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ABSTRACT

Algebraic K-theory is an interesting invariant of rings and ring spectra which has connections
to many mathematical fields including number theory, geometric topology, and algebraic geometry.
While there is great interest in algebraic K-theory, it is difficult to compute. One successful
approach is via trace methods. In this approach one utilizes trace maps from algebraic K-theory
to more computable invariants which approximate algebraic K-theory. One of these trace maps is
from algebraic K-theory to topological Hochschild homology (THH), which is an invariant of ring
spectra. One of the main tools to compute THH is the Bokstedt spectral sequence, and the algebraic
structure in this spectral sequence facilitates computations.

In recent years, several equivariant analogues of algebraic K-theory and THH have emerged.
One such analogue is Cp-twisted THH, an invariant of ring Cj,-spectra, which was defined by
Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell [ABG*18]. To compute twisted THH
there is an equivariant Bokstedt spectral sequence, constructed by Adamyk, Gerhardt, Hess, Klang,
and Kong [AGH'22].

This thesis explores the algebraic structures of twisted THH, and the equivariant Bokstedt
spectral sequence. Classically, if A is acommutative ring spectrum, [EKMM97] and [MSV97] show
that THH(A) is an A-Hopf algebra in the stable homotopy category. Angeltveit and Rognes extend
this algebraic structure to the Bokstedt spectral sequence and prove that under some conditions, the
Bokstedt spectral sequence is a spectral sequence of H(A; F,)-Hopf algebras for p prime [ARO5].
In this thesis we show that for p prime and R a commutative ring Cp-spectrum, THHCP(R) is
an R-algebra in the Cp-equivariant stable homotopy category. Further, for p > 5 prime and R a
commutative ring Cp-spectrum, THHCp (R) is a non-counital R-bialgebra in the C)-equivariant
stable homotopy category. We also extend these results to the equivariant Bokstedt spectral
sequence, proving that under appropriate flatness conditions it is a spectral sequence of non-counital

bialgebras.
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CHAPTER 1

INTRODUCTION
Algebraic K-theory is an invariant of rings that has deep connections to many mathematical fields
including number theory, algebraic geometry, and geometric topology. While algebraic K-theory
is generally very difficult to compute, one successful approach is via trace methods.
Trace methods are tools that allow us to approximate algebraic K-theory. These approximations
work by mapping from algebraic K-theory to more computable invariants. One example of such
an approximation, the Dennis trace, relates algebraic K-theory to a classical invariant of rings,

Hochschild homology (HH). For a ring A, the Dennis trace is a map:
K.«(A) — HH.(A).

For a closer approximation to algebraic K-theory, Bokstedt defined a topological analogue of HH
called topological Hochschild homology (THH), which is an invariant of ring spectra [Bok85b].
There is a trace map, the topological Dennis trace, from algebraic K-theory to THH. Topological
Hochschild homology has an § Iaction. Using this § I_action one can define topological cyclic
homology (TC) and the cyclotomic trace, which gives an even more accurate approximation to
algebraic K-theory [BHM93]. Further, the topological Dennis trace factors through the cyclotomic
trace:

K(R) — TC(R) — THH(R)

for a ring spectrum R.
One of the main tools we use to compute THH is the Bokstedt spectral sequence which relates

HH to THH [B06k85b]. For k a field and A a ring this spectral sequence takes the form:
E2, = HH.(H.(A; k)) = H.(THH(HA); k)

One way to facilitate spectral sequence calculations is to understand algebraic structures in the
spectral sequence. Angeltveit and Rognes study the algebraic structure of the Bokstedt spectral

sequence in [ARO5]. Angeltveit and Rognes’ results build off of results of [EKMM97] and



[MSV97]. Let us recall that a Hopf algebra can be thought of as both an algebra and a coalgebra

with an antipode such that these structures are compatible.

Theorem 1.0.1 ((EKMMY97, Corollary 3.4], [MSV97, Theorem I]). For A a commutative ring

spectrum, THH(A) is an A-Hopf algebra in the stable homotopy category.

These authors prove this result by inducing the maps on THH from maps on the circle. This is
possible because for A a commutative ring spectrum, THH(A) = A® S I [MSV97]. For example,
the following fold map of spaces S! v §! — $! induces the product map THH(A) A4, THH(A) —
THH(A). Angeltveit and Rognes extend this result by using simplicial maps on the circle, allowing

the algebraic structure to extend to the Bokstedt spectral sequence, proving the following result:

Theorem 1.0.2 (JAROS, Theorem 4.5]). Let A be a commutative ring spectrum, and let p be prime.
If each term of the Bokstedt spectral sequence, Ef ,(A) for r > 2 is flat over Hy(A;Fp), then the

Bokstedt spectral sequence is a spectral sequence of H.(A;Fp)-Hopf algebras.

Angeltveit and Rognes then use this algebraic structure to facilitate many computations of THH
[AROS].

In recent years, equivariant analogues of algebraic K-theory and topological Hochschild ho-
mology have emerged. Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell construct a
generalization of THH called Cy,-twisted THH, for C,, a finite cyclic subgroup of S! [ABG*18].
This generalized theory is an invariant of C,-equivariant ring spectra. Twisted THH is related to
the equivariant algebraic K-theory of Merling [Mer17], and Malkiewich-Merling [MM19], as seen
in [AGH*23] and [CGK].

To compute the equivariant homology of C,-twisted THH, Adamyk, Gerhardt, Hess, Klang,

and Kong construct an equivariant analogue to the Bokstedt spectral sequence.

Theorem 1.0.3 ((AGH*22, Theorem 4.2.7]). Let C,, = {y) be a finite subgroup of S 1 LetRbea
ring Cy-spectrum and E a commutative ring Cy-spectrum such that vy acts trivially on E. IfE , (R)

is flat over E , then there is an equivariant Bokstedt spectral sequence



E,.C
E2, =HH* "(E,(R) = E THHC, (R)).

.k
S+*(lCn

Here an object is underlined to indicate that it is a Mackey functor. To study equivariant homotopy
theory, one needs equivariant analogues of familiar algebraic objects. Mackey functors arise
naturally in equivariant homotopy theory as the equivariant analogue to abelian groups. Let G be
a finite abelian group. For a G-equivariant spectrum R, the equivariant homotopy groups of R
form a G-Mackey functor. The category of G-Mackey functors has a symmetric monoidal product
called the box product, [, allowing one to define an equivariant analogue to rings, called G-Green
functors [Lew80].

In the spectral sequence above, £ denotes 7, (E), the equivariant homotopy Mackey functors
of the ring Cp-spectrum E. Also, HH” is Hochschild homology for Green functors, as defined
by Blumberg, Gerhardt, Hill, and Lawson in [BGHL19]. While this equivariant Bokstedt spectral
sequence opens the door for computations of twisted THH, as of yet, few computations appear in
the literature.

Classically, many Bokstedt spectral sequence calculations are done with coeflicients in a field,
as this results in nicer behavior in the spectral sequence. Lewis defines G-Mackey fields to be
commutative G-Green functors with no nontrivial ideals [Lew80]. If we use C,-Mackey fields as
the coefficients in the equivariant Bokstedt spectral sequence, the spectral sequence is easier to
compute.

An important Cp-spectrum is M Ug, the Real bordism spectrum. Hill, Hopkins, and Ravenel
use MUp in their solution of the Kervaire invariant one problem in [HHR16]. In this thesis, we
compute the equivariant homology of THHC2 (M Upg) with coefficients in the following C»-Mackey

field:

|~
&3
®



Theorem 1.0.4. For F as above the RO(C,)-graded equivariant homology of THHc, (MUpg) with

coefficients in F is
H,(THHc, (MUR): F) = HE, |1, B2, .. 10uF, Anr, (21,22, . )
as an HF , -module. Here |B;| = ip and |z;| = 1 +ip.

Classically, the algebraic structure in the Bokstedt spectral sequence has lead to computations of
THH. In the current work, we study the algebraic structures of Cp,-twisted THH and the equivariant
Bokstedt spectral sequence. Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell show in
[ABG™" 18] that for a commutative Cy,-ring spectrum R, THH¢, (R) is R®c,, S I, Using equivariant
simplicial models of the circle, we demonstrate that Cp-twisted THH has the structure of an

R-algebra.

Proposition 1.0.5. For p prime and R a commutative Cp-ring spectrum, THHCp (R) is a commu-

tative R-algebra in the Cp-equivariant stable homotopy category.

For specific primes we can extend this algebraic structure to a bialgebra structure. Let us recall that,
similarly to a Hopf algebra, a bialgebra is both an algebra and a coalgebra such that these structures
are compatible. The key difference between the two algebraic structures is that a Hopf algebra has

an antipode, and the definition of a bialgebra does not include an antipode.

Theorem 1.0.6. Let R be a commutative ring Cp-spectrum and p > 5 prime. Then T HHCp (R) is

a non-counital, R-bialgebra in the Cy-equivariant stable homotopy category.

Using the equivariant simplicial maps that provide these structures on Cp-twisted THH, we
induce structures on the equivariant Bokstedt spectral sequence. Before we discuss these induced

structures let us first recall the following related result.

Proposition 1.0.7 ((AGH*22, The 4.2.7]). Let C, = (y) be a finite subgroup of S*. Let R be a
ring Cp-spectrum and E a commutative ring Cp-spectrum such that y acts trivially on E. If R
is a commutative ring Cy-spectrum, then the equivariant Bokstedt spectral sequence is a spectral

sequence of E , -algebras.



In the current work we show this spectral sequence is a spectral sequence of E, (R)-algebras.

Proposition 1.0.8. For a prime p, let R and E be commutative ring Cp-spectra, such that the
generator of C), acts trivially on E and E _(R) is flat over E . The equivariant Bokstedt spectral

sequence E} | is a spectral sequence of E, (R)-algebras.

Theorem 1.0.9. For p > 5 prime, let R and E be commutative ring Cp-spectra, such that the
generator of Cp acts trivially on E and E (R) is flat over E . If each term of the equivariant
Bokstedt spectral sequence E: WJorr > 2is flat over E, (R), then E: « Is a spectral sequence of

non-counital E, (R)-bialgebras.

1.1 Notation and conventions

Throughout this paper let G be a finite abelian group, and we are working with genuine
orthogonal G-spectra indexed on a complete universe. We use * to denote Z-gradings, * to denote
RO(G)-gradings, and e to denote simplicial gradings. Whenever discussing rotations, we mean

counter clockwise rotations.

1.2 Organization

In Chapter 2 we recall the definitions and properties of Mackey functors, Green functors, and
Mackey fields. We end the chapter by computing the RO(C)p)-graded homotopy groups of the
Eilenberg-Mac Lane spectra of Mackey fields. We then recall the constructions of Hochschild
homology (HH), topological Hochschild homology (THH), twisted HH, and twisted THH in Chap-
ter 3. This chapter ends with a computation of the equivariant homology of twisted THH of the
Real bordism spectrum.

In Chapter 4 we recall the classical story about the algebraic structure of THH and the Bokstedt
spectral sequence. In Chapters 5 and 6 we study the algebraic structure of twisted THH and the

equivariant Bokstedt spectral sequence respectively.



CHAPTER 2

MACKEY FUNCTORS

In this section we will recall the definition of a Mackey functor. Fix G a finite abelian group.

Definition 2.0.1. Let S, 7 and U be finite G-sets. A span from S to T is a diagram

A U > T

where the maps are G-equivariant. An isomorphism of spans is a commutative diagram of finite

G-sets

S\V:/T

and the composition of spans is given by the pullback. Given two spans § < U; — T and

S « Uy — T, there is a monoidal product via the disjoint union, S <« U | | Uy — T.

Definition 2.0.2. The Burnside category of G, denoted A, has as objects finite G-sets. The
morphism set A (S, T) is the group completion of the monoid of isomorphism classes of spans

S«<U-—->T.

Definition 2.0.3. A G-Mackey functor is an additive functor M : ﬂoGp — Ab that sends disjoint

unions to direct sums.

Recall that any finite G-set is isomorphic to | | G/H; for H; < G. Therefore one only needs to
i
know M (G/H) for each H < G to know M (S) for any finite G-set S.
Let Fing be the category of finite G-sets. A G-Mackey functor M is equivalent to a pair of

additive functors

M., M*: Fing — Ab



which send disjoint unions to direct sums, and are covariant and contravariant, respectively, such

that: for any S € Fing, M«(S) = M*(S), denoted M(S). Further, if the following diagram is a

pullback in Fing:
o
w > X
f! f
V4 Z > Y

mwy —2E s yx)

M* (") M*(f)

M(Z MY
M(2) W M(Y)
then the second diagram commutes.

Any sequence of subgroups K < H < G induces a natural surjection qg: G/K — G/H. The
homomorphism M*(qf(l): M(G/K) — M(G/H) is called the transfer map, denoted trII'(I or tr
when K and H are clear from context. The homomorphism M *(qg): M(G/H) - M(G/K) is
H
K

called the restriction map, denoted res?. or res.

Definition 2.0.4. For a finite group G, the Weyl group with respect to H < G is defined as
WH = Ng(H)/H where N (H) denotes the normalizer of H in G. Note that when G is abelian,
WH =G/H.

The set of G-maps of G/H into itself is isomorphic to WH. Thus, the abelian group M (G /H)
has a W H-action.

A Lewis diagram is a succinct way to describe a Mackey functor. For all H < G, M(G/H) are
written in the Lewis diagram. Also in the Lewis diagram are all the restriction maps resIP(I , and all
the transfer maps trg for K < H such that there are no subgroups K’ such that [K] < [K’] < [H].

Here [H] denotes the conjugacy class of H in G. In this paper we will leave off the Weyl actions



in the Lewis diagrams. Consider a C»-Mackey functor M. Then a Lewis diagram for M has the

following form:
M(Cy/C)

M(Cy/e)
Now that we have defined G-Mackey functors, we can now define maps between G-Mackey

functors.

Definition 2.0.5. A map between G-Mackey functors ¢: M — N is a natural transformation
between them. This map is defined by W H-equivariant group homomorphisms ¢ : M(G/H) —
N(G/H) for all H < G. Further, these homomorphisms must respect the transfer and restriction

maps. This can be visualized by the following diagram:
¢H
M(G/H) ————— N(G/H)
res tr res tr
M(G/K) —or N(G/K)

Let us consider some important examples of G-Mackey functors, starting with constant Mackey

functors.

Example 2.0.6. Let L be an abelian group. The constant G-Mackey functor over L, denoted L, is a
Mackey functor where L(G/H) = L with a trivial W H-action. Each restriction map is the identity

and each transfer map trII;I is multiplication by |H/K]|.

Example 2.0.7. The constant C;-Mackey functor F,, is

Fp

where the Weyl actions are trivial.



Let us denote the set of maps in A from W to Y as [W, Y]. There is a natural family of Mackey

functors defined in the following example.

Example 2.0.8 ([Lew80, Definition 1.1]). There is a representable G-Mackey functor [—, S] for

any § € Ag. Let us call this Mackey functor Pg.
For the next example, we first need the following definition.

Definition 2.0.9. The Burnside ring of G, denoted A(G), is the group completion of the monoid
of isomorphism classes of finite G-sets under disjoint union. Multiplication in this ring is given by

the Cartesian product of finite G-sets.

Example 2.0.10. The Burnside Mackey functor for G, denoted A, or A when G is clear from
context, is defined by A(G/H) = A(H) for all H < G. The transfer and restriction maps are given
by induction and restriction maps on finite sets. More explicitly, for K < H < G, § a finite K-set,

and 7 a finite H-set,
tril ([S]) = [H xg S] and resi{ ([T]) = [ (T)],
where ig : HSets — KSets is the restriction functor. Additionally, A is P /G-

Mackey functors are thought of as the equivariant analogue of abelian groups. While in classical
homotopy theory many invariants take values in abelian groups, the equivariant analogues of those
invariants take values in Mackey functors. The following is an important example that demonstrates

this.

Example 2.0.11. Let X be a G-spectrum. For each n € Z, the equivariant homotopy groups of X

assemble to a G-Mackey functor, denoted 7, (X), defined by
7,(X)(G/H) = mp(XH)

where X are the H fixed points of X.



This last example assembles into an integer graded G-Mackey functor. Before we define a
graded G-Mackey functor let us first recall the notion of RO (G)-grading, where RO(G) is the real
representation ring of G. The following is an example of RO (G) that will be used throughout this

article.

Example 2.0.12. Any @ € RO(C>) can be written as n + mo for o the sign representation and

n,me 7.
Homotopy groups of G-spectra are naturally graded by RO(G).

Definition 2.0.13. Let X be a G-spectrum. For all @ = [y] — [B8] € RO(G), the equivariant

homotopy groups of X, denoted 7, (X), are defined by
7, (X)(G/H) = no(XH) = [SY AG/H4, SP A X]G = [S7, 5P A X]p.

Let G be a finite abelian group, then for each subgroup H < G and each @ € RO(G), there is a

level wise G-actions on 7, (E) is defined by
G xn,(E)(G/H) » G/H X7, (E)(G/H) — n,(E)(G/H),

where the second map is the Weyl group action. These level-wise G-action assemble into a G-action

onz,(E).

Remark 2.0.14. If G is a cyclic group, then any G-Mackey functor admits a G-action. Since G is
cyclic, then every subgroup of G is normal so WH = G/H is always a subgroup of G. So, for M
a G-Mackey functor, M(G/H) is a G-module for all H < G and all of the transfer and restriction

maps are maps of G-modules. Therefore M admits a G-action.
Lewis and Mandell define RO (G)-graded G-Mackey functors in [LMO06, Definition 2.2]

Definition 2.0.15. There are notions of Z-graded and RO (G)-graded G-Mackey functors:

10



1. An integer graded G-Mackey functor is a collection of G-Mackey functors {M,};c7, written
as M. A map of Z-graded Mackey functors M, — N _, is a collection of maps of Mackey

functors {M; — N, }icz.

2. An RO(G)-graded G-Mackey functor is defined as a collection of G-Mackey functors
{M,}acro(G) Written as M, . A map of RO(G)-graded G-Mackey functors M, — N, is

a collection of maps of G-Mackey functors {M,, = N, },er0(G)-

Lewis defines an important example of a G-Mackey functor in [Lew80, Definition 5.5] called
the J-Mackey functor. We will use these functors in our computations of equivariant homology and
cohomology in Section 2.5. For our purposes, we will focus on the specific example of G = Cp, p

prime.
Definition 2.0.16 ([Lew80, Definition 5.5]). Let H < C,, p prime. The functor Jcp (V) forVa

Z|W H]-module is the following depending on H:

Jepse(V): ver Jeyic,(V): 1%

p-1 .
where tr(x) = ZO vixforx eV.

2.1 Box product and induction theories

The category of G-Mackey functors is an abelian category that has a symmetric monoidal
product called the box product, denoted [ 1. The box product was first defined by Lewis in Section

1 of [Lew80].

Definition 2.1.1. Let M and N be G-Mackey functors. The box product M 1N is given by a left

Kan extension over the Cartesian product of finite G-sets

11



Ag
The unit for the box product is the Burnside Mackey functor A, defined in Example 2.0.10.

Lewis demonstrates what the box product is for two C,-Mackey functors in [Lew88].

Definition 2.1.2 ([Lew88]). Let p be prime and let us choose the generator y for Cp,. Let M and

N be Cp-Mackey functors:

M: M(Cp/Cp) N: N(Cp/Cp)
resM trM resM trﬁ
M(Cp/e) N(Cple).

We can inductively define M [IN:

(M(Cp/cp) ®N(Cp/cp) @ (M(Cp/e) ®M(Cp/e))/cp)/FR

res tr

M(Cp/e) ® M(Cp/e)'
Let x € M(Cp/e),y € N(Cp/e),a € M(Cp/Cp), and b € N(C,/Cp). The Cp-action on
M(Cp/e) ® N(Cp/e) is given by y(x ® y) = y(x) ® y(y). The quotient by the Cp-action,
(M(Cp/e) ® N(Cp/e))/Cp, is isomorphic to the image of the transfer, Im(ir). The restric-
tion map is defined by res(a ® b) = resy(a) ® resy(b) and for any element tr(z) € Im(ir),
res(tr(z)) = z+yz+...+yP1z. The notation FR denotes the Frobenius reciprocity submodule

which is generated by elements of the form:
(Cl ® ”’ﬂ()’)ao) - (O’ tr(TESM(Cl) ® y))’

12



and

(try (x) ® b,0) — (0, 1r (x ® resﬁ(b))).

Hill and Mazur extend this definition to G = C ph in [HM19]. Since the subgroups of C pn are

nested, one can inductively build the box product of two C,n-Mackey functors, say M and N by

considering
C j
(MON)(Cpn/C, ;) = (M(Cpn/C ;) ® N(Cpn/C ) ® Im(trcpj_l))/FR
14

where the restriction, transfers, and F' R are defined as in the above definition.

Hill and Mazur also show that the above definition also extends to an i-fold box product of
Cpn-Mackey functors in [HM19]. Say M is a Cj,n-Mackey functor for 1 < k < i, the box product
of these Mackey functors is defined by

(M, UM, 0 ... UM)(Cpn/C ;) =
C .
J
(Ml(cpn/cpj) ® My(Cpn/C,j) ® ... @ Mi(Cpn/C ;) & Im(trC;’j_l))/FR.
Here the Frobenius reciprocity submodule F'R is generated by elements of the form
C .
J
(m@my®...0tr, (b)®...0m;0)-
C C C

J J J
KP (m1)®rest (m2)®...®b®...®rest (my)))

i
(0, ter (res

where b € M, (C,n/K) for 1 < k <iand K any subgroup of ij.

Proposition 2.1.3 ([Lew80, Lew88, ShulOl). Let p be prime. For C,n-Mackey functors M, N and
L, maps MU N — L are in natural bijective correspondence with collections of Weyl equivariant

maps which satisfy certain conditions. Namely,
fir M(Cpn/C ;) @ N(Cpn/C ;) — L(Cpn/C )

forall 0 < j < n such that the following compatibility conditions are satisfied:

Cj C j Cj
1. rescp ofj=fi-1° (rescp ®rescp )
p]_l pj_l p]_

13



Cpi Cpi Cpi
2. fjo (trcp. ® id) = trcp. ofi—1o(id® rescp. )
pi1 pi-1 pi1

ij ij ij
3. fjo(ld®trc _ 1)=trc 10fj_10(resc .

. ® id)
p/~ pl~ p/-1

forall j.
There is also a box product on graded G-Mackey functors.

Definition 2.1.4 ([LMO06, Definition 2.4]). Let N, and M, be RO(G)-graded G-Mackey functors.
We define N, (1M, as an RO(G)-graded G-Mackey functor such that for y € RO(G)

(M* DM*))/ = y:?+ﬁ(ﬁa Dﬂﬁ)-

The definition is similar for Z-graded Mackey functors.

The unit for the product on RO(G)-graded G-Mackey functors is A, which is A in degree 0
and 0O in all other degrees.

The following is an example of a Mackey functor which will prove to be useful shortly.

Example 2.1.5 ([Lew80, Definition 1.2]). Let M be a G-Mackey functor. For S € Ag one can

define M ¢ to be a G-Mackey functor where M ((T) = M(S X T) for T € Ag.

Recall that P is the representable G-Mackey functor, [—, S], as defined in Example 2.0.8. The
following lemma shows us how we can use the definition of Pg to better understand M ¢ for any

Mackey functor M.

Proposition 2.1.6 ([Lew80, Lemma 1.6]). Let S € Ag, and M be a G-Mackey functor. There are
natural isomorphisms

POM=MUOPg = Ms.

Next we will discuss H-characteristic and H-determined G-Mackey functors for H < G. These

are nice classes of Mackey functors where, loosely, one can induce information about a Mackey

14



functor M by knowing the value of M (G/H). A Mackey functor being H-determined is a stronger
notion than a Mackey functor being H-characteristic. In [Lew80], Lewis refers to tools that help
us to understand more about an H-characteristic or H-determined Mackey functor as induction
theorems named after the classical induction theorems from representation theory. For more
information see Section 4 of [Lew80].

We need a definition and some discussion before we can define an H-characteristic Mackey

functor.

Definition 2.1.7 ([Lew80, Definition 5.1(a)]). A G-Mackey functor M is H-bounded if there is a
subgroup H of G where M(G/K) =0 for [K] < [H] and M(G/H) # 0if M # 0.

Before the next definition, let us discuss how the map of G-sets G/G < G/H can induce the
map M — Mgy Recall that the morphism set of the Burnside category from S to T, A5 (S, T),
is the group completion of the monoid of isomorphsim classes of spans S «— U — T for S, U,
and T finite G-sets. The map of G-sets G/G « G/H generates an isomorphism class of spans in
Ac(G/G,G/H), namely, [G/G «— G/H — G/H] where the map G/H — G/H is the identity
map. This demonstrates how a map of G-sets G/G « G/H induces a map on a G-Mackey functor

MM — Mgy

Definition 2.1.8 ([Lew80, Definition 3.4]). Let H < G. A G-Mackey functor M is H-characteristic
ifthe map M — Mg g induced from the map of G-sets G/G «— G/H,is injectiveand M (G /K) =
O unless [H] < [K].

Note that for H < G, a G-Mackey functor M being H-characteristic implies that M is H-
bounded but the converse does not hold. In order to define an H-determined Mackey functor, we

need the following definition.

Definition 2.1.9 ([Lew80, Definition 4.1]). We say a G-Mackey functor M satisfies G /H-injective
induction if the diagram M — M,y = Mgy /p induced by the diagram G /HXxG/H =
G/H — G/G in Fing is an equalizer diagram. The two maps from G/H X G/H — G/H are the

projections onto the first and second components.
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Lewis goes on to explain that to show a G-Mackey functor satisfies G /H-injective induction
directly is difficult. Even so, this is a very useful form of induction as demonstrated by the following

definition.

Definition 2.1.10 ([Lew80, Definition 5.1(b)]). A G-Mackey functor M is H-determined for H < G

if it is both H-bounded and satisfies G /H-injective induction.

Recall, that a G-Mackey functor being H-characteristic implies that it is H-bounded. In fact, if
a G-Mackey functor is H-determined, then it is H-characteristic. Therefore the above definition is

equivalent to the following.

Definition 2.1.11 ([Lew80]). A G-Mackey functor M is H-determined for H < G if it is both

H-characteristic and satisfies G / H-injective induction.

In fact Lewis shows that Jg /g (V), two examples of which are seen in Definition 2.0.16, is
H-determined for any H < G and V a Z[WH]-module in [Lew80, Lemma 5.6].
It is difficult to directly show that a G-Mackey functor satisfies G / H-injective induction. There

are stronger forms of induction that are easier to verify.
Definition 2.1.12 ([Lew80, Definition 4.2]). We say a G-Mackey functor M

1. is G/H-projective if the map M H—M induced from the transfer map G/G < G/H is a

split surjection.

2. is G/H-injective if the map M — M JH induced from the restriction map G/H — G /G is

a split injection.

It turns out that if a G-Mackey functor is G /H-projective or G /H-injective then it satisfies
G / H-injective induction. The following shows the relationship between G/ H-injection and G /H-

projection.

Proposition 2.1.13 ([Lew80, Proposition 4.4]). For any G-Mackey functor M, it is equivalent for

M to be G |H-projective and G | H-injective.
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We can know a lot about a Mackey functor if we know it is S-projective, S a finite G-set, as

demonstrated by the following induction theorem.

Proposition 2.1.14 ([Lew80, Proposition 4.4]). Let M be a G-Mackey functor. The Mackey functor

M is a direct summand of M ; JH if and only if M is G | H-projective.

2.2 Green functors

Since Mackey functors are the equivariant analogues of abelian groups, one may ask how to
define the equivariant analogue to rings. Now that we have a symmetric monoidal product, we can

define an equivariant analogue to rings.

Definition 2.2.1 ([Lew80, Definition 2.1(a)]). A G-Green functor R is a Mackey functor with a
unit map 7: A — R and a multiplication map ¢: RLIR — R such that the following diagrams

commute:

01

ROROR > ROR
10¢ é
ROR > R
— — ¢ —
AUR —— RUR <—— RUA

/

%

A G-Green functor is said to be commutative if the following diagram commutes

N

where 7 swaps the two copies of R.

RO
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To define graded Green functors which are commutative we must define the rotating isomor-
phism. The definition of the rotating isomorphism uses elements in the Burnside ring. Namely,
for G a finite abelian group and «, 8 € RO(G), the switch map S* A S — SB A S% gives an
element in the Burnside ring A(G). Let us refer to this element as s(a, ). Further, for N, and M,
RO(G)-graded Mackey functors, s(a, 8) induces an automorphism M , (1N 5 M, ON 5 This
automorphism, along with the symmetry isomorphism of abelian groups, gives an isomorphism
rag: M,UNg — NgUOM,.

Definition 2.2.2. Let M, and N, be RO (G)-graded Mackey functors. The rotating isomorphism,

noted7r: M, IN,_— N UM, isdefined onlevel y € RO(G), by rq g: MQ’DM,B —>ﬁﬁDM

04 2

as defined above, for all @ + 8 = .
We are now ready to define an Z or RO (G)-graded G-Green functor.

Definition 2.2.3 ([LMO06, Definition 3.1]). An RO(G)-graded G-Green functor R, is a collection
of Mackey functors, {R,},ero(G) With a unit map n: A, — R, and a multiplication map

¢: R, IR, — R, such that the following diagrams commute:

$01

R,UR,OR, > R, OR,
10¢ 0]
R,UR, p > R,

n1 107
A*DB* — B*DE* — B*DA*

R
1R

R

An RO(G)-graded G-Green functor is said to be commutative if the following diagram commutes
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where 7 is the rotating isomorphism defined in Definition 2.2.2.

This allows us to define Mackey modules, submodules, and ideals. Let us first consider the

following definition.

Definition 2.2.4. A subfunctor, say S, of a G-Mackey functor M is a functor from finite G-sets
to abelian groups where S(G/H) < M(G/H) for all H < G, where the transfer maps, restriction

maps, and Weyl actions of S are induced from the corresponding maps and actions on M.

Definition 2.2.5 ([Lew80, Definition 2.1(b)]). For R a G-Green functor, a left R-module is a G-
Mackey functor M with a module structure map &: R M — M such that the following diagrams

commute:

o001

I<

O
N
(TD

ROM > M
a1
AOM — M

%B

<TD

I<

where ¢ and i are the multiplication and unit map of R respectively. Right R-modules and R-
bimodules are defined analogously. If R is commutative, then every left (right) R-module is a

R-bimodule. An R-submodule N of M is a subfunctor that is closed under the action of R.

Lewis and Mandell define an RO (G)-graded module over an RO (G)-graded Green functor in
[LMO6].



Definition 2.2.6 ([LMO06, Definition 3.2]). For R, an RO(G)-graded G-Green functor, a left R , -
module is an RO(G)-graded G-Mackey functor M, with a module structure map é: R, 1M, —

M, such that the following diagrams commute:

01
R,OR,OM, —'— % R OM,

10¢ &
B*DM* £ > M*
1
A0OM, — > R,OM,
> '3
M,

where ¢ and 5 are the multiplication and unit map of R, respectively. Right R, -modules and
R, -bimodules are defined analogously. If R, is commutative, then every left (right) R, -module
is an R, -bimodule. An RO(G)-graded R, -submodule N, of M, is a subfunctor on every level,
meaning that N, is a subfunctor of M , for all « € RO(G), where N _ is closed under the action of

R

—k"

In the classical case, we have relative tensor products of abelian groups defined from a coequal-
izer diagram. The following is the equivariant analogue. Lewis originally defined the non-graded
case in [Lew80] and Lewis and Mandell extended this to the RO(G)-graded case in [LMO6,

Definition 3.6(a)].

Definition 2.2.7 ([Lew80, LMO06]). Let L, and M, be right and left R -modules, respectively, for
R, an RO(G)-graded G-Green functor. Define L, [] R, M, as the coequalizer in the category of
RO(G)-graded Mackey functors
pid
L* DB* DM* = L* DM* - L* |:lR M*
id0A =

for p and A being the left and right module actions, respectively.
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It is natural to now define the ideals of Green functors.

Definition 2.2.8 ([Lew80, Definition 2.1(c)]). Let R be a G-Green functor. A left ideal I of R is a
submodule of R considered as a left module over itself. Analogously, one can define right ideals

and two sided ideals.

The definition of an RO (G)-graded ideal can be derived from Lewis and Mandell’s definition
of an RO (G)-graded module.

Definition 2.2.9. Let R, be an RO(G)-graded G-Green functor. An RO (G)-graded left ideal I,
of R, is an RO(G)-graded submodule of R, considered as a left module over itself. Analogously,

one can define RO (G)-graded right ideals and RO(G)-graded two sided ideals.

Note that, as is true classically, if I, is an RO(G)-graded left ideal of R,, then I, must be a
left ideal of R,. This is because by the definition of an R -subfunctor, there is an inclusion map
Iy — R and the module structure map on R, L1/, must land in /.

We will need the notion of a flat R-module later on in this paper. Lewis discusses this briefly

after Proposition 2.4.

Definition 2.2.10 ([Lew80]). A left R-module M is flat if the functor — g M from the category
of right R-modules to the category of G-Mackey functors is exact. The definitions of a flat right

R-module and flat R-bimodule are defined analogously.
Lewis and Mandell extend this definition to RO (G)-gradings in [LMO06, Theorem 4.5].

Definition 2.2.11. A left R, -module M, is flat if the functor — Lg M, from the category of right
R -modules to the category of RO (G)-graded Mackey functors is exact. The definitions of a flat

right R, -module and flat R, -bimodule are defined analogously.

Recall that for § a finite G-set and M a G-Mackey functor, M ¢ = M U1 Pg. Moreover, for R a
G-Green functor and S a finite G-set, R¢ is an R-bimodule. Lewis discusses after Proposition 2.4

in [Lew80] that —LJ Pg, R¢ [Lg —, and — g R are exact functors.
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2.3 Equivariant spectra and fixed points

Let us recall some constructions for G-spectra, such as fixed points, and their relation to Mackey

functors. Let us first define fixed points of a G-spectrum.

Definition 2.3.1. For G a finite group, H < G, and X a G-spectrum, the H-fixed point spectrum of

X, X" isa W H-spectrum defined by:
Xy = xp
for V a G-representation that is fixed by H.

For E and D G-spectra, in general (E A D) is not equivalent to Eff A D for H < G. The
geometric fixed points is another important notion of fixed points. We will need to work our way

up to this definition.

Definition 2.3.2 ([LMSM86]). Let N be a normal subgroup of G. Denote Py as the family of
proper subgroups of N. Let EPy denote the classifying space of Py such that E P}\L]I is empty and
for any proper subgroup H, E P]{]I is weakly contractible.

We will always assume that EPy is a G-CW complex and let EPy be the mapping cone of

Hill, Hopkins, and Ravenel discuss in more detail the construction of this classifying space in

Section 2.5.2 of [HHR16].

Definition 2.3.3. Let X be a G-spectrum and N a normal subgroup of G. The N-geometric fixed
point functor ®N , maps from the category of G-spectra to the category of G /N-spectra is defined
by

oN(X) = (EPy A X)V.

For H < G and E and D G-spectra, we have

O (E A D) ~ 7 (E) A (D).
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Another important property of the geometric fixed point functor is that for a G-space X and H I G

we have
O (z°x) ~ 3°(xH).
Proposition 2.3.4 ([LMSMS86)). For E a G-spectrum concentrated over H I G we have
o (E) ~ EH.
Let D and E be G-spectra. We let [ D, E]; denote the homotopy classes of maps of G-spectra.

Proposition 2.3.5 ((LMSM86]). Let E and D be G-spectra. If E is concentrated over H and

H < G, then
[D,Elg = [®(D), (E)wh.

For a G-Mackey functor M, there is an associated Eilenberg-Mac Lane G-spectrum, denoted
HM (see, for example, [dS03, dSNO09]). As is true classically, these Eilenberg-Mac Lane G-spectra

are characterized by their Z-graded homotopy groups:

M n=0
7, (HM) =

0 else.

We need the following definition to state another induction theorem which has to do with the

Eilenberg-Mac Lane spectrum of a Mackey functor.

Definition 2.3.6. For H < G, a G-spectrum E is concentrated over H if Ef (E) # 0if and only if

K contains H up to conjugacy.

Proposition 2.3.7 ([Oru89, Remark 3.7]). For any H-determined G-Mackey functor M, the

Eilenberg-Mac Lane spectrum HM is concentrated over H.

The following is an interesting fact about H-determined Green functors, which we will use later

in this paper. Orug proves the following within the proof of Theorem 3.11 in [Oru89].

23



Proposition 2.3.8 ([Oru89]). Let R be an H-determined, G | H-projective G-Green functor. Then
if we consider of (HR) as non-equivariant, it is isomorphic to the non-equivariant Eilenberg-Mac

Lane spectrum H(R(G/H)).

2.4 Mackey fields

Green functors are an equivariant analogue to rings, and we have recalled what it means for a
Mackey functor to be an ideal of a Green functor, so now we can recall an equivariant analogue to

fields.

Definition 2.4.1 ([Lew80, Definition 2.6(f)]). A G-Mackey field F is a nonzero, commutative

G-Green functor with no nontrivial proper ideals.
Let us define RO (G)-graded Mackey fields.

Definition 2.4.2. An RO(G)-graded G-Mackey field is a nonzero, commutative RO (G)-graded

G-Green functor with no nontrivial RO (G)-graded ideals.

Before we recall some properties of Mackey fields, let us first cover some examples. One may
guess that the constant Mackey functor over a field is always a Mackey field, but this is not always

true.

Example 2.4.3. The constant C>-Mackey functor over F; is not a Mackey field. Recall that I, is

the following

F

one can check that the following is an ideal of F,
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B>

which is not a trivial ideal, therefore F, is not a Mackey field.

It turns out that there are many cases where the constant Mackey functor over a field is in fact a

Mackey field.

Example 2.4.4. The constant Cp-Mackey functor over Fp, for p an odd prime is a Mackey field.

Recall that Ep is the following

Fp
where the transfer map is multiplication by two. One can check that this has no ideals. For example,

the following Mackey functor, say /, cannot be an ideal

Fp
as there is no inclusion map I — Ep which respects the transfer and restriction maps. To see this

consider the following

0— 0 4,
0 0 id 2

PP id ) FP
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inc 2 0 0
this fails to be a map of Mackey functors as F), = Fp — Fp is not the same as F, — 0 — Fp,.

One can do a similar argument for the other nontrivial candidate for an ideal of E,

Fp

Therefore Ep is a Cp-Mackey field.

There are many other examples of Mackey fields. In fact any Cp-Mackey functor M where
M(Cp/e) =0and M(Cp/Cp) = F for F a field is a Cp-Mackey field. The following is another

interesting example.

Example 2.4.5. The following is a C»-Mackey field:

where the Cs-action on C is complex conjugation, and the transfer map takes the real part of the

complex number and multiplies it by two.

One may have noticed that for every example of a Mackey field F, F(G/G) has been a field.

This is not special to these examples, but is a feature of Mackey fields.
Proposition 2.4.6 ([Lew80, Proposition 3.9(f)]). If F is a G-Mackey field, then F(G|G) is a field.

Note that it is not necessarily true that F(G/H) is a field for H < G. The following result will

illuminate some of the interesting properties of Mackey fields.

Proposition 2.4.7 ([Lew80, Corollary 4.5]). Let R be a G-Green functor, and F a G-Mackey field.

1. R is G/H-projective if and only if every module M over R is also G | H-projective.
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2. If F(G/H) # 0, then any module over F is G | H-projective.

Since every Mackey field is nonzero, there must be some H < G such that F(G/H) # 0.
Therefore, by the above proposition, F is G /H-projective for at least one H < G. Furthermore,
since a Mackey functor being G / H-projective implies that it is G /H-injective and satisfies G /H-
injective induction, then a Mackey field F satisfies all forms of G /H-induction for any H < G such

that F(G/H) # 0.

Proposition 2.4.8 ([LewS80]). Let F be a G-Mackey field. There exists some H < G such that F is

H-determined.

Proof. We have already shown that for any K’ < G such that F(G/K’) # 0, F satisfies G/K’-
injective induction, we must now show that there is some H such that F is H-bounded.

Since F cannot be the zero Mackey functor, there must be at least one subgroup of G, say
H’, such that F(G/H’) # 0. Choose a smallest, with respect to size, subgroup H < H’ such that

F(G/H) #0. Then F(G/K) =0 for all K < H, therefore F is H-bounded. O

From this result, we can “sort" all G-Mackey fields by classes of subgroups H < G. Note that
a Mackey functor can be Hj-characteristic and H,-characteristic for H; # H,. For example, a
Cg-Mackey functor can be Cz-characteristic and C,-characteristic.

We can also see that if F is H-determined, then by Proposition 2.4.7 every F-module also

satisfies all forms of G /H-induction.

Proposition 2.4.9 ([Lew80]). Let F be an H-determined G-Mackey field. If M is an F-module,

then M is H'-determined for some H' < H.

Proof. We have already shown that M satisfies G /H’-injective induction whenever F(G/H’) # 0.
We must now show that M is H’-bounded for some such H’. If M = 0, then we are done as 0 is
K-bounded for any K < G.

If M # 0, then we need to show that there exists some H’ as above such that M (G /K) = 0 for

all K < H', M(G/H’") # 0, and H' £ H. Since M # 0, there exists at least one minimal H” such
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that M(G/H’) # 0, where by minimal we mean that there exists no proper subgroup K of H’ such
that M(G/K) # 0. Therefore, M is H'-bounded. We now need to show that H' < H.
By the assumption that F is H-determined, F'(G/K) must be O for all K < H. Since M is an

F-module, the following diagram must commute

01
AOM —1—— FOM

[

IR

for 7 the unit map for F and ¢ the module structure map. If there existsa K < H suchthat M(G/K) #
0 then this diagram would not commute since one can show inductively that (FUOM)(G/K) = 0.

Therefore H’ is not a proper subgroup of H. U
The following is a simple fact that will be useful in this paper.

Proposition 2.4.10. For a G-Mackey field F we have that F(G/e) # 0 if and only if F is e-

determined.

Proof. Let us assume that F(G/e) # 0. Since F is a G-Mackey field, we know that it is H-
determined for some H < G. This implies that F(G/K) = 0 unless H < K. By our assumption
F(G/e) #0,s0 H < e and therefore H = e.

In the other direction, let us assume that F is e-determined. Then F is e-bounded, so F (G /e) #

0. U

The following follows from the previous proposition and the fact that any C,-Mackey field must

be either e-determined or C p -determined.

Corollary 2.4.11. Let p be prime. For a Cp-Mackey field F, F is Cp-determined if and only if
E(Cp/e) =0.
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2.5 Equivariant homotopy groups of Eilenberg-Mac Lane spectra

In this section, we will compute zr, (HF) for any Cp,-Mackey field F and p prime. Note that
Ferland and Lewis computed these homotopy groups in [FLO4]. That is, in Chapter 8 of [FL0O4]
the authors compute HM ,_ for M any C,-Mackey functor. Considering M to be a Cp-Mackey field
greatly simplifies this computation. Let us first recall the definition of equivariant homology and
cohomology.

Define a4 as the disjoint union of the discrete space a and a G-trivial point. For G-spectra D
and E we regard [D, E]; as a G-Mackey functor by defining [D, E]g(a) = [E%a+ A D, E]g for
a a finite G-set. Similarly for a G-space X, [Z°X, E|g(a) = [2%a+ A %X, E]q is a G-Mackey

functor.

Definition 2.5.1 ((LMMS81, LMSMS86]). Assume E and D are G-spectra, and X a G-space. Then

G-equivariant E-cohomology and E-homology of X and D are given by

EX(X) = [EPX,S* A Elg, E,(X) = [$*.ZFX A Elg.
E*(X) = [Z¥X,S* A E]gG. E (X)=[S*Z¥X A E]g.
E*(D)=[D,S* AE]g, and E,(D)=[S*,DAE]g.
Note that 7, (E A D) = E_, (D).

Orug gives an explicit formula for the homology and cohomology of a G-spectrum with
coeflicients in G-Mackey functors under certain conditions in [Oru89]. In order to state this
theorem, we need some observations and definitions.

Let V be a G-representation, and y € G, then there is a G-action on SV, v sV > sV, In

fact, since fixed points have an action of the Weyl group, there is a WH action induced from vy, say

H H
y:SV — sV,

Definition 2.5.2 ([Oru89, Definition 3.10(2)]). For any G-representation V, let zg (V) denote the
; H H

Z[WH]-module HYmV™) gV 7) ~ 7 The action of y € WH on zyy(V) is yx = (degy)x for

any x € zy(V) and deg(z) the non-equivariant degree. For any @ = [V]| — [W] € RO(G). Let

za(@) = zg(V) ® zg(W).
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For H < G, if [WH| is odd, then for every y € WH, deg(y) = 1. Therefore, for any G-
representation V, if |WH]| is odd, then zg (V) = Z with a trivial WH-action. This paper focuses
on G = Cp. In that case, z,(V) = Z with the trivial Cp-action when p is an odd prime. We get

something interesting when p = 2.

Example 2.5.3. Let G = C; and let y be the nontrivial element of C;. Let us compute z, (€ + ko)
for €,k > 0. The map y: SI*KT — §(+ko hag degree (—1)F since y is flipping the S/** sphere
on k axes and fixing the other ¢ axes. Therefore, yx = (=Dkx for x € z.(¢ + ko). Therefore,

Ze(€ + ko) = Z has a trivial Cp-action when £ is even and the Cy-action of multiplication by —1

when k is odd.

This example shows that the only way that z. (¢ + ko) has a nontrivial C-action is if k is odd.
We now have the tools to introduce Orug’s explicit computation of equivariant cohomology and
homology of a G-spectrum with coefficients in certain Mackey functors. We have only defined
J-Mackey functors for G = Cp, but Orug’s result is for a more general G. For the full definition of

J-Mackey functors please refer to [Lew80, Definition 5.5].

Proposition 2.5.4 ([Oru89, Proposition 3.11]). For R an H-determined, G |H-projective Green

functor, M a module over R, E a G-spectrum and a« € RO(G) we have

Ho(E:M) = I u(Hy o) (P (E):M(G/H)) ® 2y (), and

im(a

HO(E; M) = Jg (HE™ @) (@ (E); M(G/H)) @ z4(a)).

Recall that any G-Mackey field is H-determined for some H < G. Let Scp and S be the units
in the category of ring C)-spectra, and the category of ring spectra, respectively. We can write
n (HF) as ﬂ*(SCPQE)- The geometric fixed points of Scp are as follows, @e(SCp) = Scp, and
¢Cp(scp) = @Cp(zg’pso) =3°((§9CP) = x50 = §,

For F an H-determined C,-Mackey field, Proposition 2.5.4 shows that

7, (HE) = Je, i (Hy oy (9 (Sc, ) F(Cp/H)) @ 21 (@) 25.1)
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for any @ € RO(Cp). We can split the computation into two cases, when F is Cp-determined and

when F is e-determined.
2.5.1 Cp-determined Mackey field coefficients

For this subsection, let F be a Cp-determined C,-Mackey field for p prime. Then F(C,/Cp) is a
field, say k, and F(Cp/e) = 0. There was a discussion around Example 2.5.3 which showed that
o () is always congruent to Z with no group action. By Proposition 2.5.4 we have the following

computation:

mo(HE) = ey e, (Hy | Cpy(5:K) @ 2¢) ()

(
= JepcpH (o Cpy 55 0))

= JcpiCp (T g (oCp) (HE))

for any @ € RO(Cp). Note that this is only nonzero when dim(aCP ) = 0, that is, when « is ko
when p = 2 for k € Z. Using the J-Mackey functor computations in Definition 2.0.16 above we

can simplify this computation to the following for p prime

F deg(a/CP) =0

m,(HE) =
0 else.
The Z-graded homotopy groups of the Eilenberg-Mac Lane spectrum of a Mackey field gives
a Mackey field since 7, (HF) is F in degree 0 and 0 in all other degrees. The question of whether
the RO(Cp)-graded homotopy groups of the Eilenberg-Mac Lane spectrum of a Mackey field is a

graded Mackey field is more complex since 7, (HF) is nonzero in many degrees.

Proposition 2.5.5. Let p be prime. For F a Cp-determined Cp-Mackey field, HF | is an RO(Cp)-
graded Mackey field.

Proof. Let F be such that F(C,/Cp) = k. By way of contradiction, say there exists a nontrivial,
proper RO(Cp)-graded ideal I, of HF ,. The definition of a graded ideal says that there must be

a module structure map HF , [11 g1 and I, must be an ideal of HF, = F. Therefore I, is

a+f’
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either F or 0. We will show that for either situation I, will be forced to be 0, or HF, , which will
be a contradiction since I, is assumed to be a nontrivial, proper ideal.
If I, = F, choose @ € RO(Cp) such that HF , # 0, so by above calculations since HF , #

0, then HF, = F. Consider the module structure map HF 11, = FUF — and by

1,
Proposition 2.1.3 this map is determined by the module structure map: k ® k — I,(Cp/Cp).
As we know, when considering k as a module over itself, the module structure map is just the
multiplication map, so I, (Cp/Cp) must be k or else that is not a multiplication map on k. Then
we can see that [, must be F. Thus, I, must be F for all @ such that HF , # O0so I, = HF _.

If Iy = 0, choose @ € RO(C)) such that HF , # 0, so by above calculations since HF , #
0, HF , = F. Consider the module structure map HF UJI_, = FUI_, — I, = 0 and by
Proposition 2.1.3 this map is determined by the module structure map: k ® I_,(C,/Cp) — 0.
Recall that /_, is an ideal of HF_, which by the computation above is either 0 or F. So I_,
can either be 0 or F. If I_, = F, then the multiplication map would be k ® k — 0, but we
assumed that k is a field so this is not a multiplication map. Therefore I_ , must be 0. Note that if
deg(acp) = deg(—aCP) so by definition of HF ,, HF , = HF _ , for all @ € RO(C)). Thus, [,
must be 0 for all @ such that HF , # 0so I, =0,.

Therefore, HF , is an RO(C)p)-graded Mackey field. O
2.5.2 e-determined Mackey field coefficients

Let F be an e-determined Cp,-Mackey field, for p prime. Then F(Cp,/Cp) isafieldand F(Cp/e) #
0, say R. Example 2.5.3 shows that when p = 2, then z,(n+mo-) is congruent to Z with a nontrivial
Cy-action when m is odd and congruent to Z with a trivial Cp-action when m is even. There was a
discussion after Example 2.5.3 which shows that when p is an odd prime, z. (@) is congruent to Z

with a trivial Cp-action. By Proposition 2.5.4 we have the following computation:

7o (HE) = Jc, /e (Haim(a)(Scp: R) ® ze(a))

= JCp/e (ﬂ'dim(a) (HR) ® ze(a))

for any @ € RO(Cp). Note that mgim(o) (HR) is R when dim(@) = 0 and O else.
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For the p = 2 case, using the J-Mackey functor computations in Definition 2.0.16 above we

have the following:

R©2

inc 14y a=k—ko, keven

R
x,(HF) ={ (R®2)2

a=k—-ko, kodd

inc 1+y

R®Z

0 else

where the C»-action is diagonal on R ® Z and the C;-action on Z is multiplication by —1. If R is
characteristic two, then R®Z = R where the C»-action is just the action on R and (R ®Z)C2 =~ RC2,

Since HFy = F, then every e-determined C»-Mackey field can be written as the following:
R©2

Note that this does not mean that every Cp-Mackey functor that has the above Lewis diagram is a
C)-Mackey field. For example Z has this structure but is not a Mackey field as Z(C,/Cy) = Z is
not a field and M (G /G) must be a field if M is a G-Mackey field.

For the case when p is an odd prime, using the J-Mackey functor computations in Defini-

tion 2.0.16 above we have the following:

REP

dim(a) =0

inc tr

n,(HE) =

1o

else

33



where the transfer map is the sum of y! for 0 < i < p — 1, v the chosen generator of Cp. Since
HF = F, then every e-determined Cp-Mackey field for p an odd prime, can be written as the

following:
RCP

R.
Note that this does not mean that every C,-Mackey functor for p an odd prime that has the above

Lewis diagram is a Cp-Mackey field. For example Z has this structure but is not a Mackey field as
Z(Cp/Cp) = Zis not a field and M (G /G) must be a field if M is a G-Mackey field.

Further, Lewis discusses after Remark 7.4 in [Lew80] the following result.

Proposition 2.5.6 ([Lew80]). If F is an H-determined G-Mackey field, then there must be an

element x € F(G/H) such that trfl(x) =1¢€ F(G/G).

Corollary 2.5.7. Let p be prime. If F is an e-determined Cj,-Mackey field, then the transfer map

IS nonzero.

This result will greatly help in future proofs about e-determined C,-Mackey fields.
As mentioned above, the question of whether the RO(Cp)-graded homotopy groups of the
Eilenberg-Mac Lane spectrum of a Mackey field is a graded Mackey field is more complex than

the Z-graded homotopy groups since r, (HF) is nonzero in many degrees.

Proposition 2.5.8. For F an e-determined Cp-Mackey field, and p an odd prime, HF , is an
RO(Cp)-graded Mackey field.

Proof. Let F be such that F(Cp/e) = R, and F(Cp/Cp) = RCr. By way of contradiction, say
there exists a nontrivial, proper RO (Cp)-graded ideal I, of HF , . The definition of a graded ideal

says that there must be a module structure map HF 11 g = 1 and /, must be an ideal of

a+p’
HF = F. Therefore I, is either F or 0. We will show that for either situation I, will be forced to

be 0, or HF ,, which will be a contradiction since I, is assumed to be a nontrivial, proper ideal.
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If I, = F, choose & € RO(Cp) such that HF, # 0, so by above calculations since HF, # 0,
then HF, = F. Consider the module structure map is HF U1, = FUF — [, and by
Proposition 2.1.3 this map is determined by the module structure maps: R® R — I ,(Cp/e) and
R¢r @ R¢P — 1,(Cp/Cp). As we know, when considering a ring as a module over itself the
module structure map is a multiplication map, so I,(Cp/e) must be R and I ,(Cp/C)) must be
RCP or else the above mentioned maps are not multiplication maps on R and RCp respectively.
Then we can see that I, must be F. Thus, I, must be F for all @ such that HF , # O0so I, = HF .

If Iy = 0, choose @ € RO(C)) such that HF , # 0, so by above calculations since HF , # 0,
then HF, = F. Consider the module structure map HF ,UJI_, = FUI_, — I, = 0 and by
Proposition 2.1.3 this map is determined by the module structure maps: R® I_ ,(Cp/e) — 0, and

R @ I_,(Cp/Cp) — 0. Since I_, is a submodule of F_,, which by above computations is

—a’
either O or F, then I_ ,(Cp/e) is a submodule of R and I_,(C,/C)p) is a submodule of RCP. The
only submodule of R, say M, whose multiplication map is the zero map, is O itself so I_,(Cp/e)
must be 0. Similarly we can show that /_,(Cp/Cp) must be 0. Then we can see that /_, = 0.
Note that if dim(«) = dim(—a) so for p an odd prime, by definition of HF ,, HF , = HF _, for all
@ € RO(Cp). Thus, I, must be O for all @ such that HF , # 0so I, =0,.

Therefore, HF , is an RO(Cp)-graded Mackey field. O
The proof is the same for the following proposition.

Proposition 2.5.9. Let F be an e-determined Cy-Mackey field, where F(Cy/e) = R. If R is such
that R® Z = R as Z|Cy]-modules where Z has the C-action of multiplication by —1, then HF | is

an RO (C,)-graded Mackey field.

Note that this does not mean that HF is not an RO(C;)-graded Mackey field for other e-

determined Cr-Mackey fields F.
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CHAPTER 3

CLASSICAL AND EQUIVARIANT HOCHSCHILD THEORIES
Throughout this paper, we will use equivariant analogues of Hochschild homology (HH) and
topological Hochschild homology (THH); these equivariant analogues were defined in [BGHL19]
and [ABG™"18], respectively. In this section, we recall the definition of HH, a classical invariant of
algebras, its topological analogue THH which was defined in [Bok85a], and discuss some tools used
to compute them. We will then recall equivariant analogues of HH and THH, namely, Hochschild
homology for Green functors [BGHL19, Definition 2.25] and twisted THH [ABG*18, Definition

8.2], which take as input equivariant rings and equivariant ring spectra, respectively.

3.1 Hochschild homology

For this section, let kK be a commutative ring, let A be a k-algebra, and let all tensor products be
over k. We will discuss two perspectives on Hochschild homology, one via the cyclic bar complex

and the other using Tor-functors. We start by defining the cyclic bar complex.

Definition 3.1.1. Let £ be a commutative ring. The cyclic bar complex for a k-algebra A, denoted
B.Y (A), is a simplicial k-module such that B,Cly(A) = A®"*1 where the face and degeneracy maps
di: A% 5 A®M and ;0 A®MHL 5 A®NH2 gre defined as follows:

ag®a1®...®a;a;4+1®...Q0a, 0<Li<n
dilap®a; ®...®ay) =

anpag® a1 ®...0a,—1 i=n
silap®a; ®...Q®ap) =ap®a;®...04;91Q...®ay 0<i<n.
To define Hochschild homology, we start by defining the Hochschild complex, C+(A). Define
Cn(A) = A®"1 guch that the boundary map b: A®™! — A®" is defined as b = igo(—l)idi.

Using this, we can define HH(A).

Definition 3.1.2. Let k£ be a commutative ring, and A a k-algebra. The Hochschild homology of A
is HHK (A) := H,(C.(A)).
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By the Dold-Kan correspondence, there is an equivalent way to define Hochschild homology.

Definition 3.1.3. Let £ be a commutative ring, and A a k-algebra. The Hochschild homology of A
is HHK (A) = 7,(|BS (A)]).

Interestingly, the cyclic bar complex has a cyclic operator on every level. In particular, there is
amap 7: A9 5 A%+ which rotates the last copy of A to the front for all n > 0. This map 7
generates the C,,j-action on the n™ level of the cyclic bar complex. This cyclic bar complex is a
cyclic object and by Connes’ theory of cyclic sets, the geometric realization of a cyclic object has
an Sl-action [Con8&3].

Recall that A — A-bimodules agree with left (A ® A°P)-modules. We will write the enveloping

algebra A @ A°P as A¢. We recall the following classical homological algebra result.

Proposition 3.1.4. Let k be a commutative ring, and A a k-algebra. If A is flat as a module over

k, then there is an isomorphism

HHY (A) = Tor (4, A).

3.2 Topological Hochschild homology

As one can see in the previous subsection, Hochschild homology is a purely algebraic object.
Bokstedt developed a topological analogue to Hochschild homology, topological Hochschild ho-
mology (THH) [Bok85a]. Throughout this subsection, let R be a ring spectrum. We will start by
defining the cyclic bar complex for ring spectra. Let 7: RMNL 5 RAML be the map that rotates

the last copy of R to the front.

Definition 3.2.1. The cyclic bar complex for a ring spectrum R, denoted BS’ (R), is a simplicial
spectrum such that B, (R) = RMN*1 wwhere the face and degeneracy maps d;: R"*! — R and

s;: RAML 5 RAN2 re defined as follows:
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id AgpAidml 0<i<n
di =

(pAid™Hor i=n
s,-=idi+1A77Aid”_i 0<i<n

where ¢ and 7 are the multiplication and unit maps of the ring spectrum R.

This is the topological analogue to the cyclic bar complex in algebra, as we replace k-algebras

with ring spectra and the tensor with the smash product.

Definition 3.2.2 ([Bok85a]). The ropological Hochschild homology of aring spectrum R, THH(R),

is the geometric realization of the cyclic bar complex, |BSY (R)].

An advantage of Hochschild homology was that we could compute it using homological algebra.

One of the main tools used to compute THH is the Bokstedt spectral sequence.

Theorem 3.2.3 ([B6k85b]). Let R be a ring spectrum, and p prime. There is a Bokstedt spectral
sequence

E2, = HH.(H:(R;F,)) = H.(THH(R);F))
with differentials d": E; j — E;_y jyr—1. This spectral sequence converges strongly.

This spectral sequence demonstrates a strong relationship between THH and its algebraic
analogue. Bokstedt goes on to use this spectral sequence to compute THH(HTF)) in [Bok85b] and
many computations of THH have been made by other authors.

There are other useful perspectives on THH. Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and

1
Mandell show in [ABG™18] that THH(R) can be written as an equivariant norm, N, 5 R. McClure,

Schwinzl, and Vogt show in [MSV97] that for R a commutative ring spectrum THH(R) = |R® S 5.

3.3 Hochschild homology for Green functors

As discussed above, Green functors are an equivariant analogue to rings; therefore, it is natural

to want an equivariant analogue of Hochschild homology to take an input of R-algebras for R a
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Green functor. In [BGHL19] the authors define an equivariant analogue to Hochschild homology,
namely Hochschild homology for Green functors.

For this section, let C, = (y) be the cyclic group of order n where y = e2mi/n et R be a
commutative C,,-Green functor, let M be an R-algebra, and all box products are over R. Recall
that for G a cyclic group, one can define a G-action on a G-Mackey functor Remark 2.0.14. Let
a: M Cm+l _, M Hm+l pe the map that rotates the last copy of M to the front and then acts on that
M by y.

We now recall the equivariant analogue of the cyclic bar construction defined in [BGHL19].

Definition 3.3.1 ([BGHL19, Definition 2.20]). Let C,, = (y) and let R be a commutative C-
Green functor. The Cy,-twisted cyclic bar complex of M an R-algebra, denoted By’ Cn (M), is a

cy,Cn
m

simplicial C,,-Mackey functor such that B =M Hm+l where the face and degeneracy maps

diz MBI+ pEm and 50 MU 5 MO™M+2 gre defined as follows:

idd¢0id™ =1 0<i<m
di =

(¢0id" Hoa i=m
si=id*' Oy 0id"  0<i<m

where ¢ and 7 are the multiplication and unit maps of M.

There is an equivalence between the category of simplicial Mackey functors and the category
of non-negatively graded dg Mackey functors by applying the Dold-Kan correspondence at each
orbit. The homology of a simplicial Mackey functor is the homology of the associated normalized

dg Mackey functor; details can be found in Section 4 of [BGHL19].

Definition 3.3.2 ((BGHLI19, Definition 2.25]). Let C, = (y), let R be a commutative C,,-Green

functor, and let M be an R-algebra. The Hochschild homology of M, is defined by
HH " (M) = Hi(B O ().

Adamyk, Gerhardt, Hess, Klang, and Kong define Hochschild homology of graded Green

functors in [AGH*22]. Let a: M1 — MU™*! be the iteration of the rotating isomorphism
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(as defined in Definition 2.2.2) which moves the last copy of M, to the front, and then acts on that
copy of M, by y. Now let us define the Cy-twisted cyclic bar complex for RO (Cjy,)-graded Green

functors.

Definition 3.3.3. [AGH"22, Definition 4.1.7] Let C,, = (y), let R . be a commutative Cy,-Green
functor. The Cy,-twisted cyclic bar complex of M, an R, -algebra, denoted B,C”’Cy (M,),is a sim-
plicial RO (C,)-graded Mackey functor such that By, Cn _ M E m+1 where the face and degeneracy
maps d;: MP"™ — MU and s;: ME' m+l s MU™M+2 are defined as follows:
idd¢0id™ =1 0<i<m
di =
(¢0id" Hoa i=m

si=id* 1 OpOid™  0<i<m

where ¢ and 7 are the multiplication and unit maps of M, .

Definition 3.3.4. [AGH*22, Definition 4.1.8] Let C,, = (y), let R, be a commutative RO(Cp)-
graded Green functor, and let M , be an R -algebra. The Hochschild homology for RO (Cy,)-graded

Green functors of M , , is defined by

HHE*

—

(M,) = Hi (B (M,)).

Lewis and Mandell’s paper [LMO06] allows us to do homological algebra in the equivariant
setting. As is true classically, there is a Tor functor perspective for Hochschild homology for Green

functors. We recall the definition of Tor in this setting.

Definition 3.3.5 ([LMO06]). Let R, be an RO(G)-graded Green functor. For M, and N left and

R
right R -modules respectively, Es—’: (N,,M,) is the s left derived functor of N Ur, M,.

We will now define an R-module which encodes this twisting information into the left module
structure map. Let R be a C,,-Green functor, and M a left R-module. Let us define ¥ M as M with

the left module map defined as
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MUrM

yDidl

MUrM
where y is the left module map for M and y: M — M acts on M by .

Proposition 3.3.6 ((AGH*22, Proposition 4.3.2]). Let C,, = (y) and R, be an RO(Cy)-graded
commutative Green functor. If M, is an R -algebra and is flat as an R -module, there is a natural
isomorphism

Ug

op
R M M
HEL* " (0,) = Tor, 54 (M, 7M,).

—

3.4 Twisted topological Hochschild homology

For this section, let C;; = () be the cyclic group of order n where y = 27/ et R be a ring
Cp-spectrum, and a: R+ s RAMAL potates the last copy of R to the front and acts on that copy
of R by y. In [ABG*18], Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell define an
equivariant analogue to THH which takes as input a ring C,-spectra, namely C,-twisted THH. The
authors define Cj,-twisted THH of a ring Cy-spectrum R to be the norm N giR The authors show

that twisted THH can be defined using a twisted analogue of the cyclic bar complex.

i
Definition 3.4.1. Let y = ¢ be the chosen generator of Cy,. The Cy,-twisted cyclic bar complex

for a ring Cp-spectrum R, denoted ny’C" (R), is a simplicial object such that B}, Cn _ prm+l

b

. R/\m+l — R/\m+2

where the face and degeneracy maps, d;: R""+! — RM" and s; are defined as

follows:

id ApAidl 0<i<m
di =

(pAId" Hoa i=m
si=id* ApAid™T 0<i<m

where ¢ and 7 are the multiplication and unit maps of R.

In the following definition, we let 7 denote the change of universe functor.
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Definition 3.4.2 ((ABG*18, Definition 8.2]). Let U be a complete S l-universe, let U = i*CnU be
the pullback of the universe to C;, and let R be a ring Cy;-spectrum indexed on U. The Cj-twisted

topological Hochschild homology of R is THHc, (R) = Iléjoo |ny’C” (L. §m R)|.

The work of Adamyk, Gerhardt, Hess, Klang, and Kong in [AGH*22, Theorem 4.2.7] shows
that there is an equivariant analogue of the Bokstedt spectral sequence which demonstrates a
relationship between Hochschild homology for Green functors and Cj-twisted THH. First, we must
discuss the following facts.

For G an abelian group, and y € G, one can define a left y-action on any genuine orthogonal
G-spectrum, denoted £y : X — X (for more details see [Sch18, Section 3.1]). We will say that y

acts on a G-spectrum trivially if £y is equivariantly homotopic to the identity map.

Theorem 3.4.3 ((AGH*22, Theorem 4.2.71). Let Cy, be a finite subgroup of S such that C, = ().
Let R be a ring Cy-spectrum and E a commutative ring Cy-spectrum such that y acts trivially on

E. IfE,(R) is flat over E , then there is an equivariant Bokstedt spectral sequence

E, .C
EZ, =HH{* "(E,(R)) = E THH(, (R))

<k

s+*(lCn
r. . .

where d' : E; o — E;_; g1r—1-

The category of orthogonal Cj,-ring spectra and the category of unbased C,-spaces are tensored
over the category of unbased C,-spaces. Let R be a commutative ring C,-spectrum indexed over
the trivial universe R®. Consider the functor R ®c,, (—) to be the coequalizer of the following

diagram

where r is the Cp,-action on (—) and ¢ is the induced Cj-action on R.
The authors of [ABG™18] show that for U a complete S Luniverse and U = L*Cn U, THHc, (R) =
Iléjoo (R®c, S 1. This definition will be heavily used in Chapter 5 in order to demonstrate the

algebraic structure of twisted THH.
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3.5 A computation of twisted THH

Very few computations of twisted THH have been done. In this section, we will compute
HE*(THch (MUR)) for F the Cp-Mackey field such that F(C,/C>) = F; and F(Cs/e) =0, and
MUy the Real bordism spectrum. To do this computation, we will use the equivariant Bokstedt
spectral sequence Theorem 3.4.3. Recall that to use this spectral sequence for this circumstance,
we will need that y, the non-trivial element of C,, acts trivially on HF, and that HF , (MUy) is
flat over &, (HF).

Recall that in Section 3.4 we discussed that one can define a Cp-spectrum to have a trivial
y-action, for y € Cp, if £y is equivariantly homotopic to the identity map. Let X be a Cp-spectrum.
If the Weyl action on 7, (X) is trivial, then the generator y of C), induces the identity map on the
RO(Cp)-graded homotopy groups of X. Furthermore, if the only element that induces the identity
map in X*X is the unit 1, then {y must be equivariantly homotopic to the identity map.

If we consider X to be the Eilenberg-Mac Lane spectrum of the Cp-Mackey field F where
F(Cp/Cp) = k and F(Cp/e) = 0 then by the computations in Section 2.5 we know that whenever
n,(HF) # 0 then x,(HF) = F which has a trivial Weyl action. Further, 7 ,(HF) # 0 only when
dim(ozcl’ ) = 0. Therefore HF , has a trivial Weyl action and the only degrees of HF*HF we need
to consider are the degrees a such that dim(aCP) = 0.

To compute HF*HF we consider Proposition 2.3.8 which shows that we have the following
isomorphism of non-equivariant ring spectra: oCr (HF) = Hk. Therefore, by Proposition 2.5.4
HF®HF(C,/Cp) = HkAm@P) gk and HF®HF(Cp/e) = 0.

Since we only need to consider HF*HF for dim(a®P) = 0 then we only need to consider
HKOHk. If we let k = F,, then the question reduces to which elements of F, induce the identity on
HF(z)HIFz =~ [F>. The only element of F, which induces the identity on F is the unit 1. Therefore
the action of y on HF is trivial when F(Cp/Cy) = Fy, and F(Cy/e) = 0.

We will now compute HF' *(THHCZ (MUg)) using the equivariant Bokstedt spectral sequence

HF , ,C
E, = HH,~™"2(HF,(MUg)) = HF,(THHc, (MUz))
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for F(Cy/Cy) =F, and F(Cy/e) = 0. To aid our computations, we will recall what it means for a
spectrum to be real oriented.

Consider CP" and CP™ as pointed C-spaces under the action of complex conjugation, where
the base point is CP?. Note that the C,-fixed point spaces of CP" and CP*® are RP" and RP*®

respectively.

Definition 3.5.1 ([Ara79]). Let E be a Cp-equivariant homotopy commutative ring spectrum. A

real orientation of E is a class x € Ep (CP*)(C,/Cy) whose restriction to
=P 1 ~ 0
E(CP)(Cy/Cr) = EX(p1)(C2/Cr)

is the unit, where p = 1 + o is the regular representation. The spectrum E is real oriented if it has

a real orientation.
The following corollary builds off of this work of Araki.

Corollary 3.5.2 ((HHR16, Corollary 5.18]). If E is a real oriented spectrum, then there is a weak

equivalence

MUR AE = E A [\S°[S"]

i>1

where SO[SIP] = \/ (SP)/.
720

For F where F(Cy/C,) = k and F(C,/e) = 0, let us consider for which k HF is real oriented.

Proposition 3.5.3. Let F be the Cr-Mackey field where F(Cy/Cp) = k is a finite field and

F(Cy/e) =0. Then, HF is real oriented if and only if k is characteristic 2.

Proof. If E := HF isreal oriented, then there exists an element x € E P (CPP*™)(Cy/C>) that restricts

to the unit of E’O (CPI)(CZ /C>). Using Definition 2.5.1, we have

E”(CP®)(C2/Cy) = [E¥CP™, 2P E]c, (C2/C2)
= [(Cy/Cr)s N Z°CP®, Z’OE]C2
= [E°CP*, 2PE]c,.
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By Proposition 2.3.7, E is concentrated on C,, which means that EI;I (E) # 0if and only if H
contains C; up to conjugation. Note that x — p ranges over all RO(C,)-gradings. Therefore, an
equivalent way to say that E is concentrated over C, is by saying that gf (SPAE) = Ef_ o (E)+#0
if and only if A contains C; up to conjugation. This implies that S A E is concentrated over C,.
Using Proposition 2.3.4, and Proposition 2.3.5 and the properties of geometric fixed points, we can

continue our calculation in the following way:

[E®CP®, 2P E]c, = [@2(ZVCP®), ($¥ A E)<2],
= [Z®((CP®)©2), ®C2(SP A E)].
= [Z®°RP®, S! A ©C2(E)]..

Since [Z®RP®, S! A ®C2(E)], is non-equivariant, we can use Proposition 2.3.8 to state

IR

[Z®RP®, S! A ®C2(E)], = [E°RP®, S! A Hk],

=~ HY(RP®; k).
By a similar argument, we have that
E’(CP')(C2/Cy) = H' (RP': k).

We know that H'(RP!;k) = k and using the Universal Coeflicient Theorem we have that
H 1(RP"";k) =~ Hom(F,, k) is k when the characteristic of k is 2, and O else. Thus, if k is
not characteristic two then there exists no ¥ € H! (RP®; k) that maps to the unit in k£, so HF would
not be real oriented.

In the other direction, say k is characteristic two. We can use the cofibration sequence cp! -

CP® — CP*/CP! to induce the following exact sequence:
EP (CB®/CP')(C2/Cy) — EF (CP®)(C2/C2) — EP (CBN)(C2/Ca).
By the computations above this gives an exact sequence:
Hl((CcP®/cPHC2; k) — HL(RP®; k) —» HI(RP!; k).
Since k is characteristic two, we get
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H'((CP®/CPYHYC2: k) > k — k.

The Cy-action on the subset CP! ¢ CP* is closed, therefore (CP*/ CPH¢2 ~ RP®/RP! which
is connected. Since RP®\RP! is connected then Ext%(HO(RP‘X’\RPl;Z), k) = Ext%(Z, k) = 0.
Further, since RP®\RP! has no 1-cells then H 1(RIP°°\RIP1;Z) =~ (. So the Universal Coefficient
Theorem tells us that H' ((CP®/CP')€2; k) = 0. Then the map k — k in this exact sequence is
injective, which makes it an isomorphism since k is finite by assumption. So the identity element

maps to the identity element, therefore HF is real oriented. O

Now that we know some examples of Cp-determined Cp-Mackey fields F which have an
Eilenberg-Mac Lane spectrum that is real oriented, we can use Corollary 3.5.2 to obtain the

following result.

Lemma 3.5.4. Let F be a Cy-determined Cy-Mackey field. If HF is real oriented, then HF , (M Uy)

is a free HE  -module, that is,

HE,(MUg) = HF  [by,by,...]
where deg(b;) = ip.
Proof. Since HF is real oriented, we can use Corollary 3.5.2 to show that

MUR AHF ~ HF A é\lso[sip]

i>
which gives an isomorphism of RO (C;)-graded Green functors
7, (MUgr ANHF) = 1, (HF)[b1,D2,.. ]

for deg(b;) =ip. O

There is a classical standard argument which is a result of Cartan and Eilenberg’s Theorem
X.6.1 in [CE99]. The argument is that for k a commutative ring, and A a commutative k-algebra

that is flat as a module over k, then
Torfe (A,A) = A®y Torf(k, k).
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Using the homological algebra from [LMO06] we can extend Cartan and Eilenberg’s argument to
the equivariant setting. That is, if R, is a commutative G-Green functor, and M, is a commutative
R -algebra that is flat as a module over R, then

M, Upg Mip M
Tor = (M*’ M*) = M* DE* M*_: (E*’ B*)

20T, «

We will use this in our calculations.
From the discussion in the beginning of this section and Proposition 3.5.3 we know that for the
C>-Mackey field F where F(Cy/Cy) = Fp, and F(Cy/e) = 0, HF has a trivial Cy-action and is

real oriented.

Theorem 3.5.5. For F the Co-Mackey field where F(Cy/Cy) =Ty, and F(Cy/e) =0,
H,(THHc, (MUR); F) = HE, [b1, by, .. 10ug, Aur (21,22, )

as an HF , -module. Here |b;| = ip and |z;| = 1 +ip.

Proof. Proposition 3.5.3 shows that HF has a trivial Cp-action. In order to use the Bokstedt
spectral sequence, we need to show that HF , (M Uy ) is flat over HF | . The following isomorphism

of RO(Cy)-graded Green functors is given by Lemma 3.5.4:
7, (HE AMUR) = HF  [by, b3, .. ]

where deg(b;) = ip. Therefore HF , (MUy) is flat over HF,. Since the appropriate conditions

hold, we can use the equivariant Bokstedt spectral sequence

HF_,C
EZ, =HH; ™ 2(H,(MUg;F)) = H

—_—s

s+*(i*cz THHc, (MUR); F).

The E,-term is
E2, =HHI ™2 (g ~ A
Sk T =S ( _*[ﬁlnB29 .- ]) = HE*[IBl’lgz’ .- ]DHE* HE*(ZI’ 225+ )
where deg(b;) = (0,ip) and deg(z;) = (1,ip).

Recall that d": EY , — E! Our spectrum MUy is commutative, so by [AGH*22,

s—r,a+r—1-

Proposition 4.2.8] we can view this as a spectral sequence of HF'  -algebras. Consider the differential

47



d?. We know that all the differentials are determined by what the differential does on the generators
of the E2 page, thus since the only generators are in the columns where s = 0, 1 then all of the

differentials on the E 2-page are zero and the spectral sequence collapses. O
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CHAPTER 4

HOPF STRUCTURE OF THE BOKSTEDT SPECTRAL SEQUENCE

Throughout this section, let R be a commutative ring, and A a commutative ring spectrum.

Spectral sequences can have algebraic structures, and these structures can be very helpful when
doing computations with said spectral sequences. More specifically, the algebraic structure of a
spectral sequence can help one know more about the differentials of the spectral sequence. As
mentioned in Section 3.2, the Bokstedt spectral sequence is one of the main tools we have to compute
THH. In this section we will recall results of Angeltveit and Rognes in [AR05] which show that
the Bokstedt spectral sequence has a Hopf algebra structure. These results we will recall extend
the results of [EKMMO97] and [MSV97] which demonstrate that for a commutative ring spectrum
A, THH(A) is an A-Hopf algebra. In the future sections, namely Chapter 5 and Chapter 6, we
will prove an equivariant analogue to these results for twisted THH and the equivariant Bokstedt
spectral sequence, so this section is dedicated to recalling these classical results. We will start this

section by recalling the algebraic definition of R-bialgebras and R-Hopf algebras.

Definition 4.0.1. Let R be a commutative ring. An R-bialgebra M is a unital, associative R-algebra

as well as a counital, coassociative R-coalgebra such that the following diagrams commute:
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M < MM
\ £Qe
R=R®R
R®R =R
nen n
MM < M
¥
R id Sy R
n &

MoM AN Y s MeM
Yy ol o)
MOIMOIMQOSM - , > MOIMOIMPOM
ideT®id

where 1, £, ¢, Y, and 7 are the unit, counit, product, coproduct, and the map that swaps the two

copies of M respectively.

Definition 4.0.2. Let R be a commutative ring. An R-Hopf algebra is an R-bialgebra with a map

of R-modules y: M — M, called the antipode, such that the following diagram commutes:
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M—Y s MeM

[~

MeoM Mo M

o]

M®M—>M

where 1, €, ¢, ¢, and y are the unit, counit, product, coproduct, and antipode, respectively.

These algebraic definitions can be extended to ring spectra where tensor products are replaced
with smash products, and rings are replaced with ring spectra. Further, one can extend these
definitions to define spectral sequences of Hopf algebras. This will be discussed more in Chapter 6.
In this section we will discuss the simplicial maps which can be used to prove that, for A a
commutative ring spectrum, THH(A) is an A-Hopf algebra in the stable homotopy category. Then
we will discuss how these maps induce the Hopf structure on the Bokstedt spectral sequence.

McClure, Schwinzel, and Vogt show in [MSV97] that for A a commutative ring spectrum,
THH(A) = A ® S'. This result can be used to prove the following theorem by inducing the

structure maps of THH(A) from maps on the circle.

Theorem 4.0.3 ([EKMM97, Corollary 3.4], [MSV97, Theorem I]). For A a commutative ring

spectrum, THH(A) is an A-Hopf algebra in the stable homotopy category.

Angeltveit and Rognes extend this result to the Bokstedt spectral sequence by considering
simplicial maps on the circle [ARO5]. We will first recall Angeltveit and Rognes’ simplicial
argument which proves that THH(A) is an A-Hopf algebra in the stable homotopy category.

Let us define three simplicial spaces e, Sl and dSl, where e is the point, Sl is the classical

Qvo

and dS is the following simplicial structure on the circle:

simplicial structure on the circle:
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VIQVO

Note that dS1 = (Al u Al U | OAL.

anluon
Many of the maps needed to prove that THH(A) is an A-Hopf algebra are induced from the

following simplicial maps

n:e—>Sl

:Sl—)e

M

¢: Stvsl gl
v dsl — slvsl
X: dSl —>dSl.

Here the map 7 includes the point into the basepoint of Sl, the map & crushes Sl to the point,
the map ¢ folds the two copies of sl together, the map ¢ is the simplicial pinch map, and y
swaps the two 1-cells. Since tensoring with A preserves pushouts, A ® (st vslyis isomorphic
to the pushout of the simplicial span A ® S} — A® e —» A ® S.. By VIL1.6 in [EKMM97] we
have the isomorphism (JA ® S!|) A4 (A ® SL|) = THH(A) A4 THH(A). So, we can identify
A® (SLvSl) with THH(A) A4 THH(A). Let dTHH(A) := |A® dS!|. Lemma 3.8 in [AR05] says
that the collapse map 7: dS! — S, which collapses the second A}, induces a weak equivalence

n: dTHH(A) — THH(A). Therefore, the simplicial maps above induce the following maps of

spectra

n: A — THH(A)

&: THH(A) —> A

¢: THH(A) A4 THH(A) — THH(A)
: THH(A) — THH(A) A4 THH(A)
x: THH(A) — THH(A)

which are the unit, counit, product, coproduct and the antipode, respectively. Note that the coproduct

map is the following y: THH(A) 5 dTHH(A) — THH(A) A4, THH(A) and the antipode is the
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following y: THH(A) — dTHH(A) — dTHH(A) — THH(A) where the second map is induced
by x: dSl - dSl.

In order to show that THH(A) is an A-Hopf algebra in the stable homotopy category, we need
to show that a variety of diagrams commute up to homotopy. Note that we can reduce the problem
to considering if diagrams of simplicial maps of circles commute up to simplicial homotopy. For

example, we can reduce the problem of checking if the following diagram commutes:

id
THH(A) A, THH(A) A4 THH(A) 1he THH(A) A4, THH(A)
oAid ¢
THH(A) A4 THH(A) 5 THH(A)
to checking the commutativity of:
id
shvshvsl—2 _glvs)
¢vid ¢
St v sl 5 Si.

Recall that ¢ is the fold map, and so this diagram commutes since it does not matter what order
the circles get folded together. Since this diagram of simplicial objects commutes, then the first
diagram commutes. This demonstrates that the product map for THH(A) is associative in the
category of spectra.

In order to show that the coproduct map on THH(A) is coassociative, we need a simplicial

triple model of the circle. Angeltveit and Rognes call this 7S, which can be drawn as:
v2

Vo OVl

Angeltveit and Rognes show that tTHH(A) = |A ® tS)]| is weakly equivalent to THH(A) within
the proof of Theorem 3.9 in [AROS5].
Let us now check if the coproduct ¢ : THH(A) — THH(A) A4 THH(A) is coassociative by

checking that the following diagram commutes:
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21

1S} slvasl

%) idvy

dsl VSIWSI vSivsl
Here ¢/ identifies v and v and i, identifies v{ and v,. This diagram commutes because either
way we get the same wedge of three circles.
Since tTHH(A) and dTHH(A) are only weakly equivalent to THH(A), we need to be in the
stable homotopy category for ¢ to be coassociative.

The following are the remaining diagrams which need to commute, or to commute up to

homotopy, in order to show that THH(A) is an A-Hopf algebra:

’
asivasl — 2 s asl ¥y glysl
wvwl wacp
slvslvslvsl — y slvslvslvsl
idvrvid
shv sl 4 s Sl
\ /
eVe=z=e
eVe=e
y \
shvsl < d ds!
e
\
id s!
/
e
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sl YLy g1y gsl

dsl v sl S v asl
n .
m \ J/(ﬁo(ldVﬂ')
1y ol 1
dS. \% S. W S.

where ¢’ is the simplicial fold map for dS It swaps the two copies of § 1, 7’ includes the point into
the first point of dS), and 7: dS1 — S is the simplicial collapse map defined above. In fact, all of
the above diagrams commute except the last diagram, which commutes up to homotopy. Angeltveit
and Rognes discuss why the last diagram commutes up to homotopy in their proof of Theorem 3.9
in [AROS]. Thus, for A commutative ring spectrum, THH(A) is an A-Hopf algebra in the stable
homotopy category.

Since Angeltveit and Rognes do this whole argument with simplicial circles then they are able

to extend these structure maps to the Bokstedt spectral sequence in [AROS].

Theorem 4.0.4 ([AROS, Proposition 4.2]). Let A be a commutative ring spectrum, and let p be
prime. The Bokstedt spectral sequence E, ,(A) is a spectral sequence of commutative H.(A;Fp)-

algebras.

Further, they show that under some flatness conditions this spectral sequence has a coalgebraic

structure as well.

Theorem 4.0.5 (JAROS, Theorem 4.5]). Let A be a commutative ring spectrum, and let p be prime.

If each term E ,(A) for r > 2 is flat over H.(A;Fp), then there is a coproduct
v Ei,* (A) — E:;,* (A) ®H*(A;Fp) E::,* (A)
and E; ,(A) is a spectral sequence of H.(A;Fp)-Hopf algebras.

Indeed, Angeltveit and Rognes continue to do many computations of THH by leveraging this

algebraic structure on the Bokstedt spectral sequence [AROS].
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CHAPTER 5

ALGEBRAIC STRUCTURE ON TWISTED THH
In this section, we will explore the algebraic structure of Cp-twisted THH, p prime. Let U be a
complete S!-universe and let U = i Z'p U. Let R be a commutative ring Cp-spectrum indexed over
U letR =T (.}EMR, let A be a commutative ring spectrum, and let the chosen generator of the
group C, be y = 2/ unless otherwise specified. Recall that, by convention, our spectra are
orthogonal spectra.
Recall the following simplicial model of S! from [Lod86], where C,y; = {1,7,...,7"}

indicates the number of elements on each level,

C3
|+~ 1 |
do£d1s1 dp
| 4]
6))
dg S0 dy

b

Let us call this model S.. The face and degeneracy maps are as follows:

N —

_ yl j<i<n
di(y’)) =
yi=1 J>i
. I j<n
dn(y’) =
1 j=n
. J J <t
si(y/) =
7,]+1 j>i
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There are also maps 7: Cy,;1 — C,41 such that #(y/) is y/* for j < nand 1 for j = n. Itis notable
thatd, =dgot: Cyy1 — Cy4q forall n.

Angeltveit and Rognes’ classical argument, recalled in Chapter 4, requires additional models
of the circle. For our equivariant proof, we will also need additional models and will construct
these using the simplicial edgewise subdivision functor defined by Bokstedt, Hsiang, and Madsen
in [BHM93]. The simplicial r-fold edgewise subdivision functor, sd,(—), is defined so that for a

simplicial object X,

sdr(Xe)n = X(n+1)r-1

with face and degeneracy maps d; and 5; defined by

di = dj o ditns1© ... 0 dig(r-1)(n+1)
Si = Six(r=1)(n+2) © - - - © Si+(n+2) © Si

for d; and s; the face and degeneracy maps of the simplicial object Xe.

Remark 5.0.1. Recall the simplicial relation that d; o d; = d;_j o d; if i < j and that in S}
dyp =dgot: Cpy1 — Cuyq. Itis also true that in sdr(Sl), dy = dyot. To see this, consider
that dy = dyodyepo...o0 d(r~1)n+r—1 and using the simplicial relation mentioned above, we
can move dy to the front and get that dy = dj o dppp1 © ... © d(r~1)n4r—2 © do. Consider
dyot=dyodyio...ody_1yysr—podyot =dyodyio...0d;_1)sr—2 © drpsr—i Whichis

dp.
Let us start by understanding the 2-fold edgewise simplicial subdivision of the circle, sd(S?).
Example 5.0.2. Let us refer to sd,(S)) as 2S1. By definition,

SdZ(Sl)n =5l

2n+1°

di =d;jodiipy1, and

Si = Si+n+2 © Si-
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Therefore 2.5 l is

el
—_

— &
—5—

—s—

—s—
i

Q= Qe Qe

One can see that the only nondegenerate elements are 1,y € Cp and y, 73 € Cy4, where the boundary

of the 1-cell y is defined by

do(y) =land d|(y) =,

and the boundary of the 1-cell y3 is defined by

do(y®) =y and dy(y?) = 1.

vl QVG

where the C,-action on 25} is induced from applying the functor sd(—) to S L. This action sends
n

2, where y" = 1 in Cp,. Therefore the Cp-action on 28} is counter clockwise rotation by

Therefore ZSl looks like:

’yi to 7i+
180°.
Remark 5.0.3. If we consider 251 non-equivariantly, it is not the same as dS 1 as defined in [ARO5]

and discussed earlier in Chapter 4. Non-equivariantly, 25 is equivalent to d’S} as defined in

[ARO5, Remark 3.6].
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Example 5.0.4. We can similarly build 481 = sd4(Sl). Note that this can be constructed by

considering sdy (S1) or sdy(sd>(S!)). By definition,

Sd4(Sl)n = Sin+35
di = d; © djtn+1 © diy2n+2 © div3p+3, and

Si = Si+3n+6 © Si+2n+4 © Si+n+2 © Si-

Therefore sd4(Sl) is

=l}
[unry

— &
—5—

s

—&—
s

O—s> Q-0

And 45! looks like

Y0
v1 Q V3

V2
where the induced Cy-action is counter clockwise rotation by 90° and the induced C»-action is

counter clockwise rotation by 180°.

We can use this process to define mS I for any positive integer m, which will have the C;;;-action
of counter clockwise rotation by (%@)O. Notice that in order for mS) to have a simplicial Cj;-action
of counter clockwise rotation by (32;0)O then m must be a multiple of n. Consider two examples of

C3-equivariant simplicial models of the circle; 3S! and 65!

Y0 Y0

V1 Vs

V1 Vo V2 V4
V3
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where the induced C3-action on both of these simplicial objects is counter clockwise rotation by
120°.

In Section 3.4 we recalled the definition of twisted THH as defined by Angeltveit, Blumberg,
Gerhardt, Hill, Lawson, and Mandell in [ABG*18]. We also discussed the different perspectives
these authors gave us on twisted THH including, suppressing some change of universe notation,
that for R a commutative ring Cp,-spectrum THH¢, (R) = R ®c,, S 1. The following proposition

demonstrates which simplicial model of the circle is suitable for this perspective.

Proposition 5.0.5. Let R be a commutative ring Cp-spectrum indexed on the trivial universe R,

/,C . . .
for p prime. Then R ®c, pSk = B? P(R), the C p-twisted cyclic bar construction.

Proof. Let p and n be the multiplication and unit maps of R respectively. To show that these
simplicial objects are equivalent we will first show that every level is the same and then we will
show that they have equivalent face and degeneracy maps.

The k-simplicies of R ®c), pSL are defined by the following coequalizer diagram

+> 1 1
R®Cp®pS}< ; R®pS, — > R®c, pS,
{®id P

where the map r is the Cp-action on pS}( and ¢ is the induced Cp-action on R.
Let Cp = (y), and pSllC = Cpiap = {Lix,... ,xpk+p_l}. The induced Cp-action on the set
of elements C,,, is defined by yx' = x/ such that j = i + k + 1( mod pk + p). There is a

Cpi+p-action on pS}C induced by 7: Cpryp — Cpiyp defined by t(x*) = x/ such that j =i + 1(

mod pk + p).
! 1 ‘ p—1 pk+p—1
As Cp-sets, Cp @ pS; = Cp X Cppip. Thus RO Cp @ pS, can be written as ti\o ( S/Z\O Rxs,yf)-

For ease of notation let us write Ry instead of Rxs,yf- Similarly, R ® pS}{ can be written as
pk-K)_IRS. With this notation id ® r: Rs > R; such that j = s +7(k + 1)( mod pk + p), and
¢ g?d: Rs; — th s Where th indicates R which has been acted on by y’. By definition of the
coequalizer, R ®cp pS ]lc is the quotient space of R® pS,l< where the quotient forces these two actions

to agree. Recall that y’x® = x/ for j = s+#(k+1)( mod pk + p). Therefore R®c, pS}( = RN+
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We will now show that the face and degeneracy maps from R ®cy pS }C are equivalent to the
,C . Dl
face and degeneracy maps from B;y P(R). We will start by considering the face and degeneracy
maps of pS Ilc and induce the corresponding face and degeneracy maps of R ®c) pS Ilc

Recall that pS ]1( =sdp (Sl)k with face and degeneracy maps d; and §; defined as follows:

di =diodiyky10 ... 0dir(p-1)(k+1)
5i = Sit(p=1)(k+2) © -+ - © Sit(k+2) © Si
where d; and s; are the face and degeneracy maps of Si, and 0 < i < k.

Let us start by finding what the induced face maps are on R ®cp pS I say 0;: R ®c, pSII< —
R®c, pSIIc—l’ for0 <i < k and k > 0. The map (id® d;): R ®pS}< —SR® pS]lc_1 applies the
multiplication map to R; A R;yq as well as Ry (x41) A Riy1an(k+1) for all 0 < n < p. Therefore
éi: R®c, pS,lC — R®c, pS}C_1 is the map id™ A u A id==1 for 0 < i < k.

Before figuring out what 6; must be, recall that pS}c has a C) 4 p-action induced by the map
t. Consider (id®17): R® pS }{ — R®pS }{, this map rotates the last copy of R to the front. This

map also rotates Ry into the position Rj,; was in, this is important as in the quotient R ®cy pSllC

we have that the following two are equivalent:

(t®id)(Ro,1) = yRo

(id®r)(Ro,1) = Ri41

so the map that is induced on R ®cp pS llc rotates the last copy of R to the front and acts on that
copy of R by y. Let us suggestively refer to this induced map as ay.

Recall from Remark 5.0.1 that d; = d o t, so the last face map ¢y, is induced from id ® d} =
(id®dy) o (id®t): R® pS ]1( — R®pS }{_ |- The universal property of the coequalizer shows
that the maps (id ® dp) and (id ® ¢) induce maps on R ®c, PS ! namely ¢ and ay respectively.
Further, by the uniqueness property, the map induced from their composition, (id ® dg) o (id ® ¢)

must be equivalent to the composition of the induced maps. Meaning, d; = o o .
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We similarly induce the degeneracy maps of R ®cp pSh, say 0;: R ®c, pS]l< — R ®c) PSiip

for 0 <i < k and k > 0. By a similar argument as above we can show that these can be written as
o = idN+ A g A §dNRT
,.C .
Recall that B;y P(R) = RM*1 and the face and degeneracy maps from this level are the

following:
d; = idM A p A idMk—il
dk = d() SNes
sj = idN* A A idNRd
forO0<i<kand0O<j<k.

,C
Therefore, R ®cy pSlis isomorphic to ny P(R). O

Aresult of this proposition is that for R a commutative ring Cp-spectrum indexed on Cp-universe
U, |(I§mR) ®c) pSl| = THHCp(R). We can construct similar structures (IllsooR) ®c) mpSl,
and we will refer to |(I§ROOR) ®c) mpSL| as m THHCp (R).

An equivariant analogue of Angeltveit and Rognes’ result [AROS, Lemma 3.8] shows the

following result.

Proposition 5.0.6. Let U be a complete S'-universe, and let U = i*cp U. Let R be a commutative

ring Cp-spectrum indexed on the Cp-universe U, Jor p prime. Then there is a Cp-weak equivalence
mm: m THHc), (R) — THHc, (R).

It will also be important to consider simplicial objects that look the same non-equivariantly to

pSL, but have different C p-actions. For example, one can consider what looks like 5§ !
VO

1 V4
v2 V3

but with the Cs-action of counter clockwise rotation by 144°, 216°, or 288° instead of the usual
counter clockwise rotation by 72°. Let us denote the Cp-simplicial space that resembles pS ! but

has the Cp-action of counter clockwise rotation by (%360)O forl <n<pas anl.
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Proposition 5.0.7. Let R be a commutative ring Cp,-spectrum indexed over the trivial universe R,
p prime. For 1 < n < p, the simplicial object R ®c) anl is isomorphic to the Cp-twisted cyclic

. cy,C
bar construction B,y P(R).

Proof. The proof is fairly similar to that of Proposition 5.0.5. Let u and n be the multiplication and
unit maps of R respectively. To show that these simplicial objects are equivalent we will first show
that every level is the same and then we will show that they have equivalent face and degeneracy
maps.

As anl resembles pSl, they have the same simplicial construction, but with different C),-

actions. Therefore R ®cp pnSY has the same number of copies of R as ny’

C
P(R) on every
level.
Now let us move on to show that the face and degeneracy maps are equivalent. Again, this

argument will be similar to Proposition 5.0.5 and so we will start by discussing the Cp,i,,-action

on R ®cp pnSL. Consider the coequalizer diagram

the Cp-action we consider here for ¢ is the same as it would be for the coequalizer diagram for
R ®Cp pS 1 , while the Cp-action for r is different.

Let Cp = (y), and an}c = Cpisp = {L,x,... ,xPk+P=11 " The induced Cp-action on the set
of elements C,, is defined by yx' = x/ such that j = i + n(k + 1)( mod pk + p). There is a
Cpi+p-action on pnS) generated by 7: Cpryp — Cpr4p defined by t(x*) = x/ such that j =i+ 1(
mod pk + p). This action is induced from S!. Note that unlike in Proposition 5.0.5, t**! does not
generate the Cp-action on an}C. Instead, (k+1) generates the Cp-action.

Let us use the notation ytﬁ to mean that R has been acted on by y!. The Cpi+p-action on

R ®c) pnS) is the same as it was in the proof of Proposition 5.0.5, namely ay:

() (RoARI ARy AN ...ARp)=yRr ARy ARy A ... N Ry_y.
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,C
To show that the face and degeneracy maps of R ®cp pnS1 are equivalent to those in ny P(R)

is the same as in Proposition 5.0.5. (]
We are now ready to discuss the structure of twisted THH.

5.1 Algebraic structure

In this section, we will show that for R a commutative ring Cp-spectrum, THHCP(R) is a
commutative R-algebra in the category of Cp-spectra for any prime p. The process for proving this
is similar to the process that Angeltveit and Rognes use in [AROS5] that we recalled in Chapter 4.

Recall that in [ARO5] the simplicial map n7: ¢ — S is the inclusion of the point, which induces
the unit map n: A — THH(A) by applying the functor A ® (—). The equivariant analogue to
this simplicial map is n: Cp — pS! which includes the p points into pS1. This induces the unit
mapn: R — THHCp (R) by applying the functor R ®c) (—). The intuition here is that we need
Cp-equivariant analogues to the classical spaces used, so instead of a point we require the C),-orbit
of a point and a Cp-equivariant model of the circle that after applying the functor R ®cy (—) gives
us THHc, (R).

Example 5.1.1. The inclusion map C3 — 3S 1 can be pictured as follows:
V0 Y0

Ve ev Vl@vz

Let us consider the following pushout defined by the span of two copies of the simplicial map
n:Cp — pSl, for p prime:
Cp ——— pSl

pSE —— 3 x.
Let us call this pushout pSl Ve, pSl := X and define the fold map ¢: pSl Ve, pSl — pSl as

folding the 1-cells together that share the same boundary. This chosen notation is meant to evoke
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that this is an equivariant analogue of the classical wedge.

Example 5.1.2. The spaces 25) Ve, 28! and 35] Ve, 38} can be depicted with the following

diagrams, respectively:
V0

O WA
V1 v2

where the C»-action on the first diagram is counter clockwise rotation by 180°, and the C3-action

on the second diagram is counter clockwise rotation by 120°.

In order to show that this fold map induces the product map ¢: THHCP (R) AR THHCP (R) —
THHc, (R), we need to show R ®c) (pS! Ve pSY) is congruent to (R ®c) pPSH AR (R ®c) pSh
as simplicial Cp-spectra. This question reduces to if the functor R ®cy (=) from Cj-spaces to

Cp-spectra preserves pushouts.

Proposition 5.1.3. Let R be a commutative ring Cp-spectrum and consider Cp as an unbased
Cp-space, p prime. The functor R ®cp (=) from the category of Cp-spaces to the category of

commutative ring Cp-spectra preserves pushouts.

Proof. Let Z « X — Y define a pushout of Cj-spaces, say P. Since the pushout of the span
Z «— X — Y is Cp-equivariant, and the functors R ® C ® (—) and R ® (—) preserve pushouts,
then by definition of the left and right action maps which define the coequalizer R ®c) (—) the top
three-dimensional box of the following diagram commutes when considering only the left action
maps, as well as when only considering the right action maps. Then by properties of coequalizers

the arrows on the bottom two-dimensional square are induced in the following diagram:
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R®Cp®X > ROCp®Y
RecC,®7 » R®Cp® P
~ ~ ¥
ReX > RQY
R®Z > R P
~ ~
R®CpX >R®CPY
~ ~

In order to show that the bottom square is a pushout diagram consider a commutative ring
Cp-spectrum Q and two maps of ring Cp-spectra g : R ®c) Y —>Qandgy: R ®cp Z — Q such

that the diagram commutes. We want to show that there is a unique map /: R ®cy P — Q that

makes the diagram commute.

We can use ¢q1, g7, and the universal property of pushouts to induce maps of ring C)-spectra
from both R® C), ® P and R® P to Q which each respect both the left and right action maps. By the
universal property of coequalizers this induces a unique map of ring Cp-spectra h: R ®cp P—- 0,
and one can check that the diagram commutes. Note that in the diagram below, the squiggly lines

are induced from the universal property of pushouts and the dashed line is induced by the universal

property of coequalizers. Therefore R ®cp (—) preserves pushouts.
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R®Cp®X ' R®Cp Y

R®C,®Z > RRCp®P

N2\

R®X

~

R®Z

(]
Now we can say that the simplicial maps:
n: Cp — pSe
$¢: pSeNCy PSe = PSe
induce the following maps of commutative ring Cp-spectra:
n: R — THH¢, (R)
“r (5.1.1)

o THHCp (R) AR THHCp (R) — THHCp (R)

which are the unit and product maps respectively. We will use these maps to show that T HHCp (R)
is a commutative R-algebra.
In order to check associativity of this product map we will need to understand the pushout of

the span pSl Ve pSl —Cp— pSl, which is pSl Ve pSl Vep pSl.
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Example 5.1.4. Consider 35) Ve, 3s) Ve 3S) which can be pictured as:
Y0

Vl 1’2
Here ¢Vid: 351 Ve, 3Sl Ve, 3Sl - 3Sl Ve 3Sl folds the outer copy of 3Sl with the middle copy of

3Sl and leaves the inner copy of 3Sl alone. Similarly, idV ¢: 3Sl Ve 3Sl e SSl - 3Sl e 3Sl

folds the inner copy of 3§ I with the middle copy of 35! and leaves the outer copy of 3§ I alone.

Proposition 5.1.5. Let p be prime. For a commutative ring Cp-spectrum R, THHCp(R) is a

commutative R-algebra in the category of commutative ring Cp-spectra.

Proof. We begin by checking associativity of the product map ¢: THHCp (R) AR THHCp (R) —»
THHCp (R). For ease of notation, let 7 := THHCp(R). We need to verify that the following

diagram commutes:

id
TART ART —2 s T ART

PAid ¢

TART ; 5 T.

It is sufficient to show that the following diagram of Cp-simplicial spaces commutes

idve
PSe Ve, PSa Ve, PSe ——— pSe Ve, PSs

$vid ¢

> pS!

pSe Ve, PSe 5
where pS! Ve pS! Ve pSL s the pushout of the span pSl Ve pSh Cp — pSL. This is
thought of as some equivariant analogue to the wedge of three circles, Example 5.1.4 shows this
for p = 3. Note that id V ¢ and ¢ V id fold the inner two copies of pSl together and the outer two
copies of pSl together respectively where ¢ folds the two copies of pS ! together. Therefore this

diagram commutes.
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To check unitality and commutativity of the product map, we need to show that the following

diagrams commute:

pSive, Cp ——1— pShve, pSh «—1— Cp Ve, pS)

[l
1R

pSe Ve, PSe > PSe Ve, PSe

pSs

where pS1 Ve, Cp = pSLis the pushout of the span pSL Cp — Cp. The mapid V n: pSl Ve
Cp — pS ! Ve pSlisthe identity on pS§ 1"and includes C p into the second copy of pS1, similarly
nvid: Cp Ve pSl — pSl Ve, pSl is the identity on pSl and includes Cp, into the first copy of
pSl. The map 7 swaps the first and second copies of pS I3

For the unitality diagram, note that ¢: pSl Ve pSL — pslis the fold map and the maps
id vV i and 7 V id both have an image of one copy of pSL, so this diagram commutes. For the
commutativity diagram, the fold map has the same image no matter the position of the two copies
of p§ 3

Therefore, THHCp (R) is a commutative R-algebra. O

5.2 Coproduct Structure

In this section, we will show that for R a commutative ring Cj-spectrum, THHCP(R) is a

non-counital R-coalgebra for p > 5 prime in the Cp-equivariant stable homotopy category. There
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will be remarks that explain why there is not the same coproduct map for p = 2 and why the
coproduct for p = 3 is not coassociative.

If a counit map were to exist, it should be from pSl to Cp, for p prime. There is no C p-
equivariant, simplicial way to map one connected component to Cp,. Therefore, one cannot
induce a counit map on THHCp (R) as we did for the unit map. Note that there could be a map
THHCp (R) — R that satisfies the properties of a counit, but for the purposes of this thesis, we
would like to induce these maps from simplicial maps, so we will not explore these possible maps
further in this paper.

Classically, the coproduct map on THH was induced from a pinch map on a double model of the
circle. We will also use a pinch map to induce the coproduct structure on twisted THH. Consider,
for p > 3, the pinch map on 2pS! which identifies opposite vertices. The case for p = 2 will be
covered in Remark 5.2.2. The Cp-action on 2 pSl sends v( to vy, and the pinch map v’ identifies v;
with v; for j = i+ p( mod 2p). The map ¢ has two copies ofple in its image. Recall that anl
is the Cp-simplicial space that resembles pS! but has the Cp-action of counter-clockwise rotation

by (1%360)O forl <n < p.

Example 5.2.1. The following is a depiction of the pinch map for p = 3, 4" : 6S) — 32Sl Ve, 3251

where the vertices of the same color are identified:

Y0 Y0

V1 Vs

V2 V4 V1 V2
V3

The colors of the arrows is to help keep track of where each 1-cell goes.
Now, let us consider the following Cp-equivariant, simplicial pinch map for p an odd prime:

Y': 2pSe = paSe Ve, P2Se

which identifies O-cells that have the same C,-orbit, that is, 0-cells opposite each other. Note that

the Cp-action is induced on 2pSl from the functor sdp(—) as 2pSl = sdp( pSl).
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Remark 5.2.2. This pinch map which identifies opposite points is what makes this process not
work for p = 2. Note that since (%360)O is just 360°, then if there were such a map, it would be

from 4S! to a space that looks like 2§ ! Ve, 251 but with a trivial C,-action, pictured here:

Y0

v2

Let us refer to this space with trivial C»-action as Xe. In order for this to induce a coproduct map onto
THHc, (R) then |R ®c, Xo| would need to be Cp-weakly equivalent to THHc, (R) AR THHc, (R),

which is not true in general.

This pinch map, along with the S!-homeomorphism Ty I defined in Proposition 5.0.6 gives the

following map:
v =y omy THHc, (R) — THH,, (R) Ag THHC, (R) (5.2.2)

which is the coproduct map.

Since the coproduct is not in general cocommutative in the classical case, one would (correctly)
assume that the equivariant case will not be cocommutative in general.

We still would like to check if this coproduct is coassociative. Similarly to the classical case we
need a “triple model" of our circle. In [AROS5] this was tS1, as recalled in Chapter 4. Here we will
consider sd3( pSYy =3pSl. The coproduct is not in general coassociative for p = 3, as explained
in Remark 5.2.8.

To check if ¢ is coassociative, we will show later that it is sufficient to show that a diagram of

the following form commutes

3ps] id > Xo Ve, Yo

Y2 idvy’

Y’ ch X. W Y. VCp Y. VCp Y’.
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Where ¢/ and ¢, are two different kinds of pinch maps and X, is a simplicial space such that for
R a commutative ring Cp-spectrum IR ®c) Xeo| = 2THHCp (R) and Y, is such that |§®Cp Yo| =
THHCP (R). These two pinch maps ¢ and ¢, on 3pS) for p > 5 are determined by identifying v
to vp and vy, respectively.

We can define kpSl Ve mpSl as the pushout of the diagram kpSl —Cp — mpSl, where
the left and right arrows both include Cp into a Cp-orbit of a 0-cell in the category of simplicial

Cp-spaces. It does not matter which orbit of O-cells. Consider the following example.

Example 5.2.3. Let us consider 6S) e 38!, this is the pushout of the following diagram:

0] w0
el
V1 Vs 0
— ° Zl _—
v2 V4 w1 wo
e 2D
V3
where the left arrow is such that zg +— vq, z; — vy, and 7 +— vy4 and the right arrow is such that

z; — w; for all i. The pushout of this diagram is pictured here:
Y0

Vi Vs
Vo vq
V3
Note that the picture is the same even if zy maps to any v;, as long as z| maps to v; for j =i +2(

mod 6) and zp maps to v for k =i +4( mod 6).

First, let us recall that p,, S} is the C p-simplicial space that resembles pS ! but has the C p-action
of counter clockwise rotation by (;’—7360)O for 1 < n < p. Recall the pinch map ¢’: 2pS) —
pS! Ve pS1 works by identifying opposite points. By abuse of notation let us denote the pinch

map on 2p,S1 for 1 < n < p which identifies opposite points also as .

Proposition 5.2.4. Let p > 5 be prime. Let | and Y be the Cp-equivariant pinch maps on
3pSl such that | is determined by identifying vo and v, and ) is determined by identifying

vo and vy, Then y: 3pSl - p3Sl Ve 2pp_+351, and Yo : 3pSl - 2pp_+3$l Ve p3S1,
2 2
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such that (id V y') o yq: 3pS) — p3S] Vep p3S1 Vep paSs and (Y’ v id) o yy: 3pSt —

P3Ss Ve, P3Sa Ve, P3Se.

The argument changes only slightly depending on if p is 1 mod 3 or 2 mod 3. In the hopes
to build up some intuition, or to be used as an illustrative reference while reading the proof, we
have included two examples. First, the easier of the two p = 5 is Example 5.2.5 and the example
for p = 7 is very similar but may be helpful when reading the proof of the above proposition

Example 5.2.6.

Example 5.2.5. For | and ¢, as in Proposition 5.2.4, let us do a toy example for p = 5. First, let

us picture 1581

v 0 vig
v v13
v3 V12
v4 Y1l
vs V10
v6 v
v7 g

Let us apply ¢ to 1551, By definition, ¢ identifies v with v5 and is Cs-equivariant, so there are
many other vertices which will be identified, namely v3 and vg, vg and v{1,vg and vi4, V13 and v5.

This gives the following:
v4 Vi3 V7

Wl LN N
S

Here the Cs-action sends v to v3. Consider the following two circles in this picture:
V4 V13 V7 V4 V13 V7

Recall that anl is the Cp-simplicial space that resembles pSl but has the Cp-action of counter
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clockwise rotation by (%360)O for 1 < n < p. The circle in red on the left is 5,5} for some m and
the circle in red on the right is 10,S! for some ¢£. To figure out the Cs-actions on either circle we
will consider how many rotations by (%360)o get us from v to v3. The circle colored in red on
the left has the Cs-action of rotation by (%360)", meaning that one can trace three 1-cells in the
positive orientation starting from v( to v3, connecting through vg, and v{». The circle colored in
red on the right has the Cs-action of rotation by (%360)°, meaning that one can trace four pairs
of 1-cells in the positive orientation starting from v( to v3, connecting through v, vg, and vg.
Therefore this whole space is 53Sl Ves 104Sl.

The map id V ¢’ applied to 5351 Vs 104! identifies vo and viq, vg and vy4,v3 and v{3,v2

and v7, and lastly vg and v. This gives the diagram:

NN

V6

The Cs-action sends v to v3 so this is 5381 Vs 53581 Vs 5381, Therefore for the case of p = 5,
(id V ) o ¥ is a map from 158! to 5551 Vs 5381 Vs 5381,

Now let us apply ¥ to 1581, By definition, ¢, identifies v with v and is Cs-equivariant, so
there are many other vertices which will be identified, namely v3 and v{3,vg and v, vg and v4, vi2

and vy. This gives the following:

The Cs-action sends v to v3. Tracing through the two copies of the circle as we did above, one
can see that this is 1O4Sl Vs 53Sl. The map ¢’ V id applied to 104Sl Vs 5351 identifies vy and

vs,vg and vi4,v3 and vg, vio and v, and lastly vg and v1;. This gives the diagram:
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)
)
)
)

Y0 Y6

(

The Cs-action sends v( to v3 so this is 53Sl Vs 5351 Vs 53Sl. Therefore for the case of p =5,

(¢’ Vv id) o 5 is a map from 158! to 53Sl Ves 53Sl Vs 5351.

We have now worked through the specific example of Proposition 5.2.4 for p = 5. For the case
when p is 1 mod 3 the modular arithmetic is slightly different. For this reason, we have included
the following example for p = 7. Note that these differences are minimal, but we wanted to include

both illustrative examples for the reader.

Example 5.2.6. For /| and ¢, as in Proposition 5.2.4, let us do a toy example for p = 7. First, let

us picture 215 l

%
% 2 v
3 18
V4 V17
VS V16

"9 viovin

Let us apply ¢ to 218 L By definition, y| identifies v with v7 and is C7-equivariant, so there are

many other vertices which will be identified, namely v3 and vq, v and v{3,vg and vg, vi2 and

v19,v15 and v, vig and v4. This gives the following:
Y20 V5 Vil V17 V2

V15

Here the C7-action sends v to v3. Consider the following two circles in this picture:
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v20 Vs Vi1t V17 V2

The circle in red on the left is 7,3 for some m and the circle in red on the right is 14,8 1 for
some ¢. To figure out the Cy-actions on either circle we will consider how many rotations by
(%360)O get us from v to v3. The circle colored in red on the left has the C7-action of rotation by
(%360)0, meaning that one can trace three 1-cells in the positive orientation starting from v to v3,
connecting through v{s, and vg. The circle colored in red on the right has the Cy-action of rotation
by (%360)0, meaning that one can trace five pairs of 1-cells in the positive orientation starting from
vo to v3, connecting through vg, vig, vg and v15. Therefore this whole space is 73Sl Vey 145Sl.
The map id Vv y/ applied to 73Sl Ve, 145S1 identifies v and v4, vg and vyg, vi2 and vs, v(g

and v11, v3 and v{7, vg and vy, and lastly, v{5 and vg. This gives the diagram:

The C7-action sends v to v3 so this is 7351 Veq 7351 Ve, 7351. Therefore for the case of p =7,
(id v ¢') o 1 is a map from 2153 t0 7354 Ve, 7384 Ve 735
Now, let us apply ¥, to 2158). By definition, ¥, identifies v and v14 and is C7-equivariant, so

there are many other vertices which will be identified, namely v3 and v7, vg and vo(, vg and v»,

vi2 and vs, vi5 and vg, and vqg and v1. This gives us a space which can be considered as follows:
iz V19 Y4 V10 V16

V15

The Cy-action sends v to v3. Tracing through the two copies of the circle as we did above, one
can find that this is 14551 Ve, 7351. The map ¢’ Vv id applied to 145Sl Ve, 7351 identifies v and

v7,vg and v3,v1p and vig,vg and v4, v3 and vg, vg and v¢, and lastly, vi5 and vy. This gives
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the diagram:

The C7-action sends vq to v3 so this is 7351 Ve, 73Sl Ve, 73Sl. Therefore for the case of

p =7, vid) oy is a map from 218, t0 735, Vc; 7384 Ve, 73Ss.
Now that we have given two examples, let us do the proof for a general p > 5.

Proof of Proposition 5.2.4. By our assumption, p > 5 is prime and the pinch maps | and ¥, are
determined by the fact that they are Cp,-equivariant and identify v to v, and v to v;), respectively
on 3pSl. A big part of this proof is to show that /| sends 3pSl to p3Sl Ve 2pp__,_3Sl and y» sends
3pSkto 2pp_+351 Ve p3SL. In addition, we want to show that (id V ¢’) o y; znd (¢’ vid) oy
both send 3pS) to p3S ! Ve p3S ! Ve p3S 1. The proof strategy will be slightly different for ¢
and ¢», and whether p = 1( mod 3) or p = 2( mod 3), so there are four cases to consider. To
prove what we want, we will take each of these cases through the following three steps.

Step 1: Show there is a copy of pj S1in the image of ;.

Step 2: Show there is a copy of 2p p3 S1 in the image of ;.

Step 3: Show that (id V ¢¥’) o ¥ or %a,b’ Vv id) o ¢, sends 3pS! to p3Sl Ve, p3Sl Ve p3Sl.

In many of these arguments, we are counting 1-cells between vertices. Our convention will
be that we are always “traveling" along 1-cells in the direction of their orientation. Note that this
convention agrees with our definitions of m pSl and m anl. We will do one case, and the others
are very similar with slightly different modular arithmetic.

Case 1) ¢y and p = 1( mod 3).

Step 1: Since p = 1( mod 3),then p+2 =0( mod3) and2p+1=2+1=0( mod 3),
so p+2 =3k and 2p + 1 = 3k, for some ki, kp € Z. Since the Cp-action on 3pSl sends v;
tov; for j =i+ 3( mod 3p) and ¢ is a Cp-equivariant map which identifies v( and v, then it

must also identify v3; and vy for € = 3k + p( mod 3p). For example, ; identifies v3 and v 3,

77



Vps2 and vop 49, as well as voj, 41 and vy since we showed that p +2 and 2p + 1 can be written as
multiples of 3. The vertex v is connected by a 1-cell to v{, which is identified to v, 1, which is
connected by a 1-cell to vy 12, which is identified to v 15, which is connected by a 1-cell to v .3,
which is identified to v3. For the following picture, the dual labelling of the vertices indicates the
identification of those vertices under ¥, also, we have organized the upper labels to be enumerated

by numbers which are O( mod 3) and the bottom 1( mod 3).

Y0
°

Vp V1 V2p+2 Vp+3

V2p+1 Vp+2 v3
° °

The following is an equation which tells us the enumeration of the top label of the vertex which is z
1-cells away from v(: z(1 — p)( mod 3p). This equation will help us to show that there is a copy
of p3Sl in the image of y/;.

Since p = 1( mod 3) then thereis a k € Zsuchthat p = 3k+1. There are two important values
we need from the above equation, z = pandz = 3: p(1—p) = p—p? = p—p(3k+1) = =3pk = 0(
mod 3p), and 3(1 — p) =3 - 3p = 3( mod 3p). The meaning behind these two computations
are that there are p 1-cells on this simplicial space, and there are 3 1-cells between v and vj.
Therefore p3S lisin the image of 1.

Step 2: Since the map ¢ identifies v3; and vy such that £ = 3k + p( mod 3p) then ¥
identifies vertices whose enumeration is O( mod 3) to vertices whose enumeration is 1( mod 3)
since 3k+p = 1( mod 3). Since p = 1( mod 3), then p+1 = 2( mod 3). Therefore v, is not
identified to any other vertices under ¢/, but v is identified to v, and v, is identified to vy,2.
This demonstrates that there is a copy of 2p,S lin the image of ¢ as there are p copies of pairs of
1-cells like the pair of 1-cells between v, and v ,4». Now we need to show that n = pTH The vertex
v is identified to v, which is connected by a pair of 1-cells to v,,,2, which is identified to vy,
which is connected by a pair of 1-cells to v,,4. For the following picture, the dual labelling of the
vertices indicates the identification of those vertices under ¢/, also, we have organized the double
labels so that the upper labels to be enumerated by numbers which are 0( mod 3) and the bottom

1( mod 3). The vertices which only have one label have an enumeration which is 2( mod 3).
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Vo Vp+2
° °
vp Vp+l1 V2p+2 V2p+3 V4

V2p+4
°

The following is an equation which tells us the enumeration of the top label of the vertex which is
2z 1-cells away from v(: z(p +2)( mod 3p). This equation will help us to show that there is a
copy of 2pp_+3Sl in the image of 1.

Since p 25 1( mod 3) then there is a k € Z such that p = 3k + 1. There are two important
values we need from the above equation, z = p and z = p7+3, the first of these equations is:
p(p+2)=p%+2p=pBk+1)+2p=3pk+3p=0( mod 3p). The second of these equations

is a bit more complicated. Since p is odd, and p = 3k + 1 then k must be even, so let k = 2¢ for

some ¢ € Z. We can now do the second equation:

3
EE(p+2)=%4(p+2) = (3C+2)(p +2)
=3pl+2p+6L+4=3pl+2p+(66+1)+3 =
3p(t+1)+3=3( mod 3p).

The first of these equations shows that this simplicial space has 2p 1-cells, and the second
equation shows us that this simplicial space has pT"'?’ pairs of 1-cells between v and v3. Therefore

2p p+3 Sl is in the image of /.
2
Step 3: Since (¢’ Vv id) fixes the copy of p3Sl then it suffices to show that y/: 2p P43 sl
2
p3S ! Ve p3S I3 By definition, v’ identifies opposite vertices. The opposite vertex from v will be

p 1-cells away from v(. Recall the following drawing of 2p ;3 S from Step 2:
2

) vp+2
° °
vp Vp+1 V2p+2 V2p+3 V4

V2p+4
°

Recall from Step 2 that we can consider p = 6¢+1 for some ¢ € Z. Recall that the equation z(p+2)(
mod 3p) tells us the enumeration of the top label of the vertex z pairs of 1-cells away from vy.

Therefore we would like to consider (pTH)( p+2)—1( mod 3p) to find out the enumeration of
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the vertex p 1-cells away from v(. This computation is (pTH)(p +2)-1=0@B¢+1)(p+2)-1=
3pt+p+66+2—1=3pt+2p=2p( mod 3p). Then p I-cells away from v is the vertex vy,.
Therefore " will identify v and v;,.
By similar arguments as in the last two steps one can show that ¢’ : ZpﬁSl — p3 Sl Ve p3Sl.
2

The other cases are very similar, the only differences are that there are different formulas and

the modular arithmetic looks different. (I
Now we can discuss the following proposition.

Proposition 5.2.7. Let R be a commutative ring Cp-spectrum, and p > 5 prime. Then THHCp (R)

is a non-counital, coassociative R-coalgebra in the Cp-equivariant stable homotopy category.

Proof. To prove coassociativity, we must show that the following diagram of C,-spectra commutes,

where T = THHCp (R)

T > T AR T

v idAy

T/\RTWT/\RTART-

Since we are working in the homotopy category, it is sufficient to show that the following diagram

of Cp-simplicial spaces commutes, where 37" := 3 THHCP (R)and 2T :=2T HHCp (R)

3T i S T Ap 2T

) idAy

ZT/\RTW) TARTART

To prove this, it is sufficient to show that the following diagram of C)-simplicial spaces commutes
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Y1
3pSa > P3Se Vep 2P pi3Se
2

¥2 idvy’

1 1 1 1 1
2pp_;35. Vcp P3Se W P3Se Vcp P3Se Vp P3Se
where /1 is the Cp-equivariant pinch map determined by identifying the vertices vo and v, and 5 is
the Cp-equivariant pinch map determined by identifying the vertices vo and v;,,. Proposition 5.2.4
discusses why this is the correct diagram to consider for these maps. The idea of the commutativity
of this diagram is that /| is determined by identifying vy and v, and y” is determined by identifying
voandvy,in2p ;.38 !, while the other direction goes in the reverse order firstidentifying vo and vy,
2
and then v and v,. The modular arithmetic works out such that whether one identifies v with v, or
Vo), first or second it works out to be the same. This demonstrates that (id v U)oy = (W' vid)oys.

This is shown for two specific examples in Example 5.2.5 and Example 5.2.6.

Therefore, THHCp (R) is a non-counital, coassociative R-coalgebra for p > 5. (I

Note that we are working in the C),-equivariant stable homotopy category because 3 THHCp (R)
is only weakly equivalent to THHc, (R).
Now that we have thoroughly discussed the coproduct structure of THHCp (R) for p > 5, letus

discuss the subtleties that arise when p = 3.

Remark 5.2.8. For the p = 3 case, one can not follow the same argument as in Proposition 5.2.7.
Let us explore why this is. Consider 951, The C3-action on this space sends v( to v3, and v3 to
ve. If we identify v with v3 or vg as we defined y| and y,, then we identify vertices with other
vertices in their orbit. This would cause there to be fixed points in the image of these maps which
we do not want for this particular approach. It is not clear how one could alter the definitions of
Y1 and ¥, to make them work in this case. As is true with the counit, there may be a way to
define a coassociative R-coproduct on T HHC3 (R), but we are focusing on inducing these algebraic

structures from simplicial spaces, so we will not pursue this question further.
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These algebraic and coalgebraic structures interact with each other to give the following theorem.

Theorem 5.2.9. Let R be a commutative ring Cp-spectrum indexed on a complete Cp-universe,
and let p > 5 be prime. Then THHCp (R) is a non-counital, R-bialgebra in the Cp-equivariant

stable homotopy category.

Proof. In Proposition 5.1.5 and Proposition 5.2.7 we showed that, under the assumed conditions,
THHCp (R) is a non-counital R-algebra and R-coalgebra.
To show that these algebraic and coalgebraic structures are compatible to yield a bialgebraic

structure, we need to show that the following diagram of Cp-spectra commutes, where T' :=

THHCP(R)
TART ¢ > T d > T AR T
VA A
TARTART ART AnTrid > TARTART ART

where 7 swaps the two copies of T'. Since we are working in the Cp-equivariant stable homotopy

category it is sufficient to show that the following diagram of Cp-spectra commutes

/
2T Ag 2T AN Y id S T ART

VN4 PP

TARTART ART > TARTART ART

idATAid
To prove this, it is sufficient to show that the following diagram of C),-simplicial spaces commutes:

4

2pSive, 2psh ——2—— 2ps! > PSe Ve, PS

vy Ve

PSa Ve, PSe ey, PSe Ve, PSs > PS4V, PSe Ve, PSa Ve, PSe
where i/’ and ¢ are the Cp,-simplicial pinch and fold maps as defined above and 7 swaps the two

copies of p»rS 1. To better understand the commutativity of this diagram, let us considered the
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following colored diagram where one of the starting circles is blue, the other starting circle is red,

and a purple circle indicates that it is the image of a blue and red circle which were folded together:

2pSive, 2pSt ——2—3 2ps] > pShve, Sl

vy Ve

1 1 I I
pSt Ve pS! Ve, PSe Vep PSe a7 pSi Ve, PSe Ve, pSi Vep PSe

If we go along the top of the diagram, the two copies of 2p S} are folded together and then pinched
into two copies of pS LI we go along the bottom of the diagram, we first pinch both copies of
2pSl. In order to fold the same I-cells together that were folded together along the top of the
diagram, we want to fold the first blue copy with the first red copy of pSl and similarly with the last
blue copy and last red copy. This is accomplished by the composition of maps (¢ V @) o (idV 7 Vid).

To consider the next diagram, we will first set up some definitions. Say that the vertices of
Cp are denoted 1,7y, 72, and so on. Let us define n’: C,, — 2pS1 to be the C p-€quivariant map
determined by n": 1 +— v(. Let us define v n: Cp Ve Cp — ple Ve, ple to be the Cp-
equivariant map which includes each copy of C), into the corresponding copy of p,S§ 1. Note that
because we are “wedging over C)," then this is really just including C), into the vertices shared by
the two copies of ppSi. Letpvp: 1 — VQ-

To check that the unit and coproduct maps respect each other, we will show that the following

diagram of Cp,-simplicial spaces commutes

" \\\\Z\ﬁ

P2Se Ve, P2Se 4 o

By the definition of the maps we can see that this diagram commutes.

2pSi

There are no other diagrams for us to check as we do not need to check any diagrams which

include the counit. Therefore, THHCp (R) is a non-counital R-bialgebra in the Cp-equivariant
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stable homotopy category.
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CHAPTER 6

ALGEBRAIC STRUCTURE ON THE EQUIVARIANT BOKSTEDT SPECTRAL
SEQUENCE

In this section, we will discuss the algebraic structure of the equivariant Bokstedt spectral sequence
that is induced from the algebraic structure on twisted THH. Let us recall the equivariant Bokstedt

spectral sequence.

Theorem 6.0.1 ((AGH*22, Theorem 4.2.7]). Let C,, = {y) be a finite subgroup of S L Let R bea
ring Cp-spectrum and E a commutative ring Cy-spectrum such that vy acts trivially on E. If E, (R)

is flat over E , then there is an equivariant Bokstedt spectral sequence

E,.C
E, =HH{* "(E,(R) = Ej,, (if, THHc,(R)

s+*(i2‘

r. r r
cEL,—E .
where d S0 s—rair—1

These authors also show that this equivariant Bokstedt spectral sequence has some algebraic

structure.

Proposition 6.0.2 ([AGH*22, Proposition 4.2.8]). Let E and R be as in Theorem 6.0.1. If R is
a commutative ring Cy-spectrum, then the equivariant Bokstedt spectral sequence is a spectral

sequence of RO(Cy)-graded algebras over E .

In Chapter 5 it was shown that THHCP (R) is a non-counital R-bialgebra for p > 5 and a
commutative R-algebra for p = 2,3. The structure maps which we used to demonstrate these
structures on THHCp (R), namely (5.1.1) and (5.2.2), are all induced from simplicial maps. Since
they are induced from simplicial maps, they respect the skeletal filtration on THHCP (R). We will
use this fact to induce the structure maps on the equivariant Bokstedt spectral sequence which will

be used to demonstrate its algebraic structure.

6.1 Algebraic structure

Let us recall an equivariant analogue to a differential bigraded algebra.
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Definition 6.1.1. Let p be prime, R a commutative Cp-Green functor, and M a commutative
R-algebra that is flat over R. A differential (Z, RO(C)))-graded M-algebra is a collection of
(Z,RO(Cp))-graded M-bimodules and a differential, (Ex x,d), with the following maps of M-

bimodules:

d: P Esa— €D Ery,

sta=f r+y=p-1
H: Eso DM Ey g — Egira+p. and

n: M — Ey«.
The first map defines the differential, the second map is the multiplication map, and the third map
is the unit map. These maps must make all the usual associativity and unitality diagrams commute.
The differential d must be compatible with the product map in the sense that it satisfies the Leibniz

rule:
. C
dop=po(dTyid+ (~1)*m@ a0y q).

Now, let us recall an equivariant analogue to a spectral sequence of algebras. Note that the
flatness assumption in the following definition is so that the equivariant Kiinneth spectral sequence,

as defined in [LMO6, Theorem 1.3], collapses to give the Kiinneth isomorphism.

Definition 6.1.2. Let p be prime, R a commutative Cp-Green functor, and M a commutative
R-algebra which is flat over R. A Cp-equivariant spectral sequence of M -algebras is a collection
of differential (Z, RO(C)))-graded M-algebras {E7, ,,d"}, with multiplication maps ¢, such that

*, ok

¢4+ is the composite

>~ p
bre1: ETP Oy ECSY — HW(E7,) Oy Ha(E,) —
Hx(¢r) =
H.(E,, Oy E},) — H.(E},)— E%],

where the homomorphism p is induced from the homology cross product map.
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Using this definition and the simplicial maps from earlier sections, we can prove the following

proposition.

Proposition 6.1.3. Let p be prime, and let R and E be commutative ring Cp-spectra, such that the
generator of Cp, acts trivially on E, and E , (R) is flat over E,. The equivariant Bokstedt spectral

sequence E!,_, is a spectral sequence of commutative E  (R)-algebras.

Proof. Unless otherwise specified, every box productisover £, . Let’E i . be the spectral sequence
associated to the skeleton filtration on R ®c) (pSi Ve, pSly = THHCP (R)AR THHCp (R). We know
that THHCP (R) is acommutative R-algebra by Proposition 5.1.5, and all the relevant structure maps
(5.1.1) are induced from Cp-equivariant simplicial maps, so they respect the skeleton filtration on
THHCp (R). As aresult, the “fold" maps ¢: "E{ , — E| , respect the differentials of the Bokstedt
spectral sequence.

One can consider T HHCP (R)e, the simplicial Cp-spectrum R ®cp pS !~ ny’cp (R). Since
THHc, (R)s = R"**!, and by our assumption that E +(R) is flat over £ then we have the following

isomorphism:
E*(R/\(S+l) AR R/\(S+l)) >~ E*(R)DS-H DE*(R) E*(R)D“H-l.

By definition, the left hand side is "E %  and the right hand side is E 3 LU £ (R) E % "

The following map is induced from the homology cross product map
H*(E::,*) DE",((R) H*(E:,*) - H*(Ei,* DE,‘,((R) Ei*)
Therefore we have a map
EZ. O E2, = H.(E!,)O H.(E! H.(E!, O El ) =H.(El,) ='E?
sx HE (R) Eixe =2 Hi(E ) Ug (R) H+(E, ) = He(E, W UE, (R) Exy) = HiCE, ) = "E}
which, by induction, induces the following maps
E:,* |:'E",((R) E:,* - ’E:,*

for all » > 2.

Then we can define the composite map of spectral sequences
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¢
ér: E:,* |:IE,,((R) E:,* - ,E:,* - E:,*

for any r > 1. The maps ¢, respect differentials for all  since ¢ and the product maps respect the
differentials. Since all of the necessary maps respect the differential, the commutative diagrams in
Proposition 5.1.5 induce the necessary commutative diagrams for the equivariant Bokstedt spectral

sequence. Therefore E7 |, is a spectral sequence of commutative £ (R)-algebras. (I

6.2 Coalgebraic structure

Let us recall an equivariant analogue to a differential bigraded coalgebra.

Definition 6.2.1. Let p be prime, R a commutative Cp-Green functor, and M a commutative
R-algebra that is flat over R. A differential (Z, RO(Cp))-graded M-coalgebra is a collection of
(Z,RO(Cp))-graded M-bimodules and a differential (Ex x,d) with the following maps of M-

bimodules:

d: @ Es,a/ - @ Er,)/a

sta=0 r+y=p-1

A: Es’a — @ Eu,ﬁ DM EW,')/’ aIld
U+w=s —
pry=a

e Eix— M.

The first map defines the differential, the second map is the comultiplication map, and the third map
is the counit map. These maps must make all the usual coassociativity and counitality diagrams
commute. The differential d must be compatible with the coproduct map in the sense that it satisfies

the coLeibniz rule:
. C
Aod=(d0yid+ (1)@ Pid Oy d) o A.

Now we can recall an equivariant analogue to a spectral sequence of coalgebras.
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Definition 6.2.2. Let p be prime, R a commutative Cp-Green functor, M a commutative R-algebra
that is flat over R, and (E :’ +» d) be differential (Z, RO(Cp))-graded M-coalgebras such that £ i, + s
flat as an R-module for r > 2. A Cp-equivariant spectral sequence of M-coalgebras is a collection
of differential (Z, RO(Cp))-graded M-coalgebras {E] .., d" }, with comultiplication maps ¢, such

that ¢,,1 is the composite

= Hs(Yr) P_l
Wrs1: E:-:(l - H*(E:,*) - H*(Ei,* DEE;,*) -

H.(E},)Og Ho(EL,) — ER Og ELYL,

where the homomorphism p is the Kiinneth isomorphism.

This definition allows us to discuss the coalgebraic structures of the equivariant Bokstedt spectral

sequence.

Proposition 6.2.3. For p > 5 prime, let R and E be commutative ring Cp-spectra, such that the
generator of Cp, acts trivially on E, and E, (R) is flat over E . If each term of the equivariant
Bokstedt spectral sequence E: WJorr > 2is flat over E  (R), then there is a coproduct sy : Ef,: x>

E,  UE, (R EL . and E, , is a spectral sequence of non-counital E, (R)-coalgebras.

Proof. Unless otherwise specified, every box productisover £ . Let 2E i , be the spectral sequence
associated to the skeleton filtration on R ®c) 2pS 1 let o E i . be the spectral sequence associated to
the skeleton filtration on R ®cy p2S I let’E :’ , be the spectral sequence associated to the skeleton
filtration on R ®c, (pS) Ve, pSY), and let ’2E ; . be the spectral sequence associated to the skeleton
filtration on R ®c), (p2SL v pashy.

We know that THHCp (R) is a non-counital R-coalgebra in the stable homotopy category by
Proposition 5.2.7, and the coproduct map (5.2.2) is induced from the Cj-equivariant simplicial
pinch map, so this map respects the skeleton filtration on THHCP(R), RV ZEZ, x> ’in -

which is induced from the pinch map, respects the differentials of the Bokstedt spectral sequence.

Consider the following sequence of maps which are defined below:

g 2opr g Spr Plpr o E’
sk T A T B T B T By HEL(R) Paxe
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Here m, is the algebraic analogue of the weak equivalence defined in Proposition 5.0.6 and is
an isomorphism for » > 2. The map £ is an algebraic analogue of the isomorphism defined in
Proposition 5.0.7 and is an isomorphism for » > 1. The last map p, takes some work to define and
is described below.

One can consider THHCp (R)e, the simplicial Cp-spectrum R ®cp pSl = ny’cp (R). In
[LMO6, Theorem 1.3] Lewis and Mandell define an equivariant analogue to the Kiinneth spectral se-
quence. Our flatness assumption gives that the equivariant Kiinneth spectral sequence collapses for

E*(THHCP (R)s AR THHCP (R)s)), therefore it is isomorphic to E*(THHCP (R)s) DE*(R) E, (THHCp (R)s).

Since THHCp (R)s = R™*! then this isomorphism can be written as:
E*(R/\(Hl) AR R/\(s+1)) ~ E*(R)D‘H'l DE*(R) E*(R)Ds"'l.

The left hand side is 'E Sl . and the right hand side is £ Sl «UE, (R) E Sl - For a fixed s, one can
define a shuffle map [Ei, «UE, (R) Ei Wsx = E sl «HE, (R)E sl - The Eilenberg-Zilber theorem
can be applied to any bisimplicial object in an abelian category [Wei94, Theorem 8.5.1]. Using

the Eilenberg-Zilber theorem, we can show that the map p;: E i U E,(R) E i , = 'E i 4 is an

2

isomorphism on homology. By assumption, E; ,

is flat over E, (R) therefore the equivariant
Kiinneth spectral sequence collapses to the Kiinneth isomorphism. By the Kiinneth isomorphism,

and the Eilenberg-Zilber theorem we have the following isomorphism:
p2: Ef,* Ue, (R) E%,* = H*(Ei,* D, (r) Ei*) — H*(,Ei,*) = /Ef,*'

Choose r > 2, using an inductive argument, assume that p,: E{ , [ E,(R) E[, — 'E,, isan

isomorphism. By assumption E:";l is flat over £

+(R) so we can use the equivariant Kiinneth

spectral sequence to get the following isomorphism:
DPr+l: E:::(l DE*(R) E:;l = H*(E:;* DE*(R) E:,*) SN H*(/E::,*) = /E::j;l

We can now define the coproduct i, on E7 , as pr_1 ofoyomy Ufor r > 2. These iso-

morphisms and ¢ respect the skeletal filtrations they are respectively defined on, therefore i,

respects the skeletal filtration it is defined on for all . Since ¢, respects the skeletal filtration,
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it also respects the differentials for all ». Since all of the necessary maps respect the differential,
the commutative diagrams in Proposition 5.2.7 induce the necessary commutative diagrams for
the equivariant Bokstedt spectral sequence. Therefore E | is a spectral sequence of non-counital

E, (R)-coalgebras. O

In fact, combining the results and arguments from Proposition 6.1.3 and Proposition 6.2.3 we

have the following result.

Theorem 6.2.4. For p > 5 prime, let R and E be commutative ring Cp-spectra, such that the
generator of Cp acts trivially on E and E(R) is flat over E . If each term of the equivariant
Bokstedt spectral sequence E: y Jorr > 2 is flat over E (R), then E: + 1s a spectral sequence of

non-counital E (R)-bialgebras.

Proof. Since all necessary maps respect the differential, the commutative diagrams in Theo-
rem 5.2.9 induce the necessary commutative diagrams for the equivariant Bokstedt spectral se-

quence. Therefore, E ,’k  is anon-counital £ (R)-bialgebra spectral sequence. O
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