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ABSTRACT 

This PhD research advances the application of high-resolution Synthetic Aperture Radar 

(SAR) and other satellite remote sensing technologies in agriculture, particularly focusing on crop 

classification, crop monitoring, and yield prediction. The study addresses critical challenges in 

effectively leveraging vast spatiotemporal data by integrating SAR data with deep learning, 

machine learning, and time-series analysis techniques to estimate crop attributes, crop biophysical 

parameters, and crop yield with improved accuracy. 

A novel contribution of this research is the development of self-supervised learning 

foundation models and the fusion of SAR and optical data to enhance predictions of crop yield, 

Vegetation Water Content (VWC), and crop height. The research also investigates the integration 

of dynamic SAR-based planting dates into crop models, improving yield estimation in rainfed 

paddy fields in Cambodia. The findings reveal that SAR-derived planting dates significantly 

enhance yield predictions by reducing uncertainty and improving accuracy compared to traditional 

methods. 

Spanning diverse climatic zones and management practices, this research demonstrates the 

exceptional potential of VH channel of Sentinel-1 SAR data for near-accurate yield prediction 

across different crops, including Michigan’s non-irrigated corn, soybean, and winter wheat. The 

study also highlights the effectiveness of patch-based 3D Convolutional Neural Networks (3D-

CNNs) and XGBoost in yield estimation, particularly in scenarios with limited reference data. 

In addition, this dissertation introduces a novel approach for estimating VWC and crop height 

using geospatial foundation models, demonstrating superior accuracy and generalizability across 

varied agricultural landscapes. The integration of SAR, optical indices, and climatic data 

significantly improved the reliability of VWC and crop height estimations, with NDVI, NDWI, 



 
 

VH backscatter, and precipitation emerging as key drivers. The research underscores the need for 

continued innovation in remote sensing technologies, offering new insights for precision 

agriculture and supporting sustainable farming practices. 

Keywords: Synthetic Aperture Radar (SAR), Foundation models, Vegetation Water Content, Deep 

learning.
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1.1. Introduction  

Satellite-based remote sensing (RS) through optical/thermal sensors and synthetic aperture 

radar (SAR) (e.g., Sentinel-1A/B (Torres et al., 2012), Sentinel-2A/B (Drusch et al., 2012a), and 

Landsat-8 (Roy et al., 2014)) has revolutionized our ability to collect vast amounts of open-access 

images at various temporal, spectral, and spatial resolutions. This has led to the creation of Big 

Data on a wide range of geophysical and biophysical features across the Earth's surface (Adrian et 

al., 2021; Kussul et al., 2017). However, analyzing extensive time-series RS data and extracting 

features by understanding sequential relationships for classification applications has consistently 

presented challenges to scientists (Zhong et al., 2019). The emergence of machine learning (ML) 

techniques has significantly enhanced scientists' capabilities in refining crop type mapping 

processes. Nevertheless, these methods often heavily rely on comprehensive feature engineering 

and the use of external indices (Zheng and Casari, 2018), and struggle to capture the dynamic 

temporal behaviors of crop classes, which fluctuate according to seasonal cycles (Wang et al., 

2021). 

The advent of cloud computing has significantly empowered the RS community to explore 

new avenues for creating classification maps, particularly by harnessing the sophisticated 

capabilities of Deep Learning (DL) algorithms (Brown et al., 2022; Ma et al., 2019). Unlike 

traditional ML methods, deep neural networks offer an advanced methodology through multiple 

interconnected layers that facilitate automatic feature extraction and representation learning 

(Kamilaris and Prenafeta-Boldú, 2018). They also excel at identifying both spatial and temporal 

relationships within RS data, from the level of individual pixels to broader parcel scales, greatly 

improving the accuracy of models that depict the complex dynamics of crop phenology (Han et 

al., 2023). 



3 
 

While DL techniques have been successfully applied with multispectral sensors for various 

agricultural tasks, such as crop classification (Dong et al., 2016; Drusch et al., 2012), monitoring 

(Katal et al., 2022), and yield prediction (Qiao et al., 2021; Wang et al., 2023), the integration of 

SAR imagery has opened up new possibilities for enhancing these applications by offering a 

consistent acquisition schedule and remains unaffected by cloud cover and the day-night cycle 

(Steele-Dunne et al., 2017). SAR data overcome the limitations of multi-spectral sensors, such as 

susceptibility to cloud cover, background interference, aerosol effects, and saturation in regions of 

high biomass (Soudani et al., 2008). Furthermore, SAR observations are sensitive to water under 

the canopy, such as in the stem and ears, which is not detectable by multi-spectral sensors (Judge 

et al., 2021; Togliatti et al., 2022). 

Despite the significant potential of SAR data for agricultural applications, its usage comes 

with a multiple of challenges such as speckle effect, the complexity of information due to both 

amplitude and phase, geometric distortions inherent in the side-looking nature of SAR, and 

temporal decorrelation (Oveis et al., 2022).  SAR data can be complex, noisy, and difficult to 

interpret, especially in agricultural applications where a wide range of factors can influence the 

signals received (Alemohammad et al., 2018). In this chapter, we discuss how DL can be 

instrumental in addressing these challenges and in extracting valuable information from a large 

stack of SAR images (Ma et al., 2014). To the best of our knowledge, this is the first review that 

explores the intersection of common and emerging DL techniques, SAR observations, and their 

classification, and monitoring applications in agriculture.  

1.2. SAR in Agricultural Applications 

1.2.1. Techniques 

SAR technology has proven to be a valuable tool for monitoring and assessing agricultural 
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landscapes. This section will delve into the key techniques employed in SAR systems for 

agricultural applications, namely backscatter, polarimetry, and interferometry. By examining the 

principles and applications of each technique, we aim to provide a comprehensive understanding 

of how SAR data are utilized to extract crucial information for crop classification, health, growth 

(i.e., tracking phenology), and management practices. 

1.2.1.1. Backscatter 

Backscatter in SAR refers to the portion of the transmitted radar signal that is reflected back 

to the sensor by the target surface, providing information about the target's physical properties and 

structure. Three properties of the SAR imagery make them ideal for agricultural applications: (i) 

The SAR backscatter’s sensitivity to the dielectric properties, size, shape, orientation, roughness, 

and distribution of canopy (i.e., leaves, stems, and fruits, etc.) (McDonald et al., 2000), (ii) the 

ability of exact repeat with multi-temporal SAR observations to capture crop growth stages and 

crop structure variation enabling improved distinction among individual crops (Deschamps et al., 

2012; McNairn et al., 2009), and (iii) the high spatial resolution (<=50m) of backscatter data that 

is instrumental in tracking crop growth/phenology and health status at a field scale. 

The SAR backscatter signal from vegetated surfaces primarily comprises three major first-

order components: (i) surface scattering from the soil; (ii) multiple (volume) scattering from the 

canopy; and (iii) double-bounce scattering from the interaction between the canopy and the soil 

surface (Lopez-Sanchez and Ballester-Berman, 2009; Ulaby et al., 1996). Several factors influence 

the interaction between the active microwave signal and canopy structure, including SAR 

instrument characteristics, microwave frequency, and incidence and azimuth angles (Balenzano et 

al., 2010). Thus, SAR observations enable the characterization of unique structural attributes and 

dielectric properties of crop canopies, providing valuable insights for phenology tracking and crop 
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discrimination (McNairn et al., 2009).  

When considering the SAR configuration for agricultural applications, the choice of frequency is 

crucial. This decision is not straightforward and must take into account the canopy characteristics, 

such as crop type and development stage. 

Recent studies have shown that SAR backscatter data at X-band (~9.65 GHz) (Fontanelli et 

al., 2022; Lopez-Sanchez et al., 2011; Phan et al., 2018; Ryu and Lee, 2023), C-band (~ 5.6 GHz) 

(Canisius et al., 2018; Inoue et al., 2014; Lopez-Sanchez et al., 2013; Mascolo et al., 2015; Skakun 

et al., 2015a; Skriver, 2011), and L-band (~1.4 GHz) (Busquier et al., 2022; Huang et al., 2021; 

Khabbazan et al., 2022; Kim et al., 2018; Whelen and Siqueira, 2017) have the potential for crop 

classification and monitoring applications. Lower-frequency bands, such as the C- and L-band, are 

capable of penetrating deeper into the canopy, providing insights into the plant structure. 

Conversely, the higher-frequency X-band, due to its limited penetration ability, is more effective 

in correlating with surface-level canopy details, such as the weight of rice heads, highlighting its 

utility for precise measurements. However, while the X-band has shown potential for early growth 

monitoring and grain yield estimation, it faces challenges in accurately correlating with volumetric 

properties of the canopy that influence LAI and biomass (Inoue et al., 2002). Building on this 

understanding, Busquier et al. (2022) further established the comparative advantages of frequency 

bands for agricultural applications. Specifically, they found that for crop classification tasks, C-

band data typically outperform X-band data. This superior performance is attributed to the C-

band's optimal sensitivity towards both vegetation and soil moisture (SM) levels, crucial factors 

that significantly enhance the effectiveness of differentiating various crop types. However, C-band 

SAR signals, with their shorter wavelengths compared to L-band, interact more with smaller 

vegetation elements like leaves and small stems, making them suitable for discriminating 
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herbaceous crops such as wheat, alfalfa, and canola, even at moderate growth stages. In contrast, 

L-band SAR signals, having longer wavelengths, are less affected by the upper canopy layers and 

interact more with intermediate-sized crop elements like stems and leaf ribs of wide-leaf crops 

such as corn and sunflower. This L-band characteristics allows for better sensitivity to biomass in 

crops with low plant density. However, for crops with high plant density, both L-band and C-band 

provide useful information for biomass estimation, with C-band saturating earlier than L-band due 

to the significant contribution of leaves to backscatter at C-band. In fact, for broad-leaf crops, the 

leaf contribution to backscatter at C-band is significant and comparable to that of stems. 

Conversely, the leaf contribution is minimal at L-band for most crop types, as the longer 

wavelengths interact more with the larger plant structures (Ferrazzoli et al., 1997). The above-

mentioned characteristics make L-band particularly well-suited for assessing vegetation properties 

such as biomass, structure, density, height, and vegetation water content (VWC), as well as SM 

beneath the canopy (Dobson et al., 1985).  

Although some studies not using DL techniques have shown that integrating different SAR 

frequencies can enhance crop classification accuracy significantly—reporting improvements up to 

37% for early-season and 5% for end-season classifications (McNairn et al., 2014) —most SAR 

with DL studies (75 out of 82) focusing on crop classification, monitoring, and yield estimation 

predominantly utilized a single frequency. In cases where frequency integration was used, the 

comparison results between multi-frequency and single frequency were not reported. Additionally,  

Busquier et al. (2022) suggested that having a longer time-series of images, even from a single 

frequency band, can be as beneficial as combining data from multiple frequency bands with fewer 

images per band.  

Figure 1 illustrates the usage of various SAR platforms and frequency bands along with DL 
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across different agricultural applications. The C-band emerges as the most frequently utilized 

band, represented in 70 out of 82 studies (85%), followed by the L and P bands (4 studies each) 

and the X band (3 studies). The figure indicates a predominant use of the C-band frequency for 

classification/mapping tasks within agricultural contexts. Despite the L-band's potential 

advantages for crop monitoring and yield estimation, its application in these areas remains limited, 

with the C-band, especially images from Sentinel-1, being the favored option. This preference is 

largely attributed to the cost-free access to C-band Sentinel-1 imagery, making it a more feasible 

and attractive option for agricultural purposes.  

  

Figure 1.1:  The stacked bar chart illustrates the distribution of SAR platforms used in conjunction 

with DL for various agricultural applications. Each bar represents the count for a specific 

application, and the height of the bar indicates the cumulative count across multiple SAR 

platforms. On the x-axis, 'CPIS' refers to the Center Pivot Irrigation Systems. 
 

In addition to frequency, the SAR signal's interaction with the crop canopy is influenced by 

the polarization of the signals transmitted and received by the SAR system. Polarization refers to 

the orientation of the electric field in the electromagnetic wave. Single-polarization SAR systems 

measure only one polarization (e.g., HH or VV), while dual-polarization SAR systems measure 
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two polarization combinations (e.g., HH and HV, or VV and VH). A signal with co-polarization, 

such as Vertical-Vertical (VV), exhibits heightened sensitivity to the vertical alignment of leaves 

(Le Toan et al., 1997). Conversely, a cross-polarization channel like Vertical-Horizontal (VH) 

demonstrates a stronger association with the Leaf Area Index (LAI) due to the volume scattering 

occurring within the crop canopy (Inoue et al., 2014; McNairn and Brisco, 2004). 

In SAR imagery, three principal metrics—Beta-naught (β0), Sigma-naught (σ0), and 

Gamma-naught (γ0)—quantify the returned radar backscatter. While Beta-naught measures 

backscatter in slant-range geometry, reflecting surface properties, it is less commonly used in 

agricultural applications. Sigma-naught and Gamma-naught are more relevant for agricultural 

studies, as they account for local incidence angle and terrain-induced variations, respectively. 

Sigma-naught corrects for local incidence angle, presenting backscatter in ground-range geometry 

as a natural normalization of beta-naught. Gamma-naught, adjusted for the plane perpendicular to 

the slant range, excels in areas of significant topographic variation, where beta-naught and sigma-

naught may falter (Small, 2011). 

While most papers have used sigma-naught (𝜎0) as the input feature for their DL algorithms, 

several studies have highlighted the advantages of gamma-naught over sigma-naught for crop 

mapping and monitoring as they are less dependent on incidence angle (Lobert et al., 2023; Pandžić 

et al., 2024; Sonobe, 2019; Wicks et al., 2018). Sigma-naught is more commonly used for 

applications involving flat terrain, while gamma-naught is preferred when dealing with areas of 

varying topography (Small, 2011).  

Figure 1.2 presents time-series data of the backscatter coefficient (𝜎0) in both VV and VH 

channels, as well as their ratio, from Sentinel-1 C-band SAR signals for sixteen crop types. At any 

single point in time, two crops may exhibit similar backscatter values, but as the crop structure 
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evolves, particularly during seed and fruit development stages, the backscatter signature changes 

accordingly. By acquiring multi-temporal SAR data, these changes can be captured and analyzed 

to distinguish different crop types and monitor their growth. However, interpreting the sequential 

relationship in the SAR time-series can be challenging, and DL has been recognized as a valuable 

tool in addressing these challenges by learning spatial and temporal relationships of crops at the 

pixel or parcel level (Han et al., 2023). 

 

Figure 1.2: Time-series data for the backscatter coefficient (𝜎0) in both VV and VH channels, 

along with their ratio—all measured in decibels (dB)—across sixteen crop types. For each date, 

the mean value is depicted by a solid line, while the standard deviation is illustrated through a 

shaded region surrounding the mean (Adapted from Villarroya-Carpio et al., 2022). 
 

Preprocessing of SAR images is a critical step in improving their quality and enhancing their 

interpretability. Out of the 82 papers analyzed, 60 (75%) have conducted SAR preprocessing, 

while the remaining papers have used preprocessed SAR data from public or non-public datasets. 

The majority of these preprocessing efforts were focused on Sentinel-1 data, with only eight papers 

addressing RADARSAT-2 and AIRSAR. The preprocessing workflow has been presented in 
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Figure 1.5 flowchart.  

The majority of the papers employed Sentinel Application Platform (SNAP) software for 

SAR processing, with a few exceptions. Garnot et al. (2022) and Kussul et al. (2018) utilized the 

Orfeo toolbox and Sentinel-Toolbox (S1TBX), respectively, while Mei et al. (2018) used 

PolSARpro to generate coherency matrix (Sec 1.2.1.2) for AirSAR data. Recently, cloud-based 

platforms such as Google Earth Engine have gained popularity for SAR processing, as 

demonstrated by Paul et al. (2022), Ngo et al. (2023) and Y. Zhou et al. (2019). Most of the papers 

utilized Lee and Refined Lee filters for speckle filtering, making them the most commonly 

employed methods for reducing speckle effect in SAR imagery for agriculture. Similarly, the 

Shuttle Radar Topography Mission (SRTM) was frequently used as the digital elevation model 

(DEM) for terrain and geometric corrections.  

To summarize, the selection of SAR backscatter observables from specific bands as input 

features for DL classifiers was strategically tailored to align with the crop types, structural 

characteristics, and intended agricultural application. This included employing both co-

polarization and cross-polarization, or their combinations, standardized into decibel scales.  

1.2.1.2. Polarimetry 

In addition to single and dual-polarization SAR systems, fully polarimetric SAR (PolSAR) 

systems also known as quad-polarization systems, have the capability to transmit and receive 

electromagnetic waves in all four possible combinations of horizontal (H) and vertical (V) 

polarizations: HH, HV, VH, and VV. This allows the PolSAR systems to measure the complete 

scattering matrix of a target, which consists of four complex elements (S_HH, S_HV, S_VH, and 

S_VV) that describe how the target interacts with the incident electromagnetic wave and changes 

the polarization state of the scattered wave. By measuring the complete scattering matrix, PolSAR 
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systems provide valuable insights into the scattering mechanisms and physical characteristics of 

agricultural crops and the underlying soil surface (Hajnsek and Desnos, 2021; Lee and Pottier, 

2017). However, interpreting the raw scattering matrix directly can be challenging. Therefore, to 

better understand and interpret the scattering behavior, polarimetric decomposition techniques are 

employed. Polarimetric decomposition is the process of breaking down the PolSAR scattering 

matrix into simpler, physically meaningful components that represent different scattering 

mechanisms such as surface, volume, and double-bounce scattering (Vicente-Guijalba et al., 

2014). The temporal evolution of the relative contributions of these scattering mechanisms relates 

to crop growth stages, and therefore, they are effective features for crop classification application. 

In the early growth stages, surface scattering typically dominates as the SAR signal primarily 

interacts with the soil surface, double-bounce scattering can also occur if the crop has vertical 

structure or residues that facilitate this interaction. In the specific case of rice planting in flooded 

fields, double-bounce scattering becomes prominent right after transplanting, due to the radar 

signal reflecting off both the flat-water surface and the upright rice stalks. As the crop grows and 

the canopy develops, volume scattering becomes more prominent, since the SAR signal interacts 

with the leaves, stems, and fruits of the plants. This volume scattering is mainly related to VWC 

and LAI. Moreover, the combination of both double-bounce and volume scattering can provide 

valuable information for biomass and yield estimation, as it captures the density and structure of 

the crop canopy. 

To facilitate the interpretation of PolSAR data, various decomposition strategies have been 

proposed, including those by Cloude and Pottier. (1996), Freeman and Durden. (1998), Yang et 

al. (1998), Yamaguchi et al. (2005), Cameron and Rais. (2006), and Raney et al. (2012). 

Pauli decomposition, based on the Pauli matrices (Cloude and Pottier, 1996), is widely used to 
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break down the backscatter matrix into surface, double-bounce and volume scattering mechanisms. 

Cloude and Pottier  also introduced a method based on eigenvectors and eigenvalues for deriving 

decomposition parameters from the coherency matrix (a 3x3 hermitian matrix derived from the 

scattering matrix that characterizes the polarimetric properties of a target), helping to identify 

entropy (H, indicating the randomness of scattering mechanisms), alpha angle (α, showing the 

main or average scattering mechanism), and anisotropy (A, evaluating the intensity difference 

between the second and third scattering mechanisms) (Lee and Pottier, 2017; Xu and Jin, 2005). 

Additionally, pedestal height, the ratio of the smallest to the largest eigenvalue, has been adopted 

to indicate the share of unpolarized scattering (Lee and Pottier, 2017).  

In addition to the Cloude-Pottier decomposition, model-based decomposition techniques 

such as Freeman-Durden (Freeman and Durden, 1998) and Yamaguchi (Yamaguchi et al., 2005) 

decompositions have been widely used for several decades. The Freeman-Durden decomposition 

conceptualizes the covariance matrix as deriving from three distinct scattering mechanisms, 

enabling identification of the predominant scattering types (Freeman and Durden, 1998; Lee and 

Pottier, 2017). Yamaguchi et al. (2005) enhanced this model by incorporating helix scattering 

power (the co-pol and the cross-pol correlations) as a fourth element. The m-chi decomposition 

technique, introduced by Raney et al. (2012) for lunar and astronomical studies, offers a valuable 

approach for analyzing polarimetric SAR data in various terrestrial applications, including 

agriculture. This decomposition is centered around two parameters: m, which measures the portion 

of the electromagnetic wave that is polarized, and chi, the Poincaré ellipticity parameter. Different 

types of crops and their varying conditions (e.g., healthy, stressed, different growth stages) can 

alter the degree of polarization of the radar signal (m), while the structural characteristics and 

orientation of crop leaves and stems, as well as the properties of the underlying soil, can influence 
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chi parameter. 

While most reviewed studies predominantly input raw linear polarization data (e.g., VV, HH, 

VH) into their DL classifiers, several have further enhanced classification accuracy in agricultural 

applications by effectively utilizing polarimetric decomposition parameters along with single and 

dual polarization measurements (Gu et al., 2019; Han et al., 2022; Komisarenko et al., 2022; Li et 

al., 2021; K. Li et al., 2022; Ma et al., 2022; Zhang et al., 2020). 

In addition to decomposition parameters from PolSAR data, various SAR indices have been 

used, such as Span, calculated as the sum of various polarizations (HH, VV, HV, and VH) and 

measuring the total backscattering strength from these polarizations (Yahia et al., 2020), cross ratio 

(CR) 
𝜎𝑉𝐻

0

𝜎𝑉𝑉
0, the quad-pol Radar Vegetation Index (RVI) which measures the randomness of 

scattering mechanisms 8𝜎𝐻𝑉
0/(𝜎𝐻𝐻

0 + 𝜎𝑉𝑉
0 + 2𝜎𝐻𝑉

0) (Zhang et al., 2020), and was modified for 

dual-pol SAR data  as 
4𝜎𝐻𝑉

0

(𝜎𝐻𝑉
0 + 𝜎𝐻𝐻

0)
⁄  (Trudel et al., 2012), and Later adopted by several 

studies as 
4𝜎𝑉𝐻

0

(𝜎𝑉𝐻
0 + 𝜎𝑉𝑉

0)
⁄  using Sentinel-1 dual-pol data (VV-VH) (Nasirzadehdizaji et al., 

2019), Polarimetric Radar Vegetation Index (PRVI), (1-degree of polarization) × 𝜎𝐻𝑉 (Chang et 

al., 2018), Dual-pol radar vegetation index (DpRVI), (1-degree of polarization × normalized 

dominant eigenvalue) Mandal et al., (2020) and Dual Polarization SAR Vegetation Index (DPSVI), 

(𝜎𝑉𝑉 + 𝜎𝑉𝐻)
𝜎𝑉𝑉

⁄  (Periasamy., 2018). Furthermore, Nasirzadehdizaji et al. (2019) introduced a 

new index, (𝜎𝑉𝑉
0-𝜎𝑉𝐻

0)/( 𝜎𝑉𝑉
0+𝜎𝑉𝐻

0), for estimating crop height and canopy coverage. This index 

was later utilized by Sun et al. (2022) for rice mapping using Sentinel-1 data. Mei et al. (2018) 

enhanced crop classification accuracy by combining RVI with eigenvalues from the H/A/Alpha 

polarimetric decomposition instead of linear polarization, formulated as 
4λ3

λ1 + λ2 + λ3
⁄ , and 
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from scattered power components derived from the Freeman-Durden decomposition, expressed as 

𝐹𝑣
𝐹𝑣 + 𝐹𝑑 + 𝐹𝑠

⁄ , where 𝐹𝑣 , 𝐹𝑑 , 𝑎𝑛𝑑 𝐹𝑠 represent the volume, double-bounce, and surface scattering 

components, respectively.  

Texture features extracted from polarimetric SAR images is another measure that capture the 

structural characteristics of the target surface and its surrounding environment, providing insights 

into spatial variations in land cover. The Gray-Level Co-occurrence Matrix (GLCM) technique, 

introduced by Haralick et al. (1973), is widely used for texture analysis in polarimetric SAR 

images, which is a statistical method used to extract texture features from an image. It analyzes 

the spatial relationship between pixels by considering the frequency of occurrence of pairs of pixel 

values at a specified distance and orientation. Hoa et al. (2019) highlighted the importance of 

GLCM-derived textural features for soil salinity detection using polarimetric SAR imagery.  

While various studies have adopted combinations of different decomposition parameters and 

SAR indices as input features for DL classifiers, future research should focus on feature Selection, 

as will be detailed in section 1.3.1.3. This is crucial for minimizing feature redundancy and 

selecting the optimal parameters based on the intended application. 

1.2.1.3. Interferometry 

In addition to SAR observables derived from measured backscattered intensity and 

polarimetric decomposition parameters, SAR also provide access to interferometric data. The 

technique involves the combination of pairs of exact repeat SAR images to produce phase 

measurements that relate to the vertical dimension of the scene being observed, among other 

properties (Bamler and Hartl, 1998).  A critical element in interferometric SAR (InSAR) is the 

concept of interferometric coherence, a measure that reflects the quality of the interferometric 

phase and, by extension, the quality of the products derived from it. This coherence is influenced 
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by a variety of factors, including scene characteristics, sensor specifications, and the configuration 

of the interferometric pair itself (Zebker and Villasenor, 1992). Repeat-pass InSAR involves 

capturing SAR images of the same area at different times, allowing for the detection of changes 

within a scene. This technique has proven effective in measuring decreases in interferometric 

coherence, which often occur due to the rapid growth of plants or wind-induced movements, 

leading to temporal decorrelation, particularly over areas with agricultural crops (Rosen et al., 

2000). The time gap between the two acquisitions can range from days to weeks or even months, 

depending on the satellite revisit time and the application requirements. The presence or absence 

of vegetation, as indicated by changes in coherence over time, provides insights into the 

agricultural calendar and, consequently, the types of crops present in a given area. This aspect of 

temporal decorrelation has been extensively explored through the use of time-series data from 

various SAR satellite sensors, enabling detailed mapping of crop types (Busquier et al., 2022). 

Villarroya-Carpio et al. (2022) established a strong correlation between the coherence measured 

in each polarimetric channel (VV and VH) and the NDVI, proposing that data from intensity and 

interferometry serve as complementary sources, a concept previously validated by Mestre-Quereda 

et al. (2020) in crop-type mapping.  

In addition to repeat-pass interferometry, single-pass interferometry has also demonstrated 

potential for crop classification and vegetation height estimation. Single-pass interferometry 

involves acquiring two SAR images simultaneously or within a very short time interval, 

eliminating temporal decorrelation effects. This technique is particularly useful for capturing the 

vertical structure of vegetation. Erten et al. (2016) found that single-pass interferometry provided 

valuable information about crop height and structure, especially when using large spatial baselines. 

Building on this, Busquier et al. (2020) showed that single-pass coherence can contribute to 
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improve classification accuracy in both dual-pol and single-pol cases, with more notable 

improvements observed for taller crops. The sensitivity to vertical structure provided by the 

physical baseline in single-pass interferometry allows for better discrimination between crop types 

based on their height and architectural differences.  

While both repeat-pass and single-pass interferometry offer valuable insights into crop 

characteristics, combining interferometric techniques with polarimetric information (PolInSAR) 

can provide enhanced sensitivity to vegetation structure and height. As reviewed by Romero-Puig 

and Lopez-Sanchez (2021), PolInSAR techniques have been successfully applied to crop height 

estimation, offering advantages over single-polarization interferometry or polarimetry alone. By 

exploiting the varying penetration depths of different polarizations, PolInSAR can more accurately 

locate the scattering phase centers within the vegetation volume. This allows for improved 

estimation of crop height, especially for taller or denser crops where single-channel approaches 

may saturate. While PolInSAR generally requires fully polarimetric data, which limits coverage 

compared to single-pol acquisitions, it provides a powerful tool for crop monitoring when such 

data are available. Despite its potential, interferometry coherence has been underutilized in crop 

mapping and monitoring using DL, being employed in two crop classification studies. Future 

research should concentrate on harnessing the potential synergies between intensity data and 

interferometric measurements to enhance crop mapping, monitoring, and the detection of 

agricultural management practices. 

1.2.2. Applications  

The SAR techniques described in the previous section provide valuable insights into the 

physical properties and temporal dynamics of agricultural landscapes. These SAR-derived features 

serve as input to DL models, enabling the development of architectures for crop 
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classification/mapping, monitoring, and yield estimation. In this section, we review how SAR 

observables from linear polarization, PolSAR, and InSAR have been used as input features to DL 

approaches for the aforementioned applications. 

1.2.2.1. Classification/Mapping 

SAR linear polarizations, specifically VH and VV, have been the subject of extensive 

investigation for their utility in crop mapping. Research, including studies by Asadi and 

Shamsoddini (2024), Liu et al. (2023), and Zhou et al. (2019b) highlights the superior performance 

of cross polarization (VH or HV) in identifying the majority of crops. However, a synergistic 

approach combining both VH and VV polarizations has been shown to provide a more detailed 

insight into crop characteristics, thereby improving model accuracy. This is supported by findings 

from Jo et al. (2022) and Y. Zhou et al. (2019), which demonstrated the enhanced crop 

classification accuracy achieved through the integrated use of VH and VV signals, as further 

evidenced by Magalhães et al. (2022), Paul et al. (2022) and Liu et al. (2023). Their research 

underscores the advantage of this combined approach over the exclusive use of either VH, VV, or 

their ratio. Additionally, the integration of various SAR polarimetric parameters from Pauli, 

Cloude and Pottier (H, A, alpha), Yamaguchi, and Freeman–Durden decomposition, as explored 

by K. Li et al. (2022), Mei et al. (2018), Yin et al. (2023), and Zeyada et al. (2016) extended the 

potential of SAR data for high accuracy crop mapping. These studies highlight the value of 

leveraging a multi-dimensional dataset to refine crop classification methods. McNairn et al. (2009) 

found that L-band polarimetric parameters derived from three decomposition approaches—

Cloude–Pottier, Freeman–Durden, and Krogager— yielded higher crop classification accuracies 

relative to those achieved using the single and dual polarization. Further advancing this research, 

McNairn et al. (2014) showed that employing PolSAR technology over linear polarization could 
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improve Overall Accuracy (OA) of crop classifications by up to 7%. Extending these insights, Ma 

et al. (2022) confirmed that polarimetric decomposition parameters specifically enhance rice 

mapping accuracy by an additional 3% over traditional VV and VH polarizations. 

In addition to PolSAR data, the role of interferometric coherence in crop classification has 

gained attention. Busquier et al. (2022) further explored the synergistic effects of combining 

backscatter intensity with repeat-pass interferometric coherence, particularly emphasizing the 

value of C-band coherence in enhancing classification accuracies. Despite the lower performance 

of X-band coherence data due to quicker decorrelation, its fusion with C-band data significantly 

improved classification outcomes. Further, Ni et al. (2022) introduced the asymmetric coherence 

term or polarimetric ratio, which focuses on variations in polarimetric properties and radiometric 

changes between observations, whereas traditional coherence measures the temporal correlation 

and stability of scattering properties in SAR data. They illustrated that using asymmetric coherence 

can improve classification accuracy by 20% to 50% compared to traditional coherence-based 

methods. Consequently, given InSAR's potential to enhance crop classification accuracy, further 

research should focus on utilizing this SAR technique in conjunction with intensity measurements 

and polarimetry. 

1.2.2.2. Crop monitoring: Phenology and Biophysical Parameters Estimation 

In the domain of crop phenology and BPs estimation, SAR data have proven to be a powerful 

tool, providing detailed insights into agricultural crop dynamics. Among the extensive set of linear 

and dual polarization SAR data, particularly VH, emerges as a critical feature due to its heightened 

sensitivity to volumetric scattering within crop canopies. This characteristic makes VH 

polarization particularly effective in distinguishing between different crop growth stages, as it 

adeptly captures the complex scattering interactions among canopy components, such as leaves, 
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stems, and branches. The superiority of VH polarization over VV polarization lies in its reduced 

sensitivity to factors like water, topography, and the canopy's morphological structure, as 

demonstrated in studies focusing on rice phenology estimation (Yang et al., 2021). 

In addition to linear polarization, SAR polarimetric decompositions and radar indices have 

established their significance by revealing key physical attributes closely associated with various 

crop BPs (Mandal et al., 2021). Notably, features like the RVI, Entropy, and the Alpha angle have 

been instrumental in delineating growth patterns across various crops, including soybeans and 

onions (Kim et al., 2011; Mascolo et al., 2015). However, there are varied findings on the 

effectiveness of the cross ratio (VH/VV). Blaes et al. (2006) highlighted a diminished sensitivity 

of cross ratio to maize growth beyond certain LAI and VWC thresholds, and Hosseini et al. (2019) 

emphasized the significance of VH and VV backscatter over cross ratio for accurate winter wheat 

LAI and Canopy Chlorophyll Content (CCC) estimation. Conversely, studies like Mercier et al. 

(2020) demonstrated cross ratio's correlation with wheat LAI and the adept application of entropy 

in assessing wheat's VWC. 

Moreover, the comprehensive analysis by Canisius et al. (2018) employing a wide array of 

SAR features from RADARSAT-2, including both VV and VH backscatter coefficients alongside 

several decomposition parameters, highlighted the significant role of VH cross-polarization and 

the Alpha angle from Cloude-Pottier decomposition in tracking the growth stages of canola and 

spring wheat. Further, Mandal et al. (2020), presented a strong correlation between DpRVI and 

essential BPs such as Plant Area Index (PAI), VWC, and dry biomass (DB) across various crops, 

notably outperforming other indices in terms of performance. This approach's efficacy was further 

validated by Ge et al. (2023), who leveraged a combination of polarimetric decomposition 

techniques to discern characteristics crucial to rice phenology.   
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Collectively, these studies affirm the strategic importance of integrating multiple SAR 

features, particularly polarimetric parameters and VH polarization, in enhancing the accuracy and 

reliability of crop phenology and BPs estimations. 

1.2.2.3. Yield Prediction 

Recent research has revealed the intricate relationship between SAR polarizations, 

frequencies, and their applications in crop yield predictions. The sensitivity of SAR backscatter to 

crop biomass and LAI, which directly correlates with crop yield, can be valuable for yield 

estimation. However, the relationship between SAR backscatter and crop biomass is not uniform 

and varies based on factors such as crop type, growth stage, and SAR sensor characteristics, 

including wavelength and polarization (Bouman and Hoekman, 1993). The structural differences 

among crops significantly influence how SAR signals interact with vegetation, which can affect 

the selection of SAR frequency, as discussed in section 1.2.2.1. Optimizing the timing and 

frequency of SAR acquisitions based on crop growth stages is crucial for accurate yield prediction. 

Studies have shown that SAR data acquired during the reproductive and ripening stages are most 

effective for estimating rice yield (Nguyen et al., 2016), while for soybean, data from the pod 

development and seed filling stages are more informative (Navarro et al., 2016). In the case of 

corn, SAR data from the late vegetative and early reproductive stages, such as tasseling and silking, 

have demonstrated potential for yield estimation (Fieuzal et al., 2017). 

SAR polarization is another critical factor affecting the sensitivity of backscatter to crop 

biomass and yield. Studies by Tesfaye et al. (2022), Tripathi et al. (2022), and Sharma et al. (2022) 

have demonstrated the superiority of VH polarization in predicting rice and wheat, respectively. 

Conversely, VV polarization has exhibited better performance for sugarcane stalk development, 

which serves as a critical reservoir for sucrose accumulation (den Besten et al., 2023).  However, 
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the synergistic use of both VV and VH polarizations has been shown to enhance the robustness 

and precision of yield estimation models (Yu et al., 2023). Besides linear polarization, the highest 

correlations with LAI and biomass have been found for volume scattering components from 

polarimetric parameters indicative of multiple scattering events, pedestal height and RVI (Steele-

Dunne et al., 2017). This suggests that incorporating these parameters into DL classifiers for yield 

prediction could improve their performance. 

However, for DL-based studies, only VH and VV SAR observables have been used as input 

features. This reliance is due to the inherent capability of DL models to automatically learn and 

extract relevant features from raw input data, such as VH and VV signals in SAR imagery. This 

capability negates the need for manually crafted SAR indices like the RVI, which depends on the 

ratio of VH to VV signals. By directly processing raw SAR observables, DL models can uncover 

complex patterns and relationships that predefined indices may not capture, potentially leading to 

more precise and efficient analysis of agricultural scenes. 

1.2.3. Data Sources 

Out of the 82 papers reviewed, 11% (9 papers) utilized airborne SAR data, such as multi-

temporal AirSAR, UAVSAR, and PolSAR images from the AgriSAR project (Figure 1). These 

airborne SAR systems offer high spatial resolution and flexibility in data acquisition, making them 

valuable for small-scale studies and algorithm development. However, the majority of the papers 

(89%) employed spaceborne SAR data, with Sentinel-1 (C-band) being the most commonly used 

in 80% (66 papers) of the cases. The widespread use of Sentinel-1 data can be attributed to its open 

access policy, systematic acquisition strategy, and global coverage. The Sentinel-1 mission, 

comprising two satellites (Sentinel-1A and Sentinel-1B, which was decommissioned on 23 

December 2021), provides C-band SAR data with a revisit time of 6-12 days, making it an 
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invaluable resource for agricultural monitoring applications. Given the widespread use of 

spaceborne SAR data in conjunction with DL for agriculture, Table 1.1 offers a comprehensive 

overview of all the spaceborne SAR satellites. 
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Table 1.1: Overview of SAR Spaceborne Satellites: Specifications, Operators, and Data Accessibility. 

Name Mission 
Spatial 

coverage 

Spatial 

Resolution 

(meter) 

Temporal 

Resolution 

(days) 

Band/ 

Frequency 

(GHZ) 

Incidence Angle 

(°) 
Polarization 

ERS-1 1991 to 2000 global 10-30 35 in IM C-5.2 5-45 VV 

JERS-1 1992-1998 global 18 44 L- 1.275 32-38 HH 

ERS-2 1995 to 2011 global 10-30 35 in IM C-5.3 5-45 VV 

RADARSAT-

1 
1995 to 2013 

Regional

* 

10(FM),25(S

M),10-

50(SWM), 

30(SNM) 

24 (FM), 12 

(SM), 72 

(SWM) 

C-5.3 

20-35(FM), 20-

45(SM) 10-60 

(SWM), 30(SNM) 

HH 

ENVISAT-

ASAR 
2002 to 2012 global 30  

35 in APM 

and IM modes 
C-5.6 

15-45(WSM, IM, 

APM),17-43 

(GMM),23(WM),

20-44 (SNSM) 

HH, VV, HH/HV, 

VV/VH 

RADARSAT-

2 
2007 to now global 

10(FM), 

25(SM) 10-

50(SWM), 

30(SNM), 

3(UFM) 

24 (SM), 3 

(FM) 
C-5.405 

20-35(FM), 20-

45(SM),10-60 

(SWM), 

30(SNM), 

3(UFM) 

HH, VV, HV, VH 

COSMO-

SkyMed 

v1-2(2007), 

v3(2008), v4 

(2010) to now 

global 1(Spotlight)  16  X-9.65 20-59 VV, HH 

TerraSAR-X/ 

TanDEM-X  

TerraSAR -2007 

to now, TanDEM-

2010 to now   

global 
1-3 (SL and 

SM), 16 (SC) 
11  X-9.65 20-55 

HH, VV, HH/VV, 

HH/HV, VV/VH 

RISAT-1 2012-2017 global 1-50 25 C-5.35 12-55 
HH, VV, HH/HV, 

VV/VH, Quad-pol 

Gaofen-3(GF-

3) 
2014 to now 

Swath of 

10-650 

km 

1-10 1.5-3  C-5.405 20-50 
HH, VV, HH/HV, 

VV/VH 

ALOS-2 2014 to now global 10-100 46  L-1.27 20-40 HH, HV, VH, VV 

Sentinel-1A, C 
A-2014 to now, 

C-2024 
global 3-10 12  C-5.405 20-45 

VV-VH (IW), VV-

VH, VV or HH (strip 

mode), VV(WM) 

Sentinel-1 B 2016-2021 global 3-10 12  C-5.405 20-45 

VV-VH (IW), VV-

VH, VV or HH (strip 

mode), VV(WM) 
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Table 1.1 (cont’d) 

Name Mission 
Spatial 

coverage 

Spatial 

Resolution 

(meter) 

Temporal 

Resolution 

(days) 

Band/ 

Frequency 

(GHZ) 

Incidence Angle 

(°) 
Polarization 

NovaSAR-1 2018 to now global 

6 (SM), 20 

(SC), 30-50 

(SC wide) 

16 S-3.1 – 3.3  

16-31.2 (SM), 

11.29-32.01(SC), 

11.82 – 31.18 (SC 

wide) 

HH or VV (SM), HH, 

VV and HV (SC and 

SC wide) 

PAZ 2018 to now global 
1-3 (SL and 

SM), 16 (SC) 
11  X-9.65 20-55 VV, HH, HV, and VH 

SAOCOM-1A, 

B 

A-2018 and B-

2020 to now 
global 10 (SM)  16 L-1.215 18-50 

HH, VV, HH/HV, 

VV/VH, Quad-pol 

RCM 2019 to now global 
1-3 (SL), 50-

100 (SC) 
4 C-5.405 33.63-35.93 

HH, VV, HV, VH, 

Compact pol 

Capella2-10 2020-2023 global 0.5 <= 2 hour X-9.3-9.9 45-53 VV, VH 

Umbra 2023-now global 0.25 6-12 hour X-9.2 – 10.4 10-75 VV, VV+VH 

Iceye 2023 Regional 0.5-3 1-22 X-9.65 15-35 
HH, VV, HH/HV, 

VV/VH, Quad-pol 

NISAR 2024 global 3-10  12  
L-(1.215-1.3) 

and S-3.2 
33-47 HH, VV 

BIOMASS 2024 global 50-200 365 P-0.435  23-34 Quad-pol 

Sentinel-1 NG 2029 global 1-5 4-12 C-5.405 17-45 
HH, VV, HH/HV, 

VV/VH, Quad-pol 

ROSE-L 2028 global <=5 3-6 L-1.2575 15-45 
HH/HV, VV/VH, 

Quad-pol 

Tandem-L 2028 global 
1 for spot 

image 
16 L-1.215–1.3 20-45 HH, VV, Quad-pol 
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1.3. Use of Deep Learning in Agricultural Applications of SAR  

DL and SAR technologies have been widely utilized in the agricultural sector, with 

numerous studies conducted in various countries. Europe, the USA, Brazil, and China have 

emerged as key regions with a significant number of research efforts in this field. This trend 

highlights the widespread adoption of DL applications in diverse ecosystems, showcasing their 

adaptability for different vegetation types and agricultural applications.  

Upon a detailed review of the existing literature, it's clear that a substantial number of 

studies emphasize the use of SAR and DL techniques for classification/mapping application, 

particularly targeting the end-of-season crop mapping, most notably for rice (Figure 1.3 and 

Figure 1.4). Despite the potential for wider applications, it appears that there is a surprisingly 

limited utilization of contemporary DL techniques for crop monitoring (5 studies) and crop yield 

estimation (3 studies).  A probable factor could be the relative scarcity of training datasets for 

these applications, which are critical for the optimal performance of DL algorithms. 

In this section, we delve into the potential of DL algorithms to mitigate the speckle effect 

in SAR images. Furthermore, we investigate the fusion of SAR and optical data, as research has 

shown that combining these two data sources can yield superior results compared to using SAR 

and optical data alone in various agricultural applications, such as crop classification, monitoring, 

and yield estimation. This underscores the potential benefits of integrating multiple remote 

sensing data sources within DL frameworks for agricultural purposes. Additionally, we explore 

feature selection methods, which enhance DL model efficiency and generalization by reducing 

data dimensionality and eliminating redundant features. We also examine both established and 

emerging DL architectures to gain a deeper understanding of their contributions to SAR 

applications in mapping/classification, including early- and end-season crop classification, crop 
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rotation, mapping of center pivot irrigation systems, and soil salinity mapping, as well as crop 

monitoring and yield prediction. Moreover, we discuss crucial implementation considerations, 

such as data collection and augmentation techniques, along with training and validation ratios, 

which play a vital role in the successful deployment of DL models for agricultural applications. 

 

Figure 1.3:  Distribution of studies across SAR bands, agricultural applications, and DL 

architectures. Emphasis on C-band SAR for crop classification using LSTM and 2D-CNNs. CPIS: 

Mapping of Center Pivot Irrigation Systems. 
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Figure 1.4: Network analysis of interconnections between agricultural applications, SAR 

frequencies, and DL architectures in reviewed studies. Node size indicates number of studies. Att: 

self-attention mechanism; TL: transfer learning; CPIS: mapping of Center Pivot Irrigation 

Systems. 
 

1.3.1. Data Processing Techniques  

1.3.1.1. Speckle Filtering  

Speckle effect is a common phenomenon in SAR imagery that degrades image quality and 

hinders the accurate interpretation of dynamic crop phenology. Traditional speckle filtering 

methods often struggle to achieve a balance between noise reduction and preservation of fine 

details. However, DL approaches, particularly Convolutional Neural Networks (CNNs), have 
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shown remarkable success in addressing this challenge. CNNs can learn hierarchical features 

from SAR data, enabling them to effectively distinguish between noise and actual ground 

features. By training on large datasets of SAR images with varying levels of speckle effect, CNNs 

can learn to suppress speckle while retaining important spatial and textural information. This 

capability has led to significant improvements in SAR image quality, facilitating more accurate 

crop classification, monitoring, and yield estimation. 

Several studies in this review have explored the application of DL techniques for speckle 

filtering in SAR data. Mei et al. (2018) employed Simple Linear Iterative Clustering (SLIC) 

superpixel segmentation to reduce speckle effect by dividing the SAR image into smaller 

superpixel blocks. Furthermore, Adrian et al. (2021) introduced Denoising Convolutional Neural 

Networks (DnCNNs), which adapt to the specific noise characteristics within SAR images, 

preserving essential details while eliminating noise. 

Interestingly, some studies have highlighted the potential of DL algorithms to obviate the 

need for preprocessing SAR data. Garnot et al. (2022) demonstrated that the U-Net architecture, 

combined with temporal attention-based networks (will be discussed in Sec 1.3.2.1), could 

effectively learn features and patterns from vast raw datasets without requiring radiometric terrain 

correction or speckle filtering. This approach enhanced crop mapping models without the need 

for extensive SAR preprocessing. Similarly, Gargiulo et al. (2020) showed that the W-net 

architecture (will be discussed in Sec 1.3.2.1) could produce reliable segmentation maps without 

speckle filtering, reducing computational complexity. 

These findings underscore the potential of DL methods to not only effectively mitigate 

speckle effect in SAR data but also to potentially eliminate the need for certain preprocessing 

steps. Further research into the capabilities of DL in handling raw SAR data could lead to more 
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efficient and streamlined workflows for agricultural applications. 

1.3.1.2. SAR and Optical Fusion Techniques 

Integrating SAR with optical data represents a pivotal advancement in agricultural 

monitoring, optimizing the strengths and mitigating the limitations of each sensor type  (Ofori-

Ampofo et al., 2021). This fusion approach confronts challenges such as integrating multi-band 

spectral reflectance with SAR backscatter intensity and overcoming differences in spatial 

resolutions and temporal characteristics. Evidence of the successful application of SAR and 

optical data fusion is abundant, with notable examples including the combination of Sentinel-1 

with Landsat-8 (Kussul et al., 2018, 2017; Cué La Rosa et al., 2023),  and Sentinel-2 datasets 

(Asadi and Shamsoddini, 2024; Komisarenko et al., 2022; Liu et al., 2021; Ngo et al., 2023; 

Saadat et al., 2022; C. Sun et al., 2019; Thorp and Drajat, 2021; Tripathi et al., 2022; Wang et al., 

2020; Yu et al., 2023; Zhao et al., 2020, 2022). A comprehensive review of 82 studies in this field 

revealed that 45% (37 papers) utilized a combination of optical and SAR data, primarily for crop 

classification, while encompassing all studies related to yield and BPs estimation. This review 

also highlighted the wide array of optical data sources employed beyond Sentinel-2 and Landsat-

8, such as VENµS, RapidEye, ZY-3, Planet satellite imagery, Very High Resolution orthophotos, 

AVIRIS, ROSIS, and RGB data from the CNES/Airbus Pleiades satellite.  

The superiority of combining SAR and optical data over approaches relying on a single 

modality has been consistently validated across research, particularly for crop classification (de 

Albuquerque et al., 2021; Giordano et al., 2020; Ofori-Ampofo et al., 2021), crop monitoring 

(Lobert et al., 2023; Thorp and Drajat, 2021), and yield prediction (Yu et al., 2023). This fusion 

technique benefits from combining SAR’s detailed textural insights with the spectral richness of 

optical imagery, offering a broader spectrum of data for analysis.  
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Data fusion strategies can be broadly categorized into three approaches: Early fusion 

(input/pixel level), Mid fusion (feature/layer level), and Late fusion (decision-level). Early fusion 

combines SAR and optical data at the input level using specific methods to address gaps in optical 

images, such as interpolation. Mid fusion merges features from each source at an intermediate 

stage, facilitating the use of a single temporal model and reducing preprocessing efforts. Late 

fusion, on the other hand, focuses on combining the outputs from independently processed 

modalities, emphasizing class confidence scores for final decision-making. For a deeper 

understanding of various fusion methods, readers are encouraged to read the papers by Garnot et 

al. (2022), Ofori-Ampofo et al. (2021) and Weilandt et al. (2023). 

The choice between these fusion strategies largely depends on the desired outcomes, the 

specific characteristics of the datasets involved, and computational constraints. While most 

studies have shown a preference for early fusion due to its straightforward implementation, other 

studies compared all the three fusion methods to find the best one. Ofori-Ampofo et al. (2021) 

demonstrated the effectiveness of early fusion, especially under cloudy conditions, and proposed 

Layer-Level Fusion at Pixel Set Encoders (PSE) and Temporal Attention Encoder (TAE) (will be 

detailed in section 1.3.2.1) for better identification of minor classes. Garnot et al. (2022) explored 

late fusion with the same classifier PSE-TAE, augmented with auxiliary supervision and temporal 

dropout, finding it generally superior but noted that mid-fusion offers a pragmatic balance 

between accuracy and computational efficiency, being 20% faster than late fusion. This makes 

mid-fusion appealing for scenarios with computational constraints. Yuan et al. (2023) effectively 

tackle the high computational costs associated with late fusion by introducing a shared temporal 

encoder and a 'feature stacking' technique to the PSE-TAE classifier. This method consolidates 

temporal variation metrics from separately processed optical and SAR data, achieving a 60% 
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reduction in trainable parameters without compromising performance. This innovation retains the 

effectiveness of the DL classifiers used by Ofori-Ampofo et al. (2021) and Garnot et al. (2022), 

streamlining late fusion processes in RS applications. Ienco et al. (2019) also demonstrated that 

late fusion, involving features extracted separately from SAR and optical streams using two 

ConvGRU networks, outperformed other fusion techniques. However, Saadat et al. (2022) further 

confirmed the advantages of mid-fusion in rice mapping using CNNs. Consequently, the choice 

between mid- and late fusion becomes a strategic decision, influenced by the specific application 

and the DL classifier utilized, for optimal SAR and optical data integration. 

Common and emerging DL further confirmed the advantages of mid-fusion in rice mapping 

using CNNs. Consequently, the choice between mid- and late fusion becomes a strategic decision, 

influenced by the specific application and the DL classifier utilized, for optimal SAR and optical 

data integration. 

1.3.1.3. Feature Selection 

Although DL models possess the ability to learn features automatically, providing them with 

a carefully selected subset of relevant features can help reduce the computational complexity and 

training time of the model. This is particularly important when dealing with large, high-

dimensional datasets, such as multi-temporal SAR data. Consequently, to enhance classification 

accuracy, it is essential to minimize feature redundancy and avoid overfitting—a challenge noted 

by Zhang et al. (2020), yet addressed in only a limited number of studies concerning optimal SAR 

feature selection. Additionally, Zhang et al. (2021) observed that even with similar crop types, 

the most effective features for crop identification vary across different regions. To address this, 

Zhang et al. (2020) advocated for a tree structure-based feature selection algorithm that prioritizes 

features based on their calculated significance. Mei et al. (2018) improved classification accuracy 
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by optimizing the feature set through a quantitative index that evaluates the separability of crop 

types. Zeyada et al. (2016) enhanced classification accuracy by identifying the superior 

performance of polarimetric parameters from Pauli, Cloude–Pottier, and Freeman–Durden 

decompositions, in conjunction with fundamental backscatter coefficients. They determined that 

expanding the parameter set from three to twelve could minimize training errors and prevent 

overfitting. Similarly, Yu et al. (2023) and Lobert et al. (2023) evaluated the performance of 

different sets of features to select the optimal features for yield prediction and phenology stages 

estimation, respectively. The results indicated that the combination of SAR with optical and 

meteorological data was the most effective combination for both studies. Delving further into 

SAR features, Hashemi et al. (under review) recently investigated the impact of different SAR 

observable combinations on crop yield estimation. Their findings revealed that the fusion of VH 

polarization with climate data outperformed other feature sets, which included VV polarization, 

cross ratio, RVI, and incidence angle for corn, soybeans, and winter wheat yield estimation.  

The aforementioned studies collectively emphasize the crucial role of feature selection in 

enhancing the performance and efficiency of DL models when applied to SAR data in agricultural 

applications. By carefully choosing the most informative SAR observables and ancillary data 

prior to training DL models, researchers can optimize the models' ability to achieve reliable results 

in tasks such as crop classification, yield prediction, and phenology stage estimation. 

1.3.2. Common and Emerging Deep Learning Modeling 

1.3.2.1. Classification/Mapping 

a. End-Season Crop Classification 

The integration of SAR imagery with ML approaches has revolutionized the field of 

agricultural technology, particularly in the realm of precise crop classification at the pixel and 
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parcel level. Traditionally, these methods relied on stacking time-series SAR imagery as a 

composite of features and employing data mining techniques to differentiate various crop types 

(Han et al., 2023). This reliance on handcrafted features, however, has necessitated expert 

knowledge and often overlooked the nuanced spatio-temporal relationships inherent in time-

series SAR data. Techniques such as Random Forest (RF) have shown proficiency in identifying 

predominant crop types but struggle when distinguishing less prevalent ones, attributed to their 

tendency for overfitting as the decision trees expand, particularly in multi-class scenarios (Jin et 

al., 2018). 

Moreover, traditional ML models face inherent limitations, such as their inability to 

effectively process sequences or time-dependent data due to their auto-regressive nature, which 

hinders their ability to generalize and adapt to new data (Katharopoulos et al., 2020). In contrast, 

DL models have emerged as a superior alternative, showcasing their capacity for multiscale 

feature learning and demonstrating a remarkable ability to generalize across diverse datasets 

(Olimov et al., 2023). The launch of the C-band-equipped Sentinel-1A and Sentinel-1B satellites 

in 2014 and 2016, respectively, has significantly accelerated the adoption of DL techniques 

alongside SAR data by providing widespread access to high-quality, freely accessible SAR data 

from these satellites. This development has enabled more comprehensive studies, specifically in 

crop classification, harnessing the power of SAR data and DL techniques for this application. The 

investigation commenced with the exploration of Multilayer Perceptrons (MLP), a class of 

artificial neural networks (ANNs) in which each neuron in one layer is connected to every neuron 

in the next layer. It generally consists of two or more layers that can separate nonlinear data (Mas 

and Flores., 2008).  Sonobe et al. (2017) and Skakun et al. (2015) illustrated the efficacy of MLP 

for crop classification, achieving an OA exceeding 90%. Conversely, Zeyada et al. (2016) 
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highlighted that shallow ML methods, when applied to C-band SAR data, outperformed MLP in 

crop classification tasks. This insight underscored the limitations of MLP, particularly its less 

optimal performance in handling complex spatial and channel information inherent in SAR 

imagery. Consequently, the year 2017 witnessed a strategic shift towards Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) to better capture the spatial and 

temporal dynamics of multi-temporal SAR imagery. CNNs, in particular, are known for their 

hierarchical structure, enabling high-accuracy classification and prediction tasks by learning 

spatial contextual representations through convolutional filters to realize end-to-end classification 

in large-scale SAR imagery (Oquab et al., 2014). Carranza-García et al. (2019) highlighted the 

unparalleled ability of CNNs to excel at processing minority classes in their research, 

distinguishing them from other ML methods. Notably, CNNs can be utilized in 1D for analyzing 

the channel or temporal dimension, in 2D for spatial dimension, or in 3D across channel, spatial 

and temporal dimension. Although 3D convolution has demonstrated a high accuracy in crop 

classification (Kussul et al., 2017), CNNs are rarely used as feature extractors for the temporal 

domain of remotely sensed time-series (Zhong et al., 2019b). However, highlighting the 

effectiveness of CNNs in temporal analysis, Asadi & Shamsoddini. (2024) demonstrated the 

superiority of 1D-CNNs over shallow ML methods by using the backscatter and polarimetric 

features from SAR time-series for crop mapping. Further supporting the advancements in CNNs 

application, Teimouri et al. (2022) corroborated earlier findings, demonstrating the superior 

performance of 3D-CNNs over 2D-CNNs and MLP. Their study underscored the importance of 

fine-tuning the kernel depth in 3D-CNNs to optimize classification accuracy which facilitated the 

successful learning of crop growth cycles and consequently, boosted the classification accuracy. 

To address the "curse of dimensionality" issue plaguing CNNs in handling high-dimensional SAR 
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data, stacked auto-encoder (SAE) was combined with 1D-CNNs to design a convolutional-

autoencoder neural network (C-AENN) by Luo et al. (2022) and  Guo et al. (2022). This model 

is taking advantage of dimension reduction capabilities of the SAE (Guo et al., 2020; Hinton and 

Salakhutdinov, 2006), and achieves a superior classification ability that surpasses standalone 1D-

CNNs and SAE approaches, as well as traditional ML methods. Autoencoders are primarily 

linked with unsupervised learning, as they are designed to compress input data into a condensed 

representation and subsequently reconstruct it without requiring labeled data during the training 

process. Di Martino et al. (2022) successfully employed C-AENN to classify crops in an 

unsupervised manner, proving its effectiveness in extracting detailed agricultural classes from 

temporal SAR signatures. Furthermore, when incorporated into supervised learning frameworks, 

autoencoders can enhance classifier performance providing richer and more relevant data 

representation (Goodfellow et al., 2016). Di Martino et al. (2023) also demonstrated the utility of 

C-AENN in a semi-supervised context to identify and rectify labeling errors in crop type datasets. 

Unlike CNNs, fully convolutional network (FCN) avoids fully connected layers in favor of 

convolutional and pooling operations that facilitate pixel level crop classification by learning 

spatial relationships and generating predictions for each individual pixel in the input image (Long 

et al., 2015). While Cué La Rosa et al. (2018) and Mullissa et al. (2018) highlighted the superiority 

of FCN over patch-based 2D-CNNs, Cué La Rosa et al. (2019) have confirmed the superior 

performance of 3D-CNNs compared to 3D-FCN and traditional ML methods. Classifying pixels 

independently using FCNs, while considering their spatial pattern, is particularly effective when 

dealing with high-resolution SAR data where pixel-level classification is critical. In contrast, 

patch-based 2D-CNNs, which classify patches of pixels, can result in a loss of spatial detail and 

potentially lower classification accuracy. However, for 3D data, 3D-CNNs, which are capable of 
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learning hierarchical features across both temporal and spatial dimensions, appear to perform 

better than 3D-FCNs, despite the latter's ability to model spatio-temporal information. This could 

be attributed to 3D-CNN's ability to capture complex temporal patterns and dependencies in time 

series SAR data, which is crucial for distinguishing crops with similar backscatter characteristics 

but different temporal behaviors. 

The U-Net architecture, a variant of CNNs, has revolutionized the field of semantic 

segmentation by providing an innovative approach to preserving spatial integrity, which is crucial 

for accurate crop classification (Ronneberger et al., 2015). U-Net's unique structure allows it to 

effectively capture and integrate spatial information and contextual features across different 

scales. During the contracting/encoding phase, U-Net reduces the spatial dimensions while 

increasing the number of feature channels. In the expansive/decoding phase, it combines the 

feature information with the spatial information from the contracting path through skip 

connections, enabling precise localization of classified pixels (Wenger et al., 2022). This 

architecture also demonstrates robustness in handling imbalanced datasets, a common challenge 

in crop classification tasks (L. Ma et al., 2019). Recent advancements in U-Net have further 

enhanced its performance in crop mapping. Adrian et al. (2021) introduced a 3D U-Net method 

that learns local spatial and temporal features simultaneously by applying 3D convolution kernels 

throughout the crop growing season. This approach outperformed 2D U-Net, Squeeze-and-

Excitation Residual Network (SegNet) (Badrinarayanan et al., 2017), and Random Forest (RF) 

models in terms of overall crop mapping accuracy. Following the validation of U-Net's 

effectiveness in rice mapping by Wei et al. (2021), Xu et al. (2021) integrated a Conditional 

Random Field (CRF) with U-Net, significantly improving the accuracy of field boundaries and 

plot compactness on a large scale. 
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Attention mechanisms have also been incorporated into U-Net to boost its performance. Ma 

et al. (2022) proposed an attention-gated U-Net architecture (Oktay et al., 2018) that outperformed 

DeepLab v3 (Chen et al., 2017), and traditional ML methods in rice mapping accuracy. 

Furthermore, M. Wang et al. (2022) augmented the U-Net model with a SegNet backbone and 

incorporated Object-Based Image Analysis (OBIA), resulting in high-resolution rice field 

mapping that surpassed the performance of a U-Net model based on a Residual Networks 

(ResNet) (Szegedy et al., 2017) backbone. However, in a recent comparative study by Ngo et al. 

(2023), U-Net with ResNet backbone surpassed DeepLab-V3+ utilized the Xception network 

(Chollet, 2017) by 1-3% in accuracy. Ngo et al. (2023) also evaluated the performance of two 

widely used ML methods in crop classification, XGBoost (Chen and Guestrin, 2016) and 

LightGBM (Ke et al., 2017), which employ gradient boosting algorithms. Interestingly, both ML 

methods achieved an accuracy of 92%, matching the performance of Linknet (Chaurasia & 

Culurciello, 2017), a CNN-based model that utilizes ResNet for feature extraction. However, U-

Net demonstrated superior performance, surpassing XGBoost, LightGBM, and Linknet in rice 

mapping accuracy using SAR imagery. 

This supremacy of U-Net was challenged by Gargiuloet al. (2020), who demonstrated a 3% 

improvement in crop classification using W-Net over U-Net, LinkNet, Feature Pyramid Network 

(FPN) (T.-Y. Lin et al., 2017), and SegNet (Badrinarayanan et al., 2017) using Sentinel-1. 

Moreover, W-Net offers advantages in processing time, memory usage, and performance while 

mitigating the multiplicative speckle effect more efficiently and maintaining fewer parameters 

despite its additional convolution layers.  

The exploration of DL models in crop classification using SAR imagery continues to evolve, 

with RNNs marking a significant advancement in processing sequential data. Specialized for 
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analyzing multitemporal SAR data, RNNs, particularly Long Short-Term Memory (LSTM) 

networks and their bidirectional counterparts (Bi-LSTM), have been widely adopted for crop 

mapping. These models have shown remarkable accuracy in capturing temporal correlations and 

extracting multi-temporal features from time-series SAR data, significantly outperforming 

traditional ML approaches in mapping rice crops (Crisóstomo de Castro Filho et al., 2020; Wang 

et al., 2020). The inherent gating mechanism of LSTM allows for selective information retention 

or discarding within the hidden state layer, effectively addressing long-term dependencies and the 

challenge of vanishing gradients in input sequences—a common obstacle in traditional RNNs 

training (Graves and Graves., 2012). Building on this foundation, Y. Zhou et al. (2019) leveraged 

LSTM with GLCM feature extraction to achieve a 5% boost in OA over traditional ML methods. 

Despite these advancements, Qu et al. (2020) highlighted the superiority of 1D-CNNs over LSTM 

in crop classification. Furthermore, Lin et al. (2022) advanced the application of LSTM through 

Multi-Task Learning for extensive rice mapping, leveraging time-series SAR data from Sentinel-

1. Further, scientists started to use a simpler and computationally more efficient variant of RNNs, 

Gated Recurrent Unit (GRU) that outperformed LSTM in crop classification (Ndikumana et al., 

2018; Ni et al., 2022). GRU can effectively model sequential data with fewer gates and parameters 

compared to LSTM (Cho et al., 2014). Ni et al. (2022) demonstrated that GRU outperformed 

LSTM and 1D-CNNs in processing temporal data, as well as FCN in modeling spatial 

polarimetric data. Bidirectional form of LSTM and GRU models process data in both directions—

forward and backward—allowing them to incorporate information from both earlier and later data 

points in the sequence when making prediction. In contrast, Unidirectional-RNNs, process 

sequential data in a single direction, typically from the beginning of the sequence to the end. 

Therefore, Bi-LSTM and Bi-GRU surpassed LSTM and GRU in crop classification using SAR 
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imagery (Crisóstomo de Castro Filho et al., 2020; Ge et al., 2023; Sun et al., 2022). Additionally, 

Sun et al. (2022) highlighted the effectiveness of dual-branch BiLSTM (DB-BiLSTM) networks, 

which demonstrated marked superiority in large-scale rice mapping compared to conventional 

BiLSTM and RF methods. Ultimately, in a comparative analysis between CNNs and RNNs,  Ni 

et al. (2022) demonstrated the superiority of FCN and 2D-CNNs over RNNs, with GRU 

outperforming LSTM slightly, and 2D-CNNs excelling beyond FCN. Therefore, scientists started 

to use hybrid architecture of CNN and RNN variants, e.g., ConvGRU and ConvLSTM, addressing 

an inherent limitation of LSTM and GRU- the loss of spatial context information when handling 

images – (Shi et al., 2015). Martinez et al. (2021) and Rogozinski et al. (2022) improved the 

accuracy of these models by adding Atrous Spatial Pyramid Pooling (ASPP) module to 

ConvLSTM. Moreover, the integration of the Bi-Tempered Logistic Loss (BiTLL) function 

during the ConvLSTM model's training phase enhances its robustness to noise in the training data, 

making the model less sensitive to outliers or incorrect labels by using temperature settings to 

modulate logistic loss, thus mitigating the impact of noise. This model achieved high accuracy in 

rice mapping using Sentinel-1 imagery and surpassed methods like GRU, 3D-CNNs, and basic 

ConvLSTM (Chang et al., 2022). 

Additionally, Rustowicz et al. (2019) demonstrated that a combination of 2D-Unet and 

ConvLSTM can surpass the performance of 3D-Unet. In this approach, SAR images are initially 

processed through a U-Net, which enriches the data with detailed spatial context before it is fed 

into the ConvLSTM. This preprocessing step enhances and structures the spatial features, 

emphasizing the most relevant information for the task. As a result, the ConvLSTM can more 

effectively detect and interpret temporal changes, leveraging the improved spatial detail provided 

by the U-Net. 
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Since the introduction of the attention mechanism in DL in 2014, its incorporation into 

various models has markedly enhanced their effectiveness. By enabling models to selectively 

concentrate on the most pertinent aspects of the input data for a specific task, this dynamic 

allocation of input features facilitated a more efficient learning of complex patterns and 

relationships (Bahdanau et al., 2014). Such improvements have been particularly beneficial in 

advancing the accuracy of crop classification. Notably, the integration of the attention mechanism 

into LSTM networks has significantly boosted temporal modeling capabilities, leading to state-

of-the-art classification performance (Rußwurm & Körner, 2018). Chang et al. (2022) 

investigated the integration of attention mechanisms into ConvLSTM blocks to focus on specific 

parts of Sentinel-1 SAR images more relevant for rice field detection. Furthermore, Garnot et al. 

(2022), Ofori-Ampofo et al. (2021) and Weilandt et al. (2023) proposed a multi-modal crop 

mapping framework utilizing dense time-series of optical and radar data, combining pixel-set 

encoder and temporal self-attention (PSE-TAE) to achieve multi-source feature fusion and 

improve crop mapping accuracy. Similarly, the U-TAE architecture introduced by Garnot & 

Landrieu (2021) incorporated the spatial UNet-based architecture into TAE to achieve pixel-level 

crop mapping from a semantic segmentation perspective. 

Further Z. Han et al. (2023) developed spatio-temporal Multi-level Attention (STMA) 

model for crop mapping that surpassed conventional convolutional models for accurate and 

generalized crop mapping across various datasets. While 3D U-Net excelled in handling spatial 

and temporal information with its 3D convolutional kernels, outperforming ConvLSTM, U-TAE, 

LSTM, and RF, it was surpassed by the STMA. The STMA method, with its multi-level attention 

mechanism consisting of cascaded spatio-temporal self-attention (STSA) and multi-scale cross-

attention (MCA) modules for effective spatio-temporal data processing, especially in noisy 
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datasets, and a novel learnable spatial attention position encoding, demonstrated superior 

performance in capturing the complex dynamics of crop phenology. 

The transformative impact of attention was further amplified with the introduction of the 

Transformer model in 2017 (Vaswani et al., 2017). The Transformer's novel "self-attention" 

mechanism marked a significant advancement in DL, particularly beneficial for tasks like crop 

classification. Unlike previous attention mechanisms that relied on sequential processing, the self-

attention mechanism computes attention weights by comparing each element of the input 

sequence with every other element, allowing the model to determine the relative importance of 

each data point in the context of the entire sequence. This enables the Transformer to capture 

long-range dependencies more effectively. Moreover, the Transformer relies solely on the self-

attention mechanism, dispensing with recurrent and convolutional layers, allowing for parallel 

processing of input data and making it more computationally efficient. These features make the 

Transformer particularly suited for analyzing temporal patterns in crop classification from time-

series SAR imagery. However, the Transformer's dependency on large datasets for training poses 

challenges for its application in scenarios with limited data availability. 

Building upon the success of the Transformer model in natural language processing tasks, 

researchers have adapted this architecture for visual tasks, giving rise to the Vision Transformer 

(ViT). ViT interprets images as sequences of patches, offering a more natural approach to 

handling multiple channels than traditional CNNs. Li et al. (2022) demonstrated ViT's superior 

performance in crop classification compared to various models, including 2D-CNNs with 

Attention (CNN-Att), 2D-CNNs-LSTM (C-LSTM), and LSTM with Attention (LSTM-Att). To 

further enhance ViT's effectiveness in crop classification tasks, Li et al. (2022) introduced a 

hybrid ViT (H-ViT) that incorporates a temporal dimension. This innovative strategy harnesses 
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the spatial feature extraction capabilities of CNNs in the preliminary layers, coupled with the 

global attention mechanism of Transformers in subsequent stages, enabling comprehensive 

spatio-temporal analysis. Moreover, Li et al. (2022) proposed a multi-branch architecture that 

utilizes self-supervised contrastive learning with ViT to process and integrate data from various 

sources, outperforming H-ViT in crop classification. 

In conclusion, the incorporation of spatio-temporal DL methods has revolutionized crop 

classification using multi-temporal SAR images, leading to significant improvements in accuracy. 

Models such as 3D-CNNs and 3D-UNet have showcased their ability to effectively capture both 

spatial and temporal dependencies, surpassing the performance of traditional 2D approaches. 

Hybrid CNN-RNN architectures, like ConvLSTM, and the integration of 2D U-Net with 

ConvLSTM has proven to further boost their performance, enabling them to focus on the most 

relevant features for the classification task at hand. The introduction of ViT, especially when 

combined with self-supervised learning techniques, has demonstrated promising results in crop 

classification by efficiently integrating multi-source data. Moreover, the STMA model, with its 

innovative attention mechanisms, has excelled in capturing crop phenology dynamics and 

achieving accurate, generalized crop mapping across various datasets. Despite the demonstrated 

superiority of these advanced spatio-temporal models, our review reveals that they have been 

employed in a relatively small number of studies compared to more traditional DL architectures. 

As illustrated in Figure 1.3, LSTM, 2D-CNNs, 1D-CNNs, and 2D-UNet have been utilized in 23, 

22, 14 and 11 papers respectively, while ConvLSTM and self-attention mechanisms have been 

applied in 9 papers each. Transformers and 3D-UNet have been used in 6 and 4 papers, 

respectively, and the ViT has been explored in only one paper. This disparity in the application 
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of these cutting-edge models highlights the need for future research to further investigate and 

leverage the potential of spatio-temporal methods for crop classification using SAR imagery. 

b. Early-Season Crop Classification 
 

Although a significant volume of research—totaling 60 studies—has thoroughly 

investigated the use of multiple SAR images for classifying crops at the end of their growing 

season, the potential for identifying crops during the early stages of growth has received 

comparatively less attention. Platforms such as Sentinel-1, known for their high temporal 

resolution (ranging from 6 to 12 days) and minimal delay in data acquisition, present promising 

opportunities for assessments at the initial stages of crop development. However, the task of 

identifying crops early in the season presents distinct challenges. The similar appearance of 

different crops in their early growth phases complicate the task of distinguishing between them. 

Moreover, variables like surface roughness and SM can influence the backscatter signals in early-

season imagery, particularly when the crops have not reached full maturity, thus affecting the 

precision of early-season mapping across various crop types. As a result, the efficacy of early-

season classification varies from one crop to another, highlighting the need for tailored 

approaches in this application. For instance, Kussul et al. (2018) demonstrated that winter 

rapeseed, along with spring and summer crops, could be distinguished with high accuracy (>85%) 

at least 2 months before harvest. In contrast, crops like winter barley and grassland could not be 

reliably discriminated before harvest. Despite these challenges, SAR imaging offers a more viable 

option for early-season analysis compared to optical imagery. This advantage is particularly 

evident in regions prone to cloud coverage during this period, which can significantly compromise 

the quality and usability of optical data. According to Kussul et al. (2018), employing SAR 

imagery over optical can improve the precision of early-season crop identification by as much as 
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5%.  Additionally, studies by Weilandt et al. (2023) and Ofori-Ampofo et al. (2021) confirmed 

that the fusion of SAR and optical datasets surpasses the performance of using either type of data 

individually for early-season crop classification. Further research by Zhao et al. (2019) revealed 

that a 1D-CNNs model surpassed LSTM and GRU in early classification while GRU displayed 

high accuracy earlier than other classifiers for end-season classification. Contrarily, Rußwurm et 

al. (2023) enhanced LSTM models’ capability for early season classification by adding a decision 

head to evaluate prediction uncertainty. This approach enabled precise classifications of Barley, 

Wheat, Rapeseed, Orchards, and Corn up to 3 months before harvest, leveraging combined data 

from Sentinel-1, -2, and Planet satellites for superior accuracy. Further, 2D-CNNs was examined 

with combination of VH and VV SAR backscatter for early-season classification that let classify 

Soybean, Fallow, Cotton, Jowar, and Sugarcane 45 days before harvest, albeit with a 3.5% 

reduction in accuracy (Paul et al., 2022). Nonetheless, Fontanelli et al. (2022) showcased the 

superiority of 3D-CNNs compared to 1D- and 2D-CNNs using X-band VV and HH SAR data 

composition for early-season classification with 98.5% accuracy one month before harvest. 

However, they also noted a significant decrease in classification accuracy, by approximately 20%, 

when predictions were made three months before the harvest. A recent study by Weilandt et al. 

(2023) demonstrated that spatio-temporal transfer learning (Sec 1.4.2) using Transformers 

alongside a fusion of SAR and optical can classify crops 1 to 3 month prior to harvest. Notably, 

their model outperformed Heupel et al. (2018) by identifying Barley and Rye at least two months 

earlier in an unseen year. Their results, consistent with Kondmann et al. (2022), showed that using 

a CNN-based classification method, Rapeseed and Sugar Beet could be identified at least one 

month earlier, and Maize three months before harvest, similar to Rußwurm et al. (2023)'s findings. 
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Moreover, their model detected Wheat two months before harvest, a slight deviation from Heupel 

et al. (2018) who detected it 3 months prior using optical data. In recent study, Liu et al. (2023) 

managed to classify tobacco during the mid-growing period with over 85% accuracy using a 

combination of VH and VV features alongside an Attention LSTM FCN model.  

In conclusion, Simpler DL methods such as 1D-CNNs, GRU, and LSTM have proven 

effective for early season classification of major crops like corn and rice. For minor crops, 

however, more complex models like Transformers have showcased its efficacy. 

c. Crop Rotation Mapping  
 

Crop rotation mapping is a complex task that involves predicting the sequence of crops 

planted in a field over multiple growing seasons. This practice is crucial for sustainable 

agriculture, as it helps maintain soil health, reduce pest and disease pressure, and optimize nutrient 

management. Given the sequential nature of crop rotations, DL architectures that can capture 

temporal patterns and dependencies in time-series data are particularly well-suited for this task. 

Among the reviewed literature, Dupuis et al. (2023) employed a Sequence-to-Sequence LSTM 

(Seq2Seq-LSTM) model alongside SAR data for forecasting field-level crop rotation over 

multiple years. This Seq2Seq-LSTM model, distinct from traditional LSTM models by its 

encoder-decoder structure, is specifically designed to handle complex sequence-to-sequence 

transformations, offering enhanced capability in predicting the sequence of crops over successive 

periods. It forecasts the likely crops to be planted in future cycles, with predictions further refined 

through a Conditioned Probability model, showcasing the model's advanced ability to capture 

temporal patterns and transitions in crop cultivation practices. While the application of DL in crop 

rotation mapping using SAR data is still in its early stages, the potential for temporal and spatio-

temporal DL architectures to advance this field is significant. 
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As discussed in section 1.3.2.1a, several temporal and spatio-temporal DL architectures, 

including LSTM, GRU, ConvLSTM, their combination with attention mechanisms, and 

Transformers, have shown promising results in crop classification. These architectures have the 

ability to process and learn from sequential data, making them potential candidates for future 

research in crop rotation mapping.  

d. Mapping of Center Pivot Irrigation System (CPIS) 
 

The study of the temporal dynamics of CPIS, which are influenced by factors such as cropping 

systems, irrigation practices, and tillage protocols, reveals significant challenges for their 

detection at a single point in time. However, leveraging multi-temporal SAR images effectively 

addresses these challenges by facilitating the tracking of changes in shape over time. Three key 

characteristics of SAR imagery underscore its suitability for CPIS detection. Its ability to 

penetrate cloud cover, the distinct backscatter signatures reflective of variations in SM, crop 

types, and growth stages within and outside of the designated areas, and its consistent and 

comprehensive temporal coverage. 

While previous research has investigated the utility of the U-net architecture at the pixel 

level with optical data for CPIS identification (de Albuquerque et al., 2020; Saraiva et al., 2020), 

advanced object detection models such as Faster R-CNN and Mask R-CNN were applied to 

optimal number of SAR observations to detect CPIS (de Albuquerque et al., 2021). 

Faster R-CNN introduces a Region Proposal Network (RPN) that streamlines the object detection 

process by generating region proposals directly from image features. Building on this, Mask R-

CNN adds a segmentation mask prediction branch for each Region of Interest, enabling detailed 

object localization through precise pixel-level segmentation in addition to bounding box 
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identification and object classification. This makes it exceptionally suitable for tasks that require 

intricate object detailing and effective background differentiation. 

Future work in this domain should focus on expanding the methodologies and technologies 

applied to CPIS detection, leveraging the advancements in SAR imaging with DL models to 

enhance the accuracy of CPIS mapping.  

e. Soil salinity mapping 
 

Given the critical global issue of soil salinization, impacting an estimated 230 million 

hectares of irrigated land (Metternicht and Zinck, 2003), the need for efficient and accurate 

monitoring methods is crucial. This is particularly the case in dry seasons when salinity intrusion 

tends to worsen as river systems undergo significant reductions in water discharges. Such 

conditions underscore the necessity of meticulous monitoring and management of soil salinity to 

mitigate its adverse environmental effects (Hoa et al., 2019). RS technology, particularly SAR, 

offers a cost-effective and promising solution for the acquisition of soil salinity data (Huang et 

al., 2019). The effectiveness of SAR in soil salinity mapping is particularly attributed to its 

sensitivity to the soil's dielectric constant, a measure significantly influenced by the soil's moisture 

content and salinity levels. The dielectric constant, represented as a complex number, comprises 

real and imaginary components. The imaginary component, crucial for its association with the 

soil's ability to absorb energy, becomes a pivotal factor in soil salinity detection (Chandrasekaran 

et al., 2012). This sensitivity has enabled the accurate mapping of soil salinity across varied 

landscapes, as demonstrated by the correlation of in-field salinity measurements with Radarsat-2 

data in semi-arid regions by Barbouchi et al. (2014). While the intersection of SAR and DL in 

soil salinity detection, is a relatively growing field with few foundational studies such as those by 

Nurmemet et al. (2018) and Zhang et al. (2020), the potential for future research is vast. These 
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studies, employing quad-polarization and dual-polarization decomposition analyzed through 2D-

CNNs and 1D-CNNs respectively, underscore the promise of combining SAR and DL for soil 

salinity detection. 

Future research can build upon the existing groundwork by exploring different SAR data 

features, incorporating additional SAR frequencies, and examining spatio-temporal DL 

architectures for more precise detection of soil salinity on a large-scale or worldwide. 

1.3.2.2. Crop Monitoring: Phenology and Biophysical Parameters Estimation 

Crop phenology, which tracks the growth stages of crops from planting to harvest, plays a 

pivotal role in dynamic crop monitoring (Richardson et al., 2013), precision agriculture (Gao et 

al., 2017; Jentsch et al., 2009), yield prediction (Yuan et al., 2016), and enhancing agricultural 

productivity (Jung et al., 2021; Weiss et al., 2020). Moreover, as highlighted in section 1.2, the 

characteristics of SAR data, which include its sensitivity to vegetation biomass, make it a valuable 

tool for correlating with and indicating the phenological stages of crops (McNairn & Brisco, 

2004). 

Despite the joint utilization of SAR and optical to estimate BPs and crop growth monitoring 

(Mercier et al., 2020; Veloso et al., 2017b)  direct feature stacking has not been successful in 

exploring the nonlinear complementary relationship between the two data types. This failure is 

primarily due to the complex nonlinear response exhibited by SAR and optical data in the 

temporal domain, influenced by crop phenology. ML methods, despite their formidable power 

across various classification tasks, inherently struggle with temporal sequence data. This 

limitation can hinder their ability to precisely predict the timing of phenological stages (Lobert et 

al., 2023). Conversely, DL methods, specifically RNNs, can effectively capture temporal 

dependencies and dynamics in SAR and optical data. Utilizing LSTM layers within a 1D U-Net 
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has proven effective in estimating different phenology stages of winter wheat by capturing the 

dynamics in the SAR gamma naught and optical time-series (Lobert et al., 2023). 

Recently multi-head attention mechanism employed in RNNs, particularly Transformers, 

has exhibited superior capabilities in capturing long-range contextual features. The integration of 

CNNs for features extraction and the fusion of SAR with optical data along with the use of a 

Transformer model for temporal analysis was explored by Zhao et al. (2022) to enhance the start 

and end of the growing season detection. Similarly, Thorp and Drajat. (2021) demonstrated the 

superiority of spatio-temporal DL model, ConvLSTM over Conv2D, LSTM and GRU in 

detecting/identifying tillering, heading and harvesting stages of paddy rice using SAR and optical 

fusion. While models integrating spatial and temporal analyses have demonstrated superior 

accuracy, other studies such as Han et al. (2022) and Hosseini et al. (2019) have applied 2D-

CNNs and 1D-CNNs, respectively, for estimating LAI and Canopy Chlorophyll Content (CCC) 

in winter wheat. These approaches utilize a combination of SAR backscatter data, polarimetric 

features, and radar vegetation indices to achieve their results. 

1.3.2.3. Yield Prediction 

Crop yield prediction is of great importance in ensuring food security and meeting the 

growing demand for crop production (Battude et al., 2016). This is a complex task due to various 

factors that affect crop yield, such as soil type, weather condition, cultivation practices (e.g., date 

of sowing, amount of irrigation and fertilizer, etc.), and biotic stress (Dadhwal, 2003). DL-based 

models are a powerful tool for extracting useful information from raw satellite imagery, enabling 

accurate crop growth monitoring and yield prediction. These models uniquely bypass the need 

for directly measuring challenging parameters such as planting schedules, irrigation, fertilizer 

supply and soil characteristics, traditionally crucial to crop models. Using DL with SAR to predict 
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crop yields represents an emerging area of research, currently evidenced by three published 

studies.  Simple DL methods such as MLP (Tripathi et al., 2022), LSTM (Yu et al., 2023) and 

DNN with 3-6 hidden layers (Tesfaye et al., 2022) have been used with SAR imagery to predict 

rice and wheat yield. While Tesfaye et al. (2022) advocated for a fusion of SAR, optical, and 

meteorological data as the optimal approach for rice yield prediction. In contrast, Tripathi et al. 

(2022) emphasized the importance of soil health parameters—SM, Soil Salinity, and Soil Organic 

Carbon (SOC)—for enhancing wheat yield estimation. While other research indicated LSTM's 

superiority over ML methods in county-level yield prediction using RS and meteorological data 

(Barriguinha et al., 2022; Cao et al., 2021), Yu et al. (2023) found that Meta-Learning Ensemble 

Regression (MLER), an ensemble learning algorithm that integrates predictions from various ML 

models (Vanschoren, 2018), outperformed LSTM for small datasets and equaled its accuracy for 

larger ones. Complementing this, Tripathi et al. (2022) underscored the significance of dataset 

size for MLP's success in yield estimation. They observed that simple regression techniques 

outperformed MLP for smaller datasets, but an enhanced MLP with additional hidden layers 

surpassed other ML methods, including OLS, KNN, RF, DT, Ridge regression, and SVR, for 

larger datasets. Likewise, Tesfaye et al. (2022) illustrated that increasing DNN's hidden layers 

boosted wheat yield prediction accuracy. This indicates that carefully adding complexity through 

more hidden layers can uncover more detailed data patterns crucial for yield prediction, thereby 

enhancing the model's performance.  

A recent systematic literature review by Muruganantham et al. (2022) focused on the use of 

DL and RS for crop yield prediction reported CNNs, LSTM, and ConvLSTM as the most 

commonly used DL that were used with optical data for yield prediction. 3D-CNNs model was 

optimal for predicting soybean yield using optical imagery from sources like MODIS 
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(Abbaszadeh et al., 2022; Fernandez-Beltran et al., 2021; Gavahi et al., 2021; Qiao et al., 2021; 

Russello, 2018; Terliksiz and Altýlar, 2019) and ConvLSTM was superior compared to 2D-CNNs 

and LSTM in predicting soybean yield using MODIS data, weather information, land surface 

temperature (LST), and surface reflectance data (J. Sun et al., 2019). In a recent study, Hashemi 

et al. (under review) demonstrated that with a small dataset, 3D-CNNs and XGBoost (a traditional 

ML method) had comparable performance in maize, soybeans and winter wheat yield estimation.   

For future research leveraging advanced DL models such as 3D-CNNs, ConvLSTM, and attention 

mechanism using Transformers or in combination with the other DL models (was discussed in 

Mapping/Classification section, 1.3.2.1) holds promise for enhancing yield predictions across 

different crop varieties. However, given the complexity of these models, it is crucial to collect 

substantial reference data to serve as training datasets. 

1.3.3. Implementation Consideration 

1.3.3.1. Data Collection and Augmentation Techniques 

Methods for field data collection, such as point observations or plot-based data, frequently 

encounter difficulties in forming a direct spatial and temporal association with SAR data. This 

presents a significant challenge when producing adequate reference data for agricultural 

applications. Most DL studies in classification/mapping applications typically resort to visual 

interpretation of primary or secondary RS data for reference, or for delineating target classes in a 

GIS environment. Such interpretations may include identifying individual targets for agricultural 

object detection (Freudenberg et al., 2019), or demarcating vegetation elements as polygons for 

semantic or instance segmentation (Kattenborn et al., 2021). 

According to our review, several studies utilized visual interpretation using various 

resources. These included Landsat-8, (de Albuquerque et al., 2021; Wei et al., 2019) fine-
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resolution RGB images and Pléiades satellite imagery (M. Wang et al., 2022), high-resolution 

Google Earth images (Crisóstomo de Castro Filho et al., 2020), Korea Multi-Purpose Satellite-2 

(KOMPSAT-2), IKONOS images, and orthorectified aerial photos (Jo et al., 2020), optical data 

and physical characteristics (Ge et al., 2023).  

Data augmentation, used in 12% of the studies, enhances the size and diversity of training 

datasets. By introducing minor alterations or generating synthetic data, this technique improves 

the network's robustness in classifying unseen data. The literature employed various data 

augmentation strategies. Rotation and flipping techniques, such as horizontal, vertical, and 90-

degree rotations, were used in studies by (Chamorro Martinez et al., 2021; K. Li et al., 2022; M 

Rustowicz et al., 2019; Rogozinski et al., 2022; Teimouri et al., 2019; M. Wang et al., 2022). The 

addition of noise, specifically Gaussian noise, was a strategy applied in the research by K. Li et 

al. (2022). Other strategies included solarization, as used by K. Li et al. (2022), and scaling or 

zooming, as employed in the study by Teimouri et al. (2019). 

1.3.3.2. Training and Validation  

To ensure robustness, transferability, and prevention of overfitting, it's crucial to 

independently validate DL models before deployment. This ensures that they can effectively 

generalize beyond specific instances. To this end, supervised DL models require three distinct 

datasets: training, validation, and testing. The validation dataset is used during model training to 

tune model parameters, optimize hyperparameters, and implement early stopping mechanisms to 

mitigating the risk of overfitting, while the test dataset is used post-training to assess the final 

model's performance. It's essential that this validation doesn't solely depend on iterative shuffling 

of training and validation data, but rather, is based on entirely independent data unseen by the 

model. Usually, 20 to 30% of the reference data is set aside for independent validation and testing.  
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1.4. Challenges 

1.4.1. Challenges in the Use of SAR in Agriculture 

Several challenges must be addressed before SAR observations can be effectively used for 

feature extraction in DL models:  

Dynamic Range Management: This involves dealing with the large dynamic range of SAR 

observations, which could be as high as 90 dB depending on the spatial resolution (Steele-Dunne 

et al., 2017).  Dynamic Range Management in SAR observations is crucial for the stability of DL 

models like CNNs. These models are designed for data within a certain range (0 and 1 or -1 and 

1), and large dynamic ranges can lead to numerical instability, causing issues like exploding or 

vanishing gradients. This can lead to slower convergence during training or even cause the model 

to fail to learn from the data. To mitigate this, dynamic compression techniques such as 

normalization and amplitude value thresholding are employed. Normalization scales data to a 

standard range, ensuring balanced input features, while amplitude value thresholding clips 

extreme values, effectively reducing the dynamic range (Metzler et al., 2020; Shi et al., 2022). 

Speckle filtering: Speckle effect, presents a unique challenge in the analysis of SAR images. 

Unlike additive noise, speckle is a form of multiplicative interference, which can significantly 

complicate the extraction of meaningful features from SAR images. Traditional edge and low-

level feature detectors, which are typically designed to handle additive noise, may not be optimal 

for dealing with speckle effect. As such, specific techniques and adaptations are often required to 

effectively process SAR images. While enhanced speckle filtering techniques can help to mitigate 

some of the effects of speckle effect, the presence of scatter noise in SAR data remains a 

significant issue. This can lead to poor model performance, particularly at finer resolutions (e.g., 

10 meters) (J. Li et al., 2022). One common approach to mitigate the impact of speckle effect is 
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to aggregate SAR images to a coarser resolution, such as 30-50 meters (typical agricultural plot 

size). This can help to reduce the impact of speckle effect and improve the performance of 

subsequent analysis. Incorporating plot-scale data can also help to reduce noise interference and 

further improve prediction results (Garioud et al., 2021). In addition to these preprocessing 

techniques, recent research has also explored the development of robust DL methods that are 

specifically designed to handle noise and other imperfections in data. One notable example is the 

combination of CNNs and LSTMs, which has been shown to effectively mitigate the speckle 

effect in SAR images (Mohan et al., 2021). CNN layers excel in spatially filtering out speckle 

effect by identifying and preserving essential structural details like edges, while LSTM layers 

enhance this process by ensuring temporal consistency and coherence across image sequences. 

This dual approach significantly improves SAR image quality by effectively removing noise 

while safeguarding critical image features. 

Further advancements have been introduced by Dalsasso et al. (2020) initially explored the 

use of transfer learning from pre-trained denoising models, as well as end-to-end training 

strategies specifically tailored for SAR despeckling. Building on this foundation, they introduced 

the SAR2SAR algorithm in 2021, which employs a semi-supervised strategy—starting with 

training on simulated speckle and then fine-tuning on real SAR image pairs with a change 

compensation mechanism. 

Further innovations include the self-supervised learning approach developed by Dalsasso et 

al. (2022), which uses a convolutional U-Net architecture to process single-look complex SAR 

data by exploiting the statistical independence between real and imaginary components. 

Meraoumia et al. (2023) extended this concept to leverage multiple SAR acquisitions, learning 

an effective despeckling model without requiring clean ground truth images.Imaging Geometry: 
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The unique range and azimuth coordinates, inherent to the SAR image generation process, pose 

challenges in terms of processing and data augmentation. The use of rotation as a data 

augmentation technique could result in distorted imagery due to these unique coordinates. 

Therefore, careful consideration is required when applying such techniques to SAR data.  

Phase Component Analysis: The phase component contains valuable information for 

training the DL model for crop classification and monitoring applications, and careful 

consideration is necessary when selecting nonlinear activation functions and loss functions. 

Activation functions introduce non-linearity into the model, allowing it to learn complex patterns. 

For processing phase information, the suitability of certain activation functions, such as ReLU, 

which only handles positive inputs, is limited. They risk ignoring critical phase information that 

falls below zero. However, normalization application ensures that all phase information is 

adjusted into a positive range, making it compatible with activation functions like ReLU and 

safeguarding against the loss of vital data. Loss functions, on the other hand, measure the 

discrepancy between the model's predictions and the actual values. When dealing with phase 

information, it's crucial to choose a loss function that can handle the cyclical nature of phase data. 

Mean Squared Error, for instance, might not be the best choice as it doesn't account for the cyclical 

nature of phase data, which can lead to inaccuracies. Therefore, the choice of activation functions 

and loss functions should be made carefully, considering the nature of phase information in SAR 

data.  

Orbit Variation: The use of SAR images from both ascending and descending orbits or 

combination of different sensors can introduce challenges due to varying incidence angles and 

azimuths between orbits. These differences can cause a periodic “orbit-bias”, requiring extra 

processing e. g., incidence angle correction algorithm for correcting such orbit effects (Navacchi 
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et al., 2022; Quast et al., 2023). It is worth noting that adding the incidence angle as a feature to 

the DL algorithm can help reduce the orbit effects. For instance, Han et al. (2022) used local 

incidence angle as a feature to 2D-CNN to reduce the orbit-bias effect of Sentinel-1 and Sentinel-

3 combination to estimate BPs. 

Additionally, the unique imaging principles of SAR introduce complexities in capturing the 

dynamic scattering characteristics of crops, significantly influenced by factors like irrigation 

schedules and planting times. These variables can disrupt the temporal consistency of SAR data, 

posing further challenges to spatio-temporal generalization efforts critical for accurate BPs, yield 

and agricultural management practices. A promising mitigation strategy involves the fusion of 

SAR with optical data, leveraging the complementary strengths of both data types to enhance 

model robustness against these variations. 

1.4.2. Challenges in the Use of Deep Learning in Agriculture 

DL practitioners in agriculture face a multitude of challenges that can significantly impact 

the effectiveness of their models. These challenges can be broadly categorized into two main 

areas: data quality and availability and model design and implementation challenges. 

a) Data quality and availability challenges 

 DL models' success in agriculture depends on the availability of high-quality, well-curated 

datasets (Zhu et al., 2021). While data augmentation can expand the volume of datasets, publicly 

available agricultural datasets frequently face limitations, requiring extensive, labor-intensive 

ground-based data collection efforts. In response to the challenge of scarce labeled data, research 

has delved into a wide range of strategies. Within this context, numerous studies have investigated 

how the limited size of reference datasets influences the accuracy of DL models. Advancements 

in DL methodologies, such as weakly supervised LSTM networks (Wang et al., 2020), Self-
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Attention Mechanisms (Transformers) (J. Li et al., 2022), and Stacked Auto-Encoders (SAE) 

(Zhang et al., 2023), have demonstrated significant resilience in maintaining model accuracy with 

substantially reduced dataset size. For instance, innovative approaches have shown that 

reductions in labeled data by up to 90% may result in only minimal decreases in accuracy metrics 

(Wang et al., 2020). For example, employing Transformers has shown good performance 

maintenance with only 30% of the training dataset for NDVI construction from SAR data, 

relevant to crop classification improvements (J. Li et al., 2022). Remarkably, SAE-based methods 

have achieved classification accuracy of 98.6% with only 2% of the training dataset, and 94% 

accuracy with just 0.5%, illustrating a critical advancement in the efficient and effective training 

of DL models (Zhang et al., 2023). 

Some other studies have assessed the effectiveness of their developed DL methods for 

generalization across datasets from various regions and times, spanning both small and large 

sizes. The Geodesic Distance Spectral Similarity Model (GDSSM) was utilized alongside 1D-

CNN to efficiently extract and utilize training samples from a limited dataset (H. Li et al., 2022). 

GDSSM identifies pixels with high similarity to labeled samples, effectively augmenting the 

amount of training data available.  

Furthermore, a Spatial Feature-based Convolutional Neural Network (SF-CNN) 

incorporating a dual-branch CNN structure was able to process groups of samples rather than 

individual samples that could expand the training set by combining different samples (Shang et 

al., 2022). Z. Han et al. (2023) demonstrated the generalization capability of CNNs and 

Transformers integration handling of multi-scale spatio-temporal features that maintained high 

accuracy even in regions or where data might be sparse or highly variable. 

Another popular technique to mitigate the limitation of scarce labeled data is transfer 
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learning (TL), which enhances the adaptability of DL models to new domains or tasks by utilizing 

pre-trained models, often referred to as 'pre-trained backbones'. This method starts with training 

a model on a vast and varied dataset, known as the source, followed by fine-tuning it for a specific, 

different domain, termed the target. Studies dealing with transferability of crop mapping models 

using SAR imagery can be divided roughly into three categories, those dealing with transferability 

in the temporal domain (Hu et al., 2022; Pandžić et al., 2024), those dealing with transferability 

in the spatial domain (Jo et al., 2022) and those dealing with transitioning to a different task (Jo 

et al., 2022). The combination of these categories, i.e., spatiotemporal transferability as a 

simultaneous method, is a particularly complex task and thus rarely seen in the literatures (Hao 

et al., 2020; Weilandt et al., 2023). This technique conserves resources by minimizing the need 

for extensive training datasets and computational power for the target task. Moreover, it boosts 

model performance through the strategic use of pre-acquired knowledge. The literature reviewed 

identified two primary strategies for TL. The 'shallow strategy' uses pre-trained low-level image 

features, fine-tuning only the final layers of the deep neural networks for task-specific features 

using relevant imagery. On the other hand, the 'deep strategy’ fine-tunes the entire network by 

back-propagating through all layers of the pre-trained network (Pires de Lima and Marfurt., 

2019). However, the choice of layers to fine-tune depends on various factors, including the 

similarity between the source and target tasks, the complexity of the new task, the amount of 

available data for the new task, and computational resources. CNNs, known for their ability to 

identify and utilize hierarchical visual features, are especially adept at this form of learning, 

making TL a powerful tool for adapting models to new tasks with remarkable efficiency and 

effectiveness (Kattenborn et al., 2021). Numerous pre-trained backbones are available for popular 

CNN architectures (Tuia et al., 2016) such as Visual Geometry Group (VGG) (Simonyan and 
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Zisserman, 2014), ResNet (Szegedy et al., 2017), AlexNet (Krizhevsky et al., 2012), Densely 

Connected Convolutional Networks (DenseNet) (Huang et al., 2017), Inception (Szegedy et al., 

2015), and Extreme Inception (Xception) (Chollet, 2017). However, a significant challenge arises 

when applying these backbones to SAR data. Unlike the 3-channel (RGB) images typically used 

for training these architectures, SAR datasets are rich in a greater number of features, including 

backscatter intensity, polarimetric decomposition parameters, coherence measures, radar indices, 

and observations across different bands. Some potential solutions to this challenge include the 

use of band selection or feature reduction algorithms (Rezaee et al., 2018). However, these 

approaches could lead to loss of potentially valuable information, which may affect the model's 

performance. 

Addressing the specific challenges posed by limited labeled data, 3D U-Net was evaluated 

by Jo et al. (2022) using fine-tuning encoder, decoder, and full model for paddy rice identification 

across different geographical regions. Among these, fine-tuning the encoder surpassed the other 

methods in both spatial and task-related TL. Further, Capability of Transformers for spatio-

temporal TL for early-season crop classification was explored by Weilandt et al. (2023) using a 

Pixel-Set Encoder–Temporal Attention Encoder (PSE-TAE) DL model (Garnot et al., 2020). 

Their conclusion suggests that enhancing the model's adaptability to diverse weather conditions 

may be attained by including temporal TL and extending the training duration, rather than relying 

on the integration of weather data. However, Pandžić et al. (2024) showcased the superior 

performance of CNNs over Transformers and RF models in the context of temporal TL for crop 

classification, utilizing Sentinel-1 satellite imagery. The application of TL across all three models 

significantly enhanced classification accuracy within a new domain, with CNNs combined with 

TL exhibiting the most notable improvement. This outcome highlights the distinct advantage of 
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CNNs in leveraging TL to optimize crop classification results. Consequently, the successful 

application of temporal TL suggests that it may not be necessary to collect ground truth data 

annually. The interannual applicability of these trained models holds promise for both predicting 

future crop type distributions and reconstructing historical ones, as affirmed by Hu et al. (2022).  

Class imbalance in crop classification is another limitation that needs to be addressed before DL 

modeling. Yuan et al. (2023) introduced k-positive contrastive loss (KCL) (Kang et al., 2020) to 

handle imbalanced datasets in crop classification tasks. Specifically, the KCL approach works by 

randomly selecting K instances of the same crop within a batch of data to create a set of positive 

samples, illustrating its practical application in enhancing model performance under class 

imbalance conditions. If there are fewer than K instances of the same crop in the batch, all 

instances of that crop are used instead. This approach helps ensure that the model receives enough 

examples of each class to learn effectively, even when some classes are underrepresented in the 

dataset. Further, Cué La Rosa et al. (2023) asserted their solution to the class imbalance issue 

with the introduction of an inventive online deep clustering technique called Learning from Label 

Proportions with Prototypical Contrastive Clustering (LLP-Co). This approach effectively utilizes 

government-provided crop proportion data as priors, seamlessly integrating them into a 

contrastive learning framework. Generative Adversarial Networks (GANs) are a DL method 

recently applied to generate data for minority classes in crop classification (Mirzaei et al., 2023). 

A GAN consists of two components: a generator that produces synthetic data and a discriminator 

that differentiates between synthetic and real data. The generator aims to create data that the 

discriminator cannot distinguish from real data, improving through adversarial training. However, 

GANs may struggle with non-Gaussian distributions in tabular data. To address this, Mirzaei et 

al. (2023) introduced the Conditional Tabular GAN (CTGAN), specifically designed for tabular 
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data. CTGAN supports conditional generation and employs categorical embeddings, making it 

effective for both continuous and categorical variables. Despite needing substantial training data 

and being more time-consuming than traditional methods, CTGAN's ability to accurately mirror 

complex data distributions marks a significant advancement over conventional data generation 

techniques like Random Under-Sampling (RUS), Random Over-Sampling (ROS), and Synthetic 

Minority Over-sampling Technique (SMOTE), improving classification performance by 5% and 

offering tailored synthetic data creation to better represent minority classes. Resampling and cost-

sensitive learning are other techniques that have been used to overcome the issue of imbalanced 

labeled datasets in the studies by Johnson and Khoshgoftaar. (2019) and Khan et al. (2017).  

b) Model Design and Implementation Challenges 

Beyond dataset constraints, selecting the optimal network architecture emerges as a pivotal 

challenge. The decision not only influences a model's ability to discern complex patterns but also 

its generalization capabilities. This is a delicate balancing act; too complex an architecture risks 

overfitting with smaller datasets, while too simple a model may underperform with larger or high-

dimensional datasets. For example, Crop phenology detection, which involves measuring BPs 

such as LAI and VWC, generally suffers from limited reference data due to the requirement for 

destructive in-situ measurements. Consequently, the DL architectures that are appropriate for crop 

classification may not be optimal for crop phenology detection. Additionally, the impact of 

hyperparameters on model performance cannot be overstated, yet the practice often defaults to 

using standard settings, potentially overlooking opportunities to fine-tune models for optimal 

results.  

Training DL models effectively encompasses navigating through a myriad of challenges, 

such as overfitting, the vanishing or exploding gradient problem, each presenting unique hurdles 



62 

 
 

to model accuracy and generalizability. Overfitting, a common issue with deep architectures, 

arises from a model’s capacity to learn not just the underlying patterns but also the noise within 

the training data, thereby diminishing its performance on unseen data. This challenge is intricately 

linked to the structural complexity of DL models and the dimensionality of the input data 

(Carranza-García et al., 2019). 

Parallel to the issue of overfitting is the vanishing and exploding gradient problems, which 

directly impact the learning process. The vanishing gradient problem slows or halts learning as 

gradients diminish through layers, while the exploding gradient problem destabilizes learning 

with excessively large gradients. These issues highlight the delicate balance required in designing 

and training DL models to ensure stable and effective learning. 

Addressing these challenges, a suite of techniques such as regularization, dropout, early 

stopping, and batch normalization (BN) have been developed to enhance model robustness and 

prevent overfitting. Regularization adds a penalty to the loss function based on the complexity of 

the model, encouraging simpler solutions. Dropout randomly "drops out" a number of output 

features of the layer during training, making the network less reliant on any single feature and 

more robust to noise in the input data. Early stopping is a form of regularization that halts training 

when performance on a validation set stops improving, preventing the model from learning noise 

in the training data. BN is a technique that normalizes the inputs of each layer in a mini batch, 

reducing internal covariate shift and helping the model generalize better (Mikołajczyk and 

Grochowski, 2019). Similarly, to combat the vanishing and exploding gradient problems, several 

techniques has been employed.  Activation functions such as Rectified Linear Unit (ReLU), which 

outputs the input directly if it is positive and zero otherwise, help ensure gradients neither vanish 

nor explode (Hu et al., 2021). Additionally, gradient clipping is used to prevent gradients from 
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becoming excessively large. Furthermore, the introduction of residual connections, or skip 

connections, allows gradients to bypass certain layers directly, thus mitigating the vanishing 

gradient problem (Yahya et al., 2023).  

However, the integration of these techniques demands careful consideration to avoid 

potential adverse interactions, exemplifying the complexity of optimizing DL models. This 

optimization extends beyond technique selection to encompass implementation costs and the 

practicalities of model training, which may be hindered by computational or hardware limitations 

(Chen et al., 2014; Christiansen et al., 2016). Despite these challenges, DL has gained significant 

popularity owing to various technological advancements. These include efficient data processing 

techniques, high-performance graphics cards, cloud-computing capabilities, and open data 

initiatives that offer annotated data. Such developments enable the efficient computation of 

numerous non-linear transformations of input data, thereby establishing the fundamental strength 

of DL: its capacity to learn end-to-end  (Kattenborn et al., 2021). 

1.5. Opportunities 

Despite the advancements in SAR and DL methods for agricultural applications, there are 

still several gaps and areas that require further exploration. Here are some potential gaps and 

directions for future work: 

1.5.1. SAR Data Preprocessing 

The Alaska Satellite Facility (ASF) offers Sentinel-1A and Sentinel-1B Radiometrically 

Terrain Corrected (RTC) products at no cost, developed using the GAMMA software. These 

products provide a 10-to-30-meter spatial resolution in different scales (decibel, power, and 

amplitude) and radiometric units (gamma naught and sigma naught) (ASF, 2023). 

Additionally, ASF incorporates speckle filtering for these products. Intriguingly, despite the 
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availability of preprocessed Sentinel-1 RTC images, none of the reviewed papers have integrated 

them with DL techniques in agricultural applications. 

1.5.2. Availability of Multi-Frequency Data from Future Missions  

Notably, spaceborne L-band SAR data availability has been constrained, predominantly 

sourced from airborne and Advanced Land Observing Satellite (ALOS) PALSAR platforms. 

These platforms provide data with coarse temporal resolutions, and unlike open-access datasets, 

they often require specific task submissions for access (Table 1). Our review indicates that, to 

date, no study has utilized ALOS PALSAR data in conjunction with DL for agricultural 

applications. Another source, the SMAP mission L-band SAR data, was only accessible for 

approximately 2.5 months during the summer of 2015. However, the launch of the NASA-ISRO 

Synthetic Aperture Radar (NISAR) satellite in 2024 and Radar Observing System for Europe - 

L-band (ROSE-L) in 2028 brings promising opportunities for utilizing SAR L-band observations 

(Table 1). With a temporal resolution of 12 days (exact repeat) and a spatial resolution of 10 

meters, Sentinel-1, NISAR, and ROSE-L enabling the utilization of both C- and L-band data, 

offering similar spatial and temporal resolutions. The combination of C- and L-band SAR 

observations may offer significant advantages in crop analysis. Firstly, it can enhance the 

discrimination and classification of different crop types, particularly during early-season 

classification when image availability is limited, and the crops' structures are similar to each other. 

Integrating C- and L-band SAR data can also improve crop residue and tillage detection. C-band 

SAR data is sensitive to structural characteristics such as canopy height and biomass, while L-

band SAR data responds to moisture content and vegetation water content. Thus, combining these 

two bands provides a comprehensive understanding of these agricultural management practices. 

Secondly, the fusion of C- and L-band SAR data can prove to be highly beneficial for phenology 
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and BPs estimation. Each phenological stages exhibits unique radar signatures due to changes in 

vegetation structure, biomass, and moisture content. By incorporating both C- and L-band SAR 

data, researchers can more precisely capture these phenological changes, leading to a more 

accurate representation of crop phenology, yield estimation. 

1.5.3. Emerging Applications 

1.5.3.1. Phenology, Biophysical Parameters, and Yield Estimation 

While SAR has shown promise for crop growth monitoring, BPs estimation, and yield prediction, 

there is a limited number of studies that have explored the integration of SAR and DL in these 

areas. The challenge often lies in the DL models' requirement for extensive training datasets, 

which are particularly difficult to compile for such specialized applications. 

To address this challenge, future research could explore various strategies to enhance the 

effectiveness of DL models for these applications, even when dealing with limited datasets. 

Among these strategies are data augmentation (was discussed in section 1.3.3.1), transfer learning 

(was discussed in section 1.4.2), and foundation models. Foundation models, which leverage self-

supervised learning (SSL) techniques, can be particularly valuable as they do not rely on labeled 

datasets. Instead, they are pretrained using SSL methods and subsequently fine-tuned for specific 

tasks with smaller, labeled datasets. Recent advancements have seen the application of foundation 

models across a range of tasks, utilizing methods like contrastive learning, Masked Autoencoders 

(MAE), Masked Image Modeling (MIM), DINO, Bootstrap Your Own Latent (BYOL), 

Momentum Contrast (MoCo), and CACo Loss; along with Seasonal Contrast (SeCo) as SSL 

methods combined with Transformers or ViT (Wang et al., 2022) and various RS data types, 

including SAR, optical, and LiDAR. These applications encompass a wide range of domains, 

including forest monitoring (Bountos et al., 2023), image segmentation (Fuller et al., 2023), crop 
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mapping (Xu et al., 2024), and land cover classification (Prexl and Schmitt, 2023). Employing 

these techniques can significantly boost the accuracy and generalizability of models dedicated to 

yield prediction and BPs estimation, promising substantial progress in the integration of SAR and 

DL in agricultural monitoring and assessment. Figure 1.5 illustrates a comprehensive workflow 

that integrates SAR data and DL techniques for various agricultural applications, including crop 

classification, phenology, BPs retrieval, and yield estimation. Since the availability of reference 

data varies among these applications, with crop type data being more abundant compared to BPs, 

growth stages, and yield data, the workflow incorporates a fine-tuning step, where the parameters 

of a pre-trained crop mapping model are adapted to the BPs and yield estimation application. This 

TL approach leverages the knowledge gained from the crop classification task to improve the 

performance of the DL models in applications with limited reference data, thereby enhancing the 

overall effectiveness of the SAR-based DL framework in agricultural management.  
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Figure 1.5: A flowchart illustrating the integration of SAR and DL for agricultural applications. 

The flowchart highlights three major components: (1) pixel-wise crop classification from SAR 

imagery, (2) feature selection, multi-modal fusion, and selection and implementation of 

appropriate DL architectures, and (3) fine-tuning the crop classification model parameters for 

robust crop phenology estimation, BPs retrieval, and yield prediction. 
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1.5.3.2. Agricultural Management Practices Detection 

a. Planting and Harvest Dates Estimation 

Accurate planting and harvest dates estimation is crucial for optimizing crop yields, 

resource allocation, and adaptation to climate variations. However, traditional crop calendars may 

not account for dynamic field conditions (Hashemi et al., 2022), highlighting the need for robust, 

real-time estimation methods using RS data to improve agricultural planning and productivity. 

Several studies have used the potential of SAR in planting dates estimation (Phan et al., 2018b; 

Shang et al., 2020)  and the impact of SAR-based planting dates on estimated crop yield using 

crop growth models (Hashemi et al., 2022). By integrating DL with SAR data, the estimation of 

planting and harvest dates becomes more precise and reliable. DL techniques effectively reduce 

noise and mitigate the effects of varying orbit combinations, enabling the utilization of high 

temporal resolution SAR data with revisit times of 6 days or less. This enhanced temporal 

resolution allows for the capture of subtle changes in crop growth and development, leading to 

more accurate detection of key phenological events such as planting and harvesting.  

b. Crop Residue and Tillage Mapping 

Crop residue management plays a vital role in maintaining soil health, reducing erosion, 

increasing fertility, and ensuring agricultural sustainability (Zheng et al., 2014). The 

determination of timing and variability of tillage across landscapes relies on utilizing multi-

temporal imagery to provide a full picture of tillage patterns for a region (Zhang et al., 2012). The 

cloud-penetrating capabilities of SAR significantly enhance the potential for acquiring sequential 

imagery. Its sensitivity to surface roughness and moisture makes SAR ideal for mapping crop 

residue and tillage. Figure 1.6 illustrates the impact of corn residues on Sentinel-1 VH backscatter 

from both a plowed and non-plowed soybean farm. The green line represents the VWC measured 
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every 12 days based on the Sentinel-1 overpass in the summer of 2022 in two different soybean 

farms in Michigan. In the well-plowed field, the backscatter is consistent with the VWC pattern, 

indicating the soybean growth cycle. However, the presence of crop residue in the other field has 

caused abnormal behavior in the VH backscatter. Despite the impact of crop residue on SAR 

backscatter, there has been a lack of research investigating its effect on the performance of crop 

classification/mapping, monitoring, and BPs estimation. Since 2010, only TerraSAR-X (X-band) 

and Sentinel-1 (C-band) data have been used for conservation tillage monitoring (Zhang et al., 

2024). Although the dual-polarization (HH and HV) backscattering coefficients of TerraSAR-X 

images have been employed to distinguish soil roughness differences due to tillage methods, these 

SAR observables have shown weak correlations with surface roughness (Pacheco et al., 2010). 

In a study by Cai et al. (2019), indices 𝜎𝑉𝑉
0/𝜎𝑉𝐻

0, and (𝜎𝑉𝑉
0-𝜎𝑉𝐻

0)/( 𝜎𝑉𝑉
0+𝜎𝑉𝐻

0) were found to 

be effective in winter wheat crop residue detection using regression methods. However, with the 

maximum R² value reaching only 0.4, there is a clear need for the application of DL and ML 

methods to improve accuracy. 

To address these limitations and effectively detect and analyze crop residue and tillage 

practices, future research should focus on developing robust DL algorithms that leverage the 

potential of SAR data. These algorithms should incorporate ancillary data, such as surface 

roughness and SM, to enhance the accuracy and reliability of the results. Furthermore, combining 

different SAR frequencies, such as C and L bands, can provide complementary information and 

improve the overall performance of crop residue and tillage mapping. By integrating advanced 

DL techniques, multi-source data fusion, and multi-frequency SAR data, researchers can develop 

more comprehensive and accurate methods for monitoring and understanding the complex 

dynamics of crop residue management and tillage practices in agricultural systems. 
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Figure 1.6: Impact of crop residues on cross-polarized Sentinel-1 backscatter from a soybean farm 

and its influence on crop growth cycle monitoring using SAR backscatter time-series. (a) Soybean 

farm with corn residue. (b) Soybean farm without corn residue (well plowed). 

c. Cover Crop Mapping 

Cover cropping is an essential agricultural practice that plays a vital role in promoting soil 

health and fertility (Reicosky and Forcella, 1998). By reducing nutrient leaching, cover crops 

contribute to long-term soil fertility and minimize nitrate losses (De Notaris et al., 2018). Minh 

et al. (2018) demonstrated the effectiveness of Sentinel-1 𝜎𝑉𝑉
0 and 𝜎𝑉𝐻

0 in detecting winter cover 

crop using LSTM and GRU, which outperformed the RF method. Additionally, Najem et al. 

(2023) highlighted the superiority of multi-level decision trees over RF in both cover crop 

mapping and the analysis of temporal patterns. While these studies provide valuable insights, 

there is a pressing need for further research to fully explore the potential of SAR and DL 

technologies in understanding the complex dynamics of cover cropping, ultimately leading to 

improved soil health, reduced environmental impact, and increased agricultural sustainability. 
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d. Grassland Mowing 

 

The accurate detection of grassland mowing events holds significant ecological and 

economic implications, given the multifaceted roles of grasslands (Reinermann et al., 2022). 

Beyond serving as a primary source of fodder for livestock (Holtgrave et al., 2023), grasslands 

are crucial in delivering a range of ecosystem services, encompassing carbon sequestration 

(Soussana et al., 2004), water filtration (Jankowska-Huflejt, 2006), and provision of habitats for 

a myriad of species. A salient challenge in monitoring grassland mowing pertains to the swift 

regrowth dynamics of grasses, necessitating a high-resolution satellite time-series for precise 

event identification. In this context, SAR emerges as a valuable tool, adeptly augmenting optical 

time-series by mitigating observational gaps attributed to cloud interferences. This integration, 

when synergized with meteorological data, can markedly amplify the precision in detecting 

mowing events, especially considering the intrinsic association between mowing patterns and 

specific weather conditions. Several studies have explored the SAR and its fusion with optical 

data for grassland mowing detection (De Vroey et al., 2021; Holtgrave et al., 2023; Reinermann 

et al., 2022; Schuster et al., 2011; Tamm et al., 2016; Voormansik et al., 2015). Komisarenko et 

al. (2022) demonstrated the efficacy of employing CNN and LSTM models with an innovative 

reject region mechanism for the reliable detection of mowing events throughout the growing 

season, utilizing a blend of optical, InSAR, and PolSAR satellite time-series data. The study 

highlighted the superior performance of CNN and LSTM models over traditional shallow ML 

methods. Moreover, the study emphasized the critical role of weather data, particularly 

precipitation, in the successful detection of mowing events. Despite these advancements, there is 

a notable gap in research that exploits DL in conjunction with SAR data for grassland mowing 

event detection. 
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1.5.4. Training Data 

The development of DL models for agricultural applications relies heavily on the acquisition 

of comprehensive and diverse training datasets. To effectively estimate crop phenology, BPs, 

yield, and detect agricultural management practices, these datasets must include a wide range of 

measurements, such as VWC, LAI, canopy surface water, yield metrics, and soil characteristics 

(e.g., moisture and roughness). However, compiling such datasets is a time-consuming and costly 

endeavor, presenting significant challenges to researchers and practitioners. 

To overcome these challenges, several methodologies have been proposed, including data 

augmentation, transfer learning, and self-supervised, unsupervised, or weakly supervised learning 

techniques. While these approaches offer potential solutions, the reliance on pre-trained models 

that may not be entirely suited for specific agricultural tasks can hamper model performance and 

limit advancements in the field. 

Addressing this issue requires the creation of publicly accessible, extensive, and diverse 

reference datasets that encompass a variety of agricultural scenarios. Such datasets would greatly 

facilitate research and development efforts in the application of DL models to agricultural 

problems. Some European countries have already taken steps towards creating these datasets by 

mandating farmers to report their cultivar types as a requirement for receiving financial support 

(Arias et al., 2020). This has led to the development of datasets like EuroCrops (Schneider et al., 

2021), ZueriCrop (Turkoglu et al., 2021), BreizhCrops (Rußwurm et al., 2019), and others, which 

contain hundreds of thousands of labeled parcels and are invaluable for training high-quality ML 

and DL models. However, assembling a comprehensive, large-scale ground truth database 

requires involvement from higher public authorities to set guidelines on data collection, storage, 

usage, and access rights. Establishing these datasets not only aids in developing more precise and 
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efficient models but also supports their evaluation and enhancement. Moreover, access to 

standardized datasets driven by the community would encourage advancements and innovation 

in the use of DL with SAR based agricultural applications. Emphasizing this need, we encourage 

research institutions, academia, and industry stakeholders to collaborate and contribute towards 

the creation of these reference datasets. Following is a comprehensive overview of all the open-

access ground reference datasets for crop classification that is provided in Table 1.2. Additionally, 

Table 1.3 is outlining the field campaign datasets for vegetation sampling, which can be 

instrumental in collecting training datasets for crop monitoring applications. 
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Table 1.2: Open-access Ground reference datasets for crop classification/Mapping.  

Product name Spatial coverage 
Time 

period 
Crop type Research Article 

EuroCrops 

(combination of all 

publicly available 

self-declared crop 

reporting datasets) 

 

European countries: Austria, Belgium, 

Germany, Denmark, Estonia, Spain, 

France, Croatia, Lithuania, Latvia, 

Netherlands, Portugal, Romania, 

Sweden, Slovenia, Slovakia 

2015-2022 

Meadow, Vineyards, Winter Barley, Barely, 

Potato, Winter Rye, Summer Barely, Fallow, 

Vegetables, summer oats, sunflower, soya, 

Millet, winter Durum, Hopes, Berries, 

Rapeseed, Fodder Roots, Oil seed crops, Maize, 

wheat, Sorghum 

(Schneider et al., 

2023) 

TimeSen2Crop Austria 2017-2019 

16 crop types, Barley, Wheat, Rapeseed, Corn, 

Sunflower, Orchards, Nuts, Permanent 

meadows, Temporary meadows, Grassland, 

Spring cereals, Legumes, Permanent plantations 

(includes Vineyards, Cherry Plantation, 

Apricots, Nectarines, Peach, Apples, Pears, and 

Plums) 

(Weikmann et 

al., 2021) 

Annual Crop 

Inventory 
Canada 2010-now 

More than 16 crop types: Wheat, Barley, 

Canola, Corn, Soybeans, Oats, Peas, Lentils, 

Flaxseed, Rye, Potatoes, Beans, Mustard, 

Sunflowers, Fallow, and Pasture.  

- 

CAWA Crop type 

dataset 
Uzbekistan and Tajikistan 

2008, 2011, 

2015, 2018 

40 crop types and is dominated by “cotton” 

(40%) and “wheat”, (25%). Other crops:  rice, 

maize, orchards, vineyards, alfalfa, potatoes and 

onions. 

(Remelgado et 

al., 2020) 

Mali Crop Type 

Training Data-ground  
Mali 2019 Maize, Millet, Rice, and Sorghum 

(Nakalembe, 

2021) 

Great African Food 

Company Crop Type 
Tanzania 2018 field boundaries and crop types 

(Great African 

Food Company, 

2019) 

Eyes on the Ground 

Image Data 
Kenya 2019 

Georeferenced crop images along with labels on 

input use, crop management, phenology, crop 

damage, and yields 

(Waithaka, 2022) 

Drone Imagery 

Classification 

Training Dataset for 

Crop Types  

Rwanda 2018-2019 

19 different land cover types.  These land cover 

types were reduced to three crop types (Banana, 

Maize, and Legume), two additional non-crop 

land cover types (Forest and Structure) 

(Chew et al., 

2020;  Rineer et 

al., 2021) 

DENETHOR Dataset Northern Germany 2018-2019 
Wheat, Rye, Barley, Oats, Corn, Oil Seeds, Root 

Crops, Meadows, Forage Crops 

(Kondmann et 

al., 2021) 

https://github.com/maja601/EuroCrops/wiki/Austria
https://github.com/maja601/EuroCrops/wiki/Belgium
https://github.com/maja601/EuroCrops/wiki/Germany
https://github.com/maja601/EuroCrops/wiki/Denmark
https://github.com/maja601/EuroCrops/wiki/Estonia
https://github.com/maja601/EuroCrops/wiki/Spain
https://github.com/maja601/EuroCrops/wiki/France
https://github.com/maja601/EuroCrops/wiki/Croatia
https://github.com/maja601/EuroCrops/wiki/Lithuania
https://github.com/maja601/EuroCrops/wiki/Latvia
https://github.com/maja601/EuroCrops/wiki/Netherlands
https://github.com/maja601/EuroCrops/wiki/Portugal
https://github.com/maja601/EuroCrops/wiki/Romania
https://github.com/maja601/EuroCrops/wiki/Sweden
https://github.com/maja601/EuroCrops/wiki/Slovenia
https://github.com/maja601/EuroCrops/wiki/Slovakia
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Table 1.2 (cont’d) 

Product name Spatial coverage 
Time 

period 
Crop type 

Research 

Article 

ZueriCrop 
an area of 50 km × 48 km in the Swiss 

cantons of Zurich and Thurgau 
2019 

116000 individual fields spanning 48 crop 

classes, and 28000 (multi-temporal) image 

patches from Sentinel-2 

(Turkoglu et al., 

2021) 

BreizhCrops Brittany region of France 2017 

Barley, Wheat, Corn, Fodder, Fallow, 

Miscellaneous, Orchards, Cereals, Permanent 

Meadows, Protein Crops, Rapeseed, Temporary 

Meadows, Vegetables 

(Rußwurm et 

al., 2019) 

CV4A Kenya Crop 

Type Competition 
Kenya 2019 Maize, Cassava, Soybean 

(Kerner et al., 

2020) 

AgriFieldNet 

Competition Dataset 

 

Uttar Pradesh, Rajasthan, Odisha and 

Bihar in northern India 
- 

13 classes in the dataset including Fallow land 

and 12 crop types of Wheat, Mustard, Lentil, 

Green pea, Sugarcane, Garlic, Maize, Gram, 

Coriander, Potato, Berseem and Rice. 

(Radiant Earth 

Foundation & 

IDinsight, 

2022) 

A Fusion Dataset for 

Crop Type 

Classification in 

Germany 

Germany and South Africa 

2017(South 

Africa) 

2018-2019 

(Germany)  

Nine crop types: Wheat, Rye, Barley, Oats, 

Corn, Oil Seeds, Root Crops, Meadows, Forage 

Crops 

(Team, 2022) 

World Cereal Project  

 

107 in situ datasets around the world: 

USA, Canada, Brazil, Sri Lanka, 

Northern India, Central Asia, Sweden, 

Estonia, Latvia, Lucas, Europe, 

Lebanon, Egypt, Senegal, Niger, Mali, 

Burkina Faso, Brazil, Ethiopia, Rwanda, 

Sudan, Africa, Nigeria, Cameroon, 

Kenya, Tanzania, Mozambique, 

Zimbabwe, South Africa, Madagascar 

2017-2021 
Maize and Cereal including wheat, barley, and 

rye 

(Van Tricht et 

al., 2023) 

 

Crop land USGS. 

Ground reference 

 

Vietnam, India, USA, Indonesia, 

Thailand. 
2016-2017 

Rice, Maize, Barely, Alfalfa, fallow, Sugarcane, 

Cassava, Soybean, Palm, Cotton 
- 

Cropland Data Layer 

(CDL)-USDA-NASS 
US 

Annual 

1997-now 
106 unique crop types 

(Boryan et al., 

2011) 

Campo Verde 
Campo Verde municipality, Mato 

Grosso state, Brazil. 
2015-2016 

14 land use classes were detected: soybean, 

maize, cotton, beans, sorghum, NCC–millet, 

NCC-crotalaria, NCC-brachiaria, NCC-grasses, 

pasture, turf grass, eucalyptus, Cerrado  

(Sanches et al., 

2018) 
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Table 1.3: Field campaign vegetation sampling datasets. 

Name Time period 
Spatial  

Coverage 

SAR 

Freq 
Crop type Measurements Reference 

Eagle 

campaign 

8-18 June 

2006 

Three sites in the 

Netherlands  

L, C 

X 

one grass land and two forest 

area 

Land cover type (Su et al., 

2009) 

AgriSAR 

Campaign  

16 flights in 

2006 

Northeastern of Germany 

(DEMMIN test site) 

X, C, 

L  

winter wheat, winter rape, winter 

barley, maize, and sugar beet 

Crop type, SM, and in 

situ measurements of 

BPs 

(Skriver et al., 

2011) 

SMEX02 
2002 (fly on 5-

8 days) 

walnut creek watershed area 

in Iowa (N: 42.389, S: 

41.308, E:-93.017, W:-

93.913),Southern Great 

Plains (SGP) site 

C, S, 

L, P 
Soybean and corn, walnut Creek  

Vegetation and Land 

Cover (Plant height, 

Ground cover, Stand 

density, Phenology, LAI, 

Green and dry biomass) 

Soil Moisture, Surface 

Temperature, Surface 

Roughness 

(Jackson et al., 

2004; Narayan 

et al., 2004) 

SMEX03 
July 2003 (fly 

on 6 days) 

southern and northern part of 

Oklahoma around Stillwater 

and Chickasha (N: 37.02, 

S:34.37, E:-97.43, W:-98.39) 

C, L 

and P 
Soybean, alfalfa, and corn 

Crop height, density, 

number of leaves, LAI, 

VWC and soil moisture 

(Jackson et al., 

2007) 

SMAPVE

X08 

Fall 2008 (fly 

for 7 days 

every 1-3 

days) 

Maryland and Delaware 

(N:39.09, S:38.93, E:-75.55, 

W:-76.25) 

L Soybean 

VWC, LAI and crop 

type, soil moisture 
(Park et al., 

2011; NASA, 

2008) 

SMAPVE

X12 

June to July 

2012 (6 days) 

Manitoba (N: 50.01, S:49.32, 

E:-97.62, W:-98.67) 
L 

55 Ag-land fields, 5 forested 

sites, Corn and Soybean, 

Landcover: cereals (32%), 

canola (13%), corn (7%), 

soybean (7%), grassland & 

pasture (16%) 

Crop height, stem 

diameter, number of 

leaves, VWC, soil 

moisture, surface 

roughness 

(Fang and 

Lakshmi, 

2014) 

SMAPVE

X15 

August 2015 

(every 2-3 

days) 

Arizona (N:31.87, S:31.51, 

E:-109.84, W:-110.96)- 

walnut gulch experimental 

watershed 

L Walnut 

Soil moisture, 

precipitation, vegetation 

and roughness sampling 

(Colliander et 

al., 2017) 

SMAPVE

X16 
Summer 2016 

Iowa (N:42.66, S:42.28, E:-

93.21, W:-93.58) and 

Manitoba(N: 49.79, S: 49.36, 

E: -97.75, W:-98.12) 

L  Corn and Soybean 

Crop density, height, and 

biomass 

Soil moisture and soil 

temperature 

(NASA, 2016 

a,b) 
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1.6. Conclusion 

This comprehensive review has highlighted the transformative impact of SAR with DL on 

different aspect of agricultural applications. The Sentinel-1 satellite has been the most widely used 

SAR sensor in agriculture due to its open-access data with continuous temporal coverage. The 

combination of VH and VV backscatter, along with the inclusion of polarimetric parameters, and 

SAR indices has significantly enhanced the accuracy of crop classification and monitoring. 

However, feature selection remains crucial to prevent data redundancy and overfitting problems.  

The review revealed that L-band SAR, has not been widely used for monitoring and yield 

estimation due to the lack of freely accessible data of this sensor. However, the upcoming launches 

of the NISAR and ROSE-L satellites are expected to bridge this gap by providing L-band SAR 

data with high temporal and spatial resolution.  

End-season crop classification has been extensively covered, and numerous emerging DL 

methods such as ViT have been developed, leading to improved performance in this application. 

However, the scarcity of labeled data has hindered the application of DL in crop monitoring and 

yield prediction. Techniques such as Transfer Learning and self-supervised learning using 

foundation models can potentially address this issue by enabling the use of smaller datasets. 

Moreover, future research should focus on exploring the potential of these techniques in early-

season crop classification, CPIS, and soil salinity detection, which have received less attention 

compared to end-season crop classification. 

Despite the challenges posed by the limited availability of reference data for training and 

validation, the integration of SAR with DL continues to revolutionize agricultural applications. 

Emerging applications, such as mapping crop residue, tillage, and cover crop, as well as detecting 
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grassland mowing and estimating planting and harvest dates, highlight the tremendous potential 

of SAR with DL in agriculture.  

However, to fully harness this potential, the availability of comprehensive training datasets 

remains a critical bottleneck. Therefore, a concerted effort from the research community is needed 

to gather and share high-quality, annotated datasets that can support the development of robust DL 

models for agricultural applications. 
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2. CHAPTER 2: IMPACT OF SAR PLANTING DATE ON CROP MODEL YIELD 
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2.1. Introduction 

Rice is one of the most common sources of staple food for mankind. With 164 million 

hectares of rice-cultivated land in the year 2020, rice is the third most widely produced cereal in 

the world (FAO, 2020). Recently rice production is adversely affected globally by extreme weather 

events (Phung et al., 2020a). Fahad et al. (2018) found that an increase in the frequency/severity 

of the hot weather could decrease rice production up to 40% by the end of the 21st century. 

Therefore, monitoring of paddy over farms is becoming crucial for national food security.  

Important geo-bio-physical variables and events such as timely pre-harvest assessment of the 

PD, crop type detection, acreage estimation, phenology monitoring, and the harvest date 

determination at a fine spatial resolution are essential for near real-time decision-making at small 

(farm) to large (country-wide) scale for rice production. Obtaining information on these important 

variables and events and ingesting them into crop models, can improve the rice yield nowcast and 

forecast. Most of the rice crop growth models, such as the Decision Support System for 

Agrotechnology Transfer (DSSAT) (Jones et al., 2003), Agricultural Production Systems 

Simulator (APSIM) (Keating et al., 2003), CropSyst (Stöckle et al., 2003), Wageningen crop 

models (van Ittersum et al., 2003), and ORYZA (Bouman, 2001) used climate, soil, and 

ecophysiological crop parameters to simulate yields. Simulation of crop yields is affected by 

human decisions, forcings such as temperature (i.e., growing degree days, GDD) and precipitation 

rate/pattern, planting date, irrigation and fertilizer amount and timing, crop cultivars, and 

atmospheric CO2 (Baigorria et al., 2008). Among all these, PD has a significant impact on the crop 

model output (Urban et al., 2018), owing to its effect on growth duration and critical phenological 

phases. For rainfed paddy in particular, the PD and the length of the wet and dry season as well as 

the timing of precipitation can influence growth, physiology, and estimated yield (Tsimba et al., 
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2013). Several studies have shown that late sowing reduces yields whereas timely sowing increases 

crop production (Irwin and Hubbs, 2019; Kucharik, 2008). In almost all crop growth models, soil 

conditions, climatology, and water availability are used as inputs to calculate PD. Moreover, crop 

calendars developed from long-term PD observations provide fixed PD that do not account for the 

current field conditions, weather events, and socioeconomic factors that may lead to divergence of 

PD within the study region (Zhang et al., 2021). Hence, for a particular location or region of 

interest, getting information on PD data purely by any one indicator is difficult and may lead to 

erroneous results and adversely impact the crop modeling performance. Furthermore, the choice 

of cultivars with long or short durations also plays a major role in PD selection (Mandal et al., 

2018). Thus, to have an optimal estimation of yield through crop models, it is necessary to have 

realistic near real-time information on PD.  

Recent advances in remote sensing have provided scientists and resource managers with the 

opportunity to estimate PD using near-real-time satellite observations that captures the farmer's 

decisions/interventions into crop models to forecast yields. In remote sensing techniques, 

microwave, optical, and thermal sensors have provided useful tools for estimating crop PD, 

detecting crop types, and monitoring phenology (Boschetti et al., 2017). Satellite-based optical 

sensors provide muti-spatiotemporal reflectance data that can be used to determine time-series of 

vegetation indices in cropland areas. However, optical/thermal imagery is susceptible to clouds, 

aerosols, and saturation in areas with high biomass. It is also notable that in the rainfed regions 

and during the paddy planting period, generally overcast conditions are observed. Thus, since the 

1990s, scientists have been using and exploring microwave SAR observations at finer resolution 

(~10 m) with day-night and all-weather capabilities for crop monitoring.  

Studies have been conducted recently to evaluate the potential of SAR observations in 



109 

different frequency bands for rice identification and phenology detection, including the L-band 

(Wang et al., 2005), C-band (Canisius et al., 2018), and X-band (Küçük et al., 2016). The results 

showed that C-band and higher frequencies are more capable of crop attributes detection since 

lower frequencies penetrate through crops/vegetation and also interact with the underlying layers 

(soil and water) (Friesen et al., 2012).  

SAR backscatter carries information on structural and dielectric properties of the vegetation 

canopy that may be unique to each crop class, providing valuable information for phenology 

tracking and crop discrimination (Steele-Dunne et al., 2017). Additionally, the interaction between 

the SAR backscatter and the rice canopy depends on the electromagnetic polarization. A co-

polarized signal like VV is particularly sensitive to the vertical orientation of the leaves (McNairn 

et al., 2009b), while a cross-polarization channel like VH creates a stronger correlation with the 

Leaf Area Index (LAI) resulting from the volume scattering within the crop canopy (McNairn and 

Brisco, 2004). With the launch of the Copernicus Sentinel-1 satellites in 2014 (Sentinel 1A) and 

2016 (Sentinel 1B), the multi-temporal, dual-polarized, C-band backscatter images with ~10-meter 

spatial resolution and 6-12 days revisit time paved a new approach of mapping rice fields and 

tracking growth/phenology. Based on Sentinel-1 polarimetric observations, the following methods 

has been previously used to estimate the rice PD and growth cycles: (i) Using backscatter 

intensities that show unique characteristics of rice crop (flooded stage, low backscatter of water) 

(Yang et al., 2021), (ii) Using machine learning crop classification and phenology detection 

techniques (Lasko et al., 2018), and (iii) Using plant growth indices as a function of co-polarized 

and cross-polarized backscatter intensities to track the crop growth cycle (Mandal et al. 2020).  

Our study uses the Sentinel-1A backscatter time-series analysis to fairly estimate the accurate PD 

for rice crops within a season. We particularly focused on the assessment of SAR PD impact on 
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crop model yield estimation, as there have been no studies that examine this topic. The specific 

objectives of our study are as follows: (i) To map rice planting areas using analytical time-series 

analysis of Sentinel-1A, (ii) To determine the observed PD through tracking of the backscatter 

time-series, and (iii) To evaluate the impact of the SAR-derived PD on physically-based crop 

model performance in estimating yield. 

2.2. Study area, Datasets, and Tools 

2.2.1. Study Area 

 Rainfed paddy fields in Cambodia were chosen as our study area (Figure 2.1a). As a 

tropical country, Cambodia has a high average temperature with dry season prior to wet rainy 

seasons. The rainy season is from May to October, with ~75-80% of the total annual precipitation 

is brought by south-westerly summer monsoon and the dry season occurs from November to April 

(Nguyen et al., 2010). 

The majority of the paddy in Cambodia is rainfed and cultivated during the wet season (Wang 

et al., 2017). With ~2.9 million acres of rice cultivated and ~11 million tons of production, 

Cambodia is ranked tenth among the global rice producers in 2020 (FAO, 2020). Seven provinces 

reported planting over 100,000 hectares: Prey-Veng, Battambang, Banteay-Meanchey, Takeo, 

Kampong-Thom, Siemreap, and Svay-Rieng (NIS, 2019). In the study, yield simulations were 

conducted for these provinces. In Cambodia, fertilizer use is much lower (~34.3 kg/ha in 2018) 

compared to the other neighboring Southeast Asian countries (World Data ATLAS).  

https://knoema.com/atlas


111 

 
 

 

Figure 2.1: a) Study area (Cambodia), the background in the map is the 30 m DEM. The rectangular 

tiles are the Sentinel-1A tiles showing three ascending satellite tracks covering Cambodia. The 

yellow points are showing the location of the selected pixels in Figure 2.3, b) Region with rice 

crop in Cambodia for the year 2012 from Open Development Mekong platform 

(https://bit.ly/3tFPuCI). 

 

2.2.2. Datasets 

Sentinel-1A (SAR) Data 

 Alaska satellite facility (ASF) provides free access to Sentinel-1A IW level 1, ground range 

detection (GRD) data with a 12-day repeat cycle of the C-band SAR. For this study, Sentinel-1A 

radiometrically terrain corrected (RTC) products generated by ASF using GAMMA software 

(Copernicus Sentinel data., 2022) were downloaded (from 2017-2020) for three different 

ascending tracks covering Cambodia (Figure 2.1a).   

Satellite and Ancillary Data Used for Rice Yield Estimation 

Table 2.1 provides information related to precipitation, temperature, wind speed, crop 

calendars, crop maps, soil maps, rice yield observations, and fertilizer data used in this study. This 

study used a crop calendar developed by the Center for Sustainability and the Global Environment 

https://bit.ly/3tFPuCI
https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus
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by compiling data on rice planting and harvesting dates from six different sources such as USDA-

FAO, USDA-FAS, USDA-NASS, and IMD-AGRIMET (Sacks et al., 2010).  

Table 2.1: Data used for the study. 

Parameter Product 
Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 
Reference 

Precipitation Chirps 5 km daily 1981-present 
(Daly et al., 

2008) 

Temperature NCEP 1.875 deg daily 1948-present 
(Kanamitsu et al., 

2002) 

Wind speed NCEP 1.875 deg daily 1948-present 
(Kanamitsu et al., 

2002) 

Soil type SoilGrid250m 250m static 2017 Open Land map 

Crop Map & 

Calendar 
SAGE 18.5 km static 

One for all 

years 

(Sacks et al., 

2010) 

SAR 

Backscatter 
Sentinel-1A 30 m 12 days 2016-present ASF 

Fertilizer - 
One 

pattern 
static yearly 

world data 

ATLAS 

Yield 

Observation 
- Province yearly 2010-2020 (GDA, 2020) 

 

 

2.2.3. Rice Crop Model  

We implemented the Regional Hydrologic Extremes Assessment System (RHEAS) 

framework (Andreadis et al., 2017) over our study domain. It is a comprehensive drought and crop 

yield information system that loosely couples a hydrologic model (Variable Infiltration Capacity, 

VIC) with a crop model (Modified Decision Support System for Agrotechnology Transfer, M-
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DSSAT) (Ines et al., 2013). RHEAS allows for the investigation of the effects of weather 

conditions, hydrology, climate, and farm management practices (e.g., PD, fertilizer rates) on crop 

yield. Using RHEAS, a regional based study has been previously carried out by Abhishek et al. 

(2021) that evaluated the potential implications of growing season drought on interannual 

variability of rice yields. Table 2.1 presents a list of the meteorological forcings, soil properties, 

and land cover data information incorporated into the VIC hydrologic model. The hydrological 

outputs from the hydrologic model (specifically, rainfall, air temperature, and net solar radiation) 

are channelized into the crop model to simulate the crop yield. The M-DSSAT runs in an ensemble 

mode to capture the variability in the agricultural system due to cultivars, soil types, fertilizer and 

irrigation applications, and PD. In addition, RHEAS has the capability to assimilate the surface 

soil moisture and LAI data from different remote sensing products. Here, we calculated the range 

of interannual variability of rice yields within each year among different provinces using the 

information from SAR-derived PD. We refer the reader to Abhishek et al. (2021) for a 

comprehensive and general presentation of the RHEAS model.  

2.3. Methodology 

The methodology used in this study comprises four main steps: (1) Pre-processing of 

Sentinel-1A observations, (2) Time-series analysis of VH and VV Sentinel-1A backscatter for rice 

mapping, (3) Developing a PD retrieval algorithm using VH Sentinel-1A backscatter time-series, 

and (4) Yield estimation using SAR-derived PD in the RHEAS framework. 

2.3.1. Pre-processing of Sentinel-1A images 

RTC images processed through the Gamma software in ASF were downloaded at a 30-meter 

resolution. We used the Sentinel-1A ascending mode for mapping rice and detecting PD in this 

study because of the negative impact of morning dew on SAR observations in tropical areas. Ten 
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Sentinel-1A image tiles in the ascending mode were mosaicked covering wall-to-wall over 

Cambodia. The time difference between the three ascending tracks (Figure 2.1) is 2 and 5 days. 

The assigned date to the mosaicked landscape is based on the average overpass dates of the three 

tracks. To reduce speckle noise in the VH and VV time-series, the SAR images were aggregated 

to 100 meters using bilinear interpolation (a weighted average of the four nearest neighboring 

pixels). Using Equation (1), the linear VH and VV time-series were converted to decibel (dB) 

scale. From here on, the Sentinel-1A backscatters are denoted as 𝜎0. 

𝜎𝑑𝐵
0 = 10 × 𝑙𝑜𝑔10(𝜎0)                                                                                                                  (1) 

Where 𝜎0 is the backscatter at linear scale and 𝜎𝑑𝐵
0  is in the logarithmic scale (dB). The 

incidence angle range of Sentinel-1A over Cambodia is 37° to 46. Rice paddy fields in Cambodia 

are primarily located in flat terrain (Figure 2.1), which minimizes the incidence angle artifacts due 

to terrain (Lasko et al., 2018). Moreover, in the mosaicked landscape the incidence angle and 

backscatter data were taken from only one granule from the overlap region without any averaging. 

The detailed procedure for preprocessing the Sentinel-1A data is shown in Figure 2.2. 

2.3.2. Algorithm for rice mapping 

Cambodia includes a variety of landcover types, primarily dominated by croplands, 

particularly for rice agriculture, urban areas, forest, and grasslands. In this study, rice mapping was 

conducted using  𝜎𝑉𝐻
0 and 𝜎𝑉𝑉

0 [dB] backscatter time-series. An analytical time-series analysis 

algorithm was developed to differentiate between rice and the other crops/landcovers. In which, a 

set of statistical parameters were defined for cross-polarized 𝜎𝑉𝐻
0 observations, and vegetation 

growth indices were calculated with both 𝜎𝑉𝐻
0 and 𝜎𝑉𝑉

0 observations.  

In this study, the algorithm uses cross-polarization channel (𝜎𝑉𝐻
0)  observations as the main 

SAR observations for both mapping rice and detecting PD. This is due to the fact that 𝜎𝑉𝑉
0 
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observations are influenced by standing water and largely attenuated by the rice crop, while the 

𝜎𝑉𝐻
0  data are less affected and more representative of rice growth and plant canopy structure (Son 

et al., 2021). Additionally, Inoue et al. (2014a)found that there is a stronger correlation between 

𝜎𝑉𝐻
0 and LAI resulting from the volume scattering within the crop canopy. 

In a preliminary step, the rice mapping algorithm distinguishes between crop and non-crop 

pixels by considering a threshold for the average and standard deviation (STD) of the 𝜎𝑉𝐻
0 time-

series (Figure 2.2, process 1). For further differentiation between rice and other crops, four 

thresholds were defined for the minimum and maximum backscatter values (Figure 2.2, Process 

2). To choose these thresholds, a sample analysis of known paddy fields taken from landcover 

information was conducted to identify a temporal signature of 𝜎0 values over the rice-planted areas 

(Figure 2.1b). There are three vegetation indices that were used to enhance rice detection precision: 

(i) co-pol ratio (
𝜎𝑉𝐻

0

𝜎𝑉𝑉
0) (Veloso et al., 2017), (ii) Dual-pol Radar Vegetation Index (RVI) 

4𝜎𝑉𝐻
0

(𝜎𝑉𝑉
0+4𝜎𝑉𝐻

0)
(Nasirzadehdizaji et al. , 2019), and (iii) Dual Polarization SAR Vegetation Index 

(DPSVI) 
(𝜎𝑉𝑉

0+𝜎𝑉𝐻
0)

𝜎𝑉𝑉
0 (Mandal et al. , 2020). We defined thresholds for the standard deviation and 

average of the above indices to distinguish the paddy pixels from the non-rice pixels using 

countrywide sampling. The detailed rice mapping procedure is shown in Figure 2.2, Process1 and 

Process-2 are elaborated below in the following steps: 

Process-1: Differentiating between crop and non-crop, the pixels with STD (𝜎𝑉𝐻
0) less than 1 

is classified as non-crop pixels. These pixels are mostly forest and urban areas. 

Process-2: Differentiating between rice and the other crops  

Process-2.1: Defining a backscatter range for 𝜎𝑉𝐻
0 variation by averaging the behavior of 

~100-200 backscatter time-series over the verified paddy fields from landcovers data (Figure 2.1b). 
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The 𝜎𝑉𝐻
0 mainly varies from -12 to -24 dB over paddy fields depending on the pixel’s location in 

the near and far range in swath width. Due to flooding in some parts of Cambodia, the minimum 

𝜎𝑉𝐻
0 may decrease to -30 dB due to the impact of specular reflection from the flooded area.  

Process-2.2: Defining a threshold for STD(𝜎𝑉𝐻
0/𝜎𝑉𝑉

0), Mean(𝜎𝑉𝐻
0/𝜎𝑉𝑉

0), STD(DPSVI), 

Mean(DPSVI), and STD(RVI) using the countrywide sampling to increase the accuracy of rice 

differentiation from the other crops.  

Process-2.3: Eliminating the pixels in which the highest rise in 𝜎𝑉𝐻
0 time-series is less than 

4 dB in 24 days (two consecutive Sentinel-1A observations). 4 dB was determined by averaging 

the behavior of the 𝜎𝑉𝐻
0 time-series over the verified rice fields from landcovers (Figure 2.1b). 
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Figure 2.2: Methodology for identifying rice acreage, retrieving PD, and estimating rice yield. Section 2.3.2 provides details on each 

parameter, t is the observed dates in  𝜎𝑉𝐻
0 time-series within the wet season, tp is the PD candidate, and the start time of the sorted 

slopes in Process-3. 



118 

2.3.3. Planting date detection 

By considering the unique phenology of the paddy 𝜎0 signals as well as a general time period 

for the growing seasons (e.g., May to August is the wet season in Cambodia), we found the local 

PD coinciding with the local minimum value of the 𝜎0 time-series, indicating an inundated surface. 

Both sowing and transplanting methods for rice planting, result in a double bounce at the beginning 

of the growth cycle that causes an increase in the 𝜎0 time-series. In the case of transplantation, we 

would experience the double bounce immediately after transplantation. For sowing, after 15-20 

days, the plant height is 15-20 cm with 2-3 leaves, and this is the time when the soil is flooded 

with water and a sharp rise is observed in the 𝜎0 time-series. Therefore, as the beginning of the 

rise in 𝜎0 time-series is 12 days before the double bounce occurrence, it can be a good 

representative of the sowing time which is the most commonly used rice planting method 

(Kamoshita et al., 2016). It is notable that the water droplet on the rice leaves can also increase the 

radar backscatter intensity up to 2dB in co- and cross-polarized backscatter timeseries (Kabbazan 

et al., 2022), however this increase is negligible compared to the sharp rise due to the planting 

double bounce effect.  

Most of the rice fields in Cambodia are rainfed and no data is available on rice PD, thus a 

larger time window from March to August was considered in order to determine PD in various 

provinces. It is easier to determine the PD over the irrigated paddy fields compared to the rainfed 

rice fields due to the distinct seasonal rise and fall pattern in 𝜎0 time-series in irrigated rice fields. 

Rainfed areas are usually plowed to a depth of 70-100 mm (depending on the soil condition), and 

they may need to be plowed again within 3-6 weeks after the initial plowing which results in an 

increase in soil surface roughness. Consequently, the 𝜎0 time-series varies frequently before 

planting in rainfed areas, which can be mistaken as a planting signal. The 𝜎𝑉𝐻
0 time-series shown 
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in Figure 3a is from the southern part of Cambodia (next to Vietnam in which irrigated paddy field 

is the common practice). A pattern in the time-series indicates that irrigation is widely used in this 

area, making it easy to choose the local minimum or highest rise slope in the 𝜎0 time-series as the 

time for sowing. Conversely, in rainfed rice fields, the pattern of the 𝜎0 time-series is continuously 

changing (Figure 2.3b-f), and it does not have a consistent pattern, making the detection of PD 

very challenging. Therefore, other criteria being incorporated into the algorithm for determining 

the increase associated with planting. Accordingly, each sharp rise in the time-series for a specific 

period (wet season) was examined using several criteria such as the slope and 𝜎𝑉𝐻
0 variation 

between 36-60 days after sowing. Since an average overpass date was considered for the 

mosaicked landscape of Cambodia (section 2.3.1), the PD for each province was corrected using 

the Sentinel-1A track associated with the province. The detailed PD detection procedure is shown 

in Figure 2.2.  

Process-3: Estimation of planting date for the rice field map determined from Process 2 

For a specific time period (March to August) all the rises in 𝜎𝑉𝐻
0 time-series were sorted 

from the highest to the lowest value. A parameter was defined to calculate the slope of each rise 

in 𝜎𝑉𝐻
0 time-series by measuring the increase in 𝜎𝑉𝐻

0 in 24 days. Starting from the highest slope 

in the list and considering the start time of the slope as the candidate PD, 𝜎𝑉𝐻
0 behavior was 

monitored 36-60 days after the candidate PD. P3.1 to P3.3 filter out PD candidates based on the 

criteria that 𝜎𝑉𝐻
0 must be less than 18 [dB] in 36-60 days after planting, and the 𝜎𝑉𝐻

0 time-series 

should not have a sharp rise higher than 4 [dB] within this period.  
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Figure 2.3: Temporal backscatter profile of 𝜎𝑉𝐻
0 for rainfed rice in year 2020 for different pixels 

in the north and south part of Cambodia. The red line represents the sharp rise (difference between 

𝜎𝑃𝐷+12
0 − 𝜎𝑃𝐷

0 ) associated with the planting and the start of the rise was taken as the time of sowing. 

A sharp rise in the 𝜎0 time-series was taken as an indicator of the sowing stage. 

 

2.3.4. Yield estimation using RHEAS Tool 

To evaluate the efficacy of PD to estimate rice yield, the SAR-derived and crop calendar PDs 

were used as separate inputs to the crop model (M-DSSAT). 40 ensembles of yield scenarios were 

generated for each province to capture the variability due to soil, cultivars, PD, and forcings. A 

sequential resampling process to assign the most frequent SAR-derived PD to the ensembles in 

(a) (b) 

(c) (d) 

(e) (f) 
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each province was applied to make sure that the most probable dates from the SAR data were used. 

The resampling process is analogous to rolling an N-sided loaded die, where N is the number of 

SAR-derived PD (here N=12). The probability of rolling each side of the die is defined by weights 

calculated based on the fraction of the total area for each growing month (March to August) times 

the fraction of the month for each specific date. Hence, PDs with higher weights have higher 

probabilities of propagating through the ensembles. In addition to PD, fertilizer and irrigation 

application, and cultivar varieties also play an important role in simulating yield. To obtain a fair 

estimation of rice yields in each province, rice cultivar genetic coefficients must be calibrated using 

observation yields under no stress conditions (Boote, 1999). To calibrate the genetic coefficients, 

the two most common cultivars in Cambodia reported by FAO (Phka Rumduol and Sen-Pidao) 

were used. Phka Rumduol rice is a premium aromatic jasmine rice cultivated during the wet season 

with a long season, medium maturity, and taller photosensitive rice. Sen-Pidao is a soft cooking 

rice with a non-glutinous aromatic flavor, short duration, and early maturity which makes it similar 

to jasmine rice (Nadar et al., 2020). This study used the Shuffled Complex Evolution Algorithm 

to calibrate cultivar coefficients. This algorithm mainly consists of multiple complex shuffling and 

competitive evolution based on the simplex search method (Guo et al., 2013). The simulated yield 

and observed yield for 11 years (2010-2020) were used to optimize the cultivar coefficients.  

2.4. Results 

2.4.1. Rice mapping 

Our study found that vegetation indices such as RVI, DPSVI and 𝜎𝑉𝐻
0/𝜎𝑉𝑉

0 have the same 

efficiency on rice mapping and the results improved significantly as compared to the rice map in 

Figure 2.1b when the indices were applied to the rice mapping algorithm (Figure A1 in the 

supplementary material shows the detected rice map in 2020 before employing RVI, DPSVI and 
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𝜎𝑉𝐻
0/𝜎𝑉𝑉

0 in the rice mapping algorithm). While 𝜎𝑉𝐻
0 signal compared to 𝜎𝑉𝐻

0/𝜎𝑉𝑉
0, RVI and 

DPSVI showed a better capability in PD detection (Yang et al., 2021). The paddy fields as shown 

in Figure 2.4 are mostly found in low-altitude regions along the Tonle Sap Lake and Mekong 

River. However, rice fields are relatively sparse in the eastern part of Cambodia, which is 

consistent with the land cover map of Cambodia (2012) in Figure 2.1b. The presence of rice fields 

signature closer to the lake shores (around the lake) is caused by the similarity in 𝜎𝑉𝐻
0 time-series 

between wetland and paddy fields. According to the landcover of Cambodia, the northwestern 

region close to the Tonle Sap has number of wetlands and forests. To evaluate whether the rice 

mapping algorithm could distinguish between crops and not crops in this study, we did not use a 

non-cropland mask. A comparison of rice detection map (Figure 2.4) from our study to landcover 

map of Cambodia (Figure 2.1b) shows that our rice mapping algorithm is capable of distinguishing 

between crops and not-crops as well as rice from other crops.  
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Figure 2.4: Rice planted area estimated from Sentinel-1A  𝜎𝑉𝐻
0 observations in four years (2017-

2020).  
 

Furthermore, using the same approach we detected a significant expansion in the estimated 

rice planting areas in 2020 relative to the previous years (Figure 2.4). The reason for detecting 

more paddy fields in 2020 is the false alarms due to the flooding in Cambodia between September 

and November 2020 caused by 13 consecutive tropical storms that resulted in unprecedented 

flooding and landslides in 19 provinces (Tamesis et al., 2020). This flooding could have resulted 

in spurious fluctuations in 𝜎0, such as many sharp peaks and valleys in 𝜎0 time-series same as 

backscatter signatures over paddy fields, wetlands, and low-lying regions. 

2.4.2. Maps of planting dates 

Figure 2.5 shows the PD retrieval estimated using an analytical 𝜎𝑉𝐻
0 time-series analysis.  In 

this study 𝜎𝑉𝐻
0 time-series were used to detect paddy PD. The dates in the legend are derived from 

the overpass times of Sentinel-1A, which are composited using three satellite tracks covering 
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Cambodia. The estimated PD maps demonstrate that the PD not only changes throughout the 

country but also it varies within each province (Figure 2.6 and Figure 2.7). Seven of the 25 

administrative units in Cambodia (the most cultivated areas (USDA 2020)) were selected to 

examine how SAR-derived PD may vary from commune to commune and what effects dynamic 

PD may have on simulated yields. Figure 2.6 and Figure 2.7 show PD at Banteay-Meanchey in the 

north and Svay-Rieng in the south of Cambodia, respectively. The dates in the legend are the exact 

observed dates of the Sentinel-1A images before compositing three satellite tracks over Cambodia. 

Figures 2.5, 2.6, and 2.7 collectively illustrate farmers planting rice in May thru July in 2020, while 

the planting season extensively varied from Mar thru Aug during 2017-2019. We hypothesize that 

delayed planting in 2019 (starting from April) and 2020 (starting from May) is a result of flooding 

in March 2019 and March and April 2020, specifically in the north of Cambodia (Banteay-

Meanchey province). Inundation by flood can prevent farmers from using their ploughing 

machinery to prepare their fields, resulting in late planting (Figure A2 in the supplementary 

material shows the area inundated in Banteay-Meanchey between March, April and May of 2017 

thru 2020). 

The SAR-based PD can be determined by observing the field before and after the PD in 

irrigated paddy fields (Yang et al., 2021), whereas in rainfed rice the 𝜎0 time-series needs to be 

monitored for 36-60 days after planting to distinguish the differences in real and spurious 

fluctuations (as described in the previous section) during the planting season (Figure 2.3).   
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Figure 2.5: The SAR-derived PD were estimated using analytical analysis of 𝜎𝑉𝐻
0 time-series for 

2017-2020.  
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Figure 2.6: Planting dates map over Banteay-Meanchey province in the north of Cambodia.  
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Figure 2.7: Planting dates map over Svay-Rieng province in the south of Cambodia. 
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2.4.3. Impact of SAR-derived planting date on yield estimation 

To test whether SAR-derived PD improve the yield estimation, two simulations were 

conducted: 1) a data denial simulation by the M-DSSAT model using a fixed crop calendar PD 

(i.e., June 1 or DOY 152), and 2) a Simulation using the SAR-derived PD from Sentinel-1A 

observations. 

The only variable changing through the 40 ensembles between the two simulations is the PD. 

Hence, the difference between the fixed and SAR-derived PD is the only factor contributing to the 

estimated yield changes through ensembles in each province. Figure 2.8 and Figure 2.9 show the 

time difference between the fixed PD from the crop calendar and the SAR-derived PD for Banteay-

Meanchey and Svay-Reing provinces, respectively. Green and red areas in the Figures refer to 

earlier and later PD, respectively, and yellow areas have an almost similar PD compared to the 

fixed date. According to the Figure 2.8 and Figure 2.9, the difference between SAR-derived PD 

and fixed date can be as high as 75 days (earlier or later).  

 

Figure 2.8: The difference between the fixed PD from the crop calendar (DOY 152) and the SAR-

derived PD in Banteay-Meanchey in Cambodia's north. The +/- numbers indicate planting earlier 

and later than the fixed date. The subset represents the fraction of total area (%) for each PD 

difference. 
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Green areas in Figure 2.8 and Figure 2.9 indicate early planting in March and April. In the 

Banteay-Meanchey (as an example of a north province), planting is very rare during March and 

April, which is to be expected from a country known for its rainfed paddy fields. However, ~30 

percent of the total area over Banteay-Meanchey is planted in March thru April in 2018, primarily 

due to the early onset of summer monsoon. According to our investigation, Svay-Rieng, which is 

a neighboring province to Vietnam uses irrigation for planting rice. This fact is also supported by 

the backscatter time-series pattern of this province (Figure 2.3a). Additionally, the March and 

April planting has declined in both provinces from 2017 to 2020. A 30% planting in March and 

April between 2017-2018 (-75 to -60 days PD difference) was declined to 15% between 2019-

2020 in Svay-Rieng (Figure 2.9).  Changes in weather and lack of irrigation water could contribute 

to this decline. 

 

Figure 2.9: The difference between the fixed PD from the crop calendar (1st of June, DOY 152) 

and the SAR-derived PD in Svay-Rieng in Cambodia's south.  

 

Figure 2.10 and Figure 2.11 compare two simulated rice yields using a fixed PD and SAR-

derived PD over Banteay-Meanchey and Svay-Rieng, respectively. In both simulations, all other 
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input parameters were kept the same through the ensembles, such as weather, soil type, crop type, 

cultivar coefficients, and fertilizer rate. Rather, only the fixed PD (June 1 or DOY 152) from the 

crop calendar was changed to the dynamic SAR-derived PD to determine the effect of the PD on 

rice yield estimation. The results illustrate that M-DSSAT model has mostly overestimated the rice 

yield using fixed PD while applying the SAR-derived PD to the M-DSSAT has improved both the 

average and median of simulated yield significantly. In general, estimated yield decreases as the 

PD moves earlier in the year and increases as the PD moves forward. Wang et al. (2017) studied 

the effects of shifting PD forward and backward with different fertilizer application rates on yield 

simulation using the CERES-Rice model. In general, they concluded that shifting PD backward 

and forward for Sen-Pidao and Phka-Rumduol cultivars resulted in a decrease and increase in yield 

respectively.  

 

Figure 2.10: Estimated rice yield in 2017-2020 in Banteay-Meanchey province. The gray and the 

blue boxes are showing the estimated rice yield using fixed and dynamic SAR-derived PD, 

respectively. The normalized bias was calculated using the average value of the simulated yield.  
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Figure 2.11: Estimated rice yield in 2017-2020 in Svay-Rieng province. The gray and the blue 

boxes are showing the estimated rice yield using fixed planting and the dynamic SAR-derived PD, 

respectively. 

 

According to Figures 2.10-11, and Table 2.1, the normalized bias of estimated yield 

decreased by ~1.5-12% in Banteay-Meanchey and ~27-40% in Svay-Rieng in the study period 

after using SAR-derived PD in crop model. With a higher fraction of total area for -75 to -60 days 

PD difference, Svay-Rieng province's yield bias is reduced more than Banteay-Meanchey's after 

using the SAR-derived PD in M-DSSAT model. Figure 2.8 illustrates that in 2020 the positive and 

negative PD difference compensate for one another in Banteay-Meanchey, and the 30 % area 

fraction for +15 difference days resulted in yield overestimation and a 1.5% increase in normalized 

bias (Table 2.2). In 2017, however, the area fraction for -75 to -60 days (PD difference) is higher 

in this province, resulting in a 12% reduction in the yield normalized bias compared to the fixed 

PD. Table 2.2 is showing the improvement in average estimated yield bias in all the seven 

provinces using the SAR-derived PD in M-DSSAT model compared to using fixed PD. 

Additionally, the interquartile range of estimated yield has been decreased in all the provinces by 

using SAR-derived PD in the crop model (Figures 2.10-11, and Table 2.2) resulting in a significant 

reduction in yield estimation uncertainty in almost all the provinces of Cambodia. For example, 
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the uncertainty in yield estimation was reduced by 38-65% in Banteay-Meanchey and 7-44% in 

Svay-Rieng.  

Table 2.2: Mean estimated rice yield in 2017-2020 using fixed and SAR-derived PD for seven 

provinces in Cambodia. The positive bias difference is showing an improvement in yield 

estimation using SAR-observed PD compared to using fixed PD in crop model and the negative 

bias difference is illustrating the increase in normalized bias.    

 

 

 

 

 

 
 
 

Year

Province
Yield (kg/ha) 

Fixed PD 

Yield (kg/ha)              

SAR derived PD 

Yield (kg/ha)        

Observation

Normalized bias 

% (Fixed PD) 

Normalized bias % 

(SAR derived PD) 

Bias 

difference %

Interquartile 

range (Fixed PD)

Interquartile 

range (SAR 

derived PD)

Uncertainty 

Reduction %

Banteay 

Meanchey
3626.2 3244.9 3224.5 12.5 0.6 +11.8 1287.3 798.0 +38.0

Battambang 2945.1 3080.4 2976.6 -1.1 3.5 -2.4 1532.3 1506.0 +1.7

Siemreap 3614.5 2639.6 2581.5 40.0 2.2 +37.8 3110.5 2050.3 +34.1

KampongThum 3140.7 2554.9 2659.6 18.1 -3.9 +22.0 1728.0 1033.3 +40.2

Prey Veng 4135.5 3596.5 3100.1 33.4 16.0 +17.4 3519.8 2690.0 +23.6

Svay Rieng 3733.8 2583.7 2578.2 44.8 0.2 +44.6 2511.0 2128.8 +15.2

Takeo 3592.8 3097.5 3029.4 18.6 2.3 +16.4 2643.8 1427.5 +46.0

2017

Year

Province
Yield (kg/ha) 

Fixed PD 

Yield (kg/ha)              

SAR derived PD 

Yield (kg/ha)        

Observation

Normalized bias 

% (Fixed PD) 

Normalized bias % 

(SAR derived PD) 

Bias 

difference %

Interquartile 

range (Fixed PD)

Interquartile 

range (SAR 

derived PD)

Uncertainty 

Reduction %

Banteay 

Meanchey
3555.8 3193.0 3248.1 9.5 -1.7 +7.8 1091.5 385.5 +64.7

Battambang 3344.9 3050.1 3159.7 5.9 -3.5 +2.4 1695.0 1332.3 +21.4

Siemreap 3948.7 2377.0 2604.7 51.6 -8.7 +42.9 3053.8 1869.3 +38.8

KampongThum 2741.5 2592.3 2756.3 -0.5 -5.9 -5.4 1583.0 765.0 +51.7

Prey Veng 4222.5 3211.2 3207.8 31.6 0.1 +31.5 3962.0 2440.5 +38.4

Svay Rieng 3820.9 2607.1 2487.2 53.6 4.8 +48.8 2885.5 1755.0 +39.2

Takeo 3546.9 3371.3 3071.4 15.5 9.8 +5.7 1715.8 1208.8 +29.6

2018

Year

Province
Yield (kg/ha) 

Fixed PD 

Yield (kg/ha)              

SAR derived PD 

Yield (kg/ha)        

Observation

Normalized bias 

% (Fixed PD) 

Normalized bias % 

(SAR derived PD) 

Bias 

difference %

Interquartile 

range (Fixed PD)

Interquartile 

range (SAR 

derived PD)

Uncertainty 

Reduction %

Banteay 

Meanchey
3817.5 3580.9 3386.1 12.7 5.8 +7.0 1150.0 621.5 +46.0

Battambang 3314.1 3050.1 2947.8 12.4 3.5 +9.0 1458.3 1451.8 +0.4

Siemreap 3182.9 3068.2 2367.3 34.5 29.6 +4.8 1896.5 2306.3 -21.6

KampongThum 3024.8 2641.9 2695.9 12.2 -2.0 +10.2 1373.0 864.0 +37.1

Prey Veng 3691.0 3155.7 3250.0 13.6 -2.9 +10.7 2351.0 2253.0 +4.2

Svay Rieng 3380.0 2527.7 2567.7 31.6 -1.6 +30.1 2091.0 1951.3 +6.7

Takeo 3472.7 3182.2 3082.0 12.7 3.3 +9.4 1437.3 1644.8 -14.4

2019

Year

Province
Yield (kg/ha) 

Fixed PD 

Yield (kg/ha)              

SAR derived PD 

Yield (kg/ha)        

Observation

Normalized bias 

% (Fixed PD) 

Normalized bias % 

(SAR derived PD) 

Bias 

difference %

Interquartile 

range (Fixed PD)

Interquartile 

range (SAR 

derived PD)

Uncertainty 

Reduction %

Banteay 

Meanchey
3815.0 3862.8 3259.9 17.0 18.5 -1.5 1411.0 850.3 +39.7

Battambang 3768.9 3180.7 3038.1 24.1 4.7 +19.4 2051.0 1413.3 +31.1

Siemreap 3555.3 3056.4 2770.5 28.3 10.3 +18.0 2788.3 2177.8 +21.9

KampongThum 2923.6 2844.9 2837.6 3.0 0.3 +2.8 1309.3 1012.3 +22.7

Prey Veng 4272.2 3079.4 3343.5 27.8 -7.9 +19.9 3669.3 2178.8 +40.6

Svay Rieng 3891.6 2301.0 2585.0 50.5 -11.0 +39.6 2829.8 1583.5 +44.0

Takeo 3863.2 3239.0 3093.3 24.9 4.7 +20.2 2496.5 1532.8 +38.6

2020
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2.5. Discussion  

2.5.1. Capabilities and limitations of SAR in acreage and planting date detection 

 We demonstrated the utility of SAR imagery for the detection of lowland rice, particularly 

in tropical and subtropical regions where widespread cloud cover and complex cropping systems 

and land use changes (e.g., forestation) prevail, thus preventing the use of optical imagery.  Rice 

mapping in Cambodia has become feasible due to the high spatial resolution of SAR images 

(<=100 m) as the paddy fields are typically less than two hectares and, in some cases, less than 

one hectare in this region (Pandey et al., 2010). Moreover, as a result of flooding, soil moisture 

and surface roughness were no longer a factor affecting backscattered SAR signals in rice fields, 

which has made SAR observations more effective in determining rice PD. 

For accurate detection of rice fields, the number of SAR acquisitions should cover the whole 

season that lasts three to four months (Nelson et al., 2014). On the other hand, from the perspective 

of data mining, using all images for one year would maximize rice mapping accuracy.  

 The SAR-based PD can be determined by utilizing two images before and after the PD in 

irrigated paddy fields (Yang et al., 2021), whereas in rainfed rice-planted areas such as in 

Cambodia the backscatter time-series need to be monitored for ~36-60 days after planting to 

distinguish the actual increasing trend (caused by rice planting) and spurious fluctuations (frequent 

fall and rise due to preparation of the field before planting or some other reasons as illustrated in 

Figure 2.3). 

2.5.2. Impact of 12 days Sentinel revisit time on SAR-derived planting date accuracy  

The yearly variations of SAR-derived PD in Figure 2.5 are related to the shifting of the 

monsoon season (Loo et al., 2015). Due to the unpredictable nature of the monsoon onset and 

pattern, rice yield estimation using the SAR-derived PD can provide a more optimal estimate of 
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yield. Moreover, the tropical and subtropical climate in much of Asia means that rice can be 

cultivated with diverse cropping calendars and practices over very short distances (Nguyen et al., 

2012). Moreover, each province in Cambodia has some variations in its planting schedules, in 

addition to the annual changes. Considering the fact that farmers' decisions for planting are likely 

based on rules of thumb that include what their neighbors' whereabouts (Zhang et al., 2021), the 

PD clusters can be observed across each province (Figure 2.6 and Figure 2.7).  

Since, the Sentinel-1A revisit time is 12 days, it is not possible to determine the exact date 

of the planting using 𝜎0 time-series. The wall-to-wall coverage of Sentinel-1A granules over 

Cambodia was achieved by compositing the observations over 12 days, and the composited 

observation map assigns an average date to compute the first and the last dates of the 12 days 

interval. This approach ensures that the planting date uncertainty for a given pixel at 100 m 

resolution can be <= +/- 6 days. The 12-day overpass interval can be improved to 6-days by 

including descending Sentinel-1A overpasses. However, this complicates the PD retrieval 

algorithm due to different incidence angles and azimuth of Sentinel-1A descending overpass, as 

the algorithm performance depends largely on backscatter observations that have exact incidence 

angle and azimuth. It is also possible to improve the revisit interval by using a combination of 

Sentinel-1A and Sentinel-1B that leads to SAR backscatter within 6 days of revisit time. However, 

in this case, also, the difference in incidence angle and azimuth would reduce the performance of 

our algorithm. Moreover, Sentinel-1B is unavailable since 23 December 2021 and the combined 

product of Sentinel-1A and 1B cannot be used in the future (ESA, 2022). We used an indirect 

approach to validate the SAR-derived planting date through comparison with the rice yield data 

for the provinces in Cambodia. Our study demonstrated the significant improvement in the bias 

and RMSE of rice yields after using the SAR-derived planting dates instead of conventional use 
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of crop calendar in modeling rice production over the whole study area.  

2.5.3. Rice yield estimation 

Table 2.2 shows the reduction in both normalized bias and the interquartile range 

(uncertainty) of the estimated yield as the impact of using SAR-derived PD in a crop model. A 

fixed PD in the M-DSSAT model can cause a wide range of crop yield estimations since the PD 

is constant for all the ensembles, which means that actual precipitation and temperature (i.e., water 

availability and growing-degree-days) for the crop growth duration may not actually represent with 

the use of fixed PD, resulting in an under- or overestimation of yield. While a SAR-derived PD is 

an observation of the farmers' decision to plant and represents the near actual ground conditions. 

As a consequence, the use of fixed PD in the crop model increased the number of outliers and 

interquartile range in all provinces, ultimately increasing the uncertainty of yield estimation.  

The irrigation application in the southern provinces led to the rice experiencing two or three 

growing seasons each year, which shifted the PD of the wet season to March and April, whereas 

the fixed PD is June 1st (DOY 152). Thus, the M-DSSAT model overestimated rice yield in the 

southern provinces (Prey-Veng, Svay-Rieng, and Takeo) using a fixed PD due to the impact of 

late planting on estimated yield (Wang et al., 2017). Figure 2.8 shows that half of the Banteay-

Meanchey was planted in July in 2020, which resulted in an increase in yield estimation using 

SAR-derived PD.  

Another factor that is responsible for the variation in yield estimation is considering two 

different cultivars for 40 ensembles in each province. Depending on the cultivars used for each 

ensemble, PD have a different impact on yield estimation. Sen-Pidao, for example, shows a larger 

reduction when planting shifted earlier to March and April than Phka-Rumduol does. The variation 

in yields was less correlated with PD at Phka-Rumduol than it was at Sen-Pidao.   
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2.6. Conclusion 

In this study, an analytical time-series analysis algorithm was developed based on Sentinel-

1A backscatter time-series to detect rice fields and the PD in a paddy-dominated region. The study 

aimed to investigate the impact of using SAR-derived PD in a physically-based crop model to 

estimate rice yield.  

The results showed a significant departure of the SAR-derived PD from the crop calendar 

dates that are based on climatology (+/-75 days). According to our findings, detection of PD from 

SAR backscatter time-series analysis of rainfed paddy fields requires more consideration than that 

of irrigated rice fields. The Sentinel-1A  𝜎𝑉𝐻
0 time-series has been shown to improve the accuracy 

of PD detection in rainfed paddy areas while applying the 𝜎𝑉𝐻
0/𝜎𝑉𝑉

0 ratio to the algorithm 

improved the accuracy of rice mapping.  

The estimated yields were significantly improved by replacing the fixed PD from crop 

calendar with the SAR-derived PD. The average bias improved by 7-12% and 30-48% and the 

uncertainty in yield estimation was reduced by 38-65% and 7-44% in Banteay-Meanchey and 

Svay-Rieng respectively. PD retrieved in the months of March and April are from the region that 

is predominantly irrigated, particularly in the southeastern provinces that border Vietnam or it can 

be due to the early onset of the summer monsoon. As the mean yield in the rainfed lowland 

ecosystem is less than half of the irrigated rice yield, distinguishing between these two can help us 

to have an accurate estimation of rice production in the future. Using such an approach for future 

rice yield can help improve the overall accuracy of the total production estimations.
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APPENDIX 

 
Figure A1: Rice detection map using Sentinel-1 data in 2020 A) without, and B) with employing 

cross ratio in the rice mapping algorithm. 

 
 

 

Figure A2: Flooded area in Banteay-Meanchey province during March, April and May of 2017 -

2020. The pixels with 𝜎𝑉𝐻
0 < −25 𝑑𝐵 are selected as the flooded area.  
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3. CHAPTER 3: YIELD ESTIMATION FROM SAR DATA USING PATCH-BASED DEEP 

LEARNING AND MACHINE LEARNING TECHNIQUES 
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3.1. Introduction 

Enhancing our ability to forecast crop yields is pivotal for various socioeconomic agricultural 

activities, such as disaster/drought management, market strategizing, yield mapping for efficient 

harvest management, and insurance planning (J. Sun et al., 2019). Predicting yields is, however, 

prone to uncertainties due to myriad influencing factors. These factors encompass the plant's 

genotype, soil characteristics, weather patterns during the growing season, cultivation techniques, 

and vulnerability to biotic threats (Dadhwal., 2003). The complexity is further compounded by the 

necessity to monitor and analyze data throughout the entire crop growth cycle, requiring sustained 

observation and the integration of a vast array of information to make optimal predictions (Leroux 

et al., 2019). For example, the United States Department of Agriculture (USDA) offers monthly 

state-level yield projections through its Objective Yield (OY) service. For Soybeans, for example, 

OY surveys commence on July 25th and persist until the season's end. Yet, a delay exists in 

accessing county-specific Soybean yield data, with the USDA only publishing these granular 

estimates in March of the following year. Consequently, there is an urgent need for quick and 

accurate county-level yield predictions. This data would help farmers and sellers make better 

marketing decisions and manage their harvests more effectively (J. Sun et al., 2019). 

Beyond the on-site survey, numerous modeling techniques have evolved over time, each 

offering unique benefits and drawbacks towards agricultural yield prediction. Traditional 

approaches, such as empirical-based and process-based models, have found extensive application, 

with the Agricultural Production Systems Simulator (APSIM) and Soil Yield Model (SYM) 

serving as representative examples (Bolton & Friedl, 2013, Abhishek et al., 2023). Hybrid models 

blend elements from both methodologies, enhancing the accuracy of yield prediction (Nana et al., 

2014). However, the requirement for comprehensive agro-environmental parameters can limit the 
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applicability of complex simulation-based models predominantly to local scales. Simpler 

empirical models, while more straightforward to parameterize, suffer from similar limitations, 

often being restricted to the dataset and study site for which their relationships were initially 

established (Battude et al., 2016). Crop simulation models (CSMs) for example Decision Support 

System for Agrotechnology Transfer (DSSAT) (Jones et al., 2003), despite offering insightful 

predictions at the field scale, often encounter challenges in their broader implementation due to 

data availability constraints. Furthermore, the quality and precision of the input parameters 

significantly influence the reliability of model outcomes. For instance, the planting date is a crucial 

parameter for CSMs, often derived from broad, nationally scaled crop calendars. These calendars 

generally propose a single planting date for the entire country over several years, which doesn't 

account for temporal or regional variations (Hashemi et al., 2022). This simplification could 

potentially compromise the accuracy of CSM predictions. As a result, the quality of other input 

variables such as irrigation, fertilizer, cultivar, soil, and climate data can affect the model 

performance.  In this context, the integration of remote sensing (RS) data emerges as a potent 

solution to alleviate these constraints (El-Hajj et al., 2016). Specifically, a novel trend in this field 

involves harnessing RS data and deep learning (DL) to enable large-scale yield prediction. In 

recent years, the integration of optical and thermal satellite imagery with DL techniques has 

emerged as a powerful approach for advancing crop yield predictions. Recent research highlights 

the frequent use of optical data from platforms like AVHRR, Landsat-8, MODIS, UAV, and 

Sentinel-2. In terms of DL methodologies, CNNs, LSTM, and ConvLSTM are the frontrunners 

(Muruganantham et al., 2022). Notably, the 3D-CNNs model has been identified as particularly 

effective for Soybean yield predictions when leveraging optical data, especially from MODIS 

(Fernandez-Beltran et al., 2021; Qiao et al., 2021; Russello, 2018; Terliksiz and Altýlar, 2019; 
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Abbaszadeh et al., 2022; Gavahi et al., 2021). J. Sun et al. (2019) showcased the edge ConvLSTM 

has over both CNN and LSTM in Soybean yield predictions, utilizing MODIS data, climate data, 

land surface temperature (LST), and surface reflectance data for both end-of-season and in-season 

Soybean yield prediction at the county-level in the CONUS. This observation is consistent with 

the findings of Q. Yang et al. (2019) during the crop's ripening phase. Interestingly, CNNs slightly 

surpassed LSTM in their predictive capabilities. Reinforcing this, studies by, Qiao et al. (2021) 

and Fernandez-Beltran et al. (2021) verified the superiority of 3D-CNNs over its 2D counterpart 

and LSTM when predicting yields using MODIS, combined with soil and climatic information.  

While these advancements underscore the significant potential of optical and thermal satellite 

imagery combined with DL techniques, they also bring to light certain limitations inherent in these 

satellite data, particularly when assessing crop health such as vegetation water content (VWC) and 

dealing with environmental interferences. The optical and thermal indices (such as NDVI, NDWI, 

and NDII) prove effective under low vegetation conditions, particularly when the VWC is less 

than 4 kg/m2 (Cosh et al., 2019b). However, these indices are not able to detect water content 

below the canopy surface, including in the stem and ears of crops. This inability to accurately 

measure plant hydration levels can result in the underestimation of plant water and saturation at 

varying points throughout the growing season (Judge et al., 2021; Togliatti et al., 2022). 

Consequently, this could contribute to an underestimation of crop yield, revealing a limitation of 

relying solely on these indices for comprehensive crop monitoring and yield prediction. Moreover, 

the optical and thermal sensors are adversely affected by the presence of clouds, and they also get 

affected by background, aerosol, and saturation in high biomass regions (Soudani et al., 2008). 

Therefore, multispectral optical imagery alone may not suffice in complex and diverse 

environments to discriminate summer crops (McNairn et al., 2014; Skakun et al., 2015).  
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Conversely, scientists have leveraged high-resolution (approximately 10-meter) multi-

temporal Synthetic Aperture Radar (SAR) images/observations for crop classification and 

monitoring since 1990, using time series analysis methods and traditional machine learning (ML) 

techniques (Hashemi et al., 2023; Yang et al., 2021b). These SAR images offer significant 

advantages due to their all-weather and day-night monitoring capabilities. SAR sensors exhibit a 

keen sensitivity to a multitude of vegetation attributes. These include dielectric properties, size, 

shape, orientation, roughness, and the distribution of various plant components like leaves, stems, 

and fruits (McDonald et al., 2000; Steele-Dunne et al., 2017). Such nuanced detection capabilities 

empower SAR sensors to capture fairly accurately different growth stages and structural variations 

of crops (Thorp and Drajat., 2021; Zhao et al., 2022) which is helpful in estimating crop yield. 

Highlighting SAR's ability towards yield prediction, Clauss et al. (2018) used Sentinel-1 SAR time 

series data to accurately estimate rice production in multiple locations, including China, California, 

and Spain. Their approach, which employed super-pixel segmentation and a phenology-based 

decision tree, demonstrated a strong correlation with district-level data from province statistics 

offices, showcasing the potential of SAR time series data to estimate rice production. Alebele et 

al. (2021) showed that the synergetic use of Sentinel-1 and -2 can be an effective approach for 

crop yield estimation using Gaussian kernel regression while Sharma et al. (2022) showed that the 

VH-polarization-based artificial neural network (ANN) model outperformed the VV polarization-

based model in paddy rice yield estimation with an R2 of 0.72 and an RMSE of 600.1 kg/ha. den 

Besten et al. (2023) aimed to improve our understanding of the relationship between Sentinel-1 

backscatter and variations in sugarcane yield as well as waterlogging effects. The analysis was 

carried out on an irrigated sugarcane plantation, utilizing a substantial dataset of sugarcane yield. 

By examining different seasons, the study investigated the correlation between backscatter and 
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sucrose yield variability. Notably, the findings indicated a connection between VV backscatter and 

stalk development, which serves as a critical reservoir for sucrose accumulation. Despite the SAR 

potential in yield estimation, its integration with DL remains a largely untapped but promising area 

for crop monitoring applications and yield prediction. The reliance of DL on extensive training 

datasets poses a significant challenge in crop monitoring (e.g., crop phenology and biophysical 

parameters (BPs) estimation) and yield estimation, as obtaining accurate and comprehensive 

ground-reference data for such applications is both resource-intensive and costly. 

Crucially, SAR data, while rich in information, can often be noisy, and difficult to interpret, 

especially in agricultural applications where a wide range of factors can influence the signals 

received. Conversely, the multi-layered structure and sophisticated learning capabilities of DL can 

be particularly beneficial in this context. By utilizing a deep, hierarchical learning approach, DL 

can efficiently extract and interpret salient features from SAR observations, effectively managing 

and deciphering the intrinsic noise present in SAR data (Kamilaris and Prenafeta-Boldú, 2018).  

Overlooking factors like planting date, cultivar, soil type, irrigation, and fertilizer usage, our 

approach in this study use SAR backscatter, and climate data, utilizing patch-based 3D-CNNs, and 

Random Forest (RF), XGBoost, and Support Vector Machine (SVM) as ML methods, to 

accurately predict both in-season and end-of-season yields for Corn, Soybean, and Winter Wheat. 

Our approach, as the first known effort to predict field-scale crop yield using SAR and DL, was 

demonstrated in a Michigan case study area lacking irrigation. It includes eight-year (2016-2023) 

yield data, spanning diverse weather conditions, and aims to create a model applicable to various 

climate scenarios. This paper will address these pivotal questions: 

1. How effective are DL and ML models in estimating crop yields from SAR imagery?  
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2.Which SAR features have the most significant impact on yield estimation using ML and DL 

techniques?  

3.What is the earliest possible point in the growth cycle for accurate yield estimation using SAR 

imagery and DL and ML techniques? 

3.2. Study Area and Material 

3.2.1. Case Study 

This study focuses on the W.K.Kellogg Biological Station (KBS) in Michigan as its primary 

case study. As an integral part of the U.S. Long-Term Agroecosystem Research (LTAR) Network, 

established by the USDA, KBS is committed to formulating sustainable intensification strategies 

for agricultural production. This network is a synergy of 18 extensive research sites across the 

U.S., all collaborating towards a common goal. Our study centers on three pivotal crops, Corn, 

Soybean, and Winter Wheat, all grown within the confines of the KBS. The selected fields, which 

span from 1.3 to 17.5 hectares in size, are depicted in Figure 3.1, showcasing the field distribution 

in the area. Notably, most of these fields experience crop rotation annually to enhance crop yield 

rates. The growth cycle for each crop varies with corn and Soybean cultivation extending from 

May to October, and Winter Wheat from September to July. Unique to these fields is their lack of 

irrigation systems; they rely solely on rainfall for crop growth.  
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Figure 3.1: Location of Corn, Soybean, and Winter Wheat fields within Michigan's KBS site. The 

fields, depicted by the orange shapes on the map, undergo annual crop rotation. 

 

3.2.2. Dataset and input features to the DL and ML models 

a. SAR data 

The ascending Radiometrically Terrain Corrected (RTC) Sentinel-1A images, spanning eight 

years (2016-2023) from May to October were downloaded from the Alaska Satellite Facility 

(ASF). Subsequently, these images underwent speckle filtering. The SAR images were originally 

available at a 30-meter resolution and were aggregated to 50-meter resolutions through the bilinear 

sampling method to mitigate the effects of speckle and noise. An exploration of two resolutions 

will be undertaken for yield prediction, aimed at determining the optimal Sentinel-1 observation 

resolution for such prediction and investigating the capability of DL in mitigating the noise effect.  

To ensure our analysis is not influenced by varying planting dates, which typically occur from 

mid-May to early June for corn and soybean and end of September to early November for  

Winter Wheat, we selected SAR data from June 1st to the end of October for Corn and Soybean, 

and from May 1st to the end of July for Winter Wheat. This approach allows for a more consistent 

assessment of the growth cycles for these crops. Feature inputs to the DL and ML models 

encompassed the VH and VV polarization channels (measured in decibel), along with the 
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polarization ratio 
𝜎𝑉𝐻

0

𝜎𝑉𝑉
0⁄  , Radar Vegetation Index (RVI), 

4𝜎𝑉𝐻
0

(𝜎𝑉𝐻
0 + 𝜎𝑉𝑉

0)
⁄  

(Nasirzadehdizaji et al., 2019), and Radar Cross-Section Polarization Ratio, (𝜎𝑉𝑉
0-𝜎𝑉𝐻

0)/( 

𝜎𝑉𝑉
0+𝜎𝑉𝐻

0) (Nasirzadehdizaji et al., 2019) measured in linear unit. Beyond the aforementioned 

parameters, the incidence angle was deliberately included as a key input feature, thereby 

precluding the necessity for separate incidence angle correction. It's important to highlight that, 

given the geographical concentration of all field sites within a single Sentinel-1 tile with exact 

repeat, there is no variations in the incidence angle. However, in anticipation of broader 

applications in future research, this parameter was integrated into the input features to enhance the 

model's adaptability and precision across diverse locations. 

b. Climate data 

Khaki & Wang. (2019) identified precipitation and minimum and maximum temperature as 

the pivotal climate factors influencing yield prediction. Leveraging the resources of the KBS-

LTER weather station (https://lter.kbs.msu.edu/datatables/7), our study focused exclusively on 

daily precipitation data along with minimum and maximum temperature readings, the finest 

resolution climate data for our study. Accumulated precipitation and average minimum and 

maximum temperature were computed up to each satellite revisit time. 

Finally, the training dataset to DL and ML models amalgamates 9 derived features: six SAR-

based features (𝜎𝑉𝐻
0, 𝜎𝑉𝑉

0, 𝜎𝑉𝐻
0/𝜎𝑉𝑉

0, RVI, (𝜎𝑉𝑉
0-𝜎𝑉𝐻

0)/( 𝜎𝑉𝑉
0+𝜎𝑉𝐻

0), and incidence angle) and 

three climate-based features (precipitation, minimum temperature, and maximum temperature), 

with a depth of 8-14 (number of Sentinel-1 images).  

d. Yield data 

For yield data, we employed the yield mapping feature from John Deere software, acquired 

from KBS. The John Deere Operations Center is a cutting-edge, cloud-based farm management 
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platform provided by leading agricultural machinery manufacturer, John Deere. Its standout 

feature is the yield mapping function, which leverages data from harvesting machinery to generate 

a visual representation of yield variation across the fields (Luck and Fulton, 2014). 

We harnessed real-time grain yield estimates, measured in bushels per acre (bu/acre), from 

each GPS-tracked location in the field. This dataset, spanning from 2016 to 2023, provided detailed 

point measurements of both moisture and dry yield for crops like Corn, Soybean, and Winter 

Wheat, and was stored in a shapefile format. With data points captured at intervals less than 5 

meters apart, the dataset boasts high resolution. To align the yield data with our primary training 

dataset from Sentinel-1, with 30- and 50-meter resolution, we generated two yield TIFF files. 

These files were created by averaging the yield values of points within each pixel. Figure 3.2 

showcases the visual representation of point measurements exported from the software, alongside 

the 30 and 50-meter TIFF files. 

 

Figure 3.2: Spatial distribution of yield in a 2022 KBS Corn field: a) Point-based measurements, 

b) high-resolution yield map at 30-meter resolution (bu/acre), and c) coarser yield map at 50-meter 

resolution (bu/acre). 
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3.3. Patch-Based Regression Methodology for Yield Estimation 

In this study, we utilized the 3D-CNNs DL architecture, along with three ML techniques, 

which include Random Forest (RF), Support Vector Machine (SVM), and XGBoost, to estimate 

crop yield based on the spatial-temporal variations observed in SAR data. Below, we provide a 

concise overview of the patch-based 3D-CNNs architecture and its associated hyperparameters, as 

well as those of the ML techniques employed. Our modeling endeavors were implemented in 

python using library functions provided by the PyTorch framework. 

3.3.1. 3D Convolutional Neural Network (3D-CNNs) 

Convolutional Neural Networks (CNNs) are known for their ability to perform 

classification and regression tasks with high accuracy due to their hierarchical structure and large 

learning capacity (Oquab et al., 2014). They can accept different forms of data as input, including 

images, speech, natural language, audio, and video (Kamilaris and Prenafeta-Boldú, 2018). 

Convolutional layers, activation function, fully connected layers, and pooling layers are the main 

components of the CNNs. CNNs can be used in 1D across the spectral or temporal dimension, 2D 

across the spatial dimensions, or 3D across the spectral and spatial dimensions. While 3D 

convolution has shown slightly higher accuracy in crop classification (Kussul et al., 2017), CNNs 

are rarely used as feature extractors for the temporal domain of remotely sensed time series (Zhong 

et al., 2019b). Cué La Rosa et al. (2019) showed the superiority of patch-based 3D-CNNs over 

3D-FCN and RF for crop classification using sentinel-1. Fontanelli et al. (2022) and Teimouri et 

al. (2022) also demonstrated that 3D-CNNs outperform 1D- and 2D-CNNs in crop classification. 

Significantly, this study pioneers the evaluation of patch-based 3D-CNNs for yield prediction 

using Sentinel-1. Information from each field SAR signal, climate, and yield data were selected as 

data and label patches, to be input into the model. Given the unique characteristics of our yield 
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data, which is field-specific and lacks spatial interconnectivity between fields, we employed a 

patch-based regression methodology. This approach facilitates the processing of individual 

patches in isolation, enabling a more granular and targeted analysis. Each image patch underwent 

an independent normalization process using the z-score method, where the mean was subtracted 

from each data point and then divided by the standard deviation. This normalization stabilizes the 

training dynamics and facilitates a more predictable learning process by centering the data around 

a mean of 0 and a standard deviation of 1. Figure 3.3 illustrates the architecture of the patch-based 

3D-CNNs, while Table 3.1 presents the hyperparameters of the model, which were optimized for 

the best performance on the validation set during the model training process. 

 

Figure 3.3: Patch-based 3D-CNNs architecture for yield prediction using Sentinel-1 time series.  

Given the variability in patch sizes, the depth (time steps), width, and height dimensions of 

our input remained unchanged in different layers, while the channel dimension increased and 

reduced progressively in the encoder and decoder parts. In this DL model, a set of patches is 

defined as a batch number, and the model weights are updated after processing this specific number 

of patches. The implementation of early stopping, with a patience level set at 150, effectively 

curtailed the training process before it could be overfitted to the training data. This approach 

ensured that the model generalized well to unseen data, providing a robust mechanism to safeguard 
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against overfitting while also optimizing computational efficiency.  

Table 3.1: Detailed Breakdown of Hyperparameters Employed in the 3D-CNNs Model. 

Params lr 
Lr 

Scheduler 

T_max 

(scheduler) 

Eta_min 

(scheduler) 
Optimizer 

Loss 

function 

Batch 

size 

Weight 

decay 

Value 0.01 
Cosine 

Annealing 
1000 0.0001 Adam L1 Loss 32 10-6 

 

To optimize the model's efficacy, we partitioned our dataset into training, validation, and test 

subsets. The training subset plays a pivotal role in refining the model's parameters, while the 

validation subset is instrumental for hyperparameter optimization and mitigating overfitting 

through early stopping. The test subset, on the other hand, serves as a benchmark to gauge the 

model's prowess on novel data. Table 3.2 and Table 3.3 depict the number of patches and pixels 

used as the training, validation, and test datasets for two different resolutions of SAR data. 

To protect against the model potentially memorizing the training data and strengthen its 

generalization capabilities, we incorporated an element of randomness by shuffling the training 

dataset at the start of each epoch. This step is crucial to prevent any unintentional patterns that 

might arise from the sequential ordering of data samples. We employed vertical and horizontal 

flipping as our augmentation method. Additionally, we employed transfer learning, adopting initial 

weights from a 3D-CNNs crop classification model that was trained using Sentinel-1 features as 

input features and Cropland Data Layer (CDL)-USDA-NASS (Boryan et al., 2011) crop-type data 

as labels.  

In terms of model configuration, since yield prediction is a regression problem, we used 

Mean Squared Error (MSE) as the loss function, and there is no activation function in the output 

layer. We also used K-Fold Cross-Validation to provide a more robust evaluation on the model by 

training and validating it on 5 different subsets of the data.  
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Table 3.2: Sample set distribution in the study area-30 meter (without augmentation). 

 

Category all 
Total 

pixel 

Number of patch/fields 

train validation test 

Corn 47 3955 36 6 5 

Soybean 65 3194 49 6 8 

Winter Wheat 50 3777 36 6 8 

all 162 10926 126 14 22 

 

Table 3.3: Sample set distribution in the study area-50 meter (without augmentation). 

 

Category all train 
Number of patch/fields 

train validation test 

Corn 37 1383 28 4 5 

Soybean 41 1326 30 4 7 

Winter Wheat 39 924 30 4 5 

all 117 3633 86 12 19 

 

3.3.2. Machine Learning techniques 

Random Forest (RF): RF is an ensemble learning method that constructs multiple decision 

trees during training and outputs the mode of the classes (for classification) or mean prediction 

(for regression) of individual trees for unseen data (Breiman., 2001). In yield prediction, it can 

capture complex nonlinear relationships in the data by aggregating the predictions of numerous 

trees, enhancing accuracy and robustness (Dang et al., 2021). In the implementation of the RF 

model, hyperparameter tuning was conducted using validation dataset to optimize the model's 

predictive performance. The finalized hyperparameters, post-tuning, are as follows: the number of 

trees was set to 400, the maximum depth of the tree was limited to 40, the minimum number of 

samples required to split an internal node was set to 2, the minimum number of samples required 

to be at a leaf node was set to 1, and bootstrapping samples were used, set to True. 
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Support Vector Machine (SVM): SVM is a supervised learning algorithm that finds the 

hyperplane that best divides a dataset into classes. For yield prediction, the SVM can be used in 

its regression form, known as Support Vector Regression (SVR) (Dang et al., 2021). SVR tries to 

fit the best line within a predefined margin, aiming to predict continuous values like yield, while 

maximizing the distance from the data points to this line. Similarly, the SVR model was fine-tuned 

to achieve optimal predictive accuracy. The hyperparameters were configured as follows after the 

tuning process: the cost parameter was set to 10, the kernel coefficient was defined as 0.01, and a 

linear kernel function was employed. 

eXtreme Gradient Boosting (XGBoost) is an optimized gradient boosting library that uses 

decision trees in a sequential manner, where each tree corrects the errors of its predecessor (Chen 

and Guestrin, 2016). In the context of yield prediction, XGBoost can handle missing values, 

capture nonlinear relationships, and is known for its high performance and speed, making it a 

popular choice for many predictive tasks. Furthermore, the XGBoost model was meticulously 

tuned to enhance its predictive performance. The finalized hyperparameters, post-tuning, are as 

follows: the number of boosting rounds was set to 400, the learning rate was established at 0.1, the 

maximum depth of a tree was limited to 8, the fraction of columns to be randomly sampled for 

each tree was determined to be 0.7, and the fraction of samples used to train each tree was 

configured at 0.9. 

In the context of our ML methodologies, it is pivotal to note that explicit feature engineering 

was not conducted. This decision is substantiated by the inherent nature of SAR derived features, 

which, in themselves, can be perceived as a form of feature engineering. For instance, the features 

provide various polarimetric variables such as 𝜎𝑉𝐻
0 and 𝜎𝑉𝑉

0, along with derived ratios and indices 

like 𝜎𝑉𝐻
0/𝜎𝑉𝑉

0, 
4𝜎𝑉𝐻

0

(𝜎𝑉𝐻
0 + 𝜎𝑉𝑉

0)
⁄ and (𝜎𝑉𝑉

0-𝜎𝑉𝐻
0)/( 𝜎𝑉𝑉

0+𝜎𝑉𝐻
0), which are formulated 
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through combinations of the aforementioned polarimetric variables. These inherently encapsulate 

significant information and variability, thereby alleviating the necessity for additional feature 

engineering.  

3.3.3. Model Assessment Techniques 

To assess the accuracy of the predicted yield in comparison to the actual labels, several 

statistical metrics tailored for regression problems were selected: Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), Mean Average Percentage Error (MAPE), Normalized RMSE 

(NRMSE), Correlation coefficient (r), and Index of Agreement (d). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃𝑖 − 𝑂𝑖|

𝑁
𝑖=1                                    (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑃𝑖 − 𝑂𝑖)2𝑁

𝑖=1                             (2) 

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
𝑂̅

⁄                                          (3) 

𝑟 =
1

𝑁−1
∑(

𝑃𝑖−𝑃̅

𝑆𝑝
)(

𝑂𝑖−𝑂̅

𝑆𝑂
)                                      (4) 

𝑑 = 1 −
∑ (𝑃𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (|𝑃𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2𝑁
𝑖=1

                                (5) 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑃𝑖−𝑂𝑖

𝑂𝑖
|𝑁

𝑖=1                                     (6) 

Where, Pi and Oi denote the predicted and observed values for the ith instance, respectively, 

while 𝑂̅ signifies the average of observed values, 𝑆𝑝  is the standard deviation of the predicted 

values, 𝑆𝑂 is the standard deviation of the observed values, and N stands for the sample size. r, the 

correlation coefficient, evaluates the fit's adequacy in mirroring a linear relationship between the 

predicted and actual values, focusing on variance in the samples rather than model bias. Both 

RMSE and NRMSE quantify the average discrepancies between predictions and observations, 

encompassing considerations of bias and random inaccuracies. The index of agreement, d, assesses 

the accuracy of model predictions, accounting for both systematic and random errors. It's fine-

tuned based on the variability in observations and predictions. Notably, these metrics are computed 

for individual patches and juxtaposed with each patch's yield, which is determined by averaging 
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the yield values at the pixel level. 

3.4. Experiments and Results 

In the process of enhancing the yield prediction capabilities of ML and DL models, we 

conducted an in-depth analysis of various Sentinel-1 data derived features, as detailed in Section 

2.2.2.a. Our objective was to discern whether variations in yield rates were followed by distinct 

time series and signals in Sentinel-1 data.  

Figure 3.4 clearly depicts the mean Sentinel-1 temporal progression throughout the growth 

cycle of Soybean, Corn, and Winter Wheat for five different Sentinel-1 derived features. A key 

insight derived from  

Figure 3.4 is the strong correlation observed between the 𝜎𝑉𝐻
0 channel and the fluctuations 

in crops yield, establishing a link that is more pronounced than that observed with the 𝜎𝑉𝑉
0 

channel. Notably, the signals from the  𝜎𝑉𝐻
0/𝜎𝑉𝑉

0and RVI were nearly indistinguishable, 

following each other closely. Conversely, the (𝜎𝑉𝑉
0-𝜎𝑉𝐻

0)/( 𝜎𝑉𝑉
0+𝜎𝑉𝐻

0) signal aligns with those 

of 𝜎𝑉𝐻
0/𝜎𝑉𝑉

0, and RVI, albeit inversely, and all three demonstrate a consistent relationship with 

the variations present in the yield map. 

Building on these insights, Figure 3.5-6 delve deeper, exploring the interplay between 𝜎𝑉𝐻
0 

and RVI time series across a multitude of pixels within the three sample fields depicted in  

Figure 3.4. These figures uniquely consider two distinct resolutions, 30- and 50-meter, 

thereby providing a comparative perspective on crop growth cycle. Both figures consistently 

demonstrate that the 𝜎𝑉𝐻
0 and RVI time series have a distinct correlation with the crops' planting 

and harvest dates, regardless of resolution. This correlation is evident with an increase in 

backscatter following seeding and a decrease post-harvest for Soybean and Corn. Conversely, for 

Winter Wheat, which is seeded months prior and harvested in July, the 𝜎𝑉𝐻
0 and RVI features do 



 159 

not exhibit a clear relationship. Nonetheless, the primary focus of this paper is not to delineate the 

apparent relationships but to delve into the non-relationship between Sentinel-1 feature and yield 

variations. 
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Figure 3.4: Average 30-meter Sentinel-1 signal progression across five derived features during Soybean, Corn and Winter Wheat 

growth cycle.
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Figure 3.5: Comparative analysis of 𝜎𝑉𝐻
0,and RVI time series at 30-meter resolution for A) 

Soybean-2020, B) Corn-2019, and C) Winter Wheat-2023 sample field. 

3.4.1. Ablation Study 

Given the limited size of the yield dataset in this study, we derived the dry weight of the yield 

irrespective of the crop type and analyzed all three crops collectively. Due to the distinct patterns 

displayed by the SAR time series for each crop, our focus was to examine the proficiency of DL 

and ML models in deciphering the non-linear correlations between yield values and SAR features 

across these crops. It's evident that expanding the dataset and tailoring the models to individual 

crops would significantly enhance accuracy, reducing bias and error in the predictions. Achieving 

this, however, necessitates the acquisition of a more extensive sample size. 
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Figure 3.6: Comparative analysis of 𝜎𝑉𝐻
0, and RVI time series at 50-meter resolution for A) 

Soybean-2020, B) Corn-2019, and C) Winter Wheat-2023 sample field. 

Our methodology involved running the 3D-CNNs and three ML models, each configured for 

seven distinct feature combinations, to pinpoint the most predictive set for yield forecasting. We 

consistently included climate features (precipitation, minimum and maximum temperature) in all 

combinations, acknowledging their established influence on crop yield (Khaki and Wang, 2019). 

The feature sets ranged from four features (𝜎𝑉𝐻
0 + climate data) to nine features (𝜎𝑉𝐻

0+𝜎𝑉𝑉
0 + 

𝜎𝑉𝐻
0/𝜎𝑉𝑉

0 + RVI + (𝜎𝑉𝑉
0-𝜎𝑉𝐻

0)/( 𝜎𝑉𝑉
0+𝜎𝑉𝐻

0) + incidence angle + climate), incrementally adding 

SAR derived features. 

Figure 3.7 illustrates the evolution of MAE and r values in response to increasing feature 

counts. 30-meter Sentinel-1 resolution was used for these analyses. Among the ML architectures, 
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XGBoost emerged as the superior performer, hence our selection for detailed analysis alongside 

the 3D-CNNs for the DL category. However, XGBoost displayed a consistent decline in MAE as 

features were added, achieving optimal performance with the full feature set. In contrast, the 3D-

CNNs model's peak performance was attained with only four features, underscoring 𝜎𝑉𝐻
0's 

predominant influence. These findings accentuate the pivotal role of feature engineering in ML, a 

domain where XGBOOST resides. Unlike their DL counterparts, such as 3D-CNNs, which 

inherently extract and capitalize on complex data relationships, traditional ML models rely heavily 

on the deliberate crafting and refinement of input features to enhance predictive prowess. This 

reliance reaffirms the criticality of thorough feature engineering, particularly for models missing 

of intrinsic feature prioritization or extraction capabilities. Furthermore, the 3D-CNNs's superior 

performance, evidenced by a lower MAE using only four features and excluding the incidence 

angle, substantiates the assertion made by Garnot et al. (2022) and Gargiulo et al. (2020) regarding 

the capacity of DL algorithms to bypass the necessity for extensive preprocessing of SAR data. 

 

Figure 3.7: Comparative performance analysis of 3D-CNNs and XGBoost architectures 

highlighting the impact of feature combinations on yield prediction accuracy. 
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Upon identifying the optimal feature combination for each DL and ML model, we delved 

into analyzing the influence of noise in pixels located on field edges. Figure 3.2 illustrates the yield 

map pixels, highlighting that the marginal pixels may encompass diverse elements such as other 

crop fields, bare soil, or trees, potentially contributing to noise. This noise is particularly 

pronounced at higher spatial resolutions, such as 50 meters. Figure 3.8 depicts the yield 

discrepancy map, showcasing the absolute differences between the estimated yields and the actual 

labeled yields. This comparison is conducted at a 30-meter resolution, utilizing the ideal feature 

set for both 3D-CNNs and XGBoost models, and it includes every pixel spanning the fields. For 

this analysis, we randomly selected one sample from each crop and each year as the test dataset 

(22 samples). Conversely, Figure 3.9. displays the difference yield map for the same fields as those 

in Figure 3.8, still at a 30-meter resolution, but with a crucial distinction: it illustrates the results 

after mitigating the influence of edge pixels during the model training, validation, and test phases. 

In comparing the two figures, it becomes evident that the greatest discrepancies between 

estimated and actual yields predominantly occur at the field edges, particularly for Winter Wheat 

and Soybean crops. Hence, the subsequent sections of the paper present the final results of the DL 

and ML models, derived by employing this refined approach of data cleansing. This process 

involved the exclusion of edge pixels and the utilization of the optimal feature combination 

specific to each model. 
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Figure 3.8: Yield prediction discrepancy map at 30-meter resolution across three crops and eight 

growing seasons, depicting differences without edge filtering. 
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Figure 3.9: Yield prediction discrepancy map at 30-meter resolution for three crops over eight 

growing seasons, with edge pixel removal implemented. 
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3.4.2. End-of-Season Yield Estimation  

In this study, we employed k-fold cross-validation as a robust method to estimate crop yields, 

thereby enhancing the reliability and generalizability of our models. To ensure the 

comprehensiveness and randomness of our validation process, we meticulously selected five 

distinct sets of test and validation datasets. Each test dataset comprised 22 samples, which included 

a diverse array of crops: 8 Winter Wheat fields, 8 Soybean fields, and 6 Corn fields. This diversity 

allowed us to assess and validate our models' performance across various crop types and climate 

conditions, ensuring their efficacy and versatility in predicting yields under different agricultural 

conditions. Figure 3.10-11 depict a detailed breakdown of six statistical parameters, evaluated both 

collectively for all crops and separately for each individual crop, at 30-meter and 50-meter 

resolutions, respectively. For thoroughness and ease of reference, we have included the complete 

tables detailing these results in the supplementary materials accompanying this paper (Tables S1 

and A2). 

 

Figure 3.10: Comparative performance of various DL and ML architectures at two resolutions: a) 

30-meter and b) 50-meter for all crops, evaluated across six statistical parameters. Within this 

illustration, the units of MAE and RMSE are expressed in kg/ha, while MAPE is presented as a 

percentage, and R, D, and NRMSE are dimensionless. 
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The study's findings, presented in Figure 3.10, Table B1 and S2, highlight the comparative 

performance of three ML methods—RF, XGBoost, and SVM— and 3D-CNNs model in 

estimating crop yield using Sentinel-1 SAR data at two different resolutions: 30-meter and 50-

meter. For all crops combined at the 30-meter resolution, XGBoost emerged as the most accurate 

model, with the lowest MAE (590.8 kg/ha), RMSE (874.4 kg/ha), and MAPE (9.5%), alongside 

the highest r (0.96) and d index (0.98), indicating robust predictive accuracy and strong agreement 

with observed data. Conversely, SVM performed the poorest, evidenced by its higher MAE 

(1508.1 kg/ha), RMSE (2114.6 kg/ha), and MAPE (24.8%), and lower r (0.74) and d index (0.85). 

The DL model 3D-CNNs, while not outperforming XGBoost, still showed commendable results, 

particularly a high d index of 0.95 and r (0.92) for all crops, suggesting a good level of agreement 

with actual observations, though it had a higher MAE (872 kg/ha), RMSE (1215.94 kg/ha) and 

MAPE (14.7) compared to XGBoost. When examining individual crops at the same resolution 

(Figure 3.11), XGBoost consistently showed superior performance across all metrics for Winter 

Wheat (MAE of 322.2 kg/ha, RMSE of 362.6 kg/ha, MAPE of 7.9 % and r of 0.72) and Soybean 

(340.3 kg/ha, RMSE of 419.6 kg/ha, MAPE of 8.6, and r of 0.66), while for corn, it demonstrated 

a higher predictive accuracy (r of 0.90) despite a slightly lower MAE (1237.3 kg/ha) and RMSE 

(1504.2 kg/ha) compared to 3D-CNNs. We refer readers to Tables S1 and S2 for more detailed 

information.  

The findings from this study collectively highlight the robustness of the XGBoost algorithm 

in predicting yields across diverse crops, with notably superior performance in estimating Winter 

Wheat yield. Corn, possessing a distinct structural variation compared to other crops, presents a 

unique challenge that ideally requires separate model training. However, due to the limited dataset, 

particularly for the data-intensive 3D-CNNs, the models were trained on a combined crop dataset. 
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Conversely, at the 50-meter resolution, a marked degradation in performance was observed across 

all models. The 3D-CNNs's metrics regressed significantly, with MAE and RMSE increasing to 

1282.5 (kg/ha) and 1881.1 (kg/ha), respectively, for all crops, r decreasing to 0.83, and the d index 

falling to 0.90. Similarly, XGBoost experienced a downturn, with its MAE and RMSE rising to 

1509.2 and 1968.5, respectively, and a reduction in r to 0.80, alongside a d index decline to 0.86. 

Their MAPEs also increased significantly. This decline was particularly pronounced for Winter 

Wheat predictions using XGBoost, where MAE escalated to 1081.4, RMSE to 1328.3, and r fell 

into the negative (-0.66), indicating a negative moderate correlation between predicted and actual 

yield. Concurrently, the d index plummeted to 0.26 and MAPE soared to 21.0 %, signaling a 

substantial dip in both prediction accuracy and concordance with observed data.  

The smaller sample size at the 50-meter resolution likely provided less information for the 

training process, hindering the models' ability to effectively learn and make accurate predictions. 

This is particularly impactful for DL models like 3D-CNNs, which require substantial data to 

identify and learn intricate patterns. Furthermore, the coarser resolution integrates more 

information from neighboring fields, introducing additional noise into the data. These noisy data 

can significantly distort the true reflectance and other signals from the crops of interest, thereby 

confounding the models and leading to higher error rates. However, the outcomes derived from 

the 50-meter resolution data reveal a notable advantage of 3D-CNNs over XGBoost, particularly 

in scenarios where the data encompasses noise. As illustrated in Figure 3.10-11, 3D-CNNs 

surpasses XGBoost in performance, a trend consistent not just in the aggregate analysis of all crops 

but also when examining each crop individually. This suggests that 3D-CNNs exhibits a higher 

tolerance for noise within the data, enhancing its predictive reliability under these specific 

conditions. 
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 Figure 3.11: Comparative Performance of Various DL and ML Architectures at Two Resolutions: 

a) 30-meter and b) 50-meter for Corn, Evaluated Across Six Statistical Parameters. Within this 

illustration, the units of MAE and RMSE are expressed in kg/ha, while MAPE is presented as a 

percentage, and R, D, and NRMSE are dimensionless. 
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Compared to findings from similar studies utilizing 3D-CNNs and MODIS data, our research 

distinctly highlights the potent capability of SAR data in enhancing yield prediction accuracy. For 

instance, Qiao et al. (2021), utilized a 3D-CNNs model, enhanced with a multikernel learning 

approach and supplemented by MODIS data, achieving a MAPE of 14.35% in Winter Wheat yield 

prediction. In contrast, our model achieved superior MAPE results of 7.9% and 9.5% using 

XGBoost and 3D-CNNs, respectively.  

Further comparisons with works like Russello, (2018), Terliksiz & Altýlar., (2019), Gavahi et 

al. (2021), and Abbaszadeh et al. (2022) reveal a common trend: the application of 3D-CNNs with 

MODIS data for county level Soybean yield estimation, yielding RMSE of 396.8, 497, 450.6, and 

450.6 kg/ha respectively and Abbaszadeh et al. (2022)  reported 0.73 correlation coefficient. Our 

research, while aligning with the predictive accuracies of these studies, distinguishes itself through 

the use of SAR data, achieving an RMSE of 419.6 and 627.8 for XGBoost and 3D-CNNs, 

respectively, and r of 0.66 which is competitive considering the dataset size disparity. 

Additionally, our findings comply with those of J. Sun et al. (2019), who reported an RMSE 

of 329.5 using a CNN-LSTM model and MODIS data for Soybeans. Our model's comparable 

RMSE of 419.6 and 627.8 using XGboost and 3D-CNNs values indicate a consistent predictive 

capability, even with the shift from MODIS to SAR data.  

3.4.3. In-Season Yield Estimation 

To determine the earliest point at which yield can be estimated without significant loss of 

accuracy, we systematically reduced the number of Sentinel-1 images used in our models. Figure 

3.12 illustrates the MAE and r values in response to this gradual reduction for both the 3D-CNNs 

and the superior ML model, XGBoost. Our analysis commenced from the harvest time (end of 

October for Corn and Soybean and end of July for Winter Wheat), identified by the lowest MAE 
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and highest r. The figure shows that up to 36 days prior to harvest, r remains relatively stable, and 

the MAE sees a marginal rise of 44 kg/ha (7.5%) and 82 kg/ha (9.5%) for all crops using XGBoost 

and 3D-CNNs, respectively. Beyond this point, there is a marked acceleration in MAE, indicating 

diminishing returns in predictive accuracy. The fewer available Sentinel-1 images for Winter 

Wheat as we move further from harvest time could also contribute to the increased MAE. 

 Our in-season yield estimation results are in harmony with J. Sun et al. (2019) reported in-

season Soybean yield estimation using MODIS and CNN-LSTM on August 21 (two month before 

harvest) with just losing 7% accuracy compared to harvest estimated yield.  

 

Figure 3.12: Analysis of yield prediction accuracy over time, depicting MAE and R metrics for 

3D-CNNs and XGBoost models as the number of Sentinel-1 Images decreases, highlighting the 

stability of predictions up to 36 days before harvest. 

 

3.5. Discussion 

3.5.1. Impact of feature combination on DL and ML models performance 

Our ablation study revealed a notable divergence in performance between the 3D-CNNs and 

XGBoost models in yield prediction using SAR features. Specifically, the 3D-CNNs model 

achieved optimal performance with a subset of only four features, while the XGBoost model 
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required the full set of nine features to realize its best results. This disparity underscores the 

differing operational dynamics and feature sensitivities inherent to these two distinct model 

architectures. 

The 3D-CNNs model, known for its capacity to automatically extract spatial and temporal 

features, demonstrated a pronounced efficiency in handling complex feature interactions with a 

reduced feature set. This suggests that the most critical information relevant for yield prediction 

was effectively captured by these four key features (VH channel, precipitation, minimum and 

maximum temperature), highlighting the model's ability to distill and prioritize feature importance. 

Conversely, the XGBoost model's reliance on the complete feature set indicates a different 

interaction with the feature space, where the collective contribution of all features was necessary 

to maximize predictive performance. 

The results also bring to the forefront the critical role of feature engineering in ML, 

particularly for models like XGBoost. Unlike DL models such as 3D-CNNs, which are designed 

to autonomously discern and leverage intricate data patterns, traditional ML algorithms often hinge 

on the careful selection and optimization of input features to bolster their predictive accuracy.  

Therefore, the ablation study underscored the critical role of the VH channel in comparison to 

other SAR features, a finding that aligns with the research presented by Sharma et al. (2022). Their 

study demonstrated that an artificial neural network (ANN) model relying on VH polarization 

surpassed its VV polarization-based counterpart in terms of accuracy in paddy rice yield 

estimation. Guo et al. (2022) also underscored the significance of pinpointing the optimal blend of 

SAR features through Jeffries-Matusita (J-M) distance analysis to enhance crop classification 

accuracy using DL methods. This not only highlights the prowess of DL in feature mining but also 

underscores its utility in leveraging SAR time series data for effective yield forecasting. 
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3.5.2. Machine Learning versus Deep Learning: Assessing Yield Prediction Capabilities 

The results highlight the subtle performance differences between ML algorithms and DL 

methods in yield estimation using SAR data at different resolutions. XGBoost's superior 

performance at the 30-meter resolution across almost all metrics underscores its effectiveness in 

handling complex, high-dimensional data, likely due to its sophisticated ensemble learning 

structure. In contrast, while the 3D-CNNs model didn't lead in performance, its relatively high d 

values indicate a respectable level of predictive reliability, an expected strength of DL models 

owing to their capacity for hierarchical feature learning from data. However, it is important here 

to highlight the impact of dataset size on DL model performance. DL models, particularly those 

employing convolutional neural networks, are inherently data-hungry. They thrive on large, 

diverse datasets from which they can extract intricate patterns and features at multiple levels of 

abstraction. However, in this study, the relatively limited size of the dataset, especially when 

considering individual crop types, posed a significant constraint. The necessity to pool data from 

Corn, Soybean, and Winter Wheat for the DL model was primarily due to insufficient individual 

crop data, preventing the model from being trained separately on each crop type. This merging 

approach, while practical, introduces an inherent challenge: it requires the model to generalize 

across crops with distinct growth behaviors and yield patterns, potentially obscuring crop-specific 

nuances essential for precise yield prediction. 

Moreover, the use of transfer learning, though a strategic choice given the dataset's 

constraints, further emphasizes the model's dependency on pre-existing knowledge extracted from 

different tasks (crop classification in this case). While this technique aids in model convergence 

and prevents overfitting in the face of limited data, it may also carry over biases from the pre-

trained task, affecting the model's ability to learn crop-specific yield determinants effectively. 
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Looking ahead, there's a compelling case for expanding the dataset—both in terms of the number 

of samples per crop and the diversity of conditions represented (e.g., irrigated and non-irrigated 

crops). By increasing the volume and variety of training data, the DL model's capacity for feature 

extraction and complex pattern recognition can be more fully leveraged. This, in turn, is anticipated 

to enhance the model's predictive accuracy, as reflected in potential reductions in MAE and RMSE, 

and improve its crop-specific yield estimation capabilities. 

Furthermore, with a more substantial and crop-diverse dataset, future work could explore 

more nuanced DL architectures and training strategies, potentially developing separate models for 

each crop type or employing multi-task learning approaches that can simultaneously learn across 

several related tasks. Such advancements, grounded in richer datasets, hold promise not only for 

improving yield predictions but also for providing more granular insights into the factors 

influencing crop yields, ultimately contributing to more informed agricultural decision-making 

and resource allocation. 

3.5.3. Balancing SAR Image Resolution and Yield Prediction Accuracy 
 

The decision to employ a 50-meter resolution for SAR images was initially based on the 

assumption that aggregating SAR data would mitigate the impact of speckle noise, a common 

challenge in SAR imagery. It was hypothesized that this aggregation might enhance the clarity of 

the signals, thereby improving the predictive performance of the models. However, the outcomes 

indicated a contrary effect. The coarser 50-meter resolution led to a significant reduction in the 

number of distinct samples available for analysis, as detailed in Table 3.3, which inadvertently 

constrained the models' learning capabilities due to less granular data. Moreover, the aggregation 

process introduced an unexpected complication: the incorporation of additional noise from 

adjacent fields (Figure 3.2) This extraneous information, rather than providing more accurate 
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reflectance and crop condition data, introduced variables that confounded the models, 

overshadowing the benefits anticipated from speckle reduction. The resultant increase in 

prediction errors underscores the delicate balance required in choosing an appropriate data 

resolution, where the intended benefits of noise reduction must be carefully weighed against the 

potential drawbacks of data aggregation, such as diminished sample detail and the introduction of 

irrelevant noise from the surrounding environment. This insight highlights the nuanced 

complexities involved in optimizing data preprocessing strategies for ML and DL applications in 

precision agriculture. 

In this study, the 3D-CNNs has showcased its superiority over traditional ML by its ability 

to sustain performance in dealing with the noise in the SAR observations. Firstly, it achieved 

superior performance using only four features, eliminating the need for the incidence angle as an 

input feature, a stark contrast to ML methods that required all nine features, including the incidence 

angle, for optimal functionality. These findings reinforce the assertions made by Garnot et al. 

(2022) and Gargiulo et al. (2020) about the adeptness of DL algorithms in circumventing extensive 

preprocessing of SAR data for speckle filtering. Secondly, despite the limited dataset at the 50-

meter resolution and the inherent data-intensive nature of 3D-CNNs, it still surpassed ML methods 

in filtering out noise from adjacent fields. 

3.6. Conclusion 

This research embarked on a comprehensive exploration of the capabilities of DL models, 

specifically 3D-CNNs, in enhancing yield prediction accuracy using multi-temporal Sentinel-1 

SAR data. This study conducted a thorough analysis of SAR data features, uncovering crucial 

insights into how specific features correlate with variations in crop yield. Notably, the VH channel 

demonstrated a particularly robust relationship with agricultural yield predictions. 
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The comparative analysis between traditional ML models and the patch-based 3D-CNNs 

highlighted the nuanced strengths of each approach. While XGBoost, an ML model, demonstrated 

robust performance across various metrics, particularly at the 30-meter resolution, it required a 

comprehensive set of features to achieve optimal results. In contrast, the 3D-CNNs model, despite 

the dataset's limited size, not only performed commendably with a reduced feature set but also 

displayed remarkable resilience against noise, particularly at the coarser 50-meter resolution. This 

resilience is particularly noteworthy, as it suggests an inherent capability of DL models to maintain 

performance integrity even when external factors introduce data inconsistencies. 

Furthermore, the study's findings emphasize the critical role of feature engineering in the 

realm of ML, where the deliberate selection and optimization of input features significantly 

influence model performance. On the other hand, DL models, like 3D-CNNs, exhibit an intrinsic 

ability to autonomously extract and capitalize on complex data relationships, a quality that 

traditional ML models lack. 

In terms of practical applications, the models' ability to predict yields with reasonable 

accuracy almost one month before harvest presents significant implications for agricultural 

planning and resource allocation. The models' performance also points to the potential benefits of 

expanding the dataset and tailoring models to individual crops, which could further enhance 

prediction accuracy and reduce biases.  

In conclusion, this study illustrates the promising potential of ML and DL in agricultural 

yield prediction. By harnessing the rich data provided by Sentinel-1 SAR imagery and leveraging 

the advanced analytical capabilities of these models, stakeholders in the agricultural sector can 

gain unprecedented insights into crop performance, ultimately contributing to enhanced food 

security and resource optimization. However, the research and development doesn't end here; the 
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findings also pave the way for future research, particularly in expanding and diversifying datasets 

and exploring different types of DL architectures using SAR imagery to estimate intra-season crop 

yield from field to county scale. 
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APPENDIX 

Table B1: Simulation results using 30-meter Sentinel-1 resolution. 

All Crops 30-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 871.62 1215.94 0.92 0.11 14.65 0.95 

RF 708.25 1025.22 0.94 0.09 9.32 0.97 

XGBoost 590.80 874.37 0.96 0.08 9.53 0.98 

SVM 1508.09 2114.61 0.74 0.20 24.84 0.85 

              

Winter Wheat 30-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 550.22 643.91 0.60 0.41 9.48 0.69 

XGBoost 322.23 362.56 0.72 0.16 7.88 0.91 

              

Soybean 30-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 594.96 627.83 0.66 0.35 15.79 0.78 

XGBoost 340.32 419.63 0.66 0.19 8.60 0.92 

              

Corn 30-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 1657.69 1980.30 0.67 0.34 18.718 0.77 

XGBoost 1237.26 1504.18 0.90 0.26 13.95 0.91 
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Table B2: Simulation results using 50-meter Sentinel-1 resolution. 

All crops 50-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 1282.51 1881.11 0.83 0.16 31.10 0.90 

RF 1583.73 2037.92 0.83 0.18 45.06 0.86 

XGBoost 1509.22 1968.48 0.80 0.18 36.70 0.86 

SVM 1802.46 2272.46 0.75 0.19 47.14 0.82 

              

Winter Wheat 50-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 685.07 859.11 0.40 0.56 11.76 0.58 

XGBoost 1081.36 1328.27 -0.66 0.54 21.00 0.26 

              

Soybean 50-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 635.08 934.33 0.66 0.29 31.04 0.73 

XGBoost 1068.86 1412.59 0.36 0.40 48.00 0.58 

              

Corn 50-meter resolution 

test MAE [kg/ha] RMSE [kg/ha] R [-] NRMSE [-] MAPE [%] D [-] 

3D-CNNs 1289.15 1458.59 0.73 0.30 12.22 0.81 

XGBoost 2598.18 2958.28 0.92 0.55 17.00 0.75 
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4. CHAPTER 4: ESTIMATING CROP BIOPHYSICAL PARAMETERS USING SELF-

SUPERVISED LEARNING WITH FOUNDATION MODELS AND SAR-OPTICAL 

OBSERVATIONS 
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4.1. Introduction 

The estimation of Vegetation Water Content (VWC) is of crucial importance in various 

environmental and agricultural applications, as well as for satellite-based remote sensing retrieval 

algorithms. As a critical biophysical parameter, VWC significantly influences agricultural land 

monitoring, yield forecasting, soil moisture (SM) retrieval, and wildland fire risk assessment 

(Fensholt and Sandholt, 2003). Accurate VWC estimation is vital for providing real-time insights 

into crop status, enabling farmers to optimize timing for agricultural interventions, thereby 

maximizing yields and resource efficiency (Khabbazan et al., 2022).  Additionally, VWC is crucial 

in understanding plant productivity and crop growth, as these are largely dependent on water 

availability within the root zone (Friesen et al., 2012). It also plays a key role in regulating 

evapotranspiration, accounting for 60% of water returned to the atmosphere by vegetation (Oki 

and Kanae, 2006). For SM retrievals from microwave remote sensing (RS) observations, VWC, 

along with surface roughness (SR), is essential in models like the zeroth-order single-scattering 

Tau-Omega model (Jackson et al., 1982), the single-scattering Water Cloud Model (WCM) 

(Attema and Ulaby, 1978), and the Bayesian model for microwave emission and scattering 

(Pierdicca et al., 2010). Therefore, the accuracy of VWC estimates is crucial in reducing 

uncertainties in these model-based retrievals, which directly impacts the reliability of SM and 

Vegetation Optical Depth (VOD) measurements (Judge et al., 2021). 

VWC in a simple word is volume of water content in vegetation with unit in kilogram per 

square meter (Hunt et al., 2011). VWC can be categorized in three different scales, leaf, plant, and 

canopy scales (Hunt Jr et al., 2018). Leaf VWC is the water mass per leaf unit area (Ceccato et al., 

2001; Jacquemoud et al., 2009), while the ratio of water content weight to the total plant weight is 

defined as the plant VWC. Finally, the canopy VWC can be determined by measuring the water 
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mass of vegetation per ground area. 

VWC measurement, traditionally reliant on labor-intensive field sampling (Vermunt et al., 

2021; Ye et al., 2021), has evolved with the advent of satellite observations, particularly multi-

spectral and Microwave sensors operating in C-band and higher frequencies (Steele-Dunne et al., 

2017). Optical and thermal indices like Normalized Difference Vegetation Index (NDVI), and 

Normalized Different Water Index (NDWI) are effective in low vegetation conditions, especially 

when VWC is below 4 kg/m² (Cosh et al., 2019) and they have been widely used to estimate VWC 

(Cosh et al., 2019; Gao et al., 2015; Hunt et al., 2011; Jackson et al., 2004; Judge et al., 2021; 

Michael H. Cosh, 2010). However, the multi-spectral sensors are adversely affected by the 

presence of clouds, and they also get affected by background, aerosol, and saturation in high 

biomass regions (Soudani et al., 2008). Moreover, they are less sensitive to the water beneath the 

canopy surface, such as in the stem and ears which can lead to underestimation of plant water and 

saturation at different points in the growing season (Judge et al., 2021; Togliatti et al., 2022). 

Among optical-thermal vegetation indices, NDVI, popular for VWC estimation (Jackson et al., 

2004), is limited by its focus on chlorophyll rather than water content (Chen et al., 2005; Huang et 

al., 2009). NDWI, on the other hand targeting water absorption in shortwave infrared bands (Hunt 

Jr et al., 2018; Wang et al., 2013), show stronger correlations with crop water content (Jackson et 

al., 2004). Huang et al. (2009) demonstrated that NDWI outperforms NDVI in estimating VWC 

for Corn and Soybeans. Building on this, Xu et al. (2020) investigated high-resolution VWC 

estimation using linear regression with NDWI, achieving R² values of 0.44 to 0.85 for corn and 

soybean plants and canopies in Iowa. Their study focused on a brief period of crop reproductive 

growth in August, likely benefiting from clear sky conditions and increased availability of optical 

imagery. Further supporting NDWI's efficacy, Cosh et al. (2019) and Judge et al. (2021) showed 
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that NDWI-based regression models for VWC estimation result in lower Root Mean Square 

Deviation (RMSD) for SM retrieval compared to NDVI-based approaches. 

Recent advancements in agricultural monitoring have highlighted the efficacy of low-

frequency Synthetic Aperture Radar (SAR) data, particularly in crop monitoring, SM estimation, 

and biophysical parameters extraction. Studies have consistently demonstrated the sensitivity of 

radar backscatter intensity to various crop biophysical parameters, with a notable correlation 

between backscatter coefficients, Radar Vegetation Indices (RVI), and VWC (Huang et al., 2016; 

Liu et al., 2013; Vreugdenhil et al., 2018; Yihyun Kim et al., 2014, 2012). The sensitivity of 

backscatter to dielectric properties of vegetation is a clue of strong relationship between crop water 

content and backscatter coefficient (Konings et al., 2019; Steele-Dunne et al., 2017).  SAR indices, 

however, are influenced by factors such as leaf size, canopy structure, SM, SR and surface canopy 

water (SCW), which can affect their accuracy (Judge et al., 2021; Khabbazan et al., 2022; Kim et 

al., 2011; Vermunt et al., 2022) The effectiveness of SAR in agricultural applications is further 

nuanced by the choice of frequency (Hashemi et al., 2024; Steele-Dunne et al., 2017). C-band SAR 

signals, with their shorter wavelengths compared to L-band, interact more with smaller vegetation 

elements like leaves and small stems, making them suitable for discriminating herbaceous crops 

such as wheat, alfalfa, and canola, even at moderate growth stages. In contrast, L-band SAR 

signals, having longer wavelengths, are less affected by the upper canopy layers and interact more 

with intermediate-sized crop elements like stems and leaf ribs of wide-leaf crops such as corn and 

sunflower (Ferrazzoli et al., 1997).   

Kim et al. (2018) observed a lower correlation between VWC and L-band radar backscatter 

for less dense, herbaceous crops like winter wheat and soybean compared to thicker crops like 

corn, attributing this to the higher influence of SM and SR in shorter, less dense crops. Moreover, 
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Huang et al. (2016) and Hosseini et al. (2015), revealed that spatial variations in vegetation and 

surface conditions can substantially affect these correlations. This issue is more pronounced in 

airborne and satellite observations compared to scatterometer L-band SAR data, highlighting the 

necessity for more sophisticated models that incorporate these varying environmental variables.  

Further, Judge et al. (2021) advanced this understanding by developing multiple linear 

regressions to estimate VWC using both Visible to Shortwave Infrared (VSWIR) and radar 

vegetation indices. Their results demonstrated that near-real-time NDWI and L-band Circularly 

Polarized Ratio (CRvv)-derived VWC could enhance the accuracy of the SMAP single channel 

retrieval algorithm in SM retrieval. They highlighted the dynamic influence of soil characteristics 

and vegetation on radar backscatter across different growth stages of corn in Iowa. Recent studies 

by Khabbazan et al. (2022) and Vermunt et al. (2022)  explored the relation between VWC, SCW 

and L-band SAR observables. The findings of Khabbazan et al. (2022) indicated that SCW can 

potentially increase radar backscatter up to 2 dB. However, they noted that this effect was less 

significant in the case of cross ratio and RVI. Complementing this, Vermunt et al. (2022) 

developed a multiple linear regression model incorporating VWC, SCW, and SM to examine the 

influence of VWC on L-band backscatter. Their findings revealed that internal VWC can fluctuate 

by 10%-20% throughout the day under non-stressed conditions but it can increase to 35% under 

stress.  

Previous studies on VWC estimation using SAR predominantly employed a linear regression 

or the WCM (Attema and Ulaby, 1978) with limited labeled VWC datasets. However, the 

application of WCM encounters several challenges. It requires labor-intensive calibration of 

parameters like vegetation attenuation (Kumar et al., 2012), tends to oversimplify heterogeneous 

canopies (Khabbazan et al., 2019), and operates under the assumption that vegetation and ground 
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scattering are independent—an assumption that may not be valid in dense, multi-layered vegetative 

areas. This study aims to address this limitation by employing foundation models (FMs), with 

VWC estimation as the downstream task. 

FMs are large-scale models pre-trained on vast, unlabeled datasets using self-supervision. 

They are designed to be generalist, understanding a wide range of inputs and tasks. These models 

can then be fine-tuned on smaller, task-specific datasets. Their architecture, often based on 

transformers, allows them to excel in multiple domains, from natural language processing to vision 

tasks, by adjusting the model's head for specific downstream tasks (Jakubik et al., 2023). In this 

chapter we propose a first-of-its-kind framework for the creation of geospatial FMs to accelerate 

the development and deployment of crop biophysical parameters estimation. The scarcity problem 

of ground reference for crop monitoring application can be resolved using FMs by self-supervision 

technique without the need for labeled dataset and then fine-tuning the pretrained model for 

downstream tasks with small, labeled dataset. Furthermore, FMs can address the limitations of the 

WCM by capturing complex relationships between SAR and VSWIR data, SM, SR, and VWC.  

In recent years, researchers have applied geospatial FMs incorporating various Self-Supervised 

Learning (SSL) techniques to remote sensing (RS) tasks. These techniques include contrastive 

learning, Masked Autoencoder (MAE), Masked Image Modeling (MIM), self-DIstillation with 

NO labels (DINO), Bootstrap Your Own Latent (BYOL), Momentum Contrast (MOCO), 

Contrastive Aggregated Contrastive (CACo), and Seasonal Contrast (SeCo). These approaches, 

often implemented with transformer or vision transformer (ViT) architectures, have been adapted 

for diverse RS data types such as SAR, optical/thermal, and LiDAR for image/scene classification 

(Ayush et al., 2021; Bastani et al., 2023; Muhtar et al., 2023; Prexl and Schmitt, 2023; Tsaris et 

al., 2024), semantic segmentation (Bountos et al., 2023; Fuller et al., 2023; Jain et al., 2022; Wang 
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et al., 2023; Y. Wang et al., 2022), object detection (Li et al., 2021; D. Wang et al., 2022; Zhang 

et al., 2022), change detection (Mall et al., 2023; Manas et al., 2021), land cover classification 

(Prexl and Schmitt, 2023; D. Wang et al., 2022a; Zhang et al., 2022), and crop mapping (Xu et al., 

2024). To illustrate the effectiveness of these approaches, Scheibenreif et al., (2022) demonstrated 

that SSL techniques combined with ViT (Dosovitskiy, 2020) architectures have outperformed 

ConvNet in classification and segmentation tasks. Their study revealed significant performance 

improvements, with gains of up to 30% over supervised baselines across various downstream tasks 

when finetuned with small, labeled data. 

This study pioneers the application of geospatial FMs and advanced machine learning (ML) 

methods, including random forest (RF) and XGBoost (XGB), for fine-scale (50-meter) VWC 

estimation. By leveraging freely available Sentinel-1A C-band and Sentinel-2 Visible and 

Shortwave Infrared (VSWIR) data, our research demonstrates the significant potential of ML and 

deep learning (DL) in enhancing SAR and VSWIR-based VWC estimation. This work sets a 

precedent for future studies on the use of FMs in crop monitoring and agricultural practice 

management, particularly addressing the challenge of limited labeled data. 

Our comprehensive case study encompasses a diverse range of climatic conditions, from the 

humid continental climate of Iowa to the temperate climate of Michigan and the humid subtropical 

climate of Florida. This diversity extends to field conditions and practice management, including 

both irrigated and non-irrigated fields, as well as varying tillage practices such as fields with crop 

residue and those fully plowed. The breadth of our study settings significantly enhances the 

applicability and relevance of our findings across different agricultural contexts. Furthermore, we 

evaluate the potential of multi-task learning (MTL), simultaneously estimating crop height and 

VWC, to enhance overall prediction accuracy. The rationale for using MTL stems from the 
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intrinsic relationship between crop height and VWC. Crop height can be indicative of plant health 

and biomass, which are closely related to the water content of the vegetation. Accurate estimates 

of crop height can thus provide contextual information that enhances the prediction of VWC, 

particularly with small labeled datasets.  

By addressing these critical aspects and leveraging advanced modeling techniques, our study 

not only advances the technical capabilities of VWC and crop height estimation but also opens 

new avenues for accurate, timely, and scalable crop monitoring. This comprehensive approach has 

the potential to transform agricultural decision-making processes, offering farmers and 

agronomists more reliable data for optimizing resource management and improving crop yields 

across diverse agricultural landscapes. 

4.2. Measurements and Case Study: 

4.2.1. SAR and Optical Data Sources 

Our study leverages a comprehensive suite of RS data to address the challenges of crop 

biophysical parameters estimation. We strategically combined SAR and optical data to exploit 

their complementary strengths, focusing on freely available and regularly acquired satellite 

observations.  

4.2.1.1. Sentinel-1A SAR Data 

For our study, we leveraged Sentinel-1A C-band SAR data, chosen for its advantageous 

combination of regular global coverage, open data policy, and practical applicability to agricultural 

monitoring. We downloaded ascending Radiometrically Terrain Corrected (RTC) Sentinel-1A 

images with 30-meter resolution, spanning 2016, 2018, and 2022-2023 from the Alaska Satellite 

Facility (ASF). ASF provides these RTC products with speckle filtering at no cost (ASF, 2023). 

To further reduce speckle noise, we aggregated the resolution from 30 meters to 50 meters using 
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the bilinear sampling method.  

This study leveraged both single and dual polarization (VH, VV) SAR data to estimate VWC 

and crop height. To enhance our analysis, we derived the entropy, anisotropy, and alpha 

parameters, as introduced by Cloude and Pottier (Lee and Pottier, 2017). These polarimetric 

parameters provide valuable insights into vegetation structure and scattering mechanisms: Entropy 

(H) measures the degree of randomness in scattering (0 to 1), with values near zero indicating 

single scattering (e.g., smooth bare soils) and higher values indicating multiple scattering events 

(e.g., developing crop canopy) (Lee and Pottier, 2017; Xu and Jin, 2005). Anisotropy (E) estimates 

the relative importance of secondary scattering mechanisms, with zero indicating two mechanisms 

of equal proportions, and values approaching 1 indicating dominance of the second mechanism 

over the third (Lee and Ainsworth, 2010). Alpha (α) angle determines the scattering source: angles 

close to 0° indicate single bounce scattering, around 45° indicate volume scattering, and near 90° 

indicate double bounce scattering observed in developed stalks. 

We utilized the Sentinel Application Platform (SNAP) software to process and analyze these 

polarimetric parameters. To further enrich our dataset, we incorporated additional SAR indices, 

including the cross-ratio and the RVI. We calculated both C-band RVI : 
4𝜎𝑉𝐻

0

(𝜎𝑉𝐻
0 + 𝜎𝑉𝑉

0)
⁄  

(Nasirzadehdizaji et al., 2019) and L-band RVI : 8𝜎𝐻𝑉
0/(𝜎𝐻𝐻

0 + 𝜎𝑉𝑉
0 + 2𝜎𝐻𝑉

0) (Zhang et al., 

2020) for our model analysis.  

Importantly, to account for the impact of acquisition geometry on SAR backscatter, we 

included the incidence angle as a feature in our ML and FMs. This inclusion allows for a more 

accurate interpretation of the SAR data across different acquisition conditions. 
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4.2.1.2. Sentinel-2 Optical Data 

To complement our SAR data, we utilized Sentinel-2 multispectral imagery, which provides 

valuable information on vegetation spectral properties. We acquired atmospherically corrected 

Sentinel-2 images for the years 2016, 2018, 2022, and 2023 through Google Earth Engine. To 

maintain consistency with our SAR data, we upscaled these images to a 50-meter resolution. 

From the Sentinel-2 data, we derived three key optical indices known for their effectiveness in 

estimating crop height and VWC: i) NDVI: (R𝑅𝑒𝑑 − R𝑁𝐼𝑅)/(R𝑅𝑒𝑑 + R𝑁𝐼𝑅), ii) NDWI: (R𝐺𝑟𝑒𝑒𝑛 −

R𝑁𝐼𝑅)/(R𝐺𝑟𝑒𝑒𝑛 + R𝑁𝐼𝑅) and (R𝑁𝐼𝑅 − 𝑅𝑆𝑊𝐼𝑅)/(R𝑁𝐼𝑅 + R𝑆𝑊𝐼𝑅), and iii) red-edge (band 7).  

As illustrated in Figures 4.3, 4.6, 4.8, and 4.9, the temporal coverage of Sentinel-2 imagery exhibits 

gaps due to cloud cover, a limitation inherent to optical sensors. To address these data gaps and 

ensure a continuous time series, we applied linear interpolation between available observations. 

This approach allows us to maintain a consistent temporal resolution across our dataset, aligning 

the optical data with our SAR observations and in-situ measurements. 

4.2.2. Climate data 

Our analysis incorporated three main climate parameters, each calculated from the crop 

planting date up to each time-step in the Sentinel-1A backscatter time series: i) Accumulated 

Precipitation — the total rainfall from planting to each observation point; ii) Minimum 

Temperature — the average of daily minimum temperatures from planting to each time-step; and 

iii) Maximum Temperature — the average of daily maximum temperatures from planting to each 

time-step. 

This approach allows us to capture the cumulative effects of weather conditions throughout 

the growing season, providing a more comprehensive view of the climate's impact on crop 

development. For Michigan (2022-2023 campaigns) non-irrigated fields, the climate data was 
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obtained from the Kellogg Biological Station Long Term Ecological Research (KBS-LTER) 

weather station (https://lter.kbs.msu.edu/datatables/7). This station provides high-quality, 

continuous meteorological observations specific to our study area. For other sites including non-

irrigated fields in Iowa and irrigated fields in Michigan and Florida, a combination of satellite-

derived and global precipitation products was used to collect climate datasets. We utilized 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived products for 

minimum and maximum temperature data. We employed Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS) for precipitation information. CHIRPS is a global rainfall 

dataset that combines satellite imagery with in-situ station data to create gridded rainfall time 

series. 

4.2.3. Reference datasets 

In this research, the selection of case studies was strategically made based on the availability 

of high-quality reference datasets for parameters such as VWC, crop height, SM, SR, and SAR 

backscatter data at C-band and L-band frequencies. We carefully selected three distinct sites, 

ensuring that a comprehensive range of vegetation conditions could be analyzed. Figure 4.1 

illustrates the geographical locations of the three field campaigns used in this study. The polygons 

in Iowa and Michigan represent the areas used for supervised learning, while the surrounding 

Google Earth imagery delineates the regions used for SSL. Each of these datasets is discussed in 

detail in the following sections. The single field in Florida, also shown on the map, was used solely 

for generalizing our results and was not included in either the supervised or SSL processes. 

 

https://lter.kbs.msu.edu/datatables/7
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Figure 4.1: Geographical locations of the reference datasets and areas used for SSL. The red, blue, 

and green polygons indicate the regions of the reference datasets in Iowa (2016), Michigan (2022-

2023), and Florida (2018), respectively. The surrounding areas shown in Google Earth imagery 

represent the regions used for SSL, excluding the area in Florida. 

4.2.3.1. Soybeans and Corn in Iowa: SMAPVEX2016 

The SM Active Passive Validation Experiment 2016 (SMAPVEX16) campaign, conducted 

at the South Fork Core Validation Site (CVS) in Iowa's Corn Belt, aimed to validate SM 

observations by NASA's SMAP satellite (Colliander et al., 2017). Established in 2013 by the 

USDA Agricultural Research Service (Coopersmith et al., 2015), this site spans latitudes 42°N to 

43°N and longitudes 93°W to 94°W (Figure 4.1). The region, characterized by a sub-humid climate 

    

     

     

                  

        

         

      

       

            

                                    

     

     

     

     

                        



198 

 

with annual precipitation of around 800 mm, primarily supports rainfed corn and soybean 

cultivatio0n. 

In 2016, two intensive observation periods (IOPs) were held: IOP-1 from May 28 to June 5, 

when crops were in early growth stages, and IOP-2 from August 3 to August 16, during ear and 

pod formation. The soil texture was predominantly silt loam, suitable for agriculture (Cosh et al., 

2019). In-situ measurements in this campaign included vegetation sampling (VWC, height, and 

leaves count), SM, and SR.  

For measuring VWC, crop density and three plants per subsite for both corn and soybean 

fields were collected. Plants were separated into leaves, stems, and pods/ears, with each part 

weighed before and after drying for 5-7 days in oven with 60°C temperature to estimate water 

content and dry matter to calculate the VWC using the equation 1: 

𝑉𝑊𝐶 = (𝑊𝑓 − 𝑊𝑑) × ρplant                                                                                                      (1) 

Here, 𝑊𝑓 and 𝑊𝑑 represent the average fresh and dry weights of the three samples in 

kilograms, respectively, while ρplant is the average number of plants per square meter.  

In corn fields, plant VWC distribution typically comprises 50% in the stem, 20% in leaves, and 

30% in the ear, while in soybeans, it is either 60% in the stem, 20% in leaves, and 20% in pods, or 

70% in the stem, 20% in leaves, and 10% in pods. This detailed breakdown aids in assessing the 

penetration levels of C-band, L-band SAR and optical sensors for VWC and crop height 

estimation. 

SM was measured using reflectometry probes, calibrated against gravimetric methods for 

high accuracy. SR was measured using lidar, pinboard, and gridboard techniques (Figure 4.2a), 

with pinboard measurements selected for this study for consistency with other roughness 

measurements in Michigan 2023 campaign (Sec. 4.2.3.b). The pinboard technique, applied in 21 
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fields, involved capturing soil profiles through photography using a 1-meter transect with pins set 

5mm apart (Figure 4.2a). 

  

a) SMAPVWX16 b) Michigan-2023 

Figure 4.2: Photos of Pinboard sampling, a) SMAPVEX16 Taken from (Walker et al., 2023) and 

b) Michigan-2023.   

In Figure 4.3, the revisit times for SMAPVEX16 measurements are displayed. As shown in 

Figure 4.3, VWC measurements align with four Sentinel-1A revisit times (DOYs 153, 201, 213, 

and 225). SM measurements correspond to DOYs 153 and 225, and SR was measured at the 

beginning of the season on DOY 153. Sentinel-2 data align with three Sentinel-1A revisit times 

(DOYs 153, 213, and 225) and it was interpolated for DOY 201. 

 

Figure 4.3: Temporal distribution of Sentinel-1A, Sentinel-2, VWC, SM, and SR measurements in 

SMAPVEX16 campaign.   
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The VWC and SM measurements have been averaged across each 50-meter grid area of 

Sentinel-1A. Due to the lack of repeated measurements at the same locations on this site, the 

training dataset from this site include vegetation measurements from only 1–2 time-steps in the 

growing season. 

4.2.3.2. Soybeans and Corn in Michigan 2022-2023 

Michigan 2022 

In 2022, we personally conducted a field campaign in Michigan, encompassing three corn 

fields (DOY planting: 132 and 136, DOY harvest: 293 and 311) and three soybean fields (DOY 

planting (130), DOY harvest (276 and 278). Four fields were located within the Kellogg Biological 

Station, characterized by non-irrigated and well-plowed conditions (Figure 4.4), while the 

remaining two fields were situated on privately owned farmland, featuring irrigation and crop 

residue from the previous year's corn plantation (Figure 4.5). A comparison of Figure 4 and 5 

highlights the contrasting tillage status between the non-irrigated fields at the Kellogg Biological 

Station (Figure 4.4) and the privately owned irrigated farms (Figure 4.5). 

Regular measurements were taken every 12 days from June 21st to October 7th to align with 

the revisit time of the Sentinel-1A satellite. These measurements included crop height, leaf count, 

and crop density (number of plants per square meter). For VWC measurements, we employed a 

systematic sampling approach. We randomly selected three crop samples from the center of each 

Sentinel-1 grid pixel, with the number of pixels ranging from 2 to 10 (as illustrated in Figure 4.4 

and 5). These samples were carefully collected and sealed in plastic bags to preserve their moisture 

content. The samples were then dried in an oven at 60 degrees Celsius for 7 days. 

VWC for both soybean and corn were calculated using Equation 1, which incorporates the wet and 

dry weights of the samples.  
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Figure 4.4: Rainfed corn and soybean fields in kellogg bioligical center, Michigan 2022 field 

campaign.  

 

 

Figure 4.5: Irrigated corn and soybean fields on private farms in Michigan, 2022. This image 

captures the varied impact of high crop residue in a soybean field.  
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Figure 4.6 illustrates the temporal distribution of Sentinel-1A, Sentinel-2, and VWC 

measurements throughout the growing cycle for all corn and soybean fields in this campaign. 

Despite the diverse SR conditions encountered, SR and SM measurements were not conducted for 

this campaign. Furthermore, given the limited number of irrigated fields available, we leveraged 

the irrigated fields from this campaign to evaluate our model's performance and assess its ability 

to adapt to new conditions. 

 

Figure 4.6: Temporal distribution of Sentinel-1A, Sentinel-2, and VWC through out the growing 

cycle of corn and Soybean fields in Michigan 2022 campaign.  

Michigan 2023 

In 2023, the Michigan 2022 campaign's measurements were replicated across six rainfed 

fields in Kellogg Biological Center, encompassing three corn fields (planting: 125, 126, and 132; 

harvest: 277, 283, 300, and 319) and three soybean fields (planting: 102, 103, 138; harvest: 283, 

and 276). This campaign measurements included enhancements such as the addition of probe-

based SM, and SR measurements using Pinboard (Figure 4.2b). All the fields were rainfed; among 

them, two fields each of corn and soybean were well-plowed, while one field each of corn and 

soybean contained crop residue (Figure 4.7-S2) and cover crop (Figure 4.7-C1). The measurements 

were conducted every 12 days based on the Sentinel-1 revisit time in the center of 1-2 pixel area 
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per fields. For SR measurements, we employed a specialized pinboard instrument (Figure 4.2b). 

This device consists of a 4-foot (1.2192 m) frame equipped with 62 precisely arranged pins. Each 

pin measures 3 mm in diameter and is positioned at 20 mm intervals along the frame. The design 

allows the pins to conform to the soil's topography when the board is placed on the ground, 

providing an accurate representation of the surface roughness. In each field, we captured six 

photographs, covering 3-meter transects in both South-North and West-East directions of 

cultivation. We carefully avoided potential obstacles such as dense crop residue, young plants, or 

footprints. The 3-meter length was chosen to achieve a precision of ±10% when measuring the 

root mean square (RMS) height and correlation length (Oh and Kay., 1998).  

 

Figure 4.7: Exploring soil surface conditions in Michigan's 2023 corn (C) and soybean (S) fields: 

This image captures the varied impact of high crop residue levels in S2 (soybean) and cover crops 

in C1 (corn) plots. 

 

Figure 4.8 illustrates the time distribution of Sentinel-1A, Sentinel-2, VWC, SM, and SR 

measurements throughout the growth cycle for corn and soybean fields in this campaign. The 

Sentinel-2 observations have been linearly interpolated to match the Sentinel-1A revisit times for 

unified dataset construction. 
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Figure 4.8: Temporal distribution of Sentinel-1A, Sentinel-2, VWC, SM, and SR through out the 

growing cycle of corn and soybean fields in Michigan 2023 campaign.  

4.2.3.3. Florida 2018 

The 2018 field campaign in Florida, USA, was centered in Citra (29.4100 N, 82.1790 W) at 

the Plant Science Research and Education Unit (PSREU) of the University of Florida and the 

Institute of Food and Agricultural Sciences (UF/IFAS) (Figure 4.1). This campaign focused on a 

single sweet corn field planted in sandy soil, with a crop density of 8 plants per square meter. The 

crop, intended for human consumption, was harvested after 66 days, in mid-June. The region's 

climate is classified as humid subtropical, and the spring growing season of 2018 was marked by 

high temperatures, intense rainfall, and frequent thunderstorms. Sweet corn was sown on April 13 

and harvested on June 18. Throughout the growing season, center-pivot irrigation was employed 

as required. This irrigation was typically carried out late in the evening, especially during the early 

season's dry spells, to ensure adequate water supply (Khabbazan et al., 2022).  

Throughout the entire growing season, vegetation sampling was carried out every 2-3 days before 

dawn to assess VWC. During each sampling session, 8 plants, representative of the field 

conditions, were selected from these areas and the VWC were measured with the same method 

detailed in SMAPVEX16 and Michigan 2022. 
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A key component of this campaign was the monitoring of a corn field using a truck-mounted, 

fully polarimetric, L-band radar. The high temporal resolution L-band backscatter data were 

collected using the University of Florida L-band Automated Radar System (UF-LARS). The 

scatterometer systematically surveyed the corn field at a 40-degree incidence angle, capturing 16 

observations spread across the day during the late season. Besides L-band scatterometer data, the 

field campaign setup enabled continuous measurement of SM at 15-minute intervals over a period 

of 58 days. For the purpose of this study, the VWC, SM, and L-band data were aggregated to 

match the Sentinel-1A revisit time. Figure 4.9 illustrates the measurement revisit times in this field 

campaign compared to Sentinel-1A and Sentinel-2 observations. We are missing one Sentinel-1A 

image on DOY 152, and overall, 4 Sentinel-1A images cover the whole growing season. We used 

linear interpolation to calculate the Sentinel-2 observations for the same revisit times as Sentinel-

1A. For detailed information on the sensor and measurement methodologies, readers are referred 

to Vermunt et al. (2021).  

 

Figure 4.9: Temporal distribution of UF-LARS, Sentinel-1A, Sentinel-2, VWC, and SM in Florida.  

Drawing on the SAR, optical, and reference datasets detailed in Table 4.1 from all four field 

campaigns, our study design and data analysis strategy are structured as follows: 
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Irrigation Status: Due to the limited number of irrigated fields compared to rainfed ones, we 

used the irrigated fields for model generalization testing. Our ML and FMs were primarily trained 

on data from rainfed soybean and corn fields. 

SAR Band Availability: L-band data was only available for the Florida campaign. 

Consequently, we trained our models using C-band Sentinel-1A data. The Florida L-band data was 

utilized in the generalization section to discuss different SAR frequencies impact on VWC and 

crop height estimation. 

SM and SR: The availability of these measurements varied across campaigns. To account for 

this, we conducted two types of analyses: a) Feature importance using Iowa 2016 and Michigan 

2023 to investigate the impact of SM and Roughness on VWC and crop height estimation, and b) 

A comprehensive analysis using data from Iowa 2016 and Michigan (2022-2023) campaigns, 

excluding SM and SR to estimate VWC and crop height.  

This stratified approach allows us to maximize the utility of our diverse dataset, addressing 

the challenges posed by varying measurement availability across different campaigns and 

locations. 

Table 4.1: Overview of the case studies measurements.  

 

Campaign Crops C-band L-band 
In situ 

SM 
SR* VWC Height 

Irrigation 

status 

Iowa 

2016 

corn- 

soybean 
✓ ✗ ✓ ✓ ✓ ✓ Rainfed 

Florida 

2018 
corn ✓ ✓ ✓ ✗ ✓ ✗ Irrigated 

Michigan 

2022 

corn-

soybean 
✓ ✗ ✓ ✓ ✓ ✓ 

Rainfed 

and 

irrigated 

Michigan 

2023 

corn-

soybean 
✓ ✗ ✓ ✓ ✓ ✓ Rainfed 

*Surface roughness (SR) 
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4.2.4. Surface roughness computation 

For the Michigan 2023 campaign, we employed the pinboard method to measure SR. Six 

photographs were taken per field, both across-row and in-row, at the center of each Sentinel-1 

pixel. These images were processed using Fiji ImageJ software to calibrate dimensions and trace 

the soil surface at 5mm intervals, creating a topographic profile. To minimize human-induced 

errors in pinboard data analysis, we established specific guidelines, such as marking the center of 

each pin and excluding broken or stuck pins. 

The roughness profile reveals variations in soil heights, quantified using two key parameters: 

i) Standard deviation of surface height (𝜎s), also known as random roughness or RMS height, and 

ii) Correlation length (lc). These parameters are calculated after adjusting for the mean slope of 

the surface, using the following formulas Walker et al. (2023): 

𝜎𝑠 = √
1

𝑁 − 1
∑ (𝑧(𝑗) −

1

𝑁
∑ 𝑧(𝑖)

𝑁

𝑖=1

)

2𝑁

𝑗=1

 (2) 

𝜌(𝑛) =

1
(𝑁 − 𝑛) − 1

∑ 𝑧(𝑗)𝑧(𝑗 + 𝑛)𝑁−𝑛
𝑗=1

1
𝑁 − 1

∑ 𝑧(𝑗)2𝑁
𝑗=1

 (3) 

where 𝑁 is the total number of points on the surface, 𝑧(𝑗) is the height of the 𝑗th point on the 

soil surface, and 𝑙𝑐 is the lag, 𝑛, where the autocorrelation function 𝜌(𝑛) drops below 𝑒 −1.  

To feed our ML and DL models, we calculated the roughness parameter SR both in-row and 

across-row using equations 4-6 from Lawrence et al. (2013).  

For input into our ML and DL models, we calculated in-row and across-row roughness 

parameter SR using equations 4-6 from Lawrence et al. (2013): 
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𝑍𝑠 =
𝜎𝑠

2

𝑙𝑐
 (4) 

𝑆𝑅 = {
2.62 (1 − 𝑒

−
𝑍𝑠

2.993) (𝑍
𝑠

< 1.553 𝑐𝑚)

0.853  (𝑍
𝑠

> 1.553 𝑐𝑚)
 (5) 

For training the models, we utilized the in-row and across-row roughness parameter h, calculated for 

the Michigan 2023 dataset and derived from pinboard measurements in the SMAPVEX-16 campaign. 

These parameters, as documented by Walker et al. (2023) for SMAPVEX-16, are detailed in Tables C1 and 

C2 (appendix). 

4.3. Methodology 

In this study, our primary objective is to estimate the VWC and crop height for non-irrigated soybean 

and corn fields across three different growth seasons and two geographical locations with distinct climates. 

While the main purpose of this study is VWC estimation, we incorporated crop height estimation to 

facilitate MTL and to evaluate its impact on enhancing VWC estimation. Given the limited size of our 

labeled dataset, we developed a FM and assessed its performance against traditional shallow ML methods, 

RF and XGB. Details on the FM and ML methods are provided below. To further refine our model, we 

utilized labeled datasets from irrigated fields in Michigan and Florida for generalization. The FM, including 

all pre-training and fine-tuning procedures, and ML methods are fully documented and accessible for 

reproducibility in our publicly available repository at https://github.com/MahyaSad/FoundationModel-

CropBiophysicalParameters. 

4.3.1. Foundation models 

Background 

FMs with SSL have shown great promise for crop mapping and classification purposes using 

RS imagery, particularly when labeled training data is limited. These approaches leverage spatial, 

temporal, and multi-modal information in satellite image time series (SITS) data to learn rich, 

transferable feature representations that enhance supervised learning performance using small, 

https://github.com/MahyaSad/FoundationModel-CropBiophysicalParameters
https://github.com/MahyaSad/FoundationModel-CropBiophysicalParameters
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labeled dataset. Contrastive learning and masked autoencoding (MAE) are widely used SSL 

strategies in RS. Contrastive learning constructs positive pairs from images of the same location 

at different times to learn similar representations while distinguishing them from negative pairs 

(Manas et al., 2021). While contrastive learning has been used with RS data for different 

downstream tasks (Chen et al., 2020; Fuller et al., 2023; He et al., 2020; Scheibenreif et al., 2022; 

Xu et al., 2024), it is difficult to apply this approach to SITS due to the difficulty of designing 

augmentations for temporal sequences (Tsaris et al., 2024). 

MAE randomly masks input patches and learns to reconstruct the missing pixels, enabling 

the learning of useful representations from unlabeled data without requiring positive/negative 

pairs. This is advantageous for crop mapping and monitoring using SAR, as self-supervision using 

MAE can capture unique backscatter signatures. Several studies have used self-supervision using 

MAE for various downstream tasks, such as land cover classification, building segmentation, and 

scene classification (Bountos et al., 2023; Cha et al., 2023; Cong et al., 2022; Fuller et al., 2023; 

Sun et al., 2022; Tsaris et al., 2024; D. Wang et al., 2022). These studies employed ViT architecture 

with varying sizes, from 87 million to 3 billion parameters, and introduce techniques such as 

rotated varied-size attention (RVSA) and novel positional encodings to enhance robustness and 

generalization. The scaling of ViTs to billion-parameter models highlighting the potential of large-

scale FMs for RS applications. The models are pretrained on large-scale datasets, such as SSL4EO, 

MillionAID, and USatlas, containing millions of radars optical, and multi-sensor samples.  

Self-Supervised Learning Using Geospatial Foundation Models 

Our proposed methodology initiates with a SSL phase, employing a geospatial FM based on 

the ViT architecture. This model is specifically designed to learn rich spatial representations from 

unlabeled satellite imagery via a MAE approach. The initial step involves data preparation, where 

Sentinel-1A images from three growing seasons in Iowa (2016) and Michigan (2022-2023) are 
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segmented into fixed-size patches. These patches, which include three features—VV, VH, and 

incidence angle—are linearly embedded before being input into the model. A similar process is 

applied to optical images from Sentinel-2, which incorporate the three main indices: NDVI, 

NDWI, and red-edge. As illustrated in Figure 4.10, the SSL processes for SAR and optical data 

are conducted separately; consequently, there was no need to interpolate optical data to match the 

SAR revisit times. The optical images used were readily available during the growing season of 

Michigan (2022-2023) and Iowa (2016), as depicted in Figures 4.3, 4.6, and 4.8. 

The Flowchart in Figure 4.10 illustrates a key aspect of our methodology where the ViT 

functions as the encoder within the MAE framework, processing solely the unmasked patches. It 

is structured with multiple layers of transformer blocks, each containing multi-head self-attention 

mechanisms and feedforward neural networks. This architecture allows the encoder to focus its 

computational resources on understanding the visible parts of the input, developing internal 

representations that infer the missing content based on the spatial context provided by the 

unmasked patches. 

The decoder network, which mirrors the architecture of the encoder but is optimized for the 

task of reconstruction, attempts to regenerate the full input image from the encoded latent 

representations. The goal of the decoder is to predict the appearance of the masked patches, thereby 

learning to fill in missing information effectively. The primary objective during pre-training is to 

minimize the reconstruction error between the original full input images and the outputs predicted 

by the decoder. This process encourages the development of an internal representation that 

captures essential spatial features within the data, which is crucial for understanding and 

interpreting satellite imagery. Our model has approximately 15 million parameters, which is 

considered a moderate-scale model in the context of DL. The training dataset includes three 
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growing seasons and total of 4000 patches with 256 size and three channels for each of the SAR 

and optical training process. 

The hyperparameters of this model, detailed in Table 4.2 were optimized using training and 

validation datasets that included approximately 262 million pixels (50-meter resolution) for each 

of the three channels, separately for both optical and SAR data.  

Table 4.2: Hyperparameter Settings for the MAE in SSL phase.  

Hyperparameter Value Key Justification 

Patch Size 256 Captures fine-grained details in high-res imagery 

Encoder Dim 768 Balances model capacity and computational efficiency 

Encoder Layers 12 Enables learning of hierarchical features 

Attention Heads 16 Allows focus on diverse data aspects simultaneously 

Decoder Dim 512 Ensures high-quality reconstruction of masked patches 

Decoder Layers 1 
Adequate for reconstruction while maintaining 

efficiency 

Learning Rate 6.777e-05 Optimized for convergence speed and model stability 

Batch Size 16 Balances GPU memory constraints and generalization 

Mask Ratio 0.136 
Encourages learning of robust features across image 

regions 

Epochs 50 Sufficient for model convergence 

 

 

The pre-training phase results in a set of encoder weights that encapsulate the spatial 

characteristics learned from the SAR and optical datasets. These weights form a sophisticated 

spatial understanding that can be leveraged in subsequent supervised tasks. According to the 

flowchart in Figure 4.10, the pre-trained encoder weights from each SAR and optical training 

session were fine-tuned within the supervised learning architecture. 
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Spatio-Temporal Supervised Single Task and Multi Task with Fine-Tuning Geospatial FMs 

Our methodology extends the use of pre-trained ViT from the MAE setup to a supervised 

MTL and STL frameworks for estimating VWC and crop height. This approach leverages rich 

spatial features learned during the MAE pre-training phase and captures temporal dynamics 

through a 1D Convolutional Neural Network layer (1D-Conv). The details of the model are 

illustrated in Figure 4.10 and are as follows: 

Two pre-trained ViT models are initialized: one for SAR data and another for optical data. 

These models are loaded with pre-trained weights, excluding the decoder parts, allowing us to 

utilize the rich spatial features captured during the MAE pre-training using a large unlabeled SAR 

and optical data. These pre-trained ViT models form the backbone of our feature extraction 

process. 

The radar and optical images are processed independently through their respective ViT 

encoders. The outputs from these encoders are then fused by concatenating the features from both 

encoders, a technique known as mid-level fusion. Among the different fusion techniques—early, 

mid, and late/decision fusion—mid-fusion and late-fusion have shown better classification 

accuracy in studies using DL with SAR observations for crop classification (Saadat et al., 2022; 

Yuan et al., 2023). However, mid-fusion offers a pragmatic balance between accuracy and 

computational efficiency (Garnot et al., 2022). Given these advantages, we opted for mid-fusion 

using feature concatenation in our study. 

We employed concatenation to merge the additional features with the previously fused 

dataset, thereby integrating VH/VV ratios, RVI, climate variables, SR measures, SM levels, and 

polarimetric decomposition parameters into a 1D-Conv layer. In detail, the 1D-Conv layer is 

implemented to analyze temporal sequences by sliding convolutional filters over the time 

dimension of the fused features. This method effectively extracts temporal features, critical for 
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understanding changes in VWC and crop height over the growing season. The layer configuration, 

including the number of filters and kernel size, has been optimized through extensive 

hyperparameter tuning to maximize the extraction of useful temporal information. The extracted 

features are then fed into two linear projection layers—one for VWC and another for crop height—

enabling the model to perform MTL efficiently. In scenarios where STL is applied, only the 

relevant linear projection layer is used. 

The entire model, comprising the pre-trained encoder, 1D-Conv, and linear projection, is 

trained end-to-end, optimizing all parameters for maximal performance on the regression tasks. 

We employ the Adam optimizer with a Cosine Annealing Learning Rate scheduler and apply 

early stopping based on validation loss to prevent overfitting. 
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Figure 4.10: Comprehensive Workflow of the MTL-FM: Illustrating the Pre-training and Fine-

tuning Phases for VWC and Crop Height Estimation. 

Training/Validation and Test Composition 
 

In this study, we analyzed non-irrigated soybean and corn data collected over multiple years 

(2016, 2022-2023) and locations (Michigan and Iowa) for a supervised learning task. Specifically, 

our Soybean dataset includes data from 6 pixels across three different farms in 2023, each recorded 

at 10 time-steps throughout the growing season; data from 6 pixels across two different farms in 

2022, each also captured at 10 time-steps; and data from 50 pixels in 2016, each with a single time-
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step that varies throughout the season, covering early (May) and mid-season (August). This results 

in a total of 62 pixels and 192 time-steps for the soybean dataset. For corn, the dataset comprises 

data from 5 pixels across three different fields in 2023 with 10 time-steps each; data from 6 pixels 

in 2022 across two different fields, also with 10 time-steps each; and data from 119 pixels in 2016, 

each with a single time-step during early and mid-season. 

We implemented a pixel-wise data splitting strategy for training, validation, and testing 

phases. Initially, 14 pixels were reserved for the soybeans test set, comprising two pixels from 

each of 2022 and 2023, along with 10 pixels from 2016 and 18 pixels were reserved for corn test 

set, comprising one pixel from 2023 and two pixels from 2022 and 18 pixels from 2016. For 

hyperparameter tuning and early stopping, we employed 10-fold cross-validation on the remaining 

pixels. This structured approach ensures an even distribution of data, robust model evaluation, and 

optimal parameter selection while maintaining a distinct separation between the test set and other 

data sets, thus providing an unbiased assessment of the model’s generalization capabilities. 

To accommodate the ViT model, which requires a fixed patch size, we replicated the data to extend 

each pixel to an 8x8 dimension.  

The optimized key hyperparameters of supervised learning model has been shown in Table. 4.3.  

The objective function is designed to minimize the mean squared error loss, which includes the 

summation of losses for both VWC and crop height predictions. The model is implemented using 

PyTorch. 

Table 4.3: Optimized Hyperparameters for Supervised Learning Models. 

Ir 
Patch 

Size 

Batch 

Size 

Patience-

early 

stopping 

1D-Conv 

layer 

1D-Conv 

size 

Dropout 

Rate 

Weight 

Decay 

lr_cosine 

init 

lr_cosine 

cycles 

0.00024 8 8 13 1 1024 0.136 
2.95 e-

05 
0.00999 4 

Cosine Annealing Initial LR (lr_cosine_init), Cosine Annealing Cycles (lr_cosine_cycles) 

 

 



216 

 

4.3.2. Machine Learning methods  

To evaluate the FM's performance, we selected two shallow ML methods, Random Forest 

(RF) and XGBoost (XGB), which are commonly used for crop classification, crop monitoring, and 

yield prediction purposes. These ML methods were implemented using the open-source Python 

Scikit-learn package. To ensure a fair and robust comparison, we employed identical training and 

test datasets for both the traditional ML methods and the FMs. Furthermore, we implemented a 

10-fold cross-validation strategy across all models. To integrate SAR, optical, and auxiliary 

features, we implemented an early fusion strategy. This approach involved concatenating all 

feature arrays into a unified input matrix prior to model ingestion. It's notable that these traditional 

ML methods have limitations when it comes to capturing temporal dependencies compared to 

temporal DL models. Furthermore, while our FMs could perform both STL and MTL, we were 

only able to implement STL with the ML methods due to their inherent architectural constraints. 

4.3.2.1. Random Forest Regression 

RF is a robust ensemble learning method widely used in classification and regression 

problems (Breiman, 2001). Ensemble learning involves producing multiple models and combining 

them to solve a particular task, with common types being boosting and bagging. RF, a successful 

bagging approach, consists of numerous individual decision trees, each making its prediction. The 

model combines all predictions to enhance performance (Liaw and Wiener, 2002). RF is 

particularly advantageous for crop biophysical parameter estimation due to its ability to handle 

high-dimensional data and capture non-linear relationships between features(Belgiu and Drăguţ, 

2016). Additionally, RF provides feature importance rankings, which is valuable for understanding 

the relative impact of different SAR and optical indices on crop biophysical parameters.  
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4.3.2.2. Gradient Boosting and Extreme Gradient Boosting 

XGBoost (XGB), a popular implementation of Gradient Boosting, enhances model 

performance, speed, flexibility, and efficiency (Chen and Guestrin, 2016). XGB has gained 

widespread adoption in ML competitions and practical applications due to its superior performance 

and scalability. It builds upon the principles of gradient boosting introduced by Friedman. (2001), 

but incorporates several improvements. These include a more regularized model formalization to 

control overfitting, which was a common issue in gradient boosting machines (GBMs). XGB 

features advanced tree optimization techniques, built-in cross-validation, and efficient handling of 

missing values, all of which contribute to its robustness and performance (Chen and Guestrin, 

2016). In contrast to RF, XGB builds trees sequentially, with each new tree correcting the errors 

of the previous ones.  

Traditional ML methods have limitations when it comes to capturing temporal dependencies 

compared to temporal DL models. ML methods cannot capture the temporal dependencies in the 

SAR and optical data as effectively as more advanced time series analysis techniques (Ienco et al., 

2017). It's important to note that, ML methods are intrinsically designed optimize for a single 

output variable at a time (Ruder, 2017); therefore, we performed MTL only with FMs. This 

limitation restricts their ability to simultaneously predict multiple related tasks, such as VWC and 

crop height, in a single model framework. Despite these limitations, we chose to include both RF 

and XGB in our study to provide a comprehensive comparison with more FMs and to leverage 

their respective strengths in handling different aspects of SAR and optical datasets.  
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4.4. Result 

4.4.1. Self-Supervised Learning (SSL) Performance 

The SSL performance was evaluated for both SAR and optical datasets over selected areas 

in Michigan and Iowa, as shown in Figure 4.1. Due to computational resource limitations, the 

training area was confined to the region surrounding the referenced dataset. Future research could 

explore training with larger areas, such as entire states or continental regions. 

Figure 4.11 illustrates the reconstruction results for the Sentinel-1A VH channel and Sentinel-2 

NDVI images at different stages of the SSL process. For both SAR and optical images, we observe 

a clear progression in the quality of reconstruction as the training progresses. At the 10th epoch 

(Column c), the reconstructed images show a rough approximation of the masked areas. By the 

30th epoch (Column d), the reconstruction quality improves significantly, with more detailed 

features becoming apparent. At the 50th epoch (Column e), the reconstructed areas closely 

resemble the original images, demonstrating the model's ability to learn and reproduce complex 

spatial patterns in both SAR and optical data. Figure 4.12 presents the loss progression for the SSL 

models on both Sentinel-1A and Sentinle-2 datasets.  
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Figure 4.11: Reconstructed examples on Sentinel-1A VH channel and Sentinel-2 NDVI images. 

(a) denotes masked images; (b) denotes reconstructed results of pre-trained model at the 10th 

epoch; (c) denotes reconstructed results of pre-trained model at the 30th epoch; (d) denotes 

reconstructed results of pre-trained model at the 50th epoch; (e) denotes the original images. 

  

 

 
 

Figure 4.12: loss progression for the SSL models on Sentinel-1A and Sentinel-2 datasets. 
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4.4.2. SAR and Optical Feature Relationships with VWC and Crop Height 

The relationships between VWC, crop height, and SAR and optical features are illustrated in 

Figures 4.13 and C1 (appendix) for soybean, and Figures 4.15 and C2 (appendix) for corn. SAR 

features, including VV and VH backscatter, show similar positive correlations with both VWC 

and height across various field conditions, though these relationships are not consistently strong. 

RVI does not show a strong relation with VWC, and height compared to VH and VV. Among 

optical features, Red-edge reflectance and NDVI demonstrate strong positive correlations with 

both VWC and crop height, exhibiting clear and consistent relationships across most fields. 

Notably, NDWI displays a pronounced negative correlation with both parameters. It's notable here 

that (R𝐺𝑟𝑒𝑒𝑛 − R𝑁𝐼𝑅)/(R𝐺𝑟𝑒𝑒𝑛 + R𝑁𝐼𝑅) definition of NDWI was more effective in both VWC and 

height estimation; therefore, from here on, when we refer to NDWI, we mean NDWI derived from 

this definition. The SM shows variable relationships across different fields, highlighting the 

influence of local conditions, management practices and precipitation pattern.  
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Figure 4.13: Relationship between VWC and various SAR and optical features for soybean fields. The features include SAR-derived (VH, VV, 

RVI), optical (Red-edge, NDVI, NDWI), and SM parameters. Panels (a-c): Three different non-irrigated soybean fields in Michigan, 2023; (d-e) 

Uphill and downhill sections of a non-irrigated soybean field in Michigan, 2022; (f) Another non-irrigated soybean field in Michigan, 2022; and (g) 

An irrigated soybean field in Michigan, 2022 with no tillage and high crop residue, used for model generalization testing. NDWI is calculated using 

(R𝐺𝑟𝑒𝑒𝑛 − R𝑁𝐼𝑅)/(R𝐺𝑟𝑒𝑒𝑛 + R𝑁𝐼𝑅).  In each panel, the horizontal axis is showing the DoY, the left vertical axis is showing the SAR/Optical features, 

and the right vertical axis is showing VWC (kg/m2). 
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Figure 4.14: Relationship between VWC and SAR and optical features for corn crops. Features include C-band SAR (VH, VV, RVI), 

L-band SAR (HH, VV, RVI, cross-pol), optical (Red-edge, NDVI, NDWI), and soil moisture (SM) parameters. Panels show corn fields 

from Michigan (a-h) and Florida (i) under various conditions: (a-b) uphill/downhill sections with cover crop effects; (c-e) different SM 

and VWC patterns; (f-g) varying stress conditions; (h) irrigated; and (i) irrigated with L-band SAR data.
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Figure 4.14 illustrates the relationships between VWC, SAR, and optical features for corn 

crops across diverse conditions. Of particular note are panels (a) and (b), which show an apparent 

anomaly where the downhill section has higher SM but lower VWC, while the uphill section shows 

the opposite. This unusual pattern is attributed to the use of a diverse cover crop (including red 

clover, alfalfa, chicory, and annual ryegrass) prior to corn planting. The cover crop was terminated 

in early May, followed by corn planting. Subsequent dry conditions from May to late June likely 

favored corn growth in higher elevation areas, potentially due to residual effects of the cover crop 

on soil structure and moisture retention. This observation highlights the complex interactions 

between management practices, topography, and crop water dynamics. 

Figure 4.14i compares L-band and C-band SAR features for a Florida corn field, showing 

similar behavior across VV, VH, and RVI. This suggests C-band Sentinel-1A may have 

comparable capability to L-band SAR for estimating corn VWC and height. However, panels g 

and h display abnormal SAR features, potentially affecting model performance. These anomalies 

warrant further investigation to understand their impact on our results. 

Figures C1 and C2 (appendix) displays an important distinction between corn and soybean 

crops near harvest which is their contrasting physical responses. Corn maintains its structural 

height even as it matures and dries, resulting in relatively stable height measurements. However, 

its VWC and consequently NDVI decrease dramatically as the plant dries out. In contrast, 

soybeans undergo a more pronounced physical change. As they approach harvest and lose leaves, 

soybean plants tend to wilt and flatten, especially under windy conditions. This flattening effect 

can lead to a significant reduction in the effective height that reflects energy back to satellites, even 

though the actual plant height hasn't decreased as much. 
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4.4.3. Feature Combination Analysis  

In this section, we employed SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 

2017) for feature selection and analysis. SHAP, a method grounded in cooperative game theory, 

is a powerful tool for interpreting the predictions of both DL and ML models. By assigning SHAP 

values to each feature, this method quantifies the contribution of each feature to the model's output, 

enabling a nuanced interpretation of both the significance and direction of influence of each feature 

on the prediction. We employed RF for feature importance analysis due to its suitability for smaller 

datasets, such as our limited samples from Michigan (2023) and Iowa (2016), excluding Michigan 

2022 due to missing soil moisture and surface roughness data. RF provides a robust and 

interpretable method, essential for consistency given the reduced sample size. Conducting feature 

importance analysis with the foundation model is computationally intensive, so RF was used 

instead. However, in section 4.4.4, we evaluated all models across 22 feature combinations and 

compared their performance. 

 SHAP summary plots for various features in estimating crop height and VWC using RF 

model is presented in Figure 4.17. The plots illustrate the relative importance of optical, SAR 

features, and weather parameters. Features include optical indices (Red-edge, NDVI, NDWI), 

SAR backscatter and indices (VH, VV, VH/VV, RVI), SAR polarimetric parameters (Entropy, 

Anisotropy, Alpha), incidence angle, weather data (P: rainfall, Tmin: minimum temperature, and 

Tmax: maximum temperature), and soil surface measurements (SM, in-row and across-row SR).  



225 

 

 

Figure 4.15: SHAP summary plots illustrating feature importance in RF model for crop height and 

VWC estimation (2016 and 2023). Bars represent mean absolute SHAP values; longer bars 

indicate greater feature importance in model predictions. 

For soybean VWC estimation, optical indices (NDVI and NDWI) emerged as the most 

important features, with NDVI having a greater impact. Precipitation (P) ranks second, close to 

NDWI. Among SAR backscatter parameters, VH is more effective as the fourth-ranked feature, 

while VV shows minimal importance. This could be due to VH's sensitivity to vegetation structure 

and water content, because it interacts with the volume scattering properties of the vegetation, 

whereas VV is more affected by surface scattering which is affected by the soil SR and moisture 

content. SM has minimal importance, while SR in-row is more effective compared to across-row, 

possibly due to row orientation relative to the sensor. VH/VV is more effective than RVI and VV. 

Among polarimetric decomposition parameters, entropy has a higher rank, but overall, they have 

minimal impact. 

  
a) Soybean VWC b) Soybean height 

  
c) Corn VWC d) Corn height 
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In contrast, soybean height estimation was predominantly influenced by P, which far 

outweighed other features in importance. Following P, similar to VWC estimation, NDWI and 

NDVI have almost the same impact and rank second. As with VWC, VH is more effective 

compared to VV, VH/VV, and RVI. The impact of polarimetric decomposition parameters is 

almost zero. SM is more effective here compared to VWC estimation, but its impact is minimal 

compared to P, optical indices, and VH. Unlike VWC estimation, across-row SR is more effective 

here compared to in-row SR. 

For Corn VWC estimation, NDWI shows the highest importance, followed by P and NDVI 

in the second and third ranks, respectively. Unlike soybean, corn VWC estimation finds SR across 

rows to be more important, whereas for height estimation, in-row roughness is more significant. 

SM has a minimal impact on both Corn VWC and height estimation. Among weather parameters, 

after precipitation (P), Tmax is more effective than Tmin for both VWC and height estimation. 

Incidence angle and red-edge indices have moderate impacts on both VWC and height estimation. 

Regarding SAR features, contrary to soybeans, Corn VWC estimation shows VV slightly more 

important than VH (with a very minimal difference). For height estimation, SAR indices (VH/VV 

and RVI) surpass individual VH and VV polarizations in importance. Similar to soybeans, SAR 

polarimetric decomposition parameters are not as influential compared to other features for corn 

estimations. 

Based on the above feature importance analysis, we selected 22 optimal feature combinations 

to evaluate the performance of RF and XGB and FMs. This approach allowed us to systematically 

assess the effectiveness of different feature sets in estimating corn and soybean VWC and height. 

As explained in the methodology section, traditional ML methods were applied for STL, focusing 

on either VWC or height estimation individually. However, we extended our evaluation to include 
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SSL with FMs in both STL (only VWC or only height) and MTL (height and VWC 

simultaneously) scenarios. Our hypothesis was that MTL should improve accuracy, as each task 

can provide important complementary information to the other, potentially enhancing overall 

model performance. It is important to note that in the feature combination of SAR and optical 

alone, the pre-trained encoders for both SAR and optical have been individually fine-tuned within 

the FM's supervised learning framework, without any integration of their features. The 

performance of these STL and MTL approaches across 22 feature combinations for both soybean 

and corn VWC estimations is visualized in Figure 4.16 and Figure C3 (appendix), and for height 

estimation in Figure C4 and Figure C5 in the supplementary material. The surface measurements 

(SM and SR) are not included in this combination as Michigan 2022 datasets lacks this 

measurement. As it was shown in Figure 15 SM and both in-row and across-row roughness are not 

significant for soybean VWC and height estimation compared to the other SAR, optical and 

weather features. However, in-row SR and across-row are important after precipitation, NDVI and 

NDWI for corn VWC and height estimation.  

Our analysis of the heat map figures reveals several key insights: 1) Optical features alone 

outperform SAR features in estimating crop biophysical parameters, even with interpolated 

Sentinel-2 data for missing dates. However, the addition of SAR features enhances the ultimate 

estimation accuracy, indicating that SAR complements optical data in crop parameter estimation. 

2) Contrary to our hypothesis, MTL with FMs yields slightly lower R² and higher MAE compared 

to STL for VWC and height estimation. This suggests a trade-off in model performance when 

simultaneously optimizing for multiple parameters. 3) The performance comparison between FMs 

and ML methods shows while RF outperforms FMs in some feature combination, in the ultimate 

feature combination (Table. 4.4) STL-FM outperforms RF and XGB. Particularly for SAR and 
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optical features in isolation, STL-FM outperforms RF (not all the combination) possibly due to the 

SSL approach's effectiveness with the SAR and optical feature types. The STL-FM using the 

optimal feature combination outperforms traditional ML methods across most parameters, with 

the notable exception of soybean height estimation. 4) Overall, RF demonstrates superior 

performance compared to XGB except for corn VWC that they have the same performance. 5) The 

inclusion of polarimetric decomposition features such as entropy, anisotropy, and alpha angle did 

not yield significant improvements in both VWC and height estimation accuracy. 6) The 

incorporation of weather parameters consistently enhanced model performance across all feature 

combinations for both VWC and height estimation. 7) For soybean, red-edge index did not provide 

substantial benefits, while NDVI and NDWI showed comparable importance. For corn the 

combination of the three optical indices had the highest value. 8) Among SAR-only features, the 

combination of VH, VH/VV ratio, and RVI proved most effective for both soybean and corn. SAR 

features (VH, VH/VV, RVI) alone achieved a MAE of 0.5 and R² of 0.8 for soybean VWC 

estimation. For corn, combining these SAR features with climate data resulted in an MAE of 0.92 

and R² of 0.83 for VWC estimation, highlighting the significant role of precipitation in corn VWC 

and height estimation. 9) VH polarization outperforms VV for soybeans, while both polarizations 

are important for corn parameters estimation. 
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Figure 4.16: Performance metrics for soybean VWC estimation using different feature 

combinations and model types. Entropy (H), Anisotropy (E), tmin and tmax are the maximum and 

minimum temperature. Unit of MAE and RMSE are kg/m2.  

4.4.4. Best Combination Results 

Table 4.4 displays the feature combinations that yielded the best performance metrics—

lowest MAE and RMSE, and highest R²—for estimating VWC and height (H) of corn and 

soybeans, as depicted in the Figures 4.16 and C3-5 (appendix). 
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Table 4.4: Best feature combination results.  

 

Task 
STL-FM MTL-FM STL-RF STL-XGB 

Features Metric Features Metric Features Metric Features Metric 

Soybean 

VWC 

VH, Red-edge, 

NDVI, NDWI, 

climate 

MAE 0.3 

RMSE 0.44 

R2 0.90 

Red-edge, 

NDVI, NDWI, 

climate 

MAE 0.36 

RMSE 0.48 

R2 0.88 

VH, Red-edge, 

NDVI, NDWI, 

climate 

MAE 0.35 

RMSE 0.47 

R2 0.89 

VH, NDVI, 

NDWI, 

climate 

MAE 0.36 

RMSE 0.51 

R2 0.87 

Soybean 

Height 

VH, NDVI, 

NDWI, climate 

MAE 7.0 

RMSE 8.45 

R2 0.95 

Red-edge, 

NDVI, NDWI, 

climate 

MAE 7.64 

RMSE 9.44 

R2 0.93 

VH, Red-edge, 

NDVI, NDWI, 

climate 

MAE 5.26 

RMSE 7.44 

R2 0.96 

VH, VV, Red-

edge, NDVI, 

NDWI, 

climate 

MAE 5.68 

RMSE 7.36 

R2 0.96 

Corn 

VWC 

VH, Red-edge, 

NDVI, NDWI, 

climate 

MAE 0.7 

RMSE 1.07 

R2 0.89 

VH, NDVI, 

NDWI, climate 

MAE 0.78 

RMSE 1.17 

R2 0.87 

VH, VV, Red-

edge, NDVI, 

NDWI, climate 

 

MAE 0.67 

RMSE 1.15 

R2 0.88 

NDVI, NDWI, 

climate 

MAE 0.71 

RMSE 1.08 

R2 0.89 

Corn 

Height 

NDVI, NDWI, 

climate 

MAE 11.40 

RMSE 14.99 

R2 0.98 

NDVI, NDWI, 

climate 

MAE 14.09 

RMSE 18.22 

R2 0.97 

VH, VV, VHVV, 

RVI, Red-edge, 

NDVI, NDWI, 

climate 

MAE 13.92 

RMSE 22.09 

R2 0.95 

VH, VHVV, 

RVI, Red-

edge, NDVI, 

NDWI, 

climate 

MAE 16.07 

RMSE 35.83 

R2 0.87 
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Figure 4.17 depicts the chronological progression of soybean growth stages from planting to 

harvest, based on field observations in Michigan during the 2023 growing season (May 23 to 

September 20). This visual timeline captures key developmental milestones including emergence, 

flowering initiation and completion, pod formation and development, seed development, and 

maturation phases. Each stage is represented by in-situ photographs, providing a clear visual 

reference for the physiological and morphological changes occurring throughout the growing 

season. This chronological visualization serves as a valuable tool for correlating growth stages 

with the performance and accuracy of VWC and height estimation models, offering insights into 

stage-specific estimation challenges and opportunities in crop monitoring applications. 

 

Figure 4.17: Temporal Dynamics of soybean Growth Cycles: This figure illustrates the field 

measurements captured during the 2023 Michigan field campaign. The numbers on the images 

represent the day of the year (DOY) for each measurement. 
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Figure 4.18 compares estimated and actual soybean VWC across different field conditions 

in Michigan for 2022 and 2023, highlighting the performance of various estimation methods (RF, 

STL-FM, MTL-FM) throughout the growing season. The fluctuations in soybean VWC observed 

in certain samples, such as sample (d), highlight the difficulties in accurately estimating soybean 

VWC. These challenges arise from high within-field variability and complex environmental 

influences. Additionally, the limitations of the reference data, where three samples per pixel might 

not adequately capture the full range of VWC variability in the field, should be taken into account 

when interpreting these results. Moreover, it is important to note that VWC exhibits significant 

daily and sub-daily fluctuations, with potential depletion of 10-20% under non-stressed conditions 

and up to 35% under stress (Vermunt et al., 2022). These variations are influenced by transpiration, 

root water uptake, environmental factors, SM, plant stress, growth stage, and dew formation 

(Khabbazan et al., 2022; Vermunt et al., 2021).  

The VWC estimates presented in Figure 4.18 incorporated optimized feature combinations 

derived from Table 4.4, aimed at minimizing feature redundancy. Specifically, the STL-FM and 

RF models incorporate VH backscatter, NDVI, NDWI, red-edge indices, and climate features. The 

MTL-FM model employs the same feature set, with the exception of the red-edge index. Figure 

4.18 demonstrates that the STL-FM method consistently outperforms other approaches across all 

samples, accurately tracking actual VWC trends throughout the growing season. In contrast, the 

RF model tends to underestimate VWC, particularly during critical phenological stages such as 

flowering and pod development. This underestimation is most pronounced in panel (d), which 

highlights the complex and dynamic nature of VWC in soybeans. The VWC fluctuations, 

particularly evident in panel (d), highlight the challenges in obtaining representative field samples 

for soybeans. This variability reflects the significant spatial heterogeneity within a single pixel 
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area, a common characteristic of soybean fields. These results emphasize the superiority of the 

STL-FM approach in capturing the nuanced VWC dynamics of soybeans across various growth 

stages and field conditions. 

 
 

Figure 4.18: Presents a comparison of estimated and actual soybean VWC across different field 

conditions and growing seasons. Panels (a) and (b) are related to the non-irrigated soybean fields 

in Michigan in 2023, Panels (c) and (d) present data from uphill and downhill pixels, respectively, 

located within a single soybean field in Michigan during the 2022 growing season. The plots 

overlay growth stages and compare actual VWC measurements with estimates from different 

methods (RF, STL and MTL-FM). 

 

The test dataset for soybean exhibits relatively consistent crop residue levels across all cases. 

They correspond to samples a, c, d, and e in Figure 4.13 which illustrates soybean VWC 

relationship with SAR and optical features.  However, there are notable differences in SM 

conditions. Panel (c) represents a downhill location with higher SM content, while panel (d) 

depicts an uphill area within the same field, characterized by lower SM and consequently lower 

VWC. Despite not explicitly incorporating SR and SM data, the STL-FM method demonstrates 
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reliable performance in estimating both VWC and height, as evidenced in Figure 4.18 and 4.19. 

SR typically exerts its greatest influence on estimation accuracy during the early growth stages. 

Notably, all three methods (STL-FM, MTL-FM, and RF) perform well in estimating VWC at the 

beginning of the growth cycle across most cases. The exception is case (d), where overestimation 

occurs. This discrepancy is likely attributable to the lower SM content in this uphill location rather 

than SR effects. Unfortunately, we lack SM data for this sample. Therefore, we recommend 

incorporating SM data in future studies to fully evaluate both uphill and downhill conditions in 

soybean or corn fields.  

 
Figure 4.19: Comparison of estimated and actual soybean height for selected feature combinations 

from Table 4.4. the fields are the same as Figure 4.15.  

 

For soybean height estimation, the STL-FM method demonstrates excellent performance 

across nearly all growth stages. The RF method, however, tends to underestimate height for the 
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Michigan 2023 samples. Interestingly, for samples c and d, the MTL-FM model exhibits more 

stable estimations compared to STL-FM, although it consistently overestimates the height.  

Figure 4.20 illustrates the chronological progression of corn growth stages from planting to 

harvest, based on field observations in Michigan during the 2023 growing season (May 23 to 

September 20). This visual timeline captures key phenological phases of corn. Each stage is 

represented by in-situ photographs, providing a clear visual reference for the physiological and 

morphological changes occurring throughout the growing season. This chronological visualization 

serves as a valuable tool for correlating growth stages with the performance and accuracy of VWC 

and height estimation models, offering insights into stage-specific estimation challenges and 

opportunities in corn crop monitoring applications. 

 

Figure 4.20: Temporal Dynamics of corn Growth Cycles: This figure illustrates the field 

measurements captured during the 2023 Michigan field campaign. The numbers on the images 

represent the day of the year (DOY) for each measurement. 

 

Figure 4.21 illustrates that the RF with VH, VV, Red-edge, NDVI and NDWI features 

demonstrates adequate performance in estimating corn VWC up to 6-8 kg/m2. However, it 
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consistently underestimates VWC for higher values ranging from 8-10 kg/m2. This limitation 

suggests that RF may struggle to capture the full range of VWC variability, particularly during 

peak biomass periods or in high-yielding conditions. Both STL-FM and MTL-FM models 

demonstrate exceptional performance in predicting VWC. However, the overestimation noted 

during the R4 and R5 growth stages could be attributed to sub-daily fluctuations in VWC or 

inaccuracies in in-situ measurements, as corroborated by other samples depicted in Figures 4.21 

and 4.14. Figure 4.22 illustrates corn height estimation results in which, the STL-FM outperformed 

the other methods and generally performs well across most growth stages. However, notable 

underestimations occur during the V18 and R1 stages both are related to ear shoot development. 

The VWC and height estimates for Iowa test datasets are provided in appendix, Figures C6 and 

C7.  

 

Figure 4.21: Comparison of estimated and actual corn VWC for selected feature combinations 

from Table 4.4. The growth stages from Figure 4.20 are indicated on the plot. Panels (a) presents 

label data from a non-irrigated corn field in Michigan 2023. Panels (c) and (d) display data from 

Michigan in 2022 from two different fields c with lower SM rate and d with higher SM rate.  

 
 

 
  
 

 
 

 
  
 

 
 

 
 
 

 
 
 

 
 
 

   

 
 

 
 

 
 

 
 

 
  
 

 
 
 

 
 
 

 
 
 

 
 
 
  
  
  

 
 

 
 

 
  
 

 
 

 
  
 

 
 
 

 
 
 

 
 
 

   

   

 
 
 
  
  
  

 
 

   

   



237 

 

 

Figure 4.22: Comparison of estimated and actual corn height using selected feature combinations 

from Table 4.4, with fields identical to those shown in Figure 4.21. 

 

4.4.5. Model Generalization 

To test our model's generalization capability, we selected two irrigated fields (one soybean, 

one corn) from Michigan's 2022 measurements. These fields were excluded from the SSL phase 

of FM and differ significantly from the training and test datasets in management practices. They 

are irrigated, unlike the other fields used for training our models, and the soybean field notably 

features high crop residue from previous corn cultivation with minimal tillage (Figure 4.5). These 

distinct characteristics provide a rigorous test of the model's adaptability to varied agricultural 

conditions and practices. 

Figure 4.23 demonstrates model performance under conditions distinct from the training 

dataset, showcasing the generalizability of different estimation methods (STL-FM, MTL-FM, and 

RF) across various growth stages. Due to irrigation, the soybean field exhibits higher VWC (6 
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kg/m2) than non-irrigated fields (3-4.5 kg/m2), leading to underestimation by all models. Despite 

the increased influence of SR during early growth stages, both STL-FM and MTL-FM models 

demonstrate reliable performance. These models exhibit only slight overestimation, effectively 

mitigating the typically challenging impact of SR on VWC estimation in the early season. This 

resilience suggests that the FMs have successfully learned to account for SR effects, a significant 

advantage over ML traditional approaches. In height estimation, the STL-FM model demonstrates 

superior performance across most growth stages. However, it exhibits a notable overestimation 

during the unrolled trifoliate leaf stage (V2). This overestimation likely stems from the combined 

effects of crop residue and high surface moisture on the ground, which influence the VH 

backscatter from both soil and emerging crop. These factors can lead to an artificial increase in the 

perceived height of the young soybean plants, challenging accurate estimation during this early 

growth phase. The performance metrics for VWC estimation are presented in Table 4.5. These 

results demonstrate STL-FM's superior generalization capability, suggesting that future inclusion 

of irrigated datasets in training could further enhance its performance across diverse agricultural 

conditions and practices. 

Table 4.5: The performance metrics of VWC and height estimates in irrigated Soybean field from 

Michigan's 2022 campaign. 

Model Metric VWC Estimates Height Estimates 

STL-FM 

MAE 0.91 7.73 

RMSE 1.18 11.80 

R2 0.79 0.89 

MTL-FM 

MAE 1.21 19.96 

RMSE 1.56 22.89 

R2 0.63 0.59 

RF 

MAE 1.32 13.30 

RMSE 1.61 17.14 

R2 0.61 0.77 
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Figure 4.23: High-residue, minimally tilled irrigated soybean field from Michigan's 2022 

campaign, used to test model generalizability. 

 

Figure 4.24: Irrigated corn field from Michigan's 2022 campaign, used to test model 

generalizability. 

Figure 4.24 presents the generalizability results for an irrigated corn field from Michigan’s 

2022 campaign. The STL-FM and MTL-FM models significantly outperform RF in estimating 

both VWC and height. RF consistently underestimates VWC and height, while the FM models 

tend to overestimate during the V18 and R1 growth stages, possibly due to irrigation effects on 

VH backscatter. Performance metrics for VWC estimation are illustrated in Table 4.6. The results 

demonstrate that while RF underestimates crop height, it achieves the highest R² for height 

estimation, suggesting better correlation despite systematic underestimation.  
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Table 4.6: The performance metrics of VWC and height estimates in irrigated Corn field from 

Michigan's 2022 campaign. 

Model Metric VWC Estimates Height Estimates 

STL-FM 

MAE 0.83 33.83 

RMSE 1.03 38.07 

R2 0.85 0.68 

MTL-FM 

MAE 0.64 31.46 

RMSE 0.80 36.81 

R2 0.91 0.70 

RF 

MAE 1.71 26.26 

RMSE 2.06 29.10 

R2 0.41 0.81 

The feature importance analysis reveals that, following precipitation, NDVI and NDWI have 

the most significant impact on corn and soybean parameter estimation. The observed height 

overestimation during the first four growth stages can be primarily attributed to anomalously high 

NDVI values displayed in Figure 4.13g. Moreover, On DOY 196, the overestimation is likely due 

to increased VH backscatter, influenced by recorded rainfall. Additionally, irrigation practices 

during these early stages may affect VH backscatter. This effect is particularly pronounced in these 

growth stages, where the smaller canopy size allows C-band signals to penetrate more effectively, 

leading to a stronger influence of SM on the backscatter. These factors collectively contribute to 

the model's tendency to overestimate crop height and VWC in the early growth stages, highlighting 

the complex interplay between environmental conditions, management practices, and RS 

observations in agricultural monitoring. Furthermore, as mentioned in section 1.4.1, an anomalous 

behavior is observed in Figure 4.24i for VH and VV signals on this pixel, which could contribute 

to this unusual overestimation.  

Another case for testing the generalizability of our models is a selected corn field from 

Florida. This field presents a significantly different scenario from the Michigan and Iowa datasets 

used for training the models, featuring a distinct climate, irrigation and a shorter growth cycle. 
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Notably, the reference VWC data does not show the typical reduction at harvest time (on DOY 

162), possibly due to these unique growing conditions. The performance metrics for this case are 

illustrated in Table 4.7 and the VWC estimates using all three models are shown in Figure 4.25. 

Table 4.7: The performance metrics of VWC and height estimates in irrigated Corn field from 

Florida 2018 campaign. 

 

Model Metric VWC Estimates 

STL-FM 

MAE 0.84 

RMSE 1.02 

R2 0.62 

MTL-FM 

MAE 0.79 

RMSE 0.98 

R2 0.65 

RF 

MAE 0.83 

RMSE 1.25 

R2 0.44 

 

Figure 4.25: Irrigated corn field from Florida 2018 campaign, used to test model generalizability. 

The results show that, both FMs outperform the RF model, with the MTL FM slightly 

outperforming the STL-FM. These results further demonstrate the generalizability of our FM 

approaches in generalizing to significantly different agricultural contexts. 
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4.5. Discussion 

4.5.1. Synergy of Optical and SAR data in VWC and crop height estimation 

The combination of optical and SAR data, along with weather parameters, effectively 

addresses the limitations of optical data, particularly in high vegetation biomass where VWC 

exceeds 4 kg/m² (Cosh et al., 2019). Optical sensors, while valuable, are less sensitive to water 

content beneath the canopy surface, potentially leading to underestimation of plant water content. 

SAR data complements optical data by providing continuous monitoring even during cloudy 

periods, enhancing overall estimation accuracy. 

Our analysis reveals distinct patterns in data source importance for corn and soybean VWC 

and crop height estimation. For corn, NDWI showed the highest importance, while NDVI ranked 

higher for soybeans. This difference reflects the physiological and structural characteristics of 

these crops. Corn's higher water content and distinct canopy structure allow better penetration of 

shortwave infrared light used in NDWI calculations. Conversely, soybeans' more uniform canopy 

structure makes NDVI a better indicator of overall plant health and biomass, correlating well with 

water content. 

Notably, precipitation emerged as the highest-ranked factor for height estimation in both 

crops, surpassing even optical or SAR features, highlighting the critical role of water availability 

in plant growth. Additionally, we observed that VH polarization outperforms VV for soybeans, 

while both polarizations are important for corn parameter estimation. This difference can be 

attributed to the distinct canopy structures: soybeans' more horizontally oriented leaves interact 

more strongly with VH polarization (volume scattering), while corn's complex structure with 

vertical stalks and large leaves interacts significantly with both polarizations. 
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The fusion of SAR and optical data outperformed both optical and SAR alone in VWC and 

height estimation, with optical alone surpassing SAR alone. This hierarchy (fusion > optical > 

SAR) can be attributed to: (i) Complementary information: Optical data provides detailed spectral 

information about the vegetation surface, while SAR offers insights into the structure and water 

content throughout the canopy. (ii) Optical sensitivity to pigments: Optical indices like NDVI and 

NDWI is highly sensitive to chlorophyll and water content in leaves, strong indicators of overall 

plant health and water status. (iii) SAR complexity: SAR data, while valuable, is more complex to 

interpret due to its sensitivity to multiple factors including SR, SM, and canopy structure. 

While the fusion of SAR, optical and weather features is effective for both VWC and height 

estimation to maximize classification accuracy, it's vital to reduce feature redundancy and prevent 

overfitting. Zhang et al. (2020) highlighted this challenge, noting that relatively few studies have 

focused on optimal SAR feature selection. In our study, we addressed this by analyzing 22 feature 

combinations to identify the optimal set (Figure 4.16). The most effective combination typically 

included one or two SAR features (either VH alone or both VH and VV), red-edge, NDVI, NDWI, 

and climate features. This careful feature selection process balanced model complexity with 

performance, enhancing our approach's overall efficacy. 

4.5.2. Foundation Models: Capabilities and Generalizability 

Our study marks a significant advancement in applying geospatial FMs to VWC and crop 

height estimation. By leveraging SSL on large, unlabeled datasets, our approach addresses 

limitations of traditional methods like linear regressions and the WCM. 

The STL-FM consistently outperformed traditional RF and XGB, particularly in capturing 

nuanced VWC dynamics across various growth stages. This is evidenced by lower MAE and 
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higher R² values, especially during critical phenological stages like flowering and pod/ear 

development. 

Incorporating temporal modeling into the supervised MTL and STL frameworks by adding 

a 1D convolutional layer after fine-tuning the pre-trained geospatial FM encoder has enhanced the 

performance of both MTL and STL models. Unlike traditional ML models that do not account for 

the temporal relationships within the data during training, 1D convolution captures temporal 

patterns within the training time series data. Given that part of our reference dataset (Iowa 2016) 

includes only 1-2 time steps, the performance of the STL-FM model is close to that of Random 

Forest, with STL-FM slightly outperforming RF. With a more extensive time series dataset, this 

performance gap could potentially widen even further. 

Additionally, the model is capable of making predictions using single time-step data, as well 

as for time series covering the entire growth cycle. Consequently, the model performed well even 

with the limited time-steps available in the Iowa dataset (Figures C6 and C7). 

The diverse training dataset, encompassing varied climatic zones (Iowa and Michigan) and 

management practices (including different tillage methods), significantly enhanced the model's 

generalizability. This was demonstrated by its successful application to Florida's distinct climate 

and irrigated fields, which were not included in the training data and SSL process, thus showcasing 

the model's reliable performance across diverse agricultural contexts. While RF showed 

comparable performance to FM in training and testing, FM demonstrated superior generalizability 

across diverse scenarios. The STL-FM showed remarkable adaptability, maintaining high accuracy 

even in challenging conditions such as fields with high crop residue or varying SM.  

Comparison of the STL-FM with existing research for VWC estimation shows our model 

not only outperformed them in terms of statistical metrics but also in terms of including a variety 
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of climate and field conditions. For example, Xu et al. (2020), employed a linear regression model 

using SMAPVEX16 data from a single time-step in August in Iowa, combined with MODIS-

derived NDWI. Their approach yielded RMSE values of 1.31 kg/m² for corn and 0.94 kg/m² for 

soybean field canopy VWC, with corresponding R² values of 0.66 and 0.85. In contrast, our STL-

FM achieved RMSE values of 0.7 and 0.3 kg/m² for corn and soybean VWC, with R² values of 

0.89 and 0.9, using VH, red-edge, NDVI, NDWI, and weather parameters. Our model’s 

generalization results (soybean RMSE of 1.18, R² of 0.79; corn RMSE of 1.03, R² of 0.85) also 

surpassed those of Xu et al. (2020), demonstrating the capability of SSL with FMs and the impact 

of feature fusion on improvement. The results for height estimation were also impressive, with 

corn RMSE of 15 cm and R² of 0.98, and soybean RMSE of 7.4 cm and R² of 0.95. 

However, we observed some limitations, particularly in early growth stages and in estimating 

extreme soybean VWC values (>4.5 kg/m²) and corn VWC values (>8 kg/m²). These challenges 

highlight areas for future research, possibly through the incorporation of irrigated fields. 

Additionally, the MTL approach did not consistently outperform STL in our experiments. 

MTL is typically beneficial when leveraging information from related tasks can compensate for 

limited data in one of the tasks. However, in our case, the geospatial FM effectively mitigates the 

data scarcity issue by utilizing SSL to enhance feature representation learning. Consequently, the 

inherent advantage of MTL in leveraging task interdependencies may not be as pronounced. This 

outcome is expected; MTL seeks to optimize performance across multiple tasks, while STL is fine-

tuned for specific tasks. Consequently, STL may perform better in scenarios requiring specialized 

solutions, as MTL might compromise on individual task efficacy to achieve average performance 

across tasks. 
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4.5.3. Surface roughness and soil moisture consideration 

Previous studies, including those by McNairn et al. (2001) and Smith and Major. (1996), 

have shown that crop residue significantly affects backscatter, particularly when they are wet. This 

is relevant to situations such as irrigated soybean in Michigan 2022 (Figure 4.5) or cover crops in 

non-irrigated corn in Michigan 2023 (Figure 7C1). Cross-polarizations are especially sensitive to 

residue amounts. Therefore, VH signal reflected from the soybean field used for generalization 

has been affected by crop residue.  

While SR and SM are known to influence SAR backscatter, especially for higher frequencies 

like L-band, incorporating these measurements for large-scale VWC estimation presents 

significant challenges. Our approach prioritizes freely available and easily accessible data sources 

such as Sentinel-1A, Sentinel-2, and weather information. Despite not explicitly including SR and 

SM inputs, our models achieved reliable VWC and height estimates. This suggests that while these 

factors contribute to backscatter, their impact may be secondary to that of SAR, optical, and 

precipitation data in VWC and height estimation using FMs (was illustrated in feature importance 

Figure 4.15). The STL-FM demonstrated a remarkable ability to account for SR effects, 

outperforming traditional ML approaches in estimating VWC and height for irrigated soybean in 

Michigan 2022 (Figure 4.23). 

Our key point is that providing SM and SR as inputs to the model for estimating VWC and 

height would be challenging for future applications. Instead, by providing reference VWC data 

from more diverse fields with different management practices (irrigation and tillage methods), we 

can train the model without directly incorporating SR and SM, making it more widely applicable. 

However, it's worth noting that while SR and SM may have limited impact on C-band data used 

in this study, they could become more significant when using L-band SAR, potentially introducing 



247 

 

additional complexity. Future research might explore the integration of these factors, particularly 

for L-band applications, while balancing the trade-off between model complexity and data 

availability. 

4.5.4. In-situ measurement refinement 

The accuracy of our model training and evaluation is inherently tied to the quality of 

reference VWC and height data. Several factors contribute to potential uncertainties in these 

measurements: 

1. Diurnal VWC Fluctuations: VWC can vary by 10-20% daily under normal conditions, 

increasing to 35% under stress (Vermunt et al., 2022). The time gap between field 

measurements (typically morning to afternoon) and Sentinel-1A overpass (night) may 

introduce discrepancies due to transpiration-induced VWC reduction throughout the day. 

2. Dew Effects: While efforts were made to dry samples before measurement, dew presence 

during early morning collections, particularly in irrigated fields, could affect VWC readings. 

The nighttime Sentinel-1A overpass mitigates this issue, but future studies using different SAR 

data should consider dew impact based on sensor revisit times. 

3. Spatial Heterogeneity: Some crops, like soybeans, exhibit high variability within a 50- meter 

grid pixel. To better represent this heterogeneity, future studies should consider increasing the 

number of samples per pixel, potentially exceeding the current 10-sample approach. 

Addressing these factors in future data collection protocols could significantly enhance the 

robustness of reference data, thereby improving model training and evaluation accuracy. 

4.6. Conclusion 

This study represents a significant leap forward in the application of FMs for estimating 

VWC and crop height. By harnessing the power of SSL on large, unlabeled datasets, our approach 
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effectively addresses the limitations of traditional methods, offering superior performance across 

diverse agricultural settings. 

Our STL-FM consistently outperformed MTL-FM and conventional ML techniques, 

demonstrating remarkable adaptability across varied climatic zones and management practices. 

The fusion of Sentinel-1A C-band SAR, Sentinel-2 optical data, and weather information proved 

particularly effective, overcoming challenges such as saturation in high biomass regions and 

reduced sensitivity to sub-canopy moisture. 

The study revealed important insights into the synergistic effects of combining different data 

sources. The VH polarization, alongside optical indices like red-edge, NDVI and NDWI, emerged 

as crucial predictors for VWC, with precipitation playing a surprisingly significant role in height 

estimation. This multi-sensor approach effectively addresses the limitations of individual data 

sources, providing a more comprehensive view of crop conditions. 

Our models demonstrated reliable performance even in challenging scenarios, such as fields 

with high crop residue or varying SM. This resilience suggests that geospatial FMs have implicitly 

learned to account for complex environmental interactions, potentially reducing the need for 

explicit inclusion of factors like surface roughness and soil moisture in large-scale applications. 

While the study achieved impressive results, particularly in estimating VWC and height for corn 

and soybeans, it also highlighted areas for future research. These include refining the model's 

performance for extreme VWC values specifically in early growth stages. 

Looking ahead, the integration of Sentinel-1A C-band and the upcoming NISAR L-band 

SAR data presents exciting opportunities for enhancing crop monitoring capabilities. Future 

research should also focus on expanding the application of geospatial FMs to larger areas with 

diverse crop types and climate. 
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The advancements presented in this study have significant implications for precision 

agriculture. By providing more accurate and timely information on crop water content and height, 

these models can support more efficient resource use and potentially higher yields. As we continue 

to refine and expand these techniques, we move closer to developing universal crop monitoring 

systems capable of adapting to diverse agricultural contexts and supporting sustainable farming 

practices worldwide. 
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APPENDIX 

Table C1: Computed geometric roughness parameters using Pinboard observations from 

Michigan 2023 field campaign. 
 

Pixel Id DOY 𝜎𝑠, mm 𝑙𝑐, mm standard error 

  in-row across-row in-row across-row in-row across-row 

Corn1-1 

142 - - - - - - 

166 4.10 7.36 33.33 43.33 0.26 0.43 

201 4.35 6.09 33.33 23.33 0.10 0.53 

Corn1-2 

142 5.01 9.35 10.00 36.66 0.43 1.71 

166 6.19 8.29 50.00 23.33 0.64 0.91 

201 - - - - - - 

Corn2 

142 3.67 5.94 10.00 30.00 0.16 0.33 

166 4.55 7.68 33.33 46.67 0.42 0.91 

201 - - - - - - 

Corn3-1 

142 2.56 7.08 16.67 36.67 0.24 0.76 

166 4.37 7.39 33.33 10.00 0.52 1.08 

201 - - - - - - 

Corn3-2 

142 3.69 8.96 20.00 43.33 0.45 0.07 

166 2.81 11.00 36.67 56.67 0.23 2.16 

201 - - - - - - 

soy1-1 

142 9.67 5.71 43.33 10.00 1.43 0.58 

166 4.72 7.55 26.67 30.00 0.16 0.39 

201 - - - - - - 

soy1-2 

142 3.04 8.26 20.00 46.67 0.10 0.84 

166 3.56 9.64 26.67 53.33 0.21 1.05 

201 - - - - - - 

soy2-1 

142 4.91 8.53 30.00 10.00 0.42 0.13 

166 7.56 5.83 46.67 23.33 0.53 0.37 

201 5.91 6.77 30.00 43.33 0.67 1.08 

soy2-2 

142 5.79 8.65 20.00 13.33 1.15 0.45 

166 4.41 7.97 23.33 20.00 0.07 0.72 

201 3.95 8.30 33.33 36.67 0.20 1.11 

soy3-1 

142 3.81 9.44 10.00 40.00 0.47 0.76 

166 3.84 11.18 10.00 60.00 0.37 1.60 

201 - - - - - - 

soy3-2 

142 - - - - - - 

166 4.32 8.54 13.00 16.00 0.45 0.92 

201 - - - - - - 
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Table C2: Computed geometric roughness parameters using Pinboard observations from 

SMAPVEX16 field campaign. Taken from (Walker et al., 2023). 

 

Field Name DOY 𝜎𝑠, mm 𝑙𝑐, mm 

  In-row Across-row In-row Across-row 

JPL flux 155 9 ± 1 15 ± 1 54 ± 5 23 ± 4 

LTAR south 146 8 ± 2 12 ± 1 59 ± 11 44 ± 7 
 157 8 ± 1 8 ± 1 60 ± 7 64 ± 4 

NA01 149 15 ± 1 15 ± 1 21 ± 6 18 ± 4 

NA04 155 9 ± 1 14 ± 1 54 ± 7 30 ± 5 

S02 153 14 ± 1 16 ± 2 30 ± 4 23 ± 7 

S03 150 17 ± 2 15 ± 1 15 ± 6 21 ± 6 

S04 149 7 ± 1 13 ± 1 62 ± 5 28 ± 6 

S09 150 11 ± 1 18 ± 1 43 ± 6 12 ± 4 

S10 147 10 ± 2 14 ± 2 51 ± 9 30 ± 9 
 157 9 ± 1 11 ± 1 58 ± 6 52 ± 6 

S11 151 8 ± 1 13 ± 2 64 ± 5 33 ± 8 

S14 147 8 ± 1 14 ± 1 61 ± 7 30 ± 4 
 157 10 ± 1 10 ± 1 51 ± 5 51 ± 8 

S19 151 9 ± 1 13 ± 1 52 ± 5 32 ± 8 

S21 147 10 ± 1 14 ± 1 53 ± 8 27 ± 7 

S32 154 7 ± 1 12 ± 1 68 ± 4 41 ± 7 

S36 155 12 ± 1 17 ± 2 38 ± 7 19 ± 6 

SF02 151 15 ± 3 14 ± 1 35 ± 7 34 ± 5 

SF07 153 6 ± 1 11 ± 1 69 ± 3 44 ± 5 

SF10 150 7 ± 1 21 ± 2 65 ± 2 9 ± 6 

SF15 154 11 ± 1 14 ± 1 42 ± 5 30 ± 4 

SF21 flux north 154 11 ± 1 17 ± 2 36 ± 3 19 ± 6 

SF21 flux south 146 10 ± 3 13 ± 3   
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Figure C1: Relationship between crop height and various SAR and optical features for soybean 

crops. The features and field conditions are identical to those described in Figure 4.13, with crop 

height replacing VWC as the measured parameter. Panels (a-g) correspond to the same fields and 

conditions as in Figure 4.13. These scatter plots illustrate how soybean height correlates with 

various remote sensing parameters across different field conditions, irrigation status, topographies, 

and management practices. 
 

 
Figure C2: Relationship between crop height and SAR and optical features for Corn crops. 

Features include SAR-derived (VH, VV, RVI), optical (Red-edge, NDVI, NDWI), and soil 

moisture (SM) parameters. Panels (a-h) correspond to the same fields and conditions as in Figure 

4.15. These plots demonstrate the complex relationships between crop height and SAR and optical 

features across various field conditions and irrigation status.  
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Figure C3: Performance metrics for corn VWC estimation using different feature combinations 

and model types. 

 

Figure C4: Performance metrics for soybean Height estimation using different feature 

combinations and model types. 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

VH,VV,VH/VV,RVI,ap 1.80 2.24 0.53 1.49 2.11 0.58 1.54 2.08 0.59 1.68 2.25 0.52

VH,VV 1.55 2.05 0.60 1.40 1.89 0.66 1.45 2.00 0.62 1.76 2.30 0.50

VH, VH/VV,RVI 1.44 2.00 0.62 1.22 1.82 0.69 1.48 2.15 0.56 1.64 2.33 0.49

VH,VV,VH/VV,RVI,H,E,alpha 1.43 1.97 0.63 1.66 2.21 0.54 1.65 2.21 0.54 1.77 2.27 0.51

VH, VHVV 1.34 1.95 0.64 1.33 2.02 0.61 1.47 2.14 0.57 1.86 2.46 0.43

VH, RVI 1.31 1.93 0.65 1.62 2.14 0.59 1.47 2.14 0.57 1.86 2.46 0.43

VH,VV,P,tmin,tmax,H,E,alpha 1.24 1.80 0.71 1.34 1.80 0.69 0.90 1.43 0.81 0.99 1.46 0.81

VH,VV,VH/VV,RVI 1.15 1.82 0.69 1.69 2.24 0.52 1.49 2.12 0.58 1.69 2.29 0.50

VH, VH/VV,RVI,P,tmin,tmax,H,E,alpha 1.14 1.62 0.75 1.23 1.67 0.74 0.87 1.40 0.82 1.08 1.56 0.77

VH,VV,VH/VV,RVI,P,tmin, tmax 0.97 1.3 0.84 1.04 1.46 0.8 0.83 1.35 0.83 0.91 1.33 0.83

VH, Red-edge,NDVI, NDWI,P,tmin, tmax,H,E,alpha 0.94 1.41 0.81 0.97 1.40 0.81 0.79 1.27 0.85 0.82 1.16 0.87

VH, VH/VV,RVI,P,tmin,tmax 0.92 1.35 0.83 0.93 1.40 0.81 0.80 1.30 0.84 0.88 1.35 0.83

NDVI, NDWI 0.87 1.23 0.86 0.93 1.34 0.83 0.91 1.31 0.84 0.84 1.28 0.85

VH,VV, NDVI, NDWI,P,tmin,tmax 0.86 1.26 0.85 0.85 1.21 0.86 0.77 1.20 0.86 0.80 1.18 0.87

Red-edge, NDVI, NDWI 0.81 1.21 0.86 0.91 1.27 0.86 0.82 1.26 0.85 0.84 1.32 0.84

VH, NDVI, NDWI,P,tmin, tmax 0.79 1.17 0.87 0.78 1.17 0.87 0.77 1.19 0.87 0.77 1.09 0.89

NDVI, NDWI,P,tmin, tmax 0.76 1.18 0.87 0.76 1.22 0.86 0.78 1.20 0.86 0.71 1.08 0.89

Red-edge, NDVI, NDWI,P,tmin, tmax 0.76 1.17 0.87 0.75 1.18 0.87 0.77 1.17 0.87 0.80 1.19 0.87

VH,VH/VV,RVI, Red-edge, NDVI, NDWI,P,tmin, tmax 0.76 1.15 0.87 0.73 1.13 0.88 0.71 1.17 0.87 0.74 1.23 0.86

VH,VH/VV,RVI, NDVI, NDWI,P,tmin, tmax 0.74 1.18 0.87 0.80 1.17 0.87 0.77 1.24 0.86 0.78 1.25 0.85
VH,VV,VHVV,RVI,Red-edge, NDVI, NDWI,P,tmin, tmax 0.74 1.14 0.88 0.80 1.15 0.87 0.68 1.17 0.87 0.77 1.18 0.87

VH,VV, Red-edge,NDVI, NDWI,P,tmin, tmax 0.73 1.15 0.88 0.70 1.10 0.89 0.67 1.15 0.88 0.76 1.18 0.87

VH, Red-edge,NDVI, NDWI,P,tmin, tmax 0.70 1.07 0.89 0.81 1.17 0.87 0.70 1.16 0.87 0.79 1.14 0.88

STL- FM MTL-FM STL-RF STL-XGBoost

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

VH,VV,VH/VV,RVI,ap 16.91 22.93 0.60 18.79 23.24 0.56 14.77 20.67 0.67 16.11 22.81 0.60

VH, RVI 14.63 17.91 0.75 13.51 16.16 0.80 12.51 17.85 0.75 14.03 18.81 0.73

VH, VH/VV,RVI,H,E,alpha 14.54 17.46 0.77 18.40 24.02 0.56 13.94 19.63 0.70 16.99 21.72 0.64

VH, VH/VV,RVI 14.20 17.36 0.77 14.72 17.89 0.75 12.51 17.84 0.76 11.50 15.84 0.81

VH,VV,VH/VV,RVI,P,tmin, tmax 13.58 17.49 0.76 9.33 11.30 0.90 5.97 8.83 0.94 7.45 10.50 0.92

VH,VV 13.56 17.27 0.77 13.34 15.88 0.81 13.20 19.08 0.72 16.27 22.67 0.60

VH,VV,VH/VV,RVI 13.15 16.87 0.78 12.62 15.49 0.82 12.74 18.87 0.73 13.32 19.77 0.70

VH, VH/VV 12.86 15.77 0.81 13.58 16.74 0.78 12.51 17.84 0.76 14.03 18.81 0.73

VH, VH/VV,RVI,P,tmin,tmax,H,E,alpha 12.23 15.89 0.81 13.07 16.79 0.78 5.87 8.82 0.94 7.12 10.00 0.92

VH, VH/VV,RVI,P,tmin,tmax 11.71 14.18 0.85 14.55 17.62 0.76 6.13 9.13 0.94 6.73 9.31 0.93

VH,VH/VV,RVI, NDVI, NDWI,P,tmin, tmax 10.22 12.35 0.88 11.30 14.82 0.84 5.60 8.69 0.94 6.45 8.33 0.95

Red-edge, NDVI, NDWI 9.99 11.98 0.89 9.39 12.81 0.87 10.76 14.79 0.83 11.11 15.82 0.81

VH,VH/VV,RVI, Red-edge, NDVI, NDWI,P,tmin, tmax 9.66 12.08 0.89 10.26 13.14 0.87 5.59 8.56 0.94 6.77 9.27 0.93

VH,VV,VH/VV,RVI,Red-edge,NDVI, NDWI,P,tmin, tmax 9.63 12.06 0.89 14.40 17.90 0.75 5.68 8.27 0.95 6.63 8.65 0.94
VH,VV,NDVI,NDWI,P,tmin, tmax 9.47 12.61 0.88 10.60 13.87 0.85 5.41 7.37 0.96 6.25 7.99 0.95

VH,VV, Red-edge,NDVI, NDWI,P,tmin, tmax 8.48 10.92 0.91 10.60 13.39 0.86 5.31 7.24 0.96 5.68 7.36 0.96

NDVI, NDWI 8.27 11.67 0.90 8.57 12.92 0.87 11.35 16.21 0.80 13.66 18.92 0.72

VH, Red-edge,NDVI, NDWI,P,tmin, tmax,H,E,alpha 8.15 10.23 0.92 9.61 13.38 0.86 5.45 7.56 0.96 7.47 9.56 0.93
Red-edge, NDVI, NDWI,P,tmin, tmax 7.29 9.52 0.93 7.64 9.44 0.93 5.69 7.48 0.96 5.98 8.05 0.95

VH, Red-edge,NDVI, NDWI,P,tmin, tmax 7.10 9.48 0.93 8.25 10.20 0.92 5.26 7.44 0.96 6.38 8.62 0.94
VH, NDVI, NDWI,P,tmin, tmax 7.00 8.45 0.95 10.57 13.08 0.87 5.32 7.62 0.96 6.15 8.15 0.95

NDVI, NDWI,P,tmin, tmax 6.88 9.38 0.93 8.27 10.30 0.92 5.82 7.40 0.96 6.87 9.30 0.93

STL- FM MTL-FM STL-RF STL-XGBoost
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Figure C5: Performance metrics for corn Height estimation using different feature combinations 

and model types. 

 

 

Figure C6: Comparison of estimated and actual soybean VWC and height for fields selected from 

Iowa 2016 test dataset. 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

VH,VV,VH/VV,RVI 49.78 63.82 0.57 54.61 69.95 0.49 48.44 69.27 0.50 53.41 81.87 0.30

VH,VV,VH/VV,RVI,H,E,alpha 48.36 59.43 0.63 55.29 64.97 0.56 55.97 69.71 0.49 49.87 72.91 0.44

VH, RVI 47.28 58.83 0.64 41.02 56.56 0.62 51.67 73.65 0.43 67.83 91.46 0.13

VH,VV,VH/VV,RVI,ap 45.07 61.06 0.62 43.26 54.23 0.69 50.49 67.85 0.52 49.65 75.08 0.41

VH, VHVV 43.43 56.27 0.67 52.79 64.35 0.567 51.67 73.65 0.44 67.83 91.46 0.13

VH,VV 43.22 56.28 0.67 40.16 55.57 0.68 46.95 64.92 0.56 66.76 82.61 0.29

VH, VH/VV,RVI 43.15 58.62 0.64 43.34 56.56 0.67 51.81 73.90 0.43 60.08 87.77 0.20

VH, Red-edge,NDVI, NDWI,P,tmin, tmax,H,E,alpha 26.22 32.49 0.89 22.15 27.41 0.92 14.61 23.20 0.95 21.36 40.65 0.83

VH,VV,P,tmin,tmax,H,E,alpha 26.18 41.85 0.83 25.51 32.57 0.89 16.16 25.40 0.93 21.24 38.35 0.85

VH, VH/VV,RVI,P,tmin,tmax,H,E,alpha 24.32 29.52 0.91 25.06 30.97 0.90 15.48 25.81 0.93 18.81 37.58 0.85

NDVI, NDWI 22.84 35.42 0.87 26.21 39.07 0.84 31.46 49.63 0.74 39.52 63.39 0.58

Red-edge, NDVI, NDWI 21.97 33.79 0.88 29.15 37.37 0.85 27.84 43.42 0.80 39.56 64.92 0.56
VH,VV,VH/VV,RVI,climate 20.79 26.10 0.93 21.83 27.67 0.92 14.75 23.05 0.94 19.43 36.66 0.86

VH,VH/VV,RVI, Red-edge, NDVI, NDWI,P,tmin, tmax 18.69 23.8 0.95 19.58 22.37 0.95 13.39 22.25 0.95 16.07 35.83 0.87

VH,VV, Red-edge,NDVI, NDWI,P,tmin,tmax 18.66 23.55 0.95 20.81 27.19 0.92 14.37 22.48 0.95 21.42 41.72 0.82

VH, VH/VV,RVI,P,tmin,tmax 18.56 23.53 0.95 16.36 20.48 0.96 14.68 22.89 0.95 20.61 38.67 0.84

VH,VV,VHVV,RVI,Red-edge,NDVI, NDWI,P,tmin,tmax 17.89 21.86 0.95 14.86 19.60 0.96 13.92 22.09 0.95 19.62 38.14 0.85

VH,VH/VV,RVI, NDVI, NDWI,P,tmin, tmax 16.42 20.88 0.95 23.39 29.37 0.91 13.24 21.13 0.95 17.00 36.08 0.86

VH, Red-edge,NDVI, NDWI,P,tmin, tmax 15.50 16.45 0.95 16.7 21.47 0.95 14.79 23.49 0.94 20.08 39.17 0.84

VH,VV, NDVI, NDWI,P,tmin,tmax 14.50 19.19 0.97 20.25 24.36 0.94 14.47 21.71 0.95 19.05 37.20 0.86

Red-edge, NDVI, NDWI,P,tmin, tmax 14.46 18.18 0.97 18.91 23.75 0.94 14.14 22.95 0.94 22.72 42.48 0.81
NDVI, NDWI,P,tmin, tmax 13.06 18.07 0.97 14.54 18.32 0.96 14.82 22.62 0.95 21.39 39.67 0.84

VH, NDVI, NDWI,P,tmin, tmax 11.40 14.99 0.98 14.09 18.22 0.97 14.87 22.50 0.95 21.14 38.88 0.84

STL- FM MTL-FM STL-RF STL-XGBoost
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Figure C7: Comparison of estimated and actual soybean VWC and height for fields selected from 

Iowa 2016 test datase
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CONCLUSION 
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The culmination of this dissertation underscores the transformative potential of advanced 

remote sensing technologies, particularly SAR, and deep learning models in enhancing agricultural 

monitoring and yield prediction. Through the integration of multi-temporal SAR data, analytical 

time-series analysis, machine learning, deep learning, and geospatial foundation models, this work 

demonstrates substantial improvements in the accuracy and reliability of crop attributes estimation, 

including planting date, yield, VWC, and crop height across diverse climatic regions and 

management practices. 

Key findings reveal that the incorporation of SAR-derived planting dates can significantly 

refine yield predictions, reducing biases and uncertainties in rainfed paddy fields, as evidenced in 

the Cambodia case study. The study demonstrated that using SAR-derived planting dates improved 

yield prediction accuracy by 7-48% across different provinces, with the normalized bias for rice 

yield being reduced significantly. The results also highlighted that differences between crop-

calendar-based planting dates and SAR-derived planting dates could be as much as 75 days, 

emphasizing the importance of accurate planting date estimation. 

Moreover, the application of machine learning and deep learning techniques, particularly 

XGBoost and patch-based 3D-CNNs, has shown to be exceptionally effective in predicting yields 

with minimal error margins. Specifically, the models achieved a 7.5% margin of error in predicting 

yields a full month before harvest, underscoring the critical role of SAR data, especially the VH 

channel, in capturing essential crop features. The analysis further illustrated that XGBoost 

consistently outperformed other methods, particularly in scenarios with limited reference data, 

while patch-based 3D-CNNs closely approximated XGBoost’s performance with a more 

streamlined set of input features. 
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Furthermore, this research pioneers the application of self-supervised learning within geospatial 

foundation models to estimate VWC and crop height. The Single-Task Learning Foundation 

Model (STL-FM) demonstrated superior accuracy and generalization capabilities, achieving R² 

values of 0.90 and 0.89 for soybean and corn VWC, respectively, and 0.95 and 0.98 for crop height. 

The integration of SAR, optical indices, and weather data provided more reliable estimations than 

using individual data sources alone. Feature importance analysis identified key drivers such as 

NDVI, NDWI, VH backscatter, and precipitation for accurate VWC and height estimations, with 

the red-edge band emerging as particularly significant for VWC estimation. 

In conclusion, this dissertation advances the field of agricultural remote sensing by showcasing 

the powerful synergy between SAR data and machine learning and deep learning models. The 

research not only improves crop monitoring techniques, but also sets a precedent for future 

innovations in agricultural management. These advancements contribute to a more precise, data-

driven approach to support global food security and sustainable agriculture across diverse 

landscapes. 
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5. FUTURE RESEARCH DIRECTIONS 
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Our study opens several avenues for future research in crop monitoring using geospatial 

foundation models (FMs).  Future work should explore larger areas for self-supervised learning 

(SSL), including different climate, practice management and different crop types. In the current 

study, due to high computational costs, we utilized an area surrounding the reference data in Iowa 

and Michigan for SSL (Figure 4.1). This approach, while effective, did not encompass various 

field conditions or diverse climates such as Florida. Future research with expanded resources could 

broaden the scope to include a wider range of agricultural conditions and climatic zones, 

potentially enhancing the model's generalizability. While our current models primarily use C-band 

Sentinel-1A data with acceptable accuracy for VWC and crop height estimation without 

incorporation of surface roughness and soil moisture, the limited L-band data from Florida shows 

promise for improved canopy-level sensitivity. As illustrated in Figure 4.14i, there are notable 

similarities between L- and C-band VV polarizations, as well as between C-band VH and L-band 

cross-polarization backscatter. Future research should explore the integration of Sentinel-1A C-

band SAR and the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) L-band SAR 

(scheduled for launch in February 2025) data with FMs to enhance crop monitoring capabilities. 

The selection of C-band or L-band should be informed by crop biomass characteristics, with L-

band potentially offering advantages for high-biomass crops and C-band being more suitable for 

lower-biomass crops. This integrated approach could provide a more comprehensive and nuanced 

understanding of crop dynamics across various growth stages and biomass levels. 

The enhanced accuracy in VWC and crop height estimation offered by FMs has significant 

implications for precision agriculture. Future research should focus on translating these 

improvements into practical tools for farmers and agricultural managers, supporting more efficient 

resource use and potentially higher yields. 


