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ABSTRACT

We currently see a steady rise in the usage and size of multiprocessor systems, and so the community is

evermore interested in developing fast parallel processing algorithms. However, most algorithms require a

synchronization mechanism, which is costly in terms of computational resources and time.

If an algorithm can be executed in asynchrony, then it can use all the available computation power, and

the nodes can execute without being scheduled or locked. However, to show that an algorithm guarantees

convergence in asynchrony, we need to generate the entire global state transition graph and check for the

absence of cycles. This takes time exponential in the size of the global state space.

In this dissertation, we present a theory that explains the necessary and sufficient properties of a multi-

processor algorithm that guarantees convergence even without synchronization. We develop algorithms for

various problems that do not require synchronization. Additionally, we show for several existing algorithms

that they can be executed without any synchronization mechanism.

A significant theoretical benefit of our work is in proving that an algorithm can converge even in asyn-

chrony. Our theory implies that we can make such conclusions about an algorithm, by only showing that

the local state transition graph of a computing node forms a partial order, rather than generating the entire

global state space and determining the absence of cycles in it. Thus, the complexity of rendering such proofs,

formal or social, is phenomenally reduced.

Experiments show a significant reduction in time taken to converge, when we compare the execution time

of algorithms in the literature versus the algorithms that we design. We get similar results when we run an

algorithm, that guarantees convergence in asynchrony, under a scheduler versus in asynchrony. These results

include some important practical benefits of our work.
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CHAPTER 1

INTRODUCTION

Given the available technology, increasing the number of computing processors is significantly cheaper

than making a single chip more powerful. The development and demand of computing systems are, presently,

profoundly affected by this fact, and we see a continuous rise in the usage and size of multiprocessor systems.

A multiprocessor system contains multiple computing nodes performing executions to solve one problem.

Each node can run one or more processes.

In this dissertation, we assume that each computing node runs only one process to allow maximum par-

allelization. For this reason, throughout this dissertation, we use the term node for processes and processors

alike. A node can be viewed as an independent computing machine, and a multiprocessor system consists of

multiple nodes.

In a multiprocessor system, each node may store some data. When the system executes, all nodes read

the data that they need through a shared memory or by passing messages.

The goal for the computing nodes is to collectively reach a state where the problem is deemed solved. To

achieve this, these nodes need to read the data in a controlled manner so that they synchronize with each

other. To illustrate this, consider the problem of graph colouring. An algorithm for this problem can be

developed as follows: if node i reads that it has a conflicting colour with at least one of its neighbours, then it

changes its colour to the minimum possible available colour. If this algorithm is run in an interleaving fashion

(where one node executes at a time), then it will converge to a state where all nodes have non-conflicting

colours.

In a uniprocessor execution (or a multiprocessor execution where only one node executes at a time), this

algorithm runs correctly because the global states form a directed acyclic graph (DAG), and all the sink

nodes of this DAG are optimal states. This property is also necessary and sufficient for the correctness of an

algorithm that must reach an optimal state and then terminate/stutter. However, if the above algorithm is

run on a multiprocessor system in asynchrony, it may never converge. This can be explained by the following

example. Consider a graph with only two nodes, i and j, connected to each other by an edge. Consider that

both i and j are initialized with colour value 1. Suppose that i reads the value of j and decides to change

its colour to 2. However, if j reads the state of i asynchronously before the changes made by i are reflected,

it will also decide to change its colour to 2. Similarly, in the next step, both nodes may decide to change

their colour to 1. This can continue forever and the system may never converge.

Convergence cannot be guaranteed, from an arbitrary state, in the above system because of the presence

of a cycle in the global state transition graph, which, in turn, is induced due to the race conditions arising

1



among neighbouring nodes. Deployment of proper synchronization mechanisms (in this case, local mutual

exclusion) eliminates such behaviour.

From above, we observe: (1) under the assumption of synchronization, analysis of system behaviour

and design of algorithms becomes easier, and (2) if such assumptions are removed, then we may observe

cyclic behaviour in state transitions, making it tedious to analyze the system, and in some cases, even

preventing the system from convergence. Thus, designing an algorithm that guarantees convergence without

synchronization is not trivial.

There are various synchronization primitives considered in the literature. A common synchronization

primitive is to use a scheduler/daemon that identifies how/when nodes can execute. The synchronization

model used in the above-discussed algorithm for graph colouring uses the central scheduler, which chooses

only one node per time step to execute. Other than this, there are other scheduler-based synchronization

models, e.g., a distributed scheduler chooses one or more nodes, possibly arbitrarily, per time step, and a

synchronous scheduler chooses all the nodes in each time step. All schedulers implicitly assume a barrier

requirement that one step has to complete before the next step can begin. This means that if multiple nodes

are executing a step then it is necessary to wait until all executing nodes finish their step before starting the

next one.

Apart from enforcing the above-discussed scheduler-based synchronization primitives, there are other

synchronization primitives like local mutual exclusion, token ring and semaphores. In all such models, the

idea is to prohibit certain processes to execute, depending on the availability of resources or semantics of the

subject algorithm. This assumption restricts the usage of resources and flow of data, and thus, makes the

design of algorithms easy, ensuring correctness.

Enforcing synchronization introduces an overhead, which can be very costly in terms of computational

resources and time. For this reason, the community is interested in developing algorithms that require

minimum possible synchronization. If an algorithm can be executed in asynchrony, then it can use all the

available computation power, and the nodes can execute without being scheduled or locked. If we understand

the underlying behaviour of such algorithms, then we can easily analyze if an algorithm possesses this quality,

and if not, we can make minimal changes to it and transform it into an algorithm that does not require

synchronization.

While there have been instances of algorithms that are correct under asynchrony (e.g., [3–5]), we do

not have a model that captures and explains the behaviour of an arbitrary algorithm that convergences in

asynchrony. Hence, in this dissertation, we focus on developing a theory for multiprocessor algorithms that

guarantees convergence under asynchrony. Specifically, we validate the following thesis statement:
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Synchronization is not required in a multiprocessor system which can identify, in

every suboptimal global state, at least one node whose local state will indefinitely

prevent convergence.

Organization of the Chapter

We validate the above thesis statement by building on a recent work by Garg [6]. We briefly discuss Garg’s

model of lattice-linearity in Section 1.1. In Section 1.2, we enumerate the contributions of this dissertation.

In Section 1.3, we discuss the applications of the problems that we study in this dissertation. Section 1.4

outlines the organization of the following chapters in this dissertation.

1.1 Lattice-Linearity

The recent introduction of lattice-linearity (by Garg, SPAA 2020) [6] has shown that algorithms can be

developed in such a way that the nodes can execute asynchronously.

A critical observation from [6] is that if the global states form a lattice, then, under some additional

constraints, an algorithm traversing that lattice is fully tolerant to asynchrony. The key idea of lattice-

linearity is that in such systems, a node can determine that its local state is not feasible in any reachable

optimal global state, so, it has to change its state to reach an optimal state. Thus, if node i changes its state

from i[st] to i[st′] it never revisits state i[st] again.

Since it is guaranteed for a node in a violating state that its current state has to be rejected permanently,

and that no optimal global state can be reached in its current local state, it can change its state even if it

is relying on the old values of its neighbours. This allows the nodes to run without synchronization and the

system is yet guaranteed to reach an optimal state. There are some additional constraints regarding what

the next chosen local state i[st′] will be, once i rejects its current state i[st]. These constraints are problem-

dependent; we discuss these constraints, in detail, in the following chapters, according to their relevance to

the subject problem and the algorithm being studied.

As a consequence of the property that a local state once rejected is never visited again, the local states

visited by each individual node form a total order. The lattice structure induced among the global states is

a consequence of this total order induction in the local state transition graph.

In [6], Garg studies a restricted class of problems, which we call lattice-linear problems. In such problems,

the nodes that are in a violating local state can be distinctly determined. In addition, the problems studied

in [6] do not allow self-stabilization.

1.2 Contributions of the Dissertation

We first study whether there exist any lattice-linear problems that allow self-stabilization. To this end,

we show that the parallel processing version developed for Karatsuba’s multiplication algorithm (cf. [7]) by

Cesari and Maeder [8] guarantees convergence without synchronization. This algorithm is lattice-linear and
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is self-stabilizing. We study multiple algorithms for multiplication and modulo operations that are lattice-

linear, and effectively, they guarantee convergence in asynchrony. This study is presented in Chapter 3; a

preliminary version of this chapter appeared in SSS 2023.

The problem that we study next is whether we can develop algorithms for non-lattice-linear problems

(problems in which violating nodes cannot be determined in a suboptimal global state) that converge in

asynchrony. To this end, we observe that, under problem-specific constraints, convergence can be guaranteed

in non-lattice-linear problems algorithmically even if one or more lattices are induced only in a subset of the

state space. This leads to the introduction of eventually lattice-linear algorithms, and we develop eventually

lattice-linear algorithms for service-demand based minimal dominating set, minimal vertex cover, maximal

independent set, graph colouring and 2-dominating set problems. This study is presented in Chapter 4; a

preliminary version of this chapter appeared in SSS 2021 and the full chapter was published in JPDC 2024.

We also present some experimental results, comparing the runtime of our algorithm for maximal independent

set with other algorithms in the literature. Experimental results show that our algorithm converges much

faster as compared to other algorithms.

In eventually lattice-linear algorithms, lattices are induced only among a subset of the global states, so a

developer must guarantee that the system, initialized in an arbitrary or specified state, is (1) guaranteed to

reach a state in one of the lattices, and then (2) guaranteed to reach an optimal state. Thus, the problem that

we study next is whether it is possible to induce lattices in the entire state space if the underlying problem is a

non-lattice-linear problem. To this end, we observe that lattices can be induced algorithmically in the entire

state space in non-lattice-linear problems. Thus, we introduce fully lattice-linear algorithms, and develop

algorithms for minimal dominating set, graph colouring, minimal vertex cover and maximal independent set

problems. We also present a parallel-processing lattice-linear 2-approximation algorithm for the vertex cover

problem. This study is presented in Chapter 5; a preliminary version of this chapter appeared in SRDS

2023. We transform the lattice-linear algorithm for minimal dominating set (which is originally a distance-4

algorithm) to a distance-1 algorithm. We present some experimental results, comparing the runtime of our

algorithms for minimal dominating set with other algorithms in the literature. Experimental results show

that the distance-1 algorithm that we develop for minimal dominating set converges much faster as compared

to other algorithms.

We also show for an algorithm developed by Goswami et. al (SSS, 2022) that it is lattice-linear, and

is thus, tolerant to asynchrony. This algorithm was developed to solve the gathering problem on a finite

number of robots on an infinite triangular grid. The authors of this algorithm originally assumed a distributed

scheduler. We also show that this algorithm converges in 2n rounds, which is less than the time complexity

originally showed (i.e., 2.5n rounds). Apart from this, we find that some guards used in the original algorithm
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are redundant, so we remove them and present a new updated algorithm, which uses only a subset of guards

from the original algorithm. This study is presented in Chapter 5 (Section 5.8); this study appeared in

EDCC 2024.

We have that lattice induction is sufficient to allow asynchrony, but it is not a necessary condition. In

other words, all algorithms that induce a lattice structure in the state space (that results from the induction

of total order in the local state transition graph) allow asynchrony, but given an arbitrary algorithm that

can tolerate asynchrony, it is possible that it is not lattice-linear. Thus, we investigate to find the necessary

and sufficient conditions under which an algorithm guarantees convergence in asynchrony. To this end, we

find that asynchrony can be allowed if and only if the local states visited by individual nodes form a partial

order. Due to the partial order induced among the local states, the global states form a directed acyclic

graph (DAG). Effectively, we introduce the classes of DAG-inducing problems and DAG-inducing algorithms.

We study the dominant clique problem and the shortest path problems as DAG-inducing problems, and the

maximal matching problem as a non-DAG-inducing problem. We provide algorithms for all these problems.

This study is presented in Chapter 6.

It is noteworthy from above that problems such as dominant clique and shortest path cannot be modelled

within the class of lattice-linear problems, and maximal matching cannot be modelled within the class of

non-lattice-linear problems. The algorithms that we present for these problems cannot be modelled within

the class of lattice-linear algorithms. This is because here, the local state transition graph of each individual

node forms a partial order, and this behaviour cannot be modelled within a discrete structure such as the

total order.

For several problems we study in this dissertation, we develop multiple algorithms. In such cases, we

analyze those algorithms in such a way that the differences in their behaviour become clear.

The algorithms that we develop theoretically converge faster as compared to the other algorithms in the

literature – in terms of the number of moves, or the order of time. We have conducted several experiments

to investigate the benefit of asynchrony. Our algorithms that were put to this test are observed to run

faster than other algorithms in the literature. We also observe that algorithms that guarantee convergence

in asynchrony run faster in asynchrony as compared to the same algorithm running under a scheduler.

1.3 Applicability of Our Work

The major focus and benefit of this dissertation is in developing algorithms that guarantee convergence

in asynchrony, and in developing a theory that explains the properties of such algorithms.

A significant theoretical benefit of our work is in proving that an algorithm can converge even in asyn-

chrony. Our theory implies that we can show that an algorithm can tolerate asynchrony, by only showing

that the local state transition graph of an arbitrary computing node forms a partial order, rather than
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generating the entire global state space and determining the absence of cycles in it. Thus, the complexity of

rendering such proofs, formal or social, is phenomenally reduced. We also study the time complexity of an

arbitrary asynchrony-tolerant algorithm, and how it is tied to the complexity class of the subject problem.

Experiments show a significant reduction in time taken to converge, when we compare the execution time

of algorithms in the literature versus the algorithms that we design. We get the same results when we run

an algorithm, that guarantees convergence in asynchrony, under a scheduler versus in asynchrony. These

results include some remarkable practical benefits of our work.

Some applications of the specific problems studied in this dissertation are listed as follows. Dominating

set is applied in communication and wireless networks where it is used to compute the virtual backbone of

a network. Vertex cover is applicable in (1) computational biology, where it is used to eliminate repetitive

DNA sequences – providing a set covering all desired sequences, and (2) economics, where it is used in

camera instalments – it provides a set of locations covering all hallways of a building. Independent set is

applied in computational biology, where it is used in discovering stable genetic components for designing

engineered genetic systems. Graph colouring is applicable in (1) chemistry, where it is used to design storage

of chemicals – a pair of reacting chemicals are not stored together, and (2) communication networks, where

it is used in wireless networks to compute radio frequency assignment.

Matching has applications in numerous areas including social networks. Shortest path problem has

applications in network routing and geographical route navigation. Dominant clique problem has applications

in social networks and ecology (cf. [9]).

The applications of integer multiplication include the computation of power, matrix products which has

applications in a plethora of fields including artificial intelligence and game theory, the sum of fractions and

coprime base. Modular arithmetic has applications in theoretical mathematics, where it is heavily used in

number theory and various topics (e.g., groups, rings, fields, knots) in abstract algebra. Modular arithmetic

also has applications in applied mathematics, where it is used in computer algebra and cryptography. It has

applications also in chemistry and the visual and musical arts. In many of these applications, the value of

the divisor is fixed. In addition to these applications, it is needless to note that multiplication and modulo

are among the fundamental mathematical operations.

1.4 Organization of the Dissertation

The following chapters are organized as follows. In Chapter 2, we discuss preliminary symbols and defini-

tions that we utilize in the chapters that follow. In Chapter 3, we study the properties of lattice-linearity in

the parallel processing version for Karatsuba’s multiplication algorithm (cf. [7]) present in [8]. We study some

more algorithms for multiplication and modulo operations that are lattice-linear. In Chapter 4, we introduce

the class of eventually lattice-linear algorithms, and present example algorithms for several problems, along
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with some experimental results. In Chapter 5, we introduce the class of fully lattice-linear algorithms, and

present example algorithms for several problems, along with some experimental results. Chapter 6 investi-

gates the conditions that are necessary and sufficient, under which an algorithm can guarantee convergence

even in asynchrony. Like the previous chapters, in this chapter also, we present asynchrony-tolerant example

algorithms for several problems. We discuss the related work in Chapter 7. We conclude in Chapter 8.

This dissertation is written such that we assume that a reader is aware of some basic results in graph

theory and distributed systems. For a reader who is not aware of these topics, we provide a preliminary

overview of these subjects in Appendix A. We provide a list of peer-reviewed publications that emerged from

this dissertation in Appendix B.
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CHAPTER 2

PRELIMINARIES

Most algorithms that we study in this dissertation are graph algorithms where the input is a graph G,

V (G) is the set of its vertices, E(G) is the set of its edges. In our algorithms, each computation node will

simulate a distinct vertex of a graph, so we use the term nodes for vertices; in the rest of this dissertation,

V (G) will be called a set of the nodes of graph G; this can also be visualized as each vertex of G acting as

a computation node.

For the graph G, n = |V (G)|, and m = |E(G)|. For a node i ∈ V (G), Adji is the set of nodes adjacent to

i, and Adjxi is the set of nodes within distance-x from i, excluding i. Neighbourhood of i is adjacency of i,

including i, i.e., Ni = Adji ∪ {i} and Nx
i = Adjxi ∪ {i}. Degree of a node i is the number of nodes connected

to i by an edge, i.e., deg(i) = |Adji|. The length of shortest path from i to node j is denoted by dis(i, j).

For a finite natural number x, [1 : x] denotes a sequence of all natural numbers from 1 to x.

2.1 Modeling Distributed Systems

A parallel/distributed algorithm consists of nodes where each node is associated with a set of variables.

Local state of a node i is a sequence of values of all its variables. A global state, say s, is a sequence of local

states of all nodes. Effectively, we represent s as a vector, where s[i] itself is a vector of the variables of node

i. We denote the state space by S, which is the set of all global states that a given system can obtain.

Each node in V (G) is associated with rules. Each rule at node i checks values of the variables of the

nodes in Nx
i (where the value of x depends on the subject problem and acting algorithm) and updates the

variables of i. A rule at a node i is of the form g −→ ac, where the guard g is a Boolean expression over

variables in Nx
i and the action ac is a set of instructions that updates the variables of i if g is true. A node

is enabled iff at least one of its guards is true, otherwise it is disabled.

A move is an event in which an enabled node updates its variables. A round is a sequence of events in

which every node evaluates its guards at least once, and makes a move iff it is enabled.

In many algorithms presented in this dissertation, at a time, atmost one guard per node holds true. In

the case that more than one guard is true and more than one action is to be executed, the actions will be

executed in the order in which they are written, and in the order in which their respective guards are written.

If a node executes more than one actions in a single move, then all those actions will take into consideration

the updations made by the actions that were executed before them.

The state transition system S on the state space S is a discrete structure that defines all the possible

transitions that can take place among the states of S. Under a given algorithm A, S is a directed graph such

that V (S) = S, and E(S) = {⟨s, s′⟩|⟨s, s′⟩ is a state transition under A}.
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We assume So to be the set of optimal global states: the system is deemed converged once it reaches a

state in So. All other global states are suboptimal. An algorithm A is self-stabilizing with respect to the

subset So of S iff it satisfies the following properties: (1) convergence: starting from an arbitrary state, any

sequence of computations of A reaches a state in So, and (2) closure: any computation of A starting from

So always stays in So. A is a silent self-stabilizing algorithm if no node makes a move once a state in So is

reached.

We use the work complexity of an algorithm with respect to time consumed; it is the summation of the

time taken by all nodes to execute whenever they were enabled. The term time complexity is also used with

respect to time consumed, however, this term, on the other hand, describes the order of time taken for an

algorithm to reach an optimal state; it does not provide any information to the reader/observer about the

work complexity of an algorithm, but it tells how much time a distributed system as a whole will take to

converge. As an example, if an algorithm executes actions 1, 2, and 3, each taking 1 time unit, such that

actions 1 and 2 are executed concurrently and action 3 is executed only after they finish, then the time

complexity is 2 units and the work complexity is 3 units.

2.1.1 Execution Without Synchronization.

Typically, we view the computation sequence of an algorithm as a sequence of global states ⟨s0, s1, · · · ⟩,

where st+1 (t ≥ 0) is obtained by executing some action by one or more nodes (as decided by the scheduler)

in st. For the sake of discussion, assume that only node i executes in state st, and it has only one variable.

The computation prefix uptil st is ⟨s0, s1, · · · , st⟩. The state that the system traverses to after st is st+1.

Under proper synchronization, i would evaluate its guards on the current local states of its distance-x (x ≥ 1)

neighbours in st, resulting in the system reaching st+1.

We assume that an observer oracle is able to take a consistent snapshot of the system instantly without

having to stop the executions of the nodes. However, the computing nodes may not know the fresh local

states of other nodes. To understand how the execution works in asynchrony, let s[j] be the local state

of node j in state s. If i executes in asynchrony, then since the reads performed by the nodes, as well

as their movements, are not coordinated with each other, the read operation performed by i may return

older values. As a result, i views the global state that it is in to be s′ where, for an arbitrary node j ̸= i,

s′[j] ∈ {s0[j], s1[j], · · · , st[j]}. This means that i can read older local states of other nodes from arbitrarily

older global states.

In the case that i may read older values, st+1 is evaluated as follows. If all guards of i evaluate to false in

global state s′, then the system will continue to remain in state st, i.e., st+1 = st. If some guard g evaluates

to true in s′ then i will execute its corresponding action ac. Here, we have the following observations: (1)

st+1[i] is the state that i obtains after executing an action in s′, and (2) ∀j ̸= i, st+1[j] = st[j].
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2.1.2 Variations of Asynchrony

In this dissertation, we are interested in two models: arbitrary asynchrony (AA) and asynchrony with

monotonous read (AMR). In the AA model, as described above, a node can read old values of other nodes

arbitrarily; here, we only assume that if some information is sent from a node, it eventually reaches the

target node. Similar to AA, in AMR, the nodes execute asynchronously. However, the AMR model adds

another restriction: the values of variables of other nodes are read/received in the order in which they were

updated/sent.

Algorithms present in this dissertation that require AMR model are also guaranteed to converge when

there is a much more relaxed requirement that given a pair of arbitrary nodes i and j, node i can read

arbitrarily old values of j (as allowed by AA), but i will eventually stop reading/receiving the values that j

obtained but rejected. However, in this more relaxed model, our proofs that describe the time complexity

and other characteristics of such algorithms are, clearly, not valid.

In both AA and AMR, node i reads the most recent state of itself.

Our algorithms are independent of, and allow, both the message-passing model and the shared memory

model, and our correctness and time-complexity proofs remain correct in both these models. We do not

assume any node failures or byzantine behaviours, other than the nodes running without synchronization.

2.1.3 Simple Examples

We discuss two example problems and one algorithm, each, to solve them. Our intent here is to show the

difference between the working of algorithms that guarantee convergence in asynchrony, versus the algorithms

that cannot make this guarantee. Specifically, we show how the naive algorithm for graph colouring that we

discuss in the Introduction does not guarantee convergence in asynchrony. We introduce the max problem,

and we discuss an algorithm for it that converges in asynchrony.

Example 2.1. Colouring. Consider the example algorithm for the graph colouring problem discussed in

the Introduction. This algorithm, if run under a central scheduler, guarantees convergence. If the initial state

is ⟨1, 1⟩, then depending on which node executes first, it is guaranteed to converge to an optimal state (see

Figure 2.1 (a), solid lines going out from ⟨1, 1⟩ and from ⟨2, 2⟩). However, if this algorithm is run in AA or

AMR model, then it does not guarantee convergence. In AA model, e.g., all possible global state transitions

are possible, depending on the oldness of the values that the nodes are reading from each other (see Figure 2.1

(a), all dotted and solid lines).

Example 2.2. Max. Now consider the max problem on 3 nodes, and let the initial state be ⟨1, 2, 3⟩. Consider

the following naive algorithm: if a node i reads that there is another node j whose value is greater than that of

i, then i changes its own value to be equal to the value of j. If this algorithm is run under a central scheduler,
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then convergence is guaranteed (possible transitions are represented by solid edges in Figure 2.1 (b)). Notice

that if this algorithm is run in AMR or AA model, then also convergence is guaranteed. However, AA or

AMR model result in additional transitions. Specifically, state ⟨1, 3, 3⟩ has a predecessor ⟨1, 2, 3⟩, so in state

⟨1, 3, 3⟩, node 1 can read an old local state of node 2 (i.e., 2) and not the current state of node 2 (i.e., 3).

Thus, another transition ⟨1, 3, 3⟩ −→ ⟨2, 3, 3⟩ is allowed in this case (presented as a dashed edge in Figure 2.1

(b)).

⟨1, 1⟩

⟨1, 2⟩⟨2, 1⟩

⟨2, 2⟩

(a)

⟨1, 2, 3⟩

⟨1, 3, 3⟩ ⟨2, 2, 3⟩

⟨3, 2, 3⟩⟨2, 3, 3⟩

⟨3, 3, 3⟩

(b)

Figure 2.1: (a) State transitions of a naive 2-node algorithm for graph colouring. (b) State transitions under
a naive algorithm for the max problem.

2.2 Embedding a ≺-lattice in Global States

In this section, we discuss the structure of a lattice in the state space which, under proper constraints,

allows an algorithm to converge to an optimal state. To describe the embedding, we define a total order ≺l;

all local states of a node i are totally ordered under ≺l. Using ≺l, we define a partial order ≺g among global

states as follows.

We say that s ≺g s′ iff (∀i : s[i] = s′[i] ∨ s[i] ≺l s
′[i]) ∧ (∃i : s[i] ≺l s

′[i]). Also, s = s′ iff ∀i : s[i] = s′[i].

For brevity, we use ≺ to denote ≺l and ≺g: ≺ corresponds to ≺l while comparing local states, and ≺

corresponds to ≺g while comparing global states. We also use the symbol ‘≻’ which is such that s ≻ s′ iff

s′ ≺ s. Similarly, we use symbols ‘⪯’ and ‘⪰’; e.g., s ⪯ s′ iff s = s′ ∨ s ≺ s′. We call the lattice, formed from

such partial order, a ≺-lattice.

Definition 2.1. ≺-lattice. Given a total relation ≺l that orders the values of s[i] (the local state of node i

in state s), for each i, the ≺-lattice corresponding to ≺l is defined by the following partial order: s ≺ s′ iff

(∀i : s[i] ⪯l s
′[i]) ∧ (∃i : s[i] ≺l s

′[i]).

A ≺-lattice constraints how global states can transition among one another: a global state s can transition

to state s′ only if s ≺ s′.

In the ≺-lattice discussed above, we can define the meet and join of two states in the standard way: the

meet (respectively, join), of two states s1 and s2 is a state s3 where ∀i : s3[i] is equal to min(s1[i], s2[i])
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(respectively, max(s1[i], s2[i])), where for a pair of local states x and y, if x ≺l y, then min(x, y) = min(y, x) =

x and max(x, y) = max(y, x) = y. We are interested in the ≺-lattices where a join can be found for any

pair of global states, however, a meet may not be found for some but not all the pairs of global states,

the examples of which we study, in this dissertation, in the following chapters. This makes a ≺-lattice an

incomplete lattice.

By varying ≺l that identifies a total order among the states of a node, one can obtain different lattices.

A ≺-lattice, embedded in the state space, is useful for permitting the algorithm to execute asynchronously.

Under proper constraints on how the lattice is formed, convergence is ensured. We discuss these constraints

in the next section.

2.3 Introduction to Lattice-Linearity

Lattice-linearity has been shown to allow asynchrony among the computing nodes whenever it is induced

in problems. The key idea of lattice linearity is that if a node can determine if its current state is not feasible

in any optimal global state, then it can perform executions even based on old and inconsistent values, i.e.,

without needing any synchronization. We call such nodes impedensable 1 nodes (an impediment to progress

if does not execute, indispensable to execute for progress).

Definition 2.2. [6] Impedensable node. Impedensable (i, s, P) ≡ ¬P(s) ∧ (∀s′ ≻ s : s′[i] = s[i] ⇒

¬P(s′)).

Example 2.Max: Continuation 1. Under the algorithm for the max problem present in Section 2.1.3, we

notice that in any suboptimal global state s, an impedensable node i is a node that does not have the highest

value stored in it. For example in state ⟨2, 2, 3⟩ node 1 and node 2 are impedensable. If any of these nodes

retains its state, then it will prevent the system from convergence.

Example 2.Colouring: Continuation 1. Notice that in the graph colouring problem, an impedensable

node cannot be determined. This is because, in any given global state and any chosen node, convergence can

be achieved without changing the local state of that node.

The problems in which nodes can make such decisions are called lattice linear problems. In such problems,

a node once discards its local state, by definition, discards it forever. This can form a total order among the

states of a node, resulting in the induction of a lattice among the global states. In such a system, because

a local state that is discarded is never revisited, computing nodes can run without synchronization and the

system is guaranteed to converge correctly even when the nodes read old values of each other.
1The term ‘impedensable’ is similar to the notion of a node being forbidden introduced in [6]. This word itself comes from

predicate detection background [10]. We changed the notation to avoid the misinterpretation of the English meaning of the
word ‘forbidden’.
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Now, because convergence is guaranteed in such systems and nodes do not revisit the local states that

they reject, in any suboptimal global state, there must be at least one node that must change its state, i.e.,

there must be at least one impedensable node in every suboptimal global state.

Definition 2.3. Impedensable global state. Impedensable(s,P) ≡ ∃i : Impedensable(i, s,P).

Example 2.Max: Continuation 2. Under the algorithm for the max problem present in Section 2.1.3,

we notice that in any suboptimal global state, there is at least one impedensable node. All suboptimal global

states are impedensable global states.

Example 2.Max: Continuation 3. Under the algorithm for the max problem presented in Section 2.1.3,

the local states form a total order. E.g., for node 1, this order is 1 → 2 → 3. Since node 2 is initialized in

local state 2, the total order induced among its local states is 2 → 3.

Since all nodes follow the same algorithm, the partial order formed among the local states is essentially

the same; its starting point only depends on the local state of initialization for each individual node.

Due to the total order formed among the local states of each individual node, the global states form a

≺-lattice, which is shown in Figure 2.1 (b).

In this section, we discuss lattice-linear problems, i.e., the problems where the description of the problem

statement creates the lattice structure. Such problems can be represented by a predicate under which the

states in S form a lattice. Such problems have been discussed in [6, 11,12].

A lattice-linear problem P can be represented by a predicate P such that if any node i is violating P in

a state s, then it must change its state. Otherwise, the system will not satisfy P. Let P(s) be true iff the

global state s satisfies P. A node violating P in s is called an impedensable node.

If a node i is impedensable in state s, then in any state s′ such that s′ ≻ s, if the state of i remains

the same, then the algorithm will not converge. Thus, predicate P induces a total order among the local

states visited by a node, for all nodes. Consequently, the discrete structure that gets induced among the

global states is a ≺-lattice, as described in Definition 2.1. We say that P, satisfying Definition 2.2, is lattice-

linear with respect to that ≺-lattice. P is used by the nodes to determine if they are impedensable, using

Definition 2.2.

Definition 2.4. [6]Lattice-linear predicate. P is an LLP with respect to a ≺-lattice induced among the

global states iff ∀s ∈ S : ¬P(s) ⇒ ∃i : Impedensable(i, s,P).

Example 2.Max: Continuation 4. The predicate, governing the algorithm for the max problem presented

in Section 2.1.3, can be noted as follows.

Impedensable-Max(i) ≡ ∃j : j[val] > i[val].
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When this predicate is combined with the actions imposed the algorithm, the state transition graph, as pre-

sented in Figure 2.1 (b), is formed. This transition graph is a ≺-lattice.

Now we complete the definition of lattice-linear problems. In a lattice-linear problem P , given any

suboptimal global state s, P specifies all and the only nodes which cannot retain their local states. P is thus

designed conserving this nature of the subject problem P , following Definitions 2.2 and 2.4.

Definition 2.5. Lattice-linear problems. Problem P is lattice-linear iff there exists a predicate P and a

≺-lattice such that

• P is deemed solved iff the system reaches a state where P is true,

• P is lattice-linear with respect to the ≺-lattice induced among the states in S, i.e., ∀s : ¬P(s) ⇒ ∃i :

Impedensable(i, s,P), and

• ∀s : (∀i : Impedensable(i, s,P) ⇒ (∀s′ : P(s′) ⇒ s′[i] ̸= s[i])).

Remark : A ≺-lattice, induced under P, allows asynchrony because if a node, reading old values, reads the

current state s as s′, then s′ ≺ s. So ¬P(s′) ⇒ ¬P(s) because Impedensable(i, s′,P) and s′[i] = s[i].

Example 2.Max: Continuation 5. The max problem, as discussed in Section 2.1.3 is a lattice-linear

problem. This is because, in any suboptimal state, we can determine all the nodes that are impedensable.

Example 2.Colouring: Continuation 2. Since an impedensable node cannot be determined in the graph

colouring problem, we put the graph colouring problem in the class of non-lattice-linear problems. We discuss

more on such problems later in this dissertation (in Section 3.6, Chapter 4 and Chapter 5).

Definition 2.6. Self-stabilizing lattice-linear predicate. Continuing from Definition 2.5, P is a self-

stabilizing lattice-linear predicate if and only if the supremum of the lattice, that P induces, is an optimal

state.

Note that a self-stabilizing lattice-linear predicate P can also be true in states other than the supremum of

the ≺-lattice.

Example 2.3. SMP. We describe a lattice-linear problem, the stable (man-optimal) marriage problem

(SMP) from [6]. In SMP, all men (respectively, women) rank women (respectively men) in terms of their

preference (lower rank is preferred more). A man proposes to one woman at a time based on his preference

list, and the proposal may be accepted or rejected.

A global state is represented as a vector s where the vector s[i] contains a scalar that represents the rank

of the woman, according to the preference of man i, whom i proposes.

SMP can be defined by the predicate
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PSMP ≡ ∀m,m′ : m ̸= m′ ⇒ s[m] ̸= s[m′].

PSMP is true iff no two men are proposing to the same woman. A man m is impedensable iff there exists

m′ such that m and m′ are proposing to the same woman w and w prefers m′ over m. Thus,

Impedensable-SMP(m, s,PSMP ) ≡ ∃m′ : s[m] = s[m′] ∧ rank(s[m],m′) < rank(s[m],m).

If m is impedensable, he increments s[m] by 1 until all his choices are exhausted. Following this algorithm,

an optimal state, i.e., a state where the sum of regret of men is minimized, is reached.

A key observation from the stable marriage problem (SMP) and other problems from [6] is that the states

in S form one lattice, which contains a global infimum ℓ and possibly a global supremum u i.e., ℓ and u are

the states such that ∀s ∈ S, ℓ ⪯ s and u ⪰ s.

Example 2.SMP: continuation 1. As an illustration of SMP, consider the case where we have 3 men and

3 women. The lattice induced in this case is shown in Figure 2.2. In this figure, every vector represents the

global state s such that s[i] represents the rank of the woman, according to the preference of man i, whom i

proposes. The algorithm begins in the state ⟨1, 1, 1⟩ (i.e., each man starts with his first choice) and continues

its execution in this lattice. The algorithm terminates in the lowest state in the lattice where no node is

impedensable.

⟨1,1,1⟩

⟨2,1,1⟩ ⟨1,2,1⟩ ⟨1,1,2⟩

⟨1,1,3⟩⟨1,2,2⟩

⟨1,2,3⟩

⟨1,3,1⟩

⟨1,3,2⟩

⟨1,3,3⟩

⟨2,1,2⟩

⟨2,1,3⟩

⟨2,2,1⟩

⟨2,2,2⟩

⟨2,2,3⟩

⟨2,3,1⟩

⟨2,3,2⟩

⟨2,3,3⟩

⟨3,1,1⟩

⟨3,1,2⟩

⟨3,1,3⟩

⟨3,2,1⟩

⟨3,2,2⟩

⟨3,2,3⟩

⟨3,3,1⟩

⟨3,3,2⟩

⟨3,3,3⟩

Figure 2.2: Lattice for SMP with 3 men and 3 women; ℓ = ⟨1, 1, 1⟩ and u = ⟨3, 3, 3⟩. Transitive edges are
not shown for brevity.

In SMP and other problems in [6], the algorithm needs to be initialized to ℓ to reach an optimal solution.

If we start from a state s such that s ̸= ℓ, then the algorithm can only traverse the lattice from s. Hence,

upon termination, it is possible that the optimal solution is not reached. In other words, such algorithms

cannot be self-stabilizing unless u is optimal.
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Example 2.SMP: continuation 2. Consider that men and women are M = ⟨A, J, T ⟩ and W = ⟨K,Z,M⟩

indexed in that sequence respectively. Let that proposal preferences of men are A = ⟨Z,K,M⟩, J = ⟨Z,K,M⟩

and T = ⟨K,M,Z⟩, and women have ranked men as Z = ⟨A, J, T ⟩, K = ⟨J, T,A⟩ and M = ⟨T, J,A⟩.

The optimal state (starting from ⟨1, 1, 1⟩) is ⟨1, 2, 2⟩. Starting from ⟨1, 2, 3⟩, the algorithm terminates at

⟨1, 2, 3⟩ which is not optimal. Starting from ⟨3, 1, 2⟩, the algorithm terminates declaring that no solution is

available.
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CHAPTER 3

PARALLELIZING MULTIPLICATION AND MODULO

We observe that the community is evermore interested in designing algorithms for problems with least

possible synchronization assumptions. Asynchrony in algorithms has been earnestly a desired property for

algorithms to possess. Recently, Garg (SPAA, 2020) [6] showed that if lattices are induced among the

state space, then an algorithm that traverses those lattices, under some additional constraints, guarantees

convergence in asynchrony. In Section 2.2, we formally described the structure of such lattices. However,

the problems studied in [6] are constrained to a class, which we call lattice-linear problems, and do not

allow self-stabilization. In this chapter, we study whether there exist lattice-linear problems that allow

self-stabilization.

Specifically, in this chapter, we study some parallel processing algorithms for multiplication and modulo

operations. We demonstrate that the state transitions that are formed under these algorithms satisfy lattice-

linearity, and these algorithms induce a lattice among the global states. Lattice-linearity implies that these

algorithms can be implemented in asynchronous environments, where the nodes are allowed to read old

information from each other. It means that these algorithms are guaranteed to converge correctly without

any synchronization overhead. These algorithms also exhibit snap-stabilizing properties, i.e., starting from

an arbitrary state, the sequence of state transitions made by the system strictly follows its specification.

The algorithms present in this chapter tolerate asynchrony in AMR model (cf. Section 2.1.1).

Organization of the Chapter

This chapter is organized as follows. In Section 3.1, we describe the definitions and notations that we

specifically use in this chapter. We study lattice linearity of the multiplication operation in Section 3.2. Then,

in Section 3.3, we study the lattice linearity of the modulo operation. Finally, we summarize the chapter in

Section 3.5. We discuss the nature of the problems that are not naturally lattice-linear in Section 3.6; this

section lays the foundation of the next chapter in which we study such problems and present algorithms for

them.

3.1 Some Specific Preliminaries

This chapter focuses on multiplication and modulo operations, where the operands are n and m. In the

computation n×m or n mod m, n and m are the values of these numbers respectively, and |n| and |m| are

the length of the bitstrings required to represent n and m respectively. 1 If n is a bitstring, then n[k] is the

kth bit of n (indices start from 1). For a bitstring n, n[1] is the most significant bit of n and n[|n|] is the

least significant bit of n. We use n[j : k] to denote the bitstring from jth bit to kth bit of n; this includes
1Since n and m are sequence of bit-values and if x is a sequence or a set, |x| is used to denote the number of elements in x,

|n| and |m| are the lengths of these bitstrings respectively. This notation does not represent the magnitude of their values.
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n[i] and n[j]. For simplicity, we stipulate that n and m are of lengths in some power of 2. Since size of n

and m may be substantially different, we provide complexity results that are of the form O(f(n,m)) in all

cases, where f is a function of n and m.

3.1.1 Additional Operations

We use the following string operations: (1) append(a, b), appends b to the end of a in O(1) time, (2)

rshift(a, k), deletes rightmost k bits of a in O(k) time, and (3) lshift(a, k), appends k zeros to the right of

a in O(k) time.

n×m or n mod m are typically thought of as arithmetic operations. However, when n and m are large,

we view them as algorithms. In this chapter, we view them as parallel/distributed algorithms where the

nodes collectively perform computations to converge to the final output.

In several places, we have used the functions Mod(x, y), Mul(x, y), and Sum(x, y). These functions,

respectively, compute x mod y, x× y and x+ y.

3.1.2 Modulo: Some Classic Sequential Models

In this subsection, we discuss some sequential algorithms for computing n mod m. We will utilize these

preliminary algorithms to analyze the effective time complexity of parallelized modulo operation. We consider

two instances, one where both n and m are inputs and another where n is an input but m is hardcoded. We

utilize these algorithms in Section 3.3.

The latter algorithm is motivated by algorithms such as RSA [13] where the value of n changes based

on the message to be encrypted/decrypted, but the value of m is fixed once the keys are determined. Thus,

some pre-processing can potentially improve the performance of the modulo operation; we observe that

certain optimizations are possible. While the time and space complexities required for preprocessing in this

algorithm are high, thereby making it impractical, it demonstrates a gap between the lower and upper bound

in the complexity.

Modulo by Long Division

The standard long-division algorithm to compute n mod m is shown in Figure 3.1.

Clearly, the number of iterations in this algorithm is bounded by |n|. In each of these iterations, the worst

case complexity is O(|m|) to perform the subtraction operation. Thus, the time complexity of standard long

division is O(|n| × |m|) when m and n are both inputs to the algorithm.

Modulo by Constructing DFA

If the value of m is hardcoded in the algorithm, we use it to reduce the cost of the modulo operation by

creating a deterministic finite automaton (DFA) M = ⟨Q, Σ, δ, q0⟩, where (1) Q = {q0..qm−1} is the set

of all possible states of M , (2) Σ = {0, 1} is the alphabet set, (3) δ is the transition function, the details

of which we study in this section, and (4) q0 is the initial state. If M has read the first k digits of n then
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Division-Modulo(n,m):

1. ans = n[1 : |m| − 1]. k = |m|.

2. while (k ≤ |n|),

3. ans = append(ans, n[k]).

4. if ans > m, then

5. ans = ans−m. k=k+1.

6. Return ans.

Figure 3.1: The standard long-division algorithm to compute n mod m.

its state would be n[1 : k] mod m. When M reads the next digit of n, n[1 : (k + 1)] mod m is evaluated

depending on the next digit. If the next digit is 0, the next state will be (2 × (n[1 : k] mod m)) mod m,

otherwise, it will be (2 × (n[1 : k] mod m) + 1) mod m. Since the value of m is hardcoded, this DFA is

assumed to be pre-computed. As an example, for m = 3, the corresponding DFA is provided in Example 3.1.

Example 3.1. A finite automaton M3 computing n mod 3 (m = 3 is fixed) for any n ∈ N is shown in

Figure 3.2.

q0 q1 q2

1

1

0

0

0

1

Figure 3.2: A finite automaton M3 computing n mod 3 for any n ∈ N.

With this DFA, the cost of computing the modulo operation corresponds to one DFA transition for each

digit of n. Hence, the complexity of the corresponding operation is O(|n|). M does not have any accepting

states, which is unlike a usual finite automaton; the final state of M only tells us the value of the remainder

which we would obtain after the computation of the expression n mod m.

We define the construction of the transition function δ of M in Figure 3.3. δ is constructed using the

magnitude of m, and it is capable of reading a bitsting n starting from n[1] and traversing through n[|n|],

reading every bit, sequentially, in each step. The problem is as follows: let that M has read the first z bits

of n that evaluates to the value K (here, K = n[1 : z]), and let K mod m = k, so M is in state qk. From

here, we have to determine the next state based on whether the next bit M reads is 0 or 1, which would

mean that the total value read will be 2×K + 0 or 2×K + 1.

We start by assigning edges from q0. (2× 0 + 0) mod m is 0 and (2× 0 + 1) mod m is 1, for example.
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So δ(q0, 0) = 0 and δ(q0, 1) = 1. So we assign q0 to transition to q0 on input 0, and to q1 on input 1. This

method induces labelled edges between the states of M , such that those labels define which edge should be

traversed based on what bit is read. After reading the first bit, assuming that M has read the value K so far

and M is in state qk, we assign the next state to be (2× k+0) mod m and (2× k+1) mod m for inputs 0

and 1 respectively. This is because (2×K +0) mod m and (2×K +1) mod m will be equal to (2× k+0)

mod m and (2× k+1) mod m respectively. Note that if 2× k+0 (resp., 2× k+1) is greater than m, then

we assign (2× k + 0) mod m (resp., (2× k + 1) mod m) to be (2× k + 0)−m (resp., (2× k + 1)−m) as

2× k + 0 (and 2× k + 1) cannot exceed 2×m.

Elaborated definition of δ.

1. v = 0. mrs = rshift(m, 1).

b = last bit of m. i = 0.

2. for( ; i < mrs; i = i+ 1),

3. δ(qi, 0) = qv. v = v + 1.

4. δ(qi, 1) = qv. v = v + 1.

5. if b = 1, then

6. δ(qi, 0) = qv. δ(qi, 1) = q0. v = 1.

7. else, then

8. δ(qi, 0) = q0. δ(qi, 1) = q1. v = 2.

9. i = i+ 1.

10. for( ; i < m; i = i+ 1),

11. δ(qi, 0) = qv. v = v + 1.

12. δ(qi, 1) = qv. v = v + 1.

13. δ(qi, 0) = q0. δ(qi, 1) = q1.

Figure 3.3: Definition of the transition function δ.

It can be clearly observed that while this approach takes |n| steps, each step taking a constant amount

of time, the time complexity (as well as the space complexity) of the required preprocessing is O(m× |m|),

which is very high. Therefore, this approach is not practical when m is large. However, we consider it

to observe that we obtain a time complexity of O(|n|) to run this automaton to evaluate for the modulo

operation if m can be hardcoded.
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3.2 Parallelized Multiplication Operation

In this section, we demonstrate that the parallelized version of the standard multiplication algorithm as

well as a parallelized version of Karatsuba’s [7] algorithm presented in [8] meet the requirements of lattice-

linearity, i.e. a system of nodes traverses a lattice of global states and provide the final output. We consider

the problem where we want to compute n×m.

3.2.1 Parallelizing Standard Multiplication

In this subsection, we present the parallelization of the standard multiplication algorithm. First, we

discuss the key idea of the sequential algorithm, then we elaborate on the lattice-linearity of its parallelization.

Key Idea

In the standard multiplication, we multiply m with one digit of n at a time (for each digit of n), and

then add all these multiplications, after left shifting those resultant strings appropriately. Suppose that we

have two strings a = n[1 : ⌊|n|/2⌋] ×m and b = n[⌊|n|/2⌋ + 1 : |n|] ×m. Then the resultant multiplication

n×m will be equal to lshift(a, |n| − ⌈|n|/2⌉) + b.

Parallelization

This algorithm requires 2 × |n| − 1 nodes, and induces a binary tree among them. The root of the tree

is marked as node 1 and any node i (1 ≤ i ≤ |n| − 1) has two children: node 2i and node 2i+ 1.

In this algorithm, every node stores two variables: shift and ans. We demonstrate that the computation

of each of these variables is lattice-linear.

Computation of i[shift]: At the lowest level (level 1), the value of shift is set to 0. Consequently, at

the next level (level 2), shift is set to 1. At all higher levels, shift of any node is computed to be twice

the value of shift of its children, i.e., i[shift] is set to 2× (2i)[shift]. This can be viewed as a lattice-linear

computation where a node is impedensable iff the following condition is satisfied. A impedensable node

updates its value to be either 0 (at level 1), 1 (at level 2), or 2× (2i)[shift] (at level 3 and higher).

Impedensable-Multiplication-Standard-Shift(i) ≡
i[shift] ̸= 0 if i ≥ |n|

i[shift] ̸= 1 if (2i)[shift] = (2i+ 1)[shift] = 0

i[shift] ̸= 2× (2i)[shift] if (2i)[shift] = (2i+ 1)[shift] ≥ 1

Computation of i[ans]: The value of ans at the lowest level (level 1) is set to be the corresponding bit

of n. At level 2, i[ans] is computed to be equal to the bitstring stored in ans of left child (left-shifted by
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i[shift] bits (by 1 bit)) multiplied with m, added to the bitstring stored in ans of right child multiplied

with m. At every level above level 2, i[ans] is set by left shifting (2i)[ans] by the i[shift], and then adding

(2i+1)[ans] to that value. Thus, to propagate the value of ans among the nodes correctly, we declare them

to be impedensable as follows.

Impedensable-Multiplication-Standard-Ans(i) ≡

i[ans] ̸= n[i− |n|+ 1] if i ≥ |n|.

i[ans] ̸= lshift(((2i)[ans]×m), i[shift])

+((2i+ 1)[ans]×m) if (2i)[shift] = (2i+ 1)[shift] = 0.

i[ans] ̸= lshift((2i)[ans], i[shift]) + (2i+ 1)[ans] if (2i)[shift] = (2i+ 1)[shift] ≥ 1.

We observe that determining Impedensable-Multiplication-Standard-Ans(i) is more complex than

determining Impedensable-Multiplication-Standard-Shift(i). However, we can eliminate it by ob-

serving that it suffices to update ans when shift is updated. This requires that i[shift] and i[ans] are

updated at a node i atomically in a single step. In that case, we can view the algorithm as Algorithm 3.1.

Algorithm 3.1. Parallelized standard multiplication algorithm.

Rules for node i.

Impedensable-Multiplication-Standard-Ans(i) −→

i[shift] = 0, i[ans] = n[i− |n|+ 1]. if i ≥ |n|.

i[shift] = 1,

i[ans] = lshift(((2i)[ans]×m), 1) + ((2i+ 1)[ans]×m). if (2i)[shift] = 0.

i[shift] = 2× (2i)[shift],

i[ans] = lshift((2i)[ans], i[shift]) + (2i+ 1)[ans]. otherwise.

From the above description, we see that the standard multiplication algorithm satisfies the constraints

of lattice-linearity, which we prove in the following part of this subsection. This algorithm executes in

O(|m| × lg |n|) time. Its work complexity is O(|n| × |m|), which is same as the time complexity of the

standard multiplication algorithm. The example below demonstrates the working of Algorithm 3.1.

Example 3.2. In Figure 3.4, we demonstrate the multiplication of the bitstrings 00011011 (value of n) and

0101 (value of m) under Algorithm 3.1.
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1010000+110111
node 1

0+101
node 2

101000+1111
node 3

0+0
node 4

0+101
node 5

1010+0
node 6

1010+101
node 7

0
node 8

0
node 9

0
node 10

1
node 11

1
node 12

0
node 13

1
node 14

1
node 15

shift = 0

shift = 1

shift = 2 (10)

shift = 4 (100) (=10000111)

Figure 3.4: Multiplication of 00011011 and 0101 in base 2.

Lattice-Linearity

Lemma 3.1. Given the input bitstrings n and m, the predicate

∀i : ¬Impedensable-Multiplication-Standard-Ans(i)

is lattice-linear on 2|n| − 1 computing nodes.

Proof. Let us assume that node 1 does not have the correct value of 1[ans] = n×m. This implies that (1)

node 1 has a non-updated value in 1[ans] or 1[shift], in which case node 1 is impedensable, or (2) node 2

does not have the correct values 2[ans] = n[1 : |n|/2] × m or 2[shift] or node 3 does not have the correct

values 3[ans] = n[|n|/2 + 1 : |n|]×m or 3[shift].

Recursively, this can be extended to any node i. Let that node i has stored an incorrect value in i[ans]

or i[shift]. If i ≤ |n| − 1, then this means that (1) node i has a non-updated value in i[ans] or i[shift], in

which case node i is impedensable, or (2) node 2i or node 2i+1 do not have the correct values in (2i)[ans] =

n[|n|−2(|n|−2i)+1 : |n|−2(|n|−2i)+2] or (2i+1)[ans] = n[|n|−2(|n|−2i−1)+1 : |n|−2(|n|−2i−1)+2]

respectively. If i ≥ |n|, then this implies that node i has not read the correct value n[i − |n| + 1], in which

case, again, node i is impedensable.

From these cases, we have that given a global state s, where s = ⟨⟨1[ans], 1[shift]⟩, ⟨2[ans], 2[shift]⟩,

..., ⟨(2|n|−1)[ans], (2|n|−1)[shift]⟩⟩, if s is impedensable, there is at least one node which is impedensable.

Next, we show that if some node is impedensable, then node 1 will not store the correct answer. ∀i : i ∈

[1 : 2|n| − 1] node i is impedensable if it has a non-updated value in i[ans] (i[ans] = n[|n| − 2(|n| − i) + 1 :

|n| − 2(|n| − i) + 2]×m if i ≤ |n| − 1 and i[ans] = n[i− |n|+ 1] if i ≥ |n|) or i[shift]. This implies that the

parent of node i will also store incorrect value in its ans or shift variable. Recursively, we have that node

1 stores an incorrect value in 1[ans], and thus the global state is impedensable.

Lemma 3.2. The predicate
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∀i : ¬Impedensable-Multiplication-Standard-Ans(i)

is a lattice-linear self-stabilizing predicate.

Proof. Since the lattice linearity was shown in Lemma 3.1, we only focus on the self-stabilizing aspect here.

To show this, we need to show that this predicate is true in the supremum state.

We note that if s is the supremum of the induced lattice, then there is no outgoing edge from s to any

other global state in the state transition graph. It means that in s, no node is enabled, and so, no node is

impedensable. Thus, we have that the predicate

∀i : ¬Impedensable-Multiplication-Standard-Ans(i)

holds true in s. Since s is an arbitrary supremum, this predicate is a self-stabilizing predicate.

Theorem 3.1. Algorithm 3.1 is silent and self-stabilizing.

Proof. The nodes that have ID ≥ n (leaf nodes) read the bit-values directly from the input (cf. first rule of

Algorithm 3.1), so their value is fixed immediately when they make their first move. Then, these nodes will

not change their states. After that, recursively, all other nodes will update their state with respect to the

state of their children (cf. second and third rules of Algorithm 3.1). If the nodes are arbitrarily initialized,

then several nodes may need to update their state more than once.

This process will continue for all nodes in the tree, and the nodes will converge to a stable state bottom-

to-top, in an acyclic fashion. Therefore, eventually, the root node will correct its own state. At this point,

no node is enabled and the value of ans in the root node provides the answer. Thus, Algorithm 3.1 is silent

and self-stabilizing.

3.2.2 Parallelized Karatsuba’s Multiplication Operation

In this section, we study the lattice-linearity of the parallelization (of Karatsuba’s [7] algorithm) that

was presented in [8]. First we discuss the idea behind the sequential Karatsuba’s algorithm, and then we

elaborate on its lattice-linearity.

Key Idea of Sequential Karatsuba’s Algorithm

The input is a pair of bitstrings n and m. This algorithm is recursive in nature. As the base case, when

the length of n and m equals 1 then, the multiplication result is trivial. When the length is greater than 1,

we let n = append(a, b) and m = append(c, d), where a and b are half the length of n, and c and d are half

the length of m. Here, append(a, b), for example, represents concatenation of a and b, which equals n.

Let z = 2|b|. n ×m can be computed as a × c × z2 + (a × d + b × c) × z + b × d. a × d + b × c can be

computed as (a+ b)× (c+d)−a× c− b×d. Thus, to compute n×m, it suffices to compute 3 multiplications
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a× c, b×d and (a+ b)× (c+d). Hence, we can eliminate one of the multiplications. In the following section,

we analyse the lattice-linearity of the parallelization of this algorithm as described in [8].

The CM Parallelization [8] for Karatsuba’s Algorithm

The Karatsuba multiplication algorithm involves dividing the input string into substrings and use them to

evaluate the multiplication recursively. In the parallel version of this algorithm, the recursive call is replaced

by utilizing other (children) nodes to treat those substrings. We elaborate more on this in the following

paragraphs. Consequently, this algorithm induces a tree among the computing nodes, where every non-leaf

node has three children. This algorithm works in two phases, top-down and bottom-up. This algorithm uses

four variables to represent the state of each node i: i[n], i[m], i[ans] and i[shift] respectively.

In the sequential Karatsuba’s algorithm, both of the input strings n and m are divided into two substrings

each, and the algorithm then runs recurively on three different input pairs computed from those excerpt

bitstrings. In the parallel version, those recursive calls are replaced by activating three children nodes [8].

As a result of such parallelization, if there is no carry-forwarding due to addition, we require lg |n| levels, for

which a total of |n|lg 3 nodes are required. However, if there is carry-forwarding due to additions, then we

require 2 lg |n| levels, for which a total of |n|2 lg 3 nodes are required.

In the top-down phase, if |i[m]| > 1 or |i[n]| > 1, then i writes (1) a and c to its left child, node 3i − 1

((3i− 1)[m] = a and (3i− 1)[n] = c), (2) b and d to its middle child, node 3i ((3i)[m] = b and (3i)[n] = d),

and (3) a + b and c + d to its right child, node 3i + 1 ((3i + 1)[m] = a + b and (3i + 1)[n] = c + d). If

|i[m]| = |i[n]| = 1, i.e., in the base case, the bottom-up phase begins and node i sets i[ans] = i[m]× i[n] that

can be computed trivially since |i[m]| = |i[n]| = 1.

In the bottom-up phase, node i sets i[ans] = (3i−1)[ans]×z2+((3i+1)[ans]−((3i−1)[ans]+(3i)[and]))×

z + (3i)[ans]. Notice that multiplication by z and z2 corresponds to bit shifts and does not need an actual

multiplication. Consequently, the product of m× n for node i is computed by this algorithm.

With some book-keeping (storing the place values of most significant bits of a + b and c + d), a node i

only needs to write the rightmost |i[m]|
2 and |i[n]|

2 bits to its children. Thus, we can safely assume that when

a node writes m and n to any of its children, then m and n of that child are of equal length and are of length

in some power of 2. (If we do not do the book-keeping, the required number of nodes increases, this number

is upper bounded by |n|2 lg 3 as the number of levels is upper bounded by 2 lg |n|; this observation was not

made in [8].) However, we do not show such book-keeping in the algorithm for brevity. Thus this algorithm

would require 2 lg |n| levels, i.e., |n|2 lg 3 nodes.

Computation of i[shift] : This algorithm utilizes shift to compute z. A node i updates i[shift] by

doubling the value of shift from its children. A node i evaluates that it is impedensable because of an
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incorrect value of i[shift] by evaluating the following macro.

Impedensable-Multiplication-Karatsuba-Shift(i) ≡
|i[m]| = 1 ∧ |i[n]| = 1 ∧ i[shift] ̸= 0 OR

(3i)[shift] = (3i− 1)[shift] = 0 ≤ (3i+ 1)[shift] ∧ i[shift] ̸= 1 OR

0 < (3i)[shift] = (3i− 1)[shift] ≤ (3i+ 1)[shift] ∧ i[shift] ̸= (3i)[shift]× 2.

Computation of i[m] and i[n] : To ensure that the data flows down correctly, we declare a node i to be

impedensable as follows.

Impedensable-Multiplication-Karatsuba-TopDown(i) ≡

i = 1 ∧ (i[m] ̸= m ∨ i[n] ̸= n) OR

((|i[m]| > 1 ∧ |i[n]| > 1)∧

((3i− 1)[m] ̸= i[m]
[
1 : |i[m]|

2

]
OR

(3i− 1)[n] ̸= i[n]
[
1 : |i[n]|

2

]
OR

(3i)[m] ̸= i[m]
[
|i[m]|

2 + 1 : |i[m]|
]

OR

(3i)[n] ̸= i[n]
[
|i[n]|
2 + 1 : |i[n]|

]
OR

(3i+ 1)[m] ̸= i[m]
[
1 : |i[m]|

2

]
+ i[m]

[
|i[m]|

2 + 1 : |i[m]|
]

OR

(3i+ 1)[n] ̸= i[n]
[
1 : |i[n]|

2

]
+ i[n]

[
|i[n]|
2 + 1 : |i[n]|

]
)).

Computation of i[ans] : To determine if a node i has stored i[ans] incorrectly, it evaluates to be impe-

densable as follows.

Impedensable-Multiplication-Karatsuba-BottomUp(i) ≡

|i[m]| = 1 ∧ |i[n]| = 1 ∧ i[ans] ̸= i[m]× i[n] OR

|i[m]| > 1 ∧ |i[n]| > 1 ∧ (i[ans] ̸= lshift((3i− 1)[ans], i[shift])

+lshift((3i+ 1)[ans]− (3i− 1)[ans]− (3i)[ans], (3i)[shift])

+(3i+ 1)[ans])

Thus, Algorithm 3.2 is described as follows:
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Algorithm 3.2. Parallel processing version of Karatsuba’s algorithm.

Rules for node i.

Impedensable-Multiplication-Karatsuba-Shift(i) −→

i[shift] = 0 if |i[m]| = 1 ∧ |i[n]| = 1 ∧ i[shift] ̸= 0.

i[shift] = 1 if (3i)[shift] = (3i− 1)[shift] = 0

≤ (3i+ 1)[shift] ∧ i[shift] ̸= 1

i[shift] = (3i)[shift]× 2 otherwise

Impedensable-Multiplication-Karatsuba-TopDown(i) −→

i[m] = m, i[n] = n if i = 1 ∧ (i[m] ̸= m ∨ i[n] ̸= n).

(3i− 1)[m] = i[m]
[
1 : |i[m]|

2

]
if (3i− 1)[m] ̸= i[m]

[
1 : |i[m]|

2

]
.

(3i− 1)[n] = i[n]
[
1 : |i[n]|

2

]
if (3i− 1)[n] ̸= i[n]

[
1 : |i[n]|

2

]
.

(3i)[m] = i[m]
[
|i[m]|

2 + 1 : |i[m]|
]

if (3i)[m] ̸= i[m]
[
|i[m]|

2 + 1 : |i[m]|
]
.

(3i)[n] = i[n]
[
|i[n]|
2 + 1 : |i[n]|

]
if (3i)[n] ̸= i[n]

[
|i[n]|
2 + 1 : |i[n]|

]
.

(3i+ 1)[m] = i[m]
[
1 : |i[m]|

2

]
+i[m]

[
|i[m]|

2 + 1 : |i[m]|
]

if (3i+ 1)[m] ̸= i[m]
[
1 : |i[m]|

2

]
.

+i[m]
[
|i[m]|

2 + 1 : |i[m]|
]
.

(3i+ 1)[n] = i[n]
[
1 : |i[n]|

2

]
+i[n]

[
|i[n]|
2 + 1 : |i[n]|

]
otherwise

Impedensable-Multiplication-Karatsuba-BottomUp(i) −→

i[ans] = i[m]× i[n] if |i[m]| = 1 ∧ |i[n]| = 1

i[ans] = lshift((3i− 1)[ans], i[shift])+

lshift((3i+ 1)[ans]− (3i− 1)[ans]

−(3i)[ans], (3i)[shift]) + (3i+ 1)[ans]) otherwise.

Algorithm 3.2 converges in O(|n|) time [8], and its work complexity is O(nlg 3), which is the time com-

plexity of the sequential Karatsuba’s algorithm [8].

Example 3.3. Figure 3.5 evaluates 100× 100 following Algorithm 3.2.
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(b)

Figure 3.5: Demonstration of multiplication of 100 and 100 in base 2: (a) top down (b) bottom up.

Lattice-Linearity

Lemma 3.3. Given the input bitstrings n and m, the predicate

∀i : ¬(Impedensable-Multiplication-Karatsuba-Shift(i)∨

Impedensable-Multiplication-Karatsuba-TopDown(i)∨

Impedensable-Multiplication-Karatsuba-BottomUp(i))

is lattice-linear on |n|2 lg 3 computing nodes.

Proof. For the global state to be optimal, in this problem, we require node 1 to store the correct multiplication

result in 1[ans]. To achieve this, each node i must have the correct value stored in i[n] and i[m], and their

children must store correct values of n, m and ans according to the values of i[n] and i[m]. This in turn

requires all nodes to store the correct i[shift] values.

Let us assume for contradiction that node 1 does not store the correct value in 1[ans] as n × m. This

implies that (1) node 1 does not have an updated value in 1[n] or 1[m], or (2) node 1 has a non-updated

value of 1[ans], (3) node 1 has not written the updated values to 2[n] & 2[m], 3[n] & 3[m] or 4[n] & 4[m], (4)
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node 1 has a non-updated value in 1[shift], or (5) nodes 2, 3 or 4 have incorrect values in their respective

n, m, ans or shift variables. In cases (1),...,(4), node 1 is impedensable.

Recursively, this can be extended to any node i. Let node i has stored an incorrect value in i[ans] or

i[shift]. Let i > 1. Then (1) node i has a non-updated value in i[shift], i[ans], i[n] or i[m], or (2) if

|i[m]| > 1 or |i[n]| > 1, node i has not written updated values to (3i−1)[n] & (3i−1)[m] or (3i)[n] & (3i)[m]

or (3i+1)[n] & (3i+1)[m], in which case node i is impedensable. In both these cases, node i is impedensable.

It is also possible that at least one of the children of node i has incorrect values in its respective n, m, ans

or shift variables.

From these cases, we have that given a global state s, where s = ⟨⟨1[n], 1[m], 1[ans]⟩, ⟨2[n], 2[m], 2[ans]⟩,

... ⟩, if s is impedensable, there is at least one node which is impedensable. This shows that if the global

state is impedensable, then there exists some node i which is impedensable.

Next, we show that if some node is impedensable, then node 1 will not store the correct answer. Node 1

is impedensable if it has not read the correct value 1[m] and 1[n]. Additionally, ∀i : i ∈ [1 : n2 lg 3] node i is

impedensable if (1) it has non-updated values in i[ans] or i[shift], (2) i has not written the correct values

to (3i − 1)[n] & (3i − 1)[m] or (3i)[n] & (3i)[m] or (3i + 1)[n] & (3i + 1)[m]. This implies that the parent

of i will also store incorrect value in its ans or shift variable. Recursively, we have that node 1 stores an

incorrect value in 1[ans]. Thus, the global state is impedensable.

With the arguments similar to those made in the proof of Lemma 3.2 and Theorem 3.1, we have the

following.

Lemma 3.4. The predicate

∀i : ¬(Impedensable-Multiplication-Karatsuba-Shift(i)∨

Impedensable-Multiplication-Karatsuba-TopDown(i)∨

Impedensable-Multiplication-Karatsuba-BottomUp(i))

is a lattice-linear self-stabilizing predicate.

Theorem 3.2. Algorithm 3.2 is silent and self-stabilizing.

Remark : In Algorithm 3.2, an impedensable node updates the state of its children. We have done so for

the brevity of the presentation of the algorithm. In practice, each child will notice that its local state does

not tally with the state of its parent, and will then update its own state.

3.3 Parallel Processing Modulo Operation

In this section, we demonstrate parallel processing systems which can be used to compute a given modulo

operation n mod m.
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3.3.1 Using |n | Processors

In this subsection, we discuss a lattice-linear method to compute modulo operation which requires |n|

processors. First, we discuss the key idea of the sequential algorithm, then we elaborate on the lattice-

linearity of its parallelization.

Key Idea

This algorithm is based on the standard modulo operation. Suppose that we have computed a = n[1 :

|n| − 1] mod m and b = n[|n|]. Then we have that the resultant value of n mod m is (a× 2 + b) mod m,

which is also equal to (lshift(a, 1) + b) mod m.

Parallelization

Every node, sequentially, reads a distinct bit of the input dividend n. Every node i will eventually store

the value of n[1 : i] under modulo m. The last node, indexed as node |n|, will store the final value, i.e.

n mod m. We demonstrate two ways of executing this algorithm. One way is with using the machine M

that we constructed in Section 3.1.2. Another way is to perform the computation without M where we use

Division-Modulo() that we defined in Section 3.1.2. We demonstrate these methods in the following.

Using M

In this part, we will utilize M to compute n mod m. Since every node i must store the value of n[1 : i]

mod m, the impedensable node i can be defined as follows.

Impedensable-Linear-Modulo(i) ≡


i[ans] ̸= n[1] if i = 1

(i[ans] ̸= M((i− 1)[ans], n[i]) otherwise

In the definition of Impedensable-Linear-Modulo(i), M(i, j) means that M is being invoked with an

initial state qi and an input j ∈ {0, 1}, i.e. M(i, j) = δ(qi, j). If δ(qi, j) = qk, then the execution of M(i, j)

will give k as output. The algorithm to compute n mod m is demonstrated in Algorithm 3.3.

Algorithm 3.3. Computing modulo on |n| processors using M .

Rules for node i.

Impedensable-Linear-Modulo(i) −→
i[ans] = n[1] if i = 1.

i[ans] = M((i− 1)[ans], n[i]) otherwise.

The time complexity of this algorithm is O(|n|). However, this method needs a preprocessing of O(m×
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|m|), which is quite high and impractical, especially if m is large. We present this result only to demonstrate

that some pre-processing can reduce the complexity of the modulo operation substantially.

Theorem 3.3. Given the input bitstrings n and m, the predicate

∀i : ¬Impedensable-Linear-Modulo(i)

is lattice-linear on |n| computing nodes.

Proof. Let us assume that node |n| has incorrect value in |n|[ans]. This implies that (1) node |n| does not

have an updated value in (|n|)[ans], in which case node |n| is impedensable, or (2) node |n| − 1 has an

incorrect value in (|n| − 1)[ans].

Recursively, this can be extended to any node i. Let that node i has stored an incorrect value in

i[ans], then (1) node i has a non-updated value in i[ans], in which case, node i is imedensable, or (2) node

i − 1 has an incorrect value in (i − 1)[ans]. From these cases, we have that given a global state s, where

s = ⟨1[ans], 2[ans], ..., |n|[ans]⟩, if s is impedensable, there is at least one node which is impedensable.

This shows that if the global state is impedensable, then there exists some node i which is impedensable.

Next, we show that if some node is impedensable, then node 1 will not store the correct answer. If node

i is impedensable, then node i has a non-updated value in i[ans]. This implies that node i+1 will also store

incorrect value in (i+ 1)[ans]. Recursively, we have that node |n| stores an incorrect value in |n|[ans], and

thus the global state is impedensable.

With the arguments similar to those made in the proof of Lemma 3.2 and Theorem 3.1, we have the

following.

Lemma 3.5. The predicate

∀i : ¬Impedensable-Linear-Modulo(i)

is a lattice-linear self-stabilizing predicate.

Theorem 3.4. Algorithm 3.3 is silent and self-stabilizing.

Using Long Division

If we utilize Division-Modulo() instead of M in Algorithm 3.3 (and, subtraction in place of M in

the definition of Impedensable-Linear-Modulo(i)), then every node takes O(|m|) time because of the

subtraction in Division-Modulo(), which implies that the total work complexity is O(|n| × |m|). Node i

will compute the value of n[1 : i] mod m by the end of time-step t. Therefore, the time complexity of this

algorithm is O(|n|× |m|) to compute n mod m, which is the same as the work complexity of this algorithm.
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Discussion

The behaviour of these methods is lattice-linear, but similar to a uniprocessor computation, in the sense

that if we ran these methods on a uniprocessor machine, then it will take the same order of time. In

Section 3.3.2, we present algorithms which exploit the power of a distributed system better.

3.3.2 Using 4 |n |/|m | − 1 Processors

In this section, we present a parallel processing algorithm to compute n mod m using 4 × |n|/|m| − 1

computing nodes. First, we discuss the key idea of the sequential algorithm, then we elaborate on the

lattice-linearity of its parallelization.

Key Idea

This algorithm better parallizes the idea discussed in Section 3.3.1. Suppose that we have computed

a = n[1 : ⌊|n|/2⌋] mod m and b = n[⌊|n|/2⌋+1 : |n|]. Then the resultant value of n mod m is (a×2⌈|n|/2⌉+b)

mod m, which is also equal to (lshift(a, ⌈|n|/2⌉) + b) mod m.

Parallelization

The algorithm induces a binary tree among the nodes based on their ids; there are 2×|n|/|m| nodes in the

lowest level (level 1). This algorithm starts from the leaves where all leaves compute and store, in sequence,

a substring of n of length |m|/2 under modulo m. In the induced binary tree, the computed modulo result

by sibling nodes at level ℓ is sent to the parent. Consecutively, those parents at level ℓ+1, contiguously, store

a larger substring of n (double the bits that each of their children covers) under modulo m. We elaborate

this procedure in this subsection. This algorithm uses three variables to represent the state of each node i:

i[shift], i[pow] and i[ans].

Computation of i[shift] : The variable shift stores the required power of 2. At any node at level 1, shift

is 0. At level 2, the value of shift at any node is |m|/2. At any higher level, the value of shilft is twice the

value of shift of its children. Impedensable-Log-Modulo-Shift, in this context, is defined below.

Impedensable-Log-Modulo-Shift(i) ≡
i[shift] ̸= 0 if i ≥ 2× |n|/|m|

i[shift] ̸= |m|/2 if (2i)[shift] = (2i+ 1)[shift] = 0

i[shift] ̸= 2× (2i)[shift] if (2i)[shift] = (2i+ 1)[shift] ≥ |m|/2

Computation of i[pow] : The goal of this computation is to set i[pow] to be 2i[shift] mod m, whenever

the level of i is greater than 1. This can be implemented using the following definition for Impedensable-

Log-Modulo-Pow.
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Impedensable-Log-Modulo-Pow(i) ≡
i[pow] ̸= 1 if i[shift] = 0

i[pow] ̸= 2
|m|
2 if i[shift] = |m|/2

i[pow] ̸= ((2i)[pow])2 mod m otherwise

By definition, i[pow] is less than m. Also, computation of pow requires multiplication of two numbers

that are upper-bounded by |m|. Hence, this computation can benefit from parallelization of Algorithm 3.2.

However, as we will see later, the complexity of this algorithm (for modulo) is dominated by the modulo

operation happening in individual nodes which is O(|m|2), we can use the sequential version of Karatsuba’s

algorithm for multiplication, without affecting the order of the time complexity of this algorithm.

Computation of i[ans] : We split n into strings of size |m|
2 , the number representing this substring is less

than m. At the lowest level (level 1), i[ans] is set to the corresponding substring. At higher levels, i[ans]

is set to (i[pow] × (2i)[ans] + (2i + 1)[ans]) mod m. This computation also involves multiplication of two

numbers whose size is upper bounded by |m|. An impedensable node i from a non-updated i[ans] can be

evaluated using Impedensable-Log-Modulo-Ans(i).

Impedensable-Log-Modulo-Ans(i) ≡
i[ans] ̸= n[(i− 2× |n|

|m|
)× |m|

2
+ 1 : (i− 2× |n|

|m|
+ 1)× |m|

2
] if i[shift] = 0

i[ans] ̸= Mod(Sum(Mul((2i)[ans], i[pow]), (2i+ 1)[ans]),m) otherwise

We describe the algorithm as Algorithm 3.4.
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Algorithm 3.4. Modulo computation by inducing a tree among the nodes.

Rules for node i.

Impedensable-Log-Modulo-Shift(i) −→
i[shift] = 0 if i ≥ 2× |n|/|m|

i[shift] =
|m|
2

if (2i)[shift] = (2i+ 1)[shift] = 0

i[shift] = 2× (2i)[shift] if (2i)[shift] = (2i+ 1)[shift] ≥ |m|/2

Impedensable-Log-Modulo-Pow(i) −→
i[pow] = 1 if i[shift] = 0

i[pow] = 2
|m|
2 if i[shift] = |m|/2

i[pow] = Mod(Mul(i[pow], i[pow]),m) otherwise

Impedensable-Log-Modulo-Ans(i) −→
i[ans] = n[(i− 2× |n|

|m|
)× |m|

2
+ 1 : (i− 2× |n|

|m|
+ 1)× |m|

2
] if i[shift] = 0

i[ans] = Mod(Sum(Mul((2i)[ans], i[pow]), (2i+ 1)[ans]),m) otherwise

Example 3.4. Figure 3.6 shows the computation of 11011 mod 11 as performed by Algorithm 3.4.

1+10 mod 11
node 1

1 mod 11
node 2

10+0 mod 11
node 3

00 mod 11
node 4

01 mod 11
node 5

10 mod 11
node 6

11 mod 11
node 7

0
node 8

0
node 9

0
node 10

1
node 11

1
node 12

0
node 13

1
node 14

1
node 15

pow = 1

pow = 10

pow = 100 mod 11 (= 1)

pow = 10000 mod 11 (= 1) (=0)

Figure 3.6: Processing 11011 mod 11 following Algorithm 3.4.

Lattice-Linearity

Theorem 3.5. Given the input bitstrings n and m, the predicate

∀i : ¬(Impedensable-Log-Modulo-Shift(i)∨

Impedensable-Log-Modulo-Pow(i)∨

Impedensable-Log-Modulo-Ans(i))

is lattice-linear on 4|n|/|m| − 1 computing nodes.
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Proof. For the global state to be optimal, under this algorithm, we require node 1 to store the correct modulo

result in 1[ans]. To achieve this, each node i must have the correct value of i[ans]. This in turn requires all

nodes to store the correct i[shift] and i[pow] values.

Let us assume for contradiction that node 1 has incorrect value in 1[ans]. This implies that (1) node 1

has a non-updated value in i[shift] or i[pow], or (2) node 1 does not have an updated value in i[ans]. In

both these cases, node 1 is impedensable. It is also possible that node 2 or node 3 have an incorrect value

in their variables.

Recursively, this can be extended to any node i. Let node i has stored an incorrect value in i[ans]. If

i < 2(|n|/|m|), then (1) node i has a non-updated value in i[ans], i[pow] or i[shift], in which case node

i is impedensable or (2) node 2i or node 2i + 1 have incorrect value in their respective shift, pow or ans

variables. If i ≥ 2(|n|/|m|), then i does not have values i[shift] = 0, i[pow] = 1 or a correct i[ans] value, in

which case i is impedensable. From these cases, we have that given a global state s, where s = ⟨⟨1[shift],

1[pow], 1[ans]⟩, ⟨2[shift], 2[pow], 2[ans]⟩, ..., ⟨(4|n|/|m|−1)[shift], (4|n|/|m|−1)[pow], (4|n|/|m|−1)[ans]⟩⟩,

if s is impedensable, there is at least one node which is impedensable.

This shows that if the global state is impedensable, then there exists some node i which is impedensable.

Next, we show that if some node is impedensable, then node 1 will not store the correct answer. ∀i :

i ∈ [1 : 4|n|/|m| − 1] node i is impedensable if it has non-updated values in i[ans], i[pow] or i[shift]. This

implies that the parent of node i also stores incorrect value in its ans variable. Recursively, we have that

node 1 stores an incorrect value in 1[ans], and thus the global state is impedensable.

With the arguments similar to those made in the proof of Lemma 3.2 and Theorem 3.1, we have the

following.

Lemma 3.6. The predicate

∀i : ¬(Impedensable-Log-Modulo-Shift(i)∨

Impedensable-Log-Modulo-Pow(i)∨

Impedensable-Log-Modulo-Ans(i))

is a lattice-linear self-stabilizing predicate.

Theorem 3.6. Algorithm 3.4 is silent and self-stabilizing.

Time Complexity Analysis

Algorithm 3.4 is a general algorithm that uses the Mod( Mul(· · · )) and Mod( Sum(· · · )). For some

given x, y and z values, Mod(Mul(x, y),z) (resp., Mod (Sum(x, y),z)) involves first the multiplication (resp.,

addition) of two input values x and y and then evaluating the resulting value under modulo z. These functions

35



can be implemented in different ways. Choices for these implementations affect the time complexity. We

consider the following approaches.

Modulo via Long Division

First, we consider the standard approach for computing Mod(Mul(· · · )) and Mod(Sum(· · · )). Observe

that in Algorithm 3.4, if we compute Mod(Mul(x, y)) then x, y < m. Hence, we can use Karatsuba’s

parallelized algorithm from Section 3.2, where both the input numbers are less than m. Using the analysis

from Section 3.2, we have that each multiplication operation has a time complexity of O(|m|).

Subsequently, to compute the mod operation, we need to compute xy mod m where xy is upto 2|m|

digits long. Using the standard approach of long division, we will need |m| iterations where in each iteration,

we need to do a subtraction operation with numbers that are |m| digits long. Hence, the complexity of this

approach is O(|m|2) per modulo operation. Since this complexity is higher than the cost of multiplication,

the overall time complexity is O(|m|2 × lg
|n|
|m|

).

Modulo by Using M

The previous approach used m and n as inputs. Next, we consider the case where m is hardcoded in the

algorithm. As discussed in Section 3.1.2, we observe that these problems occur in practice. Our analysis is

intended to provide lower bounds on the complexity of the modulo operation when m is hardcoded. Similar to

Section 3.1.2, the pre-processing required in these algorithms makes them impractical in practice. However,

we present them to show that there is a potential to reduce the complexity by some pre-processing.

We can use Algorithm 3.2 for multiplication; each multiplication operation will have a time complexity of

O(|m|). Subsequently, to compute the mod operation, we need to compute xy mod m where xy is upto 2|m|

digits long. Using M , we will need 2m iterations; each iteration takes a constant amount of time. Hence,

the complexity of this approach is O(|m|) per modulo operation. Since this complexity is higher than the

cost of multiplication, the overall time complexity is O(|m| × lg
|n|
|m|

).

Modulo by Constructing Transition Functions

In this part, we again consider the case where m is hardcoded. If m is fixed, we can create a table δsum

of size m × m where an entry at location (i, j) represents i + j mod m in O(m2) time. Using δsum, we

can create another transition function δmul of size m ×m where an entry at location (i, j) represents i × j

mod m in O(m2) time.

Using a preprocessed δmul, the time complexity of a Mod(Mul(· · · )) operation becomes O(1). As a

result, the overall complexity of the modulo operation becomes O(lg
|n|
|m|

). The pre-processing required in

this method also is high. However, the effective time complexity of the modulo operation is reduced even

more, as compared to the method that uses M , which is discussed above.
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3.4 Discussion on Common Properties of These Algorithms

In this section, we look at some common properties that are present in the problems and algorithms

discussed in the preceding sections. Effectively, we also provide an alternate visualization to the abstraction

of the lattices induced by the algorithms present in this chapter.

3.4.1 Data Dependency Among Nodes

In Section 3.2.2, for example, we showed how Algorithm 3.2 is lattice-linear by showing that given any

suboptimal global state, we can point out specific nodes that are impedensable. Any impedensable node i

has only one choice of action, which implies that a total order is induced among all the local states that i

can visit. Such a total order, induced among the local states of every node, gives rise to the induction of a

lattice among the global states.

Let that source of the variable i[var] in a node i be the node that i depends on to evaluate i[var]. For

example, under Algorithm 3.2, node i depends on node 3i − 1, node 3i and node 3i + 1 to evaluate i[ans].

Thus the source nodes for node i with respect to the evaluation of i[ans] are node 3i− 1, node 3i and node

3i+ 1. Similarly the source node of i with respect to i[m] or i[n] is node
⌊ i+ 1

3

⌋
.

Let that Source(i, var) is the set of nodes that are the source of i with respect to var. Thus, under

Algorithm 3.2, for example, Source(i, ans) = {3i − 1, 3i, 3i + 1}. Source(i,m) =
{⌊ i+ 1

3

⌋}
. However,

Source(1,m) = ϕ because i is receiving m as part of the input. Similarly, for all other algorithms, we can

define the source nodes for all the nodes with respect to any given variable.

Let Variables(i) be the set of the names of all variables of node i. We use a macro Depends(i); a

recursive definition for this macro is present in Figure 3.7.

Depends(i) ⊇
⋃

var∈Variables(i)
Source(i, var).

Depends(i) ⊇
⋃

j∈Depends(i),var∈Variables(j)
Source(j, var).

Figure 3.7: Definition of the macro Depends.

3.4.2 Induction of ≺-lattice

In Algorithm 3.2, for m and n, the information of m and n for i is set based on the values of the parent

of i. Hence, the Depends(i) will contain all the ancestor nodes of i in the tree. In addition, the ans variable

of i is based on the children of i. Hence Depends(i) will (also) contain the descendants of i in the tree. For

example, in Figure 3.5, Depends(3) = {1, 8, 9, 10} and Depends(8) = {1, 3}.

Let Is-Bad(i, var) be true if and only if i is impedensable with respect to some variable var, i.e., based

on the values of the variables in Source(i, var), i has not computed var correctly yet. We define state value

of a node i in a global state s as follows. All the macros are also computed in the same global state s.
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State-Value(i, s) =

|{var|var ∈ Variables(i) : Is-Bad(i, var)}|

+|{var|var ∈ Variables(j) : j ∈ Depends(i, var) : Is-Bad(j, var)}|

We define the rank of a global state s as follows.

Rank(s) =
∑

each node i

State-Value(i, s).

From the perspective of, for example, Algorithm 3.2, a total order is induced among the local state

visited by a node; State-Value(i) describes the badness of the local state of a node i, which decreases

monotonously as the nodes execute under Algorithm 3.2. Similarly, for all other algorithms, a total order is

defined similarly using State-Value(i).

As a consequence of the total order that is defined by State-Value(i), a lattice among the global states

can be observed with respect to the rank of the system; if the rank of a state s is nonzero, then there is some

node i that is impedensable in s. Let that only node i changes its state and as a consequence, s transitions

to state s′. Then, we have that s ≺ s′ where s[i] ≺ s′[i]. This forms a ≺-lattice among the global states

where s[i] ≺ s′[i] iff State-Value(i, s) > State-Value(i, s′) and s ≺ s′ iff Rank(s) > Rank(s′). Rank is

0 at the supremum of the lattice, which is the optimal state.

From the above observation, we have that the system is able to converge from an arbitrary state to the

required state within the expected number of time steps. This allows providing new inputs to a parallel

processing system without needing to refresh variables of the nodes.

A problem is lattice-linear if it can be modelled in such a way that an impedensable node must change its

state in order for the system to reach the optimal state [6]. From the above discussion, we have the following

theorem about multiplication and modulo operations.

3.5 Summary of the Chapter

The contribution of this chapter is two-fold, one is applicative and the other is mathematical. First,

we show that the parallelization of multiplication and modulo is lattice-linear. Due to lattice-linearity,

we have that the algorithms we study in this chapter are tolerant to asynchrony. Second, we show two

different distributive lattice structures, for both multiplication and modulo, which guarantee convergence in

asynchronous environments. This chapter is the first work that shows that a lattice-linear problem can be

solved under two different lattice structures. Specifically, considering (any) one of these problems in both

the lattice structures, (1) the numbers of nodes are different, so the size of the global states in both the

lattice structures is different, and (2) the numbers of children that a node has are different.

Multiplication and Modulo are among the fundamental mathematical operations. Fast parallel processing
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algorithms for such operations reduce the execution time of the applications which they are employed in. In

this chapter, we showed that these problems are lattice-linear. In this context, we studied parallelization of

the standard multiplication and a parallelization of Karatsuba’s algorithm. In addition, we studied parallel

processing algorithms for the modulo operation.

The presence of lattice-linearity in problems and algorithms allows nodes to execute asynchronously. This

is specifically valuable in parallel algorithms where synchronization can be removed as is. These algorithms

are snap-stabilizing, which means that the state transitions of the system strictly follow its specification.

They are also self-stabilizing, i.e., the supremum states in the lattices induced under the respective predicates

are the optimal states.

Utilizing these algorithms, the available cluster or GPU power can be used to compute the multiplication

and modulo operations on big-number inputs. In this case, a synchronization primitive also does not need

to be deployed. Also, the circuit does not need to be refreshed before providing it with a new input. This

is also very fruitful, for example, in Karatsuba’s multiplication the time that it would take to refresh the

circuit is O(|n|2 lg 3), but even without refreshing, we obtain the final answer in O(n) time. This shows the

gravity of the utility of the self-stabilizing property of these algorithms. Thus a plethora of applications will

benefit from the observations presented in this chapter.

3.6 Non-Lattice-Linear Problems

Unlike the problems that we studied in this chapter, certain problems are non-lattice-linear problems. In

those problems, given a suboptimal global state, the problem does not stipulate, from a specific set of nodes,

to change their state. In such problems, there are instances in which the impedensable nodes cannot be

determined naturally, i.e., in those instances ∃s : ¬P(s) ∧ (∀i : ∃s′ : P(s′) ∧ s[i] = s′[i]). For such problems,

≺-lattices may be induced algorithmically, through lattice-linear algorithms.

In Chapter 4 (and 5), we study non-lattice linear problems. Minimal dominating set, minimal vertex

cover and maximal independent set are examples of non-lattice linear problems: in such problems for any

subject node i, an optimal global state can be reached without changing the local state of i.
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CHAPTER 4

EVENTUALLY LATTICE-LINEAR ALGORITHMS

In Chapter 3, we study examples of lattice-linear problems and present self-stabilizing algorithms that

guarantee convergence in asynchrony. These algorithms are capable of converging in asynchrony because

they exploit the property of lattice-linearity of the problems that they are developed for.

In this chapter, we study whether lattice-linearity can be extended for problems that are not lattice-linear.

This is one of the issues that were pointed out in [6]: whether non-lattice-linear problems can be solved under

the model of lattice-linearity. The behaviour of non-lattice-linear problems makes it seem impossible since

the nature of these problems does not provide the definition of impedensable nodes. However, we find that

a total order can be induced among the local states of nodes algorithmically, even if the problem does not

does not define how impedensable nodes can be identified.

In this chapter, we introduce the class of eventually lattice-linear algorithms. We present eventually

lattice-linear self-stabilizing algorithms for service demand based minimal dominating set (SDMDS), minimal

vertex cover (MVC), maximal independent set (MIS), graph colouring (GC) and 2-dominating set (2DS)

problems.

Eventually lattice-linear algorithms induce lattices in a subset of the state space. These algorithms first

(1) guarantee that from any arbitrary state, the system reaches a state in one of the induced lattices, and

then (2) these algorithms behave lattice-linearly, and make the system traverse that lattice and reach an

optimal state.

We proceed as follows. We begin with the SDMDS problem which is a generalization of the minimal

dominating set. We devise a self-stabilizing algorithm for SDMDS. We scrutinize this algorithm and de-

compose it into two parts, the second of which satisfies the lattice-linearity property of [6] if it begins in a

feasible state. Furthermore, the first part of the algorithm ensures that the algorithm reaches a feasible state.

We show that the resulting algorithm is self-stabilizing, and the algorithm has limited-interference property

(discussed in Section 4.2.5) due to which it is tolerant to the nodes reading old values of other nodes. We

also demonstrate that this approach is generic. It applies to various other problems including MVC MIS,

GC and 2DS.

The algorithms for SDMDS, MVC and MIS converge in 1 round plus n moves, the algorithm for GC

converges in n + 4m moves, and the algorithm for 2DS converges in 1 round plus 2n moves. Adding to

the fact that these algorithms do not require a synchronous environment to execute, these results are an

improvement over the algorithms present in the literature.

We also present some experimental results that show the efficacy of eventually lattice-linear algorithms
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in real-time shared memory systems. Specifically, we compare our algorithm for MIS (Algorithm 4.3) with

algorithms presented in [14] and [15]. The experiments are conducted in cuda environment, which is built on

shared memory model.

The algorithms present in this chapter tolerate asynchrony in AMR model (cf. Section 2.1.1).

Organization of the Chapter

This chapter is organized as follows. In Section 4.1, we describe the algorithm for the service demand

based minimal dominating set problem. In Section 4.2, we analyze the characteristics of that algorithm

and show that it is eventually lattice-linear. We use the structure of eventually lattice-linear self-stabilizing

algorithms to develop algorithms for minimal vertex cover, maximal independent set, graph colouring and

2-dominating set problems, respectively, in Sections 4.3, 4.4, 4.5 and 4.6. Then, in Section 5.6, we compare

the convergence speed of the algorithm presented in Section 4.4 with other algorithms (for the maximal

independent set problem) in the literature (specifically, [14] and [15]). Finally, we summarize the chapter in

Section 4.8.

4.1 Service Demand based Minimal Dominating Set

In this section, we introduce a generalization of the minimal dominating set (MDS) problem (Sec-

tion 4.1.1), the service demand based minimal dominating set (SDMDS) problem, and describe an algorithm

to solve it (Section 4.1.2).

4.1.1 Problem Description

The SDMDS problem, a generalization of MDS, is a simulation, on an arbitrary graph G, in which all

nodes have some demands to be fulfilled and they offer some services. If a node i is in the dominating set

then it can not only serve all its own demands Di, but also offer services from, its set of services Si, to its

neighbours. If i is not in the dominating set, then it is considered dominated only if each of its demands in

Di is being served by at least one of its neighbours that is in the dominating set.

Definition 4.1. Service demand based minimal dominating set problem (SDMDS). In the service

demand based minimal dominating set problem, the input is a graph G and a set of services Si and a set of

demands Di for each node i in G; the task is to compute a minimal set D such that for each node i,

1. either i ∈ D, or

2. for each demand d in Di, there exists at least one node j in Adji such that d ∈ Sj and j ∈ D.

In the above generalization of the MDS problem, if all nodes have same set X as their services and

demands, i.e., ∀i : Si = X and Di = X, then it is equivalent to MDS.

In the following subsection, we present a self-stabilizing algorithm for the minimal SDMDS problem.

Each node i is associated with variable i[st] with domain {IN,OUT}. i[st] defines the state of i. We define
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D to be the set {i ∈ V (G) : i[st] = IN}.

4.1.2 Algorithm for SDMDS Problem

The list of constants, provided with the input, is in Table 4.1.

Constant What it stands for

Di the set of demands of node i.

Si the set of services provided by node i.

Table 4.1: Constants provided with the input.

The macros that we utilize are described in Table 4.2. Recall that D is the set of nodes which currently

have the state as IN . A node i is addable if there is at least one demand of i that is not being serviced by

any neighbour of i that is in D. A node i is removable if D \ {i} is also a dominating set given that D is a

dominating set. The dominators of i are the nodes that are (possibly) dominating node i: if some node j is

in Dominators-Of(i), then there is at least one demand d ∈ Di such that d ∈ Sj . i is impedensable if i is

removable and there is no node k that is removable and is of an ID higher than i, such that k and i are able

to serve for some common node j.

D ≡ {i ∈ V (G) : i[st] = IN}.

Addable-SDMDS-ELL(i) ≡ i[st] = OUT∧

(∃d ∈ Di,∀j ∈ Adji : d ̸∈ Sj ∨ j[st] = OUT ).

Removable-SDMDS-ELL(i) ≡ (∀d ∈ Di : (∃j ∈ Adji : d ∈ Sj ∧ j[st] = IN))∧

(∀j ∈ Adji,∀ d ∈ Dj : d ∈ Si ⇒

(∃k ∈ Adjj , k ̸= i : (d ∈ Sk ∧ k[st] = IN))).

Dominators-Of(i) ≡

{j ∈ Adji, j[st] = IN : ∃d ∈ Di : d ∈ Sj} ∪ {i} if i[st] = IN

{j ∈ Adji, j[st] = IN : ∃d ∈ Di : d ∈ Sj} otherwise.

Impedensable-SDMDS-ELL(i) ≡ i[st] = IN∧ Removable-SDMDS-ELL(i)∧

(∀j ∈ Adji,∀ d ∈ Dj : d ∈ Si ⇒

((∀k ∈ Dominators-Of(j), k ̸= i : (d ∈ Sk ∧ k[st] = IN)) ⇒

(k[id] < i[id] ∨ ¬Removable-SDMDS-ELL(k)))).

Table 4.2: Macros used in the algorithm for SDMDS problem.

The general idea our algorithm is as follows.

1. A node enters the dominating set unconditionally if it is addable. This ensures that G enters a state
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where the set of nodes in D form a (possibly non-minimal) dominating set. If D is a dominating set,

we say that the corresponding state is a feasible state.

2. While entering the dominating set is not lattice-linear, the instruction governing the leaving of the

dominating set is lattice-linear. Node i leaves the dominating set iff it is impedensable. Specifically,

if i serves for a demand d in Dj where j ∈ Adji and the same demand is also served by another

node k (k ∈ Adjj) then i leaves only if (1) k[id] < i[id] or (2) k is not removable. This ensures that

if some demand d of Dj is satisfied by both i and k both of them cannot leave the dominating set

simultaneously. This ensures that j will remain dominated.

Thus, the rules for Algorithm 4.1 are as follows:

Algorithm 4.1. Rules for node i.

Addable-SDMDS-ELL(i) −→ i[st] = IN .

Impedensable-SDMDS-ELL(i) −→ i[st] = OUT .

We decompose Algorithm 4.1 into two parts: (1) Algorithm 4.1.1, that only consists of first guard and

action of Algorithm 4.1 and (2) Algorithm 4.1.2, that only consists of the second guard and action of

Algorithm 4.1. We use this decomposition in the following section of this chapter to relate the algorithm to

eventual lattice-linearity.

4.2 Lattice-Linear Characteristics of the Algorithm for SDMDS

In this section, we analyze the characteristics of Algorithm 4.1 to demonstrate that it is eventually

lattice-linear. We proceed as follows. In Section 4.2.1, we state the propositions which define the feasible

and optimal states of the SDMDS problem, along with some other definitions. In Section 4.2.2, we show

that G reaches a state where it manifests a (possibly non-minimal) dominating set. In Section 4.2.3, we

show that after when G reaches a feasible state, Algorithm 4.1 behaves like a lattice-linear algorithm. In

Section 4.2.4, we show that when D is a minimal dominating set, no nodes are enabled. In Section 4.2.5, we

argue that because there is a bound on interference between Algorithm 4.1.1 and Algorithm 4.1.2 even when

the nodes read old values, Algorithm 4.1 is an eventually lattice-linear self-stabilizing (ELLSS) algorithm.

In Section 4.2.6, we study the time and space complexity attributes of Algorithm 4.1.

4.2.1 Propositions Stipulated by the SDMDS Problem

The SDMDS problem stipulates that the nodes whose state is IN must collectively form a dominating

set. We represent this proposition as P ′
sdmds.

P ′
sdmds(D) ≡ ∀i ∈ V (G) : (i ∈ D ∨ (∀d ∈ Di,∃j ∈ Adji : (d ∈ Sj ∧ j ∈ D))).

The SDMDS problem stipulates an additional condition that D should be a minimal dominating set. We

represent this proposition as Psdmds.
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Psdmds(D) ≡ P ′
sdmds(D) ∧ (∀i ∈ D,¬P ′

sdmds(D \ {i})).

If P ′
sdmds(D) is true, then G is in a feasible state. And, if Psdmds(D) is true, then G is in an optimal

state.

Based on the above definitions, we define two scores with respect to the global state, Rank and Badness.

Rank determines the number of nodes needed to be added to D to change D to a dominating set. Badness

determines the number of nodes that are needed to be removed from D to make it a minimal dominating

set, given that D is a (possibly non-minimal) dominating set.

Definition 4.2. Rank(D) ≡ min{|D′| − |D| : P ′
d(D′) ∧ D ⊆ D′}.

Definition 4.3. Badness(D) ≡ max{|D| − |D′| : P ′
d(D′) ∧ D′ ⊆ D}.

4.2.2 Guarantee to Reach a Feasible State by Algorithm 4.1.1

We show that under Algorithm 4.1.1, G is guaranteed to reach a feasible state.

Lemma 4.1. Let t.D be the value of D at the beginning of round t. If t.D is not a dominating set then

(t+ 1).D is a dominating set.

Proof. Let i be a node such that i ∈ t.D and i ̸∈ (t+ 1).D, i.e., i leaves the dominating set in round t. This

means that i remains dominated and all nodes in Adji remain dominated, even when i is removed. This

implies that i will not reduce the feasibility of t.D; it will not increase the value of Rank.

Now let ℓ be a node such that ℓ ̸∈ t.D which is addable when it evaluates its guards in round t. This

implies that ∃ d ∈ Dℓ such that d is not present in Sj for any j ∈ Adjℓ that is in the dominating set.

According to the algorithm, the guard of the second action is true for ℓ. This implies that ℓ[st] will be set

to IN .

It can also be possible for the node ℓ that it is not addable when it evaluates its guards in round t. This

may happen if some other nodes around ℓ already decided to move to D, and as a result ℓ is now dominated.

Hence ℓ ̸∈ (t+ 1).D and we have that ℓ is dominated at round t+ 1.

Therefore, we have that (t+ 1).D is a dominating set, which may or may not be minimal.

From Lemma 4.1, we have that if at the beginning of some round, G is in a state where Rank > 0, then

by the end of that round, Rank will be 0.

4.2.3 Lattice-Linearity of Algorithm 4.1.2

In the following lemma, we show that Algorithm 4.1.2 is lattice-linear.

Lemma 4.2. If t.D is a non-minimal dominating set then under Algorithm 4.1 (more specifically, Algo-

rithm 4.1.2), there exists at least one node such that G cannot reach a minimal dominating set until that

node is removed from the dominating set.
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Proof. Since D is a dominating set, the first guard is false for all nodes in G.

Since D is not minimal, there exists at least one node that must be removed in order to make D minimal.

Let S′ be the set of nodes which are removable. Let x be some node in S′. If x is not serving any node,

then Impedensable-SDMDS-ELL(x) is trivially true. Otherwise there exists at least one node j which is

served by x, that is, ∃d ∈ Dj : d ∈ Sx. We study two cases which are as follows: (1) for some node j served

by x, there does not exist another node b ∈ S′ which serves j, and (2) for any node b ∈ S′ such that x and

b serve some common node j, b[id] < M [id].

In the first case, x cannot be removed because Impedensable-SDMDS-ELL(x) is false and, hence, x

cannot be in S′, thereby leading to a contradiction. In the second case, Impedensable-SDMDS-ELL(x)

is true and Impedensable-SDMDS-ELL(b) is false since b[id] < M [id]. Thus, node b cannot leave the

dominating set until x leaves. In both the cases, we have that j stays dominated.

Since ID of every node is distinct, we have that there exists at least one node x for which Impedensable-

SDMDS-ELL(x) is true. For example, Impedensable-SDMDS-ELL is true for the node with the highest

ID in S′; G cannot reach a minimal dominating set until x is removed from the dominating set.

From Lemma 4.2, it follows that Algorithm 4.1.2 satisfies the condition of lattice-linearity as described

in Section 2.3. It follows that if we start from a state where D is a (possibly non-minimal) dominating set

and execute Algorithm 4.1.2 then it will reach a state where D is a minimal dominating set even if nodes

are executing with old information about others. Next, we have the following result which follows from

Lemma 4.2.

Lemma 4.3. Let t.D be the value of D at the beginning of round t. If t.D is a non-minimal dominating set

then |(t+ 1).D| ≤ |t.D| − 1, and (t+ 1).D is a dominating set.

Proof. From Lemma 4.2, at least one node x (including the maximum ID node in S′ from the proof of

Lemma 4.2) would be removed in round t. Furthermore, since D is a dominating set, Addable-SDMDS-

ELL(i) is false at every node i. Thus, no node is added to D in round t. Thus, the |(t+ 1).D| ≤ |t.D| − 1.

For any node x that is removable, Impedensable-SDMDS-ELL(i) is true only if any node j which is

(possibly) served by x has other neighbours (of a lower ID) which serve the demands which x is serving to

it. This guarantees that j stays dominated and hence (t+ 1).D is a dominating set.

4.2.4 Termination of Algorithm 4.1

The following lemma studies the action of Algorithm 4.1 when D is a minimal dominating set.

Lemma 4.4. Let t.D be the value of D at the beginning of round t. If D is a minimal dominating set, then

(t+ 1).D = t.D.
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Proof. Since D is a dominating set, Addable-SDMDS-ELL(i) is false for every node in V (G), i.e., the

first action is disabled for every node in V (G). Since D is minimal, Impedensable-SDMDS-ELL(i) is

false for every node i in D. Hence, the second action is disabled at every node i in D. Thus, D remains

unchanged.

4.2.5 Eventual Lattice-Linearity of Algorithm 4.1

Lemma 4.2 showed that Algorithm 4.1.2 is lattice-linear. In this subsection, we make additional observa-

tions about Algorithm 4.1 to generalize the notion of lattice-linearity to eventually lattice-linear algorithms.

We have the following observations.

1. From Lemma 4.1, starting from any state, Algorithm 4.1 will reach a feasible state even if a node

reads old information about the neighbours. This is due to the fact that Algorithm 4.1.1 only adds

nodes to D. If incorrect information about the state of neighbours causes i not to be added to D, this

will be corrected when i executes again and obtains recent information about neighbours. If incorrect

information causes i to be added to D unnecessarily, it does not affect this claim.

2. From Lemma 4.2, if we start G in a feasible state where no node has incorrect information about the

neighbours in the initial state then Algorithm 4.1.2 reaches a minimal dominating set. Note that this

claim remains valid even if the nodes execute actions of Algorithm 4.1.2 with old information about

the neighbours as long as the initial information they use is correct.

3. We observe that Algorithm 4.1.1 and Algorithm 4.1.2 have very limited interference with each other,

and so an arbitrary graph G will reach an optimal state even if nodes are using old information.

From the above observations, if we allow the nodes to read old values, then the nodes can violate the

feasibility of G finitely many times and so G will eventually reach a feasible state and stay there forever. We

introduce the class of eventually lattice-linear algorithms (ELLA). Algorithm 4.1 is an ELLA.

Definition 4.4. Eventually Lattice-Linear Algorithms (ELLA). An algorithm A is ELLA for a prob-

lem P , represented by a predicate P, if its rules can be split into two sets of rules F1 and F2 and there exists

a subset Sf of the state space S, such that

(a) Any computation of A (from its permitted initial states) eventually reaches a state where Sf is stable

in A, i.e., Sf is true and remains true subsequently.

(b) Rules in F1 are disabled in a state in Sf .

(c) F2 is a lattice-linear algorithm, i.e., it induces a total order among the local states visited by the nodes,

given that the system initializes in a state in Sf .

Definition 4.5. Eventually Lattice-Linear Self-Stabilizing (ELLSS) Algorithms. Continuing from

Definition 4.4, A is an ELLSS algorithm iff F1 takes the system to a state in Sf from an arbitrary state,

46



and F2 is capable of taking the system from any state in Sf to an optimal state.

Remark : The algorithms that we study in this chapter are ELLSS algorithms, i.e., they follow Definition 4.5.

Notice that Algorithm 4.1 is an ELLSS algorithm.

In Algorithm 4.1, F1 corresponds to Algorithm 4.1.1 and F2 corresponds to Algorithm 4.1.2. This

algorithm satisfies the properties of Definition 4.5.

Example 4.1. We illustrate the eventual lattice-linear structure of Algorithm 4.1 where we consider the

special case where all nodes have the same single service and demand. Effectively, it becomes a case of

minimal dominating set.

In Figure 4.1, we consider an example of graph G4 containing four nodes connected in such a way that

they form two disjoint edges, i.e., V (G4) = {v1, v2, v3, v4} and E(G4) = {{v1, v2}, {v3, v4}}.

We write a state of this graph as (v1[st], v2[st], v3[st], v4[st]). As shown in this figure, of the 16 states in

the state space, 9 are part of 4 disjoint lattices. These are feasible states, i.e., states where nodes with st

equals IN form a (possibly non-minimal) dominating set. And, the remaining 7 are not part of any lattice.

These are infeasible states, i.e., states where nodes with st equals IN do not form a dominating set. The

states not taking part in any lattice structure (the infeasible states) are not shown in Figure 4.1.

In a non-feasible state, some node will be addable. The instruction executed by addable nodes is not

lattice-linear: an addable node moves in the dominating set unconditionally. After this, when no node is

addable, then the global state s becomes feasible state, i.e., s manifests a valid dominating set. In s, however,

some nodes may be removable. Only the removable nodes can be impedensable. The instruction executed by

an impedensable node is lattice-linear.

E.g., notice in Figure 4.1 (a), assuming that the initial state is (IN , IN , IN , IN), that v2 and v4 are

impedensable. Since they execute asynchronously, a lattice is induced among all possible global states that G4

transitions through. If only v2 (respectively, v4) executes, the global state we obtain is (IN , OUT , IN , IN)

(respectively, (IN , IN , IN , OUT )). Since eventually both the nodes change their local states, we obtain the

global state (IN , OUT , IN , OUT ).

(IN,OUT,IN,OUT)

(IN,OUT,IN,IN) (IN,IN,IN,OUT)

(IN,IN,IN,IN)

(a)

(OUT,IN,OUT,IN)

//only 1 state

(b)

(OUT,IN,IN,OUT)

(OUT,IN,IN,IN)

(c)

(IN,OUT,OUT,IN)

(IN,IN,OUT,IN)

(d)

Figure 4.1: Example lattice induced by Algorithm 4.1.1 in G4 (G4 is described in Example 4.1).

47



4.2.6 Analysis of Algorithm 4.1: Time and Space complexity

Theorem 4.1. Starting from an arbitrary state, Algorithm 4.1 reaches an optimal state within 2n moves

(or more precisely 1 round plus n moves).

Proof. From Lemma 4.1, we have that starting from an arbitrary state, Algorithm 4.1 will reach a feasible

state within one round (or within n moves).

After that, if the input graph G is not in an optimal state, then at least one node moves out such that

G stays in a feasible state (Lemma 4.3). Thus, G manifests an optimal state within n additional moves.

Corollary 4.1. Algorithm 4.1 is self-stabilizing and silent.

Observation 4.1. At any time-step, a node will take O((∆)4×(maxd)
2) time, where (1) ∆ is the maximum

degree of any node in V (G), and (2) maxd is the total number of distinct demands made by all the nodes in

V (G).

4.3 Applying ELLSS in Minimal Vertex Cover

The execution of Algorithm 4.1 was divided in two phases, (1) where the system reaches a feasible state

(reduction of Rank to 0), and (2) where the system reaches an optimal state (reduction of Badness to 0).

Such design defines the concept of ELLSS algorithms. This design can be extended to numerous other

problems where the optimal global state can be defined in terms of a minimal (or maximal) set S of nodes.

This includes the minimal vertex cover (MVC) problem, maximal independent set problem and their variants.

In this section, we discuss the extension to MVC.

Definition 4.6. Minimal Vertex Cover. In the MVC problem, the input is an arbitrary graph G, and

the task is to compute a minimal set V such that for any edge {i, j} ∈ E(G), (i ∈ V) ∨ (j ∈ V). If a node i

is in V, then i[st] = IN , otherwise i[st] = OUT .

The proposition P ′
v defining a feasible state and the proposition Pv defining the optimal state can be

defined as follows.

P ′
v(V) ≡ ∀i ∈ V (G) : ((i ∈ V) ∨ (∀j ∈ Adji, j ∈ V)).

Pv(V) ≡ P ′
v(V) ∧ (∀i ∈ V,¬P ′

v(V \ {i})).

To develop an algorithm for MVC, we utilize the macros in Table 4.3. A node i is removable if all the

nodes in its neighbourhood are in the vertex cover (VC). i is addable if i is not in the VC and there is some

node adjacent to it that is not in the VC. i is impedensable if i is in the VC, and i is the highest ID node

that is removable in its distance-1 neighbourhood.

Based on the definitions above, the algorithm for MVC is described as follows. If a node is addable, then

it moves into the VC. If a node is impedensable, then it moves out of the VC.
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Removable-MVC-ELL(i) ≡ ∀j ∈ Adji, j[st] = IN .

Addable-MVC-ELL(i) ≡ i[st] = OUT ∧ (∃j ∈ Adji : j[st] = OUT ).

Impedensable-MVC-ELL(i) ≡ i[st] = IN ∧ Removable-MVC-ELL(i)∧

(∀j ∈ Adji : j[id] < i[id] ∨ ¬Removable-MVC-ELL(j)).

Table 4.3: Macros used in the algorithm for MVC.

Algorithm 4.2. Rules for node i.

Addable-MVC-ELL(i) −→ i[st] = IN .

Impedensable-MVC-ELL(i) −→ i[st] = OUT .

Algorithm 4.2 is an ELLSS algorithm in that it satisfies the conditions in Definition 4.5, where F1

corresponds to the first action of Algorithm 4.2, F2 corresponds to its second action, and Sf is the set of the

states for which P ′
v holds true. Thus, starting from any arbitrary state, the algorithm eventually reaches a

state where V is a minimal vertex cover.

Lemma 4.5. Algorithm 4.2 is a silent eventually lattice-linear self-stabilizing algorithm for minimal vertex

cover.

Proof. In an arbitrary non-feasible state (where the input graph G does not manifest a valid VC), there is at

least one node that is addable. An addable node immediately executes the first instruction of Algorithm 4.2

and moves in the VC. This implies that by the end of the first round, we obtain a valid (possibly non-minimal)

VC.

If the input graph G is in a feasible, but not optimal, state (where G manifests a non-minimal VC), then

there is at least one removable node. This implies that there is at least one impedensable node i in that

state (e.g., the removable node with the highest ID). Under Algorithm 4.2, any node in Adji will not execute

until i changes its state. i is removable because all nodes in Adji, along with i, are in the vertex cover.

Thus i must execute so that it becomes non-removable. This shows that the second rule in Algorithm 4.2 is

lattice-linear.

In a non-minimal, but valid, VC, there is at least one node that is impedensable, thus, with every move,

the size of the vertex cover, manifested by G, reduces by 1. Also, notice that when an impedensable node i

changes its state, no node in Adji changes its state simultaneously. Thus, the validity of the vertex cover is

not impacted when i moves. Therefore, Algorithm 4.2 is self-stabilizing.

When G manifests a minimal vertex cover, no node is addable or removable. This shows that Algo-

rithm 4.2 is silent.
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Observe that in Algorithm 4.2, the definition of Impedensable relies only on the information about

distance-2 neighbours. Hence, the evaluation of guards take O(∆2) time. In contrast, (the standard) minimal

dominating set problem would require the information of distance-4 neighbours to evaluate Impedensable.

Hence, the evaluation of guards in that would take O(∆4) time. This algorithm converges in 2n moves (or

more precisely 1 round plus n moves).

4.4 Applying ELLSS in Maximal Independent Set

In this section, we consider the application of ELLSS in the problem of maximal independent set (MIS).

Unlike MVC and SDMDS problems where we tried to reach a minimal set, here, we have to obtain a maximal

set.

Definition 4.7. Maximal Independent Set. In the maximal independent set (MIS) problem, the input

is an arbitrary graph G, and the task is to compute a maximal set I such that for any two nodes i ∈ I and

j ∈ I, if i ̸= j, then {i, j} ≠ E(G).

The proposition P ′
i defining a feasible state and the proposition Pi defining the optimal state can be

defined as follows.

P ′
i(I) ≡ ∀i ∈ V (G) : ((i ̸∈ I) ∨ (∀j ∈ Adji : j ̸∈ I)).

Pi(I) ≡ P ′
i(I) ∧ (∀i ∈ V (G) : ¬P ′

i(I ∪ {i})).

To develop the algorithm for MIS, we define the macros in Table 4.4. A node i is addable if all the

neighbours of i are out of the independent set(IS). A node is removable if i is in the IS and there is some

neighbour of i that is also in IS. i is impedensable if i is out of the IS, and i is the highest ID node in its

distance-1 neighbourhood that is addable.

Addable-MIS-ELL(i) ≡ ∀j ∈ Adji, j[st] = OUT .

Removable-MIS-ELL(i) ≡ i[st] = IN ∧ (∃j ∈ Adji : j[st] = IN).

Impedensable-MIS-ELL(i) ≡ i[st] = OUT∧ Addable-MIS-ELL(i)∧

(∀j ∈ Adji : j[id] < i[id] ∨ ¬Addable-MIS-ELL(j)).

Table 4.4: Macros used in the algorithm for MIS.

Based on the definitions above, the algorithm for MIS is described as follows. If a node i is impedensable,

then it moves into the IS. If i is removable, then it moves out of the IS.

Algorithm 4.3. Rules for node i.

Removable-MIS-ELL(i) −→ i[st] = OUT .

Impedensable-MIS-ELL(i) −→ i[st] = IN .
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This algorithm is an ELLSS algorithm as well: as per Definition 4.5, F1 corresponds to the first action

of Algorithm 4.2, F2 corresponds to its second action, and Sf is the set of the states for which P ′
i holds

true. Thus, starting from any arbitrary state, the algorithm eventually reaches a state where I is a maximal

independent set.

Lemma 4.6. Algorithm 4.3 is a silent eventually lattice-linear self-stabilizing algorithm for maximal inde-

pendent set.

Proof. In an arbitrary non-feasible state (where the input graph G does not manifest a valid IS), there

is at least one node that is removable. A removable node immediately executes the first instruction of

Algorithm 4.3 and moves out of the IS. This implies that by the end of the first round, we obtain a valid

(possibly non-minimal) IS.

If the input graph G is in a feasible, but not optimal, state (where G manifests a non-minimal IS), then

there is at least one addable node. This implies that there is at least one impedensable node i in that state

(e.g., the addable node with the highest ID). Under Algorithm 4.2, any node in Adji will not execute until

i changes its state. i is addable because all nodes in Adji, along with i, are out of the independent set.

Thus i must execute so that it becomes non-addable. This shows that the second rule in Algorithm 4.3 is

lattice-linear.

Since in a non-minimal, but valid, independent set, there is at least one node that is impedensable, we

have that with every move, the size of the independent set, manifested by G, reduces by 1. Also, notice

that when an impedensable node i changes its state, no node in Adji changes its state simultaneously. Thus,

the validity of the independent set is not impacted when i moves. Therefore, we have that Algorithm 4.3 is

self-stabilizing.

When G manifests a maximal independent set, no node is removable or addable. This shows that

Algorithm 4.3 is silent.

In Algorithm 4.3, the definition of Addable relies only on the information about distance-2 neighbours.

Hence, the evaluation of guards take O(∆2) time. This algorithm converges in 2n moves (or more precisely

1 round plus n moves).

4.5 Applying ELLSS in Colouring

In this section, we extend ELLSS algorithms to graph colouring. In the graph colouring (GC) problem,

the input is a graph G and the task is to (re-)assign colours to all the nodes such that no two adjacent nodes

have the same colour.

Definition 4.8. Graph colouring. In the GC problem, the input is an arbitrary graph G with some initial

colouring assignment ∀i ∈ V (G) : i[colour] ∈ N. The task is to (re)assign the colour values of the nodes such
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that any adjacent nodes should not have a conflict (i.e., should not have the same colour), and there should

not be a node whose colour can be reduced without conflict.

Unlike MVC, MDS or MIS, colouring does not have a binary domain. Instead, we correspond the

equivalence of changing the state to IN to the case where a node sets its colour to i[id] + n. And, the

equivalence of changing the state to OUT corresponds to the case where a node decreases its colour.

The proposition P ′
c defining a feasible state and the proposition Pc defining an optimal state is defined

below. Pc is true when all the nodes have lowest available colour, that is, for any node i and for all colours

c in [1 : i[colour]− 1], c equals the colour of one of the neighbours j of i.

P ′
c(G) ≡ ∀i ∈ V (G),∀j ∈ Adji : i[colour] ̸= j[colour].

Pc(G) ≡ P ′
c ∧ (∀i ∈ V (G) : (∀c ∈ [1 : i[colour]− 1] : (∃j ∈ Adji : j[colour] = c))).

We define the macros as shown in Table 4.5. A node i is conflicted if it has a conflicting colour with at

least one of its neighbours. i is subtractable if there is a colour value less than i[colour] that i can change to

without a conflict with any of its neighbours. i is impedensable if i is not conflicted, and it is the highest ID

node that is subtractable.

Conflicted-GC-ELL(i) ≡ ∃j ∈ Adji : j[colour] = i[colour].

Subtractable-GC-ELL(i) ≡ ∃c ∈ [1 : i[colour]− 1] : ∀j ∈ Adji : j[colour] ̸= c.

Impedensable-GC-ELL(i) ≡ ¬Conflicted-GC-ELL(i) ∧ Subtractable-GC-ELL(i)∧

(∀j ∈ V (G) : ¬Conflicted-GC-ELL(j) ∧ (j[id] < i[id] ∨ ¬Subtractable-GC-ELL(j))).

Table 4.5: Macros used in the algorithm for GC.

Unlike SDMDS, MVC and MIS, in graph colouring (GC), each node is associated with a variable colour

that can take several possible values (the domain can be as large as the set of natural numbers). As

mentioned above, the action of setting a colour value to i[colour] + i[id] is done whenever a conflict is

detected. Effectively, this is like setting the colour to an error value such that the error value of every node

is distinct in order to avoid a conflict. This error value will be reduced when node i becomes impedensable

and decreases its colour.

The actions of the algorithm are shown in Algorithm 4.4. If a node i is impedensable, then it changes

its colour to the minimum possible colour value. If i is conflicted, then it changes its colour value to

i[colour] + i[id].
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Algorithm 4.4. Rules for node i.

Conflicted-GC-ELL(i) −→ i[colour] = i[colour] + i[id].

Impedensable-GC-ELL(i) −→

i[colour] = min
c

{c ∈ [1 : i[colour]− 1] : (∀j ∈ Adji : j[colour] ̸= c)}.

Algorithm 4.4 is an ELLSS algorithm: according to Definition 4.5, F1 corresponds to the first action of

Algorithm 4.2, F2 corresponds to its second action, and and Sf is the set of the states for which P ′
c holds

true. Thus, starting from any arbitrary state, the algorithm eventually reaches a state where no two adjacent

nodes have the same colour and no node can reduce its colour.

Lemma 4.7. Algorithm 4.4 is a silent eventually lattice-linear self-stabilizing algorithm for graph colouring.

Proof. In an arbitrary non-feasible state (where the input graph G does not manifest a valid colouring),

there is at least one node that is conflicted. A conflicted node immediately executes the first instruction of

Algorithm 4.4 and makes its colour equal to its ID plus its colour value. Since the value i[colour] + i[id]

by which a node updates its colour value will resolve such conflict with one adjacent node in 1 move, i will

become non-conflicted in almost deg(i) moves.

If the input graph G is in a feasible, but not optimal, state (where G manifests a valid colouring but

some nodes can reduce their colour), then there is at least one subtractable node. This implies that there is

an impedensable node i in that state (the subtractable node with the highest ID). Under Algorithm 4.4, any

node will not execute until i changes its state. i is subtractable because there is a colour value c less that

i[colour] such that no node in Adji has that colour value. Thus i must execute to become non-subtractable.

This shows that the second rule in Algorithm 4.4 is lattice-linear.

Since in a non-minimal, but valid, colouring, there is at least one node i that is impedensable, we have

that a node will become non-subtractable in atmost deg(i) moves. Notice that when an impedensable node i

changes its state, no node changes its state simultaneously. Also, the reduced colour will not have a conflict

with any other node. Thus, no conflicts arise. Therefore, we have that Algorithm 4.4 is self-stabilizing.

When G manifests a valid non-subtractable colouring, no node is removable or addable. This shows that

Algorithm 4.4 is silent.

In Algorithm 4.4, the definition of Impedensable relies only on the information about distance-2 neigh-

bours. Hence, the evaluation of guards take O(n) time. This algorithm converges in 2m+(n+2m) = n+4m

moves.

4.6 Applying ELLSS in 2-Dominating Set Problem

The 2-dominating set (2DS) problem provides a stronger form of dominating set (DS), as compared to

the usual MDS problem. In the 2-dominating set problem, the input is a graph G with nodes having domain
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{IN,OUT}. The task is to compute a set D where some node i ∈ D iff i[st] = IN ; D must be computed

such that there are no two nodes j, k ∈ V (G) that are in D, and a node i ∈ V (G) that is not in D, such that

D ∪ {i} \ {j, k} is a valid DS.

Unlike the SDMDS, MVC, MIS or GC problems that simply study the condition of their immediate

neighbours before they change their state, and after they would change their state, the 2-DS problem looks

one step further. Specifically, the usual MDS or MVC problems investigate the computation of any minimal

DS or VC respectively, whereas the 2DS problem requires the computation of such a DS where it must not

be the case that another valid DS can be computed while removing two nodes from it and adding one node

to it.

The propositions P ′
d defines a DS, Pd defines an MDS and P2d defines an optimal state, obtaining a 2DS.

These propositions are defined below.

P ′
d(D) ≡ ∀i ∈ V (G) : i ∈ D ∨ (∃j ∈ Adji : j ∈ D).

Pd(D) ≡ P ′
d(D) ∧ (∀(i ∈ V (G) : ¬Pd(D \ {i}))).

P2d(D) ≡ Pd(D) ∧ ¬(∃i ∈ V (G), i ̸∈ D :

(∃j, k ∈ Adji, j ∈ D, k ∈ D : P ′
d(D ∪ {i} \ {j, k})))

Our algorithm is based on the following intuition: Let D be an MDS. If there exists nodes i, j and k such

that j, k ∈ D and i ̸∈ D, and D ∪ {i} − {j, k} is also a DS, then j and k must be neighbours of i.

The macros that we utilize are in Table 4.6. A node i is addable if i[st] = OUT and all the neighbours of

i are also out of the DS. i is removable if i[st] = IN and there exists at least one neighbour of i that is also

in the DS. A node i is 2-addable if i[st] = OUT there exist nodes j and k in the distance-2 neighbourhood

of i where j[st] = IN and k[st] = IN such that j and k can be removed and i can be added to the DS such

that j, k and their neighbours stay dominated. A node is unsatisfied if it is removable or 2-addable. A node

is impedensable if it is the highest id node in its distance-4 neighbourhood that is unsatisfied.

The algorithm for the 2-dominating set problem is as follows. If a node i is addable, then it turns itself

in the DS, ensuring that i and all it neighbouring nodes it stay dominated. As stated above, a node is

impedensable then it is either removable or 2-addable. If a node is impedensable and removable, then it

turns itself out of the DS, ensuring that i is not such a node that is not needed in the DS, but is still present

in the DS. If i is impedensable and 2-addable, then there are two nodes j and k in the DS such that j and k

can be removed, and i can be added, and the resulting DS is still a valid DS. In this case, i moves into the

DS, and moves j and k out of the DS.
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Addable-2DS-ELL ≡ i[st] = OUT ∧ (∀j ∈ Adji : j[st] = OUT ).

Removable-2DS-ELL(i) ≡ i[st] = IN ∧ (∀j ∈ Adji ∪ {i} : ((j ̸= i ∧ j[st] = IN)

∨ (∃k ∈ Adjj , k ̸= i : k[st] = IN))).

Two-Addable-2DS-ELL(i) ≡ i[st] = OUT ∧ (∀j ∈ Adj2i ∪ {i} :

¬(Addable-2DS-ELL(j) ∨ Removable-2DS-ELL(j)))∧

(∃j, k ∈ Adj2i , j[st] = IN, k[st] = IN :

(∀q ∈ Adjj ∪Adjk ∪ {j, k} : (∃r ∈ Adjq : r[st] = IN ∨ r = i))).

Unsatisfied-2DS-ELL(i) ≡ Removable-2DS-ELL(i) ∨ Two-Addable-2DS-ELL(i).

Impedensable-2DS-ELL(i) ≡ Unsatisfied-2DS-ELL(i) ∧ (∀j ∈ Adj4i :

(¬Unsatisfied-2DS-ELL(j) ∨ i[id] > j[id])).

Table 4.6: Macros used in the algorithm for 2DS.

Algorithm 4.5. Rules for node i.

Addable-2DS-ELL(i) −→ i[st] = IN.

Impedensable-2DS-ELL(i) −→
i[st] = OUT. if i[st] = IN .

j[st] = OUT, k[st] = OUT, i[st] = IN. if i[st] = OUT .

//The reference to j and k is from the definition of Two-Addable-2DS-ELL(i)

This is an ELLSS algorithm that works in three phases: first, every node i checks if it is addable. If i

is not addable, then i checks if it is impedensable and removable, providing a minimal DS. And finally, i

checks if it is impedensable and 2-addable, providing a 2DS. Thus, this algorithm satisfies the conditions in

Definition 4.5, where F1 constitutes of the first action of Algorithm 4.5, F2 corresponds to its second action,

and Sf is the set of the states for which P ′
d holds true. Thus, starting from any arbitrary state, the algorithm

eventually reaches a state where D is 2-dominating set.

Lemma 4.8. Algorithm 4.2 is a silent eventually lattice-linear self-stabilizing algorithm for 2-dominating

set.

Proof. In an arbitrary non-feasible state (where the input graph G does not manifest a valid DS), there is at

least one node that is addable. An addable node immediately executes the first instruction of Algorithm 4.5

and moves in the DS. This implies that by the end of the first round, we obtain a valid (possibly non-minimal)

DS.
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If the input graph G is in a feasible, but not optimal, state (where G manifests a non-minimal DS),

then there is at least one node that is removable or 2-addable. This implies that there is at least one

impedensable node i in that state (e.g., the node, which is removable or 2-addable, with the highest ID).

Under Algorithm 4.2, any node in Adj4i will not execute until i changes its state. If i is removable, then

all its neighbours are being dominated by a node other than i. If i is 2-addable, then there exists a pair of

nodes j and k such that if j and k can move out and i moves in, then all nodes in Adji, Adjj and Adjk will

stay dominated, including i, j and k. Thus i must execute so that it becomes non-impedensable. This shows

that the second rule in Algorithm 4.5 is lattice-linear.

Notice that if an arbitrary node j and k can move out of the DS given that all nodes stay dominated if

i moves in, then j and k must be the neighbours of i. This is assuming that G is in a valid dominating set.

Otherwise, it cannot be guaranteed that i can dominate the nodes that only j or k are dominating.

Since in a non-minimal, but valid, DS, there is at least one node that is removable impedensable, we have

that with every move of a removable impedensable node, the size of the DS, manifested by G, reduces by 1.

Now assume that G manifests a DS such that no node is addable or removable. Here, if G does not manifest

a 2-dominating set, then, from the discussion from the above paragraph there must exist at least one set of

three nodes i, j and k such that j and k can move out and i can move in guaranteeing that all nodes in Adji,

Adjj and Adjk stay dominated, including i, j and k. With every move of a 2-addable impedensable node,

the size of the DS, manifested by G, reduces by 1. Also, notice that when an impedensable node i changes

its state, no node in Adj4i changes its state simultaneously. Thus, the validity of the DS is not impacted

when i moves. Therefore, we have that Algorithm 4.5 is self-stabilizing.

When G manifests a 2-dominating set, no node is addable, removable or 2-addable. This shows that

Algorithm 4.5 is silent.

Note that in Algorithm 4.5, the definition of Removable relies on the information about distance-2

neighbours, and consequently, the definition of Two-Addable relies on the information about distance-4

neighbours. Hence, because of the time complexity of evaluating if a node is impedensable, the guards take

O(∆8) time. This algorithm converges in 3n moves (or more precisely 1 round plus 2n moves).

In this algorithm, one of the actions is changing the states of 3 processes at once. However, it can be

implemented in a way that a process changes its own state only. We sketch how this can be done as follows.

To require that a process only changes its own state, we will need additional variables so processes know that

they are in the midst of an update where i needs to add itself to D and j and k need to remove themselves

from D. Intuitively, it will need a variable of the form getout.i which will be set to {j, k} to instruct j and

k to leave the dominating set. When j or k are in the midst of leaving the dominating set, all the nodes in
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Adj6i will have to wait until the operation is completed. With this change, we note that the algorithm will

not be able to tolerate incorrect initialization of getout.i while preserving lattice-linearity.

4.7 Experiments

In this section, we present the experimental results of time convergence of shared memory programs. We

focus on the problem of maximal independent set (Algorithm 4.3) as an example.

(a) (b)

(c) (d)

Figure 4.2: Maximal Independent set algorithms convergence time on random graphs generated by networkx

library of python3. All graphs are of 10,000 nodes. Comparision between runtime of Algorithm 4.3, Hedetniemi
et al. (2003) [14] (marked as hea) and Turau (2007) [15] (marked as t) and Algorithm 4.3. (a) 20,000 to
100,000 edges, Algorithm 4.3, [14] and [15]. (b) 200,000 to 1,000,000 edges, Algorithm 4.3, [14] and [15]. (c)
2,000,000 to 4,000,000 edges, Algorithm 4.3, [14] and [15]. (d) 20,000 to 100,000 edges, Algorithm 4.3 and
Algorithm 4.3 lockstep synchronized.

We compare Algorithm 4.3 with the algorithms present in the literature for the maximal independent set

problem. Specifically, we implemented the algorithms present in Hedetniemi et al. (2003) [14] and Turau

(2007) [15], and compare their convergence time. The input graphs were random graphs of order 10,000

nodes, generated by the networkx library of python. For comparing the performance results, all algorithms
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are run on the same set of graphs.

The experiments are run on Cuda using the gcccuda2019b compiler. The program for Algorithm 4.3 was run

asynchronously, and the algorithms in [14] and [15] are run under the required synchronization model. The

experiments are run on Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40 GHz, cuda V100S. The programs are run using

the command nvcc ⟨program⟩.cu -G. Here, each multiprocessor ran 256 threads. And, the system provided

sufficient multiprocessors so that each node in the graph can have its own thread. All the observations are

an average of 16 readings.

Figure 4.2 (a) (respectively, Figure 4.2 (b) and Figure 4.2 (c)) shows a line graph comparison of the

convergence time for these algorithms with the number of edges varying from 20,000 to 100,000 (respectively,

200,000 to 1,000,000 and 2,000,000 to 4,000,000). So, the average degree is varying from 4 to 20 (respectively,

40 to 200 and 400 to 800). Observe that the convergence time taken by the program for Algorithm 4.3 is

significantly lower than the other two algorithms.

Next, we considered how much of the benefit of Algorithm 4.3 can be allocated to asynchrony due to the

property of lattice-linearity. For this, we compared the performance of Algorithm 4.3 running in asynchrony

(to allow nodes to read old/inconsistent values) and running in lock-step (to ensure that they only reads the

most recent values). Figure 4.2 (d) compares these results. We observe that the asynchronous implementation

has lower convergence time.

We have performed the experiments on shared memory architecture that allows nodes to access all

memory quickly. This means that the overhead of synchronization is low. By contrast, if we had used a

distributed system, where computing processors are far apart, the cost of synchronization will be even higher.

Hence, the benefit of lattice-linearity (where synchronization is not needed) will be even higher.

4.8 Summary of the Chapter

We extended lattice-linearity from [6] to the context of self-stabilizing algorithms. A key benefit of

lattice-linear systems is that correctness is preserved even if nodes read old information about other nodes.

However, the approach in [6] relies on the assumption that the algorithm starts in specific initial states,

hence, it is not directly applicable in self-stabilizing algorithms.

We began with the service demand based minimal dominating set (SDMDS) problem and designed a

self-stabilizing algorithm for the same. Subsequently, we observed that it consists of two parts: One part

makes sure that it gets the system to a state in Sf . The second part is a lattice-linear algorithm that

constructs a minimal dominating set if it starts in some valid initial states, say a state in Sf . We showed

that these parts have bounded interference, thus, they guarantee that the system stabilizes even if the nodes

execute asynchronously.

We defined the general structure of eventually lattice-linear self-stabilization to capture such algorithms.
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We demonstrated that it is possible to develop eventually lattice-linear self-stabilizing (ELLSS) algorithms

for minimal vertex cover, maximal independent set, graph colouring and 2-dominating set problems.

We also demonstrated that these algorithms substantially benefit from their ELLSS property. They

outperform existing algorithms while they guarantee convergence without synchronization among processes.
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CHAPTER 5

FULLY LATTICE-LINEAR ALGORITHMS

In Chapter 4, we study algorithms that induce lattices only in a subset of the state space. The algorithms

that we develop in Chapter 4 are called eventually lattice-linear algorithms. Such algorithms are capable of

inducing one or more lattices in a subset of the state space, and guarantee that the system will transition

from an arbitrary global state to a state in one of the lattices, and then it transitions to an optimal state

traversing through that lattice.

In this chapter, we focus on studying whether lattices can be induced in the entire state space for non-

lattice-linear problems. Specifically, in this chapter, we alleviate the limitations of, and bridge the gap

between, [6] and Chapter 4 by introducing fully lattice-linear algorithms (FLLAs). The former creates

a single lattice in the state space and does not allow self-stabilization whereas the latter creates multiple

lattices in a subset of the state space. FLLAs induce one or more lattices among the reachable states and can

enable self-stabilization. This overcomes the limitations of [6] and Chapter 4. We present fully lattice-linear

self-stabilizing algorithms for the minimal dominating set (MDS), graph colouring (GC), minimal vertex

cover (MVC) and maximal independent set (MIS) problems, and a lattice-linear 2-approximation algorithm

for vertex cover (VC).

We show that the algorithm developed by Goswami et al. [16] is lattice-linear. Lattice-linearity follows

that the moves of the robots are predictable. This allows us to show tighter bounds to the arena traversed

by the robots under the algorithm. As a consequence of tighter bounds on this arena, (1) we obtain a better

convergence time bound for this algorithm, which is lower than that showed in [16], and (2) we show that the

gathering point of the robots can be uniquely determined from the initial, or any intermediate, global state.

We show that this algorithm converges in 2n rounds, which is lower as compared to the time complexity

bound (2.5(n+ 1) rounds) shown in [16].

The algorithms for MDS, MVC and MIS converge in n moves and the algorithm for GC converges in n+2m

moves. These algorithms are fully tolerant to consistency violations and asynchrony. The 2-approximation

algorithm for VC is the first lattice-linear approximation algorithm for an NP-Hard problem; it converges in

n moves.

The algorithms present in this chapter tolerate asynchrony in AMR model (cf. Section 2.1.1).

Organization of the Chapter

This chapter is organized as follows. In Section 5.1, we recap on eventually lattice-linear algorithms and

discuss the motivation behind the theory present in this chapter. In Section 5.2, we describe the general

structure of a (fully) lattice-linear algorithm. In Section 5.3, we present a fully lattice linear algorithm for
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minimal dominating set. We present a fully lattice linear algorithm for graph colouring in Section 5.4.

We discuss why the design used to develop algorithms for minimal dominating set and graph colour-

ing cannot be extended to develop algorithms for minimal vertex cover and maximal independent set in

Section 5.5. We present algorithms for minimal vertex cover and maximal independent set problems in

Section 5.5.2 and Section 5.5.3 respectively.

In Section 5.6, we compare the convergence speed of the algorithm presented in Section 5.3 with other

algorithms (for the minimal dominating set problem) in the literature.

We present a lattice-linear 2-approximation algorithm for vertex cover in Section 5.7. In Section 5.8,

we study the lattice-linearity properties of the algorithm developed by Goswami et al. [16]. Finally, we

summarize the chapter in Section 5.9.

5.1 Revisiting Eventually Lattice-Linear Algorithms

Unlike the lattice-linear problems where the problem description creates a lattice among the states in S,

there are problems where the states do not form a lattice naturally, i.e., in those problems, given a suboptimal

global state, the problem does not specify a specific set of nodes to change their state. As a result, in such

problems, there are instances in which the impedensable nodes cannot be determined naturally, i.e., in those

instances ∃s : ¬P(s) ∧ (∀i : ∃s′ : P(s′) ∧ s[i] = s′[i]).

However, lattices can be induced in the state space algorithmically in these cases. In Chapter 4, we

presented algorithms for some of such problems. Specifically, the algorithms presented in Chapter 4 partition

the state space into two parts: feasible and infeasible states, and induce multiple lattices among the feasible

states. These algorithms work in two phases. The first phase takes the system from an infeasible state to

a feasible state (where the system starts to exhibit the desired property), which is an element of a lattice.

In the second phase, only an impedensable node can change its state. This phase takes the system from

a feasible state to an optimal state. These algorithms converge starting from an arbitrary state; they are

called eventually lattice-linear self-stabilizing algorithms.

Example 5.1. MDS. In the minimal dominating set problem, the task is to choose a minimal set of nodes

D in a given graph G such that for every node in V (G), either it is in D, or at least one of its neighbours is

in D. Each node i stores a variable i[st] with domain {IN,OUT}; i ∈ D iff i[st] = IN .

Remark : The minimal dominating set (MDS) problem is not a lattice-linear problem. This is because, for

any given node i, an optimal state can be reached if i does or does not change its state. Thus i cannot be

deemed as impedensable or not impedensable under the natural constraints of MDS.

Example 5.MDS: continuation 1. Even though MDS is not a lattice-linear problem, lattice-linearity

can be imposed on it algorithmically. Algorithm 5.1 (present in the following) is based on the algorithm in
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Chapter 4 for a more generalized version of the problem, the service demand based minimal dominating set

problem. Algorithm 5.1 consists of two phases. In the first phase, if node i is addable, i.e., if i and all its

neighbours are not in dominating set (DS) D, then i enters D. This phase does not satisfy the constraints

of lattice-linearity from Definition 2.2. However, once the algorithm reaches a state where nodes in D form

a (possibly non-minimal) DS, phase 2 imposes lattice-linearity. Specifically, in phase 2, a node i leaves D iff

it is impedensable, i.e., i along with all neighbours of i stay dominated even if i moves out of D, and i is of

the highest ID among all the removable nodes within its distance-2 neighbourhood.

Algorithm 5.1. Eventually lattice-linear algorithm for MDS.

Addable-MDS-ELL(i) ≡ i[st] = OUT ∧ (∀j ∈ Adji : j[st] = OUT ).

Removable-MDS-ELL(i) ≡ i[st] = IN ∧ (∀j ∈ Adji ∪ {i} : ((j ̸= i ∧ j[st] = IN)∨

(∃k ∈ Adjj , k ̸= i : k[st] = IN))).

// Node i can be removed without violating dominating set

Impedensable-MDS-ELL(i) ≡ Removable-MDS-ELL(i)∧

(∀j ∈ Adj2i : ¬Removable-MDS-ELL(j) ∨ i[id] > j[id]).

Rules for node i:

Addable-MDS-ELL(i) −→ i[st] = IN . (phase 1)

Impedensable-MDS-ELL(i) −→ i[st] = OUT . (phase 2)

Example 5.MDS: continuation 2. To illustrate the lattice imposed by phase 2 of Algorithm 5.1, consider

an example graph G4 with four nodes such that they form two disjoint edges, i.e., V (G) = {v1, v2, v3, v4} and

E(G) = {{v1, v2}, {v3, v4}}. Assume that G is initialized in a feasible state.

The lattices formed in this case are shown in Figure 5.1. We write a state s of this graph as ⟨v1[st],

v2[st], v3[st], v4[st]⟩. We assume that vi[id] > vj [id] iff i > j. Due to phase 1, the nodes not being dominated

move in the DS, which makes the system traverse to a feasible state. Now, due to phase 2, only impedensable

nodes move out, thus, lattices are induced among the feasible global states as shown in the figure.

⟨IN,OUT,IN,OUT⟩

⟨IN,OUT,IN,IN⟩ ⟨IN,IN,IN,OUT⟩

⟨IN,IN,IN,IN⟩

(a)

⟨OUT,IN,OUT,IN⟩

//only 1 state

(b)

⟨OUT,IN,IN,OUT⟩

⟨OUT,IN,IN,IN⟩

(c)

⟨IN,OUT,OUT,IN⟩

⟨IN,IN,OUT,IN⟩

(d)

Figure 5.1: The lattices induced in the problem instance in Example MDS continuation 2. Transitive edges
are not shown for brevity.

62



In Algorithm 5.1, lattices are induced among only some of the global states. After the execution of phase

1, the algorithm locks into one of these lattices. Thereafter in phase 2, the algorithm executes lattice-linearly

to reach the supremum of that lattice. Since the supremum of every lattice represents an MDS, this algorithm

always converges to an optimal state.

5.2 Overcoming Limitations of [6] and Chapter 4

In this section, we introduce fully lattice-linear algorithms that induce a lattice structure among all

reachable states. While defining these algorithms, we also distinguish them from the closely related work

in [6] and Chapter 4. Specifically, we discuss why developing algorithms for non-lattice-linear problems

(such that the algorithms are lattice-linear, i.e., they induce lattices in the reachable state space) requires

the innovation presented in this chapter.

In [6], authors consider lattice-linear problems. Here, the state space is induced under a predicate and

forms one lattice. Such problems, for a given suboptimal state, specify a set of nodes that must change their

state, in order for the system to reach an optimal state. Such problems possess only one optimal state, and

hence a violating node must change its state. The acting algorithm simply follows that lattice to reach the

optimal state.

Certain problems, e.g., dominating set are not lattice-linear (cf. the remark below Example 5.1) and

thus they cannot be modelled under the constraints of [6]. That is, the problem cannot specify for an

arbitrary suboptimal state, a specific set of nodes that must change their state. Such problems are studied

in Chapter 4. An interesting observation on the algorithms studied in Chapter 4 is that they induce multiple

lattices in a subset of the state space (c.f. Figure 5.1).

Limitations of [6]

From the above discussion, we note that the general approach presented in Chapter 4 is applicable to a

wider class of problems. Additionally, many lattice-linear problems do not allow self-stabilization. In such

cases, e.g., in SMP, if the algorithm starts in, e.g., the supremum of the lattice, then it may terminate

declaring that no solution is available. Unless the supremum is the optimal state, the acting algorithm

cannot be self-stabilizing.

Limitations of Chapter 4

In eventually lattice-linear algorithms (e.g., Algorithm 5.1 for MDS), the lattice structure is imposed only

on a subset of states. Thus, by design, the algorithm has a set of rules, say A1, that operate in the part

of the state space where the lattice structure does not exist, and another set of rules, say A2, that operate

in the part of the state space where the lattice is induced. Since actions of A1 operate outside the lattice

structure, a developer must guarantee that if the system is initialized outside the lattice structure, then A1

converges the system to one of the states participating in the lattice (from where A2 will be responsible for
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the traversal of the system through the lattice) and thus the developer faces an extra proof obligation. In

addition, it also must be proven that actions of A2 and the actions of A1 do not interfere with each other.

E.g., the developer (in the context of Algorithm 5.1) has to make sure that actions of A2 do not perturb the

node to a state where the selected nodes do not form a dominating set.

Alleviating the Limitations of [6] and Chapter 4

In this chapter, we investigate if we can benefit from the advantages of both [6] and Chapter 4. We study

if there exist fully lattice-linear algorithms where lattices can be imposed on all reachable states, forming

single or multiple lattices. In the case that there are multiple optimal states and the problem requires

self-stabilization, it would be necessary that multiple disjoint lattices are formed where the supremum of

each lattice is an optimal state. Self-stabilization also requires that these lattices are exhaustive, i.e., they

collectively contain all states in the state space.

Incorporating the property of self-stabilization ensures that the system can be allowed to initialize in

any state, and asynchrony can be permitted. The initial state locks into one of the lattices, and due to the

induction of ≺-lattices, such algorithms ensure a deterministic output (all local states visited by individual

nodes form a total order, so an impedensable node has only one choice of action, and thus, the global state of

convergence can be predicted deterministically from the initial state or any intermediate state; the following

sections contain examples of such algorithms). Such algorithms would also permit multiple optimal states.

In addition, there will be no need to deal with interference between actions.

Definition 5.1. Lattice-linear algorithms (LLA). Algorithm A is an LLA for a problem P , iff there

exists a predicate P and A induces a ≺-lattice among the states of S1, ..., Sw ⊆ S(w ≥ 1), such that

• State space S of P contains mutually disjoint lattices, i.e.

– S1, S2, · · · , Sw ⊆ S are pairwise disjoint.

– S1 ∪ · · · ∪ Sw contains all the reachable states (starting from a set of initial states, if specified; if

an arbitrary state can be an initial state, then S1 ∪ · · · ∪ Sw = S).

• Lattice-linearity is satisfied in each subset under P, i.e.,

– P is deemed solved iff the system reaches a state where P is true

– ∀k : 1 ≤ k ≤ w, P is lattice-linear with respect to the ≺-lattice induced in Sk by A, i.e., ∀s ∈ Sk :

¬P(s) ⇒ ∃i : Impedensable(i, s,P).

Remark : Any algorithm that traverses a ≺-lattice of global states is a lattice-linear algorithm. An algorithm

that solves a lattice-linear problem, under the constraints of lattice-linearity, e.g. the algorithm described in

Example 2.3, is also a lattice-linear algorithm.

Definition 5.2. Self-stabilizing LLA. Continuing from Definition 5.1, A is self-stabilizing only if S1 ∪ S2 ∪
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· · · ∪ Sw = S and ∀k : 1 ≤ k ≤ w, the supremum of the lattice induced among the states in Sk is optimal.

5.3 Fully Lattice-Linear Algorithm for Minimal Dominating Set (MDS)

In this section, we present a lattice-linear self-stabilizing algorithm for MDS. MDS has been defined in

Example 5.1.

We describe the algorithm as Algorithm 5.2. The first two macros are the same as Example 5.1. The

definition of a node being impedensable is changed to make the algorithm fully lattice-linear. Specifically,

even allowing a node to enter into the dominating set (DS) is restricted such that only the nodes with the

highest ID in their distance-2 neighbourhood can enter the DS. Any node i which is addable or removable

will toggle its state iff it is impedensable, i.e., iff any other node j ∈ Adj2i : j[id] > i[id] is neither addable nor

removable. In the case that i is impedensable, if i is addable, then we call it addable-impedensable, otherwise,

if it is removable, then we call it removable-impedensable.

Algorithm 5.2. Algorithm for MDS.

Removable-MDS-FLL(i) ≡ i[st] = IN ∧ (∀j ∈ Adji ∪ {i} : ((j ̸= i ∧ j[st] = IN)∨

(∃k ∈ Adjj , k ̸= i : k[st] = IN))).

Addable-MDS-FLL(i) ≡ i[st] = OUT ∧ (∀j ∈ Adji : j[st] = OUT ).

Unsatisfied-MDS-FLL(i) ≡ Removable-MDS-FLL(i) ∨ Addable-MDS-FLL(i).

Impedensable-MDS-FLL(i) ≡ Unsatisfied-MDS-FLL(i)∧

(∀j ∈ Adj2i : ¬Unsatisfied-MDS-FLL(j)∨ i[id] > j[id]).

Rules for node i.

Impedensable-MDS-FLL(i) −→ i[st] = ¬i[st].

Lemma 5.1. Any node in an input graph does not revisit its older state while executing under Algorithm 5.2.

Proof. Let s be the global state at time t while Algorithm 5.2 is executing. We have from Algorithm 5.2

that if a node i is addable-impedensable or removable-impedensable, then no other node in Adj2i changes its

state.

If i is addable-impedensable at t, then any node in Adji is out of the DS. After when i moves in, then

any other node in Adji is no longer addable, so they do not move in after t. As a result, i does not have to

move out after moving in.

If otherwise i is removable-impedensable at t, then all the nodes in Adji ∪ {i} are being dominated by

some node other than i. So after when i moves out, then none of the nodes in Adji, including i, becomes

unsatisfied.
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Let that i is dominated and out, and some j ∈ Adji is removable impedensable. j will change its state

to OUT only if i is being covered by another node. Also, while j turns out of the DS, no other node in

Adj2j , and consequently in Adji, changes its state. As a result, i does not have to turn itself in because of

the action of j.

From the above cases, we have that i does not change its state to i[st] after changing its state from i[st]

to i[st′]. throughout the execution of Algorithm 5.2.

To demonstrate that Algorithm 5.2 is lattice-linear, we define state value and rank, the auxiliary variables

associated with nodes and global states, as follows:

State-Value-MDS(i, s) =


1 if Unsatisfied-MDS(i) in state s

0 otherwise

Rank-MDS(s) =
∑

i∈V (G)

State-Value-MDS(i, s).

Theorem 5.1. Algorithm 5.2 is a silent self-stabilizing and lattice-linear algorithm executed by n nodes

running asynchronously.

Proof. We have from the proof of Lemma 5.1 that if G is in state s and Rank-MDS(s) is non-zero, then at

least one node will be impedensable, e.g., the unsatisfied node in V (G) with the highest ID. For any node i,

we have that State-Value-MDS(i) decreases whenever i is impedensable and never increases. As a result,

Rank-MDS monotonously decreases throughout the execution of the algorithm until it becomes zero. This

shows that Algorithm 5.2 is self-stabilizing. Once Rank-MDS is zero, no node is impedensable, so no node

makes a move. This shows that Algorithm 5.2 is silent.

Next, we show that Algorithm 5.2 is fully lattice-linear. We claim that there is one lattice corresponding

to each optimal state. It follows that if there are w optimal states for a given instance, then there are w

disjoint lattices S1, S2, · · · , Sw formed in the state space S. We show this as follows.

We observe that an optimal state (manifesting a minimal dominating set) is at the supremum of its

respective lattice, as there are no outgoing transitions from an optimal state.

Furthermore, given a state s, we can uniquely determine the optimal state that would be reached from

s. This is because in any given non-optimal state, the impedensable nodes, that must change their state

in order to reduce the ranks of the global state of the system, can be uniquely identified. Additionally, the

value, that these impedensable nodes will update their local state to, is also unique. Thus, the optimal state

reached from a given state s can be uniquely identified.
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This implies that starting from a state s in Sk(1 ≤ k ≤ w), the algorithm cannot converge to any state

other than the supremum of Sk. Thus, the state space of the problem is partitioned into S1, S2 · · · , Sw where

each subset Sk contains one optimal state, say skopt
, and from all states in Sk, the algorithm converges to

skopt .

Each subset, S1, S2, · · · , Sw, forms a ≺-lattice where s[i] ≺ s′[i] if and only if State-Value-MDS(i, s) >

State-Value-MDS(i, s′) and s ≺ s′ iff Rank-MDS(s) > Rank-MDS(s′). This shows that Algorithm 5.2

is lattice-linear.

Example 5.MDS: continuation 3. For G4 the lattices induced under Algorithm 5.2 are shown in Fig-

ure 5.2; each vector represents a global state ⟨v1[st], v2[st], v3[st], v4[st]⟩.

⟨IN,OUT,IN,OUT⟩

⟨IN,OUT,IN,IN⟩ ⟨IN,IN,IN,OUT⟩

⟨IN,IN,IN,IN⟩

(a)

⟨OUT,IN,OUT,IN⟩

⟨OUT,IN,OUT,OUT⟩ ⟨OUT,OUT,OUT,IN⟩

⟨OUT,OUT,OUT,OUT⟩

(b)

⟨OUT,IN,IN,OUT⟩

⟨OUT,IN,IN,IN⟩ ⟨OUT,OUT,IN,OUT⟩

⟨OUT,OUT,IN,IN⟩

(c)

⟨IN,OUT,OUT,IN⟩

⟨IN,IN,OUT,IN⟩ ⟨IN,OUT,OUT,OUT⟩

⟨IN,IN,OUT,OUT⟩

(d)

Figure 5.2: The lattices induced by Algorithm 5.2 on the graph G4 described in Example 5.1. Transitive
edges are not shown for brevity.

5.4 Fully Lattice-Linear Algorithm for Graph Colouring (GC)

In this section, we describe a fully lattice-linear algorithm for GC. We first define the GC problem, and

then we describe an algorithm for GC. Graph colouring is defined in Definition 4.8 (Section 4.5).

We describe the algorithm as Algorithm 5.3. Any node i, which has a conflicting colour with any of its

neighbours, or if its colour value is reducible, is an unsatisfied node. A node having a conflicting or reducible

colour changes its colour to the lowest non-conflicting value iff it is impedensable, i.e., any node j in Adji

with ID more than i is not unsatisfied. In the case that i is impedensable, if i has a conflict with any of

its neighbours, then we call it conflict-impedensable, if, otherwise, its colour is reducible, then we call it

reducible-impedensable.
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Algorithm 5.3. Algorithm for GC.

Conflicted-GC-FLL(i) ≡ ∃j ∈ Adji : j[colour] = i[colour].

Reducible-GC-FLL(i) ≡ ∃c ∈ N, c < i[colour] : (∀j ∈ Adji : c ̸= j[colour]).

Unsatisfied-GC-FLL(i) ≡ Conflicted-GC-FLL(i) ∨ Reducible-GC-FLL(i).

Impedensable-GC-FLL(i) ≡ Unsatisfied-GC-FLL(i)∧

(∀j ∈ Adji : ¬Unsatisfied-GC-FLL(j)∨ i[id] > j[id]).

Rules for node i.

Impedensable-GC-FLL(i) −→ i[colour] = min{c ∈ N : ∀j ∈ Adji, c ̸= j[colour]}.

Lemma 5.2. Under Algorithm 5.3, the colour value may increase or decrease at its first move, after which,

its colour value monotonously decreases.

Proof. When some node i is deemed impedensable for the first time, it may be conflicted or reducible. In

either case, it obtains a colour value that is not conflicting with the colour value of its neighbours. The

updated colour of i will be a value from 1 to |Adji|+1. At this time, no neighbour of i can change its colour.

Now, we show that i will not become conflicted again, after becoming impedensable for the first time.

Under Algorithm 5.3, any node j in Adji will not change its colour until it obtains the updated colour value

of i. (If j reads old information about i[colour] then it will continue to wait for i to execute as required

by the guard Impedensable-GC-II.) If in case some node j in Adji becomes impedensable, then it must

obtain a colour value that is not equal to the copy of i[colour] that it reads/stores. Thus i does not become

conflicted by the action of j.

Thus, after i becomes impedensable for the first time, it only reduces its colour in every subsequent

move.

To demonstrate that Algorithm 5.3 is lattice-linear, we define the state value and rank, auxiliary variables

associated with nodes and global states, as follows.

State-Value-GC(i, s) =


deg(i) + 2 if Conflicted-GC-FLL(i) in state s

i[colour] otherwise

Rank-GC(s) =
∑

i∈V (G)

State-Value-GC(i, s).

Theorem 5.2. Algorithm 5.3 is a silent self-stabilizing and lattice-linear algorithm executed by n nodes

running asynchronously.
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Proof. From the proof of Lemma 5.2, we have that for any node i, State-Value-GC(i) decreases when i is

impedensable and never increases. This is because i can increase its colour only once, after which it obtains

a colour that is not in conflict with any of its neighbours, so any move that i makes after that will reduce

its colour. Therefore, Rank-GC monotonously decreases until no node is impedensable. This shows that

Algorithm 5.3 is self-stabilizing.

In any suboptimal global state, at least one node is impedensable, e.g., the highest ID node that is

unsatisfied. Thus, a suboptimal global state will transition to a global state with a lesser rank. Since there

are only a bounded number of colour values from 1 to deg(i)+1, a node can become reducible only a bounded

number of times. If no node is conflicted and no node is reducible, and no node is impedensable, no node

makes a move. This shows that Algorithm 5.3 is silent.

Algorithm 5.3 exhibits properties similar to Algorithm 5.2 which are elaborated in the proof for its

lattice-linearity in Theorem 5.1. Thus, Algorithm 5.3 is also lattice-linear.

5.5 Limitations of using Simple Actions and Tiebreakers for Developing FLLA

We studied that lattice-linear algorithms for MDS and GC can be designed by simply using tie-breakers.

Hence, a natural question arises if a lattice-linear algorithm can be designed for other graph theoretic

problems by using some tie-breaker. The answer is no. Specifically, we cannot extend this design to develop

algorithms for all graph theoretic problems – we study minimal vertex cover (MVC) and maximal independent

set (MIS) problems in this context.

We first show (Section 5.5.1) the issues involved in an algorithm that simply uses a tie-breaker to decide

which node enters or leaves the vertex cover. Specifically, we show that this design results in cyclic behaviour.

Such behaviour is observed when we use simple actions, where a node only changes the state of itself when it

evaluates that its guards are true, with arbitrary-distance tie-breaker. Similar results can be derived for the

MIS problem. Subsequently, in Section 5.5.2 (respectively, in Section 5.5.3), we show that a lattice-linear

algorithm can be developed for MVC (respectively, MIS) with complex actions, where a node is allowed to

make changes to the variables of other nodes. Then, in Section 5.5.4, we elaborate on the properties of

algorithms, that we present, for MVC and MIS.

5.5.1 Issues in Using Only a Tie-Breaker in Algorithm for Minimal Vertex Cover (MVC)

Minimal vertex cover is defined in Definition 4.6 (Section 4.3).

We could use the macros addable (some edge of a subject node is not covered) and removable (removing

the node preserves the vertex cover) to design an algorithm for MVC. However, this design results in a cyclic

behaviour, with respect to the local state transition of a node, even with a tie-breaker with all other nodes

in the graph. To illustrate this, consider the execution of an algorithm with such a tie-breaker on a line

69



graph of 4 nodes (ID’d 1-4, sequentially) where all nodes are initialized to OUT . Here, node 4 can change

its state to IN . Other nodes cannot change their state because there is a node with a higher ID that can

enter the vertex cover. After node 4 enters the vertex cover, node 3 enters the vertex cover, as edge {2, 3}

is not covered. However, this requires node 4 to leave the vertex cover to keep it minimal.

Observe, above, that node 4 was initialized such that 4[st] = OUT , then it changed to 4[st] = IN and

subsequently changed again to 4[st] = OUT . Thus, we see a cyclic behaviour which is not desired in a lattice-

linear algorithm. This analysis also shows that the use of simple actions results in the system exhibiting a

cyclic behaviour. However, we have that complex actions can be utilized to move around this issue, which

we study in the following.

5.5.2 Fully Lattice-Linear Algorithm for Minimal Vertex Cover (MVC)

In Section 5.5.1, we discussed the issues that arise in using (1) only a tie-breaker, and (2) simple actions.

Based on these limitations, in this section, we describe a lattice-linear algorithm that utilizes complex actions

to solve the MVC problem.

We use the macros listed in Table 5.1. A node i is removable iff i is in the vertex cover, and all the

neighbours of i are also in the vertex cover. i is addable iff i is out of the vertex cover and there is some edge

{i, j} incident on i such that j is not in the vertex cover. i is unsatisfied iff i is removable or i is addable. i is

impedendable iff i is unsatisfied and there is no node j in distance-3 of i, with ID greater than i, such that j

is unsatisfied. The algorithm is defined as follows. An addable-impedensable node i turns itself in and forces

Removable-MVC-FLL(i) ≡ i[st] = IN ∧ (∀j ∈ Adji : j[st] = IN).

Addable-MVC-FLL(i) ≡ i[st] = OUT ∧ (∃j ∈ Adji : j[st] = OUT ).

Unsatisfied-MVC-FLL(i) ≡ Removable-MVC-FLL(i) ∨ Addable-MVC-FLL(i).

Impedensable-MVC-FLL(i) ≡ Unsatisfied-MVC-FLL(i)∧

(∀j ∈ Adj3i : ¬Unsatisfied-MVC-FLL(j) ∨ i[id] > j[id]).

Table 5.1: Macros used in the algorithm for MVC.

all its removable neighbours out. (after accounting for the fact that i has already turned in). In this version

of the algorithm, this complex action is assumed to be atomic. A removable-impedensable node i will move

out of the vertex cover.

Algorithm 5.4. Rules for node i.

Impedensable-MVC-FLL(i) −→
i[st] = IN. ∀j ∈ Adji : j[st] = OUT, if Removable-MVC-FLL(j). if Addable-MVC-FLL(i).

i[st] = OUT. otherwise
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Lemma 5.3. An addable (respectively, removable) node that enters (respectively, leaves) the vertex cover

does not become removable (respectively addable) in any future time.

Proof. Let s be the state at time t while Algorithm 5.4 is executing. We have from Algorithm 5.4 that if a

node i is addable-impedensable or removable-impedensable, then no other node in Adj3i changes its state.

If i is removable-impedensable at t, then all the nodes in Adji are in the vertex cover. Any node j ∈ Adji

cannot move out of the vertex cover until i moves out. Hence, i does not become addable after being removed

at time t.

If i is addable-impedensable at t, then some node in Adji is out of the vertex cover. After i moves in and

forces its removable neighbours out, i is no longer addable and all nodes in Adji are no longer removable.

Now, i can become removable only if some neighbour of i enters the vertex cover. Let j be a neighbour of i.

We consider two cases (1) j[st] = OUT (2) j[st] = IN and j was forced out by i (3) j[st] = IN and j was

not forced out by i.

In the first case, as long as j never enters the vertex cover, i cannot become removable, thereby ensuring

that edge {i, j} remains covered. In the event j enters the vertex cover, i may be forced out. However, (as

a result) i does not become removable-impedensable.

In the second case, j is forced out of the vertex cover. This implies that all neighbours of j are already

in the vertex cover. Hence, j does not become addable again. (This argument is the same as the above

argument that showed that if a node is removed from the vertex cover, it does not become addable.) Since

j is never added back to the vertex cover, i cannot become removable because of the action of j.

In the third case, even if j moves out afterwards, it cannot make i removable, so after time t, nodes in

Adji do not move in; as a result, i does not have to move out after moving in. In addition, the nodes that i

turned out of the vertex cover do not have to move in after t, because the neighbours of those nodes are not

changing their states simultaneously when their states are being changed.

From the above cases, we have that i does not change its state to i[st] after changing its state from i[st]

to i[st′]. throughout the execution of Algorithm 5.4.

To demonstrate that Algorithm 5.4 is lattice-linear, we define state value and rank, auxiliary variables

associated with nodes and global states, as follows:

State-Value-MVC(i, s) =


1 if Unsatisfied-MVC-FLL(i) in state s

0 otherwise

Rank-MVC(s) =
∑

i∈V (G)

State-Value-MVC(i, s).
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Theorem 5.3. Algorithm 5.4 is a silent self-stabilizing and lattice-linear algorithm executed by n nodes

running asynchronously.

Proof. We have from the proof of Lemma 5.3 that if G is in state s and Rank-MVC(s) is non-zero, then

at least one node will be impedensable, e.g., an unsatisfied node with the highest ID. For any node i, we

have that State-Value-MVC(i) decreases whenever i is impedensable and never increases. In addition, by

the action of i, the state value of any other node in G does not increase. (Note that adding node i to the

vertex cover may have caused a neighbour j of i to be removable. If this happens, j is removed from the

vertex cover in the same action atomically. Hence, j does not become unsatisfied.) In effect, Rank-MVC

monotonously decreases throughout the execution of the algorithm until it becomes zero. This shows that

Algorithm 5.4 is self-stabilizing. Once Rank-MVC is zero, no node is impedensable, so no node makes a

move. This shows that Algorithm 5.4 is silent.

Algorithm 5.4 exhibits properties similar to Algorithm 5.2 (as well as Algorithm 5.3) which are elaborated

in the proof for its lattice-linearity in Theorem 5.1. From there, we obtain that Algorithm 5.4 also is lattice-

linear.

Example 5.2. Let Gp
4 be a graph of four vertices forming a path ⟨v1, v2, v3, v4⟩ such that vi[id] > vj [id] iff

i > j. In Figure 5.3, we show all possible state transitions that Gp
4 can go through under Algorithm 5.4. The

global states in the figure are of the form ⟨v1[st], v2[st], v3[st], v4[st]⟩.

⟨OUT, IN, IN,OUT ⟩

⟨OUT,OUT, IN,OUT ⟩

⟨OUT,OUT,OUT,IN⟩

⟨OUT,OUT,OUT,OUT ⟩

⟨OUT,OUT, IN, IN⟩

⟨OUT, IN, IN, IN⟩

(a)

⟨OUT, IN,OUT, IN⟩

⟨OUT, IN,OUT,OUT ⟩ ⟨IN, IN,OUT, IN⟩

⟨IN, IN,OUT,OUT ⟩

(b)

⟨IN,OUT, IN,OUT ⟩

⟨IN,OUT,OUT,IN⟩

⟨IN,OUT,OUT,OUT ⟩

⟨IN,OUT, IN, IN⟩ ⟨IN, IN, IN,OUT ⟩

⟨IN, IN, IN, IN⟩

(c)

Figure 5.3: ≺-lattices formed by the global states of Gp
4 of 4 nodes forming a straight path ⟨v1, v2, v3, v4⟩

under Algorithm 5.4. The nodes that are kicked out, by a node that decides to move into the vertex cover,
are underlined.

5.5.3 Fully Lattice-Linear Algorithm for Maximal Independent Set (MIS)

In this subsection, we describe an algorithm for the MIS. The issues, similar to the issues that we discussed

in Section 5.5.1, can be observed for MIS problem as well. For example, a similar behaviour can be observed
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on a path of 4 nodes, all initialized to IN . However, we can follow the general design of Algorithm 5.4, that

we described in Section 5.5.2, to develop an algorithm for MIS. MIS problem is defined in Definition 4.7

(Section 4.4).

The macros that we use here are similar to the macros we used for MVC, but with opposite polarity. We

use the macros listed in Table 5.2. A node i is addable iff i is out of the independent set (IS), and all the

neighbours of i are also out of the IS. i is removable iff i is in the IS and there is some edge {i, j} incident

on i such that j is also in the IS. i is unsatisfied iff i is removable or i is addable. i is impedensable iff i is

unsatisfied and there is no node j in distance-3 of i, with ID greater than i, such that j is unsatisfied.

Addable-MIS-FLL(i) ≡ i[st] = OUT ∧ (∀j ∈ Adjij[st] = OUT ).

Removable-MIS-FLL(i) ≡ i[st] = IN ∧ (∃j ∈ Adji : j[st] = IN).

Unsatisfied-MIS-FLL(i) ≡ Removable-MIS-FLL(i) ∨ Addable-MIS-FLL(i).

Impedensable-MIS-FLL(i) ≡ Unsatisfied-MIS-FLL(i)∧

(∀j ∈ Adj2i : ¬Unsatisfied-MIS-FLL(j) ∨ i[id] > j[id]).

Table 5.2: Macros used in the algorithm for MIS.

Given the similarities in the MVC and MIS problems, the algorithm we develop here is similar to the

algorithm we developed for MVC. The algorithm is defined as follows. A removable-impedensable node i

turns itself out and moves all its addable neighbours into the independent set (after accounting for the fact

that i has already turned out). An addable-impedensable node i will turn itself into the independent set.

In the present design of the algorithm, the execution while i is impedensable is assumed to be executed

atomically.

Algorithm 5.5. Rules for node i.

Impedensable-MIS-FLL(i) −→
i[st] = OUT. ∀j ∈ Adji : j[st] = IN, if Addable-MIS-FLL(j). if Removable-MIS-FLL(i).

i[st] = IN. otherwise

Since the behaviour of Algorithm 5.5 is similar to the behaviour of Algorithm 5.4, we briefly cover the

description of the behaviour of Algorithm 5.5 in the following: Lemma 5.4 and Theorem 5.4.

Lemma 5.4. Any node in an input graph does not revisit its older state while executing under Algorithm 5.5.

Proof. Let s be the state at time t while Algorithm 5.5 is executing. We have from Algorithm 5.5 that if a

node i is addable-impedensable or removable-impedensable, then no other node in Adj3i changes its state.

73



If i is removable-impedensable at t, then some node in Adji is in the independent set. After when i moves

out, and turns its addable neighbours in, then we have that i is no longer removable and all nodes in Adji

are no longer addable, so after time t, nodes in Adji do not move out; as a result, i does not have to move

in after moving out. In addition, the nodes that i turned into the independent set do not have to move out

after t, because the neighbours of those nodes are not changing their states simultaneously when their states

are being changed.

Let that at some instance of time, two nodes i and j simultaneously evaluate that they are removable-

impedensable. Since no nodes in Adj3i (respectively, Adj3j ) change their state under Algorithm 5.5 until i

(respectively, j) changes its state, we have that i and the nodes that i would move into the independent set

are not adjacent to j or the nodes that j would move into the independent set. Thus, no node by the action

of i becomes removable.

If otherwise i is addable-impedensable at t, then all the nodes in Adji are out of IS. So after when i moves

in, none of the non-unsatisfied nodes in Adji (non-addable nodes in Adji), including i, becomes unsatisfied

(addable). As a result, i does not have to move out after moving in.

From the above cases, we have that i does not change its state to i[st] after changing its state from i[st]

to i[st′]. throughout the execution of Algorithm 5.5.

To demonstrate that Algorithm 5.5 is lattice-linear, we define state value and rank, auxiliary variables

associated with nodes and global states, as follows:

State-Value-MIS(i, s) =


1 if Unsatisfied-IS(i) in state s

0 otherwise

Rank-MIS(s) =
∑

i∈V (G)

State-Value-MIS(i, s).

Theorem 5.4. Algorithm 5.5 is a silent self-stabilizing and lattice-linear algorithm executed by n nodes

running asynchronously.

Proof. We have from the proof of Lemma 5.4 that if G is in state s and Rank-MIS(s) is non-zero, then at

least one node will be impedensable, e.g., an unsatisfied node with the highest ID. For any node i, we have

that State-Value-MIS(i) decreases whenever i is impedensable and never increases. In addition, by the

action of i, the state value of any other node in G does not increase. In effect, Rank-MIS monotonously

decreases throughout the execution of the algorithm until it becomes zero. This shows that Algorithm 5.5

is self-stabilizing. Once Rank-MIS is zero, no node is impedensable, so no node makes a move. This shows

that Algorithm 5.5 is silent.
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Algorithm 5.5 exhibits properties similar to Algorithm 5.2 (as well as Algorithm 5.3 and Algorithm 5.4)

which are elaborated in the proof for its lattice-linearity in Theorem 5.1. From there, we obtain that

Algorithm 5.5 also is lattice-linear.

5.5.4 Complex Actions: Properties Shared by Algorithms for MVC and MIS

In this subsection, we study some behavioural aspects of the algorithm for MVC present in Section 5.5.2.

Consequently, similar arguments for the algorithm for MIS will follow.

Algorithm 5.4 can be transformed into a simple action algorithm as follows. To accommodate that, we

use the variable i[addable] to set to be true so that the surrounding nodes can then evaluate if they are

removable. We use the following additional guards. For a node i, else-pointed is true iff a node j in Adj4i

moved into the VC (and set j[addable] to true), and there is a node k in Adjj that is removable.

Else-Pointed-MVC-FLL(i) ≡ ∃j ∈ Adj4i : (j[addable] = true ∧ ∃k ∈ Adjj : Removable-MVC-FLL(k))

Consequently, the algorithm can be modified as follows. A node i will not be enabled (impedensable) if

else-pointed is true for i. The modified algorithm that allows simple actions, thus, is defined as follows.

Algorithm 5.6. Transformed Algorithm 5.4, where nodes only execute simple actions.

Impedensable-MVC-FLL-II(i) ≡

(∃j ∈ Adji : j[addable] = true ∧ Removable-MVC-FLL(i))∨

(¬Else-Pointed-MVC-FLL(i) ∧ (Unsatisfied-MVC-FLL(i)∧

(∀j ∈ Adj3i : ¬Unsatisfied-MVC-FLL(j)∨

i[id] > j[id]))).

Rules for node i :

Impedensable-MVC-FLL-II(i) −→


i[addable] = true if i[st] = OUT .

i[addable] = false if i[st] = IN .

i[st] = ¬i[st] unconditionally.

Next, we identify why Algorithm 5.6 can be reconciled with the inability to design an algorithm with

simple actions from Section 5.5.1. This analysis also helps us to obtain the correctness proof of Algorithm 5.6.

Reconciling Section 5.5.1 and Algorithm 5.6

As discussed in Section 5.5.1, if a tie-breaker in conjunction with simple actions is deployed, then the

system would exhibit cyclic behaviour. On the other hand, Algorithm 5.6 uses only simple actions. We

identify the subtlety, involved in both these results, that make this possible, in the following.
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To explain how these results can coexist together, we describe the behaviour of Algorithm 5.6 with an

example. Assume that this algorithm is deployed on a graph of 4 nodes forming a path, with node IDs being

in the sequence ⟨1, 4, 3, 2⟩. In a simple algorithm that uses a tiebreaker with all nodes (which is considered

in Section 5.5.1), node 4 would execute first then node 3, then node 2 and finally node 1. This execution

order is not preserved in Algorithm 5.6, which we discuss as follows.

Specifically, let the initial global state in this graph be ⟨IN,OUT,OUT,OUT ⟩. First, node 4 will move

into the VC. Now, the node that is unsatisfied and has the highest ID is node 3. However, Else-Pointed(3)

is true, because 4[addable] is set to true and node 1 needs to move out of the vertex cover as part of the

action that allowed node 4 to enter the vertex cover. In other words, node 3 can execute only after node 1

leaves the vertex cover. This is not permitted in a algorithm that uses simple actions with tie-breaker on

node IDs. This effect is similar to that of priority inheritance, where node 1 inherits the priority of node

4 because it has to be forced out of the vertex cover by node 4. Hence, in this specific case, node 1 has a

higher priority of movement as compared to node 3, despite the fact that node 3 is unsatisfied and is of a

higher ID, because of a recent action committed by node 4.

After node 1 moves out, node 3 moves in, and thence, the system reaches an optimal state.

Correctness of Algorithm 5.6

Algorithm 5.5 is lattice-linear with respect to state value and rank, defined as follows.

State-Value-MVC-II(i, s) =



|Adji + 1|

if Unsatisfied-MVC-FLL(i) in state s

|{j ∈ Adji : Unsatisfied-MVC-FLL(j)}|

if in state s, ¬Unsatisfied-MVC-FLL(i)∧

(∃j ∈ Adji : Unsatisfied-MVC-FLL(j))

0

otherwise

Rank-MVC-II(s) =
∑

i∈V (G)

State-Value-MVC-II(i, s).

Since the working of this algorithm straightforwardly follows from the working of Algorithm 5.4, we omit

the proof of correctness of this algorithm. A similar algorithm can be developed for MIS, that deploys only

simple actions.
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5.6 Experiments

In this section, we present the experimental results of convergence times from implementations run on real-

time shared memory model. We implement the algorithm for minimal dominating set (Algorithm 5.2), and

compare it to algorithms by Hedetniemi et al. (2003) [14] and Turau (2007) [15]. We also present the runtime

of a distance-1 transformation of Algorithm 5.2. First, we present the transformation of Algorithm 5.2 in

the following subsection.

5.6.1 Transforming Algorithm 5.2 to Distance-1

In Algorithm 5.2, we observe that the guards of a node i are distance-4. First, we transform this algorithm

to a distance-1 algorithm. To accomplish this, the nodes maintain additional variables, that provide them

information about other nodes, as required. We use additional variables and guards to propagate this

information. Due to the constraint of reading only distance-1 neighbours, the nodes may end up reading old

information about the other nodes. However, due to lattice-linearity, such executions stay to be correct.

A straightforward transformation would require each node i to maintain copies of all the variables of its

distance-4 neighbours. However, we use only 4 additional variables. Note that the requirement of these four

variables is independent of the number of nodes in Adj4i .

We use i[ldom] and i[hdom] to assist in propagating the information about the macro Removable-DS(i).

i[hdom] stores the highest ID dominator of i: it is a node in Ni of highest ID such that its state is IN .

i[ldom] stores the lowest ID dominator of i: it is a node in Ni of lowest ID such that its state is IN . (If such

a node does not exist, these variables are set to ⊤ (null).)

Once Removable-DS is transformed to a distance-1 macro, unsatisfied-ds will also be a distance-1 macro,

as Addadble-DS is already a distance-1 macro.

We use i[uflag] and i[hud1] to assist in propagating the information about Impedensable-II-DS. Node

i sets i[uflag] to true to indicate that i is unsatisfied. i[hud1] stores the highest ID node in distance-1, i.e.,

in Ni, of i that is unsatisfied.

Now, we describe the actions of the transformed distance-1 algorithm. We use the macros listed in

Table 5.3. i is hdom-outdated iff i[hdom] is not equal to the highest ID dominator of i. i is ldom-outdated iff

i[ldom] is not equal to the lowest ID dominator of i. i is removable iff every node j ∈ Ni will stay dominated

even if i moves out of the dominating set. This will happen if either j[st] = IN , or, either j[hdom] or j[ldom]

differs from i. Node i is addable if all nodes in Adji, along with i, are out of the DS. i is unsatisfied if i

is removable or addable. i is unsatisfied-flag-outdated iff i[uflag] is not equivalent to i being unsatisfied.

i is hud1-outdated iff i[hud1] is not qual to the highest ID node in Ni that is unsatisfied. i is unsatisfied-

impedensable if i is the highest ID node in the distance-2 neighbourhood that is unsatisfied. i is impedensable
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iff i is hdom-outdated, ldom-outdated, unsatisfied-flag-outdated, hud1-outdated or unsatisfied-impedensable.

variables of i: st, ldom, hdom, uflag, hud1

HDom-Outdated(i) ≡ i[hdom] ̸= argmax{x[id] : x ∈ Ni ∧ x[st] = IN}.

LDom-Outdated(i) ≡ i[ldom] ̸= argmin{x[id] : x ∈ Ni ∧ x[st] = IN}.

Removable-MDS-D ≡ i[st] = IN ∧ (∀j ∈ Ni : ((j ̸= i ∧ j[st] = IN) ∨ ((j[ldom] ̸= i∧

j[ldom] ̸= ⊤) ∨ (j[hdom] ̸= i ∧ j[hdom] ̸= ⊤)))).

Addable-MDS-D(i) ≡ i[st] = OUT ∧ (∀j ∈ Adji : j[st] = OUT ).

Unsatisfied-MDS-D(i) ≡ Removable-MDS-D(i) ∨ Addable-MDS-D(i).

Unsatisfied-Flag-Outdated(i) ≡ i[uflag] ̸= Unsatisfied-MDS-D(i).

HUD1-Outdated(i) ≡ i[hud1] ̸= argmax{x[id] : x ∈ Ni ∧ x[uflag] = true}.

Unsatisfied-Impedensable-MDS-D(i) ≡ i[uflag] ∧ (∀j ∈ Adji : (j[uflag] ⇒ j[id] < i[id])∧

(j[hud1] ̸= ⊤ ⇒ j[hud1] < i[id])).

Impedensable-MDS-D(i) ≡ HDom-Outdated(i) ∨ LDom-Outdated(i)∨

Unsatisfied-Flag-Outdated(i) ∨ HUD1-Outdated(i)∨

Unsatisfied-Impedensable-MDS-D(i).

Table 5.3: Macros used in transformed algorithm for MDS.

We describe the algorithm as follows. If i is hdom-outdated, then it updates i[hdom] with ID of the

highest ID node in Ni that is in the dominating set. If i is ldom-outdated, then it updated i[ldom] with ID

of the lowest ID node in Ni that is in the dominating set. If i is unsatisfied-flag-outdated, then it updates

i[uflag] to correctly denote whether i is unsatisfied. If i is hud1-outdated, then i updates i[hud1] with the

ID of the highest ID node in Ni that is unsatisfied. If i is unsatisfied-impedensable, then i toggles i[st].

Algorithm 5.7. Rules for node i.

Impedensable-DS-M(i) −→

hdom = argmax{x[id] : x ∈ Ni ∧ x[st] = IN} if HDom-Outdated(i).

ldom = argmin{x[id] : x ∈ Ni ∧ x[st] = IN} if LDom-Outdated(i).

uflag ̸= Unsatisfied-MDS-D(i) if Unsatisfied-Flag-Impedensable(i).

i[hud1] = argmax{x[id] : x ∈ Ni ∧ x[uflag] = true} if HUD1-Outdated(i).

i[st] = ¬i[st] if Unsatisfied-Impedensable(i).

i[uflag] = false unconditionally.
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Deploying the above algorithm reduces the work complexity of evaluating the guards for a node to

O(∆), which was originally O(∆4) in Algorithm 5.2. In principle, all lattice-linear distance-x (where x > 1)

algorithms can be transformed into distance-1 algorithms by keeping a copy of all variables in Adjx [17].

However, it will increase the space complexity of every node by |Adjx|, without decreasing the time complexity

of the evaluation of guards. By contrast, the above algorithm increases the space complexity by only O(1),

while decreasing the time complexity from O(∆4) to O(∆).

5.6.2 Runtime Comparison

While we see a significant reduction of the time complexity, of the evaluation of guards by a node, from

O(∆4) in Algorithm 5.2 to O(∆) in Algorithm 5.7, it is also worthwhile to compare the convergence time

of these algorithms when they are implemented on real-time systems. In this subsection, we compare the

runtime of Algorithm 5.7 with Algorithm 5.2 and other algorithms.

(a) (b)

(c) (d)

Figure 5.4: Runtime comparison of Algorithm 5.7, Algorithm 5.2, Algorithm 5.1 and other algorithms for
minimal dominating set in the literature. All graphs are of 10,000 nodes.
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We implemented Algorithm 5.2 (gkll_m), Algorithm 5.7 (gkll_d), lockstep synchronized Algorithm 5.7

(gkll_d_sync), Algorithm 5.1 (gk), algorithms for minimal dominating set present in Hedetniemi et al. (2003)

[14] (hea) and Turau (2007) [15] (t), and compare their convergence time. The input graphs were random

graphs of order 10,000 nodes, generated by the networkx library of python. For comparing the performance

results, all algorithms are run on the same set of graphs.

The experiments are run on Cuda using the gcccuda2019b compiler. gkll_m, gkll_d and gk were run asyn-

chronously, and the algorithms in gkll_d_sync, hea and t were run under the required synchronization model.

The experiments are run on Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40 GHz, cuda V100S. The programs are run

using the command nvcc ⟨program⟩.cu. Here, each multiprocessor ran 256 threads. And, the system provided

sufficient multiprocessors so that each node in the graph can have its own thread. All the observations are

an average of 3 readings.

Figure 5.4 (a) (respectively, Figure 5.4 (c) and Figure 5.4 (d)) shows a line graph comparision of the

convergence time for these algorithms with the number of edges varying from 20,000 to 100,000 (respectively,

200,000 to 500,000 and 200,000 to 1,000,000). So, the average degree is varying from 4 to 20 (respectively,

40 to 100 and 40 to 200). Figure 5.4 (b) is same as Figure 5.4 (a), except that the curve for hea is removed

so that the other curves can be analyzed closely. Similarly, Figure 5.4 (c) and Figure 5.4 (d) are similar,

however, (1) Figure 5.4 (c) shows curves for convergence time of graphs of average degree 40 to 100, whereas

Figure 5.4 (d) shows curves for convergence time of graphs of average degree 40 to 200, and (2) Figure 5.4

(c) contains all 6 curves, whereas Figure 5.4 (d) does not contain curves for gkll_m and gk. Observe that the

convergence time taken by the program for gkll_d is consistently lower than the other algorithms.

In Figure 5.4 (b), it can be observed that the runtime of gkll_m is lower than the other algorithms

(except gkll_d, which is not surprising). However, in Figure 5.4 (c), it can be observed that the runtime of

gkll_m increases more rapidly and overtakes the runtime of other algorithms (that is why we omitted gkll_m

from Figure 5.4 (d)). This happens mainly because the nodes under gkll_m are reading values of nodes at

distance-4 from themselves. gk also converges comparatively quicker than (gkll_m) (but not quicker than other

algorithms) because its first phase is quicker: the addable nodes move in the dominating set “carelessly”,

whereas in gkll_m the nodes moving in are “careful” as well as the nodes that move out of the dominating

set, which adds to the convergence time in the case of gkll_m.

Next, we discuss how much of the benefit of gkll_d can be allocated to asynchrony due to the property of

lattice-linearity. For this, observe the performance of gkll_d running in asynchrony (to allow nodes to read

old/inconsistent values) against gkll_d_sync (which is the same algorithm as gkll_d but running in lock-step, to

ensure that the nodes only read the most recent values). We observe that the asynchronous implementation

has a lower convergence time. This happens mainly because both the asynchronous and the synchronized
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algorithms have the same convergence time complexity, however, the cost of synchronization (time spent in

synchronization, plus the requirement of at least one scheduling thread) is eliminated.

We have performed the experiments on shared memory architecture that allows the nodes to access

memory quickly. This means that the overhead of synchronization is low. By contrast, if we had implemented

these algorithms on a distributed system instead, where computing processors are placed remotely, the

cost of synchronization would be even higher. Hence, we anticipate the benefit of lattice-linearity (where

synchronization is not needed) to be even higher.

5.7 Lattice-Linear 2-Approximation Algorithm for Vertex Cover (VC)

It is highly alluring to develop parallel processing approximation algorithms for NP-Hard problems under

the paradigm of lattice-linearity. In fact, it has been an open question if this is possible [6]. We observe that

this is possible. In this section, we present a lattice-linear 2-approximation algorithm for VC.

The following algorithm is the classic 2-approximation algorithm for VC. Choose an uncovered edge

{A,B}, select both A and B, repeat until all edges are covered. Since the minimum VC must contain either

A or B, the selected VC is at most twice the size of the minimum VC.

While the above algorithm is sequential in nature, we demonstrate that we can transform it into a

distributed algorithm under the paradigm of lattice-linearity as shown in Algorithm 5.8 (we note that this

algorithm is not self-stabilizing).

In Algorithm 5.8, all nodes are initially out of the VC, and are not done. In the algorithm, each node

will check if all edges incident on it are covered. A node is called done if it has already evaluated if all the

edges incident on it are covered. A node is impedensable if it is not done yet and it is the highest ID node

in its distance-3 neighbourhood which is not done. If an impedensable node i has an uncovered edge, and

assume that {i, j} is an uncovered edge with j being the highest ID node in Adji which is out (note that i

is out), then i turns both i and j into the VC. If otherwise i evaluates that all its edges are covered, then it

declares that it is done (i sets i[done] to true), while staying out of the VC.

This is straightforward from the 2-approximation algorithm for VC. We have chosen 3-neighbourhood

to evaluate impedensable to ensure that no conflicts arise while execution from the perspective of the 2-

approximation algorithm for VC.
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Algorithm 5.8. 2-approximation lattice-linear algorithm for VC.

Init: ∀i ∈ V (G), i[st] = OUT, i[done] = false.

Impedensable-VC2A(i) ≡ i[done] = false ∧ (∀j ∈ Adj3i : j[id] < i[id] ∨ j[done] = true).

Rules for node i.

Impedensable-VC2A(i) −→

if (∀k ∈ Adji, k[st] = IN), then i[done] = true.

else, then

j = argmax{x[id] : x ∈ Adji ∧ x[done] = false}.

i[st] = IN .

j[st] = IN , j[done] = true.

i[done] = true.

Observe that the action of node i is selecting an edge {i, j} and adding i and j to the VC. This follows

straightforwardly from the classic 2-approximation algorithm.

5.7.1 Lattice-Linearity of Algorithm 5.8

To demonstrate that Algorithm 5.8 is lattice-linear, we define the state value and rank, auxiliary variables

associated with nodes and global states, as follows.

State-Value-VC2A(i, s) =


|{j ∈ Adji : s[j[st]] = OUT}| if s[i[st]] = OUT

0 otherwise

Rank-VC2A(s) =
∑

i∈V (G)

State-Value-VC2A(i, s).

Theorem 5.5. Algorithm 5.8 is a lattice-linear 2-approximation algorithm for VC.

Proof. Lattice-linearity : In the initial state, every node i has i[done] = false and i[st] = OUT . Let s be an

arbitrary state at the beginning of some time step while the algorithm is under execution such that s does not

manifest a vertex cover. Let i be some node such that i is of the highest ID in its distance 3 neighbourhood

such that some of its edges are not covered. Also, let j be the node of the highest ID in Adji for which

j[done] = false, if one such node exists. We have that i is the only impedensable node in its distance-3

neighbourhood, and j is the specific additional node, which i turns in. Thus the states form a partial order

where state s transitions to another state s′ where s ≺ s′ and for any such i, s′[i[st]] = IN∧s′[i[done]] = true

and s′[j[st]] = IN ∧ s′[j[done]] = true.

82



If s manifests a vertex cover, then no additional nodes will be turned in, and atmost one additional node

(node i, as described in the paragraph above) will have s′[i[done]] = true.

From the above observations, we have that for every node i, State-Value-VC2A(i) is initially deg(i);

this value decreases monotonously and never increases; it becomes 0 after when i is impedensable. As a

result, Rank decreases monotonously until it becomes zero, because if Rank is not zero, then at least one

node is impedensable (e.g., node of highest ID which has at least one uncovered edge). Thus, we have that

Algorithm 5.8 also is lattice-linear. However, it induces only one lattice among the global states since the

initial state is predetermined, thus w = 1.

2-approximability : If a node i is impedensable and if one of its edges is uncovered, then it selects an edge

(it points to the other node in that edge) and both the nodes in that edge turn in; thus it straightforwardly

follows the standard sequential 2-approximation algorithm. If some node k (at a distance farther than 3

from i) executes and selects k′ ∈ Adjk to turn in, then and neither i nor j can be a neighbour of k or k′.

Thus any race condition is prevented. This shows that Algorithm 5.8 preserves the 2-approximability of the

standard 2-approximation algorithm for VC.

Example 5.3. In Figure 5.5 (a), we show a graph (containing eight nodes v1, ..., v8) and the lattice induced

by Algorithm 5.8 in the state space of that graph. We are omitting how the value of i[done] gets modified;

we only show how the vertex cover is formed. Only the reachable states are shown. Each node in the lattice

represents a tuple of states of all nodes ⟨v1[st], v2[st], · · · , v8[st]⟩.

v2

v1

v3

v4 v8

v7

v6

v5

(a)

(OUT,OUT,OUT,OUT
OUT,OUT,OUT,OUT )

(OUT, IN,OUT, IN
OUT,OUT,OUT,OUT )

(OUT,OUT,OUT,OUT
OUT,OUT, IN, IN)

(OUT, IN,OUT, IN
OUT,OUT, IN, IN)

(b)

Figure 5.5: Execution of Algorithm 5.8: (a) input graph, and (b) lattice induced in the input graph. Tran-
sitive edges are not shown for brevity.

In Algorithm 5.8, local state of any node i is represented by two variables i[done] and i[st]. Observe that

in this algorithm, the definition of a node being impedensable depends on i[done] and not i[st]. Therefore

the transitions and consequently the structure of the lattice depends on i[done] only, whose domain is of size

2.

83



In this algorithm, a node i makes changes to the variables of another node j, which is, in general, not

allowed in a distributed system. We observe that this algorithm can be transformed into a lattice-linear

distributed system algorithm where any node only makes changes only to its own variables. We describe the

transformed algorithm, next.

5.7.2 Distributed Version of Algorithm 5.8

In Algorithm 5.8, we presented a lattice-linear 2-approximation algorithm for VC. In that algorithm, the

states of two nodes i and j were changed in the same action.

Here, we present a mapping of that algorithm where i and j change their states separately. The key idea

of this algorithm is when i intends to add j to the VC, i[point] is set to j. When i is pointing to j, j has to

execute and add itself to the VC. Thus, the transformed algorithm is as shown in Algorithm 5.9.

Algorithm 5.9. Algorithm 5.8 transformed where every node modifies only its own variables.

Init: ∀i ∈ V (G), i[st] = OUT, i[done] = false, i[point] = ⊤.

Else-Pointed-VC2A(i) ≡ ∃j ∈ Adj4i : ∃k ∈ Adjj :

k[point] = j ∧ j[done] = false.

Impedensable-VC2A-II(i) ≡

(i[done] = false ∧ (∃j ∈ Adji : j[point] = i)∨

(¬Else-Pointed-VC2A(i)∧

(i[done] = false ∧ (∀j ∈ Adj3i : j[id] < i[id]∨

j[done] = true))).

Rules for node i:

Impedensable-VC2A-II(i) −→

if (∃j ∈ Adji : j[point] = i), then

if (∀k ∈ Adji : k[st] = IN), then i[done] = true

else, then i[st] = IN, i[done] = true.

else, then

if (∀k ∈ Adji, k[st] = IN), then i[done] = true.

else, then

j = argmax{x[id] : x ∈ Adji ∧ x[done] = false}.

i[st] = IN .

i[point] = j.

i[done] = true.

Remark : Observe that in this algorithm, any j chosen throughout the algorithm by some impedensable i

does not move in if it is already covered. Thus, we have that this algorithm computes a minimal as well
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as a 2-approximate vertex cover. On the other hand, Algorithm 5.8 is a faithful replication of the classic

sequential 2-approximation algorithm for vertex cover.

5.8 Gathering Robots on Triangular Grid

In this section, we study the problem of gathering distance-1 myopic robots on an infinite triangular grid.

We show that the algorithm developed by Goswami et al. [16] is lattice-linear. Hence, this algorithm will

run correctly even if the robots run in asynchrony where the robots can execute on old information about

other robots. Because of lattice-linearity, this algorithm works correctly even if the robots are equipped with

a unidirectional camera to see neighbouring robots. Authors of [16] assumed a distributed scheduler, which

would require an omnidirectional camera, capable to get fresh values from all neighbouring locations.

Lattice-linearity follows that the moves of the robots are predictable. This allows us to show tighter

bounds to the arena traversed by the robots under the algorithm. As a consequence of tighter bounds on

this arena, (1) we obtain a better convergence time bound for this algorithm, which is lower than that showed

in [16], and (2) we show that the gathering point of the robots can be uniquely determined from the initial,

or any intermediate, state. We show that this algorithm converges in 2n rounds, which is lower as compared

to the time complexity bound (2.5(n+ 1) rounds) shown in [16].

5.8.1 Gathering of Distance-1 Myopic Robots on Infinite Triangular Grid (GMRIT)

This chapter focuses on the problem where the input is a swarm of robots with minimal capabilities.

Each robot is present at a vertex on an infinite triangular grid. In the initial global state, the robots form a

connected graph on the underlying grid. The robots agree on an axis (i.e. a direction and its orientation).

The robots can move only across one edge at a time. Each robot is myopic, i.e., it can only sense if another

robot is present at an adjacent vertex. Robots do not have an abiliy to communicate with each other. Under

these constraints, it is required that all robots gather at one point.

Problem Statement

The input is a global state s that describes the location of n robots placed on the grid points of an

infinite triangular grid G such that the robots form a connected graph. The GMRIT problem requires that

all robots gather at one vertex of G and stay forever at that vertex subject to the following constraints:

• Visibility: A robot can only determine if another robot is present in a neighbouring location. It cannot

exchange data with another robot.

• One Axis Agreement: All robots agree on one axis and the orientation of that axis. (cf. y-axis as

shown in Figure 5.6).

All robots are independent and identical from a physical and computational perspective and do not have

an ID. They are oblivious to the coordinates of their location on the infinite triangular grid G. Observe that

we can allow a global state s to be a multiset of vertices, each of which is the location of a robot. For s, its
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Figure 5.6: Robots on an infinite triangular grid: one on every round highlighted vertex.

visibility graph is the subgraph of G induced by the set of vertices in s.

Notice that by definition of the problem statement, a solution to GMRIT will provide silent self-

stabilization. An instance of GMRIT is shown in Figure 5.6. Here, each round highlighted vertex represents

a robot. Observe that the visibility graph of this global state is a connected graph.

Next, we discuss how GMRIT problem is not a lattice-linear problem. This can be illustrated by a system

containing two robots x1 and x2 present at locations l1 and l2 (l1 and l2 are different vertices on the same

edge) on G. In such a system x1 can move to l2, in which case, x2 is not impedensable, or otherwise, x2 can

move to l1, in which case, x1 is not impedensable. Hence, no specific robot can be deemed impedensable,

though, the global state is suboptimal.

Problem Specific Definitions

Some of the definitions that we discuss in this subsection are from [16]. A horizontal layer is a line

perpendicular to the y-axis that passes through at least one robot. The top layer of a global state s is a

horizontal layer such that there is no horizontal layer above it (e.g., AD in Figure 5.6). Bottom layer of s is

a horizontal layer such that there is no horizontal layer below it (e.g., BC in Figure 5.6).

A vertical layer is parallel to the y-axis such that it passes through at least one robot. The left layer of

s is the vertical layer such that there is no vertical layer on its left (e.g., AB in Figure 5.6). The right layer

of s is the vertical layer such that there is no vertical layer on its right (e.g., CD in Figure 5.6).

As seen in Figure 5.6, vertices in G are intersections of three groups of parallel lines; one of these groups

are lines parallel to the y-axis. We use p-axis (positive slope) and n axis (negative slope) to denote the other

group of parallel lines. The positive slant is a line parallel to p-axis (e.g., BP in Figure 5.6) and negative

slant is a line parallel to n-axis (e.g., CP in Figure 5.6). The bottom l2r slant of s is a negative slant that
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passes through a robot such that there is no negative slant on its left passing through a robot (e.g., B′Q in

Figure 5.6). The bottom r2l slant of s is a positive slant that passes through a robot such that there is no

positive slant on its right passing through a robot (e.g., C ′Q in Figure 5.6). Note that a negative slant and

a positive slant can be imaginary, or a line in G.

The depth of s is the distance between its top layer and its bottom layer. The width of s is defined as

the distance between its left layer and right layer.

As shown in Figure 5.6, a polygon ABPCD is a bounding polygon of a global state s if (1) AB and CD

are line segments of the left layer and the right layer of s respectively, (2) AD and BC are line segments

of the top layer and the bottom layer of s respectively, and (3) P is the point of intersection between the

negative slant passing through B and the positive slant passing through C.

Note that these definitions (top/bottom layer, etc.) are only used for discussion of the protocol and

proofs. The robots are not aware of them. Similarly, the robots can distinguish between up and down, but

not left and right.

5.8.2 General Idea of the Algorithm

A robot has six possible neighbouring locations. The naming convention for these locations is as shown

in Figure 5.7 (a) [16]. Since each robot has 6 neighbouring locations, it can be in one of 26 possible local

states. Of these, the robot can move in only 11 states. Of these, 7 states are shown in Figure 5.7 (b) [16].

The other 4 states are mirror images of those shown in cases 2, 5, 6 and 7 in Figure 5.7 (b).

i

v1

vℓ2 vr2

vℓ3 vr3

v4

(a)

∗ ∗ ∗ ∗

case 1 case 2 case 3 case 4

∗ ∗ ∗

case 5 case 6 case 7
(b)

+y

Figure 5.7: (a) Naming conventions for neighbourhood of a robot. (b) Cases where a node is impedensable.
Note that the mirror images of these local states are also impedensable.

Authors of [16] show that the robots do not move out of the bounding polygon. They also show that

the visibility graph induced among the robots stay connected, and the dimensions of the bounding polygon

reduce with every round.
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5.8.3 GSGS Algorithm [16] for GMRIT problem

In this section, we reword the algorithm in [16] to demonstrate its lattice-linearity. We define the macros

listed in Table 5.4. For a set L of locations around a node i, At(i, L) is true iff if there is at least one robot

at each location in L. Only-At(i, L) is true iff At(i, L), and there is no other robot at locations other than

locations in L. A robot i is extreme if (1) there is no robot on top (v4(i)) of i and (2) if there is a robot on

the left (vℓ2 or vℓ3) of i, then there is no robot on the right (vr2 or vr3) of i. If a robot i is extreme, and there is

no robot around it, then i is a terminating robot. If i is extreme, and there is a robot only on v3(i) or there

are robots only on both v1(i) and v3(i), then i is a staying robot.

If i is extreme, and there is a robot on v1(i) and no robot on v3(i), then i is a downward impedensable

robot. If i is not a downward impedensable robot, not a staying robot, and not a terminating robot, then it is

a downslant impedensable robot. If i is not an extreme robot, and there is a robot on both v2(i) and no robot

at its y-coordinate > 0, then i is a non-extreme impedensable robot. The algorithm is described as follows.

Extreme(i) ≡ ¬At(i, {v4}) ∧ ((At(i, {vr2})∨

At(i, {vr3})) ⇒ (¬At(i, {vℓ2}) ∧ ¬At(i, {vℓ3})))

Terminating(r) ≡ Extreme(i) ∧ (∀q ∈ {v1, vr2, vr3, v4, vℓ3, vℓ2} : ¬At(i, {q})).

Staying(i) ≡ Extreme(i) ∧ (Only-At(i, {vr3})∨

Only-At(i, {vℓ3}) ∨ Only-At(i, {v1, vr3}) ∨ Only-At(i, {v1, vℓ3})).

Downward(i) ≡ Extreme(i) ∧ At(i, {v1}) ∧ ¬(At(i, {vr3}) ∨ At(i, {vℓ3})).

Downslant-Right(i) ≡ Extreme(i) ∧ ¬Downward(i) ∧ ¬Staying(i)∧

¬Terminating(r) ∧ At(i, {vr2}).

Downslant-Left(i) ≡ Extreme(i) ∧ ¬Downward(i) ∧ ¬Staying(i)∧

¬Terminating(r) ∧ At(i, {vℓ2}).

Non-Extreme(i) ≡ ¬Extreme(i) ∧ At(i, {vr2, vℓ2}) ∧ ¬(At(i, {vr3}) ∨ At(i, {vℓ3}) ∨ At(i, {v4})).

Impedensable-GSGS(i) ≡ Downward(i) ∨ Downslant-Right(i)∨

Downslant-Left(i) ∨ Non-Extreme(i).

Table 5.4: Macros used in the algorithm for GMRIT problem.

If a robot i is downward impedensable, then i moves downwards to v1(i). If i is downslant impedensable, then

i moves to v2(i). If i is a non-extreme impedensable robot, then i moves to v1(i).
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Algorithm 5.10. Rules for robot i.

Impedensable-GSGS(i) −→



move(i, v1(i)) if Downward(i)

move(i, vr2(i)) if Downslant-Right(i)

move(i, vℓ2(i)) if Downslant-Left(i)

move(i, v1(i)) if Non-Extreme(i)

In [16], authors assume a distributed scheduler. Next, we show that Algorithm 5.10 is lattice-linear,

Thus, it will be correct even in asynchrony.

Lattice-Linearity

In this subsection, we show lattice-linearity of Algorithm 5.10. Among the lemmas and theorems presented

here, Lemma 5.7 and Lemma 5.8 are adopted from [16]. We use them to help prove some properties of

Algorithm 5.10. All other results show or arise from the lattice-linearity of Algorithm 5.10.

Lemma 5.5. The predicate ∀i : ¬Impedensable-GSGS(i) is a lattice-linear predicate on n robots, and the

visibility graph does not get disconnected by the actions under Algorithm 5.10.

Proof. In this proof, we consider the 7 cases as shown in Figure 5.7 (b) and show that if robot i is impedens-

able, it must execute to reach the goal state. We show that if a robot i is impedensable, then there exists

at least one robot j around i which does not move until i moves. Specifically, Algorithm 5.10 imposes that

j ‘waits’ for i to move. It means that if i does not move, then the robots cannot find the gathering point.

Case 1 : This robot i is a downward impedensable robot. The other robot that is present below it is not

extreme and is also not a non-extreme impedensable robot because i is present above it, so it will not move

until i changes its location.

Case 2 : This robot i is a downward impedensable robot. There are two robots, x1 and x2, present at

locations v1(i) and v2(i) respectively. x1 is not extreme and is also not non-extreme impedensable because

i is present above it. So x1 will not move until i changes its location. x2 may be impedensable. x2 can only

move to the location of x1 thereby resulting in case 1. In this possibility, the robot i remains impedensable

and its required action does not change.

Case 3 : This robot i is a non-extreme impedensable robot. There are two robots, x1 and x2, present at

locations v2(i)-left and v2(i)-right respectively. For x1 or x2 to be impedensable, there must be some robot

at the v1(i) location, which is not the case, thus, they are not impedensable. Hence, x1 and x2 will not move

until i changes its location.

Case 4 : This robot i is a non-extreme impedensable robot. There are three robots, x1, x2 and x3,

present at locations v2(i)-left, v1(i) and v2(i)-right respectively. x2 is not impedensable. x1 and x3 may be
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impedensable, based on their local states. If one or both of them move, they will move to the location of x2,

resulting in case 2 or case 1. In these possibilities, the robot i remains impedensable and its required action

does not change.

Case 5 : This robot i is a downslant impedensable robot. There are two robots, x1 and x2, present at

locations v2(i) and v3(i) respectively. x1 is not extreme and is also not non-extreme impedensable. So x1

will not move until i changes its location. x2 may be impedensable, based on its local state. x2 can move to

the location of x1 or i thereby resulting in case 7. In this possibility, the robot i remains impedensable and

its required action does not change.

Case 6 : This robot i is a downslant impedensable robot. There are three robots, x1, x2 and x3, present

at locations v1(i), v2(i) and v3(i) respectively. x1 and x2 are not extreme and are also not non-extreme

impedensable. Initially, x1 and x2 cannot move. x3 may be downward impedensable, based on its local

state. x3 can only move to the location of x2 thereby resulting in case 2. After this, one or both of x1 and

x2 can move to the location of x1, resulting in case 1. In these possibilities, i remains impedensable, its

required action may change, but the graph does not get disconnected if it executes under case 6 (using old

information, if it assumes, despite the movement of other robots, that it falls in case 6).

Case 7 : This robot i is a downslant impedensable robot. The other robot x1 that is present at v2(i)

is not extreme and is also not a non-extreme impedensable robot, so x1 will not move until i changes its

location.

From these cases, we also have that an impedensable robot stays connected to the robots that were its

neighbours before it moved. This implies that the visibility graph stays connected after any impedensable

robots move.

The robots executing Algorithm 5.10, as shown in [16], stay in the bounding polygon ABPCD. Next,

we show, using the above proof, a tighter polygon bounding the robots. To define this polygon, we let Q to

be the point such that it is an intersection between the bottom l2r slant of s and the bottom r2l slant of s

(cf. Figure 5.6). Let B′ be the point of intersection between left layer (AB) and the bottom l2r slant of s

and let C ′ be the point of intersection between the right layer (CD) and the bottom r2l slant of s. We show

that the robots never step out of the polygon AB′QC ′D, which is tighter than ABPCD.

Observation 5.1. If the neighbouring robot, say j of an impedensable robot i moves then i or j fall under

case 5 or case 6.

Lemma 5.6. Throughout the execution of Algorithm 5.10, the bottom r2l slant and the bottom l2r slant will

not change.
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Proof. In a global state s, a robot present at the bottom l2r slant of s or a bottom r2l slant of s is represented

in cases 5 and 7. From Algorithm 5.10 and the proof of Lemma 5.5, if a robot is present at bottom l2r slant

(respectively, bottom r2l slant), it will never move below (v1(i)) or left (vℓ2(i)) of its location (respectively,

below (v1(i)) or right (vr2(i)) of its location).

Lemma 5.7. [16] Throughout the execution of Algorithm 5.10, left layer does not move leftwards and right

layer does not move rightwards.

Lemma 5.8. [16] In every round of Algorithm 5.10, the top layer moves at least 1/2 unit in the negative

direction of the y-axis.

Corollary 5.1. (From Lemma 5.6 and Lemma 5.7) The robots will never step out of the polygon AB′QC ′D.

Theorem 5.6. Algorithm 5.10 is a lattice-linear self-stabilizing algorithm for the GMRIT problem on n

robots executing asynchronously.

Proof. From Lemma 5.6, we have that bottom l2r slant and bottom r2l slant do not change. From Corol-

lary 5.1, we have that the robots will never step out of the polygon AB′C ′DQ. From Lemma 5.8, we have

that the top layer moves down by at least half a unit in the negative direction of y-axis. Thus we have that

the robots converge at the point of intersection of the bottom l2r slant and the bottom r2l slant, and the

robots will eventually gather at that point.

Corollary 5.2. (From Lemma 5.8, Corollary 5.1 and Theorem 5.6) The point, Q, where the robots gather,

can be uniquely determined from the initial global state.

Time Complexity Properties

In [16], authors showed that Algorithm 5.10 converges in 2.5(n+1) rounds. Based on Corollary 5.2 which

identifies a predictable gathering point, we show that a maximum of 2n rounds is sufficient, which is a tighter

bound.

Theorem 5.7. Algorithm 5.10 converges in 2n rounds.

Proof. We use Figure 5.6 to discuss convergence of robots in Algorithm 5.10. As discussed in Section 5.8.1

and Section 5.8.3, let A, B′, Q, C ′ and D be the points obtained by pairwise intersection of the top layer,

left layer, bottom l2r slant, bottom r2l slant and right layer. Let hℓ be the depth of the line segment AB′,

hr be the depth of the line segment C ′D, and w be the width of the line segment AD. Note that a unit of

length of the depth of AB′ or C ′D is
√
3 times a unit of length of the width of AD due to the geometry of

G. Since the robots form a connected graph, w ≤ n. And, if w > 0 then hℓ + hr ≤ n. If w = 0, we define

hℓ = 0 and hr = n.
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In the case where w = 0, it can be clearly observed that Algorithm 5.10 converges in n rounds. Next, we

consider if w > 0. Without the loss of generality, let hr ≥ hℓ. Thus, hℓ ≤ n/2.

Let E be the point of intersection between the bottom l2r slant and the right layer (cf. Figure 5.6). We

draw a horizontal line (perpendicular to the y-axis) through B′ and use J to denote its intersection with

DC ′. Thus, the depth of AB′JD is hℓ. Additionally, observe that the length of B′E on the n-axis is w. Thus

the height of JE is w/2 units on the y-axis. This means that the depth of B′EJ is w/2. By construction

of E, the depth of B′QC ′J is upper bounded by the depth of B′EJ . Thus, the depth of B′QC ′J cannot

exceed w/2 ≤ n/2 units.

Thus, the total depth of AB′QC ′D is equal to the sum of the depth of AB′JD and the depth of B′QC ′J ,

which is upper bounded by n/2 + n/2 = n units. From Lemma 5.8, the total number of rounds required for

the robots to gather is upper bounded by 2n moves.

5.8.4 Revised Algorithm for GMRIT

In this section, we present a revised algorithm that simplifies the proof of lattice-linearity. This algorithm

is based on the difficulties involved in the proof of Lemma 5.5 where we needed to consider the possible actions

taken by the neighbours of an impedensable robot. Our proof would have been simpler if all the neighbours

of an impedensable robot i would not be allowed to move until i moves. Additionally, from Observation 5.1,

we have that if a robot j, neighbouring to an impedensable node i, is impedensable, then i or j fall in case

5 or case 6.

These issues can be alleviated by removing cases 5 and 6 from the algorithm. The macros that we utilize

are as follows. A robot is downward impedensable if its local state is one of those represented in cases 1, 2,

3 or 4 (and their mirror images; cf Figure 5.7 (b)). A robot is is downslant impedensable if its local state is

that represented in case 7.

Downward-II(i) ≡ (At(i, {v1}) ∧ ¬At(i, {vℓ3, v4, vr3})) ∨ Only-At(i, {vℓ2, vr2}).

Downslant-Left-II(i) ≡ Only-At(i, {vℓ2}).

Downslant-Right-II(i) ≡ Only-At(i, {vr2}).

The revised algorithm is as follows. A downward impedensable robot moves to v1(i) location, and a

downslant impedensable robot moves to v2(i) location.

Algorithm 5.11. Rules for robot i.

Downward-II(i) −→ move(i, v1(i)).

Downslant-Right-II(i) −→ move(i, vr2(i)).

Downslant-Left-II(i) −→ move(i, vℓ2(i)).
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In Algorithm 5.11, because of the removal of cases 5 and 6, any robot around an impedensable robot

does not move. Thus lattice-linearity of this algorithm can be visualized more intuitively. Consequently, we

have the following lemma.

Lemma 5.9. The predicate ∀i : ¬(Downward-II(i) ∨ Downslant-Right-II(i) ∨ Downslant-Left-II(i)),

is a lattice-linear predicate on n robots, and the visibility graph does not get disconnected by the actions under

Algorithm 5.11.

Lemma 5.8 shows the top-layer moves down in each round. This proof is not affected by the removal of

cases 5 and 6, as the robot executing in cases 5 or 6 is not a top-layer robot. Consequently, Algorithm 5.11

follows the properties as described in Lemma 5.8, Theorem 5.6 and hence Theorem 5.7. Thus, we obtain the

following theorem.

Theorem 5.8. Algorithm 5.11 is a lattice-linear self-stabilizing algorithm for GMRIT problem on n robots

executing asynchronously. It converges in 2n rounds, and the robots gather at Q.

5.9 Summary of the chapter

In this chapter, we introduced fully lattice-linear algorithms that are tolerant to asynchrony. Such algo-

rithms induce lattices in the state space even if the underlying problem does not specify, in a suboptimal

global state, a set of nodes that must change their states.

5.9.1 Theoretical Achievements

We bridge the gap between lattice-linear problems [6] and eventually lattice-linear algorithms (Chapter 4).

Fully lattice-linear algorithms overcome the limitations of [6] and Chapter 4. Additionally, such algorithms

can be developed even for problems that are not lattice-linear. This overcomes a key limitation of [6] where

the system fails if nodes cannot be deemed impedensable, or not impedensable, naturally. Since the lattice

structures exist in the entire (reachable) state space, we overcome a limitation of Chapter 4 where only in a

subset of global states, lattice-linearity is observed.

5.9.2 New Fully Lattice-Linear Algorithms

We present algorithms for minimal dominating set (MDS), graph colouring (GC), minimal vertex cover

(MVC) and maximal independent set (MIS). Of these, MDS and GC relied on tie-breakers on node IDs, a

common approach for breaking ties in the literature. We observe that a similar design cannot be directly

extended to develop an algorithm for MVC and MIS. However, the use of complex actions – that permit a

node to change the values of the variables of other node as well as its own – enable the design of algorithms

for MVC and MIS. We also observe that complex actions can be revised into simple actions – where a node

can only change its own values – without losing lattice-linearity. However, these revised algorithms utilize

the phenomenon of priority inheritance to accomplish this.
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We also provide a fully lattice-linear 2-approximation algorithm for vertex cover. This algorithm is the

first lattice-linear approximation algorithm for an NP-Complete problem.

In [6] lattice-linearity is studied in only those systems where the state space forms a distributive lattice

where all pairs of global states have a join (supremum) and meet (infimum), and join and meet operations

distribute over each other. We observe that some of these requirements are not required to provide correctness

under asynchrony. Specifically, we observe that a system allows asynchrony if the state space forms ≺-lattices,

where the join between any two states is defined, but the definition of meet is not required. This aspect is

more overtly observed in instances of MVC. Specifically, Figure 5.3 shows that we have a ≺-lattice but not

a distributive lattice.

Fully lattice-linear algorithms considered in this chapter preserve an advantage of [6] that was lost in the

extension by Chapter 4. Specifically, in [6], the final configuration could be uniquely determined from the

initial state, whereas in Chapter 4, all global states (specifically, the infeasible states) do not form a lattice,

so starting from an arbitrary state, the state of convergence cannot be predicted. In fully lattice-linear

algorithms that we introduce in this chapter, the state space is split into multiple lattices and the algorithm

starts in one of them. Hence, the state of convergence can be uniquely determined by the initial state.

5.9.3 Distance-1 Transformation and Experiments

We have that a lattice-linear algorithm can be transformed to a distance-1 algorithm by having the nodes

keep a copy of the variables, of the other nodes, that they want to evaluate their guards with. We transform

Algorithm 5.2 to a distance-1 algorithm by using a minimal set of variables needed to evaluate said guards.

We also demonstrate that these algorithms substantially benefit from using the fact that they satisfy the

property of lattice-linearity. Specifically, they outperform existing algorithms when they utilize the fact that

they are correct without synchronization among processes, i.e., they are correct even if a node is reading

old/inconsistent values of its neighbours.

5.9.4 Gathering Myopic Robots

We also show lattice-linearity of the algorithm developed by Goswami et al [16] for gathering robots on

an infinite triangular grid. This removes the assumptions of synchronization from the algorithm and thus

makes a system running this algorithm fully tolerant to asynchrony. We also present a revised algorithm

that simplifies the proof of lattice-linearity without losing any of the desired properties (e.g., convergence

time, stabilization).

Lattice-linearity implies that the locations, possibly visited by a robot, form a total order. The total

order is a result of the fact that we are able to determine all and the only robots in any global state that

are impedensable, and an impedensable robot has only one choice of action. By making this observation,

it can also be noticed that we can closely predict the executions that the robots would perform. As a
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result, we are able to (1) compute the exact arena traversed by the robots throughout the execution of the

algorithm (Lemma 5.6 and Lemma 5.7), and (2) deterministically predict the point of gathering of the robots

(Corollary 5.2).

We also provided a better upper bound on the time complexity of this algorithm. Specifically, we show

that it converges in 2n rounds, whereas [16] showed that a maximum of 2.5(n+1) rounds are required. This

was possible due to the observations that followed from the proof of lattice-linearity of this algorithm.
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CHAPTER 6

PARTIAL ORDER-INDUCING SYSTEMS

In the previous chapters, we explored several special cases of algorithms that can converge without

synchronization. Specifically, we studied how algorithms, that impose the nodes to visit their local states

in a total order, tolerate asynchrony. Consequently, the global state transition graph forms a ≺-lattice, and

thus, we call such systems lattice-linear systems. We also studied several example problems and algorithms

that act as concrete evidence of our theory. However, as we will study in this chapter, an arbitrary system,

that can converge in asynchrony, may not be lattice-linear. Lattice induction is a sufficient condition to

allow asynchrony, but it is not a necessary condition. In this chapter, we complete the theory that explains

the behaviour of an arbitrary system that can tolerate asynchrony. To this end, we introduce partial order-

inducing problems and partial order-inducing algorithms.

We show that induction of a ≺-DAG (induced among the global states – that forms as a result of a partial

order induced among the local states visited by individual nodes) is a necessary and sufficient condition to

allow an algorithm to run in asynchrony.

In the chapter, we first provide a comprehensive description of partial order-inducing problems and partial

order-inducing algorithms, along with some simple examples. Then we show some properties of an algorithm

that can converge under asynchrony, which include the condition that we discussed in the above paragraph.

An important conclusion from the above observation is that if we want to show that an algorithm can

converge without synchronization, then we do not have to generate the entire global state transition system

and check for the absence of cycles. Rather, we only need to show that the local state transition graph forms

a partial order (PO). Thus, the complexity of determining the correctness of such systems is significantly

reduced, and so this observation is fruitful in writing social and formal proofs that show tolerance of an

algorithm to asynchrony.

In this chapter, we study problems such as the dominant clique (DC) problem, the shortest path (SP)

problem and the maximal matching (MM) problem. We show that DC and SP are PO-inducing problems.

Among these, DC allows self-stabilization, whereas the algorithm that we present for the SP does not. We

demonstrate that MM is not a PO-inducing problem. We present a PO-inducing algorithm for it. This

algorithm allows self-stabilization. We study the upper bound to the convergence time of a PO-inducing

algorithm. We show how inducing a partial order among the local states of all individual nodes is crucial to

allow asynchrony: it is necessary and sufficient condition to allow asynchrony.

A observation that immediately follows is that since a total order is a special case of a partial order, all

lattice-linear problems and algorithms are, respectively, PO-inducing problems and algorithms.
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Organization of the Chapter

This chapter is organized as follows. In Section 6.1, we study the characteristics of PO-inducing problems,

and in Section 6.2, we study the characteristics of PO-inducing algorithms, with examples. In Section 6.3, we

study the properties of PO-inducing algorithms. While the previous sections provide simple, but sufficient,

examples of asynchrony tolerant systems, this section is crucial from the perspective of the theory that we

establish in this chapter. Finally, we summarize the chapter in Section 6.4.

6.1 Natural partial order induction: PO-inducing Problems

In this section, we discuss properties of problems where a partial order (PO) among the nodes visited by

individual nodes is induced naturally. It means that in any suboptimal state, the problem definition itself

specifies the nodes that must change their state, in order for the system to reach an optimal state.

6.1.1 Embedding a ≺-DAG among global states

To explain the embedding of a ≺-DAG, first, we define a partial order ≺l among the local states of a

node. This partial order defines all the possible transitions that a node is allowed to take. The partial order

≺l is used to restrict how node i can execute: i can go from state s[i] to s′[i] only if s[i] ≺l s
′[i].

Using ≺l, we define ≺g that orders the global states. The predicate s ≺g s′ is true iff the predicate (∀i :

s[i] = s′[i]∨ s[i] ≺l s
′[i])∧ (∃i : s[i] ≺l s

′[i]) is true; s = s′ iff ∀i : s[i] = s′[i]. For brevity, we use ≺ to denote

≺l and ≺g: ≺ corresponds to ≺l while comparing local states, and ≺ corresponds to ≺g while comparing

global states. We also use the symbol ‘≻’ which is such that s ≻ s′ iff s′ ≺ s. Similarly, we use symbols ‘⪯’

and ‘⪰’; e.g., s ⪯ s′ iff s = s′ ∨ s ≺ s′. We call the DAG, formed from such partial order, a ≺-DAG.

Definition 6.1. ≺-DAG. Given a partial order ≺l that orders the local states visited by i (for each i), the

≺-DAG corresponding to ≺l is defined as follows: s ≺ s′ iff (∀i : s[i] ⪯l s
′[i]) ∧ (∃i : s[i] ≺l s

′[i]).

A ≺-DAG constraints how global states can transition among one another: state s can transition to

state s′ iff s ≺ s′. By varying ≺l that identifies a partial order among the local states of a node, one can

obtain different ≺-DAGs. A ≺-DAG, embedded in the state space, is useful for permitting the algorithm to

execute asynchronously. Under proper constraints on the structure of ≺-DAG, convergence can be ensured.

We elaborate on this in Section 6.1.2.

6.1.2 General Properties of PO-Inducing Problems

Asynchrony can be allowed in any system that imposes a condition that any node i changes its state only

if it evaluates that an optimal global state cannot be reached with the current local state of i. We call such

a node an impedensable node (indispensable to change for progress, an impediment to progress if it does not

change its state). Let P be the predicate governing a system such that it determines the state transitions of

that system, that is, it determines which nodes have to change their state. And, let P(s) be true only if no
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nodes in global state s are impedensable.

Impedensable Node and Impedensable Global State

In a multiprocessor system, a node can have single or multiple choices of action when it changes its state,

but it can be in only one state at a given instance. A node i is enabled iff it is impedensable. In this case,

(1) the nodes are also capable of discarding more than one local state, and (2) consequently, a partial order

is induced among the local states visited by individual nodes.

Let i be impedensable in a global state s, and let st be the current local state of i. Node i does not

revisit st, and it also does not visit some other local states. To explain this, let Equicorrupt(st, i) be the

set of local states of i that are deemed to be violating iff state st is is a violating local state in i. So if st is

discarded, all states in Equicorrupt(st, i) are also not visited by i throughout the execution. This ensures

that i must move up in the partial order. We have the definition of an impedensable node as follows.

Definition 6.2. Impedensable node (updated definition). Impedensable(i, s,P) ≡ ¬P(s) ∧ (∀s′ :

(s′ ⪰ s) ⇒ (s′[i] ∈ Equicorrupt(s[i], i) ⇒ ¬P(s′))).

Example 6.Max: Continuation 6. Consider the execution of the nodes in global state ⟨2, 2, 3⟩ under the

algorithm for the max problem presented in Section 2.1.3. Equicorrupt(2, 1) is the set of local states of

node 1 that are equally corrupt as local state 2. Due to the total order, there is only one node in each level,

and so, e.g., the set Equicorrupt(2, 1) = {2} has only one value.

As we will study in Section 6.1.3 and in the following parts of the chapter, the states in Equicorrupt(st, i)

are essentially the local states of i that are at the same level in the partial order. Thus, a global state s is

suboptimal, that is, s is impedensable, if and only if it contains at least one impedensable node. Formally,

Definition 6.3. Impedensable global state. Impedensable(s,P) ≡ ∃i : Impedensable(i, s,P).

PO-inducing problems

A PO-inducing problem P can be represented by a predicate P, where P stipulates that any local state

st of i, that is deemed in violation by i, will make any global state s suboptimal if s[i] = st. So i never

revisits st. As a result, predicate P induces a partial order among the local states visited by a node, for

all nodes (no cycles). Consequently, the discrete structure S that gets induced among the global states is a

≺-DAG, as described in Definition 6.1. We say that P, satisfying Definition 6.2, is PO-inducing with respect

to that ≺-DAG. P is used by the nodes to determine if they are impedensable, using Definition 6.2 and

Definition 6.3.

Definition 6.4. PO-Inducing Predicate. P is a PO-inducing predicate with respect to a ≺-DAG induced

among the global states iff ∀s ∈ S : ¬P(s) ⇒ ∃i : Impedensable(i, s,P).
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Remark : Since a total order is a special case of a partial order, all lattice-linear problems are PO-inducing

problems.

Now we complete the definition of PO-inducing problems. In a PO-inducing problem P , given any

suboptimal global state, we can identify all nodes that should not retain their state. P is thus designed

conserving this nature of problem P .

Definition 6.5. PO-inducing problem (DIP). A problem P is PO-inducing iff there exists a predicate

P and a ≺-DAG S, induced among the global states, such that (1) P is solved iff the system reaches a state

where P is true, (2) P is PO-inducing with respect to S, i.e., ∀s : ¬P(s) ⇒ ∃i : Impedensable(i, s,P), and

(3) ∀s : (∀i : Impedensable(i, s,P) ⇒ (∀s′ : P(s′) ⇒ s′[i] ̸= s[i])).

Successors of Global States

When a system allows asynchrony, then a global state s can transition to one of multiple other global

states. Let Ss be a set of such states. Ss will contain the states which s can transition to if all nodes are

reading fresh local states of other nodes.

Definition 6.6. Successors of a global state. Successors(s) ≡ {s′ : s′ ≻ s}.

There may be are some global states that do not have any successors. We call them terminal successors.

Definition 6.7. Terminal Successors. s′ ∈ Terminal-Successors(s), iff {s′| s′ ∈ Successors(s)∧

Successors(s′) = ϕ}.

Example 6.Max: Continuation 7. Going back to Example 2.2 (Chapter 2), the only terminal successor

in the state transition graph shown in Figure 2.1 (b) is ⟨3, 3, 3⟩.

Self-Stabilizing Predicates

P satisfies Definition 6.8 only if starting from any arbitrary state, the system converges to an optimal

state. This, in turn, is possible only if all terminal successors in S are optimal states. P can be true in other

states as well.

Definition 6.8. Self-stabilizing PO-inducing predicate. Continuing from Definition 6.5, P is a self-

stabilizing PO-inducing predicate if and only if all terminal successors in the ≺-DAG induced by P are

optimal states, i.e. ∀s, s′ ∈ S : Terminal-Successor(s, s′) ⇒ P(s′) = true.

Example 6.Max: Continuation 8. We have shown an incomplete state transition graph in Figure 2.1

(b), however, it can be trivially noticed that the predicate for the max problem, as noted in Example Max:

Continuation 4 is a self-stabilizing PO-inducing predicate.
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The main intent of this chapter is to establish some fundamental properties of PO-inducing systems.

However, to understand these properties, we need to understand the behaviour of such systems. Thus, in

the remaining part of this section, we study some PO-inducing problems, and explore how the induction

of a partial order among the local states, under the acting algorithm, allows the nodes to execute without

synchronization.

6.1.3 Dominant Clique (DC) Problem

In this section, we describe an algorithm for the dominant clique problem, which is defined in the following

paragraph. The algorithm that we describe in this subsection is an embarrassingly parallel algorithm, i.e., in

this algorithm, there is no transfer of data among the nodes. However, we use this trivial algorithm to build

the intuition behind the induction of a partial order among the local states visited by individual nodes, and

how that gives rise to a ≺-DAG among the global states.

Definition 6.9. Dominant Clique. In the dominant clique problem, the input is an arbitrary graph G

such that for the variable i[cliq] of each node i, i[cliq] ⊆ Ni and {i} ⊆ i[cliq]. The task is to (re-)evaluate

i[cliq] such that (1) all the nodes in i[cliq] form a clique, and (2) there exists no clique c in G such that

i[cliq] is a proper subset of c.

Thus, we define the DC problem by the following predicate.

Pdc ≡ (i ∈ i[cliq])∧(∀j, k ∈ i[cliq] : (j ̸= k) ⇒ (k ∈ Adjj))∧ (̸ ∃j ∈ Adji : j ̸∈ i[cliq]∧(∀k ∈ i[cliq] : k ∈ Adjj))

The local state of a node i is defined by ⟨i[cliq]⟩. An impedensable node i in a state s is a node for which

(1) all the nodes in i[cliq] do not form a clique, or otherwise (2) there exists some node k in Adji such that

i[cliq] ∪ {k} is a valid clique, but k is not in i[cliq]. Formally,

Impedensable-DC(i) ≡ (i ̸∈ i[cliq]) ∨ ¬(∀j, k ∈ i[cliq] : j ̸= k ∧ j ∈ Adjk)) ∨

(∃j ∈ Adji : j ̸∈ i[cliq] ∧ (∀k ∈ i[cliq] : k ∈ Adjj)).

The algorithm that we develop next is a self-stabilizing algorithm, which means that the nodes can be

initialized arbitrarily. Thus, i[cliq] may contain the nodes that are not connected to i by an edge. The

algorithm is defined as follows. If all the nodes in i[cliq] do not form a clique, then i[cliq] is reset to be {i}.

If there exists some node j in Adji such that i[cliq] ∪ {j} is a clique, but j is not in i[cliq], then j is added

to i[cliq].
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Algorithm 6.1. Rules for node i in state s.

Impedensable-DC(i) −→
i[cliq] = {i} if (i ̸∈ i[cliq] ∨ (∃j, k ∈ i[cliq] : j ̸= k ∧ j ̸∈ Adjk))

i[cliq] = i[cliq] ∪ {j} otherwise

(where j is such that ∀i ∈ i[cliq] : j ∈ Adji)

Lemma 6.1. The dominant Clique problem is a PO-inducing problem.

Proof. For a node i, i[cliq] contains the nodes that i is connected with, and the nodes in i[cliq] should form

a clique. A global state does not manifest a dominant clique if at least one node i in s does not store a set

of nodes forming a maximal clique with itself, i.e. (1) i[cliq] is not a maximal clique, that is, there exists a

j in Adji \ i[cliq] such that i[cliq] ∪ {j} forms a valid clique, or (2) the nodes in i[cliq] do not form a clique.

Next, we need to show that if some node i in state s is violated, then for any global state s′ such that

s′ ⪰ s, if s′[i] = s[i], then s′ will not manifest a dominant clique. This is straightforward from the definition

itself, that if a node i is impedensable, then i does not store a set of nodes forming a maximal clique with

itself. Thus, if i is impedensable in s, and i has the same state in some s′ such that s′ ≻ s, then s′, as well,

does not satisfy Pdc.

To present the abstraction of the partial order induced among the local states, we define the state value

of a local state as follows.

State-Value-DC(i, s) =
|C| − |i[cliq]| : C = largest superset of i[cliq] that is a valid clique if i[cliq] is a clique.

deg(i) + 1 otherwise.

P induces a partial order among the local states, which can be abstracted by state value as defined above:

for a pair of global states s and s′, s[i] ≺ s′[i] iff State-Value-DS(i, s′) < State-Value-DS(i, s). As an

instance, the partial order induced among the local states of node v1 (of the graph in Figure 6.1 (a)) is shown

in Figure 6.1 (b).

To present the abstraction of the ≺-DAG induced among the global states, we define the rank of a global

state as follows.

Rank-DC(s) =
∑

i∈V (G)

State-Value-DC(i, s).

Under Algorithm 6.1, the global states of the graph in Figure 6.1 (a) form a ≺-DAG that we show in

Figure 6.2. For a pair of global states s and s′, s ≺ s′ iff Rank-DC(s′) < Rank-DC(s). In Figure 6.2, a

global state is represented as ⟨⟨v1[cliq]⟩, ⟨v2[cliq]⟩, ⟨v3[cliq]⟩⟩. The state space for this instance has a total
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v1

v3
v2

(a)

{v1}

{v1,v2} {v1,v3}

{v1,v2,v3} {v2,v3} {} {v2} {v3}

state value = 0

state value = 1

state value = 3

(b)

Figure 6.1: (a) Input graph. (b) The acronym s.v. stands for state value. Partial order among local states
of node 1 (all edges are directed upwards).

512 states. In the figure, we only show the states where the second guard is false in all the nodes. All the

global states where the second guard is true in some nodes will converge to one of the states present in this

figure, and then it will converge to one of the terminal successors.

⟨{1},{2},{3}⟩

⟨{1,2},{2},{3}⟩ ⟨{1},{1,2},{3}⟩ ⟨{1},{2},{1,3}⟩ ⟨{1,3},{2},{3}⟩

⟨{1,2},{1,2},{3}⟩ ⟨{1,2},{2},{1,3}⟩ ⟨{1},{1,2},{1,3}⟩ ⟨{1},{1,2},{1,3}⟩ ⟨{1,3},{1,2},{3}⟩ ⟨{1,3},{2},{1,3}⟩

⟨{1,2},{1,2},{1,3}⟩ ⟨{1,3},{1,2},{1,3}⟩

Figure 6.2: ≺-DAG, assuming that initial state is ⟨{1}, {2}, {3}⟩; we replaced writing vi by i for brevity. In
all these states, the second guard of Algorithm 6.1 is false. Observe that any other state will converge to
one of these states and then converge to one of the optimal states in this ≺-DAG. (Transitive edges are not
shown; all edges are directed upwards.)

Notice that ∀i¬Impedensable-DC(i) is a self-stabilizing PO-inducing predicate and satisfies Defini-

tion 6.8; Algorithm 6.1 that utilizes this predicate is a self-stabilizing algorithm.

Theorem 6.1. Algorithm 6.1 is a silent self-stabilizing algorithm for the dominant clique problem on n

nodes executing asynchronously.

Proof. We need to show that (1) Algorithm 6.1 traverses a ≺-DAG of global states, (2) for all suboptimal

states, ∃ a terminal successor, and (3) all terminal global states are optimal states.

Let the current state be s. If s is suboptimal, then for at least for one of the nodes i: (1) i[cliq] is not a

maximal clique, that is, there exists a j in Adji \ i[cliq] such that i[cliq]∪{j} forms a valid clique, or (2) the

nodes in i[cliq] do not form a clique.

In the case that s is suboptimal and the first case holds true for some node i, then under Algorithm 6.1,
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i will include a node j in i[cliq] which forms a clique with the nodes already present in i[cliq], which reduces

the state value of i by at least 1.

In the case that s is suboptimal and the second case holds true for some node i, then under Algorithm 6.1,

i will change i[cliq] to be {i}, which reduces the state value of i from deg(i) + 1 to some value less than or

equal to deg(i).

This shows a partial order being induced among the local states visited by an arbitrary node i. Thus

under Algorithm 6.1, an arbitrary graph will follow a ≺-DAG of states and if it transitions from a state s to

another state s′, then we have that s′ ≻ s such that rank of s′ is less than the rank of s.

If some node is impedensable, then the rank of the corresponding global state is non-zero. When a

impedensable node i makes an execution, then its state value reduces, until it becomes 0. Thus if there is a

global state s with rank greater than 0, then there exists at least one impedensable node in it. When any

node performs execution in s then s transitions to some state with rank less than s. This shows that for

every suboptimal global state, there exists at least one terminal successor.

Let that s is a terminal successor. This implies that P(s) is true: no node is impedensable in s, so any

node will not change its state and s manifests a dominant clique. Thus we have that all terminal states are

optimal states, and Algorithm 6.1 is silent.

Algorithm 6.1 is a distance-1 algorithm and guarantees converges in asynchrony. This is because in a

given state s some node i is impedensable iff i does not store a dominant clique, thus, s will never transition

to an optimal state without i changing its state.

6.1.4 Shortest Path (SP) Problem

Definition 6.10. Shortest path. In the shortest path problem, the input is a weighted arbitrary connected

graph G (all edge weights are positive) and a destination node vdes. Every node i stores i[p] (initialized with

⊤) and i[d] (initialized with ∞). The task is to compute, ∀i ∈ V (G), the length i[d] of a shortest path from

i to vdes, and the parent i[p] through which an entity would reach vdes starting from i.

The positive weights assigned for every edge {i, j} ∈ E(G) denote the cost that is required to move from

node i to node j. In this problem, if we would have considered the local state of a node i to be represented

only by the variable i[d] then the local states of the nodes would form a total order. Consequently, the

resultant discrete structure formed among the global states will be a ≺-lattice. This was shown in [6]. On

the other hand, in applications such as source routing [18] where the source node specifies the path that

should be taken, the local states form a partial order: such a system cannot be simulated within a total

order. For brevity, we only represent the next hop, in i[p]. The SP problem can be represented by the

following predicate, where, w(i, j) is the weight of edge {i, j}.
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Psp ≡ ∀i : (i[d] = dis(i, vdes) = min{dis(j, vdes) + w(i, j) : j ∈ Adji})∧

(i[p] = arg min{dis(j, vdes) + w(i, j) : j ∈ Adji}).

The local state of a node i is defined by ⟨i[p], i[d]⟩. An impedensable node i in a state s is a node for which

its current parent is not a direct connection to the shortest path from i to vdes. Formally,

Impedensable-SP(i) ≡ (i[d] ̸= 0 ∧ i = vdes) ∨ (∃j ∈ Adji : i[d] > j[d] + w(i, j)).

The algorithm that we develop next is not a self-stabilizing algorithm. We require that each node i has

i[d] initialized to ∞, however, i[p] can be arbitrarily initialized. However, as we later prove in this subsection,

this algorithm converges even without enforcing any synchronization mechanism. The algorithm is defined

as follows. If an impedensable node i is vdes, then i[d] is updated to 0 and i[p] is updated to vdes. Otherwise,

i[p] is updated to the j in Adji for which j[d] + w(i, j) is minimum.

Algorithm 6.2. Rules for node i.

Impedensable-SP(i) −→
i[d] = 0, i[p] = i if i = vdes

⟨i[d], i[p]⟩ = ⟨j[d] + w(i, j), j⟩ : j = argmin{k[d] + w(i, k) : k ∈ Adji} otherwise

We show in the following that Algorithm 6.2 is a PO-inducing algorithm, and the properties of this

algorithm imply that the SP problem is a PO-inducing problem.

Lemma 6.2. The shortest path problem is a PO-inducing problem.

Proof. For a node i, i[d] contains the distance of vdes from node i. A global state s does not manifest all

correct distances if for at least one node i in s, (1) dis(i, vdes) ̸= i[d], that is, i does not store a shortest path

from i to vdes, or (2) the parent of i is not a valid direct connection in a shortest path from i to vdes.

Next, we need to show that if some node i in state s violates Psp, then for each global state s′ such that

s′ ≻ s, if s′[i] = s[i], then s′ will not manifest all shortest paths. This is straightforward from the definition

itself, that if a node i is impedensable, then either i = vdes and it is not pointing to itself through i[p], or

there is at least one other node j such that i[d] > j[d] +w(i, j). If i is impedensable in s, and i has the same

state in some global state s′ such that s′ ≻ s, then i stays impedensable in s′ as well, and s′ does not satisfy

Psp.

To present the abstraction of the induction of an ≺-DAG, we define the state value and rank as follows.

State-Value-SP(i, s) = i[d]− dis(i, vdes).

Rank-SP(s) =
∑

i∈V (G)

State-Value-SP(i, s).
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Under Algorithm 6.2, the global states form a ≺-DAG. We show an example in Figure 6.3. Figure 6.3 (a)

is the input graph and Figure 6.3 (b) is the ≺-DAG induced among the global states. For a pair of global

states s and s′, s ≺ s′ iff Rank-SP(s′) < Rank-SP(s). In Figure 6.3, a global state is represented as ⟨⟨v1[p],

v1[d]⟩, ..., ⟨v4[p], v4[d]⟩⟩.

v1

v2 v3

v4 = vdes

2 1

2 3

(a)

⟨⟨⊤,∞⟩,⟨⊤,∞⟩,
⟨⊤,∞⟩,⟨⊤,∞⟩⟩

⟨⟨⊤,∞⟩,⟨⊤,∞⟩,
⟨⊤,∞⟩,⟨v4, 0⟩⟩

⟨⟨⊤,∞⟩,⟨v4, 2⟩,
⟨⊤,∞⟩,⟨v4, 0⟩⟩

⟨⟨⊤,∞⟩,⟨⊤,∞⟩,
⟨v4, 1⟩,⟨v4, 0⟩⟩

⟨⟨⊤,∞⟩,⟨v4, 2⟩,
⟨v4, 1⟩,⟨v4, 0⟩⟩

⟨⟨v2, 4⟩,⟨v4, 2⟩,
⟨v4, 1⟩,⟨v4, 0⟩⟩

⟨⟨v3, 4⟩,⟨v4, 2⟩,
⟨v4, 1⟩,⟨v4, 0⟩⟩

(b)

Figure 6.3: (a) Input graph. (b) ≺-DAG induced among the global states in evaluating for the shortest path
parblem in the graph shown in (a); a global state is represented as ⟨⟨p.v1, d.v1⟩, ..., ⟨p.v4, d.v4⟩⟩. Transitive
edges are not shown.

The above algorithm requires that all nodes are initialized where i[d] = ∞, i[p] = ⊤. If nodes were initial-

ized arbitrarily (e.g., if for all nodes i, i[d] = 0) then the algorithm does not compute shortest paths. Hence,

∀i ¬Impedensable-SP(i) is a PO-inducing predicate but is not self-stabilizing; in turn, Algorithm 6.2, that

utilizes this predicate, is not self-stabilizing.

Theorem 6.2. Algorithm 6.2 solves the shortest path problem, on a connected positive weighted graph, on

n nodes executing asynchronously.

Proof. We need to show that (1) Algorithm 6.2 traverses a ≺-DAG of global states, (2) for all suboptimal

states, ∃ a terminal successor, and (3) all terminal global states are optimal states.

Let the current state be s. If s is suboptimal, then for at least one of the nodes i: (1) i[p] ̸= i ∧ i = vdes,

that is, i is the destination node and is not pointing to itself, or (2) dis(i, vdes) ̸= i[d], that is, i does not

store a shortest path from i to vdes.

In the case that s is suboptimal and the first case holds true for some node i, then under Algorithm 6.1,

i updates i[d] to 0 and i[p] to i, which reduces the state value of i to 0.
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In the case that s is suboptimal and the second case holds true for some node i, then under Algorithm 6.2,

i will reduce its i[d] value and update i[p], which reduces the state value of i at least by 1.

This shows that a partial order is induced among the local states visited by an arbitrary node i. Thus

under Algorithm 6.1, an arbitrary graph will follow a ≺-DAG of global states and if it transitions from a

state s to another state s′, then we have that s′ ≻ s such that rank of s′ is less than the rank of s.

If no node is impedensable, then this implies that all nodes have computed the shortest distance in their

i[d] variable, and thus the rank is 0. Thus if there is a global state s with rank greater than 0, then there

exists at least one impedensable node in it. When any node performs execution in s then s transitions to

some state s′ such that the rank of s′ is less than the rank of s. This shows that for every suboptimal global

state, there exists at least one terminal successor.

Let that s is a terminal successor. Then, P(s) is true: no node is impedensable in s, so any node will

not execute and s manifests correct shortest path evaluation for all nodes. Thus we have that all terminal

states are optimal states, and Algorithm 6.2 is silent.

Algorithm 6.2 is a distance-1 algorithm and converges even if the nodes run without synchronization in

AA model. This is because in a given state s, some node i is impedensable iff there is a shorter path that i

can follow to reach vdes, thus, s will never transition to an optimal state without i changing its state.

6.1.5 Limitations of Modelling Problems as PO-Inducing Problems

Unlike the PO-inducing problems where the problem description creates a ≺-DAG among the states in

S, there are problems where the states do not form a ≺-DAG naturally. Such problems are non-PO-inducing

problems. In such problems, there are instances in which the impedensable nodes cannot be distinctly

determined, i.e., in those instances ∃s : ¬P(s) ∧ (∀i : ∃s′ : P(s′) ∧ s[i] = s′[i]).

Definition 6.11. Maximal matching. In the maximal matching problem, the input is an arbitrary graph

G. For all i, i[match] has the domain Adji ∪{⊤}. The task is to compute the i[match] (for ach node i) such

that (1) ∀i : i[match] ̸= ⊤ ⇒ (i[match])[match] = i, and (2) if i[match] = ⊤, then there must not exist a j

in Adji such that j[match] = ⊤.

Maximal matching (MM) is a non-PO-inducing problem. This is because, for any given node i, an optimal

state can be reached if i does or does not change its state. Thus i cannot be deemed as impedensable or

not impedensable under the natural constraints of MM. This can be illustrated through a simple instance of

a 3 nodes network forming a simple path ⟨A,B,C⟩. Initially no node is paired with any other node. Here,

MM can be obtained by matching A and B. Thus, C is not impedensable. Another maximal matching can

be obtained by matching B and C, in which case A is not impedensable. Thus the problem itself does not

define which node is impedensable.
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We observe that it is possible to induce a ≺-DAG in non-PO-inducing problems algorithmically. We call

such algorithms non-PO-inducing algorithms, which we study in the following section.

6.2 Imposed PO-Induction: PO-inducing Algorithms

In this section, we study algorithms that can be developed for problems that cannot be represented by a

predicate under which the global states form a ≺-DAG. This is because, as described in Section 6.1.5, in a

suboptimal global state, the problem does not specify a specific set of nodes that must change their state.

6.2.1 General Properties of PO-Inducing Algorithms

Non-PO-inducing problems do not naturally define which node is impedensable. There may be multiple

optimal states. However, impedensable nodes can be defined algorithmically.

Definition 6.12. PO-inducing algorithms (DIA). A is a DIA for a problem P , represented by predicate

P, iff (1) P is solved iff the system reaches a state where P is true, and (2) P is PO-inducing with respect

to S induced in S by A, i.e. ∀s ∈ S : ¬P(s) ⇒ ∃i : Impedensable(i, s,P).

Remark : An algorithm that traverses a ≺-DAG S of global states is a DIA. Thus, an algorithm that solves

a PO-inducing problem, under the constraints of PO-induction, e.g. Algorithm 6.1, is a DIA.

Remark : Since a total order is a special case of a partial order, all lattice-linear algorithms are PO-inducing

algorithms.

Definition 6.13. Self-stabilizing DIA. Continuing from Definition 6.12, A is self-stabilizing only if in

the ≺-DAG S induced by A, ∀s, s′ ∈ S : Terminal-Successor(s, s′) ⇒ P(s′) = true.

In the remaining part of this section, we study the maximal matching problem, a non-PO-inducing

problem, and explore how a PO-inducing algorithm can be developed for such a problem. We will see, again,

that the induction of a partial order among the local states, under the acting algorithm, allows the nodes to

execute without synchronization.

6.2.2 Maximal Matching (MM) Problem

As discussed in Section 6.1.5, MM is not a PO-inducing problem. However, a PO-inducing algorithm can

be developed for this problem, which we discuss in the following.

The local state of a node i is defined by ⟨i[match]⟩. We use the macros listed in Table 6.1. A node i is

wrongly matched if i is pointing to some node j, but j is pointing to some node k ̸= i. A node i is matchable

if i is not pointing to any node, i.e. i[match] = ⊤, and there exists a node j adjacent to i which is also not

pointing to any node. A node i is being pointed to, or i is i-pointed, if i is not pointing to any node, and

there exists a node j adjacent to i which is pointing to i. A node sees that another node is being pointed,

or i “sees” else-pointed, if some node j around (in 2-hop neighbourhood of) i is pointing to another node
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k and k is not pointing to anyone. A node is unsatisfied if it is wrongly matched or matchable. A node

i is impedensable if i is i-pointed, or otherwise, given that i does not see else-pointed, i is the highest ID

unsatisfied node in its distance-2 neighbourhood.

Wrongly-Matched-MM(i) ≡ i[match] ̸= ⊤∧ (i[match])[match] ̸= i ∧ (i[match])[match] ̸= ⊤.

Matchable-MM(i) ≡ i[match] = ⊤ ∧ (∃j ∈ Adji : j[match] = ⊤).

I-Pointed-MM(i) ≡ i[match] = ⊤ ∧ (∃j ∈ Adji : j[match] = i).

Else-Pointed-MM(i) ≡ ∃j ∈ Adj2i ,∃k ∈ Adjj : j[match] = k ∧ k[match] = ⊤.

Unsatisfied-MM(i) ≡ Wrongly-Matched-MM(i)∨ Matchable-MM(i).

Impedensable-MM(i) ≡ I-Pointed-MM(i)∨ (¬Else-Pointed-MM(i) ∧ (Unsatisfied-MM(i)∧

(∀j ∈ Adj2i : i[id] > j[id] ∨ ¬Unsatisfied-MM(j))).

Table 6.1: Macros used in the algorith for MM.

The algorithm that we develop next is a self-stabilizing algorithm, which means that the nodes can be

initialized arbitrarily. Thus, i[match] may store some node that is not connected to i by an edge, or some

node j in Adji but j[match] may not store i. The algorithm for an arbitrary node i can be defined as follows.

If i is impedensable and i-pointed, then i starts to point to the node which is pointing at i. If i is wrongly

matched and impedensable, then i takes back its pointer, i.e. i starts pointing to ⊤. Otherwise (if i is

matchable and impedensable), i chooses a node j which is not pointing to anyone, i.e. j[match] = ⊤, and i

starts pointing to j.

Algorithm 6.3. Rules for node i.

Impedensable-MM(i) −→
i[match] = j : j ∈ Adji : j[match] = i if I-Pointed-MM(i).

i[match] = ⊤ if Wrongly-Matched-MM(i).

i[match] = j : j ∈ Adji : j[match] = ⊤ otherwise.

Lemma 6.3. Algorithm 6.3 induces a ≺-DAG in the global state space under AMR model.

Proof. The ≺-DAG is induced in the global state space with respect to the state values, which we prove in

the following. Let s be a suboptimal state that the input graph is in. A node i is impedensable in s (1) if

i is wrongly matched, (2) if i is matchable, or (3) if i is being pointed at by another node j, but i does not

point back to j or any other node. We elaborate on all these cases in the following paragraphs of this proof.

In all these cases, we assume AMR model, that is, if a node reads a local state of another node, then it does

not read an older local state from that node in a subsequent read operation.
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We show that if some node i is impedensable in some state s, then for any state s′ : s′ ≻ s, if s′[i] = s[i],

then s′ will not form a maximal matching under Algorithm 6.3.

In the case if i is wrongly matched in s and is impedensable, and it is pointing to the same node in s′

as well, then i stays to be impedensable in s′. This is because since i is impedensable, i is also the highest

ID node that is unsatisfied, so all other nodes within distance-2 of i will wait for i to take back its pointer

before taking any action. Thus s′ does not have a correct matching.

In the case if in s, i is being pointed to by some node but i does not point to any node, and i stays in

the same state in s′, then i stays to be impedensable in s′. This can be explained as follows. Let j be the

node that is pointing to i, i.e., j[match] = i∧ i[match] = ⊤. Now since I-Pointed-MM(i) is true, so for all

unsatisfied nodes within distance-2 of i, Else-Pointed is true. Thus, they will not take any action until

i does. Also since i[match] = ⊤, j will not retreat its pointer as it does not fall under the constraints of

Wrongly-Matched. Thus s′ does not form a correct matching.

Finally, in the case if i is matchable and impedensable in s′, and it stays the same in s′, then it is still

impedensable as any other node in Adji will not initiate matching with it. This is because all the unsatisfied

nodes within distance-2 of i have IDs less than that of i. Also, for the same reason, any node in Adj2i will

not take any action until i does. Thus s′ does not manifest a maximal matching.

To present the abstraction of the induction of an ≺-DAG under Algorithm 6.3, we define the state value

and rank as follows.

State-Value-MM(i, s) =



3 if Wrongly-Matched-MM(i).

2 if Matchable-MM(i) ∧ ¬I-Pointed-MM(i).

1 if I-Pointed-MM(i).

0 otherwise.

Rank-MM(s) =
∑

i∈V (G)

State-Value-MM(i, s).

Under Algorithm 6.3, the global states form a ≺-DAG. We show an example in Figure 6.4: Figure 6.4

(a) is the input graph and Figure 6.4 (b) is the induced ≺-DAG. For a pair of global states s and s′,

s ≺ s′ iff Rank-MM(s′) < Rank-MM(s). In Figure 6.4, a global state is represented as ⟨⟨v1[match]⟩, ...,

⟨v4[match]⟩⟩.

Since the solution presented for this problem is self-stabilizing, ∀i¬Impedensable-MM(i) forms a self-

stabilizing predicate with respect to the ≺-DAG induced by Algorithm 6.3. Thus, Algorithm 6.3 is a PO-

inducing self-stabilizing algorithm and satisfies Definition 6.13.
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v4

v2
v3

v1

(a)

⟨⊤,⊤,⊤,⊤⟩
⟨2, 2, 2, 2⟩ = 8

⟨⊤,⊤,⊤, v1⟩
⟨1, 0, 0, 0⟩ = 1

⟨⊤,⊤,⊤, v2⟩
⟨0, 1, 0, 0⟩ = 1

⟨⊤,⊤,⊤, v3⟩
⟨0, 0, 1, 0⟩ = 1

⟨v4,⊤,⊤, v1⟩
⟨0, 0, 0, 0⟩ = 0

⟨⊤, v4,⊤, v2⟩
⟨0, 0, 0, 0⟩ = 0

⟨⊤,⊤, v4, v3⟩
⟨0, 0, 0, 0⟩ = 0

(b)

Figure 6.4: (a) Input graph. (b) The state transition diagram, a ≺-DAG, assuming that the initial global
state is ⟨⊤,⊤,⊤,⊤⟩. In every state, the first row shows the global state, the second row shows the respective
local state values of nodes and the rank of the global state. Observe that any other state will converge to
one of these states and then converge to one of the optimal states in this ≺-DAG. (All edges are directed
upwards; transitive edges are not shown for brevity).

Theorem 6.3. Algorithm 6.3 is a PO-inducing algorithm for the maximal matching problem on n nodes

executing asynchronously in AMR model.

Proof of Theorem 6.3. We show that (1) Algorithm 6.3 traverses a ≺-DAG of global states, under AMR

model, that has the properties as mentioned in the above lemma, (2) for all suboptimal states ∃ a terminal

successor, and (3) all terminal global states are optimal states.

If s is suboptimal, then for at least one of the nodes i: (1) i is wrongly matched, (2) i is matchable, or

(3) i is being pointed at by another node j, but i does not point back to j or any other node.

If s is suboptimal and some node i is being pointed to by some node j and i does not point to any node,

then under Algorithm 6.3, i will point back to j, and thus the state value of i will get reduced from 1 to 0.

In the case that s is suboptimal and some node j is wrongly matched or matchable with ¬Else-Pointed-

MM(j), then at least one node (e.g., a node with highest ID which is wrongly matched or matchable) will be

unsatisfied and impedensable. Let that i is unsatisfied and impedensable. Here i is either wrongly matched

or matchable. If i is wrongly matched, then i will change its pointer and start pointing to ⊤, in which case

its state value will change from 3 to 2, 1, or 0. If i is matchable then, i will start pointing to some node j

in Adji, in which case, the state value of i will change from 2 to 0 and the state value of j will change from

2 to 1.

In all the above cases, we have that under Algorithm 6.3, if s is a suboptimal state, then its rank will

be of some value greater than zero because at least one of the nodes will be impedensable. s will transition

to some state s′ whose rank is less than that of s. Thus, we have that Algorithm 6.3 transitions s to s′ and

thus decreases the rank of the system. This shows that (1) Algorithm 6.3 traverses a ≺-DAG that has the

properties as mentioned in Lemma 6.3, (2) for all suboptimal states ∃ a terminal successor.
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In the case that s is a terminal successor, then none of the nodes will be enabled. So no node will change

its state. This state will manifest a maximal matching. This shows that all terminal successors are optimal

states, and Algorithm 6.3 is silent.

Algorithm 6.3 is a distance-4 algorithm. From Theorem 6.3, we have that Algorithm 6.3 converges

even if the nodes run withoutout synchronization in AMR model. However, Algorithm 6.3 cannot tolerate

asynchrony in AA model. This is because a node i in its current state may wrongly evaluate itself to be

i-pointed or unsatisfied-impedensable if it gets information, from other nodes, out of order. This can result

in i changing its state incorrectly. As a consequence of execution in AA model, i can keep repeating such

execution and as a result, the system may not obtain an optimal state.

6.3 Properties of PO-Induction

In the previous sections, we discussed example algorithms that converge even without synchronization.

In this section, we use that intuition and describe some characteristics of general PO-inducing systems. We

study how the induction of a partial order among the local states visited by individual nodes is a necessary

and sufficient condition to allow asynchrony (Section 6.3.1). We also study some time-complexity properties

of an algorithm that induces a ≺-DAG among the global states (Section 6.3.2).

6.3.1 PO-Induction to Obtain Asynchrony

In this subsection, we study whether ≺-DAG induction is necessary and sufficient for asynchronous

execution.

Theorem 6.4. Let P be a problem that requires an algorithm to converge to a state where P is true. Let A

be an algorithm for P that is correct under a central scheduler. Let S be the transition graph that is formed

under A, where nodes are allowed to read old values in some communication model M .

If S forms a ≺-DAG, then A guarantees convergence in asynchrony in the model M .

Proof. Definition 6.12 follows that the local states form a partial order if every node, under Algorithm A,

rejects each violating local state permanently. Consequently, a ≺-DAG is induced among the global states.

A ≺-DAG, induced under P, allows asynchrony because if a node, reading old values, reads the current

state s as s′, then s′ ≺ s. So ¬P(s′) ⇒ ¬P(s) because Impedensable(i, s′,P) and s′[i] = s[i].

The limitation of the above theorem is as follows. An algorithm A guarantees convergence in asynchrony

in some model only if it induces a ≺-DAG in that model. For instance, a Algorithm 6.3 developed for

maximal matching induces a ≺-DAG in AMR model. As we discussed in Section 6.2.2, such an algorithm

does not necessarily induce a ≺-DAG in AA model, so it may not guarantee convergence in AA model.
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In the above theorem, we showed that a ≺-DAG is sufficient for allowing asynchronous executions. Next,

we study if a ≺-DAG is guaranteed to be induced among the global states given that an algorithm is correct

under asynchrony. In other words, we study if a ≺-DAG is necessary for asynchrony. To study that, we

first examine the representation of a global state, which is a mathematical abstraction of a multiprocessor

system.

Let C be an algorithm that runs correctly under a central scheduler. Let that Rcent
s be the set of states,

that s can transition to, under C, i.e. ∀s′ ∈ Rcent
s , ⟨s, s′⟩ is a valid transition under C. If C and s are

given, Rcent
s can be correctly computed. In synchronous systems, s is an abstraction of the global state that

only contains the current local states of the nodes. However, if some algorithm A were to be executed in

asynchrony, then a set Rasyn
s of resulting states cannot be computed correctly for a given state s. This is

because some nodes would be reading the old values of other nodes. Thus, s must also contain the details

of the information that nodes have about other nodes.

Let S be the original transition system, and Sext be its extended version, where a given state sext identifies

local states of individual nodes and the information that the nodes maintain about other nodes. Similarly,

Sext can be constructed back to S, by removing the information that the nodes have about other nodes, and

then merging the resulting global states (along with the transition edges) that are the same.

Observe that in all the algorithms presented in this chapter, the State-Value of a node i provides

information about how bad the current local state of i is, with respect to an optimal global state farthest

from its current global state s. Thus, the evaluation of the state value of i can utilize the information about

the local states of other nodes in s. In the following theorem, we use this observation as leverage to show

some interesting properties of PO-inducing systems. Herein, instead of S we elaborate on the necessity of

Sext being a ≺-DAG to allow asynchrony.

Theorem 6.5. Let P be a problem that requires an algorithm to converge to a state where P is true. Let A

be an algorithm for P that is correct under a central scheduler. Let S be the transition graph that is formed

under A, where nodes are allowed to execute asynchronously in some communication model M .

If algorithm A guarantees convergence in asynchrony under the communication model M , then Sext (the

extended transition system) forms a ≺-DAG in the model M .

Proof. Since A guarantees to terminate under asynchrony and the extended state space Sext captures the

effect of asynchrony (where a node may read old values of the variables of other nodes), there will be no

cycles present among the global states in Sext, i.e., Sext forms a DAG. Next, we transform Sext to a ≺-DAG.

Let Sext
o be the set of optimal states. For each optimal global state o ∈ Sext

o , for each node i in o, assign
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the state value of i to be 0. Thus, the rank of o is 0 (sum of state values of all nodes). For every non-optimal

global state s, we assign the state value of every node i to be ⊤. Subsequently, if all successors of state s

have a non-null (non-⊤) rank (i.e., ∀s′ : ⟨s, s′⟩ ∈ E(Sext) ⇒ (∀i : State-Value(s′[i]) ̸= ⊤)) then we set the

state value of each node i in s to be (max{Rank(s′)|⟨s, s′⟩ ∈ E(Sext)})/n+ 1. We do this recursively until

no more updates happen to any state value of any global state in Sext.

Since there are no cycles, this procedure will terminate in finite time. Observe that using the above

procedure, we obtain a valid ≺-DAG from Sext: in this ≺-DAG, for all reachable global states s′ and s′′,

s′ ≺ s′′ (i.e., ⟨s′, s′′⟩ is in E(Sext)) iff s′[i] ⪯ s′′[i], ∀i : [1 : n].

If Sext forms a ≺-DAG then so does S, Hence, from Theorem 6.4 and Theorem 6.5, we have

Corollary 6.1. Let P be a problem that requires an algorithm to converge to a state where P is true.

An Algorithm A guarantees convergence in asynchrony iff it induces a ≺-DAG among the (extended) global

states.

The above corollary shows that a ≺-DAG is a necessary and sufficient condition for a parallel processing

system to guarantee convergence in asynchrony. For reasons of space, we have moved the subsection on the

time complexity properties of PO-inducing algorithms to Appendix 6.3.2.

6.3.2 Time Complexity Properties of an Algorithm Traversing a ≺-DAG

Theorem 6.6. Given a system of n processes, with the domain of (state values having) size not more than

m for each process, the acting algorithm will converge in n× (m− 1) moves.

Proof. Assume for contradiction that the underlying algorithm converges in x ≥ n× (m−1)+1 moves. This

implies, by pigeonhole principle, that at least one of the nodes i is revisiting their state st after changing to

st′. If st to st′ is a step ahead transition for i, then st′ to st is a step back transition for i and vice versa.

For a system where the global states form a ≺-DAG, we obtain a contradiction since step-back actions are

absent in such systems.

Example 6.MDS: continuation 4. Consider phase 2 of Algorithm 5.1. As discussed earlier, this phase is

lattice-linear. The domain of each process {IN , OUT} is of size 2. Hence, phase 2 of Algorithm 5.1 requires

at most n × (2 − 1) = n moves. (Phase 1 also requires atmost n moves. But this fact is not relevant with

respect to Theorem 6.6.)

Example 6.SMP: continuation 3. Observe from Figure 2.2 that any system of 3 men and 3 women with

arbitrary preference lists will converge in 3 × (3 − 1) = 6 moves. This comes from 3 men (resulting in 3

processes) and 3 women (domain size of each man (process) is 3).
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Corollary 6.2. Let that each node i stores atmost r variables, i[var1], ..., i[varr] (with domain sizes z1, ...zr

respectively) contribute independently to the formation of the partial order. Then an algorithm traversing

the resultant ≺-DAG will converge in n× ((
∏r

j=1 zj)− 1) moves.

Corollaries from Chapter 5

Corollary 6.3. (From Theorem 5.1 and Theorem 6.6) Algorithm 5.2 converges in n moves.

Corollary 6.4. (From Theorem 5.2 and Theorem 6.6) Algorithm 5.3 converges in
∑

i∈V (G)

deg(i)+1 = n+2m

moves.

Proof. This can be reasoned as follows: first, a node may increase its colour, once, to resolve its colour

conflict with a neighbouring node. Then it will decrease its colour, whenever it moves. Depending on the

colour value of its neighbours and when they decide to move, a node i can decrease its colour almost deg(i)

times.

Corollary 6.5. (From Theorem 5.3 and Theorem 6.6) Algorithm 5.4 converges in n moves.

Corollary 6.6. (From Theorem 5.4 and Theorem 6.6) Algorithm 5.5 converges in n moves.

Corollary 6.7. (From Theorem 5.5 and Corollary 6.2) Algorithm 5.8 converges in n moves.

Corollaries from this chapter

Corollary 6.8. (From Theorem 6.1 and Corollary 6.2) Algorithm 6.1 converges in
∑

i∈V (G)

deg(i) = 2m

moves. In terms of rounds, it converges in ∆ rounds, where ∆ is the maximum degree of the input graph.

Corollary 6.9. (From Theorem 6.2 and Corollary 6.2) Algorithm 6.2 converges converges in D rounds,

where D is the diameter of the input graph.

Corollary 6.10. (From Theorem 6.3 and Corollary 6.2) Algorithm 6.3 converges in 2n moves.

Proof. This is because, as explained in Lemma 6.3, any node i goes from state value 3 to 2 or 3 to 1, and

then 2 to 0 or 1 to 0. Hence, there are atmost two transitions that i goes through, with respect to its state

value, which can happen due to the movement of i or some node in Adji.

6.4 Summary of the Chapter

In this chapter, we focused on the problem of finding necessary and sufficient conditions for an algorithm

to execute correctly without synchronization. We observe that the induction of a partial order among

the local states is necessary and sufficient for multiprocessor algorithms to allow execution without any

synchronization.
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In PO-inducing problems, all unsatisfied nodes are enabled and can (and must) therefore evaluate their

guards and take a corresponding action at any time. In a non-PO-inducing problem, however, all unsatisfied

nodes are not enabled. Only the impedensable nodes are enabled; these nodes satisfy some additional

constraints, in addition to being unsatisfied. In the algorithm for maximal matching, for example, we note

that a tie-breaker is the key to deciding which nodes are impedensable; in algorithms for dominant clique

and shortest path, on the other hand, do not require any tie-breaking strategy.

The sufficiency nature of ≺-DAG implies that such algorithms can be executed asynchronously, thereby

eliminating the cost of synchronization. This is especially important in today’s multiprocessor architecture

where synchronization overhead is the Achilles heel of parallel algorithms. The necessity of this result means

that an ≺-DAG exists in these algorithms even if the algorithms were designed without any prior assumption

of an ≺-DAG.

Finally, we have that since a total order is a special case of a partial order, all lattice-linear systems are

PO-inducing systems.
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CHAPTER 7

RELATED WORK

In this chapter, we discuss works from several areas of computer science that we find related to our work.

7.1 Asynchronous Circuits

In this dissertation, we studied algorithms that are tolerant to asynchrony. There has also been recent

development of hardware architectures that allow programs to run asynchronously, i.e., such architectures

run programs without synchronization among their components. Asynchronous circuits are the circuits that

do not synchronize their components centrally. Such circuits are also called clockless or self-timed circuits.

We discuss some literature in this area, however, we do not go into the details of the hardware architecture

of such circuits. The reader is directed to [19] for a comprehensive discussion on asynchronous circuits.

Asynchronous circuits contain communicating components, and the input and output ports of these

components control the computation. On the other hand, in synchronous circuits, the computation is

controlled by a global clock, that triggers the transition of the circuit from one state to another. Authors

of [20] opine that asynchronous logic is the key technology for telecommunication applications.

Asynchronous circuits, as compared to synchronous circuits, have (1) low power consumption, (2) high

performance, and (3) low noise and electromagnetic emissions [21]. This is mainly because, respectively,

(1) asynchronous circuits are clock-driven whereas asynchronous circuits are data-driven, (2) asynchronous

circuits are self-timed, and (3) asynchronous circuits implement a distributed control which results in low

current peaks, as compared to synchronous circuits which implement a central control [20]. In addition,

with the increase of the number and circuit size of the components on a chip, it is an increasingly complex

problem to time all the components using a global clock, however, this problem is eliminated in asynchronous

circuits.

The University of Manchester designed the AMULET2e, an embedded chip that incorporates a 32-

bit ARM-compatible asynchronous core, a cache, and several other system functions [22–24]. The 80C51

microcontroller Philips Semiconductors and Philips Research, and then later redesigned to its asynchronous

version [25]. 80C51, along with its successors – other integrated chips designed based on 80C51 – is the

first asynchronous integrated chip that was commercially available. Cogency designed the Digital Signal

Processor, and then later redesigned to its asynchronous version [26]. University of Osaka, University of

Kochi and Sharp Corporation designed a self-timed data-driven multimedia processor [27–29]. An application

for which it can be used is digital television receivers. Its peak performance is 8600 memory operations per

second, and where it consumes below 1 watt.

Some other asynchronous chips are MiniMIPS designed by Caltech [30], AMULET3i designed by Uni-
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versity of Manchester [31], TITAC2 designed by Tokyo University [32], and MICA designed by TIMA Lab-

oratory [33]. The details of these chips are summarized in [20].

Asynchronous circuits have not received much attention in industry and academia. One of the contribut-

ing factors is the unavailability of software tools that can run on these circuits – programs that can tolerate

asynchrony. This dissertation studies the necessary and sufficient conditions that make an algorithm tolerant

to asynchrony. In addition, we not only develop new algorithms but also show that many existing algorithms

in the literature are tolerant to asynchrony. This dissertation lays a theoretical foundation for asynchronous

algorithms – that can run on asynchronous circuits – and provides ways to determine if an algorithm being

developed is tolerant to asynchrony.

7.2 Other Abstractions in Concurrent Computing

In this section, we discuss some existing models that guarantee the progress or convergence of multipro-

cessor algorithms in the presence of node failures or the absence of synchronization at different levels.

7.2.1 Lock-Free and Wait-Free Algorithms

An algorithm is non-blocking if in a system running such algorithm, if a node fails or is suspended, then it

does not result in failure or suspension of another node. A non-blocking algorithm is lock-free if system-wide

progress can be guaranteed, and it is wait-free if progress can be guaranteed per node. A lock-free algorithm

completes a given operation in a finite number of system steps, whereas a wait-free algorithm completes a

given operation in a finite number of its own steps.

Non-blocking algorithms are very useful in designing memory transaction and input-output protocols due

to the fact that such algorithms guarantee global (system-wide) or local (with respect to one computational

node) progress. They allow processes that fail, in performing an operation due to contention, to continue

processing other tasks and not continue to wait.

There is a vast literature on non-blocking algorithms. We note some of them as follows.

• Authors of [34] present algorithms for dynamic lock-free hash tables and list-based sets.

• A lock-free stack algorithm is presented in [35].

• Algorithms for implementing lock-free singly-linked lists are presented in [36].

• A lock-free algorithm to implement a binary search tree is present in [37].

• A wait-free sorting algorithm is studied in [38], which sorts an array of size N using n ≤ N processors.

• An O(n) time wait-free approximate agreement algorithm is presented in [39].

A large class of lock-free algorithms, as shown in [40], under the scheduling conditions that are close to

those implemented in commercially available hardware, stochastically behave as wait-free algorithms.

In the context of non-blocking algorithms, contention is the race condition that arises when multiple pro-

cesses try to access the same resource (e.g., a variable, an array index or a memory location) simultaneously.
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Lock-free algorithms are fast when contention is low, however, they do not provide an upper bound on the

time complexity of individual operations when contention is high [41] (this paper uses the term ‘non-blocking’

to refer to lock-free algorithms). Authors of [42] showed that an adversary can cause O(n) contention in a

wait-free algorithm that is being executed by n processes in asynchrony.

There are some subtle differences between non-blocking and asynchronous algorithms. Non-blocking

algorithms allow the nodes to return without waiting for an operation to complete, whereas asynchronous

algorithms allow multiple nodes to perform operations concurrently such that the computing nodes do not

block the progress of each other. Due possibility of contention, the scheduler is required to continuously

check for the failed processes and completed tasks so that it can assign tasks to idle processes and guarantee

progress, whereas asynchronous algorithms, the class of algorithms that this dissertation studies, eliminate

the requirement to schedule tasks to processes.

In this dissertation, we are interested in asynchronous algorithms. Asynchronous algorithms are non-

blocking, but not vice-versa. In addition, we do not assume a scenario where a node fails or turns byzantine.

We assume that all nodes run correctly, however, their speeds can differ.

A key characteristic of PO-inducing algorithms is that they permit the algorithm to execute asyn-

chronously. And, a key difference between non-blocking and asynchronous algorithms is the system-perspective

for which they are designed. To understand this, observe that from a perspective, the asynchronous algo-

rithms considered in this dissertation are wait-free. Each node reads the values of other nodes. Then, it

executes an action, if it is enabled, without synchronization. More generally, in an asynchronous algorithm,

each node reads the state of its relevant neighbours to check if the guard evaluates to true. It can, then,

update its state without coordination with other nodes.

That said, the goal of asynchronous algorithms is not the progress / blocking of individual nodes (e.g.,

success of insert request in a linked list and a binary search tree, respectively, in [36] and [37]). Rather it

focuses on the progress from the perspective of the system, i.e., the goal is not about the progress of an

action by a node but rather that of the entire system. For example, in the algorithm for minimal dominating

set present in this dissertation, if one of the nodes is slow or does not move, the system will not converge.

However, the nodes can run without any coordination and they can execute on old values, instead of requiring

a synchronization primitive to ensure convergence. In fact, the notion of impedensable (recall that in the

algorithms that we present in this dissertation, in any global state, all enabled nodes are impedensable)

captures this. An impedensable node has to make progress in order for the system to make progress.

7.2.2 Starvation-Free Algorithms

Starvation happens when requests of a higher priority prevent a request of lower priority from entering

the critical section indefinitely. To prevent starvation, algorithms are designed such that the priority of
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pending requests are increased dynamically. Consequently, a low-priority request eventually obtains the

highest priority. Such algorithms are called starvation-free algorithms.

Starvation-free algorithms have been developed to solve several problems in multiprocessor systems. Some

of the interesting works that deploy the starvation-free protocols are listed as follows.

• Authors of [43] present a starvation-free algorithm to schedule queued traffic in a network switch. This

algorithm is based on the dynamic priority increment of the waiting requests.

• Authors of [44] implement a starvation-free distributed directory algorithm for shared objects. They

show that this algorithm can serve concurrent requests and works correctly even in asynchrony.

• Authors of [45] introduce the notions of buffered semaphore and polite semaphore that facilitate

starvation-free mutual exclusion. They showed, for three existing algorithms (present in, respec-

tively, [32, 46, 47]), that they are implementations of one abstract algorithm and operate on one or

the other of these semaphores.

• Authors of [48], on the other hand, view priority increment as a priority violation. They present

an algorithm, for mutual exclusion in distributed systems, that postpones the priority increment of

pending requests, and consequently the number of priority violations. Their algorithm is an extension

of Karnar-Chaki algorithm [49]. They show that their methods (1) have a low message overhead (in

comparison to Kanrar–Chaki algorithm and Chang’s priority-based algorithm [50]), (2) keep the same

waiting time, and (3) tolerate the peaks of request load well.

In asynchronous algorithms, priority modification is not the key. For example, in the algorithms that

we presented in this dissertation, we do not modify priority so as to ensure that some nodes can execute.

Rather, the algorithms that are designed under the asynchronous model have the property that the nodes

can execute independently given that there is at least one guard that holds true.

7.2.3 Serializability

Serializability in a distributed system allows only those executions to be executed concurrently which

can be modelled to some permutation of a sequence of those executions. In other words, serializability does

not allow nodes to read and execute on old information of each other: only those executions are allowed in

concurrency such that reading fresh information, as if the nodes were executing in an interleaving fashion,

would give the same result. Serializability is heavily utilized in database systems, and thus, the executions

performed in such systems are called transactions.

• A multidatabase system is a system of multiple autonomous and heterogeneous (local) databases.

Authors of [51] addressed the problem of how global serializability can be ensured in such a system. In

their model, if some local database commits a pair of global transactions T1 and T2 in that sequence,

but the local serialization is reversed, then such a schedule is aborted.

119



• Authors of [52] consider the problem in which the sequence of operations performed by a transac-

tion may be repeated infinitely often. They describe a synchronization algorithm allowing only those

schedules that are serializable in the order of commitment.

• Authors of [53] show that corresponding to several transactions, determining whether a sequence of read

and write operations is serializable is an NP-Complete problem. They also present some polynomial

time algorithms that approximate such serializability.

• JavaSpecs is a distributed data management tool produced by Sun Microsystem. Authors of [54]

showed that serializability is satisfied in JavaSpaces only if we restrict to output, input, and read

operations. Serializability, on the other hand, is not satisfied in the presence of test for absence or

event notification.

In serializability protocols, schedules that cannot be serialized are aborted. However, in asynchronous

systems, no process is aborted: all processes freely read from each other and perform executions indepen-

dently. The asynchronous execution considered in this dissertation is not serializable, especially, since the

reads can be from an old global state. Even so, the algorithm converges, and does not suffer from the

overhead of synchronization required for serializability.

7.2.4 RedBlue Systems

In redblue systems (e.g., [55]), the rules can be divided into two non-empty sets: red rules, which must be

synchronized, and blue rules, which can run in a lazy manner and do not have to be synchronized. Lattice-

linear and asynchronous systems in general are the systems in which red rules are absent as an enabled node

can execute independently regardless of which action is to be executed.

7.2.5 Local Mutual Exclusion

In local mutual exclusion, at a given time, some nodes block other nodes while entering to critical section.

This can be done, e.g., by deploying semaphores.

• Authors of [56] study the group mutual exclusion problem, where nodes request for various “sessions”

repeatedly, and it is required that (1) individual processes cannot be in different sessions concurrently,

(2) multiple processes can be in the same session concurrently, and (3) is a process tries to enter a

session, it is eventually able to do so.

• Authors of [57] propose a leader-based algorithm that deploys local mutual exclusion to solve resource

allocation problem in Flying Ad hoc Networks.

• Authors of [58] presented an algorithm for distributed mutual exclusion in computer networks, that

uses a spanning tree of the subject network. In this algorithm, the number of messages exchanged per

critical section depends on the topology of this tree, typically this value is O(n).

• Authors of [59] an algorithm with O(lg n) time complexity for mutual exclusion among n nodes. Specif-

120



ically, this algorithm requires atomic reads and writes and in which all spins are local (here a spin means

a busy wait in which a node, in this case, waits on locally accessible shared variables).

We see, in algorithms based on local mutual exclusion, that they require additional data structures/variables

to ensure that access is provided to (and blocking is deployed on) a certain set of processes. In asynchronous

algorithms, nodes do not block each other. In non-lattice-linear problems, we see that usually a tie-breaker is

required to ensure the correctness of the executions, however, if a problem is naturally lattice-linear, then it is

not required. This is because in the case of non-lattice-linear problems, it may be desired that all unsatisfied

nodes do not become enabled, however, in the case of lattice-linear problems, as we see in [6], all unsatisfied

nodes can be enabled. And, all enabled nodes can read values and perform executions asynchronously, where

they are allowed to read old values, which is not allowed in algorithms that deploy mutual exclusion.

7.3 Fixed Point Theorem

Fixed point theorems are extensively studied concepts in Mathematics. We discuss some closely related

results from fixed point theory in this section, along with their applications. We include this discussion here

because our work can be seen as a application of the fixed point theory – in our work, we develop systems,

and theory of such systems, which converge at a global state, meaning that once an optimal global state is

reached, then the system continues to be in that state for the rest of the execution. This is precisely the

definition of a fixed point; we discuss the formal definition of this term in the following.

Let f be a function with the same domain and codomain. If for some input x, f(x) = x, then x is a fixed

point of f . A function can have multiple fixed points. For example, let fds be a function that realizes the

functionality of Algorithm 5.2 for the minimum dominating set: given a graph G, for an input global state

s, fds will return the set of global states that G will transition to under Algorithm 5.2, if G is initialized

in s. Observe, for example, in Figure 5.2, that all the supremum of each lattice is a fixed point for fds. In

general, an optimal state, a state in which G manifests a minimal dominating set, is a fixed point for fds.

Similarly, a function fsmp can be simulated for the algorithm for the stable marriage problem as presented

in Example 2.3. It can be observed that for the instance of this problem as presented in Example SMP

continuation 2 in Section 2.3, there are multiple global states that act as a fixed point for fsmp (a set of

all states for this instance is shown in Figure 2.2). However, starting from the infimum of the lattice, i.e.,

⟨1, 1, 1⟩ we only reach the state ⟨1, 2, 2⟩, which is one of the fixed points for this instance of the stable

marriage problem. Note that all algorithms studied in this dissertation can be simulated, each, as a function

with the same domain and codomain.

A complete lattice is a lattice for which there exists a unique infimum and a unique supremum. The

lattices present in Figure 5.2 are, each, a complete lattice. The lattice present in Figure 2.2 is also a

complete lattice.
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A fixed-point theorem provides the conditions under which a fixed point exists in a system. We only

study the fixed-point theorems that are most relevant to this dissertation.

There are some works that study fixed-point theorems in discrete systems, whereas some other works

study fixed-point theorem in continuous systems.

It was shown in [60] that a function f whose domain and codomain are subsets of a set, which is increasing

under set-theoretical inclusion, has at least one fixed point. This result was generalized in [61], which provides

fixed point theorems in lattices. We discuss how the results in [61] relate to our work, next.

The lattices that we study in this dissertation are induced under the ‘⪯’ operation. Let (L,⪯) be a

lattice, and let f be an order-preserving function with respect to the ⪯ operation (e.g., fds and fsmp) that

traverses through L. Alfred Tarski (1955) [61] showed that the fixed points of f in L form a complete lattice

under ⪯. He further showed that if F is a set of order-preserving commutative functions, then the fixed

points of all the functions in F form a complete lattice. He also presented its applications in set theory,

Boolean algebra, topology and real functions.

Brouwer (1911) [62] showed that if f is a continuous function in a multidimensional closed simplex onto

itself, then there exists a point x such that f(x) = x. Kakutani [63], further, provided the generalization of

this theorem and studies a multidimensional closed simplex, where f is a point to set function f . He showed

that if f is upper semi-continuous, then there exists a point x0 such that x ∈ f(x).

The fixed-point theorems have many applications. One of the applications is in the development of

parallel processing algorithms that are tolerant to asynchrony, as we describe in Chapter 3, Chapter 4 and

Chapter 5. Fixed-point theorem implies that all the optimal states, that belong to the same lattice L, form

a lattice L′ on their own. The infimum of L′ is the optimal state that a system will converge to, if it is

initialized in the infimum of L. A lattice-linear system that initializes in the infimum of a lattice is required

to have at least one fixed point. A self-stabilizing system requires that the supremum is a fixed point. A

silent self-stabilizing system requires that only the supremum is a fixed point.

In the next subsections, we present the applications of fixed point computation and how our results apply

to them.

7.3.1 Conflict-free Replicated Datatypes

Introduced in [64], a conflict-free replicated datatype (CRDT) is a replicated data structure which can

be accessed and modified by multiple processes. Each process has access to a distinct replica and the

data structure is guaranteed to converge in s self-stabilizing manner even when these processes execute in

asynchrony.

An example of such data structure is a vector for which the only allowed operation is to monotonically

increase or decrease the values stored in it. The different states that this vector traverses through form a
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≺-lattice (≺-lattice is called semilattice in [64]).

The theory of CRDTs has been extended to many other works. We note some of these works. The authors

of [65] present an algorithm, as well as formal semantics, for a JSON data structure. This data structure

automatically resolves concurrent modifications such that no updates are lost – all replicas converge towards

the same state. A replicated set datatype is presented in [66]. The authors of [67] study integration of

CRDTs with blockchain technologies to alleviate the additional latency between executing and committing

transactions.

7.3.2 Fixed point iteration

In numerical analysis a fixed point iteration is the method of computing a fixed point. Essentially, given

a function f with the same domain and codomain, and an element x0 in the codomain of f , we input x0 in

f , and recursively provide the output of f as an input to it. Mathematically, we perform the recursion

xi+1 = f(xi), for i = 0, 1, 2, ...

This iterative computation is performed until f stutters on a point, i.e., until a point xl is found such that

f(xl) = xl. In such a case, x is said to be a fixed point of f .

To find the least fixed point of a function f with respect to a lattice L, we start the above iterative

computation from the infimum xinf of L. Notice that this is how, e.g., the algorithm for stable marriage

problem functions, to reach the optimal state.

The least fixed-point of a function f in a lattice L is the least element x in L for which f(x) = x. Similarly,

the greatest fixed-point is the greatest element which is a fixed point for f . For example, in the lattice present

in Figure 2.2, ⟨1, 2, 2⟩ is the least fixed-point of fsmp. To find the set of all fixed points of f with respect to

a lattice, we initialize the above iterative computation starting from every point in a lattice.

Fixed point iteration is used by compilers for code optimization, e.g., through abstract interpretation [68]

(where a compiler gains information about the semantics of a program – e.g., control flow, data flow – without

performing all the computations). Apart from this, the fixed-point theorem has been used in several other

fields such as economics, e.g., where John Nash introduced the Nash equilibrium [69] by exploiting the

Kakutani fixed-point theorem (this theorem provides sufficient conditions for a function, whose domain and

codomain are set-valued, that is defined on a convex, compact subset of Euclidean space to have a fixed

point).

The vector in the PageRank algorithm [70] is a fixed point with respect to linear transformation, and

by extension, all Markov chain models also search for a fixed point where they stabilize with respect to

transition probability.
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7.3.3 Modal µ-Calculus

µ-calculus is a logic that describes the properties of a transition system S (cf. Section 2.1 for the definition

of a transition system). A transition system can be an infinite graph. However, most transition systems,

that we study in this dissertation, have finite size. We do not discuss the µ-calculus in detail, the reader is

directed to [71] for an introduction on the topic. µ-calculus provides second-order expressive power which

makes it extremely powerful logic in model checking. It utilizes the recursive computation of fixed-point

iteration to express the operators of temporal logic.

7.3.4 Extending fixed-point logics to DAG-inducing systems

Observe that lattices and DAGs are special cases of simplices, where a global state, an n-dimensional tuple,

can have one or more outgoing edges pointing to other global states. Thus, we have that a nondecreasing

function whose domain is a set of n-dimensional tuples, forming a DAG, is a special case of the fixed point

theorem by Kakutani [63]. Thus we have a corollary from Kakutani’s theorem, which we state as follows.

Corollary 7.1. (Of [63]) Let f be a nondecreasing point-to-set function whose domain and codomain is a

finite set of n-dimensional tuples forming a DAG. Then, there is at least one point x such that x ∈ f(x).

7.4 Lattice-Linearity

In [6], the authors have studied lattice-linear problems which possess a predicate under which the states

naturally form a lattice among all states. Problems like the stable marriage problem, job scheduling and

others are studied in [6]. We study the theory established in [6] in detail in Section 2.3.

In [12], the authors have studied lattice-linearity in several dynamic programming problems.

The key idea of lattice-linearity is that a process/node determines that its local state is not feasible in any

reachable optimal global state. In other words, it has to change its state to reach an optimal state. Thus,

if node i changes its state from st.i to st′.i it never revisits state st.i again. Consequently, the local states

visited by a node form a total order. Hence, it can change its state even if it is relying on the old values

of its neighbours. As a result, the nodes can run without synchronization and the system is guaranteed to

reach an optimal state.

Garg, in [6], studied problems in which a distributive lattice is formed among the global state, where

a meet and join can be found for any given pair of states, and meet and join distribute over each-other.

However, we find that to allow asynchrony, a more relaxed data structure can be allowed. Specifically, in

a ≺-lattice, for a pair of global states, their join can be found, however, their meet may not be found. For

instance, in the instance that we study in Figure 5.2, both meet and join can be found for a pair of global

states in a ≺-lattice, however, in the instance that we study in Figure 5.3, a join can be found for a pair of

global states in a ≺-lattice but a meet is not always found.
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Showing Property of Asynchrony for Existing Algorithms

Johnson’s algorithm for computing shortest paths [72] and Gale-Shapey algorithm for stable marriage [73]

have been shown to be tolerant to asynchrony in [6]. The top trading cycle algorithm for housing market

problem by Shapley and Scarf [74] (attributed to Gale) was shown to be lattice-linear in [11].

7.5 Problems Studied in this Dissertation

In this section, we discuss the related work on specific problems that we study in this dissertation. While

doing so, we compare the properties of existing algorithms for these problems against the algorithms that

we study in this dissertation. Note that in several cases, we do not develop new algorithms for problems,

rather we show that an existing algorithm has better properties than originally proven, e.g., the guarantee

of convergence in asynchrony.

Multiplication

In [8], the authors presented three parallel implementations of the Karatsuba algorithm for long integer

multiplication on a distributed memory architecture. Two of the implementations have time complexity of

O(n) on nlg 3 processors. The third algorithm has complexity O(n lg n) on n processors.

We show that the Cesari-Maeder parallelization of the Karatsuba’s algorithm for multiplication is tolerant

to asynchrony. This algorithm converges in O(n) time. We also study a parallel processing algorithm for

modulo operation, which is tolerant to asynchrony.

Modulo

In [75], the authors have presented parallel processing algorithms for inverse, discrete roots, or a large power

modulo a number that has only small prime factors. A hardware circuit implementation for mod is presented

in [76].

Dominating Set

Self-stabilizing algorithms for the minimal dominating set problem have been proposed in several works in

the literature, for example, in [77–79]. Apart from these, the algorithm in [14] converges in O(n2) moves,

and the algorithm in [15] converges in 9n moves under an unfair distributed scheduler. The best convergence

time among these works is 4n moves.

We study a generalized version of minimal dominating set, the service demand based minimal dominating

set problem, which is a more practical generalization of MDS than other algorithms present in the literature.

We present an eventually lattice-linear self-stabilizing algorithm, converges in 1 round plus n moves (within

2n moves), and does not require a synchronous environment. In addition, evaluation of guards takes only

O(∆4) time, which is better than the algorithm presented in [80]. We also study a fully lattice-linear self-

stabilizing algorithm for minimal dominating set that converges in n moves and is fully tolerant to consistency
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violations. These results preset an improvement over the other algorithms present in the literature.

Vertex Cover

Self-stabilizing algorithms for the vertex cover problem has been studied in Astrand and Suomela (2010) [81]

that converges in O(∆) rounds, and Turau (2010) [82] that converges in O(min{n,∆2,∆ log3 n}) rounds.

We present an eventually lattice-linear self-stabilizing algorithm for minimal vertex cover; it converges in

1 round plus n moves (within 2n moves). We also present a fully lattice-linear algorithm for minimal vertex

cover that converges in n moves. These algorithms guarantee convergence in asynchrony.

Independent Set

Self-stabilizing algorithm for maximal independent set has been presented in [15], that converges in max{3n−

5, 2n} moves under an unfair distributed scheduler, [78] that converges in n rounds under a distributed or

synchronous scheduler, [14] that converges in 2n moves.

We present an eventually lattice-linear self-stabilizing algorithm for maximal independent set; it converges

in 1 round plus n moves (within 2n moves). We also present a fully lattice-linear algorithm for maximal

independent set that converges in n moves. These algorithms guarantee convergence in asynchrony.

Graph Colouring

Self-stabilizing algorithms for graph colouring have been presented in several works, including [83–90]. The

best convergence time among these algorithms is n×∆ moves, where ∆ is the maximum degree of the input

graph.

We study an eventually lattice-linear self-stabilizing algorithm for graph colouring; it converges in n+4m

moves. We also study a fully lattice-linear self-stabilizing algorithm for graph colouring; it converges in

n+ 2m moves. These algorithms guarantee convergence in asynchrony.

2-Dominating Set

The 2-dominating set is not an extensively studied problem. The problem was introduced in [91]. A self-

stabilizing algorithm for the 2-dominating set problem has been studied in [92]. This algorithm converges in

O(nD) rounds under a distributed scheduler, where D is the diameter of G.

We study an eventually lattice-linear self-stabilizing algorithm for 2-dominating set; it converges in 1

round plus 2n moves (within 3n moves), and is tolerant to asynchrony.

Robot Gathering on Discrete Grids

In a general case, it is impossible to gather a system of robots if their visibility graph is not a connected

graph. One-axis agreement and distance-1 myopia are the minimal capabilities that robots need to converge

on a triangular grid [16].

A system of robots with minimal capabilities has been studied with several output requirements, including

gathering [16,93,94], dispersion [95], arbitrary pattern formation [96]. Gathering of robots has been studied
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more recently in [3, 97]. We focus on systems of robots on grids, mainly the papers that study gathering.

Robots placed on an infinite rectangular grid were studied in [98], where the authors presented two

algorithms for gathering. A synchronous scheduler is assumed and the robots require, respectively, distance-

2 and distance-3 visibility. Moreover, under the latter algorithm, robots may not gather at one point but

will gather a horizontal line segment of unit length.

Robots placed on an infinite triangular grid were studied in [99], where the authors provided an algorithm

to form any arbitrary pattern. They require full visibility. Their algorithm works only when the the initial

global state is asymmetric. Authors of [100] have studied gathering problem of 7 robots – initially, 6 of them

form a hexagon and one robot is present at the centre of that hexagon. They require the initial state to form

a connected visibility graph; the system finally reaches a global state where the maximum distance between

two robots is minimized. A synchronous scheduler is assumed. In [93], authors characterized the problem of

gathering on a tree and finite grid.

We study the algorithm presented by [16] and show that it can converge in asynchrony. This algorithm

converges assuming that the robots are myopic, and can use a unidirectional camera, that sees one neighbour

at a time. The robots form an arbitrary connected graph initially. Apart from the property of being able to

converge in asynchrony, we also show that this algorithm converges in 2n rounds; the authors of the original

algorithm showed that it converges in 2.5(n+ 1) rounds.

Maximal Matching

A distributed self-stabilizing algorithm for the maximal matching problem is presented in [101]; this algo-

rithm converges in O(n3) moves. The algorithm in [102] converges in O(log4 n) moves under a synchronous

scheduler. The algoritrithm for maximal matching presented in [103] converges in n+1 rounds. Hedetniemi

et al. (2001) [104] showed that the algorithm presented in [101] converges in 2m+ n moves.

The PO-inducing algorithm for maximal matching, present in this dissertation, converges in 2n moves

and is tolerant to asynchrony. This is an improvement to the algorithms present in the literature.
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CHAPTER 8

CONCLUSION

Synchronization constraints affect how and when the nodes read data from each other. These constraints

permit the user to design the algorithm at a high level and omit some of the details of the underlying system.

Hence, they make the design of algorithms easier. However, enforcing synchronization creates an overhead

that can lead to suboptimal use of computational resources. This is especially problematic, as we see a rise

in the development and usage of large multiprocessor systems.

In this dissertation, we focused on developing algorithms that work correctly even without synchroniza-

tion. We explore the necessary and sufficient properties of algorithms that allow them to execute without

synchronization.

We showed that local state transitions being abstracted as a partial order is both necessary and sufficient

for an algorithm to allow asynchrony. Focusing on the necessary condition, we find that if there is any

existing algorithm that allows to be executed under asynchrony, then it induces a ≺-DAG in the global state

space.

Organization of the Chapter

In Section 8.1, we discuss the specific contributions of this dissertation. In Section 8.2, we discuss how a PO-

inducing algorithm can be transformed to other models. In Section 8.3, we discuss the practical applications

and theoretical impact of this dissertation in multiprocessor systems technology. Finally, in Section 8.4, we

discuss future work directions that arise from this dissertation.

8.1 Summary of Contributions

In this section, we summarise some key objective contributions of this dissertation.

Self-Stabilizing Lattice-Linear Problems

We observed the existence of lattice-linear problems that allow self-stabilization. We show that the parallel

processing version developed by [8] for Karatsuba’s multiplication algorithm (cf. [7]) has properties of asyn-

chrony; we present one other algorithm for multiplication and two algorithms for the modulo operation that

are lattice-linear, and thus, guarantee convergence in asynchrony. These algorithms are self-stabilizing, and

in any given global state, all impedensable nodes can be identified.

Eventually Lattice-Linear Algorithms

We observed that eventually lattice-linear algorithms can be developed for non-lattice-linear problems. These

algorithms induce one or more lattices only in a subset of the state space. They guarantee that starting from

an arbitrary global state, the system traverses to a state in a lattice, and then traverses to an optimal state

through that lattice. We develop eventually lattice-linear self-stabilizing algorithms for minimal dominating
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set, minimal vertex cover, maximal independent set and graph colouring problems.

Fully Lattice-Linear Algorithms

We observed that fully lattice-linear algorithms can be developed for non-lattice-linear problems. Such algo-

rithms induce lattices in the entire state space. We develop fully lattice-linear self-stabilizing algorithms for

minimal dominating set, graph colouring, minimal vertex cover and maximal independent set problems. We

also develop a lattice-linear 2-approximation algorithm for vertex cover; this algorithm is not self-stabilizing.

We showed for an algorithm developed in [16], that solves the gathering problem of myopic robots on an

infinite triangular grid, that it is lattice-linear.

PO-Inducing Systems

We observed that the induction of a partial order in the local state transition graph is a necessary and

sufficient condition to allow asynchrony. An observation that immediately follows is that since a total order

is a special case of a partial order, all lattice-linear problems and algorithms are, respectively, PO-inducing

problems and algorithms.

We showed that the dominant clique problem and the shortest path problem (where the path is required

to be generated) are PO-inducing problems, and maximal matching is a non-PO-inducing problem. We

present algorithms for these problems; the local state transition graph induced by these algorithms forms a

partial order – it cannot be modelled within the constraints of a discrete structure such as the total order.

We derive time-complexity properties of a PO-inducing algorithm. As direct corollaries, we obtain the

time-complexity properties of all the fully lattice-linear algorithms that we present in Chapter 5 and all the

PO-inducing algorithms that we present in Chapter 6.

8.2 Transforming Our Algorithms to Other Models

In this dissertation, for the sake of simplicity, we presented algorithms that often require a node to read

the values of its distance-x neighbours x ≥ 1. For similar reasons, we present algorithms where nodes easily

read data from each other as if they had direct access to the memory of each other. We note that these can

be easily extended to other models of practical use while preserving the properties of interest. We identify

some of these extensions, next.

Transforming to Distance-1

Some algorithms that we study in this dissertation require to read information about the nodes at distance-x

from themselves, where x > 1. An algorithm, under which the nodes require to read information from other

nodes at a high distance, can be costly to execute.

Since PO-inducing algorithms are tolerant to asynchrony and the nodes executing based on old informa-

tion, a trivial transformation to distance-1 is to keep a copy of all variables of nodes in distance-x (cf. [17]).

However, as we see in Section 5.6.1, a transformation that we present for Algorithm 5.2, a distance-4 al-
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gorithm for minimal dominating set, we may not need to keep a copy of all such variables. As we see

in Figure 5.4, the transformed algorithm has a substantial benefit in runtime as compared to the original

algorithm.

Transforming to Message Passing Model

The algorithms that we study in this dissertation appear to execute such that the nodes can seamlessly read

data from each other. As a result, these algorithms appear to be executing in the shared memory model.

If the nodes, however, are placed remotely from each other, then the algorithm will need to be executed in

the message passing model. We can very simply transform a shared memory PO-inducing algorithm into an

algorithm that is executable in the message passing model. We discuss this in the following paragraph.

Since the algorithms we study are tolerant to asynchrony, we can assume, for message passing model,

that every time a node changes its state, it announces its new state to other nodes. The target nodes may

continue to perform executions based on old values until they receive this information. However, since the

algorithm that they are executing is tolerant to asynchrony, their execution will not worsen the rank of the

system.

8.3 Application and Impact of this Dissertation

In addition to applications in improving computing technology, this dissertation has an impact on the

theory of multiprocessor systems and the way they are designed. Among such topics, we discuss some key

areas in the following.

Designing a PO-inducing algorithm

We note that the techniques for PO-inducing algorithms are often different. However, a PO-inducing algo-

rithm is closely related to the properties of the problem at hand. Additionally, the partial order imposed

among states may involve auxiliary variables.

If while developing an algorithm, it is analyzed if it is PO-inducing, then a lot of assumptions about the

properties of the system implementing that algorithm.

Being able to design systems that fully tolerate asynchrony has been a desired, albeit unattainable, ob-

jective. PO-inducing systems provide with a deterministic, discrete, guarantee to attain such fault tolerance.

Writing Proofs

One immediate implication of our theory is in its application in writing proofs. Developing systems that can

tolerate asynchrony has been difficult, and one of the reasons that adds to the intricacy is writing proofs of

correctness of such systems. Our theory not only insists on the possibility of simplifying such proofs, but also

provides an upper bound to the time complexity of the runtime of asynchronous algorithms. Corollary 6.1

implies that to show that an algorithm is tolerant to asynchrony, we only need to show that the local states

visited by individual nodes can be abstracted as a partial order, rather than to generate the entire state
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space and checking for the existence of a cycle. Thus, our theory simplifies the detail that a proof would

require in order to show tolerance to asynchrony of a multiprocessing system. In addition, Corollary 6.2

provides the upper bound of the time complexity of a PO-inducing algorithm.

Showing Property of Asynchrony for Existing Algorithms

Studying whether existing algorithms exploit lattice-linearity is extremely interesting and beneficial.

Specifically, it allows us to eliminate costly, sophisticated, assumptions of synchronization from existing

systems, instead of redesigning them from scratch.

A large number of problems can be solved by algorithms that may converge without requiring any syn-

chronization. A high fraction of such algorithms may already be published, but it has not been proven so.

Recently, there has been work that shows for some existing algorithms that they do not require synchroniza-

tion. Such work includes the results present in this dissertation, where we show for existing algorithms that

they do not require synchronization. We discuss this in the following paragraph.

We show tolerance to asynchrony in Cesari-Maeder parallelization [8] of Karatsuba’s multiplication and

GSGS algorithm for converging myopic robots on an infinite triangular grid [16] in, respectively, Chapter 3

(Section 3.2.2) and Chapter 5 (Section 5.8).

There has been work by other authors who have proved for existing algorithms that they can be executed

without synchronization. This work falls under the umbrella of PO-inducing algorithms. These results are

listed in Related Work (Section 7.4).

The above results are a consequence of the observation that these algorithms stipulate that all impedens-

able nodes must update their local states, and that as a consequence, the local state transition graph forms

a partial order.

8.4 Future Work

In the following, we discuss some interesting future work that can be extended from this dissertation.

Algorithm Design

One promising direction is to continue studying what other existing algorithms tolerate asynchrony. This

will have an impact on alleviating the assumptions of synchronization from existing systems, and will thus,

avoid having to design systems from scratch. Such work may have immediate applications in industrial

computing technology.

Tolerating asynchrony does remove all requirements of synchronization, however, we have not seen any

considerable improvement in the termination detection of such algorithms. Even these algorithms use the

tools to detect termination, same as the algorithms that require synchronization. Despite numerous and

ongoing efforts, developing a better termination detection protocol seems to be, as of yet, an unsolved

problem. It would be very useful to bring about an improvement in the area of termination detection of

131



algorithms that execute without synchronization.

Systems Design

The existing algorithms that we have found results for, present a potential impact in discrete software engi-

neering systems and operating systems. For example, we show for an existing parallel processing algorithm

for multiplication (cf. Chapter 3) that it is tolerant to asynchrony. Most computational machines contain

a circuit that computes the multiplication of a pair of bitstrings, which makes our result vital from the

perspective of operating systems. Thus, along with theoretical problems and algorithms, a demanding and

promising direction is to study algorithms that have applications in operating systems and firmware design.

This will have an impact on improving the robustness of multicore, distributed and GPU systems. If a

critical system is not straightforwardly tolerant to asynchrony, then it is worthwhile to investigate what

minimal changes we can make to make it tolerant to asynchrony.

Another related research area is timeless circuits. Such circuits do not use a clock to organise the steps of

its components, rather, the output of a component is fully dependent on the input fed to it by its predecessor

component in the circuit (cf. Section 7.1). Such circuits have not received sufficient attention due to the

scarcity of asynchronous algorithms, and the lack of any improvement in termination detection. Our research

has a potential to motivate more substantial research in these areas; we expect our models and algorithms

to perform even better when implemented on timeless circuits.

Machine Intelligence

Another application of our work is in machine learning, deep learning, and AI systems. We have recently

started investigating such systems and found that many such systems can be divided into phases, where each

individual phase can run asynchronously. However, when we merge those phases into one system, then it is

required to put barriers between them. Specifically, transitioning between phases requires synchronization,

and the current phase needs to be completed on all computing nodes before starting the next phase. Given

the applications of such systems, a direction that is worth pursuing is to study if such systems can be allowed

to run without synchronization between phases, and if not, then what minimal changes can be made to allow

asynchrony.
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APPENDIX A

OVERVIEW OF GRAPH THEORY AND DISTRIBUTED ALGORITHMS

The intention behind adding this appendix is to assist a reader, who is new to distributed systems and

graph theory, in understanding the concepts on which this dissertation is based. However, we assume that a

reader is acquainted with Boolean algebra. Part of Appendix A.1 and Appendix A.2 is taken verbatim from

Burning Geometric Graphs (A T Gupta, Master’s Thesis, 2020) [105].

A.1 Preface to Algorithms

Lionardo Pisano, more popularly known as Fibonacci, was an Italian mathematician, and he introduced

the conventional Indian mathematical methods to Europe in the 13th century [106]. In his book, Liber

Abaci (liberation from abacuses/abaci), he introduces modus Indorum (method of the Indians). Until then,

the abacus was used across Europe to perform mathematical calculations. Pisano introduced a mathematics

which was more efficient: computations could be performed on numbers without bounds on their digit length.

Earlier than Pisano, Muhammad ibn Musa al-Khwarizmi, a Persian mathematician, in 9th century, wrote

kitāb al-hisāb al-hindī (book of Indian arithmetic) and kitab al-jam’ wa’l-tafriq al-h. isāb al-hindī (book of

addition and subtraction in Indian arithmetic). A few centuries later, Al-Khwarizmi’s texts were translated

to Latin [107].

It is due to the work of Al-Khwarizmi and Pisano that the methods of Indian arithmetic spread across

Europe, and a person who could perform computations without the use of abacus was called Maẽstro-de-abaci.

After a series of nomenclatural adaptations, the Europeans started to call this new form of mathematics,

which could be performed without abacus and without bounds on the input size, algorithms.

Since then, numerous efforts have been made to translate human intelligence and computing ability into

artificial machinery. Blaise Pascal [108] built a machine in the 17th century which could perform addition

and subtraction. Gottfried Wilhelm Leibniz built a machine, during the same time, which could perform

multiplication and division as well. Charles Babbage built the famous Difference Engine which could do

similar computations automatically, that is, once the input numbers are supplied to it, it was able to do

the computation without any human intervention. This machine was able to prepare tables: it was able to

compute polynomials of degree 2 for consecutive integers; this was called the method of differences. Babbage

built the first prototype of this machine in 1822.

Luigi Frederico Menabrea explained with reference to the Difference Engine that it was limited only to

one type of computations, it could not be applied to solve numerous other problems in which mathematicians

might be interested. This led Babbage to design the Analytical Engine, which could solve the full range of

algebraic problems. The generality of the Analytical Engine is discussed in Menabrea’s Italian article Sketch
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of the Analytical Engine (1842), which was translated into English by Augustus Ada [109].

Augustus Ada, countess of Lovelace, proposed that Babbage’s design could be used to compute function

of any number of functions. On Babbage’s request, she wrote some additional notes to her memoir, most

famous one of them is the Note G , in which, firstly, she anticipated an issue: whether computers can exhibit

intelligence, or, original thought, and secondly, in this note she wrote a sequence of operations (an algorithm)

to compute Bernoulli numbers on the Analytical Engine.

Modern definition of the word algorithm is as follows. An algorithm is a step-by-step procedure used to

solve a problem given that it halts in finite time for any given input.

After some decades, Alan Mathison Turing worked on decision functions (or a decision problem, as he

presents in [110]) and their representations. A decision function is a sequence of mathematical instructions

whose outputs are accept or reject on an arbitrary input string. A decision function solves a decision problem.

The set of strings which a function accepts is the language of that function. This set of strings defines the

problem which that function solves.

Turing initiated the design of what we call the Turing Machine which works on these formal languages

to compute for any decision problem. We do not discuss the Turing Machine; the reader is advised to

refer [110, 111] to study the Turing Machine in detail. We start with a brief discussion on graphs, on which

the chapters in this dissertation are majorly based.

A.2 Preface to Graphs

A graph is a representation of entities and their relations: generally, a graph tells which entities are related

(unweighted graph); sometimes the relations may have some associated cost or weightage (weighted graphs).

Formally, a graph is a mathematical object which represents entities as vertices, and relations as edges

between those vertices: if two entities are related, then there will be an edge between their corresponding

vertices in the graph. The number of vertices in a graph is its order, and the number of edges in a graph is

its size. Generally, given a graph, all its edges represent the same type of relation.

An example of an unweighted graph is presented in Figure A.1. In this graph, 1, 2, 3 and 4 are the

vertices and, for example, there is an edge between vertices 1 and 2. This graph can be represented by the

sequence G1
4 = ⟨4, 7, 8, 11, 13, 15, 2, 1, 3, 4, 2, 4, 2, 3⟩. The first element in G1

4, 4, represents the total

number of vertices. The second element of G1
4, 7, represents that the vertices connected to the first vertex

start at position 7 in G1
4. Similarly, the third element of G1

4, 8, represents that the vertices connected to the

second vertex start at position 8 in G1
4. So the first vertex, vertex 1, is only connected to vertex 2, and vertex

2 is connected to vertices 1, 3 and 4. Similarly, the fourth and fifth elements of G1
4, 11 and 13, represent

that the vertices connected to the third and fourth vertices start at position 11 and 13 in G1
4 respectively.

The sixth element, 15, represents that G1
4 contains only 14 elements.
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A graph in which all the edges are of equal weight is also viewed as an unweighted graph. Generally, in

the graphs that are deemed as unweighted graphs, all edges are represented with the weight value 1. In the

graph represented in Figure A.1 also, we consider the weight on all edges to be 1, which we do not show

explicitly for brevity.

12

3 4

Figure A.1: A sample graph represented by the sequence G1
4 = ⟨4, 7, 8, 11, 13, 15, 2, 1, 3, 4, 2, 4, 2, 3⟩.

Some of the graphs that we study in this dissertation are weighted graphs. A weighted graph is a graph

that has a weight associated to the edges that connect the vertices. A weighted edge represents a cost or

weightage of a relation between a pair of entities. Such cost-associated, or weighted, edges signify some

real-world properties. For example, if two computers are connected in a network, we can model them as

a pair of vertices, and there will be an edge connecting those vertices. The frequency of communication

between them can be modelled by assigning that much weight to that edge. A graph constructed in this way

will provide information about the frequency of communication among computers in a network. For another

example, a weighted edge joining a pair of vertices (where these vertices represent two cities) can represent

that there is a direct road connecting those cities, and its weight would represent the distance between their

corresponding cities. In the above computer network example, the edges represent weightage (priority) of

the connections, whereas in the city example, the edges would represent the cost of the connections.

We also study directed graphs. In an undirected graph, we have edges directed both to and from the

vertices that they connect. So, an undirected edge joining two vertices a and b has directions both from a

to b and from b to a. Thus, an undirected edge is effectively a bidirectional edge, as it can be depicted from

the description of G1
4 and its representation in Figure A.1. A directed graph is a graph in which the edges

are unidirectional. A mixed graph is a graph that contains both unidirectional and bidirectional edges.

An example of a mixed weighted graph is presented in Figure A.2. In this graph, 1, 2, 3 and 4 are the

vertices and, for example, there is an edge from vertex 1 to vertex 2. This graph can be represented by the

sequence G2
4 = ⟨4, 7, 8, 8, 10, 12, ⟨2, 1⟩, ⟨2, 3⟩, ⟨4, 5⟩, ⟨2, 4⟩, ⟨3, 5⟩⟩. The first element in G2

4, 4, represents

the total number of vertices. The second element of G2
4, 7, represents that the vertices that have edges from

vertex 1 start at position 7 in G2
4. Similarly, the third element of G2

4, 8, represents that the vertices that

have edges from vertex 2 start at position 8 in G2
4. So vertex 1 has an edge to vertex 2 only; the weight

of this edge is 1. Similarly, the fourth and fifth elements of G2
4, 8 and 10, represent that the vertices that
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have edges from vertex 3 and vertex 4 start at position 8 and 10 in G2
4 respectively. The sixth element, 12,

represents that G2
4 contains only 11 elements. Since the start index is 8 corresponding to both vertex 2 and

vertex 3, we have that there is no edge that goes from vertex 2 to any other vertex. The edge between vertex

3 and vertex 4 is a bidirectional edge, which can be represented as having no arrows, as in Figure A.2, or

having arrows on both its ends.

12

3 4

1

3 4

5

Figure A.2: A sample graph represented by the sequence G2
4 = ⟨4, 7, 8, 8, 10, 12, ⟨2, 1⟩, ⟨2, 3⟩, ⟨4, 5⟩, ⟨2, 4⟩,

⟨3, 5⟩⟩.

Note that we do not need to represent the edges of a weighted graph as a two-value tuple. We can

represent such a graph as a single dimension tuple, where each edge will occupy two consecutive indices in

that tuple, where the first of those indices represents the direction of the edge and the second index represents

its weight. For example, G2
4 can also be represented as G3

4 = ⟨4, 7, 9, 9, 13, 17, 2, 1, 2, 3, 4, 5, 2, 4, 3, 5⟩

In a directed graph, a supremum of a pair vertices a and b is the closest vertex from a and b that has a

path from both a and b. Similarly, an infimum of a and b is the closest vertex to a and b that has a path to

both a and b.

A complete lattice is a directed graph in which, for every pair of vertices a and b, there exists a unique

infimum and supremum of a and b. As an example, consider a directed graph in which the vertices are natural

numbers, and there is an edge from a to b iff b is equal to a, multiplied by a prime number. Notice that this

directed graph is a complete lattice: for every pair of numbers a and b, there is a unique supremum (which is

the lowest common multiple (LCM) of a and b) and there is a unique infimum (which is the highest common

factor (HCF) of a and b). We call this lattice a prime-factorizability lattice. We have shown a subgraph of

the prime-factorizability lattice for numbers from 1 to 20 in Figure A.3. In a prime-factorizability lattice,

a number a is a factor of b iff there is a path from a to b. Note that the prime-factorizability lattice is of

infinite order and size. The supremum of, for example, 16 and 20 is 80, which is not shown in Figure A.3.

In this dissertation, the lattices that we study have a supremum defined for any given pair of vertices,

however, an infimum may not be found. Such lattices come within the class of incomplete lattices.

The prime-factorizability lattice can be used to study several properties of numbers, for example: (1) iff

there is a path from a to b, then a is a factor of b, (2) iff b is a multiple of a, then the supremum of a and b

is b, and the infimum of a and b is a, (3) iff the infimum of a pair of numbers a and b is 1, then a and b are
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1

17 11 5 2 3 7 13 19

1510 4 6 914

20 8 12 18

16

Figure A.3: A subgraph of the prime-factorizability lattice for natural numbers from 1 to 20. All edges are
directed upwards; arrows are not shown for brevity.

coprime, and (4) if p is a prime number, then p is connected to 1 by a direct edge.

Another example lattice is shown in Figure A.4. In this lattice, each vertex is a tuple of three numbers.

There is an edge from tuple a to tuple b iff (1) all elements of b (sequentially) are equal to or greater than

the elements of a, that is, ∀i, 1 ≤ i ≤ 3 : b[i] ≥ a[i], (2) all but one elements (sequentially) of a and b are

different, that is, ∃i, 1 ≤ i ≤ 3 : (a[i] ̸= b[i] ∧ (∀j ̸= i : a[i] = b[i])), and (3) at the index i where a and b are

different, b[i]− a[i] = 1. Notice that the graph shown in Figure A.4 is a complete lattice.

⟨1,1,1⟩

⟨2,1,1⟩ ⟨1,2,1⟩ ⟨1,1,2⟩

⟨1,1,3⟩⟨1,2,2⟩

⟨1,2,3⟩

⟨1,3,1⟩

⟨1,3,2⟩

⟨1,3,3⟩

⟨2,1,2⟩

⟨2,1,3⟩

⟨2,2,1⟩

⟨2,2,2⟩

⟨2,2,3⟩

⟨2,3,1⟩

⟨2,3,2⟩

⟨2,3,3⟩

⟨3,1,1⟩

⟨3,1,2⟩

⟨3,1,3⟩

⟨3,2,1⟩

⟨3,2,2⟩

⟨3,2,3⟩

⟨3,3,1⟩

⟨3,3,2⟩

⟨3,3,3⟩

Figure A.4: An example lattice where each vertex is a tuple. All edges are pointing upwards. We have not
shown the arrows for brevity.

A.3 Transitive Edges

Let that R be a relation and for a pair of objects a and b, let aRb be true if and only if b is related to a

under R. We say that R is a transitive relation only if the following is true: for any three objects, a, b and

c, if aRb is true and bRc is true, then aRc is also true.

As an illustration of a relation that a graph can represent, consider the lattice presented in Figure A.4.

Let that each tuple in this lattice represents some state of a system. Let this lattice be L. We know that
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all the edges in this lattice are pointing upwards. An algorithm A that follows this lattice can take a system

from a state s1 to another state s2 in one step only if there is an edge from s1 to s2. If we consider a relation

represented by a graph such as L, then we have that s2 is related to s1 if and only if there is an edge from

s1 to s2. It also means that s2 is related to s1 if and only if A is able to take the system from s1 to s2 in

one step.

In this dissertation, at several places, we discuss transitive edges. If we impose transitivity in L, then it

would mean we are considering L′ instead of lattice L, such that there are edges from a state s1 to another

state s2 in L′ if and only if there is a path from s1 to s2 in L. An algorithm A′, that follows the lattice L′,

will be able to transition the system from s1 to s2 in L′ in one step only if there is a path from s1 to s2 in

L. We discuss more on transitivity, and some applications transitivity in directed graphs, in Chapter 2 and

the chapters that follow.

A.4 Preface to Parallel Processing

The soul of this dissertation lies in methods of parallel processing. Contemporary examples of parallel

processing systems are a graphical processing unit (GPU) or a cluster of computers connected to each other

via Ethernet, or computers even more remotely connected to each other, where, between a pair of computers,

several channels can be involved, e.g., one or more of an Ethernet cable, WiFi, optical cable.

When a single processor solves a problem, then it may solve that problem in say, k time units. But when

we use a system comprising several processors, then we can distribute the work among those processors. We

already have a single processor powerful enough, now one would expect that a bunch of, say, n processors

would be n times as powerful. However, there are other costs that a parallel processing system must pay

in order to utilize such increased power due to parallelization. Let us consider the following example, an

instance of job distribution in a kitchen rather than a multiprocessor system.

Let us assume that a cook takes 2 hours to prepare a certain dish. Let us assume that this dish does not

require any cooking, and only mixing certain vegetables and spices, but the vegetables have to be prepared

and sliced, each, in a certain way which takes this much time in total. Now let us assume that we have

3 cooks at our disposal. Here, the cooks are the job-doers. In the same way, in a computer system, a

processor is the job-doer. 3 cooks might take about 40-45 minutes to prepare this dish, as they can prepare

all the ingredients consequently and then mix them at the end. Taking 40-45 minutes is reasonable. Now

assume that there are 100 cooks. Ideally, they should take less than 2 minutes altogether to prepare the

dish. However, all those cooks should communicate their states in terms of progress and the part of the

preparation they want to take up. Now on average, if I am one of those cooks, I will take about a minute

and a half to talk to one other cook, and about 150 minutes to talk to all other cooks. Similarly, all cooks

would want to talk to all other cooks, maybe more than once. This is going to take time even more than
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what a single cook would take to prepare the dish. So most of the power of the job-doers in our kitchen is

consumed in communication for synchronization.

As we assumed above, a single processor would take k time units to compute for a problem. But if we use

n processors, it may take more than
k

n
time units to solve the same problem, even when the work is evenly

divided. The extra time that they take is invested in communication for synchronization. Similar to cooks

in our kitchen example, processors need to communicate with each other and they need to be synchronized

with each other.

This dissertation investigates the behaviour of the systems where we eliminate the need for synchroniza-

tion among the processors, and thereby, the costs incurred to enforce it. Some problems naturally allow

asynchrony, while in other problems, we have to add details to the executions algorithmically.

For example, we could develop an algorithm for these 100 cooks and associate their names with the part

of preparation that they have to take care of. Then they would simply work asynchronously and get their

parts done, and then mix the ingredients at the end. Depending on the vegetables, it would take roughly

two minutes to cut them precisely and mix them all with the required spices. Now any cook could choose

any part of the preparation, other than what he is assigned, so this problem does not allow asynchrony

naturally, and therefore we must impose on them their respective jobs algorithmically. We do come across

such problems in computer science as well.

There are, however, problems that naturally allow asynchrony. For example, consider that an aquarium

company of pre-telephonic times, established near a freshwater lake, requires 100 pounds of live fish to put

in its aquariums. Assume that a ship can collect 10 pounds of fish in a day. So it would take 10 days for a

single ship to collect that amount of fish. If that aquarium company owns 5 ships, each ship can be sent off

with the target of 20 pounds of fish each. This job can be done in roughly 2 days. There is no job association

with, e.g., the name of the ship; all ships have to catch a specific, same, amount of fish, so such a system

naturally allows asynchrony.

Now assume that we have not assigned the amount of fish to all boats and require them to return, all,

at the same time. One might think that this requirement will take the least possible time for all ships to

come back, but it is not so. In the above system, the ships might have returned to port at different times,

because they may be working at different speeds in catching the fish. However, in this latter case, we will

have to utilize synchronization, so that we can ensure that the ships stay in communication with each other

regarding the amount of fish each of them has to catch, and return to port at the same time. But since these

are pre-telephonic times, exchanging information through longboats, will take considerable time in itself and

much time will be consumed only in waiting for information to arrive.

In this dissertation, we study the characteristics of problems that allow asynchrony naturally, and the
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structure of executions of algorithms that impose asynchrony in solving problems that do or do not allow

asynchrony naturally.

A.5 Preface to Acyclic State Transitions

Above, we discussed the amount of resources and time used to enforce synchronization in a kitchen and

a fish-catching example. In a multiprocessor system, where multiple processors perform execution to solve

a problem, resources and time are invested, with a similar proportion, to enforce synchronization. In this

dissertation, by the word system we refer to a multiprocessor system.

The progress made by a system can be evaluated by analyzing its global state, which is represented by

the values stored in variables throughout all the processes. For now, we will call the state of convergence

to be a global state where the system is deemed to have solved the problem at hand, and the solution is

represented by the state that the system is in (by the values stored in variables throughout all the processes

when the system is in the state of convergence). If a system is not synchronized, then it can potentially

make mistakes, which may take it farther away from the state of convergence. Synchronization prevents

these mistakes from happening. Furthermore, the assumption of synchronization restricts when the nodes

will read from other nodes and take action, and consequently, it makes the design of algorithms easy.

There are different types of synchronization, which we describe at various places throughout this disserta-

tion. The type of synchronization that a system needs to enforce depends on the nature of the problem and

the structure of the system. An absence of an apt synchronization primitive, where it would be otherwise

required, can make the system make mistakes. These mistakes are caused because of executions that the

processes make based on old and inconsistent information. We call such faults consistency violation faults.

Such mistakes result in the system to commit cyclic state transitions, where a system makes some progress,

but then moves further away from the state of convergence because of a consistency violation. This can

repeat continually, and everytime the system makes progress, it will again move farther away from the state

of convergence; this happens due to the absence of an apt synchronization primitive, even if the algorithm

is otherwise correct on a uniprocessor system.

Proper synchronization ensures that an acyclic structure is induced among the state transitions, as it

ensures that the data flows among the processes in a consistent fashion.

In this dissertation, we study the properties of systems that guarantee convergence without synchroniza-

tion. The essential property for an algorithm to allow asynchrony is that it should be able to enforce acyclic

state transitions in the system. There are multiple processors in a system running at least one process each.

Acyclic state transitions can be enforced even in asynchrony as follows. Let us assume that every process

performs execution such that a local state once discarded is never revisited again (a local state of a process

is represented by the values of only its own variables). However, the processes need to make such transitions
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carefully: they must ensure that if they are discarding their local state, then that local state is infeasible for

any possible desired state of convergence. Enforcing such guarantees is problem-dependent; this, we explore

throughout this dissertation. If such guarantees can be made, then even if a node is reading old values, it

can safely make a transition if it decides so, because its current local state would be infeasible for any desired

state of convergence. Consequently, the system exhibits acyclic state transitions, which is the main subject

of exploration for this dissertation.

A.6 An Example Graph Theoretic Problem

Consider, e.g., a fort containing three indexed towers; each pair of towers has a straight path connecting

them. This is demonstrated in Figure A.5. Consider that the fort is under attack. All three paths are well

protected with high and strong walls. The only entry point to enter the fort are the towers. The problem,

thus, is to place archers minimally ; this problem is not of how many archers to place, the problem is where

to place them. We can place archers on all three towers, any two towers or just one tower. Notice that if

we place archers in only one of the towers, they can protect the tower that they are placed in, as well as the

other two towers. Therefore, for this problem, we have that placing one or more archers in only one tower

is sufficient to protect all three towers, and hence the entire fort.

IN

3

OUT

1

OUT

2

Figure A.5: Fort under attack: archers positioned at the tower marked IN .

The threads in a multiprocessing system have a distinct ID associated to them. An algorithm for this

problem computes a minimal set of towers such that all towers can be protected. An example algorithm

for such a problem makes each processor simulate a distinct tower. We call a processor, that performs

computation in a multiprocessor system, a computation node. A node can be in states IN or OUT ; if a node

is IN , then it means that the algorithm decided to place archers in its corresponding tower, or otherwise,

if a node is OUT , then it means that the algorithm decided not to place any archers in its corresponding

tower.

Consider an algorithm in which the nodes check if one of their neighbours is IN ; if none of their neighbours
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are IN , then they will move IN . Suppose that initially, all nodes are OUT . Now let that node 2 and node

3 execute together. They will see that their neighbouring nodes are OUT , so both node 2 and node 3 will

change their state to IN . In such an output, notice that the fort is protected, but not minimally. Thus, to

allow only a minimal set of nodes to move in, we need some synchronization primitive to be deployed among

the nodes. Most algorithms in the literature, that are developed for multiprocessor systems, assume some

synchronization primitive to be deployed among the nodes.

In the paragraph above, we discussed an algorithm for minimal dominating set problem where the com-

puting nodes should not be allowed to run in asynchrony. Now consider another algorithm for this problem,

in which, if a set of nodes want to move in, they will allow the node with a higher ID in their neighbourhood

to move first, and wait until then. In such an algorithm, node 3 will move (change its state to) IN . Node 1

and node 2 will wait for node 3 to move first. After when node 3 moves IN , when node 1 and node 2 evaluate

their required action, they will see that they are already being protected by node 3 (tower 3), so they will

not perform any move (i.e., they will not change their state). Thus, we have a minimal set of towers that

are able to protect the entire fort. Notice that this algorithm, unlike the algorithm described in the above

paragraph, can be allowed to run asynchronously for this problem. This is because we used a tie-breaker

based on node IDs, so race conditions like the previous algorithm do not evolve. Thus, Figure A.5 shows the

output of this algorithm, where we obtain a minimal set of locations to place the archers. In this dissertation,

we study the properties of such algorithms: algorithms that can be allowed to run without synchronization.

The problem described above is the dominating set problem. In the dominating set problem, the input

is a graph G, and the task is to compute a dominating set D such that every node i should be dominated :

(1) either i is in the dominating set, or (2) at least one of the neighbours of i is in the dominating set. We

consider all and only the nodes that are IN to be in D. In the minimal dominating set problem, the input

is a graph G, and the task is to compute the dominating set problem on G and compute D such that if any

node is removed from D, then some node in G becomes not dominated. The dominating set problem solves

the problem of domination, whereas the minimal dominating set problem solves the problem of minimality

along with domination.

Assume that in the initial state, all the nodes that represent the three towers are OUT . With such

an input setting, notice that in the two algorithms that we described in the above paragraphs, the former

algorithm solves the dominating set problem, even if it is run in asynchrony. However, it can solve the

minimal dominating set problem only if it uses synchronization (in this case, local mutual exclusion or

a central scheduler). The latter algorithm solves the minimal dominating set problem with or without

synchronization.

In this dissertation, we study the properties that enable an algorithm to guarantee convergence in asyn-
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chrony. We study several problems for which such algorithms can be developed, and present example

algorithms. We also study example problems where some specific algorithm designs do not work, and what

algorithm design approaches would work. In such cases, we also study how the properties of the subject

problems are responsible for certain algorithm design approaches to not work, and how these properties are

correlated to the design approaches that work.
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