
By

Hongzhi Wen

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science—Doctor of Philosophy

2024

SINGLE CELLS ARE BIOLOGICAL TOKENS: TOWARDS CELL LANGUAGE MODELS

ABSTRACT

The rapid advancement of single-cell technologies allows for simultaneous measurement of multiple

molecular features within individual cells, providing unprecedented multimodal data through single-

cell multi-omics and spatial omics technologies. This dissertation addresses the complex challenges

of modeling these multimodal interactions using deep learning techniques. We propose two series of

studies: the first, is the application of graph neural networks and graph transformers to model relations

between multimodal features, incorporating external domain knowledge. We propose Single-cell

Multi-Omics GNN (scMoGNN) and Single-cell Multi-Omics Transformer (scMoFormer), the latter

extends the former one and demonstrates the prospect of transformers in single-cell multi-omics

representation learning. The second is the application of transformers in spatial omics representation

learning. We propose Spatial Transformer (SpaFormer), a transformer-based masked autoencoder

learning framework for extracting cell context information and imputing spatial transcriptomics

data. Despite the effectiveness of these models, their knowledge transferability across tasks and

datasets remains limited. To overcome this, we introduce a new transformer-based foundation

model, Cell Pre-trained Language Model (CellPLM), that encodes inter-cellular relations and

multimodal features, demonstrating the significant potential of foundation models for future research

in single-cell biology.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Jiliang Tang,

for his invaluable guidance, inspiration, and unwavering support throughout my Ph.D. journey. Dr.

Tang has been more than just an academic mentor; he has also been a true friend, offering wisdom

and advice in many aspects of life. Joining Dr. Tang’s research lab was one of the best decisions I

made four years ago, as it has provided me with an enriching experience. Under his mentorship,

I have acquired extensive knowledge, from effective research methodologies to leadership skills.

Dr. Tang is among the finest advisors one could hope for, and I am profoundly grateful for his

consistent encouragement and responsiveness in nurturing the growth of his students. I owe much

of my success to his steadfast support over the years.

I would like to extend my deepest appreciation to my dissertation committee members, Dr.

Guan-Hua Tu, Dr. Hui Liu, and Dr. Yuying Xie, for their insightful comments and invaluable

suggestions. Their expertise and feedback have been instrumental in shaping both this dissertation

and my future career path.

I am grateful to have had the pleasure and fortune of having supportive and encouraging colleagues

during my Ph.D. I am thankful to all my colleagues from the Data Science and Engineering Lab: Dr.

Jamell Dacon, Dr. Wei Jin, Jiayuan Ding, Wenzhuo Tang, Xinnan Dai, Dr. Remy Liu, Kaiqi Yang,

Hang Li, Zhikai Chen, Haitao Mao, Yingqian Cui, Jie Ren, Dr. Wenqi Fan, Dr. Hamid Karimi, Dr.

Tyler Derr, Dr. Yao Ma, Dr. Haochen Liu, Hua Liu, Dr. Xiaorui Liu, Dr. Wentao Wang, Dr. Yiqi

Wang, Dr. Zhiwei Wang, Dr. Han Xu, Dr. Xiangyu Zhao, Haoyu Han, Harry Shomer, Kai Guo,

Juanhui Li, Yaxin Li and Yuxuan Wan.

I would also like to extend my heartfelt appreciation to the DANCE team, my dear friends,

and collaborators outside of MSU for their unwavering support and encouragement during the

challenging moments of my Ph.D. journey. Their kindness and steadfast support helped me persevere

through times of frustration. Finally, I would like to thank my family, for their unconditional love

and support.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 GRAPH NEURAL NETWORKS FOR SINGLE-CELL MULTI-OMICS
REPRESENTATION LEARNING . 4

CHAPTER 3 TRANSFORMERS FOR SINGLE-CELL MULTI-OMICS
REPRESENTATION LEARNING . 26

CHAPTER 4 TRANSFORMERS FOR SINGLE-CELL SPATIAL OMICS
REPRESENTATION LEARNING . 48

CHAPTER 5 BUILDING SINGLE-CELL FOUNDATION MODEL BEYOND
SINGLE CELLS . 69

CHAPTER 6 CONCLUSION . 86

BIBLIOGRAPHY . 88

APPENDIX A GRAPH NEURAL NETWORKS FOR MULTI-OMICS
REPRESENTATION LEARNING . 102

APPENDIX B TRANSFORMERS FOR SINGLE-CELL SPATIAL OMICS
REPRESENTATION LEARNING . 106

APPENDIX C BUILDING SINGLE-CELL FOUNDATION MODEL BEYOND
SINGLE CELLS . 110

iv

CHAPTER 1

INTRODUCTION

1.1 Motivation

The rapid advance of single-cell technologies makes it possible to simultaneously measure

multiple molecular features at multiple modalities in a cell, such as gene expressions, protein

abundance, and chromatin accessibility. This is known as single-cell multi-omics technologies. For

instance, CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) (Stoeckius et al.,

2017) enables simultaneous quantification of mRNA expression and surface proteins abundance;

methods like sci-CAR (Cao et al., 2018), Paired-seq (Zhu et al., 2019), and SNARE-seq (Chen et al.,

2019) enable joint profiling of mRNA expression and chromatin accessibility (i.e. genome-wide

DNA accessibility). The joint measurements from these methods provide unprecedented multimodal

data for single cells, which has given rise to valuable insights into not only the relationship between

different modalities but, more importantly, a holistic understanding of the cellular system. In addition

to the aforementioned multi-omic technologies, recently, single-cell spatial omics technologies have

emerged as another next-generation tool for biomedical research. For instance, in-situ hybridization

(ISH) based technology (Lubeck et al., 2014) produces detailed single-cell transcriptomic profiles

along with the location of cells within a tissue, yielding deeper insights into cell identity and

functionality than ever.

The proliferation of these advanced single-cell data also introduces tremendous challenges in

modeling the complex interactions among different modalities. As a result, there is an emerging

trend to leverage deep learning techniques to handle multimodal single-cell data (Molho et al.,

2024). For example, BABEL (Wu et al., 2021b) translated between the transcriptome (mRNA) and

chromatin (DNA) profiles of a single cell based on an encoder-decoder architecture; scMM (Minoura

et al., 2021) implemented a mixture-of-experts deep generative model for joint embedding learning

and modality prediction. Cobolt (Gong et al., 2021) acquired joint embedding via a variant of

Multimodal Variational Autoencoder (MVAE) (Yao et al., 2021). While there are a growing number

of deep learning frameworks for modeling multimodal single-cell data, most of them treat each cell

1

as a separate input without considering possible high-order interactions among cells or different

modalities. This makes them not optimal for multi-omics technology and spatial omics technology.

In light of this, we propose two series of studies to fill up the gaps in terms of two perspectives. First,

we study how to model the complex relations between multi-modal features. Specifically, we explore

the application of graph neural networks and graph transformers on cell-feature heterogeneous

graphs, which can readily incorporate external domain knowledge and model the interactions within

each modality and cross-modalities. Second, we study how to model the complex interactions

between cells. Specifically, we propose a transformer-based framework for spatial transcriptomic

data and leverage positional encodings to help extract cell context information. Through these two

studies, we demonstrate the effectiveness and advantages of deep learning models, particularly,

transformers, in modeling single-cell multimodal data.

Despite that the proposed models are effective in handling multimodal data, the knowledge

learned by models is not transferable across tasks and datasets. To address this issue, there is an

emerging effort (Yang et al., 2022; Gong et al., 2023; Shen et al., 2023; Cui et al., 2023; Theodoris

et al., 2023) from the research community to explore the potential of a foundation model that first

extracts latent knowledge from unlabeled data and subsequently generalizes this knowledge to a

variety of tasks. Existing foundation models all regard genes as tokens and focus solely on modeling

gene relationships within individual cells, neglecting the inter-cellular information in an organism,

as well as the abundant multi-modal resources. Therefore, a need has arisen to extend the foundation

model to multimodal applications beyond single cells. Based on our previous studies, we propose a

new transformer-based foundation model to encode inter-cellular relations and multimodal features.

Our research on various downstream tasks demonstrates the power of this foundation model, which

has great potential to facilitate future research in single-cell biology.

1.2 Contributions

This dissertation addresses the complex challenges of modeling single-cell multi-omics and

spatial omics data using deep learning techniques. First, we study the representation learning

for multi-omics data, explore the application of graph neural networks and transformers, and

2

highlight the prospect of transformers in single-cell analysis. Second, we study the representation

learning of spatial omics with transformer architecture and demonstrate the effectiveness of masked

autoencoders in spatial omics learning. Based on these findings, we further develop a foundation

model for single-cell data analysis. The major contributions of this dissertation can be summarized

as follows:

• We conduct research on designing transformer-based frameworks for single-cell spatial and

multimodal data. Based on the studies, we further propose a multimodal foundation model for

single-cell analysis.

• In Chapter 2, we explore the application of graph neural networks on cell-feature heterogeneous

graphs for multi-modal single-cell data, named scMoGNN (Wen et al., 2022a). scMoGNN

can readily incorporate external domain knowledge and model the interactions within each

modality and cross-modalities.

• In Chapter 3, we extend our studies from graph neural networks (i.e., scMoGNN) to graph

transformers (i.e., scMoFormer (Tang et al., 2023)) for multi-omics data analysis, which

not only enhances performance but also further highlights the potential of transformers in

multi-omics representation learning.

• In Chapter 4, we propose a transformer-based model for spatial transcriptomic data,

SpaFormer (Wen et al., 2023), and leverage positional encodings to facilitate cell-cell

relation identification and data imputation. Our results demonstrate the high efficiency and

performance of a masked autoencoder backbone for spatial omics representation learning.

• In Chapter 5, by unifying the explored architectures, we propose a new transformer-based

foundation model for multimodal single-cell data, CellPLM (Wen et al., 2024), which can

encode spatial and transcriptomics features as well as cell-cell relations.

3

CHAPTER 2

GRAPH NEURAL NETWORKS FOR SINGLE-CELL MULTI-OMICS
REPRESENTATION LEARNING

Recent advances in multimodal single-cell technologies have enabled simultaneous acquisitions of

multiple omics data from the same cell, providing deeper insights into cellular states and dynamics.

However, it is challenging to learn the joint representations from the multimodal data, model the

relationship between modalities, and, more importantly, incorporate the vast amount of single-

modality datasets into the downstream analyses. To address these challenges and correspondingly

facilitate multimodal single-cell data analyses, three key tasks have been introduced: Modality

prediction, Modality matching, and Joint embedding. In this work, we present a general Graph Neural

Network framework scMoGNN to tackle these three tasks and show that scMoGNN demonstrates

superior results in all three tasks compared with the state-of-the-art and conventional approaches.

Our method is an official winner in the overall ranking of Modality prediction from NeurIPS 2021

Competition1, and all implementations of our methods have been integrated into DANCE package2.

2.1 Chapter Introduction

The rapid advance of single-cell technologies makes it possible to simultaneously measure

multiple molecular features at multiple modalities in a cell, such as gene expressions, protein

abundance and chromatin accessibility. For instance, CITE-seq (cellular indexing of transcriptomes

and epitopes by sequencing) (Stoeckius et al., 2017) enables simultaneous quantification of mRNA

expression and surface proteins abundance; methods like sci-CAR (Cao et al., 2018), Paired-seq (Zhu

et al., 2019), and SNARE-seq (Chen et al., 2019) enable joint profiling of mRNA expression and

chromatin accessibility (i.e. genome-wide DNA accessibility). The joint measurements from these

methods provide unprecedented multimodal data for single cells, which has given rise to valuable

insights for not only the relationship between different modalities but, more importantly, a holistic

understanding of the cellular system.

Despite the emergence of joint platforms, single-modality datasets are still far more prevalent.
1The competition official website is https://openproblems.bio/neurips_2021.
2Our DANCE package is released at https://github.com/OmicsML/dance.

4

How to effectively utilize complementary information from multimodal data to investigate cellular

states and dynamics and to incorporate the vast amount of single-modality data while leveraging

the multimodal data pose great challenges in single-cell genomics. To address these challenges,

Luecken (Luecken et al., 2021) summarized three major tasks: (1) Modality prediction aims

at predicting the features of one modality from the features of another modality (Wu et al.,

2021b); (2) Modality matching focuses on identifying the correspondence of cells between different

modalities (Welch et al., 2017); and (3) Joint embedding requires embedding the features of two

modalities into the same low-dimensional space (Stoeckius et al., 2017). The motivation of modality

prediction and modality matching is to better integrate existing single-modality datasets, while joint

embedding can provide more meaningful representations of cellular states from different types of

measurements. In light of these benefits, computational biologists recently organized a competition

for multimodal single-cell data integration at NeurIPS 2021 (Luecken et al., 2021) to benchmark

these three tasks and facilitate the computational biology communities.

There is an emerging trend to leverage deep learning techniques to tackle the tasks mentioned

above for multimodal single-cell data (Molho et al., 2024). BABEL (Wu et al., 2021b) translated

between the transcriptome (mRNA) and chromatin (DNA) profiles of a single cell based on an

encoder-decoder architecture; scMM (Minoura et al., 2021) implemented a mixture-of-experts deep

generative model for joint embedding learning and modality prediction. Cobolt (Gong et al., 2021)

acquired joint embedding via a variant of Multimodal Variational Autoencoder (MVAE) (Yao et al.,

2021). MOFA2 (Argelaguet et al., 2020) used Bayesian group factor analysis to reduce dimensions

of multi-modality data and generate a low-dimensional joint representation. However, most of these

approaches treat each cell as a separate input without considering possible high-order interactions

among cells or different modalities. Such higher-order information can be essential for learning

with high-dimensional and sparse cell features, which are common in single-cell data. Take the

joint embedding task for example, the feature dimensions for GEX (mRNA) and ATAC (DNA)

data are as high as 13,431 and 116,490, respectively; however, only 9.75% of GEX and 2.9% of

ATAC features are nonzero on average over 42, 492 training samples (cells). Furthermore, integrated

5

measuring often requires additional processing to cells, which can lead to extra noise and drop-out

in the resulting data (Lee et al., 2020; Mimitou et al., 2021). Therefore, it is a desired technique that

can mitigate the negative impact of such noise.

Recently, the advances in graph neural networks (GNNs) (Kipf and Welling, 2017; Wu et al.,

2020; Battaglia et al., 2018; Gilmer et al., 2017; Liu et al., 2021b) pave the way for addressing the

aforementioned issues in single-cell data integration. Specifically, GNNs aggregate information

from neighborhoods to update node embeddings iteratively (Gilmer et al., 2017). Thus, the node

embedding can eventually encode high-order structural information through multiple aggregation

layers. In addition, GNNs smooth the features by aggregating neighbors’ embedding and also

filter the eigen-values of graph Laplacian, which provides an extra denoising mechanism (Ma

et al., 2021b). Hence, by modeling the interactions between cells and their features as a graph,

we can adopt GNNs to exploit the structural information and tackle the limitations of previous

techniques for single-cell data integration. With the constructed graph, we can readily incorporate

external knowledge (e.g., interactions between genes) into the graph to serve as additional structural

information. Moreover, it enables a transductive learning paradigm with GNNs to gain additional

semi-supervised signals to enhance representation learning.

Given those advantages, we aim to design a GNN framework for multimodal data integration.

While several existing works attempted to introduce graph neural networks to single cell analysis (Song

et al., 2021; Wang et al., 2021; Ciortan and Defrance, 2022; Shao et al., 2021), none of them tackle

the challenging problem of multimodal data integration which requires handling different modalities

simultaneously. Therefore, we aim to develop GNN methods for the tasks in multimodal data

integration, especially for modality prediction, modality matching and joint embedding. Specifically,

we propose a general framework scMoGNN for modeling interactions of modalities and leveraging

GNNs in single-cell analysis3. Our framework is highly versatile: we demonstrate its use cases in

the three different multimodal tasks. To the best of our knowledge, we are the first to develop a

GNN framework in this emerging research topic, i.e., multimodal single-cell data integration. Our
3Our solution won the first place of the modality prediction task in the Multimodal Single-Cell Data Integration

competition at NeurIPS 2021.

6

proposed framework achieves the best results in all of these three tasks on the benchmark datasets,

providing a very strong baseline for follow-up research. Our contributions can be summarized as

follows:

1. We study the problem of multimodal single-cell data integration and propose a general

GNN-based framework scMoGNN to capture the high-order structural information between

cells and modalities.

2. The proposed general framework is highly flexible as it can be adopted in different multimodal

single-cell tasks.

3. Our framework achieves remarkable performance across tasks. It has won the first place of

the modality prediction task in the Multimodal Single-Cell Data Integration competition, and

currently outperforms all models for all three tasks on the leaderboard4. All of our results are

based on publicly available data and are reproducible.

2.2 Problem Statement

Before we present the problem statement, we first introduce the notations used in this paper.

There are three modalities spanning through each task. They are GEX as mRNA data, ATAC as

DNA data and ADT as protein data. Each modality is initially represented by a matrix M ∈ R𝑁×𝑘

where 𝑁 indicates the number of cells, and 𝑘 denotes the feature dimension for each cell. In our

work, we later construct a bipartite graph G = (U,V, E) based on each modality M, where U is

the set of 𝑁 cell nodes {𝑢1, 𝑢2, ..., 𝑢𝑁 } and V is the set of 𝑘 feature nodes {𝑣1, 𝑣2, ..., 𝑣𝑘 }.

With the aforementioned notations, the problem of learning GNNs for single-cell data integration

is formally defined as, Given a modality M ∈ R𝑁×𝑘 , we aim at learning a mapping function 𝑓𝜃 which

maps M to the space of downstream tasks.

In the following, we formally define these three key tasks of single-cell data integration: modality

prediction, modality matching and joint embedding. We will also define the corresponding evaluation

metrics for each task. Note that these metrics are also adopted by the competition to decide the top

winners.
4The leaderboard can be accessed at https://eval.ai/web/challenges/challenge-page/1111/leaderboard/2860.

7

2.2.1 Task 1: Modality Prediction

In this task, given one modality (like GEX), the goal is to predict the other (like ATAC) for all

feature values in each cell. It can be formally defined as,

Given a source modality M1 ∈ R𝑁×𝑘1, the goal is to predict a target modality M2 ∈ R𝑁×𝑘2 via

learning a mapping function 𝑓𝜃 parameterized by 𝜃 such that M2 = 𝑓𝜃 (M1).

Possible modality pairs of (M1, M2) are (GEX, ATAC), (ATAC, GEX), (GEX, ADT) and (ADT,

GEX), which correspond to four sub-tasks in Task 1. Root Mean Square Error (RMSE) is used to

quantify performance between observed and predicted feature values.

2.2.2 Task 2: Modality Matching

The goal of this task is to identify the correspondence between two single-cell profiles and

provide the probability distribution of these predictions. It can be formally defined as,

Given modality M1 ∈ R𝑁×𝑘1 and modality M2 ∈ R𝑁×𝑘2, we aim to learn two mapping functions

𝑓𝜃1 parameterized by 𝜃1 and 𝑓𝜃2 parameterized by 𝜃2 to map them into the same space such that

S = 𝑔(𝑓𝜃1 (M1), 𝑓𝜃2 (M2)) (2.1)

where 𝑔 is a score function to calculate probability distribution of correspondence predictions.

S ∈ R𝑁×𝑁 is an output score matrix with each row summing to 1. Sij is the correspondence

probability between 𝑖-th cell from modality M1 and 𝑗-th cell from modality M2.

Possible modality pairs of (M1, M2) are (GEX, ATAC), (ATAC, GEX), (GEX, ADT) and

(ADT, GEX), which correspond to four sub-tasks in Task 2. The sum of weights in the correct

correspondences of S is used as final score to quantify prediction performance using 𝑠𝑐𝑜𝑟𝑒 =∑𝑁
𝑖=1

∑𝑁
𝑗=1 S𝑖, 𝑗 if 𝑖 = 𝑗 .

2.2.3 Task 3: Joint Embedding

In this task, the goal is to learn an embedded representation that leverages the information of

two modalities. The quality of the embedding will be evaluated using a variety of criteria generated

from expert annotation. It can be formally defined as,

Given modality M1 ∈ R𝑁×𝑘1 and modality M2 ∈ R𝑁×𝑘2, we aim to learn three mapping functions

8

𝑓𝜃1 , 𝑓𝜃2 and 𝑓𝜃3 parameterized by 𝜃1, 𝜃2 and 𝜃3 accordingly to project them into downstream tasks,

H = 𝑓𝜃3

(
𝐶𝑂𝑁𝐶𝐴𝑇 (𝑓𝜃1 (M1), 𝑓𝜃2 (M2))

)
(2.2)

where 𝑓𝜃1 (M1) ∈ R𝑁×𝑘1′ and 𝑓𝜃2 (M2) ∈ R𝑁×𝑘2′ correspond to new representations learned from

modality M1 and M2 separately, H ∈ R𝑁×𝑘3 is a final output embedding learned through 𝑓𝜃3 on

concatenation of 𝑓𝜃1 (M1) and 𝑓𝜃2 (M2).

H will be measured using six different metrics broken into two classes: biology conservation and

batch removal. Biology conservation metrics include “NMI cluster/label”, “Cell type ASW”, “Cell

cycle conservation” and “Trajectory conservation” which aim to measure how well an embedding

conserves expert-annotated biology. Batch removal metrics include “Batch ASW” and “Graph

connectivity” which are to evaluate how well an embedding removes batch variation. Please refer to

the Appendix A.1 for more details about these metrics description. Possible modality pairs of (M1,

M2) are (GEX, ATAC) and (ADT, GEX), which correspond to two sub-tasks in Task 3.

In this work, we instantiate 𝑓𝜃 as a graph neural network model by first constructing a bipartite

graph G = (U,V, E) based on modality M, and then learning better cell node representation

through message passing on graphs.

2.3 Method

In this section, we first introduce the proposed general framework scMoGNN for multimodal

data integration. Then we introduce how to adapt scMoGNN to advance three tasks: modality

prediction, modality matching and joint embedding. An illustration of our framework is shown

in Figure 2.1. Specifically, our framework can be divided into three stages: graph construction,

cell-feature graph convolution, and task-specific head.

2.3.1 A General GNN Framework

To develop a GNN-based framework for single-cell data integration, we are essentially faced with

the following challenges: (1) how to construct the graph for cells and its features (or modalities); (2)

how to effectively extract meaningful patterns from the graph; and (3) how to adapt the framework

to different multimodal tasks.

9

0

Features Nodes

0 … 0
0 0 … 0

… … … …
0 0 … 0

…

…

Cell Nodes

C
el

l N
od

es

0 …

0 …

… … … …
… 0

1

Features

C
el

ls
0 … 0

0 0 … 2

… … … …
2 0 … 3

…

…

0

Features

0.1 … 0.3
0.1 0 … 0.2

… … … …
0.3 0.2 … 0

…

…Fe
at

ur
es

Modality Input

Enhanced Components
(optional)

0.1 0.3
0.1 0.2

0.3 0.2

Adjacency Matrix

1 0 … 0
0 0 … 2

… … … …
2 0 … 3

…

1

Fe
at

ur
e

N
od

es 0 … 2
0 0 … 0

… … … …
0 2 … 3

…

Graph Construction

Cell Nodes Feature Nodes

(a) Graph Construction

Cell-Feature Graph Convolution

Cell Nodes Feature Nodes

Cell Nodes

Feature Nodes

Feature Nodes

Heterogeneous Edges

Feature Nodes

Cell Nodes

Convolutional Layers
!𝑯

Modality1 Embedding

Modality2 Embedding

!"!"#$!"!"#%&

! =

Score Matrix
Cell1

Cell1

Cell2

Cell3

Cell2 Cell3

0.6 0.9 0.3

0.3

0.2

0.6 0.8

0.9 0.5

(L2 normalized)
(L2 normalized)

(Cosine Similarity)

cell1

cell2

cell3

Task-specific Head

…

MLP Layers Output Matrix

(optional)

(b) Cell-feature Graph Convolution with Task-
Specific Head

Figure 2.1 An overview of scMoGNN. We first construct the cell-feature graph from a given modality
and then perform cell-feature graph convolution to obtain latent embeddings of cells, which are sent
to a task-specific head to perform the downstream task.

2.3.1.1 Graph Construction

With the single-cell data, our first step is to construct a cell-feature graph that GNNs can be

applied to. We construct a cell-feature bipartite graph where the cells and their biological features

(e.g. GEX, ADT or ATAC features) are treated as different nodes, which we term as cell nodes

and feature nodes, respectively. A cell node is connected with the feature nodes that represent its

features. With such graph structure, the advantage is that cell nodes can propagate features to their

neighboring feature nodes, and vice versa.

Formally, we denote the bipartite graph as G = (U,V, E). In this graph, U is the set of 𝑁 cell

nodes {𝑢1, 𝑢2, ..., 𝑢𝑁 } and V is the set of 𝑘 feature nodes {𝑣1, 𝑣2, ..., 𝑣𝑘 }, where each feature node

refers to one feature dimension of the input data. E ⊆ U ×V represents the set of edges between

U and V, which describe the relations between cells and features. The graph can be denoted as a

weighted adjacency matrix

A =
©«

O M

M𝑇 O

ª®®¬ ∈ R(𝑁+𝑘)×(𝑁+𝑘) , (2.3)

where O is a matrix filled with constant 0 and M ∈ R𝑁×𝑘 is the input feature matrix of cells. M can

be also viewed as the features of one modality such as GEX. Note that A is a bipartite graph where

two nodes within the same set (either feature nodes or cell nodes) are not adjacent. Based on the

aforementioned process of graph construction, we can adjust it for specific tasks, e.g., incorporating

10

a prior knowledge graph of genes, which can change the bipartite characteristic of A.

Furthermore, since GNNs are mostly dealing with attributed graphs, we need to assign initial

embeddings for feature and cell nodes. Specifically, we use Xcell and Xfeat to denote the initial

embeddings for cell and feature nodes, respectively. We have Xcell ∈ R𝑁×𝑑
′ and Xfeat ∈ R𝑘×𝑑

′′

where 𝑑′ and 𝑑′′ are determined by the task-specific settings. As an illustrative example, the initial

embeddings of feature nodes {𝑣1, ..., 𝑣𝑘 } could be the one-hot index of each feature dimension; thus,

Xfeat ∈ R𝑘×𝑘 is an identity matrix, i.e., Xfeat = I𝑘 . Meanwhile, we do not have any prior knowledge

for each cell, thus, Xcell = O𝑁×1. Together with the node features, the constructed cell-feature graph

can be denoted as G = (A,Xfeat,Xcell).

2.3.1.2 Cell-Feature Graph Convolution

After we obtain the constructed cell-feature graph, the next challenge is how to extract high-order

structural information from the graph. In this work, we utilize GNNs to effectively learn cell/feature

representations over the constructed graph. Note that there are two types of nodes in the graph and

we need to deal with them differently. For the ease of illustration, we first only consider one type of

nodes (e.g., feature nodes V), and later we extend it to the whole graph. Typically, GNNs follow

the message-passing paradigm (Gilmer et al., 2017) and in each layer of GNNs, the embedding of

each node is updated according to the messages passed from its neighbors. Let H𝑙 = {h𝑙
1, ..., h

𝑙
𝑁
},

h𝑙
𝑖
∈ R𝑑

𝑙
be the input node embeddings in the 𝑙-th layer, where h𝑙

𝑖
corresponds to node 𝑣𝑖. Hence, the

output embeddings of the 𝑙-th layer can be expressed as follows:

h𝑙+1
𝑖 = Update(h𝑙

𝑖 ,Agg(h𝑙
𝑗 | 𝑗 ∈ N𝑖)), (2.4)

where N𝑖 is the set of first-order neighbors of node 𝑣𝑖, Agg(·) indicates an aggregation function

on neighbor nodes’ embedding, and Update(·) is an update function that generates a new node

embedding vector from the previous one and aggregation results from neighbors. Notably, for the

input node embedding in the first layer, we have

H1 = 𝜎(XfeatWfeat + bfeat),Wfeat ∈ R𝑑
′×𝑑 (2.5)

11

where Wfeat is a transformation matrix, 𝑑 is the dimension of the hidden space and 𝜎 is an activation

function.

Though there exist a number of different GNN models, in this work, we focus on the most

representative one, Graph Convolution Network (GCN) (Kipf and Welling, 2017). Note that it is

straightforward to extend the proposed framework to other GNN models. Considering that we have

two different types of nodes in the graph (i.e., cells and features nodes), we make some modifications

on the vanilla GCN to deal with different types of nodes/edges. We name it as cell-feature graph

convolution, where we separately perform the aggregation function on different types of edges to

capture interactions between cell and feature nodes. Moreover, we use different parameters for

aggregation on different edges, thus allowing the embedding of each node type to have very different

distributions. Specifically, from a message passing perspective, the operation in a cell-feature graph

convolution layer can be expressed as two steps, i.e., aggregation and updating. In order to generate

a message m for different types of nodes, there are at least two basic aggregation functions, one is:

m𝑖,𝑙

U→V = 𝜎(b𝑙
U→V +

∑︁
𝑗∈N𝑖 ,𝑣𝑖∈V

𝑒 𝑗𝑖

𝑐 𝑗𝑖
h𝑙
𝑗W

𝑙
U→V) (2.6)

where 𝑖 corresponds to node 𝑣𝑖 ∈ V, 𝑗 corresponds to node 𝑢 𝑗 ∈ U; 𝑒 𝑗𝑖 denotes the edge weight

between 𝑣 𝑗 and 𝑢𝑖, W𝑙
U→V and b𝑙

U→V are trainable parameters, 𝜎(·) is an activation function such

as ReLU, and 𝑐 𝑗𝑖 is a normalization term defined as follows:

𝑐 𝑗𝑖 =

√︄∑︁
𝑘∈N𝑗

𝑒 𝑗 𝑘

√︄∑︁
𝑘∈N𝑖

𝑒𝑘𝑖 (2.7)

Obviously, Eq. (2.6) is the aggregation function from cell nodes U to feature nodes V. Thus the

other aggregation function from V to U can be written as:

m𝑖,𝑙

V→U = 𝜎(b𝑙
V→U +

∑︁
𝑗∈N𝑖 ,𝑢𝑖∈U

𝑒 𝑗𝑖

𝑐 𝑗𝑖
h𝑙
𝑗W

𝑙
V→U) (2.8)

The transformation matrices W𝑙
U→V and W𝑙

V→U project the node embeddings from one hidden

space to another vice versa. After generating the messages from neighborhoods, we then update the

embedding for nodes in V and U accordingly:

h𝑙+1
𝑖 = h𝑙

𝑖 + m𝑖,𝑙

U→V , h𝑙+1
𝑗 = h𝑙

𝑗 + m 𝑗 ,𝑙

V→U , (2.9)

12

where 𝑣𝑖 ∈ V and 𝑢 𝑗 ∈ U. In Eq. (2.9), we adopt a simple residual mechanism in order to enhance

self information. As mentioned earlier, we can have more than two types of edges depending on the

downstream task and the graph structure can be much more complex than a bipartite graph. Despite

such complexity, our proposed framework and cell-feature graph convolution have the capacity to

handle more types of edges/nodes. We will introduce these details in Section 2.3.2.

2.3.1.3 Task-specific Head

After we learn node embeddings for feature and cell nodes, we need to project the embedding to

the space of the specific downstream task. Hence, we design a task-specific head, which depends

on the downstream task. Specifically, we first take the node embeddings of cell nodes from each

convolution layer, aggregate them and project them into the space of downstream task Ŷ:

Ŷ = Head
(
Readout𝜃 (H1

U , ...,H𝐿
U)

)
(2.10)

where H𝑖
U refers to embeddings of all cell nodes in 𝑖-th layer, Readout(·)𝜃 is a trainable aggregation

function, Head(·) is a linear transformation that projects the latent embedding to the downstream

task space. With the obtained output, we can then optimize the framework through minimizing the

task-specific loss functions. In the following subsection, we give the details of training the general

framework for different tasks.

2.3.2 Model Specifications

With the proposed general framework scMoGNN, we are now able to perform different tasks by

adjusting some of the components. In this subsection, we show how scMoGNN is applied in the

three important tasks in single-cell data integration: modality prediction, modality matching and

joint embedding.

2.3.2.1 Modality Prediction

In the modality prediction task, our objective is to translate the data from one modality to another.

Given the flexibility of graph construction and GNNs in our framework, we can readily incorporate

external knowledge into our method. In this task, we adjust the graph construction to include

such domain knowledge to enhance the feature information. Specifically, in GEX-to-ADT and

13

GEX-to-ATAC subtasks, we introduce hallmark gene sets(Liberzon et al., 2015) (i.e., pathway data)

from the Molecular Signatures Database (MSigDB)(Subramanian et al., 2005). The pathway data

describe the correlations between gene features (i.e., features of GEX data) and the dataset consists

of 50 so-called gene sets. In each gene set, a group of correlated genes are collected. However, there

is no numerical information in these gene sets to help us quantify the relations between those genes,

resulting in homogeneous relations. Intuitively, we can construct a fully-connected inter-gene graph

for each gene set, and incorporate those edges into our original graph G. Hence, the new adjacency

matrix for G is:

A =
©«

O M

M𝑇 P

ª®®¬ (2.11)

where P ∈ R𝑘×𝑘 is a symmetric matrix, which refers to the links between gene features, generated

from gene sets data. Furthermore, we manually add some quantitative information, i.e., cosine

similarity between gene features based on their distributions in GEX input data.

Due to the existence of extra type of edges in the graph (i.e., edges among feature nodes), we

need to make corresponding adjustment on our cell-feature graph convolution. Taking an arbitrary

feature node 𝑣𝑖 as example, we have N𝑖 = Nu
𝑖
∪ Nv

𝑖
, where N𝑖 denotes the set of neighbors of node

𝑣𝑖, Nu
𝑖
⊆ U is the set of cell node neighbors of 𝑣𝑖, Nv

𝑖
⊆ V is the set of feature node neighbors of 𝑣𝑖.

Since cell and feature nodes have very different characteristics, when we aggregate the embedding

from Nu
𝑖

and Nv
𝑖

respectively, we expect to get very different results. Thus, when we update the

embedding of center node, we have different strategies to combine messages from different channels.

As a starting point, we decide to enable a scalar weight. Formally speaking, similar to Eq. (2.6) and

Eq. (2.8), we first generate two messages m𝑖,𝑙

U→V and m𝑖,𝑙

V→V for each node 𝑣𝑖 ∈ V, then we update

the node embedding of 𝑣𝑖 following the formulation below:

h𝑙+1
𝑖 = h𝑙

𝑖 + 𝛼 · m𝑖,𝑙

V→V + (1 − 𝛼) · m𝑖,𝑙

U→V (2.12)

where 𝛼 is either a hyper-parameter or a learnable scaler to control the ratio between inter-feature

aggregation and cell-feature aggregation.

14

Next we elaborate on the modality prediction head and loss function for the task. The head

structure for modality prediction is relatively simple. Note that we deliberately keep the same hidden

dimension throughout the cell-feature graph convolution; thus we can simply use a trainable weight

vector w to sum up cell node embeddings from different layers, as follows:

Ĥ =

𝐿∑︁
𝑖=1

w𝑖 · H𝑖
U (2.13)

where Ĥ,H𝑖
U ∈ R𝑁×𝑑 , and 𝑑 is the dimension of hidden layer. After that, a simple fully connected

layer is performed to transform it to the target space:

Ŷ = ĤW + b. (2.14)

A rooted mean squared error (RMSE) loss is then calculated as:

L =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(Y𝑖 − Ŷi)2, (2.15)

which is a typical loss function for regression tasks.

2.3.2.2 Modality Matching

Our goal in the modality matching task is to predict the probability that a pair of different

modality data is actually from the same cell. Modality matching is very different from the modality

prediction task in two regards: (1) it requires interactions between two modalities; and (2) it

does not demand the model to give detailed predictions but it emphasizes pairings between two

modalities. Therefore, we need to adjust the framework in graph construction and task-specific head

correspondingly.

Since two different modalities are presented as input in this task, we construct two cell-feature

graphs. Cell-feature graph convolutions are then performed on these two graphs separately to obtain

two embedding matrices Ĥm1 ∈ R𝑁×𝑑1 and Ĥm2 ∈ R𝑁×𝑑2 . We set 𝑑1 = 𝑑2 so they can be directly

multiplied together. Thus, we calculate the cosine similarity between each cell pair as follows:

S = Ĥ′m1 · Ĥ′𝑇
m2 (2.16)

15

where S ∈ R𝑁×𝑁 denotes the symmetric score matrix; Ĥ′
m1 and Ĥ′

m2 indicate that we perform L2

normalization for each row (i.e., each cell) in Ĥm1 and Ĥm2 before we perform matrix multiplication.

We further calculate the softmax function for each row and each column of S to convert scores to

probabilities. Then we can express the loss function as follows:

Lmatch = −
𝑁∑︁

𝑐1=1

𝑁∑︁
𝑐2=1

Y𝑐1,𝑐2 log(P𝑟
𝑐1,𝑐2) + Y𝑐1,𝑐2 log(P𝑐

𝑐1,𝑐2) (2.17)

with P𝑟
𝑖, 𝑗 =

𝑒S𝑖, 𝑗∑𝑁
𝑘=1 𝑒

S𝑖,𝑘

, P𝑐
𝑖, 𝑗 =

𝑒S𝑖, 𝑗∑𝑁
𝑘=1 𝑒

S𝑘, 𝑗

,

where Y ∈ R𝑁×𝑁 denotes a binarized matching matrix that indicates the perfect matching (i.e., the

ground truth label), and P𝑖, 𝑗 ∈ R𝑁×𝑁 represents the probability that 𝑖-th data in modality 1 and 𝑗-th

data in modality 2 are actually referring to the same cell.

In addition to the matching loss Lmatch, we include a set of auxiliary losses to boost the

performance, i.e., prediction losses and reconstruction losses:

Laux = Lpred12 + Lpred21 + Lrecon11 + Lrecon22

=
1
𝑁

𝑁∑︁
𝑖=1

(Xm2 − 𝑓𝜃2 (Ĥm1))2 + 1
𝑁

𝑁∑︁
𝑖=1

(Xm1 − 𝑓𝜃1 (Ĥm2))2

+ 1
𝑁

𝑁∑︁
𝑖=1

(Xm1 − 𝑓𝜃1 (Ĥm1))2 + 1
𝑁

𝑁∑︁
𝑖=1

(Xm2 − 𝑓𝜃2 (Ĥm2))2

(2.18)

where Xm1 and Xm2 refer to the preprocessing results of two modalities respectively, 𝑓𝜃1 and 𝑓𝜃2

each refers to a fully connected network with one hidden layer, which project the node embeddings

Ĥ to the particular target modality space. These auxiliary losses provide extra supervision for our

model to encode the necessary information within the hidden space Ĥ. Hence they have the potential

to improve the robustness of the model and reduce the risk of overfitting. In the training phase, we

jointly optimize Lmatch and Laux.

Lastly, in the inference phase, we introduce bipartite matching as an extra post-processing

method to further augment our matching result. Specifically, we first use percentile threshold to

filter the score matrix S in order to reduce the subsequent calculations, resulting in a symmetric

sparse matrix S′. We consider S′ as an adjacency matrix of a bipartite graph, which helps us model

16

the two different modality data and their inter-class relations. Thus, our goal (i.e., matching between

two modalities) becomes a rectangular linear assignment problem, where we try to find a perfect

matching that maximizes the sum of the weights of the edges included in the matching. We can

effectively solve this problem through the Hungarian algorithm, also known as the Munkres or

Kuhn-Munkres algorithm.

2.3.2.3 Joint Embedding

The target of the joint embedding task is to learn cell embeddings from multiple modalities and

thus better describe cellular heterogeneity. Several complex metrics are enabled in this task, there

often exist trade-offs between metrics and metrics (e.g. to remove the batch effect while retaining the

batch information). To provide more training signals, we utilize both supervised and self-supervised

losses to train our graph neural networks. Specifically, we first use the LSI for preprocessing to

generate the input node features for two modalities and concatenate them as one joint modality,

which allows us to construct a cell-feature graph. Based on the graph, we perform the proposed

cell-feature graph convolution and generate the output cell node embedding in the same way as in

Eq. (2.13). As suggested by the work (Liu et al., 2021a), cell type information plays a key role in the

metrics of joint embedding evaluation and it is beneficial to extract 𝑇 dimensions from the hidden

space to serve as supervision signals. Following this idea, we calculate the softmax function for

𝑡 ∈ {1, ..., 𝑇}, 𝑖 ∈ {1, ..., 𝑁} with 𝑁 being the number of cells:

Ŷ𝑖,𝑡 =
𝑒Ĥ𝑖,𝑡∑𝑇
𝑘=1 𝑒

Ĥ𝑖,𝑘

(2.19)

where Ŷ is the probability that cell 𝑖 belongs to cell type 𝑡 and 𝑇 is set to be exactly equal to the total

number of cell types. Then we introduce the loss functions:

L = Lrecon + Lcell type + Lregular

=
1
𝑁

𝑁∑︁
𝑖=1

(XLSI − 𝑓𝜃 (Ĥ))2 +
𝑇∑︁
𝑡=1

Y𝑡 log(Ŷ𝑡) + 𝛽 ∗ ∥ĤJ̃ ∥2

(2.20)

where 𝑓𝜃 is a two-layer perceptron, Y ∈ R𝑁×𝑇 is the sparse labels of cell types, and ĤJ̃ refers to

the other hidden dimensions aside from the 𝑇 dimensions that have been exclusive to cell type

17

information. Eventually, the output hidden space Ĥ would contain cellular information required by

the task, although the loss functions do not directly optimize the final metric.

2.4 Experiment

In this section, we evaluate the effectiveness of our framework scMoGNN against three tasks

and show how scMoGNN outperforms representative baselines over all three tasks by combining

our general framework with task-specific design. Note that in this experiment, we follow the

official settings and datasets in the multimodal single-cell data integration competition at NeurIPS

2021 (Luecken et al., 2021) and we compare the performance of the proposed framework with that

from the top winners in the competition. All source codes of our model have been integrated into

the DANCE package (Ding et al., 2024).

2.4.1 Modality Prediction

Datasets. In the modality prediction dataset, each modality is provided with source data,

preprocessed data (with default methods), and batch labels. Data statistics are shown in Table A.1

in Appendix A.2. Note that the GEX-ATAC and ATAC-GEX subtasks are not entirely symmetric,

because in the GEX-ATAC task, the output dimension is deliberately reduced, where 10,000 ATAC

features are randomly selected out of the original 116,490 dimensions.

Settings and Parameters. For our own model, we report the average performance of 10 runs.

In each run, we reserved 15% of training cells for validation and early stopping. In practice, several

tricks help boost the performance: (1) utilizing initial residual instead of the skip connections

in Eq.2.9, (2) using group normalization for aggregation results and dismissing the edge weight

normalization stated in Eq. 2.7. Besides, we empirically set our parameter 𝛼 in Eq. 2.12 to 0.5.

Additionally, in order to fit the high-dimensional ATAC features, we enabled node sampling.

Baselines. In Table 2.1, we only show the teams that acquired top results in one or more

subtasks in the competition, because they are officially required to declare their model details. For

further comparison, we briefly detail each method: (1) Baseline, a truncated-SVD dimensionality

reduction followed by linear regression. (2) Dengkw, a well-designed model based on kernel ridge

regression. (3) Novel, an encoder-decoder structure with LSI preprocessing. (4) Living System

18

Lab, an ensemble model composed of random forest models, catboost(Prokhorenkova et al., 2018)

models, and k-nearest neighbors regression models. (5) Cajal, a feed forward neural network with

heavy feature selection guided by prior knowledge. (6) ScJoint, an ensemble neural network model

incorporated various strategies of preprocessing such as extracting TF-IDF features and filtering

highly variable genes/features.

The source codes for all the methods above can be found in the official github of the competition5.

It can be seen that the existing models are relatively simple, mainly based on traditional machine

learning algorithms and autoencoders. In contrast, our framework has a more advanced architecture,

which provides the flexibility to different structural data (e.g. graph data) and different tasks. This

makes our framework a very suitable backbone in the field of single-cell multimodal data integration.

Results. As shown in Table 2.1, our method achieved the lowest overall loss in the competition

(the lower, the better). An interesting observation is that there is no team lead consistently across

all subtasks, resulting in individual s for each category, which is very different from the other two

tasks in the competition. However, as far as we know, there is no team that worked only on one

subtask. Such a phenomenon may be caused by three reasons: (1) the modality prediction task

is the most competitive task in the competition, and many participating teams participated only

in this task (including our own team). As a result, over 40 individual teams appeared on the final

leaderboard. (2) the modality prediction task has only 1,000 cells in the private test dataset, therefore,

certain variance exists in the evaluation results. (3) the diverse feature dimensionality and sparsity

in different modalities raised additional challenges to the model’s generalization ability. Compared

to the other models, our GNN model presented consistently better performance across these four

subtasks and became the overall winner in the competition.

Furthermore, we even improved our models after the competition, with modifications including:

a learning-rate decay training strategy, more hidden units along with stronger regularization of

dropout and weight decay. Eventually, we’ve effectively strengthened our graph neural network

model hence significantly improved our results, especially in the toughest subtask GEX-to-ADT,
5The official github link is https://github.com/openproblems-bio/neurips2021_multimodal_topmethods.

19

Table 2.1 RMSE for Modality Prediction (Task 1)↓ . ‘*’ indicates ensemble models.

GEXADT ADT2GEX GEX2ATAC ATAC2GEX Overall

Baseline 0.4395 0.3344 0.1785 0.2524 0.3012
Dengkw* 0.3854 0.3242 0.1833 0.2449 0.2836
Novel 0.4153 0.3177 0.1781 0.2531 0.2911
LS. Lab* 0.4065 0.3228 0.1774 0.2393 0.2865
Cajal 0.4393 0.3311 0.1777 0.2169 0.2891
ScJoint* 0.3954 0.3247 0.1785 0.2377 0.2840
scMoGNN* 0.3898 0.3221 0.1776 0.2403 0.2824

scMoGNN
(Single) 0.3885 0.3242 0.1778 0.2315 0.2805

scMoGNN*
(Ensemble) 0.3809 0.3223 0.1777 0.2310 0.2780

where the output for each cell is a 134-dimensional dense vector. We now achieved an RMSE loss

of 0.3809 which is lower than the previous best score of 0.3854 in the competition. Overall, the

results prove the effectiveness of our GNN framework, and in some specific cases, scMoGNN has

tremendous advantage in view of performance.

2.4.2 Modality Matching

Datasets. The majority of the modality matching dataset is the same as the modality prediction

dataset (as shown in Table A.2 in Appendix A.2, while several differences exist, including: (1) the

number of testing cells; (2) the dimensionality of ATAC features; and (3) the inconsistent cell order

among modalities. In the training data, samples’ correspondence between different modalities is

given, while for the test data, our goal is to find the correspondence.

Settings and Parameters. The experimental settings are similar to the previous task, while

some adjustments were made. For calculation convenience, we decoupled the propagation and

transformation. Besides, batch labels are given in company with the test data, which provides a

very strong prior knowledge for matching. We thus divided the test data into different batches, then

matched samples that belong to the same batch. This trick dramatically reduced the search space,

resulting in a significant performance boost. To be fair, we have confirmed that the winning solution

also used the same strategy.

Baselines. In Table 2.2, we only compare our models with the winning team and runner-up

20

Table 2.2 Performances for Modality Matching (Task 2)↑.

GEX2ADT ADT2GEX GEX2ATAC ATAC2GEX Overall

Baseline 0.0000 0.0000 0.0001 0.0001 0.0001
GLUE (CLUE) 0.0495 0.0516 0.0560 0.0583 0.0539
Novel 0.0373 0.0373 0.0412 0.0412 0.0392

scMoGNN 0.0810 0.0810 0.0630 0.0630 0.0720

team in the competition. Next we briefly introduce those models: (1) Baseline, first projecting one

modality to the other with linear regression, and then searching for the nearest neighbors in the same

modality. (2) GLUE (Cao and Gao, 2022) (CLUE), the official winner, a variational auto-encoder

(VAE) model supervised by three auxiliary losses. (3) Novel, a feed-forward neural network directly

supervised by matching loss.

Results. As shown in Table 2.2, scMoGNN outperforms the winning team and the runner-up

team with a very large margin. Note that we didn’t create any models for this task during the

competition since we focused on the modality prediction task. This is the reason why we don’t have

any results on the official leaderboard.

The score of the metric can be roughly seen as the accuracy of predicting a right correspondence

for each piece of data. Meanwhile the search space grows with the total number of cells in the test

data. For example, in the test phase of the ADT-to-GEX subtask, we have 15,066 cells to match,

thus for each piece of ADT data, we have 15,066 candidates in GEX data. Although we separated

those cells into three batches, the rough expectation of the accuracy of randomly guessing is still as

low as 1/5000, which can indicate the difficulty of this task. Thus, scMoGNN has already achieved

very high performance (e.g. 0.08 in ADT-GEX subtask). Note that both team Novel’s model and

scMoGNN utilizes a symmetric matching algorithm, thus we have exactly the same performance

for dual subtasks (e.g. GEX2ADT and ADT2GEX). Another interesting observation is that our

proposed graph neural network model is especially good at GEX-ADT dual subtasks, where we

improved the previous winning performance from 0.05 to 0.08.

21

Table 2.3 Performances for GEX-ADT Joint Embedding (Task 3)↑.

NMI Cell type ASW Cc_con Traj_con Batch ASW Graph Conn Average

Baseline 0.6408 0.5266 0.9270 0.8325 0.7982 0.8945 0.7699
Amateur (JAE) 0.7608 0.6043 0.7817 0.8631 0.8432 0.9700 0.8039
GLUE 0.8022 0.5759 0.6058 0.8591 0.8800 0.9506 0.7789

scMoGNN 0.8499 0.6496 0.7084 0.8532 0.8691 0.9708 0.8168

2.4.3 Joint Embedding

Datasets. The training data of this task are basically the same as the modality prediction task.

Moreover, data from different modalities are already aligned. Regarding the complementary data,

there are two settings for this task. In the ’online’ setting, the only data is features of two modalities.

Meanwhile, in the ’pre-trained’ setting, any external knowledge is acceptable. In this paper, we

follow the second setting (i.e. pre-trained setting) and we only compare our results with other

pre-trained models. Generally speaking, pre-trained models obtain better performance than online

models. In our experiments, cell type labels are provided in the training phase, while test data

consist of all the train cells and unseen test cells but are not along with cell type labels.

Settings and Parameters. Considering that the input in this task is similar to modality matching,

we followed settings in Section 2.4.2.

Baselines. We briefly describe the other three models in Table 2.3: (1) Baseline, a concatenation

of PCA results of two modalities. (2) Amateur (JAE), the official winner, an auto-encoder model

that incorporates extra supervision (cell annotations). The model is adapted from scDEC (Liu et al.,

2021a). (3) GLUE (Cao and Gao, 2022), an auto-encoder model guided by an external knowledge

graph.

Results. As shown in Table 2.3, our scMoGNN significantly outperforms the other two models

in GEX-ADT joint embedding task, with an improvement over 0.1 according to the average metric.

2.4.4 Ablation Study

Throughout the previous sections, we have examined that our graph neural network general

framework is suitable for all these tasks in single-cell multimodal data integration. In this subsection,

we investigate if we really benefit from graph structural information. We take the modality matching

22

0.0810

0.0630

0.0757

0.0615

0.0745

0.0619

0.0787

0.0562

0.0500

0.0550

0.0600

0.0650

0.0700

0.0750

0.0800

0.0850

GEX-ADT GEX-ATAC

scMoGNN w/o auxiliary loss w/o propagation w/o negative edge weight

Figure 2.2 Ablation study for the modality matching task.

0.150

0.185

0.287

0.341

0.320

0.565

0.183

0.183

0.303

0.321

0.321

0.435

0.320

0.632

0.410

0.338

0.360

0.347

0.000 0.200 0.400 0.600 0.800 1.000

GEX-to-ADT

GEX

ADT

GEX

ATAC

GEX-ADT

Ta
sk
1

Ta
sk
2

Ta
sk
3

Layer1 Layer2 Layer3 Layer4

Figure 2.3 Parameter analysis of layer weight w.

task as an example. In the modality matching task we use decoupled GNNs, thus, we can easily

remove the graph structural information by eliminating the propagation layers. The result is referred

to as “w/o propagation” in Figure 2.2. The performance significantly drops from 0.0810 to 0.0745

in the GEX-ADT subtask and from 0.0630 to 0.0562 in the GEX-ATAC subtask, respectively. These

observations indicate that the graph structural information extracted by the propagation layers indeed

helped the performance of our method significantly. We also examined the importance of our

auxiliary loss, shown in Figure 2.2. Without the supervision of auxiliary losses, scMoGNN lost a lot

of generalization ability, behaving as poorly as without graph structural information.

23

2.4.5 Parameter Analysis

We analyzed an important parameter in our framework, i.e. w in Eq. 2.13, in order to gain

a deeper insight on scMoGNN. Specifically, w is a learnable parameter that controls the weight

between each propagation layer. Intuitively, the value of w can prove to us the effectiveness of

graph structural information and help us understand how much higher-order structural information

is valued by models in different tasks. Therefore we show values of w learned by scMoGNN in

different tasks in Figure 2.3. Note that in different tasks we have different numbers of layers, in

modality prediction we have 4 layers and in modality matching and joint embedding we have 3 layers

and 2 layers, respectively. The results consistently show that scMoGNN tends to synthesize the

information in each layer, not just limited to the shallow layer, which suggests that the information

of the higher-order graph structure is indeed effective. As for more details, joint embedding depends

more on local information, which exists in source input data. While in modality prediction, more

higher-order information is referenced, indicating that the model needs to enrich more information

from similar cells or similar features. This can be explained from the need for more detailed

information in modality prediction.

2.5 Related Work

In this section, we briefly introduce works related to our work including GNNs on single-modality

data and multimodal data integration.

GNNs on Single-Modality Data. Graphs occur as a natural representation of single-cell

data both as feature-centric (RNAs, DNAs, or proteins) and cell-centric. Thus, a few recent

works have applied GNNs to the single-cell data. scGCN (Song et al., 2021) proposes a GNN

model for knowledge transfer in single-cell omics (mRNA or DNA) based on Graph Convolutional

Networks (Kipf and Welling, 2017). scGNN (Wang et al., 2021) formulates and aggregates cell-cell

relationships with Graph Neural Networks for missing-data imputation and cell clustering using

single-cell RNA sequencing (scRNA-seq) data. scDeepSort (Shao et al., 2021) is a pre-trained

cell-type annotation tool for scRNA-seq data that utilizes a deep learning model with a weighted

GNN. Similar to our proposed model, scDeepSort also relies on feature-cell graphs. However, it

24

does not incorporate any prior knowledge into GNNs. Using spatial transcriptomics (mRNA) data,

DSTG (Song and Su, 2021) utilizes semi-supervised GCN to deconvolute the relative abundance of

different cell types at each spatial spot. Despite its success on single-modality data, there are few

efforts on applying GNNs to multimodal single-cell data.

Multimodal Data Integration. Most of the prior works in multimodal data integration can

be divided into 1) matrix factorization (Duren et al., 2018; Stein-O’Brien et al., 2018; Jin et al.,

2020) or statistical based methods (Stuart et al., 2019; Shen et al., 2009; Welch et al., 2017) and

2) autoencoder based methods (Wu et al., 2021b; Gong et al., 2021). Specifically, BABEl (Wu

et al., 2021b) leverages autoencoder frameworks with two encoders and two decoders to take only

one of these modalities and infer the other by constructing reconstruction loss and cross-modality

loss. Cobolt(Gong et al., 2021) acquires joint embedding via a variant of Multimodal Variational

Autoencoder (MVAE(Yao et al., 2021)). Unlike our proposed models, these aforementioned methods

are unable to incorporate high-order interactions among cells or different modalities. To the best of

our knowledge, we are the first to apply GNNs in the field of multimodal single-cell data integration

and build a GNNs-based general framework to broadly work on these three key tasks from NeurIPS

2021 Competition. Our framework officially won first place in the overall ranking of the modality

prediction task. After the competition, we extended our framework to the other two tasks and

achieved superior performance compared with the top winning methods.

2.6 Chapter Conclusion

In this chapter, we proposed a general framework scMoGNN based on GNNs for multimodal

single-cell data integration and multi-omics representation learning. It can be broadly applied to all

three key tasks, modality prediction, modality matching and joint embedding, from the NeurIPS

2021 Competition. Our framework scMoGNN is able to capture high-order structural information

between cells and features. To the best of our knowledge, we are the first to apply GNNs in this field.

Our method officially won first place in the overall ranking of the modality prediction task and now

outperforms all models from three tasks on the leaderboard with remarkable advantage.

25

CHAPTER 3

TRANSFORMERS FOR SINGLE-CELL MULTI-OMICS REPRESENTATION
LEARNING

The recent development of multimodal single-cell technology has made the possibility of acquiring

multiple omics data from individual cells, thereby enabling a deeper understanding of cellular

states and dynamics. Nevertheless, the proliferation of multimodal single-cell data also introduces

tremendous challenges in modeling the complex interactions among different modalities. The

recently advanced methods focus on constructing static interaction graphs and applying graph neural

networks (GNNs) to learn from multimodal data, such as scMoGNN in Chapter 2. However, such

static graphs can be suboptimal as they do not take advantage of the downstream task information;

meanwhile, GNNs also have some inherent limitations when deeply stacking GNN layers. To tackle

these issues, in this work, we investigate how to leverage transformers for multimodal single-cell

data in an end-to-end manner while exploiting downstream task information. In particular, we

propose a scMoFormer framework that can readily incorporate external domain knowledge and

model the interactions within each modality and cross-modalities.

3.1 Chapter Introduction

Advancements in multimodal single-cell technologies provide the capability to simultaneously

profile multiple data types in the same cell, including chromatin accessibility (Cao et al., 2018;

Chen et al., 2019), DNA methylation (Gaiti et al., 2019), nucleosome occupancy (Pott, 2017). For

example, CITE-seq (Stoeckius et al., 2017) utilizing oligonucleotide-conjugated antibodies can

quantify RNA and surface protein abundance in the same cells. Here, protein abundance is measured

via the antibody-derived tags (ADTs) read counts. The Single Cell Multiome ATAC + Gene

Expression technology (Belhocine et al., 2021) concurrently profiles assay of transposase-accessible

chromatin (ATAC-seq) (Buenrostro et al., 2013) and RNA expression from the same cell. These

technologies offer an exciting opportunity to characterize cell identity and state at an unprecedented

resolution, enabling a better understanding of gene regulatory networks in multicellular organisms

and tissues (Zhu et al., 2020).

26

Despite the rapid accumulation of multimodal single-cell data, the analyses of such data are still

faced with numerous challenges. First, single-cell measurements frequently exhibit high sparsity

levels, making it difficult to draw meaningful insights from the data. The measurement process is

impacted by various environmental factors, such as amplification bias, cell cycle effects, variations

in library size, and RNA capture rate, all of which contribute to substantial noise in single-cell

data (Eraslan et al., 2019). Furthermore, samples are often measured under different conditions,

including batches, times, locations, or using different instruments, which leads to systematic

variations in the measured values, which further complicates the interpretation of single-cell data.

These imperfections can result in biased estimates of cell-cell interactions and pose tremendous

challenges for computational models to exploit such interactions.

To effectively capture the intricate interactions within cells and genes, current research focuses

on constructing static graphs based on heuristic criteria and then employing graph neural networks

(GNNs) (Kipf and Welling, 2017; Velickovic et al., 2018; Ma and Tang, 2021) to extract information

from the built graph. For example, Hao et al. (Hao et al., 2021) and Van et al. (Van Dĳk et al., 2018)

have built the k-nearest neighbor (k-NN) graph for cells, which assesses the connections between

cells by measuring the similarity in gene expression of cells. However, the quality of k-NN graphs is

contingent upon the selected heuristic similarity measure and it does not incorporate downstream

task information, which can introduce noise for GNNs to perform well on the downstream task. An

alternative way for building the interaction graph is to construct the graph based on prior domain

knowledge, e.g., utilizing publicly accessible databases (Wen et al., 2022a). For instance, Wen

et al. (Wen et al., 2022a) construct the graph based on the pathway data (Liberzon et al., 2015)

extracted from the Molecular Signatures Database (Subramanian et al., 2005), which describes

the correlations between gene features. However, similar to k-NN graphs, such graph construction

process does not leverage downstream task information and the knowledge base may not include all

relevant genes/proteins. To make things worse, GNNs have some inherent limitations that hinder

their success in applications: the over-smoothing (Kreuzer et al., 2021) and over-squashing (Alon

and Yahav, 2021) issues where GNNs produce poor results when we deeply stack GNN layers. In

27

view of these, one question naturally arises: can we have a better approach to construct interaction

graphs (among cells, genes, and proteins) that utilize downstream information while avoiding the

aforementioned issues?

In light of the recent advances of transformers (Devlin et al., 2019; Kitaev et al., 2020; Liu et al.,

2021c, 2022) in capturing pairwise relations among objects, we seek to utilize transformers for

learning the interaction graph for cells, genes, and proteins in an end-to-end manner. Transformers

are well-suited to address the limitations of static graphs: they learn the interaction between objects

through the self-attention mechanism, where all objects are attended to each other with learnable

attention scores indicating their interaction strength. Thus, the attention matrix provides an advanced

approach to characterize the interaction between objects in a data-driven way and has demonstrated

success in reducing unwanted variance and noise across batches (Yang et al., 2022). Moreover,

multi-head and multi-layer transformers have the capability of capturing more complex and nuanced

relationships during the training process (Huang et al., 2021; Ieremie et al., 2022). However, these

traditional transformers do not account for the available graph structure and are therefore unable

to leverage prior information present in graph data, such as biological knowledge graphs. In this

context, graph transformers (Rampasek et al., 2022; Ying et al., 2021; Dwivedi and Bresson, 2020)

offer a solution by combining the strengths of GNNs and transformers to make use of graph data.

These approaches allow for the incorporation of prior insights from structural information learned

from GNNs, while still allowing for data-specific interactions to be learned through the attention

mechanism. On top of that, graph transformers also alleviate the over-smoothing and over-squashing

problems in GNNs by enabling individual objects to attend to unconnected objects (Chen et al.,

2022; Dwivedi et al., 2021; Kreuzer et al., 2021; Rampášek et al., 2022). Therefore, it is of great

importance to investigate the potential of (graph) transformers in single-cell analysis.

In this work, we aim to design a transformer framework for multimodal single-cell data. In

essence, to utilize the strengths of (graph) transformers, we are faced with two non-trivial challenges.

First, since multimodal data contains diverse information from various sources, e.g., genes, proteins,

and cells, it can be difficult for a single transformer to capture all aspects. Second, traditional

28

transformers suffer a quadratic computation complexity w.r.t. the number of objects, which poses

a challenge for single-cell analysis where the number of cells can be large. To address the first

challenge, we introduce the Single-Cell Multimodal Transformer scMoFormer, which employs

multiple transformers to model the multimodal data, allowing each transformer to deal with a specific

data modality. The core of scMoFormer is the cross-modality aggregation component which builds

a bridge between these transformers and aggregates the necessary information from individual ones.

For the second challenge, scMoFormer employs linearized transformers (Choromanski et al., 2021)

to the cells which greatly reduces the computational complexity.

To the best of our knowledge, we are the first to employ transformers to advance the analysis of

multimodal single-cell data. Our proposed framework achieves promising results on the benchmark

datasets, providing a very strong baseline for follow-up research. Our contributions can be

summarized as follows:

• We study the problem of multimodal single-cell data analysis and propose a transformer

framework scMoFormer to capture the intricate relations within modalities and between

modalities.

• The proposed scMoFormer is versatile and can flexibly incorporate domain knowledge of

biological databases regarding genes and proteins.

• The proposed scMoFormer achieves superior performance on various benchmark datasets.

Remarkably, we won a Kaggle silver medal with the rank of 24/1221 (Top 2%) without

multi-model ensembling in a NeurIPS 2022 competition1.

3.2 Problem Statement

Before we state the problem, we first introduce the notations used in the following sections. For

clarity and simplicity, we use the subscripts “g”, “p” and “c” for gene, protein, and cell, respectively.

For instance, we use h𝑔, h𝑝, h𝑐 to denote the embeddings of genes, proteins, and cells, respectively.

Although we aim to develop a general framework for multi-omics, a great entry point is to focus

on a specific standardized problem that is easy to evaluate. In this study, we follow the benchmark
1The competition official website is https://nips.cc/virtual/2022/competition/50092.

29

setting in the NeurIPS 2022 competition, i.e., Multimodal Single-Cell Integration Across Time,

Individuals, and Batches2. The specific problem in this competition is to predict a paired modality

with a given modality and to infer how DNA, RNA, and protein measurements co-vary in single

cells. For simplicity, in this work, we focus on using gene expression (RNA) to predict surface

protein levels. We denote Xg and Xp as the measurement counts of gene and protein, respectively.

With Xg, we try to learn a mapping function that can best describe the relationship between two

modalities. We denote L (·, ·) as the objective function that measures the dissimilarity between the

predicted and the true protein level. Formally, we describe our target as an optimization problem:

Given Xg and the objective function L (·, ·), we aim to find a mapping function 𝑓 ∗
𝜃

(parameterized

by 𝜃) that minimize the objective loss:

𝑓 ∗𝜃 = arg min
𝑓𝜃

L
(
𝑓𝜃
(
Xg

)
,Xp

)
. (3.1)

In the subsequent sections, we formulate the mapping 𝑓 ∗
𝜃

using transformers and GNNs and

employ Root Mean Square Error, Mean Absolute Error, and Pearson correlation coefficient as

evaluation metrics for our predictions.

3.3 Proposed Multimodal Transformer Framework

In this section, we introduce the proposed multimodal framework scMoFormer. An overview of

scMoFormer is shown in Figure 3.1. It consists of multimodal graph construction, a multimodal

transformer, and a prediction layer. In brief, we first construct a heterogeneous graph that contains

cell, gene, and protein nodes together with their interactions. We then utilize multiple (graph)

transformers on top of this heterogeneous graph to extract rich cell representations and predict

each cell’s surface protein abundance levels. In the following subsections, we will detail these key

components.

3.3.1 Multimodal Graph Construction

In this subsection, we introduce how we construct the graph for multimodal single-cell data.

Specifically, we construct a heterogeneous graph containing three different types of nodes to denote
2The competition information can be found at https://www.kaggle.com/competitions/open-problems-multimodal.

30

Figure 3.1 An illustration of scMoFormer. In this framework, three important components are
included: graph construction, multimodal transformer, and prediction layer.

the entire data. It has four subgraphs as shown in Figure 3.1, i.e., a protein-protein graph, a gene-gene

graph, a gene-protein graph, and a cell-gene graph. Next, we detail how to conduct these subgraphs.

3.3.1.1 Subgraph Construction.

Before we present the construction of the multimodal heterogeneous graph, we first describe

how we build the subgraphs within modalities and between modalities.

Protein-protein graph. To integrate prior biological information into protein-protein graph,

we refer to the STRING (Szklarczyk et al., 2023) database. STRING provides a comprehensive

resource of protein-protein interactions and the functional relationships between different proteins.

It contains seven different channels covering varied aspects of sources, including genomic context,

experiment results, and text mining efforts. We use the combined confidence score of all channels

as edge weights to comprehensively enhance the graph. The proteins in STRING are labeled in

Ensemble (Cunningham et al., 2022) protein (ENSP), and the mapping from ENSP to the protein

preferred name is provided in additional information resource. Notice that regularly one protein may

have multiple aliases. To match the protein display names with ENSP, we utilize GeneCards (Stelzer

et al., 2016) to find all possible aliases of our target proteins. In a nutshell, the mapping from

STRING nodes to our target proteins is given by ENSP � possible aliases of proteins � the display

names of proteins within the dataset.

Gene-gene graph. In order to maintain consistency and reduce the impact of potential noise

31

from multiple sources of prior information, we also utilized the STRING database to construct the

gene-gene graph and combined all seven channels of the STRING database to enhance the graph

as much as possible. It is worth noting that although the gene and protein nodes are biologically

equivalent in the sense of prior information, we process them separately to more specifically handle

data-specific information related to the target labels. The genes are labeled in Ensemble gene

(ENSG) and additional matching efforts are needed to form the gene-gene graph. We utilize the

MyGeneInfo (Wu et al., 2014) gene query service to align the STRING protein nodes, encoded by

ENSP, with the input gene nodes, encoded by ENSG.

Gene-protein graph. Now we have two separate graphs among proteins and genes respectively,

and we would like to form a general frame by adding the connections between genes and proteins.

Following the central dogma of molecular biology, information flows from RNA to proteins via

translation. This encoding relationship is recorded within the gene and protein nomenclature.

Specifically, the gene names from existing single-cell multimodal datasets contain two parts: the

ENSG and the symbol or name of corresponding proteins. That is, if a gene and a protein share the

same symbol, it means the target protein is encoded by the gene. Utilizing biological information,

we link the proteins to genes by matching their symbols.

Cell-gene graph. The constructed gene-protein graph is fully based on prior knowledge, and we

integrate data-based information into the multimodal heterogeneous graph by involving cell nodes.

The gene expression counts of multimodality data imply the data-specific relationships between

genes and cells. Naturally, a cell and a gene are connected if the gene expresses within that cell.

Note that the number of genes detected within each cell varies significantly, which depicts that the

raw counts of RNA abundance show substantial heterogeneity among cells. In addition, the raw

data includes extremely large counts, making it impractical to straightforwardly apply counts data as

the edge weights between cells and genes. Therefore, we normalize each cell by total counts over

all genes and taking the logarithm of the resulting data matrix, i.e., library size normalization and

centered log-transformation. The processed data is then fed into the multimodal graph to describe

the cell-gene links.

32

Remark. In the above discussion, we have introduced four types of subgraphs, i.e., a protein-

protein graph, a gene-gene graph, a gene-protein graph, and a cell-gene graph. It is worth noting

that we do not construct the cell-cell graph. Instead, we use the transformer to learn the cell-cell

relationships via the attention mechanism. This is in contrast with some previous studies that

utilize a static cell-cell similarity graph generated from the input features, which might be prone to

inaccurate cell relationships due to the noisy nature of single-cell data. On the other hand, we do

not explicitly establish connections between the cells and the target protein nodes, as it might cause

the model to easily overfit.

3.3.1.2 Heterogeneous Graph Construction.

With the aforementioned subgraphs, we are now ready to explain how we construct the multimodal

heterogeneous graph.

Formal Graph Definition. We now formally define the multimodal heterogeneous graph. Let

A be the adjacency matrix of the multimodal heterogeneous graph with V =
(
vp, vg, vc

)
as the node

set, where we have

vp =

(
𝑣1

p, 𝑣
2
p, . . . , 𝑣

𝑁p
p

)
,

vg =

(
𝑣1

g, 𝑣
2
g, . . . , 𝑣

𝑁g
g

)
,

vc =
(
𝑣1

c , 𝑣
2
c , . . . , 𝑣

𝑁c
c

)
,

(3.2)

and 𝑁p, 𝑁g, 𝑁c are the number of proteins, genes, cells, respectively. Denote E ∈ V ×V as the

edge set, we write the multimodal heterogeneous graph as G = (V, E). Let 𝑁 = (𝑁p + 𝑁g + 𝑁c) be

the total number of nodes, the adjacency matrix A can be written as follows:

A =

©«
Ap S𝑇 0

S Ag A𝑇
RNA

0 ARNA 0

ª®®®®®¬
∈ R𝑁×𝑁 , (3.3)

where Ap ∈ R𝑁p×𝑁p is the protein-protein interaction graph; Ag ∈ R𝑁g×𝑁g denotes the gene-gene

graphs mapped from STRING via MyGene.info (Lelong et al., 2022); S ∈ R𝑁g×𝑁p is the encoding

relationship between genes and proteins; and ARNA ∈ R𝑁c×𝑁g represents the gene expression.

33

Node Feature initialization. With the graph structure, next we discuss how to initilize the node

features. Since the RNA counts Xg show drastic sparsity along with high dimension, it is not practical

to be directly used as cell features. Therefore, we first denoise the data and reduce the dimension

by Singular Value Decomposition (SVD). To alleviate the effects of cell-to-cell heterogeneity and

extreme large counts, we conduct library size normalization and centered log-transformation. The

preprocessed data X̄ is then passed through the SVD algorithm. Cell features are initialized with

the reduced features h0
c ∈ R𝑁c×𝑑0 . We then initialize gene features by the weighted sum of the

reduced features h0
g = X̄𝑇

g · h0
c ∈ R𝑁g×𝑑0 with the normalized counts X̄g as the weights. In the studied

problem, proteins are the target modality for prediction; thus they are initialized randomly based on

their indices.

3.3.2 Multimodal Transformers

In the proposed scMoFormer, we address the challenge of heterogeneity in the multimodal

heterogeneous graph consisting of three distinct modalities: cells, genes, and proteins. To effectively

handle this heterogeneity, we employ multiple transformers, each designed to process a specific data

modality. The information obtained from these individual transformers is then aggregated through a

cross-modality aggregation mechanism. Subsequently, we will present the transformers assigned to

each modality and elaborate on how to coherently integrate them.

3.3.2.1 Cell Transformer

Transformer (Vaswani et al., 2017) has made significant achievements in the field of Natural

Language Processing (NLP) in recent years. The attention mechanism can capture high-order and

non-Euclidean connections between nodes, which is desired to explore the cell-cell relationships

within single-cell multimodal data. Following the notations of the original transformer, we denote

the queries, keys and input cell embeddings as Q, K, hc ∈ R𝑁c×𝑑 with input dimension 𝑑, the scaled

dot-product attention can be formulated as

Attn(hc) = softmax
(
QK𝑇

√
𝑑

)
hc, (3.4)

34

where Aattn = softmax
(

QK𝑇

√
𝑑

)
is the attention matrix of cell-cell interactions. Despite being effective

in various NLP tasks, the original transformer has limitations in scalability due to its relatively high

space complexity of 𝑂 (𝑁2
c + 𝑁c𝑑) and time complexity of 𝑂 (𝑁2

c 𝑑). This issue considerably limits

the application of transformers in single-cell multimodal analysis. Since typically multimodal data

includes tens of thousands of cells, it is not applicable to implement the original transformer directly

on cells.

To address the scalability issue, we employ generalized kernelizable attention (Choromanski

et al., 2021) as a computationally efficient approximation of traditional attention. The attention

blocks is kernelized in the form A(𝑖, 𝑗) = K
(
q⊤
𝑖
, k⊤

𝑗

)
, where q𝑖 stands for the 𝑖𝑡ℎ row of query Q

and k 𝑗 denotes the 𝑗 𝑡ℎ row of key K. The kernel K : R𝑑 × R𝑑 → R+ is specified as:

K(x, y) = E
[
𝜙(x)⊤𝜙(y)

]
, (3.5)

where 𝜙 : R𝑑 → R𝑟+ denotes the feature mapping. Let Q′, K′ ∈ R𝑁c×𝑟 be the approximate query and

key with rows given as 𝜙
(
q⊤
𝑖

)⊤ and 𝜙
(
k⊤
𝑖

)⊤ respectively, the kernel approximation of cell attention

is formulated as

Attn(hc) = D̂−1 (Q′ ((K′)⊤ hc
))
,

where D̂ = diag
(
Q′ ((K′)⊤ 1𝑁c

))
.

(3.6)

With kernel of dimension 𝑟 , the space complexity and time complexity is reduced to𝑂 (𝑁c𝑟+𝑁c𝑑+𝑟𝑑)

and 𝑂 (𝑁c𝑟𝑑), respectively.

The generalized kernelizable attention boosts our cell transformer to linear space and time

complexity, while still delivering results comparable to regular transformers (Choromanski et al.,

2021). The attention mechanism in the model captures the intricate relationships between cells,

resulting in an improved representation of the individual cells.

3.3.2.2 Gene Transformer and Protein Transformer

To leverage biological insights, we include STRING (Szklarczyk et al., 2023) as an addition

to provide local information of genes and proteins. Although STRING provides solid prior

networks, there may still exist data-related concerns when applied to sequencing data. For instance,

35

the NeurIPS 2022 competition dataset3 contains 22, 050 genes, but only 13, 101 of these genes

have interactions recorded in the STRING database. This issue also occurs in proteins, as the

NeurIPS 2022 competition dataset collects 140 proteins and only 120 of them are found within

the STRING (Szklarczyk et al., 2023) networks. This means that information about interactions

within the remaining molecules is not available unless additional global information is included. To

address the concerns, we utilized graph transformers to encode both the local and global information

about genes and proteins. Specifically, following GraphGPS (Rampasek et al., 2022), we adapt the

graph transformers for gene-gene and protein-protein graphs separately, i.e., gene transformer and

protein transformer. Since the gene transformer and protein transformer have the same architecture,

we will use the gene transformer to illustrate the details.

A gene transformer layer consists of two parallel components: a message-passing GNN block

and a global attention block. The GNN block subtracts the gene interaction information from the

prior local network, while the attention block learns global data-specific relationships by allowing

each gene to attend to all other genes. The results from two blocks are summed together and then

processed by fully connected layers to update the gene embeddings. Recall that the adjacency matrix

of the gene-gene graph is denoted as Ag ∈ R𝑁g×𝑁g , let hℓ
𝑔 ∈ R𝑁g×𝑑ℓ with dimension 𝑑ℓ be the gene

embedding of ℓ-th layer, the update functions are as follows:

hℓ+1
g,𝑀 = GNNℓ

(
hℓ

g,Ag

)
,

hℓ+1
g,𝑇 = Attnℓ

(
hℓ

g

)
,

hℓ+1
g = MLPℓ

(
hℓ+1

g,𝑀 + hℓ+1
g,𝑇

)
,

(3.7)

where GNNℓ and Attnℓ represent the message passing GNN block and the global attention mechanism

and MLPℓ is a 2-layer MLP block. The GNN block brings in prior biological insights, while the

attention block allows resolving the expressivity bottlenecks caused by over-smoothing (Kreuzer

et al., 2021) and over-squashing (Alon and Yahav, 2021).

Positional encoding is applied to the gene transformer layer to provide another solution to

the expressivity bottlenecks among gene-gene graphs. Message-passing GNNs update gene node
3The dataset can be accessed at https://www.kaggle.com/competitions/open-problems-multimodal.

36

embeddings by aggregating local neighborhood representation given by gene knowledge graphs. By

incorporating additional positional information, positional encoding helps to differentiate nodes that

have the same local surroundings but distinct positions. Accompanied by prior gene-gene interaction

networks, positional encoding distinguishes genes by the absolute position of each gene within the

STRING network. This is important from a biological perspective as each gene functions differently.

Here, we implement Laplacian positional encoding (Dwivedi and Bresson, 2020) and random walk

positional encoding (Dwivedi et al., 2022). The Laplacian positional encoding captures the spectral

information of graph Laplacian by its eigenvectors. Denote the graph Laplacian of input gene graph

as Lg, the matrix factorization of Lg is formulated as

Lg = I − D−1/2
g AgD−1/2

g = U𝑇
g𝚲gUg, (3.8)

where Dg is the degree matrix of gene graph, 𝚲g and Ug correspond to the eigenvalues and

eigenvectors respectively. The gene node Laplacian positional encoding of dimension 𝑘 is defined as

the 𝑘 smallest non-trivial eigenvectors. While Laplacian positional encoding embeds the positional

information from the graph Laplacian, the random walk positional encoding tends to grasp the

positional information given by the graph clusters. The random walk positional encoding of

dimension 𝑘 is defined with 𝑘-steps of the random walk as:

p𝑖 =
[
RW𝑖𝑖,RW2

𝑖𝑖, · · · ,RW𝑘
𝑖𝑖

]
∈ R𝑘 , (3.9)

where RW = AgD−1
g is the random walk operator. The term RW𝑘

𝑖𝑖 represents the landing probability

of a gene node 𝑖 to itself after 𝑘 steps. The processed positional encoding is then combined to gene

features through a fully connected layer.

3.3.2.3 Cross-Modality Aggregation

Transformers are constructed separately for each modality. To build a bridge among those

transformers, we implement message passing GNNs among the links which connect nodes of

distinct types. The information from cell transformer will denoise the prior knowledge by adding

data-specific details into gene embeddings and protein embeddings. Meanwhile, information from

gene transformer and protein transformer will bring in biological insights to cell transformer to

37

predict the target proteins. Particularly, we take the advantage of GraphSAGE (Hamilton et al.,

2017) to transfer the information. Denote the 𝑖-th destination node as 𝑣𝑖 and 𝑗-th source node as 𝑢 𝑗 .

The information from the source nodes to the destination nodes is updated by:

h(ℓ+1)
N (𝑣𝑖) = Aggregate

({
hℓ
𝑢 𝑗
,∀ 𝑢 𝑗 ∈ N (𝑣𝑖)

})
h(ℓ+1)
𝑣𝑖 = Update

(
h𝑣𝑖 , hN(𝑣𝑖)

) (3.10)

For node 𝑣𝑖, the message passing GNN aggregates information from its neighbors through aggregator

function (Aggregate). The neighborhood information h(ℓ+1)
N (𝑣𝑖) is then combined to the embeddings

hℓ
𝑣𝑖

and processed by an updating procedure. The newly generated embeddings are normalized

before next iteration. The message passing GNN modules facilitate communication between the

transformers, enabling the transformers to leverage various forms of information during the training

process.

Now we summarize the workflow of scMoFormer. As shown in Figure3.1, we apply transformers

within each type of node and utilize message passing GNNs to form the bridges between transformers.

In a formal way, for ℓ-th layer, denote the cell transformer as Transℓc, gene graph transformer and

protein graph transformer as GTℓ
g and GTℓ

p respectively. Let MPGℓ
g�p and MPGℓ

p�g be the message

passing GNN modules between genes and proteins, and MPGℓ
g�c and MPGℓ

c�g are for the links

between genes and cells. For the purpose of prediction, we process the cell embeddings with MLP as

cell readouts, where FCℓ represents the ℓ-th fully connected layer. The updates of node embeddings

are achieved by

hℓ+1
g =GTℓ

g

(
hℓ

g,Ag

)
+ MPGℓ

p�g

(
hℓ

p, S𝑇
)
+ MPGℓ

c�g

(
hℓ

c,ARNA

)
,

hℓ+1
c =Transℓc

(
hℓ

c

)
+ MPGℓ

g�c

(
hℓ

g,A𝑇
RNA

)
+ FCℓ

(
hℓ

c

)
,

hℓ+1
p =GTℓ

p

(
hℓ

p,Ap

)
+ MPGℓ

g�p

(
hℓ

g, S
)
,

(3.11)

where S, Ap, Ag, ARNA are adjacency blocks defined in Section 3.3.1.

38

3.3.3 Prediction Layer

With the number of layers be 𝐿, the predictions are given by one extra full connected layer FC𝐿+1

as

h𝐿+1
c = Concat

(
hℓ

c, ℓ in {1, 2, . . . , 𝐿}
)
,

X̂p = FC𝐿+1
(
h𝐿+1

c

)
,

(3.12)

where X̂p ∈ R𝑁c×𝑁p is the final prediction. To optimize the whole framework, we adapt a Mean

Square Error (MSE) loss to measure the difference between the predictions and the ground-truth

values:

L
(
X̂p,Xp

)
=

1
𝑁𝑝𝑁𝑐

𝑁𝑝∑︁
𝑖=1

𝑁𝑐∑︁
𝑖=1

(
X𝑖 𝑗

p − X̂𝑖 𝑗
p

)2
. (3.13)

3.4 Experiment

In this section, we present the experimental results of scMoFormer against baselines on

benchmark datasets. In particular, we aim to answer the following questions:

• RQ1: How does scMoFormer perform compare against baselines based on various evaluation

metrics?

• RQ2: Given various choices of the positional encodings, how do they affect the performance

of scMoFormer?

• RQ3: How does each of the model component impact the performance of scMoFormer?

Before presenting our experimental results and observations, we first introduce the experimental

settings.

3.4.1 Experimental Settings

3.4.1.1 Datasets

We follow the setting of the NeurIPS multimodal single-cell integration competition of the year

2021 (Luecken et al., 2021) and 2022 and collect the joint measurements of gene expression and

surface protein levels datasets from the competitions. Both datasets contain the raw counts, which

represent the number of reads per gene per cell, as well as the normalized counts. For the NeurIPS

39

Table 3.1 Dataset Statistics.

CITE GEX2ADT

Number of RNA 22,050 13,953
Number of Proteins 140 134

Train Cells 42,843 66,175
Test Cells 28,145 1,000

RNA Zero Rate 0.780 0.904

2021 competition, we pick the data corresponding to the task of protein abundance prediction via

gene expression and refer to it as “GEX2ADT”. The processed data is centered and log-transformed

for denoising purposes. For the competition in 2022, which we refer to as “CITE”, the objective

is to utilize CITE-seq (Stoeckius et al., 2017) data measured from days 2, 3, and 4 to predict the

protein level on day 7 from different individuals. It is worth mentioning that the protein level testing

data is not available during the completion of this work. Therefore, we simulate the competition

scenario by treating the training data from day 4 as our testing set. The processed RNA data

is centered and log-transformed, while the normalized protein levels are denoised and scaled by

background (Kotliarov et al., 2020). We summarize the statistics of both datasets in Table 3.1.

3.4.1.2 Baselines

We evaluate the performance of scMoFormer against state-of-art multimodal prediction models

among the task of using gene expression to predict surface protein levels. The selected baselines are

as follows:

• Cross-modal Autoencoders (Yang et al., 2021), short for CMAE, incorporated multi-

ple autoencoders to integrate multimodal data and utilized domain knowledge by adding

discriminative loss to the training process to align shared markers or clusters among datasets.

• BABEL (Wu et al., 2021b) proposed a general framework for multimodal translation with

modality-specific encoders and decoders. Note that initially, BABEL focused on RNA and

ATAC-seq (Buenrostro et al., 2013) data. In this evaluation, we repurpose BABEL to the

RNA to protein setting.

• scMM (Minoura et al., 2021) modeled the multimodal data with generative setting. We note

40

Table 3.2 Prediction evaluations based on different metrics (score ± std).

Dataset CITE GEX2ADT
Metric RMSE ↓ MAE ↓ Corr ↑ RMSE ↓ MAE ↓ Corr ↑

BABEL 1.67388 ± 0.00765 1.07777 ± 0.00602 0.87475 ± 0.00119 0.45387 ± 0.00738 0.30720 ± 0.00618 0.86144 ± 0.00274
CMAE 2.00874 ± 0.02088 1.21897 ± 0.01042 0.82502 ± 0.00843 0.51549 ± 0.00857 0.34855 ± 0.00488 0.81565 ± 0.00463
scMM∗ - - - 0.64067 ± 0.00722 0.43407 ± 0.00307 0.68287 ± 0.00981

ScMoGNN 1.66634 ± 0.00741 1.07577 ± 0.00372 0.87788 ± 0.00113 0.42576 ± 0.01180 0.28819 ± 0.00976 0.87051 ± 0.00524
scMoFormer 1.62720 ± 0.00731 1.05639 ± 0.00221 0.88552 ± 0.00080 0.41987 ± 0.00234 0.28289 ± 0.00223 0.87698 ± 0.00121

*The scale of scMM predictions is not compatible with that of normalized protein levels.

that the input of scMM is restricted to raw counts by design, and the output predictions are

scaled as centered log-transformed data.

• ScMoGNN (Wen et al., 2022a) involved domain knowledge like biological pathways to

enhance the GNNs. The original ScMoGNN followed a transductive setting. In this work, we

implement an inductive setting of ScMoGNN for a fair comparison with the baselines.

3.4.1.3 Parameter Setting

To benchmark the performance of baselines and scMoFormer, we uniformly employ inductive

settings among both datasets. On the CITE dataset, we use the data measured on day 4 for testing

and randomly split 80/20% of the data prior to day 4 for training and validation. On the GEX2ADT

dataset, we randomly pick 15% of the training data for validation and evaluate the predictions on

the testing set. For BABEL, the hidden dimension is tuned from {16, 32, 64, 128}. For CMAE,

the weights of adversarial loss and reconstruction loss are chosen from {0.1, 1, 2.5, 5, 10}. For

scMM, the hidden dimensions are tuned from {16, 32, 64, 128}. For ScMoGNN, the weight decay

parameter of the optimizer is tuned from {5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4}.

3.4.2 Evaluation of Predictions

We evaluate the final protein-level prediction performance using Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE). Meanwhile, because multimodal data usually suffers

from the influence of batch effects and unbalanced measuring depth, the count’s scale of each cell

may vary significantly, which will substantially affect the RMSE and MAE metrics. Therefore,

we also include the Pearson correlation coefficient (Corr), which is normalized by the mean and

variance of the input on a per-cell basis, as a robust and scale-free metric to evaluate the predictions.

41

A lower RMSE or MAE score indicates a geometrically closer estimation of the protein levels,

while a higher Corr score suggests a statistically more similar match to the actual value. We report

the mean and the standard deviation of each metric across five different runs, and the results are

illustrated in Table 3.2. The best performance is highlighted in bold.

To answer the first question, we note that our scMoFormer consistently outperforms all other

baselines according to all three metrics on both datasets, indicating that scMoFormer successfully

captures the quantitative characteristics of target protein levels given the input gene expression

measurements. Particularly, for the CITE dataset, scMoFormer achieved significantly lower RMSE

compared to the second-best model ScMoGNN, by 0.04. More importantly, scMoFormer achieved

a significant improvement in terms of the Pearson correlation metrics over all other baselines, with a

noticeably lower performance variation across runs, indicating the stability of our model.

We further analyze the performance of different models on proteins that are least well captured

by any models. Specifically, for each model, we compute the RMSE for each protein separately

and identify ten proteins that resulted in the highest average RMSE across all models. As shown in

Figure 3.2, scMoFormer and ScMoGNN achieved relatively stable results and are consistently better

compared to BABEl and CMAE.

Figure 3.2 Least well-predicted protein performance comparison across models.

3.4.3 Positional Encoding

As mentioned in Section 3.3.2.2, we implement Laplacian positional encoding (Dwivedi and

Bresson, 2020) and random walk positional encoding (Dwivedi et al., 2022) to capture positional

information of prior knowledge graph. For ease of notation, we use the abbreviation PE to refer to

42

Table 3.3 Prediction RMSE results of different positional encoding (score ± std).

CITE GEX2ADT

Laplacian PE 1.63161 ± 0.01082 0.42025 ± 0.00243
Random Walk PE 1.63014 ± 0.01129 0.41987 ± 0.00234

w/o PE 1.62720 ± 0.00731 0.42202 ± 0.00399

the positional encoding. To benchmark the impact of the two types of PE among two datasets and

answer the second question, we show the performance of scMoFormer with each PE and compare

them with the scenario without any PE. The mean and standard deviation of RMSE scores of five

runs are shown in Table 3.3.

According to the results, the influence of PE varies among datasets. The setting without PE

reaches the best RMSE score on CITE dataset, while two types of PE both improve the performance

on GEX2ADT dataset. Notice that in Table 3.1, the RNA zero rate of CITE dataset is significantly

lower compared to the GEX2ADT dataset, providing the model with greater access to data-specific

information. If the data contains sufficient information, then the neighborhood information from the

GNNs alone is adequate and there is no need for the extra prior knowledge from the PEs. This is

further supported by the observation that random walk PE performs better than Laplacian PE in both

datasets. The Laplacian PE models global information by using the spectral information of the graph

Laplacian, while the random walk PE encodes local information by accessing the landing probability

of a 𝑘-step random walk. In cases where the prior knowledge may be noisy for downstream tasks,

the local information alone is enough for predictions and the global structure becomes redundant.

3.4.4 Ablation Study

Table 3.2 demonstrates that models that incorporate domain knowledge perform better in

modality prediction compared to those that do not. BABEL, ScMoGNN, and scMoFormer are the

three models that make use of domain knowledge, and they show improved performance compared

to the other two models. Among these three models, ScMoGNN, which is based on GNNs, performs

better than BABEL, while scMoFormer outperforms all other models with its combination of

transformers and GNNs framework. Given that scMoFormer includes three transformers, this

raises the questions: Which transformer has the biggest impact on performance? How much do the

43

transformers contribute to the improvement in performance?

3.4.4.1 Influence of Every Transformer

The propose multimodal transformers consist of three different transformers, namely the cell

transformer, gene transformer and protein transformers. As our predictions are based on the cell

readout, it is expected that each of the three transformers will have different levels of impact on the

performance. To quantify the specific impact of a single transformer, we conduct an experiment by

removing the other two transformers and measuring the prediction RMSE scores. The results of the

evaluation, including the scores of three partial models and the model with no transformers, are

summarized in Figure 3.3.

(a) CITE (b) GEX2ADT

Figure 3.3 Prediction RMSE↓ results of keeping only one Transformer.

The performance of the gene transformer and protein transformer is better than that of the cell

transformer in the CITE dataset, while it is the opposite in the GEX2ADT dataset. This can be

explained by the difference in RNA zero rate between the two datasets, as shown in Table 3.1. For

the GEX2ADT dataset, the high RNA zero rate means less information, making the cell transformer

crucial in increasing performance by drawing more information from the data. On the other hand,

44

Table 3.4 Prediction RMSE results of scMoFormer over GNNs (score ± std).

CITE GEX2ADT

GNN 1.63071 ± 0.01081 0.43070 ± 0.00237
GNN-prior 1.63020 ± 0.00672 0.42731 ± 0.00138

scMoFormer 1.62720 ± 0.00731 0.41987 ± 0.00234

the CITE dataset has a lower zero rate, meaning it provides more information, allowing the gene

transformer and protein transformer to enhance the model by adding external biological knowledge.

3.4.4.2 How to Utilize Prior Knowledge

To answer the second question, we compare scMoFormer with two GNN-based models in

Table 3.4. The model “GNN-prior” refers to the GNNs that built on the same graph in Section 3.3.1,

while the “GNN” model is constructed using only the cell-gene graph without incorporating any

prior information. The results show that the incorporation of prior knowledge into the graph results

in a slight performance boost in both datasets. However, when multimodal transformers are included,

the performance improvement is much more pronounced. This highlights the usefulness of prior

knowledge and the importance of using transformers to effectively incorporate this information into

the model.

3.5 Related Work

In this section, we go through some related works of our proposed framework, including GNNs,

transformers, and other deep learning methods in single-cell analysis.

There is a growing number of deep learning-based methods for multimodal single-cell analysis

in the community. For instance, scMDC (Lin et al., 2022) is an end-to-end autoencoder-based

model with one encoder and two decoders. The encoder takes the concatenation of two modalities

as an input and then reconstructs two modalities separately via two individual decoders. After

training, the learned latent embedding would be used for clustering analysis. DCCA (Zuo et al.,

2021) learns a coordinated but distinct representation for each omics data by mutually supervising

each other on the basis of semantic similarity across embeddings, and then reconstructs back to the

original dimension as output via a decoder for each omics data. Cross-modal Autoencoders (Yang

45

et al., 2021) utilize multiple autoencoders to map different modalities onto the same latent space,

and incorporate prior knowledge through the use of adversarial loss and paired anchor loss in the

training process. BABEL (Wu et al., 2021b) consists of two neural-network-based encoders and two

decoders for translation and reconstruction. Both Cross-modal Autoencoders and BABEL focus

on multimodal translation by adding interoperability constraints to train multiple encoders and

decoders. Another approach, scMM (Minoura et al., 2021), captures nonlinear latent structures with

variational autoencoders. It exploits a mixture-of-expert framework with a deep generative model

and attains end-to-end learning by modeling raw counts of each modality. While these models have

made significant advancements in multimodal integration, most of them are based on autoencoders

and tend to overlook the underlying biological interactions of molecules and cells.

To capture the biological interactions of molecules and cells, there has been an increasing number

of GNNs and transformer frameworks published in the field of single-cell analysis. One benefit

of transformers applied in single-cell data is to capture long-range dependency in a global view.

Another benefit is to interpret biological phenomena via the attention mechanism in transformers.

From GNNs’ perspective, graphs are natural to represent all kinds of data in single-cell data, like

gene-to-gene graphs, cell-two-cell graphs, and cell-to-gene graphs. Another benefit of GNNs is

to easily add domain knowledge or prior knowledge into graphs, like pathways between genes

or overlaps between genes and peaks. For example, scGNN (Wang et al., 2021) models cell-cell

interaction by incorporating GNN with multi-modal autoencoders. Specifically, scGNN builds a

cell graph by capturing cell-type-specific regulatory signals and utilizes a Left-Truncated Mixture

Gaussian model for scRNA-Seq data analysis. GLUE (Cao and Gao, 2022) pre-trains modality-

specific variational autoencoders to get cell embeddings and then encodes a knowledge-based graph

with GNNs. The next step involves performing an adversarial multimodal alignment of the cells

through an iterative optimization process. In addition, ScMoGNN (Wen et al., 2022a) models the

cell similarity and feature similarity by building a cell-feature graph and extracts information from

data with a graph encoder. ScMoGNN takes advantage of gene pathway data as prior knowledge

to enhance the graph and denoise the data. Moreover, scBERT (Yang et al., 2022) follows the

46

pre-training and fine-tuning paradigm of bidirectional encoder representations from transformers

(BERT) for cell annotation of scRNA-seq data. The process of annotation involves extracting

high-level patterns of cell types from the reference dataset. Different from these approaches which

focus on single-modality data, we are the first to introduce transformers and GNNs to single-cell

multimodal prediction.

3.6 Chapter Conclusion

In this chapter, we enhance our scMoGNN with a transformer model architecture and present

scMoFormer, a multimodal transformer model for single-cell surface protein abundance from gene

expression measurements. We combined the data with prior biological interaction knowledge from

the STRING database into a richly connected heterogeneous graph and leveraged the transformer

architectures to learn an accurate mapping between gene expression and surface protein abundance.

Remarkably, scMoFormer achieves superior and more stable performance than other baselines on

both 2021 and 2022 NeurIPS single-cell competition datasets.

47

CHAPTER 4

TRANSFORMERS FOR SINGLE-CELL SPATIAL OMICS REPRESENTATION
LEARNING

Spatially resolved transcriptomics brings exciting breakthroughs to single-cell analysis by providing

physical locations along with gene expression. However, as a cost of the extremely high spatial

resolution, the cellular level spatial transcriptomic data suffer significantly from missing values.

While a standard solution is to perform imputation on the missing values, most existing methods

either overlook spatial information or only incorporate localized spatial context without the ability to

capture long-range spatial information. Using multi-head self-attention mechanisms and positional

encoding, transformer models can readily grasp the relationship between tokens and encode location

information. In this paper, by treating single cells as spatial tokens, we study how to leverage

transformers to impute spatial transcriptomic data. In particular, investigate the following two key

questions: (1) how to encode spatial information of cells in transformers, and (2) how to train a

transformer for spatial transcriptomic imputation. By answering these two questions, we present a

transformer-based imputation framework, SpaFormer, for cellular-level spatial transcriptomic data.

Extensive experiments demonstrate that SpaFormer outperforms existing state-of-the-art imputation

algorithms on three large-scale datasets while maintaining superior computational efficiency.

4.1 Chapter Introduction

Spatial transcriptomic technologies have rapidly developed in recent years and emerged as

next-generation tools for biomedical research. For instance, in-situ hybridization (ISH) based

technology (Lubeck et al., 2014) produces detailed single-cell transcriptomic profiles along with the

location of cells within a tissue, yielding deeper insights into cell identity and functionality than

ever. However, as the number of profiled genes increases, the requirement for additional rounds

of hybridization also increases, which elevates the potential for cumulative errors. As a result,

ISH-based spatial transcriptomic data generally suffer from low mRNA capture efficiency and may

miss a significant number of expressed genes, resulting in many false zero counts in observed gene

expression data.

48

An effective approach to mitigate this problem is applying imputation methods to rectify the

false zeros. There are numerous types of imputation methods for conventional transcriptomic data

(i.e., scRNA-seq data). Nevertheless, those methods tend to yield suboptimal performance when

imputing spatial transcriptomic data, as they do not leverage the presented spatial information.

Notably, the spatial locations of cells provide important information about cell-cell interactions as

well as cell similarities (Wen et al., 2022b), which have the great potential to advance the imputation

process. For example, tumor cells usually show strong aggregation, and neighboring tumor cells

with similar micro-environment in terms of ligands tend to have higher gene expression similarity

than distant cells (Browaeys et al., 2020).

To effectively utilize spatial information, graph neural networks have been recently utilized for

spatial transcriptomic analysis (Li et al., 2022; Wang et al., 2022). Concretely, graph neural networks

(GNNs) are applied to the cell-cell neighboring graphs built on the spatial positions. However, these

methods are limited to modeling a localized spatial context, which can be unfavorable for identifying

long-range correlated cells. For example, Treg cells are scarce spatially in many tissues but still

tend to be homologous and share similar gene expression profiles (Rudensky, 2011). Hence, it is

desirable to capture the cell interactions from broader contexts. To achieve this goal, we employ

the transformer model (Vaswani et al., 2017) for the studied problem. The transformer model

was originally designed for textual data. It uses multi-head self-attention mechanisms to model

relationships between input tokens and utilizes positional encoding to model the locations of tokens.

Transformers are able to weigh the importance of each input token relative to all other tokens, rather

than adjacent ones as in GNNs. In our studied problem, by treating cells as tokens, we can readily

apply the transformer model to capture long-range correlations between cells.

In this chapter, we investigate two key questions when applying transformers to spatial transcrip-

tomic imputation: (1) how to encode spatial information of cells in transformers, and (2) how to train

a transformer for transcriptomic imputation. To answer the first question, one natural idea is to adopt

the positional encodings from common transformers to encode spatial cellular coordinates. However,

the spatial coordinates of cells are continuous and irregular, which are essentially different from the

49

discrete coordinates in the common practice of transformers. Therefore, efforts are still desired to

design positional encodings for spatial transcriptomics. To address this issue, we investigate existing

positional encodings, compare their advantages and disadvantages, and conduct comprehensive

experiments to obtain a best practice for spatial transcriptomics. To answer the second question, we

generalize the well-studied imputation models for conventional transcriptomic data into a flexible

autoencoder framework, where we adopt a transformer as the encoder. Furthermore, we propose

a new bi-level masking technique that can be plugged into the general autoencoder framework.

With the solutions to two questions, our proposed framework, SpaFormer, consistently achieves

outstanding imputation performance on three large-scale cellular-level spatial transcriptomic datasets.

4.2 Problem Statement

Before we introduce the notations and basic concepts, we first introduce the data we use. It

is important to note that the focus of this chapter is on high-resolution cellular-level datasets

(typically generated by ISH-based techniques), as opposed to the commonly studied spot-level

datasets (e.g., 10X Visium, Seq-based data). In this work, we use two published and one unpublished

dataset produced by the Nanostring CosMx (He et al., 2022b) platform. In order to obtain the

cellular level gene expression, CellPose (Stringer et al., 2021) software is applied to conduct cell

segmentation. Figure 4.1 gives an example about the raw image data and how cells are segmented.

After pre-processing, a typical single-cell spatial transcriptomic dataset is comprised of two

essential components, i.e., the gene expression of cells and the corresponding spatial locations. We

denote the gene expression data as a matrix X ∈ R𝑁×𝑘 , where 𝑁 is the number of cells, and 𝑘 is the

number of genes. Hereby, X𝑖, 𝑗 denotes the count of the 𝑗-th gene captured in the 𝑖-th cell. We use

C ∈ R𝑁×2 to denote the two-dimensional coordinates of each cell, where those coordinates are based

on the center position of each cell. Note that each dataset is composed of multiple field-of-views

(FOVs). Each FOV contains thousands of cells and might not be adjacent to each other. Thus, we

focus on units of FOVs by default.

In the spatial transcriptomic imputation problem, we suppose that a part of the input values in X

are missing, denoted as a mask matrix M ∈ {0, 1}𝑁×𝑘 , where the value of X𝑖, 𝑗 can only be observed

50

when M𝑖, 𝑗 = 1. A partially observed data matrix X̃ is defined as:

X̃𝑖, 𝑗 =

0 M𝑖, 𝑗 = 0

X𝑖, 𝑗 M𝑖, 𝑗 = 1
(4.1)

Our objective is to predict the missing values X𝑖, 𝑗 at M𝑖, 𝑗 = 0, given the partially observed data X̃𝑖, 𝑗

and the spatial positions C. Note that in this work, we treat cells as tokens thus we use these two

terms exchangeably in the remaining of the chapter.

(a) Molecular image. (b) Cell segmentation.

Figure 4.1 A sample image of protein, RNA molecules, and segmented cells. Colors in sub-figure
(a) indicate the protein molecules that are stained. These proteins contribute to the cell segmentation
process, which results in the sub-figure (b). The final output from the pipeline consists of the
position of each cell and a cell-by-gene count matrix.

4.3 Encoding Spatial Information in Transformers

An essential component of our SpaFormer framework is transformer (Vaswani et al., 2017)

encoders, which were introduced in Section 3.3.2.1. When employing transformer models to spatial

transcriptomic data, a critical challenge is how to encode spatial information in transformers. In a

standard transformer, positional encodings (PEs) are added to the token embeddings to make use of

the positional information of tokens. Different from chapter 3, in this chapter, positional encodings

in the transformer mainly encode the spatial positions for every single cell. The coordinates of spatial

transcriptomics are continuous and irregular, which are essentially different from the sequential data,

image data, or graph data (as in Chapter 3). To tackle this issue, we investigate three general groups

of positional encodings and demonstrate how we apply them to spatial transcriptomics. On top of

51

that, we introduce two advanced model-based positional encodings that address the limitations of

previous positional encodings.

4.3.1 Patch-based Positional Encodings

We define patch-based positional encodings as encodings derived from discrete and regular

patches. For example, ViT (Dosovitskiy et al., 2020) separates an image into 16 × 16 patches, so

that patches lie in a regular grid. Positional encodings generated from these patch coordinates are

considered patch-based positional encodings. To apply this approach to spatial transcriptomic data,

we segment a whole input region, a.k.a, a field-of-view (FOV), into regular patches. In this chapter,

we segment each FOV into 100 × 100 patches, where each patch contains 0.3-0.55 cell on average

due to the distinct cell size of different tissues. Based on the patch coordinates, there are generally

two ways to produce positional encodings (PE) for each patch, i.e., learnable PE and sinusoid PE.

Learnable PE is introduced in ViT (Dosovitskiy et al., 2020), where it learns a positional encoding

for each individual position. Sinusoid PE is proposed in vanilla transformer (Vaswani et al., 2017),

originally designed for sequential data, while it can be extended to 2-dimensional space (Carion

et al., 2020).

4.3.2 Coordinate-based Positional Encodings

Coordinate-based positional encodings aim to generate positional encodings directly from

the continuous spatial coordinates. In order to improve the generalizability, we normalize the

spatial coordinates C ∈ R𝑛×2 to [0, 1] by applying min-max normalization in each FOV. In this

subsection, we discuss two specific types of positional encodings: naive PE and sinusoid PE.

naive PE projects normalized spatial coordinates to desired dimension 𝑑 via an MLP or other

transformation. Compared to patch-based learnable PE, naive PE imposes the ordinal relation

between coordinates. On the other hand, coordinate-based sinusoid PE replaces discrete patch

coordinates in the patch-based version with continuous spatial coordinates.

4.3.3 Graph-based Positional Encodings

Graph-based positional encodings are derived from the spatial adjacency graph that connects

adjacent tokens. The motivation of graph-based positional encodings is that the spatial adjacency

52

graph conveys the relative position relations between tokens so that we can capture the positional

information by encoding the spatial adjacency graph. To this end, we construct a spatial graph in

which cell pairs are connected when the euclidean distance is smaller than 15-25𝜇𝑚. As a result,

each cell is connected to 4-6 cells on average, depending on the specific tissue type. The resulting

adjacency matrix is denoted as A. Next, we present two ways to encode positional information from

spatial adjacency graphs: random walk PE (RWPE) , which derives from landing probabilities of

random walks, is proposed in LSPE (Dwivedi et al., 2021). This positional encoding is effective

in encoding graph structures, however, it hardly encodes distance information. Furthermore, it is

limited to structural information within the 𝑘-th order neighborhood and thus overlooks the global

context. Laplacian PE (LapPE), which uses Laplacian eigenvectors as positional encodings (Kreuzer

et al., 2021). Specifically, graph Laplacian L is defined as L = I𝑛 − D−1/2AD−1/2 = U𝚲U𝑇 , where

I𝑛 is an identity matrix, and 𝚲 ∈ R𝑘×𝑘 and U ∈ R𝑛×𝑘 correspond to the eigenvalues and eigenvectors

respectively, 𝑛 is the number of nodes, and 𝑘 is the number of top eigenvalues we select. The

Laplacian eigenvectors constitute a local coordinate system that retains the overall structure of

the graph. Thus, we can use the 𝑖-th row of eigenvector matrix U as the positional encoding for

node 𝑖 (a.k.a, cell 𝑖) in the graph. LapPE is generally a good choice despite being limited by sign

ambiguity (Kreuzer et al., 2021). A straightforward approach to address this problem is to randomly

flip the sign of eigenvectors during training, to force the model to be sign-invariant.

Cells in Space
Input Tokens

+ Positional Encodings

Transformer

Encoder

Decoder
(MLP or

ZINB)

Latent Space

(Optional) Reconstruction

𝜇𝑥

𝜎𝑥
𝑧

Masked

(Optional)

Gene

Expression

Positional

Encodings

Figure 4.2 An illustration of our transformer-based autoencoder framework for spatial transcriptomics
data imputation.

53

4.3.4 Model-based Positional Encodings

Despite that the aforementioned positional encodings can encode spatial information, each of

them has certain limitations. Specifically, patch-based and coordinate-based positional encodings

are dependent on the absolute location. However, studies have shown that relative positional

encodings (Wu et al., 2021a; Luo et al., 2021), which consider the pair-wise relationships, generally

perform better in various domains. One key advantage of relative positional encodings is their

translation-invariant property. Translation-invariance refers to the property that positional encodings

remain unchanged upon global translation of the coordinates, thereby enhancing the generalizability

of transformers. Fortunately, graph-based positional encodings also achieve translation invariance

since they are derived from the spatial adjacency graph, which is naturally based on invariant

pair-wise distances. Nevertheless, RWPE cannot accurately encode pair-wise distance, while LapPE

suffers from sign ambiguity.

To overcome the aforementioned limitations, we introduce two advanced models to generate

positional encodings based on spatial adjacency graphs: SignNet (Lim et al., 2022) proposes a

sign invariant and permutation invariant network to learn positional encodings from the Laplacian

eigenvectors of a target graph. The resulting positional encodings inherit the advantages of

LapPE while not suffering from sign ambiguity. Cond PE, which stands for conditional positional

encodings, originally proposed in CPVT (Chu et al., 2021). In the original version, CPVT added a

simple convolution layer before vision transformers, to provide positions conditioned on the local

neighborhood of each input token. We adopt this idea while substituting the visual convolution

with a graph convolution, as it is more feasible to implement the graph convolution on a spatial

graph compared to directly convolute the sparsely positioned cell tokens in 2-dimensional space.

Consequently, we apply a graph attention network (Velickovic et al., 2018) to the spatial adjacency

graph to generate initial embedding for each cell token. This embedding is considered a conditional

positional encoding (Cond PE) that encodes spatial neighborhoods while achieving translation

invariance.

54

Table 4.1 Comparison between positional encodings regarding the desired properties for spatial
transcriptomics.

Sources Distance Aware. Global Effec. Translation Invari. Structure Aware. Other Issues

Sinusoid PE Patch / Coordinate ✓ ✓ ✗ ✗

Learnable PE Patch ✓ ✓ ✗ ✗

Naive PE Coordinate ✓ ✓ ✗ ✗

RWPE Graph ✗ ✗ ✓ ✓

LapPE Graph ✓ ✓ ✓ ✓ Sign Ambiguity
Relative PE Distance ✓ ✓ ✓ ✗ Scalability

SignNet (Lim et al., 2022) Model ✓ ✓ ✓ ✓

Cond PE Model ✓ ✗ ✓ ✓

4.3.5 Summary

We summarize all aforementioned positional encodings in Table 4.1. We consider four

main properties when we compare these methods, namely distance awareness, global effectiveness,

translation invariance, and spatial structure awareness. These properties have already been mentioned

in the previous introduction. In conclusion, we investigate four types of position encoding to capture

spatial information in transformers, which possess different properties and mostly demonstrate

good potential as position encodings for spatial transcriptomics. We will apply distinct positional

encodings in our SpaFormer framework in order to gain the best practices for position encoding in

spatial transcriptomes.

4.4 Proposed Transformer Framework

In this section, we introduce our SpaFormer framework. An overview of SpaFormer is illustrated

in Figure 4.2. In SpaFormer, we first extract the spatial positional encoding for each cell, using

different methods as discussed in Section 4.3. Then cell embeddings are initialized with gene

expressions and positional encodings, while some cells are selectively masked depending on

the specific setting. Next, a transformer encoder is applied to encode both cellular profiles and

intercellular contexts into the latent space. Finally, a decoder reconstructs the input (or masked)

information based on the latent variables. In the following, we first introduce our general framework

that generalizes popular transcriptomic imputation models in Section 4.4.1. Then based on the

general framework, we propose a new bi-level masking strategy in Section 4.4.2, which is particularly

suitable for spatial transcriptomic data imputation.

55

4.4.1 Generalized Autoencoder Framework

The most popular architecture for deep-learning-based transcriptomic data imputation meth-

ods (Molho et al., 2024) is autoencoder, due to its prevalence in data denoising and missing data

applications. Existing methods introduced a few variants of autoencoders, including variational

autoencoders (VAE) (Kingma and Welling, 2013; Lopez et al., 2018) and ZINB-based (zero-inflated

negative binomial) autoencoders (Eraslan et al., 2019), while they often lack a systematic comparison

for these autoencoder variants. In order to compare the performances of different autoencoders on

the spatial transcriptomic imputation task, our SpaFormer framework generalizes all these variants

of autoencoders.

Our general framework takes a batch of cells as input. To be consistent with Section 4.2, we

denote the input as X̃ ∈ R𝑛×𝑘 , where 𝑛 is the number of cells in the input field-of-view (FOV).

Note that here we omit the positional encodings, which should also be included in the input matrix.

An encoder 𝑞𝜃 projects the input data to latent space, resulting in Z ∈ R𝑛×𝑑 , where 𝑑 is the latent

dimension. A decoder 𝑝𝜙 then generates an output X̂ ∈ R𝑛×𝑘 from the latent space, where we expect

X̂ to be identical with the input matrix X̃. The overall framework can be simply written as:

Z = 𝑞𝜃

(
X̃
)

(4.2)

X̂ = 𝑝𝜙 (Z) (4.3)

Next, we proceed to introduce how we implement various autoencoder variants under the general

framework.

Vanilla autoencoders. In the case of vanilla autoencoder, we implement 𝑞𝜃 with a transformer

and 𝑝𝜙 with a multi-layer perception (MLP). Note that we have selected an asymmetrical encoder-

decoder architecture, as we believe that the model requires a greater ability to utilize spatial

information for denoising during the encoding process. While during decoding, the contextual

information of each cell has already been included in the latent space, making decoding easier. The

56

loss function for vanilla autoencoders can be written as:

LMSE =

X̂ − X̃
2

𝐹
(4.4)

ZINB-based autoencoders. Previous studies (Eraslan et al., 2019; Lopez et al., 2018) pointed

out that the data distribution of the transcriptomic data can be approximated by zero-inflated negative

binomial (ZINB) distribution because the data are discrete, overdispersed and contain many zero

values. Therefore, we can adopt a ZINB-based autoencoder to leverage this prior information. A

ZINB distribution is defined as:

NB(𝑥 | 𝜇, 𝜃) = Γ(𝑥 + 𝜃)
𝑥!Γ(𝜃)

(
𝜃

𝜃 + 𝜇

)𝜃 (
𝜇

𝜃 + 𝜇

)𝑥
(4.5)

ZINB (𝑥 | 𝜋, 𝜇, 𝜃) = 𝜋𝛿0(𝑥) + (1 − 𝜋) NB(𝑥) (4.6)

where 𝜇 and 𝜋 denote mean and dispersion, 𝜋 is the weight of the point mass at zero, and 𝛿0

generates constant 0.

In our SpaFormer framework, to adapt a vanilla autoencoder to a ZINB-based autoencoder, the

encoder 𝑝𝜙 remains unchanged, while a ZINB decoder implements the decoder 𝑞𝜃 instead of an

MLP decoder. A ZINB decoder takes the latent code Z as input and generates an intermediate result

Ĥ ∈ R𝑛×𝑑′ via MLP. On top of that, ZINB decoders have three fully-connected output layers to

estimate the parameters of ZINB distribution. Let 𝚷, M and 𝚯 be the three parameters 𝜋, 𝜇, 𝜃 of

ZINB distribution estimated by the three output layers respectively, then the overall loss function of

ZINB-based autoencoder changes to the negative log-likelihood of the ZINB distribution, formulated

as:

LZINB = − log
(
ZINB(X̃ | 𝚷,M,𝚯)

)
(4.7)

In the inference stage, the estimated mean matrix M is selected as the imputation output.

Variational autoencoders. VAEs have been wildly applied in single-cell transcriptomic

analysis (Lopez et al., 2018, 2019; Molho et al., 2024) since they are robust to technical noise

and bias. In our SpaFormer framework, we optionally transform an autoencoder framework to a

VAE by making modifications to the latent space and loss function. Specifically, two additional

57

fully-connected layers are appended to the encoder to estimate the mean and variance of latent

variables:

𝝁𝑧 = 𝑞𝜃

(
X̃
)
· W𝜇𝑧 , 𝝈𝑧 = exp

(
𝑞𝜃

(
X̃
)
· W𝜎𝑧

)
(4.8)

where 𝜇z and 𝜎z are mean and variance respectively. The latent variables Z are then sampled from

the estimated Gaussian distributionN
(
𝝁𝑧,𝝈𝑧

)
, where we apply reparametrization trick (Kingma and

Welling, 2013) to keep the gradient descend possible. Furthermore, an additional Kullback-Leibler

(KL) divergence loss term is added to regularize the distribution of latent variables, which is:

LKL = 𝐷KL
(
N

(
𝝁𝑧,𝝈𝑧

)
∥N (0, 1)

)
(4.9)

The loss functions of vanilla autoencoder and ZINB-based autoencoder then turn to: L =

LMSE + 𝛽LKL, or L = LZINB + 𝛽LKL, respectively, where 𝛽 is the KL loss weight. In the inference

stage, we directly employ the estimated mean 𝜇z as latent variables, instead of sampling.

4.4.2 Bi-level Masked Autoencoders

Inspired by the tremendous success of the masked autoencoding paradigm in NLP (Devlin et al.,

2019) and Computer Vision (He et al., 2022a), we propose to incorporate a new masked autoencoder

model into our generalized framework. Specifically, masked autoencoders are a form of more

general denoising autoencoders (Vincent et al., 2008), which adopt a simple concept to remove a

proportion of the data and then learn to recover the removed parts. The idea of masked autoencoders

is also natural and applicable in spatial transcriptomics since we expect a powerful model to be able

to recover missing cellular profiles from neighboring cells sharing the same microenvironment and

homologous cells with the same cell state. Note that the objective of the masked autoencoder is

highly consistent with the process of data imputation. Hence, it is very promising that the model

will be trained with the specific capability for imputing missing values.

Despite that masked autoencoders are highly suitable for training an imputation model, the

characteristic of spatial transcriptomics adds difficulties to the utilization of masked autoencoders.

Compared to NLP and vision, it is much more difficult to recover cell profiles solely based on

contexts. One reason is that the external signals a cell receives depend not only on the concentration

58

of ligands in the microenvironment but also on the amount of receptors on its membrane. Therefore,

it’s hardly possible to identify intercellular correlations when the cell profile is completely masked

out. To address this issue, we made a modification to the standard masked autoencoder, which we

call it a bi-level masking strategy.

In a bi-level masking strategy, for each input batch of tokens, we first determine which cells are

to be masked. Then, instead of thoroughly masking the tokens, we selectively mask out a certain

proportion of features in those tokens, leaving the potential for the model to recover underlying

intercellular correlations. Specifically, we first sample a mask vector m̃token ∈ {0, 1}𝑛 from a

Bernoulli distribution with 𝑝 = 𝜃, where 𝑛 is the number of input tokens, 𝜃 is the probability

that a token is selected to be masked. Next, M̃feat ∈ {0, 1}𝑛×𝑘 is sampled from another Bernoulli

distribution with 𝑝 = 𝛾, where 𝛾 is the probability that a feature is masked in a selected token.

Lastly, we combined m̃token and M̃feat as:

M̃𝑖, 𝑗 = 1 − m̃token
𝑖 · M̃feat

𝑖, 𝑗 (4.10)

where M̃ is the finalized mask matrix. The input features X̃𝑖, 𝑗 are then masked when M̃𝑖, 𝑗 = 0,

resulting in a new feature matrix X̃′ ∈ R𝑛×𝑘 written as:

X̃′ = 𝜙

(
M̃ ⊙ X̃

)
(4.11)

where ⊙ indicates element-wise multiplication, and 𝜙 refers to a rescaling technique that maintains

the mean of the input unchanged for each cell. Notably, when 𝛾 = 1, our masked autoencoder is

equivalent to MAE for vision (He et al., 2022a). When 𝜃 = 1, our masked autoencoder is equivalent

to a denoising autoencoder (Vincent et al., 2008). Such a bi-level masking strategy provides our

framework with greater flexibility.

During training, masked features X̃′ are used as initial token embeddings. Therefore, it should

be plugged into Eq. 4.2 to replace X̃. Note that our bi-level masking strategy perfectly fits the

overall autoencoder framework, which means we can combine the masked autoencoder with other

components, i.e., VAE and ZINB decoders. When enabling the masked autoencoder, we need to

59

change the reconstruction loss in Eq. 4.4 to:

LMSE =

(1 − M′) ⊙
(
X̂ − X̃

)2

𝐹
(4.12)

where we only calculate mean squared error (MSE) for the prediction of masked values. For

inference, we simply dismiss the bi-level masking strategy. Instead, the unmasked input X̃ is enabled,

which provides extra information for imputation.

Table 4.2 Imputation performance on three CosMx datasets.

Methods Lung 5 Kidney 1139 Liver Normal
RMSE↓ Pearson↑ Cosine↑ RMSE↓ Pearson↑ Cosine↑ RMSE↓ Pearson↑ Cosine↑

Baseline Raw 0.3758 - - 0.3747 - - 0.3507 - -

scRNA-
seq

Methods

scImpute 0.3245 0.444 0.5214 0.311 0.4824 0.5714 0.3048 0.4437 0.5074
SAVER 0.3213 0.4564 0.5269 0.3106 0.4887 0.5689 0.2909 0.5462 0.5864

scVI 0.2861 0.6231 0.6661 0.2901 0.5834 0.648 0.2797 0.5749 0.6224
DCA 0.2858 0.6223 0.6648 0.2852 0.5985 0.6597 0.2542 0.657 0.688

GraphSCI 0.3957 0.1334 0.3081 0.3624 0.2403 0.4128 0.3347 0.3707 0.443
scGNN OOM * OOM * OOM *

Reference-
based

Methods

gimVI 0.3170 0.5320 0.5917 0.4387 -0.0104 0.1967 0.4542 -0.0015 0.1170
Tangram 0.3905 0.3161 0.3883 0.3639 0.4037 0.4798 0.3373 0.4830 0.5236
SpaGE 0.4420 0.3942 0.4572 0.5096 0.4311 0.5065 0.6433 0.5483 0.5899

Spatial
Methods

Sprod OOT ** OOT** OOT**

SEDR 0.3245 0.4949 0.5499 0.3116 0.5101 0.5826 OOM*

Ours SpaGAT 0.2865 0.6047 0.6518 0.2859 0.5852 0.6506 0.2241 0.7624 0.7829
SpaFormer 0.2785 0.6363 0.6786 0.2794 0.6108 0.671 0.2117 0.7793 0.7973

*Run out of 300G CPU Memory. **Run more than 48 hours on 128 CPUs.

4.5 Experiment

4.5.1 Experimental settings

Datasets. We validate the proposed approach on three spatial transcriptomic datasets generated by

the CosMX platform (He et al., 2022b) from Nanostring, and can be accessed on their official website1.

These datasets differ in their scales and sources of tissues, which highlights the comprehensiveness

of our experiments. The data statistics are presented in Table 4.3.

Baselines. To evaluate the effectiveness of SpaFormer, we compare it with the state-of-

the-art spatial and non-spatial transcriptomic imputation models: scImpute (Li and Li, 2018),

SAVER (Huang et al., 2018), scVI (Lopez et al., 2018), DCA (Eraslan et al., 2019), GraphSCI (Rao
1Dataset can be downloaded from https://nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-

dataset.

60

Table 4.3 Dataset statistics.

Dataset Cell Num. FOV Num. Gene Num. Zero Ratio

Lung 5 99,656 30 960 86.74%
Kidney 1139 61,283 18 960 83.49%
Liver Normal 305,730 244 1000 86.39%

et al., 2021), scGNN (Wang et al., 2021), gimVI (Lopez et al., 2019), Tangram (Biancalani et al.,

2021), SpaGE (Abdelaal et al., 2020), Sprod (Li et al., 2022), and SEDR (Xu et al., 2024). The

first six methods are designed for scRNA-seq data imputation. gimVI, Tangram, and SpaGE aim to

impute spatial transcriptomic data via external reference scRNA-seq data. Sprod and SEDR build

cell-cell graphs among spatial neighbors to help imputation. In addition to these published baselines,

we create a new baseline model SpaGAT which uses the same bi-level masking autoencoder

framework as SpaFormer, based on a graph neural network encoder with spatial graphs. Specifically,

we implement a graph attention network (Velickovic et al., 2018) as the encoder. Since the graph

attention network is a localized version of transformers, SpaGAT can be considered an ablation

study for our SpaFormer model.

Implementation Settings. Before we conduct the experiment, we first randomly mask 30%

of the data to create the partially observed data, while the original masked data are considered as

ground truth. All training and inference processes are then conducted on the partially observed data,

and those dropped values are kept for evaluation. Based on the partially observed data, we further

conduct preprocessing methods, according to the recommended settings of each specific model.

For our own SpaGAT and SpaFormer, we first normalize the total RNA counts of each cell, and

then apply log1p transform. In addition, considering that the output format of the baseline models

varies between raw counts and log-transformed values, we uniformly conduct postprocessing to

make sure all imputed data and ground-truth data are normalized and log-transformed. By default,

SpaGAT and SpaFormer adopt a bi-level masked autoencoder, while SpaFormer chooses a Cond

PE as positional encoding. Reproducibility details and codes for all methods can be found on our

GitHub repository2 as well as Appendix B.1.
2Codes and hyperparameter settings are available at https://github.com/wehos/CellT.

61

Evalutaion. For imputation, the rooted mean squared error (RMSE), Pearson correlation

coefficients (Pearson), and cosine similarity (Cosine) metrics are calculated based on the predictions

of the masked values. For clustering, we first reduce the dimension of imputed data with PCA and

then construct kNN graph based on the first 10 PCs. The clustering result is obtained from Leiden

algorithm on the kNN graph, where we conduct a grid search to find the optimal resolution for

Leiden. Clustering metrics normalized mutual information (NMI) and adjusted Rand index (ARI)

are then calculated based on the clustering results and predefined cell type labels. Lastly, all deep

learning models are evaluated with 5 random seeds, and the average performance is reported, while

statistical models are evaluated only once. The standard deviation is presented in Appendix B.2.

4.5.2 Imputation Performance

In Table 4.2, we present the experimental results. It is shown that our SpaFormer consistently

outperforms other baselines by showing a better imputation performance. Aside from that,

there are several interesting observations. (1) scVI and DCA consistently present suboptimal

performance, outperforming some advanced methods, e.g., GraphSCI. Since both DCA and scVI

adopt ZINB-based autoencoders, this demonstrates the effectiveness of ZINB-based autoencoders.

(2) Reference-based methods, i.e., gimVI, Tangram, SpaGE, generally do not work well on our

highly noisy spatial transcriptomic dataset. These methods map spatial transcriptomic data to

scRNA-seq reference datasets and impute the missing values based on reference data. However,

the single-cell spatial transcriptomics data has a substantially low cover rate of RNA molecules,

which causes distinct distributions between spatial transcriptomic data and reference scRNA-seq

data. These results indicate the limitation of these reference-based imputation approaches. (3)

SpaGAT, the non-transformer version of SpaFormer, presents fairly good performance. This

demonstrates the advantage of our bi-level mask-autoencoder framework. (4) Recent methods

specifically designed for spatial transcriptomics either suffer from scalability issues or demonstrate

suboptimal performance. Therefore, there remains significant space for exploration in the field of

single-cell spatial transcriptomic imputation.

62

4.5.3 Scalability Analysis

Scalability is critical when deploying methods on single-cell spatial transcriptomic data since the

datasets often contain tens of thousands of cells. We considered scalability as an important factor

when conducting the evaluation. Specifically, we set limits on the runtime and memory consumption

of the model, i.e., 48 hours of running time, 300G CPU memory, and 45G GPU memory. Notably,

we encountered scalability issues in scGNN and Sprod methods even with the smallest Kidney

dataset. scGNN and SEDR train neural networks on GPUs, however, both of them may run out of

300G CPU memory when building the cell-cell graph. Sprod separates data into numerous batches

and purely runs on CPUs. We allocate 128 CPU processors for it, yet it fails to finish running in

48 hours. In contrast, our proposed SpaFormer exhibits linear complexity w.r.t the number of

cells, thanks to our efficient autoencoder architecture and the Performer (Choromanski et al., 2021)

encoder.

In addition, we present the empirical computational overhead of all methods on the largest Liver

dataset in Table 4.4,. Specifically, we record the running time, peak CPU memory, and peak GPU

memory. Peak CPU memory refers to the physical CPU memory consumption. Peak GPU Memory

refers to the peak consumption of GPU memory resources. Running time refers to the training and

inference for the imputation, excluding preprocessing time. The experiments are conducted on an

RTX 8000 GPU card and 128 AMD EPYC CPU cores with 300G CPU memory. Each setting is

repeated 4 times and the average running time is reported. Our SpaFormer method demonstrates

superior computational efficiency, especially running time.

4.5.4 Clustering Performance

In addition to imputation performance, we conduct unsupervised clustering on the imputed data

to validate whether the imputation can help recover cell type information. For evaluation, cell type

labels accompanied by the dataset are considered as ground truth. It is expected that well-imputed

data can better recover the cell clustering structures. As shown in Figure 4.3, although all models

enhance the clustering performance as compared to the unimputed raw data, clustering based on

SpaFormer achieves the best performance.

63

Table 4.4 Computational overhead on Liver dataset. Methods are ranked by running time.

Methods
Running

Time
(hour)

Peak
CPU
Mem-
ory

(Mb)

Peak
GPU
Mem-
ory

(Mb)
SpaFormer 0.068 6,612 1,678

scVI 0.119 3,511 254
Spage 0.179 12,493 N/A
DCA 0.236 7,508 41,850

Tangram 0.551 4,507 17012
gimVI 0.971 6,600 250
SAVER 1.975 245,760 N/A
scImpute 2.917 269,490 N/A
GraphSCI 9.592 18,329 N/A
scGNN N/A > 307,200 N/A
SPROD >48 N/A N/A
SEDR N/A >307,200 N/A

In addition, an interesting observation is that despite reference-based methods (i.e., SpaGE and

gimVI) do not achieve impressive performance on imputation metrics, their clustering performance

is relatively better. This indicates that they may have succeeded in discovering reference cells from

scRNA-seq data, however, they still suffer from the distribution gap between the reference and query

data.

4.5.5 Ablation Study

4.5.5.1 Positional Encodings

As we mentioned in Section 3.4.3, we conduct experiments on three datasets to compare the

performance of different positional encodings. According to our experiments in FIgure 4.4, Cond

PE and LapPE outperform other positional encodings w.r.t overall performance on three datasets,

indicating the effectiveness of graph-based PEs. Meanwhile, Cond PE outperforms SignNet,

suggesting that global effectiveness might not be a desired property for spatial transcriptomics, as

we discussed in Section 3.4.3. In conclusion, we select Cond PE as a default setting in SpaFormer.

Besides, a 2-dimensional Sinusoid PE can also be a good choice for spatial transcriptomics since

64

0.641

0.659

0.648

0.628

0.540

0.622

0.402

0.402

0.460

0.366

0.335

0.228

0.599

0.626

0.585

0.604

0.483

0.575

0.235

0.236

0.405

0.252

0.236

0.096

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Clean

SpaFormer

DCA

gimVI

SpaGE

scVI

Saver

GraphSCI

scImpute

SEDR

Tangram

Raw

ARI NMI

Figure 4.3 Clustering performance on imputed data of Lung dataset.

it has fewer parameters than others. Meanwhile, the gap between transformers with and without

positional encodings is less significant than we expected. Therefore, there is still large room for

exploration in positional encodings for spatial transcriptomic data.

4.5.5.2 Autoencoder Frameworks

Another highlight of our SpaFormer framework is that we generalize different popular

autoencoder-based models. Based on our general framework, we conduct a thorough ablation

study on the Liver dataset. The experimental results in Figure 4.5 indicate that various variations

of autoencoders achieved optimal performance when combined with masking. Additionally, the

simple bi-level mask autoencoder obtained the best results. Therefore, we recommend the masked

autoencoder as the default setting for our SpaFormer framework.

65

0.607

0.607

0.607

0.611

0.611

0.611

0.611

0.608

0.624

0.628

0.623

0.634

0.635

0.636

0.772

0.774

0.771

0.777

0.776

0.776

0.779

None

SignNet

Learnable PE

Naïve PE

Sinusoid

LapPE

Cond PE

Kidney Lung Liver

Figure 4.4 Comparison between different positional encodings on three datasets. Values indicate
Pearson correlation coefficient.

0.288

0.391

0.503

0.771 0.768 0.760 0.780 0.775

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
ar

so
n

C
or

re
la

tio
n

AE - MLP
AE - ZINB
VAE - MLP
VAE - ZINB
MVAE - MLP
MVAE - ZINB
MAE - MLP
MAE - ZINB

Figure 4.5 Ablation study on different autoencoder variants, i.e., vanilla autoencoders (AE),
variational autoencoders (VAE), bi-level masked autoencoder (MVAE) and masked autoencoder
(MAE). For each variant, we implement both MLP and ZINB decoders. Values indicate the Pearson
correlation coefficient on the Liver dataset.

4.5.5.3 Mask Ratio

Lastly, we conduct a parameter analysis on token masked ratio 𝜃 and feature masked ratio

𝛾 in Section 4.4.2 to demonstrate the importance of our bi-level masking strategy. As shown

in Figure 4.6, joint tuning 𝜃 and 𝛾 results in an optimal Pearson correlation score. In our main

experiment, we select 𝜃 = 0.5, 𝛾 = 0.5 as default parameters, since this setting consistently achieves

optimal performance on three datasets.

66

Figure 4.6 Parameter analysis on 𝜃 and 𝛾. Values indicate Pearson correlation coefficient on Lung
dataset.

4.6 Related Work

The increased resolution of transcriptomics profiling methods comes at a cost of increasing

data sparsity. The profiling technology may fail to capture a number of the expressed genes of an

individual cell due to low amounts of mRNA in individual cells and a low capture rate. A popular

way to address this issue is to perform imputation, which aims to correct false zeros by estimating

realistic values for those gene-cell pairs. A large number of methods have been developed for the

task of scRNA-seq data imputation, mainly focusing on generative probability models or matrix

factorization (Gong et al., 2018; Huang et al., 2018; Ronen and Akalin, 2018; van Dĳk et al., 2017).

Aside from these methods, deep learning models have gained immense popularity over recent years.

A natural deep learning architecture for the imputation task is the autoencoder, due to its prevalence

in data denoising and missing data applications (Beaulieu-Jones et al., 2017; Boquet et al., 2019;

Gondara and Wang, 2017, 2018; Pereira et al., 2020).

To leverage the spatial information of spatial transcriptomic data, the latest method, Sprod (Wang

et al., 2022) constructs a graph by connecting cells with similar transcriptomic profiles and prunes it

with physical distance. Then a denoised matrix is learned by minimizing the reconstruction error

67

and a graph Laplacian smoothing term. However, this graph only connects cells that are spatially

close to each other. As a result, it is limited in a localized spatial context and difficult to identify

cells with long-range correlations. Different from the aforementioned methods, we propose to utilize

transformers for spatial transcriptomic imputation to globally model the cell-cell interactions while

exploiting the spatial information.

4.7 Chapter Conclusion

In this chapter, we comprehensively investigate two key questions related to implementing

transformer models for spatial transcriptomic imputation at the cellular level. By answering these

two questions, we proposed a transformer-based general imputation framework SpaFormer for

spatial transcriptomics data. In addition, we propose a new bi-level masking technique, which can

be incorporated into general autoencoder frameworks. Our method outperforms all existing methods

for recovering missing values and clustering structures. This result strongly suggests the advantage

of transformers in spatial omics data analysis.

68

CHAPTER 5

BUILDING SINGLE-CELL FOUNDATION MODEL BEYOND SINGLE CELLS

Despite that the proposed methods in chapter 3 and 4 are effective in handling multimodal data,

the knowledge learned by models is not transferable across tasks and datasets. To address this

kind of issue, there is an emerging effort (Yang et al., 2022; Gong et al., 2023; Shen et al., 2023;

Cui et al., 2023; Theodoris et al., 2023) from the research community to explore the potential

of a foundation model that first extracts latent knowledge from unlabeled data and subsequently

generalizes this knowledge to a variety of tasks. The current state-of-the-art single-cell pre-trained

models are greatly inspired by the success of large language models. They trained transformers by

treating genes as tokens and cells as sentences. However, three fundamental differences between

single-cell data and natural language data are overlooked: (1) scRNA-seq data are presented as

bag-of-genes instead of sequences of RNAs; (2) Cell-cell relations are more intricate and important

than inter-sentence relations; and (3) The quantity of single-cell data is considerably inferior to

text data, and they are very noisy. In light of these characteristics, we propose a new pre-trained

model CellPLM, which takes cells as tokens and tissues as sentences. In addition, we leverage

spatially-resolved transcriptomic data in pre-training to facilitate learning cell-cell relationships and

introduce a Gaussian mixture prior distribution as an additional inductive bias to overcome data

limitation. CellPLM is the first single-cell foundation model that encodes cell-cell relations and it

consistently outperforms existing foundation models in diverse downstream tasks, with 500x times

higher inference speed on generating cell embeddings than existing pre-trained models.

5.1 Chapter Introduction

Next-generation sequencing technologies such as single-cell RNA sequencing (scRNA-seq) have

produced vast amounts of data, sparking a surge of interest in developing large-scale pre-trained

models for single-cell analysis (Yang et al., 2022; Gong et al., 2023; Shen et al., 2023; Cui et al.,

2023; Theodoris et al., 2023). These models seek to capture underlying structures and patterns

from unlabeled scRNA-seq data, and can be fine-tuned on specific downstream datasets to deliver

accurate predictions and nuanced insights into cellular mechanisms. Particularly, these pre-trained

69

models have been inspired by the success of large language models, such as BERT and GPT (Devlin

et al., 2019; Bubeck et al., 2023), and treat genes as words (tokens) and cells as sentences to train

transformers (Vaswani et al., 2017). However, we argue that these approaches may have limitations

due to the fundamental differences between single-cell data and natural language data, which have

been largely overlooked in existing literature:

First, unlike sentences, the scRNA-seq data utilized by existing pre-trained models are not

sequential. Before the training stage, RNA sequences have been identified as functional units, i.e.,

genes. Instead of original sequences, data is denoted as a cell-by-gene count matrix that measures

the abundance of individual genes within each cell. This is analogous to the bag-of-words model in

natural languages, where the set of genes is fixed, and there is no sequential relationship among

them.

Second, the relationship between cells is remarkably more intricate and important than that

of sentences, since cell-cell communications play an essential role in determining cell states and

cell development (Armingol et al., 2021). Additionally, within tissues, there are numerous cells

from the same or similar cell lineage, which grants them similar gene expression profiles and hence

provides valuable supplementary information for denoising and identifying cell states (Cannoodt

et al., 2016; Molho et al., 2024; Street et al., 2018). As a result, many recent methods (Wang et al.,

2021; Shao et al., 2022; Xu et al., 2023; Wen et al., 2023) have constructed cell-cell graphs to

advance representation learning for single-cell data. Such evidence demonstrates the importance of

the cell-cell relationship, which is neglected by existing pre-trained models.

Third, the quantity and quality of single-cell datasets are significantly lower than those of natural

language data. For comparison, the high-quality filtered English dataset extracted from Common

Crawl corpora (Wenzek et al., 2020) consists of 32 billion sentences, whereas the largest collection

of single-cell datasets, namely the Human Cell Atlas (Regev et al., 2017), includes less than 50

million cells. To make things worse, single-cell data often suffer from technical artifacts and dropout

events (Svensson et al., 2017; Qiu, 2020), as well as significant batch effects between sequencing

platforms and experiments (Tran et al., 2020; Argelaguet et al., 2021).

70

The aforementioned differences introduce distinct challenges that call for new pre-training

strategies tailored for single-cell data. To bridge this gap, we propose a novel single-Cell Pre-trained

Language Model (CellPLM), which addresses these challenges from the following perspective: First,

As shown in Figure 5.1, CellPLM proposes a cell language model to account for cell-cell relations.

The cell embeddings are initialized by aggregating gene embeddings since gene expressions are bag-

of-word features. Second, CellPLM leverages a new type of data, spatially-resolved transcriptomic

(SRT) data, to gain an additional reference for uncovering cell-cell interactions. Compared to

scRNA-seq data, SRT data provide additional positional information for cells. Both types of data

are jointly modeled by transformers. Third, CellPLM introduces inductive bias to overcome the

limitation of data quantity and quality by utilizing a Gaussian mixture model as the prior distribution

in the latent space. This design can lead to smoother and better cell latent representations (Grønbech

et al., 2020; Xu et al., 2023; Jiang et al., 2023). To the best of our knowledge, the proposed CellPLM

is the first pre-trained transformer framework that encodes inter-cell relations, leverages spatially-

resolved transcriptomic data, and adopts a reasonable prior distribution. It is evident from our

experiments that CellPLM consistently outperforms both pre-trained and non-pre-trained methods

across five distinct downstream tasks, with 500x times higher inference speed on generating cell

embeddings compared to existing pre-trained models.

5.2 Cell Language Model Beyond Single Cells

In this section, we introduce the concept of the cell language models and detailed implementation

of the proposed CellPLM. As illustrated in Figure 5.2, CellPLM consists of four modules: a

gene expression embedder, an encoder, latent space, and a decoder, which we will demonstrate in

Section 5.2.2. At a higher level, there are two stages in our framework: pre-training and fine-tuning.

During pre-training, the model is trained on unlabeled data with a masked language modeling

objective. For fine-tuning, the model is first initialized with the pre-trained parameters, and then all

of the parameters are fine-tuned using data and labels (if available) from the downstream datasets.

We demonstrate the pre-training and fine-tuning framework in Section 5.2.3 and 5.2.3.2, respectively.

71

Cell
gene1 gene2 gene3 gene4 gene5

Existing Single-cell Pretrained Models
“Gene Language Model”

Cell 1 Cell 2 Cell 3 Cell 4

gene1 gene2 gene3 gene1 gene2 gene3gene1 gene2 gene3 gene1 gene2 gene3

CellPLM
“Cell Language Model”

Figure 5.1 An illustration of the difference in the language models between existing single-cell
pre-trained models and CellPLM. Existing pre-trained models only consider conditional probability
between gene expressions within the same cell, while in CellPLM, gene expression distribution is
also conditioned on other cells. See details in Section 5.2.

5.2.1 Cell Language Model

Due to the recent achievements of large language models (Bubeck et al., 2023), several studies

have drawn inspiration from natural language processing in an attempt to establish a foundation

model for single-cell analysis. These studies consider genes as tokens and train transformers on

them, aiming to model the conditional probability between gene expressions. Concretely, previous

pre-trained models are trained on scRNA-seq data, which are stored in the format of a cell-by-gene

matrix X ∈ R𝑁×𝑘 , where 𝑁 is the number of cells, and 𝑘 is the number of distinct gene types. The

value of X𝑖, 𝑗 denotes the count of gene 𝑗 observed in cell 𝑖, also known as gene expression. The

pre-training goal of these models is to estimate a conditional probability distribution, which can be

formulated as:

𝑝
(
X𝑖, 𝑗 |{X𝑖,𝑜}𝑜∈O(𝑖)

)
, 𝑗 ∈ U(𝑖), (5.1)

where 𝑖 refers to the 𝑖-th cell and O(𝑖) is the set of observed genes in cell 𝑖 whose expressions are

known; U(𝑖) denotes the set of unobserved genes in cell 𝑖 whose expression will be predicted by

the model, typically referring as masked genes. If we consider genes as words, this objective is

analogous to the language model in computational linguistics (Bengio et al., 2000), and thus can be

named a “gene language model”. In this way, the model is trained to capture the intrinsic relations

between genes, which can provide prior knowledge for downstream analysis.

However, in Eq. (5.1), the distribution of unobserved gene expressions only depends on genes

within the same cell, while disregarding the information of other cells within the same tissue, which

72

does not align with the inherent nature of biology. Therefore, in CellPLM, we provide a different

perspective to model scRNA-seq data by treating cells as tokens:

𝑝

(
X𝑖, 𝑗 |{X𝑢,𝑣}(𝑢,𝑣)∈MC

)
, (𝑖, 𝑗) ∈ M, (5.2)

where we denote M as the set of masked gene expressions in X, and M𝐶 is the complement, i.e.,

the set of unmasked expressions. The distribution of a masked entry X𝑖, 𝑗 depends on both the

observed genes in cell 𝑖 and genes from other cells that are not masked. We hereby name it as

“cell language model”, which models the distribution of cellular features beyond single cells. By

estimating the conditional probability distribution in Eq. (5.2), CellPLM is trained to capture the

intricate relationships that exist between not only genes but also cells.

From a biology perspective, there are particularly two types of inter-cell relations that can be

beneficial to CellPLM. First, within tissues, there are numerous cells from the same or similar cell

lineage, which mutually provide valuable supplementary information for denoising and identifying

cell states (Cannoodt et al., 2016; Molho et al., 2024; Street et al., 2018). The other type of

relations, cell-cell communications, plays an essential role in determining cell development and

cell states (Armingol et al., 2021). Existing analysis methods (Hou et al., 2020; Jin et al., 2021;

Raredon et al., 2019) have already explored the cell-cell communications on the cell type or cluster

levels, while CellPLM aims to capture the intricate “language” of cell-cell communications between

single cells. Overall, CellPLM presents a novel cell language model that aligns well with biological

principles and holds great potential to enhance downstream tasks by extracting valuable cellular

knowledge from unlabeled single-cell data.

5.2.2 Model Architecture

5.2.2.1 Gene Expression Embedder

The first module in CellPLM model is a gene expression embedder, which projects input gene

expressions into a low-dimensional cellular feature space. In light of the nature that scRNA-seq is

profiled as bag-of-genes features, CellPLM learns an embedding vector for each type of gene and

then aggregates these gene embeddings according to their expression levels in each cell. Formally

73

Self-Supervised Pretraining

Gene
Expression
Embedder

CellPLM
Model

Masked
Pretraining

CellPLM Model
Encoder Latent Space

Gaussian
Mixture as

Prior

Decoder
Latent Variable

Fully Connected
Layer

x N

Feature Reconstruction

Batch Label

z b
draw

! " =$
!"#

$
%!&("|)!, +!)

Masked Masked

Positional Embedding

Expression Embedding
Cell 1 Cell 2 Cell 3 Cell 4

+

Transformer Block
N x

Estimate !, #, $

scRNA-seq Atlas Spatial Transcriptomic Atlas

Gene Expression Embedder
Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Unmeasured

Unexpressed

Masked

Expression
EmbeddingAggregate

Input

Figure 5.2 An illustration of the pre-training framework of CellPLM. CellPLM is pre-trained with
cell-level masked language modeling task. The model consists of four modules: a gene expression
embedder, a transformer encoder, a Gaussian mixture latent space, and a batch-aware decoder.

speaking, for gene 𝑗 ∈ {1, ..., 𝑘}, a randomly-initialized learnable embedding vector h 𝑗 ∈ R𝑑 is

assigned, where 𝑑 is the hidden dimension of the encoder layers. The gene expression embedding

matrix E ∈ R𝑁×𝑑 is then generated by aggregating gene embeddings according to their expressions:

E𝑖 =

𝑘∑︁
𝑗=1

X𝑖, 𝑗h 𝑗 , (5.3)

where E𝑖 is the 𝑖-th row vector of E, corresponding to the gene expression embedding for cell 𝑖.

Note that the gene expression matrix X is a sparse matrix since the zero-rate of scRNA-seq can be

up to 90% (Jiang et al., 2022). In addition, unmeasured genes (per sequencing platforms) also lead

to zero entries in X. Therefore, when implementing Eq. (5.3), CellPLM leverages sparse operations,

which significantly improves memory and computational efficiency. In addition, following the

convention (Stuart et al., 2019), we preprocessed X with library size normalization and log1p

transformation before inputting the model.

74

5.2.2.2 Transformer Encoder

The proposed CellPLM follows an encoder-decoder structure, where the encoder is based on

transformers (Vaswani et al., 2017). The transformer model was originally developed for processing

textual data. It leverages multi-head self-attention mechanisms to capture relationships between

input tokens and incorporates positional encoding to represent the token positions. In CellPLM,

by considering cells as tokens, we can readily apply the transformer model to capture intercellular

relationships. When applying the transformer, we consider the embedding at 𝑙-th layer H(𝑙) ∈ R𝑁×𝑑

as a set of 𝑁 tokens, where 𝑁 is the total number of cells in a tissue sample, and 𝑑 is the hidden

dimension. By stacking 𝐿 transformer layers, CellPLM gradually encodes cellular and inter-cellular

information into cell embeddings, formulated as:

H(𝑙) = TransformerLayer(𝑙) (H(𝑙−1)). (5.4)

In practice, 𝑁 can scale up to ten thousand, which is out of the capacity of an ordinary transformer.

Therefore, we adopt an efficient variant of transformers with linear complexity (i.e., Flowformer (Wu

et al., 2022)) for the implementation of transformer layers.

To further inform inter-cellular relations, we incorporate spatial positional information of

individual cells from a novel type of data, spatially-resolved transcriptomic (SRT) data. Specifically,

SRT data consists of two parts. One is a gene expression matrix X ∈ R𝑁×𝑘 same as scRNA-seq

data, and the other part is a 2D coordinate matrix C ∈ R𝑁×2. The coordinates denote the center

position of each cell within a field-of-view (FOV) where the cells are located (an illustration can be

found in Appendix C.1). This feature helps locate the microenvironment surrounding each cell,

providing an additional reference for identifying cell lineage and cell communications, which were

introduced in Section 5.2.1. To encode this extra positional information, we leverage the idea of

positional encodings (PE) in transformers.

5.2.2.3 Gaussian Mixture Latent Space

One of the highlights of CellPLM is the design of probabilistic latent space. Prior studies have

employed variational autoencoders for single-cell analysis, which typically assumes an isotropic

Gaussian distribution as the prior distribution of the latent space (Lopez et al., 2018; Xu et al., 2021).

75

While this approach can effectively remove batch effects, it may also result in a loss of information

regarding the underlying biological structure of cell groups. To address this limitation, CellPLM

incorporates the concept of Gaussian mixture variational encoder (Dilokthanakul et al., 2016; Yang

et al., 2019; Xu et al., 2023), which utilizes a mixture of Gaussians to capture the information of

distinct functional groups of cells. Formally, for 𝑖 ∈ {1, . . . , 𝑁}, the generative model of cell 𝑖 can

be formulated as:

𝑝(y𝑖; 𝝅) = Multinomial(𝝅),

𝑝 (z𝑖 | y𝑖) =
𝐿∏
𝑖=1

N
(
𝝁𝑦𝑖,𝑙

, diag
(
𝝈2

𝑦𝑖,𝑙

))
,

𝑝𝜃𝑑𝑒𝑐 (x𝑖 | z𝑖) = N
(
𝝁z𝑖 , 𝜎

2I
)
,

(5.5)

where y𝑖 ∈ R𝐿 represents the one-hot latent cluster variable and 𝝅 is its prior; 𝑦𝑖,𝑙 denotes the

𝑙-th entry of y𝑖; 𝝁𝑦𝑙
∈ R𝑑𝑧 and 𝝈2

𝑦𝑙
∈ R𝑑𝑧×𝑑𝑧 denote the mean and variance of the 𝑙-th Gaussian

component, respectively; and 𝝁𝑧𝑖
∈ R𝑘 and 𝜎2I ∈ R𝑘×𝑘 denote the posterior mean and variance of

expression x𝑖, respectively. In this work, we assume that 𝜎2 is a constant and the posterior mean is

parameterized by 𝝁𝑧𝑖
= 𝑓𝑑𝑒𝑐 (z𝑖; 𝜃𝑑𝑒𝑐).

To estimate the posterior of z𝑖 and y𝑖, we parameterize the inference process with neural networks,

which is detailed in Appendix C.3. On top of that, a log-evidence lower bound (ELBO) can be

derived from this generative model for the optimization purpose (Dilokthanakul et al., 2016).

However, as mentioned in Section 5.2.1, our pre-training framework incorporates a cell language

model, where parts of the input gene expression matrix X are masked. This will result in a modified

objective. To formalize the problem, recall that previously we defined the masked set as M. On top

of that, we denote M ∈ R𝑁×𝑘 as a mask indicator matrix such that

M𝑖, 𝑗 =

1 if (𝑖, 𝑗) ∉ M,

0 if (𝑖, 𝑗) ∈ M .

Let X̃ ∈ R𝑁×𝑘 be the masked gene expression matrix given by the element-wise multiplication

X̃ = M ⊙ X. The objective of cell language model with Gaussian mixture prior, i.e., a denoising

76

variational lower bound (Im Im et al., 2017), can be formulated as:

LCellLM =E𝑞(Z,Y|X̃)E𝑝(X̃|X)

[
ln

𝑝𝜃 (X,Z,Y)
𝑞𝜂 (Z,Y | X̃)

]
(5.6)

=E𝑞𝜂𝑒𝑛𝑐 (Z|X̃)E𝑝(X̃|X)
[
log 𝑝𝜃𝑑𝑒𝑐 (X | Z)

]︸ ︷︷ ︸
Lrecon

−E𝑞𝜂𝜋 (Y|Z)
[
KL

(
𝑞𝜂𝑒𝑛𝑐 (Z | X̃)∥𝑝(Z | Y)

)]︸ ︷︷ ︸
Lcond

− E𝑞𝜂𝑒𝑛𝑐 (Z|X̃)
[
KL

(
𝑞𝜂𝜋

(Y | Z)∥𝑝(Y)
)]︸ ︷︷ ︸

LY

.

Similar to previous works (Dilokthanakul et al., 2016), we refer to the three terms in Eq. (5.6) as

reconstruction term Lrecon, conditional prior term Lcond and Y prior term LY. The approximation

and estimation of the denoising variational lower bound are specified in Section 5.2.3.

5.2.2.4 Batch-aware Decoder

The decoder in CellPLM operates by decoding each cell individually, given that the tissue

context has already been encoded into the latent space by the encoder. The decoder’s purpose is

twofold: to reconstruct masked features and to help remove batch effects from the latent space. In

order to accomplish this goal, the decoder stacks several feed-forward layers (FFLayers) atop the

input of latent variables z, and a batch embedding, denoted as b ∈ R𝑑𝑧 . Specifically, for each cell,

the batch embedding is loaded from a learnable lookup table as b = LookUp(𝑏), where 𝑏 is the

label indicating the specific tissue sample (or FOV for SRT data) from which the cell has been

drawn. By feeding the batch label to the decoder, a batch-effect-free latent space can be achieved, as

empirically evidenced in scVI (Lopez et al., 2018). The decoder can thus be formulated as:

h(0) = z + b, h(𝑙) = FFLayer(𝑙) (h(𝑙−1)),

where 𝑙 indicates the number of the layer, h(𝑙) is the hidden vector of layer 𝑙 ∈ (1..𝐿 − 1), and 𝐿

is the total number of fully connected layers. The dimension of the last layer is different from the

previous layers because the last layer is considered as an output layer, with h𝐿 ∈ R𝑘 , where 𝑘 is the

size of gene sets in the gene expression matrix X ∈ R𝑁×𝑘 .

77

5.2.3 Model Pre-training and Fine-tuning

5.2.3.1 Pre-training

The pre-training of CellPLM follows a cell language modeling objective, as demonstrated in

Eq. (5.6). Specifically, given a batch of cell tokens as input, we first decide which cells should be

masked. Instead of completely masking these cell tokens, we selectively mask a certain percentage

of the gene expressions within them. This allows the model to recover underlying correlations

between cells, as proposed in a recent preprint, SpaFormer (Wen et al., 2023). A significant concern

in CellPLM is the disparity in the number of genes measured by different sequencing platforms.

Notably, the gap between scRNA-seq and SRT can be substantial, ranging from 1,000 to 30,000.

Taking this into consideration, CellPLM only masks the expression of genes that are measured in

each dataset, implying that the reconstruction loss is calculated exclusively on these measured genes.

When optimizing the denoising variational lower bound in Eq. (5.6), we apply reparameterization

trick and Monte Calo sampling, as proposed in VAE (Kingma and Welling, 2014). Furthermore,

under the independent Gaussian assumption, we reformulate and estimate the reconstruction term

Lrecon in Eq. (5.6) with a mean squared error (MSE). Therefore, the pre-training loss function of

CellPLM can be formulated as:

LMSE =

M ⊙
(
H(𝐿) − (1 − M) ⊙ X

)2

𝐹
,Lpretrain = LMSE + Lcond + LY, (5.7)

where ⊙ signifies element-wise multiplication, H(𝐿) ∈ R𝑁×𝑘 is the output from the decoder, X

and M are the ground-truth gene expression matrix and the mask indicator matrix respectively, as

defined above. Lcond and LY are derived from Eq. (5.6).

5.2.3.2 Task-specific Fine-tuning

When fine-tuning CellPLM, the model is first initialized with the pre-trained parameters. In

downstream tasks that require gene expressions as output, the pre-trained decoder can be directly

leveraged, and the batch embedding is set to the mixture of all pre-training batches. Otherwise,

the decoder will be replaced with a task-specific head. The entire model is then fine-tuned with

task-specific loss functions, which helps align the general knowledge of the model to the specific

78

downstream task. For example, in the spatial transcriptomic imputation task, the entire pre-trained

model can do zero-shot inference. It can also be fine-tuned on a query SRT dataset and a reference

scRNA-seq dataset, where two datasets are sampled from the same type of tissue. In this case, the

loss function remains the same as Eq.(5.7). After fine-tuning on these datasets, CellPLM fits the data

distribution of the target tissue and can readily perform imputation. The design and implementation

of heads and loss functions for other downstream tasks are elucidated in Appendix C.5.

5.3 Experiment

CellPLM is first pre-trained on more than 9 Million scRNA-seq cells and 2 Million SRT cells,

with the masked language modeling objective, demonstrated in Section 5.2.3. The model consists

of over 80 million parameters and the pre-training was finished in less than 24 hours on a GPU

server with 8 Nvidia Tesla v100 16GB cards. The hyperparameters, datasets, and reproducibility

information for pre-trained models are detailed in Appendix C.4.

In the following sections, we evaluate the performance of CellPLM on various downstream tasks,

including zero-shot clustering, scRNA-seq denoising, spatial transcriptomic imputation, cell type

annotation, and perturbation prediction. With the selected tasks, we aim to answer the following

research questions:

RQ1: Is CellPLM capable of transferring pre-train knowledge to a brand new dataset?

RQ2: Does CellPLM provide better cell representations than other pre-trained and non-pre-

trained models?

RQ3: Does CellPLM succeed in jointly modeling scRNA-seq and SRT data?

5.3.1 Preliminary study: zero-shot clustering

Table 5.1 Inference time(s) for querying 48, 082 cells on a Tesla V100 GPU. Due to GPU memory
capacity, the batch size of Geneformer and scGPT is set to 8, while the batch size of CellPLM is
48, 082.

Geneformer scGPT CellPLM

1183.20 1540.65 2.54

To evaluate the transferability of the pre-trained model, we extract cell embeddings from the

79

CellPLM
(ARI = 0.867, NMI = 0.823)

PCA
(ARI = 0.843, NMI = 0.812)

scGPT
(ARI = 0.836, NMI = 0.818)

Geneformer
(ARI = 0.461, NMI = 0.586)

Major cell type

(a) Clustering Performance

CellPLMPCA

scGPTGeneformer

Patient

(b) Batch Correction

Figure 5.3 CellPLM readily removes patient batch effect and provides accurate cell clustering results
without fine-tuning.

pre-trained encoder on a public dataset from Li, etc.(Li et al., 2020), which is not included in

pre-train data. In addition to CellPLM, we include three baselines, i.e., PCA, Geneformer (Theodoris

et al., 2023) and scGPT(Cui et al., 2023). PCA refers to the first 512 PCs of log-normalized

expressions from 4500 highly variable genes (the number of PCs equals the embedding size of

scGPT and CellPLM). This is a common embedding method on scRNA-seq data. Geneformer and

scGPT are two recently published pre-trained models that are capable of generating cell embeddings.

Figure 5.3a illustrates how well the embeddings are aligned with curated cell type labels, and

Figure 5.3b demonstrates models’ ability to remove technical artifacts and mix biological signals

from different experiments. Notably, the clustering result of CellPLM’s embedding achieves the

highest ARI and NMI with respect to the ground-truth cell type labels. From the visualization, it

is also clear that CellPLM possesses smoother latent space than others, which is attributed to our

Gaussian mixture prior distribution for pre-training. We also notice that CellPLM is over 500 times

faster than other pre-trained models that conduct self-attention among gene tokens, as shown in

Table 5.1. Overall, this preliminary study addresses RQ1 and RQ2, and indicates that CellPLM

can readily transfer pre-trained knowledge to new datasets in removing batch effect and generating

high-quality cell embeddings, at extraordinarily high inference speed.

80

Table 5.2 (Task 1) The scRNA-seq denoising performance on the PBMC 5K and Jurkat datasets.

PBMC 5K Jurkat
Model RMSE (↓) MAE (↓) RMSE (↓) MAE (↓)

DeepImpute 1.168 ± 0.018 1.051 ± 0.025 0.786 ± 0.006 0.557 ± 0.003
scGNN 2.0 1.376 ± 0.015 1.237 ± 0.019 1.001 ± 0.016 0.917 ± 0.021
GraphSCI 1.068 ± 0.007 0.924 ± 0.009 0.659 ± 0.030 0.481 ± 0.024
SAVER 0.884 ± 0.001 0.748 ± 0.001 0.569 ± 0.001 0.472 ± 0.001
DCA 0.775 ± 0.002 0.621 ± 0.002 0.423 ± 0.001 0.351 ± 0.001
scVI 0.777 ± 0.005 0.623 ± 0.004 0.416 ± 0.001 0.344 ± 0.002

MAGIC 0.793 ± 0.001 0.639 ± 0.001 0.424 ± 0.001 0.351 ± 0.002
scImpute 1.170 ± 0.003 1.002 ± 0.001 0.624 ± 0.002 0.529 ± 0.001

scGPT (fine-tuned) 0.901 ± 0.001 0.565 ± 0.001 0.711 ± 0.001 0.498 ± 0.001

CellPLM (zero-shot) 0.854 ± 0.001 0.692 ± 0.000 0.517 ± 0.001 0.426 ± 0.000
CellPLM (from scratch) 0.761 ± 0.009 0.571 ± 0.011 0.395 ± 0.003 0.320 ± 0.003
CellPLM (fine-tuned) 0.725 ± 0.001 0.551 ± 0.001 0.391 ± 0.001 0.320 ± 0.001

5.3.2 Task 1: scRNA-seq Denoising

Given that single-cell RNA-Seq protocols capture only a subset of the mRNA molecules within

individual cells, the resulting measurements exhibit substantial technical noise (Grün et al., 2014).

Therefore, we consider denoising power as the most desired and essential property for a single-cell

foundation model. The goal of the denoising task is to estimate the true expression level of each

gene in each cell from a noisy observation. To assess the denoising efficacy of CellPLM, we conduct

an evaluation on two single-cell RNA-Seq datasets, i.e., PBMC 5K and Jurkat from 10x Genomics1.

These two datasets were excluded from pre-training. Following the setting of scGNN (Wang et al.,

2021) and scGNN2.0 (Gu et al., 2022), we apply a random flipping process to a subset of non-zero

entries, transforming them into zeros in order to simulate the effects of dropout. We compare

CellPLM against a broad range of contemporary approaches, including DeepImpute (Arisdakessian

et al., 2019), scGNN2.0 (Gu et al., 2022), SAVER (Huang et al., 2018), DCA (Eraslan et al.,

2019), scVI (Lopez et al., 2018), MAGIC (Van Dĳk et al., 2018), scImpute (Li and Li, 2018) and

scGPT (Cui et al., 2023). We evaluate scRNA-seq denoising performance based on two popular

regression metrics, i.e., Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), to

measure the degree of similarity between predicted gene expression and the actual ones. More

details pertaining to these methods, the fine-tuning of CellPLM, and the evaluation metrics under
110x Genomics datasets are available at https://support.10xgenomics.com/single-cellgene-expression/datasets.

81

the task of scRNA-seq denoising can be found in Appendix C.5.1.

It is evident that the fine-tuned CellPLM consistently exhibits superior performance compared

to all baseline models on both datasets. Note that even under the zero-shot setting, CellPLM

shows satisfactory results that surpass the majority of baselines (6 out of 8) on each dataset. These

observations answer the question of RQ1 and RQ2. As a powerful denoising model, CellPLM can

serve as a foundation for other downstream analyses.

5.3.3 Task 2: Spatial Transcriptomic Imputation

Spatially resolved transcriptomics has revolutionized single-cell analysis by incorporating

physical locations along with gene expression, leading to exciting breakthroughs. However, as a

tradeoff for the highly detailed spatial resolution, spatial transcriptomic data at the cellular level

typically cover less than 1, 000 genes, which poses challenges in data analysis. To assess the

potential benefits of the pre-trained model in the given task, we evaluate CellPLM on two spatial

transcriptomic datasets at single-cell resolution, i.e., Lung2 and Liver2 from Merscope datasets

dataset2 (the whole study is not included in our pre-train data). Following the setting of baselines

including SpaGE (Abdelaal et al., 2020), stPlus (Shengquan et al., 2021), gimVI (Lopez et al., 2019)

and Tangram (Biancalani et al., 2021), we impute the unmeasured genes of the SRT dataset utilizing

a scRNA-seq dataset as reference. We identify the testing gene set in SRT data by stratified sampling

according to gene sparsity (Avşar and Pir, 2023) and hold out those genes in the fine-tuning stage.

To evaluate the accuracy of spatial transcriptomic imputation, we employ the Pearson correlation

coefficient (Corr) and cosine similarity (Cosine) to measure the degree of similarity between the

predicted spatial gene expressions and the corresponding ground-truth expression values.

Remarkably, the fine-tuned CellPLM takes the lead on both datasets, effectively addressing the

research question RQ1 and RQ3. However, when training from scratch on these datasets, CellPLM

hardly converges. This indicates the pre-training information is necessary for CellPLM to impute

the SRT data. In addition, we conduct a preliminary study by visualizing the attention between

cells in space, which might hint at cell-cell communication. For the visualization and additional
2Merscope ffpe human immuno-oncology datasets are available at https://info.vizgen.com/ffpe-showcase.

82

Table 5.3 (Task 2) The results of spatial tanscriptomic imputation on the Lung2 and Liver2 datasets.

Lung2 Liver2
Model Corr (↑) Cosine (↑) Corr (↑) Cosine (↑)

SpaGE 0.227 ± 0.011 0.352 ± 0.015 0.253 ± 0.014 0.376 ± 0.005
stPlus 0.177 ± 0.021 0.360 ± 0.014 0.224 ± 0.010 0.399 ± 0.012
gimVI 0.130 ± 0.010 0.325 ± 0.010 0.163 ± 0.019 0.338 ± 0.010

Tangram 0.123 ± 0.005 0.285 ± 0.008 0.168 ± 0.024 0.309 ± 0.008

CellPLM (zero-shot) 0.119 ± 0.024 0.327 ± 0.011 0.141 ± 0.013 0.322 ± 0.145
CellPLM (from scratch) 0.058 ± 0.020 0.370 ± 0.013 0.024 ± 0.039 0.352 ± 0.011
CellPLM (fine-tuned) 0.318 ± 0.015 0.481 ± 0.011 0.328 ± 0.011 0.481 ± 0.010

Table 5.4 (Task 3) The results of cell type annotation on MS and hPancreas dataset. “*" indicates
results directly taken from scGPT (Cui et al., 2023).

MS hPancreas

F1 (↑) Precision (↑) F1 (↑) Precision (↑)
CellTypist 0.667 ± 0.002 0.693 ± 0.001 0.708 ± 0.023 0.736 ± 0.025,
ACTINN 0.628 ± 0.012 0.634 ± 0.009 0.705 ± 0.005 0.709 ± 0.006

SingleCellNet 0.637 ± 0.001 0.700 ± 0.001 0.739 ± 0.006 0.761 ± 0.004
TOSICA* 0.578 0.664 0.656 0.661

scBERT* (fine-tuned) 0.599 0.604 0.685 0.699
scGPT* (fine-tuned) 0.703 0.729 0.718 0.735

CellPLM (from scratch) 0.709 ± 0.007 0.732 ± 0.015 0.689 ± 0.034 0.682 ± 0.037
CellPLM (fine-tuned) 0.766 ± 0.007 0.803 ± 0.008 0.749 ± 0.010 0.753 ± 0.010

information regarding baselines, the fine-tuning of the CellPLM, and the evaluation metrics under

this task, please refer to Appendix C.5.2.

5.3.4 Task 3: Cell Type Annotation

Cell type annotation is another important task in single-cell analysis as it enables the identification

and characterization of distinct cell populations within a tissue or organism. The objective of this

task is to classify the type of cells from query datasets according to the annotations in reference

datasets. Here we follow the suggestion of scGPT (Cui et al., 2023) to include hPancreas (Chen

et al., 2023) and Multiple Sclerosis (MS) (Schirmer et al., 2019) datasets. More details about the

datasets, baseline methods, the fine-tuning of CellPLM can be found in Appendix C.5.4.

The empirical results presented in Table 5.4 indicate that CellPLM learns a well-represented

and generalizable cellular embedding, achieving considerably large improvement on the cell type

annotation task. This again confirms our positive answer to the research questions RQ1 and RQ2.

83

In addition to the aforementioned cell-level tasks, we also explore the potential of CellPLM in

gene-level tasks. We conduct an experiment on perturbation prediction following the setting of

GEARS (Roohani et al., 2022). The results show that CellPLM can also benefit gene perturbation

prediction, and successfully outperform previous SOTA. Due to space limitations, we leave the

detailed results in Appendix C.5.3.

5.4 Related Work

Deep learning methods for single-cell data have garnered significant research interest in recent

years (Molho et al., 2024). However, due to the distinct model architectures, the knowledge learned

by models is not transferable across tasks. To address this issue, there is an emerging effort (Yang

et al., 2022; Gong et al., 2023; Shen et al., 2023; Cui et al., 2023; Theodoris et al., 2023) from

the research community to explore the potential of a foundation model that first extracts latent

knowledge from unlabeled scRNA-seq data and subsequently generalizes this knowledge to a variety

of tasks.

The first such pre-trained model for single-cell data, scBERT (Yang et al., 2022), takes genes

as tokens and leverages an efficient transformer (Choromanski et al., 2020) to encode over 16,000

gene tokens for each cell. By randomly masking a fraction of non-zero gene expression values

and predicting them based on the remaining data, scBERT effectively learns intricate relationships

between genes, leading to improved cellular representation. Later, xTrimoGene (Gong et al., 2023)

made two key enhancements to scBERT: pruning zero-expressed genes and improving expression

binning strategies by an auto-discretization strategy. These modifications notably enhance scalability

and feature resolutions. Another latest preprint, scGPT (Cui et al., 2023), introduces a variant

of masked language modeling that mimics the auto-regressive generation in natural language

processing, where the masked genes are iteratively predicted according to model’s confidence.

Unlike the aforementioned models, Geneformer (Theodoris et al., 2023) and tGPT (Shen et al.,

2023) completely abandon precise expression levels of genes. Instead, they model the rank of gene

expressions and construct sequences of genes according to their relative expression levels within

each cell.

84

The aforementioned models all regard genes as tokens and focus solely on modeling gene

relationships within individual cells, neglecting the intercellular information in an organism. In

contrast, CellPLM overcomes this limitation by introducing a cell language model that extends

beyond single cells. Furthermore, by leveraging the spatial information of cells acquired from SRT

data, along with a prior Gaussian mixture distribution, the model achieves unparalleled performance

on a range of downstream tasks.

5.5 Chapter Conclusion

In this chapter, we propose Cell Language Model, a novel paradigm of single-cell pre-trained

model, which aligns well with the fundamental characteristics of single-cell data. This has led to

CellPLM, the first pre-trained transformer framework that encodes inter-cell relations, leverages

spatially-resolved transcriptomic data and adopts a reasonable prior distribution. Our experiments

on various downstream tasks demonstrate the power of CellPLM, which has great potential to

facilitate future research in single-cell biology.

85

CHAPTER 6

CONCLUSION

In this chapter, we summarize the research results of this dissertation, discuss their broader impact

and highlight promising research direction.

6.1 Summary

In this dissertation, we have explored various deep learning approaches for advancing single-

cell multi-omics and spatial omics analysis. By leveraging graph neural networks (GNNs) and

transformers, we introduced several innovative models tailored for the unique challenges presented

by single-cell data. These models not only demonstrate significant improvements over existing

methodologies but also lay the groundwork for future developments in the field.

One of the central contributions is the development of CellPLM, a novel pre-trained model that

effectively captures cell-cell relationships and integrates spatial transcriptomic data, outperforming

existing models in various tasks. CellPLM is built upon our findings from the first chapters, and

effectively transfers knowledge from cross-domain unlabeled data, to various downstream tasks and

datasets of interest. It can serve as a universal backbone for single-cell research, which exactly fits

the concept of a foundation model. Therefore, the implications of this dissertation extend beyond

the specific models and tasks discussed. The methodologies proposed in this work highlight the

importance of considering complex inter-cellular interactions and multi-modal data integration in

single-cell foundation model development. As single-cell technologies continue to advance, the

need for more sophisticated foundation models that can handle the intricacies of these data types

will only grow.

6.2 Future Work

In the future, we plan to further unleash the power of foundation models, i.e., CellPLM, in

single-cell analysis. Currently, CellPLM only considers two modalities: scRNA-seq and spatial

transcriptomics. While these modalities have already demonstrated significant improvements in

various tasks, there is substantial room for growth and refinement.

One potential direction for future work is the extension of the CellPLM framework to incorporate

86

multi-omics data, just like what we have explored in scMoGNN and scMoFormer. The integration

of additional omics layers, such as epigenomics, proteomics, and metabolomics, would enable

a more comprehensive understanding of cellular processes. By incorporating these diverse data

types, CellPLM could capture a more holistic view of the molecular landscape, leading to improved

accuracy in cell classification, state prediction, and trajectory inference.

Another promising area for future exploration is the enhancement of the embedder module within

CellPLM to better handle cross-modality integration. The introduction of advanced techniques, such

as multi-view learning or contrastive learning, could improve the model’s ability to learn meaningful

representations across different omics modalities. Furthermore, the development of novel attention

mechanisms tailored specifically for multi-modal data could allow the model to more effectively

prioritize and fuse information from each modality, thus enhancing its overall performance.

Additionally, there is a growing interest in the application of foundation models like CellPLM

to the study of rare and heterogeneous cell populations. As single-cell technologies continue

to advance, the ability to analyze these rare cell types with high precision becomes increasingly

important. Future work could involve the adaptation of CellPLM to focus on these challenging cell

populations, possibly through the incorporation of few-shot learning techniques or the development

of specialized pre-training strategies designed to handle imbalanced datasets.

In conclusion, the potential future directions for CellPLM are vast and varied. By extending the

framework to incorporate more diverse data types, refining the model’s architecture, and exploring

new application domains, we can continue to push the boundaries of single-cell analysis and

unlock new biological insights. As single-cell technologies continue to evolve, the development

of sophisticated foundation models like CellPLM will be crucial in addressing the increasing

complexity and diversity of the data being generated.

87

BIBLIOGRAPHY

Abdelaal, T., Mourragui, S., Mahfouz, A., and Reinders, M. J. (2020). Spage: spatial gene
enhancement using scrna-seq. Nucleic Acids Research, 48(18):e107–e107.

Adamson, B., Norman, T. M., Jost, M., Cho, M. Y., Nuñez, J. K., Chen, Y., Villalta, J. E., Gilbert,
L. A., Horlbeck, M. A., Hein, M. Y., et al. (2016). A multiplexed single-cell crispr screening
platform enables systematic dissection of the unfolded protein response. Cell, 167(7):1867–1882.

Alon, U. and Yahav, E. (2021). On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations.

Argelaguet, R., Arnol, D., Bredikhin, D., Deloro, Y., Velten, B., Marioni, J. C., and Stegle, O.
(2020). Mofa+: a statistical framework for comprehensive integration of multi-modal single-cell
data. Genome Biology, 21(1):1–17.

Argelaguet, R., Cuomo, A. S., Stegle, O., and Marioni, J. C. (2021). Computational principles and
challenges in single-cell data integration. Nature biotechnology, 39(10):1202–1215.

Arisdakessian, C., Poirion, O., Yunits, B., Zhu, X., and Garmire, L. X. (2019). Deepimpute:
an accurate, fast, and scalable deep neural network method to impute single-cell rna-seq data.
Genome Biology, 20(1):1–14.

Armingol, E., Officer, A., Harismendy, O., and Lewis, N. E. (2021). Deciphering cell–cell
interactions and communication from gene expression. Nature Reviews Genetics, 22(2):71–88.

Avşar, G. and Pir, P. (2023). A comparative performancencodere evaluation of imputation methods
in spatially resolved transcriptomics data. Molecular Omics.

Batool, F. and Hennig, C. (2021). Clustering with the average silhouette width. Computational
Statistics & Data Analysis, 158:107190.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

Beaulieu-Jones, B. K., Moore, J. H., and CONSORTIUM, P. R. O.-A. A. C. T. (2017). Missing
data imputation in the electronic health record using deeply learned autoencoders. In Pacific
symposium on biocomputing 2017, pages 207–218. World Scientific.

Belhocine, K., DeMare, L., and Habern, O. (2021). Single-cell multiomics: Simultaneous epigenetic
and transcriptional profiling: 10x genomics shares experimental planning and sample preparation
tips for the chromium single cell multiome atac+ gene expression system. Genetic Engineering &
Biotechnology News, 41(1):66–68.

88

Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language model. Advances
in Neural Information Processing Systems, 13.

Biancalani, T., Scalia, G., Buffoni, L., Avasthi, R., Lu, Z., Sanger, A., Tokcan, N., Vanderburg,
C. R., Segerstolpe, Å., Zhang, M., et al. (2021). Deep learning and alignment of spatially resolved
single-cell transcriptomes with tangram. Nature Methods, 18(11):1352–1362.

Boquet, G., Vicario, J. L., Morell, A., and Serrano, J. (2019). Missing data in traffic estimation: A
variational autoencoder imputation method. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2882–2886. IEEE.

Browaeys, R., Saelens, W., and Saeys, Y. (2020). Nichenet: modeling intercellular communication
by linking ligands to target genes. Nature Methods, 17(2):159–162.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li,
Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence: Early experiments with
gpt-4. arXiv preprint arXiv:2303.12712.

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., and Greenleaf, W. J. (2013). Transposition
of native chromatin for fast and sensitive epigenomic profiling of open chromatin, dna-binding
proteins and nucleosome position. Nature Methods, 10(12):1213–1218.

Burgess, D. J. (2019). Spatial transcriptomics coming of age. Nature Reviews Genetics, 20(6):317–
317.

Cang, Z., Zhao, Y., Almet, A. A., Stabell, A., Ramos, R., Plikus, M. V., Atwood, S. X., and Nie,
Q. (2023). Screening cell–cell communication in spatial transcriptomics via collective optimal
transport. Nature Methods, 20(2):218–228.

Cannoodt, R., Saelens, W., and Saeys, Y. (2016). Computational methods for trajectory inference
from single-cell transcriptomics. European journal of immunology, 46(11):2496–2506.

Cao, J., Cusanovich, D. A., Ramani, V., Aghamirzaie, D., Pliner, H. A., Hill, A. J., Daza, R. M.,
McFaline-Figueroa, J. L., Packer, J. S., Christiansen, L., et al. (2018). Joint profiling of chromatin
accessibility and gene expression in thousands of single cells. Science, 361(6409):1380–1385.

Cao, Z.-J. and Gao, G. (2022). Multi-omics single-cell data integration and regulatory inference
with graph-linked embedding. Nature Biotechnology, 40(10):1–9.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). End-to-end
object detection with transformers. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pages 213–229. Springer.

Chen, D., O’Bray, L., and Borgwardt, K. (2022). Structure-aware transformer for graph representation
learning. In International Conference on Machine Learning, pages 3469–3489. PMLR.

89

Chen, J., Xu, H., Tao, W., Chen, Z., Zhao, Y., and Han, J.-D. J. (2023). Transformer for one stop
interpretable cell type annotation. Nature Communications, 14(1):223.

Chen, S., Lake, B. B., and Zhang, K. (2019). High-throughput sequencing of the transcriptome and
chromatin accessibility in the same cell. Nature Biotechnology, 37(12):1452–1457.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis,
J., Mohiuddin, A., Kaiser, L., et al. (2020). Rethinking attention with performers. arXiv preprint
arXiv:2009.14794.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P.,
Davis, J. Q., Mohiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J., and Weller, A. (2021).
Rethinking attention with performers. In International Conference on Learning Representations.

Chu, X., Tian, Z., Zhang, B., Wang, X., Wei, X., Xia, H., and Shen, C. (2021). Conditional positional
encodings for vision transformers. arXiv preprint arXiv:2102.10882.

Ciortan, M. and Defrance, M. (2022). Gnn-based embedding for clustering scrna-seq data.
Bioinformatics, 38(4):1037–1044.

Cui, H., Wang, C., Maan, H., and Wang, B. (2023). scgpt: Towards building a foundation model for
single-cell multi-omics using generative ai. bioRxiv, pages 2023–04.

Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., Austine-
Orimoloye, O., Azov, A. G., Barnes, I., Bennett, R., et al. (2022). Ensembl 2022. Nucleic Acids
Research, 50(D1):D988–D995.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186.

Dilokthanakul, N., Mediano, P. A., Garnelo, M., Lee, M. C., Salimbeni, H., Arulkumaran, K.,
and Shanahan, M. (2016). Deep unsupervised clustering with gaussian mixture variational
autoencoders. arXiv preprint arXiv:1611.02648.

Ding, J., Liu, R., Wen, H., Tang, W., Li, Z., Venegas, J., Su, R., Molho, D., Jin, W., Wang, Y., et al.
(2024). Dance: A deep learning library and benchmark platform for single-cell analysis. Genome
Biology, 25(1):72.

Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C. P., Jerby-Arnon, L., Marjanovic, N. D., Dionne,
D., Burks, T., Raychowdhury, R., et al. (2016). Perturb-seq: dissecting molecular circuits with
scalable single-cell rna profiling of pooled genetic screens. Cell, 167(7):1853–1866.

Domínguez Conde, C., Xu, C., Jarvis, L., Rainbow, D., Wells, S., Gomes, T., Howlett, S., Suchanek,

90

O., Polanski, K., King, H., et al. (2022). Cross-tissue immune cell analysis reveals tissue-specific
features in humans. Science, 376(6594):eabl5197.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929.

Duren, Z., Chen, X., Zamanighomi, M., Zeng, W., Satpathy, A. T., Chang, H. Y., Wang, Y., and
Wong, W. H. (2018). Integrative analysis of single-cell genomics data by coupled nonnegative
matrix factorizations. Proceedings of the National Academy of Sciences, 115(30):7723–7728.

Dwivedi, V. P. and Bresson, X. (2020). A generalization of transformer networks to graphs. arXiv
preprint arXiv:2012.09699.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. (2021). Graph neural networks
with learnable structural and positional representations. arXiv preprint arXiv:2110.07875.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. (2022). Graph neural networks
with learnable structural and positional representations. In International Conference on Learning
Representations.

Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S., and Theis, F. J. (2019). Single-cell rna-seq
denoising using a deep count autoencoder. Nature Communications, 10(1):1–14.

Gaiti, F., Chaligne, R., Gu, H., Brand, R. M., Kothen-Hill, S., Schulman, R. C., Grigorev, K., Risso,
D., Kim, K.-T., Pastore, A., et al. (2019). Epigenetic evolution and lineage histories of chronic
lymphocytic leukaemia. Nature, 569(7757):576–580.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, Proceedings of Machine
Learning Research.

Gondara, L. and Wang, K. (2017). Multiple imputation using deep denoising autoencoders. arXiv
preprint arXiv:1705.02737, 280.

Gondara, L. and Wang, K. (2018). Mida: Multiple imputation using denoising autoencoders. In
Pacific-Asia conference on knowledge discovery and data mining, pages 260–272. Springer.

Gong, B., Zhou, Y., and Purdom, E. (2021). Cobolt: integrative analysis of multimodal single-cell
sequencing data. Genome Biology, 22(1):1–21.

Gong, J., Hao, M., Zeng, X., Liu, C., Ma, J., Cheng, X., Wang, T., Zhang, X., and Song, L. (2023).
xtrimogene: An efficient and scalable representation learner for single-cell rna-seq data. bioRxiv,
pages 2023–03.

91

Gong, W., Kwak, I.-Y., Pota, P., Koyano-Nakagawa, N., and Garry, D. J. (2018). Drimpute: imputing
dropout events in single cell rna sequencing data. BMC bioinformatics, 19(1):1–10.

Grønbech, C. H., Vording, M. F., Timshel, P. N., Sønderby, C. K., Pers, T. H., and Winther, O.
(2020). scvae: variational auto-encoders for single-cell gene expression data. Bioinformatics,
36(16):4415–4422.

Grün, D., Kester, L., and Van Oudenaarden, A. (2014). Validation of noise models for single-cell
transcriptomics. Nature Methods, 11(6):637–640.

Gu, H., Cheng, H., Ma, A., Li, Y., Wang, J., Xu, D., and Ma, Q. (2022). scgnn 2.0: a graph
neural network tool for imputation and clustering of single-cell rna-seq data. Bioinformatics,
38(23):5322–5325.

Hamilton, W. L., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
volume 30.

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A., Lee, M. J., Wilk,
A. J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell,
184(13):3573–3587.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022a). Masked autoencoders are
scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16000–16009.

He, S., Bhatt, R., Brown, C., Brown, E. A., Buhr, D. L., Chantranuvatana, K., Danaher, P., Dunaway,
D., Garrison, R. G., Geiss, G., Gregory, M. T., Hoang, M. L., Khafizov, R., Killingbeck, E. E.,
Kim, D., Kim, T. K., Kim, Y., Klock, A., Korukonda, M., Kutchma, A., Lewis, Z. R., Liang, Y.,
Nelson, J. S., Ong, G. T., Perillo, E. P., Phan, J. C., Phan-Everson, T., Piazza, E., Rane, T., Reitz,
Z., Rhodes, M., Rosenbloom, A., Ross, D., Sato, H., Wardhani, A. W., Williams-Wietzikoski,
C. A., Wu, L., and Beechem, J. M. (2022b). High-plex multiomic analysis in ffpe at subcellular
level by spatial molecular imaging. bioRxiv.

Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A., and Forrest, A. R. (2020). Predicting
cell-to-cell communication networks using natmi. Nature Communications, 11(1):5011.

Huang, K., Xiao, C., Glass, L. M., and Sun, J. (2021). Moltrans: molecular interaction transformer
for drug–target interaction prediction. Bioinformatics, 37(6):830–836.

Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., Murray, J. I., Raj, A., Li, M.,
and Zhang, N. R. (2018). Saver: gene expression recovery for single-cell rna sequencing. Nature
Methods, 15(7):539–542.

92

Ieremie, I., Ewing, R. M., and Niranjan, M. (2022). Transformergo: predicting protein–protein
interactions by modelling the attention between sets of gene ontology terms. Bioinformatics,
38(8):2269–2277.

Im Im, D., Ahn, S., Memisevic, R., and Bengio, Y. (2017). Denoising criterion for variational
auto-encoding framework. In Proceedings of the AAAI conference on artificial intelligence,
volume 31.

Jiang, J., Xu, J., Liu, Y., Song, B., Guo, X., Zeng, X., and Zou, Q. (2023). Dimensionality reduction
and visualization of single-cell rna-seq data with an improved deep variational autoencoder.
Briefings in Bioinformatics, page bbad152.

Jiang, R., Sun, T., Song, D., and Li, J. J. (2022). Statistics or biology: the zero-inflation controversy
about scrna-seq data. Genome Biology, 23(1):1–24.

Jin, S., Guerrero-Juarez, C., Zhang, L., Chang, I., Ramos, R., Kuan, C., Myung, P., Plikus, M., and
Nie, Q. (2021). Inference and analysis of cell-cell communication using cellchat. nat. commun.
12, 1088.

Jin, S., Zhang, L., and Nie, Q. (2020). scai: an unsupervised approach for the integrative analysis of
parallel single-cell transcriptomic and epigenomic profiles. Genome biology, 21:1–19.

Kim, N., Kim, H. K., Lee, K., Hong, Y., Cho, J. H., Choi, J. W., Lee, J.-I., Suh, Y.-L., Ku, B. M.,
Eum, H. H., et al. (2020). Single-cell rna sequencing demonstrates the molecular and cellular
reprogramming of metastatic lung adenocarcinoma. Nature Communications, 11(1):2285.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In Bengio, Y. and LeCun,
Y., editors, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations.

Kitaev, N., Kaiser, Ł., and Levskaya, A. (2020). Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451.

Kotliarov, Y., Sparks, R., Martins, A. J., Mulè, M. P., Lu, Y., Goswami, M., Kardava, L., Banchereau,
R., Pascual, V., Biancotto, A., et al. (2020). Broad immune activation underlies shared set point
signatures for vaccine responsiveness in healthy individuals and disease activity in patients with
lupus. Nature Medicine, 26(4):618–629.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V., and Tossou, P. (2021). Rethinking graph

93

transformers with spectral attention. In Advances in Neural Information Processing Systems,
volume 34, pages 21618–21629.

Lee, J., Hyeon, D. Y., and Hwang, D. (2020). Single-cell multiomics: technologies and data analysis
methods. Experimental & Molecular Medicine, 52(9):1428–1442.

Lelong, S., Zhou, X., Afrasiabi, C., Qian, Z., Cano, M. A., Tsueng, G., Xin, J., Mullen, J., Yao,
Y., Avila, R., et al. (2022). Biothings sdk: a toolkit for building high-performance data apis in
biomedical research. Bioinformatics, 38(7):2077–2079.

Li, J., Chen, S., Pan, X., Yuan, Y., and Shen, H.-B. (2022). Cell clustering for spatial transcriptomics
data with graph neural networks. Nature Computational Science, 2(6):399–408.

Li, W. V. and Li, J. J. (2018). An accurate and robust imputation method scimpute for single-cell
rna-seq data. Nature Communications, 9(1):1–9.

Li, Y., Ren, P., Dawson, A., Vasquez, H. G., Ageedi, W., Zhang, C., Luo, W., Chen, R., Li, Y.,
Kim, S., et al. (2020). Single-cell transcriptome analysis reveals dynamic cell populations and
differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation,
142(14):1374–1388.

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and Tamayo, P. (2015).
The molecular signatures database hallmark gene set collection. Cell systems, 1(6):417–425.

Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron, H., and Jegelka, S. (2022). Sign and basis
invariant networks for spectral graph representation learning. arXiv preprint arXiv:2202.13013.

Lin, X., Tian, T., Wei, Z., and Hakonarson, H. (2022). Clustering of single-cell multi-omics data
with a multimodal deep learning method. Nature Communications, 13(1):7705.

Liu, Q., Chen, S., Jiang, R., and Wong, W. H. (2021a). Simultaneous deep generative modelling and
clustering of single-cell genomic data. Nature machine intelligence, 3(6):536–544.

Liu, X., Ding, J., Jin, W., Xu, H., Ma, Y., Liu, Z., and Tang, J. (2021b). Graph neural networks with
adaptive residual. Advances in Neural Information Processing Systems, 34.

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L., et al. (2022).
Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 12009–12019.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021c). Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012–10022.

Lopez, R., Nazaret, A., Langevin, M., Samaran, J., Regier, J., Jordan, M. I., and Yosef, N. (2019). A

94

joint model of unpaired data from scrna-seq and spatial transcriptomics for imputing missing
gene expression measurements. arXiv preprint arXiv:1905.02269.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep generative modeling
for single-cell transcriptomics. Nature Methods, 15(12):1053–1058.

Lotfollahi, M., Wolf, F. A., and Theis, F. J. (2019). scgen predicts single-cell perturbation responses.
Nature Methods, 16(8):715–721.

Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M., and Cai, L. (2014). Single-cell in situ rna
profiling by sequential hybridization. Nature Methods, 11(4):360–361.

Luecken, M. D., Burkhardt, D. B., Cannoodt, R., Lance, C., Agrawal, A., Aliee, H., Chen, A. T.,
Deconinck, L., Detweiler, A. M., Granados, A. A., et al. (2021). A sandbox for prediction
and integration of dna, rna, and proteins in single cells. In Thirty-fifth conference on neural
information processing systems datasets and benchmarks track (Round 2).

Luo, S., Li, S., Cai, T., He, D., Peng, D., Zheng, S., Ke, G., Wang, L., and Liu, T.-Y. (2021). Stable,
fast and accurate: Kernelized attention with relative positional encoding. Advances in Neural
Information Processing Systems, 34:22795–22807.

Ma, F. and Pellegrini, M. (2020). Actinn: automated identification of cell types in single cell rna
sequencing. Bioinformatics, 36(2):533–538.

Ma, L., Wang, L., Khatib, S. A., Chang, C.-W., Heinrich, S., Dominguez, D. A., Forgues, M.,
Candia, J., Hernandez, M. O., Kelly, M., et al. (2021a). Single-cell atlas of tumor cell evolution
in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Journal
of Hepatology, 75(6):1397–1408.

Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., and Shah, N. (2021b). A unified view on graph neural
networks as graph signal denoising. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages 1202–1211.

Ma, Y. and Tang, J. (2021). Deep Learning on Graphs. Cambridge University Press.

Merritt, C. R., Ong, G. T., Church, S. E., Barker, K., Danaher, P., Geiss, G., Hoang, M., Jung, J.,
Liang, Y., McKay-Fleisch, J., et al. (2020). Multiplex digital spatial profiling of proteins and rna
in fixed tissue. Nature Biotechnology.

Mimitou, E. P., Lareau, C. A., Chen, K. Y., Zorzetto-Fernandes, A. L., Hao, Y., Takeshima, Y., Luo,
W., Huang, T.-S., Yeung, B. Z., Papalexi, E., et al. (2021). Scalable, multimodal profiling of
chromatin accessibility, gene expression and protein levels in single cells. Nature Biotechnology,
39(10):1246–1258.

Minoura, K., Abe, K., Nam, H., Nishikawa, H., and Shimamura, T. (2021). A mixture-of-experts

95

deep generative model for integrated analysis of single-cell multiomics data. Cell reports methods,
1(5):100071.

Molho, D., Ding, J., Tang, W., Li, Z., Wen, H., Wang, Y., Venegas, J., Jin, W., Liu, R., Su, R.,
et al. (2024). Deep learning in single-cell analysis. ACM Transactions on Intelligent Systems
and Technology, 15(3):1–62.

Norman, T. M., Horlbeck, M. A., Replogle, J. M., Ge, A. Y., Xu, A., Jost, M., Gilbert, L. A., and
Weissman, J. S. (2019). Exploring genetic interaction manifolds constructed from rich single-cell
phenotypes. Science, 365(6455):786–793.

Pereira, R. C., Santos, M. S., Rodrigues, P. P., and Abreu, P. H. (2020). Reviewing autoencoders
for missing data imputation: Technical trends, applications and outcomes. Journal of Artificial
Intelligence Research, 69:1255–1285.

Pott, S. (2017). Simultaneous measurement of chromatin accessibility, dna methylation, and
nucleosome phasing in single cells. eLife, 6:e23203.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A. (2018). Catboost:
unbiased boosting with categorical features. Advances in Neural Information Processing Systems,
31.

Qiu, P. (2020). Embracing the dropouts in single-cell rna-seq analysis. Nature Communications,
11(1):1169.

Rampasek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. (2022). Recipe for
a general, powerful, scalable graph transformer. In Advances in Neural Information Processing
Systems.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. (2022). Recipe for a
general, powerful, scalable graph transformer. arXiv preprint arXiv:2205.12454.

Rao, J., Zhou, X., Lu, Y., Zhao, H., and Yang, Y. (2021). Imputing single-cell rna-seq data by
combining graph convolution and autoencoder neural networks. iScience, 24(5):102393.

Raredon, M. S. B., Adams, T. S., Suhail, Y., Schupp, J. C., Poli, S., Neumark, N., Leiby, K. L.,
Greaney, A. M., Yuan, Y., Horien, C., et al. (2019). Single-cell connectomic analysis of adult
mammalian lungs. Science advances, 5(12):eaaw3851.

Regev, A., Teichmann, S. A., Lander, E. S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B.,
Campbell, P., Carninci, P., Clatworthy, M., et al. (2017). The human cell atlas. eLife, 6:e27041.

Ronen, J. and Akalin, A. (2018). netsmooth: Network-smoothing based imputation for single cell
rna-seq. F1000Research, 7.

96

Roohani, Y., Huang, K., and Leskovec, J. (2022). Gears: Predicting transcriptional outcomes of
novel multi-gene perturbations. bioRxiv, pages 2022–07.

Rudensky, A. Y. (2011). Regulatory t cells and foxp3. Immunological reviews, 241(1):260–268.

Schirmer, L., Velmeshev, D., Holmqvist, S., Kaufmann, M., Werneburg, S., Jung, D., Vistnes, S.,
Stockley, J. H., Young, A., Steindel, M., et al. (2019). Neuronal vulnerability and multilineage
diversity in multiple sclerosis. Nature, 573(7772):75–82.

Shao, X., Li, C., Yang, H., Lu, X., Liao, J., Qian, J., Wang, K., Cheng, J., Yang, P., Chen, H.,
et al. (2022). Knowledge-graph-based cell-cell communication inference for spatially resolved
transcriptomic data with spatalk. Nature Communications, 13(1):4429.

Shao, X., Yang, H., Zhuang, X., Liao, J., Yang, P., Cheng, J., Lu, X., Chen, H., and Fan, X. (2021).
scdeepsort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep
learning with a weighted graph neural network. Nucleic Acids Research, 49(21).

Shen, H., Liu, J., Hu, J., Shen, X., Zhang, C., Wu, D., Feng, M., Yang, M., Li, Y., Yang, Y.,
et al. (2023). Generative pretraining from large-scale transcriptomes for single-cell deciphering.
iScience.

Shen, R., Olshen, A. B., and Ladanyi, M. (2009). Integrative clustering of multiple genomic data
types using a joint latent variable model with application to breast and lung cancer subtype
analysis. Bioinformatics.

Shengquan, C., Boheng, Z., Xiaoyang, C., Xuegong, Z., and Rui, J. (2021). stplus: a
reference-based method for the accurate enhancement of spatial transcriptomics. Bioinformatics,
37(Supplement_1):i299–i307.

Song, Q. and Su, J. (2021). Dstg: deconvoluting spatial transcriptomics data through graph-based
artificial intelligence. Brief Bioinform, 22(5):1–13.

Song, Q., Su, J., and Zhang, W. (2021). scgcn is a graph convolutional networks algorithm for
knowledge transfer in single cell omics. Nature Communications, 12(1):1–11.

Stein-O’Brien, G. L., Arora, R., Culhane, A. C., Favorov, A. V., Garmire, L. X., Greene, C. S.,
Goff, L. A., Li, Y., Ngom, A., Ochs, M. F., et al. (2018). Enter the matrix: factorization uncovers
knowledge from omics. Trends in Genetics, 34(10):790–805.

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel,
R., Lieder, I., Mazor, Y., et al. (2016). The genecards suite: from gene data mining to disease
genome sequence analyses. Current protocols in bioinformatics, 54(1):1–30.

Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow,
H., Satĳa, R., and Smibert, P. (2017). Simultaneous epitope and transcriptome measurement in

97

single cells. Nature Methods, 14(9):865–868.

Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., Purdom, E., and Dudoit, S. (2018).
Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC genomics,
19:1–16.

Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021). Cellpose: a generalist algorithm
for cellular segmentation. Nature Methods, 18(1):100–106.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck III, W. M., Hao, Y.,
Stoeckius, M., Smibert, P., and Satĳa, R. (2019). Comprehensive integration of single-cell data.
Cell, 177(7):1888–1902.

Ståhl, P. L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., Giacomello, S.,
Asp, M., Westholm, J. O., Huss, M., Mollbrink, A., Linnarsson, S., Codeluppi, S., Åke Borg,
Pontén, F., Costea, P. I., Sahlén, P., Mulder, J., Bergmann, O., Lundeberg, J., and Frisén, J.
(2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.
Science, 353(6294):78–82.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich,
A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005). Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the
National Academy of Sciences, 102(43):15545–15550.

Svensson, V., Natarajan, K. N., Ly, L.-H., Miragaia, R. J., Labalette, C., Macaulay, I. C., Cvejic, A.,
and Teichmann, S. A. (2017). Power analysis of single-cell rna-sequencing experiments. Nature
Methods, 14(4):381–387.

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L.,
Fang, T., Doncheva, N. T., Pyysalo, S., et al. (2023). The string database in 2023: protein–protein
association networks and functional enrichment analyses for any sequenced genome of interest.
Nucleic Acids Research, 51(D1):D638–D646.

Tan, Y. and Cahan, P. (2019). Singlecellnet: a computational tool to classify single cell rna-seq data
across platforms and across species. Cell systems, 9(2):207–213.

Tang, W., Wen, H., Liu, R., Ding, J., Jin, W., Xie, Y., Liu, H., and Tang, J. (2023). Single-
cell multimodal prediction via transformers. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, pages 2422–2431.

Theodoris, C. V., Xiao, L., Chopra, A., Chaffin, M. D., Al Sayed, Z. R., Hill, M. C., Mantineo,
H., Brydon, E. M., Zeng, Z., Liu, X. S., et al. (2023). Transfer learning enables predictions in
network biology. Nature, pages 1–9.

Tran, H. T. N., Ang, K. S., Chevrier, M., Zhang, X., Lee, N. Y. S., Goh, M., and Chen, J. (2020).

98

A benchmark of batch-effect correction methods for single-cell rna sequencing data. Genome
Biology, 21:1–32.

van Dĳk, D., Nainys, J., Sharma, R., Kaithail, P., Carr, A. J., Moon, K. R., Mazutis, L., Wolf, G.,
Krishnaswamy, S., and Pe’er, D. (2017). Magic: A diffusion-based imputation method reveals
gene-gene interactions in single-cell rna-sequencing data. bioRxiv, page 111591.

Van Dĳk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., Burdziak, C., Moon, K. R.,
Chaffer, C. L., Pattabiraman, D., et al. (2018). Recovering gene interactions from single-cell data
using data diffusion. Cell, 174(3):716–729.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing
Systems, 30.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph
attention networks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international conference
on Machine learning, pages 1096–1103.

Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., Wang, C., Fu, H., Ma, Q., and Xu, D.
(2021). scgnn is a novel graph neural network framework for single-cell rna-seq analyses. Nature
Communications, 12(1):1–11.

Wang, Y., Song, B., Wang, S., Chen, M., Xie, Y., Xiao, G., Wang, L., and Wang, T. (2022). Sprod
for de-noising spatially resolved transcriptomics data based on position and image information.
Nature Methods, 19(8):950–958.

Welch, J. D., Hartemink, A. J., and Prins, J. F. (2017). Matcher: manifold alignment reveals
correspondence between single cell transcriptome and epigenome dynamics. Genome Biology,
18(1):1–19.

Wen, H., Ding, J., Jin, W., Wang, Y., Xie, Y., and Tang, J. (2022a). Graph neural networks for
multimodal single-cell data integration. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 4153–4163.

Wen, H., Jin, W., Ding, J., Xu, C., Xie, Y., and Tang, J. (2022b). Bi-channel masked graph
autoencoders for spatially resolved single-cell transcriptomics data imputation. In NeurIPS 2022
AI for Science: Progress and Promises.

Wen, H., Tang, W., Dai, X., Ding, J., Jin, W., Xie, Y., and Tang, J. (2024). CellPLM: Pre-training of
cell language model beyond single cells. In The Twelfth International Conference on Learning

99

Representations.

Wen, H., Tang, W., Jin, W., Ding, J., Liu, R., Shi, F., Xie, Y., and Tang, J. (2023). Single cells
are spatial tokens: Transformers for spatial transcriptomic data imputation. arXiv preprint
arXiv:2302.03038.

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V., Guzmán, F., Joulin, A., and Grave,
E. (2020). CCNet: Extracting high quality monolingual datasets from web crawl data. In
Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 4003–4012,
Marseille, France. European Language Resources Association.

Wu, C., Mark, A., and Su, A. I. (2014). Mygene. info: gene annotation query as a service. bioRxiv,
page 009332.

Wu, H., Wu, J., Xu, J., Wang, J., and Long, M. (2022). Flowformer: Linearizing transformers with
conservation flows. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages 24226–24242. PMLR.

Wu, K., Peng, H., Chen, M., Fu, J., and Chao, H. (2021a). Rethinking and improving relative position
encoding for vision transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10033–10041.

Wu, K. E., Yost, K. E., Chang, H. Y., and Zou, J. (2021b). Babel enables cross-modality translation
between multiomic profiles at single-cell resolution. Proceedings of the National Academy of
Sciences, 118(15):e2023070118.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A comprehensive survey on
graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24.

Xu, C., Lopez, R., Mehlman, E., Regier, J., Jordan, M. I., and Yosef, N. (2021). Probabilistic
harmonization and annotation of single-cell transcriptomics data with deep generative models.
Molecular systems biology, 17(1):e9620.

Xu, H., Fu, H., Long, Y., Ang, K. S., Sethi, R., Chong, K., Li, M., Uddamvathanak, R., Lee,
H. K., Ling, J., et al. (2024). Unsupervised spatially embedded deep representation of spatial
transcriptomics. Genome Medicine, 16(1):12.

Xu, J., Xu, J., Meng, Y., Lu, C., Cai, L., Zeng, X., Nussinov, R., and Cheng, F. (2023). Graph
embedding and gaussian mixture variational autoencoder network for end-to-end analysis of
single-cell rna sequencing data. Cell Reports Methods, page 100382.

Yang, F., Wang, W., Wang, F., Fang, Y., Tang, D., Huang, J., Lu, H., and Yao, J. (2022). scbert as a
large-scale pretrained deep language model for cell type annotation of single-cell rna-seq data.
Nature Machine Intelligence, 4(10):852–866.

100

Yang, K. D., Belyaeva, A., Venkatachalapathy, S., Damodaran, K., Katcoff, A., Radhakrishnan, A.,
Shivashankar, G., and Uhler, C. (2021). Multi-domain translation between single-cell imaging
and sequencing data using autoencoders. Nature Communications, 12(1):1–10.

Yang, L., Cheung, N.-M., Li, J., and Fang, J. (2019). Deep clustering by gaussian mixture variational
autoencoders with graph embedding. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6440–6449.

Yao, Z., Liu, H., Xie, F., Fischer, S., Adkins, R. S., Aldridge, A. I., Ament, S. A., Bartlett, A.,
Behrens, M. M., Van den Berge, K., et al. (2021). A transcriptomic and epigenomic cell atlas of
the mouse primary motor cortex. Nature, 598(7879):103–110.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., and Liu, T.-Y. (2021). Do transformers
really perform badly for graph representation? Advances in Neural Information Processing
Systems, 34:28877–28888.

Zhu, C., Preissl, S., and Ren, B. (2020). Single-cell multimodal omics: the power of many. Nature
Methods, 17(1):11–14.

Zhu, C., Yu, M., Huang, H., Juric, I., Abnousi, A., Hu, R., Lucero, J., Behrens, M. M., Hu, M., and
Ren, B. (2019). An ultra high-throughput method for single-cell joint analysis of open chromatin
and transcriptome. Nature Structural & Molecular Biology, 26(11):1063–1070.

Zuo, C., Dai, H., and Chen, L. (2021). Deep cross-omics cycle attention model for joint analysis of
single-cell multi-omics data. Bioinformatics, 37(22):4091–4099.

101

APPENDIX A

GRAPH NEURAL NETWORKS FOR MULTI-OMICS REPRESENTATION LEARNING

A.1 Details of Metrics in Task 3

A.1.1 Biology Conservation Metrics

NMI cluster/label. Normalized mutual information (NMI) compares the overlap of two

clusterings. We use NMI to compare the cell type labels with an automated clustering computed

on the integrated dataset (based on Louvain clustering. NMI scores of 0 or 1 correspond to

uncorrelated clustering or a perfect match, respectively. Automated Louvain clustering is performed

at resolution ranges from 0.1 to 2 in steps of 0.1, and the clustering output with the highest NMI

with the label set is used.

Cell type ASW. The silhouette width metric indicates the degree to which observations with

identical labels are compact. The average silhouette width (ASW) (Batool and Hennig, 2021), which

ranges between -1 and 1, is calculated by averaging the silhouette widths of all cells in a set. We

employ ASW to determine the compactness of the resulting embedding’s cell types. The ASW of

the cluster is calculated using the cell identity labels and scaled to a value between 0 and 1 using the

equation:

𝐴𝑆𝑊 = (𝐴𝑆𝑊𝐶 + 1)/2 (A.1)

where C denotes the set of all cell identity labels.

Cell cycle conservation. The cell cycle conservation score serves as a proxy for the preservation

of the signal associated with gene programs during data integration. It determines the amount of

variance explained by cell cycle per batch prior to and following integration. The differences in

variance before 𝑉𝑎𝑟𝑏𝑒 𝑓 𝑜𝑟𝑒 and variance after 𝑉𝑎𝑟𝑎 𝑓 𝑡𝑒𝑟 are aggregated into a final score between 0

and 1, using the equation:

𝐶𝐶𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 1 −
|𝑉𝑎𝑟𝑎 𝑓 𝑡𝑒𝑟 −𝑉𝑎𝑟𝑏𝑒 𝑓 𝑜𝑟𝑒 |

𝑉𝑎𝑟𝑏𝑒 𝑓 𝑜𝑟𝑒
(A.2)

where values near to 0 suggest less conservation of variance explained by the cell cycle, while 1

represents complete conservation.

102

Trajectory conservation. The conservation score of a trajectory is a proxy for the conservation

of a continuous biological signal within a joint embedding. We compare trajectories computed

after integration for relevant cell types that depict a continuous cellular differentiation process to

trajectories computed per batch and modality using this metric. The conservation of the trajectory is

quantified via Spearman’s rank correlation coefficient, 𝑠, between the pseudotime values before and

after integration. The final score is scaled to a value between 0 and 1 using the equation:

𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = (𝑠 + 1)/2 (A.3)

where a value of 1 or 0 indicates that the cells on the trajectory are in the same order before and

after integration, or in the reverse order.

A.1.2 Batch Removal Metrics

Batch ASW. The ASW is used to quantify batch mixing by taking into account the incompatibility

of batch labels per cell type cluster. We consider the absolute silhouette width, on batch labels per

cell, in particular. Here, zero shows that batches are thoroughly mixed, but any variation from zero

indicates the presence of a batch effect. We rescale this score so that higher values imply better

batch mixing and use the equation below to determine the per-cell type label, j:

batch 𝐴𝑆𝑊 𝑗 =
1��𝐶 𝑗

�� ∑︁
𝑖∈𝐶 𝑗

1 − |𝑠(𝑖) | (A.4)

where 𝐶 𝑗 is the set of cells with the cell label j and |𝐶 𝑗 | denotes the number of cells in that set. To

obtain the final 𝑏𝑎𝑡𝑐ℎ𝐴𝑆𝑊 score, the label-specific 𝑏𝑎𝑡𝑐ℎ𝐴𝑆𝑊 𝑗 scores are averaged:

batch 𝐴𝑆𝑊 =
1
|𝑀 |

∑︁
𝑗∈𝑀

batch 𝐴𝑆𝑊 𝑗 (A.5)

where M is the set of unique cell labels. A 𝑏𝑎𝑡𝑐ℎ𝐴𝑆𝑊 value of 1 suggests optimal batch mixing,

whereas a value of 0 indicates severely separated batches.

Graph connectivity. The graph connectivity metric determines whether cells of the same

kind from various batches are embedded close to one another. This is determined by computing a

k-nearest neighbor (kNN) graph using Euclidean distances on the embedding. Then, we determine

103

Table A.1 Dataset Statistics of modality prediction task. The number of feature dimensions, train/test
samples, and batches.

GEX-ADT ADT-GEX GEX-ATAC ATAC-GEX

Source Dim 13,953 134 13,431 116,490
Target Dim 134 13,953 10,000 13,431
Train Cells 66,175 66,175 42,492 42,492
Test Cells 1,000 1,000 1,000 1,000

Train Batches 9 9 10 10
Test Batches 3 3 3 3

if all cells with the same cell identity label are connected in this kNN graph. For each cell identity

label 𝑐, we generate the subset kNN graph 𝐺 = (𝑁𝑐; 𝐸𝑐), which contains only cells from a given

label. Using these subset kNN graphs, we compute the graph connectivity score:

𝑔𝑐 =
1
|𝐶 |

∑︁
𝑐∈𝐶

|𝐿𝐶𝐶 (𝐺 (𝑁𝑐; 𝐸𝑐)) |
|𝑁𝑐 |

(A.6)

where 𝐶 represents the set of cell identity labels, 𝐿𝐶𝐶 () denotes the number of nodes in the largest

connected component of the graph, and 𝑁𝑐 is the number of nodes with cell identity 𝑐. The resulting

score ranges from 0 to 1, where 1 means that all cells with the same cell identity are connected in

the integrated kNN graph, while 0 indicates that no cell is connected in the network.

A.1.3 Metric Aggregation

Due to the differing nature of each metric, each metric would be assigned a weight. An overall

weighted average of batch correction and bio-conservation scores will be computed via the equation:

𝑆overall ,𝑖 = 0.6 · 𝑆𝑏𝑖𝑜,𝑖 + 0.4 · 𝑆𝑏𝑎𝑡𝑐ℎ,𝑖 (A.7)

A.2 Data Statistics

The Table A.1 and Table A.2 provide statistics about dataset used in modality prediction task

and modality matching task respectively.

A.3 Reproducibility

A.3.1 Source Codes

All the source code of winning solutions can be found at OpenProblems official github. These

codes have been officially verified thus reproducibility is ensured.

104

Table A.2 Dataset Statistics of modality matching task. The number of feature dimensions, train/test
samples, and batches.

GEX-ADT ADT-GEX GEX-ATAC ATAC-GEX

Source Dim 13,953 134 13,431 116,490
Target Dim 134 13,953 116,490 13,431
Train Cells 66,175 66,175 42,492 42,492
Test Cells 15,066 15,066 20,009 20,009

Train Batches 10 10 10 10
Test Batches 3 3 3 3

For the new models we developed after the competitions, all source codes have been integrated

into the DANCE package (Ding et al., 2024).

105

APPENDIX B

TRANSFORMERS FOR SINGLE-CELL SPATIAL OMICS REPRESENTATION
LEARNING

B.1 Reproduciblity Details

B.1.1 Data Availability

Two datasets (Lung and Liver) we used are public available on Nanostring official website:

https://nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-dataset.

B.1.2 Implementation Settings

B.1.2.1 Baselines

To evaluate the effectiveness of SpaFormer, we compare it with the state-of-the-art spatial and

non-spatial transcriptomic imputation models: (1) scImpute (Li and Li, 2018) employs a probabilistic

model to detect dropouts, and implements imputation through non-negative least squares regression.

(2) SAVER (Huang et al., 2018) uses negative binomial distribution to model the data and estimates

a Gamma prior through Poisson Lasso regression. The posterior mean is used to output expression

with uncertainty quantification from the posterior distribution. (3) scVI (Lopez et al., 2018) models

dropouts with a ZINB distribution, and estimates the distributional parameters of each gene in each

cell with a VAE model. (4) DCA (Eraslan et al., 2019) is an autoencoder that predicts parameters

of chosen distributions like ZINB to generate the imputed data. (5) GraphSCI (Rao et al., 2021)

employs a graph autoencoder on a gene correlation graph. Meanwhile, it uses another autoencoder

to reconstruct the gene expressions, taking graph autoencoder embeddings as additional input. (6)

scGNN (Wang et al., 2021) first builds a cell-cell graph based on gene expression similarity and then

utilizes a graph autoencoder together with a standard autoencoder to refine graph structures and

cell representation. Lastly, an imputation autoencoder is trained with a graph Laplacian smoothing

term added to the reconstruction loss. (7) gimVI (Lopez et al., 2019) is a deep generative model for

integrating spatial transcriptomics data and scRNA-seq data which can be used to impute spatial

transcriptomic data. gimVI is based on scVI (Lopez et al., 2018) and employs alternative conditional

distributions to address technology-specific covariate shift more effectively. (8) Sprod (Li et al.,

106

2022) is the latest published imputation method for spatial transcriptomics data. It first projects gene

expressions to a latent space, then connects neighboring cells in the latent space, and prunes it with

physical distance. Then a denoised matrix is learned by jointly minimizing the reconstruction error

and a graph Laplacian smoothing term. (9) SpaGAT is a baseline model created by ourselves. It is

the same bi-level masking autoencoder framework as SpaFormer, based on a graph neural network

encoder with spatial graphs. Specifically, we implement a graph attention network (Velickovic et al.,

2018) as the encoder. Since the graph attention network is a localized version of transformers,

SpaGAT can be considered an ablation study for our SpaFormer model.

B.1.2.2 Hyperparameter Settings

For our own2 SpaGAT and SpaFormer, we first normalize the total RNA counts of each cell,

and then apply log1p transform. We heavily conducted hyperparameters searching on the Lung

dataset. However, we noticed that the performance is not sensitive to most hyperparameters,

except for masking rate, autoencoder type, and positional encodings as we presented in ablation

studies. To reproduce our results, the recommended hyperparameters are n_layer=2, num_heads=8,

num_hidden=128, latent_dim=20, learning rate=1e-3, weight_decay=5e-4. We used these default

hyperparameters in the other two datasets. The source codes will been released on our github. For

our own created baseline model SpaGAT, we used the same set of hyperparameters while replacing

the transformer encoder with a graph attention network.

For baseline models, all the implementations are from the authors’ repo/software. Optimiz-

ers/trainers are provided by original implementations. Preprocessings are also consistent with the

original methods. The detailed settings are as below:

ScImpute only involves two parameters. Parameter K denotes the potential number of cell

populations, threshold t on dropout probabilities. We set t=0.5 and K=15. This is per the author’s

instructions in their paper, i.e., a default threshold value of 0.5 is sufficient for most scRNA-seq

data, and K should be chosen based on the clustering result of the raw data and the resolution level

desired by the users, where K=15 is close to the ground-truth cell-type number.

SAVER is a statistical model and does not expose any hyperparameters in their implementation.

107

Therefore, we run their default setting.

For scVI, we searched for combinations of n_hidden=[128, 256], n_layer=[1, 2], gene_likelihood=[nb,

zinb] on the Lung5 dataset. All settings are repeated five times and the best mean performance is

achieved by n_hidden=128, n_layer=1, and gene_likelihood=’nb’. Other parameters are per default.

We then applied this set of hyperparameters to all three datasets and reported it in the main results.

For DCA, the original hyperparameter optimization mode is broken (there is a relevant unresolved

issue on GitHub), and there are no other parameter instructions in the tutorial, therefore we used

default parameters.

For GraphSCI, we tried hidden1=[16, 32, 64], hidden2=[32, 64]. Note that GraphSCI does not

have other hyperparameters and the default number of hidden sizes is quite small. The performance

reported in our paper was obtained from hidden1=32, and hidden2=64.

gimVI software does not expose hyperparameters such as n_hidden and n_layer, so we follow

the default settings. Additionally, gimVI requires external scRNA-seq reference data. For the Lung5

dataset, we used data from GSE131907 as a reference. For Kidney, we used data from GSE159115,

and for Liver we used data from GSE115469.

scGNN provides two sets of preprocessing in their GitHub repo and we adopt the first one

"Cell/Gene filtering without inferring LTMG" for CSV format. Then we follow the corresponding

instructions to run their imputation method but get an out-of-memory error during EM algorithm.

Sprod provides batch mode for handling very big spatial datasets. We follow their instructions

for dataset without a matching image and ran the batch mode with num_of_batches=30, however, it

can not finish running within 48 hours even on the smallest Kidney dataset.

For Spage we follow the official tutorial. For SeDR, we follow their official tutorial for

imputation and batch integration, where we consider each FOV as a batch. SeDR does not provide

any information on hyperparameters in their tutorial, therefore, we run their default method with

5 random seeds. To adapt SeDR’s output to our evaluation protocol, we remove the inherent

standardization function from SeDR’s ‘.recon‘ function.

For Tangram, we found that directly inputting all the data would lead to OOM issue. Therefore,

108

we follow the official instruction to separate the data into 5 splits and impute them split by split.

B.2 Standard Deviation

For simplicity, we omit the standard deviation in Table 4.2. The detailed experiment statistics

are shown below in Table B.1.

Table B.1 The standard deviation of the imputation experiments.
Lung 5 Lung 5 Lung 5 Kidney 1139 Kidney 1139 Kidney 1139 Liver Norma Liver Normal Liver Norma
RMSE Pearson Cosine RMSE Pearson Cosine RMSE Pearson Cosine

scVI 0.2861±
0.0037

0.6231±
0.0136

0.6661±
0.0112

0.2901±
0.0040

0.5834±
0.0152

0.6480±
0.0125

0.2797±
0.0159

0.5749±
0.0641

0.6224±
0.0582

DCA 0.2858±
0.0002

0.6223±
0.0008

0.6648±
0.0007

0.2852±
0.0005

0.5985±
0.0022

0.6597±
0.0017

0.2542±
0.0129

0.657±
0.0461

0.688±
0.0401

GraphSCI 0.3957±
0.0006

0.1334±
0.0016

0.3081±
0.0007

0.3624±
0.0009

0.2403±
0.0048

0.4128±
0.0029

0.3347±
0.0009

0.3707±
0.0065

0.4430±
0.0065

gimVI 0.3170±
0.0018

0.5320±
0.0063

0.5917±
0.0052

0.4387±
0.0015

−0.0104±
0.0004

0.1967±
0.0027

0.4542±
0.0024

−0.0015±
0.0010

0.1167±
0.0050

SpaFormer 0.2785±
0.0005

0.6363±
0.0019

0.6786±
0.0016

0.2794±
0.0042

0.6108±
0.0152

0.671±
0.0121

0.2117±
0.0014

0.7976±
0.0034

0.7797±
0.0032

109

APPENDIX C

BUILDING SINGLE-CELL FOUNDATION MODEL BEYOND SINGLE CELLS

C.1 Spatially-Resolved Transcriptomic Data

Recently, spatial transcriptomic technologies are developed to spatially resolve transcriptomics

profiles (Ståhl et al., 2016; Merritt et al., 2020). With spatial transcriptomics data, researchers

can learn the spatial context of cells and cell clusters within a tissue (Burgess, 2019). The major

technologies/platforms for spatial transcriptomics are Visium by 10x (Ståhl et al., 2016), GeoMx

Digital Spatial Profiler (DSP) (Merritt et al., 2020) by NanoString and CosMx Spatial Molecular

Imager (SMI) by NanoString, MERFISH, Vizgen, Resolve, Rebus, and molecular cartography. 10x

Visium does not profile at single-cell resolution, and while GeoMx DSP is capable of single-cell

resolution through user-drawn profiling regions, the scalability is limited. The most recent platform,

CosMx Spatial Molecular Imager (SMI) (He et al., 2022b), can profile consistently at single-cell and

even sub-cellular resolution. CosMx SMI follows much of the initial protocol as GeoMx DSP, with

barcoding and ISH hybridization. However, the SMI instrument performs 16 cycles of automated

cyclic readout, and in each cycle, the set of barcodes (readouts) are UV-cleaved and removed.

These cycles of hybridization and imaging yield spatially resolved profiling of RNA and protein at

single-cell (∼ 10𝜇𝑚) and subcellular (∼ 1𝜇𝑚) resolution. In this work, we use two published and

one unpublished dataset produced by the CosMx platform. In order to obtain the cellular level gene

expression, CellPose (Stringer et al., 2021) software is applied to conduct cell segmentation.

To give a concrete example, we provide a sample field-of-view (FOV) in Fig. 4.1. Pre-selected

types of RNA molecules are captured by the molecular imager, which are denoted as white dots

in the figures. Colors in the first sub-figure indicate the protein molecules that are stained. These

proteins contribute to the cell segmentation process, which results in the second sub-figure. The

final output from the pipeline consists of the position of each cell and a cell-by-gene count matrix,

which is produced by counting the number of RNA molecules within each cell. The difference

between scRNA-seq and SRT data is further demonstrated in Fig. C.1.

110

Figure C.1 An illustration of the difference between scRNA-seq and SRT data.

C.2 2D Sinusoid Positional Encodings

Since 2D sinusoidal PE achieves a competitive performance and has a lower complexity on SRT

data (Wen et al., 2023), in our transformer encoer, we generate a sinusoidal PE for cells in SRT data,

formulated as:

PE(𝑥,𝑦,2𝑖) = sin
(
𝑥/100004𝑖/𝑑

)
, PE(𝑥,𝑦,2𝑖+1) = cos

(
𝑥/100004𝑖/𝑑

)
,

PE(𝑥,𝑦,2 𝑗+𝑑/2) = sin
(
𝑦/100004 𝑗/𝑑

)
, PE(𝑥,𝑦,2 𝑗+1+𝑑/2) = cos

(
𝑦/100004 𝑗/𝑑

)
,

(C.1)

where 𝑑 is the total dimension of positional encoding, 𝑖, 𝑗 ∈ [0, 𝑑/4) specify a specific feature

dimension. Let C̃ ∈ R𝑁×2 be a normalized coordinate matrix, where we normalize and truncate

coordinates in C to integers ranging in [0, 100). 𝑥, 𝑦 then refer to the spatial coordinates from C̃,

e.g., 𝑥 = C̃𝑡,0 and 𝑦 = C̃𝑡,1 for cell 𝑡. In this way, we generate a PE matrix P ∈ R𝑁×𝑑 for every

cell in SRT data, where P𝑖 is the PE vector for cell 𝑖. Meanwhile, for scRNA-seq data, a randomly

initialized 𝑑-dimensional vector 𝑝′ is shared among all cells, which also results in a placeholder PE

matrix P.

C.3 Denoising Variational Lower Bound for Masked Language Modeling

One of the highlights of CellPLM is the design of probabilistic latent space. Prior studies have

employed variational autoencoders for single-cell analysis, which typically assumes an isotropic

Gaussian distribution as the prior distribution of the latent space (Lopez et al., 2018; Xu et al., 2021).

While this approach can effectively remove batch effects, it may also result in a loss of information

regarding the underlying biological structure of cell groups. To address this limitation, CellPLM

incorporates the concept of Gaussian mixture variational encoder (Dilokthanakul et al., 2016; Yang

et al., 2019; Xu et al., 2023), which utilizes a mixture of Gaussians to capture the information of

111

distinct functional groups of cells. Formally, for 𝑖 ∈ {1, . . . , 𝑁}, the generative model of cell 𝑖 can

be formulated as:

𝑝(y𝑖; 𝝅) = Multinomial(𝝅),

𝑝 (z𝑖 | y𝑖) =
𝐿∏
𝑖=1

N
(
𝝁𝑦𝑖,𝑙

, diag
(
𝝈2

𝑦𝑖,𝑙

))
,

𝑝𝜃𝑑𝑒𝑐 (x𝑖 | z𝑖) = N
(
𝝁z𝑖 , 𝜎

2I
)
,

(C.2)

where y𝑖 ∈ R𝐿 represents the one-hot latent cluster variable and 𝝅 is its prior; 𝑦𝑖,𝑙 denotes the

𝑙-th entry of y𝑖; 𝝁𝑦𝑙
∈ R𝑑𝑧 and 𝝈2

𝑦𝑙
∈ R𝑑𝑧×𝑑𝑧 denote the mean and variance of the 𝑙-th Gaussian

component, respectively; and 𝝁𝑧𝑖
∈ R𝑘 and 𝜎2I ∈ R𝑘×𝑘 denote the posterior mean and variance of

expression x𝑖, respectively. In this work, we assume that 𝜎2 is a constant and the posterior mean is

parameterized by 𝝁𝑧𝑖
= 𝑓𝑑𝑒𝑐 (z𝑖; 𝜃𝑑𝑒𝑐).

To estimate the posterior of z𝑖 and y𝑖, we parameterize the inference process with neural networks.

Specifically, we assume that the cluster variables y are independent of the expression x𝑖 condition

on latent variables z𝑖. The inference model can be formulated as:

𝑞𝜂𝜇 ,𝜂𝜎 (z𝑖 | x𝑖) = N
(
�̂�𝑖, diag

(
�̂�2
𝑖

))
,

𝑞𝜂𝜋
(y𝑖 | z𝑖) = Multinomial(�̂�𝑖),

(C.3)

where the estimations are given by

h𝑖 = 𝑓𝑒𝑛𝑐 (x𝑖; 𝜂𝑒𝑛𝑐),

�̂�𝑖 = 𝑓𝜇
(
h𝑖; 𝜂𝜇

)
,

log
(
�̂�2
𝑖

)
= 𝑓𝜎 (h𝑖; 𝜂𝜎) ,

�̂�𝑖 = 𝑓𝜋 (z𝑖; 𝜂𝜋) .

(C.4)

Here 𝑓𝑒𝑛𝑐 (·; 𝜂𝑒𝑛𝑐) represents the transformer encoder, 𝑓𝜇 (·; 𝜂𝜇), 𝑓𝜎 (·; 𝜂𝜎) and 𝑓𝜋 (·; 𝜂𝜋) are neural

networks. A log-evidence lower bound (ELBO) can be derived from this generative model for the

optimization purpose (Dilokthanakul et al., 2016). However, as mentioned in Section 5.2.1, our

pre-training framework incorporates a cell language model, where parts of the input gene expression

matrix X are masked. This will result in a modified objective. To formalize the problem, recall

112

Table C.1 Hyperparameters for pretraining CellPLM model.

CellPLM

encoder hidden dim 1024
encoder layers 4

latent dimension 512
decoder hidden dim 1024

decoder layers 2
model dropout 0.2
cell mask rate 0.75
gene mask rate 0.25
learning rate 2e-4
weight decay 1e-8
num of cluster

(for GMM) 16

total parameter 82,402,543

that previously we defined the masked set as M. On top of that, we denote M ∈ R𝑁×𝑘 as a mask

indicator matrix such that

M𝑖, 𝑗 =

1 if (𝑖, 𝑗) ∉ M,

0 if (𝑖, 𝑗) ∈ M .

Let X̃ ∈ R𝑁×𝑘 be the masked gene expression matrix given by the element-wise multiplication

X̃ = M ⊙ X. The objective of cell language model with Gaussian mixture prior, i.e., a denoising

variational lower bound (Im Im et al., 2017), can be formulated as:

LCellLM =E𝑞(Z,Y|X̃)E𝑝(X̃|X)

[
ln

𝑝𝜃 (X,Z,Y)
𝑞𝜂 (Z,Y | X̃)

]
(C.5)

=E𝑞𝜂𝑒𝑛𝑐 (Z|X̃)E𝑝(X̃|X)
[
log 𝑝𝜃𝑑𝑒𝑐 (X | Z)

]︸ ︷︷ ︸
Lrecon

−E𝑞𝜂𝜋 (Y|Z)
[
KL

(
𝑞𝜂𝑒𝑛𝑐 (Z | X̃)∥𝑝(Z | Y)

)]︸ ︷︷ ︸
Lcond

− E𝑞𝜂𝑒𝑛𝑐 (Z|X̃)
[
KL

(
𝑞𝜂𝜋

(Y | Z)∥𝑝(Y)
)]︸ ︷︷ ︸

LY

.

C.4 Pre-training Settings

C.4.1 Hyperparameter Settings

We pre-trained CellPLM model with the hyperparameters specified in Table C.1.

113

Table C.2 List of dataset and data sources. External links will be included in our github repo.

Source Datasets

HTCA HTAN_HTAPP, HTAN_Stanford, HTAN_Vanderbilt, HTAN_BU

HCA

cxg_PBMCs, EGAS00001004571_PBMCs, eQTLAutoimmune,
covid19autoimmunityPBMCs, VanDerWĳst-Human-10x5pv1,
cxg_Airways, COMBAT2022, TabulaSapiens,
PAN.A01.v01.raw_count.20210429.PFI.embedding,
GTEx_8_tissues_snRNAseq_atlas_071421.public_obs

GEO

GSE139324, GSE136246, GSE179994,GSE131907,
GSE171145, GSE139555, GSE156728_CD4,
GSE148071, PMID_34663877, Qian_et_al_2020_LC,
GSE176021, GSE156728_CD8

Other Atlas (deduplicated) MalteEtAl_LungAtlas, TICAtlas

C.4.2 Datasets for Pre-training

The dataset for pre-training contains 11.4 million cells from scRNA-seq and SRT data. scRNA-seq

data consist of 4.7 million cells from human tumor cell atlas (HTCA, https://humantumoratlas.org),

1.4 million cells from human cell atlas (HCA, https://www.humancellatlas.org), and 2.6 million cells

from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo). All of them are public

available data, elucidated in table C.2. A more detailed list and external links will be disclosed in

our GitHub repository. Note that although our CellPLM is capable to handle various input feature

sets, when we concatenated these scRNA-seq datasets, we used inner join by default of Anndata

package. As a result, all scRNA-seq datasets only contain a 13, 500 common gene set. We will

address this issue and increase the size of the gene set in future versions of CellPLM.

The SRT datasets we used are publicly available on Nanostring official website (nanostring.com),

where 2.7 million cells and 1, 000 genes are measured. Both scRNA-seq and SRT data are

preprocessed with library size normalization and log1p transformation, following the convention in

Stuart et al. (2019).

C.5 Additional Experimental Details

In this section, we provide more experimental details about fine-tuning, baselines, and evaluation

metrics under each downstream task.

114

C.5.1 scRNA-seq Denoising

Downstream Task Datasets. In scRNA-seq denoising task, we evaluate CellPLM on two

datasets, i.e., PBMC 5K and Jurkat from 10x Genomics1. It is worth noting that during the

prepossessing stage, we performed sub-setting on both datasets to ensure that all the genes were

included in the gene set of pre-training data. Additionally, any genes with zero counts were removed

from the analysis. We list the statistics of them in Table C.3.

Table C.3 scRNA-seq denoising datasets.

5K PBMC Jurkat

Number of genes 33,538 32,738
Number of cells 5,247 3,258

Num genes picked 7,197 7,618

Evaluation Metrics. Following the setting of scGNN (Wang et al., 2021), scGNN2.0 (Gu et al.,

2022) and DeepImpute (Arisdakessian et al., 2019), we performed synthetic dropout simulation

with missing at random (MAR) setting. While scGNN only considered a simple scenario, i.e.,

randomly flipped 10% of the non-zero entries to zeros, DeepImpute applied cell-wise mask with

masking probability given by a multinomial distribution. Specifically, we adapted the setting

from DeepImpute with exponential kernel. For cell 𝑖 that contains at least 5 expressed genes, the

probability that one non-zero count 𝑥𝑖, 𝑗 is masked during the training process is given by Exp(0, 20):

𝑝𝑖, 𝑗 =
1

20
𝑒−

𝑥
20 ,

𝑞𝑖, 𝑗 =
𝑝𝑖, 𝑗∑𝐽𝑖
𝑗=0 𝑝𝑖, 𝑗

,

where 𝐽𝑖 is the number of non-zero counts within cell 𝑖. We masked 10% of the non-zero counts

according to {𝑞𝑖, 𝑗 }𝐽𝑖𝑗=0 and evaluate model performance on the masked entries. We calculate the

root mean squared error (RMSE) and mean absolute error (MAE) between the predicted values and

ground truth.

Baselines. (1) DeepImpute (Arisdakessian et al., 2019) employed a strategy of dividing genes

into subsets and constructing deep neural networks to impute scRNA-seq data. We implemented
110x Genomics datasets are available at https://support.10xgenomics.com/single-cellgene-expression/datasets.

115

DeepImpute with default settings in DANCE (Ding et al., 2024) package. (2) scGNN2.0 (Gu et al.,

2022) incorporated a feature autoencoder, a cluster autoencoder and a graph attention autoencoder

for simultaneous imputation and clustering. scGNN2.0 is implemented by DANCE package with

default settings. (3) GraphSCI (Rao et al., 2021) combined autoencoders with graph convolution

networks among a gene-gene similarity graph. We accommodated the implementation of GraphSCI

in DANCE package. (4) SAVER (Huang et al., 2018) leveraged Poisson LASSO regression to model

the scRNA-seq counts with Poisson–gamma mixture. We utilized R package SAVER to illustrate

the performance of it. (5) DCA (Eraslan et al., 2019) introduced an autoencoder framework based

on zero inflated negative binomial (ZINB) distribution. We applied DCA to aforementioned datasets

with its Python pacakge. (6) MAGIC (Van Dĳk et al., 2018) utilized Markov affinity to capture

gene-gene relationship and impute missing gene expression. We adapted its Python package to

access the performance of it. (7) scImpute (Li and Li, 2018) developed a Gamma and Gaussian

mixture model to identify dropout values. We revealed the performance of scImpute with its R

pacakge.

Fine-tuning. Since denoising task requires model to recover the gene expression matrix, we

can directly get the zero shot performance of CellPLM by specifying the gene set of target dataset.

Additionally, we fine-tuned CellPLM by replacing the pre-trained decoder with a MLP head and

initializing encoder with pre-trained weights. Additionally, for methods require model selection on

validation set, we performed another 10% simulation dropout and treat masked entries as validation

set. The fine-tuned CellPLM was trained on MSE reconstruction loss, while the best model was

selected by evaluating MSE on validation set.

C.5.2 Spatial Tanscriptomic Imputation

Downstream Task Datasets. To evaluate spatial tanscriptomic imputation models at single-cell

resolution, we collected two samples from MERSCOPE FFPE Human Immuno-oncology Data2.

Specifically, we chose "Lung cancer 2" and "Liver cancer 2" as our samples, and subsequently

referred to them as "Lung2" and "Liver2" respectively. The Lung2 and Liver2 datasets were
2Merscope ffpe human immuno-oncology datasets are available at https://info.vizgen.com/ffpe-showcase.

116

subsetted to align with the gene set of the pre-training data. Additionally, we removed the fields of

view (FOVs) that contained fewer than 100 cells and retained only the first 100 FOVs from both

datasets. Note that all baselines require reference scRNA-seq datasets to impute the unseen genes of

SRT data, we collected GSE131907 (Kim et al., 2020) and GSE151530 (Ma et al., 2021a) for lung

cancer and liver cancer, respectively. The statistics of all datasets are illustrated in Table C.4.

Table C.4 Spatial tanscriptomic imputation datasets.

Lung2 Liver2 GSE131907 GSE151530

Number of genes 500 500 29,634 18,667
Number of cells 836,739 598,141 208,506 56,721

Num genes picked 462 446 All ALL
Num cells picked 40,114 20,629 All All

Evaluation Metrics. Following the evaluation pipeline proposed by Avşar et al. (Avşar and

Pir, 2023), we selected target genes of SRT data with stratified sampling according to gene sparsity.

Specifically, we grouped genes into four categories: low sparse, moderate sparse, high sparse, and

very-high sparse. Empirically, the boundaries were defined as [𝑥 < 75, 75 ≤ 𝑥 < 90, 90 ≤ 𝑥 <

95, 95 ≤ 𝑥] to approximate the Gaussian mean and standard deviation slices. Subsequently, we

randomly selected 25 genes from each sparsity group and remove them from training data. After

training the models, we calculate the evaluation metrics on the target genes. Namely, we compute

the root mean squared error (RMSE), Pearson’s correlation coefficient (PCC) and cosine similarity

(Cosine) between the ground truth values and the corresponding imputed values in a gene-wise

approach.

Baselines. (1) SpaGE (Abdelaal et al., 2020) relied on domain adaptation to map scRNA-seq

data onto SRT data and utilized a 𝑘-nearest-neighbor (k-NN) graph to predict unseen genes. We

implemented SpaGE with default settings on both datasets. (2) stPlus (Shengquan et al., 2021)

developed an autoencoder framework for learning cell embeddings and imputing SRT genes using

a weighted k-NN approach. The performance of stPlus is accessed by its Python package. (3)

gimVI (Lopez et al., 2019) introduced a variational autoencoder based model with protocol-specific

treatments on scRNA-seq data and SRT data. We applied the algorithm with default settings to

117

evaluate the performance of gimVI. (4) Tangram (Biancalani et al., 2021) utilized a deep learning

approach to learn the spatial alignment of scRNA-seq data based on a reference SRT dataset with

consistent spatial maps. We evaluated Tangram with its Python package.

Fine-tuning. Similar to scRNA-seq denoising, the spatial tanscriptomic imputation task requires

the ouput of the model to be the gene expression. Thus, we directly fine-tune CellPLM on the

pre-trained weights while specifying the input genes and target genes. The last two batches were

hold out for validation.

Figure C.2 Visualization of attention matrix demonstrate cell-cell communication.

Visualization of attention. One essential multi-cell task is cell-cell communication (CCC)

inference, where CCC mainly represents biochemical signaling through ligand-receptor binding

across cells (Cang et al., 2023). Our CellPLM applies self-attention mechanism on cell level, from

which we can study the interaction strength given by cell attention matrix. As a preliminary study,

we extract the attention matrix between cells from a random chosen field of view (FOV) in Cosmx

Liver dataset. The attention matrix is treated as CCC scores, and we visualize the results following

the stream plot setting in Cang et al. (2023). As shown in the Figure C.2 in our supplementary PDF,

there are some strong trends on the left side and right side of the FOV, suggesting further exploration

118

of specific signaling pathways for the included cells. This case study showcase the potential of

our CellPLM model in cell-cell communication research. We hope our model can facilitate more

insightful biological research in the future.

C.5.3 Perturbation Prediction

The perturb-seq technology has been established to examine the gene expression response at

the single-cell level when subjected to pooled perturbations (Dixit et al., 2016). By comparing the

gene expression before and after perturbation, downstream analysis of differential expression (DE)

enables the identification of genes that play a crucial role in disease progression. To assess the

potential benefits of CellPLM in gene-level tasks, we conduct experiments to predict the expression

value of genes after perturbation. Following the setting of GEARS (Roohani et al., 2022), we

partition the perturbations into training, validation, and test sets, ensuring that none of the test

perturbations are encountered during the optimization process.

Two perturbation datasets are employed for evaluation: (1) the Adamson Perturb-Seq dataset (Adam-

son et al., 2016), consisting of 87 one-gene perturbations; and (2) the Norman Perturb-Seq

dataset (Norman et al., 2019), containing 131 two-gene perturbations and 105 one-gene pertur-

bations. To evaluate the performance of perturbation prediction, we employ Root Mean Square

Error (RMSE) to measure the degree of similarity between the non-zero ground-truth expression

values and corresponding predicted gene expressions. In addition, following previous settings in

GEARS (Roohani et al., 2022), we also present the RMSE calculated on the top 20 deferentially-

expressed genes.

We compare the performance between CellPLM and two baselines, i.e., a recent preprint GEARS

method (Roohani et al., 2022), and scGen (Lotfollahi et al., 2019). The results in Figure C.3 imply

that CellPLM achieves the lowest RMSE values across all settings.

Downstream Task Datasets. We included the Adamson Perturb-Seq dataset (Adamson et al.,

2016) for one-gene perturbations and the Norman Perturb-Seq dataset (Norman et al., 2019) for

two-gene perturbations. We followed the preprocess pipeline of GEARS (Roohani et al., 2022) and

both datasets were then gene-wise subsetted to fit in the gene set of pre-training data. The statistics

119

Adam. All Adam. DE Norman.0 All Norman.0 DE Norman.1 All Norman.1 DE0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM
SE

CellPLM
GEARS
scGEN

Figure C.3 (Task 3) The RMSE performance (↓) on Adamson Perturb-Seq and the Norman Perturb-
Seq datasets. The Norman Perturb-seq dataset consists of two settings: one-gene perturbations and
two-gene perturbations, denoted as Norm.0 and Norm.1, respectively.

Table C.5 Perturbation prediction datasets.

Adamson Norman

Number of genes 5,060 5,045
Number of cells 68,603 91,205

Num genes picked 3,246 2,353
Num one-gene pert. 87 105
Num two-gene pert. – 131

are summaried in Table C.5.

Evaluation Metrics. Following the setting of GEARS (Roohani et al., 2022), we applied

data split such that the testing perturbation are unseen during the training process. Specifically,

For Adamson dataset, we randomly hold out 25% of the perturbations for testing and 10% of the

perturbations within the training set for validation. For Norman dataset, two settings for two-gene

perturbations are implemented for evalutation purpose: 1/2 unseen and 2/2 unseen. We excluded

all two-gene combinations in which at least one of the individual genes involved in the combination

belonged to the unseen set. Finally, we evaluate the performance by calculating the root mean

squared error (RMSE) between the predictions and the true values within the testing set.

Baselines. (1) GEARS (Roohani et al., 2022) utilized gene co-expression knowledge graph and

Gene Ontology-derived knowledge graph to model the influence of perturbations. We followed

the recommended parameter settings within its Python package to access the performance. (2)

scGen (Lotfollahi et al., 2019) built a conditional variational autoencoders and incoporated vector

arithmetics to model phenomena response. We implemented scGen with its Python package on both

120

datasets.

Fine-tuning. For one perturbation, we set the input of perturbed genes to be −100 to mimic the

gene perturbation action. During the fine-tuning process, we substituted the original batch-aware

decoder with a simplified MLP decoder. Additionally, we initialized the remaining components of

CellPLM with pre-trained weights. The final model was chosen to be the best-performed model on

the validation set.

C.5.4 Cell Type Annotation

Cell type annotation is a crucial step in single-cell analysis as it enables the identification and

characterization of distinct cell populations within a tissue or organism. This information is crucial

for understanding the functional diversity, developmental trajectories, and disease relevance of

different cell types, providing insights into biological processes and facilitating targeted therapeutic

approaches.

Downstream Task Datasets. We assess the performance of CellPLM on the task of cell type

annotation on hPancreas (Chen et al., 2023) and Multiple Sclerosis (MS) (Schirmer et al., 2019),

which are suggested by (Cui et al., 2023). The hPancreas dataset contains five scRNA-seq datasets of

human pancreas cells, divided into reference and query sets with annotations, including 13 cell types

and 11 cell types, respectively. The Multiple Sclerosis dataset (M.S.), sourced from EMBL-EBI,

includes 9 healthy control and 12 M.S. samples. 3,000 highly variable genes were retained.

Evaluation Metrics. We evaluate cell type annotation performance based on two standard

classification metrics, Macro Precision and Macro F1 score.

Baselines. To benchmark the performance of CellPLM, we compare it with both pre-trained

models including scGPT (Cui et al., 2023), scBERT (Yang et al., 2022), as well as non-pre-trained

SOTA models including ACTINN (Ma and Pellegrini, 2020), CellTypist (Domínguez Conde et al.,

2022), SingleCellNet (Tan and Cahan, 2019), and TOSICA (Chen et al., 2023). For baseline

methods, we adhere to their provided guidelines and utilize the default parameter setting. The

performance metrics reported for scBERT, TOSICA and scGPT in this task are directly obtained

from scGPT papers.

121

Fine-tuning. For CellPLM model, we attach a feed forward layer to the pre-trained encoder

and latent space and tune the downstream model on the downstream dataset with a standard cross

entropy loss.

C.6 Comparison between CellPLM and scVI

As a supplement to the zero-shot clustering experiments in Section 5.3.1, we add an additional

comparison with scVI (Lopez et al., 2018) on the same dataset. As shown in Figure C.4, CellPLM

successfully outperforms scVI without any training or fine-tuning, while the latter was trained on

this specific dataset.

CellPLM
(ARI = 0.867, NMI = 0.823)

scVI
(ARI = 0.843, NMI = 0.823)

PatientMajor cell type

Figure C.4 Visualization and comparison between CellPLM (zero-shot) and scVI on the clustering
task.

C.7 Visualization of Gene Embeddings

In order to examine whether gene interactions can be encoded in CellPLM, we present a

visualization of pre-trained gene embeddings from the gene expression embedder in Figure C.5.

From the visualization, the gene embeddings maintain some latent structures. To further verify the

effectiveness of the latent structure, we highlight a specific family of genes, HLA genes. There are

multiple classes of genes in HLA gene family. For example, HLA class I genes (e.g., HLA-A, -B, and

122

Figure C.5 Visualization of gene embeddings in the pre-trained CellPLM demonstrate that CellPLM
successfully captures gene interactions in the initial gene embeddings. For example, HLA Class I
genes and HLA Class II perfectly form two clusters in the gene embedding space.

-C) present endogenous peptides to responding CD8+ T Cells while the class II (e.g., HLA-DR, -DP,

and –DQ) process exogenous peptides for presentation to CD4+ helper T Cells. From the UMAP

visualization, HLA gene embedding clusters perfectly match the functionality and characteristics of

those genes.

123

