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ABSTRACT 
 

I present three projects that propose computationally efficient Bayesian methods and 

applications for analyzing high-dimensional genetic data, focusing on incorporating local SNP 

information, such as linkage disequilibrium, to elucidate genetic variability across the genome. 

Genome-wide information offers valuable insights, but its vast scale presents significant 

statistical, computational, and interpretation challenges. Focusing on local genomic segments can 

help address these challenges by providing a more refined approach to understanding genetic 

variation, particularly across different ancestry groups.  

In Chapter 1, I propose an approach to map the contribution of short chromosome 

segments to the genetic correlation between traits. While genome-wide genetic correlations 

between traits offer an overall estimate for comorbid traits, local regions with opposing 

directional genetic correlations are masked, making it challenging to untangle the strength of the 

relationship overall. Chapter 1 addresses this limitation by estimating local genetic correlations. 

Hyperuricemia/gout and chronic kidney disease are comorbid conditions for which the biological 

roots of the comorbidity remain unknown. Utilizing a novel approach, I disentangled the shared 

genetic regions contributing to both conditions. The results presented in this chapter validate 

several previously suggested pleiotropic loci and discovered new ones, with about a third showing 

genetic correlation estimates opposite to the overall correlation. 

Chapter 2 focuses on estimating the portability of local polygenic scores in cross-ancestry 

prediction accuracy. The vast majority of genetic data comes from individuals of European 

ancestry. As a result, many investigators attempt cross-ancestry prediction, utilizing European 

data to predict the risk of disease/traits among underrepresented non-European ancestries. In most 

cases, cross-ancestry prediction remains more accurate than within-ancestry predictions due to 



 

limitations imposed by non-European sample sizes, but it is still low. This shortcoming is largely 

due to differences in allele frequencies and linkage disequilibrium patterns between different 

ancestry groups, as well as genetic-by-environmental interactions involving environmental 

exposures that are not independent of ancestry. In this study, I propose a method, MC-ANOVA, 

to estimate the relative accuracy loss in cross-ancestry prediction across ancestries due to local 

linkage disequilibrium and allele frequency differences. I implemented the proposed algorithm 

and developed maps of the relative accuracy of cross-ancestry prediction for four non-European 

ancestry groups. Furthermore, I developed an interactive R Shiny app that can be used to visualize 

the results obtained in each portability map. My findings revealed significant variability in the 

portability of local PGS across genomic regions, reflecting varying degrees of genetic similarity 

between ancestries across regions. This study highlights the potential for improving cross-

ancestry predictions by taking local genetic differences into account. 

The advent of big data has had a remarkable impact on PGS prediction accuracy. Sample 

size affects both the power to detect significant associations between SNPs and phenotypes and 

the accuracy of SNP effects estimates. For homogenous populations, PGS prediction accuracy 

grows monotonically with sample size. However, when using multi-ancestry data, the relative 

proportion of each ancestry group can greatly impact prediction accuracy. Therefore, in Chapter 

3, using data from individuals of European ancestry from the UK Biobank and African ancestry 

from All of Us, I investigate how sample size and the relative proportion of each ancestry group 

influence PGS prediction accuracy. This study sheds light on the relative benefits of increasing 

within- and across-ancestry sample sizes in cross-ancestry genetic predictions through empirical 

results, ultimately highlighting the importance of prioritizing the collection of non-European 

ancestry data.
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 In recent years, statistical genetics has obtained unprecedented access to vast datasets such 

as the UK Biobank, with near half a million participants with genotypes (at millions of single-

nucleotide polymorphisms [SNPs]) and thousands of phenotypes and disease records. The ever-

increasing sample sizes in genetic data have significantly improved the statistical power of 

genome-wide association studies (GWAS), leading to the publication of thousands of results1. 

However, this increase in data is accompanied by an increase in statistical and computational 

challenges. 

 While advancements in statistical methods have allowed for the evaluation of complex 

genome-wide models, as sample sizes grow it becomes increasingly less efficient and feasible to 

analyze hundreds of thousands of SNPs using standard techniques. Common approaches, such as 

single-SNP methods, fail to incorporate linkage disequilibrium (LD) that exists between flanking 

variants. Additionally, due to variation across the genome, models attempting to use whole-

genome information can mask important differences between chromosome segments2. In this 

dissertation, I propose methods to estimate important genetic parameters for short chromosome 

segments. 

In Chapter 1, I propose an approach to map the contribution of short chromosome 

segments to the correlation between traits. Using this methodology, and data from the UK 

Biobank, I report estimates of the (local) genetic correlation between serum urate and estimated 

glomerular filtration rate. The results presented in Chapter 1 validate several previously suggested 

pleiotropic loci and discovered new ones, with about a third showing genetic correlation estimates 

opposite to the overall correlation. 

 The prediction accuracy for European (EUR)-ancestry individuals has improved with 

increased statistical power from larger sample sizes3,4. However, the vast overrepresentation of 
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EUR-ancestry in GWAS datasets (approximately 80%5) leads to poor cross-ancestry prediction 

accuracy. This is particularly true for more distant ancestry groups, such as African (AF)5–16. The 

poor portability of EUR-derived PGS in cross-ancestry prediction has been primarily attributed to 

differences in allele frequencies and LD, among other factors8,9,17. 

I hypothesize that, owing to varying levels of LD and allele frequency differences between 

ancestry groups, the portability of local PGS varies substantially over the genome, with some 

regions having high portability of SNP effects between ancestries and others exhibiting very poor 

potability in cross-ancestry prediction. Therefore, in Chapter 2, I propose a methodology to map 

the portability of local PGS between ancestry groups. The methodology uses a Monte Carlo 

approach to map both within-ancestry loss of accuracy (due to imperfect LD between markers and 

causal loci) and the loss of accuracy in cross-ancestry prediction attributable to differences in 

allele frequencies and LD between ancestry groups. I used the proposed methodology, and data 

from the UK Biobank to generate maps of the relative accuracy of local PGS in cross-ancestry 

prediction for several non-EUR ancestry groups. 

 Finally, in Chapter 3, building on the investigations in cross-ancestry PGS prediction 

accuracy, I investigate the impact of sample size and of the proportion of data from different 

ancestry groups on PGS prediction accuracy. In this study, I used data from individuals of EUR 

ancestry from the UK Biobank (n~250,000)18 and AF ancestry data from All of Us (n~50,000)19. 

The results emphasize the importance of investing in the collection of non-EUR data. 
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CHAPTER 1: Local genetic covariance between serum urate and kidney function estimated with 

Bayesian multitrait models 
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Abstract 

 Hyperuricemia (serum urate >6.8 mg/dl) is associated with several cardiometabolic and 

renal diseases, such as gout and chronic kidney disease. Previous studies have examined the 

shared genetic basis of chronic kidney disease and hyperuricemia in humans either using single-

variant tests or estimating whole-genome genetic correlations between the traits. Individual 

variants typically explain a small fraction of the genetic correlation between traits, thus the ability 

to map pleiotropic loci is lacking power for available sample sizes. Alternatively, whole-genome 

estimates of genetic correlation indicate a moderate correlation between these traits. While useful 

to explain the comorbidity of these traits, whole-genome genetic correlation estimates do not shed 

light on what regions may be implicated in the shared genetic basis of traits. Therefore, to fill the 

gap between these two approaches, we used local Bayesian multitrait models to estimate the 

genetic covariance between a marker for chronic kidney disease (estimated glomerular filtration 

rate) and serum urate in specific genomic regions. We identified 134 overlapping linkage 

disequilibrium windows with statistically significant covariance estimates, 49 of which had 

positive directionalities, and 85 negative directionalities, the latter being consistent with that of 

the overall genetic covariance. The 134 significant windows condensed to 64 genetically distinct 

shared loci which validate 17 previously identified shared loci with consistent directionality and 

revealed 22 novel pleiotropic genes. Finally, to examine potential biological mechanisms for these 

shared loci, we have identified a subset of the genomic windows that are associated with gene 

expression using colocalization analyses. The regions identified by our local Bayesian multitrait 

model approach may help explain the association between chronic kidney disease and 

hyperuricemia. 
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Introduction 

 Chronic kidney disease (CKD) carries significant global health and economic burden1,2. 

CKD stages three to five manifest as decreased renal function and are defined by elevated serum 

creatinine (sCr) or estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2. 

Hyperuricemia is defined by serum urate (sU) concentration >6.8 mg/dL and is contributed to by 

deteriorating renal function3. Hyperuricemia has several comorbidities associated with it, 

including CKD and gout3–5. Among people with hyperuricemia, there is a higher prevalence of 

CKD, and among patients with CKD, sU concentrations are higher6,7.  

 Genome-wide analyses have demonstrated that the association observed between eGFR 

and serum urate has a genetic basis. Tin et al. carried out a large-sample trans-ethnic genome-

wide association study (GWAS) of sU and, through cross-trait linkage disequilibrium (LD) score 

regression, obtained an estimate of overall genetic correlation between eGFR and sU of -0.26 

(standard error of 0.04)8. This was one of the largest negative correlations with sU out of 748 

traits analyzed8. Reynolds et al., using two large family-based datasets and Bayesian whole-

genome regressions, obtained global genetic correlations between sCr (which has a direct inverse 

relationship to eGFR, hence the directionality difference between the estimates) and sU of 0.20 

(95% credibility region (CR): 0.07, 0.33) in one dataset and 0.25 (95% CR: 0.07, 0.41) in the 

other9. While these estimates contribute to dissecting biological causes of the observed 

comorbidities, the shared pleiotropic genomic regions and underlying biological mechanisms are 

only reliably discovered by estimating local genetic covariances10. 

 GWAS of sU and eGFR have identified numerous loci associated with each phenotype 

separately. A recent study comparing large GWAS of these traits identified 36 shared loci11. 

However, the GWAS methods used to detect the shared signals are based on the marginal 
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association of individual single-nucleotide polymorphisms (SNPs) with phenotypes, thus not 

accounting for LD between SNPs. Our method improves over post-analysis of GWAS summary 

statistics by estimating neighboring SNP effects concomitantly. Incorporating local LD to 

estimate genetic effects in a tightly segregating chromosomal segment has been previously 

suggested to account for the correlation between SNPs12–14. Additionally, our methodology 

implements a multi-trait model so we obtain direct genetic covariance estimates. 

 In this study, we aimed to characterize the common genetic basis for CKD (eGFR) and 

hyperuricemia (sU levels) by identifying pleiotropic genomic regions. To achieve this goal, we 

identified the local regions contributing to genetic variances and covariances across the whole 

genome14. We used Bayesian multi-trait models to estimate the genetic (co)variances. SNP effects 

were estimated in large DNA regions and genetic variances and covariances were calculated from 

the posterior means per LD window. We identified 64 unique local genetic regions with 

significant local genetic covariance, including previously implicated and novel shared loci. 

Materials and Methods 

Participants 

 This study was based on 333,542 Caucasian participants from the UK Biobank. 

Participants missing serum urate or serum creatinine for both of their two visits were excluded 

from the analysis. We excluded close relatives with relatedness  0.1, estimated using the R 

package BGData15 (see details in the Supplementary Methods). 

Genotypes and phenotypes 

 The UK Biobank used the custom UK Biobank AxiomTM Array by Affymetrix to 

genotype study participants16. Quality control involved removing SNPs that had a minor allele 

frequency less than 1% or a missing call rate greater than 5%, resulting in 607,490 autosomal 
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chromosomes (1-22) SNPs17. 

 Serum urate and sCr data were obtained from the first visit. For the small number of 

participants (0.28%) that did not have phenotype data of interest collected at the first visit, we 

retrieved data from the second visit. sCr was used to define eGFR and details on this can be found 

in the Supplementary Methods. For both eGFR and sU, we took a log transformation to normalize 

their distributions and preadjusted by age, sex, and the first five SNP-derived principal 

components using ordinary least squares. 

Local Bayesian multi-trait models 

 We estimated local (co)variances by fitting Bayesian models to chromosomal segments 

with a non-overlapping core of 1,000 contiguous SNPs (between 3-4 Mbp depending on the 

region). We included two overlapping flanking regions each consisting of 250 SNPs to each side 

of the core. The SNPs in the flanking regions were included to account for the effects of SNPs 

that were outside of the core region but possibly in LD with SNPs in the core segment. Whole 

genome regressions have been used to fit several markers concomitantly (e.g., Vazquez et al.18). 

However, biobank data imposes computational restrictions due to its large dimensions. In the 

context of a single trait, local Bayesian conditional regressions have been employed to deal with 

the computational burden (Funkhouser et al.14). In their study, the authors indagated sex 

differences in genetic effects in single-trait models. Here, we utilized the idea of conditional 

regressions in large chunks of DNA with flanking regions in the context of a multi-trait Bayesian 

model. This provides posterior estimates of variances and covariances between traits to find 

pleiotropic regions. The linear model used had the form 𝐘= 𝟏𝛍ᇱ+ 𝐗𝛃 + 𝐄, where 𝐘n x 2 is a matrix 

containing the pre-adjusted phenotypes, 𝛍 2 x 1 is a vector of trait-specific intercepts, 𝐗n x 1500 is a 

SNP-genotype matrix (1,000 core SNPs plus 250 flanking SNPs to each side), 𝛃1500
 
x 2 is a matrix 
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of SNP effects, and 𝐄n x 2 is a matrix of error terms. The error terms were assumed to be IID 

multivariate normal with a mean of zero and covariance Var(𝛆୧)=𝐑2 x 2, where 𝛆୧ is the ith row of 

𝐄. We used IID priors with a point of mass at zero and a bivariate Gaussian slab with a mean of 

zero and (co)variance matrix 𝚺2 x 2. The extent of shrinkage and variable selection was influenced 

by three groups of parameters: 𝐑, 𝚺, and the prior proportion of non-zero effects, 𝛑. For a two-

trait model, 𝛑={𝜋1, 𝜋2} and represents the prior probability of non-zero effects for traits 1 and 2 

(sU and eGFR), respectively. We treated the {𝐑, 𝚺, 𝛑} parameters as unknown and we assigned 

Inverse-Wishart priors for the (co)variance matrices and Beta priors for the prior probability of 

non-zero effects. 

 We used the Multitrait function from the BGLR R package available in the R CRAN19 to 

generate 5,000 samples from the posterior distribution for each chromosomal segment. We 

filtered the samples of the SNP effects collected using a burn-in of 250 SNPs and a thinning 

interval of 10, thus retaining 475 samples for further inference.  

Defining local LD-based windows 

 After we obtained the model estimates, for each core segment SNP we defined an LD 

window that contained correlated, neighboring SNPs with an overlapping sliding technique13,14. 

Within each LD window, we collected the corresponding estimated effects and computed 

(co)variance estimates (described below). For each seed SNP xij (i=1,...,n individuals and j=1,...,p 

core segment SNPs) coming from the core segment of SNPs, we sequentially identified SNPs in 

both directions (xij*) surrounding the seed SNP and included them in window j if Corr(xij, xij*) ≥ 

0.1. In a simplified example, if SNP xij had an adequate pairwise correlation with 2 SNPs to the 

left, and 1 SNP to the right, the window for that SNP would be defined as the set of SNPs: {xij-2, 

xij-1, xij, xij+1}. That is, Corr(xij, xij-1) ≥ 0.1 and Corr(xij, xij-2) ≥ 0.1 and Corr(xij, xij+1) ≥ 0.1. Our 
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definition of an LD sliding window also involved an allowance for one SNP in the sequential 

process to not meet this correlation criterion, to allow for a brief loss of LD or minor mapping 

errors, and the SNP was still included in the LD window. In the previous example, if Corr(xij, xij-1) 

< 0.1, and Corr(xij, xij-2) ≥ 0.1, then the set would still include both xij-2 and xij-1. The LD window 

ends when two SNPs sequentially did not meet the criteria described above. The LD windows 

could include flanking buffer SNPs, but buffer SNPs were never used to define an LD window. 

Local (co)variances 

 For each LD window, we computed the local variances for traits 1 and 2 and the local and 

covariances using 𝑉௪ଵ௦ = Var(𝐗୵𝛃୵ଵୱ), 𝑉௪ଶ௦ = Var(𝐗୵𝛃୵ଶୱ), and Cov୵ୱ =

Cov(𝐗୵𝛃୵ଵୱ, 𝐗୵𝛃୵ଶୱ). Here, 𝐗୵ is the matrix containing the genotypes of the SNPs in the wth 

window and 𝛃୵ଵୱ and 𝛃୵ଶୱ are the samples of effects of those SNPs for traits 1 and 2 collected at 

the sth iteration of the sampler. This generated samples from the posterior distribution of the local 

(co)variances, which we used to produce posterior mean estimates (by averaging across the 

samples from the posterior distribution), estimate posterior standard deviations, and obtain 95% 

posterior CRs. As discussed in Lehermeier et al.20, this approach accounts for the contribution of 

local LD to genetic (co)variances and, by averaging over samples from the posterior distribution, 

for uncertainty about SNP effects. 

Gene expression/eQTL analysis 

 A colocalization analysis was performed between GWAS significant markers for sU and 

sCr and the publicly available eQTL data from GTEx V821. The R package COLOC was used, 

which implements a Bayesian test that analyses a single genomic region and identifies LD 

patterns in that locus using SNP summary statistics and the associated minor allele frequencies. 

The lead variant for both sCr and sU was used at each significant covariance window with a 
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surrounding 500 kb buffer in the GTEx database. The Contextualizing Developmental SNPs using 

3D Information algorithm22,23 was modified to identify long-distance regulatory relationships for 

the lead sU and sCr variants at each significant covariance window within a 500 kb region. eQTL 

data for variants +/- 500 kb of the lead variant were also extracted from GTEx and then COLOC 

was used to assess if the significant cis- and trans-eQTL identified were colocalized with sCr and 

sU signals. An eQTL was determined to be colocalized if the COLOC H4 (posterior probability of 

colocalization (PPC)) was at least 0.5 for both traits and at least 0.8 for one of the two traits, 

according to Giambartolomei et al.21. 

Validation 

 We performed a validation analysis with the related Caucasian UK Biobank cohort, 

consisting of 57,370 subjects not missing sU or eGFR phenotypes. The genotyping array used for 

this cohort is the same as that used for the discovery analysis cohort. The validation analysis 

repeated the estimation procedures described above and the sliding LD windows used were 

identical to those used in the discovery set.  

Results 

 This study was based on 333,542 distantly related white participants, of whom 53.7% 

were female with an average age of 56.9 ± 8.0 years old. The average sCr level was 0.8 ± 0.2 

mg/dL (the average ± standard error), average eGFR was 144.2 ± 56.0 ml/min/1.73 m2, and the 

average sU level was 5.2 ± 1.3 mg/dL. Two (2.0) percent of the individuals had an ICD10 

diagnosis or self-diagnosis of gout, 12.4% had hyperuricemia, 0.5% had CKD, and 0.3% had 

hyperuricemia and CKD. 

 We analyzed the markers (sU and eGFR) using a sequence of Bayesian multi-trait models 

where the markers were regressed on contiguous SNPs in a large chromosomal segment (core) 
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plus overlapping flanking buffers. We collected the samples from the posterior distribution of 

effects for each core segment and used these samples to estimate the local variances for each 

marker (Figure 1) and the local covariances between the markers (Figure 2). The (co)variances 

were estimated within 511,828 overlapping LD windows (small, non-independent contiguous 

chromosomal regions). 
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Figure 1: The variance estimates of overlapping LD windows. a) Variance estimates multiplied 

by 1E4 for sU concentrations and (b) for eGFR. 

 



 

 16

 
 
Figure 2: The covariance estimates of overlapping LD windows. Windows are selectively 

annotated with the gene name of the mid-point SNP of that window. Windows that contained 

SNPs in loci associated with known eGFR genes are highlighted in dark green, windows that 

contained SNPs in genes associated with sU are highlighted in blue, and windows that contained 

SNPs in genes associated with both sU and eGFR (from comparing GWAS, Leask et al., 202011) 

are highlighted in bright green. Windows significant for genetic covariance are highlighted in red. 

The covariance estimates were multiplied by 1E4. 

We found 134 LD windows with covariance estimates that had a 95% CR excluding zero 

(Figure 2; Table A1). The number of SNPs in the significant LD windows ranged from one to 56, 

and the median SNPs per window was 6.0 (22 kbp on average, excluding 12 single-SNP 

windows). Interestingly, although the global correlation between sU and eGFR is negative8,9, 49 

of the 134 significant windows showed positive genetic covariance directionality, and the 

remaining 85 were negative. 

 The 134 significant LD windows often included the same variants and mapped to identical 

GWAS loci, so we collapsed the 134 windows to 64 unique loci that possessed genetic covariance 

signal between eGFR and sU (Table A2 and Supplementary Methods). The top 25 distinct loci 

implicated by the significant windows in terms of covariance magnitude are listed in Table 1. A 
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graphical representation of the top significant loci is presented in Figure 3. 

 
 
Figure 3: The top 25 shared loci and their covariance estimates with corresponding 95% CRs. 

The top 25 distinct loci from LD genomic regions with CRs not including zero. The window size 

indicates the number of SNPs in each window. The covariance estimates and CRs were multiplied 

by 1E4. 
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Table 1: The top 25 magnitude genomic windows significant for covariance between sU and 

eGFR with their chromosome, annotated gene name, number of SNPs and first and last SNP 

names, estimated covariance [95% CR], and colocalized genes. 

 
 

Chromosome 
Annotated Gene 

Name 

Number of SNPs in the 
Window and First to Last 

SNP 

Estimated 
Covariance 
[95% CR]a 

Colocalized Genes 

2 CPS1 
1  

rs1047891 
6.42 

[5.45, 7.65] 
 

2 LRP2 
6 

rs41268683-rs2075252 
4.58 

[2.61, 6.4] 
 

2 
NRBP1/IFT172/F

NDC4/GCKR 
16 

Affx-19857019-rs1260333 
10.3 

[8.43, 12] 
NRBP1 

6 
SLC17A1/SLC17A

3/SLC17A2 
56 

rs1165196-rs9467632 
4.87 

[.863, 8.61] 
 

10 A1CF 
7 

rs12413118-rs61856594 
4.64 

[3.74, 5.66] 
A1CF 

17 BCAS3 
7 

rs9904048-rs9895661 
2.34 

[1.38, 3.19] 
CRHBP, SH3GL2 

19 SLC7A9/CEP89 
16 

rs78676942-rs11668957 
3.84 

[1.85, 5.2] 
SLC7A9, CLDND2 

2 LOC105373585 
7 

rs11122800-rs35932591 
-4.19 

[-5.58, -2.57] 
 

2 
HOXD13/HOXD1

2/HOXD10 
5 

rs847153-rs711818 
-2.86 

[-4.14, -1.84] 
 

2 KCNS3 
7 

rs9789415-rs11688124 
-2.42 

[-3.19, -1.59] 
 

3 SLC15A2/ILDR1 
9 

rs2049330-rs6438689 
-2.02 

[-3.12, -1.03] 
SLC15A2, CD86 

6 VEGFA 
1 

rs881858 
-6.85 

[-8.61, -5.48] 
SETD1A 

6 
TTBK1/SLC22A7/

CRIP3 
20 

rs2651206-rs2242416 
-2.24 

[-3.31, -1.27] 
SETD1A 

7 UNCX 
13 

rs6950388-rs1880301 
-6.94 

[-8.56, -5.18] 
PALM2, PSMD11 

7 LOC730338 
5 

rs700752-rs12537178 
-2.31 

[-3.89, -.944] 
 

8 STC1 
6 

rs62502212-rs1705690 
-5.83 

[-7.38, -4.46] 
RP11-38H17.1 

11 OVOL1 
7 

rs4014195-rs36008241 
-5.59 

[-8.13, -3.29] 

PCNX3, MAP3K11, 
SCYL1, RP-11-770G2.2, 

OVOL1, KRT8P26 

11 DCDC1 
10 

rs963837-rs10767873 
-12.7 

[-14.9, -10.7] 
 

12 
R3HDM2/INHBC/

INHBE 
7 

rs73115999-rs507562 
-5.13 

[-6.49, -3.72] 
KMT2A, R3HDM2, 

SFXN5 

13 DACH1 
5 

rs7981995-rs626277 
-1.98 

[-2.73, -1.39] 
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Table 1 (cont’d) 

 

a  Estimates and CRs were multiplied by 1E4 for readability. 

Gene expression/eQTL analysis 

We used COLOC21 and expression data from The Genotype Tissue Expression (GTEx) 

project (v8)24 to identify candidate causal genes at significant local genetic covariance windows 

between sU and eGFR. Twenty-six of the 64 distinct significant shared loci (41.6%) were shown 

to modify the expression of candidate causal genes colocalized with the covariance signals (Table 

A3). Of note are TRIM6 and L3MBTL3 in cis, which are genes that have a significant covariance 

signal and a colocalized eQTL that is expressed in the kidney. 

Validation 

 In the related white UK Biobank validation cohort twelve LD windows were significant 

for genetic covariance between sU and eGFR (Table A1). All of the twelve significant windows 

were also significant in the main analysis with consistent directionality. The 12 windows 

condensed to five distinct loci (Table A2), meaning five out the 64 significant distinct loci from 

the main analysis were also significant in this validation. The sample size of the related cohort is 

82.8% smaller (n=57,370) than the unrelated cohort used in the discovery set (n=333,542), so our 

validation analysis was comparatively underpowered to the main analysis. 

 

15 NRG4 
1 

rs8024155 
-2.82 

[-4.29, -1.42] 
MAN2C1, PARD3 

15 IGF1R 
4 

rs907808-rs12437561 
-2.68 

[-3.75, -1.52] 
IGF1R, NRCAM, 

TRAPPC10 

16 UMOD/PDILT 
9 

rs1123670-rs12917707 
-2.52 

[-3.77, -1.32] 
ACSM1, DNAH3 

16 LOC105371257 
1 

rs12927956 
-2.25 

[-3.24, -1.5] 
 

20 CYP24A1 
4 

rs4809954-rs2616278 
-2.12 

[-2.9, -1.24] 
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Discussion 

 The goal of this study was to infer the shared genetic architecture of sU (causal for gout), 

and eGFR (a marker for CKD). Our results highlight genes that may be involved in the observed 

relationship between the traits. In this study, we estimated local genetic (co)variances between sU 

and eGFR and identified regions with pleiotropy. This study was based on the large-scale UK 

Biobank and formal statistical inference from local Bayesian multi-trait models. Our results 

demonstrated that genetic covariance between eGFR and sU was widespread across the genome. 

Our method identified 64 distinct LD windows with shared genetic effects between eGFR and sU, 

the majority of which had negative genetic covariance estimates. We identified 22 distinct novel 

shared loci, to our knowledge, with significant local genetic covariance for sU and eGFR, 

including MMP11/SMARCB1, ADH1B, MIP/GLS2, ENG/AK1, EPB41L5, KIAA1199, CELSR2, 

SOS2, KCNS3, TET2, SMLR1/EPB41L2, GLIS1, KIAA1683/JUND, and METTL10/FAM175B. 

Furthermore, 14 distinct loci identified were previously only known to be associated with only 

one of the two traits, demonstrating that the set of loci contributing to both traits is substantially 

larger than previously thought. These loci are partially responsible for the comorbidity between 

hyperuricemia/gout and CKD. 

 One advantage of the local method that we present here is that it facilitates the 

identification of genomic windows with opposite signs to the overall negative genetic correlation 

between eGFR and sU. Out of the significant shared loci, about two-thirds showed negative local 

genetic covariance estimates. This is consistent with the overall genetic covariance 

directionality8,9, indicating that they either contribute to worsening kidney function (decreasing 

eGFR or increasing sCr) and increasing sU, or vice versa. Interestingly, there were 21 distinct 

significant shared loci with positive local genetic covariance estimates (about one-third). Positive 
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covariance indicates that the genomic region either contributes to increasing sU and improved 

kidney function or decreasing sU and worsening kidney function. Two of the loci with a 

significant positive signal, GCKR and CPS1, are mainly expressed in the liver and one, LRP2, is 

mainly expressed in the kidney24. One novel shared locus identified in this study consisted of the 

genes SLC17A1, SLC17A3, and SLC17A2. This large window in chromosome six (56 SNPs, 

Table 1) had a strong, positive significant covariance signal and SLC17A1 and SLC17A3 are urate 

transporters both linked to gout25. The opposite signs of locus-specific genetic covariances are 

indicative of distinct physiological processes governing the phenotypic expression of urate and 

eGFR. The loci with positive covariance in particular are excellent candidates for discovering 

functional mechanisms that simultaneously increase sU and improve kidney function. 

 Urate transporters SLC2A9 and ABCG2 have the largest GWAS effect sizes for sU, 

accounting for 4-5% of the variance in sU8,26–29. However, no windows in SLC2A9 or ABCG2 had 

a 95% CR for local genetic covariance that did not include zero. Our results demonstrate that 

windows in both SLC2A9 and ABCG2 loci are associated with just sU levels but are not 

pleiotropic regions for sU and eGFR. A similar phenomenon is observed with the eGFR gene 

SHROOM3. That is, none of the windows containing SNPs in SHROOM3 were significant for 

local genetic covariance. This exemplifies that the loci driving the genetic correlation between 

these two traits are not necessarily the leading GWAS hits. 

 Previous research investigating pleiotropic genetic loci between serum urate and eGFR 

has implicated loci as shared if signals of association obtained from marginal single-marker 

regressions (e.g., GWAS) for both traits are colocalized11. Leask et al.11 recently compared 

overlapping loci between two large GWAS, one of sU and the other kidney function8,30, and 

found 36 independent colocalized loci. Our results validate 20 of these 36 loci, and all but three 
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loci (DACH1, CPS1, and INS-IGF2) had covariance directionality that matched the directionality 

of effects found by Leask et al.11. 

 Our covariance approach may have direct implications for assessing causal relationships 

between exposures using Mendelian randomization (MR). Pleiotropic genetic variants violate 

assumptions of univariate MR, however, they are useful in multivariable MR that can 

simultaneously assess the causal effects of multiple risk factors on an outcome31. For example, 

genetic variants from SLC2A9 and ABCG2 may be valid instrumental variables to use in MR to 

test for a causal effect of sU on CKD, however, the loci listed in Table A1 would not. In fact, 

SLC22A11 has previously been identified as a pleiotropic variant that may improve kidney 

function through its activity in raising urate levels28. MR has previously been used to show that 

serum urate is not causal of CKD32, however, Jordan et al. noted significant pleiotropy in the 

genetic variants used in their study, which they attempted to counter using MR techniques robust 

to pleiotropy. Of the 26 SNPs used by Jordan et al., rs1260326 (GCKR) and  rs17050272 

(LINC01101) were identified by us as shared, and rs1165151 and rs3741414 were located within 

one of our significant pleiotropic regions but were not in our genotyping platform. 

 Our eQTL analysis of the windows significant for local genetic covariance uncovered 

numerous genes of interest, such as SLC7A9, which encodes a solute transporter largely expressed 

in the small intestine, A1CF, which encodes a protein involved in apolipoprotein B synthesis in 

the liver, and TRIM6, which encodes an E3 ubiquitin ligase involved in interferon gamma 

signaling and innate immune response with high expression levels in the kidney24. The genes 

uncovered from the eQTL analysis will be particularly interesting for future study, as they will 

likely aid our understanding of the relationship between kidney function and sU. 

 Through our approach of obtaining local genetic (co)variance estimates from Bayesian 
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multi-trait models in very large datasets, we have uncovered twenty-two novel shared genetic 

regions for sU and eGFR. The approach presented in this paper was applied in the context of sU 

and eGFR, but it could be applied to any pair of traits. While our discovery set sample size is 

excellent, we lack a dataset of a similar size for the validation. Some regions were validated but 

not all. 

 The local shared genomic regions we have uncovered in this study can provide insight into 

the relationship between hyperuricemia/gout and CKD, elucidating the biological mechanisms 

underlying the traits. This will help further understanding of the genetic basis of 

hyperuricemia/gout and CKD. 

Data Availability 

 All data used are secondary and are held in public repositories. This study utilized 

deidentified data from the UK Biobank where genotype and phenotype data are available to 

researchers upon registration. The protocol and consent were approved by the UK Biobank’s 

Research Ethics Committee and were conducted under the application number “15326.” For 

eQTL analysis, cis- and trans-eQTL data were downloaded from the GTEx V8 portal (Carithers 

and Moore 2015). Supplemental material is available at G3 online. UK Biobank: 

https://www.ukbiobank.ac.uk/. 
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APPENDIX A: Chapter 1 

 Supplementary Tables A1-A3 for Chapter 1 can be found with the publication: 

https://academic.oup.com/g3journal/article/12/9/jkac158/6649732#supplementary-data. 

Supplementary Methods for Lupi et al. 2022 

Identification of distantly related samples 

We used the R package BGData15 to compute the expected proportion of allele sharing 

among UK Biobank individuals with the additive genomic relationship matrix G,  

𝑮 =
𝒁𝒁ᇲ

௧(𝒁𝒁ᇲ)/
 , where Z is a matrix of centered genotypes. That is, Zij = xij - 2pj where xij is the 

number of copies of the reference allele at the jth loci of the ith individual and pj is the frequency 

of the reference allele of the jth loci. In a homogeneous sample, gij (where i ≠ j) can be considered 

as an estimate of the relatedness between subjects i and j. If gij ≥ 0.1 they were excluded from the 

sample. 

Phenotypes 

eGFR is an indicator of renal function and was used to ascertain CKD. In this study, we 

defined eGFR using the abbreviated Modification of Diet in Renal Disease (MDRD) equation, 

which uses fewer variables than others yet performs just as well33, with a modification to include 

a calibration factor to correct for the variability of sCr measures across laboratories and time34: 

eGFR = 186.3 × (sCr – 0.24) -1.154 × Age -0.203 × (0.742 if Female). 

Defining distinct loci 

 We condensed our 134 significant windows to 64 distinct, non-overlapping regions. To 

determine which significant window would represent each region, we first checked if a window’s 

base pair position overlapped with that of a neighboring window. If the windows overlapped, we 

kept whichever window had the most SNPs. If the number of SNPs in the windows were equal, 
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we kept the first of the two. This iterative process ended once there were no overlapping 

neighboring significant windows. 
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CHAPTER 2: Mapping the relative accuracy of cross-ancestry prediction 
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Abstract 

The overwhelming majority of participants in genome-wide association studies (GWAS) 

have European (EUR) ancestry, and polygenic scores (PGS) derived from EURs often perform 

poorly in non-EURs. Previous studies suggest that between-ancestry differences in allele 

frequencies and linkage disequilibrium are significant contributors to the poor portability of PGS 

in cross-ancestry prediction. We hypothesize that the portability of (local) PGS varies 

significantly over the genome. Therefore, we develop a method, MC-ANOVA, to estimate the 

loss of accuracy in cross-ancestry prediction attributable to allele frequency and linkage 

disequilibrium differences between ancestries. Using data from the UK Biobank we develop PGS 

relative accuracy (RA) maps quantifying the local portability of EUR-derived PGS in non-EUR 

ancestries. We report substantial variability in RA along the genome, suggesting that even in 

ancestries with low overall RA of EUR-derived effects (e.g., African), there are regions with high 

RA. We substantiate our findings using six complex traits, which show that EUR-derived effects 

from regions where MC-ANOVA predicts high RA also have high empirical RA in real PGS. We 

provide software implementing MC-ANOVA and RA maps for several non-EUR ancestries. 

These maps can be used to interpret similarities and differences in GWAS results between groups 

and to improve cross-ancestry prediction. 

Introduction 

In the last fifteen years, thousands of genome-wide association studies (GWAS) have been 

published1. Increasingly, single nucleotide polymorphisms (SNPs) that these studies reported to 

be associated with specific phenotypes or disease outcomes are used to build polygenic scores 

(PGS). The availability of biobank-sized data has led to unprecedented improvements in PGS 

prediction accuracy2,3. However, the overwhelming majority of participants in GWAS 
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(approximately 80%) are of European (EUR) descent4, leading to issues with generalizability and 

exacerbating existing health disparities. Consistently, studies across various traits/diseases and 

target ancestry groups have shown that PGS derived with data from EURs have poor predictive 

performance when used to predict among individuals of non-EUR ancestry (African [AF] in 

particular)4–15. 

Several factors can contribute to the poor portability of PGS across ancestries. At causal 

loci, unaccounted gene-by-gene (GG) and genetic-by-environment (GE) interactions can lead 

to ancestry differences in the additive effects of causal alleles. Furthermore, differences across 

ancestry groups in allele frequencies and linkage disequilibrium (LD) patterns can lead to 

heterogeneity in marker effects even for loci without such heterogeneity at causal loci16. The 

relative contribution of GG, GE, allele frequency differences, and LD differences to the poor 

portability of PGS remains largely unknown and can be expected to vary across traits and 

ancestries. However, several studies suggest that allele frequency and LD differences between 

ancestries are significant factors contributing to the poor portability of PGS, possibly explaining 

up to 75% of the empirical loss of accuracy (LOA) in cross-ancestry prediction7,8,17,18. 

Many studies have investigated the portability of PGS across ancestries from a whole-

genome perspective7,8. However, no previous study has quantified how the portability of local 

PGS varies over the genome and how this information can be used to identify genomic regions of 

low and high relative accuracy (RA, the ratio of cross-ancestry to within-ancestry variance 

explained and functions thereof) between ancestral groups. We hypothesize that the degree of 

allele frequency and LD differences between ancestries (and therefore the local portability and 

RA of PGS) varies along the genome. Therefore, we developed an algorithm, Monte Carlo 

ANOVA (MC-ANOVA), to map the RA of local linear functions of SNP genotypes. 
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In this work, we apply the MC-ANOVA method to data from the UK Biobank19 and the 

ARIC (Arteriosclerosis in Risk Communities) study20 to generate portability maps of the local RA 

of PGS between EUR and non-EUR ancestry groups. Using PGS for six quantitative traits 

(height, high-density lipoprotein [HDL], low-density lipoprotein [LDL], serum urate, body mass 

index [BMI], and serum glucose), we show that the portability maps we develop are predictive of 

the empirical local RA of EUR-derived PGS for the prediction of the same traits in African (AF), 

Caribbean (CR), East Asian (EA), and South Asian (SA) ancestry groups. We illustrate how the 

RA maps we develop can be used, together with GWAS results, to improve prediction accuracy in 

underrepresented ancestry groups. Our study is accompanied by the software needed to develop 

RA maps for other ancestries or data sets. 

Results 

The MC-ANOVA method estimates the impact of differences in allele frequencies and LD 

patterns between ancestries on the local relative accuracy (RA, and functions thereof) of PGS. To 

define RA, let us consider a scenario where the same causal additive model holds in two ancestry 

groups: 

     𝑦 = 𝐳୧
ᇱ𝛂 + 𝜀      [1] 

where 𝑦 (i=1,...,n is an index for subjects) is a phenotype, 𝐳୧ is the (centered) vector of SNP 

genotypes at causal loci (QTL), and 𝛂 is the vector of effects. Now, let us consider an 

instrumental model where phenotypes are regressed on SNPs that may not necessarily have a 

causal effect (markers): 

𝑦 = 𝐱୧
ᇱ𝛃 + 𝑒      [2] 

where 𝐱୧ is a vector of (centered) SNP genotypes at markers. 

For a single marker-QTL pair j, the (population) marker effect is defined as: 



 

 33

𝛽 =
େ୭୴൫௫ೕ,௭ೕ൯

ୟ୰൫௫ೕ൯
𝛼     [3] 

where Var൫𝑥൯ is the marker variance and Cov(𝑥, 𝑧) is the marker-QTL covariance (both 

scalars). Extending this to a multilocus model21, we have that the vector of population marker 

effects is defined as: 

𝛃 = 𝚺ଡ଼
ିଵ𝚺ଡ଼𝛂      [4] 

where 𝚺ଡ଼ is the covariance matrix of marker genotypes and 𝚺ଡ଼ is the covariance matrix between 

marker and QTL genotypes. 

Within-ancestry R-squared: Within an ancestry group, the maximum proportion of 

variance of the genetic values that can be explained by a regression on SNPs (assuming SNP 

effects are known with certainty) depends on the extent of LD between the SNPs used in [1] and 

those in [2], specifically (see the Supplementary Methods for a step-by-step derivation of [5]): 

   𝑅ଶ = Corr(𝐱୧
ᇱ𝛃, 𝐳୧

ᇱ𝛂)ଶ = (𝛂ᇱ𝚺ଡ଼𝚺ଡ଼
ିଵ𝚺ଡ଼𝛂) (𝛂ᇱ𝚺𝛂⁄ ) .  [5]  

Under perfect LD between markers and QTLs (something that will occur if the causal loci 

are genotyped or are perfectly predicted by markers), [5] would be equal to one. However, if there 

is imperfect LD between markers and QTLs, 𝑅ଶ would be less than one. Thus, the R-squared in 

[5] captures the impact of imperfect LD between markers and QTL on the proportion of variance 

at casual loci that can be explained by a regression on SNPs22 within a population. 

Cross-ancestry R-squared: An R-squared similar to [5] can be derived for cross-ancestry 

prediction by using marker effects from an ancestry (ancestry 1, (𝛃ଵ [4]) to predict genetic scores 

in a different ancestry group (ancestry 2). Thus, introducing ancestry group notation, we can 

define cross-ancestry R-squared as: 

𝑅ଵ→ଶ
ଶ = Corr൫𝐱୧మ

ᇱ 𝛃ଵ, 𝐳୧మ

ᇱ 𝛂൯
ଶ
     [6] 
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where 𝐱୧మ
 and 𝐳୧మ

 are the marker and QTL genotype vectors of an individual from the target 

ancestry (ancestry 2), 𝛃ଵ is the vector of marker effects from ancestry 1, and 𝛂 is the vector of 

QTL effects in the target ancestry. The Supplementary Method present a step-by-step derivation 

of [5] and [6], expressing the within- and cross-ancestry R-squared parameters as a function of 

(co)variance matrices of alleles at markers and QTL loci and the QTL effects.  

It is important to highlight that the R-squared defined above (expressions [5] and [6], as 

well as the expressions presented in the Supplementary Methods) are not directly comparable to 

empirical PGS R-squared values commonly reported in the literature because empirical PGS R-

squared values quantify the proportion of variance of a phenotype that can be explained by a PGS 

(and such, its upper limit is the genomic heritability). The R-squared defined above capture the 

proportion of genetic (not phenotypic) variance at causal loci that can be explained by regression 

on SNPs (as such, the upper limit for [5] and [6] is one; this will happen under perfect LD 

between markers and causal variants). 

Relative accuracy: Following Wang et al. (2020)7, we define the RA of a PGS as: 

RA =
ோభ→మ

మ

ோభ→భ
మ       [7] 

where 𝑅ଵ→ଵ
ଶ  is a within-ancestry R-squared (i.e., the proportion of variance at causal loci that can 

be explained by regression on markers within-ancestry group [5]), and 𝑅ଵ→ଶ
ଶ  is a cross-ancestry R-

squared [6]. Under the assumption that the effects of the causal loci are the same in both 

ancestries and in the absence of allele frequency or LD differences between ancestries, 𝛃ଵ = 𝛃ଶ. 

In this case, the RA will equal one. However, if there are allele frequency or LD differences 

between ancestries and imperfect LD between markers and causal variants (QTLs), 𝛃ଵ ≠ 𝛃ଶ and 

the RA will be less than one. Thus, the RA captures the proportion of the reduction in PGS 

prediction R-squared attributable to allele frequency and LD differences between ancestries. 
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Monte Carlo Analysis of Variance (MC-ANOVA): Estimating the R-squared 

parameters ([5] and [6]) and the RA ([7]) requires knowledge of the QTL positions and effects 

(𝛂), which are both unknown. Therefore, we propose a Monte Carlo (MC) algorithm (Figure 4) 

that, for a given chromosome segment, estimates the distribution of these R-squared values by 

computing R-squared values over possible configurations of marker and causal loci and their 

effects. The algorithm is an extension of a method proposed by us previously23 to estimate the 

proportion of variance of a high-dimensional set by a regression on another high-dimensional set 

(in our case, the QTL by the SNPs). Additional details of the MC-ANOVA algorithm can be 

found in the Methods.  



 

 36

 

Figure 4: A representation of the MC-ANOVA algorithm. MC-ANOVA uses genetic data 

from two or more ancestry groups (here, to illustrate we consider European [EUR] and African 

[AF] ancestry) to estimate the proportion of variance at causal loci explained by EUR-derived 

marker effects in testing data from EUR and non-EUR (e.g., AF) ancestry groups. To estimate the 

relative accuracy (RA) for a given chromosome segment (e.g., all loci in a ten Kbp segment), 

MC-ANOVA assumes that the same additive genetic model (𝑔∗
= 𝐳𝐢∗

ᇱ 𝛂, * = EUR or AF) holds in  
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Figure 4 (cont’d) 

both ancestry groups. Within a short chromosome segment, for one Monte Carlo replicate (MC 

rep), we sample quantitative trait locus (QTL) (e.g., three) positions (𝐳𝐢∗
 for i = 1,...,n) at random. 

The remaining SNPs in the segment plus those in short flanking regions form a marker genotype 

vector 𝐱𝐢. After sampling QTL effects (𝛂) from a standard normal distribution, N(0,1), genetic 

scores are computed as 𝑔∗
=  𝐳𝐢∗

ᇱ 𝛂. Marker effects are derived from the EUR ancestry group 

using 𝛃𝐄𝐔𝐑 = Var൫𝐱𝐢𝐄𝐔𝐑
൯

ିଵ
Cov൫𝐱𝐢𝐄𝐔𝐑

, 𝐳𝐢𝐄𝐔𝐑

ᇱ ൯𝛂, where Var is the variance and Cov is the 

covariance, and these effects are used to obtain local marker scores for both ancestry groups 

(𝑆∗
= 𝐱𝐢∗

ᇱ 𝛃𝐄𝐔𝐑). The squared correlations (Cor) between genetic (𝑔∗
) and marker (𝑆∗

) scores are 

used to derive cross-ancestry and within-ancestry R-squared (R-sq.) values, and the RA is 

computed as the ratio between the two. This procedure is repeated a large number of times for 

each segment, resampling QTL positions and their effects every time. For each segment, the R-

squared and RA values are averaged across MC replicates. The procedure is applied to each 

chromosome segment. 

Maps of the relative accuracy of European-derived PGS in non-Europeans 

          We used the MC-ANOVA method to develop maps of the RA of EUR-derived marker 

effects in non-EUR ancestry groups from the UK Biobank. We developed RA maps using SNPs 

from the UK Biobank arrays (~610,000 SNPs with minor-allele frequency 1%) as well as using 

~1.3 million HapMap SNPs (with minor-allele frequency 0.1%) that were present in the imputed 

UK genotypes (see Methods for further details on the QC and filtering steps). 

To develop each of these portability maps, we partitioned the genome into short 

nonoverlapping segments that were at least ten Kbp long and had at least ten SNPs. We chose to 

use short chromosome segments to capture the proportion of variance at causal loci that can be 

explained (in both within- and cross-ancestry prediction) by SNPs that are physically close to 

causal variants. The average segment was 45 Kbp long (containing 12 core SNPs) in the case of 

the map derived using SNPs from the UK Biobank arrays and 22 Kbp long (containing 13 core 
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SNPs) in the case of the map using HapMap variants. Though the base-pair length differed, the 

average and median number of SNPs per segment in each map were very similar. The results 

from the map developed using SNPs from the UK Biobank arrays are presented in the main body 

of the article, and those based on HapMap variants are provided as supplementary data. Whenever 

pertinent, we discuss the differences between the two maps. 

The derivation of marker effects (Figure 4) and within-ancestry R-squared [5] used the 

genotypes of 230,000 distantly related EUR ancestry individuals from the UK Biobank. To 

estimate the cross-ancestry R-squared [6] and the RA [7], we used data from the UK Biobank of 

individuals of African (AF), Caribbean (CR), East Asian (EA), and South Asian (SA) ancestry 

(Table 2 and Figure B1). Further details about sample selection and SNP QC are offered in the 

Methods section. An interactive R Shiny app that displays RA estimates (from the UK Biobank 

arrays or HapMap variants) for user-specified genome positions (or SNP IDs) was created and is 

available via an R package and also on a website (see Supplementary Notes for more 

information). In addition, the portability map based on the UK Biobank arrays is provided in 

Supplementary Data 1 and the portability map based on the HapMap variants is provided in 

Supplementary Data 2. 
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Table 2: Average R-squared and relative accuracy (RA) by testing set (based on SNPs from the 

UK Biobank arrays). 

Ancestry Group 
 

Sample 

Size 

Fst with 

EUR 

R-squared 

(𝑅ଵ→ଶ
ଶ )* 

Relative 

Accuracy 

(𝑅ଵ→ଶ
ଶ /𝑅ଵ→ଵ

ଶ ) 

Standard 

Error of 

RA*** 

Variance in 

RA Across 

Segments*** 

European (EUR) 230,000 --- 0.648** 1.000 --- --- 

African (AF) 3,083 0.120 0.182 0.268 0.016 0.033 

Caribbean (CR) 3,343 0.102 0.228 0.340 0.017 0.030 

East Asian (EA) 1,329 0.095 0.379 0.564 0.030 0.043 

South Asian (SA) 7,919 0.022 0.506 0.771 0.017 0.016 

* Subscript 1 always indicates an EUR training or testing set; 2 indicates non-EUR testing; ** 𝑅ଵ→ଵ
ଶ ; *** Median 

MC-ANOVA predicts low relative accuracy of PGS between ancestry groups 

Averaged over the genome, the within-EUR R-squared, 𝑅ଵ→ଵ
ଶ  [5], was 0.65. This suggests 

that within-EUR ancestry SNPs from the UK Biobank arrays could explain roughly two-thirds of 

the genetic variance at ungenotyped causal loci that have a similar allele frequency distribution to 

the SNPs in the UK Biobank arrays (Table 2). The cross-ancestry R-squared [6] estimates were 

much lower, ranging from 0.182 (AF) to 0.506 (SA), which resulted in RA estimates ranging 

from 0.268 (AF) to 0.771 (SA). As expected, the RA was inversely related to the genetic distance 

between the testing ancestry and the EUR group (Table 2 and Figure B1). For example, the AF 

ancestry group had the highest Fst24 with the EUR group (0.120) and the lowest whole-genome 

RA (0.268), while the SA group had the lowest Fst (0.022) and the highest RA (0.771). The 

estimated R-squared values were significantly higher when the map was produced using HapMap 

variants (Figure B2 and Table B1). The variance of RA between segments was slightly smaller 

when the map was produced with the HapMap variants (Table 2 and Table B1). The increase in 
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RA with the HapMap variant-based map was expected, given that this map had twice as many 

SNPs as the one using array SNPs.  

Predicted versus empirical RA 

We used data from distantly related EURs from the UK Biobank and a Bayesian shrinkage 

variable-selection prediction method (BayesC25) to develop PGS for six complex traits: height, 

HDL, LDL, serum urate, BMI, and serum glucose (see Methods for details about the phenotypes 

and methods used to derive the PGS). Using testing data from the EUR and non-EUR ancestry 

groups (Table B2), we estimated the empirical prediction R-squared for each trait, the 

corresponding empirical RA (i.e., the ratio of the PGS R-squared in non-EURs relative to the PGS 

R-squared in EURs), and the loss of accuracy (LOA) attributable to allele frequency and LD 

differences between ancestries7 (LOA % =
ଵି୮୰ୣୢ୧ୡ୲ୣ  ୖ

ଵିୣ୫୮୧୰୧ୡୟ  ୖ
× 100, where the predicted RA is 

defined in [7]). 

For most traits, the empirical RA estimates were smaller than the predicted RA (Figure 5 

for UK Biobank arrays and Figure B3 for HapMap variants). This is expected because the MC-

ANOVA-predicted RA captures the LOA attributable to allele frequency and LD differences, 

which together are only one source of LOA. In general, for any given trait, ancestries with higher 

predicted RA also had higher empirical RA (Figure 5). This suggests that, as noted earlier by 

Wang et al.7, allele frequency and LD differences between ancestries are a substantial factor 

affecting the portability of PGS and that the MC-ANOVA estimates capture that. For most traits 

and ancestry groups, allele frequency and LD differences alone explained more than 50% of the 

empirical LOA. However, for glucose, the proportion of reduction in accuracy explained by allele 

frequency and LD differences was smaller. This could suggest that differences in the genetic 

architecture (including both heritability and polygenicity) of traits between ancestries and G×E 
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interactions may play a more important role in glucose than the other traits evaluated. For 

example, height is highly heritable and highly polygenic, and BMI is also highly polygenic and 

moderately heritable. On the other end, glucose has a moderately low heritability and is less 

polygenic than height or BMI26–28. 

 

Figure 5: Predicted relative accuracy versus empirical RA with UK Biobank array SNPs. 

MC-ANOVA predicted relative accuracy (RA) versus empirical RA of European (EUR)-derived 

polygenic scores when used to predict phenotypes of individuals of non-EUR ancestry (AF, CR, 

EA, and SA denote African, Caribbean, East Asian, and South Asian ancestry, respectively). Each 

panel displays a different phenotype (height, high-density lipoprotein [HDL], serum urate, low-

density lipoprotein [LDL], body mass index [BMI], and glucose). The loss of accuracy (LOA, %) 

attributable to allele frequency and LD differences between ancestries is shown on top of each bar  

set. A standard error bar of each mean RA estimate is shown and derivation details are in the 

Supplementary Methods and details for the empirical RA are in the Methods. The sample sizes  

used to derive the standard errors are in Table B2. These results are based on SNPs from the UK 

Biobank arrays; see Figure B3 for results obtained using HapMap SNPs.  
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We compared our PGS-predicted RA and LOA estimates with those reported by Wang et 

al., 20207, who developed a method to predict RA and LOA for specific PGS. Overall, except for 

LDL, our results were similar to those published by Wang et al. in terms of both RA and LOA 

(Figure B4), although, unlike Wang et al.’s method, MC-ANOVA does not use trait-specific SNP 

effect estimates. 

The (local) relative accuracy of PGS varies along the genome 

The results presented above were based on the estimated R-squared and RA averaged 

across the genome or the segments of the genome represented in a PGS. However, in line with our 

main hypothesis, we found sizable variability in cross-ancestry R-squared [6] and RA between 

chromosome segments (Figure 6 and Figure B5 [UK Biobank arrays]; Figure B6 and Figure B7 

[HapMap variants]), suggesting that even for ancestries with a low overall RA (e.g., AF), there 

are still chromosome segments with high RA and portability of EUR-derived PGS. The 

distribution of the within-EUR R-squared [5] values was symmetric; however, for ancestries with 

a strong African ancestry influence, the distribution of the cross-ancestry R-squared [6] was 

heavily right-skewed, with most of the chromosome segments having a low cross-ancestry R-

squared. 
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Figure 6: Within- and cross-ancestry R-squared distributions based on UK Biobank array 

SNPs. Distribution of the cross-ancestry R-squared (R-sq.) versus the within-European (EUR) R-

squared for the African (AF), Caribbean (CR), East Asian (EA), and South Asian (SA) ancestry 

groups obtained when using SNPs from the UK Biobank arrays (see Figure B6 for results based 

on HapMap SNPs). Each panel displays a different non-EUR ancestry group. Each point 

represents a small chromosome segment (45 Kbp) and a histogram of the distribution of the points 

is also shown along each axis. Each subplot has dashed gray lines at the 10th, 50th, and 90th 

percentiles of the distribution and a red dashed 45-degree reference line (slope of one and 

intercept at zero). There is a white point at the intersection of the within-ancestry R-squared 

median and the cross-ancestry R-squared median. See Figure B6 for results based 



 

 44

Figure 6 (cont’d) 

on HapMap SNPs. 

The estimates presented in Figure 6 correspond to average results across MC runs of the 

MC-ANOVA algorithm. In our maps, we also provide the standard deviation (SD) of the 

distribution of the R-squared and RA parameters across MC replicates, along with the standard 

error of the means (Supplementary Methods). The median cross-ancestry R-squared [6] standard 

error was 8.0% (median) of the point estimates and the within-ancestry R-squared [5] variance 

was 1.7%. To illustrate the uncertainty associated with the reported R-squared estimates, we 

sampled 100 segments for each ancestry group and displayed the within- and cross-ancestry R-

squared point estimates with their corresponding standard error bars in Figure B8.  

MC-ANOVA estimates are predictive of the local RA of empirical PGS 

The results shown in Figure 6 suggest that in any ancestry group, but particularly for those 

that are more genetically distant from the EUR ancestry, the predicted cross-ancestry R-squared 

and RA vary substantially over the genome. To evaluate whether MC-ANOVA estimates are 

predictive of the local RA of real PGS, we first grouped SNPs into sets according to their MC-

ANOVA predicted cross-ancestry R-squared [6] and used this to define four portability groups: 

Very Low, Low, Medium, and High (Table 3 for AF; Table B3 for CR, EA, and SA). Then, we 

decomposed the trait-specific PGS into subscores, each using the SNPs in a predicted portability 

group. Finally, we computed the correlation between each subscore and their corresponding 

adjusted phenotype in testing sets for EUR and non-EUR, as well as the difference in the 

correlations of within- and cross-ancestry PGS prediction. 

  



 

 45

Table 3: Estimated relative accuracy (RA) of the SNP segments across the genome grouped by 

their estimated portability in terms of cross-ancestry R-squared (𝑅ଵ→ଶ
ଶ  for 1 = EUR and 2 = AF 

testing set). Results were obtained using SNPs from the UK Biobank arrays. 

 

 
(See Table B3 for other ancestry groups.) 

For most traits, we observed that the difference in empirical PGS correlation (non-EUR 

PGS correlation subtracted from EUR PGS correlation) decreased as the predicted portability of 

the SNP set increased (Figure 7 for AF; Figure B9 for CR, EA, and SA). For instance, for 

individuals of AF ancestry, the difference in the within- and cross-ancestry PGS and phenotype 

correlations for height ranged from 0.30 for the Very Low portability group of SNP segments to 

just 0.06 for the High portability group of SNP segments (top-left panel in Figure 7). Similar 

patterns were observed for the other traits (and ancestry groups; Figure B9). For serum urate and 

HDL cholesterol, there was near-perfect portability of PGS between EUR and AF for SNPs in the 

High portability group. Furthermore, the LOA attributable to allele frequency and LD differences 

estimated within each SNP portability group was lowest in the High portability group for most 

traits and ancestry groups (Figure B10). For example, in the AF group, we achieve a LOA for 

height of just 9.2% for the High portability group, but in the Very Low portability group, the LOA 

Testing 

Group 

Portability 

Group 

Quantile 

Group Cutoff 

𝑅ଵ→ଶ
ଶ   

Range 

Number 

of SNPs 

Average 

𝑅ଵ→ଵ
ଶ  

Average 

𝑅ଵ→ଶ
ଶ  

Average RA 

(𝑅ଵ→ଶ
ଶ /𝑅ଵ→ଵ

ଶ ) 

African 

(AF) 

High (0.8,1] (0.26,0.97] 122,135 0.751 0.400 0.529 

Medium (0.6,0.8] (0.18,0.26] 122,131 0.674 0.215 0.323 

Low (0.5,0.6] (0.15,0.18] 61,065 0.646 0.162 0.255 

Very Low [0,0.5] [0,0.15] 305,352 0.597 0.086 0.144 
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is 88.3%. This indicates that MC-ANOVA-predicted portability is predictive of the empirical RA 

and LOA of chromosome segments. 

 

Figure 7: The difference between polygenic score prediction correlation by SNP portability 

group based on UK Biobank array SNPs. The vertical axis represents the difference between 

the within- and cross-ancestry polygenic score prediction correlations of European (EUR) derived 

polygenic scores (PGS) for SNP groups with Very Low, Low, Medium, and High MC-ANOVA 

predicted portability (𝑅ଵ→ଶ
ଶ  groupings, Table 3) by trait. Each panel displays a different phenotype 

(height, high-density lipoprotein [HDL], serum urate, low-density lipoprotein [LDL], body mass 

index [BMI], and glucose). A positive difference in PGS prediction correlation indicates that the 

PGS of the SNP set had a higher prediction correlation in EUR (within-ancestry prediction) than 

in individuals of African (AF, cross-ancestry prediction) ancestry. The number of SNPs entering 

each PGS is annotated toward the bottom of each subplot. A standard error bar for each prediction 

correlation difference is shown and details for the calculation can be found in the Methods. The 

gray vertical bars are the simulated null distribution (mean +/- standard error of 2,000 iterations)  

for the correlation difference, where SNPs were assigned to portability groups completely at 

random, maintaining the number of SNPs in each subgroup. The sample sizes for the simulated 

null distribution are in Table B2. See Figure B9 for results for other 



 

 47

Figure 7 (cont’d) 

ancestry groups (Caribbean, East Asian, and South Asian) and Figure B11 for results based on 

HapMap SNPs.  

Using HapMap SNPs did not notably improve PGS local portability over using the called 

genotypes set (Figure B11). Overall, the validation results obtained with the HapMap-based map 

were similar to the ones reported for the map based on SNPs of the UK Biobank arrays; however, 

the grouping of SNPs based on the HapMap-based map was not as effective at reducing the 

empirical difference in prediction correlation between EUR and non-EUR ancestry groups as with 

the map based on SNPs from the UK Biobank arrays (Figure 7, and Figures B9 and B11). We 

believe this may partially reflect possible artifacts induced by the use of imputed SNPs which may 

lead to upwardly biased estimates of RA. 

To benchmark the results of Figure 7, we performed a similar analysis to that presented in 

Figure 4, Figure B9, and Figure B11 classifying SNPs into portability groups using Fst24 and 

Wang et al.’s RA method7 (Figure B12). Overall, MC-ANOVA was considerably more effective 

at identifying SNP sets with varying levels of portability than Fst or Wang et al.’s RA. Fst was 

very poor at predicting the RA of trait-specific local PGS, and Wang et al.’s RA was only 

effective at detecting SNP sets with different RAs for height (Figure B12). Conversely, both the 

High and Medium portability groups based on MC-ANOVA were different from the simulated 

null for height, and the High portability group based on MC-ANOVA was different from the 

simulated null for HDL, serum urate, and BMI (Figure 7). 

Genomic regions with high RA are enriched for GWAS hits and high SNP density  

We investigated whether the MC-ANOVA estimates of R-squared and RA were 

associated with the presence of GWAS hits (p value < 5e-8; Table B4) in the EUR ancestry. We 

found that genomic regions with higher MC-ANOVA R-squared values were highly enriched for 
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GWAS hits for all the traits investigated (Figure 8) and tended to have higher marker density 

(which, in turn, leads to higher LD between markers and causal variants). However, for segments 

with similar marker density to each other, the R-squared estimates were relatively uniformly 

distributed across the entire range (Figure B13), especially for the EA and SA ancestry groups. 

This suggests that high marker density is a necessary but not sufficient condition to achieve high 

MC-ANOVA R-squared values. 

 

Figure 8: The proportion of UK Biobank array SNPs that were significantly associated with 

a trait for SNP groups with Very Low, Low, Medium, and High MC-ANOVA predicted 

portability. The y-axes give the proportion of SNPs for which a European (EUR)-based genome-

wide association study (GWAS) p value (based on a two-sided test of a t-statistic, with the null  

hypothesis that the SNP effect is zero) was less than 5e-8 within each portability group (x-axes). 

Each panel displays a different phenotype (height, high-density lipoprotein [HDL], serum urate, 

low-density lipoprotein [LDL], body mass index [BMI], and glucose). For the EUR testing set 

(African [AF], Caribbean [CR], East Asian [EA], and South Asian [SA]), the grouping was based  

on the within-ancestry R-squared [5]. The number of SNPs is noted above each bar and is based 

on SNPs from the UK Biobank arrays. 

Using RA to improve cross-ancestry prediction of transfer learning algorithms  

To demonstrate how RA maps can be used to improve cross-ancestry PGS prediction 
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accuracy, we evaluated PGS informed by the RA maps in the context of transfer learning. 

Gradient Descent with Early Stopping (GD-ES) is a widely employed technique for transfer 

learning (TL) in various machine learning algorithms. Recently, Zhao et al.29 introduced the 

application of GD-ES in constructing PGS for cross-ancestry prediction. This approach uses 

EUR-derived SNP effect estimates as initial values for a GD-ES algorithm that updates these 

estimates iterating on data from the non-EUR target population. In GD-ES, a learning rate 

parameter is used to control the strength of the updates. In Zhao et al.29, the learning rate was the 

same for all SNPs in the PGS. We took this concept one step further by using the cross-ancestry 

RA maps to inform the learning rate of the gradient descent algorithm, making it SNP-specific 

(see Methods). Specifically, we allowed for stronger learning rates for SNPs in regions with low 

predicted portability and weaker learning rates for SNPs with high cross-ancestry portability. We 

applied this approach to develop PGS for non-EUR ancestry groups from the UK Biobank, using 

EUR-derived effects as initial values. Our preliminary results (Table B8) suggest that using RA-

informed learning rates can improve cross-ancestry prediction accuracy over using a fixed 

learning rate in most traits evaluated for prediction in an external testing set (see Methods). The 

improvement is particularly clear in the CR and AF ancestry groups (Table B8).  

External validation  

The results presented thus far were entirely based on UK Biobank data. Prediction across 

cohorts poses additional challenges (e.g., the use of different SNP arrays and GE factors). 

Therefore, to assess the performance of MC-ANOVA in an external validation, we conducted an 

evaluation using data from the Atherosclerosis Risk in Communities (ARIC) study20. The 

validation involved 9,628 European American (AEA) and 3,130 African American (AAA) 

participants from the ARIC study. For these analyses, we utilized a set of 795,613 SNPs that were 
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common between the genotypes of the ARIC study and the imputed genotypes from the UK 

Biobank19. The AEA group from the ARIC study served as a within-ancestry (cross-data set) 

testing set, while the AAA group from the ARIC study served as a cross-ancestry (and cross-data 

set) testing set. We evaluated global RA and LOA, as well as local PGS, based on the predicted 

portability groups based on the MC-ANOVA R-squared estimates [6] for height, serum urate, and 

BMI. The whole PGS empirical RA estimates were higher than those of the within data set (UK 

Biobank only) analysis for height (approximately 0.35) and BMI (approximately 0.25), and the 

predicted RA estimates were correspondingly higher as well. The whole PGS LOA attributable to 

allele frequency and LD differences across height, serum urate, and BMI was approximately 60% 

(Figure B14a), which is similar to what we estimated using the UK Biobank data. The assessment 

of empirical correlation difference (UK Biobank EUR → ARIC AEA minus UK Biobank EUR → 

ARIC AAA) within SNP sets grouped by MC-ANOVA portability estimates validated the results 

for height, as the empirical correlation difference deviated from the simulated null distribution in 

the High portability group (Figure B14b). 

Discussion 

Previous studies suggest that between-ancestry differences in allele frequencies and LD 

patterns are a major factor contributing to the loss of accuracy (LOA) in cross-ancestry PGS 

prediction6–8. For instance, Privé et al.8 showed that the portability of PGS between ancestry 

groups worsens with the genetic distance between the groups, and Wang et al.7 reported that much 

of the LOA in prediction from European (EUR) to African (AF) ancestry could be attributed to 

allele frequency and LD differences. However, no previous study has investigated whether the 

relative accuracy (RA) of cross-ancestry PGS varies along the genome. To address this 

knowledge gap, we developed a novel approach (MC-ANOVA) to estimate the RA of short 
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chromosome segments. MC-ANOVA estimates the RA of randomly generated linear functions of 

genotypes within each chromosome segment, making MC-ANOVA a trait-agnostic method that is 

solely based on genome information. The methodology can be used to map regions of high and 

low (local) PGS portability between two or more ancestry groups. We applied MC-ANOVA to 

UK Biobank data to generate maps (with a mapping resolution of ~45 Kbp) of the maximum 

expected RA when EUR-derived SNP effects are used to predict phenotypes or disease risk of 

non-EURs, including individuals of AF, Caribbean (CR), East Asian (EA), and South Asian (SA) 

descent. Finally, we validated these RA maps by quantifying the empirical RA of real PGS for 

SNP sets with High, Medium, Low, and Very Low MC-ANOVA predicted portability for 

prediction within and across data sets. 

Genome differentiation between populations has been a focus of population genetics for 

more than seven decades. The Fst24 metric quantifies differentiation in allele frequencies. MC-

ANOVA and Wang et al.’s RA method7 capture both differences in allele frequencies and LD 

patterns, with the key difference being that Wang et al.’s RA method accounts for pairwise LD 

and MC-ANOVA uses a multilocus regression approach that accounts for the full patterns of 

conditional linear dependence/independence of loci within a segment and does not require 

assuming that causal variants are independent. Additionally, unlike Wang et al.’s method, MC-

ANOVA is trait-agnostic in that it does not use SNP effect estimates. This makes MC-ANOVA 

suitable to develop RA maps that can be used with any trait. We benchmarked MC-ANOVA 

against Fst and Wang et al.’s RA metric in terms of the ability of the methods to identify SNPs 

with Very Low, Low, Medium, and High portability. In the benchmark analysis, MC-ANOVA 

convincingly outperformed both Fst and Wang et al.’s RA method across traits and ancestry 

groups (Figure B12). 
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Consistent with previously reported LOA estimates7, we found that, on average, allele 

frequency and LD differences between ancestries explained approximately half of the LOA 

genome-wide in the EA and SA ancestry groups and approximately two-thirds in the AF and CR 

groups. As expected, for the average chromosome segment, MC-ANOVA predicts lower RA for 

groups more genetically distant (e.g., EUR→AF or EUR→CR) relative to genetically closer 

groups (e.g., EUR→EA or EUR→SA). These results support the literature that allele frequency 

and LD differences between ancestries significantly affect the RA of PGS across ancestries. 

However, we also found significant variability in RA across chromosome segments. Indeed, even 

for the more genetically distant groups (e.g., EUR→AF), we found many segments with high 

predicted RA. This is important because it suggests that there are many genomic regions of the 

genome for which results from large EUR GWAS may be portable to non-EUR ancestries, which 

has the potential for improving cross-ancestry prediction. 

MC-ANOVA estimates capture the components of LOA attributable to differences in 

allele frequencies and LD between ancestry groups, which together are only one of the factors 

affecting the RA of PGS in cross-ancestry prediction. Therefore, MC-ANOVA-predicted RA 

should be considered the maximum RA that one could achieve in cross-ancestry prediction, under 

the implicit assumption that causal variants are being tagged by SNPs within ~45 Kbp. The gap 

between the predicted empirical RA varied between traits. For example, among the traits we 

considered, the gap between the MC-ANOVA predicted RA and the empirical RA appeared to be 

largest for glucose (Figure 5), a trait that is likely to be more affected by GE exposures (e.g., 

diet, lifestyle, and exercise) that can be correlated with ancestry. Likewise, the ability of MC-

ANOVA RA maps to identify regions of high and low RA varied between traits (Figure 7). For 

traits with an extremely polygenic genetic architecture (e.g., height and BMI26,27), MC-ANOVA 
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appeared to be more predictive of the empirical difference in the PGS prediction correlation 

between the EUR and non-EUR groups than for traits such as glucose. This is expected because 

MC-ANOVA estimates the RA of linear functions averaging over many possible randomly drawn 

linear combinations of SNP and QTL genotypes. 

The MC-ANOVA algorithm is controlled by a few parameters, including the segment 

size, the number of causal variants within the segment, the number of SNPs in the flanking 

regions, and the distribution causal variant effects are drawn from. The RA maps that we present 

in this study are based on small (~45 Kbp) segments, each containing three causal variants (which 

are randomly chosen in each MC replicate) and ten SNPs in each of the flanking regions of the 

segment. We chose these parameters to achieve a relatively fine mapping resolution for segments 

that may hold more than one causal variant. To assess the robustness of our results with respect to 

the parameter values chosen, we performed sensitivity analyses first varying the number of causal 

variants in the segment, then varying the flank size for a given QTL and segment size, and finally 

changing the distribution used to sample effects from Gaussian to Gamma (Figures B15a, B15b, 

and B16, respectively). Overall, in all sensitivity analyses, we found that the distribution of the 

RA measures, as well as the genomic regions where RA peaks, were reasonably robust to the 

parameters of the MC-ANOVA algorithm, except in cases involving just one causal variant or no 

flanking SNPs. In these two cases, we observed a systematic reduction in R-squared parameters 

and RA (Figures B15c and B15d). 

The RAs of the map developed with UK Biobank array SNPs (~610,000 SNPs) were 

smaller (and the variance in RA was higher) than those estimated using twice as many HapMap 

variants (~1.3 million SNPs). This can be attributed to the higher marker density of the HapMap 

variant set and the stronger LD among those variants compared to those of the UK Biobank array. 
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The higher LD among variants in the HapMap variant set was both a consequence of the higher 

marker density and of a distribution of the minor allele frequency (MAF) that was symmetric and 

with a mode near 0.24. On the other hand, the distribution of the MAF in the array set had an 

enrichment in the lower MAF which would impose limits on the maximum LD30. Furthermore, 

correlated imputation errors (which may result from a tendency to impute genotypes from certain 

haplotypes) may lead to a spurious increase in LD among imputed variants. Overall, the global 

MC-ANOVA predicted relative accuracy was more similar to the empirical relative accuracy with 

the UK Biobank array-based map (Figure 5) than the HapMap-based map (Figure B3). 

Furthermore, the UK Biobank array-based RA map was slightly better than the HapMap-based 

map at predicting the empirical differences between the within- and cross-ancestry PGS 

prediction correlation (compare Figure 7 and Figure B9 with Figure B11). Therefore, for PGS 

with SNPs within the allele frequency spectrum represented in the UK Biobank arrays, we 

recommend using the map based on UK Biobank array variants. Nevertheless, both maps are 

made available with this article. 

When comparing RA estimates with GWAS results, we found that regions with high 

predicted portability are highly enriched for GWAS hits. This is expected because RA is expected 

to be high in regions with strong and long-spanning LD and, at the same time, high LD among 

variants also increases the power to detect associations when causal variants are not genotyped. 

Furthermore, selection can lead to higher LD for loci with large effects on fitness traits31,32. A 

good example of the overlap of high RA in regions that have been detected to be associated with 

many traits, including many fitness traits, appears on chromosome six between 25.84 and 33.29 

Mbp (Figure B5), which had the largest cross-ancestry R-squared [6] values in all four non-EUR 

ancestry groups. This peak closely overlaps with the major histocompatibility complex (MHC) 
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region33. An abundance of literature has established that the MHC region includes numerous loci 

(e.g., human leukocyte antigen [HLA] genes) associated with many traits and diseases, 

particularly autoimmune diseases (e.g., nephropathy), infections, cancers, and psychiatric 

conditions (e.g., autism and schizophrenia)1,33–37. The MHC region is also known to be highly 

polymorphic, has high gene density, and has very strong LD33,34,38. Interestingly, for all four 

ancestry groups, the majority of the genes with the highest predicted portability were within 

chromosome six and the MHC region (Tables B5-B7) 

An important question is whether the RA maps that we developed can be used to improve 

PGS prediction accuracy for groups that are underrepresented in GWA studies. For example, in 

the construction of PGS for cross-ancestry prediction, one could filter out SNPs that are in regions 

with very low predicted RA. However, in our maps, there were almost no segments with negative 

cross-ancestry correlation estimates. Therefore, we don’t expect that removing SNPs based on 

their low RA would result in improved cross-ancestry PGS prediction. Another possibility is to 

use cross-ancestry predicted R-squared [6] estimates to inform transfer learning (TL) algorithms 

used to develop PGS for non-EUR ancestry groups. We found that using cross-ancestry predicted 

R-squared [6] to inform learning rates in a GD-ES29 algorithm resulted in improvements in PGS 

prediction accuracy compared to an algorithm that used a fixed learning rate; thus, demonstrating 

an important practical application of the RA maps developed in this study. 

In conclusion, we developed and validated a method to map the RA of short chromosome 

segments and used data from the UK Biobank and the ARIC study cohorts to develop RA maps 

for several ancestry groups. These maps can provide valuable information for explaining GWAS 

replication (or lack thereof) across ancestry groups and can help in prioritizing variants for the 

development of PGS for cross-ancestry prediction. Together with the methods and results 
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presented in this study, we provide software that can be used to generate RA maps for other data 

sets and ancestry groups and share the maps of RA through an R-package and a web interface. 

Methods 

Data 

In this study, we used data from the UK Biobank and the ARIC study cohorts. For model 

training, we leveraged the large sample size of Europeans (EUR) from the UK Biobank. We 

conducted an internal validation using testing data from EUR and non-Europeans from the UK 

Biobank and an external validation using data from European Americans and African Americans 

from the ARIC study. 

UK Biobank cohort. We used distantly related individuals (defined as individuals with a 

within-ancestry genomic relationship < 0.05) from the UK Biobank. We randomly split the 

236,698 distantly related EUR ancestry individuals into a training set of size 230,000 and a testing 

set of 6,698. Additionally, UK Biobank testing sets included individuals of African ([AF], 

n=3,083), Caribbean ([CR], n=3,343), East Asian ([EA], n=1,329), and South Asian ([SA], 

n=7,919) ancestry (Table 2). Ancestral groups were defined by the UK Biobank self-reported 

Ethnic background (Data-Field 2100039), but individuals were only included in each ancestry 

group if they passed the UK Biobank’s Sample QC (Resource 53139), not excluded from kinship 

inference, included in phasing, and not identified as an outlier in heterozygosity and missing rates. 

Samples were also excluded if they withdrew from the study, if they had a mismatch of reported 

and genetic sex, if they were missing all six phenotypes of interest (described below), or if they 

were related to other samples with relatedness 0.05. Relatedness was determined using genomic 

relationship matrices (𝐆 =
𝐙𝐙ᇲ

୲୰(𝐙𝐙ᇲ)/
, where Z is the centered genotype matrix) computed within an 

ancestry group. 
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The ARIC study cohort. An external validation utilized the ARIC study, consisting of a 

European American (AEA) testing set of 9,628 and an African American (AAA) testing set of 

3,130 based on self-reported race, which is highly concordant with the ancestry group defined 

based on SNP-derived principal component analysis16. The previously described EUR training set 

from the UK Biobank was used as the training set again for this external validation. 

UK Biobank genotypes. For analysis involving the SNPs from the UK Biobank arrays, 

we used 610,791 genotyped SNPs from the UK Biobank Affymetrix array19 in autosomal 

chromosomes. SNPs with a minor allele frequency of <1% or a missing call rate >5% overall (all 

ancestry groups combined) were excluded, and monomorphic SNPs in a particular ancestry group 

were excluded from analyses involving that group (108 for AF and 47,390 for EA). The base pair 

positions provided are based on GRCh3719. The HapMap SNP set used was based on the 

intersection of the Northern and Western European ancestry HapMap 340,41 SNPs and the UK 

Biobank imputed SNP genotypes19. 1,297,917 SNPs with a quality score >0.7, a minor allele 

frequency in the full dataset cohort 0.1%, and not monomorphic in either the EUR or non-EUR 

cohorts were retained for analysis. 

The ARIC study genotypes. For analysis involving model training in the UK Biobank 

and model validation in the ARIC study, we identified a common set of 795,613 autosomal 

chromosome SNPs between the ARIC study genotyped SNPs and the UK Biobank imputed set 

(excluding multiallelic variants)19. SNPs were excluded if they were monomorphic in either the 

UK Biobank EUR training set or one of the testing sets from the ARIC study. We checked for 

consistency of the genotyped strand and the reference alleles. SNP effects for SNPs with different 

reference alleles in the UK Biobank and the ARIC study (estimated in the UK Biobank) were 

multiplied by -1 before PGS were computed in the ARIC study cohorts. 
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Mapping the relative accuracy (RA) of cross-ancestry PGS prediction 

MC-ANOVA method. MC-ANOVA uses genomic data from two or more ancestry 

groups (here, we use 1 = EUR and 2 = AF groups to illustrate). The goal is to estimate the 

proportion of variance (R-squared) at causal loci that can be explained by EUR-derived marker 

effects in testing data from EUR (𝑅ଵ→ଵ
ଶ = Corr൫𝐱୧భ

ᇱ 𝛃ଵ, 𝐳୧భ

ᇱ 𝛂൯
ଶ
 [5]) and AF (𝑅ଵ→ଶ

ଶ =

Corr൫𝐱୧మ

ᇱ 𝛃ଵ, 𝐳୧మ

ᇱ 𝛂൯
ଶ
 [6]) ancestries. Here, 𝐳୧∗ and 𝐱୧∗ are genotypes at causal variants and markers 

(including markers in the core and flanking regions, Figure 1) of group * (* = 1 or 2), 

respectively, 𝛂 is the vector of QTL effects (which are assumed to be the same in both groups), 

and 𝛃ଵ is the vector of marker effects in group 1. The relative accuracy (RA) ratio is then defined 

and computed as RA = 𝑅ଵ→ଶ
ଶ /𝑅ଵ→ଵ

ଶ . For a chromosome segment, MC-ANOVA estimates RA by 

quantifying the portability of randomly generated linear functions of SNP genotypes within short 

chromosome segments. We have previously shown that for general settings, the MC-ANOVA 

algorithm provides unbiased estimates of [5]23. 

RA maps. To develop our RA maps, we first grouped SNPs into disjoint segments. For 

each chromosome, we partitioned the SNPs into ten Kbp nonoverlapping segments with a 

minimum of ten core SNPs per segment, leading to 52,956 segments for the SNPs from the UK 

Biobank arrays and 100,311 segments for the SNPs from the HapMap variants. The average SNP 

segment was 45 (22) Kbp long and contained 12 (13) core SNPs for the UK Biobank array SNPs 

(HapMap variants). The code used to define the SNP segments for the RA maps can be found at 

https://github.com/lupiA/MCANOVA (Supplementary Notes). 

For each segment and Monte Carlo (MC) replicate, we sampled three QTL positions at 

random (𝐳୧∗
). The remaining SNPs in the segment plus 20 flanking SNPs (ten for each flanking 

region) were used as markers (𝐱୧∗
). QTL effects were sampled from IID standard normal 
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distributions. For the sensitivity analysis shown in Figure B16, QTL effects were sampled from 

IID Gamma distributions with a shape parameter equal to 1.5 and a rate parameter equal to one. 

We computed genetic scores for the causal model for individuals from ancestries 1 and 2 using 

𝑔భ
= 𝐳୧భ

ᇱ 𝛂 and 𝑔మ
= 𝐳୧మ

ᇱ 𝛂. Marker effects in ancestry group 1 were computed as 𝛃ଵ =

(𝐗ଵ
ᇱ 𝐗ଵ + 𝐈𝑘)ିଵ𝐗ଵ

ᇱ 𝐙ଵ𝛂, where k = 1e-8 was a small constant added to the diagonal of 𝐗ଵ
ᇱ 𝐗ଵ to 

avoid numerical problems. For short chromosome segments, the resulting marker effect estimates 

(𝛃ଵ) are almost identical to the true population effects (𝛃ଵ) because the response used to derive 𝛃ଵ 

(𝑔భ
= 𝐳୧భ

ᇱ 𝛂) is not affected by errors and the sample size used vastly exceeded the number of 

markers. For each MC replicate, we estimated the within and across R-squared parameters ([5] 

and [6]) using data not used to derive marker effects by squaring the correlation of the marker and 

QTL predictions: 𝑅ଵ→ଵ
ଶ = Corr൫𝐱୧భ

ᇱ 𝛃ଵ, 𝐳୧భ

ᇱ 𝛂൯
ଶ
 [5] and 𝑅ଵ→ଶ

ଶ = Corr൫𝐱୧మ

ᇱ 𝛃ଵ, 𝐳୧మ

ᇱ 𝛂൯
ଶ
 [6]. For each 

segment, we conducted 300 MC replicates (each time resampling QTL positions and their effects) 

and reported the average (across MC replicates) R-squared and RA values in the RA maps. A 

visual representation of the MC-ANOVA estimation algorithm can be found in Figure 1. 

MC-ANOVA sensitivity analysis. To demonstrate the robustness of MC-ANOVA to its 

main parameters, we re-estimated the RA maps in the AF UK Biobank cohort, first varying the 

number of QTLs sampled for a given segment (one, two, three, four, five, and six QTLs per 

segment). Second, we varied the number of flanking SNPs to each side of the segment to be 

included in the MC-ANOVA estimation (zero, five, ten, 15, 20, and 30 flanking SNPs to each 

side). These were both evaluated in the chromosome segments discussed above. 

Phenotype preprocessing 

UK Biobank phenotypes. We evaluated six phenotypes in the UK Biobank cohort (Table 

B2): height, HDL, serum urate, LDL, BMI, and serum glucose. Each phenotype was preadjusted 
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using an ordinary least squares (OLS) regression including sex, age, the first five genotyped 

principal components, center, and batch. We used records from the first or, when the first instance 

was missing, the second visit. Serum urate was log-transformed before preadjustment. 

The ARIC study phenotypes. We evaluated three phenotypes that were common 

between the ARIC study and those evaluated in our main UK Biobank-based analyses: height, 

serum urate, and BMI. The ARIC study phenotypes were preadjusted within each ancestry group 

using OLS regressions including sex and age. Serum urate was log-transformed before 

preadjustment. The ARIC study subjects were removed from the PGS analyses if they were 

missing the phenotype of interest, sex, or age. 

Relative accuracy map validation for real traits 

GWAS. For each preadjusted phenotype (Table B2), we conducted a GWAS in the 

training set described above – distantly related individuals of EUR ancestry (n=230,000) from the 

UK Biobank (Table B4). Each GWAS (a single marker regression) was carried out using the R 

package BGData42 (the rayOLS option). This uses a t-statistic with the null hypothesis that the 

SNP effect is zero (a two-sided test). The GWAS p values were used as a filtering step for the 

subsequent PGS, in that a SNP was included in the PGS if it had a p value < 1e-5. Note that when 

referring to a GWAS hit, as in Figure 8, we used the standard cutoff of p value < 5e-8 for 

consistency with other literature. 

SNP effects for polygenic scores (PGS) using real data. For each phenotype, effects 

(𝐛መ ଵ) for the GWAS-filtered SNPs were estimated with a Bayesian shrinkage variable-selection 

method (BayesC25, a mixture prior consisting of a point of mass at zero and a Gaussian slab). 

These models were fit using the BLRXy function from the R package BGLR43, which generates 

posterior samples using a Gibbs sampler44. We estimated SNP effects using 50,000 posterior 
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samples collected using five MCMC chains. SNP effects were averaged over the chains. 

PGS prediction. For each phenotype, we computed PGS for each subject in each testing 

set (ancestry group 1 = EUR and 2 = AF, CR, EA, or SA) using 𝑦ො∗
= 𝐱𝐢∗

ᇱ 𝐛መ 𝟏, where * denotes 

group 1 or 2. The PGS prediction correlation was then defined as Corr(𝑦ො∗
, 𝑦∗

), where 𝑦∗
 is the 

adjusted phenotype of the ith subject of the corresponding testing group. The empirical RA was 

then defined as RA =
େ୭୰୰൫௬ොమ

,௬మ
 ൯

మ

େ୭୰୰൫௬ොభ
,௬భ

 ൯
మ, where the numerator is the squared PGS correlation for a 

cross-ancestry PGS (e.g., 2 = AF, CR, EA, or SA), and the denominator is that for within-ancestry 

(1 = EUR). Comparing this empirical RA to the MC-ANOVA predicted RA, RA =
ோభ→మ

మ

ோభ→భ
మ  [7], we 

can also define the loss of accuracy7 (LOA) percentage attributable to allele frequency and LD 

differences between ancestries: LOA % =
ଵି୮୰ୣୢ୧ୡ୲ୣ  ୖ

ଵିୣ୫୮୧୰୧ୡୟ  ୖ
× 100. 

Standard error estimates. We obtained approximate standard error estimates for the PGS 

correlation coefficients, Corr(𝑦ො∗
, 𝑦∗

), using ඨ
ଵିେ୭୰୰൫௬ො∗ ,௬∗

൯
మ

∗ିଶ
, where 𝑛∗ is the sample size of the 

given testing set (* = 1 or 2). The standard error of the correlation difference between two 

ancestries (e.g., 1 = EUR and 2 = AF), Corr൫𝑦ොభ
, 𝑦భ

൯ − Corr(𝑦ොమ
, 𝑦మ

), was computed as 

ඥSEଵ
ଶ + SEଶ

ଶ. Following Wang et al.7, the standard error for the empirical RA was computed 

as SE(empirical RA) = ඨ(empirical RA)ଶ ∗ ቆ 
ସቀଵିେ୭୰୰൫௬ොభ

,௬భ
 ൯

మ
ቁ

భ∗େ୭୰୰൫௬ොభ
,௬భ

 ൯
మ +

ସቀଵିେ୭୰୰൫௬ොమ
,௬మ

 ൯
మ

ቁ

మ∗େ୭୰୰൫௬ොమ
,௬మ

 ൯
మ ቇ. A 

similar method was used to obtain standard errors for the predicted RA, with the addition of an 

MC error component. More details of this can be found in the Supplementary Methods.  

PGS subscores. To validate the MC-ANOVA method, we computed four PGS subscores 

for each trait and ancestry group based on the MC-ANOVA cross-ancestry R-squared estimates 
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[6] from the RA maps. For one ancestry group and trait, the High PGS subscore consisted of the 

SNPs in the PGS that were in the top 20th percentile of 𝑅ଵ→ଶ
ଶ  [6]. Similarly, the Medium subscore 

was the 60th-80th percentile SNPs, the Low the 50th-60th, and the Very Low the bottom 50th. The 

PGS correlations described above, Corr(𝑦ොమ
, 𝑦మ

), were then computed within each of those SNP 

sets. Note that in Table B4, the trait-specific proportion of variance explained by the EUR 

ancestry-derived PGS was computed from the overall PGS R-squared (using all PGS SNPs). In 

the benchmark analysis described next, PGS subscores were computed in the same way as MC-

ANOVA, with SNP sets for PGS subscores based on the quantiles of the respective method’s RA 

map (Fst or Wang et al.’s RA). To obtain a simulated null distribution for the expected correlation 

difference based on the number of SNPs included in each PGS in Figure 7 and Figures B9, B11, 

B12, and B14b, we permuted the grouping labels over 2,000 iterations for each trait and ancestry 

group and estimated the PGS correlation difference between EUR and non-EUR within each 

permuted grouping. 

Benchmarks 

We benchmarked MC-ANOVA against Fst24 and the RA method described in Wang et al., 

20207. Both of these benchmark RA methods were evaluated in the same SNP segments described 

above (which were defined based on a minimum length of ten Kbp and at least ten SNPs) to build 

cross-ancestry RA maps for MC-ANOVA, ultimately building RA maps for each benchmark 

method as well. 

Fixation index (Fst). Derived from Wright’s F-statistic, Fst24 has been the traditional 

metric used in population genetics to quantify genome differentiation in terms of allele frequency 

differences between populations. For a given locus, Fst decomposes the genetic variance as the 

proportion of between-population variation out of the total population variation, such that a value 
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of zero corresponds to no differentiation between the populations. We computed the Fst for the qth 

window as the average Fst of all core SNPs in that segment, where the Fst for a single SNP is: 

 
ቆቀଵ∗

భ

భశమ
ାଶ∗

మ

భశమ
ቁ∗൬ଵିቀଵ∗

భ

భశమ
ାଶ∗

మ

భశమ
ቁ൰ቇି൬

భ

భశమ
∗ଵ∗(ଵିଵ)ା

మ

భశమ
∗ଶ∗(ଵିଶ)൰

ቀଵ∗
భ

భశమ
ାଶ∗

మ

భశమ
ቁ∗൬ଵିቀଵ∗

భ

భశమ
ାଶ∗

మ

భశమ
ቁ൰

  [8] 

where 𝑝∗ is the minor allele frequency and 𝑛∗ is the sample size for population *. 

Wang et al. RA method. The second RA method was described by Wang et al., 20207 to 

quantify the proportion of prediction accuracy loss across ancestries attributable to allele 

frequency and LD differences. We modified Wang et al.’s method to make it trait-invariant. For 

each core SNP j (i.e., those in a chromosome segment, excluding the SNPs in flanking regions) in 

a single segment (see the section ‘Mapping the relative accuracy (RA) of cross-ancestry PGS 

prediction’ for segment details), we computed the SNPs in pairwise LD (𝑅ଶ ≥ .45) from SNPs in 

the core or buffer of that window. The local RA of Wang et al. for SNP j was then defined by: 

⎝

⎜
⎛

భ,ೕమ,ೕ  ඨ
మ,ೕ(భషమ,ೕ)

భ,ೕ(భషభ,ೕ)

భ,ೕ
మ

⎠

⎟
⎞

ଶ

x
భ,ೕ(ଵିభ,ೕ)

మ,ೕ(ଵିమ,ೕ)
.     [9] 

Here, 𝑝∗, is the allele frequency for the jth SNP, and 𝑟∗, is the mean correlation between the jth 

SNP and the SNPs in pairwise LD with it, for ancestry group * = 1,2 (for this analysis 1 = EUR 

and 2 = AF). The overall RA estimated for a segment by Wang et al. is the average of [9] over 

each core SNP j in the segment. 

Validation in the ARIC Study 

RA maps were developed using the UK Biobank EUR training set and the data from the 

AEA and AAA participants from the ARIC study for external validation. For this validation, the 

MC-ANOVA procedure was carried out as described above for the UK Biobank (a minimum 
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segment length of ten Kbp and at least ten SNPs, and three QTL), and 65,525 nonoverlapping 

SNP segments (an average of 36 Kbp and containing 12 core SNPs) were defined for the RA 

maps. Global predicted RA, empirical RA, and LOA were estimated for height, serum urate, and 

BMI. First, portability measures (cross-ancestry R-squared [6] and predicted RA [7]) were 

estimated within each segment with MC-ANOVA. In this case, predicted RA is defined as 

𝑅ୖ→
ଶ /𝑅ୖ→

ଶ  [7], where EUR is the UK Biobank EUR training set, AAA is the ARIC 

study African American testing set, and AEA is the ARIC study European American testing set. 

Similarly, the global PGS (using all SNPs meeting the GWAS p value threshold of 1e-5) was 

evaluated for each trait. The same procedure as above was used to estimate SNP effects (see ‘SNP 

effects for polygenic scores (PGS) using real data’), which are derived from the UK Biobank 

EUR training set: 𝐛መ ଵ. Then, the PGS prediction is 𝑦ො∗
= 𝐱୧

ᇱ
∗
𝐛መ ଵ, for * = 1 or 2 now denoting either 

AEA (within-ancestry) or AAA (cross-ancestry), respectively. The PGS correlation 

calculation, Corr(𝑦ො∗
, 𝑦∗

), was also the same as above for the UK Biobank (* = 1 [AEA] or 2 

[AAA]; see ‘PGS prediction’). Thus, empirical RA in this case was computed as 
େ୭୰୰൫௬ොమ

,௬మ
൯

మ

େ୭୰୰൫௬ොభ
,௬భ

൯
మ. 

When evaluating the RA map validation estimating PGS subscores based on SNP groups defined 

by the RA maps, the correlation difference was computed as Corr൫𝑦ොభ
, 𝑦భ

൯
ଶ

− Corr൫𝑦ොమ
, 𝑦మ

൯
ଶ
, 

and the portability groupings were based on the same 𝑅ଵ→ଶ
ଶ  [6] quantiles as for the UK Biobank 

(see ‘PGS subscores’). 

Integrating RA maps into a gradient descent algorithm 

Gradient descent with early stopping (GD-ES) is an approach commonly used for TL in 

machine learning algorithms. Recently, Zhao et al.29 proposed using GD-ES to build PGS for 

cross-ancestry prediction. In Zhao’s GD-ES algorithm, effects are estimated by minimizing a 
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residual sum of squares evaluated in a data set (D2) from a target population (e.g., African 

ancestry), using an iterative procedure that uses an external estimator (𝛃ଵ derived from D1 of, 

e.g., European ancestry) as the initial value. Thus, GD-ES produces a sequence of estimates, 

൛𝛃෩ଶ(), 𝛃෩ଶ(ଵ), … , 𝛃෩ଶ(ୱ)ൟ, starting with 𝛃෩ଶ() = 𝛃ଵ (pure cross-ancestry prediction) and moving 

toward the solution that one would obtain only using D2 (𝛃ଶ) after s iterations. Early stopping of 

the GD algorithm renders estimates that are a compromise between 𝛃ଵ and 𝛃ଶ and have been 

shown to improve cross-ancestry PGS prediction compared to using either a purely external (𝛃ଵ) 

or a purely internal (𝛃ଶ) estimate29. We extended this approach by allowing for a SNP-specific 

learning rate (LR) that is based on MC-ANOVA relative accuracy estimates. 

In a GD algorithm, coefficients are updated one at a time using 𝛽ଶ
୬ୣ୵ = 𝛽ଶ

ୡ୳୰୰ୣ୬୲ −

LR × dL/dβଶ୨, where LR is a learning rate parameter (controlling how fast the algorithm moves in 

the direction that minimizes the loss function, in our case the residual sum of squares loss 

function) and dL/dβଶ୨ is the gradient of the loss function with respect to the jth coefficient of 𝛃ଶ. 

In Zhao et al.29, the same LR was used for all SNPs. We modified the algorithm by introducing an 

adaptive (SNP-specific) LR: LR୨ =  0.01 × 𝑒ିଷோభ→మ,ೕ
మ

, where 𝑅ଵ→ଶ,
ଶ  is the estimate presented in 

equation [6]. With this approach, a SNP with a high MC-ANOVA cross-ancestry R-squared 

estimate will have a low learning rate, staying closer to the initial external estimate (𝛽መଵ) and a 

SNP with a low 𝑅ଵ→ଶ,
ଶ  will have a higher learning rate, thus moving further away from the EUR-

derived estimated effect. 

For a EUR ancestry group effect, 𝛃ଵ, we used the same PGS effects (𝐛መ ଵ) described above 

(see the Methods section ‘SNP effects for polygenic scores (PGS) using real data’). This was then 

employed as an initial value in a gradient descent algorithm run on data from either AF, SA, or 
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CA ancestry from the UK Biobank (the EA group was excluded due to the small sample size for 

this group). To obtain an unbiased estimate of the out-of-sample R-squared, we split the data into 

training and testing sets (n-testing=300). We then conducted a five-fold cross-validation within 

the training data to select the optimal number of iterations of the GD algorithm (which acts as the 

parameter controlling how much effects are shrunk towards the initial values). Then, we ran the 

GD algorithm with that number of iterations on the entire training data and used the resulting 

effects to predict in the excluded testing data. This was repeated 50 times, each time with a 

different random partition of training and testing. The average results for the 18 trait-ancestry 

group combinations are reported in Table B8. The adaptive (SNP-specific) learning rate was 

compared to using a fixed learning rate, which was the mean of the adaptive learning rate for each 

trait-ancestry group pair. Additionally, for each trait-ancestry pair, we compute the percentage of 

times (across training-testing partitions) for which the prediction R-squared for the adaptive 

learning rate method compared to the fixed learning rate is higher (Table B8), excluding partitions 

that had identical R-squared. The R-code implementing the GD algorithm is included in the GD.R 

function in the GitHub repository https://github.com/lupiA/MCANOVA. 

Genetic distance 

The genetic distance reported between the ancestry groups in Table 2 and Figure B1 was 

computed as the overall (genome-wide) Fst24 between pairwise ancestries using PLINK 

(v1.90b6.24)45: --fst –within. We used a random sample of 20,000 individuals from the EUR 

ancestry group. 

Data availability 

The relative accuracy maps generated in this study have been deposited in the Zenodo 

database at https://doi.org/10.5281/zenodo.13769713 and are provided as Supplementary Data. 
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The GWAS summary statistics are available through Zenodo at 

https://doi.org/10.5281/zenodo.13785877. The UK Biobank data is available under restricted 

access and access can be obtained by applying at https://www.ukbiobank.ac.uk/. The ARIC Study 

data is available from dbGaP (https://www.ncbi.nlm.nih.gov/gap/) under accession code 

phs000280.v3.p1. The raw UK Biobank and the ARIC study data are protected and are not 

available due to data privacy laws. The protocol and consent were approved by the UK Biobank’s 

Research Ethics Committee and were conducted under the application number 15326. Data from 

the ARIC study usage was approved by Michigan State University's Institutional Review Board 

under Study ID LEGACY15-745. Source data for Figures are provided with this paper. 

Code availability 

The software presented and described in this study (the MC-ANOVA algorithm, a 

function to obtain the chromosome segments, the portability maps, and an interactive Shiny App) 

along with examples of how to use the MC-ANOVA algorithm can be found in an R package 

described and installable from https://github.com/lupiA/MCANOVA (Zenodo: 

https://doi.org/10.5281/zenodo.13769713). An identical web-based Shiny app is also available at 

https://lupia.github.io/Cross-Ancestry-Portability/ (Zenodo: 

https://doi.org/10.5281/zenodo.13769723) which will run slower than the R package app but does 

not require R software or package installation. 
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Supplementary Methods 

Derivation of the Within- and cross-ancestry R-squared parameters 

In this note we present a step-by-step derivation of the within- and cross-ancestry 

R-squared parameters. The note expands what is presented in the main text and shows that 

these parameters (and functions thereof such as the relative accuracy) are functions of (i) 

allele frequencies (which impact the variance of genotypes at each locus), (ii) linkage-

disequilibrium patterns (which impacts the correlation of genotypes at markers and causal 

loci), and (iii) the effects of causal alleles (which in MC-ANOVA we integrate out by 

averaging over MC replicates).  

Under the framework described in the Results section, for ancestry group 1 the 

causal model (expression [1] in the main text) is: 

      𝑦భ
= 𝐳୧భ

ᇱ 𝛂 + 𝜀భ
   (SE1) 

where 𝑦భ
 is the phenotype of the ith individual (from ancestry group 1), 𝐳୧భ

is the vector of 

QTL genotypes from the same individual, and 𝛂 is the vector of QTL effects. To isolate 

the effects of LD and allele frequency differences between ancestry groups in cross-

ancestry prediction, MC-ANOVA assumes that the same causal model holds in both 

ancestries and, hence, 𝜶 does not have a population subscript (and S1 is 𝑦మ
= 𝐳୧మ

ᇱ 𝛂 + 𝜀మ
 

for ancestry group 2).  

The instrumental model (expression [2] in the main text) for ancestry group 1 can 

be written as: 

      𝑦భ
= 𝐱୧భ

ᇱ 𝛃ଵ + 𝜀భ
    (SE2) 

where 𝐱୧భ
 is the vector of markers/SNPs for an individual i from ancestry group 1. 

Assuming the causal model of SE1 and that the errors in SE2 are uncorrelated 

with markers, marker effects in population 1 are  
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    𝛃ଵ = Var൫𝐱୧భ
൯

ିଵ
Cov൫𝐱୧భ

, 𝐳୧భ

ᇱ ൯𝛂 = 𝚺ଡ଼భ

ିଵ𝚺ଡ଼భభ
𝛂   (SE3) 

where 𝚺ଡ଼భ
 is the covariance matrix among markers and 𝚺ଡ଼భభ

 is the covariance matrix 

between the markers and QTL, both in ancestry group 1; these matrices are functions of 

allele frequencies and LD patterns in population 1. 

Therefore, the squared correlation between the true genetic values (𝐳୧భ

ᇱ 𝛂) and the 

marker-predicted genetic scores (𝐱୧భ

ᇱ 𝛃ଵ) in population 1 (expression [5] in the main text) 

is: 

    Corr൫𝐱୧భ

ᇱ 𝛃ଵ, 𝐳୧భ

ᇱ 𝛂൯
ଶ

=
ൣ𝛃భ

ᇲ 𝚺భౖభ
𝛂൧

𝟐

ൣ𝛃భ
ᇲ 𝚺భ

𝛃భ൧ൣ𝛂ᇲ𝚺ౖభ
𝛂൧

 .   (SE4) 

Using 𝛃ଵ = 𝚺ଡ଼భ

ିଵ𝚺ଡ଼భభ
𝛂 (SE3) in SE4 we get:  

Corr൫𝐱୧భ

ᇱ 𝛃ଵ, 𝐳୧భ

ᇱ 𝛂൯
ଶ

=
ൣ𝛂ᇲ𝚺ౖభభ

𝚺భ
షభ𝚺భౖభ

𝛂൧
మ

[𝛂ᇲ𝚺ౖభభ
𝚺భ

షభ𝚺భౖభ
𝛂]ൣ𝛂ᇲ𝚺ౖభ

𝛂൧
=

𝛂ᇲ𝚺ౖభభ
𝚺భ

షభ𝚺భౖభ
𝛂

𝛂ᇲ𝚺ౖభ
𝛂

 .        (SE5) 

Conceptually, this can be elucidated if we consider the QTL (𝐙ଵ) and the markers (𝐗ଵ) to 

have some multivariate distribution with covariance 𝚺ଵ = 
𝚺భ

𝚺భଡ଼భ

𝚺ଡ଼భభ
𝚺ଡ଼భ

൨. Then the 

conditional covariance of the QTL given the markers, Cov(𝐙ଵ|𝐗ଵ), is known to be the 

Schur complement of 𝚺ଡ଼భ
, which is 𝚺భ

− 𝚺భଡ଼భ
𝚺ଡ଼భ

ିଵ𝚺ଡ଼భభ
. Thus, the term 𝚺భଡ଼భ

𝚺ଡ଼భ

ିଵ𝚺ଡ଼భభ
 

captures the variance and covariance from QTL explained by regression on markers.  

Therefore, we define the within-ancestry R-squared as the squared correlation in 

(SE5): 

               𝑅ଵ→ଵ
ଶ = Corr൫𝐱୧భ

ᇱ 𝛃ଵ, 𝐳୧భ

ᇱ 𝛂൯
ଶ

=
𝛂ᇲ𝚺ౖభభ

𝚺భ
షభ𝚺భౖభ

𝛂

𝛂ᇲ𝚺ౖభ
𝛂

 .              (SE6) 

This is equivalent to what is shown in expression [5] in the main text (including ancestry 

group indices here). 
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To derive the cross-ancestry correlation, we define the following (co)variance 

matrices for ancestry group 2: 

  Var൫𝐱୧మ
൯ = 𝚺ଡ଼మ

, Cov൫𝐱୧మ
, 𝐳୧మ

ᇱ ൯ =  𝚺ଡ଼మమ
, and Var൫𝐳୧మ

൯ = 𝚺మ
 .   (SE7) 

Using the marker effects from ancestry group 1 to predict genetic scores in ancestry 

group 2 (𝐳୧మ

ᇱ 𝛂), the cross-ancestry R-squared is: 

  Corr൫𝐱୧మ

ᇱ 𝛃ଵ, 𝐳୧మ

ᇱ 𝛂൯
ଶ

=
ቂ𝛃భ

ᇲ େ୭୴ቀ𝐱మ
,𝐳మ

ᇲ ቁ𝛂ቃ
మ

ୟ୰ቀ𝐱మ
ᇲ 𝛃భቁୟ୰ቀ𝐳మ

ᇲ 𝛂ቁ
=

ൣ𝛃భ
ᇲ 𝚺మౖమ

𝛂൧
మ

ൣ𝛃భ
ᇲ 𝚺మ

𝛃భ൧ൣ𝛂ᇲ𝚺ౖమ
𝛂൧

 .  (SE8) 

Replacing 𝛃ଵ with the right-hand side of (SE3) we get: 

𝑅ଵ→ଶ
ଶ = Corr൫𝐱୧మ

ᇱ 𝛃ଵ, 𝐳୧మ

ᇱ 𝛂൯
ଶ

=
ൣ𝛂ᇲ𝚺ౖభభ

𝚺భ
షభ𝚺మౖమ

𝛂൧
మ

ቂ𝛂ᇲ𝚺ౖభభ𝚺భ
షభ𝚺మ

𝚺భ
షభ𝚺భౖభ𝛂ቃൣ𝛂ᇲ𝚺ౖమ

𝛂൧
 .  (SE9) 

It is interesting to compare the quadratic forms involved in the within- and cross-ancestry 

R-squared parameters (expressions SE6 and SE9). If the variances of genotypes at 

individual loci and the LD patterns are the same in both ancestry groups (i.e., if 𝚺భ
=

𝚺మ
, 𝚺ଡ଼భ

= 𝚺ଡ଼మ
, and 𝚺ଡ଼భభ

= 𝚺ଡ଼మమ
), the two R-squared values are identical.  
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The variance of MC-ANOVA predicted relative accuracies 

Following Wang et al.1, the variance of a ratio is approximately: 

  Var(𝑥/𝑦) ≈ ቀ
ா(௫)

ா(௬)
ቁ

ଶ

ቂ 
ୟ୰(௫)

ா(௫)మ
+

ୟ୰(௬)

ா(௬)మ
− 2 ቀ

େ୭୴(௫,௬)

ா(௫)ா(௬)
ቁ ቃ .  (SE10) 

For notation purposes, let relative the accuracy (RA, [7]) be denoted as: 

     RA =
ோభ→మ

మ

ோభ→భ
మ =

ோమ
మ

ோభ
మ .      (SE11) 

Plugging (SE11) into the general formula in (SE10), we obtain: 

  Var ቀ
ோమ

మ

ோభ
మቁ ≈ ൬

ா൫ோమ
మ൯

ா൫ோభ
మ൯

൰
ଶ

 
ୟ୰൫ோమ

మ൯

ா൫ோమ
మ൯

మ +
ୟ୰൫ோభ

మ൯

ா൫ோభ
మ൯

మ − 2 ൬
େ୭୴൫ோమ

మ,ோభ
మ൯

ா൫ோమ
మ൯ா൫ோభ

మ൯
൰ ൨ .  (SE12) 

Replacing the expected value with the MC-ANOVA estimate, 𝐸(𝑅∗
ଶ) = 𝑅∗

ଶ (* = 1, 2), and 

assuming Cov(𝑅ଶ
ଶ, 𝑅ଵ

ଶ) = 0 since the ancestry cohorts are independent of one another we get: 

   Var ቀ
ோమ

మ

ோభ
మቁ ≈ ቀ

ோమ
మ

ோభ
మቁ

ଶ

ቂ 
ୟ୰൫ோమ

మ൯

ோమ
ర +

ୟ୰൫ோభ
మ൯

ோభ
ర ቃ .   (SE13) 

For the Var(𝑅∗
ଶ), we must consider two sources of uncertainty, the sampling variance of the 

estimator (resulting from the use of a finite sample size) and the Monte Carlo error; therefore 

Var(𝑅∗
ଶ) = MC_variance(𝑅∗

ଶ) + ቀ
ସ

∗
ቁ 𝑅∗

ଶ(1 − 𝑅∗
ଶ),    (SE14) 

where the MC_variance component is the variance of the estimate over the 300 Monte Carlo 

replications, and the sample variance component is from the same Taylor series-based derivation 

as used in the empirical RA variance approximation (see ‘Standard error estimates’ in Methods). 

Thus: 

Var ቀ
ோమ

మ

ோభ
మቁ ≈ ቀ

ோమ
మ

ோభ
మቁ

ଶ

ቈ 
େ_୴ୟ୰୧ୟ୬ୡୣ൫ோమ

మ൯ାቀ
ర

మ
ቁோమ

మ൫ଵିோమ
మ൯

ோమ
ర +

େ_୴ୟ୰୧ୟ୬ୡୣ൫ோభ
మ൯ାቀ

ర

భ
ቁோభ

మ൫ଵିோభ
మ൯

ோభ
ర  . (SE15) 

The standard error bars presented in the portability maps are the square root of (SE15). 
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Supplementary Data 
 
Supplementary Figures 

 
 
Figure B1: Loadings in the first two SNP-derived principal components (PC) colored by 

ancestry. The inner and outer ellipses represent the 68th and 99th percentile of the PC loadings of 

each ancestry (European [EUR], African [AF], Caribbean [CR], East Asian [EA], and South 

Asian [SA]). A random sample of 3,000 EUR ancestry individuals were selected for plotting. 
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Figure B2: Comparing the UK Biobank and HapMap SNP set estimates. The cross-ancestry 

(European [EUR] to non-EUR) R-squared [6] distributions for each SNP set (HapMap variants 

compared to UK Biobank arrays) and each ancestry group (African, Caribbean, East Asian, and 

South Asian). Each panel displays a different non-EUR ancestry group. The bottom line of each 

box represents the first quartile, the next line is the median, and the top line is the third quartile. 

Verticle lines extend from the first (third) quartiles to the minimum (maximum) and outliers are 

represented by blue points. 
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Figure B3: MC-ANOVA predicted relative accuracy (RA) versus empirical RA using SNPs 

from the HapMap variants. Predicted compared to empirical RA of European (EUR)-derived 

polygenic scores when used to predict phenotypes of individuals of non-EUR ancestry (AF, CR, 

EA, and SA denote African, Caribbean, East Asian, and South Asian ancestry). Each panel 

displays a different phenotype. The loss of accuracy (LOA, %) attributable to allele frequency 

and LD differences between ancestries is shown on top of each bar set. A standard error bar is 

shown for each mean RA estimate (derivation details for predicted RA are in the Supplementary 

Methods and details for the empirical RA are in the Methods). The sample sizes used to derive 

the standard errors are in Table B2. See Figure 5 for results based on SNPs from the UK Biobank 

arrays. 
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Figure B4: Polygenic score relative accuracy and loss of accuracy by method. (a) Predicted 

and empirical relative accuracy (RA) for four traits (height, high-density lipoprotein [HDL], low-

density lipoprotein [LDL], and body mass index [BMI]) in the African (AF) ancestry group 

(compared to European). (b) Loss of accuracy (LOA) explained by genome differentiation for 

four traits in the AF group by method: MC-ANOVA (using SNPs from the  

UK Biobank arrays) and the values reported in Wang et al. 20201. The sample sizes used to 

derive the standard errors for MC-ANOVA mean RA are in Table B2.  

b: Loss of accuracy. 

a: Relative accuracy. 
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Figure B5: Cross-ancestry MC-ANOVA predicted R-squared by chromosome and position 

based on SNPs from the UK Biobank arrays. Each dot represents the estimated 𝑅ଵ→ଶ
ଶ  [6] for a 

chromosome segment (with an average length of 45 Kbp) by the ancestry group of the testing 

data: AF=African (a), CR=Caribbean (b), EA=East Asian (c), and SA=South Asian (d). 

Ancestry group 1 is European (EUR). The green line is the 80th percentile value of 𝑅ଵ→ଶ
ଶ , the blue 

short dashed line is the 60th percentile, and the red long dashed line is the 50th percentile. See 

Figure B7 for results based on HapMap SNPs. 
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a: African ancestry group. 
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Figure B5 (cont’d) 
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Figure B6: Within- and cross-ancestry R-squared distributions based on HapMap SNPs. 

Distribution of the cross-ancestry R-squared (R-sq.) versus the within-European (EUR) R-

squared for the African, Caribbean, East Asian, and South Asian (AF, CR, EA, and SA, 

respectively) ancestry groups. Each panel displays a different non-EUR ancestry group. Each 

point represents a small chromosome segment (23 Kbp on average). Each subplot has dashed 

gray lines at the 10th, 50th, and 90th percentiles of the distribution and a red dashed 45-degree 

reference line (slope of one and intercept at zero). There is a white point at the intersection of the 

within-ancestry R-squared median and the cross-ancestry R-squared median. See Figure 6 for 

results based on SNPs from the UK Biobank arrays. 
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Figure B7: Cross-ancestry MC-ANOVA predicted R-squared (R-sq.) by chromosome and 

position based on SNPs from the HapMap variants. Each dot represents the estimated 𝑅ଵ→ଶ
ଶ  

[6] for a chromosome segment from the HapMap SNP set (with an average length of 23 Kbp) by 

the ancestry group of the testing data: AF=African (a), CR=Caribbean (b), EA=East Asian (c), 

and SA=South Asian (d). Ancestry group 1 is European (EUR). The green line is the 80th 

percentile value of 𝑅ଵ→ଶ
ଶ , the blue short dashed line is the 60th percentile, and the red long dashed 

line is the 50th percentile. See Figure B5 for results based on SNPs from the UK Biobank arrays. 

 
 
 
 
 
 

a: HapMap SNPs African ancestry group. 

b: HapMap SNPs Caribbean ancestry group. 
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Figure B7 (cont’d) 

 
 
 

  

c: HapMap SNPs East Asian ancestry group. 

d: HapMap SNPs South Asian ancestry group. 
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Figure B8: Distribution of the cross-ancestry R-squared (R-sq.) versus the within-

European (EUR) R-squared for the African (AF), Caribbean (CR), East Asian (EA), and 

South Asian (SA) ancestry groups. Each point represents a small chromosome segment (45 

Kbp) from the UK Biobank arrays. Each panel displays a different non-European (EUR) ancestry 

group. Five hundred segments were randomly sampled and plotted for each ancestry group. The 

standard error bars for each R-squared (R-sq.) point estimate are shown with the cross bars. The 

sample sizes used to derive the standard errors are in Table B2. 
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Figure B9: Difference between within- and cross-ancestry polygenic score prediction 

a: Caribbean ancestry group. 

b: East Asian ancestry group. 
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Figure B9 (cont’d) 

correlation of European (EUR) derived polygenic scores by ancestry and SNP portability 

group based on SNPs from the UK Biobank arrays. The vertical axis represents the difference 

between the within- and cross-ancestry polygenic score prediction correlation for SNP groups 

with Very Low, Low, Medium, and High MC-ANOVA predicted portability (𝑅ଵ→ଶ
ଶ  groupings, 

Table 3) by trait (height, high-density lipoprotein [HDL], serum urate, low-density lipoprotein 

[LDL], body mass index [BMI], and glucose) and ancestry group (CR=Caribbean [a], EA=East 

Asian [b], and SA=South Asian [c]). A positive difference in PGS prediction correlation 

indicates that the PGS of the SNP set had a higher prediction correlation in EURs (within-

ancestry prediction) than in individuals of CR, EA, or SA (cross-ancestry prediction) ancestry. 

The number of SNPs entering each PGS is annotated toward the bottom of each subplot. A 

standard error bar for each prediction correlation difference is shown and details for the 

calculation can be found in the Methods. The gray vertical bars are the simulated null 

distribution (mean +/- standard error) for the correlation difference, where SNPs were assigned  

to portability groups completely at random, maintaining the number of SNPs in each subgroup. 

The sample sizes for the simulated null distribution are in Table B2.
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Figure B9 (cont’d) 

 

 
 

c: South Asian ancestry group. 
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Figure B10: Predicted and empirical relative accuracies (RA) by SNP portability group by 

trait and ancestry group based on SNPs from the UK Biobank arrays. MC-ANOVA 

predicted relative accuracy (RA) and empirical RA of European (EUR)-derived polygenic scores 

when used to predict phenotypes of individuals of non-EUR ancestry (AF, CR, EA, and SA 

denote African, Caribbean, East Asian, and South Asian ancestry) by SNP portability group for 

six traits (height, high-density lipoprotein [HDL], serum urate [SU], low-density lipoprotein 

[LDL], body mass index [BMI], and glucose). Each panel displays a different phenotype-

ancestry group combination. The loss of accuracy (LOA, %) attributable to genome 

differentiation is shown on top of each bar set. A standard error bar is shown for each mean RA 

estimate (derivation details are in the Methods). The sample sizes used to derive the standard 

errors are in Table B2.
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Figure B11: Validation plots for the HapMap SNP set. The difference between polygenic 

a: African ancestry group (HapMap SNPs). 

b: Caribbean ancestry group (HapMap SNPs). 
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Figure B11 (cont’d) 

score prediction correlation by HapMap SNP portability group. The vertical axis represents the 

difference between the within- and cross-ancestry polygenic score prediction correlations of 

European (EUR) derived polygenic scores for SNP groups with Very Low, Low, Medium, and 

High MC-ANOVA predicted portability (𝑅ଵ→ଶ
ଶ  groupings) by trait (height, high-density 

lipoprotein [HDL], serum urate, low-density lipoprotein [LDL], body mass index [BMI], and 

glucose) and ancestry group (AF=African [a], CR=Caribbean [b], EA=East Asian [c], and 

SA=South Asian [d]). A positive difference in PGS prediction correlation indicates that the PGS 

of the SNP set had a higher prediction correlation in EURs (within-ancestry prediction) than in 

individuals of AF (cross-ancestry prediction) ancestry. The number of SNPs entering each PGS 

is annotated toward the bottom of each subplot. A standard error bar for each prediction 

correlation difference is shown and details for the calculation can be found in the Methods. The 

gray vertical bars are the simulated null distribution (mean +/- standard error) for the correlation 

difference, where SNPs were assigned to portability groups completely at random, maintaining 

the number of SNPs in each subgroup. The sample sizes for the simulated null distribution are in 

Table B2. See Figure 7 and Figure B9 for results based on SNPs from the UK Biobank array
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Figure B11 (cont’d) 

 

 
 

 

 
 

c: East Asian ancestry group (HapMap SNPs). 

d: South Asian ancestry group (HapMap SNPs). 
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Figure B12: Difference between within- and cross-ancestry polygenic score prediction 

correlation of European (EUR) derived polygenic scores by ancestry and SNP portability 

groups based on different methods (using SNPs from the UK Biobank arrays). The vertical 

axis represents the difference between the within- and cross-ancestry polygenic score prediction 

correlation for SNP groups with Very Low, Low, Medium, and High predicted portability 

determined from different methods (Fst2 vs. MC-ANOVA [a] and Wang et al. RA1 vs. MC-

ANOVA [b]) by trait (height, high-density lipoprotein [HDL], serum urate, low-density 

lipoprotein [LDL], body mass index [BMI], and glucose) and ancestry group (AF=African, 

CR=Caribbean, EA=East Asian, and SA=South Asian). A positive difference in PGS prediction  

 a: Fst2 compared to MC-ANOVA. 

Caribbean African 

East Asian South Asian 
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South Asian East Asian 

Figure B12 (cont’d) 

correlation indicates that the PGS of the SNP set had a higher prediction correlation in EURs 

(within-ancestry prediction) than in individuals of AF, CR, EA, or SA (cross-ancestry prediction) 

ancestry. Within (a) and (b), the panels are first grouped by ancestry group and then by trait. A 

standard error bar for each prediction correlation difference is shown and details for the 

calculation can be found in the Methods. The gray vertical bars are the simulated null 

distribution (mean +/- standard error) for the correlation difference, where SNPs were assigned 

to portability groups completely at random, maintaining the number of SNPs in each subgroup. 

The sample sizes for the simulated null distribution are in Table B2. 

  
 
 
 

 
 
 

 b: Wang et al.’s1 RA compared to MC-ANOVA. 

African Caribbean 

SNP Portability Group RA Method 
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Figure B13: Predicted cross-ancestry R-squared [6] by number of SNPs in the chromosome 

segment (including the core and the SNPs in the flaking regions) by ancestry of the testing data 

(AF=African, CR=Caribbean, EA=East Asian, and SA=South Asian). Each panel displays a 

different ancestry group. The results are based on SNPs from the UK Biobank arrays. For 

European (EUR) the plot displays the within-ancestry R-squared parameter [5].
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Figure B14: PGS relative accuracies (RA) and correlation differences in the ARIC study 

data set. (a) MC-ANOVA predicted relative accuracy (RA) versus empirical RA of UK Biobank 

European (EUR)-derived polygenic scores (PGS) when used to predict phenotypes of individuals 

from the ARIC study. The within-ancestry testing group is the ARIC study European Americans 

(AEA) and the cross-ancestry group is the ARIC study African Americans (AAA). A standard 

error (SE) bar is shown for each mean empirical RA estimate. The loss of accuracy (LOA, %) 

attributable to genome differentiation is shown on top of each bar set. (b) The vertical axis 

represents the difference between the within- and cross-ancestry polygenic score prediction 

correlation for SNP groups with Very Low, Low, Medium, and High MC-ANOVA predicted 

portability (𝑅ଵ→ଶ
ଶ  groupings) by trait (height, serum urate, and body mass index [BMI]). A 

 

a 
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Figure B14 (cont’d) 

positive difference in PGS prediction correlation indicates that the PGS of the SNP set had a  

higher prediction correlation in AEA (within-ancestry prediction) relative to AAA (cross-

ancestry prediction) ancestry. The number of SNPs entering each PGS is annotated toward the 

bottom of each subplot. A standard error bar for each prediction correlation difference is  

shown and details for the calculation can be found in the Methods. The gray vertical bars are the 

simulated null distribution (mean +/- standard error) for the correlation difference, where SNPs 

were assigned to portability groups completely at random, maintaining the number of SNPs in 

each subgroup. For both a and b, the sample sizes for the SE bars and the simulated null are 

n=9,628 AEA and n=3,130 AAA for height, n=9,627 AEA and n=3,046 AAA for serum urate, 

and n=9,625 AEA and n=3,127 AAA for BMI. 
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Figure B15: (a, b) Cross-ancestry R-squared by chromosome and position by number for 
 

 a: Varying the number of QTL per segment. 

 b: Varying the number of flanking SNPs to the sides of each segment. 
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Figure B15 (cont’d) 

varying numbers of causal variants in the segment and number of SNPs in the flanking 

regions (all results based on SNPs from the UK Biobank arrays). Each dot represents the 

estimated 𝑅ଵ→ଶ
ଶ  [6] for a chromosome segment for the AF=African ancestry group by (a) the 

number of sampled QTL and (b) the number of SNPs included in the flanking regions to each 

side of the chromosome segment. (c, d) Cross-ancestry R-squared (R-sq.) from the baseline 

model (three QTL and ten flanking SNPs) subtracted from the model varying either the  

number of causal variants in the segment or the number of SNPs in the flank (based on SNPs 

from the UK Biobank arrays). Each histogram shows the distribution of the difference in 𝑅ଵ→ଶ
ଶ  

[6] between the sensitivity model minus the baseline model for the AF=African ancestry group 

by (c) the number of sampled QTL and (d) the number of SNPs included in the flanking regions 

to each side of the chromosome segment. There is a vertical red line at R-squared equals zero. 
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Figure B15 (cont’d) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 c: Varying the number of QTL per segment compared to the baseline method (3 QTL). 
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Figure B15 (cont’d)  

 

 
  

 d: Varying the flanking SNPs to the sides of each segment compared to the baseline method 
(3 QTL).  

C
o

u
nt

 
C

o
u

nt
 

C
o

u
nt

 

R-sq. (EUR→AF) difference from 
baseline method 

R-sq. (EUR→AF) difference from 
baseline method 



 

 103

a: Cross-ancestry R-squared (EUR → AF).   b: Within-ancestry R-squared (EUR → 
EUR).  

 

 
 
Figure B16: Cross- and within-ancestry R-squared for different causal variant effect 

distributions based on SNPs from the UK Biobank arrays. The MC-ANOVA cross-ancestry 

R-squared (R-sq.) estimates for the African (AF) ancestry group (a) and the within-ancestry 

(European [EUR]) R-squared estimates (b) when drawing causal variant effects from a normal 

distribution (shown in the main results) compared to a gamma distribution with a shape 

parameter of 1.5 and rate parameter of one. The pairwise Pearson correlation is noted for each 

subplot. 

  



 

 104

Supplementary Tables 

Table B1: Average R-squared and relative accuracy (RA) by testing set using HapMap SNPs. 

Ancestry 

Group 

 

Sample Size 
R-squared 

(𝑅ଵ→ଶ
ଶ )* 

Relative Accuracy 

(𝑅ଵ→ଶ
ଶ /𝑅ଵ→ଵ

ଶ ) 

Standard 

Error of the 

RA*** 

Variance in RA 

Across 

Segments*** 

European 
(EUR) 

230,000 0.926** 1.000   

African (AF) 3,083 0.596 0.638 0.021 0.030 

Caribbean 
(CR) 

3,343 0.629 0.674 0.020 0.026 

East Asian 
(EA) 

1,329 0.814 0.875 0.022 0.012 

South Asian 
(SA) 

7,919 0.868 0.935 0.010 0.003 

* Subscript 1 always indicates an EUR training or testing set; 2 indicates non-EUR testing; ** 𝑅ଵ→ଵ
ଶ ; *** 

Median   
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Table B2: Descriptive statistics by ancestry group in the UK Biobank data set. Continuous 

variables are reported as the mean  standard deviation and are followed by the number of 

samples missing in parentheses. 

 

Variable Units 
European 

(EUR) Training 

EUR 

Testing 

South Asian 

(SA) 

East Asian 

(EA) 

Caribbean 

(CR) 
African (AF) 

Total Sample 

Size 
 230,000 6,698 7,919 1,329 3,343 3,083 

Female  %  52.8 52.4 45.6 62.8 62.7 48.5 

Age years 56.8  8.0 57.0  7.9 53.2  8.5 52.4  7.6 52.8  8.1 50.8  7.9 

Height cm 169.1  9.2 
169.2  

9.3 

164.4  8.9 

(305) 

162.0  7.7 

(25) 

167.3  8.6 

(51) 

167.7  8.6 

(66) 

HDL mmol/L 1.5  0.4 1.5  0.4 
1.3  0.3 

(1,053) 
1.5  0.4 (172) 

1.5  0.4 

(428) 

1.4  0.4 

(406) 

Serum Urate umol/L 309.8  80.1 
310.5  

79.8 

318.7  79.8 

(410) 

311  76.9 

(62) 

305.5  81.7 

(183) 

318.7  80.5 

(207) 

LDL mmol/L 3.6  0.9 3.6  0.9 3.3  0.9 (419) 3.4  0.8 (61) 
3.3  0.8 

(187) 

3.2  0.8 

(209) 

BMI kg/m2 27.4  4.7 27.4  4.7 27.1  4.4 (169) 24.1  3.4 (8) 
29.3  5.5 

(50) 

29.6  5.1 

(51) 

Serum 

Glucose 
mmol/L 5.1  1.2 5.1  1.2 

5.4  1.9 

(1,048) 
5.1  1.0 (172) 

5.2  1.6 

(434) 

5.1  1.5 

(407) 
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 Table B3: Estimated relative accuracy (RA) of SNP windows grouped by the estimated cross-

ancestry R-squared (𝑅ଵ→ଶ
ଶ  for 1=European [EUR] and 2=testing set) for the Caribbean (CR), East 

Asian (EA), and South Asian (SA) ancestry groups using SNPs from the UK Biobank array. 

 
  

Testing 

Group 

Portability 

Group 

Quantile 

Group Cutoff 

𝑅ଵ→ଶ
ଶ   

Range 

Number of 

SNPs 

Average 

𝑅ଵ→ଵ
ଶ  

Average 

𝑅ଵ→ଶ
ଶ  

Average RA 

(𝑅ଵ→ଶ
ଶ /𝑅ଵ→ଵ

ଶ ) 

Caribbean 

(CR) 

High (0.8,1] (0.31,0.98] 122,158 0.752 0.447 0.592 

Medium (0.6,0.8] (0.23,0.31] 122,157 0.675 0.266 0.400 

Low (0.5,0.6] (0.20,0.23] 61,073 0.645 0.211 0.334 

Very Low [0,0.5] [0,0.20] 305,403 0.596 0.128 0.216 

East Asian 

(EA) 

High (0.8,1] (0.52,0.98] 112,673 0.771 0.642 0.835 

Medium (0.6,0.8] (0.41,0.52] 112,685 0.685 0.460 0.678 

Low (0.5,0.6] (0.36,0.41] 56,332 0.652 0.384 0.596 

Very Low [0,0.5] [0,0.36] 281,711 0.592 0.240 0.405 

South 

Asian (SA) 

High (0.8,1] (0.62,0.98] 122,156 0.784 0.712 0.908 

Medium (0.6,0.8] (0.53,0.62] 122,151 0.694 0.575 0.831 

Low (0.5,0.6] (0.50,0.53] 61,082 0.656 0.516 0.791 

Very Low [0,0.5] [0.04,0.50] 305,402 0.573 0.395 0.689 
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Table B4: The number of SNPs that were selected for each trait (height, high-density lipoprotein 

[HDL], serum urate, low-density lipoprotein [LDL], body mass index [BMI], and glucose) by the 

threshold used for the p-value in the GWAS (based on a two-sided test of a t-statistic, with the 

null hypothesis that the SNP effect is zero), and the proportion of variance of the (adjusted) 

phenotype explained by the European (EUR)-derived PGS in testing data, by ancestry group 

(African [AF], Caribbean [CR], East Asian [EA], South Asian [SA], ARIC European American 

[AEA], and ARIC African American [AAA]) using SNPs from the UK Biobank array.  

 

Variable 
# SNPs 

(p<1e-5) 

# SNPs for 

GWAS 

(p<5e-8) 

Proportion 

of Variance 

Explained 

in EUR (%) 

Proportion 

of Variance 

Explained 

in AF (%) 

Proportion 

of Variance 

Explained 

in CR (%) 

Proportion 

of Variance 

Explained 

in EA (%) 

Proportion 

of Variance 

Explained 

in SA (%) 

Height 11,675 6,907 27.4 3.9 6.7 9.7 15.0 

HDL 3,609 1,967 18.0 6.6 7.5 9.3 13.2 

Serum Urate 3,151 1,751 11.4 5.1 4.6 6.2 8.8 

LDL 2,272 1,210 10.1 6.0 7.9 5.4 4.1 

BMI 2,371 830 3.8 0.3 0.9 0.9 2.8 

Glucose 938 338 1.9 0.3 0.4 0.5 0.8 

Proportion of Variance 

Explained in ARIC AEA (%) 

Proportion of Variance 

Explained in ARIC AAA (%) 

22.0 7.6 

-- -- 

9.0 2.7 

-- -- 

3.6 0.9 

-- -- 
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Table B5: The average cross-ancestry R-squared, 𝑅ଵ→ଶ
ଶ  [6], by chromosome (Chr) and ancestry 

group, and the number of annotated genes for each using SNPs from the UK Biobank array.  

African (AF) Caribbean (CR) East Asian (EA) South Asian (SA) 

Chr 
Average 

𝑅ଵ→ଶ
ଶ  

# 
Genes 

Chr 
Average 

𝑅ଵ→ଶ
ଶ  

# 
Genes 

Chr 
Average 

𝑅ଵ→ଶ
ଶ  

# 
Genes 

Chr 
Average 

𝑅ଵ→ଶ
ଶ  

# 
Genes 

6 0.335 1060 6 0.379 1060 6 0.515 1041 6 0.605 1060 

11 0.241 1303 11 0.292 1304 19 0.464 1351 17 0.571 1125 

19 0.236 1406 16 0.286 802 17 0.455 1081 19 0.571 1406 

   16 0.233 802 17 0.281 1125 11 0.45 1254 22 0.569 463 

17 0.232 1125 19 0.28 1406 21 0.448 237 11 0.565 1304 

5 0.222 876 5 0.272 876 22 0.442 456 16 0.558 802 

15 0.22 607 7 0.271 932 16 0.432 756 21 0.554 244 

7 0.219 932 3 0.27 1122 1 0.43 1935 15 0.551 607 

3 0.218 1122 22 0.268 463 5 0.428 847 1 0.547 2031 

1 0.215 2031 15 0.268 607 15 0.421 591 2 0.546 1278 

22 0.215 463 1 0.267 2031 7 0.418 910 7 0.544 932 

2 0.212 1278 2 0.262 1278 2 0.417 1230 5 0.543 876 

    12 0.21 1053 12 0.26 1058 3 0.415 1068 20 0.54 564 

    10 0.21 776 20 0.259 564 10 0.415 762 12 0.537 1058 

    21 0.208 244 10 0.258 776 4 0.411 777 14 0.536 650 

    20 0.208 564 21 0.254 244 14 0.411 622 3 0.536 1122 

    14 0.207 650 9 0.254 768 20 0.41 545 10 0.536 776 

    9 0.206 768 4 0.252 802 12 0.405 1006 9 0.533 768 

    4 0.205 802 14 0.251 650 9 0.403 739 4 0.527 802 

    18 0.193 312 18 0.237 312 18 0.395 308 18 0.521 312 

    13 0.188 383 8 0.237 715 13 0.389 373 13 0.519 383 

    8  0.186 715 13 0.236 383 8 0.387 695 8 0.51 715 
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Table B6: The top fifteen most portable annotated genes (largest 𝑅ଵ→ଶ
ଶ  [6]) for each ancestry 

group and the associated chromosome (Chr) and number of SNPs in each gene using SNPs from 

the UK Biobank array. The gene that was common between all ancestry groups is noted with an 

asterisk. 

 

 
African (AF) Caribbean (CR) East Asian (EA) South Asian (SA) 

 

Gene Chr 

# 

SNPs Gene Chr 

# 

SNPs Gene Chr 

# 

SNPs Gene Chr 

# 

SNPs 

1 
HIST1H2

AD 
6 1 TCF19 6 13 

LOC1001
29195 

6 4 ZBTB22 6 4 

2 
HLA-

DQB1  
6 84 

HLA-
DQB1 

6 84 
ZSCAN1

6 
6 5 

HIST1H1
T 

6 7 

3 TCF19    6 13 
HLA-F-

AS1* 
6 48 

HLA-F-
AS1* 

6 48 OR51M1 11 6 

4 CCHCR1   6 58 CCHCR1 6 58 ZFP57 6 60 
LOC1001

29195 
6 4 

5 
HLA-

DRB1  
6 83 

HLA-
DRB1 

6 83 ZNFX1 20 7 
ZSCAN1

6 
6 5 

6 
 HLA-F-

AS1* 
6 48 HCG4 6 6 

HIST1H1
T 

6 7 
B3GALT

4 
6 1 

7 
LINC001

16 
2 7 

LOC5542
23 

6 17 HLA-F 6 33 PFDN6 6 1 

8 
HLA-
DOB   

6 20 
HIST1H2

AD 
6 1 ZBTB22 6 4 WDR46 6 12 

9 SFTA2    6 7 OR2B3 6 7 
B3GALT

4 
6 1 ZFP57 6 60 

10 BAG6     6 21 
HLA-
DOB 

6 20 PFDN6 6 1 HLA-F 6 33 

11 HCG4     6 6 SFTA2 6 7 WDR46 6 12 
LOC5531

03 
5 2 

12 
LOC554

223 
6 17 

LINC001
16 

2 7 BTNL2 6 36 ADH1A 4 4 

13 OR2B3    6 7 BTNL2 6 36 OR2B3 6 7 
HLA-

DPB2 
6 69 

14 BTNL2    6 36 BAG6 6 21 OR51M1 11 6 
HLA-F-

AS1* 
6 48 

15 
HLA-

DQA2 
6 43 BRD2 6 19 SFTA2 6 7 

HIST1H2
BG 

6 25 
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Table B7: From the top fifteen most portable genes from chromosome six from any ancestry 

group (African [AF], Caribbean [CR], East Asian [EA], and South Asian [SA]) using SNPs from 

the UK Biobank arrays, the 26 unique genes are grouped by base pair (BP) position (within 50 

Kbp) only or base pair position as well as functional class. The three groups based on proximity 

as well as class were the HIST genes, the HLA-F/V genes, and the HLA-D genes. 

 

Genes BP position Ancestry groups 

H1-6 (HIST1H1T), H2BC8 (HIST1H2BG), H2AC7 
(HIST1H2AD) 

26106237-26216656 AF, CR, EA, SA 

ZSCAN16-AS1 (LOC100129195), ZSCAN16 28092306-28103691 EA, SA 

OR2B3 29045632-29054923 AF, CR, EA 

ZFP57, HLA-F, HLA-F-AS1, HCG4, HLA-V 
(LOC554223) 

29640785-29768123 AF, CR, EA, SA 

SFTA2 30899163-30900150 AF, CR, EA 

CCHCR1, TCF19 31108829-31130078 AF, CR 

BAG6 31606813-31619576 AF, CR 

BTNL2 32361762-32374640 AF, CR, EA 

HLA-DRB1, HLA-DQB1, HLA-DQA2, HLA-DOB, 
HLA-DPB2 

32542638-33101602 AF, CR, SA 

BRD2 32938199-32948804 CR 

B3GALT4, WDR46, PFDN6, ZBTB22 33245868-33283766 EA, SA 
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Table B8: Prediction correlation for each trait (height, high-density lipoprotein [HDL], serum 

urate, low-density lipoprotein [LDL], body mass index [BMI], and glucose) averaged over 50 

replications in an external testing set (n-testing=300) from a cross-ancestry  

gradient descent algorithm for each ancestry group (AF=African, CR=Caribbean, and SA=South 

Asian) when using an adaptive learning rate based on relative accuracy compared to a fixed 

learning rate (LR). 

 
* Percentage excludes training-testing partitions for which the adaptive and fixed R-squared were identical, 
which happened whenever the optimal number of iterations was zero or very large, in which cases varying 
learning rates do not affect estimates. 
 
 
 
 

Ancestry 

Group 
Trait 

Average Prediction 

Correlation (R-

squared) with Fixed 

Learning Rate (LR) 

Average Prediction 

Correlation (R-

squared) with 

Adaptive LR 

% Change in 

R-squared 

(Fixed to 

Adaptive LR) 

% of Testing Sets in 

Which Using an 

Adaptive LR Improved 

Prediction R-squared* 

African (AF) 

Height 0.207 (0.043) 0.213 (0.045) 5.97 74.0 

HDL 0.248 (0.062) 0.255 (0.065) 5.64 88.0 

SU 0.203 (0.041) 0.206 (0.042) 2.34 56.0 

LDL 0.227 (0.052) 0.229 (0.052) 1.70 72.0 

BMI 0.059 (0.003) 0.059 (0.003) -0.71 54.2* 

Glucose 0.021 (0.0004) 0.025 (0.001) 43.77 51.0* 

Caribbean 

(CR) 

Height 0.246 (0.061) 0.250 (0.062) 3.13 70.0 

HDL 0.245 (0.060) 0.249 (0.062) 3.13 78.0 

SU 0.170 (0.029) 0.178 (0.032) 9.16 79.5* 

LDL 0.262 (0.068) 0.264 (0.069) 1.48 73.8* 

BMI 0.083 (0.007) 0.084 (0.007) 0.95 50.0* 

Glucose 0.059 (0.003) 0.060 (0.004) 3.66 66.7* 

South Asian 

(SA) 

Height 0.345 (0.119) 0.346 (0.120) 0.40 64.0 

HDL 0.319 (0.102) 0.319 (0.102) -0.15 46.9* 

SU 0.266 (0.071) 0.266 (0.071) 0 
All replications were 

equal 

LDL 0.177 (0.031) 0.179 (0.032) 2.13 64.0 

BMI 0.160 (0.026) 0.163 (0.027) 3.02 70.0 

Glucose 0.086 (0.007) 0.088 (0.008) 6.54 62.0 
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Supplementary Notes 

Supplementary Note 1: Portability map availability and use. 

The portability maps for SNPs from the UK Biobank arrays as well as SNPs from HapMap 3 

variants are accessible in three ways: 1) Supplementary Data, 2) via an R package (downloadable 

as data objects as well as interactively through a Shiny app), and 3) interactively through a Shiny 

app hosted on a webpage. 

1. Supplementary Data 

The two portability maps can be downloaded directly as Supplementary Data 1 and 

Supplementary Data 2 (UK Biobank arrays and HapMap variants, respectively). 

2. Webpage Shiny app 

A Shiny app graphical interface was created to provide portability map information based 

on user-provided base pair positions (or genes or RS IDs). It is available at: 

https://lupia.github.io/Cross-Ancestry-Portability/. 

This version of the Shiny app will run slower than the identical version accessible 

through the R package described next. However, this web-based version does not require R 

software or packages. 

3. R package MCANOVA: data objects and Shiny app 

The maps are available in an R package, detailed on GitHub here: 

https://github.com/lupiA/MCANOVA/blob/main/README.md. 

The MCANOVA R package provides the portability maps in two ways. First, they are 

directly useable as data objects (see Examples, i) once the MCANOVA package is installed. 

Second, we have created an interactive Shiny app (see Examples, ii) in which users can input 

base pair positions (or genes or RS IDs) to obtain the relative accuracy estimates and other 
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portability information for those regions from the maps. 

Additionally, the MCANOVA package provides a function implementing the MC-

ANOVA method to estimate relative accuracy and functions to obtain the small chromosome 

segments (see Examples, iii) used in this paper. 

Installation 

To install the `MCANOVA` package in R, first install the `remotes` package: 

  install.packages("remotes") 

  library(remotes) 

Then install the package: 

  install_github("lupiA/MCANOVA") 

  library(MCANOVA) 

Examples 

After installation is complete: 

i)  To load the portability maps into an R session as data objects: 

  data(MAP_UKB) 

  data(MAP_HAPMAP) 

ii)  Launching the Shiny app to interactively access the portability map information: 

  PGS_portability_app() 

iii)  Creating chromosome segments of a minimum base pair length and size (using a small 

example map): 

  data(geno_map_example) 

  minSNPs <- 10 

  minBP <- 10e3 

  MAP_example <- geno_map_example 

  MAP_example$segments <- getSegments(MAP_example$base_pair_position, 
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    chr = MAP_example$chromosome, 

minBPSize = minBP, 

minSize = minSNPs, 

verbose = TRUE) 

iv)  Running MC-ANOVA 

  # install.packages("BGData") 

  library(BGData) 

  # Set seed 

  set.seed(12345) 

## 

  # Generate genotypes (100 subjects and 500 SNPs) 

  n <- 100 

  p <- 500 

  X <- matrix(sample(0:2, n * p, replace = TRUE), ncol = p) 

  data(geno_map_example) 

  colnames(X) <- geno_map_example$SNPs 

  minSNPs <- 10 

  minBP <- 10e3 

  MAP_example <- geno_map_example 

  MAP_example$segments <- getSegments(MAP_example$base_pair_position, 

    chr = MAP_example$chromosome, 

minBPSize = minBP, 

minSize = minSNPs, 

verbose = TRUE) 

## 

  # Assign ancestry IDs (80% to ancestry 1, 20% to ancestry 2) 

  n_1 <- round(0.8 * n) 
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  n_2 <- round(0.2 * n) 

  ancestry <- rep(c("Group_1", "Group_2"), times = c(n_1, n_2)) 

  rownames(X) <- ancestry 

## 

  # Initialize portability estimates 

  MAP_example$correlation_within <- NA 

  MAP_example$correlation_across <- NA 

  MAP_example$R_squared_within <- NA 

  MAP_example$R_squared_across <- NA 

## 

  # Set parameters for MC-ANOVA 

  lambda <- 1e-8 

  nRep <- 300 

  nQTL <- 3 

## 

  # Loop over segments and run MC-ANOVA 

  # For whole genome applications, this can be run in parallel with one 

job per 

  segment in a High-Performance Computing Cluster 

##   

  for (i in min(MAP_example$segments):max(MAP_example$segments)) { 

    core <- which(MAP_example$segments == i) 

    flank_size <- 10 

    chunk_start <- max(min(core)– flank_size, 1) 

    chunk_end <- min(max(core) + flank_size, nrow(MAP_example)) 

    chunk <- chunk_start:chunk_end 

    isCore <- chunk %in% core 
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 ##  

    X_1 <- X[rownames(X) ==“Group_1”, chunk] 

    X_2 <- X[rownames(X) ==“Group_2”, chunk] 

##   

    # Run MC-ANOVA 

    out <- MC_ANOVA(X = X_1, X2 = X_2, core = which(isCore),  

lambda = lambda, 

nQTL = nQTL, 

nRep = nRep) 

##   

    # Extract portability estimates 

    MAP_example$correlation_within[chunk[isCore]] <- out[1, 1] 

    MAP_example$correlation_across[chunk[isCore]] <- out[2, 1] 

    MAP_example$R_squared_within[chunk[isCore]] <- out[1, 1]^2 

    MAP_example$R_squared_across[chunk[isCore]] <- out[2, 1]^2 

  } 

## 

  RA <- MAP_example$R_squared_across/MAP_example$R_squared_within 
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Introduction 

Over the past two decades, there has been a large increase in the publication of Genome-

Wide Association Studies (GWAS), with initial studies relying on cohorts of a few thousand 

participants1. These early investigations identified numerous loci linked to various human traits 

and diseases. However, there was a lack of replication between studies which highlighted the need 

for larger sample sizes to better detect associations between single nucleotide polymorphisms 

(SNPs) and phenotypes, especially for SNPs with small effects and rare variants. Consequently, 

numerous GWAS were conducted by consortia, which meta-analyzed summary statistics from 

multiple cohorts, revealing many novel findings. Despite these advancements, consortia faced 

limitations such as reliance on summary statistics, inconsistent phenotype definitions, and a focus 

on single health issues. Thus, with the establishment of biobanks housing hundreds of thousands 

of individual phenotype-genotype records, sample sizes were increased drastically, overcoming 

some of the previous consortia limitations. 

 The advent of Big Data in genomics allowed for a more accurate identification of 

quantitative trait loci (QTL), and thus significantly enhanced our ability to predict complex traits 

and disease risk2,3. Polygenic scores (PGS) are a common method to estimate the disease or trait 

genetic predisposition for an individual. Now that genotyping platforms have become sufficiently 

dense, and with the availability of methods that can be used to impute several millions of variants, 

the overarching limiting factor of prediction accuracy in PGS is sample size2,4–7.  

Within-population PGS prediction accuracy is affected by three main factors. First, the 

trait heritability imposes an upper bound on PGS prediction accuracy. Theoretically, we could 

achieve a PGS prediction R-squared equal to the trait heritability if we knew all the causal 

variants (and were able to genotype them) and their effects without error8,9. However, for complex 
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traits, knowing all causal variants is nearly impossible. Therefore, PGS rely on using SNPs that 

are in linkage disequilibrium (LD) with causal variants. Thus, a second factor affecting PGS 

prediction accuracy is the strength of LD between causal variants and the SNPs used to build a 

PGS9-11. This depends on trait heritability, marker density, and sample size because these three 

factors affect the power to detect associations between SNPs and phenotypes. Third, PGS use 

SNP effect estimates; thus, a third factor affecting PGS prediction performance is the accuracy of 

SNP effect estimates9-12. Additionally, for cross-ancestry PGS prediction, the portability of SNP 

effects between ancestry groups also affects PGS prediction performance13,14.    

There is comparatively poor prediction performance and replication of PGS when applied 

across ancestries, particularly between more genetically distant ancestry groups, such as European 

(EU) and African (AF)15–20. Genomic differences between ancestry groups in allele frequencies, 

LD patterns, and LD strength are the primary factors contributing to poor PGS prediction 

accuracy13,14,20,21. Additional factors affecting prediction accuracy are genetic-by-genetic, genetic-

by-environment interactions, and effect size differences, however, previous literature suggests that 

causal variants and their effect sizes are mostly shared between ancestry groups13,23–26. 

Nevertheless, cross-ancestry (EU to non-EU) prediction remains a necessity due to the lack of 

statistical power from small sample sizes available for within-non-EU prediction and the extreme 

overrepresentation of EU ancestry groups in genetic data. Recently, studies have found that 

including even a small number of non-EUs (the target ancestry group) in the training data, or 

incorporating non-EU summary statistics into the PGS construction, can improve prediction20,27–

32. 

We hypothesize that in cross-ancestry prediction (e.g., EU to AF), as training sample size 

increases, there is more statistical power, typically resulting in more SNPs entering each PGS and 
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ultimately increasing prediction accuracy. However, we anticipate that the gains in prediction 

accuracy from increasing the training sample size of EU versus AF is not equivalent, and 

increasing the sample size of AF will have a bigger gain in prediction accuracy than the same 

increase in sample size of EU. Additionally, we expect that increasing the training sample sizes 

will improve SNP effect estimation precision and that the portability of SNP effects between 

ancestry groups is an additional factor affecting cross-ancestry prediction accuracy. 

In this study, using EU ancestry data from the UK Biobank33 and AF ancestry data from 

the All of Us platform34 we evaluate how factors influence cross-ancestry prediction accuracy 

(EU to AF). We focus on three primary factors: SNP selection and the strength of LD between 

markers and QTL, SNP effect estimate precision, and SNP effect portability across ancestry 

groups. Additionally, we estimate the relative contribution to the prediction accuracy of additional 

cross-ancestry samples compared to within-ancestry samples, hypothesizing that they are not a 

one-to-one equivalent. Our analysis provides insight into the need for prioritizing non-EU data 

collection and explores the main bottlenecks in cross-ancestry prediction accuracy. 

Materials 

UK Biobank cohort 

This study selected distantly related individuals of European (EU) ancestry from the UK 

Biobank who had complete data on height, sex, and age. Participants were between 18 and 75 

years old and were not excluded from kinship inference, were included in phasing, and were not 

identified as an outlier in heterozygosity and missing rates. Following Lupi et al., 202414, samples 

were excluded if they withdrew from the study, “if they had a mismatch of reported and genetic 

sex, or if they were related to other samples with relatedness 0.05. Relatedness was determined 

using genomic relationship matrices (𝐆 =
𝐙𝐙ᇲ

୲୰(𝐙𝐙ᇲ)/
, where Z is the centered genotype matrix) 
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computed within an ancestry group.” 

All of Us cohorts 

We selected distantly related African (AF) ancestry individuals from the All of Us 

cohort34 with complete data on height, sex, and age (18-75 years old). Relatedness and ancestry 

were both defined by Controlled Tier data provided by the platform (relatedness-based kinship 

scores and predicted ancestry35). The principal components (PCs) used for this cohort were also 

supplied by the platform as Controlled Tier data. 

Methods 

Study overview 

One of the main factors limiting PGS prediction accuracy is sample size. To evaluate how 

different factors, some affected by training sample size, impact cross-ancestry PGS prediction 

accuracy, we used European (EU) data from the UK Biobank (UKB) and the unprecedentedly 

large African (AF) ancestry data from the All of Us (AoU) platform to evaluate different 

scenarios to produce PGS. For each scenario, we constructed PGS for height at varying AF and 

EU training set sample sizes (used for effect estimation) and evaluated the prediction in the same 

two testing sets every time: AF (𝑇𝑆𝑇ி, 𝑛்ௌ ಲಷ
= 9,078) and EU (𝑇𝑆𝑇ா, 𝑛்ௌ்ಶೆ

= 10,000). 

The scenarios differed by: (1) varying both the training sample sizes and the number of SNPs 

selected (a typical PGS), (2) fixing the number of SNPs but varying the training sample sizes 

(isolating how sample size affects effect estimation), (3) incorporating SNP effect portability, by 

comparing PGS consisting of SNPs estimated to be more portable across ancestry group to SNPs 

estimated to be less portable. The AF training (𝑇𝑅𝑁ி) sample size for effect estimation ranged 

from 𝑛்ோேಲಷ
= 0 to 40,000 and EU training (𝑇𝑅𝑁ா) sample size ranged from 𝑛்ோேಶೆ

= 0 to 

250,000, with a grid of eight additional sample sizes in between for each ancestry group (more 
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details can be found in the cohort descriptions in the Methods section). 

Scenario 1: A typical PGS (SNP filtering and estimation depend on sample size). To 

examine the impact of both QTL signal detection and SNP effect estimation, which are dependent 

on sample size, we varied the training sample sizes used for both SNP filtering and SNP effect 

estimation. We evaluated each PGS with a standard approach in which SNPs entering into each 

PGS were selected based on meta-analysis p-values (more details on this can be found in the 

section ‘Genome-wide association study (GWAS)’ in Methods) from combining the single 

marker GWAS (p-value < 1e-4) using the given training sample size of each training ancestry (AF 

and EU). 

Scenario 2: Isolating effect estimation (fixing the SNP set). Next, to distinguish the 

impact of effect estimation on prediction accuracy from the impact of the number of SNPs 

selected, we evaluated each PGS with a predetermined SNP set. Thus, in this scenario, the 

training sample size used for effect estimation varied but the SNP set was fixed (p=5,234 SNPs, 

filtered from a meta-GWAS from 𝑛்ோேಲಷ
= 25,000 and 𝑛்ோேಶೆ

= 100,000). An additional 

fixed SNP set was filtered from the meta-GWAS of AF (𝑛்ோேಲಷ
= 25,000) and EU (𝑛்ோேಶೆ

=

25,000). 

Scenario 3: SNP portability. Previous literature has suggested that some regions of the 

genome will be portable across ancestry groups in PGS and others will not14. Therefore, to 

examine SNP portability (more details on this follow in the ‘SNP selection’ section of Methods), 

we evaluated the PGS in two different genomic scores. The first PGS included the most portable 

SNPs across ancestry group, i.e., the SNPs that were in the top 20th percentile of MC-ANOVA 

predicted cross-ancestry R-squared (most portable SNPs)14 and the second consisted of the SNPs 

in the bottom 20th percentile (least portable SNPs). 
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Design 

Out of the 270,859 selected EU individuals, a random sample of 𝑛்ௌ்ಶೆ
= 10,000 

individuals was designated as the EU testing set (𝑇𝑆𝑇ா), and then nine distinct training sets 

(𝑇𝑅𝑁ா) of varying sample sizes were randomly drawn: 𝑛்ோேಶೆ
= {0, 5,000, 10,000, 25,000,

50,000, 75,000, 100,000, 150,000, 200,000, 250,000}. The training sets, 𝑇𝑅𝑁ா, did not 

include any individuals from the testing set, 𝑇𝑆𝑇ா. Additionally, smaller training sets were 

subsets of the larger training sets. 

A random sample of 𝑛்ௌ்ಲಷ
= 9,078 individuals was selected to be the AF testing set 

(𝑇𝑆𝑇ி), and nine distinct training sets (𝑇𝑅𝑁ி) of varying sample sizes were randomly drawn: 

𝑛்ோேಲಷ
= {0, 5,000, 7,500,   10,000,   15,000, 20,000,   25,000, 30,000, 35,000, 40,000}. 

The training sets, 𝑇𝑅𝑁ி, did not include any individuals from the testing set, 𝑇𝑆𝑇ி. 

Additionally, smaller training sets were subsets of the larger training sets. 

Genotypes 

Since this analysis involved combining data from two cohorts, UKB and AoU, we used 

the intersection between the AoU genotyped SNPs and the UKB imputed SNPs. SNPs were 

excluded from this set if they had a minor allele frequency of less than 0.01 or missingness of 

over 0.1 in either dataset (among the full sample set), resulting in p = 522,170 SNPs retained for 

analysis. If a sample subset contained a missing SNP, it was imputed with the mean. 

Phenotypes 

For the AF cohort, the height measurement selected was the one closest to 60 years old for 

each individual, and outliers for height were removed, defined as larger or smaller than the 

median  three times that of the middle 50th percentile for height. For the EU cohort, the height 

measurement selected was from the first instance or the second if the first was missing. 
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Some steps in this study involved preadjusting the height phenotype (e.g., the effect 

estimation for the PGS). For this, the residuals from an ordinary least squares (OLS) regression of 

height on sex, age, and the first five genotyped principal components were used as the adjusted 

phenotype. The EU OLS regression also included batch and center. 

Genome-wide association study (GWAS) 

A GWAS for height, including sex, age, and the first five SNP-derived PCs as additional 

covariates, was evaluated for each sample size set and for each data cohort (EU and AF) using 

PLINK36. That is, a single marker regression for 𝑇𝑅𝑁∗, where ‘*’ = EU or AF, was evaluated as: 

𝐲∗ = 𝐒𝐍𝐏∗,𝛽∗, + 𝐙∗𝛼∗ + 𝐞∗      [10] 

for j = 1...p SNPs, where 𝐲∗ is the height vector for the ‘*’ = EU or AF ancestry group and 𝐒𝐍𝐏∗, 

is the vector of the number of allele copies for the jth SNP and the ‘*’ = EU or AF ancestry group. 

𝐙∗ ∈ ℝೃಿ∗  ୶  is a predictor matrix, consisting of sex, age, and PC1 to PC5 (the first five 

genotype-derived principal components). 

To obtain GWAS p-values that considered both data cohorts (EU and AF), we combined 

the ancestry group GWAS SNP effects (𝛽መா, and 𝛽መி,) estimated in [10] to obtain a meta-

analysis-based estimate, 𝛽መொ்,, for each SNP (j = 1...p)37:  

𝛽መொ், =
௪ಶೆ,ೕఉಶೆ,ೕା௪ಲಷ,ೕఉಲಷ,ೕ

௪ಶೆ,ೕା௪ಲಷ,ೕ
     [11] 

where 𝑤ா, =
ଵ

ௌா൫ఉಶೆ,ೕ൯
మ and 𝑤ி, =

ଵ

ௌா൫ఉಲಷ,ೕ൯
మ . The variance of the meta-estimator is 

𝑆𝐸൫𝛽መொ்,൯ = ට
ଵ

௪ಶೆ,ೕା௪ಲಷ,ೕ
  and the meta-test statistic for each SNP (j = 1...p) was defined as: 

𝑍ொ், =
ఉಾಶಲ,ೕ

ௌா൫ఉಾಶಲ,ೕ൯
 .      [12] 

The final meta-GWAS p-value was then defined to be twice the area under a standard normal 
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distribution of negative infinity to the negative absolute value of 𝑍ொ், [12]. 

PGS and prediction accuracy calculation 

SNP selection. The primary difference between the PGS evaluated in each of the 

scenarios described above was in the SNPs entering into each PGS. In all three scenarios, in the 

cases where 𝑛்ோேಶೆ
= 0 or 𝑛்ோேಲಷ

= 0, the single-cohort GWAS p-value was used instead of the 

meta-GWAS. 

In Scenario 1 (‘A typical PGS’), the number of SNPs varied based on the training sample 

sizes 𝑛்ோேಶೆ
 and 𝑛்ோேಲಷ

. For each sample size combination, the SNPs were selected for the PGS 

if the meta-GWAS p-value [12], if applicable, was less than 1e-4. 

In Scenario 2 (‘Isolating effect estimation’), SNPs entering into each PGS were selected if 

they had a p-value < 1e-4 based on the meta-GWAS [12], if applicable, using the sample sets 1) 

𝑛்ோேಶೆ
= 100,000 and 𝑛்ோேಲಷ

= 25,000 to select p=5,234 SNPs and 2) 𝑛்ோேಲಷ
= 25,000 and 

𝑛்ோேಶೆ
= 25,000 to select p=817 SNPs. 

In Scenario 3 (‘SNP portability’), the SNPs entering into each PGS were selected if they 

had a p-value < 1e-2 from the meta-GWAS, if applicable. Then, the PGS for each sample size 

combination was split into two sub-PGS. Since the SNPs were subset into two PGS for each 

sample size combination, the threshold for selection was relaxed to allow for an adequate number 

of SNPs in each PGS. One PGS sub-score was based on the SNPs with the top 20% of predicted 

portability, and the second was based on the SNPs with the lowest 20% of predicted portability. 

Portability was defined by the MC-ANOVA14 predicted cross-ancestry R-squared for a small 

chromosome segment based on UKB (EU to AF) array data: 𝑅ா→ி
ଶ = Corr൫𝐱ಲಷ

ᇱ 𝛃ா, 𝐳ಲಷ

ᇱ 𝛂൯
ଶ
, 

where 𝐳ಲಷ
 is the (centered) vector of SNP genotypes at causal loci (QTL) for the AF ancestry 

group, 𝐱ಲಷ
 is the (centered) vector of SNP genotypes at markers for the AF ancestry group, 𝛂 is 
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the vector of effects, and 𝛃ா = 𝚺ಶೆ

ିଵ 𝚺ಶೆಶೆ
𝛂  are the EU ancestry group (population) marker 

effects. The portability estimates used were obtained from the portability maps provided by Lupi 

et al., 202414. 

SNP effects. Once the SNP set was determined, every PGS was based on summary 

statistics from the AF and EU training cohorts. To jointly estimate effects for J PGS SNPs, 𝐛መ , we 

fit a Bayesian ridge regression model using a Markov Chain Monte Carlo (MCMC) Gibbs 

sampler algorithm: 

𝐲∗ = 1𝜇∗ + ∑ 𝐒𝐍𝐏∗,

ୀଵ 𝐛∗, + 𝒆∗        [13] 

where, for the ‘*’ = EU or AF ancestry group, 𝐲∗ is the preadjusted vector of height, 𝜇∗ is an 

intercept, 𝐒𝐍𝐏∗, is the vector of the number of allele copies for the jth SNP, and 𝒆∗ = {𝑒ଵ∗, … 𝑒∗} 

are independent normal residuals. The residual variance has a scaled inverse-chi squared prior and 

the shrinkage parameter lambda (𝜆∗) in the Bayesian ridge regression prior was kept fixed for 

each ancestry group. The ridge estimator is 𝐛መ ∗, = (𝐗∗
ᇱ 𝐗∗ + 𝜆∗𝐈)ିଵ𝐗∗

ᇱ 𝐲∗, where 𝐗∗ is the design 

matrix of the intercept and SNPs. The prior mean, 𝜇, was defined as an unweighted average 

across the two training cohorts: 

𝜇 =
ቀ∑ 𝒚ೃ ಲಷ

ಲಷ
సభ

ା∑ 𝒚ೃಿಶೆ

ಶೆ
సభ

ቁ

ೃಿಲಷ
ାೃಿಶೆ

 ,         [14] 

and the prior variance, since the two cohorts are independent, was defined simply as the 

unweighted combined variance: 

𝜎
ଶ =

ቀ(𝒚ᇲ𝒚)ೃಿಲಷ
ା(𝒚ᇲ𝒚)ೃಿಶೆ

ቁ

ೃಿಲಷ
ାೃ ಶೆ

− 𝜇
ଶ ,         [15] 

where 𝜇 is the expression defined in [14], 𝐲்ோேಲಷ
 and 𝐲்ோேಶೆ

 are the AF and EU preadjusted 

height vectors, respectively, and 𝑛்ோேಲಷ
 and 𝑛்ோ ಶೆ

 are the ancestry group-specific training set 

sample sizes. 
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We ran the BLR algorithm with 50,000 MC iterations and used a burn-in of 2,000 using 

the ‘BLRCross’ function from the R package BGLR38. This function takes summary statistics as 

inputs rather than the traditional inputs of an incidence matrix 𝐗 and phenotype vector. That is, for 

p SNPs entering into a PGS, the model involved the summary statistics 𝐗ᇱ𝐗்ோே∗
, 𝐗ᇱ𝐲்ோே∗

,

𝐲ᇱ𝐲்ோ ∗
, and  𝑛்ோே∗

, where, for the ancestry group subscript (* = AF or EU), 𝑛்ோே∗
 is the sample 

size, 𝐗்ோே∗
∈ ℝ ௫  is the centered and imputed matrix of genotypes coded as 0, 1, or 2 (the 

count of reference allele at each SNP), and 𝐲்ோே∗
∈ ℝ ௫ ଵ is the preadjusted vector of the height 

phenotype. The training sets were then combined additively (without weights) into one set of 

summary statistics, and the combined summary statistics are were entered into the BLR algorithm 

described above. 

 Prediction accuracy estimation. To evaluate each PGS in a testing set, we used summary 

statistics from each test set (for AF, 𝐗ᇱ𝐗்ௌ்ಲಷ
, 𝐗ᇱ𝐲்ௌ்ಲಷ

, and 𝐲ᇱ𝐲்ௌ ಲಷ
, and for EU, 𝐗ᇱ𝐗்ௌ ಶೆ

,

𝐗ᇱ𝐲்ௌ்ಶೆ
, and 𝐲ᇱ𝐲்ௌ ಶೆ

) and the estimated SNP effects, 𝐛መ , to estimate the prediction correlation 

for each ancestry group, 𝑅்ௌ்ಲಷ
 and 𝑅்ௌ ಶೆ

 (for ease of notation we will drop the ancestry group 

subscript here, with the understanding that 𝑇𝑆𝑇 either equals 𝑇𝑆𝑇ி or 𝑇𝑆𝑇ா): 

𝑅்ௌ் = 𝐶𝑜𝑟𝑟(𝐲ො்ௌ் , 𝐲்ௌ்) 

=
𝐶𝑜𝑣(𝐲ො்ௌ் , 𝐲்ௌ்)

ඥ𝑉𝑎𝑟(𝐲்ௌ்)𝑉𝑎𝑟(𝐲ො்ௌ்)
 

=
ா൫𝐲ොೄ

ᇲ 𝐲ೄ൯ିఓෝೄ
ఓೄ

ට
భ

ೄ
𝐲ᇲ𝐲ೄ𝐛መ ᇲ𝐗ᇲ𝐗ೄ𝐛መ

 . 

Since 𝐸(𝐲ො்ௌ்) = 𝐗𝐛መ , 𝐸(𝐲்ௌ்) = 𝐲்ௌ், and since 𝐲்ௌ் is centered around zero, 𝜇்ௌ் = 0: 

=
𝐛መ ᇲ𝐗ᇲ𝐲ೄ

ට
భ

ೄ
 𝐲ᇲ𝐲ೄ 𝐛መ ᇲ𝐗ᇲ𝐗ೄ𝐛መ

 .        [16] 
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The prediction R-squared, 𝑅்ௌ்
ଶ , is the prediction correlation squared. 

Results 

In this study, we explored how factors, particularly sample size and the ancestry group of 

the training set, affected cross-ancestry prediction accuracy. We evaluated different scenarios of 

PGS varying the size of the training set consisting of two ancestry groups: EU ancestry data from 

the UKB and AF from AoU. Age, sex, and height were well-balanced across the sample size sets 

and datasets (Table C1). The average height across the UKB sets was 169.0  9.2 cm and was 

169.4  9.8 cm across the AoU sets. The AoU samples were younger on average (48.8  13.4 

years old) and more female (56.3%) than the UKB sets (56.8  8.0 years old and 53.3% female). 

Scenario 1: A typical PGS (SNP filtering and estimation depend on sample size) 

In this scenario, the training set was composed of varying sample sizes of AF and EU 

(𝑛்ோேಲಷ
 and 𝑛்ோேಶೆ

), and was used for both SNP selection as well as SNP effect estimation. 

Figure 9a shows the prediction accuracy in the AF testing set, 𝑇𝑆𝑇ி, while Figure 9b shows the 

prediction accuracy in the EU testing set, 𝑇𝑆𝑇ா. In the AF testing set (Figure 9a), the pure 

within-ancestry (EU 𝑛்ோேಶೆ
= 0) is the first column of results and the pure cross-ancestry (AF 

𝑛்ோேಲಷ
= 0) is the last row of results. The prediction correlation increased as the training sample 

size increased for both the pure cross-ancestry and pure within-ancestry prediction (Figure 9a). 

The maximum prediction correlation achieved with pure within-ancestry prediction was 0.19, and 

it was at the maximum sample size explored (𝑛்ோேಲಷ
= 40,000). This was, as expected, larger 

than the maximum prediction correlation achieved with pure cross-ancestry prediction (𝑅்ௌ ಲಷ
=

0.15). The maximum pure cross-ancestry prediction correlation was approximately equivalent to 

pure within-ancestry at 𝑛்ோேಲಷ
= 25,000 (Figure 9a), implying that for comparing strictly cross-

ancestry and within-ancestry PGS, ten EU individuals were required for every one AF individual. 
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The 10:1 (EU:AF) relationship was not linear though (Figure 9a), as the ancestry ratio was 1.3:1 

to achieve a prediction correlation of about half as much (𝑅்ௌ்ಲಷ
= 0.08), and the ratio was 5.6:1 

to achieve a prediction correlation of about twice as much (𝑅்ௌ்ಲಷ
= 0.29). 

The number of SNPs selected for each PGS varied depending on the training sample sizes 

used for the meta-GWAS, and, interestingly, the SNP sets filtered from AF only (𝑛்ோேಶೆ
= 0) 

tended to be compared to the SNP sets filtered from EU only (𝑛்ோேಲಷ
= 0). For example, when 

𝑛்ோேಶೆ
= 0 but 𝑛்ோேಲಷ

= 25,000, 510 SNPs were selected. However, when this was reversed 

such that 𝑛்ோேಲಷ
= 0 but 𝑛்ோேಶೆ

= 25,000, 770 SNPs were selected. This could be because the 

EU ancestry group tends to have more LD compared to the AF ancestry group. 
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a. Scenario 1: African testing set, 𝑇𝑆𝑇ி 
 

 

Figure 9: PGS varying the training sample sizes used to filter SNPs and estimate effects. The 

prediction correlation, 𝑅்ௌ், for height using different PGS for: (a) the African testing set, 𝑇𝑆𝑇ி, 

and (b) the European testing set, 𝑇𝑆𝑇ா, for different combinations of 𝑇𝑅𝑁ி and 𝑇𝑅𝑁ா sample 

sizes used for both SNP filtering and SNP effect estimation. SNPs entering into each PGS are 

based on the training sample size combinations (𝑛்ோேಲಷ
 and 𝑛்ோேಶೆ

) and the number of SNPs, p, 

for each PGS is shown in parenthesis. For 𝑇𝑆𝑇ி, when there are no AF in the training (𝑛்ோேಲಷ
=

0), this is pure cross-ancestry prediction and when there are no EU in the training (𝑛்ோேಶೆ
= 0), 

this is pure within-ancestry prediction (and vice versa for 𝑇𝑆𝑇ா). 
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Figure 9 (cont’d) 

b. Scenario 1: European testing set, 𝑇𝑆𝑇ா 
 

 
 

When training the PGS using a combination of AF and EU data, prediction correlation 

testing in the AF group, 𝑇𝑆𝑇ி, tended to increase as both training sample sizes increased (Figure 

9a), such that the maximum prediction correlation achieved was for the maximum sample sizes of 

both (AF 𝑛்ோேಲಷ
= 40,000 and EU 𝑛்ோேಶೆ

= 250,000). As seen comparing the pure within-

ancestry and cross-ancestry PGS, the number of EU individuals included in the training data 

required to obtain equivalent prediction accuracy was more than that required of the AF number 

of individuals. For example, to achieve a prediction correlation of 0.27, four scenarios in Figure 

9a achieved this: AF 𝑛்ோேಲಷ
= 35,000 and 40,000 with EU 𝑛்ோேಶೆ

= 100,000 (2.7:1), AF 

𝑛்ோேಲಷ
= 30,000 and EU 𝑛்ோேಶೆ

= 150,000 (5:1), and AF 𝑛்ோேಲಷ
= 25,000 and EU 
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𝑛்ோேಶೆ
= 250,000 (10:1). This means at this prediction accuracy level, the additional EU 

individuals added was worth increasingly less than adding more within-ancestry (AF) individuals. 

Conversely, we observed from the results in Figure 9b when testing in EU, 𝑇𝑆𝑇ா, that adding AF 

samples did not have much impact on prediction accuracy, rather, the prediction accuracy 

increased as the EU sample size increased. 

Figure 10 has contour lines over the prediction correlations testing in AF (𝑇𝑆𝑇ி), 

identifying the sample sizes required of each training ancestry to achieve equivalent prediction 

correlation. As the EU sample size (𝑛்ோேಶೆ
) increased in size, the contour lines started to level 

off, showing the relative decrease of information added after about 𝑛்ோேಶೆ
= 100,000 EU 

individuals. This leveling off suggests that beyond some threshold for sample size, increasing the 

size of the non-target ancestry group in the training data (e.g., more EU individuals) contributes 

less to enhancing prediction accuracy and there are diminishing returns from additional data of 

this type. Additionally, the larger negative slopes at smaller EU sample sizes means that, while 

additional AF individuals increased prediction correlation more than the equivalent number of EU 

individuals, they were closer to a 1:1 equivalency (slope becomes closer to negative one) than at 

the higher EU sample sizes (where the slope becomes closer to zero). 
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Figure 10: Prediction correlation contour lines. Contour lines of predictive correlations (shown 

in red) over the estimated prediction correlation, 𝑅்ௌ், for height using different PGS for the AF 

testing set, 𝑇𝑆𝑇ி. The axes show different combinations of AF and EU training set sample size 

combinations (𝑛்ோேಲಷ
 and 𝑛்ோேಶೆ

). The training sample sizes were used for both SNP filtering 

and SNP effect estimation.  

Scenario 2: Isolating effect estimation (fixing the SNP set) 

To explore how SNP effect estimation accuracy affects PGS accuracy, we evaluated each 

PGS with a fixed SNP set of p = 5,234 SNPs (Figure 11) but estimated the SNP effects in 

different training sample sizes of EU and AF. In Figure 11a (testing in AF, 𝑇𝑆𝑇ி), as the EU 

sample size increased relative to the AF sample size, the prediction accuracy decreased since the 

SNP effect estimates converged toward the EU-specific estimates. The highest prediction 

accuracy was with the largest sample size of AF and a small number of EU (𝑛்ோேಲಷ
= 40,000 

and 𝑛்ோேಶೆ
= 10,000; Figure 11a).  This is due to the EU sample having a substantially higher 

total size than the AF sample. For both testing in AF and EU, Figures 11a and 11b, respectively, 

as expected, pure cross-ancestry prediction (training in one ancestry group and testing in the other 

ancestry group) generally had the lowest prediction accuracy. When testing in the EU group 

Contour 
Lines 
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(Figure 11b), the highest accuracy was among the PGS with the largest sample size of EU. The 

range of prediction correlation estimates (Figure 11a) within the AF testing set, 𝑇𝑆𝑇ி, was 

narrow compared to the range in Scenario 1 (Figure 9a). Excluding pure within- and cross-

ancestry cases, for the AF testing set, 𝑇𝑆𝑇ி, the range of prediction correlation was 0.19 – 0.28. 

Similarly, for the EU testing set, 𝑇𝑆𝑇ா, the range of prediction correlation was 0.33 – 0.46. In 

Scenario 1, both testing sets (𝑇𝑆𝑇ி and 𝑇𝑆𝑇ா) had a range starting from nearly zero and a larger 

maximum. 

 When comparing the fixed SNP set combinations in Figure 11a to another fixed SNP set 

of p = 817 SNPs (Figure C1a), the prediction correlations were typically higher (although six 

cases when 𝑛்ோேಲಷ
= 0 were smaller), which is what we hypothesized for PGS selecting a larger 

number of SNPs. The pattern of the correlation estimates was the same, in that the highest 

correlation estimates were among a smaller number of 𝑛்ோேಶೆ
 rather than the maximum. 
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a. Scenario 2: African testing set, 𝑇𝑆𝑇ி 

 

Figure 11: PGS fixing the SNP set but varying the training sample sizes used to estimate 

SNP effects. The prediction correlation, 𝑅்ௌ், for height using different PGS for: (a) the African 

testing set, 𝑇𝑆𝑇ி, and (b) the European testing set, 𝑇𝑆𝑇ா, for different combinations of 𝑇𝑅𝑁ி 

and 𝑇𝑅𝑁ா sample sizes used for effect estimation. The SNPs entering into each PGS are the 

same (p=5,234 SNPs) and is noted in parentheses. For 𝑇𝑆𝑇ி, when there are no AF in the 

training (𝑛்ோேಲಷ
= 0), this is pure cross-ancestry prediction and when there are no EU in the 

training (𝑛்ோேಶೆ
= 0), this is pure within-ancestry prediction (and vis versa for 𝑇𝑆𝑇ா). The scale 

of the prediction correlation is based on the values from Figure 9a for Figure 11a (and from 

Figure 9b for Figure 11b) to allow for straightforward comparison between the plots. 

  



 

 137

Figure 11 (cont’d) 

b. Scenario 2: European testing set, 𝑇𝑆𝑇ா 
 

 
 
Scenario 3: SNP portability 

In Scenario 3 we used cross-ancestry PGS portability estimates from the Relative 

Accuracy maps derived from the UK Biobank arrays, available at Lupi et al., 202414 (see ‘SNP 

selection’ in Methods for details on portability estimates). To build each PGS for height we 

partitioned the SNPs into two groups using a p < 1e-2 inclusion level. The two groups were the 

top 20th percentile of portable SNPs and the bottom 20th percentile of portable SNPs. Similar to 

Scenario 1, the training sample sizes (𝑛்ோேಲಷ
 and 𝑛்ோேಶೆ

) for this scenario determined both SNP 

selection as well as SNP effect estimation. Figure 12a shows the prediction accuracy when testing 

in AF (𝑇𝑆𝑇ி) for 99 combinations of training sample sizes (different sizes and ancestries) by 

SNP portability. Figure 12b shows the prediction accuracies for the same settings but testing in 
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EU (𝑇𝑆𝑇ா). Figure 12a shows that even among the pure within-ancestry PGS, that did not 

involve any EU data, the PGS involving the SNPs predicted to be most portable across ancestry 

group had higher prediction correlation compared to the PGS involving the SNPs predicted to be 

the least portable. Interestingly, for the most portable SNPs testing in AF (𝑇𝑆𝑇ி), the maximum 

prediction correlation achieved was only 0.18, and was with the maximum training sample sizes 

used for both SNP filtering and estimation (𝑛்ோேಲಷ
= 40,000 and 𝑛்ோேಶೆ

= 250,000). For the 

least portable SNPs testing in AF (𝑇𝑆𝑇ி), the maximum prediction correlation achieved was only 

0.16, and was also with the maximum training sample sizes used for both SNP filtering and 

estimation (𝑛்ோேಲಷ
= 40,000 and 𝑛்ோேಶೆ

= 250,000). While this sample size combination had 

fewer SNPs compared to that in Figure 9a (about 9,080 SNPs versus 15,039 SNPs, respectively), 

which used the same sample sizes for effect estimation but differed in the SNP set, other 

combinations had a larger number of SNPs entering into the PGS but still had poorer prediction 

accuracy. One example of this is for 𝑛்ோேಲಷ
= 25,000 and 𝑛்ோேಶೆ

= 25,000, in which the 

typical PGS (Figure 9a) had 817 SNPs and a prediction correlation of 0.20, while the most 

portable SNP-based PGS (Figure 12a) had 2,091 SNPs and a prediction correlation of 0.14 (0.12 

for the least portable SNP-based PGS). 
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a. Scenario 3: African testing set, 𝑇𝑆𝑇ி 
 

 
 
b. Scenario 3: European testing set, 𝑇𝑆𝑇ா 
 

 
 
Figure 12: PGS subset by SNP portability. The prediction correlation, 𝑅்ௌ், for height using 

different PGS for: (a) AF (𝑇𝑆𝑇ி) and (b) EU (𝑇𝑆𝑇ா) when using the top 20% most portable  

SNPs (based on MC-ANOVA’s cross-ancestry R-squared14) compared to the bottom 20% most 

portable SNPs by training set sample size (AF [𝑇𝑅𝑁ி] and EU [𝑇𝑅𝑁ா]). The scale of the 

prediction correlation is based on the values from Figure 9a for Figure 12a (and from Figure 9b 

for Figure 12b) to allow for straightforward comparison between the plots. 

Least Portable SNPs Most Portable SNPs 

Least Portable SNPs Most Portable SNPs 
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Comparing the most portable PGS to the least in the AF testing set, 𝑇𝑆𝑇ி  (Figure C2a), 

the pure within-ancestry PGS had an average (median) increase in prediction R-squared 

(prediction correlation squared) of 103.8% (103.1%), the pure cross-ancestry PGS had an average 

(median) increase of 119.1% (83.7%), and the PGS involving both EU and AF in training had an 

average (median) increase of 78.8% (49.1%). In the EU testing set, 𝑇𝑆𝑇ா (Figure C2b), the most 

portable SNPs set tended to have higher prediction R-squared compared to the least portable 

SNPs. There was an average (median) increase of 158.5% (27.1%) across all PGS combinations 

(including pure within- and cross-ancestry PGS). 

Our prediction correlations for Scenario 3 (Figure 12) are generally lower than in Scenario 

1 (Figure 9). Of the cases when Scenario 1 had fewer SNPs than Scenario 3 (59 out of 99), only 

13 of those had a smaller prediction correlation. The thirteen combinations with lower prediction 

correlation and a lower number of SNPs selected were all when 𝑛்ோேಲಷ
≤ 15,000 and 𝑛்ோேಶೆ

≤

25,000. Since Scenario 3 represents the genomic regions with high portability instead of being 

genome-wide, if the SNPs with higher LD (portability) are located near one another, they could be 

picking up the same QTL signal, leading to less diversity in the signal being picked up by 

markers. Indeed, in Table C2 when defining AF peaks (unique local chromosome regions 

consisting of GWAS-significant hits in LD picking up the same QTL signal) from the two 

portability-based SNP hit sets (GWAS p-value < 1e-2), the SNP set consisting of the highly 

portable SNPs condensed to 511 peaks on average across sample size cases (on average 9.3% of 

the total SNPs) and the SNPs with low portability condensed to 500 peaks (8.6% of the total 

SNPs). Conversely, the Scenario 1 SNPs condensed 2,015 peaks on average (on average 50.2% of 

the total SNPs). 
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Discussion 

In this study, we postulate that training sample size and ancestry group are the major 

limitations in cross-ancestry prediction accuracy. Previous studies have shown that the sample 

size used to train models affects prediction accuracy by influencing both the identification of 

phenotype-associated SNPs selected for inclusion in the PGS and the precision of SNP effect 

estimates8–12. To shed light on this problem, we evaluated polygenic scores (PGS) under various 

scenarios using both within and cross-ancestry training data from the UK Biobank and All of Us. 

Using individuals from multiple ancestry groups is important in identifying genomic 

regions with QTL signal. However, we found that cross-ancestry prediction did not produce 

accurate marker effect estimates across ancestries. When the training sample size of the target 

ancestry group (AF) was very small (or zero), the estimated effects were poor and prediction 

accuracy among AF was low. However, when the AF ancestry group had a certain training 

sample size (e.g., at 15,000 AF samples in Scenario 2) it was more precise to use a European (EU) 

training size smaller than available since we observed that over-increasing the number of EU 

ancestry samples compared to the number of AF samples dominated the effect estimation, 

resulting in poorer prediction accuracy when testing among AF ancestry. These results might 

suggest that the QTL, or QTL effects, are not the same across ancestry groups, but Hou et al., 

202339 suggest that causal variants tend to be similar across ancestry groups. Our results may 

align with this if different LD patterns exist between SNP markers and QTL across ancestry 

groups, as these variations could alter the QTL effects captured by markers in each group. 

Indeed, previous studies have shown that there are LD and allele frequency differences 

between ancestry groups13,14,19. Thus, the QTL effect that we may capture in a marker in one 

ancestry group may not exist in the other. SNP portability describes the transferability of a PGS 
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across ancestry groups based on how similar the (local) genetic regions in the PGS are across 

ancestry groups. As shown by Lupi et al.14, the higher the portability, the better conserved the LD 

and allele frequency in the region between groups and the more portable a cross-ancestry PGS 

will be. Classifying SNPs based on their portability across ancestries showed that SNPs in higher 

portability regions improved predictive accuracy in PGS compared to SNPs with lower portability 

(Scenario 3). This was true even in within-ancestry predictions. This suggests that cross-ancestry 

SNP portability is a valuable tool for identifying regions that are more suitable for prediction 

across ancestries and those that are less suitable. 

Classifying SNPs by portability also demonstrated that the number of SNPs included in 

the PGS doesn’t necessarily translate to better selection or identification of QTL or QTL markers. 

The SNP filtering threshold was less conservative (larger) in Scenario 3 compared to Scenario 1, 

yet under Scenario 3, some of the PGS yielded lower prediction correlation estimates (among 

𝑇𝑆𝑇ி) even when more SNPs were selected. Since the portability-based SNP sets included 

substantially fewer GWAS peaks than the typical PGS, there was less variation in the QTL signal 

picked up by the portability-based SNP sets. This is similar to that observed by Kim et al., 20172, 

who compared SNP selection based on LD blocks to selecting the top SNPs independent of LD 

blocks and found that for a small number of SNPs, the top SNP method underperformed due to 

the top SNPs clustering in regions, thus, having poor genome coverage. 

Our findings demonstrate the inefficiency of using cross-ancestry data (EU) compared to 

within-ancestry data (AF) for PGS predictions in AF individuals, similar to that found by 

Lehmann et al., 20236. The study suggests that a significantly larger number of EU individuals is 

required to achieve the same prediction accuracy as a smaller number of AF individuals. This 

inefficiency is particularly pronounced at higher levels of prediction accuracy, where the required 
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EU sample size disproportionately increases compared to the AF sample size required. This non-

linear relationship indicates diminishing returns from adding more cross-ancestry data beyond a 

certain point. Yet, our results highlight the need for further increasing non-EU data collection, 

since PGS involving both within and cross-ancestry data still greatly improved upon the pure 

within-ancestry prediction at the limited sample sizes available of AF individuals. 

Our study has some limitations. First, this study used data from different cohorts, and both 

cohorts had different genotyping platforms. Therefore, we obtained a common set of SNPs with 

sufficient genome coverage (calls for All of Us and the UK Biobank imputed SNP set). This is a 

limitation since SNP imputation can induce artifacts related to the reference panels used for 

imputation, which are often EU-dominant. Additionally, imputed SNPs have a higher marker 

density and higher LD compared to genotyped SNPs. Another limitation is that this study only 

evaluated height. Thus, our results are not necessarily representative of other traits with different 

heritability, polygenicity, and genetic architecture. Lehmann et al., 20236, found that for cross-

ancestry prediction, the optimal training strategy, e.g., the sample sizes of each ancestry (EU and 

non-EU), varied substantially depending on the trait. Nevertheless, their conclusion that additional 

non-EU genomic data collection is critical is consistent with our findings. 

These findings have important implications for genomic research and the development of 

PGS. First, they highlight the necessity of increasing sample sizes for non-European ancestry 

groups to achieve more accurate prediction. Second, our findings show the value of cross-ancestry 

information borrowing to identify genomic regions with QTL signals. Finally, they highlight the 

limitations in estimating effects across ancestry groups. Overall, by highlighting the limitations 

and inefficiencies in using cross-ancestry data, our findings advocate for prioritizing the 

continuation of ongoing efforts in collecting data for underrepresented ancestry 
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groups.                                                                                                                                                      
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APPENDIX C: Chapter 3 

Supplementary Figures 

a. Scenario 2: African testing set, 𝑇𝑆𝑇ி, with a p = 817 SNP set 

 
 
Figure C1: PGS fixing the SNP set but varying the training sample sizes used to estimate 

SNP effects. The prediction correlation, 𝑅்ௌ், for height using different PGS for: (a) the African 

testing set, 𝑇𝑆𝑇ி, and (b) the European testing set, 𝑇𝑆𝑇ா, for different combinations of 𝑇𝑅𝑁ி 

and 𝑇𝑅𝑁ா sample sizes used for effect estimation. The SNPs entering into each PGS are the 

same (p = 817 SNPs) and is noted in parentheses. For 𝑇𝑆𝑇ி, when there are no AF in the training 

(𝑛்ோேಲಷ
= 0), this is pure cross-ancestry prediction and when there are no EU in the training 

(𝑛்ோேಶೆ
= 0), this is pure within-ancestry prediction (and vis versa for 𝑇𝑆𝑇ா). The scale of the 

prediction correlation is based on the values from Figure 9a for Figure 11a (and from Figure 9b 

for Figure 11b) to allow for straightforward comparison between the plots. 
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Figure C1 (cont’d) 

b. Scenario 2: European testing set, 𝑇𝑆𝑇ா, with a p = 817 SNP set 
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a. Scenario 3: African testing set, 𝑇𝑆𝑇ி 

 
 

Figure C2: The percent increase in prediction R-squared, 

ቀோೄ
మ (௦௧ ௧)ିோೄ

మ (௦௧ ௧)ቁ

ோೄ
మ (௦௧ ௧)

× 100%14, for height using different PGS for: (a) AF 

(𝑇𝑆𝑇ி) and (b) EU (𝑇𝑆𝑇ா) when using the top 20% most portable SNPs (based on MC-

ANOVA’s cross-ancestry R-squared14) compared to the bottom 20% most portable SNPs by 

training set sample size (AF [𝑇𝑅𝑁ி] and EU [𝑇𝑅𝑁ா]) used for SNP filtering and estimation. 
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Figure C2 (cont’d) 

b. Scenario 3: European testing set, 𝑇𝑆𝑇ா 
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Supplementary Tables 

Table C1: Descriptive statistics of the European (EU) and African (AF) training and testing sets. 

Continuous traits are described by the mean plus or minus one standard deviation. 

 
 
  

Ancestry 
Group 

Sample Size Female (%) Age (years) Height (cm) 

European (EU) 

n=5,000 53.7 56.9  8.0 168.9  9.2 

n=10,000 53.2 56.8  8.0 169.0  9.1 

n=25,000 53.1 56.7  8.0 169.1  9.2 

n=50,000 53.3 56.8  8.0 169.0  9.2 

n=75,000 53.2 56.8  8.0 169.1  9.2 

n=100,000 53.1 56.8  8.0 169.1  9.2 

n=150,000 53.2 56.8  8.0 169.1  9.2 

n=200,000 53.3 56.8  8.0 169.1  9.2 

n=250,000 53.2 56.8  8.0 169.1  9.2 

Testing Set (n=10,000) 54.1 56.7  8.0 168.9  9.2 

African (AF) 

n=5,000 55.7 48.7  13.4 169.5  9.8 

n=7,500 55.7 48.7  13.4 169.5  9.8 

n=10,000 55.9 48.6  13.5 169.4  9.9 

n=15,000 56.5 48.7  13.5 169.4  9.8 

n=20,000 56.6 48.8  13.5 169.4  9.8 

n=25,000 56.6 48.8  13.4 169.3  9.7 

n=30,000 56.6 48.9  13.4 169.4  9.7 

n=35,000 56.7 48.9  13.4 169.3  9.8 

n=40,000 56.7 48.9  13.4 169.3  9.8 

Testing Set (n=9,078) 56.0 49.1  13.4 169.5  9.7 
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Table C2: The number of AF peaks at an R-squared threshold of 0.1 for each sample size 

combination SNPs (EU and AF). SNP set refers to the scenario under which the SNPs were 

selected. ‘1e-4’ is the p-value cutoff used in Scenario 1, and ‘1e-2 Low’ and ‘1e-2 High’ are the 

p-value cutoffs and portability sets used in Scenario 3. 

 
AF Sample 

Size 
EU Sample 

Size 
SNP Set 

# of 
Peaks 

Total # 
of SNPs 

# of Peaks out of # 
of SNPs (%) 

5000 0 1e-4 72 75 96.0 
7500 0 1e-4 76 87 87.4 

10000 0 1e-4 102 119 85.7 
15000 0 1e-4 147 210 70.0 
20000 0 1e-4 205 374 54.8 
25000 0 1e-4 273 509 53.6 
30000 0 1e-4 351 680 51.6 
35000 0 1e-4 413 843 49.0 
40000 0 1e-4 513 1058 48.5 

5000 5000 1e-4 70 81 86.4 
7500 5000 1e-4 74 92 80.4 

10000 5000 1e-4 83 106 78.3 
15000 5000 1e-4 123 156 78.8 
20000 5000 1e-4 170 260 65.4 
25000 5000 1e-4 238 380 62.6 
30000 5000 1e-4 282 466 60.5 
35000 5000 1e-4 346 610 56.7 
40000 5000 1e-4 455 834 54.6 

5000 10000 1e-4 97 143 67.8 
7500 10000 1e-4 100 134 74.6 

10000 10000 1e-4 109 153 71.2 
15000 10000 1e-4 155 211 73.5 
20000 10000 1e-4 180 277 65.0 
25000 10000 1e-4 233 374 62.3 
30000 10000 1e-4 289 466 62.0 
35000 10000 1e-4 332 567 58.6 
40000 10000 1e-4 424 735 57.7 

5000 25000 1e-4 345 710 48.6 
7500 25000 1e-4 366 716 51.1 

10000 25000 1e-4 353 684 51.6 
15000 25000 1e-4 369 714 51.7 
20000 25000 1e-4 405 770 52.6 
25000 25000 1e-4 433 816 53.1 
30000 25000 1e-4 475 895 53.1 
35000 25000 1e-4 507 994 51.0 
40000 25000 1e-4 553 1084 51.0 

5000 50000 1e-4 886 2100 42.2 
7500 50000 1e-4 878 2036 43.1 

10000 50000 1e-4 879 1998 44.0 
15000 50000 1e-4 896 1984 45.2 
20000 50000 1e-4 908 1974 46.0 
25000 50000 1e-4 921 1984 46.4 
30000 50000 1e-4 956 2026 47.2 
35000 50000 1e-4 977 2029 48.2 
40000 50000 1e-4 1022 2079 49.2 

5000 75000 1e-4 1519 3670 41.4 
7500 75000 1e-4 1524 3649 41.8 

10000 75000 1e-4 1517 3635 41.7 
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Table C2 (cont’d) 

15000 75000 1e-4 1513 3588 42.2 
20000 75000 1e-4 1506 3556 42.4 
25000 75000 1e-4 1512 3535 42.8 
30000 75000 1e-4 1537 3510 43.8 
35000 75000 1e-4 1547 3509 44.1 
40000 75000 1e-4 1570 3508 44.8 

5000 100000 1e-4 2228 5625 39.6 
7500 100000 1e-4 2211 5510 40.1 

10000 100000 1e-4 2188 5445 40.2 
15000 100000 1e-4 2144 5301 40.4 
20000 100000 1e-4 2136 5253 40.7 
25000 100000 1e-4 2134 5233 40.8 
30000 100000 1e-4 2150 5195 41.4 
35000 100000 1e-4 2154 5140 41.9 
40000 100000 1e-4 2165 5112 42.4 

5000 150000 1e-4 3569 9138 39.1 
7500 150000 1e-4 3533 9055 39.0 

10000 150000 1e-4 3530 9016 39.2 
15000 150000 1e-4 3478 8914 39.0 
20000 150000 1e-4 3510 8760 40.1 
25000 150000 1e-4 3463 8680 39.9 
30000 150000 1e-4 3414 8536 40.0 
35000 150000 1e-4 3422 8512 40.2 
40000 150000 1e-4 3433 8478 40.5 

5000 200000 1e-4 4880 12364 39.5 
7500 200000 1e-4 4849 12253 39.6 

10000 200000 1e-4 4816 12171 39.6 
15000 200000 1e-4 4794 12061 39.7 
20000 200000 1e-4 4795 12006 39.9 
25000 200000 1e-4 4805 11938 40.2 
30000 200000 1e-4 4784 11864 40.3 
35000 200000 1e-4 4768 11775 40.5 
40000 200000 1e-4 4794 11802 40.6 

5000 250000 1e-4 6236 15719 39.7 
7500 250000 1e-4 6209 15662 39.6 

10000 250000 1e-4 6206 15586 39.8 
15000 250000 1e-4 6172 15418 40.0 
20000 250000 1e-4 6167 15371 40.1 
25000 250000 1e-4 6104 15233 40.1 
30000 250000 1e-4 6109 15177 40.3 
35000 250000 1e-4 6116 15153 40.4 
40000 250000 1e-4 6085 15038 40.5 

5000 0 1e-2 Low 18 1055 1.7 
7500 0 1e-2 Low 22 1190 1.8 

10000 0 1e-2 Low 25 1256 2.0 
15000 0 1e-2 Low 27 1443 1.9 
20000 0 1e-2 Low 58 1708 3.4 
25000 0 1e-2 Low 69 1954 3.5 
30000 0 1e-2 Low 81 2153 3.8 
35000 0 1e-2 Low 105 2305 4.6 
40000 0 1e-2 Low 115 2548 4.5 

5000 5000 1e-2 Low 16 1132 1.4 
7500 5000 1e-2 Low 15 1193 1.3 

10000 5000 1e-2 Low 14 1230 1.1 
15000 5000 1e-2 Low 16 1368 1.2 
20000 5000 1e-2 Low 38 1546 2.5 
25000 5000 1e-2 Low 57 1744 3.3 
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Table C2 (cont’d) 

30000 5000 1e-2 Low 71 1911 3.7 
35000 5000 1e-2 Low 81 2096 3.9 
40000 5000 1e-2 Low 115 2299 5.0 

5000 10000 1e-2 Low 15 1248 1.2 
7500 10000 1e-2 Low 12 1293 0.9 

10000 10000 1e-2 Low 15 1312 1.1 
15000 10000 1e-2 Low 24 1423 1.7 
20000 10000 1e-2 Low 33 1529 2.2 
25000 10000 1e-2 Low 44 1694 2.6 
30000 10000 1e-2 Low 61 1873 3.3 
35000 10000 1e-2 Low 73 2019 3.6 
40000 10000 1e-2 Low 96 2211 4.3 

5000 25000 1e-2 Low 69 1892 3.6 
7500 25000 1e-2 Low 73 1877 3.9 

10000 25000 1e-2 Low 71 1865 3.8 
15000 25000 1e-2 Low 77 1908 4.0 
20000 25000 1e-2 Low 88 2004 4.4 
25000 25000 1e-2 Low 89 2090 4.3 
30000 25000 1e-2 Low 88 2164 4.1 
35000 25000 1e-2 Low 104 2247 4.6 
40000 25000 1e-2 Low 104 2401 4.3 

5000 50000 1e-2 Low 191 2913 6.6 
7500 50000 1e-2 Low 195 2884 6.8 

10000 50000 1e-2 Low 195 2852 6.8 
15000 50000 1e-2 Low 202 2835 7.1 
20000 50000 1e-2 Low 200 2874 7.0 
25000 50000 1e-2 Low 196 2906 6.7 
30000 50000 1e-2 Low 196 2962 6.6 
35000 50000 1e-2 Low 213 3002 7.1 
40000 50000 1e-2 Low 218 3100 7.0 

5000 75000 1e-2 Low 372 3899 9.5 
7500 75000 1e-2 Low 375 3873 9.7 

10000 75000 1e-2 Low 375 3856 9.7 
15000 75000 1e-2 Low 367 3818 9.6 
20000 75000 1e-2 Low 354 3836 9.2 
25000 75000 1e-2 Low 359 3815 9.4 
30000 75000 1e-2 Low 368 3856 9.5 
35000 75000 1e-2 Low 368 3886 9.5 
40000 75000 1e-2 Low 370 3930 9.4 

5000 100000 1e-2 Low 543 4856 11.2 
7500 100000 1e-2 Low 535 4827 11.1 

10000 100000 1e-2 Low 536 4796 11.2 
15000 100000 1e-2 Low 550 4769 11.5 
20000 100000 1e-2 Low 536 4762 11.3 
25000 100000 1e-2 Low 546 4768 11.5 
30000 100000 1e-2 Low 541 4784 11.3 
35000 100000 1e-2 Low 537 4776 11.2 
40000 100000 1e-2 Low 529 4797 11.0 

5000 150000 1e-2 Low 884 6516 13.6 
7500 150000 1e-2 Low 874 6496 13.5 

10000 150000 1e-2 Low 884 6463 13.7 
15000 150000 1e-2 Low 867 6415 13.5 
20000 150000 1e-2 Low 844 6389 13.2 
25000 150000 1e-2 Low 859 6353 13.5 
30000 150000 1e-2 Low 857 6362 13.5 
35000 150000 1e-2 Low 849 6360 13.3 
40000 150000 1e-2 Low 853 6368 13.4 
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Table C2 (cont’d) 

5000 200000 1e-2 Low 1236 7909 15.6 
7500 200000 1e-2 Low 1237 7862 15.7 

10000 200000 1e-2 Low 1220 7840 15.6 
15000 200000 1e-2 Low 1219 7794 15.6 
20000 200000 1e-2 Low 1214 7759 15.6 
25000 200000 1e-2 Low 1210 7718 15.7 
30000 200000 1e-2 Low 1191 7720 15.4 
35000 200000 1e-2 Low 1175 7692 15.3 
40000 200000 1e-2 Low 1220 7716 15.8 

5000 250000 1e-2 Low 1606 9268 17.3 
7500 250000 1e-2 Low 1609 9235 17.4 

10000 250000 1e-2 Low 1594 9203 17.3 
15000 250000 1e-2 Low 1574 9181 17.1 
20000 250000 1e-2 Low 1594 9128 17.5 
25000 250000 1e-2 Low 1587 9113 17.4 
30000 250000 1e-2 Low 1577 9077 17.4 
35000 250000 1e-2 Low 1571 9061 17.3 
40000 250000 1e-2 Low 1574 9078 17.3 

5000 0 1e-2 High 18 1055 1.7 
7500 0 1e-2 High 15 1188 1.3 

10000 0 1e-2 High 18 1255 1.4 
15000 0 1e-2 High 37 1443 2.6 
20000 0 1e-2 High 50 1706 2.9 
25000 0 1e-2 High 62 1953 3.2 
30000 0 1e-2 High 91 2153 4.2 
35000 0 1e-2 High 97 2305 4.2 
40000 0 1e-2 High 131 2548 5.1 

5000 5000 1e-2 High 9 1132 0.8 
7500 5000 1e-2 High 14 1194 1.2 

10000 5000 1e-2 High 22 1230 1.8 
15000 5000 1e-2 High 36 1368 2.6 
20000 5000 1e-2 High 46 1545 3.0 
25000 5000 1e-2 High 59 1743 3.4 
30000 5000 1e-2 High 66 1912 3.5 
35000 5000 1e-2 High 91 2094 4.3 
40000 5000 1e-2 High 118 2299 5.1 

5000 10000 1e-2 High 27 1248 2.2 
7500 10000 1e-2 High 27 1292 2.1 

10000 10000 1e-2 High 34 1313 2.6 
15000 10000 1e-2 High 45 1423 3.2 
20000 10000 1e-2 High 57 1529 3.7 
25000 10000 1e-2 High 73 1700 4.3 
30000 10000 1e-2 High 87 1873 4.6 
35000 10000 1e-2 High 91 2019 4.5 
40000 10000 1e-2 High 118 2210 5.3 

5000 25000 1e-2 High 116 1892 6.1 
7500 25000 1e-2 High 123 1875 6.6 

10000 25000 1e-2 High 117 1865 6.3 
15000 25000 1e-2 High 123 1905 6.5 
20000 25000 1e-2 High 131 2004 6.5 
25000 25000 1e-2 High 143 2090 6.8 
30000 25000 1e-2 High 151 2164 7.0 
35000 25000 1e-2 High 157 2247 7.0 
40000 25000 1e-2 High 163 2402 6.8 

5000 50000 1e-2 High 252 2917 8.6 
7500 50000 1e-2 High 254 2883 8.8 

10000 50000 1e-2 High 268 2852 9.4 
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Table C2 (cont’d) 

15000 50000 1e-2 High 262 2833 9.2 
20000 50000 1e-2 High 266 2875 9.3 
25000 50000 1e-2 High 265 2905 9.1 
30000 50000 1e-2 High 262 2964 8.8 
35000 50000 1e-2 High 269 3001 9.0 
40000 50000 1e-2 High 281 3100 9.1 

5000 75000 1e-2 High 405 3899 10.4 
7500 75000 1e-2 High 415 3872 10.7 

10000 75000 1e-2 High 414 3856 10.7 
15000 75000 1e-2 High 403 3819 10.6 
20000 75000 1e-2 High 410 3836 10.7 
25000 75000 1e-2 High 409 3815 10.7 
30000 75000 1e-2 High 396 3856 10.3 
35000 75000 1e-2 High 404 3885 10.4 
40000 75000 1e-2 High 420 3930 10.7 

5000 100000 1e-2 High 593 4856 12.2 
7500 100000 1e-2 High 593 4828 12.3 

10000 100000 1e-2 High 583 4797 12.2 
15000 100000 1e-2 High 566 4768 11.9 
20000 100000 1e-2 High 587 4759 12.3 
25000 100000 1e-2 High 576 4768 12.1 
30000 100000 1e-2 High 575 4784 12.0 
35000 100000 1e-2 High 569 4779 11.9 
40000 100000 1e-2 High 566 4797 11.8 

5000 150000 1e-2 High 913 6516 14.0 
7500 150000 1e-2 High 917 6499 14.1 

10000 150000 1e-2 High 901 6463 13.9 
15000 150000 1e-2 High 895 6414 14.0 
20000 150000 1e-2 High 897 6391 14.0 
25000 150000 1e-2 High 870 6354 13.7 
30000 150000 1e-2 High 861 6362 13.5 
35000 150000 1e-2 High 861 6360 13.5 
40000 150000 1e-2 High 868 6369 13.6 

5000 200000 1e-2 High 1204 7902 15.2 
7500 200000 1e-2 High 1187 7861 15.1 

10000 200000 1e-2 High 1206 7838 15.4 
15000 200000 1e-2 High 1177 7794 15.1 
20000 200000 1e-2 High 1186 7760 15.3 
25000 200000 1e-2 High 1187 7716 15.4 
30000 200000 1e-2 High 1181 7719 15.3 
35000 200000 1e-2 High 1190 7690 15.5 
40000 200000 1e-2 High 1185 7714 15.4 

5000 250000 1e-2 High 1485 9272 16.0 
7500 250000 1e-2 High 1504 9237 16.3 

10000 250000 1e-2 High 1494 9208 16.2 
15000 250000 1e-2 High 1474 9179 16.1 
20000 250000 1e-2 High 1476 9126 16.2 
25000 250000 1e-2 High 1454 9104 16.0 
30000 250000 1e-2 High 1462 9075 16.1 
35000 250000 1e-2 High 1470 9074 16.2 
40000 250000 1e-2 High 1451 9079 16.0 
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 In this dissertation, I discuss three projects that address challenges in the analysis and 

prediction of high-dimensional genetic data, focusing on utilizing local genetic information and 

improving the accuracy of models across underrepresented ancestry groups. One approach in 

genomics is to do a genome-wide analysis. However, genome-wide analyses can have 

challenges, such as heavy computational burdens or interpretation difficulties. If instead the 

analysis is evaluated locally, some of these challenges can be overcome. 

Both Chapters 1 and 2 present approaches that leverage local information, such as linkage 

disequilibrium. Chapter 1 estimates local genetic covariances within local segments in linkage 

disequilibrium, identifying segments with opposing directionality to the overall genetic 

correlation that would typically be masked in genome-wide correlation analyses. In the context 

of cross-ancestry prediction, the second study develops the MC-ANOVA method, which 

estimated the loss of prediction accuracy due to (local) differences in linkage disequilibrium and 

allele frequencies between ancestry groups. The study highlights the significant variability in 

prediction accuracy across local SNP segments, identifying some segments that are portable in 

PGS across ancestry groups and other segments that are not portable. 

Chapter 2 highlighted limitations in the non-European data available, and the importance 

of continuing ongoing efforts to collect non-European genomic data. Thus, Chapter 3 explores 

the impact of sample size on cross-ancestry prediction accuracy by meta-analyzing data from the 

UK Biobank and All of Us to investigate how varying European and African ancestry training 

sample sizes affect prediction in African ancestry. The findings further demonstrate the 

importance of cross-ancestry sample sizes in improving prediction accuracy among 

underrepresented ancestry groups and emphasize the need for increased sample sizes of non-

Europeans. 
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Collectively, these projects contribute important methodological advancements and 

computational tools in the field of statistical genetics, particularly in the context of leveraging 

local genetic and ancestry information. 


