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ABSTRACT 

Algebraic K-theory is an interesting invariant of rings and ring spectra which has connections 

to many mathematical fields including number theory, geometric topology, and algebraic geometry. 

While there is great interest in algebraic K-theory, it is difficult to compute. One successful 

approach is via trace methods. In this approach one utilizes trace maps from algebraic K-theory 

to more computable invariants which approximate algebraic K-theory. One of these trace maps is 

from algebraic K-theory to topological Hochschild homology (THH), which is an invariant of ring 

spectra. One of the main tools to compute THH is the Bokstedt spectral sequence, and the algebraic 

structure in this spectral sequence facilitates computations. 

In recent years, several equivariant analogues of algebraic K-theory and THH have emerged. 

One such analogue is Cn-twisted THH, an invariant of ring Cn-spectra, which was defined by 

Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell [ABG+l8]. To compute twisted THH 

there is an equivariant Bokstedt spectral sequence, constructed by Adamyk, Gerhardt, Hess, Klang, 

and Kong [AGH+22]. 

This thesis explores the algebraic structures of twisted THH, and the equivariant Bokstedt 

spectral sequence. Classically, if A is a commutative ring spectrum, [EKMM97] and [MSV97] show 

that THH(A) is an A-Hopf algebra in the stable homotopy category. Angeltveit and Rognes extend 

this algebraic structure to the Bokstedt spectral sequence and prove that under some conditions, the 

Bokstedt spectral sequence is a spectral sequence of H*(A; lFp)-Hopf algebras for p prime [AR05]. 

In this thesis we show that for p prime and R a commutative ring Cp-spectrum, THHcp (R) is 

an R-algebra in the Cp-equivariant stable homotopy category. Further, for p ~ 5 prime and Ra 

commutative ring Cp-spectrum, THHcp (R) is a non-counital R-bialgebra in the Cp-equivariant 

stable homotopy category. We also extend these results to the equivariant Bokstedt spectral 

sequence, proving that under appropriate flatness conditions it is a spectral sequence of non-counital 

bialgebras. 
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CHAPTER! 

INTRODUCTION 

Algebraic K-theory is an invariant of rings that has deep connections to many mathematical fields 

including number theory, algebraic geometry, and geometric topology. While algebraic K-theory 

is generally very difficult to compute, one successful approach is via trace methods. 

Trace methods are tools that allow us to approximate algebraic K-theory. These approximations 

work by mapping from algebraic K-theory to more computable invariants. One example of such 

an approximation, the Dennis trace, relates algebraic K-theory to a classical invariant of rings, 

Hochschild homology (HH). For a ring A, the Dennis trace is a map: 

For a closer approximation to algebraic K-theory, Bokstedt defined a topological analogue of HH 

called topological Hochschild homology (THH), which is an invariant of ring spectra [Bok85b]. 

There is a trace map, the topological Dennis trace, from algebraic K-theory to THH. Topological 

Hochschild homology has an S1-action. Using this S1-action one can define topological cyclic 

homology (TC) and the cyclotomic trace, which gives an even more accurate approximation to 

algebraic K-theory [BHM93]. Further, the topological Dennis trace factors through the cyclotomic 

trace: 

K(R) ➔ TC(R) ➔ THH(R) 

for a ring spectrum R. 

One of the main tools we use to compute THH is the Bokstedt spectral sequence which relates 

HH to THH [Bok85b]. For k a field and A a ring this spectral sequence takes the form: 

One way to facilitate spectral sequence calculations is to understand algebraic structures in the 

spectral sequence. Angeltveit and Rognes study the algebraic structure of the Bokstedt spectral 

sequence in [AR05]. Angeltveit and Rognes' results build off of results of [EKMM97] and 
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[MSV97]. Let us recall that a Hopf algebra can be thought of as both an algebra and a coalgebra 

with an antipode such that these structures are compatible. 

Theorem 1.0.1 ([EKMM97, Corollary 3.4], [MSV97, Theorem I]). For A a commutative ring 

spectrum, THH(A) is an A-Hopf algebra in the stable homotopy category. 

These authors prove this result by inducing the maps on THH from maps on the circle. This is 

possible because for A a commutative ring spectrum, THH(A) ~A® s1 [MSV97]. For example, 

the following fold map of spaces s1 v s1 ~ s1 induces the product map THH(A) AA THH(A) ~ 

THH(A). Angeltveit and Rognes extend this result by using simplicial maps on the circle, allowing 

the algebraic structure to extend to the Bokstedt spectral sequence, proving the following result: 

Theorem 1.0.2 ([AR05, Theorem 4.5]). Let A be a commutative ring spectrum, and let p be prime. 

If each term of the Bokstedt spectral sequence, E~,*(A) for r ~ 2 is flat over H*(A;lFp), then the 

Bokstedt spectral sequence is a spectral sequence of H*(A; lFp)-Hopf algebras. 

Angeltveit and Rognes then use this algebraic structure to facilitate many computations of THH 

[AR05]. 

In recent years, equivariant analogues of algebraic K-theory and topological Hochschild ho­

mology have emerged. Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell construct a 

generalization of THH called Cn-twisted THH, for Cn a finite cyclic subgroup of S1 [ABG+l8]. 

This generalized theory is an invariant of Cn-equivariant ring spectra. Twisted THH is related to 

the equivariant algebraic K-theory of Merling [Merl 7], and Malkiewich-Merling [MM19], as seen 

in [AGH+23] and [CGK]. 

To compute the equivariant homology of Cn-twisted THH, Adamyk, Gerhardt, Hess, Klang, 

and Kong construct an equivariant analogue to the Bokstedt spectral sequence. 

Theorem 1.0.3 ([AGH+22, Theorem 4.2.7]). Let Cn = (y) be a finite subgroup of S1. Let R be a 

ring Cn-spectrum and Ea commutative ring Cn-spectrum such that y acts trivially on E. If E*(R) 

is flat over E *' then there is an equivariant Bokstedt spectral sequence 
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Here an object is underlined to indicate that it is a Mackey functor. To study equivariant homotopy 

theory, one needs equivariant analogues of familiar algebraic objects. Mackey functors arise 

naturally in equivariant homotopy theory as the equivariant analogue to abelian groups. Let G be 

a finite abelian group. For a G-equivariant spectrum R, the equivariant homotopy groups of R 

form a G-Mackey functor. The category of G-Mackey functors has a symmetric monoidal product 

called the box product, □, allowing one to define an equivariant analogue to rings, called G-Green 

functors [Lew80]. 

In the spectral sequence above, E* denotes !I..*(E), the equivariant homotopy Mackey functors 

of the ring Cn-spectrum E. Also, HHCn is Hochschild homology for Green functors, as defined 

by Blumberg, Gerhardt, Hill, and Lawson in [BGHL19]. While this equivariant Bokstedt spectral 

sequence opens the door for computations of twisted THH, as of yet, few computations appear in 

the literature. 

Classically, many Bokstedt spectral sequence calculations are done with coefficients in a field, 

as this results in nicer behavior in the spectral sequence. Lewis defines G-Mackey fields to be 

commutative G-Green functors with no nontrivial ideals [Lew80]. If we use Cn-Mackey fields as 

the coefficients in the equivariant Bokstedt spectral sequence, the spectral sequence is easier to 

compute. 

An important Cz-spectrum is MUR, the Real bordism spectrum. Hill, Hopkins, and Ravenel 

use MUR in their solution of the Kervaire invariant one problem in [HHR16]. In this thesis, we 

compute the equivariant homology of THHc 2 (MUR) with coefficients in the following Cz-Mackey 

field: 

F: 

0 
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Theorem 1.0.4. For Fas above the RO( C2)-graded equivariant homology ofTHHc 2 (MU~) with 

coefficients in F is 

as an HF *-module. Here l/3d = ip and lzd = 1 + ip. 

Classically, the algebraic structure in the Bokstedt spectral sequence has lead to computations of 

THH. In the current work, we study the algebraic structures of Cp-twisted THH and the equivariant 

Bokstedt spectral sequence. Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell show in 

[ABG+18] that for a commutative Cn-ring spectrum R, THHcn (R) is R ®en S1. Using equivariant 

simplicial models of the circle, we demonstrate that Cp-twisted THH has the structure of an 

R-algebra. 

Proposition 1.0.5. For p prime and Ra commutative Cp-ring spectrum, THHcp (R) is a commu­

tative R-algebra in the Cp-equivariant stable homotopy category. 

For specific primes we can extend this algebraic structure to a bialgebra structure. Let us recall that, 

similarly to a Hopf algebra, a bialgebra is both an algebra and a coalgebra such that these structures 

are compatible. The key difference between the two algebraic structures is that a Hopf algebra has 

an antipode, and the definition of a bialgebra does not include an antipode. 

Theorem 1.0.6. Let R be a commutative ring Cp-spectrum and p ~ 5 prime. Then THHcp (R) is 

a non-counital, R-bialgebra in the Cp-equivariant stable homotopy category. 

Using the equivariant simplicial maps that provide these structures on Cp-twisted THH, we 

induce structures on the equivariant Bokstedt spectral sequence. Before we discuss these induced 

structures let us first recall the following related result. 

Proposition 1.0.7 ([AGH+22, The 4.2.7]). Let Cn = (y) be a finite subgroup of S1. Let R be a 

ring Cn-spectrum and E a commutative ring Cn-spectrum such that y acts trivially on E. If R 

is a commutative ring Cn-spectrum, then the equivariant Bokstedt spectral sequence is a spectral 

sequence of E * -algebras. 
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In the current work we show this spectral sequence is a spectral sequence of E*(R)-algebras. 

Proposition 1.0.8. For a prime p, let R and E be commutative ring Cp-spectra, such that the 

generator of Cp acts trivially on E and E*(R) is flat over E*. The equivariant Bokstedt spectral 

sequence E~,* is a spectral sequence of E*(R)-algebras. 

Theorem 1.0.9. For p ~ 5 prime, let R and E be commutative ring Cp-spectra, such that the 

generator of Cp acts trivially on E and E*(R) is flat over E*. If each term of the equivariant 

Bokstedt spectral sequence E~,*for r ~ 2 is flat over E*(R), then E~,* is a spectral sequence of 

non-counital E*(R)-bialgebras. 

1.1 Notation and conventions 

Throughout this paper let G be a finite abelian group, and we are working with genuine 

orthogonal G-spectra indexed on a complete universe. We use * to denote Z-gradings, * to denote 

RO( G)-gradings, and • to denote simplicial gradings. Whenever discussing rotations, we mean 

counter clockwise rotations. 

1.2 Organization 

In Chapter 2 we recall the definitions and properties of Mackey functors, Green functors, and 

Mackey fields. We end the chapter by computing the RO ( C p )-graded homotopy groups of the 

Eilenberg-Mac Lane spectra of Mackey fields. We then recall the constructions of Hochschild 

homology (HH), topological Hochschild homology (THH), twisted HH, and twisted THH in Chap­

ter 3. This chapter ends with a computation of the equivariant homology of twisted THH of the 

Real bordism spectrum. 

In Chapter 4 we recall the classical story about the algebraic structure of THH and the Bokstedt 

spectral sequence. In Chapters 5 and 6 we study the algebraic structure of twisted THH and the 

equivariant Bokstedt spectral sequence respectively. 
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CHAPTER2 

MACKEY FUNCTORS 

In this section we will recall the definition of a Mackey functor. Fix G a finite abelian group. 

Definition 2.0.1. Let S, T and Ube finite G-sets. A span from S to Tis a diagram 

S +-----U ~ T 

where the maps are G-equivariant. An isomorphism of spans is a commutative diagram of finite 

G-sets 

and the composition of spans is given by the pullback. Given two spans S ~ U1 ~ T and 

S ~ U2 ~ T, there is a monoidal product via the disjoint union, S ~ U1 LJ U2 ~ T. 

Definition 2.0.2. The Burnside category of G, denoted -7lG, has as objects finite G-sets. The 

morphism set .7LG(S, T) is the group completion of the monoid of isomorphism classes of spans 

s~u~r. 

Definition 2.0.3. A G-Mackey functor is an additive functor M: .7LJ ~ .7lb that sends disjoint 

unions to direct sums. 

Recall that any finite G-set is isomorphic to LJ G / Hi for Hi ::; G. Therefore one only needs to 

know M ( G / H) for each H ::; G to know M (S) for any finite G-set S. 

Let FinG be the category of finite G-sets. AG-Mackey functor Mis equivalent to a pair of 

additive functors 
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which send disjoint unions to direct sums, and are covariant and contravariant, respectively, such 

that: for any S E FinG, M*(S) = M*(S), denoted M(S). Further, if the following diagram is a 

pullback in FinG: 

then the second diagram commutes. 

g' 
w-----➔ x 

1J } 
Z------Y 

g 

Any sequence of subgroups K ::; H ::; G induces a natural surjection q1: G / K ➔ G / H. The 

homomorphism M*(q1): M(G/K) ➔ M(G/H) is called the transfer map, denoted tr1 or tr 

when Kand Hare clear from context. The homomorphism M*(q1): M(G/H) ➔ M(G/K) is 

called the restriction map, denoted res1 or res. 

Definition 2.0.4. For a finite group G, the Weyl group with respect to H ::; G is defined as 

WH := NG(H)/H where NG(H) denotes the normalizer of Hin G. Note that when G is abelian, 

WH=G/H. 

The set of G-maps of G/H into itself is isomorphic to WH. Thus, the abelian group M(G/H) 

has a WH-action. 

A Lewis diagram is a succinct way to describe a Mackey functor. For all H ::; G, M ( G / H) are 

written in the Lewis diagram. Also in the Lewis diagram are all the restriction maps res1, and all 

the transfer maps tr1 for K < H such that there are no subgroups K' such that [ K] < [ K'] < [ H] . 

Here [ H] denotes the conjugacy class of H in G. In this paper we will leave off the Weyl actions 
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in the Lewis diagrams. Consider a C2-Mackey functor M. Then a Lewis diagram for M has the 

following form: 

Now that we have defined G-Mackey functors, we can now define maps between G-Mackey 

functors. 

Definition 2.0.5. A map between G-Mackey functors <p: M --+ N is a natural transformation 

between them. This map is defined by W H-equivariant group homomorphisms <pH: M ( G / H) --+ 

N ( G / H) for all H ::; G. Further, these homomorphisms must respect the transfer and restriction 

maps. This can be visualized by the following diagram: 

M(G/H) __ <fJH __ ) N(G/H) 

"' ( }, re, ( }tr 
M(G/K) --<fJK-- N(G/K) 

Let us consider some important examples of G-Mackey functors, starting with constant Mackey 

functors. 

Example 2.0.6. Let L be an abelian group. The constant G-Mackey functor over L, denoted L, is a 

Mackey functor where L( G / H) = L with a trivial WH-action. Each restriction map is the identity 

and each transfer map trl is multiplication by IH /Kl. 

Example 2.0.7. The constant C2-Mackey functor ]!:2, is 

where the Weyl actions are trivial. 
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Let us denote the set of maps in 310 from W to Y as [W, Y] . There is a natural family of Mackey 

functors defined in the following example. 

Example 2.0.8 ([Lew80, Definition 1. l]). There is a representable G-Mackey functor [ -, S] for 

any S E 310. Let us call this Mackey functor P s. 

For the next example, we first need the following definition. 

Definition 2.0.9. The Burnside ring of G, denoted A ( G), is the group completion of the monoid 

of isomorphism classes of finite G-sets under disjoint union. Multiplication in this ring is given by 

the Cartesian product of finite G-sets. 

Example 2.0.10. The Burnside Mackey functor for G, denoted A 0 , or A when G is clear from 

context, is defined by A( G / H) = A(H) for all H ::;; G. The transfer and restriction maps are given 

by induction and restriction maps on finite sets. More explicitly, for K ::;; H ::;; G, S a finite K-set, 

and T a finite H-set, 

trfl([S]) = [HxKS] andresf([T]) = [ifl(T)], 

where if: HSets ~ KSets is the restriction functor. Additionally, A 0 is P G/G· 

Mackey functors are thought of as the equivariant analogue of abelian groups. While in classical 

homotopy theory many invariants take values in abelian groups, the equivariant analogues of those 

invariants take values in Mackey functors. The following is an important example that demonstrates 

this. 

Example 2.0.11. Let X be a G-spectrum. For each n E Z, the equivariant homotopy groups of X 

assemble to a G-Mackey functor, denoted !in (X), defined by 

where xH are the H fixed points of X. 
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This last example assembles into an integer graded G-Mackey functor. Before we define a 

graded G-Mackey functor let us first recall the notion of RO( G)-grading, where RO( G) is the real 

representation ring of G. The following is an example of RO ( G) that will be used throughout this 

article. 

Example 2.0.12. Any a E RO ( C2) can be written as n + mer for er the sign representation and 

n,m EZ. 

Homotopy groups of G-spectra are naturally graded by RO ( G). 

Definition 2.0.13. Let X be a G-spectrum. For all a = [y] - [,B] E RO(G), the equivariant 

homotopy groups of X, denoted ~(X), are defined by 

Let G be a finite abelian group, then for each subgroup H::::; G and each a E RO(G), there is a 

level wise G-actions on ~(E) is defined by 

G X'!I..o:(E)(G/H) ~ G/Hx~(E)(G/H) ~ ~(E)(G/H), 

where the second map is the Weyl group action. These level-wise G-action assemble into a G-action 

on~(E). 

Remark 2.0.14. If G is a cyclic group, then any G-Mackey functor admits a G-action. Since G is 

cyclic, then every subgroup of G is normal so W H = G / H is always a subgroup of G. So, for M 

a G-Mackey functor, M(G/H) is a G-module for all H::::; G and all of the transfer and restriction 

maps are maps of G-modules. Therefore M admits a G-action. 

Lewis and Mandell define RO(G)-graded G-Mackey functors in [LM06, Definition 2.2] 

Definition 2.0.15. There are notions of Z-graded and RO( G)-graded G-Mackey functors: 
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1. An integer graded G-Mackey functor is a collection of G-Mackey functors {MihEZ, written 

as M *" A map of Z-graded Mackey functors M * ---+ N *' is a collection of maps of Mackey 

functors {Aft ---+ N)iEZ· 

2. An RO(G)-graded G-Mackey functor is defined as a collection of G-Mackey functors 

{Ma}aERO(G), written as M*. A map of RO(G)-graded G-Mackey functors M*---+ N*, is 

a collection of maps of G-Mackey functors {Ma, ---+ !:la} a ERO ( G). 

Lewis defines an important example of a G-Mackey functor in [Lew80, Definition 5.5] called 

the J-Mackey functor. We will use these functors in our computations of equivariant homology and 

cohomology in Section 2.5. For our purposes, we will focus on the specific example of G = Cp, p 

prime. 

Definition 2.0.16 ([Lew80, Definition 5.5]). Let H ~ Cp, p prime. The functor Jcp/H(V) for Va 

Z[WH]-module is the following depending on H: 

p-1 . 
where tr(x) = ~ ylx for x EV. 

i=O 

V 

2.1 Box product and induction theories 

0 

The category of G-Mackey functors is an abelian category that has a symmetric monoidal 

product called the box product, denoted □. The box product was first defined by Lewis in Section 

1 of [Lew80]. 

Definition 2.1.1. Let M and N be G-Mackey functors. The box product M □ N is given by a left 

Kan extension over the Cartesian product of finite G-sets 
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The unit for the box product is the Burnside Mackey functor A, defined in Example 2.0.10. 

Lewis demonstrates what the box product is for two Cp-Mackey functors in [Lew88]. 

Definition 2.1.2 ([Lew88]). Let p be prime and let us choose the generator y for Cp. Let Mand 

N be Cp-Mackey functors: 

M: N: 

We can inductively define M □N: 

(M(Cp/Cp) ® N(Cp/Cp) EB (M(Cp/e) ® N(Cp/e))/Cp )!FR 

re{ F 
M(Cp/e) ® N(Cp/e). 

Let x E M(Cp/e),y E N(Cp/e),a E M(Cp/Cp), and b E N(Cp/Cp)- The Cp-action on 

M(Cp/e) ® N(Cp/e) is given by y(x ® y) = y(x) ® y(y). The quotient by the Cp-action, 

( M ( C p / e) ® N ( C p / e)) / C p, is isomorphic to the image of the transfer, Im (tr). The restric­

tion map is defined by res(a ® b) = resM(a) ® resN(b) and for any element tr(z) E Im(tr), 
- -

res(tr(z)) = z + yz + ... + yP-l z. The notation FR denotes the Frobenius reciprocity submodule 

which is generated by elements of the form: 

(a® trN(Y), 0) - (0, tr(resM(a) ® y)), - -
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and 

Hill and Mazur extend this definition to G = Cpn in [HM19]. Since the subgroups of Cpn are 

nested, one can inductively build the box product of two Cpn-Mackey functors, say Mand N by 

considering 

C· 
(M □ !:!)(Cpn/Cpj) = (M(Cpn/Cpj) ®N(Cpn/Cpj) EBlm(trc;;_ 1))fFR 

where the restriction, transfers, and FR are defined as in the above definition. 

Hill and Mazur also show that the above definition also extends to an i-fold box product of 

Cpn-Mackey functors in [HM19]. Say Mk is a Cpn-Mackey functor for 1 ~ k ~ i, the box product 

of these Mackey functors is defined by 

(M 1 □ M2 □ ... □ M.;_)(Cpn/Cpj) = 
C . 

(M 1 (Cpn/Cpj) ® M 2(Cpn/Cpj) ® ... ® M.;_(Cpn/Cpj) EB lm(tr c;;_1) )/ FR· 

Here the Frobenius reciprocity submodule FR is generated by elements of the form 
C 1· p 

(m1 ®m2 ® ... ®trK (b) ® ... ®mi,0)-
Cpj Cpj Cpj Cpj 

(0, tr K (resK (m1) ® resK (m2) ® ... ® b ® ... ® resK (mi))) 

where b e Mk ( C Pn / K) for 1 ~ k ~ i and K any subgroup of C Pj. 

Proposition 2.1.3 ([Lew80, Lew88, ShulO]). Let p be prime. For Cpn-Mackey functors M, N and 

L, maps M □ N ~ L are in natural bijective correspondence with collections of Wey[ equivariant 

maps which satisfy certain conditions. Namely, 

for all O ~ j ~ n such that the following compatibility conditions are satisfied: 

~j ~j ~j 
1. resc . o Jj = fj-l o (resc . ® resc . ) 

pJ-l pJ-l pJ-l 
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for all j. 

There is also a box product on graded G-Mackey functors. 

Definition 2.1.4 ([LM06, Definition 2.4]). Let N~ and M* be RO( G)-graded G-Mackey functors. 

We define N* □ M* as an RO(G)-graded G-Mackey functor such that for y E RO(G) 

The definition is similar for Z-graded Mackey functors. 

The unit for the product on RO(G)-graded G-Mackey functors is A*, which is A in degree 0 

and Q in all other degrees. 

The following is an example of a Mackey functor which will prove to be useful shortly. 

Example 2.1.5 ([Lew80, Definition 1.2]). Let M be a G-Mackey functor. For S E .'.llG one can 

define Ms to be a G-Mackey functor where M 8 (T) = M(S x T) for TE .'.llG. 

Recall that P s is the representable G-Mackey functor, [-, S], as defined in Example 2.0.8. The 

following lemma shows us how we can use the definition of P s to better understand Ms for any 

Mackey functor M. 

Proposition 2.1.6 ([Lew80, Lemma 1.6]). Let S E .'.llG, and M be a G-Mackey functor. There are 

natural isomorphisms 

Next we will discuss H-characteristic and H-determined G-Mackey functors for H::::; G. These 

are nice classes of Mackey functors where, loosely, one can induce information about a Mackey 
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functor M by knowing the value of M ( G / H). A Mackey functor being H-determined is a stronger 

notion than a Mackey functor being H-characteristic. In [Lew80], Lewis refers to tools that help 

us to understand more about an H-characteristic or H-determined Mackey functor as induction 

theorems named after the classical induction theorems from representation theory. For more 

information see Section 4 of [Lew80]. 

We need a definition and some discussion before we can define an H-characteristic Mackey 

functor. 

Definition 2.1.7 ([Lew80, Definition 5.l(a)]). AG-Mackey functor Mis H-bounded if there is a 

subgroup H of G where M ( G / K) = 0 for [ K] < [ H] and M ( G / H) -:f:. 0 if M -:f:. Q. 

Before the next definition, let us discuss how the map of G-sets G / G f- G / H can induce the 

map M ~ MG I H. Recall that the morphism set of the Burnside category from S to T, .11a ( S, T), 

is the group completion of the monoid of isomorphsim classes of spans S f- U ~ T for S, U, 

and T finite G-sets. The map of G-sets G / G f- G / H generates an isomorphism class of spans in 

.11a(G/G, G/H), namely, [G/G f- G/H ~ G/H] where the map G/H ~ G/H is the identity 

map. This demonstrates how a map of G-sets G / G f- G / H induces a map on a G-Mackey functor 

M,M~MG/H· 

Definition 2.1.8 ([Lew80, Definition 3.4 ]). Let H ::; G. AG-Mackey functor Mis H-characteristic 

ifthemapM ~ Ma;H,inducedfromthemapofG-setsG/G f- G/H,isinjectiveandM(G/K) = 

0 unless [ H] ::; [ K] . 

Note that for H ::; G, a G-Mackey functor M being H-characteristic implies that M is H­

bounded but the converse does not hold. In order to define an H-determined Mackey functor, we 

need the following definition. 

Definition 2.1.9 ([Lew80, Definition 4.1]). We say a G-Mackey functor M satisfies G/H-injective 

induction if the diagram M ~ MG I H ~ MG I HxG I H induced by the diagram G / H x G / H ~ 

G / H ~ G / G in Fina is an equalizer diagram. The two maps from G / H x G / H ~ G / H are the 

projections onto the first and second components. 
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Lewis goes on to explain that to show a G-Mackey functor satisfies G / H-injective induction 

directly is difficult. Even so, this is a very useful form of induction as demonstrated by the following 

definition. 

Definition 2.1.10 ([Lew80, Definition 5. l(b )]). AG-Mackey functor Mis H-determined for H ~ G 

if it is both H-bounded and satisfies G / H-injective induction. 

Recall, that a G-Mackey functor being H-characteristic implies that it is H-bounded. In fact, if 

a G-Mackey functor is H-determined, then it is H-characteristic. Therefore the above definition is 

equivalent to the following. 

Definition 2.1.11 ([Lew80]). A G-Mackey functor Mis H-determined for H ~ G if it is both 

H-characteristic and satisfies G / H-injective induction. 

In fact Lewis shows that JG;H(V), two examples of which are seen in Definition 2.0.16, is 

H-determined for any H ~ G and Va Z[WH]-module in [Lew80, Lemma 5.6]. 

It is difficult to directly show that a G-Mackey functor satisfies G / H-injective induction. There 

are stronger forms of induction that are easier to verify. 

Definition 2.1.12 ([Lew80, Definition 4.2]). We say a G-Mackey functor M 

1. is G / H-projective if the map MG I H ➔ M induced from the transfer map G / G ~ G / H is a 

split surjection. 

2. is G / H-injective if the map M ➔ MG I H induced from the restriction map G / H ➔ G / G is 

a split injection. 

It turns out that if a G-Mackey functor is G / H-projective or G / H-injective then it satisfies 

G / H-injective induction. The following shows the relationship between G / H-injection and G / H­

projection. 

Proposition 2.1.13 ([Lew80, Proposition 4.4]). For any G-Mackey functor M, it is equivalent for 

M to be G / H-projective and G / H-injective. 
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We can know a lot about a Mackey functor if we know it is S-projective, S a finite G-set, as 

demonstrated by the following induction theorem. 

Proposition 2.1.14 ([Lew80, Proposition 4.4]). Let M be a G-Mackey functor. The Mackey functor 

M is a direct summand of MG I H if and only if M is G / H-projective. 

2.2 Green functors 

Since Mackey functors are the equivariant analogues of abelian groups, one may ask how to 

define the equivariant analogue to rings. Now that we have a symmetric monoidal product, we can 

define an equivariant analogue to rings. 

Definition 2.2.1 ([Lew80, Definition 2.l(a)]). A G-Greenfunctor Risa Mackey functor with a 

unit map 17 : A ~ R and a multiplication map </J : R □ R ~ R such that the following diagrams 

commute: 

¢D1 
R □ R □R-------R□R 

R □ R ¢ R 

17 □ 1 □ 1 □ 17 
A □R--)R R( R □ A 

A G-Green functor is said to be commutative if the following diagram commutes 

R □R----T----R □ R 

where T swaps the two copies of R. 
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To define graded Green functors which are commutative we must define the rotating isomor­

phism. The definition of the rotating isomorphism uses elements in the Burnside ring. Namely, 

for Ga finite abelian group and a,[3 e RO(G), the switch map sa I\ sfJ ---+ sfJ I\ sa gives an 

element in the Burnside ring A(G). Let us refer to this element as s(a,[3). Further, for N1c:, and M* 

RO(G)-graded Mackey functors, s(a,[3) induces an automorphism.Ma, □ N.fJ---+ Ma, □ N.fJ. This 

automorphism, along with the symmetry isomorphism of abelian groups, gives an isomorphism 

r a,fJ: Ma, D N .f3 ---+ N .f3 □ Ma,. 

Definition 2.2.2. Let M* and N* be RO(G)-graded Mackey functors. The rotating isomorphism, 

noted T: M* □ N*---+ N* □ M* is defined on level ye RO(G), by ra,fJ: Ma, □ N.fJ---+ N.fJ □ Ma,, 

as defined above, for all a + f3 = y. 

We are now ready to define an Z or RO ( G)-graded G-Green functor. 

Definition 2.2.3 ([LM06, Definition 3.1]). An RO(G)-graded G-Greenfunctor R* is a collection 

of Mackey functors, U~a}aERO(G) with a unit map TJ: A* ---+ R* and a multiplication map 

</J : R* □ R* ---+ R* such that the following diagrams commute: 

An RO(G)-graded G-Green functor is said to be commutative if the following diagram commutes 
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R* □ R* ____ T _____ R* □ R* 

~/. 
R* 

where T is the rotating isomorphism defined in Definition 2.2.2. 

This allows us to define Mackey modules, submodules, and ideals. Let us first consider the 

following definition. 

Definition 2.2.4. A subfunctor, say §_, of a G-Mackey functor M is a functor from finite G-sets 

to abelian groups where §_ ( G / H) ::; M ( G / H) for all H ::; G, where the transfer maps, restriction 

maps, and Weyl actions of§_ are induced from the corresponding maps and actions on M. 

Definition 2.2.5 ([Lew80, Definition 2.l(b)]). For Ra G-Green functor, a left R-module is a G­

Mackey functor M with a module structure map g: R □ M ~ M such that the following diagrams 

commute: 

¢D1 
R □ R □M ---- R □M 

R □M-----➔ M 
~ 

17 □ 1 
A □M-----R □M 

where </> and 'I/ are the multiplication and unit map of R respectively. Right R-modules and R­

bimodules are defined analogously. If R is commutative, then every left (right) R-module is a 

R-bimodule. An R-submodule N of Mis a subfunctor that is closed under the action of R. 

Lewis and Mandell define an RO(G)-graded module over an RO(G)-graded Green functor in 

[LM06]. 
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Definition 2.2.6 ([LM06, Definition 3.2]). For R* an RO( G)-graded G-Green functor, a left R*­

module is an RO(G)-graded G-Mackey functor M* with a module structure map§: R* □ M* ~ 

M * such that the following diagrams commute: 

M* 

where ¢ and 17 are the multiplication and unit map of R* respectively. Right R* -modules and 

R*-bimodules are defined analogously. If R* is commutative, then every left (right) R* -module 

is an R*-bimodule. An RO(G)-graded R*-submodule N* of M* is a subfunctor on every level, 

meaning that fia is a subfunctor of Af.a for all a E RO ( G), where N * is closed under the action of 

R*. 

In the classical case, we have relative tensor products of abelian groups defined from a coequal­

izer diagram. The following is the equivariant analogue. Lewis originally defined the non-graded 

case in [Lew80] and Lewis and Mandell extended this to the RO(G)-graded case in [LM06, 

Definition 3.6(a)]. 

Definition 2.2.7 ([Lew80, LM06]). Let L* and M* be right and left R*-modules, respectively, for 

R* an RO( G)-graded G-Green functor. Define L* □E_* M* as the coequalizer in the category of 

RO( G)-graded Mackey functors 

for p and ,l being the left and right module actions, respectively. 
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It is natural to now define the ideals of Green functors. 

Definition 2.2.8 ([Lew80, Definition 2.l(c)]). Let R be a G-Green functor. A left ideal l of Risa 

submodule of R considered as a left module over itself. Analogously, one can define right ideals 

and two sided ideals. 

The definition of an RO( G)-graded ideal can be derived from Lewis and Mandell's definition 

of an RO( G)-graded module. 

Definition 2.2.9. Let R;.; be an RO(G)-graded G-Green functor. An RO(G)-graded left ideal l;.; 

of R;.; is an RO ( G)-graded submodule of R;.; considered as a left module over itself. Analogously, 

one can define RO(G)-graded right ideals and RO(G)-graded two sided ideals. 

Note that, as is true classically, if l;.; is an RO(G)-graded left ideal of R*, then fu must be a 

left ideal of&· This is because by the definition of an R;.;-subfunctor, there is an inclusion map 

fu --+ & and the module structure map on & D lo must land in lo• 

We will need the notion of a flat R-module later on in this paper. Lewis discusses this briefly 

after Proposition 2.4. 

Definition 2.2.10 ([Lew80]). A left R-module Mis flat if the functor - DK M from the category 

of right R-modules to the category of G-Mackey functors is exact. The definitions of a flat right 

R-module and flat R-bimodule are defined analogously. 

Lewis and Mandell extend this definition to RO ( G)-gradings in [LM06, Theorem 4.5]. 

Definition 2.2.11. A left R* -module M * is flat if the functor - DE* M * from the category of right 

R£modules to the category of RO(G)-graded Mackey functors is exact. The definitions of a flat 

right R*-module and flat R;.; -bimodule are defined analogously. 

Recall that for Sa finite G-set and M a G-Mackey functor, Ms ~ MD P s· Moreover, for R a 

G-Green functor and Sa finite G-set, Rs is an R-bimodule. Lewis discusses after Proposition 2.4 

in [Lew80] that - DPs, Rs DK-, and - DK& are exact functors. 
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2.3 Equivariant spectra and fixed points 

Let us recall some constructions for G-spectra, such as fixed points, and their relation to Mackey 

functors. Let us first define fixed points of a G-spectrum. 

Definition 2.3.1. For G a finite group, H ::; G, and X a G-spectrum, the H-fixed point spectrum of 

X, xH, is a Wall-spectrum defined by: 

for Va G-representation that is fixed by H. 

For E and D G-spectra, in general (EA D)H is not equivalent to EH A DH for H::; G. The 

geometric fixed points is another important notion of fixed points. We will need to work our way 

up to this definition. 

Definition 2.3.2 ([LMSM86]). Let N be a normal subgroup of G. Denote <pN as the family of 

proper subgroups of N. Let EtpN denote the classifying space of <pN such that EtpJ! is empty and 

for any proper subgroup H, EtpJ! is weakly contractible. 

We will always assume that E<pN is a G-CW complex and let E<pN be the mapping cone of 

EtpN ~ *· 

Hill, Hopkins, and Ravenel discuss in more detail the construction of this classifying space in 

Section 2.5.2 of [HHR16]. 

Definition 2.3.3. Let X be a G-spectrum and Na normal subgroup of G. The N-geometricfixed 

point functor cpN, maps from the category of G-spectra to the category of G / N-spectra is defined 

by 

For H :'.9 G and E and D G-spectra, we have 
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Another important property of the geometric fixed point functor is that for a G-space X and H ~ G 

we have 

Proposition 2.3.4 ([LMSM86]). For E a G-spectrum concentrated over H ~ G we have 

Let D and E be G-spectra. We let [ D, E]a denote the homotopy classes of maps of G-spectra. 

Proposition 2.3.5 ([LMSM86]). Let E and D be G-spectra. If E is concentrated over H and 

H ~ G, then 

For a G-Mackey functor M, there is an associated Eilenberg-Mac Lane G-spectrum, denoted 

HM (see, for example, [dS03, dSN09]). As is true classically, these Eilenberg-Mac Lane G-spectra 

are characterized by their Z-graded homotopy groups: 

n=O 

else. 

We need the following definition to state another induction theorem which has to do with the 

Eilenberg-Mac Lane spectrum of a Mackey functor. 

Definition 2.3.6. For H ::::; G, a G-spectrum E is concentrated over H if!£! (E) * Q if and only if 

K contains H up to conjugacy. 

Proposition 2.3.7 ([Oru89, Remark 3.7]). For any H-determined G-Mackey functor M, the 

Eilenberg-Mac Lane spectrum HM is concentrated over H. 

The following is an interesting fact about H-determined Green functors, which we will use later 

in this paper. Oru~ proves the following within the proof of Theorem 3.11 in [Oru89]. 
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Proposition 2.3.8 ([Oru89]). Let R be an H-determined, G/H-projective G-Greenfunctor. Then 

ifwe consider cpH (HR) as non-equivariant, it is isomorphic to the non-equivariant Eilenberg-Mac 

Lane spectrum H(R(G/H)). 

2.4 Mackey fields 

Green functors are an equivariant analogue to rings, and we have recalled what it means for a 

Mackey functor to be an ideal of a Green functor, so now we can recall an equivariant analogue to 

fields. 

Definition 2.4.1 ([Lew80, Definition 2.6(f)]). A G-Mackey field F is a nonzero, commutative 

G-Green functor with no nontrivial proper ideals. 

Let us define RO( G)-graded Mackey fields. 

Definition 2.4.2. An RO(G)-graded G-Mackey field is a nonzero, commutative RO(G)-graded 

G-Green functor with no nontrivial RO ( G)-graded ideals. 

Before we recall some properties of Mackey fields, let us first cover some examples. One may 

guess that the constant Mackey functor over a field is always a Mackey field, but this is not always 

true. 

Example 2.4.3. The constant C2-Mackey functor over lF2 is not a Mackey field. Recall that ]E2 is 

the following 

lF2 

one can check that the following is an ideal of ]E2 
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F2 

which is not a trivial ideal, therefore !:2 is not a Mackey field. 

It turns out that there are many cases where the constant Mackey functor over a field is in fact a 

Mackey field. 

Example 2.4.4. The constant C2-Mackey functor over f'p for p an odd prime is a Mackey field. 

Recall that !Ep is the following 

where the transfer map is multiplication by two. One can check that this has no ideals. For example, 

the following Mackey functor, say !_, cannot be an ideal 

as there is no inclusion map !_ ~ !:p which respects the transfer and restriction maps. To see this 

consider the following 

f'p ----Fp 
id 
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this fails to be a map of Mackey functors as JP p ~ JP p ~ JP p is not the same as JP p ~ 0 ~ JP p. 

One can do a similar argument for the other nontrivial candidate for an ideal of ]E P 

0. 

Therefore lEp is a Cz-Mackey field. 

There are many other examples of Mackey fields. In fact any Cp-Mackey functor M where 

M(Cp/e) = 0 and M(Cp/Cp) = F for Fa field is a Cp-Mackey field. The following is another 

interesting example. 

Example 2.4.5. The following is a Cz-Mackey field: 

where the Cz-action on <C is complex conjugation, and the transfer map takes the real part of the 

complex number and multiplies it by two. 

One may have noticed that for every example of a Mackey field F, F ( G / G) has been a field. 

This is not special to these examples, but is a feature of Mackey fields. 

Proposition 2.4.6 ([Lew80, Proposition 3.9(f)]). If Fis a G-Mackey field, then F( G JG) is afield. 

Note that it is not necessarily true that F ( G / H) is a field for H ~ G. The following result will 

illuminate some of the interesting properties of Mackey fields. 

Proposition 2.4. 7 ([Lew 80, Corollary 4.5]). Let R be a G-Green functor, and F a G-Mackey field. 

1. R is G / H-projective if and only if every module M over R is also G / H-projective. 
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2. If F ( G / H) * 0, then any module over F is G / H-projective. 

Since every Mackey field is nonzero, there must be some H ::; G such that F(G/H) * 0. 

Therefore, by the above proposition, Fis G/H-projective for at least one H ::; G. Furthermore, 

since a Mackey functor being G/H-projective implies that it is G/H-injective and satisfies G/H­

injective induction, then a Mackey field F satisfies all forms of G / H-induction for any H ::; G such 

that F(G/H) ':/:. 0. 

Proposition 2.4.8 ([Lew80]). Let F be a G-Mackey field. There exists some H ::; G such that F is 

H-determined. 

Proof. We have already shown that for any K' ::; G such that F( G / K') * 0, F satisfies G / K' -

injective induction, we must now show that there is some H such that Fis H-bounded. 

Since F cannot be the zero Mackey functor, there must be at least one subgroup of G, say 

H', such that F(G/H') * 0. Choose a smallest, with respect to size, subgroup H < H' such that 

F(G/H) ':/:. 0. Then F(G/K) = 0 for all K < H, therefore Fis H-bounded. □ 

From this result, we can "sort" all G-Mackey fields by classes of subgroups H ::; G. Note that 

a Mackey functor can be Hi-characteristic and H2-characteristic for H1 * H2. For example, a 

C6-Mackey functor can be C3-characteristic and C2-characteristic. 

We can also see that if F is H-determined, then by Proposition 2.4.7 every F-module also 

satisfies all forms of G / H-induction. 

Proposition 2.4.9 ([Lew80]). Let F be an H-determined G-Mackey field. If M is an F-module, 

then M is H' -determined for some H' -1. H. 

Proof. We have already shown that M satisfies G / H' -injective induction whenever F( G / H') * 0. 

We must now show that M is H' -bounded for some such H'. If M = Q, then we are done as Q is 

K-bounded for any K::; G. 

If M * Q, then we need to show that there exists some H' as above such that M ( G / K) = 0 for 

all K < H', M ( G / H') * 0, and H' -1. H. Since M * Q, there exists at least one minimal H' such 
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that M ( G / H') * 0, where by minimal we mean that there exists no proper subgroup K of H' such 

that M(G/K) * 0. Therefore, Mis N'-bounded. We now need to show that H' f. H. 

By the assumption that Fis H-determined, F(G/K) must be 0 for all K ~ H. Since Mis an 

F-module, the following diagram must commute 

77 □ 1 
A □M----F□M 

for 77 the unit map for F and f the module structure map. If there exists a K < H such that M ( G / K) * 

0 then this diagram would not commute since one can show inductively that ( F □ M) ( G / K) = 0. 

Therefore H' is not a proper subgroup of H. □ 

The following is a simple fact that will be useful in this paper. 

Proposition 2.4.10. For a G-Mackey field F we have that F(G/e) * 0 if and only if Fis e­

determined. 

Proof. Let us assume that F(G/e) * 0. Since Fis a G-Mackey field, we know that it is H­

determined for some H ~ G. This implies that F(G/K) = 0 unless H ~ K. By our assumption 

F(G/e) * 0, so H ~ e and therefore H = e. 

In the other direction, let us assume that F is e-determined. Then F is e-bounded, so F ( G / e) * 

0. □ 

The following follows from the previous proposition and the fact that any Cp-Mackey field must 

be either e-determined or Cp-determined. 

Corollary 2.4.11. Let p be prime. For a Cp-Mackey field f..., F is Cp-determined if and only if 
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2.5 Equivariant homotopy groups of Eilenberg-Mac Lane spectra 

In this section, we will compute !!..*(Hf) for any Cp-Mackey field F and p prime. Note that 

Ferland and Lewis computed these homotopy groups in [FL04]. That is, in Chapter 8 of [FL04] 

the authors compute HM* for M any C p-Mackey functor. Considering M to be a C p-Mackey field 

greatly simplifies this computation. Let us first recall the definition of equivariant homology and 

cohomology. 

Define a+ as the disjoint union of the discrete space a and a G-trivial point. For G-spectra D 

and Ewe regard [D, E]G as a G-Mackey functor by defining [D, E]G(a) = [~ 00 a+ AD, E]G for 

a a finite G-set. Similarly for a G-space X, [~ 00 X, E]G(a) = [~00 a+ A ~ 00 X, E]G is a G-Mackey 

functor. 

Definition 2.5.1 ([LMM81, LMSM86]). Assume E and Dare G-spectra, and X a G-space. Then 

G-equivariant E-cohomology and £-homology of X and Dare given by 

E*(X) = [~~X, sJt A E]G, 

ff;* (X) = [~ 00 X, sJt A E]G, 

E*(X) = [S*,~~X A E]G, 

E*(X) = [S*,~ 00 X A E]G, 

E*(D) = [D, S* A E]G, and E*(D) = [S*, DA E]G. 

Note that !J..*(E AD) = E*(D). 

Orm;; gives an explicit formula for the homology and cohomology of a G-spectrum with 

coefficients in G-Mackey functors under certain conditions in [Oru89]. In order to state this 

theorem, we need some observations and definitions. 

Let V be a G-representation, and y e G, then there is a G-action on sV, y: sV ~ sV. In 

fact, since fixed points have an action of the Weyl group, there is a WH action induced from y, say 
H H r: sv ~ sv 

Definition 2.5.2 ([Oru89, Definition 3.10(2)]). For any G-representation V, let ZH(V) denote the 

Z[WH]-module Hdim(VH)csVH;Z) = Z. The action of ye WH on ZH(V) is yx = (degy)x for 

any x e ZH(V) and deg(y) the non-equivariant degree. For any a= [V] - [W] e RO(G). Let 

ZH(a) = ZH(V) ® ZH(W). 
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For H ::; G, if IWHI is odd, then for every y E WH, deg(y) = 1. Therefore, for any G­

representation V, if IWHI is odd, then ZH(V) = Z with a trivial WH-action. This paper focuses 

on G = Cp. In that case, ze(V) = Z with the trivial Cp-action when pis an odd prime. We get 

something interesting when p = 2. 

Example 2.5.3. Let G = C2 and let y be the nontrivial element of C2. Let us compute ze(l + kcr) 

for l, k ~ 0. The map y: st+kcr ---+ st+kcr has degree (-1 )k since y is flipping the st+k sphere 

on k axes and fixing the other laxes. Therefore, yx = (-l)kx for x E ze(l + kcr). Therefore, 

ze(l + k<r) = Z has a trivial C2-action when k is even and the C2-action of multiplication by -1 

when k is odd. 

This example shows that the only way that ze(l + kcr) has a nontrivial C2-action is if k is odd. 

We now have the tools to introduce Oru~'s explicit computation of equivariant cohomology and 

homology of a G-spectrum with coefficients in certain Mackey functors. We have only defined 

J-Mackey functors for G = Cp, but Oru~'s result is for a more general G. For the full definition of 

J-Mackey functors please refer to [Lew80, Definition 5.5]. 

Proposition 2.5.4 ([Oru89, Proposition 3.11]). For R an H-determined, G / H-projective Green 

functor, Ma module over ft Ea G-spectrum and a E RO(G) we have 

!i.a(E;M) = lGjH(Hdim(aH)(tpH(E);M(G/H)) ®ZH(a)), and 

Ha(E;M) = JGjH(Hdim(aH){tpH(E);M(G/H)) ® ZH(a)). 

Recall that any G-Mackey field is H-determined for some H::; G. Let Sep and S be the units 

in the category of ring Cp-spectra, and the category of ring spectra, respectively. We can write 

'!!..*(Hf) as H,1,:(Sep;fJ. The geometric fixed points of Sep are as follows, tpe(Sep) = Sep, and 

tpeP(Sep) = tpeP(~~PSO) = ~oo((So)eP) = ~oosO = S. 

For Fan H-determined Cp-Mackey field, Proposition 2.5.4 shows that 

(2.5.1) 
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for any a E RO(Cp)- We can split the computation into two cases, when Fis Cp-determined and 

when F is e-determined. 

2.5.1 Cp-determined Mackey field coefficients 

For this subsection, let F be a Cp-determined Cp-Mackey field for p prime. Then F(Cp/Cp) is a 

field, say k, and F(Cp/e) = 0. There was a discussion around Example 2.5.3 which showed that 

zcp (a) is always congruent to Z with no group action. By Proposition 2.5.4 we have the following 

computation: 

!!_0/Hf) ~ lcp/Cp (H dim(acP) (S; k) ® zcp (a)) 

~ lcp/Cp (H dim(acP/S; k)) 

~ lcp/Cp (1r dim(acP) (Hk)) 

for any a E RO(Cp)- Note that this is only nonzero when dim(acP) = 0, that is, when a is k<r 

when p = 2 fork E Z. Using the J-Mackey functor computations in Definition 2.0.16 above we 

can simplify this computation to the following for p prime 

The Z-graded homotopy groups of the Eilenberg-Mac Lane spectrum of a Mackey field gives 

a Mackey field since!!..* (Hf) is Fin degree O and Qin all other degrees. The question of whether 

the RO(Cp)-graded homotopy groups of the Eilenberg-Mac Lane spectrum of a Mackey field is a 

graded Mackey field is more complex since !!..*(Hf) is nonzero in many degrees. 

Proposition 2.5.5. Let p be prime. For Fa Cp-determined Cp-Mackey field, HF* is an RO( Cp)­

graded Mackey field. 

Proof. Let F be such that F(Cp/Cp) = k. By way of contradiction, say there exists a nontrivial, 

proper RO(Cp)-graded ideal!.* of HF*" The definition of a graded ideal says that there must be 

a module structure map H Ea □ l./3 --+ l.a+/3' and !.o must be an ideal of H f...o = F. Therefore !.o is 
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either F or Q. We will show that for either situation !.* will be forced to be Q* or HF*' which will 

be a contradiction since !.* is assumed to be a nontrivial, proper ideal. 

If fu = F, choose a e RO(Cp) such that Hf.a * Q, so by above calculations since Hf.a * 
Q, then H Ea ~ F. Consider the module structure map H Ea □ l.o ~ F □ F ~ !.a and by 

Proposition 2.1.3 this map is determined by the module structure map: k ® k ~ f.a(Cp/Cp)­

As we know, when considering k as a module over itself, the module structure map is just the 

multiplication map, so !.a ( C p / C p) must be k or else that is not a multiplication map on k. Then 

we can see that !.a must be F. Thus, !.a must be F for all a such that H Ea * Q so !.* ~ HF*" 

If fu = Q, choose a E RO ( C p) such that H f..a * Q, so by above calculations since HF a * 
Q, H Ea ~ F. Consider the module structure map H Ea □ La ~ F □ I-a ~ l.o = Q and by 

Proposition 2.1.3 this map is determined by the module structure map: k ® I-a ( C p / C p) ~ 0. 

Recall that l.-a is an ideal of HF -a which by the computation above is either Q or F. So l.-a 

can either be Q or F. If I-a = F, then the multiplication map would be k ® k ~ 0, but we 

assumed that k is a field so this is not a multiplication map. Therefore I-a must be Q. Note that if 

deg(acP) = deg(-acP) so by definition of HF*' HF a= HF _a for all a e RO(Cp). Thus, f.a 

must be Q for all a such that H f..a * Q so !.* ~ Q*. 

Therefore, HF* is an RO(Cp)-graded Mackey field. 

2.5.2 e-determined Mackey field coefficients 

□ 

Let F be an e-determined C p-Mackey field, for p prime. Then F ( C p / C p) is a field and F ( C p / e) * 

0, say R. Example 2.5.3 shows that when p = 2, then Ze (n + ma-) is congruent to Z with a nontrivial 

C2-action when mis odd and congruent to Z with a trivial C2-action when mis even. There was a 

discussion after Example 2.5.3 which shows that when pis an odd prime, ze(a) is congruent to Z 

with a trivial Cp-action. By Proposition 2.5.4 we have the following computation: 

~(Hf) ~ lcpfe(Hdim(a)(Scp; R) ® Ze(a)) 

~ lcp/e(1fcJim(a)(HR) ® Ze(a)) 

for any a E RO(Cp)- Note that 1fcJim(a)(HR) is R when dim(a) = 0 and O else. 
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For the p = 2 case, using the J-Mackey functor computations in Definition 2.0.16 above we 

have the following: 

Rc2 

foe( ) l+y a= k - k<T, keven 

R 

(R ®Z)c2 

foe( }+y a= k - kcr, k odd 

0 else 

where the C2-action is diagonal on R ® Z and the C2-action on Z is multiplication by -1. If R is 

characteristic two, then R®Z ~ R where the C2-actionisjustthe actiononR and (R®Z)c2 ~ Rc2. 

Since HF O ~ F, then every e-determined C2-Mackey field can be written as the following: 

Rc2 

,~( }+y 
R 

Note that this does not mean that every C2-Mackey functor that has the above Lewis diagram is a 

C2-Mackey field. For example~ has this structure but is not a Mackey field as ~(C2/C2) = Z is 

not a field and M(G/G) must be a field if Mis a G-Mackey field. 

For the case when p is an odd prime, using the J-Mackey functor computations in Defini­

tion 2.0.16 above we have the following: 

dim(a) = 0 

R 

0 else 
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where the transfer map is the sum of yi for O ~ i ~ p - 1, y the chosen generator of C p. Since 

Hf.JJ ~ F, then every e-determined Cp-Mackey field for p an odd prime, can be written as the 

following: 

R. 
Note that this does not mean that every Cp-Mackey functor for pan odd prime that has the above 

Lewis diagram is a Cp-Mackey field. For example~ has this structure but is not a Mackey field as 

~(Cp/Cp) = Z is not a field and M(G/G) must be a field if Mis a G-Mackey field. 

Further, Lewis discusses after Remark 7.4 in [Lew80] the following result. 

Proposition 2.5.6 ([Lew80]). If F is an H-determined G-Mackey field, then there must be an 

element x E F(G/H) such that tr;;(x) = 1 E F(G/G). 

Corollary 2.5.7. Let p be prime. If Fis an e-determined Cp-Mackey field, then the transfer map 

is nonzero. 

This result will greatly help in future proofs about e-determined Cp-Mackey fields. 

As mentioned above, the question of whether the RO(Cp)-graded homotopy groups of the 

Eilenberg-Mac Lane spectrum of a Mackey field is a graded Mackey field is more complex than 

the Z-graded homotopy groups since ?I...*(Hf) is nonzero in many degrees. 

Proposition 2.5.8. For Fan e-determined Cp-Mackey field, and p an odd prime, HF* is an 

RO( Cp)-graded Mackey field. 

Proof. Let F be such that F(Cp/e) = R, and F(Cp/Cp) = RCP. By way of contradiction, say 

there exists a nontrivial, proper RO( Cp)-graded ideal!.* of HF*" The definition of a graded ideal 

says that there must be a module structure map H f..a □ !.p ~ l..a+/3' and !.o must be an ideal of 

Hf.JJ = F. Therefore !.o is either For Q. We will show that for either situation!.* will be forced to 

be Q* or HF*' which will be a contradiction since !.* is assumed to be a nontrivial, proper ideal. 
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If Io= F, choose a E RO(Cp) such that Hf.a * Q, so by above calculations since Hf.a* Q, 

then H f...a = F. Consider the module structure map is H f...a □ Io = F □ F ---+ Ia and by 

Proposition 2.1.3 this map is determined by the module structure maps: R ® R ---+ Ia ( C p / e) and 

RC P ® RC P ---+ Ia ( C p / C p). As we know, when considering a ring as a module over itself the 

module structure map is a multiplication map, so Ia ( C p / e) must be R and Ia ( C p / C p) must be 

RCP or else the above mentioned maps are not multiplication maps on R and RCP respectively. 

Then we can see that Ia must be F. Thus, Ia must be F for all a such that H f...a * Q so I* = HF*" 

If Io= Q, choose a E RO(Cp) such that Hf.a * Q, so by above calculations since Hf.a * Q, 

then H f...a = F. Consider the module structure map H f...a □ I-a = F □ I-a ---+ Io = Q and by 

Proposition 2.1.3 this map is determined by the module structure maps: R ® I-a(Cp/e)---+ 0, and 

RCP ® I-a(Cp/Cp) ---+ 0. Since I-a is a submodule of La, which by above computations is 

either Q or F, then I-a ( C p / e) is a submodule of R and I-a ( C p / C p) is a submodule of RC P. The 

only submodule of R, say M, whose multiplication map is the zero map, is O itself so I-a(Cp/e) 

must be 0. Similarly we can show that I-a(Cp/Cp) must be 0. Then we can see that La = Q. 

Note that if dim( a) = dim( -a) so for p an odd prime, by definition of HF*' H f...a = H La for all 

a E RO ( C p). Thus, Ia must be Q for all a such that H f...a * Q so I* = Q*. 

Therefore, HF* is an RO(Cp)-graded Mackey field. □ 

The proof is the same for the following proposition. 

Proposition 2.5.9. Let F be an e-determined C2-Mackey field, where F( C2/ e) = R. If R is such 

that R ® Z =Ras Z[C2]-modules where Z has the C2-action of multiplication by -1, then HF* is 

an RO( C2)-graded Mackey field. 

Note that this does not mean that HF* is not an RO(C2)-graded Mackey field for other e­

determined C2-Mackey fields F. 
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CHAPTER3 

CLASSICAL AND EQUIVARIANT HOCHSCHILD THEORIES 

Throughout this paper, we will use equivariant analogues of Hochschild homology (HH) and 

topological Hochschild homology (THH); these equivariant analogues were defined in [BGHL19] 

and [ABG+18], respectively. In this section, we recall the definition of HH, a classical invariant of 

algebras, its topological analogue THH which was defined in [Bok85a], and discuss some tools used 

to compute them. We will then recall equivariant analogues of HH and THH, namely, Hochschild 

homology for Green functors [BGHL19, Definition 2.25] and twisted THH [ABG+1s, Definition 

8.2], which take as input equivariant rings and equivariant ring spectra, respectively. 

3.1 Hochschild homology 

For this section, let k be a commutative ring, let A beak-algebra, and let all tensor products be 

over k. We will discuss two perspectives on Hochschild homology, one via the cyclic bar complex 

and the other using Tor-functors. We start by defining the cyclic bar complex. 

Definition 3.1.1. Let k be a commutative ring. The cyclic bar complex for a k-algebra A, denoted 

B~Y (A), is a simplicial k-module such that B~Y (A) = A ®n+l, where the face and degeneracy maps 

di: A ®n+ 1 ~ A ®n and Si: A ®n+ 1 ~ A ®n+2 are defined as follows: 

lao ® a1 ® ... ® aiai+l ® ... ®an 
di(ao ® a1 ® ... ®an) = 

anao ® a1 ® ... ® an-1 

Si(ao ® a1 ® ... ®an) = ao ® a1 ® ... ® ai ®I® ... ® an 

05'i<n 

i = n 

0 5' i 5' n. 

To define Hochschild homology, we start by defining the Hochschild complex, C*(A). Define 

Cn(A) = A®n+l, such that the boundary map b: A®n+l ~ A®n is defined as b = I. (-Iidi. 
i=O 

Using this, we can define HH (A). 

Definition 3.1.2. Let k be a commutative ring, and A a k-algebra. The Hochschild homology of A 

is HH!(A) := Hn(C*(A)). 
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By the Dold-Kan correspondence, there is an equivalent way to define Hochschild homology. 

Definition 3.1.3. Let k be a commutative ring, and A a k-algebra. The Hochschild homology of A 

is HH! (A) := nn(IB~y (A)I). 

Interestingly, the cyclic bar complex has a cyclic operator on every level. In particular, there is 

a map T: A ®n+ 1 ➔ A ®n+ 1 which rotates the last copy of A to the front for all n ~ 0. This map T 

generates the Cn+1-action on the nth level of the cyclic bar complex. This cyclic bar complex is a 

cyclic object and by Connes' theory of cyclic sets, the geometric realization of a cyclic object has 

an S1-action [Con83]. 

Recall that A -A-bimodules agree with left (A® A0 P)-modules. We will write the enveloping 

algebra A ® A op as A e. We recall the following classical homological algebra result. 

Proposition 3.1.4. Let k be a commutative ring, and A a k-algebra. If A is fiat as a module over 

k, then there is an isomorphism 

k ~ Ae HHn (A) = Torn- (A, A). 

3.2 Topological Hochschild homology 

As one can see in the previous subsection, Hochschild homology is a purely algebraic object. 

Bokstedt developed a topological analogue to Hochschild homology, topological Hochschild ho­

mology (THH) [Bok85a]. Throughout this subsection, let R be a ring spectrum. We will start by 

defining the cyclic bar complex for ring spectra. Let r : RAn+ 1 ➔ RAn+ 1 be the map that rotates 

the last copy of R to the front. 

Definition 3.2.1. The cyclic bar complex for a ring spectrum R, denoted B~Y (R), is a simplicial 

spectrum such that B~Y (R) = RAn+l where the face and degeneracy maps di: RAn+l ➔ RAn and 

Si: RAn+l ➔ RAn+ 2 are defined as follows: 
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0::::; i < n 

i = n 

where </J and 77 are the multiplication and unit maps of the ring spectrum R. 

This is the topological analogue to the cyclic bar complex in algebra, as we replace k-algebras 

with ring spectra and the tensor with the smash product. 

Definition 3.2.2 ([Bok85a]). The topological Hochschild homology of a ring spectrum R, THH(R), 

is the geometric realization of the cyclic bar complex, IB~Y (R)I. 

An advantage of Hochschild homology was that we could compute it using homological algebra. 

One of the main tools used to compute THH is the Bokstedt spectral sequence. 

Theorem 3.2.3 ([Bok85b ]). Let R be a ring spectrum, and p prime. There is a Bokstedt spectral 

sequence 

with differentials d7 : Ei,j ~ Ei-r,j+r-l· This spectral sequence converges strongly. 

This spectral sequence demonstrates a strong relationship between THH and its algebraic 

analogue. Bokstedt goes on to use this spectral sequence to compute THH(HlFp) in [Bok85b] and 

many computations of THH have been made by other authors. 

There are other useful perspectives on THH. Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and 

1 
Mandell show in [ABG+t8] that THH(R) can be written as an equivariant norm, N! R. McClure, 

Schwanz!, and Vogt show in [MSV97] that for Ra commutative ring spectrum THH(R) ~ IR® s! 1-

3.3 Hochschild homology for Green functors 

As discussed above, Green functors are an equivariant analogue to rings; therefore, it is natural 

to want an equivariant analogue of Hochschild homology to take an input of R-algebras for Ra 
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Green functor. In [BGHL19] the authors define an equivariant analogue to Hochschild homology, 

namely Hochschild homology for Green functors. 

For this section, let Cn = (r) be the cyclic group of order n where y = e21ri/n, let R be a 

commutative Cn-Green functor, let M be an R-algebra, and all box products are over R. Recall 

that for Ga cyclic group, one can define a G-action on a G-Mackey functor Remark 2.0.14. Let 

a: MD m+ 1 ➔ MD m+ 1 be the map that rotates the last copy of M to the front and then acts on that 

Mbyy. 

We now recall the equivariant analogue of the cyclic bar construction defined in [BGHL19]. 

Definition 3.3.1 ([BGHL19, Definition 2.20]). Let Cn = (r) and let R be a commutative Cn­

Green functor. The Cn-twisted cyclic bar complex of M an R-algebra, denoted B~y,Cn (M), is a 

simplicial Cn-Mackey functor such that B';I'Cn = MDm+l, where the face and degeneracy maps 

d · : MD m+ 1 ➔ MD m and s · : MD m+ 1 ➔ MD m+2 are defined as follows: l_ _ l_ _ 

05.i<m 

i =m 

05.i5.m 

where ¢ and 17 are the multiplication and unit maps of M. 

There is an equivalence between the category of simplicial Mackey functors and the category 

of non-negatively graded dg Mackey functors by applying the Dold-Kan correspondence at each 

orbit. The homology of a simplicial Mackey functor is the homology of the associated normalized 

dg Mackey functor; details can be found in Section 4 of [BGHL19]. 

Definition 3.3.2 ([BGHL19, Definition 2.25]). Let Cn = (y), let R be a commutative Cn-Green 

functor, and let M be an R-algebra. The Hochschild homology of M, is defined by 

Adamyk, Gerhardt, Hess, Klang, and Kong define Hochschild homology of graded Green 

functors in [AGH+22]. Let a: M;;;m+l ➔ M;;;m+l be the iteration of the rotating isomorphism 
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(as defined in Definition 2.2.2) which moves the last copy of M* to the front, and then acts on that 

copy of M* by y. Now let us define the Cn-twisted cyclic bar complex for RO(Cn)-graded Green 

functors. 

Definition 3.3.3. [AGH+22, Definition 4.1.7] Let Cn = (y), let R* be a commutative Cn-Green 

functor. The Cn-twisted cyclic bar complex of M* an R*-algebra, denoted B~n,cy (M*), is a sim­

plicial RO ( Cn)-graded Mackey functor such that B'/,l'Cn = M~ m+ 1, where the face and degeneracy 

maps d·: M□m+l ➔ M□m ands·: M□m+l ➔ M□m+2 are defined as follows: 
z -* -* z -* -* 

05,i<m 

i =m 

05:i5:m 

where <p and T/ are the multiplication and unit maps of M *" 

Definition 3.3.4. [AGH+22, Definition 4.1.8] Let Cn = (y), let R* be a commutative RO(Cn)­

graded Green functor, and let M *bean R* -algebra. The Hochschild homology for RO ( Cn)-graded 

Green functors of M *' is defined by 

Lewis and Mandell's paper [LM06] allows us to do homological algebra in the equivariant 

setting. As is true classically, there is a Tor functor perspective for Hochschild homology for Green 

functors. We recall the definition of Tor in this setting. 

Definition 3.3.5 ([LM06]). Let R* be an RO(G)-graded Green functor. For M* and N* left and 

right R*-modules respectively, To~!(N*, M*) is the sth left derived functor of N* □B.* M*. 

We will now define an R-module which encodes this twisting information into the left module 

structure map. Let R be a Cn-Green functor, and M a left R-module. Let us define 'Y M as M with 

the left module map defined as 
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y 
M □RM µ M 

y□{/ 
M□RM 

where µ is the left module map for M and y: M ➔ M acts on M by y. 

Proposition 3.3.6 ([AGH+22, Proposition 4.3.2]). Let Cn = (y) and R* be an RO(Cn)-graded 

commutative Green functor. If M * is an R* -algebra and is flat as an R* -module, there is a natural 

isomorphism 

3.4 1\visted topological Hochschild homology 

For this section, let Cn = (y) be the cyclic group of order n where y = e21ri/n, let R be a ring 

Cn-spectrum, and a: Rt--m+l ➔ Rt--m+l rotates the last copy of R to the front and acts on that copy 

of R by y. In [ABG+18], Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell define an 

equivariant analogue to THH which takes as input a ring Cn-spectra, namely Cn-twisted THH. The 
1 

authors define Cn-twisted THH of a ring Cn-spectrum R to be the norm N~n R. The authors show 

that twisted THH can be defined using a twisted analogue of the cyclic bar complex. 

21ri 
Definition 3.4.1. Let y = e""""n be the chosen generator of Cn, The Cn-twisted cyclic bar complex 

for a ring Cn-spectrum R, denoted B;Y,Cn (R), is a simplicial object such that BC:,'Cn = Rt--m+l, 

where the face and degeneracy maps, di: Rt--m+l ➔ Rt--m and Si: Rt--m+l ➔ Rt--m+2 are defined as 

follows: 

05:i<m 

i =m 

Si = idi+l A TJ A idm-i 05:i5:m 

where </J and T/ are the multiplication and unit maps of R. 

In the following definition, we let I denote the change of universe functor. 
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Definition 3.4.2 ([ABG+t8, Definition 8.2]). Let Ube a complete S1-universe, let ff := icn Ube 

the pullback of the universe to Cn, and let R be a ring Cn-spectrum indexed on U. The Cn-twisted 

topological Hochschild homology of R is THHen(R) = IJi'00 1B~y,en(IV 00 R)I. 

The work of Adamyk, Gerhardt, Hess, Klang, and Kong in [AGH+22, Theorem 4.2.7] shows 

that there is an equivariant analogue of the Bokstedt spectral sequence which demonstrates a 

relationship between Hochschild homology for Green functors and Cn-twisted THH. First, we must 

discuss the following facts. 

For G an abelian group, and y E G, one can define a left y-action on any genuine orthogonal 

G-spectrum, denoted ly: X ---+ X (for more details see [Sch18, Section 3.1]). We will say that y 

acts on a G-spectrum trivially if ly is equivariantly homotopic to the identity map. 

Theorem 3.4.3 ([AGH+22, Theorem 4.2.7]). Let Cn be a.finite subgroup of S1 such that Cn = (y). 

Let R be a ring Cn-spectrum and Ea commutative ring Cn-spectrum such that y acts trivially on 

E. If E*(R) is flat over E*, then there is an equivariant Bokstedt spectral sequence 

The category of orthogonal Cn-ring spectra and the category of unbased Cn-spaces are tensored 

over the category of unbased Cn-spaces. Let R be a commutative ring Cn-spectrum indexed over 

the trivial universe R 00 • Consider the functor R ®en ( - ) to be the coequalizer of the following 

diagram 

R ® Cn ® ( - ) ~ R ® ( - ) 
l'®id 

id®r 

where r is the Cn-action on ( - ) and£ is the induced Cn-action on R. 

The authors of [ABG+t8] show that for U a complete S1-universe and ff= ten U, THHen (R) ~ 

IJi'00 ( R ®en S 1). This definition will be heavily used in Chapter 5 in order to demonstrate the 

algebraic structure of twisted THH. 
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3.5 A computation of twisted THH 

Very few computations of twisted THH have been done. In this section, we will compute 

HF *(THHc 2(MUR)) for F the C2-Mackey field such that F(C2/C2) = lF2 and F(C2/e) = 0, and 

MUR the Real bordism spectrum. To do this computation, we will use the equivariant Bokstedt 

spectral sequence Theorem 3.4.3. Recall that to use this spectral sequence for this circumstance, 

we will need that y, the non-trivial element of C2, acts trivially on HF, and that HF *(MUR) is 

flat over '!!..*(Hf). 

Recall that in Section 3.4 we discussed that one can define a Cp-spectrum to have a trivial 

y-action, for y E C p, if ly is equivariantly homotopic to the identity map. Let X be a C p-spectrum. 

If the Weyl action on '!I...*(X) is trivial, then the generator y of Cp induces the identity map on the 

RO ( C p )-graded homotopy groups of X. Furthermore, if the only element that induces the identity 

map in X*X is the unit 1, then ly must be equivariantly homotopic to the identity map. 

If we consider X to be the Eilenberg-Mac Lane spectrum of the Cp-Mackey field F where 

F ( C p / C p) = k and F ( C p / e) = 0 then by the computations in Section 2.5 we know that whenever 

'!I...a(Hf) -::/:-Q then '!I...a(Hf) = F which has a trivial Weyl action. Further, '!I...a(Hf) -::/:-Q only when 

dim(acP) = 0. Therefore HF* has a trivial Weyl action and the only degrees of HF*HF we need 

to consider are the degrees a such that dim(acP) = 0. 

To compute HF*HF we consider Proposition 2.3.8 which shows that we have the following 

isomorphism of non-equivariant ring spectra: cI>CP (Hf) = Hk. Therefore, by Proposition 2.5.4 

HFaHF(C JC)= Hkdim(acP)Hk andHFaHF(C /e) = 0. - _pp - _p 

Since we only need to consider HFaHF for dim(acP) = 0 then we only need to consider 

H k0 H k. If we let k = lF2, then the question reduces to which elements of lF2 induce the identity on 

~HlF2 = lF2. The only element of lF2 which induces the identity on lF2 is the unit 1. Therefore 

the action of yon HF is trivial when F(C2/C2) = lF2, and F(C2/e) = 0. 

We will now compute HF *(THHc 2 (MUR)) using the equivariant Bokstedt spectral sequence 
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for F(C2/C2) = lF2 and F(C2/e) = 0. To aid our computations, we will recall what it means for a 

spectrum to be real oriented. 

Consider ClP'n and ClP'00 as pointed C2-spaces under the action of complex conjugation, where 

the base point is ClP'o. Note that the C2-fixed point spaces of ClP'n and ClP'00 are RJP'1Z and JlU1'00 

respectively. 

Definition 3.5.1 ([Ara79]). Let Ebe a C2-equivariant homotopy commutative ring spectrum. A 

real orientation of E is a class x e EP ( ClP'00 ) ( C2/ C2) whose restriction to 

is the unit, where p = 1 + a- is the regular representation. The spectrum E is real oriented if it has 

a real orientation. 

The following corollary builds off of this work of Araki. 

Corollary 3.5.2 ([HHR16, Corollary 5.18]). If Eis a real oriented spectrum, then there is a weak 

equivalence 

MURA E ~EA j\s 0[siP] 
i~l 

where s0[siP] = V (Sip)j. 
j~O 

For F where F ( C2/ C2) = k and F ( C2/ e) = 0, let us consider for which k HF is real oriented. 

Proposition 3.5.3. Let F be the C2-Mackey field where F(C2/C2) = k is a finite field and 

F ( C2/ e) = 0. Then, HF is real oriented if and only if k is characteristic 2. 

Proof If E := HF is real oriented, then there exists an element x e EP ( ClP'00 ) ( C2/ C2) that restricts 

to the unit of EP (ClP'1 )(C2/C2). Using Definition 2.5.1, we have 

EP (ClP'00 )(C2/C2) = [L00 ClP'00 , LP E]c 2 (C2/C2) 

= [(C2/C2)+ A L00 ClP'00 , LP E]c 2 

= [LooClP'oo' LP E]c2. 
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By Proposition 2.3.7, Eis concentrated on C2, which means that '!I..: (E) * 0 if and only if H 

contains C2 up to conjugation. Note that * - p ranges over all RO ( C2)-gradings. Therefore, an 

equivalent way to say that Eis concentrated over C2 is by saying that '!I..: (SP A E) = '!I...:-p (E) * 0 

if and only if H contains C2 up to conjugation. This implies that SP A Eis concentrated over C2. 

Using Proposition 2.3.4, and Proposition 2.3.5 and the properties of geometric fixed points, we can 

continue our calculation in the following way: 

[L00 CJP'00 , LPE]c2 = [4>c2(L00 CJP'00 ), (SP A E)c2]e 

= [Loo((CJP'oo)C2), <l>c2(SP A E)]e 

= [L00 fill>00 , S1 A <l>C2(E)]e-

Since [L00 fill>00 , S1 A 4>C2 (E) ]e is non-equivariant, we can use Proposition 2.3.8 to state 

[L00 ru1>00 , S1 A 4>C2 (E) ]e = [L00 fill>00 , S1 A Hk ]e 

= H1 (fill>00 ; k). 

By a similar argument, we have that 

We know that H 1 (rui>1; k) = k and using the Universal Coefficient Theorem we have that 

H 1(rui>00 ;k) = Hom(lF2,k) is k when the characteristic of k is 2, and O else. Thus, if k is 

not characteristic two then there exists no x e H 1 (fill>00 ; k) that maps to the unit in k, so HF would 

not be real oriented. 

In the other direction, say k is characteristic two. We can use the cofibration sequence CJP'1 ➔ 

CJP'00 ➔ ClP'00 /CJP'1 to induce the following exact sequence: 

By the computations above this gives an exact sequence: 

Since k is characteristic two, we get 
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The C2-action on the subset CJP1 c CJP00 is closed, therefore (CJP00 /CJP1 )c2 == JRJP'00 /JRJP'1 which 

is connected. Since JRJP'00 \JRJP'1 is connected then Ext!(Ho(fill' 00 \JRJP'1; Z), k) = Ex1i:(Z, k) = 0. 

Further, since JRJP'00 \JRJP'1 has no 1-cells then H l (JRJP'00 \JRJP'1; Z) = 0. So the Universal Coefficient 

Theorem tells us that H1 ( ( CJP00 / CJP1) C2; k) = 0. Then the map k ~ k in this exact sequence is 

injective, which makes it an isomorphism since k is finite by assumption. So the identity element 

maps to the identity element, therefore HF is real oriented. □ 

Now that we know some examples of C2-determined C2-Mackey fields F which have an 

Eilenberg-Mac Lane spectrum that is real oriented, we can use Corollary 3.5.2 to obtain the 

following result. 

Lemma 3.5.4. Let F be a C2-determined C2-Mackey field. If HF is real oriented, then HF* (MU~) 

is a free HF* -module, that is, 

where deg(bi) = ip. 

Proof. Since HF is real oriented, we can use Corollary 3.5.2 to show that 

MUIR. A HF== HF A /\ s0 [siP] 
i~l 

which gives an isomorphism of RO ( C2)-graded Green functors 

for deg(bi) = ip. □ 

There is a classical standard argument which is a result of Cartan and Eilenberg's Theorem 

X.6.1 in [CE99]. The argument is that fork a commutative ring, and A a commutative k-algebra 

that is flat as a module over k, then 
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Using the homological algebra from [LM06] we can extend Cartan and Eilenberg's argument to 

the equivariant setting. That is, if R~ is a commutative G-Green functor, and M * is a commutative 

R* -algebra that is flat as a module over R*, then 

M * □Ji* M~p ( ) ~ M * ( ) 
Tor*,* M*,M* = M* □!i* Tor;,-* R*,R*. 

We will use this in our calculations. 

From the discussion in the beginning of this section and Proposition 3.5.3 we know that for the 

C2-Mackey field F where F(C2/C2) = lF2, and F(C2/e) = 0, HF has a trivial C2-action and is 

real oriented. 

Theorem 3.5.5. For F the C2-Mackey field where F ( C2/ C2) = lF2, and F ( C2/ e) = 0, 

as an HF *-module. Here lbil = ip and lzil = 1 + ip. 

Proof. Proposition 3.5.3 shows that HF has a trivial C2-action. In order to use the Bokstedt 

spectral sequence, we need to show that HF* (MUR) is flat over HF*. The following isomorphism 

of RO( C2)-graded Green functors is given by Lemma 3.5.4: 

where deg(bi) = ip. Therefore HF *(MUJR) is flat over HF*" Since the appropriate conditions 

hold, we can use the equivariant Bokstedt spectral sequence 

where deg(bi) = (0, ip) and deg(zi) = (1, ip ). 

Recall that dr: E; a ~ Er + 1. Our spectrum MUJR is commutative, so by [AGH+22, , s-r,a r-

Proposition 4.2. 8] we can view this as a spectral sequence of HF* -algebras. Consider the differential 
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d2. We know that all the differentials are determined by what the differential does on the generators 

of the E 2 page, thus since the only generators are in the columns where s = 0, 1 then all of the 

differentials on the E 2-page are zero and the spectral sequence collapses. □ 
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CHAPTER4 

HOPF STRUCTURE OF THE BOKSTEDT SPECTRAL SEQUENCE 

Throughout this section, let R be a commutative ring, and A a commutative ring spectrum. 

Spectral sequences can have algebraic structures, and these structures can be very helpful when 

doing computations with said spectral sequences. More specifically, the algebraic structure of a 

spectral sequence can help one know more about the differentials of the spectral sequence. As 

mentioned in Section 3 .2, the Bokstedt spectral sequence is one of the main tools we have to compute 

THH. In this section we will recall results of Angeltveit and Rognes in [AR05] which show that 

the Bokstedt spectral sequence has a Hopf algebra structure. These results we will recall extend 

the results of [EKMM97] and [MSV97] which demonstrate that for a commutative ring spectrum 

A, THH(A) is an A-Hopf algebra. In the future sections, namely Chapter 5 and Chapter 6, we 

will prove an equivariant analogue to these results for twisted THH and the equivariant Bokstedt 

spectral sequence, so this section is dedicated to recalling these classical results. We will start this 

section by recalling the algebraic definition of R-bialgebras and R-Hopf algebras. 

Definition 4.0.1. Let R be a commutative ring. An R-bialgebra Mis a unital, associative R-algebra 

as well as a counital, coassociative R-coalgebra such that the following diagrams commute: 
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<p 
M----------M®M 

~/-
R~R®R 

M®M----------M 
t/f 

id R R 

~/ 
M 

M®M------M------M®M 

~®'{,1 I·®· 
M®M®M®M M®M®M®M 

id®T®id 

where 17, s, </J, ,fr, and Tare the unit, counit, product, coproduct, and the map that swaps the two 

copies of M respectively. 

Definition 4.0.2. Let R be a commutative ring. An R-Hopf algebra is an R-bialgebra with a map 

of R-modules x: M ~ M, called the antipode, such that the following diagram commutes: 
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M®M 

} 
M®M-----M 

<p 

where 17, s, ¢, 1/J, and x are the unit, counit, product, coproduct, and antipode, respectively. 

These algebraic definitions can be extended to ring spectra where tensor products are replaced 

with smash products, and rings are replaced with ring spectra. Further, one can extend these 

definitions to define spectral sequences of Hopf algebras. This will be discussed more in Chapter 6. 

In this section we will discuss the simplicial maps which can be used to prove that, for A a 

commutative ring spectrum, THH(A) is an A-Hopf algebra in the stable homotopy category. Then 

we will discuss how these maps induce the Hopf structure on the Bokstedt spectral sequence. 

McClure, Schwanzel, and Vogt show in [MSV97] that for A a commutative ring spectrum, 

THH(A) ~ A ® S1. This result can be used to prove the following theorem by inducing the 

structure maps of THH(A) from maps on the circle. 

Theorem 4.0.3 ([EKMM97, Corollary 3.4], [MSV97, Theorem I]). For A a commutative ring 

spectrum, THH(A) is an A-Hopf algebra in the stable homotopy category. 

Angeltveit and Rognes extend this result to the Bokstedt spectral sequence by considering 

simplicial maps on the circle [AR05]. We will first recall Angeltveit and Rognes' simplicial 

argument which proves that THH(A) is an A-Hopf algebra in the stable homotopy category. 

Let us define three simplicial spaces e, s! and dS!, where e is the point, s! is the classical 

simplicial structure on the circle: 

and dS ! is the following simplicial structure on the circle: 
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Note that dS! = (~! u ~!) u8~lua~l a~!. 

Many of the maps needed to prove that THH(A) is an A-Hopf algebra are induced from the 

following simplicial maps 

,,,: e---+ s! 

s: S!---+ e 

</J: s! v s! ---+ s! 

1/1: dS! ---+ s! Vs! 

x: dS!---+ dS!. 

Here the map T/ includes the point into the basepoint of s!, the maps crushes s! to the point, 

the map <p folds the two copies of s! together, the map l{I is the simplicial pinch map, and x 

swaps the two 1-cells. Since tensoring with A preserves pushouts, A® (S! vs!) is isomorphic 

to the pushout of the simplicial span A® s! ~A® e---+ A® s!. By VII.1.6 in [EKMM97] we 

have the isomorphism (IA® s!I) AA (IA® s!I) ~ THH(A) AA THH(A). So, we can identify 

A® (S! v S!) with THH(A) AA THH(A). Let dTHH(A) := IA® dS! 1-Lemma 3.8 in [AR05] says 

that the collapse map n: dS! ---+ s!, which collapses the second~!, induces a weak equivalence 

n: dTHH(A) ---+ THH(A). Therefore, the simplicial maps above induce the following maps of 

spectra 

T/: A ---+ THH(A) 

s: THH(A) ---+ A 

</J: THH(A) AA THH(A) ---+ THH(A) 

1/1: THH(A) ---+ THH(A) AA THH(A) 

X: THH(A) ---+ THH(A) 

which are the unit, counit, product, coproduct and the antipode, respectively. Note that the coproduct 

map is the following 1/1: THH(A) ~ dTHH(A) ---+ THH(A) AA THH(A) and the antipode is the 
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following X: THH(A) ~ dTHH(A) ➔ dTHH(A) ~ THH(A) where the second map is induced 

by x: dS! ➔ dS!. 

In order to show that THH(A) is an A-Hopf algebra in the stable homotopy category, we need 

to show that a variety of diagrams commute up to homotopy. Note that we can reduce the problem 

to considering if diagrams of simplicial maps of circles commute up to simplicial homotopy. For 

example, we can reduce the problem of checking if the following diagram commutes: 

THH(A) AA THH(A) AA THH(A)-id_A<f> __ THH(A) AA THH(A) 

¢Aid! j ¢ 

THH(A) AA THH(A) ---</>----THH(A) 

to checking the commutativity of: 

idV<f> s1 v s1 v s1 ---+-S 1 v s1 • • • • • 

¢Yid! !¢ 

Recall that <p is the fold map, and so this diagram commutes since it does not matter what order 

the circles get folded together. Since this diagram of simplicial objects commutes, then the first 

diagram commutes. This demonstrates that the product map for THH(A) is associative in the 

category of spectra. 

In order to show that the coproduct map on THH(A) is coassociative, we need a simplicial 

triple model of the circle. Angeltveit and Rognes call this tS!, which can be drawn as: 
v2 

voOv1 
Angeltveit and Rognes show that tTHH(A) := IA® tS!I is weakly equivalent to THH(A) within 

the proof of Theorem 3.9 in [AR05]. 

Let us now check if the coproduct ,fr: THH(A) ➔ THH(A) AA THH(A) is coassociative by 

checking that the following diagram commutes: 
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ts! ___ ifr_i __ s! V dS! 

W2l lMvw 

dS1 V s1 ----s 1 V s1 V s1 
• • ,fr Yid • • • 

Here 1/fl identifies vo and v1 and l/f2 identifies v1 and v2. This diagram commutes because either 

way we get the same wedge of three circles. 

Since tTHH(A) and dTHH(A) are only weakly equivalent to THH(A), we need to be in the 

stable homotopy category for ,fr to be coassociative. 

The following are the remaining diagrams which need to commute, or to commute up to 

homotopy, in order to show that THH(A) is an A-Hopf algebra: 

¢' 
dS1 V dS1 -----+ dS1 ----➔ s1 V s1 • • • • • 

wvwl }v¢ 
s1 v s1 v s1 v s1 • • • • --------- s1 v s1 v s1 v s1 

idVTVid • • • • 

s1 v s1 </J s1 • • • 

~/ 
eVe=:E.e 

e Ve =:E. e 

7~ 
s1 V s1 ,fr dS1 • • • 

e 

~ 
id s1 • 

/ 
e 
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tS 1 tflt s1 V dS 1 • • • 

~21~ ~ 
dS 1 V S 1 e S 1 V dS 1 

0 

•~ ~ }o(:dvn) 
dS! V s! ( "d) ) s! </Jo 11"Vl 

where <fl is the simplicial fold map for dS!, T swaps the two copies of s!, 'f/1 includes the point into 

the first point of dS!, and n: dS! ~ s! is the simplicial collapse map defined above. In fact, all of 

the above diagrams commute except the last diagram, which commutes up to homotopy. Angeltveit 

and Rognes discuss why the last diagram commutes up to homotopy in their proof of Theorem 3.9 

in [AR05]. Thus, for A commutative ring spectrum, THH(A) is an A-Hopf algebra in the stable 

homotopy category. 

Since Angeltveit and Rognes do this whole argument with simplicial circles then they are able 

to extend these structure maps to the Bokstedt spectral sequence in [ AR05]. 

Theorem 4.0.4 ([AR05, Proposition 4.2]). Let A be a commutative ring spectrum, and let p be 

prime. The Bokstedt spectral sequence E~,*(A) is a spectral sequence of commutative H*(A;lFp)­

algebras. 

Further, they show that under some flatness conditions this spectral sequence has a coalgebraic 

structure as well. 

Theorem 4.0.5 ([AR05, Theorem 4.5]). Let A be a commutative ring spectrum, and let p be prime. 

IfeachtermE~,*(A)forr ~ 2isflatoverH*(A;lFp), thenthereisacoproduct 

and E~,*(A) is a spectral sequence of H*(A;lFp)-Hopf algebras. 

Indeed, Angeltveit and Rognes continue to do many computations of THH by leveraging this 

algebraic structure on the Bokstedt spectral sequence [AR05]. 
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CHAPTERS 

ALGEBRAIC STRUCTURE ON TWISTED THH 

In this section, we will explore the algebraic structure of C p-twisted THH, p prime. Let U be a 

complete S1-universe and let fJ := ic U. Let R be a commutative ring Cp-spectrum indexed over 
p 

fl, let R := f~ 00 R, let A be a commutative ring spectrum, and let the chosen generator of the u 
group Cn bey := e21ri/n unless otherwise specified. Recall that, by convention, our spectra are 

orthogonal spectra. 

Recall the following simplicial model of S1 from [Lod86], where Cn+l = {l, y, ... , yn} 

indicates the number of elements on each level, 

e 

Let us call this models!. The face and degeneracy maps are as follows: 
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j ~ i 

j > i. 



There are also maps t: Cn+ 1 ---+ Cn+ 1 such that t( yi) is yi+ 1 for j < n and 1 for j = n. It is notable 

that dn = do o t: Cn+ 1 ---+ Cn+ 1 for all n. 

Angeltveit and Rognes' classical argument, recalled in Chapter 4, requires additional models 

of the circle. For our equivariant proof, we will also need additional models and will construct 

these using the simplicial edgewise subdivision functor defined by Bokstedt, Hsiang, and Madsen 

in [BHM93]. The simplicial r-fold edgewise subdivision functor, sdr(-), is defined so that for a 

simplicial object x., 

with face and degeneracy maps di and Si defined by 

di = di O di+n+l O • • • 0 di+(r-l)(n+l) 

Si = Si+(r-l)(n+2) 0 • • • 0 Si+(n+2) 0 Si 

for di and Si the face and degeneracy maps of the simplicial object x •. 

Remark 5.0.1. Recall the simplicial relation that di o dj = dj-l o di if i < j and that in sl 

dn = do o t: Cn+l ---+ Cn+l· It is also true that in sdr(Sl), dn = do o t. To see this, consider 

that do = do o dn+l o ... o d(r-l)n+r-l and using the simplicial relation mentioned above, we 

can move do to the front and get that do = dn o d2n+l o ... o d(r-l)n+r-2 o do. Consider 

do o t = dn o d2n+l o ... o d(r-l)n+r-2 o do o t = dn o d2n+l o ... o d(r-l)n+r-2 o drn+r-l which is 

dn. 

Let us start by understanding the 2-fold edgewise simplicial subdivision of the circle, sd2(Sl). 

Example 5.0.2. Let us refer to sd2(Sl) as 2s¼. By definition, 

sd2(Sl)n = sin+l' 

di= di o di+n+l• and 
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Therefore 2S ! is 

c6 
1 t I t 1 
do so J1 s1 d2 

.!-I -!-I .!-
c 4 

I t I 
Jo so J1 

-!-I -!-
c2 

One can see that the only nondegenerate elements are 1, y E C2 and y, y 3 E C4, where the boundary 

of the 1-cell y is defined by 

and the boundary of the I-cell y 3 is defined by 

Therefore 2S ! looks like: 

where the C2-action on 2S! is induced from applying the functor sd2(-) to s!. This action sends 
. . n 

y1 to yi+2, where yn = I in Cn. Therefore the C2-action on 2S! is counter clockwise rotation by 

180°. 

Remark 5.0.3. If we consider 2S! non-equivariantly, it is not the same as dS! as defined in [AR05] 

and discussed earlier in Chapter 4. Non-equivariantly, 2s! is equivalent to d's! as defined in 

[AR05, Remark 3.6]. 
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Example 5.0.4. We can similarly build 4S! := sd4(S!). Note that this can be constructed by 

considering sd4(S!) or sd2(sd2(S!)). By definition, 

Therefore sd4 (S!) is 

And 4S ! looks like: 

sd4(S!)n = sJn+3, 

di= di O di+n+l O di+2n+2 ° di+3n+3, and 

Si = Si+3n+6 ° Si+2n+4 ° Si+n+2 ° Si. 

C12 

tit 
do so d1 s1 d2 

..!- I -!- I ..!-
cs 

It I 
do so d1 

-!- I -!-
c4 

where the induced C4-action is counter clockwise rotation by 90° and the induced C2-action is 

counter clockwise rotation by 180°. 

We can use this process to define mS! for any positive integer m, which will have the Cm-action 

of counter clockwise rotation by ( 3!0)°. Notice that in order for mS! to have a simplicial Cn-action 

of counter clockwise rotation by ( 3~0)° then m must be a multiple of n. Consider two examples of 

C3-equivariant simplicial models of the circle; 3S! and 6S!: 
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where the induced C3-action on both of these simplicial objects is counter clockwise rotation by 

120°. 

In Section 3.4 we recalled the definition of twisted THH as defined by Angeltveit, Blumberg, 

Gerhardt, Hill, Lawson, and Mandell in [ABG+l8]. We also discussed the different perspectives 

these authors gave us on twisted THH including, suppressing some change of universe notation, 

that for R a commutative ring Cn-spectrum THHcn (R) ~ R ®en S1. The following proposition 

demonstrates which simplicial model of the circle is suitable for this perspective. 

Proposition 5.0.5. Let R be a commutative ring C p-spectrum indexed on the trivial universe R 00 , 

for p prime. Then R ®cp pS! ~ B~y,Cp (R), the Cp-twisted cyclic bar construction. 

Proof. Let µ and T/ be the multiplication and unit maps of R respectively. To show that these 

simplicial objects are equivalent we will first show that every level is the same and then we will 

show that they have equivalent face and degeneracy maps. 

The k-simplicies of R ®cp pS! are defined by the following coequalizer diagram 

where the map r is the Cp-action on pS} and f is the induced Cp-action on R. 

Let Cp = (y), and pS} = Cpk+p = {l,x, ... ,xPk+p-l }. The induced Cp-action on the set 

of elements Cpk+p is defined by yxi = xj such that j = i + k + 1( mod pk+ p). There is a 

Cpk+p-action on pS} induced by t: Cpk+p ➔ Cpk+p defined by t(xi) = xj such that j = i + 1( 

mod pk+ p). 
p-l pk+p-l 

As Cp-sets, Cp ®pS} = Cp xCpk+p· Thus R®Cp ®pS} can be written as /\ ( /\ Rxs,yt). 
t=O s=O 

For ease of notation let us write Rs,t instead of Rxs,yt• Similarly, R ® pS} can be written as 
pk+p-l 

I\ Rs, With this notation id® r: Rs,t H Rj such that j = s + t(k + 1)( mod pk+ p), and 
s=O 

f ® id: Rs,t H yt Rs where yt R indicates R which has been acted on by y 1• By definition of the 

coequalizer, R ®cp pS} is the quotient space of R ® pS} where the quotient forces these two actions 

to agree. Recall that y1 xs = xj for j = s + t(k + 1) ( mod pk+ p). Therefore R ®cp pS} = RA.k+ 1. 
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We will now show that the face and degeneracy maps from R ®cp pS} are equivalent to the 

face and degeneracy maps from B~y,Cp (R). We will start by considering the face and degeneracy 

maps of pS} and induce the corresponding face and degeneracy maps of R ®cp pSk-

Recall that pS} = sdp(Sl)k with face and degeneracy maps di and Si defined as follows: 

di = di O di+k+l O • • • O di+(p-I)(k+I) 

Si= Si+(p-l)(k+2) o · · · o Si+(k+2) o Si 

where di and Si are the face and degeneracy maps of sl, and 0 ~ i ~ k. 

Let us start by finding what the induced face maps are on R ®cp pS}, say 8i: R ®cp pS} ~ 

R ®cp pS}_1, for 0 ~ i ~ k and k > 0. The map (id® di): R ® pS} ~ R ® pS}_1 applies the 

multiplication map to Ri I\ Ri+I as well as Ri+n(k+I) I\ Ri+I+n(k+I) for all 0 ~ n < p. Therefore 

8i: R ®cp pS} ~ R ®cp pS}_1 is the map idJ\i Aµ I\ idAk-i-l for 0 ~ i < k. 

Before figuring out what 8k must be, recall that pS} has a Cpk+p-action induced by the map 

t. Consider (id® t): R ® pS} ~ R ® pS}, this map rotates the last copy of R to the front. This 

map also rotates Rk into the position Rk+I was in, this is important as in the quotient R ®cp pS} 

we have that the following two are equivalent: 

(l' ® id)(Ro,1) = yRo 

(id® r)(Ro,1) = Rk+I 

so the map that is induced on R ®cp pS} rotates the last copy of R to the front and acts on that 

copy of R by y. Let us suggestively refer to this induced map as ak. 

Recall from Remark 5.0.1 that dk = do o t, so the last face map 8k is induced from id® dk = 

(id® do) o (id® t): R ® pS} ~ R ® pS}_1. The universal property of the coequalizer shows 

that the maps (id® do) and (id® t) induce maps on R ®cp pS}, namely 80 and ak respectively. 

Further, by the uniqueness property, the map induced from their composition, (id® do) o (id® t) 

must be equivalent to the composition of the induced maps. Meaning, 8k = 80 oak. 
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We similarly induce the degeneracy maps of R ®cp pS}, say a-i: R ®cp pS}---+ R ®cp pSl+ 1, 

for 0 ~ i ~ k and k ~ 0. By a similar argument as above we can show that these can be written as 

U-i = idl\i+ 1 A 77 A idAk-i. 

Recall that B?'Cp (R) = RAk+l and the face and degeneracy maps from this level are the 

following: 

dk = do oak 

s j = idAj+ l A 77 A idAk-j 

for O ~ i < k and O ~ j ~ k. 

Therefore, R ®cp pS! is isomorphic to B~y,Cp (R). □ 

A result of this proposition is that for R a commutative ring C p-spectrum indexed on C p-universe 

iJ, l(Itf0 R) ®cp pS!I ~ THHcp(R). We can construct similar structures (I"300 R) ®cp mpS!, 

and we will refer to I (I"300 R) ®cp mpS! I as m THHcp (R). 

An equivariant analogue of Angeltveit and Rognes' result [AR05, Lemma 3.8] shows the 

following result. 

Proposition 5.0.6. Let U be a complete S 1-universe, and let iJ := ic U. Let R be a commutative 
p 

ring Cp-spectrum indexed on the Cp-universe U,for p prime. Then there is a Cp-weak equivalence 

It will also be important to consider simplicial objects that look the same non-equivariantly to 

pS!, but have different Cp-actions. For example, one can consider what looks like 5S! 
vo 

v1ov4 v2 v3 

but with the C5-action of counter clockwise rotation by 144°, 216°, or 288° instead of the usual 

counter clockwise rotation by 72°. Let us denote the Cp-simplicial space that resembles pS! but 

has the Cp-action of counter clockwise rotation by (:360) 0 for 1 < n <pas PnS!. 
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Proposition 5.0.7. Let R be a commutative ring Cp-spectrum indexed over the trivial universe R00 , 

p prime. For 1 < n < p, the simplicial object R ®cp PnS! is isomorphic to the Cp-twisted cyclic 

b . cy,Cp( ) ar construction B • R . 

Proof. The proof is fairly similar to that of Proposition 5.0.5. Letµ and 1J be the multiplication and 

unit maps of R respectively. To show that these simplicial objects are equivalent we will first show 

that every level is the same and then we will show that they have equivalent face and degeneracy 

maps. 

As PnS! resembles pS!, they have the same simplicial construction, but with different Cp­

actions. Therefore R ®cp PnS! has the same number of copies of R as B~y,Cp (R) on every 

level. 

Now let us move on to show that the face and degeneracy maps are equivalent. Again, this 

argument will be similar to Proposition 5.0.5 and so we will start by discussing the Cpk+p-action 

on R ®cp PnS!. Consider the coequalizer diagram 

id®r 
1 ) R 81 1 R ® Cp ® PnS k _____ , ® Pn k ----- R ®cp PnS k 

t'®id 7 

the C p-action we consider here for l is the same as it would be for the coequalizer diagram for 

R ®cp pSl, while the Cp-action for r is different. 

Let Cp = (y), and PnSl = Cpk+p = {l,x, ... ,xPk+p-l }. The induced Cp-action on the set 

of elements Cpk+p is defined by yxi = xj such that j = i + n(k + 1)( mod pk+ p). There is a 

Cpk+p-action on PnS! generated by t: Cpk+p ~ Cpk+p defined by t(xi) = xj such that j = i + 1( 

mod pk+ p). This action is induced from s!. Note that unlike in Proposition 5.0.5, tk+l does not 

generate the Cp-action on PnSl- Instead, tn(k+l) generates the Cp-action. 

Let us use the notation ytR to mean that R has been acted on by y 1• The Cpk+p-action on 

R ®cp PnS! is the same as it was in the proof of Proposition 5.0.5, namely ak: 
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To show that the face and degeneracy maps of R ®ep PnS! are equivalent to those in B:y,ep (R) 

is the same as in Proposition 5.0.5. □ 

We are now ready to discuss the structure of twisted THH. 

5.1 Algebraic structure 

In this section, we will show that for R a commutative ring Cp-spectrum, THHep (R) is a 

commutative R-algebra in the category of Cp-spectra for any prime p. The process for proving this 

is similar to the process that Angeltveit and Rognes use in [AR05] that we recalled in Chapter 4. 

Recall that in [ AR05] the simplicial map T/ : e ➔ S ! is the inclusion of the point, which induces 

the unit map T/: A ➔ THH(A) by applying the functor A ® (-). The equivariant analogue to 

this simplicial map is T/: Cp ➔ pS! which includes the p points into pS!. This induces the unit 

map TJ: R ➔ THHep (R) by applying the functor R ®ep (-). The intuition here is that we need 

Cp-equivariant analogues to the classical spaces used, so instead of a point we require the Cp-orbit 

of a point and a C p-equivariant model of the circle that after applying the functor R ®e P ( - ) gives 

us THHep(R). 

Example 5.1.1. The inclusion map C3 ➔ 3S! can be pictured as follows: 

Let us consider the following pushout defined by the span of two copies of the simplicial map 

T/: Cp ➔ pS!, for p prime: 

Cp ----➔ ps! 

1 1 
pS!----➔ X. 

Let us call this pushout pS! Yep pS! := X and define the fold map</): pS! Yep pS! ➔ pS! as 

folding the 1-cells together that share the same boundary. This chosen notation is meant to evoke 
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that this is an equivariant analogue of the classical wedge. 

Example 5.1.2. The spaces 2s! v c2 2s! and 3S! v c3 3S! can be depicted with the following 

diagrams, respectively: 

where the C2-action on the first diagram is counter clockwise rotation by 180°, and the C3-action 

on the second diagram is counter clockwise rotation by 120°. 

In order to show that this fold map induces the product map </J: THHcp (R) AR THHcp (R) ~ 

THHcp (R), we need to show R ®cp (pS! v Cp pS!) is congruent to (R ®cp pS!) AR (R ®cp pS!) 

as simplicial C p-spectra. This question reduces to if the functor R ®c P ( - ) from C p-spaces to 

C p-spectra preserves pushouts. 

Proposition 5.1.3. Let R be a commutative ring C p-spectrum and consider C p as an unbased 

Cp-space, p prime. The functor R ®cp (-)from the category oJCp-spaces to the category of 

commutative ring Cp-spectra preserves pushouts. 

Proof. Let Z ~ X ~ Y define a pushout of C p-spaces, say P. Since the pushout of the span 

Z ~ X ~ Y is C p-equivariant, and the functors R ® C p ® ( - ) and R ® ( - ) preserve pushouts, 

then by definition of the left and right action maps which define the coequalizer R ®c P ( - ) the top 

three-dimensional box of the following diagram commutes when considering only the left action 

maps, as well as when only considering the right action maps. Then by properties of coequalizers 

the arrows on the bottom two-dimensional square are induced in the following diagram: 
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R®Cp®X ------------+ R®Cp®Y 

~ ~ 
R®Cp®Z R®Cp®P 

R®X--------------+R®Y 

~ ~ 
R®Z R®P 

In order to show that the bottom square is a pushout diagram consider a commutative ring 

Cp-spectrum Q and two maps of ring Cp-spectra q1: R ®cp Y---+ Q and q2: R ®cp Z---+ Q such 

that the diagram commutes. We want to show that there is a unique map h: R ®cp P ---+ Q that 

makes the diagram commute. 

We can use q1, q2, and the universal property of pushouts to induce maps of ring Cp-spectra 

from both R ® C p ® P and R ® P to Q which each respect both the left and right action maps. By the 

universal property of coequalizers this induces a unique map of ring C p-spectra h : R ®c P P ---+ Q, 

and one can check that the diagram commutes. Note that in the diagram below, the squiggly lines 

are induced from the universal property of pushouts and the dashed line is induced by the universal 

property of coequalizers. Therefore R ®c P ( - ) preserves push outs. 
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R®Cp®X ------------+ R®Cp®Y 

~ ~ 
R®Cp®Z R®Cp®P 

R®X--------------+R®Y 

~ ~ 
R®Z R®P 

Now we can say that the simplicial maps: 

17: Cp ~ pS! 

¢: pS! Yep pS! ~ pS! 

induce the following maps of commutative ring C p-spectra: 

7]: R ~ THHep(R) 

¢: THHep (R) AR THHep (R) ~ THHep (R) 

□ 

(5.1.1) 

which are the unit and product maps respectively. We will use these maps to show that THHep (R) 

is a commutative R-algebra. 

In order to check associativity of this product map we will need to understand the pushout of 

the span pS! Yep pS! ~ Cp ~ pS!, which is pS! Yep pS! Yep pS!. 
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Example 5.1.4. Consider 3S! V c3 3S! V c3 3S! which can be pictured as: 

vo 

VJ{));.v2 
Here </>Yid: 3S! V c3 3S! V c3 3S! ~ 3S! V c3 3S! folds the outer copy of 3S! with the middle copy of 

3S! and leaves the inner copy of 3S! alone. Similarly, id V </>: 3S! V c3 3S! V c3 3S! ~ 3S! V c3 3S! 

folds the inner copy of 3S! with the middle copy of 3S! and leaves the outer copy of 3S! alone. 

Proposition 5.1.5. Let p be prime. For a commutative ring Cp-spectrum R, THHcp (R) is a 

commutative R-algebra in the category of commutative ring Cp-spectra. 

Proof. We begin by checking associativity of the product map</>: THHcp (R) AR THHcp (R) ~ 

THHcp (R). For ease of notation, let T := THHcp (R). We need to verify that the following 

diagram commutes: 

It is sufficient to show that the following diagram of C p-simplicial spaces commutes 

where pS! Vcp pS! Vcp pS! is the pushout of the span pS! Vcp pS! ~ Cp ~ pS!. This is 

thought of as some equivariant analogue to the wedge of three circles, Example 5.1.4 shows this 

for p = 3. Note that id V </>and</> V id fold the inner two copies of pS! together and the outer two 

copies of pS! together respectively where</> folds the two copies of pS! together. Therefore this 

diagram commutes. 
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To check unitality and commutativity of the product map, we need to show that the following 

diagrams commute: 

1 idV17 1 1 17Vid 1 
pS. Yep Cp -----+ pS. Yep pS. ----- Cp Yep pS. 

pS! 

where pS! Yep Cp ~ pS! is the pushout of the span pS! ~ Cp ---+ Cp. The map id Y 7J: pS! Yep 

Cp ---+ pS! Yep pS! is the identity on pS! and includes Cp into the second copy of pS!, similarly 

7J Yid: Cp Yep pS!---+ pS! Yep pS! is the identity on pS! and includes Cp into the first copy of 

p S ! . The map T swaps the first and second copies of p S ! . 
For the unitality diagram, note that </J: pS! Yep pS! ---+ pS! is the fold map and the maps 

id Y 7J and 7J Yid both have an image of one copy of pS!, so this diagram commutes. For the 

commutativity diagram, the fold map has the same image no matter the position of the two copies 

of pS!. 

Therefore, THHep (R) is a commutative R-algebra. □ 

5.2 Coproduct Structure 

In this section, we will show that for R a commutative ring Cp-spectrum, THHep (R) is a 

non-counital R-coalgebra for p ~ 5 prime in the Cp-equivariant stable homotopy category. There 
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will be remarks that explain why there is not the same coproduct map for p = 2 and why the 

coproduct for p = 3 is not coassociative. 

If a counit map were to exist, it should be from pS! to Cp, for p prime. There is no Cp­

equivariant, simplicial way to map one connected component to C p. Therefore, one cannot 

induce a counit map on THHcp (R) as we did for the unit map. Note that there could be a map 

THHcp (R) ---+ R that satisfies the properties of a counit, but for the purposes of this thesis, we 

would like to induce these maps from simplicial maps, so we will not explore these possible maps 

further in this paper. 

Classically, the coproduct map on THH was induced from a pinch map on a double model of the 

circle. We will also use a pinch map to induce the coproduct structure on twisted THH. Consider, 

for p ~ 3, the pinch map on 2pS! which identifies opposite vertices. The case for p = 2 will be 

covered in Remark 5.2.2. The Cp-action on 2pS! sends vo to v2, and the pinch map ,fl' identifies Vi 

with v j for j = i + p( mod 2p ). The map ,fl' has two copies of p2S! in its image. Recall that PnS! 

is the Cp-simplicial space that resembles pS! but has the Cp-action of counter-clockwise rotation 

by (i360) 0 for 1 < n < p. 

Example 5.2.1. The following is a depiction of the pinch map for p = 3, ,fl': 6S! ---+ 32S! V c3 32S! 

where the vertices of the same color are identified: 
vo vo 

:~Q:: --v il~.v2 
The colors of the arrows is to help keep track of where each 1-cell goes. 

Now, let us consider the following C p-equivariant, simplicial pinch map for p an odd prime: 

which identifies 0-cells that have the same C2-orbit, that is, 0-cells opposite each other. Note that 

the C2-action is induced on 2pS! from the functor sd2(-) as 2pS! = sd2(pS!). 
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Remark 5.2.2. This pinch map which identifies opposite points is what makes this process not 

work for p = 2. Note that since ( ~360) 0 is just 360°, then if there were such a map, it would be 

from 4S! to a space that looks like 2S! v c2 2S! but with a trivial C2-action, pictured here: 

Let us refer to this space with trivial C2-action as x •. In order for this to induce a coproduct map onto 

THHc 2 (R) then IR ®c2 x.1 would need to be C2-weakly equivalent to THHc 2 (R) AR THHc 2 (R), 

which is not true in general. 

This pinch map, along with the S1-homeomorphism n21 defined in Proposition 5.0.6 gives the 

following map: 

(5.2.2) 

which is the coproduct map. 

Since the coproduct is not in general cocommutative in the classical case, one would (correctly) 

assume that the equivariant case will not be cocommutative in general. 

We still would like to check if this coproduct is coassociative. Similarly to the classical case we 

need a "triple model" of our circle. In [AR05] this was tS!, as recalled in Chapter 4. Here we will 

consider sd3(pS!) = 3pS!. The coproduct is not in general coassociative for p = 3, as explained 

in Remark 5.2.8. 

To check if 1/J is coassociative, we will show later that it is sufficient to show that a diagram of 

the following form commutes 

Y. Yep X. 
¢/vid 
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Where ifr1 and ifr2 are two different kinds of pinch maps and x. is a simplicial space such that for 

Ra commutative ring Cp-spectrum IR ®cp x.1 ::::= 2 THHcp (R) and Y. is such that IR ®cp Y.I ::::= 

THHcp (R). These two pinch maps ifr1 and ifr2 on 3pS! for p ~ 5 are determined by identifying vo 

to Vp and v2p respectively. 

We can define kpS! Yep mpS! as the pushout of the diagram kpS! ~ Cp ~ mpS!, where 

the left and right arrows both include C p into a C p-orbit of a 0-cell in the category of simplicial 

C p-spaces. It does not matter which orbit of 0-cells. Consider the following example. 

Example 5.2.3. Let us consider 6S! V c3 3S!, this is the pushout of the following diagram: 

where the left arrow is such that zo H vo, z1 H v2, and z2 H v4 and the right arrow is such that 

Zi H Wi for all i. The pushout of this diagram is pictured here: 
vo 

v1JA'\vs 
V2 '<:::Y' V 4 

v3 

Note that the picture is the same even if zo maps to any Vi, as long as z1 maps to v j for j = i + 2( 

mod 6) and z2 maps to vk fork= i + 4( mod 6). 

First, let us recall that PnS ! is the C p-simplicial space that resembles pS ! but has the C p-action 

of counter clockwise rotation by (i360) 0 for 1 < n < p. Recall the pinch map ,fr': 2pS! ~ 

pS! V Cp pS! works by identifying opposite points. By abuse of notation let us denote the pinch 

map on 2pnS! for 1 < n < p which identifies opposite points also as ,fr'. 

Proposition 5.2.4. Let p ~ 5 be prime. Let i/f1 and i/f2 be the Cp-equivariant pinch maps on 

3pS! such that ifrl is determined by identifying vo and Vp and i/f2 is determined by identifying 

vo and v2p• Then i/f1: 3pS! ~ p3S! V Cp 2p p+3 S!, and i/f2: 3pS! ~ 2p p+3 S! V Cp p3S!, 
2 2 
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such that (id V 1/1') o 1/11: 3pS! ~ p3S! Vcp p3S! Vcp p3S! and (I/I' V id) o 1/12: 3pS! ~ 

p3S! V Cp p3S! V Cp p3S!. 

The argument changes only slightly depending on if pis 1 mod 3 or 2 mod 3. In the hopes 

to build up some intuition, or to be used as an illustrative reference while reading the proof, we 

have included two examples. First, the easier of the two p = 5 is Example 5.2.5 and the example 

for p = 7 is very similar but may be helpful when reading the proof of the above proposition 

Example 5.2.6. 

Example 5.2.5. For 1/11 and 1/12 as in Proposition 5.2.4, let us do a toy example for p = 5. First, let 

us picture 15S! 

v9 

Let us apply 1/11 to 15S! . By definition, 1/11 identifies vo with v5 and is C5-equivariant, so there are 

many other vertices which will be identified, namely v3 and vs, v6 and vu, v9 and v14, v12 and v2. 

This gives the following: 

Here the C5-action sends vo to v3. Consider the following two circles in this picture: 
V 4 V 13 v7 V 4 V 13 v7 

Recall that PnS! is the Cp-simplicial space that resembles pS! but has the Cp-action of counter 
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clockwise rotation by (i360) 0 for 1 < n < p. The circle in red on the left is 5mSl for some m and 

the circle in red on the right is lOeSl for some l. To figure out the C5-actions on either circle we 

will consider how many rotations by (!360) 0 get us from vo to v3. The circle colored in red on 

the left has the C5-action of rotation by ( ~ 360) 0 , meaning that one can trace three 1-cells in the 

positive orientation starting from vo to v3, connecting through V6, and v12. The circle colored in 

red on the right has the C5-action of rotation by (!360) 0 , meaning that one can trace four pairs 

of 1-cells in the positive orientation starting from vo to v3, connecting through v12, v9, and v6. 

Therefore this whole space is 53S l V c5 104S l. 
The map id V ,fr' applied to 53Sl Vc5 l04Sl identifies vo and v10, v9 and v4, v3 and v13, v12 

and v7, and lastly V6 and v1. This gives the diagram: 

The C5-action sends vo to v3 so this is 53Sl Vc5 53Sl Vc5 53Sl. Therefore for the case of p = 5, 

(id v ,fr') o ,J,1 is a map from 15S l to 53S l V c5 53S l V c5 53S l. 
Now let us apply ,J,2 to 15S l. By definition, ,J,2 identifies vo with v10 and is C5-equivariant, so 

there are many other vertices which will be identified, namely v3 and v13, v6 and v1, v9 and v 4, v12 

and v7. This gives the following: 

The C5-action sends vo to v3. Tracing through the two copies of the circle as we did above, one 

can see that this is l04Sl Vc5 53Sl. The map ,fr' v id applied to l04Sl Vc5 53Sl identifies vo and 

v5, v9 and v14, v3 and vg, v12 and v2, and lastly V6 and vu. This gives the diagram: 
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The C5-action sends vo to v3 so this is 53S! Vc 5 53S! Vc 5 53S!. Therefore for the case of p = 5, 

(,fr' V id) o I/J2 is a map from 15S! to 53S! V c5 53S! V c5 53S!. 

We have now worked through the specific example of Proposition 5.2.4 for p = 5. For the case 

when p is 1 mod 3 the modular arithmetic is slightly different. For this reason, we have included 

the following example for p = 1. Note that these differences are minimal, but we wanted to include 

both illustrative examples for the reader. 

Example 5.2.6. For 'Pl and I/J2 as in Proposition 5.2.4, let us do a toy example for p = 1. First, let 

us picture 21s! 

Let us apply 'Pl to 21S!. By definition, 'Pl identifies vo with v7 and is C7-equivariant, so there are 

many other vertices which will be identified, namely v3 and v10, v6 and v13, v9 and v16, v12 and 

v19, v15 and v1, vis and v4. This gives the following: 
v20 v5 v11 v17 v2 

Here the Craction sends vo to v3. Consider the following two circles in this picture: 
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The circle in red on the left is 7mS! for some m and the circle in red on the right is I4cS! for 

some£. To figure out the C7-actions on either circle we will consider how many rotations by 

(-+ 360) 0 get us from vo to v3. The circle colored in red on the left has the C7-action of rotation by 

(; 360) 0 , meaning that one can trace three I-cells in the positive orientation starting from vo to v3, 

connecting through v 15, and v9. The circle colored in red on the right has the C7-action of rotation 

by ( ;360) 0 , meaning that one can trace five pairs of I-cells in the positive orientation starting from 

vo to v3, connecting through v9, v18, v6 and v15. Therefore this whole space is 73S! V c7 I4sS!. 

The map id v ,ft' applied to 73S! v c7 I4sS! identifies vo and v14, v6 and v20, v12 and v5, vis 

and vu, v3 and v17, v9 and v2, and lastly, v15 and vs. This gives the diagram: 

The Craction sends vo to v3 so this is 73S! V c7 73S! V c7 73S!. Therefore for the case of p = 7, 

(id V if/) o 1/11 is a map from 2IS! to 73S! V C7 73S! V C7 73S!. 

Now, let us apply 1/12 to 2IS!. By definition, 1/12 identifies vo and v14 and is C7-equivariant, so 

there are many other vertices which will be identified, namely v3 and v17, v6 and v20, v9 and v2, 

v12 and v5, v15 and vs, and vis and vu. This gives us a space which can be considered as follows: 
v13 v19 v4 v10 v16 

The C7-action sends vo to v3. Tracing through the two copies of the circle as we did above, one 

can find that this is I4sS! V c7 73S!. The map ifi' V id applied to I4sS! V c7 73S! identifies vo and 

v7, v6 and v13, v12 and v19, vis and v4, v3 and v10, v9 and v16, and lastly, v15 and v1. This gives 
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the diagram: 

The C7-action sends vo to v3 so this is 73S l V c7 73S l V c7 73S l. Therefore for the case of 

p = 1, (If/ v id) o lfr2 is a map from 21Sl to 73Sl vc 7 73Sl vc 7 73Sl. 

Now that we have given two examples, let us do the proof for a general p ~ 5. 

Proof of Proposition 5.2.4. By our assumption, p ~ 5 is prime and the pinch maps lfr1 and lfr2 are 

determined by the fact that they are Cp-equivariant and identify vo to Vp and vo to v2p respectively 

on 3pSl. A big part of this proof is to show thatlfr1 sends 3pSl to p3Sl Vcp 2p p+3 sl and lfr2 sends 
2 

3pSl to 2p p+3 sl v Cp p3Sl. In addition, we want to show that (id v lfr') o lfr1 and (lfr' v id) o lfr2 
2 

both send 3pSl to p3Sl V Cp p3Sl V Cp p3Sl. The proof strategy will be slightly different for 1/fl 

and lfr2, and whether p = 1( mod 3) or p = 2( mod 3), so there are four cases to consider. To 

prove what we want, we will take each of these cases through the following three steps. 

Step 1: Show there is a copy of p3Sl in the image of 1/fi· 

Step 2: Show there is a copy of 2p p+3 sl in the image of 1/fi• 
""T 

Step 3: Show that (id v lfr') o 1/fl or (lfr' v id) o lfr2 sends 3pSl to p3Sl Vcp p3Sl Vcp p3Sl. 

In many of these arguments, we are counting 1-cells between vertices. Our convention will 

be that we are always "traveling" along 1-cells in the direction of their orientation. Note that this 

convention agrees with our definitions of mpSl and mpnSl. We will do one case, and the others 

are very similar with slightly different modular arithmetic. 

Case 1) lfr1 and p = 1 ( mod 3). 

Step 1: Since p = 1( mod 3), then p + 2 = 0( mod 3) and 2p + 1 = 2 + 1 = 0( mod 3), 

sop+ 2 = 3k1 and 2p + 1 = 3k2 for some k1, k2 E Z. Since the Cp-action on 3pSl sends Vi 

to v j for j = i + 3( mod 3p) and lfr1 is a Cp-equivariant map which identifies vo and Vp, then it 

must also identify v3k and ve for l = 3k + p( mod 3p). For example, lfr1 identifies v3 and Vp+3, 
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Vp+2 and v2p+2, as well as v2p+l and v1 since we showed that p + 2 and 2p + 1 can be written as 

multiples of 3. The vertex vo is connected by a 1-cell to v1, which is identified to v2p+l, which is 

connected by a 1-cell to v2p+2• which is identified to Vp+2• which is connected by a 1-cell to Vp+3• 

which is identified to v3. For the following picture, the dual labelling of the vertices indicates the 

identification of those vertices under ,fr 1, also, we have organized the upper labels to be enumerated 

by numbers which are 0( mod 3) and the bottom 1( mod 3). 

vo 
• Vp 

The following is an equation which tells us the enumeration of the top label of the vertex which is z 

1-cells away from vo: z(l - p )( mod 3p ). This equation will help us to show that there is a copy 

of p3S! in the image of 1/f 1. 

Since p = 1 ( mod 3) then there is a k E Z such that p = 3k + 1. There are two important values 

we need from the above equation, z = p andz = 3: p(l-p) = p-p 2 = p-p(3k+l) = -3pk = 0( 

mod 3 p), and 3 ( 1 - p) = 3 - 3 p = 3 ( mod 3 p). The meaning behind these two computations 

are that there are p 1-cells on this simplicial space, and there are 3 1-cells between vo and v3. 

Therefore p3S! is in the image of l/f1. 

Step 2: Since the map 1/fl identifies v3k and ve such that l = 3k + p( mod 3p) then 1/fl 

identifies vertices whose enumeration is 0( mod 3) to vertices whose enumeration is 1 ( mod 3) 

since 3k+ p = 1( mod 3). Since p = 1( mod 3), then p + 1 = 2( mod 3). Therefore Vp+l is not 

identified to any other vertices under I/J1, but vo is identified to Vp and Vp+2 is identified to v2p+2· 

This demonstrates that there is a copy of 2pnS! in the image of 1/f 1 as there are p copies of pairs of 

1-cells like the pair of 1-cells between v p and v p+2 · Now we need to show that n = P; 3 . The vertex 

vo is identified to Vp, which is connected by a pair of 1-cells to Vp+2• which is identified to v2p+2• 

which is connected by a pair of 1-cells to v2p+4· For the following picture, the dual labelling of the 

vertices indicates the identification of those vertices under l/f1, also, we have organized the double 

labels so that the upper labels to be enumerated by numbers which are 0( mod 3) and the bottom 

1 ( mod 3). The vertices which only have one label have an enumeration which is 2( mod 3). 
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vo 
• Vp 

The following is an equation which tells us the enumeration of the top label of the vertex which is 

2z I-cells away from vo: z(p + 2)( mod 3p). This equation will help us to show that there is a 

copy of 2p p+3 s! in the image of ifr1. 
2 

Since p = I ( mod 3) then there is a k E Z such that p = 3k + l. There are two important 

values we need from the above equation, z = p and z = P;3, the first of these equations is: 

p(p + 2) = p 2 + 2p = p(3k + 1) + 2p = 3pk + 3p = 0( mod 3p). The second of these equations 

is a bit more complicated. Since pis odd, and p = 3k + 1 then k must be even, so let k = 2£ for 

some l E Z. We can now do the second equation: 

p;3 (p + 2) = 6t;4 (p + 2) = (3£ + 2)(p + 2) 

= 3pl + 2p + 6£ + 4 = 3pl + 2p + (6£ + 1) + 3 = 

3p(l + 1) + 3 = 3( mod 3p). 

The first of these equations shows that this simplicial space has 2p 1-cells, and the second 

equation shows us that this simplicial space has P;3 pairs of I-cells between vo and v3. Therefore 

2p p+3 s! is in the image of 1/f 1. 
2 
Step 3: Since ( ,fr' V id) fixes the copy of p3S! then it suffices to show that ,fr': 2p p+3 s! ➔ 

2 
p3S! Yep p3S!. By definition, ,fr' identifies opposite vertices. The opposite vertex from vo will be 

p 1-cells away from vo. Recall the following drawing of 2 pp+ 3 S ! from Step 2: 

vo 
• Vp 

2 

Recall from Step 2 that we can consider p = 6£ + 1 for some l E Z. Recall that the equation z (p + 2) ( 

mod 3p) tells us the enumeration of the top label of the vertex z pairs of 1-cells away from vo. 

Therefore we would like to consider ( P; 1 )(p + 2) - 1 ( mod 3 p) to find out the enumeration of 
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the vertex p 1-cells away from vo, This computation is ( P; 1) (p + 2) - 1 = (3£ + 1) (p + 2) - 1 = 

3pt + p + 6£ + 2- 1 = 3pl + 2p = 2p( mod 3p). Then p 1-cells away from vo is the vertex v2p• 

Therefore l{I' will identify vo and v2p• 

By similar arguments as in thelasttwo steps one can showthatl{I': 2p p+3 s! ~ p3S! V CpP3S!. 
2 

The other cases are very similar, the only differences are that there are different formulas and 

the modular arithmetic looks different. □ 

Now we can discuss the following proposition. 

Proposition 5.2.7. Let R be a commutative ring Cp-spectrum, and p 2:: 5 prime. Then THHcp (R) 

is a non-counital, coassociative R-coalgebra in the Cp-equivariant stable homotopy category. 

Proof. To prove coassociativity, we must show that the following diagram of C p-spectra commutes, 

where T := THHcp (R) 

Since we are working in the homotopy category, it is sufficient to show that the following diagram 

of Cp-simplicial spaces commutes, where 3T := 3 THHcp (R) and 2T := 2 THHcp (R) 

To prove this, it is sufficient to show that the following diagram of Cp-simplicial spaces commutes 
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3pS! ____ tfJ_l ____ p3S! V Cp 2p p+3 S! 

~21 ldv; 

where 1/11 is the C p-equivariant pinch map determined by identifying the vertices vo and v p and 1/12 is 

the Cp-equivariant pinch map determined by identifying the vertices vo and v2p• Proposition 5.2.4 

discusses why this is the correct diagram to consider for these maps. The idea of the commutativity 

of this diagram is that l{I 1 is determined by identifying vo and v p, and 1/J' is determined by identifying 

vo and v2p in 2p p+3 s!, while the other direction goes in the reverse order first identifying vo and v2p 
2 

and then vo and v p. The modular arithmetic works out such that whether one identifies vo with v p or 

v2p first or second it works out to be the same. This demonstrates that (id VI/I') 01{11 = (I/I' Vid) 01{12. 

This is shown for two specific examples in Example 5.2.5 and Example 5.2.6. 

Therefore, THHcp (R) is a non-counital, coassociative R-coalgebra for p ~ 5. □ 

Note that we are working in the C p-equivariant stable homotopy category because 3 THHc P (R) 

is only weakly equivalent to THHcp (R). 

Now that we have thoroughly discussed the coproduct structure of THHcp (R) for p ~ 5, let us 

discuss the subtleties that arise when p = 3. 

Remark 5.2.8. For the p = 3 case, one can not follow the same argument as in Proposition 5.2.7. 

Let us explore why this is. Consider 9S!. The C3-action on this space sends vo to v3, and v3 to 

v6. If we identify vo with v3 or v6 as we defined 1/11 and 1/12, then we identify vertices with other 

vertices in their orbit. This would cause there to be fixed points in the image of these maps which 

we do not want for this particular approach. It is not clear how one could alter the definitions of 

1/11 and 1/12 to make them work in this case. As is true with the counit, there may be a way to 

define a coassociative R-coproduct on THHc 3 (R), but we are focusing on inducing these algebraic 

structures from simplicial spaces, so we will not pursue this question further. 
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These algebraic and coalgebraic structures interact with each other to give the following theorem. 

Theorem 5.2.9. Let R be a commutative ring C µ-spectrum indexed on a complete C µ-universe, 

and let p ~ 5 be prime. Then THHcp (R) is a non-counital, R-bialgebra in the Cp-equivariant 

stable homotopy category. 

Proof. In Proposition 5.1.5 and Proposition 5.2.7 we showed that, under the assumed conditions, 

THHcp (R) is a non-counital R-algebra and R-coalgebra. 

To show that these algebraic and coalgebraic structures are compatible to yield a bialgebraic 

structure, we need to show that the following diagram of C p-spectra commutes, where T 

TART -------+ T -------+ TART 

~A~l 1¢A¢ 
TAR TART AR T idAT/\id TART AR TAR T 

where r swaps the two copies of T. Since we are working in the Cµ-equivariant stable homotopy 

category it is sufficient to show that the following diagram of C µ-spectra commutes 

TART ART ART ----i-d/\_r_/\_id-----+ TART ART ART 

To prove this, it is sufficient to show that the following diagram of C µ-simplicial spaces commutes: 

2pS! V Cp 2pS! ___ <!> __ ➔ 2pS! ---"'--➔ pS! V Cp pS! 

~v~l 1¢v¢ 

where ,fr' and </J are the C µ-simplicial pinch and fold maps as defined above and r swaps the two 

copies of pzS!. To better understand the commutativity of this diagram, let us considered the 
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following colored diagram where one of the starting circles is blue, the other starting circle is red, 

and a purple circle indicates that it is the image of a blue and red circle which were folded together: 

2pS! V Cp 2pS! ----- 2pS! -----➔ pS! Vcp pS! 

l'Vl'l l•v• 

If we go along the top of the diagram, the two copies of 2pS! are folded together and then pinched 

into two copies of pS!. If we go along the bottom of the diagram, we first pinch both copies of 

2pS!. In order to fold the same 1-cells together that were folded together along the top of the 

diagram, we want to fold the first blue copy with the first red copy of pS! and similarly with the last 

blue copy and last red copy. This is accomplished by the composition of maps (</JV </J) o (id VT V id). 

To consider the next diagram, we will first set up some definitions. Say that the vertices of 

Cp are denoted 1, y, y 2, and so on. Let us define TJ': Cp ~ 2pS! to be the Cp-equivariant map 

determined by T/': 1 H vo. Let us define T/ v T/: Cp Vcp Cp ~ pzS! Vcp pzS! to be the Cp­

equivariant map which includes each copy of Cp into the corresponding copy of pzS!. Note that 

because we are "wedging over C p" then this is really just including C p into the vertices shared by 

the two copies of pzS!. Let T/ v T/: 1 H vo. 

To check that the unit and coproduct maps respect each other, we will show that the following 

diagram of C p-simplicial spaces commutes 

Cp Vcp Cp = Cp 

~ ~ 
pzS! Vcp pzS! ----------- 2pS! 

,;/ 

By the definition of the maps we can see that this diagram commutes. 

There are no other diagrams for us to check as we do not need to check any diagrams which 

include the counit. Therefore, THHc P ( R) is a non-counital R-bialgebra in the C p-equivariant 
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stable homotopy category. □ 
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CHAPTER6 

ALGEBRAIC STRUCTURE ON THE EQUIVARIANT BOKSTEDT SPECTRAL 
SEQUENCE 

In this section, we will discuss the algebraic structure of the equivariant Bokstedt spectral sequence 

that is induced from the algebraic structure on twisted THH. Let us recall the equivariant Bokstedt 

spectral sequence. 

Theorem 6.0.1 ([AGH+22, Theorem 4.2.7]). Let Cn = (y) be a.finite subgroup of S1. Let R be a 

ring Cn-spectrum and Ea commutative ring Cn-spectrum such that y acts trivially on E. If E*(R) 

is flat over E*, then there is an equivariant Bokstedt spectral sequence 

where dr : Esr ,,, ---+ Er + 1. ,..,, s-r,a r-

These authors also show that this equivariant Bokstedt spectral sequence has some algebraic 

structure. 

Proposition 6.0.2 ([AGH+22, Proposition 4.2.8]). Let E and R be as in Theorem 6.0.1. If R is 

a commutative ring Cn -spectrum, then the equivariant Bokstedt spectral sequence is a spectral 

sequence of RO(Cn)-graded algebras over E*. 

In Chapter 5 it was shown that THHcp (R) is a non-counital R-bialgebra for p ~ 5 and a 

commutative R-algebra for p = 2, 3. The structure maps which we used to demonstrate these 

structures on THHc P ( R), namely ( 5 .1.1) and ( 5 .2.2), are all induced from simplicial maps. Since 

they are induced from simplicial maps, they respect the skeletal filtration on THHcp (R). We will 

use this fact to induce the structure maps on the equivariant Bokstedt spectral sequence which will 

be used to demonstrate its algebraic structure. 

6.1 Algebraic structure 

Let us recall an equivariant analogue to a differential bigraded algebra. 
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Definition 6.1.1. Let p be prime, R a commutative C p-Green functor, and M a commutative 

R-algebra that is flat over R. A differential (Z,RO(Cp))-graded M-algebra is a collection of 

(Z, RO(Cp))-graded M-bimodules and a differential, (E*,*• d), with the following maps of M­

bimodules: 

d: EB Es,a --+ EB Er,y, 
s+a=P r+y=P-1 

µ: Es,a □M Er,p --+ Es+r,a+P• and 

The first map defines the differential, the second map is the multiplication map, and the third map 

is the unit map. These maps must make all the usual associativity and unitality diagrams commute. 

The differential d must be compatible with the product map in the sense that it satisfies the Leibniz 

rule: 

doµ=µ o (d □Mid+ (-l)s+dim(acP)id OM d). 
- -

Now, let us recall an equivariant analogue to a spectral sequence of algebras. Note that the 

flatness assumption in the following definition is so that the equivariant Kiinneth spectral sequence, 

as defined in [LM06, Theorem 1.3], collapses to give the Kiinneth isomorphism. 

Definition 6.1.2. Let p be prime, R a commutative C p-Green functor, and M a commutative 

R-algebra which is flat over R. A Cp-equivariant spectral sequence of M-algebras is a collection 

of differential (Z, RO ( C p) )-graded M-algebras { E~,*' dr}, with multiplication maps </Jr such that 

'Pr+ 1 is the composite 

where the homomorphism p is induced from the homology cross product map. 
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Using this definition and the simplicial maps from earlier sections, we can prove the following 

proposition. 

Proposition 6.1.3. Let p be prime, and let R and E be commutative ring C p-spectra, such that the 

generator oJCp acts trivially on E, and E*(R) is flat over E*. The equivariant Bokstedt spectral 

sequence E;,* is a spectral sequence of commutative E*(R)-algebras. 

Proof. Unless otherwise specified, every box product is over E *" Let' E;,* be the spectral sequence 

associated to the skeletonfiltrationonR®cp (pS!vcpPS!) ~ THHcp (R)/\RTHHcp (R). We know 

that THHc P ( R) is a commutative R-algebra by Proposition 5.1.5, and all the relevant structure maps 

(5.1.1) are induced from Cp-equivariant simplicial maps, so they respect the skeleton filtration on 

THHcp (R). As a result, the "fold" maps </J: 'E;,* ~ E;,* respect the differentials of the Bokstedt 

spectral sequence. 

One can consider THHcp (R)., the simplicial Cp-spectrum R ®cp pS! ~ B:y,Cp (R). Since 

THHcp (R)s = R'-s+I, and by our assumption that E*(R) is flat over E* then we have the following 

isomorphism: 

E (R'-(s+I) /\R R'-(s+I)) ~ E (R)□s+I □ ( ) E (R)□s+I. -* -* §_* R -* 

By definition, the left hand side is' E},* and the right hand side is E},* □§..*(R) E},*. 

The following map is induced from the homology cross product map 

Therefore we have a map 

which, by induction, induces the following maps 

for all r ~ 2. 

Then we can define the composite map of spectral sequences 
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for any r ~ 1. The maps </Jr respect differentials for all r since ¢ and the product maps respect the 

differentials. Since all of the necessary maps respect the differential, the commutative diagrams in 

Proposition 5.1.5 induce the necessary commutative diagrams for the equivariant Bokstedt spectral 

sequence. Therefore E~,* is a spectral sequence of commutative E*(R)-algebras. □ 

6.2 Coalgebraic structure 

Let us recall an equivariant analogue to a differential bigraded coalgebra. 

Definition 6.2.1. Let p be prime, R a commutative C p-Green functor, and M a commutative 

R-algebra that is flat over R. A differential (Z,RO(Cp))-graded M-coalgebra is a collection of 

(Z, RO ( C p) )-graded M-bimodules and a differential ( E*,*' d) with the following maps of M­

bimodules: 

d: E9 Es,a ➔ E9 Er,y, 
s+a=P r+y=fi-1 

/J..: Es,a ➔ E9 Eu,p □M Ew,y, and 
u+w=s -
p+y=a 

The first map defines the differential, the second map is the comultiplication map, and the third map 

is the counit map. These maps must make all the usual coassociativity and counitality diagrams 

commute. The differential d must be compatible with the coproduct map in the sense that it satisfies 

the coLeibniz rule: 

Now we can recall an equivariant analogue to a spectral sequence of coalgebras. 
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Definition 6.2.2. Let p be prime, Ra commutative Cp-Green functor, Ma commutative R-algebra 

that is flat over R, and (E~,*' d) be differential (Z, RO( Cp))-graded M-coalgebras such that E~,* is 

flat as an R-module for r ~ 2. A Cp-equivariant spectral sequence of M-coalgebras is a collection 

of differential (Z, RO( Cp))-graded M-coalgebras {E~,*' dr}, with comultiplication maps I/fr such 

that 1/f r+ 1 is the composite 

where the homomorphism p is the Kiinneth isomorphism. 

This definition allows us to discuss the coalgebraic structures of the equivariant Bokstedt spectral 

sequence. 

Proposition 6.2.3. For p ~ 5 prime, let Rand Ebe commutative ring Cp-spectra, such that the 

generator of Cp acts trivially on E, and E*(R) is flat over E*. If each term of the equivariant 

Bokstedt spectral sequence E~,*for r ~ 2 is flat over E*(R), then there is a coproduct I/fr: E~,* ➔ 

E~,* □Q'.*(R)E~,*' and E~,* is a spectral sequence ofnon-counital E*(R)-coalgebras. 

Proof. Unless otherwise specified, every box product is over E *. Let 2E~, * be the spectral sequence 

associated to the skeleton filtration on R ®cp 2pS¼, let 2E~,* be the spectral sequence associated to 

the skeleton filtration on R ®cp p2S¼, let' E~,* be the spectral sequence associated to the skeleton 

filtration on R ®cp (pS! V Cp pS!), and let ;E~,* be the spectral sequence associated to the skeleton 

filtration on R ®cp (p2S! V p2S!). 

We know that THHcp (R) is a non-counital R-coalgebra in the stable homotopy category by 

Proposition 5.2.7, and the coproduct map (5.2.2) is induced from the Cp-equivariant simplicial 

pinch map, so this map respects the skeleton filtration on THHcp (R), so 1/f: 2E~,* ➔ ;E~,*' 

which is induced from the pinch map, respects the differentials of the Bokstedt spectral sequence. 

Consider the following sequence of maps which are defined below: 

E r rr2 2Er t/J ' Er ~ 'Er Pr Er □ Er 
*,* ~ *,* ~ 2 *,* ~ *,* ~ *,* Q'.*(R) *,*· 
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Here 1r2 is the algebraic analogue of the weak equivalence defined in Proposition 5.0.6 and is 

an isomorphism for r ~ 2. The map t is an algebraic analogue of the isomorphism defined in 

Proposition 5.0.7 and is an isomorphism for r ~ 1. The last map Pr takes some work to define and 

is described below. 

One can consider THHcp (R)., the simplicial Cp-spectrum R ®cp pS! ~ B~y,Cp (R). In 

[LM06, Theorem 1.3] Lewis and Mandell define an equivariant analogue to the Kiinneth spectral se-

quence. Our flatness assumption gives that the equivariant Kiinneth spectral sequence collapses for 

E*(THHcp (R)s AR THHcp (R)s)), thereforeitisisomorphictoE*(THHcp (R)s) D_g*(R) E*(THHcp (R)8 ). 

Since THHcp (R)s = RAs+l then this isomorphism can be written as: 

The left hand side is 'E;,* and the right hand side is E;,* D_g*(R) E;,*. For a fixed s, one can 

define a shuffle map [E!,* D_g*(R) E!,*]s,* ~ E;,* D_g*(R) E;,*. The Eilenberg-Zilber theorem 

can be applied to any bisimplicial object in an abelian category [Wei94, Theorem 8.5.1]. Using 

the Eilenberg-Zilber theorem, we can show that the map Pl: E!,* D_g*(R) E!,* ~ 'E!,* is an 

isomorphism on homology. By assumption, E';,* is flat over E*(R) therefore the equivariant 

Kiinneth spectral sequence collapses to the Kiinneth isomorphism. By the Kiinneth isomorphism, 

and the Eilenberg-Zilber theorem we have the following isomorphism: 

Choose r ~ 2, using an inductive argument, assume that Pr: E:,* D_g*(R) E:,* ~ 'E:,* is an 

isomorphism. By assumption E:-:} is flat over E*(R) so we can use the equivariant Kiinneth 

spectral sequence to get the following isomorphism: 

. Er+ 1 □ Er+ 1 ~ H (Er □ Er ) ~ H ('Er ) ~ 'Er+ 1 Pr+l · *,* Q'.*(R) *,* = * *,* Q'.*(R) *,* ~ * *,* = *,* · 

We can now define the coproduct I/Jr on E:,* as p-;: 1 o g o ,fr o n21 for r ~ 2. These iso­

morphisms and ,fr respect the skeletal filtrations they are respectively defined on, therefore I/Jr 

respects the skeletal filtration it is defined on for all r. Since I/Jr respects the skeletal filtration, 
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it also respects the differentials for all r. Since all of the necessary maps respect the differential, 

the commutative diagrams in Proposition 5.2.7 induce the necessary commutative diagrams for 

the equivariant Bokstedt spectral sequence. Therefore E; * is a spectral sequence of non-counital 
' 

E*(R)-coalgebras. □ 

In fact, combining the results and arguments from Proposition 6.1.3 and Proposition 6.2.3 we 

have the following result. 

Theorem 6.2.4. For p ~ 5 prime, let Rand E be commutative ring Cp-spectra, such that the 

generator of Cp acts trivially on E and E*(R) is flat over E*. If each term of the equivariant 

Bokstedt spectral sequence E;,*for r ~ 2 is flat over E*(R), then E;,* is a spectral sequence of 

non-counital E*(R)-bialgebras. 

Proof. Since all necessary maps respect the differential, the commutative diagrams in Theo­

rem 5.2.9 induce the necessary commutative diagrams for the equivariant Bokstedt spectral se-

quence. Therefore, E;,* is a non-counital E*(R)-bialgebra spectral sequence. □ 
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