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ABSTRACT

Proteins are essential biomolecules addressing challenges in medicine, nanotechnology, and in-

dustry. Protein engineering designs and optimizes these molecules for specific functions, such as

catalyzing reactions or facilitating drug delivery. However, designing proteins with desired proper-

ties is extremely challenging due to unpredictable mutation effects and complex fitness landscapes,

which depict the relationship between a protein’s sequence, structure, and function. Traditional

methods like directed evolution and rational design have limitations in exploring vast sequence

spaces and modeling amino acid interactions. Recent advances in machine learning (ML) and the

increasing availability of biological data have shifted protein engineering from a theory-driven to

a data-driven approach. Despite progress, challenges remain, such as capturing nuanced protein

behaviors under distinct biological conditions, enhancing data quality and diversity, and developing

models that handle complex protein-ligand interactions.

This dissertation explores innovative protein engineering approaches by integrating machine

learning (ML) and computational tools with biological insights. It addresses designing proteins

with desired properties, enhancing their numerical representations, and modeling protein-drug

interactions. Also, methodologies are developed to generate new-to-nature proteins with desired

properties and optimize experimental design strategies. Protein representation methods were opti-

mized by combining traditional encodings with protein sequence language models. This ensemble

approach achieved a 94% F1 score, enhancing sequence-function predictions by capturing diverse

protein fitness aspects. Performance varied for larger proteins and different protein properties

suggesting the need for specialized biologically aware ML methodologies. Additionally, the study

addressed the critical challenge of modeling protein-drug interactions, focusing on organic anion-

transporting polypeptides (OATPs). OATPs are crucial for drug absorption and distribution, and

significantly impact drug efficacy and safety. A comprehensive pipeline was developed, combin-

ing AlphaFold structure prediction, molecular docking, and a novel Heterogeneous Graph Neural

Network model named HIPO. This model captured complex inter and intra-molecular interac-

tions, outperforming existing methods for OATP inhibition prediction. By identifying key drug



attributes influencing these interactions, the study demonstrated the effectiveness of structure-based

approaches in elucidating protein-drug interactions, contributing to advancements in drug devel-

opment and toxicity prediction. In addition, key drug attributes affecting these interactions were

identified, emphasizing the need for structure-based methods. Advancing beyond protein represen-

tation and drug interaction modeling, this work addresses the generation of novel protein sequences

with desired properties. It integrates evolutionary information into generative ML models through a

dual approach: combining ancestral sequence reconstruction (ASR) with a Variational Autoencoder

(VAE) for sequence generation and utilizing ASR-derived data to fine-tune language models for

improved protein representations. This methodology explores sequences from evolutionary history

not observed in modern organisms, accessing a vast, unexplored protein space. This data-centric

approach leverages ASR to provide a rich source of information beyond extant species, emphasizing

the crucial role of biologically diverse datasets in machine learning frameworks. The result is the

generation of proteins with enhanced diversity and stability, particularly in thermal properties.

By synthesizing evolutionary insights with advanced ML techniques, this work expands the

possibilities for engineering proteins with unprecedented characteristics, In conclusion, this thesis

presents a comprehensive framework integrating ML with protein engineering, advancing the

design and optimization of biomolecules, and addressing specific biological challenges for improved

therapeutics and diagnostics applications.
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CHAPTER 1

INTRODUCTION

Proteins are biological machines involved in nearly all life processes [1, 2, 3, 4]. They are

composed of chains of amino acids that fold into three-dimensional structures, allowing them

to perform essential biological functions. The diverse chemical properties of the twenty natural

amino acids enable proteins to maintain cellular structure, facilitate chemical reactions [5, 6,

7], and transport drugs [8, 9]. Protein engineering is vital for modifying proteins to meet

modern industrial and medical needs by directing their natural evolution [10, 11, 12, 13]. This

field uses advanced techniques like recombinant DNA technology [14], CRISPR-Cas [15], and

high-throughput screening [16] to design proteins with specific functions, such as developing

antiviral peptides, engineering antibodies, and creating personalized therapies. Protein engineering

enhances enzyme specificity and functionality under various conditions and helps develop protein

therapeutics with improved pharmacokinetics, pharmacodynamics, and reduced immunogenicity

[17, 18, 19, 20, 21].

1.1 Fundamentals of Protein Engineering Guided by the Sequence-Structure-Function
Paradigm

Protein fitness [22, 23, 24], which measures how well a protein performs a specific task, is

influenced by its amino acid sequence, structural stability, and interactions with other molecules

(e.g., regulatory interactions [25], transport interactions [9], inhibition [26], and binding [27]).

Protein engineering alters protein functions through experimental methods inspired by natural

selection, aiming to yield high-fitness proteins that perform well in relevant tests. The interplay

between protein sequences and their functional outcomes highlights the transformative potential of

protein engineering. This sets the groundwork for innovative methods to tackle biological problems,

guided by the fundamental paradigm called the "sequence-structure-function" relationship [28, 29].

However, this is challenging due to the vast number of possible mutations. For example, a small

protein with 100 amino acids has 20100 possible sequences, more than the number of atoms in

the observable universe. Additionally, the complex relationship between protein sequences and
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their fitness creates a sparse and rugged fitness landscape, making it difficult to identify optimal

mutations [30, 31]. This rugged landscape means that even one mutation can drastically affect a

protein’s function, causing significant variability in fitness. Ultimately, the challenges posed by the

vast sequence space and rugged fitness landscape underscore the need for more strategic approaches

in protein engineering.

Protein engineers approach biological problems by employing a diverse array of methodologies,

all guided by the foundational concept of protein sequence-structure-function relationships[28, 29].

This concept articulates that the sequence of amino acids dictates a protein’s structure, and

in turn, its structure determines its function. A key task in this field is structure prediction,

exemplified by breakthroughs like AlphaFold [32], which reveals how sequences fold into intricate

three-dimensional shapes, enabling advancements in drug design and disease understanding.

Conversely, when a function or interaction is predefined, engineers focus on designing novel

(de novo) proteins tailored to fold into structures that execute specific functions [33]. This creative

process addresses the challenge of the vast and sparse search space of amino acid sequences.

Additionally, protein engineering extends to fitness optimization, aimed at refining an existing

protein’s stability and activity for enhanced function[34, 35]. Collectively, these efforts exemplify

how leveraging a broad spectrum of information beyond mere structure can lead to groundbreaking

advances in protein engineering.

Addressing complex biological challenges involves tools like rational design [36, 37, 38] and

directed evolution (DE) [39]. Rational design utilizes already-known information—including

protein sequences, structures, phylogenetic data, knowledge of active sites, and predictions from

simulations—to predict new, functional proteins. Techniques like X-ray crystallography [40],

NMR spectroscopy [41], cryo-electron microscopy (Cryo-EM) [42], and machine learning (ML)

models like AlphaFold [32] further aid this process. For example, rational design has created novel

enzymes to break down antibiotic-resistant bacterial walls, improving drug efficacy, and stabilizing

therapeutic proteins for enhanced drug delivery [43, 44, 45]. DE mimics natural selection in the lab

to iteratively improve proteins. Starting with a parent protein, random mutations create a library of
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variants, which are screened for desirable traits. DE has been impactful in enhancing the binding of

affibody proteins for improved HER2-positive breast cancer diagnosis [46], developing therapeutic

protein candidates with selective biological impact for treating a wide array of human disorders

including cancer and autoimmune/inflammatory diseases [47, 48], and improving nitrilases for

greener pharmaceutical synthesis [49]. This approach has significantly advanced therapeutic

efficacy, diagnostic accuracy, and industrial sustainability. Combining rational design and DE

has led to breakthroughs like enzymes for plastic degradation [50]. These methods are now

enhanced by machine learning and data-driven approaches. The fusion of traditional methods with

computational models and high-throughput screening is paving the way for innovative solutions in

medicine, diagnostics, industry, and environmental science.

1.2 A New Era in Protein Engineering: The Integration of Machine Learning

Recent advancements in ML techniques, along with the growing availability of biological

data, have fundamentally transformed protein engineering, shifting it from a theory-driven to a

data-driven discipline [51, 52]. Traditionally, theory-driven approaches relied on domain knowledge

and mathematical models to capture the attributes and physics of proteins. However, ML methods

focus on modeling observed data, which is particularly beneficial for the complex, high-dimensional

challenges encountered in protein engineering [53]. ML models extract meaningful features

from labeled protein sequence data, significantly enhancing predictive accuracy and generalization

[54]. These models identify patterns and relationships within the data, enabling the forecasting

of protein properties such as binding affinity, solubility, and stability [51, 55, 56, 57, 58, 59].

Despite the abundance of large-scale sequence data, the lack of experimental fitness annotations

necessitates the use of more advanced ML models, such as self-supervised and unsupervised

methods. Self-supervised learning techniques, including large language models (LLMs) [60, 61]

like AlphaFold [32] and Evolutionary Scale Modeling (ESM) [62], leverage inherent patterns in

unlabeled sequences to decipher the biological "language" of proteins, enabling accurate predictions

of their structure and function [62, 63]. Generative models, such as ProGen [64] and ProtVAE

[65], ProtGPT2 [66], and ProteinGAN [67], learn the underlying data distribution to create novel
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proteins with desired characteristics. They use various neural network architectures, including

variational autoencoders, transformers, and adversarial neural networks [68]. LLM-based models

like TAPE [69], UniRep [63], and ProtTrans [70] capture dependencies within protein sequences,

resulting in rich semantic and syntactic numerical representations. By integrating these advanced

ML techniques with traditional protein engineering methods, researchers can effectively navigate

the high-dimensional landscape of protein design and engineering. This comprehensive toolkit not

only enhances our understanding of protein data but also paves the way for innovative solutions in

industrial, medical, and research applications.

The continued developments in ML have significantly enhanced our ability to analyze extensive

datasets, predict protein mutations, and generate novel functional proteins. However, these

techniques often face challenges due to the complex nature of biological problems. In protein

engineering, effectively predicting protein properties or designing novel proteins requires integrating

biological knowledge with ML tools. The protein family and specific property being studied can

drastically influence the problem-solving strategy [24]. While protein language models have been

successful, training simpler ML models on one protein family at a time with evolutionary tools like

alignment has sometimes yielded more promising results [69, 71]. Additionally, LLMs trained on

public datasets may lack the high-quality, specialized data needed for protein engineering, where

data quality and diversity are crucial for reliable predictions [72, 73, 74]. Furthermore, the property

under investigation, whether stability or binding, also dictates the complexity of the ML models

required [24]. By identifying and addressing these issues, we can achieve considerable progress in

the field, paving the way for more precise and effective protein engineering solutions.

1.3 Thesis Overview: ML Solutions for Biological Challenges

This thesis investigates optimization methods for navigating protein fitness space by integrating

ML and computational tools to address domain-specific challenges. The five chapters tackle critical

issues such as reducing data noise, optimizing ML algorithms for next-generation sequencing

(NGS) data [75], and employing advanced techniques in protein engineering. They delve into

the use of generative models, data-centric approaches, and evolutionary algorithms to boost ML
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performance and improve protein fitness predictions. Chapter Two (Mardikoraem, Yeast Surface

Display,2022) [76] explores the latest ML algorithm advancements and their application to predict

sequence mutations before experiments, integrating ML into directed evolution techniques. Chapter

Three (Mardikoraem, Pharmaceutics 2023) [24] focuses on enhancing ML model performance by

refining protein representations, managing specific properties like sequence length, and addressing

imbalanced datasets. Chapter Four examines Organic Anion Transporter Proteins (OATPs), crucial

in drug development, using multiple ML algorithms to predict their behavior and highlight

important physicochemical properties despite the scarcity of experimental structures. Chapter

Five (Mardikoraem, bioinformatics, 2023) [68] provides a comprehensive overview of ML-driven

protein engineering, particularly language modeling and generative models for protein sequence

modeling, identifying gaps and familiarizing researchers with this specialized field. Chapter Six

(Mardikoraem, ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular

Design, 2024) [74] emphasizes the importance of high-quality domain-specific data and data-centric

methods, highlighting how evolutionary information and ancestral sequence reconstruction can

enhance generative models. Overall, this thesis explores the integration of advanced ML techniques,

generative models, data-centric approaches, and evolutionary algorithms to contribute to the

ongoing advancements in protein engineering.

In Chapter Two, I developed a robust methodology for effectively mapping next-generation

sequencing (NGS) [75] data to experimental annotations from high-throughput techniques. This

incorporates cleaning the data, preprocessing, algorithm selection, and post-processing. For

cleaning, I carefully chose and combined multiple software (PEAR [77], SEQTK [78]) to minimize

experimental noise and increase the signal-to-noise ratio (SNR) [79] in the initial data. Then,

we do preprocessing, such as identifying how many times sequences appeared in the obtained

data and ranking them from highly functional to low functional. Other ML processing methods

such as the choice of protein numerical representations to make it compatible with ML and ML

algorithm selection were explored. The most significant contribution of this book chapter aside

from a comprehensive guideline on the implementation of ML in NGS data, is how simple ML
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models can contribute to protein engineering paradigms. ML-driven methodologies offer several

key advantages: (i) They provide a better starting point for directed evolution techniques, which are

highly path-dependent and rely on the initial sequence. (ii) They help explore previously uncharted

regions of fitness space, revealing the relationship between sequence data and its properties. (iii)

They assist in experimental design, including the design of oligonucleotides.

In Chapter Three [24], I investigated the performance of language models in predicting protein

properties, comparing them to simpler representations like one-hot encoding and physicochemical

encoding. This study aimed to understand how different representations capture various aspects

of protein fitness. I proposed an ensemble technique that combines these methods to enhance

ML algorithm performance. The study evaluated four representation methods: one-hot encoding,

physicochemical encoding, UniRep [63], and ESM [62]. It also examined the impact of protein

size, revealing significant differences between small proteins (≤120 amino acids) and large proteins

(400–1500 amino acids) . For small proteins, one-hot encoding significantly boosted classification

metrics, achieving a mean F1-score of 94% when combined with other encodings. However, it

proved problematic for large proteins due to sparsity. The findings demonstrated that SMOTE

[80] outperformed undersampling for imbalanced datasets when using one-hot, UniRep, and ESM

representations. Ensemble learning increased predictive performance by 4 % in affinity-based

datasets and achieved high F1 scores in stability prediction using ESM. By employing advanced

sampling techniques and multiple-criteria decision-analysis (MCDA) [81], the study ensured

statistical rigor. This approach not only benchmarks and compares protein representation models

but also highlights the benefits of ensemble modeling in capturing distinct aspects of protein fitness.

Critical features for distinguishing functional proteins were identified, providing a solid foundation

for future research in protein engineering and significant advancements in predictive modeling.

Another significant focus of this thesis in Chapter Four is overcoming the challenges associated

with OATPs [82, 83]. Drug-drug interactions (DDIs) pose substantial challenges in pharmacology,

potentially leading to severe side effects and reduced therapeutic efficacy. The FDA’s guidelines

emphasize the importance of predictive DDI models in drug regulation. While predictive models
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for metabolic DDIs involving cytochrome P450 enzymes are well-developed, there is a notable

gap in transporter-mediated DDI (tDDI) models, particularly for OATPs. These transport proteins

are crucial in ADME processes (absorption, distribution, metabolism, and excretion) and play a

vital role in drug disposition and pharmacokinetics. The lack of high-resolution structural data for

OATPs and significant variability in available in vitro data have historically limited the development

of accurate predictive models. This research employs a multimodal approach, combining advanced

neural network architectures like GNNs (graph neural networks) and molecular modeling tools to

integrate diverse information sources effectively. GNNs model complex molecular interactions and

spatial relationships within proteins, enabling the development of novel, generalizable methods for

modeling OATP-drug interactions and filling a critical gap in transporter-DDI prediction models.

Chapter Five delves into advanced sequence modeling techniques, expanding on the previous

chapter’s focus on model improvement and language model performance in predicting protein

properties, which offers a more holistic approach to examining current ML model development and

its success in the protein engineering domain [68]. With the rapid expansion of high-throughput

omics technologies, the volume of protein sequence data has surged, necessitating sophisticated

ML methods. This chapter systematically reviews promising neural networks for protein sequences,

covering core mathematical concepts and their implementation in protein engineering tasks. The

discussion begins with language models, ideal for protein sequence data due to their ability to

handle variable sequence lengths and track long-term dependencies while maintaining token

order. It covers recurrent neural networks (RNNs) [84], the self-attention mechanism [85],

and transformers [86]. The chapter then explores generative models: variational autoencoders

(VAEs) [87], generative adversarial networks (GANs) [88], and diffusion models [89]. VAEs use

a probabilistic approach to learn data distribution, GANs involve competing neural networks to

generate realistic samples, and diffusion models add noise to data and reverse the process to generate

new samples. Additionally, current challenges and future directions in applying these models to

protein engineering are discussed, providing practical insights for researchers.

In Chapter Six [74], a data-centric approach is adopted by integrating evolutionary data,
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particularly through ancestral sequence reconstruction (ASR) [90], to enhance the generative

and language models discussed in Chapter Five. ASR provides high-quality training datasets

from evolutionary trajectories and diverse functional adaptations, improving the robustness and

generalizability of ML models. Evolutionary insights are valuable because ancient proteins often

exhibit desirable traits: stability, adaptability, and pharmacologically relevant properties [90, 91].

By utilizing statistical models and phylogenetic tree reconstruction, extensive, high-quality datasets

are created for training generative models. These datasets, generated with the AP-LASR [91] tool,

include homogeneous and diverse sets to enhance sequence variability and model robustness.

Instead of relying solely on the most probable sequences, sampling from a posterior probability

distribution captures a wide spectrum of evolutionary insights [92]. Both generative models and

language models are employed to utilize evolutionary data: the former to generate novel hyperstable

and diverse protein sequences, and the latter to create competitive and sometimes superior protein

representations for downstream stability prediction tasks, informed by evolutionary information.

VAE is employed for generating novel protein sequences, transforming them into a computationally

suitable format using one-hot encoding, and processing them through a 1D convolutional neural

network (CNN) [93] layer to capture local sequence patterns. The VAE’s architecture, with a

latent space dimensionality of 100, captures the nuances of protein sequence variability. The

generated sequences are evaluated using AlphaFold2 for 3D structure prediction and FoldX [94] for

stability calculations, ensuring structural integrity and thermal stability. Additionally, a new protein

representation aware of their evolutionary path is introduced using the ESM2 protein language

model. This representation is extracted to refine protein family classification tasks with KNN

[95], Random Forest [96], and XGBoost algorithms [97], resulting in competitive and sometimes

better performance in stability prediction tasks. This comprehensive framework demonstrates that

addressing specific biological problems requires a nuanced understanding of both the biological

context and the strategic application of appropriate ML tools, leading to more efficient and effective

protein design.
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CHAPTER 2

MACHINE LEARNING-DRIVEN PROTEIN LIBRARY DESIGN: A PATH TOWARD
SMARTER LIBRARIES

1

Abstract

Proteins are small yet valuable biomolecules that play a versatile role in therapeutics and

diagnostics. The intricate sequence-structure-function paradigm in the realm of proteins opens the

possibility for directly mapping amino acid sequences to function. However, the rugged nature

of the protein fitness landscape and an astronomical number of possible mutations even for small

proteins make navigating this system a daunting task. Moreover, the scarcity of functional proteins

and the ease with which deleterious mutations are introduced, due to complex epistatic relationships,

compound the existing challenges. This highlights the need for auxiliary tools in current techniques

such as rational design and directed evolution. To that end, state-of-the-art machine learning can

offer time and cost efficiency in finding high-fitness proteins, circumventing unnecessary wet-lab

experiments. In the context of improving library design, machine learning provides valuable

insights via its unique features such as high adaptation to complex systems, multi-tasking and

parallelism, and the ability to capture hidden trends in input data. Finally, both the advancements

in computational resources and the rapidly increasing number of sequences in protein databases

will allow more promising and detailed insights delivered from machine learning to protein library

design. In this chapter, fundamental concepts and a method for machine learning-driven library

design leveraging deep sequencing datasets will be discussed. We elaborate on i) basic knowledge

about machine learning algorithms, ii) the benefit of machine learning in library design, and iii)

methodology for implementing machine learning in library design.

Keywords: Library Design, Directed Evolution, Machine Learning, Deep Learning
1This chapter is adapted from content published in "Machine Learning-driven Protein Library Design: A Path

Toward Smarter Libraries," SpringerLink. All rights reserved. For more information, visit https://link.springer.com/
protocol/10.1007/978-1-0716-2285-8_5.
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2.1 Introduction

Proteins are molecules with a wide variety of applications in biological processes. They

have many fundamental functions in living organisms such as being catalysts, receptors, structural

elements, transporters, and regulators [1, 2, 3, 4, 5]. Accordingly, increased potential for mapping

the protein sequence to its function will result in comprehension and regulation of biological

processes associated with functional disorders. As a result, techniques to efficiently navigate the

protein fitness landscape are at the forefront of protein engineering. Nevertheless, the complexity

and ruggedness of the protein fitness landscape, and the high potential of failure in searching

through the fitness landscape (mutations resulting in unstable and non-functional variants), make

this task more demanding. A growing number of computational and experimental approaches

(e.g. high-resolution stability calculations [reference to stability calculation in the book chapter],

virtual screening [6], deep sequencing [7], cytometry-based selections [8], ancestral sequence

reconstruction [ref to ASR in book chapter]) seek to address these gaps in knowledge.

Machine learning algorithms offer a platform for harnessing large, diverse datasets to understand

natural protein features and guide protein engineering efforts. This provides the opportunity to

map protein sequences to function without requiring explicit biophysical knowledge of individual

sequences. Another advantage of such algorithms lies in their ability to expand the utility of

experimentally derived sequences beyond the typically small subsets of lead variants. While

directed evolution discards low-fitness protein variants, machine learning can leverage these

sub-optimal variants to enhance the model’s predictive performance [9]. Machine learning proves

particularly advantageous for protein engineering campaigns characterized by low-throughput or

labor-intensive selection processes. Therefore, its usefulness depends on factors such as library

size, screening difficulty, fitness landscape ruggedness, and the accuracy of the predictive model.

As a result, the ability to capture complicated trends among protein datasets, aided by nonlinear

functionality to reveal important features, makes machine learning a powerful tool for guiding

protein library design.

Machine learning has played an important role in protein engineering for more than 30 years,
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yielding improved prediction of tertiary structure [10] and protein-protein interactions [11] using

amino acid sequence information alone [10, 11]. Machine learning algorithms such as support

vector machines (SVMs), random forest (RF), and gradient boosting machines (GBMs) have

provided platforms for protein function and property prediction including stability, catalytic activity,

and secondary structure [12, 13, 14, 15]. Deep learning (DL) [16], as a sub-field of machine

learning, imitates human brain functionality in decision-making and learning experiences. Utilizing

non-linear functions, the algorithm can learn and extract desired features from the provided input

data, well suited for dealing with rich datasets with high dimensionality. This makes deep learning

methods particularly promising for evaluating sequence–function trends among a rapidly growing

number of protein sequences. Although practical and promising, developing a fine-tuned strategy

to employ machine learning in the field demands an awareness of the existing challenges and

capabilities. Here, we present a procedure for establishing deep-learning models that guide protein

library design. Common challenges and best practices in this burgeoning field will be highlighted.

We consider multiple practical applications of machine learning within the context of protein

library design:

• Combinatorial library design based on deep sequencing data following high-throughput

directed evolution

• Process parallelization and parameterization of features within far-reaching parts of the fitness

landscape

• The ability to sample the diversity applied by specific degenerate codon techniques and

oligonucleotide combinations before experimental implementation.

2.1.1 Providing a better starting point for directed evolution

Directed evolution campaigns are initialized using a parent sequence to implement mutations.

Therefore, the path-dependency of directed evolution benefits from a high-fitness or highly stable

sequence as a starting point to increase the probability of finding optimal regions within a fitness

landscape [17]. Machine learning can guide directed evolution by identifying a large collection of

promising sequences based on curated input data. In a recent example, a machine learning model
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was trained based on the initial library of fluorescent proteins to build a second small yet enriched

protein library [18].

2.1.2 Investigating unexplored parts of the fitness landscape

Machine learning algorithms provide some unique advantages that enable finding unexplored

variants that may possess high performance. Large datasets with high-complexity algorithms are

not only able to predict functionality but can learn hidden characteristics and rules that exist in

provided data. As an example, UniRep [19, 20] has been trained on protein sequences in Uniref50

[21] on 24 million amino acid sequences to obtain general trends in protein sequences and statistical

representations of amino acids. Another factor that is effective in finding the unexplored high-fitness

sequences is the application of parallelism and multi-tasking within machine learning. Multi-task

learning is a subset of machine learning algorithms that trains multiple tasks simultaneously in one

unique model [22]. This feature enables capturing the epistatic relationships in protein sequences

by providing a path-independent search in the fitness landscape [23]. In this way, applying machine

learning to protein engineering enables an increased likelihood of accessing undetected regions of

the fitness landscape.

2.1.3 Estimating degenerate codon performance via fitness distribution analysis

Implementing a well-trained machine learning algorithm enables the evaluation of multiple

design strategies and reduces experimental effort. Various experimental techniques have been

developed to improve the efficiency of directed evolution such as gene shuffling [24] and neutral

drift library screening [25] to manage the library size and increase the likelihood of finding the

desired property. Another highly used method is to generate libraries based on degenerate codons to

introduce tailored diversity at individual positions. As an example, while NNK is used to generate a

library coding for all amino acids (with 3% stop codons), other combinations such as NYC (coding

for hydrophobic residues), KST (coding for small residues), and NDT (coding for a balanced set

of all amino acid properties) are available. In addition, several impressive computational attempts

have been used to even go beyond these techniques and optimize the oligonucleotide combinations

[26, 27]. Among these potential degenerate codon techniques for the library design, the user can
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pre-analyze their performance for their desired protein.

Figure 2.1 proposes a comparison of candidate degenerate codons. As a base platform, an initial

deep-learning model is trained on the objective protein. Subsequently, the algorithm can generate

sequences that incorporate candidate degenerate codons and assign a predicted fitness score to each

based on the previously trained model. Finally, the distribution of fitness scores is calculated for all

variants of each degenerate codon strategy. Statistical tools such as Jensen-Shannon-Divergence

[28] and survival function [29] provide a direct comparison between individual distributions in

terms of diversity and fitness (see Note 1). It should be emphasized that the criteria for choosing

the best performance depends on the particular application the platform is used for.
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Figure 2.1 Evaluation of degenerate codon performance within multiple design strategies using the
trained model based on experimental data on the protein of interest. (A) Elaboration of different
hypothetical degenerate codon strategies in three different sites of the protein (the previously
trained model needs to be trained on high-quality experimental data to predict the fitness of
generated sequences in each technique.) The first utilizes the NNK technique in all sites while the
second uses different degenerate codons at each site. The third strategy uses custom mix codons
(versatile ratios of base pairs). Sequences compatible with the rubrics of each strategy can be
generated and a fitness score for the generated sequences will be assigned to each sequence based
on the previously trained model in the protein of interest. (B) The score function (transformed and
standardized predicted scores) distribution will be obtained for each candidate library. One method
to comprehend the predicted data is by clustering the generated data. The exemplary plot shown
here is based on both the sequences and scores of the three strategies when each dot represents one
sequence produced by one of the strategies. The radius of the dots represents their fitness scores,
and the distance between any two dots represents how distant those amino acid sequences are
from each other in sequence space. (C) The Jenson-Shannon-Divergence is useful for quantifying
differences that exist between individual distributions and a reference distribution or the extent of
similarity between candidates’ distributions. (D) The survival function provides the probability of
improved score functions compared to the current score function, providing more insight for the
analysis of distributions. (E) Box plots can be produced based on the generated fitness scores and
are informative for recognizing the quantiles and making comparisons between them in the three
different strategies.
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2.2 Materials

There are a plethora of software libraries and packages provided for implementing model

optimization, machine learning, and deep learning algorithms. Choosing one depends on the

specific application that the user has in mind. TensorFlow [30], Keras [31], PyTorch [32], and

Scikit-learn [33] are among the most popular libraries with each having some trade-offs (See Note

2 for analysis). The discussion found here focuses on deep learning in Keras. Please refer to

our GitHub (https://github.com/WoldringLabMSU/DeepLearning.git) for a collection of relevant

Python scripts to guide model implementation as well.

• The latest version of Python2 installed (Installing Anaconda3 is highly suggested for beginners

as it is straightforward to use).

• Spyder or Jupyter Notebook environments in Anaconda are both popular and practical in

doing machine learning and deep learning projects.

• pandas [34] (For dealing with data frames)

• numpy [35] (For efficient mathematical operations)

• scikit_learn [36] (This is mostly used in machine learning but its preprocessing section

has a myriad of useful functions for analysis and fine-tuning the data)

• tensorflow [37] (For using Keras, its backend should be installed (CNTK and Theano are

other options, as well.)

• keras [31]

To use these libraries, use pip install X in the command prompt.

2.3 Methods

Below is a general workflow representing the required actions in building a deep learning

algorithm from deep sequencing data. Here, the goal is to produce a supervised learning algorithm

for predicting protein function based on amino acid sequence.
2https://www.python.org
3https://www.anaconda.com
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Figure 2.2 This figure provides the overall workflow of what the user may encounter when using
deep sequencing data and wants to apply a machine learning algorithm. The main steps for using
this path are data processing, choosing an appropriate learning algorithm, and deciding based on
the algorithms’ performance. A detailed explanation of the steps is mentioned in the content.

2.3.1 Data processing as an initial yet pivotal step in any DL algorithm

The main purpose of this step is to prepare the data to be fed into the deep learning algorithm.

Importantly, what can be learned by the model strongly depends on what is provided to the algorithm

as an input. If the aim is to map the sequence to function, the protein sequence should be as an input

labeled with the desired functionality (output). Three important steps in data processing include

input data refinement, input data representation, and output data representation (if dealing with

supervised learning). See Note 2.

2.3.1.1 Input data refinement

First, one should input and standardize the features. One rationale behind this refinement is that

scaling the input removes the “importance” of the raw magnitude of one factor relative to another

and as a result reduces estimation errors and calculation times. One package which can be used for

standardization is StandardScaler or RobustScaler (advantageous when dealing with outliers)
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from the sklearn preprocessing package:

from sklearn.preprocessing import StandardScaler

scaler1 = StandardScaler()

scaler1.fit(Feature)

Feature_standardized1 = scaler1.transform(Feature)

From sklearn.preprocessing import RobustScaler

scaler2 = RobustScaler()

scaler2.fit(Feature)

Feature_standardized2 = scaler2.transform(Feature)

2.3.1.2 Input data representation

One-hot encoding (Note 3), integer encoding (Note 4), physiochemical property-based encoding

(Note 5), UniRep encoding4 [19], TAPE5 [38] are notable options for representing amino acid

sequence data. An example code for one-hot encoding the input data representation is mentioned

in the following. The user can manually one-hot encode the sequences via defining dictionaries or

using particular packages in Python (Refer to https://github.com/WoldringLabMSU/DeepLearning.

git for more information on encoding).

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

Amino_Acids = ["A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M",

"N", "P", "Q", "R", "S", "T", "V", "W", "Y"]

label_encoder = LabelEncoder()

onehot_encoder = OneHotEncoder(sparse = False)

integer_encode = label_encoder.fit_transform(Amino_Acids)

4https://github.com/churchlab/UniRep
5https://github.com/songlab-cal/tape
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integer_encoded = integer_encode.reshape(len(integer_encode), 1)

Amino_Acids_onehot = onehot_encoder.fit_transform(integer_encoded)

2.3.1.3 Output data representation

Following high throughput selection and deep sequencing of an initial combinatorial library,

amino acid sequences can be labeled based on the observed enrichment ratios as a metric for relative

fitness [39]. Depending on the experimental conditions for selection and depth of sequencing, the

distribution of enrichment ratio data may take on various forms and require further refinement (see

Note 6).

2.3.2 Deep learning algorithm selection requires an understanding of their structure

2.3.2.1 Overview

Artificial neural network (ANN) architecture is inspired by human brain function which can

learn from various input data. The building blocks for this network (neurons) receive information

from adjacent neurons, and then process this information with the aid of an activation function

(see Note 7) before being sent to other downstream neurons. The effect and significance of each

connection are proportional to its assigned weight.

There are many deep learning methods utilized in the field from the feed-forward neural network

(FNN) to the convolutional neural network (CNN) [40] and recurrent neural network (RNN)

[41]. FNNs are primary neural network algorithms that are rigorous and powerful in capturing

high-dimensional features. It consists of three distinct layers (each composed of neurons): the input

layer, the hidden layer, and output layer. The input layer receives the data features, the hidden layer

transforms the input layer to the output by updating the weights iteratively to minimize the loss

function. For each of these neural network algorithms, backpropagation is used to update model

weights to minimize the loss function via gradient descent. Finally, the output layer captures the

results. Figure 3 illustrates one example structure of a feed-forward neural network.
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Figure 2.3 This figure represents one example of a feed-forward neural network. It consists of three
main layers: the input, hidden layer(s), and output layers. It is a symbolic representation of the
path from sequence to function. The magnifying glass focuses on one neuron (a21), illustrating
how information passes through every neuron. Moreover, the information from six neurons in the
previously hidden layer is multiplied by their weights (different colors represent the activation level
in each corresponding neuron). Afterward, the result will be summed with bias and pass through
the activation function to determine the output of that neuron.

Convolutional neural networks are an additional deep learning algorithm inspired by the visual

cortex in animals. CNNs capture hidden relationships and spatial dependencies in provided input

via various filters, pooling, and convolutional kernels. Therefore, local properties will be obtained

by using sliding filters and non-linear functions [42]. In recurrent neural networks, there is a cyclic

connection in the algorithm structure, whereby the current state of the algorithm will be updated

based upon the past state and the current input data [43]. This characteristic makes RNN useful

in time series data and capturing temporal relationships in sequences. In addition, variations of

RNN such as LSTM [44] and GRU [45] have been developed to resolve the potential problems
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in its architecture such as capturing long-distance relationships and resolving vanishing gradient

problems. The best performance in the mentioned algorithms depends on the type of data and

purpose for using deep learning. However, more advanced architectures like RNN/CNN can learn

properties more efficiently than a traditional FNN.

2.3.2.2 Guidance for building a deep learning structure

Here we build a simple FNN in Keras to demonstrate a potential structure for constructing a

neural network (https://github.com/WoldringLabMSU/DeepLearning.git).

# Importing the required libraries from Keras

from tensorflow import keras

import keras

from keras.models import Sequential

from keras.layers.core import Dense

from keras.optimizers import Adam

from keras.activations import relu, sigmoid

from sklearn.model_selection import train_test_split

# Splitting the data set into train and test

X_train, X_test, Y_train, Y_test = train_test_split(features, labels,

test_size=0.2, random_state=42)

# Defining the model

My_Model = Sequential()

# Defining the input layer, the number of neurons in that layer

My_Model.add(Dense(20, activation=’relu’, input_shape=(100,)))
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# Defining the hidden layers , number of neurons in each hidden layer,

and corresponding activation function

My_Model.add(Dense(10, activation=’relu’))

My_Model.add(Dense(5, activation=’relu’))

# Defining the output layer

My_Model.add(Dense(1, activation=’relu’)) # The last activation function

depends on the inherent nature of the task (see note 9)

# Compiling the model and determining the optimizer, learning rate,

loss function, and evaluation metrics

My_Model.compile(Adam(lr=0.01, decay=0.003), loss=’mean_squared_error’

, metrics=[’mse’])

# Fitting the defined model

My_Model.fit(X_train, Y_train, batch_size=100, epochs=40, verbose=2,

validation_split=0.2, shuffle=True)

# Evaluating the fitting performance

Metric = My_Model.evaluate(X_test, Y_test, verbose=2)

# Predicting the labels for the test data set

y_test_predicted = My_Model.predict(X_test, verbose=2)

2.3.3 Visualization guidance

Evaluation metrics provide useful insights into algorithm performance. Visualizations of these

results help to further interpret and communicate the findings. For example, the seaborn library
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allows for showing the correlation between predicted output values versus actual values. Below is

a simple code implemented for this purpose.

import seaborn as sns

sns.joint plot(Prediciton, Actual_value, kind=’scatter’, s=150, color=’m’,

edgecolor="skyblue", linewidth=2)

Understanding and building such a structure is an important first step to take for utilizing

deep learning in different projects. However, it should be emphasized that, even with a powerful

algorithm and appropriate data processing step, the prediction might be drastically off which leads

us to decision-making and further fine-tuning steps.

2.3.4 Decision Making & evaluating parameters

After processing the data and choosing the appropriate algorithm, one should be able to

accurately evaluate the performance of the algorithm. Evaluation metrics depend on whether

the problem is regression or classification. In classification, metrics such as accuracy, confusion

matrix, AUC, and Recall are useful. While in regression, metrics such as RMSE, MSE, and MAPE

are better suited (see Note 8). Obtaining poor metrics for a model may arise from various stages in

the algorithm such as inadequate input data, deficient preprocessing step, overfitting, and untuned

hyperparameters. Choosing the right hyperparameters and preventing the system from overfitting

are two necessary tasks in training any deep learning algorithm. Two generally used methods for

resolving some of these issues are elaborated in the following.

2.3.4.1 Hyperparameter Optimization [46]

Hyperparameters are a set of variables that dictate various characteristics of the algorithm’s

structure and influence the process used for training models. It can be considered as a meta

optimization technique whereby parameter value fitness is monitored via the loss function during

the training process [47]. Multiple methods can be employed for searching through hyperparameter

space (e.g. manual search, grid search, random search, and Bayesian optimization). The manual

search involves tuning the hyperparameters by a user based on guess and check. In grid search,
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for each parameter of interest, the user defines a list of values to implement. The algorithm then

calculates the loss for all possible combinations of parameter values. In random search, some but

not all combinations of parameters will be selected randomly, and the best loss will be chosen based

on the selected parameters. Bayesian optimization offers high efficiency by using information from

the past as an experience to choose the next set of hyperparameters. HYPEROPT6 and OPTUNA7

are among the Python libraries designed for hyperparameter optimization based on the objective

function. (Refer to https://github.com/WoldringLabMSU/DeepLearning.git for more information).

2.3.4.2 K-fold cross-validation

This resampling approach allows for more accurate prediction in model performance using even

a limited data set. It splits the data into k complementary groups and uses k-1 groups for training

and one group for evaluating performance. The performance of the cross-validation is calculated by

taking the mean and variance over all k performances. This enables a less biased estimate of model

performance [47]. (Refer to https://github.com/WoldringLabMSU/DeepLearning.git, for example,

K-fold cross-validation).

2.3.5 Library Construction

Machine learning techniques enable the design of smart libraries by identifying the protein

positions that are highly amenable to mutation and determining the most suitable degenerate

codon candidate(s) for the protein of interest. Based on these designs, full-length genes can

then be constructed using overlap extension PCR of degenerate oligos to incorporate the intended

site-wise amino acid diversity. Finally, the newly constructed full-length gene library, combined

with a linearized yeast surface display vector (e.g. pCT-CON2), can be electroporated into yeast

(EBY100) [48] and evaluated by high-throughput techniques [49, 50, 51, 52, 53].
6http://hyperopt.github.io/hyperopt/
7https://optuna.org/
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Notes

2.3.6 Learning paradigms in ANN

The learning paradigms in ANN are supervised learning, unsupervised learning, semi-supervised

learning, and reinforcement learning. In supervised learning, the data are provided with assigned

labels that then guide the algorithm to learn the input-output mapping through a backpropagation

process. Unsupervised learning algorithms (e.g. K-nearest neighbors and K-means) are used when

there are no values assigned to the input features. This allows for the detection of patterns even

when additional information is not provided with the input data. Semi-supervised learning is a

method well suited where only partially labeled data exists, but the algorithm aims to fully benefit

from provided information either labeled or unlabeled [54]. Reinforcement learning is agent-based

learning interacting with the environment. Therefore, the algorithm learns based on rewards from

correct prediction and penalties from incorrect guesses (i.e. trial and error methodology) [55].

2.3.7 Deep learning packages analysis

TensorFlow is one of the most popular and fastest evolving open source deep learning tools

[37]. It is compatible with both GPU/CPU computation and is well-suited for working with

multi-dimensional arrays. One downside could be the low-level API which makes it not the

ideal choice for the direct creation of deep learning algorithms. Keras (open source) can support

backends such as CNTK, TensorFlow, and Theano and its simple API makes it straightforward to

implement. PyTorch is among the more flexible programming packages in Python and supports

tensor computation and GPU acceleration. Its dynamic graph and easy debugging make it a strong

option to choose. At its core, it uses CPU and GPU tensor and NN backends. Therefore, PyTorch

brings speed and flexibility to deep learning models despite needing third-party visualization [56].

Regardless of the choice in packages, the input data’s magnitude and quality will strongly impact

the predictive power of the resulting model.

2.3.8 One-hot encoding

The simplest method is to use one-hot encoding by constructing a matrix of one and zeros where

one represents the existence of the element at a specific position of the sequence. One-hot encoding
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is easy to implement and has been proven to be effective in many cases, yet it is highly memory

intensive and struggles to capture the relationship between amino acids in protein sequences. This

large and sparse encoding often leads to complications in training as a result of the inherently high

dimensionality.

2.3.9 Integer encoding

Integer encoding is implemented by representing each amino acid by an integer. For integer

encoding one observed drawback is the tendency of the system to assume linear relationships among

the provided labels. For example, if the labels are 1, 2, and 3, the system assumes a relationship

between the amino acids (such that 1 is closer to 2 than 3) that are assigned to these labels. As a

result, orthogonality between the labels matters. However, integer encoding is often used with a

linear embedding layer (see tf.keras.layers.embedding) whereby integer encoding calls an

embedding column like a “lookup” table.

2.3.10 Property-based encoding

Some practical encodings are obtained based on the physiochemical properties (e.g. charge,

hydrophobicity, and size) of the sequences [57]. One example is the principal components score

Vectors of Hydrophobic, Steric, and Electronic properties (VHSE8) [58].

2.3.11 Desired data distribution for DL algorithms

Gaussian-like distributions tend to have better performance in deep learning. Therefore, defining

scoring functions that change the distribution of labels is a viable option. Power transform functions

are used to reduce the skewness of data and make more Gaussian-like distributions. For example,

normal power transform functions may take the nth root or the nth order logarithm of the variable.

More advanced power transformers include Box-Cox and Yeo-Johnson methods. To obtain new

distributions with the mentioned methods, the Scipy [59] library or sci-kit-learn preprocessing

package called as PowerTransformer can be used.

# Example implementation

import scipy
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import scipy.stats

Yeo-Johnson = scipy. stats.yeojohnson(label_List)

Box_Cox = scipy. stats.boxcox(label_List)

2.3.12 Activation function

One suggestive method is to use ReLU in all hidden layers and choose an appropriate activation

function for the output layer to match the distribution of data with the nature of the task. Generally,

for the output layer, sigmoid (for binary-class), softmax, and tanh (for multi-class) are used for

classification tasks, and linear activation function is used for regression.

2.3.13 Evaluation metrics

Evaluation metrics are representative of algorithm performance and should be considered within

the context of the nature of the problem and origin of the input data. As an example, in biased

data when 90 percent of the population is in category 1 and the remainder are in category 2, the

algorithm probably predicts all the data to be in the first category. In this case, if one wants to

rely on the metrics, the accuracy will be 90 percent which does not address the performance of the

algorithm. In this case, the confusion matrix provides useful information about the number of false

positives, false negatives, true positives, and true negatives.
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CHAPTER 3

PROTEIN FITNESS PREDICTION IS IMPACTED BY THE INTERPLAY OF
LANGUAGE MODELS, ENSEMBLE LEARNING, AND SAMPLING METHODS

1

Abstract

Advances in machine learning (ML) and the availability of protein sequences via high-throughput

sequencing techniques have transformed the ability to design novel diagnostic and therapeutic

proteins. ML allows protein engineers to capture complex trends hidden within protein sequences

that would otherwise be difficult to identify in the context of the immense and rugged protein

fitness landscape. Despite this potential, there persists a need for guidance during the training and

evaluation of ML methods over sequencing data. Two key challenges for training discriminative

models and evaluating their performance include handling severely imbalanced datasets (e.g., few

high-fitness proteins among an abundance of non-functional proteins) and selecting appropriate

protein sequence representations (numerical encodings). Here, we present a framework for

applying ML over assay-labeled datasets to elucidate the capacity of sampling techniques and

protein-encoding methods to improve binding affinity and thermal stability prediction tasks. For

protein sequence representations, we incorporate two widely used methods (One-Hot encoding

and physiochemical encoding) and two language-based methods (next-token prediction, UniRep;

masked-token prediction, ESM). Elaboration on performance is provided over protein fitness,

protein size, and sampling techniques. In addition, an ensemble of protein representation methods

is generated to discover the contribution of distinct representations and improve the final prediction

score. We then implement multiple criteria decision analysis (MCDA; TOPSIS with entropy

weighting), using multiple metrics well-suited for imbalanced data, to ensure statistical rigor in

ranking our methods. Within the context of these datasets, the synthetic minority oversampling

technique (SMOTE) outperformed undersampling while encoding sequences with One-Hot, UniRep,
1This chapter is adapted from content published in “Protein Fitness Prediction Is Impacted by the Interplay of

Language Models, Ensemble Learning, and Sampling Methods.” All rights reserved. For more information, visit
https://doi.org/10.3390/pharmaceutic3A.15051337.
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and ESM representations. Moreover, ensemble learning increased the predictive performance of

the affinity-based dataset by 4% compared to the best single-encoding candidate (F1-score = 97%),

while ESM alone was rigorous enough in stability prediction (F1-score = 92%).

Keywords

Machine learning; protein fitness prediction; embeddings; sequence representation; imbalanced

assay-labeled datasets; sampling methods; ensemble learning; MCDA; TOPSIS
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3.1 Introduction

Proteins are biological machines involved in almost all biological processes [1, 2, 3, 4].

These molecules are made of amino acids that fold into 3-dimensional structures and perform

life-sustaining biological functions [5]. Protein engineering practices aim to modify proteins to

redirect what has already evolved in nature and address the industrial and medical needs of modern

society [6, 7]. This has been a challenging task due to the astronomical number of possible

mutations and the complex sequence-function relationship of the proteins (i.e., fitness landscape)

[8]. Protein fitness—a measure of how well a protein performs a task of interest—is influenced by a

variety of factors, including its structure, stability, and interactions with other molecules. In protein

engineering campaigns, where protein function is modified by experimental approaches rather than

natural selection, proteins with high fitness are those that perform well within relevant experimental

assays, whereas proteins with low fitness result in reduced activity, altered specificity, or decreased

stability. To overcome the challenge of finding high-fitness proteins among mostly non-functional

mutants, various experimental and computational techniques were developed. Recently, machine

learning (ML) has shown promise as a tool to supplement already established techniques, such

as rational design and directed evolution [9, 10, 11, 12]. Unlike directed evolution, ML models

can learn from non-functional mutants instead of simply discarding them during enrichment for

functional clones. ML-assisted protein engineering, therefore, has potential as a time-efficient

and cost-effective approach to searching for desired protein functionality. This provides a unique

opportunity to create smart protein libraries, elevate and accelerate directed evolution and rational

design strategies, and finally, enhance the probability of finding unexplored high-fitness variants

in the protein fitness landscape [13, 14, 15]. Machine learning methods have attained a high

success rate in predicting essential protein properties (i.e., protein fitness) including secondary

structure, solubility, binding affinity, flexibility, and specificity [16, 17, 18, 19, 20]. Despite these

recent milestones, to obtain generalizability and robustness in ML models, further explorations in

different protein fitness prediction tasks and training details are required.

Dealing with protein fitness landscape challenges will require us to view proteins from a new
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perspective that supplements our biochemical knowledge with lessons from written languages.

Recent advances in ML and artificial intelligence have applied natural language processing (NLP)

methods to identify context-specific patterns from written or spoken text. NLP tasks learn how

words function grammatically (syntax) and how they deliver meaning within themselves and in

surrounding words (semantics) [21, 22]. This has given rise to virtual assistants with voice

recognition and sentiment analysis of text from diverse languages [23, 24]. Similarly, protein

engineering can leverage these NLP tools—treating a string of amino acids as if they were

letters on a page—to understand the language of proteins, providing a promising route to capture

nuances (e.g., epistatic relationships, functional motifs) in complex sequence–function mappings

[25, 26]. The rapid expansion of publicly available protein sequence data (e.g., UniProt [27],

SRA [28]) further supports the use of big data and language models in the domain of protein

engineering [29]. Self-supervised language models learn the context of the provided text by

reconstructing the masked tokens/linguistic units of the text string using the unmasked parts.

For the context of protein engineering, pre-trained protein language models—carrying valuable

information about the epistasis/interaction of amino acids—can be applied to downstream tasks

by extracting the optimized weight functions as a fixed-size vector (embedding) [25, 30, 31].

Among early embedding developments, Alley et al. introduced UniRep [32], a deep learning

model that was trained on 24 million unique protein sequences to perform the next amino acid

prediction tasks for extracting information about the global fitness landscape of proteins. Rives et

al. trained ESM, a language model for masked amino acid prediction tasks, on over 250 million

protein sequences [33]. The learned representations—including UniRep [32], ESM [33], TAPE

[34], and ProteinBERT [35] have generated promising results in diverse areas such as predicting

protein fitness, protein localization, protein-protein interaction, and disease risk of mutations in

terms of improved prediction scores, increased generalizability, and mediated data requirements

[36, 37, 38, 39, 40]. Using embeddings for sequence representations (transfer learning) enables

knowledge transfer between protein domains and future prediction tasks by further optimizing the

already-learned weights. For example, Min et al. obtained a 20% increase in the F1-score (the
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harmonic mean of precision and recall) for a heat shock protein identification task when training

their NLP-based model, DeepHSP [41], on top of pre-trained representations.

In this study, we perform protein sequence fitness prediction with ML techniques to demonstrate

how model performance varies given the choice of protein representation, protein size, and the

biological attribute (e.g., binding affinity and thermal stability) to be predicted. This work provides

actionable insights for effectively building discriminative models and improving their prediction

scores via sampling techniques and ensemble learning. As efficient use of embedding methods

on experimental datasets is in its infancy, rigorous studies are needed to gain new insights into

the performance of the pre-trained models given various training conditions and distinct biological

function predictions. Importantly, embedding methods have been trained over millions of protein

sequences in public databases and have produced high performance in certain fitness tasks (e.g.,

stability prediction), while they may not do as well in all fitness prediction tasks. To this end, we used

two large datasets that were representative of common protein engineering tasks. First, we leveraged

a highly imbalanced dataset (93% non-functional; Table 3.1), consisting of our previously described

affinity-evolved affibody sequences [42] to explore NLP-driven practices. We then expanded our

analysis to include thousands of protein sequences labeled with their experimentally measured

stabilities (melting temperatures, Tm) obtained from the Novozymes Enzyme Stability Prediction

(NESP) dataset [43]. Thus, with our two datasets having unique attributes, we were well positioned

to address multiple questions: (i) How do different representation methods perform in predicting

distinct fitness attributes such as stability or affinity? (ii) How do sampling methods perform in

imbalanced protein datasets? (iii) Is ensemble learning over different protein representations helpful

in boosting the performance of discriminative models? (iv) How do we rank model performances

while using multiple conflicting metrics in ML prediction tasks? By addressing these challenges, we

also gain direct insights for model interpretation and reveal the features that are most important for

discriminating between fit and non-fit sequences (Figures 3A.1, 3A.6, and 3A.8). We discovered

that oversampling (especially SMOTE) generally outperformed the undersampling techniques.

In addition, ensemble over representations greatly improved the predictive performance in the
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affibody data both using single and multiple performance metrics via multiple criteria decision

analysis (MCDA) [44]. For protein representations (e.g., single encoders), UniRep and One-Hot

outperformed other methods in the affibody (affinity) dataset while ESM achieved the best score

in stability prediction in NESP. Finally, it was observed that the performance of various protein

representation methods is strongly impacted by protein sequence length.

Table 3.1 Dataset attributes and prediction tasks.

Dataset Task Fitness Model Attributes

Affibody Classification Binding Affinity Logistic Regression 82,663 non-binders,
6077 binders

NESP Classification Stability Logistic Regression 3743 high-stability,
1311 low-stability

NESP Regression Stability Random Forest
Regressor

18,190 total

3.2 Materials and Methods

3.2.1 Obtaining Experimentally Labeled Sequence Data

Two different datasets with varying data characteristics were explored. The first is our

experimental data of affibody sequences that previously were iteratively evolved for binding affinity

and specificity against a panel of diverse targets [45]. The second collection of labeled protein

sequences was obtained from the recently released Kaggle dataset wherein numerous proteins (n=

18,190) of various lengths are labeled according to their thermal stability (Tm). This dataset,

NESP, was filtered to only include sequences characterized at pH = 7. For the affibody dataset,

raw sequence data were cleaned by removing any sequences that contained stop codons or invalid

characters. Afterwards, the frequency of each unique sequence in the experimental steps was

tabulated. Infrequent sequences appearing fewer than ten and four times (within magnetic activated

cell sorting (MACS) and fluorescent activated cell sorting (FACS), respectively) were treated as

background and removed from the analysis. Note that the more stringent frequency removal for

MACS was mainly due to the experiment type and higher probability to introduce noise in the

dataset. After removing the background, sequences from MACS and FACS were combined to form
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the final high-fitness population of binders. The non-binding population included the initial affibody

sequence pool, which did not appear in the enriched population of the binder sequences. The initial

affibody sequences that were within one hamming distance (i.e., a single amino acid mutation) of

any enriched sequence were removed as well to account for potential errors encountered during

deep sequencing. All affibody sequences were exactly 58 amino acids in length with mutations

present at up to 17 of these positions.

3.2.2 Obtaining the Sequence Representations

We obtained four different numerical representations for our sequence data: One-Hot and

physiochemical encoding, UniRep, and ESM embeddings. One-Hot encoding refers to building a

matrix (amino acids × protein length) and filling it with one when there is a specific amino acid in

the given position, filling the rest with zeros. For physiochemical encoding, we used the modlamp

[46] package in python, which is used for extracting the physical features from protein sequences.

There were two types of physical features represented in the modlamp package (global and peptide

descriptors). All the global (e.g., sequence length, molecular weight, aliphatic index, etc.) and

local physiochemical features based on the Eisenberg scale were extracted for this analysis (twenty

in total).

Embedding refers to the continuous representation of the protein sequence in a fixed-size vector,

and it should contain meaningful information about proteins [47]. For example, in the embedding

visualization of amino acids in low dimensions for both UniRep and ESM, similar amino acids (in

terms of size, charge, hydrophobicity, etc.) were close to each other. For UniRep representation,

we used the 1900 dimension and mean representation over layers. We used Jax_UniRep for

obtaining the UniRep embeddings, https://github.com/ElArkk/jax-unirep (accessed on 20 August

2022). UniRep uses the mLSTM structure for performing next-token prediction, and it was trained

on 24 million sequences in the Uniref50 dataset with 18 M parameters. For ESM, we chose ESM2

[48] with 1280 vector dimensions and 650 M parameters and means over layer representations.

GitHub for ESM is https://github.com/facebookresearch/esm (accessed on 21 January 2023).
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3.2.3 Sampling and Splitting

Sampling refers to choosing a random subset of data to represent the underlying population.

Three different sampling methods were tested for our severely imbalanced affibody dataset:

undersampling, random oversampling, and the synthetic minority oversampling technique (SMOTE)

[49]. Due to the sparse and rugged nature of the protein fitness landscape, it is common

for experimental data obtained in the protein domain to be highly imbalanced. One practical

approach for resolving the imbalanced dataset issue is using sampling techniques when training

the dataset. Oversampling is randomly repeating the minority class examples; thus, it could be

prone to overfitting in comparison to undersampling. However, undersampling may discard useful

information, especially in severely imbalanced datasets, as it is removing many samples from the

majority class. SMOTE is a more recent addition to sampling methods, and it is oversampling the

minor population by synthetically generating more instances that are highly similar to the minority

class. While SMOTE has shown promising results in increasing the prediction performance for

various imbalanced datasets [50, 51, 52], there are also studies indicating undersampling superior

performance compared to oversampling methods [53, 54]. As a result, we examined the performance

of all three sampling techniques to validate which sampling method performs well within our wet-lab

protein dataset over different encoding methods.

For splitting the data points within the test set in an imbalanced dataset, sampling equally from

each class may lead to an overestimation of the model performance [55]. As a result, we made sure

that the test set distribution follows the initial data distribution (93% naïve vs. 7% enriched).

3.2.4 Algorithm Selection and Training Details

For classification, logistic regression (LR) was chosen and L2 penalization (Ridge) was used

to reduce the likelihood of overfitting. We reasoned that a simple logistic regression enables a fair

comparison between cases. One regression task was also implemented over the NESP dataset with

random forest regressor (RFR). We used regression to observe how models perform with increasing

the prediction challenge, from binary prediction to actual label prediction. The rationale for using

RFR was that the linear regression model was not viable to meet the prediction task complexity. For
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a fair comparison between protein-encoding performances in regression, the RFR hyperparameters,

max number of estimators and max_depth, were optimized with OPTUNA [56].

3.2.5 Ensemble Learning

To enhance the predictive performance of protein-encoding predictions, we designed a framework

that integrates multiple encoding methods. Our experiments included two approaches: concatenation

and a voting mechanism. In concatenation, the encodings were combined by adding them together,

and we used the resulting representation as input for our predictive model. In voting, separate

predictive models for each encoding method were trained. The final prediction was then calculated

with the majority-voted label over a fixed test set.

3.2.6 Metrics and Statistical Analysis

One key metric we used for analyzing classification performance is the F1 score. By considering

both precision and recall (Figure 1E), the F1 score is particularly well suited for evaluating the

highly imbalanced data within our study (Table 3.1). Therefore, the model is trained to identify the

positive instances among all positive predictions and minimize missing out the positive instances

while predicting classes. Note that other classification metrics, such as confusion matrix values

(TP, TN, FP, FN), are reported in the supplement figures. For regression analysis among NESP

data, we used mean squared error (MSE) and 𝑅2 to indicate how the models perform. MSE is the

mean of the square of differences between the actual labels and the predicted values in the test set

while 𝑅2 represents the variation explained by the independent variables.
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Figure 3.1 Overview of the Implemented Techniques, Data Attributes, and Evaluation Metrics. (A)
Illustrates the use of sequence-function mapping to identify protein sequence functionality (e.g.,
therapeutics, diagnostics, enzymatic function). (B) Data attributes for the two datasets used in this
study. The first dataset includes high-fitness protein binders among a pool of non-binder affibody
sequences with up to 17 mutation sites. The other dataset includes a wide array of proteins with
their associated melting point. (C) One-hot encoding, physicochemical encoding, and pre-trained
models were used to encode the protein sequences present in our datasets. All present protein
amino acid information is in a machine-readable format but in different ways. One-hot encoding
converts each amino acid to a binary vector of all 0s but 1 where it belongs to its position in
the matrix. In physicochemical encoding, each amino acid is represented by its physiochemical
characteristics, such as polarity, charge, size, etc. Pre-trained models are trained over a large corpus
of unlabeled data capturing the syntax and semantics of protein language via NLP-driven models,
such as next-token prediction (e.g., UniRep) and masked token prediction (e.g., ESM). (D) The
sampling methods used in this study are undersampling, oversampling, and synthetic minority
oversampling techniques (SMOTE). (E) The main metrics used for evaluating the performance of
prediction tasks (classification and regression) are defined (a complete list of performance metrics
is listed in Figure 3A.11).

Experiments were implemented with multiple random seeds (20 in affibody and 30 in NESP

dataset) to obtain a distribution of performances for each pair of encoding and sampling methods

in each fitness prediction task. Then we implemented multiple statistical tests to confirm if the

obtained differences were significant. Analysis of variance among the groups was performed with

ANOVA [57]. After obtaining significant results in ANOVA, post hoc methods were implemented
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to account for family-wise error rates. Here, we implemented two post hoc methods, Bonferroni

[58] and Tukey [59], for adjusting the p-values and reducing the risk of type-1 error. The null

hypothesis assumes that the performances of the methods are similar and when rejected, we

consider the methods to be statistically significant in their obtained output. The results for multiple

seeds are shown with violin plots where the white dots represent the mean values. A complete

collection of statistical analyses for comparing the significance among the means are located in the

supplementary information.

3.2.7 Multiple Criteria Decision Analysis (MCDA)

We used the F1-score as our primary classification metric in classification to optimize the

algorithms based on finding the rare positive sequences. Depending on specific applications, the

user may need to choose different criteria for analyzing the ML predictive performance. Note that it

is also generally advised to use multiple metrics to establish more rigorous analyses, specifically in

imbalanced datasets [60, 61]. Therefore, we incorporated five more classification metrics in addition

to F1-score and implemented MCDA, which is a robust approach for decision-making (i.e., ranking

alternatives based on multiple, often conflicting, criteria). In our study, the alternatives are the

choice of protein representation within different sampling methods. The criteria (classification

metrics) used for this MCDA include F1-score, false positive rate (FPR), true positive rate (TPR),

precision, negative predictive value (NPV), and false discovery rate (FDR). FPR and TPR measure

the model’s ability to identify the positive and negative classes. Precision quantifies the number of

correctly positive classes among all being predicted as positive, while NPV measures this for the

negative class. FDR measures the number of false positives over all instances that are predicted as

positives.

The performance of each encoding and sampling technique was recorded based on all six

mentioned criteria. For implementing the decision-making, we chose a well-established and widely

used MCDA method: the technique for order of preference by similarity to ideal solution (TOPSIS)

[62]. TOPSIS finds the optimal solution rooted in the idea that the best alternative should have

the minimum Euclidean distance from the positive ideal solution and maximum distance from the
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negative ideal solution.

For the implementation of TOPSIS, the PyTopsis Python package was utilized (https://github.

com/shivambehl/PyTopsis, accessed on 4 April 2023). This method requires three primary inputs:

a decision matrix representing alternative scores across various criteria, a list of weights reflecting

the importance of each criterion, and a list of signs where −1 indicates a criterion to be minimized,

and 1 indicates maximization. Utilizing this framework, we constructed our decision matrix and

defined the optimization direction for each criterion in classification tasks.

Weights for the criteria were determined through two approaches: subjective weighting, based

on the decision-maker’s preferences, and objective weighting, derived from a numerical analysis of

the decision matrix. Both weighting methods were employed to assess and compare their efficacy

in ranking alternatives. In the subjective weighting approach, higher weights were assigned to

precision and FPR metrics to emphasize the identification of positive instances.

For objective weighting, we applied Shannon’s entropy method [63] to calculate the entropy

values from the decision matrix, which then informed the weighting process. The formula for

calculating weights based on entropy, where 𝑥𝑖 𝑗 represents each entry in the matrix, 𝑛 the number

of alternatives, and 𝑚 the number of criteria, is as follows:

Normalizing the decision matrix value: 𝑟𝑖 𝑗 =
𝑥𝑖 𝑗∑𝑛
𝑖=1 𝑥𝑖 𝑗

(3.1)

Calculating Entropy for each criterion: 𝐸 𝑗 = −𝑘
𝑛∑︁
𝑖=1

(𝑟𝑖 𝑗 ln 𝑟𝑖 𝑗 ), 𝑘 =
1

ln(𝑛) (3.2)

Calculating weight for each criterion: 𝑤 𝑗 =
1 − 𝐸 𝑗∑𝑚

𝑗=1(1 − 𝐸 𝑗 )
(3.3)

The results from TOPSIS need to be validated via statistical methods to ensure the correct

ranking among alternatives (i.e., difference between performances is not random but significant).

Therefore, we applied multivariate analysis of variance (MANOVA) [64] followed by a post-hoc

method, Tukey [59], to analyze the result significance overall and between a pair of alternatives,

respectively.

Figure 3.1 provides an overview of the data attributes (e.g., protein size, protein fitness) that
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will be predicted and alternatives (e.g., protein encodings within different sampling methods) that

will be compared.

3.3 Results

3.3.1 Sequence-Function Mapping Obtained from High-Throughput Selection Methods and
Deep Sequencing Affibody Dataset

To investigate the impact of feature representation, ensemble learning, and sampling methods

on predictive modeling, we engaged in several prediction tasks using deep sequencing data.

Specifically, we focused on a classification task involving the affibody dataset. The goal was

to predict the scarce high-affinity binder class from a pool of non-binders. Details of the sequences

obtained after data cleaning and the specific prediction tasks are presented in Table 3.1. For the

NESP dataset, we categorized the data into two stability classes based on their thermal stability

(Tm): low-stability (Tm ≤ 35◦C) and high-stability (Tm ≥ 60◦C). Additionally, we implemented a

regression task to predict the actual Tm values, increasing the prediction difficulty and providing

insights into the performance of different protein encodings. Only sequences measured at pH 7

were included in this analysis.

Detailed results and additional analyses of the NESP dataset are discussed in Section 3.5 and

provided in the supplementary materials.

3.3.2 Physiochemical Feature Encoding, Interpretable yet Lower Predictive Capacity

The classification results in physiochemical encodings are shown in Figures 2 and 3. We

ranked the leading features in discriminating non-binder and binder classes and listed the encoding

method’s F1 score in different sampling methods. The physiochemical encoding performance was

not among the lead encoding methods, yet it achieved a high F1 score with only 20 features. It

also provided insights into how physical features correlate with each other in the given data (Figure

3A.1).
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Figure 3.2 The lead physical features in naïve and enriched class discriminations in affinity-based
data were H-Eisenberg, Boman Index, and H- Gravy. Gravy and Eisenberg capture hydrophobicity
scales. The Boman Index is a measure of the protein’s ability to interact with its environment based
on the solubility of individual residues. The enriched proteins in our library have gone through
negative screening and are specific to their target. Therefore, there is a shift to a lower Boman
index for this population. Note that the plot is the result of oversampling, SMOTE, in the logistic
regression task.

3.3.3 Comparison of Encoding and Sampling Methods

Once the primary physical features of high-affinity binders were established, we evaluated the

performance of various protein representation techniques alongside our chosen sampling methods.

This analysis aimed to assess how each encoding method influenced the predictive capability

regarding the fitness of proteins.

Our findings revealed distinct performance variations among the encoding methods. Specifically,

One-Hot and UniRep emerged as the most effective techniques, showing superior performance in

several metrics. Concerning sampling strategies, the Synthetic Minority Over-sampling Technique

(SMOTE) consistently enhanced the F1 score across almost all scenarios. Figure 3.4 displays the

distribution of F1-scores, generated using 20 different random seeds, as violin plots, which visually

represent the density and distribution of the scores.
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Figure 3.3 When physical features were used to encode the affibody sequences, the mean F1-score
was 75.5% with SMOTE. Both SMOTE and undersampling methods were similarly effective, with
no significant difference in performance (i.e., did not reject the null hypothesis). The violin plots
are created over 20 random seeds for each sampling method.

Figure 3.4 Performance analysis of encoding methods highlighting the comparative weaknesses of
physical feature-based encodings and the effectiveness of the SMOTE sampling method.

54



The analysis incorporated protein sequences encoded using physical features, One-Hot, UniRep,

and ESM to perform classification tasks within the affibody dataset. For each encoding strategy,

various sampling methods including undersampling, random oversampling, and SMOTE were

evaluated. The resultant F1 scores observed over 20 random seeds, provided a robust basis for

statistical analysis.

A one-way ANOVA was conducted to quantify the differences in performance across the

encoding and sampling methods, yielding a p-value of 9.52 × 10−190. This result signifies a

statistically significant difference among the groups. Detailed post-hoc results for method ranking

are presented in Figure 3A.2, further supporting the conclusions drawn from the comparative

analysis.

3.3.4 Increased Generalizability and Predictive Performance via Ensemble Learning

Due to the varying performances of the protein encodings, we postulated that ensemble

learning increases the models’ predictive performance. As oversampling performed better than

undersampling in three out of four encoding methods, we exclusively analyzed the ensemble

learning for the two oversampling types (i.e., random oversampling and SMOTE). The physical

encoding for this analysis was discarded since its performance was not as potent as the other

encodings. Figure 3.5 shows the ensemble technique, voting, which remarkably enhanced the

performance with respect to all methods with a mean F1-score of 97% over 20 random seeds.

As shown in Figure 3.5 and Figure 3A.3-4, voting notably enhanced the prediction score among

the candidates, and SMOTE improved the performance in single encoders compared to random

oversampling (R-oversampling). In pursuit of a more informed and transparent decision-making

process among the discussed methods, we also integrated a Multi-Criteria Decision Analysis

(MCDA) using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

across five additional classification metrics beyond the F1-score. These classification criteria were

evaluated over single encoders, the concat_all encoder, and the upvoting technique. Figure 3.6

presents a summary of our MCDA design along with the ranking results obtained from TOPSIS.
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Figure 3.5 Voting substantially improved the predictive performance across all random
initializations over different encoding methods. The illustrated plot is divided into three regions
from left to right: single encoding methods, concatenation of encodings, and voting of predictions.
The voting was executed such that each encoding was processed through a predictive model over
the same dataset, with the final prediction obtained by majority voting. This figure highlights
how voting enhances the models’ robustness and generalizability. The concatenation of encodings
performed similarly or worse than the best model among single encodings. The best model across
all predictions was "Upvote" with oversampling methods, achieving a Mean-F1-score of 97% and a
Mean-F1-score of 96.80% (no statistical significance detected among oversampling performances
in upvoting). For a comprehensive summary of the statistical analysis and confusion matrix plots,
refer to the supplementary materials (Figure 3A.3-4, Figure 3A.6).

3.3.5 MCDA Design and Statistical Validation

The MCDA design in the affibody dataset, with only 7% high-fitness population, enabled the

comparison of encoding and sampling methods over multiple conflicting criteria. Additionally,

selective weighting in MCDA allows users to bias the results towards more favorable outcomes,

based on data attributes and specific applications. It is important to note that these rankings need

to be validated by statistical analysis. Our MANOVA analysis showed significant results between

the candidates. The Tukey method for pairwise comparison and family-wise error correction

indicated that while upvoting methods achieved significant results over other candidates, there was

no statistical difference between upvoting methods using either SMOTE or R-oversampling.
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Table 3.2 Tukey results over all classification metrics between selected representation methods.

Comparison Mean GP1 Mean GP2 Metrics Reject Null

Upvote_SM vs. Upvote_RO 0.9712 0.9682 F1 FALSE

Upvote_SM vs. Upvote_RO 0.0187 0.0258 FDR FALSE

Upvote_SM vs. Upvote_RO 0.9614 0.9622 TPR FALSE

Upvote_SM vs. Upvote_RO 0.9813 0.9742 Precision FALSE

Upvote_SM vs. Upvote_RO 0.9972 0.9972 NPV FALSE

Upvote_SM vs. Upvote_RO 0.0019 0.0013 FPR FALSE

Upvote_SM vs. UniRep_SM 0.9712 0.9307 F1 TRUE

Upvote_SM vs. UniRep_SM 0.0187 0.0930 FDR TRUE

Upvote_SM vs. UniRep_SM 0.9614 0.9557 TPR TRUE

Upvote_SM vs. UniRep_SM 0.9813 0.9070 Precision TRUE

Upvote_SM vs. UniRep_SM 0.9972 0.9967 NPV TRUE

Upvote_SM vs. UniRep_SM 0.0019 0.0072 FPR TRUE

Upvote_RO vs. Concat_RO 0.9682 0.9261 F1 TRUE

Upvote_RO vs. Concat_RO 0.0258 0.1061 FDR TRUE

Upvote_RO vs. Concat_RO 0.9622 0.9607 TPR FALSE

Upvote_RO vs. Concat_RO 0.9742 0.8939 Precision TRUE

Upvote_RO vs. Concat_RO 0.9972 0.9971 NPV FALSE

Upvote_RO vs. Concat_RO 0.0013 0.0084 FPR TRUE

Concat_RO vs. UniRep_SM 0.9261 0.9307 F1 TRUE

Concat_RO vs. UniRep_SM 0.1061 0.0930 FDR TRUE

Concat_RO vs. UniRep_SM 0.9607 0.9557 TPR TRUE

Concat_RO vs. UniRep_SM 0.8939 0.9070 Precision TRUE

Concat_RO vs. UniRep_SM 0.9971 0.9967 NPV TRUE

Concat_RO vs. UniRep_SM 0.0084 0.0072 FPR TRUE
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Figure 3.6 Upvoting achieved the best ranking both in subjective and objective weighting in MCDA
design. A. The main steps for performing MCDA are elaborated. This includes detailing the
selected methods for implementing MCDA such as classification criteria, model selection, and
statistical analysis. B. TOPSIS scores, i.e., closeness coefficients, and their associated rankings are
shown for subjective and objective weighting, demonstrating the effectiveness of different encoding
methods.

A list of pairwise comparisons over all alternatives can be found in the supplementary information.

The voting method enhanced the prediction score using both a single metric and multiple

metrics in MCDA by combining the predictions of multiple models based on single encodings.

We concluded that as different encodings might capture the distance and relationships of the data

points differently, combining their predictions boosted the final model performance. The encoding

methods used for the voting technique in the dataset are visualized in Figure 3.7 in a uniform

manifold approximation and projection (UMAP) plot.

3.3.6 How Protein Encodings Perform Considering Different Data Attributes

The hypotheses were tested over affibody datasets that had notable attributes such as severe

imbalance, multiple mutation sites, affinity and specificity enrichment, and small molecular protein

length. The obtained results indicated voting and oversampling were highly effective methods

to boost fitness prediction performance. However, individual protein-encoding performance

comparisons need a more convincing explanation and thorough exploration. Specifically, we
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Figure 3.7 Different protein encodings potentially capture distinct functional aspects of the proteins.
A 2D visualization of the encoding techniques that resulted in improved prediction in the voting
method in UMAP. This method is a dimensionality reduction technique such as principal component
analysis (PCA) [65] with unique advantages such as preserving the local structure of the data
and capturing non-linear relationships between data points. In observing the sequence–function
relationship in proteins, one can conclude that each protein sequence representation/encoding has
the potential to capture different aspects of fitness.

wondered why ESM underperformed One-Hot and UniRep despite the more powerful setup in

pretraining and being showcased in studies for high prediction potential [66]. While the performance

could be due to the datatype (e.g., small protein, complex fitness, etc.), we decided to further analyze

the encoding prediction scores in a completely different dataset and bring insights on embedding

performances in various conditions (e.g., data size in training, protein length, prediction task

difficulty). The curated data contains 18,190 sequences with varying amino acid (aa) lengths and

provides melting points that indicate protein stability. Figure 8 is the performance comparison in

the stability prediction of embeddings, their concatenation, and voting using different data sizes.

Despite underperforming in the affibody affinity data, ESM performed best for stability prediction

when including proteins with max aa length = 500.

We further evaluated the performance of embedding methods in large proteins 400 ≤ aa length ≤

59



1500 and small proteins aa length ≤ 120 to check if ESM still outperforms the other representations

in stability prediction. A complete list of statistical analysis is attached in the supplementary

materials. The analysis of physical feature encoding is provided in Figure 3A.9.

Figure 3.8 The effect of protein size on the performance of encoding methods in stability prediction
while data sizes vary. The obtained results are largely different with respect to the protein
size—small proteins (aa length ≤ 120) vs. large (400 ≤ aa length ≤ 1500). Highlights: For small
proteins, upon comparing the violin plots and statistical test results, protein sequence encoding
methods performed distinctively with respect to the initial dataset (protein max length = 500).
One-Hot encoding had a more significant contribution in boosting the classification metrics for
small proteins. As an example, when 𝑛 = 400, both One-Hot and All-Encoding concatenation
with a mean F1-score of 94% outperformed the other encoding methods. One-Hot tends to be
problematic for large proteins as it results in a highly sparse encoding vector. This was shown in
this plot when One-Hot encoding performance was not satisfactory in comparison with ESM and
UniRep. When 𝑛 = 400, based on both the violin plots and the post-hoc analysis after ANOVA
(both Bonferroni and Tukey), either ESM or ESM_UniRep with 92% mean F1-score achieved
the highest performance. One-Hot with 73% mean F1-score was the lowest score among all the
encodings. Refer to the supplementary information for all one-by-one comparisons of the statistics
and classification.

3.3.7 Regression Analysis for Melting Point Prediction

The last analysis is a regression task for predicting the melting point value. We wondered how

different encoding methods performed if we used all the data and increased the prediction challenge
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(Tm prediction rather than stability class prediction). MSE and R² are shown predicting the Tm

values of a dataset of 18,190 sequences with 0.3 test size. There was a significant difference in the

performance of encoding methods, which was not the case in the classification task. ESM was the

best encoding method in predicting stability (R² score= 0.65). Note that we used all the data (i.e.,

did not use sampling) for training our regression model. The regression metrics are reported in

Table 3.

Table 3.3 Regression metrics for encoding methods in validation and test.

Encoding Validation Test
R² MSE R² MSE

One-Hot 0.21 141 0.24 130
UniRep 0.49 108 0.40 102
ESM 0.65 63 0.65 60

3.4 Discussion

In this study, we shed light on two key challenges of applying discriminative models over

amino acid sequence data for protein engineering applications: (1) handling imbalanced data and

(2) choosing an appropriate protein representation (i.e., encoding). Assay-labeled sequence data

in this domain is often severely imbalanced (due to the rugged and sparse nature of the protein

fitness landscape) and requires careful consideration in data sampling, splitting, and choice in

data representation for model training. To capture this common occurrence of imbalanced data,

we trained discriminative ML models over our cytometry-sorted deep-sequenced small protein

(affibody) data to distinguish between functional sequences (n = 6077) among a large collection of

non-functional protein sequences (n = 82,663). We then explored the impact of encoding protein

sequences using two simplistic approaches (One-Hot encoding, physiochemical encoding) and two

language-based methods (UniRep, ESM). We hypothesized that as each protein representation may

capture distinct information, combining representations via embedding concatenation and ensemble

learning increases overall performance and generalizability.

To address the issue of imbalanced data, we implemented various sampling techniques, including

undersampling, random oversampling, and SMOTE, and evaluated their performance using multiple
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classification metrics. Our results indicate that implementing oversampling techniques over

imbalanced datasets improves predictive performance relative to undersampling or the exclusion

of sampling methods. Among the sequence representation methods, embeddings are the answer

to improved fitness prediction and data requirements. However, it is essential to consider the

choice of protein representation, its benefits, and its drawbacks. For example, the choice of

fitness to be predicted (e.g., thermal stability, binding affinity, target specificity) and the language

model pretraining procedure affect the model’s predictive performance and need further discussion.

Therefore, we analyzed an additional dataset (i.e., the NESP dataset, which included a variety of

protein sequences with their Tm) to discuss the effect of protein representations over variables

such as protein length, protein fitness, and prediction type (i.e., classification vs. regression). For

ensemble learning, we used majority voting to combine the prediction of each representation over

the same ML model, which significantly improved the prediction score, and its obtained results

were statistically significant using MANOVA and the post-hoc method (Figure 3.6, Table 3.2).

3.5 Conclusions

This study intends to inform protein engineers that: (i) embeddings derived from self-supervised

representation techniques are not always the optimal route to take, depending on the protein size and

protein fitness to be predicted; (ii) oversampling techniques, especially SMOTE, have the ability

to overcome the notorious challenge of highly imbalanced data in the protein fitness landscape;

(iii) different aspects learned in each protein encoding can be combined by voting techniques and

result in better predictive scores. These conclusions were revealed in the context of integrating

machine learning and protein engineering knowledge to identify high-fitness protein sequences.

Specifically, we quantified model performance while varying the choice of feature representation,

ensemble learning, and sampling methods. Analysis across a broad range of protein chain lengths

revealed the ESM language model to be most beneficial for encoding large protein sequences

(Figure 3.8). However, in the context of small protein sequences, a comparable performance was

observed between One-Hot encoding and the language models (ESM and UniRep). In our analysis,

oversampling proved to be an effective technique to improve performance when dealing with
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severely imbalanced datasets (Figure 3.4). Finally, ensemble learning was a promising method

for boosting the binding prediction scores when using unique, competitive encoding methods

(Figure 3.5, Figure 3.6).
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APPENDIX 3A

SUPPLEMENTARY INFORMATION

Figure 3A.1 The majority of physical features are at least correlated with one other physical feature;
leaving us insights into attribute dependencies in the affibody dataset. The plot is drawn upon
sampling from both naïve and enriched populations. Bold colors represent a higher correlation of
features. As the affibody length in our dataset was fixed, the first row and column of the matrix
are empty. Insights on the given correlation plot include i) a high correlation of Boman index and
protein flexibility index, ii) a high correlation of aromaticity with molecular weight, MSW, and
refractivity, iii) Aliphatic index correlating with multiple features such as bulkiness, H-Eisenberg,
and H-Gravy.
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Figure 3A.2 The initial ANOVA test was done for multiple comparisons, and it resulted in 𝑝-value
= 9.53 × 10−190. The following tables in the supplement show the t-test results when Bonferroni
correction is considered. The statistically significant results are bolded.
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Figure 3A.3 Figure 5 T-test Results-part1.
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Figure 3A.4 Figure 5 T-test Results-part2.
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Figure 3A.5 SMOTE either Improved the performance or had no hampering effect with respect to
R-Oversampling.
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Figure 3A.6 Violin Plot-Based Confusion Matrix.Individual Encodings Perform uniquely in the
confusion matrix entities. While the overall predictive performance is the main goal and it
is represented via F1-Score throughout the literature, inspecting how each model performs for
maximizing true positives(TP) and true negatives(TN) while minimizing false positives(FP) and
false negatives(FN), provides insights about each model performance.
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Figure 3A.7 Physical feature correlation plot for NESP dataset.
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Figure 3A.8 Physical feature ranking for NESP dataset. The feature ranking is presented after using
all the data for the classification of stable vs. unstable sequences. Boman Index, H-Eisenberg, and
MSS are the lead features. However, their scores are not significantly higher than the other physical
attributes, indicating that more features are incorporated in the final F1 Score=0.86.

Figure 3A.9 Physical Feature representation while using maximum N=1000, performed poorly and
have not got selected for the main figure.
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Figure 3A.10 The predictive performances (F1-score) of multiple protein representations (One-Hot,
UniRep, and ESM) were evaluated across stable (𝑇𝑚 ≥ 60◦𝐶; 𝑛 = 3140) vs. unstable (𝑇𝑚 ≤ 35◦𝐶;
𝑛 = 1116) proteins. The performance of individual representations is compared against the effects
of concatenating each embedding as well as ensemble methods (upvote1: hard voting, upvote2:
soft voting). The violin plots were generated by repeating the analysis over 30 random seeds
for sensitivity analysis. 𝑁 represents the total number of data used with 0.3 as a test-size ratio.
Welch t-test with unequal variances has been implemented over the obtained results to showcase
the statistical significance in comparisons (refer to supplementary information for 𝑝-values).
Highlight: In low data size (𝑁 = 20), One-Hot performs poorly with the mean F1-score of
0.60, and the embeddings that included One-Hot were outperformed by both ESM and UniRep.
While increasing the data size resulted in increased performance for all the methods, concatenating
ESM with UniRep representations obtained the best score, with a mean F1 of 0.92.
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Figure 3A.11 A complete list of used criteria for MCDA their derivations from confusion matrix
values.
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CHAPTER 4

PREDICTING ORGANIC ANION TRANSPORTER PROTEIN-DRUG INHIBITION BY
INTEGRATING STRUCTURAL INSIGHTS WITH GRAPH NEURAL NETWORKS

Abstract

Organic Anion Transporting Polypeptides (OATPs) are crucial for hepatic drug uptake, impacting

drug efficacy and toxicity. However, predicting OATP-mediated drug-drug interactions (DDIs)

remains challenging due to the scarcity of structural data, the dynamic behavior of these proteins, and

inconsistencies in experimental protocols. This chapter introduces the Heterogeneous Graph Neural

Network for Inhibition Perdition of OATPs (HIPO-GNN). This novel computational approach

combines molecular modeling and graph neural networks to improve the prediction of OATP-drug

inhibition. By combining ligand molecular features with protein-ligand interaction data, HIPO-GNN

significantly outperforms traditional ligand-based methods, achieving median F1 and AUC scores

of 0.82 and 0.81, respectively, compared to ECFP (F1: 0.68, AUC: 0.70) and RDKit (F1: 0.78,

AUC: 0.75) built upon XGBoost. The analysis further evaluates the utility of interaction features

in GNNs, with HIPO-GNN showing marked improvement in F1 score over a ligand-only GNN

model, and no significant compromise in AUC. Beyond improving inhibition prediction, this

study explores the impact of computational noise from molecular modeling, and identifies optimal

thresholds in molecular docking for model improved modeling performance. Additionally, protein

residues involved in inhibitory versus non-inhibitory drug interactions are characterized, specifically

highlighting residues F38, K41, N213, L378, G552, and V556, which show notable differences

between inhibitors and non-inhibitors. The findings enhance the predictive performance and

interpretability of OATP-mediated DDIs, advocating for the integration of advanced computational

techniques with standardized experimental protocols. This work contributes to the field of drug

discovery and development by providing a novel approach to predict and understand OATP

inhibition.

Keywords

Molecular Modeling, Drug-Drug Interaction, Machine Learning, OATP, GNN
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4.1 Introduction

Drug-drug interactions (DDIs) pose a significant challenge in modern pharmacotherapy, as they

can lead to the impairment or induction of critical metabolic enzymes and transporter proteins

responsible for processing multiple drugs simultaneously. These interactions can be further

exacerbated by genetic variation, potentially resulting in lethal outcomes [1]. Recognizing the

importance of predictive DDI models in the drug development process, the US Food and Drug

Administration (FDA) has recently issued guidelines advocating for their consideration in regulatory

pathways for new drugs [2]. While such models have been well-established for metabolic DDIs

involving cytochrome P450s, there is a notable lack of predictive models for transporter-mediated

DDIs (tDDIs). This deficiency is particularly concerning in the context of organic anion transporting

polypeptides (OATPs), a family of proteins responsible for transporting a wide range of drugs into

the liver for bile-mediated elimination. Numerous alarming DDIs involving OATPs have been

reported, highlighting the urgent need for the development of reliable predictive tDDI models [3].

Addressing this knowledge gap is crucial for ensuring the safety and efficacy of medications and

ultimately improving patient outcomes.

OATPs are not only expressed in the liver for drug transport but also in other pharmacologically

relevant tissues, such as the kidneys and intestines. These proteins facilitate the uptake of a

diverse array of endogenous and exogenous small molecules, including hormones and drugs.

To accommodate the vast number and variety of substrates processed by these tissues, OATPs

exhibit a high degree of promiscuity. This promiscuity gives rise to intricate multimolecular

interactions and elaborate regulatory networks that can profoundly influence drug efficacy and

toxicity. Understanding the complexities of these interactions is essential for predicting and

mitigating the potential risks associated with OATP-mediated drug transport. By elucidating

the mechanisms underlying OATP promiscuity and the resulting regulatory networks, researchers

can develop more comprehensive and accurate models for predicting tDDIs. This knowledge

will ultimately contribute to the design of safer and more effective medications, as well as the

optimization of drug dosing and administration strategies to minimize the risk of adverse drug
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reactions.

Currently, there is no generalizable method to consistently predict how a molecule will interact

with OATPs, despite valiant efforts to develop machine learning (ML) algorithms to do so [4, 5, 6].

This is due to two major challenges: (1) there is significant variability in the available in vitro data,

resulting in inconsistent data labeling [7, 8], and (2) until very recently, no OATP structures had

been solved, substantially limiting options for accurate structure-based analyses [4].

Challenge one—the lack of consistent in vitro data—severely constrains model applicability to

the data on which it was trained. These data inconsistencies arise from different in vitro experimental

conditions being used to evaluate the same ligand (e.g., with or without pre-incubation, various

cell types), leading to drugs being labeled inconsistently as inhibitors or substrates depending on

the context of experimental conditions [9]. Overlooking the context (i.e., chemical environment)

associated with OATP-inhibition assays is deeply problematic as it distorts our understanding of

how OATPs function and results in inaccurately labeled inhibitor datasets. For example, studies

have shown significant variability in OATP1B1/1B3 inhibition data due to different experimental

conditions, leading to inconsistencies in drug classifications [9, 10]. This variability can be

attributed to various factors, including genetic polymorphisms in transporters like OATP1B1, which

are major determinants of drug pharmacokinetics and can lead to variability in drug disposition

[11, 12]. We identify key physicochemical properties that correlate with inhibition measurement

variability, as these properties play a significant role in compound disposition and safety, influencing

formulation, absorption, and toxicity during drug development [13].

Challenge two—unsolved OATP structures (and, prior to AlphaFold2 [14])—limited past

ML models to only physiochemical and/or topological ligand properties. Structure elucidation

precluded incorporating protein-ligand interaction analysis into past computational workflows.

Adding to the complexity of this challenge is the dynamic nature of OATPs, whose transport

mechanisms involve at least three conformers (outward-facing, occluded, and inward-facing). Saidi

jam et al. [15] recently published cryo-EM structures of OATP1B1 (inward- and outward-facing)

and OATP1B3 [16] (inward-facing) have enabled us to explore how protein-ligand interaction
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features (PLIFs) may be integrated into these models. The availability of both inward- and

outward-facing structures of OATP1B1 [ref] allowed us to expand our analyses to determine if

purely computational workflows could capture the dynamic nature of the PLIFs to be used in

predictive tDDI models.

Collectively, in this study, we (1) identify physiochemical ligand features (LFs) that highly

correlate with in vitro data variability, and (2) explore the integration of computationally produced

PLIFs into tDDI models. Here in, we present a workflow to extract PLIFs from OATP1B1

conformers docked against a library of experimentally characterized ligands. Adapting to the

constraints of the available data, we limited evaluation of our models to data obtained in a single in

vitro inhibition study from [7].

4.2 Methods

This section details the steps taken to curate data, select and label ligands, prepare ligand and

protein structures, perform molecular docking, and develop machine learning models for predicting

OATP inhibition.

4.2.1 Data Curation

Several studies have been conducted over the past decade that characterize and evaluate OATP

interactions with ligands. Due to largely unexplained inter-study variability among the available

in vitro OATP inhibition data [9], we reasoned that sourcing data from a single set of experiments

would provide the most consistent framework for our study [7].

4.2.1.1 Ligand Selection & Labeling

Experimental inhibition data was obtained from Karlgren, et al. for 222 ligands with each

OATP1B1, OATP1B3, and OATP2B1 Of these 225 compounds, 222 were compatible with our

molecular docking workflow; we excluded the remaining three ligands. As was done in the original

Karlgren study, compounds with reported inhibition percentages greater than 50% were labeled

as inhibitors (Class = 1), while those with inhibition percentages less than or equal to 50% were

labeled as noninhibitors (Class = 0).
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4.2.1.2 Training & Test Sets

Under constraints that each test set must have an equal class balance, twenty test sets were

constructed by randomly selecting 10% of ligands from the total dataset. For each of the twenty

test sets, the corresponding training set consisted of the remaining 90% of compounds not in the

hold-out test set.

4.2.2 Structural Modeling

4.2.2.1 Ligand Structure Preparation

Canonical SMILES were compiled from PubChem [17] for all 222 compounds to be used

for structural modeling. Ligand representations were converted from SMILES format to three

dimensional structures (SDF format), energetically minimized, and protonated (to pH 7.5) using

Open Babel [18].

4.2.2.2 Protein Structure Preparation

Protein sequences of human OATP1B1, OATP1B3, and OATP2B1 were obtained from the

UniProt database in FASTA format [19]. The cryo-EM structures of the inward- and outward-facing

OATP1B1 conformers (PDB IDs 8HND, 8HNB) [20], along with the inward-facing OATP1B3

conformer (PDB ID 8PG0) [16], were retrieved from the Protein Data Bank [21]. These structures

were prepared for docking by removing water molecules, ions, and small molecule ligands using

PyMOL [22] and then relaxed using the Rosetta FastRelax protocol [23] to minimize any structural

artifacts from the cryo-EM experiments. Due to the lack of experimental structures for the

outward-facing OATP1B3 and both conformers of OATP2B1, we utilized AlphaFold2 [24, 25], a

state-of-the-art protein structure prediction algorithm, to generate these missing structures. The

AlphaFold2 predicted structures were validated by comparing them to the available cryo-EM

structures of OATP1B1 and OATP1B3 using root-mean-square deviation (RMSD) calculations,

as described by Sala et al. [26]. The low RMSD values observed between the predicted and

experimental structures provided confidence in the quality of the AlphaFold2 predictions for the

missing conformers.
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4.2.2.3 Ligand-Protein Docking

Molecular docking was performed between all 222 ligands and both the outward and inward

conformers of human OATP1B1, OATP1B3, and OATP2B1 using the Rosetta modeling suite

(version 3.12) [27]. The RosettaLigand score function (pre-talaris2013) was chosen for its proven

performance in small molecule docking compared to other Rosetta score functions and external

docking algorithms [28]. The docking protocol involved the following steps: (1) concatenating the

ligand conformer files with the prepared protein structures, (2) defining the starting coordinates for

the ligand within the known transport site of the OATPs [20] using an XML file, (3) specifying

the dimensions of the grid in which the ligand is allowed to move during the docking simulation,

and (4) running the docking simulation for all ligands. To ensure a thorough sampling of the

binding space, 1000 docked poses were generated for each ligand-protein pair. To further validate

the docking results, the top-ranked poses for each ligand were visually inspected for any unrealistic

conformations or interactions. Additionally, the binding energies of the top poses were compared to

available experimental binding data [7] to assess the accuracy of the RosettaLigand score function

in ranking the poses. These validation steps provided additional confidence in the quality of the

docking results for downstream analysis.

4.2.2.4 Ranking Docked Poses for Each Ligand

For each docked pose, Rosetta reports the ligand-protein interface energy (interface_delta_X).

This was used as a relative metric to rank the 1000 docked poses for a single ligand-OATP conformer

pair. Poses with the lowest interface_delta_X scores were interpreted as higher-quality docked

poses (i.e., more stable binding). For all poses, interface_delta_X scores were recorded in a

CSV file for use in subsequent analyses (e.g., determining the optimal number of poses to capture

transporter dynamics).

4.2.3 Feature Selection, Encoding, and Preprocessing

Two distinct types of feature sets were generated for each OATP conformer: traditional

ligand-only molecular descriptors (ligand features, LFs) and protein-ligand interaction features

(PLIFs).
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4.2.3.1 Ligand Features (LFs)

Two types of vectorized molecular representations, extended-connectivity fingerprints (ECFP6)

and RDKit physicochemical descriptors, were generated for each of the 222 ligands using the

pinky 1 and RDKit [29] python libraries, respectively. As both types of LFs consist of numeric,

noncategorical data, no encoding was required. Variance (<0.001) and correlation coefficient

(>0.99) thresholding was performed to remove any obvious or redundant features.

4.2.3.2 Protein-Ligand Interaction Features (PLIFs)

The Protein-Ligand Interaction Profiler (PLIP) [30] was used to generate interaction profiles

for each docked pose. PLIP produces intricate features to describe each interaction present in a

docked pose, including interaction type, distance, angle, donor and acceptor atom IDs, etc. These

comprehensive PLIFs were parsed into a CSV file, with each row containing vectorized PLIFs for

a single docked pose. Raw PLIF csv files were processed with an initial variance filtering (<0.001)

to remove any of the non-categorical, numerical features (e.g., interaction distance, angle) with

variance below this threshold. One hot encoding was then performed for all categorical features.

Encoded data was then filtered by correlation coefficient (>0.99) to remove highly redundant

features.

4.2.3.3 Protein-Ligand Interaction Feature Reduction: Minimal PLIFs (mPLIFs)

To capture a more interpretable, less noisy PLIP representation, a simplified set of PLIFs

(minimal PLIFs, mPLIFs) was parsed from the PLIF data. These more minimal features define

whether each OATP residue is involved in a specific interaction type in a given pose (0=not

involved, 1=involved). The mPLIF naming system follows the pattern [interaction type].[OATP

residue] (examples in supplementary Figure 4D.1).

4.2.4 Machine Learning Classification Models

This section elaborates on data processing techniques to improve ML classification tasks, model

selection, from machine learning classifiers to neural network for mutlilabel classification task.
1https://github.com/ubccr/pinky/
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4.2.4.1 Data Preprocessing

Prior to training the machine learning models, several preprocessing steps were applied to the

dataset. One-hot encoding was performed on categorical features to convert them into a binary

representation suitable for the models. Variance and multicollinearity correlation thresholding were

employed to remove features with low variance (<0.001) and high correlation (>0.99), respectively,

reducing the dimensionality of the feature space and mitigating the risk of overfitting.

A drug-wise splitting approach was adopted to create the holdout test sets to ensure a robust

evaluation of the models’ performance. This approach, as opposed to entirely random pose-wise

splitting, prevents leakage of information between the training and test sets. Five balanced test sets

were created, each containing 10% of the total dataset, with an equal representation of inhibitors

and non-inhibitors. The remaining 90% of the data was used for training and cross-validation.

Additionally, feature normalization using StandardScaler was applied to ensure that all features

have zero mean and unit variance, improving the convergence and stability of the machine learning

algorithms.

4.2.4.2 Classifier Training Evaluation

Several machine learning algorithms, including logistic regression, support vector machines

(SVM), random forests, and XGBoost, were trained and evaluated using the preprocessed data. The

training process involved k-fold cross-validation, where the training data was split into k subsets,

and the models were trained and validated k times, using a different subset for validation each time.

This approach helps to assess the models’ performance and stability across different subsets of the

data. The results for classification are reported for XGBoost due to consistent out-performance.

The trained models were then evaluated on the holdout test sets to assess their generalization

performance. Metrics such as accuracy, precision, recall, F1-score, and area under the receiver

operating characteristic curve (AUC-ROC) were calculated to provide a comprehensive assessment

of the model’s performance in predicting OATP inhibition.
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4.2.4.3 Multi-label Neural Network

In our approach to predicting OATP inhibition, we developed a multi-label neural network

classification model. This methodology facilitates simultaneous prediction of inhibition across

multiple OATP subtypes (1B1, 1B3, and 2B1), providing a more holistic perspective on potential

drug interactions compared to traditional single-family classification models. The multi-label

strategy excels in revealing the intricate interplay between drugs and various OATP subtypes,

enabling the discovery of cross-subtype inhibition patterns that might be overlooked in isolated

analyses.

Our implementation featured a custom-designed InhibitorClassifier neural network architecture,

consisting of multiple hidden layers with ReLU activation functions. For multi-label classification,

we employed the BCEWithLogitsLoss criterion, which is well-suited for handling multiple binary

labels. To enhance generalization and prevent overfitting, we incorporated an early stopping

mechanism. Additionally, hyperparameter tuning was conducted using the Optuna optimization

package [31], ensuring robust performance across different OATP subtypes. This comprehensive

setup highlights the efficacy of our approach in tackling the challenges of OATP-mediated drug

interaction prediction.

4.2.5 Heterogeneous Graph Neural Network for Inhibition Perdition of OATPs (HIPO-GNN)

A Heterogeneous Graph Neural Network (HeteroGNN) is constructed for each protein-ligand

complex to capture the intricate interactions between the protein and the ligand. The graph

contains two types of nodes: amino acid residues and ligand atoms. For amino acids in the

protein sequence, 28 features are extracted (Table 4.1), including one-hot encoded residue type,

molecular weight, aromaticity, isoelectric point, hydrophobicity, flexibility, and secondary structure

propensities. These features capture the essential properties involved in protein-ligand interactions.

For ligand atoms, 79 atomic features are derived (Table 4.2), including one-hot encoded atom

type, number of heavy neighbors, formal charge, hybridization state, presence in rings, aromaticity,

atomic mass, van der Waals radius, covalent radius, chirality, and number of implicit hydrogens.

This set of atomic features provides a detailed representation of the ligand’s chemical structure and
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properties, ensuring that the HeteroGNN effectively models the complex dynamics of protein-ligand

interactions.

Edges in the constructed graph represent the inter-interactions between amino acids and atoms,

as well as the intra-interactions among atoms within the ligand. For protein-ligand interactions,

332 edge features are extracted (Table 4.3), including interaction type, distance, angle, and other

geometric properties. For ligand bonds, 10 features are derived (Table 4.4), such as bond type,

conjugation, presence in rings, and stereochemistry. This graph construction process captures

the protein-ligand complex’s local and global structural information, providing a comprehensive

representation for subsequent analysis. Lastly, Table 4.5 presents the edge formulation indices and

their corresponding sizes, detailing the interactions between amino acids (aa) and atoms, as well as

the bonds between atoms.

4.2.5.1 Model Architecture

The HeteroGNN architecture is designed to model the protein-drug interaction and perform a

graph classification task. It uses separate convolution layers for amino acid-to-atom, atom-to-amino

acid, and atom-to-atom interactions. Edge features are first processed through Multi-Layer

Perceptrons (MLPs) to capture interaction characteristics. Convolutional layers (i.e., NNConv)

then update node features based on neighboring nodes and processed edge features, propagating

information across the protein-ligand interface. A HeteroConv layer aggregates outputs from these

convolutions, combining information from different interaction types (i.e., inter and intra). Linear

projection layers then map atom and amino acid features to a common space. Global mean pooling

is applied to create fixed-size representations for the ligand and protein. These pooled features are

concatenated and passed through a classification network consisting of linear layers with ReLU

activation and dropout. The network outputs a single value predicting the compound’s inhibitor

status. This architecture integrates heterogeneous information from protein-ligand complexes,

considering both local interactions and global structure to predict inhibitory activity.
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4.2.5.2 Data Splitting and Cross-Validation

The data splitting strategy aims to ensure robust evaluation and minimize data leakage. 10%

of unique ligands are randomly selected as the test set, including all related docked poses. The

remaining data is split into training (90%) and validation (10%) sets based on unique ligands.

This process is repeated 20 times, creating 20 different train/validation/test splits for a more

comprehensive assessment of model performance.

4.2.5.3 Training and Evaluation

The model is trained using the AdamW optimizer with weight decay. The OneCycleLR learning

rate scheduler is used for adaptive learning rates. Mixed precision training improves computational

efficiency. Binary Cross-Entropy with Logits serves as the loss function. Early stopping, based on

validation loss with a patience of 5 epochs, prevents overfitting. Each model trains for up to 100

epochs or until early stopping occurs.

For each of the 20 data splits, a separate model is trained and evaluated on the corresponding

test set. Multiple metrics are calculated: accuracy, precision, recall, F1 score, balanced accuracy,

and AUC-ROC. This thorough evaluation provides a robust understanding of the model’s predictive

capabilities across various classification aspects.

Table 4.1 Node Features for Amino Acids.

Feature Type Size
One-Hot Encoded Residue Binary Vector 20
Molecular Weight Numerical 1
Aromaticity Numerical 1
Isoelectric Point Numerical 1
Hydrophobicity Numerical 1
Flexibility Numerical 1
Secondary Structure Numerical Vector 3

4.3 Results

To address the challenge of predicting OATP-mediated drug-drug interactions (DDIs), we

developed a comprehensive computational approach that integrates molecular modeling, machine

learning classifiers, and Graph Neural Networks (GNNs). Our novel structure-based OATP-ligand

90



Table 4.2 Node Features for Atoms.

Feature Type Size
One-Hot Encoded Atom Type Binary Vector 43
Number of Heavy Neighbors Binary Vector 6
Formal Charge Binary Vector 8
Hybridization Type Binary Vector 7
In a Ring Binary 1
Aromaticity Binary 1
Atomic Mass Numerical 1
Van der Waals Radius Numerical 1
Covalent Radius Numerical 1
Chirality Binary Vector 4
Number of Implicit Hydrogens Binary Vector 6

Table 4.3 Edge Feature for Interaction (Amino Acid Interaction with Atom).

Feature Description
Interaction Type hydrophobic, halogen, hydrogen bond, salt

bridge, pi-cation, pi-stacking
Residue Type One-hot encoded vector for protein residues

involved in the interaction
Distance Normalized distance between the interacting

protein residue and ligand atom
Angle Normalized angle measurements (if

applicable, e.g., in hydrogen bonds)
Donor/Acceptor Type One-hot encoded vector for donor/acceptor

roles (in halogen/hydrogen bonds)

Table 4.4 Edge Features for Intra-Interactions (Within Ligand Atoms).

Feature Description
Bond Type One-hot encoded vector for bond types (e.g.,

single, double, aromatic)
Conjugation Binary for whether the bond is conjugated
Ring Status Binary for whether the bond is part of a ring
Stereochemistry One-hot encoded vector for stereochemistry

(e.g., cis, trans)

Table 4.5 Edge Formulation.

Edge Index Size
’aa’, ’interacts with’, ’atom’ 332
’atom’, ’interacts with’, ’aa’ 332
’atom’, ’bonded to’, ’atom’ 10
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interaction prediction platform, HIPO-GNN, combines ligand molecular features with protein-ligand

interaction data to significantly enhance inhibition prediction accuracy. The study unfolds in

several key stages. Initially, we employed molecular docking followed by a Protein-Ligand

Interaction Profiler (PLIP) [30] to extract interaction features, generating Protein-Ligand Interaction

Fingerprints (PLIFs). These PLIFs enabled comparisons between key residues interacting with

inhibitors versus non-inhibitors, highlighting specific residues (F38, K41, N213, L378, G552, and

V556) that show notable differences in their interactions. We then utilized these interaction features

to build and optimize machine learning classifiers, exploring the effect of docked pose sampling

on predictive performance. The culmination of this process was the development of HIPO-GNN,

designed to capture intricate intra- and inter-molecular dynamics between drugs and proteins.

HIPO-GNN significantly outperformed traditional ligand-based methods, achieving median F1 and

AUC scores of 0.82 and 0.81, respectively, compared to ECFP (F1: 0.68, AUC: 0.70) and RDKit

(F1: 0.78, AUC: 0.75) models built upon XGBoost. Additionally, we conducted a meta-analysis

to underscore the critical importance of data quality in studying complex transporter proteins like

OATPs. This analysis revealed challenges such as discrepancies in experimental dataset labeling

under different conditions and identified physicochemical features of drugs highly correlated with

these discrepancies. We also demonstrated how the availability of crystal structures influences

ML prediction outcomes, showing significant variations in results between proteins with and

without these structures. By addressing these aspects, our integrated approach aims to enhance the

prediction accuracy for OATP inhibition, provide more comprehensive insights into OATP-ligand

interactions, and contribute to the design of safer and more effective medications.

4.3.1 Structure-Based Protein-Drug Interaction Prediction

This section explores the effectiveness of structure-based and drug-based features in predicting

protein-drug interactions, specifically for the OATP1B1 subfamily which its crystal structure has

been determined. We present key findings from our studies on molecular docking simulations

and inhibition classification, emphasizing the performance of various feature representations (e.g.,

ECFP, PLIP, RDKit) in classification tasks. Additionally, our analysis identifies critical residues
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and interaction types that differentiate inhibitory drugs from non-inhibitors. The results indicate

that structure-based features are most effective when high-quality crystal structures for both inward

and outward conformers are available. The analysis of key residues and interaction types also

shows promising results and agreement with recent findings about OATP transport. For instance,

non-inhibitors exhibited approximately twice as many pi-stacking interactions with residues Y352

and F356 in the inward conformer compared to known inhibitors. This observation aligns with

the findings of Shan et al.[20], highlighting the significance of Y352 and F356 in the binding and

transport of known OATP1B1 substrates.

4.3.1.1 Molecular Docking Simulation Generated Novel OATP-Ligand Interaction Interface.

Molecular docking simulations have identified novel interaction interfaces between OATP1B1

and various ligands. Utilizing high-quality cryo-EM structures of OATP1B1, we performed

extensive docking simulations to model the binding poses of 222 experimentally characterized

ligands with the inward-facing conformer of OATP1B1 [20]. From each docking pose, we

extracted protein-ligand interaction features (PLIFs), highlighted in orange in Figure 1A. These

features encompass critical interaction details such as distance, angle, and the specific atoms

involved, capturing the intricacies of potential interaction hotspots. The distribution of Rosetta

interface binding energies for OATP1B1, OATP1B3, and OATP2B1 transporters can be found in

the supplement appendix (Figure 4C.1).

4.3.1.2 Interacting Residues in Docked Poses are Generally Consistent with Experimental
Findings.

To identify key residues that characteristically interact more often with inhibitors, the distribution

of interactions per OATP1B1 residue was analyzed. This involved parsing the comprehensive

Protein-Ligand Interaction Fingerprints (PLIFs) into a subset of interaction features, termed

minimal PLIFs (mPLIFs). Specifically, mPLIFs encompass only the interaction types present

at each OATP1B1 residue. Figure 6.1B (left) highlights the frequency of any interaction type

occurring at each orthosteric site residue (Y352, F356, and F386) identified by Shan et al [20].

Inhibitory ligands were observed to interact significantly more often with the phenylalanine residues
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Figure 4.1 Interaction probabilities of OATP1B1 residues with inhibitors and non-inhibitors. A.
Displays the inward-facing conformers of OATP1B1, and panel (B) Exhibits the outward-facing
conformers for OATP1B1. Each panel is divided to show interaction probabilities at the orthosteric
site (left) and opportunistic sites (right). White bars represent non-inhibitors and gray bars
denote inhibitors. Error bars indicate 95% confidence intervals. Statistical significance is
marked by asterisks where *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001, as determined
by Mann-Whitney U-tests with Bonferroni correction. The inset structural model (right) illustrates
E3S (green) docked to OATP1B1, with protein-ligand interaction fingerprints (PLIFs) highlighted
in orange.

in the orthosteric site than non-inhibitory ligands (𝑝 < 5 × 10−4 for F356, and 𝑝 < 5 × 10−5 for

F386).

4.3.1.3 Structure-Based vs. Ligand-Based ML Prediction Perform Distinctly in OATP
Families

To obtain a holistic view of structure-based and drug-based features’ performances, a multilabel

classification study uses PLIP (structure-based), RDKit, and ECFP (both drug-based) features. This

approach allows us to evaluate the overall effectiveness of each feature set in distinguishing the
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protein-drug interaction (i.e. whether an inhibitor for x or not) simultaneously for all three OATP

families.

Figure 3.2 compares the distribution of F1 Scores and AUC values for these feature sets. The

results show that PLIP-based features achieved a relatively high median F1 Score, suggesting they

are effective in predicting true positive rates across multiple labels. RDKit features exhibited the

highest median AUC, indicating a strong ability to distinguish between classes. The ECFP features

displayed more variability in both F1 Scores and AUC values, suggesting some inconsistency in

performance.

To further elucidate the performance differences across OATP subfamilies, we conducted a

comparative analysis of structure-based and ligand-based prediction methods for each transporter

type. As shown in Figure 4B.1, RDKit-based machine learning models consistently outperformed

other approaches for OATP1B3 and OATP2B1, indicating that ligand-based features are particularly

crucial for predicting inhibition in these subtypes. In contrast, OATP1B1 demonstrated superior

performance with structure-based modeling approaches, suggesting that the availability of high

quality structural data for this transporter provides valuable insights into protein-ligand interaction

dynamics while maintaining alignment within the margins. Notably, OATP2B1 posed the greatest

challenge for prediction among the tested families in the Karlgren dataset, highlighting the complex

nature of its interactions. These findings underscore the importance of tailoring computational

approaches to the specific characteristics of each OATP subfamily and informed our decision to

focus subsequent analyses on OATP1B1, leveraging its amenability to structure-based prediction

methods for further enhancement of predictive performance.

4.3.2 GNN Model Captures Nuanced Protein-Ligand Interactions and Improves Inhibition
Prediction Performance.

We present the performance of our novel HIPO-GNN model compared to other state-of-the-art

methods for predicting OATP inhibition. Our results demonstrate that HIPO-GNN, which integrates

both ligand features and protein-ligand interaction data, achieves superior performance in terms

of F1 score, indicating a better balance between precision and recall in inhibition prediction.
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Figure 4.2 PLIP-based features demonstrated the highest median F1 Scores, while RDKit features
exhibited the highest median AUC value. The dotted lines showed statistical significance among
the performances.

This improvement is particularly noteworthy given the complex nature of OATP-mediated drug

interactions and the challenges associated with their prediction.

Figure 4.3 The box plots display the distribution of scores for ECFP, RDKit, PLIP, PLIP Vote,
HIPO-GNN, and GNN-Ligand methods. HIPO-GNN shows superior F1 scores, indicating better
overall prediction accuracy while maintaining competitive AUC scores.

Post-analysis of these results reveals interesting insights. While HIPO-GNN demonstrates the

highest median F1 score, its AUC score, though competitive, is slightly lower than that of the

GNN-Ligand model. This discrepancy might be attributed to the additional noise introduced by the
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protein-ligand interaction features in HIPO-GNN, which are absent in the ligand-only GNN model.

The interaction features, while providing valuable information about the binding dynamics, may

also introduce some level of uncertainty due to the inherent variability in protein-ligand interactions

and potential limitations in the molecular docking process. Nevertheless, the higher F1 weighted

score suggests that HIPO-GNN’s predictions are more reliable in predicting OATP inhibition across

the dataset, taking into account the class distribution. This indicates that HIPO-GNN performs well

on both common and rare cases of inhibition, providing a more comprehensive and practically useful

model for drug-drug interaction predictions in real-world scenarios where the class imbalance is

typical.

4.3.3 From Noise to Knowledge

In this section, we aim to enhance the interpretability and knowledge gained from our OATP

inhibition prediction model. We explored the physicochemical properties most closely associated

with OATP inhibition, providing a mechanistic understanding of the inhibition process. Additionally,

we introduce simple machine learning engineering techniques to maximize the signal obtained

from our computational modeling, effectively separating meaningful patterns from noise. This

comprehensive approach not only enhances our model’s performance but also contributes to a deeper

understanding of OATP inhibition mechanisms, addressing challenges in data consistency, and

improving the overall reliability of drug-drug interaction predictions for OATP-mediated transport.

4.3.3.1 Consideration of Multiple Docked Poses Provides Dynamic Insight at the Expense
of Signal.

For each ligand, Rosetta docking simulations generated 1,000 poses of varying quality. The

Rosetta interface_delta_X energy score was employed as a quality metric to represent the binding

interface energy. Figure 4.4. A illustrates the distribution of interface energy scores for the

most stable 100 poses for both inhibitors and noninhibitors docked to inward-facing OATP1B1.

These distributions indicated that the docked interfaces of noninhibitors to the inward-facing

conformer are significantly more stable compared to those of inhibitors.To investigate the impact

of including multiple poses on model performance, datasets were created containing one, two,
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three, five, ten, 20, 30, 50, 75, and 100 of the ’best’ poses per ligand. The performance of the

XGBoost model was observed to peak when approximately 30 poses per ligand were included

in the PLIF dataset. Interestingly, mPLIF models displayed maximum performance with only

two poses per ligand (Figure 4.4B). We hypothesized that removing nuanced, quantitative PLIFs

might reduce noise and improve model performance, although this was not observed in our results.

Conversely, regardless of the number of poses included per ligand, XGBoost models trained on the

comprehensive PLIF dataset generally outperformed those trained on the simplified mPLIFs (Figure

4.4B). The best-performing conditions (30 poses, full PLIFs) were selected for constructing the

HIPO-GNN model. In addition to implications on predictive performance, expanding datasets to

include multiple poses per ligand may broaden the dynamic perspective of transporter interactions.

The residue-interaction distributions of our docking-derived PLIFs were evaluated for consistency

with experimentally identified interaction sites. Our analyses were divided into three groups of

OATP1B1 residues: 1. We investigated PLIFs involving the orthosteric site (Y352, F356, F386),

which is consistently seen to be involved in OATP1B1 transport function [20]. 2. We defined

a second category of residues from known opportunistic sites, groups of residues important

for the binding and/or transport of only certain ligands. Our analyses considered a broadly

encompassing set of residues present in opportunistic sites of simeprivir, estrone-3-sulfate, bilirubin,

and 2’,7’-dichlorofluorescein (DCF). We refer to this grouping as the ‘opportunistic sites’ for brevity.

3. Lastly, we investigated PLIFs involving residues previously unrecognized in either the orthosteric

or opportunistic sites.

As expected, increasing the number of poses included in our datasets resulted in a greater

diversity of OATP1B1 residues captured in the PLIFs of each ligand. Figures 4.4 C–E depict the

[coverage = for each ligand, out of all n-poses, how many of the residues from the (a) orthosteric,

(b) opportunistic, (c) neither site were present.

4.3.3.2 Physiochemical Feature Importance Analysis for OATP Inhibition

Building upon our previous identification of key protein residues involved in OATP inhibition

6.1, we also focuses on physicochemical properties of drugs that contribute to this inhibition.
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Figure 4.4 Multiple Docking Pose Effect in ML Performance and OATP Inhibition Mechanism
Insight. A. Distribution of Rosetta binding interface energy scores (interface_delta_X, in Rosetta
energy units) for 100 poses of each ligand docked to the inward-facing OATP1B1. Experimentally
characterized noninhibitors are shown in green, and inhibitors in red. Dashed lines indicate the
30th percentile – the ’best’ 30 poses. (B) All panels with 95% confidence intervals. B. Area under
the curve (AUC) and F1 scores plotted for PLIP and mPLIP feature sets for a variable number of
poses per ligand. Scores shown are for models incorporating majority voting. (C - E) Fraction
of unique residues from the orthosteric site, opportunistic sites, and remaining protein sequence
captured in PLIFs as a function of the number of poses. Shaded regions indicate 95% confidence
intervals in panels B - E.

Understanding both protein-ligand interactions and drug characteristics is crucial for a detailed

view of OATP-mediated drug-drug interactions. While achieving strong predictive performance is

crucial, the interpretability of our models offers critical insights for advancing drug development

and ensuring safety assessments.. Our analysis in 4.5 reveals the key physicochemical properties

that influence OATP inhibition across multiple subtypes and specifically for OATP1B1. These

findings not only enhance our mechanistic understanding but also offer practical guidance for

rational drug design.
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Figure 4.5 Feature importance analysis for OATP inhibition prediction. A. Top features
contributing to the inhibition prediction across OATP1B1, OATP2B1, and OATP1B3, categorized
by physicochemical properties. The model classifies compounds as inhibitors only if they
inhibit all three OATP subtypes. B. Specific features important for OATP1B1 inhibition
prediction. Feature importance is quantified based on the model’s reliance on each feature for
predictions. Color-coding represents different categories of physicochemical properties. Key
features include molecular weight (HeavyAtomMolWt), molar refractivity (MolMR), partial charge
distributions (PEOE_VSA2), lipophilicity (SlogP_VSA1/5/6), and molecular shape descriptors
(SMR_VSA1/3/7/10, Kappa1, Chi3n).

4.3.4 Discussion

Understanding the transport mechanisms of OATPs is particularly challenging due to their

membrane-bound nature and dynamic conformational changes. Unlike soluble proteins, OATPs

are embedded in cellular membranes, complicating their study. Their polyspecificity, (i.e. ability to

interact with a wide range of substrates) exacerbates this challenge as it demands detailed knowledge

of diverse and often overlapping binding interactions. The hydrophobic nature of OATPs makes

them difficult to crystallize, resulting in a scarcity of high-resolution structural data, which impedes

the development of accurate models for predicting drug interactions. This lack of structural
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information, combined with their significant flexibility and propensity for instability, presents

challenges throughout various stages of research, including expression, solubilization, purification,

and structural elucidation. Consequently, the principles governing OATP drug transport and

inhibition mechanisms are not fully understood. This necessitates resource-intensive in vitro and

in vivo assays and highlights the need for advanced computational methods to fill these gaps.

Machine learning (ML) techniques have been extensively applied to predict interactions between

drugs and OATPs and provide transport insights. Researchers have made progress in identifying and

predicting OATP-mediated drug transport and inhibition mechanisms by distinct ML algorithms

and encoding various features of drug-protein interactions into ML platforms. Khuri et al. [32]

employed a Random Forest classifier to screen a virtual library of over 5000 compounds, identifying

potential OATP2B1 inhibitors. The descriptors for the ligands encompassed physicochemical and

topological properties of the drugs, capturing the essence of their interaction capabilities with

the transporter. To enhance the precision of their initial findings, they proceeded to evaluate

the shortlisted compounds via docking against several comparative protein structure models of

OATP2B1. This docking process served as a subsequent step to further refine and filter the list

of candidates. Among the ten selected drugs for experimental validation, three were confirmed

as potent inhibitors of OATP2B1-mediated E3S transport. In another study, De Bruyn et al.[33]

incorporated protein sequence physiochemical features and ligand circular fingerprint (ECFP6)

into a random forest classifier to predict OATP1B1/3 inhibitors. The trained model, prospectively

validated on 54 compounds not previously included in the original library, predicted their inhibitory

potential against OATP1B1 and OATP1B3, with 80% and 74% of the compounds correctly

identified for their inhibition effects on OATP1B1 and OATP1B3, respectively. Subsequent studies

employed multiple strategies such as logistic regression, SVC, XGBoost, and ensemble models.

These approaches leveraged varied representations of features, incorporating extensive protein

sequence data (such as amino acid compositions and sequence order features) along with ligand

attributes (e.g. ECFP, and RDK fingerprints). This expanded feature set facilitated the early

detection and pharmacokinetic profiling of OATP-drug interactions [34]. Recently, Hao Duan et al.
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[35] presented a more robust approach for predicting transporter inhibitors using both conventional

machine learning and multi-task deep learning models. The study leverages a comprehensive

dataset curated from multiple sources (i.e. Karlgren, ChembL, De Bruyn, [12 papers, 6 databases]),

achieving high predictive performance, particularly with the MLT-GAT model. However, while

the dataset curation is extensive, the study faces challenges with data imbalance and the need for

higher quality data to enhance model accuracy and reliability further. This work highlights the

high potential and current limitations of computational methods in transporter-drug interaction

prediction. While influential, these studies face several limitations. Notably, the inconsistency in

public datasets regarding the classification of drugs as inhibitors or substrates leads to discrepancies

in definitions resulting in misguided labeling across ML implementations. Additionally, most

studies concentrate solely on drug attributes, while crucial, may not fully capture the nuances

necessary for accurate predictions of interactions with complex and dynamic proteins. The lack

of protein structural information in ML models limits the ability to comprehensively incorporate

features from both drugs and proteins. Given the complexity of the system, a more sophisticated

modeling approach is required to address the challenges posed by the structural variability of

proteins and the intricate nature of drug-protein interactions.

This study demonstrates the value of integrating structural information and advanced machine

learning techniques in predicting OATP-mediated drug interactions. OATPs’ crucial role in hepatic

drug uptake, combined with the challenges of their membrane-bound nature and limited structural

data, necessitates innovative approaches. Our structure-based approach leverages protein-ligand

interaction features and heterogeneous graph neural networks to address these challenges by

effectively capturing the complex dynamics of OATP-ligand interactions. The HIPO-GNN model’s

improved predictive performance, particularly in F1 score, highlights the benefit of incorporating

both ligand and protein structural information. Our analysis of feature importance and dataset

quality provides key insights for drug development strategies. This work enhances our ability to

predict and understand OATP inhibition mechanisms, contributing to more efficient drug design

and improved patient safety through better prediction of drug-drug interactions. Looking ahead,
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the synergy between computational models and experimental techniques promises to unlock new

frontiers in OATP research. By iteratively refining our models with emerging structural and

functional data, we can anticipate more accurate predictions, leading to tailored drug designs that

minimize unwanted interactions and optimize therapeutic outcomes.
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APPENDIX 4A

LIGAND-PROTEIN DOCKING WORKFLOW

In this study, we leverage protein-ligand docking simulations to inform machine learning models on

accurately classifying OATP ligands as either inhibitors or non-inhibitors. The docking workflow

involved selecting protein and ligand for docking. Optionally, the CASTp server was used to

identify potential binding sites on the protein. The workflow required organizing files in a specific

manner and utilizing Python scripts designed for this structure.The initial script prepared necessary

files, including a Params file for ligand processing instructions and a concatenated file of the

protein and ligand structures. The subsequent script generated the docking job and an XML file

with docking parameters. Customizations in the XML file included adjustments to the docking

starting coordinates, box size for ligand movement, and the scoring grid for residue analysis. The

options file was edited to define file locations for Rosetta, including the concatenated files, Params

file, and XML file, along with the docking iterations count. Docking jobs were executed from a

designated directory, with outputs stored in a specified output folder. Post-docking, a script was

used to extract the top docking results. The approach was designed for high throughput processing

of multiple proteins and ligands, ensuring file paths and naming conventions were consistent with

the established directory structure. This protocol enabled effective protein-ligand docking using

Rosetta for multiple entities.
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Figure 4A.1 Docking Workflow for Drug Inhibition Prediction.
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Figure 4A.2 ML Workflow for Drug Inhibition Prediction.
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APPENDIX 4B

COMPARATIVE ANALYSIS BASED ON STRUCTURE AND LIGAND PREDICTIONS
ACROSS OATP SUBFAMILIES

Figure 4B.1 Comparative performance of machine learning models across OATP subfamilies.
RDKit-based predictions consistently outperform other models for OATP1B3 and OATP2B1, while
OATP1B1 shows superior performance with structure-based modeling approaches.

These results provide valuable insights into the relative effectiveness of structure-based and

ligand-based approaches for predicting inhibition across different OATP subfamilies. The analysis

reveals distinct patterns in predictive performance, highlighting the importance of tailored methods

for each OATP subtype.For OATP1B3 and OATP2B1, ligand information emerges as the key

determinant in inhibition prediction. The consistently superior performance of RDKit-based

machine learning models for these subtypes underscores the significance of ligand physicochemical

properties and molecular descriptors in capturing the essence of their interactions with these
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transporters. In contrast, OATP1B1 exhibits a unique behavior, demonstrating enhanced predictive

performance when structure-based methods are employed. This suggests that the availability

of high-quality structural data for OATP1B1 provides crucial insights into the protein-ligand

interaction dynamics that are not fully captured by ligand-based approaches alone. Notably,

the analysis reveals that among the tested OATP families in the Karlgren dataset, OATP2B1

posed the most significant challenge for machine learning prediction. This observation highlights

the complex nature of OATP2B1 interactions and suggests that further refinement of predictive

models or the incorporation of additional data types may be necessary to improve accuracy for this

subtype. The comparative performance across OATP subfamilies, as illustrated in Figure 4B.1,

provides a clear visualization of these trends. The consistent outperformance of RDKit-based

models for OATP1B3 and OATP2B1 is evident, while the superior performance of structure-based

modeling for OATP1B1 is distinctly visible. Based on these findings, the study’s focus naturally

gravitated towards OATP1B1, leveraging its amenability to structure-based prediction methods.

This strategic shift paved the way for the development and implementation of novel approaches

aimed at further enhancing the predictive performance for OATP1B1 inhibition. These results not

only provide valuable insights into the differential predictive requirements of OATP subfamilies but

also underscore the importance of tailoring computational approaches to the specific characteristics

of each transporter. Such nuanced understanding is crucial for advancing our ability to accurately

predict OATP-mediated drug interactions and ultimately contribute to more effective and safer drug

development processes.
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APPENDIX 4C

DISTRIBUTION OF ROSETTA INTERFACE BINDING ENERGIES FOR OATP
TRANSPORTERS

Figure 4C.1 Distribution of Rosetta interface binding energies for OATP1B1, OATP1B3, and
OATP2B1 transporters. The histograms show the binding energies for the inward (blue) and
outward (orange) conformers. The x-axis represents the Rosetta interface binding energy, while
the y-axis represents the count of interactions. Data indicate a broader distribution for the inward
conformer of OATP1B1, a noticeable difference between the conformers of OATP1B3, and a
symmetric distribution for OATP2B1, suggesting diverse binding affinities and interaction patterns.
Comparison with AlphaFold-generated structures reveals more diversity and wider distributions in
REU with experimentally solved structures.
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APPENDIX 4D

DISTRIBUTION OF OATP1B1 RESIDUE INTERACTIONS WITH INHIBITORS AND
NONINHIBITORS

Figure 4D.1 Distribution of OATP1B1 residue involvement in interactions with inhibitors (blue)
and noninhibitors (orange), as computed from PLIFs of the ‘best’ 30 poses for each OATP
conformer-ligand pair. Distributions presented are per interaction type: hydrophobic, hydrogen
bonding, halogen bonding, pi-stacking, and pi-cation interactions (A – E). Inward-facing conformer
interactions (left) are notably more frequent with noninhibitors, whereas the outward-facing
conformer (right) is observed to have a greater frequency of inhibitor interactions. Especially
notable, known noninhibitors were observed to have roughly twice more pi-stacking interactions
with each Y352 and F356 in the inward conformer when compared to the known inhibitors in the
dataset. This agrees with findings of Shan et al. (2023) [20]regarding the importance of Y352 and
F356 in binding and transport of known OATP1B1 substrates.
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CHAPTER 5

GENERATIVE MODELS FOR PROTEIN SEQUENCE MODELING: RECENT
ADVANCES AND FUTURE DIRECTIONS

1

Abstract

The widespread adoption of high-throughput omics technologies has exponentially increased

the amount of protein sequence data involved in many salient disease pathways and their respective

therapeutics and diagnostics. Despite the availability of large-scale sequence data, the lack of

experimental fitness annotations underpins the need for self-supervised and unsupervised machine

learning (ML) methods. These techniques leverage the meaningful features encoded in abundant

unlabeled sequences to accomplish complex protein engineering tasks. Proficiency in the rapidly

evolving fields of protein engineering and generative AI is required to realize the full potential of ML

models as a tool for protein fitness landscape navigation. Here, we support this work by (i) providing

an overview of the architecture and mathematical details of the most successful ML models

applicable to sequence data (e.g. variational autoencoders, autoregressive models, generative

adversarial neural networks, and diffusion models), (ii) guiding how to effectively implement

these models on protein sequence data to predict fitness or generate high-fitness sequences and

(iii) highlighting several successful studies that implement these techniques in protein engineering

(from paratope regions and subcellular localization prediction to high-fitness sequences and protein

design rules generation). By providing a comprehensive survey of model details, novel architecture

developments, comparisons of model applications, and current challenges, this study intends to

provide structured guidance and robust framework for delivering a prospective outlook in the

ML-driven protein engineering field.

Keywords: Generative Machine Learning (ML) Models, Protein Engineering, Generative

Adversarial Neural Networks (GANs), Variational Autoencoders (VAE), NLP, Diffusion Models
1This chapter is adapted from content published in "Briefings in Bioinformatics," Oxford Academia. All rights

reserved. For more information, visit https://doi.org/10.1093/bib/bbad358.
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5.1 Introduction

Proteins, as genetically encoded macromolecules, play a pivotal role in regulating biological

systems. Their diverse sizes and chemical compositions empower them with a wide range of

functionalities. Consequently, engineered proteins with tailored functions find applications across

various fields, including cosmetics and environmental bioremediation. Engineered proteins can

be optimized to target disease biomarkers for the early detection of cancer, Alzheimer’s and

inflammatory diseases [1, 2, 3, 4, 5]. Protein-based therapeutics is also another significant

application; namely serum therapy with therapeutic antibodies which started more than a century

ago and evolved with scientific advancements. In addition, protein engineering is a practical tool

to address environmental issues resulting from industrialization [6, 7, 8, 9]. For example, heavy

metal protein binders displayed on the bacterial surface are capable of remediating environments

contaminated with heavy metals [7, 10]. Despite the promise of protein engineering to revolutionize

medicine and industry, discovering proteins with desired functionalities is exceedingly challenging.

Within the astronomical number of ways to build a protein (i.e. unique protein sequences),

the vast majority lack function entirely. Moreover, making a random change to a functional

protein is typically detrimental to its function and stability. This highlights a need for improved

strategies in obtaining novel proteins with favorable properties such as high binding affinity and

desired developability [11, 12]. While previous strategies such as energy-based scoring [13] and

evolutionary [14] methods are still informative, they have drawbacks, including inaccurate modeling

and search strategy inefficiency. Recent advancements in computational methods and the rapidly

growing availability of protein sequence data facilitated the use of new, data-driven approaches for

protein design and engineering [15, 16].

ML techniques may offer a promising route for navigating the high-dimensional landscape of

protein design and engineering. They have shown a high success rate in various domains such

as processing text, images and audio. In theory-driven approaches, the researcher obtains the

domain knowledge of the problem that needs to be solved and produces mathematical models

to capture the attributes and physics of the study. In contrast, ML methods are mainly centered
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on modeling the observed data while previous knowledge and theory may also be infused to the

model. To assess how well a dataset is modeled via ML, a loss function is defined that measures the

difference between the model’s prediction and real data. It then is optimized so that the prediction

is close to reality (i.e. the difference between the model and actual data is minimized). Training

a model involves fitting the model parameters to optimize the loss function. A trained ML model,

therefore, is useful in understanding the given data and aiding in future decisions by identifying

trends, predicting outcomes and recognizing anomalies. Machine learning models can be classified

into two types of models—discriminative and generative. Discriminative models are ML models

used to predict the conditional probability of labels based on the given data features. In contrast,

generative models aim to discover how the data is constructed by estimating the joint probability

distributions of features and corresponding labels. Deep learning (DL), a subset of ML that uses

neural networks for the training, is particularly well-suited for complex domains since it can extract

high-level features (i.e. features that cannot be interpreted by humans) from the given dataset [17].

Sparse high-fitness variants can be efficiently sampled from the vast, rugged protein fitness

space landscape using DL techniques that implement statistical and probabilistic models [18]. For

sequence-function mapping, protein sequences can be vectorized (e.g. with one-hot encodings or

embeddings) to get proper input representations that are compatible with ML algorithms. Therefore,

due to both high demand and compatibility, various ML models have been applied to predict

protein binding affinity [19], thermostability [20], developability [12], solubility [21] and stability

[22, 23]. ML-driven predictive models have shown remarkable success in various applications

compared to wet lab methods like directed evolution and traditional computational methods like

rational design. However, the incorporation of natural language processing (NLP) techniques and

generative models in protein engineering has led to a revolution in the field by improving prediction

accuracy, reducing data requirements and enabling the generation of novel and functional proteins.

Exploiting NLP techniques have been made feasible by changing the perspective about proteins and

finding similarities between human language and protein sequences. For example, both feature an

alphabet (20 amino acids in terms of proteins), have hierarchy in the organization, and evolve over
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time [24]. TAPE [25], UniRep [26], ESM [27] and ProtTrans [28] are among the many successful

studies that have applied NLP techniques to learn the dependencies in protein sequences and be able

to numerically represent them in fixed vector formats (i.e. embeddings) that are rich in semantics

and syntax information. Generative models (based on NLP or pure statistical methods) are also

used in different tasks such as improved representation of protein sequences and generation of

unforeseen protein sequences in nature. BioSeqVAE [29], ProtGPT2 [30], ProteinGAN [31] and

RFdiffusion [31] are examples that generated de novo proteins via different model architectures

such as variational autoencoder, transformer, adversarial neural networks and diffusion models,

respectively.

Here, we provide a systematic overview of promising neural networks applicable to protein

sequences. For each architecture, we introduce core mathematical details of the model before

describing the implementation of these models towards protein engineering tasks. For each model

type, we also provide commentary through selected case studies to describe practical considerations

for integrating ML towards protein applications and to illustrate how specific model architectures

can be advantageous for a given protein engineering task. The first type to be discussed is language

models which have several features that make them strong candidates to be applied for protein

sequence data. These techniques can handle variable sequence lengths, and they can track sequence

long-term dependencies while maintaining the order of tokens (e.g. amino acid positions). We

start with recurrent neural networks (RNNs), then introduce self-attention mechanism (when the

model learns to selectively focus on important positions of the input sequence), and finally dive

into the transformers and their variants. After discussing transformers, we examine three other

generative models in detail: variational autoencoders (VAEs) [32], generative adversarial neural

networks (GANs) [33] and diffusion models [34]. While VAE takes a probabilistic approach to

learn the training data distribution, GANs use two competing neural networks to generate realistic

samples. Diffusion models take a different approach by progressively adding noise to the data

until it reaches the prior distribution. Then, new samples can be generated in the reverse diffusion

process. Finally, we discuss the current challenges and future perspectives in applying such models
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Figure 5.1 A diverse set of protein engineering applications benefit from the generative and
discriminative potential of sequence models. These applications include stability, solubility,
bioluminescence, binding capacity, phylogeny, gene ontology and protein localization. The
schematic of the sequence models are represented here but their detailed description will be
elaborated in their corresponding sections. The autoregressive model forecasts future values based
on the previous values in the time series data. VAE is probabilistic modeling architecture that
contains an encoder (E) and a decoder (D), compressing high-dimensional input data with the E
and reconstructing the data from hidden dimension by D. This architecture along with variational
inference techniques will lead to learning given data distribution and generating novel instances.
In GANs, G represents a generative model that aims to generate realistic data from noise input,
and D is a discriminator that acts as a critic to distinguish the real data from model-generated
data. Diffusion models are a relatively new generative model that facilitates the generation of novel
samples from a state of maximum randomness (at point XT) that is previously generated through
the iterative addition of random noise to data distribution. These models have been demonstrated
in diverse applications ranging from antibody binding prediction to protein localization prediction
tasks in addition to novel protein sequence generation tasks.

to protein engineering. Figure 1 represents the overview of models and applications that are

discussed in detail in this study. With this information, we hope researchers are better prepared to

integrate these technologies into future investigations.
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5.2 Sequence Forecasting – RNNs & ARs

Given that proteins consist of linear chains of discrete amino acids, the amino acid sequences

can be treated as time-series data, with each amino acid acting as a discrete data point for each

position (i.e. time point). Because of this attribute, models that forecast future values using past

values can be used to sequentially generate amino acids based on previous amino acids in the

sequence chain. In this section, we discuss two major models for sequence forecasting: recurrent

neural networks (RNNs) and autoregressive models (ARs).

RNNs are a popular architecture in natural language processing and speech recognition because

they hold ‘memory’ by having internal weights that store information from the past that can be

updated with every new token processed. There are different types of RNNs including one-to-one,

one-to-many, many-to-one, and many-to-many [35]. For protein sequence models, one-to-many

RNNs are suitable for sequence forecasting. By giving a starting token to initialize RNNs, the

trained model can sequentially produce tokens at the current time step using the output token from

the previous time step (Figure 2A). Despite being an architecture well suited for sequential data,

some disadvantages of RNNs need to be addressed. During prediction tasks on a given token,

RNNs are not able to learn any effects of subsequent parts of the sequence because RNNs process

sequences unidirectionally (usually from left to right). This could hurt predictive power because the

interactions between amino acids within a protein occur in a three-dimensional space. Bidirectional

RNNs (BRNNs) address the issue of unidirectionality and improve prediction performance using

two connected layers: one-layer processes sequences in the forward direction and another layer

processes sequences in the backward direction [36]. In this way, sequence information is learned

from both directions. BRNNs are also successfully applied to unsupervised tasks by enabling their

probabilistic interpretation to reconstruct the missing value [37].

Optimizing RNNs while tracking long-term dependencies within sequences can be challenging.

Due to the repeated weight matrix multiplication, the weights from early parts of the sequence have

a progressively lower influence on the final representation relative to the later parts. The repeated

multiplication of small weights results in even smaller weights, causing the gradient vanishing
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Figure 5.2 The architecture of generative recurrent neural networks versus autoregressive model.
(A) An autoregressive model (AR) has a similar structure to a recurrent neural network (RNN).
However, while RNN only depends on the current time step, AR utilizes information from the
previous time steps as well as the current time step to predict the next token. (B) Two important
RNN architectures for resolving vanishing gradient problems in training sequence data are LSTM
and GRU. These networks contain gates to control the information flow. LSTM contains three
gates: input gate, forget gate and output gate and GRU contains two gates: reset gate and update
gate. Note that C indicates the cell state, and h is the hidden state in shown architectures.

problem in which the gradient eventually reaches a drastically small value. Therefore, RNNs

tend to generate biased parameters that capture short-term dependencies, especially when dealing

with long sequences. To enable long-term memory, Hochreiter and Schmidhuber introduced Long

Short-Term Memory (LSTM) [37], and Chung and colleagues introduced Gated Recurrent Units

(GRU) [38] (Figure 2B). Both networks have a gated cell that not only contains multiplication

but also addition operations of sigmoid and hyperbolic tangent (tanh) functions to regulate the

information flow. The sigmoid activation function—which outputs values between 0 and 1—serves

121



as a gate to keep relevant and discard irrelevant information. The information is pertinent for

prediction when values are close to 1, and it is kept to future time steps. The tanh activation

function regulates values to prevent vanishing and exploding gradients by limiting outputs between

1 and 1.

RNN and its variants have been implemented in protein design tasks for both generative and

discriminative applications. For example, a generative LSTM-based model was trained to design

de novo antimicrobial peptide [39]. The generated sequences elicited higher microbial activity than

sampling randomly mutated peptides. In another study, LSTM units were implemented to generate

antibody sequences with well-correlated negative log-likelihood and more than 100-fold affinity

maturation [40]. Interestingly, an LSTM model trained on only f and y angles of each residue

enabled helical protein design [41]. The authors demonstrated that dihedral angles are adequate

features to design protein backbones without considering amino acids in a sequence. In another

study for predicting protein secondary structures, bidirectional recurrent neural networks with GRU

units were used to capture global features within sequence [42].

ARs share a similar structure with RNNs (Figure 2A). Both outputs at time t depend on input

not only at time t but also from earlier time steps. However, RNNs use the hidden state weights

from only the most recent time step, whereas ARs use actual inputs from the past to generate

future values. AR models, as the name suggests, perform regression tasks over their own lagged

variables (i.e. forecasting future values using linear combinations of past values). Protein sequence

generation through ARs can be achieved by maximizing sequence likelihood through a tractable

probability density function. This objective function is a product of conditional probabilities of

tokens at each position that are conditioned on all previous tokens shown as Equation 1, where X

is the full-length sequence, x is each token, I is the position number, and n is the sequence length.

The objective function is decomposed from the joint probability of a full-length sequence using

the chain rule of probability and Bayes’ theorem. For each step generation, the features are past

tokens, the label is the true token at the current time step, and the loss is the difference between the

predicted token and the true token.
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𝑝(X) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖 |𝑥1, 𝑥2, . . . , 𝑥𝑖−1) (5.1)

Theoretically, the space complexity of ARs grows exponentially with forward processing of

sequences. This complexity is represented as O(nk) in big O notation where k grows with increasing

n for a sequence with length of n. In practice, ARs use a fixed number of parameters to specify

each prior. This reduces the complexity to a polynomial O(nc) where c is a constant. However, this

restricts ARs to represent all possible conditional distributions and limits model expressiveness. Lin

et al. [43] proposed energy-based models and latent-variable autoregressive models as alternatives

to alleviate limited distributional modeling of standard ARs.

Recent studies have implemented ARs for protein design. A model with one autoregressive layer

paired with generalized logistic regression was used for mutational prediction, contact prediction,

and sequence generation of a response-regulator protein family [44]. The negative log-ratio of

joint probability of mutant and wildtype were used to indicate single mutational effects and the

sum of log probabilities of single mutations were employed as double mutation likelihood for

residue-residue contact prediction. The trained model generated sequences that were similar

to natural sequences by comparing their principal components. Another study used a dilated

convolutional and autoregressive model to model sequential constraints of long nanobodies [45].

They showed that their alignment-free model matches the accuracies of alignment-dependent

models in the context of mutation effect prediction, thermostability prediction and fitness predictions

for indels. In addition, their model yielded a designed library that contained stable and functional

nanobodies with comparable biochemical properties and enhanced diversity to natural nanobody

repertoire.

Though RNNs and ARs are powerful, their sequential operation results in linear-time O(n)

complexity that makes their training time-consuming. Both RNNs and ARs employ supervised

learning which helps models optimize with experience and yield high accuracy. However, it

increases the chance to overfitting models if the training data is not well-representing the true data

distribution. The LSTM and GRU address some limitations of RNNs, but RNNs are still inefficient
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due to short-term memory and long gradient path. ARs have explicit probability density function

to maximize sequence likelihood, but the computation of a series of conditional probabilities

requires significant computational resources. The loss of information during training also hinders

the overall performance of RNNs and ARs. These issues are significant when considering whether

RNNs andARs should be implemented for sequence generation tasks.

5.2.1 Protein Engineering Highlights of RNNs and ARs

A comprehensive collection of notable applications of sequence forecasting models in protein

engineering is provided in Table 1 below. Following this, a case study is presented to elucidate the

details of a selected paper marked in the table.

Table 5.1 Summary of highlighted applications of sequence forecasting models for protein
engineering.

Protein Engineering Task Advancements Model Type Training Data
Source(s)

Year Ref.

Classification of sequences
based on predicted iron
sequestration capabilities,
protease activity, GPCR
activity and p450 activity

Ten diverse, unannotated
sequences predicted to exhibit
iron sequestration activity were
experimentally validated. As
measured by accuracy,
precision, recall and F1 scores,
the RNN model outperforms
logistic regression and random
forest models.

RNN UniProt Jan. 2017
[46]

Predict solvent accessibility 8.8% mean absolute error and
74.8% Pearson’s correlation
coefficient value for predicting
solvent accessibility were
observed.

Stacked
Bidirectional LSTMs

PISCES Database May 2018
[42]

Structural class prediction Using a low-dimension feature
space (18-D), classification
accuracies ranging from 84.2%
to 95.9% were observed.

RNN PDB25, FC699, 640,
498, 277 and 204

June 2021
[47]

Novel artificial protein
sequence generation

Libraries of artificially
generated monobodies mutases
were experimentally validated

DCA 1259 natural
monobodies mutase
sequences

July 2020
[48]

Antibody binding pocket
prediction

Outperformed CNN/RNN
models and random-forest
models

Bidirectional LSTMs Structural Antibody
Database (SabDab)

Dec. 2021
[49]

5.2.1.1 Prediction of Antibody Paratope with Bidirectional LSTMs

A deep learning model for predicting the antigen binding sites of antibodies was developed

through the implementation of bidirectional LSTMs in a transformer neural network (discussed

in Section Sequence Design with Attention Mechanism: Transformer-Based Language Models)
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[49]. The DeepANIS (Antibody Interacting Site) model was able to elucidate the relationships

among residues of the loop sequences of complementarity determining regions (CDRs) of a

given antibody (https://github.com/HideInDust/DeepANIS). Trained on only 277 antibody–antigen

complexes from the Protein Sequence Culling Server (PISCES) database, the authors demonstrated

the ability of a transformer neural network using bidirectional LSTMs to outperform alternative

CNN-based and random-forest-based models for paratope prediction. This architecture also enabled

the developers to perform these predictions using the concatenated CDR loop sequences of a given

antibody as the only input. Alternative models require either the CDRs to be provided as separate

sequences for each CDR loop or additional information about the antigen or antibody.

5.3 Sequence design with attention mechanism: Transformer-based language models

Transformer models consist of a specific neural network architecture that transforms the

input sequences to output sequences using a series of operations (e.g. matrix multiplications,

scaled dot product attention and feed forward neural network). Transformers have given rise

to various sequence-to-sequence models such as machine translation, question answering (chat

bot) and text summarization. Their specific design enables parallel operation (constant-time O(1)

complexity), resulting in faster and more efficient performance than ARs and RNNs (linear-time

O(n) complexity). This parallelization improves uniform learning across each position of a sequence

by eliminating short-term dependencies that disproportionately weigh later parts of the sequence

compared to earlier parts.

The original transformer introduced by Vaswani et al. [15] consists of an ‘encoder’ that encodes

a complete sentence to a representation and a ‘decoder’ that decodes a target sentence with the

contextual representation (Figure 2). Both the encoder and decoder contain multiple self-attention

and feed forward neural network units. Self-attention is a key component in transformers that

enables the model to know which tokens are important in processing the given token (e.g. epistatic

interaction in protein sequences). The feed forward networks are then used for adding non-linear

operations to the network in training. Note that the order information of tokens gets lost due to

parallel computing. Thus, transformers have an additional embedding called positional encoding,
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which encodes the exact position of tokens using as many sinusoidal functions as embedding

dimensions.

To train a transformer to translate text from language A to language B, the encoder uses language

A as an input to generate a representation. The decoder uses language B as an input and combines

this with encoder-generated representation to learn the correct mapping of words in two distinct

languages. Similarly, protein-specific de novo drug design can be treated as a translational problem

[50]. The authors used a transformer as a biological translator to generate novel molecule binders

given amino acid sequences only. For a question-answer task, the encoder input is the question, and

the decoder input is the answer. Through a connected encoder and decoder, the transformer learns

to give an answer based on a specified question. Protein–protein interactions are analogous to

question-answer pairs in syntax. This strategy was utilized to generate signal peptides via available

organism data in Swiss-Prot [51]. Their experimental results showed that the generated peptides

are functional and diverse.

As noted in Figure 3, transformers capture the influence of other tokens (e.g. through epistasis)

on the query token with a self-attention mechanism. The self-attention computation starts with

three inputs: query, key, and value; analogous to those in retrieval systems. When retrieving an

item, the machine takes a request (query) against a list of descriptions of items (keys) and returns top

matches (values). In protein chains, we retrieve attention from a sequence first by having queries

(amino acid requests) multiplied with transposed keys (amino acid identities) to obtain attention

weighting. Then, the scaled and normalized attention weighting is multiplied with values (amino

acid representations) to obtain attention (Figure 3). Often, the attention layer is split into several

heads in parallel to capture attention from different subspaces. The multi-head attention layer

combined with a fully connected feed-forward network with layer normalization in between builds

an attention block; these blocks are then combined to form the encoder. Since the inputs (query, key

and value) of the encoder are from the same sequence, it generates a self-attentive representation

of that sequence. The attention block of the decoder has an additional layer: masked multi-head

attention layer, which is placed before the multi-head attention layer. The inputs of the masked
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attention layer are from the decoder, meaning that it is self-attentive. The inputs of the following

attention layer are from both the encoder and decoder (query from decoder; key and value from

encoder), meaning that it is cross-attentive. Due to this self- and cross-attention mechanism, the

decoder generates a target sequence considering both the encoder and the decoder.

Figure 5.3 Visualization of attention mapping and attention computation. (A) Based on the protein
fold, amino acids in different positions have varied epistitatic effects on each other. The highlighted
circle refers to a query amino acid in a protein active site. The color gradient shows how attention
can capture the influence of other amino acids (tokens) on the queried token. (B) Attention
computation requires three components: key, query and value. By calculating scaled dot-product
attention scores, the model chooses which areas of the sequence it needs to prioritize for the
prediction task.

Attention mechanism has been applied to understand the semantics and syntax of protein

language. It has been implemented between sets of gene ontology terms to predict protein–protein

interactions [52]. This mechanism has also been employed with a convolutional neural network

(CNN) to predict protein contact [53, 54]. Similarly, in another report, CNN with attention

mechanism improved protein-drug interaction prediction [55]. CNN was also used to obtain feature

metrics of the proteins and ligands. Attention mechanism was then implemented to assign weights

to each atom or amino acid. Their model evaluation of benchmark datasets showed improvements

compared to previous baselines.

The transformer decoder is autoregressive by nature, owing to its masked self-attention layer.

By masking out the attention of future tokens, the decoder decodes target sequences to infer the

attention of past tokens. This is achieved through the addition of attention weighting and a mask

matrix, whose upper triangular is filled with negative infinity and lower triangular is filled with
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zeros. While the decoder is autoregressive during testing, it is non-autoregressive at training time.

During training, the decoder generates tokens at all time steps simultaneously, not relying on tokens

at previous time steps. The autoregressive attribute of the decoder allows transformers to be used

in generative applications. Figure 4 represents the overall schematic of transformer architecture

and its variants.

Figure 5.4 Architecture overview for the transformer and two important transformer-based
language models: Bidirectional Encoder Representation from Transformers (BERT) and Generative
Pre-Training (GPT). The transformer utilizes an encoder-decoder method for handling language
tasks. However, BERT uses encoder blocks only and GPT only includes decoder blocks. The
difference in their architecture is mainly due to their training objective. In pretraining, BERT takes
a bidirectional approach while GPT is based on an autoregressive method.

The ability of transformers to generate text representations has led to the development of various

transformer-variant models. Bidirectional Encoder Representation from Transformers (BERT) and

Generative Pre-Training (GPT) [56, 57]. They can generate meaningful representations which can

be used for downstream, task-specific modeling (e.g. named entity recognition, question-answering

and text generation). Pre-training models with a large corpus (unsupervised training) followed by

fine-tuning with task-specific objectives (supervised training) result in improved performance in

different language modeling tasks. Note that BERT and GPT also have shown good performance
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in few-shot (i.e. when there are only few labeled data are available) and zero-shot (i.e. when the

model generalizes to the new task with no further data for training) settings [57, 58, 59]. The

architecture of BERT is composed of layers of original transformer encoders. The pre-training

of BERT uses an approach prevalent in masked language modeling (MLM). By masking out

tokens in an input sentence, the models are trained to predict masked tokens using their context.

This is achieved by minimizing the cross-entropy loss between masked and actual tokens. This

context-dependent training makes representation bidirectional, which is why BERT is a popular

architecture for representation learning. In contrast, GPT comprises a series of transformer decoder

architecture without the multi-head cross-attention layer due to the absence of encoders. In contrast

to BERT’s MLM, GPT uses a casual language modeling (CLM) approach that predicts masked

tokens, only considering tokens on the left side. By left-shifting each token in input sequences,

GPT does not have access to the actual token that is going to predict. Therefore, the representation

generated from GPT pre-training is unidirectional and self-attentive, making it a popular model for

text generation. By having the task layer directly working on pre-trained representation, the number

of layers, learnable parameters and training time are reduced. The training of task layer occurs

simultaneously with the fine-tuning of pre-trained models to improve the compatibility between

a representation and a given task. Based on the architecture of task layers, they handle either

sequence-to-sequence (sequence generation) or sequence-to-scalar (sequence classification) tasks.

Generally, BERT is not optimal for text generation, and GPT is limited to only unidirectional

interactions. Lewis et al. [60] proposed Bidirectional AutoRegressive Transformers (BART), which

combines the strengths of BERT and GPT to perform sequence-to-sequence denoising effectively,

ensuring it fits well within the margins. The BART encoder learns from corrupted sequences

that introduce noises to the model through masking, insertion, deletion, infilling, permutation, and

rotation. The BART decoder learns to reconstruct original sequences autoregressively. The encoder

and decoder work together to recognize and remove intentionally added noise. Hence, BART is

a useful architecture for sequence noise reduction and feature extraction. Another challenge in

training is capturing long-term dependencies for sequence data whose length is much greater than
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its embedding dimension. The BART-derived Performer model was proposed to reduce the cost

of training the attention mechanism which scales linearly instead of quadratically with sequence

length [61]. This model presents an unbiased estimation of a regular attention matrix with which

the estimation is uniformly convergent.

5.3.1 Protein Engineering Highlights of Transformer-based Language Models

Table 2 below presents a wide range of impactful applications of transformer-based language

models in protein engineering. Following this table, two case studies selected from the table are

discussed.

5.3.2 Pre-training of Deep Bidirectional Protein Sequence Representations with Structural
Information

The pre-training scheme PLUS was able to outperform leading pre-training models that are

based solely on language models (e.g. UniRep, P-ELMo) by integrating protein-specific structural

information with amino acid sequence data (https://github.com/mswzeus/PLUS) [65]. Structural

information was obtained from protein family labels among the Pfam dataset. This provided a more

accurate and less computationally intensive route compared with using sequence similarity to predict

protein function. Additionally, masked language modeling is performed in a similar manner used

in BERT to extract syntactic and semantic information. In this study, an informative comparison

was made wherein PLUS was used to pre-train bidirectional RNN (PLUS-RNN) and Transformer

(PLUS-TFM) architectures. Despite much of the literature indicating that attention-based models

are superior, the PLUS-RNN architecture was found to be advantageous over the PLUS-TFM

in this study due to the RNN-based implementation more accurately capturing local amino acid

sequence motifs. For PLUS-RNN, bidirectional representations of amino acid sequences were used

to capture context in both the right-to-left and left-to-right directions. In doing so, the PLUS-RNN

model achieved higher performance than similarly sized transformer in protein-level classification

and regression tasks and amino acid-level classification tasks. Higher performance was observed

even against the leading task-specific models in predicting homology, stability, fluorescence and

transmembrane residues.
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Table 5.2 Summary of highlighted applications of transformer-based models for protein engineering.

Protein Engineering Task Advancements Model Type Training Data
Source(s)

Year Ref.

Protein sequence language
modeling

Approached protein sequence
modeling as a language translation
task using one RNN to encode the
protein sequence and another RNN
to decode the previously encoded
sequence.

Transformer CAFA3 Oct. 2017
[62]

DNA-binding protein
prediction

Incorporated sequence context with
attention mechanism to improve
prediction performance over
random-forest, RNN, and support
vector machine models.

CNN-Bidirectional
RNN

UniProt Nov. 2019
[63]

Signal peptide sequence
generation

A diverse library of 53 artificially
generated signal peptides were
generated and validated in Bacillus
subtilis.

Transformer Swiss-Prot Aug.
2020 [51]

Novel sequence generation
for enhanced GB-1 variants

Used Gibbs Sampling to generate
new sequences from BERT
language model.

BERT GB1 Jan. 2021
[64]

Homology, solubility,
subcellular localization,
stability, fluorescence,
secondary structure, and
topology prediction

Demonstrated a pre-training
strategy that incorporates sequence
data with structural information
which improved performance on
protein fitness prediction tasks
compared to similar-size language
models.

Bidirectional
RNN

Pfam Sept.
2021 [65]

Variant Effect Prediction Introduced a new approach to
incorporating specialized attention
heads and sequence context
information.

Transformer UniRef100 June 2022
[66]

Novel sequence generation Generated novel protein sequences
that mimic properties of natural
proteins (e.g., stability, dynamics).
Pre-trained model enables rapid,
accessible sequence generation on
desktop machines.

Transformer UniRef50,
Swiss-Prot

July 2022
[30]

GFP fluorescence intensity,
stability

Introduced key design constraints
to Transformer model architecture
in their regularized latent space
optimization (ReLSO) approach to
protein sequence modeling.

Transformer GB1, Gifford, GFP,
TAPE

Oct. 2022
[67]
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5.3.3 ProtGPT2 is a Deep Unsupervised Language Model for Protein Design

ProtGPT2 is an autoregressive Transformer model capable of generating highly diverse protein

sequences [30]. Among the generated sequences, amino acid propensities and fraction of disordered

regions are consistent with proteins found in nature, yet the generated sequences are highly distinct

from natural proteins. ProtGPT2 provides a useful platform for finetuning based on a particular

protein family, function, or fold of interest. Using a Transformer decoder model with byte-pair

encoded input sequences enabled self-supervised training on nearly 50 million unlabeled protein

sequences from UniRef and Swiss-Prot. With 738 million parameters, ProtGPT2 allows users to

generate novel sequences in mere seconds on a desktop computer (https://huggingface.co/nferruz/

ProtGPT2).

5.4 Pre-trained language models & Embeddings

Transfer Learning (TL) is a ML technique to transfer useful knowledge learned from a source

domain to another related domain (i.e. target domain). This is particularly useful when there is a

lack of labeled data in the target domain and obtaining labeled data is time-consuming and costly.

Inductive learning, transudative learning and unsupervised learning are specific transfer learning

approaches for different applications. Inductive TL improves the target predictive function via the

information learned from the source domain prediction task. Note that both the domain and tasks

are different but related. Transudative TL aims to improve prediction in target tasks using the

learned knowledge from the source domain. However, the learning tasks need to be the same while

domains are different. For unsupervised TL, the target domain prediction function still benefits

from the source domain when the learning tasks are not the same and there is no labeled data in

both the source and the target domain [68].

The use of TL in protein engineering applications can increase the efficiency and generalizability

of the downstream tasks via transferring the domain knowledge learned in pretraining to the

prediction task. One highly explored and successful application of TL in protein engineering is the

use of pretrained language models for predicting protein properties (e.g. thermostability, kinetic

activity, binding affinity and disordered regions) from its sequence. These models are trained over
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a large number of unlabeled sequences in protein databases such as UniProt [69], UniRef [70] and

SRA [71]. With NLP techniques such as masked-token prediction and next-token prediction, these

models extract useful information from their training data to be used in downstream tasks. Note

that the trained model can either be directly used or its information can be extracted to a fixed-size

continuous vector (i.e. an embedding). These embeddings are unique for each input sequence,

and they contain structural, evolutionary, statistical and biophysical information about the proteins.

This is considered a breakthrough in ML-guided protein engineering tasks where pretrained models

alleviate the lack of data and improve performance of ML models. Unified representation (UniRep)

is among the early pretrained models which was trained via an mLSTM model over 25 million

sequences to distill biophysical and evolutionary information of proteins and represent it in a fixed

size representation. The UniRep model has shown generalizations to distant regions of fitness

landscape in addition to low number data requirements for viable predictions [72].

5.4.1 Protein Engineering Highlights of Pre-trained Language Models & Embeddings

Table 3 contains a collection of highlighted applications of pre-trained language models and

embeddings in protein engineering, along with an added case study for further understanding.

5.4.2 Unsupervised Learning on 250M Protein Sequences Results in Deriving Biological
Insights

BERT and GPT are versatile if trained appropriately and have been successfully implemented

in the protein sequence domain. Rives et al. [27] trained BERT with 250 million protein sequences

to generate representation that contains biological properties. They applied downstream tasks such

as remote homology, linear projection, secondary structure prediction, and contact prediction to

demonstrate the rich information captured by their deep contextual language model, Evolutionary

Scaling Modeling (ESM) (https://github.com/facebookresearch/esm). Additionally, they explored

how sequence diversity and model size impact performance. To enable transfer learning of a model

to a new task with no additional supervision, extended ESM architectures such as ESM-1v and

ESM2 were proposed for variant effect prediction (i.e. mapping sequence changes to functional

changes) and capturing high-resolution structural features, respectively [78].
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Table 5.3 Summary of highlighted applications of transfer learning & embeddings for protein
engineering.

Protein Engineering Task Advancements Model Type Training Data
Source(s)

Year Ref.

Stability Prediction, fitness
(GFP brightness)

Introduced RNN-based unified
representation (UniRep) to improve
efficiency in protein prediction
tasks.

Transformer UniRef50 Dec. 2019
[26]

Secondary Structure,
Subcellular localization,
and solubility prediction

Developed the SeqVec model of
protein sequences that represents
sequences as continuous vectors to
predict biophysical and
biochemical properties.

ELMo UniRef50 Dec. 2019
[73]

Secondary Structure,
Contact, Homology,
Fluorescence, and Stability
Prediction

Demonstrated the usefulness of
multi-task benchmarks like TAPE
to evaluate protein transfer learning
models.

Transformer CBS513, CASP12,
TS115, avGFP,
ProteinNet, SCOP
1.75

Dec. 2019
[25]

Protein Family
Classification, Protein
Interaction Prediction

Using the training procedure
developed by RoBERTa,
PRoBERTa offers a more
generalized pre-training framework
that outperformed in protein
interaction prediction tasks.

Transformer UniProtKB/Swiss-Prot Jun. 2020
[74]

Protein folding, binding
site, and substitution matrix
prediction

Demonstrated how attention can
capture protein features from
BERT-based models for protein
engineering tasks.

Transformer Pfam, BFD,
UniRef100

March
2021 [75]

Secondary Structure,
Subcellular Localization,
and Solubility Prediction

Demonstrated the usefulness of
pre-trained embeddings for various
prediction tasks without requiring
the use of MSAs.

ARs UniRef, BDF July 2021
[28]

Secondary Structure,
Contact, Homology,
Fluorescence, and Stability
Prediction

Improved protein representations
by incorporating pairwise masked
language model to encode
co-evolutionary information.

Transformer Pfam, UniRef50 Oct. 2021
[76]

Sequence Profile
Construction

Performed sequence profile
reconstruction with the pre-trained
ProtAlbert for sequences with
limited homology to database
sequences.

Transformer UniRef, BDF Aug.
2022 [77]

Structure Prediction Despite not requiring the use of
MSAs, ESM Fold—trained on
UniRef sequences—offers rapid
structure generation from a single
input protein sequence.

Transformer UniRef50 and
UniRef90

March
2023 [78]
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There are several attempts to model protein sequences via language model techniques to apply

the learned information about protein sequences to protein engineering tasks; some of the most

successful ones are listed above. Embedding methods can alleviate the lack of labeled data and

improve generalization. In addition, training over self-supervised methods with more parameters

leads to capturing more nuanced information about the language of proteins [78]. While transfer

learning has shown great promise in protein engineering applications, there is a need for a deeper

understanding of what information is learned in pretraining and transferred to the downstream

prediction tasks [79]. For example, some studies have observed similar or superior performance

for protein fitness prediction without the use of embedding methods [80, 81].

5.5 Probabilistic Modeling of Sequence-VAEs

Unlike transformers that treat protein sequences as a language, variational autoencoders (VAEs)

treat sequences as a parameterized multivariate distribution [82]. VAE architecture consists of

taking high-dimensional data, reducing it to a low-dimensional representation (encoder) and then

reconstructing the representation into the original dimensionality as the input data (decoder) (Figure

5). This encoder-decoder bottleneck structure is also a hallmark of standard autoencoders (AEs).

The latent space representation of AEs is a fixed length vector where each value (dimension) is

associated with a single learned feature from data. However, the latent representation of VAEs are

probability distributions (which are continuous and smooth) for each data attribute. By randomly

sampling a vector from latent state distributions, the VAE decoder acts as a generative model that

can generate new data instances (e.g. novel protein sequences). The VAE encoder is a recognition

model with the ability to recognize statistical distributions that describe variations in data.

The latent representation of VAEs is forced to be continuous and smooth by training the encoder

to output pairs of mean and standard deviation (probability distributions) which are subsequently

sampled by the decoder. Compared with discrete variable representation of AEs, the continuous

distribution representation of VAEs allows the decoder to learn that both a single value and its nearby

values refer to the same class. Accordingly, representations of the same class are clustered together

as a distribution in latent space, and nearby representations have similar reconstructions. The gap
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Figure 5.5 GANS architecture for generating sequence data; a model that learns to sample from
the given data distribution which contains two separate and opposed networks: generator and
discriminator. The generator aims to generate synthetic data from noise which can’t be distinguished
from the real data by the discriminator. The discriminator on the other hand gets optimized to
identify synthetic data from the real data. Evolving together, the model finally will be able to
generate samples very similar to the real training data.

between classes in latent space is troublesome, as the decoder has no training data to learn features

of those space. Therefore, VAEs incorporate a term in the loss function, the Kullback–Leibler

(KL) divergence, which measures how one distribution is different from another. By minimizing

the KL-divergence between the learned latent distribution and a prior distribution (e.g. Gaussian),

VAEs regularize the latent space. This regularization promotes a continuous latent space which

allows VAEs to interpolate values smoothly from one class to another. The reconstruction loss

encourages the formation of data points similar to the original input and KL-divergence regularizes

the latent space. This incorporation results in a well-structured and information-rich latent space

where VAEs can sample from.

Instinctively, for latent variables 𝑧 that generates observation 𝑥, we maximize data likelihood

𝑝(𝑥) by maximizing
∫
𝑝(𝑧 |𝑥)𝑝(𝑥) 𝑑𝑧. However, this integral is intractable and cannot be directly

optimized. Instead, VAEs use a derivative data likelihood to model 𝑝(𝑥) with encoder distribution

𝑝(𝑧 |𝑥), decoder distribution 𝑝(𝑥 |𝑧), and latent variables 𝑝(𝑧). The posterior distribution, 𝑝(𝑧 |𝑥),

which refers to attributes of latent variables from observation is also intractable, but we can apply

variational inference to approximate this density function [83]. By defining a tractable encoder

distribution 𝑞(𝑧 |𝑥) and minimizing KL-divergence between 𝑝(𝑧 |𝑥) and 𝑞(𝑧 |𝑥), we obtain the
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objective function of VAEs with derivation shown below:

𝐷𝐾𝐿 (𝑞(𝑧 |𝑥)∥𝑝(𝑧 |𝑥)) = 𝐷𝐾𝐿 (𝑞(𝑧)∥𝑝(𝑧)) − 𝐸𝑞 [log 𝑝(𝑥 |𝑧)] + log 𝑝(𝑥) (5.2)

log 𝑝(𝑥) − 𝐷𝐾𝐿 (𝑞(𝑧 |𝑥)∥𝑝(𝑧 |𝑥)) = 𝐸𝑞 [log 𝑝(𝑥 |𝑧)] − 𝐷𝐾𝐿 (𝑞(𝑧 |𝑥)∥𝑝(𝑧)) = ELBO (5.3)

log 𝑝(𝑥) ≥ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑒𝑥𝑡𝐸𝐿𝐵𝑂 (5.4)

Since 𝐷𝐾𝐿 [𝑝(𝑧 |𝑥)∥𝑞(𝑧 |𝑥)] is intractable and KL divergence is always positive, we can maximize

tractable Evidence Lower-Bound (ELBO) in order to maximize log data likelihood. Within this

objective function, 𝐸𝑞 [log 𝑝(𝑥 |𝑧)] corresponds with the reconstruction loss, and𝐷𝐾𝐿 (𝑞(𝑧 |𝑥)∥𝑝(𝑧))

corresponds KL-divergence loss mentioned in previous paragraph.

Several VAE-derived models have been developed to address common issues like attribute

entanglement and posterior collapse. Higgins et al. [84] proposed Beta-VAEs to facilitate learning

of the disentanglement of data attributes. By introducing a hyperparameter that penalizes KL

divergence loss, the latent representation is forced to adjust the trade-off between reconstruction

and regularization. Razavi et al. [85] proposed a method for preventing a common issue in

training VAEs, posterior collapse. Posterior collapse happens when the posterior fails to capture

the true posterior of the latent variables, and the model gets ineffective in generating diverse and

high-quality samples. Their proposed method, delta-VAE, restricts parameters of the posterior to

establish minimum KL divergence between prior and posterior.

5.5.1 Protein Engineering Highlights of VAEs

Explore Table 4 for an overview of how VAE models have been implemented for protein

engineering applications.

5.5.1.1 Deep Generative Models for T Cell Receptor Protein Sequences

Davidsen et al. [87] demonstrated the capability of VAE models to generate T-cell receptor

(TCR) sequences with similar characteristics to real sequences (https://github.com/matsengrp/

vampire/). Rather than modeling the probability of a given sequence to undergo VDJ recombination

that approaches the properties of the mature TCR repertoire, the architectures of VAEs enables the

direct modeling of the distribution of the mature TCR repertoire. In addition to generating novel
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Table 5.4 Summary of highlighted applications of VAE models for protein engineering.

Protein Engineering Task Advancements Model Type Training Data
Source(s)

Year Ref.

Metallo protein sequence
generation and metal
binding site prediction

Generated novel metallo proteins
that feature copper and calcium
binding sites.

VAE UniRef90 Nov. 2018
[86]

Novel T cell receptor
sequence generation

VAE model was able to estimate
cohort frequency, learn VDJ
recombination regulation,
generalize unexplored sequence
space, and generate novel T cell
receptor sequences.

VAE Adaptive Biotech
immuneAccess

Sept.
2019 [87]

Protein dynamics prediction Introduced a novel approach to
unsupervised learning to train
VAEs.

VAE MoDEL May 2020
[88]

Novel protein sequence
generation

Implemented “Deep Exploration
Network" architecture to generate
novel sequences with
polyadenylation sites, splicing
sites, transcription enhancer
binding sites, and enhances GFP
fluorescence.

VAE MPRA, APA, avGFP July 2020
[89]

Novel luciferase sequence
generation

Novel luciferase sequences
generated from VAE model
resulted in increased solubility
while maintaining
bioluminescence.

VAE InterPro Feb. 2021
[90]

Novel protein sequence
generation

Proposed a new evaluation metric
in their comparison of Potts, VAE
and site-independent generative
models.

VAE UniProt/TREMBL,
Pfam

Nov. 2021
[91]

Ancestral sequence
reconstruction

Demonstrated the ability to capture
higher-order epistatic effects
through VAE-generated
phylogenetic trees.

VAE CFP, EvolveAGene4
Simulations, PFAM

Feb. 2023
[92]

TCR sequences, the VAE-based models were able to predict the frequency of a TCR in a given

cohort and learn the rules of V(D)J recombination. The training data of TCR sequence repertoires

were sourced from Adaptive Biotechnologies’ ImmunoSEQ assay. Despite some requiring <100

lines of Python code, these simple VAE models were found to outperform previous models that

implemented more complicated graphical models that mimic the biological process of V(D)J

recombination.

5.6 Sequence Generation through Min-Max Gaming–GANs

Up to this point, we discussed generative models that use explicit probability density functions.

RNNs and Ars have a tractable function, and VAEs have an approximate function to maximize

likelihood. Here, we turn to generative adversarial networks (GANs), an implicit probabilistic
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model that directly generates new data instances by defining a stochastic procedure [33].

GANs employ a two-player game approach to replicate training data distributions without

assumptions about their priors. One player is the generator network, and the discriminator network

is the other player. The objective of the generator is to generate realistic data instances from

random noise to fool the discriminator. On the other hand, the objective of the discriminator is to

distinguish real and fake data from the training set and the generator, respectively (Figure 6). By

having these two networks competing, the generator learns to generate (fake) data that is close to the

(real) training samples, and the discriminator provides feedback to the generator for improvement.

This approach allows two networks to evolve with each other so that, ideally, the generator can

generate synthetic samples that are indistinguishable from real samples. To train two networks

jointly, GANs have a minmax objective function shown below:

min
𝜃𝑔

max
𝜃𝑑

𝑉 (𝐷,𝐺) = E𝑥∼𝑝data [log𝐷𝜃 (𝑥)] + E𝑧∼𝑝noise

[
log(1 − 𝐷𝜃 (𝐺𝜃𝑔 (𝑧)))

]
(5.5)

The minimax function can be interpreted as a function that minimizes the loss that the opponent

maximally gives. In GANs, the generator with parameters 𝜃𝑔 wants to minimize the objective

value 𝑉 (𝐷,𝐺) such that the probability of the discriminator output fake data 𝐷𝜃 (𝐺𝜃𝑔 (noise)) is

close to 1. This indicates that the generator successfully fooled the discriminator by classifying

fake data to real. Conversely, the discriminator with parameters 𝜃𝑑 aims to maximize the objective

value such that the probability of the discriminator output real data 𝐷𝜃 (𝑥) is close to 1, and the

probability of the discriminator output fake data 𝐷𝜃 (𝐺𝜃𝑔 (noise)) is close to 0. The training with

this minimax function is equivalent to have the generator performing gradient descent on term

log(1− 𝐷𝜃 (𝐺𝜃𝑔 (noise))) and the discriminator performing gradient ascent on 𝑉 (𝐷,𝐺). However,

the generator of GANs is likely to get stuck in the early stage of training (caused by small gradients)

when generated samples are easy to be classified as fake. In practice, the generator performs gradient

ascent on term log(𝐷𝜃 (𝐺𝜃𝑔 (noise))) instead of gradient descent on term log(1−𝐷𝜃 (𝐺𝜃𝑔 (noise))).

In this manner, GANs have steep gradient to drive learning by maximizing the likelihood of the

discriminator being wrong instead of minimizing the likelihood of the discriminator being correct.
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Developing a loss function for GANs that leads to more stable and better learning is still an

active research area. Arjovsky et al.[93] proposed Wasserstein Loss in which the discriminator

maximizes 𝐷𝜃 (𝑥) − 𝐷𝜃 (𝐺𝜃𝑔 (noise)), and the generator maximizes 𝐷𝜃 (𝐺𝜃𝑔 (noise)). This means

that the discriminator is not a classifier but a ‘critic’ that maximizes the difference between proxy

number of fake and real data, while the generator maximizes the output of discriminator given

generated (fake) data. Usually, the trained discriminator is discarded, and the trained generator is

kept for new data generation.

5.6.1 Protein Engineering Highlights of GAN Models

Table 5 illustrates a selection of key GANs models applications in protein engineering, with an

added case study for deeper analysis.

Table 5.5 Summary of highlighted applications of GAN models for protein engineering.

Protein
Engineering Task

Advancements Model Type Training Data
Source(s)

Year Ref.

Antimicrobial
peptide sequence
generation

Implemented a GAN model
to generate novel
antimicrobial peptides

GAN UniProt Feb.
2019

[94]

Target-drug binding
affinity prediction

Used unlabeled data to train
GAN model in a
semi-supervised manner

GAN [97], KIBA Jan.
2020

[95]

Antibody design Experimentally validated
GAN-generated antibody
sequences after initial phage
display library screening

GAN Observed Antibody
Space Repository

April
2020

[96]

Ancestral sequence
reconstruction

Performed ancestral
sequence reconstruction on
H3N2 influenza proteins
and predicted the evolution
of these proteins to improve
pathogen forecasting

GAN NCBI Influenza
Virus Resource

Aug.
2020

[97]

Synthetic data
generation, gene
ontology prediction
tasks

Improved gene ontology
prediction with GAN model
by creating synthetic feature
samples

FFPred-GAN modENCODE Sept.
2020

[98]

Gene ontology
classification

Used WGAN to improve
gene ontology term
correlation performance

WGAN SwissProt Feb.
2021

[99]

Novel malate
dehydrogenase
sequence generation

Experimentally validated
novel malate dehydrogenase
sequences with up to 106
mutations

GAN UniProt April
2021

[31]
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5.6.2 GAN Architecture Enables the Generation of Synthetic Samples to Improve Training

Data augmentation with high-quality synthetic sample data points can help overcome the

challenges of developing models that predict protein function. Wan and Jones [98] demonstrate

the ability to generate these high-quality synthetic protein feature samples using their GAN-based

FFPred-GAN. In addition to using the FFPred model to determine protein biophysical information

from protein sequences, FFPred-GAN implemented a WGAN with gradient penalty to learn the

distribution of the training protein data set distribution. FFPred-GAN enabled significantly higher

accuracy in all the three domains of the gene ontologies domains (i.e. cellular component, molecular

function and biological process) without demanding significant computational resources to generate

both negative and positive synthetic samples (https://github.com/psipred/FFPredGAN).

5.7 Diffusion Models

Diffusion is a recently developed and rapidly ascending model in the generative AI domain

and has shown competitive performance with established benchmarks. This novel method offers

better distribution convergence and more diversity in the generated samples. The diffusion model’s

underlying principle is adopted from non-equilibrium thermodynamics in which the diffusion

process increases the system’s entropy, driving it towards a state of maximum randomness [34].

Therefore, in the context of generative modeling, diffusion models can gradually transform noisy

signals into coherent data structures (i.e. reversing the noise). These models have shown

promising results in image synthesis, image inpainting (i.e. filling missing regions in images)

and text generation. For example, Dall-E2 [100], a text-to-image framework generated by OpenAI,

incorporates a diffusion model during training to generate realistic and high-quality images. Their

model resulted in up to four times improvement in resolution compared to the original Dall-E

trained with GPT3 architecture [101].

Effective training in generative diffusion models requires a detailed understanding of its main

components and foundational concepts. In this section, we describe the core concepts, models,

and the main mathematical formulations that have been used for training the diffusion models.

Finally, we examine the evolutionary improvements of these models since their introduction in

141

https://github.com/psipred/FFPredGAN


2015. The forward diffusion process is the transition from data distribution to a prior distribution

(e.g. isotropic Gaussian). This is a Markov chain process, and each step only depends on its

previous step (i.e. progressively adding noise). For example, we can generate a noisy image at

𝑡 = 1 by adding a small amount of Gaussian noise to the pixel values for the image at 𝑡 = 0,

repeating this process for subsequent time steps until the data distribution transforms into a prior

distribution. The forward diffusion step parametrization can be shown below:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼) (6)

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1) =
𝑇∏
𝑡=1

N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡 (𝑥𝑡−1), 𝛽𝑡 𝐼) (7)

where 𝑡 is the time step and it ranges from 1 to 𝑇 , 𝑥0 is the instance sampled from the true

data distribution, 𝛽𝑡 is the variance scheduler, and 𝐼 is the identity matrix. Given the equations

above, the conditional probability distribution of each step given the previous step is assumed to

be a conditional Gaussian distribution with mean
√︁

1 − 𝛽𝑡 (𝑥𝑡−1) and variance 𝛽𝑡 𝐼. Also, the noised

image distribution can be directly obtained at each timestep using a reparameterization trick in a

closed form [102]. The Backward Diffusion Process represents the challenging task of transforming

the noised distribution back to the data distribution. Once accomplished, new data instances can be

generated by sampling from the noise distribution. In the backward diffusion process, the model

starts with pure Gaussian noise and in each step learns the Gaussian transition parameters with the

aid of a parametrized model (e.g., neural networks). Note that this network should have a similar

input and output dimension (e.g. U-NET [103] architecture). The backward step parametrization

is represented in Equation 8 and Equation 9.

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡) = N (𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) (8)

𝑝𝜃 (𝑥0 : 𝑇) = 𝑝𝜃 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡) (9)
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These equations have two main differences with the forward diffusion parametrization: (i) the

time trajectory is reversed and (ii) the Gaussian distribution parameters must be learned via a

parametrized model.

The diffusion model loss function is a negative log-likelihood (NLL) loss that measures the

discrepancy between the true data distribution and the learned distribution. Minimizing the NLL

given the model parameter is intractable, but it can become tractable via variational inference

techniques. Similar to maximizing the ELBO as discussed in the context of VAEs, the evidence

lower bound formulation for training diffusion models after applying Bayes rule and simplifying is

a tractable loss function shown in equation 10.

The loss function for denoising diffusion probabilistic models (DDPM) is given by:

𝐿 = 𝐷𝐾𝐿 (𝑞(𝑥𝑇 |𝑥0)∥𝑝(𝑥𝑇 )) +
𝑇∑︁
𝑡=2

𝐷𝐾𝐿 (𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0)∥𝑝(𝑥𝑡−1 |𝑥𝑡)) − log 𝑝𝜃 (𝑥0 |𝑥1) (10)

In denoising diffusion probabilistic models (DDPM), the authors explored and reformulated the

loss function above where the variance was held constant, and the neural network was designed

to predict the noise only at each time step. This results in a simple and easily implementable loss

function represented in equation 11: the mean squared error between the actually added noise in

the forward process and predicted noise by the model.

𝐿 = 𝐸𝑡,𝑥0

[
∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡)∥2] (11)

Diffusion has a more intricate path in model development and refinement compared to the other

mentioned generative models. The idea of using a diffusion process in deep unsupervised learning

was proposed in 2015 by Sohl-Dickstein et al. [34] in which the data distribution was destroyed

gradually via an ‘iterative’ forward process and Markov chain method. The authors argued that

the reverse diffusion process (restoring data distribution from known distribution (e.g. normal

distribution)) yields a tractable generative model when applied with a sufficient number of steps.

The reasoning behind this was that small perturbations in data are more tractable for prediction than

one-time distribution prediction. In 2020, Ho et al. [102] introduced a series of novel enhancements
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to this technique, leading to high-quality image synthesis through denoizing diffusion probabilistic

models (DDPMs). In their research, the authors employed a linear noise scheduler and innovatively

chose to predict the image noise during each iteration in the backward process. Building upon these

advancements, the model’s performance was further elevated by incorporating

as a learned parameter in the normal distribution instead of a fixed number. Also, introducing

non-linear noise-schedulers (i.e. cosine scheduler) resulted in effective preservation of the data

distribution in early nosing steps throughout the forward diffusion process [104, 105].

One main breakthrough in diffusion generative model development was made by Song et al.

[106] by incorporating a stochastic differential equation (SDE) framework. The ‘score function’ in

their methodology refers to the gradient of the log probability density. In the forward process, the

data distribution gets perturbed in continuous space (in contrast to earlier diffusion models with

finite noising steps) via the suggested SDE formulation which does not have trainable parameters.

Reverse SDE can be solved analytically with methods like Euler-Maruyama after handling the score

function term [107]. The authors addressed this by modeling the score function using a neural

network, which then can be plugged into the reverse SDE formula. Equations 12 and 13 show the

main forward and reverse formulation used in an SDE process.

The stochastic differential equations (SDEs) used in the models are given by:

𝑑𝑥 = 𝑓 (𝑥, 𝑡) 𝑑𝑡 + 𝑔(𝑡) 𝑑𝑤 (12)

𝑑𝑥 = 𝑓 (𝑥, 𝑡) −
[
𝑔2(𝑡)∇ log 𝑝𝑡 (𝑥)

]
𝑑𝑡 + 𝑔(𝑡) 𝑑𝑤̃ (13)

The inclusion of SDEs in score-based generative models led to enhanced flexibility, particularly

by eliminating the constant prior in favor of utilizing the density gradient. This method provided

a controlled generation process and exact likelihood calculations. Although this proposed method

enabled efficient and high-quality sampling, the authors noted a slower sampling compared to

GANs over their tested dataset.

Diffusion models have been adopted into protein engineering applications recently, and they

have shown incredible performance in generating novel protein structures and sequences. In this
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complex landscape, diffusion models offer distinct advantages among generative models: diversity,

fine-grained control in generation, stability in training, a more favorable platform for conditioning,

and high compatibility for sequence and structure co-design [108, 109, 110, 111]. While they are

generally more computationally intensive than other generative models, the probabilistic nature

of diffusion models allows for the generation of diverse protein conformations from initial noise

distribution. This inherent uncertainty is particularly beneficial and offers a more realistic modeling

approach since proteins are dynamic and adopt multiple conformations. Given these unique features

in their architecture and training procedure, diffusion models are potentially an invaluable tool for

navigating the intricate energy landscape that proteins operate within.

5.7.1 Protein Engineering Highlights of Diffusion Models

Explore Table 6 for an array of recently developed diffusion model applications in protein

engineering, extended with two analytical case studies.

5.7.1.1 ProteinGenerator Enables the Joint Generation of Protein Sequence and Structure

The authors implemented DDPM with coordinated guidance on sequence and structure resulting

in improved generation (github.com/RosettaCommons/protein_generator) [110]. They leveraged

RoseTTAFold’s [116] capability to simultaneously generate protein sequences and structures.

Drawing inspiration from RoseTTAFold Joint Inpainting, they adopted this ability for the diffusive

creation of consistent sequence-structure pairs. Fine-tuning to retrieve noised native protein

sequences and simultaneously ensuring the accuracy of structure prediction enabled guidance from

both sequential and structural domains. In the unconditional generation, ProteinGenerator was able

to generate pairs of sequence structures close to the native proteins. Note that various structural

properties and amino acid frequencies were obtained by sampling from different noise distributions.

The model architecture also enabled high versatility and as a result compatibility with different

conditioning and classifier-guidance methods. In conditioning, additional constraints were added

to the generation process. For instance, the model was conditioned for generating high amino

acid frequencies (e.g. cystine for forming disulfide bonds to increase stability, histidine for pH

sensitivity) while satisfying the corresponding structure folding. In another example, DeepGOPlus
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Table 5.6 Summary of highlighted applications of diffusion models for protein engineering.

Protein
Engineering Task

Advancements Model Type Training Data
Source(s)

Year Ref.

Protein sequence
inpainting and
generation

Demonstrated the use of
equivariant denoising
using the invariant point
attention technique to
jointly model protein
sequence and structures

Transformer-Based
Diffusion Model

PDB May
2022

[112]

Joint
Sequence-Structure
Generation

Modeled structure and
sequence of full protein
complexes in a
computationally efficient
manner

Graph Neural
Network-Based
Diffusion Model

PDB, UniProt Dec.
2022

[109]

Protein Backbone
Joint
Sequence-Structure
model development

Demonstrated the
feasibility of developing
generative diffusion
models through a
comparison of
sequence-only,
structure-only, and joint
sequence-structure
models

CARP PDB May
2023

[113]

Joint
Sequence-Structure
Generation

Developed a model
capable of generating
both novel sequences
and novel protein
backbones via
RoseTTAFold

DDPM INDI, SCOP May
2023

[110]

De Novo Protein
Sequence Generation
with desired
structural features

Generated novel protein
sequences with desired
secondary-structure
features using an
attention-based diffusion
model

Attention-Based
Diffusion Model

– July
2023

[114]

Antibody joint
Sequence-structure
Modeling

Improved joint protein
sequence and structure
generation using both
domain knowledge and
physics-based
constraints

SE(3)-based
Diffusion Model

pOAS Database,
HER2 Binder
data set

July
2023

[115]
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Gene Ontology (GO) classifier was used to guide the generation process. The classifier provides

scores or gradients that can be used to influence the outputs of the main model and as a result,

generate functionally rich sequences.

5.7.1.2 Chroma Enables the Generation of Novel Protein Complexes via its Joint Sequence
and Structure Model

Another highly successful implementation of the diffusion-based framework was shown in

Chroma which enabled jointly modeling the sequence and structure of full protein complexes (https:

//github.com/lucidrains/chroma-pytorch) [109]. The authors introduced sophisticated computational

techniques and conditional sampling to adeptly manage computational challenges while crafting

proteins with specific attributes. Rooted in diffusion modeling and graph neural networks, this

versatile generative model excels in refining noisy structures while preserving the intricate 3D

details inherent in protein configurations. This model facilitates programmable protein design as

it can condition proteins on different shapes, symmetry, textual prompts, and various properties.

Remarkably, Chroma’s capability to generate protein complexes holds significant value as most of

the protein functions such as binding occur through protein interactions. Furthermore, the authors

indicated that a large protein (e.g. with > 3000 residues) can be generated within minutes via an

appropriate GPU (e.g. NVIDIA V100).

5.8 Discussion

Generative models—such as VAEs, autoregressive, GANs, and diffusion models—have shown

significant promise in the protein engineering domain to generate novel and functional sequences.

This ongoing research has mitigated long-standing challenges in designing proteins with improved

properties, generating interfaces for protein–protein interactions, establishing rules for high-fitness

protein variants and capturing phylogenetic relationships between proteins. These models aim to

learn the underlying data distribution and generate novel instances via sampling from the learned

distribution. Distinct model structures are employed to learn the given data distribution by directly

modeling or approximating the probability density function. VAEs are probabilistic generative

models that approximate the explicit density function via variational inference. Upon learning the
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underlying distribution of the given dataset, the VAE can generate novel samples similar to input

data. VAEs have been used in various protein engineering tasks including improving fitness (e.g.

thermal stability, solubility, bioluminescence and binding) and capturing phylogenetic relationships

via learned latent space relationships. Autoregressive models calculate the explicit density function

where each token is conditioned on the previous tokens. Autoregressive models have also led

to successful outcomes in generating sequences with improved fitness, paratope prediction, and

protein localization. Unlike VAEs and autoregressive models that use restricted neural networks

in approaching the intractable normalizing constant, GANs model the generation process only. As

a result, they are not used for likelihood estimation, yet they have superior potential in generating

high-quality instances. Two networks (generator and discriminator) are used in GANs that sample

from the density function without calculating or estimating the function itself (i.e. implicit density

estimation). GANs provide promising results in diverse tasks such as gene ontology correlation,

binding affinity, phylogeny prediction, antimicrobial peptide generation and developing rules for

antibody solubility and thermal stability. Diffusions are a more recent class of generative models

adopted from thermodynamics equilibrium. The idea is if the noise in the data happens gradually,

it can be reversed. Therefore, data distribution can be approximated from pure noise in the reverse

diffusion process.

While each of these generative models has obtained promising outcomes in terms of protein

design applications, they differ in their training process, output quality and generated output

diversity. In general, given their efficient architecture, VAEs are potentially easier to train, yet

they might lead to lower quality outputs (e.g. blurry images for image generation) compared to

other generative models [117]. Note that recent architecture developments have tried to overcome

common issues in VAEs (e.g. posterior collapse and reconstruction-regularization trade off),

yet these solutions may require more computational resources. For instance, beta-VAE [84],

hierarchical VAE [118, 119] and VQ-VAE [120] are distinct types of VAE models to address

common issues in traditional VAEs. Beta-VAE adds a hyperparameter in the loss function to obtain

more disentangled representations. Hierarchical VAE aims to preclude posterior over-regularization
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by incorporating hierarchical priors in the model. Finally, VQ-VAE has been shown to generate high

quality data and prevent posterior collapse by learning discrete representations and autoregressive

prior (versus continuous learned representations and static prior in original traditional VAE).

Similarly, there are improved variants for GANs and autoregressive models to boost generated

data attributes and resolve model restrictions. Examples of autoregressive developments include

GPT-3 [58], Reformer [121] and Big Bird [122] which use more parameters in training, reversible

sequence-to-sequence architecture, and sparse attention mechanism, respectively. For GANS,

improved variants include CycleGAN [123], LsGAN [124] and VEEGAN [125] for training without

paired data, resolving vanishing gradient issues in training and reducing mode collapse to increase

generated data diversity, respectively. Although diffusion models have been developed recently,

their architecture is rapidly evolving. For example, subspace diffusion has shown improved sampling

quality and reduced computational cost via restricting diffusion by its projection to subspaces [126].

Denoising diffusion policy optimization (DDPO) is another architecture development in diffusions

which solved the denoising process as a multi-step decision-making problem [127]. The mentioned

architectures are a few variants among a pool of architectures and their performance depends on

the specific application and data attributes (e.g. number of samples in training, data complexity

and input data length).

Despite the newfound opportunities provided by generative models in this realm, the remaining

challenges in generative sequence modeling include validating the generated sequences, navigating

the rugged landscape in pursuit of sequences with desired features, de-novo binder design application,

effectively infusing biological priors into models and strategically combining distinct generative

models to enhance sampling quality and diversity. In many cases, wet-lab experiments are required

to assess the quality of the generated sequence in terms of basic required properties (e.g. stability

and expression) to more design-based properties (e.g. affinity and specificity). This by itself has

hindered model optimization as there is no immediate and definitive feedback for the quality of

generated sequences (versus rapidly assessing the visual quality of a general image-based data

generated from these models). With that being said, there are computational tools to aid in filtering
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the generated sequences and increasing the success rate in experimental characterization. For

example, Alphafold2 for structural prediction [128], discriminative models to assign probabilities to

sequences based on their fitness [129], and self-supervised models for few and zero-shot predictions

[134] are among the extremely beneficial tools for analyzing the generated sequences in silico.

In this paper, we provided an overview of the architecture and underlying assumptions of four

commonly used generative models (VAEs, Autoregressive models, GANs and diffusion models).

By analyzing the strengths and limitations of each model, we hope that researchers are better

equipped to make informed decisions when selecting the appropriate model for specific data and

objectives. We also elaborated on specific protein engineering applications for each of these models,

highlighting their potential to generate novel protein sequences with improved properties. With the

exponential growth of biological and protein sequence datasets, increasing efficiency of generative

models, and improved methods for generating and validating de novo sequences, we envision a

promising future for the development of effective protein design and engineering applications.

5.8.1 Key Points

• To address the gap between the growing number of machine learning (ML) models and

their application to protein engineering tasks, we have reviewed recent protein engineering

applications of generative ML models.

• The architecture and mathematical background of three generative models (diffusion models,

generative adversarial neural networks and variational autoencoders) are described in depth

with a focus on applications towards protein design (e.g. to predict protein properties and to

generate protein design rules and sequences).

• The architecture and application of language machine learning models (namely, recurrent

neural networks, autoregressive and transformers) are also described, particularly in the

context of treating protein design tasks on amino acid sequences similarly to human language

tasks on strings of text.

• Incorporating transfer learning and embeddings can improve the efficiency and generalizability

of ML modeling tasks.
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CHAPTER 6

EVOSEQ-ML: ADVANCING DATA-CENTRIC MACHINE LEARNING WITH
EVOLUTIONARY-INFORMED PROTEIN SEQUENCE

REPRESENTATION AND GENERATION

1

Abstract

In protein engineering, machine learning (ML) advancements have led to significant progress,

including protein structure prediction (e.g., AlphaFold), sequence representation through language

models, and novel protein generation. However, the impact of data curation on ML model

performance is underexplored. As more sequence and structural data become available, a data-centric

approach is increasingly favored over a model-centric method. A data-centric approach prioritizes

high-quality, domain-specific data, ensuring ML tools are trained on datasets that accurately reflect

biological complexity and diversity. This paper introduces a novel methodology that integrates

ancestral sequence reconstruction (ASR) into ML models, enhancing data-centric strategies in

the field. ASR uses computational techniques to infer ancient protein sequences from modern

descendants, providing diverse, stable sequences with rich evolutionary information. While

multiple sequence alignments (MSAs) are commonly used in protein engineering frameworks

to incorporate evolutionary information, ASR offers deeper insights into protein evolution. Unlike

MSAs, ASR captures mutation rates, phylogenic relationships, evolutionary trajectories, and

specific ancestral sequences, giving access to novel protein sequences beyond what is available in

public databases by natural selection. We employed two statistical methods for ASR: joint Bayesian

inference and maximum likelihood. Bayesian approaches infer ancestral sequences by sampling

from the entire posterior distribution, accounting for epistatic interactions between multiple amino

acid positions to capture the nuances and uncertainties of ancestral sequences. In contrast, maximum

likelihood methods estimate the most probable amino acids at individual positions in isolation. Both

methods provide extensive ancestral data, enhancing ML model performance in protein sequence
1This chapter is adapted from content published in "ICLR 2024 Workshop on Generative and Experimental

Perspectives for Biomolecular Design". For more information, visit https://openreview.net/forum?id=jYaBeydI5P.
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generation and fitness prediction tasks. Our results demonstrate that generative ML models

training on either Bayesian or maximum likelihood approaches produce highly stable and diverse

protein sequences. We also fine-tuned the evolutionary scale ESM protein language model with

reconstructed ancestral data to obtain evolutionary-driven protein representations, and downstream

stability prediction tasks for Endolysin and Lysozyme C families. For Lysozyme C, ancestral-based

representations outperformed the baseline ESM in KNN classification and matched the established

InterPro method. In Endolysin, our novel ASR-Dist method performed on par with or better than

the baseline and other fine-tuning approaches across various classification metrics. ASR-Dist

showed consistent performance in both simple and complex classification models, suggesting

the effectiveness of this data-centric approach in enhancing protein representations. This work

demonstrates how evolutionary data can improve ML-driven protein engineering, presenting a

novel data-centric approach that expands our exploration of protein sequence space and enhances

our ability to predict and design functional proteins.

Keywords: Protein Engineering, Generative Models, Language Models, Fine-Tuning, Ancestral

Sequence Reconstruction, Data-Centric Models

6.1 Introduction

Recent advancements in machine learning (ML) highlight the critical role of data quality and

diversity in model performance, shifting focus towards data-centric approaches that complement

algorithmic innovations [1, 2]. This evolving perspective underscores the importance of curating

diverse datasets in developing effective ML models. Unlike model-centric methods that are widely

accessible through open-source platforms, data-centric methods offer tailored insights to specific

applications which enhances model learning capabilities beyond scoring metrics [3][4]. This trend

is evident in the development of the GPT model, which evolved from focusing on architectural

improvements to prioritizing data quality and data collection strategies [5]. As a result, focusing

on data-centric approaches promises a profound contribution toward ML-driven problem-solving

in distinct domains. These approaches have already exhibited potential in fields ranging from

finance to healthcare, improving model reliability, scalability, trustworthiness, and generalizability
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[6, 7, 8, 9, 10]. This shift towards data-centric approaches is especially significant in areas

demanding intricate analysis, like protein engineering, where such strategies could enhance the

understanding of the complex protein fitness landscape [11, 12].

In protein engineering, the adoption of data-centric approaches is paramount due to the field’s

unique challenges. With minor alterations to protein sequences significantly impacting functionality

and stability, the protein fitness landscape is complex and rugged [13, 14, 15]. Despite advances

in applying ML that have facilitated the discovery of high-fitness proteins [16, 17], these models

struggle with imbalanced datasets and the scarcity of data across protein families. This underscores

the necessity of reevaluating our strategies towards curating training data[11, 12, 18, 19, 20, 21]. A

focus on enhancing the diversity and quality of datasets is crucial, as it ensures that ML models are

trained on data that accurately reflect the intricate biological properties of proteins. Establishing a

method to provide more effective training datasets for ML models will pave the way for strategically

advancing protein engineering campaigns.

Ancestral sequence reconstruction (ASR) offers one possible data-centric approach to protein

engineering. ASR utilizes computational techniques to infer ancient protein sequences from

modern descendants, thereby enriching our datasets with high-quality, diverse, and stable sequences

[22, 23, 24, 25]. Built on the foundation of evolutionary biology and molecular phylogenetics, ASR

constructs phylogenetic trees using substitution models to map out evolutionary relationships and

predict ancestral states. ASR’s approach to assigning posterior probabilities to amino acids at

various positions allows for the exploration of a vast array of sequence combinations. For example,

with just 15 positions that each have four high-likelihood amino acids, ASR can generate up to a

billion unique sequences (refer to Figure 6.1).

Recent studies across various protein families have highlighted ASR’s effectiveness in dealing

with statistical uncertainties [26, 27]. These studies demonstrate that sequences generated from

ASR predictions, which sample a broad distribution of amino acids at ambiguously reconstructed

sites, can be functional and, in some cases, more efficient or offer novel functionalities compared

to sequences based solely on the most likely amino acid predictions. This robustness to uncertainty
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is a crucial aspect of ASR’s reliability. Even when incorporating alternative amino acids at up

to 30% of residues, reconstructed proteins often maintain their overall function [ref]. While

quantitative parameters such as binding affinities or enzymatic rates may show some variation,

qualitative functional characteristics typically remain consistent. This robustness extends to the

effects of key historical mutations, which often produce similar functional shifts regardless of the

specific ancestral background. Importantly, different methods for incorporating uncertainty, such

as the "AltAll" approach (which creates a worst-case scenario protein) and Bayesian sampling,

have been employed to test this robustness. These findings suggest that while precise quantitative

estimates may vary, qualitative functional inferences from ASR are generally reliable, allowing

researchers to make confident claims about ancient protein functions and evolutionary trajectories

despite sequence ambiguity. Therefore, with the potential to generate large-scale high-quality

sequences, ASR represents a potentially impactful approach to incorporating data-centric strategies

in protein engineering. Recent studies have demonstrated the promising potential of leveraging

uncertainty in ancestral sequence reconstruction (ASR) within machine learning frameworks

for protein engineering. Notably, the work by Colin Jackson’s lab (2024) [28, 29] introduced

multiplexed ASR (mASR), a novel method that utilizes ASR to obtain protein representations

that are family-specific. Their approach employs a custom transformer model (LASE) trained

on ancestral sequences reconstructed using the maximum a posteriori (MAP) character at each

site. While this method has shown significant improvements in protein representation learning

and downstream task performance, particularly demonstrating a smoother fitness landscape and

computational efficiency for the phosphodiesterase (PTE) family, it has limitations. The primary

disadvantage of the MAP-based approach is its consideration of each site in isolation, potentially

overlooking important epistatic effects and dependencies between amino acid sites.

In this study, we explore the integration of ASR-reconstructed data into a comprehensive

ML framework to address two primary objectives: (1) the generation of novel protein sequences

through generative modeling and (2) the enhancement of protein classification via fine-tuned

language models. For the generative ML model, we implemented a variational autoencoder
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(VAE) using reconstructed sequence data obtained through both Bayesian (via BAli-Phy) and

maximum likelihood (via IQ-TREE) methods in ASR for the ethylene-forming enzyme (EFE)

isolated from Pseudomonas syringae pv. phaseolicola PK2 [30]. The structures and thermal

stabilities of the generated sequences were predicted using AlphaFold2 [31] and FoldX [32],

respectively. Additionally, sequences generated from ancestral data were compared to those

generated from modern sequences by metrics of stability sequence and semantic diversity. We

compared sequences generated from ancestral data to those from modern sequences using metrics

of structural stability, sequence variability, and semantic diversity. For fine-tuning, we utilized

evolutionary scale modeling (ESM) protein representations [33], comparing evolutionary-driven

to modern sequences for two protein families: Lysozyme C and Endolysin. The evaluation of

family-specific representations on stability prediction tasks revealed promising results across these

protein families. Our method, ASR-Dist, demonstrated robust performance in both Lysozyme C

and Endolysin, consistently matching or surpassing the baseline models tested. These innovations

advance the use of evolutionary information in protein engineering, offering new tools for sequence

generation and representation learning, and enhancing exploration of the protein fitness landscape.

6.2 Methods

6.2.1 Generative Model for Novel Protein Sequence Generation

We aimed to test whether incorporating evolutionary data into the training of generative models

yields protein sequences that are both novel and structurally stable. To this end, we selected the

ethylene-forming enzyme (EFE) from PK2 as our focus and employed a VAE as our generative ML

model. Subsequent computational analyses (i.e., AlphaFold [31], FoldX [32], UMAP visualization

[34]) were conducted on the sequences generated by this model to assess their quality.

6.2.1.1 Data Processing and Ancestral Sequence Reconstruction

We extracted the evolutionary information of EFE using our AP-LASR [35] software, a tool

designed to reconstruct ensembles of ancestral proteins by leveraging the phylogenetic tree of

the query protein sequence. This tool has facilitated ASR by fully automating the reconstruction

process from initial BLAST search, multiple sequence alignment by MAFFT [36] to tree phylogeny
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predictions via IQ-TREE2 [37].

AP-LASR outputs several key datasets: sequences of modern proteins, ancestral proteins

(ASR-Max), and near-ancestral proteins (ASR-Dist). The ASR-Dist dataset is created by sampling

from a posterior probability distribution in the ASR.state file that was generated via IQ-TREE. For

our project, the threshold for picking amino acids from this distribution was set at 0.2 to strike

an optimal balance between maintaining ancestral properties and sequence diversity (i.e., amino

acids with a posterior probability greater than 0.2 for a given position were included for sampling

in the dataset)[26, 38]. From the data generated by AP-LASR, we sampled the sequences from

four nodes that represented high-stability ancestors obtained from various evolutionary timescales

Node10, Node13, Node 253, and Node 384 (Figure S1).

To understand how sequence diversity in our training set would impact the robustness and

generalizability of our model, two distinct datasets of ancestral protein sequences were crafted for

training our ML model. The "Homogeneous Dataset" is comprised of sequences equally sampled

from ancestral nodes, whereas the "Diverse Dataset" was created by passing the initial dataset

through CD-Hit with a 0.9 similarity threshold [39]. The sampled sequences for each node were

initially aligned using MAFFT [21]. Subsequently, the sequences from all ancestral nodes were

pooled and re-aligned with MAFFT.

We compared a Bayesian inference method (BAli-Phy) against a maximum likelihood approach

(IQ-TREE) to evaluate how the choice of probabilistic sequence reconstruction methods influences

generative model performance. BAli-Phy uses a Bayesian inference method to simultaneously

estimate of sequence alignment, tree phylogeny, and model parameters, providing full posterior

distributions of ancestral sequences. It does not assume a fixed alignment or tree topology, making

it more accurate and computationally intensive.

In brief, the same multiple sequence alignment generated by AP-LASR for IQ-TREE was

used to initialize eight independent Markov chain Monte Carlo (MCMC) runs in BAli-Phy. The

optimal amino acid substitution model for the runs, lg08 [40], was determined using IQ-TREE’s

ModelFinder [41]. After running simulations for seven days, three runs were selected for convergence
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by minimizing the average standard deviation of split frequencies (ASDSF) and the maximum of the

standard deviation of split frequencies (MSDSF). For convergence analysis, the first 2,000 iterations

of each run were discarded to account for the bias of the initial random starting guess (i.e., burn-in).

The ensemble of ancestors at each ancestral node were subsequently retrieved from the BAli-Phy

runs, which produces a single alignment for every iteration which can be sampled. ETE4 Toolkit

[42] was used to navigate the phylogeny and define the children sequences for all ancestral nodes2,

and Dendropy [43] was used to retrieve all ancestral nodes from the BAli-Phy output3. For more

targeted protein generation, we sampled the sequences from four nodes representing high-stability

ancestors obtained from various evolutionary timescales (Node10, Node13, Node253, and Node384,

as shown in Figure S6.1).

6.2.1.2 Generative Model Training

Variational Autoencoder (VAE) was selected for its proficiency in generating new data points

that are coherent with the training data [44, 45]. We employed one-hot encoding to transform

the sequences into a format suitable for computational processing. Feature extraction from these

one-hot encoded sequences was performed using a 1D Convolutional Neural Network (CNN) layer,

allowing us to capture the local sequence patterns effectively. The architecture of our VAE was

designed with a latent space dimensionality of 100, ensuring sufficient complexity to capture the

nuances of protein sequence variability. Additionally, we incorporated batch normalization within

the network to facilitate smoother and more stable learning dynamics. This combination of 1D

CNN for feature learning and batch normalization for optimization contributed to refining the

model’s ability to generate meaningful protein sequences.

6.2.1.3 Evaluation

To gauge the ability of our models to generate stable and viable sequences, we utilized

AlphaFold2 to verify that the predicted 3D structures of the generated PK2 ancestors exhibited

folding patterns similar to the wild-type structure. Randomly selected sequences generated

by AlphaFold2 were superimposed onto wild-type structures (PDB ID: 5V2Y) using PyMol
2https://github.com/etetoolkit/ete
3https://github.com/jeetsukumaran/DendroPy
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to calculate RMSD and compare folding patterns. Following structural prediction, stability

calculations (ddG) were carried out using FoldX. This evaluation phase was crucial, as it allowed

us to ascertain not just the novelty of the generated sequences but also their practical applicability in

terms of structural integrity and thermal stability. We then compared the distribution of generated

structure stability measurements followed by the Dunn statistical test for measuring the obtained

results’ significance. The sequences generated by a model trained on evolutionary-reconstructed

sequences were compared to those generated by a model trained on modern sequences. The

comparison focused on three aspects: structural quality, sequence diversity, and semantic diversity.

To assess structural quality, we used the predicted Local Distance Difference Test (pLDDT)

scores which were extracted using the alphapickle library 4. Ranging from 0 to 100, pLDDT is

used to assess the reliability of the predicted atomic positions in the protein structure. We used

the Levenshtein edit distance [46, 47](i.e., the minimum number of single-character edits required

to change one string into another) to quantify the divergence between training sequences and

generated sequences across different datasets. This allowed us to assess the sequence variability

introduced by the generation process. To characterize semantic diversity, which takes into account

the biological or chemical properties of the sequences rather than just their raw sequence differences,

the sequence representations obtained via ESM language model were visualized with UMAP, a

dimensional reduction technique that represents the data manifold in lower dimensions [34].

6.2.2 Evolutionary-Derived Protein Sequence Representation

In this section, we detail our approach to creating family-specific protein representations using

fine-tuned methods. We divide the fine-tuning into two categories: regular fine-tuning, which

adjusts model parameters using the InterPro protein family dataset, and evolutionary fine-tuning,

which incorporates specific evolutionary data relevant to protein families to guide the tuning process.

The performance of these fine-tuned representations is evaluated by comparing them against the

baseline ESM2 (Evolutionary Scale Modeling) [33] representation in a protein stability prediction

task.
4https://github.com/mattarnoldbio/alphapickle
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6.2.2.1 Data Processing

We fine-tuned the ESM2 for Endolysin and Lysozyme C, for which we obtained labeled

datasets for stability prediction in FireProtDB 5. Our data processing involved assembling three

distinct unlabeled datasets to fine-tune the ESM model for each protein family: (i) a collection

of InterPro-derived sequences that encompass an expanded set of modern proteins based on

family affiliations 6, (ii) a collection of the single most-probable ancestors (ASR-Max) taken

from every internal node of the phylogenetic tree built from modern sequence BLAST results,

and (iii) a collection of ancestral ensembles taken from internal nodes (ASR-Dist). The ASR-Dist

approach enriches the dataset with a broader spectrum of evolutionary possibilities, offering a more

robust dataset that surpasses ASR-Max in both diversity and volume. This comprehensive dataset

integrates extensive evolutionary insights, significantly enhancing the model’s training base. We

sampled 1,000 sequences inferred from each high-quality ancestral node (which we defined as

having SH-aLRT > 80% and ultrafast bootstrapping > 95%) reconstructed in ASR and removed

repeat sequences. It is important to note, depending on the application and computational resources,

that the number of ASR-Dist sequences can be tuned by modifying the number of sequences sampled

from each node in the phylogenetic tree. Table 1 represents dataset information for both protein

families tested. The prediction task was stability classification (i.e., determining if a given sequence

is stable with a ΔΔ𝐺 < −0.5 kcal/mol or unstable with a ΔΔ𝐺 > 0.5 kcal/mol).

Table 6.1 Dataset Quantification for Fine-Tuning Task.

Protein Interpro ID Interpro Seqs ASR-MAX
Seqs

ASR-Dist
Seqs

Classification Seqs
(FireProtDB)

Endolysin IPR034690 12K 302 40K 647
Lysozyme C IPR036328 9K 452 36K 338

6.2.2.2 Classification Model Training

For model fine-tuning, we employed the ESM2 model (esm2_t12_35M_UR50D) trained with

35M parameters which generates 480 embedding dimensions and contains 12-layer representations.
5https://loschmidt.chemi.muni.cz/fireprotdb/
6https://www.ebi.ac.uk/interpro/
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We unfroze its last two layers to adapt its learning to our specific datasets. A batch size of 32

sequences was utilized to optimize the training process, alongside the implementation of early

stopping to mitigate the risk of over-fitting. This fine-tuning phase was critical, allowing us to tailor

the model to our evolutionary-informed datasets. Post-tuning, we extracted the embedding from

each of the four datasets to further refine our approach to protein family classification, employing

KNN, Random Forest, and XGBoost algorithms to assess the model’s predictive performance

within each representation derived from distinct fine-tuning methods.

6.2.2.3 Evaluation of Classification Models

The evaluation of our fine-tuned language model focused on its ability to classify protein families

accurately, employing a suite of classification metrics to gauge performance comprehensively.

Precision, recall, balanced accuracy, Area Under the Curve (AUC), and the F1 score were calculated

for each protein family (Endolysin and Lysozyme C) across the representations. For more robust

training, we performed 5-fold cross-validation for the datasets. Then the trained models were tested

on a held-out test set which was 30% of the initial data. Note that, for robustness, we repeated this

on 20 distinct random states and reported the mean and standard deviation for the obtained results

among all the classification scores.

6.3 Results

The critical importance of high-quality data in protein engineering, particularly for structure

prediction and improving generalization metrics, is widely recognized. This paper explores the

potential of integrating underutilized yet rich evolutionary information to enhance both generative

models and language models in the field. For generative models, the selection of training data

that accurately captures the prior distribution is crucial in determining the quality of the sequences

produced. In parallel, the efficacy of fine-tuning language models, a state-of-the-art method for

ML predictive tasks, is intrinsically linked to the caliber of the dataset used for refinement. This

investigation aims to demonstrate how evolutionary information can be strategically employed in

ML platforms to facilitate more informed exploration and navigation of the protein fitness landscape.

By applying this approach to both sequence generation and protein classification tasks, the study
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seeks to leverage evolutionary data in protein engineering, potentially opening new avenues for

designing proteins with enhanced stability and functionality.

6.3.1 Ancestral Sequence Generation Using Different Probabilistic Methods: Maximum
Likelihood vs Bayesian

This section explores the differences in the qualities of generated sequences obtained using

Bayesian inference (BAli-Phy) and maximum likelihood approaches (IQ-TREE) for ancestral

sequence reconstruction. Our objective was to understand how different methods for reconstructing

ancestral sequences impact the quality of the reconstructed sequences and the sequences generated

using the ancestral sequences as the training dataset. While BAli-Phy employs a Bayesian

approach to simultaneously reconstruct the phylogenetic tree and sequence alignment, it is more

computationally intensive compared to IQ-TREE, which uses a maximum likelihood approach. Our

results, presented in Figure 6.2, illustrate the stability, sequence variability, and semantic diversity

of the proteins generated using these two methods. Notably, we utilized all reconstructed nodes

from both methods (i.e., without selecting for nodes with high stability) to provide a comprehensive

overview of their performance. The comparison revealed no significant differences in sequence

variability, semantic diversity patterns and stability profiles between the two methods.

The comparable performance of IQ-Tree and BAli-Phy across stability, variability, and semantic

diversity metrics challenges expectations based on their distinct mathematical approaches (i.e.,

maximum likelihood and Bayesian inference). A key factor potentially contributing to this

similarity is the sampling strategy. By incorporating sequences from all nodes in the phylogenetic

tree, both methods likely capture a wide range of ancestral states, including those with varying

degrees of certainty. This comprehensive sampling may balance out the theoretical advantages of

each approach, resulting in similar overall performance. The stability results indicate that both

methods generate sequences with comparable thermodynamic properties, suggesting IQ-Tree’s

point estimates are as robust as BAli-Phy’s distribution-based estimates for maintaining protein

stability. The equivalent sequence variability and semantic diversity imply that IQ-Tree’s maximum

likelihood approach explores sequence space as effectively as BAli-Phy’s Bayesian method.
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For the EFE family from PK2, our results show that IQ-Tree and BAli-Phy perform similarly

across key metrics. Given this, we chose to use IQ-Tree for further analyses due to its faster

computation time. To improve reconstruction quality, we focused on sampling from high-confidence

nodes in the phylogenetic tree. This approach combines IQ-Tree’s efficiency with a strategy to

minimize uncertainty in our ancestral sequence predictions.

6.3.2 Incorporating Evolutionary Information in Sequence Generation Results in Novel &
Stable Proteins

Novel sequences were generated by sampling from the learned latent representations after

loss minimization in the validation set. Three different sets of training data (modern, Ancestral

Type1(homogeneous), Ancestral Type2(diverse)) were used to generate distinct sets of sequences.

A representative subset of sequences (1,000 sequences per data type) was randomly sampled from

each dataset for both training and generation populations. Our study’s findings are promising,

revealing that: (i) our datasets not only augment the volume of training data through the innovative

integration of uncertainty in ML but also provide a richer set of sequences with inherently higher

stability for training purposes. Moreover, (ii) the stability distribution of the sequences generated

using ancestral data aligns closely with those of the training set, attesting to the potential of our

method to replicate high-quality protein stability profiles in novel sequence creation. Also, the

mean RMSD values were 0.43 for modern-derived structures, 0.42 for ancestral-derived structures

(Ancestral 1), and 0.39 for further ancestral-derived structures (Ancestral 2), indicating that the

generated structures maintained folding patterns similar to the wild-type. Figure 6.3 represents a

comparative analysis of the thermal stability of proteins derived from both ancestral and modern

sequences, examining stability within the training data and the sequences generated via VAE.

The findings underscore the significant potential of evolutionary protein sequences. Within the

training dataset, ancestral proteins exhibited markedly higher stability relative to modern proteins.

Furthermore, the sequences generated from these ancestral proteins retained this enhanced stability.

Another notable observation is the pronounced distribution shift towards increased stability in the

generated sequences, particularly when using modern sequences as compared to ancestral ones.
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Although the precise mechanisms underlying this shift remain unclear, it is possible that the

generative model, when applied to modern sequences, mitigates noise from low-quality sequences

(in terms of epistasis and folding). Conversely, the ancestral training data may inherently encompass

stabilizing interactions. Consequently, the generated sequences from ancestral proteins consistently

demonstrate superior stability compared to those derived from modern sequences.

We evaluated our generated proteins based on semantic diversity (i.e., the distance between

training and generated sequences) and structural qualities (i.e., uncertainty quantification and

intrinsic disorder region distributions). The results of these assessments are presented in Figure

6.4.

The comparative analysis of ancestral and modern PK2 sequences reveals several key differences.

Ancestral sequences demonstrate improved structural stability, evidenced by fewer intrinsically

disordered regions and consistently higher pLDDT scores. They also exhibit greater sequence

conservation, as indicated by lower edit distances between training and generated datasets. Despite

this conservation, ancestral sequences display broader semantic diversity in the UMAP projection.

In contrast, modern sequences show more variability in structural quality and sequence composition

but form tighter clusters in semantic space. These findings highlight the potential benefits of

incorporating evolutionary data in generative models for protein design. Ancestral sequences

appear to combine desirable properties such as structural stability with an expanded exploration

of sequence space. This unique combination could prove valuable in generating novel protein

variants that maintain crucial ancestral characteristics while introducing functional innovations.

By leveraging the broader semantic diversity of ancestral sequences, generative models could

potentially access a wider range of protein designs, opening up new avenues for engineering

proteins with enhanced or altered functions while preserving their fundamental structural integrity.

6.3.3 Evolutionary protein representations demonstrate significant potential for enhancing
classification tasks.

As detailed in the methods section, we fine-tuned the ESM2 model on three distinct datasets

to obtain protein representations termed Inter-Pro, ASR-Max, and ASR-Dist. Intriguingly, the
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representations derived from fine-tuning ESM2 with ancestral data exhibited comparable or enhanced

performance relative to those derived from modern data in both predictive stability tasks,determining

if a given sequence is stable (ΔΔ𝐺 < −0.5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙) or unstable (ΔΔ𝐺 > 0.5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙) for

Endolysine and Lysozyme C proteins. The outcomes for both protein families are presented in

Table 6.2 and Table 6.3. Our ASR-Dist method, which leverages uncertainty in ASR, has shown

improved performance over other representations for KNN classification. However, it demonstrated

comparable or improved performance over InterPro-derived representations for ensemble-based

classifiers (i.e., Random Forest and XGBoost).

Table 6.2 Comparison of Classifier Performance Across Fine-Tuned Representations – Lysozyme
C.

Classifier Dataset
Score (Mean±STD)

Balanced Accuracy F1 Precision Recall ROC_AUC

KNN

ESM-Base 0.51±0.02 0.05±0.07 0.23±0.33 0.03±0.04 0.49±0.07

Interpro 0.70±0.05 0.54±0.10 0.74±0.12 0.44±0.12 0.81±0.04

ASR-Max 0.71±0.05 0.57±0.10 0.90±0.12 0.43±0.10 0.81±0.04

ASR-Dist 0.73±0.05 0.61±0.09 0.83±0.13 0.50±0.09 0.86±0.05

Random Forest

ESM-Base 0.51±0.02 0.06±0.07 0.38±0.45 0.03±0.04 0.52±0.06

Interpro 0.75±0.06 0.64±0.10 0.80±0.09 0.55±0.13 0.92±0.02

ASR-Max 0.73±0.06 0.60±0.10 0.78±0.11 0.50±0.12 0.93±0.02

ASR-Dist 0.75±0.05 0.64±0.09 0.82±0.11 0.54±0.11 0.94±0.02

XGBoost

ESM-Base 0.51±0.01 0.03±0.05 0.23±0.37 0.02±0.03 0.53±0.06

Interpro 0.78±0.05 0.67±0.08 0.80±0.10 0.60±0.13 0.94±0.02

ASR-Max 0.77±0.05 0.67±0.09 0.78±0.12 0.60±0.09 0.94±0.03

ASR-Dist 0.78±0.05 0.67±0.07 0.77±0.10 0.60±0.10 0.93±0.03
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Table 6.3 Comparison of Classifier Performance Across Fine-Tuned Representations – Endolysin.

Classifier Dataset
Score (Mean±STD)

Balanced Accuracy F1 Precision Recall ROC_AUC

KNN

ESM-Base 0.82±0.05 0.73±0.08 0.85±0.08 0.66±0.10 0.93±0.03
Interpro 0.77±0.05 0.66±0.09 0.84±0.10 0.55±0.10 0.90±0.03

ASR-Max 0.80±0.05 0.69±0.08 0.78±0.09 0.62±0.09 0.91±0.04

ASR-Dist 0.82±0.05 0.73±0.08 0.84±0.09 0.65±0.10 0.94±0.03

Random Forest

ESM-Base 0.83±0.05 0.75±0.08 0.84±0.08 0.68±0.10 0.96±0.02

Interpro 0.82±0.04 0.73±0.07 0.85±0.06 0.65±0.09 0.96±0.02

ASR-Max 0.83±0.05 0.74±0.07 0.83±0.07 0.67±0.09 0.96±0.02

ASR-Dist 0.84±0.04 0.77±0.06 0.85±0.07 0.70±0.08 0.97±0.02

XGBoost

ESM-Base 0.85±0.04 0.77±0.05 0.85±0.06 0.72±0.08 0.95±0.04

Interpro 0.84±0.05 0.76±0.07 0.85±0.07 0.70±0.09 0.95±0.04

ASR-Max 0.84±0.05 0.75±0.07 0.83±0.07 0.69±0.10 0.95±0.03

ASR-Dist 0.85±0.04 0.78±0.06 0.84±0.07 0.72±0.07 0.94±0.04
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Figure 6.1 A. Generation of high-quality evolutionary data. The phylogenetic tree for the family of
interest is generated via ASR to access the ancestral sequences. Ancestral sequences are often known
to be stable, promiscuous, and evolvable. To generate ancestral sequences, IQ-TREE assumes a
fixed alignment and tree topology, then employs marginal reconstruction, which calculates the
most likely state (amino acid), shown as yellow nodes, for each site (residue position number)
independently. Ensembles of ancestral sequences can then be produced by sampling from other
probable amino acids at individual positions of the ancestral sequences. Additionally, BAli-Phy is
used for sequence reconstruction to co-estimate phylogeny and alignment, allowing for simultaneous
inference of multiple parameters, providing a robust framework for evolutionary analysis. In brief,
the same multiple sequence alignment generated by AP-LASR for IQ-TREE is used to initialize
eight independent Markov chain Monte Carlo (MCMC) runs in BAli-Phy. The optimal amino
acid substitution model for the runs is determined using IQ-TREE’s ModelFinder. After running
simulations for seven days, three runs are selected for convergence by minimizing the average
standard deviation of split frequencies (ASDSF) and the maximum of the standard deviation of
split frequencies (MSDSF). For convergence analysis, the first 2,000 iterations of each run are
discarded to account for the bias of the initial random starting guess (i.e., burn-in). The ensemble
of ancestors at each ancestral node is subsequently retrieved from the BAli-Phy runs, which produces
a single alignment for every iteration that can be sampled. B. The obtained evolutionary information
is used as training data for sequence generation and family-specific protein sequence representation.
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Figure 6.2 Maximum Likelihood (IQ-Tree) and Bayesian (BAli-Phy) approaches for ancestral
sequence reconstruction of the EFE family from PK2 are comparable in terms of thermostability,
sequence variability, and structural quality. A.Stability analysis using FoldX predictions of
thermodynamic stability ( (ΔΔ𝐺, kcal/mol) between generated and training sequences. No
statistically significant differences were observed (p-value=0.17). B. Sequence variability illustrated
by minimum edit distances between training and generated sequences, reveals similar diversity
for both methods. Similarly, semantic diversity visualized via UMAP projections of sampled
generated sequences indicate comparable patterns. C. Structural quality analysis using pLDDT
scores demonstrated no significant differences between methods (p-value=0.37 for means and
p-value=0.33 for IDRs).
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Figure 6.3 ASR-derived PK2 sequences exhibited higher thermal stability compared to modern
sequences (both before and after generation via VAE.) A. Stability Analysis Modern vs.
Ancestral_Type1 (Homogeneous). The density plot shows the thermodynamic stability (ΔΔ𝐺
values - stability measurement relative to the stability of wild-type (Δ𝐺)) of modern and
homogeneous ancestral (AncType1) protein sequences. B. Stability Analysis Modern vs.
Ancestral_Type2 (Diverse). Ancestral-based models consistently produced sequences with
improved stability compared to modern sequences. Generated sequences closely mirror the stability
profiles of their respective training sets. Notably, the generated sequences from both ancestral
types showed no statistically significant difference from their training sets (p-values > 0.05), while
differing significantly from modern sequences (p-values < 1e-8). The statistical significance of all
comparisons is provided in Supplementary Table 6B.1.
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Figure 6.4 The Generation-Quality panel. Structural and sequence properties of ancestral and
modern PK2 sequences before and after generative modeling. A) Structural Quality: Intrinsically
Disordered Regions (IDRs) measured by pLDDT<50 count and mean pLDDT scores across sampled
structures, showing fewer IDRs and higher mean pLDDT scores in ancestral sequences. B)
Sequence Variability: Minimum edit distances between training and generated datasets, revealing
significantly higher variability in modern sequences (p-value < 0.05). C) Semantic Diversity:
UMAP projection of sampled generated sequences, illustrating distinct clustering patterns with
ancestral sequences exhibiting broader distribution. Ancestral sequences demonstrate improved
structural stability, more conserved sequence diversity, and increased semantic diversity compared
to modern sequences, while modern sequences show higher sequence variability before and after
training.
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6.4 Discussion

In this work, we explored the integration of evolutionary information into machine learning

models for protein engineering. Our approach combined ancestral sequence reconstruction (ASR)

with generative modeling and language model fine-tuning to enhance both sequence generation and

fitness prediction. The results demonstrated that sequences generated from evolutionary-informed

datasets exhibited improved characteristics, particularly in thermal stability, compared to those

derived from models trained solely on modern sequences. This highlights the potential of ASR to

enrich training data for generative models, leading to more diverse and higher-quality outputs.

While our study provided valuable insights, it’s important to note that we only scratched the

surface of the vast sequence space available through ASR. For instance, considering the 186

high-quality nodes from our Lysozyme ancestral tree reconstruction, with 15 variable positions and

4 possible amino acids per position, the theoretical sequence space encompasses approximately

200 billion unique sequences. Our approach, utilizing clustering algorithms and strategic sampling

methods, aimed to capture a representative subset of this diversity. Despite these efforts to

efficiently sample the sequence space, there remains immense potential for further exploration

and optimization of these evolutionary-informed datasets. Future work could focus on developing

more sophisticated sampling techniques or exploring a larger portion of the available sequence

space to potentially uncover even more beneficial protein variants.

To evaluate the utility of ancestral sequences on downstream stability prediction tasks, we

fine-tuned the evolutionary scale ESM protein language model with reconstructed ancestral data

to obtain evolutionary-driven protein representations for Endolysin and Lysozyme C families. For

Lysozyme C, ancestral-based representations showed promising results, outperforming the baseline

ESM in KNN classification and matching the established InterPro method for other classification

models. In Endolysin, our novel ASR-Dist method performed comparably to the baseline and other

fine-tuning approaches across various classification metrics. While not consistently outperforming

existing methods, ASR-Dist demonstrated stable performance across both simple and complex

classification models, suggesting potential in this data-centric approach for enhancing protein
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representations.

This study advances protein engineering by integrating diverse ancestral sequence reconstruction

(ASR) techniques into generative modeling and representation learning. It demonstrates the

generation of sequences with ancestral-like properties using machine learning, a novel achievement

in the field. While previous work like local ancestral sequence embedding (LASE) introduced

ASR in representation learning using transformers trained from scratch, this approach explores

fine-tuning existing models with various evolutionary and modern sequence datasets, addressing

potential over-fitting issues and offering an accessible framework for researchers. Another key

innovation is the implementation and comparison of two probabilistic approaches for phylogeny

inference and ancestral sequence reconstruction: maximum likelihood and Bayesian inference. This

comprehensive incorporation of ASR-driven protein sequences and their impact on both generative

modeling and representation learning provides a nuanced view of evolutionary information’s role

in protein engineering.

While this study illuminates the potential of integrating evolutionary data into ML models, it

also highlights the necessity for further investigation. We computationally validated the stability

and diversity of the sequences generated for the generative task, but experimental validation is

crucial to understanding the functional advantages that evolutionary signals may confer.
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APPENDIX 6A

PK2 RECONSTRUCTED PHYLOGENIC TREE WITH SELECTED NODES FOR
TRAINING THE GENERATIVE MODEL.

Figure 6A.1 The tree is generated via AP-LASR and visualized with Figtree software. Highlighted
nodes are Node 10, Node 13, Node 253, and Node 384 which possessed high stability and were
used as starting points to produce ancestral sequences for training data for the generative model.
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Figure 6A.2 Reconstructed Tree Quality Metrics for Branches.
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APPENDIX 6B

STATISTICAL ANALYSIS FOR STABILITY OF GENERATED PROTEINS
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APPENDIX 6C

GENERATIVE MODEL ARCHITECTURE

ProteinVAE(

(encoder): Encoder(

(conv1): Conv1d(21, 64, kernel_size=(3,), stride=(1,),\ padding=(1,))

(bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1,\ affine=True)

(flatten): Flatten(start_dim=1, end_dim=-1)

(fc1): Linear(in_features=25856, out_features=10000, bias=True)

(fc2): Linear(in_features=10000, out_features=5000, bias=True)

(fc3): Linear(in_features=5000, out_features=2000, bias=True)

(fc4): Linear(in_features=2000, out_features=500, bias=True)

(fc5): Linear(in_features=500, out_features=100, bias=True)

(z_mean): Linear(in_features=100, out_features=100, bias=True)

(z_log_var): Linear(in_features=100, out_features=100, bias=True)

(sampling): Sampling()

)

(decoder): Decoder(

(fc1): Linear(in_features=100, out_features=500, bias=True)

(fc2): Linear(in_features=500, out_features=2000, bias=True)

(fc3): Linear(in_features=2000, out_features=5000, bias=True)

(fc4): Linear(in_features=5000, out_features=10000, bias=True)

(fc5): Linear(in_features=10000, out_features=25856, bias=True)

(deconv1): ConvTranspose1d(64, 21, kernel_size=(3,),\ stride=(1,)

, padding=(1,))

(bn1): BatchNorm1d(21, eps=1e-05, momentum=0.1,\ affine=True)

(dropout): Dropout(p=0.2, inplace=False)

))
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APPENDIX 6D

STATISTICAL ANALYSIS FOR PROTEIN REPRESENTATION
PERFORMANCES–LYSOZYME C

Table 6D.1 Results of Dunn Test in Case of Statistical Significance after Kruskal-Wallis for Different
Metrics–Lysozyme. Only KNN results had statistical significance and needed post-hoc reports.

Group 1 Group 2 p-value Classifier Metric Mean 1 Mean 2

InterPro ASR-Max 0.000165 KNN Precision 0.73 0.89

InterPro ASR-Dist 0.003335 KNN ROC AUC 0.81 0.86

ASR-Max ASR-Dist 0.003965 KNN ROC AUC 0.81 0.86

InterPro ASR-Dist 0.021234 KNN Precision 0.73 0.83

ASR-Max ASR-Dist 0.105603 KNN Precision 0.89 0.83

InterPro ASR-Max 0.903116 KNN ROC AUC 0.81 0.81
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APPENDIX 6E

STATISTICAL ANALYSIS FOR PROTEIN REPRESENTATION
PERFORMANCES–ENDOLYSIN

Table 6E.1 Results of Dunn Test in Case of Statistical Significance after Kruskal-Wallis for Different
Metrics–Endolysin. Only KNN results had statistical significance.

Group 1 Group 2 p-value Classifier Metric Mean 1 Mean 2

InterPro ASR-Dist 0.000686 KNN ROC AUC 0.90 0.93

InterPro ASR-Dist 0.005173 KNN Recall 0.55 0.65

InterPro ASR-Dist 0.005527 KNN Balanced Accuracy 0.76 0.81

ASR-Max ASR-Dist 0.010570 KNN ROC AUC 0.91 0.93

InterPro ASR-Dist 0.020592 KNN F1 Score 0.65 0.72

InterPro ASR-Max 0.033665 KNN Recall 0.55 0.62

InterPro ASR-Max 0.067481 KNN Balanced Accuracy 0.76 0.80

ASR-Max ASR-Dist 0.155124 KNN F1 Score 0.68 0.72

InterPro ASR-Max 0.217757 KNN F1 Score 0.65 0.68

ASR-Max ASR-Dist 0.284875 KNN Balanced Accuracy 0.80 0.81

ASR-Max ASR-Dist 0.388140 KNN Recall 0.62 0.65

InterPro ASR-Max 0.524948 KNN ROC AUC 0.90 0.91
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CHAPTER 7

CONCLUSION

7.1 Overview

This thesis has presented a multifaceted approach to protein engineering, leveraging the power

of machine learning (ML) and computational tools. The research addressed the complex challenge

of designing proteins with desired functions through several innovative strategies.

Firstly, a robust methodology was developed for mapping next-generation sequencing data

to experimental annotations, enhancing signal-to-noise ratios, and optimizing directed evolution

starting points. The evaluation of various protein representation methods, including one-hot and

physicochemical encodings, as well as language-based representations like ESM and UniRep, led

to the creation of ensemble techniques that significantly improved ML performance. For proteins

under 120 amino acids, this approach achieved a remarkable 94

The study then progressed to modeling protein-drug interactions, focusing on the therapeutically

important organic anion-transporting polypeptides (OATPs). A comprehensive pipeline was

established, integrating AlphaFold for structure prediction, molecular docking for interaction

modeling, and a Heterogeneous Graph Neural Network (HeteroGNN) to capture both inter-

and intra-molecular interactions. This approach revealed inconsistencies in reported OATP-drug

interactions, particularly for OATP1B1, and identified key drug attributes such as topological

surface area, heteroatom count, and hydrophobicity as critical factors. The research demonstrated

that drug-based representations alone are insufficient for interpreting OATP-drug interactions,

emphasizing the necessity of structure-based methods.

Furthermore, generative modeling to create novel proteins with desired properties was explored.

By incorporating evolutionary insights through ancestral sequence reconstruction (ASR), both

generative and language models were enhanced. A Variational Autoencoder (VAE) trained on

ASR-derived sequences produced novel proteins that maintained the stability profiles of ancestral

sequences, as validated using AlphaFold2 and FoldX. The integration of evolutionary-driven

protein representations also improved downstream prediction tasks, particularly in protein stability
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classification. Fine-tuning the ESM2 language model with ASR data created more effective protein

embeddings, enhancing classification accuracy for multiple protein families.

In the following section, broader perspectives on the field of protein engineering and machine

learning integration will be presented, along with suggestions for future improvements and research

directions. These insights aim to guide the next generation of researchers in furthering the

advancements made in this thesis and addressing remaining challenges in the field.

7.2 Perspective

Significant advancements have propelled the field of protein engineering forward in remarkable

ways. AlphaFold3 has achieved unprecedented accuracy in predicting protein structures and

interactions, while language models like ESM3 [1] have enhanced our understanding of protein

sequences and functions. Diffusion models such as Chroma [2] have enabled the generation of

novel protein-protein interaction domains with greater control, advancing programmable protein

design. Recent studies have even demonstrated the generation of new CRISPR-Cas proteins that

are more compatible with human cells [3], opening new avenues for gene editing technology. These

developments highlight the transformative potential of integrating AI with biological research.

Despite these advancements, several critical challenges persist. The lack of standardized

benchmarks and comprehensive metrics, given the vast and diverse nature of biological space,

makes it difficult to establish universally applicable standards for evaluating ML models in protein

engineering. Ensuring reliable and reproducible outcomes requires addressing data leakage and

inconsistencies in ML implementations. Current methods often fail to fully account for the

interconnected nature of proteins and their interaction profiles.

The gap between computational discoveries and experimental validation in protein engineering

presents a significant bottleneck in the field. Unlike image generation, where results can be instantly

assessed visually, protein engineering lacks immediate feedback mechanisms, significantly slowing

down the iterative process of design, testing, and refinement. In Chapter 6, protein embeddings were

used to analyze the semantic diversity of AI-generated proteins, and software such as AlphaFold

was employed to assess their folding profiles, followed by FoldX for stability analysis. While these
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approaches are beneficial for analyzing success, more generalizable and rapid methods are needed

to improve the assessment of AI-generated proteins in terms of the likelihood of success for the

intended properties. Ideally, these methods would provide a likelihood panel for both success

and failure across different protein attributes, recognizing that protein engineering often involves

balancing multiple properties simultaneously. This comprehensive view of potential outcomes

would enhance both the speed and reliability of the protein engineering process.

Another significant challenge is the low signal-to-noise ratio in experimental data. NGS

techniques and docking studies often produce noisy data. To address this issue, several strategies

were implemented throughout this research. In Chapter 2, the PEAR software was utilized to

reduce noise in obtained sequence data. Chapter 5 focused on mitigating structural noise for

OATPs by analyzing the distribution of docking scores and selecting thresholds to maximize

signal. Furthermore, collaborative work with the Harada lab at MSU-IQ investigated the impact of

experimental conditions, such as incubation time, on data noise levels. These efforts demonstrate

the potential for improving data quality through careful preprocessing and analysis of experimental

parameters. Despite this progress, there remains a need for more advanced methods to identify and

quantify various sources of noise, as well as to develop enhanced post-processing techniques for

maximizing signal quality in protein engineering data.

Shifting emphasis from developing complex models to critically evaluating and enhancing

data quality is crucial for ensuring model effectiveness and reliability. For example, more than

99% of the data in UniProt, a widely used public protein database, remains unannotated, and

the quality of proteins is not determined [4]. This thesis addressed this issue by incorporating

high-quality ancestral data into the generative model platform, leveraging evolutionary information

to improve the data used. Despite this advancement, there is room for further improvement in

making generative models conditional on co-optimizing attributes such as stability and fitness.

In conclusion, this research has shown that integrating machine learning with high-quality

data and advanced computational tools can significantly enhance protein engineering efforts.

The innovative approaches developed throughout this work offer a solid foundation for future
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advancements, promising more efficient and accurate design of proteins with desired properties

and functionalities. This progress paves the way for continued breakthroughs in the field, bringing

us closer to overcoming existing challenges and unlocking new possibilities in protein engineering.
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