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ABSTRACT 

Assistive technologies have emerged as powerful tools for assessing physical health and 

wellness through monitoring physiological parameters such as movement and heart rate. 

However, our overall health is influenced not only by physiological parameters but also by mental 

health factors and environmental influences. Therefore, in the pursuit of holistic wellness, 

assistive technologies need to support multimodal sensing to monitor various aspects of 

individuals' health, including physiological health, mental wellness, and environmental 

parameters that influence personal health and wellness. The challenges arise when these 

technologies must be implemented in real-time and in miniaturized point-of-care platforms 

where multi-modal sensing algorithms must run efficiently, and resources, including power, are 

limited. Solving these challenges requires converging engineering practices with psychological 

and physiological principles. This work aims to implement resource-efficient algorithms to assess 

social interaction parameters as an important mental health factor and to enable high-

performance point-of-care devices to monitor physiological and environmental parameters in a 

miniaturized and effective manner. In this work, an extensive dataset for human interaction in 

virtual settings was prepared. Efficient algorithms were developed to identify levels of two highly 

important social interaction parameters, ‘affect’ and ‘rapport.’ We analyzed affect in time 

intervals based on the conversation turns and analyzed rapport in 30-second time intervals, 

which is the highest temporal resolution reported in the literature. We achieved an affect 

prediction accuracy of 76.8% and a rapport prediction accuracy of 73.6%, which are the highest 

reported results for analyzing multi-person groups. Furthermore, to support monitoring 

physiological and environmental parameters, electrochemical solutions were identified as a 



 

 

highly effective method. We introduced new architecture to overcome limited supply potentials 

in modern point-of-care devices. In our novel design, the potential window for electrochemical 

reactions doubles compared to the traditional designs. This, in return, facilitates a significantly 

wider range of target elements that can be monitored with this novel architecture. Overall, the 

enhanced algorithms and architecture introduced in this work enable multimodal sensing of 

important personal health and wellness parameters. 
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Chapter 1: Introduction 

1.1. Applications and Significance of Assistive Technologies in Individuals’ Wellness 

Assistive technologies have emerged and gained popularity as powerful tools for tracking 

the physical health of individuals. However, our overall wellness is affected by factors such as 

emotional state and environmental factors that influence individuals’ health. Therefore, in the 

pursuit of rounded and comprehensive wellness, it is paramount to develop assistive 

technologies for monitoring social, physiological, and environmental parameters to promote 

individuals' wellness. 

1.1.1. Social interactions and individuals’ wellness 

Social connections and relationships are vital components of overall well-being, 

influencing mental health, emotional resilience, and a sense of belonging. Monitoring social 

parameters involves assessing the quality of interpersonal relationships, support networks, and 

community engagement. By tracking indicators such as social connections, loneliness levels, and 

participation in social activities, individuals and healthcare providers can identify areas for 

improvement and intervention. Therefore, developing technologies to monitor social 

interactions can provide insights into individuals' social behaviors, communication patterns, and 

social support systems, aiding in the identification of potential risks or opportunities for 

enhancing social wellness. These tools can be utilized in a wide range of settings, from helping 

healthcare professionals to improving the quality of interactions in workplaces. This can, in 

return, improve health services, and subsides anxiety, biases, and inequity for example in work 

places. 
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1.1.2. Role of physiological and environmental parameters on individuals’ 

wellness 

Physiological health is intricately linked to overall wellness, encompassing factors such as 

physical fitness, nutrition, sleep quality, and stress levels. Monitoring physiological parameters 

involves tracking key metrics such as heart rate, blood pressure, body composition, and 

biochemical markers. Assistive technologies that regularly assess these parameters could help 

individuals gain insights into their health status, identify potential health risks, and make 

informed lifestyle choices to optimize wellness. 

Likewise, environmental factors play a significant role in shaping individual wellness, 

influencing physical health, mental well-being, and overall quality of life. Monitoring 

environmental parameters involves assessing factors such as air quality, noise levels, and 

temperature. By understanding the impact of the environment on wellness, individuals and 

communities can take steps to create healthier living environments and mitigate potential health 

hazards. 

Developing assistive technologies for monitoring physiological and environmental 

parameters could improve individuals' wellness and quality of life. The emergence of wearable 

devices, smartphone apps, and point-of-care technologies that, for instance, monitor heart rate, 

air quality, or noise level, is enabling real-time tracking and analysis of health data. These assistive 

technologies empower individuals to take proactive control of their health, facilitating early 

detection of health issues and timely interventions to prevent or manage chronic conditions. 

Moreover, by leveraging these quantitative data, individuals can make informed decisions to 

optimize their living environments, reduce exposure to pollutants, and promote overall wellness. 
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1.2. Engineering challenges with assistive technologies 

Assistive technologies have advanced in many areas. However, despite these 

advancements, several challenges and areas for further research remain.  

 Multimodality and interoperability: many assistive technologies operate in isolation, 

lacking interoperability with other devices or platforms. Multifaceted assistive 

technologies and the integration of different data sources are needed. Therefore, 

multimodal assistive technologies that address different aspects of individual’s 

health such as psychological and physiological are highly desirable. This allows for a 

holistic monitoring of individuals’ wellness.  

 Resource-efficient implementation: many advanced algorithms and devices in 

assistive technologies involve resource-heavy operations that prevent real-time 

execution. This also limits the range of target applications that a point-of-care device 

can support. Developing resource-efficient algorithms and devices remains an 

important area of research. 

 Temporal resolution: many assistive technologies have been introduced, for 

instance, to analyze individuals' overall interaction and social engagement. However, 

the temporal resolution of analysis is often low in these assessments and they lack 

real-time analysis. Therefore, higher temporal resolution assessment solutions are 

necessary, especially for analyzing the dynamic of interactions over the course of an 

event. These fine-resolution analyses are paramount to devising individual plans for 

improving social interactions.  
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 Versatility of the solutions: translating from standard laboratory solutions to point-

of-care assistive technologies often faces limitations such as reduced functionality. 

Wearable point-of-care devices must be implemented with a small form factor and 

low power consumption. These constraints often result in a limited range of 

operations, excluding many target parameters. Therefore, further research is needed 

to improve the performance of point-of-care devices within the limitations of 

wearable devices.  

 Personalization and Accessibility: assistive technologies often adopt a one-size-fits-

all approach, overlooking the diverse needs and preferences of users. Research is 

needed to develop personalized and customizable solutions that adapt to individual 

abilities, preferences, and contexts, thus enhancing user engagement and 

effectiveness. 

1.3. Goals  

Collaboration between researchers from different disciplines is essential for tackling 

these challenges and for the successful development and deployment of assistive technologies. 

The overall objective and vision of this work is to identify microsystems and algorithms to 

overcome the challenges specified in section 1.2. Discovering important parameters in social 

interactions and the avenues that technology can help is essential. This requires an 

understanding of individuals’ psychology. Moreover, identifying the potential technologies for 

addressing these parameters requires a deep understanding of engineering solutions.  

In this work, we bring expertise in machine learning and the extensive experience our lab 

has in developing efficient microsystems to tackle different aspects of challenges in assistive 
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technologies.  We aim to take a holistic approach to improving individuals’ wellness. Specifically, 

the following are the focus of this work. 

1.3.1. Developing technologies that enable monitoring of important social 

interaction parameters with high temporal resolution. 

There is limited literature on analyzing social interaction parameters in groups, especially 

with high temporal resolution. In this work, the goal is to develop resource-efficient algorithms 

to monitor affect and rapport. Engaging user interfaces that accommodate personal preferences 

and accessibility issues is of important consideration.  

1.3.2. Applying microsystems techniques to bring laboratory utilities to assistive 

technologies. 

Utilizing our lab’s extensive experience in developing wearable technologies for point-of-

care applications, this work focuses on developing assistive technologies for enhancing 

individuals’ wellness by monitoring physiological and environmental parameters. More 

specifically, electrochemical solutions for detecting various physiological and environmental 

parameters that influence individuals’ wellness are explored. Given the limited resources 

available for wearable devices, electrochemical solutions in these devices face serious limitations 

in the range of parameters that can be detected. Widening this range and targeting more diverse 

elements is the aim of this work. The goal is to make CMOS potentiostat overcome the 

limitations of analyzing a wide range of elements.  

1.4. Outline 

The following forms the content of this dissertation. Literature on employing assistive 

technologies for improved human interaction as well as monitoring of physiological and 
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environmental parameters is reviewed in Chapter 2. Chapter 3 presents the early work we did 

and the avenues we explored toward having a platform for improved virtual interactions. Chapter 

4 describes the data collection and preparation for human trials along with the algorithms we 

developed for extracting social cues in virtual meetings. Chapter 5 presents the methods we 

employed for enhancing the efficacy of point-of-care electrochemical devices that are resource-

efficient. Chapter 6 summarizes this dissertation and outlines potential paths for future works. 
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Chapter 2: Background and literature review 

Literature has reported point-of-care devices and assistive technologies for improving 

different aspects of individuals’ wellness. This includes technologies for monitoring psychological 

wellness such as individuals’ emotions [1], [2], [3] as well as physiological parameters such as 

heart rate [4]. Some others focus on analyzing physical parameters such as skin conductivity using 

electrodermal activity sensors that can indicate stress levels and various health-related issues [3], 

[5]. Some others develop point-of-care devices to analyze human secretions, such as sweat [6], 

and monitor environmental parameters, such as particulate matter [7], [8], that can affect health. 

In this chapter, we explore the literature and identify the challenges and areas that require 

further research.  

2.1. Employing technology for improved interaction 

Among the solutions for monitoring individuals’ emotional wellness, a body of work has 

recently gained attention that focuses on the interaction among people on different occasions, 

such as in a classroom, in a work meeting, in a clinical set, etc. [5], [9], [10]. After a recent shift in 

the trend that incorporated more and more virtual interactions, the need to improve online 

interactions has become more important than ever. That is especially because of the different 

nature of online interactions compared to in-person setups.  

To have a productive meeting at work or to have an effective learning experience in a 

classroom, we benefit from recognizing non-verbal audial or visual cues in our audience. These 

cues help find out about the emotional states of people and the level of their engagement and, 

consequently, help establish more effective communication with our audience. For instance, a 

study [11] showed that social intelligence had a significant effect on the professional 
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performance of mathematics teachers. Thus, it is desirable to leverage technologies to help 

people perceive these cues in their audience.  

The inability to detect important cues in an interaction is more pronounced in a virtual 

setting. Distance collaboration has become a common practice in recent years. Many companies 

and universities have opted to facilitate remote working and education. Even some companies 

went on to announce they would let their employees work remotely for the indefinite future. 

This trend shows distance collaboration will stay and only flourish in the coming years. Thanks to 

video conferencing technologies, we can now hold these virtual events that were not possible 

not too long ago. However, many elements of in-person interactions are missing in a virtual 

environment. For instance, lack of eye contact, noting body gestures, and other cues that are 

more easily assessable in an in-person meeting are missing in a virtual setup. This leads to less 

effective communication. Therefore, utilizing technologies to help people communicate better 

and have more effective interactions in this type of environment is highly desirable. 

Recently, an increasing interest has been seen in the literature for developing 

technologies that are capable of detecting the emotional state of people [12]. Many of these 

methods rely on deep neural network implementation [13] which often is computationally heavy 

and not generally applicable to real-time implementation with limited computational resources. 

On the other hand, some of the reported works in literature employ machine learning algorithms 

that require less computation but often require hand-crafting features, which adds to the 

complexity of the problem [14]. Furthermore, these reported works are generally bound to the 

controlled lab environment [15], where the designed experiments induce desired emotions in 

the participants. These experiments, therefore, have a higher signal-to-noise ratio than a normal 
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interaction in a natural setup. Consequently, the developed algorithms might perform less 

effectively in a more natural setup. Moreover, some platforms were developed for detecting 

nonverbal cues from recorded videos [16] in a noncontrolled environment, but often focused on 

detecting very intense emotions, which are very different than the baseline emotion and hence 

easier to identify.  

An example of using automated solutions to improve interactions is utilizing technologies 

to reduce unintended negative communications among participants. For instance, most 

unfavorable interactions in a workplace are being done unconsciously [17]. Many individuals may 

have unconscious bias against different groups of people. A common method that traditionally 

has been employed to overcome these challenges is through human experts. In this method, an 

expert analyzes the behavior of participants and provides constructive feedback to achieve 

higher-quality interactions. However, this method does not work well in real time. This means 

that this method is appropriate for an overall assessment of an interaction after it is over. 

Furthermore, since a human is involved in this type of assessment, some people may be 

uncomfortable with it and raise some privacy issues. Therefore, employing technology to 

enhance awareness of individuals helps to have more positive interactions. 

The literature has investigated these technologies for various setups. The following are 

examples of literature that use technologies to improve virtual interactions in the most popular 

setups. The target applications were mostly for online settings such as online classrooms and 

online work meetings. 

 Online learning environment 
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In a study [2] on virtual learning setups, researchers demonstrated that tutors who were 

provided with the emotional state of the learners in a virtual classroom used more affective 

elements in their report and wrote more formative and less summative feedback.  

 Online work meeting 

In another study [14], researchers developed a platform that processed audio and video 

data after a video conference session and extracted affective features such as smile and 

attention, as well as speech overlap and turn-taking. By providing feedback after finishing a 

session, participants demonstrated statistically significant improvements in balanced 

participation. 

2.2. Types of cues extracted by algorithms 

2.2.1. Emotional state 

Emotions can be perceived as residing on two distinct dimensions: one concerning the 

degree of pleasure associated with the emotion and the other regarding the level of arousal or 

activation it entails [18]. Recently, literature has shown increasing interest in developing 

technologies capable of detecting people's emotional states [15], [19].  

Emotions mirror responses of the sympathetic nervous system [20]. The Polyvagal Theory 

elucidates how emotional states influence both brain processes and bodily functions [21]. 

Moreover, this theory sheds light on the interplay between measurable physiological states tied 

to the autonomic and central nervous systems and resultant human behavior, proposing a 

mutual relationship between mind and body. It further suggests that environmental factors 

influence behaviors that subsequently impact physiological states. Thus, monitoring changes in 



 

11 
 

bodily physiological markers like respiration rate, heart rate, and perspiration rate can offer 

valuable insights into an individual's emotional state [22]. 

2.2.2. Engagement intensity 

Social Cognitive Theory (SCT) asserts that individuals' interpretations of their 

surroundings can shape their emotional, physiological, and behavioral responses [23], thus 

impacting subsequent behaviors in a reciprocal manner. We define engagement by level of 

interest and cohesion shown by participants and their communication dynamics.  

Multiple platforms were developed for detecting nonverbal cues from recorded videos 

[24], for finding the engagement intensity of people [9], [10], [25], [26]. Other cues such as head 

motion synchronization and empathy in face-to-face communications have been studied [27].  

2.2.3. Rapport building 

Rapport is defined as a friendly and harmonious relationship, especially, “a relationship 

characterized by agreement, mutual understanding, or empathy that makes communication 

possible or easy” [28]. Recent literature has explored monitoring rapport building between 

dyadic pairs. Studies have been done on both human-to-human and human-to-virtual agent 

interactions [29], [30], [31]. Studies in the literature focusing on analyzing rapport utilize various 

modalities such as audio [18], natural language [32] and video [33]. Machine learning approaches 

have been utilized in the literature [29], [33], [34] for analyzing rapport in various communication 

contexts. These algorithms focus on discerning the emotional valence of communication and 

identifying instances of agreement, disagreement, or conflict. Machine learning models can 

leverage audio and visual cues, such as tone of voice, intonation [18] and facial expressions [29], 

to infer underlying sentiments and attitudes. 
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2.3. Offline vs real-time feedback 

A rich body of literature [9], [14], [15], [25], [26], [27], [35], [36], some of which were 

presented in the previous sections, has focused on detecting nonverbal cues in human 

interactions, though only provided off-line feedback to participants about their behavior, once 

the session is over. However, some other studies [37], [38] developed platforms for providing 

real-time feedback to the users using innovative visual representation, though limited to text-

based communication in chatrooms. They analyzed the communication patterns as well as group 

dynamics using their platform. They also analyzed whether the feedback made any distractions 

for users. 

The challenge of providing real-time analysis and feedback using technologies is that the 

required algorithms are extremely computationally demanding. Therefore, it makes it very 

difficult, if not impossible, to utilize common algorithms and methods for the real-time analysis 

of events. Extensive computational load manifests itself differently whether we are dealing with 

an in-person or a virtual setup. Since in an in-person/on-the-go situation, we would typically have 

limited hardware resources, we would like to increase both the computational and hardware 

efficiency to make the solutions viable on wearable devices. In virtual setups, however, access to 

powerful hardware (thorough computers for example) is not typically an issue, but we still need 

to increase the computational efficiency to speed up and facilitate the real-time processing of 

algorithms.  

2.4. Sensor modalities for social cue extraction 

Reported works in the literature use multiple modalities such as audio (tone, pitch, etc.), 

natural language, video, etc. [39], [40]. In [39], researchers used deep neural network to analyze 
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audiovisual data for affect recognition. [40] also uses deep neural networks to analyze the 

speech.  

Other researchers used visual data to analyze the engagement intensity of people in 

different occasions such as a classrooms [9], [10], [25], [26]. They use facial expressions and 

physiological sensor data such as heart rate and employ various machine learning algorithms to 

identify students' engagement levels. Other cues, such as head motion synchronization and 

empathy in face-to-face communication, have been studied using the accelerometer in a lab 

environment [27], and it was shown that the level of empathy is mirrored in the frequency and 

phase of head motion synchronization.  

2.5. Developing technologies to improve interactions in virtual meetings  

 We aim to develop efficient technologies to assist people in having more productive and 

positive meetings in the workplace, for example. We are also interested in improving the quality 

of virtual interactions in an online setting. To this end, we focus on developing algorithms to 

detect important cues from individuals, analyze them in tandem with the cues from other people, 

and feed the processed data back to the participants. 

The feedback to the participants can be placed in offline or online modes. Although 

providing real-time feedback leads to having the most effective solution to increase the quality 

of interactions, offline assessment and feedback to the participants could also enhance 

awareness and improve the interactions. Another important aspect is the type and frequency of 

feedback data to the participants. We are interested in exploring different avenues for providing 

this information to the participants from both psychological and technical points of view.  
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To overcome these challenges, this work aims to develop methodologies for extracting 

social cues from participants in an online meeting in a natural setup without any artificial 

constraints. We aim to do this with the highest computational efficiency to enable future 

implementation of real-time analysis. 

2.6. Effect of physiological and environmental parameters on individuals’ wellness 

The Polyvagal Theory highlights how emotional states affect both brain functions and 

bodily processes [21]. Additionally, this theory illuminates the dynamic interaction between 

measurable physiological states linked to the autonomic and central nervous systems and 

resulting human behaviors, proposing a bidirectional relationship between the mind and body. It 

also suggests that the environment influences behaviors that subsequently impact physiological 

states. Therefore, tracking changes in bodily indicators such as heart rate can yield valuable 

insights into an individual's emotional state. Similarly, monitoring environmental conditions can 

provide information on how the surroundings influence emotional states and other factors that 

directly affect the wellness of individuals. Therefore, a rich body of literature has studied these 

effects on the overall health and wellness of individuals and assistive technologies that have been 

developed for assessing these important parameters [41], [42].  

2.7. Sensor modalities for monitoring physiological and environmental parameters 

Among the sensors modalities, optical methods for measuring heart rate of individuals 

are widely popular [43], [44]. Among different methods, pulse oximetry is popular for measuring 

heart rate and hemoglobin oxygen saturation in a noninvasive manner. It also can be used for 

determining respiratory rates. Some recent literature [45] has suggested using camera feed for 

monitoring heart rate in an online session purely based on visual data. 
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Respiratory rates are also an indicator of different emotional states [46]. A sensor 

modality used for respiratory rate estimation is an inertial measurement unit (IMU) [47]. IMU 

detects chest movements and estimates the breathing rate based on the physical movements. 

Given how indicative of an emotional state a breathing rate can be, this method provides a 

noninvasive approach to the detection of the respiratory rate.  

Another category of sensors is electrodermal activity (EDA) and galvanic skin response 

(GSR) sensors. These sensors have been reported in literature [48], [49], [50] to be used for 

monitoring emotional state of individuals. In other works, skin temperature [51] has also been 

investigated as an indicator of individuals’ emotions. Furthermore, other approaches, such as 

utilizing electroencephalography (EEG) for monitoring the electrical activity of the brain, have 

been explored in the literature [52]. These brain waves can be indicative of the states an 

individual is in and, therefore, a valuable insight into human overall emotions.  

Eye trackers use infrared and visual spectrum to monitor pupil diameter, gaze distance 

and coordinates and eye blinking. These parameters have been shown to be indicative of 

individuals’ emotions as well as the level of engagement among people. Therefore, eye tracking 

is a viable approach for monitoring individuals’ wellness [53].  

Another popular category of sensor modalities in assistive technologies is electrochemical 

sensors. These sensors have a wide range of applications for monitoring physiological as well as 

environmental parameters. For instance, researchers in [54], [55] utilized electrochemical 

sensing to detect cortisol levels in sweat as an indication of stress level. Others utilized chemical 

sensing to analyze biosamples for detecting cancer precursors such as zinc ions [56]. 

Electrochemical methods also provide valuable insight about environmental parameters such as 
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air pollution and particulate matters [57]. Therefore, they facilitate a holistic approach for 

monitoring individuals wellness and how it is affected by various physiological and environmental 

parameters.  

2.8. Electrochemical solutions for point-of-care devices 

Since electrochemical sensors provide a rounded understanding of both physiological and 

environmental parameters and enable studying their effects on individuals’ wellness, they 

provide a unique opportunity for integrating different aspects of health monitoring. Therefore, 

we examined this type of sensors in more detail.  

Electrochemical measurements find extensive utility across scientific, technological, and 

everyday contexts, influencing various aspects of people's lives. They serve multiple purposes 

such as assessing food quality within supply chains [58], [59] evaluating human health through 

analysis of bodily secretions like  salivary biomarkers [55], [60], identifying cancer precursors [56], 

monitoring air quality for toxic gases [61], as well as detecting heavy metals [62]. These 

applications empower individuals to make informed life style decisions, thereby enhancing their 

overall well-being. 

For optimal utilization of electrochemical methods in diverse practical scenarios, it is 

crucial to employ them in compact, power-efficient, cost-effective, and preferably wearable 

devices. However, realizing these capabilities necessitates the development of miniaturized and 

economical electrochemical instruments as opposed to bulky and expensive laboratory 

equipment. In this pursuit, researchers have leveraged CMOS technology to craft small and 

wearable potentiostats [63], [64]. Significant strides have been made to broaden the current 
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readout range [65], reduce power consumption and device size [66], [67], and accommodate 

bidirectional current flow in electrochemical cells [66]. 

Despite the strides made in miniaturizing electrochemical systems, the reduction in 

feature size of modern CMOS technologies has led to diminished voltage supplies. For instance, 

while older 0.5 µm CMOS technology supported a 5 V supply, newer technologies like 180 nm 

only support a maximum of 1.8 V for regular transistors or 3.3 V for high-voltage transistors. 

Consequently, numerous electrochemical reactions cannot be sustained by contemporary 

integrated potentiostats. Moreover, since potentiostats must facilitate bidirectional current for 

redox reactions, only half of the supply voltage is available for each direction in an ideal rail-to-

rail operation. With a 3.3 V supply, this translates to only 1.65 V for each reduction or oxidation 

reaction. Additionally, due to the necessity for the counter electrode in a standard three-

electrode electrochemical cell to exceed the bias potential, only a fraction of this 1.65 V is usable 

as bias potential. However, many electrochemical reactions, such as those for detecting heavy 

metals like Mn, require bias potentials beyond the supported range [68]. Hence, conventional 

CMOS potentiostat designs implemented in newer technologies with lower supply voltages 

cannot support reactions for these elements. This opens a door for further research on 

empowering CMOS potentiostats with modern technologies to resolve the limited supply voltage 

issue. This advancement will allow a more versatile solution that can support a wider range of 

target elements in real-world applications.  

2.9. Summary 

Employing technology to improve individuals’ wellness is of great interest. These 

technologies can be used to monitor different parameters that are indicative of individuals’ 
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wellness. These parameters obtained from features extracted from audio data, visual data, 

physiological and environmental sensors, among others. These technologies help identifying 

parameters related to individuals’ state of wellness including physiological and emotional 

wellness. Furthermore, they provide insight into interactions among people and how these 

interactions have mutual effects on participants’ wellness. Moreover, these technologies can be 

deployed to monitor environmental parameters and study their effects on individuals’ wellness, 

hence supporting more appropriate behavior to improve individuals’ health.  

The areas that require further research include efficient implementation of algorithms to 

enable resource-limited applications. Furthermore, providing higher temporal resolution, which 

enables the study of dynamic changes over time and allows real-time applications, is of high 

interest. Developing devices that are resource-efficient and tackling the limitations of translating 

laboratory instruments to wearable point-of-care devices is also of great importance for 

developing next-generation multifaceted assistive technologies.  
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Chapter 3: Methods and tools for analyzing social interactions 

3.1. Introduction 

Building rapport is an important element in having healthy and productive interactions in 

different situations, including in workplace environments or healthcare sets. This chapter 

presents the preliminary work on designing a framework for collecting data using sensors to infer 

human behavior and emotion and ultimately assess the rapport level in an interaction. The goal 

is to develop algorithms to process raw data and assess rapport building between dyads and 

leverage this information to enhance the quality of interactions in virtual meetings and overcome 

some of the shortcomings of virtual interactions compared to in-person setups. This chapter 

presents the work that has been conducted to converge knowledge across disciplines and identify 

suitable approaches and tools that can be utilized for analysis of important parameters in social 

ineractions. Different design iterations of the platform for conducting experiments and their 

design procedure are discussed. The analysis of tools and viable approaches for designing the 

aforementioned platform is reviewed. The algorithms that were developed, as well as methods 

to increase computational efficiency, are introduced. An analysis of the applicability of 

reinforcement learning (RL) for improving the platform is also presented. Finally, a discussion on 

how this preliminary work shaped the research path is discussed.  

3.2. Sensor modality and data collection 

To implement a platform for analyzing human behavior in a virtual environment, the first 

step is to collect raw data using sensors. This collected data will be processed down the line to 

infer human behavior and emotion. In this project, aiming at analyzing virtual meetings, camera 

data was employed for collecting visual data. Visual cues such as facial expression plays important 
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role in building rapport [69]. The goal of this project was to explore whether the visual data 

obtained by a camera can be utilized to extract information about affect and rapport. Camera 

provides rich data to work with for analyzing nonverbal cues. Moreover, in a virtual setup, a 

camera is often available, and thus, visual data can be obtained without the need for extra 

sensors, which makes this platform more widely accessible. In this work, different options for 

utilizing camera data were studied. Moreover, various features extracting from camera were 

studies to analyze human behavior.  

3.3. Visual data for assessing affect and rapport 

Literature suggests [69], [70] visual data such as direction of head and eye gaze as well as 

body pose including leg and arm posture are important elements in building rapport. Other 

nonverbal elements such as facial expressions are also important.  

Among these visual cues, some elements like leg posture are not typically accessible in a 

virtual meeting. Some other features, however, can be collected using a camera in a virtual 

meeting which includes eye gaze, head movements and action units (AUs). AUs are the elements 

in the Facial Action Coding System (FACS) [71], [72] which is a system to taxonomize human facial 

expressions. This section introduces the analysis of tools for capturing visual data and presents 

an in-depth comparison of the options and how they can be integrated in a custom-built 

platform. This platform has been developed to collect data, process it and feed the processed 

data back to participants in a meeting.  

3.3.1. Monitoring eye contact 

Making eye contact is an important element of an effective communication [73]. It is an 

indication of engagement and attention levels of the audience. However, eye contact is missing 
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in a virtual environment, and therefore, participants miss an important cue in communication. 

Thus, one of the objectives of this research work was to utilize visual data to determine if 

participants in a virtual meeting were looking at each other and hence, they established “virtual 

eye contact” during the interaction. In this section, the options for monitoring eye gaze are 

analyzed and a comparison is presented. The methods that were developed for integrating eye 

gaze monitoring tools into our platform are explained.  

The goal in this work was to implement a platform where participants in a virtual meeting 

can benefit without the need for an extensive setup on their end. For instance, utilizing special 

hardware/camera, which is often equipped with infrared detection and proprietary software, 

provides very accurate eye gaze data and improves the result of any analysis using this data. 

However, this special equipment is not typically readily available for users who use their laptops, 

for example, to attend a virtual meeting. Therefore, the objective in this research work was to 

limit the experiments to using hardware that is available to an average user, namely a webcam 

only. This constraint makes the platform usable without any special equipment and only require 

participants to install a piece of software that is developed for integrating different elements of 

the platform.  

After analyzing different options, we chose GazePointer [74], which provides sufficient 

accuracy as an open-source software for detecting eye gaze on a regular 14” display. To facilitate 

this experiment, we developed a user interface in HTML as shown in Figure 3. 1. 
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Figure 3. 1. Developed user interface in HTML that communicates with GazePointer and displays 
the coordinates of a user's gaze on the screen. The experiment was performed on a 14” display. 

The HTML page communicates in the backend with GazePointer and displays the location 

at which a person is looking at on display. The HTML page also displays the coordinates of head 

location as well as yaw, pitch, and roll to monitor head movements. Despite the relatively good 

accuracy of GazePointer, a few disadvantages resulted in exploring other options to replace 

GazePointer. First, GazePointer requires a lengthy calibration process at the start of each session. 

Second, the result is very sensitive to the location of the head in front of the camera and might 

not be useful for a normal virtual session where participants move relative to the camera within 

the normal range of human movements. Third, it lacks support for analyzing prerecorded videos 

as well as videos that manifest multiple people. Finally, there is a lack of support for capturing 

action units (AUs), which are essential for detecting facial expressions [71]. It is worth mentioning 

for the case of real-time monitoring of participants in a virtual meeting, all different eye tracking 
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software require a dedicated camera because Windows settings do not allow two applications 

such as Zoom and GazePointer use one camera simultaneously.  

3.3.2. Framework for processing action units and head movements using 

OpenFace 

 OpenFace [75] is open-source software that is slightly less accurate in eye gaze detection 

than GazePointer but without all the issues stated section 3.3.1, such as the need for a lengthy 

calibration process and the restriction of movements in front of the camera. This software 

provides an opportunity for seamless integration with the developed platform for analyzing the 

data using Python scripts. Besides eye gaze and head location/orientation, OpenFace provides 

information about action units. It also allows using recorded video and analyzes multiple people 

in one scene.  

Since OpenFace allows the analysis of recorded videos, it facilitates analyzing the data 

from all participants on a single computer instead of analyzing data on each node. This method 

reduces the complexity of the experimental setup for each user as most of the heavy lifting is 

being done on a central node. Therefore, only a minimal software setup is required on each node. 

The approach to this method was recording the screen in small time frames and analyzing them 

immediately afterward. This method eliminates the need for a second camera for real-time 

analysis. The bottleneck, however, becomes the latency of processing the videos. Different 

methods for recording the screen and feeding the recorded data to OpenFace were explored. 

Namely, Python was employed to automatically use Camtasia [76], a third-party software, to 

record the screen and feed it back to Python. The Python script controls and sends commands to 

Camtasia using the command terminal. Another method that was used to achieve higher speed 
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was using Python directly for capturing screenshots and feeding the sequence of screenshots to 

OpenFace. The entire software backend was integrated and worked seamlessly and 

automatically. The Python script uses ZeroMQ [77] to communicate with OpenFace.  

The rate of taking the screenshots and processing them through OpenFace was optimized 

to achieve the lowest latency. Figure 3. 2 shows the analysis for recording and processing the 

data for multiple subjects. The fastest solution we achieved was ~6 seconds latency for analyzing 

4 people on the screen. This latency does not include the post-processing of our algorithms on 

the data obtained from OpenFace.   

 

Figure 3. 2. Analyzing time delays on different methods of recording and processing the data 
using OpenFace. Our Python script uses ZeroMQ protocol to communicate with OpenFace back-
end. 

Besides relatively slow processing time, one downside of OpenFace is its low accuracy in 

eye gaze detection, especially in the vertical direction. To illustrate this limitation, Figure 3. 3 

shows the result of the experiment where the eye gaze direction was assessed while looking at 

four corners of a 23-inch display. We were able to detect eye gaze in the horizontal direction with 

high accuracy, but the accuracy in the vertical direction was limited. This is a typical issue in eye 



 

25 
 

gaze detection systems as the movement of eyes in the y direction is more limited than in the x 

direction. Moreover, the vertical movement of the eyes is occluded by eyelids. This was a 

limitation that we observed in all the webcam-based eye gaze detection systems that we 

experimented with. It is worth mentioning that this experiment was focused on four extreme 

corners of a 23-inch display, and the result will be degraded when we want to use smaller screens 

or if we want to follow eye gaze in smaller range within a display. Therefore, without using 

specific hardware components for eye gaze estimation, we can only estimate the “virtual eye 

contact” for two people in a virtual meeting where the faces are displayed side by side on a 

screen.  



 

26 
 

 

3.4. Preparing the platform for conducting experiments 

In earlier sections, we discussed developing software for processing data and establishing 

communication between this software and other open-source software. We also briefly 

 

 

Figure 3. 3. Experimental results for estimating eye gaze when looking at four corners of a 23-
inch display. (a) displays gaze angle in x and y direction vs video frames where the video was 
recorded at 30 fps. (b) shows XY coordinate of the estimated eye gaze on a 2D plane. 
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discussed the web interface for running experiments for eye gaze detection. In this section, we 

present in more detail the considerations we had for developing the front-end and back-end for 

our experiments. The goal of this effort was to develop a dashboard where the data was 

effectively communicated to meeting participants. Efficient methods for data management and 

storing data in databases were also explored.  

For visual display in the dashboard, the idea was to feed the processed data back to the 

users in an efficient and easy-to-understand way. The goal was for data not to distract 

participants, but rather let them take the key points away with a glance. Using Python, HTML and 

CSS, we developed the front-end of the display dashboard. We explored several options and 

ended up designing a split layout where the information is presented on both sides of the HTML 

page. The Zoom window was then laid out on top and in the middle of the page. We chose pie 

charts to include data about the participation of users in the conversation and bar charts for the 

dynamic of conversation between people. We also used Sankey diagrams to show the rapport 

building between each person and other participants as well as showing the level of affect for 

that participant. Figure 3. 4 shows an instance of the dashboard. The instances on the application, 

as well as the size of the text, are modifiable. Different options such as graphs with or without 

text and different layouts such as horizontal split of the display are selectable. Charts without 

text could convey the message with less distraction and are useful once the participant gets 

comfortable with the platform. 

MySQL was used to manage the database running on a central node or server. The central 

node sends/receives data to/from all connected nodes through the local network. This 
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connection allows real-time communication between nodes and real-time updates of chart data 

on the dashboard display.  

To improve the platform's accessibility, we also included color palettes suitable for color 

blindness cases. As for the networking, we used a central node to host the database and 

employed the MySQL protocol to connect different nodes. As of now, all the nodes need to be 

on a local network for the database to run effectively. Hosting the database on the web or a cloud 

to allow participants to connect from any location remains for future work. 

 

Figure 3. 4. Concept illustration of the split layout on the web interface with a Zoom window 
overlayed on top. 

 

3.5. Exploring possibilities with reinforcement algorithms to enable person-specific 

recommendation 

In the platform discussed so far, we ideally are interested in implementing a dynamic 

feedback system where the system analyzes the data and provides each participant with 

personalized recommendations to improve the quality of the interaction. To implement this 



 

29 
 

system, we intended to leverage reinforcement learning (RL) algorithms. Among all different RL 

methods, we are interested in methods that 1) do not require a model, 2) learn at each time step 

(as opposed to updating the parameters at the end of the experiment), and 3) provide control 

opportunity (as opposed to merely learning). After analyzing all the options with respect to these 

criteria, we created a short list of methods, namely SARSA, Expected SARSA, and Q-learning [78]. 

We analyzed the suitability of these options for this work. For example, Expected SARSA provides 

a more stable update target and lower variance, but it is more computationally expensive 

compared to SARSA as it requires the calculation of the expected estimate of the next action 

value for every state. Given the fact that we aimed for a real-time application where the speed 

of processing using a regular personal computer is a bottleneck, we chose the implementation of 

the SARSA method.  

Another factor that is important is using approximate solution methods rather than 

tabular methods, as we typically do not have prior information about each possible state, and 

even if we did, constructing huge tables of states is not desirable in these applications. Moreover, 

using function approximation makes the learning methods applicable to partially observable 

problems which we expected to deal with when considering human involvement in our control 

system. Therefore, we chose to use approximation solution methods with neural networks (NN) 

as a function approximator.  

To implement the quantized RL algorithm, we decided to apply the quantization 

technique to each main block of the algorithm and fine-tune it before implementing the complete 

solution. To this end, we started with the function approximator. To implement a quantized NN, 
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we took the standard NN problem of classifying hand-written digits and implemented our 

solution with the quantization technique.   

Table 3.1. Classification accuracy of NN with quantized parameters. 

 

To begin with this phase, extreme cases of quantization which is binarization has been 

studies. Binarized version of NN was investigated first since its implementation is simpler than 

multilevel quantization and also supportive literature [79] exists on this topic. In this method, all 

the weights of the NN were replaced by -1 and 1. For the activation function, sign function is ideal 

but its derivative function causes problems in training a NN as it is equal to zero almost 

everywhere. Therefore, to mimic the sign function, we used sigmoid function with a large 

multiplier in its argument. This allows us to simulate the sign function behavior while still be able 

to take derivative of the activation function in backpropagation procedure. As shown in Table 

3.1, the accuracy of 85% was obtained while all the weights have been binarized and the 

activation functions were nearly binarized as discussed above. This served as proof of concept 

that high precision is not always necessary for weights and activation functions in a NN. In the 
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next step, we replaced sigmoid functions with actual sign function to fully binarize the network. 

The accuracy of this design dropped to ~50%. To improve the results, we explored straight 

through estimator for implementing back propagation. In this method [79], the derivative of cost 

function ( ) during backpropagation gets replaced by ∗ 1| |  where J is the cost function, ϴ 

is the weights and g is the activation function. What this means is that instead of calculating the 

derivative of the cost function with respect to the weights (ϴ), the derivative is calculated with 

respect to the activation function which in this case is a sign function. Then the result is multiplied 

by 1| | which equals to 1 in the vicinity of origin and 0 everywhere else. In other words, the 

backpropagation is calculated with this assumption that derivative of the sign function is 1 close 

to origin and 0 elsewhere.  

To calculate the derivative of cost function with respect to the activation function, the 

following formula was derived.  Given that the forward path is represented by (3.1), 

 𝑜𝑢𝑡 = 𝑔 𝑎( ). 𝜃( ) . 𝜃( ) , (3.1) 

We assumed : 

 =  𝜃 (3.2) 

And we know: 

 (𝑓 )′ 
( )

=
( ( ) )

 (3.3) 

Applying the chain rule and (3.3), the following expression was obtained. 

= − ∑ ∑ 𝜃( ) log ℎ ( ) + ℎ ( )

( )

( )
− 𝜃( ) log 1 − ℎ ( ) + 1 − ℎ ( )

( )

( )
+

∑ ∑ ∑ 𝜃
( )

= − ∑ ∑ 𝜃 𝑙𝑜𝑔ℎ ( ) − log (1 − ℎ ( )) + ∑ ∑ ∑ 𝜃 (3.4) 
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(3.4) was plugged into the algorithm. The accuracy of the results did not improve, but the 

computation overload was much less because the operations for calculating the derivative in 

backpropagation were just replaced with simpler mathematical equations as discussed above in 

(3.1) - (3.4). 

Despite the potential we see and the progress we made with applying Reinforcement 

Learning to this problem, a major bottleneck remained the amount of data we needed for 

training the algorithms. Upon further investigation on implementing SARSA, we noticed with 

current human subjects and experiments, it was not feasible for us to follow this path for now. 

However, it remains a viable path to pursue in the future.   

3.6. Conclusion and discussion 

Given the findings in the preliminary work presented in this chapter, we organized the 

bulk of this thesis work on the following topics. The core of behavior monitoring in this framework 

is having a reliable assessment of the “affect” level of each individual. In psychology, affect is 

described as “the underlying experience of feeling, emotion, attachment, or mood” [80]. A valid 

assessment of affect in individuals may indicate the effect of the conversation on individuals over 

the course of a meeting. Such an assessment also gives clues to other participants, which may be 

utilized to improve the quality of interaction. Another important factor in assessing the dynamic 

of any conversation is assessing the rapport building between participants. Monitoring the 

rapport building between dyads in a conversation is a very important parameter that gives an 

understanding of the quality of interaction. Therefore, the next chapter is focused on assessing 

the effect and rapport in virtual conversations to foster higher quality interactions in virtual 
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meetings and improve the well-being of the participants. This, in return, facilitates the 

productivity of meetings or online learning setups.  
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Chapter 4: Developing platforms for monitoring affect and rapport 

4.1. Introduction 

To ensure productive work meetings and effective learning environments, it's crucial to 

pay attention to non-verbal cues from our audience such as auditory or visual cues. These cues 

offer insights into people's emotional states and engagement levels, facilitating more impactful 

communication. However, individuals vary in their social intelligence, affecting their ability to 

interpret these cues accurately. This discrepancy directly influences the quality of interpersonal 

interactions. 

This challenge is amplified in virtual settings, where remote collaboration has become 

increasingly prevalent. Despite advancements, virtual platforms often lack the richness of in-

person interactions, such as eye contact and body language observation, making communication 

less effective. Consequently, there is a growing need for technologies to enhance communication 

and interaction effectiveness in virtual environments. 

Recent literature reflects a surge in interest in developing technologies capable of 

discerning people's emotional states as well as rapport building among individuals. Many of these 

approaches rely on computationally intensive deep neural networks, limiting real-time 

implementation, especially with constrained computational resources. Alternatively, some 

studies utilize machine learning algorithms requiring less computation but necessitating manual 

feature engineering, adding complexity. Moreover, these methodologies often operate within 

controlled lab environments, where experiments induce specific emotions, resulting in a higher 

signal-to-noise ratio than natural interactions. As a result, algorithms developed under these 

conditions may exhibit reduced performance in more natural settings.  
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In this work, we developed a framework that utilizes neural networks to analyze the 

individuals’ affect and rapport building in groups during virtual meetings. The contributions of 

this work are as follows: 

 Analyzing affect and rapport where individuals are holding regular work meetings in 

a natural setup without acted sessions.  

 Classification of subtle changes towards positive or negative affect as opposed to 

extreme cases. 

 Analyzing affect and rapport  with high temporal resolution, which enables providing 

real-time analysis and feedback. 

 Analyzing affect and rapport in multiperson groups. 

 Implementing neural network with minimum number of layers and input nodes by 

reducing the feature space and using raw features as opposed to hand crafting the 

features. 

To the best of our knowledge, this work is the first to achieve high accuracy while 

satisfying all the requirements specified above. In this chapter, we present the details of our 

methods in dataset pteparation and data analysis. The results for analyzing rapport and affect 

are presented in different subsections. We conclude the chapter with summarizing the work and 

discussion on our findings. 

4.2. Background and related works 

4.2.1. Related work on affect monitoring 

According to the American Psychology Association, together with ‘cognition’ and 

‘conation’, affect is one of the three identified components of mind [81]. According to [81], affect 
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is defined as “any experience of feeling or emotion, ranging from suffering to elation, from the 

simplest to the most complex sensations of feeling, and from the most normal to the most 

pathological emotional reactions. Often described in terms of positive affect or negative affect, 

both mood and emotion are considered affective states.” Reported works on affect recognition 

in the literature use multiple modalities of sensors and different types of machine learning 

algorithms some of which were explained in chapter 2. These modalities include audio, visual and 

natural language. In one study [39], researchers utilized deep neural networks to analyze 

audiovisual data for affect recognition, showcasing a significant improvement in emotion 

recognition performance compared to traditional methods reliant on handcrafted features. 

Similarly, another study [40] employs deep recurrent neural networks to analyze speech. Despite 

demonstrating promising results, these approaches are computationally intensive, which hinders 

their real-time application where computational resources are constrained. 

Another work in [16] compares using logistic regression with linear support vector 

machine (SVM) to analyze videos. By extracting the action units (AUs) from the videos and 

analyzing them with these classifiers, the researchers were able to recognize disrespectful 

interactions with accuracy of ~62%. In [82], the researchers built on [16] and by adding audio 

features such as pitch and intensity, an accuracy of 79.86% was achieved in detecting 

disrespectful vs respectful interactions using logistic regression model. 

Other researchers focus on visual data to gauge the engagement intensity of individuals 

in various settings, such as classrooms [9], [10], [25], [26]. Additionally, cues such as head motion 

synchronization and empathy in face-to-face communication are investigated using 
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accelerometers in a lab environment [27], revealing that empathy levels correlate with the 

frequency and phase of head motion synchronization. 

This collective body of research motivates us to explore the potential of using visual 

features in natural settings, as opposed to controlled lab experiments, to analyze audience affect. 

To achieve this without relying on handcrafted features and to reduce computational complexity 

compared to deep neural network approaches, we opt to implement neural networks with only 

one hidden layer. Our objective is to classify affect in a natural meeting environment where 

extreme emotions are less prevalent, training the classifier to detect subtle shifts in participants' 

emotions. Throughout this dissertation, by “participants”, we refer to people who were subject 

to monitoring their emotions and behavior and not the labelers and the study team who designed 

and conducted the experiments 

4.2.2. Related work on rapport monitoring 

Rapport, the establishment of a harmonious and empathetic connection between 

individuals, lies at the heart of effective communication and collaboration across diverse contexts 

from personal to professional interactions. Particularly, it is the cornerstone for building 

productive and impactful meetings across professional settings. Rapport encompasses the 

establishment of trust, understanding, and mutual respect among participants, fostering an 

environment conducive to open communication, collaboration, and creativity. The presence of 

rapport can greatly influence the dynamics of a meeting, shaping the level of engagement, the 

quality of discussions, and ultimately, the outcomes achieved. Research has consistently 

highlighted the significant impact of rapport on team performance, decision-making processes, 

and overall meeting effectiveness [83]. In this context, recognizing the importance of rapport and 
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its role in facilitating productive meetings is essential for organizations seeking to optimize their 

communication strategies and maximize team synergy. 

Building rapport in virtual environments presents unique challenges compared to face-

to-face interactions [84]. One of the primary obstacles is the lack of non-verbal cues, such as body 

language and eye contact, which are integral to establishing trust and connection. In virtual 

meetings, participants may find it challenging to interpret subtle cues or accurately gauge the 

emotions and intentions of others, leading to potential misunderstandings or miscommunication. 

As a result, individuals may struggle to develop the same level of rapport in virtual environments, 

requiring deliberate efforts and strategies to overcome these challenges effectively. 

A body of work in this area focuses on recognizing rapport levels in the human interaction 

with a virtual agent [31], [32]. Others aim to analyze rapport levels in human-to-human 

interaction [29], [85] in dyadic pairs. Despite all the advances in this area, interpreting rapport in 

high temporal resolution and among multi-person groups is missing in the literature, leaving 

rapport analysis for dyadic conversations that is done for an entire session of interaction (as 

opposed to fine temporal resolutions). Therefore, granular information about the dynamics of 

conversations is absent in these studies. The focus in this work is analyzing rapport in multiperson 

groups and with high temporal resolution. 

4.3. Dataset preparation 

4.3.1. Collecting and preparing  the data for analyzing affect 

To perform this experiment, we recorded five work group meetings with the duration of 

approximately 40 minutes to 100 minutes with an average of ~62 minutes each. The first two 

meetings had 5 participants whereas the last three had 4 participants, both male and female. 
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Figure 4.1 shows a snapshot of one of these recording sessions in Zoom [86]. This study has been 

reviewed and approved by the Institutional Review Board (IRB) office at Michigan State 

University. 

 

Figure 4. 1. An example of the setup for collecting data during a virtual meeting using Zoom. © 
2023, IEEE.  

The labels were assigned to each segment in which a participant was speaking. To simplify 

the labeling process, a Matlab script was developed to identify the conversation segments in each 

recording and generate time stamps accordingly. The recorded video files were cut into 2522 

segments using the MATLAB script based on the generated time stamps. For labeling the cut 

segments, a graphical user interface (GUI) was developed using the App Designer tool of MATLAB 

2019b. This GUI plays each segment one by one and lets the labeler assign the proper label from 

within the same GUI. Figure 4.2 shows the appearance of this GUI which greatly speeds up the 

labeling process [87]. 
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Figure 4. 2. Developed graphical user interface for labeling ‘affect’ [87].   

4.3.2. Labeling the affect dataset 

Three labelers were trained to label the affect level of each participant for each segment 

of the recorded meeting. The GUI introduced in the prior section was used to assist with labeling. 

The labelers could play each segment and label it from within the app. The segments were played 

both in the order of occurrence and randomly and labeled separately. In this work, however, we 

focused on the labeling that was done in order and left the analysis of labeling the segments in a 

random fashion for the future work. The labelers were instructed to label the segments as 

positive, neutral, or negative. The app outputs a text file which contains the labels for each video 

segment. After completion of the labeling process, the labels that had a majority agreement 

among the labelers were kept, and the rest were disregarded. As seen in Figure 4.3, in 59.9% of 

datapoints, all three labelers assigned the same labels. For 36.8% of datapoints, only two labelers 

assigned the same label. And in 3.3% of datapoints, none of the labelers assigned the similar 

label. Therefore, we kept 96.7% of datapoints to which at least two labelers assigned a similar 

label and disregarded the remaining 3.3% of datapoints.  
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Figure 4. 3. percentage of datapoints that labelers agreed on a label. 

A Python script then reads the labels and assigns them to the corresponding features and 

makes the dataset ready to be used with the classification algorithms. The details about features 

and algorithms will be presented in the methods section later in this chapter. 

4.3.3. Collecting and preparing the data for rapport monitoring 

For this experiment, we recorded twenty meeting sessions, of which eight meetings had 

three participants and twelve meetings had four participants. The duration of the sessions was 

between 18 minutes and 30 minutes, with an average of ~22 minutes. A total of 35 participants 

(people who were recorded and not the labelers and the study team who designed and 

conducted the experiments) were recruited for holding meetings. Tables 4.1 and 4.2 show the 

gender and age distribution of the participants. More than 90% of participants were in the age 

group of 18-34 years old. 
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Table 4.1. Gender distribution of participants. 

Gender Count 

Male 21 

Female 12 

Other 2 

Total 35 

 

Table 4.2. Age distribution of participants. 

Age group Percentage 

25 - 34 48.57% 

18 - 24 42.86% 

35 - 44 8.57% 

Total 100.00% 

 

Tables 4.3 and 4.4 show the distribution of the participants' education level and 

occupation status. More than 90% of participants had passed at least some college courses or 

had college or professional degrees. 
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Table 4.3 . Distribution of education level of participants. 

Education level Count  

Some college, no degree 10 

Bachelor's degree (e.g. BA, BS) 10 

Master's degree (e.g. MA, MS, MEd) 10 

Doctorate or professional degree (e.g. MD, DDS, PhD) 3 

High school degree or equivalent (e.g. GED) 1 

Do not wish to answer 1 

Total 35 

 

Table 4.4 . Distribution of occupation status of participants. 

Occupation status Count 

Student 29 

Employed full-time (40 or more hours per week) 3 

Employed part-time (up to 39 hours per week) 3 

Total 35 

 

 The 3-person groups formed three dyadic pairs and the 4-person groups formed six 

dyadic pairs for the purpose of analyzing rapport in these groups. Figure 4.4 shows a snapshot of 

one of these recording sessions in Zoom. This study has been reviewed and approved by the 

institutional review board (IRB) office at Michigan State University. 
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Figure 4. 4. An example of the recording session for collecting data during a virtual meeting.  

To facilitate the labeling process, the Matlab script that was mentioned in section 4.3.1 

was used to segment video files in 30-second windows as we were interested in analyzing the 

rapport in fine-grained time segments.This would allow us to analyze the dynamics of 

interactions during each session. For labeling these video segments, a graphical user interface 

(GUI) was developed using Python and PyQt. This GUI plays each segment of videos one by one 

and lets the labeler assign the proper label from within the same GUI. This GUI has features that 

facilitate faster and easier labeling processes, such as navigating between segments or skipping 

some segments. Figure 4.5 shows the appearance of this labeling assistant GUI which greatly 

smoothed the labeling process. 

 

Figure 4. 5. Developed graphical user interface for labeling rapport. 
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4.3.4. Labeling the rapport dataset 

Four labelers were recruited to label the 30-second segmented videos. The labelers were 

instructed to label each dyadic pair, three or six pairs for three-person and four-person groups, 

respectively. They were instructed only to label the dyadic pairs in which at least one person 

speaks for more than 10 seconds. The labelers were provided with the definition of rapport. To 

have consistency among the labelers, they were instructed to look for the parameters shown in 

Table 4.5. These parameters are derived based on the literature presented in [88], [89] and with 

the method introduced in [87]. However, they were instructed not to overemphasize these 

parameters and to rely on their first impressions and general intuition to gauge the rapport 

building in the groups. 

Table 4.5. Parameters of interest in gauging rapport. 

Well-

coordinated 

Boring Cooperative Harmonious Unsatisfying Uncomfortable 

Cold Awkward Engrossing Unfocused Involving Intense 

Unfriendly Active Positive Dull Worthwhile Slow 

Given the subjective nature of these labelings, and based on our previous experience that 

many of the labelers tend to label instances as ‘neutral’, we labelers to label each segment on 

seven-point Likert scales where -3 represented extreme negativity and +3 represented extreme 

positivity as shown in the GUI in Figure 4.5. This was purely meant to have more labels other than 

‘neutral’ or zero and then we binned these labels in only two classes of high and low rapport 

based on the statistical analysis presented in the Method section. 
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4.4. Method and results 

4.4.1. Extracting Facial Action Units 

In this work, we used facial action units (AUs) as features to analyze ‘affect’. AUs are 

representative of movement of individual facial muscles and are commonly used as indicative of 

expression of emotions [90], [91]. Figure 4.6 shows some examples of action units [92]. To extract 

AUs, we used OpenFace [93], [94], [95], an open source software widely used by the community. 

OpenFace extracts a subset of AUs comprising intensity of 17 different AUs. These 17 features 

were used for classifying different affect levels in the various virtual meetings.  

 

Figure 4. 6. Examples of facial action units [92]. 

4.4.2. Classification of affect 

As described earlier, for classifying affect, the video segments were labeled as positive, 

neutral, and negative. We trained our classifier only on positive and negative labels as they are 

more reliably classified. In order to avoid developing the bias toward any of the classes during 

training, we balanced the dataset to have equal number of datapoints for positive and negative 
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labels. For the classification, to avoid manually crafting the features for the algorithms, we chose 

to use neural networks as opposed to other machine learning algorithms such as logistic 

regression or SVM. Moreover, to avoid heavy computational load as well as reducing the chance 

of overfitting, we chose to implement a neural network with only one hidden layer. We first 

implemented the neural network with all the 17 AUs as the input features. The videos were 

recorded at the rate of 30 fps. Although the change in the facial expression is not fast and our 

analysis does not need 30 fps, we did not downsample the recordings for now. Downsampling 

could be further investigated in the future. We just used the fully recorded data for this 

experiment. For each AU, the code takes the average of the values over the span of the start to 

stop time of each video segment. Therefore, for each AU, one value is assigned to each video 

segment.  With all the 17 AUs used in the classifier, the design suffered from significant variance 

where despite using regularization, training accuracy of 92.9% was achieved while the testing 

accuracy was only 60.7%. To solve this problem, we employed principal component analysis 

(PCA). As shown in Figure 4.7, to retain at least 80% of variance, we projected the feature space 

to only 10 features and reformed the neural network with 10 input features and 10 nodes in the 

hidden layer.  
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Figure 4. 7. Retention of variance vs number of principal components. By choosing 10 principal 
components, more than 80% of the variance has been retained © 2023, IEEE. 

4.4.3. Results  for classifying affect  

The neural network was trained with 4-fold cross validation and the training accuracy and 

testing accuracy of 81.1% and 76.8% were obtained, respectively. Considering that we performed 

our experiments on natural setups without any constraints on participants, and considering that 

we did not aim at only classifying extreme cases such as disrespectful moments, 76.8% testing 

accuracy using a neural network with only one hidden layer is achieved. To the best of our 

knowledge, this result has been achieved for the first time in literature and paves the path toward 

real-time analysis of virtual meetings using local computational resources on a typical laptop for 

example. Table 4.6  summarizes the results of these experiments. 

Table 4.6. Training and testing accuracy of affect with and without implementation of PCA © 
2023, IEEE. 

 Training accuracy Testing accuracy 

Full feature space (17 AUs) 92.9% 60.7% 

Reduced feature space (PCA with 

10 components) 

81.1% 76.8% 
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4.4.4. Extracting gaze and head orientation 

For the purpose of analyzing rapport, we extracted eye gaze and head orientation as well 

as head coordination in addition to AUs. These features were extracted using OpenFace as well. 

We were interested not only in these features, but more so on the synchrony of these features 

among dyadic pairs which is a more indicative of rapport building in groups. As a measure of 

synchrony, we used dynamic time warping (DTW). DTW is a measure of similarity between two 

temporal sequences. Similar to Euclidean distance, it measures the distance between two 

vectors. However, unlike Euclidean distance, it does not measure the distance between two 

vectors point by point. It takes into account the distance between neighboring points and 

chooses the minimum value for each point. Figure 4.8 shows the comparison between Euclidean 

distance and DTW. This method is widely used in applications such as language processing. It can 

be used for comparing two instances of data that are noisy or have different lengths. For instance, 

the similarity between one sentence pronounced by two people can be identified using DTW.  

 

Figure 4. 8. Comparison between Euclidean distance and DTW [96] . 

 In this work, synchrony features were constructed for each of the base features, namely, 

eye gaze, head orientation, head coordination and action units. We used a Sakoe-Chiba band of 
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three seconds to calculate DTW and used it as a set of input features to our algorithm. The full 

list of features are shown in Table 4.7. 

Table 4.7. Full list of features for analyzing rapport building in groups. 

Category Comment Number of components 

Eye gaze x, y, z coordinates for each eye 

angle (x, y) 

multiply by 2 (for each pair) 

8 x 2 = 16 

Head coordination x, y, z coordinate 

multiply by 2 (for each pair) 

3 x 2 = 6 

Head orientation Yaw, pitch, roll 

multiply by 2 (for each pair) 

3 x 2 = 6 

AUr Intensity of AU 

multiply by 2 (for a pair) 

17 x 2 = 34 

AUc Presence of AU 

multiply by 2 (for a pair) 

18 x 2 = 36 

DTW Constructed between two participants (in 

each pair) for gaze, head orientation and 

coordination, AUr and AUc  

5 

Total  103 
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4.4.5. Classification of Rapport 

The statistics of the rapport labels are presented in Figure 4.9. 2674 valid labels were 

generated. The main challenge in this dataset is the imbalance of data among classes. Therefore, 

we chose to bin high and low rapport in a way to have a more balanced dataset. This greatly 

helped train the algorithms. This graph also shows that the choice of having a seven-point scale 

for labeling helped the labelers to identify more instances of ‘minor positivity’ (indicated by scale 

‘1’), which otherwise would be labeled as neutral and would skew the dataset massively.  

 

Figure 4. 9. Distribution of the dyadic rapport labels. The boxes show the group of labels used 
for high and low rapport. 

4.4.6. Results  for classifying rapport  

A neural network with a single hidden layer and two output classes was implemented for 

classifying high and low rapport. The first experiment was done by the full feature set. Given a 

total of 103 features were used in this experiment, the rule of thumb for the required number of 

data points is: 

 N = 10 x M/α (4.1) 
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where N is the number of data points, M is the number of parameters and α is 

overparametrization ratio. We used 10 nodes in the hidden layer, therefore the number of 

parameters, M, is calculated as follows: 

The number of parameters between the input and the hidden layer = 103 x 10 + 10 = 1040. Note 

that we added ten parameters for the bias nodes. Likewise, the number of parameters between 

the hidden layer and the output layer = 10 x 2 + 2 = 22. Therefore, a total of 1062 parameters 

should be trained. Let α = 5, from (4.1) we know at least N =10 x 1062/5 = 2124 data points are 

needed for training the network. Given the total number of 2674 data points we had, the concern 

was overfitting and our experiment results shown in Figure 4.10 confirms it as seen in the data 

for full set of features (the last two bars in the figure). Therefore, the feature space should be 

reduced to achieve more generalization. To this end, a study on each feature types were 

performed to identify the most relevant features. The idea was to keep the five DTW features as 

they are indicative of synchrony between participants. Then, each type of feature was added to 

the analysis to examine their impact on the results. The accuracy results for rapport classification 

of the dyads are shown in Fig. 4.9. The experiments were repeated 20 times, and each time, 

initialization of parameters was repeated in the training process. The same 80% of data chosen 

randomly was used for training and the remining 20% of the data for testing purposes in all these 

20 runs. The average, along with the maximum and minimum error bars, are shown on the graph 

for different combinations of features as well as for the full set of features.  
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Figure 4. 10. Training and testing accuracy of rapport for different features. The right most 
column shows the result for the full set of features. 

Since accuracy measures how often a classification model is correct in general, it is not a 

good metric when a dataset is imbalanced among different classes [97]. Since the dataset in this 

experiment was not fully balanced, precision and recall were calculated as well. Precision in this 

case is the measure of what portion of the items that have been detected as high rapport are 

correctly predicted [98]. In other words, it shows how often is the prediction correct when 

predicting a target class [97]. The formula for calculating precision was: 

 Precision = Tp/(Tp+Fp) (4.2) 

where Tp is true positive and Fp is false positive among the predicted labels. Recall measures 

what portion of all high rapport data points is correctly predicted [98]. In other words, it is a 

measure of how well all the instances of a target class is predicted [97]. It was calculated using 

the following formula: 

 Recall = Tp/(Tp+Fn) (4.2) 
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where Fn represents false negative predictions. Figure 4.11 and Figure 4.12 represent the results 

for precision and recall in these experiments 

 

Figure 4. 11. Precision for the rapport classification. 

 

Figure 4. 12. Recall for the rapport classification. 
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Another commonly used metric that often is used to take into account both precision and 

recall is F1 score [99]. This metric was calculated using the following formula, and the results are 

shown in Figure 4.13. 

 F1 = 2*(precision*recall)/( precision+recall) (4.3) 

 

 

Figure 4. 13. F1 score for the classification results. 

According to the results of our experiments, we noticed that head coordination (poseT) 

and presence of action unita (AUc) are more significant than head orientation (poseR) and 

intensity of action units (AUr), respectively. Therefore, we did not include them directly as 

independent features. However, they still indirectly contribute to the classification because DTW 

features derived from those metrics have been utilized in the feature space. By eliminating these 

features, the number of features reduced from 103 to 63, which would help to the generalization 

of the classifier. These 63 features include eye gaze, head coordination and AUc, for both 

individuals constructing a dyadic pair. They also include five DTW features for each of eye gaze, 

head orientation, head coordination, AUc and AUr. 
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Using the newly constructed feature space, the classifier was trained on 80% of randomly 

selected data and was tested on the remaining 20% of data. This process was repeated 20 times, 

each time with a new subset of 80/20 data. The results for average and standard deviation of 

accuracy for both the full and reduced feature spaces are presented in Figure 4.14. As depicted 

in this figure, the difference between average accuracy of training and testing is smaller for the 

reduced feature space compared to that of the full set of features. The standard deviations of 

accuracy also follow the same pattern. This confirms the more generalized solution while 

achieving high accuracy of 73.6% for the testing experiment. 

 

Figure 4. 14. (a) average accuracy and (b) standard deviation of accuracy across 20 experiments 
on training and testing data, for the full set of features and the reduced subset of features. (a) 
shows the difference in training and testing accuracy (∆𝐴) is smaller for the case of reduced 
features. (b) shows the standard deviation (𝜎) of the accuracy for the testing data is lower for 
the reduced feature space compared to the full feature space. Moreover, the difference of 
standard deviations (∆𝜎) between training and testing is smaller for reduced features compared 
to the full features. 

We repeated these experiments to calculate precision and recall for reduced features and 

compared them with the case of using the full feature set. The results are depicted in Figure 4.15 

and Figure 4.16.  
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Figure 4. 15. (a) average precision and (b) standard deviation of precision across 20 experiments 
on training and testing data, for the full set of features as well as the reduced subset of features. 
(a) shows the difference in precision between training and testing (∆𝑃) is smaller in the case of 
reduced features. (b) shows the standard deviation (𝜎) of the precision of the testing data is 
lower for the reduced feature space compared to the full feature space. Moreover, the 
difference of standard deviations (∆𝜎) between training and testing is smaller for reduced 
features compared to the full features. 

 

Figure 4. 16. (a) average recall and (b) standard deviation of recall across 20 experiments on 
training and testing data, for the full set of features and the reduced subset of features. (a) 
shows the difference in recall between training and testing (∆𝑅) is smaller in the case of 
reduced features. Although (b) shows the standard deviation (𝜎) of the recall for testing data is 
increased for the reduced features compared to the full features, the difference of standard 
deviations (∆𝜎) between training and testing is decreased for the reduced features compared to 
the full features. This result confirms a better generalization of the algorithm. 

Moreover, the average and standard deviation of F1 score were calculated. The results 

are presented in Figure 4.17. 
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Figure 4. 17. (a) average F1 score and (b) standard deviation of F1 score across 20 experiments 
on training and testing data, for the full set of features and the reduced subset of features. (a) 
shows the difference in F1 score between training and testing (∆𝐹1) is smaller in the case of 
reduced features. (b) shows the standard deviation (𝜎) of the F1 score for the testing data is 
lower for the reduced features compared to the full features. Moreover, the difference of 
standard deviations (∆𝜎) between training and testing is smaller for reduced features compared 
to the full features. 

In all of these results, using the reduced features instead of full features decreased the 

difference between the average results between testing and training as seen in Figures 4.14 (a), 

4.15(a), 4.16(a) and 4.17(a). Moreover, the standard deviation for the testing experiments on the 

reduced subset of features is smaller than that of the full set of features., except for the ‘recall’. 

And in all cases, the difference between training and testing standard deviations of the reduced 

subset of features are much smaller than that of the full set of features as depicted in (4.4): 

 (𝜎 − 𝜎 )  <  (𝜎 − 𝜎 )     (4.4) 

where 𝜎  is the standard deviation of test results and 𝜎  is the standard deviation of the 

training results across all 20 runs of experiments. In other words, we have: 

 ∆𝜎  <  ∆𝜎     (4.5) 

where ∆𝜎   is the difference between 𝜎  and 𝜎  across 20 runs of experiments 

with reduced features and ∆𝜎   is the difference between 𝜎  and 𝜎  across 20 

runs of experiments with full features. The fact that the standard deviation for test results is 
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lower in most cases (except for recall), and more importantly, ∆𝜎 as in (4.5) is smaller for all cases 

(including recall) using reduced features shows that the classifier has achieved better 

generalization compared to the case of using the full feature set. 

4.5. Summary and discussion 

In this work, we focused on classifying subtle shifts in ‘affect’ in a completely natural setup 

without any constraints on the participants. We leveraged the power of neural networks but 

limited our design to the simplest neural network architecture with minimum number of nodes 

to help reduce the computational load.  More investigation into the minimum number of frames 

per second for video recording could help to further decrease the time and resources needed for 

extracting the AUs from the video files. PCA was performed to reduce the dimension of features 

from 17 to 10 which helped reduce the variance in the results. Considering only positive and 

negative affect, testing accuracy of 76.8 % was achieved which is, to the best of our knowledge, 

the best results within the constraints discussed above. One observation in this study was 

reduction of accuracy while trying to classify the ‘neutral’ labels. We speculate that ‘neutral’ 

labels span more diverse characteristics compared to ‘positive’ or ‘negative’ labels; therefore, 

more training examples are likely necessary to train the algorithms to correctly classify ‘neutral’ 

instances. The bottleneck is increasing the number of ‘neutral’ datapoints alone is not helpful as 

it will result in skewed database which leads the classifier to massively develop bias towards 

identifying ‘neutral’ labels. In fact, according to our experience, most of the labels in a given 

dataset have been marked as ‘neutral’. Therefore, for a given dataset, during the training phase, 

many of the ‘neutral’ labels were randomly removed to balance the dataset. This means even 

more data points have to be collected so that after balancing the dataset, remaining labels would 
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be enough for training the neural network to correctly detect ‘neutral’ labels. Tackling this 

challenge is a viable goal for future work. 

As for rapport, we developed an architecture which leveraged DTW for gauging synchrony 

among participants. Five DTW features were constructed according to the gaze, head 

coordination, head orientation, AUc and AUr. Along these five DTW features, raw data for gaze, 

head coordination and AUc were used as input features. By leaving out head coordination and 

AUr data, a total of 63 features were used. 2674 data points were employed for training the 

neural network. An accuracy of 73.6% was achieved for testing over 20 experiments with a 

standard deviation of 2.68%. Precision, recall and F1 score for testing were achieved as 0.764, 

0.807 and 0.784, respectively. To the best of our knowledge, these are the highest reported 

metrics for identifying rapport in multiperson groups and with highest temporal resolution of 30 

seconds.  

Further research could be done on the effect of more output classes such as high, neutral, 

and low rapport. The challenge lies in the number of additional datapoints needed for training 

the network. Moreover, balancing the dataset could get more challenging with higher number of 

classes which in return may require even more data point collection.  

Another interesting path for research is incorporating the sequence of data in the 

analysis. As of now, the classifier does not consider the order of the datapoints. However, the 

labelers watched the video segments in order and that naturally affects the perception of 

‘rapport’ and ‘affect’ by the labelers. Therefore, employing techniques such as recurrent neural 

networks and other methods for analyzing the sequence of data could further improve the 
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results. Our findings in this work pave the way and encourage the community to investigate 

further the future work some of which were briefly mentioned here. 

Disclaimer: A substantial portion of this chapter was published in [86] © 2023, IEEE. 
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Chapter 5: Advancing integrated electrochemical instruments for point-of-care devices 

5.1 Introduction 

As described in chapter 2, electrochemical sensing has been proven to be an effective 

approach for monitoring different physiological and environmental parameters. Therefore, 

implementing miniaturized electrochemical solutions could enhance assistive technologies for 

human health and wellness. To this end, researchers have utilized complementary metal-oxide 

semiconductor (CMOS) technology to develop small and wearable potentiostats [63], [64], [100], 

[101],and many advances have been made to develop potentiostats that increase the range of 

current readout [65], [66], decrease the power consumption and size [67], [102], [103], lower the 

noise [104] and widen the dynamic range [105], and support the bidirectional current of electro-

chemical cells [66]. New processes have also been developed for implementing quasi-reference 

electrodes on the CMOS chip for a fully integrated electrochemical measurement [106]. 

Although these advances have enabled miniaturized electrochemical systems, as the 

modern CMOS technologies scale down in size, the voltage supply have become smaller [107]; 

for example, while an older 0.5 µm CMOS technology used to support a 5 V supply, newer 

technologies such as 180 nm support a maximum of 1.8 V for regular transistors or 3.3 V in the 

case of high-voltage transistors. As a result, many electrochemical reactions cannot be supported 

by modern integrated potentiostats, as illustrated in Figure 5.1. 
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Figure 5. 1. The graph shows voltammetry of different heavy metals and indicates bias 
potentials for each target element to obtain peak current (data adapted from [68]). The blue 
and green bars show ideal ranges of bias potential that are supported with a traditional CMOS 
potentiostat and our novel potentiostat, respectively, both with a 3.3 V supply. In this example, 
the reactions for some elements such as Zn and Mn are not supported by a traditional CMOS 
potentiostat. Note that the gray bar represents VCE-swing, the excess voltage beyond the bias 
potential required for an electrochemical cell [108]. 

 Since a potentiostat needs to support bidirectional current for redox reactions, only half 

of the supply voltage is available to be used for each direction in an ideal rail-to-rail operation of 

the potentiostat. For a 3.3 V supply, this means only 1.65 V is available for each reduction or 

oxidation reaction. Furthermore, as detailed in section 5.2, because the counter electrode in a 

typical three-electrode electrochemical cell must be allowed to swing well beyond the bias 

potential, only a small portion of this 1.65 V is available to be used as bias potential, as illustrated 

in Figure 5.1. However, many electrochemical reactions, for example for detecting heavy metals 

such as manganese and zinc, require bias potentials of about 1.6 V and 1.2 V, respectively. As 

shown in Figure 5.1, these potentials fall outside the window that is supported by conventional 

CMOS potentiostats with power supplies of 3.3 V or lower. Therefore, conventional CMOS 

potentiostat designs implemented in newer technologies with lower supply voltages do not 

support voltammetry for detecting these elements. On the other hand, older CMOS process 

nodes, such as 0.5 µm that support supply voltages greater than 3.3 V, are not offered by 
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mainstream foundries as they are considered obsolete [109]. Therefore, it is inevitable to utilize 

these newer CMOS technologies for electrochemical measurements that come with the added 

benefits of smaller feature size, lower power consumption, and higher speed. Consequently, 

overcoming the issue of limited bias potential in CMOS potentiostats implemented in newer 

process nodes is crucial to accommodate a wide range of electrochemical reactions in wearable 

assistive technologies.   

In this work, we introduce a novel potentiostat topology that addresses the limited supply 

voltage in newer CMOS technologies and supports bidirectional current measurement in a wide 

range of electrochemical reactions. For a given supply voltage, this new topology nearly doubles 

the voltage range for the electrochemical cell compared to conventional designs. Hence, it 

enables detecting a wider range of target elements than any previously reported integrated 

potentiostat. As desired with most integrated instrumentation circuits, this potentiostat also 

provides a small form factor and low power consumption for a compact system implementation 

which is necessary for wearable applications. We presents an in-depth analysis on voltage 

requirements of a three-electrode electrochemical cell as well as the challenges of Conventional 

CMOS potentiostats in section 5.2. Then we present the methodology and design for enhancing 

voltage range of the electrochemical cell along with the results of electrochemical experiments 

as well as simulation results of the implemented CMOS potentiostat.  
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5.2 Manifestation of Electrode Potentials and Challenges for Conventional CMOS 

Potentiostats 

5.2.1 Electrochemical Cell Model and Manifestation of Potentials at Electrodes 

As briefly asserted in in section 5.1, an important bottleneck in miniaturized CMOS 

potentiostats is their ability to support a wide bias potential window to extend the range of 

electrochemical targets that can be measured using CMOS instrumentation. To elaborate on this 

point, consider the electrochemical cell model shown in the circle at the center of Figure 5.2. A 

three-electrode electrochemical cell features a reference electrode (RE), a working electrode 

(WE) and a counter electrode (CE). The resistance between CE and RE is mainly attributed to the 

solution resistance. Similarly, the resistance between RE and WE is attributed to the solution 

resistance in series with a parallel capacitance and resistance that model the double-layer 

capacitance and charge transfer resistance at the WE surface.  

 

Figure 5. 2. Schematic of a traditional potentiostat with grounded working electrode. The 
electrochemical cell model is presented at the center of the figure with a circle symbol [108]. 

In this three-electrode cell, a bias voltage is traditionally applied to the RE with respect to 

WE. In other words, VRE-WE is applied to the electrochemical cell as shown in Figure 5.2. In this 

paper, we will refer to this applied voltage as Vbias. Note that Vbias is sometimes defined as VWE-RE 
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[8], which is negative of Vbias as defined here. Both definitions are valid as long as one remains 

consistent. Therefore, throughout this paper, we define: 

 Vbias = VRE-WE = VRE – VWE  (5.1) 

This definition facilitates a clearer discussion about the integrated CMOS potentiostat. 

While the Vbias is externally applied between RE and WE, the potential on CE can and will swing 

beyond Vbias in order to establish a desired electrochemical reaction. Let us define this CE swing 

voltage as: 

 VCE-swing = VCE-RE = VCE – VRE (5.2) 

This VCE-swing depends on several factors such as electrolyte concentration and the 

geometry and material of electrodes, and it can be as large as Vbias, which extends the maximum 

potential the potentiostat must support to beyond two times Vbias. Finally, let us define the full 

cell potential, Vcell such that:  

 Vcell = VCE-WE = VCE – VWE = VCE-swing + Vbias (5.3) 

Based on our extensive experience with integrated electrochemical platforms, we expect 

voltages at the cell electrodes to generally manifest similar to the graph in Figure 5.3. The 

absolute value of the cell potential is always more than that of the bias potential due to the 

existence of CE-RE resistance. Moreover, by lowering the electrolyte concentration, the CE-RE 

potential difference further increases due to the increase in the CE-RE resistance. Therefore, for 

a potentiostat with a limited voltage supply, the voltage swing on CE is the limiting factor. 
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Figure 5. 3. Conceptual representation of Vcell and Vbias. VRE-WE (Vbias) is always equivalent to the 
Vbias voltage applied to the electrochemical cell. VCE-WE (Vcell), however, is more than Vbias and 
further increases if electrolyte concentration decreases [108]. 

5.2.2 Challenges of Conventional CMOS Potentiostats 

A conventional CMOS potentiostat is shown in Figure 5.2. An operational amplifier is used 

to apply a bias voltage to an electrochemical cell. The current generated in the electrochemical 

cell is usually read using a transimpedance amplifier (TIA) as shown in the bottom right of Figure 

5.2. The WE of the electrochemical cell in this design is tied to analog ground which is usually set 

to Vsupply/2. This allows the potentiostat to support bidirectional current measurement and hence 

supports both reduction and oxidation reactions. For instance, in the old 0.5 µm CMOS 

technology with a 5 V supply, in an ideal rail-to-rail operation of the circuit, the analog ground is 

set to 2.5 V. Therefore, the available voltage for |Vcell| is 2.5 V in either direction (negative or 

positive). Basically, the bottom half of the supply range (0 V to 2.5 V) is used to support negative 

Vcell (remember Vcell=VCE-VWE) and the top half (2.5 V to 5 V) is used to support positive Vcell. Only 

a portion of this 2.5 V in either direction can be assigned to Vbias because always Vbias<Vcell (the 

exact ratio of Vbias to Vcell depends on the cell condition such as electrolyte concentration). This 

covers a relatively wide range of electrochemical experiments [110].  However, 0.5 µm CMOS 
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process node is not offered by major foundries anymore [109].  On the other hand, the supply 

voltage in newer CMOS technologies is drastically reduced compared to the older technologies. 

For example, going from 0.5 µm CMOS to newer 180 nm CMOS, the supply voltage drops from 5 

V to 1.8 V (or 3.3 V in case of high-voltage transistors). This reduction in supply severely restricts 

the range of electrochemical experiments that can be conducted using a conventional CMOS 

potentiostat. In other words, this reduced supply voltage is not sufficient to support Vbias and Vcell 

in an electrochemical cell. In this case, for an ideal rail-to-rail operation of a CMOS potentiostat 

with 3.3 V supply, only Vsupply/2=1.65 V is available for the electrochemical cell in either direction 

(negative or positive). Therefore, the absolute value for the maximum |Vcell|=|VCE-VWE| in this 

case is 1.65 V (i.e. ‘Vsupply - analog ground’ or ‘analog ground - gnd’). |Vbias|=|VRE-VWE| in this 

case will be much lower than |Vcell| as described in the previous section. The results of our 

experiments suggest Vbias≈0.5Vcell as presented in section 4, but the exact ratio depends on the 

characteristics of the electrochemical cell. Consequently, only around 0.9 V is available as Vbias 

in this example with a conventional potentiostat. As shown in Figure 5.1, many of the 

electrochemical reactions happen in bias voltages outside this potential window [68], [110], [111] 

and hence are not supported by conventional methods. In this work, we present a novel circuit 

architecture for CMOS potentiostats that widens the supported windows for Vbias and Vcell to 

facilitate a wide range of electrochemical reactions and enable powerful miniaturized assistive 

technologies for point-of-care- devices.  
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5.3 Design Methodology for CMOS Potentiostats to Support High Voltage 

Requirements 

To solve the problem of limited potential window, a novel architecture is introduced in 

this work to enable wider range of electrochemical experiments using cutting-edge CMOS 

technologies. The first step to widen the voltage swing is to allow the voltage on the WE to switch 

between high and low supply rails, instead of being tied to analog ground. This will allow Vbias to 

have a voltage swing of the full supply range in an ideal rail-to-rail operation of the circuit. The 

limitation, however, arises in reading the current. Traditionally, a TIA is used to read the current, 

whose reference point is tied to analog ground together with the WE as shown in Figure 5.2. By 

employing the proposed method, the reference point of the TIA should switch between high and 

low supply rails along with WE. However, this does not allow reading current in the original 

direction as it will push the output of the TIA beyond 3.3 V (the supply voltage) or less than 0 V 

(ground) which is not possible. Therefore, a current conveyor was employed to reverse the 

direction of the current and thus enable the TIA to read the current properly. The schematic of 

the current conveyor is seen in the middle of Figure 5.4.  
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Figure 5. 4. Schematic of the implemented potentiostat. The current conveyor in the middle of 
the schematic is employed to reverse the direction of current to support bidirectional current 
measurement while allowing WE to switch between supply rails [108]. 

5.3.1 Current Conveyor 

The current conveyor in this work was designed with the objective of enabling wide 

output voltage swing. In a typical current conveyor, a cascode current mirror is used to ensure 

the accuracy of copying current from the left leg to the right leg. However, to maximize the 

voltage swing at the output, single transistors (M7 and M8) were used in the current mirror to 

reduce the overhead voltage required for the circuitry and hence maximize the voltage swing for 

electrochemical reactions. These single transistors are shown in the bottom center of Figure 5.4. 

However, using single transistors results in mismatch between mirrored currents if the 

transistor’s drain voltages do not follow each other. To ensure the matching of the current in 

both legs of the current mirror, an op amp was employed to match the drain voltages of the 

transistors. The input pair of this op amp was constructed of PMOS transistors to warrant that 
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the op amp remains in saturation mode even with low voltages at its input terminals. This op 

amp is placed in both positive and negative feedback loops. The impedance at the left leg of the 

current conveyor is higher than that of the right leg. To elaborate on this, note the simplified 

schematic of the circuit shown in Figure 5.5. In this structure, the mirrored current is multiplied 

from left leg to the right leg of the current conveyor. As it will be detailed in Table 5.1,  the 

transistors in the right leg are four times wider than the ones in the left leg. Therefore, the output 

resistance of M7, M9, M11 and M13 are bigger than those of M8, M10, M12 and M14. Moreover, 

the cell resistance that we simplified in this schematic with Rcell is in the Mega Ohm range, as will 

be explained in more detail in section 5.4.2 while the feedback resistor on the TIA (Rf) is in kilo 

Ohm range. Therefore, the equivalent impedance at the drain of M7 is higher than the equivalent 

impedance at the drain of M8.  

 

Figure 5. 5. Simplified schematic showing the impedance at input nodes of the p-pair op amp. 
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The positive terminal of the op amp is connected to the left side at the drain of M7 to form a 

negative feedback loop (as shown with the purple curved arrow in Figure 5.4) that is stronger 

than the positive feedback loop. Note that since M7 adds 180 degrees to the phase, the drain of 

M7 is tied to the positive terminal of the op amp to make a strong negative feedback loop. This 

guarantees the stability of the circuit, and it ensures the drain voltages of the two transistors 

match and the current is accurately mirrored. 

To maximize the voltage range for electrochemical cells, the transistors at the output of 

the op amp in the current conveyor (M9 and M10) should be carefully designed. The first option 

considered was the NMOS-based design shown in Figure 5.6. However, the high threshold and 

overdrive voltages of the NMOS transistor at the output of the op amp were found to limit the 

available voltage for electrochemical reactions. This higher threshold voltage was due to the body 

effect of the NMOS transistor. To reduce the overdrive voltage that limits output swing, it was 

noted that a design based on PMOS transistors in isolated n-wells would eliminate the body effect 

and hence decrease the threshold and overdrive voltages of the transistors, given our design 

utilizes an n-well CMOS technology. Therefore, to decrease overdrive voltage and increase the 

range of voltage available for electrochemical reactions, the PMOS transistors with isolated wells 

were employed in the final design, as depicted in Figure 5.4. In addition, a PMOS transistor was 

added to the middle of the second leg of the current conveyor to balance the current in both 

legs. 
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Figure 5. 6. Initial design of the current conveyor with NMOS transistors. This design suffered 
from limited voltage range available for the electrochemical cell that was mainly caused by 
body effect of the NMOS transistor .   

5.3.2 Digital Control Unit  

A digital control unit was employed to dynamically change the reference voltage that is 

applied to WE (bottom left of Figure 5.4) and the positive terminal of the TIA (right side of Figure 

5.4). Also, a digital signal (I_ctrl) was created from the WE voltage, and this signal was used to 

control the current sources employed in the current conveyor, through the switches depicted in 

the top center of Figure 5.4. This control of the bias current is crucial to properly bias the current 

conveyor according to the voltage that is applied to the WE.  

5.4 Results 

5.4.1 Test Setup and Electrochemical Experiments 

To assess the behavior of electrode voltages for varying electrochemical model 

parameters, chronoamperometry experiments were conducted using different electrolyte 

concentrations. Electrodes in these experiments were built in-house using standard 

microfabrication techniques, including photolithography and thermal evaporation. Interdigitated 

electrodes were made by depositing 10 nm of titanium and 100 nm of gold on a silicon wafer 
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containing a thin silicon dioxide layer. The titanium was used as an adhesion layer between the 

gold and the oxide substrate. For the electrolyte, phosphate buffer (PB) solution was used in low 

concentrations to increase the lifetime of thin-film gold electrodes. Phosphate buffer saline (PBS) 

solution was avoided because the chlorine (Cl) molecules released from saline were observed to 

dissolve the gold electrodes in previous experiments. 

Experiments with our custom interdigitated gold electrodes were performed in a beaker 

using 0.05 M and 0.1 M PB solutions. A commercial electrochemistry instrument (CHI 760E) was 

used for chronoamperometry measurements. An illustration of the test setup and electrodes is 

shown in Figure 5.7, where a photo of the fabricated interdigitated electrode is provided as an 

inset. The experimental measurements shown in Figure 5.8 confirm the initial expectation that, 

while Vbias (VRE-WE) stays at the applied bias potential, Vcell (VCE-WE) is always greater than the 

applied bias potential. Notice also from Figure 5.8 that the CE potential further increases when 

the electrolyte concentration is decreased. For instance, for a Vbias of 1.4 V, a Vcell of 2.2 V and 2.9 

V were measured for high and low electrolyte concentrations, respectively. This validates the 

importance of expanding the potential window that a potentiostat could support. 

 

Figure 5. 7. Schematic of the experimental setup for concentration comparison using 
interdigitated electrodes and CHI potentiostat. A photo of the fabricated electrodes is shown 
inset. The size of electrode is 5 mm x 5 mm [108]. 
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Figure 5. 8. Measured CE and RE voltages w.r.t. the WE voltage (i.e. Vcell and Vbias). Vcell is always 
higher than Vbias and this voltage difference increases as electrolyte concentration decreases 
[108]. 

5.4.2 Electrochemical Cell Model 

As described in section 5.2.1. the parallel capacitance and resistance in Figure 5.9 model 

the double layer capacitance and charge transfer resistance at the WE surface. For all simulations 

of the novel wide-swing potentiostat, a typical value of 2.6 µF was chosen as the model 

capacitance and a value of 64 kΩ was used to model the charge transfer resistance based on the 

data presented in [112]. The solution resistance values of the electrochemical cell were 

empirically modeled from the experiments described in section 5.4.1 as follows: the measured 

steady state chronoamperometry current for a given bias voltage was used to calculate the RE-

WE resistance; and the measured cell voltage for each chronoamperometry current was used to 

determine CE-RE resistance. For these calculations, measurements were performed at Vbias = 1 

V where Vcell was measured as 2.44 V. Then, the RE-WE resistance was calculated as 10.2 MΩ and 

the CE-RE resistance was calculated as 14.7 MΩ. This calculation is based on the fact that the RE 

in a three-electrode electrochemical cell does not draw any current [113]. Therefore, the 
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resistances in the electrochemical cell can be considered to be in series and the voltage drop on 

the resistances can be calculated by Kirchhoff's circuit laws. The voltage and current distribution 

on the model electrochemical cell are depicted in Figure 5.9. This gives a reasonable 

approximation of the resistance values that were used in simulations. 

 

Figure 5. 9. The electrochemical cell characterization for simulation of the potentiostat. The 
characterization was performed using the measured voltage and current using the CHI 760E 
instrument [108]. 

5.4.3 Simulation Results for the CMOS Potentiostat 

Using the transistor sizes listed in Table 5.1, the new potentiostat design from Figure 5.4 

was simulated in Cadence along with the electrochemical cell model described above.  

Table 5.1. Transistor sizing of the readout portion of the potentiostat shown in Figure 5.4 [108]. 
device W/L fingers device W/L fingers 

M1,2 4u/500n 1 M8 4x2u/350n 1 

M3,4 8.5u/500n 2 M9 8u/300n 1 

M5 7.5u/500n 4 M10 4x8u/300n 1 

M6 10u/500n 20 M11 2u/300n 2 

Mb 6u/500n 1 M12 2u/300n 8 

Mb_c 2u/300n 2 M13 2u/300n 4 

M7 2u/350n 1 M14 2u/300n 16 
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The simulation results are shown in Figure 5.10. Figure 5.10 (a) demonstrates the voltage 

support for positive Vbias and Vcell. In this case, the digital control unit fixes the WE voltage at 0.88 

V. By sweeping RE voltage from 0.88 V toward 3.3 V, Vbias increases until it saturates at Vbias_max = 

1.1 V. Consequently, Vcell also increases until it saturates at Vcell_max = 2.41 V. Likewise, Figure 5.10 

(b) explains voltage support for negative Vbias and Vcell. In this case, the WE voltage is fixed at 3.2 

V and the RE voltage is swept from 3.2 V toward 0 V. As seen in Figure 5.10 (b), a Vbias of -2.12 V 

to 0 V and a Vcell of -3.11 V to 0 V are supported. This demonstrates that the new potentiostat 

enhances the potential window for oxidation and reduction measurements by supporting a 

maximum Vcell of 2.41 V and -3.11 V in positive and negative directions, respectively. In 

comparison, a conventional potentiostat, even with an ideal rail-to-rail operation at a 3.3 V 

supply supports a maximum Vcell of only ±1.65 V. Therefore, our new potentiostat architecture 

achieves 46% and 88% increase in the voltage range of Vcell for positive and negative voltages, 

respectively. 

 

Figure 5. 10. Simulated voltage range for Vbias and vcell. The graphs show the enhanced 
supported voltage range for (a) positive and (b) negative Vbias and Vcell [108]. 
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The design operates from a 3.3 V supply and consumes only 2.047 mW of power. Figure 

10 shows the layout of the new potentiostat designed in 180 nm CMOS technology, which 

occupies only 0.013 mm2. The op amp employed in this design occupies 964 µm2, consumes 435 

µW, and demonstrates a bandwidth of 32.52 MHz with phase margin of 63 degrees. Figure 5.11 

demonstrates the Bode plot for this op amp and Table 5.2 highlights the design and performance 

characteristics of the op amp designed for and employed in the potentiostat.  

 

Figure 5. 11. Bode plot of the designed op amp used in the novel potentiostat design. It shows 
around 90 db of DC gain, bandwidth of 32.57 MHz and phase margin of 63 degree. 

Table 5.2. Characteristics of the op amp [108]. 

supply technology DC gain area power bandwidth slew rate 

3.3 V CMOS 180 nm 89.2 db 964 µm2 435 µW 32.52 MHz 28.33 V/µs 
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Table 5.3 summarizes the characteristics of the whole novel potentiostat including the 

current conveyor, the digital control unit and the TIA. The 10% to 90% charge and discharge time 

of a typical 2.6 µF capacitor within the model electrochemical cell was less than 1 µs. Considering 

the reaction times of multiple seconds in a typical chronoamperometry experiment, the charge 

and discharge times are negligible and the potentiostat meets the speed requirements. Figure 

5.12 demonstrates the layout of the entire potentiostat, implemented in CMOS 180 nm 

technology. 

Table 5.3. Electrical Characteristics of the Potentiostat [108]. 

supply area max power max cell voltage 

support 

load 

capacitance 

3.3 V 0.0132 mm2 2.047 mW 3 V 2.6 µF 

 

Figure 5. 12. Layout of the entire potentiostat designed in 0.18 µm CMOS technology. The total 
dimension is 159 µm x 83 µm [108]. 
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5.5 Summary and discussion 

5.5.1 Summary 

As conventional integrated potentiostats support a limited cell voltage range, Vcell, they 

fail to accommodate many electrochemical reactions of interest. To resolve this challenge, we 

introduced a novel integrated potentiostat topology that was verified to support Vcell range 

between 2.41 V and -3.11 V (with 3.3 V supply). This increases the maximum supported Vcell by 

46% and 88% for positive and negative voltages, respectively, compared to traditional CMOS 

potentiostat designs. This dramatic improvement in potential window permits the measurement 

of a much wider range of electrochemical targets, expanding applications for portable sensing 

and assistive technologies for point-of-care applications. The circuit was implemented in CMOS 

180 nm technology and consumes only 2.047 mW of power. For a given electrochemical cell 

model, the maximum charge and discharge time was found to be under 1 µs, easily meeting the 

speed requirements for most electrochemical experiments. The greatly expanded potential 

window of this new potentiostat, along with its low power consumption and high slew rate, make 

this design well-suited for many current and future wearable electrochemical sensing and point-

of-care applications.  

5.5.2 Discussion and open challenges 

Given the trend toward smaller integrated circuits and lower power supplies, the limited 

potential window for integrated CMOS potentiostats will be reduced as well. In this work, we 

addressed this challenge by leveraging existing technologies that support up to 3.3 V. In  order to 

further increase the range of the potential window for such potentiostats or for implementing 

potentiostats with sub 1 V supplies, new methods should be explored. These methods could 



 

81 
 

utilize topologies such as charge pumps to increase the available voltages. The bottleneck is the 

current support, which also needs to be taken into account. Therefore, simply using voltage 

boosters alone cannot solve the issue, as they often do not support high-current applications. 

This opens the avenue for further research on this topic. 

Disclaimer: A substantial portion of this chapter was published in [108]. 
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Chapter 6: Conclusions and future works 

6.1. Summary 

In the pursuit of holistic wellness, monitoring various aspects of individuals' lives has 

become paramount. Assistive technologies have emerged as powerful tools for tracking physical 

health parameters. However, psychological wellness is another important factor of overall 

health. Therefore, it is crucial to develop assistive technologies to monitor social, physiological, 

and environmental parameters affecting health to promote individuals' wellness. In order to have 

multifaceted assistive technologies as point-of-care devices, these technologies need to support 

multimodal sensing and monitoring. The challenges arise when these technologies need to be 

implemented resource-efficiently and often in real-time. Moreover, transferring from standard 

laboratory equipment to personal miniaturized point-of-care devices limits their functionality. In 

this work, we introduced a framework and method for assessing social interaction parameters as 

important factors of emotional wellness. More specifically, we developed algorithms for 

monitoring ‘affect’ and ‘rapport’ as indications of the quality of interaction among individuals. 

Moreover, to facilitate multimodal sensing point-of-care devices, we developed novel 

electrochemical architecture to monitor important physiological and environmental parameters 

with highly efficient use of resources.  

6.2. Contributions 

The work presented in this dissertation converges engineering solutions to psychological 

and physiological aspects of individuals’ wellness by contributing novel technologies and 

frameworks to facilitate multimodal sensing of important parameters. These contributions are: 
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 We developed a machine learning platform for monitoring ‘affect’ and ‘rapport’ as 

two important parameters indicative of the quality of interaction among individuals 

as well as the overall wellness of participants. Our analysis are done in natural setups 

as opposed to artificial and acting setups. We developed classifiers to identify subtle 

changes in affect and rapport as opposed to classifying only extreme cases. We 

introduced the first framework for analyzing these parameters in groups with a high 

temporal resolution of 30 seconds. The accuracy, precision and recall for assessing 

rapport are among the highest reported in the literature. 

 Introduced novel architecture for enhancing electrochemical measurement of target 

elements. This novel architecture doubles the potential range of traditional solutions 

and hence facilitates the most comprehensive measurement of important health-

related chemical parameters within the requirements of wearable point-of-care 

devices utilizing low voltage supply technologies. This architecture was implemented 

as an integrated circuit using CMOS 180 nm technology. 

6.3. Future work 

The work presented in this dissertation established a foundation for implementation of 

multifaceted assistive technologies that pursue a holistic wellness of individuals. The following 

are suggestions for future work: 

 Developing personalized solutions for social interaction monitoring  

Given personal differences, individuals may exhibit different baselines in emotions and 

rapport-building with others. In other words, a state of high affect and rapport for one individual 

may seem similar to the baseline of these parameters for another individual. Therefore, the 
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algorithms should take these differences into account. Developing solutions that can learn the 

baseline for each individual using techniques such as reinforcement learning can greatly improve 

the success of these methods. The key to this success is generating a rich dataset of interactions 

among individuals. In this work we recorded about 750 minutes total of interactions. The more 

the data collection process, the more success in getting results. Further statistical analysis is 

needed to design experiments for developing personalized affect and rapport monitoring and 

recommendation platforms. 

 Context-aware approach for analyzing affect and rapport 

In this work, our developed algorithms do not take into account the sequence of data 

points. As human labelers watched the video segments in order, they had an understanding of 

the context of the sessions. This undoubtedly influenced the labelers' perception about the 

events and their judgment in labeling the datapoints. However, the developed algorithms are 

agnostic to the contexts and assess the video segments by only looking at one datapoint at a 

time. Implementing classifiers that pay attention to the sequence of data could potentially 

improve the results. Methods such as recursive neural network could be explored for this 

purpose. 

 Integration of more diverse modalities in assistive technologies 

We showcased electrochemical methods as a viable solution for detecting physiological 

parameters. Incorporating other methods, such as optical solutions for monitoring health-related 

parameters, could improve the multimodal aspect of these devices and hence expand the 

efficacy of multifaceted assistive technologies. These methods could provide simple and yet 

effective methods for monitoring parameters such as heart rate. The challenge is effective 



 

85 
 

resource sharing among different modalities. Expanding the modalities of operation comes with 

more complexity and is resource-consuming. Integrating these modalities in efficient ways, such 

as smart multiplexing and innovative packaging, could be a future thrust for implementing 

multimodal assistive technologies. 
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