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ABSTRACT 

The recent COVID-19 pandemic has highlighted the importance of wastewater-based-

epidemiology (WBE) methods to effectively monitor and predict infectious viral disease 

outbreaks. Traditional disease detection systems rely on identification of outbreaks by diagnostic 

analysis of clinical samples. Since it is impossible to test every individual in a community for all 

potential viral infections those systems are lacking in their ability to predict outbreaks. 

Environmental based surveillance that includes WBE can help reduce the load of medical 

systems, guide clinical testing, and provide early warnings. Untreated wastewater can serve as a 

community-based excrement sample that can be tested to identify the diversity of human viruses 

prevalent in the community. This dissertation presents innovative screening tools based on 

molecular methods, high throughput sequencing, and bioinformatics analysis that can be applied 

in the analysis of wastewater samples to identify viral diversity in the corresponding catchment 

community. Confirmation of this method was done using traditional PCR methods and all results 

were correlated with clinical samples. Further, population biomarker methods were developed to 

normalize the signals. The proposed methods were applied to identify endemic and emerging 

viral infections in a major metropolitan city in US (Detroit-MI) and Latin America (Trujillo-

Peru) using wastewater-based-epidemiology methods.  

The first chapter of the dissertation focuses on an application of bioinformatics-based 

screening tool to reveal high abundance of rare human herpesvirus 8 in Detroit wastewater. The 

second chapter focuses on early warning of COVID-19 second wave in Detroit MI. The third 

chapter focuses on surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-

County area, United States and assessing per capita SARS-CoV-2 estimations and COVID-19 

incidence. The fourth chapter uses the bioinformatics-based screening tool identify a wide 

variety of human viruses in Trujillo-Peru wastewater and confirms Covid-19, monkeypox, and 

diarrheal disease outbreaks. 
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INTRODUCTION 

The first chapter assesses the diversity and abundance of Human Herpesviruses (HHVs) 

in the influent of an urban wastewater treatment plant by using shotgun sequencing, 

metagenomic analysis, and qPCR. Influent wastewater samples were collected from the three 

interceptors that serve the City of Detroit and Wayne, Macomb, and Oakland counties between 

November 2017 to February 2018. The samples were subjected to a series of processes to 

concentrate viruses which were further sequenced and amplified using qPCR. All nine types of 

human herpesviruses were detected in wastewater. Human Herpesvirus 8 (HHV-8), known as 

Kaposi’s sarcoma herpesvirus, which is only prevalent in 5-10% of USA population, was found 

to be the most abundant followed by Human Herpesvirus 3 or Varicella-zoster virus. The high 

abundance of HHV-8 in the Detroit metropolitan area may be attributed to the HIV-AIDS 

outbreak that was ongoing in Detroit during the sampling period. The approach described in this 

paper can be used to establish a baseline of viruses secreted by the community as a whole. 

Sudden changes in the baseline would identify changes in community health and immunity. 

The second chapter focuses on using wastewater-based-epidemiology to provide early 

warnings of the second COVID-19 wave in Detroit metropolitan area in MI, USA. SARS-CoV-2 

RNA from untreated wastewater samples was compared to reported public health records. 

Untreated wastewater samples were collected from the Great Lakes Water Authority (GLWA) 

Water Resource Recovery Facility (WRRF), located in southeast Michigan, between Aug 6, 

2020 and Dec 14, 2020. The WRRF receives wastewater from its service area via three main 

interceptors: Detroit River Interceptor (DRI), North Interceptor-East Arm (NIEA), and 

Oakwood-Northwest-Wayne County Interceptor (ONWI). A total of 144 untreated wastewater 

samples were collected (45, 48, and 51 for ONWI, NIEA and DRI respectively) at the point of 

intake into the WRRF.  Virus-selective sampling was conducted, and viruses were isolated from 

wastewater using electropositive NanoCeram column filters. For each sample, an average of 33 

L of wastewater was passed through NanoCeram electropositive cartridge filters at an average 

rate of 11 L/m. Viruses were eluted and concentrated and SARS-CoV-2 RNA concentrations 

were quantified with RT-qPCR. SARS-CoV-2 RNA was detected in 98% of samples and 

measured concentrations were in the range of 4.45E+04 to 5.30E+06 genomic copies/L. Early 

warnings of COVID-19 peaks were observed approximately four weeks prior to reported 

publicly available clinical data.  
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The third chapter focuses on surveillance of SARS-CoV-2 in nine neighborhood 

sewersheds in Detroit Tri-County area, United States and assessing per capita SARS-CoV-2 

estimations and COVID-19 incidence. Appropriate population biomarkers were screened for 

wastewater SARS-CoV-2 normalization and the normalized SARS-CoV-2 values were 

compared across locations with different demographic characteristics in southeastern Michigan. 

Wastewater samples were collected between December 2020 and October 2021 from nine 

neighborhood sewersheds in the Detroit Tri-County area. Using reverse transcriptase droplet 

digital polymerase chain reaction (RT-ddPCR), concentrations of N1 and N2 genes in the studied 

sites were quantified, with N1 values ranging from 1.92102 genomic copies/L to 6.87103 gc/L 

and N2 values ranging from 1.91102 gc/L to 6.45103 gc/L. The strongest correlations were 

observed with between cumulative COVID-19 cases per capita (referred as COVID-19 

incidences thereafter), and SARS-CoV-2 concentrations normalized by total Kjeldahl nitrogen 

(TKN), creatinine, 5- hydroxyindoleacetic acid (5-HIAA) and xanthine when correlating the per 

capita SARS-CoV-2 and COVID-19 incidences. When SARS-CoV-2 concentrations in 

wastewater were normalized and compared with COVID-19 incidences, the differences between 

neighborhoods of varying demographics were reduced as compared to differences observed 

when comparing non-normalized SARS-CoV-2 with COVID-19 cases. This indicates when 

studying the disease burden in communities of different demographics, accurate per capita 

estimation is of great importance. The study suggests that monitoring selected water quality 

parameters or biomarkers, along with RNA concentrations in wastewater, will allow adequate 

data normalization for spatial comparisons, especially in areas where detailed sanitary sewage 

flows and contributing populations in the catchment areas are not available. This opens the 

possibility of using WBE to assess community infections in rural areas or the developing world 

where the contributing population of a sample could be unknown. 

The fourth chapter uses the bioinformatics-based screening tool to identify a wide variety 

of human viruses in Trujillo-Peru wastewater and confirms Covid-19, monkeypox, and diarrheal 

disease outbreaks. The immense burden of human and zoonotic viral infections in Peru is widely 

recognized. Peru was one of the worst-hit countries during the COVID-19 pandemic. Moreover, 

multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and 

arising. According to Peru’s Ministry of Health, the COVID-19 pandemic reverted the current 

health facilities of the country leading to reduced action to curb other diseases. Furthermore, 
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many viral diseases in the area are under-reported and not recognized. One significant aspect of 

combating infections is early detection. The One Health approach, in addition to clinical testing, 

incorporates environmental surveillance for early detection of infectious disease outbreaks. The 

purpose of this study is to use wastewater surveillance methods to identify virus-related diseases 

circulating in Trujillo-Peru. A screening tool, based on molecular methods, high throughput 

sequencing and bioinformatics analysis is applied. We collected nine untreated wastewater 

samples from the Covicorti wastewater utility in Trujillo-Peru. High throughput metagenomic 

sequencing followed bioinformatic analysis was used to assess viral diversity of the samples. Our 

results revealed the presence of sequences associated with multiple human and zoonotic viruses 

including Orthopoxvirus, Hepatovirus, Rhadinovirus, Parechovirus, Mamastrovirus, 

Enterovirus, Varicellovirus, Norovirus, Kobuvirus, Bocaparvovirus, Simplexvirus, Spumavirus, 

Orthohepevirus, Cardiovirus, Molliscipoxvirus, Salivirus, Parapoxvirus, Gammaretrovirus, 

Alphavirus, Lymphocryptovirus, Erythroparvovirus, Sapovirus, Cosavirus, Deltaretrovirus, 

Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, Lentivirus, Betapolyomavirus, Rotavirus, 

Hepacivirus, Alphacoronavirus, Mastadenovirus, Cytomegalovirus and Alphapapillomavirus. 

For confirmation purposes, we tested for the presence of selective viruses belonging to the 

genera detected above. PCR based molecular methods confirmed the presence of SARS-CoV-2, 

MPXV, noroviruses, and RoA in our samples. Furthermore, publicly available clinical data for 

selected viruses confirm our findings. Wastewater, or other environmental media surveillance, 

combined with bioinformatics has a vast potential to serve as a systematic screening tool for the 

identification of a myriad of human or zoonotic viruses that may cause disease. The results of 

this practical method can guide further clinical surveillance efforts and allocation of resources. 

Incorporation of this bioinformatic-based screening tool by public health officials in Peru and 

other Latin American countries will help manage endemic and emerging diseases that could save 

human lives and resources. 
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CHAPTER 1: HIGH ABUNDANCE OF HUMAN HERPESVIRUS 8 IN WASTEWATER 

FROM A LARGE URBAN AREA 

This chapter was published in Journal of Applied Microbiology, Volume 130, Issue 5, 1 May 

2021, Pages 1402–1411, B. Miyani, C. McCall and I. Xagoraraki, High abundance of human 

herpesvirus 8 in wastewater from a large urban area 

ABSTRACT 

This study assesses the diversity and abundance of Human Herpesviruses (HHVs) in the 

influent of an urban wastewater treatment plant by using shotgun sequencing, metagenomic 

analysis, and qPCR. Influent wastewater samples were collected from the three interceptors that 

serve the City of Detroit and Wayne, Macomb and Oakland counties between November 2017 to 

February 2018. The samples were subjected to a series of processes to concentrate viruses which 

were further sequenced and amplified using qPCR. All nine types of human herpesviruses were 

detected in wastewater. Human Herpesvirus 8 (HHV-8), known as Kaposi’s sarcoma 

herpesvirus, which is only prevalent in 5-10% of USA population, was found to be the most 

abundant followed by Human Herpesvirus 3 or Varicella-zoster virus. The high abundance of 

HHV-8 in the Detroit metropolitan area may be attributed to the HIV-AIDS outbreak that was 

ongoing in Detroit during the sampling period. The approach described in this paper can be used 

to establish a baseline of viruses secreted by the community as a whole. Sudden changes in the 

baseline would identify changes in community health and immunity.  

1. INTRODUCTION 

Untreated wastewater can be considered as a community-based excrement sample, which 

if monitored in a timely manner, can identify spikes in excreted viruses that can be related to 

outbreaks. Wastewater-based epidemiology can be used for endemic viral disease identification, 

early detection of potential viral outbreaks and monitoring of community health (O’Brien and 

Xagoraraki, 2019; Xagoraraki and O’Brien, 2020). Contrary to classic epidemiology and 

traditional disease detection and management systems, which rely on clinical symptoms to detect 

and describe an outbreak, wastewater-based epidemiology methods can monitor community 

health and forecast viral outbreaks in advance (Xagoraraki and O’Brien, 2020). Viruses of 

particular concern are herpesviruses since they are abundant in human populations and have been 

associated with multiple diseases. Furthermore, increased shedding of certain human 

herpesviruses (HHVs) has been associated with immunocompromised populations. Monitoring 
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herpesvirus diversity and abundance may serve as an indicator of overall population health and 

immunity.  

Herpesviruses are DNA viruses belonging to the Herpesviridae family. Herpesviridae, 

based on biological and molecular properties, are further subdivided into Alphaherpesvirinae (α-

Herpesviruses), Betaherpesvirinae (β-Herpesviruses), and Gammaherpesvirinae (γ-

Herpesviruses) subfamilies (Pellett and Roizman, 2013; Roizman et al., 1981). Nine 

herpesviruses are known to infect humans and include Human herpesvirus 1 HHV-1 (or Herpes 

simplex virus HSV-1), HHV-2 (or HSV-2), HHV-3 (or Varicella-zoster virus VZV), HHV-4 (or 

Epstein-Barr virus EBV), HHV-5 (or human cytomegalovirus HCMV/CMV), HHV-6 (HHV-6A 

and HHV-6B), HHV-7, and HHV-8 (or Kaposi’s sarcoma herpesvirus KSHV). Currently the two 

variants of HHV-6 are recognized as separate viruses (Adams et al., 2013). α-Herpesviruses 

include HHV-1, HHV-2, and HHV-3. β-Herpesviruses include HHV-5, HHV-6, and HHV-7. γ-

Herpesviruses include carcinogenic HHV-4 and HHV-8 (Contreras and Slots, 2000; Fratini et 

al., 2014).  

Age adjusted seroprevalence of HHV-1 and HHV-2 is 48.1% and 12.1%, respectively 

(McQuillan et al., 2018). Currently rather than primary infection, recurrent form of HHV-3 

infection is quite prevalent in USA with 1 million cases of it occurring every year (CDC, 2019). 

Age adjusted seroprevalence of HHV-4, HHV-5, HHV-6 and HHV-7 is at least 50% (Ablashi et 

al., 1994; Bate et al., 2010; Braun et al., 1997; Campadelli-Fiume et al., 1999; Dowd et al., 

2013; CDC, 2020; R. et al., 2012) whereas HHV-8 is prevalent only in 5% of the general 

population (Gao et al., 1996; Martin, 2007).  

Shedding of HHVs occur in symptomatic individuals and otherwise healthy 

asymptomatic individuals  (Roizman et al., 2013). However, some herpesvirus species such as 

HHV-8 and HHV-4 are shed at higher amounts in immunocompromised populations, solid organ 

transplant patients, cancerous patients and critically ill non immunocompromised patients 

compared to healthy controls (Gianella et al., 2016; Gianella, Morris, et al., 2013; Gianella, 

Smith, et al., 2013; Libert et al., 2015; Lisco et al., 2012; Lucht et al., 1993; Lucht, Biberfeld and 

Linde, 1995; Miller et al., 2006; Palmieri et al., 2018; Sarmento et al., 2018). Furthermore, 

reactivation of HHVs is common in immunocompromised individuals like HIV patients (Kim et 

al., 2006).  HHV-8 prevalence in the US is the lowest compared to other HHV species (Gao et 

al., 1996; Martin, 2007). Therefore, it is conceivable that monitoring the excretion of HHV-8 
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could be used as an indicator of population immunity. Measurements could be conducted to 

establish base excretion levels of a certain population, compare between populations, and 

possibly monitor sudden increases that may indicate changes in community health and immunity.  

HHVs have been detected in wastewater, sludge and biosolids using sequencing and 

metagenomic analysis (Aw et al., 2014; Bibby and Peccia, 2013; Bibby et al. 2011; Brisebois et 

al., 2018; Di Bonito et al. 2017; O’Brien et al 2017). Published papers have focused on 

Herpesvirus genus or the family Herpesviridae. To the best of our knowledge, no previous study 

validated next generation sequencing results using qPCR and no previous study has surveyed all 

nine HHV types in environmental samples. The objective of this paper is to identify the diversity 

of HHV species in wastewater by using metagenomic sequencing and qPCR and investigate the 

possibility of tracking community health by monitoring HHVs in wastewater. 

2. MATERIALS AND METHODS 

2.1 Field sampling 

Samples were collected from the Detroit wastewater treatment utility that serves Wayne, 

Oakland and Macomb counties of Michigan. Three main sewers (interceptors): North 

Interceptor—East Arm (NI-EA), Detroit River Interceptor (DRI), and Oakwood-Northwest-

Wayne County Interceptor (O-NWI) collect wastewater from the City of Detroit and Wayne, 

Oakland and Macomb counties. All three interceptors were sampled at their discharge points in 

the wastewater utility, prior to any treatment. Samples were collected in triplicate at each 

interceptor, between November 2017 to February 2018 (11/17/2017, 12/1/2017, 12/14/2017, 

1/19/2018, 2/2/2018 and 2/16/2018). A total of nine samples (triplicates for each interceptor) 

were collected per sampling date for a total of 54 samples. Approximately 12L of influent 

wastewater was passed through NanoCeram electropositive cartridge filters at a rate of 11-12  L 

min-1 using a previously described method (Kuo et al., 2010; O’Brien et al., 2017; U.S. EPA, 

2001). Samples were transported to Michigan State University on ice for further processing.  

2.2 Sample processing 

Viruses were eluted from the cartridge filters with 1.5% w/v beef extract (0.05 mol l-1 

glycine, pH 9.5). Elution was carried out using a previously described method (Kuo et al., 2010; 

O’Brien et al., 2017; U.S. EPA, 2001) within 48 h. All eluted samples were stored in 2 ml 

cryogenic tubes in -80 °C. Viral DNA and RNA was extracted using QIAamp Viral RNA Mini 
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Kit (Qiagen). All the extracts were preserved in -20 °C. Quantitation of viral DNA was done 

using a Qubit Fluorometer.  

2.3 Next generation sequencing and metagenomics analysis  

After nucleic acid extraction, sample replicates were combined. This resulted in eighteen 

samples. To detect HHV-related contigs, samples were sequenced with Illumina NextSeq 

Sequencing at the Research Technology Support Facility (RTSF) at Michigan State University. 

Libraries were prepared through Rubicon ThruPLEX DNA-Seq kit, which were further 

quantified and checked for quality control. All samples were loaded onto one lane of an Illumina 

NextSeq 500 and sequencing was performed from both ends for an output of 150bp.  

Trimming of reads and removal of adaptors was done using Trimmomatic (Bolger et al., 

2014). To reduce the chance of false positives, the trimmed reads were merged and assembled 

into contig files using IDBA-UD de novo assembler (Peng et al., 2012). The contigs were blasted 

against NCBI’s RefSeq viral database using BLAST+/2.2.31 with a minimum E-value 10-3. A 

PYTHON code was written to extract contigs related to all 9 types of HHVs from all BLAST 

output files using the NCBI accession number. The contig dataset was filtered to remove low 

quality contigs. A minimum base length of 200bp was used as threshold based on previous 

papers (Aw et al., 2014; Rosario et al., 2009). A BitScore (Dora et al., 2015), of 100 was used as 

a second filter to select reliable HHVs contigs.  

To detect HIV-related contigs in wastewater samples, nucleic acid was merged as stated 

above, reverse transcribed, and subjected to random amplification as previously described (Wang 

et al., 2003). After DNA quantification with Qubit Fluorometer, the eighteen cDNA samples 

were sequenced with Illumina HiSeq Sequencing. Samples were processed on a HiSeq 4000 

sequencing platform to generate pair-end 150bp reads. Trimming, removal of adaptors, 

assembling using IDBA-UD de novo and blasting against merged NCBI viral database followed. 

A PYTHON code, as described above, was used to extract contigs of HIV from the BLAST 

output using the NCBI accession number.  

2.4 qPCR analysis 

All samples were analyzed using qPCR for Human Herpesvirus 8 and 6 on Eppendorf 

realplex 2 instrument. The assay used for HHV-8 was based on previously described method 

(Lallemand et al., 2000). The total reaction mixture was 20 µl containing 10 µl of 1X Roche 

Lightcycler qPCR Master mix, 1.8 µl of 10 µmol l-1 of each forward and reverse primer (final 
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concentration 900nm), 1 ul of 5 µmol l-1 probe (final concentration 250nm), 0.4 µl of PCR grade 

water and 5 µl of DNA extract. For each sample, the reaction was carried out in triplicates under 

the following conditions: denaturation at 95 °C for 15 min and 45 amplification cycles of 95 °C, 

15 s and 65 °C for 1 min. 

The assay used for HHV-6 was based on previously described method (Gautheret-Dejean 

et al., 2002). The total reaction mixture was 20 µl containing 10 µl of 1X Roche Lightcycler 

qPCR Master mix, 0.8 µl of 10 µmol l-1 of each forward and reverse primer (final concentration 

400nm), 0.4 µl of 10 µmol l-1 probe (final concentration 200nm), 3 µl of PCR grade water and 5 

µl of DNA extract. For each sample, the reaction was carried out in triplicates under the 

following conditions: denaturation at 95 °C for 15 min and 45 amplification cycles of 95 °C, 15 s 

and 60 °C for 1 min. All samples were analyzed in triplicate. The standard curves obtained for 

HHV-8 and HHV-6 are illustrated by figure 1.1. 

 

Figure 1.1. Standard curves of qPCR HHV-8 (Left) and HHV-6 (Right) 

2.5 Statistical analysis 

Oneway ANOVA (comparing means) and a Tukey post hoc test were done in SPSS to 

check if the datasets were statistically significant compared to each other.  

3. RESULTS 

Trimming resulted in an average of 22 million read pairs per sample. An average of 6% 

of those reads was eliminated by Trimmomatic. The remaining 94% of reads were assembled 

into contigs by IDBA-UD de novo assembler. BLAST results were viewed with MEGAN. Table 

1.1 illustrates the percentage of affiliated viral sequences and number of contigs in all samples. 

The percentage of affiliated sequences ranged from 44 to 75%. Viral sequences were divided in 
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dsDNA, ssDNA, ssRNA, unclassified archaeal, unclassified bacterial and unclassified viruses. 

Diversity of viruses present in the samples is also illustrated in Table 1.1. 

Table 1.1. Classification of Viruses using Illumina Sequencing 

 

 

Sample 

Date) 

Num

ber of 

conti

gs 

 

% of 

Affiliated 

Viral 

Sequence

s 

Assi

gned 

virus

es 

dsD

NA 

virus

es 

ssD

NA 

virus

es 

ssR

NA 

virus

es 

Unclassi

fied 

archaeal 

viruses 

Unclassi

fied 

bacterial 

viruses 

Unclas

sified 

viruses 

O-NWI 

11/17/17 

2561

78 

 

68.5 9.7 97.4 0.15 0.09 0 0.27 2.12 

NI-EA 

11/17/17 

3064

05 

66.8 8.8 97.5 0.17 0 0 0.27 2.06 

DRI  

11/17/17 

2848

15 

64.3 8.3 97.2 0.21 0 0 0.24 2.39 

O-NWI 

12/1/17 

2312

17 

61.9 9.5 96.6 0.23 0.14 0 0.28 2.72 

NI-EA 

12/1/17 

1898

33 

57.7 10.1 95.6 0.34 0.18 0.13 0.31 3.41 

DRI  

12/1/17 

2940

31 

55.52 8.8 95.5 0.43 0.17 0.11 0.26 3.49 

O-NWI 

12/14/17 

2608

41 

74.3 9.2 98 0.08 0 0 0.27 1.65 

NI-EA 

12/14/17 

2572

41 

74.4 9.05 98 0.11 0.12 0 0.24 1.55 

DRI  

12/14/17 

2689

42 

75.9 9.07 98.1 0 0 0 0.29 1.55 

O-NWI 

1/19/18 

2349

81 

69.9 10.2 97.3 0.17 0.1 0 0.25 2.2 
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Table 1.1. (cont’d) 

Contigs were matched to all HHVs (figure 1.2). The highest number of matches was 

observed for HHV-8 and the lowest for HHV-1, 2 and 6. The second higher abundance was 

observed for HHV-3. The number of HHV-8 related contigs was significantly greater than the 

number of observed HHV-3 related contigs (P = 0.0).   

NI-EA 

1/19/18 

2818

07 

73 11.7 97.7 0.11 0 0 0.28 1.86 

DRI  

1/19/18 

2372

58 

67.85 10.5 97 0.22 0.09 0 0.27 2.4 

O-NWI 

2/2/18 

2345

35 

73.4 11.7 97.6 0.14 0 0 0.26 2.03 

NI-EA  

2/2/18 

2521

70 

73.2 11.4 97.8 0.11 0 0 0.24 1.85 

DRI  

2/2/18 

2213

73 

68 11.1 96.7 0.21 0.11 0 0.27 2.67 

O-NWI 

2/16/18 

1905

86 

47.55 8.4 94.3 0.55 0.26 0.18 0.27 4.38 

NI-EA 

2/16/18 

3225

59 

23.83 2.8 94 0.39 0 0 0 5.64 

DRI 

2/16/18 

2283

84 

44.1 7.6 94.4 0.54 0.23 0.2 0.29 4.37 
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Figure 1.2. Average number of contigs in all samples (O-NWI, NI-EA and DRI for all six dates) 

of different HHVs 

HHV species with lowest abundance (HHV-6) and highest abundance (HHV-8) based on 

metagenomics analysis, were further analyzed with qPCR. HHV-6 was detected in 9 out of 54 

samples as shown in figure 1.3. Sampling dates 1/19/2018 and 2/16/2018 were the only dates 

when HHV-6 was detectable in more than one interceptor, as shown in figure 1.3. HHV-8 was 

found in 51 out of 54 samples as shown in figure 1.4. The highest number of genomic copies of 

HHV-8 per L, 112, was found on 12/1/2017 at NI-EA interceptor. 
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Figure 1.3. Genomic copies of HHV-6 L-1 (measured by qPCR) and number of contigs related to 

HHV-6 (detected with Illumina sequencing) in all wastewater interceptors for all sampling dates. 

O-NWI = Oakwood-Northwest Wayne County Interceptor, NI-EA = North Interceptor-East 

Arm, DRI = Detroit River Interceptor 

 

Figure 1.4. Genomic copies of HHV-8 L-1 (measured by qPCR) and number of contigs related to 

HHV-8 (detected with Illumina sequencing) in all wastewater interceptors for all sampling dates. 

O-NWI = Oakwood-Northwest Wayne County Interceptor, NI-EA = North Interceptor-East 

Arm, DRI = Detroit River Interceptor 

NI-EA interceptor accounted for the maximum percentage of HHV-8 copies L-1 for the 

majority of dates as depicted in figures 1.5 and 1.7. The highest number of genomic copies L-1 of 

HHV-8 was detected on 12/1/2017 (figure 1.4). One-way ANOVA (comparing means) and a 
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Tukey post hoc test in SPSS resulted in genomic copies L-1 measured in the NI-EA interceptor 

being statistically significantly higher over other interceptors (P = 0.0). Out of all interceptors 

only samples collected at the NI-EA interceptor on 12/1/17 showed statistically significantly 

results (P < 0.05) as compared to the other five sampling dates.  

To correlate with HHV-8 data, the number of HIV contigs were identified. The PYTHON 

code resulted in contigs of HIV of low parameters (BitScore 22 to 56, and E-value 1E-3 to 1E-

10). Figure 1.6 illustrates the HIV contigs for different interceptors. Contigs related to NI-EA 

were higher than contigs related to O-NWI and DRI (figure 1.6), but there was no statistical 

significance found between any of the interceptors.  

 

Figure 1.5. Distribution of HHV-8 Concentrations between interceptors for all sampling dates. 

O-NWI = Oakwood-Northwest Wayne County Interceptor, NI-EA = North Interceptor-East 

Arm, DRI = Detroit River Interceptor 
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Figure 1.6. Average number of HIV-related contigs in all the samples (O-NWI, NI-EA and DRI 

for all six dates). O-NWI = Oakwood-Northwest Wayne County Interceptor, NI-EA = North 

Interceptor-East Arm, DRI = Detroit River Interceptor 

 

Figure 1.7. Average number of genomic copies/L of HHV-8 for all sampling dates. O-NWI = 

Oakwood-Northwest Wayne County Interceptor, NI-EA = North Interceptor-East Arm, DRI = 

Detroit River Interceptor 
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nine types of HHVs were detected in the samples using molecular methods. According to 

Michigan Department of Health and Human Services (MDHHS, 2018), there have been HHV-3 

related cases observed in these counties during the same timeframe (2017 and 2018) as our 

sampling period. The highest number of HHV-3 related (chicken pox, shingles and unspecified) 

cases were observed in Oakland County followed by almost equivalent number of cases for 

Macomb and Wayne County. MDHHS only reports HHV-3 related cases (Varicella/chickenpox, 

Shingles and VZV infection unspecified). HHV-3, according to metagenomic analysis, was 

found as the second most abundant virus from all samples (figure 1.3). Other HHVs related cases 

are not currently monitored by MDHHS.  

HHV-8 related contigs were observed in all samples and their abundance was the highest 

between all nine HHV species. The second highest abundance was observed for HHV-3. One-

way ANOVA indicated that HHV-8 related contigs were significantly higher than HHV-3 related 

contigs with a p-value of 0.0. Furthermore, HHV-8 was detected in 51 out of 54 samples with 

qPCR. This was an unexpected outcome since HHV-8, compared to other HHVs, is relatively 

less abundant in the USA with a seroprevalence of 5-10% (Martin, 2007). On the contrary, in 

this study we observed that HHV8 was the most prevalent observed species by both Illumina 

sequencing and qPCR. One of the reasons of high prevalence could be due to higher probability 

of reactivation of HHV-8 in immunocompromised individuals like HIV/AIDS patients or 

patients undergoing any kind of surgical transplantation, compared to healthy individuals 

(Hudnall et al., 1998; Mendez et al., 1999). HIV-positive patients shed HHV-8 at a higher rate 

compared to healthy individuals (Gianella et al., 2016; Gianella, Morris, et al., 2013; Gianella, 

Smith, et al., 2013; Lisco et al., 2012; Lucht et al., 1993; Lucht, Biberfeld and Linde, 1995; 

Miller et al., 2006). 

This is supported by the ongoing HIV outbreak in the Detroit Metropolitan area at the 

time of sampling. MDHHS reported an HIV outbreak in Detroit that started in 2016 (MDHHS, 

2020). The prevalence rates in Detroit city, 713.3 per 100,000 residents, was 4.3 times greater 

than average prevalence rate in Michigan (MDHHS, 2020). HIV prevalence rates in Wayne 

county except Detroit City, Oakland county and Macomb county at the end of 2018 were 191.2, 

164.5 and 141.9 respectively per 100,000 residents (MDHHS, 2020). Bioinformatics analysis 

confirmed presence of HIV-related contigs in our samples.  
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Regular monitoring of HHVs such as HHV-8 in wastewater influent for a particular city 

might create a baseline of HHVs shed as a whole by the community. Spikes or sudden increases 

might possibly forecast other ongoing diseases in the community since immunocompromised 

individuals shed HHVs at a higher rate as compared to healthy individuals. 

In summary, all HHVs, except HHV-8, are quite prevalent in USA and have been 

associated with multiple potential diseases. These viruses are being regularly shed from both 

asymptomatic and symptomatic individuals and ultimately end up in wastewater. Influent 

wastewater samples were collected from the three interceptors (NI-EA, DRI and O-NWI) serving 

the City of Detroit and Wayne, Macomb and Oakland counties between November 2017 to 

February 2018. The samples were subjected to a series of processes to concentrate viruses which 

were further sequenced and amplified using qPCR. All nine types of human herpesviruses were 

detected in wastewater using Illumina sequencing, bioinformatics and qPCR, with HHV-8 being 

the most abundant. According to literature, HHVs are shed at higher rate in HIV 

immunocompromised patients, solid organ transplant recipients, cancerous patients and critically 

ill non-immunocompromised patients compared to healthy controls. The high abundance of 

HHV-8 in the Detroit metropolitan area is attributed to the HIV-AIDS outbreak that was ongoing 

in Detroit during the sampling period. The approach described in this paper can be used to 

monitor HHVs to establish a baseline secreted by the community. Sudden changes in the 

baseline would identify changes in community health and immunity. 
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CHAPTER 2: EARLY WARNINGS OF COVID-19 SECOND WAVE IN DETROIT MI 

This chapter was published in Journal of Environmental Engineering Volume 147, Issue 8, 3 

June 2021, Brijen Miyani, Liang Zhao, Maddie Spooner, Sejal Buch, Zachary Gentry, Anna 

Mehrotra, John Norton, and Irene Xagoraraki, Early Warnings of COVID-19 Second Wave in 

Detroit 

ABSTRACT 

This study focuses on using wastewater-based-epidemiology to provide early warnings of 

the second COVID-19 wave in Detroit metropolitan area in MI, USA. SARS-CoV-2 RNA from 

untreated wastewater samples was compared to reported public health records. Untreated 

wastewater samples were collected from the Great Lakes Water Authority (GLWA) Water 

Resource Recovery Facility (WRRF), located in southeast Michigan, between Aug 6, 2020 and 

Dec 14, 2020. The WRRF receives wastewater from its service area via three main interceptors: 

Detroit River Interceptor (DRI), North Interceptor-East Arm (NIEA), and Oakwood-Northwest-

Wayne County Interceptor (ONWI). A total of 144 untreated wastewater samples were collected 

(45, 48, and 51 for ONWI, NIEA and DRI respectively) at the point of intake into the WRRF.  

Virus-selective sampling was conducted, and viruses were isolated from wastewater using 

electropositive NanoCeram column filters. For each sample, an average of 33 L of wastewater 

was passed through NanoCeram electropositive cartridge filters at an average rate of 11 L/m. 

Viruses were eluted and concentrated and SARS-CoV-2 RNA concentrations were quantified 

with RT-qPCR. SARS-CoV-2 RNA was detected in 98% of samples and measured 

concentrations were in the range of 4.45E+04 to 5.30E+06 genomic copies/L. Early warnings of 

COVID-19 peaks were observed approximately four weeks prior to reported publicly available 

clinical data.  

1. INTRODUCTION 

The possibility and methodological approaches of using wastewater-based epidemiology 

for early detection of viral outbreaks have been previously discussed (Xagoraraki, 2020; 

Xagoraraki and O’Brien 2020; O’Brien and Xagoraraki 2019). The methodology has been 

applied and validated for the Detroit area population for multiple enteric, respiratory and 

bloodborne viruses (McCall et al. 2020; Miyani et al. 2020b, McCall et all, in press), and 

recently for SARS-CoV-2 (Miyani et al. 2020a). Wastewater surveillance has been used to 
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indicate the presence of Influenza A (H1N1) (Heijnen et al. 2011) and Hepatitis E virus, 

Adenovirus, Astrovirus and Rotavirus (Hellmér et al. 2014).  

Wastewater-based epidemiology can be used as an additional resource for health officials 

to monitor and predict COVID-19 prevalence in the community. The final product of 

wastewater-based-epidemiology that is of interest to health officials is the lag time i.e., the time 

difference between SARS-CoV-2 RNA detection in wastewater and the time a person in the 

community gets tested positive for COVID-19. As reported in the scientific community, the lag 

time seems to be varying between 3 to 28 day (Saguti et al. 2021, Nemudryi et al. 2020, Peccia 

et al. 2020, Weidhaas et al. 2020, Ahmed et al. 2020, Randazzo et al. 2020, Medema et al. 2020, 

Rimoldi et al. 2020, Harvey et al. 2020, Ahmed et al. 2021).  

A critical component of molecular testing in environmental samples is concentrating and 

cleaning the sample to remove chemical or microbial contamination typically not found in 

clinical samples. For this work we used virus-selective sampling of large volumes of wastewater 

followed by elution and concentration (Miyani 2020a). The method is based on electropositive 

column filters (Nanoceram filters Argonide, Sanford, FL) which have an advantage over 

conventional 1MDS filters (USEPA 2001) in terms of low cost and higher viral recovery 

efficiency from wastewater (Soto-Beltran et al. 2013). In this paper we also used wastewater 

interceptor flow rates and service area population to normalize observed concentrations of 

SARS-CoV-2 RNA in wastewater. Our SARS-CoV-2 RNA measurements and normalized 

concentrations provided early warnings of about four weeks prior to medically reported data of 

the second COVID-19 wave in Detroit, Michigan. 

2. MATERIAL AND METHODS 

2.1 Field Site  

Untreated wastewater samples were collected from the Great Lakes Water Authority 

(GLWA) Water Resource Recovery Facility (WRRF) located in southeast Michigan between 

Aug 6, 2020 and Dec 14, 2020. The GLWA WRRF is the largest single-site wastewater 

treatment plant in the US. It has a primary and secondary treatment capacity of 6,435 million 

liters per day (ML/d; 1,700 million gallons per day [MGD]) and 3,520 ML/d (930 MGD), 

respectively. GLWA’s WRRF has a semi-combined sewer-shed system, which collects and treats 

stormwater along with residential, industrial, and commercial waste, depending on service area. 

The WRRF serves the three largest counties, by population, in Michigan: Wayne, Oakland, and 
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Macomb. The WRRF receives wastewater from its service municipalities via three main 

interceptors: Detroit River Interceptor (DRI), North Interceptor-East Arm (NIEA), and 

Oakwood-Northwest-Wayne County Interceptor (ONWI) – figure 2.1.  Untreated wastewater 

samples were collected from all three interceptors at the point of discharge into the WRRF. 

Estimated population served by each interceptor, daily flows, and other characteristics of the 

three interceptors, between Aug 6 and Dec 14, 2020, are shown in table 2.1.  

Table 2.1. Interceptor serviced population, flows, and wastewater quality parameters between 

Aug 6 and Dec 14, 2020 

Characteristic ONWI NIEA DRI 

Population 840,600 1,482,000 492,000 

Flow (ML/d) 677 ± 272 625 ± 191 758 ± 210 

Flow (MGD) 179 ± 72 165 ± 51 200 ± 55 

Estimated Fraction of 

Flow that is Sanitary (%) 

33 ± 6.6  53 ± 12.3 27 ± 5.4 

BOD (mg/L) 113 ± 39 179 ± 69 70 ± 31 

TSS (mg/L) 100 ± 48 191 ± 79 100 ± 47 

TP (mg/L) 3 ± 0.8 3 ± 0.8 1 ± 0.4 

Notes:  

1. ML/d = 106 liters per day; MGD = million gallons per day; cBOD = carbonaceous 

biochemical oxygen demand; TSS = total suspended solids; TP = total phosphorus. 

2. Values for flow, BOD, TSS and TP are shown as average ± one standard deviation. 



24 

 

 

Figure 2.1. Areas served by different GLWA WRRF interceptors 

Note: Seventy two percent of the population of Wayne, Macomb and Oakland Counties is 

serviced by the WWRF 

2.2 Virus-Selective Sample Collection and Elution 

A total of 144 untreated wastewater samples were collected at the influent of the GLWA 
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WRRF (45, 48, and 51 for ONWI, NIEA, and DRI respectively). The sampling took place on 18 

different dates between Aug 6 and Dec 14, 2020 (table 2.2) and 94% of the samples were 

collected in triplicate. Viruses were isolated from wastewater using electropositive NanoCeram® 

column filters (Argonide, Sanford, FL). Depending on the suspended solids of wastewater, 

approximately 10-60 L of influent wastewater was passed through the column filters at a rate not 

more than 11.3 L/min using a previously described method (Miyani et al. 2020a). After 

sampling, all NanoCeram® cartridges were stored at 4oC until elution, which was performed 

within 48 hours using 1.5% beef extract (0.05 M glycine, pH 9.5) and a previously described 

method (Miyani et al. 2020a). Following elution, each sample was aliquoted into multiple 2ml 

corning tubes. 140 µL of sample was used from one of the corning tubes for RNA extraction 
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Table 2.2. SARS-CoV-2 RNA concentrations (genomic copies/liter) quantified in untreated 

wastewater 

Sampling 

Date 

ONWI Interceptor NIEA Interceptor DRI Interceptor 

Average STDEV Average STDEV Average STDEV 

8/6/20 9.90E+04 2.66E+04 1.64E+05 5.46E+04 1.06E+05 6.13E+04 

8/11/20 5.66E+05 4.68E+05 5.75E+05 3.52E+05 8.71E+04 
 

8/18/20 1.18E+06 
 

NA 
 

9.23E+04 3.71E+04 

8/26/20 8.37E+04 3.05E+04 9.88E+04 6.77E+03 1.39E+05 
 

9/1/20 NA 
 

NA 
 

1.04E+05 3.06E+04 

9/8/20 2.88E+05 3.44E+05 8.34E+05 5.27E+05 3.94E+05 5.13E+03 

9/15/20 6.50E+05 7.00E+05 8.59E+05 6.34E+05 9.42E+04 3.23E+04 

9/21/20 NA 
 

NA 
 

NA 
 

9/29/20 2.35E+06 2.66E+06 1.28E+06 9.01E+05 NA 
 

10/7/20 3.53E+06 1.76E+06 2.04E+06 2.10E+05 2.80E+06 1.29E+06 

10/14/20 1.04E+06 6.92E+05 1.21E+06 1.28E+06 6.08E+05 8.25E+05 

10/21/20 NA 
 

1.24E+06 1.43E+06 1.13E+06 1.34E+06 

10/28/20 NA 
 

1.33E+06 1.57E+06 1.80E+05 3.26E+04 

11/4/20 2.69E+05 1.12E+04 2.25E+05 8.38E+04 1.33E+05 7.45E+04 

11/11/20 1.43E+05 4.49E+03 1.86E+05 4.28E+03 2.50E+05 1.33E+05 

11/18/20 4.25E+05 2.80E+05 2.53E+05 8.96E+04 1.54E+05 
 

11/23/20 NA 
 

NA 
 

NA 
 

11/30/20 
  

1.81E+05 9.27E+03 1.33E+05 
 

12/7/20 2.78E+05 2.42E+05 2.43E+05 3.23E+04 1.07E+05 2.45E+04 

12/14/20 6.53E+04 
 

7.99E+04 3.95E+04 1.01E+05 
 

Note: NA=non-available (sample not collected) 

2.3 RNA extraction 

Viral RNA was extracted using Viral RNA QIAGEN kits following manufacturer’s 

protocol. A volume of 140 µL of elution buffer was used to elute RNA from 140 µL of sample. 

2.4 RT-qPCR 

The extracted viral RNA was reverse transcribed using iScript RT-qPCR Supermix (Bio-

Rad). A two-step quantitative reverse transcription polymerase chain reaction (RT-qPCR) was 
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used to quantify SARS-CoV-2 in the samples. qPCR was performed on a Mastercycler ep 

realplex2 (Eppendorf) in 96-well optical plates. The primers and probe targeting the N1 gene of 

SARS-CoV-2 were used based on a previously described assay (Miyani et al. 2020a).  

American Type Culture Collection synthetic SARS-CoV-2 RNA: ORF, E, N VR-3276SD 

was used as a positive control. Sterile nuclease-free water was used as a negative control. For 

each sample, five microliters of cDNA were transferred to a 15 μL reaction mix containing a 

final concentration of 150 nM of each primer, 125 nM of probe, 1× Lightcycler 480 probes 

master, and sterile nuclease free water. All reactions were performed in four replicates with the 

following amplification conditions: denaturation at 95ºC for 10 min, followed by 45 cycles of 

95ºC for 10 s and 55ºC for 30 s. All qPCR runs included a positive and a negative control.  

The protocol mentioned above was used to prepare standard curves with 10-fold serial 

dilutions of positive SARS-CoV-2 RNA control ranging from 101 to 105 genome copies/ul.  A 

standard curve was prepared once every two weeks. The average standard curve was used to 

calculate SARS-CoV-2 concentrations since biweekly standard curves were very similar. The 

standard curve used to quantify SARS-CoV-2 RNA in field samples has a slope and R-squared 

value of -3.4279 and 0.9977 respectively. 

Sampling volume and all dilutions starting from field sampling to RT-qPCR were 

accounted when calculating copies of SARS-CoV-2 RNA per liter. These included: volume of 

wastewater passed through the NanoCeram filter, 1 L of beef extract used for elution, 30 mL of 

Na2HPO4, volume of RNA used in reverse transcription (10 µL), dilution factor, and volume of 

cDNA used in qPCR (5 µL).  

To estimate the recovery percentage of reverse transcription and qPCR, three older 

samples (free of SARS-CoV-2) were spiked with SARS-CoV-2 RNA. The samples used for the 

recovery study were obtained from the three interceptors on 2/16/2018 using the same method 

mentioned in the study and stored in -80C freezer (Miyani et al. 2020b). Viral RNA was 

extracted, reverse transcribed and amplified for SARS-CoV-2 using the aforementioned method. 

Five ul of 5.8E+04 gc/ul SARS-CoV-2 RNA was spiked in the extracted viral RNA samples 

which were reverse transcribed and amplified for SARS-CoV-2 detection. No amplification of 

SARS-CoV-2 was observed in the samples before spiking. Additionally, 5 ul of 5.8E+04 gc/ul 

SARS-CoV-2 RNA was spiked in PCR-grade water, reverse transcribed and amplified for 

SARS-CoV-2. Recovery percentage of SARS-CoV-2 RNA, for reverse transcription, dilution 
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and qPCR was observed to be 54%, 46% and 30% for O-NWI, NI-EA and DRI respectively.  

The limit of detection of RT-qPCR was determined using 10-1, 10-0.5, 100, 100.5, 101, 102, 

103, 104, 105 dilutions of positive SARS-CoV-2 RNA gc/ul control based the method described 

in FDA approved CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic 

Panel document (CDC Coronavirus 2020). No amplification was observed in 10-1, 10-0.5 and 100 

dilutions of SARS-CoV-2 RNA. The limit of detection was determined to be 100.5 SARS-CoV-2 

gc/ul. 

The qPCR efficiency was found to be 95.76% based on the standard curve and the 

following equation E = 10(-1/slope) – 1.  

2.5 Publicly-Available Clinical Data 

Publicly-available online data reporting confirmed COVID-19 infections in the City of 

Detroit, and Wayne, Oakland, and Macomb counties were used for this study 

(https://www.michigan.gov/coronavirus/). The database was accessed on Feb 6, 2020. The state 

of MI reports the data as follows: “county” is based on the county of residence; “cases” are 

aggregated by the date of onset of COVID-19 symptoms, if known, otherwise by laboratory 

specimen date, if known, otherwise by case referral date; “confirmed cases” only include 

individuals who have had a positive diagnostic laboratory test for COVID-19. The data are 

shown in figure 2.2. 

 

Figure 2.2. Observed COVID-19 cases between August 5 and December 15, 2020 

https://www.michigan.gov/coronavirus/
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2.6 Interceptor Contributing Populations and Flow Rates 

The population served by each interceptor was estimated from 2020 populations provided 

by the Southeast Michigan Council of Governments by traffic analysis zone (TAZ). Geographic 

information systems (GIS) analysis was used to intersect the TAZ boundaries with ZIP Code 

boundaries and proportionally allocate population from each TAZ to the intersected areas. ZIP 

Code boundaries were also intersected with the interceptor service areas to allow a calculation of 

population by interceptor area.  

Daily flow rates for the three interceptors were estimated from the daily influent flow to 

the WRRF (calculated from GLWA-reported primary influent flow minus WRRF recycle flows) 

and a calibrated hydrologic and hydraulic model developed for the GLWA collection system. 

The collection system model was developed with US EPA’s Stormwater Management Model 

(SWMM) 5 as part of the GLWA Wastewater Master Plan. The SWMM model represents 

sanitary wastewater and infiltration/inflow, hydraulics in all physical assets of the collection 

system and at the WRRF entrances, and stages and flows in the Rouge and Detroit rivers.  

2.7 Correlations Between COVID-19 Cases and Wastewater SARS-CoV-2 

Concentrations 

One-Way ANOVA and Post-Hoc Tukey test (comparing means) by SPSS was used to 

evaluate the lag time between SARs-CoV-2 concentrations in wastewater and confirmed clinical 

cases. Time series analysis was not possible because of data gaps. All the confirmed COVID-19 

clinical cases and SARS-CoV-2 RNA qPCR measurements (gc/liter) were pooled together in the 

following groups: Aug 13-Aug 17, Aug 17-Aug 31, Aug 31-Sept 14, Sept 14-Sept 28, Sept 28-

Oct 12, Oct 12-Oct 26, Oct 26-Nov 9, Nov 9-Nov 23, Nov 23-Dec 7 and Dec 7- Dec 21. The 

reason for choosing biweekly groups was to compensate for the dates on which sampling was not 

conducted. All the groups were analyzed by One-Way ANOVA and Post-Hoc Tukey test to 

determine statistically significant differences. 

3. RESULTS AND DISCUSSION  

A total of 144 samples were collected and processed between Aug 6, and Dec 14, 2020. 

SARS-CoV-2 was detected in 98% of samples. Figure 2.3 illustrates the average and standard 

deviation of genomic copies per liter of SARS-CoV-2 in all three interceptors. The data are also 

shown in table 2.2. SARS-CoV-2 concentrations, for all three interceptors, were in the range of 

104 to 106 genomic copies per liter. The lowest and highest concentration, for ONWI, was 
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observed on Sept 8, 2020 (4.45E+04 copies/L) and Sept 29, 2020 (5.36E+06 copies/L), 

respectively. For NIEA, the lowest and highest was observed on Dec 14, 2020 (5.2E+04 

copies/L) and Oct 14, 2020 (2.65E+06 copies/L), respectively. Comparatively, in the case of 

DRI, the lowest and highest was observed on Sept 15, 2020 (6.33E+04 copies/L) and October 7, 

2020 (3.71E+06 copies/L), respectively. Figure 2.2 shows confirmed COVID-19 cases for the 

City of Detroit and Macomb, Oakland and Wayne Counties. As seen in figure 2.2, the number of 

confirmed COVID-19 cases for the second wave in the region peaked around Nov 9, 2020, a 

month later than the observed peak in SARS-CoV-2 RNA concentrations in wastewater (figure 

2.3).  

 

Figure 2.3. SARS-CoV-2 RNA concentrations quantified in the ONWI, NIEA and DRI 

interceptors 

  Figures 2.4 and 2.5 show boxplots of biweekly grouped measured SARS-CoV-2 RNA 

concentrations in wastewater and confirmed COVID-19 cases. For SARS-CoV-2 RNA 

concentrations (figure 2.4), the Sept 28-Oct 12 group was found to be significantly different 

compared to all other groups (all p-value = 0). Similarly, for biweekly confirmed COVID-19 

cases (figure 2.5), the Oct 26-Nov 9 group was found significantly different compared to all 

other groups (all p-value = 0). These observations indicate a lag time of approximately one 

month (Sept 28 to Oct 26).  
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Figure 2.4. Biweekly SARS-CoV-2 concentrations at three interceptors 

 

Figure 2.5. Biweekly confirmed COVID-19 cases in City of Detroit and Wayne, Macomb and 

Oakland Counties 

Additionally, qPCR data were normalized (and expressed as genomic copies per day per 

person) by multiplying with the wastewater flow rate on the specific day and dividing by the 

population served by each interceptor (figure 2.6). Normalized SARS-CoV-2 RNA 
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concentrations in the WRRF influent peaked on the same dates as non-normalized concentrations 

(figure 2.6) both prior to reported COVID-19 cases. However, the magnitude of the normalized 

and non-normalized peak concentrations is different, eliciting the importance of understanding 

other parameters relevant to viral fate and transport within the sewer-sheds and the change in 

population. One-Way ANOVA and Post-Hoc Tukey results were obtained for normalized data 

and, similarly to non-normalized data, the Sept 28-Oct 12 group was significantly different as to 

compared to other sampling dates for biweekly combined SARS-CoV-2 RNA concentrations.  

 

Figure 2.6. Normalized SARS-CoV-2 RNA concentrations in genomic copies per day, 

per person, gc/(day*person) 

In summary, our SARS-CoV-2 RNA measurements suggested early warnings of about 

four weeks prior to the rise of clinically reported COVID-19 cases in Detroit, Michigan. This 

agrees with observations by Saguti et al. 2021 and Ahmed et al. 2021. Saguti et al. 2021 

collected influent wastewater samples, daily, from the city of Gothenburg and surrounding 

municipalities in Sweden. The daily samples were combined into weekly samples and passed 

through Nano-Ceram filter which were then concentrated and eluted by milk powder and 

ultracentrifugation respectively. Saguti et al. 2021 found a time lag of three to four weeks 

between increases in SARS-CoV-2 RNA in wastewater and the number of newly hospitalized 

patients with COVID-19. Additionally, Ahmed et al. 2021 observed SARS-CoV-2 RNA in 

wastewater from Southern Brisbane wastewater treatment plant, Australia in late February 2020, 

three weeks before the first clinical case was reported.  
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Other studies report shorter lag times. Randazzo et al. 2020 investigated the occurrence 

of SARS-CoV-2 RNA in six wastewater treatments plants in Spain, and indicated that the 

positive influent wastewater samples were detected 12 to 16 days prior to the reported clinical 

COVID-19 cases in municipalities. Medema et al. 2020 collected sewages samples from six 

cities and an airport in the Netherlands. It was found that SARS-CoV-2 RNA measurements 

were detected in Amersfoort 6 days before the first cases were reported. Peccia et al. 2020 found 

that the SARS-CoV-2 RNA concentrations in sludge were 0 to 2 days ahead of COVID-19 

positive test results. The time difference between SARS-CoV-2 RNA concentrations in sludge to 

local hospital admissions was 1 to 4 days, whereas 6 to 8 days for reporting of SARS-CoV-2 

positive test results. Nemudryi et al. 2020 collected samples from the municipal wastewater 

treatment plant in Bozeman, Montana and was able to identify that SARS-CoV-2 RNA levels in 

wastewater were leading clinical PCR test results by 2 to 4 days.  

The type of samples and their source, viral retention in the wastewater collection 

network, including dilution, sorption to solids, and decay, and the demographics of the 

population may greatly influence the observed lag times. At this point generalizations of 

expected lag times between different locations and populations cannot be made. Accurate 

determination of lag times and prediction involves the incorporation of many other 

measurements, data, and processes, including but not limited to, estimation of the dilution, 

retention and fate of viral particles in the wastewater collection network and the estimation of 

characteristics of contributing population (Xagoraraki 2020). Establishing early warning of 

upcoming fluctuations in the greater Metropolitan area of Detroit facilitates planning of 

resources and further clinical testing. Our team is currently conducting targeted sewer-shed 

sampling in communities with high cumulative COVID-19 cases per 100.000 people and 

communities with varying demographics. 

4. CONCLUSIONS  

Untreated wastewater samples were collected and processed between Aug 6, and Dec 14, 

2020, from the Detroit metropolitan area in southeast Michigan. SARS-CoV-2 RNA was 

detected in 98% of samples with concentrations ranging from 104 to 106 copies/L. Early 

warnings of the second wave of COVID19 were observed ahead of clinical data reporting. 

Statistical analysis indicated a lag time of four weeks between observed SARS-CoV-2 RNA 

concentrations in wastewater and COVID-19 reported cases in the community. Along with 



34 

 

clinical diagnostic testing, wastewater-based epidemiology may be a helpful resource for health 

officials in predicting the incidence of SARS-CoV-2 in community. Accurate prediction models 

can be created by including processes that affect the fate of viruses in the collection network, 

demographic information, and shedding rate and duration data. 
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CHAPTER 3: SURVEILLANCE OF SARS-COV-2 IN NINE NEIGHBORHOOD 

SEWERSHEDS IN DETROIT TRI-COUNTY AREA, UNITED STATES: ASSESSING 

PER CAPITA SARS-COV-2 ESTIMATIONS AND COVID-19 INCIDENCE 

This chapter was published in Science of The Total Environment Volume 851, Part 2, 10 

December 2022, 158350, Yabing Li, Brijen Miyani, Liang Zhao, Maddie Spooner, Zach Gentry, 

Yangyang Zou, Geoff Rhodes, Hui Li, Andrew Kaye, John Norton, Irene Xagoraraki, 

Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, 

United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence 

ABSTRACT 

Wastewater-based epidemiology (WBE) has been suggested as a useful tool to predict the 

emergence and investigate the extent of severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). In this study, we screened appropriate population biomarkers for wastewater SARS-

CoV-2 normalization and compared the normalized SARS-CoV-2 values across locations with 

different demographic characteristics in southeastern Michigan. Wastewater samples were 

collected between December 2020 and October 2021 from nine neighborhood sewersheds in the 

Detroit Tri-County area. Using reverse transcriptase droplet digital polymerase chain reaction 

(RT-ddPCR), concentrations of N1 and N2 genes in the studied sites were quantified, with N1 

values ranging from 1.92102 genomic copies/L to 6.87103 gc/L and N2 values ranging from 

1.91102 gc/L to 6.45103 gc/L. The strongest correlations were observed with between 

cumulative COVID-19 cases per capita (referred as COVID-19 incidences thereafter), and 

SARS-CoV-2 concentrations normalized by total Kjeldahl nitrogen (TKN), creatinine, 5- 

hydroxyindoleacetic acid (5-HIAA) and xanthine when correlating the per capita SARS-CoV-2 

and COVID-19 incidences. When SARS-CoV-2 concentrations in wastewater were normalized 

and compared with COVID-19 incidences, the differences between neighborhoods of varying 

demographics were reduced as compared to differences observed when comparing non-

normalized SARS-CoV-2 with COVID-19 cases. This indicates when studying the disease 

burden in communities of different demographics, accurate per capita estimation is of great 

importance. The study suggests that monitoring selected water quality parameters or biomarkers, 

along with RNA concentrations in wastewater, will allow adequate data normalization for spatial 

comparisons, especially in areas where detailed sanitary sewage flows and contributing 

populations in the catchment areas are not available. This opens the possibility of using WBE to 
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assess community infections in rural areas or the developing world where the contributing 

population of a sample could be unknown. 

1. INTRODUCTION 

It has been more than two years since the start of the coronavirus disease 2019 (COVID-

19) pandemic which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2). During this period, scientists from multiple disciples including epidemiology, evolutionary 

biology and environmental engineering have come a long way in understanding the distribution, 

transmission, genomic characteristics and risks of SARS-CoV-2 (Ahmed et al., 2022a; Ahmed et 

al., 2022c; Koelle et al., 2022; Laborde et al., 2020; Li et al., 2022; Lu et al., 2020; Sills et al., 

2020; Subbaraman, 2021). Although our understanding about SARS-CoV-2 has improved, 

challenges ahead remain, with new emerging variants of concern, high transmissibility and 

COVID-19 risks, and developing control strategies in rural areas and the developing world. 

Wastewater-based epidemiology (WBE) is suggested to be an important and useful tool 

to investigate the prevalence and spatial distribution of viruses such as hepatitis virus, poliovirus 

noroviruses in the environment. The corresponding wastewater surveillance strategy can serve as 

an “early warning” system to provide scientific evidence for public health decision-making 

(Ahmed et al., 2022b; Ahmed et al., 2021b; Bibby et al., 2021; Hovi et al., 2012; Lodder et al., 

2012; McCall et al., 2021; Miyani et al., 2020; Xagoraraki and O’Brien, 2020; Zhao et al., 2022). 

Wastewater surveillance systems have been launched to monitor SARS-CoV-2 RNA 

concentrations and transmission in the various environments, when coping with the COVID-19 

pandemic (Ahmed et al., 2021a; Gerrity et al., 2021; Medema et al., 2020; Wu et al., 2021; Xie et 

al., 2022). Studies associated with SARS-CoV-2 vary in scales, ranging from small campuses 

(Betancourt et al. 2021; Gibas et al 2021) to the large national scale programs (Bivins and Bibby, 

2021; Gonzalez et al., 2020; Li et al., 2021b; Miyani et al., 2020; Miyani et al., 2021; Scott et al., 

2021; Wu et al., 2021; Wu et al. 2021; Zhao et al., 2022).  By conducting WBE coupled with 

targeted clinical testing in 13 dorms in the University of Arizona, both SARS-CoV-2 RNA in the 

wastewater and COVID-19 cases in the community were investigated, and the results provide 

evidence for the application of WBE in defined communities (Betancourt et al., 2021). A similar 

building-level SARS-CoV-2 surveillance study was implemented and found that identification of 

positive COVID-19 cases can be indicated by WBE (Gibas et al., 2021).All these instances 
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validate the application of WBE as a promising and cost-effective tool to assist in public health 

responses to disease outbreaks. 

However, a critical factor associated with successful application of WBE is the accurate 

population estimation (Sims and Kasprzyk-Hordern, 2020). It is highly recommended by the 

United States Centers for Disease Control and Prevention (CDC) that normalizing the viral 

concentrations by the number of people served by the sewer system enables the viral levels 

comparisons across different sampling locations (CDC, 2022). The variability of population size 

within a catchment area is dynamic due to many factors such as commuting and tourism. This 

contributes to various uncertainties in real-time WBE. Additionally, if WBE were to be applied 

in rural areas or the developing world, where information on the characteristics of catchment 

areas and populations may not be available, estimating the contributing population will be of 

great importance. 

Although both viral (e.g., pepper mild mottle virus, PMMoV) and human biomarkers 

have been  suggested to normalize the SARS-CoV-2 RNA in the wastewater, however, it is still 

debated which marker is the most ideal to perform the normalization (Xie et al., 2022). In a most 

recent study, using coprostanol as a potential biomarker, the strongest correlation between 

normalized SARS-CoV-2 RNA concentrations and COVID-19 incidences was observed, which 

demonstrated the promising application of population biomarkers in wastewater surveillance 

studies (Reynolds et al., 2022). Additionally, 5-HIAA was selected to assess population size in 

an exploratory study, in which surveillance of SARS-CoV-2 RNA in wastewater from two 

municipalities in Latvia were discussed (Gudra et al., 2022). To evaluate the application of 

population biomarkers in normalizing SARS measurements, one can review the efforts and 

conclusions drawn of the study of drug abuse estimation using WBE, where biomarkers have 

been widely studied all over the world (Choi et al., 2018). 

Two approaches were commonly used to estimate population sizes and compare with 

census data: measurement of water quality parameters in sewage (biochemical oxygen demand 

[BOD], nitrogen, etc.) (Tscharke et al., 2019; Zheng et al., 2019) and measurement of population 

biomarkers (Chen et al., 2014; Gracia-Lor et al., 2017).  The advantage of using water quality 

parameters is that they can be easily measured and tracked, which makes them easily applicable 

especially in rural areas and the developing world. However, water quality parameters, such as 

BOD, total nitrogen (TN) or total phosphorous (TP) levels may be influenced by both human and 



40 

 

non-human contributions (e.g., industrial discharges, agricultural activities) (Been et al., 2014; 

Daughton, 2012; Rico et al., 2017). However, population biomarkers in sewage, which are either 

endogenous compounds, such as creatinine, 5-HIAA, or exogenous substances like caffeine and 

its metabolites, are contributed by human metabolism only and, therefore, may be surrogates for 

estimating sewershed populations (Chen et al., 2014; Chiaia et al., 2008; Choi et al., 2018). 

Compared with the census approach, they may reflect the real-time fluctuation of population. 

For example, a breakdown compound of muscle tissues, creatinine was proposed as a 

potential population biomarker and is widely used clinically (Chen et al., 2014; Chiaia et al., 

2008). However, degradability of creatinine in sewer systems was reported, and this affects its 

potential as a population biomarker (Thai et al., 2014).  Neurotransmitter metabolite 5-HIAA 

was suggested as an eligible population biomarker that is cultural independent and may be 

reliable for comparisons of population sizes among different countries (Chen et al., 2014). 

Caffeine is one of the most ubiquitous micro-contaminants found in the untreated wastewater 

due to its wide usage in many globally popular products (e.g., tea, cola drinks or coffee) as a 

stimulating agent. It has been suggested as a human biomarker for assessing the real-time 

fluctuations of population (Daughton, 2012; Froehner et al., 2010). Metabolism of caffeine is 

extensive and at least 17 urinary metabolites of caffeine are identified (Gracia-Lor et al., 2017). 

Occurrences of caffeine metabolites in wastewater are still scarce, which limit their application 

in population estimation. Meanwhile, concentrations of the metabolites depend on human habits, 

it was found that the average loads of caffeine and its metabolites were slightly lower during the 

weekends, which may result from the relatively lower consumption of coffee (Senta et al., 2015). 

This study focuses on the evaluation of the relationship between the COVID-19 

incidences and the measured and estimated per capita SARS-CoV-2 RNA concentrations. It is 

hypothesized that population normalization with water quality markers and population 

biomarkers could be a reliable approach to calculate the per capita SARS-CoV-2 RNA 

concentrations. To test the hypothesis, we collected 486 samples from nine sewersheds of 

different demographics in the Detroit Tri-County area, MI from December 2020 through October 

2021, and quantified SARS-CoV-2 RNA concentrations at a neighborhood level. The population 

of each community was assessed using water quality parameters (BOD, TKN, total suspended 

solids [TSS], volatile suspended solids [VSS]) and human biomarkers (creatinine, 5-HIAA, 

caffeine and its metabolites), which was further validated with the census-reported population in 
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the catchment areas. Correlations between COVID-19 incidences and per capita SARS-CoV-2 

RNA concentrations were performed to identify relatively reliable population biomarkers that 

can be applied in sewage surveillance studies. 

Moreover, using normalized SARS-CoV-2 concentration and COVID-19 incidences, 

spatial differences between nine sewersheds of different demographics were assessed. 

Previously, SARS-CoV-2 RNA concentrations in wastewater collected from the Great Lakes 

Water Authority (GLWA) Water Resource Recovery Facility (WRRF) influent in Detroit, 

Michigan were quantified and ranged from 104~105 gc/L (Miyani et al., 2020). Considering 

sewage surveillance can capture the presence of virus before the onset of symptoms, an “early 

warning” system was proposed to try and forecast the second COVID-19 wave in the Detroit 

metropolitan area by combining the sewage surveillance methodology with local public health 

records (Miyani et al., 2021; Richardson, 2021). However, sewage surveillance research of 

SARS-CoV-2 incorporating the contributed population of the studied sewersheds is still limited. 

To our knowledge, a spatial comparison across the Detroit neighborhoods sewersheds has not 

been performed. Such spatial investigations of SARS-CoV-2 RNA that take into consideration 

the social-demographic characteristics of various communities within the Detroit Tri-County 

would provide important information for understanding county-level comparisons of COVID-19 

incidences as well as inform the public health decision-making process. 

The study suggests that monitoring selected water quality parameters or biomarkers along 

with RNA concentrations in wastewater will allow adequate data normalization, especially in 

areas where detailed sanitary sewage flows in the catchment areas are not available. This opens 

the possibility of using WBE to assess community infections in rural areas or the developing 

world where the contributing population of a sample could be unknown. 

2. MATERIAL AND METHODS 

2.1. Sampling sites and sample collection 

The Detroit metropolitan area, often referred to as Metro Detroit, is a major metropolitan 

area in the U.S. and the largest in the state of Michigan. It is known for its developed economics 

and cultural diversity. The City of Detroit serves as the metropolitan area’s core, and the 

metropolitan area extends into three adjacent counties: Macomb, Oakland, and Wayne. This area 

is also referred as the Detroit Tri-County area. Social and demographic characteristics of 

communities in this area are varied. Although the underlying mechanisms of disparities are 
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unknown, significant racial/ethnic differences in COVID-19 cases in the U.S. were revealed and 

social-demographic factors including economic status, racial/ethnic status, household 

composition should be included when assessing the COVID-19 burdens (Karmakar et al., 2021; 

Kim and Bostwick, 2020). 

Sewer wastewater samples from three locations in Macomb County (EP, MT, SH), three 

locations in the City of Detroit, located in Wayne County (D1, D2, D3) and three locations in 

Oakland County (SF, WB, OP) were collected to conduct the neighborhood sewershed 

surveillance of SARS-CoV-2 in the Detroit Tri-County area (figure 3.1). Sampling locations 

were selected in the Detroit Tri-County area to ensure data from neighborhoods with varying 

demographics. Census tract level population and demographic information obtained from the 

Southeast Michigan Council of Governments (SEMCOG) website (https://semcog.org/) were 

evaluated along with sample location catchment areas to define sewershed level demographics 

(table 3.1).   

 

 

https://semcog.org/
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Figure 3.1. Locations of nine sewershed sites selected from the Detroit Tri-County area in 

Michigan in the United States. Decisions were made with local health departments and 

sewersheds selected represent different demographic characteristics from County Macomb (EP, 

MT and SH), Wayne (D1, D2 and D3) and Oakland (SF, WB and OP) in the Detroit Tri-County 

area MI 

Sampling locations in the City of Detroit (D1, D2 and D3) have relatively higher 

population densities and higher poverty rates and relatively lower household income than those 

in Macomb County (EP, MT and SH) and Oakland County (SF, WB and OP). Sample locations 

The Detroit Tri-County Area

Site County City/Township ZIPCode

EP Macomb Eastpointe 48021

MT Macomb Macomb Township 48044,48042,48049,48095

SH Macomb Sterling Heights 48310,48312,48313

D1 Wayne Detroit 48205

D2 Wayne Detroit 48210

D3 Wayne Detroit 48235

SF Oakland Southfield 48076

WB Oakland West Bloomfield 48322

OP Oakland Oak Park 48237

United States

Michigan

City/Township and ZIP code of

the selected locations
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MT and SH in Macomb County have the largest catchment areas and populations. The nine 

sample locations include a demographic variety in the Detroit Tri-County area, and represent 

areas with differing racial makeups, education levels, poverty, and income levels (table 3.1). 

Table 3.1. Demographic characteristics of the catchment areas for the nine sampling sewersheds 

in the Detroit Tri-County area MI 

Sample Tributary Catchment 

Site 

Area 

(Acres

) 

Popula

tion 

Dens

ity1 

Asi

an 

(%) 

Bla

ck 

(%) 

Hisp

anic 

(%) 

Whi

te 

(%) 

Pover

ty 

(%) 

65+2 

(%) 
Deg

ree3 

(%) 

Total 

Househol

d Income 

($) 

EP 278 2,400 8.6 0 37 5 54 5 16 17 56,450 

MT 29,264 99,970 3.4 3 5 3 88 4 14 34 102,850 

SH 6,246 37,560 6.0 10 5 2 80 12 17 27 65,700 

D1 135 1,690 12.5 0 95 0 4 19 11 5 39,300 

D2 372 5,190 14.0 0 8 76 14 32 6 5 35,900 

D3 127 1,300 10.2 0 95 0 2 44 17 14 22,100 

SF 717 3,080 4.3 0 61 3 31 10 18 56 92,100 

WB 1,218 5,800 4.8 15 19 0 63 5 27 55 100,520 

OP 286 2,270 7.9 2 85 3 6 15 16 20 51,680 

1：Unit of population density, people per acre. 

2:   Percent of population older than 65. 

3:   Percent of population with bachelor’s degree or higher. 

Sewer wastewater samples were collected during 18 sampling events from December 

2020 to October 2021. For each site, triplicate samples were collected each sampling event for a 

total of 54 samples collected for each site. Dates for each sampling event are shown in the 

supplementary table 3.2. Sewer flow values for each sampling event were measured by existing 

flow meters at two sites in Macomb County (MT and SH) and two sites in Oakland County (SF 

and WB). A hydraulic model [GLWA’s Reginal Wastewater Collection System (RWCS) Model] 

was updated with rainfall data for the sampling period and applied to estimate flow values for 

sewersheds D1, D2 and D3 in the City of Detroit (Wayne County) for each sampling event. 
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There was no available flow meter data or hydraulic model that could be used to estimate flows 

for sites EP in Macomb County and OP in Oakland County for the study period. 

Table 3.2. Specific dates of sampling events occurred for the nine neighborhood sewersheds 

(County Macomb: EP, MT and SH; County Wayne: D1, D2 and D3; and County Oakland: SF, 

WB and OP) in the Detroit Tri-County Area MI 

Week EP MT SH D1 D2 D3 SF WB OP 

12/7/2

0 

12/9/2

0 

12/9/2

0 

12/9/2

0 

12/10/

20 

12/10/

20 

12/10/

20 

12/8/2

0 

12/8/2

0 

12/9/2

0 

12/14/

20 

12/17/

20 

12/17/

20 

12/17/

20 

12/15/

20 

12/15/

20 

12/15/

20 

12/17/

20 

12/18/

20 

12/18/

20 

1/18/2

1 

1/20/2

1 

1/19/2

1 

1/19/2

1 

1/20/2

1 

1/20/2

1 

1/20/2

1 

1/21/2

1 

1/21/2

1 

1/21/2

1 

1/25/2

1 

1/27/2

1 

1/26/2

1 

1/26/2

1 

1/27/2

1 

1/27/2

1 

1/27/2

1 

1/28/2

1 

1/28/2

1 

1/28/2

1 

2/1/21 2/3/21 2/2/21 2/2/21 2/3/21 2/3/21 2/3/21 2/4/21 2/4/21 2/4/21 

2/8/21 2/10/2

1 2/9/21 2/9/21 

2/10/2

1 

2/10/2

1 

2/10/2

1 

2/11/2

1 

2/11/2

1 

2/11/2

1 

3/1/21 3/2/21 3/2/21 3/2/21 3/3/21 3/3/21 3/3/21 3/4/21 3/4/21 3/4/21 

3/8/21 

3/9/21 3/9/21 3/9/21 

3/10/2

1 

3/10/2

1 

3/10/2

1 

3/11/2

1 

3/11/2

1 

3/11/2

1 

3/15/2

1 

3/16/2

1 

3/16/2

1 

3/16/2

1 

3/17/2

1 

3/17/2

1 

3/17/2

1 

3/18/2

1 

3/18/2

1 

3/18/2

1 

3/22/2

1 

3/23/2

1 

3/23/2

1 

3/23/2

1 

3/24/2

1 

3/24/2

1 

3/24/2

1 

3/25/2

1 

3/25/2

1 

3/25/2

1 

8/30/2

1 

8/31/2

1 

8/31/2

1 

8/31/2

1 9/1/21 9/1/21 9/1/21 9/2/21 9/2/21 9/2/21 

9/6/21 9/7/21 9/7/21 9/7/21 9/8/21 9/8/21 9/8/21 9/9/21 9/9/21 9/9/21 

9/13/2

1 

9/14/2

1 

9/14/2

1 

9/14/2

1 

9/15/2

1 

9/15/2

1 

9/15/2

1 

9/16/2

1 

9/16/2

1 

9/16/2

1 

 

 



46 

 

Table 3.2. (cont’d) 

9/20/2

1 

9/21/2

1 

9/21/2

1 

9/21/2

1 

9/22/2

1 

9/22/2

1 

9/22/2

1 

9/23/2

1 

9/23/2

1 

9/23/2

1 

9/27/2

1 

9/28/2

1 

9/28/2

1 

9/28/2

1 

9/29/2

1 

9/29/2

1 

9/29/2

1 

9/30/2

1 

9/30/2

1 

9/30/2

1 

10/4/2

1 

10/5/2

1 

10/5/2

1 

10/5/2

1 

10/6/2

1 

10/6/2

1 

10/6/2

1 

10/7/2

1 

10/7/2

1 

10/7/2

1 

10/11/

21 

10/12/

21 

10/12/

21 

10/12/

21 

10/13/

21 

10/13/

21 

10/13/

21 

10/14/

21 

10/14/

21 

10/14/

21 

10/18/

21 

10/19/

21 

10/19/

21 

10/19/

21 

10/20/

21 

10/20/

21 

10/20/

21 

10/21/

21 

10/21/

21 

10/21/

21 

Viruses were collected and isolated from wastewater using electropositive NanoCeram 

column filters (Argonide, Sanford, FL, USA) based on the EPA Virus Adsorption-Elution 

(VIRADEL) method (Miyani et al., 2020; Miyani et al., 2021; Xagoraraki et al., 2014; Zhao et 

al., 2022). Specifically, depending on the quantity of suspended solids in the wastewater, 

approximately 20 to 50 L of raw wastewater were passed through NanoCeram electropositive 

cartridge filters at a rate not more than 11 L/min.  Flow meter readings were recorded at the 

beginning and termination of each sampling event to measure the total volume raw wastewater 

that passed through the filter. After sampling, the NanoCeram column filters were placed in 

sealed plastic bags on ice and transported to the laboratory for elution and downstream molecular 

analysis within 24 hours. In addition, for each sampling event, triplicate grab samples of raw 

sewage were collected using 1L autoclavable polythene plastic bottles. To prevent degradation of 

biomarkers, the pH in the bottles was adjusted to 2. The bottle was transported to the laboratory 

within 24 hours for the biomarkers analysis. Solid phase extraction for biomarkers analysis was 

performed within two weeks of sample collection. Another set of samples were collected for 

each sampling event and transported to Paragon Laboratories, Inc. in Livonia, MI for the 

analyses of water quality markers (BOD, TKN, TSS and VSS). Standards methods were applied 

to perform the analyses as follows: BOD: SM5210B; TKN: SM 4500-Norg B; TSS: SM 2540D 

and VSS: SM 2540 E. 
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2.2. Quantification of SARS-CoV-2 in the wastewater samples 

2.2.1 Virus elution and RNA extraction 

Virus elution from the cartridge filters was conducted within 48 hours of each sampling 

event. Viruses were eluted based on a previously described method (Miyani et al., 2020; Miyani 

et al., 2021) using 1.5% beef extract (0.05 M glycine). Following elution, each sample was 

aliquoted into multiple 2 mL Corning tubes. Subsequently, 140 µL of sample was used from one 

of the corning tubes for RNA extraction. Viral RNA was extracted using QIAGEN QIAamp 

Viral RNA QIAGEN kits (QIAGEN, Hilden, Germany), following the manufacturer’s protocol 

with the volume of final eluting reagent (buffer AVE) modified from 60 µL to 140 µL as in the 

previous study (Miyani et al., 2021; Zhao et al., 2022). Bacteriophage Phi6 was spiked to 

estimate the losses of virus in elution and concentration. And the recoveries were decided from 

10.37% to 58.96%, with a mean recovery of 24.91% (22.89%). RNA extracts were stored at -80 

C and RT-ddPCR were performed within 24 hours after the extraction. 

2.2.2 Reverse transcriptase droplet digital PCR (RT-ddPCR) 

A QX200 AutoDG Droplet Digital PCR system (Bio-Rad, Hercules, CA, USA) was 

applied to perform RT-ddPCR and the One-step RT-ddPCR Advanced Kit was used for Probes 

(Bio-Rad, Hercules, CA, USA). Primers and probe targeting N1 and N2 of SARS-CoV-2 used 

were summarized in table 3.3. The N1 N2 gene Duplex Assay Reaction Mixture was prepared 

with 5.5 μL of One-Step RT-Supermix (20x) (final volume ratio: 0.25), 2.2 μL of Reverse 

Transcriptase (RT) (final volume ratio: 0.1), 1.1 μL 300 mM DTT (final volume ratio: 0.05), 3.3 

μL of N1 primer probe mix (final volume ratio: 0.15), 3.3 μL N2 primer probe mix (final volume 

ratio: 0.15), and 1.1 μL of PCR-grade water (final volume ratio: 0.05) in a final volume of 16.5 

μL per reaction. Amounts of the mixture was prepared according to the sample number. After 

mixing thoroughly, the reagents were pipetted into each well of a 96-well plate. Then, 5.5 μL of 

RNA product was added to each well reaching a total reaction volume of 22 μL. 
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Table 3.3. Primers and probe targeting at gene N1 and N2 of SARS-CoV-2 used in reverse 

transcriptase droplet digital PCR (RT-ddPCR) 

Primers/probe N1 N2 

Forward 

primer 

GAC CCC AAA ATC AGC GAA 

AT 

TTA CAA ACA TTG GCC GCA 

AA 

Reverse 

primer 

TCT GGT TAC TGC CAG TTG 

AAT CTG 

GCG CGA CAT TCC GAA GAA 

Probe [FAM] ACC CCG CAT TAC GTT 

TGG TGG ACC [BHQ1] 

[FAM] ACA ATT TGC CCC CAG 

CGC TTC AG [BHQ1].  

The 96-well plate was sealed on a PX1 PCR Plate Sealer (Bio-Rad, Hercules, CA, USA), 

subsequently vortexed and centrifuged at 1000 rpm for 30 seconds. Oil droplets were generated 

using an Automated Droplet Generator (Bio-Rad, Hercules, CA, USA). Samples were then run 

on a C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA) using the following 

conditions for the N1 N2 Duplex: 25 ℃ for 3 min, 50 ℃ for 60 min, 95 ℃ for 10 min, following 

40 cycles of 95 ℃ for 30 s and 55 ℃ for 1 min with a ramp speed of 2 ℃/s, 98 ℃ for 10 min, 

and finally 4℃ until the next step. Plates were transferred to a QX200 Droplet Reader (Bio-Rad, 

Hercules, CA, USA) for a measurement of fluorescence in each droplet. 

For each RT-ddPCR run, three positive controls (PTCs) and three negative controls 

(NTCs), and process negative controls (including virus elution and RNA extraction process 

controls) were included. Twist Bioscience Twist Synthetic SARS-CoV-2 RNA Control 2 

(MN908947.3) with a concentration of 102 gc/μL was used for PTCs. Nuclease-free water was 

used for NTCs. Nano-pure water was used as a substitute for 1.5% beef extract in virus elution, 

as process negative control. Sterile nuclease-free water was used as a substitute for 140 µL of 

sample for RNA extraction, as process negative control. All samples were run in triplicate. 

Determination of Limit of Blank (LOB) and Limit of Detection (LOD) was based on the 

methods described in the manufacturer’s (Bio-Rad) guidelines for evaluating analytical 

sensitivity and validation of RT-ddPCR (Bio-Rad, Hercules, CA, USA). The Limit of Blank 

(LOB) was determined by testing three types of samples using RT-ddPCR, across four 

consecutive days including the prior-to COVID-19 pandemic samples collected from the same 

interceptors, nuclease-free water, and negative process control samples from elution and 

extraction processes. The LOB for N1 gene ddPCR was determined as 0.09 gc/μL, and the LOB 
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for N2 gene ddPCR was 0.08 gc/μL. Furthermore, an LOD of 0.1 gc/μL with 72.9% confidence 

for the N1 gene and 0.1 gc/μL with 81.3% confidence for the N2 gene were determined. 

2.3. Population biomarkers analysis 

Population biomarkers were extracted from wastewater using solid-phase extraction 

(SPE). Specifically, 19.95 mL of wastewater sample passed through pre-conditioned 200 mg/6cc 

Waters Oasis HLB cartridges connected to a 12-port vacuum manifold. The SPE cartridges were 

conditioned by sequentially washing with 5 mL of methanol and 5 mL of deionized (DI) water. 

The flow rate was controlled at approximately 2 mL/min. After the wastewater sample passed 

through the cartridge, the sample vial was rinsed with 3 mL of DI water and the rinse water was 

loaded to the SPE cartridge. Clean vials were placed in the vacuum manifold beneath each SPE 

cartridge to collect the eluate. The cartridge was eluted with 5 mL of methanol at a rate of 1 

mL/min. The samples were analyzed within two weeks using a Shimadzu Prominence high-

performance liquid chromatography coupled to a Sciex 4500 triple quadruple mass spectrometer 

(LC-MS/MS) within two weeks. 

The target population biomarkers included creatinine, 5-HIAA, caffeine and its 

metabolites xanthine, methylxanthine, theobromine, paraxanthine and theophylline. These 

biomarkers were analyzed by the LC-MS/MS under the positive ionization mode. The ionspray 

voltage, temperature, curtain gas pressure and entrance potential were 5000 V, 700 °C, 20 psi 

and 10 V. An Agilent Eclipse Plus C18 column (50 mm × 2.1 mm, particle size 5 μm) was used 

for separation. The binary mobile phase consisted of phase A water containing 0.3% formic acid 

and phase B methanol (acetonitrile) with a flow rate of 0.3 mL/min. The injection volume was 5 

μL. In the tandem mass spectrometer, multiple reaction monitoring acquisition mode was set up 

for precursor and product ion transitions, and the highest-intensity transition was selected for 

quantification. The biomarker concentrations in the extracts were quantified against the external 

calibration curves. 

2.4. Sources of demographic and clinical data 

Demographic and socioeconomic data were downloaded from the Southeast Michigan 

Council of Governments (SEMCOG) website (https://maps.semcog.org/CommunityExplorer/). 

Daily clinically confirmed cases data for sites in Macomb County (EP, MT and SH) were 

downloaded from Macomb County Health Department 

(https://mcmap.maps.arcgis.com/apps/dashboards/439123f4ca934ceb893927776fcda9f8), and 

https://maps.semcog.org/CommunityExplorer/
https://mcmap.maps.arcgis.com/apps/dashboards/439123f4ca934ceb893927776fcda9f8
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for sites in Oakland County (SF, WB and OP) were downloaded from Oakland County Michigan 

(https://www.oakgov.com/covid/casesByZip.html), for sites in Wayne County (D1, D2 and D3), 

daily clinically confirmed cases data were downloaded from Wayne County Michigan 

(https://www.waynecounty.com/covid19dashboard/). Sum of the weekly/monthly new-

confirmed cases for the duration of the 18 sampling events were calculated and referred as 

cumulative clinical cases thereafter.  

2.5. Statistical analysis 

Concentrations and loads of SARS-CoV-2 RNA targeting at both N1 and N2 were 

calculated using formula 3.1. R function Shapiro test was applied to check the normality of the 

data obtained in this study. Mean values of SARS-CoV-2 for the nine sewersheds were 

compared among the nine neighborhood sewersheds using one-way analysis of variance 

(ANOVA), followed by a Tukey’s post hoc test to explore the differences of SARS-CoV-2 

burdens within the nine sewersheds in the Detroit Tri-County area. Pearson correlation 

coefficients were applied to assess the relationship between population markers and the 

population sizes estimated from analysis of census data. Normalized SARS-CoV-2 RNA 

concentration were obtained through using SARS-CoV-2 RNA concentration divided by 

concentration of the population marker. Furthermore, correlations between the normalized 

SARS-CoV-2 RNA concentrations and COVID-19 incidences were also conducted to assess the 

COVID-19 burden in communities of the Detroit Tri-County area. All the calculations and 

statistical analysis were performed using Microsoft Excel and R version 4.1.1.  

CS = CPCR ×
VEL×

1000μL

mL

VS
×

VEX′

VEX
×

VPCR′

VPCR
        (3.1) 

CS: Concentrations of SARS-CoV-2 RNA in samples collected; gc/L. 

CPCR: Concentration of SARS-CoV-2 RNA obtained from RT-ddPCR instrument; gc/μL. 

VEL: Sample volume after elution, Na2HPO4 solution (0.15 M) was used to dissolve virus 

precipitate and the volume is 30 mL. 

VS: Sample volume collected by cartridge filters, and value was calculated from pump readings 

and converted to number with unit of L. 

VEX: Volume of sample used for RNA extraction; 140 μL. 

VEX′: Volume of RNA products after RNA extraction; 140 μL. 

VPCR: Volume of RNA product used for RT-ddPCR; 5.5 μL.  

https://www.oakgov.com/covid/casesByZip.html
https://www.waynecounty.com/covid19dashboard/
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VPCR′: Final reaction volume of RT-ddPCR; 22 μL. 

3. RESULTS AND DISCUSSION 

3.1. Prevalence of SARS-CoV-2 and clinical COVID-19 cases in the communities 

SARS-CoV-2 concentrations were quantified using N1 and N2 RT-ddPCR assays for 

samples collected from Macomb County Sites (EP, MT and SH), City of Detroit (Wayne 

County) (D1, D2 and D3) and Oakland County sites (SF, WB and OP) in the Detroit Tri-County 

area. Concentrations of both N1 and N2 in all the studied sites were found to be greater than 

1.91102 gc/L and up to 6.87103 gc/L. Average concentration of N1 for the nine sample sites 

ranged from 348  14.2 gc/L in D1 to 937  110 gc/L in MT. The average concentration of N2 

ranged from 372  17.0 gc/L in D1 to 879  161 gc/L in SH. Concentrations of SARS-CoV-2 in 

MT and SH were relatively higher than those at other sites, which may relate to the larger 

population in these sewersheds. Tukey’s post hoc analysis support this observation and indicated 

concentrations of SARS-CoV-2 in MT and SH are significantly higher than those in the 

remaining sites (figure 3.2A and 3.2B). Meanwhile, N1 and N2 measurements were strongly 

correlated (r>0.76) for every site except site SF, where more high outliers of N2 measurements 

were found compared with N1 measurements. 
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Figure 3.2. A&B: Concentrations of SARS-CoV-2 (A: N1, B: N2) detected in samples collected 

from sites of County Macomb (EP, MT and SH), Wayne (D1, D2 and D3) and Oakland (SF, WB 

and OP) in Detroit Tri-County area, MI. One-way analysis of variance (ANOVA), followed by a 

Tukey’s post hoc test indicates SARS-CoV-2 RNA concentrations in sewershed MT and SH are 

significantly higher than those in the remaining sewersheds. C&D: Loads of SARS-CoV-2 (C: 

N1, D: N2) calculated for sites with flow data available (Macomb: MT and SH, Wayne: D1, D2 

and D3, and Oakland: SF and WB). EP and OP are absent because their flow rates are 

unavailable. MI. One-way analysis of variance (ANOVA), followed by a Tukey’s post hoc test 

indicates loads of SARS-CoV-2 in sewershed MT and SH are significantly higher than those in 

the remaining sewersheds. E: Cumulative clinical confirmed cases for the studied period  
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Figure 3.2. (cont’d) 

corresponding to occurrence of the 18 sampling events. F: The COVID-19 cases rate expressed 

as cases per 1000-person in nine neighborhood sewersheds (Macomb County: EP, MT and SH; 

City of Detroit (Wayne County): D1, D2 and D3; and Oakland County: SF, WB and OP) in the 

Detroit Tri-County area (F) 

Flow rates of seven sewersheds [MT and SH in Macomb County, D1, D2 and D3 in the 

City of Detroit (Wayne County), and SF and WB in Oakland County] were available and used to 

investigate SARS-CoV-2 loads in the study period. Flow data for the four sites located at 

existing flow meters (MT, SH, SF, and WB) were available in 5-minute intervals.  The hydraulic 

model used to estimate flows for the three City of Detroit sites (D1, D2, and D3) had a 15-minute 

reporting time step.  Due to meter flow variability, either 30-min or 1 hour moving average flow 

values were applied for the analyses. Averages of the flow rates for the seven sewersheds ranged 

from 7.88105 L/day in D3 to 3.16107 L/day in MT (table 3.4).  

Table 3.4. Descriptive statistics of flow rates (30-min or 1-hour moving average, L/day) for the 

seven neighborhood sewersheds (County Macomb: MT and SH; County Wayne: D1, D2 and D3; 

and County Oakland: SF and WB) in the Detroit Tri-County Area MI 

 MT SH D1 D2 D3 SF WB 

Minimum 3.01107 1.54107 1.35106 1.44106 4.89105 2.06106 2.78106 

Maximum 3.58107 2.97107 1.89107 4.22107 3.92106 7.72106 6.43106 

Average 3.16107 2.01107 2.51106 4.04106 7.88105 3.50106 5.84106 

Std 1.47106 3.16106 4.10106 9.52106 7.88105 1.20106 7.90105 

The average SARS-CoV-2 loads using N1 gene assay ranged from 3.64108 gc/day in D3 

to 2.941010 gc/day in MT, while for N2 gene assay, they ranged from 3.53108 gc/day in D3 to 

2.601010 gc/day in MT (figure 3.2C and 3.2D). Further Tukey’s post hoc analysis indicated 

SARS-CoV-2 loads in MT and SH were significantly larger than those in the remaining sites. 

Cumulative COVID-19 cases in the nine sewersheds for the entire study period are 

presented in figure 3.2E. COVID-19 cases for MT and SH sewersheds (6,770 and 7,305 cases, 

respectively) were larger than those in the other seven sewersheds. Confirmed cumulative cases 

in the SF sewershed (635) were the lowest reported during the study period. Cumulative 

COVID-19 cases per capita was calculated (figure 3.2F) using the population data for the nine 
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sewersheds. On a per capita basis, COVID-19 incidences in MT and SH remain to be the highest; 

however, the difference between these two sewersheds and the remaining seven sewersheds 

decreased compared to the cumulative cases without normalizing to population. 

Both concentrations and loads of SARS-CoV-2 RNA in MT and SH sewersheds were 

higher than the other sewersheds, which is consistent with their high cumulative clinically 

confirmed cases. Relationships between SARS-CoV-2 RNA loads (targeting at N1 and N2) and 

cumulative confirmed cases were explored using spearman correlation analysis (figure 3.3A and 

3.3C). Also, linkages between SARS-CoV-2 RNA loads and populations that the sewersheds 

served were investigated through spearman correlation analysis (figure 3.3B and 3.3D). The 

results suggest SARS-CoV-2 RNA loads are correlated with both the cumulative clinical 

COVID-19 cases and population served by the sewersheds and agrees with previous published 

work (Bertels et al., 2022; Wilder et al., 2021; Wu et al., 2021). A linear relationship between 

SARS-CoV-2 RNA concentration and population size in the catchment area in New York, US 

was identified (Wilder et al., 2021). With the wastewater surveillance study of SARS-CoV-2 

across 40 states in the U.S. from February to June 2020, a positive correlation between SARS-

CoV-2 RNA detection rates and population sizes were found (Bertels et al., 2022; Wu et al., 

2021). However, as mentioned above, difference of COVID-19 incidences between sewershed 

MT and SH, and the remaining seven sewersheds decreased when normalized to population, 

which signifies the importance of assessing COVID-19 burden to per capita level. 
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Figure 3.3. A: Spearman correlation analysis between SARS-CoV-2 gene N1 load and 

cumulative cases. B: Spearman correlation analysis between SARS-CoV-2 gene N1 load and 

population served by each sewershed. C: Spearman correlation analysis between SARS-CoV-2 

gene N2 load and cumulative cases. D: Spearman correlation analysis between SARS-CoV-2 

gene N2 load and population served by each sewershed. Correlations were performed for 

sewersheds with flow data available (Macomb: MT and SH, Wayne: D1, D2 and D3, and 

Oakland: SF and WB) 

3.2. Assessment of the potential population markers in wastewater-based 

surveillance 

In addition to the census approach, contributing population to a sewershed can be 

assessed using water quality parameters (BOD, etc.) and population biomarkers (creatinine, etc.). 

In this study, both water quality and population biomarkers were studied to evaluate potential 

A B

C D
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population markers in per-capita SARS-CoV-2 assessments and cross-site comparisons. Water 

quality constituent and population biomarker concentrations from the nine sites are shown in 

table 3.5. 

Table 3.5. Concentrations of water quality markers and population biomarkers in the wastewater 

samples collected from nine sewersheds in the Detroit Tri-County area MI. Values are described 

as average  standard deviation 

Markers 
Sites 

EP MT SH D1 D2 D3 SF WB OP 

BOD 

(mg/L) 

2286

1.0 

2084

7.0 

1342

8.0 

1204

3.0 

68.01

9.0 

79.02

5.0 

84.03

7.0 

2154

4.0 

1255

9.0 

TKN 

(mg/L) 

40.09

.00 

58.06

.00 

45.08

.00 

25.07

.00 

25.07

.00 

30.01

0.0 

31.01

0.0 

34.04

.00 

40.01

6.0 

TSS 

(mg/L) 

97.05

0.0 

1267

8.0 

99.02

1.0 

39.02

0.0 

24.01

2.0 

37.01

7.0 

56.03

0.0 

1072

7.0 

67.04

9.0 

VSS 

(mg/L) 

85.04

1.0 

1065

6.0 

91.01

7.0 

35.01

7.0 

18.04

.00 

33.01

5.0 

43.01

9.0 

98.02

4.0 

58.04

1.0 

Creatinine 

(g/L) 

32.61

5.9 

34.11

0.9 

22.51

0.9 

24.81

0.0 

22.29

.1 

25.68

.4 

20.51

2.3 

24.19

.4 

37.42

0.3 

5-HIAA 

(g/L) 

8.104

.80 

11.15

.80 

4.905

.10 

5.103

.90 

5.303

.90 

6.504

.20 

6.603

.90 

6.603

.70 

9.506

.30 

Caffeine 

(g/L) 

1376

0.4 

1827

7.0 

1135

0.9 

55.42

4.8 

46.71

8.4 

33.61

1.6 

1066

4.1 

1567

8.3 

91.33

6.4 

Xanthine 

(g/L) 

29.52

1.2 

33.42

0.6 

23.91

6.0 

20.81

2.9 

17.71

1.5 

21.31

4.4 

22.61

4.7 

26.32

0.7 

35.82

3.6 

Methylxan

thine 

(g/L) 

64.65

6.2 

1037

4.2 

63.05

0.2 

32.42

4.8 

30.52

4.5 

36.32

7.0 

49.04

0.4 

49.74

2.0 

67.65

0.6 

Theophylli

ne 

(g/L) 

35.21

1.3 

60.01

7.3 

40.91

2.8 

16.55

.30 

23.09

.30 

19.37

.20 

30.89

.40 

34.41

3.3 

35.21

1.1 
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Table 3.5. (cont’d) 

Theobro

mine 

(g/L) 

37.41

7.8 

67.22

5.4 

41.51

8.6 

21.27

.20 

24.31

0.0 

22.99

.00 

31.61

3.6 

40.61

9.6 

38.01

7.6 

Paraxant

hine 

(g/L) 

28.18

.10 

46.61

4.1 

31.81

0.2 

13.54

.10 

18.67

.00 

15.85

.40 

25.07

.60 

27.01

0.2 

28.08

.70 

The highest concentrations of BOD were found in EP (228  61.0 mg/L) and WB (215  

44.0 mg/L), which have populations of approximately 2,400 and 5,800, respectively, based on 

the census estimate. The two sites with the highest concentrations of TKN were MT (58.0  6.00 

mg/L) and SH (45.0  8.00 mg/L), which also have the largest catchment level populations 

(99,970 and 35,560, respectively). High levels of TSS and VSS were found in site MT (TSS: 126 

 78.0 mg/L; VSS: 106  56.0 mg/L) and WB (TSS: 107  27.0 mg/L; VSS: 98.0  24.0 mg/L), 

however, the population estimated for the MT sewershed (99,970) is much larger than the WB 

sewershed (5,800). 

The highest concentration of creatinine was detected in sewer samples collected from the 

OP site (37.4  20.3 g/L), followed by the MT site (34.1  10.9 g/L). The estimated 

population for the MT sewershed is the largest (99,970), which is consistent with its high 

creatinine concentration. However, the population estimated for the catchment area of the OP 

site is relatively small (2,270). Similar results were found for 5-HIAA, where concentrations 

were found to be very high at sites MT and OP (MT:11.1  5.80 g/L; OP:9.50  6.30 g/L), 

even though the estimated populations of the two sites vary significantly. Concentrations of 

caffeine and its metabolites were identified in microgram per liter, and concentrations of the 

metabolites were found to be slightly lower than the parent compound (Chen et al., 2014; Choi et 

al., 2018; Gracia-Lor et al., 2017). 

Correlations analysis between the loads (g/day) of population markers and the population 

sizes obtained from census approach were performed (figure 3.4). The results showed that BOD, 

TKN, creatinine, 5-HIAA and three of caffeine’s metabolites are correlated strongly with the 

population sizes obtained from census (r > 0.90) (figure 3.4). 



58 

 

 

Figure 3.4. Correlation analysis between loads of potential population markers (including water 

quality parameters and human biomarkers) and population sizes obtained from census. Numbers 

in the shapes are the correlation coefficients. Unit of all the population markers is kept consistent 

and is g/day 

Concentration of the wastewater RNA may increase with the larger population sizes, as in 

our study, concentrations of SARS-CoV-2 RNA in MT and SH wastewater are much higher than 

those in other sites (figure 3.2A and 3.2B). To understand the per capita viral contribution, it is 

critical to have an accurate estimate of population to be able to normalize measured SARS-CoV-

2 concentrations in wastewater. 

3.3. Normalized SARS-CoV-2 and the clinical cases rate 

To understand the per capita viral contribution and perform spatial comparisons, SARS-

CoV-2 RNA concentrations were normalized to population served in order to relate with 

COVID-19 incidences in the nine sampling locations. Descriptive characteristics of the 

normalized SARS-CoV-2 were summarized in table 3.6. 
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Table 3.6. Normalized SARS-CoV-2 in nine neighborhood sites (County Macomb: EP, MT and 

SH; County Wayne: D1, D2 and D3; and County Oakland: SF, WB and OP) in the Detroit Tri-

County area MI. Values were described as average  standard deviation 

Norm

alizing 

factors 

Sites 

EP MT SH D1 D2 D3 SF WB OP 

SARS

/BOD 

(gc/m

g 

BOD) 

N1:2.1

50.94 

N2:2.1

71.00 

N1:4.7

34.34 

N2:4.1

63.17 

N1:6.94

9.61 

N2:7.04

10.70 

N1:3.3

22.07 

N2:3.4

82.04 

N1:7.1

87.44 

N2:7.1

26.28 

N1:6.8

55.26 

N2:6.4

33.82 

N1:6.5

38.12 

N2:5.7

93.73 

N1:2.2

90.70 

N2:2.3

90.98 

N1:5.0

73.90 

N2:4.7

82.99 

SARS

/TKN 

(gc/m

g N) 

N1:11.

94.34 

N2:12.

04.76 

N1:15.

912.7 

N2:14.

09.30 

N1:20.8

28.7 

N2:21.1

32.1 

N1:15.

811.1 

N2:16.

611.1 

N1:19.

517.8 

N2:19.

616.2 

N1:20.

922.7 

N2:20.

021.3 

N1:17.

419.1 

N2:16.

715.1 

N1:14.

54.93 

N2:15.

26.64 

N1:18.

22.47 

N2:17.

52.14 

SARS

/TSS 

(gc/m

g 

TSS) 

N1:5.5

32.49 

N2:5.5

32.53 

N1:11.

619.2 

N2:10.

313.0 

N1:10.2

17.2 

N2:10.1

18.3 

N1:11.

06.01 

N2:11.

86.66 

N1:20.

625.0 

N2:20.

921.5 

N1:16.

515.0 

N2:15.

210.5 

N1:11.

316.9 

N2:9.5

77.56 

N1:4.8

42.17 

N2:5.0

82.94 

N1:9.9

06.75 

N2:9.4

05.16 

SARS

/VSS 

(gc/m

g 

VSS) 

N1:6.3

12.91 

N2:6.3

12.98 

N1:13.

221.2 

N2:11.

814.2 

N1:10.9

17.4 

N2:10.8

18.6 

N1:12.

37.17 

N2:13.

27.89 

N1:26.

229.8 

N2:26.

125.3 

N1:18.

617.1 

N2:17.

212.3 

N1:13.

919.8 

N2:12.

19.42 

N1:5.2

52.27 

N2:5.5

33.18 

N1:11.

47.67 

N2:10.

86.08 
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 Table 3.6. (cont’d)  

SARS/C

reatinine 

(gc/g 

Creatini

ne) 

N1:19.

116.1 

N2:19.

418.4 

N1:31.

528.0 

N2:27.

521.8 

N1:57.

896.4 

N2:58.

0103 

N1:16.

28.06 

N2:16.

98.20 

N1:24.

924.9 

N2:24.

722.2 

N1:20.

216.1 

N2:18.

99.75 

N1:29.

522.4 

N2:29.

320.7 

N1:23.

813.1 

N2:25.

216.4 

N1:18.

813.0 

N2:18.

613.2 

SARS/5-

HIAA 

(gc/g 

5-

HIAA) 

N1:43

7876 

N2:45

2931 

N1:92

6208

3 

N2:80

3180

8 

N1:258

46172 

N2:266

16620 

N1:45

8854 

N2:46

1852 

N1:51

5996 

N2:50

3989 

N1:44

9953 

N2:43

0928 

N1:52

9123

4 

N2:51

3121

1 

N1:42

4838 

N2:40

1729 

N1:42

2878 

N2:41

9879 

SARS/C

affeine 

(gc/g 

Caffeine

) 

N1:5.1

53.62 

N2:5.2

54.36 

N1:8.1

08.23 

N2:6.9

66.67 

N1:10.

115.9 

N2:9.6

316.6 

N1:8.2

33.68 

N2:9.1

84.35 

N1:11.

310.2 

N2:11.

17.78 

N1:22.

021.9 

N2:20.

517.4 

N1:5.2

12.18 

N2:5.6

42.52 

N1:4.2

72.64 

N2:4.7

33.10 

N1:8.3

07.27 

N2:7.7

75.51 

SARS/X

anthine 

(gc/g 

Xanthin

e) 

N1:27.

018.7 

N2:26.

820.3 

N1:46.

042.9 

N2:39.

435.3 

N1:52.

888.3 

N2:51.

092.7 

N1:22.

38.24 

N2:24.

710.2 

N1:29.

720.4 

N2:29.

516.1 

N1:36.

530.7 

N2:33.

121.3 

N1:24.

29.11 

N2:26.

110.8 

N1:29.

319.2 

N2:32.

624.0 

N1:23.

018.9 

N2:21.

414.0 
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 Table 3.6. (cont’d) 

SARS/Met

hylxanthin

e 

(gc/g 

Methylxant

hine) 

N1:15.

212.1 

N2:15.

313.5 

N1:17.

116.5 

N2:14.

914.1 

N1:24.

946.8 

N2:24.

149.1 

N1:16.

37.48 

N2:18.

39.78 

N1:20.

917.9 

N2:20.

715.0 

N1:23.

419.9 

N2:21.

214.1 

N1:13.

26.98 

N2:14.

18.16 

N1:17.

212.6 

N2:19.

215.5 

N1:13.

812.5 

N2:12.

79.19 

SARS/The

ophylline 

(gc/g 

Theophylli

ne) 

N1:18.

411.9 

N2:18.

212.8 

N1:20.

818.1 

N2:18.

215.1 

N1:25.

940.3 

N2:24.

942.3 

N1:25.

59.56 

N2:28.

411.7 

N1:22.

017.2 

N2:21.

713.0 

N1:34.

626.8 

N2:33.

020.7 

N1:15.

64.84 

N2:16.

96.05 

N1:19.

012.5 

N2:21.

415.7 
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Clinical case per 1000-person per site were calculated using the cumulative clinical cases 

divided by the population size served by each sewershed. Clinical cases per 1000-person for the 

nine sites ranged from 29 cases to 65 cases per 1000-person (figure 3.2F). Even though SH and 

MT have a relatively higher confirmed case rate, the deviation of these two sites to the remaining 

seven sites has reduced significantly compared to cumulative clinical cases in the study periods 

(figure 3.2E). 

Correlations between normalized SARS-CoV-2 and the clinical cases were used to 

evaluate the application of the population markers. Results indicated that SARS-CoV-2 RNA 

normalized on the basis of TKN, creatinine, 5-HIAA and xanthine were correlated strongly with 



62 

 

the clinical cases per 1000-person (figure 3.5). Furthermore, when TKN and xanthine were used 

to normalize the SARS-CoV-2 RNA concentrations, no significant differences were found 

among the nine sites. When creatinine and 5-HIAA were used, SH still stood out from the nine 

sampling locations (figure 3.6 and 3.7). Findings in this study may promote the per capita viral 

assessment and benefit the public health, especially in rural areas and the developing world, 

since factor like TKN can be measured easily onsite. 

Concentrations of SARS-CoV-2 RNA in wastewater are affected by several factors 

including shedding-related factors, sewershed population, in-sewer factors (e.g., load and 

physiochemical properties of solid particles and organic matters, influx of 

rainwater/stormwater/groundwater), and sampling strategies (Bertels et al., 2022).  Adjusting for 

these factors can help reduce uncertainties of the wastewater data. Among these factors, 

population normalization is crucial for accurate wastewater surveillance and confident viral 

assessment. By evaluating various water quality parameters and human biomarkers as the 

normalizing factors, SARS-CoV-2 RNA normalized by TKN, creatinine, 5-HIAA and xanthine 

correlated strongly with the clinical cases per 1000-person. 

 

Figure 3.5. Normalized SARS-CoV-2 (A: N1; B: N2) by population markers to assess the 

COVID burdens to the per capita level. Correlation analyses were performed between 

normalized SARS-CoV-2 and COVID-19 cases per 1,000-person. Events with water quality 

markers, creatinine, 5-HIAA, and caffeine and its metabolites available were included to do the 

correlation. For each sewershed and normalizing factor, sum of the normalized SARS-CoV-2 for  
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 Figure 3.5. (cont’d) 

the 8 events were considered to do the correlation. COVID-19 cases rates were calculated for the 

periods corresponding to those 8 events. Unit of all the normalized SARS-CoV-2 concentrations 

is kept consistent and is gc/g population marker 

 

Figure 3.6. Boxplots of normalized SARS-CoV-2 RNA concentrations by TKN and Xanthine in 

nine neighborhood sites (County Macomb: EP, MT and SH; County Wayne: D1, D2 and D3; and 

County Oakland: SF, WB and OP) in the Detroit Tri-County Area MI 
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Figure 3.7. Boxplots of normalized SARS-CoV-2 RNA concentrations by TKN and Xanthine in 

nine neighborhood sites (County Macomb: EP, MT and SH; County Wayne: D1, D2 and D3; and 

County Oakland: SF, WB and OP) in Detroit MI 

4. CONCLUSIONS 

Average concentrations of N1 (SARS-CoV-2) in wastewater samples collected from nine 

sites ranged from 3.48102 to 9.37102 gc/L, and for N2, averages ranged from 3.72102 to 

8.79102 gc/L. Both levels and loads of SARS-CoV-2 RNA in wastewater in two neighborhoods 

(MT and SH) were found to be higher than that in the other seven sites. The differences were 

statistically significant. Comparisons between normalized SARS-CoV-2 by population markers 

and COVID-19 incidences, indicated that normalization of SARS-CoV-2 RNA concentrations 

with TKN, creatinine, 5-HIAA and xanthine correlated positively with the COVID-19 

incidences.  
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CHAPTER 4: BIOINFORMATICS-BASED SCREENING TOOL IDENTIFIES A WIDE 

VARIETY OF HUMAN VIRUSES IN TRUJILLO-PERU WASTEWATER AND 

CONFIRMS COVID-19, MONKEYPOX, AND DIARRHEAL DISEASE OUTBREAKS 

This chapter was published in One Health Volume 18, June 2024, 100756, Brijen Miyani, Yabing 

Li, Heidy Peidro Guzman, Ruben Kenny Briceno, Sabrina Vieyra, Rene Hinojosa, Irene 

Xagoraraki, Bioinformatics-based screening tool identifies a wide variety of human and zoonotic 

viruses in Trujillo-Peru wastewater 

ABSTRACT 

Peru was one of the most affected countries during the COVID-19 pandemic. Moreover, 

multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and 

rising. According to Peru's Ministry of Health, various health facilities in the country were 

reallocated for the COVID-19 pandemic, thereby leading to reduced action to curb other 

diseases. Many viral diseases in the area are under-reported and not recognized. The One Health 

approach, in addition to clinical testing, incorporates environmental surveillance for detection of 

infectious disease outbreaks. The purpose of this work is to use a screening tool that is based on 

molecular methods, high throughput sequencing and bioinformatics analysis of wastewater 

samples to identify virus-related diseases circulating in Trujillo-Peru.  

To demonstrate the effectiveness of the tool, we collected nine untreated wastewater 

samples from the Covicorti wastewater utility in Trujillo-Peru on October 22, 2022. High 

throughput metagenomic sequencing followed by bioinformatic analysis was used to assess the 

viral diversity of the samples. Our results revealed the presence of sequences associated with 

multiple human and zoonotic viruses including Orthopoxvirus, Hepatovirus, Rhadinovirus, 

Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, 

Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, 

Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, 

Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, 

Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, 

Cytomegalovirus and Alphapapillomavirus. For confirmation purposes, we tested the samples for 

the presence of selective viruses belonging to the genera detected above. PCR based molecular 

methods confirmed the presence of severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), monkeypox virus (MPXV), noroviruses GI and GII (NoVGI and NoVGII), and 
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rotavirus A (RoA) in our samples. Furthermore, publicly available clinical data for selected 

viruses confirm our findings.  

Wastewater or other environmental media surveillance, combined with bioinformatics 

methods, has the potential to serve as a systematic screening tool for the identification of human 

or zoonotic viruses that may cause disease. The results of this method can guide further clinical 

surveillance efforts and allocation of resources. Incorporation of this bioinformatic-based 

screening tool by public health officials in Peru and other Latin American countries will help 

manage endemic and emerging diseases that could save human lives and resources.  

1. INTRODUCTION 

Peru is the third largest South American country comprising of a diverse range of 

landscapes and a population of 31,331,228 (Peru National geography kids). Half of Peru is 

covered by the world’s largest rainforest, the Amazon. Considering the country’s unique 

landscapes and ecosystems, diverse range of wildlife, and large population, the country could be 

an epicenter for a wide variety of human and zoonotic diseases. The United States Agency for 

International Development (USAID) Emerging Pandemic Threats PREDICT program has 

included Peru, Bolivia, Brazil, and Colombia in training personnel for surveillance of outbreaks 

of infectious diseases associated with wildlife pathogens in the community (Uhart et al., 2013).  

A quick historical review of emerging infectious diseases of human pathogens points out 

that 60% or more have originated from animals (Jones et al., 2008). Furthermore, 75% of human 

pathogens studied are known to be viruses that are associated with wildlife reservoirs 

(Woolhouse et al., 2007). SARS-CoV-2, apart from ebola hemorrhagic fever, nipah viral 

encephalitis, hantavirus pulmonary syndrome, H5N1 highly pathogenic avian influenza, and the 

pandemic 2009 H1N1 influenza virus are recent examples of emerging infectious diseases of 

wildlife origin (Karesh et al., 2005; Flanagan et al., 2012). The One Health approach (also 

known as ‘One world, One health’), that focuses on the innate relation between human, animal, 

and environmental health, can provide solutions to effective monitoring and early detection of 

infectious viral diseases by incorporating environmental surveillance in addition to clinical 

testing (O’Brien et al., 2019).  

Traditional disease detection systems are based on diagnostic analysis of clinical samples. 

This approach, however, assumes that patients are examined at a clinical setting after symptoms 

have developed. Testing every individual for active infections or immunity, especially in 
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underserved communities, is impossible. Environmental based surveillance, such as wastewater 

testing, provides a means of collecting and analyzing community-composite-samples (O’Brien et 

al., 2019). Wastewater testing may provide early warnings of potential upcoming viral outbreaks 

as well as predictions of fluctuations of established outbreaks for specific geographical areas. 

Wastewater-based epidemiology has the potential to identify multiple endemic respiratory, 

enteric, bloodborne and vector-borne diseases circulating in the community (McCall et al., 2020; 

Miyani et al., 2021; Li et al., 2024a; Li et al., 2024b) as well as predicting viral outbreaks such as 

Covid-19 (Xagoraraki et al., 2020a; Xagoraraki et al., 2020b; Li et al., 2022; Zhao et al., 2022; 

Miyani et al., 2021). Early detection of emerging viral diseases in the community could help 

boost the preparedness of public health officials and save lives. 

The immense burden of human and zoonotic viral infections in Peru is widely 

recognized. Respiratory diseases, from both viral and bacterial infections, were the leading cause 

of death across all age group from the year 2019 to 2020 (before the Covid-19 outbreak) (Peru 

WHO Mortality Database). Furthermore, Peru was one of the most affected countries during the 

Covid-19 pandemic. In Peru, from January 2020 to December 2023, as reported by the World 

Health Organization (WHO), there were 4,520,102 confirmed cases of Covid-19 with 221,564 

deaths (Peru WHO Coronavirus Dashboard). During the Covid-19 pandemic, Peru experienced 

the worst infection rate (99%) (IHME Covid-19) and death rate (6400 deaths per million 

population) (Peru Covid-19 statistics; Peru NPR WAMU 88.5; Johns Hopkins CORONAVIRUS 

RESEARCH CENTER). Moreover, multiple other viral diseases (enteric, respiratory, 

bloodborne, and vector-borne) are endemic and rising. Arboviruses, such as Dengue virus, have 

been on a rise in South American countries including Peru (Hasan et al., 2022). Other 

arboviruses like Chikungunya and Zika have also been reported in the region (Centro Ministry 

Salud 2021). Many viral diseases in the area are under-reported and not recognized. According to 

Peru's Ministry of Health, various health facilities in the country were reallocated for the 

COVID-19 pandemic, thereby leading to reduced action to curb other diseases.   

The purpose of this study is to analyze wastewater samples collected at Trujillo-Peru, 

with a screening tool that involves high throughput metagenomic sequencing and bioinformatics 

analysis, to identify potential virus-related diseases circulating in the community.  This method 

may supplement and guide clinical surveillance efforts. Incorporation of this bioinformatic-based 
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screening tool by public health officials in Peru and other Latin American countries will help 

manage endemic and emerging diseases that could save human lives and resources. 

2. MATERIAL AND METHODS 

2.1 Study area and wastewater sampling  

Trujillo, located in northwestern part of Peru, is the capital city of La Libertad province. 

According to 2017 census (Instituto Republica del Peru 2017), about 970 thousand people live in 

Trujillo making it the third largest city in the country. SEDALIB S.A (https://sedalib.com.pe/), a 

waste utility company, has divided the city’s wastewater into five drainage collectors: Covicorti, 

Cortijo, Valdiva, Industrial Park, and the basin of La whitewashed. More than 90% of the city’s 

wastewater is treated by these plants (Avila et al., 2016). Covicorti is the largest wastewater 

treatment utility in Trujillo and collects wastewater from 3 districts of Trujillo-Peru: Trujillo, 

Victor Larco Herrera, and El Porvenir. Annually, it treats an average flow of 59,166 m3 per day 

(685 L/sec) and an organic load of 24,350 kg of chemical oxygen demand per day (I.D.E.C 

2006). The utility discharges treated wastewater to the ocean along Playa de Buenos Aires. 

Wastewater samples were collected in triplicates from the Covicorti wastewater utility on 

October 22, 2022. 

Covicorti wastewater utility connects the grit removal tank and aeration tank by a long 

open 600m aqueduct. Untreated influent grab wastewater samples were collected in triplicates at 

100m (A), 300m (B), and 500m (C) from the grit removal tank, for a total of 9 samples. For each 

sample, 200 mL of wastewater was collected in labelled corning polypropylene bottle. Samples 

were labeled as COVIA1, COVIA2, COVIA3, COVIB1, COVIB2, COVIB3, COVIC1, 

COVIC2, COVIC3. Samples were also collected at the Playa de Buenos Aires beach waters 

resulting in no signals for SARS-CoV-2 and hence no further analysis was conducted. Samples 

were shipped overnight on dry ice to the Environmental Virology Laboratory at Michigan State 

University (MSU) and stored in freezer (-80C) once delivered. Virus concentration were 

conducted within 72 hours of sampling 

2.2 Virus concentration using Polyethylene Glycol (PEG) precipitation and RNA 

extraction 

Polyethylene Glycol (PEG) precipitation was performed on grab samples using a 

previously described method (Li et al., 2024a; Flood et al., 2021). This involved adding 1.17g of 

sodium chloride and 8g of polyethene glycol to 100 mL sample and mixing in 4C at 110rpm for 

https://sedalib.com.pe/


74 

 

2 hours (Flood et al., 2021). Samples were centrifuged for 45 mins at 4700xg at 4C . The 

supernatant was discarded without disturbing the pellets. Virus pellets were resuspended with 1-

4 mL of liquid sample. Final volumes were noted, and the concentrated samples were stored in 

the freezer (-80C) for subsequent RNA extraction. Type I water (Barnstead Nano pure water 

system) was used as a negative control (NTC) in PEG precipitation process. 

Viral nucleic acids were extracted according to manufacturer’s protocol using QIAGEN 

QIAamp Viral RNA Mini Kit (QIAGEN cat# 52904, Germantown, Maryland) to obtain 

sufficient viral genetic materials. PCR-grade water was included in the RNA extraction 

processes as a negative control (NTC). 

2.3 High throughput metagenomic sequencing and downstream bioinformatics 

analysis 

High throughput metagenomic sequencing and downstream bioinformatics was applied 

as described previously (Li et al., 2024a; Li et al., 2024b) to assess viral diversity in the samples. 

RNA extract from the triplicates of each site were combined to result in total of 3 samples 

(COVIA, COVIB, COVIC). The RNA samples were reverse transcribed to cDNA using a 

random-primer protocol developed to identify viral pathogens (Wang et al., 2002, Wang et al., 

2003). 

Viral cDNA for the wastewater samples (n = 3) were sent to the MSU Research 

Technology Support Facility's Genomics Core for library preparation and sequencing. Quality of 

the raw reads were assessed using FastQC (Andrews et al., 2010). Every sample, for about 89% 

of both R1 and R2 reads, had quality score of greater than 30. An average of about 118 million 

reads and 35.4 Gb yield were obtained for each sample. Trimming, assembly and three different 

types of annotations were conducted using a previously described method (Li et al., 2024a; Li et 

al., 2024b). Briefly, adapters and low-quality reads were trimmed with Trimmomatic (Bolger et 

al., 2014). The proportion of viral reads in the samples were determined by aligning the trimmed 

reads against the National Center for Biotechnology Information (NCBI) BLAST non-redundant 

database using Kaiju (v. 1.9.0) (Menzel et al., 2016). Contigs were assembled using Megahit 

(Bibby et al., 2011) and aligned with NCBI RefSeq virus database (retrieved on December 1, 

2022) with DIAMOND Blastx (Bağcı et al., 2021) to determine the virus composition. 

Furthermore, the assembled contigs were aligned again to custom Swiss-Prot human virus 

database using BLASTx to identify viral diversity at genus level (McCall et al., 2020). MEGAN 
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software was used for taxonomic annotation of viruses at genus level (Huson et al., 2016). 

2.4 Municipal wastewater characterization by quantification of pepper mild mottle 

virus (PMMoV) and crAssphage virus using digital droplet qPCR 

PMMoV virus was quantified using a GT molecular ddPCR kit for the Bio-Rad 

QX200™ Droplet Digital™ PCR System (cat# 100320) following the manufacturer’s protocol. 

The kit contains single plex assay mastermix and positive control of PMMoV. Briefly 5.5 μL 

One-Step RT-ddPCR Supermix (20x), 2.2 μL of Reverse Transcriptase, 1.1 μL of 300mM DTT, 

1 μL of PMMoV mastermix, and 9 μL RNA were mized. The total volume of reaction was made 

22 μL by adding PCR-grade water. PMMoV was amplified using 50 °C for an hour, 95 °C for 10 

mins, and 45 cycles (94 °C for 30 sec and 55 °C for 1min at slow ramp speed of 2 °C/second). 

The samples were subjected to a last extension cycle for 98 °C for 10mins followed by 4 °C for 

30 min for droplet stabilization. 

crAssphage virus was quantified using a GT molecular ddPCR assay kit (cat# 100285) 

using the manufacturer’s protocol. Briefly, the mastermix contained 11 μL of 2X Supermix for 

Probes, 1 μL of crAssphage mastermix, and 10 μL RNA. crAssphage virus was amplified using 

95 °C for 10 mins, and 45 cycles of (94 °C for 30 sec and 58 °C for 1min at slow ramp speed of 

2 °C/second). The samples were subjected to a last extension cycle for 98 °C for 10 mins 

followed by 4 °C for 30 min for droplet stabilization. Each reaction consisted of samples run in 

triplicates, and NTCs from elution, extraction and ddPCR step.  

2.5 Quantification of SARS-CoV-2 and monkeypox virus using digital droplet qPCR 

SARS-CoV-2 was quantified by a duplex (N1 and N2 gene) digital droplet PCR (ddPCR) 

technology using Bio-Rad’s One-Step RT-ddPCR Advanced kit with a QX200 ddPCR system 

(Bio-Rad, CA, USA) using a previously described method (Li et al., 2022; Zhao et al., 2022). 

The assay contained 5.5 μL One-Step RT-ddPCR Supermix (20x), 2.2 μL of Reverse 

Transcriptase, 1.1 μL of 300mM DTT, and 5.5 μL RNA. The final concentration of N1 and N2 

gene forward and reverse primer was 900 nm, whereas the N1 and N2 probe was at 250 nm. The 

total volume of reaction was made 22 μL by adding PCR-grade water. Each reaction consisted of 

samples run in triplicates, PEG precipitation NTC, extraction NTC and ddPCR controls (SARS-

CoV-2 from Twist Bioscience Twist Synthetic SARS-CoV-2 RNA Control 2 MN908947.3 as 

PTC and PCR-grade water as NTC). SARS-CoV-2 was amplified using 25 °C for 3 mins, 50 °C 

for an hour, 95 °C for 10 mins, and 40 cycles of (95 °C for 30 sec and 55 °C for 1min at slow 



76 

 

ramp speed of 2 °C/second). The samples were subjected to a last extension cycle for 98 °C for 

10mins. Limit of blank (LOB) and Limit of detection (LOD) were calculated according to 

manufacturer’s guidelines (Bio-Rad) as shown previously (Li et al., 2022; Zhao et al., 2022). 

LOB for SARS-CoV-2 N1 gene and N2 gene ddPCR was determined to be 0.09 and 0.08 

copies/μL respectively (Li et al., 2022; Zhao et al., 2022). Limit of detection (LOD) of 0.1 

copies/μL with 72.92 % confidence for the N1 gene ddPCR and 0.1 copies/μL with 81.25 % 

confidence for the N2 gene ddPCR were determined as shown previously (Li et al., 2022; Zhao 

et al., 2022). 

Monkeypox virus (MPXV) was quantified using digital droplet PCR (ddPCR) technology 

using Bio-Rad’s ddPCR™ Supermix for Probes following the manufacture’s protocol. The 

primers and probe for amplifying are recommended by CDC (CDC PRB) and were used from a 

previously published study (Li et al., 2010). The assay contained 10 μL ddPCR Supermix for 

probes (20x, No dUTP), 900nm forward and reverse primer, 250nm probe, and 8.7 μL sample. 

The total volume of reaction was made 22 μL by adding PCR-grade water. Monkeypox viral 

DNA was purchased from ATCC (ATCC Number: VR-3270SD). The stock concentration was 

diluted to 103 copies/μL and used as a PTC. PCR-grade water was used as an NTC. Each 

reaction consisted of samples and controls run in triplicates. MPXV was amplified using 95 °C 

for 10 mins, and 45 cycles of (94 °C for 30 seconds and 58 °C for 1min at slow ramp speed of 2 

°C/second). The samples were subjected to a last extension cycle for 98 °C for 10 mins followed 

by 4 °C for 30 min for droplet stabilization. LOB and LOD for MPXV was determined to be 0 

copies/μL and 0.08 copies/μL (95% confidence) respectively.  

2.6 Detection of noroviruses and rotavirus using conventional PCR, gel 

electrophoresis and sanger sequencing 

The samples were tested for Norovirus GI (NoVGI), Norovirus GII (NoVGII) and 

Rotavirus A (RoA) using gene specific primers (Thongprachum et al., 2018). Reverse 

transcription (RT) was performed using Invitrogen SuperScript™ IV Reverse Transcriptase (cat# 

18090010) protocol. A final concentration of 1 μM random primer (cat# 48190011 Invitrogen 

Thermo Fisher) was added in the reaction. cDNA was generated using a cycle of 23 °C for 10 

min, 50 °C for 1 hr, 94 °C for 5 min. Each reaction consisted of samples and NTC from all steps 

(PEG precipitation, extraction, RT). Norovirus G1 RNA (ATCC number: VR-3234SD) and 

human rotavirus RNA (ATCC number: VR-2018DQ) were included as RT PTCs. 
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PCR was performed using Invitrogen Platinum™ SuperFi II DNA Polymerase (cat# 

12361010) protocol. The final concentrations of forward and reverse primers for NoVGI, 

NoVGII, and RoA were 1 μM, 0.8 μM, 1 μM respectively. 10 μL RNA and PCR-grade water 

were added to make a total volume of reaction of 20 μL. NoVGI was amplified at one cycle of 

94 °C for 5 mins, 40 cycles (94 °C for 1 min, 55 °C for 1 min, and 72 °C for 2 min) and a final 

extension cycle of 72 °C for 7 mins. NoVGII and RoA were amplified at one cycle of 94 °C for 3 

mins, 35 cycles (94 °C for 30 sec, 55 °C for 30 sec, and 72 °C for 1 min) and a final extension 

cycle of 72 °C for 7 mins. An additional NTC was included for PCR step to check for cross 

contamination. 

The results were confirmed by running the samples on 1.5% agarose gels. All PTC for 

NoVGI and RoA assays were confirmed with gel electrophoresis. The samples were PCR 

purified using QIAquick PCR Purification Kit (QIAGEN cat#28104), quantified by Thermo 

Scientific Qubit Fluorometer and submitted to RTSF at Michigan State University for sanger 

sequencing. The result sequences were analyzed using FinchTV 1.5.0 version. After performing 

quality control, the sequences were blasted using NCBI BLASTn to confirm presence of the viral 

species. The top BLASTn result under default conditions was chosen as the best possible match. 

A phylogenetic tree was generated using similar hits from BLAST and other common human 

viruses within the genus. All sequences are aligned using UGENE software with the MUSCLE 

algorithm. The aligned regions are extracted for generation of a phylogenetic tree using 

MEGA11 software (Tamura et al., 2021). 

2.7 Clinical data collection 

Clinical cases of viral diseases for the year 2022 for Peru, La Libertad, and Trujillo were 

retrieved from online publicly available sources (Hospital Regional Trujillo, Peru Ministerio de 

Salud, Peru Ministerio de Salud – cumulative Incident cases, Unique digital platform of the 

Peruvian State). 

3. RESULTS 

3.1 Municipal wastewater characterization 

Water quality parameters of untreated wastewater were provided by the utility as shown 

in table 4.1.  

PMMoV co-occurs with multiple pathogens of interest and has been suggested as a 

promising index for enteric viruses (Symonds et al., 2018). Similarly, crAssphage has been 
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detected abundantly in wastewater and has been proposed as a viral fecal indicator (Dutilh et al., 

2014; Stachler et al., 2014). A combination of PMMoV and crAssphage has been used by many 

researchers as a fecal and enteric virus indicator (Malla et al., 2019; Tandukar et al., 2020; Holm 

et al 2022; Meuchi et al., 2023). 

Levels of PMMoV and crAssphage in wastewater samples were tested and the results are 

shown in figure 4.1. All the samples tested positive for both viruses. Average concentrations of 

PMMoV and crAssphage ranged around 108 and 106 genomic copies per 100ml of wastewater 

respectively as shown in figure 4.1. The results fall in the range found in untreated wastewater 

from all around the world (Symonds et al., 2018). 

Table 4.1. Water Quality parameters at Covicorti wastewater treatment plant 

Description/test Influent  Final Effluent  

Sampling date 6/9/2022  6/9/2022  

Biological oxygen demand (mg/L) 320.69 26.03 

Chemical oxygen demand (mg O2/L) 683.75 122.18 

Total suspended solids (mg/L) 376 205 

Oils and fats (mg/L) 43.7 5.2 

Thermotolerant coliforms (NMP/100 

ml) 

1.7 * 108 3.4 * 105 

pH 7.98 7.95 
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Figure 4.1. Concentrations of enteric virus indicators (PMMoV and crAssphage) for wastewater 

characterization 

3.2 Sequencing and bioinformatics analysis for viral diversity identification 

A description of the metagenomic sequencing data after each bioinformatic analysis step 

is summarized in table 4.2. After trimming, at least 80 million reads were obtained for each 

sample, among these reads, more than 1.2 million were classified as viruses with kaiju. To 

achieve substantial gains in taxonomic mapping, long contiguous sequences (contigs) generated 

by MEGAHIT, and more than 400 thousand contigs were obtained. When comparing these 

contigs against the NCBI RefSeq virus protein database, more than 17 thousand contigs were 

assigned to virus with MEGAN. 
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Table 4.2. Sequencing yield, number of clean reads, viral reads and viral contigs of each 

wastewater sample 

Sample Yield 

(Gbp) 

Number of 

clean reads 

Number 

of viral 

reads 

Percent 

of viral 

reads 

(%) 

Number 

of 

contigs 

Number 

of viral 

contigs 

Percent 

of viral 

contigs 

(%) 

COVIA 36.6 118,495,760 6,068,836 5.12 884,618 140,316 15.86 

COVIB 33.2 107,865,545 11,395,312 10.56 704,133 114,245 16.22 

COVIC 32.0 104,061,454 3,720,569 3.58 669,569 83,766 12.51 

Virus composition in the family level was analyzed by comparing the assembled contigs 

against the NCBI RefSeq virus protein database. The results showed the viral populations that 

took a large proportion in the wastewater samples were affiliated to bacteriophage, and are 

members of Myoviridae, Siphoviridae and Microviridae families.  

To improve the detection of human viruses in samples collected from the wastewater 

utility in Peru, assembled contigs were compared against a customized Swiss-Prot human virus 

protein database. Human viruses identified in less than 2 samples were excluded. Figure 4.2 

shows the diversity of viruses detected at genus level. Among the human viral contigs, 

Orthopoxvirus took a large proportion in all the samples, followed by Hepatovirus, 

Rhadinovirus, Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, 

Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, 

Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, 

Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, 

Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, 

Cytomegalovirus and Alphapapillomavirus 
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Figure 4.2. Log (Normalized proportion) of human viruses in wastewater collected from 

Trujillo-Peru. Contigs in three samples (COVIA, COVIB and COVIC) were combined together 

to do the calculation. Numbers in the brackets after the genus names are the sum of human viral 

contigs identified in the three samples 

3.3 Quantification of SARS-CoV-2 and MPXV 

A total of nine samples were taken at Covicorti wastewater utility by grab sampling 

followed by polyethylene glycol (PEG) precipitation. SARS-CoV-2 and MPXV virus’s assays 

were run in triplicates for all nine samples along with positive and negative controls. Figure 4.3 

shows SARS-CoV-2 and MPXV concentrations in copies/100 mL of wastewater. COVIB had 

the highest concentrations for both SARS-CoV-2 and MPXV with about 2500 and 700 

copies/100 mL respectively. MPXV concentrations were almost three times less than SARS-

CoV-2 by ddPCR. 
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Figure 4.3. Confirmation of selected human viruses (SARS-CoV-2 [N1 and N2 genes] 

and monkeypox viruses) in wastewater collected from Trujillo-Peru by digital droplet PCR 

3.4 Detection of Norovirus GI (NoVGI), Norovirus GII (NoVGII), and Rotavirus A 

(RoA) by PCR, gel electrophoresis, BLASTn analysis 

Presence of NoVGI, NoVGII, and RoA was detected by PCR. For gel electrophoresis, all 

nine samples tested positive for NoVGI, NoVGII, and RoA. The amplicon size for NoVGI, 

NoVGII, and RoA was 330, 387, and 395 respectively (Thongprachum et al., 2018). The samples 

along with positive controls were PCR purified and submitted for sanger sequencing with 

forward primer and reverse primer separately. The resulting sequence was blasted against viral 

database on NCBI Blast website. The top 10 BLASTn sequences producing significant 

alignments results for all samples and positive controls amplified using gene specific primers 

(NoVGI, NoVGII, RoA) resulted in the respective viruses with at least 94% percent identity and 

98% query coverage.  

Using the BLASTn result, similar hits and other common human viruses were 

downloaded and aligned. Phylogenetic trees were generated using the aligned regions with 

MEGA11 software (Tamura et al., 2021). Phylogenetic trees generated with selected human viral 

related sequences identified in COVIC1, COVIC2, COVIC3 samples, reference sequences they 
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are affiliated with, and PTCs purchased from ATCC were shown in figure 4.4. All the nine 

samples BLASTn results were found to be closely associated with the respective viruses as 

shown in phylogenetic trees. 

 

Figure 4.4. Phylogenetic analysis of selected human viruses identified in wastewater in 

Trujillo-Peru. A: Norovirus GI. B: Norovirus GII. C: Rotavirus A. Reference genomes they are 

affiliated with, positive controls used in this study and human viral related sequences identified  
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Figure 4.4. (cont’d) 

in the samples are included. The tree was constructed using the neighbor-joining method with the 

replicates of bootstrap test as 1000. Percentage of replicate trees in which the associated 

sequences clustered together are shown below the branches. The evolutionary distances were 

computed with the Kimura 2-parameter method for Norovirus GI and GII related sequences. 

Tamura 3-parameter method was used for Rotavirus A related sequences. Gaps and missing data 

were eliminated (complete deletion option). The scale bar represents the estimated number of 

base substitutions per site. MEGA 11 was used to perform the phylogenetic analysis. Accession 

numbers of the reference sequences in NCBI are shown in the brackets after the names 

3.5 Publicly available health records of clinical confirmed viral disease in the area 

Table 4.3 contains all clinical cases available for Peru, La Libertad, and Trujillo (Hospital 

Regional Trujillo, Peru Ministerio de Salud, Peru Ministerio de Salud – cumulative Incident 

cases, Unique digital platform of the Peruvian State). During 2022, Trujillo had 2, 5, 21, 151, 

and 148, cases of chicken pox, monkeypox, dengue, acute diarrheal disease, and acute 

respiratory infections respectively. There were no reported cases of Yellow fever, Hepatitis B, 

Zika, Chikungunya in Trujillo for the year 2022. Comparatively, Peru as a whole country had 3, 

811, 10, 164 cases of Yellow fever, Hepatitis B, Zika, and Chikungunya respectively. Of all 

diseases acute diarrheal, acute respiratory, and Dengue cases are the highest in the country of 

Peru, the state of La Libertad, and the city of Trujillo. It is important to note that most viral 

diseases in the area are unreported. 
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Table 4.3. Clinical cases of viral diseases for the year 2022 in Peru 

Location/ 

Viral disease 

Peru La 

Libertad 

Trujillo 

Acute respiratory 

infections 

622,259 448 148 

Acute diarrheal disease 306,201 288 151 

Dengue 38,877 162 21 

Monkey pox 3,367 20 5 

Hepatitis B 811 8 0 

Chicken pox 376 46 2 

Chikun-gunya  164 0 0 

Zika 10 0 0 

Yellow fever 3 0 0 

Note: All clinical cases were obtained from BIBLIOGRAPHY (Hospital Regional 

Trujillo, Peru Ministerio de Salud, Peru Ministerio de Salud – cumulative Incident cases, Unique 

digital platform of the Peruvian State) 

4. DISCUSSION  

Since the COVID-19 pandemic multiple efforts have focused on wastewater surveillance. 

Most studies focused on selected known pathogens, such as SARS-CoV2 (Zhao et al., 2022; 

Miyani et al., 2020; Randazzo et al., 2020) or MPXV (Girón et al., 2023; de Jonge et al., 2022; 

Wurtzer et al., 2022). In this study we apply a tool that includes broad screening of viruses at the 

genus level (McCall et al., 2020; Li et al., 2024a; Li et al., 2024b). The first level of screening 

includes testing wastewater, or other environmental samples, with high throughput sequencing 

followed by bioinformatics analysis. If signals identify potential presence of viruses of concern, 

further PCR testing targeting the specific virus follows. Final confirmation with clinical 

surveillance is recommended. We have successfully applied this method in samples collected in 

Detroit MI to identify endemic and emerging diseases in the area (McCall et al., 2020; Miyani et 

al., 2021b; Li et al., 2024a; Li et al., 2024b; McCall et al., 2021). Application of such a screening 

tool has the potential to identify endemic and emerging diseases that may otherwise be missed by 

regular clinical testing.  
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The screening analysis presented in this study revealed the presence of a wide variety of 

human and zoonotic, respiratory, bloodborne, enteric and vector-borne viruses circulating in the 

population (figure 4.2). For example, genera Betacoronavirus and Orthopoxvirus (that includes 

species SARS-CoV-2 and MPXV respectively) were detected by high throughput sequencing 

(figure 4.2). To further investigate and validate these findings SARS-CoV-2 and MPXV were 

quantified with ddPCR (figure 4.3). Clinical cases of COVID-19 and MPX reported by Peru 

Ministry of Health (table 4.3) confirm our findings. Until November 2022, Peru reported the 

greatest number of MPX cases among countries where the disease is not endemic (like Africa) 

(PAHO WHO). Similarly, NoV GI, NoV GII, and RoA viruses that belong to genera Norovirus 

and Rotavirus were selected for further testing and confirmation to target part of the large 

number of diarrheal cases detected in Trujillo-Peru (table 4.3). Confirmation tests for SARS-

CoV2, MPXV, norovirus and rotavirus validate the utility of the method. Importantly, the 

genomic sequences shown in figure 4.2 reveal the potential presence of a wider range of human 

and zoonotic viruses.  

Many of the viral-related sequences identified in this study (figure 4.2) correspond to 

viruses that have been detected in wastewater or other environmental samples in Latin American 

countries. For example, Orthopoxvirus was the largest genus detected in all three wastewater 

samples tested in this study. MPXV, a viral species in genus Orthopoxvirus, has been detected in 

wastewater in Chile (Ampuero et al., 2023). Vaccinia virus, another viral species of genus 

Orthopoxvirus caused outbreaks in animals and workers in the dairy industry in Brazil (Peres et 

al., 2013; Abrahão et al., 2015; Kroon et al., 2011) and Colombia (Styczynski et al., 2019).  

Hepatovirus genus, consisting of different types of hepatitis viruses, was the second largest 

genera to be detected in our samples. Hepatitis A and E virus has been detected in wastewaters in 

Brazil (Prado et al., 2012), Venezuela (Rodríguez-Díaz et al., 2009), Argentina (Yanez et al., 

2014; Castro et al., 2023), Colombia (Baez et al., 2017), and Ecuador (Guerrero-Latorre et al., 

2018). SARS-CoV-2 (belonging to genus Betacoronavirus which was detected in our samples) 

has been detected in wastewater in Peru (Pardo-Figueroa et al., 2022; Reyes-Calderón et al., 

2022), Brazil (Fongaro et al., 2021), and Ecuador (Guerrero-Latorre et al., 2020). 

Gastroenteritis related viruses belonging to genera Cosavirus, Kobuvirus, Mamastrovirus, 

Norovirus, Rotavirus, Salivirus, and Sapovirus were detected in our samples. Cosavirus was 

detected in river waters in Argentina (López et al., 2021) and Ecuador (Guerrero-Latorre et al., 
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2018) and wastewater samples in Venezuela (Zamora-Figueroa et al., 2024). Aichivirus 

(belonging to genus Kobuvirus) was tested positive in wastewater samples of Uruguay 

(Burutarán et al., 2016) and Ecuador (Guerrero-Latorre et al., 2018). Astroviruses were present 

in wastewater of Brazil (Guimarães et al., 2008), Venezuela (Rodríguez-Díaz et al., 2009), 

Ecuador (Guerrero-Latorre et al., 2018), and Uruguay (Lizasoain et al., 2015). Wastewater of 

Latin American countries like Brazil (Fumian et al., 2019), Chile (Díaz et al., 2012), Argentina 

(Fernández et al., 2011), Nicaragua (Bucardo et al., 2011), Uruguay (Victoria et al., 2014), 

Ecuador (Guerrero-Latorre et al., 2018), and Venezuela (Rodríguez-Díaz et al., 2009) tested 

positive for norovirus. Comparatively, rotavirus was detected in wastewater samples of Uruguay 

(Tort et al., 2015), Brazil (Mehnert et al., 1993), and Argentina (Barril et al., 2010). Klassevirus 

and sapovirus were detected in river waters (Calgua et al., 2013) and wastewater (Guerrero-

Latorre et al., 2018; Fioretti et al., 2016) of Brazil and Ecuador respectively.  

Genera such as Bocaparvovirus and Mastadenovirus have been known to be associated 

with both gastroenteritis and respiratory illnesses. Human bocaparvovirus has been detected in 

wastewaters of Uruguay (Salvo et al., 2018; Salvo et al., 2019) and Ecuador (Guerrero-Latorre et 

al., 2018), whereas various types of human mastadenovirus have been detected in Brazil (Santos 

et al., 2004), Argentina (Ferreyra et al., 2015), Ecuador (Guerrero-Latorre et al., 2018), and 

Venezuela (Rodríguez-Díaz et al., 2009). Other examples include Saffold virus that belongs to 

Cardiovirus genus and has been detected in wastewater of Argentina (López et al., 2021) and 

Ecuador (Guerrero-Latorre et al., 2018). Human parechovirus, belonging to genus Parechovirus, 

has been detected in wastewater in Ecuador (Guerrero-Latorre et al., 2018). Human 

polyomaviruses belonging to genus Betapolyomavirus have been detected in raw sewage in 

Argentina (Torres et al., 2016), Brazil (Fumian et al., 2010), and Chile (Levican et al., 2019). 

This proposed screening method has the potential to identify non-reportable (not required 

to be tested for at clinical settings) human and zoonotic viruses that may be emerging in the 

community. For some of those emerging viruses there may not be validated clinical tests 

available. While this study demonstrates the advantages of wastewater surveillance with 

molecular methods, high-throughput sequencing, and bioinformatics to identify endemic and 

emerging diseases in the contributing population, there are several limitations. Particularly in 

resource-limited nations, obtaining all the requisite resources for such endeavors can pose 

challenges. Another limitation of this study is the sample size, as only three pooled samples were 



88 

 

tested with high-throughput sequencing and bioinformatics methods. This restricted number of 

samples may limit the generalizability of the findings that can only serve as a pilot study. The 

results of this study only indicate the possibility of occurrence of the detected viral genera in the 

community. To develop a tool that can predict viral disease fluctuations over space a time 

multiple more samples have to be collected, analyzed, normalized, and compared with clinical 

data in the catchment area. This will require a long-term full-scale investigation that needs to 

involve local public health officials and environmental scientists and engineers. 

5. CONCLUSIONS 

Wastewater, or other environmental media surveillance, combined with bioinformatics 

has a vast potential to serve as a systematic screening tool for the identification of a myriad of 

human or zoonotic viruses that may cause disease. One common problem in Peru and other Latin 

America countries is that health agencies do not have the resources and tools to anticipate and 

systematically monitor disease outbreaks. The methodology presented here provides a practical 

method to assist with clinical surveillance and prediction. 

The viral species detected with bioinformatics methods (figure 2) are at the genus level 

and need to be confirmed by additional PCR based methods for species identification. The 

results highlight the importance of the method as an initial screening tool. The results may be 

used by local professionals to guide further clinical monitoring and develop health care policies. 

Incorporation of this bioinformatic-based screening tool by public health officials in Latin 

America will help identify endemic and emerging diseases that could save human lives and 

resources. 
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CONCLUSIONS AND SIGNIFICANCE 

The first chapter assesses the diversity and abundance of Human Herpesviruses (HHVs) 

in the influent of an urban wastewater treatment plant by using shotgun sequencing, 

metagenomic analysis, and qPCR. All HHVs, except HHV-8, are quite prevalent in USA and 

have been associated with multiple potential diseases. These viruses are being regularly shed 

from both asymptomatic and symptomatic individuals and ultimately end up in wastewater. 

Influent wastewater samples were collected from the three interceptors (NI-EA, DRI and O-

NWI) serving the City of Detroit and Wayne, Macomb and Oakland counties between November 

2017 to February 2018. The samples were subjected to a series of processes to concentrate 

viruses which were further sequenced and amplified using qPCR. All nine types of human 

herpesviruses were detected in wastewater using Illumina sequencing, bioinformatics and qPCR, 

with HHV-8 being the most abundant. According to literature, HHVs are shed at higher rate in 

HIV immunocompromised patients, solid organ transplant recipients, cancerous patients and 

critically ill non-immunocompromised patients compared to healthy controls. The high 

abundance of HHV-8 in the Detroit metropolitan area is attributed to the HIV-AIDS outbreak 

that was ongoing in Detroit during the sampling period. The approach described in this paper can 

be used to monitor HHVs to establish a baseline secreted by the community. Sudden changes in 

the baseline would identify changes in community health and immunity.  

The second chapter focuses on using wastewater-based-epidemiology to provide early 

warnings of the second COVID-19 wave in Detroit metropolitan area in MI, USA. Untreated 

wastewater samples were collected and processed between Aug 6, and Dec 14, 2020, from the 

Detroit metropolitan area in southeast Michigan. SARS-CoV-2 RNA was detected in 98% of 

samples with concentrations ranging from 104 to 106 copies/L. Early warnings of the second 

wave of COVID19 were observed ahead of clinical data reporting. Statistical analysis indicated a 

lag time of four weeks between observed SARS-CoV-2 RNA concentrations in wastewater and 

COVID-19 reported cases in the community. Along with clinical diagnostic testing, wastewater-

based epidemiology may be a helpful resource for health officials in predicting the incidence of 

SARS-CoV-2 in community. Accurate prediction models can be created by including processes 

that affect the fate of viruses in the collection network, demographic information, and shedding 

rate and duration data. 
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The third chapter focuses on surveillance of SARS-CoV-2 in nine neighborhood 

sewersheds in Detroit Tri-County area, United States and assessing per capita SARS-CoV-2 

estimations and COVID-19 incidence. Average concentrations of N1 (SARS-CoV-2) in 

wastewater samples collected from nine sites ranged from 3.48102 to 9.37102 gc/L, and for 

N2, averages ranged from 3.72102 to 8.79102 gc/L. Both levels and loads of SARS-CoV-2 

RNA in wastewater in two neighborhoods (MT and SH) were found to be higher than that in the 

other seven sites. The differences were statistically significant. Comparisons between normalized 

SARS-CoV-2 by population markers and COVID-19 incidences, indicated that normalization of 

SARS-CoV-2 RNA concentrations with TKN, creatinine, 5-HIAA and xanthine correlated 

positively with the COVID-19 incidences.  

  The fourth chapter uses the bioinformatics-based screening tool to identify a wide variety 

of human viruses in Trujillo-Peru wastewater and confirms Covid-19, monkeypox, and diarrheal 

disease outbreaks. Wastewater, or other environmental media surveillance, combined with 

bioinformatics has a vast potential to serve as a systematic screening tool for the identification of 

a myriad of human or zoonotic viruses that may cause disease. One common problem in Peru 

and other Latin America countries is that health agencies do not have the resources and tools to 

anticipate and systematically monitor disease outbreaks. The methodology presented here 

provides an economical and practical method to assist with surveillance and prediction. The viral 

species detected with bioinformatics methods are at the genus level and need to be confirmed by 

additional PCR based methods for species identification. The results highlight the importance of 

the method as an initial screening tool. The results may be used by local professionals to guide 

further clinical monitoring and develop health care policies. Incorporation of this bioinformatic-

based screening tool by public health officials in Latin America will help identify endemic and 

emerging diseases that could save human lives and resources. 


