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ABSTRACT

The need for fast and reliable sensing at millimeter-wave frequencies has been increasing dra-

matically in recent years for a wide range of applications including non-destructive evaluation,

medical imaging, and security screening such as concealed contraband detection. Imaging based

approaches have been of particular interest since the wavelengths at millimeter-wave frequencies

provide good resolution and are capable of propagating through clothing with negligible attenuation

allowing the identification of concealed contraband. While various implementations for millimeter-

wave imaging have been developed, the new technique of active incoherent millimeter-wave (AIM)

imaging, developed in our research group, is of particular interest because it solves fundamental

limitations inherent in other approaches. Furthermore, AIM enables imaging with significantly

fewer elements than phased arrays and costs less than passive imagers. This is enabled by actively

transmitting noise signals, allowing the system to capture scene information in the spatial Fourier

domain. When the received signal at each of the array elements are spatio-temporally incoherent,

the spatial coherence function of the captured signals represent samples of the measured visibility

which can be further processed via an inverse Fourier transformation to recover the measured scene.

With a good quality recovered image, additional processing can be applied for detection and/or

classification on specific spatial features. However, images often contain more than the required

information necessary for effective classification results which means that unnecessary resources

are used for the collection and processing of redundant information.

In this dissertation, I present on the design and analysis of array dynamics for radar and remote

sensing applications. Specifically, I investigate approaches to measure specific spatial Fourier

information which can be useful for direct classification therefore eliminating the need of full

image recovery. I present an adapted formulation of the spatial coherence function by considering

individual antenna trajectories within a dynamic antenna array. The measured visibility, hence,

becomes a function of array trajectory over a slow time dimension. The use of array dynamics

further reduces the hardware requirements in the AIM technique by introducing a new degree of

freedom in the array design. By allowing the receiving elements of the antenna array to dynamically



move across the measurement plane, the spatial Fourier domain can be efficiently sampled using as

few as two receiving antennas. Discussion of the effects of trajectory approaches on the measured

spatial Fourier information are presented. Furthermore, I expand on a specific array trajectorywhere

as few as two antennas can generate a ring filter (i.e., spatial Fourier sampling function exhibiting

a form of a ring) that can efficiently identify spatial Fourier artifacts pertaining to sharp edges in

the scene. This approach enables an imageless approach to differentiate scenes containing objects

with sharp-edge that are generally made artificially. I then present a real-time rotational dynamic

antenna array operating at 75 GHz with two noise-transmitting sources as required by the AIM

technique and two receivers to generate the ring filter. Compared to traditional millimeter-wave

imaging, this non-imaging approach further reduces the required number of antennas. Experimental

measurements using the AIM based rotational dynamic antenna array demonstrate the possibility

of detecting concealed contraband via the direct measured spatial Fourier domain information.
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CHAPTER 1

INTRODUCTION

1.1 Radar and Remote Sensing

The concept of remote sensing describes the process where systems with integrated sensors,

without making physical contact, can detect and/or monitor physical attributes within its coverage

by acquiring the reflected and/or the emitted radiation at a distant location [1]. Implementations

of remote sensing systems are derived from application specific requirements. For underwater

detection and mapping, remote sensing systems are designed to respond to acoustic waves (i.e.,

longitudinal waves) [2]. In addition to the use of acoustic waves, sensing can also be achieved

via measuring electromagnetic waves such as using radar systems that typically operate in the

microwave (3 GHz–30 GHz) and millimeter-wave region (30 GHz–300 GHz) [1]. Furthermore,

electromagnetic based remote sensing systems can also operate atmuch higher frequencies such as in

the infrared region (300 GHz–400 THz) [3] and optical region (300 GHz–3000 THz) [4] for specific

application scenarios. Leveraging electromagnetic waves for remote sensing has gained traction

since the 17th century after Christiaan Huygens’ studies in optics where light exhibits the properties

of waves [5]. Approximately two centuries later, James Clerk Maxwell formulated the theory

of electromagnetism that corresponded to the characteristics between light and electromagnetic

waves [6]. Later that century, experimental demonstration of Maxwell’s prediction was presented

by Heinrich Hertz where the electromagnetic propagation speed is equivalent to that of light [7].

Inevitably, radar systems operating and microwave and millimeter-wave frequencies came out

during World War II and have since been used for both military and commercial purposes.

Radar, originated as an acronym for radio detection and ranging [8], generally refers to a

system that leverages radio waves (i.e., electromagnetic waves) to determine the relative range,

direction and velocity of objects that are within its coverage. Given the characteristic that radar

systems do not make physical contact with the objects that are distant to their position, it is also

considered to be within the framework of remote sensing. In modern times, radar systems can be

found in various applications such as non-destructively evaluating the fruit quality [9], detection
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for breast cancer [10, 11], remote sensing of the Earth [12, 13, 14], and detection of concealed

contraband [15, 16, 17]. In particular, radar systems operating in themicrowave andmillimeter-wave

frequencies are especially desirable as wavelength within this spectrum is sufficiently small which

can provide good resolution while also being sufficiently large which exhibits good propagation

characteristics. For example, materials such as fog, smoke, clothing, among others can manifest

high propagation attenuation at higher frequencies such as infrared and optical region, which in

contrast, are low, if not minimal at microwave and millimeter-wave frequencies [18, 1]. Besides,

recent advancements in hardware design and fabrication techniques represent opportunities for

microwave and/or millimeter-wave radar systems to be implemented in a cost-effective manner

as components are becoming significantly more efficient and affordable [19, 20]. Therefore, it

is natural that the exploration using radar systems for remote sensing applications have gained

significant interest both in the research and commercial communities.

A typical radar system is complex by nature and generally involves a diverse pool of expertise

to identify use cases, overcome challenges and constraints, and solidify requirements which brings

the system from concept to realization. The design considerations for a radar system’s architecture

can be generalized into the following two categories:

1. Hardware and physics, which include antennas, transmitters, receivers, propagation, target

scattering, mechanical structure, and power distribution, etc.

2. Software and algorithms, which represent the developments that range from the coordina-

tion of various subsystems and signal processing where the latter can be further dissected

into waveform designs, data acquisition, signal conditioning, detection, classification, and

imaging, etc.

Each of the aforementioned design considerations are not necessarily independent from each other

representing various complicated design trade-offs during development. Therefore, advancements

in one particular area of radar development are extremely valuable as the improvement in one area

could lead to significantly fewer, if not eliminate the constraints of others.
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1.1.1 Radar Applications

Since the deployment inWorldWar II, radar systems have been used in various applications and

have become an integrated part of many aspects of society. Primarily stimulated by military use

cases, radar was employed for surveillance, navigation, and weapon control in the early days [21].

One such application is the moving target indication (MTI) radars that transmit pulsed waveform,

and that the return signals are processed to identify Doppler frequency shift which exploit the fact

that shift in frequency are produced by moving targets and stationary clutters will appear to have

exceedingly small spectral content near zero frequency [22, 23]. Similarly, tracking radars can

provide the range, angle, and Doppler frequency shift of targets within coverage [24, 25]. Weather

radar is another specific application that takes advantage of Doppler frequency shift to determine

the motion and intensity of atmospheric objects enabling the classification of precipitation type

varying from hail, snow, or rain [26, 27].

Besides detection and classification, synthetic aperture radar (SAR) systems are used to image

the environment such as landscapes [28, 29]. The concept of SAR systems leverages motion

of the radar antenna, mounted on moving platforms such as aircraft or spacecraft, which moves

across a region of interest to provide finer spatial resolution over conventional stationary scanning

radar. Directed outwardly from theEarth, radio astronomers utilize radar imaging systems to recover

images of celestial objects such as theVery LargeArray (VLA) in Socorro, NewMexico [30, 31, 32].

The VLA is an example of a sparse antenna array in contrast to a fully populated filled array, which

benefits from using significantly fewer receiving antennas and the subsequent radio frequency

components while achieving the same resolution.

In modern days, radar systems have also thrived on civilian applications. Notably, enabling

the possibility of autonomous driving and life-saving vehicular functionalities where cars utilize

multiple compact automotive radars to detect and identify on-road objects, hence mitigate colli-

sions [33, 34, 35]. Given the recent advancements in electronics design and fabrication, radar

systems have also be deployed for many indoor use cases ranging from evaluating fruit quality in a

non-destructive manner that can help improving efficiency of logistical facilities [9]; reconstructing
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medical imageries to assist early detection of breast cancer [10, 11]; monitoring of human activities

where micro-Doppler signatures are used track the location of a person and/or determine a person’s

activity based on the classification of Doppler associated gait patterns [36, 37, 38]; and the detection

of concealed contraband beneath clothing by either recovering imageries for human recognition or

classification based on the range-Doppler mapping [15, 16, 17].

1.1.2 Radar System Architectures

As observed above, radar systems are complex and exist for a remarkably diverse range of

applications. While the realization of radar system architectures can differ drastically, the general

building blocks are similar and are illustrated in Figure 1.1. The five important pillars of a typical

radar system architecture are: signal processing, modulation and demodulation of the signals,

transmission and reception of electromagnetic waves carrying the information, accurate modeling

of the propagating environment, and prediction of the scatter responses from a group of expected

targets or sources external to the radar systems that produce radiation sensitive to the radar. Each

of them is highly dependent on the others which can increase the complexity of design trade-offs

and system requirements.

The signal processing component involves the generation of information, or waveforms that are

suitable for the specific radar functionality such as using pulsed waveforms to exploit the Doppler

frequency shift of potentially moving targets. Other types of waveforms that are commonly used

are continuous waveform, linear frequency modulated waveform (i.e., chirp or de-chirp) and even

noise waveform. Furthermore, acquiring the received signal requires sampling rate that is efficient

based on the defined signal types where too low of a rate means the possibility of losing useful

information (i.e., under-sampled) and too high of a rate represents unnecessary resources being

allocated for capturing signals (i.e., over-sampled). Upon successful data sampling, the received

information can be further processed enabling:

1. Detection, such as evaluation for Doppler frequency shift or change in signal amplitude when

compared to preceding measurements;

4



2. Classification, where the processed information is compared against classes of known signa-

tures to determine the likelihood of specific event monitored by the radar systems; or

3. Imaging, where aggregated information from the measured scene is used to spatially recover

imagery of the scene.

It is important to note that detection, classification, imaging, and other functionalities of a radar

system are not necessarily unrelated to each other. For example, detection based on tracking over

a radar’s coverage could lead to a more comprehensive imaging of the radar’s field of view. For

another example, classification algorithms can be applied to either the measured signals, processed

signals, or the reconstructed images [39, 40].

Given that it is economically efficient to generate information at baseband (i.e., generally under

2 GHz), modulation and demodulation becomes inevitable part of radar system architectures as it

enables information generated at lower frequency to be up-converted to, and down-converted from

the desirable frequency spectrum such as in the case of automotive radars that typically operate

around 77 GHz[41]. Once the signals are at the desirable frequency on transmission, it is common

that they are fed through a cascade of components that condition the signal to ensure that they only

appear in the correct frequency region and that their power does not exceed ratings of neighboring

components to ensure dependable and reliable operation. Lastly, the modulated and conditioned

signals are radiated through either a single antenna or an array of antennas. Similarly, on reception,

the receiver captures electromagnetic radiation arriving at its aperture and the measured signals are

conditioned and subsequently demodulated before sampled and further processed.
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Target Scattering

(External Radiation)

Propagation

(one-way, two-way)

Transmitter

Receiver

Modulation

Demodulation

Signal Processing

Information Generation

Data Sampling

Classification, Detection, Imaging

Figure 1.1 General architecture of a radar system. Information such as waveforms are generated
before being modulated, conditioned, and transmitted out of an antenna (or array of antennas).
Propagation of the transmitted waves (or waves generated from other unknown sources) are re-
flected from target(s) within the radar’s coverage. The receiving antenna (or array of antennas)
captures the reflected waves. The captured signals are then conditioned, demodulated before being
acquired by computational device(s) that performs subsequent detection, classification, and/or im-
age reconstruction.
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The last two pillars of radar system architecture as shown in Figure 1.1 represents factors that

are external to the physical realization. However, they drive the majority of early design decisions.

For example, a practical propagation environment requires the consideration of many factors that

can potentially degrade the performance of radar systems such as multipath, attenuation due to

propagation, unwanted interfering signals and/or refraction. Lastly, understanding the types of

possible scattering targets can help define the requirements for proper signal transmission and

reception throughout the radar systems. On the other hand, some radar systems do not have

transmission capability but can still process radiation arriving at its receiving aperture due to

external sources.

The first three pillars of radar system architecture as shown in Figure 1.1 usually represent the

physical realization of the system implementation. Depending on the configuration, the architecture

of radar systems can be grouped in ways such as mono-static versus bi-static, active versus passive,

and scanning versus staring. Mono-static radar systems compose a single set of transmitter, receiver,

and antenna. In contrast, bi-static radar systems compose multiple mono-static radars operating at

the same frequency that can also be physically separated at larger distances depending on the use

cases. Active radar systems can both transmit and receive while passive radar systems only receive.

Scanning radars have system beams (i.e., due to antenna or array configuration) that are adjustable

to achieve certain spatial coverage while staring radars are designed to operate at specific spatial

direction.

1.1.3 Scanning Radar Systems

Scanning radar systems are common for detection, tracking and imaging use caseswith examples

shown in Figure 1.2. The scanning can be accomplished either by electrical and/or mechanical

implementationwhere the antenna/array responses are redirectedwithin the radar systems’ coverage

(i.e., field of view). Depending on the implementation, scanning radar systems might support only

a confined spatial coverage due to component limitation which can also dictate the scanning

effectiveness (i.e., undesirable reset motion between subsequent scanning).

Electronically-based scanning radar systems (top left of Figure 1.2) leverage multiple radiating
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elements each with independent phase shifting capability to form an array where the beam can be

steered to a specific spatial direction based on the control of phases. A common implementation of

electronically scanning radar is the use of a phased array that utilizes phase shifters located behind

each antenna element to alter the overall array response [42, 43]. In general, the scanning rate of

an electronically-based scanning radar is much higher than its mechanical counterpart as a result

of no physical moving components and that the control of phases can be accomplished digitally.

However, the cost of such electronically scanning radar can increase significantly when the number

of antennas within the array is large because each radiating element represent additional cascaded

active and/or passive components such as amplifiers, phase shifters, filters, among others which can

themselves becoming challenging engineering tasks to design and fabricate at higher frequencies.

Mechanically based scanning radar systems (bottom left of Figure 1.2) utilize motors to raster

scan the system beam (of the antenna/array) by either rotating the aperture or by rotating reflective

surfaces that help direct the beam from a static aperture to the desired spatial direction [21]. The

reflecting surfaces can take the form of different geometry such as using a mirror to direct the beam

of high-gain aperture, or a parabolic reflector to focus the beam of low-gain aperture. Furthermore,

either the aperture or the entire front end of the radar systems can bemechanicallymoved to facilitate

scanning. Generally, only a single antenna and receiver is required for mechanically scanning radar

making it a cost-effective implementation over other radar architectures. However, vibrations due

to mechanical movements can contribute to the noise problem from transient signals which can be

problematic for radar systems operating at higher frequencies. In addition, mechanical scanning is

rather slow when compared to the aforementioned electrical scanning method making it prohibitive

for certain applications such as real-time imaging of moving targets.
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Figure 1.2 Examples of scanning systemswhere the beam can be steered towards a specific direction
that is within the total system coverage (i.e., field of view). Scanning can be achieved electronically
such as using a phased array (top left), mechanically such as mounting the antenna on an adjustable
platform (bottom left), or compositely using a hybrid approach.
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1.1.4 Staring Radar Systems

Unlike scanning radar systems that seek to cover a spatial region overtime, staring radar systems

are optimized for specific spatial direction which drives the importance of array configuration.

An example of a staring radar system is an interferometric imaging system which is shown in

Figure 1.3. One appreciable design consideration of such imaging radar systems is the concept of

using a sparse array where the resolution can be achieved using significantly fewer antenna elements

when compared to a fully populated phased array with equivalent dimensions. As illustrated in

Figure 1.3, the resolution of an interferometric imaging radar is determined by the largest antenna

spacing (in both spatial dimensions) within the array and the field of view of an interferometric

imaging radar is determined by the smallest antenna spacing (in both spatial dimensions) within

the array. The result of using significantly fewer receiving antennas represents a radar system that

is more cost-effective, lighter in weight, and consumes less energy to operate.

Interferometric imaging radar systems were developed for radio astronomical observations

around the mid-twentieth century with the objective to map the radio frequency emission coming

from celestial objects [44, 45, 32]. It was discovered by radio astronomers that the result of

cross-correlating the outputs of two antennas is a representation of the radiating scene and that

by using an array configuration that produces the most diverse cross-correlating pair will improve

the reconstruction of the measured scene. Given the nature of radio astronomy, the associated

interferometric systems are considered passive which means that there is no active transmission of

signals towards the scene. Recently, the interferometric imaging technique was made possible with

active incoherent illumination where active transmission of noise signals are used to illuminate the

scene of interest [46, 47, 48]. Furthermore, the particular interferometric radar imaging system was

implemented at millimeter-wave frequency making it compact and suitable for indoor use cases.

This technique not only improves the receive signal power at the interferometric array but also

enables a computationally cost-effective imaging radar that can be used for applications such as

conceal contraband detection.
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Figure 1.3 Example of a 15-element interferometric imaging system (staring system). The field of
view of the imaging system is determined by the smallest element spacing within the array. The
resolution of the imaging system is determined by the largest element separation within the array.
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1.2 Fourier-Domain Imaging Using Incoherent Signals

1.2.1 Fundamentals on Interferometric Imaging

Interferometric imaging system measures information in the spatial Fourier domain, or spatial

frequency domain to recover spatial information of the measured scene which can be represented

as two-dimensional images. As shown in the top of Figure 1.4, a two-dimensional image can be

also considered as the superposition of an infinite series of spatial varying sinusoidal signals that

are related to different spatial frequencies and orientations (i.e., spatial Fourier domain informa-

tion) [49]. Spatial Fourier domain information is captured by the unique correlation pair within the

antenna array of interferometric imagers, which can be treated as the electromagnetic information

that corresponds to a specific set of spatial frequencies. By carefully designing the placements of

individual antennas of the interferometric array, the unique combination of spacing and orientation

(i.e., baseline) of all possible pairs map to a specific spatial frequency when the received signals of

the particular antenna pair are correlated upon capturing.

The most basic element of any interferometric imaging array is the correlation pair of two

antennas. Considering a two-element correlation pair observing a distant radiating point source as

shown in the bottom right of Figure 1.4, the measured signals in terms of voltage response at each

of the antennas can be represented as follows [50, 46, 1]:

𝑉1(𝑡) = cos(2𝜋 𝑓 𝑡) + 𝑛1(𝑡)

𝑉2(𝑡) = cos[2𝜋 𝑓 (𝑡 − 𝜏𝑔)] + 𝑛2(𝑡)
(1.1)

where the subscripts 1 and 2 indicate the two antennas, 𝑓 is the operating frequency of the correlation

pair, 𝜏𝑔 = 𝐷
𝑐
·sin 𝜃 is the geometric time delay representing the time difference of wavefront reaching

the two antennas that are separated by the baseline 𝐷 considering a wavefront propagation speed of

𝑐, and the terms 𝑛1(𝑡) and 𝑛2(𝑡) each describes the additive noise as part of the measured signal of

the corresponding antenna. Based on (1.1), the response, or correlation output of the two-element
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interferometric array is

𝑟 (𝜃) = ⟨𝑉1(𝑡)𝑉2(𝑡)⟩

𝑟 (𝜃) = ⟨cos(2𝜋 𝑓 𝑡) cos[2𝜋 𝑓 (𝑡 − 𝜏𝑔)]⟩ + ⟨cos(2𝜋 𝑓 𝑡)𝑛2(𝑡)⟩

+ ⟨cos[2𝜋 𝑓 (𝑡 − 𝜏𝑔)]𝑛1(𝑡)⟩ + ⟨𝑛1(𝑡)𝑛2(𝑡)⟩

(1.2)

where the angle brackets ⟨·⟩ represent time averaging. Because the signal from the considered point

source is statistically independent from each of the measured noise and the two measured noises in

each antenna are also uncorrelated, the time averaging operation applied to the last three terms of

(1.2) will become zero, hence reduces (1.2) to

𝑟 (𝜃) = ⟨cos(2𝜋 𝑓 𝑡) cos[2𝜋 𝑓 (𝑡 − 𝜏𝑔)]⟩

𝑟 (𝜃) = ⟨1
2

cos[2𝜋 𝑓 (2𝑡 − 𝜏𝑔)] +
1
2

cos(2𝜋 𝑓 𝜏𝑔)⟩
(1.3)

where the details of derivation on (1.3) are included in Appendix B. Lastly, the higher frequency

component term (i.e., cos[2𝜋 𝑓 (2𝑡 − 𝜏𝑔)]) can be dropped due to integration of low pass filtering at

the correlator output, hence,

𝑟 (𝜃) = 1
2

cos(2𝜋 𝑓 𝜏𝑔) (1.4)

Recall that 𝜏𝑔 = 𝐷
𝑐
· sin 𝜃,

𝑟 (𝜃) = 1
2

cos(2𝜋 𝑓 𝐷
𝑐
· sin 𝜃)

𝑟 (𝜃) = 1
2

cos(2𝜋𝐷
𝜆

· sin 𝜃)

𝑟 (𝜃) = 1
2

cos(2𝜋𝐷𝜆 · sin 𝜃)

(1.5)

where 𝜆 =
𝑓

𝑐
is the wavelength and 𝐷𝜆 is the baseline in the unit of wavelength. It can be seen

from the result of (1.5) that the correlation interferometer output is associated with an oscillatory

response relative to sin 𝜃. This is also the spatial pattern comprising grating lobes mapping to

a specific spatial frequency which are dependent on the electrical baseline (i.e., 𝐷𝜆) of a given

correlation pair. Furthermore, this spatial pattern is multiplicative to the antenna beam pattern

yielding the system beam pattern as illustrated in the bottom left of Figure 1.4.
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Figure 1.4 Top: A two-dimensional image can be considered as the superposition of an infinite
series of spatially varying sinusoidal signals that are related to different spatial frequencies and
orientations [49]. Bottom left: Illustration of the two-element correlation pair’s array pattern that
is due to the multiplicative relationship of antenna pattern and array factor. Bottom right: Example
of a two-element correlation pair observing a distant radiating point source [1].
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1.2.2 The Van Cittert-Zernike Theorem: Signals Incoherence

One important prerequisite for the interferometric imaging radar to successfully recover spatial

scene information forming images is the van Cittert-Zernike theorem which requires that the

signals emanating from the measured scene shall be spatially and temporally incoherent [51, 52].

For radio astronomy application, radiation emanating from celestial objects generally satisfies

the incoherence requirement except the occurrences of pulsars and masers [53, 32]. Radiation

that is thermally induced can also be considered as incoherent for the purpose of recovering

images of measured scenes. However, challenges arise for designing interferometric radar with the

intention of imaging humans for application such as security screening. This is because thermally

induced radiations from humans have exceedingly low power at microwave and millimeter-wave

frequencies mandating a high sensitivity requirement for passive interferometric systems. In

which, represent systems that can require exceedingly high gain amplification circuitry while

also minimizing noise figure, supporting wide bandwidth, and/or long integration time which

are not necessarily cost-effective nor feasible. Addressing these challenges, the active incoherent

millimeter-wave (AIM) technique introduced recently leverages properly placed independent noise

transmitters to illuminate the measured scene enabling Fourier domain sampling with commercially

available components [48, 54, 55]. A photo of the latest iteration on the AIM radar imager is

included in Appendix A.

Tounderstand the importance of the vanCittert-Zernike theorem, let’s first consider two antennas

observing signals emanating from a distant distributed source as shown in Figure 1.5. The mutual

spatial coherence function, as defined in optics for an electric field 𝐸 (𝑡) measured by the two

antennas is given by [56]

Γ12(𝑢, 𝑣, 𝑤, 𝜏) = lim
𝑇→∞

1
2𝑇

𝑇∫
−𝑇

𝐸1(𝑡)𝐸∗
2 (𝑡 − 𝜏) 𝑑𝑡 (1.6)

where 𝑢 =
𝑥2−𝑥1
𝜆

, 𝑣 =
𝑦2−𝑦1
𝜆

and, 𝑤 =
𝑧2−𝑧1
𝜆

are the three-dimensional spacing between the two

measurement points expressed in wavelength, and 𝜆 is the considered wavelength. Following a

similar approach as in [32], when the distance between the radiating distributed source and the
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antennas are significant than the separation of the antennas (𝑅 ≫ 𝐷 shown in Figure 1.5), it is

convenient to specify a single radiating element in the 𝑋𝑌𝑍-space using direction cosines (𝑙, 𝑚, 𝑛)

which are with respect to the 𝑥, 𝑦, and 𝑧 axes of the antenna space. Note that both ®𝑅1 and ®𝑅2 point

toward the (𝑙, 𝑚, 𝑛) direction of any point within the distributed source and will be the same when

measured at the two antennas given they are at large distance from the distributed source.

It can be assumed that the amplitude of the electric fields arriving at both antennas to be

approximately the same when the distributed source is at a larger distance away while being close

to the broadside of the antenna pair. In contrast, the phases of the two considered electric fields will

undergo different phase shifts due to the actual difference in the absolute distance traveled from the

source to each antenna. Furthermore, let’s assume the electric fields are propagating in vacuum.

With these considerations, the electric fields arriving at Antenna 1 and Antenna 2 that originated

from a single element of the distributed source (𝑙, 𝑚, 𝑛) can be written as

𝐸1(𝑙, 𝑚, 𝑛, 𝑡) = E
(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅1

𝑐

) 𝑒− 𝑗𝜔(𝑡−𝑅1/𝑐)

𝑅1

𝐸2(𝑙, 𝑚, 𝑛, 𝑡) = E
(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅2

𝑐

) 𝑒− 𝑗𝜔(𝑡−𝑅2/𝑐)

𝑅2

(1.7)

where 𝑐 is the speed of wavefront propagation, 𝜔 = 2𝜋 𝑓 where 𝑓 is the frequency, E is the

electric field originated from the considered element of the distributed source, 𝑅1 and 𝑅2 account

for the propagation attenuation, and the exponential terms represent the phase changes due to the

corresponding propagation paths. Considering that (1.6) is the time-averaged product between the

two electric fields at the two antennas, the spatial coherence function of the fields can be computed

using the complex cross-correlation between the signals in (1.7) as〈
𝐸1(𝑙, 𝑚, 𝑛, 𝑡)𝐸∗

2 (𝑙, 𝑚, 𝑛, 𝑡)
〉

(1.8)

where the superscript asterisk denotes the complex conjugate and the angle brackets ⟨·⟩ represent

time averaging, or 〈
𝐸1(𝑙, 𝑚, 𝑛, 𝑡)𝐸∗

2 (𝑙, 𝑚, 𝑛, 𝑡)
〉

=

〈
E (𝑙, 𝑚, 𝑛, 𝑡) E∗

(
𝑙, 𝑚, 𝑛, 𝑡 −

(
𝑅2−𝑅1
𝑐

))〉
·
(
𝑒− 𝑗𝜔(𝑅2−𝑅1)/𝑐

𝑅1𝑅2

) (1.9)
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with detail derivation from (1.8) to (1.9) included in Appendix C. (1.9) represent the mutual spatial

coherence function due to a single element of the distributed source at the two antennas. To account

for all radiating points from the distributed source, one can consider the expression as an integration

over the entire source, hence,

Γ21 (𝑢, 𝑣, 𝑛, 𝜏)

=

∫
dist.source

〈
E (𝑙, 𝑚, 𝑛, 𝑡) E∗

(
𝑙, 𝑚, 𝑛, 𝑡 −

(
𝑅2−𝑅1
𝑐

))〉
·
(
𝑒− 𝑗𝜔(𝑅2−𝑅1)/𝑐

𝑅1𝑅2

)
𝑅2𝑑𝑙𝑑𝑚

𝑛

(1.10)

where 𝑅 denotes the distance between the origins of the two coordinate systems as illustrated in

Figure 1.5 (i.e., 𝑥𝑦𝑧 and 𝑋𝑌𝑍). Considering the assumption that the fields from the source subtend

a small angle, the direction cosines 𝑙 and𝑚 can be approximated by small angles where the direction

cosine 𝑛 can be approximated by unity. Furthermore, the quantity (𝑅2 − 𝑅1) can also be expressed

as the quantity 𝜆(𝑢𝑙 + 𝑣𝑚 + 𝑤𝑛). (1.10) then becomes

Γ21 (𝑢, 𝑣, 𝑤, 𝜏)

=

∫
dist.source

〈
E (𝑙, 𝑚, 1, 𝑡) E∗

(
𝑙, 𝑚, 1, 𝑡 −

(
𝑅2−𝑅1
𝑐

))〉
·
(
𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚+𝑤)

𝑅1𝑅2

)
𝑅2𝑑𝑙𝑑𝑚

(1.11)

Given that the electric field from the distributed source is constant with regard to variable 𝑛,

the (1.11) can be further reduce by dropping 𝑤 and 𝑛 = 1,

Γ21 (𝑢, 𝑣, 𝜏)

=

∫
dist.source

〈
E (𝑙, 𝑚, 𝑡) E∗

(
𝑙, 𝑚, 𝑡 −

(
𝑅2−𝑅1
𝑐

))〉
·
(
𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚)

𝑅1𝑅2

)
𝑅2𝑑𝑙𝑑𝑚

(1.12)

Recall that for (1.6), it is assumed that 𝑅 ≫ 𝐷 (as shown in Figure 1.5), hence, 𝑅1 and 𝑅2 can

be approximate as 𝑅,

Γ21 (𝑢, 𝑣, 𝜏)

=

∫
dist.source

〈
E (𝑙, 𝑚, 𝑡) E∗

(
𝑙, 𝑚, 𝑡 −

(
𝑅2−𝑅1
𝑐

))〉
· 𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚

(1.13)

Subsequently, the limits of the integral can be considered as extending to ±∞ because the

integrand is effectively zero when accounting for location outside the distributed source boundary,
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and the term 𝑅2−𝑅1
𝑐

can be neglected if is less than the reciprocal receiver bandwidth, hence,

Γ21 (𝑢, 𝑣, 𝜏) =
∞∬

𝑙,𝑚=−∞

⟨E (𝑙, 𝑚, 𝑡) E∗ (𝑙, 𝑚, 𝑡)⟩ · 𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚 (1.14)

Assume that the distributed source satisfies the incoherence property, then the time-averaged

quantity due to different elements of the source, are zero. Therefore, the two quantities within

the angle bracket in (1.14) is equivalent to that of the time-averaged intensity of the considered

distributed source, or ⟨E (𝑙, 𝑚, 𝑡) E∗ (𝑙, 𝑚, 𝑡)⟩ = 𝐼 (𝑙, 𝑚). Thus,

Γ21 (𝑢, 𝑣, 𝜏) =
∞∬

𝑙,𝑚=−∞

𝐼 (𝑙, 𝑚)𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚 (1.15)

For zero time offset, 𝜏 = 0, the mutual spatial coherence function Γ21 (𝑢, 𝑣, 0) is equivalent to the

complex visibility 𝑉 (𝑢, 𝑣) which both are the Fourier transformation of the scene intensity (i.e.,

property of the van Cittert-Zernike theorem),

𝑉 (𝑢, 𝑣) = Γ21 (𝑢, 𝑣, 0) =
∞∬

𝑙,𝑚=−∞

𝐼 (𝑙, 𝑚)𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚 (1.16)
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Figure 1.5 Two antennas observing signals emanating from a distant distributed source.
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1.2.3 Fourier Relationships and Array Design Considerations

Based on the observation in (1.16), the Fourier relationships between the interferometric mea-

suring domain (i.e., spatial Fourier domain) and the scene intensity’s domain (i.e., spatial domain)

can be summarized as shown in Figure 1.6 where the visibility𝑉 (𝑢, 𝑣) is the Fourier transformation

of the scene intensity 𝐼 (𝑙, 𝑚),

𝐼 (𝑙, 𝑚) =
∞∬

𝑙,𝑚=−∞

𝑉 (𝑢, 𝑣)𝑒 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚 (1.17)

In the second column of Figure 1.6, the star pattern of the sampling function is the result of an

interferometric array configuration that uses 28 receiving antennas arranged in a "Y" layout with

a maximum dimension of 36𝜆 and an inter-element spacing of 2𝜆 with 𝜆 being the considered

wavelength. As introduced in Figure 1.3, these two array design parameters determine the spatial

resolution and the usable unambiguous field of view, respectively. Furthermore, for a specific

interferometric array configuration, a sampling function 𝑆(𝑢, 𝑣) can be synthesized where its

inverse Fourier transform is the point spread function 𝑃𝑆𝐹 (𝑙, 𝑚),

𝑃𝑆𝐹 (𝑙, 𝑚) =
∞∬

𝑙,𝑚=−∞

𝑆(𝑢, 𝑣)𝑒 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚 (1.18)

The point spread function can be used as a metric to evaluate the performance of a specific

sampling function (i.e., array configuration). An ideal sampling function measures all spatial

frequency information representing an inverse Fourier transform yielding a Dirac delta function,

or a point. In the point spread function example shown in Figure 1.6, it can be seen at the location

(𝑙 = 0, 𝑚 = 0) that a slight spread from an ideal point is a result of the spatial frequencies that the

considered sampling function can measure. Furthermore, one can also observe the spatial aliasing

extending outward from (𝑙 = 0, 𝑚 = 0) which is due to the under-sampling of the spatial Fourier

domain (i.e., result of the smallest inter-element spacing of the array).

In the third column of Figure 1.6, the sampled visibility can be considered as the multi-

plicative product in the spatial Fourier domain between the visibility and the sampling function,

𝑉s(𝑢, 𝑣) = 𝑉 (𝑢, 𝑣)𝑆(𝑢, 𝑣) and that the inverse Fourier transform of the sampled visibility yields the
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reconstructed scene intensity 𝐼r(𝑙, 𝑚). It is evident that the quantity 𝐼r(𝑙, 𝑚) is not a fully recovered

copy of 𝐼 (𝑙, 𝑚) which is expected as not all spatial frequencies are measured by the considered

sampling function. Furthermore, the multiplicative operation in the spatial Fourier domain rep-

resents a convolution in the spatial domain, hence, the spatial aliasing appearing in reconstructed

intensity reducing the usable or unambiguous field of view. A dense sampling function can be

synthesized enabling high-resolution image reconstruction using sparse antenna arrays with judi-

cious placement of a small number of antennas (compared to a filled aperture) [57, 49, 32, 58].

In general, an interferometric array’s performance can be improved by increasing the number of

elements with the objective to synthesize additional sampling points in the spatial Fourier domain

(i.e., as a result of new unique baselines). However, this can become a challenge as the number of

receiving antennas in the array is large.

21



ℱ−1

×

∗

=

=
Convolution

Multiplication

Spatial Domain

Spatial Fourier Domain

ℱ ℱ−1 ℱ ℱ−1 ℱ

Y Array

Figure 1.6 Visual example showing the Fourier relationship between the spatial Fourier domain
and the spatial domain. The visibility𝑉 (𝑢, 𝑣) is the Fourier transform of the scene intensity 𝐼 (𝑙, 𝑚)
when the van Cittert-Zernike theorem is satisfied. The sampling function 𝑆(𝑢, 𝑣) is determined by
the interferometric array configuration and is the Fourier transform of the point spread function
𝑃𝑆𝐹 (𝑙, 𝑚). The sampled visibility 𝑉s(𝑢, 𝑣) is the multiplicative product between the sampling
function and the visibility, and its inverse Fourier transform yields the reconstructed scene intensity
𝐼r(𝑙, 𝑚) which can also be considered as the convolution between the point spread function and the
scene intensity.

22



1.3 Significance of this Dissertation

The work included in this dissertation demonstrates an unconventional way of designing radar

systems. Scanning based radar systems leverage relative motion of the antenna/array to obtain

additional information of the measured scene. In contrast, staring based radar systems utilize

specific antenna/array configuration to improve the measured scene information. The concept of

dynamic antenna array inherits both design considerations of scanning and staring based radar

systems; fast array dynamics are being applied to individual receiving elements within the dynamic

antenna array to measure additional information of the scene over a period of time due to the

antennas’ trajectories while the line of sight of the system remains unchanged (i.e., staring).

Information measured using the dynamic antenna array technique can be combined with various

signal processing techniques enabling its applicability to different use cases providing the possibility

to be considered alternative solutions to radar applications such as imaging radar, remote sensing

of the Earth, or concealed contraband detection.

Airport security screening is a specific application that can benefit from this work. At the

time of drafting this dissertation, Quarter 1 of 2024, air travel numbers have already returned to

pre-pandemic level. Furthermore, it is estimated that we will see a record number of 4.7 billion

air travelers in the year 2024. This can represent a challenge at the airport security checkpoints

when the number of travelers is beyond the capacity of security screener. Common airport security

personnel screener such as the ProVision®2 requires less than six seconds total processing time

from scan to decision with upgrades and future iterations focusing on reducing this time to further

improve the throughput of screened travelers [59]. By using a dynamic antenna array I designed and

implemented, imaging of the screened person is not necessary, hence enabling privacy preservation

of the person. All of this, from data acquisition, signal processing, and classification only account

for a fraction of a second which presents itself as a potential viable approach.
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CHAPTER 2

SPATIAL FOURIER DOMAIN SAMPLING USING ARRAY WITH DYNAMICS

In this chapter, I discuss the concept and theory of spatial Fourier domain sampling starting with a

conventional static array followed by the expansion to account for array dynamics. For the context

of this work, the synthesized sampling function refers to the collection of 𝑢𝑣-points based on the

array configuration at a given fast time instance as described by (2.3); and the integrated sampling

function refers to the aggregated measured 𝑢𝑣-points integrated over a slow time duration 𝑇 as a

result of each individual antenna’s trajectory yielding varying array configurations at various times

as described by (2.14). Subsequently, I present a remote sensing scenario considering two different

types of array trajectories with discussion on the trades and design constraints.

This chapter is, in part, a reprint or adaptation ofmaterialswith permission in "ARemote Sensing

Approach Using Dynamic Distributed Interferometric Array" submitted to the IEEE Transactions

on Geoscience and Remote Sensing, March 2024 and "Imageless Contraband Detection Using a

Millimeter-Wave Dynamic Antenna Array via Spatial Fourier Domain Sampling" submitted to the

IEEE Access, April 2024.

2.1 Spatial Fourier Domain Sampling

As discussed in the previous chapter, an interferometric imaging array measures the scene

information in the spatial Fourier domain by cross-correlating the receive signals among individual

antenna pairs within the array, and relies on the assumption that the signals emanating from the

measured scene are spatially and temporally incoherent which satisfies the van Cittert-Zernike

theorem [51, 52]. When the spatio-temporal incoherent requirement is maintained, the visibility

function can be expressed as the two-dimensional (2D) Fourier transform of the scene intensity

function [32] as previously given in (1.16),

𝑉 (𝑢, 𝑣) =
∞∬

𝑙,𝑚=−∞

𝐼 (𝑙, 𝑚)𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚

where 𝑙 = sin 𝜃 cos 𝜙 and 𝑚 = sin 𝜃 sin 𝜙 are the direction cosines relative to the two spatial Fourier

domain dimensions 𝑢 and 𝑣 in unit of cycles·rad−1, respectively. This formulation can be further
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expanded to include array design consideration such as antenna pattern and/or placement given by

[
𝑉 (𝑢, 𝑣) ∗ ∗ 𝐴̄𝑁 (𝑢, 𝑣)

]
𝑆(𝑢, 𝑣) =

∞∬
𝑙,𝑚=−∞

[𝐼 (𝑙, 𝑚)𝐴𝑁 (𝑙, 𝑚)] ∗ ∗ 𝑃𝑆𝐹 (𝑙, 𝑚)𝑒− 𝑗2𝜋(𝑢𝑙+𝑣𝑚) 𝑑𝑙𝑑𝑚

(2.1)

where the double-asterisk ∗∗ represents 2D convolution, 𝐴̄𝑁 (𝑢, 𝑣) is the 2D Fourier transform of

the normalized antenna patterns 𝐴𝑁 (𝑙, 𝑚), and 𝑆(𝑢, 𝑣) is the synthesized sampling function with

its 2D Fourier transform pair being the point spread function 𝑃𝑆𝐹 (𝑙, 𝑚).

2.1.1 Synthesized Sampling Function and the Measured Visibility

The sampling function can be thought of as the 2D auto-correlation function among the dis-

tributed electric fields E(𝑥𝜆, 𝑦𝜆) across the considered array aperture,

𝑆(𝑢, 𝑣) = E(𝑥𝜆, 𝑦𝜆) ★★ E∗(𝑥𝜆, 𝑦𝜆) =
∞∬

𝑥𝜆,𝑦𝜆=−∞

E(𝑥𝜆, 𝑦𝜆)E∗(𝑥𝜆 − 𝑢, 𝑦𝜆 − 𝑣) 𝑑𝑥𝜆𝑑𝑦𝜆 (2.2)

where the double-star symbol ★★ represents 2D auto-correlation and (𝑥𝜆, 𝑦𝜆) represent the co-

ordinates of the array aperture plane in wavelength. In practice, however, electric fields among

individual coordinates of a single antenna cannot be measured separately, hence the output response

of a receiving antenna accounts for only one sampling coordinate that usually represents the location

of the phase center of the antenna. With such consideration, (2.2) can be formulated considering

coordinates of individual antennas’ phase center within the array aperture A(𝑥𝜆, 𝑦𝜆) as

𝑆(𝑢, 𝑣) = A(𝑥𝜆, 𝑦𝜆) ★★A∗(𝑥𝜆, 𝑦𝜆) (2.3)

An example of a linear array (i.e., array aperture) is shown in the top of Figure 2.1 with two

identical horn antennas located at (𝑥1𝜆, 𝑦1𝜆) and (𝑥2𝜆, 𝑦2𝜆), respectively resulting in a separation

of 𝐷𝜆, and that both have an antenna aperture dimension of 𝑥𝜆 × 𝑦𝜆. The resulting sampling

function is shown in the bottom of Figure 2.1 where the rectangles in the 𝑢𝑣-space represent the

sampling function formulation in (2.2) and the points on the 𝑢𝑣-space (i.e., 0 and ±|𝐷𝜆 |) represent

the formulation in (2.3).
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Figure 2.1 Top: Example of a linear array (i.e., array aperture) with two identical horn antennas
located at (𝑥1𝜆, 𝑦1𝜆) and (𝑥2𝜆, 𝑦2𝜆), respectively resulting in a separation of 𝐷𝜆, and that both have
an antenna aperture dimension of 𝑥𝜆 × 𝑦𝜆. Bottom: The sampling function can be considered
as the 2D auto-correlation of the array aperture resulting in cross-correlation among individual
antennas (i.e., sampling points at ±|𝐷𝜆 | in and auto-correlation of individual antenna with itself
(i.e., sampling point at 0) where the former maps a specific pair of antenna’s baseline 𝐷𝜆 = (𝐷𝜆𝑥 =
𝑥𝜆1 − 𝑥𝜆2, 𝐷𝜆𝑦 = 𝑦𝜆1 − 𝑦𝜆2) to specific sampled 𝑢𝑣-points such that (𝑢, 𝑣) = ±(𝐷𝜆𝑥 , 𝐷𝜆𝑦), and the
latter yielding the sampling point (𝑢 = 0, 𝑣 = 0).
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Note that the consideration of 2D auto-correlation of the array aperture in (2.3) results in

cross-correlation among individual antennas (i.e., sampling points at ±|𝐷𝜆 | in Figure 2.1) and

auto-correlation of individual antenna with itself (i.e., sampling point at 0 in Figure 2.1) where

the former maps a specific pair of antenna’s baseline 𝐷𝜆 = (𝐷𝜆𝑥 = 𝑥𝜆1 − 𝑥𝜆2, 𝐷𝜆𝑦 = 𝑦𝜆1 − 𝑦𝜆2)

to specific sampled 𝑢𝑣-points such that (𝑢, 𝑣) = ±(𝐷𝜆𝑥 , 𝐷𝜆𝑦), and the latter yielding the sampling

point (𝑢 = 0, 𝑣 = 0) assuming the two antennas are located at (𝑥𝜆1, 𝑦𝜆1) and (𝑥𝜆2, 𝑦𝜆2), respectively.

The design of an interferometric array mainly considers the number of available antennas and

the array’s configuration. The placement of individual antennas is important as it determines the

performance of the interferometric array which is associated with the recovered image quality. For

a given interferometric imaging array, the spatial resolution achieved by a given array configuration

is determined by the maximum baselines along all direction on the measurement plane considering

the null-to-null bandwidth given by [48]

Δ𝑙,𝑚 ≈ 𝜃 (𝑙,𝑚)NNBW ≈ 2
max{𝐷𝑥𝜆,𝑦𝜆}

(2.4)

and the half-angle unambiguous field of view (FOV) across the two direction cosines is determined

by the antenna spacing (𝑑𝑥𝜆,𝑦𝜆) such that

FOV 𝑙
2 ,

𝑚
2
=

1
2 · 𝑑𝑥𝜆,𝑦𝜆

(2.5)

In addition to the imaging system’s resolution and unambiguous coverage, redundancy of specific

sampled 𝑢𝑣-points can also be an important factor contributing to the recovered imagery quality.

For a given two-dimensional interferometric array, the complete collection of all discretely sampled

𝑢𝑣-points (i.e., spatial frequency information due to the array’s configuration) can be formulated as

𝑆Total(𝑢, 𝑣) =
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝛿(𝑢 − 𝑢𝑛)𝛿(𝑣 − 𝑣𝑚) (2.6)

where 𝛿(·) is the Dirac delta function and the product 𝑁𝑀 represents the total possible number of

spatial frequency samples that the imaging array can acquire. Note that 𝑁𝑀 can be considered as

the collection of redundant and unique spatial frequency samples

𝑁𝑀 = (𝑁𝑀)redundant + (𝑁𝑀)unique (2.7)
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This is demonstrated in Figure 2.2 using a one-dimensional linear array with four antennas. Each

color specifies the unique baseline associated with a given pair of antennas. Solid lines represent

unique baselines and the dashed lines represent redundant baselines. For example, the pair of

Antennas 1 and 2 and the pair Antennas 2 and 3 both yield the same electrical baseline and

orientation (i.e., in the one-dimensional consideration), and hence will sample the same spatial

Fourier sampling points. When multiple pairs of antennas within the array synthesize the exact

sampled 𝑢𝑣-points, a redundant sample is obtained and contributes to the term (𝑁𝑀)redundant.

Depending on the application, redundant samples may be useful, for example in calibration, but the

typical design objective is to optimize (𝑁𝑀)unique using a fixed number of receiving elements. In

general, when the number of receiving elements is small, the receiver numbers tend to have higher

positive correlation to (𝑁𝑀)unique. However, challenges arise when trying to implement additional

elements, especially for arrays that are large, such as avoiding redundant antenna baselines.

The left-hand side of (2.1) can be treated as the measured visibility by the interferometric

array. While (2.3) accounts for the location of the sampled spatial Fourier information in the

𝑢𝑣-domain, it is necessary to understand the composition of the measured visibility from each pair

of antennas within the array due to antenna orientation and polarization. One way to describe the

output from a pair of antennas is to consider the Stokes visibilities, which assumes their correlating

output to be modeled using an arbitrary polarized antenna considering two idealized dipoles in

a cross configuration [32] as shown in Figure 2.3. The Stokes parameters are associated with

the amplitudes of the two perpendicular electric field components that are both orthogonal to

the direction of propagation [32]. Suppose that the electric field components take the following

complex form,

𝐸𝑥 (𝑡) = E𝑥 (𝑡)𝑒 𝑗 [2𝜋 𝑓 𝑡+𝛿𝑥 (𝑡)]

𝐸𝑦 (𝑡) = E𝑦 (𝑡)𝑒 𝑗 [2𝜋 𝑓 𝑡+𝛿𝑦 (𝑡)]
(2.8)

where 𝑓 is the considered frequency and the 𝛿(𝑡) terms describe an arbitrary phase of the associated

field component.
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Antenna

Ant.1 Ant.2 Ant.3 Ant.4

𝐷𝜆,12, 𝐷𝜆,21

𝐷𝜆,13, 𝐷𝜆,31

𝐷𝜆,14, 𝐷𝜆,41

𝐷𝜆,23, 𝐷𝜆,32

𝐷𝜆,24, 𝐷𝜆,42

𝐷𝜆,34, 𝐷𝜆,43

Unique Redundant

Figure 2.2 Example of a one-dimensional linear array consists of four antennas demonstrating the
concept of unique and redundant sampling point due to the uniqueness of the baseline between
two antennas that is determined by their electrical separation and orientation. Each color specifies
the unique baseline associated for a given pair of antennas. Based on the ascending antenna
numbering label, solid lines represent the considered unique baselines and the dash lines represent
the redundant baselines. Originally submitted to IEEE Access, April 2024.
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V′(𝑡)

sin χ

cos χ

ൗ𝜋
2

ො𝑥 

ො𝑦 

ො𝑦′ 

ො𝑥′ 

𝜓 

𝜒

Figure 2.3 An antenna of arbitrary polarization can be described using two idealized dipoles that
are physically orthogonal to each other [32]. The position angle 𝜓 is between major axis of the
polarization ellipse and the reference 𝑥. The angle 𝜒 describes the axial ratio with a range within
±𝜋/4. The measured voltage response is the total response from each of the dipoles, and the
measured 𝑥′ and 𝑦′ components each pass through networks with voltage response proportional to
cos 𝜒 and sin 𝜒 with a 𝜋/2 phase lag, respectively. Note that the measured voltage response V′(𝑡)
is not italicized to differentiate it from the visibility function𝑉 (𝑢, 𝑣). Originally submitted to IEEE
Transactions on Geoscience and Remote Sensing, March 2024.
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The Stokes parameter are defined as follows [32]:

𝐼 = ⟨E2
𝑥 (𝑡)⟩ + ⟨E2

𝑦 (𝑡)⟩

𝑄 = ⟨E2
𝑥 (𝑡)⟩ − ⟨E2

𝑦 (𝑡)⟩

𝑈 = 2⟨E𝑥 (𝑡)E𝑦 (𝑡) cos
[
𝛿𝑥 (𝑡) − 𝛿𝑦 (𝑡)

]
⟩

𝑉 = 2⟨E𝑥 (𝑡)E𝑦 (𝑡) sin
[
𝛿𝑥 (𝑡) − 𝛿𝑦 (𝑡)

]
⟩

(2.9)

where the angle brackets represent the expectation (i.e., time averaging over a fast time integration

of 𝜏), and each of the Stokes parameters represents the total intensity (𝐼), the two linearly polarized

components (𝑄, 𝑈), and the circularly polarized component (𝑉) of the wave. In Figure 2.3, the

antenna model of arbitrary polarization makes an angle 𝜓 between its major axis of polarization

ellipse and the reference 𝑥. Furthermore, the angle 𝜒 describes the axial ratio of the modeled

antenna and is within a range of ±𝜋/4.

The measured voltage response as illustrated in Figure 2.3 can be expressed as

V′(𝑡) = 𝐸𝑥′(𝑡) cos 𝜒 − 𝑗𝐸𝑦
′(𝑡) sin 𝜒 (2.10)

where the marks ′ indicate measured responses, cos 𝜒 and sin 𝜒 represent the voltage response

proportional to the associated network as indicated in Figure 2.3, and the factor − 𝑗 represents the

𝜋/2 lag applied to the measured component of 𝑦′. Note that the measured voltage response V′(𝑡)

in (2.10) is not italicized to differentiate it from the visibility function 𝑉 (𝑢, 𝑣). Furthermore, the

components associated with the 𝑥′ and 𝑦′ in (2.10) can each be expressed by accounting for the

position angle 𝜓 and axial ratio 𝜒 as

𝐸𝑥′ (𝑡) =
[
E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓

]
𝑒 𝑗2𝜋 𝑓 𝑡

𝐸𝑦′ (𝑡) =
[
−E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓

]
𝑒 𝑗2𝜋 𝑓 𝑡

(2.11)

Therefore, the output response of a pair of correlating antennas can be expressed by considering a

time averaging operation over a fast time integration of duration 𝜏 such that

𝑅12 = 𝐺12⟨V′
1(𝑡)V

′
2
∗(𝑡)⟩ (2.12)
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where the subscripts 1 and 2 represent the two antennas, 𝐺12 is the instrumental gain factor. By

considering the formulations from (2.9)–(2.11), (2.12) can be further expressed using the Stokes

visibilities as [32]

𝑅12 = 𝐺12{𝐼𝑣 [cos(𝜒1 − 𝜒2) cos(𝜓1 − 𝜓2) + 𝑗 sin(𝜒1 + 𝜒2) sin(𝜓1 − 𝜓2)]

+𝑄𝑣 [cos(𝜒1 + 𝜒2) cos(𝜓1 + 𝜓2) + 𝑗 sin(𝜒1 − 𝜒2) sin(𝜓1 + 𝜓2)]

+𝑈𝑣 [cos(𝜒1 + 𝜒2) sin(𝜓1 + 𝜓2) − 𝑗 sin(𝜒1 − 𝜒2) cos(𝜓1 + 𝜓2)]

−𝑉𝑣 [sin(𝜒1 + 𝜒2) cos(𝜓1 − 𝜓2) + 𝑗 cos(𝜒1 − 𝜒2) sin(𝜓1 − 𝜓2)]}

(2.13)

where 𝐼𝑣, 𝑄𝑣, 𝑈𝑣, and 𝑉𝑣 are the Stokes visibilities with 𝜒 and 𝜓 describing the axial ratio and

the position angle off from the considered major axis of the measurement plane of an antenna,

respectively. Details on the derivation of (2.13) are included in Appendix D. Composition of

different Stokes visibilities can therefore be measured using different combinations of antenna

polarization and/or position angles. The fast time integration duration 𝜏 is dependent on the

sensitivity of the considered interferometric imaging array such that 𝜏 is inversely proportional

to the signal-to-noise ratio (SNR) [54]. For systems with significant SNR yielding a very short

duration of dwell time, this represents an opportunity to consider the scenario that array elements

move across the measurement plane at a relatively slow time dimension, hence enabling the concept

of dynamic antenna array.
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2.1.2 The Integrated Sampling Function Through Array Trajectory

As observed from the above formulation, it is evident that array design for an interferometric

imager is complex. For example, balancing the number of unique sampled 𝑢𝑣-points and the

redundancy at each of the sampled 𝑢𝑣-point considering a small/fixed number of receiving antennas.

Fortunately, in radio astronomy, the synthesized sampling function due to a fixed interferometric

array configuration varies as the Earth rotates, which modifies the apparent baselines among array

elements with respect to the observing celestial direction [32]. This represents an integrated

sampling function throughout the array trajectory due to the Earth’s rotation that is much more

filled when compared to the synthesized sampling function at any given instance. However, the

Earth’s rotation is slow, uncontrollable, and inapplicable outside the use case of observing celestial

objects. Nevertheless, this motivates the concept of using a dynamic distributed interferometric

array for remote sensing application which is shown at the bottom of Figure 2.4 illustrating nine

aerial platforms each with independent trajectory synthesizing specific Fourier domain sampling

function at a given slow time instance due to array configuration. Over the duration of slow time,

an integrated sampling function is obtained where an inverse Fourier transformation can be applied

to the aggregated sampled visibility to obtain the reconstructed scene intensity assuming that the

scene intensity remains quasi-static relative to the slow time duration 𝑇 . As shown in the top right

of Figure 2.4, the idea of integrating individual synthesized sampling functions over all synthesized

sampling function during the array trajectory is analogous to the concept of a radar data cube

considering the individual synthesized sampling function 𝑆(𝑢, 𝑣), the fast time 𝑡 enabling sufficient

duration of received signal to be measured, and slow time 𝑇 for the integrated sampling function

𝑆𝑇 (𝑢, 𝑣) =
T∫

0

A (𝑥𝜆 (𝑇), 𝑦𝜆 (𝑇)) ★★A∗ (𝑥𝜆 (𝑇), 𝑦𝜆 (𝑇)) 𝑑𝑇 (2.14)
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Figure 2.4Top left: Illustration of the synthesized sampling function froma two-element correlation
pair at different slow time instances. At 𝑇 =1T or 𝑇 =2T, the 𝑢𝑣-points sampled according to (2.3)
are shown in red or green for the cross-correlation response and gray for the auto-correlation
responses. Over a duration of 𝑇 =2T, the integrated sampling function includes the aggregated
synthesized sampling function at various slow time instances. Top right: The integrated sampling
function is analogous to the concept of a radar data cube considering the fast time 𝑡, slow time
𝑇 , and the individual synthesized sampling function 𝑆(𝑢, 𝑣). Bottom: The dynamic distributed
interferometric array concept illustrates nine aerial platforms each with independent trajectory
synthesizing specific Fourier domain sampling function at a given slow time instance due to array
configuration. Over the duration of slow time, an integrated sampling function is obtained where
an inverse Fourier transformation can be applied to the aggregated sampled visibility to obtain
the reconstructed scene intensity assuming that the scene intensity remains quasi-static relative to
the slow time duration 𝑇 . Originally submitted to IEEE Transactions on Geoscience and Remote
Sensing, March 2024.
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The 𝑥𝜆 (𝑇) and 𝑦𝜆 (𝑇) in (2.14) represent coordinates of all antennas within the dynamic dis-

tributed aperture at a given 𝑇 .

𝑥𝜆 (𝑇) =
{
𝑥𝜆,1(𝑇), 𝑥𝜆,2(𝑇), 𝑥𝜆,3(𝑇), . . . 𝑥𝜆,𝑁 (𝑇)

}
𝑦𝜆 (𝑇) =

{
𝑦𝜆,1(𝑇), 𝑦𝜆,2(𝑇), 𝑦𝜆,3(𝑇), . . . 𝑦𝜆,𝑁 (𝑇)

} (2.15)

where 𝑁 is the number of antennas within the dynamic antenna array’s aperture. Furthermore,

the coordinates of the 𝑛-th antenna as function of slow time 𝑇 can be described using a trajectory

function
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ 𝑛 (𝑇) = 𝑥𝑥𝜆,𝑛 (𝑇) + 𝑦̂𝑦𝜆,𝑛 (𝑇)

=
⃗⃗
𝑝 𝑛 (𝑇) +

⃗⃗ ⃗⃗ ⃗
trj 𝑛 (𝑇)

(2.16)

where
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ 𝑛 (𝑇) represent the global trajectory function with reference to the global origin of the

considered plane where the dynamic distributed aperture resides, which can be further represented

using the commutative vector addition property such that an offset vector ⃗⃗𝑝 𝑛 (𝑇) relates the global

origin to the local trajectory function
⃗⃗ ⃗⃗ ⃗
trj 𝑛 (𝑇) that is referenced to a local origin. An illustration of

(2.16) is shown in Figure 2.5 where the left demonstrates an arbitrary trajectory in purple with three

slow time instances 𝑇1, 𝑇2, and 𝑇3 colored in red, green, and blue, respectively. Furthermore, on

the right of Figure 2.5 is an example of how an offset vector ⃗⃗𝑝 𝑛 (𝑇) (shown in red) can be utilized

to more efficiently relate a local trajectory function
⃗⃗ ⃗⃗ ⃗
trj 𝑛 (𝑇) (shown in blue) to the global origin.

In terms of the Stokes visibility, it is expected that the position angle can vary as a result

of individual antenna’s movement, hence (2.13) should be modified to account for the individual

antenna’s position angle at slow time 𝑇

𝑅𝑛𝑚 = 𝐺𝑛𝑚{𝐼𝑣 [cos(𝜒𝑛 − 𝜒𝑚) cos(𝜓−(𝑇)) + 𝑗 sin(𝜒𝑛 + 𝜒𝑚) sin(𝜓−(𝑇))]

+𝑄𝑣 [cos(𝜒𝑛 + 𝜒𝑚) cos(𝜓+(𝑇)) + 𝑗 sin(𝜒𝑛 − 𝜒𝑚) sin(𝜓+(𝑇))]

+𝑈𝑣 [cos(𝜒𝑛 + 𝜒𝑚) sin(𝜓+(𝑇)) − 𝑗 sin(𝜒𝑛 − 𝜒𝑚) cos(𝜓+(𝑇))]

−𝑉𝑣 [sin(𝜒𝑛 + 𝜒𝑚) cos(𝜓−(𝑇)) + 𝑗 cos(𝜒𝑛 − 𝜒𝑚) sin(𝜓−(𝑇))]}

(2.17)

where the subscripts 𝑛 and 𝑚 represent any two given antennas of the dynamic antenna array, and

𝜓±(𝑇) = 𝜓𝑛 (𝑇) ± 𝜓𝑚 (𝑇).
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Figure 2.5 Left: Two-dimensional arbitrary trajectory shown in purple along with three slow
time instances 𝑇1, 𝑇2, and 𝑇3 colored in red, green, and blue, respectively. Right: Example of
commutative vector addition property where an offset vector (shown in red) can be utilized to more
efficiently relate a local trajectory function (shown in blue) to the global origin.
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2.2 Remote Sensing Using a Dynamic Interferometric Array

2.2.1 Simulation Setup and Assumption

To demonstrate the potential of an interferometric arraywith controllable dynamics, a simulation

based remote sensing scenario is investigated. A nine-platform dynamic distributed interferometric

array operating at 10 GHz where each platform is assumed to be a DJI MATRICE 600 Pro with a

full span of 1.668 m or ≈56𝜆 as shown in the top of Figure 2.6. Each platform is assumed to have

either a single antenna integrated at its centroid or a three-element sub-array as shown in the bottom

of Figure 2.6. Each individual antenna is assumed to have equal beamwidth of 30◦ and gain for each

of its principle plane, and is also dual polarized such that both linearly cross-polarized components

can be measured simultaneously. Furthermore, we assume all antennas position angle remain

unchanged during the movement such that they also remain co-polarized. Therefore, all Stokes

visibilities as described by (2.17) can be measured and the expression can be further simplified

with the assumptions on the antenna characteristics such that

𝑅𝑛𝑚,𝑣𝑣 = 𝐺𝑛𝑚 [𝐼𝑣 −𝑄𝑣]

𝑅𝑛𝑚,ℎℎ = 𝐺𝑛𝑚 [𝐼𝑣 +𝑄𝑣]

𝑅𝑛𝑚,𝑣ℎ = 𝐺𝑛𝑚 [𝑈𝑣 − 𝑗𝑉𝑣]

𝑅𝑛𝑚,ℎ𝑣 = 𝐺𝑛𝑚 [𝑈𝑣 + 𝑗𝑉𝑣]

(2.18)

where the additional subscripts 𝑣 and ℎ represent the vertically and horizontally polarized compo-

nent that can be measured independently by each of the antennas. A scene intensity with a spatial

extent of 1000 m×1000 m based on a ground scene radar image measured at 9.65 GHz from [60]

is used as a reference to investigate the scene reconstruction quality of various array dynamics

with and without the use of a sub-array. The reference scene intensity is shown in Figure 2.7

along with the associated visibility function assuming satisfying the van Cittert-Zernike theorem.

Considering the beamwidth of the antenna and the spatial extent of the reference scene, the flying

altitude of the platform is approximately 1866 m which is lower than the advertised flying ceiling

for the considered platform between 2500–4500 m based on its propeller configuration.
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1.668 m, ≈ 56λ @ 10 GHz
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Antenna
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Figure 2.6 Top: Photo of the assumed platform, DJI MATRICE 600 Pro, with a full span of
1.668 m, or ≈ 56𝜆 considering an operating frequency of 10 GHz. Bottom: Configuration of a
three-element sub-array that is considered to be integrated with respect to the platform’s centroid
where each of the antenna is 5𝜆 to the centroid of the platform. Originally submitted to IEEE
Transactions on Geoscience and Remote Sensing, March 2024.
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Figure 2.7 Top: The scene intensity function 𝐼 (𝑙, 𝑚) with spatial extent of 1000 m×1000 m.
Bottom: The visibility function 𝑉 (𝑢, 𝑣) which is the Fourier transform of the scene intensity
function assuming that the van Cittert-Zernike theorem is fulfilled. Source of scene intensity
data [60]. Both figures were reformatted for this dissertation and originally submitted to IEEE
Transactions on Geoscience and Remote Sensing, March 2024.
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2.2.2 Array Trajectory Approach and Integrated Sampling Function

Two approaches for designing array trajectory are investigated: coordinated and random. As

shown in the top of Figure 2.8 and Figure 2.9, both approaches assume the nine-element distributed

array with an initial configuration of a Y-array which is a common and efficient array configuration

in radio astronomy [32]. The coordinated array trajectory (i.e., Array Trajectory 1) enforces the

platform configuration to adhere to that of a Y-array while the random array trajectory (i.e., Array

Trajectory 2) allows each platform to move in random manner. It is assumed that all platforms

remain in the same altitude (i.e., measurement plane) throughout the 2D trajectories. Furthermore,

both approaches require that none of the platform exits a measurement plane with dimension of

27 m×27 m and a clearance requirement that each platform cannot get closer than 60𝜆 which is

slightly wider than a full span of the considered platform. Both array dynamics are assumed

to elapse for a slow time duration of 𝑇 =1T with an additional scenario of the random array

dynamics over a slow time period of 𝑇 =10T. We also assume that there will be platforms not

part of the receiving array near the perimeter of the measurement plane (but not inside) such that

they perform active incoherent illumination [61] to ensure proper sampling in the spatial Fourier

domain. Each antenna is assumed to dwell for a duration of 𝑡 = 𝜏 for the fast time integration

to obtain a synthesized sampling function at a given slow time 𝑇 (i.e., 𝑇 ≫ 𝑡, 𝜏), and that the

antenna locations fall on a 0.5𝜆 spatial grid (in [62], a localization accuracy of 0.15𝜆 was achieved).

The slow time increment is uniformly at 𝑇 =0.01T representing an integrated sampling function

consisting of 100 and 1000 synthesized sampling functions for the consideration of 𝑇 =1T and

𝑇 =10T, respectively. Based on the considered platform, the value T is taken to be 2 s so that

no platform in the studied trajectories will move faster than the advertised maximum speed of

≈17.88 m/s. This represents a slow time increment of 20 ms which is reasonable considering

the recent active incoherent approach achieving a fast time integration of as low as 𝜏 =64 µs per

synthesized sampling function with sufficient signal-to-noise ratio (SNR) [54].

For the coordinated array trajectory (i.e., Array Trajectory 1), each platform’s trajectory can be
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expressed using (2.16) as

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ 1,𝑛 (𝑇) =

⃗⃗
𝑝 1,𝑛 (𝑇) +

⃗⃗ ⃗⃗ ⃗
trj 1,𝑛 (𝑇) (2.19)

for the 𝑛-th platform and that

⃗⃗
𝑝 1,𝑛 (𝑇) = 0

⃗⃗ ⃗⃗ ⃗
trj 1,𝑛 (𝑇) =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ 1,𝑛 (𝑇) = 𝑥𝐷𝜆,𝑛 cos [Θ𝑛 (𝑇)]

+ 𝑦̂𝐷𝜆,𝑛 sin [Θ𝑛 (𝑇)]

(2.20)

where the quantity 𝐷𝜆,𝑛 and Θ𝑛 (𝑇) represent the magnitude (i.e., distance in wavelength) and the

angle of a vector pointing from the global origin (i.e., origin of the assumed measurement plane) to

the 𝑛-th platform. It is assumed that individual platforms with trajectories achieve a 120◦ rotation on

the maintained Y-array over a period duration of 𝑇 =1T and continuing the periodic array trajectory

does not yield in additional 𝑢𝑣-points covered by the integrated sampling function. This is shown

in the top row of Fig. 2.8 where both the array trajectory and the integrated sampling function form

concentric rings.

For the random array trajectory (i.e., Array Trajectory 2), each platform’s trajectory can be

expressed using (2.16) as

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ 2,𝑛 (𝑇) =

⃗⃗
𝑝 2,𝑛 (𝑇) +

⃗⃗ ⃗⃗ ⃗
trj 2,𝑛 (𝑇) (2.21)

for the 𝑛-th platform and that

⃗⃗
𝑝 2,𝑛 (𝑇) =

⃗⃗
𝑝 2,𝑛 (𝑇 − 1)

⃗⃗ ⃗⃗ ⃗
trj 𝑛,2(𝑇) = 𝑥𝑑𝜆,𝑛 (𝑇) cos [𝜃𝑛 (𝑇)]

+ 𝑦̂𝑑𝜆,𝑛 (𝑇) sin [𝜃𝑛 (𝑇)]

(2.22)

where the quantity 𝑑𝜆,𝑛 (𝑇) and 𝜃𝑛 (𝑇) represent the magnitude (i.e., distance in wavelength) and

the angle of a vector pointing from the local origin to the 𝑛-th platform; and that both 𝑑𝜆,𝑛 (𝑇)

and 𝜃𝑛 (𝑇) follow a specific uniform distribution of 𝑈 (0𝜆, 10𝜆) and 𝑈 (0, 2𝜋), respectively. Note

that the upper- and lower-case of variable naming 𝐷𝜆,𝑛, Θ𝑛 (𝑇), 𝑑𝜆,𝑛, and 𝜃𝑛 (𝑇), in (2.20) and
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(2.22) represent referencing to the global and local coordinate in consistency with the notation

of (2.16), respectively. This is shown in Figure 2.9 where the array trajectory still exhibits a Y-

array configuration with varying inter-element spacing across array aperture and that the integrated

sampling function takes the form of a star pattern which is the result of integrating over multiple

synthesized sampling functions of similar star pattern. Unlike the coordinated trajectory that is

periodic and has a maximum number of sampled 𝑢𝑣-points by the integrated sampling function,

the random trajectory approach is capable of acquiring additional spatial Fourier information such

that each subsequent synthesized sampling function 𝑆(𝑢, 𝑣) can acquire new 𝑢𝑣-points leading to

an improved integrated sampling function 𝑆𝑇 (𝑢, 𝑣) as 𝑇 increases.

A third scenario considering the random trajectory approach is shown in Figure 2.10 which is

a continuation from the random trajectory with 𝑇 =1T in Figure 2.9 that elapses until 𝑇 =10T. As

expected, a much denser integrated sampling function is achieved due to the random trajectories

of individual platforms within the array. We note the apparent un-sampled lower spatial frequency

region in the integrated sampling function is a direct result of the clearance assumption that each

of the platforms must adhere to. This means that for a dynamic distributed interferometric array,

spatial Fourier information that resides in regions that commensurate to the clearance requirement

can only be sampled by leveraging a well-designed sub-array mounted on each of the platforms. In

the following analysis, each of the platforms is assumed to carry the same three-element sub-array

as depicted in the bottom of Figure 2.6. However, we note that additional antennas within the

sub-array can improve the number of 𝑢𝑣-samples within the un-sampled region due to clearance,

and that integrating different types of sub-array on each platform can further improve the sampling.

For brevity, the integrated sampling functions considering the sub-array scenario in combination

with the three aforementioned trajectories are not shown since the results will just appear wider

due to additional 𝑢𝑣-samples enabled by additional antenna elements within the dynamic antenna

array aperture (i.e., 27 instead of 9) while exhibit similar form which is mainly to the trajectory.
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Figure 2.8 Top: A coordinated trajectory approach as described by (2.19) and (2.20) with nine
platforms that maintain a Y-array configuration over a rotating trajectory that is periodic every 120◦
rotation and is assumed to account for a slow time duration of 𝑇 =1T. Bottom: The integrated
sampling function over the slow time duration of 𝑇 =1T for the coordinated trajectory approach
exhibiting a form of concentric rings. The gray cross markers represent either the initial position of
the platforms or the initial synthesized sampling function; the black inverted-Ymarkers represent the
final position of the platforms at the end of the slow time duration𝑇 ; the black plusmarkers represent
the final synthesized sampling function at the end of the slow time duration 𝑇 ; and transition of the
color red and blue represent the elapsed trajectory and the integrated sampling function over the
slow time duration𝑇 , respectively. Both figures were reformatted for this dissertation and originally
submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.

Spacer Text

43



Figure 2.9Top: A random trajectory approach as described by (2.21) and (2.22) with nine platforms
that start with a Y-array configuration where an individual platform is assumed to randomly move
across the measurement plane for a slow time duration of 𝑇 =1T. Bottom: The integrated sampling
function over the slow time duration of 𝑇 =1T for the above random trajectory approach. The
gray cross markers represent either the initial position of the platforms or the initial synthesized
sampling function; the black inverted-Y markers represent the final position of the platforms at the
end of the slow time duration 𝑇 ; the black plus markers represent the final synthesized sampling
function at the end of the slow time duration𝑇 ; and transition of the color red and blue represent the
elapsed trajectory and the integrated sampling function over the slow time duration 𝑇 , respectively.
Both figures were reformatted for this dissertation and originally submitted to IEEE Transactions
on Geoscience and Remote Sensing, March 2024.

Spacer Text
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Figure 2.10Top: The same random trajectory approach over a longer slow time duration for𝑇 =10T.
Bottom: The integrated sampling function over the slow time duration of 𝑇 =10T for the above
random trajectory approach. The gray cross markers represent either the initial position of the
platforms or the initial synthesized sampling function; the black inverted-Y markers represent the
final position of the platforms at the end of the slow time duration𝑇 ; the black plusmarkers represent
the final synthesized sampling function at the end of the slow time duration 𝑇 ; and transition of the
color red and blue represent the elapsed trajectory and the integrated sampling function over the
slow time duration𝑇 , respectively. Both figures were reformatted for this dissertation and originally
submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.

Spacer Text
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2.2.3 Performance Evaluation of Integrated Sampling Function Considering Scene Recon-
struction

In Figure 2.11, Figure 2.13, and Figure 2.15, the point spread function (PSF) of the integrated

sampling function and the scene intensity reconstruction of the reference scene intensity in Fig-

ure 2.7 are shown for the three trajectory scenarios with single antenna assumption as described in

Figure 2.8, Figure 2.9, and Figure 2.10 above. For the scenarios with the sub-array consideration,

the corresponding PSF and scene intensity reconstruction are shown in Figure 2.12, Figure 2.14,

and Figure 2.16.

From the top of Figure 2.11 and Figure 2.12, it can be seen that the coordinated trajectory’s

PSFs (i.e., considering both single antenna and three-element sub-array per platform) exhibit the

form of an 2D Airy function [63] which is a direct result of the concentric integrated sampling

function as illustrated in Figure 2.8 for the single antenna scenario. As shown in the bottom of

Figure 2.11 and Figure 2.12, the scene intensity reconstructions due to the coordinated trajectory

recovered perceptible responses from the reference scene intensity (in the lower left and center

right of the scene). Furthermore, the consideration of sub-array shows improvement over the

single antenna scenario which is a direct result of sampling additional 𝑢𝑣-points. From the top of

Figure 2.13–Figure 2.16, the random trajectory’s PSFs with and without the sub-array assumption

both appear to be noise-like which is expected as the integrated sampling function is the aggregation

of randomly sampled𝑢𝑣-points. Similar to the coordinated trajectory scenario, the sub-array enables

more 𝑢𝑣-points to be sampled, hence reducing the level of surrounding artifacts (i.e., improving

the contrast of the point of the PSF). Unlike the coordinated trajectory scenario, the single antenna

scenario considering the random trajectory did not recover perceptible information of the reference

scene as shown in the bottom of Figure 2.13 when the slow time duration is 𝑇 =1T. However, with

the consideration of the sub-array, not only are the two responses in the bottom left and center right

of the reference scene intensity (Figure 2.7) are recovered, but also the response from top left.
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Figure 2.11 Top: The point spread function of the integrated sampling function due to the array
trajectory shown in Figure 2.8 considering a single antenna at each of the nine platforms. Bottom:
The scene intensity reconstruction of the reference scene intensity in Figure 2.7 using the integrated
sampling function as a result of the coordinated trajectory with the consideration of a single antenna
at each of the nine platforms. Both figures were reformatted for this dissertation and originally
submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.

Spacer Text
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Figure 2.12 Top: The point spread function of the integrated sampling function due to the array
trajectory shown in Figure 2.8 considering the three-element sub-array at each of the nine platforms.
Bottom: The scene intensity reconstruction of the reference scene intensity in Figure 2.7 using
the integrated sampling function as a result of the coordinated trajectory with the consideration of
the three-element sub-array at each of the nine platforms. Both figures were reformatted for this
dissertation and originally submitted to IEEE Transactions on Geoscience and Remote Sensing,
March 2024.

Spacer Text
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Figure 2.13 Top: The point spread function of the integrated sampling function due to the array
trajectory shown in Figure 2.9 considering a single antenna at each of the nine platforms. Bottom:
The scene intensity reconstruction of the reference scene intensity in Figure 2.7 using the integrated
sampling function as a result of the coordinated trajectory with the consideration of a single antenna
at each of the nine platforms. Both figures were reformatted for this dissertation and originally
submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.

Spacer Text
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Figure 2.14 Top: The point spread function of the integrated sampling function due to the array
trajectory shown in Figure 2.9 considering the three-element sub-array at each of the nine platforms.
Bottom: The scene intensity reconstruction of the reference scene intensity in Figure 2.7 using
the integrated sampling function as a result of the coordinated trajectory with the consideration of
the three-element sub-array at each of the nine platforms. Both figures were reformatted for this
dissertation and originally submitted to IEEE Transactions on Geoscience and Remote Sensing,
March 2024.

Spacer Text

50



Figure 2.15 Top: The point spread function of the integrated sampling function due to the array
trajectory shown in Figure 2.10 considering a single antenna at each of the nine platforms. Bottom:
The scene intensity reconstruction of the reference scene intensity in Figure 2.7 using the integrated
sampling function as a result of the coordinated trajectory with the consideration of a single antenna
at each of the nine platforms. Both figures were reformatted for this dissertation and originally
submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.

Spacer Text

51



Figure 2.16 Top: The point spread function of the integrated sampling function due to the array tra-
jectory shown in Figure 2.10 considering the three-element sub-array at each of the nine platforms.
Bottom: The scene intensity reconstruction of the reference scene intensity in Figure 2.7 using
the integrated sampling function as a result of the coordinated trajectory with the consideration of
the three-element sub-array at each of the nine platforms. Both figures were reformatted for this
dissertation and originally submitted to IEEE Transactions on Geoscience and Remote Sensing,
March 2024.

Spacer Text
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As stated above, the coordinated trajectory will not yield additional sampling points due to its

periodic nature and the random trajectory has the potential to improve scene intensity reconstruction

by measuring potentially additional unique 𝑢𝑣-points as the slow time duration increases. This is

demonstrated in Figure 2.13–Figure 2.16 for the consideration with and without the sub-array. The

PSFs are noise-like due to the random trajectory and that the level of surrounding artifacts is much

lower when compared to the random trajectory scenarios considering 𝑇 =1T. Furthermore, the

scene intensity reconstruction is improved, and a perceptible recovery of almost the full reference

scene is achieved when considering the random trajectory integrating over a duration of 𝑇 =10T

where each platform carries the assumed three-element sub-array. Regardless of the trajectory or

slow time integration 𝑇 , it is observed that when assuming a sub-array at each of the platforms,

the additional sampled 𝑢𝑣-points reduce the side-lobe artifacts of the PSF, hence improving the

reconstruction scene intensity.

Aside from the perception-based evaluation of the scene reconstructions shown above, it is also

necessary to quantitatively evaluate the performance of the various integrated sampling function

scenarios considered above. Two metrics are used to compare the reconstruction quality against

the reference scene intensity: the peak signal-to-noise ratio (PSNR) and the structural similarity

index measure (SSIM).

PSNR is defined as the ratio between the maximum possible power of signal (i.e., reference

image) and the mean squared error which can be due to imperfectly recovering of the original

signal such as corrupting noise [64]. The PSNR has a unit of dB where an ideal recovery of the

original signal has a PSNR of +∞. The evaluated PSNR are reported in Table 2.1 for each of the

reconstructed scene intensities in Figure 2.11–Figure 2.16 against the reference scene intensity in

Figure 2.7 along with the improvement by comparing between the scenarios of a single antenna

versus the three-element sub-array or the random trajectory for the two integrated sampling function

duration of 𝑇 =1T and 𝑇 =10T. It can be seen that when the slow time integration is at 𝑇 =1T, the

coordinated trajectory performs better than the random trajectory with and without the sub-array

consideration, and that implementing the sub-array achieves at least 13.7 dB improvement over
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PSNR (dB) Single Sub-array Improvement
Trj.1 12.7 26.4 13.7
Trj.2 10.5 25.1 14.6

Trj.2, 𝑇 =10T 29.1 35.9 6.8
Trj.2 Improvement

over 𝑇 =10T 18.6 10.8

Table 2.1 Peak signal-to-noise ratio (PSNR) comparison between the reference scene intensity in
Figure 2.7 and each of the reconstructed scene intensity in Figure 2.11–Figure 2.16. Originally
submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.

the single antenna assumption for both trajectory approaches. Comparing the random trajectory

approach with two slow time integration duration, we observe that the single antenna scenario

achieved 18.6 dB improvement and the sub-array scenario achieved 10.8 dB improvement. Overall,

the random trajectory approach with sub-array over a slow time duration 𝑇=10T achieved the best

PSNR at 35.9 dB.

The SSIM is an image specific quality metric that considers the structural information, contrast,

and luminance between the recover image and the reference image and has a range of [−1, 1] where

1 represents identical recover and reference images, and 0 and -1 indicate no similarity and perfect

anti-correlation, respectively [65]. Compared to PSNR, the SSIM enables further evaluation of

how similar the scene reconstruction is to the reference image. We report the SSIM in Table 2.2

for each of the reconstructed scene intensity in Figure 2.11–Figure 2.16 against the reference scene

intensity in Figure 2.7 along with the improvement by comparing between the scenarios of a single

antenna versus the three-element sub-array or the random trajectory for the two integrated sampling

function duration of 𝑇 =1T and 𝑇 =10T. Similar to the observation made in PSNR (Table 2.1), the

coordinated trajectory approach demonstrated higher SSIM than the random trajectory regardless

of the sub-array assumption. Furthermore, both sub-array scenarios at slow time duration 𝑇 =1T

demonstrated improvement above 0.44. Comparing the random trajectory approach with two slow

time integration duration, we observe that the single antenna scenario achieved 0.60 improvement

and the sub-array scenario achieved 0.44 improvement. Overall, the random trajectory approach

with sub-array over a slow time duration 𝑇 =10T achieved the best SSIM at 0.93.
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SSIM Single Sub-array Improvement
Trj.1 0.08 0.58 0.50
Trj.2 0.05 0.49 0.44

Trj.2, 𝑇 =10T 0.65 0.93 0.28
Trj.2 Improvement

over 𝑇 =10T 0.60 0.44

Table 2.2 Structural similarity index measure (SSIM) comparison between the reference scene
intensity in Figure 2.7 and each of the reconstructed scene intensity in Figure 2.11–Figure 2.16.
Originally submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.

From both the reported PSNR and SSIM evaluation, it is evident that for the random trajectory

approach, the improvement by allowing the single antenna assumption over a longer slow time

duration outperforms the assumption of implementing the three-element sub-array with unchanged

slow time duration (i.e., PSNR: 18.6 versus 14.6 and SSIM: 0.60 versus 0.44). Furthermore,

we report progression of the PSNR, SSIM, and the number of unique 𝑢𝑣-points sampled by the

integrated sampling function at different time 𝑇 in Figure 2.17. For the random trajectory with

sub-array, it is observed that both PSNR and SSIM converge as 𝑇 increases suggesting that slow

time duration longer than 𝑇 =10T is unlikely to achieve significant improvement. While it seems

obvious that the random trajectory approach with sufficient slow time integration duration is better

at reconstructing the measured scene intensity, coordinated trajectory approaches can be useful in

certain use cases and provide a more cost-effective remote sensing approach. For example, the

decision to reconstruct specific ground scene intensities might not be necessary unless detection

of certain spatial attributes such as man-made artificial structures like buildings and roads where

their sharp edges generate spatial frequency responses that extend over a broad spatial frequency

bandwidth but confined to a narrow angular range are recognized, which can be captured by a set

of concentric rings of integrated sampling function due to a coordinated array trajectory as will be

discussed in the subsequent chapter.
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Figure 2.17 Top: Peak signal-to-noise ratio (PSNR) between the reference scene intensity in
Figure 2.7 and the reconstructed scene intensity due to the integrated sampling function over the
course of slow time duration 𝑇 . Center: Structural similarity index measure (SSIM) between the
reference scene intensity in Figure 2.7 and the reconstructed scene intensity due to the integrated
sampling function over the course of slow time duration 𝑇 . Bottom: Number of measured unique
𝑢𝑣-points due to the integrated sampling function over the course of slow time duration𝑇 . Originally
submitted to IEEE Transactions on Geoscience and Remote Sensing, March 2024.
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CHAPTER 3

ENABLING IMAGELESS REMOTE SENSING USING
ROTATIONAL DYNAMIC ANTENNA ARRAY

In this chapter, I discuss a specific use case where a correlation pair can be implemented in

conjunction with rotational array dynamics such that it generates an integrated sampling function

taking the form of a ring (i.e., ring filter) that covers the full two-dimensional (2D) spatial Fourier

space. This approach enables an imageless remote sensing technique such that no image of the

measured scene is recovered. I first present a remote sensing scenario where the ring-filtered

spatial Fourier responses enable ground scene classification between scenes containing man-made

structures such as road and bridges and scenes that exhibit naturally occurring characteristics like

vegetation. Man-made, artificial structures such as buildings and roads are generally characterized

by sharp edges, which generate spatial frequency responses that are confined to a narrow angular

range but extend over a broad spatial frequency bandwidth. These artifacts can be detected by

generating a ring-shaped filter in the Fourier domain, which can be obtained through the novel

design of a linear antenna array with rotational dynamics. In addition, I present the design and

implementation of an experimental setup of a two-element rotational dynamic antenna array and

demonstrate the concept of capturing the sharp edge associated with spatial Fourier responses.

This chapter is, in part, a reprint or adaptation of materials with permission in "Analysis of

Imageless Ground Scene Classification Using a Millimeter-Wave Dynamic Antenna Array" pub-

lished in IEEE Transactions on Geoscience and Remote Sensing [66] © 2022 IEEE, "A 75-GHz

Dynamic Antenna Array for Real-Time Imageless Object Detection via Fourier Domain Filtering"

published in 2022 IEEE/MTT-S International Microwave Symposium [67] © 2022 IEEE, "Image-

less Contraband Detection Using a Millimeter-Wave Dynamic Antenna Array via Spatial Fourier

Domain Sampling" submitted to the IEEE Access, April 2024, and "A Remote Sensing Approach

Using Dynamic Distributed Interferometric Array" to be submitted to the IEEE Transactions on

Geoscience and Remote Sensing, March 2024.
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3.1 Techniques of Scene Information Classification

Classification of the scene information is important in a broad range of civilian and military

remote sensing applications. Due to the abundance of information obtained from remote sensing

systems, both from satellites and aerial platforms, methods of rapidly classifying scenes are of pri-

mary interest so that relevant information can be efficiently processed. Various sensing applications,

from sensing the Earth surface via aerial platforms to distant security imaging of people, require

the differentiation between naturally occurring and artificial structures/objects [68, 39, 69, 70, 40].

To effectively determine whether man-made structures/objects exist in the scene of interest, image-

based classifiers are typically implemented where the classification performance is dependent on

the measurement, signal processing, and the selected classifier in combination with the evaluated

features. Each of the stages contribute to the overall cost in terms of hardware and the associated

computational complexity. Interestingly, images often contain more than the required minimum in-

formation for effective classification results, which means unnecessary resources can be committed

to the collection and processing of redundant data. Understanding this phenomenon, the designs

associated with both the measurements (hardware and acquisition time) and the processing can be

optimized to reduce system complexity and cost by eliminating resources that would have been

designed for unnecessary tasks.

Typically, remote scene classification is approached separately from the data acquisition process.

The remote sensing system acquires data and forms a set of images, which are then passed to a

classification algorithm that operates on the image data. Many works have focused on classifying

large numbers of images using image processing approaches. Various features can be obtained from

images, such as target sizes, geometries, and/or edges of structures/objects, which can be leveraged

individually or in combination to perform classification on the imaged scene [71]. Recently,

machine-learning based techniques have been applied to this approach to address the sheer amount

of data that must be processed [72, 73, 74, 75]. Such approaches, however, necessitate full image

reconstruction for every scene of interest, which leads to a significant amount of data that must be

acquired, transferred, and processed before classification takes place, which can strain resources in
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hardware, communications, and computational processing.

In the subsequent sections, I investigate the use of a novel approach to obtain a small subset of

the spatial frequency information in a scene using a rotationally dynamic millimeter-wave antenna

array and demonstrate the ability to classify scenes containing man-made structures with only a

small amount of data compared to a full imaging system. The approach only samples a ring of

spatial frequencies in the Fourier transform domain of the scene spatial intensity, capturing the

unique spatial frequency signatures of man-made objects. In contrast to other approaches, the

presented technique does not sample sufficient information to reconstruct a full image; however,

this leads to a significant reduction in the amount of information necessary for scene classification,

and furthermore may be beneficial for privacy-preserving applications. A dynamic antenna array

concept where a two-element interferometric antenna array was designed with rotational spatio-

temporal dynamics to acquire filtered spatial frequency domain information [76, 77, 78] which

focuses on features that are particular to man-made shapes in the scenes. The concept uses

dynamic rotational motion of the array, which is far simpler than typical mechanically-steered

imaging systems, and thus assumes that the scene is quasi-stationary during the measurement.

I will also discuss the design of a millimeter-wave antenna array for obtaining filtered spatial

frequency information from ground scenes and evaluate the classification capabilities using filtered

spatial frequency data from a publicly available microwave remote sensing data set.

3.2 Artifacts in the Spatial Fourier Domain

Scene classification can operate on the reconstructed intensity 𝐼r(𝑙, 𝑚) via image processing

technique as described in the previous chapters. The approach presented in this chapter, however,

is to operate directly on the sampled visibility 𝑉s(𝑢, 𝑣) without reconstructing the image, and

furthermore with extraordinarily little spatial frequency information. Imageless classification via

the dynamic antenna array concept is based on capturing spatial Fourier features present in the

scene. In particular, the objective is to distinguish remote sensing images of non-natural scenes

(NNS) comprising man-made structures such as roadways and/or bridges from remote sensing

images of natural scenes (NS) containing only natural landscapes. Man-made structures generally
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have sharp edges, which are infrequent in natural scenes and that manifest strong spatial frequency

signals that are localized to spatial frequency angles orthogonal to the edge direction in the spatial

domain and extend radially outward over a broad spatial frequency bandwidth. Examples of NS

and NNS radar images from [60] with a spatial field-of-view (FOV) of 1000 m by 1000 m and a

resolution of 1 m/pixel are shown in Figure 3.1. Furthermore, examples of the visibility for one

NS and one NNS are shown in the top of Figure 3.2 along with their corresponding visibility in

the bottom of Figure 3.2. Note that the visibility is not generally affected by topology since range

information is not obtained. As observed in Figure 3.2, the visibility of the NS exhibits smoother

spatial frequency content whereas the NNS visibility presents strong while discrete components

that are orthogonal to the direction of the sharp edges.
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Figure 3.1 Processed radar images from [60] with a field-of-view of 1000 m by 1000 m and a
resolution of 1 m/pixel. The top six figures represent examples of natural scenes (NS) and the
bottom six figures represent examples of non-natural scenes (NNS). Image [66] © 2022 IEEE.
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Figure 3.1 (cont’d)
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Figure 3.2 Top: Microwave radar images of a natural scene of a vegetation region of Cushing (left),
Oklahoma and a non-natural scene of highway and building cluster from the region of Phoenix,
Arizona (right). Bottom: The visibility of the corresponding scene above. Data from [60].
Image [66] © 2022 IEEE.
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3.3 The Ring Filter

Since the spatial frequency features discussed above are largely discrete and directional, they

enable detection with only a small subset of the available visibility information. One such way is to

generate a ring-shaped sampling function in the spatial frequency domain [76], shown in Figure 3.3,

where a two-element dynamic array is rotated regarding its centroid covering a spatial frequency

bandwidth over the full 360◦ of the 𝑢𝑣-plane. This ring-shaped spatial frequency sampling function

integrated over the slow time duration 𝑇 is referred to as the "ring filter". Since the ring filter

covers the full angle of rotation, discrete spatial frequency features that extend radially outward

can be captured. Note that this approach only requires the correlation pair to rotate 180◦ due to the

Hermitian symmetric nature of the visibility given that the scene intensity function is of real value,

and that the direction of rotation is arbitrary. As discussed in [76], a design may be implemented

by rotating an array on an aerial vehicle’s rotor blades where the two antennas always remain

co-polarized enabling the dynamic array to operate either actively or passively as discussed earlier.

The ring filter concept based on the dynamic antenna array combines the interferometric tech-

nique and rotational array dynamics to sparsely sample spatial frequency information. Recall that

interferometric imaging systems co-process the signals received at elements in a sparse array to

generate high-resolution imagery with a fraction of the aperture area required in typical imaging

systems. Pairwise cross-correlation of the received signals generates spatial frequency samples

(Fourier-domain information) of the scene to be reconstructed [13, 32]. Intuitively, one can rec-

ognize that the smallest unit of a typical interferometric array is a two-element array (Figure 3.4,

bottom left) where the spatial frequency being sampled corresponds to a far-field sinusoidal depen-

dent on the baseline separation 𝐷𝜆 between the two antennas and the orientation formed between

the baseline and the system’s horizontal plane. A ring-shaped spatial frequency filter can be synthe-

sized by dynamically rotating the array at a fixed baseline [76] as demonstrated in the bottom right

of Figure 3.4 shown at three slow time instances. As shown in the upper right corner of Figure 3.4,

boxed by solid orange and dash-dot magenta, sharp edges in the spatial domain manifest radially

extending Fourier artifacts that are orthogonal to the edge direction. Such Fourier artifacts can be
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easily sampled by utilizing array dynamics, assuming the measured scene is relatively static, where

the achieved baseline 𝐷𝜆 (𝑇) depends on both the antenna placement and the array trajectory. The

dynamic antenna array shown above is a correlation pair rotating with respect to their centroid,

synthesizing a ring-shaped sampling function over a rotational trajectory of 180◦ that can effectively

capture the radially extending Fourier artifacts in the 𝑢𝑣-plane.

The array trajectory generating the ring filter can be considered as a coordinated trajectory

approach as discussed in the previous chapter. Following the formulation of the coordinated

trajectory function defined in (2.19) and (2.20), for a two-element linear interferometric pair

(denoted by subscripts 1 and 2) residing on the measurement plane (𝑥𝑦-plane) co-rotating with

respect to their centroid, the trajectory functions that enable the ring filter can be described by

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ ring,𝑛 (𝑇) =

⃗⃗
𝑝 ring,𝑛 (𝑇) +

⃗⃗ ⃗⃗ ⃗
trj ring,𝑛 (𝑇) (3.1)

for the 𝑛-th antennas and that

⃗⃗
𝑝 ring,1(𝑇) = 0
⃗⃗
𝑝 ring,2(𝑇) = 0

⃗⃗ ⃗⃗ ⃗
trj ring,1(𝑇) =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ ring,1(𝑇) = 𝑥 𝐷𝜆

2 cos [Θ𝑛 (𝑇)]

+ 𝑦̂ 𝐷𝜆

2 sin [Θ𝑛 (𝑇)]
⃗⃗ ⃗⃗ ⃗
trj ring,2(𝑇) =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
TRJ ring,2(𝑇) = −𝑥 𝐷𝜆

2 cos [Θ𝑛 (𝑇)]

− 𝑦̂ 𝐷𝜆

2 sin [Θ𝑛 (𝑇)]

(3.2)

where 𝐷𝜆 is the separation between the two antennas and that the factor 1
2 accounts for the

definition that the two antennas co-rotate with respect to their centroid. Note that the quantity

𝐷𝜆 (𝑇) in Figure 3.4 is the electrical baseline (i.e., both separation and orientation) over the slow

time dimension 𝑇 and that the quantity 𝐷𝜆 in (3.1) only describes the separation between the two

antennas in wavelength.
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Figure 3.3 Example of utilizing a dynamically rotated correlation pair to synthesize a spatial
frequency ring filter. A physical separation of 𝐷𝜆 will yield a ring filter with a radius of 𝐷𝜆
cycles/rad. The radius of the ring filter is also dependent on the center frequency (red circle) and
the extending coverage of spatial frequency bandwidth is dependent on the antenna bandwidth
(yellow). A 180◦ rotation from the correlation pair covers the full 360◦ span on the 𝑢𝑣-plane
indicating that no reset is required and that the continuing rotational dynamics will synthesize
additional ring filters. Direction of rotation is a design choice. Image [66] © 2022 IEEE.
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Figure 3.4 Overview of the interferometric technique and the comparison between static and
dynamic antenna array. The smallest element of an interferometric array is a correlation pair which
is shown by the yellow and gray conical horn antennas. Conventional interferometric arrays are
considered static where the array pattern of a given correlation pair within the array is defined by
antenna placement achieving a baseline, 𝐷𝜆, and a far-field grating lobe pattern that corresponds
to particular sampling points in the Fourier domain. The sampling Fourier-domain space is also
known as the scene visibility, 𝑉 (𝑢, 𝑣), which is the two-dimensional Fourier transformation of
the scene intensity, 𝐼 (𝑙, 𝑚), when satisfying the Van Cittert-Zernike theorem [79, 32] where the
fields radiated from the measured scene is considered spatio-temporally incoherent. The visibility
is the collection of all spatial frequency information of the measured scene which are related to
particular spatial/physical features. As shown in the upper right corner, boxed by solid orange and
dash-dot magenta, sharp edges in the spatial domain manifest radially extending Fourier artifacts
that are orthogonal to the edge direction. Such Fourier artifacts can be easily sampled by utilizing
array dynamics, assuming the measured scene is relatively static, where the achieved baseline
𝐷𝜆 (𝑇) depends on both the antenna placement and the array trajectory. The dynamic antenna
array shown above is a correlation pair rotating with respect to their centroid, synthesizing a
ring-shaped sampling function over a rotational trajectory of 180◦ that can effectively capture the
radially extending Fourier artifacts in the 𝑢𝑣-plane. Data source for Scene Intensity [60]. Originally
submitted to IEEE Access, April 2024.
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3.3.1 Direct Classification in the Spatial Fourier Domain

Previously in [76], a single ring filter of baseline 761𝜆 was heuristically determined and

subsequently fed to a decision-boundary-based classifier. The baseline decision not only considered

the spatial-spectral signal length near 761 rad−1 but also considered a notional implementation of a

40 GHz system on a medium-sized unmanned aerial vehicle (UAV) [80] matching the altitude and

physical separation requirement of the single correlation pair that is close to a typical rotor blade

specification with an end-to-end length or wingspan of 5 m–10 m, amenable to implementation

on industrial-grade UAV helicopters like the StarLite-2A [81]. In this work, a wider range of

baselines are considered to investigate the influence of baseline on the ring filter’s performance.

With a maximum baseline of 761𝜆 as considered in [76], seven additional ring filters varied in 100𝜆

baseline difference are considered that are supported by an antenna separation in 50𝜆 increment

from their centroid to account for wider spatial frequency coverage. The baselines were 61𝜆, 161𝜆,

261𝜆, 361𝜆, 461𝜆, 561𝜆, 661𝜆, and 761𝜆. Note that at 40 GHz, these require physical separation

is less than the rotor blade assumption above and that the occlusion from the UAV body is not

considered here. Furthermore, an antenna beamwidth of 3% is assumed across all considered ring

filters. For a 40 GHz (7.5 mm) system, the effective electrical baselines due to the beamwidth,

39.4 GHz–40.6 GHz (7.6 mm–7.4 mm), account for the spatial frequency bandwidth coverage as

shown in Figure 3.3 and summarized in Table 3.1.

Physical Baseline -1.5% +1.5%
61𝜆 60𝜆 62𝜆
161𝜆 159𝜆 163𝜆
261𝜆 257𝜆 265𝜆
361𝜆 356𝜆 366𝜆
461𝜆 454𝜆 468𝜆
561𝜆 553𝜆 569𝜆
661𝜆 651𝜆 671𝜆
761𝜆 751𝜆 771𝜆

Table 3.1 Electrical baselines assuming 40 GHz and 3% antenna beamwidth. Table [66] © 2022
IEEE.
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Microwave ground images from [60] were selected to facilitate the classification analyses. Data

were selected to form a set containing 2076 ground scene radar images where 1038 were NS and

1038 were NNS. The data were processed to share a common resolution of 1 m/pixel. Furthermore,

the assumed 40 GHz millimeter-wave frequency yields resolution commensurate with the data set.

The data were then processed via two-dimensional (2D) Fourier transform of the radar images and

subsequently filtered using the eight ring filters described above where it is assumed that the van

Cittert-Zernike requirement is satisfied. Subsequently, the data were evaluated using a decision-

boundary classifier operating on a single ring-filtered output. It is assumed that the measuring

interval in the slow time dimension is uniform, hence, the sampled visibility based on the ring filter

can also be considered as uniformly sampled over the rotated angle as covered by the generating

trajectory as described in (3.1) and (3.2). By mapping the filtered visibility sample to the associated

angle, a one-dimensional vector 𝑆𝑠 (𝛾) which is the averaged response (over the antenna bandwidth)

spanning across the 360◦ of the 𝑢𝑣-plane, where 𝛾 is the angle with respect to the positive 𝑢-axis,

and is given by

𝑆𝑠 (𝛾) =

𝑟H∑
𝑟ring=𝑟L

𝑉s(𝑟ring cos(𝛾), 𝑟ring sin(𝛾))

𝑟H − 𝑟L
(3.3)

where 𝑉s is the ring-filtered visibility from the dynamic antenna array, 𝑟ring is the radius of the ring

filter that corresponds to the antenna pair’s electrical baseline; and 𝑟H − 𝑟L is the spatial frequency

bandwidth due to antenna bandwidth as illustrated in Figure 3.3. Examples of the ring-filtered

responses using (3.3) for a ring filter generated with a baseline of 161𝜆 are shown in Figure 3.5 for

the real data of Figure 3.2.
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Figure 3.5 Example of ring-filtered responses, 𝑆𝑠 (𝛾) based on the example visibilities shown in
Figure 3.2 using a baseline of 161𝜆 over the entire 360◦ 𝑢𝑣-plane. N.U.: Normalized Units.
Image [66] © 2022 IEEE.

Subsequently, the vector 𝑆𝑠 (𝛾) is differentiated with respect to 𝛾 yielding

𝑆′𝑠 (𝛾) =
𝑑

𝑑𝛾
𝑆𝑠 (𝛾) (3.4)

which yields the rate of change of the filtered data, which better captures the discrete spatial

frequency components. Lastly, the mean of 𝑆′𝑠 (𝛾),

𝜇𝑆′𝑠 = mean{𝑆′𝑠 (𝛾)} (3.5)

is calculated to generate a specific pattern for each of the 2076 sets of data thus enabling a decision

boundary to be defined to differentiate between NS and NNS. Furthermore, the distributions of the

derived patterns for NS and NNS are shown in Figure 3.6 for all eight considered baselines/ring

filters. It is observed that an apparent separation between NS (dark red) and NNS (dark green)

exist which suggest that a threshold, or decision boundary, can be determined to differentiate the

two classes of ring-filtered patterns.
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Figure 3.6 Distribution of (3.5), 𝜇𝑆′𝑠, for the studied scenarios considering eight different spatial
frequency ring filters generated by eight different antenna baselines. Image [66] © 2022 IEEE.

71



The decision boundary was calculated based on the midpoint between the two quantities

max {𝜇𝑆′
𝑠,NS} and min {𝜇𝑆′

𝑠,NNS} where the former represents the NS pattern with the highest

ring-filtered averaged responses and the latter corresponds to the NNS pattern with the lowest

responses. From the total data set, approximately 70% of the images were used as the training

set to determine the decision boundary and the remaining approximately 30% were used as the

testing set to evaluate the performance of the classifier. To avoid biasing of evaluating specific

combinations of the training and testing sets, a total of 1 000 000 Monte Carlo simulations [82]

were conducted where the data within the training and the testing sets were randomly reassigned

between each iteration. To evaluate the performance of the classifier, the error rate and the F1 Score

(F1) [83, 84] are reported in the top half portion of Table 3.2 representing the averaged metrics

from the simulations. The error rate is defined as the sum of the false positives and false negatives

divided by the total number of samples and gives a measure of the total number of errors. The

F1 score is a measure of the accuracy of the classifier, and is the harmonic mean of precision and

recall, where the former is the ratio of the true positives to the sum of all classified positives and the

latter is the ratio between the true positives and the sum of the true positives and false negatives.

As observed, a 161𝜆 ring filter performed the best on average with an error rate of 1.4% and an F1

Score of 98.6%.

While the decision boundary provided reasonable classification performance, it only utilizes a

single pattern from each scene type within the training set. For a two-class classification problem

with a large training set of𝑁 patterns, 𝑁−2 patternswill be discardedwhich is not efficient utilization

of the training patterns. However, using all available patterns is equally problematic as outliers

can affected the outcomes for the decision boundary resulting in over-fitting, hence the K-nearest

neighbor (KNN) classifier was selected as an alternative to improve the classification performance

by evaluating multiple training patterns that are locally close to each of the incoming unknown

pattern for classification. The KNN classifier determines the class of an unclassified sample by

examining the class label of the K-nearest known patterns from the training set, where the final

classification is based on the vote of the majority class among the K-nearest neighbors [85, 71].
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In addition to the above discussed decision-boundary classification simulation, all eight ring

filters were evaluated using a KNN classifier where the nearest K=37 patterns from the training

set were used to determine the type of each pattern from the testing set. K was selected as an

odd integer for K =
√︁
𝐾training where 𝐾training is the total number of patterns in the training set

(i.e., 737 NS and 737 NNS). For each of the ring filter scenarios, 100 Monte Carlo iterations were

also performed where the generation of training and testing sets were randomized between each

iteration. The averaged KNN classifier results are shown in the lower half of Table 3.2 including

the performance improvement for the F1 metric when compared to the aforementioned decision-

boundary approach. It is evident that the KNN classifier outperforms the decision-boundary

approach for all eight scenarios with an averaged F1 improvement of 1.2% and significantly lower

error rate where the best performing single ring filter of 261𝜆 had an average error rate of 0.6%.

It is noted that the standard deviation of the evaluated metrics is lower when considering the KNN

classifier which suggests that it is more robust over the discussed decision-boundary approach. The

improvement by selecting the KNN classifier was expected as using more patterns in the training set

should contribute to the performance of the classification process. Similar to the decision-boundary

results, the performance differences among different baselines of ring filters are noted which may

possibly be due to the difference of the number of structures manifesting spatial frequency responses

that falls within the spatial frequency bandwidth of a single ring filter. Therefore, it is reasonable to

assume that the classification results should be further improved by using a dynamic linear antenna

array comprising multiple ring filters.
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Scenario Error±𝜎 (%) F1±𝜎 (%) Improvement (%)
Threshold (1 000 000 MC)

61𝜆 1.9±0.7 98.1±0.7 -
161𝜆 1.4±0.5 98.6±0.5 -
261𝜆 1.5±0.5 98.5±0.5 -
361𝜆 2.0±0.8 98.0±0.7 -
461𝜆 3.2±1.2 96.9±1.2 -
561𝜆 3.2±0.7 96.9±0.7 -
661𝜆 2.4±1.2 97.6±1.2 -
761𝜆 2.9±0.9 97.1±0.8 -

KNN (100 MC)
61𝜆 0.9±0.3 99.1±0.3 1
161𝜆 0.7±0.3 99.3±0.3 0.7
261𝜆 0.6±0.3 99.4±0.3 0.9
361𝜆 0.7±0.3 99.3±0.3 1.3
461𝜆 0.9±0.3 99.1±0.4 2.2
561𝜆 1.3±0.4 98.7±0.4 1.8
661𝜆 1.3±0.4 98.7±0.4 1.1
761𝜆 2.2±0.4 97.8±0.4 0.7

Table 3.2 Imageless classification results using different single ring filters. F1: F1-score. MC:
Monte Carlo simulation. Table [66] © 2022 IEEE.
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3.4 Design Consideration Using Multiple Ring Filters

In the previous section, the choice antenna baseline yielding specific ring filter design is deter-

mined heuristically. While this demonstrates the possible framework of imageless classification,

it is also important to discuss the impact of spatial bandwidth of man-made objects and its spatial

frequency bandwidth appearing in the visibility that can drive the choice of antenna baseline.

Therefore, the design of the ring filter should consider the visibility of the objects of interest.

Shown in Figure 3.7 are a set of simulated targets of common dimensions for man-made structures,

simulated using exact FOV and resolution of the radar images of Figure 3.2, with their associated

normalized visibility. As in one-dimensional Fourier transform where a rectangular function with

pulse width 𝑇pulse is related to a sinc function with its main lobe residing across the frequency

range 2/𝑇pulse, the same applies to two-dimensional structures and their visibilities. As observed in

Figure 3.7, the effective spatial extent formed by the edges of a tennis court is much smaller than a

football field which explains how the spatial frequency bandwidth of the edge related responses are

wider and narrower, respectively. The inversely proportional relationship between spatial extent

and spatial frequency bandwidth is also demonstrated where spatial extent in the vertical direc-

tion is significantly greater than the horizontal direction of a four-lane highway meaning that the

associated orthogonal visibility responses extend wider in the 𝑢-direction and diminishes faster in

the 𝑣-direction. Furthermore, as demonstrated in Figure 3.7, when multiple man-made structures

appear in the same FOV, the radially extended outward spatial frequency features can diminish at

spatial frequency region which can make the design of a single ring filter implementation challeng-

ing. Therefore, it is reasonable to consider utilizing multiple ring filters to improve the probability

of observing these spatial frequency features by implementing a dynamically rotated linear antenna

array. While individual object responses cannot generally be separated after filtering, the use of

multiple ring filters has the potential to improve the likelihood of detecting responses frommultiple

different objects.
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Figure 3.7 First Row: Simulated scene examples of size 1000m by 1000m demonstrating common
dimensions of man-made structures. Second Row: Corresponding normalized visibilities. The
spatial bandwidth as formed by the edges is inversely proportional to the spatial frequency bandwidth
of the associated features. When multiple man-made structures of different dimension exist in the
same scene, a single ring filter implementation might not detect spatial frequency features outside
of the sampled bandwidth motivating the investigation of utilizing multiple ring filters. Third Row:
Corresponding processed ring-filtered 𝑆𝑠 (𝛾) from (3.3), synthesized with a baseline of 161𝜆. N.U.:
Normalized Units. Image [66] © 2022 IEEE.
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Figure 3.7 (cont’d)
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By implementing the dynamic spatio-temporal modulation on a simple linear antenna array (i.e.,

multiple pairs of co-rotating antennas generating multiple ring filters), additional spatial frequency

filters can be obtained simultaneously, while far fewer elements are needed to achieve adequate

scene classification compared to other millimeter-wave imaging approaches. The dynamic linear

antenna array concept is shown in Figure 3.8 where eight interferometric correlation pairs are shown

in different colors. Each pair forms a different baseline and can synthesize spatial frequency ring

filters through rotational dynamics thus can capture a wider range of unique features in the spatial

frequency spectrum. Note that the presented concept only requires cross-correlation of received

signal at each of the ring filter pairs (same color as shown in Figure 3.8) which further reduces the

amount of receivers’ combination to be processed when compared to an interferometric array with

the objective of recovering images. In fact, the approach uses an amount that is insufficient for

full image reconstruction, thereby allowing privacy-preserving detection and classification. The

dynamic array approach has the added benefit of reduced the hardware requirements compared

to conventional imaging approaches; high-gain steered-beam systems use either a large, filled

aperture (e.g., a reflector antenna) or an electronically steered phased array, which necessitates

the use of many antenna elements along with their associated transceiver hardware. Conventional

interferometric arrays already reduce hardware burdens by eliminating beam scanning to realize

larger synthesized apertures using comparably fewer antennas as in traditional phased arrays and/or

focal-plane arrays [32, 86, 57, 49, 87, 58, 88]. By implementing appropriate array dynamics, the

number of antennas required can be further reduced as a larger physical array can be dynamically

synthesized over time through antennas’ movements.
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Figure 3.8 Concept diagram for the rotational dynamic linear antenna array. Each interferometric
correlation pair(colored differently) forms a different baseline separation and represents a separate
spatial frequency domain ring filter when considering a rotation regarding the antenna array’s
centroid. The black dots on each end of the dynamic linear antenna array denote the possibility to
expand the number of antenna pairs. Image [66] © 2022 IEEE.
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3.4.1 Rotational Dynamic Linear Antenna Array Design and Optimization

As previously discussed, it is reasonable to assume that the classification results should be

further improved by using a dynamic linear antenna array comprising multiple ring filters when

compared to the performance of a single ring filter. Here, I consider a postulated rotational dynamic

linear antenna array capable of generating eight ring filters that was shown in Figure 3.8 where eight

differently colored cross-correlation pairs (i.e., 16 antennas) rotate regarding a common centroid

(i.e., each individual pair’s centroid is the same as the full linear antenna array’s centroid). The

implementation can be further optimized by removing redundant antennas [89, 1] from the linear

antenna array such that the total required antennas can be reduced. However, this will require the

center of rotation to be properly designed to ensure that a set of circular spatial frequency sampling

points can be synthesized. This design aspect is noted but not further expanded in this work.

A summary of the discussed rotational dynamic linear antenna array concept and the associated

antenna baselines are in Table 3.3.

Baseline 𝐷𝜆 Antenna Pair
61𝜆 Pair 1
161𝜆 Pair 2
261𝜆 Pair 3
361𝜆 Pair 4
461𝜆 Pair 5
561𝜆 Pair 6
661𝜆 Pair 7
761𝜆 Pair 8

Number of Antennas 16

Table 3.3 Investigated baselines and the corresponding pairs from Figure 3.8. Table [66] © 2022
IEEE.
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To understand the effect of whether using multiple ring filters improves the classification

performance, two sequential selection algorithms were utilized to determine the best 𝑁 ring filters

combination where 𝑁 = 2, 3..., 7. The selected sequential selection algorithms are the widely

known sequential forward selection (SFS) and its reverse counterpart, the sequential backward

selection (SBS) [90, 91]. Both SFS and SBS algorithms are sub-optimal but efficient methods

compared to exhaustive search of optimal subset where the former obtains a subset of all the

available features by adding locally the best feature during each iteration, and the latter seeks

the same objective by removing locally the worst feature during each iteration. The two selected

sequential selection algorithms were applied to the eight baselines in conjunction with the KNN

classifier where the objective function was to optimize the F1 metric of the classifier. The following

sequential selection scenarios are performed: finding the best 7, 6, 5, 4, 3 and 2 baselines (ring

filters) using the SFS and the SBS methods. In Table 3.4 and 3.5, the 12 optimized dynamic

linear antenna array designs are summarized with their corresponding ring filter combinations.

The associated KNN classifier outcomes corresponding to the 12 scenarios covered in Table 3.4

and 3.5 are summarized in Table 3.6 where SFS.Best𝑁 and SBS.Best𝑁 represent the best 𝑁 ring

filters determined by the corresponding sequential selection algorithms.

It is evident that the performance outcomes of the KNN classifier consideringmultiple baselines

are all better than the best case for the single baseline case (i.e., 261𝜆 using KNN in Table 3.2).

An array with two baselines using SFS optimization (SFS.Best2 with error rate of 0.3% and F1 of

99.7%) obtained the best performance, while adding additional baselines either did not improve

the performance, or, when seven baselines were used, the performance began to degrade. This

can be explained by the commonly known “curse of dimensionality” in classification analyses

where increasing the number of features in a classifier leads to better performance, however the

improvement at some point has diminishing returns, leading to minimal performance improvements

for significant effort. Increasing the number of features can undermine the classifier performance

when the dimension is too high (i.e., too many features) [71]. Therefore, it is desired to use only a

subset of all available features while achieving reasonable classification performance. Furthermore,
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in the present case, reducing the number of features also leads to a reduction in the number of

antennas required, further minimizing the hardware burden. As a comparison, all eight ring filters

were selected in conjunction with the KNN classifier where an error rate of 0.5% was obtained with

an F1 of 99.5% as shown in Table 3.6. As observed, while this also provides better performance

compared to the single ring filter scenario (0.6% for 261𝜆), the additional required hardware does

not justify the small improvement when compared to the optimized scenarios as determined by

the sequential selection algorithms. As shown in Figure 3.9, considering the original postulated

16 antenna rotational dynamic linear antenna array as shown in Figure 3.8, the optimized design

requires only four antennas: two pairs to achieve 61𝜆 and 261𝜆. The optimized array design

achieved an averaged error rate of 0.3% (half of the best performing single ring filter at 0.6%) and

an averaged F1 of 99.7% where the cost of implementing the two additional receiving antennas is

a reasonable trade-off for performance.

61𝜆 161𝜆 261𝜆 361𝜆 461𝜆 561𝜆 661𝜆 761𝜆
SFS.Best7 X X X X X X X
SFS.Best6 X X X X X X
SFS.Best5 X X X X X
SFS.Best4 X X X X
SFS.Best3 X X X
SFS.Best2 X X

Table 3.4 Feature selection results using sequential forward selection (SFS). Table [66] © 2022
IEEE.

61𝜆 161𝜆 261𝜆 361𝜆 461𝜆 561𝜆 661𝜆 761𝜆
SBS.Best7 X X X X X X X
SBS.Best6 X X X X X X
SBS.Best5 X X X X X
SBS.Best4 X X X X
SBS.Best3 X X X
SBS.Best2 X X

Table 3.5 Feature selection results using sequential backward selection (SBS). Table [66] © 2022
IEEE.
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Scenario Error±𝜎 (%) F1±𝜎 (%)
All8 0.5±0.2 99.5±0.2

SFS.Best7 0.4±0.2 99.6±0.2
SBS.Best7 0.4±0.2 99.6±0.2
SFS.Best6 0.3±0.2 99.7±0.2
SBS.Best6 0.3±0.2 99.7±0.2
SFS.Best5 0.3±0.2 99.7±0.2
SBS.Best5 0.3±0.2 99.7±0.2
SFS.Best4 0.3±0.2 99.7±0.2
SBS.Best4 0.3±0.2 99.7±0.2
SFS.Best3 0.3±0.2 99.7±0.2
SBS.Best3 0.4±0.2 99.6±0.2
SFS.Best2 0.3±0.2 99.7±0.2
SBS.Best2 0.4±0.2 99.6±0.2

Table 3.6 Imageless classification results from different multi-baseline dynamic linear antenna array
designs with 100 Monte Carlo simulations. F1: F1-score. Table [66] © 2022 IEEE.

Pair1 Pair3

1
3

3
1

Center of rotation

Figure 3.9 Final design of the rotational dynamic linear array using only four antennas to synthesize
the two baselines that yield the best classification results (Table 3.6) as selected by the SFS
(Table 3.4) when evaluated with the KNN classifier. Colors indicate different antenna pairs for the
synthesization of specific spatial frequency ring filters. Image [66] © 2022 IEEE.
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3.5 Design and Implementation of a Rotational Dynamic Antenna Array

As observed from the previous sections, a single ring filter can be effective at capturing spatial

Fourier artifacts pertaining to sharp edges enabling direct classification usingmeasured datawithout

forming an image. Furthermore, it is shown that additional ring filters can improve the classification

performance when balancing the associated cost and evaluation metrics. In this section, I discuss

the design and implementation of a rotational dynamic antenna array capable of synthesizing the

already discussed ring filter in the spatial Fourier domain.

The implemented rotational dynamic antenna array is shown in Figure 3.10 and can operate

between 71 GHz–76 GHz (referred to as a 75 GHz system) consisting of two transmitters to satisfy

the spatio-temporal incoherent radiation condition on the measured scene, and two receivers (i.e.,

correlation pair) [67]. As shown on the top right of Figure 3.10, from the source to the radiating

antenna, the two transmitter sub-systems each contains a baseband noise source (RF-Gadgets XDM

NSE15-1) with bandwidth of 10–1600 MHz; three cascaded baseband amplifiers (Mini-Circuits

ZX50-V63+); a 180◦ coupler (Mini-Circuits ZFSCJ-2-232-S+); an upconverter (Analog Devices

EVAL-ADMV7310) to enable the noise signals to be propagate through a linearly conical horn

antenna (Eravant SAC-1533-12-S2) with a gain of 15 dBi at 75 GHz. From the receiving antenna

to the baseband digitizer, each of the two receiving subsystems consists a linearly conical horn

antenna (Eravant SAC-1533-12-S2)with a gain of 15 dBi; a downconverter (AnalogDevices EVAL-

ADMV7410); two pairs of 180◦ coupler each combines the differential baseband in-phase and

quadrature signals which is subsequently acquired by a digitizer (AlazarTech ATS9416) supporting

a sampling rate of 100 MS/s. A four-way splitter (Mini-Circuits ZN4PD1-183W-S+) is used to

provide the local oscillator (LO) signals to each of the transmit and receiving sub-system and that the

LO is generated using anAgilent PSGE8267D.Note that only the two receiving sub-systems require

a common reference LO. Furthermore, note that both transmitters and both receivers are integrated

on the same rotation platform to ensure co-polarization. The full schematics and additional photos

of the rotational dynamic antenna array can be found in Appendix E. Furthermore, the MATLAB

code operated from the host computer is included in Appendix F.
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Figure 3.10 Top left: The measured target that is placed 1.83 m broadside to the rotational dynamic
antenna array. The target is made from a foam board that is transparent at the considered frequency
and uses two copper stripes to create sharp edges that make a 45◦ acute angle. Each of the stripes
has a dimension of 61.0 cm×5.1 cm. Top right: Photo of the implemented 75 GHz rotational
dynamic antenna array. Bottom: The radio frequency architecture includes the local oscillator
circuit (green), receiver circuit (red), and the transmitter circuit (blue) of the rotational dynamic
antenna array. Originally submitted to IEEE Transactions on Geoscience and Remote Sensing,
March 2024.
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The rotational dynamic antenna array system is capable of synthesizing a receiver baseline

within the range of [47𝜆, 127𝜆] at 75 GHz, and the two receivers can be linearly adjusted along

the rotating structure. The two transmitters are fixed at locations forming a baseline that of 162𝜆

at 75 GHz that is significantly wider than the widest possible receiver baseline to achieve the

spatio-temporal illuminating condition at the measured scene when considered its combination

with two independent wideband noise sources. Furthermore, the rotating structure of the dynamic

antenna array is mechanically coupled to a motor encoder capable of 400 pulse-per-revolution

(PPR) representing a rotating angular resolution of 0.9◦. Note that the array shown in Figure 3.10

supports a rotational span of 180◦ which is sufficient to achieve a 360◦ coverage in the spatial

Fourier domain given that it is Hermitian symmetric. Therefore, the angle from [0◦, 180◦) is the

measured response and the angle from [180◦, 360◦) is referred to as the inferred-measured response

as at the rotated angle of 180◦ the two antennas effectively switched their location. The rotational

dynamic antenna array is generally configured such that the fast time integration (dwell time) at each

angle is 1.024 ms representing a slow time integration of 204.8 ms over 180◦ rotation achieving

an integrated sampling function that is also referred to as the ring filter. The 75 GHz rotational

dynamic antenna array is a real-time system and can be considered first of its kind to my best

knowledge. In Table 3.7, I provided the summary of the 75 GHz rotational dynamic antenna array

along with comparison to earlier implementation that was presented in my prior works [92, 93].

The main advancement of the 75 GHz rotational dynamic antenna array is its real-time capability

where a comparable experimental setup (e.g., one ring filter measurement) is significantly shorter

than the prior system.
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Prior Works [92, 93] This Dissertation
Frequency (GHz) 37–40 71–76

Number of Transmitters 3 2
Number of Receivers 2 2

Receiver Baseline Range (𝜆) 50–106 47–127
Rotating Angle Resolution ≥0.1◦ 0.9◦

Rotating Angle Determination Manual† Motor Encoder
Sampling Rate 2.5 GSamp/s 100 MSamp/s

Sampling Trigger Manual† Motor Encoder
Fast Time Integration (per angle) 0.1 ms 1.024 ms

Slow Time Integration for 200 angles
(i.e., ring filter with 0.9◦ rotating resolution) ≈6.7 h† ≈205 ms

Slow Time Integration Improvement n.a. ≈99.99 %†

Table 3.7 Comparison between the 75 GHz rotating dynamic antenna array systems and the previ-
ously implemented 38 GHz system [92, 93].† The 38 GHz system relies on a digital angle gauge
to manually determine the rotated angle before manually triggering an oscilloscope for data acqui-
sition. Therefore, although the fast time integration for an angle is short, it still takes about two
minutes before a subsequent angle’s measurement can be acquired.
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3.5.1 Demonstration on the Measurement of Spatial Fourier Artifacts

As shown in the top left of Figure 3.10, a target which its spatial Fourier responses to be

measured is constructed of a foam board that is transparent at the considered frequency. Two

copper stripes are used to create sharp edges that make a 45◦ acute angle, and each of the stripes has

a dimension of 61.0 cm×5.1 cm. The target is placed 1.83 m at broadside of the rotational dynamic

antenna array and the measurement was conducted in a semi-enclosed anechoic environment where

the target is backed by walls of radio frequency absorbing materials as illustrated in Figure 3.11.

A simulated binary scene intensity assuming strong reflection due to the copper tapes from

the measured target and zeros elsewhere is shown in the top left of Figure 3.12 with its visibility

shown on the top right where a transparent white ring is included to annotate the ring-filtering

integrated sampling function due to the array trajectory described in (3.1). Note that the sharp

edge induced spatial Fourier response is orthogonal to the sharp edge direction in the spatial

domain. In the bottom of Figure 3.12, the measured (including the inferred) ring-filtered visibility

is shown alongside the simulated response showing close agreement. The expected spatial Fourier

artifacts that are induced by the physical edge of the target are expected to appear at rotated

angles of {0◦, 45◦, 180◦, 225◦} where with respect to the positive 𝑢-axis of the 𝑢𝑣-plane in the

counter-clockwise direction. It is noted that specularity between the dynamic antenna array and the

target can contribute to the difference between the measured and simulated response as the target

plane and the measurement plane might not be exactly parallel. Nevertheless, the measurement

successfully demonstrates the ability to recognize such spatial Fourier artifacts without requiring

the inverse Fourier transformation to recover the measured scene intensity. This approach of using

a coordinated array trajectory again can be used to efficiently determine a scene’s significance

before requiring the deployment of the random trajectory approach to recover a good quality scene

intensity reconstruction.

88



1.83 m

0.97 m

Figure 3.11 Measurement setup of the two-stripe target that is 1.83 m away from the broadside of
the 75 GHz dynamic antenna array with height of 0.97 m measured from its center of rotation to
the floor. Image [67] © 2022 IEEE.
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Figure 3.12 Top left: Simulated measured target as shown in Figure 3.10. Top right: Simulated
visibility of the measured target with a white ring annotating the ring-filter (i.e., integrated sampling
function) due to the two-element dynamic antenna array with a baseline separation of 73.5𝜆.
Bottom: Comparison of the measured and simulated ring-filtered visibility response as a function
of the rotated angle due to array trajectory. The array supports a rotation of 180◦ which is sufficient
to achieve a 360◦ coverage in the spatial Fourier domain given that it is Hermitian symmetric.
Therefore, the angle from [0◦, 180◦) is the measured response and the angle from [180◦, 360◦) is
referred to as the inferred-measured response. N.U.: Normalized Unit. Originally submitted to
IEEE Transactions on Geoscience and Remote Sensing, March 2024.
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CHAPTER 4

A PRIVACY PRESERVING APPROACH FOR IMAGELESS
SECURITY SCREENING APPLICATION

In this chapter, I present an imageless approach to concealed contraband detection enabled by the

direct measured spatial Fourier samples collected by the ring filter that is generated by the 75 GHz

rotational dynamic antenna array. Concealed contraband detection via imagery typically relies on

rigorous classification processes to identify objects [68]. However, such an approach relies on fully

reconstructed imagery, which can be expensive to obtain due to the need for additional hardware,

such as many receiving antennas, and extensive computational resources. As demonstrated in the

previous chapter, objects with sharp edges manifest identifiable artifacts in the Fourier domain and

represent the opportunity for direct object detection and classification without relying on imagery,

with the potential for significant reductions in cost of the overall sensing system [67]. Furthermore,

the collected spatial Fourier information is not sufficient to form imagery of the screened scene,

thus ensuring privacy when the potential application involves humans. Using the 75 GHz rotational

dynamic antenna array, a fiberglass mannequin, and a metallic gun-shaped object, I demonstrated

the separability of spatial Fourier responses when the gun-shaped object is concealed beneath a

clothed mannequin and when the gun-shaped object is not present. Subsequently, I investigated

the applicability of the imageless concealed contraband approach where the mannequin is replaced

by a real person meaning that the aforementioned quasi-static scene condition is not necessarily

fulfilled when considering the array dynamics.

This chapter is, in part, a reprint or adaptation of materials with permission in "Privacy

Preserving Contraband Detection Using a Millimeter-Wave Dynamic Antenna Array" published in

IEEE Microwave and Wireless Technology Letters [94] © 2023 IEEE and "Imageless Contraband

Detection Using aMillimeter-WaveDynamic AntennaArray via Spatial Fourier Domain Sampling"

submitted to the IEEE Access, April 2024.
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4.1 Separability in the Spatial Fourier Domain

Based on the principle of improving unique 𝑢𝑣 sampling points through array dynamics and

the demonstration on the captures of sharp edge induced spatial Fourier artifacts (in Chapter 3),

the 75 GHz rotational dynamic antenna array can be suitable for security screening involving

potential contraband concealed under clothing. The concept is shown in Figure 4.1 where the

implemented 75 GHz rotational dynamic antenna array is used to collect spatial Fourier responses

using the generated ring filter. Subsequently, direct classification is carried out using the ring-

filtered information that is processed and evaluated using a classifier to determine the condition of the

measured scene (i.e., contraband present or not). Furthermore, as discussed previously, it is expected

that the information captured by the ring filter is insufficient for scene reconstruction representing an

opportunity to preserve the privacy of the screened person using this imageless security screening

technique. Due to the implemented design of the 75 GHz rotational dynamic antenna array, the

ring-filtering integrated sampling function (2.14) becomes a function of the sampled angles 𝑘

rather than 𝑇 because of uniform angular sampling interval across the rotating trajectory due to

the implemented motor encoder. For a dwell time of 𝑡single = 𝜏 at each measured given angle, the

total integrated slow time required to synthesize a complete ring filter is 𝑇 = 𝑡ring = 200𝜏 assuming

constant rotational speed. Therefore, the speed at which the dynamic antenna rotates will be

𝛾ring = 0.5
200𝜏 where a half rotation (i.e., 180◦) accounts for 200𝜏 duration. To ensure that the uniform

sampling interval assumption is valid, 𝛾𝑟 ≤ 𝛾ring. When 𝛾𝑟 > 𝛾ring, certain angles will be skipped

making the ring filter incomplete and nonuniform. When all possible spatial frequency samples at

all angles are measured, the collection of the cross-correlating outputs can be represented as

S = 𝑆𝑇 (𝑢𝑘 , 𝑣𝑘 ), ∀𝑘 = [0, 𝐾 − 1] (4.1)

where 𝑢𝑘 and 𝑣𝑘 are the 𝑢𝑣-samples defined by the two-element array dimension normalized to

the wavelength 𝐷𝜆 and the 𝐾 discrete rotational angles 𝛾(𝑘) over 180◦ as 𝑢𝑘 = 𝐷𝜆 sin 𝛾(𝑘) and

𝑣𝑘 = 𝐷𝜆 cos 𝛾(𝑘), respectively.
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Figure 4.1 Concept diagram and system architecture of the experimental 75 GHz dynamic antenna
array. The system includes two transmitters (blue dashed box), two receivers (red dashed box),
and local oscillator (LO) (green dashed box). The noise transmitters satisfy the spatio-temporal
incoherence condition which enables Fourier-domain sampling. The two received signals at any
given sampled angle are cross-correlated to obtain visibility samples defined by the antenna baseline
𝐷𝜆. As the dynamic antenna array rotates, the corresponding Fourier-domain sample also rotates,
hence achieving a ring filter where additional Fourier-domain information can be obtained. The
signals are sent to a classifier to determine whether a specific contraband, e.g., a handgun, is
concealed by the screened subject. LO: local oscillator. IF: intermediate frequency. TX: transmitter.
RX: receiver. Originally submitted to IEEE Access, April 2024.
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4.1.1 Experiment Setup

For the remainder of this chapter, the term subject refers to the primary background (e.g.,

a mannequin or person) carrying an object which refers to items (e.g., a handgun), that can

be concealed under clothing. Experiments were conducted to determine the separability of the

spatial Fourier-domain responses of different scenarios with and without an object present in

the measurement. The experiment consisted of 160 independent measurements equally grouped

into two general classes as shown in Figure 4.2: a clothed fiberglass mannequin facing towards

the dynamic antenna array with and without a gun-shaped target of dimension 164 mm×235 mm

concealed underneath the clothing. Between each successive measurement, the mannequin was

removed and replaced to mimic the uncertainties of a practical test subject’s relative orientation to

the dynamic antenna array due to breathing and/or torso movements. Similarly, the gun-shaped

target was randomly placed beneath the clothing with its barrel pointing at varying directions. The

mannequin with and without the gun-shaped target was approximately 1.83 m from the dynamic

antenna array and was backed by walls of radio-frequency absorbers. The two receivers of the array

were 77𝜆 apart at 75 GHz and rotated over a 180◦ rotational span at every 0.9◦ (equivalent to the

motor encoder resolution) for all measurements.

Figure 4.2 From left to right: Front of a clothed mannequin (t-shirt shown transparent to show
mannequin); front of a clothed mannequin with a concealed gun-shaped target; the gun-shaped
target of dimension 164 mm×235 mm. Image [94] © 2023 IEEE.
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4.1.2 Spatial Fourier Responses and Features Extraction

The two received signals at all 200 angles, tracing out a ring-shape sampling function, each

with dwelling time of 𝜏=1.024 ms, were then cross-correlated to recover the Fourier information

to form the ring-filtered response S of (4.1). Examples of ring-filtered responses are shown in

Figure 4.3 where the black and blue dashed lines represent the responses of an empty scene and a

scene with only the absorbing staging materials, and the green/red pair in dash and dash-dot lines

are two sets of data from scene with and without the gun shape, respectively. It is clear that the two

classes are difficult to differentiate based solely on the sampled output in the Fourier domain from

the dynamic antenna array.

To overcome this challenge, a multi-feature classification approach using 11 heuristically de-

fined features is investigated, each of which was a different algorithmic process on the ring-filtered

spatial Fourier-domain data S. The 11 features were: mean, median, maximum, difference between

maximum and mean, difference between maximum and median, difference between maximum and

minimum, difference between mean and minimum, difference between median and minimum, dif-

ference between median and mean, standard deviation, and variance which are shown in Figure 4.4.

The magnitude of the 11-feature space vector was computed for each measurement and normalized

to all measurements. As seen in the bottom right of Figure 4.4, the two distributions display

significant differences despite the similarities between the two classes of S seen in Figure 4.3. The

responses with no target are concentrated below a normalized feature vector magnitude of 0.2, while

the responses with a target spread over a wider range. This difference in the distribution points

to a threshold value of the normalized feature vector magnitude of approximately 0.2. The mul-

ticollinearity among the 11 features via principal component analysis (PCA) and determined that

the first five principal components contribute 89.1%, 8.6%, 1.7%, 0.4%, and 0.1% of the variance

between the two classes, respectively, and all 11 features are highly correlated to the first principal

component. It is noted that more complex processing techniques may be used to efficiently extract

features and/or implemented to improve and/or enable other classification approaches.
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Figure 4.3 Six examples of the ring-filtered responses (4.1) using the 75 GHz rotational dynamic
antenna array at 𝐷𝜆 = 77𝜆. The black and blue dash lines are the responses of empty scenes and
absorbing staging materials, respectively. The solid green/red and dash-dot green/red lines show
how varying mannequin placements and/or gun-shaped target can affect the measured responses.
Gs: Gun-shape. nGs: non-Gun-shape. N.U.: Normalized Unit. Image [94] © 2023 IEEE.
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Figure 4.4 11 heuristically defined statistical features extracted from the ring-filtered spatial Fourier-
domain data S. Bottom Right: Distribution based on the magnitude of the 11-feature space vector
for the two classesGs (red) and nGs (green) based onmeasurements pertaining to varying conditions
of when the mannequin is facing towards the DAA. A plausible threshold value of approximately
0.2 N.U. for the magnitude of the 11-feature space vector is observed and shown in dash-dot blue
that can separate the two classes. Gs: Gun-shape. nGs: non-Gun-shape. N.U.: Normalized Units.
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4.1.3 Performance of Different Classifiers

Given that the number of available measurements is not sufficiently large (i.e., 80 for each of the

two investigated classes), aMonte Carlo analysis [82] of 10 000 iterations using the simple threshold

method based on the heuristically defined features. Each iteration used a randomly selected 70%

of the data set for training and the remaining 30% for testing. The 70% training data are used to

determine a threshold value maximizing the accuracy of the simple threshold classifier within the

training set. Under the assumption that individual measurements are independent of each other,

the performed classification is based on 𝑁 consecutive measurements of the same scene type for

𝑁 = [1, 7] where 𝑁 = 1 and 𝑁 = 7 represent classifying a single response and seven consecutive

responses, respectively.

To evaluate the performance of a classifier, the following four metrics are used [83, 84]

• True positive rate (TPR) which represents the probability of detection, or successfully iden-

tifying an object concealed under the subject’s clothing;

• False positive rate (FPR) which represents the probability of false detection when only the

subject is measured;

• Accuracy (ACC) which represents the ratio of all correctly classified data over all data with

emphasis on the true positives (i.e., correctly classified subjects with concealed object) and

true negatives (i.e., correctly classified subjects without concealed object); and

• F1-score (F1) which is a metric similar to ACC but with emphasis on the false negatives

(i.e., incorrectly classified subjects with concealed object) and false positives (i.e., incorrectly

classified subjects without concealed object);
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where

TPR =
TP

TP + FN

FPR =
FP

FP + TN

ACC =
TP + TN

TP + FN + FP + TN

F1 =
2TP

2TP + FN + FP

(4.2)

where TP is the number of true positives (correctly identified as contraband), FP is the number of

false positives (incorrectly identified as contraband), TN is the number of true negatives (correctly

identified as non-contraband), and FN is the number of false negatives (incorrectly identified as

non-contraband). The averaged classification metrics from the Monte Carlo simulations are shown

in Figure 4.5. It can be seen that the true positive rate (TPR) improves as 𝑁 increases but at the

cost of increasing false positive rate (FPR). Furthermore, it is noted that the accuracy (ACC) and

F1-score (F1) peak when 𝑁 = 4 at 0.908 and 0.916, respectively.

Figure 4.5 Classification results using 𝑁 consecutive independent ring filtered responses of the
same scene type. TPR: True Positive Rate. FPR: False Positive Rate. ACC: Accuracy. F1:
F1-score. Image [94] © 2023 IEEE.
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While the above results indicate that the simple threshold classifier performswell, one inevitable

challenge with this approach to classification is the contribution of outliers in the training data

set causing the exact value of the threshold to be significantly shifted, therefore degrading the

classification. Another potential issue is when the two considered classes are not linearly separable

in the training feature space. This could be due to an extremely complex decision boundary

being required or the boundary might not exist. In addition, while classifying 𝑁 consecutive

responses provides opportunity to improve the overall performance, this approach only works when

a classifier’s performance on a single response is robust; and classifying on multiple consecutive

responses can lead to longer screening timewhich can be undesirable. Therefore, two new classifiers

were considered as potential alternatives to address the above concerns and to complement the

investigation of the privacy preserving contraband detection technique.

The first classifier considered is the 𝐾-nearest neighbor (KNN) classifier [85, 71]. For an

incoming unknown data point, the KNN classifier operates by considering 𝐾-nearest data points in

the training feature space that are local to the unknown point where the classification outcome is

based on the majority class type among the 𝐾-nearest neighboring points in the training data set. It

is noted that while KNN can be more robust to potential outliers in the training data set as it benefits

from the clustering effect of the data points rather than drawing specific decision boundary, it has

an inherent drawback of higher computational expense due to the process of evaluating the nearest

neighboring points as well as additional computational cost with increasing 𝐾 values.

The second considered classifier is the support vectormachine (SVM) using radial basis function

(RBF) [95, 96, 97]. SVM is a technique that seeks to find the best hyperplane (i.e., decision

boundary) that maximizes the distance between the training points of the classes. When the two

considered classes are not linearly separable in the original feature space, a kernel function is

typically applied to transform the original feature space into a higher-dimensional feature space

where the points between the two classes become linearly separable. One such kernel function is the

RBF that is also commonly known as the Gaussian radial basis kernel. During the classifier training

stage, the SVM-RBF determines the proper regularization parameters such that the width of the
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kernel function (i.e., RBF) is neither too wide nor too narrow which controls how much influence

the training points have on the overall classifier. Once an RBF is determined, the SVM algorithm

identifies the best hyperplane in the higher-dimensional feature space. During the classification

stage, an incoming unknown data is transformed to the higher-dimensional feature space by the

trained RBF and classified against the trained hyperplane/decision boundary.

The same Monte Carlo simulation configuration (i.e., number of iterations and training-testing

data split) was applied to both the KNN and SVM-RBF classifiers. For the KNN classifier, five

values of 𝐾 = [7, 9, 11, 13, 15] were considered. For the SVM-RBF classifier, the regularization

parameters controlling the RBF are determined per iteration using a logarithmic grid search ap-

proach to maximize the accuracy of the classifier based on the training data set. The corresponding

results are shown in Figure 4.6 and summarized in Table 4.1 and Table 4.2. Figure 4.6 is commonly

known as the receiver operating characteristic (ROC) curve [84] that can be used to complement the

evaluation of a classifier’s performance. The ROC curve has two dimensions both ranging from 0

to 1 where the FPR and TPR are associated with the horizontal and vertical dimension, respectively.

An ideal classifier will reside exactly at the upper left corner of an ROC curve (FPR = 0, TPR = 1)

suggesting that a classifier’s performance can be determined by how close its ROC is to the ideal

classifier. On the contrary, the lower right corner of an ROC curve (FPR = 1, TPR = 0) repre-

sents the worst classifier. The diagonal line (magenta-dashed) in Figure 4.6 connecting (FPR = 0,

TPR = 0) and (FPR = 1, TPR = 1) is also important as an ROC value residing on this line is

equivalent to a classifier that is based on a random guess process, hence, a good classifier should

always be above and away from this line. As discussed earlier for the threshold classifier, it can be

seen that TPR improves as 𝑁 increases but at the cost of increasing FPR. This is also illustrated in

Figure 4.6 where the ROC of the threshold classifier approaches the ideal classifier as 𝑁 increases

until around 𝑁 = 4 where it starts moving away as 𝑁 continues to increase. Furthermore, at 𝑁 = 4,

it is noted that the ACC and F1 peak at 0.908 and 0.916, respectively. For the KNN classifier, it can

be seen that FPR improves (i.e., decreasing) as the number of considered 𝐾 neighbors increases

but at the cost of decreasing TPR. Nevertheless, the KNN classifier’s performance with 𝐾 = 15 is
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similar to that of the threshold classifier with 𝑁 = 1 where the FPR improves by −0.017 (approxi-

mately +41.5%) at the cost of a lower TPR by −0.027 (approximately −4.7%). For the SVM-RBF

classifier, when compared to the threshold classifier with 𝑁 = 1, the TPR improves by +0.047

(approximately +8.2%) but with significant higher FPR by +0.077 which is at least one order of

magnitude worse than the threshold classifier of 𝑁 = 1.

Scenario TPR FPR ACC F1
THR (𝑁=1) 0.574 0.041 0.766 0.707
THR (𝑁=2) 0.820 0.080 0.870 0.862
THR (𝑁=3) 0.925 0.118 0.904 0.907
THR (𝑁=4) 0.969 0.154 0.908 0.916
THR (𝑁=5) 0.987 0.189 0.899 0.913
THR (𝑁=6) 0.995 0.223 0.886 0.905
THR (𝑁=7) 0.998 0.255 0.872 0.895
KNN (𝐾=7) 0.616 0.133 0.741 0.702
KNN (𝐾=9) 0.598 0.101 0.749 0.702
KNN (𝐾=11) 0.580 0.069 0.756 0.701
KNN (𝐾=13) 0.562 0.042 0.760 0.698
KNN (𝐾=15) 0.547 0.024 0.762 0.694
SVM-RBF 0.621 0.118 0.752 0.714

Table 4.1 Averaged classifier metrics based on the reported 10 000 Monte Carlo simulations shown
in Figure 4.6. Bold represents the best performing classification scenario based on a single response.
THR: Threshold.
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Figure 4.6 Receiving operating characteristic (ROC) curves of the 10 000-iteration Monte Carlo
analysis on the experiment described in Figure 4.2 using the threshold classifiers (red circlemarkers),
K-nearest neighbor (KNN) classifiers (blue triangle markers), and support vector machine (SVM)
using radial basis function (RBF) (green diamond marker). A magenta dashed line is shown to
demonstrate the random guess process. The solid black, dash-dot black, and dotted black lines
represent the one, two, and three standard deviation (𝜎) contours for a particular classifier.
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Figure 4.6 (cont’d)
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Figure 4.6 (cont’d)
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Figure 4.6 (cont’d)
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Scenario 𝜎TPR 𝜎FPR 𝜎ACC 𝜎F1

THR (𝑁=1) 0.037 0.089 0.045 0.070
THR (𝑁=2) 0.071 0.093 0.053 0.059
THR (𝑁=3) 0.069 0.110 0.060 0.057
THR (𝑁=4) 0.049 0.142 0.072 0.062
THR (𝑁=5) 0.033 0.172 0.086 0.071
THR (𝑁=6) 0.021 0.201 0.100 0.080
THR (𝑁=7) 0.013 0.227 0.113 0.088
KNN (𝐾=7) 0.066 0.118 0.047 0.059
KNN (𝐾=9) 0.063 0.111 0.045 0.059
KNN (𝐾=11) 0.060 0.099 0.042 0.059
KNN (𝐾=13) 0.053 0.084 0.040 0.058
KNN (𝐾=15) 0.043 0.073 0.036 0.057
SVM-RBF 0.077 0.195 0.068 0.064

Table 4.2 Standard deviations on the classifier metrics on the reported 10 000 Monte Carlo simula-
tions shown in Figure 4.6. Bold represents the best performing classification scenario based on a
single response. THR: Threshold.
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4.1.4 Robustness of Different Classifiers

In the above analysis, I investigated the performance of three common classifiers focusing

on the two classes where the subject and object were kept the same while their orientation and

placement were varied between subsequent measurements as a means to introduce uncertainties in

the measured scene. In this part, I investigate the robustness of the aforementioned classifiers that

are trained based on the full experiment described in Figure 4.2 and that the incoming unknown

measurements are based on different subjects and/or objects.

The additional subject and objects considered for this analysis are illustrated in Figure 4.7. The

additional subject, Subject 2, is the same clothed fiberglass mannequin but with its back toward

the dynamic antenna array. The consideration of a different subject is to investigate the changing

scattered responses due to different surface profiles of the measured primary background which

can be expected as a security screening system is likely to encounter various subject profiles.

Furthermore, the two additional considered objects are all metallic. Object 2 is an object with a

similar vertical dimension as Object 1 at 45 mm×202 mm; and Object 3 has similar dimensions

as Object 1 at 193 mm×253 mm. Note that Object 1 is the considered gun-shaped object with a

dimension of 164 mm×235 mm in Figure 4.2. While this work focuses on gun-sized metal objects

for a proof-of-concept, the approach is applicable to the detection of smaller objects and dielectric

objects providing sufficient SNR. Previously, our research group demonstrated the ability to image

dielectric objects using active incoherent millimeter-wave imaging, which is based on the same

concept as the work in this paper [98, 99], thus detection of such objects with the imageless system,

described herein should also be feasible.
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Subject 1 Subject 2

Object 1 Object 2 Object 3

Subject 2

with no object

Subject 2

with Object 2

Subject 2

with Object 3

Figure 4.7 Top: Subjects considered. Subject 1: clothed fiberglass mannequin with its front toward
the dynamic antenna array. Subject 2: clothed fiberglass mannequin with its back toward the
dynamic antenna array. Center: Metallic objects considered for the experiments. Object 1: a gun-
shaped object with a dimension of 164 mm×235 mm. Object 2: an object with a similar vertical
dimension as Object 1 at 45 mm×202 mm. Object 3: an object with similar dimensions as Object 1
at 193 mm×253 mm. Bottom: Examples of the measured subject and object combination. From
left to right: Subject 2 with no object underneath clothing; Subject 2 with Object 2 underneath
clothing; and Subject 2 with Object 3 underneath clothing. Note that the optically opaque clothing
for the figures are shown transparent to demonstrate the presence and/or the types of concealed
object underneath clothing.
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The following scenarios, each will be referred to as a numbered experiment, were investigated

where the training data set is the full measurements described in Figure 4.2 and the incoming

unknown data set for the implemented classifiers are from

1. Experiment 2: 80 measurements of only Subject 2 as the non-contraband class and 80

measurements of Subject 2 and Object 1 as the contraband class;

2. Experiment 3: 80 measurements of only Subject 2 as the non-contraband class and 80

measurements of Subject 2 and Object 2 as the contraband class; and

3. Experiment 4: 80 measurements of only Subject 2 as the non-contraband class and 80

measurements of Subject 2 and Object 3 as the contraband class.

Note that given the independent investigation among the three described experiments above, the

80 measurements of only Subject 2 is common. Furthermore, similar practices are conducted

where the mannequin was removed and replaced to mimic the uncertainties of a practical scenario

where the test subject’s relative orientation to the dynamic antenna array, the object was randomly

placed beneath the clothing at varying directions. The mannequin with and without the object was

approximately 1.83 m from the dynamic antenna array and was backed by walls of radio-frequency

absorbers. Lastly, the two receivers of the array were kept the same at 77𝜆 apart at 75 GHz.

In Experiment 2, the consideration explores the robustness of the three classifiers (i.e., simple

threshold, KNN, and SVM-RBF) when the measured subject has a different scattering profile (i.e.,

front versus back of the fiberglass mannequin) while keeping the same considered concealed object

(i.e., gun-shaped object). The results are shown in Figure 4.8 and summarized in Table 4.3. From

Figure 4.8, it is observed that the ROC for all considered classifiers operating on a single response

are above the random guess process where the best performing classifier is the KNN classifier

with 𝐾 = 11 with an ACC = 0.725 and F1 = 0.662 considering its ROC of FPR = 0.088 and

TPR = 0.538. For the threshold classifier, it is verified that when the single response classifier

(𝑁 = 1) is associated with undesirable ROC (i.e., FPR = 0.438, TPR = 0.638), operating the

classifier on 𝑁 consecutive measured responses will only degrade the classifier performance as the
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ROC begins to shift away from the ideal classifier’s ROC as 𝑁 increases. One possible explanation

for the threshold classifier’s undesirable performance is because the distribution based on the

magnitude of the 11-feature space vector for the two classes in the training set is slightly different

than that of the testing set. This is shown in the top and bottom of Figure 4.9 for the class where the

subject conceals the gun-shaped object (red and cyan) and the class with only the subject (green and

magenta), respectively. The general distribution is similar when Object 1 (gun-shape) is concealed

by Subject 1 (red) and Subject 2 (cyan). However, when the concealed object is not presented, it is

evident that Subject 2 (magenta) has a slightly higher response than that of Subject 1 (green). This

means that the threshold value determined by training against measurements from Experiment 1

will be undesirably low when classified against measurements from Experiment 2, hence, explains

the increase in the FPR of the single response threshold classifier. Furthermore, it is also evident

from Figure 4.9 that the general clustering of the two classes are similar between measurements

from Experiment 1 and Experiment 2, hence, explains why the KNN classifier has comparably

lower FPR. Similar as observed in the previous analysis (i.e., Figure 4.6), for the KNN classifier,

FPR improves (i.e., decreasing) as the number of considered 𝐾 neighbors increases but at the cost

of decreasing TPR. Of all KNN classifiers, the setup where 𝐾 = 11 has the best performance

with a TPR = 0.538, FPR = 0.088 resulting in an accuracy and F1-score of 0.725 and 0.662,

respectively. The SVM-RBF classifier also outperforms the threshold method with a TPR = 0.625,

FPR = 0.225 resulting in an accuracy and F1-score of 0.700 and 0.676, respectively. In this

analysis, it is observed that even when the same concealed object is considered, the difference

between the primary backgrounds, Subject 1 and Subject 2, can introduce shifts in the distribution

of the Fourier-domain features extracted from the dynamic antenna array’s captured responses.

Such shifts in the feature space can potentially post challenges to a classifier’s performance (i.e.,

threshold approach [94]). Therefore, the choice of the implemented classifier, e.g., KNN, shall also

be considered as a way to alleviate the possible challenges.
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Figure 4.8 ROC curves of the classifier performance using measurements from Figure 4.2 for
training and measurements from Experiment 2 for testing. TPR: true positive rate. FPR: false
positive rate. KNN: K-nearest neighbor. SVM-RBF: support vector machine using radial basis
function.

Scenario TPR FPR ACC F1
THR (𝑁=1) 0.638 0.438 0.600 0.615
THR (𝑁=2) 0.925 0.725 0.600 0.698
THR (𝑁=3) 0.963 0.850 0.556 0.684
THR (𝑁=4) 0.975 0.925 0.525 0.672
THR (𝑁=5) 0.988 0.975 0.506 0.667
THR (𝑁=6) 1.000 1.000 0.500 0.667
THR (𝑁=7) 1.000 1.000 0.500 0.667
KNN (𝐾=7) 0.588 0.163 0.713 0.671
KNN (𝐾=9) 0.563 0.175 0.694 0.648
KNN (𝐾=11) 0.538 0.088 0.725 0.662
KNN (𝐾=13) 0.488 0.050 0.719 0.634
KNN (𝐾=15) 0.488 0.050 0.719 0.634
SVM-RBF 0.625 0.225 0.700 0.676

Table 4.3 Summary of Figure 4.8. Bold represents the best performing classification scenario based
on a single response. THR: Threshold.
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Figure 4.9 Comparison on the magnitude of the 11-feature space vector between measurements
from Figure 4.2 and Experiment 2. Top: distribution comparison of Object 1 concealed by
either Subject 1 (red) or Subject 2 (cyan) showing similar distribution. Bottom: distribution
comparison of Subject 1 (green) and Subject 2 (magenta) with no object being concealed showing
that distribution of only Subject 2 being presented is slightly shifted from Subject 1 only, hence,
a possible reason to the degradation on the classifier performance using the threshold method
(Figure 4.8 and Table 4.3). N.U.: Normalized Units.
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In Experiment 3 and Experiment 4, both considerations explore the robustness of the three

classifiers when both the measured subject and object have a different scattering profile (i.e.,

front versus back of the fiberglass mannequin while considering different concealed objects) that

contribute to the overall varying scattering responses measured by the dynamic antenna array.

For Experiment 3, the results are shown in Figure 4.10 and summarized in Table 4.4. From

Figure 4.10, it is observed that the ROC for all considered classifiers operating on a single response

are above the random guess process where the best performing classifier is the KNN classifier

with 𝐾 = 15 with an ACC = 0.813 and F1 = 0.833 considering its ROC of FPR = 0.313 and

TPR = 0.938.

For Experiment 4, the results are shown in Figure 4.11 and summarized in Table 4.5. From

Figure 4.11, it is observed that the ROC for all considered classifiers operating on a single response

are above the random guess process where the best performing classifier is the KNN classifier

with 𝐾 = 15 with an ACC = 0.856 and F1 = 0.841 considering its ROC of FPR = 0.050 and

TPR = 0.763.

In both analyses, for the KNN classifier, the relationship between increasing 𝐾 and decreasing

TPR, and increasing 𝐾 and decreasing FPR are again observed similar to that discussed in previous

sections. It is noted that the SVM-RBF classifier yields the worst performance in the Experiment 3.

In Experiment 4, the outcomes between the SVM-RBF classifier and the threshold classifier with

𝑁 = 1 are similar. From the above analyses, it is observed that even when the training data are

completely different from the incoming unknown data (i.e., both the screened subject and object),

the choice of a robust classifier is important. Furthermore, they also demonstrate that the proposed

privacy-preserving imageless contraband detection technique has the ability to accommodate for

wider screened subject and object combination which is important for practical implementation.
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Figure 4.10 ROC curves of the classifier performance using measurements from Figure 4.2 for
training and measurements from Experiment 3 for testing. TPR: true positive rate. FPR: false
positive rate. KNN: K-nearest neighbor. SVM-RBF: support vector machine using radial basis
function.

Scenario TPR FPR ACC F1
THR (𝑁=1) 1.000 0.425 0.788 0.825
THR (𝑁=2) 1.000 0.700 0.650 0.741
THR (𝑁=3) 1.000 0.813 0.594 0.711
THR (𝑁=4) 1.000 0.888 0.556 0.693
THR (𝑁=5) 1.000 0.950 0.525 0.678
THR (𝑁=6) 1.000 0.988 0.506 0.670
THR (𝑁=7) 1.000 1.000 0.500 0.667
KNN (𝐾=7) 0.975 0.775 0.600 0.709
KNN (𝐾=9) 0.963 0.475 0.744 0.790
KNN (𝐾=11) 0.950 0.688 0.631 0.720
KNN (𝐾=13) 0.938 0.338 0.800 0.824
KNN (𝐾=15) 0.938 0.313 0.813 0.833
SVM-RBF 1.000 0.850 0.575 0.702

Table 4.4 Summary of Figure 4.10. Bold represents the best performing classification scenario
based on a single response. THR: Threshold.
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Figure 4.11 ROC curves of the classifier performance using measurements from Figure 4.2 for
training and measurements from Experiment 3 for testing. TPR: true positive rate. FPR: false
positive rate. KNN: K-nearest neighbor. SVM-RBF: support vector machine using radial basis
function.

Scenario TPR FPR ACC F1
THR (𝑁=1) 0.875 0.425 0.725 0.761
THR (𝑁=2) 0.963 0.700 0.631 0.723
THR (𝑁=3) 1.000 0.813 0.594 0.711
THR (𝑁=4) 1.000 0.888 0.556 0.693
THR (𝑁=5) 1.000 0.950 0.525 0.678
THR (𝑁=6) 1.000 0.988 0.506 0.670
THR (𝑁=7) 1.000 1.000 0.500 0.667
KNN (𝐾=7) 0.888 0.275 0.806 0.821
KNN (𝐾=9) 0.825 0.175 0.825 0.825
KNN (𝐾=11) 0.838 0.163 0.838 0.838
KNN (𝐾=13) 0.750 0.138 0.806 0.795
KNN (𝐾=15) 0.763 0.050 0.856 0.841
SVM-RBF 0.863 0.413 0.725 0.758

Table 4.5 Summary of Figure 4.11. Bold represents the best performing classification scenario
based on a single response. THR: Threshold.
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4.2 Applicability Involving a Real Person

Up to this point in this dissertation, all investigations involving the dynamic antenna array

assume that the quasi-static scene condition is maintained. However, this assumption is unlikely

to be satisfied regardless of how fast the implemented array dynamics is when the measured scene

involves a real person, which is a more practical scenario involved in security screening application

as breathing and/or torso movements can happen at any instance even during the fast array dynamics

screening process. In this part, I investigate the validity of the imageless contraband detection

approach where the involved screening subject is a real person and the considered contraband gun-

shaped object is metallic by exploring various classification algorithms applied to the extracted

arithmetic features.

4.2.1 Experiment Setup

In this experiment, as shown in Figure 4.12, the considered subject is a real person and the

considered object is the same metallic gun-shaped object used in the previous analyses. The

person with and without the object was approximately 1.83 m from the dynamic antenna array and

was backed by walls of radio-frequency absorbers. Furthermore, the generated ring filter for each

measurement is based on the two receivers of the rotational dynamic antenna array with a separation

of 77𝜆 at 75 GHz. The two classes considered are the non-contraband class involving only the person

and the contraband class where the metallic gun-shape is concealed beneath clothing by the person.

In total, 80 measurements for each class were taken. Between each successive measurement, the

object was randomly placed beneath the clothing at varying directions.
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Figure 4.12 Left: The subject for the imageless contraband detection experiment which is a real
person. Right: The object for the imageless contraband detection experiment which is a metallic
gun-shape with a dimension of 164 mm×235 mm. Originally submitted to IEEE Access, April
2024.
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4.2.2 Performance and Robustness of Different Classifiers

The results of the threshold classifiers are shown in Figure 4.13 comprising the receiver oper-

ating characteristic (ROC) curve [84] that are used to complement the evaluation of a classifier’s

performance. As observed, the threshold classifier failed to differentiate between the two measured

classes regardless of the consideration of 𝑁 consecutive measurements and that the outcome is

similar to a random guess process as shown in Figure 4.13, and summarized in Table 4.6 and

Table 4.7. It is noted the degradation of the threshold classifier can be related with motion of the

person during the measurements. While in the analyses involving the mannequin, considerations

were given by varying position and orientation of the measured subject and object, the scattering

profile remains constant for any given measurement. This is no longer valid when the measured

subject is a real person as a single measurement can capture various scattering profiles due to the

person’s movements. In Figure 4.14, the distribution of the heuristically determined 11 features

are shown. In contrast to Figure 4.4, no apparent threshold value can be computed as a high level

of overlapping between the two classes is observed. Unlike the threshold-based method, both the

KNN classifier (for all considered 𝐾) and the SVM-RBF classifiers achieved comparably better

performance. The SVM-RBF method is the best performing classifier with an ACC = 0.986 and

F1= 0.986 considering its ROC of FPR= 0.017 and TPR= 0.989. Furthermore, it is also noted that

the SVM-RBF classifier exhibits the smallest standard deviation across the Monte Carlo simulation

followed by the KNN classifier then the randomly guessing threshold classifier.
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Figure 4.13 Receiving operating characteristic (ROC) curves of the 10 000-iteration Monte Carlo
analysis on the experiment described in Figure 4.12 using the threshold classifiers (red circle
markers), K-nearest neighbor (KNN) classifiers (blue triangle markers), and support vector machine
(SVM) using radial basis function (RBF) (green diamond marker). A magenta dashed line is
shown to demonstrate the random guess process. The solid black, dash-dot black, and dotted black
lines represent the one, two, and three standard deviation (𝜎) contours for a particular classifier.
Originally submitted to IEEE Access, April 2024.
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Figure 4.13 (cont’d)
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Figure 4.13 (cont’d)
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Figure 4.13 (cont’d)
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Scenario TPR FPR ACC F1
THR (𝑁=1) 0.028 0.055 0.487 0.039
THR (𝑁=2) 0.051 0.087 0.482 0.063
THR (𝑁=3) 0.071 0.107 0.482 0.083
THR (𝑁=4) 0.089 0.121 0.484 0.101
THR (𝑁=5) 0.106 0.131 0.488 0.117
THR (𝑁=6) 0.121 0.138 0.492 0.131
THR (𝑁=7) 0.136 0.144 0.496 0.144
KNN (𝐾=7) 0.767 0.195 0.786 0.781
KNN (𝐾=9) 0.756 0.195 0.780 0.774
KNN (𝐾=11) 0.743 0.193 0.775 0.767
KNN (𝐾=13) 0.730 0.192 0.769 0.759
KNN (𝐾=15) 0.715 0.190 0.763 0.750
SVM-RBF 0.989 0.017 0.986 0.986

Table 4.6 Averaged classifier metrics based on the reported 10 000 Monte Carlo simulations shown
in Figure 4.13. Bold represents the best performing classification scenario based on a single
response. THR: Threshold. Originally submitted to IEEE Access, April 2024.

Scenario 𝜎TPR 𝜎FPR 𝜎ACC 𝜎F1

THR (𝑁=1) 0.040 0.159 0.047 0.076
THR (𝑁=2) 0.060 0.238 0.071 0.110
THR (𝑁=3) 0.074 0.290 0.082 0.137
THR (𝑁=4) 0.088 0.324 0.089 0.161
THR (𝑁=5) 0.102 0.349 0.093 0.183
THR (𝑁=6) 0.115 0.367 0.097 0.203
THR (𝑁=7) 0.128 0.382 0.102 0.221
KNN (𝐾=7) 0.068 0.081 0.057 0.060
KNN (𝐾=9) 0.066 0.082 0.058 0.061
KNN (𝐾=11) 0.067 0.083 0.058 0.063
KNN (𝐾=13) 0.068 0.085 0.059 0.065
KNN (𝐾=15) 0.069 0.086 0.060 0.066
SVM-RBF 0.024 0.031 0.021 0.021

Table 4.7 Standard deviations on the classifier metrics on the reported 10 000 Monte Carlo simula-
tions shown in Figure 4.13. Bold represents the best performing classification scenario based on a
single response. THR: Threshold. Originally submitted to IEEE Access, April 2024.
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Figure 4.14 11 heuristically defined statistical features extracted from the ring-filtered spatial
Fourier-domain data S when the screened subject is a real person. Bottom Right: Distribution
based on the magnitude of the 11-feature space vector for the two classes Gs (red) and nGs (green)
based onmeasurements pertaining to varying conditions of when the person’s back is facing towards
the DAA. Unlike the experiment with mannequin, a plausible threshold value for magnitude of the
11-feature space vector is not apparent to separate the two classes. Gs: Gun-shape. nGs: non-Gun-
shape. N.U.: Normalized Units.
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4.2.3 Processing Cost Analysis

The ability for real-time operation is one important consideration for a screening system to be

used for real world application. The imageless detection system processing can be generalized to

four separate processes (in sequence): data acquisition, visibility generation, feature extraction, and

classification (i.e., inference). Averaged values of the computational time of each process are shown

in Table 4.8; the processor of the host machine was an Intel®Core™ i9-9820X. The data acquisition

time was 200 ms and accounts for the majority of the duration from measurement to inference. It

is noted that the resolution of the angle rotation, the dwell time per angle, and the integration time,

among other factors, contribute to the data acquisition time required to complete a single screening

measurement. The visibility generation time was 8.53 ms for a single screening measurement

with 200 angles. The feature extraction time to obtain the 11 features was 0.03 ms. The time to

infer an incoming unknown sample ranged from 0.22 ms–2.01 ms depending on the classifier. The

threshold method (for a single event) required the least amount of time followed by SVM-RBF, and

followed by KNN in increasing 𝐾 values which is expected for KNN classifiers where the choice

of 𝐾 affects the number of neighboring data that will be compared to. Based on Table 4.8, the

longest duration from measurements to inference was approximately 211 ms considering the KNN

(𝐾=15) scenario. As discussed in [100], a measurement time of a few hundred milliseconds is

sufficient for screening people that are standing or sitting still. Note that the above assumes a serial

configuration for the four processes and that the training and evaluation for the classifier is done

offline. Furthermore, the demonstrated technique can continue to operate for screening without

reset due to the benefit of the rotational array dynamics. In Table 4.9, comparison is shown for the

demonstrated imageless contraband detection technique and other image-based techniques that are

also intended for contraband detection application [101, 102, 100]. Nevertheless, it is worth noting

that the presented imageless technique accounts for the full screening process from measurements

to inference in under 211 ms which is feasible for real-time applications, considering that some

techniques consumemore time simply for image formation [101, 102]. Furthermore, current airport

security screening systems can take up to 1.5 s to complete scanning and up to 6 s to complete both
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scanning and detection [59, 103]. Finally, it is evident that the presented imageless contraband

detection approach enables significant hardware reduction (i.e., number of antennas).

Process Time (ms)
Data Acquisition 200

Visibility Generation 8.53
Feature Extraction 0.03

Classification (Inference)
THR (𝑁=1) 0.22
KNN (𝐾=7) 1.98
KNN (𝐾=9) 1.99
KNN (𝐾=11) 2.00
KNN (𝐾=13) 2.00
KNN (𝐾=15) 2.01
SVM-RBF 1.32

Table 4.8 Averaged elapsed time for individual processes of the demonstrated imageless contraband
detection technique. THR: Threshold. Originally submitted to IEEE Access, April 2024.
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Work Frequency
(GHz)

Number of
Antennas

Image
Formation

Detection
Demonstration

Number of
Detected Classes

Processing
Time

[101] 20–26 40 Yes No n.a. 15 s
[102] 20–30 256 Yes No (Visual) n.a. 1.5 s

[100] 72–80 1472
(736 TX + 736 RX) Yes No (Visual) n.a. 157 ms

[104] 32 220 Yes No (Visual) n.a. 2.07 s

[105] 12 2
(1 TX + 1 RX) Yes Yes

(Best ACC: 0.930) Four 3.8 ms

This Work 75 4
(2 TX + 2 RX) No Yes

(Best ACC: 0.986) Two 211 ms

Table 4.9 Comparison of techniques intended for contraband detection application. TX: Transmitter. RX: Receiver. ACC: Accuracy.
Originally submitted to IEEE Access, April 2024.

127



4.2.4 Privacy Preservation via Unrecoverable Image Reconstruction

In applications of concealed contraband detection where the primary background is a person,

the ability to identify potential prohibited objects without compromising personal privacy can

be beneficial. With recent advancements of automatic recognition techniques, it is possible to

extract sensitive information from a wide range of biometric modalities [106]; for example, an

individual’s age and gender can be determined from gait patterns [107, 108, 109]. Imagery from

security screenings of people falls in the category of biometric data that potentially contains per-

sonal information that may be used for malicious purposes. Approaches addressing the concern are

therefore of interest. Recent research has sought to address the challenges related to privacy issues

with such sensing techniques. As discussed in [106], there are multiple points of opportunities

where privacy enhancing techniques can be applied, ranging from designing imaging sensors with

embedded privacy protection features [110], using template protection techniques [111], deidenti-

fying sensitive information within the data [112, 113], using cancelable biometrics [114], sharing

data using privacy-preserving schemes [112], and applying adversarial approaches for automatic

recognition techniques [115], among others. In general, these approaches can be categorized into

three levels [106]: image level, representation level, and inference level. Regardless of where a

privacy enhancing technique is applied, there generally exists a trade space between privacy en-

hancement and biometric utility of the measured data. This means that complete privacy protection

can eliminate the utility of biometric data while a complete biometric utility offers no protection on

privacy. One possible solution to this problem is to shift away from using modalities that require

imaged-based data.

In the remainder of this part, I demonstrate the inherent privacy preservation attribute of

the demonstrated imageless technique. As shown in the top row of Figure 4.15, I simulated

a reference scene and its visibility using the metallic gun-shaped object described in the above

experiment. To illustrate the privacy-preserving aspect, I first conducted a simulation using a

similar rotational Fourier-domain system, however one that includes far more samples and that is

intended to reconstruct images; I demonstrated such a system in [93]. In the bottom of Figure 4.15,
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the reconstructed gun-shaped object shown on the left is obtained from a far denser sampling

function shown on the right. In the top row of Figure 4.16, the simulated point spread function

(PSF), its two-dimensional Fourier transform pair, and the ring filter (i.e., sampling function) are

shown. A semi-transparent magenta annotation is included in the ring filter plot to illustrate spatial

Fourier regions that the ring filter samples. In the bottom left of Figure 4.16, the simulated scene

intensity reconstruction is shownwhich is processed based on the interferometric imaging technique

as described in Chapter 1. As observed, the reconstructed scene intensity can be considered to be

unrecoverable since no perceptible spatial information is represented in the reconstructed image.

To demonstrate the fact that the recovered "image" does not represent useful data from which

biometrics may be obtained when sensing a person, I also computed the structural similarity index

measured (SSIM) between the simulated reference and the reconstruction. The reconstructed image

yielded a SSIM with a value of 0.070, meaning that there is essentially no correlation between

the information in the reconstructed image and that in the original image. This demonstrates

that the sensing technique does not provide sufficient information from which biometric data may

be obtained when sensing a person. In the bottom right of Figure 4.16, I present a measured

unrecoverable scene intensity of the metallic gun-shaped object using the same systems setup as in

the imageless contraband detection measurements where the object is horizontally and vertically

aligned to the array’s center of rotation with similar orientation as the simulated reference scene

(top left of Figure 4.15). Similar to the simulated reconstruction, the measured reconstruction

yielded no useful spatial information demonstrating the capability for privacy preservation. In

addition, I include two unrecoverable reconstruction examples for each of the two classes from

the imageless classification measurements on a person in Figure 4.17. Evidently, the recovered

measured scenes exhibit no spatial information of the screened person nor the gun-shaped object.

It is evident that the proposed approach, using far fewer spatial frequency samples, does not collect

sufficient information to form images, and is thus inherently privacy-preserving.
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Figure 4.15 Top Row: Simulated scene intensity using the metallic gun-shaped object in the
imageless contraband detection measurements (left), and the simulated visibility (right). Bottom
Row: Simulated examples showing that the rotational dynamic antenna array can recover useful
spatial information when sufficient spatial Fourier information is measured, such as using the
technique demonstrated in [93]. Originally submitted to IEEE Access, April 2024.
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Figure 4.16 Top Row: Simulated point spread function (PSF) of the ring filter (i.e., sampling
function) based on the receivers’ configuration of the rotational dynamic antenna array used in the
imageless contraband detection measurement. Note that a semi-transparent magenta annotation
is included in the ring filter plot to illustrate spatial Fourier regions that the ring filter samples.
Bottom Row: The simulated unrecoverable scene intensity based on the simulated ring filtered
visibility (i.e., product between the simulated ring filter and simulated visibility) of the metallic
gun-shaped object (left). The measured unrecoverable scene intensity of the metallic gun-shaped
object using the same systems setup as in the imageless contraband detection measurements where
the object is horizontally and vertically aligned to the array’s center of rotation (right). Originally
submitted to IEEE Access, April 2024.
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Figure 4.17 Examples demonstrating unrecoverable image reconstruction based on the ring-filtered
visibilities for the imageless concealed contraband detection of a real person with (left column)
and without the metallic gun-shape (right column). Gs: Gun-shape (with real person). nGs: No
gun-shape (real person only). Originally submitted to IEEE Access, April 2024.

Spacer Text

132



CHAPTER 5

CONCLUSION

Remote sensing using micro- or millimeter-wave radars is an emerging field that presents oppor-

tunities for obtaining new knowledge and/or developing new techniques enabling more efficient

sensing technologies. This dissertation investigated a new way to design micro- and millimeter-

wave antenna arrays where individual receiving antennas within the array are allowed to move

across the measurement plane, hence, achieving a dynamic antenna array with a dynamic aper-

ture by assuming the measured scenes remain quasi static to the array dynamics. Challenges of

designing micro- and millimeter-wave remote sensing arrays are already abundant with a diverse

trade space including but not limited to system resolution, hardware cost, sensitivity, and compu-

tational complexity, etc. This dissertation addressed a possible trade to leverage array dynamics

with reasonably longer total measurement time to reduce the system cost due to the large number

of antennas needed when compared to conventional array design approaches.

I investigated the dynamic antenna array design by first exploring a specific remote sensing

approach based off of the interferometric antenna array commonly found in radio astronomy

application aswell as the recently introduced active incoherentmillimeter-wave technique developed

in my research group. By satisfying the van Cittert-Zernike theorem, cross-correlation between

any two antennas within the array represent a sample in the spatial Fourier domain. With the

implementation of array dynamics, a small number of antennas can generate sampling functions

associated with array trajectory such that much more spatial Fourier information can be recovered,

hence, improving the quality of the scene reconstruction. I compared two types of array trajectory

where a coordinated strategy tries to maintain certain array configurations throughout the trajectory,

and a random strategy where elements within the dynamic antenna array are allowed to move

randomly on the measurement plane as long as avoiding physical collision with others. After

investigation by comparing the generated sampling function of the two trajectory strategies, it is

demonstrated in this dissertation that the random trajectory strategy has the potential to collect

much more unique spatial Fourier information given longer observation time.
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While the random trajectory strategy is better for remote sensing systems intended for scene

recovery, the coordinated trajectory strategy is also useful for specific use cases. Interestingly, the

generate sampling function can efficiently cover the full two-dimensional spatial Fourier domain

at specific spatial frequency bandwidth by designing a dynamic antenna array using as few as two

receivers that co-rotates with respect to their centroid which is referred to as the ring filter. As

discussed, spatial features such as sharp edges in the measured scene manifest radially extending

responses in the spatial Fourier domain that are orthogonal to the edges’ direction. By using a ring

filter, it was demonstrated that only a subset of samples on the spatial Fourier domain can potentially

enable the inference on specific spatial features of the measured scene. I investigated a remote

sensing scenario where ring filters generated by correlating pairs integrated on the rotor blades of

an aerial vehicle can differentiate scenes that contain man-made structures such as roadway and

bridges with accuracy above 90%. Furthermore, I discussed in detail the design consideration of

single ring filter design as well as possible improvement to achieve wider spatial frequency coverage

by generating multiple ring filters using multiple correlating pairs. Based on this concept of using

a ring filter to measure specific spatial Fourier domain artifacts, a real-time 75 GHz rotational

dynamic antenna array was designed and implemented capable of capturing the sharp edge induced

responses.

One possible use case of the ring filter generating rotational dynamic antenna array is concealed

contraband detection for security screening. I investigated the separability of spatial Fourier

responses captured by the ring filter between cases when a fiberglass mannequin concealed a

metallic gun-shape beneath clothing and when the gun-shape object is not presented. With a simple

threshold classifier and the consideration of classifying on consecutive measurements, an accuracy

of 90.8% was achieved. Subsequently, I investigated the performance of multiple classifiers as well

as their robustness when the unknown incoming data captured by the ring filter do not share similar

primary background (i.e., mannequin profile) and/or object (i.e., contraband) as the training data

while maintaining an accuracy above 72.5% among different considered scenarios. In addition, I

further relax the assumption on the scene’s quasi-static condition by considering a more practical
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security screening scenario where the primary background is a real person. The investigation

demonstrated that while a non-static scene condition due to a person’s breathing and/or torso

movements can significantly degrade the performance of some classifier, specific classifiers can

still differentiate between the contraband and non-contraband measurements achieving an accuracy

as high as 98.6%.

In summary, this dissertation provides a framework for remote sensing applications that do

not necessarily require the recovery of images. By using an antenna array with controllable array

dynamics, the number of antennas along with the associated chains of hardware and processing

can be further reduced when compared to the non-dynamic counterparts. Finally, by investigating

the particular spatial Fourier location of interest where antennas within a dynamic antenna array

can easily move across the measurement plane to recover spatial Fourier artifacts enabling direct

inference of the measured scene. The work presented in this dissertation can prove useful for

advanced remote sensing modalities with simplified/reduced hardware requirements by enabling

individual antennas with controllable trajectories.
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APPENDIX A

ACTIVE INCOHERENT MILLIMETER-WAVE (AIM) IMAGING
RADAR

Noise 

Transmitters

Noise 

Transmitters

24-element Receivers

Active Incoherent Millimeter-wave

Radar Imager

Figure A.1 Photo of the active incoherent millimeter-wave (AIM) radar imager developed by the
Distributed Electromagnetics Theory andApplications research group atMichigan State University.
The active interferometric radar imaging system uses four independent noise transmitters (annotated
with red) to achieve the spatio-temporal radiation condition at the measured scene required by the
van Cittert-Zernike theorem. The 24-element receiving array (annotated with magenta) has a
circular array configuration.
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APPENDIX B

DERIVATION OF (1.3)

Begin with

𝑟 (𝜃) = ⟨cos(2𝜋 𝑓 𝑡) cos[2𝜋 𝑓 (𝑡 − 𝜏𝑔)]⟩

Expand the second cosine term and apply the identity cos(𝐴 − 𝐵) = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵,

𝑟 (𝜃) = ⟨cos(2𝜋 𝑓 𝑡) cos(2𝜋 𝑓 𝑡 − 2𝜋 𝑓 𝜏𝑔)⟩

𝑟 (𝜃) = ⟨cos(2𝜋 𝑓 𝑡) [cos(2𝜋 𝑓 𝑡) cos(2𝜋 𝑓 𝜏𝑔) + sin(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝜏𝑔)]⟩

𝑟 (𝜃) = ⟨cos2(2𝜋 𝑓 𝑡) cos(2𝜋 𝑓 𝜏𝑔) + cos(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝜏𝑔)⟩

Add 0 = 1
2 cos(2𝜋 𝑓 𝜏𝑔) − 1

2 cos(2𝜋 𝑓 𝜏𝑔) within the angle brackets,

𝑟 (𝜃)

= ⟨cos2(2𝜋 𝑓 𝑡) cos(2𝜋 𝑓 𝜏𝑔) −
1
2

cos(2𝜋 𝑓 𝜏𝑔) + cos(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝜏𝑔) +
1
2

cos(2𝜋 𝑓 𝜏𝑔)⟩

Factor out 1
2 cos(2𝜋 𝑓 𝜏𝑔) among the first two terms and apply the identity cos 2𝜃 = 2 cos2 𝜃 − 1,

𝑟 (𝜃) = ⟨1
2

cos(2𝜋 𝑓 𝜏𝑔) [2 cos2(2𝜋 𝑓 𝑡) − 1] + cos(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝜏𝑔) +
1
2

cos(2𝜋 𝑓 𝜏𝑔)⟩

𝑟 (𝜃) = ⟨1
2

cos(2𝜋 𝑓 𝜏𝑔) cos(4𝜋 𝑓 𝑡) + cos(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝜏𝑔) +
1
2

cos(2𝜋 𝑓 𝜏𝑔)⟩

Similarly, apply the identity sin 2𝜃 = 2 sin 𝜃 cos 𝜃 to the second term,

𝑟 (𝜃) = ⟨1
2

cos(4𝜋 𝑓 𝑡) cos(2𝜋 𝑓 𝜏𝑔) +
1
2

sin(4𝜋 𝑓 𝑡) sin(2𝜋 𝑓 𝜏𝑔) +
1
2

cos(2𝜋 𝑓 𝜏𝑔)⟩

Apply the identity cos(𝐴 − 𝐵) = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵 to the first two term,

𝑟 (𝜃) = ⟨1
2

cos(4𝜋 𝑓 𝑡 − 2𝜋 𝑓 𝜏𝑔) +
1
2

cos(2𝜋 𝑓 𝜏𝑔)⟩

𝑟 (𝜃) = ⟨1
2

cos[2𝜋 𝑓 (2𝑡 − 𝜏𝑔)] +
1
2

cos(2𝜋 𝑓 𝜏𝑔)⟩
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APPENDIX C

DERIVATION OF (1.9)

Begin with 〈
𝐸1(𝑙, 𝑚, 𝑛, 𝑡)𝐸∗

2 (𝑙, 𝑚, 𝑛, 𝑡)
〉

Substitute with the right-hand side expressions from (1.7),〈
𝐸1(𝑙, 𝑚, 𝑛, 𝑡)𝐸∗

2 (𝑙, 𝑚, 𝑛, 𝑡)
〉

=

〈
E
(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅1

𝑐

) 𝑒− 𝑗𝜔(𝑡−𝑅1/𝑐)

𝑅1
E∗

(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅2

𝑐

) 𝑒 𝑗𝜔(𝑡−𝑅2/𝑐)

𝑅2

〉
Group the exponential terms, apply the product rule of exponents and simplify,〈

𝐸1(𝑙, 𝑚, 𝑛, 𝑡)𝐸∗
2 (𝑙, 𝑚, 𝑛, 𝑡)

〉
=

〈
E
(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅1

𝑐

)
E∗

(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅2

𝑐

) ( 𝑒− 𝑗𝜔(𝑡−𝑅1/𝑐)

𝑅1

𝑒 𝑗𝜔(𝑡−𝑅2/𝑐)

𝑅2

)〉
=

〈
E
(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅1

𝑐

)
E∗

(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅2

𝑐

) ( 𝑒− 𝑗𝜔(𝑡−𝑅1/𝑐)+ 𝑗𝜔(𝑡−𝑅2/𝑐)

𝑅1𝑅2

)〉
=

〈
E
(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅1

𝑐

)
E∗

(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅2

𝑐

) ( 𝑒− 𝑗𝜔(𝑅2−𝑅1)/𝑐

𝑅1𝑅2

)〉
Move the fraction containing the exponential term out of the time averaging angle bracket as it is

no longer dependent on 𝑡,〈
𝐸1(𝑙, 𝑚, 𝑛, 𝑡)𝐸∗

2 (𝑙, 𝑚, 𝑛, 𝑡)
〉

=

〈
E
(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅1

𝑐

)
E∗

(
𝑙, 𝑚, 𝑛, 𝑡 − 𝑅2

𝑐

)〉
·
(
𝑒− 𝑗𝜔(𝑅2−𝑅1)/𝑐

𝑅1𝑅2

)
Shift the referenced time by +𝑅1

𝑐
for both the electric fields,〈

𝐸1(𝑙, 𝑚, 𝑛, 𝑡)𝐸∗
2 (𝑙, 𝑚, 𝑛, 𝑡)

〉
=

〈
E (𝑙, 𝑚, 𝑛, 𝑡) E∗

(
𝑙, 𝑚, 𝑛, 𝑡 + 𝑅1

𝑐
− 𝑅2

𝑐

)〉
·
(
𝑒− 𝑗𝜔(𝑅2−𝑅1)/𝑐

𝑅1𝑅2

)
=

〈
E (𝑙, 𝑚, 𝑛, 𝑡) E∗

(
𝑙, 𝑚, 𝑛, 𝑡 −

(
𝑅2−𝑅1
𝑐

))〉
·
(
𝑒− 𝑗𝜔(𝑅2−𝑅1)/𝑐

𝑅1𝑅2

)
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APPENDIX D

DERIVATION OF (2.13)

Let 1 and 2 specify the two antennas of a two-element interferometer, the correlator output will be

based on each of the two antenna that has specific components of the field in its arbitrary directions

(i.e., (𝑥′1, 𝑦̂
′
1) and (𝑥

′
2, 𝑦̂

′
2)). With such consideration, the components of the field at the two antennas

are

𝐸𝑥′1(𝑡) =
[
E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1

]
𝑒 𝑗2𝜋 𝑓 𝑡

𝐸𝑦′1(𝑡) =
[
−E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1

]
𝑒 𝑗2𝜋 𝑓 𝑡

for Antenna 1 and

𝐸𝑥′2(𝑡) =
[
E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓2

]
𝑒 𝑗2𝜋 𝑓 𝑡

𝐸𝑦′2(𝑡) =
[
−E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓2

]
𝑒 𝑗2𝜋 𝑓 𝑡

for Antenna 2.

The measured voltage response (2.10) for the two antennas are therefore

V′
1(𝑡) = 𝐸𝑥′1(𝑡) cos 𝜒1 − 𝑗𝐸𝑦′1(𝑡) sin 𝜒1

V′
2(𝑡) = 𝐸𝑥′2(𝑡) cos 𝜒2 − 𝑗𝐸𝑦′2(𝑡) sin 𝜒2

Substitute the individual voltage response of the two antennas to find the correlator output response

𝑅12 = 𝐺12⟨V′
1(𝑡)V

′
2
∗(𝑡)⟩

= 𝐺12⟨
(
𝐸𝑥′1(𝑡) cos 𝜒1 − 𝑗𝐸𝑦′1(𝑡) sin 𝜒1

) (
𝐸𝑥′2(𝑡) cos 𝜒2 − 𝑗𝐸𝑦′2(𝑡) sin 𝜒2

)∗⟩
= 𝐺12⟨

(
𝐸𝑥′1(𝑡) cos 𝜒1 − 𝑗𝐸𝑦′1(𝑡) sin 𝜒1

) (
𝐸∗
𝑥′2(𝑡) cos 𝜒2 + 𝑗𝐸∗

𝑦′2(𝑡) sin 𝜒2

)
⟩

= 𝐺12⟨𝐸𝑥′1 (𝑡)𝐸
∗
𝑥′2
(𝑡) cos 𝜒1 cos 𝜒2 + 𝑗𝐸𝑥′1 (𝑡)𝐸

∗
𝑦′2
(𝑡) cos 𝜒1 sin 𝜒2

− 𝑗𝐸𝑦′1 (𝑡)𝐸
∗
𝑥′2
(𝑡) sin 𝜒1 cos 𝜒2 + 𝐸𝑦′1 (𝑡)𝐸

∗
𝑦′2
(𝑡) sin 𝜒1 sin 𝜒2⟩
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Substitute the field components for the two antennas

𝑅12
𝐺12

=⟨

cos 𝜒1 cos 𝜒2[
E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1

]
𝑒 𝑗2𝜋 𝑓 𝑡[

E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2
]
𝑒− 𝑗2𝜋 𝑓 𝑡

+ 𝑗 cos 𝜒1 sin 𝜒2[
E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1

]
𝑒 𝑗2𝜋 𝑓 𝑡[

−E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2
]
𝑒− 𝑗2𝜋 𝑓 𝑡

− 𝑗 sin 𝜒1 cos 𝜒2[
−E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1

]
𝑒 𝑗2𝜋 𝑓 𝑡[

E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2
]
𝑒− 𝑗2𝜋 𝑓 𝑡

+ sin 𝜒1 sin 𝜒2[
−E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1

]
𝑒 𝑗2𝜋 𝑓 𝑡[

−E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2
]
𝑒− 𝑗2𝜋 𝑓 𝑡

⟩
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Cancel out the common term 𝑒 𝑗2𝜋 𝑓 𝑡𝑒− 𝑗2𝜋 𝑓 𝑡 = 1,

𝑅12
𝐺12

=⟨

cos 𝜒1 cos 𝜒2[
E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1

]
[
E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

]
+ 𝑗 cos 𝜒1 sin 𝜒2[
E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1

]
[
−E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

]
− 𝑗 sin 𝜒1 cos 𝜒2[
−E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1

]
[
E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

]
+ sin 𝜒1 sin 𝜒2[
−E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1

]
[
−E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

]
⟩

151



Rewrite the above expression by introducing four terms 𝐴, 𝐵, 𝐶, and 𝐷 to represent the expressions

in the square brackets

𝑅12
𝐺12

= ⟨cos 𝜒1 cos 𝜒2 {𝐴} + 𝑗 cos 𝜒1 sin 𝜒2 {𝐵} − 𝑗 sin 𝜒1 cos 𝜒2 {𝐶} + sin 𝜒1 sin 𝜒2 {𝐷}⟩

where

𝐴 = + E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

+ E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

𝐵 = − E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

− E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

𝐶 = − E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 − E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

+ E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

𝐷 = + E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 − E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

− E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

Examine the terms 𝐴, 𝐵, 𝐶, and 𝐷 and simplify

𝐴 = + E𝑥 (𝑡) cos𝜓1E𝑥 (𝑡) cos𝜓2 + E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

+ E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡) sin𝜓1E𝑦 (𝑡) sin𝜓2

𝐵 = − E𝑥 (𝑡) cos𝜓1E𝑥 (𝑡) sin𝜓2 + E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) cos𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

− E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) sin𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡) sin𝜓1E𝑦 (𝑡) cos𝜓2

𝐶 = − E𝑥 (𝑡) sin𝜓1E𝑥 (𝑡) cos𝜓2 − E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) sin𝜓2

+ E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) cos𝜓2 + E𝑦 (𝑡) cos𝜓1E𝑦 (𝑡) sin𝜓2

𝐷 = + E𝑥 (𝑡) sin𝜓1E𝑥 (𝑡) sin𝜓2 − E𝑥 (𝑡)𝑒 𝑗𝛿𝑥 (𝑡) sin𝜓1E𝑦 (𝑡)𝑒− 𝑗𝛿𝑦 (𝑡) cos𝜓2

− E𝑦 (𝑡)𝑒 𝑗𝛿𝑦 (𝑡) cos𝜓1E𝑥 (𝑡)𝑒− 𝑗𝛿𝑥 (𝑡) sin𝜓2 + E𝑦 (𝑡) cos𝜓1E𝑦 (𝑡) cos𝜓2
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Group the like terms and further simplify the 𝐴, 𝐵, 𝐶, and 𝐷 terms

𝐴 = + E2
𝑥 (𝑡) cos𝜓1 cos𝜓2 + E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2

+ E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2 + E2
𝑦 (𝑡) sin𝜓1 sin𝜓2

𝐵 = − E2
𝑥 (𝑡) cos𝜓1 sin𝜓2 + E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2

− E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2 + E2
𝑦 (𝑡) sin𝜓1 cos𝜓2

𝐶 = − E2
𝑥 (𝑡) sin𝜓1 cos𝜓2 − E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2

+ E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2 + E2
𝑦 (𝑡) cos𝜓1 sin𝜓2

𝐷 = + E2
𝑥 (𝑡) sin𝜓1 sin𝜓2 − E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2

− E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2 + E2
𝑦 (𝑡) cos𝜓1 cos𝜓2

Rewrite the correlator output using the simplified 𝐴, 𝐵, 𝐶, and 𝐷 terms

𝑅12
𝐺12

=

⟨cos 𝜒1 cos 𝜒2{
E2
𝑥 (𝑡) cos𝜓1 cos𝜓2 + E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2

+E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2 + E2
𝑦 (𝑡) sin𝜓1 sin𝜓2

}
+ 𝑗 cos 𝜒1 sin 𝜒2{
−E2

𝑥 (𝑡) cos𝜓1 sin𝜓2 + E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2

−E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2 + E2
𝑦 (𝑡) sin𝜓1 cos𝜓2

}
− 𝑗 sin 𝜒1 cos 𝜒2{
−E2

𝑥 (𝑡) sin𝜓1 cos𝜓2 − E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2

+E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2 + E2
𝑦 (𝑡) cos𝜓1 sin𝜓2

}
+ sin 𝜒1 sin 𝜒2{
+E2

𝑥 (𝑡) sin𝜓1 sin𝜓2 − E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2

−E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2 + E2
𝑦 (𝑡) cos𝜓1 cos𝜓2

}
⟩
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Expand the expression inside the angle bracket ⟨·⟩

𝑅12
𝐺12

=

⟨cos 𝜒1 cos 𝜒2E2
𝑥 (𝑡) cos𝜓1 cos𝜓2

+ cos 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2

+ cos 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2

+ cos 𝜒1 cos 𝜒2E2
𝑦 (𝑡) sin𝜓1 sin𝜓2

− 𝑗 cos 𝜒1 sin 𝜒2E2
𝑥 (𝑡) cos𝜓1 sin𝜓2

+ 𝑗 cos 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2

− 𝑗 cos 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2

+ 𝑗 cos 𝜒1 sin 𝜒2E2
𝑦 (𝑡) sin𝜓1 cos𝜓2

+ 𝑗 sin 𝜒1 cos 𝜒2E2
𝑥 (𝑡) sin𝜓1 cos𝜓2

+ 𝑗 sin 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2

− 𝑗 sin 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2

− 𝑗 sin 𝜒1 cos 𝜒2E2
𝑦 (𝑡) cos𝜓1 sin𝜓2

+ sin 𝜒1 sin 𝜒2E2
𝑥 (𝑡) sin𝜓1 sin𝜓2

− sin 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2

− sin 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2

+ sin 𝜒1 sin 𝜒2E2
𝑦 (𝑡) cos𝜓1 cos𝜓2⟩
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Rewrite the time-averaging expression by considering individual contribution from the combination

of field components

𝑅12
𝐺12

=

⟨cos 𝜒1 cos 𝜒2E2
𝑥 (𝑡) cos𝜓1 cos𝜓2⟩

+ ⟨cos 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2⟩

+ ⟨cos 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2⟩

+ ⟨cos 𝜒1 cos 𝜒2E2
𝑦 (𝑡) sin𝜓1 sin𝜓2⟩

− 𝑗 ⟨cos 𝜒1 sin 𝜒2E2
𝑥 (𝑡) cos𝜓1 sin𝜓2⟩

+ 𝑗 ⟨cos 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2⟩

− 𝑗 ⟨cos 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2⟩

+ 𝑗 ⟨cos 𝜒1 sin 𝜒2E2
𝑦 (𝑡) sin𝜓1 cos𝜓2⟩

+ 𝑗 ⟨sin 𝜒1 cos 𝜒2E2
𝑥 (𝑡) sin𝜓1 cos𝜓2⟩

+ 𝑗 ⟨sin 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 sin𝜓2⟩

− 𝑗 ⟨sin 𝜒1 cos 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 cos𝜓2⟩

− 𝑗 ⟨sin 𝜒1 cos 𝜒2E2
𝑦 (𝑡) cos𝜓1 sin𝜓2⟩

+ ⟨sin 𝜒1 sin 𝜒2E2
𝑥 (𝑡) sin𝜓1 sin𝜓2⟩

− ⟨sin 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) sin𝜓1 cos𝜓2⟩

− ⟨sin 𝜒1 sin 𝜒2E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡)) cos𝜓1 sin𝜓2⟩

+ ⟨sin 𝜒1 sin 𝜒2E2
𝑦 (𝑡) cos𝜓1 cos𝜓2⟩
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Terms that are not time-dependent can be moved out of the time-averaging operators

𝑅12
𝐺12

=

cos 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2⟨E2
𝑥 (𝑡)⟩

+ cos 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

+ cos 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

+ cos 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2⟨E2
𝑦 (𝑡)⟩

− 𝑗 cos 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2⟨E2
𝑥 (𝑡)⟩

+ 𝑗 cos 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

− 𝑗 cos 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

+ 𝑗 cos 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2⟨E2
𝑦 (𝑡)⟩

+ 𝑗 sin 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2⟨E2
𝑥 (𝑡)⟩

+ 𝑗 sin 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

− 𝑗 sin 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

− 𝑗 sin 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2⟨E2
𝑦 (𝑡)⟩

+ sin 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2⟨E2
𝑥 (𝑡)⟩

− sin 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

− sin 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩

+ sin 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2⟨E2
𝑦 (𝑡)⟩

The terms within the time-averaging operators can be replaced with the Stokes parameters using

the following expressions

⟨E2
𝑥 (𝑡)⟩ =

1
2
(𝐼 +𝑄)

⟨E2
𝑦 (𝑡)⟩ =

1
2
(𝐼 −𝑄)

⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩ =
1
2
(𝑈 + 𝑗𝑉)

⟨E𝑥 (𝑡)E𝑦 (𝑡)𝑒− 𝑗 (𝛿𝑥 (𝑡)−𝛿𝑦 (𝑡))⟩ =
1
2
(𝑈 − 𝑗𝑉)
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Multiply both side by a factor of 2 (i.e., common 1
2 term)

2𝑅12
𝐺12

=

cos 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2(𝐼 +𝑄)

+ cos 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2(𝑈 + 𝑗𝑉)

+ cos 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2(𝑈 − 𝑗𝑉)

+ cos 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2(𝐼 −𝑄)

− 𝑗 cos 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2(𝐼 +𝑄)

+ 𝑗 cos 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2(𝑈 + 𝑗𝑉)

− 𝑗 cos 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2(𝑈 − 𝑗𝑉)

+ 𝑗 cos 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2(𝐼 −𝑄)

+ 𝑗 sin 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2(𝐼 +𝑄)

+ 𝑗 sin 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2(𝑈 + 𝑗𝑉)

− 𝑗 sin 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2(𝑈 − 𝑗𝑉)

− 𝑗 sin 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2(𝐼 −𝑄)

+ sin 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2(𝐼 +𝑄)

− sin 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2(𝑈 + 𝑗𝑉)

− sin 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2(𝑈 − 𝑗𝑉)

+ sin 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2(𝐼 −𝑄)
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Group the same parenthesized Stokes parameters together,

2𝑅12
𝐺12

=

cos 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2(𝐼 +𝑄)

− 𝑗 cos 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2(𝐼 +𝑄)

+ 𝑗 sin 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2(𝐼 +𝑄)

+ sin 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2(𝐼 +𝑄)

+ cos 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2(𝐼 −𝑄)

+ 𝑗 cos 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2(𝐼 −𝑄)

− 𝑗 sin 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2(𝐼 −𝑄)

+ sin 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2(𝐼 −𝑄)

+ cos 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2(𝑈 + 𝑗𝑉)

+ 𝑗 cos 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2(𝑈 + 𝑗𝑉)

+ 𝑗 sin 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2(𝑈 + 𝑗𝑉)

− sin 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2(𝑈 + 𝑗𝑉)

+ cos 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2(𝑈 − 𝑗𝑉)

− 𝑗 cos 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2(𝑈 − 𝑗𝑉)

− 𝑗 sin 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2(𝑈 − 𝑗𝑉)

− sin 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2(𝑈 − 𝑗𝑉)
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Expand the expression

2𝑅12
𝐺12

=

𝐼 cos 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2 +𝑄 cos 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2

− 𝑗 𝐼 cos 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2 − 𝑗𝑄 cos 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2

+ 𝑗 𝐼 sin 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2 + 𝑗𝑄 sin 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2

+ 𝐼 sin 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2 +𝑄 sin 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2

+ 𝐼 cos 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2 −𝑄 cos 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2

+ 𝑗 𝐼 cos 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2 − 𝑗𝑄 cos 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2

− 𝑗 𝐼 sin 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2 + 𝑗𝑄 sin 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2

+ 𝐼 sin 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2 −𝑄 sin 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2

+𝑈 cos 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2 + 𝑗𝑉 cos 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2

+ 𝑗𝑈 cos 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2 −𝑉 cos 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2

+ 𝑗𝑈 sin 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2 −𝑉 sin 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2

−𝑈 sin 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2 − 𝑗𝑉 sin 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2

+𝑈 cos 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2 − 𝑗𝑉 cos 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2

− 𝑗𝑈 cos 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2 −𝑉 cos 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2

− 𝑗𝑈 sin 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2 −𝑉 sin 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2

−𝑈 sin 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2 + 𝑗𝑉 sin 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2
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Group and real and imaginary part then factor out the common Stokes parameters (and 𝑗 when

applicable),

2𝑅12
𝐺12

=

𝐼 [cos 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2 + sin 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2

+ sin 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2 + cos 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2]

− 𝑗 𝐼 [cos 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2 + sin 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2

− sin 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2 − cos 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2]

+𝑄 [cos 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2 − sin 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2

+ sin 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2 − cos 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2]

− 𝑗𝑄 [cos 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2 − sin 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2

− sin 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2 + cos 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2]

+ 𝑗𝑈 [cos 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2 − sin 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2

+ sin 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2 − cos 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2]

+𝑈 [cos 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2 − sin 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2

− sin 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2 + cos 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2]

−𝑉 [cos 𝜒1 sin 𝜒2 cos𝜓1 cos𝜓2 + sin 𝜒1 cos 𝜒2 cos𝜓1 cos𝜓2

+ sin 𝜒1 cos 𝜒2 sin𝜓1 sin𝜓2 + cos 𝜒1 sin 𝜒2 sin𝜓1 sin𝜓2]

+ 𝑗𝑉 [cos 𝜒1 cos 𝜒2 cos𝜓1 sin𝜓2 + sin 𝜒1 sin 𝜒2 cos𝜓1 sin𝜓2

− sin 𝜒1 sin 𝜒2 sin𝜓1 cos𝜓2 − cos 𝜒1 cos 𝜒2 sin𝜓1 cos𝜓2]
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Factor out the sines and cosines of 𝜓, then simplify the sines and cosines of 𝜒 using the compound

angle properties,

2𝑅12
𝐺12

=

𝐼 [cos𝜓1 cos𝜓2(cos 𝜒1 cos 𝜒2 + sin 𝜒1 sin 𝜒2) + sin𝜓1 sin𝜓2(sin 𝜒1 sin 𝜒2 + cos 𝜒1 cos 𝜒2)]

− 𝑗 𝐼 [cos𝜓1 sin𝜓2(cos 𝜒1 sin 𝜒2 + sin 𝜒1 cos 𝜒2) − sin𝜓1 cos𝜓2(sin 𝜒1 cos 𝜒2 + cos 𝜒1 sin 𝜒2)]

+𝑄 [cos𝜓1 cos𝜓2(cos 𝜒1 cos 𝜒2 − sin 𝜒1 sin 𝜒2) + sin𝜓1 sin𝜓2(sin 𝜒1 sin 𝜒2 − cos 𝜒1 cos 𝜒2)]

− 𝑗𝑄 [cos𝜓1 sin𝜓2(cos 𝜒1 sin 𝜒2 − sin 𝜒1 cos 𝜒2) − sin𝜓1 cos𝜓2(sin 𝜒1 cos 𝜒2 − cos 𝜒1 sin 𝜒2)]

+ 𝑗𝑈 [cos𝜓1 cos𝜓2(cos 𝜒1 sin 𝜒2 − sin 𝜒1 cos 𝜒2) + sin𝜓1 sin𝜓2(sin 𝜒1 cos 𝜒2 − cos 𝜒1 sin 𝜒2)]

+𝑈 [cos𝜓1 sin𝜓2(cos 𝜒1 cos 𝜒2 − sin 𝜒1 sin 𝜒2) − sin𝜓1 cos𝜓2(sin 𝜒1 sin 𝜒2 − cos 𝜒1 cos 𝜒2)]

−𝑉 [cos𝜓1 cos𝜓2(cos 𝜒1 sin 𝜒2 + sin 𝜒1 cos 𝜒2) + sin𝜓1 sin𝜓2(sin 𝜒1 cos 𝜒2 + cos 𝜒1 sin 𝜒2)]

+ 𝑗𝑉 [cos𝜓1 sin𝜓2(cos 𝜒1 cos 𝜒2 + sin 𝜒1 sin 𝜒2) − sin𝜓1 cos𝜓2(sin 𝜒1 sin 𝜒2 + cos 𝜒1 cos 𝜒2)]

2𝑅12
𝐺12

= 𝐼 [cos𝜓1 cos𝜓2 cos(𝜒1 − 𝜒2) + sin𝜓1 sin𝜓2 cos(𝜒1 − 𝜒2)]

− 𝑗 𝐼 [cos𝜓1 sin𝜓2 sin(𝜒1 + 𝜒2) − sin𝜓1 cos𝜓2 sin(𝜒1 + 𝜒2)]

+𝑄 [cos𝜓1 cos𝜓2 cos(𝜒1 + 𝜒2) + sin𝜓1 sin𝜓2(− cos(𝜒1 + 𝜒2))]

− 𝑗𝑄 [cos𝜓1 sin𝜓2(− sin(𝜒1 − 𝜒2)) − sin𝜓1 cos𝜓2 sin(𝜒1 − 𝜒2)]

+ 𝑗𝑈 [cos𝜓1 cos𝜓2(− sin(𝜒1 − 𝜒2)) + sin𝜓1 sin𝜓2 sin(𝜒1 − 𝜒2)]

+𝑈 [cos𝜓1 sin𝜓2 cos(𝜒1 + 𝜒2) − sin𝜓1 cos𝜓2(− cos(𝜒1 + 𝜒2))]

−𝑉 [cos𝜓1 cos𝜓2 sin(𝜒1 + 𝜒2) + sin𝜓1 sin𝜓2 sin(𝜒1 + 𝜒2)]

+ 𝑗𝑉 [cos𝜓1 sin𝜓2 cos(𝜒1 − 𝜒2) − sin𝜓1 cos𝜓2 cos(𝜒1 − 𝜒2)]
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Factor out the sines and cosines of 𝜒, then simplify the sines and cosines of 𝜓 using the compound

angle properties,

2𝑅12
𝐺12

= 𝐼 [cos(𝜒1 − 𝜒2) (cos𝜓1 cos𝜓2 + sin𝜓1 sin𝜓2]

− 𝑗 𝐼 [sin(𝜒1 + 𝜒2) (cos𝜓1 sin𝜓2 − sin𝜓1 cos𝜓2)]

+𝑄 [cos(𝜒1 + 𝜒2) (cos𝜓1 cos𝜓2 − sin𝜓1 sin𝜓2)]

+ 𝑗𝑄 [sin(𝜒1 − 𝜒2) (cos𝜓1 sin𝜓2 + sin𝜓1 cos𝜓2)]

− 𝑗𝑈 [sin(𝜒1 − 𝜒2) (cos𝜓1 cos𝜓2 − sin𝜓1 sin𝜓2)]

+𝑈 [cos(𝜒1 + 𝜒2) (cos𝜓1 sin𝜓2 + sin𝜓1 cos𝜓2)]

−𝑉 [sin(𝜒1 + 𝜒2) (cos𝜓1 cos𝜓2 + sin𝜓1 sin𝜓2)]

+ 𝑗𝑉 [cos(𝜒1 − 𝜒2) (cos𝜓1 sin𝜓2 − sin𝜓1 cos𝜓2)]

2𝑅12
𝐺12

= 𝐼 cos(𝜒1 − 𝜒2) cos(𝜓1 − 𝜓2)

+ 𝑗 𝐼 sin(𝜒1 + 𝜒2) sin(𝜓1 − 𝜓2)

+𝑄 cos(𝜒1 + 𝜒2) cos(𝜓1 + 𝜓2)

+ 𝑗𝑄 sin(𝜒1 − 𝜒2) sin(𝜓1 + 𝜓2)

− 𝑗𝑈 sin(𝜒1 − 𝜒2) cos(𝜓1 + 𝜓2)

+𝑈 cos(𝜒1 + 𝜒2) sin(𝜓1 + 𝜓2)

−𝑉 sin(𝜒1 + 𝜒2) cos(𝜓1 − 𝜓2)

− 𝑗𝑉 cos(𝜒1 − 𝜒2) sin(𝜓1 − 𝜓2)
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With further simplification, the Stokes visibilities expression in (2.13) can be obtained as follow

𝑅12 = 1
2𝐺12{𝐼 [cos(𝜒1 − 𝜒2) cos(𝜓1 − 𝜓2) + 𝑗 sin(𝜒1 + 𝜒2) sin(𝜓1 − 𝜓2)]

+𝑄 [cos(𝜒1 + 𝜒2) cos(𝜓1 + 𝜓2) + 𝑗 sin(𝜒1 − 𝜒2) sin(𝜓1 + 𝜓2)]

+𝑈 [cos(𝜒1 + 𝜒2) sin(𝜓1 + 𝜓2) − 𝑗 sin(𝜒1 − 𝜒2) cos(𝜓1 + 𝜓2)]

−𝑉 [sin(𝜒1 + 𝜒2) cos(𝜓1 − 𝜓2) + 𝑗 cos(𝜒1 − 𝜒2) sin(𝜓1 − 𝜓2)]}

Note that the difference of 1
2 when compared to (2.13) assumes that this factor is subsumed into the

instrumental gain term 𝐺12.
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APPENDIX E

PARTS, FULL SCHEMATIC, AND ADDITIONAL PHOTOS OF THE 75 GHZ
DYNAMIC ANTENNA ARRAY

Parts

Label(s) Manufacturer Part Number
P24V0 MEAN WELL USA Inc. RS-15-24
P5V0 XP Power VCS100US05
N5V0 MEAN WELL USA Inc. RS-25-5
SW1, SW2, SW3, SW4 Nilight 90014E
CALO Mini-Circuits FLC-6FT-SMSM+
1:4 Mini-Circuits ZN4PD1-183W-S+
CALO_x Mini-Circuits 141-18SMRSM+
NS_x RF-GADGETS XDM NSE15-1
DCBN_x Mini-Circuits BLK-89-S+
CAN_x Mini-Circuits 086-2SM+
A1_x, A2_x, A3_x Mini-Circuits ZX60-V63+
ADP1_x, ADP2_x Linx Technologies Inc. ADP-SMAM-SMAM
CAN1_x Mini-Circuits FL086-9SM+
HT_x Mini-Circuits ZFSCJ-2-232-S+
CANP_x, CANN_x Mini-Circuits FL086-9SM+
UC_x Analog Devices ADMV7310-EVALZ
T50-1_x, T50-2_x Mini-Circuits ANNE-50+
TxAnt_x, RxAnt_x Eravant SAC-1533-12-S2
DC_x Analog Devices ADMV7410-EVALZ
CAIP_x, CAIN_x Mini-Circuits FL086-9SM+
CAQP_x, CAQN_x Mini-Circuits FL086-9SM+
HI_x, HQ_x Mini-Circuits ZFSCJ-2-232-S+
DCBI_x, DCBQ_x Mini-Circuits BLK-89-S+
CAI_x, CAQ_x Mini-Circuits ULC-6FT-SMSM+

Table E.1 Labels and the associated manufacturer and part number for the subsequent schematics.
Bold ’x’s indicate common parts that are used in either transmit, receive, or all channels. Standard
insulated (i.e., stranded/solid) electrical wires for power supply related connections are not listed.
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Full Schematic (1/2)

Figure E.1 Schematic of the power supply subsystem for the dynamic antenna array.
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Full Schematic (2/2)

Figure E.2 Schematic of the radio frequency subsystem for the dynamic antenna array. The red
’x’s indicate the two transmitting channels (i.e., 1 and 2). The blue ’x’s indicate the two receiving
channels (i.e., 1 and 2).
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Photo

Transmitter 1 Transmitter 2Receiver 1 Receiver 2

Receiver baseline

Center of rotation

Figure E.3 Additional photos of the 75 GHz dynamic antenna array implementation demonstrating
the rotational dynamics.
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APPENDIX F

DATA ACQUISITION SCRIPT FOR ROTATIONAL DYNAMIC ANTENNA ARRAY
(MATLAB)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Danie l S . Chen %%

%% Michigan S t a t e U n i v e r s i t y %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%%%%%%%%%%%%%%%%%%%%%%%

%% Pre−c o n f i g u r a t i o n %%

%%%%%%%%%%%%%%%%%%%%%%%

c l o s e a l l ;

c l e a r

c l c

% Add pa th t o A la zarTech m f i l e s

addpa th ( ’ . . \ I n c l u d e ’ )

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%%%%%%%%%%%%%%%%%%

%% Main f u n c t i o n%%

%%%%%%%%%%%%%%%%%%

i n s t r r e s e t

di sp ( ’ Check␣ Av a i l a b l e ␣ S e r i a l ␣ Po r t ␣ and␣ f i n d ␣Arduino : ’ )
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s e r i a l l i s t ( " a v a i l a b l e " )

di sp ( ’=================================================================== ’ )

di sp ( ’ Connnect ␣ t o ␣Arduino ’ )

a r du i noOb j = s e r i a l ( "COM4" )

di sp ( ’=================================================================== ’ )

PPR = 400 ;

ang le = l i n s p a c e (0 ,360 −360/PPR , PPR ) ;

% Ca l l m f i l e w i t h l i b r a r y d e f i n i t i o n s

Alaza rDe f s

% Load d r i v e r l i b r a r y

i f ~ a l a z a r L o a dL i b r a r y ( )

f p r i n t f ( ’ E r r o r : ␣ATSApi . d l l ␣ no t ␣ l o aded \ n ’ ) ;

re turn

end

% S e l e c t a board

sy s t emId = i n t 3 2 ( 1 ) ;

bo a r d I d = i n t 3 2 ( 1 ) ;

% Get a hand l e t o t h e board

boardHand le = AlazarGetBoardBySystemID ( sys temId , bo a r d I d ) ;

s e t d a t a t y p e ( boardHandle , ’ v o i d P t r ’ , 1 , 1 ) ;

i f boardHand le . Value == 0

f p r i n t f ( ’ E r r o r : ␣Unable ␣ t o ␣open␣ boa rd ␣ sys tem ␣ID␣%u␣ board ␣ID␣%u \ n ’ , . . .

sys t emId , boa r d I d ) ;

re turn

end

% Con f i gu r e t h e board ’ s sample ra t e , i npu t , and t r i g g e r s e t t i n g s

i f ~ con f i g u r eBoa r d ( boa rdHand le )

f p r i n t f ( ’ E r r o r : ␣Board␣ c o n f i g u r a t i o n ␣ f a i l e d \ n ’ ) ;
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re turn

end

a _ a l l _ d a t a ( l eng th ( ang le ) ) = s t r u c t ( ) ;

fopen ( a r du i noOb j ) ;

whi le ( 1 )

% Get c u r r e n t ang l e from Arduino

c u r r _ a n g l e = s t r 2 d o u b l e ( f g e t s ( a r du i noOb j ) ) ;

% Disp l a y t h e c u r r e n t ang l e

di sp ( c u r r _ a n g l e )

i f c u r r _ a n g l e == 201

break

e l s e i f c u r r _ a ng l e >=1

% Acqu i r e da ta

r aw_da t a=doub l e ( a c q u i r eDa t a ( boa rdHand le ) ) ;

a _ a l l _ d a t a ( c u r r _ a n g l e ) . ang le = ang le ( c u r r _ a n g l e ) ;

a _ a l l _ d a t a ( c u r r _ a n g l e ) . rawIQs = raw_da t a ;

end

end

p l o t ( 0 , 0 ) ; s e t ( gca , ’ c o l o r ’ , [ 0 1 0 ] ) ; drawnow ;

save ( ’ temp . mat ’ , ’ a _ a l l _ d a t a ’ )

cd . .

a a a _ r i n g F i l t _ r e s p o n s e s = [ ang le ; zeros ( 3 , l eng th ( ang le ) ) ] ;

n =1;

whi le ( n <201)

ma t r i x _doub l e =doub l e ( a _ a l l _ d a t a ( n ) . rawIQs ) ;

% Combine t h e in−phase and qud ra t u r e da ta per r e c e i v e r channe l
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b = ( ( ma t r i x _doub l e ( : , 1 : 2 : 3 ) ) − nanmean ( ma t r i x _doub l e ( : , 1 : 2 : 3 ) ) ) + . . .

1 i ∗ ( ma t r i x _doub l e ( : , 2 : 2 : 4 ) − nanmean ( ma t r i x _doub l e ( : , 2 : 2 : 4 ) ) ) ;

% Compute t h e v i s i b i l i t y

visM = t r a n s p o s e ( b )∗ conj ( b ) ;

a a a _ r i n g F i l t _ r e s p o n s e s ( 2 , n ) = abs ( visM ( 1 , 1 ) ) ;

a a a _ r i n g F i l t _ r e s p o n s e s ( 3 , n ) = abs ( visM ( 2 , 2 ) ) ;

a a a _ r i n g F i l t _ r e s p o n s e s ( 4 , n ) = abs ( visM ( 1 , 2 ) ) ;

n=n +1;

end

f i g u r e

subp lo t ( 3 11 )

p l o t ( a a a _ r i n g F i l t _ r e s p o n s e s ( 1 , : ) , a a a _ r i n g F i l t _ r e s p o n s e s ( 2 , : ) , ’ r ’ ) ;

x l im ( [ min ( ang le ) max ( ang le ) / 2 ] ) ;

x l a b e l ( ’Deg ’ ) ; y l a b e l ( ’Rx1 . ␣Response ’ ) ;

subp lo t ( 3 12 )

p l o t ( a a a _ r i n g F i l t _ r e s p o n s e s ( 1 , : ) , a a a _ r i n g F i l t _ r e s p o n s e s ( 3 , : ) , ’ r ’ ) ;

x l im ( [ min ( ang le ) max ( ang le ) / 2 ] ) ;

x l a b e l ( ’Deg ’ ) ; y l a b e l ( ’Rx2 . ␣Response ’ ) ;

subp lo t ( 3 13 )

p l o t ( a a a _ r i n g F i l t _ r e s p o n s e s ( 1 , : ) , a a a _ r i n g F i l t _ r e s p o n s e s ( 4 , : ) , ’ r ’ ) ;

x l im ( [ min ( ang le ) max ( ang le ) / 2 ] ) ;

x l a b e l ( ’Deg ’ ) ; y l a b e l ( ’ xCorr . ␣Response ’ ) ;

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Con f i gu r e board f u n c t i o n %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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f unc t i on [ r e s u l t ] = c on f i g u r eBoa r d ( boa rdHand le )

% Con f i gu r e sample ra t e , i npu t , and t r i g g e r s e t t i n g s

% Ca l l m f i l e w i t h l i b r a r y d e f i n i t i o n s

Alaza rDe f s

% s e t d e f a u l t r e t u r n code t o i n d i c a t e f a i l u r e

r e s u l t = f a l s e ;

% g l o b a l v a r i a b l e used i n acqu i r eDa ta .m

g l o b a l s amp le sPe rSec ;

s amp le sPe rSec = 100000000 .0 ;

r e tCode = . . .

A l a z a rS e tCap t u r eC l o ck ( . . .

boardHandle , . . . % HANDLE −− board hand l e

INTERNAL_CLOCK, . . . % U32 −− c l o c k sou r c e i d

SAMPLE_RATE_100MSPS , . . . % U32 −− sample r a t e i d

CLOCK_EDGE_RISING , . . . % U32 −− c l o c k edge i d

0 . . . % U32 −− c l o c k d e c i m a t i o n

) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a rS e tCap t u r eC l o ck ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% S e l e c t channe l A i n p u t pa rame t e r s as r e q u i r e d .

r e tCode = . . .

A l a z a r I n p u tCon t r o l Ex ( . . .

boardHandle , . . . % HANDLE −− board hand l e

CHANNEL_A, . . . % U32 −− i n p u t channe l
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DC_COUPLING, . . . % U32 −− i n p u t c o u p l i n g i d

INPUT_RANGE_PM_1_V , . . . % U32 −− i n p u t range i d

IMPEDANCE_50_OHM . . . % U32 −− i n p u t impedance i d

) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r I n p u tCon t r o l Ex ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% S e l e c t channe l B i n p u t pa rame t e r s as r e q u i r e d .

r e tCode = . . .

A l a z a r I n p u tCon t r o l Ex ( . . .

boardHandle , . . . % HANDLE −− board hand l e

CHANNEL_B, . . . % U32 −− i n p u t channe l

DC_COUPLING, . . . % U32 −− i n p u t c o u p l i n g i d

INPUT_RANGE_PM_1_V , . . . % U32 −− i n p u t range i d

IMPEDANCE_50_OHM . . . % U32 −− i n p u t impedance i d

) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r I n p u tCon t r o l Ex ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% S e l e c t channe l C i n p u t pa rame t e r s as r e q u i r e d .

r e tCode = . . .

A l a z a r I n p u tCon t r o l Ex ( . . .

boardHandle , . . . % HANDLE −− board hand l e

CHANNEL_C, . . . % U32 −− i n p u t channe l

DC_COUPLING, . . . % U32 −− i n p u t c o u p l i n g i d

INPUT_RANGE_PM_1_V , . . . % U32 −− i n p u t range i d

IMPEDANCE_50_OHM . . . % U32 −− i n p u t impedance i d

) ;

i f r e tCode ~= ApiSucces s
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f p r i n t f ( ’ E r r o r : ␣ A l a z a r I n p u tCon t r o l Ex ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% S e l e c t channe l D i n p u t pa rame t e r s as r e q u i r e d .

r e tCode = . . .

A l a z a r I n p u tCon t r o l Ex ( . . .

boardHandle , . . . % HANDLE −− board hand l e

CHANNEL_D, . . . % U32 −− i n p u t channe l

DC_COUPLING, . . . % U32 −− i n p u t c o u p l i n g i d

INPUT_RANGE_PM_1_V , . . . % U32 −− i n p u t range i d

IMPEDANCE_50_OHM . . . % U32 −− i n p u t impedance i d

) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r I n p u tCon t r o l Ex ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% S e l e c t t r i g g e r i n p u t s and l e v e l s as r e q u i r e d

r e tCode = . . .

A l a z a r S e t T r i g g e rOp e r a t i o n ( . . .

boardHandle , . . . % HANDLE −− board hand l e

TRIG_ENGINE_OP_J , . . . % U32 −− t r i g g e r o p e r a t i o n

TRIG_ENGINE_J , . . . % U32 −− t r i g g e r eng i n e i d

TRIG_EXTERNAL , . . . % U32 −− t r i g g e r sou r c e i d

TRIGGER_SLOPE_POSITIVE , . . . % U32 −− t r i g g e r s l o p e i d

1 5 0 , . . . % U32 −− t r i g g e r l e v e l from 0 (− range ) t o 255 (+ range )

TRIG_ENGINE_K , . . . % U32 −− t r i g g e r eng i n e i d

TRIG_DISABLE , . . . % U32 −− t r i g g e r sou r c e i d f o r eng i n e K

TRIGGER_SLOPE_POSITIVE , . . . % U32 −− t r i g g e r s l o p e i d

128 . . . % U32 −− t r i g g e r l e v e l from 0 (− range ) t o 255 (+ range )

) ;
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i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r S e t T r i g g e rOp e r a t i o n ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% S e l e c t e x t e r n a l t r i g g e r pa rame t e r s as r e q u i r e d

% re tCode = . . .

% A l a z a r S e t E x t e r n a l T r i g g e r ( . . .

% boardHandle , . . . % HANDLE −− board hand l e

% DC_COUPLING, . . . % U32 −− e x t e r n a l t r i g g e r c o u p l i n g i d

% ETR_TTL . . . % U32 −− e x t e r n a l t r i g g e r range i d

% ) ;

% i f re tCode ~= Ap iSuc c e s s

% f p r i n t f ( ’ Error : A l a z a r S e t E x t e r n a l T r i g g e r f a i l e d −− %s \ n ’ , . . .

% e r r o r T o T e x t ( re tCode ) ) ;

% r e t u r n

% end

% S e t t r i g g e r d e l a y as r e q u i r e d .

t r i g g e rD e l a y _ s e c = 0 ;

t r i g g e rD e l a y _ s amp l e s = u i n t 3 2 ( f l o o r ( t r i g g e rD e l a y _ s e c ∗ s amp le sPe rSec + 0 . 5 ) ) ;

r e tCode = A l a z a r S e t T r i g g e rDe l a y ( boardHandle , t r i g g e rD e l a y _ s amp l e s ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r S e t T r i g g e rDe l a y ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn ;

end

% S e t t r i g g e r t i m e o u t as r e q u i r e d .

t r i g g e r T im e o u t _ s e c = 0 ;

t r i g g e r T im e o u t _ c l o c k s = u i n t 3 2 ( f l o o r ( t r i g g e r T im e o u t _ s e c / 10 . e−6 + 0 . 5 ) ) ;

r e tCode = . . .
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Alaza rSe tT r i gge rT imeOu t ( . . .

boardHandle , . . . % HANDLE −− board hand l e

t r i g g e r T im e o u t _ c l o c k s . . . % U32 −− t i m e o u t _ s e c / 10 . e−6 (0 == wa i t f o r e v e r )

) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a rSe tT r i gge rT imeOu t ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% Con f i gu r e AUX I /O conne c t o r as r e q u i r e d

r e tCode = . . .

A laza rConf igu reAuxIO ( . . .

boardHandle , . . . % HANDLE −− board hand l e

AUX_OUT_TRIGGER , . . . % U32 −− mode

0 . . . % U32 −− parame te r

) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣Alaza rConf igureAuxIO ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% s e t r e t u r n code t o i n d i c a t e s u c c e s s

r e s u l t = t r u e ;

end

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Acqu i r e da ta f u n c t i o n %%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on [ d a t aMa t r i x ] = a c q u i r eDa t a ( boa rdHand le )

% Make an AutoDMA a c q u i s i t i o n from dual−p o r t e d memory .

% g l o b a l v a r i a b l e s e t i n con f i gu r eBoa rd .m

g l o b a l s amp le sPe rSec ;

% c a l l m f i l e w i t h l i b r a r y d e f i n i t i o n s

Alaza rDe f s

% There are no pre− t r i g g e r samples i n NPT mode

p r eT r i g g e rS amp l e s = 0 ;

% S e l e c t t h e number o f pos t − t r i g g e r samples per r e co rd

po s tT r i g g e r S amp l e s = 400∗256;

% S p e c i f y t h e number o f r e c o r d s per channe l per DMA b u f f e r

r e c o r d s P e r B u f f e r = 1 ;

% S p e c i f i y t h e t o t a l number o f b u f f e r s t o c a p t u r e

b u f f e r s P e r A c q u i s i t i o n = 1 ;

% S e l e c t which channe l s t o c a p t u r e (A , B , or bo th )

channelMask = CHANNEL_A + CHANNEL_B + CHANNEL_C + CHANNEL_D;

% C a l c u l a t e t h e number o f enab l ed channe l s from t h e channe l mask

channe lCoun t = 0 ;

ch anne l sPe rBoa r d = 16 ;

f o r channe l = 0 : ch anne l sP e rBoa r d − 1

c h a nn e l I d = 2^ channe l ;

i f b i t a n d ( channe l I d , channelMask )

channe lCoun t = channe lCoun t + 1 ;

end
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end

f p r i n t f ( ’Number␣ o f ␣ enab l ed ␣ c h a nn e l s : ␣%d \ n ’ , . . .

channe lCoun t ) ;

i f ( channe lCoun t < 1) | | ( channe lCoun t > channe l sP e rBoa r d )

f p r i n t f ( ’ E r r o r : ␣ I n v a l i d ␣ channe l ␣mask␣%08X\ n ’ , channelMask ) ;

re turn

end

% Get t h e sample and memory s i z e

[ re tCode , boardHandle , maxSamplesPerRecord , b i t s P e r S amp l e ] = . . .

A l a z a rGe tChanne l I n f o ( boardHandle , 0 , 0 ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a rGe tChanne l I n f o ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% C a l c u l a t e t h e s i z e o f each b u f f e r i n b y t e s

by t e sPe rSamp l e = f l o o r ( ( doub l e ( b i t s P e r S amp l e ) + 7 ) / doub l e ( 8 ) ) ;

s amp le sPe rReco rd = p r eT r i g g e rS amp l e s + po s tT r i g g e r S amp l e s ;

s amp l e sP e rBu f f e r = samp le sPe rReco rd ∗ r e c o r d s P e r B u f f e r ∗ channe lCoun t ;

b y t e s P e rB u f f e r = by t e sPe rSamp l e ∗ s amp l e sP e rBu f f e r ;

% S e l e c t t h e number o f DMA b u f f e r s t o a l l o c a t e .

bu f f e rCoun t = u i n t 3 2 ( 4 ) ;

% Crea te an ar ray o f DMA b u f f e r s

b u f f e r s = c e l l ( 1 , b u f f e rCoun t ) ;

f o r j = 1 : b u f f e rCoun t

p b u f f e r = A l a z a rA l l o cBu f f e r ( boardHandle , b y t e s P e rB u f f e r ) ;

i f p b u f f e r == 0
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f p r i n t f ( ’ E r r o r : ␣ A l a z a rA l l o cBu f f e r ␣%u␣ samples ␣ f a i l e d \ n ’ , . . .

s amp l e sP e rBu f f e r ) ;

re turn

end

b u f f e r s ( 1 , j ) = { p b u f f e r } ;

end

% S e t t h e r e co rd s i z e

r e tCode = A l a z a r S e tRe co r dS i z e ( . . .

boardHandle , p r eT r i gge rSamp l e s , p o s tT r i g g e r S amp l e s ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r S e tRe co r dS i z e ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% S e l e c t AutoDMA f l a g s as r e q u i r e d

admaFlags = ADMA_EXTERNAL_STARTCAPTURE + ADMA_NPT + ADMA_FIFO_ONLY_STREAMING;

% Con f i gu r e t h e board t o make an AutoDMA a c q u i s i t i o n

r e c o r d s P e rA c q u i s i t i o n = r e c o r d s P e r B u f f e r ∗ b u f f e r s P e r A c q u i s i t i o n ;

r e tCode = Alaza rBefo reAsyncRead ( . . .

boardHandle , channelMask , − i n t 3 2 ( p r eT r i g g e rS amp l e s ) , . . .

s amplesPe rRecord , r e c o r d s P e rBu f f e r , r e c o r d s P e rA c q u i s i t i o n , admaFlags ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣Alaza rBefo reAsyncRead ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% Pos t t h e b u f f e r s t o t h e board

f o r b u f f e r I n d e x = 1 : b u f f e rCoun t

p b u f f e r = b u f f e r s {1 , b u f f e r I n d e x } ;
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r e tCode = A l a z a rPo s tAsyncBu f f e r ( boardHandle , p bu f f e r , b y t e s P e rB u f f e r ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a rPo s tAsyncBu f f e r ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

re turn

end

end

% Arm t h e board s y s t em t o wa i t f o r t r i g g e r s

r e tCode = A l a z a r S t a r t C a p t u r e ( boa rdHand le ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r S t a r t C a p t u r e ␣ f a i l e d ␣−−␣%s \ n ’ , e r r o rToTex t ( r e tCode ) ) ;

re turn

end

% Wait f o r s u f f i c i e n t da ta t o a r r i v e t o f i l l a b u f f e r , p r o c e s s t h e b u f f e r ,

% and r e p e a t u n t i l t h e a c q u i s i t i o n i s comp l e t e

s t a r t T i c kC o u n t = t i c ;

upda t eT i ckCoun t = t i c ;

u p d a t e I n t e r v a l _ s e c = 0 . 1 ;

b u f f e r sComp l e t e d = 0 ;

cap tu r eDone = f a l s e ;

s u c c e s s = f a l s e ;

whi le ~ cap tu reDone

d a t aMa t r i x = [ ] ;

b u f f e r I n d e x = mod ( bu f f e r sComp l e t ed , b u f f e rCoun t ) + 1 ;

p b u f f e r = b u f f e r s {1 , b u f f e r I n d e x } ;

% Wait f o r t h e f i r s t a v a i l a b l e b u f f e r t o be f i l l e d by t h e board

[ re tCode , boardHandle , b u f f e rOu t ] = . . .
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Alaza rWai tAsyncBuf f e rComple t e ( boardHandle , p bu f f e r , 5 000 ) ;

i f r e tCode == ApiSucces s

% Th i s b u f f e r i s f u l l

b u f f e r F u l l = t r u e ;

cap tu r eDone = f a l s e ;

e l s e i f r e tCode == ApiWaitTimeout

% The wa i t t i m e o u t e x p i r e d b e f o r e t h i s b u f f e r was f i l l e d .

% The board may no t be t r i g g e r i n g , or t h e t i m e o u t p e r i o d

% may be too s h o r t .

f p r i n t f ( . . .

’ E r r o r : ␣ Alaza rWai tAsyncBuf f e rComple t e ␣ t imeou t ␣−−␣ Ve r i f y ! \ n ’ ) ;

b u f f e r F u l l = f a l s e ;

cap tu r eDone = t r u e ;

e l s e

% The a c q u i s i t i o n f a i l e d

f p r i n t f ( ’ E r r o r : ␣ Alaza rWa i tAsyncBuf f e rComple t e ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

b u f f e r F u l l = f a l s e ;

cap tu r eDone = t r u e ;

end

i f b u f f e r F u l l

% Proce s s sample da ta i n t h i s b u f f e r .

i f by t e sPe rSamp l e == 1

s e t d a t a t y p e ( bu f f e rOu t , ’ u i n t 8 P t r ’ , 1 , s amp l e sP e rBu f f e r ) ;

e l s e

s e t d a t a t y p e ( bu f f e rOu t , ’ u i n t 1 6 P t r ’ , 1 , s amp l e sP e rBu f f e r ) ;

end

da t a t emp= bu f f e rOu t . Value ;

f o r i c h =1: channe lCoun t

d a t aMa t r i x =[ d a t aMa t r i x da t a t emp ( i c h : channe lCoun t : end ) ’ ] ;
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end

% Make t h e b u f f e r a v a i l a b l e t o be f i l l e d aga in by t h e board

r e tCode = A l a z a rPo s tAsyncBu f f e r ( boardHandle , p bu f f e r , b y t e s P e rB u f f e r ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a rPo s tAsyncBu f f e r ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

cap tu r eDone = t r u e ;

end

% Update p r o g r e s s

bu f f e r sComp l e t e d = bu f f e r sComp l e t e d + 1 ;

i f bu f f e r sComp l e t e d >= b u f f e r s P e r A c q u i s i t i o n

cap tu r eDone = t r u e ;

s u c c e s s = t r u e ;

e l s e i f t o c ( upda t eT i ckCoun t ) > u p d a t e I n t e r v a l _ s e c

upda t eT i ckCoun t = t i c ;

% Update wa i t ba r p r o g r e s s

wa i t b a r ( doub l e ( bu f f e r sComp l e t e d ) / . . .

doub l e ( b u f f e r s P e r A c q u i s i t i o n ) , . . .

wa i t ba rHand l e , . . .

s p r i n t f ( ’ Completed ␣%u␣ b u f f e r s ’ , b u f f e r sComp l e t e d ) ) ;

% Check i f wa i t ba r c a n c e l b u t t o n was p r e s s e d

i f g e t a p p d a t a ( wa i t ba rHand l e , ’ c a n c e l i n g ’ )

break

end

end

end % i f b u f f e r F u l l

end % wh i l e ~ captureDone
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% Abor t t h e a c q u i s i t i o n

r e tCode = AlazarAbor tAsyncRead ( boardHand le ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣AlazarAbor tAsyncRead ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

end

% Re l ea s e t h e b u f f e r s

f o r b u f f e r I n d e x = 1 : b u f f e rCoun t

p b u f f e r = b u f f e r s {1 , b u f f e r I n d e x } ;

r e tCode = A l a z a r F r e eBu f f e r ( boardHandle , p b u f f e r ) ;

i f r e tCode ~= ApiSucces s

f p r i n t f ( ’ E r r o r : ␣ A l a z a r F r e eBu f f e r ␣ f a i l e d ␣−−␣%s \ n ’ , . . .

e r r o rToTex t ( r e tCode ) ) ;

end

c l e a r p b u f f e r ;

end

% Disp l a y r e s u l t s

i f bu f f e r sComp l e t e d > 0

b y t e s T r a n s f e r r e d = doub l e ( bu f f e r sComp l e t e d ) ∗ doub l e ( b y t e s P e rB u f f e r ) ;

r e c o r d s T r a n s f e r r e d = r e c o r d s P e rB u f f e r ∗ bu f f e r sComp l e t e d ;

i f t r a n s f e r T im e _ s e c > 0

b u f f e r s P e r S e c = bu f f e r sComp l e t e d / t r a n s f e r T im e _ s e c ;

b y t e sP e rS e c = b y t e s T r a n s f e r r e d / t r a n s f e r T im e _ s e c ;

r e c o r d s P e r S e c = r e c o r d s T r a n s f e r r e d / t r a n s f e r T im e _ s e c ;

e l s e

b u f f e r s P e r S e c = 0 ;

b y t e sP e rS e c = 0 ;

r e c o r d s P e r S e c = 0 . ;

end
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f p r i n t f ( ’ Cap tu r ed ␣%u␣ b u f f e r s ␣ i n ␣%g␣ sec ␣(%g␣ b u f f e r s ␣ pe r ␣ s ec ) \ n ’ , . . .

b u f f e r sComp l e t ed , t r a n s f e r T ime_ s e c , b u f f e r s P e r S e c ) ;

f p r i n t f ( ’ Cap tu r ed ␣%u␣ r e c o r d s ␣ (%.4 g␣ r e c o r d s ␣ pe r ␣ s ec ) \ n ’ , . . .

r e c o r d s T r a n s f e r r e d , r e c o r d s P e r S e c ) ;

f p r i n t f ( ’ T r a n s f e r r e d ␣%u␣ by t e s ␣ (%.4 g␣ by t e s ␣ pe r ␣ s ec ) \ n ’ , . . .

b y t e s T r a n s f e r r e d , b y t e sP e rS e c ) ;

end

% s e t r e t u r n code t o i n d i c a t e s u c c e s s

r e s u l t = s u c c e s s ;

end
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