.3 Let the notation be as above. Then we have ๐ป ๐‘— ๐‘ (๐‘‹, ๐‘Š๐‘šฮฉ๐‘– ๐‘‹,log ) = 0 for ๐‘— โ‰  ๐‘Ÿ, ๐‘Ÿ + 1. 54 (cid:47) (cid:47) (cid:47) (cid:15) (cid:15) (cid:47) (cid:47) (cid:15) (cid:15) (cid:47) (cid:47) (cid:15) (cid:15) (cid:47) (cid:47) (cid:47) (cid:47) Also we have the following exact diagram: 0 0 0 0 0 0 ๐ป2 ๐‘ƒ (๐‘‹, ฮฉ1 โ€ข,log) (cid:47) ๐ป1 ๐‘Œ (๐‘‹, ฮฉ1 โ€ข,log) ๐ป1 ๐‘ฆ (๐‘‹ โˆ’ {๐‘ƒ}, ฮฉ1 โ€ข,log) (cid:47) ๐ป1 ๐‘Œ (๐‘‹, ฮฉ1 โ€ข) ๐นโˆ’๐ผ ๐ป1 ๐‘ฆ (๐‘‹ โˆ’ {๐‘ƒ}, ฮฉ1 โ€ข) ๐นโˆ’๐ผ (cid:47) ๐ป1 ๐‘Œ (๐‘‹, ฮฉ1 โ€ข/๐‘‘O) ๐ป1 ๐‘ฆ (๐‘‹ โˆ’ {๐‘ƒ}, ฮฉ1 โ€ข/๐‘‘O) (cid:47) ๐ป2 ๐‘Œ (๐‘‹, ฮฉ1 โ€ข,log) ๐ป2 ๐‘ฆ (๐‘‹ โˆ’ {๐‘ƒ}, ฮฉ1 โ€ข,log) ๐›ฟ๐‘ฆ 1 ๐›ฟ๐‘ฆ 1 ๐›ฟ๐‘ฆ 1 ๐›ฟ๐‘ฆ 2 ๐ป2 ๐‘ƒ (๐‘‹, ฮฉ1 โ€ข,log) ๐ป2 ๐‘ƒ (๐‘‹, ฮฉ1 โ€ข) ๐นโˆ’๐ผ ๐ป2 ๐‘ƒ (๐‘‹, ฮฉ1 โ€ข/๐‘‘O) ๐ป3 ๐‘ƒ (๐‘‹, ฮฉ1 โ€ข,log) 0 0 0 (cid:47) 0 (cid:47) 0 (cid:47) 0 (cid:47) 0 (5.2.2) Notice that we have ๐ป ๐‘— ๐‘ฆ (๐‘‹, โ€ข) = ๐ป ๐‘— ๐‘ฆ (๐‘‹ โˆ’ {๐‘ƒ}, โ€ข) by excision. In the above diagram, we are using cohomology groups instead of cohomology sheaves, since ๐‘‹ is a strictly henselian local scheme. In order to compute ๐›ฟ2 and ๐ป3 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹,log), recall the following facts about the (รฉtale) local cohomology. Lemma 5.2.4 ([39, Lemma 0G74]) Let (๐‘‹, O๐‘‹) be a ringed space. Let ๐‘ โŠ‚ ๐‘‹ be a closed subset. Let ๐พ be an object of ๐ท (O๐‘‹) and denote ๐พab its image in ๐ท (Z๐‘‹). Then there is a canonical map ๐‘…ฮ“๐‘ (๐‘‹, ๐พ) โ†’ ๐‘…ฮ“๐‘ (๐‘‹, ๐พab) in ๐ท (Ab). Proposition 5.2.5 ([39, Lemma 0A46]) Let ๐‘† be a scheme. Let ๐‘ โŠ‚ ๐‘† be a closed subscheme. Let F be a quasi-coherent O๐‘†-module and denote F ๐‘Ž the associated quasi-coherent sheaf on the small รฉtale site of ๐‘†. Then ๐‘ (๐‘†Zar, F ) = ๐ป๐‘ž ๐ป๐‘ž ๐‘ (๐‘†, F ๐‘Ž). Proposition 5.2.6 For any รฉtale morphism ๐‘“ : ๐‘‹ โ†’ ๐‘Œ , ๐‘“ โˆ—ฮฉ1 ๐‘Œ โ†’ ฮฉ1 ๐‘‹ is an isomorphism of O๐‘‹-modules. 55 (cid:15) (cid:15) (cid:15) (cid:15) (cid:15) (cid:15) (cid:47) (cid:47) (cid:47) (cid:15) (cid:15) (cid:47) (cid:47) (cid:15) (cid:15) (cid:15) (cid:15) (cid:47) (cid:47) (cid:47) (cid:47) (cid:15) (cid:15) (cid:47) (cid:47) (cid:15) (cid:15) (cid:15) (cid:15) (cid:47) (cid:47) (cid:47) (cid:47) (cid:15) (cid:15) (cid:47) (cid:47) (cid:15) (cid:15) (cid:15) (cid:15) (cid:47) (cid:47) (cid:47) (cid:47) (cid:15) (cid:15) (cid:47) (cid:47) (cid:15) (cid:15) (cid:15) (cid:15) (cid:47) By Proposition 5.2.6, we get (ฮฉ1 ๐‘† on the small รฉtale site of ๐‘†. It is also known that (O๐‘†)๐‘Ž = O๐‘† (or ๐บ ๐‘Ž), where ๐บ ๐‘Ž is the additive group. Then by Proposition 5.2.5, the รฉtale local ๐‘†)๐‘Ž = ฮฉ1 cohomology groups of ๐‘‹ agree with the Zariski local cohomology groups. Now it suffices to calculate the รฉtale local cohomology groups of ฮฉ1 ๐‘‹/๐‘‘O๐‘‹. In fact, we have the following exact sequences on the small รฉtale site of ๐‘‹ 0 0 (cid:47) O๐‘‹ ๐น (cid:47) O๐‘‹ (cid:47) ๐‘‘O๐‘‹ (cid:47) ๐‘‘O๐‘‹ (cid:47) ฮฉ1 ๐‘‹ (cid:47) ฮฉ1 ๐‘‹/๐‘‘O๐‘‹ (cid:47) 0, (cid:47) 0. (5.2.3) These sequences follow from the Cartier isomorphism [38, Corollary 2.5], since ๐‘‹ is affine regular and ๐น-finite. Passing to the cohomology sequences, we have the exact sequences 0 0 (cid:47) ๐ป1 ๐‘Œ (๐‘‹, O๐‘‹)/๐ป1 ๐‘Œ (๐‘‹, O๐‘‹) ๐‘ (cid:47) ๐ป2 ๐‘ƒ (๐‘‹, O๐‘‹)/๐ป2 ๐‘ƒ (๐‘‹, O๐‘‹) ๐‘ ๐‘‘ ๐‘‘ (cid:47) ๐ป1 ๐‘Œ (๐‘‹, ฮฉ1 ๐‘‹) (cid:47) ๐ป2 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹) (cid:47) ๐ป1 ๐‘Œ (๐‘‹, ฮฉ1 ๐‘‹/๐‘‘O๐‘‹) (cid:47) ๐ป2 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹/๐‘‘O๐‘‹) (cid:47) 0. (cid:47) 0. (5.2.4) Using (5.2.4), it suffices to calculate the local cohomology groups of ฮฉ1 ๐‘‹ and O๐‘‹. They are computed by the Cech complex in the below. Lemma 5.2.7 ([39, Lemma 0A6R]) Let ๐ด be a noetherian ring and let ๐ผ = ( ๐‘“1, ยท ยท ยท , ๐‘“๐‘Ÿ) โŠ‚ ๐ด be an ideal. Set ๐‘ = ๐‘‰ (๐ผ) โŠ‚ Spec( ๐ด). Then ๐‘…ฮ“๐‘ ( ๐ด) โ‰ƒ ( ๐ด (cid:47) (cid:206)๐‘–0 ๐ด ๐‘“๐‘– 0 (cid:47) ยท ยท ยท (cid:47) ๐ด ๐‘“1ยทยทยท ๐‘“๐‘Ÿ ) in ๐ท ( ๐ด). If ๐‘€ is an ๐ด-module, then we have ๐‘…ฮ“๐‘ (๐‘€) โ‰ƒ ( ๐‘€ (cid:47) (cid:206)๐‘–0 ๐‘€ ๐‘“๐‘– 0 (cid:47) ยท ยท ยท (cid:47) ๐‘€ ๐‘“1ยทยทยท ๐‘“๐‘Ÿ ) in ๐ท ( ๐ด). Recall that ๐‘‹ = Spec ๐‘˜ [[๐œ‹, ๐‘ก]], where ๐‘˜ is an algebraically closed field. Let ๐‘… = ๐‘˜ [[๐œ‹, ๐‘ก]]. Then ๐œ‹ and ๐‘ก are regular primes of ๐‘…. Denote by ๐‘‰ (๐œ‹), ๐‘‰ (๐‘ก) the closures of codimension 1 points (๐œ‹) and (๐‘ก) respectively. 56 (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) Then we have the following ๐‘‰ (๐‘ก) (๐‘‹, ฮฉ1 ๐ป1 ๐‘‹) (cid:27) ฮฉ1 ๐‘…[ 1 ๐‘ก ] (cid:46) ฮฉ1 ๐‘… , ๐ป1 (๐‘ก) (๐‘‹, ฮฉ1 ๐‘‹) (cid:27) ๐ป1 (๐‘ก) (๐ท (๐œ‹), ฮฉ1 (cid:46) ๐ป2 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹) (cid:27) ฮฉ1 (ฮฉ1 ๐‘…[ 1 ๐œ‹ ] + ฮฉ1 ๐‘…[ 1 ๐‘ก ] ) ๐ท (๐œ‹)) (cid:27) ฮฉ1 ๐‘…[ 1 ๐œ‹๐‘ก ] (cid:46) ฮฉ1 ๐‘…[ 1 ๐œ‹ ] , ๐‘‰ (๐‘ก) (๐‘‹, O๐‘‹) (cid:27) ๐‘…[ ๐ป1 ] /๐‘… . ๐œ‹๐‘ก ] ๐‘…[ 1 1 ๐‘ก ๐ป1 (๐‘ก) (๐‘‹, O1 ๐‘‹) (cid:27) ๐ป1 ๐ป2 ๐‘ƒ (๐‘‹, O1 ๐‘‹) (cid:27) ๐‘…[ ๐ท (๐œ‹)) (cid:27) ๐‘…[ 1 ๐œ‹๐‘ก ] (cid:30) ๐‘…[ 1 ๐œ‹ ] , (๐‘ก) (๐ท (๐œ‹), O1 (cid:30) (cid:16) 1 ๐œ‹๐‘ก ] ๐‘…[ 1 ๐œ‹ ] + ๐‘…[ (cid:17) ] . 1 ๐‘ก Combining with the exact sequence (5.2.4), it follows that ๐‘‰ (๐‘ก) (๐‘‹, ฮฉ1 ๐ป2 ๐‘‹,log) (cid:27) ฮฉ1 ๐‘…[ 1 ๐‘ก ] (cid:30) (cid:16) ฮฉ1 ๐‘… + (๐น โˆ’ ๐ผ)ฮฉ1 ๐‘…[ 1 ๐‘ก ] + ๐‘‘ (๐‘…[ (cid:17) ]) 1 ๐‘ก (cid:27) Br(๐‘…[ ๐ป2 (๐‘ก) (๐‘‹, ฮฉ1 ๐‘‹,log) = ฮฉ1 ๐‘…[ 1 ๐œ‹๐‘ก ] (cid:27) Br(๐‘…[ ๐ป3 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹,log) = ฮฉ1 ๐‘…[ 1 ๐œ‹๐‘ก ] ๐‘…[ 1 ๐œ‹ ] (cid:30) ]) [ ๐‘] 1 ๐œ‹๐‘ก (cid:30) (cid:16) ฮฉ1 ๐‘…[ 1 ๐œ‹ ] (cid:30) (cid:16) 1 ]) [ ๐‘] /Br(๐‘…) [ ๐‘] , ๐‘ก (cid:30) (cid:16) ฮฉ1 + (๐น โˆ’ ๐ผ)ฮฉ1 + ๐‘‘ (๐‘…[ (cid:17) ]) 1 ๐œ‹๐‘ก ๐‘…[ 1 ๐œ‹๐‘ก ] Br(๐‘…[ 1 ๐œ‹ ]) [ ๐‘] , + ฮฉ1 ๐‘…[ 1 ๐‘ก ] + (๐น โˆ’ ๐ผ)ฮฉ1 ๐‘…[ 1 ๐œ‹๐‘ก ] + ๐‘‘ (๐‘…[ (cid:17) ]) 1 ๐œ‹๐‘ก (cid:27) Br(๐‘…[ 1 ๐œ‹๐‘ก ]) [ ๐‘] Br(๐‘…[ 1 ๐œ‹ ]) [ ๐‘] + Br(๐‘…[ ]) [ ๐‘] (cid:17) . 1 ๐‘ก Notice that we used the fact that the localization of a unique factorization domain (UFD) at a multiplicatively closed subset is also a UFD and the Picard group of a UFD is zero. Furthermore, from the last row of (5.2.2), we get the following identification Br(๐‘…[ 1 ๐‘ก ]) [ ๐‘] /Br(๐‘…) [ ๐‘] (cid:47) Br(๐‘…[ 1 ๐œ‹๐‘ก ]) [ ๐‘] (cid:46) Br(๐‘…[ 1 ๐œ‹ ]) [ ๐‘] (5.2.5) ๐›ฟ ๐‘ฆ 2 (cid:47) Br(๐‘…[ 1 ๐œ‹๐‘ก ]) [ ๐‘] (cid:46) (cid:16) Br(๐‘…[ 1 ๐œ‹ ]) [ ๐‘] + Br(๐‘…[ 1 ๐‘ก ]) [ ๐‘] (cid:17) (cid:47) 0. 5.3 Period-index problems of semi-global fields in positive characteristic In this section, we are going to prove the following theorem as an application of the logarithmic de Rham cohomology with support. 57 (cid:47) (cid:47) (cid:47) Theorem 5.3.1 Let ๐‘‹ be a smooth projective curve over ๐‘˜ ((๐‘ก)) where ๐‘˜ is an algebraically closed fields of characteristic ๐‘ > 0. Suppose that there is a model X over ๐‘˜ [[๐‘ก]] with good reduction. Suppose that ๐œ” โˆˆ Br(๐‘‹) [ ๐‘] satisfies swX (๐œ”) < ๐‘. Then per(๐œ”) = ind(๐œ”). Here the geometric Swan conductor swX is defined based on the smooth model X of ๐‘‹. It is not clear if the definition is independent of the choice of the smooth model. We will review the notations and define the geometric Swan conductor (Definition 5.3.4) in the next subsection. 5.3.1 Notations Let ๐‘‹ be an algebraic curve over ๐พ = ๐‘˜ ((๐‘ก)), where ๐‘˜ = ยฏ๐‘˜ is an algebraically closed field of characteristic ๐‘ > 0. Denote by ๐น = ๐พ (๐‘‹) the function field of ๐‘‹. Let O๐พ = ๐‘˜ [[๐‘ก]] be the complete discrete valuation ring with the field of fraction ๐พ and ๐‘ก the uniformizer. Denote by ๐‘‡ the unique closed point of Spec(O๐พ). Definition 5.3.2 An integral model X of ๐‘‹ is a 2-dimensional regular O๐พ-scheme such that (i) ๐‘ : X โ†’ Spec(O๐พ) is flat and proper; (ii) There is an isomorphism of ๐พ-schemes ๐‘‹ โ‰ƒ X๐พ; (iii) The reduced scheme (๐‘Œ = X ร— ๐‘‡)red is a 1-dimensional (proper) schemes over ๐‘‡ whose irreducible components are all regular and has normal crossings (i.e. X๐‘‡ only has ordinary double points as singularities). The existence of an integral model follows from the resolution of singularities of excellent 2-dimensional schemes ([29]), and the embedded resolution of the special fiber ([30]). If ๐‘‹ admits a smooth integral model X over O๐พ, we say that ๐‘‹ has good reduction over O๐พ. In this case, the special fiber X๐‘‡ will have a single irreducible component that is a proper smooth curve over ๐‘‡. ๐‘‹ X ๐‘Œ Spec(๐พ) (cid:47) Spec(O๐พ) ๐‘‡ = Spec(๐‘˜) For a closed point ๐‘ƒ of X, let OX,๐‘ƒ denote the local ring at ๐‘ƒ, ห†OX,๐‘ƒ the completion of the regular 58 (cid:47) (cid:47) (cid:15) (cid:15) (cid:15) (cid:15) (cid:111) (cid:111) (cid:15) (cid:15) (cid:47) (cid:111) (cid:111) local ring OX,๐‘ƒ at its maximal ideal and ๐น๐‘ƒ the field of fractions of ห†OX,๐‘ƒ. For an open subset ๐‘ˆ of an irreducible component of ๐‘Œ , let ๐‘…๐‘ˆ be the ring consisting of elements in ๐น which are regular on ๐‘ˆ. Then O๐พ โŠ‚ ๐‘…๐‘ˆ. Let ห†๐‘…๐‘ˆ be the (๐‘ก)-adic completion of ๐‘…๐‘ˆ and ๐น๐‘ˆ the field of fractions of ห†๐‘…๐‘ˆ. Now suppose that the algebraic curve ๐‘‹ has good reduction over O๐พ. We have the following exact sequence by purity of the Brauer groups in codimension 1: 0 (cid:47) Br(๐‘‹) (cid:47) Br(๐พ (๐‘‹)) โŠ•๐‘– ๐‘ฅ (cid:47) (cid:47) (cid:201) ๐‘ฅโˆˆ๐‘‹0 Br(Quot( ห†O๐‘‹,๐‘ฅ)). For ๐œ” โˆˆ Br(๐‘‹), we have that ๐œ” โˆˆ Br(O๐‘‹,๐‘ฅ) for all ๐‘ฅ โˆˆ ๐‘‹0. Lemma 5.3.3 Let ๐‘“ : ๐‘‹ โ†’ ๐‘Œ be a morphism of schemes. Let ๐‘ฆ โˆˆ ๐‘Œ and ๐‘ž : ๐‘‹โ€ฒ = ๐‘‹ ร—๐‘Œ SpecO๐‘Œ ,๐‘ฆ โ†’ ๐‘‹ be the projection morphism. Then O๐‘‹ โ€ฒ,๐‘žโˆ’1 (๐‘ฅ) (cid:27) O๐‘‹,๐‘ฅ for any ๐‘ฅ โˆˆ ๐‘‹๐‘ฆ. Recall that every effective irreducible divisor ๐ท โŠ‚ X is either ๐‘Œ (๐ท is vertical), or the closure of a closed point ๐‘ฅ โˆˆ ๐‘‹0 of the generic fiber (๐ท is horizontal). Using this lemma, it follows that ๐œ” โˆˆ Br(OX,๐‘ฅ) for all ๐‘ฅ โˆˆ ๐‘‹0 โŠ‚ X (1). Hence we have that ๐œ” is ramified only along the vertical divisor ๐‘Œ . Hence we define Katoโ€™s Swan conductor of ๐œ” โˆˆ Br(๐‘‹) in the following way. Definition 5.3.4 (Swan conductor for Brauer groups of curves) Let ๐‘˜ be an algebraically closed field of characteristic ๐‘ > 0 and let ๐‘‹ be an algebraic curve over ๐‘˜ ((๐‘ก)). Suppose ๐‘‹ has good reduction with the associated model X โ†’ Spec ๐‘˜ [[๐‘ก]]. Denote by ๐‘ฃ๐‘Œ the valuation associated to the divisor ๐‘Œ and ๐น the function field ๐‘˜ (๐‘‹). Then we define the X-Swan conductor of ๐œ” โˆˆ Br(๐‘‹) [ ๐‘] by swX (๐œ”) = sw๐น,๐‘ฃ๐‘Œ (๐œ”). 5.3.2 Sketch of the proof In order to prove Theorem 5.3.1, we will use the patching method from [19], which reduces the global period-index problem to two types of local period-index problems. We continue to use the notations from last section. 59 (cid:47) (cid:47) Let ๐œ‚ be a generic point of an irreducible component of ๐‘Œ and ๐น๐œ‚ the completion of ๐น at the discrete valuation given by ๐œ‚. Let ๐ท be a central simple algebra over ๐น. By [20, 5.8], there exists an irreducible open set ๐‘ˆ๐œ‚ of ๐‘Œ containing ๐œ‚ such that ind(๐ท โŠ—๐น ๐น๐‘ˆ๐œ‚ ) = ind(๐ท โŠ—๐น ๐น๐œ‚). Theorem 5.3.5 (Patching, [19, Theorem 5.1], [35, Page 228]) Let ๐ท be a central simple algebra over ๐น of period ๐‘. Let ๐‘†0 be a finite set of closed points of X containing all the points of intersection of the components of ๐‘Œ and the support of the ramification divisor of ๐ท. Let ๐‘† be a finite set of closed points of X containing ๐‘†0 and ๐‘Œ \ (โˆช ๐‘ˆ๐œ‚), where ๐œ‚ varies over generic points of ๐‘Œ . Then ind(๐ท) = lcm (cid:8)ind(๐ท โŠ— ๐น๐œ )(cid:9) , where ๐œ runs over ๐‘† and irreducible components of ๐‘Œ \ ๐‘†. We apply this theorem in our situation. First, suppose ๐œ = ๐‘ˆ for some irreducible component ๐‘ˆ of ๐‘Œ \ ๐‘†. Let ๐œ‚ be the generic point of ๐‘ˆ. Then ๐‘ˆ โŠ‚ ๐‘ˆ๐œ‚. Since ๐น๐‘ˆ๐œ‚ โŠ‚ ๐น๐‘ˆ, ind(๐ท โŠ—๐น ๐น๐‘ˆ) | ind(๐ท โŠ—๐น ๐น๐‘ˆ๐œ‚ ) = ind(๐ท โŠ—๐น ๐น๐œ‚). Since the residue field of the generic point of ๐‘ˆ is a function field of the curve over an algebraically closed field, by Theorem 4.2.2, we have ind(๐ท โŠ— ๐น๐œ‚)| ๐‘. Hence, ind(๐ท โŠ—๐น ๐น๐‘ˆ) | ๐‘. Next suppose ๐œ = ๐‘ƒ โˆˆ ๐‘†, where ๐‘ƒ is a closed point of X. By the Cohen structure theorem for an equi-characteristic field [39, Tag 0C0S], we have ห†OX,๐‘ƒ (cid:27) ๐‘˜ [[๐œ‹, ๐‘ก]], where ๐œ‹, ๐‘ก are local uniformizers at ๐‘ƒ. Notice that it is actually a ๐‘˜-algebra isomorphism, since the residue field ๐‘˜ is naturally embedded into the complete local ring. In general, the Cohenโ€™s structure theorem only provides a ring isomorphism instead of a ๐‘˜-algebra isomorphism. To analyze the period-index problem for the field ๐น๐‘ƒ = ๐‘˜ ((๐œ‹, ๐‘ก)), we will apply Theorem 5.1.4 to the 2-dimensional regular local ring ๐‘˜ [[๐œ‹, ๐‘ก]]. Notice that we have the condition swX (๐œ”) < ๐‘. We would relate the X-Swan conductor to the local Katoโ€™s Swan conductor in the next subsection. 60 5.3.3 Local Swan Conductor We use the notations from Theorem 5.1.4. There is a commutative diagram Br(๐น) [ ๐‘] โ‰ƒ ๐ป1(๐น, ฮฉ1 ๐น,log) ๐ป1(OX,๐‘ƒ, ฮฉ1 โ€ข,log) (cid:16) (cid:47) ๐ป2 (๐‘ก) OX,๐‘ƒ, ฮฉ1 โ€ข,log (cid:17) , ๐ป1( ห†OX,๐‘ƒ, ฮฉ1 โ€ข,log) (cid:47) ๐ป2 (๐‘ก) (cid:16) ห†OX,๐‘ƒ, ฮฉ1 โ€ข,log (cid:17) where the horizontal row is part of the long exact sequence in local รฉtale cohomology associated to the sheaf ฮฉ1 โ€ข,log. By (5.2.1), we have the following isomorhisms ๐ป2 (๐‘ก) (OX,๐‘ƒ, ฮฉ1 ๐ป2 (๐‘ก) ( ห†OX,๐‘ƒ, ฮฉ1 โ€ข,log) (cid:27) Br(Frac((OX,๐‘ƒ) โ„Ž โ€ข,log) (cid:27) Br(Frac(( ห†OX,๐‘ƒ) โ„Ž (๐‘ก))) [ ๐‘]/Br((OX,๐‘ƒ) โ„Ž (๐‘ก))) [ ๐‘]/Br(( ห†OX,๐‘ƒ) โ„Ž (๐‘ก)) [ ๐‘], (๐‘ก)) [ ๐‘]. (5.3.1) (5.3.2) Notice that, for a prime ideal ๐”ญ of a ring ๐‘…, we denote by ๐‘…โ„Ž ๐”ญ the henselization of the localization ๐‘…๐”ญ of the ring ๐‘… at the prime ideal ๐”ญ. Using the diagram above, we can give a result which relates the X-Swan conductor to the local cohomology groups as in (5.3.1) and (5.3.2). Proposition 5.3.6 Let ๐‘‹ be an algebraic curve over ๐‘˜ ((๐‘ก)) with a smooth integral model X โ†’ Spec ๐‘˜ [[๐‘ก]] and ๐œ” โˆˆ Br(๐‘‹) [ ๐‘]. Then swFrac(( ห†OX,๐‘ƒ)โ„Ž (๐‘ก ) ) (๐œ”) = swFrac((OX,๐‘ƒ)โ„Ž (๐‘ก ) ) (๐œ”) = swX (๐œ”). Proof of Proposition 5.3.6. The second equality follows from Definition 5.3.4. For the first one, by Lemma 5.3.7, we can take ๐พ = Frac((OX,๐‘ƒ) โ„Ž (๐‘ก)). Then it suffices to show that the residue field extension is separable, since ๐‘ก is the uniformizer in both fields. The residue field extension is (๐‘ก))) and ๐ฟ = Frac(( ห†OX,๐‘ƒ) โ„Ž given by ๐‘˜ (๐œ‹) โ†’ ๐‘˜ ((๐œ‹)), which is a completion morphism. The separability is given by Lemma 5.3.8. Lemma 5.3.7 ([26, Lemma 6.2, Page 119]) โ–ก Let ๐พ โŠ‚ ๐ฟ be two henselian discretely valued fields such that O๐พ โŠ‚ O๐ฟ and ๐‘š ๐ฟ = O๐ฟ๐‘š๐พ. Assume 61 (cid:47) (cid:47) (cid:41) (cid:41) (cid:15) (cid:15) (cid:47) (cid:15) (cid:15) (cid:47) that the residue field of ๐ฟ is separable over the residue field of ๐พ. Then, for any ๐œ” โˆˆ Br(๐พ) [ ๐‘], we have Lemma 5.3.8 sw๐พ (๐œ”) = sw๐ฟ (๐œ”). Let ๐น be a discretely valued field with [๐น : ๐น ๐‘] = ๐‘ and ห†๐น be its completion. Then the completion morphism ๐น โ†’ ห†๐น is separable. Proof. We prove it by contradiction. Suppose that there exists an algebraic extension ๐ธ/๐น inside ห†๐น which is not separable. Then we can decompose ๐ธ/๐น as a chain of field extensions ๐ธ/๐ฟ/๐น where ๐ฟ is separable over ๐น and ๐ธ/๐ฟ is purely inseparable. Moreover, let ๐œ‹ be a uniformizer of ๐น. Then inseparable, there exists ๐‘Ž โˆˆ ๐ธ โŠ‚ ห†๐น such that ๐‘Ž ๐‘ โˆˆ ๐ฟ \ ๐ฟ ๐‘. Let ๐‘ = ๐‘Ž ๐‘. It follows that ๐‘ = we have that ๐œ‹ is still a uniformizer in ๐ฟ, and it gives a ๐‘-basis of ๐ฟ/๐ฟ ๐‘. Since ๐ธ/๐ฟ is purely ๐‘“ ๐‘ ๐‘– ๐œ‹๐‘– in ๐ฟ (also in ห†๐น) such that ๐‘“๐‘– โ‰  0 for some ๐‘– > 0. However, notice that ๐œ‹ is a uniformizer of ห†๐น. ๐‘โˆ’1 (cid:205) ๐‘–=0 Therefore, it implies that ๐‘ is not a ๐‘-power in ห†๐น, which is a contradiction. Hence the conclusion follows. 5.3.4 The end of the proof Theorem 5.3.9 โ–ก Let ๐‘… = ๐‘˜ [[๐œ‹, ๐‘ก]], ๐‘‹ = Spec(๐‘…), ๐พ = Frac(๐‘…) and ๐œ” โˆˆ Br(๐พ) [ ๐‘] which ramifies only along (๐‘ก) with sw๐พ,(๐‘ก) (๐œ”) = ๐‘š < ๐‘. Then ๐œ” = [โˆ—, ๐œ‹). Proof. By Theorem 5.1.4, we have the exact sequence 0 (cid:47) ๐ป1(๐‘‹, ฮฉ1 ๐‘‹,log) (cid:47) ๐ป1(๐พ, ฮฉ1 ๐พ,log) ๐›ฟ1 (cid:47) (cid:201) ๐‘ฅโˆˆ๐‘‹ 1 ๐ป2 ๐‘ฅ (๐‘‹, ฮฉ1 ๐‘‹,log) ๐›ฟ2 (cid:47) ๐ป3 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹,log) (cid:47) 0. Since ๐‘‹ is affine and regular, ๐ป1(๐‘‹รฉt, ฮฉ1 ๐‘‹,log) โ‰ƒ Br(๐‘…) [ ๐‘] โ‰ƒ Br(๐‘˜) [ ๐‘] = 0. So the last exact sequence reduces to 0 (cid:47) ๐ป1(๐พ, ฮฉ1 ๐พ,log) ๐›ฟ1 (cid:47) (cid:201) ๐‘ฅโˆˆ๐‘‹ 1 ๐ป2 ๐‘ฅ (๐‘‹, ฮฉ1 ๐‘‹,log) ๐›ฟ2 62 (cid:47) ๐ป3 ๐‘ƒ (๐‘‹, ฮฉ1 ๐‘‹,log) (cid:47) 0. (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) (cid:47) Our goal is to find a symbol algebra that represents ๐œ” in the Brauer group of ๐พ. Since sw๐พ,(๐‘ก) (๐œ”) = ๐‘š < ๐‘, by Theorem 4.2.2, we have that ๐œ” = [ ๐‘“๐‘š ๐‘ก๐‘š , ๐œ‹) + [ ๐‘“๐‘šโˆ’1 ๐‘ก๐‘šโˆ’1 , ๐œ‹) + ยท ยท ยท + [ ๐‘“0, ๐‘ก) in Br(๐พ) [ ๐‘], where ๐‘“๐‘– โˆˆ ๐œ‹ ยท ๐‘˜ [[๐œ‹]] for all ๐‘–. The choices of ๐‘“๐‘– follow from the identification in (5.2.5). Since that ๐œ‹ is a regular element, we have a consistent way to lift the elements from ๐‘˜ ((๐œ‹)). Since ๐‘“0 โˆˆ ๐‘˜ [[๐œ‹]] and ๐‘˜ is algebraically closed, by Henselโ€™s lemma, we have [ ๐‘“0, ๐‘ก) โ‰ƒ 0. Hence, ๐œ” = [ ๐‘“๐‘š ๐‘ก๐‘š + ยท ยท ยท + ๐‘“1 ๐‘ก , ๐œ‹). โ–ก Now we are ready to finish the proof of Theorem 5.3.1 based on Theorem 5.3.5. Proof of Theorem 5.3.1. First, suppose ๐œ = ๐‘ˆ for some irreducible component ๐‘ˆ of ๐‘Œ \ ๐‘†. Let ๐œ‚ be the generic point of ๐‘ˆ. Then ๐‘ˆ โŠ‚ ๐‘ˆ๐œ‚. Since ๐น๐‘ˆ๐œ‚ โŠ‚ ๐น๐‘ˆ, ind(๐ท โŠ—๐น ๐น๐‘ˆ) | ind(๐ท โŠ—๐น ๐น๐‘ˆ๐œ‚ ) = ind(๐ท โŠ—๐น ๐น๐œ‚). Since the residue field of the generic point of ๐‘ˆ is a function field of the curve over an algebraically closed field, by Theorem 4.2.2, we have ind(๐ท โŠ— ๐น๐œ‚)| ๐‘. Hence, ind(๐ท โŠ—๐น ๐น๐‘ˆ) | ๐‘. Second, suppose ๐œ = ๐‘ƒ โˆˆ ๐‘†, where ๐‘ƒ is a closed point of X. Combining Proposition 5.3.6 and Theorem 5.3.9, we have ind(๐ท โŠ— ๐น๐œ )| ๐‘. Finally, by Theorem 5.3.5, we have that per(๐œ”) = ind(๐œ”). โ–ก 63 BIBLIOGRAPHY [1] A. Adrian Albert. Structure of Algebras. American Mathematical Society Colloquium Publications, Vol. 24. American Mathematical Society, New York, 1939. [2] Roberto Aravire, Bill Jacob, and Manuel Oโ€™Ryan. The de Rham Witt complex, cohomological kernels and ๐‘๐‘š-extensions in characteristic ๐‘. J. Pure Appl. Algebra, 222(12):3891โ€“3945, 2018. ISSN 0022-4049. doi: 10.1016/j.jpaa.2018.02.013. URL https://doi-org.proxy2.cl. msu.edu/10.1016/j.jpaa.2018.02.013. [3] M. Artin. Brauer-Severi varieties. In Brauer groups in ring theory and algebraic geometry (Wilrฤณk, 1981), volume 917 of Lecture Notes in Math, pages pp 194โ€“210. Springer, Berlin- New York, 1982. [4] M. Artin and D. Mumford. Some elementary examples of unirational varieties which are not rational. Proc. London Math. Soc. (3), 25:75โ€“95, 1972. ISSN 0024-6115. doi: 10.1112/plms/ s3-25.1.75. URL https://doi-org.proxy2.cl.msu.edu/10.1112/plms/s3-25.1.75. [5] Michael Artin and Aise Johan de Jong. Stale orders over surfaces. Preprint, 2003. [6] Nivedita Bhaskhar and Bastian Haase. Brauer ๐‘-dimension of complete discretely valued fields. Trans. Amer. Math. Soc., 373(5):3709โ€“3732, 2020. ISSN 0002-9947,1088-6850. doi: 10.1090/tran/8038. URL https://doi.org/10.1090/tran/8038. [7] Spencer Bloch and Kazuya Kato. ๐‘-adic รฉtale cohomology. Inst. Hautes ร‰tudes Sci. Publ. ISSN 0073-8301,1618-1913. URL http://www.numdam.org/ Math., (63):107โ€“152, 1986. item?id=PMIHES_1986__63__107_0. [8] Spencer Bloch and Arthur Ogus. Gerstenโ€™s conjecture and the homology of schemes. Ann. Sci. ร‰cole Norm. Sup. (4), 7:181โ€“201, 1974. ISSN 0012-9593. URL http://www.numdam. org/item?id=ASENS_1974_4_7_2_181_0. [9] Nicolas Bourbaki. Algebra II. Chapters 4โ€“7. Springer-Verlag, Berlin, english edition, 2003. 978-3-642-61698-3. URL https://doi.org/10.1007/978-3-642-61698-3. Elements of Mathematics (Berlin). doi: 10.1007/ ISBN 3-540-00706-7. [10] Jean-Luc Brylinski. Thรฉorie du corps de classes de Kato et revรชtements abรฉliens de surfaces. Ann. Inst. Fourier (Grenoble), 33(3):23โ€“38, 1983. ISSN 0373-0956,1777-5310. URL http: //www.numdam.org/item?id=AIF_1983__33_3_23_0. [11] Adam Chapman and Kelly McKinnie. Essential dimension, symbol length and ๐‘-rank. ISSN 0008-4395,1496-4287. doi: 10.4153/ Canad. Math. Bull., 63(4):882โ€“890, 2020. s0008439520000119. URL https://doi.org/10.4153/s0008439520000119. [12] Ivan Chipchakov. Henselian discrete valued stable fields. Turkish J. Math., 46(5):1735โ€“1748, 64 2022. ISSN 1300-0098. [13] Ivan D. Chipchakov. On the Brauer ๐‘-dimension of Henselian discrete valued fields of residual characteristic ๐‘ > 0. J. Pure Appl. Algebra, 226(8):Paper No. 106948, 22, 2022. ISSN 0022-4049,1873-1376. doi: 10.1016/j.jpaa.2021.106948. URL https://doi.org/10.1016/ j.jpaa.2021.106948. [14] Jean-Louis Colliot-Thรฉlรจne. Cohomologie galoisienne des corps valuรฉs discrets henseliens, dโ€™aprรจs K. Kato et S. Bloch. In Algebraic ๐พ-theory and its applications (Trieste, 1997), pages 120โ€“163. World Sci. Publ., River Edge, NJ, 1999. ISBN 981-02-3491-0. [15] Jean-Louis Colliot-Thรฉlรจne, Raymond T. Hoobler, and Bruno Kahn. The Bloch-Ogus-Gabber theorem. In Algebraic ๐พ-theory (Toronto, ON, 1996), volume 16 of Fields Inst. Commun., pages 31โ€“94. Amer. Math. Soc., Providence, RI, 1997. ISBN 0-8218-0818-4. [16] A. J. de Jong. The period-index problem for the Brauer group of an algebraic surface. Duke ISSN 0012-7094. doi: 10.1215/S0012-7094-04-12313-9. Math. J., 123(1):71โ€“94, 2004. URL https://doi-org.proxy2.cl.msu.edu/10.1215/S0012-7094-04-12313-9. [17] Philippe Gille and Tamรกs Szamuely. Central simple algebras and Galois cohomology, volume 165 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2017. ISBN 978-1-316-60988-0; 978-1-107-15637-1. [18] Michel Gros and Noriyuki Suwa. La conjecture de Gersten pour les faisceaux de Hodge- Witt logarithmique. Duke Math. J., 57(2):615โ€“628, 1988. ISSN 0012-7094,1547-7398. doi: 10.1215/S0012-7094-88-05727-4. URL https://doi.org/10.1215/S0012-7094-88-05727-4. [19] David Harbater, Julia Hartmann, and Daniel Krashen. Applications of patching to quadratic ISSN 0020- forms and central simple algebras. 9910. doi: 10.1007/s00222-009-0195-5. URL https://doi-org.proxy2.cl.msu.edu/10.1007/ s00222-009-0195-5. Invent. Math., 178(2):231โ€“263, 2009. [20] David Harbater, Julia Hartmann, and Daniel Krashen. Local-global principles for torsors over arithmetic curves. Amer. J. Math., 137(6):1559โ€“1612, 2015. ISSN 0002-9327,1080-6377. doi: 10.1353/ajm.2015.0039. URL https://doi.org/10.1353/ajm.2015.0039. [21] David Harbater, Julia Hartmann, and Daniel Krashen. Bounding cohomology classes over semiglobal fields. Israel J. Math., 257(2):353โ€“387, 2023. ISSN 0021-2172,1565-8511. doi: 10.1007/s11856-023-2549-x. URL https://doi.org/10.1007/s11856-023-2549-x. [22] Luc Illusie. Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. ร‰cole Norm. Sup. (4), 12(4):501โ€“661, 1979. ISSN 0012-9593. URL http://www.numdam.org.proxy2.cl. msu.edu/item?id=ASENS_1979_4_12_4_501_0. [23] O. T. Izhboldin. On the cohomology groups of the field of rational functions. In Mathematics 65 in St. Petersburg, volume 174 of Amer. Math. Soc. Transl. Ser. 2, pages 21โ€“44. Amer. Math. Soc., Providence, RI, 1996. ISBN 0-8218-0559-2. doi: 10.1090/trans2/174/03. URL https://doi.org/10.1090/trans2/174/03. [24] Kazuya Kato. A generalization of local class field theory by using ๐พ-groups. I. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26(2):303โ€“376, 1979. ISSN 0040-8980. [25] Kazuya Kato. Galois cohomology of complete discrete valuation fields. In Algebraic ๐พ- theory, Part II (Oberwolfach, 1980), volume 967 of Lecture Notes in Math., pages 215โ€“238. Springer, Berlin-New York, 1982. [26] Kazuya Kato. Swan conductors for characters of degree one in the imperfect residue field case. In Algebraic ๐พ-theory and algebraic number theory (Honolulu, HI, 1987), volume 83 of Contemp. Math., pages 101โ€“131. Amer. Math. Soc., Providence, RI, 1989. doi: 10.1090/ conm/083/991978. URL https://doi-org.proxy2.cl.msu.edu/10.1090/conm/083/991978. [27] Serge Lang. On quasi algebraic closure. Ann. of Math. (2), 55:373โ€“390, 1952. ISSN 0003-486X. doi: 10.2307/1969785. URL https://doi.org/10.2307/1969785. [28] Max Lieblich. Twisted sheaves and the period-index problem. Compos. Math., 144(1):1โ€“31, 2008. ISSN 0010-437X. doi: 10.1112/S0010437X07003144. URL https://doi-org.proxy2. cl.msu.edu/10.1112/S0010437X07003144. [29] Joseph Lipman. Desingularization of two-dimensional schemes. Ann. of Math. (2), 107(1): ISSN 0003-486X. doi: 10.2307/1971141. URL https://doi.org/10.2307/ 151โ€“207, 1978. 1971141. [30] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002. ISBN 0-19-850284-2. Translated from the French by Reinie Ernรฉ, Oxford Science Publications. [31] Eliyahu Matzri. Symbol length in the Brauer group of a field. Trans. Amer. Math. Soc., 368 (1):413โ€“427, 2016. ISSN 0002-9947. doi: 10.1090/tran/6326. URL https://doi-org.proxy2. cl.msu.edu/10.1090/tran/6326. [32] A. S. Merkurโ€™ev and A. A. Suslin. ๐พ-cohomology of Severi-Brauer varieties and the norm Izv. Akad. Nauk SSSR Ser. Mat., 46(5):1011โ€“1046, 1135โ€“1136, residue homomorphism. 1982. ISSN 0373-2436. [33] J. S. Milne. Fields and Galois Theory. Kea Books, Ann Arbor, MI, 2022. [34] James S. Milne. ร‰tale cohomology, volume No. 33. Princeton University Press, Princeton, N.J., 1980. ISBN 0-691-08238-3. [35] R. Parimala and V. Suresh. Period-index and ๐‘ข-invariant questions for function fields over com- 66 plete discretely valued fields. Invent. Math., 197(1):215โ€“235, 2014. ISSN 0020-9910,1432- 1297. doi: 10.1007/s00222-013-0483-y. URL https://doi.org/10.1007/s00222-013-0483-y. [36] David J. Saltman. Division algebras over ๐‘-adic curves. J. Ramanujan Math. Soc., 12(1): 25โ€“47, 1997. ISSN 0970-1249,2320-3110. [37] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. ISBN 0-387-90424-7. Translated from the French by Marvin Jay Greenberg. [38] Atsushi Shiho. On logarithmic Hodge-Witt cohomology of regular schemes. J. Math. Sci. Univ. Tokyo, 14(4):567โ€“635, 2007. ISSN 1340-5705. [39] The Stacks project authors. The Stacks project, 2023. [40] Jason Starr and Johan de Jong. Almost proper GIT-stacks and discriminant avoidance. Doc. Math., 15:957โ€“972, 2010. ISSN 1431-0635,1431-0643. [41] Allen Tannenbaum. The Brauer group and unirationality: an example of Artin-Mumford. In The Brauer group (Sem., Les Plans-sur-Bex, 1980), volume 844 of Lecture Notes in Math., pages 103โ€“128. Springer, Berlin, 1981. [42] Guy Terjanian. Un contre-exemple ร  une conjecture dโ€™Artin. C. R. Acad. Sci. Paris Sรฉr. A-B, 262:A612, 1966. ISSN 0151-0509. [43] Burt Totaro. Cohomological invariants in positive characteristic. Int. Math. Res. Not. IMRN, (9):7152โ€“7201, 2022. ISSN 1073-7928. doi: 10.1093/imrn/rnaa321. URL https://doi-org. proxy2.cl.msu.edu/10.1093/imrn/rnaa321. [44] Kestutis ฤŒesnaviฤius. Purity for the Brauer group. Duke Math. J., 168(8):1461โ€“1486, 2019. ISSN 0012-7094. doi: 10.1215/00127094-2018-0057. URL https://doi-org.proxy2.cl.msu. edu/10.1215/00127094-2018-0057. [45] Vladimir Voevodsky. Motivic cohomology with Z/2-coefficients. Publ. Math. Inst. doi: 10.1007/ Hautes ร‰tudes Sci., (98):59โ€“104, 2003. s10240-003-0010-6. URL https://doi.org/10.1007/s10240-003-0010-6. ISSN 0073-8301,1618-1913. [46] Takao Yamazaki. Reduced norm map of division algebras over complete discrete val- uation fields of certain type. Compositio Math., 112(2):127โ€“145, 1998. ISSN 0010- 437X. doi: 10.1023/A:1000439025718. URL https://doi-org.proxy2.cl.msu.edu/10.1023/A: 1000439025718. [47] Yizhen Zhao. Brauer ๐‘-dimensions of fields of characteristic ๐‘ > 0. Preprint. Available on request, 2023. 67 APPENDIX A SYMBOL LENGTH AND FOLIATION THEORY Let ๐น be a field of characteristic ๐‘ > 0 and [๐น : ๐น ๐‘] = ๐‘๐‘›, ๐‘› โˆˆ N>0. We can approach the symbol length problem of ฮฉ1 ๐น/๐‘ 1 ๐น using the Galois theory of purely inseparable extensions. Let ๐ฟ/๐พ be a field extension of characteristic ๐‘ > 0. The vector space Der๐พ (๐ฟ) of ๐พ-derivations ๐ท : ๐ฟ โ†’ ๐ฟ is closed under forming commutators [๐ท, ๐ทโ€ฒ] and ๐‘-fold compositions ๐ท [ ๐‘] in the associative ring End๐พ (๐ฟ). We can view Der๐พ (๐ฟ) as a Lie algebra over ๐พ, endowed the map ๐ท โ†ฆโ†’ ๐ท [ ๐‘] as an additional structure. This phenomenon only happens in characteristic ๐‘ > 0. We call them restricted Lie algebras. A restricted Lie algebra (๐‘-Lie algebra) over ๐พ is a Lie algebra ๐”ค over ๐พ, together with a map ๐”ค โ†’ ๐”ค, ๐‘ฅ โ†ฆโ†’ ๐‘ฅ [ ๐‘] called the ๐‘-map, subject to the following three axioms: (R 1) We have ad๐‘ฅ [ ๐‘] = (ad๐‘ฅ) ๐‘ for all vectors ๐‘ฅ โˆˆ ๐”ค. (R 2) Moreover (๐œ† ยท ๐‘ฅ) [ ๐‘] = ๐œ† ๐‘ ยท ๐‘ฅ [ ๐‘] for all vectors ๐‘ฅ โˆˆ ๐”ค and scalars ๐œ† โˆˆ ๐พ. (R 3) The formula (๐‘ฅ + ๐‘ฆ) [ ๐‘] = ๐‘ฅ [ ๐‘] + ๐‘ฆ [ ๐‘] + (cid:205)๐‘โˆ’1 ๐‘Ÿ=1 ๐‘ ๐‘Ÿ (๐‘ฅ, ๐‘ฆ) holds for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐”ค. Here the summands ๐‘ ๐‘Ÿ (๐‘ฅ, ๐‘ฆ) are universal expressions defined by ๐‘ ๐‘Ÿ (๐‘ก0, ๐‘ก1) = โˆ’ 1 ๐‘Ÿ โˆ‘๏ธ ๐‘ข (ad๐‘ก๐‘ข(1) โ—ฆ ยท ยท ยท โ—ฆ (ad๐‘ก๐‘ข( ๐‘โˆ’1) (๐‘ก1), where ad๐‘Ž (๐‘ฅ) = [๐‘Ž, ๐‘ฅ] denotes the adjoint representation, and the index runs over all maps ๐‘ข : {1, ยท ยท ยท , ๐‘ โˆ’ 1} โ†’ {0, 1} taking the value zero exactly ๐‘Ÿ times. Restricted Lie algebras were introduced and studied by Jacobson. It appears in the Galois theory of purely inseparable extensions. We will recall it below. We say ๐ฟ/๐พ has exponent 1 if ๐‘ฅ ๐‘ โˆˆ ๐พ for all ๐‘ฅ โˆˆ ๐ฟ. Theorem A.0.1 (Jacobson) Let ๐ฟ/๐พ be a finite purely inseparable field extension of exponent one. There is an inclusion- reversing bฤณection between ๐ฟ/๐พ-restricted Lie algebra Der๐ธ (๐ฟ) โŠ‚ Der๐พ (๐ฟ) and intermediate field extension ๐พ โŠ‚ ๐ธ โŠ‚ ๐ฟ. Recall that there is an isomorphism of ๐น-vector spaces Hom๐น (ฮฉ1 ๐น, ๐น) (cid:27)๐œ™ Der๐น ๐‘ (๐น), where 68 ๐‘“ โˆˆ Hom๐น (ฮฉ1 ๐น, ๐น) โ†ฆโ†’ ๐œ™( ๐‘“ )(๐‘Ž) = ๐‘“ (๐‘‘๐‘Ž). Notice that ๐‘ 1 ๐น has dimension ( ๐‘๐‘› + ๐‘› โˆ’ 1) as a ๐น ๐‘-vector space. Let ๐›ผ โˆˆ ฮฉ1 ๐น and ๐›ฝ โˆˆ ๐‘ 1 ๐น, ๐น) defined by ๐‘‰ (๐›ผ + ๐›ฝ) = ๐น/๐‘ 1 ๐น, ๐น) | ๐‘“ (๐›ผ + ๐›ฝ) = 0}. Denote the image of ๐‘‰ (๐›ผ + ๐›ฝ) in Der๐น ๐‘ (๐น) also by ๐‘‰ (๐›ผ + ๐›ฝ). Then the existence of a restricted ๐น-subspace of ๐‘‰ (๐›ผ + ๐›ฝ) would be equivalent to the symbol length ๐น. Consider the ๐น-subspace of Hom๐น (ฮฉ1 { ๐‘“ โˆˆ Hom๐น (ฮฉ1 conjecture 3.5.7. Let us investigate the special case ( ๐‘, ๐‘›) = (2, 2) using this approach. ๐œ• ๐œ• Let ๐œ” โˆˆ Der๐น ๐‘ (๐น) and { ๐œ•๐‘  ๐œ•๐‘ก ๐œ• ๐œ•๐‘ก for ๐‘“ , ๐‘” โˆˆ ๐น. we have that ๐œ” = ๐‘“ ๐œ• ๐œ•๐‘  + ๐‘” , } be a ๐น-basis of Der๐น ๐‘ (๐น) given by a ๐‘-basis {๐‘ , ๐‘ก} of ๐น. Then Since dim๐น Der๐น ๐‘ (๐น) = 2, we want to find out the conditions on ๐‘“ and ๐‘” such that ๐œ”[ ๐‘] = ๐‘˜๐œ” for ๐‘˜ โˆˆ ๐น. If either of ๐‘“ or ๐‘” is 0, it is obvious ๐œ”[ ๐‘] = 0. Hence we assume that ๐‘“ , ๐‘” โ‰  0. Since ๐‘ = 2, ๐œ”[2] (๐‘ ) =๐œ”[2] (๐‘‘๐‘ ) = ๐œ”( ๐‘“ ) =๐œ”(๐‘‘๐‘“ ) = ๐œ”( ๐‘“๐‘ ๐‘‘๐‘  + ๐‘“๐‘ก ๐‘‘๐‘ก) = ๐‘“๐‘  ๐‘“ + ๐‘“๐‘ก๐‘”. (A.0.1) (A.0.2) (A.0.3) Similarly, we have that ๐œ”[2] (๐‘ก) = ๐‘”๐‘  ๐‘“ + ๐‘”๐‘ก๐‘”. Hence, ๐œ”[2] = ๐‘˜๐œ” is equivalent to the existence of a solution to the following equation ( ๐‘“๐‘  ๐‘“ + ๐‘“๐‘ก๐‘”)๐‘” = (๐‘”๐‘  ๐‘“ + ๐‘”๐‘ก๐‘”) ๐‘“ . (A.0.4) Since we are considering the ๐น-vector space {๐‘™ ยท ๐œ” | ๐‘™ โˆˆ ๐น}, we can further assume that ๐‘” = 1. Then the equation reduces to ๐‘“๐‘  ๐‘“ + ๐‘“๐‘ก = 0. (A.0.5) Now we take the expansion of ๐‘“ over ๐น ๐‘. Let ๐‘“ = ๐‘“ 2 00 + ๐‘“ 2 01 ๐‘ก + ๐‘“ 2 10 ๐‘  + ๐‘“ 2 11 ๐‘ ๐‘ก. Then ๐‘“๐‘  = ๐‘“ 2 10 + ๐‘“ 2 11 ๐‘ก and ๐‘“๐‘ก = ๐‘“ 2 01 + ๐‘“ 2 11 ๐‘ . It follows that ( ๐‘“ 2 01 + ๐‘“ 2 00 10 + ๐‘“ 2 ๐‘“ 2 11 ๐‘“ 2 01 ๐‘ก2) + ( ๐‘“ 2 11 + ๐‘“ 4 10 + ๐‘“ 4 11 ๐‘ก2)๐‘  + ( ๐‘“ 2 11 00 + ๐‘“ 2 ๐‘“ 2 10 01)๐‘ก = 0. ๐‘“ 2 (A.0.6) 69 It is equivalent to the following system of equations ๐‘“01 + ๐‘“00 ๐‘“10 + ๐‘“11 ๐‘“01๐‘ก = 0 10 + ๐‘“ 2 11 ๐‘“11 ๐‘“00 + ๐‘“10 ๐‘“01 ๐‘“11 + ๐‘“ 2 = 0 = 0. ๐‘ก ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ (A.0.7) If ๐‘“11 = 0, it implies ๐‘“10 = ๐‘“01 = 0. Hence we get the first kind of solutions ๐‘“ = ๐‘“ 2 00. When ๐‘“11 โ‰  0, we notice that the determinant of the first and the third equations respect to variables ๐‘“00 and ๐‘“01 is (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ๐‘“10 1 + ๐‘“11๐‘ก ๐‘“11 ๐‘“10 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) = ๐‘“11 + ๐‘“ 2 10 + ๐‘“ 2 11 ๐‘ก. (A.0.8) Therefore, the second equation of (A.0.7) is more independent comparing with others. Moreover, since ๐‘“11 โ‰  0, we can divide both sides of the second equation by ๐‘“ 2 11 (cid:0) ๐‘“10 ๐‘“11 (cid:1) 2 + 1 ๐‘“11 + ๐‘ก = 0. Let ๐‘š = ๐‘“10 ๐‘“11 โˆˆ ๐น. Then we have ๐‘“11 = ๐‘› โˆˆ ๐น, and ๐‘“ = ๐‘š2๐‘›2 + ๐‘›2๐‘ก + and ๐‘“10 = 1 ๐‘š2 + ๐‘ก ๐‘ ๐‘ก (๐‘š2 + ๐‘ก)2 . ๐‘š2๐‘  (๐‘š2 + ๐‘ก)2 + (A.0.9) ๐‘š ๐‘š2 + ๐‘ก . Hence ๐‘“00 = ๐‘š๐‘›, ๐‘“01 = ๐‘› for Summarizing the above discussions, we get the following theorem which classifies all the proper restricted ๐น-subspaces of Der๐น ๐‘ (๐น). Theorem A.0.2 (Classification of proper restricted subspaces of Der๐น ๐‘ (๐น)) Let ๐น be a field of characteristic ๐‘ = 2 and [๐น : ๐น ๐‘] = ๐‘2. Let {๐‘ , ๐‘ก} be a ๐‘-basis of ๐น and ๐œ” = ๐‘“ ๐œ• ๐œ•๐‘  + ๐‘” ๐œ• ๐œ•๐‘ก โˆˆ Der๐น ๐‘ (๐น) (cid:27) Hom๐น (ฮฉ1 ๐น, ๐น). Then the ๐น-subspace of Der๐น ๐‘ (๐น) generated by ๐œ” is restricted if and only if [ ๐‘“ : ๐‘”] โˆˆ P1 ๐น takes values in the following cases: (๐‘–) [1 : 0], [0 : 1]; (๐‘–๐‘–) [๐‘˜ 2 : 1] for ๐‘˜ โˆˆ ๐นร—; (๐‘–๐‘–๐‘–) [๐‘š2๐‘›2 + ๐‘›2๐‘ก + ๐‘š2๐‘  (๐‘š2 + ๐‘ก)2 + ๐‘ ๐‘ก (๐‘š2 + ๐‘ก)2 : 1] for ๐‘š, ๐‘› โˆˆ ๐น. Now we can turn back to the symbol length problem of the group ฮฉ1 ๐น. Keep the assumptions ๐น. Then ๐›ผ = ๐‘š2๐‘กdlog(๐‘ ) + ๐‘›2๐‘ dlog(๐‘ก) + ๐‘™2๐‘ ๐‘กdlog(๐‘ ), where ๐น/๐‘ 1 in Theorem A.0.2. Let ๐›ผ โˆˆ ฮฉ1 ๐น/๐‘ 1 70 ๐‘“ , ๐‘”, โ„Ž โˆˆ ๐น. Let ๐›ฝ โˆˆ ๐‘ 1 ๐น. Then ๐›ฝ = ๐‘Ž2dlog(๐‘ ) + ๐‘2dlog(๐‘ก) + ๐‘‘ (๐‘) = ๐‘Ž2dlog(๐‘ ) + ๐‘2dlog(๐‘ก) + ๐‘‘ (๐‘2 01 ๐‘ก + ๐‘2 10 ๐‘  + ๐‘2 11 ๐‘ ๐‘ก), where ๐‘Ž, ๐‘, ๐‘ = ๐‘2 00 + ๐‘2 01 ๐‘ก + ๐‘2 10 ๐‘  + ๐‘2 11 ๐‘ ๐‘ก โˆˆ ๐น. ๐›ผ + ๐›ฝ = ( ๐‘š2๐‘ก ๐‘  + ๐‘™2๐‘ก + ๐‘Ž2 ๐‘  + ๐‘2 10 + ๐‘2 11 ๐‘ก)๐‘‘๐‘  + ( ๐‘›2๐‘  ๐‘ก + ๐‘2 + ๐‘2 01 + ๐‘2 11 ๐‘ )๐‘‘๐‘ก. (A.0.10) Let ๐œ” โˆˆ ๐‘‰ (๐›ผ + ๐›ฝ), i.e. ๐œ”(๐›ผ + ๐›ฝ) = 0. Suppose that ๐œ” = ๐‘“ ๐œ• ๐œ•๐‘  + ๐‘” ๐œ• ๐œ•๐‘ก . It follows that ๐œ”(๐›ผ + ๐›ฝ) = ( ๐‘š2๐‘ก ๐‘  + ๐‘™2๐‘ก + ๐‘Ž2 ๐‘  + ๐‘2 10 + ๐‘2 11 ๐‘ก) ๐‘“ + ( ๐‘›2๐‘  ๐‘ก + ๐‘2 + ๐‘2 01 + ๐‘2 11 ๐‘ )๐‘” = 0 (A.0.11) Hence ๐‘“ = ๐‘›2๐‘  ๐‘ก + ๐‘2 + ๐‘2 01 + ๐‘2 ๐‘  ๐‘š2๐‘ก ๐‘  + ๐‘™2๐‘ก + ๐‘Ž2 ๐‘  + ๐‘2 10 11 + ๐‘2 11 . ๐‘ก The computation here will get complicated. From (3.5.1), we find that ๐›ผ is split by the purely inseparable extension defined by ๐‘ฆ2 = ๐‘ 2๐‘™2 ๐‘š2 The restricted ๐น-subspace corresponding to the 1-form ๐‘‘ ( ๐‘ 2๐‘™2 ๐‘š2๐‘ก ๐‘ก + ๐‘ ๐‘ก) = [๐‘ก๐‘‘๐‘  + ( ๐‘ 2๐‘™2 ๐‘š2 ๐œ• ๐œ•๐‘ก . ๐œ• ๐œ•๐‘  ๐‘  ๐‘ก + + (cid:0) (cid:1) ๐‘ 2๐‘™2 ๐‘š2 ๐‘ก+๐‘ ๐‘ก. + ๐‘ )๐‘‘๐‘ก] is 71 APPENDIX B RAMIFICATION OF CENTRAL DIVISION ALGEBRAS (๐‘-RANK 1 CASE) In this appendix, let ๐พ be a complete discretely valued field with the valuation ๐‘ฃ and the residue field ๐น of characteristic ๐‘ > 0, where [๐น : ๐น ๐‘] = ๐‘. We want to use the structure of ๐‘-torsion part of Br(๐พ) to understand the ramification behavior of ๐‘๐‘›-torsion part of Br(๐พ). We mainly consider two cases: (1) Br.dim๐‘ (๐ธ) = 0 for all finite extension ๐ธ/๐น, and (2) ๐น is a local field. B.1 Br.dim๐‘ (๐ธ) = 0 for all finite extension ๐ธ/๐น In this case, Br(๐พ) [ ๐‘] has symbol length 1. Hence, every central division algebra of period ๐‘ over ๐พ is cyclic and has ramification index ๐‘ and a degree ๐‘ residue field extension. Now for a period ๐‘๐‘› central division algebra ๐ด over ๐พ, it has degree ๐‘๐‘› by Theorem 4.2.2. Hence we can assume [ ๐ด : ๐พ] = ๐‘2๐‘›. This gives ๐‘’ = ๐‘’โ€ฒ = ๐‘๐‘› (Notation 2.3.1). The residue division algebra of ๐ด is commutative and hence a field. It has degree ๐‘๐‘› over ๐พ. We want to describe this residue field using the structure of Br(๐พ) [ ๐‘]. Next we explain how to read the information related to the residue field extension. Consider ๐‘๐‘›โˆ’1 [ ๐ด], where [ ๐ด] indicates the class of ๐ด as above in Br(๐พ). This class has period ๐‘. Hence, there exists a field extension ๐ฟ1/๐พ of degree ๐‘ with the degree ๐‘ residue field extension ๐ธ1/๐น. Then we consider [ ๐ด] ๐ฟ1, the image of [ ๐ด] in Br(๐ฟ1). The field ๐ธ1 is a complete discretely valued field with the residue field ๐ธ1 which is a degree ๐‘ field extension of ๐น. Now ๐ธ1/๐น is either an Artin-Schreier extension or a purely inseparable extension. By Proposition 4.1.2 and the assumptions on ๐น, Br(๐ธ1) [ ๐‘] = 0 and [๐ธ1 : ๐ธ ๐‘ ] = ๐‘. The period of [ ๐ด] ๐ฟ1 is ๐‘๐‘›โˆ’1. Otherwise, the index of [ ๐ด] ๐ฟ1 is less than ๐‘๐‘›โˆ’1. Then a splitting field of [ ๐ด] ๐ฟ1 would have the degree over ๐พ less than ๐‘๐‘› (= ๐‘ ยท ๐‘๐‘›โˆ’1), which is a contradiction. 1 Hence, we can repeat the argument above to get a composition of field extensions of degree ๐‘, ๐พ โŠ‚ ๐ฟ1 โŠ‚ ยท ยท ยท โŠ‚ ๐ฟ๐‘›, such that the composition of residue field extensions, ๐น โŠ‚ ๐ธ1 โŠ‚ ยท ยท ยท โŠ‚ ๐ธ๐‘›, consists of either Artin-Schreier extension or purely inseparable extension of degree ๐‘. ๐ฟ๐‘› is a splitting field of ๐ด with degree ๐‘๐‘›. This gives the following theorem: 72 Theorem B.1.1 Suppose that the field ๐น satisfies [๐น : ๐น ๐‘] = ๐‘ and Br.dim๐‘ (๐ธ) = 0 for all finite extensions ๐ธ/๐น. Let ๐พ be a complete discretely valued field with the residue field ๐น. Then the degree of a central division algebra of period ๐‘๐‘› over ๐พ is ๐‘๐‘›. Moreover, it admits a splitting field of degree ๐‘๐‘› such that the residue field extension is of degree ๐‘๐‘› which is a composition of either Artin-Schreier extension of degree ๐‘ or purely inseparable extension of degree ๐‘. The ramification index is also ๐‘๐‘›. In fact, we have an easy way to determine the separable degree and the inseparable degree of the residue field extension. Corollary B.1.2 We continue with the same assumptions as in Theorem B.1.1. Let ๐ด be a central division algebra over ๐พ of period ๐‘๐‘›. Denote the order of [ ๐ด]tame in Br(๐พtame) by ๐‘๐‘š (โ‰ค ๐‘๐‘›), where ๐พtame is the maximal tame extension of ๐‘˜ ((๐œ‹)). Then the residue field ๐ต of ๐ด has degree ๐‘๐‘› over ๐‘˜ with separable degree [๐ต : ๐น] ๐‘  = ๐‘๐‘›โˆ’๐‘š and inseparable degree [๐ต : ๐น]๐‘– = ๐‘๐‘š. Proof. Consider the class ๐‘๐‘š [ ๐ด]. It is split by a tame extension of degree ๐‘๐‘›โˆ’๐‘š over ๐พ. More precisely, this tame extension has ramification index 1 and residual degree ๐‘๐‘›โˆ’๐‘š. Hence, the proof reduces to the case ๐‘š = ๐‘›. This case just follows from Theorem B.1.1. โ–ก B.1.1 ๐น a local field In general, if Br.dim๐‘ (๐ธ) > 0 for a finite extension ๐ธ/๐น, the situation is more complicated, since there exist nontrivial division algebras over the residue field ๐ธ. However, when ๐น is a local field, we have the following theorem similar to Theorem B.1.1. Theorem B.1.3 Suppose that ๐น is a local field, i.e. ๐น (cid:27) F๐‘ž ((๐‘ก)), ๐‘ž = ๐‘๐‘›. Then the degree of a central division algebra of period ๐‘๐‘› over ๐พ is ๐‘๐‘›. Moreover, it admits a splitting field of degree ๐‘๐‘› such that the 73 residue field extension is of degree ๐‘๐‘› and it is a composition of either Artin-Schreier extension of degree ๐‘ or purely inseparable extension of degree ๐‘. The ramification index is also ๐‘๐‘›. Proof. The proof is similar to the proof of Theorem B.1.1. The local field condition on ๐น is used for Theorem 4.2.4. It follows that a tamely ramified Brauer class in Br(๐พ) [ ๐‘] is split by a tame Artin-Schreier extension of degree ๐‘ over ๐พ. โ–ก Similarly, we have the following corollary. Corollary B.1.4 Suppose that ๐น is a local field, i.e. ๐น (cid:27) F๐‘ž ((๐‘ก)), ๐‘ž = ๐‘๐‘›. Let ๐ด be a central division algebra over ๐พ of period ๐‘๐‘›. Denote the order of [ ๐ด]tame in Br(๐พtame) by ๐‘๐‘š (โ‰ค ๐‘๐‘›), where ๐พtame is the maximal tame extension of ๐พ. Then the residue field ๐ต of ๐ด has degree ๐‘๐‘› over ๐น with separable degree [๐ต : ๐น] ๐‘  = ๐‘๐‘›โˆ’๐‘š and inseparable degree [๐ต : ๐น]๐‘– = ๐‘๐‘š. Remark B.1.5 In fact, the condition on ๐น can be replaced by ๐น is ๐‘-quasilocal and almost perfect using [12, Theorem 2.3]. The key ingredient of the proof is the fact that Br.dim๐‘ (๐ธ) = 1 for all fintie extension ๐ธ/๐น. 74