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ABSTRACT

Advances in omics technologies have led to an abundance of comprehensive biomolecular

information of biological systems, down to single-cell resolution. With omics data, biologists

can gain a deeper understanding of the complex-hierarchical networks that constitute an

organism. To this end, deep learning methods are often applied to assist in discovering

meaningful patterns and relationships from omics data. Though deep learning methods

can offer high performance on many complex tasks, some challenges arise with omics-based

tasks: (1) Omics data are often high-dimensional with low-sample size and/or high levels

of sparsity, with complex dependency structures between and within omics data types. (2)

There is an imbalance of annotated data across different species and environments. These

difficulties make desirable the integration of omics data across different modalities, group

samples, and platforms, as well as environments and species.

This thesis examines, builds and implements approaches to address these challenges

through Integrative Learning techniques, which I use as a general term to encompass tech-

niques that incorporate multiple sources of related data for improved learning (e.g., transfer

learning, multi-task learning, and multi-modal data integration). In this work I highlight

and address these challenges in different omics-based tasks.

In addition to applied methods development, I provide probabilistic and mathematical

frameworks that underpin many of these applied problems in omics analysis.

Lastly, I showcase some of my more current experiments in deconvolution. Though these

experiments are prelimary, often through toy examples, they demonstrate some possible

future directions I want to consider.
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CHAPTER 1

INTRODUCTION

Complex cellular networks with dynamic functional states have a pivotal role in the hierarchy

of networks and structures that make up an organism McManus et al. (2015). This makes

the study of cells and cellular networks integral to understanding all of biology. This has

motivated advances in high-throughput single-cell sequencing and imaging technologies have

enabled the collection of massive biomolecular data at single-cell resolution. Indeed, single-

cell sequencing technologies often generate tens of thousands to millions of samples/cells per

study Svensson et al. (2018). This massive and complex data make deep learning methods

an attractive approach to analyze cell behavior and cellular networks.

Deep learning methods, which have consistently shown cutting-edge performance in vari-

ous big data applications Pouyanfar et al. (2018); Dong et al. (2021), have fertile new ground

for research that pushes the frontiers of biological science.

The first developments in single-cell sequencing technology began with complementary

DNA (cDNA) Eberwine et al. (1992); Brady et al. (1990). A major breakthrough would

come decades later, through the development of single-cell RNA sequencing (scRNA-seq)

methods Tang et al. (2009). scRNA-seq methods have given scientists the ability to anal-

ysis biology with single cell resolution, i.e. at the building blocks of life. This has served a

pivotal role in changing how we study biology, and has lead to great advancements across

many fields of biology and science more broadly. Since then, there has been further devel-

opments in next-generation sequencing platforms, with over one hundred currently existing

single-cell sequencing technologies Wang and Navin (2015); Wen and Tang (2022). We

now have technologies that measure a wide-array of cell features, e.g. DNA sequences and

epigenetic features, methylation and chromatin accessibility, RNA expression, and profiles

of surface proteins. Building on these developments, recent omics technology advances offer

multi-feature capability, and additional ancillary features such as spatial location via spatial

transcriptomics.
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These advances in sequencing technologies have facilitated great advances on the bioin-

formatics front, through high throughput methods Svensson et al. (2018); Kolodziejczyk

et al. (2015) which provide (1) higher resolution from bulk tissues to individual cells (and

sub-cellular levels) and (2) a massive volume of open data. To illustrate this, consider bulk

tissue RNAseq (bulk RNA-seq) Li and Wang (2021) vs scRNA-seq data. With bulk RNA-

seq we quantify expression as an aggregate from a group of cells (cell pool). Here, cellular

heterogeneity is lost, and we have only a single expression sample comprised of multiple cells.

With single-cell sequencing technologies we quantify expression for each individual cell. So

if we consider a cell pool consisting of 20 cells, we get a single sample from bulk RNA-seq

and 20 samples from scRNA-seq. In real sequencing experiments, this small delta becomes

a great delta, where a single experiment with scRNA-seq technologies can generate tens

of thousands up to millions of samples. These high-resolution and high-throughput omics

technologies have provided a massive amount of rich biological data to analyse and explore.

Naturally, as with data explosions across other scientific domains, this has fostered ad-

vancements in data analysis and machine learning. In particular, deep learning methods

have come to the forefront in many big data applications Pouyanfar et al. (2018); Dong

et al. (2021), and omics data analysis is no exception. Deep learning applications in omics

have provided biologists with powerful in silico tools to supplement and inform their in vitro

and in vivo experiments. Conversely, domain knowledge gained from in vitro and in vivo

experiments can inform deep learning models through integrative learning methods. This

feedback loop between domain experts and advanced in silico learning methods will serve

as a vehicle we drive to new frontiers in our understanding of biology, and thereby, physical

life.

Despite the success of single-cell data in numerous applications, difficulties arise due to

the complexity of the data which requires advanced analysis pipelines with a number of

steps. Single-cell data preprocessing includes many stages of data pruning, normalization,

and often challenging machine learning tasks like batch effect correction, data imputation,
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or dimensionality reduction. Moreover, specialized types of single-cell data require further

processing such as multimodal data integration and cell type deconvolution for spatial tran-

scriptomics. These steps are crucial to facilitate downstream tasks ranging from clustering

and cell annotation, disease prediction, identifying gene coexpression networks, to the iden-

tification of developmental trajectories of cells transitioning between states Lähnemann and

et al. (2020).

For tasks with clear evaluation metrics, deep learning often achieves top performance

against other classical machine learning techniques Muzio et al. (2021). Deep learning can

uniquely leverage its diverse architectures to capture networks of interdependencies between

genes that alter other genes’ expression levels Bansal et al. (2007), and cells that communicate

with other cells through mechanisms like ligand-receptor pairs Li et al. (2022b). Due to the

richness of deep learning architectures and the customization of hyper-parameters and loss

functions, deep learning models can be more readily tailored to particular tasks in single-

cell analysis compared to shallow-classical machine learning methods. Deep learning has

already become a staple in omics analysis, but there is still fertile ground in deep learning

applications to problems in omics data analysis.

In this work, I review and showcase some major problems in omics data analysis, with

applications of deep learning on omics data. In the chapter 1, I give background of omics data

and technologies, focusing on single-cell, bulk-seq and spatial transcriptomics data. Further, I

put scRNA-seq data into a probabilistic framework that underpins many methods in scRNA-

seq analysis. In Chapter 3 I apply deep learning frameworks and methods to predicting plant

stress response from DNA sequences. There, I emphasize the utility of integrative learning

through transfer learning and multi-task learning. In Chapter 4 I develop and apply deep

graph learning methods for cell type deconvolution, provide benchmarking experiments, and

a method for generating large-scale cell type deconvolution benchmarking datasets, with

ground truth labels. In chapter 5 I showcase a few more (early) works in deconvolution,

emphasizing probabilistic frameworks for deconvolution. Lastly, in chapter 6 I give some
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concluding remarks about experimental results, developments, and future directions.
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CHAPTER 2

BACKGROUND

We begin this chapter with an overview of omics data, with an emphasis on single-cell data

and spatial transcriptomics data. Here, we will discuss developments in omics technologies, as

well as structure and select problems in omics data analysis. We then develop a probabilistic

framework for scRNA-seq count data, which serves as an underpinning assumption in many

analytical methods for tasks involving scRNA-seq data.

The first section - Omics Data - is in part derived from my contributions to the survey

paper Molho et al. (2024), and new developments paper Ding et al. (2024b).

2.1 Omics Data

At a high-level, we study biology to understand life through internal (unseen or micro-

scale) dynamics, Further, to understand the levers that control those dynamics. To under-

stand the dynamics and controls of any system, it is most helpful to create causal maps,

i.e., mapping cause and effect. To do this, we need output or outcomes that we can observe

through our senses. Of course, dynamic systems are complex, with controls defined by non-

linear interactions of components across both horizontal and vertical scales. To understand

the dynamics of life, then, it helps to understand biological systems across varying levels.

This allows us to better understand causal maps controlling biological systems.

In biological systems, one of the most tangible levels we can observe outcomes is with

phenotypes. On the other hand, genotypes are the microscopic basic building blocks of

organisms. This makes the task of understanding causal maps from genotypes to phenotypes

essential to understanding biological systems. Further, any map from genome to phenome

begins with the transcriptome, making trancriptome analysis an essential goal for biologists

Houle et al. (2010).

While the genotypes of cells within an organism are nearly identical, only a small subset

of the total gene pool is expressed at any given moment in time. That is, cellular networks

have dynamic functional states, which lead to variations in RNA transcribed from DNA
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across cells, i.e., transcriptomic variations. A major control of these dynamics are gene

regulatory networks, as they regulate gene activity. In short, the transcriptome is largely

defined by gene regulatory networks. Moreover, variations in the transcriptome highlight

and reinforce the notion of cellular heterogeneity. Thus, being able to capture and analyze

omics data of individual cells can help us account for cellular heterogeneity, which in turn

help us understand gene regulatory networks and other major drivers of biological systems.

Most gladly, there has been significant developments in single-cell technologies that provide

researchers with ever increasing information at the cellular level, including transcriptomics,

genomics and epigenomics data.

While bulk sampling methods can access and take transcriptomics measurements of cell

pools within a tissue, they lack the capability to capture the heterogeneity and stochasticity

of the cells that make up the bulk sample. Further, even with a homogeneous bulk mixture,

we lose granularity in the aggregate signal measured from the mixture. On the other hand,

single-cell technologies measure signals from individual cells, thus giving more granularity to

study cell heterogeneity. This provides a way to isolate individual cells and their influence

on upstream biological functions Goldman et al. (2019); Kulkarni et al. (2019); Stegle et al.

(2015); Nguyen et al. (2018). In this section we review developments of single-cell and other

omics technologies over time, with a focus on transcriptomics technologies. We summarize

these technological advances chronologically in Figure 2.1.

Figure 2.1 Timeline of major developments in single-cell technologies.
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2.1.1 Single-cell Technologies

The first developments in sequencing technology can be traced back to James Eberwine

et al. Eberwine et al. (1992) and Iscove et al.Brady et al. (1990), who first expanded

complementary DNAs (cDNAs). Since then, modest yet consistent advancements culminated

in a significant breakthrough in 2009, when single-cell RNA sequencing (scRNA-seq) was

created Tang et al. (2009). The ideas underpinning scRNA-seq have since provided the

way for various single-cell technologies for a broader range of target measures within a

cell. Some examples include technologies that target DNA methylation Guo et al. (2013)

(2013), protein and DNA accessibility (2015), and histone modifications Bartosovic et al.

(2021) (2021). Beyond sequencing technologies, scRNA-seq has facilitated advancements

in quantitative methods and understanding. With scRNA-seq data, researchers have made

strides in essential tasks for deeper biological understanding, such as cell type segmentation,

classification, and cell type expression profiling, to name a few.

Structurally, single-cell omics data is put into matrix form, with measured signals (e.g.,

RNA transcripts) as columns and cells as rows. Some example features could be some

measures from accessible DNA regions in ATAC-seq data, genes in scRNA-seq data, and

proteins in CITE-seq data. Here in Figure 2.2, we show a simple example of a single-cell

omics data matrix.

For scRNA-seq, isolation of the cell is the first step for obtaining transcriptome infor-

mation. Naturally, scRNA-seq and other single-cell technologies depend first on isolating

individual cells. This process often distinguishes the different single-cell technologies, i.e.,

how they perform cell isolation. The earliest technologies tended to be low throughput and

achieved cell isolation through serial dilution or robotic micromanipulation Brehm-Stecher

and Johnson (1990). More recently, technologies that use microfluidic methods to isolate

the cell have provided higher throughput capabilities Whitesides (2006). A key microfluidic

based cell isolation method uses microdroplets Thorsen et al. (2001). Here, water droplets

are uniformely disperesed in a medium of oil, which allows cells to isolate into the droplets.
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While commercial microfluidic platforms like Fluidigm C1, ICELL8, and Chromium can

benefit from high throughput, they face the challenge of high cost and often the requirement

of uniform cell size in the sample. Once a cell is separated and lysed, messenger RNAs in

this cell are reverse transcripted into more stable cDNAs with a unique cell barcode. The

cDNAs are then amplified via Polymerase Chain Reaction (PCR) for better data capture

before sequencing, which tends to introduce bias due to the uneven amplification efficiency.

Therefore, besides the unique barcodes, the cDNA molecules in a cell are also given a Unique

Molecular Identifier (UMI) to correct the amplification bias by collapsing the reads with the

same UMI into one read. After debiasing, sequence reads are mapped to the genome and

are grouped into genes for the creation of a count matrix Wang and Navin (2015).

In addition to measuring RNA transcripts, some single-cell technologies can also mea-

sure chromatin accessibility of a cell’s chromosome. Eukaryotic genomes are hierarchically

packaged into chromatin Kornberg (1974), and this packaging plays a central role in gene

regulation Kornberg and Lorch (1974). Buenrostro et al. created a means for sampling the

epigenome at the single-cell level through the Assay for Transposase Accessible Chromatin

using sequencing (ATAC-seq) Buenrostro et al. (2013) in 2013 . ATAC-seq allows the identi-

fication of accessible DNA, i.e. the nucleosome-free regions of the genome Hendrickson et al.

(2018). DNA accessibility within the genome can be used to identify regulatory elements in

different cell types which cause the activation or repression of gene expression Thurman et al.

(2012). scATAC-seq produces a count matrix with a number of reads per open chromatin

regions, which lead to very large matrices with hundreds of thousands of regions. Further-

more the data is known to be very sparse, where it is common to have the non-zero entries

make up less than 3% of the data Li et al. (2021).

While single-cell sequencing techniques for transcriptome measurements have seen great

growth, single-cell proteomics methods have been developing at a slower pace. This makes

a gap in omics data analysis, since proteomic data are essential to understand how genes

respond to environmental changes. Moreover, proteins are basic functional units for many
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Figure 2.2 An illustration of data matrices produced by single-cell technologies.

cellular processes, which makes proteomics data essential to analyzing and understanding

cellular behavior. Unlike most sequencing technologies, which have a standard process, pro-

teomic measurements are often bespoke and designed for specific applications Vistain and

Tay (2021). However, some technologies have made significant strides in capturing protein

information of cells and combining this with mRNA measurements. Specifically, Cellular In-

dexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), simultaneously sequences

mRNA and measures the surface proteins on a cell Stoeckius et al. (2017). The method can

sample over 1,000 genes and 80 proteins per cell, but like many other sequencing techniques,

it suffers from high noise. In addition, CITE-seq is incapable of detecting intracellular pro-

teins Baron and Yanai (2017).

2.1.2 Single-Cell Spatial Transcriptomics

Single-cell technologies that capture transcriptomic, proteomic, or epigenetic information

do so with great precision but with the loss of spatial information of the cells within the

tissues. However, the cells’ relative locations within tissue is critical to understanding normal

development and disease pathology. With spatial transcriptomic technologies, researchers

are able to measure transcriptomics and leverage the spatial information or relative locations

of cells in a tissue for better performing downstream tasks Crosetto et al. (2015); Moor and

Itzkovitz (2017); Wang et al. (2018); Marx (2021); Asp et al. (2020); Waylen et al. (2020);

Teves and Won (2020). For example, motivated by the fact that a pair of ligand and receptor

with closer distance are easier to bind, HoloNet Li et al. (2022b) builds up a directed graph
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based on the expression of ligand–receptor gene lists and the physical distance between the

sender cell and receiver cell to represent cell–cell communication events. However, the early

generations of spatially resolved profiling technologies are not at the single-cell resolution but

instead sampled in groups called ‘spots’, which capture several cells. It requires additional

work to determine the cell type proportion in spots, a process called cell type deconvolution.

Alternatively, many cell imaging platforms provide RNA spatial information at the cellular

and subcellular level, but the individual cells must be identified through cell segmentation

methods.

Major technologies or platforms for spatial transcriptomics include multiplexed error-

robust fluorescence in-situ hybridization (MERFISH), sequential fluorescence ISH (seqFISH+),

Slide-Seq, Visium by 10x Ståhl et al. (2016), GeoMx Digital Spatial Profiler (DSP) Mer-

ritt et al. (2020) by NanoString,and CosMx Spatial Molecular Imager (SMI) by NanoS-

tring. MERFISH Moffitt and Zhuang (2016), first introduced in 2015, is a single-molecule-

fluorescence-in-situ-hybridization (smFISH)-based technology that can be applied to fresh-

frozen samples to provide subcellular resolution. While traditionally the procedure of these

smFISH-based technologies is complex, a number of commercialized platforms have emerged

recently, such as Vizgen, Rebus Esper, Molecular Cartography, and Resolve Biosciences

Moses and Pachter (2022), which allow more convenient sequencing of spatial transcrip-

tomic at a lower cost. As an alternative to MERFISH, seqFish+ Lubeck et al. (2014); Shah

et al. (2016); Eng et al. (2019) employs ’pseudocolor’ as a combination of colors to increase

the amount of detectable transcripts Rao et al. (2021a).

Beyond early in-situ hybridization methods, a number of sequence-based technologies

have emerged. Closely related to scRNA-seq technologies, these sequencing-based methods

barcode RNAs such that each read can be mapped to its corresponding spatial location

through the associated barcodes. The rest of the sequencing read is mapped to the genome

to identify the transcript of origin, collectively generating a gene-expression matrix. Stahl

et al. Ståhl et al. (2016) first proposed this method, which has been adapted by commercial
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platforms such as 10X Visium. 10x Visium fixes spatially barcoded oligos to each spot in a

capture slide (area 6.5mm2), with the barcoding done through DNA extension and reverse

transcription for formalin fixed paraffin embedded tissues (FFPE) and fresh frozen tissues

respectively. In particular, the 10x Visium expression slide contains 4 capture slides, each

with area 6.5 mm2 where fresh frozen or FFPE tissues are placed. Each of the capture

slides contain a grid of approximately 5000 barcoded spots that are 55µm in diameter with

a center-to-center distance of 100µm between any two adjacent spots. On average, there

are 1 − 10 cells in each of these spots, and ∼ 18, 000 unique genes in human (∼ 20, 000 in

mouse) can be quantified. Another major sequencing-based technology is Slide-Seq, which

captures mRNA by placing barcoded beads on slides, which achieves a high resolution of 10

micron. Technological innovations further improved sequencing resolution in recent years.

For instance, high-definition spatial transcriptomics (HDST) Rodriques et al. (2019a) uses

wells rather than slides, whereas built upon Slide-Seq, Slide-seqV2 Stickels et al. (2020)

raised the resolution to near-cellular level while reaching RNA capture efficiency of roughly

50% of scRNA-sequencing. Finally, spatio-temporal enhanced resolution omics sequencing

(Stereo-seq)Chen et al. (2022) deposits barcoded DNA nanoballs in patterned arrays to

achieve single-cell resolution while maintaining high sensitivity.

While 10x Visium and Slide-Seq do not profile at cellular resolution, Nanostring’s GeoMx

DSP is capable of cellular resolution through user-drawn profiling regions. Geomx DSP uses

PC-linker to link barcodes via antibodies to proteins and RNA for identification. The spatial

regions of interest (ROI) on the tissue are flexible and can be user-defined, or with pre-defined

layouts (such as a square grid). During imaging, the DSP barcodes from each ROI are UV-

cleaved and collected for sequencing, and the spatial information is recorded. Due to the

flexibility of the ROI definitions, the ROIs can be a range of sizes, from a single-cell or

hundreds of cells. The RNA assay can quantify > 18, 000 target genes, and the protein assay

can quantify > 96 proteins.

Though GeoMX can produce cellular-resolution sequencing, its scalability is limited. The
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most recent platform, CosMx Spatial Molecular Imager (SMI) Lewis et al. (2022), is able to

profile consistently at single cell, and even subcellular resolution. CosMx SMI follows much

of the initial protocol as GeoMx DSP, with barcoding and ISH hybridization. However,

the SMI instrument performs 16 cycles of automated cyclic readout, and in each cycle the

set of barcodes (readouts) are UV-cleaved and removed. These cycles of hybridization and

imaging yield spatial resolved profiling of RNA (> 980 target genes) and protein (> 80

validated proteins) at single-cell (∼ 10µm) and subcellular (∼ 1µm) resolution.

Multiplex imaging technologies have significantly advanced higher spatial resolution for

single-cell profiling. Spatially resolved transcriptomic data, along with corresponding imag-

ing data, enables single-cell or even subcellular analysis on both spatially morphological and

pixel resolution information. Recently, antibody-based multiplexed imaging methods have

dominated the multiplexing approaches, as they can capture cellular organization and tissue

phenotypic heterogeneity at the protein level. They utilize various protein markers for cellu-

lar identification. Immunohistochemistry (IHC)Coons et al. (1942), first reported in 1942, is

one of the most commonly used multiplexed imaging methods. It uses appropriately-labeled

antibodies to bind specifically to their target antigens in situ (in the original site), which can

be better captured by current light or fluorescence microscopy. Due to the limited protein

readouts, methods including multiplexed immunofluorescence (MxIF) Gerdes et al. (2013)

and cyclic immunofluorescence (CyCIF) Lin et al. (2015, 2018) were proposed to add more

new antibodies in multiple rounds of staining. Another imaging platform, Co-Detection

by IndeXing (CODEX)Goltsev et al. (2018), is designed for up to 40 proteins using cyclic

detection of DNA-indexed antibody panels. Imaging mass cytometry (IMC)Giesen et al.

(2014) is an evolutionary technology that leverages mass spectroscopy to obtain images from

tissues with 40+ labels simultaneously. This vastly reduces data noise and enhances the

multiplex capability. Multiplexed ion beam imaging (MIBI)Keren et al. (2019) is also per-

formed by imaging tissues with secondary ion mass spectrometry based on metal-labeled

antibodies. These multiplexed imaging tools provide high-dimensionality imaging assays at
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the single-cell level and enable analyzing and understanding of the single-cell function and

tissue structure.

2.1.3 Spatial & Bulk Deconvolution

In addition to omics data, spatial transcriptomics technologies provide spatial location

data of samples. The spatial resolution capabilities now range from multi-cell pools or bulk

samples, to single-cell and even sub-cellular levels. This information gives us yet another

aspect to study the functional dynamics in biological systems. Along with cellular het-

erogeneity, we can now study spatial heterogeneity and the cellular composition of tissues

(Molho et al., 2024; Rao et al., 2021b; Fan et al., 2023). With spatial transcriptomics, we

can analyze omics data within a spatial context, which can offer deeper insight into cellular

interactions (Tian et al., 2023; Raredon et al., 2023), and cell type localization under varying

conditions. For example, we can study how cell types are organized in cancerous or diseased

tissue (Williams et al., 2022; Rao et al., 2021b). Of course, to analyze this most readily and

objectively requires single-cell resolution. With lower resolution (multi-cell pools or spots),

each omics data point is an aggregate of the multiple cells within the captured region. For

example, with RNA we would have an aggregate expression of the cells in the cell-pool,

which heterogeneous in many cases. While this does provide us with some spatial context, it

does not readily allow for studying the spatial distribution of cells and thus any downstream

analysis that is dependent on cell type composition. While there are options with single-cell

resolution, the more affordable options in spatial transcriptomics are not single-cell resolu-

tion, naturally. Some popular lower resolution options include 10X Visium (Maynard et al.,

2021), and Slide-seq (Stickels et al., 2021; Rodriques et al., 2019b).

With this tradeoff in mind, it is desirable to make best use of the non single-cell resolu-

tion spatial transcriptomics data. Though spatial information is not captured at single-cell

resolution, we can use the spatial omics data together with robust reference single-cell data

to deconvolute the aggregated omics data in terms cell type composition. Indeed, this task

is called cell type deconvolution (Ding et al., 2024a; Molho et al., 2024), which is the task of
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quantifying the cell type composition of bulk mixtures (in this context, spatial mixtures) by

decomposing bulk mixture omics measurements by cell type proportion. The simplest idea

to accomplish this is through non-negative matrix factorization (NMF). Here, we take a cell

type expression profile derived from some set of robust single-cell reference data, and regress

onto the bulk mixture expression data, with a non-negative constraint on the coefficients.

These non-negative coefficients (after normalization) are taken as the cell type composition

estimates. This is fairly intuitive, as the bulk mixture expression is an aggregate of the

multiple cells in the mixture and so finding the cell type composition (coefficients) that best

match a standard cell type expression profile should give a decent estimate of the true cell

type compositions. In recent years there has been further development in cell type deconvo-

lution, with many methods building on this basic idea of NMF. Here are some methods and

brief descriptions (further description found in the Deconvolution chapter):

SPOTlight (Elosua-Bayes et al., 2021a) essentially applies a seeding to NMF regression to de-

convolve bulk mixtures with reference scRNA-seq data. Stereoscope (Andersson et al., 2020)

is a Bayesian model that integrates information from both single-cell and spatial transcrip-

tomics data to estimate the probability of each cell type at each location within the tissue

sample. Cell2location (Kleshchevnikov et al., 2022a) puts bulk expression into a Bayesian

hierarchical framework with a spatially determined prior on the cell-type compositions. Out-

side of these shallow-classical methods that build on the basic idea from NMF, there has

been developments in deep learning-based methods (Molho et al., 2024) fro cell type decon-

volution. Tangram (Biancalani et al., 2021) spatially aligns reference scRNA-seq data and

identifies spatially co-expressed gene modules, from which it infers the presence of different

cell types in a tissue sample. DSTG (Song and Su, 2021a) creates synthetic mixtures by

sampling reference scRNA-seq data and map the synthetic and real bulk mixtures to a com-

mon domain. A graph is then constructed by mutual-nearest neighbors in this domain and

taken as input through graph-based convolutional networks, which directly estimate the cell

type proportion.
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Currently, a road block in the way of making significant advancements in cell type de-

convolution methods is the relatively limited amount of data with ground truth cell type

compositions. At its core, cell type deconvolution reduces to an inverse problem of sorts,

as we are trying to recover cell type composition from an aggregate signal over all cells in

a mixture. The only way to get cell type labeled data is with single-cell resolution, so syn-

thetic experiments must be done to create cell type labeled mixture data. In most cases,

such labeled data is small and taken from non-human tissue. Moreover, creating synthetic

mixtures does not always reflect the heterogeneity and organization of cell types within real

tissues, and hence real biological systems. For example, Lulu Yan et al. (Yan and Sun,

2023) provide three deconvolution benchmark datasets from mouse tissues, which contains at

most 80,000 cells. Bin Li et al. (Li et al., 2022a) provide 32 synthetic deconvolution datasets,

taken from scRNA-seq reference data.

Further developments in methods and benchmark datasets in cell type deconvolution can

provide a way to better leverage high-throughput bulk omics data for downstream analyses

that depend on cell type composition. Of course, this is strengthened further with spatial

omics data, as we can then use spatial information together with cell type composition. An

important area that could greatly benefit from these developments is in immuno-oncology, to

better understand tumor cell organization, and their interactions with the immune system.

Indeed, tumors grow from cell proliferation, making the study of immune cell composition

and organization an important tool for understanding cancer and developing better therapies

(Sturm et al., 2019). Towards this end, in the Cell Type Deconvolution section we develop

a spatial transcriptomic benchmark dataset from samples that include TME (human), a

deconvolution method, and set of benchmarking exercises.

2.2 Probabalistic Framework for scRNA-seq Data

2.2.1 scRNA-seq Count Models

Cell type composition relies on cell type annotation of cells from scRNA-seq data, either

directly or as a reference for deconvolution of bulk data. Many approaches to cell type anno-
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tation rely on scRNA count models to estimate the annotations. Below is small progression

of scRNA count models that add parameters to incorporate technical effects, which is often

needed to deal with technical effects across studies (batches) and platforms. We are given d

genes, N single-cells, K cell-types

Observed

X ∈ RN×d = (xi,j) - observed single-cell expression

X̃ = (x̃i,j) ∈ RK×d - estimate of mean cell-type profiles µ

Unobserved

µ = (µi,j) ∈ RK×d - True mean cell-type profiles

c(i) - cell-type of cell i ∈ [1, N ]

Goal: Predict true cell-type c(i) of each cell i ∈ [1, N ] from {X, X̃}

Xi,j ∼ NB(µ = µc(i),j, size = θ) ≡ Poisson(Γ) (2.1)

Γ = Gamma(θ, θ/µc(i),j)

Technical effects model

Xi,j ∼ Poisson(bi) +NB(µ = siµc(i),j, size = θ) (2.2)

Technical effects of observation

(i) Not all mRNA transcripts get detected → Detection efficiency scale factor si

(ii) Off-target binding → Background counts additive factor bi

(iii) Gene-specific detection efficiencies

Simplified technical effects model

Xi,j ∼ NB(µ = bi + siX̃c(i),j, size = θ) (2.3)

Simplifying assumption to avoid discrete distribution convolution. Same mean model as

(2.2), but higher variance.
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2.2.2 scRNA-seq Count Pre-processing

Forgiving the minor deviation in symbol definition from the previous section, we define

X = [Xgm] ∈ RD×N raw expression : D genes × N samples

X =
1

N
X1 = [xg] ∈ RD×1 mean expression : D genes over N samples

and we outline some standard pre-processing steps applied to scRNA-seq expression data.

1. Select d ≤ D candidate genes G with highest mean expression

G = arg max
G′⊂[1,D],|G′|=d

{∑
G′

xg

}
2. For all d candidate genes g, g′ ∈ G, where g ̸= g′:

(i) Compute log-transformed expression ratios L = [Lgg′ ] ∈ RN×d(d−1)

Lgg′ =

[
log2

( xgm

xg′m

)]N
m=1

∈ RN×1

(ii) Compute pair-wise variations V = [Vgg′ ] ∈ Rd×(d−1)

Vgg′ = SE(Lgg′), where

SE2(Lgg′) =
1

N−1

N∑
m=1

(
log2

( xgm

xg′m

)
− Lgg′

)2

, where Lgg′ =
1
N
1TLgg′

or, in matrix form

SE2(Lgg′) =
1

N−1

(
Lgg′ − Lgg′1

)T(
Lgg′ − Lgg′1

)
= 1

N−1
LT
gg′

(
IN − 1

N
11T

)
Lgg′

(iii) Compute gene-stability measures M = [Mg] ∈ Rd×1 - arithmetic mean of pairwise

variations

Mg =
1

d−1

∑
g′ ̸=g

Vgg′

3. Determine d∗ ≤ d housekeeper/reference genes G∗: genes with the lowest gene-stability

measure (low =⇒ more stable)

G∗ = arg min
G′⊂G,|G′|=d∗

{∑
G′

Mg

}

17



Normalizing factors: F̃ = F ∗ F ∈ RN×1 where

F =
[
Fm

]N
m=1

, Fm =

(∏
G∗

xgm

)1/d∗

F =
1

N
1TF

Normalized expression matrix: x̃ = Xdiag(F̃ ) ∈ RD×N

median(X) = [median(Xc)]
K
c=1 ∈ RD×K : median normalized expression

Then re-scale for equal median expression across cells

X̃ = median(X)diag
(
M(X)

)
, where M(X) =

(median(x1)
median(xc)

)K
c=1

The background and normalized read counts can then be computed from negative control

probes.

{Pl}Ll=1 : probe pools

{Rl}Ll=1, Rl ⊂ Pl : negative control (nc) probes in pool Pl

X̃Rl
∈ R|Rl|×N : normalized read counts of nc probes (from X̃)
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CHAPTER 3

PLANT STRESS RESPONSE

The chapter is comprised of work on a collaborative project between Dr. Xie’s and Dr.

Shiu’s labs. Here, I have reproduced original experiments I worked on with Dr. Yuning Hao

and Dr. Runze Su. I give them both credit for the original experiments, and figures 3.4-3.7,

3.9-3.10. In part, the reproductions were done to make further inquiries and developments.

Particularly, I contributed inquiries and experiments in stress type grouping and alternative

model architectures.

3.1 Introduction

A central problem in molecular plant biology is to understand how plants respond to

various abiotic and biotic stressors (e.g. heat waves, drought, and pest infestations) at the

molecular level. As stresses trigger changes in gene expression levels, differential expression

analysis is a key tool to understand stress response in plants. The goal of such analyses is

to determine motifs that are

A main component of gene expression regulation is through the binding of transcription

factors to specific sequences of DNA called regulatory elements (motifs). For this reason, an

avenue of research has been to identify these transcription factors and the respective regula-

tory motifs, in order to predict gene expression responses Uygun et al. (2017); Wilkins et al.

(2016). However, identifying individual regulatory motifs, such as transcription factor bind-

ing sites (TFBS), is only a small part of the complex process of gene regulation. Indeed, gene

regulation processes also depend on the location, orientation, quantity and co-localization of

regulatory motifs. These dependencies form the structures that modulate gene regulation,

and these structures form what is called regulatory grammar Weingarten-Gabbay and Segal

(2014).

Understanding of regulatory grammar by computational modeling of these complex de-

pendencies has thus become a hot area of bioinformatics research. Many advancements to-

wards modeling complex regulatory grammar have come from deep sequence learning models,
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traditionally used in natural language processing.

One of the early deep learning models developed to account for the sequential depen-

dencies was DeepSea Zhou and Troyanskaya (2015). This was done by using convolutional

neural networks (CNN), from which motifs and local dependencies were learned, ultimately

used for functional-variant prediction.

Building on the DeepSea model, Quang and Xie developed DanQ Quang and Xie (2016),

which couples the CNN with a recurrent neural network (RNN), namely a bi-directional

long short-term memory network (LSTM) Hochreiter and Schmidhuber (1997). The LSTM

component helps identify long-range dependencies [9], and hence co-localization dependen-

cies. As the LSTM is bi-directional, it learns these features on both the forward and reverse

ordering of sequences (hence orientation).

These developments of deep sequence learning models are easily tailored and applied to

our problem of interest: predicting plant stress response from DNA sequences. Building

on these ideas, we propose DeepCAT, a convolutional self-attention architecture to predict

plant stress response from DNA sequences 1. DeepCAT consists of 3 layers. The first is

a convolutional layer which converts DNA base-pairs to a numerical sequence, identifying

key predictive motifs and local dependencies. The second layer is self-attention, which cap-

tures key predictive co-localization dependencies. Lastly, a fully-connected (FC) layer to

output prediction scores of gene up-regulation under different abiotic and biotic stresses.

A few properties of DeepCAT yield advantages over popular learning models. First, the

self-attention Vaswani et al. (2017) method has been shown to capture long-range sequence

dependencies beyond the capabilities of RNNs Vaswani et al. (2017). Another property of

self-attention is that it does not impose a strict order on how a sequence is processed Vaswani

et al. (2017), which is advantageous since the ordering of base-pairs may not always be a

factor in gene expression. With these advantages we hypothesize that DeepCAT outperforms

many other popular learning models in predicting plant stress response. Also, that Deep-

1DeepCAT is an adaptation of another model our lab has proposed: CANEE, a convolutional self-
attention architecture to analyze the function of non-coding DNA sequences
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Figure 3.1 Basic DNA up-regulation prediction model.

Figure 3.2 High level pipeline of DeepCat.

CAT extracts sequential features that can identify known and potentially novel transcription

factor binding motifs (TFBMs) and their interactions. We demonstrate this on the problem

of predicting gene expression of Arabidopsis thaliana (A.thaliana) in response to 57 abiotic

and biotic stress conditions.

3.2 Data and Problem Statement

Given raw arabidopsis thaliana DNA sequence data, the objective is to predict gene up-

regulation under 57 environmental stress conditions. Specifically, to predict if an arabidopsis

gene was up-regulated or not in shoot tissue under each of 36 abiotic (e.g. cold, heat, osmotic)

and 21 biotic (e.g. 71 Pseudomonas syringae, bacterial flagellin) stress conditions.

Gene expression and sequence data of 20,799 A. thaliana genes each consisting of 3,200-

bp (covering promoter and 5’ UTR) were downloaded from the AtGenExpress database

and processed as in Uygun et al. (2017). Genes with a log2 fold change ≥ 1 were con-

sidered up-regulated. In particular, the preprocessed and normalized expression data from
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AtGenExpress was used to calculate log2 fold change between stress and control conditions

using Limma in the R environment. Genes with a log2 fold change ≥ 1 were considered

up-regulated.

DNA sequences were pulled for each gene from TAIR10. Particularly, the sequences were

taken from 1-kilobase (kb) upstream and 500-base pairs (bp) downstream the transcription

start site and 500-bp upstream and 1-kb downstream the transcription stop site. These

sequences were then one-hot encoded, with each sequence converted into a 3200x4 binary

matrix. The columns correspond to A,C,G,T, and rows correspond to the position in the

DNA sequence, with each row containing a single 1 in one column and zeros in the remaining

columns. Genes were randomly assigned according to a training-validation-test split of 70-

10-20.

3.3 Model Architecture and Training

DeepCAT consists of 3 main modules: (1) CNN, (2) self-Attention and (3) FC/output.

CNN Module

A 1D convolutional layer and a max-pooling layer makes up the CNN module. Suppose the

input of the convolutional layer has shape (N, I, L) and the output is (N,O), then the 1D

convolution is given by:

Conv1D(XNm,Oj
) = ReLU(Bias(Oj) +

I−1∑
k=0

WOj ,k ⋆ XNm,k),

where for batch size N, input sequence dimension I, output element dimension O, and input

sequence length L. The subsequent max-pooling is given by:

Output(Ni, Cj, k) = max
m=0,1,...,kernel size−1

input(Ni, Cj, k +m),

where input value is of size (N,C, L).

Self Attention Module

First, positional encoding is applied to enable the model to capture relative positional infor-

mation, and thus potential order structure. This consists of applying a positional embedding
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Figure 3.3 DeepCAT architecture.

of the sequences that are output from the CNN module. We apply the sinusoidal embedding

as in Vaswani et al. (2017).

The self-attention mechanism, as in Vaswani et al. (2017), has three factors: query Q,

key K and value V . Assuming the input is X, the formulation can be expressed as:

Qi = WQXi

Ki = WKXi

Vi = WKXi

Si,j =
Qi ·Kj√

d

Scorei,j =
exp(Si,j)∑
k exp(Si,k)

outputi =
∑
j

Si,jVj

Here, W(·) represents a weight matrix. The weights corresponding to each of these factors,

and hence the factors themselves, are learned during the training process.

The output from the self-attention network is then passed to the FC module.

Fully-Connected Output Module

We apply a single FC layer, giving weighted scores for each of the 57 stress types. We then

apply a sigmoid output layer to obtain probability scores for gene up-regulation. We trained

DeepCAT by minimizing the average multi-task binary cross-entropy loss in mini-batches of

size 50 using the Adam optimizer Kingma and Ba (2014). All the weights and biases were

initialized with Xavier (uniform) Glorot and Bengio (2010) and zero values respectively. For
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model regularization purposes, we applied dropout with rate of 0.1 in attention layers.

Validation data was used to determine an optimal number of training iterations. Namely,

we use an early-stopper to stop the training process if the validation loss does not decrease

for a set number of epochs (default 5), thus keeping the model that performs best on the

validation set.

In all of our experiments we trained DeepCAT with settings: 320 convolutional kernel-

s/filters, kernel dimension 26, pooling dimension 13, and used 4 attention heads.

Our implementation was with PyTorch, and our experiments (training and testing) were

ran on NVIDIA K80 GPU.

3.4 Experiments

Using the fully trained models, performance was measured on the testing data (70-10-20

train-valid-test split). We used two metrics: the Receiver Operating Characteristic-Area

Under the Curve (ROC-AUC) and the Precision Recall-Area Under the Curve (PR-AUC).

For overall comparison purposes we averaged the PR-AUC and ROC-AUC across the 57

stress types.

In each of our experiments we compare DeepCAT against a few well-known shallow and

deep learning models. The shallow models consisted of Support Vector Machines (SVM) and

Random Forest. The deep learning model we compared against was essentially the DanQ

model Quang and Xie (2016), with the modification of the output layer to give plant response

probability scores for the 57 different stress types. We chose this deep learning model for

comparison, as it has a similar structure as DeepCAT, and has performed well on a different

but similar problem with human DNA data. We first evaluated baseline performances of

our standard DeepCAT model and the other learning models. To improve on these baseline

results, we experimented with transfer learning strategies.

3.4.1 Transfer Learning - experimentally verified and pre-learned sources

The main idea of transfer learning Tan et al. (2018) is to leverage existing knowledge

in one setting to learn a task in a different but related setting. Here we injected existing
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Figure 3.4 PFM construction process.

knowledge in two ways. One was through experimentally verified information. The other

was information learned from a model with a much larger data set. As the kernels in the

CNN layer of DeepCAT act as DNA motif finders, we experimented initializing the kernels

with known A.thaliana TFBMs. That is, we initialize with the resulting position weight

matrices (PWM). To do this, consider a set of n aligned sequences of length m. Then

we construct the position frequency matrix (PFM) of size 4 × m with the counts of each

base over the sequences. We then apply row-wise normalization to get the 4 × m position

probability matrix, as each column-position sums to 1. Finally, we compute the PWM

with log odds from the PFM against a background model. In the simplest case, we use a

uniform background model, i.e. each base is equally likely to occur in a sequence. Moreover,

the DanQ model used a massive amount of human gene data (> 4 million), so we also

experimented initializing the kernels with the kernel weights learned in the DanQ model.

We found that implementing these transfer learning methods in DeepCAT lead to better

performances across nearly all 57 stresses (Figures 3.5 and 3.6).

3.4.2 Multi-task learning - Stress Grouping

Our previous results are based on learning all 57 tasks (57 stress responses) simultane-

ously. Hence we are in a multi-task learning (MTL) setting. In this setting, the learning

process seeks the shared representation (feature mapping of the sequences) that best pre-

dicts response to each of the 57 stress types. This can be problematic, however, because

different stress types may induce very different underlying regulatory mechanisms, and find-

ing a good shared representation may not be possible. The expectation is that in an MTL

setting, learning stresses with similar underlying regulatory mechanisms will benefit from
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Figure 3.5 Performance of DeepCAT with kernels initialized from weights learned from the
DanQ human model - updated original figure from Dr. Yuning Hao.

each other, while stresses with very different underlying regulatory mechanisms may hinder

performance.

We tested this hypothesis by finding related stresses through k-means (k=3) clustering of

the stress responses, and trained the three models separately. We also paired this a transfer

learning scheme by initializing the convolutional kernels with known A.thaliana TFBMs.

Overall we found that both of these experiments lead to better performances, with the latter

yielding the best performance (Figure 3.8). In figure 3.7 we show the clustering hierarchy

of the stress types.

3.5 Motif Learning and Location Dependencies

An interesting result is that the DeepCAT model can be interpreted as a motif learner, by

a translation of the kernels in the convolution layer to positional weight matrices B. Alipanahi
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Figure 3.6 Performance of DeepCAT with kernels initialized from experimentally verified
TFBMs - updated original figure from Dr. Yuning Hao.

and Frey (2015). We aligned these to known motifs from the DAP-seq and CIS-BP databases

using TOMTOM software (see meme-suite.org/meme/tools/tomtom). Of the 319 motifs

learned by our model, 114 significantly match known motifs (E < 0.1); a threshold of 0.05

was used for p-value to measure the similarities. Figure A.7 shows this process, Figures A.8-

A.11 show resulting learned TFBMs, which are all found in the appendix.

Analyzing the scores in the attention module, we found interactions of motifs at different

positions. From Figure A.11 we can see that the attention model identifies interactions be-

tween base-pairs at long ranges, and thus identifies long-range co-localization dependencies.
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Figure 3.7 Clustering hierarchy of the stress types from k-means clustering. Three large
clusters are identifiable, with red highlighted stresses being heat related - original figure
from Dr. Yuning Hao.

Figure 3.8 Performance of DeepCAT with known TFBM initialized kernels, and the
clustered response multi-task model (also with TFBM initialized kernels) - original figure
from Dr. Yuning Hao.
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Figure 3.9 Task-specific architectural variations.

3.6 Additional Experiments and Future directions

A direction I explored, and continue to explore, for mitigating negative transfer between

stress types is through the addition of task-specific layers. In its most basic form, the idea

is to compose the model in two modules. The first module is a shared module, where the

parameters are shared between all the tasks. This is the set-up of the basic multi-task

architecture. The second module consists of task-specific silos or towers. These serve as the

output layers where each task has a dedicated silo, and parameters are not shared between

the tasks. These architectures can be improved by incorporating gating mechanisms that

limit the amount of shared information each silo receives as input, as well as incorporating

a mixture of experts. At this point in time I have only done preliminary bench-marking

exercises with these architectures and have not yet seen significant improvement above our

standard DeepCAT architecture.

Nonetheless, with DeepCAT we have shown how deep sequence learning and other learn-

ing mechanisms, such as grouped learning and transfer learning, can move us towards solving

the problem of plant stress response prediction. Moreover, these methods are able to learn

and extract key motifs and long-range motif interactions, which are important components

of understanding regulatory grammar, and hence gene regulation.
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CHAPTER 4

CELL TYPE DECONVOLUTION

4.1 Introduction

Quantifying cell type composition (proportion) is an important tool to better understand

and characterize diseases and other abnormalities by differences in cell type composition

between experimental groups Karagiannis et al. (2022). With single-cell transcriptomics

data, this can be done by annotating the cell type of each cell. Cell type annotation is often

done computationally by comparing expression patterns in a cell with reference cell type

expression profiles with maximum likelihood approaches. Segmentation based methods are

also used, as well as expert validation (when the sample size is small).

While advances in high-throughput transcriptomics technologies have facilitated this task

by providing single-cell resolution, bulk sequencing is significantly less labor intensive and

costly Jin and Liu (2021). Estimating cell type composition in bulk samples offers a more

economical approach, and provides a way to make use of a wealth of public bulk data. A

more recent motivating factor for estimating cell type composition in bulk data is due to

developments in spatial transcriptomics, as doing so provides a way understand cell type

composition in a spatial context within a tissue. Moreover, spatial transcriptomics technolo-

gies measure gene expression of small spatially tagged regions, but most platforms do not

have single-cell resolution.

An issue with bulk sampling of biomolecular information, such as bulk RNA-seq, is

that information is averaged across a cell pool that is often heterogeneous. This makes it

difficult to deconfound cell type composition from differences in the molecular profile between

experimental groups Repsilber et al. (2010). Cell type deconvolution is the task of estimating

and deconfounding the composition of cell types in bulk samples of biomolecular information.

This is a type of inverse problem, as we are trying to determine the signal of individual cell

types from aggregated readings across multiple cell types. Solving this task then requires

some transfer learning approaches, using single-cell data as a reference (transfer source) and
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bulk data as a query (transfer target). Typically, gene expression data are used, though

other data such as protein expression Okendo et al. (2022) or DNA methylation have also

been used Singh et al. (2021).

4.2 Problem Formulation

The input of the task of cell type deconvolution consists of three components: 1) bulk

gene expression (to be deconvoluted), 2) reference scRNA-seq, 3) (optional) spot coordinates

to indicate the location within the tissue of each spot. Note additional data, such as histology

images can be leveraged as well.

The problem is formulated as follows. We’re given bulk expression data Y ∈ Rd×n where

each cell-pool i ∈ [1, n] is composed of a mixture of cell types [1, K]. Then for each cell-pool

i ∈ [1, n], we wish to construct an estimator âi ∈ ∆K−1 of the true cell type composition

ai ∈ ∆K−1, where ∆K−1 is the regular K-simplex

∆K−1 = {x ∈ RK :
K∑
k=1

xk = 1, xk ≥ 0 for k = 1, 2, ..., K} (4.1)

We are also given some reference scRNA-seq expression data X ∈ Rd×N with one-hot labeled

cell types C ∈ RN×K . Then construct the estimator of cell type compositions for the n cell-

pools by some function

B̂ = F (Y,X,C) ∈ RK×n (4.2)

If the spatial information (2D or 3D coordinates in the given tissue)

S =


s1
...

sn

 ∈ Rn×m, m ∈ {2, 3}

of the cell-pools are available, then we may incorporate this into the estimator of cell type

compositions for the n cell-pools by some function

B̂ = F (Y, S,X,C) ∈ RK×n (4.3)

We can further generalize this setup to account for multi-batch data.
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Reference: N reference single-cells, K cell-types

Target: T experiments/batches of nt cell-pools

Observed

Y (t) ∈ Rd×nt = (y(t)i,j) - bulk mRNA counts

X ∈ Rd×N = (xi,j) - reference single-cell mRNA counts

c(i) - cell type of reference cell i ∈ [N ]

X̃ = (x̃i,j) ∈ Rd×K - estimate of mean cell-type profiles µ

Unobserved

µ = (µi,j) ∈ Rd×K - True mean cell type profiles

B(t) = (β(t)i,j) ∈ RK×nt - cell type abundances of cell-mixtures

β(t)·,j ∈ ∆K−1 = {x ∈ RK :
K∑
k=1

xk = 1, xk ≥ 0 for k = 1, 2, ..., K}

For simplicity, we return to the single batch setup to further define the deconvolution

problem under two different scenarios - with and without ground truth cell type compositions.

Unsupervised solution:

B∗(Y ;X) = argmin
B

min
θ

L
(
Y, Ŷ (B, θ;X)

)
, where

Ŷ (B, θ;X) = h(X; θ)B

Supervised solution:

B∗(Y ;X) = B̂(θ∗;X, Y ), where

B̂(θ;X, Y ) = f(X, Y ; θ) and θ∗ = argmin
θ

L(B, B̂(θ;X, Y ))

Baseline unsupervised solutions:

(1) multivariate linear regression - independently for each sample mixture
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β∗
LS = argmin

β
||y −Xβ||2

(2) non-negative constraint of (1)

β∗
NNLS = argmin

β⪰0
||y −Xβ||2

(3) multivariate regression with multiplicative log-normal errors - independently for each

sample mixture

β∗
lnm = argmin

β⪰0
||log(y)− log(Xβ)||2

Typically, cell type deconvolution models are evaluated on datasets with ground truth cell

type proportions using mean squared error (MSE), mean absolute error (MAE), correlation,

cross-entropy and Jensen-Shannon divergence (JSD). In most cases, however, non-simulated

datasets do not have ground truth cell type proportions. In this unsupervised setting, if

profiled marker proteins are also provided with the dataset, one evaluation metric Danaher

et al. (2022) is the correlation between predicted cell type proportions and the respective

marker proteins.

4.3 Survey of Methods

Most classical methods for cell type deconvolution are based on non-negative matrix fac-

torization (NNMF). The most basic method is non-negative least squares (NNLS), where

some reference scRNA-seq gene expression is used to create a cell-profile matrix X̃ ∈ Rd×K ,

which is then regressed onto the bulk gene expression. The resulting (non-negative) coeffi-

cients are then used as the cell type composition estimates.

B̂ = argmin
B≥0

||Y − X̃B||F (4.4)

Here, the idea is that the single-cells’ expression will aggregate linearly, respective to their

proportion in the bulk sample. The cell profile or signature matrix is typically constructed

through the median or mean across cells within each cell type of interest. A penalized NNLS

approach is taken with DWLS Tsoucas et al. (2019), which applies a dampened weighting
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scheme to the standard NNLS framework. Here, each gene’s error term is weighted by the

squared inverse of the predicted bulk expression level. This is done to reduce bias towards

highly expressed genes, or genes that are highly represented across cell types. Most other

traditional methods build on these ideas.

NMFreg Rodriques et al. (2019a) applies non-negative matrix factorization (NNMF) on

the reference X to construct a basis in a lower dimensional gene space,

W,H = argmin
W ′,H′≥0

∣∣|X −W ′H ′∣∣|F (4.5)

where the rows of H ∈ RK×N are the cell-topic embeddings, and the columns of W ∈ Rd×K

the corresponding weightings. The cell-topic profiles are then used for the deconvolution of

the bulk data via NNLS

B̂ = argmin
B≥0

||Y −HB||F (4.6)

Building on NMFReg, SPOTlight Elosua-Bayes et al. (2021b) uses non-negative matrix

factorization to produce the cell-topic profile matrix. Taking W,H from the first step of

NMFReg, SPOTligt then constructs spot-topic profiles P ∈ RK×n through NNLS of X onto

W

P = argmin
P ′≥0

||X −WP ′||F (4.7)

Cell-topic profiles H̃ ∈ RK×K are then constructed from H by taking the median over each

cell type. Finally, the estimator of cell type compositions for the bulk data is then given by

B̂ = argmin
B≥0

||P − H̃B||F (4.8)

Altering the classical assumption of an additive error linear model, SpatialDecon Danaher

et al. (2022) implements a non-negative linear regression-based method that assumes a log-

normal multiplicative error model. The log-normal error model is given by

log(i·) = log(X̃T
i·B) + ϵi, where ϵi ∼ N (0, σ2In) and B ∈ RK×n (4.9)

The estimator of cell type compositions for the n cell-pools is then given by

B̂ = argmin
B≥0

∣∣|log(Y )− log(X̃TB)
∣∣|2 (4.10)
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One of the first methods to incorporate spatial information in the deconvolution spatial

transcriptomics data is Conditional AutoRegressive Model-based Deconvolution (CARD)

Ma and Zhou (2022). CARD applies a conditional autoregressive (CAR) assumption on the

coefficients of the classical non-negative linear model between the bulk expression Y and a

cell-profile matrix X̃. The linear model is given by

Y = X̃B + ϵ, ϵ ∼ N (0, σ2
eIn) (4.11)

The CAR assumption then incorporates 2D spatial information S ∈ Rn×2 through an intrinsic

prior on the cell type compositions (the model coefficients) by modeling compositions in each

location as a weighted combination of compositions in all other locations. This modeling

assumption is given by

Bki = bk + ϕ
n∑

j=1,j ̸=i

Wij(Bkj − bk) + ϵki, ϵki ∼ N (0, σ2
ki) (4.12)

where the weights Wij are given by the Gaussian kernel

Wij = KG(si, sj;σ
2) = exp(−||si − sj||22

2σ2
) (4.13)

with default scaling parameter σ2 = 0.1. CARD then estimates the cell type composition of

the spatial transcriptomic data through constrained maximum likelihood estimation.

Some recent developments in cell type deconvolution have applied deep learning-based

methods. These approaches typically apply a transfer learning scheme wherein they first

simulate bulk data from scRNA reference data, and use a common network to predict the

cell type composition of both the simulated and real bulk data. A notable feature of the

deep learning-based methods is that they model the cell type compositions directly, i.e. the

model objective is on the predicted cell type compositions. This contrasts with most classical

methods, where the predicted cell type proportions are the optimal parameters/coefficients

from some regression model.

One of the early deep learning approaches to the cell type deconvolution problem is

Scaden Menden et al. (2020). First, scRNA reference data is randomly sampled from scRNA
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reference data to generate simulated mixed-cell samples. A fully-connected network is then

trained to predict the true cell type compositions of the simulated bulk data, with cross-

entropy loss function. This trained model is then applied to the real bulk data to get cell

type compositions. Building on this approach, DSTG Song and Su (2021b) is a Graphical

Neural Network (GNN) based method, modeling similarities in expression between different

bulk samples. First, the pseudo bulk expression data is generated taking np random samples

(with replacement) of 2 to 8 cells from the scRNA-seq reference, and aggregating their UMI

counts, downsampling to adjust for realistic bulk UMI counts. The pseudo and real bulk

data are then aligned in a lower dimensional (S < d) gene-space using Canonical Correlation

Analysis (CCA). The projections to the s = 1, 2, ..., S dimensions are given by the canonical

variables
Us = X̃µ∗

s

Vs = Xν∗
s

(4.14)

where

µ∗
s, ν

∗
s = argmax

µs,νs∈Rd

{νT
s X̃

TXνs} s.t. UT
s Us′ = V T

s Vs′ = δss′ (4.15)

are the canonical correlation vector pairs. These embeddings are then used to construct a

graph by considering Mutual Nearest Neighbors (MNN) as adjacent in the graph. That is,

given a pair of sample cell-pools i, j, we let

Ai,j =


1 if i and j are mutual nearest neighbors

0 otherwise
(4.16)

Here, adjacencies can be between simulated-to-real and real-to-real samples. With Xin =

[X̃X] ∈ Rd×N (N = np + n) and the normalized adjacency matrix Ã as input, the L ≥ 1

(default 1) graph convolution (GCN) layers of the DSTG model are given by

H(0) = Xin

H(l) = ReLU(ÃH(l−1)W (l)) for l ∈ [1, L]

(4.17)
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where W (l) is the weight matrix for the lth layer. The output of the DSTG model is the

predicted composition of K cell-types, given byB̂p

B̂

 = softmax(ÃH(L)W ) ∈ Rn×K (4.18)

where B̂p and B̂ are the predictions for the pseudo and real cell-pools, respectively. The

loss function is then defined as the cross-entropy between the predicted and true cell-type

compositions of the pseudo cell-pools

L = −
np∑
i=1

K∑
k=1

y
(p)
i,k ln(ŷ

(p)
i,k ) (4.19)

where ŷ
(p)
i,k and y

(p)
i,k are the predicted and true composition of cell-type k in the ith pseudo

cell-pool.

I have summarized a list of existing cell type deconvolution methods in Table 4.1, and

in Table 4.2 I highlight some select benchmark sets in table. Note that this benchmark

collection was made prior to our development of large-scale benchmark data.

Table 4.1 A summary of tools for cell type deconvolution.

Tool Algorithm Description Language Availability

NMFReg Classical A non-negative matrix factorization
of an annotated scRNA reference matrix Matlab, Python NMFReg Rodriques et al. (2019a)

NMFReg-Python

SPOTlight Classical
Extension of NMFReg, with non-negative matrix
factorization applied to both the scRNA reference
matrix, and the bulk expression matrix

R, Python SPOTlight Elosua-Bayes et al. (2021b)
Dance Ding et al. (2022)

DWLS Classical Weighted NNLS; dampened weighting is applied to genes R DWLS Tsoucas et al. (2019)
SpatialDWLS Classical A subset of cell types chosen via PAGE enrichment analysis R SpatialDWLS Dong and Yuan (2021)

SpatialDecon Classical A multiplicative log-normal error model R, Python SpatialDecon Danaher et al. (2022)
Dance Ding et al. (2022)

cell2location Variational Inference Bayesian hierarchical model of spatial expression counts
with a spatially informed prior on cell type compositions Python cell2location Kleshchevnikov et al. (2022b)

CARD Classical Conditional autoregressive based model that incorporates
spatial correlation of cell type compostion R, Python CARD Ma and Zhou (2022)

Dance Ding et al. (2022)

RNA-Sieve Classical A likelihood based inference model that estimates
cell type proportion through a maximum-likelihood method Python RNA-Sieve Dan D. Erdmann-Pham and Song (2021)

Scaden GNN
A fully-connected network that is trained on simulated
bulk data, and used to predict cell type compositions
of real bulk data

Python Scaden Menden et al. (2020)

DSTG GNN
A graph convolutional network whose graph is constructed on
Mutual Nearest Neighbors of low-dimensional embeddings of
simulated and real bulk data

R, Python DSTG Song and Su (2021b)
Dance Ding et al. (2022)

4.4 Cell Type Deconvolution Benchmark Dataset and Model Development

As mentioned in the background chapter, section Spatial & Bulk Deconvolution, there is

a lack for quality benchmark data for cell type deconvolution. Again, such datasets must be

37

https://github.com/broadchenf/Slideseq
https://github.com/tudaga/NMFreg_tutorial
https://github.com/MarcElosua/SPOTlight
https://github.com/OmicsML/dance
https://github.com/dtsoucas/DWLS
https://github.com/rdong08/spatialDWLS_dataset 
https://github.com/Nanostring-Biostats/SpatialDecon 
https://github.com/OmicsML/dance
https://github.com/BayraktarLab/cell2location
https://github.com/YingMa0107/CARD 
https://github.com/OmicsML/dance
https://github.com/songlab-cal/rna-sieve
https://github.com/KevinMenden/scaden 
https://github.com/Su-informatics-lab/DSTG
https://github.com/OmicsML/dance


Table 4.2 A summary of datasets for cell-type deconvolution.

Dataset Species Tissue Dataset
Dimensions Protocol Availability

Mouse Posterior Brain
10x Visium Data Mouse Posterior brain 3,353 spots

31,053 genes 10X Visium MPB10xV lin (d)

Mouse Olfactory Bulb Mouse Olfactory bulb 1,185 spots
11,176 genes 10X Visium MOB10xV lin (c)

HEK293T and CCRF-CEM cell line mixture Human 56 mixtures
1,414 genes NanoString GeoMx CelllineGeoMx lin (a)

Human PDAC Human Pancreas 1,819 spots
19,738 genes Spatial Transcriptomics HPdacST lin (b)

generated through either synthetic mixture experiments or some form of random sampling

from a reference scRNA-seq dataset. In either case, most datasets are limited in size, and/or

do not reflect real conditions. Towards this end, we develop a method to generate large yet

realistic cell type deconvolution benchmark datasets, from which we have generated a human

tumor microenvironment dataset consisting of 1.8 million cells.

Additionally, we build on ideas from DSTG and develop a spatially informed Graph

Neural Network based method, GNNDECONVOLVER. Here, we build the model framework

to incorporate spatial information, if it is available. Prior to this, only a small set of classical-

shallow methods have incorporated spatial information, such as CARD. With this method,

we can leverage reference scRNA-seq data with and without spatial information, to infer cell

type compositions of bulk mixtures with and without spatial information.

To validate GNNDECONVOLVER, we carry out a compilation of experiments on the

large-scale benchmark dataset we’ve generated. In this benchmarking, we will see that

GNNDECONVOLVER performs strongly against a set of existing state-of-the-art methods.

For fairness, we have included methods that incorporate spatial information.

An outcome of this method to generate cell type deconvolution benchmark datasets is an

open tool that takes single-cell resolution spatial trancriptomics data and generates synthetic

mixtures of varying size. This tool accepts data from many popular spatial transcriptomic

platforms, such as 10x Visium, MERFISH, and sci-Space.

Here, we developed cell type deconvolution benchmarking datasets that are larger in

scope and quality than current datasets. In terms of quality, most benchmark datasets for
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Table 4.3 A summary of datasets for cell-type deconvolution.

Tissue sections 8
Cells 771,236
Genes 980
Fields of view (FOV) 239
FOV size ∼ 984.96µm× 656.64µm

cell type deconvolution are created through random sampling of scRNA-seq data, wherein

the number of sampled cells is randomly chosen within some range that matches typical

ranges found in a given spatial transcriptomics platform. This sampling process lacks spatial

context, as spatial context is lost with scRNA-seq methods. We used single-cell resolution

spatial transcriptomics datasets generated by the CosMx Spatial Molecular Imager (SMI) to

create benchmark datasets with preserved spatial context and large sample size. However,

while SMI is high-throughput (up to nearly 1 million cells), it has relatively low multi-plex

capability (can target around 1,000 genes and 100 proteins per panel) He et al. (2022).

Data from the CosMx Spatial Molecular Imager (SMI) consists of transcriptomic, cell

type annotations, spatial, histology images, and some protein data. Cell type annotations are

made from a negative binomial likelihood model with the mean given by cell type reference

profiles, bias added from expected background, and a large size parameter (default 10) to

account for overdispersion due to technical sources of variance. This is the model given in

2.2, with detection scale factor set to 1.

4.4.1 Non-small cell lung cancer tumors

For this experiment, we used the NanoString CosMx open-source non-small-cell lung

cancer (NSCLC)dataset. This dataset consists of transcriptomic, spatial, and histology

image data for 8 samples of 5 Non-small cell lung cancer (NSCLC) tumors. A data summary

is given in Table 4.3. The cell type compositions of each sample can be seen in physical

space, and in gene space through gene expression UMAP projections, which can be seen in

Figure 4.1.

To generate pseudo-spot data, we divided each FOV spatially into a uniform grid (see
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Figure 4.1 Composition of CosMx Lung Samples in A. physical space, and B. gene space
through gene expression UMAP projections. Figures from He et al. (2022).

4.3, ). The uniform spot (grid rectangle) sizes were chosen to cover an area of 37456.28µm2,

which is the mean area of spots in another NSCLC spatial transcriptomics dataset from

Nanostring’s GeoMx platform (not single-cell resolution). The ultimate purpose of this is to

test these pseudo-spot data as a reference for deconvoltion of the GeoMx generated data. To

allow for spatial context in the pseudo spots, we simply use spot centers as the coordinates

of each spot. Figures 4.2- 4.3 illustrate this two step process of applying an FOV grid on

the tissue, and a second layer grid on each FOV.

In addition to this benchmark dataset, we developed a GNN-based model by modifying

and building upon ideas from the GNN-based model DSTG Song and Su (2021b) that is

detailed in the Survey of Methods subsection. An important change we made was in the graph
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Figure 4.2 FOV grid overlaying tissue sample.

Figure 4.3 Layout of pseudo-spots as a grids over each FOV.
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Figure 4.4 Cell type deconvolution benchmark data results - NSCLC tumors.

construction. DSTG only uses CCA embedded expression data to define adjacencies through

Mutual-Nearest-Neighbors, and does not allow for the integration of spatial information. Our

model incorporates spatial information by defining graph adjacencies from expression data

and spatial location.

We used these benchmark pseudo-spot data to validate our model. The common exper-

imental design we use is to one or more samples as references (training and/or validation

sets), and one sample as the query (test set). We used both mean squared error (MSE) and

mean absolute error as evaluation metrics. Our GNN performed best in the majority of ex-

periments, in both the 18 cell type and 17 cell type settings. See Figure 4.4 for a breakdown

of the experimental settings, and the performance results.

4.5 Spot Data and Deconvolution Methodology

Here, we build on the preliminary developments of spot data generation and the graph-

based deconvolution scheme proposed.
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4.5.1 Dataset

The single-cell resolution spatial transcriptomic data we used is from the CosMx plat-

form (He et al., 2021) by Nanostring, which uses a spatial molecular imaging technique.

Through our collaboration with Nanostring, we collected 20 samples from human tissue in

lung, kidney, and liver. All the samples contain tumor micro environments. Each dataset

was generated from 960-to-1000-plex CosMx RNA panel run on CosMx SMI. Here we de-

scribe the data from each tissue in detail.

Human Lung. This dataset consists of 8 samples over 5 NSCLC (non-small cell lung cancer)

tissues. The resulting dataset contains measurements from 960 targets over 800,327 cells, of

which 766,313 cells are analyzed. In more detail, 259,604,214 transcripts are detected. In

these samples, the cells were experimentally labeled (by CosMx) from 18 detected cell types.

Human Kidney. This dataset consists of 10 samples of tissue taken from lupus nephritis

patients, via kidney core biopsy. The resulting dataset contains nearly 300,000 cells.

Human Liver. This dataset had subcellular resolution, and consists of 1,000 genes over

800,000 cells. These samples cover a 180 mm2 area of liver tissue, from 1 normal liver and

1 hepatocellular carcinoma tissues.

4.5.2 Pseudo spot generation

As in the pseudo spot generation process described in the previous section, we impose a

grid on the single-cell resolution spatial transcriptomics data. We choose a spot size to yield

multiple cells per spot, with an average size similar to lower resolution spatial transcriptomics

methods. We then have the cell type compositions of these pseudo spots, but in a realistic

setting since we are generating them within their spatial context of the tissue samples. We

assign the cells to pseudo spots based on the centroid coordinates of each cell. That is, the

cell gets assigned to the pseudo spot that contains its centroid within its defined boundary.

Interestingly, we did not have any cells whose centroid sat on a boundar line, so we did not

deal with that assignment problem. Nonetheless, we could randomly assign a cell living on

a boundary line to a single pseudo spot forming that boundary. We take the expression
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Figure 4.5 An Overview of SPATIALCTD. (a). The method for generating the
SPATIALCTD dataset. SPATIALCTD comprises three distinct human tissues, namely, the
lung, kidney, and liver. For each sample in tissues, SPATIALCTD consists of a spot gene
expression file, a spot location file, and a ground truth file. (b). A summary of
SPATIALCTD.
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measure of the pseudo spots by aggregating the expression over the cells within the pseudo

spot. One thing to note is we are operating under the simple assumption that expression from

bulk mixtures is the sum of the expression of the cells within the mixture. This may not be

the case, indeed some studies have shown a log-normal aggregation, but it is a widely used

assumption (hence NMF based methods) and a simple starting point. We then compute

the cell type composition of the pseudo spots from the cell types of the cells within the

pseudo spots, which serves as the ground truth labels of the pseudo spots. We define the

spatial location of the spots from their centroid coordinates. This process generates the

following data: (1) number of cells in each spot, (2) cell ID, spot ID, and their mapping

that defines the cell-to-spot assignment, (3) spatial location of each spot, (4) spot level gene

expression, and (5) the ground truth cell type compositions. This procedure has spot size

as a parameter, which we set to a realistic size seen in Nanostring’s GeoMx platform, which

is lower resolution (bulk mixtures). Here, we aimed for spot sizes near the mean and/or

median spot size taken by GeoMx, 37456.28 µm2, and 24168.74 µm2 respectively.

Human Lung. We set the FOV accordingly: 5,472 pixels * 3,648 pixels, 0.18 µm per pixel.

Dividing each FOV into 20 pseudo spots, we get a spot area 32338.2067 µm2, which is within

the mean and median GeoMx spot size. Lastly, we filtered out low quality (spots without

cells), resulting in a total of 4,660 spots over the 8 samples, and 771,236 cells. In 4.5 we

outline the generation procedure and give a summary of the generated datasets.

Human Kidney. We set the FOV accordingly: 5,472 pixels * 3,648 pixels, 0.18 µm per pixel.

Dividing each FOV into 20 pseudo spots, we get a spot area 32338.2067 µm2. After filtering,

we have 2,460 spots over 10 samples, consisting of 296,838 cells.

Human Liver. We set the FOV accordingly: 4,236 pixels * 4,236 pixels, 0.12 µm per pixel.

Dividing each FOV into 9 pseudo spots, we get a spot area 28709.9136 µm2. After filtering,

we have 5,796 spots over 2 samples, consisting of 760,506 cells.
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Figure 4.6 An overview of GNNDECONVOLVER and experimental settings. a. An
overview of GNNDECONVOLVER. Note that reference refers to the training data with
known cell type proportion labels, and query indicates test data the model will predict. b.
Four types of experimental settings.
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4.5.3 GNNDECONVOLVER

To begin, let’s assume we have t samples which measure expression of d genes over

n1, n2,..., nt spots. We treat the spots as graph nodes, constructing the graph from their

log-normalized expression values (Lytal et al., 2020). The nodes in each sample are then

connected according to both expression level and spatial distance. To do this, let Aspatial

and Agene be the adjacency matrices of the distances and expression respectively. We define

Aspatial by nearest-neighbors, with K = 5. Meaning, each spot is connected to its 5 nearest

nodes (spatially). We also considered defining this by specifying a distance threshold. We

apply the same construction setting for Agene, except we define distance here with cosine

similarity between expression levels. We then define the final adjacency matrix Asample as

a weighted sum of these adjaceny matrices Asample = αAspatial + βAgene. We experimentally

tested and set where α and β to 0.3 and 0.7 respectively. Then, for each sample t the graph

is defined by Asamplet ∈ Rnt×nt and Xsamplet ∈ Rnt×d where Asamplet is the final adjacency

matrix, and Xsamplet is the node representation matrix.

We also connect nodes between different samples, but the spatial context is only within

samples so we contruct the between sample graphs via gene expression only. First, we

compute expression similarity of nodes between each sample. We define the adjacency matrix

using a nearest neighbors scheme, again with K = 5. This yields a graph that connects nodes

across all t samples, both labeled and unlabeled (cell type compositions). The between

sample graph is then given by Aall ∈ Rn×n and Xall ∈ Rn×d where n = n1 + n2 + · · ·+ nt.

This graph construction yields a linked graph G = (V,E). The task of GNNDECON-

VOLVER is to predict cell type compositions of unlabeled spots, with both spot features and

the graph features defined by the graph of node connections between labeled and unlabeled

spots. Namely, we have the input as [AX], where A ∈ Rn×n is the adjacency matrix, and

X ∈ Rn×d is the node representation matrix. Again, we are have n spots with expression

measurements over d genes.

GNNDECONVOLVER consists of two graph convolutional layers, where the second layer
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is treated as the output layer, i.e. no activation function is applied. These layers are define

accordingly:

H(l+1) = σ
(
ÃH(l)W (l)

)
= ReLU

(
ÃH(l)W (l)

)
(4.20)

where Ã = D̃−1/2(A + I)D̃−1/2 with D̃ the diagonal matrix of A + I and I the identity

matrix. H(l) is the input from the previous layer. W (l) is the weight matrix of the l-th layer.

ReLU(·) is the nonlinear activation function. Here, the input for the first layer would be the

original node representation H(0) = X.

We can define GNNDECONVOLVER as the following composition:

Ŷ = ÃReLU
(
ÃXTW (0)

)
W (1) (4.21)

where W (0) and W (1) are learned weight matrices, and Ŷ is the predicted cell type compo-

sitions with F unique cell types. The loss function is defined as the cross-entropy between

ground truth and predicted cell type composition:

L = −
nq∑
i=1

F∑
f=1

yi,f ln (ŷi,f ) (4.22)

Here, we have nq labeled nodes, ŷi,f and yi,f represent the predicted and ground truth cell

type proportion of cell type f in spot i, respectively. We train the model by minimizing the

cross-entropy L on training sets via stochastic gradient descent using backpropogation.

4.5.4 Results

Here we test GNNDECONVOLVER against 8 other deconvolution methods, and compare

our generated dataset with other synthetic bulk mixture data. We see that GNNDECON-

VOLVER outperforms all other methods in each evaluation metric. We continue to see this

trend as we vary the spot size. Refer back to Figure 4.6 for an overview of the model and

experimental setup.

These results show GNNDECONVOLVER to be a useful deconvolution method, and

the formative ideas may help guide future method developments. Particulary, the to inte-

grate reference scRNA-seq data with spatial transcriptomics data. We also see that this
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MSE MAE PCC Kidney Liver Lung S1 S2 S3 S4

1 GNNDeconvolver

2  RCTD

3  CARD

8  DestVI
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Figure 4.7 Performance of 9 methods in cell type deconvolution. a. A summary of results
for 9 cell type deconvolution methods. b-e. Comparison of the models under different
settings on SPATIALCTD kidney tissue in terms of MSE, MAE and PCC.
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a
# Cells # Cell 

Types
Human TMESpot 

Image
Subcellular 

Location
Cell 

Composition

MPOA

Mouse Brain

Mouse Cortex

Mouse Visual Cortex
Simulated ST for 

Human Lung

Mouse Embryo
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Figure 4.8 Statistical comparison between SPATIALCTD and existing cell type
deconvolution benchmark datasets.

pseudo spot generation procedure can provide us with more realistic cell type deconvolution

benchmark data, at a large scale.
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CHAPTER 5

FURTHER EXPLORATIONS IN DECONVOLUTION

5.1 Towards a Probabilistic Framework for Deconvolution

Let C be the random variable of observing a single cell of type [1, K] = {1, 2, ..., K}, with

distribution

C ∼ CategoricalK(w), p(C = k;w) = wk, w ∼ πw (5.1)

Let X be the random variable of a single-cell’s gene expression for D genes, and suppose

pk(x; θk) = p(X = x|C = k), θ = (θ1, ..., θK) ∼ πθ (5.2)

Then X ∼ f where f is the mixture density

f(x;θ,w) =
K∑
k=1

wkpk(x; θk) (5.3)

To simplify notation, for k ∈ [1, K] we let

Xk = X|C = k

µk = E(Xk), Σk = cov(Xk)

(5.4)

Suppose now that we randomly sample n cells C(1), ..., C(n) iid∼ CategoricalK(w), then

the total number for each of the K cell-types are given by the random variable

N = (N1, ..., Nk) ∼ MultinomialK(n,w)

p(n1, ..., nK ;n,w) =
n!

n1! · · · nK !

K∏
k=1

wnk
k , for (n1, ..., nK)/n ∈ ∆K−1

(5.5)

Suppose we measure the expression X
(1)
k , ...,X

(Nk)
k

iid∼ pk, k ∈ [1, K] and aggregate over

each cell-type

Y =
K∑
k=1

Nk∑
i=1

X
(i)
k =

K∑
k=1

NkHk, where Hk = Xk (5.6)

Letting Bk =
Nk

n
and B = (B1, ..., BK) ∈ ∆K−1, taking the sample mean we get

Y

n
=

K∑
k=1

Nk

n
Hk =

K∑
k=1

BkHk (5.7)
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Note that Epk(Hk) = µk and covpk(Hk) =
1
Nk

Σk, so

E(Y) =
K∑
k=1

Nkµk, cov(Y) =
K∑
k=1

NkΣk (5.8)

and

E
(
Y

n

)
=

K∑
k=1

Bkµk, cov
(
Y

n

)
=

K∑
k=1

Bk

n
Σk (5.9)

If we let Y =
∑

i = 1nX(i), where X(1), ...,X(n) iid∼ f , then the distribution of Y is the

n−fold convolution of f:

fY (y) = (f ∗ f ∗ · · · ∗ f ∗ f)(y) = f ∗n(y) (5.10)

Also, nkHk ∼ p∗nk
k , and Y =

K∑
k=1

nkHk ∼ (p∗n1
1 ∗ p∗n2

2 ∗ · · · ∗ p∗nK−1

K−1 ∗ p∗nK
K )(y)

5.2 Learning Cell Profiles

Cell type expression profiles have played a key role in cell type deconvolution, as they

are what the most basic methods are built on. In chapter 2, section 2, we have shown a

standard way of constructing cell type expression profiles from reference scRNA-seq data.

These methods are mostly rule based, where we take some normalized reference scRNA-seq

data, account for background, and take the median or mean. A direction I thought would be

interesting is to develop a deep learning method that learns the cell type expression profile.

As I thought about this task, it made sense to try this through the task of deconvolution,

which often relies on the cell type profile.

5.2.1 Architecture

The most basic form of this learning method is to take the full reference scRNA-seq data

set and pass it through a locally connected neural network (LocNet), specifically organized

to only share parameters within each cell type. Setting the dimension of the penultimate

layer to the number of unique cell types and applying a non-negative activation would then

yield at least the form of a cell type profile matrix. This is then used in the final output

layer as a regression task, where the coefficients are considered the cell type compositions.

So, in this setup, we not only learn a cell type profile from reference scRNA-seq data, but
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Figure 5.1 Locally-connected Neural Network.

we also perform deconvolution and get an estimate of cell type compositions. Here is a brief

setup of the method. Note that we are using the log error model framework. Here we have

D genes, N cells from reference scRNA-seq composed of K cell types, and M bulk mixtures.

Reference scRNA expression (raw): X = [X1 X2 · · · XK ] ∈ RD×N ,

Xc ∈ RD×Nc ,
K∑
c=1

Nc = N

Mixture expression (raw): Y ∈ RD×M

We then define LocNet and its locally connected layer as follows.

Locally connected layer: H = σ
(
Xdiag(W1,W2, ...,WK)

)
∈ RD×PK ,

where Wc ∈ RD×P for c=1,...,K

=

[
σ
(
X1W1

)
σ
(
X2W2

)
· · · σ

(
XKWK

)]
We can extend LocNet to have multiple locally connected layers, with

H(0) = X, H(i) = σ
(
H(i−1)diag(W

(i)
1 ,W

(i)
2 , ...,W

(i)
K )

)
and we define the cell type expression profile by F (X) = H(L) ∈ RD×K . The objective is

then to minimize the MSLE: 1
D
||log(Y)− log(F (X)B)||22
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Figure 5.2 True vs estimated cell type proportions.

Figure 5.3 LocNet preliminary validation results table.

Figure 5.4 LocNet learned profile vs median profile.

Minimizing this objective we learn a cell type expression profile F (X) = H(L) and an estimate

for the cell type compositions B. A small example given in Figure 5.1 will help illustrate the

local nature of this network.
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5.2.2 Preliminary Experimental Results

To validate this method I chose a small cell line mixture dataset from Nanostring GeoMx,

which came from a cell pellet array study done by Nanostring Danaher et al. (2022). It is a

small dataset, but this is just an early validation to test the utility of the model. It consists

of expression data from two cell lines (HEK293T, CCRF-CEM) mixed in cell-pellet array at

varying proportions (40 mixtures, 16 pure cell-lines). 700 um regions were profiled for 1414

genes with GeoMx platform. Further, I normalized the expression data with 27 housekeeping

genes that were selected using geNorm on the 50 highest mean expression genes.

I tested this method against the basic Non-negative Least Squares (NNLS) method, and

the Log-Normal Regression (LogNormReg) method. I chose these two methods because they

both use cell type profiles directly. For these two methods, I used the standard cell type

profile construction, with the median expression within each cell type.

The results show LocNet performs strongly across various metrics in estimating true

cell type composition. Since the loss function of LocNet is just the Log-Normal Regression

model objective, this may suggest that LocNet is learning a better cell type profile than the

standard rules based profile used in NNLS and LogNormReg. Further, looking at the results

we may suggest the median is underestimating the true cell type profile.

5.3 Bivariate normal genes for 2 cell-types

Here I wanted to consider deconvolution in a probabilistic framework, which I began with

a small digestible example consisting of only two cell types. Here, I consider 2 cell types by

taking samples from bivariate normal distributions. The setup is as follows.

νc ∼ N

(
µc =

µ1,c

µ2,c

 ,Σc =

 σ1,c ρcσ1,cσ2,c

ρcσ1,cσ2,c σ2,c

)
, for cell-types c = 1, 2, with ν1 ⊥⊥ ν2

Reference scRNA: x
(i)
c ∼ νc (i.i.d.), for i = 1, ..., N . We put this in matrix form as:

X = [X1 X2] ∈ R2×2N , where Xc = [x
(1)
c x

(2)
c · · · x(N)

c ]
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Figure 5.5 toy example - bivariate normal samples.

Figure 5.6 Decision boundary and classifications of MAP, LocNet and NNLS on the toy
bivariate normal gene expression samples.

Mixed-cell RNA: y(i) ∼ β
(i)
1 x̃

(i)
1 + β

(i)
2 x̃

(i)
2 , for i = 1, ...,M , where x̃

(i)
c ∼ νc (i.i.d.), and

1− β
(i)
1 = β

(i)
2 ∈ {0, 1}. We put this in matrix form as:

Y = [y(1) y(2) · · · y(M)] ∈ R2×M

In this toy example we set the mean and variance parameters as

µ1 =

45
30

 ,Σ1 =

 60 −30

−30 20

, µ2 =

30
45

 ,Σ2 =

 20 −30

−30 60


We take 1000 samples from this distribution, and plot their 2D coordinates in Figure 5.5.
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With this toy example, I am able to compute the Maximum a posteriori (MAP) estimate

for the cell type compositions, against which I compare estimates from LocNet and NNLS

for preliminary tests. Interestingly, I found LocNet was able to perform nearly as well as the

MAP, and defines very similar decision boundaries.
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CHAPTER 6

CONCLUSION

Going back to the Cell Type Deconvolution chapter, recall that scRNA-seq data are used

as references for cell type composition estimation of spatial transcriptomic data. There

are many variables at play between any pair of these datasets. One major variable is the

differences in library preparation of the two sequencing technologies, which can lead to

systematic bias that confounds cell type deconvolution results, termed as platform effects.

RCTD Cable et al. (2022) and cell2location Kleshchevnikov et al. (2022b) are two methods

that statistically account for platform effects and other sources of gene expression variations

to model cell type compositions in spatial transcriptomic data. A direction I’d like to take

my research is how to synthesize these ideas with deep learning methods, especially a GNN-

based method that allows for easier multimodal data integration. Another aim of mine is

to continue developing the cell type deconvolution benchmark datasets, and use them to

validate my model developments.

A problem highlighted in the Plant Stress Response chapter is that of negative transfer.

This is a problem the occurs across many domains, and interests me greatly. Going back

to the experimental results in the Plant Stress Response chapter, DeepCAT is shows decent

performance relative to well-established shallow and deep learning methods, but accuracy

is still low in absolute terms. Thus there are still some challenges to overcome. From

our results, we see that the stress grouping is a significant matter, and more sophisticated

methods to learn the best groupings (i.e. the most related stresses) could help increase testing

accuracy. Additionally, we saw leveraging transfer learning from both the big data human

model, and the experimentally verified TFBMs helped increase the predictive accuracy. This

is another lever for increased accuracy, and hence is a direction of great interest. However,

One issue I found with the transfer learning schemes is there was no control mechanisms on

the transferred information. We simply took the source data as parameter initializations and

trained all of the target data (Arabadopsis) from there. We didn’t account for similarities
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or differences, for example, in the DNA sequences between humans and arabadopsis. The

negative transfer is also found in the multi-task learning scheme. Grouping the heat and

non-heat related stresses separately did improve from sharing across all stresses. However,

even within those groups I found that the model performed particularly bad for a hand

full of certain stresses. Again, control mechanisms would be helpful to limit the sharing of

information between stresses when it leads to negative transfer.
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APPENDIX

Figure A.1 Median of rank-ordered Bray-curtis dissimilarity taken over all spots.

Figure A.2 Median of rank-ordered Bray-curtis dissimilarity taken over all spots.
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Figure A.3 GNNDECONVOLVER deconvolution on SPATIALCTD lung 5-2 sample. a.
Ground truth single-cell resolution on SPATIALCTD Lung 5-2 sample. Each dot is a single
cell colored by its ground truth cell type label. Proportions of deconvolved cell types from
ground truth and GNNDECONVOLVER represented as pie charts for each spot. b. Spatial
autocorrelation of the cell type proportions computed using Hotspot. Spatial distribution
of cell type proportion for T CD4 memory cells, T CD8 memory cells, tumor, macrophage
and neutrophil cells, as inferred by GNNDECONVOLVER. Each dot represents a spot.
The depth of the point indicates the proportions of the cell type in the spot.
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Figure A.4 HEK293T and CCRF-CEM cell line mixture observed expression vs estimated
expression from various models.

Figure A.5 PC Region Reconstruction of multivariate normal distributions - applied
towards deconvolution methods.
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Figure A.6 The essence of the work for which I am most proud, and excited about.

Figure A.7 Pipeline to translate kernel weights to position weight matrices, which can be
compared experimentally verified motifs.
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Figure A.8 Motifs learned from DeepCAT aligned with a known TFBM.

Figure A.9 Motifs learned from DeepCAT aligned with a known TFBM.

Figure A.10 Motifs learned from DeepCAT aligned with a known TFBM.
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Figure A.11 Potential novel kernel PWM.

Figure A.12 This table examines scaling effects when only one cell line’s expression is
scaled (by 1000 here), a common problem in cell type expression profiling.
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