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ABSTRACT

We consider how to effectively compute the combinatorial multigraded link Floer homology

of knots and links, then implement it. The goal being to compute the invariant for knots

and links for which it is unknown, and further develop the algorithm for its production.

We review a traditional description of knot Floer homology and motivate it. Then we

move to the combinatorial description of the theory known as grid homology. From there

we consider and implement an algorithm leveraging some changes in perspective and tools

afforded by modern computing.

Finally, included at the end is a compilation of some standard properties of the invariant

for examples computed using the resulting program. From the resulting directed graphs we

extract the Poincaré polynomial along with some properties of the invariant for each sample

knot.
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CHAPTER 1

INTRODUCTION

Knot theory is an active field of interest sporting a quirky flavor and array of applications.

These range from literal knots people tie, to knots that proteins and DNA tie to knots that

topologists “tie”. Being a topic that has existed longer than rope, it has been approached

in a multitude of ways. We will help the effort by exploring and leveraging a modern tool

developed by low dimensional topologists in pursuit of a tool for efficiently studying 3 and 4

manifolds.

That tool is knot Floer homology (HFK), and its invariants. We will touch on the original

formulation of the invariant but by the end of our exploration we will have a program that

computes a combinatorial version of HFK defined by Manolescu et al. in [11] known as

grid homology. Prior work has been done in this direction exists computing whats known

as the (dramatically) simplified, unblocked complex in [1]. We will approach the problem

differently and end up with the more robust “infinity” complex.

Knot homology has proven to be a strong tool thus far, associating a a chain complex,

or more generally a multi-graded module with an endomorphism, to a knot or link. It tells

us knot genus (by extension, it detects the unknot), sliceness invariants and invariants of

manifolds obtained by surgery [10]. The invariant is powerful but finicky; computing it relies

heavily on how a knot is presented and is rarely straightforward. Grid homology solves the

problem in part by restricting to a rigid class of diagrams. However, we have to pay for the

solution by having a very complex presentation of our complex.

Knots and links will be represented on a sort of n×n tic-tac-toe style grid. The complexity

issue comes down to the complex having n! generators and, naively, potentially n!(n − 1)!

entries in the matrix encoding the differential. By the end of chapter 2 we will have simplified

the problem some and implemented some tricks to have a program to compute and simplify

the invariant for knots and, notably, links through grid size 8 and some examples of size 9.
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1.1 Knot Theory

Knot theory is the study of embeddings of one (or more in the case of links) copies of

S1 into different manifolds, up to different notions of equivalence. The simplest and most

common formulation is an embedding K : S1 ↪→ S3 up to ambient isotopy. Unless otherwise

specified, we will assume this notion of knots and equivalence. If we are considering embed-

ding several copies of S1 simultaneously we will refer to these as links with n components

L :
⊔n

i=1 S
1 ↪→ S3

These definitions, although natural, are not very practical. Thankfully there is an equiv-

alent description of knots which is more useful to actually work with. Given any knot in S3,

we will project down to some plane, indicating over and under crossings. Additionally we

require the choice of projection to avoid triple points.

Figure 1.1 Projecting a knot down onto a plane to get a diagram

We will take this projection as defining a knot, and say that two knots are equivalent

when they differ by a finite set of Reidemeister moves as in 1.2.

Theorem 1.1.1 (Reidemeister). Two knots are equivalent if and only if they can be repre-

sented by diagrams which differ by a finite sequence of the moves from R0 - R4
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Figure 1.2 The Reidemeister moves

An overarching goal of knot theory is to be able to distinguish knots and links from one

another. In pursuit of this we search for properties of knots that do not depend on a given

presentation of a knot. In terms of projections, these are properties that do not change

under the Reidemeister moves.

A classic example of a knot invariant is the Alexander polynomial ∆ which associates a

polynomial to a knot.

∆(K) = ∆K(t) = f(t)

The heart of this thesis and the associated program is a combinatorial description of knot

Floer homology, which can be thought of as a generalization of the Alexander Polynomial.

The invariant was discovered by Ozsváth and Szabó [13], and independently by Rasmussen

[15]. It is a robust and well studied set of tools, with excellent introductions and surveys

available, [10], [7], and [12], to name a few. We will review it briefly here as well.

The Heegaard Floer knot package has a variety of flavors. These are all similar invari-

ants that associate a a multigraded module with an endomorphism to a knot or link up to

equivalence. (In general, it is safe to think of each flavor as associating a chain complex to

a knot or link. In the simplest cases this is exactly true, and in the more complex ones we
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will relax the boundary map condition). To recover the Alexander Polynomial we will take

a graded Euler characteristic of our module, see Theorem 1.1.2 later.

The invariant is defined using Heegaard diagrams for knots. A Heegaard diagram is a

handle description of a 3-manifold; it consists of a genus g surface called Σ with sets of g

disjoint, homologically linearly independent closed curves called alpha curves and another

such set of g curves called beta curves which intersect the first transversely.

Figure 1.3 Heegaard diagram for S3

To build a three manifold given such a diagram H we thicken Σ to Σ× [−1, 1]. Then we

attach 2 handles along the alpha curves at [αi,−1] and also along the betas at [βi, 1]. This

will necessarily leave us with a manifold with boundary S2 ⊔S2. Without thickening we can

see this in figure 1.3. To this manifold we attach two 3-balls to each boundary component.

We will call this manifold M and H is a Heegaard diagram describing it. Note that, strictly

speaking, we also must specify a basepoint for our Heegaard diagram. It is also worth noting

that there are infinitely many Heegaard diagrams for any given 3 manifold.

The reason for looking at these diagrams is because a Heegaard diagram for a knot in a

3-manifold is exactly a Heegaard diagram for that manifold with two basepoints chosen. To

recover a knot from a diagram like this you connect the basepoints with two arcs. One arc

entirely inside of the alpha handles and one entirely inside of the beta handles we attached.

A shorthand for this is to connect the points via two curves along the surface where one
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curve avoids the alpha curves and the other avoids the beta. An example of this process can

be seen on the left side of figure 1.4.

Figure 1.4 Recovering the trefoil from a Heegaard diagram, and the relevant disks for CFK

With such diagrams, we can compute knot Floer homology. Knot Floer homology comes

in many flavors CFK∞, CFK−, ĈFK and more. To refer to all the flavors at once we will

use the notation CFK◦. Each of the flavors carries a bigraded module structure, along with

an endomorphism typically referred to as the boundary map (though again this is a bit of a

misnomer as some flavors are not chain complexes; similarly the module may be referred to

as a complex as well).

Assuming we have a proper diagram, then the generators of our module are g tuples of

intersections between the alpha and beta curves, such that each curve contains exactly one

intersection point. In the case of a torus, the generators then are simply the intersections

of a single alpha and beta curve. The endomorphism is defined by counting maps of disks

(as 2-gons) into the branched cover of the Heegaard diagram with corners at generators. An

illustrative example is for CFK∞(31). First, we will define the boundary map of CFK∞:

∂x =
∑

y∈α∩β

∑
ϕ∈π2(x,y)
valid ϕ

Unw(ϕ)V nz(ϕ) · y

Where U and V are formal variables and and ϕ is a homotopy class of maps of a disk

parameterized as in figure 1.5. We denote the intersection number of a disk with a basepoint

z or w by nz and nw. The details for which disks are valid are outlined in the references.
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We are glossing over it here because in the combinatorial description we will be leaning on,

the disks in the differential are always valid.

Figure 1.5 Image of map of a disk into a Heegaard diagram

So to put this into practice for the trefoil, we count the disks in figure 1.6. We find the

complex is generated then by a, b and c, and the differential of each generator is:

∂a = V b

∂b = 0

∂c = Ub

Figure 1.6 Heegaard diagram for the trefoil with its two relevant disks shaded

The gradings are referred to as the Maslov, or homological, gradings and Alexander

gradings, the latter of which is a linear combination of the two. There is a Maslov grading

for each basepoint, we will refer to them as Maslov U and V gradings and write MU and

MV . The boundary map lowers these Maslov degrees by 1. The Alexander grading of an

element x will be defined as:
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A(x) =
1

2
(MU(x)−MV (x))

With the Alexander and Maslov gradings defined we can see how the invariant contains

the Alexander polynomial. From CFK∞ we convert to ĈFK by setting U = V = 0.

Taking homology of resulting complex we obtain ĤFK. To refer to a specific grading it is

traditionally written as ĤFKMU
(K,A). Then the following theorem gives the relationship

with ∆K(t).

Theorem 1.1.2 ([13]). The Euler characteristic of ĤFK returns the Alexander polynomial

where | − | denotes rank.

∆K(t) =
∑
MU ,A

(−1)MU |ĤFKMU
(K,A)| · tA

1.2 Grid Presentations

Although CFK◦ are a powerful set of invariants, it is difficult to find diagrams for links

that result in straightforward computations. There is an alternative way to present knots

which helps here. They are known as grid presentations, or equivalently arc presentations.

Definition 1.2.1. A grid diagram of size n is an n× n square grid, with one X and one

O in every row and column, and with no two symbols in the same position.

The placements of these X and O’s will be referred to as a pair of permutations σX , σO ∈

Sn, where σX(i) is the row that the X is placed in the ith column, and similarly for σO.

A grid diagram specifies knot or link by connecting the X’s to O’s vertically, and O’s to

X’s horizontally, and at any intersection making the vertical strand the over strand. Figure

1.7 shows this for the Hopf link given by σX = [1, 2, 3, 4] and σO = [3, 4, 1, 2]. Note that

generally we will be using one line notation for permutations since they easily encode these

diagrams.
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Figure 1.7 A grid diagram for the hopf link

Grid diagrams were introduced by Cromwell in [3], but a thorough treatment of grid

diagrams can be found in [14] and our conventions will match theirs as much as possible.

We will also mimic their proof of the following Lemma 1.2.2.

Lemma 1.2.2. Every link can be represented as a grid diagram

Proof. For a link L choose a planar presentation. Approximate this presentation with a

piecewise linear one with only horizontal and linear segments. Then at any crossing where

a horizontal strand goes over a vertical one, replace it following the procedure in figure 1.8

(imagine grabbing the strands of the crossing and twisting them 90◦). Perturb any strands

that are horizontal and at the same height or similarly vertically aligned. Finally label the

corners alternating X and O respecting the orientation.

Figure 1.8 Switching a horizontal over crossing to a vertical one

With the description of link presentations as grid diagrams we have a collection of moves

that function like the Reidemeister moves. We will refer to these as grid moves. The proof

of 1.2.5 can be found in [3].
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Definition 1.2.3 (Grid Move 1: Commutation). Two diagrams differ by a row (column)

commutation if exchanging two adjacent rows (columns) transforms one into the other and

the intervals defined by the symbols in those rows (columns) are entirely disjoint, or one is

a subset of the other.

This first move can be thought of as R0 when the strands are completely disjoint, or

as R2 when one contains the other; see figure 1.9. Note that if the intervals only partially

overlapped we would introduce linking between the strands. In that case this is referred to

as a cross commutation.

Figure 1.9 The two types of column commutation for grid moves

Definition 1.2.4 (Grid Move 2: Stabilization). A diagram can be stabilized to a larger

diagram at an X or an O in four ways. In the case of X (or equivalently O) we refer to

these as X:NE, X:NW , X:SE, X:SW . At the selected symbol split its row and column into

two; in the resulting 2× 2 s require the compass direction specified to be empty. The inverse

of this move is Destabilization.

The requirement of the empty square in 1.2.4 is sufficient to determine the placement of

the remaining symbols in the resulting diagram. See figure 1.10
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Figure 1.10 Process of producing XNE stabilization. One of four possible X stabilizations
and how a direction specifies the placement

Theorem 1.2.5 ([3]). Two grid diagrams represent the same link if and only if they differ

by a finite sequence of grid moves.

1.3 Grid Homology

We discussed knot Floer homology, and with the aid of grid diagrams we can outline its

combinatorial description, grid homology. It was defined in [11] and there is an excellent

book entirely on the subject [14]. We will recite the details relevant to the program here.

We are going to view the grid diagrams as highly pointed Heegaard diagrams. A n× n grid

diagram will be a torus with n alpha and beta curves, and 2n basepoints. The alpha curves

are the vertical dividing lines of the diagram, the betas are horizontal, and the basepoints

are the X and O symbols.

When a diagram has multiple alpha and beta curves, CFK◦ is defined using a symmetric

product. Without going into detail this shakes out to mean that the complex for grid

diagrams will be generated by complete pairings of alpha and beta curves called grid states.
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Each grid state consists of n intersections of alpha and beta curves, such that each alpha

and beta curve only a single intersection. See figure 1.11 for an example of a pair of such

grid states.

Figure 1.11 A pair of grid states and a rectangle connecting them

We specify the circle pairing by naming which horizontal circle is paired for each vertical

circle, left to right. So for example, if we call the state specified by the black circles in figure

1.11 x then we can say the third alpha circle is paired with the fourth beta circle; or rather

that x(3) = 4 and we can see that these grid states are elements of Sn.

To a grid diagram of a knot, we associate a bigraded module and endomorphism to it.

The module is generated by grid states and the endomorphism is defined on the generators

and extended to the full module. For a grid state x the boundary map is defined in terms

of rectangles in the diagram. We say that a rectangle connects two grid states if those grid

states differ by a transposition, or equivalently differ in two pairings, as seen in figure 1.11.

We will also consider such rectangles as going from the lower left generator to the upper

right.

We will refer to these rectangles as empty when the interior of the rectangle does not

intersect any of the points of the grid states and the set of such empty rectangles from x to y

will be denoted rect◦(x, y). Figure 1.11 shows an example of such an empty rectangle. Note
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that each transposition represents two potential rectangles and that some of these rectangles

are not empty, for instance the second rectangle in the above example is not empty as can

be seen in figure 1.12.

Figure 1.12 The states from figure 1.11 and a non-empty rectangle connecting them, note
the basepoint at the lower left which is inside the rectangle wrapping around the torus

With rectangles and empty rectangles defined we can describe the differential. This map

is dependent, like CFK, on the flavor but we will consider the most general infinity flavor.

For a gridstate x the map ∂ is defined as:

∂x =
∑
y∈Sn

∑
r∈rect◦(x,y)

(
∏

i∈1...n

U
Xi(r)
i

∏
i∈1...n

V
Oi(r)
i )y

More simply stated, each empty rectangle connecting x to y contributes a term to the

differential with a coefficient for each X and O contained within it. When this is computed

we can recover the various flavors by substituting values for various Ui and Vi, typically 1 or

0. In the case when we set Ui = 1 for all i we get the filtered grid complex described as GC−

in the following theorem.

Theorem 1.3.1 ([14]). The quasi-isomorphism type of GC− for a grid diagram GC−(G)

depends only on its associated unoriented knot K.
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CHAPTER 2

PROGRAM IMPLEMENTATION

2.1 Overview

A large portion of the work, and a product of, this dissertation is a program for comput-

ing the bigraded module CFK−. As noted, the program is publicly available at

https://github.com/CStClairMath/GridTools. The goal of this chapter is to show the va-

lidity of the algorithm and communicate the roles of the different component functions it

uses. To aid in that, we will consider the different functions as well as a running example for

context. The chapter itself will fall into two broad sections: the first to produce the module

associated to a given grid, and the second to reduce the complex and convert flavors.

It is worth noting the program is written in Python and Sage, which can be thought of as

an extension of Python. We will not be assuming any background in either, but at the same

time we will not give a rigorous introduction to them. With that in mind some basics of the

languages will inevitably be missed but with the hope of communicating exactly enough of

the languages to understand the algorithm.

Additionally, in the following sections we may omit some code that is present for debug-

ging or catching errors. The code without these omissions is available in the appendix as

well as the github repository.

2.2 Generating the Module

Figure 2.1 is a roadmap of the program functions called in producing the complex. Func-

tions separated by a vertical bar indicate that the function on the right is a supporting

function of the one on the left.
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Figure 2.1 Outline of module generation

With roadmap in hand, we will start at the beginning of the module generation code.

As with all modern programming languages, we will be borrowing from functions and data

types made by others. These are brought into Python and Sage by import statements. These

include the following import statements.

import networkx as nx #Package for handling mathematical graphs or networks

import numpy as np #General math package

import CodeModules.GFKTools as gfk #Part of the backend of the program

import copy

import math

These are not all of the import statements that are called between the different code

modules, but these make up the functional pieces. Any remaining imports are reserved for

debugging, and performance testing. The last two are basic Python packages. Copy allows

for more control copying variables, and math adds to the default functions.
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As the comments in green note, networkx and numpy are publicly available Python

packages that we will be using. The third import statement is referencing a package stored

locally in the program which we will see the details of in this chapter.

The phrasing import X as Y means when we want a function or object from a package X

we can refer to it by a shorter name Y. So the following two lines are equivalent to Python

for example:

MyGraph = networkx.DiGraph

MyGraph = nx.Digraph

Similar shorthands for numpy and GFKTools are added by the import lines.

2.3 Lemma-esque Code

The program is made up of a series of helper functions that break the problem into

manageable pieces. Some of the functions need dissecting but, like lemmas, will be considered

now, and applied later.

2.3.1 generate all rectangles

Part of the algorithm to construct the grid complex is to generate all connecting rectangles

between grid states. In the approach given here, we will do this by considering all potential

rectangles and fitting states to them, rather than the other way around. To that end we

need to know all potential sizes of connecting rectangles we can encounter.

Lemma 2.3.1. Valid connecting rectangles for a grid diagram of grid size n must have

dimensions l × w such that l + w ≤ n

Proof. Suppose we have a rectangle r from some generator x to another generator y. For

such a rectangle to be valid it must miss all the basepoints of x and y. Thus all the alpha

curves intersecting the rectangle must have their basepoints placed above it.

This region is made up of w − 2 alpha circles with n− l − 2 beta circles which they can

intersect. If a rectangle is valid then we were able to find a pairing of w − 2 alpha and beta

circles in that region. So we know that w − 2 ≤ n− l − 2 and therefore w + l ≤ n.
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Figure 2.2 The region above a connecting rectangle with labeled dimensions

Following the argument backwards, for any rectangle of these sizes we can see that the re-

gion above the rectangle will have sufficient room to place basepoints among the intersections.

Thus these are exactly all the rectangle sizes we will need to consider to generate the grid com-

plex. We have a function to generate all these sizes named generate all rectangle sizes.

It works by considering all pairs of width and height that sum to less than n, and saving

those dimensions as a list of tuples. Actual code below

def generate_all_rectangle_sizes(n):

#Input: n integer

#Output: All possible sizes of allowable rectangles

result = []

for width in range(1,n):

for height in range(1,n+1-width):

result.append((width,height))

return result

Then using this function we can build a function that finds every rectangle that will

contribute to the differential.

def generate_all_rectangles(n):

#Input: n integer

#Output: All possible connecting rectangles for a grid of size n in a list format

sizes = generate_all_rectangle_sizes(n)

rects = []
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for size in sizes:

for i in range(0,n):

for j in range(0,n):

x = (i % n + 1,j % n + 1)

y = ((i+size[0]) % n + 1,(j+size[1]) % n + 1)

rects.append((x,y))

return rects

The first line of this code calls the function to generate all rectangle sizes, as was described

previously, and saves them in a list named sizes. After this we create a list to hold the

collection of rectangles we are about to generate.

The nested loops take every size, and iterates through all the locations for the lower left

hand corner of the rectangle. Then it notes the location of the upper right corner of the

rectangle according to the size. The modulo operation accounts for rectangles which wrap

around the toroidal diagram. Then these pairs of lower left and upper right are added to

the rects variable.

2.3.2 generate all states outside rectangle

Recall that the algorithm to compute GFC◦ in section 1.3 starts by considering each

of the generators x ∈ Sn and considers all rectangles that start at x and end at another

generator y, while counting only such rectangles that do not contain points from the pair of

states. We can avoid considering the invalid rectangles entirely by looking at all the proper

rectangles that exist, and constructing all the states they could possibly connect.

By considering these we will have computed every element of the differential as well as

generator of the complex.

Proposition 2.3.2. Every grid state x has a rectangle that starts at it, and contributes to

the unreduced complex

Proof. Let x ∈ Sn be a generator of the unreduced GFC◦. Then there is a rectangle

connecting x to x◦ (1, 2) since the rectangle in the first column will be too narrow to contain

a basepoint of either generator.
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Recall that since the diagram is on a torus, the rectangle mentioned in the above proof

may wrap around vertically. This happens when x(1) > x(2) as in the right hand side of

figure 2.3

Figure 2.3 The possible vertical rectangles in the differential of every grid state mentioned
in the proof of proposition 2.3.2.

Therefore, if we can find every contributing rectangle along with the states that have

them as connecting rectangles we will have every component for the differential, and every

generator of the complex. This is precisely the strategy we will employ to compute the

complex. Recall that the code from section 2.3.1 will give us all possible rectangles, and the

next function we will unpack will give us all the states that a given rectangle connects.

That function is appropriately named generate all states outside rectangle. It

requires two inputs, a rectangle given by its lower left coordinate, and upper right along

with the size of the grid diagram. We will generate the states as if the rectangle is placed in

the lower left corner as in figure 2.4 and then shift the results afterwards.

Figure 2.4 Regions in generate all states outside rectangle
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def generate_all_states_outside_rectangle(rectangle, n):

#Input: rectangle = ((a0, b0), (a1, b1)), n integer

#

#Output: List

#

#This function computes the states as if the rectangle had lower corner

#(1,1) then shifts the result - keep in mind when seeing lists appending 1's

#Compute the dimensions of the rectangle - mod n since we're working on a torus

r_width = (rectangle[1][0] - rectangle[0][0]) % n

r_height = (rectangle[1][1] - rectangle[0][1]) % n

if (r_width + r_height) > n:

print("rectangle dimensions too large to have non-empty set of states" )

return []

pre_result = []

.

.

This first block of the function computes the size of the rectangle, % here is the mod

operation. We store the dimensions into r width and r height. We also do a check to

ensure that the dimensions are in line with Lemma 2.3.1.

We are going to generate the states we are searching for by placing the basepoints of the

generators outside of the rectangle. We will have 3 rectangular regions available to place

these basepoints. We will call them reserved, A and B as in figure 2.4.The next section of

the code calls a function called truncated sn(n, trunc length) the code for this function

can be found in the appendix B line 175. It returns all of the possible beginnings to an

element of Sn of length trunc length.

.

.

#region a is the one above the rectangle and b is the columns after that

#then s_a is the collection of intersection choices for a grid state x

#that keeps the rectangle empty
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sa = truncated_sn(n - r_height - 1, r_width - 1)

sb = generate_sn(n - abs(r_width) - 1)

.

.

We are calling these to give us alphabets for where to place basepoints in the rectangles

A and B. We place the points in A first, then place those for B on the horizontal lines that

remain. We will handle the case for when A is too narrow to place any points first.

.

.

if sa == []:

#whats left holds onto the symbols yet to be used

whats_left = []

for i in range(2,r_height+1):

whats_left.append(i)

for i in range(r_height+1,n+1):

whats_left.append(i)

for psi in sb:

curr_state=[]

curr_state.append(1)

curr_state = [1+r_height] + curr_state

for i in range(n-abs(r_width) - 1):

curr_state.append(whats_left[psi[i] - 1])

pcurr_state = perm(curr_state.copy())

pre_result.append(pcurr_state)

.

.

The if statement signals that we are in the case when A is too narrow to admit any

points. After this we have 2 for loops that record all the coordinates, or heights, that we
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need to place in region B. They populate a list with everything except 1 and the height of

the rectangle since those are fixed by the rectangle we are building states around.

Each state we build will be a list that starts out named curr state. Since we are

guaranteed here to have a rectangle of width 1 we know the first two coordinates of any

state associated to this rectangle must start with [1, r height, ...] so we start our state with

those using the append function and adding to the list.

After this, we place the elements of whats left according to each element of Sn−2. Note

that the element of the list called is [psi[i] - 1], this is because Python indexes lists

starting from 0 and the permutations index from 1. The last two lines convert the state we

produced to a permutation and saves it to our running list of states, pre result.

The second case is where region A is large enough to admit points in the generators.

for sig in sa:

#we're lifting this as a list rather than a permutation because

#we need to shift them all up by the height - making it no longer a perm

x = sig.copy()

#loop lifts the symbols above the rectangle into region a

for count, position in enumerate(x):

x[count] = position + r_height + 1

#whats left holds onto the symbols yet to be used

whats_left = []

for i in range(2,abs(r_height)+1):

whats_left.append(i)

for i in range(abs(r_height) + 2, n + 1):

if i not in x:

whats_left.append(i)

When A admits points, then either B does or does not. We catch the case when B is too
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narrow next.

.

.

if sb == []:

curr_state = x.copy()

curr_state.append(1)

curr_state = [1+r_height] + curr_state

pcurr_state = perm(curr_state.copy())

pre_result.append(pcurr_state)

.

.

The only way that B can be too narrow to place points is if it is a single column. When

this is the case, we just need to add in the end points of our rectangle which we do above.

Then when we have to consider points placed inside B as well we enter the following

loop:

.

.

for psi in sb:

curr_state=x.copy()

curr_state.append(1)

curr_state = [1+r_height] + curr_state

for i in range(n-abs(r_width) - 1):

curr_state.append(whats_left[psi[i] - 1])

pcurr_state = perm(curr_state.copy())

pre_result.append(pcurr_state)

.

.

In this case we have placed points in A and now we need to map each element of Sn−2−w

where w is the width of A, to the remaining horizontal arcs as in figure 2.5
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Figure 2.5 Mapping an element of an Sn to remaining rows

After this we have all of the states that correspond to a rectangle of the given size if it

were positioned at the lower left corner of the diagram. The final step then is to pair off the

source and targets of the rectangles and shift the results to where the rectangle is actually

located.

if not ((rectangle[0][0] == 1) and (rectangle[0][1] == 1)):

raw_result = hv_set_shift(rectangle[0][0] - 1, rectangle[0][1] - 1, pre_result)

else:

raw_result = pre_result

result = []

rect_pairer = transposition(rectangle[0][0],rectangle[1][0],n)

#Up to now the raw_results holds the states associated with base of the rectangle

#this loop takes all those and pairs them with the connected state

for sig in raw_result:

result.append([sig*rect_pairer,sig])

if result == []:

return None
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return result

The function hv set shift moves each state horizontally and by composing the permu-

tations of them with (1, 2, 3...n)h where h, representing the horizontal shift distance, is the

vertical arc of the lower left corner of the rectangle, and then precomposing with (1, 2, 3...n)v

where v is the coordinate of the horizontal arc. Figure 2.6 is a diagram showing the effects

of the shift.

Figure 2.6 How hv set shift shifts the states to return a rectangle to its intended
position. In this case shifting horizontally and vertically 3 steps

The final loop before returning the result is to append each state and the state it connects

to as a list to the result variable. The pair is found by composing with the transposition

defined by the x coordinates of the rectangle corners.

2.3.3 count symbols

In generating the complex GFC we will need to check which Xs and Os are inside of a

rectangle connecting two states x and y. The count symbols function, and its component

functions, handle this.

def count_symbols(n, rect, symbol_perm):

#Input: n integer, rect rectangle ((a0, b0), (a1, b1)), symbol_perm a permutation

or list↪→

#

#Output: List with 1/0 for symbol in/out of connecting rectangle
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#

#Iterates through each symbol symbol_perm(i) and marking a corresponding list

entry↪→

#to 1 if the symbol is present

temp = zero_list(n)

usable_sym = symbol_coordinates(symbol_perm)

#Moving the coordinates to the actual heights rather than the discrete style

#lists

for i in range(n):

if parent_check(rect, usable_sym[i]):

temp[i] = 1

return temp

Not counting the comments, the core of this function is very short. First we make a

container for the result called temp. Because the rectangle and symbol coordinates both begin

indexing at 1, despite being staggered in the diagram, we need to remap the coordinates.

The symbol coordinates function takes a list or permutation representing σX or σO and

returns a list of coordinates - for example symbol coordinates([3,2,1,4]) returns the

list [(1.5, 3.5), (2.5, 2.5), (3.5, 1.5), (4.5, 4.5)]. The supporting code for this

function can be found in section B on line 94.

After that is a loop that goes through each column and calls parent check which we will

unpack here.

def parent_check(rect, target):

#Input: rect = ((ax, ay), (bx, by)) and target (tx, ty)

#

#Output: Returns True if target is inside the rectangle, False otherwise.

ax = rect[0][0]

ay = rect[0][1]

bx = rect[1][0]

by = rect[1][1]
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#This is a belabored switch statement. All of these are possible since grids exist

on a↪→

#torus. There's two possibilities for the x coordinates and two for the y as to

which one↪→

#comes first. This gives us the following 4 cases.

if ( (ax < bx) and (ay < by) ):

return check_case_{1}(rect, target)

if ( (ax > bx) and (ay < by) ):

return check_case_{2}(rect, target)

if ( (ax < bx) and (ay > by) ):

return check_case_{3}(rect, target)

if ( (ax > bx) and (ay > by) ):

return check_case_{4}(rect, target)

print("invalid rectangle given" )

This function’s purpose is to sort out which type of rectangle is being checked in line

with the cases shown in figure 2.7 and see if the provided coordinate is inside the rectangle.

It decides which case is present by comparing the rectangle’s provided corner x and y coor-

dinates. Once the case is determined then it calls the corresponding check case i. These

all function very similarly as can be seen in their definitions.

def check_case_{1}(rect, target):

if (is_between(target[0], rect[0][0], rect[1][0]) and is_between(target[1],

rect[0][1], rect[1][1])):↪→

return True

return False

def check_case_{2}(rect, target):
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if ((not is_between(target[0], rect[1][0], rect[0][0])) and is_between(target[1],

rect[0][1], rect[1][1])):↪→

return True

return False

def check_case_{3}(rect, target):

if (is_between(target[0], rect[0][0], rect[1][0]) and (not is_between(target[1],

rect[1][1], rect[0][1]))):↪→

return True

return False

def check_case_{4}(rect, target):

if ((not is_between(target[0], rect[1][0], rect[0][0])) and (not

is_between(target[1], rect[1][1], rect[0][1]))):↪→

return True

return False

Each of these use a function is between(target, a, b) which checks if a < target < b

and returns a boolean accordingly. As an example consider check case 3. When it receives

rect this is a list containing the rectangles corners so rect = ((x0, y0), (x1, y1)). Then to

access x1 for example we would call rect[1][0].

So in case 3 the function is checking if target has its x coordinate between the x coor-

dinates of the rectangle corners, and that the y coordinate is not between the rectangles y

coordinates.
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Figure 2.7 The regions that a rectangle’s corners could be describing. Since rectangles here
are stored by opposite corners they are indicated by (r1, r2)

Recall that we are calling this check function inside a loop to count symbols.

.

.

for i in range(n):

if parent_check(rect, usable_sym[i]):

temp[i] = 1

return temp

In this loop i corresponds to the columns and we can see then that we are recording a

1 in temp[i] when it does contain the symbol, or we leave it as 0 otherwise. Then finally

we return the list of 0’s and 1’s. This data is accessed later, figure 2.9 shows 4 examples of

what this function could return.

2.4 Calling build cinf

The function called to start the whole process of building the complex is build cinf.

The example that we will accompany on its way through the program is the left-handed

trefoil given by the permutations σX = [5, 1, 2, 3, 4] and σO = [2, 3, 4, 5, 1] as in figure 2.8.
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Figure 2.8 Grid diagram of left-handed trefoil σX = [5, 1, 2, 3, 4] and σO = [2, 3, 4, 5, 1]

To hand this data off to the computer we will be giving it to Python as a list containing

two other lists, namely the permutations for the X and O data.

trefoil = [[5, 1, 2, 3, 4], [2, 3, 4, 5, 1]]

Having the trefoil data stored in the so named variable, we can pass this variable to the

first domino in a long series by calling the function build cinf from the GFKTools package

we recently imported. We will store the result afterward to UnreducedComplex.

UnreducedComplex = gfk.build_cinf(trefoil)

Unpacking this function we will look at build cinf’s definition from the imported mod-

ule.

def build_cinf(symbols):

#Input: symbols a list of two lists, [sigx, sigo]

#Output: g a networkx directed graph

xlist = symbols[0]

olist = symbols[1]

size = len(xlist)

comp = generate_all_edges(size, [xlist,olist])

g = nx.DiGraph()

for ele in comp:

if not g.has_edge(str(ele[0][0]),str(ele[0][1])):
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g.add_edge(str(ele[0][0]),str(ele[0][1]), diffweight = [])

g[str(ele[0][0])][str(ele[0][1])]['diffweight' ].append((ele[2][0] +

ele[2][1]))↪→

return g

The first lines of this function unpack and label the components of the grid given to the

function. In the case of our trefoil, this loads σX = [5, 1, 2, 3, 4] into the variable xlist and

σO = [2, 3, 4, 5, 1] into the variable olist. The next piece checks the grid size of the given

diagram by checking the number of elements in xlist.

The following line comp = generate all edges(size, [xlist,olist]) calls the func-

tion which generates all the differential maps in the grid complex.

def generate_all_edges(n, symbols):

#Input: n an integer, symbols, a collection of lists of length n denoting the

placement of the symbols. For knots and links this should be a pair of two

lists, or permutations.

↪→

↪→

#Output: Returns a list 3 layers deep containing all the edge information of

CFKinf↪→

pre_diff = generate_all_rectangles(n)

symbol_count = len(symbols) #This should always be 2 for knots and links.

place_holder = []

z_list = zero_list(n)

for i in range(symbol_count):

place_holder.append(z_list.copy())

unweighted_diff = []

.

.

The first step is to generate all the rectangles following section 2.3.1. As per 2.3.2

every generator of the complex, and element of a differential will be caught by one of these

rectangles. The second step is to produce a container for all the coefficient data. For X and

O we will add n slots in a list; one for each symbol/column.
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Next, for each rectangle we are going to call generate all states outside rectangle

which will build a list of generators of our module that use the rectangle in the differential

as in 2.3.2. To keep track of this data, we then pair it with the rectangle and a copy of our

data container.

.

.

for rect in pre_diff:

candidates = generate_all_states_outside_rectangle(rect, n)

#each candidate is a collection of points differing on the rectangle given

#so each candidate represents an edge from rect[0] = (a0, b0) to rect[1] = (a1,

b1)↪→

#(filling in the rest of the necessary coordinates with the candidate)

if candidates is not None:

for count, candidate in enumerate(candidates):

candidates[count] = [candidate.copy(), rect, place_holder.copy()]

#^Replacing the candidate with a clean copy, a note of its connecting

#rectangle and initialize the edge weight to zero

unweighted_diff = unweighted_diff + candidates

#appending the list of these candidates to our unweighted differential

.

.

Since that operation is done for each rectangle we add the results to a running list called

unweighted diff.

The final step is for X and O to iterate through the unweighted diff elements and

record which symbols are inside the rectangle using the count symbols function explained

in section 2.3.3,

.

.

for count, symbol in enumerate(symbols):

#This should again always be a pair in case of knots and links
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for i in range(len(unweighted_diff)):

#here we replace the previous zero weight after counting the symbols

unweighted_diff[i][2][count] = count_symbols(n, unweighted_diff[i][1],

symbol)↪→

return unweighted_diff

This resulting output contains all the information of the module but we are going to take

several steps and repackage it into a graph. Continuing along build cinf, we will build

the module as a directed graph. The first step is to initialize a directed graph object using

networkx. Then we will loop through each edge and add it to a directed graph.

.

.

comp = generate_all_edges(size, [xlist,olist])

g = nx.DiGraph()

for ele in comp:

if not g.has_edge(str(ele[0][0]),str(ele[0][1])):

g.add_edge(str(ele[0][0]),str(ele[0][1]), diffweight = [])

g[str(ele[0][0])][str(ele[0][1])]['diffweight' ].append((ele[2][0] +

ele[2][1]))↪→

return g

It is worth noting that if the edge is already in the graph that the function stores both

edge values. This happens when there are two valid rectangles connecting the states x and

y. At this point we have computed and stored all the information of the complex in a graph.

From here our goal is to make the data more useful and recognizable.
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2.5 Initializing the Module

Up to this point all of the computations have been done using Python. Now because we

want to handle polynomials over F2 we will be using Sage. Sage is an extension of Python

so the syntax will be nearly identical but the code is broken into a second part to run with

the Sage program. The first portion of the code is kept as separate Python file for maximum

modularity.

As with the first portion we need to import some modules, in this case some of them will

be our own.

import itertools as itools

import networkx as nx

import CodeModules.GFKTools as gfk

from CodeModules.GridPermutations import *

import CodeModules.perm as pr

import multiprocessing as mp

from multiprocessing.managers import BaseManager

import random as rd

Before we can convert the edge weights of the graph to polynomials we need to define the

specific Laurent polynomial ring for Sage. This is handled by our function cinf coeff(n).

def cinf_coeff(size):

# Takes size as an argument and returns the Laurent polynomial ring over Z2 with

coefficients U0,...Usize-1,V0,...Vsize-1↪→

n = size

varis = name_some_vars(['U' ,'V' ],n)

F = LaurentPolynomialRing(GF(2), varis)

F.inject_variables()

return F,list(F.gens())
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We name the necessary variables, one for each X and O, using name some vars. The

result will look like ["U0", "U1", ... "Un-1", "V0", ... "Vn-1"]. This is saved to

varis. We then pass all of this to Sage’s built-in function LaurentPolynomialRing along

with GF(2) = F2 which defines F2[Ui, U
−1
i , Vi, V

−1
i ]i=0...n. The next line’s inject variables

declares each of those variable names as objects we can reference later, so if we execute U1+U2

Sage will recognize it as an element of the polynomial ring and not a python variable name.

Then the function returns the ring and the 2n variables we declared.

The function that reassembles the graph edges from section 2.2 is construct cinf. The

first couple lines extract the size of the grid if it is not provided explicitly. After that we

generate the Laurent polynomial for the module and save the associated variables to F and

Vars.

def construct_cinf(g, sigx, sigo, size = -1):

if size == -1:

size = len(g.get_edge_data(list(g.edges())[0][0],

list(g.edges())[0][1])['diffweight' ][0])↪→

n = size/2

else:

n = size

F,Vars = cinf_coeff(n)

resG = nx.DiGraph()

.

.

We initialize a variable resG for the resulting graph we are converting to. To do this we

are going to loop over all of the edges of g which will be the resulting graph from generating

the module in section 2.4.

.

.

for edge in g.edges:

start = edge[0]
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end = edge[1]

poly = F(0)

for subweight in g[edge[0]][edge[1]]['diffweight' ]:

i = 0

polychange = F(1)

for entry in subweight:

polychange = polychange*(Vars[i])**entry

i = i + 1

poly += polychange

resG.add_edge(start,end,diffweight = poly)

return grid_complex(resG, F, sigx, sigo)

In each step of this loop we will be accessing the edge data that we stored previ-

ously. The format of edge data from 2.4 is a list of lists. The structure of that data is

diffweight[rectangle][X column, O column]. For each rectangle (at most 2) we will

have a polynomial term that will summed. As an idea for the data present see figure 2.9, it

illustrates a case where a pair of states are connected by two distinct rectangles. The data

stored in the edge data for this example will be in g[3,2,1,4][3,4,1,2][’diffweight’]

and is of the form [[0,0,1,0,0,1,0,0],[1,0,0,0,0,0,0,1]].

Figure 2.9 Rectangles connecting two states and the edge data recorded from symbols as
lists
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In the loop then we initialize the resulting edgeweight as 0 and in our module base ring

by calling poly = F(0). Then for each rectangle we set a polychange variable to 1 and

iterate through the entries multiplying by Var[i]k where k ∈ 0, 1 depending on list data.

This is exactly the differential described in section 1.3. We add these to poly and save the

result to our graph as the edge weight connecting the same vertices that we were given. The

final result is not however returned as a graph, it is returned as a grid complex object.

2.6 Class Definition for grid complex

The construct cinf function of the previous section returns a grid complex object.

The idea being that our functions are going to reference lots of internal data of the graph

we are constructing as well as auxiliary data like the base ring, σX and σO and some other

running data. Packaging these as one custom object will allow us to write functions that

can much more conveniently access this data.

We define classes in Python and Sage very similarly to how we define functions. We define

it by using class then defining a function that always runs and any supporting functions.

class grid_complex:

def __init__(self, ... )

.

.

def supporting_functions

.

.

In the rest of this thesis some of the functions we unpack will be supporting functions

of this grid complex object and some will not. We will specify when this is the case, and

additionally whenever we call such functions it will appear as

example complex.supporting function with the period indicating that the function is a

child function of that specific object.
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With that in mind, we will unpack the init function that is always called when we

create a grid complex object.

class grid_complex:

def __init__(self, directed_graph, rng, sigx = None, sigo = None):

self.comp = directed_graph

self.ring = rng

self.min_gradings = {}

self.max_gradings = {}

self.max_grading_changes = {}

self.sigx = sigx

self.sigo = sigo

self.set_to_minus = False

self.set_to_tilde = False

.

.

Each of these self.xyz lines is setting internal variables that we can reference at any

time. The first saves the directed graph associated to our complex. We also save the ring

for the module, and defining permutations. The final two above set boolean flags that we

will flip when the appropriate functions have been called. For instance, when computing the

surgered complex it is necessary to convert to the minus complex and this variable lets us

know if this has already been done.

The variables saved as {} are dictionaries where we can save data much like how lists

function but instead of being indexed by integers the indexing is more arbitrary. For example

the min gradings variable we will use to save the minimum values of the various gradings

and the other dictionaries are similar. We will return to these as they come up.

The final section of the init function handles setting up some variables for the surg-

ered complex.

.

.

# From here the values necessary for the surgered manifold gradings are mapped

out↪→
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if (sigx != None) and (sigo != None):

self.size = len(sigx)

self.components = link_components(sigx, sigo)

for i in range(len(self.components)):

key = f 'AGrading { i} '

self.min_gradings[key] = 0

self.max_gradings[key] = 0

self.max_grading_changes[key] = 0

key = f 'UGrading { i} '

self.min_gradings[key] = 0

self.max_gradings[key] = 0

self.max_grading_changes[key] = 0

key = f 'VGrading { i} '

self.min_gradings[key] = 0

self.max_gradings[key] = 0

self.max_grading_changes[key] = 0

else:

# This is included in case the methods in the class are useful to another

complex being loaded in↪→

self.components = None

What this code does (assuming the defining permutations are provided) is creates vari-

ables for each component in each of our dictionaries. So for instance, in the case of the Hopf

link, this block will find that the link has 2 components. It will then make keys ’AGrading0’

and ’AGrading1’, and for each dictionary it will save a value of 0 to each of those keys.

So it will save that the minimum Alexander grading for the first component is 0, as well

as the maximum and the largest change between vertices. It does the same for the Maslov

gradings.

This is almost certainly not going to be what these values will end up being. But, we

know that they are at least (most) these values since we know from section 1.3 that XSW

and OSW have these values and we will compare against these values and adjust accordingly

later.
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2.7 Grading the Complex

Having called construct cinf we have our complex with edgeweights represented as

polynomials. From 1.3 recall that this is a multi filtered complex but the filtration data of

our object as it stands is not clear. Our plan to fix that is going to be to set the elements

that are in grading 0 for the various gradings. We know these are xNWO and xNWX for the

Maslov gradings.Then, when those are set, we can step through a spanning tree computing

relative gradings to find the values for the rest of the generators. Figure 2.10 visualizes what

we are trying to find.

Figure 2.10 Schematic example of a spanning tree highlighted with xNWO and xNWX

indicated. Note this is illustrative but is not from a real grid complex

When these Maslov gradings are all computed, we can then compute the Alexander

grading by A(x) = 1
2
(MU(x)−MV (x))− (n−1

2
). This is only technically true for knots, the

case of links is more delicate. For links, we will keep track of the Maslov grading but also

track what we will dub virtual Maslov gradings. This will be exactly the Maslov grading for

knots, but in the case of links we will keep track of a Maslov grading for each component

rather than the entire link.

That is to say, when we compute relative virtual gradings, we will use VMUi
(x) −

VMUi
(y) = 1 − 2

∑
j∈Ci

#(r
⋂

Xj) where Ci indicates the set of indices that correspond
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to the ith component of the link. We make similar virtual gradings for the Oi and Vi. Then

recalling the equation Ai(x)− Ai(y) =
∑

j∈Ci
#(r ∩Xj)−

∑
j∈Ci

#(r ∩Oj) up to an added

constant, we can see the following:

VMVi
(y)− VMVi

(x) = 1− 2
∑

j∈Ci
#(r

⋂
Oj)

− VMUi
(y)− VMUi

(x) = 1− 2
∑

j∈Ci
#(r

⋂
Xj)

(VMUi
(x)− VMVi

(x))− (VMUi
(y)− VMVi

(y)) = 2
∑

j∈Ci
(#(r

⋂
Xj)−#(r

⋂
Oj))

Where the right side is exactly twice the ith Alexander grading and the left side is a

function of x minus a function of y. Therefore Ai =
1
2
(VMUi

(x)−VMVi
(x)), up to that same

constant which, following [14], is ni−1
2

With the strategy in mind, we will start unpacking the code. The function we call to

grade the complex is a method of grid complex and is grid complex.grade link complex.

def grade_link_complex(self):

if self.sigx == None:

gridX = list(self.comp.nodes())[0]

else:

gridX = self.sigx

cycle = pr.full_cycle(self.size)

gridX = pr.perm(gridX)

gridX = cycle*gridX

gridX = gridX.value

if self.sigo == None:

gridO = list(self.comp.nodes())[0]

else:

gridO = self.sigo

cycle = pr.full_cycle(self.size)

gridO = pr.perm(gridO)

gridO = cycle*gridO
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gridO = gridO.value

.

.

This first block of code finds the states xNWX and xNWO. There is additional code for

the sake of modularity that picks the base states arbitrarily if the object was made somehow

without X and O permutations. There is still some more setup before grading can begin.

gens = self.ring.gens()

size = len(gens)/2

comp_set = len(self.components)

for i in range(comp_set):

nx.set_node_attributes(self.comp, False, f "HasBeenGraded { i} " )

We will need to do loops in this algorithm over each component, so we save how many

components we have into the comp set variable. After this we set a variable on each vertex

called HasBeenGradedi to False where there is an i for each component. The next step is

to find a spanning tree in our graph if there is one.

Lemma 2.7.1. The unreduced grid complex is connected as a graph.

This follows from the fact that we know each grid state connects to each state differing by

adjacent transpositions as we saw in the proof of Proposition 2.3.2, and that Sn is generated

by adjacent transpositions.

So knowing that we can always find a spanning tree we will outsource the job of finding

one to NetworkX, the package we have been using to handle our graphs.

tree = nx.algorithms.minimum_spanning_tree( self.comp.to_undirected() )

eds = set(tree.edges()) # optimization

spanset = []

for edge in eds:
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if edge in self.comp.edges():

spanset.append(edge)

else:

spanset.append((edge[1],edge[0]))

span = self.comp.edge_subgraph(spanset)

As a note we technically will not be finding a directed tree since we do not mind which

direction an edge is pointed. We are able to find the relative grading we want regardless of

edge direction.

The spanning tree algorithm in NetworkX (at the time of writing) is only implemented

for undirected graphs. So this code converts to an undirected graph and finds the tree in

the first line. After that it saves the edges of the tree and pieces the directed version back

together as a directed subgraph in the following loop. The if-else statement just checks to

see which direction the edge should have and adds it to a running list spanset. Finally, we

get the subgraph generated by the edges we saved and this is our spanning subgraph that

we save to span.

The actual grading is passed off to helper functions which we do next.

.

.

self.componentwise_relative_grading_loop("UGrading" , gridX,

self.virtual_U_gradings_succ, self.virtual_U_gradings_pred, span,

comp_count)

↪→

↪→

self.componentwise_relative_grading_loop("VGrading" , gridO,

self.virtual_V_gradings_succ, self.virtual_V_gradings_pred, span,

comp_count)

↪→

↪→

self.relative_grading_loop("UGrading" , gridX, self.maslov_U_succ,

self.maslov_U_pred, span, comp_count)↪→

self.relative_grading_loop("VGrading" , gridO, self.maslov_V_succ,

self.maslov_V_pred, span, comp_count)↪→

.

.
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We will unpack relative grading loop and componentwise relative grading loop

in a moment, but after those gradings are found there is a final loop in the function to find

the Alexander gradings.

.

.

for vert in self.comp.nodes():

self.comp.nodes()[vert]['AGrading' ] = 0

for i in range(len(self.components)):

stab_count = len(self.components[i])

self.comp.nodes()[vert][f 'AGrading { i} ' ] =

(1/2)*(self.comp.nodes()[vert][f 'VGrading { i} ' ] -

self.comp.nodes()[vert][f 'UGrading { i} ' ]) - (1/2)*(stab_count - 1)

↪→

↪→

self.comp.nodes()[vert]['AGrading' ] +=

self.comp.nodes()[vert][f 'AGrading { i} ' ]↪→

return

In this loop we compute the ith Alexander grading using our virtual Maslov gradings,

indicated by UGradingi and VGradingi. We also need the constant offset for the grading

which we find by 1
2
(stab count − 1) where stab count is the number of symbols in the

ith component. We add each of these multigradings together to find the total Alexander

grading.

2.7.1 relative grading loop

We need to compute two gradings per component, so we will be finding 2i+2 relative grad-

ings across our graph each with unique functions. We will build a structural function to hold

these. We have relative grading loop and componentewise relative grading loop for

the virtual gradings. They are structured very similarly so we will unpack

relative grading loop first and then look at where the componentwise variant differs.

def relative_grading_loop(self, grading_key, base_vertex, fn1, fn2, span = None,

grading_multiplicity = 1):↪→

# Loop structure around a vertex's neighbors to set gradings based on the

functions fn1 and fn2.↪→
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if span == None:

span = self.comp

nx.set_node_attributes(self.comp, False, "HasBeenGraded" )

self.comp.nodes()[str(base_vertex)][f 'HasBeenGraded' ] = True

self.comp.nodes()[str(base_vertex)][f ' { grading_key} ' ] = 0

.

.

The first step checks to see if the loop was provided a spanning tree; if not, it is going

to work over the entire complex. The algorithm we implement will work in this case, but in

our applications this should not happen. Then we initialize our starting variables and base

vertex.

We set a flag for each vertex named HasBeenGraded to False. For whichever grading we

are computing we switch that flag to True and set the grading to 0 for base vertex which

we have to provide to the function when we call it along with the name of what grading we

are computing.

on_deck = [str(base_vertex)]

in_the_hole =[]

while len(on_deck) > 0:

for vert in on_deck:

for i, component_columns in enumerate(self.components):

for succ in span.successors(vert):

if self.comp.nodes()[succ][f 'HasBeenGraded { i} ' ]: continue

in_the_hole.append(succ)

fn1(i, succ, vert, component_columns)
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self.comp.nodes()[succ][f 'HasBeenGraded { i} ' ] = True

.

.

The terminology of the variables and loop here follows sports terminology for taking

turns. The vertex being used to grade its neighbors is “at bat” then the vertices that are

about to be used the same way are “on deck”. Finally the vertices that will follow the on

deck ones are “in the hole”.

The loop is depicted in 2.11. The first two horizontal arrows grade and reserve vertices

for the next step in the loop, saving the vertices but are adjacent to on deck. The diagonal

arrows represent flushing on deck and moving in the hole to the newly emptied on deck.

The final dotted arrow just means to iterate until all vertices are graded. The naming scheme

is a bit of a misnomer since the “batter” remains in “in the hole” until the rest of the waiting

batters have been processed.

Only half of the code for the loop is shown above. In particular it is the code for

computing the grading of a vertex that is the target of the active vertex. This can be seen

since the outermost loop is over span.successors(vert). It is a good time to note that if

the active vertex is a successor or a predecessor we will have to use a different function to

assign gradings. This just comes down to whether the active vertex is x or y in the relative

grading equations

MU(x)−MU(y) = 1− 2#(r
⋂

X)

VMUi
(x)− VMUi

(y) = 1− 2#(r
⋂

Xi)

The vertices that are predecessors of the active vertex are handled in the following loop.

.

.

for pred in span.predecessors(vert):

if self.comp.nodes()[pred][f 'HasBeenGraded { i} ' ]: continue
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in_the_hole.append(pred)

fn2(i, pred, vert, component_columns)

self.comp.nodes()[pred][f 'HasBeenGraded { i} ' ] = True

on_deck = in_the_hole

in_the_hole = []

return

We will consider an example of calling this function, to grade the Maslov U grading for

example. To call it we will assume we already created a grid complex type object called

comp=grid complex(sigx, sigo). Additionally assume we found a spanning tree named

tree. Then the function call would look like the following.

comp.relative_grading_loop("UGrading" , sigx, comp.maslov_U_succ, comp.maslov_U_pred,

span)↪→

So we are passing the function the necessary supplemental functions to compute successor

gradings and predecessor gradings as fn1 and fn2.
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Figure 2.11 Visualization of the grading loop functions.

Before we cover the predecessor and successor grading functions in detail, we will look

at the differences in the componentwise version of the grading loop. The first difference is

in the setup portion. We will be grading each vertex once for each component of the link so
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we will set flags for each of these.

.

.

for i in range(grading_multiplicity):

nx.set_node_attributes(self.comp, False, f "HasBeenGraded { i} " )

self.comp.nodes()[str(base_vertex)][f 'HasBeenGraded { i} ' ] = True

self.comp.nodes()[str(base_vertex)][f ' { grading_key}{ i} ' ] = 0

.

.

Then, the only other difference is our actual loop structure. It is one loop deeper so that

we can iterate over the components, and the predecessor and successor functions will also

use this loop information. We will only look at the successor loop here, the predecessor is

similar.

.

.

for i, component_columns in enumerate(self.components):

for succ in span.successors(vert):

if self.comp.nodes()[succ][f 'HasBeenGraded { i} ' ]: continue

in_the_hole.append(succ)

fn1(i, succ, vert, component_columns)

self.comp.nodes()[succ][f 'HasBeenGraded { i} ' ] = True

.

.

At this point we have inspected each part of the grading portion of the program except

for the innermost grading functions. There are 8 total such functions as combinations of:

successor or predecessor, U or V, and componentwise or non-componentwise.
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Since they all are very similar we will unpack maslov U pred and

virtual V gradings succ to catch each flavor. All the functions are in section C starting

on line 707.

def maslov_U_pred(self, pred, vert):

ed_weight = self.comp[pred][vert]['diffweight' ]

component_columns = self.sigx

Upows = link_U_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[pred]['UGrading' ] = self.comp.nodes()[vert]['UGrading' ] + 1

- 2*Upows↪→

return

The function is relatively lightweight. We extract the edgeweight from the vertex, and

then we take a sum of all the Ui powers in the polynomial edgeweight. We have not unpacked

link U deg but it is also available in the appendix. The code looks at the first term of a

polynomial and adds up the powers of the U variables.

Once this is found and saved to Upows we rearrange MU(x)−MU(y) = 1− 2#(r
⋂
X) to

solve for our desired variable. In our case we are setting the value of x which is pred using

the value of the active vertex. The other function we will look at behaves very similarly.

def virtual_V_gradings_succ(self, i, succ, vert, component_columns):

ed_weight = self.comp[vert][succ]['diffweight' ]

Vpows = link_V_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[succ][f 'VGrading { i} ' ] =

self.comp.nodes()[vert][f 'VGrading { i} ' ] - 1 + 2*Vpows↪→

return

In this case, the function accepts an argument component columns which indicates the

columns that the relevent symbols/variables are associated with. Passing that info along to

link V deg indicates that it will only sum the Vi that come from those columns.
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2.8 Reducing the Complex

With the complex generated at this point it will have n! generators and a cumbersome

number of edges. The first step will be simplifying the complex from here using a common

reduction algorithm. It works by producing a complex with two fewer generators that is

chain homotopy equivalent to the original.

The reduction can be thought of graphically as deleting an edge xy in the complex, and

extending any of the edges that previously ended at y to ∂x, as in figure 2.12.

Figure 2.12 Steps in the reduction algorithm

This algorithm is known broadly in the literature and is written down in [6] Lemma 4.1.

The proof and standard version of the reduction is for chain complexes but our case is a

curved complex as noted in section 1.3. So we will largely mimic their proof but for curved

complexes.

Proposition 2.8.1. Given a curved complex (C, dM) a freely generated module with potential

d2M = M , and dM(x, y) = 1 where dM(a, b) is the coefficient of b in dM(a), then the com-

plex defined by the reduction above is a curved complex (C ′, dN) which is curved homotopy

equivalent to C

Proof. We define a homomorphism h : C → C by:

h(v) =


x v = y

0 else

We also define π : C → C ′ and ι : C ′ → C to be the projection and inclusion maps

respectively.
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Then the boundary map of C ′ can be described equivalently as dN = π◦(dM−dMhdM)◦ι

and d2N(v) then can be simplified as follows:

d2N = (π ◦ (dM − dMhdM) ◦ ι)2

= π ◦ (dM − dMhdM)2 ◦ ι

= π ◦ (d2M − d2MhdM − dMhd2M + dMhd2MhdM) ◦ ι

= π ◦ (M −M(hdM + dMh) +MdMh2dM) ◦ ι

= π ◦ (M −M(hdM + dMh) +MdMh2dM) ◦ ι

= M · I

The final simplification follows because h2 = 0, and that (hdM + dMh)(v) = 0 for v ∈ C ′.

We can see this, as when we distribute through the second term is 0 and the first term is 0

or x which we lose during projection. Therefore (C ′, dN) is a curved complex.

Then defining f : C → C ′ as f = π ◦ (I−dM ◦h) and g : (I−h◦dM)◦ ι we get right away

that f ◦ g = I. Then, because homotopies of maps for curved complexes are defined nearly

identically as for chain complexes we only need to verify g ◦ f − I = hdM + dNh. Thus we

obtain as in [6] that g ◦ f ∼ I.

2.8.1 Reduction Algorithm

The function we call to search the complex for viable edges to reduce using the algorithm

is named graph red search. It will call a helper function to actually do the reduction

described which we will unpack afterwards.

def graph_red_search(self, started = False, timerstart = None):

while True:

try:

red_target = next((source, target) for source, target, weight in

self.comp.edges(data = 'diffweight' ) if weight == 1)↪→
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self.graph_reduction(red_target[0], red_target[1])

continue

except:

("StopIteration" )

break

return

The code here finds the first edge it can where the edge weight is 1, which is the required

condition for our algorithm. It does this using the next function. From there it calls the

helper function, passing it that edge it found and then continues the loop.

If there are no edges with weight 1 then the next function will throw a StopIteration

error. If it gives this specific error we know we have run out of those reducible edges

and the function ceases. From here we will go back and look at the helper function

grid complex.graph reduction.

def graph_reduction(self, key, target):

for x in self.comp.predecessors(target):

if x == key: continue

for y in self.comp.successors(key):

if y == target: continue

x_weight = self.comp[x][target]['diffweight' ]

y_weight = self.comp[key][y]['diffweight' ]

red_weight = x_weight * y_weight

if self.comp.has_edge(x,y):

old_weight = self.comp[x][y]['diffweight' ]

red_weight = red_weight + old_weight

self.comp.add_edge(x,y,diffweight=red_weight)

self.comp.remove_node(key)

self.comp.remove_node(target)

return

The loop is nested so that for each vertex that comes into the target we consider its
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combination with each vertex the source edge goes to. See figure 2.13 to see these sets

highlighted. Then for each of these combinations we save the weights associated and take

their product. Then we add an edge between the pair we are considering.

It can happen that an edge is already present, if this is the case then we add the current

weight and the weight associated with the reduction algorithm.

Figure 2.13 The vertices that constitute the two loops in graph reduction

2.8.2 Parallelization Ingredients

In observing the program running the reduction step is the first bottleneck we run into.

We will not solve this completely here but we will improve the performance significantly

using parallelization.

The observation we make is that when we are reducing an edge in the above algorithm,

we are only affecting vertices within a certain neighborhood of that edge. That means that

if we can find edges sufficiently far away that are reducible, we can run a second task to

reduce those edges at the same time without their algorithms needing to access any of the

same vertices/edges.

As an idealized example see figure 2.14. Note that when the reduction algorithm runs

inside the green rectangle, it will not affect any of the data in the blue rectangle, and vice

versa. We will come back to the top vertex in the figure in a moment.
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Figure 2.14 Two regions where the reduction algorithm will not impact one another. The
top vertex is grouped with them as information to reconstruct the graph afterward.

In order to take advantage of this observation we need to lay groundwork because the

type of data we are working with can only be accessed by one process at a time. So we cannot

directly reduce two edges simultaneously. Additionally taking the time to break our data

into pieces to reduce one edge and reconstruct afterwards will not speed up our problem.

So rather than trying to reduce all the reducible edges simultaneously we will break our

graph into regions and do the entire search and reduction loop over each of the regions. The

goal is to split the graph into regions as in figure 2.15. If we partition our graph into regions

like this that glue up along the grey regions, and the vertices in the blue regions only have

edges that extend to the grey region at most, then we can reduce any edge inside the search

region without affecting another region.

Figure 2.15 Search and glue region schematic for each component of the partition.

We will build our regions by taking subgraphs generated by all vertices a given distance

from a selected vertex. This way we can take a sequence of subgraphs of annuli formed in

the graph circles as seen in figure 2.16. This allows us to easily get a partition with definite
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search and glue regions. This is done just by making sure the outer radius of one region

overlaps the inner radius of the next by 1.

We can think of these subgraphs as sort of discs of radius r. We will refer to them as ego

graphs of radius r keeping in line with the notation of Networkx as it has a built in function

to find these subgraphs. It is called networkx.ego graph and we will see it in use when we

unpack our similarly named ego split function.

Figure 2.16 Ego graphs of varius radii multiples, denoted Gcr

As we noted we need our inner radius and outer radius of the annuli we are going to

construct to overlap by 1. However we additionally need to make sure the search region

is wide enough to actually have edges that we can reduce. To ensure the regions are wide

enough we must ensure the search region’s ego distance to be at a minimum 2 units wide.

Then if i is the inner radius that reaches the search region, then the edges between egov(i)

and egov(i+ 1) are eligible to be reduced.

So we will split our graph into the annuli defined by egov(3i+2)\egov(3i−1) Graphically

the resulting sets can be seen in figure 2.17
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Figure 2.17 Splitting the graph into the annuli use to parallelize our reduction search

2.8.3 Parallelizing the Algorithm

We have all the ingredients necessary now to separate our module and process the pieces

in parallel. We will work through the functions in the order they are called. To run the

parallel reduction we call grid diagram.ego parallel red search and provide it a cutoff

and the number of processors we will let it use. It will split the graph and search the regions

in parallel as long as there are at least cutoff reducible edges remaining. Once this threshold

is met, it will run the non-parallel reduction function from section 2.8.1.

def ego_parallel_red_search(self, cutoff = 100, proc_count = 2):

if len([source for source, target, weight in self.comp.edges(data =

'diffweight' ) if weight == 1]) > cutoff:↪→

while len([source for source, target, weight in self.comp.edges(data =

'diffweight' ) if weight == 1]) > cutoff:↪→
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reducible_edge = rd.sample([source for source, target, weight in

self.comp.edges(data = 'diffweight' ) if weight == 1], 1)↪→

self.ego_parallel_sweep(reducible_edge[0], proc_count)

self.graph_red_search()

return

This code is essentially just a loop that continuously calls the function

grid complex.ego parallel sweep, until we have eliminated enough reducible edges to dip

below our provided cutoff. Each time it calls the function it provides it a vertex to center the

ego radii from. This center vertex is chosen at random from the remaining reducible edges.

If we try to unpack grid complex.ego parallel sweep, we will immediately run into

a function named ego split. This function finds each subgraph band egov(i) \ egov(i − 1)

for i ∈ {0...n}. If the graph is connected this will span the entire graph. This is the case

if we are working with the minus or infinity variants since the generators of GFK are the

elements of Sn and adjacent transpositions are among the relations. If, however, we convert

to another flavor this may not be the case so we will save G \ egov(n) to a variable named

safety and return it along with the bands.

def ego_split(graph, vertex, n):

result = []

for i in range(n):

result.append(nx.ego_graph(graph, vertex, i))

safety = graph.copy()

safety.remove_nodes_from(result[n - 1].nodes())

for i in range(n-1, 0, -1):

result[i].remove_nodes_from(result[i-1].nodes())
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return result, safety

With ego split understood and out of the way as the first supporting function of

grid complex.ego parallel sweep, we can continue to start unpacking it. We will quickly

run into more supporting functions.

def ego_parallel_sweep(self, start_vert = None, proc_count = 2):

if start_vert == None:

start_vert = self.comp.nodes()[0]

size = len(list(self.comp.nodes)[0])

ego_bands, safety = ego_split(self.comp, start_vert, size)

partition_data = ego_region_partition(size)

parallel_subgraph_packer(self.comp, ego_bands, partition_data, self.ring)

.

.

.

The start of the function has a catch in case a start vertex is not provided, it will pick

one. After this it gets the outputs of ego split we just described and saves the results

to ego bands and safety matching the naming scheme from before. After this we call

ego region partition. This function defines the radii for the search regions and reserved

regions from section 2.8.2. It is a very short function so we will look at it here in the middle

of grid complex.ego parallel sweep.

def ego_region_partition(n):

result = {}

split_count = math.ceil(n/4)

result["block0" ] = {"search_region" : [0,1] , "reserved_region" : [2]}

for i in range(1,split_count):
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result[f "block { i} " ] = {"search_region" : [3*i, 3*i+1], "reserved_region" :

[3*i-1,3*i+2]}↪→

return result

We are going to make our regions 4 steps wide so the minimum width of 2 in the search re-

gion is satisfied. The number of regions then needs to be ⌈n
4
⌉ which we store to split count.

The regions will be named blocki and the initial block0 is distinct since this ”band” only

has one edge so we define it separately. Then for each block after that we save it to a dic-

tionary of dictionaries so if we call result[blocki] we will get back {"search region" :

[3*i, 3*i+1], "reserved region" : [3*i-1,3*i+2]}.

At this point we have the regions defined and the rings defined by our ego functions.

What is left then is to extract the actual subgraphs we will be searching over which is what

the function grid complex.parallel subgraph packer does and is the last line we have

seen thus far from grid complex.ego parallel sweep. We will unpack that function now.

def parallel_subgraph_packer(graph, subgraphs, region_data, ring):

for data in region_data:

region_nodes = []

for region in region_data[data]:

for i in region_data[data][region]:

region_nodes += (list(subgraphs[i].nodes()))

packed_subgraph = graph.subgraph(region_nodes)

region_data[data]['total_region' ] = grid_complex(packed_subgraph, ring)

for data in region_data:

region_nodes = []

for i in region_data[data]['search_region' ]:

region_nodes += list(subgraphs[i].nodes())

packed_subgraph = graph.subgraph(region_nodes)

region_data[data]['search_region' ] = grid_complex(packed_subgraph, ring)

return region_data

This function is constructed with more generality so we can split our graph differently

for parallelization. It expects a list of subgraphs and a dictionary of region data specifying

which of those subgraphs are part of each search region and which make up the gluing/re-

served regions.
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The first loop is over each block and records all the nodes from its regions. It then finds

the subgraph they generate in the parent graph and saves this as a grid complex object so

that we will have access to our custom methods. The second loop functions similarly but

instead we loop over blocks and only the specified search regions. These results overwrite

our previous dictionary values of search region and total region.

Then we can end this aside and get back to our explanation of ego parallel sweep.

The next bit of code initializes the parallelization loop.

.

.

.

region_count = len(partition_data)

count = 0

MyManager.register('list' , list)

with MyManager() as manager:

processed_subgraphs = manager.list()

.

.

.

First we check how many regions we need to assign, saving this to region count. We

will use count to keep track of how far our loop has progressed. The MyManager lines are

required for parallel processing, the object it initializes will be how we access and assign jobs

to separate processors. Registering it as a list means we can make list like variables that

multiple processors can access.

Then the with command starts the parallel process and we create one of those list objects.

With that available we will start the actual loop.

.

.

.

while count < region_count:

process_dict = {}

for i in range(proc_count):
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if count < region_count:

process_dict[count] = mp.Process(target = subgraph_red_search,

args = (partition_data[f "block { count} " ]['total_region' ],

partition_data[f "block { count} " ]['search_region' ],

processed_subgraphs))

↪→

↪→

↪→

process_dict[count].start()

count += 1

for proc in process_dict:

process_dict[proc].join()

.

.

.

We will run this as while loop, iterating our count each time we finish assigning a region

to a processor. We will save each process we assign to a dictionary named process dict.

We cycle through a for loop for each processor we are allowed in this function. For each of

those if there are regions unassigned we will satisfy count < region count. When that is

the case we make a process, telling it the target function to run and its arguments. Here

it is subgraph red search. This function can be found on line 995 in the appendix C. It

functions similarly to graph red search from section 2.8.1 but the edges are only reduced

from those inside the specified search region.

Ending the first for loop we start the process we just set up and iterate the count. The

following loop calls join for each of the processes running. This tells our function to wait

until each of the processes has concluded before continuing. This repeats until each region

is reduced completely.

The function continues after the while loop.

.

.

.

processed_subgraphs = processed_subgraphs._getvalue()

result = processed_subgraphs[0].comp
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for element in processed_subgraphs:

result = nx.compose(result, element.comp)

result = nx.compose(result, safety)

self.comp = result

self.remove_zeros()

return

The results of our processes were saved to processed subgraphs. This was indicated

when we started the processes originally. Since this is a special list from the multiprocessing

package, we access its contents with . getvalue() and save the more accessible list over it.

We are going to take a result graph and keep gluing the reduced subgraphs iteratively

until we have our full complex as a result. To start the process we initialize result as the

first subgraph in the list. From there we call the networkx.compose(x,y) function which

creates a graph with the vertices of its two arguments and all their edges. We do this for

each subgraph we have and then overwrite the overall complex with our new one. The final

step removes any edges with weight 0 that may have arisen during the reduction.
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CHAPTER 3

RESULTS

The content of this section will be a compilation of some sample results of the program. Note

that the number of generators and edges is an upper bound. The program reduces using

only the edge reduction algorithm discussed in section 2.8.1, and furthermore it can happen

that the order in which the edges are reduced may have an impact on the final count and

gradings as well.

The data was produced by generating and reducing the infinity complex using the dis-

cussed program, recording the dimensions, Poincaré polynomial, and grading ranges which

were then written out. After the complex was converted to the minus flavor and the same

data was recorded and written out.

The Poincaré polynomial is computed by starting with 0 and for each vertex adding

uMU (v)
∏

i t
Ai(v)
i . This encodes all the ranks of the module by Maslov and Alexander Multi-

grading. The resulting polynomial is factored, often only partially, using Sage’s built in

factoring algorithm for symbolic expressions.

k31

σX [5, 1, 2, 3, 4]

σO [2, 3, 4, 5, 1]

GFC∞

Number of Generators 48

Number of Edges 261

Poincaré Polynomial 11/t30 + t0/u
4 + 5/u3 + 11/(t0u

2) + 14/(t20u) + 5u/t40 + u2/t50

Poincaré Polynomial (factored) (t20 + t0u+ u2)(t0 + u)4/(t50u
4)

Grading Ranges

−4 < UGrading < 0
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−2 < V Grading < 2

−3 < AGrading < 1

−3 < AGrading0 < 1

GFC−

Number of Generators 16

Number of Edges 74

Poincaré Polynomial 1/t30 + t0/u
4 + 4/u3 + 6/(t0u

2) + 4/(t20u)

Poincaré Polynomial (factored) (t0 + u)4/(t30u
4)

Grading Ranges

−4 < UGrading < 0

−2 < V Grading < 2

−3 < AGrading < 1

−3 < AGrading0 < 1

mk31

σX [5, 4, 3, 2, 1]

σO [2, 1, 5, 4, 3]

GFC∞

Number of Generators 48

Number of Edges 310

Poincaré Polynomial 1/t50 + t0/u
6 + 5/u5 + 11/(t0u

4) + 14/(t20u
3) + 11/(t30u

2) + 5/(t40u)

Poincaré Polynomial (factored) (t20 + t0u+ u2)(t0 + u)4/(t50u
6)

Grading Ranges
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−4 < UGrading < 0

−6 < V Grading < 0

−5 < AGrading < 0

−5 < AGrading0 < 0

GFC−

Number of Generators 16

Number of Edges 76

Poincaré Polynomial 1/t50 + 1/(t0u
4) + 4/(t20u

3) + 6/(t30u
2) + 4/(t40u)

Poincaré Polynomial (factored) (t0 + u)4/(t50u
4)

Grading Ranges

−4 < UGrading < 0

−6 < V Grading < 0

−5 < AGrading < 0

−5 < AGrading0 < 0

k41

σX [6, 1, 4, 5, 3, 2]

σO [3, 5, 6, 2, 1, 4]

GFC∞

Number of Generators 160

Number of Edges 1570

Poincaré Polynomial 8/t50+t0/u
6+8/u5+26/(t0u

4)+45/(t20u
3)+45/(t30u

2)+26/(t40u)+u/t60

Poincaré Polynomial (factored) (t20 + 3t0u+ u2)(t0 + u)5/(t60u
6)
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Grading Ranges

−5 < UGrading < 0

−5 < V Grading < 0

−5 < AGrading < 0

−5 < AGrading0 < 0

GFC−

Number of Generators 28

Number of Edges 193

Poincaré Polynomial 1/t50 + 1/u5 + 5/(t0u
4) + 9/(t20u

3) + 8/(t30u
2) + 4/(t40u)

Poincaré Polynomial (factored) (t30 + 3t20u+ 2t0u
2 + u3)(t0 + u)2/(t50u

5)

Grading Ranges

−5 < UGrading < 0

−5 < V Grading < 0

−5 < AGrading < 0

−5 < AGrading0 < 0

k51

σX [5, 6, 7, 1, 2, 3, 4]

σO [7, 3, 4, 5, 6, 1, 2]

GFC∞

Number of Generators 320

Number of Edges 4767

Poincaré Polynomial 57/t40 + t20/u
6 +7t0/u

5 +22/u4 +42/(t0u
3) + 57/(t20u

2) + 62/(t30u) +

41u/t50 + 22u2/t60 + 7u3/t70 + u4/t80 + 1/(t50u)
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Poincaré Polynomial (factored) (t100 +7t90u+22t80u
2+42t70u

3+57t60u
4+62t50u

5+57t40u
6+

41t30u
7 + 22t20u

8 + 7t0u
9 + u10 + t30u

5)/(t80u
6)

Grading Ranges

−6 < UGrading < 4

−6 < V Grading < 4

−8 < AGrading < 2

−8 < AGrading0 < 2

GFC−

Number of Generators 82

Number of Edges 65

Poincaré Polynomial 5/t40 + t20/u
6 + 6t0/u

5 + 13/u4 + 30/(t0u
3) + 21/(t20u

2) + 2/(t30u) +

u/t50 + u3/t70 + u4/t80 + 1/(t50u)

Poincaré Polynomial (factored) (t100 +6t90u+13t80u
2 +30t70u

3 +21t60u
4 +2t50u

5 +5t40u
6 +

t30u
7 + t0u

9 + u10 + t30u
5)/(t80u

6)

Grading Ranges

−6 < UGrading < 4

−6 < V Grading < 4

−8 < AGrading < 2

−8 < AGrading0 < 2

mk51

σX [2, 1, 7, 6, 5, 4, 3]

σO [7, 6, 5, 4, 3, 2, 1]

GFC∞
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Number of Generators 328

Number of Edges 6062

Poincaré Polynomial 1/t80+ t20/u
10+7t0/u

9+22/u8+43/(t0u
7)+56/(t20u

6)+63/(t30u
5)+

57/(t40u
4)+41/(t50u

3)+21/(t60u
2)+7/(t70u)+1/(t0u

8)+2/(t20u
8)+1/(t40u

6)+1/(t50u
5)+

1/(t60u
4) + 1/(t20u

9) + 1/(t30u
8) + 1/(t40u

7)

Poincaré Polynomial (factored) (t100 +7t90u+22t80u
2+43t70u

3+56t60u
4+63t50u

5+57t40u
6+

41t30u
7+21t20u

8+7t0u
9+u10+t70u

2+2t60u
2+t40u

4+t30u
5+t20u

6+t60u+t50u
2+t40u

3)/(t80u
10)

Grading Ranges

−9 < UGrading < 0

−10 < V Grading < 0

−8 < AGrading < 0

−8 < AGrading0 < 0

GFC−

Number of Generators 44

Number of Edges 193

Poincaré Polynomial 1/t80+3/u8+14/(t30u
5)+1/(t50u

3)+13/(t60u
2)+5/(t70u)+1/(t0u

8)+

2/(t20u
8) + 1/(t40u

6) + 1/(t50u
5) + 1/(t60u

4) + 1/(t20u
9)

Poincaré Polynomial (factored) (3t80u+14t50u
4+ t30u

6+13t20u
7+5t0u

8+u9+ t70u+2t60u+

t40u
3 + t30u

4 + t20u
5 + t60)/(t

8
0u

9)

Grading Ranges

−9 < UGrading < 0

−10 < V Grading < 0

−8 < AGrading < 0
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−8 < AGrading0 < 0

k52

σX [2, 6, 7, 3, 4, 5, 1]

σO [7, 1, 5, 6, 2, 3, 4]

GFC∞

Number of Generators 458

Number of Edges 8318

Poincaré Polynomial 1/t30+u/t40+2/t40+50/t50+2t0/u
6+15/u5+50/(t0u

4)+95/(t20u
3)+

122/(t30u
2) + 95/(t40u) + 15u/t60 + 2u2/t70 + 3/(t30u

3) + 2/(t20u
5) + 3/(t40u

3)

Poincaré Polynomial (factored) (t40u
6 + t30u

7 + 2t30u
6 + 2t80 + 15t70u + 50t60u

2 + 95t50u
3 +

122t40u
4 + 95t30u

5 + 50t20u
6 + 15t0u

7 + 2u8 + 3t40u
3 + 2t50u+ 3t30u

3)/(t70u
6)

Grading Ranges

−6 < UGrading < 2

−6 < V Grading < 2

−7 < AGrading < 1

−7 < AGrading0 < 1

GFC−

Number of Generators 52

Number of Edges 30

Poincaré Polynomial u/t40+2/t40+t0/u
6+6/u5+19/(t0u

4)+7/(t20u
3)+2/(t30u

2)+4/(t40u)+

2u2/t70 + 3/(t30u
3) + 2/(t20u

5) + 3/(t40u
3)

Poincaré Polynomial (factored) (t30u
7+2t30u

6+t80+6t70u+19t60u
2+7t50u

3+2t40u
4+4t30u

5+

2u8 + 3t40u
3 + 2t50u+ 3t30u

3)/(t70u
6)
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Grading Ranges

−6 < UGrading < 2

−6 < V Grading < 2

−7 < AGrading < 1

−7 < AGrading0 < 1

mk52

σX [4, 1, 7, 6, 3, 2, 5]

σO [7, 6, 5, 2, 1, 4, 3]

GFC∞

Number of Generators 450

Number of Edges 8253

Poincaré Polynomial 1/(t30u
2)+2/t70+2t0/u

8+15/u7+49/(t0u
6)+97/(t20u

5)+120/(t30u
4)+

97/(t40u
3) + 50/(t50u

2) + 15/(t60u) + 1/(t30u
5) + 1/(t0u

8)

Poincaré Polynomial (factored) (t40u
6+2t80+15t70u+49t60u

2+97t50u
3+120t40u

4+97t30u
5+

50t20u
6 + 15t0u

7 + 2u8 + t40u
3 + t60)/(t

7
0u

8)

Grading Ranges

−8 < UGrading < 0

−8 < V Grading < 0

−7 < AGrading < 0

−7 < AGrading0 < 0

GFC−

Number of Generators 30

Number of Edges 84
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Poincaré Polynomial 1/t70+1/(t0u
6)+3/(t20u

5)+7/(t30u
4)+5/(t40u

3)+5/(t50u
2)+6/(t60u)+

1/(t30u
5) + 1/(t0u

8)

Poincaré Polynomial (factored) (t60u
2+3t50u

3+7t40u
4+5t30u

5+5t20u
6+6t0u

7+u8+t40u
3+

t60)/(t
7
0u

8)

Grading Ranges

−8 < UGrading < 0

−8 < V Grading < 0

−7 < AGrading < 0

−7 < AGrading0 < 0

k819

σX [3, 2, 1, 7, 6, 5, 4]

σO [7, 6, 5, 4, 3, 2, 1]

GFC∞

Number of Generators 322

Number of Edges 1863

Poincaré Polynomial 1/(t50u
2) + 1/u8 + 5/(t0u

7) + 15/(t20u
6) + 19/(t30u

5) + 15/(t40u
4) +

6/(t50u
3)+1/t90+t30/u

12+7t20/u
11+21t0/u

10+35/u9+35/(t0u
8)+22/(t20u

7)+14/(t30u
6)+

21/(t40u
5)+35/(t50u

4)+34/(t60u
3)+21/(t70u

2)+7/(t80u)+1/(t0u
9)+1/(t30u

7)+1/(t50u
5)+

1/(t60u
4) + 1/(t40u

7) + 1/(t60u
5)

Poincaré Polynomial (factored) (t40u
10+ t90u

4+5t80u
5+15t70u

6+19t60u
7+15t50u

8+6t40u
9+

t120 + 7t110 u+ 21t100 u2 + 35t90u
3 + 35t80u

4 + 22t70u
5 + 14t60u

6 + 21t50u
7 + 35t40u

8 + 34t30u
9 +

21t20u
10 + 7t0u

11 + u12 + t80u
3 + t60u

5 + t40u
7 + t30u

8 + t50u
5 + t30u

7)/(t90u
12)

Grading Ranges
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−9 < UGrading < 0

−12 < V Grading < 0

−9 < AGrading < 0

−9 < AGrading0 < 0

GFC−

Number of Generators 130

Number of Edges 524

Poincaré Polynomial 1/(t50u
2)+1/u8+2/(t0u

7)+5/(t20u
6)+5/(t30u

5)+14/(t40u
4)+6/(t50u

3)+

1/t90+2/u9+5/(t30u
6)+8/(t40u

5)+18/(t50u
4)+30/(t60u

3)+19/(t70u
2)+7/(t80u)+1/(t0u

9)+

1/(t30u
7) + 1/(t50u

5) + 1/(t60u
4) + 1/(t40u

7) + 1/(t60u
5)

Poincaré Polynomial (factored) (t40u
7 + t90u + 2t80u

2 + 5t70u
3 + 5t60u

4 + 14t50u
5 + 6t40u

6 +

2t90 + 5t60u
3 + 8t50u

4 + 18t40u
5 + 30t30u

6 + 19t20u
7 + 7t0u

8 + u9 + t80 + t60u
2 + t40u

4 + t30u
5 +

t50u
2 + t30u

4)/(t90u
9)

Grading Ranges

−9 < UGrading < 0

−12 < V Grading < 0

−9 < AGrading < 0

−9 < AGrading0 < 0

mk819

σX [3, 4, 5, 6, 7, 1, 2]

σO [7, 1, 2, 3, 4, 5, 6]

GFC∞

Number of Generators 320

Number of Edges 2422
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Poincaré Polynomial 14/t30 + t30/u
6 + 7t20/u

5 + 21t0/u
4 + 35/u3 + 35/(t0u

2) + 22/(t20u) +

22u/t40 + 35u2/t50 + 35u3/t60 + 21u4/t70 + 7u5/t80 + u6/t90 + 15/t40 + 1/u4 + 6/(t0u
3) +

15/(t20u
2) + 20/(t30u) + 6u/t50 + u2/t60

Poincaré Polynomial (factored) (t60 + t50u+ t0u
5 + u6 + t30u

2)(t0 + u)6/(t90u
6)

Grading Ranges

−6 < UGrading < 3

−4 < V Grading < 6

−6 < AGrading < 3

−6 < AGrading0 < 3

GFC−

Number of Generators 132

Number of Edges 431

Poincaré Polynomial 4/t30 + t30/u
6 + 6t20/u

5 + 15t0/u
4 + 22/u3 + 25/(t0u

2) + 20/(t20u) +

3u/t40 + 6u2/t50 + u3/t60 + 14/t40 + 8/(t30u) + 6u/t50 + u2/t60

Poincaré Polynomial (factored) (t90+6t80u+15t70u
2+22t60u

3+25t50u
4+20t40u

5+4t30u
6+

3t20u
7 + 6t0u

8 + u9 + 8t30u
5 + 14t20u

6 + 6t0u
7 + u8)/(t60u

6)

Grading Ranges

−6 < UGrading < 3

−4 < V Grading < 6

−6 < AGrading < 3

−6 < AGrading0 < 3

L2a10
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σX [4, 3, 2, 1]

σO [2, 1, 4, 3]

GFC∞

Number of Generators 16

Number of Edges 56

Poincaré Polynomial 1/(t
(3/2)
0 t

(3/2)
1 )+ t

(1/2)
0 t

(1/2)
1 /u4+2t

(1/2)
0 /(t

(1/2)
1 u3)+2t

(1/2)
1 /(t

(1/2)
0 u3)+

t
(1/2)
0 /(t

(3/2)
1 u2) + 4/(t

(1/2)
0 t

(1/2)
1 u2) + t

(1/2)
1 /(t

(3/2)
0 u2) + 2/(t

(1/2)
0 t

(3/2)
1 u) + 2/(t

(3/2)
0 t

(1/2)
1 u)

Poincaré Polynomial (factored) (t0 + u)2(t1 + u)2/(t
(3/2)
0 t

(3/2)
1 u4)

Grading Ranges

−3 < UGrading < 0

−4 < V Grading < 0

−3 < AGrading < 0

−3/2 < AGrading0 < 1/2

−3/2 < AGrading1 < 1/2

GFC−

Number of Generators 8

Number of Edges 15

Poincaré Polynomial 1/(t
(3/2)
0 t

(3/2)
1 )+t

(1/2)
0 /(t

(1/2)
1 u3)+t

(1/2)
0 /(t

(3/2)
1 u2)+1/(t

(1/2)
0 t

(1/2)
1 u2)+

t
(1/2)
1 /(t

(3/2)
0 u2) + 1/(t

(1/2)
0 t

(3/2)
1 u) + 2/(t

(3/2)
0 t

(1/2)
1 u)

Poincaré Polynomial (factored) (t20 + t0u+ t1u+ u2)(t1 + u)/(t
(3/2)
0 t

(3/2)
1 u3)

Grading Ranges

−3 < UGrading < 0
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−4 < V Grading < 0

−3 < AGrading < 0

−3/2 < AGrading0 < 1/2

−3/2 < AGrading1 < 1/2

L2a11

σX [4, 1, 2, 3]

σO [2, 3, 4, 1]

GFC∞

Number of Generators 16

Number of Edges 56

Poincaré Polynomial 2t
(1/2)
0 /t

(1/2)
1 + 2t

(1/2)
1 /t

(1/2)
0 + t

(3/2)
0 t

(3/2)
1 /u3 + 2t

(3/2)
0 t

(1/2)
1 /u2 +

2t
(1/2)
0 t

(3/2)
1 /u2 + t

(3/2)
0 /(t

(1/2)
1 u) + 4t

(1/2)
0 t

(1/2)
1 /u+ t

(3/2)
1 /(t

(1/2)
0 u) + u/(t

(1/2)
0 t

(1/2)
1 )

Poincaré Polynomial (factored) (t0 + u)2(t1 + u)2/(t
(1/2)
0 t

(1/2)
1 u3)

Grading Ranges

−3 < UGrading < 0

−2 < V Grading < 1

0 < AGrading < 3

−1/2 < AGrading0 < 3/2

0 < AGrading1 < 3/2

GFC−

Number of Generators 8

Number of Edges 18

Poincaré Polynomial t
(1/2)
1 /t

(1/2)
0 + t

(3/2)
0 t

(3/2)
1 /u3 + t

(3/2)
0 t

(1/2)
1 /u2 + 2t

(1/2)
0 t

(3/2)
1 /u2 +

3t
(1/2)
0 t

(1/2)
1 /u
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Poincaré Polynomial (factored) (t20t1 + t20u+ 2t0t1u+ 3t0u
2 + u3)t

(1/2)
1 /(t

(1/2)
0 u3)

Grading Ranges

−3 < UGrading < 0

−2 < V Grading < 1

0 < AGrading < 3

−1/2 < AGrading0 < 3/2

0 < AGrading1 < 3/2

L4a10

σX [6, 3, 4, 1, 2, 5]

σO [4, 5, 2, 3, 6, 1]

GFC∞

Number of Generators 128

Number of Edges 1203

Poincaré Polynomial 3/t20+3/t21+6/(t0t1)+t20t1/u
5+t0t

2
1/u

5+3t20/u
4+6t0t1/u

4+3t21/u
4+

12t0/u
3 + 3t20/(t1u

3) + 12t1/u
3 + 3t21/(t0u

3) + t20/(t
2
1u

2) + 10t0/(t1u
2) + 10t1/(t0u

2) +

t21/(t
2
0u

2) + 18/u2 + 12/(t0u) + 3t0/(t
2
1u) + 12/(t1u) + 3t1/(t

2
0u) + u/(t0t

2
1) + u/(t20t1)

Poincaré Polynomial (factored) (t0 + t1)(t0 + u)3(t1 + u)3/(t20t
2
1u

5)

Grading Ranges

−5 < UGrading < 0

−4 < V Grading < 1

−2 < AGrading < 3

−1 < AGrading0 < 2

−1 < AGrading1 < 2
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GFC−

Number of Generators 30

Number of Edges 239

Poincaré Polynomial 1/(t0t1) + t20t1/u
5 + t20/u

4 + 3t0t1/u
4 + t21/u

4 + 6t0/u
3 + 3t1/u

3 +

5t0/(t1u
2) + 3t1/(t0u

2) + 1/u2 + 3/(t0u) + 2/(t1u)

Poincaré Polynomial (factored) (t30t
2
1+t30t1u+3t20t

2
1u+t0t

3
1u+6t20t1u

2+3t0t
2
1u

2+5t20u
3+

t0t1u
3 + 3t21u

3 + 2t0u
4 + 3t1u

4 + u5)/(t0t1u
5)

Grading Ranges

−5 < UGrading < 0

−4 < V Grading < 1

−2 < AGrading < 3

−1 < AGrading0 < 2

−1 < AGrading1 < 2

L4a11

σX [3, 2, 6, 1, 5, 4]

σO [6, 5, 4, 3, 2, 1]

GFC∞

Number of Generators 128

Number of Edges 1119

Poincaré Polynomial 1/(t
(11/2)
0 t

(5/2)
1 ) + t

(1/2)
1 /(t

(1/2)
0 u8) + 2/(t

(1/2)
0 t

(1/2)
1 u7) +

4t
(1/2)
1 /(t

(3/2)
0 u7) + 1/(t

(1/2)
0 t

(3/2)
1 u6) + 9/(t

(3/2)
0 t

(1/2)
1 u6) + 6t

(1/2)
1 /(t

(5/2)
0 u6) +

6/(t
(3/2)
0 t

(3/2)
1 u5) + 16/(t

(5/2)
0 t

(1/2)
1 u5) + 4t

(1/2)
1 /(t

(7/2)
0 u5) + 1/(t

(3/2)
0 t

(5/2)
1 u4) +

14/(t
(5/2)
0 t

(3/2)
1 u4) + 14/(t

(7/2)
0 t

(1/2)
1 u4) + t

(1/2)
1 /(t

(9/2)
0 u4) + 4/(t

(5/2)
0 t

(5/2)
1 u3) +
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16/(t
(7/2)
0 t

(3/2)
1 u3) + 6/(t

(9/2)
0 t

(1/2)
1 u3) + 6/(t

(7/2)
0 t

(5/2)
1 u2) + 9/(t

(9/2)
0 t

(3/2)
1 u2) +

1/(t
(11/2)
0 t

(1/2)
1 u2) + 4/(t

(9/2)
0 t

(5/2)
1 u) + 2/(t

(11/2)
0 t

(3/2)
1 u)

Poincaré Polynomial (factored) (t0t1 + u2)(t0 + u)4(t1 + u)2/(t
(11/2)
0 t

(5/2)
1 u8)

Grading Ranges

−5 < UGrading < 0

−8 < V Grading < 0

−8 < AGrading < 0

−11/2 < AGrading0 < 0

−5/2 < AGrading1 < 0

GFC−

Number of Generators 28

Number of Edges 134

Poincaré Polynomial 1/(t
(11/2)
0 t

(5/2)
1 ) + 1/(t

(5/2)
0 t

(1/2)
1 u5) + 2/(t

(5/2)
0 t

(3/2)
1 u4) +

1/(t
(5/2)
0 t

(5/2)
1 u3) + 4/(t

(7/2)
0 t

(3/2)
1 u3) + 3/(t

(9/2)
0 t

(1/2)
1 u3) + 3/(t

(7/2)
0 t

(5/2)
1 u2) +

7/(t
(9/2)
0 t

(3/2)
1 u2) + 1/(t

(11/2)
0 t

(1/2)
1 u2) + 4/(t

(9/2)
0 t

(5/2)
1 u) + 1/(t

(11/2)
0 t

(3/2)
1 u)

Poincaré Polynomial (factored) (t30t
2
1+2t30t1u+t30u

2+4t20t1u
2+3t0t

2
1u

2+3t20u
3+7t0t1u

3+

t21u
3 + 4t0u

4 + t1u
4 + u5)/(t

(11/2)
0 t

(5/2)
1 u5)

Grading Ranges

−5 < UGrading < 0

−8 < V Grading < 0

−8 < AGrading < 0

−11/2 < AGrading0 < 0

−5/2 < AGrading1 < 0
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L5a10

σX [6, 1, 3, 4, 2, 7, 5]

σO [2, 4, 5, 7, 6, 3, 1]

GFC∞

Number of Generators 512

Number of Edges 10240

Poincaré Polynomial 13/t
(7/2)
0 +6/(t

(5/2)
0 t1)+16t1/t

(9/2)
0 +t21/t

(11/2)
0 +t

(3/2)
0 t21/u

7+t
(5/2)
0 /u6+

2t
(3/2)
0 t1/u

6 + 6t
(1/2)
0 t21/u

6 + 3t
(3/2)
0 /u5 + 13t

(1/2)
0 t1/u

5 + 18t21/(t
(1/2)
0 u5) + 2t31/(t

(3/2)
0 u5) +

14t
(1/2)
0 /u4+t

(3/2)
0 /(t1u

4)+35t1/(t
(1/2)
0 u4)+26t21/(t

(3/2)
0 u4)+8t31/(t

(5/2)
0 u4)+29/(t

(1/2)
0 u3)+

2t
(1/2)
0 /(t1u

3) + 53t1/(t
(3/2)
0 u3) + 33t21/(t

(5/2)
0 u3) + 9t31/(t

(7/2)
0 u3) + 35/(t

(3/2)
0 u2) +

1/(t
(1/2)
0 t1u

2) + 62t1/(t
(5/2)
0 u2) + 26t21/(t

(7/2)
0 u2) + 2t31/(t

(9/2)
0 u2) + 34/(t

(5/2)
0 u) +

5/(t
(3/2)
0 t1u) + 33t1/(t

(7/2)
0 u) + 12t21/(t

(9/2)
0 u) + 6u/t

(9/2)
0 + u/(t

(5/2)
0 t21) + u/(t

(7/2)
0 t1) +

t1u/t
(11/2)
0 + u2/t

(11/2)
0

Poincaré Polynomial (factored) (t70t
4
1 + t80t

2
1u + 2t70t

3
1u + 6t60t

4
1u + 3t70t

2
1u

2 + 13t60t
3
1u

2 +

18t50t
4
1u

2+2t40t
5
1u

2+t70t1u
3+14t60t

2
1u

3+35t50t
3
1u

3+26t40t
4
1u

3+8t30t
5
1u

3+2t60t1u
4+29t50t

2
1u

4+

53t40t
3
1u

4+33t30t
4
1u

4+9t20t
5
1u

4+t50t1u
5+35t40t

2
1u

5+62t30t
3
1u

5+26t20t
4
1u

5+2t0t
5
1u

5+5t40t1u
6+

34t30t
2
1u

6 + 33t20t
3
1u

6 + 12t0t
4
1u

6 + 6t30t1u
7 + 13t20t

2
1u

7 + 16t0t
3
1u

7 + t41u
7 + t30u

8 + t20t1u
8 +

6t0t
2
1u

8 + t31u
8 + t21u

9)/(t
(11/2)
0 t21u

7)

Grading Ranges

−6 < UGrading < 0

−5 < V Grading < 1

−7/2 < AGrading < 5/2

−9/2 < AGrading0 < 1/2

0 < AGrading1 < 3

GFC−
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Number of Generators 30

Number of Edges 78

Poincaré Polynomial 2/t
(7/2)
0 + 2t1/t

(9/2)
0 + t

(1/2)
0 t21/u

6 + t
(1/2)
0 t1/u

5 + 3t21/(t
(1/2)
0 u5) +

t31/(t
(3/2)
0 u5) + t

(1/2)
0 /u4 + 4t1/(t

(1/2)
0 u4) + 4t21/(t

(3/2)
0 u4) + t31/(t

(5/2)
0 u4) + 5t1/(t

(3/2)
0 u3) +

4t21/(t
(5/2)
0 u3) + t1/(t

(7/2)
0 u)

Poincaré Polynomial (factored) (t50t
2
1+ t50t1u+3t40t

2
1u+ t30t

3
1u+ t50u

2+4t40t1u
2+4t30t

2
1u

2+

t20t
3
1u

2 + 5t30t1u
3 + 4t20t

2
1u

3 + t0t1u
5 + 2t0u

6 + 2t1u
6)/(t

(9/2)
0 u6)

Grading Ranges

−6 < UGrading < 0

−5 < V Grading < 1

−7/2 < AGrading < 5/2

−9/2 < AGrading0 < 1/2

0 < AGrading1 < 3

L5a11

σX [3, 6, 5, 7, 1, 2, 4]

σO [5, 4, 2, 3, 6, 7, 1]

GFC∞

Number of Generators 516

Number of Edges 10504

Poincaré Polynomial 1/(t
(1/2)
0 t41)+ 1/(t

(3/2)
0 t21u)+ u/(t

(5/2)
0 t31)+ u/(t

(7/2)
0 t21)+ 3/(t

(1/2)
0 t61)+

7/(t
(3/2)
0 t51) + 13/(t

(5/2)
0 t41) + 13/(t

(7/2)
0 t31) + t1/(t

(1/2)
0 u7) + 7/(t

(1/2)
0 u6) + t

(3/2)
0 /(t21u

6) +

t
(1/2)
0 /(t1u

6)+12/(t
(3/2)
0 u5)+t

(3/2)
0 /(t31u

5)+5t
(1/2)
0 /(t21u

5)+18/(t
(1/2)
0 t1u

5)+9/(t
(5/2)
0 u4)+

7t
(1/2)
0 /(t31u

4) + 33/(t
(1/2)
0 t21u

4) + 35/(t
(3/2)
0 t1u

4) + 1/(t
(7/2)
0 u3) + 5t

(1/2)
0 /(t41u

3) +

30/(t
(1/2)
0 t31u

3) + 63/(t
(3/2)
0 t21u

3) + 28/(t
(5/2)
0 t1u

3) + 3t
(1/2)
0 /(t51u

2) + 21/(t
(1/2)
0 t41u

2) +
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54/(t
(3/2)
0 t31u

2) + 41/(t
(5/2)
0 t21u

2) + 6/(t
(7/2)
0 t1u

2) + 7/(t
(1/2)
0 t51u) + 34/(t

(3/2)
0 t41u) +

29/(t
(5/2)
0 t31u)+12/(t

(7/2)
0 t21u)+5u/(t

(5/2)
0 t51)+4u/(t

(7/2)
0 t41)+u2/(t

(7/2)
0 t51)+1/(t

(1/2)
0 t31u

4)+

1/(t
(5/2)
0 t1u

4)

Poincaré Polynomial (factored) (t20t
4
1u

6 + t30t
2
1u

7 + t0t
3
1u

8 + t41u
8 + t30t

7
1 + t50t

4
1u+ t40t

5
1u+

7t30t
6
1u+ t50t

3
1u

2+5t40t
4
1u

2+18t30t
5
1u

2+12t20t
6
1u

2+7t40t
3
1u

3+33t30t
4
1u

3+35t20t
5
1u

3+9t0t
6
1u

3+

5t40t
2
1u

4+30t30t
3
1u

4+63t20t
4
1u

4+28t0t
5
1u

4+t61u
4+3t40t1u

5+21t30t
2
1u

5+54t20t
3
1u

5+41t0t
4
1u

5+

6t51u
5 + 7t30t1u

6 + 34t20t
2
1u

6 + 29t0t
3
1u

6 + 12t41u
6 + 3t30u

7 + 7t20t1u
7 + 13t0t

2
1u

7 + 13t31u
7 +

5t0t1u
8 + 4t21u

8 + t1u
9 + t30t

3
1u

3 + t0t
5
1u

3)/(t
(7/2)
0 t61u

7)

Grading Ranges

−6 < UGrading < 1

−5 < V Grading < 1

−13/2 < AGrading < 0

−7/2 < AGrading0 < 1/2

−4 < AGrading1 < 0

GFC−

Number of Generators 28

Number of Edges 28

Poincaré Polynomial 1/(t
(1/2)
0 t41) + u/(t

(5/2)
0 t31) + u/(t

(7/2)
0 t21) + 1/(t

(7/2)
0 t31) + 1/(t

(1/2)
0 u6) +

1/(t
(3/2)
0 u5)+1/(t

(1/2)
0 t1u

5)+1/(t
(5/2)
0 u4)+1/(t

(1/2)
0 t21u

4)+4/(t
(3/2)
0 t1u

4)+ t
(1/2)
0 /(t41u

3)+

1/(t
(1/2)
0 t31u

3) + 4/(t
(3/2)
0 t21u

3) + 1/(t
(5/2)
0 t1u

3) + 3/(t
(3/2)
0 t31u

2) + 3/(t
(5/2)
0 t31u) +

1/(t
(1/2)
0 t31u

4) + 1/(t
(5/2)
0 t1u

4)

Poincaré Polynomial (factored) (t30u
6 + t0t1u

7 + t21u
7 + t30t

4
1 + t30t

3
1u + t20t

4
1u + t30t

2
1u

2 +

4t20t
3
1u

2 + t0t
4
1u

2 + t40u
3 + t30t1u

3 + 4t20t
2
1u

3 + t0t
3
1u

3 + 3t20t1u
4 + 3t0t1u

5 + t1u
6 + t30t1u

2 +

t0t
3
1u

2)/(t
(7/2)
0 t41u

6)

81



Grading Ranges

−6 < UGrading < 1

−5 < V Grading < 1

−13/2 < AGrading < 0

−7/2 < AGrading0 < 1/2

−4 < AGrading1 < 0

L6n100

σX [6, 1, 5, 3, 4, 2]

σO [3, 4, 2, 6, 1, 5]

GFC∞

Number of Generators 142

Number of Edges 1182

Poincaré Polynomial 2/(t20t
3
1) + 2/(t30t

2
1) + 1/(t20t

2
1t2) + 2t2/(t

3
0t

3
1) + t2/u

6 + 2t2/(t0u
5) +

2t2/(t1u
5)+ t22/(t0t1u

5)+2/u5+4/(t0u
4)+4/(t1u

4)+1/(t2u
4)+ t2/(t

2
0u

4)+ t2/(t
2
1u

4)+

6t2/(t0t1u
4)+2t22/(t0t

2
1u

4)+2t22/(t
2
0t1u

4)+2/(t20u
3)+2/(t21u

3)+10/(t0t1u
3)+2/(t0t2u

3)+

2/(t1t2u
3) + 7t2/(t0t

2
1u

3) + 7t2/(t
2
0t1u

3) + t22/(t0t
3
1u

3) + 4t22/(t
2
0t

2
1u

3) + t22/(t
3
0t1u

3) +

7/(t0t
2
1u

2) + 7/(t20t1u
2) + 1/(t20t2u

2) + 1/(t21t2u
2) + 4/(t0t1t2u

2) + 2t2/(t0t
3
1u

2) +

10t2/(t
2
0t

2
1u

2) + 2t2/(t
3
0t1u

2) + 2t22/(t
2
0t

3
1u

2) + 2t22/(t
3
0t

2
1u

2) + 1/(t0t
3
1u) + 7/(t20t

2
1u) +

1/(t30t1u)+2/(t0t
2
1t2u)+2/(t20t1t2u)+4t2/(t

2
0t

3
1u)+4t2/(t

3
0t

2
1u)+ t22/(t

3
0t

3
1u)+u/(t30t

3
1)+

1/(t0t1u
4)+ t2/(t0t

2
1u

4)+ t2/(t
2
0t1u

4)+ 1/(t0t
2
1u

3)+ 1/(t20t1u
3)+ t2/(t

2
0t

2
1u

3)+ 1/(t20t
2
1u

2)

Poincaré Polynomial (factored) (t30t
3
1t

2
2+2t30t

3
1t2u+2t30t

2
1t

2
2u+2t20t

3
1t

2
2u+t20t

2
1t

3
2u+t30t

3
1u

2+

4t30t
2
1t2u

2 +4t20t
3
1t2u

2 + t30t1t
2
2u

2 +6t20t
2
1t

2
2u

2 + t0t
3
1t

2
2u

2 +2t20t1t
3
2u

2 +2t0t
2
1t

3
2u

2 +2t30t
2
1u

3 +

2t20t
3
1u

3 +2t30t1t2u
3 +10t20t

2
1t2u

3 +2t0t
3
1t2u

3 +7t20t1t
2
2u

3 +7t0t
2
1t

2
2u

3 + t20t
3
2u

3 +4t0t1t
3
2u

3 +

t21t
3
2u

3+ t30t1u
4+4t20t

2
1u

4+ t0t
3
1u

4+7t20t1t2u
4+7t0t

2
1t2u

4+2t20t
2
2u

4+10t0t1t
2
2u

4+2t21t
2
2u

4+

2t0t
3
2u

4 + 2t1t
3
2u

4 + 2t20t1u
5 + 2t0t

2
1u

5 + t20t2u
5 + 7t0t1t2u

5 + t21t2u
5 + 4t0t

2
2u

5 + 4t1t
2
2u

5 +

82



t32u
5+ t0t1u

6+2t0t2u
6+2t1t2u

6+2t22u
6+ t2u

7+ t20t
2
1t2u

2+ t20t1t
2
2u

2+ t0t
2
1t

2
2u

2+ t20t1t2u
3+

t0t
2
1t2u

3 + t0t1t
2
2u

3 + t0t1t2u
4)/(t30t

3
1t2u

6)

Grading Ranges

−4 < UGrading < 1

−6 < V Grading < 0

−6 < AGrading < 0

−3 < AGrading0 < 0

−3 < AGrading1 < 0

−1 < AGrading2 < 2

GFC−

Number of Generators 42

Number of Edges 168

Poincaré Polynomial 1/(t20t
3
1) + 1/(t30t

2
1) + 2t2/(t

3
0t

3
1) + 2/(t0u

4) + 2/(t1u
4) + 1/(t2u

4) +

1/(t21u
3) + 3/(t0t1u

3) + 2/(t0t2u
3) + 2/(t1t2u

3) + t2/(t0t
2
1u

3) + t22/(t
2
0t

2
1u

3) + 3/(t0t
2
1u

2) +

2/(t20t1u
2)+1/(t20t2u

2)+1/(t21t2u
2)+t2/(t

2
0t

2
1u

2)+t22/(t
3
0t

2
1u

2)+1/(t0t
2
1t2u)+2/(t20t1t2u)+

2t2/(t
2
0t

3
1u)+2t2/(t

3
0t

2
1u)+u/(t30t

3
1)+ t2/(t0t

2
1u

4)+ t2/(t
2
0t1u

4)+1/(t0t
2
1u

3)+1/(t20t1u
3)+

t2/(t
2
0t

2
1u

3) + 1/(t20t
2
1u

2)

Poincaré Polynomial (factored) (t30t
3
1 + 2t30t

2
1t2 + 2t20t

3
1t2 + 2t30t

2
1u + 2t20t

3
1u + t30t1t2u +

3t20t
2
1t2u+ t20t1t

2
2u+ t0t1t

3
2u+ t30t1u

2 + t0t
3
1u

2 +3t20t1t2u
2 +2t0t

2
1t2u

2 + t0t1t
2
2u

2 + t1t
3
2u

2 +

t20t1u
3 + 2t0t

2
1u

3 + 2t0t
2
2u

3 + 2t1t
2
2u

3 + t0t2u
4 + t1t2u

4 + 2t22u
4 + t2u

5 + t20t1t
2
2 + t0t

2
1t

2
2 +

t20t1t2u+ t0t
2
1t2u+ t0t1t

2
2u+ t0t1t2u

2)/(t30t
3
1t2u

4)

Grading Ranges

−4 < UGrading < 1

−6 < V Grading < 0
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−6 < AGrading < 0

−3 < AGrading0 < 0

−3 < AGrading1 < 0

−1 < AGrading2 < 2

L6n110

σX [3, 4, 2, 6, 1, 5]

σO [6, 1, 5, 3, 4, 2]

GFC∞

Number of Generators 144

Number of Edges 1240

Poincaré Polynomial 2/(t20t1) + 1/(t0t
2
2) + 2/(t20t2) + 2/(t0t1t2) + t0t

2
1/u

6 + 2t0t1/u
5 +

2t21/u
5+2t0t

2
1/(t2u

5)+ t1t2/u
5+ t0/u

4+7t1/u
4+ t21/(t0u

4)+ t0t
2
1/(t

2
2u

4)+4t0t1/(t2u
4)+

4t21/(t2u
4)+2t1t2/(t0u

4)+2t2/u
4+7t1/(t0u

3)+2t0t1/(t
2
2u

3)+2t21/(t
2
2u

3)+2t0/(t2u
3)+

10t1/(t2u
3) + 2t21/(t0t2u

3) + 4t2/(t0u
3) + t2/(t1u

3) + t1t2/(t
2
0u

3) + 7/u3 + 10/(t0u
2) +

2/(t1u
2) + 2t1/(t

2
0u

2) + t0/(t
2
2u

2) + 4t1/(t
2
2u

2) + t21/(t0t
2
2u

2) + 7t1/(t0t2u
2) + 7/(t2u

2) +

2t2/(t
2
0u

2) + 2t2/(t0t1u
2) + 4/(t20u) + 4/(t0t1u) + 2t1/(t0t

2
2u) + 2/(t22u) + 7/(t0t2u) +

1/(t1t2u) + t1/(t
2
0t2u) + t2/(t

2
0t1u) + u/(t20t1t2) + t1/u

5 + t1/(t0u
4) + t1/(t2u

4) + 1/u4 +

1/(t0u
3) + t1/(t0t2u

3) + 1/(t2u
3) + 1/(t0t2u

2)

Poincaré Polynomial (factored) (t20t
2
1t2 + t20t

2
1u + t20t1t2u + t0t

2
1t2u + t0t1t

2
2u + t20t1u

2 +

t0t
2
1u

2+3t0t1t2u
2+ t0t

2
2u

2+ t1t
2
2u

2+ t0t1u
3+ t0t2u

3+ t1t2u
3+ t22u

3+ t2u
4+ t0t1t2u)(t0+

u)(t1 + u)(t2 + u)/(t20t1t
2
2u

6)

Grading Ranges

−5 < UGrading < 1

−6 < V Grading < 0
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−4 < AGrading < 2

−2 < AGrading0 < 1

−1 < AGrading1 < 2

−2 < AGrading2 < 1

GFC−

Number of Generators 40

Number of Edges 188

Poincaré Polynomial 2/(t20t1)+1/(t0t
2
2)+1/(t20t2)+t0t

2
1/(t2u

5)+2t0t1/(t2u
4)+2t21/(t2u

4)+

t1/(t0u
3)+2t0t1/(t

2
2u

3)+2t21/(t
2
2u

3)+2t1/(t2u
3)+t2/(t0u

3)+1/u3+1/(t0u
2)+t0/(t

2
2u

2)+

t1/(t
2
2u

2) + t21/(t0t
2
2u

2) + t1/(t0t2u
2) + 2/(t2u

2) + t2/(t
2
0u

2) + 1/(t20u) + 1/(t0t1u) +

t1/(t0t
2
2u)+3/(t0t2u)+u/(t20t1t2)+t1/(t0u

4)+t1/(t2u
4)+1/u4+1/(t0u

3)+t1/(t0t2u
3)+

1/(t2u
3) + 1/(t0t2u

2)

Poincaré Polynomial (factored) (t30t
3
1t2 + 2t30t

2
1t2u + 2t20t

3
1t2u + 2t30t

2
1u

2 + 2t20t
3
1u

2 +

2t20t
2
1t2u

2+ t20t1t
2
2u

2+ t0t
2
1t

2
2u

2+ t0t1t
3
2u

2+ t30t1u
3+ t20t

2
1u

3+ t0t
3
1u

3+2t20t1t2u
3+ t0t

2
1t2u

3+

t0t1t
2
2u

3 + t1t
3
2u

3 + t0t
2
1u

4 + 3t0t1t2u
4 + t0t

2
2u

4 + t1t
2
2u

4 + t0t1u
5 + t1t2u

5 + 2t22u
5 + t2u

6 +

t20t
2
1t2u+ t20t1t

2
2u+ t0t

2
1t

2
2u+ t20t1t2u

2 + t0t
2
1t2u

2 + t0t1t
2
2u

2 + t0t1t2u
3)/(t20t1t

2
2u

5)

Grading Ranges

−5 < UGrading < 1

−6 < V Grading < 0

−4 < AGrading < 2

−2 < AGrading0 < 1

−1 < AGrading1 < 2

−2 < AGrading2 < 1
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L6n101

σX [7, 1, 2, 4, 3, 5, 6]

σO [3, 4, 5, 6, 7, 2, 1]

GFC∞

Number of Generators 288

Number of Edges 5194

Poincaré Polynomial t0t
(1/2)
1 /t

(5/2)
2 + 5t

(3/2)
1 /t

(5/2)
2 + 3t

(5/2)
1 /(t0t

(5/2)
2 ) + t

(7/2)
1 /(t20t

(5/2)
2 ) +

2t0/(t
(1/2)
1 t

(3/2)
2 ) + 9t

(1/2)
1 /t

(3/2)
2 + 13t

(3/2)
1 /(t0t

(3/2)
2 ) + 4t

(5/2)
1 /(t20t

(3/2)
2 ) + 2/(t

(1/2)
1 t

(1/2)
2 ) +

5t
(1/2)
1 /(t0t

(1/2)
2 )+t

(3/2)
1 /(t20t

(1/2)
2 )+t20t

(5/2)
1 t

(1/2)
2 /u6+t0t

(7/2)
1 /(t

(1/2)
2 u5)+2t0t

(5/2)
1 t

(1/2)
2 /u5+

4t
(7/2)
1 t

(1/2)
2 /u5 + t30t

(3/2)
1 /(t

(3/2)
2 u4) + t20t

(5/2)
1 /(t

(3/2)
2 u4) + t0t

(7/2)
1 /(t

(3/2)
2 u4) +

2t20t
(3/2)
1 /(t

(1/2)
2 u4) + 2t0t

(5/2)
1 /(t

(1/2)
2 u4) + 4t

(7/2)
1 /(t

(1/2)
2 u4) + 3t0t

(3/2)
1 t

(1/2)
2 /u4 +

5t
(5/2)
1 t

(1/2)
2 /u4 + 2t

(7/2)
1 t

(1/2)
2 /(t0u

4) + 3t20t
(3/2)
1 /(t

(3/2)
2 u3) + 4t

(7/2)
1 /(t

(3/2)
2 u3) +

7t0t
(3/2)
1 /(t

(1/2)
2 u3) + 11t

(5/2)
1 /(t

(1/2)
2 u3) + 4t

(7/2)
1 /(t0t

(1/2)
2 u3) + 3t

(3/2)
1 t

(1/2)
2 /u3 +

4t
(5/2)
1 t

(1/2)
2 /(t0u

3) + t
(7/2)
1 t

(1/2)
2 /(t20u

3) + t20t
(1/2)
1 /(t

(3/2)
2 u2) + 6t0t

(3/2)
1 /(t

(3/2)
2 u2) +

8t
(5/2)
1 /(t

(3/2)
2 u2) + 2t

(7/2)
1 /(t0t

(3/2)
2 u2) + 4t0t

(1/2)
1 /(t

(1/2)
2 u2) + 10t

(3/2)
1 /(t

(1/2)
2 u2) +

9t
(5/2)
1 /(t0t

(1/2)
2 u2) + 3t

(7/2)
1 /(t20t

(1/2)
2 u2) + t

(1/2)
1 t

(1/2)
2 /u2 + t

(3/2)
1 t

(1/2)
2 /(t0u

2) +

t
(5/2)
1 t

(1/2)
2 /(t20u

2) + 3t0t
(3/2)
1 /(t

(5/2)
2 u) + t

(5/2)
1 /(t

(5/2)
2 u) + 3t0t

(1/2)
1 /(t

(3/2)
2 u) +

8t
(3/2)
1 /(t

(3/2)
2 u) + 12t

(5/2)
1 /(t0t

(3/2)
2 u) + 7t

(1/2)
1 /(t

(1/2)
2 u) + 8t

(3/2)
1 /(t0t

(1/2)
2 u) +

5t
(5/2)
1 /(t20t

(1/2)
2 u) + t

(1/2)
1 t

(1/2)
2 /(t0u) + 4t

(1/2)
1 u/t

(5/2)
2 + 11t

(3/2)
1 u/(t0t

(5/2)
2 ) +

2t
(5/2)
1 u/(t20t

(5/2)
2 ) + 7u/(t

(1/2)
1 t

(3/2)
2 ) + 7t

(1/2)
1 u/(t0t

(3/2)
2 ) + 3t

(3/2)
1 u/(t20t

(3/2)
2 ) +

t
(5/2)
1 u/(t30t

(3/2)
2 )+u/(t0t

(1/2)
1 t

(1/2)
2 )+t

(1/2)
1 u/(t20t

(1/2)
2 )+t

(1/2)
1 u2/t

(7/2)
2 +t

(3/2)
1 u2/(t0t

(7/2)
2 )+

t
(5/2)
1 u2/(t20t

(7/2)
2 ) + 2u2/(t

(1/2)
1 t

(5/2)
2 ) + 5t

(1/2)
1 u2/(t0t

(5/2)
2 ) + 3t

(3/2)
1 u2/(t20t

(5/2)
2 ) +

4u2/(t0t
(1/2)
1 t

(3/2)
2 ) + 3t

(1/2)
1 u2/(t20t

(3/2)
2 ) + t

(3/2)
1 u2/(t30t

(3/2)
2 ) + u3/(t

(1/2)
1 t

(7/2)
2 ) +

u3/(t
(3/2)
1 t

(5/2)
2 ) + 2u3/(t0t

(1/2)
1 t

(5/2)
2 ) + 2t

(1/2)
1 u3/(t20t

(5/2)
2 ) + u3/(t20t

(1/2)
1 t

(3/2)
2 ) +

u4/(t0t
(3/2)
1 t

(5/2)
2 ) + t

(5/2)
1 /(t30t

(3/2)
2 ) + t

(7/2)
1 /(t

(3/2)
2 u4) + t0t

(3/2)
1 /(t

(3/2)
2 u3) +

t
(7/2)
1 /(t0t

(3/2)
2 u3) + t

(5/2)
1 /(t0t

(1/2)
2 u3) + t

(3/2)
1 t

(1/2)
2 /(t0u

3) + t0t
(1/2)
1 /(t

(3/2)
2 u2) +

86



t
(3/2)
1 /(t

(3/2)
2 u2)+3t

(5/2)
1 /(t0t

(3/2)
2 u2)+t

(3/2)
1 /(t0t

(1/2)
2 u2)+t

(3/2)
1 /(t

(5/2)
2 u)+t

(1/2)
1 /(t

(3/2)
2 u)+

2t
(3/2)
1 /(t0t

(3/2)
2 u)

Poincaré Polynomial (factored) (t50t
4
1t

4
2+t40t

5
1t

3
2u+2t40t

4
1t

4
2u+4t30t

5
1t

4
2u+t60t

3
1t

2
2u

2+t50t
4
1t

2
2u

2+

t40t
5
1t

2
2u

2+2t50t
3
1t

3
2u

2+2t40t
4
1t

3
2u

2+4t30t
5
1t

3
2u

2+3t40t
3
1t

4
2u

2+5t30t
4
1t

4
2u

2+2t20t
5
1t

4
2u

2+3t50t
3
1t

2
2u

3+

4t30t
5
1t

2
2u

3+7t40t
3
1t

3
2u

3+11t30t
4
1t

3
2u

3+4t20t
5
1t

3
2u

3+3t30t
3
1t

4
2u

3+4t20t
4
1t

4
2u

3+t0t
5
1t

4
2u

3+t50t
2
1t

2
2u

4+

6t40t
3
1t

2
2u

4+8t30t
4
1t

2
2u

4+2t20t
5
1t

2
2u

4+4t40t
2
1t

3
2u

4+10t30t
3
1t

3
2u

4+9t20t
4
1t

3
2u

4+3t0t
5
1t

3
2u

4+t30t
2
1t

4
2u

4+

t20t
3
1t

4
2u

4+ t0t
4
1t

4
2u

4+3t40t
3
1t2u

5+ t30t
4
1t2u

5+3t40t
2
1t

2
2u

5+8t30t
3
1t

2
2u

5+12t20t
4
1t

2
2u

5+7t30t
2
1t

3
2u

5+

8t20t
3
1t

3
2u

5 +5t0t
4
1t

3
2u

5 + t20t
2
1t

4
2u

5 + t40t
2
1t2u

6 +5t30t
3
1t2u

6 +3t20t
4
1t2u

6 + t0t
5
1t2u

6 +2t40t1t
2
2u

6 +

9t30t
2
1t

2
2u

6+13t20t
3
1t

2
2u

6+4t0t
4
1t

2
2u

6+2t30t1t
3
2u

6+5t20t
2
1t

3
2u

6+t0t
3
1t

3
2u

6+4t30t
2
1t2u

7+11t20t
3
1t2u

7+

2t0t
4
1t2u

7+7t30t1t
2
2u

7+7t20t
2
1t

2
2u

7+3t0t
3
1t

2
2u

7+t41t
2
2u

7+t20t1t
3
2u

7+t0t
2
1t

3
2u

7+t30t
2
1u

8+t20t
3
1u

8+

t0t
4
1u

8+2t30t1t2u
8+5t20t

2
1t2u

8+3t0t
3
1t2u

8+4t20t1t
2
2u

8+3t0t
2
1t

2
2u

8+t31t
2
2u

8+t30t1u
9+t30t2u

9+

2t20t1t2u
9 + 2t0t

2
1t2u

9 + t0t1t
2
2u

9 + t20t2u
10 + t30t

5
1t

2
2u

2 + t40t
3
1t

2
2u

3 + t20t
5
1t

2
2u

3 + t20t
4
1t

3
2u

3 +

t20t
3
1t

4
2u

3 + t40t
2
1t

2
2u

4 + t30t
3
1t

2
2u

4 + 3t20t
4
1t

2
2u

4 + t20t
3
1t

3
2u

4 + t30t
3
1t2u

5 + t30t
2
1t

2
2u

5 + 2t20t
3
1t

2
2u

5 +

t41t
2
2u

6)/(t30t
(3/2)
1 t

(7/2)
2 u6)

Grading Ranges

−6 < UGrading < 1

−4 < V Grading < 4

−2 < AGrading < 5

−3 < AGrading0 < 3

0 < AGrading1 < 7/2

−5/2 < AGrading2 < 1/2

GFC−

Number of Generators 82

Number of Edges 194

Poincaré Polynomial t20t
(5/2)
1 t

(1/2)
2 /u6 + t0t

(7/2)
1 /(t

(1/2)
2 u5) + 2t0t

(5/2)
1 t

(1/2)
2 /u5 +

3t
(7/2)
1 t

(1/2)
2 /u5 + t30t

(3/2)
1 /(t

(3/2)
2 u4) + t20t

(5/2)
1 /(t

(3/2)
2 u4) + t0t

(7/2)
1 /(t

(3/2)
2 u4) +
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t20t
(3/2)
1 /(t

(1/2)
2 u4) + 2t0t

(5/2)
1 /(t

(1/2)
2 u4) + 4t

(7/2)
1 /(t

(1/2)
2 u4) + t0t

(3/2)
1 t

(1/2)
2 /u4 +

4t
(5/2)
1 t

(1/2)
2 /u4 + 2t

(7/2)
1 t

(1/2)
2 /(t0u

4) + 2t20t
(3/2)
1 /(t

(3/2)
2 u3) + t

(7/2)
1 /(t

(3/2)
2 u3) +

4t0t
(3/2)
1 /(t

(1/2)
2 u3) + 5t

(5/2)
1 /(t

(1/2)
2 u3) + 3t

(7/2)
1 /(t0t

(1/2)
2 u3) + 2t

(3/2)
1 t

(1/2)
2 /u3 +

3t
(5/2)
1 t

(1/2)
2 /(t0u

3) + t
(7/2)
1 t

(1/2)
2 /(t20u

3) + t20t
(1/2)
1 /(t

(3/2)
2 u2) + 4t0t

(3/2)
1 /(t

(3/2)
2 u2) +

t
(5/2)
1 /(t

(3/2)
2 u2) + t

(7/2)
1 /(t0t

(3/2)
2 u2) + t0t

(1/2)
1 /(t

(1/2)
2 u2) + 3t

(3/2)
1 /(t

(1/2)
2 u2) +

4t
(5/2)
1 /(t0t

(1/2)
2 u2) + 2t

(7/2)
1 /(t20t

(1/2)
2 u2) + t

(3/2)
1 /(t

(3/2)
2 u) + t

(5/2)
1 /(t0t

(3/2)
2 u) +

2t
(3/2)
1 /(t0t

(1/2)
2 u) + 3t

(3/2)
1 u/(t0t

(5/2)
2 ) + t

(1/2)
1 u/(t0t

(3/2)
2 ) + t

(5/2)
1 /(t30t

(3/2)
2 ) +

t0t
(3/2)
1 /(t

(3/2)
2 u3) + t

(7/2)
1 /(t0t

(3/2)
2 u3) + t

(3/2)
1 /(t

(3/2)
2 u2) + 3t

(5/2)
1 /(t0t

(3/2)
2 u2) +

t
(3/2)
1 /(t0t

(1/2)
2 u2) + t

(3/2)
1 /(t

(5/2)
2 u) + t

(1/2)
1 /(t

(3/2)
2 u) + 2t

(3/2)
1 /(t0t

(3/2)
2 u)

Poincaré Polynomial (factored) (t50t
2
1t

3
2+t40t

3
1t

2
2u+2t40t

2
1t

3
2u+3t30t

3
1t

3
2u+t60t1t2u

2+t50t
2
1t2u

2+

t40t
3
1t2u

2 + t50t1t
2
2u

2 +2t40t
2
1t

2
2u

2 +4t30t
3
1t

2
2u

2 + t40t1t
3
2u

2 +4t30t
2
1t

3
2u

2 +2t20t
3
1t

3
2u

2 +2t50t1t2u
3 +

t30t
3
1t2u

3 + 4t40t1t
2
2u

3 + 5t30t
2
1t

2
2u

3 + 3t20t
3
1t

2
2u

3 + 2t30t1t
3
2u

3 + 3t20t
2
1t

3
2u

3 + t0t
3
1t

3
2u

3 + t50t2u
4 +

4t40t1t2u
4 + t30t

2
1t2u

4 + t20t
3
1t2u

4 + t40t
2
2u

4 + 3t30t1t
2
2u

4 + 4t20t
2
1t

2
2u

4 + 2t0t
3
1t

2
2u

4 + t30t1t2u
5 +

t20t
2
1t2u

5+2t20t1t
2
2u

5+3t20t1u
7+t20t2u

7+t40t1t2u
3+t20t

3
1t2u

3+t30t1t2u
4+3t20t

2
1t2u

4+t20t1t
2
2u

4+

t30t1u
5 + t30t2u

5 + 2t20t1t2u
5 + t21t2u

6)t
(1/2)
1 /(t30t

(5/2)
2 u6)

Grading Ranges

−6 < UGrading < 1

−4 < V Grading < 4

−2 < AGrading < 5

−3 < AGrading0 < 3

0 < AGrading1 < 7/2

−5/2 < AGrading2 < 1/2

L6n111

σX [2, 6, 1, 5, 3, 4]

σO [5, 3, 4, 2, 6, 1]
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GFC∞

Number of Generators 142

Number of Edges 1139

Poincaré Polynomial 2/(t31t
2
2) + 2/(t0t

2
1t

2
2) + 2/(t0t

3
1t2) + 1/(t20t

2
1t2) + t2/u

6 + t0/(t1u
5) +

2t2/(t0u
5)+2t2/(t1u

5)+2/u5+4/(t0u
4)+2t0/(t

2
1u

4)+7/(t1u
4)+2t0/(t1t2u

4)+1/(t2u
4)+

t2/(t
2
0u

4) + t2/(t
2
1u

4) + 4t2/(t0t1u
4) + 2/(t20u

3) + t0/(t
3
1u

3) + 7/(t21u
3) + 9/(t0t1u

3) +

t0/(t1t
2
2u

3)+2/(t0t2u
3)+4t0/(t

2
1t2u

3)+7/(t1t2u
3)+2t2/(t0t

2
1u

3)+2t2/(t
2
0t1u

3)+2/(t31u
2)+

7/(t0t
2
1u

2)+4/(t20t1u
2)+2t0/(t

2
1t

2
2u

2)+2/(t1t
2
2u

2)+1/(t20t2u
2)+2t0/(t

3
1t2u

2)+10/(t21t2u
2)+

7/(t0t1t2u
2)+ t2/(t

2
0t

2
1u

2)+1/(t0t
3
1u)+2/(t20t

2
1u)+ t0/(t

3
1t

2
2u)+4/(t21t

2
2u)+1/(t0t1t

2
2u)+

4/(t31t2u) + 7/(t0t
2
1t2u) + 2/(t20t1t2u) + u/(t0t

3
1t

2
2) + 1/(t1u

5) + 1/(t21u
4) + 1/(t1t2u

4) +

1/(t0t
2
1u

3) + 1/(t21t2u
3) + 1/(t0t1t2u

3) + 1/(t0t
2
1t2u

2)

Poincaré Polynomial (factored) (t20t
3
1t

3
2 + t30t

2
1t

2
2u + 2t20t

3
1t

2
2u + 2t20t

2
1t

3
2u + 2t0t

3
1t

3
2u +

2t30t
2
1t2u

2 + t20t
3
1t2u

2 + 2t30t1t
2
2u

2 + 7t20t
2
1t

2
2u

2 + 4t0t
3
1t

2
2u

2 + t20t1t
3
2u

2 + 4t0t
2
1t

3
2u

2 + t31t
3
2u

2 +

t30t
2
1u

3 + 4t30t1t2u
3 + 7t20t

2
1t2u

3 + 2t0t
3
1t2u

3 + t30t
2
2u

3 + 7t20t1t
2
2u

3 + 9t0t
2
1t

2
2u

3 + 2t31t
2
2u

3 +

2t0t1t
3
2u

3 + 2t21t
3
2u

3 + 2t30t1u
4 + 2t20t

2
1u

4 + 2t30t2u
4 + 10t20t1t2u

4 + 7t0t
2
1t2u

4 + t31t2u
4 +

2t20t
2
2u

4 + 7t0t1t
2
2u

4 + 4t21t
2
2u

4 + t1t
3
2u

4 + t30u
5 + 4t20t1u

5 + t0t
2
1u

5 + 4t20t2u
5 + 7t0t1t2u

5 +

2t21t2u
5+ t0t

2
2u

5+2t1t
2
2u

5+2t20u
6+2t0t1u

6+2t0t2u
6+ t1t2u

6+ t0u
7+ t20t

2
1t

2
2u+ t20t

2
1t2u

2+

t20t1t
2
2u

2 + t20t1t2u
3 + t0t

2
1t2u

3 + t0t1t
2
2u

3 + t0t1t2u
4)/(t20t

3
1t

2
2u

6)

Grading Ranges

−5 < UGrading < 1

−6 < V Grading < 0

−6 < AGrading < 0

−2 < AGrading0 < 1

−3 < AGrading1 < 0

−2 < AGrading2 < 1
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GFC−

Number of Generators 36

Number of Edges 91

Poincaré Polynomial 2/(t31t
2
2)+1/(t0t

3
1t2)+1/(t0u

4)+1/(t1u
4)+t0/(t1t2u

4)+t2/(t0t1u
4)+

2/(t20u
3)+1/(t0t1u

3)+2t2/(t
2
0t1u

3)+3/(t0t
2
1u

2)+1/(t20t2u
2)+ t0/(t

3
1t2u

2)+1/(t21t2u
2)+

1/(t0t1t2u
2)+ t2/(t

2
0t

2
1u

2)+2/(t20t
2
1u)+2/(t21t

2
2u)+3/(t31t2u)+1/(t20t1t2u)+u/(t0t

3
1t

2
2)+

1/(t1u
5) + 1/(t21u

4) + 1/(t1t2u
4) + 1/(t0t

2
1u

3) + 1/(t21t2u
3) + 1/(t0t1t2u

3) + 1/(t0t
2
1t2u

2)

Poincaré Polynomial (factored) (t30t
2
1t2u+t20t

2
1t

2
2u+t0t

3
1t

2
2u+t0t

2
1t

3
2u+t0t

2
1t

2
2u

2+2t31t
2
2u

2+

2t21t
3
2u

2 + t30t2u
3 + t20t1t2u

3 + t0t
2
1t2u

3 + t31t2u
3 + 3t0t1t

2
2u

3 + t1t
3
2u

3 + 2t20t1u
4 + 3t20t2u

4 +

t21t2u
4+2t1t

2
2u

4+2t20u
5+ t0t2u

5+ t0u
6+ t20t

2
1t

2
2+ t20t

2
1t2u+ t20t1t

2
2u+ t20t1t2u

2+ t0t
2
1t2u

2+

t0t1t
2
2u

2 + t0t1t2u
3)/(t20t

3
1t

2
2u

5)

Grading Ranges

−5 < UGrading < 1

−6 < V Grading < 0

−6 < AGrading < 0

−2 < AGrading0 < 1

−3 < AGrading1 < 0

−2 < AGrading2 < 1

L7n11

σX [3, 4, 2, 5, 7, 1, 6]

σO [7, 1, 6, 3, 4, 5, 2]

GFC∞

Number of Generators 320

Number of Edges 4480
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Poincaré Polynomial 15/(t
(7/2)
0 t21) + 8/(t

(9/2)
0 t1) + t

(1/2)
0 t1/u

7 + t
(1/2)
0 /u6 + 5t1/(t

(1/2)
0 u6) +

t21/(t
(3/2)
0 u6)+7/(t

(1/2)
0 u5)+ t

(1/2)
0 /(t1u

5)+14t1/(t
(3/2)
0 u5)+ t21/(t

(5/2)
0 u5)+22/(t

(3/2)
0 u4)+

5/(t
(1/2)
0 t1u

4) + 18t1/(t
(5/2)
0 u4) + 2t21/(t

(7/2)
0 u4) + 34/(t

(5/2)
0 u3) + 5/(t

(1/2)
0 t21u

3) +

20/(t
(3/2)
0 t1u

3) + 6t1/(t
(7/2)
0 u3) + t21/(t

(9/2)
0 u3) + 18/(t

(7/2)
0 u2) + 11/(t

(3/2)
0 t21u

2) +

35/(t
(5/2)
0 t1u

2)+2t1/(t
(9/2)
0 u2)+8/(t

(9/2)
0 u)+11/(t

(5/2)
0 t21u)+28/(t

(7/2)
0 t1u)+6u/(t

(9/2)
0 t21)+

u/(t
(11/2)
0 t1)+u2/(t

(11/2)
0 t21)+ t1/(t

(3/2)
0 u6)+ 3/(t

(3/2)
0 u5)+ 1/(t

(1/2)
0 t1u

5)+ t1/(t
(5/2)
0 u5)+

5/(t
(5/2)
0 u4) + 4/(t

(3/2)
0 t1u

4) + t1/(t
(7/2)
0 u4) + 3/(t

(7/2)
0 u3) + 7/(t

(5/2)
0 t1u

3) + 2/(t
(9/2)
0 u2) +

3/(t
(7/2)
0 t1u

2) + 1/(t
(7/2)
0 t21u)

Poincaré Polynomial (factored) (t60t
3
1+t60t

2
1u+5t50t

3
1u+t40t

4
1u+t60t1u

2+7t50t
2
1u

2+14t40t
3
1u

2+

t30t
4
1u

2+5t50t1u
3+22t40t

2
1u

3+18t30t
3
1u

3+2t20t
4
1u

3+5t50u
4+20t40t1u

4+34t30t
2
1u

4+6t20t
3
1u

4+

t0t
4
1u

4 +11t40u
5 +35t30t1u

5 +18t20t
2
1u

5 +2t0t
3
1u

5 +11t30u
6 +28t20t1u

6 +8t0t
2
1u

6 +15t20u
7 +

8t0t1u
7+6t0u

8+ t1u
8+u9+ t40t

3
1u+ t50t1u

2+3t40t
2
1u

2+ t30t
3
1u

2+4t40t1u
3+5t30t

2
1u

3+ t20t
3
1u

3+

7t30t1u
4 + 3t20t

2
1u

4 + 3t20t1u
5 + 2t0t

2
1u

5 + t20u
6)/(t

(11/2)
0 t21u

7)

Grading Ranges

−6 < UGrading < 0

−6 < V Grading < 0

−11/2 < AGrading < 0

−9/2 < AGrading0 < 0

−2 < AGrading1 < 2

GFC−

Number of Generators 84

Number of Edges 325

Poincaré Polynomial 3/(t
(7/2)
0 t21)+1/(t

(9/2)
0 t1)+2/(t

(1/2)
0 u5)+3t1/(t

(3/2)
0 u5)+2/(t

(3/2)
0 u4)+

10t1/(t
(5/2)
0 u4)+t21/(t

(7/2)
0 u4)+10/(t

(5/2)
0 u3)+3/(t

(3/2)
0 t1u

3)+4t1/(t
(7/2)
0 u3)+t21/(t

(9/2)
0 u3)+

5/(t
(7/2)
0 u2) + 5/(t

(5/2)
0 t1u

2) + t1/(t
(9/2)
0 u2) + 3/(t

(9/2)
0 u) + 2/(t

(7/2)
0 t1u) + t1/(t

(3/2)
0 u6) +
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3/(t
(3/2)
0 u5) + t1/(t

(5/2)
0 u5) + 4/(t

(5/2)
0 u4) + 3/(t

(3/2)
0 t1u

4) + t1/(t
(7/2)
0 u4) + 2/(t

(7/2)
0 u3) +

7/(t
(5/2)
0 t1u

3) + 2/(t
(9/2)
0 u2) + 3/(t

(7/2)
0 t1u

2) + 1/(t
(7/2)
0 t21u)

Poincaré Polynomial (factored) (2t40t
2
1u+3t30t

3
1u+2t30t

2
1u

2+10t20t
3
1u

2+ t0t
4
1u

2+3t30t1u
3+

10t20t
2
1u

3 + 4t0t
3
1u

3 + t41u
3 + 5t20t1u

4 + 5t0t
2
1u

4 + t31u
4 + 2t0t1u

5 + 3t21u
5 + 3t0u

6 + t1u
6 +

t30t
3
1 + 3t30t

2
1u+ t20t

3
1u+ 3t30t1u

2 + 4t20t
2
1u

2 + t0t
3
1u

2 + 7t20t1u
3 + 2t0t

2
1u

3 + 3t0t1u
4 + 2t21u

4 +

t0u
5)/(t

(9/2)
0 t21u

6)

Grading Ranges

−6 < UGrading < 0

−6 < V Grading < 0

−11/2 < AGrading < 0

−9/2 < AGrading0 < 0

−2 < AGrading1 < 2

L7n20

σX [4, 7, 2, 1, 3, 5, 6]

σO [1, 3, 5, 4, 6, 7, 2]

GFC∞

Number of Generators 516

Number of Edges 8353

Poincaré Polynomial t20/(t
(5/2)
1 u) + 2t0/t

(7/2)
1 + 3t0/t

(11/2)
1 + 18/t

(9/2)
1 + 15/(t0t

(7/2)
1 ) +

t20t
(1/2)
1 /u7 +6t20/(t

(1/2)
1 u6) + 3t0t

(1/2)
1 /u6 +15t20/(t

(3/2)
1 u5) + 18t0/(t

(1/2)
1 u5) + 3t

(1/2)
1 /u5 +

21t20/(t
(5/2)
1 u4) + 45t0/(t

(3/2)
1 u4) + 18/(t

(1/2)
1 u4) + t

(1/2)
1 /(t0u

4) + 15t20/(t
(7/2)
1 u3) +

61t0/(t
(5/2)
1 u3) + 45/(t

(3/2)
1 u3) + 6/(t0t

(1/2)
1 u3) + 6t20/(t

(9/2)
1 u2) + 43t0/(t

(7/2)
1 u2) +

60/(t
(5/2)
1 u2)+15/(t0t

(3/2)
1 u2)+t20/(t

(11/2)
1 u)+18t0/(t

(9/2)
1 u)+45/(t

(7/2)
1 u)+20/(t0t

(5/2)
1 u)+

3u/t
(11/2)
1 + 6u/(t0t

(9/2)
1 ) + u2/(t0t

(11/2)
1 ) + t0/(t

(5/2)
1 u4)
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Poincaré Polynomial (factored) (t30t
3
1u

6 + 2t20t
2
1u

7 + t30t
6
1 + 6t30t

5
1u + 3t20t

6
1u + 15t30t

4
1u

2 +

18t20t
5
1u

2+3t0t
6
1u

2+21t30t
3
1u

3+45t20t
4
1u

3+18t0t
5
1u

3+t61u
3+15t30t

2
1u

4+61t20t
3
1u

4+45t0t
4
1u

4+

6t51u
4 + 6t30t1u

5 + 43t20t
2
1u

5 + 60t0t
3
1u

5 + 15t41u
5 + t30u

6 + 18t20t1u
6 + 45t0t

2
1u

6 + 20t31u
6 +

3t20u
7 + 18t0t1u

7 + 15t21u
7 + 3t0u

8 + 6t1u
8 + u9 + t20t

3
1u

3)/(t0t
(11/2)
1 u7)

Grading Ranges

−6 < UGrading < 1

−6 < V Grading < 1

−11/2 < AGrading < 3/2

−1 < AGrading0 < 2

−11/2 < AGrading1 < 1/2

GFC−

Number of Generators 34

Number of Edges 46

Poincaré Polynomial 2t0/t
(7/2)
1 + t20/(t

(1/2)
1 u6) + 4t20/(t

(3/2)
1 u5) + t0/(t

(1/2)
1 u5) + t

(1/2)
1 /u5 +

t20/(t
(5/2)
1 u4) + 5t0/(t

(3/2)
1 u4) + 3/(t

(1/2)
1 u4) + t20/(t

(7/2)
1 u3) + 3t0/(t

(5/2)
1 u3) + 3/(t

(3/2)
1 u3) +

1/(t0t
(1/2)
1 u3) + 4/(t

(5/2)
1 u2) + 1/(t

(7/2)
1 u) + 1/(t0t

(5/2)
1 u) + u/t

(11/2)
1 + t0/(t

(5/2)
1 u4)

Poincaré Polynomial (factored) (2t20t
2
1u

6 + t30t
5
1 + 4t30t

4
1u + t20t

5
1u + t0t

6
1u + t30t

3
1u

2 +

5t20t
4
1u

2 + 3t0t
5
1u

2 + t30t
2
1u

3 + 3t20t
3
1u

3 + 3t0t
4
1u

3 + t51u
3 + 4t0t

3
1u

4 + t0t
2
1u

5 + t31u
5 + t0u

7 +

t20t
3
1u

2)/(t0t
(11/2)
1 u6)

Grading Ranges

−6 < UGrading < 1

−6 < V Grading < 1

−11/2 < AGrading < 3/2

−1 < AGrading0 < 2
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−11/2 < AGrading1 < 1/2

L7n21

σX [3, 5, 1, 6, 7, 2, 4]

σO [7, 2, 4, 3, 5, 6, 1]

GFC∞

Number of Generators 512

Number of Edges 9731

Poincaré Polynomial 3t0/t
(13/2)
1 + 11/t

(11/2)
1 + 19/(t0t

(9/2)
1 ) + 3/(t20t

(7/2)
1 ) + t20/(t

(1/2)
1 u7) +

2t20/(t
(3/2)
1 u6)+5t0/(t

(1/2)
1 u6)+2t

(1/2)
1 /u6+8t20/(t

(5/2)
1 u5)+19t0/(t

(3/2)
1 u5)+6/(t

(1/2)
1 u5)+

3t
(1/2)
1 /(t0u

5) + 10t20/(t
(7/2)
1 u4) + 36t0/(t

(5/2)
1 u4) + 33/(t

(3/2)
1 u4) + 5/(t0t

(1/2)
1 u4) +

7t20/(t
(9/2)
1 u3) + 43t0/(t

(7/2)
1 u3) + 61/(t

(5/2)
1 u3) + 13/(t0t

(3/2)
1 u3) + 2/(t20t

(1/2)
1 u3) +

t20/(t
(11/2)
1 u2) + 33t0/(t

(9/2)
1 u2) + 63/(t

(7/2)
1 u2) + 29/(t0t

(5/2)
1 u2) + t20/(t

(13/2)
1 u) +

10t0/(t
(11/2)
1 u)+35/(t

(9/2)
1 u)+36/(t0t

(7/2)
1 u)+2/(t20t

(5/2)
1 u)+3u/t

(13/2)
1 +5u/(t0t

(11/2)
1 )+

u/(t20t
(9/2)
1 ) + u2/(t0t

(13/2)
1 )

Poincaré Polynomial (factored) (t40t
6
1 + 2t40t

5
1u + 5t30t

6
1u + 2t20t

7
1u + 8t40t

4
1u

2 + 19t30t
5
1u

2 +

6t20t
6
1u

2 + 3t0t
7
1u

2 + 10t40t
3
1u

3 + 36t30t
4
1u

3 + 33t20t
5
1u

3 + 5t0t
6
1u

3 + 7t40t
2
1u

4 + 43t30t
3
1u

4 +

61t20t
4
1u

4 +13t0t
5
1u

4 +2t61u
4 + t40t1u

5 +33t30t
2
1u

5 +63t20t
3
1u

5 +29t0t
4
1u

5 + t40u
6 +10t30t1u

6 +

35t20t
2
1u

6 + 36t0t
3
1u

6 + 2t41u
6 + 3t30u

7 + 11t20t1u
7 + 19t0t

2
1u

7 + 3t31u
7 + 3t20u

8 + 5t0t1u
8 +

t21u
8 + t0u

9)/(t20t
(13/2)
1 u7)

Grading Ranges

−6 < UGrading < 1

−6 < V Grading < 1

−13/2 < AGrading < 1/2

−2 < AGrading0 < 2
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−13/2 < AGrading1 < 1/2

GFC−

Number of Generators 30

Number of Edges 0

Poincaré Polynomial t
(1/2)
1 /u6+2t20/(t

(5/2)
1 u5)+t0/(t

(3/2)
1 u5)+2/(t

(1/2)
1 u5)+2t

(1/2)
1 /(t0u

5)+

t20/(t
(7/2)
1 u4) + 7t0/(t

(5/2)
1 u4) + 5/(t

(3/2)
1 u4) + 1/(t0t

(1/2)
1 u4) + t0/(t

(7/2)
1 u3) + 1/(t

(5/2)
1 u3) +

1/(t0t
(3/2)
1 u3) + 1/(t

(9/2)
1 u) + 2/(t0t

(7/2)
1 u) + 1/(t20t

(5/2)
1 u) + u/t

(13/2)
1

Poincaré Polynomial (factored) (t20t
7
1+2t40t

4
1u+t30t

5
1u+2t20t

6
1u+2t0t

7
1u+t40t

3
1u

2+7t30t
4
1u

2+

5t20t
5
1u

2 + t0t
6
1u

2 + t30t
3
1u

3 + t20t
4
1u

3 + t0t
5
1u

3 + t20t
2
1u

5 + 2t0t
3
1u

5 + t41u
5 + t20u

7)/(t20t
(13/2)
1 u6)

Grading Ranges

−6 < UGrading < 1

−6 < V Grading < 1

−13/2 < AGrading < 1/2

−2 < AGrading0 < 2

−13/2 < AGrading1 < 1/2
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APPENDIX A

PERMUTATION CODE

The following Python code is my implementation of the symmetric group that is used occa-

sionally to support the other programs. The code is included here without exposition and

explanation as in the primary sections.

import copy

import sys

import math

class perm: #takes a list of integers and makes it a permutation type with standard

permutation↪→

#group operation. Will copy argument if given a perm instead of a list

datatype.↪→

def __init__(self, lst = [1]): #initialization just loads the list into the

self.value↪→

check_if_valid(lst)

if type(lst) == perm:

self.value = lst.value.copy()

else:

self.value = lst.copy()

def __str__(self):

return str(self.value)

def __repr__(self):

return str(self.value)

def __getitem__(self, i):

return self.value[i- 1]

def __setitem__(self, i, val):

self.value[i- 1] = val

def __mul__(self, other): #self o other as permutation composition, also loads this

into the * notation so sig*phi works↪→

temp_sig = self.value.copy()

temp_phi = other.value.copy()

temp_sig, temp_phi = match_sizes(temp_sig, temp_phi)

n = len(temp_phi)
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result = temp_sig.copy()

for i in range(n):

result[i] = temp_sig[temp_phi[i] - 1]

return perm(result)

def __len__(self):

return len(self.value)

def __eq__(self, other): #lets us compare permutations

if type(other) != perm:

return False

if self.value == other.value:

return True

else:

return False

def copy(self):

newCopy = perm(self.value)

return newCopy

def inverse(self): #Finding sig^- 1

result = identity_perm(len(self.value))

for i in range(1,len(self.value)+1):

result[self[i]] = i

return result

def __pow__(self, n): #computes sig**n and loads it into the ** notation

temp_sig, temp_id = match_sizes(self.value.copy(), [1])

result = perm(temp_id)

if n >= 0:

for i in range(n):

result = self * result

return result

else:

inv = self.inverse()

for i in range(-n):

result = inv * result

return result

def size(self):

return len(self.value)

def cycles(self):

#returns a tuple of tuples representing the cycle notation for
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cycle_collection = [] #the given permutation for example [2, 1, 3, 5, 6, 4] -->

((1, 2)(3)(4,5,6)↪→

counted = []

for x in range(self.size()):

current = x + 1

current_cycle = []

while current not in counted:

current_cycle.append(current)

counted.append(current)

current = self.value[current - 1]

if len(current_cycle) > 0:

cycle_collection.append(tuple(current_cycle))

return tuple(cycle_collection)

def reduce_at(self, position): #removes an element that maps to itself and

renumbers the permutation so its consistent↪→

if self.value[position - 1] == position:

result = []

for x in self.value:

if x < position:

result.append(x)

elif x > position:

result.append(x- 1)

return perm(result)

else:

raise ValueError("Cannot reduce at given value - given value is not fixed

under the permutation" )↪→

def collapse_at(self, position): #pass this function the i s.t. you want to remove

sigma(i)↪→

original_value = self.value[position - 1]

result = []

reference = self.value.copy()

for x in reference:

if x < original_value:

result.append(x)

elif x > original_value:

result.append(x - 1)

return perm(result)

def widen_at(self, position = 1, value = 1): #inverse of the reduce function -

widens a permutation by adding i -> i in↪→

reference = self.value.copy() #the middle of a permutation and renumbers the

inputs and outputs that are↪→

size = len(reference)+1 # larger than i accordingly.
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reference.append(size) # Ex: [1, 3, 4, 6, 2, 5] widen at 4 --> [1, 3,

5, 4, 7, 2, 6]↪→

result = [] #This operation isn't very natural in

permutations but it is in the context of grids↪→

for i in range(size):

if i+1 < position:

if reference[i] < value:

result.append(reference[i])

else:

result.append(reference[i] +1)

elif i+1 > position:

if reference[i- 1] < value:

result.append(reference[i- 1])

else:

result.append(reference[i- 1] +1)

else:

result.append(value)

return perm(result)

def identity_perm(n): #produces perm data type of [1, 2, 3 ... n]

temp_list = []

for i in range(n):

temp_list.append(i+1)

return perm(temp_list)

def extend_perm(sig, n, isPerm = False): #Extends a permutation to length n - will not

shorten a given permutation↪→

check_if_valid(sig) #accepts lists and perms returning the same

type as given↪→

if type(sig) == list:

size = len(sig)

if n <= size:

if isPerm:

return perm(sig)

return sig

extended_perm = sig

for i in range(size+1, n+1):

extended_perm.append(i)

if isPerm:

return perm(extended_perm)

return extended_perm

else:

return extend_perm(sig.value, n, True)

def match_sizes(sigma, phi):
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#extends the sigma and phi as necessary, adding elements mapping to themselves

#accepts lists and perms returning the same type as given

check_if_valid(sigma)

check_if_valid(phi)

new_sigma = perm(sigma)

new_phi = perm(phi)

fin_sigma = extend_perm(new_sigma, len(phi))

fin_phi = extend_perm(new_phi, len(sigma))

return (type(sigma)(fin_sigma.value), type(phi)(fin_phi.value))

def check_if_valid(sig): #Running collection of possible errors for given permutation

arguments↪→

if not ((type(sig) == list) or (type(sig) == perm)): #checks if sig is a list or a

perm type and raises a warning if not↪→

raise ValueError("Neither list nor perm passed to function" )

return

def transposition(x, y, n = 2): #Permutation of [1,2 ... y ... x ... n] just swapping x

and y↪→

temp_list = []

for i in range(n):

temp_list.append(i+1)

temp_list[x- 1] = y

temp_list[y- 1] = x

return perm(temp_list)

def generate_all_transpositions(n):

temp_list = []

for x in range(1,n):

for y in range(x+1,n+1):

temp_list.append(transposition(x,y,n))

# print("transposing x = " + str(x) + " and y = " + str(y))

return temp_list

def generate_all_labeled_transpositions(n):

temp_list = []

for x in range(1,n):

for y in range(x+1,n+1):

temp_list.append([transposition(x,y,n), [x,y]])

return temp_list

def generate_sn(n):

ref = list(range(1,n+1))
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temp_list = []

working_x = []

hold = []

for x in range(1,n+1):

temp_list.append([x])

for i in range(n- 1):

# print(i)

for z in range(1,n+1):

for x in temp_list:

if z not in x:

working_x = x.copy()

working_x.append(z)

hold.append(working_x)

temp_list = hold.copy()

hold = []

result = []

for entry in temp_list:

result.append(perm(entry))

return result

def full_cycle(n): #permutation of [1, 2, 3, ... n]

result = []

for i in range(n- 1):

result.append(i+2)

result.append(1)

return perm(result)

def perm_from_cycle(cycle, given_size = - 1): #takes a TUPLE of TUPLES so make sure to

include commas if either of those tuples has a single element↪→

size = 0 #currently broken - doesn't handled duplicate instances of an

element -- requires reduced cycles↪→

if given_size == - 1:

for sub_cycle in cycle:

for x in sub_cycle:

if x > size:

size = x

else:

size = given_size

temp_sig = []

for i in range(size):

temp_sig.append(i+1)

for sub_cycle in cycle:

for i in range(len(sub_cycle)):

temp_sig[sub_cycle[i- 1] - 1] = sub_cycle[i]
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return perm(temp_sig)
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APPENDIX B

CODE FOR GFK GENERATION

The following code is discussed in section 2.2. It is used to generate the data for the module.

import sys

import pickle

import time

try:

from .perm import *

except:

from perm import *

import networkx as nx

######################################################

#First chunk is code for actually computing the complex

######################################################

def is_between(target, a, b):

#Input: integers target, a, b

#

#Output: Returns True if target is between a and b False otherwise

if target > a:

if target < b:

return True

return False

#Note: The next 4 cases and the parent_check function use the following conventions,

where the shaded↪→

# shaded region is the parent rectangle being checked if it contains the target

#

#Input: Coordinates rect = ((ax, ay), (bx, by)) target = (tx, ty)

#

#Output: True if target is inside shaded region, False otherwise

#

def check_case_{1}(rect, target):

if (is_between(target[0], rect[0][0], rect[1][0]) and is_between(target[1],

rect[0][1], rect[1][1])):↪→

return True
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return False

def check_case_{2}(rect, target):

if ((not is_between(target[0], rect[1][0], rect[0][0])) and is_between(target[1],

rect[0][1], rect[1][1])):↪→

return True

return False

def check_case_{3}(rect, target):

if (is_between(target[0], rect[0][0], rect[1][0]) and (not is_between(target[1],

rect[1][1], rect[0][1]))):↪→

return True

return False

def check_case_{4}(rect, target):

if ((not is_between(target[0], rect[1][0], rect[0][0])) and (not

is_between(target[1], rect[1][1], rect[0][1]))):↪→

return True

return False

def parent_check(rect, target):

#Input: rect = ((ax, ay), (bx, by)) and target (tx, ty)

#

#Output: Returns True if target is inside the rectangle, False otherwise.

ax = rect[0][0]

ay = rect[0][1]

bx = rect[1][0]

by = rect[1][1]

#This is a belabored switch statement. All of these are possible since grids exist

on a↪→

#torus. There's two possibilities for the x coordinates and two for the y as to

which one↪→

#comes first. This gives us the following 4 cases.

if ( (ax < bx) and (ay < by) ):

return check_case_{1}(rect, target)
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if ( (ax > bx) and (ay < by) ):

return check_case_{2}(rect, target)

if ( (ax < bx) and (ay > by) ):

return check_case_{3}(rect, target)

if ( (ax > bx) and (ay > by) ):

return check_case_{4}(rect, target)

print("invalid rectangle given" )

def symbol_coordinates(symbol_perm):

#Input: List or permutation of symbols (typically X and O) coordinates

#

#Output: List of the same size with the cartesian (x,y) coordinates of the symbols

if↪→

# the lower left corner of the grid is at (1,1) and the alpha and beta

curves are↪→

# 1 unit apart

#

#Note: This could be approached centering the corner at (0,0) the choice of putting

it at↪→

# (1,1) is so that the generator coordinates are exactly at the height of

their given↪→

# permutation. That is the state [2,1,3...] has the first intersection at

(1,2)↪→

#

#Example: call symbol_coordinates([1,3,2])

if type(symbol_perm) == perm:

temp = symbol_perm.value.copy()

else:

temp = symbol_perm.copy()

for count, element in enumerate(temp):
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temp[count] = (count + 1.5, element + 0.5)

return temp

def hv_set_shift(h,v,sigs):

#Input: h integer, v integer, sigs a collection of permutations

#

#Output: The list of all permutations shifted horizontally by h and vertically by

v.↪→

# this amounts to setting phi = [1, 2, 3, ... , n] and taking each sig in

the↪→

# list and replacing it with (phi^h) o sig o (phi^v)

result = []

if len(sigs) == 0:

n = 0

else:

n = len(sigs[0])

hshift = full_cycle(n)**(-h)

vshift = full_cycle(n)**v

for sig in sigs:

result.append((vshift*sig)*hshift)

return result

def deprecated_truncated_sn(n, trunc_length):

#Input: n integer, trunc_length integer

#

#Output: List of lists, each on length trunc_length. One for each sub-sequence

# that appears in sn. For example [5,1,6] would be an element for n = 6

# and trunc_length = 3, from possibly [5,1,6,3,2,4]

#We'll make sn then chop off the first trunc_length and save it to result

pre_result = generate_sn(n)
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result = []

for sig in pre_result:

temp = sig.value.copy()

trunc_sig = temp[0:trunc_length]

if trunc_sig not in result:

result.append(trunc_sig.copy())

return result

def truncated_sn(n, trunc_length):

result = [[]]

hold = []

symset = list(range(1,n+1))

while len(result[0]) < trunc_length:

for sym in symset:

for res in result:

if not (sym in res):

hold.append(res + [sym])

result = hold

hold = []

return result

def generate_all_states_outside_rectangle(rectangle, n):

#Input: rectangle = ((a0, b0), (a1, b1)), n integer

#

#Output: List

#

#This function computes the states as if the rectangle had lower corner

#(1,1) then shifts the result - keep in mind when seeing lists appending 1's

#Compute the dimensions of the rectangle - mod n since we're working on a torus

r_width = (rectangle[1][0] - rectangle[0][0]) % n

r_height = (rectangle[1][1] - rectangle[0][1]) % n

if (r_width + r_height) > n:
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print("rectangle dimensions too large to have non-empty set of states" )

return []

pre_result = []

#region a is the one above the rectangle and b is the columns after that

#then s_a is the collection of intersection choices for a grid state x

#that keeps the rectangle empty

sa = truncated_sn(n - r_height - 1, r_width - 1)

sb = generate_sn(n - abs(r_width) - 1)

#sanity check: 2 intersections used by corners, rw - 1 for a and n - rw - 1 for b

means 2 + a + b = n↪→

#This case should only happen when the rectangle prevents placing any points in

#region a (above it)

if sa == []:

#whats left holds onto the symbols yet to be used

whats_left = []

for i in range(2,r_height+1):

whats_left.append(i)

for i in range(r_height+1,n+1):

whats_left.append(i)

for psi in sb:

curr_state=[]

curr_state.append(1)

curr_state = [1+r_height] + curr_state

for i in range(n-abs(r_width) - 1):

curr_state.append(whats_left[psi[i] - 1])

pcurr_state = perm(curr_state.copy())

pre_result.append(pcurr_state)

#Case for the rest of the rectangles

for sig in sa:

#we're lifting this as a list rather than a permutation because

#we need to shift them all up by the height - making it no longer a perm
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x = sig.copy()

#loop lifts the symbols above the rectangle into region a

for count, position in enumerate(x):

x[count] = position + r_height + 1

#whats left holds onto the symbols yet to be used

whats_left = []

for i in range(2,abs(r_height)+1):

whats_left.append(i)

for i in range(abs(r_height) + 2, n + 1):

if i not in x:

whats_left.append(i)

if sb == []:

curr_state = x.copy()

curr_state.append(1)

curr_state = [1+r_height] + curr_state

pcurr_state = perm(curr_state.copy())

pre_result.append(pcurr_state)

for psi in sb:

curr_state=x.copy()

curr_state.append(1)

curr_state = [1+r_height] + curr_state

for i in range(n-abs(r_width) - 1):

curr_state.append(whats_left[psi[i] - 1])

pcurr_state = perm(curr_state.copy())

pre_result.append(pcurr_state)

#States need to all be shifted unless the rectangle is actually based at (1, 1)

if not ((rectangle[0][0] == 1) and (rectangle[0][1] == 1)):

raw_result = hv_set_shift(rectangle[0][0] - 1, rectangle[0][1] - 1, pre_result)
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else:

raw_result = pre_result

result = []

rect_pairer = transposition(rectangle[0][0], rectangle[1][0], n)

#Up to now the raw_results holds the states associated with base of the rectangle

#this loop takes all those and pairs them with the connected state

for sig in raw_result:

result.append([sig*rect_pairer,sig])

if result == []:

return None

return result

def zero_list(n):

#Input: Integer n

#

#Output: List of length n with all entries zero --- ex: zero_list(5) = [0, 0, 0, 0,

0]↪→

result = []

for i in range(n): result.append(0)

return result

def count_symbols(n, rect, symbol_perm):

#Input: n integer, rect rectangle ((a0, b0), (a1, b1)), symbol_perm a permutation

or list↪→

#

#Output: List with 1/0 for symbol in/out of connecting rectangle

#

#Iterates through each symbol symbol_perm(i) and marking a corresponding list

entry↪→

#to 1 if the symbol is present
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temp = zero_list(n)

usable_sym = symbol_coordinates(symbol_perm)

#Moving the coordinates to the actual heights rather than the discrete style

#lists

for i in range(n):

if parent_check(rect, usable_sym[i]):

temp[i] = 1

return temp

def generate_all_rectangle_sizes(n):

#Input: n integer

#

#Output: All possible sizes of allowable rectangles

#

#Any sizes outside of this are too large to not contain a generator's basepoint

#not to be confused with z/w's.

result = []

for width in range(1,n):

for height in range(1,n+1-width):

result.append((width,height))

return result

def generate_all_rectangles(n):

#Input: n integer

#

#Output: All possible connecting rectangles for a grid of size n in a list

# format

sizes = generate_all_rectangle_sizes(n)

rects = []

for size in sizes:

for i in range(0,n):
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for j in range(0,n):

x = (i % n + 1,j % n + 1)

y = ((i+size[0]) % n + 1,(j+size[1]) % n + 1)

rects.append((x,y))

return rects

def generate_all_edges(n, symbols):

#Input: n an integer, symbols, a collection of lists of length n denoting the

placement of the symbols. For knots and↪→

# links this should be a pair of two lists, or permutations.

#

#Output: Returns a list 3 layers deep containing all the edge information of

CFKinf↪→

#

#Call generate_all_edges(5,[[5, 1, 2, 3, 4], [2, 3, 4, 5, 1]]) as an example

pre_diff = generate_all_rectangles(n)

symbol_count = len(symbols) #This should always be 2 for knots and links.

place_holder = []

z_list = zero_list(n)

for i in range(symbol_count):

place_holder.append(z_list.copy())

unweighted_diff = []

for rect in pre_diff:

candidates = generate_all_states_outside_rectangle(rect, n)

#each candidate is a collection of points differing on the rectangle given

#so each candidate represents an edge from rect[0] = (a0, b0) to rect[1] = (a1,

b1)↪→

#(filling in the rest of the necessary coordinates with the candidate)

if candidates is not None:

for count, candidate in enumerate(candidates):

candidates[count] = [candidate.copy(), rect, place_holder.copy()]

#^Replacing the candidate with a clean copy, a note of its connecting
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#rectangle and initialize the edge weight to zero

unweighted_diff = unweighted_diff + candidates

#appending the list of these candidates to our unweighted differential

for count, symbol in enumerate(symbols):

#This should again always be a pair in case of knots and links

for i in range(len(unweighted_diff)):

#here we replace the previous zero weight after counting the symbols

unweighted_diff[i][2][count] = count_symbols(n, unweighted_diff[i][1],

symbol)↪→

return unweighted_diff

def imp_from_pickle(filename = 'PickleDefault.pickle' ):

# Imports pickle file and returns the object. Will import from DefaultPickleComp if no

name is provided↪→

if filename == 'DefaultPickleComp' :

print('No name provided for import - importing from DefaultPickleComp' )

try:

file = open(filename,'rb' )

print("file opened" )

except:

print('Ran into an error: Make sure you \' ve exported to the file you \' re

trying to import from' )↪→

stuff = pickle.load(file)

file.close()

print('file closed' )

return stuff

def pickle_it(comp, filename = "PickleDefault.pickle" ):

#Input: comp is any data (Usually a complex as a networkx type graph) and str

filename↪→

#Exports the complex as a binary file using the pickle module, just shorthand

file = open(filename, 'wb' )

pickle.dump(comp, file)

115



file.close()

return

def build_cinf(symbols):

#Input: symbols a list of two lists, [sigx, sigo]

#

#Output: g a networkx directed graph

xlist = symbols[0]

olist = symbols[1]

size = len(xlist)

# if type(symbols) == grid:

# xlist = symbols.sig_x

# olist = symbols.sig_o

comp = generate_all_edges(size, [xlist,olist])

g = nx.DiGraph()

# nx.set_edge_attributes(g, {'diffweight':[]})

for ele in comp:

if not g.has_edge(str(ele[0][0]),str(ele[0][1])):

g.add_edge(str(ele[0][0]),str(ele[0][1]), diffweight = [])

g[str(ele[0][0])][str(ele[0][1])]['diffweight' ].append((ele[2][0] +

ele[2][1]))↪→

return g

def pickle_cinf(gknot, filename = 'DefaultPickleComp' ):

#Input: Grid or pair of x and o coordinates as list or tuple

#

#The function takes the pair calls for the CFK complex to be constructed, loads

the↪→

#result into a networkx directed-graph then calls the function to pickle the

resulting↪→

#graph structure. This is intended to pass to the sage processing from here.

if filename == 'DefaultPickleComp' :
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print('No name provided for pickling - saving to DefaultPickleComp' )

# if type(gknot) == grid:

# size = gknot.size

# xlist = list(gknot.sig_x)

# olist = list(gknot.sig_o)

if (type(gknot) == list) or (type(gknot) == tuple):

size = len(gknot[0])

xlist = gknot[0]

olist = gknot[1]

comp = generate_all_edges(size, [xlist,olist])

g = nx.DiGraph()

for ele in comp:

g.add_edge(str(ele[0][0]),str(ele[0][1]), diffweight = (ele[2][0] + ele[2][1]))

pickle_it((g, size, gknot), filename)

return

############################################

#Code in this section is for getting the user input

############################################

def get_integer_bounded(n):

#Input: integer n

#

#Output: An integer input from the user between 1 and n

while True:

num = input()

try:

val = int(num)

if (val < n + 1) and (val > 0):

return val
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print("Your integer isn't between 1 and " + str(n))

except ValueError:

print("Please only enter an integer." )

def user_sig(n):

#Input: integer n

#

#Output: List version of the n entries from the user. Check if valid can be

strengthened↪→

# in perm.py, as it stands it won't catch any errors in this function

result = []

print("input the coordinates, returning after each entry" )

for i in range(n):

val = get_integer_bounded(n)

result.append(int(val))

if check_if_valid(result):

return result

else:

print("Invalid sig entered" )

user_sig(n)

def correct_prompt():

#Input: None

#

#Output: True if user confirms, False if user specifies, loops until one of the two

is given↪→

while True:

ans = input("Is this correct? (Y/N)" )

if (ans == 'Y' ) or (ans == 'y' ): return True

elif (ans == 'N' ) or (ans == 'n' ): return False
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else: print("You didn't enter Y or N, please only enter one of these

options." )↪→

def prompt_for_link():

#Input: None

#

#Output: List of two lists representing sigx and sigo

sigx = []

check = False

sigo = []

n = int(input("Enter grid size: " ))

while True:

print('Grid size = ' + str(n))

ans = correct_prompt()

if ans: break

else: n = int(input('Enter grid size: ' ))

print('First enter sigx.' )

sigx = user_sig(n)

while check != True:

print("sigx = " + str(sigx))

ans = correct_prompt()

if ans: break

else: sigx = user_sig(n)

print('Now enter sigo' )

sigo = user_sig(n)

while check != True:

print("sigo= " + str(sigo))

ans = correct_prompt()

if ans: break

else: sigo = user_sig(n)

return [sigx, sigo]
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########################################

#Function call if ran as script

########################################

# def main():

# user_syms = prompt_for_link()

# fname = str(input('What would you like the pickle (output) to be named: '))

# pickle_cinf(user_syms, fname)

# if __name__ == '__main__':

# main()
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APPENDIX C

CODE FOR COMPLEX REDUCTION

The code here is for grading and reducing the complex after it is produced by B. The code

is included here without exposition and explanation as in the primary sections.

import itertools as itools

import networkx as nx

import csv

# import ast

import numpy as np

from scipy import sparse

import matplotlib.pyplot as plt

import multiprocessing as mp

#from sage.graphs.graph_decompositions.graph_products import is_cartesian_product

import GFKTools as gfk

from GridPermutations import *

import time

import pickle

import perm as pr

from multiprocessing.managers import BaseManager

import random as rd

TIMERS = True

PROCESSOR_COUNT = 12

OUTPUTDIRECTORY = 'Outputs/'

PRINT_PROGRESS = True

class MyManager(BaseManager):

# Necessary class definition for parallel processing

pass

class grid_complex:

# This is the data type that holds all the information and most of the functions

and methods necessary↪→

# to produce and manipulate the graded complex.

def __init__(self, directed_graph, rng, sigx = None, sigo = None):
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# Initializing and setting default values. sigx and sigo should generally be

provided - fail safes are included↪→

# however if they're ever used then only the relative grading of the final object

will be correct↪→

if type(directed_graph) != nx.DiGraph:

raise("!This data type only supports networkx digraphs!" )

self.comp = directed_graph

self.ring = rng

self.min_gradings = {}

self.max_gradings = {}

self.max_grading_changes = {}

self.sigx = sigx

self.sigo = sigo

self.set_to_minus = False

self.set_to_tilde = False

# From here the values necessary for the surgered manifold gradings are mapped

out↪→

if (sigx != None) and (sigo != None):

self.size = len(sigx)

self.components = link_components(sigx, sigo)

for i in range(len(self.components)):

key = f 'AGrading { i} '

self.min_gradings[key] = 0

self.max_gradings[key] = 0

self.max_grading_changes[key] = 0

key = f 'UGrading { i} '

self.min_gradings[key] = 0

self.max_gradings[key] = 0

self.max_grading_changes[key] = 0

key = f 'VGrading { i} '

self.min_gradings[key] = 0

self.max_gradings[key] = 0

self.max_grading_changes[key] = 0

else:

# This is included in case the methods in the class are useful to another

complex being loaded in↪→

self.components = None
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def __repr__(self):

# If the object is called it will return the underlying digraph

return self.comp

def subcomplex(self, subgraph):

# This is essentially just the subgraph - may not be an actual subcomplex if

poor choice of vertices/edges are made↪→

sub_copy = subgraph.copy()

result = grid_complex(sub_copy, self.ring)

def copy(self):

# Adds copy functionality like the copy module

if self.sigx == None:

new_copy = grid_complex(self.comp.copy(), self.ring)

else:

new_copy = grid_complex(self.comp.copy(), self.ring, self.sigx.copy(),

self.sigo.copy())↪→

return new_copy

def grid(self):

# Adding functionality to return the original grid that produced the complex

return [self.sigx, self.sigo]

def graph(self):

return self.comp

def ring(self):

return self.ring

def to_hat(self):

# Substitutes 0 for all the U and V variables in the complex

print("setting Ui's and Vi's = 0" )

gens = self.ring.gens()

size = len(gens)/2
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for edge in self.comp.edges():

for i in range(2*size):

src = edge[0]

tar = edge[1]

self.comp[src][tar]['diffweight' ] =

self.comp[src][tar]['diffweight' ].subs({gens[i]:0})↪→

return

def to_minus(self):

# Substitutes U0 for all the Ui and 1 for Vi

self.set_to_minus = True

print("normalizing Ui's and setting Vi = 1" )

gens = self.ring.gens()

size = len(gens)/2

for edge in self.comp.edges():

for component in self.components:

for i in component:

# if i == component[0]: continue

setting_var = component[0] - 1

src = edge[0]

tar = edge[1]

self.comp[src][tar]['diffweight' ] =

self.comp[src][tar]['diffweight' ].subs({gens[i -

1]:gens[setting_var]})

↪→

↪→

self.comp[src][tar]['diffweight' ] =

self.comp[src][tar]['diffweight' ].subs({gens[i+size- 1]:1})↪→

self.remove_zeros()

return

def to_tilde(self, overwrite = True):

# Converts the complex to the tilde flavor by setting all the U's and V's to 0

# overwrite option determines whether to apply it to the complex or to make a

copy and apply↪→

# the changes there.
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if overwrite == False:

replacement = self.copy()

return replacement.to_tilde()

self.set_to_tilde = True

print("Setting all U's and V's to 0" )

gens = self.ring.gens()

size = len(gens)/2

for edge in self.comp.edges():

for i in range(2*size):

src = edge[0]

tar = edge[1]

self.comp[src][tar]['diffweight' ] =

self.comp[src][tar]['diffweight' ].subs({gens[i]:0})↪→

self.remove_zeros()

return self

def link_normalize(self):

# Substitutes Ucomp for all the Ui associated to that component

gens = self.ring.gens()

size = len(gens)/2

for edge in self.comp.edges():

for component in self.components:

for i in component:

if i == component[0]: continue

setting_var = component[0] - 1

src = edge[0]

tar = edge[1]

self.comp[src][tar]['diffweight' ] =

self.comp[src][tar]['diffweight' ].subs({gens[i -

1]:gens[setting_var]})

↪→

↪→

self.comp[src][tar]['diffweight' ] =

self.comp[src][tar]['diffweight' ].subs({gens[i+size-

1]:gens[size + setting_var]})

↪→

↪→
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self.remove_zeros()

return

# def normalize(self):

# #Substitutes U0 for all the Ui and V0 for all Vi

# gens = self.field.gens()

# size = len(gens)/2

# for edge in self.comp.edges():

# for i in range(size):

# src = edge[0]

# tar = edge[1]

# self.comp[src][tar]['diffweight'] =

self.comp[src][tar]['diffweight'].subs({gens[i]:gens[0]})↪→

# self.comp[src][tar]['diffweight'] =

self.comp[src][tar]['diffweight'].subs({gens[i+size]:gens[size]})↪→

# self.remove_zeros()

# return

def remove_zeros(self):

# Searches the complex for edges with weight 0 and removes the edge

elist = list(self.comp.edges())

for x,y in elist:

if self.comp[x][y]['diffweight' ] == 0:

self.comp.remove_edge(x,y)

return

def split_by_grading(self, partition_list, key):

# Unnecessary in current version - different approach to parallelization

# partition_list is expected to be of the form matching the partition

function's output.↪→

result = []
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for data in partition_list:

gens = [vert for vert in self.comp.nodes() if

((self.comp.nodes()[vert][key] >= data[0]) and

(self.comp.nodes()[vert][key] <= data[4])) ]

↪→

↪→

subg = self.comp.subgraph(gens)

result.append(subg)

return result

def graph_red_search(self, started = False, timerstart = None):

# searches through a cfk inf complex for reducible edges and calling

# the reduction function to eliminate the pair according to the reduction

algorithm↪→

if not started:

timerstart = time.time()

print("Reducing complex..." )

print(len([source for source, target, weight in self.comp.edges(data =

'diffweight' ) if weight == 1]))↪→

while True:

# count = (count + 1)%

try:

red_target = next((source, target) for source, target, weight in

self.comp.edges(data = 'diffweight' ) if weight == 1)↪→

# print(self.comp.edges[red_target])

self.graph_reduction(red_target[0], red_target[1])

continue

except:

("StopIteration" )

break

timerstop = time.time()

# print('Time to reduce complex: ' + str(timerstop - timerstart))

return

def graph_reduction(self, key, target):

# Deletes edge specified from graph_red_search and adds in edges according to

the↪→

# reduction algorithm
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for x in self.comp.predecessors(target):

if x == key: continue

for y in self.comp.successors(key):

if y == target: continue

x_weight = self.comp[x][target]['diffweight' ]

y_weight = self.comp[key][y]['diffweight' ]

red_weight = x_weight * y_weight

if self.comp.has_edge(x,y):

old_weight = self.comp[x][y]['diffweight' ]

red_weight = red_weight + old_weight

self.comp.add_edge(x,y,diffweight=red_weight)

self.comp.remove_node(key)

self.comp.remove_node(target)

return

def minus_reduction(self, overwrite = True):

# Reduces the complex but only reducing edges between vertices that are in the

same Alexander gradings↪→

# Note: This will not overwrite (regardless of argument) if the complex hasn't

been converted to the minus flavor. Instead, it↪→

# will make a copy, do the reduction there, and return the new complex

if self.set_to_minus == False:

replacement = self.copy()

replacement.to_minus()

replacement.minus_reduction(True)

if overwrite == False:

replacement = self.copy()

replacement.minus_reduction(True)

while True:

starting_edge_count = len([source for source, target, weight in

self.comp.edges(data = 'diffweight' ) if (weight == 1 and

alexander_grading_equivalent(self.comp, source, target,

len(self.components)))])

↪→

↪→

↪→

try:
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source, target = next((source, target) for source, target, weight in

self.comp.edges(data = 'diffweight' ) if (weight == 1 and

alexander_grading_equivalent(self.comp, source, target,

len(self.components))))

↪→

↪→

↪→

print("my alexander function returned " +

str(alexander_grading_equivalent(self.comp, source, target,

len(self.components))))

↪→

↪→

print(self.comp.nodes()[source]["AGrading0" ])

print(self.comp.nodes()[target]["AGrading0" ])

# print(self.comp.nodes()[source]["AGrading1"])

self.graph_reduction(source, target)

except StopIteration:

pass

except:

print("Unexpected Error" )

end_edge_count = len([source for source, target, weight in

self.comp.edges(data = 'diffweight' ) if (weight == 1 and

alexander_grading_equivalent(self.comp, source, target,

len(self.components)))])

↪→

↪→

↪→

if starting_edge_count == end_edge_count:

break

return self

def grade_link_complex(self):

# Input: given_graph a networkx directed graph with 'diffweight' attribute on

edges↪→

# given_field the laurent polynomial field associated to the grid graph

# gridX a list representing the vertex to be graded 0 in U V and

Alexander gradings↪→

#

# Output: given_graph with new attributes on the vertices for U V and Alexander

gradings↪→

# also an attribute HasBeenGraded as an artifact

# If the positions of the Xs aren't provided we'll initialize around whatever

# state happens to appear first in the digraph structure - This will mean the

complex's absolute grading will be off↪→
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if self.sigx == None:

gridX = list(self.comp.nodes())[0]

else:

gridX = self.sigx

if self.sigo == None:

gridO = list(self.comp.nodes())[0]

else:

gridO = self.sigo

gens = self.ring.gens()

size = len(gens)/2

print("grading complex..." )

comp_set = len(self.components)

# Adding an attribute to all nodes to keep track of if they've been assigned

gradings↪→

for i in range(comp_set):

nx.set_node_attributes(self.comp, False, f "HasBeenGraded { i} " )

# The gradings are relative so we're declaring one to be in U, V, and Alexander

grading 0↪→

# this block initializes those balues

for i in range(comp_set):

# self.comp.nodes()[str(gridX)][f'HasBeenGraded{i}'] = True

self.comp.nodes()[str(gridX)][f 'AGrading { i} ' ] = 0

# self.comp.nodes()[str(gridX)][f'UGrading{i}'] = 0

# self.comp.nodes()[str(gridX)][f'VGrading{i}'] = 0

if TIMERS: timerstart = time.time()

# Built in function to find a spanning tree

#span = nx.algorithms.tree.branchings.greedy_branching(given_graph)

tree = nx.algorithms.minimum_spanning_tree( self.comp.to_undirected() )

eds = set(tree.edges()) # optimization

spanset = []
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for edge in eds:

if edge in self.comp.edges():

spanset.append(edge)

else:

spanset.append((edge[1], edge[0]))

span = self.comp.edge_subgraph(spanset)

if TIMERS:

timerstop = time.time()

print("Time to find arborescence:" + str(timerstop - timerstart))

# Bit of baseball terminology for the following nested loops, the active data

is essentially at bat, the list we're working↪→

# through is called on_deck, and then we're building up the follow up as

in_the_hole which will turn into↪→

# on deck on the following loop

#

# On deck holds the edges to be iterated through

on_deck = [str(gridX)]

# In the hole holds the ones to be iterated through once on_deck is cleared

in_the_hole = []

if TIMERS: timerstart = time.time()

comp_count = len(self.components)

# Grading Loops Start:

####################

self.componentwise_relative_grading_loop("UGrading" , gridX,

self.virtual_U_gradings_succ, self.virtual_U_gradings_pred, span,

comp_count)

↪→

↪→

self.componentwise_relative_grading_loop("VGrading" , gridX,

self.virtual_V_gradings_succ, self.virtual_V_gradings_pred, span,

comp_count)

↪→

↪→

self.relative_grading_loop("UGrading" , gridX, self.maslov_U_succ,

self.maslov_U_pred, span, comp_count)↪→

131



self.relative_grading_loop("VGrading" , gridX, self.maslov_V_succ,

self.maslov_V_pred, span, comp_count)↪→

####################

# Grading Loops End

for vert in self.comp.nodes():

self.comp.nodes()[vert]['AGrading' ] = 0

for i in range(len(self.components)):

stab_count = len(self.components[i])

self.comp.nodes()[vert][f 'AGrading { i} ' ] =

(1/2)*(self.comp.nodes()[vert][f 'VGrading { i} ' ] -

self.comp.nodes()[vert][f 'UGrading { i} ' ]) -(1/2)*(stab_count - 1)

↪→

↪→

self.comp.nodes()[vert]['AGrading' ] +=

self.comp.nodes()[vert][f 'AGrading { i} ' ]↪→

if TIMERS:

timerstop = time.time()

print('Time to grade complex (given arborescence): ' + str(timerstop -

timerstart))↪→

return

def gml_export(self, filename = 'PleaseNameMe.gml' ):

# Exports the graph as a gml file which can be opened in a program like Gephi

# if component_length == - 1:

# return("!!! Unknown number of components for export !!!")

component_length = len(self.components)

if component_length == 0:

raise("Error finding number of components" )

nxG = self.comp.copy()

if filename == 'PleaseNameMe.gml' :

print("You didn't name your output! It's been named PleaseNameMe.gml" )

if filename[-4:] != ".gml" :

return self.gml_export(filename + ".gml" )

# filename += ".gml"
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for x,y in nxG.edges():

nxG[x][y]['diffweight' ] = str(nxG[x][y]['diffweight' ])

for node in nxG.nodes():

#print(str((nxG.nodes()[node]['UGrading'], nxG.nodes()[node]['VGrading'],

nxG.nodes()[node]['AGrading'])))↪→

try:

nxG.nodes[node]['UGrading' ] = int(nxG.nodes[node]['UGrading' ])

nxG.nodes[node]['VGrading' ] = int(nxG.nodes[node]['VGrading' ])

nxG.nodes[node]['AGrading' ] = int(nxG.nodes[node]['AGrading' ])

except:

nxG.nodes[node]['UGrading' ] = int(-99)

nxG.nodes[node]['VGrading' ] = int(-99)

nxG.nodes[node]['AGrading' ] = int(-99)

for i in range(component_length):

try:

nxG.nodes[node][f 'AGrading { i} ' ] =

int(nxG.nodes[node][f 'AGrading { i} ' ])↪→

nxG.nodes[node][f 'UGrading { i} ' ] =

int(nxG.nodes[node][f 'UGrading { i} ' ])↪→

nxG.nodes[node][f 'VGrading { i} ' ] =

int(nxG.nodes[node][f 'VGrading { i} ' ])↪→

except:

nxG.nodes[node][f 'AGrading { i} ' ] = int(-99)

nxG.nodes[node][f 'UGrading { i} ' ] = int(-99)

nxG.nodes[node][f 'VGrading { i} ' ] = int(-99)

print("writing to " + OUTPUTDIRECTORY + str(filename))

nx.write_gml(nxG, OUTPUTDIRECTORY + filename)

return

def find_grading_ranges(self, key = "AGrading" ):

# Finds the minimum and maximum gradings among the vertices associated with a

grading key↪→

self.min_gradings[key] = 0

self.max_gradings[key] = 0

for vert in self.comp.nodes():
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if self.comp.nodes[vert][key] < self.min_gradings[key]:

self.min_gradings[key] = self.comp.nodes[vert][key]

if self.comp.nodes[vert][key] > self.max_gradings[key]:

self.max_gradings[key] = self.comp.nodes[vert][key]

return

def comp_truncate(self, grading_cutoff):

# Grading cutoff should be a tuple of values, this function will

# I've only considered this for calling after converting to minus complex

generators = self.ring.gens()

for i in range(len(self.components)):

for vert in self.comp:

if self.comp.nodes()[vert][f "AGrading { i} " ] >= grading_cutoff[i]:

self.comp.nodes()[vert][f "AGrading { i} " ] += 1

self.comp.nodes()[vert][f "UGrading { i} " ] += -2

for targ in self.comp.successors(vert):

self.comp[vert][targ]['diffweight' ] =

self.comp[vert][targ]['diffweight' ]*generators[i]↪→

for pred in self.comp.predecessors(vert):

self.comp[pred][vert]['diffweight' ] =

self.comp[pred][vert]['diffweight' ]*(generators[i]^(- 1))↪→

return

def surgery(self, grading_list = None, target_grading = None):

# Creates a copy of the graph and truncates it below every combination of

Alexander gradings↪→

# and reduces the resulting complexes then writes them out

if grading_list == None:

grading_list = []
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for i in range(len(self.components)):

self.find_grading_ranges(f "AGrading { i} " )

for i in range(len(self.components)):

grading_list.append(self.max_gradings[f "AGrading { i} " ])

if target_grading == None:

target_grading = []

for i in range(len(self.components)):

target_grading.append(self.min_gradings[f "AGrading { i} " ])

print("target gradings = " + str(target_grading))

print("max gradings = " + str(grading_list))

if self.set_to_minus == False:

print("This complex hasn't been converted to minus. Making a copy of the

complex and converting it to the minus complex" )↪→

minus_copy = self.copy()

minus_copy.to_minus()

minus_copy.surgery(grading_list, target_grading)

print("uhh didn't expect to be here..." )

grading_ranges = []

for i in range(len(target_grading)):

grading_ranges.append(list(range(target_grading[i], grading_list[i] +1)))

sub_gradings = itools.product(*grading_ranges)

for grading in sub_gradings:

specimen = self.copy()

specimen.comp_truncate(grading)

specimen.graph_red_search()

specimen.remove_zeros()

specimen.gml_export(str(self.sigx) + str(self.sigo) + "surgery" +

str(grading))↪→

return
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def relative_grading_loop(self, grading_key, base_vertex, fn1, fn2, span = None,

grading_multiplicity = 1):↪→

# Loop structure around a vertex's neighbors to set gradings based on the

functions fn1 and fn2.↪→

if span == None:

span = self.comp

nx.set_node_attributes(self.comp, False, "HasBeenGraded" )

self.comp.nodes()[str(base_vertex)][f 'HasBeenGraded' ] = True

self.comp.nodes()[str(base_vertex)][f ' { grading_key} ' ] = 0

on_deck = [str(base_vertex)]

in_the_hole = []

while len(on_deck) > 0:

for vert in on_deck:

# Every vertex in on_deck should be graded. The loops iterate through

the neighbors of each of these↪→

# vertices, grading them and then adding them to in_the_hole, ignoring

vertices that have already been graded.↪→

#

# The loop is broken into two halves since we have two flavors of

neighbor in a directed graph, successors and↪→

# predecessors, named accordingly. These flavors differ in relative

grading change by a sign.↪→

for i, component_columns in enumerate(self.components):

for succ in span.successors(vert):

#skip the vertex if its already been graded

if self.comp.nodes()[succ]['HasBeenGraded' ]: continue

in_the_hole.append(succ)

fn1(succ, vert)

self.comp.nodes()[succ]['HasBeenGraded' ] = True

for pred in span.predecessors(vert):
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if self.comp.nodes()[pred]['HasBeenGraded' ]: continue

in_the_hole.append(pred)

fn2(pred, vert)

self.comp.nodes()[pred][f 'HasBeenGraded' ] = True

on_deck = in_the_hole

in_the_hole = []

return

def componentwise_relative_grading_loop(self, grading_key, base_vertex, fn1, fn2,

span = None, grading_multiplicity = 1):↪→

# Loop structure around a vertex's neighbors to set gradings based on the

functions fn1 and fn2, passing↪→

# the functions are passed component information as well

if span == None:

span = self.comp

for i in range(grading_multiplicity):

nx.set_node_attributes(self.comp, False, f "HasBeenGraded { i} " )

self.comp.nodes()[str(base_vertex)][f 'HasBeenGraded { i} ' ] = True

self.comp.nodes()[str(base_vertex)][f ' { grading_key}{ i} ' ] = 0

on_deck = [str(base_vertex)]

in_the_hole =[]

while len(on_deck) > 0:

for vert in on_deck:

# Every vertex in on_deck should be graded. The loops iterate through

the neighbors of each of these↪→

# vertices, grading them and then adding them to in_the_hole, ignoring

vertices that have already been graded.↪→

#
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# The loop is broken into two halves since we have two flavors of

neighbor in a directed graph, successors and↪→

# predecessors, named accordingly. These flavors differ in relative

grading change by a sign.↪→

for i, component_columns in enumerate(self.components):

for succ in span.successors(vert):

#skip the vertex if its already been graded

if self.comp.nodes()[succ][f 'HasBeenGraded { i} ' ]: continue

in_the_hole.append(succ)

fn1(i, succ, vert, component_columns)

self.comp.nodes()[succ][f 'HasBeenGraded { i} ' ] = True

for pred in span.predecessors(vert):

if self.comp.nodes()[pred][f 'HasBeenGraded { i} ' ]: continue

in_the_hole.append(pred)

fn2(i, pred, vert, component_columns)

self.comp.nodes()[pred][f 'HasBeenGraded { i} ' ] = True

on_deck = in_the_hole

in_the_hole = []

return

# The following block of function definitions are the supporting functions for the

grading loops↪→

# These are passed as fn1 and fn2 to the grading loops in the grading function

#########################################

def virtual_U_gradings_pred(self, i, pred, vert, component_columns):

ed_weight = self.comp[pred][vert]['diffweight' ]

Upows = link_U_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[pred][f 'UGrading { i} ' ] =

self.comp.nodes()[vert][f 'UGrading { i} ' ] + 1 - 2*Upows↪→

return
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def virtual_U_gradings_succ(self, i, succ, vert, component_columns):

ed_weight = self.comp[vert][succ]['diffweight' ]

Upows = link_U_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[succ][f 'UGrading { i} ' ] =

self.comp.nodes()[vert][f 'UGrading { i} ' ] - 1 + 2*Upows↪→

return

def virtual_V_gradings_pred(self, i, pred, vert, component_columns):

ed_weight = self.comp[pred][vert]['diffweight' ]

Vpows = link_V_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[pred][f 'VGrading { i} ' ] =

self.comp.nodes()[vert][f 'VGrading { i} ' ] + 1 - 2*Vpows↪→

return

def virtual_V_gradings_succ(self, i, succ, vert, component_columns):

ed_weight = self.comp[vert][succ]['diffweight' ]

Vpows = link_V_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[succ][f 'VGrading { i} ' ] =

self.comp.nodes()[vert][f 'VGrading { i} ' ] - 1 + 2*Vpows↪→

return

def maslov_U_pred(self, pred, vert):

ed_weight = self.comp[pred][vert]['diffweight' ]

component_columns = self.sigx

Upows = link_U_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[pred]['UGrading' ] = self.comp.nodes()[vert]['UGrading' ] + 1

- 2*Upows↪→

return

def maslov_U_succ(self, succ, vert):

ed_weight = self.comp[vert][succ]['diffweight' ]
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component_columns = self.sigx

Upows = link_U_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[succ]['UGrading' ] = self.comp.nodes()[vert]['UGrading' ] - 1

+ 2*Upows↪→

return

def maslov_V_pred(self, pred, vert):

ed_weight = self.comp[pred][vert]['diffweight' ]

component_columns = self.sigo

Vpows = link_U_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[pred]['VGrading' ] = self.comp.nodes()[vert]['VGrading' ] + 1

- 2*Vpows↪→

return

def maslov_V_succ(self, succ, vert):

ed_weight = self.comp[vert][succ]['diffweight' ]

component_columns = self.sigo

Vpows = link_U_deg(ed_weight, self.ring, component_columns)

self.comp.nodes()[succ]['VGrading' ] = self.comp.nodes()[vert]['VGrading' ] - 1

+ 2*Vpows↪→

return

#########################################

# End of relative grading support functions

def find_max_difference(self, key_set):

# For a given set of keys this function iterates through the graph and finds

the largest difference. This could be improvable↪→

# speed-wise by considering edges instead but as it stands the grading would

have to be recomputed since that data is↪→

# recorded in the vertices instead. So in its current state that would be more

expensive in processing and this is cheaper↪→
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# memory wise regardless.

if type(key_set) == str:

key_set = [key_set]

for key in key_set:

self.max_grading_changes[key] = 0

result = 0

for vert in self.comp.nodes():

for nb in self.comp.neighbors(vert):

for key in key_set:

if (abs(self.comp.nodes()[vert][key] - self.comp.nodes()[nb][key]))

> self.max_grading_changes[key]:↪→

print("setting value" )

self.max_grading_changes[key] =

abs(self.comp.nodes()[vert][key] -

self.comp.nodes()[nb][key])

↪→

↪→

return

def parallel_graph_single_split(self, key, split_count, split_blocks = None):

# Deprecated by ego split

# WARNING: !!!split count should be passed at most one lower than the actual

number of cores available, this is because of↪→

# ceilings being a part of the function - it means it can return a set with

more blocks than the given split count!!!↪→

self.find_max_difference(key)

max_step = self.max_grading_changes[key]

self.find_grading_ranges(key)

if split_blocks == None:

split_blocks = degree_partition(max_step,

math.ceil(self.min_gradings[key]), math.ceil(self.max_gradings[key]),

split_count)

↪→

↪→

if split_blocks == None:

return None
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result = []

for split in split_blocks:

current_subgraph = []

vertex_set = []

vertex_set = [vert for vert in self.comp.nodes() if

((self.comp.nodes()[vert][key] >= split[0]) and

(self.comp.nodes()[vert][key] <= split[- 1]))]

↪→

↪→

current_subgraph = self.comp.subgraph(vertex_set).copy()

result.append([current_subgraph, split])

return result

def parallel_reduction_helper(self, subgraph_set, overwrite = True):

print("running parallel_reduction_helper" )

process_dict = {}

for count, subgraph in enumerate(subgraph_set):

process_dict[count] = mp.Process(target =

subgraph[0].range_graph_red_search(), args = subgraph[1] )↪→

process_dict[count].start()

for proc in process_dict:

proc.join()

result = subgraph_set[0][0]

for subgraph in subgraph_set:

result = nx.compose(result, subgraph)

if overwrite:

self.comp = result

return

else:
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return result

def grading_parallel_graph_red_search(self, proc_count = 2, splitting_key =

"AGrading" ):↪→

# Deprecated by ego_parallel_red_search

# graph_red_search with parallel processing by splitting into pieces based on

splitting_key↪→

key = splitting_key

subgraph_set = self.parallel_graph_single_split(splitting_key, proc_count - 1)

if subgraph_set == None:

self.graph_red_search()

return

step = parallel_active_range(self.max_grading_changes[key],

math.ceil(self.min_gradings[key]), math.ceil(self.max_gradings[key]),

proc_count)

↪→

↪→

target_loop = math.ceil((1+self.max_gradings[key]

-self.min_gradings[key])/step)↪→

print(str(target_loop) + str(" target number of loops" ))

partition = subgraph_set[:][1]

for i in range(target_loop):

self.parallel_reduction_helper(subgraph_set)

partition_block_iterator(partition, step)

subgraph_set = self.parallel_graph_single_split(splitting_key, proc_count -

1, split_blocks = partition)↪→

# iterate the split

return

143



def ego_parallel_red_search(self, cutoff = 100, proc_count = 2):

# graph_red_search with parallel processing support by using networkx ego graph

function↪→

# to split the graph

if len([source for source, target, weight in self.comp.edges(data =

'diffweight' ) if weight == 1]) > cutoff:↪→

print("entering parallel reduction" )

while len([source for source, target, weight in self.comp.edges(data =

'diffweight' ) if weight == 1]) > cutoff:↪→

print(str(len([source for source, target, weight in self.comp.edges(data

= 'diffweight' ) if weight == 1])) + "reducible edges remaining" )↪→

reducible_edge = rd.sample([source for source, target, weight in

self.comp.edges(data = 'diffweight' ) if weight == 1], 1)↪→

self.ego_parallel_sweep(reducible_edge[0], proc_count)

print("parallel reduction complete" )

self.graph_red_search()

return

def ego_parallel_sweep(self, start_vert = None, proc_count = 2):

if start_vert == None:

start_vert = self.comp.nodes()[0]

size = len(list(self.comp.nodes)[0])

# (self.comp.nodes[0])

ego_bands, safety = ego_split(self.comp, start_vert, size)

partition_data = ego_region_partition(size)

parallel_subgraph_packer(self.comp, ego_bands, partition_data, self.ring)

region_count = len(partition_data)

count = 0

MyManager.register('list' , list)

with MyManager() as manager:

processed_subgraphs = manager.list()

while count < region_count:

process_dict = {}
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for i in range(proc_count):

if count < region_count:

# processed_subgraphs = []

process_dict[count] = mp.Process(target = subgraph_red_search,

args = (partition_data[f "block { count} " ]['total_region' ],

partition_data[f "block { count} " ]['search_region' ],

processed_subgraphs))

↪→

↪→

↪→

process_dict[count].start()

count += 1

# print("Assigned parallel jobs, waiting for them to finish")

for proc in process_dict:

# print(proc)

process_dict[proc].join()

# print("count = " + str(count) + "region_count = " +

str(region_count))↪→

processed_subgraphs = processed_subgraphs._getvalue()

# print("replacing parent graph...")

result = processed_subgraphs[0].comp

for element in processed_subgraphs:

result = nx.compose(result, element.comp)

result = nx.compose(result, safety)

# print('reduced total graph from ' + str(len(self.comp.nodes())), end = "")

self.comp = result

self.remove_zeros()

# print(' to ' + str(len(self.comp.nodes())))

return

def subgraph_red_search(subg, search_reg, result_list):

# graph_red_search limited to the subgraph search_reg, results are appended to

result_list↪→

# which in practice is a proxy list object handled by a multiprocessing manager
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subgraph = subg.copy()

search_region = search_reg.copy()

og_size = len(subgraph.comp.nodes())

for ed in [edge for edge in search_region.comp.edges() if

search_region.comp.edges[edge]['diffweight' ] == 1]:↪→

# print("identified edge " + str(ed) + " for reduction")

# print("nodes of subg" + str(subgraph.comp.nodes()))

# print("nodes of search region" + str(search_region.comp.nodes()))

if ed in subgraph.comp.edges():

# print("reducing an edge")

subgraph.graph_reduction(ed[0], ed[1])

f_size = len(subgraph.comp.nodes())

# print("reduced subgraph from size " + str(og_size) + " to " + str(f_size))

result_list.append(subgraph)

# print("running change result length = " + str(len(result_list)))

return

def ego_split(graph, vertex, n):

# Returns a list of collections of vertices whose index is also their distance from

the provided vertex↪→

# Safety is provided to catch any separate components.

result = []

for i in range(n):

result.append(nx.ego_graph(graph, vertex, i))

safety = graph.copy()

safety.remove_nodes_from(result[n - 1].nodes())

for i in range(n- 1, 0, - 1):

result[i].remove_nodes_from(result[i- 1].nodes())

return result, safety

def ego_region_partition(n):
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# Returns a dictionary of dictionaries which indicate the regions that are going to

be reduced and↪→

# preserved during the parallel reduction

result = {}

split_count = math.ceil(n/4)

result["block0" ] = {"search_region" : [0,1] , "reserved_region" : [2]}

for i in range(1,split_count):

result[f "block { i} " ] = {"search_region" : [3*i, 3*i+1], "reserved_region" :

[3*i- 1,3*i+2]}↪→

return result

def parallel_subgraph_packer(graph, subgraphs, region_data, ring):

# Takes the collections of vertices (intended for those from ego_split) as

subgraphs from a parent↪→

# graph and joins them up as subgraphs based on region_data. ring is provided to

construct grid_complex objects↪→

# from the resulting graphs.

# region_data should be a dict of dicts with inner dict data labeled

"search_region" and "reserved_region"↪→

# the outer data should be labeled f"block{i}". See ego_region_partition for an

example function that works↪→

# with this

# subgraphs should be a list of subgraphs corresponding to the region data

specified above↪→

for data in region_data:

# print(region_data[data])

region_nodes = []

# unpacking the indices of the subgraphs we were passed - so we need to unpack

3↪→

# layers deep in total

for region in region_data[data]:
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for i in region_data[data][region]:

# print(type(subgraphs[i]))

region_nodes += (list(subgraphs[i].nodes()))

packed_subgraph = graph.subgraph(region_nodes)

region_data[data]['total_region' ] = grid_complex(packed_subgraph, ring)

for data in region_data:

region_nodes = []

for i in region_data[data]['search_region' ]:

region_nodes += list(subgraphs[i].nodes())

packed_subgraph = graph.subgraph(region_nodes)

region_data[data]['search_region' ] = grid_complex(packed_subgraph, ring)

return region_data

def subgraph_neighborhood(graph, subgraph):

# Output: subgraph induced by the given subgraph and any neighbors it has in graph

result_nodes = set(subgraph.nodes())

for node in subgraph.nodes():

for neighbor in graph.neighbors(node):

result_nodes.add(neighbor)

result = graph.subgraph(result_nodes)

return result

def partition_block_iterator(blocks, step_size):

for count, block in enumerate(blocks):
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if count == 0:

for i in range(1, len(block)):

blocks[i] += step_size

else:

for i in range(len(block)):

blocks[i] += step_size

return

def name_some_vars(letters, num):

# Accepts a collection of strings, and an integer. Passing "U" and 3 for example

returns "U0, U1, U2"↪→

result = []

num = int(num)

for letter in letters:

for i in range(num):

new_var = f " { letter}{ i} "

#print(new_var)

result.append(new_var)

return result

def construct_cinf(g, sigx, sigo, size = - 1):

# Construct CFKinf complex from graph data - essentially just changing weights to

polynomials↪→

# Only works for grid diagrams *not* Latin Squares

print('constructing cinf...' )

if size == - 1:

size = len(g.get_edge_data(list(g.edges())[0][0],

list(g.edges())[0][1])['diffweight' ][0]) #kind of a mess - just turning

the edges

↪→

↪→

print("Grid size is " + str(size/2))

n = size/2

#into a list and checking the length of#the weight of the first edge↪→
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else:

n = size

timerstart = time.time()

F,Vars = cinf_coeff(n)

resG = nx.DiGraph()

for edge in g.edges:

start = edge[0]

end = edge[1]

poly = F(0)

for subweight in g[edge[0]][edge[1]]['diffweight' ]:

i = 0

polychange = F(1)

# print(str(subweight) + str(edge))

for entry in subweight:

polychange = polychange*(Vars[i])**entry

i = i + 1

poly += polychange

# print(str(edge) + str(poly))

resG.add_edge(start,end,diffweight = poly)

timerend = time.time()

elap = timerend - timerstart

print('Time to construct cinf ' + str(elap))

return grid_complex(resG, F, sigx, sigo)

def cinf_coeff(size):

# Takes size as an argument and returns the Laurent polynomial ring over Z2 with

coefficients U0,...Usize- 1,V0,...Vsize- 1↪→

n = size

varis = name_some_vars(['U' ,'V' ], n)

F = LaurentPolynomialRing(GF(2), varis)

F.inject_variables()

return F,list(F.gens())
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def range_skip_entry(n, skip):

# Acts similarly to standard range(n) but omits the "skip"th entry

u = []

for i in range(0, skip): u.append(i)

for j in range(skip+1, n): u.append(j)

return u

def link_GFC(sigx, sigo, filename = None):

# Group of usual commands/functions used to produce, simplify and output a

grid_complex and↪→

# its simplification in one function - uses the parallel processing functions

start_time = time.time()

if filename == None:

filename = "X"

for pos in sigx:

filename = filename + str(pos)

filename = filename + "O"

for pos in sigo:

filename = filename + str(pos)

filename = filename + ".gml"

comp = setup_complex(sigx, sigo)

print("passing to parallel reducer" )

comp.ego_parallel_red_search(proc_count = PROCESSOR_COUNT)

# comp.parallel_graph_red_search(PROCESSOR_COUNT, split_key)

print("completed parallel reducer function" )

comp.gml_export(filename)

picklefilename = filename + ".p"

gfk.pickle_it(comp, picklefilename)

comp.link_normalize()

# comp.parallel_graph_red_search(PROCESSOR_COUNT)

filename = "Normalized" + filename

comp.gml_export(filename)

picklefilename = filename + ".p"

gfk.pickle_it(comp, picklefilename)
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for i in range(len(comp.components)):

comp.find_grading_ranges(f 'AGrading { i} ' )

end_time = time.time()

print("Time to process complex = " + str(end_time - start_time) + " seconds" )

return comp

def setup_complex(sigx, sigo):

# Takes two lists sigx and sigo, constructs and grades the associated complex then

returns the result↪→

raw_complex = gfk.build_cinf([sigx, sigo])

comp = construct_cinf(raw_complex, sigx, sigo)

comp.grade_link_complex()

return comp

def link_components(sigx, sigo):

# Returns the number of components in the link defined by sigx and sigo

xperm = pr.perm(sigx)

operm = pr.perm(sigo)

comps = xperm*operm**(- 1)

result = comps.cycles()

return result

def link_U_deg(poly, ring, component_columns):

# Input: poly a laurent polynomial in field a laurent polynomial ring

#

# Output: The total sum of powers of Ui in poly

gens = ring.gens()

152



size = len(gens)/2

degree = 0

if type(poly) == sage.rings.finite_rings.integer_mod.IntegerMod_int: return 0

powers = poly.exponents()

# len(powers) tells you how many terms the polynomial has

# if len(powers) > 1:

# print(poly)

# raise Exception("Ran into a non-homogoneous degree change - polynomial wasn't

a monomial")↪→

if len(powers) == 0:

return 0

# powers is a list of lists since its intended for more than just monomials, since

we are only care about the leading↪→

# term we pull that one out

powers = powers[0]

for i in component_columns:

degree = degree + powers[i- 1]

return degree

def link_V_deg(poly, ring, component_columns):

#Input: poly a laurent polynomial in "ring" a laurent polynomial ring

#

#Output: The total sum of powers of Ui in poly

gens = ring.gens()

size = len(gens)/2

degree = 0

if type(poly) == sage.rings.finite_rings.integer_mod.IntegerMod_int: return 0

powers = poly.exponents()
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if len(powers) == 0:

return 0

# powers is a list of lists since its intended for more than just monomials, since

we are only care about the leading↪→

# term we pull that one out

powers = powers[0]

for i in component_columns:

degree = degree + powers[size + i- 1]

return degree

def parallel_active_range(max_grading_step, lower_range, upper_range, split_count):

# deprecated by ego parallelization

# Finds and returns the range of gradings that can be reduced without affecting the

gluing region↪→

# or bleeding outside of the reserved regions

block_size = math.floor((upper_range - lower_range)/split_count)

result = block_size - 2*max_grading_step

return result

def degree_partition(max_grading_step, lower_range, upper_range, split_count):

# deprecated by ego parallelization

# Returns lists marking degrees for gluing, reducing and preserving when splitting

the graph↪→

# by grading for parallelization

#output = list of lists

if split_count == 0:

raise Exception("Cannot split the graph into 0 pieces - check function

arguments" )↪→
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first_round = []

block_size = math.floor((upper_range - lower_range)/split_count)

active_range = block_size - 2*max_grading_step

print("active range " + str(active_range))

if ((active_range <= 0) and (split_count > 1)) :

print(str((max_grading_step, lower_range, upper_range, split_count - 1)))

print("Cannot partition the graph into this many pieces! Parititioning into a

smaller number of pieces" )↪→

return degree_partition(max_grading_step, lower_range, upper_range, split_count

- 1)↪→

if split_count == 1:

return None

block = []

max_grading_step += - 1

trailing_edge = lower_range - 1 - max_grading_step

leading_edge = trailing_edge

while trailing_edge < upper_range:

block = []

block.append(leading_edge)

leading_edge += 1

block.append(leading_edge)

leading_edge += max_grading_step

block.append(leading_edge)

leading_edge += active_range

block.append(leading_edge)

leading_edge += max_grading_step

block.append(leading_edge)

leading_edge += 1

block.append(leading_edge)

first_round.append(block)

trailing_edge = leading_edge

print(first_round)

return first_round
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def alexander_grading_equivalent(comp, source, target, component_count):

#Returns bool for if two vertices have the same Alexander multigradings

result = True

for i in range(component_count):

if comp.nodes()[source][f 'AGrading { i} ' ] !=

comp.nodes()[target][f 'AGrading { i} ' ]:↪→

result = False

return result

#End of main code block
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APPENDIX D

LINK AND KNOT PERMUTATIONS

The following code is the collection of grid presentations of knots up to grid size 9 and all

links from LinkInfo up to size 9 in one line notation. It is stored in Python dictionaries

of lists as written. The entire collection of links listed on Linkinfo is available along with

the program publicly at https://github.com/CStClairMath/GridTools. The code is included

here without exposition and explanation as in the primary sections.

#Permutations of knots up to arc index (grid size) 9 transcribed from Lenherd Ng's

Legendrian knot atlas↪→

knot_dict = dict(k3_{1} = [[5, 1, 2, 3, 4], [2, 3, 4, 5, 1]],

mk3_{1} = [[5,4,3,2,1],[2,1,5,4,3]],

k4_{1} = [[6, 1, 4, 5, 3, 2],[3, 5, 6, 2, 1, 4]],

k5_{1} = [[5, 6, 7, 1, 2, 3, 4],[7, 3, 4, 5, 6, 1, 2]],

mk5_{1} = [[2, 1, 7, 6, 5, 4, 3],[7, 6, 5, 4, 3, 2, 1]],

k5_{2} = [[2, 6, 7, 3, 4, 5, 1],[7, 1, 5, 6, 2, 3, 4]],

mk5_{2} = [[4, 1, 7, 6, 3, 2, 5],[7, 6, 5, 2, 1, 4, 3]],

k6_{1} = [[8, 1, 6, 7, 4, 5, 3, 2],[3, 7, 8, 5, 6, 2, 1, 4]],

mk6_{1} = [[8, 1, 6, 7, 3, 2, 5, 4],[5, 7, 8, 2, 1, 4, 3, 6]],

k6_{2} = [[8, 3, 5, 6, 7, 2, 1, 4],[6, 7, 8, 1, 4, 5, 3, 2]],

mk6_{2} = [[8, 7, 6, 5, 2, 1, 3, 4],[3, 1, 8, 7, 6, 4, 5, 2]],

k6_{3} = [[8, 1, 4, 6, 7, 5, 3, 2],[4, 5, 7, 8, 3, 2, 1, 6]],

k7_{1} = [[2, 7, 8, 9, 1, 3, 4, 5, 6],[9, 1, 2, 5, 6, 7, 8, 3, 4]],

mk7_{1} = [[2, 1, 9, 8, 7, 6, 5, 4, 3],[9, 8, 7, 6, 5, 4, 3, 2, 1]],

k7_{2} = [[2, 8, 9, 6, 7, 3, 4, 5, 1], [9, 1, 7, 8, 5, 6, 2, 3, 4]],

mk7_{2} = [[6, 1, 9, 8, 3, 2, 5, 4, 7], [9, 8, 7, 2, 1, 4, 3, 6, 5]],

k7_{3} = [[4, 1, 9, 8, 7, 6, 3, 2, 5], [9, 8, 7, 6, 5, 2, 1, 4, 3]],

mk7_{3} = [[5, 8, 9, 6, 7, 1, 2, 3, 4], [9, 3, 7, 8, 4, 5, 6, 1, 2]],

k7_{4} = [[6, 1, 9, 3, 2, 8, 5, 4, 7], [9, 8, 2, 1, 7, 4, 3, 6, 5]],

mk7_{4} = [[2, 8, 9, 3, 6, 7, 4, 5, 1], [9, 1, 7, 8, 2, 5, 6, 3, 4]],

k7_{5} = [[3, 8, 9, 1, 4, 5, 6, 7, 2], [9, 1, 2, 7, 8, 3, 4, 5, 6]],

mk7_{5} = [[4, 1, 9, 8, 7, 3, 2, 6, 5], [9, 8, 7, 6, 2, 1, 5, 4, 3]],

k7_{6} = [[2, 8, 9, 4, 3, 5, 6, 7, 1], [9, 1, 3, 2, 7, 8, 4, 5, 6]],

mk7_{6} = [[3, 1, 9, 8, 6, 7, 5, 4, 2], [9, 8, 7, 2, 1, 4, 3, 6, 5]],

k7_{7} = [[2, 5, 8, 9, 7, 4, 3, 6, 1], [9, 1, 3, 6, 2, 8, 5, 4, 7]],

mk77 = [[4, 8, 9, 2, 1, 7, 5, 6, 3], [9, 1, 7, 8, 6, 3, 2, 4, 5]],

k8_{19} = [[3, 2, 1, 7, 6, 5, 4], [7, 6, 5, 4, 3, 2, 1]],

mk8_{19} = [[3, 4, 5, 6, 7, 1, 2], [7, 1, 2, 3, 4, 5, 6]],

k8_{20} = [[8, 2, 1, 4, 5, 7, 6, 3], [4, 7, 5, 6, 8, 3, 2, 1]],

mk8_{20} = [[8, 6, 4, 5, 3, 7, 1, 2], [3, 1, 7, 8, 6, 2, 4, 5]],
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k8_{21}= [[8, 1, 4, 6, 5, 7, 2, 3], [5, 7, 8, 2, 1, 3, 4, 6]],

mk8_{21} = [[8, 7, 4, 6, 5, 3, 1, 2], [3, 1, 8, 2, 7, 6, 4, 5]],

k9_{42} = [[8, 7, 3, 2, 1, 4, 6, 5], [4, 1, 8, 6, 5, 7, 3, 2]],

mk9_{42} = [[8, 1, 5, 6, 7, 4, 2, 3], [4, 7, 8, 2, 3, 1, 5, 6]],

k9_{43} = [[4, 8, 9, 3, 2, 7, 1, 6, 5], [9, 1, 7, 8, 6, 5, 4, 3, 2]],

mk9_{43} = [[7, 1, 6, 9, 2, 3, 4, 5, 8], [9, 8, 4, 5, 6, 7, 1, 2, 3]],

k9_{44} = [[3, 8, 1, 9, 6, 4, 5, 7, 2], [9, 5, 7, 2, 1, 8, 3, 4, 6]],

mk9_{44} = [[5, 8, 9, 3, 1, 7, 2, 6, 4], [9, 2, 7, 8, 6, 4, 5, 3, 1]],

k9_{45} = [[2, 8, 9, 3, 5, 4, 6, 7, 1], [9, 1, 4, 7, 2, 8, 3, 5, 6]],

mk9_{45} = [[4, 2, 9, 3, 8, 1, 7, 5, 6], [9, 8, 5, 7, 4, 6, 2, 1, 3]],

k9_{46} = [[8, 3, 1, 5, 7, 4, 6, 2], [4, 7, 6, 8, 2, 1, 3, 5]],

mk9_{46} = [[8, 1, 7, 5, 6, 3, 4, 2], [3, 6, 4, 8, 2, 7, 1, 5]],

k9_{47} = [[4, 2, 1, 9, 7, 5, 6, 8, 3], [9, 8, 6, 3, 2, 1, 4, 5, 7]],

mk9_{47} = [[6, 1, 9, 2, 8, 3, 4, 5, 7], [9, 8, 4, 7, 5, 6, 1, 2, 3]],

k9_{48} = [[5, 1, 9, 2, 7, 6, 8, 4, 3], [9, 8, 4, 6, 5, 1, 3, 2, 7]],

mk9_{48} = [[2, 5, 8, 9, 4, 6, 7, 3, 1], [9, 1, 3, 7, 8, 2, 5, 6, 4]],

k9_{49} = [[6, 2, 9, 1, 8, 5, 4, 3, 7], [9, 8, 4, 7, 3, 2, 1, 6, 5]],

mk9_{49} = [[2, 4, 8, 9, 5, 6, 7, 1, 3], [9, 1, 3, 7, 8, 2, 4, 5, 6]],

k10_{124} = [[8, 7, 6, 5, 4, 3, 2, 1], [3, 2, 1, 8, 7, 6, 5, 4]],

mk10_{124} = [[8, 1, 2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8, 1, 2]],

k10_{128} = [[5, 1, 9, 4, 3, 2, 8, 7, 6], [9, 8, 2, 1, 7, 6, 5, 4, 3]],

mk10_{128} = [[2, 8, 9, 3, 4, 5, 6, 7, 1], [9, 1, 6, 7, 8, 2, 3, 4, 5]],

k10_{132} = [[3, 8, 2, 9, 4, 7, 5, 6, 1], [9, 1, 7, 6, 8, 3, 2, 4, 5]],

mk10_{132} = [[6, 2, 9, 8, 4, 5, 3, 7, 1], [9, 8, 7, 3, 1, 2, 6, 4, 5]],

k10_{136} = [[5, 1, 9, 7, 3, 2, 8, 4, 6], [9, 8, 4, 2, 1, 6, 5, 7, 3]],

mk10_{136} = [[2, 6, 8, 9, 4, 5, 3, 7, 1], [9, 1, 3, 7, 8, 2, 6, 4, 5]],

k10_{139} = [[4, 3, 9, 2, 8, 1, 7, 6, 5], [9, 8, 7, 6, 5, 4, 2, 3, 1]],

mk10_{139} = [[5, 4, 6, 8, 9, 7, 1, 3, 2], [9, 1, 2, 3, 4, 5, 6, 7, 8]],

k10_{140} = [[4, 8, 2, 9, 3, 5, 7, 6, 1], [9, 1, 7, 6, 8, 2, 4, 3, 5]],

mk10_{140} = [[7, 2, 9, 5, 6, 4, 8, 3, 1], [9, 8, 3, 1, 2, 7, 5, 6, 4]],

k10_{142} = [[6, 1, 9, 5, 4, 3, 2, 8, 7], [9, 8, 3, 2, 1, 7, 6, 5, 4]],

mk10_{142} = [[3, 4, 8, 9, 5, 6, 7, 1, 2], [9, 1, 2, 7, 8, 3, 4, 5, 6]],

k10_{145} = [[5, 8, 7, 1, 9, 4, 2, 3, 6], [9, 4, 3, 5, 6, 7, 8, 1, 2]],

mk10_{145} = [[5, 2, 9, 3, 8, 1, 6, 7, 4], [9, 8, 7, 6, 4, 5, 2, 3, 1]],

k10_{160} = [[5, 1, 9, 2, 4, 3, 8, 7, 6], [9, 8, 3, 7, 1, 6, 5, 4, 2]],

mk10_{160} = [[3, 7, 8, 9, 2, 4, 5, 1, 6], [9, 1, 5, 6, 7, 8, 3, 4, 2]],

k10_{161} = [[4, 3, 5, 7, 9, 6, 8, 2, 1], [9, 8, 1, 2, 3, 4, 5, 6, 7]],

mk10_{161} = [[5, 3, 9, 2, 8, 1, 7, 6, 4], [9, 8, 7, 6, 4, 5, 2, 3, 1]],

k11n19 = [[4, 7, 8, 9, 2, 3, 1, 5, 6], [9, 1, 5, 6, 7, 8, 4, 2, 3]],

mk11n19 = [[4, 3, 7, 9, 8, 2, 1, 6, 5], [9, 8, 1, 6, 5, 7, 4, 3, 2]],

k11n38 = [[4, 1, 9, 2, 6, 8, 7, 3, 5], [9, 8, 3, 7, 1, 5, 4, 6, 2]],

mk11n38 = [[2, 7, 3, 9, 5, 6, 4, 8, 1], [9, 1, 8, 4, 2, 3, 7, 5, 6]],

k11n95 = [[3, 1, 9, 7, 8, 6, 5, 4, 2], [9, 8, 5, 2, 4, 3, 1, 7, 6]],

mk11n95 = [[4, 6, 7, 9, 2, 8, 1, 3, 5], [9, 1, 3, 5, 6, 4, 7, 8, 2]],

k11n118 = [[5, 3, 9, 1, 8, 2, 7, 4, 6], [9, 8, 7, 6, 4, 5, 3, 1, 2]],
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mk11n118 = [[4, 2, 5, 9, 7, 6, 8, 1, 3], [9, 8, 1, 3, 2, 4, 5, 6, 7]],

k12n242 = [[4, 3, 2, 9, 8, 1, 7, 6, 5], [9, 8, 7, 6, 5, 4, 3, 2, 1]],

mk12n242 = [[6, 7, 8, 9, 1, 2, 3, 4, 5], [9, 3, 4, 5, 6, 7, 8, 1, 2]],

k12n591 = [[5, 3, 2, 9, 8, 1, 7, 6, 4], [9, 8, 7, 6, 4, 5, 3, 2, 1]],

mk12n591 = [[5, 7, 8, 9, 1, 2, 3, 4, 6], [9, 3, 4, 6, 5, 7, 8, 1, 2]],

k15n41185 = [[4, 3, 2, 1, 9, 8, 7, 6, 5], [9, 8, 7, 6, 5, 4, 3, 2, 1]],

mk15n41185 = [[4, 5, 6, 7, 8, 9, 1, 2, 3], [9, 1, 2, 3, 4, 5, 6, 7, 8]])

#Permutations of (prime?) links. Retrieved from linkinfo and processed for their

permutations. Not necessarily minimal.↪→

link_dict = dict( L2a1_{0} = [[4, 3, 2, 1], [2, 1, 4, 3]]

L2a1_{1} = [[4, 1, 2, 3], [2, 3, 4, 1]]

L4a1_{0} = [[6, 3, 4, 1, 2, 5], [4, 5, 2, 3, 6, 1]]

L4a1_{1} = [[3, 2, 6, 1, 5, 4], [6, 5, 4, 3, 2, 1]]

L5a1_{0} = [[6, 1, 3, 4, 2, 7, 5], [2, 4, 5, 7, 6, 3, 1]]

L5a1_{1} = [[3, 6, 5, 7, 1, 2, 4], [5, 4, 2, 3, 6, 7, 1]]

L6a1_{0} = [[8, 3, 4, 6, 5, 1, 2, 7], [4, 5, 2, 3, 7, 6, 8, 1]]

L6a1_{1} = [[2, 1, 8, 5, 4, 3, 7, 6], [8, 7, 4, 3, 2, 6, 5, 1]]

L6a2_{0} = [[8, 2, 3, 4, 5, 6, 7, 1], [3, 7, 1, 8, 2, 4, 5, 6]]

L6a2_{1} = [[3, 2, 8, 1, 5, 4, 7, 6], [8, 7, 4, 3, 2, 6, 5, 1]]

L6a3_{0} = [[8, 1, 2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 7, 8, 1]]

L6a3_{1} = [[2, 5, 4, 7, 6, 1, 8, 3], [4, 3, 6, 5, 8, 7, 2, 1]]

L6a4_{0}_{0} = [[8, 1, 7, 5, 4, 2, 3, 6], [2, 4, 3, 8, 6, 5, 7, 1]]

L6a4_{1}_{0} = [[3, 5, 4, 8, 7, 1, 2, 6], [7, 2, 6, 5, 3, 4, 8, 1]]

L6a4_{0}_{1} = [[8, 1, 3, 5, 4, 2, 7, 6], [2, 4, 7, 8, 6, 5, 3, 1]]

L6a4_{1}_{1} = [[3, 2, 4, 5, 7, 1, 8, 6], [7, 5, 6, 8, 3, 4, 2, 1]]

L6a5_{0}_{0} = [[9, 5, 6, 1, 3, 4, 7, 2, 8], [6, 7, 2, 4, 5, 8, 3, 9, 1]]

L6a5_{1}_{0} = [[5, 1, 9, 2, 8, 7, 3, 4, 6], [9, 8, 3, 7, 6, 4, 5, 2, 1]]

L6a5_{0}_{1} = [[6, 7, 5, 4, 3, 8, 2, 1], [8, 2, 1, 6, 5, 4, 7, 3]]

L6a5_{1}_{1} = [[5, 1, 9, 7, 8, 4, 3, 2, 6], [9, 8, 3, 2, 6, 7, 5, 4, 1]]

L6n1_{0}_{0} = [[6, 1, 5, 3, 4, 2], [3, 4, 2, 6, 1, 5]]

L6n1_{1}_{0} = [[3, 4, 2, 6, 1, 5], [6, 1, 5, 3, 4, 2]]

L6n1_{0}_{1} = [[7, 1, 2, 4, 3, 5, 6], [3, 4, 5, 6, 7, 2, 1]]

L6n1_{1}_{1} = [[2, 6, 1, 5, 3, 4], [5, 3, 4, 2, 6, 1]]

L7a1_{0} = [[9, 1, 3, 5, 4, 8, 2, 7, 6], [2, 4, 8, 9, 7, 6, 5, 3, 1]]

L7a1_{1} = [[2, 7, 3, 6, 5, 4, 9, 8, 1], [9, 1, 8, 2, 7, 6, 5, 3, 4]]

L7a2_{1} = [[2, 1, 9, 7, 8, 4, 3, 5, 6], [9, 8, 4, 3, 5, 2, 6, 7, 1]]

L7a3_{0} = [[7, 8, 6, 5, 4, 3, 9, 2, 1], [9, 2, 1, 7, 6, 5, 4, 8, 3]]

L7a4_{0} = [[9, 3, 4, 6, 5, 8, 7, 2, 1], [4, 5, 2, 3, 7, 6, 1, 9, 8]]

L7a4_{1} = [[2, 1, 9, 3, 4, 6, 5, 8, 7], [9, 8, 4, 5, 2, 3, 7, 6, 1]]

L7a5_{0} = [[9, 4, 5, 6, 8, 2, 3, 1, 7], [5, 8, 1, 9, 3, 4, 7, 6, 2]]

L7a5_{1} = [[3, 2, 9, 1, 7, 8, 4, 5, 6], [9, 8, 4, 3, 2, 5, 6, 7, 1]]

L7a6_{0} = [[9, 5, 6, 8, 7, 4, 3, 2, 1], [6, 7, 4, 5, 3, 2, 1, 9, 8]]

L7a6_{1} = [[2, 1, 9, 5, 6, 3, 4, 8, 7], [9, 8, 6, 7, 4, 5, 2, 3, 1]]
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L7a7_{0}_{0} = [[7, 8, 2, 3, 6, 5, 4, 9, 1], [9, 3, 4, 1, 2, 7, 6, 5, 8]]

L7a7_{1}_{0} = [[2, 1, 9, 3, 4, 7, 8, 5, 6], [9, 8, 4, 5, 2, 3, 6, 7, 1]]

L7a7_{0}_{1} = [[7, 8, 4, 3, 2, 5, 6, 9, 1], [9, 3, 2, 1, 6, 7, 4, 5, 8]]

L7a7_{1}_{1} = [[3, 2, 9, 6, 5, 4, 1, 8, 7], [9, 8, 5, 4, 3, 7, 6, 2, 1]]

L7n1_{0} = [[8, 1, 2, 4, 5, 3, 6, 7], [3, 4, 5, 6, 7, 8, 2, 1]]

L7n1_{1} = [[3, 4, 2, 5, 7, 1, 6], [7, 1, 6, 3, 4, 5, 2]]

L7n2_{0} = [[4, 7, 2, 1, 3, 5, 6], [1, 3, 5, 4, 6, 7, 2]]

L7n2_{1} = [[3, 5, 1, 6, 7, 2, 4], [7, 2, 4, 3, 5, 6, 1]]

L8n1_{0} = [[8, 1, 4, 5, 6, 3, 2, 7], [5, 6, 7, 8, 2, 1, 4, 3]]

L8n1_{1} = [[5, 6, 2, 1, 3, 4, 9, 7, 8], [9, 1, 8, 4, 5, 7, 6, 3, 2]]

L8n2_{0} = [[7, 1, 5, 2, 6, 4, 3, 8], [2, 6, 8, 7, 3, 1, 5, 4]]

L8n2_{1} = [[4, 6, 1, 2, 3, 8, 7, 5], [8, 3, 5, 4, 7, 6, 2, 1]]

L8n3_{0}_{0} = [[8, 1, 2, 4, 5, 3, 6, 7], [5, 4, 6, 7, 8, 1, 2, 3]]

L8n3_{1}_{0} = [[4, 2, 1, 5, 3, 7, 8, 6], [7, 8, 3, 2, 6, 4, 5, 1]]

L8n3_{0}_{1} = [[8, 4, 2, 7, 5, 1, 6, 3], [5, 1, 6, 4, 8, 3, 2, 7]]

L8n3_{1}_{1} = [[4, 8, 1, 2, 3, 7, 5, 6], [7, 2, 3, 5, 6, 4, 8, 1]]

L8n4_{0}_{0} = [[8, 1, 2, 6, 5, 4, 3, 7, 9], [6, 5, 7, 4, 9, 8, 1, 2, 3]]

L8n4_{1}_{0} = [[3, 4, 1, 6, 5, 2, 9, 8, 7], [9, 8, 5, 4, 7, 6, 3, 2, 1]]

L8n4_{0}_{1} = [[8, 5, 2, 6, 9, 4, 1, 7, 3], [6, 1, 7, 4, 5, 8, 3, 2, 9]]

L8n4_{1}_{1} = [[5, 7, 1, 2, 3, 8, 4, 6], [8, 2, 3, 4, 6, 5, 7, 1]]

L8n5_{0}_{0} = [[9, 1, 2, 6, 5, 3, 7, 4, 8], [6, 5, 7, 4, 8, 1, 2, 9, 3]]

L8n5_{0}_{1} = [[9, 5, 2, 6, 8, 1, 7, 4, 3], [6, 1, 7, 4, 5, 3, 2, 9, 8]]

L8n7_{0}_{0}_{0} = [[6, 1, 8, 4, 3, 9, 7, 5, 2], [9, 3, 2, 7, 5, 6, 4, 1, 8]]

L8n7_{1}_{0}_{0} = [[3, 1, 2, 9, 5, 4, 7, 8, 6], [9, 7, 4, 3, 8, 6, 1, 5, 2]]

L8n7_{0}_{1}_{0} = [[6, 3, 8, 4, 5, 9, 7, 1, 2], [9, 1, 2, 7, 3, 6, 4, 5, 8]]

L8n7_{1}_{1}_{0} = [[3, 1, 4, 9, 5, 6, 7, 8, 2], [9, 7, 2, 3, 8, 4, 1, 5, 6]]

L8n7_{0}_{0}_{1} = [[6, 1, 8, 7, 3, 9, 4, 5, 2], [9, 3, 2, 4, 5, 6, 7, 1, 8]]

L8n7_{1}_{0}_{1} = [[3, 1, 2, 9, 8, 4, 7, 5, 6], [9, 7, 4, 3, 5, 6, 1, 8, 2]]

L8n7_{0}_{1}_{1} = [[6, 3, 8, 7, 5, 9, 4, 1, 2], [9, 1, 2, 4, 3, 6, 7, 5, 8]]

L8n7_{1}_{1}_{1} = [[3, 1, 4, 9, 8, 6, 7, 5, 2], [9, 7, 2, 3, 5, 4, 1, 8, 6]]

L8n8_{0}_{0}_{0} = [[5, 1, 7, 3, 8, 4, 6, 2], [8, 4, 2, 6, 5, 1, 3, 7]]

L8n8_{1}_{0}_{0} = [[3, 1, 2, 8, 4, 6, 5, 7], [8, 6, 5, 3, 7, 1, 2, 4]]

L8n8_{0}_{1}_{0} = [[5, 4, 7, 3, 8, 1, 6, 2], [8, 1, 2, 6, 5, 4, 3, 7]]

L8n8_{1}_{1}_{0} = [[3, 1, 5, 8, 4, 6, 2, 7], [8, 6, 2, 3, 7, 1, 5, 4]]

L8n8_{0}_{0}_{1} = [[5, 1, 7, 6, 8, 4, 3, 2], [8, 4, 2, 3, 5, 1, 6, 7]]

L8n8_{1}_{0}_{1} = [[3, 1, 2, 8, 7, 6, 5, 4], [8, 6, 5, 3, 4, 1, 2, 7]]

L8n8_{0}_{1}_{1} = [[5, 4, 7, 6, 8, 1, 3, 2], [8, 1, 2, 3, 5, 4, 6, 7]]

L8n8_{1}_{1}_{1} = [[3, 1, 5, 8, 7, 6, 2, 4], [8, 6, 2, 3, 4, 1, 5, 7]]

L9n1_{0} = [[9, 1, 4, 6, 5, 7, 2, 3, 8], [5, 6, 7, 8, 9, 3, 4, 1, 2]]

L9n1_{1} = [[3, 4, 2, 7, 9, 5, 6, 1, 8], [9, 1, 8, 3, 6, 7, 4, 5, 2]]

L9n2_{0} = [[6, 9, 4, 1, 5, 7, 2, 3, 8], [1, 5, 7, 6, 8, 3, 4, 9, 2]]

L9n2_{1} = [[3, 5, 1, 8, 9, 6, 7, 2, 4], [9, 2, 4, 3, 7, 8, 5, 6, 1]]

L9n3_{0} = [[7, 9, 4, 5, 1, 6, 2, 3, 8], [1, 5, 6, 8, 7, 3, 4, 9, 2]]

L9n3_{1} = [[2, 4, 3, 7, 9, 5, 6, 8, 1], [9, 1, 8, 2, 6, 7, 4, 3, 5]]

L9n4_{1} = [[3, 4, 2, 5, 6, 7, 9, 1, 8], [9, 1, 8, 3, 4, 5, 6, 7, 2]]
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L9n5_{0} = [[4, 9, 2, 1, 3, 5, 6, 7, 8], [1, 3, 5, 4, 6, 7, 8, 9, 2]]

L9n5_{1} = [[3, 5, 1, 6, 7, 8, 9, 2, 4], [9, 2, 4, 3, 5, 6, 7, 8, 1]]

L9n6_{1} = [[2, 4, 3, 5, 6, 7, 9, 8, 1], [9, 1, 8, 2, 4, 5, 6, 3, 7]]

L9n7_{0} = [[9, 1, 4, 5, 6, 2, 3, 7, 8], [5, 6, 7, 9, 3, 4, 8, 1, 2]]

L9n13_{0} = [[9, 2, 5, 6, 4, 7, 3, 8, 1], [4, 6, 7, 3, 8, 1, 9, 2, 5]]

L9n14_{0} = [[2, 8, 5, 6, 4, 7, 3, 9, 1], [6, 4, 7, 3, 9, 1, 8, 2, 5]]

L9n14_{1} = [[2, 1, 6, 4, 5, 3, 8, 9, 7], [8, 3, 9, 7, 2, 6, 5, 4, 1]]

L9n15_{0} = [[8, 1, 2, 4, 3, 5, 6, 7], [3, 4, 5, 6, 7, 8, 1, 2]]

L9n15_{1} = [[2, 1, 5, 8, 3, 4, 9, 6, 7], [9, 4, 2, 6, 7, 8, 5, 3, 1]]

L9n16_{0} = [[2, 8, 3, 6, 5, 4, 7, 9, 1], [6, 5, 7, 4, 9, 8, 1, 2, 3]]

L9n17_{1} = [[2, 1, 5, 7, 8, 3, 9, 4, 6], [8, 3, 2, 9, 4, 6, 5, 7, 1]]

L9n18_{1} = [[2, 1, 4, 8, 6, 7, 3, 9, 5], [7, 3, 6, 5, 2, 9, 8, 4, 1]]

L9n19_{1} = [[4, 5, 2, 3, 8, 1, 7, 6], [8, 1, 7, 6, 5, 4, 3, 2]]

L9n23_{0}_{0} = [[9, 1, 3, 5, 6, 2, 7, 4, 8], [6, 5, 7, 8, 9, 4, 3, 1, 2]]

L9n23_{1}_{0} = [[2, 3, 1, 8, 4, 5, 6, 9, 7], [8, 9, 5, 2, 6, 7, 3, 4, 1]]

L9n23_{0}_{1} = [[9, 5, 3, 8, 6, 4, 7, 1, 2], [6, 1, 7, 5, 9, 2, 3, 4, 8]]

L9n23_{1}_{1} = [[2, 9, 1, 8, 6, 5, 3, 4, 7], [8, 3, 5, 2, 4, 7, 6, 9, 1]]

L10n45_{1} = [[5, 3, 7, 8, 6, 2, 9, 1, 4], [9, 6, 4, 5, 1, 7, 3, 8, 2]]

L10n46_{1} = [[1, 8, 5, 4, 6, 7, 3, 2, 9], [7, 3, 2, 1, 9, 5, 8, 6, 4]]

L10n93_{0}_{0} = [[8, 9, 1, 2, 3, 5, 4, 6, 7], [2, 3, 4, 5, 6, 8, 7, 9, 1]]

L10n93_{0}_{1} = [[8, 3, 1, 2, 6, 5, 4, 9, 7], [2, 9, 4, 5, 3, 8, 7, 6, 1]]

L10n93_{1}_{1} = [[2, 3, 5, 7, 6, 1, 8, 9, 4], [5, 6, 8, 4, 9, 7, 2, 3, 1]]

L10n94_{1}_{0} = [[3, 7, 5, 9, 4, 2, 6, 1, 8], [9, 1, 8, 6, 7, 5, 3, 4, 2]]

L10n94_{1}_{1} = [[2, 9, 4, 8, 6, 1, 5, 3, 7], [8, 6, 7, 5, 3, 4, 2, 9, 1]]

L10n104_{0}_{0}_{0} = [[9, 1, 4, 3, 6, 5, 2, 8, 7], [6, 5, 7, 8, 9, 1, 4, 3, 2]]

L10n104_{1}_{0}_{0} = [[1, 9, 2, 5, 6, 4, 3, 7, 8], [5, 4, 7, 1, 3, 9, 8, 2, 6]]

L10n104_{0}_{1}_{0} = [[9, 5, 4, 3, 6, 1, 2, 8, 7], [6, 1, 7, 8, 9, 5, 4, 3, 2]]

L10n104_{1}_{1}_{0} = [[5, 9, 2, 1, 6, 4, 3, 7, 8], [1, 4, 7, 5, 3, 9, 8, 2, 6]]

L10n104_{0}_{0}_{1} = [[8, 6, 1, 4, 3, 2, 5, 7], [4, 2, 5, 8, 7, 6, 1, 3]]

L10n104_{1}_{0}_{1} = [[1, 9, 7, 5, 6, 4, 3, 2, 8], [5, 4, 2, 1, 3, 9, 8, 7, 6]]

L10n104_{0}_{1}_{1} = [[8, 6, 1, 4, 7, 2, 5, 3], [4, 2, 5, 8, 3, 6, 1, 7]]

L10n104_{1}_{1}_{1} = [[5, 9, 7, 1, 6, 4, 3, 2, 8], [1, 4, 2, 5, 3, 9, 8, 7, 6]]

L10n105_{0}_{0}_{0} = [[1, 3, 9, 2, 5, 4, 8, 6, 7], [4, 8, 5, 6, 7, 1, 3, 2, 9]]

L10n105_{1}_{0}_{0} = [[3, 1, 8, 2, 5, 7, 4, 6], [7, 5, 4, 6, 1, 3, 8, 2]]

L10n105_{0}_{1}_{0} = [[4, 3, 9, 2, 5, 1, 8, 6, 7], [1, 8, 5, 6, 7, 4, 3, 2, 9]]

L10n105_{1}_{1}_{0} = [[3, 5, 8, 2, 1, 7, 4, 6], [7, 1, 4, 6, 5, 3, 8, 2]]

L10n105_{1}_{0}_{1} = [[3, 1, 8, 6, 5, 7, 4, 2], [7, 5, 4, 2, 1, 3, 8, 6]]

L10n105_{1}_{1}_{1} = [[3, 5, 8, 6, 1, 7, 4, 2], [7, 1, 4, 2, 5, 3, 8, 6]]

L11n132_{1} = [[2, 9, 1, 3, 7, 6, 4, 5, 8], [7, 5, 6, 8, 2, 9, 1, 3, 4]]

L11n148_{1} = [[1, 8, 7, 4, 6, 5, 3, 2, 9], [5, 3, 2, 1, 9, 7, 8, 6, 4]]

L11n204_{0} = [[8, 9, 1, 2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 7, 8, 1, 9]]

L11n204_{1} = [[2, 3, 7, 5, 6, 1, 8, 9, 4], [6, 5, 4, 8, 9, 7, 2, 3, 1]]

L11n276_{0}_{0} = [[9, 2, 3, 4, 5, 6, 7, 8, 1], [4, 6, 8, 9, 1, 2, 3, 5, 7]]

L11n276_{0}_{1} = [[9, 2, 8, 4, 1, 6, 3, 5, 7], [4, 6, 3, 9, 5, 2, 7, 8, 1]]

L11n276_{1}_{1} = [[8, 4, 1, 2, 3, 5, 7, 9, 6], [3, 9, 5, 6, 7, 8, 1, 4, 2]]
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L11n277_{0}_{0} = [[8, 2, 4, 3, 5, 6, 7, 9, 1], [3, 6, 9, 8, 1, 2, 4, 5, 7]]

L11n277_{0}_{1} = [[8, 2, 9, 3, 1, 6, 4, 5, 7], [3, 6, 4, 8, 5, 2, 7, 9, 1]])
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