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ABSTRACT 

Promoting alternatives to substitute animal-based proteins is an important strategy to mitigate the 

environmental, animal welfare, and health impacts of animal agriculture. Given the essential role 

of consumer preference and marketing success in food promotion, in this dissertation I assess 

consumer preferences for alternative proteins and market dynamic in plant-based meat alternatives 

industry.  

In the first chapter, I conduct a meta-analysis to provide evidence on consumer preferences 

for plant-based meat alternatives (PBMA) and lab-grown meat not conditional on research context, 

utilizing machine-learning techniques in both the data collection and the data analysis phases to 

improve the efficiency of the meta-analysis. I demonstrate that machine-learning reduces the 

workload in the manual title-abstract screen phase by 69% accounting for 24% of total workload 

in data collection. Besides, machine learning improves out-of-sample of sample prediction 

accuracy by 48-78 percentage points when compared to econometric model. Empirically, the 

findings further reveal that demand for meat alternatives is higher among younger consumers, 

especially when the products displayed benefit information. 

Food value theory can explain consumers’ heterogenous demand for alternative proteins. 

In the second chapter, I utilize consumers’ food values to identify the drivers of demand for 

alternative meat and milk products in China, one of the world’s largest consumer markets. I find 

that public food values, such as environmental impacts and animal welfare, drive consumers’ 

demand for alternative meat and milk. It shows that approximately 35% of Chinese urban food   

shoppers constitute the potential market for these products. I estimate that modest consumption of 

alternative meat and milk products in these markets can improve food system sustainability by 

lowering China's animal production greenhouse gas emissions.  



The PBMA market has garnered substantial investment, with numerous new product 

developments underway. In the third chapter, I evaluate the effects of a new brand entry using 

store-level scanner data from IRI. I employ three empirical approaches: the two-way fixed effect 

approach, which allows to evaluate average effects, and the extended two-way fixed effects 

approach and the rolling approach with double machine learning which account for dynamic 

effects. The results suggest that entry effects vary across geographical locations, entry waves, and 

post-entry times. From methodological perspective, I show that the TWFE estimates could be 

biased when the staggered entry effects are not homogenous across entry waves and post-entry 

times. Notably, I also found that, compared to the other models, the rolling approach integrated 

with DML controls for selection bias by including high-dimensional covariates, leading to an 

improved model precision ranging from 24% to 45%. 

In sum, findings from this dissertation can be used to inform policymakers and industry to 

better understand the consumer demand and market dynamic in alternative protein industry. Also, 

this dissertation provides insights for applied economists in utilizing diverse methodologies, 

including econometric models, machine learning techniques, and/or the combination of them, to 

provide robust and valid empirical evidence in the field of agricultural and food economics.  
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CHAPTER 1: USING MACHINE-LEARNING METHODS IN META-ANALYSES: AN 

EMPIRICAL APPLICATION ON CONSUMER ACCEPTANCE OF MEAT 

ALTERNATIVES 

1. Introduction  

The debate surrounding the impact of food and agriculture on the environment, health, and animal 

welfare – especially the role meat alternatives play in this context – is timely and of global 

relevance (Tuomisto and Teixeira de Mattos 2011; Rubio et al. 2020; Shepon et al. 2018). Central 

to this debate is the question of whether the proliferation of second generation1 meat alternatives 

(e.g., plant-based and lab-grown meat products) is inducing a shift towards diets based around 

alternative proteins. This question has attracted broad scientific interest, evidenced by the rapidly 

increasing number of studies over the past 20 years looking at a variety of aspects related to the 

second generation of meat alternatives (See Figure 1.1).  

 
1Second generation refers to plant-based meat and lab-grown meat alternatives, which serve as a substitute for regular 

meat regarding to appearance, texture, and flavor. First-generation plant-protein products refers to protein products 

such as beans, tofu, seitan etc., which are not included in this study. 
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Figure 1.1 Number of publications on the topic of meat alternatives in Google Scholar and Web of 

Science 
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Extensive research has been done on the demand side, as widespread impacts of meat 

alternatives on environment, health, and animal welfare depend on the extent to which consumers 

are willing to substitute traditional meat products with alternatives. Collectively, this literature 

finds that a large percentage of consumers show positive attitudes toward both plant-based and 

lab-grown meat alternatives, but their willingness to try and pay for them vary across product type 

(Van Loo et al. 2020), information context (Van Loo et al. 2020; Rolland et al. 2020), geographical 

location (Bryant et al. 2019; Gómez-Luciano et al. 2019), and socio-demographics (Arora et al. 

2020; Mancini and Antonioli 2019). Sensory appreciation and pricing remain the main obstacles 

to the expansion of plant-based meat alternatives in food markets (Caputo et al. 2022; Taylor et al. 

2022). While these studies provide a general picture of consumer demand for meat alternatives, 

they have used different sample pools, applied different research methods, and studied different 

products. Thus, it is yet unknown if and to what extent findings from these studies can be 

extrapolated to other research contexts. To address this gap in the literature, our first objective is 

to conduct a meta-analysis study that provides more robust inter-temporal and inter-spatial 

empirical evidence on consumer acceptance of meat alternatives. In doing so, this study contributes 

to the global debate on the market potential of meat alternatives. 

The use of meta-analyses in scientific research is not new. Indeed, meta-analyses have been 

employed across various academic fields, including sociology, medicine, and applied economics 

(Sutton et al. 2000; Nelson and Kennedy 2008; Stanley and Doucouliagos 2012). In the realm of 

food choice, meta-analyses have been utilized to study consumer demand for new food 

technologies (Lusk et al. 2005; Dannenberg 2009), assess consumer preferences for various food 

quality attributes (Lagerkvist and Hess 2011), evaluate the effectiveness of preference-distinct 

elicitation methods (Penn and Hu 2018; Newbold and Johnston 2020), and predict food choice 
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elasticities (Cornelsen et al. 2015), among other applications. Their popularity is due to their ability 

to generate science-based evidence that conclusively identifies impacts over populations, 

geographical contexts, and methods, thus generating new knowledge on a large scale (Gurevitch 

et al. 2018). However, they are subject to various inherent drawbacks.  

  One of the major challenges with meta-analyses is the labor-intensive and time-consuming 

process of gathering data, which can be prone to human errors, selection bias and lack of 

transparency (Reddy et al. 2020; Wang et al. 2020). For instance, due to the vast amount of 

literature available on a subject, it often becomes impractical for researchers to manually review 

large volumes of literature within and across fields. This can increase the risk of unintentionally 

excluding qualifying studies and of human error, as researchers have to manually sift through 

thousands of published studies to identify the most relevant ones for inclusion in the analysis 

(Norman et al. 2019; Wang et al. 2020). To address these challenges, recent developments in the 

machine-learning literature propose alternative tools that enable researchers to speed up the meta-

analysis process and avoid human error, while also increasing transparency and replicability 

(Tsafnat et al. 2014; Bannach-Brown et al. 2019). However, the use of these tools in the field of 

agricultural and food economics remains largely unexplored. Therefore, the second objective of 

this study is to introduce machine-learning tools to inform meta-analyses in agricultural and food 

economics. We employed ASReview, an efficient and open-access machine-learning tool, to 

identify and narrow down the literature that fit our meta-analysis. Our study demonstrates that 

machine-learning tools can significantly reduce the effort required to conduct meta-analyses, 

adding to the emerging literature in other fields such as medicine (Schouw et al. 2021; Bleijendaal 

et al. 2022), public service (Cagigas et al. 2021; Rodriguez Müller et al. 2021), ecology (Kindinger 

et al. 2022), and computer science (van Hasstrecht et al. 2021a, b). 
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A second major challenge in meta-analyses is the use of limited sample size, as it raises 

concerns about the robustness and external validity of the findings (Wang et al. 2020; Johnston 

and Bauer 2020; Gorg and Strobl et al. 2001). To illustrate, meta-analyses serve two main purposes: 

testing hypotheses with respect to the effects of explanatory variables on the dependent/outcome 

variables and using the estimated meta-analysis models to conduct the out-of-sample predictions 

across time and space to identify the predictors to the dependent/outcome variables (Bergstrom 

and Taylor 2006; Nelson 2015). However, econometric models may struggle to optimize out-of-

sample predictions across time and space with a small sample size, which raises concerns regarding 

the consistency of estimators and accuracy of predictions in out-of-sample contexts. Machine-

learning techniques, such as random forest and lasso regressions, can improve prediction accuracy 

by identifying the most powerful predictors (Mullainathan and Spiess 2017; Storm et al. 2020). In 

addition, when combined with resampling techniques such as over-sampling and under-sampling, 

machine learning can also effectively address imbalance issues commonly encountered in studies 

with small sample sizes (Ghorbani and Ghousi, 2020; Wang et al. 2019; Özçift 2011).  

The third objective of this study is to investigate the potential of machine-learning in 

improving prediction accuracy in meta-analyses. To achieve this objective, we employed both 

econometric models (e.g., linear regression and fractional logistic model) and machine-learning 

algorithms (random forest regression) to compare their performance with prediction accuracy and 

identify the predictors for consumer demand on meat alternatives (Altmann et al. 2010). Our 

findings indicate that machine-learning techniques, particularly RFR, outperform econometric 

models in terms of external prediction accuracy. In addition, we found that machine learning can 

also help identify relevant variables for use in econometric analysis, thus improving their out-of-

sample predictions. These findings add to the emerging applied economics literature applying RFR 
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on big data (see for example Mullainathan and Spiess 2017 and Yoon 2021), as well as to meta-

analyses using machine-learning to analyze data in the fields of biology (Sadaiappan et al. 2021; 

Palma et al. 2018), medicine (Cao et al. 2021) and agricultural economics (Lin 2023).  

 The remainder of the article is organized as follows. Section 2 provides a background to 

the application of machine-learning in meta-analysis, followed by Section 3 illustrating our use of 

machine-learning for data search and collection. Section 4 explains the estimation procedures for 

both econometric and machine-learning methods. The results are presented in Section 5, and 

section 6 concludes.  

2. Standard Meta-Analyses and Machine Learning: Limitations and Opportunities  

In this section, we will begin by providing a review of the standard procedures and machine-

learning tools commonly used for paper screening in meta-analyses (section 2.1). We will then 

delve into how machine learning algorithms can complement conventional econometric models in 

meta-analyses (section 2.2). By doing so, we will explore how machine learning algorithms can 

enhance both internal and external validity, offering researchers a more nuanced approach to 

analyzing data. 

2.1.Paper Selection: Standard (Manual) Process versus Machine Learning Process  

To begin a standard meta-analysis study, researchers typically conduct a comprehensive literature 

search in online databases such as Web of Science (Literature Search). This process involves 

selecting keywords relevant to the research subject and identifying relevant studies. The next step 

is to manually screen the studies by reviewing their title and abstract, resulting in a reduced list of 

relevant studies (Initial Screening). These studies will then be further manually screened by 

reviewing the full text, resulting in an even smaller set of studies that are relevant to the research 

objective (Full Text Screening). Finally, the relevant studies are extracted and used to build the 
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dataset for the meta-analysis (Data Extraction). It is important to note that each step in this process 

is critical and must be conducted with care to ensure the validity and reliability of the results. The 

initial screening phase can be especially challenging, requiring the screening and review of 

thousands of paper titles and abstracts. As previously mentioned in the introduction, this process 

is labor-intensive and can be prone to human errors.  

The machine-learning literature has introduced various active learning-based tools that can 

accelerate the data gathering process in meta-analyses. In this study, we used ASReview for the 

Initial Screening process. ASReview allows researchers to interact with the machine-learning 

algorithm in a human-in-the-loop approach (the detailed implementation process is described in 

Appendix Section A 1.1) and offers advantages over other machine-learning tools (see foe example 

Table A 1.1 in Appendix), such as increased accessibility, transparency, and workload reduction, 

as shown in van de Schoot et al. (2021) and described in Table A 1.1 in Appendix and section 3.1. 

Compared to the standard manual initial screening procedure, the researchers only need to screen 

a subset instead of the full pool. Indeed, ASReview only requires researchers to screen 17% of the 

studies from the full pool to find over 95% of the relevant studies for full-text review, which 

reduces workload by 83% (van de Schoot et al. 2021). Despite ASReview reducing substantial 

workload and time in initial screening, it is important to note that a full-text review is still necessary 

to complete the data collection process for meta-analyses.  

2.2.The use of machine-learning for model prediction and resampling 

Standard meta-analysis studies commonly involve the estimation of econometric models, such as 

ordinary least squares (OLS) or weighted least squares (WLS) (Penn and Hu 2018; Oczkowski 

and Doucouliagos 2014), random or fixed effect models (Lagerkvist and Hess 2011; Colen et al. 

2018), and probit models (Sibhatu and Qaim 2018). These models represent an improvement over 
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less-sophisticated methods (e.g., conventional literature reviews) and enable researchers to identify 

the marginal effect of key variables. However, they also present several shortcomings that can be 

overcome using machine learning. 

For instance, econometric models such as OLS and WLS face limitations because they rely 

on in-sample data (Mattmann et al. 2016; Lusk 2017; Storm et al. 2020), leading to overfitting 

problems and poor prediction performance on the out-of-sample data (Storm et al. 2020; 

Mullainathan and Spiess 2017). On the other hand, machine-learning methods select models that 

have the best prediction performance on out-of-sample data (Storm et al. 2020; Mullainathan and 

Spiess 2017). They do so by identifying functions that most accurately predict an outcome variable 

using out-of-sample data before making predictions (Mullainathan and Spiess 2017). Cross-

validation procedures are then used to determine the appropriate model complexity and avoid 

overfitting (Storm et al. 2020; Singh et al. 2016; Hawkins 2004).  

Furthermore, meta-analyses are often conducted using a small sample size and a large set 

of independent variables (or features in the machine-learning language), leading to insufficient 

degrees of freedom in econometric settings (Storm et al. 2020; Babyak 2004). To overcome this 

limitation when estimating econometric models, researchers typically restrict the number of 

independent variables and use restricted model specifications, which however limits flexibility 

(Storm et al. 2020). Machine-learning addresses this issue by not relying on the model’s degrees 

of freedom and using regularization techniques to avoid overfitting problems while enabling a 

wide range of independent variables (or features) in estimation (Storm et al. 2020). Further, as 

previously mentioned, resampling methods can be employed to manage imbalances in limited 

sample sizes in meta-analyses. These methods improve the performance of the machine-learning 
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algorithms, particularly when the number of variables being analyzed exceeds the number of 

observations (or studies). 

In this study, we employed econometric models such as WLS and fractional logit 

regression (FLR) alongside a popular machine-learning algorithm – the random forest regression 

(RFR) (Breiman 2001). The RFR is an ensemble learning method for regression (Breiman 2001) 

that builds multiple decision trees with the same distribution to predict the value of a variable 

(Breiman 2001; Rodriguez-Galiano et al. 2012). Compared to the WLS  and FLR models in meta-

analyses, the RFR presents three advantages: 1) it avoids multicollinearity issues that often arise 

in linear regressions (Forkuor et al. 2017), 2) it tackles the problem of overfitting by using a 

resampling technique known as “bagging”, which effectively reduces the model variance (Hastie 

et al. 2009), and 3) outperforms other algorithms used in machine-learning in terms of 

computational time and predictive power, particularly for meta-analyses based on small sample 

sizes (Mullainathan and Spiess 2017; Shataee et al. 2012; Osisanwo et al. 2017).  

However, unlike econometric models, the RFR model cannot be used to estimate marginal 

effects (Athey, 2018). To overcome this limitation, we calculated the permutation importance and 

ranked the prediction power of the independent (predictor) variables (Breiman 2001). We then 

used the calculated importance scores to select a subset of independent variables to use in 

econometric estimation. This approach improves prediction accuracy of econometric models and 

addresses the issue of limited degrees of freedom. These methods are described in detail in section 

4.3.  

3. Data Sources and Search Process  

Our meta-analysis encompasses a comprehensive analysis of relevant studies published on 

consumer willingness to try (WTT) and willingness to pay (WTP) for plant-based and lab-grown 
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meat alternatives at the time of paper selection process, which started on March 1st and ended in 

March 8th 2022. We conducted an extensive systematic search of published articles on plant-based 

and lab-grown meat alternatives using Web of Science as our primary database.2 Our search was 

limited to English-language papers and involved the use of a combination of seven “product” 

keywords and fifteen “acceptance” keywords, resulting in a total of 105 combinations. The product 

keywords included words such as  “plant-based meat”, “lab grown meat”, “artificial meat”, “in 

vitro meat”, “clean meat”, “cultivated meat”, and “cultured meat”, while the acceptance keywords 

included words such as  “willing(ness) to pay”, “willing(ness) to try”, “willing(ness) to purchase”, 

“willing(ness) to consume”, “accept(ance)”, “demand”, “perception”, “attitude”, and “valuation”. 

This process yielded a dataset of 785 papers, with no duplicates. The eligibility of each of the 785 

papers for inclusion in the final study was determined based on a sequential two-stage selection 

process: 1) review of the title and abstract (Initial Screening) and 2) review of the full text (Full 

Text Screening). The next sub-sections discuss the steps we followed at each stage.  

3.1.Initial Screening: Review titles and abstracts using ASReview 

We used ASReview to review the titles and abstracts of 785 studies selected via Web of Science.3 

The process was carried out following the steps outlined in Figure 1.2.  

  

 
2 Norris and Oppenheim (2007) show that Web of Science has a significant advantage in the quality of record 

processing and depth of coverage in social science literature relative to other commonly used scholarly search engines 

such as Google Scholar, Scopus, and CSA Illumina. 
3 ASReview is compatible with the top 10 online libraries frequently used for literature searches in agricultural 

economics. These libraries include Scopus, Web of Science, Google Scholar, AgEcon Search, EBSCO, Jstor, PubMed, 

Wiley Online Library, EconLit, and CAB Abstracts. 
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Figure 1.2 Initial screening pipeline in ASReview 

  

Import database to 

ASReview

Establish prior 

knowledge

Predict and present the

most relevant paper

Define model features

Provide feedback

Update Prediction

Stop labelling 

Export dataset

1

2

3

4

5

6

7

8

Active Learning



 

 

 

 
12 

First, we imported the 785 papers selected via Web of Science into ASReview (Step 1). 

From this full pool, we selected a subset of 10 papers and reviewed their titles and abstracts to 

label them as either “relevant” or “irrelevant” (Step 2). 4  Our selection criteria for relevancy 

included the presence of key words such as “willingness to try” and “willingness to pay” in their 

titles or abstracts. This review process resulted led to the categorization of these 10 initial papers 

into 5 relevant studies and 5 irrelevant studies, which served as prior knowledge5 (𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒0) 

for guiding the machine learning model in ASReview in subsequent steps.  

In Step 3, we defined the model features, which included the Naïve Bayes classifier, term 

frequency–inverse document frequency (TF-IDF) as the feature extraction technique, maximum 

as the query strategy, and dynamic resampling as balance strategy.6 ASReview then used these 

model features and the prior knowledge, 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒0, as exclusion/inclusion criteria to predict 

the most relevant paper to present to us (Step 4). We read the abstract and title of the presented 

paper and labeled it as either “relevant” or “irrelevant” (Step 5). This process created new prior 

knowledge (𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒1) that included both the newly labeled paper and the previous prior 

knowledge (𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒0). The algorithm then used this feedback to re-train the model and update 

its predictions for the next paper to present (Step 6). We repeated Step 4 – 6 multiple times, 

reviewing a total of 247 papers: 10 papers reviewed during the first prior knowledge set up and 

237 reviewed during the active learning process.  

 
4 The selection of these initial 10 papers was guided by the ASReview Software Documentation, which recommends 

labelling five irrelevant papers and between 1 and 5 relevant papers as prior knowledge for optimal initial model 

training. 
5 When setting the prior knowledge, ASReview has both “search” and “random” functions to find relevant and 

irrelevant studies. Following the standard practice (Van de Schoot et al. 2020), we used the “search” function to find 

relevant studies, and the random function to find irrelevant papers.  
6 This combination of model features was selected as van de Schoot (2021) suggests that it leads to superior prediction 

accuracy and lower computation time across different datasets compared to alternative feature combinations. 
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ASReview allows the user to decide the stopping point; we chose to end the process after 

encountering 50 consecutive irrelevant papers (Step 7). This decision follows the approach of prior 

studies such as Rodriguez Müller et al. (2021) and Bleijendaal et al. (2022), who stopped the 

process after being presented with 35 and 50 consecutive irrelevant studies, respectively. Of the 

247 initially screened, 81 were selected for further full-text review, with the remaining 166 were 

classified and labeled as irrelevant (Step 8). The selected 81 relevant papers were then used for 

our full text screening process (Full Text Screening). 

Overall, by using ASReview we were able to review only 247 abstracts and titles out of 

the 785 papers collected via Web of Science, achieving a 69% reduction in workload during the 

initial screening stage ((1-247/785)×100%). This resulted in time saving of approximately 1.12 

workdays (8 hours per workday). When comparing these workload reductions with the total time 

we spent on data collection, we found that ASReview contributed to a 24% decrease in total time 

required for data collection (detailed calculations are presented in Appendix Table A 1.2). The 

time saved in our study demonstrates the potential of machine learning tools like ASReview to 

offer significant advantages in applied economics and other fields that employ literature reviews 

and meta-analyses. This especially noteworthy considering that the research topic of our study is 

relatively recent, which resulted in a smaller literature pool compared to many other studies. Most 

studies involve extensive literature reviews, further highlighting the impact of this tool in 

simplifying the laborious manual screening process. For example, within agricultural and food 

economics, the volume of literature requiring review and meta-analysis can be vast: Laiou et al. 

(2021) screened 19,910 papers for a review on nudge interventions in promoting healthy diets; 

Tompson et al. (2023) screened 9967 papers on the adoption of ecological practices by farmers; 
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and Schulz and Borner (2022) screened 6982 papers for their meta-analysis on agricultural 

technology adoption.  

3.2.Full Text Screening and Data Set Creation  

Once the list of relevant papers was complete, we reviewed the full text of each of the 81 relevant 

papers and employed two selection criteria, which are consistent with previous meta-analysis 

studies (see e.g., Lusk et al. 2005; Oczkowski and Doucouliagos 2014). First, each study had to 

feature either second generation of plant-based meat alternatives or lab-grown meat alternatives. 

Second, the study had to report at least one of the following key variables: WTT plant-based/lab-

grown meat alternatives, WTP for plant-based/lab-grown meat alternatives. By using these two 

selection criteria, we refined the list of 81 relevant papers to 48 papers. These papers, which are 

listed in Table A 1.3 in Appendix, use primary data obtained from contingent valuation, discrete 

choice experiments, and consumer surveys.   

These selected 48 papers were then used to construct the data set for subsequent meta-

analysis.7 The final data set included WTT/WTP estimates as dependent variables consisting of 28 

observations for WTT plant-based meat alternatives estimates, 68 observations for WTT lab-

grown meat alternatives estimates, 32 observations for WTP for plant-based meat alternatives 

estimates, and 26 observations for WTP for lab-grown meat alternatives estimates (Table A 1.3 

displays the number of observations extracted from each study). The WTT plant-based/lab-grown 

meat alternatives represent the percentage of participants who expressed a willingness to 

try/eat/purchase plant-based/lab-grown meat alternatives in each selected study. For the WTPs, we 

focus on marginal WTP values (mWTPs), which refer to the price premium that consumers are 

willing to pay for plant-based/lab-grown meat alternatives compared to regular (animal-based) 

 
7 To clarify, all the observations we collected were from the summary statistics and model estimates that were 

reported in the 48 papers instead of the raw datasets used by the papers. 
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meat. To facilitate comparisons across studies, we followed Lusk et al. (2005) and expressed 

mWTP values as percentage premiums instead of absolute values using the formula 8 : 

[(𝑊𝑇𝑃𝑝𝑙𝑎𝑛𝑡/𝑙𝑎𝑏 − 𝑊𝑇𝑃𝑟𝑒𝑔𝑢𝑙𝑎𝑟)/𝑊𝑇𝑃𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑚𝑒𝑎𝑡 ] × 100% . Table A 1.3 reports the methods used to 

calculate WTT and mWTP estimates for plant-based/lab-grown meat alternatives for each study 

included in the meta-analysis.  

In addition to the WTT and mWTP variables, our final data set includes several 

independent variables representing consumer characteristics, product type, study contexts and 

preference elicitation methods for each sampled study. These variables are summarized and 

defined in Table 1.1, along with the WTT and mWTP variables. The average WTT for plant-based 

and lab-grown meat alternatives are 67.10% and 45.82%, respectively. Consumers show a 

discounted WTP for plant-based meat alternatives (-25.83%) and lab-grown meat alternatives (-

14.77%) compared to conventional meat products. 

The average age of respondents across observations is approximately 40 years. In the 

observations examining WTT and WTP for plant-based meat alternatives, the average proportions 

of vegan or vegetarian respondents are 17.31% and 17.54%, respectively. The proportions of vegan 

or vegetarian are lower for observations focusing on lab-grown meat alternatives, with only 9.61% 

and 5.30% of respondents falling into these categories, respectively. These proportions are 

comparable to that of the US vegan and vegetarian population (about 14%, The Hartman Group, 

2021). Regarding product type, 44.83% and 20.90% of the observations utilized burger/ground 

meat alternatives to examine WTT plant-based meat alternatives and lab-grown meat alternatives, 

respectively. The proportions are higher for the observations examining WTP, with 81.25% and 

 
8 Comparing mWTP across studies can be challenging for two main reasons:1) some papers reported the mWTP 

directly, while others reported tWTP for both plant-based/lab-grown meat alternatives and regular meat; and 2) the 

selected papers measure mWTP using different units (e.g., per pound versus per package) and/or currencies (e.g., euro 

versus U.S. dollars). 
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61.54% of the observations utilizing plant-based burger/ground meat alternatives and lab-grown 

burger/ground meat alternatives, respectively. In terms of study context, 10.34% and 26.87% of 

observations provided respondents with benefit information9 when examining WTT plant-based 

and lab-grown meat alternatives, respectively. Larger proportions provided benefit information to 

examine the WTP with 12.50% for plant-based meat alternatives and 34.62% for lab-grown meat 

alternatives. Most of the observations were obtained in the US, followed by Europe and Asia. 

Lastly, nearly half of observations employed discrete choice experiments to assess consumer WTP 

for meat alternatives (42.31% and 46.88% for plant-based and lab-grown meat alternatives 

respectively). 

  

 
9 The benefit information includes environmental and health benefits. For WTT of plant-based meat alternatives, 7% 

of observations provide solely environmental benefit information, while 3% provide information on both 

environmental and health benefits. Regarding WTT of lab-grown meat alternatives, 9% of observations solely provide 

environmental benefit information, and 18% provide information on both environmental and health benefits. In terms 

of WTP for plant-based meat alternatives, 9% and 4% of observations provide solely environmental or health benefit 

information, respectively. For WTP for lab-grown meat alternatives, 23% and 4% of observations provide solely 

environmental or health benefit information, respectively. In addition, 8% of observations provide information on 

both environmental and health benefits.  
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Table 1.1 Summary statistics for key variables in WTT and mWTP estimation   
  WTT estimation  WTP estimation 

Variables  Definition 

Plant-

based  

(28 obs) 

Lab-

grown  

(68 obs) 

p-

valu

es 

 Plant-

based 

(32 

obs) 

Lab-

grown  

(26 

obs) 

p-

valu

es 

Dependent Variables        

WTT  Percentage of 

respondents who are 

willing to try plant-

based/lab-grown 

meat alternatives  

67.10 

(16.47)a 

45.82 

(19.85) 
0.00  - - - 

mWTP  Percentage premium 

for plant-based/lab-

grown meat 

alternatives 

- - -  
-25.83 

(48.13) 

-14.77 

(67.10) 
0.47 

Independent variables         

Consumer Characteristic        

Male 

proportion  

Percentage of male 

respondents (%) 

39.75 

(16.36) 

45.53 

(6.49) 
0.02  

41.63 

(15.92) 

47.69 

(6.94) 
0.08 

Age  Average age of 

respondents, in 

years  

42.31 

(8.58) 

38.99 

(8.84) 
0.10  

43.88 

(8.34) 

41.77 

(8.07) 
0.33 

Vegan/Ve

getarian  

Percentage of 

Vegan/Vegetarian, 

proportion (%) 

17.31 

(15.91) 

9.61 

(13.05) 
0.04  

17.54 

(15.67) 

5.30 

(3.77) 
0.02 

Product 

Type  

 
       

Burger/Gr

ound meat  

1 if product valued 

was burger/ground 

meat alternatives; 0 

otherwise (%) 

44.83 

(50.61) 

20.90 

(40.96) 
0.02  

81.25 

(39.66) 

61.54 

(49.61) 
0.10 

Artificial  1 if lab-grown meat 

alternatives were 

named as artificial 

meat; 0 otherwise 

(%) 

- 
5.97 

(23.87) 
-  - 

15.38 

(36.79) 
- 

Study 

Context 

 
       

DCE 

method  

1 if valuation 

method is discrete 

choice experiment; 0 

otherwise (%) 

- - -  
46.88 

(50.70) 

42.31 

(50.38) 
0.73 
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Table 1.1 (cont’d) 

Benefit 

info  

1 if benefit 

information was 

provided to 

respondents; 0 

otherwise (%) 

10.34 

(30.99) 

26.87 

(44.66) 
0.07  

12.50 

(33.60) 

34.62 

(48.52) 
0.05 

Country/R

egion 

        

US 1 if data from US; 0 

otherwise (%) 

41.38 

(50.12) 

29.85 

(46.11) 
0.28  

40.63 

(49.90) 

38.46 

(49.61) 
0.87 

Asia 1 if data from Asia; 

0 otherwise (%) 

10.34 

(30.99) 

13.43 

(34.35) 
0.68  

3.13 

(17.68) 

23.08 

(42.97) 
0.02 

Europe 1 if data from 

Europe; 0 otherwise 

(%) 

13.79 

(35.09) 

35.82 

(48.31) 
0.03  

25.00 

(43.99) 

34.62 

(48.52) 
0.43 

Notes: a Number in parenthesis are robust standard errors. b We advise caution in directly 

comparing the mWTP and WTT between plant-based and lab-grown meat alternatives based on 

the summary statistics provided in Table 1. Statistical tests reveal significant differences in key 

variables such as consumer demographics and the inclusion of benefit information, which can 

influence the observed mWTP and WTT.  
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4. Estimation Procedures  

In this section, we begin by describing the econometric models used to estimate the WTT and 

mWTP for plant-based and lab-grown meat alternatives based on the data from the selected studies, 

then introduce the methodologies of the machine-learning techniques, random forest regression 

(RFR), in generating out-of-sample predictions, ranking the prediction power of each predictor, 

and select the subset of independent variables for econometric models.  

4.1.Econometric Models 

To estimate WTT plant-based and lab-grown meat alternatives, we used both linear and non-linear 

methods. For the linear method, we followed the approach of Lusk et al. (2005) and used a linear 

regression model (Weighted Least Square (WLS)) where WTT plant-based and lab-grown meat 

alternatives were separately regressed on a vector of independent variables indicating the 

characteristics of sample, which are: sample gender proportion, average age, vegan and vegetarian 

proportion, product type, and benefit information provision and region (the definition of the 

variables could be found in Table 1.1). However, since the dependent variable (WTT) is bounded 

between 0 and 1, the linear model may fail to ensure the fitted values fall into this range (Papke 

and Wooldridge, 1996). To address this issue, we also estimate a (non-linear) fractional logistic 

regression (FLR)10 (Papke and Wooldridge 1996; Meaney and Moineddin 2014). More model 

details could be found in Appendix Section A 1.2.1 and A 1.2.2. 

Turning now to the analysis of mWTP for plant-based/lab-grown meat alternatives, we 

estimate a linear model (WLS) where mWTP for plant-based/lab-grown meat alternatives were 

separately regressed on a vector of independent variables indicating the characteristics of sample. 

More model details could be found in Appendix Section A 1.2.3. Unlike WTT, the boundary of 

 
10 We also estimated a fractional heteroskedastic probit regression, and the results are consistent with that of FLR. 



 

 

 

 
20 

mWTP for plant-based or lab-grown meat alternatives is not an issue since it can be negative or 

positive, depending on whether consumers discount meat alternatives (negative mWTP) or give a 

higher value to meat alternatives than regular meat (positive mWTP).  

4.1.1 Out-of-Sample Prediction Using Estimates from Econometric Models  

To assess the predictive accuracy of the WLS and FLR models, we employed the delete-one cross-

validation method introduced by Efron and Tibshirani (1994) and used in previous meta-analysis 

studies (Lusk et al. 2005). Specifically, we systematically deleted one observation, re-estimated 

the model, and then used the new model to predict  WTT  or 𝑚WTP value for the deleted 

observation. We repeated this procedure for all the observations to generate out-of-sample 

predictions.  

We then calculated the out-of-sample prediction accuracy as out-of-sample R-squared, 

which measures the squared correlation between observed and predicted values. We repeated this 

process for each product of interest (plant-based and lab-grown meat alternatives) separately. We 

then compared the performance of the WLS and FLR models with our machine-learning approach 

and assess their ability to accurately predict consumer behavior. The procedures followed to 

compute machine-learning out-of-sample predictions using are described in the next section. 

4.2.The Random Forest Regression and Out-of-Sample Predictions using Machine-Learning  

We used a popular machine-learning algorithm, the RFR (Breiman 2001), to make predictions on 

consumer WTT and WTP for meat alternatives. The basic idea behind the RFR is to grow a random 

forest by using multiple randomized decision trees, where each tree is trained on a random subset 

of the input data. In each decision tree, the predictor variables (𝑥) are represented by the root node 

and internal nodes, while the leaf nodes represent the output values for prediction (𝑌). This process 

is repeated for multiple decision trees, leading to a forest of decision trees that each provide their 
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own predictions (see Lee et al., 2020). The RFR model is then estimated by training multiple 

regression trees 𝑓𝑡 = 𝐸[𝑌|𝑥] (𝑡 = 1, … , 𝑇)  and averaging the results (Biau and Scornet 2016):11  

 𝑓̅(𝑥) = ∑ 𝑓𝑡(𝑥)

𝑇

𝑡=1

 (1) 

To estimate the final RFR model and generate out-of-sample predictions for WTT and WTP for 

plant-based and lab-grown meat alternatives, we followed the steps: construct the data structure, 

determine the optimal RFR model, and estimate the final RFR model (Figure A 1.2 in Appendix 

outlines the computational steps followed to estimate the model).  

To construct the data, we defined WTT or mWTP as output variables (𝑌) and identified a 

set of predictor variables 𝑿 = {𝑥1, … , 𝑥𝑚}, where m=1, …, M. These predictor variables are the 

same as the ones used in the econometric models. Subsequently, we randomly split the data set 

into a training dataset (70%) and a test dataset (30%).  The optimal RFR model was determined 

through feature selection, which is considered as an effective approach to mitigate overfitting 

issues on small datasets (Vabalas et al., 2019; Thomas et al., 2020; Larracy et al., 2021). 

Specifically, we applied the Recursive Feature Elimination (RFE) method, as introduced by Guyon 

et al. (2002), which has been shown to outperform other feature selection methods in controlling 

overfitting issues (Vabalas et al., 2019). We evaluated a series of RFR models, each with a varying 

number of features (variables) m=1, …, M, using a fixed number of 50012 decision trees for each 

model’s evaluation.  The performance of the RFR models was evaluated using the out-of-sample 

R-squared, which was calculated using the K-fold cross validation method, as introduced by 

 
11To avoid the correlation of different trees, we bootstrapped to resample the training-folds data with replacement for 

each tree, as suggested Rodriguez-Galiano et al. (2015). 
12 We selected 500 trees for our RFR model as the out-of-bag error rate stabilizes at this number (for more details see 

Probst and Boulesteix 2017). We also conducted robustness tests with tree counts ranging from 100 to 1000 and tree 

depths from 2 to 9. The results from these tests show that out-of-sample prediction accuracies remain consistent 

irrespective of these variations, confirming the robustness of our RFR model in response to changes in tree count and 

depth.  
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Geisser and Eddy (1979) and detailed in Appendix Section A 1.3. The model with the highest out-

of-sample prediction accuracy was selected as the optimal RFR model. 

After identifying the optimal RFR model specifications, we estimate the final RFR model 

on the full training dataset. We again set 500 randomized regression trees and m* variables in each 

tree. The final step was to apply the estimated RFR model on the testing dataset to generate the 

predictions for WTT and WTP for plant-based and lab-grown meat alternatives and calculate the 

out-of-sample prediction accuracy.  

4.2.1 Resampling  

Due to the small sample size, meta-analyses might face the problem of whether the distribution of 

WTT and mWTP in the data collection is truly representative of the population. Unrepresentative 

samples can lead to machine-learning models being trained on imbalanced datasets, dominated by 

unrepresentative data points (Branco et al. 2017; Ghorbani and Ghousi 2020). To counteract this, 

we applied the Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise 

(SMOGN), which is a resampling strategy introduced by Branco et al. (2017) to mitigate such 

imbalances by reducing the influence of dominant data points. 

The SMOGN algorithm aims to generate a new synthetic dataset by using two different 

approaches. First, if the seed sample and the k-nearest neighbor selected are too close, the 

algorithm predicts extreme values. Second, if the seed sample and the k-nearest neighbor are too 

far away, the algorithm adds some Gaussian noise (Branco et al. 2017). By using these approaches, 

the WTT and mWTP in the new synthetic datasets are uniformly distributed within the range of 

the original WTT and mWTP. This helps to ensure that the new synthetic dataset is representative 

of the population.  
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We chose SMOGN for two reasons. First, it effectively solves imbalanced dataset problems 

in small samples compared to other resampling strategies like SMOTER and Gaussian Noise 

resampling. This is because SMOGN considers the extreme values in the dataset and creates a 

balanced dataset without reducing sample size (see e.g., Branco et al. 2017; Branco et al. 2018; 

Sotiroudis et al. 2022). Second, SMOGN can be applied to continuous variables (Branco et al. 

2017), such as WTT and WTP. To combine resampling techniques with machine-learning models, 

we 1) input the original dataset, 2) apply SMOGN to the original dataset to obtain the new balanced 

dataset, and 3) apply the machine-learning model training process to the new balanced dataset (see 

section 4.2). 

4.2.2 Permutation importance and variable selection 

Permutation importance is a widely used method for measuring the effect of each independent 

predictor variable on the outcome variable’s prediction accuracy (Breiman 2001). This approach 

allows us to interpret the independent variables’ impact on the prediction accuracy of out-of-

sample data and thus enables us to break down the black box of the RFR model. The outcome of 

this computational process informs econometric model specifications. Researchers can use this 

data-driven approach to exclude independent variables with low permutation importance, thus 

increasing degrees of freedom in meta-analyses. 

We computed the permutation importance for each independent variable based on the RFR 

models with resampling. We followed the three-step approach proposed by Cutler et al. (2012): 1) 

We randomly shuffled the data for each variable (𝑥𝑚) in the training dataset and then estimated 

the RFR model on the shuffled training dataset. 2) We calculated the out-of-sample prediction 

accuracy of the RFR model estimated in step 1. 3) We determined the permutation importance of 

each variable ((𝑥𝑚) by subtracting the prediction accuracy calculated in step 2 from that of the 
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RFR model. Based on the permutation importance of each variable, we re-estimated the 

econometric models (Eq. (1) – (6)) by including only independent variables with a positive 

permutation importance. 

5. Results  

5.1. Estimates from Econometric Models  

Tables 1.2 presents the estimates from the WLS and FLR models for plant-based and lab-grown 

meat alternatives. Overall, the results are consistent across the WLS and FLR models, apart from 

the coefficient of vegan/vegetarian which is not statistically significant in the FLR model. Further, 

the estimates validate the general descriptive statistics presented in Table 1.1 and further support 

the influence of consumer characteristics, product type, and study context on consumers’ WTT 

and WTP for these alternatives.  

Regarding consumer characteristics, our findings indicate that younger consumers have a 

higher WTT and WTP for both plant-based and lab-grown meat alternatives. Female consumers 

exhibit a higher WTT and WTP for plant-based meat alternatives, but a lower WTT and WTP for 

lab-grown meat compared to their male counterparts. Moreover, vegans and vegetarians express 

higher WTT and WTP for plant-based meat alternatives, while their WTT and WTP are lower for 

lab-grown meat alternatives compared to non-vegan/vegetarian consumers. 
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Table 1.2 Econometric estimates for WTT and mWTP for plant-based/lab-grown meat 

alternatives 

 Plant-based meat alternatives Lab-grown meat alternatives 

 WTT mWTP WTT mWTP 

 WLS FLR WLS WLS FLR WLS 

Consumer Characteristic    

Male -

0.139*** 

-1.020 -7.192*** 0.206*** 0.380 3.181*** 

 (0.008)a (0.777) (0.033) (0.018)a (2.175) (0.284) 

Age -

0.004*** 

-0.006 -0.009*** -0.008*** -0.021 -0.086*** 

 (0.0001) (0.015) (0.001) (0.0001) (0.015) (0.002) 

Vegan/Vegetarian 0.592*** 2.637*** 7.501*** -0.510*** 0.914  

 (0.009) (0.865) (0.050) (0.048) (0.687) ---e 

Product Type    

Burger/Ground 

meat 

0.231*** 0.903*** 0.353*** 0.0291*** 0.182 0.121*** 

 (0.003) (0.214) (0.007) (0.004) (0.308) (0.020) 

Artificial    ---d --- -0.067*** 

      (0.012) 

Study Context    

DCE   ---b   -0.657*** 

      (0.021) 

Benefit Info 0.170*** 0.882*** 0.116*** 0.050*** 0.250 0.075*** 

 (0.003) (0.296) (0.002) (0.002) (0.227) (0.011) 

Country/Region       

    US 0.003 0.151 2.657*** -0.122*** -0.023 -0.420*** 

 (0.002) (0.330) (0.020) (0.003) (0.394) (0.033) 

    Asia 0.164*** 0.766** 2.422*** 0.074*** 0.578 -0.918*** 

 (0.003) (0.355) (0.016) (0.002) (0.407) (0.024) 

    Europe 0.226*** 0.671 ---c -0.174*** -0.437 -0.126*** 

 (0.005) (0.573)  (0.002) (0.305) (0.027) 

Constant 0.615*** 0.267 -0.153*** 0.824*** 0.478 2.412*** 

 (0.003) (0.467) (0.024) (0.005) (0.788) (0.134) 

Table 1.2 (cont’d) 

 

      

Observations 28 28 32 68 68 26 

Notes: a Number in parenthesis are robust standard errors. b “DCE” is dropped due to collinearity 

issues with other variables. c “Europe” is dropped due to collinearity issues with other variables. d 

“Artificial” is dropped in WTT lab-grown meat alternatives estimation due to collinearity issues 

with other variables. e“Vegan/Vegetarian” is dropped in mWTP for lab-grown meat alternatives 

estimation due to missing observations. 

*** p<0.01, ** p<0.05, * p<0.1. 
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In terms of product type, the results reveal that consumers have a higher WTT and WTP 

when the products are specified as burger/ground meat alternatives in the survey/experiment 

compared to other types such as plant-based/lab-grown sausages or unspecified products. 

Consumers exhibit a lower WTP for lab-grown meat alternatives labeled as “artificial”. This 

finding aligns with existing studies that “artificial meat” may signal to consumers that the products 

are unnatural (Hallman and Hallman, 2020; Asioli et al., 2021; Califano et al., 2023). 

As for study context, our results indicate that Asian consumers have a higher WTT for both 

plant-based and lab-grown meat alternatives compared to European or U.S. consumers. However, 

Asian consumers have a lower mWTP for plant-based and lab-grown meat alternatives. This could 

be attributed to the perception that these alternatives are perceived as cheap substitutes to animal 

proteins despite the long history of plant-based protein consumption in Asia (He et al., 2020; Sun 

et al., 2023). Furthermore, our findings indicate that providing consumers with benefit information 

(both environmental and health benefit information) increases their WTT and WTP for both plant-

based and lab-grown meat alternatives. This is evidenced in recent studies by Van Loo et al. (2020), 

Katare et al. (2022), and Segovia et al. (2023), which suggest that different types of information 

influence consumer preferences and purchasing behaviors regarding meat alternatives. We also 

find that a DCE yields a lower WTP for lab-grown meat alternatives than the contingent valuation 
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method. This difference could be due to the fact that DCEs are less prone to hypothetical bias than 

contingent valuation (see Caputo and Scarpa, 2022 for a discussion).13 

5.2.Out-Of-Sample Predictions of WTT and WTP for meat alternatives 

In addition to estimating marginal effects, meta-analyses aim to build prediction models that can 

accurately predict out-of-sample data. Econometric methods and machine learning techniques can 

be used to develop these prediction models. While econometric methods can produce out-of-

sample predictions based on WLS and FLR estimations, as described in section 4.1.1, they may 

encounter problems such as overfitting and small sample size. Therefore, we used machine-

learning techniques (RFR) to train prediction models and generate out-of-sample predictions, as 

discussed in section 4.2.  

Figure 1.3 plots the predicted versus observed WTT and mWTP for meat alternatives 

separately for the conventional econometric (WLS and FLR) and RFR models. Points along the 

45-degree line indicate perfect predictions. Notably, the RFR models outperformed both the 

econometric models (WLS and FLR) in terms of prediction accuracy, with predicted values closer 

to the 45-degree line.  

 

 
13  There are several studies comparing the estimations from discrete choice experiments (DCE) and contingent 

valuation (CV), but the results vary across different studies. For example, Danyliv et al. (2012) find that a DCE 

produces higher WTP for physician services than a CV. However, Adamowicz et al. (1998) state that a DCE shows 

smaller compensation for the caribou improvement program than that of CV.  
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I. WTT plant-based meat alternatives II. WTT lab-grown meat alternatives 

  

III. mWTP for plant-based meat alternatives IV. mWTP for lab-grown meat alternatives 

  
 

Figure 1.3 Predictions for WTT and mWTP for plant-based and lab-grown meat 

(a) Econometric Methods (b) Machine-learning Random Forest
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To quantitatively compare the prediction accuracy between the econometric models and 

the RFR with and without SMOGN resampling, we report both in-sample and the out-of-sample 

R-squared measures in Table 1.3. The within-sample R-squared indicates how well the model fit 

the sample used for model estimation, whereas the out-of-sample R-squared measures the 

predictive accuracy of the model on data not used in the estimation (test data). For the RFR, out-

of-sample R-squared is calculated using the train/test split method14, whereas for econometric 

models, it is derived using the delete-one cross-validation approach. A larger difference between 

within-sample R-squared and out-of-sample R-squared values signals more pronounced 

overfitting. 

Our results indicate that the differences between within-sample and out-of-sample R-

squared values are consistently larger for the WLS and FLR models compared to the RFR. This 

suggests that econometric models are more prone to overfitting and tend to overlook external 

validity issues. Conversely, the RFR model demonstrates a more robust prediction capability, as 

reflected by its out-of-sample R-squared measure. The results indicate that machine-learning 

methods can improve the prediction accuracy by 48-78 percentage points.  This finding is 

consistent with other existing economic studies that have used machine-learning methods to 

improve prediction accuracy. For example, compared to conventional econometric/finance 

 
14 Vabalas et al., (2019) indicate that both the train/test split and nested cross-validation methods yield robust and 

unbiased out-of-sample prediction accuracies even in studies with small sample sizes. Using these methods, our RFR, 

WLS, and FLR regression analyses revealed that out-of-sample R-squared values for nested cross-validation (0.54 to 

0.91) closely match those from the train/test split (0.48 to 0.90). Notably, both methods yielded significantly higher 

out-of-sample R-squared values than those from WLS and FLR models (0.00 to 0.32). 
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models, Herrera et al. (2019) find that RFR could improve the prediction accuracy by 50 - 73 

percentage points. In addition to the RFR, we evaluated the improvement of out-of-sample 

prediction accuracy using machine learning techniques versus econometric methods across 

alternative algorithms, including the Decision Tree Regression, SVM Regression, and Linear 

Regression, as suggested by Ali et al. (2012) and Karim et al. (2021). The results are available in 

the Appendix, Table A 1.5. Our findings revealed consistent out-of-sample prediction accuracies 

between RFR and the other machine learning methods, with no single method consistently 

outperforming the others. Notably, all machine learning models provide higher out-of-sample 

prediction accuracies than the WLS and FLR econometric models.  
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Table 1.3 The within- and out-of-sample prediction accuracy (𝑅2) 

 Econometric  RFR 

 WLS FLR  No Resampling Resampling 

(SMOG) 

WTT Plant-based Meat Alternatives 

Within-sample 𝑅2a 0.50 0.44  0.84 0.71 

Out-of-sample 𝑅2b 0.03 0.11  0.72 0.68 

Diffc 0.47 0.33  0.12 0.03 

WTT Lab-grown Meat Alternatives 

Withn-sample 𝑅2 0.65 0.31  0.96 0.95 

Out-of-sample 𝑅2 0.00 0.00  0.48 0.43 

Diff 0.65 0.31  0.48 0.52 

mWTP Plant-based Meat Alternatives 

Within-sample 𝑅2 0.88 /  0.80 0.91 

Out-of-sample 𝑅2 0.12 /  0.88 0.90 

Diff 0.76 /  -0.08 0.01 

mWTP Lab-grown Meat Alternatives 

Within-sample 𝑅2 0.80 /  0.92 0.96 

Out-of-sample 𝑅2 0.32 /  0.82 0.88 

Diff 0.48 /  0.10 0.08 

Notes: a For econometric methods, within-sample 𝑅2 refers to the squared correlation between 

observed and predicted values on the full sample used to estimate the Table 1.2. For RFR, within-

sample 𝑅2 refers to the squared correlation between observed and predicted values on training 

dataset. Within-sample 𝑅2 indicates how well the model fit the sample used for model estimation. 
b For econometric methods, out-of-sample 𝑅2 measures the squared correlation between observed 

and predicted values on the deleted sample in delete-one cross-validation. For RFR, out-of-sample 

𝑅2 measures the squared correlation between observed and predicted values on test dataset. Out-

of-sample 𝑅2  shows the model’s prediction power outside of the sample.  c diff indicates the 

difference between within-sample 𝑅2 and out-of-sample 𝑅2.  
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5.3.Permutation Importance  

Figure 1.4 illustrates the permutation importance values for each variable 𝑥𝑚 included in the RFR 

models for both the WTT and WTP for plant-based and lab-grown meat alternatives. The variable 

with the highest bar (largest permutation importance value) in the figure represents the most 

important predictor, while the variable with the lowest/no bar (the permutation importance value 

equal to zero) represents that the variable is not relevant in prediction. The upper panels of Figure 

1.4 (a and b), show that product type (such as plant-based burger/grounded meat) and information 

provided to consumers (such as benefit information) are the most important predictors for WTT 

plant-based meat alternatives, while consumer characteristics, such as age and gender, are the most 

important predictors for WTT lab-grown meat alternatives.  Moving to the analysis of WTP, the 

bottom panels (c and d) in Figure 1.4 shows that that consumer’s gender and product type are 

important predictors for WTP for plant-based meat alternatives, while consumer’s age and 

country/region are crucial for predicting WTP for lab-grown meat alternatives.  
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Figure 1.4 The permutation importance of the features based on RFR 

Notes: 1) The X axis indicates the permutation importance, which means the decrease of out-of-

sample prediction accuracy (out-of-sample R2) if the variable is randomly shuffled. The unit of 

permutation importance is one. 2) The zero value bars imply that randomly shuffling these 

variables will not cause a decrease of out-of-sample prediction accuracy. 3) The variable “DCE” 

is included in the feature set (or set of variables) when calculating the permutation importance for 

WTP, but it is not included in Figure 1.4 because it affects WTP by mitigating hypothetical bias 

rather than directly impacting actual demand. 4) “Name” refers to “Artificial” in Table 1.1.  

(a) WTT Plant-based Meat Alternatives

(c) WTP for Plant-based Meat Alternatives

(b) WTT Lab-grown Meat Alternatives

(d) WTP for Lab-grown Meat Alternatives
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To demonstrate how machine-learning techniques can inform the econometric model 

specification regarding independent variable selection, we re-estimated the WLS model by 

including only the independent variables with positive permutation importance. The model 

estimations (in Appendix Table A 1.6) show consistent results with the original model 

specifications in Table 1.2. Additionally, using the delete-one cross-validation method, we 

calculated the out-of-sample prediction accuracies for the new econometric models and compared 

them with the original out-of-sample prediction accuracies in Table 1.4. The results reveal that 

using the variables selected by permutation importance could improve the out-of-sample 

prediction accuracy of the econometric models by 4 – 48 percentage points.  

 

Table 1.4 Out-of-sample prediction accuracy: Full list independent variables vs. variables 

selected by permutation importance 

Independent Variables Full Lista  
Variables Selected by 

Permutation Importanceb 

Out-of-sample Prediction Accuracy 

WTT Plant-based Meat Alternatives 0.03  0.18 

WTT Lab-grown Meat Alternatives  0.00  0.04 

mWTP Plant-based Meat Alternatives 0.12  0.60 

mWTP Lab-grown Meat Alternatives 0.32  0.36 

Notes: a “Full list” refers to the models including all the available independent variables and the 

estimation results are shown in Table 1.2 (WLS). b “Variables Selected by Permutation Importance” 

refers to the models only including the independent variables with positive permutation importance 

in Figure 1.4. The model estimations are shown in Table A 1.6.  
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6.  Conclusion  

Meta-analyses are widely used in applied economics due to their ability to predict outcomes that 

are independent of research contexts. However, they have two key limitations: they are labor-

intensive and small sample sizes can challenge data analysis. In this study, we conducted a meta-

analysis of consumer WTT and WTP for plant-based and lab-grown meat alternatives using 

machine-learning techniques at both data collection and data analysis stages.  

From a methodological perspective, we show that machine-learning techniques can 

significantly improve the efficiency and accuracy of meta-analyses at both data collection and data 

analysis stages. In the data collection stage, we found ASReview to be particularly useful in 

narrowing down the relevant literature, thereby reducing the workload in the initial screening 

phase by 69%. Furthermore, our research revealed that the implementation of the RFR model with 

resampling, as compared to econometric methods, produces more precise out-of-sample 

predictions, with improvements ranging between 48 – 78 percentage points. Notably, we also 

demonstrated that machine learning techniques like permutation importance can be used to inform 

econometric analysis. By utilizing this technique, we were able to identify the most predictive 

variables for econometric regressions, thereby mitigating overfitting issues. This process can lead 

to a substantial improvement in the out-of-sample prediction accuracy of econometric models, 

with gains ranging from 4 – 48 percentage points. 

 From an empirical perspective, our study significantly contributes to the ongoing debate 

surrounding the market potential and environmental and health impacts of meat alternatives. Given 
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the increasing number of empirical studies in this field, our meta-analysis is uniquely positioned 

to synthesize research findings and provide valuable insights into consumer preferences. Our 

findings highlight notable differences in consumer preferences across various socio-demographic 

factors, regions, product type, and study contexts. We found that younger consumers exhibit a 

higher demand for meat alternatives, particularly when the products are in the form of burgers and 

when benefit information is provided to consumers. We also observed that Asian consumers have 

a higher WTT for meat alternatives compared to their counterparts in the United States and Europe, 

but they are less inclined to pay a premium for meat alternatives. On the other hand, vegans or 

vegetarians display a higher WTT or WTP for plant-based meat alternatives, but not for lab-grown 

alternatives. In addition, the results from the RFR model highlight specific consumer 

characteristics, such as gender and age, as important predictors for WTT and WTP in the context 

of lab-grown meat alternatives. Furthermore, product type (such as burgers, etc.), emerged as a 

significant predictor for WTT and WTP for plant-based meat alternatives. 

Our analysis is based on published studies, which might cause some publication biases 

discussed in previous meta-analysis literature (Thornton and Lee 2000). In addition, while our 

meta-analysis study is based on studies employing primary data sources such as survey data and 

non-market valuation methods, future research could consider conducting meta-analysis on studies 

that use secondary data sources such as scanner data (Zhao et al. 2022; Neuhofer and Lusk 2022) 

and/or basked-based approaches (Caputo and Lusk 2022). Incorporating these alternative data 

sources would contribute to more robust evidence on the substitution and complementarity effects 
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between meat alternatives and animal-based meat products. Finally, despite recent research 

acknowledging the versatility of machine learning for both large and small datasets, overfitting 

remains a concern in machine learning applications with limited samples. Our dataset exemplifies 

the challenges of working with small data pools even after aggregating relevant literature. Future 

studies should focus on mitigating overfitting concerns and validating the performance of these 

techniques with small samples across various research contexts. Related to this and given the 

relatively small sample size of our study due to the novelty of the topic, it would be beneficial for 

future research to replicate this work to validate its findings. 
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CHAPTER 2: FOOD VALUES DRIVE CHINESE CONSUMERS’ DEMAND FOR MEAT 

AND MILK SUBSTITUTES 

1. Introduction  

Promoting alternatives to animal-based products is an important strategy that can mitigate 

environmental degradation, assuage animal welfare concerns, address chronic health problems 

associated with animal protein consumption, and improve food security (De Boer and Aiking, 

2011; Valin et al., 2013; Rubio et al., 2020). These issues are particularly salient in China, where 

greenhouse gas (GHG) emissions for animal production constitute over 8.5% of worldwide GHG 

emissions in this sector, 41% of the world’s pigs are slaughtered for meat annually, and over 50% 

of Chinese adults are overweight or obese (Food and Agriculture Organization of the United 

Nations (FAO), 2018; Global Burden of Disease (GBD), 2017). In addition to traditional vegan 

products like tofu and soy milk, a new generation of plant-based food products and cultured meat 

are emerging as direct substitutes for animal-derived proteins. The Chinese government recently 

listed cultured meat and artificial dairy as future food to be developed in China’s “14th Five-Year" 

National Agricultural Technology Development Plan to improve food security and the 

sustainability of its food system (Ministry of Agriculture and Rural Affairs of China, 2021). 

Although increasing consumption of these foods as alternatives to conventional pork and dairy 

could improve food system sustainability by reducing GHG emissions, improving animal welfare 

and diet-related health outcomes, the lack of a clear picture of consumers’ preference for these 

alternatives might impede market development in China (Godfray et al., 2018; Rudio et al., 2020; 

Tilman et al., 2017; Alexander et al., 2017; Carlsson et al. 2021; Bryant and Barnett, 2018). 

Consumer food values, which are stable and consistent drivers of food preferences, have 

been linked to demand for specific product categories (Lusk and Briggeman 2009; Lusk 2011). 
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Hansen et al. (2018) explained that consumers who adhere to different food values are motivated 

by different food identities, which drives their purchase behavior. Research on food values 

provides insights into the drivers of consumer preferences and demand in specific markets. 

Identifying which food values drive the plant-based and cultured meat market can help target 

investments that align with consumer needs and successfully promote the consumption of these 

products. However, most studies on food values have focused on developed countries (Bazzani et 

al. 2018; Yang and Hobbs 2020; Ellison et al. 2021; Yang et al. 2021) and have largely ignored 

consumers in developing and emerging regions of the world. Cultural, religious, and socio-

demographic differences between Western and Asian consumers suggest a potentially unique set 

of food values that drive food preferences in emerging economies. Thus, understanding food 

values in these regions and their role in driving the conventional, plant-based and cultured meat 

market warrants more investigation (Wickramasinghe et al., 2021). 

We investigate Chinese food values and assess how they drive consumer demand for 

alternative animal proteins in China, the world’s largest food market. Considered the birthplace of 

plant-based alternatives, China’s cultural history, and consumption habits have supercharged the 

market potential for plant-based and cultured alternatives to animal products. Tofu has been a 

staple of Chinese cuisine since 965 CE (Lee et al., 2020), and packaged soy milk was first 

introduced in the Chinese market in 1983 (Zheng and Peterson, 2013). While previous work has 

found that Chinese consumers have a higher acceptance of plant-based foods and cultured meat 

than Western consumers, there is an absence of data and research that informs drivers of demand 

for alternative meat in China (Bryant et al., 2019; Van Loo et al., 2020; Liu et al., 2021; Mancini 

and Antonioli, 2022; Ortega et al., 2022).  
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With a consumer base of over 1.4 billion people who consume 48% of pork worldwide and 

are increasing dairy demand by 4% annually, Chinese food consumption habits affect the 

sustainability of the global food system, and even incremental changes in the consumption of meat 

alternatives in China can have significant market and environmental impacts (FAO, 2018; Ali et 

al., 2017). Thus, understanding Chinese consumers’ food values and how they relate to the 

consumption of plant-based and other alternative foods is essential from both an emerging industry 

perspective and for guiding efforts to address environmental, animal welfare, and health problems. 

Our research informs these critical knowledge gaps and measures the potential market size of these 

products to estimate more accurate impacts of consumption changes. 

To assess Chinese consumer preferences, we implemented a best-worst scaling (BWS) 

choice experiment and estimated the relative importance of eleven food values. Demand for 

animal-based protein and alternative products was derived by eliciting consumer willingness to 

pay for pork, milk, and relevant plant-based and cultured alternatives. Our analysis finds a segment 

of urban consumers with a food value structure that aligns with the benefits associated with plant-

based and cultured meat consumption, namely environmental stewardship, nutrition, and animal 

welfare, which is consistent with existing studies (Weinrich’s et al., 2020; Mancini and Antonioli, 

2019; Noguerol et al. 2021; Moss et al. 2022; Henn et al. 2022; Piochi et al. 2022). More 

importantly, we show that the alternative animal protein market has the potential to capture 35% 

of Chinese urban consumers, and partially substituting pork and milk alternatives can lead to a 

reduction of 3.4% of China’s animal production GHG emissions as well as potential improvements 

in animal welfare and human health. 
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2. Method  

An online survey of urban Chinese consumers (n=3015) was developed and administered in 

December 2020 using the Qualtrics XM survey platform. In addition to capturing socio-

demographic and food consumption information, the survey included a best-worst (BW) food 

values experiment and elicited consumers’ willingness to pay for various conventional and plant-

based and cultured alternatives to animal-based products (see Appendix Table A 2.1). The survey 

was developed in English, translated into Mandarin Chinese, and backward translation was used 

to ensure accuracy.  

2.1.Chinese consumer food value structure 

Eleven food values were selected for evaluation based on a review of the literature and in 

consultation with food economists in China (Lusk and Briggeman, 2009; Bazzani et al., 2009). 

These values include safety, nutrition, taste, price, freshness, convenience, appearance, 

environment, origin, animal welfare, and naturalness (Table 2.1). A balanced incomplete blocked 

design (v=11, b=11, r=6, k=6, 𝜆=3)15 was used, resulting in 11 questions containing six food values 

each (Louviere et al., 2015). For each BW question, consumers were asked to select which food 

value was the most important for them and the least important over the set presented. 

  

 
15 These design parameters represent the number of points or food values (v), number of blocks or questions (b), the 

number of blocks containing a given point (r), number of points in a block (k) and the number of blocks containing 

any two distinct points ().  
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Table 2.1 English translation of food values and their definition. 

Translated English Version  Mandarin Chinese Version 

Values  Definition   Values  Definition  

Safety  Extent to which food does not 

cause any acute or chronic harm 

to human health. 

 安全 食品对人体健康在多大程度

上不造成任何急性或慢性危

害。 

Nutrition Extent to which the nutrients 

contained in food meet the needs 

of the human body 

 营养 食品所含的营养物质能在多

大程度上满足人体需要。 

Taste Extent to which food meet 

people’s taste requirements.  

 口味 食品能在多大程度上满足人

们的味觉要求。 

Price The price that is paid for food.   价格 为购买食品所支付的价格。 

Freshness The length of time that food takes 

from raw materials to finished 

product.  

 新鲜 食品从原料到成品的时间长

度。 

Convenience Extent to which food is easily 

consumed and cooked.  

 方便 食品在购买和烹饪时的便利

程度。 

Appearance Extent to which food looks 

appealing.  

 外观 食品外观吸引人的程度。 

Environment Impact of food production on the 

environment.  

 环境

影响 

食品加工对环境造成的影

响。 

Origin Where the food raw materials are 

from and processed.  

 产地 食品原材料来源地和加工

地。 

Animal 

Welfare 

Impact of food production on 

animal health, behavior and living 

environment etc.  

 动物

福利 

食品生产对动物健康、行

为、生活环境等的影响。 

Naturalness Extent to which food is produced 

without chemical additives.   

 天然 食品生产过程中不含化学添

加剂的程度。 
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A descriptive analysis of the BW data was performed, which included calculating best 

worst scores. Best worst scores were calculated as the number of times an attribute was selected 

as best, minus the number of times that attribute was selected as worst, standardized by the number 

of times the attribute appears in the design (each food value appears six times in our design). 

Further, to assess Chinese consumers’ food value structure, we employed the maxdiff model using 

a discrete choice modeling framework consistent with random utility theory (Train, 2009). The 

importance parameter for consumer i and food value j is specified as 𝜃̃𝑖𝑗 = 𝜃𝑗 + 𝑖𝑗 , where 𝜃𝑗 

indicates the importance of food value j relative to some value that was normalized to zero and 𝑖𝑗 

is a random error term, which is assumed to be i.i.d type I extreme value distribution and evaluated 

at 1000 Halton draws. The probability that consumer i chooses food value m and l as the most (m) 

and least (l) important out a set of J possible food values over T choice questions takes the mixed 

logit form: 

Prob (𝑚 is chosen as most and 𝑙 is chosen as least important)  

= ∫ ∏
𝑒[𝜃𝑖𝑚𝑡−𝜃𝑖𝑙𝑡]

∑ ∑ 𝑒[𝜃𝑖𝑗𝑡−𝜃𝑖𝑘𝑡]−𝐽𝐽
𝑘=1

𝐽
𝑗=1

𝑇

𝑡=1

⬚

𝜃

 𝑓(𝜃𝑖) 𝑑𝜃𝑖  

(1) 

where 𝑓(𝜃𝑖) is the density of the importance parameters 𝜃𝑖  . For identification, the importance 

parameters are assumed to be normally distributed and interdependencies are captured via a 

correlation structure that is specified to follow a multivariate normal distribution. Share of 

preferences, 𝑆𝑗, for each food value are calculated as  

𝑆𝑗 =
𝑒𝜃̂𝑗

∑ 𝑒 𝜃̂𝑘
𝐽
𝑘=1

 

(2) 
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where each share can be interpreted as the importance of the value j on a ratio scale. Consumer-

specific parameter estimates and share of preferences were derived using the mixed logit parameter 

estimates and each individuals’ actual choices (Train 2009, pp. 259-267). 

2.2.Chinese consumer food value segments 

A latent class approach was used to identify market segments and the resulting class probabilities 

were used to assign individual consumers to that class (Boxall and Adamowicz, 2002; Ortega et 

al., 2011). In a latent class model, individuals are sorted into S latent classes. Consumers within 

each class are homogeneous, but they are heterogeneous in terms of preferences across classes. 

Model fit criterion was used to identify the optimal number of classes. The probability that 

consumer i chooses food value m and l as the most (m) and least (l) important out a set of J possible 

food values over T choice questions, unconditional on the class is denoted as: 

Prob (𝑚 is chosen as most and 𝑙 is chosen as least important)

= ∏ ∑
𝑒[𝜃𝑖𝑠𝑚𝑡−𝜃𝑖𝑠𝑙𝑡]

∑ ∑ 𝑒[𝜃𝑖𝑠𝑗𝑡−𝜃𝑖𝑠𝑘𝑡]−𝐽𝐽
𝑘=1

𝐽
𝑗=1

𝑆

𝑠=1

𝑇

𝑡=1

𝐶𝑖𝑠 

            (3) 

where 𝜃𝑠 and 𝐶𝑖𝑠 are the preference parameter of class s and the probability that individual i falls 

into class s, respectively.  

𝐶𝑖𝑠 =
exp (𝑋𝑖

′𝛼𝑠)

∑ exp (𝑋𝑖
′𝛼𝑠)𝑠

,  s=1,2,…S 

                                               (4) 

where 𝑋𝑖
′ is a vector of individual i characteristics and  𝛼𝑠 is a vector of class-specific parameters. 

And 𝛼𝑆 is regarded as the reference class, normalized to zero.  
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2.3.Consumer demand and market shares 

Following, Wilson and Lusk (2020), consumer valuations for pork and milk products were elicited 

by asking participants to state the maximum amount they would pay for each food item. For meat 

products, we asked for their willingness to pay (in RMB, the Chinese currency per 500grams) for 

ground pork, tofu, ground plant-based meat and ground cultured meat and we informed the 

participants that the market price range of 500grams of ground pork was 35-45 RMB (Ministry of 

Agriculture and Rural Affairs of China, 2020). Similarly, for milk products, we asked participants 

to state their willingness to pay (RMB/250ml) for cow milk, soy milk, oat milk and rice milk and 

we informed them that the market price range of a 250ml serving cow milk was 3-6 RMB (CEIC, 

2020). Although stated WTP questions might be affected by hypothetical bias, they required less 

cognitive effort to answer specially when multiple products are being evaluated, and relative 

valuations (the difference in WTP between alternatives and conventional products) have not been 

found to statistically differ in hypothetical and non-hypothetical settings (Lusk and Schroeder 2004; 

Wilson and Lusk 2020)16. Thus, we calculate premiums for the alternative products relative to 

conventional animal-based products to address any hypothetical bias concerns in our estimates.  

Further, suppose that there are n consumers and H products in the market, and market 

shares were simulated using the “highest utility” rule: 

𝑈𝑖ℎ = 𝑊𝑇𝑃𝑖ℎ − 𝑃ℎ 

(5) 

where 𝑈𝑖ℎ is the utility of consumer i from purchasing product h at price 𝑃ℎ, and 𝑊𝑇𝑃𝑖ℎ denotes 

consumer i’s willingness to pay for product h. If 𝑈𝑖ℎ  is less than zero for all H products, it is 

 
16 To lower the cognitive burden of the respondents, we only included one open-ended WTP question for each product. 

Other methods such as van Westendorp price sensitivity meter (1976) or discrete choice experiments, which require 

additional survey questions, can provide additional insights into consumer’s food choice behavior and may be 

considered in future studies. 
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assumed that the person would not have purchased any of the products. Under the highest utility 

rule, consumer i purchases the product h, where 𝑈𝑖ℎ > 𝑈𝑖𝑔 , ∀ 𝑔 ≠ ℎ, and the market share of 

product h is calculated as follows: 

𝑀𝑆ℎ =
∑ 1(𝑈𝑖ℎ > 𝑈𝑖𝑔)𝑛

𝑖=1

𝑛
 

(6) 

where 𝑀𝑆ℎ is the market share of product h; 1(𝑈𝑖ℎ > 𝑈𝑖𝑔) = 1 if 𝑈𝑖ℎ > 𝑈𝑖𝑔 , ∀ 𝑔 ≠ ℎ;  1(𝑈𝑖ℎ >

𝑈𝑖𝑔) = 0 otherwise.  

3. Data and summary statistics 

Our survey of Chinese consumers was programmed, pretested and administered on the Qualtrics 

XM platform in December 2020. We obtained 3015 valid responses from primary food purchasers 

18 years of age or older across urban China. Respondents spend at least 7.7 minutes on the survey 

and the median time to completion was around 18 minutes. Summary statistics of socio-

demographics are presented in Table 2.2. Overall, 51% of our sample is female, with a mean age 

of 35 years. The majority of our sample (75%) had a college education or higher. The average 

household size is about 3.7 individuals, with 69% having one or more children present in the 

household. Fifty-five percent of the overall sample reported a monthly household income above 

15,000 RMB17. Consumers in the sample were geographically dispersed across urban China, with 

60% residing in a tier 1 city, 16% in a tier 2, and 14% in a tier 3 city (see Appendix Table A 2.2 

for specific cities included in tiers 1, 2, and 3 cities). The overwhelming majority (82%) of 

consumers indicated no dietary restrictions, with 5% not consuming any dairy products and 3% 

not consuming pork.  

 
17 1 RMB= 0.153 USD at the time of the study. 
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Table 2.2 Socio-demographics of full sample 

 
Full sample (3015 observations) 

Female (%) 51 

Age (avg years, st. dev) 35.1 (0.19) 

Income (yuan/month) (%) 
 

Less than 11000  25 

11000-14999  19 

15000-20999  30 

More than 20999  25 

Education (%) 
 

High school and above 98 

College and above  75 

Households size (pers., st.dev) 3.7 (0.02) 

Households with kid (%) 69 

City tier (%) 
 

Tier 1 60 

Tier 2 16 

Tier 3 14 

Other 11 

Dietary restriction (%) 
 

No animal product 8 

No meat 6 

No pork 3 

No dairy  5 

No restriction  82 

Notes: (1) For education, there are overlaps between high school and above and college and above; 

thus, sums are not 100%. (2) Dietary restriction is a multiple selection question; thus, sums are not 

100%. 
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3.1.Consumption habits of conventional alternative pork and milk products  

As the staple meat in the Chinese diet, 54% of the households consume 500-1500gr pork per week 

and 33% consume more than 1500grams of pork per week (see Table 2.3). Pork consumption 

levels in our sample are consistent with OECD data and much higher than the world average level 

and those of EU and US consumers (OECD, 2022). The top 3 locations, where respondents 

purchase pork, are domestic supermarket (56%), wet market (54%) and a traditional pork butcher 

or store (43%). Compared to consumers in developed countries, Chinese consumers purchase pork 

more often in wet markets and butcher shops (Pirsich and Weinrich, 2018; Umberger et al., 2009). 

Our sample has a very high rate (89%) of consuming plant-based meat alternatives (not including 

tofu). This result is consistent with the proliferation of plant-based meat alternatives in the urban 

China18. The top 3 most popular brands of products consumed are Omnipork (42%), Zhenmeat 

(27%) and Beyond Meat (18%) 19 . Comparing these three brands, we also find that Chinese 

consumers mainly consume plant-based meat to substitute pork and prefer meat alternatives in 

Chinese or Asian dishes.  

  

 
18 From GFI’s China Plant-Based Meat Industry Report 2018, 86.7 percent of the participants had consumed plant-

based meat products. https://gfi.org/blog/new-gfi-report-illustrates-the-state-of-chinas/.  
19 Omnipork is the flagship product of Omnifoods, a Hong Kong based food tech company that focuses on plant-based 

pork alternatives and Asian dishes. Zhenmeat is a Beijing based plant-based meat company specifically focused on 

Chinese dishes including both pork and beef alternatives, and US-based Beyond Meat mainly develops western dishes 

and beef alternatives. 

https://gfi.org/blog/new-gfi-report-illustrates-the-state-of-chinas/
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Table 2.3 Food consumption and purchasing behavior of full sample  

 
Full sample (3015 observations) 

Cow milk consumption 250 ml servings per week (%)  

Less than 6  28 

6-10 36 

11-15 19 

More than 15 17 

Previous purchase history (%)  

Plant-based meat 75 

Plant-based milk 89 

Pork consumption grams per week (%)  

Less than 500 13 

500-1500  54 

1501-3000  26 

More than 3000  7 

Previous plant-based meat consuming brands (%)  

Omnipork  42 

Zhenmeat 27 

Beyond Meat 18 

Godly 12 

Qishan 10 

Impossible Foods 6 

Notes: (1) For previous purchase history, plant-based meat does not include Tofu; plant-based milk 

includes soy milk. (2) Previous plant-based meat consuming brands is multiple question; thus sums 

are not 100%. 
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Regrading milk consumption, the majority of households (55%) in our sample consume 

1.5-3.75 liters of conventional milk and 17% consume over 3.75 liter per week, which are 

comparable to the statistics reported for China by USDA (USDA, 2019). The overwhelming 

majority (89%) of households report having consumed plant-based milk, with soy milk being the 

most popular plant-based alternative, followed by oat milk.  

3.2.Attitudes towards pork and milk alternatives 

When asked about their views on the environmental impacts of the alternatives to pork, 67% of 

respondents believe that tofu is better for the environment relative to conventional pork, followed 

by 66% for plant-based pork and 58% for cultured pork (Table 2.4). Similarly, for animal welfare 

impacts, 69% of respondents indicated that tofu was better for the animal welfare than pork, 

followed by plant-based pork (68%) and cultured pork (64%). With regards to health impacts, we 

find that a minority of respondents view cultured pork as healthier than traditional pork (40%), 

and over 10% believe it to be worse than traditional pork. Therefore, Chinese consumers recognize 

the environmental and animal welfare benefits of the meat alternatives but have reservations about 

the health aspects. The results are similar to those of Bryant and Sanctorum (2021) who note that 

the alternative meat attributes of animal welfare and environmental impact meet consumers’ needs 

more than that of consumer health. 

  



 

51 

 

Table 2.4 Attitudes towards tofu, plant-based and cultured pork 

 Better  Same  Worse  

Environment impacts (compared to pork) (%)    

  Tofu 67 31 2 

  Plant-based pork 66 30 4 

  Cultured pork 58 36 6 

Animal welfare impacts (compared to pork) (%)    

  Tofu 69 28 3 

  Plant-based pork 68 29 3 

  Cultured pork 64 31 5 

Health impacts (compared to pork) (%)    

  Tofu 60 35 5 

  Plant-based pork 54 39 7 

  Cultured pork 40 47 13 
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With respect to milk alternatives, approximately 60% and 70% of respondents view soy 

milk, oat milk and rice milk as better for the environment and animal welfare than cow milk, 

respectively (Table 2.5), which is consistent with the findings of Moss et al (2022) in Canada 

(2022). On health benefits, 59% of the respondents believe soy milk and oat milk have lager health 

benefits than cow milk, but only 48% find rice milk to be better for their health than conventional 

milk. This is consistent with Bus and Worsley (2003) who find that consumers perceive plant-

based milk (e.g., soy milk) more positively than whole milk with regards to health. 
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Table 2.5 Attitudes towards soy, oat and rice milk 

 Better  Same  Worse  

Environment impacts (compared to cow milk) (%)    

  Soy milk 63 35 2 

  Oat milk 62 36 2 

  Rice milk 60 38 2 

Animal welfare impacts (compared to cow milk) (%)    

  Soy milk 70 28 2 

  Oat milk 68 30 2 

  Rice milk 66 32 3 

Health impacts (compared to cow milk) (%)    

  Soy milk 59 36 4 

  Oat milk 59 37 4 

  Rice milk 48 44 8 
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3.3.Willingness to pay for pork and milk alternatives 

Consumer stated willingness to pay for pork and tofu was 34.7 and 16.2 RMB/500gr, respectively 

(Table 2.6), which parallel average urban product prices at the time of the study. Willingness to 

pay for plant-based pork and cultured pork was 28.2 RMB/500gr, indicating a discount over 

conventional pork of 6.5 RMB/500gr and 3.4 RMB/500gr, respectively. We note that tofu in China 

is generally seen as a cheap vegan product that is often consumed with meat, rather than a meat 

alternative.  
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Table 2.6 Willingness to pay for pork, dairy and their alternatives 

 Mean Std. Dev.  

Pork (RMB/500gram) 34.7  16.4  

Tofu (RMB/500gram) 16.3  17.3  

Plant-based pork (RMB/500gram) 28.2  19.1  

Cultured pork (RMB/500gram) 31.3  20.2  

Cow milk (RMB/250ml) 5.2  3.7  

Soy milk (RMB/250ml) 5.0  4.0  

Oat milk (RMB/250ml)  5.7  4.3  

Rice milk (RMB/250ml) 5.2  4.3  
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Regarding milk alternatives, the average sample willingness to pay for cow milk was 5.2 

RMB/250ml. Plant based milk alternatives were generally valued equally or slightly under the 

conventional product, with the exception of oat milk, which received a 0.5 RMB premium.  

4. Results and Discussion 

4.1.Chinese consumers’ food value structure 

In the best-worst experiment, consumers were presented with a subset of the food values and asked 

to select the most and least important in a series of choice tasks. The percentage of consumers 

choosing safety, nutrition, freshness and naturalness as the most important food values and the 

least important food values are extremely high and low, respectively (see Figure 2.1). This implies 

that consumers have strong positive preferences for safety, nutrition, freshness and naturalness. 
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Figure 2.1 Chosen percentage of food values 
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Turning to the econometric model, the importance of the food values in the mixed logit 

model was estimated relative to the least important attribute (appearance) which was omitted for 

identification purposes. Model parameter estimates and derived share of preference for the food 

values are reported in Table 2.7 and illustrated in Figure 2.2a. Values providing private benefits 

make up the largest share of urban Chinese consumers’ food value structure. In particular, values 

associated with the needs of safety, nutrition, freshness, and naturalness account for 88% share of 

preference: safety being the most important food value. By contrast, values providing public 

benefits, are on average, less important. As a result, Chinese consumers’ food value is driven by 

the need to maintain or improve physical health and safety relative to experiential motivations or 

concerns for public impacts.  
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Table 2.7 Mixed logit model results and share of preferences 

Food Values Estimates           Share of Preference 

 

    Mean Std. Dev. 
 

Safety 4.2722 (0.0792) 3.6220 (0.0635) 42.7% 

Nutrition 3.5758 (0.0665) 2.9948 (0.0566) 21.3% 

Freshness 3.1238 (0.0612) 2.6430 (0.0554) 13.5% 

Naturalness 2.8490 (0.0635) 2.6957 (0.058) 10.3% 

Taste 1.9979 (0.0454) 1.8773 (0.0429) 4.4% 

Environment 1.4023 (0.0483) 1.8405 (0.0478) 2.4% 

Animal Welfare 1.0224 (0.0494) 2.0011 (0.0487) 1.7% 

Price 0.7295 (0.035) 1.5578 (0.036) 1.2% 

Convenience 0.5369 (0.0293) 1.1602 (0.0338) 1.0% 

Origin 0.4513 (0.0321) 1.2448 (0.0303) 0.9% 

Appearance Baseline 

     

0.6% 

Model Statistics 

      
Log-likelihood Function -83693 

      
Number of choices  33165 

      
Number of individuals 3015 

      
AIC/N 5.051 

      
Note: Numbers in parenthesis are standard errors of parameter estimates. All estimated coefficients 

are statistically significant at the 0.01 level. 
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Figure 2.2 Food value structure of urban Chinese consumers and sub-markets 

Notes: 1) Panel a, presents the food value structure of urban Chinese consumers. Envir. is 

environment and AW is animal welfare. 2) Panel b, presents the food value structures in sub-

markets. PM indicates potential market and ROM indicates rest of market. Long horizontal lines 

show the means of the raw data; vertical lines with short dashes show the 95% CIs. The violin 

plots illustrate the distribution of the data. 
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Comparing these results with existing food value studies in developed countries, several 

points could be made. First, results reveal that safety is the dominant food values for urban Chinese, 

as in the US and Europe (Lusk and Briggeman 2009; Bazzani et al. 2018), while nutrition is the 

most important food value for Canadian consumers (Yang and Hobbs 2020). This is not surprising, 

given the food safety outbreaks and scandals that have plagued China over the past two decades 

(Ortega et al., 2011; Ortega and Tschirley, 2017). Beyond safety, Chinese consumers place 

substantial value on nutrition, freshness and naturalness, which is consistent with Yang’s et al. 

(2021) findings in Japan, Taiwan and Indonesia that freshness is one of the leading food values. 

Second, similar to consumers in north America and Europe, our respondents ranked price and taste 

after safety, nutrition, freshness and naturalness (Lusk and Briggeman 2009; Bazzani et al. 2018; 

Yang and Hobbs 2020; Ellison et al. 2021). This is also consistent to the findings of Liu and 

Niyongira (2017) in China that, generally, Chinese consumers are more concerned with shelf life, 

food color and nutritional content than price. Moreover, studies have found that young, highly 

educated, and high expenditure consumers are less concerned about price in food shopping in 

China (Liu and Niyoungira, 2017). On average, our sample is relatively young (around 35 years 

old), highly educated (98% above high school and 75% above college) and with high income (47% 

of the monthly household income above 17000 RMB), which suggests that they are not as price 

sensitive as other Chinese consumers. Third, public food values such as environmental impact and 

animal welfare are noticeably more important for Western consumers relative to Chinese 

consumers. In general, our findings on Chinese food values differ from those in developed 

countries, which warrants more related investigation in developing and emerging country regions. 
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4.2.Segmenting the urban Chinese market for alternatives to animal proteins 

Consumption of plant-based and cultured meat is associated with public (environment, animal 

welfare) and private (nutrition) values. These make up 25% of consumers’ food value structure in 

our sample. To effectively target food policies and marketing strategies that encourage 

consumption of plant-based and cultured meat alternatives, we use a latent class approach to 

identify a segment of the population with a food value structure that aligns with these values (Table 

2.8). This market segment, which we refer to as the potential market makes up 35% of our sample. 

We used the model with 3 latent classes for our analysis based on model fit criterion, as additional 

classes did not yield significant improvements in model fit (Table 2.9). We also note that 

identification of the potential market is robust to the specified number of latent classes, reinforcing 

the finding that there is a group of urban consumers that have relatively high share of preference 

for the values associated with consumption of alternative food products (Table 2.9). Our identified 

market segment parallels the survey result of Siegrist and Hartmann (2020) that 34% of Chinese 

consumers are willing to accept cultured meat and slightly lower than the finding of Bryant et al. 

(2019) that 59.3% of Chinese consumers are willing to accept plant-based meat. 
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Table 2.8 Latent class model results and share of preferences 

Food Values Class 1 -- Potential Market   Class 2 -- Rest of Market  Class 3 -- Rest of Market  

 

Estimate Share of 

Preferences 

 Estimate Share of 

Preferences 

 Estimate Share of 

Preferences 

Safety 0.363*** (0.032) 10.9%  5.400*** (0.054) 46.9%  4.375*** (0.073) 44.9% 

Nutrition 0.331*** (0.032) 10.6%  4.571*** (0.050) 20.5%  3.628*** (0.067) 21.3% 

Freshness 0.286*** (0.031) 10.1%  3.994*** (0.050) 11.5%  3.143*** (0.066) 13.1% 

Naturalness 0.256*** (0.031) 9.8%  4.083*** (0.051) 12.6%  2.275*** (0.067) 5.5% 

Taste 0.201**  (0.031) 9.3%  2.233*** (0.045) 2.0%  2.660*** (0.064) 8.1% 

Environment 0.124*** (0.031) 8.6%  2.631*** (0.048) 2.9%  0.421*** (0.052) 0.9% 

Animal 

Welfare 0.140*** (0.031) 8.7% 

 

2.388*** (0.048) 2.3% 

 

-0.461*** (0.052) 0.4% 

Price 0.068*** (0.031) 8.1%  0.286*** (0.034) 0.3%  1.809*** (0.065) 3.5% 

Convenience 0.066**  (0.030) 8.1%  0.551*** (0.032) 0.4%  0.836*** (0.051) 1.3% 

Origin 0.052*   (0.030) 8.0%  0.902*** (0.034) 0.5%  -0.094** (0.046) 0.5% 

Appearance Baseline 7.6%  Baseline 0.2%  Baseline 0.6% 

Class 

Probability 
35% 

 
42% 

 

23% 

Model Statistics            
Log-likelihood Function -87390           
Number of choices  33165           
Number of individuals 3015           
AIC/N 5.272           

Note: Numbers in parenthesis are standard errors of parameter estimates. *, **, and *** denote statistical significance of the parameter 

estimates at the 0.10, 0.05, and 0.01 levels, respectively. 
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Table 2.9 Latent Class Model Search Diagnostics 

No. of Classes 

Loglikelihood 

Value AIC/n 

 

Potential Market 

Class Prob. 

2 -90007 5.429 0.398 

3 -87390 5.272 0.350 

4 -86449 5.216 0.332 

5 -85929 5.185 0.328 
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More specifically, this potential market has a collective share of preference of 28% for 

nutritional, animal welfare, and environmental values. Relative to the rest of the market, 

differences in food values for potential buyers are mainly driven by the public values of 

environmental stewardship and animal welfare which make up 17.3% of the food value 

preference structure, compared to approximately 2.5% in the rest of the market (Figure 2.2b). 

This potential market has a lower share of preference for nutrition indicating that these 

consumers are motivated by the public benefits associated with food consumption. Differences 

in environmental and animal welfare values across segments is consistent with observations in 

existing studies. For example, Lusk and Norwood’s (2011) find that not all the people place a 

high value on animal welfare and only a small group of consumers are sensitive to animal 

welfare issues and those consumers tend to reduce or avoid meat consumption (Noguerol et al. 

2021). Weinrich’s et al. (2020) note that ethics (e.g., animal welfare and ecological) was the 

strongest driver to German consumers’ willingness to try cultured meat and Mancini and 

Antonioli (2019) find that consumers’ perception is positive towards the extrinsic attributes 

(e.g., animal welfare friendly and preserving natural resources) of cultured meat.  

4.3.Characterizing the potential market for alternative pork and milk in China 

Consumers in the potential market have higher relative willingness to pay for alternatives to 

pork and milk products, but premiums (or discounts) vary across product types due to cultural 

and historical factors (Figure 2.3). Given China’s weak dependence on dairy consumption (per 

capita milk consumption is less than one-third of the world average with an own-price elasticity 

of -0.861 and income elasticity of 0.406) (Hovhannisyan and Gould, 2011; Chen et al., 2015; 

Ward and Inouye, 2018), consumer valuation for plant-based alternatives is high (Figure 2.3a-

b). For example, Chinese consumers in the potential market are willing to pay premiums of 

0.48 and 0.28 RMB/250ml for oat milk and rice milk, respectively. We find no significant 

difference in willingness to pay between soy milk and conventional milk (Figure 2.3c), which 
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reinforces the notion that these products are typically consumed in different consumption 

occasions.  
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Figure 2.3 Willingness to pay and valuations for alternative products 

Notes: Panel a-f present the willingness to pay and valuations for oat milk, rice milk, soy milk, 

plant-based pork, cultured pork and tofu, respectively. PM indicates potential market and ROM 

indicates rest of market. Vertical lines with short dashes show the 95% CIs. 
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Unlike the case of dairy, Chinese consumers have a strong dependence on pork, with 

per capita consumption being more than twice the world average and an own-price elasticity 

of -0.670 and income elasticity of 0.295 (Hovhannisyan and Gould, 2011; Chen et al., 2015; 

FAO, 2018). As a result, we find that urban Chinese consumers discount pork alternatives 

(Figure 2.3d-e). These discounts average 1.65 RMB for cultured meat and 3.70 RMB for plant-

based pork per 500 grams for consumers in the potential market, which are significantly higher 

for the other consumers. We also find significant discounts for tofu, which in part is attributable 

to its positioning as a relatively inexpensive soy protein that is sometimes consumed with, but 

not necessarily as an alternative to, pork. The results are also supported by Zhao et al. (2022) 

who find that plant-based alternatives are substitutes to the mostly commonly consumed animal 

proteins (e.g., chicken in the US and pork in China); thus, conventional pork and pork 

alternatives compete on price.  

Simulating market shares of animal-based and alternative products for the potential 

market, we find oat milk has the highest demand, followed by rice milk and conventional milk 

(Figure 2.4a). When priced at the average conventional milk price of 5 RMB, the market shares 

of oat, rice and conventional milk are 25.1%, 17.6% and 15.9%, respectively. On the other 

hand, we find that the demand for pork alternatives is generally lower than conventional pork, 

except when the conventional pork price is extremely high (Figure 2.4b). When sold at the 

average conventional pork price of 35 RMB, plant-based, cultured and conventional pork could 

gain 10.2%, 19.0% and 25.8% of the market shares. However, the effect of lowering prices to 

earn larger market share is notable; a 10% reduction in relative prices would increase the 

market share of plant-based and cultured pork by 3.9% and 6.1%, respectively. As a result, 

pork alternatives must compete on price to gain a larger share of the urban market. This 

conclusion is similar to Michel’s et al. (2021) results in Germany that meat alternatives have 

the best chance of successfully replacing meat when they are offered at competitive prices.  
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a. b. 

  

Figure 2.4 Market share of conventional and alternative pork (a) and dairy (b) products 
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To target the potential market, we identify distinguishing characteristics of consumers 

in this segment. We find that consumers in the potential market are slightly older with higher 

incomes (Table 2.10). This is consistent with Apostolidis and Mcleay’s (2016) findings in the 

UK that meat reducers have higher income. Additionally, these individuals are more likely to 

buy pork in specialty meat stores over traditional wet markets or supermarkets. Not surprisingly, 

individuals with dietary restrictions, especially animal product restrictions, are more likely to 

be consumers of vegan foods. Also, there is a larger share of consumers who have previously 

purchased plant-based meat and milk in the potential market. Consumption experience and 

purchasing history also play an essential role in identifying potential consumers, which is 

consistent to the findings of Piochi et al. (2022). Potential market consumers purchase pork 

more in meat stores but less in domestic supermarket and wet market (than consumers in the 

rest of market). Our results suggest that targeting urban consumers in the 1980s generation, 

who are more open to trying new products, can maximize the effectiveness of efforts to increase 

consumption of alternative products. 
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Table 2.10 Socio-demographics in different markets  

Notes: 1) t-tests were performed for age and household size, and Pearson chi2 test for other 

variables; p-values correspond to statistical tests of differences between potential market and 

rest of market. 2) Dietary restriction & pork purchase location are multiple selection questions; 

thus sums are not 100%. 

 

 

Potential Market 

(35%) 

Rest of Market 

(65%) 
p-value 

Female (%) 51 51 0.84 

Age (avg years, st. dev) 39.5 (0.33) 32.7 (0.21) <0.01 

Income (yuan/month) (%)   <0.01 

Less than 11000  13 32  

11000-14999  17 20  

15000-20999  40 25  

More than 20999  30 23  

Education (%)    

High school and above 97 98 0.02 

College and above  64 81 <0.01 

Households size (pers., st.dev) 3.6 (0.04) 3.7 (0.03) <0.01 

Households with kid (%) 72 65 <0.01 

City tier (%)   <0.01 

Tier 1 46  67   

Tier 2 16  15   

Tier 3 21  10   

Other 17  7   

Dietary restriction (%)    

No animal product 16  4  <0.01 

No meat 11  4  <0.01 

No pork 2  3  0.19 

No dairy  10  3  <0.01 

No restriction  71  87  <0.01 

Pork purchase location (%)    

Meat store 51 39 <0.01 

Domestic supermarket 49 60 <0.01 

Wet market 44 59 <0.01 

International supermarket 13 11 0.12 

Internet outlet 3 5 0.04 

Previous purchase history (%)    

Plant-based meat 86% 69% <0.01 

Plant-based milk 91% 88% <0.01 
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4.4.Expected market potential for pork and milk alternatives in China 

To estimate the potential market share of alternative pork products, we assume a market 

composed of conventional pork, plant-based pork and cultured pork products 20 . Pricing 

products at the mean pork WTP (35 RMB/500gr) would allow the plant-based and cultured 

pork industry to capture 4% 21  and 7% 22  of urban Chinese consumer, respectively. By 

increasing consumption among these consumers to 500g of plant-based pork per week or 500g 

of cultured pork per week, each sector could generate 61 billion and 108 billion RMB in sales 

in the respective markets.23  

Similarly, we estimate the market share of alternative milk products, by assuming a 

beverage market that has conventional milk, oat milk and rice milk available24. By selling all 

three products at 5 RMB/250ml (the mean WTP for conventional milk), plant-based milk 

companies could capture 15% of urban Chinese consumers
25
. Furthermore, given the 848.4 

million urban consumers, if these 15% of consumers purchased one 250 ml serving of plant-

based milk per week, this would result in a market of 33 billion RMB per year in urban China. 

4.5.Environmental, animal welfare and potential health impacts 

The market incentives of alternatives to pork and dairy products can generate modest 

improvements in environmental outcomes. For example, with regard to GHG emissions, 

substituting 500g of pork per week with plant-based and cultured alternatives could lead to an 

annual decrease of 5.10 and 11.41 million tons of CO2eq26 of GHG emissions, respectively. 

 
20 We exclude tofu from this analysis, because in China tofu is often consumed with, but not necessarily as an 

alternative to, pork. 
21 10.2% × 35%, where 10.2% is the market share of plant-based pork. 
22 19.0% × 35%, where 19% is the market share of cultured pork.  
23 These calculations assume an urban Chinese population of 0.8484 billion. 
24 We exclude soy milk from this analysis because in China it is typically consumed in a different consumption 

occasion than milk and we do not consider it a direct substitute. 
25 (25.1% + 17.6%) × 35%, where 25.1% and 17.6% are the market share of oat milk and rice milk in the 

potential market, respectively. 
26 GHG emissions from pork are 4.93 kg CO2eq/500gr, that of plant-based pork are 1.69 kg CO2eq/500gr and that 

of cultured pork are 1.03 kg CO2eq/500gr (Tuomisto and Teixeira de Mattos, 2011; Heller and Keoleian, 2018). 

Replacing a 500 gr of pork with a plant-based or cultured alternative per week in the potential market could lead 
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Similarly, replacing a 250 ml serving of cow milk with a plant-based alternative in the potential 

market could lead to a reduction of 3.63 million tons of CO2eq27 of GHG per year. In total, this 

represents 3.4% of China’s animal production GHG emissions or 0.20% of total emissions. 

These figures parallel Liebe’s et al. (2020) finding that replacing dairy with milk alternatives 

in the US could reduce 0.7% of total US GHG emissions. Further our analysis shows that a 10 

RMB reduction in the price of alternative pork products from 40RMB/500gr, may reduce GHG 

emissions by 15 million tons of CO2eq (Figure 2.5a), depending on the level of product 

substitution that takes place. Similarly, decreasing the price of plant-based milk products below 

the average conventional milk price, would result in a reduction in GHG emissions (Figure 

2.5b). In the milk market, a 2 RMB reduction in the price of alternative milk products from 

6RMB/250ml, may shift consumption and potentially cut an additional 6 million tons of CO2eq 

GHG emissions. 

  

 

to a reduction of 5.10 million tons of GHG per year ((4.93 − 1.69)𝑘𝑔 𝐶𝑂2𝑒𝑞
500𝑔𝑟⁄ × 848.4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑝𝑒𝑜𝑝𝑙𝑒 ×

52 𝑤𝑒𝑒𝑘𝑠
𝑦𝑒𝑎𝑟⁄ × 4% ×

1

1000
) ) or 11.41 million tons of GHG per year ( (4.93 − 1.03)𝑘𝑔 𝐶𝑂2𝑒𝑞

500𝑔𝑟⁄ ×

848.4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑝𝑒𝑜𝑝𝑙𝑒 × 52 𝑤𝑒𝑒𝑘𝑠
𝑦𝑒𝑎𝑟⁄ × 7% ×

1

1000
)), where 4% and 7% are the shares of urban Chinese 

consumers who would buy plant-based and cultured pork at 35RMB/500gr, respectively. In 2016, the total GHG 

emission of China was 9893 million ton CO2eq, so these shifts in consumption could reduce 0.20% of China’s 

total GHG emission (
3.63+5.10+11.41

9893
× 100%) and 3.4% of China’s total animal production GHG emission 

(
3.63+5.10+11.41

592.87
× 100%).  

27 Greenhouse gas emissions (GHG) emission of from cow milk are estimated to be 0.8 kg CO2eq/250ml and that 

of plant-based milk are 0.25 kg CO2eq/250ml (Poore and Nemecek, 2018). Replacing a 250 ml serving of cow 

milk with a plant-based alternative per week in the potential market could lead to a reduction of 3.63 million tons 

of GHG per year ((0.8 − 0.25)𝑘𝑔 𝐶𝑂2𝑒𝑞
250𝑚𝑙⁄ × 848.4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑝𝑒𝑜𝑝𝑙𝑒 × 52 𝑤𝑒𝑒𝑘𝑠

𝑦𝑒𝑎𝑟⁄ × 15% ×
1

1000
)), 

where 15% is the share of urban Chinese consumers who would buy plant-based milk at 5RMB/250ml.  
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a.

 

b.

 

Figure 2.5 Reduction of GHG emissions by substituting pork (a) or dairy (b) with 

alternatives 
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Promoting plant-based and cultured alternatives can also bring potential benefits to animal 

welfare and human health. Given the 553 million pigs (41% of global population) slaughtered 

for meat annually and the 5.7 million dairy cows (4% of global) producing milk in China (FAO, 

2019), replacing consumption with plant-based alternatives in these markets can reduce 

dependence on animal agriculture addressing some farm animal welfare concerns. Similarly, 

plant-based alternatives have between 33% and 50% less calories than traditional pork and cow 

milk (Bohrer, 2019; Vanga and Raghavan, 2018), and can help address health concerns 

associated with consumption of animal proteins such as heart disease and obesity (Staudigel, 

2012; Rubio et al., 2020; Hygreeva and Radhakrishna, 2014), although specific benefits in this 

realm are more difficult to quantify. 

5. Conclusion   

Our study demonstrates that consumer food value structure can be used to identify potential 

consumers of plant-based products and cultured meat and finds that the alternative animal 

protein market in China is driven mainly by public food values, such as animal welfare and 

environmental stewardship. This result is particularly relevant for organizations and 

policymakers that aim to reduce carbon emissions, improve animal welfare and diet-related 

health outcomes. 

We identify a market segment of potential buyers of alternative pork and dairy products, 

which accounts for 35% of Chinese urban consumers. Consumers in the potential market have 

a higher willingness to pay for plant-based products, with historical and cultural factors 

affecting preferences for these foods. This enables food industries to conduct cost-benefit 

analysis, informing market entry and product pricing decisions.  

Although our study is specific to China, the results are applicable to other contexts, 

especially where consumers have similar food value structures and high consumption of meat 

and animal-based products. As countries seek to address the environmental, animal welfare, 
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and health problems, changes to individual consumption behavior must be considered. Thus, 

effectively targeting consumers of plant-based and cultured foods is important, and our 

approach is broadly generalizable for evaluating consumers’ food values and identifying 

emerging markets for alternative food products.   
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CHAPTER 3: ESTIMATING NEW BRAND ENTRY EFFECTS IN PLANT-BASED 

BEEF ALTERNATIVES MARKETS: A COMPARATIVE STUDY OF (EXTENDED) 

TWO-WAY FIXED EFFECTS AND ROLLING APPROACH 

1. Introduction  

The rapid growth of the plant-based meat alternatives (PBMAs) market has attracted significant 

investments in recent years (GFI, 2022), leading to numerous new brands entering or planning 

to enter food markets. This development prompts two key questions: 1) Can new brands 

replicate the early success of existing players in the PBMA market? 2) And will these new 

entrants compete with existing brands or attract new consumers? Addressing these questions is 

crucial for understanding the market dynamics of new PBMA entrants and their potential 

impact on consumer preferences and overall food industry.  

However, despite extensive research into consumer preferences for PBMA and their 

market potential (Van Loo et al., 2020; Neuhofer and Lusk, 2022; Zhao et al., 2023), the 

dynamics of market impacts resulting from new brand entry remain underexplored. This gap is 

significant, especially considering that in 2022 alone, over twenty brands announced new plant-

based facilities and product introductions, with most expected to launch by 2024 (GFI, 2022). 

Previous studies across various industries have shown mixed entry effects (Cao et al., 2021; 

Reshef, 2023), suggesting that similar dynamics might exist in the PBMA industry. On one 

hand, new entrants may compete with incumbent brand for existing PBMA consumers without 

expanding the PBMA market. On the other hand, they could stimulate market growth by 

attracting new consumers and potentially increasing overall demand for PBMAs.  

Our study bridges this gap by examining the impact of new PBMA brand entry on 

incumbent brand and its role in driving the overall market expansion of PBMAs. Using IRI 

store-level scanner data, we employ three empirical approaches. The first approach is standard 

within the difference-in-difference framework and consists of a two-way fixed effect (TWFE) 
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model, which allows us to evaluate the average effects of new brand entry in the PBMA market. 

Although widely used in entry effects literature (Cao et al., 2021; Reshef, 2023), the TWFE 

model faces challenges when entry is staggered as new PBMA brand entries occur in various 

locations and stores at different times. In addition, it overlooks heterogeneous and dynamic 

effects that arise with staggered entry, leading to potential biases in the estimates (de 

Chausemartin and D’Haultfoeuille, 2020; Goodman-Bacon, 2021; Borusyak et al., 2024). 

To overcome these limitations, we also employ two more advanced approaches: 1) the 

Extended Two-Way Fixed Effects (ETWFE) method, recently introduced by Wooldridge 

(2021), and 2) the Double Machine Learning (DML) developed by Chernozhukov et al. (2017, 

2018) in combination with the “rolling approach” by Lee and Wooldridge (2023). These 

approaches account for heterogeneous entry effects across cohorts and dynamic effects over 

time, producing unbiased entry effect estimates. In addition, the rolling approach with DML 

controls for high-dimensional covariates, such as city and store type fixed effects, thereby 

mitigating selection bias and other ongoing shocks.  

Comparing the findings across the three empirical approaches, we find that compared 

to other methods, the rolling approach integrated with DML controls for selection bias by 

including high-dimensional covariates, leading to improved model precision ranging from 24.3% 

to 44.6%. Most importantly, we find that using TWFE in a staggered intervention context can 

produce biased and misleading estimates due to identification issues. The unbiased and more 

precise results from rolling approach with DML show that earlier entry cohorts saw incumbent 

brand reacting to the new brand strongly, reflected in increased incumbent brand prices. In 

contrast, incumbent brand reacted more moderately in later entry cohorts. Furthermore, new 

PBMA brands competed with incumbent in earlier entry cohorts, leading to reduced incumbent 

brand sales. However, in the later entry cohorts, new PBMA brands expanded the market for 

both incumbent brands and the total PBMA sector. 
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This study makes empirical and methodological advancements that benefit both 

FPBBA industry stakeholders and researchers in the agricultural and food economics field. 

First, this study reveals the complexity of PBMA market dynamics and fills the knowledge gap 

of the impact of new PBMA brand entry, offering insights on the FPBBA market investments. 

Second, it extends the use of the Extended Two-Way Fixed Effects (ETWFE) and rolling 

approach with Double Machine Learning (DML) in the applied economics literature, 

particularly in the agriculture and food economics field. Although the ETWFE and DML 

approaches have gained significant attention in theoretical or econometric literature (Athey and 

Imbens, 2019; Roth et al., 2023; de Chaisemartin and D’Haultfoeuille, 2023), their application 

in empirical studies remain limited. The DML approach alone has been used to estimate a range 

of treatment effects in traditional difference-in-difference framework (Ellickson et al., 2023; 

Ding et al., 2024), while the ETWFE has been applied to study the effects of staggered adoption 

of new technologies and policy interventions (Berman and Israeli, 2022; Xiao et al., 2023). 

However, their use in analyzing staggered entry effects in market scenarios is underexplored. 

Third, this study highlights the limitations of using TWFE in staggered intervention contexts, 

providing empirical evidence of its biased estimates and comparing it with ETWFE and the 

rolling approach with DML 

 The rest of the paper is organized as follows: sections 2 and 3 present the background 

and empirical approaches, respectively. Section 4 provides an overview of the data and section 

5 discusses the results. Section 6 concludes. 

2. Background 

The interplay between market-expanding and market-stealing effects of new entrants on 

incumbent firms has been observed across various industries, as evidenced by the research of 

Cao et al., (2021). Two primary effects are documented. On one hand, new market entry can 

expand the overall market and increase demand for existing brands by introducing 
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differentiated products (Berry et al., 2016) and generating positive network effects (Cao et al., 

2021; Reshef, 2023). For example, Berry et al. (2016) demonstrated how a new radio station 

offering unique content can enlarge the radio market, thereby benefiting incumbent stations. 

Similarly, Cao et al. (2021) and Reshef (2023) observed that new entry can trigger investments 

on the supply side, increasing demand for both new and existing products. 

On the other hand, new entrants can also erode the market share of existing firms by 

intensifying competition, particularly when these entrants disrupt established market dynamics 

(Seamans and Zhu, 2014; Zervas et al., 2017; Cao et al., 2021; Reshef, 2023). For example, 

Zervas et al., (2017) reported that the entry of Airbnb, with near-zero marginal cost, 

undermined the pricing power of traditional hotels. Similarity, Seamans and Zhu (2014) noted 

that the advent of online advertising services reduced the demand for display ads in local 

newspapers. This dual impact of new entry illustrates the complex nature of market dynamics 

where innovation both creates and redistributes value among players.   

This dynamic could also affect the PBMA industry. The entry of a new PBMA brand 

that matches the incumbent in terms of ingredients and processing could increase competition 

and pose a threat to the market share of existing PBMA brand. Conversely, such an entry could 

also raise public awareness and increase interest in both the new and incumbent brand within 

the broader PBMA sector. For example, existing data indicate a spike in Google search interest 

surrounding the market entry of the new PBMA brand (see Figure 1). This growing interest 

post-entry suggests a broader market opportunity, potentially benefiting all industry 

participants. 
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Figure 3.1 Google Search Interest of PBMA, incumbent brand, and new entry brand in US. 

Note: Data is from Google Trends (https://trends.google.com/trends/). 

 

  

https://trends.google.com/trends/
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3. Data  

To evaluate the new brand entry effect in PBMA industry, we used IRI retail scanner data. IRI 

includes store-week-UPC level sales scanner data for all PBMA products. We followed four 

steps for our dataset construction. In the first step, we selected fresh plant-based beef 

alternatives (FPBBA) as our focused product segment. FPBBA was chosen because it is the 

leading segment in the FPBBA market, accounting for 64% of total PBMA sales. In the second 

step, we defined the timeframe, which includes eight cohorts and a studied period of 154 weeks 

(from the first week of 2019 to the last week of 2020). This timeframe was selected because it 

covers both the period of sole presence of the incumbent brand and the periods during and after 

the entry of the new brand. Indeed, prior to September 2019, only the incumbent brand was 

sold in the FPBBA market, while since September 2019, the new brand entering the market 

had entry times varying across different stores.  In the third step, we restrained our dataset to 

include only the stores that had ever sold the incumbent brand of FPBBAs during the studied 

period. In the fourth step, we aggregated the data from the store-week-UPC level to the store-

month-brand level. Our final dataset includes the sales data for incumbent brand and new brand 

of FPBBAs in 6,906 stores from January 2019 to December 2020, totaling 24 months.   

Of these, 3,018 stores, which represent 44% of the total, did not experience new brand 

entry during the focused time frame and are designated as “control stores.” The remaining 

3,888 stores, accounting for 56% of the total, experienced new brand entry within the same 

period and are thus classified as “treated stores”. The timing of new brand entry varies across 

treated stores . The new brand was initially introduced in 99 stores in September 2019 (Initial 

Entry) and underwent seven subsequent waves of expansion: 524 stores in June 2020 (First 

Expansion), 219 in July (Second Expansion), 549 in August (Third Expansion), 1,505 in 

September (Fourth Expansion), 355 in October (Fifth Expansion), 266 in November (Sixth 

Expansion), and 371 in December of the same year (Last Expansion), resulting in a total of 
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eight entry cohorts as shown in Figure 2. The dataset enabled us to analyze the data within a 

Difference-in-Differences (DID) framework, comparing controlled and treated stores to 

evaluate the effect of new brand entry. 
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Figure 3.2 Data Structure 
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4. Empirical Analysis  

In this section, we describe the three empirical strategies employed to analyze the data: the 

TWFE model, the ETWFE model, and the DML combined with the rolling approach. Details 

of each model, including their advantages and limitations, are elaborated in the subsequent 

sections. 

4.1.Two Way Fixed Effects 

The TWFE model is one of the most used methods in DID settings to evaluate the effects of 

new market entry. It has been employed in various sectors including bike-sharing (Cao et al., 

2021), advertising (Seamans and Zhu, 2014), transportation (Berger et al., 2018), and 

accommodation (Zervas et al., 2017). Following these studies, our first empirical strategy was 

to estimate a TWFE model, serving as a baseline to understand the constant effects of market 

entry. We analyzed eight different treated cohorts, spanning from September 2019 to December 

2020, each marked by distinct phases of market entry, as shown in Figure 1 above. 

We then specified three separate TWFE models to evaluate the following key 

dependent variables: incumbent FPBBA sales ( 𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡 ), incumbent FPBBA prices 

(𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡), and total FPBBA sales ( 𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴,𝑖𝑡 ) 28 . Each model was specified as 

follows: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽𝑃𝑜𝑠𝑡𝐸𝑛𝑡𝑟𝑦𝑖𝑡 + 𝜀𝑖𝑡 (15) 

where 𝑌𝑖𝑡 represents the dependent variables at store 𝑖 in month 𝑡. The coefficients 𝛼𝑖 and 𝛾𝑡  

denote the store and time fixed effects, respectively; and 𝜀𝑖𝑡 is the error term. The independent 

variable, 𝑃𝑜𝑠𝑡𝐸𝑛𝑡𝑟𝑦𝑖𝑡, is a dummy variable that equals one if month 𝑡 is on or after the new 

brand began to be sold in store 𝑖. For the treated stores, 𝑃𝑜𝑠𝑡𝐸𝑛𝑡𝑟𝑦𝑖𝑡 switches from zero to one 

upon new brand entry. Whereas for the control stores, 𝑃𝑜𝑠𝑡𝐸𝑛𝑡𝑟𝑦𝑖𝑡 is always zero for the entire 

 
28 Following Cao et al. (2021), we use the natural logarithm of incumbent brand sales volume and natural logarithm of total 

FPBBA sales volume as dependent variables, instead of the level values. 
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period. The parameter of interest, 𝛽 (referred to the “TWFE estimator”) measures the causal 

impact of the new entry on each outcome variables: incumbent FPBBA brand sales, incumbent 

FPBBA brand price and the total FPBBA sales. This model allows us to determine the average 

effect of a new entrant in the FPBBA market at month-store level across eight entry cohorts 

from September 2019 to December 2020. 

4.2.Extended Two-Way Fixed Effects  

In our study, the new FPBBA brand enters different stores at different times (see Figure 2), 

resulting in staggered entry interventions. Unlike the traditional DID frameworks, which treat 

all units simultaneously within one cohort, staggered interventions involve multiple cohorts 

treated at different times. This adds a layer of complexity to the analysis (Callaway et al., 2021; 

Wooldridge, 2021), which cannot be addressed using the TWFE model. Specifically, the 

TWFE approach constructs estimators using the weighted average of entry effects across entry 

cohorts and post-entry times, neglecting the heterogeneous effects across entry cohorts and 

dynamic effects over time. This limitation is exacerbated by the findings from de Chausemartin 

and D’Haultfoeuille (2020), Goodman-Bacon (2021), and Borusyak et al. (2024), who 

highlight that the TWFE estimators could be biased if the entry effects differ across entry 

cohorts and post-entry times.  

Due to these limitations, recent and emerging literature has suggested the cautious 

application of TWFE in staggered intervention frameworks and recommended alternative 

approaches. Table 1 compares the TWFE approach to these alternative methods. Each method 

presents pros and cons. For example, the approach introduced by de Chaisemartin and 

D’Haultfoeuille (2020) calculates average treatment effects in staggered intervention 

frameworks. While it relaxes the homogeneous treatment effects assumption and can produce 

unbiased average treatment effects compared to TWFE, it still does not disentangle 

heterogeneous and dynamic effects. To explore these effects, Sun and Abraham (2021) and 
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Callaway and Sant’Anna (2021) proposed event study-type estimators, which reveal dynamic 

effects over post-treatment time. More recently, Borusyak et al. (2021, 2024) introduced 

imputation estimates, while Wooldridge (2021) proposed the extended two-way fixed effects 

(ETWFE) approach. Both approaches are capable of revealing dynamic and heterogeneous 

effects. However, ETWFE relies on a more relaxed parallel trend assumption and allows for 

estimating unbiased entry effects when there are linear heterogeneous time trends. 
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Table 3.1 TWFE versus alternative approaches 
 

Effects could be estimated … 
Parallel trend assumption 

 Average Dynamic Heterogenous 

Baseline       

TWFE Biased Nob No 

Holds for every treatment 

cohort and every pair of 

consecutive time periods 

Alternative Approaches 

De Chausemartin 

and D’Haultfoeuille 

(2020) 

Unbiased No No 

Holds for every treatment 

cohort and every pair of 

consecutive time periods 

Sun and Abraham 

(2021) 
Unbiaseda Yesc Yes 

Holds for every treatment 

cohort and every pair of 

consecutive time periods 

 

Callaway and 

Sant’Anna (2021) 
Unbiased Yes Yes 

Holds for post-treatment 

times for each treatment 

cohorts 

Borusyak et al. 

(2021, 2024) 
Unbiased Yes Yes 

Holds for every treatment 

cohort and every pair of 

consecutive time periods 

Wooldridge (2021) 

(ETWFE) 
Unbiased Yes Yes 

Allows heterogenous linear 

time trend across treatment 

cohorts 

a The unbiased average effects of Sun and Abraham (2021), Callaway and Sant’Anna (2021), Borusyak et al. 

(2021, 2024), and Wooldridge (2021) (ETWFE) could be calculated based on the estimated dynamic and 

heterogenous effects.  
b “No” refers that this approach can not disclose this type of effects. 
c “Yes” refers that this approach can disclose this type of effects. 
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Based on the comparison of these methods, we selected ETWFE approach (Wooldridge, 

2021) to extend the findings of TWFE and estimate the dynamic and heterogeneous effects of 

staggered new FPBBA brand entry. We maintained the same eight treated cohorts as for the 

TWFE model and estimated three different specifications, one for each dependent variable of 

interest: incumbent FPBBA brand sales ( 𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡 ), incumbent FPBBA brand price 

(𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡), and total FPBBA sales (𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴,𝑖𝑡). Following Wooldridge (2021), each 

specification was formulated as follows: 

𝑌𝑖𝑡 = ∑ 𝛿𝑔

𝑇

𝑔=𝑆

∙ 𝐷𝑖𝑔 + ∑ ∑ 𝜏𝑔𝑟 ∙ 𝐷𝑖𝑔 ∙ 𝑓𝑟𝑡

𝑇

𝑟=𝑔

𝑇

𝑔=𝑆

+ ∑ 𝜑𝑔 ∙

𝑇

𝑔=𝑆

𝐷𝑖𝑔 ∙ 𝑡 + 𝛼𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡 (16) 

where 𝑌𝑖𝑡 represents the dependent variables at store 𝑖 in month 𝑡. 𝐷𝑖𝑔 equals 1 if the new brand 

first enters store 𝑖 in month 𝑔 (referred to cohort 𝑔); and zero otherwise, meaning either the 

store was in control group, or the treatment occurred in a different month. Thus, 𝛿𝑔 is a fixed 

entry effect for cohort 𝑔. 𝑓𝑟𝑡 is a binary indicator used in the model to identify specific months. 

It is set to 1 when the time 𝑡 corresponds exactly to the post-entry time 𝑟, indicating a direct 

match in the timeline; otherwise, it is set to 0. This specification allows the model to isolate 

effects that are specific to months, facilitating precise temporal analysis within the staggered 

entry framework. Therefore, 𝜏𝑔𝑟  is the coefficient that measures the entry effect of cohort 𝑔 in 

post-entry month 𝑟. Comparing 𝜏𝑔𝑟  across different cohort 𝑔 in the same post-entry time 𝑟 

shows the heterogenous effects across eight entry cohorts, while comparing 𝜏𝑔𝑟  across different 

post-entry time 𝑟 for the same cohort 𝑔 provides a dynamic effect of how the impact of the 

new entry evolves over time following the initial entry. 𝜑𝑔 captures the linear time trends of 

cohort 𝑔; the coefficients 𝛼𝑖 and 𝛾𝑡  denote the store and time fixed effects, respectively; and 

𝜀𝑖𝑡 is the error term.   
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4.3.Rolling Approach with Double Machine Learning  

The challenges posed by staggered intervention frameworks can be addressed by ETWFE, but 

identification could still be affected by selection bias across store type and supply chain 

disruptions caused by the COVID-19 pandemic, given that our timeframe spans from 

September 2019 to December 2020.  

The disruptions caused by COVID-19 pandemic and selection bias across stores could 

be related to both the geographical locations of the stores and the types of retailers. The 

pandemic disrupted food supply chains through labor shortages, transportation issues, and 

insufficient production (Federal Trade Commission Report, 2024), which were closely related 

to micro-geographical locations, such as metropolitan versus rural areas, and different 

counties/cities (USDA ERS, 2021; Dong and Zeballos, 2021; Haqiqi and Horeh, 2021; 

Schnake-Mahl and Bilal, 2022). In addition, the reactions of stores varied to COVID-19 

disruptions, including resource allocation, supply resilience, and pricing strategies, depended 

on the types of retailers (Federal Trade Commission Report, 2024). These heterogeneous 

effects of COVID-19 related to geographical location and retailer type could impact both new 

brand entry decisions and FPBBA market performance, posing challenges for identification. 

Moreover, selection bias, such as choosing specific retailers in certain cities to launch new 

products, could further amplify endogenous issues. 

To address these endogenous issues related to geographical locations and retailer types, 

controlling for city fixed effects and retailer types interacted with time (see model 

specifications in Wooldridge (2021)) can mitigate potential selection biases and address 

variations caused by the pandemic and selection bias. However, this approach requires the 

inclusion of a large number of covariates, which introduces high-dimensional issues, as 
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highlighted by Bajari et al. (2015)29. For example, in our dataset of 6,909 stores, this approach 

would require incorporating 3,084 city dummies and 3 retailer type dummies30 interacting with 

24 month dummies, resulting in a total of 74,088 covariates. This presents high-dimensional 

challenges in ETWFE analysis. To address these high-dimensional data issues, we employed 

the DML method introduced by Chemozhukov et al. (2017, 2018), combined with the “rolling 

approach”, recently developed by Lee and Wooldridge (2023)31. The DML method provides 

doubly robust estimators with high-dimensional covariates, while the “rolling approach” 

facilitates the use of DML on post-data transformation to assess heterogeneous and dynamic 

effects in scenarios with staggered interventions and high-dimensional data.  

As with the TWFE and ETWFE models, we considered the eight cohorts and estimated 

three different specifications, one for each dependent variables of interest: incumbent FPBBA 

brand sales (𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡), incumbent FPBBA brand price (𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡), and total FPBBA 

sales ( 𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴,𝑖𝑡 ).  In addition, following  Lee and Wooldridge (2023), we 

implemented four key steps: 1) detrending the outcome variables, 2) constructing the key 

independent variables, 3) constructing sub-datasets, and 4) assessing doubly robust estimators.  

In the first step, we detrend the outcome variables at store level over time. This step 

exploits the confoundedness and removes the store-level linear heterogenous time trend. For 

each store, 𝑖, in a treated cohort, 𝑔, we perform store-specific regressions for the pre-treatment 

period 𝑡 = 1, … , 𝑔 − 1:  

 
29 This is a common limitation with TWFE when estimating entry effects, as described by Belloni et al. (2014) in 

contexts where data include a large number of variables relative to the sample size. High-dimensional data are 

increasingly prevalent in applied economics (Ng, 2017), offering detailed micro-level information that benefits 

research but also complicates econometric modeling. Bajari et al. (2015) noted that using high-dimensional 

datasets, such as store-product-week level scanner data, often leads to poorly estimated parameters, 

multicollinearity, and inaccurate predictions due to the inclusion of multiple level fixed effects like store-level 

and product-level. 
 
30 According to Google Map, the stores are classified as inexpensive stores ($), moderately expensive stores 

($$), and unknown. In our dataset, there are not expensive ($$$) and very expensive ($$$$) stores.  
31 Machine learning is frequently used to address these high-dimensional problems (Bajari et al., 2015; Storm et 

al. 2020). However, traditional machine learning methods focus on model optimization for accurate predictions 

rather than parameter estimation (Mullainathan and Spiess, 2017). 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4516518
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.2.29
https://www.nber.org/system/files/working_papers/w23673/w23673.pdf
https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.p20151021
https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.p20151021
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.87
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𝑌𝑖𝑡𝑔 = 𝛼𝑖 + 𝜃𝑖 ∙ 𝑡 (17) 

Post-entry outcomes are adjusted based on these regressions to isolate the effects of new brand 

entry:𝑌̇𝑖𝑟𝑔 = 𝑌𝑖𝑟𝑔 − 𝑌̂𝑖𝑟𝑔 , where  𝑌̂𝑖𝑟𝑔 is the out-of-sample predicted value from equation (17).  

In the second step, we constructed the key independent variables, defining 𝐷𝑖𝑔  to 

indicate whether the new brand entered a store 𝑖 in month 𝑔.  𝐷𝑖𝑔  was set to 1 for entry months 

and zero otherwise, with 𝐷𝑖∞ = 1 indicating that the new brand never entered store 𝑖. In the 

third step, we constructed multiple sub-datasets to facilitate the analysis of treatment effects 

across different cohorts and post-entry times. Each sub-dataset, denoted as 𝑆𝑢𝑏𝐷𝑎𝑡𝑎𝑔𝑟 , 

included observations from treated stores where the new brand entered (𝐷𝑖𝑔 = 1) during post-

entry time 𝑟. Also, observations from control stores, where the new brand never entered (𝐷𝑖∞ =

1), during the same post-entry time were included as control group. In the fourth step, we used 

DML approach to estimate the entry effect (𝜃𝑟𝑔) for each entry cohort 𝑔 in each post-entry time 

𝑟 on the sub-dataset (𝑆𝑢𝑏𝐷𝑎𝑡𝑎𝑔𝑟). We follow Chemozhukov et al. (2017, 2018) and specified 

the DML model as follows: 

𝑌̇𝑖𝑟𝑔 =  𝜃𝑟𝑔 ∙ 𝐷𝑖𝑔 + 𝑔(𝑿𝒊) + 𝑈𝑖𝑟𝑔 ,    𝐸[𝑈𝑖𝑟𝑔|𝑿𝒊, 𝐷𝑖𝑔] = 0 (18) 

𝐷𝑖𝑔 = 𝑚(𝑿𝒊) + 𝑉𝑖𝑟𝑔,     𝐸[𝑉𝑖𝑟𝑔|𝑿𝒊] = 0 (19) 

In Equation (18), 𝐷𝑖𝑔  is a treatment indicator, the functions 𝑔(𝑿𝒊)  and 𝑚(𝑿𝒊)  represent 

unknown function of covariates 𝑿𝒊 (city and retailor type dummies), and 𝑈𝑖 is the stochastic 

errors; and 𝜃𝑟𝑔 represents the new brand entry effect on the treatment group cohort 𝑔 in post-

entry month 𝑟. Comparing 𝜃𝑟𝑔 across different cohorts 𝑔 in the same post-entry time 𝑟 shows 

the heterogenous effects across eight entry cohorts, while comparing 𝜃𝑟𝑔 across different post-

entry time 𝑟 for the same cohort 𝑔 provides a dynamic effect of how the impact of the new 

entry evolves over time following the initial entry. Equation (19) models the treatment indicator, 

where  𝐷𝑖𝑔 is expressed as a function of covariates 𝑿𝒊 and 𝑉𝑖 is the stochastic error term. The 

https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.p20171038
https://academic.oup.com/ectj/article/21/1/C1/5056401
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condition 𝐸[𝑈𝑖𝑟𝑔|𝑿𝒊, 𝐷𝑖𝑔] = 0 ensures orthogonality between the treatment indicator and the 

errors conditional on covariates, while the condition 𝐸[𝑉𝑖𝑟𝑔|𝑿𝒊] = 0 ensures orthogonality 

between the treatment indicator and the covariates.  

To estimate the treatment effects, 𝜃𝑟𝑔, we followed Chemozhukov et al. (2017, 2018) 

and applied three additional steps. First, we randomly and evenly split the data into 𝐾 folds 

(𝐾 = 5) and each fold is represented by 𝐼𝑘  (𝑘 ∈ [𝐾] = {1, … , 𝐾}). Second, for each fold 𝐼𝑘  we 

estimated the nuisance functions ( 𝑔̂(𝑿𝒊)𝑖∈𝐼≠𝑘
 and 𝑚̂(𝑿𝒊)𝑖∈𝐼≠𝑘

) using the data from the 

remaining 𝐾 − 1 folds (𝐼≠𝑘) as follows:  

𝜃̂𝑟𝑔,𝑘 = (
1

𝑛
∑(𝐷𝑖𝑔 −

𝑖∈𝐼𝑘

𝑚̂(𝑿𝒊)) ∙ 𝐷𝑖𝑔)−1 ∙
1

𝑛
∑(𝐷𝑖𝑔 −

𝑖∈𝐼𝑘

𝑚̂(𝑿𝒊)) ∙ (𝑌̇𝑖𝑟𝑔 − 𝑔̂(𝑿𝒊)) (20) 

where the nuisance functions measure the relationships between covariates 𝑿𝒊  and the 

treatment indicator 𝐷𝑖𝑔. Finally, we averaged the treatment effect estimates (𝜃̂𝑟𝑔,𝑘) across the 

5 folds to obtain the overall estimation of 𝜃̂𝑟𝑔 for each entry cohort gg and post-entry time, 

𝜃̂𝑟𝑔 =
1

𝐾
∑ 𝜃̂𝑟𝑔,𝑘

𝐾
𝑘=1 .  

4.4.Comparison of ETWFE and Rolling Approach with Double Machine Learning  

To compare the performance of the ETWFE model and the rolling approach integrated with 

DML, we used the Root Mean Squared Error (RMSE); the smaller out-of-sample RMSE 

represents more precise model estimation. Following Bajari et al. (2015), for the ETWFE 

method, the RMSE was calculated as the root mean squared differences between actual value 

of outcome variables and the predicted value of outcome variables on the out-of-sample data:  

√
1

𝑛
∑ (𝑌̂𝑖𝑟𝑔 − 𝑌𝑖𝑟𝑔)2𝑛

𝑖=1,𝑖∈𝐼𝑘
. 

For the method of rolling approach with DML, the RMSE was calculated by taking the 

square root of the average of the squared differences between the predicted values and the 

actual values of the outcome variables for each data point in the out-of-sample dataset: 

https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.p20171038
https://academic.oup.com/ectj/article/21/1/C1/5056401
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√
1

𝑛
∑ (𝑌̇𝑟𝑔

̂
𝑖

− 𝑌̇𝑟𝑔𝑖
)2𝑛

𝑖=1,𝑖∈𝐼𝑘
. 

It is important to note that the out-of-sample RMSEs for the ETWFE are based on the actual 

dataset, while those for the rolling approach with DML are derived from the detrended data. 

To make the RMSEs from these two methods comparable, we follow the normalization method 

described by Scherbakov et al. (2013)32.  

This comparison of out-of-sample normalized RMSEs assesses the model fitness and 

precision within the utilized dataset, rather than its predictive capability outside this dataset. 

We assume the presence of heterogeneous and dynamic effects in both the ETWFE and rolling 

approach with DML model specifications. The in-sample data for model estimation and the 

out-of-sample data for normalized RMSE calculation cover the same entry cohorts and post-

entry time periods. Additionally, both the ETWFE and rolling approach with DML cannot 

predict outcomes for entry cohorts or post-entry times not included in the dataset.  

5. Results  

This section first presents the descriptive statistics of our key variables data, and then reports 

three sets of empirical results. We begin by assessing the average impact of the new brand entry 

on the total FPBBA market size (e.g., total FPBBA sales volume) and incumbent FPBBA brand 

market performance (e.g., incumbent FPBBA brand sales volume and price) of the incumbent 

brand. These results are from the TWFE model. The second and third sets of results unpack 

dynamic and heterogenous entry effects across time and treatment cohorts. These results are 

based on the ETWFE model and based on the rolling approach with double machine learning 

(DML), respectively. 

 

32 We calculated the RMSE as  
√

1

𝑛
∑ (𝑌̂𝑖𝑟𝑔−𝑌𝑖𝑟𝑔)2𝑛

𝑖=1,𝑖∈𝐼𝑘

𝑌𝑟𝑔,𝑚𝑎𝑥−𝑌𝑟𝑔,𝑚𝑖𝑛
  for the ETWFE and  

√
1

𝑛
∑ (𝑌̇𝑟𝑔

̂
𝑖
−𝑌̇𝑟𝑔𝑖

)2𝑛
𝑖=1,𝑖∈𝐼𝑘

𝑌̇𝑟𝑔,𝑚𝑎𝑥−𝑌̇𝑟𝑔,𝑚𝑖𝑛
 for the rolling 

approach with DML. 
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5.1.Descriptive Statistics  

Table 3.2 presents the summary statistics of the key dependent and independent variables used 

in our analysis. These statistics are reported for both control and treated stores. The key 

dependent variables are incumbent FPBBA brand sales volume, incumbent FPBBA brand price, 

and total FPBBA sales volume. The descriptive statistics indicate that the incumbent brand 

sales volume is larger in the treated stores (𝐿 𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛=3.44) than that in the control stores 

(𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛=2.17), while the brand price in the treated and control stores are similar (10.58 

USD/pound and 10.54 USD/pound in the treated and control stores, respectively). We also find 

that the treated stores sold more volume of FPBBAs ((𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴 = 3.60)  than the 

control stores (𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴 = 2.19). Our key independent variable is the dummy variable, 

𝑃𝑜𝑠𝑡𝐸𝑛𝑡𝑟𝑦 𝑖𝑡 , indicating if the month 𝑡 is on or after the new brand started to be sold in store 

𝑖. 𝑃𝑜𝑠𝑡𝐸𝑛𝑡𝑟𝑦 𝑖𝑡 is always equal to zero for the control stores since the new brand never enter 

the store.  

.  
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Table 3.2 Summary Statistics 

 Definition 
Total 

Stores 

Control 

Stores 

Treated 

Stores 

Treated Stores by Entry Waves 

  Initial 

Entry 

First 

Expansion 

Second 

Expansion 

Third 

Expansion 

Fourth 

Expansion 

Fifth 

Expansion 

Sixth 

Expansion 

Last 

Expansion 

Sample Distribution            

𝑁. 𝑜𝑓 𝑆𝑡𝑜𝑟𝑒𝑠  
The number 

of stores 
6,906 3,018 3,888 99 524 219 549 1,505 355 266 371 

𝑁.  𝑜𝑓 𝑆𝑡𝑜𝑟𝑒𝑠

𝑁.  𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑜𝑟𝑒𝑠
  

The 

percentage 

of stores in 

each 

treatment 

cohort over 

total stores 

(%) 

100% 44% 56% 1% 8% 3% 8% 22% 5% 4% 5% 

𝑁. 𝑜𝑓 𝑂𝑏𝑠. 

The number 

of 

observations 

at store-

month level 

133,552 53,037 80,515 2,371 12,010 5,180 11,564 30,372 6,894 5,485 6,639 

Dependent Variables            

𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡  

The natural 

logarithm of 

sales 

volume (in 

pound) of 

incumbent 

brand in 

store 𝑖 
month 𝑡 

2.94 

(1.32) 

2.17 

(1.23) 

3.44 

(1.12) 

5.34 

(0.78) 

3.67 

(1.05) 

4.02 

(0.87) 

3.70 

(0.93) 

3.37 

(0.93) 

3.10 

(0.96) 

3.36 

(1.04) 

2.18 

(1.28) 
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Table 3.2 (cont’d) 

𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡  

 

The average 

price (in 

USD per 

pound) of 

incumbent 

brand in 

store 𝑖 
month 𝑡 

10.56 

(1.29) 

10.54 

(1.37) 

10.58 

(1.24) 

10.27 

(0.55) 

10.70 

(0.86) 

10.85 

(0.80) 

10.27 

(1.19) 

10.35 

(1.19) 

10.92 

(1.46) 

11.02 

(1.39) 

11.15 

(1.67) 

𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴,𝑖𝑡  

The natural 

logarithm of 

sales (in 

pound) of 

FPBBA in 

store 𝑖 
month 𝑡 

3.04 

(1.38) 

2.19 

(1.24) 

3.60 

(1.18) 

5.90 

(0.94) 

3.80 

(1.09) 

4.11 

(0.89) 

3.87 

(0.96) 

3.54 

(0.96) 

3.25 

(0.98) 

3.48 

(1.04) 

2.26 

(1.30) 

Independent Variable            

𝑃𝑜𝑠𝑡𝐸𝑛𝑡𝑟𝑦 𝑖𝑡  

 

=1 if the 

month 𝑡 is 

on or after 

the new 

brand 

started to be 

sold in store 

𝑖; =0, 

otherwise. 

0.12 

(0.32) 

0.00 

(---) 

0.19 

(0.39) 

0.64 

(0.48) 

0.29 

(0.45) 

0.24 

(0.43) 

0.21 

(0.40) 

0.18 

(0.38) 

0.14 

(0.35) 

0.08 

(0.27) 

0.03 

(0.16) 
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Figure 3.3 displays the trend of incumbent brand prices, incumbent brand sales, and 

total FPBBA sales in control and treated stores before and after the initial new brand entry 

(September 2019). For comparison, the time point of COVID-19 disruption (March 202033) are 

marked in the figure as well.  

Prior to the initial entry, incumbent brand prices in treated stores were higher than those 

in control stores, with heterogeneous time trends observed in both groups. After the initial entry, 

incumbent brand prices in treated stores decreased to below those in control stores. There were 

no noticeable impacts of COVID-19 on incumbent brand prices in either control or treated 

stores. Examining the trends in incumbent brand sales and total FPBBA sales, we observed that 

sales in treated stores were consistently higher than those in control stores, with identical trends 

between the two groups prior to the initial entry. After the initial entry, the sales gap between 

control and treated stores widened, particularly for total FPBBA sales. In addition, the impacts 

of the COVID-19 disruption on incumbent brand sales and total FPBBA sales were comparable 

in both treated and control stores. 

  

 
33 March 2020 is recognized as the starting point of the COVID-19 pandemic disruption. This timing is significant 

because the World Health Organization declared COVID-19 a pandemic, and multiple states began implementing 

shutdowns.  
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Panel A. Incumbent brand price trend 

 

Panel B. Incumbent brand sales trend 

 

 

Panel C. Total FPBBA sales trend 

Figure 3.3 Trend of dependent variables] 
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Figure 3.4 presents the geographical expansion of a new entry brand across the eight 

entry waves previously illustrated in Figure 2 (initial entry and seven waves of expansion). It 

shows that the store entries vary across geographical locations, which verify our earlier 

discussion.  

Based on the geographic distribution of these waves, they can be categorized into two 

levels: “Localized Entry” (Initial Entry, First Expansion, and Second Expansion in Panel A) 

and “National Expansion” (Third Expansion to Last Expansion in Panel B). Panel A (Localized 

Level) shows the initial entry of the new brand in stores located predominantly along the east 

coast, including states such as Massachusetts, Maryland, New Jersey, New York, Pennsylvania, 

Virginia, Connecticut, Rhode Island, West Virginia, Washington D.C., and Delaware. In Panel 

B (National Expansion), the brand expanded to other states during the following waves (Third 

Expansion to Last Expansion), ultimately reaching 49 states by December 2020.34   

  

 
34 There are no stores in Wyoming observed with new brand entering.  
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Panel A. Localized Entry 

 

Panel B. National Expansion  

Figure 3.4 The geographical distribution of entry waves 
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In addition to geographical locations, we also examine the types of stores the new brand 

chose to enter during different entry waves. Google Maps provides information on the expense 

levels of stores, classifying them as inexpensive ($), moderately expensive ($$), expensive 

($$$), very expensive ($$$$), or unknown (no sufficient price information available). In our 

dataset, all stores fall into the categories of inexpensive ($), moderately expensive ($$), and 

unknown. There are no stores classified as expensive ($$$) or very expensive ($$$$).  

Figure 3.5 shows the composition of stores in the control group and across different 

entry waves. It indicates that, among all control stores, 16% are inexpensive, 71% are 

moderately expensive, and 11% are unknown. In the first entry and the first to third expansions, 

the new brand entered only moderately expensive stores and no inexpensive stores had new 

brand entry. From the fourth to sixth expansions, the brand started entering inexpensive stores 

(3-22%), although moderately expensive stores still dominated the treated stores (70-97%). In 

the seventh (and last) expansion, the new brand mainly entered inexpensive stores (61%). This 

evidence of the new brand entering different types of stores supports our discussion on 

selection bias. 
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Figure 3.5 Store types by entry waves 
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5.2.Average Effects from TWFE 

Table 3.3 reports the estimates from the three TWFE models, one for each dependent variable 

of interest. More specifically, in models 1 and 2, the  key dependent variables are incumbent 

brand sales (𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡) and incumbent price (𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡), respectively, while in model 3, 

the dependent variable is the total FPBBA sales (𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝑃𝐵𝑀𝐴,𝑖𝑡).  

Table 3.3 Estimates from TWFE 

 
𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡  𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡 𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝑃𝐵𝑀𝐴,𝑖𝑡 

Post-Entry -0.015* 0.052* 0.358* 
 

(0.006) (0.011) (0.006) 

Month Fixed Effect Yes Yes Yes 

Store Fixed Effect Yes Yes Yes 

Observations 133,552 133,552 133,552 

R-squared 0.813 0.566 0.832 

Note: * indicates statistically significant at 5% level.  

Examining the post-entry effects generated by models 1 and 2, it can be noted a decrease 

in the sales volume of the FPBBA incumbent brand and an increase in its price in stores where 

a new FFPBBA brand has entered. Specifically, compared to stores without a new brand entry, 

the introduction of a new brand reduces the sales volume of incumbent brand by 1.5% and 

increases the price by 0.052 USD per pound (around 0.49% of the average incumbent brand 

price), even though the impact size is relatively small. Our findings that the increase in 

incumbent brand prices due to new brand entry aligns with existing theoretical and empirical 

literature, which offers various explanations. For example, Hollander (1987) demonstrates that 

incumbent firms raise prices to focus on consumers with high brand loyalty in response to new 

brand entry, while Frank and Salkever (1991) suggest that the increase or decrease in 

incumbent brand prices depends on the impact of new brand entry on incumbent brand own-

price elasticities and advertising effects. In addition, Cao et al. (2021) point out that incumbent 
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brand in a monopoly market tends to raise prices to maintain profitability when facing new 

competition. 

Having established evidence that the new FFPBBA entrant brand slightly erodes the 

market share of incumbents, the question arises: does the new entrant brand establish its market 

solely by competing with the incumbent in the existing market, or does it also expand the 

FPBBA market and increase total FPBBA sales? To answer this question, we now focus on the 

results from Model 3, which estimates the entry effect on total FPBBA sales (column 3). The 

results show that stores experiencing new brand entry has increased around 35.8 percent of 

total FPBBA sales compared to stores that no new brand entry, which is statistically significant 

and economically meaningful. Overall, the aggregated TWFE estimates show that, although 

the new brand entry slightly competes with the incumbent brand and reduce its sales volume 

and price, the new brand entry expands the FPBBA markets and increases the total FPBBA 

sales.  

5.3.Heterogenous and Dynamic Effects from ETWFE and Rolling Approach with DML 

While TWFE estimates offer aggregated insights into the effects of new brand entry, it remains 

uncertain whether these findings hold consistently across different times and entry cohorts. In 

this section, we present the results from the ETWFE model and the rolling approach with DML 

to assess the heterogeneous and dynamic entry effects. Given the geographical dynamics 

associated with the development of FPBBA brand, as illustrated in Figure 3.4, we chose the 

geographical expansion of brand entry as a key source of systematic heterogeneity. This was 

classified according to two dimensions, Localized Entry and National Expansion.  

5.3.1. Localized Entry Effects   

Figure 3.6 presents the results from three ETWFE models and three applications of the 

rolling approach with DML. Once again, our focus is on the heterogeneous entry effects on 

incumbent FPBBA brand sales (Panel A), incumbent FPBBA brand price (Panel B), and total 
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FPBBA sales (Panel C) at the localized entry level. This refers to when the brand enters 

locations that are localized to a specific area, which, in our case, is the East Coast. 

The localized entry involved three entry times: September 2019 (initial entry, yellow 

line), June 2020 (first expansion, green line), and July 2020 (second expansion, red line). The 

x-axis is the calendar time when and after the new brand entry, and the y-axis is the estimated 

coefficients from equations (16) and (20). The coefficients from these models are reported in 

Appendix, Tables A1-6.  
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Panel A. Entry Effects on Incumbent FPBBA Brand Sales 

 

Panel B. Entry Effects on Incumbent FPBBA Brand Price  

 

Panel C. Entry Effects on Total FPBBA Sales 

Figure 3.6 The impacts of the new brand entry: Localized Entry 
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We observe two key findings. The first one relates to the heterogeneity effects across 

entry cohorts in terms of incumbent FPBBA brand sales, incumbent FPBBA price and total 

FPBBA sales. We find that when the new brand enters the market, the sales of incumbent 

FPBBA brands decreases in both initial entry (yellow line) and first expansion stores (green 

line) but increase in second expansion stores (red line). This pattern remains consistent across 

both the ETWFE and the rolling approach with DML, although the latter exhibits more 

variation, likely due to our inclusion of city fixed effects to mitigate potential selection bias 

issues. Consistent results are also evident when examining the effects of new brand entry on 

incumbent FPBBA brand prices (Panel B) and total FPBBA sales (Panel C). We find that the 

price of incumbent brand increases in the first two cohorts (initial entry and first expansion) 

but decreases in the last cohort (second expansion). Conversely, the entry of the new brand 

generally decreases total FPBBA sales in initial entry stores (yellow line) and first expansion 

stores (green line) but increases them in second expansion stores (red line). Taken together 

these findings show that the new brand entry reduces both incumbent FPBBA brand sales and 

total FPBBA sales, while increasing market prices at their early entry, and start decreasing 

them in following expansion waves. The heterogeneous effects across different entry cohorts 

can be explained by the varying reactions of the incumbent brand during different stages of 

new brand entry. According to Bowman and Gatignon (1995), Shankar (1999), and Karakaya 

and Yannopoulos (2011), the incumbent brand tends to react more strongly to a new brand in 

an attempt to force it out when it first enters the market. However, the incumbent brand’s 

reaction is more modest if the new brand has already established a presence in specific markets 

or locations. In our context, during the early entry waves (initial entry and first expansion), the 

new brand was novel to the market, prompting a strong reaction from the incumbent brand. In 

the later entry waves, the incumbent brand’s reaction diminished due to the new brand’s 

established presence and success in other locations or stores. 
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The second key finding concerns the dynamic effects, revealing differential timing 

effects across post-entry time periods. For example, focusing on the effects of a new entry on 

incumbent FPBBA brand sales (panel A), it becomes apparent that the magnitude of the 

negative effect of new brand entry increases with early post-entry time periods (yellow and 

green lines). However, the magnitude of the positive effect of new brand entry on incumbent 

FPBBA brand sales diminishes with post-entry time periods in second wave of expansion (red 

line). Similarly, the positive impacts of new brand entry on incumbent FPBBA brand prices 

(panel B) are statistically significant across post-entry time periods in early entry waves (initial 

entry and first expansion), while the negative effect of new brand entry on incumbent FPBBA 

brand prices become statistically insignificant in the last two post-entry time periods in the 

second expansion stores (red line). 

5.3.2. Nationwide Entry Effects  

Figure 7 presents the results from three ETWFE models and three applications of the rolling 

approach with DML. Again, we focus on heterogenous entry effect on incumbent FPBBA 

brand sales (Panel A), incumbent FPBBA brand price (Panel B), and FPBBA sales (Panel C) 

at the national expansion level, namely, when the entry brand expands nationally. Our analysis 

spans from the third wave of expansions (August 2020), when the brand entered the national 

market, to December 2020, marking the last wave of expansion within our study period. The 

coefficients from the models are reported in Appendix Tables A1-6.  

The results indicate that, unlike the localized entry stage, the entry effects are consistent 

across cohorts as the new brand begins to enter the nationwide market. It appears that the new 

brand competes directly with incumbent FPBBA brands upon extensive entry into the 

nationwide market, leading to a reduction in incumbent FPBBA brand sales (Panel A). In 

response to the loss incurred from the reduction in sales and in an effort to maintain profitability, 

incumbent brand tends to increase their prices (Panel B), aligning with findings in Cao et al. 
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(2021). Turning to the entry effects on total FPBBA sales (Panel C), we observe that the new 

brand entry reduces total FPBBA sales in the third, fourth, and fifth expansion waves (in which 

the new brand enters stores in August, September, and October 2020, respectively). However, 

it increases total FPBBA sales in the sixth and final expansion waves (in which the new brand 

enters stores in November and December 2020, respectively).  
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Panel A. Entry Effects on Incumbent FPBBA brand Sales 

 

Panel B. Entry Effects on Incumbent FPBBA Brand Price  

 

Panel C. Entry Effects on Total FPBBA Sales 

Figure 3.7 The impacts of the new brand entry: National Expansion 
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5.4.Comparison of Three Empirical Approaches 

In this section, we discuss a comparative analysis of the entry effects derived from three 

different methodologies: traditional TWFE, advanced ETWFE, and the rolling approach with 

DML.   

5.4.1. Average Effects vs. Heterogenous and Dynamic Effects  

Comparing the findings from sections 5.2 and 5.3, it reveals significant differences between 

average effects estimated from the TWFE model and the dynamic and heterogenous effects 

estimated from the ETWFE and the rolling approach with DML. The presence of dynamic and 

heterogeneous effects across post-entry time and entry cohorts suggests that the assumption of 

homogeneous effects is violated, rendering TWFE estimates biased (de Chausemartin and 

D’Haultfoeuille, 2020; Goodman-Bacon 2021; Borusyak et al., 2024).  

To further examine these differences across methods, we follow the approach of 

Wooldridge (2021), Callaway and Sant’Anna (2021), and Borusyak et al. (2024). We 

calculated the average effects based on estimates from ETWFE and the rolling approach with 

DML and compare them with those from TWFE (Table 4). The TWFE model shows only 

marginal impacts of new brand entry on incumbent brands, such as a 1.5% reduction in 

incumbent FPBBA brand sales and a $0.052 per pound increase in incumbent FPBBA brand 

price. However, the average effects calculated from ETWFE and the rolling approach with 

DML show a much larger impact. These methods indicate a 54.1%-68.2% reduction in 

incumbent brand sales and a $0.63-$1.00 per pound increase in incumbent brand price due to 

new brand entry. Moreover, the TWFE model suggests that the new brand entry significantly 

expands the total FPBBA market, but this expansion effect disappears when using ETWFE and 

the rolling approach with DML. 

The substantial differences we found between the TWFE and the ETWFE and the 

rolling approach with DML align with findings from earlier studies comparing TWFE with 
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other methods, as listed in Table 4. For example, previous research by Callaway and Sant’Anna 

(2021) and de Chaisemartin and D’Haultfoeuille (2020) also showed that TWFE often 

underestimates the effects compared to alternative approaches. Similar findings are also 

reported by Xiao et al. (2023) and Nagengast and Yotov (2023). However, it is important to 

note that, compared to ETWFE and the rolling approach with DML, the other methods in Table 

4 also have their limitations, as discussed earlier.  

Table 3.4 Average entry effects from TWFE, ETWFE, and rolling approach with DML 

Dependent Variables  

 

Average Entry Effects 

 

TWFE ETWFE 
Rolling Approach with 

DML 

𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡 
-0.015* 

(0.006) 

-0.541* 

(0.050) 

-0.682* 

(0.162) 

𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡 
0.052* 

(0.011) 

0.627* 

(0.050) 

1.000* 

(0.268) 

𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴,𝑖𝑡 
0.358* 

(0.006) 

-0.099* 

(0.048) 

-0.227 

(0.164) 

* indicates statistically significant at 5% level. Bootstrapping standard errors are reported in 

the parentheses. 

5.4.2. ETWFE vs. Rolling Approach with DML 

Comparing the estimations from ETWFE and rolling approach with DML, we noticed that the 

estimated effect sizes and standard errors are different across two approaches. The differences 

in effect sizes between estimations from ETWFE and rolling approach with DML suggest that 

the entry of a new brand is related to city and store types and ETWFE encounters endogenous 

issues. After controlling city and store types fixed effects in the rolling approach, the causal 

effects could be better disclosed. For example, the rolling approach with DML estimated larger 

positive entry effects on incumbent brand price than ETWFE. This could be explained by the 

fact that new brand chose to enter the cities and stores where incumbent brand would not react 

strongly. Therefore, after controlling for city and store type fixed effects, the impacts on the 
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incumbent brand price become larger. Similarly, we noticed that for the impacts on incumbent 

brand and total FPBBA sales are estimated to be more negative with the rolling approach with 

DML than with ETWFE. This could because new brand chose cities and store types with larger 

potential FPBBA consumers. Thus, after controlling for city and store type fixed effects, the 

impacts on sales become more negative.  

Apart from the effect size, Figures 3.6 and 3.7 illustrate that estimates derived from the 

rolling approach with DML have wider confidence intervals compared to ETWFE, indicating 

larger standard errors. This reinforces the endogenous issues caused by the omitted variables, 

which can be controlled by including city and store type fixed effects. It shows that controlling 

for the city and store type fixed effects could impact the significance of the estimated entry 

effects both economically (effect size) and statistically (standard error). In addition, it should 

be noticed that although the statistical significance level reduced in the rolling approach, it is 

still statistically significant at 5% level in most cases, which suggests the significant impacts 

of the new brand entry.  

To quantitively compare the performance of ETWFE and rolling approach with DML, 

we follow Bajari et al. (2015) and Lee and Wooldridge (2023), focusing on standard errors and 

root mean squared error (RMSE) of the estimates. Table 3.5 presents the normalized out-of-

sample RMSE for each estimator from the rolling approach with DML and the ETWFE model. 

A smaller normalized out-of-sample RMSE denotes more precise model estimation. To 

quantitatively compare model precision between ETWFE and the rolling approach with DML, 

we calculate the ∆RMSE as the percentage reduction in the normalized out-of-sample RMSE 

from the rolling approach with DML compared to ETWFE. We found that, on average, the 

rolling approach with DML reduces the normalized out-of-sample RMSE by 44.6%, 24.3%, 

and 44.3% in the analysis for entry effects on incumbent sales, incumbent price, and total 

FPBBA sales, respectively. Thus, the rolling approach with DML improves model precision 
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compared to the TWFE model, suggesting its effectiveness in mitigating selection bias when 

covariates have high dimensions and improving model precision over the ETWFE model. 

These improvements are comparable to the existing literatures (McConnell and Lindner, 2019; 

Xue et al., 2023) that compares the DML with conventional econometric/statistical methods, 

such as propensity score matching and ordinary least squares. These studies show that DML 

could reduce the out-of-sample RMSE by 19%-77%. 
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Table 3.5 Normalized RMSEs from Rolling Approach with DML and ETWFE 

  Dependent Variables 

Entry 

Cohorts 

Post-Entry 

Time 

𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐼𝑛,𝑖𝑡 𝑃𝑟𝑖𝑐𝑒𝐼𝑛,𝑖𝑡 𝐿𝑛(𝑆𝑎𝑙𝑒𝑠)𝐹𝑃𝐵𝐵𝐴,𝑖𝑡 

RMSE 
∆RMSE 

(%) 

RMSE 
∆RMSE 

(%) 

RMSE 
∆RMSE 

(%) DM

L 

ETW

FE 

DM

L 

ETW

FE 

DM

L 

ETW

FE 

Initial Entry 

Sep-19 
0.0

92 
0.160 -42.5% 

0.0

94 
0.187 -49.8% 

0.0

93 
0.155 -40.0% 

Oct-19 
0.1

75 
0.240 -27.2% 

0.1

18 
0.145 -18.7% 

0.1

90 
0.199 -4.3% 

Nov-19 
0.1

27 
0.166 -23.5% 

0.1

17 
0.144 -18.5% 

0.1

26 
0.150 -15.6% 

Dec-19 
0.1

21 
0.231 -47.6% 

0.1

32 
0.158 -16.5% 

0.1

20 
0.204 -41.5% 

Jan-20 
0.1

24 
0.235 -47.1% 

0.1

10 
0.184 -40.6% 

0.1

25 
0.212 -41.1% 

Feb-20 
0.1

22 
0.244 -49.9% 

0.1

50 
0.154 -3.1% 

0.1

21 
0.215 -43.6% 

Mar-20 
0.1

21 
0.219 -44.8% 

0.1

68 
0.132 26.9% 

0.1

19 
0.200 -40.6% 

Apr-20 
0.1

25 
0.231 -45.9% 

0.1

42 
0.141 1.0% 

0.1

24 
0.217 -42.9% 

May-20 
0.1

17 
0.240 -51.2% 

0.1

59 
0.169 -6.1% 

0.1

16 
0.217 -46.6% 

Jun-20 
0.1

21 
0.243 -50.3% 

0.1

71 
0.194 -12.0% 

0.1

19 
0.219 -45.7% 

Jul-20 
0.1

00 
0.221 -54.6% 

0.1

57 
0.140 12.4% 

0.0

98 
0.201 -51.1% 

Aug-20 
0.1

02 
0.219 -53.3% 

0.1

63 
0.162 1.2% 

0.1

01 
0.196 -48.3% 

Sep-20 
0.1

02 
0.219 -53.6% 

0.1

53 
0.132 16.1% 

0.1

01 
0.200 -49.5% 

Oct-20 
0.0

98 
0.228 -57.0% 

0.1

55 
0.126 22.5% 

0.0

97 
0.206 -52.7% 

Nov-20 
0.1

18 
0.214 -44.6% 

0.1

46 
0.156 -5.8% 

0.1

18 
0.197 -40.1% 

Dec-20 
0.1

29 
0.223 -42.4% 

0.1

43 
0.147 -3.2% 

0.1

22 
0.204 -40.0% 

First 

Expansion 

Jun-20 
0.0

85 
0.175 -51.4% 

0.0

85 
0.088 -3.7% 

0.0

92 
0.169 -45.4% 

Jul-20 
0.0

76 
0.170 -55.1% 

0.0

63 
0.140 -55.1% 

0.0

81 
0.166 -51.4% 

Aug-20 
0.0

85 
0.169 -49.8% 

0.0

68 
0.170 -60.1% 

0.0

78 
0.154 -49.4% 

Sep-20 
0.0

81 
0.100 -18.5% 

0.0

72 
0.169 -57.5% 

0.0

82 
0.159 -48.6% 

Oct-20 
0.0

85 
0.182 -53.1% 

0.0

64 
0.177 -64.1% 

0.0

84 
0.174 -51.7% 

Nov-20 
0.0

76 
0.227 -66.5% 

0.0

64 
0.122 -47.2% 

0.0

75 
0.118 -36.4% 

Dec-20 
0.0

90 
0.167 -46.0% 

0.0

69 
0.112 -38.0% 

0.0

86 
0.183 -53.0% 

Second 

Expansion 

Jul-20 
0.1

04 
0.223 -53.4% 

0.1

20 
0.158 -24.1% 

0.1

41 
0.217 -34.8% 

Aug-20 
0.1

16 
0.228 -49.0% 

0.0

78 
0.168 -53.6% 

0.0

87 
0.217 -60.1% 
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Table A 3.5 (cont’d) 
 

 Sep-20 
0.1

20 
0.229 -47.8% 

0.1

12 
0.141 -20.9% 

0.1

24 
0.224 -44.5% 

 Oct-20 
0.0

90 
0.152 -40.7% 

0.0

99 
0.143 -30.3% 

0.0

93 
0.155 -40.1% 

 Nov-20 
0.0

96 
0.229 -58.2% 

0.1

12 
0.126 -11.6% 

0.0

95 
0.219 -56.7% 

 Dec-20 
0.1

24 
0.158 -21.0% 

0.0

94 
0.132 -29.2% 

0.1

22 
0.153 -20.1% 

Third 

Expansion 

Aug-20 
0.0

56 
0.102 -45.1% 

0.0

65 
0.145 -55.3% 

0.0

53 
0.095 -43.7% 

Sep-20 
0.0

66 
0.160 -58.4% 

0.0

85 
0.139 -38.6% 

0.0

60 
0.147 -59.5% 

Oct-20 
0.0

82 
0.163 -50.0% 

0.0

69 
0.085 -18.5% 

0.0

75 
0.148 -49.0% 

Nov-20 
0.0

86 
0.148 -42.1% 

0.0

57 
0.057 -0.6% 

0.0

88 
0.144 -38.7% 

Dec-20 
0.0

86 
0.163 -47.3% 

0.0

85 
0.127 -33.1% 

0.0

87 
0.144 -39.8% 

Fourth 

Expansion 

Sep-20 
0.0

34 
0.139 -75.8% 

0.0

34 
0.090 -61.9% 

0.0

33 
0.132 -74.9% 

Oct-20 
0.0

33 
0.099 -66.9% 

0.0

30 
0.079 -61.8% 

0.0

31 
0.095 -67.1% 

Nov-20 
0.0

33 
0.089 -63.0% 

0.0

30 
0.051 -41.2% 

0.0

32 
0.085 -62.3% 

Dec-20 
0.0

32 
0.143 -77.5% 

0.0

36 
0.095 -61.9% 

0.0

31 
0.132 -76.3% 

Fifth 

Expansion 

Oct-20 
0.0

67 
0.103 -35.1% 

0.0

74 
0.103 -28.0% 

0.0

65 
0.100 -35.5% 

Nov-20 
0.0

82 
0.091 -10.0% 

0.0

63 
0.067 -6.3% 

0.0

80 
0.089 -11.0% 

Dec-20 
0.0

89 
0.189 -53.0% 

0.0

92 
0.162 -43.5% 

0.0

89 
0.178 -50.1% 

Sixth 

Expansion 

Nov-20 
0.0

86 
0.112 -23.2% 

0.1

63 
0.145 12.2% 

0.0

85 
0.109 -22.1% 

Dec-20 
0.1

34 
0.096 40.1% 

0.1

45 
0.142 1.7% 

0.1

30 
0.178 -26.9% 

Last 

Expansion 
Dec-20 

0.0

87 
0.096 -8.5% 

0.0

98 
0.175 -44.1% 

0.0

83 
0.203 -59.0% 

Average ∆RMSE (%) -44.6% -24.3% -44.3% 
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6. Discussion and Conclusion  

This study investigates whether the introduction of new FPBBA products intensifies 

competition with incumbent FPBBA brands or expands the market. Using store-level scanner 

data from IRI and the three empirical approaches within a staggered intervention framework, 

we estimated the effects of entry on incumbent brand and the total FPBBA market.  

Our findings revealed different entry effects across three dimensions: localized, 

national, and across entry waves. At the localized level, we observed that the new brand and 

incumbent brands competed only during the initial entry and first expansion phases. However, 

in subsequent expansion phases, the new brand led to an increase in both incumbent FPBBA 

brand and total PBMAFPBBA sales. At the national level, competition between the new brand 

and incumbent brands was generally observed across all entry waves. These findings regarding 

the heterogeneous effects of new brand entry shed light on the patterns of impact and incumbent 

reaction strategies. This information can be used by industry stakeholders in designing their 

investment strategies and responses. For example, retailers can adjust their product assortment 

and marketing strategies based on the observed patterns of competition and market expansion. 

Additionally, policymakers can leverage these insights to develop more flexible policy tools 

aimed at effectively promoting PBMA within the market.  

Apart from the heterogeneous and dynamic entry effects, we also derived average 

effects through three empirical approaches: direct estimates from TWFE, and calculations 

based on estimates from ETWFE and the rolling approach with DML. The comparison across 

these three approaches highlights two major limitations of TWFE in a staggered intervention 

context and demonstrate how ETWFE and the rolling approach with DML can address these 

issues. First, the average entry effects disclosed by TWFE are insufficient. The heterogeneous 

and dynamic effects revealed by ETWFE and the rolling approach with DML indicate that new 

brand entry effects are not homogeneous across time and cohorts. Second, the average effects 
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estimated from TWFE are biased due to the violation of the homogeneous impact assumption. 

In contrast, ETWFE and the rolling approach with DML offer less biased estimates as they 

account for these heterogeneous and dynamic effects. The average effects calculated from these 

two approaches show that, on average, new brand entry mainly competes with incumbent 

brands, leading to reduced incumbent brand sales and increased incumbent brand prices, with 

no evidence that the new brand could expand FPBBA markets. 

Moreover, we also demonstrate that, unlike the ETWFE model, the rolling approach 

with DML allows researchers to control for selection bias and other market dynamics, as it 

handles high-dimensional data when including covariates. Specifically, our analysis shows that 

the rolling approach with DML improves the model precision of ETWFE by 24.3% to 44.6%. 
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APPENDIX A: APPENDIX FOR CHAPTER 1 

A1.1. ASReview Implementation Process 

As shown in van de Schoot et al. (2021), the implementation process of ASReview includes 

eight steps:   

1. Researchers import the dataset into ASReview from various sources, including online 

databases such as Web of Science. 

2. Researchers set up the initial screening process by selecting a small subset of papers 

from the full pool and reviewing their titles and abstracts to label them as relevant or 

irrelevant. This process establishes the prior knowledge. 

3. Researchers can define the model features by selecting: 1) the classifier (such as Naïve 

Bayes, support vector machine, neural network, etc.), 2) feature extraction methods 

(like TF-IDF, Embedding-IDF, etc.), 3) query strategies (maximum, certainty-based, 

random sampling, etc.), and 4) balance strategies (dynamic resampling, under sampling, 

etc.).  

4. ASReview reviews papers using the prior knowledge as inclusion/exclusion criteria and 

employs a machine learning algorithm to predict (train model) the most relevant paper 

to present to the researcher. 

5. The researcher reads the abstract and title of the presented paper and provides feedback 

to the algorithm by indicating whether this second paper is relevant or irrelevant. 

6. The algorithm uses this feedback to re-train the model and update its predictions of 

which paper should be reviewed next by the researcher.  

7. Steps 4 – 6 are repeated multiple times, which is called the active learning process. The 

researcher can stop the process once a high consecutive number of irrelevant papers are 

shown to them.  
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8. After the process is stopped, the researcher can export the final data set including 

relevant papers in various formats, including CSV. 

 

A 1.2. Econometric Models  

A 1.2.1. Linear Models for WTT estimation 

For the linear method, we followed the approach of Lusk et al. (2005) and used a linear 

regression model35 expressed as follows:   

 

𝑊𝑇𝑇𝑖 = 𝛼0 + 𝑿𝒊
′𝜷 + 𝜀𝑖 (A1) 

where WTTi  represents the percentage of participants stating that they are likely to 

try/eat/purchase the meat alternatives (plant-based and lab-grown meat alternatives are 

estimated separately) in observation 𝑖 , which is bounded between 0 and 1; α0 is the constant; 

𝑿𝒊  represents a vector of independent variables indicating the characteristics of sample 𝑖  , 

which are: sample gender proportion, average age, vegan and vegetarian proportion, product 

type, and benefit information provision and region (the definition of the variables could be 

found in Table 1.1); 𝜷 is the coefficient capturing the marginal effect of these independent 

variables on WTT; and 𝜀𝑖 is the error term, which is heteroscedastic due to different sample 

sizes across observations. We estimate Eq. (A1) using Weighted Least Square (WLS) to 

counter the heteroscedasticity of 𝜀𝑖, weighted by the sample size for each observation (Lusk et 

al., 2005; Romano and Wolf, 2016). 

 

 

 
35 Although there are some studies in our dataset that contain multiple observations, we chose not to control for 

study fixed effects. There are two main reasons for this decision. First, the meta-dataset does not have a strict 

panel structure since there are still some studies that only contain one observation. Second, some studies with 

multiple observations do not provide enough information about each sub-sample, and therefore, 𝑿𝒊 does not have 

sufficient variation under each study.  
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A 1.2.2. Non-Linear Models for WTT estimation 

The (non-linear) fractional logistic regression (FLR)36 (Papke and Wooldridge 1996; Meaney 

and Moineddin 2014) was estimated as follows: 

 

𝐸(𝑊𝑇𝑇𝑖|𝑿𝒊) = 𝑔(𝜃0 + 𝑿𝒊
′𝜸) (A2) 

and 𝑔(∙) refers to 

𝑔(𝜇𝑖) =
exp (𝜇𝑖)

1 + exp (𝜇𝑖)
 (A3) 

with 

𝜇𝑖 = 𝜃0 + 𝑿𝒊
′𝜸 (A4) 

 

where 𝑊𝑇𝑇𝑖 and 𝑿𝒊 are specified as in Eq. (A1); 𝜃0 and 𝜸 are the coefficients used to compute 

the marginal effect of the independent variables, 𝑿𝒊.  This approach allows our fitted values to 

always fall within the 0 and 1 range due to the format of 𝑔(∙). Parameters are estimated by 

maximizing the following Bernoulli quasi-likelihood function (Papke and Wooldridge 1996): 

 

𝐿𝐿 = 𝑊𝑇𝑇𝑖 ∙ log(𝑔(𝜇𝑖)) + (1 − 𝑊𝑇𝑇𝑖) ∙ log(1 − 𝑔(𝜇𝑖)) (A5) 

  

 

A 1.2.3. Linear Models for mWTP estimation 

For mWTP for plant-based/lab-grown meat alternatives, we estimate a linear model, which as 

expressed as follows:  

 

𝑚𝑊𝑇𝑃𝑖 = 𝛿0 + 𝑿𝒊
′𝝆 + 𝜀𝑖 (A6) 

 
36 We also estimated a fractional heteroskedastic probit regression, and the results are consistent with that of FLR. 
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where 𝑚𝑊𝑇𝑃𝑖 indicates the percentage premium for plant-based/lab-grown meat alternatives 

over regular meat in observation i. We estimated two models separately for plant-based and 

lab-grown meat alternatives. In each model, 𝑿𝒊 represents a vector of independent variables 

indicating the characteristics of sample 𝑖, which is same as that in Eq. (A1).  

 

A 1.3. K-fold cross validation 

Following the standard practice in the machine-learning literature (Grimm et al. 2017; Zhang 

et al. 2021), the k-fold cross validation procedure was implemented as follows:  

1) we randomly divided the training dataset into 5-folds (or 5 mutual exclusion 

subgroups)37 of similar size, 

2) we trained the RFR model with m (m=1, …, M) variables on 4 folds (5-1 folds) in 

each iteration, 

3) using the model trained in 2, we to calculate the out-of-sample prediction accuracy on 

the remaining fold (testing fold) in each iteration. We used out-of-sample R-squared as 

prediction accuracy, which is calculated as the square of the correlation between the 

observed and predicted values,  

4) we repeated 2) and 3) five times until each of the 5 folds had served as the testing fold. 

We calculated the out-of-sample prediction accuracy of the M models by averaging the 

out-of-sample prediction accuracy for all 5 iterations. The model with the highest 

prediction accuracy was then selected as the optimal RFR model.  

 
37 Following Rodriguez et al. (2009), we selected 5 folds as they reduce bias and save computation time.  
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Figure A 1.1 WTT and WTP for meat alternatives from individual observation 
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Figure A 1.2. Parameter selection and random forest regression model training process 
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Table A 1.1 Comparison of the machine-learning tools  

Name 
 

Workload reductiona Open access 

Abstrackr (Wallace et al. 2012) 
 

45% No 

Rayyan (Ouzzani et al. 2016) 
 

49% No 

Colandr (Cheng et al. 2018)b 
 

83% Yes 

FASTREAD (Yu et al. 2018) 
 

47.1% Yes 

RobotAnalyst (Przybyla et al. 2018) 
 

42.97% No 

ASReview (Van de Schoot et al. 

2020) 

 
83% Yes 

Research Screener (Chai et al. 2021) 
 

89.1% No 

Notes: a The workload reduction is measured by Work Saved over Sampling (WSS). WSS 

indicate the reduction of papers needed to be screened to find a given level of relevant papers. 

For example, WSS@100 and WSS@95 represent the reduction of papers needed to be screened 

to find 100% and 95% of relavant papers, respectively. For Abstrackr, we use WSS@100; for 

other machine-learning tools, we use WSS@95. b Despite both ASReview and Colandr 

providing comparable levels of accessibility and efficiency in workload reduction, ASReview 

was chosen due to its wider selection of model features and its ability to initiate the active 

learning process with fewer initial labels. This makes ASReview particularly well-suited for 

studies with smaller literature pools. 
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Table A 1.2 The time usage in each step of data collection  

 Manual With ASReview 
Time Saving 

(Through ASReview) 

Steps a    

   Screen title and 

abstract 

785 × 1 = 785 

min 
247 × 1 = 247 min 

538 min  

(1.12 workdays) 

   Retrieve full text  81 × 4 = 324 min - 

   Screen full text  81 × 5 = 405 min - 

   Extract data 48 × 15 = 720 min - 

Total 
2234 min 

(4.65 workdays) 

1696 min 

(3.53 workdays) 

538 min  

(1.12 workdays) 

Notes: a According to Shemilt et al. (2016) and Borah et al. (2017), it will take 1 minute to 

screen a title-abstract record, 4 minutes to retrieve a full-text study, 5 minutes to screen a full-

text study, and 15 minutes to extract data from a single paper in data collection for meta-

analysis and/or systematic review.   
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Table A 1.3 Summary of meat alternatives acceptance and valuation studies selected for 

analysis 
No. Study Location of 

study 
Method Sample 

size 
Product Observations 

WTT WTP 
Studies only reporting willingness to try/eat/purchase  

1 Bryant et al. 
(2019) 

US, India, 
China 

Survey 3030 Lab-grown 
& plant-
based  

6  

2 Gómez-
Luciano et al. 
(2019) 

UK, Spain, 
Brazil, The 
Dominican 
Republic 

Survey  729 Lab-grown 
& plant-
based 

4  

3 Bryant and 
Sanctorum 
(2021) 

Belgium  Survey  2001 Lab-grown  2  

4 Hocquette et 
al. (2015) 

Worldwide, 
France  

Survey  1682 Lab-grown  3  

5 Verbeke et al. 
(2015) 

Belgium  Survey   180 Lab-grown 2  

6 Wilks and 
Phillips 
(2017) 

US Survey  673 Lab-grown  1  

7 Bryant et al. 
(2020) 

Germany, 
France  

Survey  2000 Lab-grown  2  

8 Bryant et al. 
(2020) 

US Survey   1185 Lab-grown  1  

9 Bogueva and 
Marinova 
(2020) 

Australia  Survey  227 Lab-grown  1  

10 Circus and 
Robison 
(2018) 

UK Survey  139 Lab-grown 
& plant-
based 

2  

11 Dupont and 
Fiebelkorn 
(2020) 

Germany  Survey  718 Lab-grown  1  

12 Gasteratos and 
Sherman 
(2018) 

US, 
Australia  

Survey   1852 Lab-grown  6  

13 Grasso et al. 
(2019) 

EU Survey  1825 Lab-grown 
& plant-
based 

2  

14 Shaw and 
Iomaire 
(2018) 

Ireland  Survey  312 Lab-grown  2  

15 Weinrich et al. 
(2020) 

Germany  Survey  713 Lab-grown  1  

16 Bryant et al. 
(2019) 

US Survey  480 Lab-grown  1  

17 Siegrist et al. 
(2018) 

Switzerland  Survey  

 

100 Lab-grown  2  

18 Palmieri et al. 
(2020) 

Italy  Survey  490 Lab-grown  1  
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Table A 1.3 (cont’d) 

19 de Oliveira et 
al. (2021) 

Brazil  Survey  225 Lab-grown  1  

20 Chriki et al. 
(2021) 

Brazil  Survey  4471 Lab-grown  1  

21 de Koning et 
al. (2020) 

China, 
USA, 
France, UK, 
New 
Zealand, 
Netherlands
, Brazil, 
Spain, and 
the 
Dominican 
Republic 

Survey  3091 Plant-based  1  

22 Liu et al. 
(2021) 

China  Survey  4666 Lab-grown  1  

23 Verbeke et al. 
(2021) 

Belgium  Survey  398 Lab-grown  1  

24 Francekovic ́et 
al. (2021) 

Croatia, 

Greece, and 

Spain  
 

Survey  2007 Lab-grown  1  

25 Davitt et al. 
(2021) 

US Survey  1434 Plant-based  1  

26 Valente et al. 
(2019) 

Brazil  Survey  626 Lab-grown  2  

27 Szejda et al. 
(2019) 

South 

Africa  

Survey  959 Lab-grown 
& plant-
based 

2  

28 Szejda et al. 
(2019) 

US, UK Survey  4052 Lab-grown  2  

29 Baum et al. 
(2022) 

Germany Survey  53 Lab-grown  1  

30 Malavalli et 
al. (2021) 

New 

Zealand  

Survey  206 Lab-grown  1  

31 Hallman and 
Hallman 
(2020) 

US Survey  3186 Lab-grown  4  

32 de Oliveira 
Padilha et al. 
(2021) 

Australia  Survey  1087 Lab-grown  1  

Studies only reporting premiums (or WTP)   

33 Castellari et 
al. (2019) 

Italy  DCE 119 Plant-based   3 
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Table A 1.3 (cont’d) 

34 Rolland et al. 
(2020) 

Netherlands  CCV 193 Lab-grown   3 

35 Asioli et al. 
(2021) 

US DCE 625 Lab-grown   3 

36 Grasso et al. 
(2022)  

UK CCV 99 Plant-based   3 

37 Shen and 
Chen (2020) 

Taiwan  CCV 436 Plant-based   1 

38 Broeckhoven 
et al. (2021) 

EU DCE 2159 Plant-based   2 

39 Caputo et al. 
(2022) 

US DCE 172 Plant-based   4 

40 Asioli et al. 
(2022)  

UK, Spain, 
France 

DCE 648 Lab-grown   3 

Studies reporting both willingness to try/eat/purchase and premiums (or WTP) 

41 Van Loo et al. 
(2020) 

US DCE 1800 Lab-grown 
& plant-
based 

12 12 

42 Zhang et al. 
(2020) 

China  Survey  1004 Lab-grown  6 6 

43 Mancini and 
Antonioli 
(2019) 

Italy  Survey  525 Lab-grown  2 2 

44 Kantor and 
Kantor (2021) 

US CV 300 Lab-grown  2 2 

45 Slade (2018)  DCE 533 Lab-grown 
& plant-
based 

2  2 

46 Mancini and 
Antonioli 
(2020) 

Italy  CCV 525 Lab-grown  1  1 

47 Fernandes et 
al. (2020) 

Brazil  CCV 538 Lab-grown  1 1 

48 Estell et al. 
(2021) 

Australia  CCV 621 Plant-based  10  10 
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Table A 1.4 Methods used to determine WTT and mWTP 

No. Study  

Methods for determining percentage of WTT 

1 Bryant et al. 

(2019) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (probably yes) or 5 (definitely yes) on 

a five-point scale (1=Definitely no, 5=Definitely yes). 

2 Gómez-

Luciano et al. 

(2019) 

Estimated percentage is taken directly from the text of the 

original paper.  

3 Bryant and 

Sanctorum 

(2021) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (probably yes) or 5 (definitely yes) on 

a five-point scale (1=Definitely no, 5=Definitely yes). 

4 Hocquette et 

al. (2015) 

Estimated percentage calculated as proportion of the 

respondents yes on a binary question format (yes or no). 

5 Verbeke et al. 

(2015) 

Estimated percentage calculated as proportion of the 

respondents selecting 3 (surely) on a 3-item scale (1=not, 

2=maybe, 3=surely).  

6 Wilks and 

Phillips 

(2017) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (probably yes) or 5 (definitely yes) on 

a five-point scale (1=Definitely no, 5=Definitely yes). 

7 Bryant et al. 

(2020) 

Estimated percentage calculated as proportion of the 

respondents selecting 3 (yes) on a 3-item scale (1=no, 

2=maybe, 3=yes). 

8 Bryant et al. 

(2020) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (probably yes) or 5 (definitely yes) on 

a five-point scale (1=Definitely no, 5=Definitely yes). 

9 Bogueva and 

Marinova 

(2020) 

Estimated percentage is taken directly from the text of the 

original paper. 

10 Circus and 

Robison 

(2018) 

Estimated percentage is taken directly from the text of the 

original paper. 

11 Dupont and 

Fiebelkorn 

(2020) 

Estimated percentage is taken directly from the text of the 

original paper. 

12 Gasteratos and 

Sherman 

(2018) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (probably yes) or 5 (definitely yes) on 

a five-point scale (1=Definitely no, 5=Definitely yes). 

13 Grasso et al. 

(2019) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (Acceptable) or 5 (Very acceptable) 

on a five-point scale (1=Very unacceptable, 5=Very 

acceptable).  
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Table A 1.4 (cont’d) 

14 Shaw and 

Iomaire 

(2018) 

Estimated percentage is taken directly from the text of the 

original paper. 

15 Weinrich et al. 

(2020) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (Acceptable) or 5 (Very acceptable) 

on a five-point scale (1=Very unacceptable, 5=Very 

acceptable). 

16 Bryant et al. 

(2019) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (very likely) or 5 (extremely likely) 

on a five-point scale (1=not at all likely, 5=extremely likely).  

17 Siegrist et al. 

(2018) 

Estimated percentage calculated as the mean value of 

respondents selecting 0 (very low) – 100 (very high) to 

indicate how high their willingness to try lab-grown meat.  

18 Palmieri et al. 

(2020) 

Estimated percentage calculated as proportion of the 

respondents yes on a binary question format (yes or no). 

19 de Oliveira et 

al. (2021) 

Estimated percentage calculated as proportion of the 

respondents yes on a binary question format (yes or no). 

20 Chriki et al. 

(2021) 

Estimated percentage is taken directly from the text of the 

original paper. 

21 de Koning et 

al. (2020) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (agree) or 5 (strongly agree) on a five-

point scale (1=strongly disagree, 5=strongly agree).  

22 Liu et al. 

(2021) 

Estimated percentage is taken directly from the text of the 

original paper. 

23 Verbeke et al. 

(2021) 

Estimated percentage calculated as proportion of the 

respondents yes on a binary question format (yes or no). 

24 Francekovic ́et 

al. (2021) 

Estimated percentage is taken directly from the text of the 

original paper. 

25 Davitt et al. 

(2021) 

Estimated percentage is taken directly from the text of the 

original paper. 

26 Valente et al. 

(2019) 

Estimated percentage is taken directly from the text of the 

original paper. 

27 Szejda et al. 

(2019) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (very likely) or 5 (extremely likely) 

on a five-point scale (1=not at all likely, 5=extremely likely). 

28 Szejda et al. 

(2019) 

Estimated percentage calculated as proportion of the 

respondents selecting 3 (high) on a 3-item scale (1=no, 

2=medium, 3=high).  

29 Baum et al. 

(2022) 

Estimated percentage calculated as proportion of the 

respondents yes on a binary question format (yes or no). 
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Table A 1.4 (cont’d) 

30 Malavalli et 

al. (2021) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (probably yes) or 5 (definitely yes) on 

a five-point scale (1=Definitely no, 5=Definitely yes). 

31 Hallman and 

Hallman 

(2020) 

Estimated percentage is taken directly from the text of the 

original paper. 

32 de Oliveira 

Padilha et al. 

(2021) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (probably yes) or 5 (definitely yes) on 

a five-point scale (1=Definitely no, 5=Definitely yes). 

41 Van Loo et al. 

(2020) 

Estimated percentage is taken from the proportion of positive 

preferences directly reported in the paper. 

42 Zhang et al. 

(2020) 

Estimated percentage calculated as proportion of the 

respondents selecting 4 (somewhat consent) or 5 (completely 

consent) on a five-point scale (1=completely opposite, 

5=completely consent).  

43 Mancini and 

Antonioli 

(2019) 

Estimated percentage calculated as proportion of the 

respondents selecting 3 (yes) on a 3-item scale (1=no, 

2=maybe, 3=yes). 

44 Kantor and 

Kantor (2021) 

Estimated percentage is taken directly from the text of the 

original paper. 

45 Slade (2018) Estimated percentage is taken directly from the text of the 

original paper. 

46 Mancini and 

Antonioli 

(2020) 

Estimated percentage is taken directly from the text of the 

original paper. 

47 Fernandes et 

al. (2020) 

Estimated percentage calculated as proportion of the 

respondents selecting 3 (yes) on a 3-item scale (1=no, 

2=maybe, 3=yes). 

48 Estell et al. 

(2021) 

Estimated percentage calculated as 100%-the proportion of 

respondents that would not buy the plant-based meat 

alternatives. 

Methods for determining percentage premium (mWTP) 

33 Castellari et 

al. (2019) 

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat. 

34 Rolland et al. 

(2020) 

Estimated percentage premium is calculated using the 

premium for meat alternatives over regular meat and the price 

base of regular meat.  

35 Asioli et al. 

(2021) 

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat derived from the mixed 

logit model estimates.  
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Table A 1.4 (cont’d) 

36 Grasso et al. 

(2022)  

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat. 

37 Shen and 

Chen (2020) 

Estimated percentage premium is calculated as the weighted 

average of percentage premium level (0%, 1-5%, and 6-10%, 

take the mid-point). 

38 Broeckhoven 

et al. (2021) 

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat derived from the 

multinomial logit model estimates. 

39 Caputo et al. 

(2022) 

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat. 

40 Asioli et al. 

(2022)  

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat. 

41 Van Loo et al. 

(2020) 

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat derived from the 

random parameter logit model estimates. 

42 Zhang et al. 

(2020) 

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat. 

43 Mancini and 

Antonioli 

(2019) 

Estimated percentage premium is calculated as the weighted 

average of percentage premium level (-30%, -20%, -10%, 0%, 

+10%, +20%, +30%). 

44 Kantor and 

Kantor (2021) 

Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat. 

45 Slade (2018) Estimated percentage premium is calculated using the WTP 

for meat alternatives and regular meat derived from the mixed 

logit model estimates.  

46 Mancini and 

Antonioli 

(2020) 

Estimated percentage premium is calculated as the weighted 

average of percentage premium level (-30%, -20%, -10%, 0%, 

+10%, +20%, +30%). 

47 Fernandes et 

al. (2020) 

Estimated percentage premium is calculated as the weighted 

average of percentage premium level (-30%, -20%, -10%, 0%, 

+10%, +20%, +30%). 

48 Estell et al. 

(2021) 

Estimated percentage premium is calculated using the 

weighted average of WTP for meat alternatives (1-2AUD, 2-

3AUD, 3-4AUD, 4-5AUD and >5 AUD, take the mid-point) 

and the basic price for regular meat 
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Table A 1.5 The Out-of-Sample Prediction Accuracies: Econometric Models vs. Different 

Machine Learning Models 

Out-of-Sample R2 Plant-based Meat 

Alternatives 

 Lab-grown Meat 

Alternatives 

 WTT mWTP  WTT mWTP 

Machine Learninga 

  Random Forest Regression  0.68 0.90  0.43 0.88 

  Decision Tree Regression 0.47 0.65  0.63 0.90 

  SVM Regression  0.55 0.65  0.40 0.63 

  Linear Regression 0.64 0.98  0.30 0.64 

Econometric       

  WLS 0.03 0.12  0.00 0.32 

  FLR 0.11 --  0.00 -- 

Note: a The Machine Learning results are based on resampling datasets.   
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Table A 1.6 WLS estimates for WTT and mWTP for plant-based and lab-grown meat (Only 

including variables with positive permutation importance) 

 Plant-based meat Lab-grown meat 

 WTT mWTP WTT mWTP 

Consumer Characteristic     

Male ---a -0.300*** 0.543*** 3.069*** 

  (0.023) (0.018) (0.280) 

Age 0.0001*** --- -0.008*** -0.088*** 

 (0.00001)b  (0.0001) (0.002) 

Vegan or vegetarian  0.439*** --- ---  

 (0.007)    

Product Type     

Burger/Grounded 0.142*** 0.187*** 0.173*** --- 

 (0.002) (0.009) (0.003)  

Artificial   --- --- 

     

Study Context     

Benefit Info 0.119*** --- --- --- 

 (0.002)    

Country/Region     

   US --- --- -0.152*** -0.261*** 

   (0.002) (0.026) 

   Asia --- --- 0.067*** -0.945 *** 

   (0.003) (0.024) 

   Europe --- --- -0.091*** 0.034*** 

   (0.003) (0.016) 

Constant 0.502*** 0.141*** 0.581*** 2.558*** 

 (0.002) (0.009) (0.007) (0.136) 

     

Observations 28 32 68 26 

Notes: a “---” means that the variable is not included in the model estimations since it does not 

have positive permutation importance in Figure 1.5. b Number in parenthesis are robust 

standard errors. *** p<0.01, ** p<0.05, * p<0.1. 

  



 

152 

 

REFERENCES 

 

Baum, C. M., Kamrath, C., & Feistl, A. L. Cultivated Meat-do all vegetarians reply'No 

thanks'?. BERICHTE UBER LANDWIRTSCHAFT, 98(3). (2020). 

Bogueva, D., & Marinova, D. Lab-grown Meat and Australia's Generation Z. Front. Nutr., 7, 

148. (2020). 

Broeckhoven, I., Verbeke, W., Tur-Cardona, J., Speelman, S., & Hung, Y. Consumer valuation 

of carbon labeled protein-enriched burgers in European older adults. Food Qual. 

Prefer., 89, 104114. (2021). 

Bryant, C. J., Anderson, J. E., Asher, K. E., Green, C., & Gasteratos, K. Strategies for 

overcoming aversion to unnaturalness: The case of clean meat. Meat science, 154, 37-

45. (2019). 

Bryant, C., & Barnett, J. Consumer acceptance of cultured meat: A systematic review. Meat 

Sci., 143, 8-17. (2018). 

Bryant, C., & Dillard, C. The impact of framing on acceptance of lab-grown meat. Front. 

Nutr., 6, 103. (2019). 

Bryant, C., & Sanctorum, H. Alternative proteins, evolving attitudes: Comparing consumer 

attitudes to plant-based and cultured meat in Belgium in two consecutive 

years. Appetite, 161, 105161. (2021). 

Bryant, C., van Nek, L., & Rolland, N. European markets for cultured meat: A comparison of 

Germany and France. Foods, 9(9), 1152. (2020). 

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., ... & Varoquaux, 

G. API design for machine learning software: experiences from the scikit-learn 

project. arXiv preprint arXiv:1309.0238. (2013). 

Castellari, E., Marette, S., Moro, D., & Sckokai, P. The impact of information on willingness 

to pay and quantity choices for meat and meat substitute. J. Agric. Food Ind. 

Organ., 17(1). (2019). 

Cheng, S. H., Augustin, C., Bethel, A., Gill, D., Anzaroot, S., Brun, J., ... & McKinnon, M. C. 

Using machine learning to advance synthesis and use of conservation and 

environmental evidence. Conserv. Biol., 32 (4), 762-764. (2018). 

Chriki, S., Payet, V., Pflanzer, S. B., Ellies-Oury, M. P., Liu, J., Hocquette, É., ... & Hocquette, 

J. F. Brazilian Consumers’ Attitudes towards So-Called “Cell-Based 

Meat”. Foods, 10(11), 2588. (2021). 

Circus, V. E., & Robison, R. Exploring perceptions of sustainable proteins and meat 

attachment. Brit. Food J. (2019). 

Davitt, E. D., Winham, D. M., Heer, M. M., Shelley, M. C., & Knoblauch, S. T. Predictors of 

Plant-Based Alternatives to Meat Consumption in Midwest University Students. J. Nutr. 

Educ. and Behav., 53(7), 564-572. (2021). 



 

153 

 

De Koning, W., Dean, D., Vriesekoop, F., Aguiar, L. K., Anderson, M., Mongondry, P., ... & 

Boereboom, A. Drivers and inhibitors in the acceptance of meat alternatives: The case 

of plant and insect-based proteins. Foods, 9(9), 1292. (2020). 

de Oliveira Padilha, L. G., Malek, L., & Umberger, W. J. Food choice drivers of potential 

cultured meat consumers in Australia. Brit. Food J. (2021). 

de Oliveira, G. A., Domingues, C. H. D. F., & Borges, J. A. R. Analyzing the importance of 

attributes for Brazilian consumers to replace conventional beef with cultured 

meat. PloS one, 16(5), e0251432. (2021). 

Dupont, J., & Fiebelkorn, F. Attitudes and acceptance of young people toward the consumption 

of insects and lab-grown meat in Germany. Food Qual. Prefer., 85, 103983. (2020). 

Escribano, A. J., Peña, M. B., Díaz-Caro, C., Elghannam, A., Crespo-Cebada, E., & Mesías, F. 

J. Stated Preferences for Plant-Based and Cultured Meat: A Choice Experiment Study 

of Spanish Consumers. Sustainability, 13(15), 8235. (2021). 

Estell, M., Hughes, J., & Grafenauer, S. Plant protein and plant-based meat alternatives: 

Consumer and nutrition professional attitudes and perceptions. Sustainability, 13(3), 

1478. (2021). 

Fernandes, A. M., Costa, L. T., de Souza Teixeira, O., dos Santos, F. V., Revillion, J. P. P., & 

de Souza, Â. R. L. Consumption behavior and purchase intention of cultured meat in 

the capital of the “state of barbecue,” Brazil. Brit. Food J. (2021). 

Franceković, P., García-Torralba, L., Sakoulogeorga, E., Vučković, T., & Perez-Cueto, F. J. 

How Do Consumers Perceive Cultured Meat in Croatia, Greece, and 

Spain?. Nutrients, 13(4), 1284. (2021). 

Gasteratos, K. S., & Sherman, R. (2018). Consumer Interest Towards Cell-based Meat. 

Geisser, S. The predictive sample reuse method with applications. J. Am. Stat. Assoc., 70(350), 

320-328. (1975). 

Grasso, A. C., Hung, Y., Olthof, M. R., Verbeke, W., & Brouwer, I. A. Older consumers’ 

readiness to accept alternative, more sustainable protein sources in the European 

Union. Nutrients, 11(8), 1904. (2019). 

Grasso, S., Rondoni, A., Bari, R., Smith, R., & Mansilla, N. Effect of information on consumers’ 

sensory evaluation of beef, plant-based and hybrid beef burgers. Food Qual. Prefer., 96, 

104417. (2022). 

Grimm, K. J., Mazza, G. L., & Davoudzadeh, P. (2017). Model selection in finite mixture 

models: A k-fold cross-validation approach. Structural Equation Modeling: A 

Multidisciplinary Journal, 24(2), 246-256. 

Hocquette, A., Lambert, C., Sinquin, C., Peterolff, L., Wagner, Z., Bonny, S. P., ... & Hocquette, 

J. F. Educated consumers don't believe artificial meat is the solution to the problems 

with the meat industry. J. Integr. Agric., 14(2), 273-284. (2015). 



 

154 

 

Kantor, J., & Kantor, B. N. Public attitudes and willingness to pay for cultured meat: a cross-

sectional study. Front. Sustain. Food Syst., 5, 26. (2021). 

Liu, J., Hocquette, É., Ellies-Oury, M. P., Chriki, S., & Hocquette, J. F. Chinese Consumers’ 

Attitudes and Potential Acceptance toward Artificial Meat. Foods, 10(2), 353. (2021). 

Malavalli, M. M., Hamid, N., Kantono, K., Liu, Y., & Seyfoddin, A. consumers’ perception of 

in-vitro meat in New Zealand using the theory of planned behaviour 

model. Sustainability, 13(13), 7430.  

Mancini, M. C., & Antonioli, F. To what extent are consumers’ perception and acceptance of 

alternative meat production systems affected by information? the case of cultured 

meat. Animals, 10(4), 656. (2020). 

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. Rayyan—a web and mobile 

app for systematic reviews. Syst Rev., 5(1), 1-10. (2016). 

Palmieri, N., Perito, M. A., & Lupi, C. Consumer acceptance of cultured meat: Some hints 

from Italy. Brit. Food J. (2020). 

Rodriguez, J. D., Perez, A., & Lozano, J. A. Sensitivity analysis of k-fold cross validation in 

prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell., 32(3), 569-575. 

(2009). 

Romano, J. P., & Wolf, M. (2017). Resurrecting weighted least squares. Journal of 

Econometrics, 197(1), 1-19. 

Shaw, E., & Iomaire, M. M. C. A comparative analysis of the attitudes of rural and urban 

consumers towards lab-grown meat. Brit. Food J. (2019). 

Shen, Y. C., & Chen, H. S. Exploring consumers’ purchase intention of an innovation of the 

agri-food industry: A case of artificial meat. Foods, 9(6), 745. (2020). 

Siegrist, M., Sütterlin, B., & Hartmann, C. Perceived naturalness and evoked disgust influence 

acceptance of cultured meat. Meat science, 139, 213-219. (2018). 

Slade, P. If you build it, will they eat it? Consumer preferences for plant-based and cultured 

meat burgers. Appetite, 125, 428-437. (2018). 

Szejda, K., Bryant, C. J., & Urbanovich, T. US and UK consumer adoption of cultivated meat: 

a segmentation study. Foods, 10(5), 1050. (2021). 

Valente, J. D. P. S., Fiedler, R. A., Sucha Heidemann, M., & Molento, C. F. M. First glimpse 

on attitudes of highly educated consumers towards cell-based meat and related issues 

in Brazil. PloS one, 14(8), e0221129. (2019). 

Verbeke, W., Sans, P., & Van Loo, E. J. Challenges and prospects for consumer acceptance of 

cultured meat. J. Integr. Agric., 14(2), 285-294. (2015). 

Wallace, B. C., Small, K., Brodley, C. E., Lau, J., & Trikalinos, T. A. Deploying an interactive 

machine learning system in an evidence-based practice center: abstrackr. 



 

155 

 

In Proceedings of the 2nd ACM SIGHIT international health informatics 

symposium (pp. 819-824). (2012, January). 

Weinrich, R., Strack, M., & Neugebauer, F. Consumer acceptance of lab-grown meat in 

Germany. Meat science, 162, 107924. (2020). 

Wilks, M., & Phillips, C. J. Attitudes to in vitro meat: A survey of potential consumers in the 

United States. PloS one, 12(2), e0171904. (2017). 

Zhang, W., Wu, C., Li, Y., Wang, L., & Samui, P. Assessment of pile drivability using random 

forest regression and multivariate adaptive regression splines. Georisk: Assessment and 

Management of Risk for Engineered Systems and Geohazards, 15(1), 27-40. (2021). 

Zhang, M., Li, L., & Bai, J. Consumer acceptance of cultured meat in urban areas of three cities 

in China. Food Control, 118, 107390. (2020). 

  



 

156 

 

APPENDIX B: APPENDIX FOR CHAPTER 2 

Table A 2.1 Survey structure  

Section  

1 Screening Questions 

i.e. Are you the primary food shopper in your household? 

2 Best-Worst Food Value Experiment 

3 Knowledge and Consumption Experience of Meat and Milk alternatives  

 The consumption experience of meat and milk alternatives 

 The knowledge of the environment, human health and animal welfare 

benefits of meat and milk alternatives 

4 Willingness to Pay for Meat, Milk and Their Alternatives 

5 Pork and Milk Consumption History 

6 Demographics Questions 
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Table A2.2 City Tier in China  

Tier 1 

Beijing, Shanghai, Guangzhou, Shenzhen, Dongguan, Foshan, Chengdu, Hangzhou, 

Chongqing, Wuhan, Xi’an, Suzhou, Nanjing, Tianjin, Changsha, Zhengzhou, Qingdao, 

Shenyang, Hefei 

Tier 2 

Huizhou, Zhuhai, Zhongshan, Ningbo, Wenzhou, Jinhua, Jiaxing, Taizhou, Shaoxing, 

Wuxi, Changzhou, Nantong, Xuzhou, Yangzhou, Jinan, Yantai, Dalian, Kunming, Fuzhou, 

Xiamen, Quanzhou, Ha’erbin, Nanning, Changchun, Shijiazhuang, Guiyang, Nanchang, 

Taiyuan, Lanzhou, Haikou 

Tier 3 

Shantou, Jieyang, Jiangmen, Zhanjiang, Zhaoqing, Qingyuan, Chaozhou, Meizhou, 

Mianyang, Nanchong, Huzhou, Zhoushan, Lishui, Xiangyang, Jingzhou, Xianyang, 

Yancheng, Zhenjiang, Taizhou, Huai’an, Lianyungang, Suqian, Hengyang, Zhuzhou, 

Yueyang, Xiangtan, Binzhou, Luoyang, Nanyang, Xinyang, Shangqiu, Xinxiang, Weifang, 

Linyi, Jining, Zibo, Weihai, Tai’an, Anshan, Wuhu, Fuyang, Chuzhou, Bengbu, 

Ma’anshan, Anqing, Putian, Ningde, Longyan, Sanming, Nanping, Daqing, Guilin, 

Liuzhou, Jilin, Baoding, Tangshan, Langfang, Cangzhou, Qinhuangdao, Zunyi, Ganzhou, 

Shangrao, Jiujiang, Sanya, Urumqi, Hohhot, Baotou, Yinchuan 

Data Scource: YICAI news (2022). https://www.yicai.com/news/101430366.html  

  

https://www.yicai.com/news/101430366.html
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APPENDIX C: APPENDIX FOR CHAPTER 3 

Table A 3.1 ETWFE: New brand entry effects on the incumbent brand sales 

Cohort Calendar Time 

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 

Sep-19 -0.133 -0.472 -0.601 -0.655 -0.696 -0.851 -1.015 -0.755 -0.815 -0.924 -1.123 -0.999 -1.341 -1.377 -1.317 -1.326 

  (0.023) (0.033) (0.043) (0.049) (0.055) (0.061) (0.065) (0.077) (0.084) (0.089) (0.093) (0.101) (0.112) (0.121) (0.126) (0.135) 

Jun-20 
         

-0.055 -0.44 -0.131 -0.444 -0.565 -0.799 -0.907 

  
         

(0.022) (0.022) (0.026) (0.030) (0.034) (0.041) (0.042) 

Jul-20 
          

0.223 0.238 0.032 0.16 -0.085 -0.118 

                      (0.036) (0.030) (0.035) (0.045) (0.047) (0.052) 

Aug-20 
           

-0.173 -0.536 -0.627 -0.552 -0.529 
            

(0.020) (0.022) (0.026) (0.028) (0.028) 

Sep-20 
            

-0.439 -0.579 -0.51 -0.526 
             

(0.017) (0.020) (0.021) (0.022) 

Oct-20 
             

-0.354 -0.317 -0.358 
              

(0.035) (0.035) (0.040) 

Nov-20 
              

-0.303 -0.339 
               

(0.032) (0.035) 

Dec-20 
               

-0.376 
                

(0.040) 

Note: Standard errors are reported in the parentheses.  
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Table A 3.2 Rolling Approach with DML: New brand entry effects on the incumbent brand sales 

Cohort Calendar Time 

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 

Sep-19 0.059 -0.373 -0.601 -0.591 -0.412 -0.785 -1.007 -0.506 -0.696 -1.441 -1.652 -1.404 -1.407 -1.459 -1.087 -1.857 

  (0.146) (0.106) (0.134) (0.163) (0.190) (0.180) (0.221) (0.236) (0.249) (0.309) (0.288) (0.363) (0.396) (0.407) (0.429) (0.446) 

Jun-20          -0.239 -0.705 -0.402 -0.652 -0.883 -1.103 -1.330 

           (0.076) (0.083) (0.099) (0.099) (0.104) (0.122) (0.120) 

Jul-20           0.107 -0.115 -0.086 -0.058 -0.379 -0.391 

                      (0.086) (0.072) (0.082) (0.100) (0.114) (0.115) 

Aug-20                       -0.321 -0.712 -0.889 -0.777 -0.832 
 

           (0.059) (0.056) (0.076) (0.079) (0.083) 

Sep-20             -0.512 -0.767 -0.718 -0.967 
 

                        (0.077) (0.087) (0.091) (0.101) 

Oct-20                           -0.428 -0.780 -0.710 
 

             (0.090) (0.117) (0.139) 

Nov-20               0.069 -0.003 
 

              (0.109) (0.125) 

Dec-20                -0.189 
 

                              (0.084) 

Note: Standard errors are reported in the parentheses.  
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Table A 3.3 ETWFE: New brand entry effects on the incumbent brand price 

Cohort Calendar Time 

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 

Sep-19 0.699 0.637 0.663 0.871 0.947 1.066 1.007 0.819 1.042 1.389 1.454 0.858 1.642 1.218 0.600 0.648 

  (0.021) (0.025) (0.029) (0.032) (0.035) (0.038) (0.043) (0.046) (0.050) (0.056) (0.059) (0.064) (0.069) (0.073) (0.079) (0.085) 

Jun-20 
         

-0.59 1.106 -0.497 0.456 0.761 1.095 1.101 

  
         

(0.046) (0.022) (0.065) (0.068) (0.036) (0.041) (0.043) 

Jul-20 
          

-1.269 -0.791 -0.531 -0.234 0.348 0.382 

                      (0.111) (0.041) (0.044) (0.065) (0.051) (0.062) 

Aug-20 
           

0.185 0.904 0.942 0.33 0.27 
 

           
(0.031) (0.035) (0.040) (0.038) (0.042) 

Sep-20 
            

0.579 1.119 0.515 0.533 
 

            
(0.024) (0.030) (0.029) (0.035) 

Oct-20 
             

0.985 0.602 0.574 
 

             
(0.047) (0.049) (0.057) 

Nov-20 
              

0.697 0.504 
 

              
(0.048) (0.061) 

Dec-20 
               

1.971 
 

               
(0.080) 

Note: Standard errors are reported in the parentheses.  
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Table A 3.4 Rolling Approach with DML: New brand entry effects on the incumbent brand price 

Cohort Calendar Time 

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 

Sep-19 0.689 0.386 1.031 1.085 1.966 1.439 1.533 1.628 1.389 2.633 2.153 2.080 3.386 2.936 2.635 2.865 

  (0.128) (0.229) (0.160) (0.307) (0.198) (0.329) (0.395) (0.314) (0.429) (0.540) (0.503) (0.531) (0.497) (0.504) (0.549) (0.462) 

Jun-20          -0.329 1.093 -0.104 0.873 0.756 1.512 1.897 

           (0.186) (0.176) (0.244) (0.237) (0.219) (0.256) (0.214) 

Jul-20           -1.356 -0.700 -0.396 -0.207 0.534 0.633 

                      (0.174) (0.232) (0.219) (0.194) (0.276) (0.231) 

Aug-20                       0.045 0.613 0.780 0.277 0.135 
 

           (0.122) (0.119) (0.141) (0.155) (0.140) 

Sep-20             0.572 1.038 0.648 0.674 
 

                        (0.128) (0.149) (0.162) (0.157) 

Oct-20                           0.986 0.444 0.581 
 

             (0.153) (0.203) (0.228) 

Nov-20               1.327 0.990 
 

              (0.262) (0.264) 

Dec-20                0.839 
 

                              (0.124) 

Note: Standard errors are reported in the parentheses.  
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Table A 3.5 ETWFE: New brand entry effects on the FPBBA sales 

Cohort Calendar Time 

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 

Sep-19 0.117 0.763 0.464 0.226 0.042 -0.100 -0.269 -0.105 -0.201 -0.314 -0.517 -0.411 -0.731 -0.859 -0.806 -0.869 

  (0.023) (0.035) (0.040) (0.048) (0.053) (0.058) (0.063) (0.072) (0.080) (0.084) (0.091) (0.098) (0.108) (0.116) (0.124) (0.132) 

Jun-20 
         

0.199 -0.029 0.282 -0.09 -0.291 -0.474 -0.519 

  
         

(0.020) (0.025) (0.025) (0.030) (0.033) (0.041) (0.043) 

Jul-20 
          

0.446 0.506 0.417 0.414 0.338 0.339 

                      (0.035) (0.030) (0.036) (0.043) (0.049) (0.054) 

Aug-20 
           

-0.082 -0.26 -0.263 -0.208 -0.236 
 

           
(0.019) (0.021) (0.025) (0.025) (0.027) 

Sep-20 
            

-0.275 -0.257 -0.213 -0.239 
 

            
(0.016) (0.018) (0.020) (0.021) 

Oct-20 
             

-0.111 -0.023 -0.019 
 

             
(0.031) (0.034) (0.036) 

Nov-20 
              

-0.159 -0.071 
 

              
(0.031) (0.034) 

Dec-20 
               

0.083 
 

               
(0.037) 

Note: Standard errors are reported in the parentheses.  
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Table A 3.6 Rolling Approach with DML: New brand entry effects on the FPBBA sales 

Cohort Calendar Time 

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 

Sep-19 0.292 0.826 0.444 0.234 0.337 0.020 -0.234 0.139 -0.087 -0.867 -1.037 -0.883 -0.864 -0.992 -0.570 -1.538 

  (0.146) (0.108) (0.134) (0.168) (0.192) (0.185) (0.225) (0.236) (0.251) (0.308) (0.287) (0.369) (0.398) (0.413) (0.432) (0.454) 

Jun-20          0.008 -0.315 -0.041 -0.334 -0.628 -0.798 -0.906 

           (0.077) (0.084) (0.103) (0.104) (0.103) (0.126) (0.123) 

Jul-20           0.356 0.073 0.305 0.226 0.102 0.140 

                      (0.085) (0.097) (0.089) (0.103) (0.117) (0.117) 

Aug-20                       -0.278 -0.428 -0.509 -0.415 -0.530 
 

           (0.063) (0.057) (0.077) (0.076) (0.080) 

Sep-20             -0.423 -0.469 -0.447 -0.460 
 

                        (0.077) (0.087) (0.092) (0.100) 

Oct-20                           -0.198 -0.496 -0.396 
 

             (0.087) (0.116) (0.138) 

Nov-20               0.333 0.385 
 

              (0.111) (0.132) 

Dec-20                0.261 
 

                              (0.084) 

Note: Standard errors are reported in the parentheses.  
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