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ABSTRACT 

Efforts to comprehend and assess social vulnerability amidst environmental hazard events 

are crucial for fostering adaptive and resilient communities, thereby mitigating risks posed to 

humans by environmental hazards. However, the intricate interactions between humans and 

environmental hazards give rise to highly interactive and complex systems, commonly known as 

coupled human and natural systems (CHANS), necessitating a nuanced approach for accurately 

assessing environmental and social vulnerability. This dissertation bridges a research gap and 

provides novel insights into social vulnerability within CHANS, such as understanding the 

dynamics that the behaviors of one stakeholder group can influence another stakeholder group in 

the system by affecting the environment, using Lake Erie's harmful algal blooms (HABs) as a case 

study. 

This dissertation comprises three main chapters, each offering distinct perspectives. 

Chapter Two introduces a 5-theme hierarchical spatial framework for assessing social vulnerability 

to HABs at the county level. This framework not only generates a vulnerability index composed 

of socioeconomic, resource dependence, and spatial factors affecting vulnerability to HAB events 

but also provides a practical tool for policymakers and professionals to identify and prioritize 

communities for intervention. Chapter Three focuses on developing an integrated agent-based and 

multicriteria evaluation model aimed at simulating the dynamics in the system to pinpoint 

communities with high vulnerability. The agent-based section of the model simulates the CHANS 

from a bottom-up perspective to ensure the inclusion of interactions and dynamics, making the 

model more realistic and applicable. The model outputs are then used in the multicriteria 

evaluation section, which incorporates criteria representing the three pillars of social vulnerability 

factors suggested by the Intergovernmental Panel on Climate Change. In Chapter Four, sensitivity 



 

 

and scenario analyses are conducted to scrutinize the model's behavior, introduced in Chapter 

Three, shedding light on contributing factors to community vulnerability and providing insights 

for future research and policy development.  

This dissertation has identified high-vulnerability areas affected by Lake Erie HABs, 

offering significant insights into environmental and social vulnerability and thereby informing 

crucial policymaking recommendations. The studies yield three major findings: 1) The social 

vulnerability indices to harmful algal blooms, generated from both models in Chapters Two and 

Three, present clear spatial patterns; 2) The spatial distribution of the resulting indices, along with 

the social status of spatial units, provides valuable information to prioritize policy implementation, 

e.g., census tracts around the center of Lucas County, and inform targeted policies, e.g., focusing 

on alternative drinking water resource accessibility to enhance community resilience for most 

tracts in Wood County; and 3) Selected best management practices, such as cover crops, play a 

significant role in mitigating HAB severity in Lake Erie in the long run.  

The intellectual merit of this dissertation is twofold. Methodologically, through the 

adaptive agent-based and multicriteria analysis framework, we advocate for increased focus on 

addressing the inherent multifaceted complexities of the vulnerability within CHANS. This 

includes understanding how the behaviors of one component in a system indirectly affect another 

component by influencing the severity of environmental hazard events, thereby enriching the 

research field of environmental social vulnerability. From the perspective of applied science, these 

studies yield insights crucial for guiding targeted community adaptation policies to lessen the 

negative societal impacts of HABs in Lake Erie and enhance community resilience in the study 

area by informing agricultural regulations to mitigate HAB severity in the lake and other aquatic 

systems prone to HABs. 
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1. CHAPTER 1: INTRODUCTION 

 1.1. Coupled human and natural systems and social vulnerability 

The concept of coupled human and natural systems (CHANS) emerged about two decades 

ago to describe systems involving human behaviors and environmental events interacting with 

each other (Liu, Dietz, Carpenter, Folke, et al., 2007). CHANS framework is now widely used to 

study various environmental topics, such as environmental sustainability and land use change, 

which typically consists of complex interactions between human and environmental factors (Carter 

et al., 2014; J. Chen et al., 2015; Giuliani et al., 2016; Morzillo et al., 2014; Spies et al., 2014; 

Zhou, 2019). This widespread adoption is due to the framework’s ability to address system 

complexities such as dynamics, heterogeneity, nonlinearity, and feedbacks – features that are 

challenging to assess using traditional study approaches (Liu, Dietz, Carpenter, Alberti, et al., 

2007).  

Environmental hazards can disturb the equilibrium within CHANS, affecting both human 

and environmental components. To effectively protect and support communities from disasters 

caused by environmental hazards, it is crucial to evaluate social vulnerability to identify the 

susceptible groups and target supportive policies (Raju et al., 2022). Social vulnerability, which 

encompasses socioeconomic and demographic factors reflecting community resilience, has 

become essential for evaluating a community’s risk from environmental hazard events (Flanagan 

et al., 2011). However, questions remain regarding which factors to include when assessing social 

vulnerability, how to integrate the framework with a specific environmental context, and how to 

address the inherent spatiotemporal complexities. 

The Intergovernmental Panel on Climate Change (IPCC) suggests three fundamental 

pillars of factors that affect social vulnerability: intrinsic sensitivity, referring to dependence on 

natural or economic resources; external exposure risk, denoting the likelihood of exposure to an 
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event; and adaptive capacity, indicating the ability to adjust behaviors during or after an event to 

adapt or recover (McCarthy et al., 2001). These pillars provide a framework for selecting key 

factors influencing social vulnerability and allow for incorporating environmental events related 

to exposure risk and intrinsic sensitivity.  

The social vulnerability index is a widely adopted metric for quantifying and assessing 

social vulnerability. Various indices have been developed for this purpose (CDC/ATSDR, 2022; 

Cutter et al., 2003). However, the criteria used in these indices are often highly correlated and tend 

to focus solely on socioeconomic factors without considering hazard-specific conditions (W. Chen 

et al., 2013; Finch et al., 2010). Moreover, due to their structure, these social vulnerability indices 

struggle to address the spatiotemporal dynamics of the factors contributing to vulnerability within 

CHANS.  

1.2. Harmful algal blooms in Lake Erie 

Lake Erie is susceptible to harmful algal blooms (HABs) for various reasons. Physically, 

it is relatively shallow and warm compared to the other Great Lakes. Socioeconomically, this lake 

is surrounded by areas predominantly used for agriculture. Currently, the issue of HABs in Lake 

Erie is significant, impacting the environment and the quality of life for residents (Lake Erie LaMP, 

2011; National Centers For Coastal Ocean Science, 2022). Lake Erie is a drinking water source 

for over 11 million residents living in the contributing watersheds. At the same time, the occurrence 

and severity of HABs pose risks to the local economy by threatening the tourism and fishery 

industries, which generate profits exceeding $10 billion (NOAA, 2022; US EPA, 2022).  

For nearly half a century, various governance actors and agencies operating at federal, state, 

regional, and international levels have made concerted efforts, albeit sometimes competing, to 

reduce nutrient loads into Lake Erie (Bitterman & Koliba, 2020; Kellogg, 1997; Lake Erie LaMP, 



3 

2011). In alignment with the objectives outlined in the 2012 Great Lakes Water Quality Agreement 

(GLWQA), both the U.S. and Canada have adopted a nutrient load reduction target of 40 percent 

by 2025 compared to the 2008 baseline loads (Valentine, 2012). Despite these efforts to mitigate 

HABs in Lake Erie, the severity is still moderate to high and fluctuates over the years (Figure 1.1). 

Therefore, this dissertation underscores the need for research on social vulnerability, focusing on 

how different groups of people are affected by HAB events in Lake Erie and on ongoing effects to 

mitigate HAB severity over the long term. 

 

Figure 1.1 Western Lake Erie bloom severity from 2002 to 2023 

1.3. Research objectives and dissertation framework 

The overarching objective of this dissertation is to assess social vulnerability facing 

environmental hazard events in the complex CHANS. The results of this dissertation are expected 

to contribute to the understanding of the relationships and dynamic interactions between the social 

system (socioeconomic status and agricultural behaviors) and the natural system (HAB severity in 

an aquatic system). Additionally, this research aims to design a modeling framework that provides 

methodological insights into simulating the dynamic behaviors of CHANS from a process-based 
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and bottom-up perspective and investigating social vulnerability through a thorough and concise 

assessment of relevant factors. Specifically, we ask three research questions: 

1). “From a static perspective using existing socioeconomic datasets, which are the 

counties most vulnerable to Lake Erie HAB events in the south and west parts of Lake Erie Basin?” 

2). “From a systemic coupled human and natural systems (CHANS) perspective 

considering stochastic, complexities and spatiotemporal dynamics, where are the most vulnerable 

regions to Lake Erie HAB events in Maumee River Basin?” 

3). “According to the systemic model built to simulate the CHANS, how do different 

variables affect the resulting vulnerability index and contribute to the sensitivity of the model?” 

We proceed through three steps to address these three questions in the following Chapters 

Two to Four as shown in Figure 1.2. In Chapter Two, we introduce a static (one time step) 5-theme 

hierarchical spatial HAB vulnerability index (HAB-VI) to evaluate the social vulnerability facing 

HAB events in Lake Erie. We apply the HAB-VI results to inform support for high-vulnerability 

communities. In Chapter Three, we develop an integrated agent-based model and multicriteria 

evaluation to ensure the inclusion of complexities and spatiotemporal dynamics in assessing social 

vulnerability to HABs. Monte Carlo-based uncertainty analyses are conducted in Chapters Two 

and Three to evaluate the model uncertainty and provide further suggestions for policymaking. 

Chapter Four features sensitivity analysis and scenario analysis based on the model developed in 

Chapter Three. These analyses offer insights into understanding vulnerability in a complex context 

by generating information about the most significant factor affecting the sensitivity of the model 

results when calculating vulnerability indices in different study area zones. Additionally, scenario 

analysis provides insights into policymaking by simulating the effectiveness of certain Best 
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Management Practices in agriculture. The results of these chapters can all help understand the 

behaviors of CHANS and how social vulnerability within this system varies across space and time. 

 

Figure 1.2 Dissertation framework: HAB: harmful algal blooms, VI – vulnerability index, DVI, 

dynamic vulnerability index, iUSA: integrated uncertainty and sensitivity analysis  
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2. CHAPTER 2: DESIGN AND USE OF A SPATIAL HAB VULNERABILITY INDEX 

FOR INFORMING ENVIRONMENTAL POLICY AND ADVANCING 

ENVRIONMENTAL JUSTICE 

Abstract 

In recent decades, harmful algal blooms (HABs) have increased significantly in Lake Erie. The 

blooms can affect human health, aquatic ecosystems, and the local economy. The effects can vary 

across communities in the Lake Erie Basin due to local socioeconomic status and dependence on 

lake resources. Therefore, it is crucial to identify HAB-vulnerable populations and regions to 

adjust regional governance strategies and allocate resources for government support. This study 

introduces a 5-theme spatial HAB vulnerability index (HAB-VI) comprised of socioeconomic, 

resource dependence, and spatial factors affecting vulnerability to HAB events. Using a multi-

factor hierarchical model, it also applies the index to evaluate the HAB-related vulnerabilities of 

50 counties in the Lake Erie Basin. Uncertainty analysis is an essential step to assess the robustness 

of the model and the stability of the calculated indices. The research utilizes a Monte Carlo-based 

uncertainty analysis and visualizes the statistical results of the simulation runs to indicate the 

variability and reliability of the HAB-VI rankings. Comparing thematic maps of the generated 

HAB-VI rankings, indicators of local governance strength, and nonpoint nutrient loads provides 

further insights into prioritizing the regions for government support and building community 

resilience.  

Keywords: Harmful Algal Blooms, Vulnerability Index, Uncertainty Analysis, Community 

Resilience, Environmental Justice, Lake Erie 

 

 

 



9 

2.1. Introduction 

The intensity of harmful algal blooms (HABs) in Lake Erie has significantly increased in 

the past decades (National Centers For Coastal Ocean Science, 2022). Lake Erie is prone to HABs 

due to its physical characteristics and geographic location; it is the southernmost, smallest, and 

shallowest of the Great Lakes. However, these conditions are not the only reason for the increase 

in HABs. Most of the terrestrial area around the lake is urban or agricultural, and the massive 

amount of runoff makes the lake extremely nutrient-enriched. Such an optimal biological 

environment is very productive for microbes, including cyanobacteria, which cause blue-green 

algae blooms (CyanoHABs) like the event responsible for Toledo's 3-day water shutoff that 

affected more than half a million residents in 2014 (Lake Erie LaMP, 2011).  

Lake Erie is a cross-border waterbody and comprises three basins surrounded by five US 

states (i.e., Michigan, Ohio, Indiana, Pennsylvania, and New York) and the province of Ontario in 

Canada. The lake provides drinking water for about eleven million people living in the watershed, 

which is approximately one-third of the total population of the Great Lakes basin. HABs have 

threatened the drinking water safety of these people living in Great Lakes cities. However, the 

impacts of algal blooms extend far beyond the drinking water crisis. Though some algal blooms 

are normal and necessary to aquatic ecosystems, blooms that cover large areas can block sunlight 

from reaching other organisms, deplete oxygen levels in the water, and negatively impact the 

aesthetic value of aquatic environments. More importantly, in cases of HABs such as blue-green 

algae blooms, toxic substances of the blooms are not only poisonous to human, but also lead to 

issues like fish die-offs and fisheries shutoffs (NOAA, 2022; R. S. Wilson et al., 2019). The 

excessive algal growth in Lake Erie can negatively affect the lake's critical tourism industry and 

world-class fishery, with more than $10 billion in economic profit (US EPA, 2022). However, all 
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the detrimental consequences – health-wise, resource-wise, and economy-wise – are not equally 

allocated across all populations throughout the basin. Similar concerns about unequal vulnerability 

impact communities confronting algal blooms around the United States (Kourantidou et al., 2022) 

and the world (Glibert et al., 2014). 

Environmental injustice arises when different communities are disproportionately exposed 

to environmental hazards and/or are denied fair treatment in aspects of environmental policy, 

including the allocation of amenities and resources (Brulle & Pellow, 2006; Downey, 2005; Mohai 

et al., 2009; US EPA, 2023). Studies show that structurally marginalized groups and people with 

lower incomes are more likely to be at higher risk for environmental hazards such as air pollution, 

extreme heat, and rising sea levels. For example, in the US, Black, Latinx, Asian, and Pacific 

Islander communities have a significantly higher risk of non-cancerogenic respiratory health issues 

caused by outdoor air pollution toxins (Alvarez, 2022). The southern New York State population, 

which has a higher proportion of non-native English speakers, is more likely to expose to and 

suffer from extreme heat events than upstate New York State residents (S. G. Nayak et al., 2018). 

Moreover, in the coastal areas of the US, it is more difficult for populations with lower property 

values to adapt to sea level change (Martinich et al., 2013).  

Environmental injustice occurs when environmental issues are not dealt with in a fair and 

sustainable way that benefits all people. To achieve the goal of environmental justice, the first step 

is to determine the more vulnerable groups that need additional guidance and support and where 

they are located. Studies have shown that a community is more likely to suffer a more extensive 

loss due to an environmental hazard event if its individuals are more socially vulnerable (Barnett 

et al., 2008; Cutter et al., 2003; Flanagan et al., 2011). Therefore, the concept of social vulnerability, 

which covers socioeconomic and demographic factors that can reflect the resilience of 
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communities, has been introduced to environmental research and has become an integral concept 

in evaluating a community's risk from environmental hazard events (Flanagan et al., 2011). 

The Intergovernmental Panel on Climate Change (IPCC) suggests three essential 

components that affect vulnerability: intrinsic sensitivity, external exposure risk, and adaptive 

capacity (McCarthy et al., 2001). Intrinsic sensitivity refers to the dependence on natural or 

economic resources, or the system’s sensitivity responding to an event; external exposure risk is 

the chance of exposure to an event; and adaptive capacity describes the ability to adjust in an event 

to offset the impacts or recover from the hazard, and this capacity is usually related to 

socioeconomic status, such as wealth, infrastructure accessibility, information accessibility, etc. 

(Allison et al., 2009; McCarthy et al., 2001; O’Brien et al., 2004). Several studies followed this 

framework to break down vulnerability into these three components in case studies of 

environmental issues for targeting policy interventions, such as assessing fishery economy 

vulnerability of different countries under the impacts of climate change (Allison et al., 2009), and 

mapping agricultural communities’ vulnerability to climate change as well as globalization 

(O’Brien et al., 2004).  

The social vulnerability index is a widely adopted metric that can be used to quantify and 

assess different groups’ vulnerability to various threats. Several indices have been developed and 

implemented in risk assessments and emergency management in recent years. For example, the 

Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry 

Social Vulnerability Index (CDC/ATSDR SVI) is among the most widely known vulnerability 

indices (https://www.atsdr.cdc.gov/placeandhealth/svi/index.html). The 2018 SVI separates 15 

demographic and socioeconomic variables into four categories and ranks in each area under study 

with its percentile rank scores (CDC/ATSDR, 2022). It was initially developed to inform the 
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mapping of CDC/ATSDR SVI in New Orleans using Hurricane Katrina's impact on the city and 

identify communities with low resilience capacity that need more support in post-disaster 

management (Flanagan et al., 2011). Recently, the index was applied in another hurricane research 

to evaluate the association between flood and emergency department visits in Texas before and 

after Hurricane Harvey (Ramesh et al., 2022). During the COVID-19 pandemic, Nayak et al. (2020) 

applied CDC/ATSDR SVI to examine the impact of social vulnerability using the county-level 

case incidence in the US and used both the index and COVID-19 case fatality rate to identify high-

risk counties in the pandemic (A. Nayak et al., 2020). The index has also been applied to other 

health topics, such as heat-related health issues (Lehnert et al., 2020) and cardiovascular disease 

(Hong & Mainous, 2020).  

The Hazard and Vulnerability Research Institute at the University of South Carolina 

developed another index (SoVI for Social Vulnerability Index). SoVI was initially constructed to 

measure the social vulnerability of US counties to environmental hazards. Twenty-nine 

socioeconomic variables are included in this additive index calculation (Cutter et al., 2003). SoVI 

has been applied to suggest post-hurricane management strategies for New Orleans (Finch et al., 

2010) and identify flood-risk zones in Hampton Roads (Kleinosky et al., 2007). The index has also 

been adapted and applied to cases in other countries and areas, such as assessing social 

vulnerability to environmental hazards in Brazil (de Loyola Hummell et al., 2016), the Yangtze 

River Delta Region of China (Chen et al., 2013), and delineating natural risk zones in Greater 

Lisbon of Portugal (Guillard-Gonçalves et al., 2015). 

While the social vulnerability indices have been applied to study various environmental 

hazards and events, they are uncommon in HAB studies until the recent decade (Broadwater et al., 

2018; Delegrange et al., 2015; Glibert et al., 2014). However, most of these studies were focused 
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on the vulnerability of ecosystems, and only a few discussed social aspects of vulnerability to HAB 

events. Social vulnerability was introduced to examine how HAB-triggered fishery closures affect 

fishing communities on the West Coast of the US (Moore et al., 2019). Unique challenges that 

indigenous communities face in HAB events were also analyzed through discussing the 

improvement opportunities in resilience and adaptation using the case study of the Quinault Indian 

Nation from a perspective of social vulnerability (Kourantidou et al., 2022). Such social 

vulnerability research only focused on a specific group of populations and did not generalize the 

indices to the whole coastal communities. 

These social vulnerability indices (e.g., SVI, and SoVI) calculated with geospatial census 

data can provide more spatially explicit indicators of locations that may need more supportive 

policies to help with adaptation to HAB conditions. However, deciding where to implement 

regulatory policies, and how to improve the policy effectiveness to mitigate HAB environmental 

issues remain unanswered. An excess nutrient level in water is one of the necessary conditions for 

HABs. Therefore, nutrient loads, including total phosphorus (TP) and total nitrogen (TN), can be 

significant indicators reflecting the level that a specific area contributes to HABs issues in its 

nearby waterbody. This also makes nutrient load level an indicator to prioritized locations of 

regulatory governance. In addition to where to allocate governance efforts, geographic scale of 

governance is another critical point to consider for improving policy effectiveness. 

Decentralization has become popular in the governance of environmental issues, and has been 

believed to be effective for the incorporation of local knowledge, immediate interests, and mutual 

trust in local stakeholders (Larson et al., 2010; Lemos & Agrawal, 2006; Ostrom, 1990). However, 

studies also demonstrate that environmental externalities can weaken the advantages of 

decentralized governance. For instance, when pollution originates beyond the system being 
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governed, decentralized governance is powerless to address local environmental impacts 

(Monogan et al., 2017; Ocampo-Diaz et al., 2022). As a result, such externalities also potentially 

lead to environmental injustice in terms of socially vulnerable communities having even less 

capacity to protect themselves from pollution that originates elsewhere. Therefore, the geographic 

scale of governance is a key concern to improve governance effectiveness, as well as pushing 

environmental justice in the governing process. 

The framework of three components of vulnerability suggested by IPCC provides a 

qualitative metric and valuable direction to evaluate social vulnerability. At the same time, the 

application of social vulnerability indices is a functional approach to quantitatively assess 

vulnerabilities and offers a possibility to spatially address environmental injustice issues across 

certain research areas. Nevertheless, the review of existing studies points to some gaps in the 

literature. First, while the social vulnerability index has long been applied in environmental hazard 

studies, it has not been adopted to explore the effects of HAB events on aquatic ecosystems – and 

their beneficiaries – until recent years. In these recent studies, only specific groups of the 

population, e.g., fishery and indigenous communities, were examined (Kourantidou et al., 2022; 

Moore et al., 2019). Though disparities exist, HAB events can cause socioeconomic disruption to 

the whole population, which was not previously considered. Second, spatially-explicit aspects are 

rarely present in the existing studies. Akin to other natural hazard events, such as extreme heat, 

tornadoes, and earthquakes, where several adjacent counties are likely affected similarly by the 

event, the effects of HABs are dependent on the distance to the shoreline or bloom spots. Therefore, 

spatial factors in HAB effect studies warrant scrutiny. Third, though many studies were devoted to 

environmental policy or community recovery plans, very few have compared current governance 

situations with vulnerability. Existing environmental policy is also a pivotal point in evaluating 
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environmental justice, as possible under governance, over governance, and informal governance 

can all exacerbate injustice (Amuzu, 2018; S. M. Wilson et al., 2010). Therefore, we suggest that 

a comprehensive and spatially-explicit analysis, which includes the present state of governance 

throughout the basin, is necessary to provide more efficient governance improvement 

recommendations. 

This paper aims to assist policymakers in identifying and prioritizing regions for HAB-

related policies while minimizing disturbance to local socioeconomic developments and assisting 

community resilience. To achieve this goal, we propose a modified social vulnerability index that 

accounts for spatial factors for populations facing HAB events.  

We start by giving a general introduction to our research area's geographic and economic 

context (Section 2.2.1). Then, in Section 2.2.2, we describe the methods of improving 

CDC/ATSDR's SVI, organizing a 5-theme spatial HAB Vulnerability Index (HAB-VI). We adopt 

local total nutrient loads (TP and TN) as our indicator of HAB intensity and collect county-level 

agricultural policy and water management information to quantify policy strength. Finally, we 

present maps and comparisons of our calculated results of HAB-VI, nutrient contribution levels, 

and policy strengths (Section 2.3) and develop our policy recommendations (Section 2.4). 

2.2. Materials and Methods 

2.2.1. Study area 

This study includes 50 counties in the Lake Erie Basin within Michigan, Ohio, and Indiana 

(Figure 2.1). Counties are an appropriate level of analysis in this watershed because they are 

responsible for governing water drainage, and often share water supplies across intra-county 

jurisdictions. We do, however, recognize that a finer level of analysis might highlight additional 

socio-economic contrast within counties. Counties in Pennsylvania, New York, and Ontario 
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(Canada) that are also parts of the Lake Erie Basin were excluded from this study because they are 

located on the eastern or northern side of Lake Erie, which are not historical hotspots of HAB 

events – or the agricultural runoff leading to such events – in the lake. Nine counties in Michigan 

and Ohio are located along the Lake Erie shoreline. The counties are significantly different in 

demographic and socioeconomic status. Metropolitan areas, e.g., Cleveland (Ohio), Detroit 

(Michigan), and Toledo (Ohio), dominate some counties, i.e., Cuyahoga County, Wayne County, 

and Lucas County respectively. Such counties tend to have higher population densities and a more 

diverse ethnic composition. Manufacturing, science, and technology industries share most of the 

economic sectors. 

In contrast, the rest of the counties in this lake basin are dominated by agricultural land use 

and related industries (CDC/ATSDR, 2022; SSTI, 2019). In 2018, ~11,003,602 people lived across 

our study area, with around 14.5 percent in poverty (CDC/ATSDR, 2022). County-level social 

vulnerabilities calculated using the CDC/ATSDR’s SVI based on general demographic factors vary 

across the watershed, with the index of most counties distributed over "low" to "moderate to high" 

levels (CDC/ATSDR, 2022). These data reveal that people's abilities to respond to hazardous 

events (e.g., HAB events) and adapt to anthropogenic events (e.g., drastic policy changes) are 

decidedly mixed.  
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Figure 2.1 Study area 

Due to the difference in location and economic industry status, the counties vary in their 

nutrient contributions to Lake Erie, as well as the level of impact they receive from HAB severity. 

On the other hand, factors most affected by HAB events are drinking water resources and economic 

income, which are highly related to the distances from counties to the lake. In other words, counties 

are more sensitive to HAB exposure when they depend on the lake for water supply or economic 

activity. Counties closer to the lake are more likely to be affected in aspects of drinking water 

resources and lake-dependent economic income, e.g., entertainment and fishery. This is because 

surface water resources closer to the lake tend to have similar water characteristics, such as nutrient 
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level and water temperature, and their fishery and entertainment-related economic income are 

more likely to be directly related to Lake Erie.   

County industry structure differences affect their TP load contribution to Lake Erie HAB 

events. Most counties in our study area that are not located along the lakeshore are agricultural 

land dominated by cultivated crops. Maumee River and Detroit River are Lake Erie's two biggest 

nutrient contributors. The two rivers contribute about 52 percent of TP load to Lake Erie, and 

nonpoint sources (NPS) in origin contribute 94 percent of the load to the Maumee River and 34 

percent to the Detroit River in 2008 (GLWQA, 2015). Overall, NPS contributes to more than 50 

percent of TP in Lake Erie (GLWQA, 2015), and fertilizer and manure are a major part of NPS 

sources. In recent decades after 1980s, on average, counties dominated by the agriculture industry 

have been bigger contributors to TP loads to Lake Erie than the rest.  

On the other hand, the counties have varied levels of input effort in environmental policies 

to reduce their nutrient loads and mitigate Lake Erie HAB issues. As a part of the United States, 

the whole study area is required to fulfill the obligations and commitments under the U.S.-Canada 

Great Lakes Water Quality Agreement (GLWQA). Specifically, US EPA put forward a US Action 

Plan for Lake Erie, which sets TP reduction goals for priority tributaries and clarifies action 

strategies, including water management, nutrient management, and reducing agricultural sources. 

There are also several state-led efforts in approaching phosphorus reduction goals for Lake Erie. 

For example, all states in Lake Erie Basin endorsed a joint action plan developed by the 

Commission's Lake Erie Nutrient Target (LENT) Working Group and committed to following the 

ten proposed joint actions to achieve a 40 percent TP reduction target (US EPA, 2018). In addition, 

the Ohio Department of Agriculture (ODA) monitors agricultural nonpoint sources and educates 
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farmers on fertilizer management, while Ohio EPA works with ODA on a stormwater management 

program. 

Similarly, the Michigan Department of Environment, Great Lakes, and Energy (EGLE) is 

focused on P reduction goals through strategies such as stormwater management, fertilizing 

restrictions, and banning high phosphorus level detergent. Relatively, Indiana has fewer state-level 

regulatory policies. However, their efforts focus on ensuring compliance with fertilizer 

certification rules and attributing financial support to assist education and training on relevant 

environmental policies and actions. Most counties also have county-level environmental policies 

to help reduce their nutrient contribution to the lake. However, the 50 counties in our study area 

are varied in their policy orientation and strength. For example, Wood County in Ohio has a series 

of wastewater and fertilizing regulations, such as managing the amount, form, and timing of 

applying nutrients for plants, and the policies tend to be strict. Lucas County in Ohio, which is 

adjacent to Wood County, is focusing more on educational approaches that encourage the 

implementation of best management practices (BMPs), and the policies are mostly in a suggestive 

format. Thus, Lucas County’s policy strength is not as strict as that in Wood County. In contrast, 

there are also counties, such as Wyandot County in Ohio, where we did not find any specific 

regulations or management strategies to help manage water runoff or reduce nutrient load to the 

lake. 

2.2.2. Methodology 

2.2.2.1. HAB-VI  

This research develops the HAB-VI as an extension to the CDC/ATSDR's SVI 

(CDC/ATSDR, 2022). On top of SVI's original 15 factors under four themes (i.e., socioeconomic 

status, household composition, and disability, minority status and language, and housing type and 
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transportation), we add a theme of HAB impacts with two factors - local dependence on the lake-

related economy, and local dependence on surface drinking water resources. With the 2-factor 

HAB impacts theme added, our 17- factor HAB-VI structure adapted from CDC/ATSDR’s SVI 

(CDC/ATSDR, 2022) (Figure 2.2) is able to reflect the three components (i.e., intrinsic sensitivity, 

external exposure risk, and adaptive capacity) in the vulnerability framework suggested by IPCC 

(McCarthy et al., 2001). The four original themes in SVI, consisting of socioeconomic and 

demographic information, provide a proxy measurement of adaptive capacity, which describes 

residents' ability to adjust to a hazard event. Sensitivity under exposure to an environmental hazard 

refers to the degree that local systems would be impacted by a hazard, and this component is highly 

related to dependence on the impacted natural resource (in this case Lake Erie waters). Local 

dependence on lake-related economy and surface drinking water resources are two important 

indicators to measure sensitivity under exposures to the environmental hazard of HAB in our study 

(Allison et al., 2009; O’Brien et al., 2004).  We used county-level GDP shares of fishing and 

service industries, e.g., accommodation and recreation, to indicate lake-related economic 

dependence (SSTI, 2019; US BEA, 2022) and the ratio of surface drinking water sources to 

alternative drinking water sources as an indicator of surface drinking water dependence (USGS, 

2023). Both datasets were adjusted for proximity to Lake Erie (Figure 2.3) as the distance is a 

critical indicator to the level of local exposure risk to HABs in the lake (Allison et al., 2009).  

The counties in our study area are located in the western side of Lake Erie Basin, the portion 

of the basin that is most affected by HABs. Though risks vary across the counties and degrade with 

distance to the lake, research shows that counties in the basin are all under exposure to HAB events 

of Lake Erie. For example, 88% of the 1.8 billion gallons of water used per day within the basin 

for public and domestic water supply is surface water drawn from Lake Erie and its surrounding 
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waterbodies (Myers et al., 2000), which means the HAB events in Lake Erie affect the vast 

majority of population throughout the basin. In this situation, though counties far away from the 

lake have relatively lower exposure risk adjusted to the proximity compared to counites closer to 

the lake, their varied adaptive capacity and sensitivity to the hazard still function to balance or 

consolidate the differences in the component of exposure risk in our vulnerability framework. 

Moreover, there is no evidence showing any of the 17 factors in HAB-VI structure is playing a 

more significant role than others in quantifying and comparing social vulnerability. Therefore, in 

this study, we follow the CDC/ATSDR calculation rule for their SVI, and equally weigh our 17 

factors in HAB-VI calculation. 
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Figure 2.2 HAB-VI structure (adapted from CDC/ATSDR's 2018 SVI structure) 

Similarly, the closer a county is to the lake, the more likely its surface water resources will 

be exposed to HAB contamination. Therefore, we suggest that the roles that the two HAB impact 

factors play in this index depend on the distance from a county's location to the lake shoreline. To 

add a weight based on the distance to the lake, we transform the original values according to the 

proximity-adjusted preferences (PAP) method (Ligmann-Zielinska & Jankowski, 2012) using a 

function defined as Equation (2.1), 

𝐼𝑉𝑖𝑃𝐴𝑃 = 𝐼𝑉𝑖𝑂𝑟𝑖  ×
𝑑µ

𝑑𝑖
                (2.1) 



23 

where 𝐼𝑉𝑖𝑃𝐴𝑃  is the PAP-adjusted indicator values of lake-related GDP share or surface water 

resource ratio of county 𝑖, 𝐼𝑉𝑖𝑂𝑟𝑖 is the original indicator values of county 𝑖, 𝑑𝑖 is the Euclidean 

distance from the center of county 𝑖  to the nearest point of Lake Erie, and 𝑑µ  is the average 

Euclidean distance from all 50 county spatial centers to their nearest points of the lake shoreline. 

The original and PAP adjusted indicator values of lake-related GDP and surface water dependence 

are shown in Figure 2.3.  

 

Figure 2.3 Comparisons of original and PAP-adjusted indicator values 
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To calculate HAB-VI, we use the original SVI's hierarchical ranking method 

(CDC/ATSDR, 2022). We applied percentile ranking to each of the 17 equally weighted factors. 

Each factor has a set of values presented in Equation (2.2) 

𝐼𝑖𝑗 =  {𝑥𝑖𝑗1, 𝑥𝑖𝑗2, 𝑥𝑖𝑗3 … , 𝑥𝑖𝑗50}        (2.2) 

where I is a set of values for a particular factor, 𝑖 denotes the 𝑖𝑡ℎ category of the HAB-VI structure 

(Figure 2.2), 𝑗 means the 𝑗𝑡ℎ factor in that category, and 𝑥𝑖𝑗𝑘 is the value of the 𝑗𝑡ℎ factor in the 𝑖𝑡ℎ 

category in the 𝑘𝑡ℎ county of our dataset.  

We calculate the percentile ranking of the individual factor according to Equation (2.3) 

𝑃𝑅𝑖𝑗𝑘 = 𝑛(𝐴) (𝑛(𝐴)⁄ + 𝑛(𝑅))       (2.3) 

where, 𝑃𝑅𝑖𝑗𝑘 is the percentile ranking of the 𝑗𝑡ℎ factor in the 𝑖𝑡ℎ category of the 𝑘𝑡ℎ county of our 

dataset, 𝑛(𝐴) is the length of A as a subset of 𝐼𝑖𝑗 that contains all values that are smaller than 𝑥𝑖𝑗𝑘, 

and 𝑛(𝑅) is the length of A as a subset of 𝐼𝑖𝑗 that contains all values that are bigger than 𝑥𝑖𝑗𝑘.  

Next, we aggregate the individual scores based on the theme categories into a theme score 

as follows: 

𝐼𝑖 =  {∑ 𝑃𝑅𝑖𝑗1
𝑚
𝑗=1 , ∑ 𝑃𝑅𝑖𝑗2 ,   ∑ 𝑃𝑅𝑖𝑗3, … ., ∑ 𝑃𝑅𝑖𝑗50

𝑚
𝑗=1

𝑚
𝑗=1

𝑚
𝑗=1 }     (2.4) 

where 𝑚 is the number of factors in category 𝑖, and conduct a second-level percentile ranking to 

each theme as shown in Equation (2.5): 

𝑃𝑅𝑖𝑘 = 𝑛(𝐴) (𝑛(𝐴)⁄ + 𝑛(𝑅))      (2.5) 

where, 𝑃𝑅𝑖𝑘 is the percentile ranking of the 𝑘𝑡ℎ value in 𝐼𝑖 , 𝑛(𝐴) is the length of A as a subset of 

𝐼𝑖 that contains all values that are smaller than the 𝑘𝑡ℎ value, and 𝑛(𝑅) is the length of A as a subset 

of 𝐼𝑖 that contains all values that are bigger than the 𝑘𝑡ℎ value.  

Finally, we aggregate all five themes' percentile ranking scores: 

𝐼 =  {∑ 𝑃𝑅𝑖1
5
𝑖=1 , ∑ 𝑃𝑅𝑖2 ,   ∑ 𝑃𝑅𝑖3, … ., ∑ 𝑃𝑅𝑖50

5
𝑖=1

5
𝑖=1

5
𝑖=1 }      (2.6) 
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The calculated third-level percentile ranking provides an index for each county based on 

the sum of all theme scores: 

𝑃𝑅𝑘 = 𝑛(𝐴) (𝑛(𝐴)⁄ + 𝑛(𝑅))     (2.7) 

where, 𝑛(𝐴) is the length of A as a subset of 𝐼 that contains all values that are smaller than the 𝑘𝑡ℎ 

value, and 𝑛(𝑅) is the length of A as a subset of 𝐼 that contains all values that are bigger than the 

𝑘𝑡ℎ value. 

2.2.2.2. Uncertainty analysis  

Uncertainty analysis (UA) is an essential step to assess the reliability and express the 

inaccuracies of this multi-factor hierarchical vulnerability index and explain the calculated 

vulnerabilities (Ligmann-Zielinska & Jankowski, 2014; Macdonald & Strachan, 2001; Tate, 2012, 

2013). This research conducts a Monte Carlo-based uncertainty analysis focusing on the 

uncertainty in the hierarchical index structure design (Tate, 2013) and visualizes the statistical 

results of the simulation runs to indicate the variability and reliability of the HAB-VI rankings. We 

generate 1000 different "on" and "off" combinations to the 17 individual factors in the HAB-VI 

structure to guide the UA calculations so that, for every index calculation, at least one of the 17 

factors is excluded. For example, in one of the samples, the Unemployed factor in the 

Socioeconomic Status category and GDP Dependence in the HAB Impacts category are randomly 

set to "off, " meaning the two factors are excluded from this UA run. We then apply statistical 

analysis to the results of 1000 calculations. 

2.2.2.3. Governance strength coding 

We collected and researched governance data by searching for any legislation, programs, 

or informational websites regarding nonpoint source pollution at each level of government (i.e., 

national, state, and county level). We coded these nonpoint source pollution policies and programs 
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to represent the strength of governance (i.e., the level of commitment required by actors in adhering 

to the rule) on a scale of zero to five, where zero is the lowest governance strength indicating that 

relevant policies and programs are nonexistent, and five means the strongest regulation in terms 

of stakeholder actions required for compliance. We adopted policy and program type, regulation 

objectives, supervisory approach, and actions to remain in compliance as criteria for score coding 

(Appendix).  

2.2.2.4. Thematic mapping and comparison 

We created three thematic maps to provide information for further spatial comparative 

analysis. In addition to the HAB-VI and governance strength maps, we also generated a county-

level nutrient load estimation map using 2017 county-level Nitrogen (N) and Phosphorus (P) input 

from fertilizer and manure on both farm and non-farm lands with data accessed from USGS 

(Falcone, 2021). The nutrient load map provides information about counties' estimated 

contribution level to the occurrence and severity of Lake Erie HAB events. This indicator points 

to the regulation aspect of policy design, especially on fertilizing and stormwater management.  

Compared with this nutrient load map, we use the HAB-VI map to identify counties in which more 

policy guidance and support may have the greatest impact on HAB generation. We propose that 

HAB-VI, nutrient contribution level, together with current policy situation, form the three pillars 

to support the decision process of policy design, policy effort allocation, and type of policy to be 

implemented. The combination of these two aspects contributes to a comprehensive targeted policy 

design. 
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2.3. Results 

2.3.1. HAB-VI 

As shown in Figure 2.4, there is a noticeable difference between the distributions of highly 

vulnerable counties from the two vulnerability index calculation methods, HAB-VI and SVI. For 

example, in the HAB-VI ranking shown in Figure 2.4 (a), high-vulnerability counties are more 

aggregated in Ohio adjacent to the southernmost boundary of Lake Erie. In contrast, high SVI 

counties shown in Figure 2.4 (b) are closer to the western border of our study area, with more 

inland counties in Michigan and Indiana (i.e., counties further from the lakeshore). While these 

differences are not surprising, they confirm that our HAB-VI calculation is indeed reflective of 

water-related activities and, hence, more geared towards assessing HAB vulnerability when 

compared to the original SVI.  

 

Figure 2.4 Comparison between HAB-VI and SVI results 
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We further use the equal interval method to divide HAB-VI and SVI results into three 

groups to represent high, medium, and low vulnerabilities. The number of counties in each state 

that are in the three levels of vulnerability is shown in Table 2.1.  

For both Indiana and Michigan, more counties are categorized into higher levels of 

vulnerability using SVI compared to HAB-VI. In the six Indiana counties in our study area, for the 

SVI, 50% fall into high vulnerability, 33% into medium, and 17% into low. On the contrary, 33%, 

17%, and 50% of Indiana counties are classified as high, medium, and low HAB-VI vulnerability. 

In Michigan, 43% counties have high SVI vulnerability, 29% medium, and 29% low, as opposed 

to 21%, 36%, and 43% using the HAB-VI. The situation is opposite for counties in the state of 

Ohio. Using SVI, 27% are considered high vulnerability, which is 13% less than using HAB-VI. 

Consequently, more counties in Ohio have medium or low SVI compared to HAB-VI.  

Table 2.1 County vulnerability level distribution in HAB-VI and SVI 

State HAB-VI SVI 

 High Medium Low High Medium Low 

Indiana 33% 17% 50% 50% 33% 17% 

Michigan 21% 36% 43% 43% 29% 29% 

Ohio 40% 30% 30% 27% 33% 40% 

 

Comparing the difference in values between HAB-VI and SVI, some counties (e.g., 

Hillsdale, MI, and Wood, OH) are more affected by the HAB factors than others (e.g., Livingston, 

MI, and Putnam, OH). To identify if counties' rankings in vulnerability are positively or negatively 
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affected by HAB factors, we generated Figure 2.5. Counties have higher HAB-VI than SVI are 

shown in red, which means that the HAB factors exacerbate counties' vulnerabilities in these 

counties. These counties are interpreted and presented as HAB-dominated. Other counties that 

have lower HAB-VI than SVI are illustrated in the figure as non-HAB-dominated counties. There 

is a noticeable spatial pattern in the HAB-VI impact map. The HAB-dominated counties are all in 

Michigan and Ohio; most tend to be closer to the lake. However, there are some outlier counties 

in this correlation, such as Van Wert and Defiance in Ohio. 

 

Figure 2.5 HAB-VI impacted map 
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2.3.2. Uncertainty analysis  

We calculate average HAB-VI scores and their standard deviations for the 1000 UA runs 

for all 50 counties in our study area. The resulting maps are presented in Figure 2.6. A higher 

average indicates that a county is more vulnerable to Lake Erie HAB events, and a higher standard 

deviation means that a county has relatively fluctuating results over the 1000 UA calculations. The 

standard deviation values in all 50 counties are distributed from 0.02 to 0.19, which indicates that 

the average HAB-VI results are overall reliable. Still, the differences in average and standard 

deviation provide information about county-level HAB vulnerability and the robustness of the 

results. Therefore, we gathered and processed these data to create a robustness map (Figure 2.7).  

 

Figure 2.6 The average and standard deviation of 1000 UA calculations 

We divide average (AVG) and standard deviation (STD) results into two groups using their 

natural break values to jointly categorize the scores into four groups. This method enables us to 
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present the spatial distribution of uncertainty and the reliability of our HAB-VI results (Ligmann-

Zielinska & Jankowski, 2014). The four categories and their indicative meanings in our result 

analysis are shown in Fig. 8. Counties with AVG higher than its breakpoint (i.e., 0.51) and STD 

smaller than its breakpoint (i.e., 0.09) are high-score robust counties (quadrant A), suggesting that 

these counties are highly likely to be vulnerable to HAB events. There are seven counties in this 

category, most located in Ohio along the Lake Erie shoreline, for example, Cuyahoga, Lorain, and 

Lucas. Eighteen counties are high-score volatile (quadrant B), with AVG and STD values higher 

than their breakpoints. STD values in this group are between 0.09 and 0.19, which means the 

results in UA runs are relatively stable but more variable than quadrant A. This result gives lower 

confidence in the stability of the HAB-VI scores. The robustness results also indicate stability in 

categorizing five counties as low HAB-VI (quadrant C). These counties show low HAB-VI, and 

the series of scores shows low variance. All other counties are in the category of low score volatile 

(quadrant D). They show low HAB-VI scores on AVG through the 1000 UA runs, and the variance 

in results indicates a relatively higher level of uncertainty. Consequently, these counties are more 

likely to fall into the higher AVG score group. 
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Figure 2.7 Results robustness map 
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Figure 2.8 Aspects of UA robustness 

2.3.3. Thematic maps of nutrient loads and governance strength 

County-level total N and P loads are an important indicator of how human activities in each 

county influence the occurrence and severity of HAB events in Lake Erie. We adopt 2017 USGS 

county-level N and P input data from fertilizer and manure for farm and non-farm lands. Figure 

2.9 illustrates the nutrient loads as estimations of their relative contributions to Lake Erie HABs 

(using an equal interval classification). Counties with more nutrient load tend to be located 

southwest of Lake Erie. Most of these are agricultural counties in Ohio and Indiana, such as Van 

Wert County in Ohio and Wells County in Indiana. Counties with less nutrient load surround the 

two largest metropolitan areas in our study area, i.e., Detroit and Cleveland.  
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Figure 2.9 Nutrient contributions (unit: ton) 

Using the policy data from official government websites and our governance strength 

coding design (Appendix), we generate Figure 2.10 to show each county's nonpoint source 

pollution and stormwater management policy strength. County-level environmental policy-making 

is relatively spatially independent; hence the strength levels are randomly scattered.  



35 

 

Figure 2.10 Governance strength 

2.4. Discussion 

This study extends a prior social vulnerability index designed by the CDC/ASTDR to 

evaluate the vulnerability of counties in the Lake Erie Basin to HAB events occurring in the lake. 

One contribution of this study is that it builds a new vulnerability index structure by adding an 

additional theme of spatial factors that are directly affected by and related to HAB events and 

adjusting the factors by their proximity to Lake Erie. This improvement equips our HAB-VI with 

spatial dependence on the lake and develops a variant of SVI to account for social issues related 
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to HABs. This HAB-VI framework can be universally adapted to assess coastal communities’ 

vulnerability facing HAB events. Currently, HABs have been a serious environmental issue 

threatening coastal residents worldwide. Severe events have been reported not only in Lake Erie 

or the Great Lakes, but also in every U.S. coastal state (NOAA, 2022). Severe and frequent blooms 

have also happened in Europe (e.g., Baltic Sea), Africa (e.g., Lake Victoria), and Asia (e.g., Taihu) 

(Conley et al., 2009; Paerl et al., 2011; Qin et al., 2010). HAB-VI is a suitable tool to provide 

insights and help these worldwide coastal communities to target and prioritize policy 

implementation, thus building resilience in these communities.  

At the same time, the improvement in this index structure aligns with the framework of 

vulnerability suggested from IPCC with measurements accounting for sensitivity, risk exposure 

and adaptive capacities (McCarthy et al., 2001). The differences in spatial distribution of high 

vulnerability areas between SVI and HAB-VI shown in Figure 2.4 also shows how the weights of 

these three components impact this vulnerability framework in different areas. High HAB-VI 

counties have a propensity to be located close to the lake, indicating an overall tendency that 

vulnerability to HAB events is driven more by external exposure risk and sensitivity to the hazard 

events (potential threats and dependency on lake-related sources) than the internal socioeconomic 

component of adaptive capacity. There are also several high HAB-VI counties at the left border of 

our study area, where is far away from the lake. The spatial pattern, as well as the outliers, provides 

practical information for policy decision making (O’Brien et al., 2004). For example, for the high 

HAB-VI counties adjacent to the lake, policy should focus more on reducing their exposure risk 

and sensitivity, e.g., providing alternative water resources; whereas for the high HAB-VI counties 

off the lake, it is important to have policy addressing intrinsic adaptive capacities, e.g., improve 

socioeconomic status.  
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Applying a Monte Carlo-based uncertainty analysis in this research helps to evaluate our 

index's reliability and provides more information for policy recommendations (Najwer et al., 2023). 

From the four partitioned quadrants of the UA results (Figure 2.8), Quadrant A (high-score robust) 

includes areas of the most concern. Using the HAB-VI calculation and UA analysis, we can 

conclude that counties in Quadrant A are highly vulnerable to HAB events in Lake Erie. Seven 

counties fall into this quadrant (Wayne, MI; Lucas, OH; Sandusky, OH; Lorain, OH; Cuyahoga, 

OH; Ashtabula, OH; and Richland, OH). Six of these counties are along the lakeshore, except for 

Richland, OH, which is a little off the shore to the south. Six of them are in Ohio, and one is in 

Michigan. These counties call for the most attention for policy analysis, which is elaborated in the 

next section. 

In contrast to Quadrant A, counties in Quadrant C are safe from HABs. The five counties 

in this quadrant are scattered across the states. On the other hand, counties in Quadrant B with high 

vulnerabilities are also more likely to score low for certain configurations of the index (the 'on/off' 

switch of factors in UA). Since the supportive management strategies that improve the HAB 

vulnerability status should first be assigned to counties with a relatively stable high HAB-VI score 

(i.e., counties in quadrant A), the 18 quadrant B counties become a lower priority if government 

resources are limited. However, since there is a possibility that these counties can also score high 

on HAB-VI, we recommend evaluating the HAB effects on these counties to suggest governance 

support if resources and fundings are sufficient. 

Similarly, the 20 counties in Quadrant D could be disregarded because of their low average 

HAB-VI. However, they may also be considered pending resource availability (since the standard 

deviation values show higher fluctuations). We recommend that their policy priority is lower than 

Quadrant B, but regular and timely supervision is necessary. In sum, according to our UA, the 
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prioritization of HAB management should focus on Quadrant A first, followed by Quadrant B and 

D. Finally, given their low robust HAB-VI scores, counties in Quadrant C can be disregarded. 

UA as an analysis tool provides important information on prioritizing policy locations 

(Ligmann-Zielinska & Jankowski, 2014). On the other hand, the comparisons between the three 

thematic maps (i.e., HAB-VI, nutrient loads, and policy strength) as pillars for governance 

decision-making are a way to provide more specific policy recommendations in terms of 

management strategies (i.e., supportive or regulatory) based on more comprehensive information. 

The policy recommendation decision process applied in our research method is shown in Figure 

2.11. Facing complicated environmental problems, our ultimate goal is to better balance the gains 

and losses between the environment, economy, and society through policy-making that considers 

multiple aspects (Doran et al., 2022; Hawkins et al., 2016). Integrating the results of HAB-VI and 

nutrient contribution in a scatter plot in the same coordinate system, some generalized information 

about governance strategies can be extracted (Figure 2.12). Overall, the closer a point is to the 

right end of x-axis (HAB-VI), the more the county is in need of government supports to decrease 

its vulnerability to HABs in Lake Erie, whereas the higher a point is at along y-axis (nutrient 

contribution), the higher requirement it has for regulatory policy to mitigate HAB events. 

Specifically, the four corners in this coordinate system indicate four potential governance scenarios. 

The upper left corner (high nutrient contribution and low HAB-VI) is an extreme endpoint with 

counties that require strict policy to mitigate, but have little incentive to advance such policy due 

to the lack of local impacts; the opposite located at the bottom left end of this coordinate system 

(low nutrient contribution and low HAB-VI) are counties where the government would not 

contribute much to the problem; the bottom right end (low nutrient contribution and high HAB-

VI) is where government has little reason to regulate because of limited mitigation potential, but 
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requires support to decrease their vulnerability to HAB events;  the upper right corner (high 

nutrient contribution and high HAB-VI) consists of counties that need regulatory policies because 

of their high nutrient contributions, and also confront severe impacts of HABs and therefore have 

incentives for both regulatory and supportive interventions. The middle two scenarios – where 

vulnerability and contribution to the problem are mismatched warrant greater attention from the 

environmental justice perspective. In these counties, the mismatched incentives may lead to under- 

or over-regulation, with some vulnerable counties being impacted by externalities. 

This policy decision making process can be demonstrated through the following example. 

Suppose nutrient load is the only factor to be considered in environmental policy-making in our 

Lake Erie HABs study. In that case, firm policies (e.g., raising fertilizing certificate fees or 

expanding fertilizing supervision control authorities) may significantly impact net income in the 

predominantly agricultural counties and thus ultimately worsen their vulnerability to various 

threats even if not to HABs specifically. On the other hand, these counties would then reduce the 

potential harm caused to other counties, and this contribution should be considered in the policy-

making process from beyond the county. With our research method that combines multiple aspects, 

we can identify counties with relatively high nutrient loads that may also have high HAB-related 

vulnerability (both high score robust with higher confidence or high score volatile with relatively 

lower confidence). Their HAB-VI points to the fact that the counties may hardly be able to bear 

drastic increase in the strength of regulation, and need more supports to help them lower their risks 

to HAB events or improve the ability to recover from the damages, while simultaneously reducing 

their contribution to the threat. In other high nutrient load counties with low vulnerability, 

mitigation would benefit the wider region but is not incentivized. Therefore, considering the 

current governance strength data we collected, we propose that these counties apply stronger 
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regulation (for those counties that have low current governance strength) or focus on providing 

educational or financial support to improve the high HAB-vulnerability situation (for those 

counties that have medium to high current governance strength). Otherwise, it is feasible to re-

consider the governance scale to apply high-level governance to enhance local residents’ 

willingness to adjust their pollution behaviors. One instance in this case is that Sandusky County 

in Ohio has a medium level estimated nutrient contribution, which warrants at least a medium 

regulation strength. The HAB-VI of this county falls in the high score robust quadrant, where our 

model gives a high confidence in the result that it is highly vulnerable to HAB events in Lake Erie. 

This second step suggests that some extension of governance is necessary, and supportive and 

educational policy are also required to address the county’s concerns. In the final stage, we review 

the current governance strength result, which indicates that it currently has a low governance 

strength (strength score of 1) based on our evaluation scale. Therefore, we recommend that 

Sandusky County improve its policy implementation in the direction that is more focused on 

supportive policies. Based on the results about component relative weights in vulnerability 

framework for HAB-VI, exposure risk and sensitivity play a more significant role for Sandusky 

County, which is located near the lake.  Therefore, relevant policies should assist residents in 

reducing their exposure risks and sensitivities in HAB events through providing alternative water 

supplies or income sources. Other than that, a higher level regulatory policy (e.g., state level) that 

enhances the trust and collaborations between neighbor counties, especially upstream counties, 

may also be effective in improving the low ability and willingness to alter their pollution behaviors 

(Michigan Department of Environment, Great Lakes, and Energy, 2018; Monogan et al., 2017).  

Such policies without intense strength, but emphasizing trust and collaborations could be 

surprisingly effective since they offer help to polluters instead of alienating them (Cartwright & 
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Hardie, 2012). Applying this decision process with theme comparisons enables policy makers to 

improve environmental governance, as well as alleviate or at least not worsen environmental 

injustice.  

 

Figure 2.11 Policy recommendation decision process 

As intended, when compared to the results of SVI, the HAB-VI result map shows a more 

apparent spatial pattern with highly vulnerable counties clustered along the lakeshore in the state 

of Ohio (Figure 2.4). At the same time, looking at the positive values of the HAB-VI – SVI 

difference in each county (Figure 2.5), we can observe HAB-related spatial clustering for most of 

the Ohio counties (21 out of 30). Consequently, for these counties, the HAB factors dominate the 

other four themes of socioeconomic factors (Figure 2.2). In Michigan, socioeconomic factors 

dominate social vulnerability in most counties (8 out of 14). The HAB factor-dominated counties 

all aggregate in the state's south, west of Lake Erie. Unlike counties in Ohio and Michigan, all six 

counties in Indiana have socioeconomic factors that play relatively more significant roles in 

vulnerabilities facing HAB events. According to the conceptual framework for vulnerability 

(Birkmann, 2006), the four socioeconomic factors in our HAB-VI structure indicate the internal 

aspect of vulnerability, which is the capacity to cope with, resist, and recover from the hazard. 
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Figure 2.12 HAB-VI vs. nutrient contribution for governance strategy decision making 

On the other hand, the HAB impact factor indicates the external side of vulnerability, which 

implies sensitivity to the risk, as well as proximity which heightens risk exposure. Overall, the 

high HAB-VI counties need more support to protect the residents from HAB hazard events 

(Cartwright & Hardie, 2012). The efforts to reduce their HAB vulnerability should include 

assisting in recovering after severe events and, more importantly, implementing preparedness 

policies and procedures. The comparative analysis between SVI and HAB-VI makes it possible to 

differentiate between HAB and non-HAB themes of the social vulnerability index. Local 

governments may extract useful information in specific ways, in terms of internal side of 

vulnerability (socioeconomic sections) or external side of vulnerability (exposure and sensitivity 

to the risk), to support their residents in the aspects they most need and the aspects that can help 

the most with higher marginal utility. For example, Erie County in Ohio is a high HAB-VI county 
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with a relatively lower SVI score. Our data shows that the county's economy depends highly on 

Lake Erie's related recreational industries. Therefore, our results indicate that the county is very 

vulnerable to Lake Erie HAB events because if HABs happen, they will possibly drastically affect 

the county's and residents' income. With this information, local government could aim at assisting 

these recreational industries to make them more adaptive when confronting HAB events. Possible 

directions include expanding the diversity of their recreational attractions so that, if hazards occur, 

the recreational industry can refocus on income from other recreational activities. This information 

can also assist with implementation of Best Management Practices (BMPs) for farmers, as recent 

surveys suggest that environmental information can influence farmers’ behavior over time (Doran 

et al., 2022). 

2.5. Limitations and Future Research 

Inevitably, this study has some limitations. First, some datasets we applied are proxies for 

the factors in our model and analysis. However, they may not be the most accurate measures of 

the factors being addressed. For example, to calculate each county's economic dependence on lake-

related industries, we use counties' GDP from industry sectors, including agriculture, fishing, 

entertainment, recreation, accommodation, and food services. However, there is no specific 

quantitative information on how these sectors contribute to the lake economy separately from other 

tourist attractions or other industrial strengths in the county. Our approximate representation of 

GDP dependence is based on several studies that demonstrated the adverse effects of HAB events 

on industrial sectors of agriculture, fishery, and recreation (Hoagland et al., 2002; Ritzman et al., 

2018; Weir et al., 2022). In addition, to make the GDP dependence proxy more lake-related, we 

used the PAP spatial weighting method (section 2.2.2.1). Future data collection that directly 

quantifies the local lake-related GDP would increase the accuracy of our study results. On the other 
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hand, outliers in the HAB-impacted map (Figure 2.5) is an indicator of some potential omitted 

variables in our HAB-VI structure that may affect the spatial pattern of the analysis result (Clarke, 

2005). 

Second, the small sample size of 50 counties can affect our research results in several ways. 

With a larger geographic extent, perhaps including other lakes that confront HAB events, it would 

be easier to assess the magnitude of spatial dependence of HAB-VI ranking. Similarly, a larger 

extent could result in more pronounced governance strength and nutrient contribution spatial 

patterns. Consequently, it would also be easier to differentiate between counties with high versus 

low policy intervention priorities. Finally, counties are relatively coarse spatial units in studies 

regarding social vulnerability and policy making. Higher resolution results (i.e., census tract) are 

available for most existing social vulnerability indices (e.g., SVI, SoVI). The county level 

resolution in our research was selected as a compromise based on data availability of nutrient loads, 

GDP, policy information, and water source. Higher resolution data layers would allow for 

identifying localized patches of nutrient contribution, vulnerability imparities and HAB-VI 

importance and, consequently, more spatially targeted interventions.  

In the past several years, some datasets or tools that help to evaluate social features related 

to vulnerability have become available, such as the revised EJScreen tool developed by EPA 

(https://www.epa.gov/ejscreen) that helps to screen and map environmental justice, and CDC’s 

PLACES dataset project (https://www.cdc.gov/places/index.html) that provides local health data. 

We would like to accommodate our HAB-VI in future work to be used as a complement to these 

datasets or tools for HAB specific assessments and services, such as enhancing environmental 

justice in HAB events, and improving community resilience facing HAB related health issues. 

Additionally, implementation science studies and community-based participatory research could 
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enable us to better understand how county and municipal stakeholders are using the data to inform 

action and support adaptive capacity (Harley et al., 2020; Smit & Wandel, 2006; Vallury et al., 

2022). Process-based studies would allow for explorations of the intrinsic dynamics in HAB events 

and HAB-related vulnerability assessments (Webster & Pavlovich, 2019). With such bottom-up 

research approaches, we would also be able to apply sensitivity analysis on this dynamic system 

of complexity to further determine which factors are playing more significant roles in local HAB 

vulnerabilities (Ligmann-Zielinska & Jankowski, 2014). This would be helpful to provide policy 

recommendations that are more targeted to unique local issues, especially for the areas that are not 

first tier policy prioritized.  

2.6. Summary 

In this study, we developed a vulnerability index that specifically helps to identify 

vulnerability levels facing HAB events. We calculated HAB-VI for 50 counties in Lake Erie Basin, 

and the uncertainty analysis applied on our HAB-VI results helped us to locate the prioritized 

counties for improvements in HAB-related environmental governance. Further, the comparisons 

between the results of county level nutrient loads, HAB-VI, and local governance strength provides 

more detailed information on the directions and strategies of governance improvement facing HAB 

issues in Lake Erie as well as vulnerability and environmental injustice. This research brings forth 

a new idea of extending vulnerability indices with data that can specifically (and spatially) 

delineate the societal impacts of natural hazard events (such as HABs) and assess vulnerabilities 

to such hazards. Identifying regions of high vulnerability is possible due to spatially-explicit 

uncertainty analysis, serving as a baseline for targeted policymaking.  
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APPENDIX. GOVERNANCE STRENGTH CODING SCALE (AS OF JANUARY 2023) 

0 = Policies and programs for this county or state are nonexistent; there is no indication of a 

policy/program in this jurisdiction 

1 = There is no policy or program for this county or state, but there is some information available 

to the public about nonpoint source pollution and offering advice on small personal choices that 

one can make to limit personal output  

2 = Voluntary program; represents a program that is voluntary to participate in to implement best 

management practices (BMPs) or other techniques to control nonpoint source pollution 

3 = Weak nonpoint source regulation; established in the form of a set of goals or 

recommendations rather than strict regulatory policy 

4 = Suggestive nonpoint source regulation; a policy using language like "should be 

implemented." These policies strongly suggest that targeted actors follow the recommended 

behaviors, but they do not mandate that the action "must be" taken or issue punishments for 

violation 

5 = Strong nonpoint source regulation; a policy using language like "must be" or "shall be 

implemented/followed." These policies require private or public actors to take specific actions to 

remain in compliance 
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3. CHAPTER 3: A COUPLED AGENT-BASED – MULTICRITERIA MODEL TO 

SIMULATE SOCIAL VULNERABILITY TO HARMFUL ALGAL BLOOMS IN A 

COUPLED HUMAN AND NATURAL SYSTEM OF LAKE ERIE 

Abstract 

The concept of coupled human and natural systems (CHANS) features complex human-

environment interactions and provides a holistic perspective to address questions in environmental 

science and policy studies. In this paper, we report on an integrated agent-based and multicriteria 

evaluation modeling framework to calculate social vulnerability and evaluate the risks of people 

facing disturbances. While accounting for CHANS dynamics, this framework aims to quantify and 

assess community vulnerability using spatially explicit model outputs. We applied Lake Erie's 

harmful algal blooms as our case study. We calculated a harmful algal bloom stochastic and 

spatially-explicit dynamic vulnerability index (HAB-DVI) to address the inherent dynamics in 

CHANS vulnerability. The model results show a spatially autocorrelated pattern in the distribution 

of HAB-DVI across the census tracts in our study area. The outcomes of uncertainty analysis on 

our HAB-DVI succinctly summarize the stochasticity in our model, inform policy decisions to 

support targeted communities, and provide insights to understand vulnerabilities in CHANS. 

Keywords: 

Social Vulnerability; Coupled Human and Natural Systems; Agent-Based Model; Multicriteria 

Evaluation; Harmful Algal Blooms; Lake Erie 
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3.1. Introduction 

Coupled human and natural systems (CHANS) involve complex interactions between 

human behaviors and the environment (Liu, Dietz, Carpenter, Folke, et al., 2007). This framework 

features many complexities and dynamics, such as decision-making and spatial heterogeneity, 

nonlinearities, feedbacks between system components, emergent properties, etc., which are 

essential to describe the real-world interconnections between humans and the environment and 

provide a holistic perspective to understand complex systems (Liu et al., 2021). Such an integrative 

and interdisciplinary framework has spurred investigations into various contemporary challenges 

regarding human-nature interactions in recent decades and has proven instructive in addressing 

empirical issues such as landscape management (Chen et al., 2015; Spies et al., 2014), human-

wildlife interactions (Carter et al., 2014; Morzillo et al., 2014), and resource sustainability 

(Giuliani et al., 2016; Zhou, 2019).  

CHANS are susceptible to disturbances that can inflict harm to both human and 

environmental systems. Environmental hazards, being a form of natural disturbance, can pose 

varying degrees of risk to humans, depending on their vulnerabilities. “Disasters occur when 

hazards meet vulnerability” (Raju et al., 2022). The Sendai Framework for Disaster Risk 

Reduction (SFDRR) 2015-2030 has highlighted risk governance as a critical priority for mitigating 

potential harm to people or systems (UNDRR, 2015). Past disasters have underscored the inherent 

complexity and uncertainties in disaster risks, rendering risk governance a “wicked problem” that 

defies easy solutions (Head & Alford, 2015; Rittel & Webber, 1973). The underlying dynamics in 

social vulnerability and its interactions with natural hazard events are essential in amplifying the 

complexity and uncertainties in disaster risks (Cutter, 2018; De Ruiter & Van Loon, 2022; Drakes 

& Tate, 2022). Therefore, it is essential to quantify and assess social vulnerability to environmental 
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hazards to effectively address complexity in risk governance and assist policymaking in managing 

CHANS.  

Research on social vulnerability to natural hazard events has evolved its focus over time. 

Initially introduced to address environmental justice and sustainable development (Cutter et al., 

1996; Hewitt, 2014), social vulnerability studies have engaged in a prolonged discourse regarding 

the interpretation, indicators, and assessment methods of social vulnerability (Cutter et al., 2003; 

Cutter & Finch, 2008; Flanagan et al., 2011; Tate, 2012). As a prominent measurement, the social 

vulnerability index has been widely employed to gauge communities’ susceptibility to various 

hazards. Several indices, such as the Social Vulnerability Index (SoVI) designed by the Hazard 

and Vulnerability Research Institute at the University of South Carolina (Cutter et al., 2003), and 

the Center for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry 

Social Vulnerability Index (CDC/ATSDR SVI) (CDC/ATSDR, 2022b), have been developed and 

implemented in recent decades. Despite sharing common indicators like economic status and 

facility accessibility, each index holds distinct components and calculation methodologies 

(CDC/ATSDR, 2022b; Cutter et al., 2003).  

On the other hand, contemporary research on vulnerability increasingly acknowledges the 

complexities inherent in the topic and has experienced a shift from defining vulnerability as a static 

concept towards exploring its dynamic nature and investigating how risk levels fluctuate across 

different communities and evolve in response to natural hazard events (Collins, 2008; Cutter et al., 

2000; De Ruiter & Van Loon, 2022). Spatiotemporal dynamics in vulnerability can be identified 

from various perspectives. A critical factor is socioeconomic status fluctuations triggered by events 

like economic recession or temporal variations during a long-lasting natural hazard. For example, 

using the SoVI method to assess social vulnerability to natural hazards in Chile at three different 
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time points, a recent study revealed heterogeneous and evolving vulnerability patterns attributable 

to spatial and temporal interactions among different SoVI elements (Bronfman et al., 2021). At the 

same time, unstable resource distribution during long-lasting hazard events makes a crucial 

contribution to the dynamic shifts. In pandemics like COVID-19, restricted resource accessibility 

due to quarantine or supply shortages exacerbated social vulnerability dynamics (Karaye & Horney, 

2020). The compounded occurrence of consecutive disasters further amplifies dynamics by 

altering exposure risks across different population groups. For instance, individuals evacuated to 

public facilities during hazard events face heightened exposure risks to pandemics due to 

overcrowding (Gonzalo & Tiemroth, 2021). These findings stress the complex interactions of 

multiple components in the system, characterized by non-linear behaviors, spontaneous changes, 

and emergent patterns (Boccara, 2004; Ladyman et al., 2013). Consequently, traditional linear 

mathematical approaches, such as composite indices, may need to be revised to address the 

spatiotemporal dynamics and uncertainty inherent in CHANS. Despite the broad awareness, most 

studies tend to delineate the dynamics narratively or qualitatively or present statistical results 

without delving into the underlying driving forces behind changing outcomes of individual factors.   

Discussion on these studies reveals two primary challenges confronting current research in 

assessing social vulnerability to environmental hazards: 1) how to define the specific indicators of 

vulnerability and 2) how to account for the dynamics of vulnerability. Therefore, this research 

endeavors to develop a framework to address these deficiencies. Our study is particularly 

interested in selecting indicators to succinctly yet comprehensively capture social vulnerability 

measurements and developing approaches to cover the inherent complexity of vulnerability within 

CHANS. 
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The Intergovernmental Panel on Climate Change (IPCC) suggests three fundamental 

systemic components that affect social vulnerability facing natural hazard events: intrinsic 

sensitivity, external risk of exposure, and adaptive capacity (McCarthy et al., 2001). Intrinsic 

sensitivity refers to the dependence on natural or economic resources or the system’s susceptibility 

to event-induced impacts. External exposure to risk demotes the likelihood of exposure to an event. 

At the same time, adaptive capacity describes the ability to adjust or recover from hazards often 

linked to socioeconomic status, such as wealth, infrastructure accessibility, information 

accessibility, etc.  (Allison et al., 2009; McCarthy et al., 2001; O’Brien et al., 2004). This tripartite 

structure underscores the need to consider a spectrum of social, economic, and political dimensions 

to assess social vulnerabilities. Naturally, these aspects may incorporate spatial or temporal 

perspectives, further amplifying the dynamics of long-term social vulnerability.  

Over the last decades, there has been growing advocacy for employing system simulation 

methods, such as agent-based modeling (ABM), to address the complexity of “wicked problems.” 

(An, 2012; Bonabeau, 2002; De Ruiter & Van Loon, 2022; Gilbert, 2020; Railsback & Grimm, 

2019). ABM is a bottom-up simulation method that consists of a collection of autonomous 

decision-making entities with heterogeneous behaviors called agents situated in a spatial 

environment. Agents make decisions based on predefined behavior rules and their assessments of 

the timely situation related to other agents and the environment. The iterative interactions among 

agents, ongoing time steps, and changing environmental conditions emulate a real-world system. 

These dynamic interactions capture the non-linearity and spontaneity of  complex systems, 

facilitating the depiction of emergent phenomena (Bonabeau, 2002; Grimm & Railsback, 2005; 

Ligmann-Zielinska & Jankowski, 2007). Moreover, ABM’s capability to integrate geographic data 

for representing real-world spatial environments enhances its utility for empirical studies (Crooks 
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& Heppenstall, 2012). In short, ABMs have been recognized as one of the core tools in modeling 

CHANS. 

Multicriteria evaluation (MCE), or multicriteria decision analysis (MCDA), has long been 

applied in geographic analysis to support decision-making processes such as location selection or 

spatial prioritization of decision alternatives (Atici et al., 2015; Jankowski, 1995; Karimi et al., 

2019; Ligmann-Zielinska & Jankowski, 2014; Malczewski, 2006). This approach, known for its 

inclusivity of various evaluation preferences, facilitates the generation of suitability or 

prioritization scores. The general procedure of MCE usually involves defining quantifiable criteria, 

standardizing them, expressing preferences regarding their relative importance, and aggregating 

the preferences with standardized criterion values to derive a composite score (Ligmann-Zielinska 

& Jankowski, 2014). Although MCE has also been applied in recent studies to evaluate social 

vulnerability (Armaș & Gavriș, 2013; Fernandez et al., 2016), spatiotemporal stochastic factors 

are barely considered in the research. 

This paper proposes a framework integrating ABM and MCE to evaluate social 

vulnerability due to natural disturbance within CHANS. This structure aims to capture the 

complexity and dynamics inherent in CHANS (using ABM) and generate a comprehensive 

vulnerability index encompassing a range of preferences (using MCE). Additionally, the 

framework is adaptable and can be tailored to assess social vulnerability in various hazard events.  

In the subsequent sections, we introduce our study area's geographic and socioeconomic 

context, along with the questions arising therein. We then delineate our model design and 

implementation, followed by an uncertainty analysis to elucidate the model’s behavior and 

supplement the vulnerability index results by identifying areas with different uncertainty levels. 
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Finally, within the context of our case study, we discuss how our vulnerability assessments can 

contribute to risk due to natural hazards and, more broadly, vulnerabilities in CHANS. 

3.2. Study area and research questions 

Lake Erie serves as a prominent freshwater body prone to harmful algal blooms (HABs), 

typically occurring annually from July to October (NOAA, 2022). The severity of HABs in Lake 

Erie stems from the lake’s physical characteristics, geographic location, and socioeconomic status 

of its surrounding areas. Within the United States, Lake Erie is encircled by major agricultural 

states like Ohio, Michigan, and Indiana, leading to significant nutrient runoff that enriches the lake 

(Lake Erie LaMP, 2011). Providing drinking water for approximately eleven million people 

residing in the watershed, which constitutes roughly one-third of the total population of the Great 

Lakes basin, Lake Erie’s excessive algal growth poses considerable challenges. Moreover, the 

proliferation of algae detrimentally impacts the lake’s vital tourism industry and renowned 

fisheries, which collectively generate over $10 billion in economic revenue (US EPA, 2022). All 

the adverse consequences – health-wise, resource-wise, and economy-wise – are not evenly 

distributed across all populations throughout the basin (Gersony, 2022).  

The Maumee River watershed is the primary tributary feeding into western Lake Erie, 

spanning parts of northwest Ohio, eastern Indiana, and southern Michigan. Encompassing 

approximately 21,540 km2 of predominantly agricultural land, the river contributes around 30 

percent of the annual total phosphorus (TP) load to Lake Erie, with over 90 percent of the load 

originating from nonpoint sources (NPS) (GLWQA, 2015). Census data indicate a total population 

of about 2 million across the Maumee River watershed, with most of the counties in the watershed 

exhibiting a poverty rate of around 10 percent. In contrast, a few counties have a significantly 

higher rate, nearing 18 percent (U.S. Census Bureau, 2022). This data reveals varied capacities 
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among the watershed residents to respond to hazardous events such as HABs. These insights 

prompt intriguing research questions addressed in our model: Which communities are most 

vulnerable to Lake Erie HABs events, and where primarily do governments or environmental 

agencies allocate their resources to help build resilience in these communities and mitigate 

environmental injustice? 

To investigate these questions, we selected 14 Ohio counties within or partially within the 

watershed, allowing for a geographically centered discussion on state and county-level policy 

recommendations. We refined our delineated areas separately for the agricultural and economic 

sub-models of our ABM. The agricultural sub-model encompasses census tracts within the entire 

14-county region where agricultural land exceeds 50 percent based on the calculation using 

USGS’s National Land Cover Database (NLCD) (USGS, 2016). Meanwhile, the economic sub-

model includes all census tracts within the Toledo metropolitan area, the largest metropolitan area 

in the watershed, spanning Fulton, Lucas, and Wood counties. Figure 3.1 depicts an overview of 

the study area. 
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Figure 3.1 Study area 

3.3. Methodology and Data 

3.3.1. Agent-based Model 

3.3.1.1. Conceptual Model 

We developed an agent-based model named Algae Vulnerability Simulation (AVUS) using 

Python programming language (https://www.python.org/). AVUS aims to simulate the dynamics 

within the CHANS of HABs based on the decision-making processes of system actors, their 

interactions, and adaptations (Epstein, 2001). Like many previous studies employing ABM to 

explore CHANS, households are selected as the fundamental unit representing human decision-

making (An et al., 2005; Vojnovic et al., 2020). The model comprises two sub-models: agricultural 

and economic and encompasses four major procedures: agricultural fertilization, projection of the 

HAB severity index for the year, imposition of negative impacts on residents, and incorporation 

of governance feedback on fertilization practices. The conceptual model is presented in Figure 3.2. 
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Figure 3.2 AVUS conceptual model 

3.3.1.1. General Model Description  

First, farmer household agents determine the amount of P2O5 fertilizer they apply annually. 

Surveys and studies suggest that US farmers typically base their fertilizer decisions on their 

experiences, economic considerations, and information obtained from fertilizer and seed dealers. 

While soil testing and recommendations from research studies have gained importance in recent 

years, evidence shows that most farmers tend to maintain their usual fertilization practices unless 

compelled by regulatory interventions or enticing incentives (Houser et al., 2019; Stuart et al., 

2014). The initial fertilizer decisions fall within the recommended phosphorus input range for the 

farmlands for each farmer's household. Farmer agents generally adhere to their fertilization 

practices, making minor adjustments to the amount annually within a specified small range. 

However, if fertilizer regulations are in place for the year, they must modify their fertilizer amounts 
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accordingly. Additionally, farmer agents may voluntarily participate in Best Management Practices 

(BMPs) in response to incentive programs – a topic researched in the next chapter. 

Second, farmer agents' annual fertilizer inputs are aggregated to determine the total 

phosphorus potentially running off into Lake Erie, impacting the waterbody’s nutrient level. While 

the ‘fertilizer runoff – HAB occurrence’ interconnectedness is complicated and understudied, 

nutrient runoff, temperature, and rainfall are widely recognized as significant factors influencing 

the occurrence of HABs (NOAA, 2022; Wells et al., 2020), and have been adopted as the decisive 

factors in previous HAB simulations (Webster & Pavlovich, 2019). AVUS uses these three factors 

to project the annual HAB severity index (SI). 

Third, HAB events have been demonstrated to negatively affect the economic well-being 

of surrounding areas and residents, impacting tourism-related income, property values, and 

expenses incurred to cope with the hazardous events (Bingham et al., 2015; Bingham & Kinnell, 

2021; Hartig, 2019). To emulate this relationship, the HABs SI directly influences the income 

fluctuations of metropolitan residents in the economic sub-model of AVUS. Within this sub-model, 

there are two types of economic agents: those involved in lake-related occupations (LRO agents) 

and those with other occupations (non-LRO agents). On average, LRO agents experience a higher 

economic impact from the severity of HAB than non-LRO agents. Additionally, all agents 

experience minor annual income fluctuations. 

Finally, the model is equipped with the environmental agency agents who may propose 

fertilizer regulations based on the severity of the previous year’s HABs or incentivize BMPs when 

aiming to reduce nutrient runoff and further mitigate HABs. These governance strategies serve as 

feedback in AVUS to the agricultural sub-model for adjusting fertilizer amounts. The 

environmental agency’s decisions regarding the regulation of BMPs are influenced by their direct 
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observation of HAB severity and the reflection of economic agents’ environmental awareness due 

to HAB severity. BMPs and residents’ environmental advocacy will be further explored in scenario 

analysis in the next chapter.  

Through these four steps, the AVUS framework simplifies yet effectively forms an 

interaction and feedback loop representing the real-world dynamics in our CHANS under study. 

In this loop, individual agents’ (both agricultural and economic) decisions aggregate and, along 

with natural factors, determine the severity of HABs in Lake Erie. The annual severity of HABs 

affects economic agents’ awareness of this environmental issue (and, indirectly, exacerbates their 

financial situation) and pressures environmental management agencies to take action to mitigate 

the HABs. Agricultural regulations, which are well-recognized approaches to addressing aquatic 

environment issues, are implemented to influence agricultural agents’ fertilizing behaviors, 

affecting nutrient input amounts in the next loop. 

The direct output of AVUS is the individual income of economic agents. These simulation 

results are aggregated to determine the average income of each census tract in the economic sub-

model, thereby serving as a spatiotemporal factor for the subsequent MCE procedure.  

3.3.1.3. Agents and Environment of AVUS 

In the agricultural sub-model, farmer agents represent agricultural households across the 

farmland of the 14 Ohio counties within the Maumee River Watershed. Each farmer agent is 

characterized by attributes such as a unique farmer agent ID, county location, distance from the 

farmland census tract to the nearest point of Lake Erie shoreline, farmland area, and fertilizer 

amount. Throughout the simulation, farmer agents engage in behaviors including determining 

fertilizer input, updating fertilizer input under normal conditions (i.e., no regulations), adjusting 
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fertilizer input to comply with regulations, and modifying fertilizer input when participating in 

BMPs. 

Within the economic sub-model, both LRO and non-LRO agents are distributed across the 

census tracts within the Toledo metropolitan area. These agents share attributes such as agent ID, 

annual income, distance from their census tract to the nearest point of Lake Erie shoreline, census 

tract ID, county ID, agent type, environmental awareness level, and the threshold for them to 

express environmental concerns. Their behaviors include updating annual income, adjusting 

awareness levels regarding HABs potential, and deciding whether to express concerns about the 

environmental issue. However, LRO and non-LRO agents are subject to different thresholds in 

their behavior rules and different distributions when the agents are parameterized.  

In addition to these sub-model agents, AVUS also includes two global agents. The first is 

the HAB agent, representing the occurrence and severity of HABs each year. Its attributes include 

data from farmer agents, temperature, rainfall, and HAB severity for each year. The HAB agent 

calculates HAB severity using aggregated nutrient amounts from farmer agents combined with 

temperature and rainfall data. The other global agent represents environmental agencies 

responsible for proposing regulations or BMPs. These agencies collect concerns from LRO and 

non-LRO agents as input for policy decisions. Their attributes include information on all economic 

agents, thresholds for regulatory decisions, and regulated fertilizer amounts. Figure 3.3 illustrates 

the attributes and behaviors of agents using a Unified Modeling Language (UML) diagram. 
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Figure 3.3 UML of AVUS agent attributes and behaviors 

3.3.1.4. Data and AVUS parameterization 

Vector data for all census tracts in the 14 counties within the Maumee River Watershed in 

Ohio was acquired from the Centers for Disease Control and Prevention/Agency for Toxic 

Substances and Disease Registry (CDC/ATSDR) (CDC/ATSDR, 2022a). The shapefile for the 

agricultural sub-model was tailored to include only census tracts predominantly comprised of 

agricultural land, defined as having agricultural land covering more than 50 percent of the area. 

The land use classification was determined using the 30-meter spatial resolution land cover map 

from the USGS’s National Land Cover Database (NLCD) for 2016 (USGS, 2016). Following this 

selection process, 115 census tracts were retained for the agricultural sub-model. In contrast, all 

census tracts within the Toledo metropolitan area were included in the economic sub-model, except 
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for two occupied by universities, which lacked socioeconomic data. This resulted in a total of 117 

census tracts for the economic sub-model.   

Socioeconomic data, including the number of households in each economic census tract 

and the mean and median household incomes, are sourced from the United States Census Bureau 

for 2020 (https://www.census.gov/). Distances from the census tracts to Lake Erie are calculated 

from the centroid of each tract to the nearest point of the lake shoreline. The proportion of LRO 

agents in each metropolitan area county, along with their median income, were retrieved from 

DATA USA (https://datausa.io/). Industries classified as LRO include arts, entertainment, 

recreation, accommodations, and food services.  

Agricultural data, such as the number of farming households in each county categorized by 

different sizes of farmland, were obtained from the 2017 National Agricultural Statistics Service 

by the United States Department of Agriculture (USDA) (https://www.nass.usda.gov/). The 

fertilizer input amounts for farmer agents are estimated based on the recommended P2O5 amounts 

outlined in the Ohio Agronomy Guide (Barker et al., 2018). To ensure computational efficiency, 

we halved the number of households for each agent type in every census tract.  

We further gathered pertinent data to assess how annual HAB severity is influenced by 

nutrient runoff, temperature, and rainfall. Specifically, we obtained Lake Erie's average water 

temperature from July to October, the typical bloom season, from NOAA CoastWatch 

(https://coastwatch.noaa.gov/cwn/index.html). Additionally, we acquired average observed 

rainfall data from seven precipitation gauge stations in the Maumee River Watershed through 

NOAA/NCEI Climate Data Online (https://www.ncei.noaa.gov/cdo-web/). For the Western Lake 

Erie cyanobacterial bloom severity index (SI), we sourced data from NCCOS/NOAA (National 

Centers For Coastal Ocean Science, 2022). These datasets all spanned from 2002 to 2016. To 

https://www.census.gov/
https://datausa.io/
https://www.nass.usda.gov/
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estimate the total P2O5 tonnage potentially contributing to HAB severity, we utilized data from 

IPNI’s Nutrient Use Geographic Information System (NuGIS) for the U.S. (https://nugis.tfi.org/).  

We aggregated yearly P2O5 amounts impacting HAB severity using a distance decay 

function transformation, as presented by Equation (3.1): 

𝑃𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑡𝑎𝑙
=  ∑ 𝑃𝑖

𝐷𝑖
2⁄

𝑛
𝑖=1             (3.1) 

where, 𝑃𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑡𝑎𝑙
denotes the aggregated P2O5 amount after transformation, 𝑛 signifies the number 

of counties in this aggregation process, 𝑃𝑖  represents the P2O5 from the 𝑖 -th county, and 𝐷𝑖 

indicates the distance from the centroid of the 𝑖-th county to the lake in kilometers. This equation 

is also applied in the simulations to put a distance-affected adjustment on our individual P2O5 

inputs from farmer agents. We used distance decay rather than Euclidean distance to simulate the 

significantly higher contribution of agricultural runoff from near-shoreline farmland compared to 

areas further away. 

Next, we employed SciPy optimization (Vugrin et al., 2007) to derive a nonlinear fitted 

function using the HAB severity index as the dependent variable and the following three 

independent variables – fertilizer, temperature, and rainfall. The resulting function is depicted as 

follows: 

𝑆𝐼 = 1.0587 × 10−4 × 𝑃𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑡𝑎𝑙
+ 3.8936 × 10−1 × 𝑡𝑒𝑚𝑝 + 6.9766 × 10−3 × 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 −

15.8398                         (3.2) 

where, 𝑃𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑡𝑎𝑙
is the aggregated amount of P2O5 in metric tons, temp represents the average 

water temperature in Celsius, and rainfall indicates the calculated rainfall amount in millimeters.  

We utilized average bloom season water temperature data from 1995 to 2023 and rainfall 

data from 2002 to 2023 from PRISM as distribution references to generate the temperature and 

rainfall samples in AVUS. Table 3.1 outlines all input parameters for AVUS and their 

https://nugis.tfi.org/
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corresponding probabilities, along with household agent parameters. The model is conducted in 

one year's time steps to simulate the process. 

Table 3.1 Parameters to sample agents and their respective probabilities (U: continuous uniform, 

T: continuous triangular, WRC: weighted random choices, t: census tract, x: agent) 

Input Factor Definition and Units Distribution 

Farmland area 
Farmland area for each agricultural 

household (ac) 

U = (1, 10) 

U = (10, 50) 

U = (50, 70) 

U = (70, 100) 

U = (100, 140) 

U = (140, 180) 

U = (180, 220) 

U = (220, 260) 

U = (260, 500) 

U = (500, 1000) 

U = (1000, 2000) 

U = (2000, 4000) 

Fertilizer input amount P2O5 input per acre of land (lb) U = (5, 40) 

Non-LRO income Annual income of non-LRO agents T = (0, 𝑚𝑒𝑑𝑖𝑎𝑛𝑡, 𝑚𝑒𝑎𝑛𝑡 × 2) 

LRO income Annual income of LRO agents 

WRC = ((0,𝑚𝑒𝑑𝑖𝑎𝑛𝑡, 𝑚𝑒𝑎𝑛𝑡 × 2), 

𝐿𝑅𝑂𝐶𝑜𝑢𝑛𝑡𝑡, 𝑃) 

where,𝑃=𝑒
−0.5×(

|𝐼𝑛𝑐𝑜𝑚𝑒𝑥−𝑚𝑒𝑑𝑖𝑎𝑛𝑡𝐿𝑅𝑂|

𝜎
)

2

 

Environmental 

awareness 
LRO and non-LRO agents U = (0, 0.5) 

Environmental 

threshold 

LRO and non-LRO agent’s threshold 

to express environmental concern 
U = (0.7, 0.9) 

HAB threshold 
HAB severity levels where agents 

start to react 
(3, 5, 7) 

Temperature Water temperature (℃) U = (19, 23) 

Rainfall Rainfall amount (mm) U = (700, 1401) 

 

3.3.2. Multicriteria Evaluation for Social Vulnerability Assessment 

In this study, we employed MCE to consolidate the spatial heterogeneity within our study 

area, ultimately generating a social vulnerability index for communities facing HAB events over 
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time. The index is referred to as HAB-DVI for HAB Dynamic Vulnerability Index. Drawing from 

the IPCC framework (McCarthy et al., 2001). We utilize three critical pillars of social vulnerability: 

adaptive capacity, intrinsic sensitivity, and exposure risk, as the foundation for selecting criteria 

in our MCE approach.  

To operationalize these three pillars, we approximated them as follows. First, we employed 

income, a critical indicator of economic status, to represent a community's adaptive capacity. 

Income directly impacts various socioeconomic factors such as housing and transportation and 

serves as a proxy for the community’s economic resilience. The income criterion data is derived 

from the average income of each census tract simulated over time – the outcome of the ABM 

described above. As such, it constitutes the dynamic element of our framework.  

Next, we utilized alternative drinking water resource status to reflect intrinsic sensitivity, 

as defined by the IPCC. In the context of HAB events, surface water resources are particularly 

vulnerable and can become scarce. To gauge this dependence, we employed the ratio of surface 

drinking water sources to alternative drinking water sources as an indicator (Zhang et al., 2024).  

County-level data on water resource dependency were obtained from USGS (USGS, 2023).   

Lastly, we utilized the distance to Lake Erie to represent the exposure risk to HAB hazard 

events. Proximity to the lakeshore is a proxy for the likelihood of residents being affected by HAB 

events. Communities closer to the lakeshore face higher exposure risks, impacting factors such as 

employment, income, and access to water resources.  

Three key steps characterize a typical MCE process: criteria standardization, expressing 

preferences (weights), and aggregating the weighted standardized criteria (Ligmann-Zielinska & 

Jankowski, 2014). We start with shifting raw values measured on different scales for the three 

criteria using a linear scale transformation into a common scale ranging from 0-1. In this scale, 
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zero denotes the absence of the factor’s effect on vulnerability, intermediary values signify varying 

impact levels, and  represents the maximum influence of the factor on vulnerability (Fernandez et 

al., 2016; Malczewski, 1999).  

The income and distance criteria are considered cost criteria, where lower raw values 

contribute to higher HAB-DVI. For these criteria, the transformation is expressed as follows: 

𝑥𝑖𝑗
′ =  

𝑥𝑗
𝑚𝑖𝑛

𝑥𝑖𝑗
         (3.3) 

Where 𝑥𝑖𝑗
′  represents the standardized score for the 𝑖-th census tract and the 𝑗-th criterion, 𝑥𝑖𝑗 is 

the raw value, and 𝑥𝑗
𝑚𝑎𝑥 is the maximum score for the 𝑗-th criterion. Conversely, the surface water 

dependency criterion operates as a benefit criterion, where higher raw values correlate with higher 

HAB-DVI scores. For this criterion, the transformation function is given by Equation (3.4): 

𝑥𝑖𝑗
′ =  

𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥            (3.4) 

where 𝑥𝑗
𝑚𝑖𝑛 is the minimum score for the 𝑗-th criterion.  

We then applied Ordered Weighted Averaging (OWA) as the decision-making rule for 

expressing preferences and aggregating operators in our MCE. OWA incorporates the concept of 

order weights, representing the positional weight of each criterion in ranking all criteria by 

importance. The order weights are considered in addition to criterion weights in this approach to 

manage the level of risk-taking in decision-making processes (Fernandez et al., 2016; Malczewski, 

1999; Zabihi et al., 2019). To calculate the order weights, we first arrange the criteria in descending 

order of their standardized values and sort their criterion weights accordingly. For 𝑛 > 1, the order 

weights are computed using Equation. (3.5): 

𝑂𝑊𝑛 =  (∑ 𝐶𝑊𝑖
𝑛
𝑖=1 )𝛼 −  (∑ 𝐶𝑊𝑖

𝑛−1
𝑖=1 )𝛼            (3.5) 

when 𝑛 = 1: 
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𝑂𝑊𝑛 =  (∑ 𝐶𝑊𝑖
𝑛
𝑖=1 )𝛼            (3.6) 

where 𝑂𝑊𝑛 represents the order weight of the 𝑛-th criterion, 𝐶𝑊𝑖 is the criterion weight of the 

reordered 𝑖 -th criterion, and 𝛼  is a fuzzy quantifier defined using a fuzzy linguistic quantifier 

approach (Meng et al., 2011). The quantifier reflects the preference for risk-taking in decision-

making: a lower quantifier value (𝛼 ≥ 0) indicates a more risk-taking strategy, where one criterion 

is enough to satisfy the decision-maker. Contrarily, a higher value indicates a more risk-averse 

approach, which requires that most-to-all criteria are satisfied. When 𝛼 =1, the decision rule aligns 

with the weighted linear combination representing no risk. We employed 𝛼  values of 0.5 

(optimistic), 1 (neutral), and 2 (pessimistic) in our study to represent different risk level. We 

selected OWA as the aggregation function for the vulnerability index calculation because social 

vulnerability is a societal concept imbued with subjectivity of risk perception. Depending on the 

level of compensation between the three variables (one-many-all) we can directly incorporate this 

risk perception in the stochastic index calculation. 

Subsequently, we aggregated the order weights with our weighted standardized criterion 

values to compute the HAB-DVI separately for each census tract. The aggregation function is 

shown as follows: 

𝐷𝑉𝐼𝑗 =  ∑ (𝑂𝑊𝑛𝑗 × 𝑂𝑉𝑛𝑗)𝑛
𝑖=1       (3.7) 

Where 𝑂𝑊𝑛𝑗 is the order weight of the 𝑛-th criterion after ranking for the 𝑗-th census tract, and 

𝑂𝑊𝑛𝑗 stands for of the value of the 𝑛-th criterion after the ranking. We assigned criterion weights 

of 0.25, 0.25, and 0.5 to distance, surface water dependency, and income, respectively, based on 

expert and stakeholder opinions and the real-world impact of income on other economic factors 

and its role in mitigating the influence of the other two criteria. The overall framework combining 

ABM and MCE for HAB-DVI assessment is illustrated in Figure 3.4.  
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Figure 3.4 HAB-DVI evaluation framework integrating ABM and MCE 

3.3.3. Uncertainty Analysis  

Uncertainty analysis (UA) is a crucial step in assessing the reliability of stochastic model 

outcomes (Ligmann-Zielinska & Jankowski, 2014; Tate, 2012). We performed UA by resampling 

and repeating the ABM simulation for 50 individual runs, with each simulation spanning 20 years 

to gather the results of final year income for each census tract in the economic sub-model. These 

dynamic incomes, along with the corresponding distance to the lake and surface water dependency 

variables, were then integrated into the MCE to conduct Monte Carlo-based UA (Tate, 2013; Zhang 

et al., 2024). Our UA focuses on capturing uncertainty stemming from the inherent randomness in 
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ABM simulations and the design of the HAB-DVI calculation (i.e., level of risk). Additionally, we 

conduct statistical analysis and visualization to illustrate the variability and reliability of the HAB-

DVI results.  

3.4. Results 

3.4.1. HAB-DVI 

Figure 3.5 illustrates the HAB-DVI generated by our model averaged over 50 runs. 

Employing natural breaks to classify our results, we categorize the index into five vulnerability 

levels: very low, low, moderate, high, and very high. A descriptive breakdown of these categories 

across the three counties in our study area is presented in Table 3.2.  

 

Figure 3.5 HAB-DVI results 
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All ten census tracts within Fulton County, situated on the western side of the study area, 

fall into the category of very low HAB-DVI, comprising the entirety of this category. In Wood 

County, located in the southeastern area, one census tract is classified as very high, but the county 

predominantly hosts low, moderate, and high HAB-DVI tracts. Tracts in the low, moderate, and 

high categories are distributed almost evenly throughout Wood County. Spatially, one high HAB-

DVI tract and the sole very high tract are adjacent to each other near the county’s centroid. Close 

to them is a tract occupied by a university that lacks data for this study. Other highly vulnerable 

tracts are in close proximity to the border with Lucas County. In Lucas County, the number of 

tracts in categories ranging from low to very high is relatively balanced, with moderate and high 

levels slightly more prevalent. Tracts with moderate to very high levels cluster on the eastern side 

of the county, and the 94 tracts classified as high and very high HAB-DVI are concentrated around 

the county center. 

Table 3.2 Descriptive distribution of HAB-DVI results 

 Very low Low Moderate High Very high Total 

Fulton 10 0 0 0 0 10 

Lucas 0 34 49 45 39 167 

Wood 0 10 11 8 1 30 

Total 10 44 60 53 40 207 

 

3.4.2. Uncertainty Analysis 

Apart from calculating the average HAB-DVI scores, we also computed their standard 

deviations for the 50 simulation runs. The resulting maps are depicted in Figures 3.6. A higher 

standard deviation provides information about the fluctuating outcomes across the simulation runs. 

We classified the standard deviation into five categories to present the UA results. Standard 

deviation values range from 0.0067 to 0.1729, indicating overall stability in the HAB-DVI results 

across the simulation runs.  
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Figure 3.6 Standard deviation results 

Drawing upon the robustness assessment methodology employed in prior research 

(Ligmann-Zielinska & Jankowski, 2014; Zhang et al., 2024), we categorize the average and 

standard deviation results into two classes, each using their natural breakpoints. This division 

yields four groups to illustrate the robustness of our findings. The robustness map, along with the 

four groups, is shown in Figure 3.7.  
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Figure 3.7 Robustness map 

Census tracts with higher average values and lower standard deviations than the natural 

breakpoints of the two variables, specifically 0.5220 and 0.1098, are designated as high-score 

robust tracts. These tracts are likely highly vulnerable to HAB events. Except for two tracts in 

Wood County, all other high-score robust tracts are concentrated around the center of Lucas County. 

Meanwhile, all census tracts in Fulton County are categorized as low-score robust due to their 

lower average HAB-DVI scores and low standard deviation, suggesting minimal vulnerability to 

Lake Erie HAB events. Two additional tracts in Lucas County are also included in this category. 

Most tracts spanning the lower half of Wood County and around the left and right borders of Lucas 

County are considered low-score volatile. While they have lower average HAB-DVI scores, 
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indicating lower susceptibility to HAB events, the standard deviation scores highlight significant 

uncertainty. Census tracts with both higher average and standard deviation values are primarily 

located around the center of Lucas County or neighboring areas across the border in Wood County. 

These tracts demonstrate relatively higher vulnerabilities, yet the model outcomes reflect 

heightened uncertainty, classifying them as higher-score volatile tracts.   

3.5. Discussion 

Environmental scientists have long called for academic attention and empirical studies to 

identify populations susceptible to environmental hazards and provide targeted solutions for 

hazard adaptation and community resilience (Djalante & Thomalla, 2011; Elms, 2015; UNDRR, 

2015). This research tries to address this calling in the context of Lake Erie HAB events. Our 

integrated ABM-MCE model generates HAB-DVI scores for census tracts in the three counties of 

the Toledo metropolitan area, revealing a clear spatial pattern in the resulting scores. All census 

tracts in Fulton County exhibit very low HAB-DVI scores, with the UA indicating high confidence 

in these results. Consequently, prioritizing supportive policies to assist in building community 

resilience to HAB events in Lake Erie may be of lower priority for the entire county. Conversely, 

our UA results robustly indicate that the most susceptible tracts cluster around the center of Lucas 

County, with most of the group demonstrating very high HAB-DVI scores. Previous census data 

highlight this clustered area’s predominance of census tracts with high population density and 

poverty rates  (CDC/ATSDR, 2022a; U.S. Census Bureau, 2022). Moreover, being closer to the 

lake increases residents’ exposure risk to HAB events, which is compounded by heavy reliance on 

surface water resources. Most residents lack alternative water sources if HABs contaminate their 

drinking water. These tracts warrant policymakers’ attention when prioritizing government support. 

Unfortunately, many of these high-score robust DVI tracts experience weaknesses across all three 
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pillars affecting vulnerability, necessitating policymakers to adopt comprehensive approaches 

addressing these factors to bolster community resilience. Tracts falling into the other two 

categories -- high score volatile and low score volatile -- could be secondary considerations for 

resource allocation when enhancing adaptive measures to HAB events. However, the relatively 

high uncertainty in the UA results underscores the importance for government or environmental 

agencies to closely monitor the status of these communities, especially the high score volatile tracts, 

to prevent potential severe disaster consequences caused by HAB events.  

In addition to providing policy prioritization suggestions, the results also offer a systemic 

perspective for revisiting the management resource allocation strategies, considering the dynamics 

within the system, like the yearly variation of the application of fertilizer, the seasonal occurrence 

of HABs, or varying weather. Insights into the social vulnerability facing Lake Erie HAB events 

may contribute to proposing risk management strategies and building resilient communities within 

lake CHANS. The proposed ABM-MCE framework identifies geographic regions of high-risk 

management concerns by proposing and evaluating the causes of HABs, predicting their 

occurrences and the resulting social responses, followed by simulating interventions to mitigate 

the negative impacts and prepare for potential future hazards.  

In the context of this integrated model, the amount of agricultural P2O5 input is a significant 

factor affecting the occurrence and severity of HABs, and this factor, along with temperature and 

rainfall levels, determines the HAB severity each year. In AVUS, the annual total P2O5 input is 

aggregated as a collective value by simulating the farming household’s independent adaptive 

fertilizing behavior. This bottom-up method is more realistic than homogeneously representing 

agents’ decisions by averaging out historical statistical data, as it ensures heterogeneity of decision-

making driven by different values, spontaneity of choices, and bounded rationality (limited access 
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to information either due to ignorance or biases), which are typical behavioral patterns for 

stakeholders in the real world (Manson, 2006; Simon, 1990). At the same time, the model simulates 

a process that encompasses the entire disaster management cycle, covering the bottom-up 

dynamics with all elements in the model (agricultural decisions, HAB severity, social vulnerability, 

and environmental adaptation policies) interacting with each other in CHANS, as well as the 

complexities caused by consecutive hazard events inherent in social vulnerability (Cutter, 2018; 

De Ruiter & Van Loon, 2022; Liu, Dietz, Carpenter, Alberti, et al., 2007). The framework generates 

continuous presentations of each component within the system, such as HAB severity and HAB-

DVI, on a yearly basis. This provides valuable information for adaptive management, which is 

essential in the CHANS context, to dynamically reallocate resources (e.g., every year) based on 

ever-changing social and environmental conditions. Additionally, the results of prioritized policy 

intervention regions, based on stochastic outputs, generally reveal patterns indicating their specific 

risk components, corresponding to the three-pillar structure of social vulnerability. This 

understanding aids in comprehending environmental social vulnerability components and offers 

critical policymaking information tailored to the specific needs of different vulnerable 

communities. A more in-depth discussion on policy interpretation is provided in the next chapter.  

Additionally, the integrated ABM-MCE framework significantly contributes to developing 

methodologies for studying environmental social vulnerability within CHANS. This framework 

successfully addresses the key features emphasized in the literature, like exploring the complexity 

within social vulnerability assessments and advocating for including dynamic factors (Cutter et al., 

2000; De Ruiter & Van Loon, 2022). ABM has been proven to represent dynamics in social 

processes effectively (Crooks & Heppenstall, 2012; Ligmann-Zielinska & Jankowski, 2007). 
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However, only some efforts have focused on developing a framework incorporating dynamics for 

assessing social vulnerabilities.  

Our integrated ABM-MCE addresses this deficiency in several ways. First, our agent-based 

AVUS model simulates temporally varying agricultural fertilizer input from farmers in the whole 

Maumee River Watershed. This, in turn, contributes to the volatility of residents’ income, a key 

factor in vulnerability assessment. Second, we adopt the IPCC’s three pillars to represent social 

vulnerability, providing a holistic inclusion of factors while avoiding potential double counting of 

effects. For example, existing vulnerability assessment tools often include correlated economic 

indicators such as income, housing, and transportation (Armaș & Gavriș, 2013; CDC/ATSDR, 

2022a; Guillard-Gonçalves et al., 2015) while exposure risk indicators are commonly neglected. 

Third, our MCE approach aggregates the selected indicators into a composite score accounting for 

subjective risk perception. Finally, the integrated framework is versatile and can be applied in 

various contexts of environmental hazards. Existing social vulnerability indices are generic and 

insufficient to evaluate vulnerability in hazard events (Fernandez et al., 2016; O’Brien et al., 2004), 

making our framework significant as it offers an environmental perspective and enables policy 

recommendations specifically for environmental governance.  

Social vulnerability to environmental hazards is a crucial factor in CHANS (Hagenlocher 

et al., 2018; Zarghami & Dumrak, 2021), influencing how various components are affected by 

disturbances and how the system dynamics unfold. By simulating interactions between agricultural 

agents, economic agents, and the lake environment, our agent-based model demonstrates the 

complexities and dynamics in a CHANS of Lake Erie HAB events. Furthermore, by measuring 

the HAB-DVI, this study provides a social vulnerability perspective to understand mechanisms in 
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CHANS. It offers insights to support interventions and enhance community resilience to 

environmental hazards. 

3.6. Limitations and Future Research 

The data utilized in our study are primarily sourced from publicly available online 

databases. Therefore, specific datasets may have inaccuracies, necessitating approximations to 

address the factors under examination. For example, the surface water dependency data, used to 

represent the intrinsic sensitivity pillar of vulnerability in our MCE, relied on USGS water resource 

data at the county level (USGS, 2023). This implies that all census tracts within the same county 

share the same surface water dependency value, potentially impacting the accuracy of our HAB-

DVI results. Similarly, the lack of specific survey data on farmers’ fertilization preferences and 

practices in the Maumee River Watershed or the state of Ohio prompted us to use the recommended 

range of P2O5 input amounts outlined in the Ohio Agronomy Guide to parameterize our agents 

(Barker et al., 2018). Although we validated the data with estimated historical data on P2O5 

utilization (https://nugis.tfi.org/), it may not fully capture Ohio farmers’ fertilization behaviors. 

Therefore, future surveys or on-site fieldwork to gather specific data for parameterizing our model 

would enhance the accuracy of this Lake Erie HABs case study. 

While our study presents an integrated model framework for evaluating social vulnerability 

to specific environmental hazard events within the context of CHANS, we have yet to explore how 

different variables in our ABM may influence our vulnerability index results. Investigating the 

impacts of these variables on our model results can offer insights into the underlying mechanisms 

within CHANS and enable more targeted policy recommendations to address heterogeneous issues 

of individual communities. Sensitivity analysis is one way to gain insight into the mechanisms of 

the integrated model. Consequently, we will conduct a Sobol sensitivity analysis (Ligmann-
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Zielinska & Jankowski, 2014; Nossent et al., 2011) to explore the influence of variables on our 

HAB-DVI results and integrate these findings to inform further policy suggestions in subsequent 

studies.  

3.7. Summary 

In this study, we introduced an integrated ABM-MCE framework to assess social 

vulnerability to environmental hazard events within the context of CHANS. This approach allows 

for quantifying and examining social vulnerability while accommodating the complexity and 

dynamics inherent in both CHANS and social vulnerability. We applied this framework to a case 

study involving a tightly interconnected system comprising farmers, metropolitan residents, and 

the lake environment to evaluate the vulnerability of neighboring communities to Lake Erie HAB 

events. The resulting HAB-DVI reveals that communities with high vulnerability are clustered 

around the center of Lucas County. By combining these findings with the results of uncertainty 

analysis, the study points to areas of high vulnerability. It provides confidence assessments to 

further inform targeted policymaking efforts to enhance community adaptability and resilience to 

cope with Lake Erie HAB issues.  
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4. CHAPTER 4: AN APPLICATION OF SPATIALLY-EXPLICIT UNCERTAINTY 

AND SENSITIVITY ANALYSIS IN A SOCIAL VULNERBAILITY 

MULTICRITERIA EVALUATION MODEL 

Abstract 

Integrated uncertainty and sensitivity analyses (iUSA) are crucial in assessing model robustness 

and are often employed in multicriteria evaluation (MCE) models studying land use suitability. 

This research adopts the iUSA method in an integrated agent-based model (ABM) and MCE 

simulation framework to investigate dynamics in a coupled human and natural system (CHANS) 

involving agricultural practices, harmful algal blooms (HABs), environmental hazard effects on 

residents, and the actions by environmental agencies. The model assesses a spatially explicit social 

vulnerability index for residents in different census tracts facing Lake Erie HAB events. The 

resulting dynamic vulnerability indices and the iUSA outcomes provide valuable information for 

policymakers to prioritize high-vulnerability areas and offer targeted assistance to communities 

with specific needs to address their vulnerability. Scenario analysis conducted on the ABM sub-

model of the integrated framework provides evidence to advocate the promotion of cover crops in 

Ohio agriculture. It offers suggestions for enhancing the adoption rate of cover crop practices.  

Keywords: 

Sensitivity analysis; multicriteria evaluation; agent-based model; harmful algal blooms; social 

vulnerability  
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4.1. Introduction 

Multicriteria evaluation (MCE), or multicriteria decision analysis (MCDA), has long been 

one of the best-known tools to support decision-making processes. Its widespread application in 

location selection or spatial prioritizing stems from its capacity to incorporate geographic 

information and involve spatial criteria in the evaluation process (Atici et al., 2015; Karimi et al., 

2019; Ligmann-Zielinska & Jankowski, 2014). This flexibility has led to MCE's recent utilization 

in assessing social vulnerability based on spatial heterogeneity (Armaș & Gavriș, 2013; Fernandez 

et al., 2016). The MCE process typically entails selecting a set of quantifiable criteria, 

standardizing them to ensure comparability, establishing preferences to denote their relative 

importance, and aggregating these preferences with standardized criterion values to generate an 

evaluation score (Ligmann-Zielinska & Jankowski, 2014; Malczewski, 1999).  

Within the MCE framework, a notable source of uncertainty lies in expressing the relative 

preferences for each criterion. Various methods, including ranking, rating, pairwise comparison, 

and trade-off analysis, have been developed to estimate criterion weights (Malczewski, 1999). 

While these methods vary in accuracy and ease of implementation, they all remain inherently 

subjective, susceptible to differing stakeholder perspectives, and potentially constrained by limited 

information or varying levels of awareness. Additionally, uncertainty may also permeate other 

aspects of MCE, such as the selection and measurement of criteria. Hence, it becomes imperative 

to evaluate the inherent uncertainty in MCE models. 

Uncertainty analysis is intended to measure the variability of a model’s outcomes in light 

of uncertainties in its inputs. In contrast, sensitivity analysis aims at discerning the contributions 

of these inputs to the variability of outcomes and identifying key drivers of the model behavior or 

simulated systems. Often conducted concurrently, these two techniques form a synthetic approach 
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known as integrated uncertainty and sensitivity analysis (iUSA) (H. Chen et al., 2011; Ligmann-

Zielinska & Jankowski, 2008). This approach finds utility across various model types, including 

empirical agent-based models exploring uncertainties in simulated residential development, 

impacts of agricultural policy interventions, and landscape fragmentation (Ligmann-Zielinska, 

2013; Ligmann-Zielinska & Sun, 2010; Schouten et al., 2014; Ten Broeke et al., 2016). Moreover, 

the method has also been employed to understand the uncertainties in system dynamics models 

concerning topics like pollution management (Wang et al., 2012). Similarly, iUSA has gained 

traction within the MCE context, offering insights into inherent model uncertainties. Recent 

studies have integrated iUSA with MCE to address empirical issues such as river catchment 

management and land suitability evaluation (Benke & Pelizaro, 2010; H. Chen et al., 2011; 

Ligmann-Zielinska & Jankowski, 2014).  

Conduction of iUSA typically involves screening through predefined value ranges for 

model input variables, executing the model for each combination of variable values, and observing 

the corresponding changes in model outputs (Delgado & Sendra, 2004). Various approaches have 

been proposed to facilitate this iUSA process. One-Factor-At-A-Time (OAT) is among the most 

commonly used methods due to its intuitive nature and implementation simplicity. OAT involves 

varying one variable at a time while keeping all others fixed at their nominal values (Saltelli et al., 

2006). While straightforward, OAT may suffer from arbitrary changes in variable magnitudes, 

failing to comprehensively and accurately reflect outcome variability. Additionally, OAT might 

overlook interactions between the variables, particularly  in complex models with high uncertainty 

and interactive components (Saltelli & Annoni, 2010). Variance-based global sensitivity analysis 

(GSA) offers an alternative to OAT, aiming to address its limitations. As a global method (Saltelli 

et al., 2008), variance-based GSA explores the entire range of input conditions rather than relying 
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on arbitrary selections, as in OAT. Moreover, it considers the interaction effects among input 

components by calculating two sensitivity indices: a first-order index (S), representing the 

individual contribution of each input component to model output variability, and a total effect 

index (ST), which takes into consideration both the individual contribution of each input 

component and its interactions with other components in the model (Ligmann-Zielinska & 

Jankowski, 2014). 

To effectively support an MCE in addressing empirical studies within a geographic context, 

such as location suitability or spatial vulnerability assessments, an iUSA method must be capable 

of operating in a spatially explicit manner, as underscored by recent research (Y. Chen et al., 2010; 

Ligmann-Zielinska et al., 2024). Variance-based GSA can be adapted to fit this spatial context by 

mapping weight sensitivities (Feick & Hall, 2004), considering spatial heterogeneity in criteria 

values that contribute to the outcome variability (Rinner & Heppleston, 2006), and utilizing 

relative distance relationships to adjust the criteria weights (Ligmann-Zielinska & Jankowski, 

2012) to name a few. Therefore, this approach allows for investigating uncertainties in MCE 

models within their unique spatial framework. 

Furthermore, we contend that insights gleaned from appropriate iUSA methods applied in 

spatially explicit MCEs can offer valuable interpretations of the real-world systems under 

examination, thereby informing pertinent problem-solving endeavors. Specifically, spatial iUSA 

identifies heterogeneous significant factors for each spatial unit that influence the system's 

behavior simulated by MCE. Consequently, the results can aid in policy formulation or resource 

prioritization based on the distinct influential variables across different spatial units, thereby 

enhancing understanding and decision-making in complex systems. For example, previous 

research employing spatial iUSA has demonstrated its viability in guiding decision 
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recommendations for the allocation of suitable habitat areas (Ligmann-Zielinska & Jankowski, 

2014), identifying regions with varying levels of geodiversity (Ligmann-Zielinska et al., 2024), 

analyzing land-use change and urban growth (Şalap-Ayça et al., 2018), and revealing uncertainty 

factors in soil and water assessments (Koo et al., 2020). 

Scenario analysis is another widely used approach to assist policy design in empirical 

studies, especially integrated with simulations. The approach typically involves designing 

hypothetical scenarios, adjusting the baseline model according to the scenario design, simulating 

the scenarios based on the model assumptions and variable frameworks, and exploring the 

potential impacts on the simulated system or factors under examination. A parameter (set) in each 

scenario is set to specific constant values, reflecting conditions under which this particular 

alternative “reality” manifests itself. Due to the nature of this approach to explore future 

hypothetical situations, it has been commonly employed in environmental policy studies to inform 

future policy designs. It has been applied in environmental policy study topics such as agricultural 

irrigation, land use change and urbanization, and emission regulations (Riesgo & Gómez-Limón, 

2006; Wu et al., 2011; Yang et al., 2018). 

In this study, we apply spatial iUSA and scenario analysis within an integrated framework 

combining agent-based modeling (ABM) and MCE. This integrated ABM-MCE framework is 

tailored to investigate the dynamics of a complex coupled human and natural system (CHANS) 

encompassing farming, harmful algal blooms (HABs), and economic systems. We focus on 

assessing the dynamic vulnerability index reflecting residents exposed to HAB events (HAB-DVI) 

and applying it in the Lake Erie context. Further details regarding the model framework can be 

found in Chapter Two of this dissertation. Our objectives are twofold as we conduct iUSA and 

scenario analysis on this integrated model. Firstly, we aim to address uncertainties in our HAB-
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DVI results and elucidate how the criteria within our spatially explicit MCE influence HAB-DVI 

variability. Secondly, we explore the efficacy of various hypothetical policy designs in mitigating 

local community vulnerability to HAB events, thereby enhancing community resilience in the face 

of natural hazards and potentially reducing the severity of HABs in Lake Erie, thus shedding light 

on the dynamics within this simulated CHANS.  

Key questions we seek to address in this research include identifying factors in our MCE 

that contribute most to the uncertainty of HAB-DVI results for each spatial unit (census tract) and, 

based on the HAB-DVI and sensitivity analysis results, recognizing actionable measures that can 

be implemented by government or environmental agencies that consider the unique needs of 

communities in building resilience to HAB events, and, therefore address environmental injustice. 

Furthermore, this research aims to identify potential policies to support highly vulnerable 

communities, fostering improvements in the simulated system's socioeconomic (vulnerability) and 

environmental (HAB severity) aspects.   

In the subsequent sections of this chapter, we outline our methodological approach, 

including details of iUSA and policy scenarios, and elucidate how these methodologies are 

implemented in our ABM-MCE framework. We then present our analyses' findings, showcasing 

the inherent uncertainty inherent in our model, delineating the spatially heterogeneous contributors 

to this uncertainty, and examining the potential efficacy of hypothetical policy designs in 

ameliorating community vulnerability. Lastly, we discuss how the results derived from iUSA and 

scenario analysis can inform regulatory measures, incentive structures, and the formulation of 

supportive policies in our case study. Concurrently, we will explore how these insights contribute 

to understanding the complexity and dynamics within the CHANS.  
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4.2. Methodology  

4.2.1. iUSA 

4.2.1.1. Sampling and Monte Carlo simulation 

Criteria weights typically represent a significant aspect of subjective components, 

encapsulating uncertainties in MCE models. In our study, we aim to focus on the individual 

influence of each criterion in our ABM-MCE model on the calculation of HAB-DVI, which also 

serves as an indicator of each pillar of social vulnerability (McCarthy et al., 2001). Therefore, the 

results of these analyses are expected to inform policy recommendations in this empirical case 

study. Specifically, the three pillars of social vulnerability, as suggested by the Intergovernmental 

Panel on Climate Change (IPCC), are adaptive capacity, intrinsic sensitivity, and exposure risk. 

We used income, a critical indicator of economic status, to represent a community’s adaptive 

capacity; alternative drinking water resources to indicate intrinsic sensitivity, reflecting the level 

of dependency on surface water resources; and distance to Lake Erie to measure the exposure risk 

to HAB events. To achieve the goal of identifying the influence of each criterion, we employ the 

weighted linear combination (WLC) method for MCE aggregation (Malczewski, 1999). Each 

criterion is assigned a fixed weight per simulation, reflecting its relative importance in determining 

the evaluation outcomes. The aggregation process involves multiplying each criterion value by its 

corresponding weight and summing the results, as shown in Equation (4.1): 

𝐷𝑉𝐼𝑗 =  ∑ 𝑤𝑖𝑗 × 𝑐𝑖𝑗
𝑛
𝑖=1       (4.1) 

Where 𝐷𝑉𝐼𝑗  is the HAB-DVI value for the 𝑗-th census tract, 𝑤𝑖𝑗 is the weight of the 𝑖-th criterion 

in the 𝑗-th census tract, 𝑐𝑖𝑗 is the corresponding value of this criterion, and 𝑛 is the total number of 

criteria in the MCE (Malczewski, 1999).  
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The iUSA process involves sampling the input variables under examination, specifically 

criteria weights in our study, to address model uncertainty. We utilize Sobol sampling, a quasi-

random sampling method renowned for efficiently sampling inputs across the entire input range 

space, making it particularly suited for variance-based GSA (Saltelli, 2002; Saltelli et al., 2010). 

We start the sampling process by employing percent point functions (PPF) to select distributions 

and generate two independent lists, ANK, and BNK, each containing 𝑁 weight sample sets for the K 

(in our case, three) examined criteria. Subsequently, radial samples are generated using these two 

lists by substituting one weight in sample set ANK by a value from sample set BNK each time, 

resulting in 𝐾 + 2 radials per run for Sobol samples, where 2 stands for the two independent lists. 

Specifically, 𝑁 × 2 runs are necessary for the two original sample sets, and 𝑁 × 2 simulations are 

need for the sample sets with substituted weight values (Saltelli et al., 2010). Ultimately, the Monto 

Carlo MCE simulations yield a 3-dimensional array in the shape of 𝑁 × (𝐾 + 2) × 𝑗, where 𝑁 is 

the number of runs,  𝐾 + 2 represents radials, and 𝑗 indicates the number of census tracts in our 

model (Ligmann-Zielinska & Jankowski, 2014; Saltelli et al., 2010).  

4.2.1.2. Uncertainty analysis 

We conduct Monte Carlo simulation runs based on a sample size of 𝑁 = 131,072 (2^17), 

as generated in the Sobol sampling procedure. This sample size is chosen to ensure it is large 

enough to cover the entire range of the input variables and to produce a sufficiently large number 

of model realizations, thereby comprehensively representing the model outcomes. A sub-set of the 

3-dimensional array generated from the Monte Carlo simulation, which represents all weight 

combinations in one of the two 𝑁 arrays and then summarized to provide the mean and standard 

deviation of the MCE output maps. This indicates the resulting average vulnerability index for 

each census tract in the study area and the variability of the model output. 
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4.2.1.3. Sensitivity analysis 

The 3-dimensional array generated from the Monte Carlo simulation is used in the 

sensitivity analysis to generate first-order (S) and total-effect (ST) index maps to illustrate how 

different criterion weights influence HAB-DVI results in different census tracts in our study area. 

This spatially explicit iUSA can provide information on the difference in importance of the 

criterion in each census tract and can assist policy recommendations that account for the spatial 

heterogeneity of the decision criteria. The overall workflow of iUSA is presented in Figure 4.1. 

 

Figure 4.1 Overview of iUSA workflow 

4.2.2. Scenarios 

This study explores fertilizer regulation policy effectiveness and their implementation 

strategies for mitigating HAB severity. We formulated three policy scenarios based on the baseline 

ABM-MCE. Since the complexities and dynamics of the CHANS related to HABs in our 
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integrated model are simulated in the ABM section of the model, adjustments are made to variables 

and parameters in AVUS (Chapter Three) to simulate these policy scenarios.  

In the first policy scenario, we introduce a behavioral aspect for economic agents to reflect 

their environmental concerns regarding HABs in Lake Erie. Economic agents’ environmental 

awareness can escalate when they perceive the severity of HAB events exceeding their tolerance 

level (for non-LRO agents) or when their income from lake-related activities diminishes due to 

severe HAB events (for LRO agents). If their collective environmental awareness surpasses pre-

defined thresholds prompting action, government or environmental agencies may be forced to take 

action to address the HAB issue in Lake Erie. Consequently, policymakers might strengthen 

regulations on fertilizer usage among agricultural agents. This scenario aims to simulate a simple 

democratic policy-making process and assess how this behavioral addition impacts the dynamics 

within our simulated CHANS, potentially improving vulnerability conditions for economic agents 

across different spatial units.  

The second scenario builds upon the first, maintaining the democratic policy-making 

process. However, policymakers promote agricultural Best Management Practices (BMPs) instead 

of reinforcing fertilizer amount regulations. BMPs are designed to address environmental concerns 

and enhance environmental sustainability. Practices such as planting cover crops and adopting 

reduced or no-till farming techniques are widely recognized BMPs that aid in reducing water 

erosion and improving water quality (United States Department of Agriculture, 2020). While 

reduced tillage or no-till practices generally entail fewer field operations and lower financial costs 

for farmers, adopting cover crops may require additional operations and higher financial 

investments in seeds, tools, and herbicides (Wallander et al., 2021).  
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Despite the benefits of cover crops in reducing nutrient runoff from fields by an estimated 

50-60 percent on average (Blanco‐Canqui, 2018; Sustainable Agriculture Research and Education, 

2017; Yeo et al., 2014), their adoption rates vary widely across different states in the US. Maryland, 

for instance, exhibited the highest adoption rate of around 33 percent in 2017, with a significant 

upward trend. Conversely, Midwest states in the Great Lakes region demonstrate relatively lower 

to moderate adoption rates. Specifically in Ohio, the adoption rate of cover crops was 

approximately eight percent in 2017, with a growth rate of around three percent from 2012 to 2017 

(United States Department of Agriculture, 2020; Wallander et al., 2021). 

Recognizing the benefits of cover crop adoption, our second scenario proposes that when 

residents’ strong opinions regarding the severity of HABs surpass a threshold prompting 

environmental agency intervention, incentives will be offered to promote the adoption of cover 

crops. Agricultural agents will then have the opportunity to accept these incentives and implement 

cover crop practices on part of their land.  

The third scenario aligns with the principles of the second scenario but suggests a more 

robust governmental initiative to achieve a higher adoption rate of cover crops. This could involve 

implementing measures such as increasing cover crop adoption incentives or introducing 

educational programs. Agricultural agents are more likely to adopt this practice in this situation. 

The parameterization for both scenarios is detailed in Table 4.1. 
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Table 4.1 Parameterization for scenario analysis 

Input Factor 
Definition and 

Units 

Factor Value 

Policy Scenario 

One 

Policy Scenario 

Two 

Policy Scenario 

Three 

Environmental 

concern 

probability 

The probability that 

individual 

environmental 

concern is expressed 

and noticed by the 

government agency 

0.33 0.33 0.33 

Agent voice 

threshold 

The threshold that 

agencies respond to 

the advocacy of 

actions 

Number of 

economic 

agents/3 

Number of 

economic 

agents/3 

Number of 

economic 

agents/3 

Reinforced 

regulation amount 

The amount of 

fertilizer regulated in 

addition to the 

baseline amount (lb) 

Baseline 

regulated amount 

– 5 

N/A N/A 

Adoption rate 

The opportunity that 

farmers adopt cover 

crop 

N/A 0.2 0.5 

Adoption area 

The area of adoption 

when agricultural 

agents decide to 

practice cover crop 

(ac) 

N/A 
Individual 

farmland area/2 

Individual 

farmland area/2 

Nutrient reduction 

rate 

The reduction rate of 

P2O5 in runoff 
N/A 50% 50% 

 

4.3. Results 

4.3.1. HAB-DVI 

Figure 4.2 illustrates the average HAB-DVI from the Monte Carlo simulation conducted 

using our integrated ABM-MCE baseline model. Utilizing natural breaks to classify our results, 
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we organize the index into five vulnerability levels: very low, low, moderate, high, and very high. 

Table 4.2 provides a descriptive breakdown of these categories across the three counties within 

our study area.  

 

Figure 4.2 HAB-DVI results of the baseline model 

All ten census tracts within Fulton County, situated on the west part of the study area, fall 

into the very low HAB-DVI tract category, comprising the entirety of this category. Moving to 

Wood County, situated in the lower right section of the map, three census tracts are designated as 

very high. At the same time, five are classified as moderate, with the county primarily hosting 

tracts categorized as low and high HAB-DVI. Spatially, most of the high and very high HAB-DVI 

tracts are concentrated near the border with Lucas County, with two exceptions adjacent to each 
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other near the county’s centroid. A tract occupied by a university lacks data for this study in this 

vicinity. In Lucas County, approximately one-third of the tracts fall within the moderate HAB-DVI 

category, representing the highest count across all classifications. Thirty tracts are categorized as 

low HAB-DVI. Concurrently, the county holds about half of the tracts classified as high and very 

high. Notably, 85 tracts are classified as high and very high HAB-DVI and clustered around the 

county center. 

Table 4.2 Descriptive distribution of HAB-DVI results in the baseline model 

 Very low Low Moderate High Very high Total 

Fulton 10 0 0 0 0 10 

Lucas 0 30 52 45 40 167 

Wood 0 11 5 11 3 30 

Total 10 41 57 56 43 207 

 

4.3.2. Uncertainty analysis 

We calculate the standard deviation (STD) for the HAB-DVI scores derived from the 

Monte Carlo simulation runs using Sobol sampling within our ABM-MCE model. The resulting 

map depicts the STD's spatial heterogeneity across the entire study area, as illustrated in Figure 

4.3. A higher standard deviation indicates greater variability in Lake Erie HAB event vulnerability 

scores across the simulation runs. 
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Figure 4.3 Standard deviation resulting from uncertainty analysis 

Similar to the classification of HAB-DVI results, we categorize the STD results into five 

categories to present the UA results. The spatial distribution of standard deviation also exhibits 

clear patterns. In Fulton County, all census tracts display very low to low STDs. The three tracts 

categorized as low are clustered near the border with Lucas County. Conversely, the majority of 

tracts in Wood County exhibit very high STDs, while in Lucas County, most tracts show low to 

moderate variability in their HAB-DVI results. 

When analyzed in tandem, average HAB-DVI and STD results demonstrate comparable 

spatial clustering trends. Therefore, to analyze both spatial results concurrently, we employ the 

quadrant classification method utilized in previous chapters (Ligmann-Zielinska & Jankowski, 
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2014; Zhang et al., 2024). This method categorizes the average scores of HAB-DVI and STD 

results into two classes, each using its natural breakpoints. This results in groups that illustrate the 

robustness of our model outcomes, i.e., high score robust, high score volatile, low score robust, 

and low score volatile. The robustness map is presented in Figure 4.4.  

 

Figure 4.4 HAB-DVI robustness map 

The natural breakpoints for HAB-DVI and STD are determined to be 0.053 and 0.294, 

respectively. The value set of HAB-DVI and STD breakpoints predominantly categorizes the 

majority of census tracts into the high-score volatile class, indicating susceptibility to Lake Erie 

HAB events, with significant uncertainty in the outcomes. All ten tracts in Fulton County are 

classified as low-score robust, comprising the entirety of this category. Tracts classified as high-
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score robust are primarily concentrated in two areas surrounding the spatial centers of Lucas and 

Wood County, suggesting a high likelihood of vulnerability to HAB events in Lake Erie. 

Interestingly, no census tract falls into the category of low score volatile.  

4.3.3. Sensitivity analysis 

The sensitivity analysis examines the weights of three criteria in our ABM-MCE model, 

each representing a pillar in the system of social vulnerability. The analysis reveals minimal 

interaction effects for all variables, with values below 0.02. Consequently, the first-order 

sensitivity index (S) adequately reflects model sensitivity to each variable. The distribution of S 

across the entire study area for each criterion weight is presented in Figure 4.5.  

Census tracts exhibiting the highest sensitivity to distance weight are exclusively situated 

in Fulton County. For other tracts, distance weight sensitivity generally correlates with proximity 

to the lakeshore – tracts closer to the lakeshore tend to have higher sensitivity indices, with a few 

exceptions located at the south of Wood County. Tracts with the highest surface water dependency 

weight are predominantly found in Wood County. Tracts near the border between Lucas and Fulton 

County generally exhibit moderate to high sensitivity levels, while tracts closer to the lakeshore in 

Lucas County demonstrate the lowest sensitivity to this criterion weight. Most tracts in Lucas 

County display very high sensitivity to income weight. Wood County exhibits an even distribution 

in this criterion weight sensitivity, with a spatial pattern indicating higher sensitivity indices closer 

to the border with Lucas County. Conversely, most tracts in Fulton County show very low 

sensitivity to this weight.  
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Figure 4.5 First-order sensitivity index for distance weight (a), water weight (b), and income 

weight (c) 
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4.3.4. Scenario analysis 

The HAB-DVI computed in this study is based on an MCE model, which requires 

standardizing all criterion values. Consequently, our vulnerability index results does not indicate 

absolute values, but rather be rank-based values that are highly correlated with the criterion values 

of each census tract in the study area. Since the criterion values in our model are either real-world 

one-time-point empirical data or simulated based on samples derived from one-time-point 

empirical data that do not exhibit any extreme probability distributions, the rank-based 

vulnerability index resulting from this model is not expected to undergo significant changes over 

a 20-year simulation period. Indeed, after running the integrated ABM-MCE model, the resulting 

HAB-DVI across different policy scenarios confirms this expectation, with only minor differences. 

Therefore, we evaluate the differences in these HAB CHANS across scenarios by analyzing HAB 

severity in our ABM over the years through the simulation runs. Like the baseline model, we 

resample our agents and conduct 50 ABM simulations for each policy scenario. Each simulation 

spans 20-year steps and generates a HAB severity index (SI) for each step. We then summarize the 

variability of SI results over the 20 years in each simulation to account for the fluctuations in HAB 

severity over time for each scenario.  

Additionally, to estimate how HAB severity changes over time from a broader temporal 

perspective, particularly examining the HAB situation before and after the implementation of 

cover crop incentives in the second and third scenarios, we divide the HAB SI results for each year 

of simulation into two time spans and compare the average of each period. In both scenarios two 

and three, cover crop incentive actions typically commence around the seventh to the tenth step, 

with a 20-year average reflected in the eighth step. Therefore, we designate step eight as the 
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dividing point for each simulation. Step eight is also applied to divide the results for scenario one 

to maintain consistency. 

The SIs' STD for each scenario is calculated for each time step to represent the overall 

conditions of HAB severity stability or fluctuation over the 20-year simulation time. We then 

summarize the results by averaging the STDs in the 50 simulations to mitigate the effects of 

extreme runs. The STDs for three scenarios are presented in Table 4.3. 

Table 4.3 Average of STDs for policy scenarios 

 Scenario1 Scenario2 Scenario3 

Average of 

STDs 
1.64 1.50 1.58 

 

In scenario one, the overall standard deviation is the highest, slightly surpassing scenario 

three and substantially exceeding scenario two. This suggests that the fluctuation in SI results 

across the 50 simulations over time is the most pronounced in scenario one. Conversely, scenario 

two exhibits the most stability in the SI results, while scenario three falls in between the other two 

scenarios in terms of stability. 
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Figure 4.6 Average SI differences pre- and post- step eight for 50 simulations for three scenarios 

Figure 4.6 illustrates the difference in averaged SIs before and after the division step set 

for the scenarios. Scenarios one and two display a similar distribution in the number of difference 

values above or below zero, with scenario two values clustering more closely around the x-axis. 
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This consistency with the standard deviation results suggests that scenario two yields relatively 

stable SI results over time. In contrast, scenario 3 shows most points above zero, indicating that 

the pre-eighth step average SI is significantly higher than and post-eighth step average SI across 

the 50 simulations. This result reveals that cover crop promotion policy simulated in scenario three 

positively mitigates HAB severity over the years. We discuss the effectiveness of the scenarios in 

the following section.  

4.4. Discussion 

The HAB-DVI result map reveals a distinct spatial pattern. Generally, census tracts that are 

most susceptible to Lake Erie HAB events cluster near the lakeshore around the center of Lucas 

County and the border between Lucas and Wood County. Conversely, census tracts least vulnerable 

to HAB hazards are predominantly located in Fulton County. By referring to the robustness map, 

which combines the HAB-DVI results with the STD, we can evaluate the level of uncertainty of 

the index in each census tract. Specifically, census tracts clustering around the spatial center of 

Lucas County, with two additional tracts at the center of Wood County, are highly likely to be most 

vulnerable to HAB events. In contrast, census tracts in Fulton County exhibit low susceptibility 

with confidence.  

These findings suggest that governments should prioritize the high-score robust areas in 

policymaking to support targeted communities to enhance their adaptation abilities and build 

resilience after hazard events, especially when resources are limited. In contrast, census tracts in 

Fulton County pose low risks for HAB events and serve as a buffer zone for supportive 

policymaking. With limited resources to allocate, governments can safely consider other areas 

before addressing these tracts. Additionally, tracts categorized as high-score volatile with relatively 

high uncertainty in their vulnerability may present high susceptibility to HAB but with less 
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confidence. Therefore, policymakers should closely monitor economic and social conditions 

during HAB and be prepared to support these areas as secondary priority zones.  

On the other hand, the sensitivity analysis of the spatial MCE model exploring 

environmental social vulnerability has played a significant role in the application of this research 

to guide policy suggestions. The analysis distributes uncertainties in results for each census tract 

in our study area among the three criteria in our MCE model. To clearly identify the most important 

variable contributing to result uncertainty in each census tract, we rank the sensitivity scores for 

each tract and determine the factor that dominates the other factors, as presented in Figure 4.7. The 

dominant criterion weights across the study area exhibit a clear spatial pattern, with each criterion 

weight showing a relatively even spatial sensitivity distribution.  

Distance weight drives the score uncertainty for most tracts in Fulton County, with one 

exception showing a dominant factor of surface water dependency weight. Note, however, that 

since tracts in Fulton County demonstrate low STD, variance-based decomposition results are less 

valuable (with low variance, there is little to decompose). Therefore, the dominant map of Fulton 

County plays a minor role in directing policymaking.  
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Figure 4.7 Dominant weight sensitivity map 

On the other hand, except for one tract dominated by surface water dependency, all other 

tracts in Lucas County and those located at the northeast section of Wood County are dominated 

by the income criterion. In contrast, tracts in the south section of Wood County are predominantly 

influenced by surface water dependency. This outcome aligns with empirical observations 

indicating that many census tracts in this area, especially those closer to the center of Lucas County 

and Lake Erie, have relatively lower average incomes (CDC/ATSDR, 2022). Lucas County tends 

to have sufficient substitute groundwater sources, whereas most areas in Wood County are solely 

dependent on surface drinking water sources (USGS, 2023). Hence, unsurprisingly, the results of 
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sensitivity analysis indicate high surface water dependency in most tracts in the south part of Wood 

County.  

The results can inform HAB-related supportive policymaking. For example, when 

considering providing support to the communities prioritized for assistance in mitigating 

vulnerability to Lake Erie HAB events, like the vast majority in Lucas County and the North East 

communities in Wood County, focusing on economic support may be the most effective. 

Conversely, for tracts in the south section of Wood County, it would be more significant to provide 

facilities to address their drinking water needs.  

While the simulation and sensitivity analysis results guide adaptation supportive policies 

to address the social vulnerability aspect in this complex system, the scenario analysis results 

reveal how agricultural regulation policies can mitigate HAB severity, addressing the natural 

aspect in this simulated CHANS. Each scenario represents an environmental policy designed to 

address the environmental issue, and from the perspective of CHANS framework, it acts as an 

external intervention to disrupt the system’s equilibrium which might further deteriorate the 

environmental condition. The model demonstrates the interactions among components within a 

CHANS, helpful for understanding the system, and more importantly, examining the efficacy of 

specific policies. In our case study, overall, the current adoption rate of cover crop, at around eight 

percent, contributes to stabilizing HAB severity at a moderate to severe level (Wittkofsky, 2023), 

consistent with our scenario two results. However, this adoption rate does not effectively mitigate 

the severity level over time, as the average severity indices before and after the practice promotion 

program do not show a significant difference. Conversely, if the adoption rate increases to 25 to 

30 percent of farmland, as seen in states that effectively promote cover crop practices, such as 

Maryland (Wallander et al., 2021), overall HAB severity will present a downward trend after the 
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program is implemented as revealed by Figure 4.6 for scenario three. This suggests that promoting 

cover crop practices and increasing the adoption rate can effectively address nutrient runoff and 

its contribution to the HAB issue in Lake Erie.  

These findings align with previous studies that advocate establishing long-term targets for 

cover crop adoption, ranging from 20 million acres by 2020 to 100 million acres by 2025 

(Hamilton et al., 2017). However, considering the financial burden and requirements for farmers 

to adopt cover crops (Wallander et al., 2021), we suggest governments consider increasing 

incentives to support farmers’ cover crop adoption or promoting educational programs to enhance 

farmers’ awareness of environmental issues and the benefits of adopting cover crops. Another 

potentially effective approach is targeting farms that have already adopted cover crops to increase 

their area of land dedicated to more cover crops, thereby reducing the overall adoption costs. 

Spatially, these regulations can be more effective when focusing on agriculturally dominated areas 

like census tracts, as shown in Figure 4.8. 

Combining the policy implications on adaptation-supportive management discussed in this 

chapter and in the two previous studies, as well as agricultural regulations, we offer further 

discussions on specific areas based on their distinct agricultural and socioeconomic status, which 

can point to more complex policymaking circumstances. For example, Fulton County is a 

significant nutrient contributor to Lake Erie with medium-to-high levels of nutrient load as shown 

in Chapter Two (Figure 2.9). This signals to environmental policymakers that actions on HAB 

mitigation are necessary in this area. However, the results of both Chapters Three and Four indicate 

that census tracts across the county are not susceptible to, and face low risks from, HAB events in 

Lake Erie, which means mitigating HAB severity would not directly benefit the residents of the 

county. Consequently, local governments and residents lack motivation to allocate government 
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resources or incur regulatory costs, such as implementing incentives for adopting cover crops, to 

address this environmental issue. Conversely, Lucas County is not a major nutrient contributor 

affecting HAB severity, but most tracts in this county suffer from poor socioeconomic status, 

resulting in high vulnerability to HAB events. This disparity raises issues of environmental 

injustice, as Lucas County residents, being downstream lake resource consumers, are the 

environmentally marginalized communities bearing a disproportionate share of negative 

environmental impacts (Mohai et al., 2009; US EPA, 2023).  

We argue that multi-scale governance and implementing interventions at the most 

appropriate scales are essential to address this environmental justice issue. First, spontaneous 

actions are typically the main approaches to achieve adaptations (Adger, 2001), and smaller-scale 

interventions can be effective in encouraging these spontaneous actions. For example, community-

based educational programs in the high-vulnerability census tracts around the center of Lucas 

County can help residents understand how the water issue affects their health and quality of life, 

know where to obtain resources and support during HAB hazard events, and raise awareness about 

the environmental justice issue they are facing. These programs can effectively reduce residents’ 

responding time when hazards occur, thereby decreasing the harm they experience. At the same 

time, if the programs successfully build collective awareness of this environmental justice issue, 

residents can act to stimulate responsive governance from higher-level governments, such as 

county or state authorities, which can offer further support to these communities (Webster & 

Pavlovich, 2019). This process can create positive feedback to build adaptation capacity and 

community resilience for these high-vulnerability census tracts.  

On the other hand, larger-scale governance usually has a broader vision of the issue across 

space and can set overarching goals based on it. For instance, even though the government of 
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Fulton County may not be motivated to address the HAB or environmental justice issue, the state 

government of Ohio may be able to hear the voices from the community-educated high-

vulnerability residents and respond to their advocacy by implementing regulations on agricultural 

practices in nutrient-contributing areas like Fulton County. Similarly, federal level or international 

environmental agencies can set goals and coordinate efforts to mitigate the HAB issue, distributing 

nutrient loading reduction targets and incentivizing local governments to take regulatory actions. 

This approach aligns with current national and international efforts, such as Clean Water Act of 

1972 and the Great Lakes Water Quality Agreement.  

Additionally, higher-level government can be an appropriate source to directly address 

environmental injustice or HAB vulnerability issues through economic interventions. For example, 

the results of this study indicate that the extreme high-vulnerability communities located around 

the center of Lucas County would benefit from government allocation of resources to mitigate 

their HAB vulnerability sensitive negative factors, such as economic status, thereby reducing these 

residents’ risks from HAB events and build community resilience. However, local government has 

tried to improve the economic status of low-income residents, but this long-standing issue remains. 

Local government programs, such as Lucas County’s Prevention, Retention and Contingency 

Program (https://co.lucas.oh.us/913/Prevention-Retention-and-Contingency-Pro), have been 

assisting families in overcoming poverty. If the local government cannot mitigate the economic 

issues that contribute to HAB vulnerability in central Lucas communities, they cannot fully address 

this vulnerability issue. In this situation, higher-level governments or agencies can play a 

significant role by imposing charges on parties responsible for nutrient loads, such as farmers or 

fertilizer companies in upstream areas, and distributing these payments to support programs for 
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downstream high-vulnerability communities. This approach can contribute to vulnerability 

reduction and environmental injustice mitigation in this CHANS of Lake Erie HABs. 

 

Figure 4.8 Agricultural tracts 

Methodologically, this study demonstrates the utilization of a Monte Carlo-based 

simulation built upon Sobol sampling and the model’s iUSA process to assess environmental social 

vulnerability to Lake Erie HAB events. While this approach has been applied in determining land 

use suitability in previous studies (Ligmann-Zielinska, 2013), this research marks the first instance 

of adopting this method to evaluate spatially explicit social vulnerability indices. By applying this 

method to environmental vulnerability studies, we highlight the usefulness of iUSA results in 

understanding the complexity of social vulnerability, exploring significant contributing factors that 
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affect the HAB-DVI results in each spatial unit of our model, and providing policy 

recommendations. The application of this method in our study justifies the utilization of iUSA by 

exploring and examining the model. It also provides information on the drivers of change in the 

system and their significant implications from an applied perspective. Moreover, the scenario 

analysis in this study delves into the efficacy of adopting cover crops, a widely recognized 

beneficial agricultural activity that has not been sufficiently adopted in practice in Ohio. In short, 

our analyses may offer insights into understanding this practice’s influence on mitigating Lake 

Erie HAB severity in the long run and suggesting government attention be directed towards its 

promotion. 

4.5. Limitations and Future Research 

As mentioned in Chapter Two, the lack of high-quality empirical data constrains the 

accuracy of the results of this study. Specifically, this chapter shows the disadvantage of spatially 

coarse empirical data in the dominant weight sensitivity map. We mainly attribute the relatively 

smooth surface of the dominant weight map to the lack of more specific drinking water source 

data. While the current results provide some insight into policy support when assisting vulnerable 

communities exposed to HABs, the results could be more specific if the water resource datasets 

matched the resolution of census tracts. Collecting more detailed empirical data could enhance this 

study’s capacity to provide more specific and accurate information assisting policy design. 

While exploring the weights of the three pillar criteria in social vulnerability that contribute 

to the HAB-DVI is the specific aim of this research, exploring the effects of additional variables, 

such as criteria values and MCE aggregation function, would provide more insight into the 

specifics of social vulnerability in terms of the variability of criteria values in each spatial unit, 

and the limitation of MCE results from the function choice. This limitation is partially due to 
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computational costs and data availability. For the next step of this study, we propose integrating 

more variable effects in the HAB-DVI (Equation 1), like alternative layers reflecting adaptive 

capacity in vulnerability structure, to examine how different operationalizations of this pillar affect 

the uncertainty of the vulnerability index. 

There is still ample opportunity to expand the model to provide a broader range of policy 

suggestions. First, in addition to agricultural regulation and incentive policies evaluated in current 

scenarios, more actions can be simulated as external forces affecting the dynamics in the system 

and potentially benefiting the agents or environment. For example, could adaptation policies that 

help build community resilience ultimately play a positive role in mitigating HAB severity after the 

complex interactions in the CHANS? How does the scale of governance impact this issue? Besides 

simulating a state-level regulation in this chapter, future studies will also implement different 

actions at various governance scales, such as federal and local, to examine their effectiveness and 

efficiency in addressing environmental and social vulnerability issues. The question of governance 

scale leads to another question: What is the most suitable scale for specific policies, or what are 

the feasible policies for a specific governance scale that ensure that stakeholders are not 

overwhelmed by their costs or deprived of rights? Addressing these questions has the potential to 

support policymaking in evaluating who supports or opposes the implementation of specific 

policies and evaluating the extent to which those policies might be blocked from being enacted. 

This part of the work requires more fieldwork and in-depth interviews. 

Lastly, the scenario analysis could be augmented by using a more comprehensive model 

development that accounts for the viewpoints of different stakeholders – an aspect that is of 

particular importance in any social system study. For example, a policy scenario simulating a 

participatory policymaking process can be designed and implemented in this model. The scenario 
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can involve a more complex policymaking process where specific actions are taken to ensure 

stakeholders, such as lake-related occupants and farmers, have their voices and opinions heard by 

the policymakers.  

4.6. Summary 

This chapter demonstrates the use of a Monte Carlo-based simulation built upon Sobol 

sampling and the model’s iUSA process to assess environmental social vulnerability to Lake Erie 

HAB events (HAB-DVI). The results of this study identify census tracts with high HAB-DVI, 

aiding in prioritizing supportive financial resource allocation to help build communities’ 

adaptation abilities and resilience in Lake Erie HAB events. The sensitivity analysis results of this 

study further delve into these vulnerabilities by identifying drivers of HAB-DVI across geographic 

locations (figure 4.7). Finally, the scenario analysis examines the dynamics in the CHANS of 

HABs involving the agricultural behaviors of farmers and their impacts on residents affected by 

the HAB events. It provides agricultural policy suggestions to mitigate HAB severity through 

interventions in farmers’ behaviors that change the dynamics of this system.  
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5. CHAPTER 5: DISSERTATION SUMMARY 

5.1. Main research conclusions 

This dissertation delves into the realm of environmental hazards, which are common and 

potentially high-consequence disturbances to the equilibrium of coupled human and natural 

systems (CHANS), rendering communities vulnerable to these events. The study's pivotal aim is 

to develop a robust research framework that seamlessly integrates the stochasticity, complexity, 

and dynamics inherent in CHANS vulnerability. This framework is not just a tool but a significant 

step towards assessing a spatially explicit social vulnerability for communities within CHANS. Its 

implementation will aid in prioritizing supportive policies to enhance community adaptability and 

resilience, a crucial aspect in the face of environmental hazards.  

As CHANS for our case study, we took the harmful algal blooms (HABs) occurring in 

Lake Erie, the agricultural contributors to HABs, and the people affected by these events. We 

evaluated the social vulnerability of different communities facing Lake Erie HABs to comprehend 

the dynamics in this system and inform environmental policymaking. The real-world implications 

of this research are significant, as it can help in the formulation of targeted policies and strategies 

to mitigate the impact of HABs on communities, thereby enhancing their resilience and 

adaptability. Specifically, we investigated three aspects of this environmental-social vulnerability 

topic:  

1). “From a static perspective using existing socioeconomic datasets, which are the 

counties most vulnerable to Lake Erie HAB events in the south and west parts of Lake Erie Basin?” 

2). “From a systemic coupled human and natural systems (CHANS) perspective 

considering stochastic, complexities and spatiotemporal dynamics, where are the most vulnerable 

regions to Lake Erie HAB events in Maumee River Basin?” 
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3). “According to the systemic model built to simulate the CHANS, how do different 

variables affect the resulting vulnerability index and contribute to the sensitivity of the model?” 

Research question #1 was addressed in Chapter Two, where we introduced a 5-theme 

spatial HAB vulnerability index (HAB-VI). This index comprises socioeconomic, resource 

dependence, and spatial factors affecting vulnerability to HAB events. Using a multi-factor 

hierarchical model, which enhances the CDC/ATSDR’s Social Vulnerability Index (SVI) by 

extending indicators and thematic dimensions, we applied the index to evaluate the HAB-related 

vulnerabilities of 50 counties in the Lake Erie Basin. We also conducted a Monte Carlo-based 

uncertainty analysis and compared thematic maps to gain further insights into prioritizing regions 

for government support and community resilience.  

Based on this study, we conclude with three main points. First, the identified high-

vulnerability counties exhibiting a spatial pattern primarily aggregated in Ohio, adjacent to the 

southernmost boundary of Lake Erie. This finding offered valuable information for prioritizing 

supportive policies for local governments. Second, the uncertainty analysis yields a robustness 

map for our HAB-VI results, categorizing the study area into four segments and providing 

additional insights for policy prioritization. For example, while certain areas may not be prioritized 

based solely on their average HAB-Vi results, the uncertainty of the model suggests that some 

counties in these areas may require closer attention due to their highly possibly changing 

socioeconomic conditions during and after HAB events. Third, the comparison of thematic maps 

informs policymaking regarding management strategies. By integrating nutrient contribution 

levels and current policy strength with the HAB-VI, some areas with high contributions may not 

be suitable for environmental policy reinforcement due to their high vulnerability or existing 

regulation strength. 
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Research question #2 was investigated in Chapter Three by building an integrated agent-

based model (ABM: AVUS) and multicriteria evaluation (MCE) to simulate a CHANS involving 

agricultural, economic, and governance systems. The Ordered Weighted Averaging (OWA) 

aggregated MCE model generated results in a stochastic and spatially explicit dynamic 

vulnerability index (HAB-DVI), reflecting the susceptibility of each census tract in the Toledo 

Metropolitan Area to Lake Erie HAB events. A Monte Carlo-based uncertainty analysis was further 

employed to provide policy prioritization suggestions. 

This chapter yielded three main conclusions. First, the HAB-DVI results revealed a clear 

spatial pattern, with most high-vulnerability census tracts clustered around the center of Lucas 

County and the border between Lucas and Wood Counties close to Lake Erie. In contrast, low 

susceptibility tracts are aggregated in Fulton County. Second, the robustness map generated from 

uncertainty analysis indicates high confidence in most of the very high and very low vulnerability 

census tracts. However, most of the Wood and Lucas Counties tracts exhibited relatively high 

uncertainty. Therefore, we recommend monitoring most parts of this study area except for Fulton 

County, with certain tracts in the center of Lucas and Wood County identified as high-priority 

zones for community supportive policies or practices, such as putting more efforts in identifying 

low-income households, providing job opportunities, and guaranteed income programs. Specific 

aspects of support are discussed later in Chapter Four. Lastly, the integrated ABM-MCE 

framework effectively simulates the CHANS regarding environmental hazard disturbances and 

focuses on social vulnerability. By modeling the dynamics of CHANS, the chapter proposes a tool 

for evaluating the uncertainties of alternative future scenarios – a topic of the final - fourth chapter. 

In short, the framework can investigate various environmental hazards and provide adaptable 

policy recommendations.  
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Chapter Four conducted an integrated uncertainty and sensitivity analysis (iUSA) and 

scenario analysis on the ABM-MCE model framework to address question #3. We employed 

Monte Carlo simulation based on Sobol sampling on the MCE model to investigate how weights 

of the three vulnerability pillar criteria – distance (exposure risk), surface water dependency 

(intrinsic sensitivity), and income (adaptive capacity) – affect the variability of the outcome HAB-

DVI. Additionally, three policy scenarios were designed and applied to AVUS to simulate the 

changes in dynamics of the CHANS and thereby estimate how the proposed policies can affect the 

severity of Lake Erie HAB events in the long run. 

Two conclusions were drawn from the iUSA in this study. First, income weights 

predominantly influenced the sensitivity of HAB-DVI results in Lucas County and the North side 

of Wood County, which is adjacent to the border with Lucas County. On the other hand, the South 

side of Wood County primarily exhibited surface water dependency as the dominant variable 

affecting model sensitivity. This information is constructive for supportive policymaking targeted 

to these two areas. Specifically, areas dominated by income as the diver of HAB severity may 

require more economic support to cope with these disturbances while providing substitute drinking 

water facilities or focusing on improving communities’ drinking water accessibility can be crucial 

for census tracts in South Wood County. Additionally, the scenario analysis also indicates that 

cover crop implementation is an effective practice to mitigate HAB severity in Lake Erie. 

Considering the costs of cover crop adoption, government should place efforts in promoting this 

practice and adjust incentive levels to encourage the implementations. 

5.2. Intellectual merit 

Methodologically, this dissertation develops a novel framework integrating ABM and 

MCE to explore environmental and social vulnerability within CHANS. This approach presents a 
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state-of-the-art method for studying social vulnerability as one of the major characteristics of 

CHANS. First, CHANS involve complex interactions between human and environmental systems, 

which are inherently dynamic (Liu et al., 2007). To provide effective environmental policy 

recommendations targeting natural or social systems, it is crucial to employ approaches that can 

address these complexities (An et al., 2005, 2014, 2021). Hence, policy suggestions derived from 

such simulations are based on the dynamic nature of these systems. From the social vulnerability 

perspective, complexity and spatiotemporal dynamics are also significant features. Various 

dynamic factors within CHANS influence social vulnerability (De Ruiter & Van Loon, 2022; 

Drakes & Tate, 2022).  

This study unitized agent-based modeling – a tool that has been used to model CHANS 

complexity (An, 2012; Chen et al., 2023; Nazir & Olabisi, 2015; Yang et al., 2022). Also, since 

environmental and social vulnerability must be measurable to inform policymaking, we employed 

a multicriteria evaluation that produces composite indicators accounting for multiple facets of the 

target system. Hence, this study develops the first ABM-MCE integrated framework to address 

CHANS's environmental and social vulnerability. This framework is particularly suited for 

evaluating vulnerability in CHANS, as the ABM simulates interactions and dynamics within these 

systems, generating spatiotemporal results that indicate significant factors for calculating a follow-

up vulnerability index. In short, the proposed framework provides a robust method for policy-

relevant analysis. 

This dissertation also contributes to applied environmental science in studying social 

vulnerability within CHANS from multiple perspectives. First, the vulnerability indices calculated 

in this dissertation (HAB-VI in Chapter 2 and HAB-DVI in Chapters 3 and 4) are spatially explicit, 

allowing for delineating regions of high versus low social vulnerability (Armaș & Gavriș, 2013; 
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Cutter & Finch, 2008; Guillard-Gonçalves et al., 2015; Lehnert et al., 2020). In addition to 

addressing spatial heterogeneity, this dissertation also incorporates spatial features of vulnerability 

by adjusting the factors impacting or being affected by HAB events (specifically nutrient 

contribution and economic impacts on local income) through proximity-adjusted preferences 

(Ligmann-Zielinska & Jankowski, 2012). By integrating these adjustments and emphasizing the 

distance effect, the model simulates vulnerability that more accurately represents the spatial 

susceptibility distribution in real-world scenarios. 

From the perspective of environmental policymaking, this dissertation provides 

empirically-based information to guide policies to support local community resilience and regulate 

agricultural fertilizer inputs, specifically in the context of Lake Erie HAB events and surrounding 

agricultural and economic systems. While previous studies have emphasized the importance of 

researching social vulnerability to environmental hazard events (Alvarez, 2022; Martinich et al., 

2013; Nayak et al., 2018) None have explicitly focused on the Lake Erie HABs system. This study 

addresses this gap and provides suggestions on prioritizing areas for supportive policies. It also 

examines the importance of each criterion contributing to the vulnerability results, providing 

deeper insights into understanding HAB vulnerability from a systemic perspective. This enables 

policymakers to allocate resources more effectively and enhance community resilience.  

Lastly, this research evaluated how selected Best Management Practices (BMPs) reduce 

the severity of HABs. Specifically, the coupled model tested cover crops BMP in Ohio that have 

been shown to reduce the nutrient levels in runoff (Blanco‐Canqui, 2018; Hamilton et al., 2017). 

Through scenario analysis, this research tests the effectiveness of cover crop implementation in 

mitigating HAB severity and calls for policy efforts to promote this practice.  
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5.3. Limitations and future work 

The data utilized in this dissertation are primarily sourced from public databases. Since the 

data are not specifically tailored for this study, some datasets require approximations that may 

inaccurately measure the selected system characteristics. For example, surface water dependency, 

used as a vulnerability indicator in Chapter 2 and as a pillar criterion in Chapter 3, is estimated 

based on the county-level ratio of surface drinking water sources to groundwater sources. This 

estimation excludes other possible drinking water sources, such as private wells. Additionally, the 

data are not detailed enough to accurately represent drinking water sources in each census tract, as 

other sources are not included. Another instance is the parameterization of the agents in AVUS. 

The aggregated fertilizer application level, estimated from historical data, may not accurately 

represent the fertilizing behavior of Ohio farmers. These data issues could affect the results of this 

study. Therefore, fieldwork, including surveys on farmers’ behaviors and water accessibility, and 

especially participatory modeling, would help improve the accuracy of the conclusions from this 

study and provide more targeted policy recommendations to address the issues of importance to 

local communities. 

While the spatiotemporal dynamics inherent in vulnerability within CHANS are adequately 

addressed in the integrated ABM-MCE framework, our results did not investigate the evolution 

trends of some focal factors, such as annual HAB severity and HAB-DVI. We plan to expand the 

simulations by looking into the temporal changes in model runs to reveal any potential emergent 

trends. Additionally, exploring how compounding hazard events affect this CHANS is another 

promising direction. The occurrence of different types of hazards adds more complexities to this 

framework and is an important topic in studying environmental and social vulnerability in a 

complex context. For example, after years of Lake Erie HAB events, how would the occurrence of 
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a pandemic compound the dynamics in the system and stress the adaptive capacity of different 

communities? Similar topics warrant further investigation in future work.   
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