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ABSTRACT 

In the recent decades we have witnessed numerous outbreaks worldwide, resulting in millions of 

infections and deaths. Examples include the 1918 H1N1 virus, the 1968 H3N2 virus, the 2003 

SARS coronavirus, the 2012 MERS-CoV, and the 2019 SARS-CoV-2. Factors including rapid 

population growth, escalating climate change crisis, recurring natural disasters, booming 

immigration and globalization, and concomitant sanitation and wastewater management challenges 

are anticipated to exacerbate the frequencies of disease outbreaks in the years to come. The 

traditional disease detection system primarily relies on the diagnostic analysis of specimens 

collected from infected individuals in clinical settings. This approach has significant limitations in 

predicting and providing early warnings for impending disease outbreaks. Infected individuals are 

often tested only after the development of symptoms, and health authorities are usually notified 

following the inception of a disease surge. Consequently, health authorities respond reactively 

instead of taking proactive measures during a pandemic. Additionally, clinical data collected by 

traditional disease surveillance systems often fail to accurately reflect actual infections in 

communities when asymptomatic infections are dominating, clinical testing is incapable to capture 

comprehensive infections, limitations in testing supplies and accessibility, and patients’ testing 

behaviors. Environmental surveillance, especially wastewater surveillance or wastewater-based 

epidemiology, allows analyses of environmental community composite samples. Municipal 

wastewater samples are composite biological samples of an entire community that represent a 

snapshot of the disease burden of the population covered by the corresponding sewer-shed. 

Collecting and analyzing untreated wastewater samples from centralized wastewater treatment 

plants and neighborhood manholes for specific viral and bacterial targets at a regular cadence can 

reveal the trends of pathogen concentrations in wastewater. These trends represent the viral and 



 

bacterial loads shed by infected individuals, whether they are symptomatic or asymptomatic. Based 

on measured wastewater concentrations of disease pathogens and other available datasets such as 

clinical and demographic datasets, researchers can establish models to predict disease incidences 

before clinical reporting and develop tools to provide early warnings of upcoming surges of 

diseases. This crucial information can help public health officials in making informed decisions 

regarding the implementation of preparedness measures and the allocation of resources. The 

primary objective of this dissertation is to develop comprehensive laboratorial, technological, and 

translational methodologies for forecasting viral and bacterial outbreaks through wastewater-based 

epidemiology.   
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INTRODUCTION 

Viral and bacterial outbreaks resulted in devastating and uncontrollable negative impacts 

on human lives and development globally over the past decades. The recent COVID-19 pandemic 

is a striking example. At the same time, the past few decades have also experienced unprecedented 

societal, demographic, and climatic changes. These include escalating movements of populations 

via flights, railways, automobiles, and maritime transportations; an increasing influx of 

populations into already densely populated urban areas; as well as drastically changing climatic 

conditions. These changes collectively contribute to the increasing risk of infectious disease 

outbreaks on a global scale. 

Traditional disease surveillance system operated by health authorities depends on clinical 

examinations of symptomatic individuals who seek healthcare services. Infected individuals are 

typically tested after the onset of symptoms, and health authorities are notified subsequently. This 

process results in relays between exposure to the disease pathogen and symptoms onset, as well 

as between symptoms onset and confirmation by a diagnostic test. These delays can further result 

in the disease becoming widespread in communities before any intervention measures could be 

implemented. A prolonged incubation time of some diseases can also exacerbate widespread 

transmissions. Therefore, the traditional disease surveillance system based on clinical data 

collection often fail to detect infected individuals before their symptoms onset, and the system is 

incapable of providing early warnings of disease outbreaks (Xagoraraki & O’Brien, 2020). 

The traditional disease surveillance system also often relies on voluntary testing and 

willingness of testing by infected individuals, leading to biased dataset of disease prevalence. 

Infected individuals with mild or no symptoms are less likely to undergo a diagnostic test in 

clinical settings. The capacity of clinical testing can also be inadequate, especially during a surge 

of infections or in areas with limited testing resources, resulting in a significant portion of 
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underreported infections (Wang et al., 2022).  Lastly, conducting population-wide screening by 

clinical testing can impose a heavy financial burden on communities (Wang et al., 2022). Overall, 

factors including biased testing populations, underreported asymptomatic populations, limited 

testing capability, undetermined testing behaviors, collectively have an enormous impact on the 

accuracy and inclusiveness of clinical datasets (Safford et al., 2022). 

Environmental surveillance, especially wastewater surveillance or wastewater-based 

epidemiology (WBE), can provide an inclusive snapshot of disease prevalence in communities 

and exhibit numerous advantages comparing to the traditional disease surveillance system. First, 

WBE can help health authorities predict and provide early warnings of surging cases. For instance, 

Chapters 1 and 2 in this dissertation demonstrate both advanced statistical models to predict 

COVID-19 cases and simple statistical tools to provide early warnings of impending surges of 

COVID-19 cases, respectively. Researchers also developed models to predict COVID-19 cases 

based on WBE datasets, such as artificial neural network models (Galani et al., 2022), vector 

autoregression models (Cao & Francis, 2021), and automatic regression integrated moving 

average models (Matheri et al., 2022). Particularly, Bibby et al., indicated that WBE’s early 

warning of COVID-19 cases were prominent in locations with limited clinical testing capacity, or 

significant delays in clinical results reporting, or where prevalent asymptomatic infections exhibit 

(Bibby et al., 2021). Second, WBE can provide disease infections data for communities with 

limited healthcare services. In socioeconomically disadvantaged communities, healthcare service 

access is often limited, therefore, leading to inaccuracy of clinical datasets collected in these areas. 

Additionally, in most rural areas, healthcare services are more limited than in urban areas, and 

public health authorities in rural areas have less reliable disease dataset for decision makings 

comparing to their urban counterparts (Cohen et al., 2024). Therefore, potential public health 

benefits of WBE in these areas are substantial. Third, WBE can complement clinical data while 
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asymptomatic infections are dominating, or clinical testing is delayed, or clinical testing is 

insufficient to capture comprehensive infections (Mac Mahon et al., 2022). For instance, during 

the initial stage of the COVID-19 pandemic, researchers witnessed extremely high numbers of 

undetected and underreported cases and indicated that the actual infections were much higher than 

reported cases (Lau et al., 2021). Other researchers reported the case-to-report ratio for COVID-

19 as 26 to 32 in India, and the value was even higher (82 to 130) at the early stage when testing 

was less available (Murhekar et al., 2021). During these periods, WBE is particularly effective and 

beneficial as a disease surveillance tool since clinical testing is time and resource restricted, and 

inevitably delayed for identifying and tracking underreported cases. A recent study also indicated 

that WBE can be beneficial when severe cases are rare but asymptomatic infections persist during 

the final phase of disease eradication (Daughton, 2020). Finally, WBE can also help health 

authorities save financial resources to circumvent massive clinical testing in populated regions. 

Researchers indicated that strategically replacing some clinical testing with WBE could save 

financial resources without compromising surveillance accuracy (Safford et al., 2022; Wang et al., 

2022). 

WBE was originally implemented to monitor illicit drugs and later was recognized 

worldwide as an epidemiological tool to gauge infections of viral and bacterial diseases in 

communities. For human viruses, they do not replicate outside of a host and can remain stable in 

the environment for significant periods. Thus, WBE can provide a comprehensive overview of the 

viral disease burden in communities. For human bacteria, the WBE workflow used for viruses may 

not be effective. Specific methodologies and workflow need to be designed, developed, and 

implemented for targeting bacterial species in wastewater. For instance, Chapter 6 in this 

dissertation describes one of the first bacterial wastewater surveillance studies on monitoring 

Chlamydia trachomatis and Treponema pallidum in Detroit’s wastewater and demonstrates 
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advantages of WBE in monitoring bacterial species such as back-estimating infections and 

complementing clinical data. 

In December 2019, Coronavirus Disease 2019 (COVID-19) was first identified in Wuhan, 

China. The disease is caused by Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS‑CoV‑2), a positive-sense single-stranded RNA virus that is highly contagious in humans. 

COVID-19 rapidly spread worldwide, resulting in a pandemic, which was declared by the World 

Health Organization (WHO) on March 11th, 2020. In response, WBE was quickly implemented to 

monitor concentrations of SARS-CoV-2 in wastewater globally, including in countries such as the 

United States, the Netherlands, Japan, Australia, among others (Ahmed et al., 2020; Haramoto et 

al., 2020; Miyani et al., 2020; Sherchan et al., 2020). This dissertation comprises six chapters that 

introduce significant advancements in WBE with a focus on the Tri-County Detroit Area (TCDA) 

in Michigan, U.S., and explore the development and implementation of laboratorial, technical, and 

translational methodologies for monitoring and forecasting viral and bacterial disease outbreaks, 

including SARS-CoV-2 and sexually transmitted infections. The first five chapters primarily focus 

on advancements of WBE methodologies on monitoring SARS-CoV-2 and the sixth chapter 

focuses on expanding WBE applications on monitoring sexually transmitted infections caused by 

bacterial pathogens, including Chlamydia and Syphilis. Briefly, chapter 1 introduces advanced 

statistical models based on wastewater surveillance datasets that can identify and predict COVID-

19 peaks in clinical cases in the TCDA five weeks prior to peaks of reported clinical data. Disease 

characteristics such as incubation time, shedding duration, and shedding dynamics were 

incorporated in a mechanistic model to estimate the time lag between measured viral 

concentrations in wastewater and reported clinical data. Chapter 2 introduces simple statistical 

methodologies to determine early warnings of COVID-19 surges that are used for informed 

decision making by public health officials. This chapter also introduces statistical methodologies 
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to determine peaks of COVID-19 cases and approaches to evaluate the proposed early warning 

methods. Chapter 3 compares time series data of wastewater measurements and clinical cases 

through statistical tools to optimize early warning potential of three commonly used wastewater 

concentration methods. This chapter identifies the optimal wastewater concentration method to 

provide early warnings of viral diseases. Chapter 4 demonstrates time lags between SARS-CoV-

2 concentrations in wastewater and diverse clinical metrics through time lagged cross correlation 

methods. This chapter identifies dynamically changing time lags and various parameters affecting 

time lags. Chapter 5 introduces experimental and statistical methodologies to compare three 

commonly applied U.S. Centers for Disease Control and Prevention (CDC) assays targeting 

SARS-CoV-2 in wastewater, including N1, N2 and SC2 assays. Through comparative analyses, 

this chapter identifies the optimal assay for testing SARS-CoV-2 in wastewater to predict COVID-

19 cases in the TCDA. Chapter 6 explores bacterial wastewater surveillance to monitor widespread 

sexually transmitted infections, including Chlamydia and Syphilis, through developing a 

wastewater surveillance workflow and optimizing laboratory molecular biology methods. This 

chapter also demonstrates approaches to back-estimate infections based on WBE datasets. 
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CHAPTER 1: FIVE-WEEK WARNING OF COVID-19 PEAKS PRIOR TO THE 

OMICRON SURGE IN DETROIT, MICHIGAN USING WASTEWATER 

SURVEILLANCE 

Published in Science of the Total Environment: 

Zhao, L., Zou, Y., Li, Y., Miyani, B., Spooner, M., Gentry, Z., Jacobi, S., David, R. E., Withington, 

S., McFarlane, S., Faust, R. A., Sheets, J., Kaye, A., Broz, J., Gosine, A., Mobley, P., Busch, A. 

W. U., Norton, J., & Xagoraraki, I. (2022). Five-week warning of COVID-19 peaks prior to the 

Omicron surge in Detroit, Michigan using wastewater surveillance. Science of The Total 

Environment, 844, 157040. 

Abstract 

Wastewater-based epidemiology (WBE) is useful in predicting temporal fluctuations of 

COVID-19 incidence in communities and providing early warnings of pending outbreaks. To 

investigate the relationship between SARS-CoV-2 concentrations in wastewater and COVID-19 

incidence in communities, a 12-month study between September 1, 2020, and August 31, 2021, 

prior to the Omicron surge, was conducted. 407 untreated wastewater samples were collected from 

the Great Lakes Water Authority (GLWA) in southeastern Michigan. N1 and N2 genes of SARS-

CoV-2 were quantified using RT-ddPCR. Daily confirmed COVID-19 cases for the City of 

Detroit, and Wayne, Macomb, Oakland counties between September 1, 2020, and October 4, 2021, 

were collected from a public data source. The total concentrations of N1 and N2 genes ranged 

from 714.85 to 7145.98 gc/L and 820.47 to 6219.05 gc/L, respectively, which were strongly 

correlated with the 7-day moving average of total daily COVID-19 cases in the associated areas, 

after 5 weeks of the viral measurement. The results indicate a potential 5-week lag time of 

wastewater surveillance preceding COVID-19 incidence for the Detroit metropolitan area. Four 
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statistical models were established to analyze the relationship between SARS-CoV-2 

concentrations in wastewater and COVID-19 incidence in the study areas. Under a 5-week lag 

time scenario with both N1 and N2 genes, the autoregression model with seasonal patterns and 

vector autoregression model were more effective in predicting COVID-19 cases during the study 

period. To investigate the impact of flow parameters on the correlation, the original N1 and N2 

gene concentrations were normalized by wastewater flow parameters. The statistical results 

indicated the optimum models were consistent for both normalized and non-normalized data. In 

addition, we discussed parameters that explain the observed lag time. Furthermore, we evaluated 

the impact of the omicron surge that followed, and the impact of different sampling methods on 

the estimation of lag time. 

1. Introduction 

Wastewater-based epidemiology (WBE) for the prediction of viral outbreaks was proposed 

in 2019 and 2020 (Xagoraraki and O’Brien, 2019; O’Brien & Xagoraraki, 2019; Xagoraraki, 

2020), and has been applied for the early detection of COVID-19 (Ahmed et al., 2020a, 2021a; 

Miyani et al., 2020). One of the critical utilities of WBE is the possibility to forecast upcoming 

fluctuations of disease with a lag time. The lag time in our study is defined as the lag between 

peaks in measured concentrations of SARS-CoV-2 in wastewater and peaks in reported COVID-

19 cases based on clinical testing. Lag times observed in published studies since the inception of 

COVID-19 pandemic (summarized in Table 1. 1.) vary widely between 2 days and 28 days. The 

observed lag times may depend on multiple parameters. These parameters include disease 

characteristics of SARS-CoV-2 such as incubation time and shedding duration summarized in 

Tables 1S. 1 and 1S. 2, respectively, that may change with novel variants (Yaniv et al., 2021). The 

parameters that affect observed lag times may also involve contributing populations and their 
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demographic characteristics, including age (Omori et al., 2021), sex (Syangtan et al., 2021), racial 

ancestry (Allan-Blitz et al., 2021; Feehan et al., 2021), and traveling history of infected 

populations (Xiao et al., 2020). Furthermore, the hydraulic influence in the sewage network, 

including dilution events (Foladori et al., 2020), and sorption and desorption of the virus in 

wastewater (Yin et al., 2018) as well as the methods of wastewater sampling (that may be include 

viruses sorbed on particles or supernatant viruses) are critically affecting the observed lag times. 

Moreover, manners of reporting the clinical data, including the accessibility to the testing (Wiens 

et al., 2021), and traveling time to the testing sites (Rader et al., 2020) are important. 

Some of the factors contributing to the lag time between wastewater-based data peaks and 

clinical data peaks are visualized in the timeline shown in Figure 1. 1. The majority of published 

studies show empirical evidence that the range of the incubation time of SARS-CoV-2 prior to the 

Omicron surge was 0 to 14 days (shown in Table 1S. 1. and summarized in Figure 1. 1.). Clinical 

testing is often delayed from the manifestation of clinical symptoms by several days, due to limited 

availability of testing supplies, limited ability to reach testing sites, or resistance of people to seek 

testing (Rader, 2020; Torres et al., 2021; Wiens et al., 2021). In some cases, the mean delay in the 

reporting of confirmed COVID-19 cases is 5 days with 15% of cases reported after day 10 (Harris, 

2020). Some clinical studies have demonstrated a delay of approximately 7 days from illness onset 

to clinical testing (Huang et al., 2020). Henceforth, the delay in gathering clinical data could vary 

significantly, particularly in demographically and socioeconomically varied populations, like that 

of Detroit, Michigan. Generally, between day 19 and 25, clinical data will become publicly 

available, after an estimated delay of 3 to 9 days of clinical data collection and processing time 

(Garg et al., 2020; Harris, 2020; Rader, 2020). Additionally, Figure 1. 1. demonstrates the temporal 

progress of data collection of viral loadings in wastewater. The detention time of wastewater in 

the collection network is estimated as 12 to 24 hours (Table 1S. 4.). In Figure 1. 1. it is assumed 
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that in most cases, wastewater laboratory tests are completed within a day upon sample collection. 

A compilation of all the above-mentioned timelines indicates that the lag time may be estimated 

to be between 3 and 4 weeks (Figure 1. 1.). This is expected to vary with different variants and 

different sampling methods.  

Here we present a twelve-month consecutive study, prior to the omicron surge, using N1 

and N2 gene RT-ddPCR to monitor SARS-CoV-2 concentrations in untreated wastewater samples 

collected from the WRRF of GLWA that serves the city of Detroit, as well as Wayne, Macomb, 

and Oakland counties in Michigan. We applied a sampling method that captured suspended viruses 

in the supernatant of wastewater to circumvent the potential input of “old” viruses via desorption 

of settled viruses during high flows. We investigated lag time through statistical analyses and 

established four models to predict COVID-19 clinical cases using normalized and non-normalized 

SARS-CoV-2 concentrations in wastewater. The performance of each model is evaluated using 

the Root Mean Square Error (RSME) and Pearson correlation between the predicted case number 

and actual clinical case number. Future incidences of COVID-19 were predicted based on SARS-

CoV-2 concentrations in wastewater during the study period, using statistical models. In addition, 

we examined the influence of the omicron surge to the early waring lag time. We also performed 

another widely applied sampling method for comparison purposes to demonstrate the benefits of 

our current method in terms of providing early warning for COVID-19 incidences in Detroit. 
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Table 1. 1. Lag time in published studies prior to Omicron surge 

Location Sample type Lag time Test method References 

Milan & Rome, Italy wastewater within a few 

days 

RT-qPCR (La Rosa et al., 2020) 

Ottawa, Canada wastewater 2 days RT-qPCR (D’Aoust et al., 2021) 

Montana, USA wastewater 2-4 days RT-qPCR (Nemudryi et al., 2020) 

Wisconsin, USA wastewater 0-6 days RT-qPCR (Feng et al., 2021) 

New 

York, USA 

wastewater 3 days RT-qPCR (Larsen et al., 2021) 

New Haven, 

Connecticut, USA 

sludge 0-2, 1-4, 6-8 

days under 

given 

scenarios 

RT-qPCR (Peccia et al., 2020) 

Charlotte, North 

Carolina 

wastewater 5-12 days RT-qPCR 

RT-ddPCR 

(Barua et al., 2022) 

Gandhinagar, 

Gujarat, India 

wastewater 7-14 days RT-PCR (Kumar et al., 2021) 

Paris, France wastewater 8 days RT-qPCR (Wurtzer et al., 2020) 

Minnesota, USA wastewater statewide: 15-

17 days, 

regional level: 

4-20 days  

RT-qPCR (Melvin, 2021) 

Massachusetts, USA wastewater 4-10 days RT-qPCR (Wu et al., 2022) 

Netherlands wastewater 4 days RT-qPCR (Lodder & de Roda Husman, 2020) 

Netherlands sewage samples 6 days RT-qPCR (Medema et al., 2020) 

Utah, USA wastewater 7 days RT-qPCR (Weidhaas et al., 2021) 

Milan Metropolitan 

Area, Italy, 

raw and treated 

wastewater 

8 days RT-qPCR (Rimoldi et al., 2020) 

Spain wastewater  12-16 days RT-qPCR (Randazzo et al., 2020) 

Australia wastewater  21 days RT-qPCR (Ahmed et al., 2021a) 

Gothenburg, Sweden wastewater  19-21 days RT-qPCR (Saguti et al., 2021) 

Australia wastewater 28 days RT-qPCR (Ahmed et al., 2020a) 
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Figure 1. 1. Time scale of clinical data collection and wastewater surveillance  

(incubation time and shedding duration are summarized in Tables 1S. 1. and 1S. 2., respectively)
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2. Materials and Methods 

2.1 Wastewater treatment plant and sample collection 

Untreated wastewater samples were collected from the WRRF of GLWA located in 

southeastern Michigan between September 1, 2020, and August 31, 2021, prior to the Omicron 

surge. The WRRF in Detroit is the largest single-site wastewater treatment plant in the U.S. with 

a primary treatment capacity of 1,700 million gallons per day (MGD) and a secondary treatment 

capacity of 930 MGD. GLWA’s WRRF has a semi-combined sewer-shed system, which collects 

and treats stormwater along with residential, industrial, and commercial waste, depending on 

service areas. The WRRF serves the three most populous Michigan counties: Wayne, Oakland, 

and Macomb. Figure 1. 2. shows all ZIP codes captured by the three main interceptors that 

discharge into the WRRF. The WRRF receives wastewater via three main interceptors including 

the Detroit River Interceptor (DRI), the North Interceptor-East Arm (NIEA), and Oakwood-

Northwest-Wayne County Interceptor (ONWI) from its service areas which are shown in Figure 

1. 3. The samples were collected from all three interceptors at the point of discharge into the 

WRRF.  
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Figure 1. 2. GLWA WRRF tributary areas 
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Figure 1. 3. Locations of the GLWA WRRF three interceptors 

Estimated populations served by each interceptor, daily flows, and other characteristics of 

the three interceptors, between September 2020 and August 2021, are shown in Table 1S. 26. 

Sampling occurred weekly between September 1, 2020, and August 30, 2021. A total of 407 

untreated wastewater samples were collected at the influent of the WRRF, including 146, 117, and 

144 samples from ONWI, NIEA, and DRI, respectively. In addition, to evaluate the effect of 

omicron surge in the estimated lag time, we performed testing between August 1, 2021, and 

February 28, 2022, using the same methods, with a total of 249 untreated wastewater samples from 

the same sites. 

2.2 Sampling methods 

Viruses were collected and isolated from wastewater using electropositive NanoCeram 

column filters (Argonide, Sanford, FL) based on the EPA Virus Adsorption-Elution (VIRADEL) 

method (Xagoraraki et al., 2014; Miyani et al., 2021b). Depending on the suspended solids of 

wastewater, approximately 10 to 50 L of raw wastewater passed through NanoCeram 
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electropositive cartridge filters at a rate not more than 11 L/min using a previously described 

method (USEPA 2001; USEPA 2014; Miyani et al., 2021b). Flow meter readings were recorded 

at the inception and termination of each sampling event. After sampling, all NanoCeram column 

filters were placed in sealed plastic bags, on ice, and transported to the laboratory within 24 hours 

for downstream analysis.  

In addition to the VIRADEL method, for method comparison purposes, 1L of 24-hr 

composite samples were collected weekly between August 1, 2021, and February 28, 2022, to 

conduct polyethylene glycol precipitation (PEG) for the virus concentration (Ahmed et al., 2020b, 

2020c; D’Aoust et al., 2021; Kaya et al., 2022). 

2.3 Virus elution, RNA extraction, RT-ddPCR, and variants testing 

Viruses were eluted within 24 hours after sampling based on a previously described 

method (Miyani et al., 2021b). Bacteriophage Phi6 was used as a proxy virus to estimate losses 

during virus elution and concentration (Kantor et al., 2021; Ye et al., 2016). The recoveries 

obtained were from 10.37% to 58.96%, with a mean recovery of 24.91% (±22.89%). Viral RNA 

was extracted using Viral RNA QIAGEN kit (QIAGEN, Germantown, Maryland), following the 

manufacturer’s protocol with the modification described previously (Miyani et al., 2021b). 

RT-ddPCR was performed on a QX200 AutoDG Droplet Digital PCR system (Bio-Rad, 

Hercules, CA, USA), using the One-step RT-ddPCR Advanced Kit for Probes (Bio-Rad, Hercules, 

CA, USA). Per the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic 

Panel for SARS-CoV-2 detection (www.cdc.gov), the primers and probe targeting N1 and N2 of 

SARS-CoV-2 were shown in Table 1S. 5., which were proven to be the most sensitive assays to 

identify SARS-CoV-2 (Ahmed et al., 2022; Bivins et al., 2021) and were chosen in the current 

study. N1 N2 gene Duplex Assay Reaction Mixture is shown in Table 1S. 6. Samples were then 
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run on a C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA) using the conditions shown 

in Table 1S. 7., following a measurement of fluorescence on a QX200 Droplet Reader (Bio-Rad, 

Hercules, CA, USA). 

For each RT-ddPCR run, three positive controls (PTCs) and three negative controls 

(NTCs), and process negative controls (including virus elution and RNA extraction process 

controls) were included. 102 gc/μL Twist Bioscience Twist Synthetic SARS-CoV-2 RNA Control 

2 (MN908947.3) was used for PTCs. Nuclease-free water was used for NTCs. Nanopure water 

was used as a substitute for 1.5% beef extract in virus elution, as process negative controls. Sterile 

nuclease-free water was used as a substitute for 140 µL of sample for RNA extraction, as process 

negative controls. All samples were run in triplicate.  

Determination of Limit of Blank (LOB) and Limit of Detection (LOD) were based on the 

methods described in the manufacturer’s (Bio-Rad) guidelines for evaluating analytical sensitivity 

and validation of RT-ddPCR (Bio-Rad, Hercules, CA, USA). The Limit of Blank (LOB) was 

determined by testing three types of samples using RT-ddPCR, across four consecutive days 

including the prior-to COVID-19 pandemic samples collected from the same interceptors, 

nuclease-free water, and negative process control samples from elution and extraction processes. 

The purpose of testing the LOB across four separate days was to include the unnoticeable impacts 

when the tests are performed on different days. The prior-to COVID-19 pandemic interceptor 

samples were collected on February 18, 2018, from the ONWI, NIEA, and DRI interceptors. LOB 

for N1 gene ddPCR was determined to be 0.09 gc/μL, and the LOB for N2 gene ddPCR was 

determined to be 0.08 gc/μL. The Limit of Detection (LOD) was determined for each sample using 

10^(-4) and 10^2 gc/μL of positive SARS-CoV-2 RNA across nine consecutive days using a 

nonparametric method, as-described in the manufacturer’s (Bio-rad) guidelines aforementioned. 
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An LOD of 0.1 gc/μL with 72.92% confidence for the N1 gene ddPCR and 0.1 gc/μL with 81.25% 

confidence for the N2 gene ddPCR were determined.  

To elucidate the impact of SARS-CoV-2 variants on the lag time, the mutations of 

dominant SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron variants 

were tested in the wastewater samples using the GT Molecular kits (Pulicharla et al., 2021), during 

the time when N1 and N2 measurements reached three peaks, which were defined in the current 

study as Peak I (10/6/20 – 10/28/20) and Peak II (2/17/21 – 3/8/21). For comparison purposes data 

were collected during the omicron surge Peak III (12/15/21 – 1/12/22) and are presented in the 

supplementary information. Table 1S. 8. shows the time of report of the dominant SARS-CoV-2 

variants which are corresponded to the peaks’ periods that were chosen for variant tests. 
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Figure 1. 4. a. Total confirmed COVID-19 cases between September 1, 2020, and October 4, 

2021, in the city of Detroit, and Wayne, Macomb, and Oakland counties; b. Total confirmed 

COVID-19 cases between September 1, 2020, and October 4, 2021, with 7-day moving averages 

in the city of Detroit, and Wayne, Macomb, and Oakland counties. 

 

a 

b 
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2.4 Clinical data of COVID-19 

Publicly available data of confirmed COVID-19 incidence in the city of Detroit, as well as 

Wayne, Macomb, and Oakland counties were used for this study (michigan.gov/coronavirus/). 

The supplying database was accessed on January 10, 2022 (Figure 1. 4. a.). The range of clinical 

data was between September 1, 2020, and October 4, 2021. The database was accessed again on 

April 1, 2022, to supply data for the comparative analysis during the omicron surge. Data were 

reported as follows: “county” is based on the county of residence (or city in the case of Detroit); 

“cases” are aggregated by the date of onset of COVID-19 symptoms, if known, otherwise by 

laboratory specimen date, if known, otherwise by case referral date; “confirmed cases” only 

include individuals who have had a positive diagnostic laboratory test for COVID-19. Clinical 

data considering a 7-day moving average was used for further statistical analysis (Figure 1. 4. b.). 

COVID-19 data were only available per city/country for the Detroit metropolitan area. Moreover, 

each interceptor received wastewater from portions of each city/county, thus, only the total SARS-

CoV-2 concentrations could be correlated to the total COVID-19 cases of city/counties. 

2.5 Contributing populations, flow rates, and normalization 

The contributing population of each interceptor was estimated from 2020 calculations, 

provided by the Southeast Michigan Council of Governments by traffic analysis zone (TAZ). 

Geographic information systems (GIS) analysis was adopted to intersect the TAZ boundaries with 

ZIP Code boundaries and proportionally allocate population from each TAZ to the intersected 

areas. ZIP Code boundaries were also intersected with the interceptor service areas to allow for a 

calculation of population by interceptor area.  

Daily flow rates for the three interceptors were estimated from the daily influent flow to 

the WRRF, calculated from GLWA-reported primary influent flow minus WRRF recycle flows, 
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and a calibrated hydrologic and hydraulic model developed for the GLWA collection system. The 

collection system model was developed with the U.S. Environmental Protection Agency’s (EPA’s) 

Stormwater Management Model (SWMM) 5 as part of the GLWA Wastewater Master Plan. The 

SWMM model represents sanitary wastewater and infiltration/inflow, hydraulics in all physical 

assets of the collection system and at the WRRF entrances, and stages and flows in the Rouge and 

Detroit rivers. 

To account for the changing flow and dilution of the wastewater where those parameters 

are highly variable day to day, two approaches of normalizing the N1 and N2 gene concentrations 

of SARS-CoV-2 in gc/L were adopted using Eq. (1). And Eq. (2). The normalized and non-

normalized N1 and N2 gene concentrations were used for statistical analysis and modeling. 

 (1) C(1) = CN1 or N2 gene  V  f 

 (2) C(2) = CN1 or N2 gene / S 

C(1): Normalized concentration of SARS-CoV-2 (gc/d) 

CN1 or N2 gene: N1 or N2 gene concentrations of SARS-CoV-2 (gc/L) 

V: Volume of wastewater flowing into WWTP interceptors during sampling events 

f: 3.8  10^6, conversion factor between liter and million gallons 

C(2): Normalized concentration of SARS-CoV-2 (gc/L of sanitary flow) 

S: Sanitary flow percentage of wastewater flowing into WWTP interceptors during sampling 

events (%) 

2.6 Data analyses and visualization 

Data were tracked and organized with Microsoft Excel. MATLAB of a 2019b edition was 

applied to perform the model regression analyses. All figures were generated using R Statistical 

Computing Software and MATLAB (2019b), depending essentially on ggplot2 package for 
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visualization, and Forecast and VAR package for autoregression model. The inputs of the models 

are 7-day moving average of the clinical cases (Barua et al., 2022) and total N1 or N2 gene 

concentrations for the three interceptors. 

Model 1: Linear regression  

Y = bx + a (3) 

where Y is reported clinical cases, x is SARS-CoV-2 concentration from the wastewater samples, 

b is the slope of the linear regression line, and a is the intercept from the line. The method uses 

least squares regression.  

Model 2: Linear regression model with autoregressive model (ARIMA model) 

Autoregressive Integrated Moving Average (ARIMA) is one of the most widely used forecasting 

methods for time series data. It applies to time series data which have a trend. In this study, 

ARIMA model is used to fit the residuals from the linear regression between clinical cases and 

SARS-CoV-2 concentration. The ARIMA model is characterized by autoregressive (AR) and 

moving average (MA), and number of differencing required to make the time series stationary. 

For example, for AR model,  depends only on its own lags Yt-1, Yt-2, …, Yt-p. 

Yt =  + 1Yt-1 + 2Yt-2 + … + pYt-p +  (4) 

where, if Yt is clinical case of week t, Yt-1 is the previous one-week (t-1) value of clinical case. 1 

is the coefficient of lag 1-week that the model estimates and  is the intercept term. The criterion 

to choose the best ARIMA model in this study are: 1) lower Akaike information criterion (AIC) 

value, a lower AIC score indicates a more predictive model 2) white noise after adjusting residuals 

3) low standard error (SE) value.  

Model 3: Regression model with Autoregressive model has a seasonal pattern (SARIMA model)  

Seasonal ARIMA or SARIMA model is an extension of ARIMA model that applies to time series 
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data with a seasonal component. In this study, ARIMA has a limitation fitting clinical cases and 

SARS-CoV-2 concentration time series data because it does not apply to these two time series data 

which have a seasonal pattern.   

Model 4: Vector autoregressive model (VAR) 

VAR model is a forecasting model that can be used when two or more time series influence each 

other. In this study, clinical cases and SARS-CoV-2 concentration time series data are considered 

as two time series data, and there is a relationship between these two time series data.   

Y1,t = 1 + 11,1Y1,t-1 + 12,1Y2,t-1 + … + 1,t (5) 

Y2,t = 2 + 21,1Y1,t-1 + 22,1Y2,t-1 + … + 2,t (6) 

where, Y1,t is the clinical cases at week t and Y2,t is the SARS-CoV-2 concentration at the week t. 

Y1,t-1 is the lag of one-week values of clinical cases, Y2,t-1 is the lag of one-week values of SARS-

CoV-2 concentration. 

3. Results and Discussion 

3.1 Observed SARS-CoV-2 RNA in wastewater samples and observed COVID-19 cases 

During the 12-month study, N1 and N2 genes of SARS-CoV-2 were detected and 

quantified in all 407 wastewater samples using RT-ddPCR shown in Table 1. 2. The overall 

observed trends of the total N1 and N2 gene concentrations increased steeply from mid-September 

2020 and reached a peak in mid-October 2020 (Figure 1. 5.), which heralded the first peak of 

COVID-19 infections, in mid-November 2020. Both N1 and N2 gene concentrations stayed 

comparatively steady between November 2020 and the end of January 2021, following a sharp 

increase in February 2021 and reached a peak by the end of the month. This brought about the 

second peak of COVID-19 infections, from approximately late March to April 2021. 

Subsequently, the total SARS-CoV-2 concentrations measured by N1 and N2 gene RT-ddPCR in 
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wastewater samples reached comparatively lower peaks in June 2021, which preceded the increase 

of COVID-19 incidences towards the end of July and August 2021 (Figure 1. 5.). The following 

decrease of N1 and N2 gene concentrations after each peak was largely due to the termination of 

shedding events which last a few weeks as demonstrated in Figure 1. 1. and Table 1S. 2. 

 
Figure 1. 5. Total N1 and N2 gene concentrations in gc/L for the three interceptors and total 

confirmed COVID-19 cases in the city of Detroit, as well as Wayne, Macomb, and Oakland 

counties 

3.2 Correlation between SARS-CoV-2 and confirmed COVID-19 cases 

A series of statistical analysis with normalizations using different parameters, including 

BOD, TSS, wastewater flow volume and sanitary percentage of wastewater were conducted. 

Wastewater flow volume and sanitary percentage of wastewater were chosen for subsequent 

analysis in terms of stronger Pearson’s correlation. Table 1. 2. presents the N1 and N2 gene 

concentrations normalized by total flow volume and sanitary percentage, respectively. The 

fluctuations of the normalized results in gc/d and gc/L of sanitary flow stay relatively comparable 
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to the original results in gc/L of the N1 and N2 genes, which predicted the peaks of COVID-19 

incidence by 5 weeks.  

Table 1. 2. N1 and N2 gene concentrations measured by RT-ddPCR in wastewater samples 

collected from GLWA WRRF (SF stands for “Sanitary Flow”) 

Unit Gene Interceptor 

ONWI NIEA DRI 

 

 

gc/l 

 

N1 

Maximum 5.77E+03 1.52E+03 1.41E+03 

Minimum 2.56E+02 2.05E+02 1.85E+02 

Mean 1.07E+03 6.59E+02 5.50E+02 

 

N2 

Maximum 4.83E+03 2.58E+03 1.93E+03 

Minimum 2.81E+02 2.03E+02 2.10E+02 

Mean 1.05E+03 7.29E+02 6.01E+02 

 

 

gc/d 

 

N1 

Maximum 5.23E+12 1.29E+12 1.87E+12 

Minimum 1.66E+11 1.57E+11 1.61E+11 

Mean 7.68E+11 4.36E+11 4.41E+11 

 

N2 

Maximum 4.38E+12 1.75E+12 1.87E+12 

Minimum 1.56E+11 1.61E+11 1.82E+11 

Mean 7.58E+11 4.81E+11 4.79E+11 

 

 

gc/l of SF 

 

N1 

Maximum 2.54E+04 3.87E+03 9.99E+03 

Minimum 8.05E+02 4.71E+02 8.57E+02 

Mean 3.73E+03 1.31E+03 2.35E+03 

 

N2 

Maximum 2.13E+04 5.23E+03 9.99E+03 

Minimum 7.58E+02 4.82E+02 9.71E+02 

Mean 3.68E+03 1.44E+03 2.55E+03 

 

SARS-CoV-2 gene concentrations in wastewater were influenced by absolute clinical case 

numbers of COVID-19 on single consecutive days. Therefore, 7-day moving averages of clinical 

cases were performed to smooth the data and reduce outliers. Confirmed COVID-19 clinical data 

were then aligned with SARS-CoV-2 concentrations (N1/N2) on the exact sampling dates.  

Missing data from samples were filled using linear interpolation (Lepot et al., 2017). After aligning 

these two datasets, each SARS-CoV-2 concentrations (N1/N2) had a corresponding COVID-19 

case data to be analyzed for pairwise correlation and statistical modeling in the next sections.  

We proposed the hypothesis that the fluctuations of SARS-CoV-2 concentrations in 

wastewater correlate to confirmed COVID-19 cases with a prescribed range of lag times. Hence, 

Pearson’s correlations were first conducted to investigate the strength of a linear correlation 
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between the total N1 and N2 gene concentrations in gc/L, gc/d, and gc/L of sanitary flow and total 

confirmed COVID-19 cases in the study areas with various lag times (Table 1S. 27.). To estimate 

the approximate lag time, week-shift of the clinical cases was adopted. Notably, SARS-CoV-2 

concentrations in wastewater strongly correlated with the 5-week shifting forward of a 7-day 

moving average of COVID-19 incidences (Pearson’s r = 0.62 for N1 gene in gc/L, and Pearson’s 

r = 0.64 for N2 gene in gc/L). 

Our suggested lag time of 5 weeks between peaks in SARS-CoV-2 genes in wastewater 

and peaks in reported COVID-19 clinical tests is relatively similar to the longest lag times reported 

in the literature (Table 1. 1.). For example, a lag of 21 days was reported in Australia (Ahmed et 

al., 2021) and Sweden (Saguti et al., 2021), and 28 days in Australia (Ahmed et al., 2020a). The 

increased lag time may be in partly due to our sampling method (VIRADEL) that focuses on 

viruses in the supernatant of untreated wastewater rather than in the precipitates and solids. These 

samples represent the near real-time increase in clinical cases in the community. This is important 

for samples collected in large interceptors where precipitation and resuspension of solids occurs 

to a large extent.  Factors affecting our observed lag time are discussed in section 3.4. 

Our analysis also demonstrated that the normalization of clinical data using wastewater 

flow rate and percentage of sanitary flow did not significantly improve the correlation between the 

SARS-CoV-2 concentrations in wastewater and COVID-19 clinical cases in communities during 

the study period. Similar observations were demonstrated in another recent study (Ai et al., 2021). 

3.3 Statistical models on the relationship between wastewater surveillance of SARS-CoV-2 

and COVID-19 incidence 

To better estimate the relationship between the measured SARS-CoV-2 concentrations in 

wastewater and reported COVID-19 incidence in the communities, four statistical models were 
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established naming: linear model (L), autoregression model (A), autoregression with time effect 

model (AT), and vector autoregression model (VA). Confirmed COVID-19 cases with lag times 

of 3, 4, and 5 weeks were chosen to correlate with N1 and N2 gene concentrations in gc/L, gc/d, 

and gc/L of sanitary flow using the aforementioned models. The Root Mean Square Error (RMSE) 

and Pearson’s coefficient between actual cases and predicted cases were calculated to estimate the 

performance of each model shown in Supplementary Tables S1. 10. to S1. 15. From the previous 

result in section 3.2, a lag time of 5 weeks exhibits a stronger correlation, in agreement with the 

models in Table 1. 3. and Tables 1S. 29. and 1S. 30., based on Pearson’s r. For 5 weeks, in Table 

1S. 29., linear regression only considers SARS-CoV-2 concentration as the predictor in the model, 

the correlation between actual case number and predicted case number is range from 0.4-0.62. 

Seasonal patterns from the residual of linear regression were also observed. Thus, we consider that 

there is an autocorrelation effect from the case number. The models were therefore improved with 

autoregressive errors using ARIMA. The correlation then consequently increased to 0.4-0.67. It is 

important to note that there is a limitation of ARIMA, it does not apply to seasonal data. After a 

seasonal component was included in the ARIMA model, the correlation further improved to 0.94-

0.95. Thus, the analyses suggest that there is a seasonal pattern present in clinical COVID-19 

cases. VA is also a better model (r ranges from 0.95 to 0.96) because it considers both SARS-

CoV-2 concentration and case number as the predictors in the model and use their past values to 

predict current case number. Similarly, the modeling results of N2 gene concentrations show 

agreement with modeling results of N1 gene concentrations.  
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Table 1. 3. Statistical modeling results between N1 and N2 gene concentrations and total 

COVID-19 cases during the 5-week lag time study period in city of Detroit, as well as Wayne, 

Macomb, and Oakland counties (* is shown in Figure 1. 6.) 

RMSE Values N1-based results N2-based results 

Unit of N1/N2 gene gc/L gc/d gc/L of SF gc/L gc/d gc/L of SF 

3-week 

lag time 

Linear 7.22 135.76 11.78 12.40 926.30 5.62 

Autoregression 135.65 780.00 250.52 341.27 901.23 700.34 

Autoregression+ 

time effect 

10.18 10.18 10.97 11.34 12.34 15.33 

Vector 

Autoregression 

8.32 7.85 8.97 8.89 9.90 9.90 

4-week 

lag time 

Linear 7.26 123.56 9.18 16.37 104.45 8.33 

Autoregression 182.92 234.90 635.69 132.35 730.74 500.62 

Autoregression+ 

time effect 

7.50 7.47 7.20 9.75 7.39 7.33 

Vector 

Autoregression 

8.00 7.99 8.62 6.88 8.31 7.62 

5-week 

lag time 

Linear 1.83 48.97 2.62 13.95 36.19 2.36 

Autoregression 105.81 417.57 642.83 548.14 570.56 100.95 

Autoregression+ 

time effect* 

1.47* 1.60 1.60 3.21* 1.60 1.42 

Vector 

Autoregression* 

0.35* 0.53 4.44 7.57* 4.37 1.03 
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Figure 1. 6. Best prediction models based on (a) N1 gene concentrations (gc/L) and (b) N2 gene 

concentrations (gc/L) with a 5-week lag time 
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Comparing the non-normalized data with normalized data in Tables 1S. 28 and Table 1S. 

29., for the L and A models, using normalized data does not improve the correlation. For AT and 

VA models, using normalized data shows similar results comparing to using non-normalized data. 

It may indicate that these two models reduce the effect of normalizing data. It also indicates that 

normalizations of the original N1 and N2 gene concentrations did not significantly improve the 

performance of the modeling and vice versa. All other detailed results are shown in Tables S10 – 

S15. Same models and analysis were also applied to both the measurements by VIRADEL method 

(results were shown in Tables 1S. 16. to 1S. 21.) and PEG sampling method results (shown in 

Tables 1S. 22. and 1S. 23., Figure 1S. 2.) of the study period between August 2021 and February 

2022 for comparison purposes as explained in section 3.4. 

3.4 Factors affecting lag time 

3.4.1 Variants 

All the discussions above are based on the study period between September 2020 and 

August 2021 prior to the Omicron surge. Variations of lag times could not be explicitly elucidated 

without addressing the changing epidemiological characteristics of emerging SARS-CoV-2 

variants, involving incubation time, shedding durations, shedding dynamics, and so forth. Given 

the shortened incubation time (median of 3 days, (Baker et al., 2022; Brandal et al., 2021; Jansen 

et al., 2021)) and shedding duration (less than 10 days, (Lamers et al., 2022)) during the Omicron 

surge, we identified a 2-week lag time, between August 2021 and February 2022, with the same 

VIRADEL method and same modeling methods (Figure 1S. 2.). The incubation time (Baker et al., 

2022) and shedding duration (Lamers et al., 2022) were apparently shorter comparing to the 

parental and previous variants, inevitably leading to a shorter lag time. Besides, the shedding 

dynamics changed amid Omicron surge which inevitably affected the lag time (Table 1S. 3.). The 
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variant test results shown in Table 1S. 9. demonstrate the different mutations of dominant variants 

identified in the samples which in addition correspond to the reported emerging variants shown in 

Table 1S. 8. Changing epidemiological characteristics of SARS-CoV-2 variants play a crucial role 

in affecting the lag time. 

3.4.2 Sampling method 

An additional factor that may influence lag time is the sampling method. The VIRADEL 

electropositive filtration method focuses on supernatant virus in wastewater and avoids the 

inclusion of large wastewater organic solids where viruses may adsorb onto the surfaces. This 

method has been recommended by the EPA (USEPA 2001, USEPA 2014) and has been 

extensively applied in the field (Miyani et al., 2020, 2021a; McCall et al., 2020, 2021). On the 

other hand, grab or composite sampling followed by PEG precipitation incorporates viruses 

attached onto larger solid particles, which tend to settle in large interceptors and generally re-

suspend during periods of high flow. If these larger particles are included in a grab or composite 

sample, they may include a portion of the viruses that have been settled for a while, having been 

excreted earlier into that sewer-shed, thus interfering with the desired prediction which is the 

objective of this work. This becomes a critical factor in interceptors of large urban centers. For 

small catchment areas with short hydraulic detention times in neighborhood sewer lines the 

importance of this factor is expected to decrease. 

To compare the two methods, we simultaneously collected samples from the same 

locations. This comparison took place during the omicron surge and the data are shown in the 

supplementary information. Between August 2021 and February 2022, 24-hour composite 

samples followed by PEG were collected at the day as the VIRADEL electropositive filtration was 

performed. This allowed us to investigate on the impact of sampling methods on lag time and 
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demonstrate the potential for providing early warning signals of the VIRADEL method through 

comparison. 

The PEG measurements (Figure 1S. 1.) and its Pearson’s correlation (Table 1S. 25.) 

demonstrated that the N1 and N2 concentrations did not correlate with COVID-19 cases with a 

lag time. Results from the same models presented above are shown in Tables 1S. 22. and 1S. 23. 

for PEG measurements. Results demonstrate that N1 and N2 concentrations based on PEG method 

did not provide an early warning of COVID-19 cases or significant correlations with the COVID-

19 cases in the study area in terms of Pearson’s r and RMSE. 

3.4.3 Clinical data uncertainties 

The report time for associated clinical cases tends to be uncertain due to potential 

reluctance to be tested (Feng et al., 2021), disparities in reporting clinical data and availability of 

different testing methods (Ai et al., 2021), limited testing supplies and limited testing sites under 

rapid testing demand and so forth (Hasan & Nasution, 2021). Since the inception of the COVID-

19 pandemic, communities in the U.S. as well as many countries across the world had troubles 

and limited access to COVID-19 testing and real-time reporting, resulting in delay of real-time 

tracking and monitoring the clinical cases (Bibby et al., 2021; Larsen et al., 2021). 

The lag time could not be explicitly elucidated without addressing all the challenges facing 

clinical testing, especially amid the early stages of the unprecedented pandemic. In the early stage 

of the pandemic, the health departments were struggling to provide prompt testing across the 

country, such as in Detroit and its surrounding counties, rendering a notable delay in clinical data 

collection and reporting, inevitably leading to a longer lag time (Rader, 2020; Torres et al., 2021; 

Wiens et al., 2021). Throughout the past two years’ efforts amid COVID-19 pandemic, 

governmental agencies and LHDs have been adapting to increasing COVID-19 cases as well as 
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testing demands by gradually building the testing capabilities, improving clinical data processing 

and organizing, pushing clinical data releasing and so forth (Alexander et al., 2022; Powell et al., 

2021). The significant improvement and adaptation of LHD to the rapid changing transmissions 

and clinical incidences of COVID-19 enable a quicker and prompt clinical data reporting and 

releasing, inevitably leading to a shorter lag time. Despite these caveats, WBE is widely accepted 

as an effective tool for forewarning community fluctuations in COVID-19 infections (Bibby et al., 

2021). Notwithstanding the uncertainties discussed above, we put forth that WBE is an important 

tool in predicting future fluctuations of COVID-19 infections. 

Overall, this study demonstrates the effectiveness of applying wastewater-based 

epidemiology (WBE) as an early warning tool for the prediction of fluctuations of COVID-19 

cases in communities in the Detroit metropolitan area. To our knowledge, this is one of the first 

studies to systematically evaluate the lag time between peaks in measured concentrations of 

SARS-CoV-2 in wastewater and peaks in reported COVID-19 cases based on clinical testing. 

Also,  this is, to our knowledge, one of the first studies to propose the use of an autoregression 

with seasonal pattern model and a vector autoregression model in predicting clinical COVID-19 

incidences based on the N1 and N2 gene measurements in wastewater. Though WBE demonstrates 

great promise, potential limitations and challenges remain. More research is warranted to establish 

a standard framework for modeling the latency between early detection of COVID-19 and 

presentation of clinical cases. Future studies should include establishing predictive models to 

optimize wastewater surveillance for early warning of clinical manifestation. 

4. Conclusions 

• During the 12-month study, prior to the omicron surge, 407 wastewater samples were 

collected and analyzed for SARS-CoV-2 genes using RT-ddPCR. Measured 
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concentrations of SARS-CoV-2 ranged from 714.85 to 7145.98 gc/L by total N1 gene RT-

ddPCR and 820.47 to 6219.05 gc/L by total N2 gene RT-ddPCR.  

• Lag time, the latency from surge in viral concentration in wastewater and peak in clinical 

cases was estimated as 5 weeks prior to the Omicron surge. 

• As compared to linear regression and autoregression (ARIMA) models, the autoregression 

model with seasonal patterns and vector autoregression model were more effective in 

predicting COVID-19 cases during the study period for the 5-week lag scenario.  

• Original N1 and N2 gene concentrations were normalized by total flow volumes and 

sanitary percentage. The statistical results indicated the optimum 5-week prediction 

models were consistent for both normalized and non-normalized data. 

• Surveillance through wastewater sampling and analysis can be employed for predicting 

infections and monitoring health conditions in large metropolitan areas such as Detroit. 
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APPENDIX 

Table 1S. 1. Incubation time of SARS-CoV-2 prior to Omicron surge in literature 

Incubation time 

(days) 

Age Gender Sample 

population 

Location or agency References 

0 to 14 - - - World Health 

Organization 

(Zaki & 

Mohamed, 

2021) 

2 to 14 - - - European Centre for 

Disease Prevention 

and Control 

(Zaki & 

Mohamed, 

2021) 

Median of 3 - - - - (Yang et al., 

2020) 

Median of 4 Median age of 47 41.9% 

female 

1099 COVID-

19 patients 

522 hospitals in 

mainland China 

(Guan et al., 

2020) 

Median of 4.8 Median age of 45 187 males, 

204 females 

391 cases Shenzhen, China (Bi et al., 

2020) 

Median of 5 Median age of 42 - - Singapore (Tan et al., 

2020) 

Median of 5 - - - United States (Silverman et 

al., 2020) 

Median of 5.1 - - - 50 provinces and 

regions outside 

Wuhan, China 

(Lauer et al., 

2020) 

Median of 5, 

mean of 7.8 

- - - - (Zaki & 

Mohamed, 

2021) 

5.2 to 6.65 - no age, gender, or 

ethnicity restrictions 

42 studies done 

primarily in China 

(Dhouib et al., 

2021) 

5.6 to 6.7 - no age, gender, or 

ethnicity restrictions 

Analysis of 

literature from 

January to March 

2020 

(Quesada et 

al., 2021) 

Median of 5.8, 

mean of 5.1 

- - - 24 published studies 

for meta-analysis 

(McAloon et 

al., 2020) 

Median of 5.8 Mean age of 46.1 97 males, 82 

females 

180 cases Shiyan, China (Dai et al., 

2020) 

Median of 5.85 - - - Japan (Ejima et al., 

2021) 

Median of 5.6, 

mean of 6.4 

Mean age of 36, 

median age of 31 

58.2% 

female 

265 cases Vietnam (Bui et al., 

2020) 

Median of 6.5 Mean age of 6.17 4 males, 6 

females 

10 pediatric 

cases 

Wuhan, China (Jiehao et al., 

2020) 

Median of 9.1 Mean of 8.2 - 43 pediatric 

cases 

Zhejiang, China (Hua et al., 

2020) 

Median of 7.2 to 

9 

Median age of 50 

years 

172 (51.7%) 

males, 161 

(48.3%) 

females 

333 cases Shanghai, China (Yu et al., 

2020) 
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Table 1S. 2. Shedding duration of SARS-CoV-2 prior to Omicron surge in literature 

Shedding 

duration 

(days) 

Age Gender Sample 

population 

Location or agency References 

7 to 8 - - 31 cases China (Zhou et al., 2020c) 

Median 

of 9.5 

Median 

age of 44 

38 males, 28 

females 

66 cases China (Ling et al., 2020) 

10 to 22 Median 

age of 48 

12 males, 11 

females 

23 people Beijing, China (Zhang et al., 2021) 

7 to 16 - - - Anhui, China (Tu et al., 2020) 

Mean of 

31.6  

Mean age 

of 60  

Male : 

female is 

2:6 

- Tokyo Metropolitan 

Neurological Hospital, Japan 

(Warabi et al., 2020) 

Median 

of 12  

- - - China (Qian et al., 2020) 

Median 

of 17 

- - 133 cases Wuhan, China (Xu et al., 2020a) 

14 to 30  - - - Analysis from previous 

published work 

(Ahmed et al., 2021; 

Jiehao et al., 2020; Wu 

et al., 2020; Xu et al., 

2020b). 

> 30 - - 378 cases Published governmental 

documents of China 

(Li et al., 2020) 

Median 

of 17 

Mean age 

of 42  

67 males, 80 

females 

147 cases Changsha, China (Qi et al., 2020) 

Median 

of 17.2  

- - 586 

individuals 

13 studies  (Cevik et al., 2021) 

17.3 to 

22.7  

- - 851 cases United States (Agarwal et al., 2020) 

Median 

of 20  

Mean age 

of 56 

119 males, 

72 females  

191 cases Jinyintan  Hospital,   Wuhan  

Pulmonary  Hospital, China 

(Zhou et al., 2020b) 

Median 

of 23  

Median 

age of 52  

52 male, 78 

female 

120 cases Hubei, China (Yan et al., 2020) 

45  34  Male - Wuhan, China (Zhang et al., 2020) 

Median 

of 31  

Median 

age of 58  

22 males, 19 

females 

41 cases - (Zhou et al., 2020a) 

Median 

of 34  

- - 68 cases Taikang Tongji Hospital, 

Huoshenshan Hospital, China 

(Wang et al., 2020) 

49  59  Female - Wuhan, China (Wang et al., 2021) 

2 to 49  - - 3714 cases Review of 21 studies (Chan et al., 2020) 

2 to 20  Under 10 - 3 cases Qingdao, China (Xing et al., 2020) 

More 

than 70  

Median 

age of 8.2  

- - Zhejiang, China (Hua et al., 2020) 

 

 

 



 

 50 

Table 1S. 3. Time of shedding prior to symptoms onset 

Study period Time of shedding prior to symptoms onset References 

September 2020 to August 

2021 
5 to 7 days before symptoms onset 

(Cheng et al., 2020; He et al., 

2020) 

August 2021 to February 

2022 

2 days before symptoms onset (Auwaerter, 2021) 

3 days before symptoms onset 
(Long et al., 2022; Wiersinga et 

al., 2020) 
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Table 1S. 4. Travel time (hours) to WRRF for each interceptor 

Interceptor Weighted Average Minimum Maximum 

DRI 12.3 0.2 41.8 

NIEA 22.5 0.7 51.2 

NWI 8.6 0.1 25.9 
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Table 1S. 5. Sequences of the primers and probe used to detect SARS-CoV-2 

Name Description  Oligonucleotide Sequence (5’>3’) 

2019-nCoV_N1-F 2019-nCoV_N1 

Forward Primer 

GAC CCC AAA ATC AGC GAA AT 

2019-nCoV_N1-R 2019-nCoV_N1 

Reverse Primer 

TCT GGT TAC TGC CAG TTG AAT CTG 

2019-nCoV_N1-P 2019-nCoV_N1 Probe FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1 

2019-nCoV_N2-F 2019-nCoV_N2 

Forward Primer 

TTA CAA ACA TTG GCC GCA AA 

2019-nCoV_N2-R 2019-nCoV_N2 

Reverse Primer 

GCG CGA CAT TCC GAA GAA 

2019-nCoV_N2-P 2019-nCoV_N2 Probe FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1 
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Table 1S. 6. N1 N2 gene duplex assay reaction mixture 

Name Volume  Final concentration 

One-Step RT-Supermix (20x) 5.5 μL 1x 

Reverse Transcriptase (RT) 2.2 μL 20 units/μL 

300 mM DTT 1.1 μL 15 mM 

N1 primer probe mix 3.3 μL 900 nM/250nM* 

N2 primer probe mix 3.3 μL 900 nM/250nM* 

PCR-grade water 1.1 μL - 

Sample RNA 5.5 μL - 

Note: *Forward and reverse primers are at a final concentration of 900 nM and each probe is at a 

final concentration of 250 nM. 
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Table 1S. 7. Thermocycling conditions for N1 and N2 duplex reaction 

Temperature Time Note 

25°C 3 min - 

50°C 60 min - 

95°C 10 min - 

95°C 30 sec 40 cycles, ramp speed of 2°C/second 

55°C 1 min 40 cycles, ramp speed of 2°C/second 

98°C 10 min - 

4°C ∞ - 
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Table 1S. 8. Timeline of SARS-CoV-2 variants 

Name of dominate Variants Lineage First reported Country of Origin References 

Alpha B.1.1.7 September 2020  United Kingdom  

 

cdc.gov 
Beta B.1.351 October 2020 South Africa 

Gamma P.1 January 2021 Japan 

Delta B.1.617.2 February 2021  India 

Omicron B.1.1.529 November 2021 South Africa 
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Table 1S. 9. Test of variants for the time during the three highest peaks of N1 and N2 gene 

measurements using GT Molecular Kits 

Study period 

for peaks of 

N1/N2 

measurements 

Alpha (B.1.1.7) 
Beta 

(B.1.351) 

Gamma 

(P.1) 
Delta (B.1.617.2) 

Omicron 

(B.1.1.529) 

Mutations N501Y Del69-70 K417N K417T T478K L452R N679K Q954H 

Peal I (10/6/20 

- 10/28/20) 
+ + + - - - - - 

Peak II 

(2/17/21 – 

3/8/21) 

+ + + + + + + - 

Peak III 

(12/15/21 – 

1/12/22) 

- + + + + + + + 
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Table 1S. 10. Modeling results of N1 gene in gc/L for September 2020 to August 2021 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N1, gc/L) RMSE Pearson r 

3 weeks Linear yt(3) = 0.015 xt(3) + 534.96 7.22 0.26 

Autoregression yt(3)-0.2928yt(3)-1 -0.3741 yt(3)-2= 0.015(xt(3)-

0.2928xt(3)-1 – 0.3741xt(3)-2) + 534.96 

135.65 0.07 

Autoregression+ 

time effect 

yt(3) = 1052 – 1.7923t(3) -0.044dxt(3) 

yt(3)*= yt(3) + 0.5857yt(3)-1  

10.18 0.76 

Vector 

Autoregression 

yt(3) = 1.30yt(3)-1 +0.12 yt(3)-2 -0.49 xt(3)-1 – 0.01xt(3)-2 

-73.46 

8.32 0.72 

4 weeks Linear yt(4) = 0.29 xt(4) + 227.04 7.26 0.51 

Autoregression yt(4)-0.1706yt(4)-1 -0.2799 yt(4)-2= 0.29(xt(4)-

0.2354xt(4)-1 – 0.2799xt(4)-2) + 227.04 

182.92 0.50 

Autoregression+ 

time effect 

yt(4) = 1730 + 6.78t(4) + 0.06dxt(4) 

yt(4)*= yt(4) + 0.59yt(4)-1  

7.50 0.92 

Vector 

Autoregression 

yt(4) = 1.42yt(4)-1 +0.20 yt(4)-2 –0.61 xt(4)-1 + 

0.004xt(4)-2 + 109.89 

8.00 0.86 

5 weeks Linear yt(5) = 0.35 xt(5) + 93.13 1.83 0.62 

Autoregression yt(5)+0.2362yt(5)-1 -0.0785 yt(5)-2= 0.35(0.2362xt(5)-1 

– 0.0785xt(5)-2) + 93.13 

105.81 0.67 

Autoregression+ 

time effect 

yt(5) = 1337 + 20.20t(5)-0.011dxt(5) 

yt(5)*= yt(5) + 0.64yt(5)-1  

1.47 0.95 

Vector 

Autoregression 

yt(5) = 1.54yt(5)-1 -0.02 yt(5)-2 -0.68 xt(5)-1 -0.04 xt(5)-2 

– 191.18 

0.35 0.96 

Notes: (1) In the table, X represents the measured SARS-CoV-2 concentrations in wastewater, 

while Y represents COVID-19 incidences. Y* is the new estimated values based on ARIMA 

(SARIMA) model. Pearson r is between actual case and predicted case. Pearson’s correlation is 

between the actual clinical cases and predicted clinical cases. (2) All tables from the Table 1S. 10. 

To the Table 1S. 21. are based on the VIRADEL method. Tables 1S. 22. To the 1S. 23. are based 

on the PEG method. 
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Table 1S. 11. Modeling results of N1 gene in gc/d for September 2020 to August 2021 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N1, gc/d) RMSE Pearson r  

3 weeks Linear yt(3) = 6.07e-11 xt(3) + 783.22 135.76 0.16 

Autoregression y t(3)-0.4325y t(3)-1 -0.1264 y t(3) -2= 6.07e-11(x t(3) -

0.4325xt(3)-1 – 0.1264xt(3)-2) + 783.22 

780.00 0.07 

Autoregression+ 

time effect 

y t(3) = 1245 -1.507 t(3) – 7.23e-11dxt(3) 

y t(3)*= y t(3) + 0.5794y t(3)-1  

10.18 0.75 

Vector 

Autoregression 

y t(3) = 1.5461y t(3)-1 +0.0425 y t(3)-2 -0.7104 x t(3)-1 -

0.0006x t(3)-2 + 43.8610 

7.85 0.70 

4 weeks Linear y t(4) = 1.62e-10x t(4) + 628.35 123.56 0.51 

Autoregression y t(4)-0.3145y t(4)-1 -0.1923 y t(4)-2= 1.62e-10(x t(4)-

0.3245x t(4)-1 – 0.1923x t(4)-2) + 628.35 

234.90 0.51 

Autoregression+ 

time effect 

y t(4) = 1292 -16.65 t(4) -1.75dx t(4) 

y t(4)*= y t(4)+ 0.5857y t(4)-1  

7.47 0.90 

Vector 

Autoregression 

y t(4)= 1.3541y t(4)-1 + 0.0235y t(4)-2 +0.006x t(4)-1 + 

1.4532e-2x t(4)-2 + 580.33 

7.99 0.85 

5 weeks Linear y t(5) = 1.93e-10x t(5)  +590.75 48.97 0.55 

Autoregression Y t(5) +0.0559y t(5)-1 + 0.0436 y t(5)-2= 1.93e-10(x t(5) -

0.0559x t(5)-1 – 0.0436x t(5) -2) + 590.75 

417.57 0.54 

Autoregression+ 

time effect 

y t(5)  = 1337- -17.84 t(5) + 2.08e-10dx t(5) 

y t(5)*= y t(5)+ 0.6408y t(5)-1  

1.60 0.94 

Vector 

Autoregression 

y t(5) = 1.3529y t(5)-1 +0.0007 y t(5)-2 +0.0008 x t(5)-1 -

0.0006x t(5)-2 +407.89 

0.53 0.95 
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Table 1S. 12. Modeling results of N1 gene in gc/L of sanitary flow for September 2020 to 

August 2021 (measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N1, gc/L of sanitary flow) RMSE Pearson r  

3 weeks Linear y t(3) = 0.010x t(3) + 795.32 11.78 0.09 

Autoregression Y t(3)+0.4477y t(3)-1 +0.1154 y t(3)-2= 0.010(x t(3)-

0.4477x t(3)-1 + 0.1154x t(3)-2) + 795.32 

250.52 0.10 

Autoregression+ 

time effect 

y t(3) = 1244 – 15.06t(3) + 0.0143dx t(3) 

y t(3)*= y t(3) + 0.5783y t(3)-1 

10.97 0.75 

Vector 

Autoregression 

y t(3) = 1.4395y t(3)-1 +0.0170 y t(3)-2 -0.6046 x t(3)-1 - 

0.005x t(3)-2 -68.6976 

8.97 0.72 

4 weeks Linear y t(4) = 0.032x t(4)+ 642.02 9.18 0.33 

Autoregression y t(4)-0.3304y t(4)-1 -0.1952 y t(4)-2= 0.032(x t(4)-

0.3304x t(4)-1 – 0.1952x t(4)-2) + 642.02 

635.69 0.33 

Autoregression+ 

time effect 

y t(4) = 1291- 16.53t(4) +0.03 dx t(4) 

y t(4)*= y t(4) + 0.5892y t(4)-1 

7.20 0.90 

Vector 

Autoregression 

y t(4) = 1.5254y t(4)-1 -0.003 y t(4)-2 -0.6839 x t(4)-1 + 

0.0008x t(4)-2 + 180.32 

8.62 0.85 

5 weeks Linear y t(5) = 0.04x t(5) + 607.55 2.62 0.40 

Autoregression y t(5)+0.0572y t(5)-1 -0.0444 y t(5)-2= 0.04(x t(5)-

0.0572x t(5)-1 – 0.0444x t(5)-2) + 607.55 

642.83 0.40 

Autoregression+ 

time effect 

y t(5) = 1337-17.83t(5)-0.0329dx t(5) 

y t(5)*= y t(5) + 0.6424y t(5)-1 

1.60 0.95 

Vector 

Autoregression 

y t(5) = 1.5570y t(5)-1 -1.0251e-5 y t(5)-2 -0.710 x t(5)-1 -

5.4944 t(5)-2 +182.207 

4.44 0.95 
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Table 1S. 13. Modeling results of N2 gene in gc/L for September 2020 to August 2021 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N2, gc/L) RMSE Pearson r  

3 weeks Linear yt(3) = 0.168xt(3) + 483.35 12.40 0.28 

Autoregression yt(3)-0.3067yt(3)-1 -0.3836 yt(3)-2= 0.168(xt(3)-

0.3067xt(3)-1 – 0.3836xt(3)-2) + 483.35 

341.27 0.20 

Autoregression+ 

time effect 

yt(3) = 1566+ 0.22t(3) -0.008dxt(3) 

yt(3)*= yt(3) + 0.5825yt(3)-1  

11.34 0.75 

Vector 

Autoregression 

yt(3) = 1.31yt(3)-1 +0.12 yt(3)-2 -0.50 xt(3)-1 + 0.02xt(3)-2 -

69.302 

8.89 0.73 

4 weeks Linear yt(4) = 0.307xt(4) + 163.10 16.37 0.51 

Autoregression yt(4)-0.2354yt(4)-1 -0.3320 yt(4)-2= 0.307(xt(4)-

0.2354xt(4)-1 – 0.3320xt(4)-2) + 163.70 

132.35 0.29 

Autoregression+ 

time effect 

yt(4) = 1506 + 3.21t(4) -0.004 dxt(4) 

yt(4)*= yt(4) + 0.3213yt(4)-1  

9.75 0.90 

Vector 

Autoregression 

yt(4) = 2.07yt(4)-1 +0.70 yt(4)-2 -2.07 xt(4)-1 + 0.17xt(4)-2 + 

304.844 

6.88 0.86 

5 weeks Linear yt(5) = 0.152xt(5) + 534.03 13.95 0.64 

Autoregression yt(5)-0.2928yt(5)-1 -0.3741yt(5)-2= 0.152(xt(5)-0.2928xt(5)-

1 – 0.3741xt(5)-2) + 534.03 

548.14 0.65 

Autoregression+ 

time effect 

yt(5) = 1342 -0.060t(5)-0.008dxt(5) 

yt(5)*= yt(5) + 0.5825yt(5)-1  

3.21 0.92 

Vector 

Autoregression 

yt(5) = 1.30yt(5)-1 +0.12 yt(5)-2 -0.49 xt(5)-1 -0.01 xt(5)-2 – 

73.46 

7.57 0.95 
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Table 1S. 14. Modeling results of N2 gene in gc/d for September 2020 to August 2021 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N2, gc/d) RMSE Pearson r 

3 weeks Linear y t(3) = 6.040e-11x t(3) + 779.15 926.30 0.10 

Autoregression y t(3)+0.4402y t(3)-1 +0.1109 y t(3)-2= 6.04e-11(x 

t(3)+0.4402x t(3)-1 + 0.1109x t(3)-2) + 690.03 

901.23 0.08 

Autoregression+ 

time effect 

y t(3) = 1245 -15.08t(3) +7.61e-11dx t(3) 

y t(3)*= y t(3) + 0.5776y t(3)-1  

12.34 0.75 

Vector 

Autoregression 

y t(3) = 1.448y t(3)-1 +6.8e-11 y t(3)-2 -0.6142 x t(3)-1 

-2.45e-11x t(3)-2 + 80.6042 

9.90 0.72 

4 weeks Linear y t(4) = 1.48e-10x t(4) + 639.54 104.45 0.26 

Autoregression y t(4)+ 0.3572y t(4)-1 + 0.1745 y t(4)-2= 1.48e-

10(x+0.3572x t(4)-1 + 0.1745x t(4)-2) + 639.54 

730.74 0.25 

Autoregression+ 

time effect 

y t(4) = 1292 – 1.65t(4) + 1.669dt t(4) 

y t(4)*= y t(4) + 0.5806y t(4)-1  

7.39 0.90 

Vector 

Autoregression 

y t(4) = 1.5112y t(4)-1 -1.004e-11y t(4)-2 -6.72 x t(4)-1 

– 2.60e-12x t(4)-2 + 1734 

8.31 0.90 

5 weeks Linear y t(5) = 1.78e-10x t(5) + 602.38 36.19 0.30 

Autoregression y t(5)+0.1487y t(5)-1 -0.1046 y t(5)-2= 1.78e-10(x 

t(5)-0.1487xt-1 – 0.1046x t(5)-2) + 602.38 

570.56 0.31 

Autoregression+ 

time effect 

y t(5) = 1337-1.784t(5) + 1.985e-10dx t(5) 

y t(5)*= y t(5) + 0.6359y t(5)-1  

1.60 0.95 

Vector 

Autoregression 

y t(5) = 1.5559y t(5)-1 -6.1112e-12 y t(5)-2 -7.22e-1 x 

t(5)-1 -0.218e-11 x t(5)-2 +193.243 

4.37 0.95 
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Table 1S. 15. Modeling results of N2 gene in gc/L of sanitary flow for September 2020 to 

August 2021 (measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N2, gc/L of sanitary flow) RMSE Pearson r 

3 weeks Linear y t(3) = 0.010x t(3) + 802.33 5.62 0.10 

Autoregression y t(3)-0.11230y t(3)-1 -0.1392 y t(3)-2= 0.010(x t(3)-

0.1123x t(3)-1 – 0.1392x t(3)-2) + 802.33 

700.34 0.10 

Autoregression+ 

time effect 

y t(3) = 2231 + 28.33t(3) -0.001dx t(3) 

y t(3)*= y t(3) + 0.5922y t(3)-1 

15.33 0.74 

Vector 

Autoregression 

y t(3) = 1.0334y t(3)-1 +1.3420 y t(3)-2 -0.003 x t(3)-1 + 

0.001x t(3)-2 +83.22 

9.90 0.73 

4 weeks Linear y t(4) = 0.052x t(4) + 600.30 8.33 0.31 

Autoregression y t(4)-0.1363y t(4)-1 + 0.2311 y t(4)-2= 0.052(x t(4)-

0.1363x t(4)-1 + 0.2311x t(4)-2) + 600.30 

500.62 0.31 

Autoregression+ 

time effect 

y t(4) = 1345 + 5.22t(4) -0.005 dx t(4) 

y t(4)*= y t(4) + 0.5277y t(4)-1  

7.33 0.91 

Vector 

Autoregression 

y t(4) = 1.324y t(4)-1 +0.0021 y t(4)-2 +0.1942x t(4)-1 - 

0.1230xt-2 + 730.52 

7.62 0.87 

5 weeks Linear y t(5) = 0.065x t(5) + 469.92 2.36 0.40 

Autoregression y t(5)+0.1044y t(5)-1 -0.2935 y t(5)-2= 0.065(0.1044x 

t(5)-1 – 0.2935x t(5)-2) + 469.92 

100.95 0.40 

Autoregression+ 

time effect 

y t(5) = 1553 + 0.345t(5) + 3.12dx t(5) 

y t(5)*= y t(5) + 0.6391y t(5)-1 

1.42 0.95 

Vector 

Autoregression 

y t(5) = 1.2039y t(5)-1 -0.3341 y t(5)-2 -1.3423 x t(5)-

1+0.0007 x t(5)-2 + 300.49 

1.03 0.96 
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Table 1S. 16. Modeling results of N1 gene in gc/L for August 2021 to February 2022 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N1, gc/L) RMSE Pearson r 

0 weeks Linear y t(0) = 1.26x t(0) – 206.25 0.082 0.53 

Autoregression y t(0)-0.0713y t(0)-1 = 1.26(x t(0)-0.0713x t(0)-1 ) – 

206.25 

272.53 0.47 

Autoregression+ 

time effect 

y t(0) = 813.90 + 48.33t(0) + 1.15dx t(0) 

y t(0)*= y t(0) + 0.5267y t(0)-1  

1.990 0.90 

Vector 

Autoregression 

y t(0) = 1.1919y t(0)-1 +0.4965 y t(0)-2 -0.4097 x t(0)-1 + 

0.0237x t(0)-2 -430.5077 

0.023 0.94 

1 weeks Linear y t(1) = 1.48x t(1) - 717.29 11.827 0.60 

Autoregression y t(1)-0.4613y t(1)-1 -0.5982 y t(1)-2= 1.48(x t(1)-0.4613x 

t(1)-1 – 0.5982x t(1)-2) – 717.29 

182.92 0.58 

Autoregression+ 

time effect 

y t(1) = 924.27 + 41.98t(1) + 1.47 dx t(1) 

y t(1)*= y t(1) + 0.3047y t(1)-1  

1.193 0.90 

Vector 

Autoregression 

y t(1) = 1.2909y t(1)-1 +0.0946 y t(1)-2 –0.3850 x t(1)-1 - 

0.1435x t(1)-2 + 262.92 

0.024 0.92 

2 weeks Linear y t(2) = 1.35x t(2) -  411.50 4.0017 0.62 

Autoregression y t(2) – 0.3419y t(2)-1 -0.5811 y t(2)-2= 1.35(0.3419x t(2)-1 

– 0.4811x t(2)-2) – 411.50 

309.72 0.60 

Autoregression+ 

time effect 

y t(2) = 1062 + 41.92t(2) + 1.375dx t(2) 

y t(2)*= y t(2) + 0.3444y t(2)-1  

1.468 0.93 

Vector 

Autoregression 

y t(2)= 1.2019y t(2)-1 -0.23 y t(2)-2 -0.181 x t(2)-1 -0.222 x 

t(2)-2 – 752.19 

0.25 0.94 
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Table 1S. 17. Modeling results of N1 gene in gc/d for August 2021 to February 2022 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N1, gc/d) RMSE Pearson r 

0 weeks Linear y t(0) = 8.02e-10 x t(0) + 820.33 1772 0.32 

Autoregression y t(0)-0.1424y t(0)-1 -0.1559 y t(0)-2= 8.02e-10(x t(0)-

0.1424x t(0)-1 – 0.1559x t(0)-2) + 820.33 

>1000 0.32 

Autoregression+ 

time effect 

y t(0) = 813 -4.83t(0) – 7.17e-10dx t(0) 

y t(0)*= y t(0) + 0.5205y t(0)-1  

123.22 0.86 

Vector 

Autoregression 

y t(0) = 1.1821y t(0)-1 +2.8964e-10 y t(0)-2 -3.6328 x 

t(0)-1 -2.3945e-10x t(0)-2 -386.1032 

19.30 0.89 

1 weeks Linear y t(1) = 1.24e-9x t(1) + 121.02 123.56 0.57 

Autoregression y t(1)-0.332y t(1)-1 -0.0629 y t(1)-2= 1.62e-10(x t(1)-

0.3245x t(1)-1 – 0.0629x t(1)-2) + 628.35 

>1000 0.57 

Autoregression+ 

time effect 

y t(1) = 950 -4.03t(1) -1.77dx t(1) 

y t(1)*= y t(1) + 0.5856y t(1)-1  

325.33 0.90 

Vector 

Autoregression 

y t(1) = 1.2767y t(1)-1 + 1.3001e-10y t(1)-2 – 4.0889x 

t(1)-1 + 2.3333e-10 x t(1)-2 -2.9652 

9.27 0.92 

2 weeks Linear y t(2) = 1.37e-9x t(2) +2.14 135.22 0.60 

Autoregression y t(2)+0.2944y t(2)-1 + 0.0950 y t(2)-2= 1.37e-9 (x t(2)-

0.2944x t(2)-1 – 0.0950x t(2)-2) + 2.14 

>1000 0.61 

Autoregression+ 

time effect 

y t(2) = 1062 + 41.93 t(2)+ 1.31e-9 dx t(2) 

y t(2)*= y t(2) + 0.3450y t(2)-1  

15.30 0.85 

Vector 

Autoregression 

y t(2) = 1.3666y t(2)-1 -2.07193-10 y t(2)-2 -4.5682 x 

t(2)-1 -1.3492e-10x t(2)-2 +283.62 

14.32 0.90 
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Table 1S. 18. Modeling results of N1 gene in gc/L of sanitary flow for August 2021 to February 

2022 (measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N1, gc/L of sanitary flow) RMSE Pearson r 

0 weeks Linear y t(0) = 0.17x t(0) + 858.95 49.83 0.27 

Autoregression y t(0)+0.1611y t(0)-1 +0.1654 y t(0)-2= 0.17(x t(0)-

0.1611x t(0)-1 + 0.1654x t(0)-2) + 858.95 

1023 0.25 

Autoregression+ 

time effect 

y t(0) = 813 + 48.33t(0) + 0.153dx t(0) 

y t(0)*= y t(0) + 0.5165y t(0)-1  

13.93 0.90 

Vector 

Autoregression 

y t(0) = 1.2922y t(0)-1 +0.0566 y t(0)-2 -0.4510 x t(0)-1 - 

0.0495x t(0)-2 -337.9133 

12.47 0.89 

1 weeks Linear y t(1) = 0.27x t(1) + 157.49 56.25 0.49 

Autoregression y t(1) +0.2493y t(1)-1 -0.1654 y t(1)-2= 0.27(x t(1)-

0.2493x t(1)-1 – 0.1654x t(1)-2) + 157.49 

227.38 0.50 

Autoregression+ 

time effect 

y t(1) = 945- 40.61t(1) +0.26 dx t(1) 

y t(1)*= y t(1) + 0.5262y t(1)-1  

10.90 0.90 

Vector 

Autoregression 

y t(1) = 1.0422y t(1)-1 -0.3233 y t(1)-2 -0.3926 x t(1)-1 + 

0.1224x t(1)-2 + 208.33 

10.73 0.90 

2 weeks Linear y t(2) = 0.33x t(2) – 101.06 74.69 0.56 

Autoregression y t(2)+0.2557y t(2)-1 -0.1652y t(2)-2= 0.04(x t(2)-

0.0572x t(2)-1 – 0.0444x t(2)-2) + 607.55 

245.97 0.57 

Autoregression+ 

time effect 

y t(2) = 1177-34.58t(2)-0.3147dx t(2) 

y t(2)*= y t(2) + 0.5233y t(2)-1  

13.48 0.89 

Vector 

Autoregression 

y t(2) = 1.2521y t(2)-1 -0.0033y t(2)-2 -0.4322 x t(2)-1 -

0.0009 x t(2)-2 +283.02 

12.07 0.90 
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Table 1S. 19. Modeling results of N2 gene in gc/L for August 2021 to February 2022 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N2, gc/L) RMSE Pearson r 

0 weeks Linear y t(0) = 1.40x t(0) – 447.13 10.65 0.48 

Autoregression y t(0)+ 0.0356y t(0)-1 = 1.40(x t(0)-0.0356x t(0)-1 ) – 

447.13 

712.33 0.37 

Autoregression+ 

time effect 

y t(0) = 813.83 + 48.30t(0) + 1.26dx t(0) 

y t(0)*= y t(0) + 0.5139y t(0)-1  

0.953 0.92 

Vector 

Autoregression 

y t(0) = 1.1756y t(0)-1 +0.5199 y t(0)-2 -0.3786 x t(0)-1 + 

0.0882x t(0)-2 -640.73 

0.022 0.92 

1 weeks Linear y t(1) = 1.72x t(1) – 1106.03 14.70 0.60 

Autoregression y t(1)-0.4055y t(1)-1 -0.5911 y t(1)-2= 1.72(x t(1)-

0.4055x t(1)-1 – 0.5911x t(1)-2) – 1106.03 

173.7 0.59 

Autoregression+ 

time effect 

y t(1)= 924.25 + 41.95t(1) + 1.66 dx t(1) 

y t(1)*= y t(1) + 0.3049y t(1)-1  

1.005 0.92 

Vector 

Autoregression 

y t(1) = 1.3016y t(1)-1 +0.1017 y t(1)-2 –0.3786 x t(1)-1 - 

0.2298x t(1)-2 + 367.63 

0.008 0.94 

2 weeks Linear y t(2) = 1.55x t(2) -  730.15 2.68 0.62 

Autoregression y t(2) – 0.3212y t(2)-1 -0.5774 y t(2)-2= 1.35(0.3212x 

t(2)-1 – 0.5774x t(2)-2) – 730.15 

205.03 0.63 

Autoregression+ 

time effect 

y t(2) = 1062 + 41.93t(2) + 1.506dx t(2) 

y t(2)*= y t(2)+ 0.3463y t(2)-1  

27.96 0.93 

Vector 

Autoregression 

y t(2) = 1.1479y t(2)-1 -0.3116 y t(2)-2 -0.1036 x t(2)-1 -

0.3904 x t(2)-2 + 1120.17 

0.05 0.94 
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Table 1S. 20. Modeling results of N2 gene in gc/d for August 2021 to February 2022 

(measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N2, gc/d) RMSE Pearson r 

0 weeks Linear y t(0) = 6.10e-10x t(0) + 1089 157 0.21 

Autoregression y t(0)-0.3354y t(0)-1 -0.1977 y t(0)-2= 6.10e -10 (x t(0)-

0.3354x t(0)-1 – 0.1977x t(0)-2) + 1089 

>1000 0.24 

Autoregression+ 

time effect 

y t(0) = 832 -9.83t(0) – 5.50e-10 dx t(0) 

y t(0)*= y t(0) + 0.5312y t(0)-1  

123.22 0.89 

Vector 

Autoregression 

y t(0) = 1.2474y t(0)-1 +2.0000e-10 y t(0)-2 -4.0097 x t(0)-1 

-2.4903e-10 x t(0)-2 -366.122 

60.22 0.89 

1 weeks Linear y t(1)= 1.16e-9x t(1)+ 247.99 222.30 0.47 

Autoregression y t(1)-0.2592y t(1)-1 -0.0232 y t(1)-2= 1.16e-9(x t(1)-

0.2592x t(1)-1 – 0.0232x t(1)-2) + 247.99 

>1000 0.49 

Autoregression+ 

time effect 

y t(1) = 924-4.19t(1) -1.12e-9dx t(1) 

y t(1)*= y t(1) + 0.5856y t(1)-1 

14.29 0.90 

Vector 

Autoregression 

y t(1) = 1.294y t(1)-1 - 2.7231e-13 y t(1)-2 – 0.4789x t(1)-1 

+ 1.8463e-10 x t(1)-2 + 30.074 

20.07 0.92 

2 weeks Linear y t(2) = 1.31e-9x t(2) +107 181.22 0.51 

Autoregression y t(2)+0.2642y t(2)-1 + 0.0592 y t(2)-2= 1.31e-9(x t(2)-

0.2642x t(2)-1 – 0.0592x t(2)-2) + 107.23 

>1000 0.53 

Autoregression+ 

time effect 

y t(2) = 106 + 40.33t(2) + 1.26e-9dx t(2) 

y t(2)*= y t(2) + 0.3402y t(2)-1 

15.62 0.89 

Vector 

Autoregression 

y t(2) = 1.3426y t(2)-1 -2.2162-10 y t(2)-2 -0.4196 x t(2)-1 

-5.4200e-11x t(2)-2 +389.185 

8.86 0.90 
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Table 1S. 21. Modeling results of N2 gene in gc/L of sanitary flow for August 2021 to February 

2022 (measurements are based on the VIRADEL method) 

Lag 

time 

Model Equation (N2, gc/L of sanitary flow) RMSE Pearson r 

0 weeks Linear y t(0) = 0.11x t(0) + 1265 11.33 0.15 

Autoregression y t(0)+0.4132y t(0)-1 +0.1114 y t(0)-2= 0.11(x t(0)-

0.4132x t(0)-1 + 0.1114x t(0)-2) + 1265 

>1000 0.19 

Autoregression+ 

time effect 

y t(0) = 810 + 48.21t(0) + 0.0973dx t(0) 

y t(0)*= y t(0) + 0.5273y t(0)-1 

13.89 0.87 

Vector 

Autoregression 

y t(0) = 1.3329y t(0)-1 +0.0397 y t(0)-2 -0.4705 x t(0)-1 - 

0.0547x t(0)-2 -301.0673 

10.44 0.85 

1 weeks Linear y t(1) = 0.23xt(1) + 391 85.43 0.38 

Autoregression y t(1) +0.1417y t(1)-1 -0.0218 y t(1)-2= 0.23(x t(1)-

0.1417x t(1)-1 – 0.0218x t(1)-2) + 391 

830.22 0.38 

Autoregression+ 

time effect 

y t(1) = 924- 41.98t(1) +0.237 dx t(1) 

y t(1)*= y t(1) + 0.3673y t(1)-1  

12.35 0.89 

Vector 

Autoregression 

y t(1) = 1.2811y t(1)-1 -0.0005 y t(1)-2 -0.4350 x t(1)-1 + 

0.0563x t(1)-2 – 82.8092 

9.81 0.91 

2 weeks Linear y t(2) = 0.30x t(2) +120.30 49.73 0.46 

Autoregression y t(2)+0.2021y t(2)-1 -0.0243y t(2)-2= 0.30(x t(2)-

0.2021x t(2)-1 – 0.0243x t(2)-2) + 120.30 

28.36 0.48 

Autoregression+ 

time effect 

y t(2) = 1062-41.95t(2)-0.288dx t(2) 

y t(2)*= y t(2) + 0.3499y t(2)-1  

13.52 0.89 

Vector 

Autoregression 

y t(2) = 1.3403y t(2)-1 -0.0352y t(2)-2 -0.4442 x t(2)-1 -

0.0211 x t(2)-2 +292.4333 

3.34 0.89 
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Table 1S. 22. Modeling results of N1 gene in gc/L by PEG for August 2021 to February 2022 

(measurements are based on the PEG method) 

Lag 

time 

Model Equation (N1, gc/L) RMSE Pearson r 

0 weeks Linear y t(0) = 0.005x t(0) + 1226 62.147 0.32 

Autoregression y t(0)-0.1222y t(0)-1 -0.5774 y t(0)-2= 0.005(x t(0)-

0.1222x t(0)-1 -0.5774x t(0)-2) + 1226 

1633 0.31 

Autoregression+ 

time effect 

y t(0) = 245.20 + 9.83t(0) + 0.0035dx t(0) 

y t(0)*= y t(0)+ 0.7592y t(0)-1  

170.83 0.64 

Vector 

Autoregression 

y t(0) = 1.5283y t(0)-1 -6.6103 y t(0)-2 -6.8042 x t(0)-1 – 

7.222e-4x t(0)-2 -430.5077 

2.94 0.84 

1 weeks Linear y t(1) = 0.001x t(1) + 1895 24.74 0.08 

Autoregression y t(1)-0.4123y t(1)-1 -0.5921 y t(1)-2= 0.001(x t(1)-

0.4613x t(1)-1 – 0.5921x t(1)-2) + 1895 

1924 0.06 

Autoregression+ 

time effect 

y t(1) = 409.2 + 92.77t(1) – 9.01e-4dx t(1) 

y t(1)*= y t(1) + 0.4575y t(1)-1  

719.68 0.70 

Vector 

Autoregression 

y t(1) = 1.3014y t(1)-1-0.0006 y t(1)-2 –0.4453 x t(1)-1 – 

0.0011x t(1)-2 + 587.16 

30.33 0.86 

-1 

weeks 

Linear y t(-1) = 0.007x t(-1) +  882.57 18.998 0.47 

Autoregression y t(-1) – 0.2893y t(-1)-1 -0.5712 y t(-1)-2= 0.007(0.3419x 

t(-1)-1 – 0.5712x t(-1)-2) +882.57 

983.95 0.45 

Autoregression+ 

time effect 

y t(-1) = -40.495 + 109.64t(-1) + 0.0054dx t(-1) 

y t(-1)*= y t(-1) + 0.6023y t(-1)-1  

0.934 0.90 

Vector 

Autoregression 

y t(-1) = 1.4950y t(-1)-1 -2.228e-4 y t(-1)-2 -6.608 x t(-1)-1 -

5.257e-4 x t(-1)-2 – 385.00 

8.472 0.93 
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Table 1S. 23. Modeling results of N2 gene in gc/L by PEG for August 2021 to February 2022 

(measurements are based on the PEG method) 

Lag 

time 

Model Equation (N2, gc/L) RMSE Pearson r 

0 weeks Linear y t(0) = 0.005x t(0) + 1325 63.69 0.42 

Autoregression y t(0)-0.2232y t(0)-1 -0.5566 y t(0)-2= 0.005(x t(0)-

0.2232x t(0)-1 -0.5566x t(0)-2) + 1325 

266.91 0.31 

Autoregression+ 

time effect 

y t(0) = 245.50 + 9.85t(0) - 0.037dx t(0) 

y t(0)*= y t(0) + 0.6603y t(0)-1 

47.66 0.62 

Vector 

Autoregression 

y t(0) = 1.5283y t(0)-1 -6.6103 y t(0)-2 -6.8042 x t(0)-1 – 

7.222e-4x t(0)-2 -430.5077 

7.33 0.90 

1 weeks Linear y t(1) = 0.0007x t(1) + 1969 5.17 0.04 

Autoregression y t(1)-0.4430y t(1)-1 -0.5466 y t(1)-2= 0.0007(x t(1)-

0.4430x t(1)-1 – 0.5466x t(1)-2) + 1969 

1924 0.13 

Autoregression+ 

time effect 

y t(1) = 409.2 + 92.71t(1) – 0.0010dx t(1) 

y t(1)*= y t(1) + 0.4573y t(1)-1  

7.33 0.68 

Vector 

Autoregression 

y t(1) = 1.3014y t(1)-1 -0.0006 y t(1)-2 –0.4453 x t(1)-1 – 

0.0011x t(1)-2 + 587.16 

3.1 0.89 

-1 

weeks 

Linear y t(-1) = 0.007x t(-1) +  925.83 44.79 0.42 

Autoregression y t(-1) – 0.2498y t(-1)-1 -0.5628y t(-1)-2= 0.007(0.2498x 

t(-1)-1 – 0.5628x t(-1)-2) +925.83 

261.17 0.39 

Autoregression+ 

time effect 

y t(-1)= -40.494 + 109.64t(-1) + 0.0058dx t(-1) 

y t(-1)*= y t(-1) + 0.6091y t(-1)-1  

24.07 0.91 

Vector 

Autoregression 

y t(-1) = 1.4950y t(-1)-1 -2.228e-4 y t(-1)-2 -6.608 x t(-1)-1 -

5.257e-4 x t(-1)-2 – 385.00 

1.187 0.92 
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Table 1S. 24. Pearson’s r between 7-day moving average of total cases (with lag times by days) 

and total N1 and N2 concentrations (VIRADEL method) between 8/1/21 and 2/28/22 amid the 

Omicron surge 

Lag time (by day) N1 N2 

0 0.48 0.43 

1 0.52 0.47 

2 0.55 0.50 

3 0.57 0.52 

4 0.58 0.55 

5 0.61 0.57 

6 0.64 0.60 

7 0.69 0.65 

8 0.72 0.68 

9 0.73 0.70 

10 0.74 0.70 

11 0.75 0.72 

12 0.76 0.73 

13 0.74 0.71 

14 0.71 0.68 

15 0.67 0.64 
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Table 1S. 25. Pearson’s r between 7-day moving average of total cases (with lag times by days) 

and total N1 and N2 concentrations (PEG method) between 8/1/21 and 2/28/22 amid the 

Omicron surge 

Lag time (by day) N1 N2 

0 0.47 0.42 

1 0.44 0.40 

2 0.42 0.38 

3 0.38 0.34 

4 0.35 0.31 

5 0.32 0.28 

6 0.29 0.25 

7 0.24 0.21 

8 0.20 0.17 

9 0.16 0.13 

10 0.12 0.09 

11 0.08 0.06 

12 0.04 0.01 

13 0.00 -0.02 

14 -0.04 -0.06 

15 -0.07 -0.08 
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Table 1S. 26. Interceptor population, flow, and water quality parameters between September 1, 

2020, and August 30, 2021 

Parameter ONWI NIEA DRI 

Population Served 840,600 1,482,000 492,000 

Flow (MGD) 179 ± 72 165 ± 72 200 ± 55 

Estimated Fraction that is Sanitary (%) 33 ± 7 53 ± 12 27 ± 5 

BOD (mg/L) 113 ± 39 179 ± 69 70 ± 31 

TSS (mg/L) 100 ± 48 191 ± 79 100 ± 47 

Notes: (1) ML/d = 10^6 liters per day; MGD = million gallons per day; cBOD = carbonaceous 

biochemical oxygen demand; TSS = total suspended solids; TP = total phosphorus. (2) Values for 

flow, BOD, TSS and TP are shown as average ± one standard deviation 
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Table 1S. 27. Pearson’s correlation between N1 and N2 gene concentrations in various units and 

total COVID-19 cases in city of Detroit, as well as Wayne, Macomb, and Oakland counties with 

lag times 

Lag time Unit N1 vs. total cases N2 vs. total cases 

3 weeks 

gc/l 0.27 0.28 

gc/d 0.11 0.11 

gc/l of sanitary flow 0.10 0.09 

4 weeks 

gc/l 0.51 0.52 

gc/d 0.29 0.26 

gc/l of sanitary flow 0.28 0.25 

5 weeks 

gc/l 0.62 0.64 

gc/d 0.34 0.31 

gc/l of sanitary flow 0.33 0.30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 75 

Table 1S. 28. Statistical modeling results between N1 gene concentrations and total COVID-19 

cases in city of Detroit, as well as Wayne, Macomb, and Oakland counties 

Lag 

time 

Model RMSE Pearson r 

N1, 

gc/L 

N1, 

gc/d 

N1, gc/L 

of sanitary 

flow 

N1, 

gc/L 

N1, 

gc/d 

N1, gc/L 

of sanitary 

flow 

3-week Linear 7.22 135.76 11.78 0.26 0.16 0.09 

Autoregression 135.65 780.00 250.52 0.07 0.07 0.10 

Autoregression+ 

time effect 

10.18 10.18 10.97 0.76 0.75 0.75 

Vector 

Autoregression 

8.32 7.85 8.97 0.72 0.70 0.72 

4-week Linear 7.26 123.56 9.18 0.51 0.51 0.33 

Autoregression 182.92 234.90 635.69 0.50 0.51 0.33 

Autoregression+ 

time effect 

7.50 7.47 7.20 0.92 0.90 0.90 

Vector 

Autoregression 

8.00 7.99 8.62 0.86 0.85 0.85 

5-week Linear 1.83 48.97 2.62 0.62 0.55 0.40 

Autoregression 105.81 417.57 642.83 0.67 0.54 0.40 

Autoregression+ 

time effect 

1.47 1.60 1.60 0.95 0.94 0.95 

Vector 

Autoregression 

0.35 0.53 4.44 0.96 0.95 0.95 
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Table 1S. 29. Statistical modeling results between N2 gene concentrations and total COVID-19 

cases in city of Detroit, as well as Wayne, Macomb, and Oakland counties 

Lag time Model RMSE Pearson r 

N2, 

gc/L 

N2, 

gc/d 

N2, gc/L 

of sanitary 

flow 

N2, 

gc/L 

N2, 

gc/d 

N2, gc/L of 

sanitary 

flow 

3-week Linear 12.40 926.30 5.62 0.28 0.10 0.10 

Autoregression 341.27 901.23 700.34 0.20 0.08 0.10 

Autoregression+ 

time effect 

11.34 12.34 15.33 0.75 0.75 0.74 

Vector 

Autoregression 

8.89 9.90 9.90 0.73 0.72 0.73 

4-week Linear 16.37 104.45 8.33 0.51 0.26 0.31 

Autoregression 132.35 730.74 500.62 0.29 0.25 0.31 

Autoregression+ 

time effect 

9.75 7.39 7.33 0.90 0.90 0.91 

Vector 

Autoregression 

6.88 8.31 7.62 0.86 0.90 0.87 

5-week Linear 13.95 36.19 2.36 0.64 0.30 0.40 

Autoregression 548.14 570.56 100.95 0.65 0.31 0.40 

Autoregression+ 

time effect 

3.21 1.60 1.42 0.94 0.95 0.95 

Vector 

Autoregression 

7.57 4.37 1.03 0.95 0.95 0.96 
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Figure 1S. 1. Total N1 and N2 gene concentrations in gc/L measured by PEG method for the 

three interceptors and total confirmed COVID-19 cases in the city of Detroit, as well as Wayne, 

Macomb, and Oakland counties. 
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Figure 1S. 2. Modeling results of linear model (L), autoregression model (A), autoregression 

model with time effect (AT), and vector autoregression model (VA) based on N1 and N2 

measurements, between August 1, 2021, and February 28, 2022, amid the Omicron surge, with 

2-week lag time. a. based on N1; b. based on N2. 
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Figure 1S. 3. Pearson’s r between 7-day moving average of total cases (with lag times by days) 

and total N1 and N2 concentrations (VIRADEL method) prior to the Omicron surge, between 

9/1/20 and 8/31/21 
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CHAPTER 2: SIMPLE METHODS FOR EARLY WARNINGS OF COVID-19 SURGES: 

LESSONS LEARNED FROM 21 MONTHS OF WASTEWATER AND CLINICAL 

DATA COLLECTION IN DETROIT, MICHIGAN, UNITED STATES 

Published in Science of the Total Environment: 

Zhao, L., Zou, Y., David, R. E., Withington, S., McFarlane, S., Faust, R. A., Norton, J., & 

Xagoraraki, I. (2023). Simple methods for early warnings of COVID-19 surges: Lessons learned 

from 21 months of wastewater and clinical data collection in Detroit, Michigan, United 
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Abstract 

Wastewater-based epidemiology (WBE) has drawn great attention since the Coronavirus 

disease 2019 (COVID-19) pandemic, not only due to its capability to circumvent the limitations 

of traditional clinical surveillance, but also due to its potential to forewarn fluctuations of disease 

incidences in communities. One critical application of WBE is to provide “early warnings” for 

upcoming fluctuations of disease incidences in communities which traditional clinical testing is 

incapable to achieve. While intricate models have been developed to determine early warnings 

based on wastewater surveillance data, there is an exigent need for straightforward, rapid, broadly 

applicable methods for health departments and partner agencies to implement. Our purpose in this 

study is to develop and evaluate such early-warning methods and clinical-case peak-detection 

methods based on WBE data to mount an informed public health response. Throughout an 

extended wastewater surveillance period across Detroit, MI metropolitan area (the entire study 

period is from September 2020 to May 2022) we designed eight early-warning methods (three 

real-time and five post-factum). Additionally, we designed three peak-detection methods based on 

clinical epidemiological data. We demonstrated the utility of these methods for providing early 
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warnings for COVID-19 incidences, with their counterpart accuracies evaluated by hit rates. “Hit 

rates” were defined as the number of early warning dates (using wastewater surveillance data) that 

captured defined peaks (using clinical epidemiological data) divided by the total number of early 

warning dates. Hit rates demonstrated that the accuracy of both real-time and post-factum methods 

could reach 100%. Furthermore, the results indicate that the accuracy was influenced by 

approaches to defining peaks of disease incidence. The proposed methods herein can assist health 

departments capitalizing on WBE data to assess trends and implement quick public health 

responses to future epidemics. Besides, this study elucidated critical factors affecting early 

warnings based on WBE amid the COVID-19 pandemic. 

1. Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), has been spreading worldwide since its first identification in 

Wuhan, China, in December 2019. Since SARS-CoV-2 persists in human bodily fluids and 

excretions, including saliva, sputum, urine, and feces, numerous studies have applied wastewater-

based epidemiology (WBE), also known as wastewater surveillance, to monitor COVID-19 

infections in various global settings (Ahmed et al., 2020a; Ahmed et al., 2021, 2022; Barua et al., 

2022; Bivins et al., 2021; Corchis-Scott et al., 2021; Li et al., 2022; Miyani et al., 2020, 2021; 

Sherchan et al., 2020; Xiao et al., 2022; Zhao et al., 2022; Zhu et al., 2022). WBE is a 

comparatively inexpensive and less laborious tool than clinical surveillance for tracking disease 

incidence and/or prevalence within a large-scale community (Safford et al., 2022; Xagoraraki 

2020a; Xagoraraki et al., 2020b). WBE provides a comprehensive and anonymous surveillance of 

both symptomatic and asymptomatic viral disease, making it an ideal complimentary approach to 

traditional clinical surveillance testing (Bibby et al., 2021; Safford et al., 2022). A recent study 
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reported that WBE can conserve financial resources without altering surveillance accuracy by 

replacing some of clinical surveillance programs with WBE-based surveillance (Safford et al., 

2022). Perhaps most critically, WBE has the potential to provide early warnings of impending 

disease outbreaks or surges, if translated effectively to a public health setting (Zhao et al., 2022). 

“Early warnings” in this context refers to the early detection of relevant pathogen fluctuations 

within a community, providing a critical window to mount a public health response, prior to 

lagging parallel trends in clinical cases (Bibby et al., 2021; Olesen et al., 2021). Recent studies 

have proposed early warning algorithms predicated on intricate statistical models, such as 

autoregressive time series models (Zhao et al., 2022), artificial neural network models (Zhu et al., 

2022), and other advanced statistical and machine learning models (Table 2S. 1.). These 

sophisticated models are resource- and time-intensive for health departments to calculate and 

interpret, particularly in the context of a possible emerging threat. Currently, there are scant studies 

that have investigated or tested early warning methods for COVID-19, using straightforward, 

reliable, and rapid approaches for health departments. Some attempts to determine early warnings 

for COVID-19 clinical cases include: using thresholds for wastewater viral RNA concentrations 

(Zhu et al., 2021b), calculating Epidemic Volatility Index (EVI) (Kostoulas et al., 2021), 

implementing statistical thresholds such as mean plus two standard deviations (Bowman et al., 

2016; Prabdial-Sing et al., 2021), mean and variance (O’Brien et al., 2021), kurtosis and skewness 

(Harris et al., 2020), assessing the ratio between wastewater viral concentrations and clinical cases 

(w/c ratio) (D’Aoust et al., 2022; Xiao et al., 2022), estimating the percentage change of 

wastewater viral concentrations and their relationships to clinical cases (Kumar et al., 2021), etc.  

Until now, resources have been spent to generate WBE data that are not fully understood 

or applied. Wastewater surveillance for pathogens is only beneficial if public health practitioners 
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and partner agencies can apply the results to inform policy decisions and guide actions. 

Henceforth, we propose three clinical case peak-defining methods (Table 2. 1.) and eight simple-

to-calculate early warning methods (Table 2. 2.) that can be smoothly implemented by public 

health departments and partner agencies to provide prompt warnings of impending disease 

incidences or surges. One of the advantages of these methods is that they encompass both real-

time and post-factum analyses. Moreover, these methods combine WBE data with clinical data, 

though a w/c ratio (D’Aoust et al., 2022; Xiao et al., 2022) using the post-factum methods. Lastly, 

accuracy of these methods was evaluated via “hit rate”, which is subsequently defined. Results 

indicate that hit rates for all real-time methods and four post-factum methods could reach 100% 

under different circumstances, demonstrating successful discernment of clinical case peaks. Thus, 

these methods can equip local public health officials with a toolset that integrates wastewater 

surveillance with traditional clinical surveillance data, to provide early warnings for disease 

outbreaks or surges, and alert officials and the public when action is needed based on warnings 

identified by the methods. Besides, we also elucidated the impact of policy changes due to 

COVID-19, and social events in the Detroit metropolitan area on the wastewater viral 

concentrations and clinical cases over the past two years. In addition, factors that affect applying 

WBE for disease surveillance and accuracy of early warning methods are discussed. 

2. Materials and Methods 

2.1 Sample collection and laboratory analysis 

Untreated wastewater samples were collected twice weekly from the Water Resource 

Recovery Facility (WRRF) of the Great Lakes Water Authority (GLWA) located in Detroit, 

Michigan, USA, between September 1, 2020, and May 31, 2022. The WRRF receives wastewater 

via three main interceptors including the Detroit River Interceptor (DRI), the North Interceptor-
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East Arm (NIEA), and the Oakwood-Northwest-Wayne County Interceptor (ONWI) from its 

service area that encompasses greater Detroit. Samples were collected from the three interceptors 

at the point of discharge into the WRRF. Depending on the suspended solids of wastewater, 

approximately 10 to 50 L of untreated wastewater passed through NanoCeram electropositive 

cartridge filters at a rate not more than 11 L/min using a previously described method (Miyani et 

al., 2021; Zhao et al., 2022). Viruses were eluted within 24 h after sampling, based on a previously 

described method (Supplementary Materials: Sampling and Virus Elution) (Miyani et al., 2021; 

Zhao et al., 2022). Bacteriophage Phi6 was used as a proxy virus to evaluate recovery during virus 

elution and concentration (Kantor et al., 2021; Ye et al., 2016; Zhao et al., 2022). Recoveries 

obtained ranged from 10.37 % to 58.96 %, with a mean recovery of 24.91 % (±22.89 %) (Zhao et 

al., 2022). Viral RNA was extracted using Viral RNA QIAGEN kit (QIAGEN, Germantown, MD, 

USA), following the manufacturer's protocol with the method described previously 

(Supplementary Materials: RNA Extraction) (Miyani et al., 2021; Zhao et al., 2022). RT-ddPCR 

was performed on a QX200 AutoDG Droplet Digital PCR system (Bio-Rad, Hercules, CA, USA), 

using the One-step RT-ddPCR Advanced Kit for Probes (Bio-Rad, Hercules, CA, USA) in a 

previously described method (Supplementary Materials: RT-ddPCR) (Zhao et al., 2022). The 

Limit of Blank (LOB) was determined by examining three types of samples using RT-ddPCR, 

across four consecutive days, including interceptor samples collected before COVID-19 

pandemic, nuclease-free water, and negative process control samples from elution and extraction. 

The samples before COVID-19 pandemic were collected on February 18, 2018, from the ONWI, 

NIEA, and DRI interceptors at GLWA using the same methods. Limit of Blank (LOB) for N1 

gene ddPCR was determined to be 0.09 gc/μL, and the LOB for N2 gene ddPCR was determined 

to be 0.08 gc/μL (Zhao et al., 2022). Limit of Detection (LOD) of 0.1 gc/μL with 72.92 % 
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confidence for the N1 gene ddPCR and 0.1 gc/μL with 81.25 % confidence for the N2 gene ddPCR 

were determined (Zhao et al., 2022). 

2.2 WBE and clinical data of COVID-19 

Throughout our 21-month surveillance of wastewater in the Detroit metropolitan area, the 

wastewater surveillance data (September 2020 to May 2022) together with clinical data were 

implemented with eight proposed early-warning methods and three proposed clinical case peak-

defining methods. Publicly available clinical data were accessed on August 30, 2022, for the 

period between September 25, 2020, and May 31, 2022, for the city of Detroit, as well as Wayne, 

Macomb, and Oakland counties (michigan.gov) shown in Figure 2. 1. a. Clinical data presented as 

a 7-day moving average (Menkir et al., 2021) was used for further statistical analysis (Figure 2. 1. 

b.). COVID-19 data was only available per city or county within study area. Lastly, each 

interceptor received wastewater from portions of each city or county, thus, only the total SARS-

CoV-2 concentrations could be correlated to the total COVID-19 cases in each jurisdiction. 
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Figure 2. 1. a. COVID-19 cases in the city of Detroit, as well as Wayne, Macomb, and Oakland 

counties; b. 7-day moving average of COVID-19 cases 

 

 

a 
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2.3 Data analysis and visualization 

Data were tracked and organized with Microsoft Excel (version 16.66.1, Microsoft co. ltd). 

MATLAB of a 2019b edition (MatLab, 2018) and R version 4.1.3 (Team, 2022) were utilized to 

perform the early warning analyses, depending primarily on the ggplot2 package for visualization, 

and the DescTools package for standard deviation, mean, variance, skewness, kurtosis, and 

quantile for calculation. Eq. (1). depicts the ratio between the wastewater viral gene concentrations 

and clinical cases (w/c ratio) (D’Aoust et al., 2022; Xiao et al., 2022), which was first proposed as 

an indicator of disease incidence based on wastewater surveillance in a recent study (Xiao et al., 

2022). 

CN1 or N2 gene: N1 or N2 gene concentrations (genomic copies/L, gc/L) 

Clinical case: daily confirmed COVID-19 cases (7-day moving average) 

w/c ratio = CN1 or N2 gene / Clinical case (1) 

2.3.1 Methods of defining peaks of COVID-19 cases 

Few recent studies have discussed on approaches to defining peaks of clinical cases of 

COVID-19. O’Brien et al. defined the peak-range of COVID-19 clinical cases to be when the first 

derivative of cases remains positive for seven consecutive data points (O’Brien et al., 2021). 

Similarly, in this study, we define the peak-range to be when the 7-day moving average of clinical 

cases continues increasing for over 14 consecutive days (method I, shown in Table 2. 1. and Figure 

2. 2. a.). The uptick begins at day 0, peaks at the maximum, and ends symmetrically. Method II 

defines the peak where the intersection values are greater than an established variance/mean 

threshold, shown in Figure 2. 2. b. (Eq. (2)). Similarly, method III uses mean-0.5standard deviation 

threshold to define the case-peak where the intersection values are greater than the threshold, 

shown in Figure 2. 2. c. (Eq. (3)). Both methods II and III measure the distribution of the clinical 
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cases in the Detroit metropolitan area. The specific “peak ranges” or “surges” determined by these 

three methods are summarized in Table 2. 1. 

variance/mean threshold = Vc/Mc (2) 

Vc represents the variance of clinical cases 

Mc represents the mean of clinical cases 

mean – 0.5standard deviation threshold = Mc – 0.5  Sc (3) 

Sc represents the standard deviation of clinical cases 
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Figure 2. 2. Methods of defining peaks for total COVID-19 cases: a. Method I defined peaks 

(gray shaded area) of total COVID-19 cases; b. Method II defined peaks (gray shaded area) of 

total COVID-19 cases; c. Method III defined peaks (gray shaded area) of total COVID-19 cases 

 

a 

b 
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2.3.2 Real-time early warning methods 

As aforementioned, the peak ranges of clinical cases are defined using three methods, 

namely, methods I, II, and III (Table 2. 1. and Figure 2. 2.). Subsequently, eight methods of early 

warnings determination (Table 2. 2.) were proposed based on literature studies that were 

elucidated in section 1. Among them, OBMN1N2, PPCN1N2, and PPCS200 are applied to real-

time analysis. OBMN1N2 is applied to real-time N1 and N2 gene concentrations (gc/L) in 

wastewater, with first early warning dates determined on the final of three consecutively increasing 

measurements. This method (OBMN1N2) reduces the possibility a “false warning” due to high 

possible variations of the measured data since OBM requires three consecutive increasing data 

points to issue a warning. It is also a “non-quantification” method, consistently applicable 

regardless of the degree of increasing values. The PPCN1N2 method identifies early warnings 

when the positive percentage change of N1 and N2 gene concentrations (gc/L) are greater than 

40% (Kumar et al., 2021), depicted as Eq. (4): 

PPCN1N2 = (CN1 or N2 gene (n) – CN1 or N2 gene (n-1))/ CN1 or N2 gene (n-1)  100% (4) 

n indicates the current measurement 

n-1 indicates the previous measurement 

Based on the characteristics of our WBE dataset for the Detroit area, PPCS200 requires 

the positive percentage change of slope of N1 and N2 gene concentrations (gc/L) to be greater 

than 200% to issue early warnings which is depicted in Eq. (6). Percentage change of the slope 

(Sk) measures the degree of increase between values and can identify values that increased 

significantly. We have assigned the threshold to be 200% for the PPCS method, to capture the 

most meaningful warnings from our WBE data: 

Slope Sk = (CN1 or N2 gene (n) – CN1 or N2 gene (n-1))/ (Date (n) – Date (n-1)) (5) 
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PPCS200 = (Sk – S(k-1)) / S(k-1) * 100% (6) 

n indicates the current measurement or date; n-1 indicates the previous measurement or date; k 

indicates the current slope; k-1 indicates the previous slope. 

2.3.3 Post-factum early warning methods 

Post-factum methods identify early warnings when wastewater surveillance data exceed 

the thresholds proposed in this study. These methods are designed for post-factum 

implementations, where both wastewater gene concentration data and clinical data have been 

reported. An early warning is triggered when the threshold criteria is exceeded. The threshold is 

computed for an investigation period of interest, after the surges of disease have occurred. For 

instance, researchers have proposed two standard deviations as an early warning threshold and the 

time of early warning was determined by the first time the signal exceeded the threshold (Drake 

et al., 2010). Five statistical thresholds including mean plus two standard deviations (MSD), 

variance divided by mean (VAM), skewness (SKE), kurtosis (KUR), and 90th-percentile (PER90), 

were calculated using N1 and N2 gene concentrations (gc/L) and w/c ratio (gc/L/case), to 

determine early warnings. MSD targets the upper bound limit generated by the two standard 

deviations away from the mean (Gao et al., 2021; Wang et al., 2017), which is equivalent to a 95% 

confidence interval. While PER90 targets the top 10% of data from the distribution, other studies 

have applied 70th percentiles, or 80th percentiles to inform early warnings for hand, foot, and 

mouth disease in China (Gao et al., 2021). VAM is a similar method to MSD, which identifies the 

variability of the data away from the mean. SKE measures asymmetry of distribution about its 

mean, and KUR measures the combined weight of a distribution’s tails to its center (i.e., whether 

the plotted shape of the distribution is too sharply “peaked”) (Harris et al., 2020). 

 



 

 92 

Table 2. 1. Methods of defining peak-ranges of confirmed COVID-19 cases 

Method Method description Early warning level / Cutoff 

level 

Peak range 

Method I Data sequence 

numerical increase 

or decrease 

Continual increase for ≥ 14 

consecutive data points. 

Peak range begins at day 0. 

Peaks at the maximum, and 

ends symmetrically 

10/6/20 – 12/24/20, 2/27/21 – 5/1/21, 

7/17/21 – 10/2/21, 10/29/21 – 1/22/22, 

3/31/22 – 5/31/22 

Method 

II 

Variance / mean Intersection values > 

variance/mean threshold 

11/4/20-12/13/20, 3/19/21-5/4/21, 10/18/21-

10/25/21, 11/5/21-2/7/22, 5/4/22-5/24/22 

Method 

III 

Mean – 0.5standard 

deviation (SD) 

Intersection values > mean-

0.5SD threshold 

9/25/20-9/27/20, 10/24/20-1/20/21, 2/8/21-

2/21/21, 3/12/21-5/10/21, 5/15/21-5/31/21, 

7/29/21-9/6/21, 9/14/21-2/17/22, 4/18/22-

5/31/22 
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Table 2. 2. Early warning methods 

Type of 

analysis 

Early warning parameter Early warning level / 

cutoff level 

Abbreviation Data type 

 

 

 

Real-

time 

analysis 

Data sequence numerical 

increase or decrease 

Keep increasing for 3 

consecutive data points 

OBMN1N2
* N1 N2 gene 

concentrations 

Positive percentage change  > 40% PPCN1N2 N1 N2 gene 

concentrations 

Positive percentage change 

of slope 

> 200% PPCS200
* N1 N2 gene 

concentrations 

 

 

 

Post-

factum 

analysis 

Mean + 2 standard deviation  Intersection values 

higher than the 

corresponding 

threshold 

MSD (B1) * N1 N2 gene 

concentrations 

and 

w/c ratio 

Variance / mean VAM (B2) 

Skewness SKE (B3) 

Kurtosis KUR (B4) 

90 percentile PER90 (B5) * 

Note: (1) B1, B2, B3, B4, B5 are short representation of each statistical method for visualization 

purposes. (2) * marked methods were demonstrated in figures in the main text. 

 

2.3.4 Hit rate 

Hit rate is introduced to appraise the accuracy of each method – it is defined as the ratio of 

the number of early warning dates “m” capturing the defined peaks to the total number of early 

warning dates “n” (see Eq. (7)). The hit rate was calculated in this manner for all early warning 

methods. As reported by our recent study (Zhao et al., 2022), wastewater signals of N1 and N2 

genes preceded the reported clinical cases by up to 5 weeks in the Detroit metropolitan area. Thus, 

for this study, the number of early warning dates “m” that are said to capture defined peaks must 

satisfy two criteria: (1) identified early warning dates are located inside the defined peak regions 

(shaded gray areas in Figure 2. 2.); (2) identified early warning dates are located within a five-

week window preceding the defined peak regions. 

Hit rate = (number of early warning dates “m” capturing defined peaks) / (total number of 

identified early warning dates “n”)  100% (7) 

m: number of early warning dates identified by eight early warning methods, capturing defined 
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peaks, identified by three peak-defining methods 

n: total number of early warning dates identified by eight early warning methods 

3. Results and Discussion 

3.1 Wastewater viral concentrations precede disease incidence and can relate to public 

health policy or community social events 

Analysis of our 21-month wastewater surveillance data reveals that the trend of total N1 

and N2 gene concentrations preceded and forewarned the trend of total COVID-19 clinical cases 

(Figure 2. 3. a.). Both wastewater viral concentrations and clinical data were compared with 

calendar dates of major statewide, citywide, and countywide public health policies (Figure 2. 3. 

a.). For instance, both N1 and N2 gene concentrations began to increase shortly after the State of 

Michigan allowed the reopening of gyms, pools, and permitted organized sports on September 3, 

2020. This is suggestive of populations shedding the virus into wastewater after being infected by 

COVID-19 likely due to unregulated social gatherings (Figure 2. 3. a.). Subsequently, both N1 

and N2 gene concentrations began to gradually decrease, potentially due to the reduction in SARS-

CoV-2 shedding, which persisted up to 24 days (Zhao et al., 2022), as well as due to the 

implementation of new COVID-19 public health orders and guidelines for Detroit on October 9 

and October 14, 2020, respectively (Figure 2. 3. a.). Decreasing trends of both wastewater viral 

concentrations and clinical cases were observed after city of Detroit extended the emergency 

epidemic order on January 1, 2022 (Figure 2. 3. a.). Xiao et al. reported similar trends of 

wastewater viral concentrations, as affected by state public health policy in Massachusetts, USA 

(Xiao et al., 2022). Major public health orders and guidelines can affect wastewater viral 

concentrations as well as subsequent COVID-19 clinical cases by regulating everyday social 

gatherings and mitigation efforts (Xiao et al., 2022). Wastewater viral concentrations and clinical 
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data were also compared with public holidays and known large-scale social events in the Detroit 

metropolitan area (Figure 2. 3. b.). Public holidays and social events celebrated in Detroit were 

seen to be reflected in both the wastewater viral concentration and the clinical data (Figure 2. 3. 

b.). It was observed that both N1 and N2 gene concentrations increased after Labor Day 

(September 7th, 2020) (Figure 2. 3. b.), likely resulting from social gatherings during the holiday, 

as well as the policy of easing COVID-19 restrictions (September 3rd, 2020) in Michigan (Figure 

2. 3. a.), leading to potentially high transmissions of COVID-19. Similarly, both N1 and N2 gene 

concentrations began to increase after Martin Luther King Jr. Day (January 18th, 2021) and peaked 

shortly after Presidents Day (February 15th, 2021). This increase in gene concentration preceded 

an increase in COVID-19 cases by 4 to 5 weeks (Zhao et al., 2022). Similar observations can be 

identified with a steeper increase of wastewater viral concentrations as well as the clinical cases 

after Veterans Day (November 11th, 2021). Clinical cases surged again in early January of 2022 

after the Thanksgiving, Christmas, and New Year’s day holidays, when social gatherings might 

be expected during holiday celebrations (Figure 2. 3. b.). Notably, the increase of both N1 and N2 

gene concentrations in early September of 2020 and early February of 2021, preceding the increase 

of clinical cases for 4 to 5 weeks (Zhao et al., 2022), can be related to opening of schools, colleges, 

and universities in fall and spring semesters (Xiao et al., 2022). 

Wastewater surveillance has the ability to monitor virtually most members of a community 

(with an integrated sewage system), regardless of the presence of disease symptoms or inequity in 

testing accessibility (Bibby et al., 2021). To quantitively compare wastewater data and clinical 

cases, a ratio (w/c ratio) between the wastewater viral concentrations and 7-day moving average 

of daily confirmed COVID-19 clinical cases is adopted from recent studies for this purpose 

(D’Aoust et al., 2022; Xiao et al., 2022). The w/c ratio could reflect potential undercounting or 
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overcounting of actual clinical cases (D’Aoust et al., 2022; Xiao et al., 2022). Undercounting 

occurs when people do not seek clinical testing, or when access to testing is restricted due to 

resource limitations, or when there is an elevated rate of asymptomatic infections. This scenario 

was evident in the summer of 2021 from June to August where the w/c ratio of both N1 and N2 

genes was high, but the confirmed cases were low (Figure 2. 3. c.). Furthermore, during the 

summer, cases were likely to be undercounted due to lack of testing and potentially increasing 

spreading during summer social activities. Some studies have reported similar issues that can result 

in undercounting, when the actual number of cases is 12 times larger than reported cases (Lau et 

al., 2021), and the case-to-report ratio could reach 26 to 32 at the early stage of the pandemic when 

testing sources were limited (Murhekar et al., 2021). Conversely, overcounting can occur when 

testing resources are abundant and infected populations get tested multiple times during the entire 

period of infection. These individuals are counted and reported repeatedly as individual clinical 

cases, since the shedding duration of SARS-CoV-2 can persist up to 24 days prior to the Omicron 

surge (Zhao et al., 2022) and throat/nasal swab PCR tests can also remain positive up to nearly 20 

days (Xiao et al., 2022). Note that the introduction of w/c ratio also eliminates the noises of N1 

and N2 gene concentrations among peaks and accentuate the prominent peaks of N1 and N2 gene 

w/c ratio preceding major peaks of clinical cases (Figure 2. 3. c.). From the inception of the 

pandemic, the increasing trend of w/c ratio in September and October 2020 provided early 

warnings of upcoming peaks of clinical cases in late October and November 2020 (Figure 2. 3. 

c.). Similarly, the peaks of w/c ratio in late February 2021 forewarned the impending surge of 

clinical cases in March 2021. The w/c ratio stayed relatively low and stable before the peak of 

clinical cases in late December 2021 and early January 2022, which indicated that testing sources 

were sufficient. Moreover, the State of Michigan (michigan.gov/coronavirus) reported that testing 
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capacity statewide increased to approximately 50,000 test results per day in December 2021, 

corroborating the accuracy of the low w/c ratio in this period. Because as testing capacity increased 

throughout November and December of 2021, delayed clinical cases were likely reported 

simultaneously with newly reported cases but the delayed clinical cases did not contribute to the 

current wastewater viral concentrations, perhaps resulting from reduced viral shedding, leading to 

lower w/c ratio. Moreover, the surge of the Omicron variant in November and December 2021 in 

the Detroit metropolitan area could have contributed to shifting transmission dynamics, leading to 

a substantial increase in reported clinical cases, and thus, contributing to the relatively low w/c 

ratio (Auwaerter et al., 2022; Long et al., 2022; Wiersinga et al., 2020; Zhao et al., 2022). 
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Figure 2. 3. a. Major statewide, citywide, and countywide COVID-19 public health policies in 

the Detroit metropolitan area; b. Major public holidays in Michigan, USA; c. w/c ratio between 

N1 N2 gene concentrations and 7-day moving average of total COVID-19 cases 

a 

b 
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3.2 Early warnings of COVID-19 

Eight early warning methods including both real-time and post-factum methods shown in 

Table 2. 2. were implemented on N1 and N2 gene concentrations (gc/L) as well as w/c ratio 

(gc/L/case) to identify early warnings for defined peaks of clinical cases. The real-time methods 

include OBM, PPC, and PPCS, which were applied to direct measurements of N1 and N2 gene 

concentrations. The post-factum methods include MSD, VAM, SKE, KUR, and PER, which were 

applied to N1 and N2 gene concentrations as well as w/c ratio. The accuracy of each method was 

evaluated by hit rates (Table 2S. 3.). 

3.2.1 Early warnings determined by real-time methods 

Among real-time methods, OBM method was applied to N1 gene concentration (gc/L) and 

could reach 100% hit rate with method I defined peak (Figure 2. 4. a.), where all identified early 

warnings (shown as blue vertical lines in Figure 2. 4. a.) are in the defined-peak regions or within 

a five-week window ahead of the defined-peak regions (shown as gray shaded area in Figure 2. 4. 

a.). In other words, a 100% hit rate is representative of all identified early warnings successfully 

forewarning subsequent defined peaks in cases. OBM method could reach 80% hit rates with both 

method II and III defined peaks shown in Figures 2. 4. b. and 2. 4. c., respectively. Likewise, the 

application of OBM method to N2 gene concentration (gc/L) results in a 100% of hit rate with 

method III defined peaks (Figure 2S. 1. c.). Specifically, OBM method is based on direct 

measurements of N1 and N2 gene concentrations and could be immediately applied by health 

departments after obtaining the data to determine rapid warnings on the upcoming fluctuations of 

clinical cases. In addition, PPC method could also achieve a 94.44% hit rate when it is applied to 

N1 gene concentrations (Figure 2S. 1. l.) using method III defined peaks, and a 100% hit rate when 

it is applied to N2 gene concentrations with both method I (Figure 2S. 1. d.) and III defined peaks 
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(Figure 2S. 1. f.). The PPCS method, as applied to N1 gene concentrations, performed the best in 

terms of higher hit rates where it achieved 90.91%, 90.91% and 100% with method-I, -II, and -III 

defined peaks, respectively (Figure 2. 4.). PPCS was applied to N2 gene concentrations where it 

also achieved 91.67% and 100% hit rates with method I and III defined peaks, respectively (Table 

2S. 3., Figures 2S. 1. g., and 2S. 1. i.). Therefore, PPCS method based on N1 gene concentrations 

(gc/L) is recommended as a real-time method to capture early warnings with its higher hit rates 

across three methods for defining clinical peaks. Method III is the recommended as the peak-

defining method since it is also more conservative in terms of capturing the most surges and 

fluctuations of cases. All hit rates developed using real-time methods are shown in Figure 2. 6. 
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Figure 2. 4. Real-time early warning methods: OBM and PPCS based on N1 (gc/L): a. First early 

warnings of each peak identified by OBM (N1, gc/L) with Method I defined peaks; b. First early 

warnings of each peak identified by OBM (N1, gc/L) with Method II defined peaks; c. First 

early warnings of each peak identified by OBM (N1, gc/L) with Method III defined peaks; d. 

Early warnings identified by PPCS (N1, gc/L) with Method I defined peaks; e. Early warnings 

identified by PPCS (N1, gc/L) with Method II defined peaks; f. Early warnings identified by 

PPCS (N1, gc/L) with Method III defined peaks 
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3.2.2 Early warnings determined by post-factum methods 

Post-factum methods were applied to N1 and N2 gene concentrations as well as w/c ratio. 

Selected methods including MSD and PER are illustrated in Figure 2. 5. MSD was applied to N1 

gene concentrations and reached 100% hit rates with method I, II, and III defined peaks shown in 

Figures 2. 5. a., 2. 5. b., and 2. 5. c., respectively, where all identified warnings successfully 

forewarned the defined peaks. Likewise, PER method was applied to w/c ratio of N1 gene which 

are illustrated in Figures 2. 5. d., 2. 5. e., and 2. 5. f. with method I, II, and III defined peaks, where 

the hit rates reached 90%, 70%, and 100%, respectively (Table 2S. 3.). Notably, method II defined 

less peaks of cases leading to warnings identified by PER between May and July 2021 in vain 

(Figure 2. 5. e.). While method III defined more peaks of cases and covered more data with a wider 

time range thus leading to higher hit rates (Figure 2. 5. f.). From this, we conclude that clinical 

case peak defining approaches can affect hit rates of early warning methods to forewarn case 

peaks. Among all post-factum methods applied to N1 and N2 gene concentrations, MSD achieved 

100% hit rates with method I, II, and III defined peaks (Table 2S. 3., Figures 2. 5., and 2S. 2.). 

Hence, MSD based on N1 and N2 gene concentrations (gc/L) is recommended as a post-factum 

method to identify early warnings. In addition, post-factum methods applied to w/c ratio, including 

MSD (Figure 2S. 3.), SKE (Figure 2S. 5.), KUR (Figure 2S. 6.), and PER (Figure 2S. 2.), achieved 

100% hit rates except for VAM (Figure 2S. 4.), where KUR completely achieved 100% hit rates 

across three methods of defining peaks (Figure 2S. 6.) and MSD achieved 100% hit rates with 

method-I and -III defined peaks based on both w/c ratio of N1 and N2 genes. Thus, KUR and 

MSD based on w/c ratio are recommended for as post-factum methods to identify early warnings. 
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Figure 2. 5. Post-factum early warning methods MSD and PER, based on N1 (gc/L) and N1/c 

(gc/L/case), respectively: a. Early warnings identified by MSD (N1, gc/L) with Method I 

defined; b. Early warnings identified by MSD (N1, gc/L) with Method II defined; c. Early 

warnings identified by MSD (N1, gc/L) with Method III defined; d. Early warnings identified by 

PER (N1, gc/L/case) with Method I defined peaks; e. Early warnings identified by PER (N1, 

gc/L/case) with Method II defined peaks; f. Early warnings identified by PER (N1, gc/L/case) 

with Method III defined peaks 
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Worthy of noting, early warning methods achieved generally higher hit rate when they 

were implemented on N1 and N2 gene concentrations (gc/L) than on the w/c ratio (gc/L/case) 

dataset. Following this, w/c ratio did not significantly improve the hit rate of early warning 

methods in our study. Nevertheless, w/c ratio could still be used as an indicator of relationship 

between actual cases and testing capacity as discussed in section 3.1 and in recent studies (D’Aoust 

et al., 2022; Xiao et al., 2022). Among all post-factum methods, MSD method achieved higher hit 

rates compared with PER, VAM, and SKE methods for both N1 and N2 gene concentrations (gc/L) 

and w/c ratio (gc/L/case) datasets. In addition, method III could define more peak-ranges and is 

associated with higher hit rates for both real-time and post-factum methods when compared to 

method-I and-II. 
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Figure 2. 6. Hit rates of real-time early warning methods: OBM, PPC, and PPCS, with three 

peak-defining methods: method I, method II, and method III, based on N1 and N2 gene 

concentrations (gc/L) 
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3.3 Factors affecting early warnings based on WBE and other uncertainties 

Few studies have reported on straightforward, easily applied, and rapid early warning 

methods based on WBE for COVID-19 or other diseases (Bowman et al., 2016; Harris et al., 2020; 

Kostoulas et al., 2021; O’Brien et al., 2021; Prabdial-Sing et al., 2021; Zhu et al., 2021b). The 

early warning methods developed in the present study including both real-time and post-factum 

methods, effectively provide early warnings for defined peaks of COVID-19 cases in the Detroit 

metropolitan area. These methods can potentially be applied to other geographic regions and 

pathogens; however, further analysis will be necessary. None of the methods designed in this study 

is perfectly accurate when capturing early warnings of diseases, as numerous complex factors can 

affect WBE or associated reporting of clinical cases, including physiological, health system, 

laboratory-based and logistic factors (summarized in Table 2S. 2.) (Bibby et al., 2021; Kumar et 

al., 2021; Zhu et al., 2022). According to the authors of a recent WBE study conducted in Boston, 

Massachusetts, USA, WBE-based early warning methods should not be used in isolation, but 

rather in conjunction with other methods, given the complexity of factors and various unknowns 

(Xiao et al., 2022). Despite this recommendation, WBE-based early warning methods, could be 

essential in providing prompt warnings to impending epidemics, thus aiding health departments 

to mobilize and craft policy. Critical factors and uncertainties related to early warning methods 

are elucidated in the following sections. 

3.3.1 Physiological factors 

Shifting viral shedding cycles and dynamics may affect the accuracy of the relationship 

between WBE and case incidence, and therefore may affect the early warning potential of WBE 

(Bibby et al., 2021). Viral shedding dynamics can vary among individuals, variants, and so forth 

(Bibby et al., 2021; Zhao et al., 2022). Shedding of SARS-CoV-2 began for up to 7 days prior to 
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symptoms onset during the initial stage of the COVID-19 pandemic, but this duration declined to 

maximum of 3 days during the Omicron surge (Auwaerter et al., 2022; Cheng et al., 2020; Long 

et al., 2022; Wiersinga et al., 2020; Zhao et al., 2022). Shedding duration of SARS-CoV-2 

shortened from a maximum of 24 days to 10 days during the Omicron surge (Lamers et al., 2022; 

Zhao et al., 2022). All of the aforementioned dynamics would affect the measured relationship 

between wastewater viral concentrations and clinical cases, such as the w/c ratio.  

Another physiological factor is the poorly understood role of asymptomatic disease 

transmitters, which lead to an undercounting of true infection cases in communities that employ 

traditional clinical testing methods (Bibby et al., 2021). Clinical case numbers are not an ideal 

measure of disease prevalence in a given community, particularly when asymptomatic infections 

dominate. In this setting, early warning methods based on WBE may not be able to effectively 

provide early warnings of cases as it will be difficult to establish case-number as reference or 

baseline. In addition, peak defining approaches can be significantly affected by underestimations, 

leading to inaccuracy in early warning methods.  

The proportion of infected populations who shed detectable levels of virus in their stool 

and viral load distribution throughout a day, are both significant factors since they have a direct 

impact on wastewater viral concentrations (Jones et al., 2020). Some studies estimate 48% to 67% 

of infected individuals shed SARS-CoV-2 in their stool (Ahmed et al., 2021). It was also 

demonstrated that 40% of infected populations shed SARS-CoV-2 virus RNA in their stool  (Kirby 

et al., 2021). Viral load in wastewater throughout a given day is not evenly distributed, and 

therefore, some studies have suggested that optimization of sampling strategy coupled with a 

standardization based on toilet flushing frequency and wastewater travel time could improve the 

accurate detection of viral signals (Zhu et al., 2021a, 2021b). 
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3.3.2 Health system factors 

Health system factors encompass a wide range of variables, including the delay of clinical 

data reporting (Torres et al., 2021; Zhao et al., 2022), prolonged duration of clinical data 

processing (Contreras et al., 2020), under-reporting of the true number of cases (Kronbichler et 

al., 2020; Salath et al., 2020), and other inconsistencies in reporting. These factors have the 

potential to have a prodigious effect on the accuracy of peak-defining methods, including those 

outlined in this study. These factors also contribute to the disparities of clinical case-numbers, 

which affect clinical cases used as the reference or benchmark for early warning methods, such as 

the w/c ratio (Figure 2. 3. c.). For instance, at the beginning of the COVID-19 pandemic, several 

clinical studies reported a delay of nearly 7 days from onset of symptoms to clinical testing, 

resulting in delayed reporting of clinical cases which already contributed to the wastewater viral 

concentrations (Huang et al., 2020; Zhao et al., 2022). In some cases, jurisdictions or countries 

accumulate delays of between 4 and 18 days (Català et al., 2021). Disparities in clinical data can 

furthermore be influenced by testing hesitancy or eagerness (Jimenez et al., 2021), the turnaround 

time for screening of cases (Larremore et al., 2021), the availability and accessibility of diagnostic 

tests (Olesen et al., 2021), and so forth. A shortage of testing supplies and lack of testing in some 

resource-constrained countries has caused a pileup of clinical samples awaiting results and delays 

in reporting cases, therefore, inevitably leading to inaccurate representation of actual cases (Torres 

et al., 2021), which could affect methods of defining peaks thus affecting the accuracy of early 

warning methods based on WBE. 

3.3.3 Laboratory analysis and other uncertainties 

Detectable viral signals in wastewater are critical to achieve early warning methods based 

on WBE. Therefore, potential decay of virus during wastewater transport in the municipal 
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wastewater collection system, sampling, and transportation of samples to laboratories may alter 

the accuracy of early warning methods (Ahmed et al., 2020b; Bibby et al., 2021). Some recent 

studies pointed out that sample transportation and laboratory processing including sample 

concentration, nucleic acid extraction, and PCR-based nucleic acid quantification, may take from 

one to three days (Bibby et al., 2021; Zhao et al., 2022), but under some scenarios this time range 

could be easily exceeded, leading to inevitable decay of viral signals in any of the processes. 

Moreover, recovery efficiency could also vary among different sampling and analytical methods 

(Ahmed et al., 2020c), introducing more uncertainties in the results.  

Recent studies have investigated additional factors that can influence early warning 

potential of WBE, including sample site geographic distribution, fair sample representation of 

demographics/communities, uneven mixing of wastewater during sampling and laboratory 

analysis, dilution of viral RNA during rainfall events, and climate variability (Ahmed et al., 2020b; 

Bibby et al., 2021; Butler et al., 1995; Kumar et al., 2021; Zhao et al., 2022; Zhu et al., 2022). In 

addition, the persistence of SARS-CoV-2 in wastewater may be affected by environmental factors. 

These include temperature, organic matter, and microorganisms, which contribute to more 

uncertainties of measuring wastewater viral concentrations, ultimately affecting accuracy of early 

warning methods (Xiao et al., 2022). Overall, the accuracy of reported clinical data and WBE 

workflows are the primary influencers of effective early warning methods. 

3.3.4 Discussions, limitations, and future directions 

Real-time methods focus on rapid early warnings using current or recent wastewater 

measurements for predicting future surging of cases. Real-time methods can be implemented 

rapidly upon obtaining the wastewater measurements. For instance, the OBM method only 

requires three consecutive increasing measurements to issue an early warning. The early warning 
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signals determined by real-time methods precede the upcoming increase in cases. Thus, these 

methods can trigger alerts in real time before surging COVID-19 cases that are subsequently 

reported by health agencies. Real-time methods can be an effective decision-making tool for public 

health officials during an on-going epidemic. 

Post-factum methods focus on after-the-fact analysis of wastewater and clinical data over 

an entire period and provide analysis of warnings for surges of cases after they have occurred. 

Post-factum methods can be used as complementary methodologies to real-time methods. Post-

factum methods, such as the MSD method, concentrate on providing an overall picture of early 

warnings for an entire period of investigations which can identify all early warnings for an entire 

time (Bowman et al., 2016; Prabdial-Sing et al., 2021). Post-factum methods can be useful to 

health agencies to plan and design health measures for the next potential epidemic. 

Admittedly, this study has various limitations. First, eight early warning methods and three 

peak-defining methods were successfully applied to WBE data collected from the Detroit 

metropolitan area, but these methods have not been validated in other regions. More in-depth 

investigations are warranted to develop and apply early warning methods based on this study. 

Secondly, the w/c ratio was adopted from a study that assumed that viral shedding did not change 

significantly over the course of the entire pandemic (Xiao et al., 2022). However, viral shedding 

patterns and dynamics changed during the study period for the Detroit area where the dominant 

variant changed from Alpha to Beta, Gamma, Delta, and Omicron variants and so forth (Xiao et 

al., 2022; Zhao et al., 2022). For example, the lag time of wastewater surveillance preceding the 

clinical testing declined from five weeks to two weeks during the Omicron surge owning 

predominately to the changing viral shedding dynamics (Zhao et al., 2022), potentially affecting 

the performance of early warning methods. Third, the w/c ratio did not capture the third major 
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peak of clinical cases in late December of 2021 and the beginning of January 2022, which perhaps 

was a consequence of changing shedding dynamics associated with Omicron, as well as the rapidly 

increasing testing capacity in December 2021 in the State of Michigan leading redundant counting 

of clinical cases, which we discussed thoroughly in 3.1. Finally, the approaches of defining peaks 

of COVID-19 cases were potentially specific to our sampling demographic and geographic 

sampling distribution in the Detroit metropolitan area in this study. Exploration of other methods 

for defining peaks of clinical cases for other regions seems warranted. 

Overall, numerous prospects extended from this study could inspire applications of WBE 

data and development of early warning methods of WBE for public health benefits. The eight early 

warning methods described here are straightforward and easily applied, and could forewarn 

defined peaks with high hit rates, especially the real-time methods OBM and PPCS. The real-time 

methods require merely the direct measurements of N1 and N2 gene concentrations as well as 

simple statistical calculations, which are easily applied tools for public health departments to apply 

on WBE datasets to determine early warnings rapidly. Three methods of defining peaks are easily 

applied as well. The early warning methods and peak-defining methods proposed in this study 

attempt to provide rapid and straightforward approaches to determine early warnings for health 

departments, partner agencies, and the public, instead of applying intricate and sophisticated 

models. Additionally, this study demonstrates the impact of public policies on wastewater viral 

concentrations and subsequent clinical cases in Detroit metropolitan area for approximately two 

years. Combining wastewater data with clinical cases for the Detroit area, such as application of 

w/c ratio, could allow health departments to understand the actual infections and testing conditions 

in communities. However, more studies are warranted to establish a standard framework for 

defining peaks of clinical cases, apply and develop early warning methods that are easily applied 
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by health departments, to use early warnings in a timely manner. This study highlights the impact 

of public health policy on measured wastewater viral concentrations and clinical COVID-19 cases 

in Detroit. Future research should integrate public policy at a granular level. 

4. Conclusions 

This study introduced eight (three real-time and five post-factum) early-warning methods 

based on wastewater surveillance data and three peak-defining methods based on clinical data that 

can be easily implemented by public health departments and partner agencies to warn of viral 

disease fluctuations. Hit rates were calculated to evaluate the efficacy of early warning methods 

in predicting clinical case surges. Applying these methods to a 21-month WBE data set in the 

Detroit metropolitan area in Michigan amid the COVID-19 pandemic, we conclude that 

wastewater viral signals preceded the reported clinical cases. Both viral signal and clinical cases 

corresponded to social events and reflected implementation of public health policies. The early-

warning methods based on WBE were proven to be efficient during the study period, as evinced 

by hit rates. Hit rates for early warning methods were affected by the method for defining peaks 

in clinical cases. Method III for defining peaks (peak defined as clinical data values higher than 

mean – 0.5 standard deviation of all values) identified most peaks in clinical cases and was 

associated with higher hit rates across all WBE based early-warning methods. Among all real-time 

methods, PPCS method (positive percentage change of slope greater than 200%) achieved higher 

hit rates. Among all post-factum methods, KUR (values greater than kurtosis) and MSD (values 

greater than mean + 2 standard deviation) methods achieved higher hit rates. 
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APPENDIX 

Detailed Procedure: Sampling and Virus Elution 

Viruses were collected and isolated from untreated wastewater using electropositive 

NanoCeram column filters (Argonide, Sanford, FL) based on the EPA Virus Adsorption-Elution 

(VIRADEL) method (Li et al., 2022; Miyani et al., 2020, 2021; Zhao et al., 2022). Depending on 

the suspended solids of wastewater, approximately 10 to 50 L of untreated wastewater passed 

through NanoCeram electropositive cartridge filters at a rate not more than 11 L/min using a 

previously described method (Li et al., 2022; Miyani et al., 2020, 2021; Zhao et al., 2022). Flow 

meter readings were recorded at the inception and termination of each sampling event. After 

sampling, all NanoCeram column filters were placed in sealed plastic bags on ice, then transported 

to the Environmental Virology Laboratory at Michigan State University in East Lansing, 

Michigan, USA, within 24 h for downstream analysis. Viruses were eluted within 24 h after 

sampling based on a previously described method (Miyani et al., 2020, 2021; Zhao et al., 2022).  

Detailed Procedure: RNA Extraction 

Viral RNA was extracted using a Viral RNA QIAGEN kit (QIAGEN, Germantown, 

Maryland), following the manufacturer's protocol with the modification described previously (Li 

et al., 2022; Miyani et al., 2020, 2021; Zhao et al., 2022). 

Detailed Procedure: RT-ddPCR 

RT-ddPCR was performed using a QX200 AutoDG Droplet Digital PCR system (Bio-Rad, 

Hercules, CA, USA), using a One-step RT-ddPCR Advanced Kit for Probes (Bio-Rad, Hercules, 

CA, USA). According to the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR 

Diagnostic Panel for SARS-CoV-2 detection (cdc.gov/coronavirus/2019-ncov/lab), the primers 

and probe targeting N1 and N2 of SARS-CoV-2 are shown below. These were shown to be the 
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most sensitive assays for identifying SARS-CoV-2 (Ahmed et al., 2022). Oligonucleotide 

sequences (5’ to 3’) of primers and probes are shown below:  

2019-nCoV_N1-F: GAC CCC AAA ATC AGC GAA AT 

2019-nCoV_N1-R: TCT GGT TAC TGC CAG TTG AAT CTG 

2019-nCoV_N1-P: FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1 

2019-nCoV_N2-F: TTA CAA ACA TTG GCC GCA AA 

2019-nCoV_N2-R: GCG CGA CAT TCC GAA GAA 

2019-nCoV_N2-P: FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1. 

Samples were then run on a C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA) 

using the conditions shown in Zhao et al., 2022, following fluorescence measurement on a QX200 

Droplet Reader (Bio-Rad, Hercules, CA, USA). N1 N2 gene Duplex Assay Reaction Mixture was 

also adopted from Zhao et al., 2022. 
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Table 2S. 1. Prediction approaches using advanced models of COVID-19 cases based on 

wastewater surveillance 

Location Prediction method Model input Prediction output References 

Michigan, 

USA 

automatic regression 

integrated moving average 

(ARIMA) and vector 

autoregressive (VAR) models 

SARS-CoV-2 concentrations, 

clinical cases 

COVID-19 cases (Zhao et 

al., 2022) 

Utah, USA artificial neural network 

(ANN) 

WBE data, weather, clinical 

testing and vaccine coverage 

COVID-19 

incidence, 

prevalence rate, 

COVID-19 

effective 

reproduction rate 

(Jiang et 

al., 2022) 

Sendai, 

Miyagi, Japan 

generalized linear model, 

ANN, and random forest (RF) 

positive rates from consecutive 

calculation windows 

COVID-19 cases (Zhu et al., 

2022) 

Galicia, Spain  COVIDBENS models, 

quadratic LOESS model, 

simple linear regression 

model 

viral load, time, and other 

variables 

COVID-19 cases (Vallejo et 

al., 2022) 

Published 

literature 

multiple linear regression, 

ANN, and adaptive neuro 

fuzzy inference system  

SARS-CoV-2 concentrations, 

wastewater/air temperature, 

population, average daily water 

consumption, sampling 

technique, and precipitation 

prevalence of 

COVID-19 cases 

(X. Li et 

al., 2022) 

Attica, Greece distributed/fixed lag 

modelling, linear regression, 

and ANN 

SARS-CoV-2 concentrations, 

efficiency of PCR method, 

quantification cycle 

pandemic health 

indicators, 

admission rates to 

hospitals  

(Galani et 

al., 2022) 

Pennsylvania, 

USA  

VAR models SARS-CoV-2 concentrations 

and COVID-19 cases 

COVID-19 cases (Cao & 

Francis, 

2021) 

South 

Carolina, USA 

susceptible-exposed-

infectious-recovered model 

mass rate of RNA copies 

released per day, reproductive 

number, viral half-life, and 

sewage temperature 

numbers of 

infected 

individuals 

(McMahan 

et al., 

2021) 

Larissa and 

Volos, Greece 

linear regression, RF models 

were trained and tested with 

machine learning 

SARS-CoV-2 concentrations 

and normalized data 

COVID-19 cases (Koureas 

et al., 

2021) 

Johannesburg, 

South Africa 

 ARIMA models confirmed COVID-19 cases COVID-19 cases (Matheri et 

al., 2022) 
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Table 2S. 2. Factors affecting early warning of emerging diseases based on WBE 

Category Factors References 

Physiological 

/biological 

viral shedding dynamics; the role of asymptomatic 

transmitters of disease; decay of viral signals during 

wastewater transport in collection systems 

(Bibby et al., 2021) 

Public health delay in WBE data reporting  (Bibby et al., 2021) 

delay in clinical data reporting (Català et al., 2021; Menkir 

et al., 2021; Torres et al., 

2021; Zhang et al., 2020) 

clinical data processing time (Contreras et al., 2020) 

underreporting of the real number of infections (Kronbichler et al., 2020; 

Salath et al., 2020) 

Laboratory 

analysis and/or 

logistics  

the sensitivity of clinical and WBE analytical workflows (Bibby et al., 2021) 

sampling and analytical methods (Kumar et al., 2021) 

uneven mixing of wastewater (Zhu et al., 2021) 

viral RNA can be highly diluted 

viral load is not uniformly distributed throughout a given day (Butler et al., 1995) 

the sample might not be representative 

Other climatic variability (Kumar et al., 2022) 

WWTP characteristics 

population demographics 

the proportion of infected people who shed detectable levels 

of virus in their stool 

(Ahmed et al., 2021; Kirby 

et al., 2021) 
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Table 2S. 3. Hit rates of early warning methods 

Analysis 

Type 

Method 

Abbreviation 

Method of 

defining the 

peaks 

Data 

type 

Number of 

possible early 

warning dates 

identified 

Number of early warning dates 

that captured peaks (within 5 

weeks ahead of the beginning of 

the peaks) 

Hit rate % 

(accuracy) 

Real-time 

OBM 

Method I 

N1 

5 5 100.00 

Method II 5 4 80.00 

Method III 5 4 80.00 

Method I 

N2 

6 5 83.33 

Method II 6 4 66.67 

Method III 6 6 100.00 

PPC 

Method I 

N1 

18 15 83.33 

Method II 18 12 66.67 

Method III 18 17 94.44 

Method I 

N2 

17 17 100.00 

Method II 17 13 76.47 

Method III 17 17 100.00 

PPCS 

Method I 

N1 

11 10 90.91 

Method II 11 10 90.91 

Method III 11 11 100.00 

Method I 

N2 

12 11 91.67 

Method II 12 6 50.00 

Method III 12 12 100.00 

Post-

factum 

MSD 

Method I 
N1 6 6 100.00 

N2 6 6 100.00 

Method II 
N1 6 6 100.00 

N2 6 6 100.00 

Method III 
N1 6 6 100.00 

N2 6 6 100.00 

PER 

Method I 
N1 14 12 85.71 

N2 11 11 100.00 

Method II 
N1 14 12 85.71 

N2 11 9 81.82 

Method III 
N1 14 14 100.00 

N2 11 11 100.00 

MSD 

Method I 
N1/c 6 6 100.00 

N2/c 6 6 100.00 

Method II 
N1/c 6 4 66.67 

N2/c 6 4 66.67 

Method III 
N1/c 6 6 100.00 

N2/c 6 6 100.00 

VAM 

Method I 
N1/c 16 15 93.75 

N2/c 18 16 88.89 

Method II 
N1/c 16 6 37.50 

N2/c 18 8 44.44 
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Table 2S. 3. (cont’d) 

Post-factum 

SKE 

Method I 
N1/c 14 13 92.86 

N2/c 12 12 100.00 

Method II 
N1/c 14 8 57.14 

N2/c 12 6 50.00 

Method III 
N1/c 14 12 85.71 

N2/c 12 12 100.00 

KUR 

Method I 
N1/c 2 2 100.00 

N2/c 2 2 100.00 

Method II 
N1/c 2 2 100.00 

N2/c 2 2 100.00 

Method III 
N1/c 2 2 100.00 

N2/c 2 2 100.00 

PER 

Method I 
N1/c 10 9 90.00 

N2/c 10 10 100.00 

Method II 
N1/c 10 7 70.00 

N2/c 10 8 80.00 

Method III 
N1/c 10 10 100.00 

N2/c 10 10 100.00 

Mean-

0.5SD 

Method I 
N1 25 20 80.00 

N2 29 25 86.21 

Method II 
N1 25 14 56.00 

N2 29 20 68.97 

Method III 
N1 25 24 96.00 

N2 29 28 96.55 

Method I 
N1/c 18 15 83.33 

N2/c 14 14 100.00 

Method II 
N1/c 18 15 83.33 

N2/c 14 10 71.43 

Method III 
N1/c 18 18 100.00 

N2/c 14 14 100.00 

Note: “c” represents daily 7-day moving average of clinical cases. 
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Figure 2S. 1. Real-time early warning methods based on N2: OBM, PPC, and PPCS: 

a. First early warnings of each peak identified by OBM (N2, gc/L) with Method I defined peaks 

b. First early warnings of each peak identified by OBM (N2, gc/L) with Method II defined peaks 

c. First early warnings of each peak identified by OBM (N2, gc/L) with Method III defined 

peaks 

d. Early warnings identified by PPC (N2, gc/L) with Method I defined peaks 

e. Early warnings identified by PPC (N2, gc/L) with Method II defined peaks 

f. Early warnings identified by PPC (N2, gc/L) with Method III defined peaks 

g. Early warnings identified by PPCS (N2, gc/L) with Method I defined peaks 

h. Early warnings identified by PPCS (N2, gc/L) with Method II defined peaks 

i. Early warnings identified by PPCS (N2, gc/L) with Method III defined peaks 

j. Early warnings identified by PPC (N1, gc/L) with Method I defined peaks 

k. Early warnings identified by PPC (N1, gc/L) with Method II defined peaks 

l. Early warnings identified by PPC (N1, gc/L) with Method III defined peaks 
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Figure 2S. 1. (cont’d) 
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Figure 2S. 2. Post-factum early warning methods based on N2: MSD, VAM, and PER: 

a. Early warnings identified by MSD (N2, gc/L) with Method I defined 

b. Early warnings identified by MSD (N2, gc/L) with Method II defined 

c. Early warnings identified by MSD (N2, gc/L) with Method III defined 

d. Early warnings identified by PER (N2, gc/L) with Method I defined peaks 

e. Early warnings identified by PER (N2, gc/L) with Method II defined peaks 

f. Early warnings identified by PER (N2, gc/L) with Method III defined peaks 

g. Early warnings identified by PER (N2, gc/L/case) with Method I defined peaks 

h. Early warnings identified by PER (N2, gc/L/case) with Method II defined peaks 

i. Early warnings identified by PER (N2, gc/L/case) with Method III defined peaks 

j. Early warnings identified by PER (N1, gc/L) with Method I defined peaks 

k. Early warnings identified by PER (N1, gc/L) with Method II defined peaks 

l. Early warnings identified by PER (N1, gc/L) with Method III defined peaks 
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Figure 2S. 2. (cont’d) 
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Figure 2S. 3. Early warnings by post-factum method: MSD 

a. Early warnings identified by MSD (N1/c, gc/L/case) with Method I defined 

b. Early warnings identified by MSD (N1/c, gc/L/case) with Method II defined 

c. Early warnings identified by MSD (N1/c, gc/L/case) with Method III defined 

d. Early warnings identified by MSD (N2/c, gc/L/case) with Method I defined 

e. Early warnings identified by MSD (N2/c, gc/L/case) with Method II defined 

f. Early warnings identified by MSD (N2/c, gc/L/case) with Method III defined 
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Figure 2S. 4. Early warnings by post-factum method: VAM 

a. Early warnings identified by VAM (N1/c, gc/L/case) with Method I defined 

b. Early warnings identified by VAM (N1/c, gc/L/case) with Method II defined 

c. Early warnings identified by VAM (N1/c, gc/L/case) with Method III defined 

d. Early warnings identified by VAM (N2/c, gc/L/case) with Method I defined 

e. Early warnings identified by VAM (N2/c, gc/L/case) with Method II defined 

f. Early warnings identified by VAM (N2/c, gc/L/case) with Method III defined 
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Figure 2S. 5. Early warnings by post-factum method: SKE 

a. Early warnings identified by SKE (N1/c, gc/L/case) with Method I defined 

b. Early warnings identified by SKE (N1/c, gc/L/case) with Method II defined 

c. Early warnings identified by SKE (N1/c, gc/L/case) with Method III defined 

d. Early warnings identified by SKE (N2/c, gc/L/case) with Method I defined 

e. Early warnings identified by SKE (N2/c, gc/L/case) with Method II defined 

f. Early warnings identified by SKE (N2/c, gc/L/case) with Method III defined 
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Figure 2S. 6. Early warnings by post-factum method: KUR 

a. Early warnings identified by KUR (N1/c, gc/L/case) with Method I defined 

b. Early warnings identified by KUR (N1/c, gc/L/case) with Method II defined 

c. Early warnings identified by KUR (N1/c, gc/L/case) with Method III defined 

d. Early warnings identified by KUR (N2/c, gc/L/case) with Method I defined 

e. Early warnings identified by KUR (N2/c, gc/L/case) with Method II defined 

f. Early warnings identified by KUR (N2/c, gc/L/case) with Method III defined 
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Figure 2S. 7. Early warnings by post-factum method: Mean-0.5SD 

a. Early warnings identified by Mean-0.5SD (N1, gc/L) with Method I defined 

b. Early warnings identified by Mean-0.5SD (N1, gc/L) with Method II defined 

c. Early warnings identified by Mean-0.5SD (N1, gc/L) with Method III defined 

d. Early warnings identified by Mean-0.5SD (N2, gc/L) with Method I defined 

e. Early warnings identified by Mean-0.5SD (N2, gc/L) with Method II defined 

f. Early warnings identified by Mean-0.5SD (N2, gc/L) with Method III defined 

g. Early warnings identified by Mean-0.5SD (N1/c, gc/L/case) with Method I defined 

h. Early warnings identified by Mean-0.5SD (N1/c, gc/L/case) with Method II defined 

i. Early warnings identified by Mean-0.5SD (N1/c, gc/L/case) with Method III defined 

j. Early warnings identified by Mean-0.5SD (N2/c, gc/L/case) with Method I defined 

k. Early warnings identified by Mean-0.5SD (N2/c, gc/L/case) with Method II defined 

l. Early warnings identified by Mean-0.5SD (N2/c, gc/L/case) with Method III defined 
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Figure 2S. 7. (cont’d) 
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CHAPTER 3: TARGETING A FREE VIRAL FRACTION ENHANCES THE EARLY 

ALERT POTENTIAL OF WASTEWATER SURVEILLANCE FOR SARS-COV-2: A 

METHODS COMPARISON SPANNING THE TRANSITION BETWEEN DELTA AND 

OMICRON VARIANTS IN A LARGE URBAN CENTER 

Published in Frontiers in Public Health: 

Zhao, L., Geng, Q., Corchis-Scott, R., McKay, R. M., Norton, J., & Xagoraraki, I. (2023). 

Targeting a free viral fraction enhances the early alert potential of wastewater surveillance for 

SARS-CoV-2: a methods comparison spanning the transition between delta and omicron variants 

in a large urban center. Frontiers in Public Health, 11, 1140441. 

Abstract 

Wastewater surveillance has proven to be a valuable approach to monitoring the spread of 

SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19). Recognizing the 

benefits of wastewater surveillance as a tool to support public health in tracking SARS-CoV-2 and 

other respiratory pathogens, numerous wastewater virus sampling and concentration methods have 

been tested for appropriate applications as well as their significance for actionability by public 

health practices. Here, we present a 34-week long wastewater surveillance study that covers nearly 

4 million residents of the Detroit (MI, United States) metropolitan area. Three primary 

concentration methods were compared with respect to recovery of SARS-CoV-2 from wastewater: 

Virus Adsorption-Elution (VIRADEL), polyethylene glycol precipitation (PEG), and polysulfone 

(PES) filtration. Wastewater viral concentrations were normalized using various parameters (flow 

rate, population, total suspended solids) to account for variations in flow. Three analytical 

approaches were implemented to compare wastewater viral concentrations across the three 

primary concentration methods to COVID-19 clinical data for both normalized and non-
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normalized data: Pearson and Spearman correlations, Dynamic Time Warping (DTW), and Time 

Lagged Cross Correlation (TLCC) and peak synchrony. It was found that VIRADEL, which 

captures free and suspended virus from supernatant wastewater, was a leading indicator of 

COVID-19 cases within the region, whereas PEG and PES filtration, which target particle-

associated virus, each lagged behind the early alert potential of VIRADEL. PEG and PES methods 

may potentially capture previously shed and accumulated SARS-CoV-2 resuspended from 

sediments in the interceptors. These results indicate that the VIRADEL method can be used to 

enhance the early-warning potential of wastewater surveillance applications although drawbacks 

include the need to process large volumes of wastewater to concentrate sufficiently free and 

suspended virus for detection. While lagging the VIRADEL method for early-alert potential, both 

PEG and PES filtration can be used for routine COVID-19 wastewater monitoring since they allow 

a large number of samples to be processed concurrently while being more cost-effective and with 

rapid turn-around yielding results same day as collection. 

1. Introduction 

Wastewater surveillance has been widely adopted by researchers and health agencies as an 

effective tool for tracking Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 

wastewater amid the Coronavirus Disease 2019 (COVID-19) pandemic (Ahmed et al., 2020a, 

2022; Ai et al., 2021; Bivins & Bibby, 2021; Chik et al., 2021; Kaya et al., 2022; Li et al., 2022; 

Miyani et al., 2020, 2021; Sherchan et al., 2020; Xiao et al., 2022; Zhao et al., 2022a, 2022b). 

SARS-CoV-2 was first identified in Wuhan, Hubei, China, and was designated a Public Health 

Emergency of International Concern on January 30th, 2020, by the World Health Organization 

(WHO). COVID-19 was later declared a pandemic on March 11th, 2020 (who.int). Numerous 

studies have demonstrated that SARS-CoV-2 can be shed from the gastrointestinal tract of infected 
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individuals and its viral RNA can persist and be detected in wastewater (Boucau et al., 2022; 

Haramoto et al., 2020; He et al., 2020; Jones et al., 2020; Medema et al., 2020). To increase the 

sensitivity of the assay used to detect viral RNA in wastewater, samples are routinely concentrated 

prior to quantification (Farkas et al., 2020; Xagoraraki, 2020; Xagoraraki et al., 2014). 

Methods used in published studies to recover and concentrate SARS-CoV-2 viral RNA 

from wastewater encompass a wide range of techniques including Virus Adsorption-Elution 

(VIRADEL), polyethylene glycol precipitation (PEG), ultrafiltration, ultracentrifugation, 

concentrating pipette, filtration and so forth. Some of the methods, such as VIRADEL, exclude 

large solids and focus on free and suspended viral particles in supernatant wastewater. Other 

methods, such as PEG precipitation and filtration, target particulate matter and the associated 

viruses that are sorbed onto solids. Notably, this fraction may preferentially settle within the sewer 

when flow is reduced and likewise is susceptible to resuspension when flows are elevated (Flood 

et al., 2021; Zhao et al., 2022b). 

The recovery efficiencies of concentration methods are variable, differing between 

method, virus type and conditioning of the wastewater sample. Notably, VIRADEL was found to 

be effective for concentrating viruses from water samples with recovery efficiencies of more than 

90% for poliovirus (Jakubowski et al., 1975; Wallis et al., 1972), 54.4% for murine norovirus 

(MNV) (Lee et al., 2011), 51% for echovirus (Hill et al., 2009), 35% for enteric virus (Black et 

al., 2007), and 4.7% for adenovirus (Francy et al., 2013). Likewise, PEG was found to be effective 

for concentrating viruses in water samples, with recovery efficiencies of 89.5% for echovirus (Ye 

et al., 2016), 86% for hepatitis A virus (Michael-Kordatou et al., 2020), 68% for poliovirus 

(Michael-Kordatou et al., 2020), and 56.7% (Sapula et al., 2021) and 26.4% (Barril et al., 2021) 

for SARS-CoV-2. Filtration was reported to recover virus from wastewater samples with recovery 
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efficiencies ranging from 26.7% to 65.7% for murine hepatitis virus (Ahmed et al., 2020c), and 

90% for human betacoronavirus OC43 (Pecson et al., 2021). 

Applying different concentration methods can achieve different goals. For instance, use of 

VIRADEL to concentrate SARS-CoV-2 can provide early warnings of impending COVID-19 

cases (Miyani et al., 2021; Zhao et al., 2022a, 2022b). PEG precipitation is an economical and 

widely adopted method that allows a large number of samples to be processed concurrently and it 

is suitable for routine COVID-19 wastewater monitoring (Flood et al., 2021; Lu et al., 2020a). 

Likewise, filtration presents a cost-effective and simple approach commonly applied to recover 

cells and viral particles from environmental samples for nucleic acid extraction (McKindles et al., 

2020), which has also been applied to recovery of SARS-CoV-2 from wastewater (Chik et al., 

2021; Corchis-Scott et al., 2021; Gonçalves et al., 2021; Lu et al., 2020a). 

Here we present a comparison of three primary concentration methods (VIRADEL, PEG 

and filtration) to detect SARS-CoV-2 viral RNA in wastewater, in relation to COVID-19 cases 

amid the transition from Delta to Omicron Variants of Concerns (VOCs) circulating in the Detroit, 

MI metropolitan area. Similarities and correlations were examined among the three concentration 

methods with both normalized and non-normalized data. The lead/lag time of each method in 

relation to the total COVID-19 cases was also assessed. The results presented in this study will 

assist researchers and public health practitioners to select appropriate primary concentration 

methods for the recovery of SARS-CoV-2 from wastewater for different wastewater surveillance 

practices. 

2. Materials and Methods 

Untreated wastewater samples were collected weekly from the Water Resource Recovery 

Facility (WRRF) of the Great Lakes Water Authority (GLWA) located in Detroit, MI, USA, 
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between October 1, 2021, and May 31, 2022. The WRRF serves the needs of Detroit and 76 area 

communities with a service area of more than 2450 square kilometers serving nearly 4 million 

people. WRRF collects and treats stormwater, as well as residential, industrial, and commercial 

waste, depending on service areas, with its semi-combined sewershed system. WRRF receives 

wastewater via three main interceptors including the Detroit River Interceptor (DRI), the North 

Interceptor-East Arm (NIEA), and the Oakwood-Northwest-Wayne County Interceptor (ONWI) 

(see chapter 1, Figure 1. 2.), serving the City of Detroit as well as the three largest Michigan 

counties by population: Wayne, Oakland, and Macomb. Composite samples collected over 24-h 

were used to compare the polyethylene glycol (PEG) precipitation and filtration methods, 

however, the larger volumes required by the virus adsorption-elution (VIRADEL) method 

necessitated a targeted approach with samples collected between 15:30 to 18:00 each afternoon. 

The samples were collected from the three interceptors at the point of discharge into the WRRF 

and maintained chilled on ice during transport to the lab for primary concentration and sample 

analyses. 

2.1 Virus adsorption-elution (VIRADEL) method 

The United States Environmental Protection Agency virus adsorption-elution (VIRADEL) 

method employing electropositive or electronegative filters was reported to recover and 

concentrate viruses from wastewater samples previously (Li et al., 2022; Lu et al., 2020a; Miyani 

et al., 2020, 2021; Xagoraraki et al., 2014; Zhao et al., 2022a, 2022b). Electronegative filters 

require preconditioning such as adjusting the pH, prior to downstream concentration processes. 

Electropositive filters do not require any preconditioning (Lu et al., 2020a; Xagoraraki et al., 

2014). In this study, depending on the quantity of suspended solids in the wastewater, 10 to 50 L 

of untreated wastewater (grab sample) was passed through NanoCeram electropositive cartridge 
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filters (Argonide, Sanford, FL, USA) at a rate less than 11 L/min using a previously described 

method (Li et al., 2022; Miyani et al., 2020, 2021; Zhao et al., 2022b). Flow meter readings were 

tracked at the beginning and end of each sampling event to measure the total volume of wastewater 

passing through the filters. Following sampling, the NanoCeram filters were transported on ice to 

the lab for sample analyses within 24 h. The elution process releases viral particles captured by 

the filters (Xagoraraki et al., 2014). Viruses were eluted using 1.5% beef extract containing 0.05 

M glycine, based on a previously described method (Li et al., 2022; Miyani et al., 2020, 2021; 

Zhao et al., 2022b). Subsequently, the eluates containing viruses were flocculated by adjusting the 

pH, following multiple centrifugations and resuspension of particles in sodium phosphate. 

Afterwards, supernatants containing viruses were separated by adjusting the pH and 

centrifugation. Finally, the supernatants containing viruses were passed through 0.45 μm and 0.22 

μm Millipore filters (MilliporeSigma, Burlington, MA, USA), which were followed by aliquoting 

and storage of the final aliquots at -80 ℃ for downstream molecular analyses (Li et al., 2022; 

Miyani et al., 2020, 2021; Xagoraraki et al., 2014; Zhao et al., 2022b). Bacteriophage Phi6 was 

applied as a proxy virus to estimate the recovery efficiency during virus concentration (Kantor et 

al., 2021; Ye et al., 2016; Zhao et al., 2022b). Figure 3. 1. demonstrates the workflow of the 

VIRADEL method. 
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Figure 3. 1. Illustrative flowchart of the VIRADEL method and subsequent analysis 

 

2.2 Polyethylene glycol precipitation (PEG) method 

From a 24-h composite sample of untreated wastewater collected in a 1 L Nalgene bottle, 

100 mL samples were mixed with 0.2 M sodium chloride and 8% polyethylene glycol (w/v). 

Samples were mixed gently on a magnetic stirrer at 4 °C for 2 h, followed by centrifugation at 

4700×g for 45 min at 4 °C. The supernatant was removed, and the pellet was resuspended in the 

remaining liquid (approximately 2-3 mL). The final concentrate volumes were between 1 to 6 mL. 

All sample concentrates were then subjected to downstream analyses including RNA extraction 

and RT-ddPCR (Figure 3. 2.). 
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Figure 3. 2. Illustrative flowchart of the PEG method and subsequent analysis 

 

2.3 Filtration method 

Composite samples of raw wastewater collected as for the PEG method were concentrated 

by filtering 50-120 mL through 0.22 µm Sterivex PES cartridge filters (MilliporeSigma, 

Burlington, MA, USA) using a 50 mL syringe fitted into a caulking gun. Immediately following 

filtration, the filters were sealed and flash-frozen through immersion in liquid nitrogen as 

described previously (Corchis-Scott et al., 2021). Subsequently, filters were subjected to 

downstream processes including RNA extraction and RT-qPCR (Figure 3. 3.). 
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Figure 3. 3. Illustrative flowchart of the filtration method and subsequent analysis 

 

2.4 RNA extraction, RT-ddPCR, RT-qPCR 

Following VIRADEL and PEG methods, viral RNA was extracted using the QIAamp Viral 

RNA kit (Qiagen, Germantown, MD, USA), following the manufacturer's protocol modified by 

use of 140 μL elution buffer to extract the viral RNA (Li et al., 2022; Miyani et al., 2020, 2021; 

Zhao et al., 2022b). RT-ddPCR was performed on a QX200 AutoDG Droplet Digital PCR system 

(Bio-Rad, Hercules, CA, USA), using the One-step RT-ddPCR Advanced Kit for Probes (Bio-

Rad, Hercules, CA, USA) as described previously (Li et al., 2022; Zhao et al., 2022b). United 

States Centers for Disease Control and Prevention (US CDC) primers and probes that target the 

N1 and N2 genes of SARS-CoV-2 were used (Li et al., 2022; Zhao et al., 2022a, 2022b). N1 N2 

gene Duplex Assay Reaction Mixture was reported previously (Li et al., 2022; Zhao et al., 2022a, 

2022b). Following the preparation of the Duplex Mixture and oil droplets generation, samples 

were run on a C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA) using the 

thermocycling conditions which were reported previously (Li et al., 2022; Zhao et al., 2022a, 
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2022b). Subsequently, the measurement of fluorescence was performed on a QX200 Droplet 

Reader (Bio-Rad, Hercules, CA, USA). For each RT-ddPCR run, positive controls (PTCs), 

negative controls (NTCs), and process negative controls were included, which were described 

previously (Zhao et al., 2022a). All samples were run in triplicate. The Limit of Detection (LOD) 

and Limit of Blank (LOB) for RT-ddPCR were described and determined previously (Li et al., 

2022; Zhao et al., 2022a, 2022b). 

Following the filtration method, filters were thawed, and RNA was extracted from the 

filters using the AllPrep PowerViral DNA/RNA kit (Qiagen, Germantown, MD, USA) modified 

by addition of 5% 2-mercaptoethanol (v/v). RNA was eluted in 50 µL of RNAse free water. 

Samples were not treated with DNase upon extraction. Assays for SARS-CoV-2 targeted regions 

of the nucleocapsid (N) gene using US CDC primers and probes for the N1 and N2 regions (Lu et 

al., 2020b). Reagents were supplied by Integrated DNA Technologies (Coralville, IA, USA). 

Reactions contained 5 µL of RNA template mixed with 10 µL of 2 × RT-qPCR master mix 

(Takyon TM Dry One-Step RT Probe MasterMix No Rox, Eurogentec, Liège, Belgium) and 

primers and probes in a final reaction volume of 20 µL. Reaction inhibition was assessed using 

VetMAX XENO Internal Positive Control RNA (Applied Biosystems Corp., Waltham, MA, 

USA). Due to repeated incidence of inhibition with wastewater samples processed by filtration, 

template was diluted 1:5 in all reactions. Technical triplicates were run for detection of gene 

targets.  Thermal cycling was performed using a MA6000 qPCR thermocycler (Sansure Biotech, 

Changsha, China). RT was performed at 48 °C for 10 min, followed by polymerase activation at 

95 °C for 3 min, and 50 cycles of denaturation, annealing/extension at 95 °C for 10 sec, then 60 

°C for 45 sec, respectively. The EDX SARS-CoV-2 synthetic RNA standard (Exact Diagnostics, 

Fort Worth, TX, USA) was used to create a 7-point standard curve to quantify N1 and N2 gene 
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targets.  No template controls yielded no amplification, and we report a limit of detection of 5 gene 

copies of N1 and N2 per reaction containing 5 µL of template RNA for RT-qPCR. 

2.5 COVID-19 clinical data 

Publicly available clinical data were accessed on August 22, 2022, for the period between 

October 1, 2021, and May 31, 2022, for the city of Detroit, as well as Wayne, Macomb, and 

Oakland counties (Michigan.gov) (Figure 3. 4. a). Clinical data with a 7-day moving average 

(Barua et al., 2022; Menkir et al., 2021; Zhao et al., 2022a) was used for further statistical analysis 

(Figure 3. 4. b.). COVID-19 clinical data were only available per city/county for the Detroit 

metropolitan area. Each interceptor received wastewater from portions of each city/county. 

Therefore, only the total SARS-CoV-2 concentrations can be correlated to the total COVID-19 

cases of each city/county (Zhao et al., 2022a, 2022b). 
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Figure 3. 4. a. COVID-19 cases in the City of Detroit, as well as Wayne, Macomb, and Oakland 

counties; b. 7-day moving average of the COVID-19 cases 

 

 

a 

b 
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2.6 Data analyses and visualization 

Data were tracked and organized using Microsoft Excel version 16.66.1. R version 4.1.3 

(2022-03-10) was applied to perform data analysis including Pearson and Spearman correlations, 

Dynamic Time Warping (DTW), Time Lagged Cross Correlation (TLCC) and peak synchrony, 

depending primarily on ggplot2 package for visualization, and packages including dtw, synchrony, 

dplyr, and ggpubr. Missing data from samples were filled using linear interpolation for further 

analysis (Lepot et al., 2017; Zhao et al., 2022a, 2022b). For VIRADEL samples, 128 gene 

concentrations were measured for both N1 and N2 gene between 10/1/21 and 5/31/22. For PEG 

samples, 88 gene concentrations were measured for both N1 and N2 gene between 10/1/21 and 

5/31/22. For filtration samples, 66 gene concentrations were measured for both N1 and N2 gene 

between 10/1/21 and 5/31/22. To perform correlation analyses between weekly gene 

concentrations and daily clinical cases, linear interpolation was conducted to generate daily data 

based on weekly measurements. The number of interpolated daily gene concentrations were 179, 

199, and 210 for VIRADEL, PEG, and filtration, respectively. 

To account for the changing flow in wastewater, dilution events, and variability in the 

solids portion of the wastewater, four approaches (flow rate, flow rate/population, TSS, flow 

rate×TSS) of normalizing the N1 and N2 gene concentrations (gc/L) were implemented using Eq. 

(1), Eq. (2), Eq. (3), and Eq. (4) (Hopkins et al., 2023; Terry & Meschke, 2022; Zhao et al., 2022a). 

TSS, or “Total Suspended Solids”, is an estimate of the entire solids in wastewater in contrast to 

the liquid fraction or dissolved matter (Terry & Meschke, 2022). In addition, other parameters, 

including sanitary percentage and Biological Oxygen Demand (BOD), were proved ineffective for 

normalizing N1 and N2 gene concentrations for the Detroit area and other areas, thus, they were 

not considered in the current study (Ai et al., 2021; Zhao et al., 2022a).  SARS-CoV-2 gene 
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concentrations measured in the wastewater following VIRADEL, PEG, and filtration methods are 

reported as gene copies per L (gc/L). The units after normalization using flow rate, flow 

rate/population, TSS, and flow rate×TSS, are gene copies per day (gc/day), gene copies per day 

per person (gc/day/person), gene copies per mg TSS (gc/mg TSS), and gene copies per L per 

pounds/day (gc/(L(pounds/day))), respectively. 

C(1) = CN1 or N2 gene  V  f (1) 

C(2) = C(1) / P (2) 

C(3) = CN1 or N2 gene / TSS (3) 

C(4) = CN1 or N2 gene / (V  f  k  TSS) (4) 

where C(1) is the normalized concentration of SARS-CoV-2 in gc/day. C(2) is the normalized 

concentration of SARS-CoV-2 in gc/day/person. C(3) is the normalized concentration of SARS-

CoV-2 in gc/mg TSS. C(4) is the normalized concentration of SARS-CoV-2 in gc/(L(pounds/day)). 

V is the volume of wastewater flowing into WWTP interceptors during sampling events (MGD).  

f is the conversion factor between L and MGD. k is the conversion factor between mg and pounds. 

P is the total population in the Detroit metropolitan area served by WRRF’s interceptors including 

ONWI, NIEA, and DRI. TSS represents the total suspended solids (mg/L). 

2.6.1 Correlations among N1 and N2 gene concentrations by VIRADEL, PEG, and filtration 

Multiple studies investigated the applications of both Pearson and Spearman correlations 

on analyzing the relationship between wastewater viral concentrations of SARS-CoV-2 and 

COVID-19 clinical cases as well as the relationship among wastewater viral concentrations by 

different genes or methods (Ai et al., 2021; D’Aoust et al., 2021b; Vadde et al., 2022). In this 

study, Pearson and Spearman correlations were performed among N1 and N2 gene concentrations 
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(gc/L, gc/day, gc/day/person, gc/mg TSS, gc/(L(pounds/day))) by VIRADEL, PEG, and filtration 

methods. The Pearson correlation measures how two time series among VIRADEL, PEG, and 

filtration gene concentrations covary during the study period, and indicate their linear 

relationships. The Spearman correlation coefficient is a simple and straightforward approach to 

analyze the degree of associations between two time series (Ye et al., 2015). 

2.6.2 Dynamic Time Warping (DTW) 

One commonly used algorithm for quantifying the similarities/dissimilarities between time 

series data is the Euclidean distance (ED), but numerous studies demonstrated that ED is 

insensitive to time shifting and patterns between time series since it compares the data points of 

time series in a settled sequence and cannot consider time shifting or patterns (Izakian et al., 2015; 

Keogh & Ratanamahatana, 2005). Dynamic time warping (DTW) is a well-established algorithm 

that circumvents the limitations of ED and compares two time series by computing dynamic 

distances between them considering regional distortions, time shifting, and the optimal warping 

that best aligns the time series between each other (Giorgino, 2009; Izakian et al., 2015). 

Therefore, similar patterns that occur at different times between time series can be considered as 

matching, thus, the similarity of time series can be evaluated considering their time shifting and 

shapes by DTW algorithm (Izakian et al., 2015). The DTW algorithm was proposed previously 

(Giorgino, 2009). 

The outcome of DTW analysis indicates two time series with the most similar patterns by 

calculating the minimum overall dissimilarity or the DTW minimum distance where data points 

on one time series best align data points on another time series (Giorgino, 2009). Multiple studies 

investigated the similarities between time series using DTW algorithm (Izakian et al., 2015; Jeong 

et al., 2011; Rakthanmanon et al., 2012). However, to the best knowledge of the authors, this is 
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the first study to apply DTW algorithm to compare the similarities between wastewater gene 

concentrations data by three concentration methods (VIRADEL, PEG, and filtration), as well as 

comparing the similarities between wastewater gene concentrations data and COVID-19 clinical 

data. In this study, package dtw and related packages in R (version 4.1.3) were implemented to 

calculate DTW for the normalized (gc/day, gc/day/person, gc/mg TSS, and gc/(L(pounds/day))) 

and non-normalized (gc/L) data to analyze the similarities/dissimilarities between VIRADEL, 

PEG, and filtration methods. 

One limitation is that the minimum DTW distance can be affected by the scaling factor of 

time series data. For instance, the minimum DTW distance between PEG (gc/day/person) and 

COVID-19 cases can be smaller than the distance between VIRADEL (gc/day/person) and cases, 

indicating that PEG presents higher similarity to cases than VIRADEL. However, this was affected 

by the population factor which is a constant number but is not dynamic time series data. Using 

flow/population normalization including a constant factor intentionally changed the similarities 

among time series data. Therefore, the minimum DTW distance with flow/population normalized 

data was not considered for further discussions. 

2.6.3 TLCC and peak synchrony 

To estimate the leading or lagging relationships between wastewater viral concentrations 

by three concentration methods (VIRADEL, PEG, and filtration) and total COVID-19 cases, 

TLCC and peak synchrony were performed where the total COVID-19 cases were shifted over 

time and correlated with wastewater viral concentrations for each concentration method. TLCC 

refers to correlations between two time series shifted relatively in time. It can identify the direction 

and relationship between two time series, for instance, a leader-follower relationship, where the 

leader time series develop a pattern which is repeated by the follower time series (Shen, 2015). 
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TLCC is widely applied in analyzing time series especially delay, lead/lag time, and lagged cross 

correlation and so forth (Hopkins et al., 2023; Li et al., 2007; Mei et al., 2009; Shen, 2015). TLCC 

is an effective approach to estimate the dynamic relationships between two time series and 

demonstrate how they shift over time (Hopkins et al., 2023). 

In this study, TLCC is measured by gradually shifting total COVID-19 cases between -20 

days (lagging) and +20 days (leading), and constantly calculating the Pearson’s correlation 

coefficients between two time series for each shifting. Peak synchrony occurs when the peak 

correlation is observed. For instance, if the peak correlation is observed at the center where the lag 

time or offset is 0 day, this condition indicates that the time series are most synchronized at day 0 

demonstrating no shifting or lag time. However, the peak correlation can be at a different offset if 

one time series is leading or lagging another one. R package “synchrony”, “devtools”, and related 

packages were implemented to calculate the TLCC and peak synchrony between gene 

concentrations (both normalized and non-normalized data, by VIRADEL, PEG, and filtration 

methods) and 7-day moving average total COVID-19 cases. 

3. Results 

3.1 SARS-CoV-2 viral RNA concentrations in wastewater derived by three concentration 

methods spanning the transition between Delta and Omicron VOCs 

RT-ddPCR (VIRADEL and PEG samples) and RT-qPCR (filtration samples) targeting the 

N1 and N2 genes was used to quantify SARS-CoV-2 RNA concentrations in wastewater samples 

collected at GLWA’s WRRF over 34 weeks. The study period captured the third major resurgence 

of COVID-19 cases in the region corresponding to the transition from SARS-CoV-2 Delta 

(B.1.617.2) variant to Omicron (B.1.1.529) variant (Hopkins et al., 2023; Zhao et al., 2022b). 
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Filtered samples yielded N1 and N2 gene concentrations higher than those of VIRADEL but lower 

than those of PEG, for both normalized and non-normalized data (Table 3. 1.). Filtered samples 

yielded mean N1 and N2 gene concentrations of 3.22E+04 and 1.50E+04 gc/L, respectively. 

VIRADEL samples yielded mean N1 and N2 gene concentrations of 1.61E+03 and 1.63E+03 

gc/L, respectively. PEG samples yielded mean N1 and N2 gene concentrations of 1.61E+05 and 

1.50E+05 gc/L, respectively. The overall observed trends of the VIRADEL total N1 and N2 gene 

concentrations increased steeply from early December 2021 and reached a peak in late December 

2021 (Figure 3. 5. a.), which heralded the major wave of COVID-19 cases in late December 2021 

and early January 2022. Likewise, VIRADEL N1 and N2 gene concentrations increased in early 

April 2022, which preceded a resurgence of COVID-19 cases later in mid-April 2022. 
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Table 3. 1. Total N1 and N2 gene concentrations measured in wastewater samples by 

VIRADEL, PEG, and filtration methods 

Gene Concentrations VIRADEL PEG Filtration 

 

N1 (gc/L) 

Maximum 5.64E+03 7.02E+05 1.12E+05 

Minimum 9.01E+02 3.18E+04 5.12E+02 

Mean 1.61E+03 1.61E+05 3.22E+04 

 

N2 (gc/L) 

Maximum 4.95E+03 5.48E+05 7.34E+04 

Minimum 9.01E+02 2.97E+04 3.13E+02 

Mean 1.63E+03 1.50E+05 1.50E+04 

 

N1 (gc/day) 

Maximum 5.24E+12 4.07E+14 7.40E+13 

Minimum 5.39E+11 2.36E+13 4.12E+11 

Mean 1.35E+12 1.18E+14 2.52E+13 

 

N2 (gc/day) 

Maximum 4.62E+12 3.18E+14 4.77E+13 

Minimum 5.84E+11 2.21E+13 2.93E+11 

Mean 1.37E+12 1.12E+14 1.14E+13 

 

N1 (gc/day/person) 

Maximum 1.69E+00 1.31E+02 2.38E+01 

Minimum 1.74E-01 7.58E+00 1.32E-01 

Mean 4.34E-01 3.79E+01 8.11E+00 

 

N2 (gc/day/person) 

Maximum 1.49E+00 1.02E+02 1.54E+01 

Minimum 1.88E-01 7.12E+00 9.43E-02 

Mean 4.41E-01 3.59E+01 3.65E+00 

 

N1 (gc/mg TSS) 

Maximum 5.82E+01 5.72E+03 1.19E+03 

Minimum 6.85E+00 2.20E+02 2.91E+00 

Mean 1.69E+01 1.53E+03 2.97E+02 

 

N2 (gc/mg TSS) 

Maximum 5.21E+01 4.66E+03 6.60E+02 

Minimum 6.71E+00 1.99E+02 3.84E+00 

Mean 1.69E+01 1.44E+03 1.41E+02 

 

N1 

(gc/(L(pounds/day))) 

Maximum 2.94E-02 4.96E+00 8.83E-01 

Minimum 2.00E-03 6.48E-02 1.77E-03 

Mean 9.83E-03 1.01E+00 1.89E-01 

 

N2 

(gc/(L(pounds/day))) 

Maximum 2.70E-02 4.01E+00 4.84E-01 

Minimum 1.96E-03 5.90E-02 2.06E-03 

Mean 9.84E-03 9.37E-01 9.27E-02 
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Figure 3. 5. N1 and N2 gene concentrations (gc/L) by three concentration methods: VIRADEL, 

PEG, Filtration, as well as total COVID-19 cases 
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Previous reports have demonstrated that the VIRADEL method can serve as a leading 

indicator of COVID-19 cases (Miyani et al., 2021; Zhao et al., 2022a, 2022b). By contrast, PEG 

measured N1 and N2 gene concentrations were more variable and increased significantly in 

January 2022, lagging the major wave of COVID-19 infections (Figure 3. 5. b.). PEG N1 and N2 

gene concentrations increased simultaneously with the surge of COVID-19 cases in mid-April 

2022, into May 2022. N1 and N2 gene concentrations yielded by the filtration approach increased 

in early November 2021 and decreased in early December 2021. Thereafter, gene concentrations 

rapidly increased starting in mid-December 2021, peaking in mid-January 2022, which later 

significantly decreased to a low level in February 2022 (Figure 3. 5. c.). Notably, the peak in 

SARS-CoV-2 measured in wastewater by this approach was staggered, lagging the major wave of 

COVID-19 cases. 

3.2 Correlations and similarity analyses among three concentration methods 

3.2.1 Correlations of N1 and N2 gene concentrations among three concentration methods 

Multiple studies have applied Pearson and Spearman correlations to analyze the 

relationships between wastewater SARS-CoV-2 gene concentrations and COVID-19 cases (Ai et 

al., 2021; D’Aoust et al., 2021b; Zhao et al., 2022b), as well as the relationships among gene 

concentrations of SARS-CoV-2 in wastewater (Lancaster et al., 2022; Vadde et al., 2022). In this 

study, we tested the Pearson and Spearman correlations among N1 and N2 gene concentrations by 

VIRADEL, PEG, and filtration with normalized and non-normalized data (Table 3. 2.). A p-value 

that is less than 0.05 is considered statistically significant. For the non-normalized data (gc/L), the 

highest correlation was observed between PEG and filtration with N2 gene concentration 

(Pearson’s r = 0.67, Spearman’s r = 0.6). The lowest correlation was found between VIRADEL 

and PEG for N2 gene concentration (Pearson’s r = 0.12, Spearman’s r = 0.34). For non-normalized 
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data (gc/L), the correlations between PEG and filtration were stronger than the correlations 

between VIRADEL and filtration, which in turn was stronger than the correlations between 

VIRADEL and PEG. For normalized data, the highest correlation was found between PEG and 

filtration for N1 (Pearson’s r = 0.73, Spearman’s r = 0.66) and N2 (Pearson’s r = 0.76, Spearman’s 

r = 0.64) gene concentrations in gc/(L(pounds/day)). Significant correlations (Pearson coefficient 

> 0.63, Spearman coefficient > 0.6) were observed between PEG and filtration in gc/L, gc/mg TSS 

and gc/(L(pounds/day)) (Table 3. 2.). VIRADEL has stronger correlation to filtration than to PEG 

for both normalized and non-normalized data. 

Table 3. 2. Correlation coefficients among gene concentrations by VIRADEL, PEG, and 

filtration methods 

Methods (Units) N1 (Pearson) N1 (Spearman) N2 (Pearson) N2 (Spearman) 

V-P (gc/L) 0.17 0.36 0.12 0.34 

V-P (gc/day) 0.10 0.17 0.11 0.13 

V-P (gc/day/person) 0.10 0.17 0.11 0.13 

V-P (gc/mg TSS) 0.29 0.41 0.27 0.46 

V-P (gc/(L(pounds/day))) 0.46 0.58 0.43 0.62 

V-F (gc/L) 0.41 0.46 0.23 0.40 

V-F (gc/day) 0.26 0.13 0.04 0.05 

V-F (gc/day/person) 0.26 0.13 0.04 0.05 

V-F (gc/mg TSS) 0.49 0.47 0.27 0.39 

V-F (gc/(L(pounds/day))) 0.59 0.64 0.41 0.60 

P-F (gc/L) 0.63 0.60 0.67 0.60 

P-F (gc/day) 0.46 0.51 0.45 0.50 

P-F (gc/day/person) 0.46 0.51 0.45 0.50 

P-F (gc/mg TSS) 0.67 0.63 0.68 0.60 

P-F (gc/(L(pounds/day))) 0.73 0.66 0.76 0.64 

Note: V represents VIRADEL, P represents PEG, F represents filtration. 

Normalizations using flow rate and flow rate/population reduced the correlations of gene 

concentrations among VIRADEL, PEG, and filtration compared to the correlations using the non-

normalized data (gc/L) (Table 3. 2.). For instance, both Pearson and Spearman correlation 

coefficients between PEG and filtration were reduced from 0.67 (N2, Pearson, gc/L) and 0.6 (N2, 

Spearman, gc/L) to 0.45 (N2, Pearson, gc/day) and 0.5 (N2, Spearman, gc/day), respectively 
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(Table 3. 2.). Conversely, normalizations using TSS and flow rate×TSS enhanced the correlations 

of gene concentrations among the three methods. For instance, higher correlation coefficients 

(Pearson’s r ranged from 0.73 (N1 gene) to 0.76 (N2 gene), Spearman’s r ranged from 0.64 (N2 

gene) to 0.66 (N1 gene), all p < 0.05) were observed between PEG and filtration gene 

concentrations after normalization using flow rate×TSS compared to the correlation coefficients 

for non-normalized data (gc/L) (Pearson’s r ranged from 0.63 (N1 gene) to 0.67 (N2 gene), 

Spearman’s r = 0.6 (both N1 and N2 gene), all p < 0.05). 

3.2.2 Dynamic time warping (DTW) of N1 and N2 gene concentrations among three concentration 

methods 

Detecting patterns and comparing similarities of gene concentration time series data are 

critical for comparing the concentration methods. Dynamic time warping (DTW) identifies the 

most similar patterns and the optimal warping match between two time series by calculating the 

minimum DTW distance (Berndt & Clifford, 1994; Giorgino, 2009; Jeong et al., 2011). Shorter 

DTW distances indicate higher degree of similarity in patterns/shapes between two time series 

(Guan et al., 2016; Liu et al., 2018). Table 3. 3. presents the DTW minimum distances among the 

N1 and N2 gene concentrations by VIRADEL, PEG, and filtration methods. Smallest DTW 

distances were observed between VIRADEL and filtration for both non-normalized and 

normalized data, which indicated that VIRADEL has a higher degree of similarity with filtration 

than with PEG. Largest DTW distances were observed between VIRADEL and PEG for both non-

normalized and normalized data, indicating that VIRADEL and PEG have the least similarity. This 

finding was consistent with the sampling and concentration mechanisms since VIRADEL targets 

free and suspended viral particles in the dissolved phase of wastewater, whereas PEG targets 

particle-associated viruses, some of which may represent previously shed and accumulated viruses 
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in the sewer stream (Flood et al., 2021; Zhao et al., 2022b). 

Normalization using flow rate decreased the similarity among methods. For instance, the 

DTW distance between VIRADEL and filtration increased significantly after normalizing using 

flow rate (gc/day), indicating that the similarity between VIRADEL and filtration was reduced 

after normalization (Table 3. 3.). Conversely, normalization using TSS and flow rate×TSS 

strengthened the similarity among methods. For instance, the DTW distances decreased in gc/mg 

TSS and gc/(L(pounds/day)) comparing to the DTW distance in gc/L among the methods, 

indicating the improvement of similarity among methods after normalization (Table 3. 3.). 

Table 3. 3. Dynamic time warping (DTW) minimum distances among gene concentrations by 

VIRADEL, PEG, and filtration methods 

Methods (Units) N1 N2 

V-P (gc/L) 4.37E+07 4.07E+07 

V-P (gc/day) 3.23E+16 3.06E+16 

V-P (gc/day/person) 1.04E+04 9.83E+03 

V-P (gc/mg TSS) 3.93E+05 3.68E+05 

V-P (gc/(L(pounds/day))) 2.42E+02 2.23E+02 

V-F (gc/L) 7.51E+06 3.14E+06 

V-F (gc/day) 5.87E+15 2.35E+15 

V-F (gc/day/person) 1.89E+03 7.56E+02 

V-F (gc/mg TSS) 6.74E+04 2.84E+04 

V-F (gc/(L(pounds/day))) 4.33E+01 1.92E+01 

P-F (gc/L) 2.60E+07 2.85E+07 

P-F (gc/day) 1.83E+16 2.27E+16 

P-F (gc/day/person) 5.89E+03 7.30E+03 

P-F (gc/mg TSS) 2.45E+05 2.94E+05 

P-F (gc/(L(pounds/day))) 1.46E+02 1.66E+02 

Note: V represents VIRADEL, P represents PEG, F represents filtration. 

3.3 Similarity and TLCC analyses between three concentration methods and COVID-19 

cases 

3.3.1 Dynamic time warping between three concentration methods and COVID-19 cases 

Wastewater surveillance data for COVID-19 primarily contain temporal data of viral gene 

concentrations and clinical cases. DTW analyses were performed between gene concentrations 
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derived from the three concentration methods (VIRADEL, PEG, and filtration) and the 7-day 

moving average of total COVID-19 cases for both normalized and non-normalized data. For non-

normalized data (gc/L), the smallest DTW distance was found between VIRADEL and total 

COVID-19 cases (Table 3. 4.). This indicates that VIRADEL (gc/L) has the highest similarity to 

total COVID-19 cases among the three concentration methods tested. The largest DTW distance 

was found between PEG (gc/L) and total COVID-19 cases, indicating the PEG method for 

concentration yields the least similarity to clinical cases. Normalizing gene concentration data 

using flow (gc/day) demonstrated similar findings. Conversely, normalization using TSS and 

flow×TSS can significantly increase the similarity between PEG and total COVID-19 cases but 

concurrently decrease the similarity between VIRADEL and total COVID-19 cases. Specifically, 

for normalized data (gc/mg TSS, gc/L(pounds/day)), the smallest DTW distance was identified 

between PEG and total COVID-19 cases, indicating the PEG has the highest similarity to total 

COVID-19 cases. The largest DTW distance was identified between VIRADEL and COVID-19 

cases, indicating that VIRADEL has the lowest similarity to total COVID-19 cases. 
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Table 3. 4. Dynamic time warping (DTW) minimum distances between gene concentrations by 

VIRADEL, PEG, as well as filtration methods and total COVID-19 cases 

Methods (Units) N1 N2 

V-cases (gc/L) 1.04E+05 1.28E+05 

V-cases (gc/day) 4.72E+14 4.86E+14 

V-cases (gc/day/person) 4.61E+05 4.61E+05 

V-cases (gc/mg TSS) 4.55E+05 4.54E+05 

V-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05 

P-cases (gc/L) 4.39E+07 4.08E+07 

P-cases (gc/day) 3.30E+16 3.14E+16 

P-cases (gc/day/person) 4.43E+05 4.42E+05 

P-cases (gc/mg TSS) 9.87E+04 1.14E+05 

P-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05 

F-cases (gc/L) 7.35E+06 2.95E+06 

F-cases (gc/day) 6.20E+15 2.82E+15 

F-cases (gc/day/person) 4.57E+05 4.59E+05 

F-cases (gc/mg TSS) 2.87E+05 3.92E+05 

F-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05 

Note: V represents VIRADEL, P represents PEG, F represents filtration, cases represents total 7-

day-moving-average clinical cases. 

3.3.2 TLCC and peak synchrony between three concentration methods and COVID-19 cases 

The relative timing of the wastewater gene concentrations (gc/L, gc/day, gc/day/person, 

gc/mg TSS, and gc/(L(pounds/day))) of VIRADEL, PEG and filtration were compared to the total 

COVID-19 cases using TLCC and peak synchrony. To evaluate if wastewater viral concentrations 

of the three methods lead or lag COVID-19 cases, the total COVID-19 case data were shifted by 

a period of −20 (lagging) to +20 days (leading) and the Pearson’s correlation coefficients were 

calculated between cases and wastewater viral gene concentration for each shift. The leading or 

lagging metric varied for each method, which was determined by comparing the strongest 

Pearson’s correlation coefficient. 

For the VIRADEL method, both N1 and N2 gene concentrations (gc/L) were strongly 

correlated with COVID-19 cases, covering shifting windows between −20 and +20 days (Figure 

3. 6. a.). The highest correlation coefficient was observed when offset is +12 days (Figure 3. 6. 

a.), indicating that SARS-CoV-2 gene concentrations (gc/L) in wastewater by the VIRADEL 
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method lead COVID-19 cases by 12 days, which concurred with previous findings of a 35-day 

lead time of gene concentrations preceding total COVID-19 cases prior to the Omicron surge 

(Zhao et al., 2022b). For both non-normalized and normalized data, VIRADEL always led 

COVID-19 cases with a variety of lead times (Table 3. 5.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 164 

 

 

 
Figure 3. 6. Pearson correlation coefficients for TLCC and peak synchrony between wastewater 

viral concentrations and COVID-19 cases with offsets between −20 (lagging) and +20 (leading) 

days for the three methods, including VIRADEL (a), PEG (b), and Filtration (c) 
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Table 3. 5. Lead/lag time between wastewater viral concentrations by VIRADEL, PEG, as well 

as filtration methods and total COVID-19 cases 

Units Method (Gene) 

V (N1) V (N2) P (N1) P (N2) F (N1) F (N2) 

gc/L* +12 +12 -12 -12 -7 -11 

gc/day +13 +13 -6 -6 -2 -10 

gc/day/person +13 +13 -6 -6 -2 -10 

gc/mg TSS +11 +11 -9 -9 -7 -12 

gc/(L(pounds/day)) +9 +9 -14 -14 -11 -13 

Note: V represents VIRADEL, P represents PEG, F represents filtration, * was demonstrated in 

Figure 3. 6., + indicates lead time, – indicates lag time. 

For the PEG method (gc/L), the strongest correlation coefficients were observed with an 

offset of -12 days, indicating that SARS-CoV-2 gene concentrations by the PEG method lagged 

reported COVID-19 cases by 12 days during the study period (Figure 3. 6. b.). 

For the filtration method (gc/L), the highest correlation coefficient was observed with an 

offset of -7 days for the N1 gene and -11 days for the N2 gene, indicating that SARS-CoV-2 gene 

concentrations in wastewater lagged reported COVID-19 cases for 7 days (N1) and 11 days (N2), 

respectively (Figure 3. 6. c.). Likewise, similar observations were found for normalized data where 

the filtration method yielded data that lagged clinical cases (Table 3. 5.). Table 3. 5. summarized 

the lead/lag time between VIRADEL, PEG, and filtration methods and total COVID-19 cases. The 

length of the leading or lagging time differed with dissimilar normalizations. However, the leading 

or lagging pattern of each method did not change, where VIRADEL measurements were always 

leading COVID-19 cases, whereas PEG and filtration measurements routinely lagged COVID-19 

cases. 

4. Discussion 

There is an ongoing effort to optimize methods to recover and concentrate SARS-CoV-2 
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from wastewater in support of actionable public health outcomes (Ahmed et al., 2020c; Kitajima 

et al., 2020). In this study, three concentration methods were evaluated for concentrating SARS-

CoV-2 from wastewater, spanning the transition between Delta and Omicron variants circulating 

in the Detroit, MI metropolitan area. The three methods share common characteristics, especially 

downstream where they follow similar procedures of nucleic acid extraction and quantification 

such as RT-ddPCR or RT-qPCR. Likewise, their recovery efficiencies are reported as comparable 

(Li et al., 2022; Zhao et al., 2022b; Flood et al., 2021; Pecson et al., 2021; Torii et al., 2021). 

4.1 VIRADEL: Opportunities and obstacles 

Several studies have previously adopted VIRADEL as the concentration method for 

SARS-CoV-2 in wastewater (Li et al., 2022; Miyani et al., 2020, 2021; Zhao et al., 2022a, 2022b). 

An attribute of the VIRADEL method is the ability to process large volumes (10 – 50 L) of 

wastewater, thus facilitating capture of free and suspended viral particles that are arguably most 

representative of viruses shed by recently infected individuals (Lu et al., 2020a; Zhao et al., 

2022b). This establishes VIRADEL as a concentration method capable to provide early warning 

that leads case reporting (Miyani et al., 2021; Zhao et al., 2022b), which was also verified by 

TLCC analyses in this study (Table 3. 5.). Limiting widescale adoption of VIRADEL is labor-

intensive preparation of sampling units which require extensive washing and disinfection prior to 

use. VIRADEL (Bivins et al., 2022) also requires access to large volumes of wastewater which 

may not be available to all researchers. Further, the required large volumes may necessitate use of 

grab samples which typically yield higher variability than composite samples which is the 

sampling method of choice for many wastewater surveillance efforts (Bivins et al., 2022). 

VIRADEL requires trained personnel for comparatively laborious work with limited samples 

(n=15) processed over a relatively long time (4-6 h). VIRADEL also requires multiple large 
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centrifuges as well as expensive and at times, supply chain-limited consumables. Therefore, 

VIRADEL may not be an ideal choice for routine wastewater surveillance projects in common 

microbiology laboratories. However, it was clear from the comparative analyses conducted that 

VIRADEL has clear potential to be implemented as a tool to provide early warning to inform 

public health actions (Miyani et al., 2021; Zhao et al., 2022a, 2022b). 

4.2 PEG: Opportunities and obstacles 

Apart from requiring access to a centrifuge, the consumables required are widely available 

and relatively inexpensive, lending itself as one of the most broadly applied concentration methods 

for routine wastewater surveillance (Ahmed et al., 2020c; Flood et al., 2021; Hata et al., 2021; 

Sapula et al., 2021; Torii et al., 2021; Zhao et al., 2022b). On the other hand, PEG is restricted to 

processing smaller volumes of wastewater (usually 0.05 to 2 L) and only a portion of the sample 

pellet is used to recover and extract RNA, which can be affected by the variation of samples and 

representation of all viruses in wastewater (Ahmed et al., 2020c; Flood et al., 2021; Lu et al., 

2020a; Zhao et al., 2022b). 

Unlike VIRADEL, PEG targets particle-associated viruses consistent with reports that 

identify solids as the phase yielding highest SARS-CoV-2 concentrations in wastewater (Torii et 

al., 2021). While a fraction of these particles will represent recently deposited SARS-CoV-2, the 

majority may represent previously shed and accumulated viruses in the sewer stream and later 

resuspended during flow fluctuations, thus providing a mechanism for the method to yield data 

lagging clinical COVID-19 cases. Though the exact mechanism of PEG is not well understood, 

several studies proposed that it captures viruses that are sorbed to larger precipitates and solids, 

consistent with a high quantity of TSS in wastewater (Flood et al., 2021; Zhao et al., 2022b). In 

this study, through the DTW analyses, PEG yielded data were normalized using TSS and 
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flow×TSS, which increased the degree of similarity between PEG and total COVID-19 cases 

(Table 3. 4.). This demonstrated that PEG yielded data were largely affected by the presence of 

TSS. VIRADEL, instead, captured free and suspended viruses in the supernatant wastewater. 

Thus, normalizing the VIRADEL data using TSS and flow×TSS decreased the similarity between 

VIRADEL and cases (Table 3. 4.). 

Through the TLCC analyses, this study also demonstrated that PEG gene concentrations 

lagged COVID-19 cases (Table 3. 5.), which embraced the aforementioned sampling mechanism 

of PEG (Flood et al., 2021). PEG method did not provide an early warning (leading window) for 

COVID-19 cases which was concurred with our previous findings, whereas VIRADEL provided 

early warnings ahead of clinical cases while PEG lagged clinical cases for the Detroit area (Zhao 

et al., 2022b). 

However, several studies using PEG provided early warnings of impending COVID-19 

cases (D’Aoust et al., 2021a). Notably, in these studies, PEG was applied to different types of 

samples such as primary sewage sludge, which is a different sample matrix from untreated 

wastewater samples, thus needing more investigation on the impact of sample types on early 

warnings (D’Aoust et al., 2021a). Kumar et al., identified early warnings using PEG in the early 

stage of the pandemic in August 2020 in India (Kumar et al., 2021). PEG and other concentration 

methods (such as ultrafiltration (Hasan et al., 2021; Medema et al., 2020) and adsorption-

precipitation (Randazzo et al., 2020)) identified early warnings in the early stage of the pandemic 

when testing capacities were largely limited, and societal responses to the pandemic and clinical 

data reporting were significantly delayed (Bibby et al., 2021; Zhao et al., 2022b). In addition, 

earlier prevalent COVID-19 variants including Alpha, Beta and Gamma were reported with longer 

incubation times than Delta and Omicron variants, leading to prolonged early warning potentials 
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of wastewater surveillance in the early stages of the pandemic (Wu et al., 2022). 

Though PEG was reported to provide early warnings, it may have a shorter early warning 

window than VIRADEL due to the fundamental disparity of their targets, that being newly 

contributed free and suspended viral particles versus particle-attached virus, some of which may 

be considered previously shed and accumulated and subsequently resuspended from sediment 

(Zhao et al., 2022b). In the current study, PEG was shown to lag clinical cases while VIRADEL 

was leading clinical cases for both normalized and non-normalized data (Table 3. 5.). Overall, the 

early warning potential of PEG needs further investigations in terms of sample types, sampling 

mechanisms and locations, stage of the epidemic, amongst other factors. 

4.3 Filtration: Opportunities and obstacles 

Filtration is commonly applied to recover and concentrate viral RNA in water samples. It 

achieves generally good recovery efficiencies, is relatively inexpensive using commonly available 

lab equipment and simple protocols and provides consistent performance and inclusive 

measurement since it captures viruses from both solids and liquid fractions by nature of forcing 

free viral particles across trapped solids (Ahmed et al., 2020c; Gonçalves et al., 2021). However, 

filtration has several drawbacks. First, the number of available filtration units restricts the number 

of samples that can be processed concurrently (Ahmed et al., 2020c). Meanwhile, clogging of 

filters can occur due to high variations of turbidity in wastewater. While this can be offset in part 

by use of a caulking gun to exert more pressure on the sample being filtered, in reality, volumes 

are limited to ~0.1 L. Additionally, filtration measurements lagged the COVID-19 clinical cases 

in the current study, thus, its ability to provide early warnings for impending cases is called into 

question. The recovery efficiencies also differ with different filters (Ahmed et al., 2020c). 
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4.4 Future directions 

The mechanism and implications of primarily collecting viruses attached to solids that may 

have settled and resuspended before sampling, such as by the PEG, needs further investigations. 

Notably, multiple studies have reported that the integrity of SARS-CoV-2 RNA was higher when 

sorbed to suspended solids, organic matter, and large bio-solids which provide protection from 

predation and inactivation. This can be explained by the hydrophobicity of SARS-CoV-2 viral 

particles, leading to their adherence to wastewater solids and longer persistence compared to free 

viruses in the supernatant wastewater (Abu Ali et al., 2021; Gundy et al., 2009; Panchal et al., 

2021). 

The implications of seasonal variations in SARS-CoV-2 persistence in wastewater needs 

further investigations. Seasonal variations of wastewater temperature and pH are reported to affect 

the persistence of viral RNA in wastewater (Hart & Halden, 2020). However, SARS-CoV-2 RNA 

was shown to be highly stable at 4 °C aqueous environment or in a wide pH range at room 

temperature (Ahmed et al., 2020b; Chin et al., 2020). Multiple studies reported the detectability 

and persistence of SARS-CoV-2 RNA in untreated wastewater solids samples. For instance, 

researchers found that SARS-CoV-2 RNA was consistently detected for 29 days and 64 days at 4 

°C and -20 °C, respectively in wastewater solids pelleted by centrifugation,  (Hokajärvi et al., 

2021). Another study indicated that only minimal reduction of SARS-CoV-2 RNA was observed 

for wastewater solids samples after 100 days (Simpson et al., 2021). Additionally, researchers 

established models to indicate that viral RNA can be detected in wastewater even with long sewer 

travel time (100 h), especially with lower average wastewater temperature in northern cities such 

as Detroit (Hart & Halden, 2020). Recent study also indicated that biofilms could mediate the fate 

of SARS-CoV-2 in wastewater, especially leading the viral RNA to prolonged presence (Li et al., 
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2023). 

The effect of varying sampling volumes needs further investigation. Some studies 

indicated that a larger sampling volume can increase the sensitivity of the sampling method, 

suggesting that it will detect lower levels of viral RNA in wastewater samples (McMinn et al., 

2021). Similarly, researchers suggested that processing of larger sample volumes may help to 

lower the method detection limits (Hart & Halden, 2020). But at the same time, keeping the 

required samples sizes low can lead to inexpensive shipping between sampling location and the 

analytical laboratory as well as limited spare for storage (Hart & Halden, 2020). Other researchers 

indicated that detection sensitivity can be improved by increasing the sample volume from 100 ml 

to 500 ml wastewater for testing SARS-CoV-2 (Ahmed et al., 2020a). 

However, other researchers presented that large-volume sampling did not significantly 

enhance the sensitivity of methods (Zheng et al., 2022). For instance, Zheng et al., found that 

wastewater concentration methods (they used ultracentrifugation) using less volume of wastewater 

was preferable than larger volume of wastewater in terms of sensitivity for testing SARS-CoV-2. 

The study revealed that when using the same concentration methods, no significant difference was 

observed in the viral RNA concentrations between experiments conducted with a larger volume 

of wastewater and those conducted with a smaller volume (Zheng et al., 2022). Some studies 

indicated that a larger sampling volume may also dilute the wastewater sample, which can lead to 

a lower viral RNA concentration (Bertels et al., 2022). 

Overall, the sampling volume for wastewater surveillance of SARS-CoV-2 using different 

concentration methods will depend on several factors, including the sensitivity of the method, the 

concentration of viral RNA in the wastewater, and the size of the population being monitored. It 

is critical to consider and address these factors when analyzing wastewater surveillance data and 
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more in-depth research on how the sampling volume affect statistical results are needed. 

The time of sampling may potentially affect results in sewershed sampling. The effect of 

sampling time in large interceptors, like the ones sampled in this study, is less significant, since 

the interceptor wastewater is mixed at the pumping stations. A few studies have reported gene 

concentration varying on an hourly basis (Bivins et al., 2021; Li et al., 2021) although the temporal 

variability of SARS-CoV-2 concentrations in wastewater remains ambiguous (Bivins et al., 2021; 

Ahmed et al., 2020c). It has been suggested that composite samples may circumvent the within-

day variation of viral concentrations (Bivins et al., 2021). Whereas both the PEG and filtration 

methods used composite samples, the large volume required for VIRADEL necessitated separate 

sampling which was conducted over a period of several hours to help reduce temporal variability. 

Further, considering the vast sewersheds and population of nearly 4 million people that GLWA’s 

three interceptors serve, the concentrations of SARS-CoV-2 in wastewater may be highly diluted 

and within-day variations can be negligible. Future studies are called to examine within-day 

variation of SARS-CoV-2. 

Admittedly, there are caveats to the current study that should be considered and discussed. 

The study period was limited to the transition between Delta and Omicron VOCs that occurred 

between fall 2021 and winter 2022. With each successive resurgence of COVID-19, differences 

are reported related to disease trajectory including incubation time, shedding dynamics and disease 

severity (Baker et al., 2022; Boucau et al., 2022). For instance, the incubation time was shorter 

during the Omicron surge compared to the previous variants, inevitably reducing the early warning 

potentials of wastewater surveillance in the later stage of the pandemic (Baker et al., 2022; Zhao 

et al., 2022b). Further, the changing viral shedding dynamics, viral decay kinetics, and shedding 

duration of the Omicron variant are not well understood and many uncertainties remain (Boucau 
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et al., 2022; Kandel et al., 2022). As such, the lead and lag times reported here cannot be 

extrapolated to past or future SARS-CoV-2 variants. In addition, sampling frequency was limited 

to weekly samples and thus less informative for establishing time series or less likely to depict 

accurately the actual fluctuations of wastewater viral concentrations (cdc.gov). Feng et al., (2021) 

proposed a minimum of two samples collected weekly to establish the time series data of 

wastewater viral concentrations for continuous trend analysis (Feng et al., 2021). Some researchers 

have even suggested daily or very frequent sampling, if the laboratory is capable of handling 

increased numbers of samples, considering rapid resurgence of COVID-19 cases (Zhu et al., 

2021). Indeed, the filtration method has been used to analyze samples 5 days weekly since the 

emergence of the Omicron VOC as part of Ontario’s Wastewater Surveillance Initiative in the 

Windsor-Essex region located across the international border with Detroit (Q. Geng, R. Corchis-

Scott, R.M. McKay, unpublished). While SARS-CoV-2 signal intensity derived from this 

approach does not provide a clear early warning of clinical cases, preliminary analysis supports 

its use as a leading indicator of COVID-19-related hospitalizations in the region (Q. Geng, R. 

Corchis-Scott, R.M. McKay, unpublished). This is important considering that clinical testing 

capacity across North America was overwhelmed by infections attributed to Omicron and is thus 

no longer a reliable indicator of disease prevalence (Lawal et al., 2022). 

5. Conclusions 

This study is among the first to implement, evaluate, and compare commonly applied 

wastewater virus concentration methodologies to recover and concentrate SARS-CoV-2 from 

wastewater amid the transition between Delta and Omicron VOCs. Analytical approaches, 

including Pearson and Spearman correlations, Dynamic Time Warping (DTW), and Time Lagged 

Cross Correlation (TLCC) and peak synchrony, were performed to analyze the relations among 
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three methods as well as the relations between methods and COVID-19 cases. To our knowledge, 

this is the only study to implement Dynamic Time Warping to compare wastewater surveillance 

time series data and successfully identify the similarities/dissimilarities among the methods and 

between methods and clinical data. The analytical approach used can be applied to different sample 

processing and concentration methods under various pandemic scenarios to evaluate method 

efficacy for different public health practices. 
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CHAPTER 4: TRACKING THE TIME LAG BETWEEN SARS-COV-2 WASTEWATER 

CONCENTRATIONS AND THREE COVID-19 CLINICAL METRICS: A 21-MONTH 

CASE STUDY IN DETROIT AREA, MICHIGAN 

Published in Journal of Environmental Engineering: 

Zhao, L., Faust, R. A., David, R. E., Norton, J., & Xagoraraki, I. (2024). Tracking the Time Lag 

between SARS-CoV-2 Wastewater Concentrations and Three COVID-19 Clinical Metrics: A 21-

Month Case Study in the Tricounty Detroit Area, Michigan. Journal of Environmental 

Engineering, 150(1), 06023004. 

Abstract 

Wastewater surveillance has been widely implemented to monitor COVID-19 incidences 

in communities worldwide. One notable application of wastewater surveillance is for providing 

early warnings of disease outbreaks. Many studies have reported time lags between SARS-CoV-

2 wastewater concentrations and confirmed clinical COVID-19 cases. Only a few studies, to date, 

have explored time lags between SARS-CoV-2 wastewater concentrations and other clinical 

metrics. In this study, we investigated time lags between SARS-CoV-2 wastewater concentrations 

and three COVID-19 clinical metrics: confirmed clinical cases, hospitalizations, and ICU 

admissions, in the Tri-county Detroit Area, Michigan, USA. The COVID-19 clinical metrics were 

dated between September 1, 2020, and October 31, 2022, and were collected from public data 

sources. SARS-CoV-2 N1 and N2 gene concentrations between September 1, 2020, and May 31, 

2022, were generated using two sampling and concentration methods: virus adsorption-elution 

(VIRADEL) and polyethylene glycol precipitation (PEG). The data were collected from our 

recently published study. Time lagged cross correlation was implemented to estimate time lags 

between gene concentrations and the three clinical metrics. Original gene concentrations were 
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normalized by wastewater flow parameters through nine approaches to estimate the impact of 

wastewater flow on time lags. Vector autoregression models were established to analyze the 

relationship between gene concentrations and clinical metrics. The results indicate that VIRADEL 

gene concentrations in wastewater preceded all clinical metrics prior to the COVID-19 Omicron 

surge, for instance, 32 days, 47 days, and 51 days preceding confirmed cases, hospitalizations, and 

ICU admissions, respectively (gene concentrations unit: gc/day). When translated to a public 

health context, these time lags become critical lead times for officials to prepare and react. During 

the Omicron surge, there were significant reductions in time lags, with VIRADEL measurements 

trailing total ICU admissions. PEG measurements lagged behind the three clinical metrics and did 

not provide early warnings of disease surges. 

1. Introduction 

Wastewater surveillance has gained immense attention since the inception of the COVID-

19 pandemic and has been widely utilized to monitor the disease globally (Ahmed et al., 2020; 

Ahmed et al., 2021; Bivins & Bibby, 2021; Galani et al., 2022; Gentry et al., 2023; Hopkins et al., 

2023; Li et al., 2022; Miyani et al., 2020, 2021; Peccia et al., 2020; Saguti et al., 2021; Schenk et 

al., 2023; Zhao et al., 2022, 2023a). One of the most intensely studied and prominent applications 

of wastewater surveillance is the determination of the time lag between SARS-CoV-2 wastewater 

concentrations and COVID-19 clinical metrics, primarily confirmed COVID-19 cases (Miyani et 

al., 2021; Peccia et al., 2020; Zhao et al., 2022). Recently, a few studies investigated the time lag 

between SARS-CoV-2 wastewater surveillance and other COVID-19 clinical metrics, including 

COVID-19 hospitalizations and ICU admissions. Researchers found that SARS-CoV-2 gene 

concentrations in untreated wastewater preceded COVID-19 hospitalizations by at least 3 to 9 days 

in Amsterdam and Utrecht, the Netherlands (Stephens et al., 2022); 8 days in Attica, Greece 
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(Galani et al., 2022); 7 to 13 days in Houston, Texas, USA (Hopkins et al., 2023); and 19 to 21 

days in Gothenburg, Sweden (Saguti et al., 2021). Additionally, other studies indicated that SARS-

CoV-2 concentrations in wastewater sludge preceded local hospitalizations by 1 to 4 days in New 

Haven, Connecticut, USA (Peccia et al., 2020), and 4 days in Ottawa, Ontario, Canada (D’Aoust 

et al., 2021). Likewise, a few studies have also reported that SARS-CoV-2 gene concentrations in 

untreated wastewater preceded COVID-19 ICU admissions. Galani et al. found this time lag to be 

9 days, exceeding the time lag between SARS-CoV-2 wastewater concentrations and 

hospitalizations by 1 day (Galani et al., 2022). Other researchers have reported a longer time lag 

between SARS-CoV-2 wastewater concentrations and  ICU admissions, including 10 to 16 days 

in Houston, Texas, USA (Hopkins et al., 2023), and a maximum of 17.7 days across Australia 

(Schenk et al., 2023). 

In this study, “time lag” was defined as the duration between peaks in measured SARS-

CoV-2 wastewater concentrations and peaks in reported clinical metrics (Zhao et al., 2022). We 

investigated the time lag between SARS-CoV-2 N1 and N2 gene concentrations in wastewater 

and three clinical metrics including confirmed cases, hospitalizations, and ICU admissions, all 

within the Tri-county Detroit area (TCDA), Michigan, USA, between September 1, 2020, and 

May 31, 2022. The study period included three major surges of COVID-19 cases, associated with 

different SARS-CoV-2 variants such as Alpha, Delta, and Omicron shown in Tables 4S. 1. and 

4S. 2. Thus, we analyzed a 21-month dataset of SARS-CoV-2 N1 and N2 gene wastewater 

concentrations using two sampling and concentration methods in the TCDA. These methods 

included the United States Environmental Protection Agency’s (U.S. EPA) Virus Adsorption-

Elution (VIRADEL) method and the polyethylene glycol precipitation (PEG) method. The time 

lag between SARS-CoV-2 wastewater concentrations and the three clinical metrics were estimated 
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using time lagged cross correlation (TLCC). Nine approaches of normalizing SARS-CoV-2 

concentrations were performed to investigate the impact of flow parameters on time lag. We 

demonstrate the early warning potential of the VIRADEL method, which provided lead times for 

all three clinical metrics prior to the Omicron surge. During the Omicron surge, we observed that 

VIRADEL N1 and N2 gene concentrations preceded confirmed COVID-19 cases and 

hospitalizations under both normalized and non-normalized conditions. PEG SARS-CoV-2 

concentrations lagged behind all three clinical metrics during the Omicron surge for both 

normalized and non-normalized conditions. Our results also indicate that normalizations using 

flow parameters can affect time lag. 

2. Materials and Methods 

2.1 Study Area and Sample Collection 

Untreated wastewater samples were collected weekly from the Great Lakes Water 

Authority (GLWA) Water Resource Recovery Facility (WRRF) located in southeastern Michigan, 

USA, between September 1, 2020, and May 31, 2022. The WRRF operates a semi-combined 

sewershed system, which treats stormwater, residential, industrial, and commercial waste, 

depending on service areas (Zhao et al., 2023b). The WRRF serves the TCDA, including the city 

of Detroit, as well as Wayne, Macomb, and Oakland Counties (see chapter 1 Figure 1. 2.). The 

WRRF receives wastewater via three main interceptors, including the Oakwood-Northwest-

Wayne County Interceptor (ONWI), the North Interceptor-East Arm (NIEA), and the Detroit River 

Interceptor (DRI) (see chapter 1 Figure 1. 3.). As of 2020, population served by ONWI, NIEA, 

and DRI are 840600, 1482000, and 492000, respectively (Miyani et al., 2021). As mentioned, two 

sampling and concentration methods were used, VIRADEL (Li et al., 2022; Miyani et al., 2020, 

2021; Zhao et al., 2022) and PEG (D’Aoust et al., 2021; Kaya et al., 2022; Zhao et al., 2022). 
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Briefly, for VIRADEL, approximately 10 gallons of untreated wastewater passed through 

NanoCeram electropositive cartridge filters with a less than 11 L/min rate (Miyani et al., 2020, 

2021; Zhao et al., 2022). For PEG, 1 L of 24-hr composite samples were collected in sterilized 

polythene plastic bottles weekly. Subsequently, the filters were placed in sealed plastic bags and 

transported together with the bottles on ice to the Environmental Virology Laboratory at Michigan 

State University within 24 hours for downstream processes. 

2.2 Clinical Metrics and Wastewater Surveillance Dataset 

Analyzed COVID-19 clinical metrics included total confirmed cases, total hospitalizations, 

and total ICU admissions. The total confirmed COVID-19 cases for the TCDA were accessed on 

December 28, 2022, for the period between September 1, 2020, and October 31, 2022, from a 

publicly available source (michigan.gov/coronavirus). Total COVID-19 hospitalizations and total 

ICU admissions for the TCDA were accessed on December 28, 2022, for the period between 

September 1, 2020, and October 31, 2022, also from a publicly available source 

(covidactnow.org/us/michigan-mi). To mitigate the impact of outliers and to ensure a more 

accurate representation of data, 7-day moving averages of clinical metrics (Figure 4. 1. a.) were 

used for downstream statistical analyses (Menkir et al., 2021; Zhao et al., 2022). Available 

COVID-19 clinical metrics were limited to the city or county level within the TCDA. Additionally, 

wastewater captured by each interceptor represented portions of each city or county in the TCDA. 

Consequently, only the total N1 and N2 gene concentrations could be associated with total 

COVID-19 clinical metrics within each jurisdiction (Miyani et al., 2020, 2021; Zhao et al., 2022). 

Other detailed descriptions of COVID-19 clinical metrics are provided in the Supplementary 

Materials. 

The SARS-CoV-2 N1 and N2 gene concentration data using VIRADEL and PEG methods 



 

 191 

were collected throughout our previously published wastewater surveillance study shown in 

Figures 4. 1. b. and 4. 1. c. (Zhao et al., 2023a). Missing data from samples were addressed using 

linear interpolation for downstream analyses (Lepot et al., 2017; Zhao et al., 2022, 2023a). 

Detailed information on portions of data using linear interpolation are presented in the 

Supplementary Materials. 
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Figure 4. 1. a. Clinical COVID-19 metrics: total confirmed cases, total hospitalizations, and total 

ICU admissions in the TCDA (7-day moving average data). b. N1 and N2 gene concentrations 

(gc/L) by VIRADEL. c. N1 and N2 gene concentrations (gc/L) by PEG 
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2.3 Interceptor Flow Data and Normalizations 

The population contributing to each interceptor for each jurisdiction in the TCDA was 

estimated from 2020 calculations (Miyani et al., 2021). Daily flow parameters included flow rate 

(million gallons/day), sanitary percentage of wastewater (%), TSS (mg/L), CBOD (mg/L), and TP 

(mg/L) and they were collected from the WRRF. To investigate the influence of flow and dilution 

of wastewater on time lag, nine approaches to normalizing wastewater N1 and N2 gene 

concentrations were performed. Flow rate was consistently applied to normalize wastewater 

SARS-CoV-2 concentrations to account for dilution effects (Hopkins et al., 2023; Zhao et al., 

2022). Wastewater quality parameters of CBOD and TP were easily measured in WRRF and were 

applied for normalization previously (Maal-Bared et al., 2023; Isaksson et al., 2022; Zhao et al., 

2022). Maal-Bared et al. indicated that using easily measured wastewater quality parameters such 

as TP could provide comparable advantages to the application of Pepper Mild Mottle Virus 

normalization (Maal-Bared et al., 2023). Sanitary percentage and TSS were frequently applied for 

normalization of wastewater SARS-CoV-2 concentrations (Maal-Bared et al., 2023; Zhao et al., 

2022, 2023b). Especially, TSS might be useful to normalize wastewater SARS-CoV-2 

concentrations by the solids-contained PEG method (Flood et al., 2021). Detailed calculations of 

normalization approaches are described in the Supplementary Materials. Both non-normalized and 

normalized N1 and N2 gene concentrations were used for downstream statistical analyses. 

2.4 Data Analyses 

Data were tracked and organized using Microsoft Excel version 16.73. R version 4.2.3 

(2023-03-15) was utilized for performing data analyses. To estimate the time lag between N1 and 

N2 gene concentrations and clinical metrics, time lagged cross correlation (TLCC) was performed. 

Original N1 and N2 gene concentrations (gc/L) were normalized using flow parameters into the 
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following units: gc/day, gc/day/person, gc/L of sanitary flow percentage, gc/day of sanitary flow, 

gc/mg TSS, gc/mg BOD, gc/L of TSS:BOD ratio, gc/mg TP, and gc/(L*(pounds/day)). TLCC has 

been widely used for analyzing time lags between time series, providing an effective approach to 

estimate the temporal relationship between two time series and to illustrate their temporal shift 

(Hopkins et al., 2023; Mei et al., 2009; Shen, 2015). R packages “synchrony”, “devtools”, 

“ggplot2”, “ggpubr”, and other related packages were used to estimate and visualize time lag using 

TLCC. Prior to the Omicron surge (09/01/2020 and 08/31/2021), the clinical metrics were shifted 

by a period of 0 and +100 days and the Pearson’s coefficients were calculated between VIRADEL 

gene concentrations and clinical metrics for each shift. During the Omicron surge (10/01/2021 and 

05/31/2022), the clinical metrics were shifted by a period of -30 and +100 days and the Pearson’s 

coefficients were calculated between VIRADEL as well as PEG gene concentrations and clinical 

metrics for each shift. The lead/lag pattern varied between the VIRADEL and PEG methods, 

which were determined by assessing the strongest Pearson’s correlation coefficient (Hopkins et 

al., 2023; Zhao et al., 2022; 2023b). Figure 4. 2. demonstrates an example of time lag estimation 

using TLCC between VIRADEL N1 and N2 concentrations (gc/L) and total confirmed COVID-

19 cases, hospitalizations, and ICU admissions, prior to the Omicron surge. Peak synchrony 

indicates the strongest correlation. For instance, time lag between VIRADEL N1 gene 

concentrations (gc/L) and confirmed COVID-19 cases is estimated as 34 days, when the strongest 

Pearson’s correlation between the time series is observed and the time series are most 

synchronized (Figure 4. 2. a.). Additionally, a vector autoregressive (VAR) model was employed 

to estimate the relationship between wastewater gene concentrations and clinical metrics. VAR 

was proven to be effective in evaluating relationships between gene concentrations in wastewater 

and COVID-19 clinical metrics (Cao & Francis, 2021; Zhao et al., 2022). 
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Figure 4. 2. TLCC results between N1 N2 gene concentrations (gc/L) by VIRADEL and  (a) 

total confirmed COVID-19 cases (b) total hospitalizations, and (c) total ICU admissions 

 

 

 

a 

b 

c 



 

 196 

3. Results and Discussion 

For the VIRADEL method, both normalized and non-normalized N1 and N2 gene 

concentrations were strongly correlated with clinical metrics, where time lags were estimated 

(Table 4. 1.). Prior to the Omicron surge, N1 and N2 gene concentrations (gc/L) preceded total 

confirmed cases by 34 and 37 days, respectively. Both N1 and N2 gene concentrations (gc/L) 

preceded total hospitalizations and total ICU admissions by 50 and 54 days, respectively. Time 

lags with normalized N1 and N2 gene concentrations were observed with similar lead patterns 

(Table 4. 1.). The time lags between gene concentrations and ICU admissions (e.g., gc/L: 54 days 

for both N1 and N2) were longer than the time lags between gene concentrations and 

hospitalizations (e.g., gc/L: 50 days for both N1 and N2), a trend that was also observed in other 

studies (Galani et al., 2022; Hopkins et al., 2023). The VIRADEL method was previously reported 

to focus on supernatant portions of viruses in wastewater, thereby explaining its significant 

potential in providing early warnings of COVID-19 case surges (Miyani et al., 2020, 2021; Zhao 

et al., 2022, 2023a, 2023b). Especially, Zhao et al. compared VIRADEL and PEG concentration 

methods, which indicated that VIRADEL captures free and suspended virus from supernatant 

wastewater while PEG targets particle-associated viruses that sorbed onto solids (Zhao et al., 

2023b). Furthermore, in this study, VIRADEL demonstrated its capability of providing early 

warnings of hospitalizations and ICU admissions, prior to the Omicron surge. 
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Table 4. 1. Time lag, prior to the Omicron surge (09/01/2020 to 08/31/2021) using the 

VIRADEL method 

Time lag (days) Gene conc. and 

confirmed cases 

Gene conc. and 

hospitalizations 

Gene conc. and ICU 

admissions 

Gene N1 N2 N1 N2 N1 N2 

gc/L +34 +37 +50 +50 +54 +54 

gc/day +32 +32 +47 +47 +51 +51 

gc/day/person +32 +32 +47 +47 +51 +51 

gc/L of sanitary flow percentage +32 +32 +49 +49 +54 +53 

gc/day of sanitary flow +35 +37 +47 +47 +52 +52 

gc/mg TSS +30 +30 +45 +45 +49 +49 

gc/mg BOD +30 +30 +44 +44 +47 +47 

gc/L of TSS:BOD ratio +32 +38 +47 +49 +49 +53 

gc/mg TP +32 +33 +48 +48 +53 +52 

gc/(L*(pounds/day)) +30 +30 +46 +48 +50 +52 

 

During the Omicron surge, for the VIRADEL method, N1 and N2 gene concentrations 

(gc/L) preceded total confirmed cases by 11 days (Table 4. 2.). Time lags, however, became 

shorter (11 days for both N1 and N2 [gc/L]) than before the Omicron surge (34 and 37 days for 

N1 and N2 [gc/L], respectively), which supports previous findings that time lag was reduced 

during the Omicron surge (Hopkins et al., 2023; Zhao et al., 2022). VIRADEL N1 and N2 gene 

concentrations lagged total ICU admissions for all normalized and non-normalized conditions 

(Table 4. 2.). 

During the Omicron surge, the relationship between gene concentrations and total 

hospitalizations did not present a consistent lead or lag relationship among normalized and non-

normalized conditions (Table 4. 2.). For example, non-normalized gene concentrations (gc/L) 

preceded total hospitalizations (14 and 16 days for N1 and N2, respectively), while normalized 

gene concentrations lagged total hospitalizations, including by gc/day (-12 days for both N1 and 
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N2), gc/day/person (-12 days for both N1 and N2), gc/day of sanitary flow (-12 days for both N1 

and N2), and gc/mg BOD (-8 days for both N1 and N2). This demonstrates that different 

approaches of normalization may also affect time lag. This effect was also investigated in a recent 

study in Sweden, where Isaksson et al. found that time lags of normalized SARS-CoV-2 

concentrations preceding clinical cases varied comparing to non-normalized scenarios (Isaksson 

et al., 2022).  However, the researchers concluded that the impact of normalizations on time lags 

were heretofore uncertain (Isaksson et al., 2022). Future exploration is required to fully investigate 

and understand the influence of normalization approaches on time lags. 

Table 4. 2. Time lag, during the Omicron surge using the VIRADEL method 

Time lag (days) Gene conc. and 

confirmed cases 

Gene conc. and 

hospitalizations 

Gene conc. and ICU 

admissions 

Gene N1 N2 N1 N2 N1 N2 

gc/L +11 +11 +14 +16 -9 -12 

gc/day +8 +8 -12 -12 -9 -10 

gc/day/person +8 +8 -12 -12 -9 -10 

gc/L of sanitary flow percentage +14 +15 +21 +24 -7 -10 

gc/day of sanitary flow +7 +7 -12 -12 -10 -10 

gc/mg TSS +11 +11 +17 +20 -5 -7 

gc/mg BOD -12 -12 -8 -8 -5 -6 

gc/L of TSS:BOD ratio +9 +9 +14 +15 -10 -13 

gc/mg TP +15 +15 +21 +23 -5 -7 

gc/(L*(pounds/day)) +14 +13 +21 +22 -5 -8 

 

Shifting SARS-CoV-2 variant frequencies from Delta to Omicron, and their differing 

epidemiological characteristics may have played a critical role in the time lag (Ali et al., 2020; 

Galani et al., 2022; Hopkins et al., 2023; Zhao et al., 2022). Researchers have discovered that time 

lag can be affected by the dominant variants circulating during peaks in clinical metrics data 

(Hopkins et al., 2023). Moreover, with the continual evolution of SARS-CoV-2, changes in 
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epidemiological characteristics, such as the severity of disease, and developments in medical 

treatments, such as vaccination, influenced hospitalization and ICU admission rates over the 

course of the pandemic (Hopkins et al., 2023; Peng et al., 2023). This can lead to uncertainty of 

clinical metrics at a given time, affecting time lag calculations. In the latter stages of the pandemic, 

particularly during the Omicron surge, there was an increase in testing resources available and a 

widespread adoption of at-home testing both in the TCDA, and nationwide (Gupta et al., 2023). 

This could have resulted in reduced time lags and diminished early warning potential of 

wastewater surveillance since clinical metrics can be affected by repeatedly counted cases and 

massive at-home testing (Hopkins et al., 2023). 

For the PEG method, N1 and N2 gene concentrations lagged clinical metrics for nearly all 

normalized and non-normalized conditions during the Omicron surge (Table 4. 3.). This can be 

potentially explained by the sampling mechanism of the PEG method, as well as the 

aforementioned uncertainties across clinical metrics during the Omicron surge. The PEG method 

incorporates and thus takes measurements from viruses attached onto larger solid particles. These 

particles generally settle on the sewer system floor but are then typically resuspended during 

events that increase flow (Flood et al., 2021; Zhao et al., 2022). Such viruses would have been 

excreted into the sewer system, and served as indicators of past infections within communities, 

creating an elongated time lag with clinical metrics when compared to the VIRADEL method. 

Worth noting, the VAR model was effective in establishing relationships between all three 

COVID-19 clinical metrics and N1 and N2 gene concentrations, both before and during the 

Omicron surge (Tables 4S. 3. and 4S. 4.), which supported previous findings (Cao & Francis, 2021; 

Zhao et al., 2022). 
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Table 4. 3. Time lag, during the Omicron surge using the PEG method 

Time lag (days) Gene conc. and 

confirmed cases 

Gene conc. and 

hospitalizations 

Gene conc. and ICU 

admissions 

Gene N1 N2 N1 N2 N1 N2 

gc/L -12 -12 -3 -3 -10 -3 

gc/day -15 -15 -8 -7 -8 -6 

gc/day/person -15 -15 -8 -7 -8 -6 

gc/L of sanitary flow percentage -6 -6 -1 0 -3 -2 

gc/day of sanitary flow -16 -16 -9 -8 -9 -7 

gc/mg TSS -9 -9 -3 -2 -9 -4 

gc/mg BOD -6 -6 0 +2 -3 -2 

gc/L of TSS:BOD ratio -14 -14 -7 -6 -11 -7 

gc/mg TP -7 -7 -1 0 -4 -2 

gc/(L*(pounds/day)) -6 -7 +2 +4 -13 -2 

 

The determination of time lag can be affected by multiple factors, all of which varied across 

the study period, including duration and frequency of the major circulating SARS-CoV-2 variants 

(Tables 4S. 1. and 4S. 2.) (and corresponding shifts in epidemiological and clinical characteristics, 

especially varying incubation time and shedding dynamics), testing availability, clinical data 

consistency (such as onsite testing or at-home testing), wastewater sampling frequency, and 

wastewater sampling and concentration methodology (such as VIRADEL or PEG), presenting a 

challenge to systematically incorporating all factors into time lag calculations. Figure 4. 3. 

provides a comprehensive overview of potential influencers on time lag. Recent studies 

demonstrated the impacts on time lags by environmental factors, such as wastewater transportation 

within the sewer network and temperature (Ahmed et al., 2020; Bertels et al., 2022; Galani et al., 

2022). Researchers found that SARS-CoV-2 RNA decayed during the long travel of wastewater 

within the sewer network, leading to uncertainties between the detected viral RNA at sampling 

points and the actual RNA excreted from hosts (Bertels et al., 2022). Ahmed et al. indicated that 
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temperature affected SARS-CoV-2 RNA decay albeit persist presence of its viral RNA in 

wastewater allowing successful detection (Ahmed et al., 2020). More research is called for 

investigating and integrating these factors into time lag analyses. Nonetheless, and perhaps for this 

very reason, it is critical to present this study as evidence that time lag changes as SARS-CoV-2 

evolves, wastewater sampling and concentration methods progress, clinical metrics data vary, 

normalization approaches change, and so forth. This study is one of a limited number of 

investigations that evaluates time lags between SARS-CoV-2 wastewater concentrations and 

complex COVID-19 clinical data metrics, especially hospitalizations and ICU admissions 

(D’Aoust et al., 2021; Galani et al., 2022; Hopkins et al., 2023; Peccia et al., 2020; Saguti et al., 

2021; Stephens et al., 2022). Encompassing three major waves of COVID-19 in a large 

metropolitan area, this study makes valuable and unique contribution to understanding temporal 

relationships between wastewater viral measurements and clinical data metrics. This study 

moreover demonstrates wastewater surveillance’s meaningful potential for providing early 

warnings of fluctuations in clinical COVID-19 metrics data including, confirmed cases, 

hospitalizations, and ICU admissions, using the VIRADEL method. 
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Figure 4. 3. Parameters that potentially affect the time lag 

It is important to recognize that this study possesses various limitations and uncertainties. 

First and foremost, hospitalizations and ICU admissions were accessed from publicly available 

online data sources as 7-day moving average data. Unfortunately, raw data of these two clinical 

metrics were not accessible to the researchers. Future in-depth research is called to investigate the 

raw clinical data and their impact on time lags. Additionally, in this study, VIRADEL and PEG 

samples were collected twice and once weekly, respectively. More frequent sampling is 

encouraged to track nuanced temporal fluctuations of wastewater SARS-CoV-2 concentrations. 

However, researchers indicated that collecting a minimum of two samples on a weekly basis is 

sufficient to maintain the accuracy required for trend analysis (Feng et al., 2021). Besides, the 

current study did not perform any testing to identify the presence of different SARS-CoV-2 

variants throughout the study period. Future studies should identify variants and establish 

relationship between time lags and variants. 
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4. Conclusions 

This study contributes valuable insights to the field of wastewater-based epidemiology by 

estimating the time lag between SARS-CoV-2 concentrations and clinical metrics (confirmed 

cases, hospitalizations, and ICU admissions), before and during the COVID-19 Omicron surge in 

a large metropolitan area. By performing TLCC analyses, we were able to compare time lags 

between VIRADEL and PEG methodologies, between N1 and N2 gene concentrations and three 

key clinical data points over a 21-monthperiod. A total of nine normalization approaches were 

performed and evaluated for their potential impact on time lags. PEG did not provide early 

warnings for three clinical metrics for nearly all non-normalized and normalized conditions during 

the Omicron surge. VIRADEL demonstrated its potential for early warnings of total confirmed 

cases, hospitalizations, and ICU admissions, with lead times provided before the Omicron surge. 

During the Omicron surge, VIRADEL’s time lags were reduced, and the early warning potential 

of ICU admissions was diminished. The resulting lead time can provide a critical window for 

hospital systems and public health entities to properly prepare for pending disease outbreaks. This 

study underscores the importance of a robust understanding of the temporal relationship between 

wastewater viral concentrations and various clinical metrics. Such an understanding can improve 

the effective translation of wastewater surveillance data, improve wastewater-based epidemiology 

models, and ultimately, enhance public health preparedness. 
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APPENDIX 

Detailed Procedure: Additional information on clinical metrics 

Confirmed cases data source: https://www.michigan.gov/coronavirus/stats. The data 

description is as follows: 

1. County is based on the county of residence. 

2. Cases are aggregated by the date of onset of COVID-19 symptoms, if known, otherwise by 

laboratory specimen date if known, otherwise by case referral date. 

3. Confirmed cases only include individuals who have had a positive diagnostic laboratory test for 

COVID-19.  

Hospitalizations and ICU admissions data source: https://covidactnow.org/us/michigan-mi 

The data description is as follows: 

1. A Health Service area (HSA) is used when calculating county-level hospital metrics in order to 

correct for instances where an individual county does not have any or has few healthcare facilities 

within its own borders.  

2. Hospitalizations consider data of:  

• Current staffed acute bed capacity (capacity). 

• Total number of acute beds currently in use (currentUsageTotal). 

• Number of acute beds currently in use by COVID patients (currentUsageCovid). 

• Number of COVID patients admitted in the past week (weeklyCovidAdmissions). 

3. ICU hospitalizations consider data of: 

• Current staffed ICU bed capacity (capacity). 

• Total number of ICU beds currently in use (currentUsageTotal). 

• Number of ICU beds currently in use by COVID patients (currentUsageCovid). 
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Detailed Procedure: Normalization approaches 

Normalization by flow: N1N2 gene conc. gc/L × flow MGD/day = gc/day (1) 

Normalization by flow and population: N1N2 gene conc. gc/day / population = gc/day/person (2) 

Normalization by TSS: N1N2 gene conc. gc/L / TSS mg/L = gc/mg TSS (3) 

Normalization by flow and TSS: N1N2 gene conc. gc/L / (Flow × TSS pounds/day) = 

gc/(L(pounds/day)) (4) 

Normalization by sanitary percentage: N1N2 gene conc. gc/L / sanitary % = gc/L of of sanitary 

flow percentage (5) 

Normalization by flow and sanitary percentage: N1N2 gene conc. gc/day  sanitary % = gc/day 

of sanitary flow (6) 

Normalization by BOD: N1N2 gene conc.  gc/L / BOD mg/L = gc/mg BOD (7) 

Normalization by TSS:BOD ratio: N1N2 gene conc. gc/L / TSS:BOD ratio = gc/L of TSS:BOD 

ratio (8) 

Normalization by TP: N1N2 gene conc. gc/L / TP mg/L = gc/mg TP (9) 

Detailed Procedure: Portions of data using linear interpolation 

For VIRADEL samples, 230 gene concentrations were measured for both the N1 and N2 

genes between 09/01/2020 and 05/31/2022. For PEG samples, 88 gene concentrations were 

measured for both the N1 and N2 genes between 10/01/2021 and 05/31/2022. To perform TLCC 

analyses between weekly gene concentrations and daily clinical metrics data, linear interpolation 

was conducted to generate daily data based on weekly measurements. The number of interpolated 

daily gene concentrations were 408 and 155 for VIRADEL and PEG, respectively. 
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Table 4S. 1. Timeline of major SARS-CoV-2 variants of concern (VOC) in the United States 

Major variants Lineage Duration References 

Alpha B.1.1.7 January 2021 – July 2021 

cdc.gov 

Beta B.1.351 January 2021 – June 2021 

Gamma P.1 April 2021 – July 2021 

Delta B.1.617.2 May 2021 – December 2021 

Omicron B.1.1.529 December 2021 – May 2022 
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Table 4S. 2. Time of first detection of major SARS-CoV-2 variants of concern in MI, USA 

Major variants Lineage First detected in MI, USA References 

Alpha B.1.1.7 01/16/2021 

michigan.gov 

Beta B.1.351 03/08/2021 

Gamma P.1 03/31/2021 

Delta B.1.617.2 05/09/2021 

Omicron B.1.1.529 12/03/2021 
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Table 4S. 3. Vector autoregression models between N1 gene conc. and clinical metrics 

Sampling and 

concentration methods 

Clinical data metrics Equation (N1, gc/L) RMSE 

VIRADEL 

(09/01/2020 – 05/31/2022) 

Total confirmed cases yt = 1.8385yt-1 - 0.8454yt-2 + 0.0269xt-1 - 

0.0216xt-2 - 1.9001 

75.4245 

Total hospitalizations yt = 1.8872yt-1 - 0.8894yt-2 - 0.0021xt-1 + 

0.0034xt-2 + 0.6991 

16.8205 

Total ICU admissions yt = 1.9120yt-1 - 0.9136yt-2 + 0.0004xt-1 - 

0.0003xt-2 + 0.3808 

1.5033 

PEG 

(10/01/2021 – 05/31/2022) 

Total confirmed cases yt = 1.8551yt-1 - 0.8619yt-2 + 5.9532e-

05xt-1 - 5.6699e-05xt-2 – 11.4032 

106.5390 

Total hospitalizations yt = 1.9649yt-1 - 0.9656yt-2 - 1.7695e-

05xt-1 + 1.4276e-06xt-2 - 3.7552 

9.5298 

Total ICU admissions yt = 1.9826yt-1 - 0.9832yt-2 - 4.6127e-

06xt-1 + 3.6819e-06xt-2 – 0.3486 

1.3460 

Note: In Tables S4. 3., and S4. 4., X represents measured SARS-CoV-2 concentrations in 

wastewater, while Y represents COVID-19 clinical metrics data. Pearson’s correlation and root 

mean square error (RMSE) are calculated between the actual clinical metrics data and predicted 

clinical metrics data. 
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Table 4S. 4. Vector autoregression models between N2 gene conc. and clinical metrics 

Sampling and concentration 

methods 

Clinical data metrics Equation (N2, gc/L) RMSE 

VIRADEL 

(09/01/2020 – 05/31/2022) 

Total confirmed cases yt = 1.8407yt-1 - 0.8473yt-2 + 

0.0244xt-1 - 0.0200 xt-2 – 0.4719 

75.3310 

Total hospitalizations yt = 1.8849 yt-1 - 0.8870 yt-2 - 0.0084 

xt-1 + 0.0098 xt-2 + 0.3739 

16.8063 

Total ICU admissions yt = 1.9114 yt-1 - 0.9130 yt-2 - 0.0002 

xt-1 + 0.0003xt-2 + 0.3397 

1.4941 

PEG 

(10/01/2021 – 05/31/2022) 

Total confirmed cases yt = 1.8560yt-1 - 0.8630yt-2 + 7.0905e-

05xt-1 - 6.3612e-05xt-2 – 10.9896 

106.5174 

Total hospitalizations yt = 1.9666yt-1 - 0.9675yt-2 - 1.5212e-

05xt-1 - 1.5978e-06xt-2 - 4.0006 

9.9537 

Total ICU admissions yt = 1.9838yt-1 - 0.9845yt-2 - 5.0867e-

06xt-1 + 4.1023e-06xt-2 – 0.3637 

8.8621 
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CHAPTER 5: COMPARATIVE ANALYSES OF SARS-COV-2 RNA 

CONCENTRATIONS IN DETROIT WASTEWATER QUANTIFIED WITH CDC N1, 

N2, AND SC2 ASSAYS REVEAL OPTIMAL TARGET FOR PREDICTING COVID-19 

CASES 

Published in Science of The Total Environment: 

Zhao, L., Guzman, H. P., & Xagoraraki, I. (2024). Comparative analyses of SARS-CoV-2 RNA 

concentrations in Detroit wastewater quantified with CDC N1, N2, and SC2 assays reveal optimal 

target for predicting COVID-19 cases. Science of The Total Environment, 945, 174140. 

Abstract 

To monitor COVID-19 through wastewater surveillance, global researchers dedicated 

significant endeavors and resources to develop and implement diverse RT-qPCR or RT-ddPCR 

assays targeting different genes of SARS-CoV-2. Effective wastewater surveillance hinges on the 

appropriate selection of the most suitable assay, especially for resource-constrained regions where 

scant technical and socioeconomic resources restrict the options for testing with multiple assays. 

Further research is imperative to evaluate the existing assays through comprehensive comparative 

analyses. Such analyses are crucial for health agencies and wastewater surveillance practitioners 

in the selection of appropriate methods for monitoring COVID-19. In this study, untreated 

wastewater samples were collected weekly from the Detroit wastewater treatment plant, Michigan, 

USA, between January and December 2023. Polyethylene glycol precipitation (PEG) was applied 

to concentrate the samples followed by RNA extraction and RT-ddPCR. Three assays including 

N1, N2 (US CDC Real-Time Reverse Transcription PCR Panel for Detection of SARS-CoV-2), 

and SC2 assay (US CDC Influenza SARS-CoV-2 Multiplex Assay) were implemented to detect 

SARS-CoV-2 in wastewater. The limit of blank and limit of detection for the three assays were 
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experimentally determined. SARS-CoV-2 RNA concentrations were evaluated and compared 

through three statistical approaches, including Pearson and Spearman’s rank correlations, 

Dynamic Time Warping, and vector autoregressive models. N1 and N2 demonstrated the highest 

correlation and most similar time series patterns. Conversely, N2 and SC2 assay demonstrated the 

lowest correlation and least similar time series patterns. N2 was identified as the optimal target to 

predict COVID-19 cases. This study presents a rigorous effort in evaluating and comparing SARS-

CoV-2 RNA concentrations quantified with N1, N2, and SC2 assays and their interrelations and 

correlations with clinical cases. This study provides valuable insights into identifying the optimal 

target for monitoring COVID-19 through wastewater surveillance. 

1. Introduction 

Wastewater surveillance of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) has been rapidly deployed as a disease monitoring practice worldwide since the start of 

the coronavirus disease 2019 (COVID-19) pandemic (Ahmed et al., 2020, 2022; Barua et al., 2022; 

Bivins & Bibby, 2021; Boehm et al., 2023; Gentry et al., 2023; Li et al., 2022, 2024; Miyani et al., 

2020, 2021; Xagoraraki, 2020; Zhao et al., 2022, 2024). Multiple RT-qPCR and RT-ddPCR assays 

have been developed and implemented such as assays targeting SARS-CoV-2 N, ORF1ab, E, S, 

M, RdRp genes, and so on (Bivins et al., 2021; Calderón-Franco et al., 2022; Saththasivam et al., 

2021; Shah et al., 2022; Tamáš et al., 2022). Bivin et al., summarized 208 RT-qPCR assays and 

found that US CDC recommended assays targeting the N1 and N2 genes were the most frequently 

applied assays, including 45 % of the RT-qPCR assays utilized to detect SARS-CoV-2 in 

wastewater  (Bivins et al., 2021). Likewise, another study found that the N gene (including N1, 

N2, and N3 genes) was the most frequently targeted while the S gene demonstrated the most 

positive samples (Shah et al., 2022). Recently, researchers found that the SC2 assay of the CDC’s 
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Influenza SARS-CoV-2 Multiplex Assay demonstrated advantages including higher throughput, 

fewer reagents, fewer freeze-thaw cycles, and fewer chances of pipetting errors for detecting 

SARS-CoV-2 with high-level of sensitivity and specificity, compared to N1 and N2 genes (Shu et 

al., 2021).  The SC2 assay strictly detects the 3’ region from the carboxy terminus of the N gene 

into the 3’ untranslated region of the SARS-CoV-2’s genome (Shu et al., 2021). It does not detect 

any other respiratory pathogens or other human coronaviruses such as SARS-CoV or MERS-CoV 

(Shu et al., 2021). Researchers also successfully applied the SC2 assay to detect B.1.1.7, B.1.351, 

and P.1 SARS-CoV-2 variants in clinical samples (Nörz et al., 2021; Shu et al., 2021). The current 

study implemented the N1, N2 genes and SC2 assay to detect SARS-CoV-2 RNA concentrations 

in Detroit wastewater for the entire 2023. 

Multiple studies evaluated and compared assays targeting the N1 and N2 genes in terms of 

their specificity and sensitivity. For instance, many researchers found that N1 gene was more 

appropriate for SARS-CoV-2 testing in wastewater, since it presented higher sensitivity, detection, 

and quantification than N2 gene (Hong et al., 2021; Lanzarini et al., 2023). Similarly, Vogels et 

al., compared N1 and N2 genes testing results for COVID-19 clinical samples, including 

nasopharyngeal swabs, saliva, urine, etc., and they identified N1 as a more sensitive gene to target 

for detecting SARS-CoV-2 with more apparent distinction between positive and negative values 

(Vogels et al., 2020). Besides, N1 gene was found to have greater sensitivity, especially when 

concentrations were close to the limit of detection (Grube et al., 2023). However, other 

investigations demonstrated the opposite outcome, where N2 gene outperformed N1 gene. Scott 

et al., found that N2 gene targeting assays presented higher precision and reliability in terms of 

estimating COVID-19 cases in a dormitory on a university campus than N1 gene (Scott et al., 

2021). Likewise, Gonzalez et al., demonstrated that N2 gene presented higher sensitivity using 
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RT-ddPCR (Gonzalez et al., 2020). Notably, the US CDC recommended the N2 gene for SARS-

CoV-2 detection since it presented lower mismatches compared to other assays, which was also 

demonstrated elsewhere (Rahman et al., 2021). Recently, Rao et al., compared N2 and SC2 RT-

qPCR and ddPCR assays in terms of the Ct (cycle threshold) values as indirect indicators of viral 

concentrations and they found that the Ct values for N2 and SC2 were very similar, indicating 

both assays were equivalent on this basis (Rao et al., 2023). 

Despite the aforementioned investigations regarding the comparison among N1, N2 genes 

and SC2 assay, few studies directly compared their efficiency in correlating with and predicting 

clinical cases. To the best of our knowledge, published studies have only conducted limited 

comparative analyses of SARS-CoV-2 RNA concentrations quantified with N1, N2 genes and 

SC2 assay as well as clinical cases. Hence, during a 12-month study in Detroit, Michigan, USA, 

we aimed to compare the correlations and examine the similarities/dissimilarities among N1, N2 

genes and SC2 assay through comprehensive statistical approaches, establish models to predict 

COVID-19 cases based on SARS-CoV-2 RNA concentrations quantified with the three assays, 

thereby identifying the optimal assay for monitoring COVID-19. Specifically, the statistical 

approaches include Pearson and Spearman’s rank correlations, Dynamic Time Warping, and 

vector autoregressive models. Besides, thorough experimental procedures of determining the 

Limit of Blank and Limit of Detection for the three assays using RT-ddPCR were summarized. 

2. Materials and Methods 

2.1 Wastewater treatment facility and sample collection 

The Great Lakes Water Authority (GLWA) Water Resource Recovery Facility (WRRF), 

located in southeastern Michigan, is the second-largest single-site wastewater treatment facility in 

North America and the largest of its kind in the United States (Norton et al., 2022). The WRRF 
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serves an area of more than 946 square miles covering the City of Detroit and the three largest 

counties in Michigan, including Wayne, Macomb and Oakland counties, with a total population 

of over three million. Three interceptors convey raw wastewater to the WRRF, including the 

Oakwood-Northwest-Wayne County Interceptor (ONWI), the North Interceptor-East Arm 

(NIEA), and the Detroit River Interceptor (DRI) (see chapter 1 Figure 1. 2.). Untreated 1 L 24-

hour composite wastewater samples were collected weekly from all three interceptors between 

January 1 and December 31, 2023. A total of 147 samples were collected including 49 samples 

from each interceptor. The samples were collected using sterilized Nalgene bottles which were 

then enclosed in sealed plastic bags and placed on ice. The samples were then transported to the 

Environmental Virology Laboratory at Michigan State University for downstream analyses within 

24 hours. 

2.2 Sample concentration, RNA extraction, and RT-ddPCR 

Samples were concentrated using a previously described polyethylene glycol precipitation 

(PEG) method (Zhao et al., 2022). PEG was commonly used in concentrating wastewater samples 

for the detection of SARS-CoV-2 and other viruses, including influenza A, rotavirus, norovirus, 

measles virus, and human coronavirus (Borchardt et al., 2017; Dimitrakopoulos et al., 2022; 

Farkas et al., 2022). The concentrated samples were aliquoted into 2 mL tubes and stored at -80 °C 

for downstream analyses. Viral RNA was extracted using QIAamp Viral RNA QIAGEN kits 

(QIAGEN, Germantown, MD, USA) based on a previously described method (Miyani et al., 2020, 

2021). Bacteriophage Phi6 was utilized as a standard measure to estimate the recovery of RNA 

during the processes, where the observed recoveries ranged from 10.37% to 58.96% (Ye et al., 

2016; Zhao et al., 2022). 

The Reverse transcription droplet digital PCR (RT-ddPCR) was performed on a QX200 



 

 220 

AutoDG Droplet Digital PCR system, including an Automated Droplet Generator, a PTC Tempo 

Thermal Cycler, a Droplet Reader, and the QuantaSoft Software (Bio-Rad, Hercules, CA, USA). 

Primers and probes of N1, N2 genes, and SC2 assay were applied to identify SARS-CoV-2 and 

quantify the viral RNA concentrations in samples (Table 5. 1.). The One-step RT-ddPCR 

Advanced Kit for Probes (Bio-Rad, Hercules, CA, USA) was utilized. Briefly, for each sample 

(5.5 μL), 5.5 μL 1-Step RT-ddPCR Supermix (20x), 2.2 μL Reverse Transcriptase, 1.1 μL 300mM 

DTT, 3.3 μL N1 and N2 primer-probe mix or 1.1 μL SC2 primer-probe mix were added to the 

Mastermix, achieving a total of 22 μL for each well. The target primer and probe concentrations 

for all assays were 900 nM and 250 nM, respectively. Each RT-ddPCR run includes positive 

controls for SARS-CoV-2, negative controls using nuclease-free water, and process controls of 

bacteriophage Phi6, as per a previously established method (Li et al., 2022; Zhao et al., 2022, 

2023b). Each sample was tested in triplicates by RT-ddPCR, and the three concentrations were 

averaged, and standard deviations were calculated. 

Table 5. 1. Sequences of the primers and probes for the CDC recommended N1, N2, and SC2 

assays 

Target Name of primers 

and probes 

Oligonucleotide Sequence (5’>3’) References 

N1 

gene 

2019-nCoV_N1-F GAC CCC AAA ATC AGC GAA AT (Lu et al., 

2020) 2019-nCoV_N1-R TCT GGT TAC TGC CAG TTG AAT CTG 

2019-nCoV_N1-P FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1 

N2 

gene 

2019-nCoV_N2-F TTA CAA ACA TTG GCC GCA AA 

2019-nCoV_N2-R GCG CGA CAT TCC GAA GAA 

2019-nCoV_N2-P FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1 

SC2 

assay 

SC2_F CTG CAG ATT TGG ATG ATT TCT CC (Shu et al., 

2021; Xu et 

al., 2021) 
SC2_R CCT TGT GTG GTC TGC ATG AGT TTA G 

SC2_P ATT GCA ACA /TAO/ ATC CAT GAG CAG TGC TGA CTC 

 

2.3 Determination of Limit of Blank and Limit of Detection 

Limit of Blank (LOB) and Limit of Detection (LOD) were determined as per the protocol 

“A Practical Guide for Evaluating Detection Capability Using Droplet Digital PCR” provided by 
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the manufacturer Bio-Rad for assessing the analytical sensitivity and validating RT-ddPCR assays. 

The Bio-Rad protocol was developed as per the Clinical and Laboratory Standards Institute (CLSI) 

protocol “EP17 Evaluation of Detection Capability for Clinical Laboratory Measurement 

Procedures” (Pierson-Perry et al., 2012). It is crucial to indicate that our previously published 

study presented partial discussions of LOB and LOD for N1 and N2 genes (Zhao et al., 2022). 

However, this study provided a holistic protocol for determining LOB and LOD for all three assays 

including SC2. 

LOB indicates the highest template concentration that can be measured using a particular 

assay in a blank sample, which should mimic the actual sample matrix as closely as possible 

without containing the target DNA or RNA sequence, with a defined probability (α) (Armbruster 

& Pry, 2008). A value of 0.05 for α was chosen, indicating that any unknown measurement would 

only have a 5 % chance of producing a false positive. Here, four types of samples were selected 

for LOB tests to represent blank samples, including prior-to-COVID-19 pandemic samples that 

were collected on February 18, 2018, from the same interceptors, nuclease-free water, negative 

process control samples from concentration and extraction processes, and autoclaved wastewater 

samples during the study period. The selection of sample types for LOB tests relied on the Bio-

Rad protocol and previous studies (Beattie et al., 2022; Ciesielski et al., 2021; Zhao et al., 2022). 

LOB was tested across four consecutive days for N1 and N2 genes, and two consecutive days for 

SC2 assay. This approach scrutinizes unnoticeable impacts caused by tests performed across 

multiple days. Besides, the CLSI EP17 document recommended a minimum of 60 replicate 

templates for LOB tests (Pierson-Perry et al., 2012). Here, 96 replicate templates were performed 

for different types of samples to determine LOB for N1, N2 genes and SC2 assay. The data 

produced from all LOB tests presented non-normal distributions, which led to the nonparametric 
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or rank-order method to determine the final LOBs for N1, N2 genes and SC2 assay (Linnet & 

Kondratovich, 2004; Milbury et al., 2014). Briefly, 96 values were ranked from lowest to highest 

and the 92nd-position value was determined as the LOB for the current test, which was 

corresponding to the predetermined probability (α = 0.05 or 95 % confidence). Finally, LOBs for 

N1 gene, N2 gene, and SC2 assay ddPCR were determined as 0.09 gc/μL, 0.08 gc/μL, and 0.13 

gc/μL with 95 % confidence (Zhao et al., 2022). 

LOD indicates the lowest concentration of the target nucleic acid sequence that can be 

detected using a particular assay with a desired probability (β), which was set as 0.05 in the current 

study (Linnet & Kondratovich, 2004; Milbury et al., 2014). This indicates that if a sample with a 

concentration equal to the LOD is constantly tested, there would be a 95 % chance of getting a 

positive result. A series of dilutions for SARS-CoV-2 ranging from 10^(-4) and 10^2 gc/μL using 

N1, N2 genes were performed across nine consecutive days and using SC2 assay across two 

consecutive days to determine the empirical LOD. Then, 96 replicate templates with the 

concentration of the empirical LOD were tested following the nonparametric trial-error method 

(Linnet & Kondratovich, 2004). Briefly, 96 values were ranked from the lowest to highest and if 

less than 5 % of measurements were below LOB, then the empirical LOD was determined as the 

final LOD. Otherwise, a higher concentration was selected as the empirical LOD and repeated the 

tests until the final LOD was determined. Eventually, LODs were determined as 0.1 gc/μL with 

72.92 % confidence for the N1 gene ddPCR, 0.1 gc/μL with 81.25 % confidence for the N2 gene 

ddPCR, and 0.2 gc/μL with 95 % confidence for SC2 ddPCR (Zhao et al., 2022). 

2.4 COVID-19 epidemiological data 

Daily confirmed COVID-19 cases for the City of Detroit, as well as Wayne, Macomb, and 

Oakland counties were downloaded and updated on January 10, 2024, from publicly accessible 
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databases of Michigan (michigan.gov/coronavirus). The daily clinical data encompassed a range 

from January 1 to December 31, 2023. In addition, the clinical data were only available per city 

or county for the Detroit tri-county area and each interceptor received wastewater from the 

corresponding catchment areas of each city or county. Hence, only the total SARS-CoV-2 RNA 

concentrations could be correlated to the total COVID-19 cases in the city and counties (Zhao et 

al., 2022, 2024). 

2.5 Statistical analyses and visualization 

Data collection, organization, and initial data analyses were performed using Microsoft 

Excel (version 16.82). R version 2023.06.0+421 (R-project.org) was implemented to develop the 

vector autoregression models and perform statistical analyses including Pearson and Spearman’s 

rank correlations and Dynamic Time Warping. The statistical analyses and visualization relied on 

R packages, primarily including ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2018), dtw 

(Giorgino, 2009), tseries (Trapletti et al., 2007), forecast (Hyndman & Khandakar, 2008), vars 

(Pfaff, 2008). Weekly SARS-CoV-2 RNA concentrations were filled into daily data using linear 

interpolation, in order to compare with daily COVID-19 cases data (Zhao et al., 2022, 2024). 

2.5.1 Pearson and Spearman correlations 

The degree of association between total SARS-CoV-2 RNA concentrations in wastewater 

measured by N1, N2 genes as well as SC2 assay and total confirmed COVID-19 cases were 

estimated through Pearson correlation and Spearman’s rank correlation coefficients. Scatter plots 

between time series data were created and presented in Figure 5S. 1., including correlation 

coefficients and significance levels. 

2.5.2 Dynamic time warping (DTW) 

Dynamic time warping (DTW) is a widely used algorithm that estimates the 
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similarities/dissimilarities between time series data by calculating and comparing the DTW 

distance. DTW accounts for the time series data patterns by identifying the most similar and best-

matching data points on time series data regarding the shapes of data (Izakian et al., 2015). DTW 

had been used in numerous fields for time series analyses including time series data mining and 

clustering (Jeong et al., 2011; H. Li, 2021), time series classification (Kate, 2016), and multivariate 

time series correlation and dissimilarity analyses (Bankó & Abonyi, 2012), etc. Recently, DTW 

was utilized in wastewater surveillance of SARS-CoV-2. For instance, researchers applied DTW 

to quantify and compare similarities between time series data of SARS-CoV-2 RNA 

concentrations in wastewater and time series data of COVID-19 clinical cases, where the method 

was demonstrated to be effective in identifying the most similar time series data (Zhao et al., 

2023a). Likewise, researchers investigated the similarities of wastewater testing results from 

varying sampling sites on a college campus using DTW to indicate potential similar trends among 

sites (Tang et al., 2022). In this study, DTW was employed to analyze SARS-CoV-2 RNA 

concentrations measured by N1, N2 genes and SC2 assays to identify the 

similarities/dissimilarities among these targets. The DTW distance was computed in the R 

packages mentioned above, and the detailed calculations and results were demonstrated in Figure 

5S. 2. 

2.5.3 Vector autoregressive model (VAR) 

Vector autoregressive model (VAR) was one of the most commonly used methods to 

correlate multivariate time series data such as COVID-19 epidemiological data (Rajab et al., 2022; 

Zivot & Wang, 2006) and to forecast clinical cases based on wastewater measurements (Cao & 

Francis, 2021). VAR was proved to be more effective in estimating clinical cases based on SARS-

CoV-2 RNA concentrations than other models, such as linear regression and Autoregressive 
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Integrated Moving Average (ARIMA) models (Zhao et al., 2022). In this study, SARS-CoV-2 

RNA concentrations (measured by N1, N2 genes and SC2 assays) and clinical data were modeled 

as two time series data, and the relationships between them were estimated through VAR models: 

X1,t = 1 + 11 Xt-1,1 + 12 Xt-1,2 + … + t,1 (1) 

X2,t = 2 + 21 Xt-1,1 + 22 Xt-1,2 + … + t,2 (2) 

X3,t = 3 + 31 Xt-1,1 + 32 Xt-1,2 + … + t,3 (3) 

The three predicted time series based on N1, N2 genes and SC2 assay were denoted by X1,t, X2,t, 

and X3,t. Xt-1,1 denotes the SARS-CoV-2 RNA concentrations at the time when t equals to one lag. 

Xt-1,2 denotes the clinical data at the time when t equals to one lag. n,m and t,n denote constants 

to adjust the predictions. R squared (R2) and Root Mean Squared Error (RMSE) values were 

calculated for the predicted results to evaluate accuracy. 

3. Results 

3.1 SARS-CoV-2 RNA concentrations and trends measured by the CDC N1, N2, and SC2 

assays 

Over the course of the entire 12-month study, SARS-CoV-2 RNA concentrations were 

measured using N1, N2 genes, and SC2 assay RT-ddPCR in untreated wastewater samples 

collected from the three interceptors at GLWA’s WRRF. Figure 5. 1. presents the weekly averaged 

concentrations (gc/100mL) for N1, N2 genes, and SC2 assay in ONWI, NIEA, and DRI 

interceptors. SARS-CoV-2 RNA concentrations measured by all three assays reveal a surge 

beginning the week of January 2 and reaching a peak in the week of January 16 in 2023 for all 

three interceptors. Then all SARS-CoV-2 RNA concentrations decreased rapidly and fluctuated 

by the middle of March 2023. Subsequently, the SC2 assay could not detect any positive SARS-

CoV-2 concentrations higher than its LOD for consecutive ten weeks until the end of May 2023. 
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During the summer of 2023 from May to the end of July, SARS-CoV-2 RNA concentrations were 

detected slightly higher than the LODs for all three assays. Afterwards, all SARS-CoV-2 

concentrations fluctuated and experienced significant surges from mid-October to the end of 

December 2023. Figure 5. 2. demonstrates the total SARS-CoV-2 RNA concentrations measured 

by N1, N2 genes, and SC2 assay where concentrations below LODs were replaced by LODs as 

well as the total COVID-19 cases in the Detroit tri-county area. Notably, all SARS-CoV-2 RNA 

concentrations measured by three assays and the total cases reveal similar trends, especially during 

winter months of January-to-February and October-to-December 2023 when both wastewater viral 

concentrations and clinical cases experienced significant surges, as well as during summer months 

from May to August 2023 when both wastewater viral concentrations and clinical cases 

demonstrated consistent low numbers (Figure 5. 2.). These results embraced previous studies 

where researchers observed elevated concentrations of SARS-CoV-2 and other viruses, such as 

influenza A, respiratory syncytial virus, during winter months (Boehm et al., 2023). This can 

potentially be explicated by a plethora of contributing factors during winter months, including 

significantly longer time before depletion of genetic materials in wastewater than that in summers, 

higher proliferation of seasonal “winter virus” infections, more dense indoor gatherings, weaker 

immune responses of human due to insufficient daylight, and so on (Hart & Halden, 2020a, 2020b; 

Moriyama et al., 2020). 

3.2 Correlations and similarities among total SARS-CoV-2 RNA concentrations by three 

assays, and clinical cases 

Pearson and Spearman’s rank correlations analyses were conducted among the cases and 

viral concentrations measured by three targets including N1, N2 genes, and SC2 assay (Table 5. 

2.). Figure 5S. 1. demonstrated scatter plots for all correlations where correlation coefficients and 
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significance levels were presented. For correlations among the three assays, the most significant 

coefficients were observed between N1 and N2 (Pearson r = 0.97, Spearman rho = 0.95, both with 

p < 2.2e-16). The lowest coefficients were observed between N2 and SC2 (Pearson r = 0.89, 

Spearman rho = 0.86, both with p < 2.2e-16). Notably, both Pearson’s and Spearman’s coefficients 

demonstrated consistently strong correlations among N1, N2 genes, and SC2 assay with desired 

significance levels. For correlations between viral concentrations and cases, the most significant 

coefficients were observed between SC2 and cases (Pearson r = 0.62, Spearman rho = 0.77, with 

p = 1.9e-06, and p = 1.2e-10, respectively) followed by slightly lower correlation coefficients 

between N1 and cases (Pearson r = 0.61, Spearman rho = 0.71, with p = 2.4e-06, and p = 9.3e-09, 

respectively). 
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Figure 5. 1. RT-ddPCR concentrations measured by N1 (a), N2 (b), and SC2 (c) assays, in 

samples collected at the three main interceptors (ONWI, NIEA, DRI) feeding the Great Lakes 

Water Authority Water Resource Recovery Facility in 2023 
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Figure 5. 2. Total (sum of all three interceptors) concentrations of SARS-CoV-2 quantified by 

the N1, N2, and SC2 RT-ddPCR assays (including LOD); and total confirmed COVID-19 cases 

in the City of Detroit, Wayne, Macomb, and Oakland counties in 2023 

Table 5. 2. Pearson and Spearman correlations among total N1, N2, SC2 SARS-CoV-2 

concentrations, and cases 

Data Type of correlation Correlation coefficients Significance 

N1 and N2 
Pearson 0.97 ρ<2.2e-16  

Spearman 0.95 ρ<2.2e-16  

N1 and SC2 
Pearson 0.93 ρ<2.2e-16  

Spearman 0.89 ρ<2.2e-16  

N2 and SC2 
Pearson 0.89 ρ<2.2e-16  

Spearman 0.86 ρ<2.2e-16  

N1 and cases 
Pearson 0.61 ρ=2.4e-06  

Spearman 0.71 ρ=9.3e-09 

N2 and cases 
Pearson 0.54 ρ=4.7e-05 

Spearman 0.65 ρ=2e-07 

SC2 and cases 
Pearson 0.62 ρ=1.9e-06 

Spearman 0.77 ρ=1.2e-10 

 

Additionally, similarities of concentrations measured by N1, N2 genes, and SC2 assay 

were evaluated by DTW distances, which were computed between N1 and N2, N1 and SC2, as 

well as N2 and SC2 (Zhao et al., 2023a). The details of calculating DTW distances are shown in 

Figure 5S. 2. The most/least similar time series data patterns were identified as follows. Notably, 

the smallest DTW distances were observed between N1 and N2, indicating the most similar time 
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series patterns between the two genes. Conversely, N2 and SC2 presented the least similar time 

series patterns with the largest DTW distances. These findings from the DTW analyses 

corroborated the findings from correlation analyses. Overall, the statistical approaches above 

revealed that N1 and N2 exhibited the highest correlations as well as the most similar time series 

patterns, N2 and SC2 exhibited the lowest correlations as well as least similar time series patterns. 

3.3 Vector autoregressive models potentially indicate the optimal target for estimating 

COVID-19 cases 

Prediction of COVID-19 cases was accomplished through the establishment of vector 

autoregressive models, utilizing SARS-CoV-2 RNA concentrations measured by N1, N2 genes, 

and SC2 assay as well as clinical cases, respectively. Figure 5. 3. demonstrated the actual cases 

and predicted cases based on three assays, where the N2-based prediction of cases (cyan-colored 

line) closely aligned with the actual cases (red-colored line). This observation was reinforced by 

robust statistical parameters with the R-squared value of 0.76, and a root mean square error (RMSE) 

of 94.79, which demonstrated the effectiveness of N2-based predictive models in accurately 

estimating COVID-19 cases. N1-based prediction yielded stronger statistical parameters with an 

R-squared value of 0.34, and a RMSE of 199.93 than SC2-based predictions (Table 5S. 1.). The 

prediction formulas and corresponding statistics are presented in Table 5S. 1. These findings 

corroborated previously published results. Particularly, Scott et al., identified N2 gene as a more 

accurate and reliable gene to estimate COVID-19 cases than N1 gene. Moreover, their study also 

demonstrated that N2 gene alone served as the most effective predictor of COVID-19 cases in a 

college dormitory (Scott et al., 2021). Similarly, researchers demonstrated that N2 gene exhibited 

the optimal capability in estimating daily confirmed cases compared to N1 gene. This is potentially 

attributed to N2-gene’s comparatively lower mismatch frequencies than other assays and its 
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targeting region is less susceptible to mutation (Ai et al., 2021; Rahman et al., 2021). 

 
Figure 5. 3. VAR prediction of total cases based on SARS-CoV-2 concentrations 

3.4 Limitations and future directions 

Admittedly, this study has several limitations. First, this study only implemented, 

evaluated, and compared three commonly used assays to detect SARS-CoV-2 in wastewater. More 

research is needed to conduct comparative analyses for multiple assays with higher sensitivity and 

prevalent usage. For instance, a recent study compared ddPCR results for seven different primer 

and probe assays such as N1, E, ORF, RdRP, NSP, etc. They recommended parallel detection of 

multiple assays to increase the robustness of detection for SARS-CoV-2 since coronaviruses 

demonstrated a high potential for mutations (Ho et al., 2022). Nevertheless, this might not be 

practical for resource-constrained areas as previously discussed. Besides, future studies are called 

to investigate the mechanisms behind varying efficiencies when comparing N1, N2, and SC2 

assays. 

Second, it is critical to recognize that replacing non-detectable concentrations with the 
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LOD of the method can lead to some uncertain effects, particularly when a substantial portion of 

data falls below the LOD. However, in the current study, despite SC2 containing the largest portion 

of undetected concentrations below its LOD between March 13th and May 22nd, 2023, replacing 

the non-detectable values with LOD did not significantly affect the correlation analyses or 

prediction results (Tables 5S. 2., 5S. 3.). Using LODs for N1 or N2 did not affect the conclusions, 

which were also corroborated in our previous studies (Zhao et al., 2022, 2023a). Nevertheless, 

LOD-replaced data slightly improved the correlation coefficients among N1, N2, and SC2. 

Third, this study compared the three CDC assays through examining the correlations of 

SARS-CoV-2 RNA concentrations in wastewater especially with confirmed cases. Future studies 

are called on comprehensive analyses of correlations between wastewater viral concentrations and 

clinical cases encompassing asymptomatic or undercounted infections. Notably, recent studies 

indicated that the exact percentage of asymptomatic infections in the wastewater sewersheds 

remains unresolved (Wu et al., 2022) and it can vary significantly during different stages of the 

pandemic and locations, such as 79.2% asymptomatic infections reported in a local study 

conducted in Arizona, USA, (Schmitz et al., 2021), and 15.6% asymptomatic infections reported 

in a meta-analysis of worldwide COVID-19 data (He et al., 2021). Nevertheless, the presence of 

asymptomatic populations can potentially lead to undercounted COVID-19 cases (He et al., 2021), 

therefore, certainly affecting the correlations between measured SARS-CoV-2 RNA 

concentrations and available reported clinical cases. 

4. Conclusions 

This study presents comprehensive and innovating comparative analyses in evaluating the 

relationship among SARS-CoV-2 RNA concentrations in wastewater quantified with the N1, N2, 

and SC2 RT-ddPCR assays,  as well as their efficiency in correlating with and predicting clinical 
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cases. The major conclusions were summarized as follows: 

(1) During the twelve-month study, 147 untreated 24-hour composite wastewater samples 

were collected and analyzed using N1, N2 , and SC2 RT-ddPCR assays. Total SARS-CoV-

2 RNA concentrations in positive samples for N1 gene ranged from 3601.33 gc/100mL to 

57890.67 gc/100mL, for N2 gene ranged from 3322.67 gc/100mL to 50984 gc/100mL, for 

SC2 gene ranged from 800 gc/100mL to 53874.67 gc/100mL. 

(2) Experimental procedures of determining LOBs and LODs for the three assays were 

extensively elucidated. 

(3) N1 and N2 genes concentrations presented the highest correlation and the most similar 

time series pattern. Conversely, N2 gene and SC2 assay concentrations presented the 

lowest correlation and the least similar time series pattern. 

(4) N2 gene was identified as the best target to predict COVID-19 cases based on vector 

autoregressive models. 
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APPENDIX 

Table 5S. 1. VAR models based N1, N2 genes and SC2 assay 

VAR models Formula R2 RMSE 

N1 predicted cases -0.0039N1 + 0.9242Cases – 0.0014N1 – 0.4439Cases + 344.7230 0.34 218.68 

N2 predicted cases -0.0045N2 + 0.8711Cases + 0.0143N2 – 0.4800Cases – 42.3500 0.76 68.03 

SC2 predicted cases 0.0093SC2 + 0.8262Cases – 0.0273SC2 – 0.5153Cases + 722.6044 0.11 394.95 
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Table 5S. 2. Pearson and Spearman correlations among total N1, N2, SC2 SARS-CoV-2 

concentrations (without LODs), and cases 

Data Type of correlation Correlation coefficients Significance 

N1 and N2 
Pearson 0.93 ρ<2.2e-16 

Spearman 0.94 ρ<2.2e-16  

N1 and SC2 
Pearson 0.78 ρ=1.5e-10  

Spearman 0.66 ρ=5.2e-07  

N2 and SC2 
Pearson 0.72 ρ=9.7e-09  

Spearman 0.65 ρ=8.3e-07  

N1 and cases 
Pearson 0.77 ρ=1.3e-10  

Spearman 0.73 ρ=2.8e-09 

N2 and cases 
Pearson 0.68 ρ=7.2e-08 

Spearman 0.65 ρ=4e-07 

SC2 and cases 
Pearson 0.7 ρ=4.8e-08 

Spearman 0.6 ρ=9e-06 
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Table 5S. 3. VAR models for prediction of COVID-19 cases based N1, N2 genes and SC2 assay 

(without LODs) 

VAR models Formula R2 RMSE 

N1 predicted cases -0.0038N1 + 0.9241Cases – 0.0013N1 – 0.4439Cases + 344.7229 0.29 225.00 

N2 predicted cases -0.0045N2 + 0.8710Cases + 0.0143N2 – 0.4800Cases – 42.3499 0.76 73.30 

SC2 predicted cases 0.0114SC2 + 0.8101Cases – 0.0304SC2 – 0.5299Cases + 754.7753 0.19 489.03 
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Figure 5S. 1. Scatter plots for Pearson and Spearman correlations among total N1, N2, SC2 

concentrations, and cases 
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Figure 5S. 2. DTW distances among SARS-CoV-2 concentrations measured by N1, N2 genes 

and SC2 assays 
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CHAPTER 6: TRACKING CHLAMYDIA AND SYPHILIS IN THE DETROIT METRO 

AREA BY MOLECULAR ANALYSIS OF ENVIRONMENTAL SAMPLES 

Submitted for publication: Liang Zhao, Heidy Peidro Guzman, Irene Xagoraraki 

Abstract 

This paper describes one of the first studies applying wastewater surveillance to monitor 

Chlamydia and Syphilis and back-estimate their infections based on bacterial shedding and 

wastewater surveillance data. Molecular biology laboratory methods were optimized, and a 

workflow was designed to implement wastewater surveillance tracking Chlamydia and Syphilis 

in the Detroit metro area (DMA), one of the most populous metropolitans in the U.S. Untreated 

composite wastewater samples were collected weekly from three interceptors at Great Lakes 

Water Authority that services the DMA, and from street manholes that service three neighborhood 

sewersheds in Wayne, Macomb, and Oakland counties. Centrifugation, DNA extraction, and 

ddPCR methods were performed and optimized targeting Chlamydia trachomatis and Treponema 

pallidum that cause Chlamydia and Syphilis, respectively. Limit of Blank and Limit of Detection 

were determined experimentally for both targets. Both targets were detected and monitored in 

wastewater between December 25th, 2023, and April 22nd, 2024. The magnitude of C. trachomatis 

and T. pallidum concentrations were observed higher in neighborhood sewersheds compared to 

interceptors. Infections of Chlamydia and Syphilis were back-estimated through an optimized 

formula based on shedding dynamics and wastewater surveillance data, which indicated 

potentially underreported conditions with the clinical data as a benchmark. 

1. Introduction 

Wastewater surveillance or wastewater-based epidemiology (WBE) has experienced significant 

advancements since the onset of the COVID-19 pandemic. Studies have shown that most 
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respiratory, enteric, vector-borne, and bloodborne disease pathogens can be detected in wastewater 

and other environmental samples (Gentry et al., 2023; McCall et al., 2020; O’Brien & Xagoraraki, 

2019; Xagoraraki & O’Brien, 2020). Numerous investigations have implemented wastewater 

surveillance to monitor fluctuations of SARS-CoV-2 and explored its applications in 

comprehensive aspects (Barua et al., 2022; Beattie et al., 2022; Li et al., 2022a, 2022b, 2024; 

McCall et al., 2022; Miyani et al., 2020, 2021; Tiwari et al., 2022; Zhao et al., 2022, 2023a, 2023b). 

Recently, wastewater surveillance has also become recognized as an effective method for 

monitoring other viral diseases beyond COVID-19, such as norovirus, respiratory syncytial virus 

(RSV), and influenza viruses (Ammerman et al., 2024; Mercier et al., 2022, 2023). Despite 

significant technological, methodological, and translational advancements in wastewater 

surveillance, its applications have been largely limited to monitoring viral communicable diseases 

encompassing adenovirus, astrovirus, enterovirus, viral hepatitis, rotavirus, poliovirus, norovirus, 

etc., which were summarized in a systematic review (Kilaru et al., 2023). Only two bacterial 

targets, Escherichia coli and Salmonella, were identified for wastewater surveillance in Kilaru et 

al.’s study (Kilaru et al., 2023; Philo et al., 2023). Few studies have yet explored applications of 

wastewater surveillance on monitoring bacterial communicable diseases. Notably, researchers 

monitored concentrations of Salmonella in municipal wastewater in Hawaii, U.S., and 

demonstrated positive correlations between Salmonella concentrations and clinical cases of 

Salmonellosis (Yan et al., 2018). Yan et al., also observed large fluctuations and outliers of 

Salmonella concentrations that presented significant challenges and uncertainties for bacterial 

testing in wastewater. Likewise, Matrajt et al., identified environmental surveillance methods to 

monitor Salmonella Typhi and Salmonella Paratyphi which caused typhoid fever (Matrajt et al., 

2020). Other researchers also conducted surveys to identify next targets for bacterial monitoring 
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such as E. coli, Enterococci, and Enterobacteriaceae in water environments (Liguori et al., 2022). 

To date, only one study was identified to monitor Chlamydia trachomatis in wastewater on a 

Florida’s university campus (Chin Quee, 2023). Philo et al., identified four major challenges 

facing bacterial wastewater surveillance including prioritizing new bacterial targets, establishing 

relationships between wastewater data and human infections, designing and developing 

methodologies, as well as normalizing bacterial wastewater data (Philo et al., 2023). This study 

presented one of the first investigations using wastewater surveillance to monitor STIs and 

provided some specific solutions to the challenges and research gaps proposed by researchers 

previously regarding wastewater bacterial surveillance (Philo et al., 2023), including selecting new 

bacterial targets, relating bacterial wastewater data to human infections, and developing sampling 

and analytical methodologies. Recently, we developed a ranking system that prioritizes next 

wastewater surveillance targets among 96 communicable diseases for the Detroit metro area 

(Gentry et al., 2023). Among them, sexually transmitted infections (STIs) particularly Chlamydia 

and Syphilis were prioritized as the top 5th and 7th communicable diseases to be monitored using 

wastewater surveillance (Gentry et al., 2023). Chlamydia and Syphilis were caused by gram-

negative bacteria, Chlamydia trachomatis and Treponema pallidum, respectively. In 2020, the 

World Health Organization (WHO) estimated new Chlamydia and Syphilis infections as 128.5 

million and 7.1 million, respectively (WHO, 2021). In the U.S., about 1.6 million Chlamydia cases 

and nearly a quarter million Syphilis cases were reported in 2022 (cdc.gov). 

Sexually transmitted infections (STIs) infections have been rapidly increasing in the U.S. 

especially since the COVID-19 pandemic. First, the COVID-19 pandemic significantly reduced 

staff, supplies of testing materials and medications, laboratory capacity, access to STIs services, 

and surveillance activities in STIs programs, which contributed to delays in STIs diagnosis and 
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treatment with concomitant increases in STIs transmissions and incidences (Johnson et al., 2021; 

Wright et al., 2022). Second, researchers reported STIs patients might be reluctant to seek testing 

due to fear of COVID-19 exposure, leading to underreported STIs (Johnson et al., 2021). Shifted 

focus and funds from STIs to COVID-19 programs also contributed to underdiagnosis or 

underreporting. In the State of Michigan and Detroit metro area, Chlamydia have been reported 

with high number of infections annually and Syphilis infections have experienced significant 

increases between 2013 and 2023 shown in Figure 6. 1. In particular, the confirmed incidences of 

Syphilis in Michigan and Detroit metro area surged during the COVID-19 pandemic from 2020 to 

2021. More importantly, both Chlamydia and Syphilis has reportedly been underdiagnosed and 

underestimated. Currently, self-testing, opportunistic testing, and clinical testing are the 

commonly implemented methods to monitor Chlamydia within populations (Chin Quee, 2023). 

However, these monitoring methods of Chlamydia are unable to detect the majority of infections 

since few infected populations are likely to seek testing in clinical settings (Chin Quee, 2023). 

Vulnerable populations, particularly STIs infected individuals, unlikely undergo testing 

themselves due to lack of education and privacy (Blake et al., 2003). Balfe et al. reported the 

following factors including the cost of Chlamydia testing, inconvenient STIs services, long waiting 

times, and stigma related to STIs contributed to the difficulty for testing (Balfe et al., 2010). 

Likewise, Syphilis cases are potentially underreported for similar reasons (Shockman et al., 2014). 

To our best knowledge, limited studies yet investigated wastewater surveillance of both C. 

trachomatis and T. pallidum in a major metropolitan area nor to perform back-estimation of 

Chlamydia and Syphilis infections from bacterial shedding and wastewater measurements. 
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Figure 6. 1. Annually confirmed cases of Chlamydia (genital) and Syphilis (total) in the entire 

Detroit metro area and State of Michigan (a, b), City of Detroit, as well as Wayne, Macomb, and 

Oakland counties (c, d) between 2013 and 2023 

In this study, untreated wastewater samples were collected weekly from three interceptors 

of the Great Lakes Water Authority (GLWA) in southeastern Michigan, which service the City of 

Detroit, Wayne, Macomb, and Oakland counties, as well as from street manholes which service 

three smaller neighborhood sewersheds (EP in the Macomb county, D3 in the Wayne county, and 

OP in the Oakland county), between December 25th, 2023, and April 22nd, 2024. We developed a 

workflow encompassing sampling, centrifugation, DNA extraction, and droplet digital PCR to 

quantify and monitor C. trachomatis and T. pallidum concentrations in wastewater samples. We 

optimized PCR assays, Mastermix, and thermocycling conditions targeting C. trachomatis and T. 

pallidum. We also investigated the bacterial shedding of C. trachomatis and T. pallidum and 

optimized a formula for estimating Chlamydia and Syphilis infections from bacterial shedding and 

wastewater measurements. Our results demonstrated the first wastewater surveillance study for 

bacterial STIs particularly Chlamydia and Syphilis where the bacterial wastewater surveillance 
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was identified as a screening tool, which can be followed by more targeted clinical testing in 

communities. The back-estimations of Chlamydia and Syphilis infections from bacterial shedding 

and wastewater measurements indicated likely underreported cases, which further enhanced the 

significance of bacterial wastewater surveillance on monitoring STIs. 

2. Materials and Methods 

2.1 Positive controls 

Genomic DNA from C. trachomatis serovar D strain UW-3/Cx (ATCC VR-885D) was 

obtained from ATCC (Manassas, VA, USA). Quantitative synthetic T. pallidum DNA (ATCC 

BAA-2642SD) was obtained from ATCC (Manassas, VA, USA). Both products were immediately 

stored in -80°C upon arrival. The gene copy numbers of C. trachomatis and T. pallidum standard 

controls were determined experimentally. We thawed both vials on ice and avoided as many 

freeze-thaw cycles as possible to circumvent degradation of their DNA and variation in copy 

numbers by aliquoting the materials. Prior to experiments, we gently homogenized the vials to 

ensure uniform distribution of the materials and briefly centrifuge the vials to ensure all liquids 

are at the bottom. 

2.2 Epidemiological data 

Both annually and weekly reported Chlamydia and Syphilis cases for the Detroit metro 

area (DMA), including the City of Detroit, as well as Wayne, Macomb, and Oakland counties, 

were downloaded from publicly available databases of the Michigan Disease Surveillance System 

(MDSS) Weekly Surveillance Reports (WSR) (michigan.gov). The Morbidity and Mortality 

Weekly Report (MMWR) week was established by the U.S. CDC from Sunday to Saturday and is 

given a sequentially increasing number from the first week in January annually. The annually 

reported cases of Chlamydia and Syphilis for each jurisdiction were obtained from the annual 
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WSR between 2013 and 2023 for the MMWR week 52, which included the total cases of each 

disease in the year. The weekly reported cases of Chlamydia and Syphilis encompassed a range 

from the MMWR week 52 of 2023 (the week of December 25th, 2023) to the MMWR week 17 of 

2024 (the week of April 22nd, 2024). 

The Chlamydia cases reported in the WSR were denoted as “genital”. The Syphilis cases 

reported in the WSR included nine reportable conditions in Michigan, including congenital, early 

latent, late latent, latent of unknow duration, late with manifestations, primary, secondary, to be 

determined, and unknown duration or late syphilis. And we incorporated the total cases of all 

reportable conditions of Syphilis in this study, which was denoted as “Syphilis (total)”. In addition, 

the reported data were only available for each city or country in the Detroit metro area. Each 

interceptor of GLWA received wastewater from the corresponding sewersheds of each city or 

county. Epidemiological data of Chlamydia and Syphilis for smaller jurisdictions such as zip-code 

areas are unavailable for the study area. Hence, only the total C. trachomatis and T. pallidum 

concentrations of three interceptors can be compared to the total Chlamydia (genital) and Syphilis 

(total) cases in the Detroit metro area. The estimated infections from C. trachomatis and T. 

pallidum concentrations of the ONWI interceptor, the NIEA interceptor, and the DRI interceptor 

can be compared to confirmed cases for approximate regions of Wayne county, combined Oakland 

and Macomb county, and the City of Detroit, respectively. 

2.3 Sampling locations and sample collection 

Sampling locations encompass three interceptors in GLWA’s Water Resource Recovery 

Facility (WRRF) and street manholes covering three neighborhood sewersheds in Wayne, 

Macomb and Oakland counties. The three GLWA WRRF interceptors service an area of more 

than 946 square miles covering the City of Detroit and the three most populous counties in 



 

 254 

Michigan, including Wayne, Macomb and Oakland counties, with a total population of 

approximately three million. Three interceptors encompass the Oakwood-Northwest-Wayne 

County Interceptor (ONWI), the North Interceptor-East Arm (NIEA), and the Detroit River 

Interceptor (DRI), which services inhabitants of approximately 840600, 1482000, and 492000, 

respectively, by 2020 (Miyani et al., 2021; Zhao et al., 2024). The WRRF consists of a semi-

combined system that collects and treats stormwater together with residential, industrial, and 

commercial waste, according to specific service areas (Zhao et al., 2022). Samplings at street 

manholes cover three neighborhood sewersheds, including East Point (EP, ZIP code: 48021) 

located in the Macomb county, D3 (ZIP code: 48235) located in the Wayne county, and Oak Park 

(OP, ZIP code: 48237) located in the Oakland county, with covered populations of 2400, 1300, 

and 2270 (Li et al., 2022b). A total of 108 untreated 1 L 24-hour composite wastewater samples 

were collected weekly from three interceptors at GLWA and street manholes of three 

neighborhood sewersheds in the Detroit metro area between December 25th, 2023, and April 22nd, 

2024. The samples were collected using sterilized Nalgene bottles which were then enclosed in 

sealed plastic bags and placed on ice. The samples were then transported to the Environmental 

Virology Laboratory at Michigan State University for downstream analyses within 24 hours. 

2.4 Centrifugation, DNA extraction, and droplet digital PCR 

Samples were concentrated using a modified centrifugation method, where 1 L wastewater 

samples were concentrated at 12,000×g for 40 minutes (Fu et al., 2020; Mania‐Pramanik et al., 

2006; Somboonna et al., 2018; Varma et al., 2009). The concentrated samples were stored at -

80 °C for downstream analyses. Bacterial DNA was extracted from the pellets using the QIAGEN 

DNeasy PowerLyzer PowerSoil Kit (12855-50) according to the manufacturer’s protocol with 

slight modifications (QIAGEN, Germantown, MD, USA). As per the protocol, the mass of the 
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pellets was controlled approximately as 0.25 grams and was recorded for downstream calculations. 

A Vortex Adapter for 24 tubes (13000-V1-24) (QIAGEN, Germantown, MD, USA) was utilized 

at the vortex’s maximum speed for 20 minutes to achieve the bead beating process. The same 

QIAGEN kit was utilized for extracting C. trachomatis DNA from wastewater samples previously 

and was proven to be effective and efficient (Chin Quee, 2023). Finally, 100 μL bacterial DNA 

was extracted and stored in -80°C for downstream analyses. 

A QX200 AutoDG Droplet Digital PCR system (Bio-Rad, Hercules, CA, USA) was 

employed to perform ddPCR. Primers and probes targeting ompA and polA nucleotide sequences 

were applied to identify C. trachomatis and T. pallidum, respectively, and quantify their DNA 

concentrations in wastewater samples (Table 6. 1.). We implemented the same primers and probes 

to identify and quantify C. trachomatis and T. pallidum as used in previous studies (Heymans et 

al., 2010; Koek et al., 2006; Nieuwenburg et al., 2022; Salle et al., 2023; Stevens et al., 2010). 

Optimized Mastermix reaction and thermocycling conditions were demonstrated in Tables 6. 2., 

and 6. 3., with a total of 22 μL for each well on the 96-well plate. The target primer and probe 

concentrations for both assays were determined as 900 nM and 250 nM, respectively. Each run 

includes positive controls for C. trachomatis and T. pallidum, and negative controls using 

nuclease-free water. 

Table 6. 1. Sequences of the primers and probes for targeting C. trachomatis and T. pallidum 

Organism Target 

gene 

Oligonucleotide Sequence (5’>3’) References 

C. trachomatis ompA Forward: CATGARTGGCAAGCAAGTTTA (Chin Quee, 2023; 

Stevens et al., 2010) Reverse: GCAATACCGCAAGATTTTCTAG 

Probe: FAM-TGTTCACTCCYTACATTGGAGT-BHQ1 

T. pallidum 

 

polA Forward: GGTAGAAGGGAGGGCTAGTA (Heymans et al., 

2010; Koek et al., 

2006; Nieuwenburg 

et al., 2022) 

Reverse: CTAAGATCTCTATTTTCTATAGGTATGG 

Probe: FAM-ACACAGCACTCGTCTTCAACTCC-

BHQ1 
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Table 6. 2. Optimized ddPCR Mastermix reaction for both C. trachomatis and T. pallidum 

Reagents Volume (µL) 

Standard solution of the Bio-Rad Kit 8.8 

Forward primer 1.98 

Reverse primer 1.98 

Probe 1.1 

PCR-grade water 2.64 

Extracted DNA 5.5 

 

Table 6. 3. Optimized thermocycling conditions 

Conditions for C. trachomatis Conditions for T. pallidum 

Standard conditions of the Bio-Rad Kit: 25°C for 3 min, 50°C 

for 60 min, 95°C for 10 min 

55 Cycles* of 95°C for 10 

sec*, 55°C for 20 sec*, 65°C 

for 40 sec*, and 40°C for 10 

sec (Stevens et al., 2010) 

50 Cycles* of 95°C for 30 

sec*, 55°C for 30 sec*, 

72°C for 30 sec* (Koek et 

al., 2006) 

98°C for 10 min 

Hold at 4°C for ∞ 

Note: *No hot start, 40 µL reaction, and slow ramp speed of 2°C/second are required for all. 

2.5 Limit of Blank and Limit of Detection 

Limit of Blank (LOB) and Limit of Detection (LOD) were determined experimentally for 

evaluating the analytical sensitivity and validating C. trachomatis and T. pallidum assays, 

according to the manufacturer’s protocol (Bio-Rad, Hercules, CA, USA). Two types of samples 

were determined to represent blank samples in LOB tests, including nuclease-free water and 

autoclaved wastewater samples during the study period. The selection of sample types for LOB 

tests were predicated on the Bio-Rad protocol and previous studies (Barua et al., 2022; Beattie et 

al., 2022; Zhao et al., 2022). LOB was tested across two consecutive days for C. trachomatis and 

T. pallidum assays, respectively. The multiple-day testing approach examines any subtle impacts 

caused by tests conducted on different days (Zhao et al., 2022). The nonparametric or rank-order 

method listed in the manufacture’s protocol was chosen to further calculate LOBs since the data 

generated from all LOB tests demonstrated non-normal distributions. Henceforth, 96 values were 

ranked from the lowest to the highest and the value at the 92nd-position (95% confidence) was 
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determined as the LOB for the tested assay (Linnet & Kondratovich, 2004; Milbury et al., 2014). 

Ultimately, LOBs for C. trachomatis and T. pallidum assays were determined as 0.07 gc/μL and 

0.08 gc/μL, respectively, with 95 % confidence. 

A sequence of dilutions for positive controls of C. trachomatis and T. pallidum ranging 

from 105 and 10-1 gc/μL were performed. Subsequently, 96 replicate templates with the 

concentration of each dilution were tested using the C. trachomatis and T. pallidum assays 

following the nonparametric trial-error method to determine LODs as per the manufacture’s 

protocol (Linnet & Kondratovich, 2004). Briefly, 96 values were ranked from the lowest to the 

highest, where the template concentration was determined as the LOD if less than 5 % of 

measurements were below the predetermined LOB. Otherwise, a higher template concentration 

would be chosen to repeat the aforementioned tests until the final LOD was determined. Ultimately, 

LODs were determined as 0.125 gc/μL with 95 % confidence for both C. trachomatis and T. 

pallidum assays. 

2.6 Calculations of concentrations and back-estimations of infections 

Concentrations of C. trachomatis and T. pallidum bacterial DNA were calculated using the 

formula (1), based on modifications of a formula that we proposed and implemented previously 

(Li et al., 2022b; Zhao et al., 2022). 

Cfinal = CddPCR  Stotal / VC  VEX / SDNA  VddPCR / VDNA (1) 

where, Cfinal is the concentration of bacterial DNA in wastewater samples (gc/L); CddPCR is the 

measured concentration obtained from the droplet reader (gc/μL); Stotal is the measured weight of 

final total pellets after centrifugation (gram, g); VC is the volume of wastewater samples used for 

centrifugation (1 L); VEX is the volume of extracted bacterial DNA (100 μL); SDNA is the measured 

weight of pellets used for DNA extraction (g); VddPCR is the total volume of ddPCR final reaction 
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for each sample (22 μL); VDNA is the sample volume added to Mastermix (5.5 μL).  

Back-estimation of Chlamydia and Syphilis infections from C. trachomatis and T. 

pallidum concentrations in wastewater were performed using a modified formula (2) that was 

proposed in recent studies (Guo et al., 2022a; Li et al., 2022a).  

W = (CDNA × e^(k × t) × Q × α) / (PS × QS × CS) (2) 

Q = Qtotal / N × F (3) 

where, W is the number of back-estimated infections for Chlamydia and Syphilis; CDNA is the 

measured DNA concentrations of C. trachomatis or T. pallidum in wastewater (gc/L); k is the 

decay rate of the bacterial DNA in wastewater (d-1); t is the wastewater in-sewer travel time (d); α 

is the adjustment factor involving wastewater dilution and other uncertainties discussed below; Q 

is the average wastewater generated per capita in each sewershed during the study period 

(L/d·person); N is the population captured in each sewershed; Qtotal is the average wastewater 

flowing to each sewershed during the study period (million gallons per day, mg/d); F is the unit 

conversion factor between mg/d and L/d, which is 3.785 × 106; PS is the rate of positive detection 

of C. trachomatis or T. pallidum in urine from individuals of the suspected disease; QS is the daily 

volume of urine generated from an individual (mL/d·person); CS is the shedding magnitude of 

bacterial DNA in urine (gc/mL). Notably, urine-based parameters were selected for back-

estimations since unlike enteric viruses that are shed from human feces, there were limited studies 

reporting the shedding of both C. trachomatis and T. pallidum in human feces. Tables 6S. 5. and 

6S. 6. demonstrate the positive detection rates of C. trachomatis and T. pallidum in clinical and 

urine samples excreted from patients with suspected diseases. We also performed the global 

sensitivity analysis to quantify and compare the relative importance of each parameter on the final 

infection estimates. R package multisensi was implemented to perform sensitivity analysis on the 
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output of the multivariate model (Lamboni et al., 2011). The details of model implementation 

using multisensi was included in the Supporting Information. 

Briefly, Table 6S. 2. summarized decay rate constant k (d-1) for different bacteria in the 

aqueous environment. Among them, the range of k (d-1) for Campylobacter and Salmonella in 

wastewater (0.17-0.52) were determined as the approximate k (d-1) for C. trachomatis or T. 

pallidum in wastewater (Guo et al., 2022b). The four bacteria share common characteristics where 

they are classified as the gram-negative bacterium with an outer membrane especially where the 

ompA gene of C. trachomatis is targeted (Zdrodowska-Stefanow et al., 2003). The wastewater in-

sewer travel time t for interceptors were obtained from GLWA (Table 6S. 3.), including 0.51, 0.94, 

and 0.36 days for DRI, NIEA, and ONWI interceptors, respectively. For the three smaller 

neighborhood sewersheds, t was estimated as 2.4 hours or 0.1 days as per an estimation conducted 

in similar sewersheds of comparable size of both inhabitants and service area (McCall et al., 2022). 

PS for C. trachomatis was determined as 8.6%, the average rate reported previously between 5.3% 

14.4% (Božičević et al., 2011; Mania‐Pramanik et al., 2006; Møller et al., 2008, 2010). PS for T. 

pallidum was determined as 25%, the average rate reported previously between 12.8% and 37.1% 

(Nieuwenburg et al., 2022). Additionally, due to the limited understanding of the shedding rates 

of C. trachomatis and T. pallidum, the full spectrum of reported urine detection rates for both 

bacteria was considered in back-estimating infections. Wmin, or the minimum number of back-

estimated infections, was computed based on the maximum positive detection rates of C. 

trachomatis or T. pallidum in urine, which were presented in Tables 6S. 5., and 6S. 6., respectively. 

Likewise, Wmax, or the maximum number of back-estimated infections, was computed based on 

the minimum positive detection rates of C. trachomatis or T. pallidum in urine, which were also 

presented in Tables 6S. 5., and 6S. 6., respectively. Wave was computed based on the averaged 
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positive detection rates of C. trachomatis or T. pallidum in urine. Values marked with an asterisk 

(*) in Tables 6S. 5., and 6S. 6. indicate the data used for calculating positive detection rates in 

urine. The full ranges of reported detection rates of both bacteria in urine could help identify 

bounds on estimated cases. QS was estimated as 1400 mL/d·person, the average volume of urine 

generated by an individual, where the normal range for 24-hour urine generation of an individual 

ranges from 800 to 2000 mL/d with an average fluid intake of about 2000 mL/d (medlineplus.gov). 

CS for C. trachomatis was previously reported as 3.72 × 103 gc/mL for urine shedding (Twin et 

al., 2011). Likewise, CS for T. pallidum, was previously reported as 2.767 × 103 gc/mL for urine 

shedding (Wang et al., 2022). The wastewater flows to GLWA WRRF interceptors include 

stormwater, residential, industrial, and commercial wastewater. The three interceptors service 

large sewersheds with enormous populations where significant dilution events can occur, 

including dilutions caused by industrial and commercial wastewater (Zhao et al., 2022), 

stormwater (Guo et al., 2022b), and snowmelt infiltration in March and April in Michigan (Tiwari 

et al., 2022). Besides, significant decay of bacterial DNA can occur due to long in-sewer travel 

time for large sewersheds (McCall et al., 2022). Therefore, the adjustment factor α of 100 was 

chosen for interceptors. The wastewater flows to manholes, covering significantly smaller 

sewersheds, primarily include sanitary wastewater with intermittent stormwater. Hence, an α of 

10 was chosen for their adjustment (Guo et al., 2022b). Notably, the flow data (Qtotal) for the three 

neighborhood sewersheds (EP, D3, and OP) were unavailable during the study period. Thus, we 

utilized historical flow data for D3 for the same season between January 2021 to April 2021 to 

approximate the flow data in the current study period. Historic flow data of EP and OP were 

unavailable, and we utilized historic flow data a nearby Detroit metro community (Southfield, zip-

code 48076) with comparable size and population for the same season to approximate the flow 
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data in EP and OP (Li et al., 2022b). Additionally, it is noteworthy that the temperature of Detroit 

wastewater in interceptors were estimated between 5 to 25 oC and were measured ranging from 

7.6 to 21.7 oC in neighborhood sewersheds shown in Table 6S. 4. 

Since the flow data for zip-code areas within the sewersheds of interceptors or selected 

neighborhood sewersheds were unavailable, we measured and collected the PMMoV (pepper mild 

mottle virus) and crAssphage (cross-assembly phage) data for the same weeks during the study 

period. These data were utilized to normalize C. trachomatis ompA and T. pallidum polA 

concentrations for comparing disparities between interceptors and selected sewersheds. The 

details of testing PMMoV and crAssphage were demonstrated in the Supporting Information. 

3. Results 

3.1 Concentrations of C. trachomatis and T. pallidum in interceptors and neighborhood 

sewersheds wastewater 

C. trachomatis and T. pallidum DNA were detected in wastewater samples across three 

interceptors and three neighborhood sewersheds between December 25th, 2023, and April 22nd, 

2024 (Figure 6. 2.). Concentrations of C. trachomatis DNA ranged from non-detect to 1794 gc/L 

(DRI) in wastewater samples collected from interceptors, and from non-detect to 20367 gc/L (D3) 

in wastewater samples collected from neighborhood sewersheds. Concentrations of T. pallidum 

DNA ranged from non-detect to 1929 gc/L (ONWI) in wastewater samples collected from 

interceptors, and from non-detect to 4664 gc/L (OP) in wastewater samples collected from 

neighborhood sewersheds. 

For interceptors, the highest weekly concentration of C. trachomatis was observed in the 

DRI interceptor (1794 gc/L) comparing to that of ONWI (908 gc/L) and NIEA (800 gc/L) 

interceptors. DRI interceptor primarily services the City of Detroit, where the highest weekly 
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average cases of Chlamydia were reported as 171, comparing to that of 59, 45, and 64, in Wayne, 

Macomb, and Oakland counties. Notably, D3, which is located within the City of Detroit, 

demonstrated highest weekly concentration of C. trachomatis as 20367 gc/L comparing to that of 

EP (5842 gc/L) and OP (15416 gc/L) sewersheds. For T. pallidum, the highest weekly 

concentration was observed in ONWI interceptor (1929 gc/L) among three interceptors (NIEA: 

1703 gc/L, DRI: 1394 gc/L). Among the three neighborhood sewersheds, the highest weekly 

concentration was observed in OP (4664 gc/L), comparing that of D3 (3637 gc/L) and EP (1808 

gc/L).  

Additionally, normalization approaches also embraced previous findings. For instance, 

both the average C. trachomatis and T. pallidum concentrations in DRI were observed higher than 

those of ONWI and NIEA after normalization using PMMoV and crAssphage. Both C. 

trachomatis and T. pallidum concentrations in D3 were observed higher than those of EP and OP 

after normalization using PMMoV. These results indicated higher normalized C. trachomatis and 

T. pallidum concentrations were observed in DRI among interceptors and D3 among selected 

sewersheds, which both located within the City of Detroit (Figures 6S. 1., 6S. 2., and 6S. 3.). 
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Figure 6. 2. Weekly confirmed Chlamydia cases (a) and Syphilis cases (b) in the DMA, 

measured C. trachomatis concentrations in interceptors (c) and neighborhood sewersheds 

wastewater (e) and T. pallidum concentrations in interceptors (d) and neighborhood sewersheds 

wastewater (f) 
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3.2 Bacterial shedding of C. trachomatis and T. pallidum 

Extensive literature reviews were conducted to investigate the bacterial shedding of C. 

trachomatis and T. pallidum through human bodily fluids. For C. trachomatis, the positive 

detection rates in human bodily fluids with suspected Chlamydia were reported, including an 

average rate of 8.6% in urine, as well as rates ranging from 8.3% to 18.4% in clinical samples such 

as vaginal and genital ulcer swabs (Božičević et al., 2011; Mania‐Pramanik et al., 2006; Møller et 

al., 2008, 2010; Ngobese et al., 2022; Pickett et al., 2021; Tshaka et al., 2022). For T. pallidum, 

the positive detection rates in human bodily fluids with suspected Syphilis were reported including 

an average rate of 25% in urine, as well as rates ranging from 0.3% to 47% in clinical samples 

such as genital, anal ulcers and ano-rectal swabs (Dubourg et al., 2015; Glatz et al., 2014; Heymans 

et al., 2010; Koek et al., 2006; Nieuwenburg et al., 2022; Shields et al., 2012; Tshaka et al., 2022). 

To our best knowledge, limited studies yet reported shedding of C. trachomatis and T. pallidum 

through human stool or positive detections of these bacteria in stool samples in clinical settings. 

The details of reported positive rates of C. trachomatis and T. pallidum in urine and clinical 

samples were summarized in Tables 6S. 5. and 6S. 6., respectively. 

Additionally, the shedding duration of C. trachomatis can persist up to 10 days until the 

infection clears itself spontaneously (Dukers-Muijrers et al., 2022; Igietseme et al., 2001). The 

incubation time of C. trachomatis were reported with significant variabilities from 5 days 

(O’Connell & Ferone, 2016) to 28 days (Jones & Lopez, 2014). Likewise, the shedding duration 

of T. pallidum exhibited significant uncertainties and variabilities depending on the stages of 

syphilis, such as primary, secondary, and early latent. Researchers identified men shed T. pallidum 

concurrently from anal and oral routes ranging from 7 to 180 days (Towns et al., 2022). Similarly, 

the incubation time of T. pallidum were ranging from 9 to 90 days (French, 2007). For 
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asymptomatic infections, it is unclear how long the incubation time would be for both C. 

trachomatis and T. pallidum. 

3.3 Back-estimations of Chlamydia and Syphilis infections based on bacterial shedding and 

wastewater measurements 

The values of the input parameters using the formula (2) for back-estimating Chlamydia 

and Syphilis infections in interceptors and neighborhood sewersheds were demonstrated in Table 

6. 4. Figures S6. 4., and S6. 5., both demonstrated dynamics of the sensitivity analysis indices of 

Chlamydia and Syphilis infection estimates, respectively. Parameters including α, Q, Ps, Cs, Qs, 

and ekt, demonstrated descending importance on the infection estimates. Notably, catchment-

specific characteristics including α, Q, and ekt demonstrated relatively higher impacts for both the 

Chlamydia and Syphilis infection estimates (Figures S6. 4., and S6. 5.). Both parameters of α and 

Q are closely related to the scales of sampling and dilution effects, and both demonstrate highest 

sensitivity indices for infection estimates. The characteristics related to bacterial shedding also 

played a crucial role in infection estimates including Ps, Cs, Qs, which demonstrated relatively 

higher sensitivity indices. 

For interceptors, it is noteworthy that the highest estimated infections of both Chlamydia 

and Syphilis was observed in DRI, despite DRI services the smallest number of inhabitants in its 

service area. For neighborhood sewersheds, the highest estimated infections of both Chlamydia 

and Syphilis was observed in D3, despite D3 services the lowest number of inhabitants in its 

sewersheds. Notably, DRI services the majority of the City of Detroit communities and the 

sewershed covered by D3 was located within the City of Detroit. Besides, these observations of 

estimated Chlamydia and Syphilis infections agree with the trends of confirmed cases of 

Chlamydia and Syphilis in Detroit, where the highest weekly confirmed cases were observed in 
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the city (Figure 6. 2.). 

Additionally, the comparisons between ranges of estimated average weekly Chlamydia and 

Syphilis infections for interceptors and weekly confirmed cases for their approximate regions were 

demonstrated in Table 6. 5. Notably, the weekly confirmed cases for both Chlamydia and Syphilis 

for all approximate regions were potentially underreported comparing to the back-estimated 

weekly infections from the interceptors, with only one exception for the Chlamydia estimation at 

the NIEA interceptor. Ratio between ranges of estimated weekly infections and weekly confirmed 

cases for approximate regions were computed (Table 6. 5.). Ratio Wave/Cave for both Chlamydia 

and Syphilis are above 1 except for NIEA interceptor. For Syphilis, values of Wave/Cave were 

consistent approximately around 3 for NIEA, DRI, and total interceptors. Overall Syphilis 

demonstrated higher values of the three ratios (Wave/Cave, Wmin/Cave, and Wmax/Cave), which are all 

above 1, comparing to those of Chlamydia. 
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Table 6. 4. Back-estimation of average weekly infections using formula (2) 

Bacteria Site N CDNA Qtotal Q t K ekt PS QS CS 𝛼 Wave Wmin Wmax 

C. 

trachomatis 

ONWI 840600 542 231 1040.13 0.36 0.17 

- 

0.52 

1.06-

1.21 

ave = 

8.6%, 

min = 

5.3%, 

max = 

14.4% 

1400 3.72 

× 

103 

100 133.42-

152.30 

79.68-

90.96 

216.49-

247.13 

NIEA 1482000 489 218 556.77 0.94 1.17-

1.63 

71.12-

99.08 

42.48-

59.18 

115.40-

160.78 

DRI 492000 679 193 1484.77 0.51 1.09-

1.3 

245.35-

292.62 

146.53-

174.76 

398.12-

474.82 

EP 2400 1176 0.19 299.65 0.1 1.02-

1.05 

10 8.03-

8.26 

4.79-

4.93 

13.02-

13.40 

D3 1300 2997 0.8 2329.23 158.98-

163.65 

94.94-

97.74 

257.96-

265.55 

OP 2270 3148 0.19 316.81 22.71-

23.38 

13.56-

13.96 

36.85-

37.94 

T. pallidum ONWI 840600 713 231 1040.13 0.36 1.06-

1.21 

ave = 

25%, 

min = 

12.8%, 

max = 

37.1% 

2.76

7 × 

103 

100 81.17-

92.66 

54.70-

62.44 

158.54-

180.97 

NIEA 1482000 847 218 556.77 0.94 1.17-

1.63 

56.97-

79.37 

38.39-

53.49 

111.28-

155.02 

DRI 492000 546 193 1484.77 0.51 1.09-

1.3 

91.24-

108.82 

61.48-

73.33 

178.21-

212.54 

EP 2400 713 0.19 299.65 0.1 1.02-

1.05 

10 2.25-

2.32 

1.52-

1.56 

4.39-

4.52 

D3 1300 1749 0.8 2329.23 42.91-

44.17 

28.91-

29.76 

83.80-

86.27 

OP 2270 1793 0.19 316.81 5.98-

6.16 

4.03-

4.15 

11.69-

12.03 
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Table 6. 5. Comparison between back-estimated weekly cases in the sewersheds serviced by interceptors and average weekly confirmed 

cases in the approximate regions in the Detroit metro area 

Disease Interceptors Estimated 

average 

weekly cases 

(Wave) 

Estimated 

minimum weekly 

cases (Wmin) 

Estimated 

maximum 

weekly cases 

(Wmax) 

Confirmed average 

weekly cases (Cave) for 

approximate regions 

Ratio 

Wave/Cave 

Ratio 

Wmin/Cave 

Ratio 

Wmax/Cave 

Chlamydia ONWI 133.42-

152.30 

79.68-90.96 216.49-247.13 Wayne county: 58.72 2.27-2.59 1.36-1.55 3.69-4.21 

NIEA 71.12-99.08 42.48-59.18 115.40-160.78 Oakland and Macomb 

counties: 109.06 

0.65-0.91 0.39-0.54 1.06-1.47 

DRI 245.35-

292.62 

146.53-174.76 398.12-474.82 City of Detroit: 170.9 1.44-1.71 0.86-1.02 2.33-2.78 

Total 449.89-

544.00 

268.69-324.89 730.01-882.72 Total: 338.7 1.33-1.61 0.79-0.96 2.16-2.61 

Syphilis ONWI 81.17-92.66 54.70-62.44 158.54-180.97 Wayne county: 16.44 4.94-5.64 3.33-3.80 9.64-11.01 

NIEA 56.97-79.37 38.39-53.49 111.28-155.02 Oakland and Macomb 

counties: 23 

2.48-3.45 1.67-2.33 4.84-6.74 

DRI 91.24-

108.82 

61.48-73.33 178.21-212.54 City of Detroit: 37.22 2.45-2.92 1.65-1.97 4.79-5.71 

Total 229.39-

280.85 

154.57-189.25 448.02-548.54 Total: 76.67 2.99-3.66 2.02-2.47 5.84-7.15 
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4. Discussion 

4.1 Wastewater surveillance as a screening tool for Chlamydia and Syphilis 

This study demonstrates the utility of wastewater surveillance on monitoring STIs 

particularly Chlamydia and Syphilis in wastewater in a large urban center as well as small 

neighborhood sewersheds for continuous 4 months. Unlike wastewater surveillance for SARS-

CoV-2 or other viral targets, wastewater surveillance for Chlamydia and Syphilis adds its unique 

value to the wastewater surveillance field of being a screening tool for bacterial diseases, which 

can be followed by more targeted clinical testing in communities before they become widespread. 

Recent studies indicated that factors including the willingness of STIs patients for clinical 

testing, asymptomatic infections of STIs, and shift of focus from STIs to COVID-19 programs all 

contributed to uncertainties in the accuracy of clinically reported cases for Chlamydia and Syphilis 

(Johnson et al., 2021; Wright et al., 2022). Particularly, due to the high infectivity and rapid 

transmission of STIs in densely populous areas such as Detroit, universal screening, regardless of 

asymptomatic or symptomatic conditions, in clinical settings is practically impossible. Thus, 

wastewater surveillance of Chlamydia and Syphilis highlights possibilities of monitoring 

fluctuations of STIs infections in communities, complementing clinically reported cases to 

represent actual community infections. 

Notably, higher DNA concentrations of both C. trachomatis and T. pallidum were 

observed in the three smaller neighborhood sewersheds than the three interceptors that cover the 

entire DMA, which can be likely attributed to different scales of dilution impacts. Researchers 

indicated that longer in-sewer travel time in larger sewersheds led to greater variabilities and 

degradation of pathogenic concentrations in wastewater with potentially 50% or more signals 

degrading (McCall et al., 2022). In particular, the size and in-sewer travel time of interceptors 
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(ONWI, NIEA, and DRI) are significantly larger than those of the smaller neighborhood 

sewersheds (EP, D3, and OP). 

4.2 Potential underreporting of Chlamydia and Syphilis incidences when wastewater 

surveillance estimates are benchmarked against clinical data 

This study demonstrates possibilities of back-estimations on Chlamydia and Syphilis 

infections based on wastewater data using a modified formula  (Guo et al., 2022a). Comparative 

analyses between ONWI-sewershed and Wayne county, NIEA-sewershed and combined counties 

of Oakland and Macomb, DRI-sewershed and City of Detroit were carried out and results were 

demonstrated in Table 6. 3. For Chlamydia infection estimates, the confirmed weekly cases were 

likely underreported for some sewersheds serviced by interceptors if they are benchmarked against 

clinical data as the ground truth, including OWNI-sewershed. For instance, the total estimated 

average infections (ranging from 449.9 to 544 for Chlamydia and from 229.4 to 280.9 for Syphilis) 

also indicated that the total confirmed weekly cases (338.7 and 76.67 for Chlamydia and Syphilis, 

respectively) for the DMA are likely underreported if clinical data represents the actual infection 

scenario. The ratio between Syphilis infection estimates and corresponding clinical data were 

ranging from 1.65 to 11.01, which also demonstrated higher infection estimates comparing to 

reported clinical data (Table 6. 3.). These results potentially embraced previous findings where 

researchers indicated that Chlamydia and Syphilis have been underdiagnosed and underreported 

due to asymptomatic infections and inadequate participation by infected individuals (Chin Quee, 

2023; Lafetá et al., 2016). STIs such as Chlamydia and Syphilis remain underdiagnosed and 

untreated in communities, which have the potential to become widespread without a 

comprehensive screening method for both symptomatic and asymptomatic infections. To address 

the issues above, the workflow of bacterial wastewater surveillance monitoring both Chlamydia 
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and Syphilis proposed in this study, can be an ideal screening method. 

4.3 Concentrations of C. trachomatis and T. pallidum might relate to socioeconomic 

demographics 

Among the three neighborhood sewersheds EP, D3, and OP, it was observed that D3 

presented significantly higher estimated infections of both Chlamydia (158.98-163.65) and 

Syphilis (42.91-44.17), despite having the lowest population. Particularly, D3 exhibited distinctive 

demographic characteristics among the three neighborhood sewersheds. These demographic 

characteristics of the D3 sewershed include the highest poverty percentage, and the highest 

population density, in contrast to OP and EP sewersheds (Table 6S. 8.). Likewise,  researchers 

identified that low socioeconomic status generally relates to health care access. And STIs rates 

generally relate to social determinants (Hogben & Leichliter, 2008). Notably, the highest ranges 

of estimated infections for both Chlamydia and Syphilis were observed in D3 and DRI, both 

located within the City of Detroit. D3 demonstrates significant disparities in socioeconomic 

demographics among selected sewersheds (Table 6S. 8.). Nevertheless, the clear connection 

between higher infection rates of both diseases and socioeconomic demographics requires further 

investigation. 

4.4 Limitations and future directions 

This study demonstrated one of the first workflows for bacterial wastewater surveillance 

and presented the detection of C. trachomatis and T. pallidum in wastewater as a screening 

method. We adopted a centrifugation method to concentrate and isolate bacteria in wastewater. 

However, the limitation of this method is the potential losses of bacteria in the supernatant (Aw et 

al., 2012). We initially implemented a membrane filtration method using 0.2 μm filters but results 

were not presented due to low recoveries. Besides, we initially tested C. trachomatis and T. 
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pallidum in supernatant wastewater, but their recoveries were low. Researchers identified that the 

direct centrifugation method demonstrated a higher recovery rate when comparing to filtration 

coupled with centrifugation (Varma et al., 2009). Besides, bacterial cells can often be isolated 

using centrifugation method with a speed of more than 8000×g (Aw et al., 2012) and previous 

studies concentrating bacteria from environmental and clinical samples using centrifugation were 

summarized in Table 6S. 1. 

Some parameters that were implemented in the back-estimation model still needs further 

investigations. For instance, there were extremely limited studies reporting the Cs parameter for 

urine, which was identified as a limitation of the current study. Consequently, future research is 

needed to investigate Cs in urine, feces, and other bodily fluids. 

Albeit the wide applications of PMMoV and crAssphage as biomarkers for normalization 

of wastewater pathogenic concentrations, the relative recovery of their signal may differ from the 

recovery of gene concentrations of C. trachomatis and T. pallidum. In addition, differences in 

genomes (RNA versus DNA) may also affect the normalization outcomes. Therefore, in addition 

to these human fecal indicators, investigations on other closely related biomarkers are needed. 

Future research is also needed to address gaps in types of process, recovery, and inhibition controls 

when wastewater surveillance is expanded to monitoring bacterial targets (Philo et al., 2023). 

It is critical to indicate that neither infection estimates based on wastewater surveillance 

nor clinically reported cases may depict the actual infections in communities. Wastewater 

surveillance estimates could be beneficial when clinical testing capacity is limited, asymptomatic 

infections is dominating, or wiliness of individuals clinical testing is low. However, wastewater 

surveillance estimates may not provide sufficient data for unsewered areas. Clinical testing 

generally screens population who is willing to get tested. Other sources of data can also be used 
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to compare with wastewater surveillance estimates and clinical data, including google trends, 

digital epidemiological data, mobility data, ground truth data include reports published by health 

departments or the World Health Organization, census statistics, data obtained from scientific 

studies, and data in news and media (Park et al., 2018). Data from all these aforementioned sources 

need to be integrated to generate coherent information for decision-makings. 

Finally, several questions still remain to be further investigated including whether bacterial 

cells of C. trachomatis and T. pallidum can grow in wastewater, and can we directly relate their 

bacterial DNA concentrations in wastewater to Chlamydia and Syphilis infections in 

communities? There is little published research investigating growth of C. trachomatis and T. 

pallidum in wastewater. Both C. trachomatis and T. pallidum are classified as gram-negative 

bacteria that replicate only within the host cells but not in the environment (Elwell et al., 2016; 

Varma et al., 2013; Witkin et al., 2017). C. trachomatis cannot replicate outside human host cells. 

Likewise, T. pallidum is an obligate human pathogen, and animal reservoirs for T. pallidum were 

not reported yet, which enhances its dependence on human host cells (Powers-Fletcher, 2011; 

Varma et al., 2013). Besides, both C. trachomatis and T. pallidum relies entirely on the supplies 

of nutrients from the human host cell (Liang et al., 2018; Radolf et al., 2015). To date, there is 

limited research investigating on bacterial growth of C. trachomatis and T. pallidum in wastewater. 

Therefore, more research is called on investigating the impacts of bacterial growth in wastewater 

on the relationship between wastewater data and human infections. 

5. Environmental Implications 

This study fills multiple important knowledge gaps in the current field of wastewater 

surveillance. First, this study demonstrated one of the first wastewater surveillance applications in 

monitoring widespread STIs, particularly Chlamydia and Syphilis, in a large urban area as well as 
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neighborhood sewer-sheds. This information highlights the utility of bacterial wastewater 

surveillance as a screening tool to complement clinically reported cases of bacterial diseases. This 

study also established a workflow of implementing bacterial wastewater surveillance, where 

molecular biology laboratory methods were optimized to detect and quantify C. trachomatis and 

T. pallidum in wastewater. Second, the results of different concentrations of C. trachomatis and T. 

pallidum in wastewater demonstrated disparities of corresponding socioeconomic characteristics 

of sewer-sheds. Third, Chlamydia and Syphilis infections were back-estimated using a modified 

formula based on extensive investigations on shedding dynamics of C. trachomatis and T. 

pallidum in environmental and clinical samples, revealing potentially underreported cases of both 

diseases in the Detroit metro area. 
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APPENDIX 

Additional details on GLWA WRRF interceptors. The three interceptors (the Oakwood-

Northwest-Wayne County Interceptor (ONWI), the North Interceptor-East Arm (NIEA), and the 

Detroit River Interceptor (DRI)) transport raw wastewater to the Water Resource Recovery 

Facility (WRRF). They are sewers that convey large volumes of wastewater to the wastewater 

treatment facilities. For instance, the DRI lasts for approximately 12 miles, and it parallels to the 

Detroit River from the WRRF to the eastern part of the Detroit City. The size of the interceptor 

ranges from 8 to 16 ft. DRI conveys most of the Detroit’s sewage to the WRRF 

(jaydee.us/projects/repair-and-rehabilitation-of-detroit-river-interceptor). 

Additional details on the positive controls. C. trachomatis DNA was isolated from McCoy 

cells (ATCC CRL-1696) infected with C. trachomatis serovar D strain UW-3/Cx (ATCC VR-885) 

as per the manufacture’s descriptions. It can be utilized to evaluate analytical sensitivity and 

specificity of primers and probes targeting C. trachomatis. Likewise, the quantitative synthetic T. 

pallidum DNA control can be used for the validation and evaluation of molecular-based assays 

performance targeting T. pallidum. 

Additional details on the sensitivity and specificity of primers and probes. Previous studies 

utilized qPCR in testing C. trachomatis and reported average efficiencies of 87.4% in wastewater 

samples (Chin Quee, 2023) and 88.9% in clinical samples (Stevens et al., 2010). Likewise, 

researchers utilized qPCR or real-time PCR in testing T. pallidum where they observed high 

sensitivities and specificities of 89% to 100% in clinical samples (Heymans et al., 2010; Koek et 

al., 2006; Nieuwenburg et al., 2022; Salle et al., 2023). 

Additional details on LOB and LOD. The Bio-Rad protocol was developed predicated on 

the Clinical and Laboratory Standards Institute (CLSI) protocol “EP17 Evaluation of Detection 



 

 285 

Capability for Clinical Laboratory Measurement Procedures” (Pierson-Perry et al., 2012). The 

CLSI EP17 document suggested at least 60 replicate templates to determine LOBs (Pierson-Perry 

et al., 2012). Thus, 96 replicate templates were conducted for both types of samples to determine 

LOBs for C. trachomatis and T. pallidum assays, respectively. 

Additional details on the uncertainty analysis. We adopted a commonly used statistical 

method of propagation of uncertainty to estimate the effect of each variable’s uncertainties on the 

uncertainty of the estimated infection (W) for formula (2) for interceptors. We did not include the 

neighborhood selected sewersheds (EP, D3, OP) since the flow data and wastewater travel time 

are values adopted from historical records. The uncertainty analysis for interceptors can 

sufficiently demonstrate the disparities of uncertainties of each parameter in formula (2) and their 

impacts on estimated infections. In formula (2), we first identified the uncertainty of each 

independent variable, they are:  (CDNA),  (k),  (t),  (Q),  (),  (Ps),  (Qs), and  (Cs). 

When calculating the propagation of uncertainty, we would neglect the uncertainties of remaining 

variables when we focused on the targeted variable for calculating its uncertainty for the estimated 

infections. Then, we computed the partial derivatives of W with respect to each variable. The 

following equation is an example of computing the partial derivative of W with respect to the 

measured concentration CDNA. 

∂W/(∂C(DNA))=(e^(kt)Qα)/(PsQsCs) 

∂W/∂k=(C(DNA)te^(kt)Qα)/(PsQsCs) 

∂W/∂t=(C(DNA)ke^(kt)Qα)/(PsQsCs) 

∂W/∂Q=(C(DNA)e^(kt)α)/(PsQsCs) 

∂W/∂α=(C(DNA)e^(kt)Q)/(PsQsCs) 

∂W/∂Ps=-(C(DNA)e^(kt)Qα)/((Ps^2)QsCs) 
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∂W/∂Qs=-(C(DNA)e^(kt)Qα)/((Qs^2)PsCs) 

∂W/∂Cs=-(C(DNA)e^(kt)Qα)/((Cs^2)QsPs) 

Subsequently, the uncertainties of each variable is determined as described below. 𝜎 (CDNA) 

is determined as the LOD for both targets (0.125). 𝜎 (k) is determined as the standard deviation 

(0.25) of identified k values used in the formula. 𝜎 (t) is determined as the standard deviation of 

transportation time of wastewater for each interceptor: ONWI (0.27), NIEA (0.53), and DRI (0.43). 

𝜎 (Q) is determined as the standard deviation of flow data for each interceptor: ONWI (88.39), 

NIEA (114.47), and DRI (80.58). Qs is regarded as a constant and its uncertainty 𝜎 (Qs) is zero. 

There is a lack of research on Cs in the current literature, and we have identified it as a future 

research need. Finally, through the computation of derivatives of W with respect to each parameter, 

the following two tables summarized uncertainties of each parameter based on values used in the 

study. It can be seen that the uncertainties of measured concentrations are negligible compared to 

those of other variables since the precision of measured concentrations relied on LOD of 

experiments. Other variables including k, t, and Q are computed via standard deviation according 

to a series of collected data and they presented similar levels of uncertainties. Values of Ps were 

adopted from literature studies and exhibited significant variations, therefore leading to the highest 

contribution to uncertainties of the infection estimates. 

C. trachomatis 𝜎 (W)  ONWI NIEA DRI 

𝜎 (CDNA) 0.031 0.035 0.018 0.025 0.045 0.035 

𝜎 (K) 12.01 13.71 16.71 23.28 31.28 37.31 

𝜎 (t) 12.43 14.19 13.00 8.55 36.40 43.41 

𝜎 (Q) 11.34 12.94 14.62 20.37 13.32 15.88 

𝜎 PS 4803.40 5483.13 2560.51 3567.21 8833.06 10534.85 
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T. pallidum 𝜎 (W)  ONWI NIEA DRI 

𝜎 (CDNA) 0.014 0.016 0.008 0.012 0.021 0.025 

𝜎 (K) 7.31 8.34 13.39 18.65 11.63 13.87 

𝜎 (t) 7.56 8.63 10.42 14.51 13.54 16.14 

𝜎 (Q) 6.90 7.87 11.71 16.32 4.95 5.91 

𝜎 PS 5579.01 6368.49 3915.79 5455.33 6271.23 7479.44 

 

Additional details on the sensitivity analysis. We adopted the global sensitivity analysis 

using the R package multisensi to estimate the sensitivity and relative importance of each 

parameter in the model on the final infection estimates (Lamboni et al., 2011). For sensitivity 

analysis, data ranges of parameters were described in the section 2.6. Briefly, the decay rate term 

e^(kt) was denoted as “E” and is ranging from 1 to 2. The data range of Q is determined from 300 

to 2500. The dilution adjustment factor was denoted as “a”. For C. trachomatis, Ps is ranging from 

0.05 and 2. For T. pallidum, Ps is ranging from 0.128 to 0.371. Qs is ranging from 800 to 2000 as 

per previous descriptions. As per the values and the details described in the section 2.6 of 

sensitivity model inputs, dynamics of the sensitivity indices for all parameters were demonstrated 

in the Figures 6S. 4., and 6S. 5., for Chlamydia and Syphilis infection estimates, respectively. 

Approaches to compare concentrations between interceptors and selected sewersheds. 

PMMoV presents in human feces primarily due to the consumption of pepper products such as hot 

sauces and it remains stable in wastewater with little seasonal variation (Kitajima et al., 2018). 

CrAssphage is a bacteriophage that pervasively infects the human gut commensal bacteria and is 

excreted in feces (Greenwald et al., 2021). Both PMMoV and crAssphage were proved to be the 

most consistent biomarkers and human fecal indicators in wastewater, which were implemented 

in recent studies to normalize wastewater viral (i.e., SARS-CoV-2, norovirus GI/GII, astrovirus), 

bacterial (i.e., Campylobacter jejuni, Clostridioides difficile, Salmonella spp., Yersinia 

enterocolitica), fungal (i.e., Blastocystis spp.), and protozoan (i.e., Balantidium coli) 

concentrations to mitigate the influence of systematical variations due to routine WWTPs 
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operations, reduce background noise, account for dilution effects and enhance comparability 

among sites (Boehm et al., 2023; Greenwald et al., 2021; Holm et al., 2022; Rao et al., 2024). Both 

PMMoV and crAssphage were highly associated with large solids collected by centrifugation, 

which is the concentration method adopted for isolation of C. trachomatis and T. pallidum in this 

study (Nagarkar et al., 2022). Therefore, both targets were selected for normalizing C. trachomatis 

ompA and T. pallidum polA concentrations for comparing disparities between interceptors and 

selected sewersheds. 
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Table 6S. 1. Centrifugation methods for bacterial concentration from environmental and clinical 

samples 

Bacterial target Sample matrix Centrifugation speed 

and time 

References 

Chlamydia trachomatis Endocervical swab 

sample 

≥12,000×g for 30 

minutes at 4°C 

(Somboonna et al., 

2018) 

Cervical and introital 

specimens 

10,000 rpm for 15 min (Mania‐Pramanik et 

al., 2006) 

Salmonella Typhi Influent wastewater 

grab sample 

1-minute 1000×g then 

supernatant for 15 

minutes 4000×g 

(Zhou et al., 2023) 

Escherichia coli Surface natural water 

(river) and wastewater 

(raw wastewater before 

treatment) 

8000×g, 10 min, 22 °C (El Boujnouni et al., 

2022) 

Legionella pneumophila Tap water samples 8150×g for 15 min or 

3800×g for 30 min 

(Villari et al., 1998) 

Enterococcus faecalis Wastewater samples 12,000×g for 1 min (Varma et al., 2009) 

Leptospira Water samples 8000×g, 10 min (Lall et al., 2016) 

Escherichia coli Cultured medium 8000g, 10 min, 4 °C 

12,000×g for 10 min 

(Fu et al., 2020) 
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Table 6S. 2. Decay rate constant k (d-1) for different bacteria in the aqueous environment 

Bacteria Method Environment Temperature Decay rate Reference 

E. Coli RT-qPCR Seawater 

 

22–24 °C 0.06-1.47 (Zhang et al., 

2015) Enterococci 0.18-0.76 

C. perfringens 0-0.77 

Enterococci 

(intestinal) 

Membrane 

filtration with 

incubation on 

selective media 

Seawater 

 

4–20 °C 0.03-1.05 (Eregno et 

al., 2018) 

E. Coli IDEXX Colilert 

18 Quanti-

Tray/2000 

0.05-1.13 

Campylobacter Calculations 

using the 

Arrhenius 

equation based 

on data 

collected from 

published 

studies 

Wastewater 20 °C 0.17-0.19 (Guo et al., 

2022) Fresh water 1.72-1.88 

Saline water 1.15-2.75 

Salmonella Wastewater 0.4-0.52 

Fresh water 0.37-2.37 

Saline water 0.74-1.06 

Bacteroidales Real-time PCR Seawater 18.3-18.7 °C 0.95-1.11 (Jeanneau et 

al., 2012) Fresh water 1.37-1.41 

Bifidobacterium 

adolescentis 

Seawater 0.62-0.64 

Fresh water 0.62-0.7 

E. coli 

(culturable) 

Culture Seawater 1.24-1.4 

Fresh water 0.39-0.43 

Enterococci 

(culturable) 

Seawater 0.56-0.88 

Fresh water 0.67-0.91 

E. coli 

(culturable) 

Culture Seawater 15.06-19.22 °C 0.5 (Mattioli et 

al., 2017) 

Enterococci 

(culturable) 

0.65 

Enterococci RT-qPCR 0.3 
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Table 6S. 3. Wastewater in-sewer travel time in GLWA interceptors 

Interceptor (hours) Weighted Average Minimum Maximum 

DRI 12.3 0.2 41.8 

NIEA 22.5 0.7 51.2 

ONWI 8.6 0.1 25.9 
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Table 6S. 4. Temperature and pH of wastewater samples collected from the neighborhood 

sewersheds including EP, D3, and OP 

Week 
Sample site (duplicate 

samples) 
Sample Date Temperature (oC) pH 

1/8/24 

OP 

1/10/24 

pH/Temp sensor missing pH/Temp sensor missing 
OP 

D3 
pH/Temp sensor missing pH/Temp sensor missing 

D3 

EP 
pH/Temp sensor missing pH/Temp sensor missing 

EP 

1/22/24 

OP 

1/24/24 

11.1 7.75 
OP 

D3 
12.1 7.41 

D3 

EP 
13.1 7.35 

EP 

1/29/24 

OP 

1/31/24 

12.5 7.75 
OP 

D3 
7.6 7.72 

D3 

EP 
12.3 7.53 

EP 

2/5/24 

OP 

2/7/24 

14.3 7.45 
OP 

D3 
14 7.57 

D3 

EP 
14.3 7.34 

EP 

2/12/24 

OP 

2/14/24 

pH/Temp sensor missing pH/Temp sensor missing 
OP 

D3 
pH/Temp sensor missing pH/Temp sensor missing 

D3 

EP 
pH/Temp sensor missing pH/Temp sensor missing 

EP 

2/19/24 

OP 

2/21/24 

14.9 7.53 
OP 

D3 
15.8 7.62 

D3 

EP 
16.6 7.35 

EP 

2/26/24 

OP 

2/28/24 

12.1 7.78 
OP 

D3 
10.5 7.8 

D3 

EP 
8.7 7.47 

EP 
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Table 6S. 4. (cont’d) 

3/4/24 

OP 

3/6/24 

11.9 7.82 
OP 

D3 
13.1 7.77 

D3 

EP 
11.4 7.64 

EP 

3/11/24 

OP 

3/13/24 

19 7.71 
OP 

D3 
15.8 7.53 

D3 

EP 
21.7 7.6 

EP 

3/18/24 

OP 

3/20/24 

9.5 7.63 
OP 

D3 
9 7.61 

D3 

EP 
11 7.49 

EP 

3/25/24 

OP 

3/27/24 

10.3 7.61 
OP 

D3 
11 7.66 

D3 

EP 
11.3 7.54 

EP 

4/1/24 

OP 

4/3/24 

14.1 7.74 
OP 

D3 
12.9 7.65 

D3 

EP 
15.5 7.63 

EP 

4/8/24 

OP 

4/10/24 

16.8 7.58 
OP 

D3 
17 7.66 

D3 

EP 
18.4 7.48 

EP 

4/16/24 

OP 

4/18/24 

18.3 7.65 
OP 

D3 
16.8 7.52 

D3 

EP 
19.9 7.58 

EP 

4/22/24 

OP 

4/24/24 

13.9 7.64 
OP 

D3 
13.7 7.6 

D3 

EP 
14.7 7.45 

EP 
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Table 6S. 5. Positive detection of C. trachomatis in clinical samples excreted from patients with 

suspected diseases (* marked values are used in formula 2) 

Type of samples Presence (%) References 

Female urine 

5.3* (Božičević et al., 2011) 

6.6* (Møller et al., 2010) 

6.0* (Møller et al., 2008) 

All gender urine 

6.2* (Božičević et al., 2011) 

9.0* (Møller et al., 2008) 

9.1* (Møller et al., 2010) 

Male urine 

13.4* (Møller et al., 2010) 

14.4* (Møller et al., 2008) 

7.3* (Božičević et al., 2011) 

Female urine combined with vaginal swab 8.3 (Møller et al., 2008) 

Male first voided urine specimens 8.9* (Mania‐Pramanik et al., 2006) 

All gender genital ulcer swabs 10.5 (Tshaka et al., 2022) 

Female cervical and introital specimens 12.3 (Mania‐Pramanik et al., 2006) 

Female vaginal swabs 
12.2 (Ngobese et al., 2022) 

18.4 (Pickett et al., 2021) 
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Table 6S. 6. Positive detection of T. pallidum in clinical samples excreted from patients with 

suspected diseases (* marked values are used in formula 2) 

Type of samples Presence (%) References 

Male lesion swabs 0.3 (Dubourg et al., 2015) 

All gender genital ulcer swabs 6.7 (Tshaka et al., 2022) 

Male urine (early latent syphilis) 12.8* (Nieuwenburg et al., 2022) 

All gender ano-rectal swabs (primary syphilis) 13.0 (Heymans et al., 2010) 

All gender genital ulcer swabs 13.4 (Koek et al., 2006) 

Male ano-rectal swabs (secondary syphilis) 18.6 (Nieuwenburg et al., 2022) 

Male genital, anal or oral ulcers 20.8 (Shields et al., 2012) 

Male ano-rectal swabs (early latent syphilis) 24.4 (Nieuwenburg et al., 2022) 

All ano-rectal swabs (secondary syphilis) 25.6 (Heymans et al., 2010) 

Male urine (secondary syphilis) 37.1* (Nieuwenburg et al., 2022) 

Male genital, anal or oropharyngeal ulcers 47.0 (Glatz et al., 2014) 
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Table 6S. 7. Incubation time of C. trachomatis 

Incubation time References 

5-10 days (O’Connell & Ferone, 2016) 

7-21 days lacounty.gov, ndhealth.gov, iowa.gov, 

epi.utah.gov, odh.ohio.gov 

7-14 days vic.gov.au, nsw.gov.au, gov.mb.ca 

mean of 21 days mass.gov 

7-28 days (Jones & Lopez, 2014) 

2-60 days ashm.org.au 

1-3 weeks oregon.gov 

1-5 weeks nj.gov 

14-21 days, maximum 6 weeks healthunit.org, gnb.ca 

7-14 days for trachoma and genital 

infections, 3-30 days for LGV 

Public Health Agency of Canada (canada.ca) 
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Table 6S. 8. Demographic characteristics of the neighborhood sewersheds 

Sites Zip Population Density Black Hispanic White Poverty 

Total 

household 

income 

EP 48021 2400 9 37% 5% 54% 5% 56450 

D3 48235 1300 10 95% 0% 2% 44% 22100 

OP 48237 2270 8 85% 3% 6% 15% 51680 

Notes: units for Area, Density, and Total household income are acres, people per acre, and USD, 

respectively. 
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Figure S6. 1. Box plots for C. trachomatis and T. pallidum concentrations: non-normalized (a, 

b), normalized by PMMoV (c, d), normalized by crAssphage (e, f) for interceptors 
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Figure S6. 2. Box plots for C. trachomatis and T. pallidum concentrations: non-normalized (a, 

b), normalized by PMMoV (c, d), normalized by crAssphage (e, f) for selected sewersheds 
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Figure S6. 3. Comparison between interceptors and selected sewersheds for C. trachomatis and 

T. pallidum concentrations: non-normalized (a, b), normalized by PMMoV (c, d), normalized by 

crAssphage (e, f) 
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Figure S6. 4. Dynamics of the sensitivity indices of Chlamydia infection estimates with indices 

normalized to 1, and a bar plot of the PCA generalized sensitivity indices of the infection 

estimates model for Chlamydia 
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Figure S6. 5. Dynamics of the sensitivity indices of Syphilis infection estimates with indices 

normalized to 1, and a bar plot of the PCA generalized sensitivity indices of the infection 

estimates model for Syphilis 
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CONCLUSIONS AND SIGNIFICANCE 

Wastewater surveillance or wastewater-based epidemiology (WBE) has undergone 

significant advancements over the past two decades. The COVID-19 pandemic, in particular, has 

acted as a catalyst, expediting its development and applications. This dissertation extensively 

explores the laboratorial, technical, and translational methodologies of implementing WBE and 

makes significant advancements in WBE in the following aspects: 

First, in the beginning of the COVID-19 pandemic, even WBE has gradually become 

recognized as an effective method for the early detection of outbreaks, technological and 

translational advancements on predicting fluctuations of COVID-19 incidences have not yet been 

made. In chapter 1, we implemented the U.S. EPA Virus Adsorption-Elution (VIRADEL) method 

that targets the viruses in supernatant wastewater to circumvent the potential input of “old” viruses 

via desorption of settled viruses during high flows. Predicated on the measured SARS-CoV-2 

RNA concentrations in wastewater using RT-ddPCR, we built and deployed four mathematical 

models that predicted the fluctuations of COVID-19 cases five weeks before clinical reporting. 

Autoregressive models with time effect and vector autoregressive models are two examples of 

models that precisely predict the fluctuations of impending COVID-19 cases. We systematically 

evaluated the time lag between peaks in measured concentrations of SARS-CoV-2 in wastewater 

and peaks in reported COVID-19 cases and, for the first time, proposed a time lag mechanistic 

model. Both the prediction models and the time lag mechanistic model allow researchers to 

accurately depict fluctuations of future disease incidences before its clinical reporting. 

Second, while intricate models have been developed to determine early warnings based on 

wastewater surveillance data, there is an exigent need for straightforward, rapid, broadly 

applicable methods for health departments and partner agencies to implement. In chapter 2, we 
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aimed to develop and evaluate such early-warning methods and clinical-case peak-detection 

methods based on wastewater surveillance data to mount an informed public health response. We 

designed eight statistical methods to identify early warnings for surging COVID-19 incidences in 

the TCDA. We demonstrated the utility of these methods for providing early warnings for COVID-

19 incidences in real scenarios, with their counterpart accuracies evaluated by hit rates, which can 

reach 100% accuracy to capture surges of COVID-19 incidences. The proposed methods were 

utilized by health agencies including the World Health Organization on August 30th, 2023, in its 

SARS-CoV-2 Variant Risk Evaluation Framework and local health departments in Michigan, U.S., 

and Ontario, Canada, to capitalize on wastewater surveillance data to assess trends of COVID-19 

and RSV and implement quick public health responses to future epidemics. 

Third, there is a vast number of methods used to recover and concentrate SARS-CoV-2 

viral RNA from wastewater, including Virus Adsorption-Elution (VIRADEL), polyethylene 

glycol precipitation (PEG), ultrafiltration, ultracentrifugation, concentrating pipette, filtration, etc. 

However, no studies yet compared concentration methods in terms of their early warning potential. 

In chapter 3, we presented a comparison of three primary concentration methods (VIRADEL, PEG 

and PES filtration) to detect SARS-CoV-2 viral RNA in wastewater, in relation to COVID-19 

cases amid the transition from Delta to Omicron Variants of Concerns (VOCs) circulating in the 

TCDA. We identified that VIRADEL method can be used to enhance the early-warning potential 

of wastewater surveillance applications albeit drawbacks may include the need to process large 

amount of wastewater to concentrate sufficiently free and suspended virus for detection. 

Fourth, numerous studies have reported time lags between SARS-CoV-2 RNA 

concentrations in wastewater and confirmed clinical COVID-19 cases. Only a limited number of 

studies have examined the time lags between SARS-CoV-2 RNA concentrations in wastewater 
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and other clinical metrics. Chapter 4 contributes valuable insights into the field of WBE by 

estimating the time lags between SARS-CoV-2 concentrations and clinical metrics (confirmed 

cases, hospitalizations, and ICU admissions), before and during the COVID-19 Omicron surge in 

TCDA. We found that PEG did not provide early warnings for three clinical metrics for nearly all 

nonnormalized and normalized conditions during the Omicron surge. However, VIRADEL 

demonstrated its potential for early warnings of total confirmed cases, hospitalizations, and ICU 

admissions, with leading time lags provided before the Omicron surge. During the Omicron surge, 

VIRADEL’s leading time lags were reduced, and the early warning potential of ICU admissions 

was diminished. The leading time lags can provide a critical window for hospital systems and 

public health authorities to properly prepare for pending disease outbreaks. Chapter 4 contributes 

the understanding of the temporal relationship between wastewater viral concentrations and 

various clinical metrics as well as the parameters potentially affecting the relationship. Such 

understanding can improve the effective translation of wastewater surveillance data, improve 

WBE models, and ultimately, enhance public health preparedness. 

Fifth, despite the numerous investigations regarding the comparison among U.S. CDC N1, 

N2 genes and SC2 assay, few studies directly compared their efficiency in correlating with and 

predicting clinical cases. Published studies have only conducted limited comparative analyses of 

SARS-CoV-2 RNA concentrations quantified with N1, N2 genes and SC2 assay as well as clinical 

cases. Hence, in chapter 5, we compared the correlations and examined the 

similarities/dissimilarities among N1, N2 genes and SC2 assay through comprehensive statistical 

approaches. We established models to predict COVID-19 cases based on SARS-CoV-2 RNA 

concentrations quantified with the three assays and identified N2 as the optimal assay for 

predicting COVID-19 in TCDA. 
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Finally, wastewater surveillance has demonstrated its substantial potential of monitoring 

and predicting infections of communicable diseases. Yet, most studies implemented wastewater 

surveillance to monitor viral communicable diseases including COVID-19, RSV, influenza, and 

norovirus. Limited studies attempted to monitor widespread bacterial communicable diseases 

particularly sexually transmitted diseases (STDs) including Chlamydia and Syphilis despite their 

rapidly increasing trends and underreported infections in the U.S. Henceforth, in chapter 6, we 

optimized molecular biology laboratory methods including DNA extraction and ddPCR to target 

Chlamydia trachomatis and Treponema pallidum that cause Chlamydia and Syphilis, respectively. 

We also designed a workflow to implement wastewater surveillance tracking Chlamydia and 

Syphilis in the TCDA. The magnitude of Chlamydia trachomatis and Treponema pallidum 

concentrations were observed higher in neighborhood sewersheds than interceptors. Predicated on 

extensive investigations on bacteria shedding and wastewater surveillance data, we back-estimated 

the infections of Chlamydia and Syphilis where results indicated likely underreported conditions, 

further highlighting the values of WBE on tracking STDs. Different concentrations of C. 

trachomatis and T. pallidum in wastewater demonstrated disparities of varying characteristics of 

sewersheds and they were potentially related to socioeconomic status. In chapter 6, we developed 

and implemented one of the first bacterial wastewater surveillance as a screening tool to monitor 

STDs, and estimated bacterial infections based on bacterial shedding and wastewater surveillance 

data. 
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