POSSIBLE ORIGINS OF THS HBTHOXYL CARBON OF L I GUI N FORMED BY HOHOBtTM VTTLGARE By John H ilb e r t F lo k s tr a A THESIS Subm itted t o th e School o f Graduate S tudies o f Michigan S ta te C o lleg e o f A g r ic u ltu re and A pp lied Science in p a r t i a l f u l f i l l m e n t o f th e requirem ents f o r th e degree o f DOCTOR OF PHILOSOPHY Department o f Chemistry 1952 ProQuest Number: 10008302 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008302 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKNOWLBDC The a u th o r wishes t o express h is a p p re c ia tio n to D r. R ichard TJ. Byerrum f o r h is a d v ic e and a s s is ta n c e so w i l l i n g l y g iv e n d u rin g th e work on t h i s problem, and to s e v e ra l o th e r members o f th e Chemistvy Department f o r t h e i r h e lp f u l suggestions} a ls o t o D r. E. H . Lucas o f th e H o r t ic u lt u r e Departm ent, who so k in d ly fu rn is h e d seeds and a s s is te d i n growing t h e p la n ts used i n t h is in v e s t ig a t io n . F i n a l l y , th e author wishes to thank th e TTnited S ta te s Atomic Energy Commission f o r p ro v id in g a f e llo w ­ sh ip un der which t h i s work was done* ********** * * * * * * * * ****** **** ** * TABTE OF COTTTEfTTTS D3TR0DTTCTI0I? . . ....................................... EXPKETOHTAL METHODS ............. R a d io a c tiv e Precursors ........... P re p a ra tio n o f B a rle y P la n ts ........... I s o la t io n o f L ig n in ................... D em ethylation o f L ig n in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. D et© rialn ation o f R a d io a c tiv ity RESULTS . . . . . . . ......................... . . . . ............. Experiments TTsing D#L~??ethionine . .......................... O x id a tiv e D egradation Products o f L ig n in . . . . . . . . . . . . . . . . . . Experiments TTsing F o r m a te ............. DISCTTSSIOH S W Y ................... ............................... BIBLIOGRAPHY APPENDIX ........... PAGE 1 3 3 3 6 7 9 10 10 IS 14 18 22 23 26 LIS T OF TAB IBS TABLE t II in IT PACE COMPOSITION OF THE M H I M affiTHIOIKHB E X P iR I1 « T S ...................... 4 12 ................. te COMPARISON OF ACTXTXT2SS OF LJOTIff FROM PLANTS ¥ m m s m m t m m n th o se r m form at t . . . . . . . . . . . . . . . . . . . . . i? fommn MPWMtmmn . SOLUTION . . . ............ . . . . . . . . . INTRO IXTCT ION INTRODUCTION I n th© past s e v e ra l years many In v e s tig a to rs have shown the im ­ po rtance o f tra n s m e th y la tio n re a c tio n s i n th e anim al organism ( 1 ) # but r e la tiv e ly l i t t l e is known about th e r o le tra n s m e th y la tio n plays in p la n t m etabolism * Experiments re c e n tly un dertaken by Kirkwood and M arion ( 2 ) , i n which th e y attem pted t o dem onstrate th e t r a n s f e r of m ethyl groups from ohoXln© to th e b a r le y p la n t a lk a lo id , h o rd en in e, using ra d io ­ a c t iv e t r a c e r te c h n iq u e s , were unsu ccessful* However, I n re c e n t months i t has been shown by Brown ( 3 ) t h a t th© m ethyl carbon o f m ethionine may be tr a n s fe r r e d to th© m ethyl group o f n ic o tin e i n tobacco (N ic o tla n a r u s t ic a ) , and i t was p o s tu la te d t h a t a tra n s m e th y la tio n r e a c tio n m s in ­ vo lv e d * It seemed p o s s ib le th a t tra n s m e th y la tio n re a c tio n s m ight be in v o lv e d I n th© m etabolism o f o th e r p la n t products* Th© work d escrib ed h e re m s u n d ertaken i n an a tte m p t to study th© p o s s ib le r o le o f tra n s m e th y la tio n i n th e fo rm a tio n o f l i g n i n I n th e p la n t* L ig n in , th e substance chosen f o r study i n t h is In v e s t ig a t io n , is a c o n s titu e n t o f th e c e l l m i l o f p la n ts . Although th© amount o f l i g n i n presen t i n a p la n t in cre a s es as t h e p la n t grows o ld e r , th e r e is an a p p re c ia b le amount p re s en t i n c o m p aratively young b a rle y p la n ts . L ig n in is not a d e f i n i t e chemical compound, i t s com position v a ry in g acco rd ing t o th e method used I n i t s is o la tio n * Hence a g re a t d e a l Is unknown about i t s chem ical s tr u c tu r e and i t s fo rm a tio n i n th© p la n t* Fuchs ( 4 ) suggested t h a t p e c tin , a p a r t i a l l y m e th y l- e s t e r if ie d p o ly g a l& e tu ro n ic a c id fo m e d i n p la n t c e l l w a lls , a c ts as th © p re c u rso r of l i g n i n , sine© i t had been shown t h a t t h e p e rc en t ago o f p e c tin s in o ld e r , l i g n i f l e d p la n t tis s u e s was s m a lle r than I n young p la n t tis s u e s # However, as th e p la n t ages, whereas th e percentage o f p e c tin decreases, th e a c tu a l amount o f p e c tin present in creases ( 5 ) * F u rth e r , i t Is known th a t i n l i g n i n t h e m ethoxyi groups form an e th e r lin k a g e , not an e s te r lin k a g e such as Is found i n p e c tin , so a r a th e r profound chemical change would have to t a k e p la c e i f l i g n i n were to f o m from p e c tin . A more reasonable e x p la n a tio n of i t s appearance was o ffe r e d by H lb b e rt ( 6 ) # On t h e b a s is o f th e s tru c tu r e o f th e decom position products o f li g n i n , he p o s tu la te d t h a t a fr u c to s e d e r iv a t iv e can condense w ith guai&col i n th e fo rm a tio n o f lig n in # Except f o r a suggestion;, made by Klason ( 7 ) , t h a t form ald e­ hyde can a c t as a p re cu rso r o f th e mefehoxyl groups I n l i g n i n , l i t t l e is known about t h e i r o r ig in * Since no s a t is f a c t o r y e x p la n a tio n f o r t h e appearance o f th© m ethoxyl groups i n li g n i n has been o f f e r e d , i t seamed d e s ir a b le to le a r n w hether tra n s m e th y la tio n was in v o lv e d i n t h e i r form ation# Although I n a l l p re v io u s ly re p o rte d tra n s m e th y la tio n stu d ies th e compounds in v e s tig a te d contained m ethyl groups a ttac h ed to s u lfu r o r n itro g e n atoms, i t seemed p o s s ib le t h a t t r a n s fe r o f a m ethyl group t o an oxygen atom could ta k e p la c e , thus form ing a m ethoxyl group* I t m s decided i n th e present study* ( a ) t o fe e d b a r le y p la n ts a p p r o p ria te ly la b e lle d m ethionine and form at© , which a re known t o a c t as m ethyl donors o r precursors i n th e anim al organism , ( b ) to is o la t e th e li g n i n formed by th© p la n ts , and ( c ) , i f r a d io a c t iv it y is fo u n d , t o perform d egradation s i n o rd e r to determ in e t h e lo c a tio n o f th e r a d io a c t i v i t y i n th e lig n in # KXPS5IM3J1TAL METHODS S X m i^ J T A L METHODS R a d io a c tiv e Precursors The r a d io a c tiv e tr a c e r s us ad i n t h i s work were D, L~meth 1o n i na con­ t a in in g i n th e m ethyl group and th e sodltm s a l t o f C ^ “f o m i c a c id . M ethio nine was synthesised by re a c tin g D,I^f>»ben*ylhoatoeyateine w ith cl4«. jagrtjhyl io d id e which was obtained from T r& o e rla b , i n c . , under a llo c a t io n from th e TTalted S ta te s Atomic Energy Commission. The form ate m s o b ta in e d from Dak Ridge K a t lo m l la b o ra to r y , a ls o under a llo c a t io n from Mae tTnited S ta te s Atomic Energy Commission* P re p a ra tio n o f B a rle y P la n te A v a r i e t y o f Ho rd earn vu lg ar© known a© Bay b a rle y m s used i n t h i s in v e s tig a t io n . According to P h illip s and (foes ( 8 ) th e percentage of m ethoxyl i n b a r le y l i g n i n in creased a t th e f a s t e s t r a t e when th e p la n ts were t h i r t y t o f o r t y days o ld . i& oD cugall and Do Long ( 9 ) showed t h a t , w ith re sp ec t t o l i g n i n c o n te n t, n in e ty -fo u r -d a y -o ld p la n ts grown i n th e greenhouse were a t about th e same stage o f m t u r i t y as fo r ty -o n e -d a y -o ld p la n ts grown I n th© f i e l d . Consequently Mi© seeds were p la n te d i n f l a t s and a llo w e d to grow o u ts id e th © greenhous© f o r about t h i r t y days . P la n ts o f t h is age were from e ig h t t o tw e lv e inches t a l l , v a r ia tio n s probably being due to seasonal e f f e c t s . A commercial p la n t food m ix tu re was fe d as re q u ire d in a w a te r s o lu tio n . B efo re being fe d t h e r a d io a c tiv e compounds* th e p la n ts were g ive n th© fo llo w in g tr e a tm e n t. A© much o f t h e adhering s o il as p o s s ib le m s c a r e f u lly removed from th e roots by shaking* A f t e r soaking i n w a te r f o r about t h i r t y m inutes, any d i r t l e f t on the ro o ts was washed away under ru n n in g w a te r* To reduce t h e number o f b a c te r ia p re s e n t, t h e ro o ts were soaked i n a 0 .1 p ercen t s o lu tio n o f Wyandotte d e te rg e n t g erm icid e Ho* 1528 1 f o r about t h i r t y m inutes* Fo llo w ing a r in s e I n d i s t i l l e d w a te r , th e roots o f each p la n t were placed i n 25 m l* of an in o rg a n ic n u t r ie n t s o lu tio n i n a 50 m l. ilrleraneyer f la s k * T h is n u tr ie n t s o lu tio n was prepared by making a 1*3 d ilu t io n o f th e s to c k s o lu tio n , th© com position o f which is given i n T a b le 1* As a f u r t h e r p re c a u tio n TAB1.8 I COMFQSITIOH Qp THE FOTKISBT SQUfTIOH Calcium n i t r a t e * € a (M 0 g ),},l f . Potassium c h lo rid e * K C I,“ 250 !.%.gno$iurn s u lfa te * MgSC^, 250 mg. Ammonium s u lfa te * 250 mg* F e r r ic c h lo rid e * F e C l*, g rag* Potassium dihydrogen phosphate* KHgPO^, 250 mg. D i s t i l l e d w a te r to 1 1* a g a in s t b a c t e r ia l c o n ta m in a tio n , th r e e drops of a one percent s o lu tio n o f th e d e te rg e n t g erm icid e were added t o each f l a s k . Each f la s k a ls o contained a s u it a b le amount o f th e ra d io a c tiv e compound bein g s tu d ie d , as w i l l be described l a t e r * I n th© p la n ts * m etabolism o f th e ra d io a c tiv e compounds th e r e m s a 1A p o s s ib ili t y of C ■j Og bein g lib e r a t e d . The p la n ts wore grown i n a fum© T h is m a te r ia l m s ob tained fro m , the Wyandotte Chemical C o rp ., W yandotte, M ic h ., by th e M ichigan S ta te C o lle g e H o r t ic u lt u r e Departm ent. «*4 •« h o o d ^ In o rd e r t o preheat th e contam in atio n o f th® a i r from t h i s source* Two 36**inch, 30-•watt flu o re s c e n t tubes and a 1 0 0 -w a tt b u lb , about 15 inches above th© p la n ts , were used as a source o f l i g h t * A lig h t in t e n s i t y o f about 800 fo o t-c a n d le s a t th© leaves m s thus o b tained* D uring th© fe e d in g ©srpsrimenbs, the li g h t m s tu rn e d on f o r about 18 hours out o f 84* The volume o f th© n u trie n b s o lu tio n was k e p t f a i r l y constant by th® a d d itio n o f d i s t i l l e d w a te r* Is o l a t i o n o f L ig n in D i f f i c u l t y m s encountered i n th e is o la t io n o f l i g n i n , usin g a m o d ific a tio n o f th© s u lf u r ic a c id method of Ost and W ilkoning ( 1 0 ) * In t h is method th e d rie d p la n t tis s u e m s put in to 70 percen t s u lf u r ic a c id f o r 16 hours a t 8 0 ° C* o r le s s * The s u lf u r ic a e id m s then d ilu t e d to about th r e e p e rc e n t, th e m ix tu re m s hydrolyzed f o r two hours a t 100° C *, and f i l t e r e d , l i g n i n being th© p r e c ip it a t e ob tained* Tifhen t h is method m s used w ith th e s e young p la n ts , i t appeared t h a t com plete w e ttin g by th e s u lf u r ic a c id m s not achieved* I t m s f e l t t h a t an ext m e t I on o f th e f a t t y m a te r ia l from th e t is s u e would perm it com plete co n tact by th e s u lf u r ic a c id * However, a f t e r an e th e r ©attraction m s performed on th© t is s u e , th e percentage o f A lig n in '* present m s s t i l l found t o b© about thro© tim es as h ig h as t h a t re p o rte d i n th e l i t e r a t u r e In work done w ith comparable plant© ( 8 ) * MacDougall and 0© Long ( 9 ) found th a t th© a b s o lu te methoxyl content o f l i g n i n from d rie d p la n t tis s u e s m s g r e a te r 1han t h a t o f l i g n i n from fre s h tis s u e s o f t h e same p la n ts * They thought th a t t h is m s due t o th e -5 - in c lu s io n o f m efchoxyl-containing carbohydratss i n l i g n i n from th© d rie d tis s u e s # Th© fre s h p la n ts used i n th© presen t work were p r e -tr e a te d b e fo re p la c in g I n contact w ith th© s u lfu x ‘io acid# T h is tre a tm e n t con­ s is te d o f e x tra c tio n s i n a W aring B lendor u s in g v a rio u s s o lv e n ts , as suggested by -%cDoug&ll and De bong (1 1 )# E ther-satu rat@ d w a to r was b e lie v e d by them t o be th e best n o n -acid s o lv e n t f o r removal o f n itro g e n c o n ta in in g m a te r ia l from young u n d rie d tissu es# A f i v e p ercen t s o lu tio n o f a c e tic a c id m s found e f f e c t iv e i n removing carbohydrates from young tis s u e # A c o n s ta n t-b o ilin g ( 1 * 2 ) m ix tu re o f ethanol and bensene m s used as a s o lv e n t f o r f a t t y m a te ria ls p resen t I n t h e tis s u e s # A c c o rd in g ly , i n the p resen t w ork, a pr© treatm ent o f t h e p la n t tis s u e s was adopted# Th© fo llo w in g e x tra c tio n s w ere performed on th e tis s u e s i n a Waring B lendort two 1 5 -mi nut© e x tra c tio n s w ith e th e r-s a tu ra te d w a te r, one 2 0 - m inute e x t r a c t io n w ith f i v e percent a c e tic a c id , two 15-m inute e x tra c tio n s w ith 1*2 ethan o l-b em en e# A s u ita b le q u a n tity o f 70 percent s u lf u r ic a c id m s added to t h e d rie d f i b e r obtained a f t e r c a rry in g out th e above procedure and th e r e a c tio n m ix tu re a llo w ed to stand f o r about 16 hours a t f i v e degrees C# Th is was don© i n th e co ld because i t had been shown t h a t c a rb o n is a tio n o f hydrolysed carbohydrates takes p la c e a t h ig h e r tempera­ t u r e s , causing d i f f i c u l t y i n th e subsequent f i l t r a t i o n and producing an im pure l i g n i n p re p a ra tio n ( 1 2 ) * A t t h© end o f 16 h o u rs, th e s u lf u r ic a c id was d ilu t e d t o th re e p e rc e n t, b o ile d g e n tly fo r two hours, keeping th© volume c o n s ta n t by adding w a te r, and a llo w e d to o o o ij th® l i g n i n s e t t l in g o u t* The l i g n i n was th e n f i l t e r e d , using a f r i t t e d g lass f i l t e r , washed th o ro u g h ly , and d r ie d i n a vacuum d e s ic c a to r a t room te m p e ra tu re . The l i g n i n c o n ten t of p la n ts t h i s age m e found t o be about 4 .5 percent on a d ry w e ig h t b a s is . Demefchylation o f L ig n in To prove t h a t any r a d io a c t iv it y found i n th© l i g n i n m s lo c a te d i n th e m ethoxyl carbon, i t was necessary t o s p l i t o f f th e m ethyl group and o b ta in I t i n t h e f o r a o f a s o lid d e r iv a t iv e s u it a b le f o r coun ting* A m o d ific a tio n o f th e method o f P h i lli p s ( 1 3 ) , In which th e m ethoxyl group, tr e a t e d w ith h y d rio d ic a c id , y ie ld s m ethyl io d id e , was used* I n t h is method th e m ethyl io d id e is caused to re a c t w ith s i l v e r n i t r a t e and th e p r e c ip it a t e o f s i l v e r io d id e is weighed* However, sine® i n th© p resen t work i t m s necessary t o re c o v e r th e m ethyl group, th © m ethyl io d id e formed was swept in t o a s o lu tio n of t r i e th y l amine* Previous work done i n t h is la b o ra to ry showed th a t trie th y la m in © re a c ts q u a n t it a t iv e ly w ith m ethyl io d id e to form m ethyl t r 1 ethylammonium io d id e * T rie th y la m ia e is a ls o le s s v o l a t i l e th a n trim ethylamine,vhkh:Was used by Simmonds and co~ w oikers ( 1 4 ) * A m o d ified form o f th e apparatus d escribed by P re g l ( 1 5 , 3 ) m s used f o r d e m e th y la tlo n * About 60 mg* o f th e li g n i n t o be d ©methylated was weighed in to c ig a r e t t e paper and placed in th e r e a c tio n v e s s e l w ith two m l* o f ph en ol, which acted as a s o lv e n t f o r th e li g n i n , and fo u r m l* o f 47*3 p e rc e n t h y d rio d ic a c id * A ttached t o t h i s was a gas-washing b u b b ler c o n ta in in g 1*5 m l* o f th e f i v e percent CdSO^-WsgSgO^ s o lu tio n recommended by F re g l to remove t h e h y d rio d ic a c id and io d in e * A tu b e from th e b u b b le r le d to th© re c e iv in g v e s s e l, which contained a f i v e percen t so lu ­ t i o n of tr lo th y la m ia © i n e th a n o l, cooled i n a m ethyl eolloGolvo-COg bath to about -7 5 ° 0* D uring dem obhylatlon t h e r e a c tio n f la s k m s issuersed i n a copper o x id e b a th * A stream o f n itro g e n was s lo w ly run through th© sid e -a rm o f th e r e a c tio n f l a s k and through th e d e m e th y la tion assembly* Stxperimeaitation showed t h a t best re s u lts wore obtained when th© tem p eratu re o f the b ath m s k e p t a t about 15 0° C* f o r 45 m inu tes, then ra is e d t o 2 0 0° C* and h e ld th e r e f or 30 m inutes* The b a th m s allo w ed to cool f o r 15 m in u tes , du rin g which tim e a f a s t e r stream o f n itro g e n was passed through t h e a p p a ra tu s . A t t h i s tim e t h e t i n o f th e d e liv e r y tube was rin s e d w ith ethanol in to th e re c e iv in g v e s s e l* T h is v e s s e l was th e n stoppered and a llo w e d t o stand o v e rn ig h t a t room te m p e ra tu re * The ethanol s o lu tio n m s ta k e n alm ost to diyness by h e a tin g , th e la s t t r a c e o f ethanol and unre& eted amine removed I n a vacuum d e s ic c a to r, and a w h ite s o lid , t h e m ethyl trleth ylai® ao n iu ia io d id e , rem ained* This was weighed and te s te d f o r r a d io a c t iv it y * A m ethoxyl a n a ly s is o f li g n i n from t h i r t y - d a y - o ld b a rle y p la n ts was made and th e m ethoxyl content o f t h e li g n i n m s found t o be about s ix p e rc e n t, v a ry in g s l i g h t l y from one run o f p la n ts t o an o th er* d e s ir a b le t o know i f I t seemed q u a n t it a t iv e demefchylation m s e ffe c te d , so d o - m e th y la tio n o f v a n i l l i n , a compound o f known methoxyl coizfcont, was perform ed* T h is produced a 95 p e rs e rt reco very o f th e methoxyl group as th e q u a te rn a ry compound under th e c o n d itio n s used. Assuming t h a t a s im ila r s it u a t io n m aintained I n l i g n i n , t h is f ig u r e m s used as a c o r r e c tio n f a c to r I n subsequent d e te rm in a tio n s * D e te rm in a tio n o f R a d io a c tiv ity A l l count;® w r a made using a Model 163 S c a lin g U n it m anufactured fey Hu c l oar In strum ent and Chemical C o rp o ra tio n * By r e f e r r in g t o a s e l f - a b s o rp tio n curve prepared f o r t h e substance feeing counted, a l l counts made w ere c o rre c te d to sero sample th ic k n e s s * aluminum d isc s 3*83 square cm* i n a rea * The e n s ile s w ere counted on The d is c c o n ta in in g t h e sample was placed #n th e to p s h e lf o f th e c o u n te r assembly o f th e S c a le r U n it* Based on t h e measured a c t i v i t y o f a standard C*^ cample o f known a c t i v i t y , th® o v e r - a l l e f f ic ie n c y was found to fee 8*79 p e rc e n t* resu lts RESULTS Experiments Using D ,L-M ethlonin© I t has been known f o r some tim e t h a t m ethionine can a c t as a m ethyl donor i n th© an im al ( 1 ) * K e l le r and co-workers fe d m ethionine which m s doubly la b e lle d i n th© m ethyl group w ith carbon-14 and deuterium to ra ts and Is o la te d c h o lin e and c r e a tin e from th e r a t tis s u e s ( 1 6 ) * W ith in ex p e rim e n ta l e r r o r , th e r a t i o o f deuterium to carbon-14 i n m ethyl groups o f c h o lin e and c r e a tin e m e found t o b© t h e same as t h a t I n th e m ethyl group o f th e d ie t a r y m e th io n in e, proving t h a t m ethionine a c ts as a t r u e transm sfchylating a g e n t* Brown has shown t h a t th e carbon o f t h e m ethyl group o f m ethionine can be tr a n s fe r r e d t o th e m ethyl group o f n ic o tin e in th ® tobacco p la n t* Thus i t appeared reasonable th a t m e th y l-la b e lle d m ethionine oould g iv e r is e to th e m ethoxyl groups o f l i g n i n , and i t was decided t o fe e d t h is compound to th© p lan ts# An a tte m p t was made t o fe e d m ethionine to th © p la n t by immersing th© ro o ts I n a n u t r ie n t s o lu tio n c o n ta in in g m e th io n in e , thus a llo w in g absorp­ t i o n t o ta k e p lac e through th e ro o ts * A n alysis o f th e s o lu tio n was necessary to determ ine th© ra t© o f uptake o f m eth ion ine by th© p la n t and a ls o w hether d e s tr u c tio n o f th© m ethionine by b a c te r ia was ta k in g p la c e . The c o lo r im e tr ic method o f a n a ly s is used measured th© red c o lo r produced when m ethionine re a c ts w ith n itro p r u s s id e , as described by McCarthy and S u lliv a n ( 1 7 ) . l a oh of s ix b a r le y p la n ts m s fe d two nog. o f m eth ion ine i n 25 m l. o f n u tr le n t s o lu tio n which co n tain ed th re e drops o f th© one percent d e te rg e n t -1 0 - g erm icid e s o lu tio n * A fte r f o r t y - e ig h t hours th® p la n ts wore removed from t h e s o lu t io n and a n a ly s is f o r m eth ionine m s made* I t m s found t h a t In two days th e a v era g e u p ta k e par p la n t o f m eth ionin e from s o lu t io n m s 70 p e r ce n t o f t h e two mg. o r i g i n a l l y p resen t* observed i n th e medium w it h in t h i s tim e* Wo b a c t e r ia l growth m s As a fu r th e r check o f b a c t e r ia l a c t i v i t y , sam ples o f t h e n u tr ie n t medium w ere in o c u la te d w ith ro o t fragm ents* A fte r f o r t y - e i g h t hours no d e c r e a se m s nobed i n t h e amount o f m eth ion in e p resen t* compared w ith t h e uninooul&hed c o n tr o ls* P la n ts which bad been prepared i n th e manner p r e v io u sly d e sc r ib e d n w ere fe d r a d io a c t iv e m ethionine* S&oh f la s k co n ta in ed 2*01 % 1 0 ~ * m oles o f m eth ion in e p o ss e s sin g a t o t a l a c t i v i t y o f S*6 x 10® coun ts p e r m inute {e#p*m*) and th r e e drops o f t h e on# p ercent d e te r g e n t g erm icid e s o lu t io n i n 25 ml* o f n u tr ie n t s o lu tio n * The p la n ts w ere grown i n th e s p e c ia l l y d esig n ed bbed under a r t i f i c i a l l i g h t a t roost tem perature f o r sev en days* m m entioned e a r lie r * ob servab le* At t h e end o f t h i s tim e no b a c t e r ia l growth was As a fu r th e r t e s t of m eth ion in e u p tak e by th e p la n ts* r e p lic a t e sam ples o f th e n u tr ie n t s o lu t io n w ere evaporated t o d iyn osg a f t e r removing ih # p la in s a t th© end o f sev en days* Only a sm a ll amount o f r a d io a c t iv it y m s d e t e c t a b le i n th # r e s id u e , in d ic a tin g alm ost com p lete a b so r p tio n o f m ethionine by t h e p la n ts* The r o o ts o f th # plumbs w ere removed am! th e rem aining p art o f t h # p la n ts g iv e n th # p r e v io u s ly d escrib e d s o lv e n t e x t r a c tio n su g g e sted by MaeDougall and 0# bong* b ig n in m s is o la t e d from t h e rem aining f ib e r by th # W p ercen t s u lf u r ic a c id method* A fte r h y d r o ly s is , f i l t r a t i o n and w ashing, th # l i g n i n o b ta in ed p o sse sse d c o n sid e r a b le r a d io a c t iv it y as -1 1 determ ined w ith a la b o ra to r y m o n ito r* a c t i v i t y o f t h e l i g n i n in t o I s o rd e r t o b rin g th e ra d io ­ a rang© which could be ©ousted w ith th© S c a le r C h it# i t was necessary t o d i l u t e th e r a d io a c tiv e 1 ig n is w ith from s ix t o te n tim es i t s own w e ig h t o f in a c t iv e l i g n i n o b ta in e d from s im ila r p la n ts n o t fe d r a d io a c tiv e m a te ria l# A weighed amount o f about 60 mg* o f l i g n i n m s placed on a counting die© and counted as o u tlin e d p re v io u s ly * The same sample o f l i g n i n used f o r counting m s used f o r d o m eth ylatlo n * H a d !© a c tiv ity m s found i n th e q u ate rn a ry compound o b ta in e d from dem eth yla t io n o f th e lig n in # S in ce l i g n i n is not a chem ical compound# th e s p e c ific a c t i v i t y ©ou!& not be expressed# as is customary# on a m olar o r m lllim o l& r b a s is * became necessaiy to express a c t i v i t y on Henc© I t a reco very o f counts b a s is ; t h a t Is # b y a comparison o f th© t o t a l a c t i v i t y o f th e <$sa t or n a ry compound ob tain ed from a c e r t a in amount o f l i g n i n w ith th© t o t a l a c t i v i t y o f t h e l i g n i n used* t i l th e Appendix* A sample c a lc u la t io n i s shown Recovery o f counts obb&lmd from l i g n i n Is o la te d I n two experim ents is shorn i n Table I I * TABUS I I ymvLxmim $xmamw?& ' S p e ria iM E t Ho* oS airv’S f A c t i v it y (©cunts p e r m inute) M g n in Q u aternary Io d id e Per©©at pieoovery o f Counts 1 (2 4 p la n ts ) em 46? 989 662 9 9 *0 92*9 2 (2 4 p la n ts ) 710 866 979 864 9 0 .6 8 9 *6 —12** Th@s@ d a ta show t h a t p r a c t ic a l ly a l l o f th© a c t i v i t y found i n ih o li g n i n is recovered in th© q u ate rn a ry compound o b tain ed upon d ero ath ylatio n under th © c o n d itio n s used. T h is would in d ic a te t h a t th e a c t i v i t y i n th e l i g n i n is lo c a te d i n th© methoxyl group* V a r ia t io n i n th© percentage recovery between experim ents may be noted* I t was g e n e r a lly found i n th e s e experim ents t h a t recovery o f counts from l i g n i n is o la te d from p la n ts grown a t lo w er te m p e ra tu re (2 0 ° C«) was la r g e r th a n t h a t from p la n ts grown a t h ig h e r te m p e ra tu re (2 5 -3 0 ° C .} * but no e x p la n a tio n f o r t h i s o b s e rv a tio n is a p p aren t* O x id a tiv e D eg rad ation Products o f L ig n in L ig n in is o la te d from b a rle y p la n ts by th e u s u a l procedure was analysed f o r n itro g e n * u s in g th e miero-IC^©1dahl method* Th© n itro g e n ©outenb was abou t 2 *4 p e rc e n t, a v a lu e lo w er than th a t o b tain ed from most l i g n i n p re p a ra tio n s * However* th© p o s s ib ili t y escistcd t h a t t h is n itro g e n was present i n t h e form o f p r o te in and t h a t th e r a d io a c t iv it y observed i n th e l i g n i n was due t o th e presence o f m ethionine I n th e p r o te in * To determ ine d e f i n i t e l y mi e th e r o r not th© a c t i v i t y found was a s s o c ia te d w ith nitrogenous compounds* an a tte m p t m s made to is o la t e v a n i l l i n , s y rin g a ld e h y d % and s im ila r n ih ro g e n -f roe d e r iv a tiv e s formed by o x id a tio n o f l i g n i n w ith a lk a lin e nib rob ©ms©nc* and t o t e s t them f o r r a d io a c t iv it y * To c a rr y p u t th is r e a c tio n , about 145 mg* o f l i g n i n Is o la te d from p la n ts fe d r a d io a c tiv e m ethionine w ere placed I n a s ta in le s s e t e e l bomb w ith one m l. o f nitrobensen© and 18 m l. o f FaOH ( 2 0 ) . a t 130*5 C ** w ith a g it a t io n * f o r about th re e h o u rs. -1 3 T h is was heated A f t e r c o o lin g , th e a lk a lin e r e a c tio n m ix tu re mis steam d i s t i l l e d t o remove nitro genous products# The f i l t r a t e -was a c i d i f i e d t o pH 3 and th e r e s u lt in g m ix tu re c o n tin u o u sly e x tra c te d w ith benzene f o r 48 hours* The benzene s o lu tio n was e x tra c te d te n tim es w ith 15 ml* p o rtio n s o f aqueous f i v e percent NaHSOg s o lu tio n * Th© b i s u l f i t e e x tr a c tio n was a c id i f i e d w ith th re e m l. o f c o n c en trated s u lf u r ic a c id and t h e s o lu tio n fre e d from s u lf u r d io x id e under reduced pressu re a t room te m p e ra tu re ( 2 1 )* Th is s o lu tio n wbm th e n e x tra c te d s ix tim es w ith 15 m l* p o rtio n s o f e th y l e th e r and th e e th e r was th e n ©sraporated a t 60° C# ( 2 2 ) * The re s id u e was e x tra c te d w ith hot w a te r* f i l t e r e d * and mad© up to 30 ml* D u p lic a te 10 m l* a liq u o ts o f t h i s s o lu tio n were used f o r m ic ro -K je ld a h l n itro g e n de­ te rm in a tio n s * W ith in th e experim en tal e r ro r o f th e d e te rm in a tio n no n itro g e n was found* Th© aldehyde m ix tu re was p r e c ip ita t e d from th© r e s t o f th © s o lu tio n using 2 ,4 -d ittitro p h e n y lh y d ra z in e * Th© p r e c ip i t a t e was allo w ed t o stand o v e r n ig h t, f i l t e r e d , d rie d and counted* Th© p h e n y l- hydrazon© m ix tu re possessed a s p e c if ic a c t i v i t y o f 88 c*p*m* p e r mg. C a lc u la te d as v a n i l l i n , t h i s would g iv e a s p e c if ic a c t i v i t y o f 192 c*p.m * p e r mg* Th© s p e c if ic a c t i v i t y o f th© l i g n i n used f o r o x id a tio n by n itro b e n ze n e was s i so about 190 c .p ,m , per mg, J&rpcri manta Using Formate Recent experim ents show t h a t fo rm a te , o r a one-carbon compound designated as "fo rm ate* appears t o p la y a r o le i n tra n s m e th y la tio n r e ­ a c tio n s * There a r e two p o s s ib le ways i n which t h i s compound could e n te r such re a c tio n s * Formate mny a r is e from th e o x id a tio n o f m ethyl groups and in some m n n e r a c t d i r e c t ly as a laethylsitirig a g e n t, o r i t may be —1 4 — reduced to fo rm a m ethyl group* which is then tr a n s fe r r e d * S ie k e v its * e t &1. ( IP, ), have shown th a t * i n th e a n im a l, th© m ethyl group o f m eth ion ine may g iv e r is e t o fo rm ate* On th © o th e r hand* acco rd ing t o Welch and S&kaml ( 1 9 ) , fo rm a te can be reduced t o form th e m ethyl group o f m ethionine i n ■fee anim al organism . Two groups o f p la n ts * as c lo s e ly s i mi l a r as p o s s ib le * were grown i n n u tr ie n t s o lu tio n under th e same c o n d itio n s , on© group being fe d m eth ion ine and th© o th e r form ate# By comparing th © a c t i v i t i e s o f l i g n i n is o la te d from th© two groups o f p la n ts i t m s hoped t o o b ta in evidence as to whether m ethionine o r form at© a c ts as th© more d ir e c t precu rso r of th e mefehoxyl groups o f li g n i n * Ho a n a ly t ic a l method could be found w h ld i would g iv e accuracy comparable t o t h a t achieved I n the method used f o r t h e d e te rm in a tio n o f m e th io n in e . TXpon removal o f th e p la n ts from th e n u tr ie n t s o lu tio n a f t e r th© seven day period# th© contents o f s e v e ra l o f th e fla s k s were evaporated t o dryness* resid u es* ©even day©* N e g lig ib le r a d io a c t iv it y was found i n th e Ho b a c t e r ia l growth m s observed I n th© f la s k s , even a f t e r I t m s concluded th a t p r a c t ic a l ly com plete a b s o rp tio n o f f o r m t © by th e p la n ts had ta k en p la c e w ith in t h i s tim e . The p la n ts were fe d fo rm ate under th e same c o n d itio n s t h a t w ere m aintained in th© m eth ion ine experim ents* The fla s k s each con tain ed th© n u tr ie n t s o lu tio n * d e te rg e n t g e m ie id © and 1*99 x 10"® moles o f fo rm a te , having a t o t a l a c t i v i t y o f 7*2 x 10® o.p*m* The m olar c o n c e n tra tio n was t h e same as t h a t of m eth ion ine— th e a c t i v i t y double* As b e fo r e , th e p la n ts were a llo w e d to grow i n th e s o lu tio n f o r seven days. *1 5 * As p re v io u s ly d e s c rib e d , th e p la n ts were processed and l i g n i n is o la te d by th e 70 percen t s u lf u r ic a c id method* The r a d io a c tiv e li g n i n o b ta in e d was counted and demobhylated, and t h e qu atern ary compound formed was counted* The r e s u lts o b tained usin g two groups o f p la n ts a re shown in T a b le I I I . TABLE X I I FORMATS EXPERIMENTS Experim ent Ho. Observed A c t iv it y (counts p e r m inute) L ig n in Q uaternary Io d id e P ercent Recovery o f Counts 1 (25 p la n ts ) 243 241 283 256 7 1 .7 69*8 2 (26 p la n ts ) 529 181 412 212 66.8 64*8 It can be seen t h a t most o f th e a c t i v i t y found i n th e l i g n i n was re ­ covered by demethyl a t io n , showing t h a t i t m s present i n th e m ethoxyl group* The v a r i a t i o n between t h e two runs re p o rte d h e re may a g a in be due to d if fe r e n c e in tem p erature a t which the p la n ts w ere grown, a lth o u g h t h is was s m a lle r h e re th a n i n th e m eth ion ine experim ents* As s ta te d e a r l i e r , a oou^arlson o f t h e a c t i v i t i e s o f l i g n i n o b tained from p la n ts fe d m ethionine and th a t from p la n ts fe d form at© was mad©* T o ta l a c t i v i t i e s , m olar q u a n titie s a d m in istered p e r p la n t and t h e s p e c ific a c t i v i t i e s o f ih© l i g n i n is o la te d from each group o f p la n ts a re g iv e n i n T a b le I V . Th© s p e c if ic a c t i v i t y o f l i g n i n o b tain ed a f t e r a d m in is te rin g —16— TABLE IV COMPARISON OP ACTIVITIES OF LIGFTN FROM PLANTS FED ?®?HIONIKE AND THOSE FED FORMATE Group No. Compound A dm inistered Moles Given p e r P la n t T o ta l A c t iv it y Given p e r P la n t 1 M ethionine S .01 x 10**5 3 *6 x lO ^c.p.m * 385 o*p.m*/m g* 2 Format© 1 .9 9 x 1 0 -B 7*2 x I0^c#p*m* 2 9 .2 o*p*m*/mg* S p e c ific A c t i v it y o f L ig n in m eth ion ine was about t h ir t e e n tim es as high as t h a t obtained, i n the form at© e&perlment* The m olar c o n cen tratio n s of m ethionine and format© a d m in is te re d were t h e ©am©, but th e a c t i v i t y o f th e form ate m e tw ic e as g reat# 14C onsidering t h i s , i t appears t h a t i f C m ethyl m ethionine is fe d t o b a rle y p la n ts , th© s p e c ific a c t i v i t y o f Hi© l i g n i n is o la te d is a t le a s t one order of magnitude h ig h e r th a n t h a t o b tained a f t e r fe e d in g C ^ - f o r a a t e , a l l c o n d itio n s being kept as n e a rly th e same as p o s s ib le i n th© experim ents* -1 7 * DISCOSSKH DISCUSSION It is dem onstrated i n th o s e experim ents th a t th e m ethyl carbon o f m eth ion ine can a c t as th e p re c u rs o r of th e methoxyl carbon of li g n l n produced by b a r le y p la n ts i n v iv o * The r e s u lt s o b ta in e d g iv e a s tro n g in d ic a tio n t h a t a tra n s m e th y la tio n r e a c tio n is in v o lv e d * I n o rd e r to prove c o n c lu s iv e ly t h a t such a re a c tio n has occurred, i* © * , t h a t th e m ethyl group is tr a n s fe r r e d i n t a c t , i t w i l l be necessary t o conduct ex­ perim ents using m e th io n in e doubly la b e lle d w ith carbon-14 and deuterium i n th e m ethyl group* la b o ra to r y * Such experiments w i l l soon be undertaken i n t h i s I f a t r u e tra n s m e th y la tio n is proven, th e f i r s t in s ta n c e o f tra n s m e th y la tio n t o an oxygen a t m w i l l be e s ta b lis h e d * Formate can a ls o a c t as precu rso r o f th e methoxyl group o f l i g n l n b u t t o a le s s e r e x te n t than t h e m ethyl group o f m ethionine* The lo w e r s p e c ific a c t i v i t y o f th e li g n l n o b tain ed from p lan ts fe d form ate as com­ pared w ith those fe d m ethionine in d ic a te s t h a t th e m ethyl group o f m ethionine is tr a n s fe r r e d as such and does not go through a process of o x id a tio n t o fo rm a te and subsequent re d u c tio n * I f t h e l a t t e r w ere t r u e , th e l i g n l n fro m p la n ts fe d form at© would have a t le a s t as high a s p e c if ic a c t i v i t y as t h a t from p la n ts fe d m ethionine* From th ese re s u lts i t would a ls o appear th a t fo rm ate is n o t tr a n s fe r r e d as such and then reduced* A lthough Welch and Sakaml found t h a t f ormate may be reduced to t h e m ethyl group o f m e th io n in e , ih e exact manner i n ishich Hi is ta k e s p la c e is not known, but th e r e is some evidence t h a t th e r e a c tio n ta k e s p la c e v ia s e r in e , ©thanol&mine, c h o lin e and befcain© ( 2 3 ) * —IB — It is c o n ceivab le t h a t c h o lin e and b e ta in © a c t as mefchyl&ting agents i n th e fo rm a tio n o f l i g n i n , m eth ion ine not n e c e s s a rily being fo m e d befor© traxisrnothylatlon takes p la c e * W hile most o f t h e fo rm ate p2*esent in th© p la n t probably Is o x id is e d to carbon d io x id e , i t seems p o s s ib le t h a t some could be reduced t o methyl groups and in v o lv e d i n mefchylation re a c tio n s * I t Is n o t known why, i n d e m e th y la tio n o f l i g n l n from p la n ts fe d fo rm a te , a lo w e r recovery o f counts is o b tained th a n from l i g n i n formed by p la n ts fe d m ethionine* I n s e veral th e o r ie s o f l i g n i n fo rm a tio n carbo­ h y d ra te s a r e named as l i g n l n precurso rs* Sakaml (2 3 ) has shown th a t fo rm a te and g ly c in e , through s e rin e , form p yruvate* T h is p yru vate could g iv e r is e t o carbohydrates, from which l i g n i n m ight co nceivably be formed* The li g n i n formed would v e r y l i k e l y possess r a d io a c t iv it y from th e form ate I n p o s itio n s e th e r than m ethoxyl groups, subsequent dem ebhyl&tioa of th e l i g n i n g iv in g a lo w e r recovery o f r a d io a c t iv it y * This is a p o s s ib le e x p la n a tio n of t h e low r e s u lts ob tained* Elwyn and co-workers found th a t i n th e synthesis o f m ethyl groups from s e rin e t h e jB -carb o n does not go through th e o x id a tio n le v e l o f fo rm ate * The fS -carb o n o f s e rin e has an o x id a tio n s t a te midway between t h a t o f format© and a m ethyl group* Hence i t might be expected, i f th e l a b i l e m ethyl group were t o be o x id is e d to t h i s stage and th e n reduced a g a in t o a m ethyl group, t h a t th e s p e c if ic a c t i v i t i e s o f li g n i n from p la n ts fe d form at© and those fe d m ethionine would b© of about th e same o rd e r* Since t h e d if fe r e n c e i n s p e c if ic a c t i v i t i e s is so la r g e , i t would seem lo g ic a l t h a t th e m ethyl group is tr a n s fe r r e d w ith o u t t h is o x id a tio n and re d u c tio n * T h is aspect could b© f u r t h e r in v e s tig a te d by fe e d in g th e -1 9 - p la n ts la b e lle d s e rin e and comparing t h e a c t i v i t y o f th e li g n i n from th e s e p la n ts wi th t h a t from p la n ts i n th e fo rm ate and m ethionine experim ents* I n suoh a comparison as t h a t made between li g n i n from p la n ts fe d m eth ion ine and fo rm ate * s e v e ra l com plications may a ris e # I n o rd e r t h a t a f a i r comparison can be mad© i t is necessaiy# among o th e r fa c to rs * t h a t t h e ra te s o f u p ta k e of chemicals fe d be about th e same and t h a t th e s i 2 © o f th e pools o f th e s e chem icals i n the p la n t remains r a th e r constant# I t is p o s s ib le t h a t a v a r i a t i o n I n thes© fa c to rs could a p p re c ia b ly a f f e c t th e r e s u lts and c o n c lu s io n s . However* th e co n d itio n s were kept as c o n s ta n t as p o s s ib le * and s in es a d iffe r e n c e in s p e c ific a c t i v i t i e s of mor© th a n one o rd e r of magnitude m s observed# th e s e conclusions appear to be v a l i d * The r e s u lts o b ta in e d i n th e presen t study d i f f e r g r e a t ly from th o se o f Kirkwood and Marion# They found t h a t r a d io a c tiv e form at© fe d to b a r le y p la n ts m s a p p re c ia b ly in co rp o rate d in t o the m ethyl groups o f hordenlne* but t h a t r a d io a c tiv e m ethyl groups o f c h o lin e fe d to th© p la n ts war© n o t* I n t h i s la b o ra to ry Wing (2 4 ) found t h a t , i n 24 hours* an e x te n s iv e d e s tr u c tio n o f c h o lin e i n n u tr ie n t s o lu tio n in o c u la te d w ith ro o t fragm ents had ta k e n p la c e * in d ic a tin g b a c t e r ia l a c t iv it y # Since t h e above authors make no m ention of precautions ta k en a g a in s t b a c t e r i a l growth# i t seems pro b ab le t h a t th e e h o lin e was destroyed by b a o t e r ia l a e tio n b e fo re i t Gould be absorbed by th e p lan ts# T h at th © r a d io a c t iv it y was present in t h e mebhoxyl group and n o t I n m eth ion ine o r any o th e r nitrogenous component m s proved by p r e c ip it a t in g "* 20 — aldehydes formed upon o x id a tio n of l i g n l n as 2 * 4 -d in itro p h en ylh vd raao n es from a n ib ro g e n -fr© o s o lu tio n . For a convenient b a s is o f comparison* th e a c t i v i t y found i n th® phenylhy&mson© m ix tu re was c a lc u la te d as s p e c if ic a c t i v i t y o f v a n i l l i n and t h is was found t o b© on th e same o rd e r as t h a t o f t h e l i g n l n which m s oxidized# I f much o f th e r a d io a c t iv it y i n th e l i g n i n were a s s o c ia te d w ith th e n itro g e n p re s e n t, th e s p e c if ic a c t i v i t y o f t h e v a n i l l i n would be a p p re c ia b ly low er th a n t h a t o f the l i g n i n used f o r o x id a tio n # Th© re s u lts o f the presen t study g iv e evidence t h a t i n II* vu lg ar® tra n s m e th y la tio n is in v o lv e d i n fo rm atio n o f lig n in * Although th e r e Is evidence t o d is p ro v e £h@rebovf s statem ent t h a t l i g n i f i c a t i o n Is m erely an accum ulation o f m ethoxyl groups o r a proc©as o f m e th y la tio n (2 5 )# i t is p rob ab ly tr u e t h a t most th e o rie s o f l i g n i n fo rm a tio n do not p la c e due emphasis upon the im portance of th e r o le tra n s m e th y la tio n m y p la y i n th e process* Evidence f o r d ir e c t m e th y la tio n appears to be more convincing than t h a t supp orting Klasonf s th e o ry th a t form aldehyde acts as t h e p re c u rso r o f mefchoxyl groups* B efo re th© process o f li g n i n fo rm a tio n is understood th o ro u g h ly a g re a t deal more experim ental work is necessary* "Tore l i g h t could probably be dried on th© problem by fe e d in g p la n ts carbohydrates la b e lle d in th e carbon c h a in a n d /o r i n mefchoxyl groups* D e te rm in a tio n o f th© lo c a tio n of r a d io a c t iv it y I n l i g n i n synth esized by these p la n ts would g iv e a f u r t h e r in d ic a tio n o f t h e manner i n which th© li g n i n is produced# •*21** s irm n Y s ir m a Y R a d io a c tiv e m eth ion ine m s ad m in is te re d to b a rle y p la n ts * is o la te d from th ese p la n ts possessed r a d io a c tiv ity # L ig n in D egradation showed t h a t p r a c t ic a l ly a l l o f th is a c t i v i t y m s lo c a te d In the m othoxyl groups* L ig n in w ith a lo w e r le v e l o f r a d io a c t iv it y m s a ls o Is o la te d from b a r le y p la n ts which had been fe d r a d io a c tiv e form ate* Most o f t h is a c t i v i t y was found i n th e msthoxyl p o s itio n * On th e basis o f these r e s u lts I t is p o s tu la te d t h a t th e m ethyl group I s tr a n s fe r r e d as an e n t i t y , w ith o u t o x id a tio n and re d u c tio n ta k in g p la c e * I t Is f u r t h e r p o s tu la te d t h a t fo rm a te , as such, is not tra n s ­ f e r r e d , b u t t h a t re d u c tio n t o a m ethyl group is f i r s t undergone* BIBLIOGRAPHY BIBLIOGRAPHY ( 1 ) 7 . du Vigneaud, J . P. C handler, M. Cohn and G. B* Brown, J . B io l. Chem., 1 3 4, 787-8 (1 9 4 0 ). J?* Gimraonds and V# du Vigneaud, J * B io l* Chem., 146, 685-6 (1 9 4 2 ), ( 2 ) S. Kirkwood and L. M arion, Can. J . Chem., 2 9 , 30-6 (1 9 5 1 ). ( 3 ) S . A* Brown, ^S tudies on M e th y la tio n R eactions in P la n ts : Th© O r ig in of t h e M ethyl C arton o f N ic o tin e Formed. by H ic o tla n a R u s tlc a ” Ph. 0 . T h e s is , M ichigan S ta te C o lle g e , 1951. ( 4 ) W. Fuchs, Biochesu 2 . , 180, 3 0 -4 (1 9 2 7 ). ( 8 ) H. W. Huston, Rieohem. J . , 2 9 , 196-218 (1 9 3 6 ), ( 8 ) H. H ib b e rb , Can. J . Research, 168, 69-71 (1 9 3 8 ). ( 7 ) P. K laso n , A rk lv * Kemi. M in e ra l,G @ o l., £ , X?o. 1 5 , 21 (1 9 1 7 ). ( 8 ) M. P h i lli p s and M. J . Goss, J . A gr. Research, 5 , 301-19 (1 9 3 5 ). ( 9 ) D. TMcBougall and VST, A. DeLong, Can. J . Research, 26B, 468-71 (1 9 4 B ). (1 0 ) H. Ost and L . W llk e n in g , Ch@iQ.-3tg., 3 4 , 461 (1 9 1 0 ). (1 1 ) D. IfecB ougall and W. A. Dehong, Can. J . Research, 268, 457-63 (1 9 4 8 ). (1 2 ) C. J . P e terso n , A* W. Wald© and R. ¥ . H ixon, In d . Eng. Chem., A m i . E d ., 4 , 2 1 6 -7 (1 9 3 2 ). (1 5 ) ¥ . P h i l l i p s , J . Assoc. O f f i c i a l A gr. Chem*, 18, 118-31 (1 9 3 2 ). (1 4 ) S. Slimaonds, M. Cohn, J . P. C handler and ¥ * du Migneaud, J . B io l. Chem., 1 4 9 , 519-25 (1 9 4 3 ). (1 5 ) H. R o th , " Q u a n tita tiv e M ic ro a n a ly s is of F r i t z P r e g l" , 3rd E nglish E d it io n , P. B la k is to n 's Bon and C o ., I n c . , P h ila d e lp h ia , 1937, pp. 1 7 1 -8 4 . (1 6 ) E. B. K e lle r , J , R. Rachel©, and V . du Tigneaud, J . B io l . Chem., 177, 733-6 (1 9 4 9 ). (1 7 ) T . S. McCarthy and M. X# S u lliv a n , J . B io l* Chem., 141, 871-6 (1 9 4 1 ). 23— — (1 8 ) P. B* S ie k w ita s and D. M. Greenberg, J . B i o l • Chem., 186, 275-86 (1 9 5 0 ). (1 9 ) A. D. Welch and W. Sakami, F e d e ra tio n P ro © ., 9 , 245 (1 9 5 0 ). (2 0 ) E . H. J . C re ig h to n , J . L . McCarthy and H , H ib b e rt, So© ., 6 3 , 3049-52 (1 9 4 1 ), J. (2 1 ) 0 . J. Am. Chem. S . Stone and M. J . B lu n d e ll, A m i, Chem., 23, 771-4 (1 9 5 1 ). Ht Tomlinson and H« jtlib b e rt, J . Am. Chem, So©., 6 8 , 345—6 (1 9 3 6 ). ” ( 2 2 ) M» Honlg and W. H uaioaka, S. angevsr, Chem., 4 4 , 845-7 (1 9 3 1 ). (23) J , A# Munba, J . B io l . Chem., 162, 489-99 (1 9 5 0 ). A* W eissbach, 0 . Blisyn and 0 . 3 . Gprinson, J . Am. Chem, Boo., 72, 3316 (1 9 5 0 ). ¥ . Sakami, J . B io l . Chem., 176, 995-6 ( 1 9 4 8 ) . ( 2 4 ) D. B ln yn , A. Weissbach and D. B. Sprinson, J . Am. Chem. Bo©., 73, 5509-10 (1 9 5 1 ). ( 2 5 ) R, B* Wing, P ersonal ccemnunication. (26) L. ?» Bherebo''?, C. A ., 3 1 , 2418 ( 1 9 3 7 ) . APPENDIX Th© fo llo w in g forcmala was used f o r th e c a lc u la tio n of percentage reco very o f counts* Cc (q u a t# ) / % recovery * ____ n.r a C0 ( l i g n i n ^ .....X..... 1Q.Q.. , , , x 200, x 9g where Cc ( q u a t , ) 9 observed count o f qu aternary compound (c#p#m#) a » f r a c t i o n o f xaaximm s p e c ific a c t i v i t y a t sample th ic k n e s s used— from s e lf-a b s o r p tio n curve f o r q u atern ary compound, C0 ( l i g n i n ) * observed count o f li g n i n (c#p#m«), b 3S f r a c t i o n o f maximum s p e c ific a c t i v i t y a t sample th ickn ess used— from s e lf-a b s o r p tio n curve f o r l i g n i n , jy?S - c o r r e c tio n f a c t o r , based on 95^ recovery o f m ethoxyl groups from v a n i l l i n . Sample c a lc u la tio n s Co ( q u a t * ) * a » CQ ( lig n in ) ® b n % reco very * 741 c.p#m* #584 467 c#p*m« #525 i f Z ~ ~ ------ 2------i2 2 ---- x 100 = ^6V * 3 2 S x 95 92.