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ABSTRACT 

 Understanding packaging dynamics and identifying hazards in physical distribution are 

essential for reducing damage risk to packages and products, thus improving their integrity. 

Evaluating the mechanical properties of package structures in different designs and environments 

through experimental tests is time-consuming and costly. While mechanics-based simulation 

models like the Finite Element Method have been used to address these challenges, they often rely 

on simplified assumptions due to the complex mechanical responses of composite structures. 

Recent advancements in artificial intelligence, particularly machine learning, offer innovative 

solutions for efficient problem-solving, optimization, and predictive insights. In package dynamics 

and distribution, machine learning models provide significant cost and time advantages over 

traditional experimental testing by predicting performance without extensive physical trials. 

Machine learning learns from data and generates predictive models using advanced algorithms. 

This dissertation explores the use of machine learning techniques to predict damage to package 

structures and products after transportation vibrations, offering insights and predictive tools for 

future package designs. The machine learning solution is time and cost-efficient, eliminating the 

need for additional experimental tests once predictions are made. The application is demonstrated 

through three studies: a) analyzing and predicting the buckling behavior of corrugated paperboards 

with cutouts, b) predicting bruising damage to packaged apple fruits from vibrational forces during 

transportation, and c) forecasting the loss of compression strength in corrugated paperboard boxes 

post-transportation vibrations. Chapter 1 introduces the use of machine learning in package 

dynamics, outlines the algorithms used, and presents the research goals and case studies. While 

the studies are related to packaging dynamics, they differ in parameters, so the literature review is 

presented separately in each chapter. Chapter 2 investigates the relationship between cutout 



 

 

characteristics and buckling loads in ventilated corrugated paperboard boxes using experimental 

tests and Finite Element Method simulations. The study found that larger cutouts reduce buckling 

resistance, while positioning holes closer to horizontal edges maintains higher strength. The 

machine learning model effectively predicts buckling strength, achieving 91.45 R² accuracy on 

experimental data for plates with single cutouts and 94.68 R² accuracy on simulation data for plates 

with multiple circular cutouts. Chapter 3 develops machine learning solutions to predict bruising 

damage to apples during transportation, identifying vibration intensity as the primary factor 

affecting damage. Chapter 4 examines the loss of compression strength in corrugated paperboard 

boxes due to transportation vibrations, using machine learning models that achieve an R² score of 

0.93 to predict this degradation accurately. The analysis reveals that vibration characteristics have 

a more significant impact on compression strength than package dimensions. Chapter 5 

summarizes the findings and suggests directions for future research to enhance the durability and 

performance of packaging systems. The novelty of this dissertation lies in demonstrating the 

application of machine learning in predicting dynamic damage in packaging dynamics and 

distribution through three case studies. While machine learning has been used for optimizing 

packaging geometry, its application in predicting mechanical failures is relatively limited. This 

research enhances the understanding of damage to package structures and products after 

transportation and provides a machine learning-based tool for predicting damage, which can be 

adapted for similar tests. In summary, the dissertation highlights the significant potential of 

machine learning in addressing challenges within packaging dynamics and distribution. 
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Throughout the supply chain, from manufacturing facilities to end users, packaging plays 

a crucial role in protecting and preserving products (Ait-Oubahou et al., 2019; Natarajan et al., 

2014; Sharma et al., 2021). Packaging not only ensures that products remain undamaged and 

functional upon delivery but also extends their shelf life by preventing contamination and 

degradation. Effective packaging provides protection against environmental factors like moisture, 

temperature fluctuations, and light, ensuring product quality remains preserved. Additionally, 

well-designed packaging enhances the consumer experience by providing convenience, ease of 

use, and clear information about the product. In the context of global trade, robust packaging 

solutions are essential for maintaining product integrity across long distances and varied 

transportation conditions.  

1.1 Machine learning 

Machine Learning (ML) Machine learning is essentially a type of applied statistics that 

places greater emphasis on using computers to estimate complex functions and less emphasis on 

determining confidence intervals for these functions (Goodfellow et al., 2016). These models learn 

patterns and make predictions or decisions based on data. ML encompasses various methods, 

including supervised learning, which involves learning from labeled data. It also includes 

unsupervised learning, which involves finding patterns in unlabeled data. Additionally, 

reinforcement learning involves learning optimal actions through trial-and-error interactions with 

an environment (Sutton & Barto, 2018). The purpose of ML models is to develop a mathematical 

approach to predict the complex patterns of sample data.  

1.2 Application of ML model in packaging 

ML has several applications in the packaging industry, addressing various challenges and 

enhancing overall efficiency. Here are some key areas where ML is making a significant impact: 
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• Optimizing Packaging Design: ML can be used to analyze historical data on packaging 

failures, helping engineers design more robust packaging solutions tailored to specific products 

(Mrówczyński et al., 2023) 

• Predicting Potential Damage: ML models can predict the likelihood of damage under different 

scenarios, allowing for the anticipation and mitigation of risks associated with vibration, shock, 

and compression during transportation (Yin et al., 2024). 

• Enhancing Performance and Sustainability: By identifying patterns and making accurate 

predictions, ML can enhance the overall performance and sustainability of packaging 

materials, leading to more efficient and environmentally friendly solutions.  In other fields, 

ML is also used for sustainability, such as manufacturing (Kaur et al., 2023) and predicting 

scrapping inventory in environmental management, which helps reduce material waste and 

manage e-waste effectively (Huang & Liu, 2023). These applications demonstrate the broad 

potential of ML to contribute to sustainability across various industries. 

• Produce Preservation: ML can determine optimal parameter combinations to maximize the 

shelf life of perishable goods, improving the preservation of produce during storage and 

transportation (Mohammed et al., 2023; Palumbo et al., 2022). 

• Quality Control in Production: ML enhances quality control in production by continuously 

monitoring data from sensors and IoT (Internet of Things) devices (Ali et al., 2020), detecting 

anomalies (Jaramillo-Alcazar et al., 2023), and automatically adjusting production parameters 

to maintain consistent quality and reduce waste. This leads to more efficient, reliable packaging 

operations with fewer defects and lower production costs. 
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• Improving Supply Chain Processes: ML can analyze large volumes of data to identify patterns 

and make predictions that significantly improve supply chain processes and packaging 

operations, leading to increased efficiency and reduced costs (Min, 2010; Tan et al., 2017). 

1.3 Packaging dynamics and challenges  

Packages in distribution environments are exposed to various hazards (Dunno et al., 2016) 

including vibration, shock, and compression forces, which compromise the integrity and 

functionality of the package. Packaging dynamics involves the study of how packages behave 

under various environmental and mechanical stresses during handling and transportation. Key 

aspects of packaging dynamics include: 

1. Shock: Sudden and intense forces resulting from drops or impacts can cause immediate 

damage to packaging and its contents. Understanding shock dynamics helps in designing 

packaging that can absorb energy to protect the product (Ficuspax, 2023). 

2. Vibration: Continuous vibrations during transportation, especially over long distances, can 

lead to cumulative damage (Schmitz & Smith, 2012), such as fatigue in materials or 

loosening of components. Vibration analysis helps in creating packaging that can withstand 

or mitigate these effects. 

3. Compression: Stacking and storage subject packages to compressive forces, which can 

deform or crush them (Testronix Instruments, 2023). Studying compression dynamics 

ensures that packaging can maintain its structural integrity under load. 

4. Temperature Variation: Changes in temperature during transportation and storage can 

affect the integrity and performance of both the packaging and its contents (Hamm et al., 

2018). Temperature fluctuations can cause materials to expand, contract, become brittle, 

or degrade. Understanding temperature dynamics is crucial for designing packaging that 
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provides thermal insulation or temperature regulation, ensuring product stability and 

longevity. 

5. Humidity and Moisture: Exposure to humidity and moisture can weaken packaging 

materials, cause corrosion, promote mold growth, and lead to spoilage or degradation of 

the contents. Moisture dynamics involves studying how humidity levels and water 

exposure affect the packaging and product. Designing moisture-resistant packaging or 

incorporating desiccants can help protect against these adverse effects (Defraeye et al., 

2015). 

 Packaging professionals face several challenges, including accurately predicting how 

different materials and designs will respond to dynamic forces, balancing protection with cost and 

sustainability, and adapting to varied and unpredictable transportation conditions. Traditional 

methods often rely on extensive physical testing, which can be time-consuming and costly. 

To mitigate these risks and reduce the cost and time, innovative solutions are required to 

design and optimize packaging systems that can withstand the rigors of transportation and 

handling. This involves not only selecting appropriate materials and designs but also understanding 

and predicting the dynamic stresses that packages will encounter throughout the supply chain. In 

this context, the application of ML techniques presents a transformative approach to addressing 

the challenges in packaging dynamics and distribution hazards. ML algorithms can analyze vast 

amounts of data from past transportation scenarios to identify patterns and predict potential points 

of failure. By using predictive modeling, ML can simulate different packaging designs and 

transportation conditions, allowing engineers to optimize packaging solutions without the need for 

extensive physical testing. Moreover, predictive models developed using ML can reduce the need 

for extensive physical testing by simulating various stress conditions and predicting the 
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performance of packaging designs. This not only saves time but also allows for rapid prototyping 

and iteration. Additionally, ML can continuously learn and improve from new data, ensuring that 

packaging designs remain effective as transportation methods and conditions evolve. This 

capability not only enhances the resilience and reliability of packaging but also contributes to cost 

savings and sustainability by reducing material usage and minimizing product losses. 

This dissertation explores the application of machine learning in packaging dynamics, 

focusing on predicting specific package damages during transportation through three specific 

studies. ML models might be able to enhance the overall efficiency and reliability of packaging 

systems, leading to reduced damage during transit, improved product quality, and increased cost-

effectiveness in packaging logistics.   

1.4 ML algorithms employed in this dissertation 

This dissertation employs several ML algorithms, including Linear Regression, Support 

Vector Regression, K-Nearest Neighbor, Decision Tree Regressor, Random Forest Regression, 

Light Gradient Boosting Machine, and XGBoost, to predict the performance and integrity of 

packaging under various environmental and mechanical stresses. These algorithms are chosen for 

their ability to handle complex datasets and provide accurate predictions, enhancing the efficiency 

of packaging design and testing processes. 

1.4.1 Linear regression model 

Linear regression models are widely used for prediction in various fields, including 

business and industry due to their simplicity and interpretability. These models assume a linear 

relationship between the input variables and the output, typically represented by the Eq. 1: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖 (1) 
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where y is the dependent variable, 𝛽0 is the intercept, 𝛽1, 𝛽2, …, 𝛽𝑝 are the coefficients of 

the input variables 𝑥1, 𝑥2, …, 𝑥𝑝, and 𝜖 is the error term. Linear regression models are particularly 

useful in situations with small training sets or sparse data (Montgomery et al., 2021). Despite their 

simplicity, linear regression models can outperform more complex models in certain prediction 

scenarios (Hastie et al., 2009). Furthermore, their coefficients provide insights into the relative 

importance of different predictors, aiding in feature selection and model interpretation. 

Additionally, linear regression serves as a foundation for more advanced statistical and ML 

methods, making it an essential tool for data analysts and researchers. Linear regression aims to 

find the best-fitting straight line through the data points, minimizing the differences between the 

observed values and those predicted by the model (Raschka & Mirjalili, 2017). 

1.4.2 Support vector regression (SVR) 

The SVR (Support Vector Regression) method is a well-established technique used for 

predicting both linear and non-linear regression problems. It is particularly useful when dealing 

with a limited amount of sample data. The fundamental principles of SVR formulated by Vapnik 

(Vapnik, 1964) follow the same methodology of support vector machines used in classification 

methods (Smola & Schölkopf, 2004). In a support vector machine classification algorithm, each 

labeled sample within the training dataset is treated as a data point within a multidimensional 

feature space. Within this feature space, a hyperplane is employed to classify the training data 

points. In contrast, the SVR model introduces an ɛ-insensitive loss function to determine a 

hyperplane that allows for an ɛ deviation between predicted and actual values within the training 

data (Zhang & O’Donnell, 2019).  
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1.4.3 K-Nearest Neighbor (KNN) 

The KNN regression is a widely used ML method that is easy, simple, straightforward to 

interpret, and computationally cost-effective. In the KNN regression, the average values of 

𝑘 nearest neighbors are used to predict continuous values. The KNN regression estimates new data 

points based on the feature similarities (Mahmoodzadeh et al., 2021). In this method, each new 

data is given a distance value according to its similarity to the train data set. These distances (i.e., 

d) are calculated using various methods, including the Euclidian metric (Eq. 2), Manhattan metric 

(Eq. 3), and the Minkowski metric (Eq. 4) for continuous data value. 

𝑑 =  √∑(𝑝𝑖 − 𝑞𝑖)2

𝑛

𝑖=1

 (2) 

𝑑 =  ∑|(𝑝𝑖 − 𝑞𝑖)|

𝑛

𝑖=1

 (3) 

                 𝑑 =  {∑(|𝑝𝑖 − 𝑞𝑖|)
𝑚

𝑛

𝑖=1

}

1
𝑚⁄

 (4) 

where 𝑝𝑖 is the new data point and 𝑞𝑖 is the existing data point, 𝑛 is the number of data 

points, and 𝑚 is a positive value. Following the distance measurement of a new observation from 

the training set, the 𝑘 nearest data points are to be considered. In this study, the KNN method is 

applied by 6 neighbors (i.e., 𝑘=6) as the optimal value of 𝑘. 

1.4.4 Decision tree regression model 

Decision tree regression is a powerful tool for data analysis, particularly in the context of 

categorical and continuous data (Olson & Wu, 2017). The representation of decision trees, 

including the use of different node representations, can significantly impact their performance 

(Czajkowski & Kretowski, 2016). Decision tree algorithms, such as ID3, C4.5, CHAID, and 
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CART, are widely used for classification and regression tasks, with pruning being a key method 

for improving accuracy (Olson & Wu, 2017). These algorithms are favored for their simplicity, 

effectiveness, and competitive performance (Jena & Dehuri, 2020). Classification trees are used 

when the dependent variable has a finite number of unordered values. They help in categorizing 

the data into distinct classes. In contrast, regression trees are designed for dependent variables that 

are continuous or have ordered discrete values, focusing on predicting a numerical outcome rather 

than a category. The decision tree regression algorithm works by first splitting the data into subsets 

based on the value of the features, seeking to find splits that minimize the variance in the target 

variable within each subset. This process continues recursively, creating a tree-like structure where 

each internal node corresponds to a decision based on a feature, and each leaf node represents a 

predicted value. Once the tree is built, it can be used to make predictions by traversing from the 

root to a leaf, following the decisions at each node, to arrive at a predicted value. In decision tree 

regression, the predicted value for a given input is typically the mean value of the target variable 

in the subset of the data that reaches the leaf node.  

The key idea behind decision tree regression is to recursively partition the input space into 

smaller regions and fit a simple model, such as a constant or a linear function, within each region 

(Myles et al., 2004). The mathematical equation for decision tree regression can be expressed as a 

piecewise function, where each leaf node in the decision tree represents a distinct region of the 

input space, and the value associated with that leaf node represents the predicted output for any 

input that falls within that region. The decision tree regression model can be represented as a binary 

tree, where each internal node represents a split on a particular feature, and each leaf node 

represents a predicted output value (see Eq. 5). 
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𝑦 = 𝑓(𝑥) = ∑ 𝑐𝑖

𝑀

𝑖=1
∙ 𝐼(𝑥 ∈ 𝑅𝑖) (5) 

where y is the predicted output, x is the input vector, 𝑐𝑖  is the constant or mean value 

associated with the i-th leaf node, 𝐼(𝑥 ∈ 𝑅𝑖) is an indicator function that takes the value of 1 if the 

input x falls within the i-th region 𝑅𝑖, and 0 otherwise. M is the total number of leaf nodes. 

1.4.5 Random forest regression model 

Random forest regression is an ensemble learning method that builds multiple decision 

trees during training and merges their outputs to improve predictive accuracy and control 

overfitting. The algorithm begins by creating multiple bootstrap (i.e., dataset) samples from the 

training data, and for each sample, a decision tree is constructed using a subset of features selected 

at random. This process, known as bagging (bootstrap aggregating), helps to reduce variance and 

prevent overfitting. The final prediction 𝑦̂ is obtained by averaging the predictions of all individual 

trees, represented by the Eq. 6: 

𝑦̂ =
1

𝑇
∑ 𝑦̂𝑡

𝑇

𝑡=1
 (6) 

where 𝑦̂𝑡 is the prediction from the t-th tree and T is the total number of trees. Random 

forest regression is advantageous because it can handle large datasets with higher dimensionality, 

capture complex interactions between features, and is robust to outliers and noise. Additionally, it 

provides estimates of feature importance, which can be useful for understanding the underlying 

data structure. The implementation of random forest regression in this study follows the 

methodology outlined by (Breiman, 2001), utilizing the default parameters unless otherwise 

specified to ensure robustness and comparability of results. 



11 

 

1.4.6 Light Gradient Boosting Machine (LGBM) 

Boosting is a specific technique within ensemble learning that iteratively improves the 

performance of a single model by focusing on difficult-to-predict instances. The boosting 

technique was originally devised to address classification challenges, and later, its application 

extended to regression models as well (Friedman, 2001; Marani & Nehdi, 2020). In a more general 

context, a boosting algorithm builds a sequence of models, each of which is trained on a dataset in 

which the individual samples are allocated different weights (Ibrahim et al., 2009). Patterns that 

are inaccurately predicted receive increased weight, while those predicted correctly have their 

weights reduced. Consequently, the model places greater emphasis on the patterns that were 

previously incorrectly predicted during each forward iteration. Subsequently, an ensemble of 

models is assembled, building upon these iterations (Erdal et al., 2013). LGBM, a gradient 

boosting framework rooted in decision trees, leverages multiple decision trees collaboratively, as 

described by Chen et al. (Chen et al., 2019). To effectively capture complicated non-linear patterns, 

LGBM employs a specialized variant of the decision tree, often referred to as a weak learner. 

Utilizing LGBM accelerates the training of conventional gradient boosting decision trees by up to 

20 times as proven by Ke et al. (Ke et al., 2017). In the LGBM model, each subsequent model is 

trained to predict the errors of its predecessors in an additive manner. An iterative decision tree is 

constructed by fitting the residual to a negative gradient. To get the prediction from an ensemble 

of trees, all the predictions are added together. 

The final prediction value of the output is estimated by aggregating the predictions made 

by each individual tree. Eq. 7 represents the prediction function in the LGBM. 

𝑌𝑛̂ = ∑ 𝑓𝑗

𝐻

𝑗=1

(𝑥𝑚) , 𝑓𝑗  ∈  𝐹    (7) 
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where H, F, and 𝑓𝑗 represents the count of trees, all possible tree structures, and the leaf 

score of the trees respectively. Multiple decision trees are combined in this ensemble approach to 

improve prediction accuracy and robustness. LGBM focuses on minimizing the loss function by 

integrating regularization techniques, which improve the generalization capabilities of the model. 

These methods prevent overfitting, enabling the model to make more accurate predictions on 

unseen data and ultimately enhancing its predictive performance. These regularization methods 

help prevent overfitting, allowing the model to better generalize unseen data, and ultimately 

improving its predictive performance. An overview structure of the LGBM for prediction 

procedure is presented in Figure 1.1. 

 

Figure 1.1. The structure of LGBM for the prediction of the output value 

 

1.4.7 XGBoost regression model 

Extreme Gradient Boosting (XGBoost) is an advanced version of the Gradient Boosting 

algorithm, is a powerful ML algorithm that has gained immense popularity in recent years due to 

its exceptional performance in a wide range of regression and classification tasks.  This algorithm 

is built upon the principles of gradient boosting, a technique that combines multiple weak models 

to create a strong predictive model. At its core, XGBoost utilizes decision trees as the base learners, 
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which are then sequentially trained to minimize the residual error of the previous models (AL-

Shatnwai et al., 2020; Chen & Guestrin, 2016; Hu & Chu, 2019). The algorithm employs various 

techniques to enhance its efficiency and effectiveness, such as regularization, gradient 

optimization, and stochastic boosting (Chen & Guestrin, 2016). One of the key advantages of 

XGBoost is its ability to handle sparse data and missing values, making it a versatile choice for a 

variety of real-world problems.  Additionally, the algorithm is highly scalable and can be 

efficiently parallelized, enabling it to handle large-scale datasets with ease. The mathematical 

foundations of XGBoost are rooted in the gradient boosting framework, where the algorithm aims 

to minimize a loss function by iteratively adding new models to the ensemble. The objective 

function of XGBoost consists of two main components: the loss function that measures how well 

the model fits the training data, and a regularization term that penalizes model complexity to avoid 

overfitting. The objective function can be expressed as Eq. 8 (Chen & Guestrin, 2016): 

Obj (𝜙) = ∑ 𝑙(𝑦𝑖, ŷ𝑖)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝑘

𝑘=1  (8) 

where 𝑙(𝑦𝑖, ŷ𝑖) is the loss function, measuring the difference between the actual value 𝑦𝑖 

and the predicted value ŷ𝑖. Ω(𝑓𝑘) is the regularization term to penalize the complexity of the model, 

helping to prevent overfitting, n represents the number of training examples (or data points), k 

represents the number of trees in the model. Each 𝑓𝑘 corresponds to an individual tree in the 

ensemble. 

1.5 Overall goal and objectives 

This study advances the understanding of packaging dynamics and distribution hazards and 

introduces a potential tool for improving packaging performance and durability. The goals of this 

dissertation are accomplished through the following objectives: 
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1) Investigate the structural stability of ventilated Corrugated Paperboard (CP) by 

predicting the buckling load of thin CP plates with cutouts using mechanics-based models and ML 

solutions, which a) enhance the knowledge of package ventilation design, b) measure the influence 

of each factor on the buckling results, and c) provide packaging professionals a potential predictive 

tool for effective packaging designs. 

2) Develop ML solutions to predict mechanical damage to transported packed apple fruit 

during transportation and measure the influence of both packaging design elements and 

transportation vibration characteristics. 

3) Predict the impact of transportation-induced vibrations on the compression strength of 

CP boxes with different sizes and top loads using a) an advanced ML method to incorporate more 

comprehensive factors into the analysis for more accurate predictions, and b) measure the 

influence of each factor on the compression strength reductions. 

To systematically investigate the objectives of this dissertation, the following hypotheses 

have been outlined as: 

Hypothesis 1: 

• ML models can predict the buckling strength of ventilated CP with cutouts, enhancing both 

ventilation and mechanical performance for effective packaging. 

Hypothesis 2: 

• ML solutions can accurately predict mechanical damage to transported packed apple fruit 

during transportation, enhancing protection within the packages. 

Hypothesis 3: 
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• The impact of transportation-induced vibrations on the compression strength of CP boxes 

can be predicted using ML models, leading to improved packaging configurations for better 

protection during transit. 

By focusing on these specific aspects, the dissertation seeks to advance packaging 

technology through the integration of ML, ultimately leading to more resilient and efficient 

packaging solutions in dynamic distribution environments in the future. 

The structure of this dissertation is organized into three chapters, each addressing a specific 

aspect of packaging dynamics and distribution hazards through the application of ML techniques. 

Chapter 2 examines critical buckling loads in ventilated CP boxes for food packaging. Ventilated 

CP boxes are widely used in the food packaging industry, featuring ventilation holes that reduce 

compression strength. Experimental tests and Finite Element Model (FEM) simulations establish 

correlations between hole characteristics and buckling loads, contributing to polynomial formulas 

for predictions. Note that experimental results for hole sizes in CPs may not consistently exhibit 

specific trends. This variability is due to the inherent complexity of CPs, including fluctuating glue 

quality between plate layers at different locations. Therefore, to enhance the accuracy of buckling 

load predictions for ventilated CP plates, in the second phase of this study, ML models, specifically 

Light Gradient Boosting Machine (LGBM), are employed to predict buckling loads. The model 

achieves high accuracy, providing a method for predicting compression strength across various 

hole sizes and locations. In addition, the ML model revealed the influence of each factor on the 

buckling results. Chapter 3 utilizes ML models to predict damage percentages of transported 

packed apple fruit during transportation vibrations and investigate the impact of various factors on 

the damage experienced by transported packed apple fruit and its packaging during transportation 

vibrations, utilizing ML models to predict damage percentages and optimize. Chapter 4 
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investigates the prediction of compression strength loss in CP boxes post-vibration, utilizing ML 

models to guide packaging design decisions and ensure product integrity during transportation. 

In summary, these chapters demonstrate the transformative potential of ML in addressing 

critical challenges in packaging design and dynamics. By providing data-driven insights and 

predictive capabilities, this dissertation enhances the knowledge of packaging professionals and 

researchers, offering tools to inform and optimize future packaging designs for more efficient and 

reliable performance in dynamic distribution environments.  
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Abstract 

 Thin plates with cutouts are commonly used in engineering structures such as bridges, 

construction, and ventilated CP boxes in food packaging. While ventilation holes aid air 

circulation, they also impact the material's buckling strength. In this chapter, we first investigate 

the importance of cutout geometry and location on buckling for single and multiple cutouts, 

followed by exploring how variations in hole geometry and location affect this strength, 

considering the complex, multi-layered structure of the material, and then apply ML model to 

enhance predictions. Experimental tests and finite element method (FEM) simulations reveal that 

the vertical location and diameter of the hole significantly impact the buckling results, showing a 

reasonable correlation between experimental and FEM data. Polynomial formulas were developed 

to predict buckling loads, using paperboard plates to demonstrate the application for ventilated 

food packaging designs. In the food packaging industry, ventilated CP boxes are crucial for the 

sustainable transport of fresh products. Traditional mechanical analyses, which often require 

simplifications, may not fully capture this complexity, leading to less accurate predictions of the 

paperboard's strength. To address these challenges, we employed a ML approach using the LGBM 

algorithm to develop a predictive model. This ML model, trained on a compression dataset from 

experimental tests for plates with a single cutout in three shapes and FEM simulations for plates 

with multiple circular cutouts, accurately estimates the buckling strength of the plates. It achieved 

91.45% accuracy on experimental data for plates with single cutouts of different shapes and 

94.68% on FEM simulation data for plates with multiple circular cutouts, demonstrating its 

reliability. An ML-based tool for predicting the buckling strength of corrugated paperboard is 

provided by this research, along with insights that can inform the design of more sustainable 
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packaging solutions. Moreover, the results of this chapter can be used for the buckling prediction 

of other elastic thin plate structures with cutouts applied in other industries like aerospace. 

2.1 Introduction 

 Approximately 40% of the packaging market consists of paper and paperboard materials 

(Pathare & Opara, 2014). Specifically, within consumer packaging, food packaging is particularly 

significant, representing 70% of the market, with corrugated paperboard (CP) making up 48% of 

this segment (Fadiji et al., 2018a). The fundamental function of packaging is to protect the product 

from mechanical damage (Pathare & Opara, 2014). In fresh produce product packaging, ventilated 

CP (VCP) packaging has broad applications. The widespread use of VCP packaging is owing to 

its cost-effective material properties, recyclability, and effective protection of food products (Fadiji 

et al., 2019). The primary goal of VCP box design is to preserve the freshness of the food products 

and to provide adequate compression strength for the package (Mukama et al., 2020). The heat 

exchange control of the VCP packaging is critical for the consistent cooling or keeping warm the 

fresh products in a transportation system. The heat transfer between the food and air is facilitated 

by designing the vent holes in the box walls. The ventilation cutouts, however, compromise the 

strength of the package, which may cause mechanical damage to the product (Fadiji et al., 2018a). 

 Several researchers studied the design of the vent holes in the ventilated packages for fresh 

products (Berry et al., 2017; Fadiji et al., 2016; Opara & Fadiji, 2018; J. Singh et al., 2008). Berry 

et al. analyzed various package designs, finding that larger vent areas reduced package strength, 

while higher-grade corrugated fiberboard increased compression strength. Opara and Fadiji found 

that packages with smaller vent areas and lower length-to-height ratios suffered more mechanical 

damage. Singh et al. determined that rectangular or parallelogram-shaped vertical holes preserved 

the strength of corrugated boxes better than circular holes, with vent area and strength loss being 
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linearly correlated. Fadiji et al. also showed that increasing vent height and area reduced 

compression strength, with rectangular vents performing better than circular or oval ones, and 

vents placed at 45 degrees enhancing box strength. 

 Mechanical damage prevention is a critical component of effective packaging, especially 

for VCP (Gupta & Dudeja, 2017). The buckling collapse is the most common cause of mechanical 

damage and the buckling behavior of the VCP is directly associated with buckling strength of the 

vertical sidewall plate. Apart from the ventilation area, the structural strength of VCP can be 

influenced by the ventilation number, orientation, and shape (Mukama et al., 2020). There are few 

studies in the literature that examined the impact of the regarding location and size of the cutout 

on the buckling loads of the VCP. Fadiji et al., investigated the effect of vent hole design on the 

buckling loads of paperboard boxes using experimental tests and finite element analysis (Fadiji et 

al., 2016, 2019). Two VCP designs used in South Africa's fresh fruit industry were analyzed using 

a validated finite element model (FEM). The study found that the number, location, and shape of 

vents significantly affected the buckling load of the corrugated fiberboard cartons. A linear 

relationship was identified between vent height and buckling load. Additionally, the study 

concluded that the width side of the CP boxes is less susceptible to buckling than the length sides. 

In another study, Han & Park applied the FEM method to provide a comprehensive analysis of the 

key design factors for ventilation and hand holes in CP boxes (Han & Park, 2007). The study found 

that the optimal placement for vertically oblong holes on boxes is near the center and towards the 

upper section of both side faces. Incorrect vent positioning can cause misalignment of ventilation, 

especially in stacked VCP on pallets. The misalignment might disrupt airflow patterns during 

forced-air cooling (Berry et al., 2015). A study for apple bruise susceptibility in compression was 

conducted by Opara and Fadiji (Opara & Fadiji, 2018) with apples packed in two widely used VCP 
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packages MK4 and MK6. The MK4 package design, compared to the MK6, has a larger length-

to-height ratio, longer trays, and a greater vent area. The study found that package design 

significantly affects apple vulnerability to bruising. MK6 packages experienced more damage than 

MK4 packages due to differences in bruise area and volume. Apples placed at the bottom of the 

package sustained less damage, irrespective of the package design. Beldie et al., (Beldie et al., 

2001) aimed to examine the mechanical performance of paperboard packages under static 

compressive loads. They found that creases are the primary determinants of stiffness and 

recommended developing an accurate model for the creases, as they were modeled as hinges in 

the FEM. Garbowski et al. (2020) developed an analytical-numerical method to evaluate the static 

compressive strength of ventilated corrugated boxes with various openings and holes, achieving 

three times less estimation error compared to the McKee formula (Garbowski et al., 2020). 

 The majority of VCP package designs are primarily dependent on basic approaches 

developed from trial-and-error tests. In general, the buckling strength of VCP boxes is assessed by 

performing a sequence of controlled experimental compression tests utilizing a universal testing 

machine. The maximum force applied prior to the point of structural failure is then recorded. 

However, performing the experimental test is time and cost consuming. Thus, several computer 

simulation models are developed to provide more efficient solutions (Mukama et al., 2020).  

 FEM and mechanics-based approaches are used in analyzing composite structures even 

with dissimilar materials (A. Joodaky et al., 2013; I. Joodaky & Joodaky, 2019). These methods 

have been applied for studying CP used in food packaging designs (Fadiji et al., 2018b). 

Nevertheless, challenges remain in adopting FEM to model the VCP package due to the 

complexities in their composite structure such as the bonding quality of CP layers that are usually 

assumed to be perfect. The complex nonlinearities and additional properties of paper, like humidity 
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sensitivity and creep, further complicate modeling. The incorporation of these complexities and 

obtaining accurate material parameters present ongoing research needs for enhancing the 

applicability of FEM in modeling the VCP packages. 

 Alternatively, considering the progress made in artificial intelligence (AI) over the past 

few years, AI offers innovative solutions to engineering challenges. The ML models have been 

applied in various science and engineering applications such as predicting the compressive 

strength of concrete (Nguyen-Sy et al., 2020), predicting the stress-strain plots in material design 

(Pal & Naskar, 2021), predicting the mechanical properties of concrete (Ben Chaabene et al., 

2020), detecting road shock (Lepine et al., 2017), reducing packaging costs (Zhao et al., 2017), 

analyzing the freshness of packaged meat products (Sun et al., 2022), and classifying the fish 

gelatin packaging film product (Silva et al., 2021). In packaging, there are some studies that 

applied ML to the packaging application such as Archaviboonyobul et al. (Archaviboonyobul et 

al., 2020) who used the artificial neural network method to analyze the effect of ventilation hole 

design and hand hole on the box compression strength. According to the study, the location of the 

hand holes is the main parameter that reduces the compression strength of the boxes. 

 In this chapter, a ML approach, specifically utilizing the LGBM algorithm, is presented to 

predict the buckling strength of VCP plates with single vent cutouts in various shapes, including 

circles, squares, 45-degree rotated squares (diamonds), and multiple circular cutouts of different 

sizes and locations. The ML models are trained on a limited number of actual experimental or 

simulation test results and can predict other potential, unseen designs. The ML models learn from 

a limited number of actual experimental or simulation test results and predict the other possible 

unseen designs. Notably, the compression behavior of a box is directly related to the compression 
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of its vertical side plates (Frank, 2014). Therefore, the findings for predicting the compression of 

VCP plates in this study can be applied to the design of VCP boxes. 

 The novelty of the present study is in 1) its comprehensive investigation of the critical 

buckling loads of thin elastic plates with circular cut-outs, specifically applied to VCP packaging 

design. This part of study uniquely combines experimental tests and finite element method 

simulations to analyze how the vertical location and diameter of the hole affect buckling behavior. 

Furthermore, it develops second and third order polynomial formulas for predicting buckling 

loads, providing a valuable predictive tool for similar elastic thin plate structures. By using CP 

plates as samples, the research directly addresses practical applications in VCP packaging, offering 

insights that can enhance the structural design and stability of VCP box; 2) using machine learning 

models to efficiently address the complexities inherent in the buckling load of CP by learning from 

a limited test data (experimental or simulational). Traditional mechanics-based models like finite 

element methods (FEM) struggle with CP complex properties such as the anisotropy, nonlinear 

deformations, and environmentally dependent conditions, often necessitating simplifying 

assumptions that compromise accuracy. 

To this end, this chapter is divided into two main parts. For part I (plates with single 

cutouts), in the first phase the response of VCP plates with a circular cutout to buckling loads was 

analyzed first. To estimate these loads, two non-dimensionalized polynomials were developed 

based on the hole parameters and the buckling load of a perfect plate (without cutouts) using curve 

fitting to FEM results. The buckling load of the perfect plate can be obtained through experimental, 

analytical, or FEM approaches. An analytical formula for the buckling of a perfect plate was 

derived using classical plate theory in mechanics. The FEM results and developed formulas are 

based on simplified models, excluding the composite structure of CPs. In phase two of part I, ML 
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was applied to experimental test results, which include the real, complex, and relatively uncertain 

response of the plates, providing a more realistic predictive tool for buckling loads. In the 

subsequent phase, experimental data for two additional shapes square and diamond were collected, 

and ML models were applied to incorporate the shape feature into the analysis. Part II addresses 

the analysis of multiple circular cutouts. This section includes the collection of simulation data and 

the subsequent ML analysis of this data. Overall, the chapter provides a comprehensive 

examination of both single and multiple cutout configurations through a combination of 

simulation, experimental, and ML approaches. The results confirm that the buckling load of plates 

is related to the hole parameters. As the units of geometry dimensions and mechanical parameters 

presented in this study are nondimensional, the developed analysis can be applied to varied thin 

elastic plates of diverse dimensions, hole sizes, and hole locations. As a result of these findings, 

both packaging designers and manufacturers will gain valuable insights and an applicable tool for 

designing ventilated boxes for food packaging.  

 The remainder of this chapter is organized as follows. Section 2.3 and 2.4 details the data 

collection process, including the experimental test setup and analysis for single cutouts of circular, 

square, and diamond shapes. Additionally, Section 2.3.2 provides a description of the FEM model 

for the elastic plate with single circular cutouts. Section 2.5 details the data collection process for 

multiple plates with circular cutouts. An overview of the results from the ML models and a 

discussion of the performance of each model used in this chapter are presented in Section 2.5, 2.6, 

2.7 and 2.8. Finally, Section 2.9 presents the conclusions of this chapter. 

2.2 Buckling analysis of CP plates 

 This section discusses the concept of buckling, its relevance in packaging design, and the 

methods used to analyze and predict buckling behavior in structures such as VCP plates. Buckling 
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is an engineering term that refers to a collapse, usually caused by axial stresses, applied to a 

structure, such as beams or thin plates. The peak force that causes buckling is called the critical 

buckling load or simply buckling load. Analytical approaches in plate theory (Bloom & Coffin, 

2000; Bulson, 1969), numerical methods such as FEM (Eiblmeier & Loughlan, 1995; Muc et al., 

2018; Narayana et al., 2014), and experimental tests (Lin & Kuo, 1989) can be used to determine 

the buckling load of a plate. In many applications such as aerospace, bridge, and tunnel 

construction, plates might need to have one or more cutouts (Kim & Park, 2020). In packaging 

box designs, a pattern of cutouts is created on the box walls to facilitate handling (ASTM D6804, 

2014) and ventilation for food products. The mechanical properties of corrugated boards are 

susceptible to environmental condition variations. The manufacturing processes (e.g., the quality 

of glue between the layers) add to the complexity of the plate properties evaluations. Both 

analytical and FEM approaches are limited in including some of the complexities in their models.  

McKee formula estimates the compression strength of corrugated board boxes (Kawanishi, 1989) 

as represented in Eq. 1, 

𝐹 =  2.08 𝑃𝑚
0.764(√𝐷𝑥𝐷𝑦)

0.254
𝑍0.492 (1) 

where 𝑍 is the box top perimeter, 𝐷𝑥 =
𝐸𝑥𝑡3

12 (1−𝜈2)
  and 𝐷𝑦 =

𝐸𝑦𝑡3

12 (1−𝜈2)
  are the flexural rigidities of 

the plate in 𝑥 and 𝑦 directions, 𝑡 is the plates thickness, 𝐸𝑥 and 𝐸𝑦 are the plate elasticity modulus 

in 𝑥 and 𝑦 directions, 𝜈 is Poisson’s ratio, and 𝑃𝑚 is the Edge Crush Test  (ECT) result of the plate 

sample. Figure 2.1 illustrates the ECT in which a plate sample (e.g., 2in × 2in ) is placed vertically 

inside the top and bottom horizontal platens of the compression tester. The platens apply uniform 

displacement controlled quasi-static compression pressures until the plate collapses. The obtained 

peak load right before the collapse is recorded as the plate ECT. 
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Figure 2.1. Schematic of ECT 

 

 The McKee formula is more applicable when it is simplified (Frank, 2014) as, 

𝐹 =  5.87 × 𝑃𝑚 √𝑍 × 𝑡  (2) 

The estimated results from the McKee formula are limited to specific conditions (e.g., relative 

humidity of 50%). Several studies investigated the buckling behavior of elastic thin plates with 

cutouts. Scheperboer et al., found that plates with a single centrally located hole had greater 

uniaxial compression resistance compared to plates with multiple holes of the same total size. 

Additionally, having five or more evenly distributed holes did not significantly impact the 

resistance (Scheperboer et al., 2016). Aydin Komur & Sonmez studied the effect of load location 

on the buckling load (Aydin Komur & Sonmez, 2008). No significant effect of plates with small 

holes on the buckling load ratio was reported by them. The plates with loading closer to their 

corners showed a higher buckling load. For simply supported plates with single or multiple cutouts, 

Moen and Schafer applied classical plate stability equations to develop an expression to predict 

elastic buckling stress and load (Moen & Schafer, 2009). El-Sawy et al., applied the FEM method 

to investigate the buckling stress of square and rectangular plates with holes at different 

slenderness ratios under uniaxial load (El-Sawy et al., 2004). The elasto-plastic buckling 

deformation was higher for thicker plates. Cheng & Zhao showed stiffeners can be applied for 

strengthening simply supported steel plates with various centric holes subjected to buckling 
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stresses during uniaxial compression (Cheng & Zhao, 2010). The reinforced perforated plates 

presented superior buckling strengths when compared to un-strengthened cases.  Falkowicz et al. 

(Falkowicz, 2021; Falkowicz & Wysmulski, 2023; Falkowicz, 2023) investigated buckling and 

early post-buckling behavior and failure analysis (Falkowicz, 2023) of thin-walled epoxy/carbon 

composite asymmetric plates with a cutout. They applied both experimental and FEM methods. 

Moreover, the studies were conducted on the buckling behavior of thin-walled Carbon Fiber 

Reinforced Polymer composite plate with perforation (Falkowicz, 2022a, 2022b, 2022c). In a 

study by (Falkowicz, 2022a), they evaluated the effect of the parameters such as hole geometry, 

opening ratio, and spacing ratio on the buckling behavior. There was a decrease in the critical loads 

of the structure profiles due to the presence of cutouts. It was determined that the shape of the 

cutouts and opening ratio had the most impact on the buckling load of the channel cross-section 

profile. In (Falkowicz, 2022b), Falkowicz examined how the localization and geometric 

parameters of cutouts affect buckling load, finding that Z-cross-section perforated profiles remain 

stable even in the post-critical range. Additionally, a carefully selected hole arrangement can 

prevent weakening of mechanical properties.  

2.3 Data collection: experimental, FEM, and plate theory for plates with single circular cutout 

 In this section, we detail the methodologies employed for data collection, encompassing 

both experimental and simulation-based approaches. Accurate and comprehensive data were 

gathered to facilitate the analysis of buckling behavior in thin plates with circular cutouts and to 

train the machine learning models for predicting the strength of VCP boxes. The advantage of 

using the experimental approach for the buckling of the perfect plate is that it includes the complex 

CP plate properties resulting from environmental factors (e.g., humidity) and manufacturing 

conditions (e.g., machinery effects) in the formula. Obtaining a single data point for the perfect 
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plate buckling from either of the three aforementioned approaches (i.e., experimental, analytical, 

or FEM) is substantially less expensive than performing experimental tests or FEM modeling for 

thousands of different holed plate cases required for the analysis. The analytical approach is limited 

in providing a solution for all holed plate cases. Similar to the approach used to derive the McKee 

formula based on ECT, one can formulate the compression strength of ventilated box based on the 

buckling of its comprised plates. Finally, we perform hundreds of experimental tests to study the 

buckling trends and to evaluate the accuracy of the developed formula. 

2.3.1 Experimental test of CP plates with a single circular hole 

 C-flutes stand out as the predominant choice among different corrugated board grades, 

making up to 80% of the total corrugated packaging volume (American Box Company, 2023). The 

C-flute CP plates with ECT 32 lbs./in are selected for this study. Using an automatic cutting 

machine (Esko Kongsberg), the plates are cut in a random size of 15cm × 15cm, and circular holes 

were created on them. A same-sized plate without any vent holes is used as a control plate and is 

dubbed the perfect plate. The plates were conditioned in accordance with ASTM D642 test 

procedures (ASTM D642, 2000). A temperature of 23℃ and 50% relative humidity were applied 

to the plate specimens for 24 hours in an environmental chamber. A universal testing machine 

(Instron 5556) is used to conduct the compression tests. For each plate design, three samples are 

tested. The plate is compressed symmetrically. Therefore, either the right or left half of the plate 

is sufficient for creating the cutouts for testing. The left bottom corner of the plate is considered 

as the origin (0,0). The holes are placed along the 𝑥 direction at 0, 3, 4.5, 6, and 7.5cm and along 

the 𝑦 direction at 0, 3, 4.5, 6, 7.5, 9, 10.5, and 12cm. Five samples with varying diameters of 1, 2, 

3, 4, and 5cm were created and evaluated for each hole location. The number of samples are 

obtained by multiplying 5 (locations on the 𝑥 direction) to 8 (locations on the 𝑦 directions) to 5 
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(different diameters), and to 3 (number of repeats). Figure 2.2 shows three random examples of 

holed plates. All measurements are in centimeters (cm), indicating the 𝑥 and 𝑦 location from the 

left bottom corner of the plate, in addition to the diameter of holes (i.e., 𝑑). These dimensions are 

presented in the format of (𝑥, 𝑦, 𝑑). The first mode buckling load is recorded for this study. At the 

origin, the hole could only have a quadrant shape, see Figure 2.2c. When either 𝑥 or 𝑦 coordinates 

are equal to zero, the hole becomes a semi-circle, see Figure 2.2b. 

 

(a) (b) (c) 

Figure 2.2. Sketch of three C-flute plates with random holes at different locations and with different 

diameters, (𝑥, 𝑦, 𝑑) as (a) (7.5,7.5,3), (b) (4.5,0,4), and (c) (0,0,5) 

The plate is placed between the two platens of the compression test machine, see Figure 

2.3. The top platen compresses the plate at a rate of 1.27cm per minute, i.e., 0.5 in per minute 

(ASTM D642, 2000). The compression test machine used a fixed-platen design, in which the 

rotation of the platen was not permitted. To ensure the plate specimen remains in a vertical position 

during compression testing, two blocks, as shown in Figure 2.3a, are used. The blocks are removed 

when the top platen starts contacting the plate specimen. The specimens are compressed to 7.5mm, 

which is 5% of the plate height. 
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(a) (b) 

Figure 2.3. Corrugated plate specimen under compression test: (a) before buckling, (b) after buckling 

 

2.3.2 Buckling of thin elastic plates with single circular hole using FEM 

To simulate the buckling load of a thin elastic plate comprising a single circular hole, a 

FEM model is created. A 15cm width (w) square plate with the thickness (t) of 3.8mm and a circular 

hole is modeled in ABAQUS software. To determine the equivalent elasticity modulus of the 

perfect plate, an experimental compression test was performed.  

The recorded compression force and the vertical deformation are divided by the plate cross-

section area (𝑡 × 𝑤) and width to obtain the stress and strain respectively. The stress-strain curve 

shows a nearly linear response before the buckling, see Figure 2.4. The slope of the linear region 

is equal to the equivalent elasticity modulus of plate, 168.98MPa. With this approach, the 

composite CP plate is assumed to respond as an equivalent homogenous plate without any liner or 

flute layers. The obtained elasticity modulus and the Poisson’s ratio of 0.33 (Fadiji et al., 2017) 

are provided to the FEM model of homogenous plate. The peak of the force-displacement curve is 

recorded as the experimental critical buckling load of the perfect plate, 𝑁𝑒𝑥𝑝.  
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Figure 2.4. Stress-strain curve of the perfect plate in compression and fitted line for 

determining elasticity modulus 

The deformable shell element and buckling perturbation analysis are selected in ABAQUS. 

The boundary conditions of the left and right edges are set to free. A simply supported boundary 

condition was selected for the top and bottom edges. Our FEM convergence study reported in 

Figure 2.5a shows that the mesh sizes smaller than 2% of the plate outer dimension obtain highly 

convergent buckling results. Figure 2.5b shows the von Mises stress distribution of the plate before 

buckling. As expected, the existence of the hole in the plate under compression results in stress 

concentration around the hole.  
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(a) (b) 

Figure 2.5. (a) Mesh size convergence and (b) von Mises stress distribution from ABAQUS  

Only the vertical left half of the plate is analyzed due to the geometry and loading 

symmetry. We non-dimensionalize the parameters and results to provide a size independent 

solution. For non-dimensionalizing the parameters, the size and location of the hole are divided by 

the plate width (i.e., 15cm in this case). The hole sizes of 0%, 10%, 15%, 20%, 25% and 30% of 

the width are considered. The results confirmed that the location variation in the 𝑥 direction affects 

the buckling results by less than 1% due to the applied symmetry. Therefore, the location is only 

varied in 𝑦 direction from 0% (semi-circle hole, see Figure 2.2b), to 50% of the plate with a 10% 

increment. By dividing the buckling loads of the holed plates by the buckling load of the perfect 

plate (386.15 N/m), the buckling values are obtained in a non-dimesionalized percentage format. 

In Figure 2.6, the non-dimensionalized buckling results are presented through a heat map 

that shows how they vary with different 𝑦 locations and hole sizes. The map indicates that the 

closer the location is to the bottom or top edge, the larger buckling strength is preserved for all 

hole sizes. Additionally, as the size of the hole increases, the buckling strength decreases across 

all 𝑦 locations. 
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Figure 2.6. Heat map of buckling loads N/m for 𝑦 locations versus hole diameters 

 

2.3.3 Buckling load formula for plate with a circular hole 

To develop a formula for predicting buckling load, the buckling loads resulting from FEM 

models are plotted for the y locations from 0 to 50% and hole diameters from 0 to 30% as shown 

in Figure 2.7. A second (𝑂2) and third order (𝑂3) polynomials are fitted on the curves. For the 

mentioned diameter range, the coefficients of terms in the fitted polynomials are examined.  
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(a) Second order (b) Third order 

Figure 2.7. Second and third order curve-fittings on the FEM results for the buckling of CP plates with a 

circular hole 

Eq. 3 represents the second order polynomial,  

𝐹𝑝𝑒𝑟𝑐 (𝑦, 𝑑) = 𝐶20 +  𝐶21𝑦 +  𝐶22𝑦2 

𝐶20 =  − 0.0039𝑑2 +  0.0651𝑑 +  99.994 

𝐶21 =  −10−3 × (0.592𝑑2  +  3.0923𝑑 −  2.9702) 

𝐶22 =  10−5 ×  (0.613𝑑2 −  5.702𝑑 +  3.5238)                                             

(3) 

and Eq. 4 represents the third order polynomial, 

𝐹𝑝𝑒𝑟𝑐(𝑦, 𝑑) = 𝐶30 +  𝐶31𝑦 + 𝐶32𝑦2 + 𝐶33𝑦3 

𝐶30 = 10−4 × (− 1.1𝑑3 + 8.5𝑑2 −  70.7𝑑) + 100 

  𝐶31 = 10−4 × (−0.1101𝑑3 −  0.4069𝑑2  +  5.7533𝑑 − 1.0973) 

𝐶32 = 10−5 × (0.118𝑑3 −  4.981𝑑2  +  1.847𝑑 + 0.155) 

  𝐶33 = 10−7 × (−0.14𝑑3 +  6.71𝑑2 −  2.21𝑑 + 0.19)              

(4) 
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where 𝑑 and 𝑦 are in percentage (i.e., divided by the width of the plate then multiplied by 100). In 

order to convert the buckling load percentage to a buckling value, 𝐹𝑝𝑒𝑟𝑐 must be multiplied by 

the 𝑁𝑐𝑟 , the first mode buckling load of perfect plate as, 

𝐹 =  𝐹𝑝𝑒𝑟𝑐 × 𝑁𝑐𝑟                       (5) 

Table 2.1 displays the 𝑅2 values obtained from the second and third order polynomials. 

The error of the second order function is less than 2% while the third order function shows less 

than 0.0001% error compared to the FEM results. 

Table 2.1. 𝑅2 value for second and third order 𝐹𝑝𝑒𝑟𝑐 

Diameters 
 

d=0 d=10 d=15 d=20 d=25 d=30 Average 

𝑅2 

𝑂2 1 0.981 0.983 0.985 0.987 0.990 0.988 

𝑂3 1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

 

It is worth emphasizing that the obtained 𝐹𝑝𝑒𝑟𝑐 is non-dimensionalized and can be applied 

to thin elastic plates with different plate dimensions, hole dimensions, and hole locations. The first 

mode buckling load of perfect plate 𝑁𝑐𝑟  can be obtained from an analytical, FEM, or experimental 

test. The significant advantage of using the developed Eq. 5 is that obtaining one data for the 𝑁𝑐𝑟  

from either of the mentioned methods costs substantially lower compared to the cost of performing 

thousands of tests for different scenarios that vary with plate dimension, hole dimensions, and hole 

location. For specific materials and structures such as corrugated boards that are highly susceptible 

to humidity and temperature, formulating an equation that comprises all variables is not feasible. 

By using the experimental buckling load of the perfect plate (𝑁𝑒𝑥𝑝 ) for 𝑁𝑐𝑟 , both the mechanical 

and environmental properties are incorporated into the equations. The thickness of the plate is a 

crucial factor that affects its buckling loads. The effect of plate thickness has already been 
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accounted for in the critical buckling load (i.e., 𝑁𝑐𝑟 ) of the corresponding perfect plate in Eq. 5. 

Therefore, the obtained Eq. 3 and Eq. 4 do not need to include a thickness parameter. Table 2.2 

compares the buckling load results for a 15cm square plate with a 2cm hole diameter in the center 

and varying plate thicknesses from 1.5 𝑚𝑚 (1% of plate width) to 3cm (20% of plate width) to the 

buckling results from the corresponding plates with no holes. The ratio of 𝑁𝑠 that is obtained from 

dividing the with-hole (i.e., w/) buckling by without-hole (i.e., w/o) buckling for each thickness, 

stays in the range of 81.3%±0.2%. Therefore, the plate thickness does not have a significant 

secondary effect on the buckling ratio. 

Table 2.2. Comparison of plate buckling loads with 2 cm circular holes and different plate 

thicknesses 

Thickness Thickness/width 𝑁𝑐𝑟 w/o hole 𝑁𝑐𝑟 w/ hole 
𝑁𝑠 =

𝑁𝑐𝑟 𝑤/

𝑁𝑐𝑟 𝑤/𝑜
 

0.0015 0.01 22.108 18.022 0.815 

0.003 0.02 176.54 143.8 0.815 

0.0075 0.05 2734.6 2223.6 0.813 

0.015 0.1 21339 17330 0.812 

0.03 0.2 157000 128000 0.815 

 

In the following section, an analytical mechanics-based approach for calculating 𝑁𝑐𝑟  is explained. 

2.3.4 Mechanics based approach for obtaining 𝑁𝑐𝑟 of perfect plates 

Corrugated boards are considered orthotropic structures (Briassoulis, 1986). Based on the 

classical plate theory, the governing equation of a thin elastic orthotropic plate under uniform axial 

(𝑁𝑥  and 𝑁𝑦 ), torsional (𝑁𝑥𝑦 ), and transverse (𝑞) loads shown in Figure 2.8, is given as (Bloom & 

Coffin, 2000), 
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𝐷11  
𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 +  2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
= [𝑞 + 𝑁𝑥 

𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦 

𝜕2𝑤

𝜕𝑦2
+ 𝑁𝑥𝑦 

𝜕2𝑤

𝜕𝑥𝜕𝑦
] (6) 

where 𝑤 is the transverse displacement. The parameter 𝐷11, 𝐷12, 𝐷66, and 𝐷22 (i.e., 𝐷22 =

𝐸22 𝑡
3

12(1−𝜈2)
) are the flexural rigidities of the plate with the thickness of 𝑡 , and elasticity modulus of 

𝐸11 and 𝐸22 in two plate non-thickness directions of 𝑥 and 𝑦 respectively, and Poisson’s ratio of 

𝜈. Two vertical edges (see Figure 2.3) are free on the plates subjected to compression tests in this 

study. Consequently, the plate shows sinusoidal shape deformation only in the vertical direction 

(𝑥 direction) and not in the horizontal direction (𝑦 direction). The plate does not undergo any loads 

in horizontal or shear directions. As a result, the plate behaves like an isotropic plate and Eq. 6 is 

simplified to Eq. 7 (Bulson, 1969). 

 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
=

1

𝐷
[𝑞 + 𝑁𝑥 

𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦 

𝜕2𝑤

𝜕𝑦2
+ 𝑁𝑥𝑦 

𝜕2𝑤

𝜕𝑥𝜕𝑦
] (7) 

When there is only one axial compression, then 𝑁𝑦  = 𝑁𝑥𝑦  = q = 0. The Eq. 7 is reduced to 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
=

1

𝐷
[𝑁𝑥 

𝜕2𝑤

𝜕𝑥2
 ] (8) 

The transverse deformation can be defined as a function of only 𝑥 as, 

𝑤 (𝑥) = 𝐶 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) (9) 

 

Figure 2.8. A CP plate under in-plane axial and torsional loads 
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where 𝐶 is a constant value. As shown in Eq. 9. The horizontal width of plate, b, does not affect 

the buckling of the plate with two vertical free edges. After substituting Eq. 9 into Eq. 8 and 

performing some mathematical manipulations, the first buckling load is obtained as, 

𝑁𝑐𝑟 =
𝜋2𝐷

𝑎2
 (10) 

where 𝐷 =  
𝐸22 𝑡

3

12 (1−𝜈2)
. The 𝑁𝑐𝑟  in Eq. 10 can be applied in Eq. 5 to make it a totally computational 

approach. The computed buckling load in Eq. 10 is applicable to materials that are not affected by 

environmental conditions, such as aluminum. As mentioned before, for the structures such as 

corrugated boards that are susceptible to environmental conditions, using one experimental data 

for the 𝑁𝑐𝑟  in Eq. 5 will result in a highly accurate estimation for the buckling load 𝐹 in Eq. 5. 

2.3.5 Experimental results for buckling of CP plates with single circular cutout 

In this section, the experimental results of the critical buckling load analysis for the CP 

plates with a single circular hole are discussed.  

2.3.5.1 Pre-buckling and post-buckling behavior of CP plates with single circular cutout 

Figure 2.9 shows the force-displacement curve from the experimental tests for the perfect 

plate described in Section 2 and the holed plates of the same outer dimensions with a circular hole 

located at the center (i.e., (7.5cm, 7.5cm)) and diameter sizes of 1, 2, …, 5cm. It can be observed 

that the maximum peak force is obtained from the perfect plate followed closely by the plates with 

the smallest hole diameter, 1cm. As the hole size increases the peak force decreases. The plates 

show approximately a linear compression stiffness before the buckling, see the pre-buckling region 

Ι in Figure 2.9(b). The post-buckling region ΙΙ shows a nonlinear deformation behavior. 
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(a) (b) 

Figure 2.9. Buckling behavior of C-flute plate with and without circular cutout 

The slope of the nearly linear pre-buckling region Ι is considered as the linear stiffness of elastic 

plates. A line is tangentially fitted on the linear region and attached to the inflection point between 

the start and peak of the curve, see Figure 2.4. The slope of the line is recorded as the plate’s linear 

stiffness. Figure 2.10 presents the linear stiffness of plates with various hole sizes. Error bars in 

Figure 2.10 indicate the standard deviation of the mean. As can be noted, increasing the size of the 

hole decreases the stiffness of holed plates. The ventilated corrugated plate with a hole diameter 

of d=1 𝑐𝑚 shows the highest stiffness. The difference between stiffnesses of d=1cm and d=5cm 

cases is 36.31%.  

An analysis of the 𝑡-test (𝑝 < 0.05) was used to determine the statistical difference between 

the hole size and plate stiffness. The 𝑝-value calculated for the different hole sizes indicate 

statistical significance in the stiffness differences, suggesting that the size of the hole has a 

significant effect on the stiffness of the plate. Table 2.3 presents data on the stiffness of different 

sizes of the holes, represented by their respective diameters. The table provides the mean values 
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along with their corresponding standard errors for each hole size. Additionally, it includes the 

results of t-tests comparing the stiffness values to a perfect plate. For the hole sizes equal or larger 

than 2cm, the size of the hole has a significant effect on the stiffness, as indicated by 𝑝 < 0.05. 

However, for 1 cm hole diameter, the results do not provide sufficient evidence to suggest a 

significant effect on the stiffness of the CP.  

 

Figure 2.10. Stiffness of the plate with different sizes of the 

circular hole 

 

Table 2.3. Statistical analysis of the stiffness of the circular holed plate 

Size of the hole 

(𝑐𝑚) 

Mean ± standard error of 

stiffness of the holed plate  

𝑡-value 𝑝-value 

𝑑 =1  698.52 ± 19.36 −0.85 0.4842 

𝑑 =2  535.64 ± 7.40 −24.25 0.0016 

𝑑 =3  535.31 ± 2.78 −64.67 0.0002 

𝑑 =4  448.35 ± 5.25 −50.78 0.0003 

𝑑 =5  444.88 ± 15.92 −16.97 0.0034 
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Furthermore, we conducted statistical analysis to assess the effect of hole size on buckling 

loads of the holed plate, considering that the hole is located at various locations (see Table 2.4). 

The results with 𝑝 < 0.05 imply that the buckling loads of plates with various hole sizes is 

significantly different from the perfect plate that is 386.82 MPa. As the hole size increases, the 

buckling load tends to decrease, and this difference becomes more pronounced with larger hole 

sizes. Accordingly, there is strong evidence that the size of the holes impacts the buckling load of 

holed plates substantially. 

Table 2.4. Mean buckling load of plate with a circular hole 

Hole size 

(𝑐𝑚) 

 Mean ± standard error of 

buckling load 

𝑡-value 𝑝-value 

𝑑 =1  376.99± 4.53 −2.16 0.0359 

𝑑 =2 365.16± 4.57 −4.73 1.9790× 10−5 

𝑑 =3  338.44 ± 4.12 −11.73 1.0346× 10−15 

𝑑 =4 288.18 ± 1.93 −50.99 1.8195× 10−43 

𝑑 =5  257.62 ± 2.06 −62.59 1.1219× 10−47 

 

2.3.5.2 Heat map of experimental data for the buckling of CP plates with single circular cutout 

In Figure 2.11, the heat maps of the experimental data are shown for different hole sizes 

and locations of holes in 𝑥 and 𝑦 directions. The plates with larger hole sizes show lower buckling 

strength. When the holes are created closer to the horizontal edges, the buckling strength is higher. 

The effect of hole location on the buckling loads is less evident for plates with smaller hole sizes. 
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(a) d=1cm (b) d=2cm 

  

(c) d=3cm (d) d=4cm 

 

(e) d=5cm 

Figure 2.11. Heat maps of experimental data with circular hole size (a) 𝑑 =1 cm, (b) 𝑑 =2 cm, (c) 𝑑 =3 cm, 

(d) 𝑑 =4 cm, and (e) 𝑑 =5 𝑐𝑚 
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2.3.5.3 Effect of hole diameter in 𝑥 direction  

In Figure 2.12, the buckling loads of the holed corrugated plates are demonstrated for 

different hole sizes and 𝑦 locations for each 𝑥 location separately. The circular hole size varies 

from 1 to 5cm for different locations in 𝑥 (3, 4.5, 6, 7.5cm) and 𝑦 (3, 4.5, ..., 12cm) directions. The 

experimental results for plates with smaller hole sizes may contain unexpected trends due to the 

inherent complexities of the CP structures (e.g., manufacturing process) that can affect the 

mechanical properties of the plate. For example, the plot for 𝑥=7.5cm and 𝑦=3 cm shows an 

increase for the 𝑑=3cm compared to the corresponding smaller hole size cases while a reduction 

is expected. These uncertainties are significantly lower for the cases with larger hole size. It is 

evident that all cases exhibit an overall decreasing trend as the hole size increases. This decreasing 

trend is flatter for 𝑥=0 cases; the hole diameter parameter shows a lower effect on plate buckling 

for vertical edge holed cases.  
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Figure 2.12. Experimental results: Effect of different hole size in 𝑥 direction on buckling 

load of corrugated holed plates 

2.3.5.4 Effect of hole diameter in 𝑦 direction  

Figure 2.13 illustrates the buckling load of the corrugated plate with circular holes of 

varying sizes in the 𝑥 direction for each 𝑦 location separately. Similar to Figure 2.12, 1) a general 

decreasing trend is observed as the size of the hole increases and 2) the plates with smaller hole 

sizes might exhibit unexpected results in their buckling loads. 
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Figure 2.13. Experimental results: Effect of different hole size in 𝑦 direction on buckling load 

of corrugated holed plates 

2.3.6 Comparison between experimental and FEM 

The buckling loads of the experimental test and FEM model results show variations ranging 

from 3% to 26% when comparing all cases. These variations may be attributed to the influences 

of temperature, environmental condition of the CP plate with cutout sample, glue quality of the 

flute in the CP, CP types (Fadiji et al., 2019), and potential pre-damage in the experimental 

samples. Due to the inherent complexity of corrugated boards, the experimental data could 

potentially lead to over- or under-estimated results. Importantly, the FEM analysis does not 
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account for these factors. Eq. 11 is used to calculate the statistical error between the experimental 

and FEM approach results. 

Error = |
𝐹𝑒𝑥𝑝  −  𝐹𝐹𝐸𝑀

𝐹𝑒𝑥𝑝
| × 100% (11) 

where 𝐹𝑒𝑥𝑝 is the experimental results and 𝐹𝐹𝐸𝑀 is the results from FEM analysis. 

2.4 Part I Buckling data collection for CP plates with three different cutout shapes 

The widths of 1, 2, 3, 4, and 5cm are selected for the circular and squared holes. The widths 

of 1, 2, 3, and 4cm are determined for the diamond; the 5cm diamond hole does not fit into the 

locations that were close to the edge of the sample plate. The cutouts are made on the plates using 

a Kongsberg digital cutting table machine (see Table 2.5). The lower left corner of the plate is set 

as the origin (0,0). The location of the hole varies with a 1.5 cm increment, starting from point 

(3,3). Figure 2.14 shows three plates with three different cutout shapes. The plate samples are 

placed vertically inside a compression tester machine (Instron 5565 Universal testing machine). 

Vertical alignment of the samples is achieved by utilizing two small blocks within the compression 

tester machine. Once the top platen of the machine starts contacting the sample plate, the blocks 

are removed. The plates are compressed with 4% to 5% strains (6 to 7.5 mm). Figure 2.15 shows 

the plates and their buckling failure trace after performing the compression test.  

Table 2.5 A summary of the experimental data set 

Cutout Location Diameter or side(cm) Shape 

(𝑥 (cm)) (𝑦 (cm))   

3, 4.5, 6, 7.5 3, 4.5, 6, 7.5, 9, 10.5, 12 1, 2, 3, 4, 5 Circle, square, diamond 
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(a) (b) (c) 

Figure 2.14. Sketch of three sample plates for experimental tests with a (a) circular hole, (b) 

square hole, and (c) diamond hole 

 

   

(a) (b) (c) 

Figure 2.15. Experimental compression test specimen with a (a) circular hole, (b) squared hole, 

and (c) diamond hole 

As mentioned before, the average buckling strength of the plate without any holes (the 

perfect plate) is 386.83 N. The heatmaps in Figures 2.16 to 2.18 illustrate the buckling strength of 

plates as percentage of the buckling strength of perfect plate, for different vent hole locations and 

shapes. Figure 2.16 shows the buckling results of the plates comprising a circular vent hole while 

the diameter is equal to (a) 1 cm, (b) 2 cm, (c) 3 cm, (d) 4 cm, and (e) 5  cm. Figure 2.17 shows 
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the buckling results of the plates comprising a squared vent hole while the side is equal to (a) 1 

cm, (b) 2 cm, (c) 3 cm, (d) 4 cm, and (e) 5 cm. Figure 2.18 presents the buckling results for plates 

with diamond vent shape while the side is equal to (a) 1 cm, (b) 2 cm, (c) 3 cm, and (d) 4 cm. For 

all cases in Figures 2.16-2.18, 1) despite some uncertainty, positioning the holes nearer to the top 

and bottom edges of the structure maintains higher buckling strength, and as the hole width 

increases, this observation becomes more evident, and 2) increasing hole sizes decreases buckling 

strength directly. One of the advantages of applying the ML approaches is finding a highly accurate 

prediction for such problems with uncertain trends as well as ranking the importance of each factor 

on the results. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 2.16. Heatmap of buckling data for plates with circle vent hole with sizes (a) d=1 cm, (b) 

d=2 cm, (c) d=3 cm, (d) d=4 cm, and (e) d=5 cm 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 2.17. Heatmap of buckling data for the plates with square vent hole with sizes (a) s=1 cm, 

(b) s=2 cm, (c) s=3 cm, (d) s=4 cm, and (e) s=5 cm 
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(a) (b) 

  

(c) (d) 

Figure 2.18. Heatmap of buckling data for plates with diamond vent hole with sizes (a) s=1 cm, 

(b) s=2 cm, (c) s=3 cm, and (d) s=4 cm 

2.5 Part II data collection for plate with multiple circular cutouts using FEM simulation data 

In the latter phase of our analysis, the process of gathering data involved the use of FEM 

environment of SolidWorks software for creating several patterned designs of the circular cutouts 

in the plates and collecting the buckling data. The Poisson's ratio and modulus of elasticity values 

used in this section are the same as those specified in section 2.3.2. These values were incorporated 

into the SolidWorks simulation model to estimate the critical buckling load of the VCP plates. The 

plates had holes arranged in different configurations of rows and columns, with specific parameters 

such as hole size and the initial margin of the hole pattern from the left side of the plate. Due to 
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the symmetric design all four side margins are equal. The simulation process involved subjecting 

the plate models to uniaxial compression and analyzing their buckling behavior.  

The input data for the ML models included the hole pattern parameters (i.e., number of 

rows and columns), the hole diameter size, and the initial margin of the hole pattern from the plate 

side, which were specified for each plate design. The initial margin of the hole pattern from the 

plate side is considered 10, 15, 20, 25, and 30% of the plate dimensions (i.e., 15 cm). This margin 

variation includes 5 cases for the same pattern, size, and shape such as 2 by 2, 1 cm circular holes. 

When the margin is increased the distance between the holes is decreased. By systematically 

varying the hole patterns, and other parameters, a comprehensive dataset was generated, capturing 

the correlation between the input variables and the corresponding buckling loads. The buckling 

loads were measured as the output data for each configuration. The plate is designed with circular 

holes measuring 2%, 5%, 10%, and 15% of its width size (see Figure 2.19). The hole pattern 

consists of nine different variations, which are systematically varied starting from a 2×2 row and 

column arrangement. The pattern includes the following configurations: 2×2, 2×3, 2×4, 3×2, 3×3, 

3×4, 4×2, 4×3, and 4×4. The dataset in this section comprises 175 data points in total. 
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(a) (b) 

 

(c) 

Figure 2.19. Sketch of three random 15×15 cm sample plates for simulation tests (a) 2×2 pattern 

with 25% margin with circular hole diameters of 1.5 cm, (b) 3×3 pattern with 15% margin with 

circular hole diameters of 2.25 cm, (c) 4×3 pattern with 10% margin with circular hole diameters 

of 0.75 cm 

 

Figure 2.20-2.22 displays heatmaps of simulation data illustrating the buckling strength of 

various patterns across different sizes and distances from the left corner of the plate (i.e., margins). 

Designing a cutout pattern with the largest margin size of 4.5 cm and hole size of 2.5 in this study 

is unfeasible for the cases with higher number of holes due to reaching to the plate edges. The 

unfeasible designs are displayed on the heatmaps with green circles. The heatmaps reveal that 

plates with the same number of holes but different order of row and column (e.g., 2×4 and 4×2) 

exhibit different buckling strengths, indicating that factors like the order of rows and columns play 
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a crucial role. Additionally, an increase in the total number of holes correlates with a decrease in 

the buckling strength of the plate.  

 
 

 

(a) (b) (c) 

Figure 2.20. Heatmap of buckling strength of pattern (a) 2×2, (b) 2×3, and (c) 2×4  

 

 
 

 

(a) (b) (c) 

Figure 2.21. Heatmap of buckling strength of pattern (a) 3×2, (b) 3×3, and (c) 3×4 
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(a) (b) (c) 

Figure 2.22. Heatmap of buckling strength of pattern (a) 4×2, (b) 4×3, and (c) 4×4 

2.6 ML application on predicting buckling of VCP plate with single and multiple cutout 

The buckling strength of a plate with single cutout (part I), as formulated in Eq. 5, is expressed 

as a percentage of the buckling strength of a perfect plate with no cutout. As discussed in Section 

2.3.3, the formula for 𝐹𝑝 was developed by analyzing the results from a FEM model. The 𝑁𝑐𝑟 part 

can be obtained from one either FEM, plate mechanics approach, or experimental test result. It is 

beneficial to apply the experimental approach for obtaining the 𝑁𝑐𝑟, because one quick low-cost 

compression test can take the environmental and manufacturing complexities (e.g. adhesion effects 

between the corrugated board layers) effects into account. However, due to the simplified nature of 

our FEM model for simulating the VCP plates and the presence of environmental, manufacturing, 

and distribution hazards factors, the realistic buckling results contain uncertainties while following 

the expected trends. Several ML models are suggested to lower these uncertainties. In this chapter, to 

address these challenges, the 𝐹𝑝 is predicted using ML models. Obtaining the 𝑁𝑐𝑟 follows the 

previously mentioned approaches. For CP plates with a matrix of multiple circular cutouts (Part II), 

the buckling strength is analyzed through machine learning models. 
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2.6.1 Data preprocessing for ML model 

After the first step in the ML approach which is the acquisition of the sample data, the data is 

preprocessed for ML analysis. In part I of this section, the CP plates with single cutout in three shapes 

are analyzed. The location (i.e., 𝑥 and 𝑦 coordinates of the vent hole), size, and shape of the vent hole 

are considered the critical parameters that affect the compression strength of VCP packages (Han & 

Park, 2007b; Mukama et al., 2020; J. Singh et al., 2008; Thompson, 2008). The input (𝑋 =

 {𝑥1, 𝑥2, 𝑥3, 𝑥4}) and output {𝑌} variables in this study are presented in Table 2.6. An ASTM standard-

based compressive test procedure was performed to determine the compressive strength of the VCP 

plates. The C-flute paperboard plates with a random dimension of 15cm ×15cm and one either 

circular, square, or diamond cutout located at different locations on the plate are prepared. The 

samples were conditioned for 24 hours at 72°F and 50% RH as required in the test standard ASTM 

D642 (ASTM D642, 2020).  

Table 2.6 An overview of parameters in this section 

Parameter Type Unit 

𝑥1: x coordinate of the vent hole input cm 

𝑥2: y coordinate of the vent hole input cm 

𝑥3: size of the vent hole input cm 

𝑥4: shape of the vent hole input Circle, Square, Diamond 

𝑌: Buckling strength (𝐹𝑝) output N 

 

 

In part II of this section, the CP plates with a pattern of multiple circular cutouts are analyzed. The 

number of rows and columns of holes, the size of the vent holes, and the margin of the hole from the 

plate side are considered critical parameters affecting the buckling strength of CP plates. The input 

variables (𝑋 =  {𝑥1, 𝑥2, 𝑥3, 𝑥4}) and output variable {𝑌} used for part II, as presented in Table 2.7. 
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Table 2.7 Parameters in the ML data set used for the hole pattern design 

Parameter Type Unit 

𝑥1: number of the hole row  input - 

𝑥2: number of the hole column input - 

𝑥3: size of the vent hole input cm 

𝑥4: the margin of the hole from the plate side input cm 

𝑌: Buckling strength ( 𝐹𝑝) output N 

 

 

2.6.1.1 Data preprocessing for Part I 

For the second step of building up the ML models, data preprocessing in this work involves 

converting categorical input variables (i.e., the shape of the vent hole) to a numerical value, which 

can then be applied to the ML algorithms. Standardization of data that makes the input variables 

of the same scale is another part of data preprocessing. A unified scale of features generally 

improves the performance of ML and optimization algorithms. We applied non-dimensionalized 

values by dividing the dimensions to the plate width and dividing the buckling load to the buckling 

load of perfect plate to make our ML solution independent from the geometry dimensions and 

properties of the plate structure. The experimental test for part I is repeated three times for a case, 

each time on a new sample. The mean of the three maximum compression stress data for each case 

is collected and stored for the training of the ML models. 

2.6.1.2 Data preprocessing for Part II 

For part II where data is collected from FEM results, the tests do not need to be repeated 

as the simulation results do not vary for a case. The plate is compressed symmetrically from the 

top edge. Therefore, studying a vertical half (i.e., the left half) of the plate is sufficient; the results 

are duplicated symmetrically for the other half.  
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2.6.2 Data set splitting 

In the third phase of our ML model development, we divided 686 experimental sample 

data in part I and 175 FEM simulation data in part II into two separate sets. These sets are used for 

training and testing to predict the buckling strength of VCP plates. The training set is used to train 

and optimize the ML models, while the test set is used to evaluate the performance of the ML 

models. In this study, a ratio of 90% of the data set was assigned to train the ML models and the 

residual 10% was employed for testing the models. Then a 5-fold cross-validation method is used 

to validate the ML prediction models. A comprehensive discussion of the 5-fold cross-validation 

technique is available in Section 2.8. Python programming language version 3.9.7 is used to 

implement the ML models. Figure 2.23 illustrates the workflow of the proposed ML method. 

2.7 ML models used in this chapter 

To select the best ML models, we consider several factors such as the performance, the 

time and cost of training, and the robustness of the models. Prediction of the buckling strength is 

a type of regression problem due to the nature of the target variable (buckling strength), which is 

a continuous numerical quantity. The ML regression method is used to analyze the relationship 

between one or more independent variables and a dependent variable (de-Prado-Gil et al., 2022). 

 

Figure 2.23. Schematic of proposed ML workflow in this study 
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In this study, we employ three diverse methodologies for predicting the buckling strength of VCP 

plates. First, we apply the ensemble technique, specifically the LGBM. The ensemble technique is 

a ML model in which a learning algorithm combines the predictions of multiple differential ML 

models in order to enhance prediction accuracy (Al Daoud, 2019; Zhang & Ma, 2012). Chapter 1, 

Section 1.4 provides a comprehensive explanation of LGBM, a powerful gradient boosting 

framework that leverages tree-based learning algorithms. Subsequently, we compare the outcomes 

derived from the ensemble approach against those of the SVR and the well-established KNN 

method. 

2.7.1 Customized loss function 

Our general mechanics-based understanding suggests that as the size of a hole increases, 

the buckling strength of the plate should decrease. However, in 52 out of 686 cases of our 

experimental tests with different shapes, we observed that an increase in the hole size led to an 

increase in the buckling strength of the plates compared to the corresponding smaller hole size at 

the same location. This phenomenon was more pronounced in cases with circular shapes compared 

to those with square or diamond shapes. This result could be attributed to factors such as stress 

concentration, material quality, or the manufacturing process of the CP. In an attempt for 

enhancing our LGBM prediction model using ML technique, we implemented a customized loss 

function (Kashinath et al., 2021) based on the constraints in this study. This customized loss 

function penalizes the LGBM model for making predictions that contradict the known physics of 

the problem, specifically targeting predictions that indicate an increase in buckling strength with 

an increase in hole size. While Mean Squared Error (MSE) is a commonly used loss function for 

regression problems, we modified it in this context to include a penalty term (𝒫) to address this 
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specific issue. This penalty term is added to the regular MSE to increase the loss for predictions 

that violate the physics-based expectation (see Eq. 12). 

𝒫𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑚𝑎𝑥 (0, 𝑦𝑝𝑟𝑒𝑑 −  𝑦𝑡𝑟𝑢𝑒) (12) 

where 𝑦𝑝𝑟𝑒𝑑 is the predicted buckling strength,  𝑦𝑡𝑟𝑢𝑒 is the true buckling strength. The penalty is 

the positive difference between the predicted and true values. Finally, we combine the regular 

MSE with the penalty term to create the custom loss function (i.e., ℒ). This combined loss function 

will be used to train the LGBM model. The combined loss function can be written as:    

ℒ𝐿𝐺𝐵𝑀 = MSE + λ ×𝒫  (13) 

where λ is a hyperparameter that controls the strength of the penalty. By incorporating this custom 

loss function, we explicitly integrate domain-specific knowledge, in this case, physics-based 

constraints, into the training process. Ultimately, this approach encourages the model to make 

predictions that not only align with the observed data but also adhere to the underlying physics, 

resulting in predictions that are not only accurate but also physically meaningful.  

2.8 Comparing ML methods: a comparative analysis 

In order to highlight the capabilities of the LGBM algorithm, an ensemble learning 

approach, this study incorporates well-established single learning methods, namely KNN, and 

SVR. This section provides a brief description of these methods. Chapter 1 thoroughly explains 

the KNN algorithm, a simple yet effective method used for classification and regression tasks. 

Similarly, an in-depth exploration of SVR, a powerful regression technique derived from support 

vector machines, is provided in Chapter 1. 

2.8.1 Hyperparameters tuning of ML models 

As ML models are trained on different datasets, the hyperparameters (i.e., tuning 

parameters) have a significant effect on their predictability, reliability, and generalizability to 
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various datasets. The purpose of hyperparameter tuning is to achieve optimal hyperparameter 

values while applying a learning algorithm to a specified data set. Therefore, all models were 

initially tuned so that the best performance accuracy was obtained for predicting the buckling 

strength of VCP plates. Table 2.8 presents the summary of three different ML model 

hyperparameters. In the LGBM method, the maximum depth sets a boundary on the depth of the 

tree, the learning rate controls the amount of contribution that each model has to the ensemble 

prediction, and the number of leaves indicates the number of leaves in a tree, which are parameters 

to be tuned. As mentioned earlier, k is the number of the nearest neighbors in the KNN model. In 

the case of the SVR method, the kernel and ɛ are the essential parameters to be tuned, where the 

kernel determines the data transformation strategy and the choice of ɛ defines the tolerance for 

prediction errors.  

Table 2.8 An overview of the ML model hyperparameters for the prediction of buckling strength 

of plates with cutouts 

Algorithms Hyperparameters Setting 

LGBM maximum depth 2 

 learning rate 0.094 

 number of leaves 

tree learner 

15 

feature 

KNN k number of nearest neighbors 6 

SVR kernel ‘rbf’ 

 ɛ 0.1 

 

2.8.2 Model development 

A 5-fold cross-validation algorithm is implemented along with Grid Search algorithms to 

optimize the performance of all models applied in this study. As a first step, the parameter ranges 
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are evaluated based on findings in previous studies in the literature (e.g., Fadiji et al., 2019; Feng 

et al., 2020; Mukama et al., 2020). After the initial range of values has been determined, a grid 

search method is applied to find the specific values for parameters in the ML models. The cross-

validation is then used to find the parameter set with the best performance iteratively training and 

testing the model (Kohavi, 1995). The process of the cross-validation method involves splitting 

the original data into training and validation sets iteratively to assess the predicted performance of 

a model. The 5-fold cross-validation involves dividing the data set into five parts, four of which 

are used for training, and one for evaluation.  

2.8.3 Accuracy results analysis for ML section 

To verify the performance of the ML regression models, the following four evaluation 

metrics including coefficient of determination (R2), root mean square error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error (MAPE) are used. The four metrics are defined 

in Eqns. 14-17 respectively: 

𝑅2  = 1 −
∑ (𝐵𝑆𝑖−𝐵𝑆𝑖

′)2𝑛
𝑖=1

∑ (𝐵𝑆𝑖 − 𝐵𝑆̅̅̅̅ )2𝑛
𝑖=1

 (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐵𝑆𝑖 − 𝐵𝑆𝑖

′)
2

𝑛

𝑖=1

 

 

(15) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐵𝑆𝑖 − 𝐵𝑆𝑖

′
|

𝑛

𝑖=1
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𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝐵𝑆𝑖 − 𝐵𝑆𝑖
′

𝐵𝑆𝑖
| × 100

𝑛

𝑖=1

 (17) 

where 𝐵𝑆𝑖 represents the buckling strength of the 𝑖-th sample in the dataset, obtained either from 

experimental testing or FEM computation; 𝐵𝑆𝑖
′ is the buckling strength for 𝑖-th sample in the 

dataset predicted by the proposed ML models; 𝐵𝑆̅̅̅̅  in Eq. 14 is the averaged value of the buckling 
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strength of samples; and 𝑛 is the total number of the sample in the dataset. The metric R2 represents 

how well the original values fit the predicted values by applying the regression ML models. The 

RMSE shows the difference between a predicted value and an original value. The MAE is a 

measure of prediction error based on the actual situation. The MAPE metric presents the error-to-

original value ratio and the error of the prediction. A summary of the evaluation metric results is 

presented in Table 2.9 and Table 2.10 for experimental test data in part I and II, respectively. The 

high value (i.e., higher than 90%) of R2 for LGBM model indicates a comparatively good 

performance of the models in predicting the buckling strength of the VCP plates that shows a 

significant correlation with the actual data. 

Table 2.9 The summary of the results from ML models for experimental data in Section 2.4 (Part 

I)  

Method Performance measures 

 R2 RMSE MAE MAPE (%) 

LGBM 0.917 3.30 2.56 3.34 

KNN 0.868 4.23 2.93 3.83 

SVR 0.829 4.81 3.84 5.41 

 

Table 2.10 The summary of the results from ML models for FEM simulation data in Section 2.5 

(Part II)  

Method Performance measures 

 R2 RMSE MAE MAPE (%) 

LGBM 0.946 3.47 2.23 3.35 

KNN 0.873 5.13 3.24 4.73 

SVR 0.698 7.92 7.27 8.76 

 

The scatter plots of predictions and actual values of buckling strength of the VCP plates 

based on LGBM, SVR, and KNN models are illustrated in Figures 2.24 and 2.25. The actual values 

of buckling strength of VCP plates are plotted on the x-axis and the predicted values by ML models 

are plotted on the y-axis. The scatter points are the results, and the solid line indicates the condition 



67 

 

where the predicted and actual values are ideally equal. As can be seen, comparing the results of 

the three models, the LGBM model predicts results more accurately than the other two models. 

The LGBM is considered more accurate because it uses the leaf-wise tree growth method rather 

than depth-wise tree growth algorithms as in other ML algorithms.   

   

Figure 2.24. Buckling strength prediction results of ML models from experimental data in Section 2.4 

 

 

   

Figure 2.25. Buckling strength prediction results of ML models from FEM simulation data in Section 2.5 

 

2.8.4 Effect of training and testing set ratio 

The performance of an ML model is influenced by factors such as dependent and 

independent variables, the number of variables, and the size of the training dataset. To this end, 

we analyze how the size of the training data influences the results. We apply different split ratios 
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of training and testing sets including 90-10, 85-15, 80-20, and 70-30 on the LGBM model which 

shows the highest accuracy in our analysis. Table 2.11 shows the comparative results of the LGBM 

model with various training and testing sets for experimental test data in Section 3.1. As observed, 

all testing sets achieve nearly identical accuracy. The model achieved high R2 scores ranging from 

0.9143 to 0.9170, indicating a strong correlation between the predicted and actual values. 

Similarly, the RMSE values ranged from 3.30 to 3.41, showing consistent accuracy in predicting 

the variability of the target variable. Overall, the model demonstrated robust performance across 

different training and test set percentages, with minor variations in the MAPE values.  

Table 2.11 LGBM model accuracies for different training and testing sets ratios for experimental 

test data for plates with a single different shape cutout in Section 2.4 (Part I) 

Data set Performance measures 

Training set (%) Test set (%) R2 RMSE MAE MAPE (%) 

90 10 0.9145 3.40 2.65 3.55 

85 15 0.9143 3.41 2.61 3.44 

80 20 0.9170 3.30 2.56 3.34 

70 30 0.9152 3.34 2.62 3.48 

 

Table 2.12 presents the effect of different training and test set ratios on the FEM simulation 

data in Section 3.2. Increasing the volume of training data leads to an apparent trend of reducing 

prediction error and deviation. To illustrate, as the proportion of training data expands from 70% 

to 90% of the entire dataset, the R2 value exhibits growth, rising from 0.92 to 0.94. The data reveals 

a clear relationship between the size of the training set and the performance of the model on the 

test set. Specifically, as the training set size increases, the model exhibits higher R2 values, 

indicating its ability to explain a significant portion of the variance in the data, while 

simultaneously reducing RMSE, MAE, and MAPE values. This underscores the importance of 

adequately sized training sets for enhancing the performance of the model overall. 
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Table 2.12 LGBM model accuracies for different training and testing sets ratios for FEM 

simulation data for plates with multiple circular cutouts in Section 2.5 (Part II) 

Data set Performance measures 

Training set (%) Test set (%) R2 RMSE MAE MAPE (%) 

90 10 0.9468 3.47 2.23 3.35 

85 15 0.9058 4.11 2.70 3.92 

80 20 0.9328 3.42 2.42 3.53 

70 30 0.9202 3.79 2.50 3.52 

 

2.8.5 Size and area of the hole analysis 

We examined the factors affecting the buckling load of VCP plates by analyzing the size 

and shape of holes using the results from the FEM model. Figure 2.26a shows a comparison 

between the buckling loads of plates with different cutout shapes and the same size located at the 

plate center (7.5, 7.5). For a hole size of 1 cm, the circle shape exhibits a buckling load of 354.77 

N, while the square and diamond shapes have buckling loads of 352.88 N and 352.81 N, 

respectively. This suggests that, at this size, the square and diamond shapes perform comparably 

to the circle in terms of buckling load. However, as the size of the hole increases, the buckling load 

decreases for all shapes, with the circle case consistently having the highest buckling load among 

the three shapes at each size increment. In ventilation and air circulation analysis for designing 

packages in cold chain, the total area of the cutout might be a more important factor than the cutout 

width. The area of the circle cutout becomes different from the area of corresponding square and 

diamond cutout with the same width. Figure 2.26b shows a comparison of the buckling loads of 

plates with different cutout shapes and same areas. We used the same 1, 2, 3, and 4 cm diameter 

for the circle cutout diameter and matched the required cutout width for the square and diamond. 

Figure 2.26b reveals that when the areas are equal, circle cutout is not superior anymore in 

retaining the buckling strength compared to square and diamond, the three shapes show 

approximately same results. For example, for a circle with a diameter of 1 cm and a square and 
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diamond both with a width of 0.886 cm (all three cases provide same area of 0.78 cm2), the 

buckling loads are obtained as close values of 354.77 N, 354.37 N, and 354.33 N respectively. This 

indicates that the importance of shape factor is negligible when the areas of the different cutout 

shapes are equal. Here again, as the cutout sizes increase, the buckling loads decrease for all 

shapes. 

  

(a) (b) 

Figure 2.26. Comparison of buckling load of VCP plates with different cutout shapes and (a) 

same hole width, (b) same hole area 

 

2.8.6 Input variables sensitivity analysis 

The LGBM method provides a high accuracy in predicting the buckling strength of the 

VCP plates. In this section, we analyze the basic mechanical phenomena underlying the prediction 

of the LGBM model for the buckling strength of the VCP plates by studying the effect of each 

input variable on the buckling strength of the VCP plates. The input variables (i.e., features) for 

experimental data include the 𝑥 and 𝑦 location of the vent hole, the shape of the vent hole, and the 

size of the vent hole. The input variables (i.e., features) for FEM simulation data include the 

number of the hole row and column, the size of the hole, and the margin of the hole from the plate 

side. In the feature importance method, the model assigns a score to each feature by evaluating the 
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importance of the feature for predicting the outcome. By evaluating the importance of features for 

predicting the outcome, input features are given a score. The score will be higher as the feature 

contributes more to predicting the output. Figure 2.27 shows the score of each feature in the feature 

importance analysis. In the case of experimental data for single cutout with three shapes, it can be 

found that the shape of the vent hole has the most impact on the buckling strength of the VCP 

plates. The shape of the vent hole was investigated by (Han & Park, 2007b; J. Singh et al., 2008) 

and comparable effects were reported. The size and 𝑦-coordinate location of the vent hole can also 

have a significant impact on the buckling strength of the VCP plates. This is reasonable since the 

axial load was applied in the 𝑦 direction. The 𝑥-coordinate location of the vent hole has the least 

importance. Moreover, the analysis of feature importance in the FEM simulation data for a pattern 

of cutouts highlights the significance of both the size and the distance of the hole from the corner 

and to the center of the plates.  

We expanded our investigation to include the cases of three shapes with equal areas and 

found consistent results when analyzing their feature importance. This expanded investigation 

allowed us to compare how different shapes, despite having the same area, influenced the feature 

importance in our analysis. Understanding these subtleties is crucial for gaining insights into how 

geometric factors impact the overall behavior of the structures under study. 
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(a) (b) 

Figure 2.27. Importance of various input (i.e., feature) variables in (a) experimental test for    

single cutout and three shapes in section 2.4, (b) FEM simulation for pattern of circular cutouts 

in section 2.5 

 

2.9 Conclusion  

The use of perforated plates extends across various engineering structures, such as bridges, 

airplane fuselages, and ventilated food packaging boxes. In this chapter, we employed a 

combination of experimental, FEM, analytical, and ML approaches to predict the buckling load of 

thin elastic plates with A) a single circular, square, or diamond hole and B) multiple circular 

cutouts. While these models are adaptable to perforated plates made of other elastic materials, our 

primary focus was on VCP widely used in the packaging industry. Conducting these evaluations 

is essential for package designers to create efficient packages that achieve both optimal airflow 

within the package and sufficient mechanical strength while using minimized package materials, 

ensuring reliable performance throughout the cold chain supply. 

              Through the proposed methods, we successfully predicted the buckling loads of plates 

with two free vertical edges under vertical compression loads, simulating compressions in package 

stacks. First, we measured the compression stiffness of a random sized (e.g., 15cm × 15 cm) CP 

composite plate with no cutout using experimental tests to obtain a modulus of elasticity for the 
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equivalent homogenous plate. Then the CP plate was modeled in FEM software (ABAQUS) as a 

solid shell plate. Utilizing FEM results for a range of hole sizes and locations, we formulated two 

nondimensionalized buckling load equations for thin elastic plates comprising a single circular 

hole. The outcomes from the developed model aligned well with the experimental results. It was 

observed that increasing the hole size results in decreased buckling resistance of the plates while 

positioning the hole closer to the horizontal top or bottom edges retained higher buckling strength. 

The variation of hole location in the 𝑥 direction had no significant impact on the results due to the 

existing symmetries. Then, we measured the buckling of CP plates with a single circular cutout 

for a range of hole sizes and locations experimentally. It is essential to note that the experimental 

results for smaller hole sizes may not always follow the trends mentioned. This inconsistency can 

be attributed to the inherent complexity of CPs, such as variable glue quality between the plate 

layers at different locations of the paperboard due to the applied distribution hazards. Therefore, 

to enhance the accuracy of buckling load predictions for VCP plates, the integration of AI and ML 

methods becomes imperative for future studies. Furthermore, the plate theory utilized in Eq. 8 is 

developed based on linear elasticity. Hence, for structures that exhibit nonlinear deformations and 

plastic pre-buckling behavior, alternative analysis methods like ML should be employed to provide 

more accurate results. ML models typically analyze the entirety of data using advanced algorithms 

without searching for physics-based reasons. 

The ML approach for predicting the buckling strength of VCP applied in designing 

sustainable food packages offers a promising alternative to the current time- and cost-consuming 

experimental tests and computational methods. This chapter adopts ML models to predict the 

buckling strength of VCP plates using a small dataset from experimental tests or simulations to 

train the algorithms. The initial application of ML on the experimental buckling results of CP 
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plates with a single circular hole showed reasonably accurate predictions which include the 

uncertain results. Predicting these anomalies could not be expected from our simplified FEM 

models. Then we further expanded our experimental data by testing the VCP plate with two more 

cutout shapes to include hole’s shape feature in the ML analysis. In Section 2.4, experimental 

compression tests were conducted on 15 cm square plates with a single hole in three shapes: circle, 

square, and diamond. We observed that placing holes near the top and bottom edges of the structure 

preserves higher buckling strength, especially as hole width increases, while larger hole sizes 

directly reduce buckling strength. The location, size, and shape of the vent hole were considered 

as input variables and the buckling loads were labeled as output for the ML models. In many food 

package designs, VCP packages comprise several cutouts in a patterned design on their walls. 

Section 2.5 investigates the buckling strength of VCP plates with multiple circular cutouts using 

the FEM environment of SolidWorks software. The FEM simulation data includes the rows and 

columns of the holes, the size of the holes, and the initial margin of the hole pattern from the side 

of the plate, all of which collectively influence the buckling strength of the VCP packages for the 

ML models. The models are trained on the collected data and evaluated using statistical 

measurements such as R2, RMSE, MAE, and MAPE. We used a customized loss function to 

include the expected physics constraints of the problem to take advantage of the ML which 

improves the predictions accuracy. The results indicate that all ML models provide reasonably 

accurate predictions for the buckling strength of the VCP packages. In particular, the LGBM 

approach demonstrates remarkably accurate predictions for the compression strength of the VCP 

packages. The study also discusses different training and testing sizes of the dataset, finding that 

the most accurate results are achieved by training 90% of the total dataset. Furthermore, the impact 

of different input variables on buckling strength is analyzed. The sensitivity analysis of the LGBM 
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model reveals that the shape of the vent hole in plates with single cutout is the main variable 

influencing the buckling strength, followed by the size of the vent hole for VCP plates with a single 

hole. For plates with a pattern of holes, the size of the hole is the most influential variable. These 

insights provide valuable information about the relative contributions of each input variable in 

determining the buckling strength. In conclusion, the results of this study demonstrate that ML 

models align with established knowledge regarding the factors affecting buckling strength. This 

alignment highlights the potential of ML methodologies as a viable and efficient means of 

predicting the buckling strength of VCP packages. These findings offer a promising avenue for 

improving the efficiency and accuracy of buckling strength assessments, thereby reducing material 

waste in package designs while enhancing package protection properties. Additionally, the 

analysis conducted in this study can be extended to plate structures with cutouts in other 

engineering disciplines such as aerospace and construction.  

2.10 Limitations and future study 

For future research and further analysis, it will be interesting to conduct failure mode 

analysis, explore other shapes of the holes like oblong, and apply the other types of CP such as 

flute B. This comprehensive investigation will facilitate a deeper understanding of the behavior of 

perforated plates and contribute to the advancement of packaging design and engineering. The 

analysis can be applied to the other engineering plate structures with cutouts applied in industries 

such as aerospace and construction. 
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Chapter 3: Machine Learning Solutions for Predicting Mechanical Damage to Apple Fruit 

and Packaging under Vibrational Forces in Transportation 
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Abstract 

This chapter investigates the impact of various factors on the damage experienced by apple 

fruit and its packaging during transportation vibrations, including vibration intensity, duration, 

profile, package type, and apple variety. Utilizing ML models, we predict the percentage of 

damage in packaged apple fruit. By leveraging ML solutions, we not only predict damage 

percentages but also identify key areas for improvement in packaging design and transportation 

protocols, ultimately contributing to more efficient and damage-resistant packaging solutions for 

apple fruit. Our analysis reveals that vibration intensity is the most significant factor affecting 

damage, followed by duration and package type. The vibration profile and apple variety have 

relatively minor impacts. These findings underscore the importance of considering intensity, 

duration, and package type in predicting and mitigating damage during transportation vibrations. 

Furthermore, employing a random forest model, we achieved a high accuracy in predicting 

damage, outperforming other models in predictive power and accuracy. This research provides 

valuable insights for enhancing packaging design and transportation practices to reduce damage 

to apple fruit and packaging during transit. 

3.1 Introduction 

Consumer trends toward healthier food, eating out (i.e., eating out influences consumer 

products as the trend drives restaurants to offer healthier, minimally processed food options, 

boosting demand for fresh produce), and minimally processed foods have increased the demand 

for fresh produce in recent decades (Li & Thomas, 2014). Based on market data for 2023, fruits 

and vegetables were valued at USD 96.26 billion, with a projected compound annual growth rate 

of 4.1% in 2030 (Grand View Research, 2018). Transporting agricultural products, including 

apples, presents challenges like potential mechanical damage to the produce and its packaging. 
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This damage, including bruises, cuts, and blemishes, occurs during transportation and postharvest 

handling due to impact, compression, and vibration forces, affecting the quality and marketability 

of the produce.  

 Mechanical damage caused by vibration is one of the most common quality challenges to 

fresh produce during transit (Al-Dairi et al., 2022). Horticultural products like apples are highly 

susceptible to mechanical damage, leading to significant losses (Fadiji, Coetzee, Chen, et al., 

2016). Bruising represents the most frequently occurring form of mechanical damage throughout 

the stages of harvesting, sorting, packaging, storage, transportation, and retailing (Du et al., 2020). 

During transportation, damage often results from fruits colliding with each other or with 

packaging, as well as from abrasion when fruits rub against surfaces (Van Zeebroeck et al., 2007). 

These visual defects significantly impact the quality and profitability of both growers and retailers 

(Al-Dairi et al., 2022). Moreover, such damage diminishes consumer desirability and contributes 

to resource wastage (M. Lin et al., 2023). Therefore, minimizing mechanical damage is crucial for 

preserving fruit quality, extending shelf life, reducing food waste, and sustaining profitability for 

growers and distributors. 

There are several studies in the area of damage during transport and handling of apples. 

Some of them focused on the dynamic forces during apple transport and handling cause by far the 

most bruise damage. Mehl et al., (Mehl et al., 2004) developed a hyperspectral imaging system to 

detect surface defects such as bruises, side rots flyspecks, scabs and molds, fungal diseases (e.g., 

black pox), and soil contaminations in apple fruits. Detecting apple defects by non-destructive 

spectroscopy and imaging an overview of common defects in apples, encompassing physiological 

disorders, mechanical damage, pathological disorders, and contamination.  
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A range of non-destructive methods have been explored for detecting mechanical damage 

in apples. Solovchenko et al., (Solovchenko et al., 2010) and He et al., (He et al., 2022) both 

highlight the potential of visible/near-infrared spectroscopy, with the latter also discussing the 

applicability of other techniques such as chlorophyll fluorescence, computer vision, and imaging. 

Lu and Y. Lu (Lu & Lu, 2017) provides a comprehensive review of spectroscopic and imaging 

technologies for defect detection in apples, including those related to mechanical damage. Bratu 

et al., (Bratu et al., 2021). These studies highlight the potential of non-destructive methods, such 

as laser photoacoustic spectroscopy and multispectral imaging, for evaluating fruit quality and 

detecting degradation, emphasizing their value in detecting mechanical damage in apples and their 

potential for further research and application. Assessing the firmness and quality of apples using 

non-destructive methods has been a significant focus in recent research. Tian & Zu (Tian & Xu, 

2023) provides a comprehensive overview of the current state of nondestructive firmness 

evaluation methods for fruits and the challenges and prospects in achieving accurate on-line 

measurement of fruit firmness. Hosoya et al., (Hosoya et al., 2017) used a high-output pulsed laser 

to generate a laser-induced plasma shock wave, which was then applied to apples as an excitation 

force. The firmness of the apples was evaluated by analyzing the vibration response spectra using 

a Laser Doppler Vibrometer (LDV). LDV sensors detect the Doppler effect of the reflected laser, 

caused by the movement of the sample, to measure the vibration velocity of the object. Lee et al., 

(Lee et al., 2022) predict the soluble solid content in Fuji apple. In Kim et al., (K. B. Kim et al., 

2009) study with ultrasonic velocity and attenuation models, they detected firmness in apples and 

built prediction models for firmness.  

The impact of vibration on various characteristics of apple fruit has been extensively 

studied using simulation techniques. Walkowiak-Tomczak et al., (Walkowiak-Tomczak et al., 

https://en.wikipedia.org/?curid=10843
https://en.wikipedia.org/?curid=4129813
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2021) utilized vibration simulation techniques to investigate the effect of vibration on various 

characteristics of apple fruit, including color, firmness, total soluble solids, pH value, titratable 

acidity, dry matter content, and total polyphenol content. Their findings indicated that vibrations 

reduced the firmness of the fruit while enhancing its antioxidant capacity and polyphenol content 

across different cultivars. Jung and Park (Jung & Park, 2012b) employed a vibration simulation in 

their investigation, focusing on the impact of transportation vibration on various attributes of 

apples inside the package. Their study revealed that the vibration stress led to increased total 

soluble solids, weight loss, CO2 concentration, and ethylene production rate, while also decreasing 

the firmness of the apples during storage. Vursavus and Ozguven (Vursavuş & Özgüven, 2004) 

assessed the impact of vibration frequency, vibration acceleration, vibration duration and 

packaging type on mechanical damage during the transportation of Golden Delicious Apples. Their 

study considered packaging methods such as paper pulp tray, pattern packing, and volume packing. 

Interestingly, they discovered that volume packaging resulted in the most significant levels of 

damage to the apples during transportation. Fadiji et al., (Fadiji, Coetzee, Chen, et al., 2016) 

examined the sensitivity of apple fruit inside packages during simulated transport. They 

specifically focused on two commonly used ventilated CP packages in the South African fresh 

produce industry, namely, MK4 and MK6. Due to the increasing peak acceleration of the 

packaging container from the bottom to the top, they observed high bruise damage on apple fruit 

on the top layer of the package. The damage ranged from 50% to 74% bruise damage. Singh et al., 

(S. P. Singh et al., 1992) examine the impact of truck vibration and packaging systems on apple 

bruising. The study evaluated four interior packaging options: foam trays, paper pulp trays, and 

two paperboard partition/box combinations. Testing was conducted on a vibration table using a 

random controller, which mimicked the vibrations experienced by truck trailers with leaf-spring 
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and air-cushion suspensions on expressways. The results indicated that foam trays provided the 

best protection, followed by paperboard partitions. Paper pulp trays resulted in the highest damage 

levels. Additionally, the Air-ride truck suspension caused greater damage compared to the leaf-

spring suspension across all package types.  

While various studies have assessed the damage caused by vibration on different species 

of fruits and vegetables, there is limited information available on the interaction between 

packaging and fruits during vibration (Al-Dairi et al., 2022). To ensure the safety of packaged 

produce and to optimize packaging designs to minimize damage and costs, it is essential to 

understand how packages and produce react under static and dynamic loads (Fadiji, Coetzee, Chen, 

et al., 2016).  

ML has demonstrated potential for non-destructive product defect detection in recent 

studies. Nturambirwe and Opara (Nturambirwe & Opara, 2020) and Suprijono et al., (Suprijono et 

al., 2022) both highlight the role of ML methods in addressing technical challenges and achieving 

fast, early, and quantitative assessments. Image processing and artificial neural networks have been 

successfully used to detect defects in agricultural commodities, with high accuracy rates 

(Suprijono et al., 2022). Furthermore, deep learning technology has been applied to detect defects 

in tomatoes, leading to increased speed, accuracy, and cost-effectiveness in the grading process. 

Shi and Wu (Shi & Wu, 2019) and Mahanti et al, (Mahanti et al., 2022) reviews the application of 

the different image processing technique to detect the mechanical damage in apple fruits. These 

studies collectively underscore the potential of ML in enhancing quality assessment and defect 

detection in agricultural products. 

To address the issue of transportation vibrations causing damage to apples, ML solutions 

can be employed to optimize transport methods and minimize risk. These advanced algorithms 
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and predictive models analyze factors such as road conditions, vehicle dynamics, and packaging 

characteristics to develop strategies that reduce mechanical stress on apples. ML techniques 

provide detailed insights into how packages and produce interact under different loads, allowing 

for accurate prediction and grading of apple maturity and quality. By identifying factors that 

contribute to damage, ML enables packaging engineers to design more effective packaging 

solutions, ensuring safer and more efficient transportation. 

This chapter examines the bruising of apples in four different packaging types under 

simulated transportation vibrations. It aims to predict vibration damage and analyze influential 

factors and bruise severity. ML methods were used to predict mechanical damage to transported 

packed apple fruit, aiming to develop models for optimal transportation conditions. The study 

highlights the transformative potential of ML in improving the efficiency and sustainability of 

packaging systems, reducing waste, and enhancing product quality. By considering factors such 

as vibration intensity, duration, vibration level (truck suspension system), apple type, and 

packaging type, the research provides valuable insights for designing more resilient and effective 

packaging solutions, addressing an underexplored area in predicting packed apple bruising during 

transit. The novelty of this study lies in its application of ML models to predict and analyze 

mechanical damage to packed apple fruit under transportation vibrations, considering various 

influential factors such as vibration intensity, duration, profile, package type, and apple variety. In 

addition, the applied ML model ranked the influence of each factor, which is highly beneficial for 

efficient package design.  

This chapter is organized as follows: Section 3.2 outlines the data collection process for 

the sample dataset obtained from experimental tests. In Section 3.3, we investigate the 

experimental data analysis, uncovering key insights and trends. Section 3.4 evaluates the 
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performance of each ML model, comparing their effectiveness in predicting outcomes based on 

the experimental data. Finally, Section 3.5 presents the conclusions drawn from the research and 

outlines potential directions for future work. 

3.2 Data collection 

In this section, we provide a detailed description of the data collection process, including 

the description of simulating conditions utilizing the vibration table. Additionally, we present the 

ML models employed in this chapter. 

3.2.1 Plant source 

Two varieties of “Jonagold” and “Fuji” fresh apples were collected from MSU Clarksville 

Horticultural Experiment Station (MSU Clarksville Research Center, Clarksville, MI), based on 

their consistency in size, weight, firmness, and lack of physical damage. A truck transported the 

apples designated for testing to the laboratory following harvest. These specific apple cultivars 

were chosen for their high susceptibility to bruising, which is easily observable. The mean weight 

and diameter of the apples were 141.9 ± 3.1 g and 67 ± 4.0 mm respectively. Only uniformly sized 

and mature apples, assessed by firmness, and free from physical damage, were selected. 

3.2.2 Package configuration  

Figure 3.1 presents four different packaging configurations referenced in this study. These 

configurations, denoted as A, B, C, and D, represent common designs employed within the U.S. 

fruit industry for the handling of apples. Package A included a single wall CP Regular Slotted 

Container (RSC) along with a molded paper pulp tray. The box measured 480×320×105 mm, with 

each tray containing 20 apples, resulting in a total carrying capacity of 9±1.5 lbs. (see Figure 3.1a). 

Package B was like Package A, but instead of the molded paper pulp tray, it used plastic bags, 

referred to as volume packing. Each bag can contain 5 to 6 apples, with each bag weighing 3 ± 0.5 
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lbs. (see Figure 3.1b). Package C featured a Reusable Plastic Container (RPC) paired with a 

molded paper pulp tray. The container measured 580×395×190 mm, and each tray could hold 30 

apples. The container had a total weight capacity of 16±6 lbs. (see Figure 3.1c). Package D closely 

resembled Package C in many aspects. Instead of molding paper pulp trays, it used volume 

packing. This approach increased its average weight capacity to 18±5 lbs. providing enhanced 

flexibility in accommodating larger quantities of produce. 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 3.1 package type. (a) RSC + molded paper pulp tray; (b) RSC + plastic bag; (c) 

RPC+ molded paper pulp tray; (d) RPC+ plastic bag 

 

3.2.3 Vibration simulation 

The laboratory simulation involved utilizing an electrohydraulic vibration table (Model 

10000 Vibration Test System, Lansmont) to conduct rigorous testing on packaging integrity. Two 

distinct vibration profiles were employed: ISTA 3A, representing an Over-the-road profile, and 

ISTA 3H, simulating an Air-ride profile. A random vibration controller was utilized to execute the 
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vibration spectrums depicted in Figure 3.2. Vibration tests were conducted with varying durations 

of 1, 3, and 5 hours and intensities of 0.2, 0.3, 0.5, and 0.7 Grms for each profile. These parameters 

aimed to replicate real-world transportation conditions comprehensively including both smooth 

and rough roads. 

All tests were conducted under standard conditions (70°F, 50% RH), ensuring consistency 

across experiments. Following the vibration testing, packages were stored for 72 hours to allow 

any resulting bruises to become visible. Fresh produce, especially susceptible to mechanical 

damage, may take a few hours for visible bruises to appear on the injured area, depending on the 

degree and type of mechanical damage incurred. This delayed indication implies that bruising in 

some produce may remain undetected until it reaches the retail store or consumer, underscoring 

the importance of robust packaging (Fadiji et al., 2023). The severity of bruising was meticulously 

recorded, considering the diameter of the bruise.  

 

  

(a) (b) 

Figure 3.2. Vibration level in trailer with suspension system of (a) Over-the-road, (b) Air-ride 
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The percentage of bruised fruit represents the fraction of apples in a package that have 

experienced any bruising (Singh et al., 1992). This data was crucial in assessing the efficacy of 

packaging designs and transportation strategies in minimizing product damage. Quantifying the 

extent of bruising was imperative in evaluating the performance of packaging under varied 

vibration conditions. According to (Pathare & Al-Dairi, 2021), the depth of damage in apples is 

directly correlated with the surface area of the bruising and external bruise. In this study, we 

considered an apple 'damaged' if the bruise diameter was more than 0.25 inches, measured using 

a caliper; otherwise, it was categorized as 'undamaged'. We recorded the damage incidence for 

each packaging type and vibration scenario, allowing us to accurately determine the percentage of 

apples bruised within each packaging condition. Each external bruise was assessed by determining 

the average diameter determined by digital caliper measurements (Singh et al., 1992). This 

measurement facilitated a systematic approach to assessing the impact of vibration duration and 

intensity on bruise severity. Furthermore, the correlation between vibration parameters and bruise 

characteristics could provide valuable insights for optimizing packaging designs and transportation 

protocols. Understanding how different vibration profiles affect bruise development aids in 

mitigating product losses and maintaining product quality throughout the supply chain, ultimately 

benefiting both producers and consumers alike. 

3.3 Experimental data analysis 

The box plot in Figure 3.3 illustrates the distribution of the percentage of damage for two 

different vibration profiles, Over-the-road and Air-ride. The horizontal line inside each box 

represents the median percentage of damage, which is around 30% for the Over-the-road profile 

and around 20% for the Air-ride profile. The plot reveals that the Over-the-road vibration profile 

not only has a higher median percentage of damage but also exhibits greater variability, indicating 



92 

 

more significant and inconsistent damage levels. In contrast, the Air-ride vibration profile results 

in a lower median percentage of damage and less variability, suggesting more consistent and less 

severe damage to the packages. This indicates that the Air-ride profile is less damaging and more 

reliable compared to the Over-the-road profile, likely due to the smoother and more controlled 

nature of the Air-ride transportation method. Consequently, the Air-ride profile may be preferable 

for transporting packages that are sensitive to damage. 

 

Figure 3.3. Bar plot for percentage of apple damage by vibration profile 

The statistical analysis indicates that several factors have a statistically significant effect 

on the percentage of damage to apples, with p-values < 0.005. Specifically, the parameter profile, 

intensity, duration, and package type significantly influence the percentage of damage. The 

'Intensity' factor, with a p-value of 7.24 ×10-45, indicates an extremely strong influence of vibration 

intensity on the damage percentage, highlighting the importance of controlling vibration levels 

during transport. 

 The bar chart in Figure 3.4, the effect of package type on percentage of damage illustrates 

the mean percentage of damage for different package types (A, B, C, and D), with error bars 
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representing the standard deviation. Package type C exhibits the highest mean percentage of 

damage at approximately 50%, suggesting it is the least effective in preventing damage. In 

contrast, Package types A, B, and D have lower mean damage percentages, around 30-40%, 

indicating better performance in reducing damage. Notably, all package types show significant 

variability, with Package types A and C displaying the most inconsistency, as evidenced by their 

extensive error bars. The high variability across all package types implies that factors beyond the 

type of packaging might be influencing the damage percentage. This analysis suggests that while 

Package Type C is less effective, other underlying factors need further investigation to fully 

understand and mitigate the damage. 

 

 

Figure 3.4. Effect of package type on percentage of damage 

 

3.3.1 Data preprocessing for ML models 

As the first step in setting the data for the ML models, the input and output data sets are 

determined. Table 3.1 shows the input variables (𝑋 =  {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}) and the output variable 

{𝑌} used in this research. 
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Table 3.1. An overview of the variables in this study 

Parameter Type Unit 

𝑥1: vibration profile (Air-ride and Over-the-

road) 

input ISTA-random-vibration profile 

𝑥2: vibration intensity (0.2, 0.3, 0.5, 0.7) input Grms 

𝑥3: vibration duration (1, 3, 5) input hour 

𝑥4: type of package input A, B, C, D 

𝑥5: type of apple input Jonagold, Fuji 

𝑌: percentage of bruised apple output % 

 

In this chapter, the dataset was divided into three subsets: a training set, a validation set, 

and a test set. The training set, comprising (70%) of the data, is used to train the ML models by 

allowing it to learn the underlying patterns and relationships within the data. The model adjusts its 

parameters during this phase to minimize errors and improve prediction accuracy. The validation 

set, which includes (15%) of the data, is utilized to tune the hyperparameters of the model and 

evaluate its performance during the training phase. This helps in selecting the best model 

configuration that generalizes well to unseen data by checking for overfitting and refining 

hyperparameters. Finally, the test set, also (15%) of the data, is used to evaluate the performance 

of final model after training and validation are complete. This provides an unbiased assessment of 

the predictive accuracy and generalizability of model on new, unseen data, ensuring that the model 

performs well in real-world scenarios. By splitting the data into these three sets, we ensure a robust 

and effective training process that results in a model capable of making accurate predictions on 

new data. 
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3.4 ML models used in this chapter 

In this chapter, we apply three ML models: linear regression, decision tree regression, and 

random forest regression, as previously explained in Chapter 1. Linear regression is used due to 

its simplicity and interpretability, providing a baseline for understanding relationships between 

variables. Decision tree regression is employed because of its ability to handle non-linear 

relationships and capture interactions between features effectively. Random forest regression, an 

ensemble learning method, is included for its robustness and ability to reduce overfitting by 

averaging multiple decision trees, thereby improving prediction accuracy. By using these diverse 

models, we aim to comprehensively evaluate and compare their performance in predicting 

vibration damage to apple fruit and packaging during transportation. Each model is assessed for 

its effectiveness in predicting the percentage of bruised apples, considering the unique 

characteristics of our dataset. Linear regression, a fundamental and widely used model, serves as 

a baseline to understand the relationship between the variables. Decision tree regression, known 

for its ability to handle non-linear relationships and interactions between variables, is employed to 

capture the complexity of the dataset. Finally, the random forest regression model, an ensemble 

learning method that builds multiple decision trees and merges them for a more accurate and stable 

prediction, is utilized to enhance the robustness of the predictions. 

Next section provides a detailed evaluation of the ML models. Through this comprehensive 

evaluation, we aim to determine the most suitable model for accurately predicting the percentage 

of bruised apples based on the given dataset. 
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3.5 Results 

This section presents and interprets the prediction plots for three different regression 

models: linear regression, decision tree regression, and random forest regression, comparing their 

performance in terms of predicting the percentage of damage across various data points. 

3.6 Comparison of regression model predictions 

Figure 3.5 presents the prediction plots for three different regression models: (a) linear 

regression, (b) decision tree regression, and (c) random forest regression. Each plot compares the 

predicted values against the actual values, providing insight into the performance of each model. 

In Figure 3.5a, the prediction plot for the linear regression model shows the predicted values 

closely following the actual values, although there are notable deviations, particularly at certain 

peaks and troughs. This indicates that while the linear regression model captures the overall trend, 

it struggles with accurately predicting the extreme values. This can be attributed to the assumption 

of the model in a linear relationship between the input variables and the output, which may not 

hold true for the more complex patterns in the data. Figure 3.5b displays the prediction plot for the 

decision tree regression model. This model shows a closer alignment with the actual values 

compared to the linear regression, particularly at the peaks and troughs. The step-like patterns are 

evident, reflecting the nature of decision trees, which partition the data into distinct regions. 

Although the decision tree model handles the non-linearities in the data better than the linear 

regression model, it still shows some overfitting, particularly in regions with sparse data points, as 

evidenced by the sharp changes in predicted values. The prediction plot for the random forest 

regression model is shown in Figure 3.5c. This model combines the predictions of multiple 

decision trees, smoothing out the step-like patterns seen in the single decision tree model. The 

random forest regression model provides a more accurate and consistent prediction across the 
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entire range of actual values, with fewer extreme deviations. This suggests that the random forest 

model effectively captures the underlying patterns in the data while mitigating the overfitting issue 

observed with the single decision tree. The distribution of the residuals appears more uniform, 

indicating a better fit overall. 

(a) 

 

(b) 

 

(c) 

 
Figure 3.5. Prediction accuracy plot for (a) linear regression, (b) decision tree regression, and (c) 

random forest regression ML models 
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3.6.1 Feature importance for random forest model 

Figure 3.6 depicts the relative importance of various features in predicting minimizing 

vibration damage to apple fruit and packaging. The features assessed include vibration intensity, 

duration, profile, package type, and apple type. Intensity stands out as the most significant feature, 

with a score significantly higher than all other features. This indicates that the intensity of 

vibrations has the greatest impact on the damage experienced by the apple fruit and packaging. 

Duration is the second most influential feature, though its score is notably lower than that of 

intensity, suggesting that the length of time the apples are exposed to vibrations also plays a crucial 

role in the extent of damage, but to a lesser extent than intensity. Package type ranks third, 

indicating that the type of packaging used has a meaningful impact on damage levels, as different 

packaging solutions might offer varying degrees of protection against vibration. The profile of the 

vibration, while still relevant, has a lower importance score compared to intensity, duration, and 

package type, implying that the specific characteristics of the vibration profile are less critical but 

still contribute to the overall damage. Apple type is the least influential feature, with a score close 

to zero, suggesting that the type of apple has minimal impact on the damage caused by vibrations, 

indicating that the other factors are more critical in determining the extent of damage. Overall, the 

analysis underscores the dominant importance of vibration intensity and duration in predicting and 

mitigating damage to apple fruit during transportation, with package type also playing a significant 

role, while vibration profile and apple type have relatively minor impacts. 
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Figure 3.6. Feature importance 

 

3.7 Comparative analysis of model performance using evaluation metrics 

Table 3.2 compares the performance of three ML models. Linear regression, decision tree, 

and random forest using four evaluation metrics: R², Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and Mean Absolute Error (MAE). Random Forest outperforms the other 

models across all metrics. It achieves the highest R² value of 0.927, indicating it explains 92.71% 

of the variance in the data, compared to 0.825 for the decision tree and 0.797 for linear regression. 

Additionally, random forest has the lowest MSE (65.339), RMSE (8.083), and MAE (6.381), 

suggesting it produces the smallest average prediction errors both in terms of squared differences 

and absolute differences. The decision tree performs better than linear regression but not as well 

as random forest, with moderate values for MSE (144.591), RMSE (12.024), and MAE (9.871). 

Linear regression, while the least accurate, still provides reasonable predictions with an R² of 

0.797, MSE of 167.65, RMSE of 12.94, and MAE of 10.565. Overall, the random forest model is 

the most effective for this dataset, demonstrating superior predictive power and accuracy. 
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Table 3.2. Performance metrics 

 Linear Regression Decision Tree Random Forest 

R2 0.7975 0.825 0.927 

MSE 167.657 144.591 65.339 

RMSE 12.948 12.024 8.083 

MAE 10.565 9.871 6.381 

 

3.7.1 Training data size 

The line plot in Figure 3.7 shows the relationship between the number of training examples 

and the RMSE for both training and cross-validation sets in a random forest model. As the number 

of training examples increases from 25 to 100, both training and cross-validation errors decrease, 

indicating improved model performance. The training error (red line) starts at around 9 and 

stabilizes just above 5, showing increased accuracy with more data. The cross-validation error 

(green line) starts higher at 25, indicating initial overfitting, but decreases significantly to around 

15 as more data is added, improving generalization. The shaded areas represent confidence 

intervals, showing reduced variability in RMSE with more training examples. Overall, the plot 

underscores the importance of sufficient training data for enhancing the Random Forest model's 

performance and generalization. 
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Figure 3.7. Learning curve of random forest model 

 

 

3.8 Conclusion and future work 

This study examines the various factors influencing the damage to apple fruit and its 

packaging during transportation vibrations. We investigated variables such as vibration intensity, 

duration, profile (suspension system), package type, and apple variety to assess their impact. 

Employing ML techniques like linear regression, decision tree, and random forest, we were able 

to predict the damage levels experienced by the transported packed apple fruit. Our findings 

emphasize the critical significance of vibration intensity and duration in foreseeing and mitigating 

damage to apple fruit during transportation. Additionally, the type of packaging used becomes a 

crucial factor in protecting against vibration damage. While the specific characteristics of the 

vibration profile and the type of apple have minor impacts, they should still be considered when 

designing packaging solutions. Furthermore, our application of ML models, including linear 

regression, decision tree, and random forest, revealed that the random forest model outperformed 

the others, achieving an R² of 0.927. This underscores the superior predictive power and accuracy 

of the random forest model in this context, further highlighting its efficacy in predicting and 

mitigating damage during transportation vibrations. These ML predictive models not only aid in 
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anticipating the percentage of damage for transported packed apple but also allow us to identify 

potential areas for improvement in packaging design or transportation conditions, ultimately 

contributing to the reduction of damage to packaged fruit. Overall, this chapter offers valuable 

insights for enhancing packaging design and transportation practices to predict damage to 

transported packed apple fruit during transit as well as highlighting the benefit of applying ML in 

food packaging dynamics area. Thoughtful selection of improved solutions to this critical issue 

can significantly reduce the vulnerability of fresh produce to vibration damage during road 

transport, thereby lowering the incidence of postharvest losses of fresh commodities (Al-Dairiet 

al., 2022). As for future research, we recommend exploring more apple types with additional layers 

for apple packaging and incorporating factors such as temperature and humidity in the analysis. 

Moreover, a comprehensive understanding of the internal package design factors contributing to 

damage would be beneficial in developing even more effective packaging solutions. Last but not 

least, it is suggested to update the study to apply multi-axis vibration tables (like an IMV’s multi-

axis shaker recently installed in the School of Packaging at MSU), which simulates transportation 

vibration more realistically than the current vertical single axis in this study. 
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Abstract 

Effective packaging design is essential for ensuring the safe transportation and delivery of 

products, minimizing damage, and maintaining product integrity throughout the supply chain. 

With a growing emphasis on sustainability, corrugated paperboards have become increasingly 

popular for packaging due to their recyclable nature and reduced environmental impact. During a 

distribution cycle, these packages undergo transportation vibrations from the shipping vehicle, 

which can affect their structural integrity. This study delves into the prediction of compression 

strength loss in corrugated paperboard boxes following exposure to simulated transportation 

vibration, a critical concern in the packaging industry. By leveraging advanced ML techniques, 

this research aims to develop efficient models that can predict the extent of compression strength 

degradation due to vibrational forces experienced during transit. The findings from this 

investigation have significant implications for optimizing packaging materials and design, 

ultimately enhancing the durability and reliability of packaging solutions in various industries. The 

study utilizes ML models, with a specific focus on the XGBoost algorithm, to predict the 

percentage of compression strength loss based on various parameters. These parameters include 

the dimensions of the box (length, width, and height), vibration intensity, vibration duration, 

vibration profile (following ISTA standards), and top load. Using a collected dataset from 

experimental tests encompassing a range of scenarios, the XGBoost model achieved a remarkable 

R² score of 0.93, indicating its efficacy in predicting compression strength loss. Such accuracy is 

crucial in guiding packaging design decisions to minimize damage and ensure product integrity 

during transportation. The feature importance analysis reveals that vibration characteristics 

dominate the predictive capability of the XGBoost model. Vibration duration is the most critical 

feature, significantly impacting the model's performance. Vibration intensity and vibration profile 
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also play important roles, while the physical dimensions of the CP box, such as width, length, and 

height, are less influential. This highlights the greater importance of vibration characteristics over 

physical dimensions in the predictions of model. This research contributes to the field of packaging 

dynamics and distributions by providing a reliable predictive model for CP box compression 

strength loss.  

4.1 Introduction 

During distribution, packages endure various loading conditions, and inadequate protection 

can result in damage to both the package and the product. Studies have shown that shipping 

packages in a unitized configuration significantly reduces damage levels compared to shipping 

individual parcels (Singh et al., 2014). However, this method may not be appropriate for all types 

of products, such as extremely delicate items or hazardous materials. Over the past decade, there 

has been a substantial increase in the number of individual packages shipped directly to consumers, 

emphasizing the need for durable packaging solutions that can withstand the challenges of 

individual distribution (Singh & Pratheepthinthong, 2000). CP, a global sustainable packaging 

material, is employed to residence and protect a vast array of commodities, ranging from delicate 

consumer items to robust industrial components (Zang et al., 2021). However, the structural 

integrity of these corrugated boxes can be compromised during transportation, particularly due to 

the effects of vibration (Garcia-Romeu-Martinez, 2007). The compressive strength of corrugated 

boxes is a crucial indicator of their performance and ability to withstand the demands of storage 

and distribution (Zang et al., 2021). Vibration, a frequent hazard during transportation, can impose 

significant damage on the packaged-product system, altering the structural characteristics of the 

corrugated material (Molnár & Böröcz, 2020). Understanding the extent and mechanisms of this 
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damage is essential for designing robust sustainable packaging solutions that can mitigate the 

adverse effects of vibration.  

Packaging systems are subjected to random dynamic compressive loads resulting from 

vehicle-generated vibrations during transportation. The severity and level of dynamic compressive 

loads are affected by vibration levels, stack weight, and stack configurations (Garcia-Romeu-

Martinez, 2007). The vibration levels play a crucial role, as higher vibrations can lead to increased 

stress and potential damage to the stacked items. The configuration of the stack itself is significant; 

the arrangement and stability of the items within the stack can affect how the loads are distributed 

and absorbed. The weight of the stack is a substantial factor, as heavier stacks are subject to greater 

compressive forces, especially during transportation. Depending on the properties of material and 

the design of the box, a box can tolerate these compressive loads for a sufficiently long period of 

time (Garcia-Romeu-Martinez, 2007). Vibration levels experienced by packaged goods during 

transportation have been the subject of extensive research (Böröcz & Molnár, 2020). 

Measurements of vibration in smaller stacks of packages, as opposed to larger unitized loads, have 

revealed that the intensity of vibration increases with the height of the stack and the degree of free 

movement permitted. Marcondes (Marcondes, 1992) studied the effects of static and dynamic load 

histories on the compression strength and shock absorption properties of corrugated fiberboard 

boxes. The results indicated that while static compression forces did not significantly impact the 

performance of boxes, dynamic compression forces had a notable effect, suggesting that previous 

load histories play a crucial role in the overall durability and integrity of packaging during 

transportation. Rouillard et al., (Rouillard et al., 2007) explored the impact of random dynamic 

compressive loads on the stiffness and damping characteristics of packaging systems during 

transportation. Using thermal imaging and Frequency Response Function (FRF) monitoring, the 
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results reveal that regions of elevated temperature in corrugated paperboard indicate structural 

failures, and there is a strong correlation between reduced system stiffness and temperature 

variations. The reduction of compression strength in CP boxes after transportation vibration is a 

significant concern, particularly for the packaging of agricultural products (Jung & Park, 2012). 

This issue is of paramount importance as it directly impacts the integrity and protection of the 

packaged goods, which can lead to significant economic losses and compromised product quality.  

As the vehicles traverse various terrains and encounter differing road conditions, the boxes 

are subjected to a complex array of vibrations, impacts, and compressive forces. These dynamic 

loads can induce structural deformations and degradation of the paperboard material, ultimately 

leading to a diminished ability to withstand compressive stresses. Furthermore, the frequency and 

magnitude of these vibrations can vary significantly depending on the mode of transportation, the 

condition of the transportation infrastructure, and the specific characteristics of the packaged 

goods. To address this challenge, researchers have employed a complicated approach, combining 

experimental investigations, numerical simulations, and analytical modeling. Experimental studies 

have been conducted to quantify the reduction in compression strength under various 

transportation conditions, with a focus on understanding the relationship between the vibration 

parameters and the resulting structural changes in the CP. Packages are subjected to numerous 

loading conditions during the distribution process, and inadequate protection can result in damage 

to both the package as well as the product during shipment.  

This research investigates the loss of compression strength in CP boxes subjected to top 

load as a consequence of exposure to transportation vibrations. A data analysis approach was 

applied in this study, incorporating advanced ML techniques. A ML model was developed to 

predict the loss of compression strength, offering a more accurate and efficient means of assessing 
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the impact of transportation vibrations on packaging integrity. This research combines multiple 

parameters such as box dimensions, vibration intensity, duration, profile, and top load to create a 

robust predictive model. In addition, the applied ML model ranked the influence of each factor, 

which is highly beneficial for efficient package design. The integration of ML algorithms enhances 

predictive capability, providing valuable insights for improving packaging design and durability. 

In Chapter 1, an introduction to ML is provided. The novelty of this study is found in its pioneering 

use of advanced ML techniques, specifically the XGBoost algorithm, to precisely predict 

compression strength loss in CP boxes after simulated transportation vibrations. This research 

uniquely combines multiple parameters such as box dimensions, vibration intensity, duration, 

profile, and top load to create a robust predictive model. In addition, the applied ML model ranked 

the influence of each factor, which is highly beneficial for efficient package design. 

This study is organized as follows: In Section 4.2, we describe the experimental data 

collection, outline the collection process of the sample data set from the experimental tests, and 

provide a comprehensive description of the data set. Section 4.3 offers an overview of the ML 

models employed in this study. Section 4.4 evaluates the performance of each model and discusses 

the prediction results. Finally, Section 4.5 presents the key findings and conclusions derived from 

the study. 

4.2 Experimental data collection and overview 

The detailed steps for data collection and model construction are outlined in this section. 

4.2.1 Experimental data collection 

In this study, the critical parameters considered to affect the loss of compression strength 

of the CP box after transportation vibration were the dimensions of the box (length, width, and 

height), the characteristics of the vibration (truck’s suspension system, duration, intensity), and the 
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weight placed on top of the box (top load). The input variables (X = {x₁, x₂, x₃, x₄, x₅, x₆, x₇}) and 

the output variable (Y) are detailed in Table 4.1. An ASTM standard-based compressive test 

procedure was used to determine the compressive strength of the CP box after the vibration tests. 

The single wall C-flute CP boxes with three sets of random dimensions of 12 × 10 × 8 inches, 16 

× 12 × 10 inches, and 18 × 10 × 8 inches were prepared. The sample boxes have a bursting strength 

of 200 lbs., meaning the test boxes can endure 200 lbs./sq.in. of sidewall pressure before bursting. 

The samples were conditioned for 24 hours at 72°F and 50% relative humidity, as required by the 

test standard ASTM D642 (ASTM D642, 2000). 

Table 4.1 An overview of parameters in this study 

Parameter Type Unit 

𝑥1: length (12, 16, 18) input inch 

𝑥2: width (10, 12) input inch 

𝑥3: height (8, 10) input inch 

𝑥4: vibration intensity (0.3, 0.5, 0.7) input Grms 

𝑥5: vibration duration (30, 60, 90) input minutes 

𝑥6: vibration profile (Over-the-road, Air-ride) input ISTA-random-vibration profiles 

𝑥7: top load (10, 25) input lbs. 

𝑌: percentage of loss of compression strength output % 

 

The laboratory simulation involved utilizing an electrohydraulic vibration table (Model 

10000 Vibration Test System, Lansmont) to conduct vibration testing on packaging integrity. Two 

distinct vibration profiles were employed: ISTA 3A, representing an over-the-road profile (Truck 

with leaf-spring suspension system), and ISTA 3H (Truck with air-ride suspension system), 

simulating an air ride profile. These vibration profiles are presented in Power Spectral Density 
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(PSD) format. As shown in Figure 3.2, the vibration energies are significant for frequencies below 

100 Hz. 

Vibration tests were conducted with varying durations of 30, 60, and 90 minutes, and 

intensities of 0.3, 0.5, and 0.7 for each profile. The top load, a parameter used to simulate stack 

loading conditions, was set at 10 and 25 lbs. (see Figure 4.1). These parameters aimed to 

comprehensively replicate real-world transportation conditions, including both smooth and rough 

roads. The vibration spectrums were executed using a random vibration controller to ensure 

accuracy in simulating transportation environments. Each packaging sample was subjected to these 

conditions to evaluate their structural integrity and durability under different stress levels. The 

results provided a detailed understanding of how the boxes would perform during actual transit, 

helping to identify potential weaknesses and areas for improvement in packaging design. This 

approach ensured that the testing conditions closely matched real-life scenarios, making the 

findings highly relevant for practical applications.  

Compression tests for CP boxes are commonly used in packaging to evaluate the critical 

buckling loads of the packages. Similar to other compression testers in engineering, a compression 

tester with a wider platen area applies vertical loads to a box. Initially, control compression tests 

were conducted on CP boxes before subjecting them to vibration tests, recording the buckling 

loads for each different box dimension. Following this, vibration tests were performed, and 

subsequent compression tests were conducted on the samples post-vibration. Each package 

compression test was repeated five times, using a new, untested box for each iteration, and the 

average values were recorded as the compression strength of the samples after vibration. 



114 

 

 

Figure 4.1. Experimental test setup using a vertical vibration shaker table. The top packages with 

two different weights serve as the top loads 

 

4.3 Experimental data analysis 

Figure 4.2 illustrates the relationship between the top load and the percentage loss in a 

compression strength of the box after the vibration. From the plot, it is evident that the average 

percentage loss is higher for a top load of 10 lbs. compared to a top load of 25 lbs. After analyzing 

the results, the average loss for a top load of 10 lbs. was approximately 14%, whereas for a top 

load of 25 lbs., the average loss was around 12%. This indicates that a higher top load might be 

associated with a lower percentage loss in the CP boxes. While a heavier top load applies larger 

amount of compression force to the package, it can restrict box’s vibrations and jumps during a 

transportation random vibration. The impacts applied to the box during these jumps might affect 

the box compression strength more than the heavier top loads. This information could be crucial 

for optimizing packaging strategies to minimize loss during transportation or storage. 
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Figure 4.2. Effect of top load on percentage of loss of compression strength 

 Figure 4.3 illustrates the effect of different vibration profiles on the percentage loss of 

compression strength. The broad distribution of the Over-the-road profile suggests that the Over-

the-road profile is associated with a higher and more variable percentage loss in compression 

strength. In contrast, the Air-ride vibration profile shows a much narrower range of loss 

percentages. This narrow distribution and lower median loss suggest that the Air-ride profile 

results in significantly less and more consistent loss in compression strength compared to the Over-

the-road profile. Similar to other studies, this suggests that the Air-ride profile provides a smoother 

ride for packages causing less damage and better maintaining the integrity of packaged items 

during transportation. 
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Figure 4.3. Effect of vibration profile on percentage of loss 

 

4.3.1 Data preprocessing for ML models 

The ML introduction is described in Chapter 1. In this study, the dataset was divided into 

training and testing sets, with 80% of the data allocated for training and the remaining 20% 

reserved for testing. The training set, comprising the majority of the data, is utilized to develop 

and train ML models, enabling them to learn the underlying patterns and relationships within the 

data. Conversely, the testing set is employed to evaluate the performance of these trained models, 

ensuring that they generalize well to new, unseen data. This division allows for a robust assessment 

of the predictive capabilities of the model and helps prevent overfitting, ultimately enhancing the 

reliability and accuracy of the findings of the study. To determine the variance (∆ 𝐶𝑆) in the 

compression strength (CS) of a package pre- and post-vibration testing, the following equation 

(Eq. 1) was employed: 

 

∆ 𝐶𝑆 = 𝐶𝑆𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐶𝑆𝑎𝑓𝑡𝑒𝑟 (1) 

 

and the percentage of difference is calculated by given Eq. 2: 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (
∆ 𝐶𝑆

𝐶𝑆𝑏𝑒𝑓𝑜𝑟𝑒
) × 100 

(2) 

A positive ∆ 𝐶𝑆 indicates a decrease in compression strength after the vibration test. A negative 

∆ 𝐶𝑆 would indicate an increase in compression strength after the vibration test. 

4.4 ML models used in this chapter 

In this study, the selection of ML models to predict the loss of compression strength in CP 

boxes after vibration was guided by considerations of model performance, interpretability, and 

computational efficiency. Linear regression, decision tree regression, and XGBoost regression 

algorithms were chosen due to their distinct advantages and complementary strengths. Linear 

regression was selected for its simplicity and ease of interpretation, allowing for a straightforward 

understanding of the relationship between input features and the target variable. The decision tree 

regression algorithm was included for its ability to model complex, non-linear relationships and 

its intuitive decision-making process. XGBoost regression, an advanced ensemble technique, was 

employed for its high prediction accuracy and robustness against overfitting. Together, these 

models provided a comprehensive evaluation of the factors influencing compression strength loss, 

enabling a robust and reliable prediction framework. 

4.4.1 Customized XGBoost regression model 

In this study, the custom loss function in the XGBoost regression model is designed to 

address negative predictions (i.e., increase in compression strength after vibration), which are not 

mechanically feasible when predicting the percentage loss of compression strength in CP boxes 

after vibration. This customized loss function is important in the model as it handles negative 

values for the percentage loss, ensuring that the evaluation of the model is robust and realistic for 

the given circumstances. Including negative values in the dataset helps with the generalization of 

the model, as it provides a more comprehensive and realistic training set. This, in turn, can improve 
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the ability of the XGBoost model to generalize to unseen data and make more accurate predictions 

in real-world scenarios. The mathematical equation for this custom loss function combines the 

objective function of the XGBoost model with an additional penalty for negative predictions. 

Specifically, the function calculates the residuals (differences between the actual and predicted 

values) and adds a penalty term for any negative predictions. The penalty is set to ten times the 

absolute value of the negative prediction, ensuring that the model is heavily penalized for 

predicting negative values. The custom loss function L can be expressed as Eq. 6: 

𝐿(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛
∑ (𝑦𝑡𝑟𝑢𝑒,𝑖, 𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑛

𝑖=1
+

1

𝑛
∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑦𝑝𝑟𝑒𝑑,𝑖)

𝑛

𝑖=1
 (6) 

where i represents the index of each individual data point in the dataset, and n represents 

the total number of data points in the dataset. This customized approach helps the model to avoid 

making negative predictions by assigning a significant penalty, thus ensuring more realistic and 

logically consistent predictions for the percentage of loss. The penalty is defined as: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑦𝑝𝑟𝑒𝑑,𝑖) = {
10 × |𝑦𝑝𝑟𝑒𝑑,𝑖|           𝑖𝑓 𝑦𝑝𝑟𝑒𝑑,𝑖 < 0

0                                  𝑖𝑓 𝑦𝑝𝑟𝑒𝑑,𝑖 ≥ 0
            (7) 

4.5 Results and discussions 

This section provides a comprehensive analysis and interpretation of the prediction results 

for three distinct regression models: linear regression, decision tree regression, and XGBoost 

regression. Each model's performance is evaluated by comparing their predictive accuracy in 

estimating the loss of compression strength after vibration in CP boxes across various data points. 

The analysis highlights the strengths and weaknesses of each model, offering a detailed 

comparison to determine which model best predicts the loss of compression strength in different 

conditions. By examining the prediction results, we can visualize the effectiveness and reliability 

of the models, allowing for an in-depth understanding of their respective performance metrics. 
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4.5.1 Comparison of regression model predictions 

The prediction plots in Figure 4.2 for each model are analyzed to evaluate their 

effectiveness in predicting the percentage of loss across various data points (test set). In all three 

plots, the blue line represents the actual percentage of compression strength loss, while the red 

dashed line shows the predicted percentage. The linear regression model (see Figure 4.2a) shows 

that it struggles to capture the true variability in the data. While it follows the general trend, it fails 

to predict the sharp increases and decreases accurately, for example at data points 11, 12, and 19, 

where the predicted values significantly underestimate the actual percentage of compression 

strength loss. This indicates that linear regression is not well-suited for capturing non-linear 

patterns in this dataset. Next, the decision tree regressor is examined as shown in Figure 4.2b. This 

model shows a closer alignment with the actual values across most data points, indicating a 

stronger fit than linear regression. It effectively captures the peaks and valleys in the data, closely 

following the actual percentage of loss even at higher values, such as at data points 11, 12, and 19. 

This performance of the model suggests it accurately reflects the variability and complexity in the 

dataset, outperforming the linear regression model. Finally, the XGBoost regressor plot (Figure 

4.2c) demonstrates a high level of accuracy. The XGBoost model effectively captures both the 

overall trend and the specific peaks and valleys of the actual data. Its predictions are very close to 

the actual values, including the higher peaks at data points 11, 12, and 19. This indicates that 

XGBoost can handle the complex relationships in this data set more effectively than both the 

decision tree regressor and linear regression. Overall, these plots indicate that while the decision 

tree regressor performs well, the XGBoost regressor shows the best accuracy and reliability in 

predicting the percentage of loss, effectively capturing the complexity and variability in the data. 
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Linear regression, on the other hand, is less effective due to its inability to handle non-linear 

patterns and higher variability. 

(a) 

 

(b) 

 

(c) 

 

Figure 4.2. Prediction performance of (a) linear regression, (b) decision tree regression, (c) 

XGBoost regression model 
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4.5.2 Parameter importance 

Figure 4.3, the bar chart illustrates the parameter importance scores for an XGBoost 

regression model, highlighting how each feature contributes to the predictions of the model. 

Among the features, "Vibration duration" has the highest importance score, 83, indicating it plays 

a critical role in the model's performance. Following closely is "Vibration intensity" and "Vibration 

profile," with scores at 67 and 57, respectively, emphasizing the significant impact of vibration-

related features. "Top load" also shows considerable importance with a score of 51. On the other 

hand, the physical dimensions of the object, such as "Width," "Length," and "Height," of the CP 

box have lower importance scores of about 48, 27, and 10, respectively. Notably, "Height" is the 

least influential feature. This analysis underscores the predominance of vibration characteristics in 

the model's predictive capability compared to the physical dimensions of the CP box. 

 

Figure 4.3. Parameter importance scores from XGBoost regression model analysis 

 

4.5.3 Comparative analysis of model performance using evaluation metrics 

Performance metrics for three regression models including linear regression, decision tree, 

and XGBoost are shown in Table 4.2. These models are evaluated using R², Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). MSE measures the 
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average squared difference between predicted and actual values, RMSE provides the square root 

of the average squared differences, and MAE quantifies the average absolute difference, indicating 

the standard deviation of prediction errors. The XGBoost model demonstrates superior 

performance with an R² of 0.93, indicating that it explains approximately 93% of the variance in 

the data, significantly higher than linear regression (0.48) and decision tree (0.90). Furthermore, 

XGBoost achieves the lowest MSE (42.26), RMSE (6.51), and MAE (5.05), highlighting its 

accuracy in predictions. In contrast, the decision tree model, while performing better than linear 

regression, with an R² of 0.90 and moderate MSE (60.45) and RMSE (7.77), however does not 

match the performance of the XGBoost. Linear Regression lags considerably with an R² of 0.48, 

notably higher MSE (393.91), RMSE (19.84), and MAE (14.31), indicating it is the least effective 

among the three models for this particular dataset. Overall, these results underscore the 

effectiveness of XGBoost in regression tasks, outperforming both the decision tree and linear 

regression models. 

Table 4.2. Performance metrics of ML models  

 Linear Regression Decision Tree XGBoost 

R2 0.48 0.90 0.93 

MSE 393.91 60.45 42.26 

RMSE 19.84 7.77 6.51 

MAE 14.31 4.16 5.05 

 

4.6 Conclusion and future work 

Developing a mechanics-based analytical or numerical model to predict the failure modes 

of corrugated paperboard (CP) boxes, with their complexities such as glued layers susceptible to 

humidity and temperature, is challenging. The results from experimental tests often do not follow 

a clear trend for these structures, making the application of ML models beneficial. This research 



123 

 

investigates the prediction of compression strength loss in CP boxes following exposure to 

simulated transportation vibration, utilizing physics informed ML models. This investigation 

specifically focused on key parameters that influence the structural integrity of packaging, 

including the dimensions of the box (length, width, and height), the intensity and duration of the 

vibration, the specific vibration profile (following ISTA standards), and the applied top load. These 

parameters were crucial in understanding the behavior of CP boxes under real-world transportation 

conditions. The primary objective was to develop a predictive model capable of estimating the 

percentage of compression strength loss that occurs in these boxes after experiencing vibration. 

The model was trained using a dataset that included variations in these parameters to ensure its 

robustness and generalizability. The XGBoost model emerged as a standout performer, achieving 

a remarkable accuracy with an R2 score of 0.93. This high level of accuracy indicates that the model 

was able to effectively capture the complex relationships between the input parameters and the 

resulting compression strength loss. Such predictive capability is invaluable in the field of 

packaging professionals, as it can enable designers and engineers to optimize packaging designs 

to minimize damage and ensure product integrity during transportation. By providing a reliable 

method for predicting compression strength loss, this study contributes significantly to the field of 

packaging design and optimization. The insights gained can lead to more cost-effective and 

sustainable packaging solutions. 

Future research could focus on several aspects, including refining the ML model by 

incorporating additional relevant features or exploring different algorithms to improve prediction 

accuracy. Additionally, investigating the impact of other environmental factors, such as humidity 

and temperature, on compression strength loss of CP boxes could enhance the model's predictive 

power. A newly installed multi-axis vibration shaker (IMV, Japan) in the School of Packaging at 
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MSU can be used to simulate transportation vibrations more realistically by including rotational 

vibrations.  
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This dissertation has explored the transformative potential of applying ML techniques to 

enhance the design, durability, and sustainability of packaging systems, particularly in the context 

of dynamic distribution hazards. The research presented in each chapter tackles distinct challenges 

within the packaging distribution system. By employing mechanics-based analysis and data-driven 

ML models, three studies in this dissertation seek to predict buckling strength of ventilated 

corrugated paperboards plates featuring cutouts with different size, location, and shape; predict 

bruise damage to apple fruit and packaging subjected to vibrational forces during transportation; 

and forecast compression strength loss in corrugated paperboard boxes post-transportation 

vibrations. These ML solutions play a pivotal role in advancing packaging technology, offering 

substantial contributions to the field. ML predictive models offer significant cost and time 

advantages over traditional experimental testing in package dynamics and distribution hazards. By 

leveraging experimental and simulation datasets and advanced algorithms, ML models in this 

study can analyze and predict the damage of packaging under compressive load conditions without 

the need for extensive physical trials. In chapter 2, the development of machine learning models 

to predict the buckling strength of VCP plates with I) single circular, diamond, and square shaped 

cutouts and II) with multiple circular cutouts provides insights into how various factors, such as 

size, location, and shape of the cutouts impact the buckling load of ventilated CP plates. The model 

presented in this chapter serves as a valuable tool for enhancing the design of VCP plates. It 

facilitates the creation of more efficient structures and configurations, thereby serving as a step in 

optimizing the overall design process. Moreover, this study increases the knowledge of VCP plates 

and enhances insights into damage mechanisms and structural failure, leading to potential 

improved strategies for optimizing VCP performance that do not sacrifice performance. In chapter 

3, the application of ML solutions to predict bruise damage to packed apple fruit during 
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transportation demonstrated the significant impact of data-driven analysis on packaging 

configurations. By identifying influential factors including vibration intensity, vibration duration, 

vibration profile, type of package, and type of apples and providing insights into effective 

protection strategies, this study enhances the understanding of vibration and package 

characteristics that affect external bruising in packed apples. The result of this chapter showed that 

the random forest model achieving an R² of 0.927. This highlights the ML model's superior 

effectiveness in predicting damage of packed apple during transportation vibrations, which is a 

function of various mentioned factors together. The findings emphasize the role of ML in 

developing future tailored packaging solutions that meet specific apple protection requirements. 

In Chapter 4, ML models were utilized to predict compression strength loss, guiding the 

development of CP packaging that withstands dynamic stresses in transportation. Key parameters, 

such as box dimensions, vibration intensity and duration, vibration profile, and applied top load, 

were analyzed to develop a robust predictive model, with the XGBoost model achieving an R² of 

0.9302. The ML model’s feature importance analysis showed with measurements that vibration 

characteristics are more influential in box compression loss compared to box dimension factors. 

This research highlights the potential of ML predictive modeling in improving packaging designs 

and transportation characteristics to reduce CP box damages in transit. 

Collectively, the chapters in this dissertation demonstrate how ML can be employed to 

address specific challenges such as VCP compression strength, damage of packed apple due to 

transportation vibration, and reduction of compression strength in CP box after vibration in 

packaging dynamics and distribution hazards. The integration of ML models provides a powerful 

predictive tool for the development of packaging designs, thereby enhancing product protection. 

While not all influential factors on the studied damages can be controlled perfectly in a design, the 
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ML-based feature importance provided enables package designers to tackle these challenges more 

strategically.  

The findings of this research demonstrate that ML models can significantly benefit the 

packaging industry, suggesting that it can be a foundation technology in advancing packaging 

design and performance.  

5.1 Future work 

Future work may explore further applications of ML in packaging, expanding the scope of 

its impact on various aspects of packaging engineering. Two key factors should be noted in the 

future works, A) importance of varying temperature and humidity on the packaging structures 

during dynamic testing, and B) applying multi-axis vibration analysis which simulates 

transportation vibrations more realistically. The continued development and refinement of 

predictive models will contribute to the creation of more resilient, efficient, and sustainable 

packaging solutions, ultimately benefiting both manufacturers and consumers. This could involve 

the integration of advanced sensor technologies and real-time data analytics to enhance the 

precision of predictions related to packaging performance under diverse environmental conditions. 

Additionally, future research could focus on the development of adaptive packaging systems that 

automatically adjust their properties in response to changing external factors, thereby optimizing 

product protection and reducing waste. Collaborative efforts with other industries and academic 

institutions could also pave the way for innovative approaches to packaging design and supply 

chain management, leveraging interdisciplinary expertise to tackle complex challenges. 

Furthermore, considering the ethical and societal impacts of implementing ML in packaging will 

ensure that technological advancements are made responsibly, aligning with sustainability 

objectives.  


