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ABSTRACT 

Gene expression regulation involves intricate genetic and environmental interactions that 

shape phenotypic diversity. This dissertation explores both intraspecific and interspecific 

regulatory variation using F1 hybrid models in Drosophila. The first part of the study focuses on 

Drosophila melanogaster, characterizing cis- and trans-regulatory effects within the species. By 

combining allele-specific mapping and RNA sequencing, the analysis reveals that cis-regulatory 

effects are predominant, driving much of the variation in gene expression. Trans-regulatory 

effects, while less frequent, may indicate complex interactions between regulatory elements. 

The second part extends the investigation to interspecific gene regulation between 

Drosophila melanogaster and Drosophila simulans. By integrating ribosome profiling with RNA 

sequencing, the study evaluates both transcriptional and translational divergence in hybrid 

offspring. This analysis identifies significant differences in both cis- and trans-regulatory effects, 

with trans effects contributing prominently to translation efficiency variation. Temperature-

dependent changes further modulate both transcription and translation, highlighting the role of 

environmental factors in regulatory divergence between species. 

Overall, the findings demonstrate that gene expression regulation is shaped by both local 

genetic elements and broader regulatory networks, modulated by environmental conditions. The 

comparative analysis of intraspecific and interspecific hybrids provides insights into the 

evolutionary dynamics of gene regulation, emphasizing the buffering role of translational 

regulation and the adaptive potential of trans-regulatory elements. This comprehensive 

framework enhances our understanding of gene expression regulation and its implications for 

evolutionary biology
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INTRODUCTION 

Gene expression regulation is a central mechanism underlying phenotypic diversity, 

evolution, and adaptation. It involves complex layers of control from transcription to translation, 

each influenced by genetic variations and environmental factors. Understanding how these 

regulatory mechanisms contribute to gene expression variation within and between species is 

fundamental for elucidating the genetic basis of evolution. This dissertation investigates the cis- 

and trans-regulatory effects shaping gene expression in Drosophila, with a focus on both 

intraspecific variation within Drosophila melanogaster and interspecific divergence between 

Drosophila melanogaster and Drosophila simulans. 

Cis-regulatory elements are typically located near the gene they regulate and include 

promoters, enhancers, and untranslated regions, which affect transcriptional or post-

transcriptional processes. In contrast, trans-regulatory elements include diffusible factors like 

transcription factors, RNA-binding proteins, and microRNAs that act across loci to modify gene 

expression. Previous studies suggest that while trans-regulatory variation often dominates within 

species, cis-regulatory variation becomes more significant in the context of interspecies 

divergence (Vande Zande 2022). This interplay between cis and trans effects not only drives gene 

expression variation but also impacts hybrid fitness and adaptive traits. 

While much research has focused on transcriptional regulation, less is known about how 

post-transcriptional mechanisms, such as translation efficiency, contribute to regulatory 

variation. Translational regulation adds another layer of complexity, as it can either buffer or 

amplify transcriptional differences. Recent advances in high-throughput sequencing, including 

RNA sequencing (RNA-Seq) and ribosome profiling (Ribo-seq), have enabled simultaneous 

measurement of mRNA abundance and translation efficiency. These tools provide a powerful 

means to dissect allele-specific regulatory effects in hybrids, offering a unique opportunity to 

understand the genetic architecture of gene expression across different biological levels. 



 2 

This dissertation is organized into two main studies. The first study focuses on 

intraspecific regulatory variation within Drosophila melanogaster. By using allele-specific 

RNA-Seq in F1 hybrids derived from genetically distinct inbred lines, this study quantifies the 

contributions of cis- and trans-regulatory elements to transcriptional variation. The second study 

extends this approach to interspecific hybrids between Drosophila melanogaster and Drosophila 

simulans. Integrating RNA-Seq with ribosome profiling, it explores how regulatory divergence 

at both transcriptional and translational levels contributes to phenotypic variation between these 

species. Additionally, temperature-controlled experiments are used in both studies to examine 

how environmental factors modulate regulatory interactions. 

Through these complementary analyses, this dissertation provides a comprehensive view 

of how cis- and trans-regulatory elements shape gene expression within and between species. 

The findings offer new insights into the evolutionary dynamics of gene regulation, emphasizing 

the roles of genetic architecture and environmental factors in phenotypic diversity. 

Vande Zande, P., Hill, M. S., & Wittkopp, P. J. (2022). Pleiotropic effects of trans-

regulatory mutations on fitness and gene expression. Science, 377(6601), 105-109. 
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CHAPTER 1: LITERATURE REVIEW 

TRANSCRIPTIONAL, POSTTRANSCRIPTIONAL, AND TRANSLATIONAL 

REGULATION OF GENE EXPRESSION: MECHANISMS, METHODS, AND RECENT 

ADVANCES IN DROSOPHILA 

Overview of the gene expression process in eukaryotes 

Gene expression in eukaryotes is a complex, multi-step process that transforms genetic 

information encoded in DNA into functional proteins (Figure 1.1), which in turn determine 

phenotypic traits across organisms. This process is tightly regulated at each stage, maintaining 

phenotypic consistency across individuals while enabling adaptive variability in response to 

environmental changes. The initial step, transcription, involves the synthesis of messenger RNA 

(mRNA) from DNA by RNA polymerase, guided by a network of transcription factors, 

chromatin accessibility, and epigenetic modifications. Transcriptional regulation in eukaryotic 

cells is a complex process, where RNA polymerases play a central role in synthesizing RNA 

from DNA templates, a well-established understanding of the gene expression process. 

Regulatory sequences such as promoters, enhancers, and silencers coordinate with DNA-binding 

proteins to modulate transcription initiation, elongation, and termination (Cramer, 2019). 

 

Figure 1.1 Overview of the gene expression process in eukaryotes. 
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Epigenetic modifications regulate gene expression by altering chromatin structure and 

accessibility. DNA methylation at CpG islands often represses transcription, while histone 

modifications, like acetylation and methylation, shift chromatin states between heterochromatin 

(repressive) and euchromatin (permissive). Histone acetyltransferases (HATs) generally enhance 

transcription by loosening chromatin, whereas histone methylation can activate or repress 

transcription depending on the residues affected. Chromatin remodeling complexes, such as 

SWI/SNF, reposition nucleosomes to regulate DNA accessibility (Jones, 2012; Allis & Jenuwein, 

2016; Clapier & Cairns, 2009). 

Concomitant with transcription, the nascent mRNA undergoes several posttranscriptional 

modifications, including splicing, 5’ capping, RNA editing, and 3’ polyadenylation. These 

modifications are crucial for mRNA stability, nuclear export, and translation efficiency(Nilsen & 

Graveley, 2010; Darnell, 2013). Alternative splicing allows a single gene to produce multiple 

protein isoforms, increasing proteome diversity and enabling tissue-specific functions 

(Kornblihtt et al., 2013; Baralle & Giudice, 2017). In recent years, RNA modifications such as 

N6-methyladenosine (m6A) have emerged as important regulators of RNA metabolism, affecting 

splicing, stability, and translation (Zhao, Roundtree, & He, 2017; Yang, Hsu, Chen, & Yang, 

2018; Dominissini et al., 2012) 

Once processed, mature mRNAs are exported to the cytoplasm, where they serve as 

templates for translation. This step is influenced by factors such as ribosome binding, mRNA 

localization, codon usage bias, mRNA secondary structure, and mRNA stability. Additionally, the 

availability of tRNAs, regulatory proteins (e.g., initiation and elongation factors), and 

microRNAs can modulate translation efficiency (Hinnebusch & Lorsch, 2012; Gingold & Pilpel, 

2011) 

After translation, newly synthesized proteins often undergo posttranslational 

modifications like phosphorylation, acetylation, or ubiquitination, which regulate their activity, 

stability, localization, or interaction with other proteins (Mann & Jensen, 2003). This regulatory 
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layer allows cells to respond rapidly to environmental changes and maintain precise cellular 

functions. The regulation of gene expression at transcriptional, posttranscriptional, translational, 

and posttranslational levels ensures that genetic information is dynamically expressed in a way 

that supports organismal adaptation and phenotypic variation (Albert & Kruglyak, 2015). 

Regulation of the transcription process 

Transcription is a critical regulatory step in the gene expression pathway, serving as a key 

control point for many genes in eukaryotes. This process, which occurs in the cell nucleus, is 

highly regulated and consists of several distinct stages: promoter recognition, promoter opening, 

transcription initiation, and elongation. The initial phase involves the binding of RNA 

polymerase to promoter regions, which are specific DNA sequences that signal the start of a 

gene.  

This binding is influenced by cis-regulatory elements, such as promoters, enhancers, and 

silencers, which serve as docking sites for trans-regulatory factors, including transcription 

factors, co-activators, and repressors. Promoters, located near the transcription start site, interact 

directly with the transcription machinery, including TFIID and RNA polymerase II, to initiate 

transcription. Core promoter elements, such as the TATA box and Inr, facilitate this binding. 

Enhancers, often located far from the target gene, influence transcription by looping the DNA to 

bring activators closer to promoters. Silencers recruit repressors and co-repressors, which 

condense chromatin or block activator access, thereby repressing transcription. Transcription 

factors modulate gene expression by either enhancing or inhibiting transcription through direct 

interactions with these cis-elements and chromatin remodeling enzymes. Their combined action 

shapes gene expression patterns across different cells, tissues, and responses. (Levine & Tjian, 

2003; Spitz & Furlong, 2012). These interactions establish transcriptional specificity and are 

further modulated by epigenetic factors such as DNA methylation, histone modifications, and 

chromatin remodeling, which alter chromatin accessibility and gene activity (Allis & Jenuwein, 

2016). 
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The outcomes of transcriptional regulation are diverse and influence development, cell 

differentiation, and responses to environmental signals. For example, HOX genes, which 

determine body plan development in animals, are tightly regulated at the transcriptional level 

through a combination of enhancer sequences, chromatin modifications, and long non-coding 

RNAs (lncRNAs) (Alexander, Nolte, & Krumlauf, 2009; Rinn et al., 2007). Another example is 

p53, a tumor suppressor gene whose transcriptional activity is modulated by a network of 

enhancers, promoters, and epigenetic marks. The regulation of p53 expression is crucial for 

cellular responses to stress, DNA damage, and oncogenic signals, demonstrating the impact of 

transcriptional control on tumor suppression and cell cycle regulation (Vousden & Prives, 2009; 

Sullivan, Galbraith, Andrysik, & Espinosa, 2018).  

Epigenetic regulation, such as DNA methylation, also has clear implications for disease. 

For instance, hypermethylation of promoter regions in tumor suppressor genes is a common 

hallmark in many cancers, leading to transcriptional silencing and tumor progression (Jones & 

Baylin, 2002; Esteller, 2008). In neurological disorders, aberrant histone modifications have been 

linked to diseases like Rett syndrome, where mutations in the MECP2 gene result in improper 

regulation of transcription, altering neuronal gene expression and leading to developmental 

defects (Chahrour & Zoghbi, 2007; Lyst & Bird, 2015). 

Advancements in sequencing technologies have significantly enhanced our understanding 

of transcriptional regulation, with each method offering unique insights into various aspects of 

the transcription process. RNA sequencing (RNA-Seq), one of the most widely used techniques, 

detects the results of transcriptional regulation by measuring gene expression levels across 

different conditions, tissues, or cell types. By comparing RNA-Seq data from treated versus 

untreated samples, researchers can identify differential gene expression and infer regulatory 

changes caused by transcription factors, enhancers, or other regulatory elements.  

Additionally, RNA-Seq can be combined with other techniques to further dissect the 

mechanisms of transcriptional control. For example, Chromatin immunoprecipitation followed 
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by sequencing (ChIP-Seq) is instrumental in identifying genome-wide binding sites of 

transcription factors and mapping histone modifications, revealing the regulatory landscapes that 

influence transcription (Johnson, Mortazavi, Myers, & Wold, 2007; Farnham, 2009). When 

combined with RNA-Seq, ChIP-Seq can link transcription factor binding to downstream gene 

expression changes, providing a more complete picture of transcriptional regulation. ATAC-Seq 

(Assay for Transposase-Accessible Chromatin) offers insights into chromatin accessibility, 

helping researchers’ study how open or closed chromatin states correlate with transcriptional 

activation or repression (Buenrostro, Giresi, Zaba, Chang, & Greenleaf, 2013; Corces et al., 

2017). It provides information about the physical state of chromatin, identifying regions of open 

chromatin that are often associated with active promoters, enhancers, or insulators. Integrating 

ATAC-Seq with RNA-Seq allows researchers to correlate chromatin accessibility changes with 

gene expression outcomes, showing how dynamic chromatin states influence transcription. RNA 

Polymerase II ChIP-Seq and PRO-Seq (Precision Run-On sequencing) have enabled fine 

mapping of transcription initiation and elongation, offering a detailed view of active transcription 

sites and elongation rates across the genome (Core, Waterfall, & Lis, 2008; Kwak, Fuda, Core, & 

Lis, 2013). Through these techniques, researchers can monitor how RNA polymerase activity 

correlates with gene expression patterns, revealing mechanisms such as promoter-proximal 

pausing or transcriptional elongation regulation.  

Emerging technologies like Hi-C and CUT&RUN sequencing have further illuminated 

the spatial organization of chromatin and its role in transcriptional regulation. Hi-C reveals the 

three-dimensional architecture of chromatin, showing how enhancers can physically interact with 

distant promoters to regulate gene expression (Lieberman-Aiden et al., 2009; Rao et al., 2014) 

Finally, single-cell technologies like single-cell RNA-Seq (scRNA-Seq), single-cell 

ATAC-Seq and spatio-temporal single-cell sequencings integrates spatial and temporal 

dimensions with gene expression dynamics, allowing researchers to map transcriptional changes 

across time and space within tissues. For example, spatio-temporal scRNA-Seq has been applied 

to study cell lineage trajectories, tumor evolution, and neuronal differentiation, revealing how 



 8 

transcriptional regulation drives developmental processes and disease progression at single-cell 

resolution (Farrell et al., 2018; Sathe et al., 2020). 

In summary, transcriptional regulation in eukaryotes involves a complex network of cis-

elements, trans-factors, epigenetic modifications, and chromatin dynamics. These mechanisms 

ensure that gene expression is precisely controlled in response to developmental cues, 

environmental stimuli, and cellular signals. The regulatory outcomes of these processes influence 

cell identity, adaptation, and disease progression, highlighting the importance of transcriptional 

control in shaping phenotypic diversity and maintaining cellular homeostasis (Spitz & Furlong, 

2012). 

Posttranscriptional regulation of gene expression 

Posttranscriptional regulation represents a crucial layer of gene expression control in 

eukaryotes, adding complexity to the transcriptome by generating diverse mRNA isoforms and 

influencing mRNA stability, localization, and translation efficiency. The most prominent 

mechanism in this regulatory layer is alternative splicing, where pre-mRNA can be spliced in 

multiple ways, producing different transcript isoforms from a single gene. This variability 

significantly expands the diversity of both the transcriptome and proteome, enabling different 

protein products with distinct functions to be produced in a cell-type or developmental stage-

specific manner. The regulation of alternative splicing is mediated by a complex interplay 

between RNA-binding proteins (RBPs), RNA structure, and chromatin state: RBPs such as SR 

proteins (Serine/Arginine-rich proteins) and hnRNPs (heterogeneous nuclear ribonucleoproteins) 

bind to cis-regulatory sequences, either promoting or inhibiting spliceosome assembly. The 

secondary structure of pre-mRNA can influence splicing outcomes by sequestering or exposing 

cis-elements, affecting the binding of splicing factors. Alternative splicing is often co-regulated 

with transcription, where the rate of RNA polymerase II elongation can affect splice site choice. 

Slow elongation rates allow more time for upstream weak splice sites to be recognized, while 

fast rates favor downstream strong splice sites (Kornblihtt et al., 2013; Baralle, Singh, & Stamm, 
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2019). Other mechanisms, including alternative transcription initiation, RNA editing, and 

alternative polyadenylation, further contribute to transcriptome diversity, and each can be 

regulated by cis-regulatory elements, trans-acting factors, or environmental signals (Zhao et al., 

2017; Tian & Manley, 2017). 

Alternative splicing not only drives developmental processes but is also involved in 

generating phenotypic variation and disease outcomes. For instance, in Drosophila, the Dscam1 

gene undergoes extensive alternative splicing to potentially produce over 38,000 distinct mRNA 

isoforms, enabling specific synaptic connections crucial for neural wiring (Schmucker et al., 

2000). In humans, splicing of the PTBP1 gene results in isoforms that either promote neuronal 

differentiation or maintain pluripotency in stem cells, illustrating the impact of splicing on 

cellular identity (Linares et al., 2015). Aberrant splicing patterns contribute to diseases such as 

spinal muscular atrophy (SMA), where mutations affect splicing of the SMN2 gene. Therapeutic 

approaches like Spinraza enhance the production of functional SMN protein and improve patient 

outcomes, demonstrating how regulating splicing can treat genetic diseases (Singh & Singh, 

2018). In cancer, the oncogene Bcl-x undergoes alternative splicing to produce both pro-

apoptotic (Bcl-xS) and anti-apoptotic (Bcl-xL) isoforms, influencing cell survival and tumor 

progression (Mercatante, Bortner, Cidlowski, & Kole, 2001). 

mRNA stability also plays a key role in posttranscriptional regulation. The untranslated 

regions (UTRs) of mRNA contain cis-acting elements that regulate translation efficiency, 

localization, and degradation rates. Cis-elements, like AU-rich elements (AREs), and RNA-

binding proteins (RBPs) (e.g., HuR and tristetraprolin (TTP)), play key roles in stabilizing or 

destabilizing mRNA, with their activity often controlled by post-translational modifications. 

mRNA decay impacts cellular processes like stress response, immune signaling, and 

homeostasis, and it adjusts rapidly in response to stimuli, the cell cycle, or intracellular signals. 

AU-rich elements (AREs) in the 3' UTRs of mRNAs contribute to ARE-mediated decay, which 

is crucial in immune response regulation by modulating the stability of cytokine mRNAs like 

TNF-α and IL-6. These mRNAs are usually rapidly degraded to prevent excessive inflammation 
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but are stabilized under stress or infection (Kontoyiannis, Pasparakis, Pizarro, Cominelli, & 

Kollias, 1999). Dysregulation of this process can lead to chronic inflammation and cancer due to 

the prolonged stability of mRNAs that drive persistent cytokine expression and disease 

progression (Stumpo, Lai, & Blackshear, 2010). In diseases like rheumatoid arthritis or systemic 

lupus erythematosus (SLE), impaired mRNA decay results in excessive cytokine levels, 

highlighting the therapeutic potential of targeting mRNA stability to resolve inflammation 

(Uchida, Chiba, Kurimoto, & Asahara, 2019). 

Nonsense-mediated decay (NMD) functions as a quality control pathway while 

modulating the levels of specific mRNAs. It plays a role in regulating the expression of genes 

involved in metabolism and immune responses, such as MHC class I proteins, which are crucial 

for antigen presentation in immune cells (Lejeune, 2022; Lindeboom, Supek, & Lehner, 2016). 

Dysregulation of NMD can contribute to diseases like cancer, where the accumulation of 

aberrant proteins contributes to tumorigenesis (Popp & Maquat, 2016). 

Advancements in sequencing technologies have significantly advanced our understanding 

of posttranscriptional regulation. Traditional short-read RNA-seq, though instrumental for 

detecting alternative splicing events, has limitations in identifying full-length isoforms and 

understanding splicing complexity. Third-generation sequencing technologies, such as PacBio 

Iso-Seq and Oxford Nanopore sequencing, allow for full-length cDNA sequencing, providing a 

more comprehensive view of the transcriptome. These technologies have improved the detection 

of novel splicing variants, RNA editing events, and alternative polyadenylation, complementing 

short-read data and offering a detailed picture of posttranscriptional modifications (Tilgner, 

Grubert, Sharon, & Snyder, 2014; Wyman & Mortazavi, 2019). PacBio Iso-Seq uses circular 

consensus sequencing to generate high-accuracy, full-length cDNA sequences, revealing 

alternative splicing events, RNA editing, and alternative polyadenylation with greater precision. 

Oxford Nanopore sequencing is similar but offers real-time sequencing capabilities. It detects 

RNA modifications, such as N6-methyladenosine (m6A), directly from RNA molecules, 

allowing researchers to study RNA modifications and their impact on mRNA stability and 
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translation. The field of epitranscriptomics has gained attention for adding another layer of 

posttranscriptional control, involving RNA modifications such as N6-methyladenosine (m6A). 

These modifications can regulate splicing, translation, and RNA stability. For example, m6A 

modifications impact the export of mRNA from the nucleus, modulate alternative splicing by 

recruiting specific RNA-binding proteins, and regulate mRNA degradation (Zhao et al., 2017; 

Roundtree, Evans, Pan, & He, 2017). 

Ribosome Profiling (Ribo-Seq) is an invaluable tool for studying post-transcriptional 

regulation, as it provides a genome-wide view of translation dynamics by identifying ribosome-

protected mRNA fragments (Ingolia, Ghaemmaghami, Newman, & Weissman, 2009; Ingolia, 

2016). This technique reveals how gene expression is regulated at the translational level by 

tracking ribosome positions along mRNAs, offering insights into translation initiation, 

elongation, and termination (Brar & Weissman, 2015). It has been particularly effective in 

analyzing elongation dynamics, where variations in speed arise from factors like codon usage, 

tRNA availability, and mRNA structure, which can influence co-translational events such as 

protein folding and targeting (Radhakrishnan & Green, 2016; Huch & Nissan, 2014). 

Ribo-Seq also aids in identifying translation initiation sites, including non-canonical 

starts like upstream open reading frames (uORFs), which serve as key regulatory elements in 

stress responses and other cellular processes (Calviello & Ohler, 2017). Combining Ribo-Seq 

with complementary techniques such as mRNA-Seq enables researchers to distinguish between 

changes in mRNA abundance and translational regulation, providing a clearer understanding of 

how gene expression is controlled at both transcriptional and translational levels. Moreover, 

Ribo-Seq reveals novel translated regions, including those derived from long non-coding RNAs 

(lncRNAs), highlighting previously unknown protein-coding potential and expanding our 

understanding of the functional translatome (van Heesch et al., 2019). This technique has proven 

particularly valuable in studying the translational response to stress, where cells rapidly 

reprogram translation to adapt to changes like hypoxia, nutrient deprivation, or viral infection 

(Zhou et al., 2018). Complementary approaches like polysome profiling, which examines 
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ribosome density across mRNAs, and RNC-Seq, which focuses on ribosome-nascent chain 

complexes, provide additional insights into translation rates, efficiency, and co-translational 

folding (T. Wang et al., 2013). 

To conclude, the complex nature of post-transcriptional regulation is pivotal to gene 

expression, driven by mechanisms like alternative splicing, mRNA stability, and translation 

dynamics. Advanced sequencing techniques, including Ribo-Seq, PacBio Iso-Seq, and Oxford 

Nanopore, have greatly expanded our understanding of these regulatory processes, revealing 

their roles in cellular function, development, and disease. These advancements offer a 

comprehensive view of how cells fine-tune gene expression beyond transcription, showcasing 

the intricate layers of regulation that maintain cellular diversity and adaptability. 

Genetic and environmental effects on gene expression regulation 

Gene expression is shaped not only by genetic factors but also by environmental 

influences, affecting every stage of the gene expression pathway. Genetic variants—including 

single nucleotide polymorphisms (SNPs), insertions, deletions, and structural variations—

contribute to gene expression variation by altering regulatory elements and impacting 

transcription, splicing, translation, and posttranslational modifications. For instance, cis-acting 

expression quantitative trait loci (cis-eQTLs) near promoters or enhancers can modify 

transcription factor binding sites, influencing transcription initiation rates, while trans-eQTLs 

can alter the expression of distal genes by affecting transcription factors or signaling molecules 

(Albert & Kruglyak, 2015; Consortium, 2020). 

Environmental factors—including internal changes like developmental stages, aging, and 

hormonal fluctuations, as well as external stimuli such as temperature, diet, stress, and pathogen 

exposure—play significant roles in gene expression regulation. Developmental cues drastically 

alter transcriptional programs, leading to stage-specific gene expression patterns essential for 

differentiation and tissue specification. During the transition from embryonic to fetal 

development, distinct changes in transcriptional and translational profiles occur, driven by 
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growth factors and hormones acting as internal environmental signals (Nord et al., 2013). Aging 

is also associated with changes in chromatin structure and gene expression, often resulting in 

increased variability in gene expression among individuals, particularly in genes related to 

inflammation and metabolic processes (Stegeman & Weake, 2017; Benayoun et al., 2019). 

External environmental factors influence gene expression at multiple regulatory levels. 

For instance, heat shock proteins (HSPs) are rapidly upregulated in response to elevated 

temperatures, demonstrating a transcriptional response that helps cells cope with stress by 

maintaining protein folding and function (Lindquist, 1986; Akerfelt, Morimoto, & Sistonen, 

2010). Exposure to UV radiation can activate DNA repair genes, while nutrient availability 

affects the translation of mRNAs involved in metabolism via pathways like mTOR, which 

integrates signals from amino acids and glucose to regulate global protein synthesis (Hay & 

Sonenberg, 2004; Saxton & Sabatini, 2017). 

Environmental factors also play a role in posttranscriptional regulation. For instance, 

hypoxia (low oxygen conditions) alters splicing patterns of genes involved in angiogenesis, 

allowing for adaptive responses that promote blood vessel growth (Mazzone et al., 2009). During 

cellular stress, mRNA stability is often modulated by stress-induced RNA-binding proteins 

(RBPs) or microRNAs (miRNAs), affecting the half-life of stress-responsive mRNAs like ATF4 

or HIF1A (Kilberg, Shan, & Su, 2009). Translational regulation can also be affected by 

environmental changes; for instance, nutrient deprivation triggers phosphorylation of eIF2α, 

reducing global translation but selectively enhancing translation of mRNAs with upstream open 

reading frames (uORFs), such as those encoding stress-response proteins (Hinnebusch, 2011; 

Pakos-Zebrucka et al., 2016). 

Research into gene-environment interactions has been facilitated by recent advances in 

sequencing technologies. RNA sequencing (RNA-seq) combined with genotyping has been 

employed to identify eQTLs that vary under different environmental conditions, revealing 

context-specific gene expression changes (Montgomery & Dermitzakis, 2011). ATAC-seq and 
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ChIP-seq have provided insights into how environmental factors influence chromatin states and 

transcriptional regulation, while ribosome profiling (Ribo-seq) has enabled the study of 

translation dynamics under different stress conditions, such as nutrient deprivation or hypoxia 

(Ingolia et al., 2009; Brar & Weissman, 2015). Single-cell RNA-seq (scRNA-seq) and multi-

omics approaches have further facilitated the exploration of gene expression changes during 

development, aging, and environmental responses, providing a comprehensive view of gene-

environment interactions across life stages (Tang et al., 2009; Lopez-Otin, Blasco, Partridge, 

Serrano, & Kroemer, 2013; Ziegenhain et al., 2017). 

In summary, gene expression is dynamically shaped by both genetic and environmental 

factors. Developmental stages, aging, and external stimuli all contribute to phenotypic diversity 

and adaptation. Understanding how these factors interact is essential for elucidating complex 

traits, evolutionary adaptations, and disease mechanisms, underscoring the importance of gene-

environment interactions in shaping cellular functions and organismal phenotypes. 

Cis- and trans-regulatory effects on gene expression 

Gene expression is regulated by both cis- and trans-regulatory elements across all stages 

of the gene expression pathway, from transcription to posttranslational modification. Cis-

regulatory elements include promoters, enhancers, and untranslated regions (UTRs), which act 

locally by interacting with proteins or non-coding RNAs, thereby influencing transcription 

initiation, splicing, mRNA stability, and translation efficiency (Levine & Tjian, 2003). In 

contrast, trans-regulatory factors include diffusible proteins such as transcription factors, RNA-

binding proteins (RBPs), and microRNAs (miRNAs), which can regulate multiple genes across 

the genome. Together, these regulatory effects drive phenotypic diversity within species and 

evolutionary divergence between species (Wittkopp, Haerum, & Clark, 2008; Signor & Nuzhdin, 

2018). 

Mapping cis- and trans-regulatory effects is fundamental for understanding gene 

expression variation, with two primary approaches being F1 hybrid mapping and expression 
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quantitative trait loci (eQTL) mapping. In F1 hybrids, which inherit alleles from two different 

parental strains or species, differences in allele-specific expression (ASE) can be used to identify 

cis- and trans-regulatory effects. Cis effects are detected when one parental allele consistently 

shows higher or lower expression than the other within the same cellular environment, indicating 

sequence differences in local regulatory elements. Conversely, trans effects are inferred when 

both alleles have similar expression in the F1 hybrid but differ between the parental strains, 

suggesting that variations in trans-acting factors drive the expression differences (Wittkopp, 

Haerum, & Clark, 2004). Technologies such as RNA-seq have been widely used to measure ASE 

at the transcriptional level, while other sequencing approaches extend this analysis to additional 

regulatory layers. For instance, ribosome profiling (Ribo-seq) has been applied to F1 hybrids to 

detect allele-specific translation, revealing how cis-regulatory differences not only affect mRNA 

abundance but also translation efficiency (Ingolia et al., 2009; Artieri & Fraser, 2014). Similarly, 

ATAC-seq has been used to assess allele-specific chromatin accessibility, identifying cis effects 

on chromatin states, while ChIP-seq reveals how cis-regulatory variants influence transcription 

factor binding (Buenrostro et al., 2013; Core et al., 2014). 

eQTL mapping identifies genetic loci associated with gene expression variation across a 

population, distinguishing between cis- and trans-eQTLs. Cis-eQTLs are typically located near 

the gene they regulate, often within promoters or enhancers, leading to direct changes in 

transcription or splicing. In contrast, trans-eQTLs are located farther away and influence gene 

networks by altering the expression or function of trans-acting factors such as transcription 

factors or RBPs (Albert & Kruglyak, 2015; Consortium, 2020). eQTL mapping has traditionally 

relied on RNA-seq or microarrays to measure gene expression levels across individuals, 

combined with genotyping to identify genetic variants linked to expression changes. Recent 

advances such as single-cell RNA-seq (scRNA-seq) provide insights into eQTLs at the single-

cell level, enabling fine-scale mapping of gene expression variation in complex tissues (Tang et 

al., 2009). Additionally, multi-omics approaches—integrating RNA-seq with ATAC-seq or ChIP-

seq—have refined eQTL mapping by linking genetic variants to chromatin accessibility or 
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transcription factor binding (Battle et al., 2014; Furey, 2012). For example, in human 

populations, eQTL mapping has uncovered both cis- and trans-eQTLs associated with complex 

traits such as asthma and diabetes, highlighting how genetic variation shapes gene expression 

(Gamazon et al., 2018). In crops like maize, eQTL mapping has identified both cis- and trans-

eQTLs that influence stress response genes, shedding light on gene-environment interactions in 

plant adaptation (Kremling et al., 2018). 

Several other approaches complement F1 hybrid mapping and eQTL mapping in 

distinguishing cis- and trans-regulatory effects. The common reference design involves using a 

pooled reference RNA sample to normalize expression differences between two biological 

samples, facilitating the detection of both cis- and trans-effects. While it lacks the precision of 

allele-specific methods, it is useful for broad comparisons of gene expression across individuals 

or species (Landry et al., 2005). Allele-specific chromatin accessibility (ASCA), employing 

techniques such as ATAC-seq or DNase-seq in heterozygotes or F1 hybrids, can reveal how cis-

regulatory variants affect chromatin states, while the absence of allele-specific differences 

suggests trans-regulatory influences (Degner et al., 2012; Bryois et al., 2018). CRISPR/Cas9 

editing has also been applied to introduce specific mutations into cis-elements or trans-acting 

genes, providing direct evidence of their regulatory roles. For example, editing a promoter 

sequence can confirm a cis-effect, while altering a transcription factor gene can uncover trans-

effects (Gasperini et al., 2019). Massively parallel reporter assays (MPRAs) allow thousands of 

cis-regulatory sequences to be tested simultaneously for their effects on gene expression, 

primarily revealing cis-effects but also providing insights into trans-effects when tested in 

different cellular backgrounds (Tewhey et al., 2016). 

In summary, cis- and trans-regulatory effects influence gene expression across all stages, 

driving phenotypic diversity and evolutionary changes within and between species. Techniques 

such as F1 hybrid mapping, eQTL mapping, and complementary methods like ASCA, CRISPR 

editing, and MPRAs provide comprehensive insights into these regulatory mechanisms. By 

leveraging advanced sequencing technologies, researchers can better understand the complex 
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interplay of cis and trans-regulation, revealing how genetic and environmental factors shape gene 

expression dynamics. 

Recent advances in flies 

Drosophila has long been a model organism in genetic and molecular biology research, 

recognized for its many advantages. Its short life cycle, high reproductive rate, and genetic 

tractability make it ideal for studying gene expression regulation. The species' well-annotated 

genome, coupled with resources like the Drosophila Genetic Reference Panel (DGRP), 

comprising over 200 inbred lines from a natural population of D. melanogaster, enhances its 

utility (Mackay et al., 2012). Additionally, projects like “The Drosophila Genome Nexus” and 

“101 Drosophila Genomes” have expanded genomic resources, providing insights into global 

genetic diversity and regulatory variation (Lack et al., 2015; Kim et al., 2021)  (Lack et al., 2015; 

Kim et al., 2021). These advancements have been pivotal in identifying both cis- and trans-

regulatory variants, enabling detailed mapping of gene expression traits across developmental, 

physiological, and evolutionary contexts. Combined with advancements in sequencing and gene-

editing technologies, these resources make Drosophila an unparalleled model for understanding 

gene expression regulation. 

Recent studies have revealed detailed maps of cis-regulatory elements (CREs) using 

high-throughput techniques like ChIP-seq and ATAC-seq, which have refined our understanding 

of enhancer dynamics across developmental stages and tissues. For instance, a genome-wide 

enhancer activity mapping method called STARR-seq was applied to D. melanogaster to enable 

direct, quantitative identification of enhancers, revealing complex transcriptional regulation with 

multiple independent enhancers per gene (Arnold et al., 2013). Furthermore, single-cell RNA 

sequencing (scRNA-seq) has provided unprecedented resolution of transcriptional states, helping 

to identify lineage-specific transcription factors and their regulatory roles in cell differentiation 

(Li, 2021). 
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Post-transcriptional regulation in Drosophila has been increasingly dissected through 

techniques like CLIP-seq, which maps RNA-protein interactions, revealing how RNA-binding 

proteins influence splicing, stability, and localization of mRNAs (Hansen et al., 2015). Recent 

advances in long-read sequencing technologies, such as PacBio and Nanopore, have enabled the 

detection of full-length isoforms, uncovering complex alternative splicing patterns that affect 

developmental transitions (Zhang, Bae, Cuddleston, & Miura, 2023). Recent developments in 

spatial transcriptomics provides high-resolution 3D transcriptomic maps of Drosophila embryos 

and larvae. It captures spatial gene expression patterns, enabling detailed analyses of gene 

regulatory networks, tissue-specific dynamics, and cell state changes during development.  (M. 

Wang et al., 2022). 
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CHAPTER 2: INTRASPECIFIC HYBRID ALLELE-SPECIFIC MAPPING 

EFFICIENTLY DETERMINES MODE OF REGULATORY VARIATION IN 

DROSOPHILA MELANOGASTER 

ABSTRACT 

Gene expression regulation is modulated by both genetic and environmental factors, 

leading to variation in regulatory effects across individuals in a population. This study employs 

an F1 hybrid allele-specific mapping approach to partition regulatory variation into cis- and 

trans-regulatory effects in intraspecific reciprocal crosses of Drosophila melanogaster inbred 

lines. Whole body RNA sequencing was performed for females from both parental lines and their 

F1 hybrids, enabling the identification of allele-specific expression patterns. Results showed a 

predominance of cis regulatory effects over trans regulatory effects across all crosses, 

corroborating previous findings within Drosophila populations. Additionally, the concordance 

between hybrid mapping and expression quantitative trait loci (eQTL) mapping was notably 

strong for cis effects but weaker for trans effects. The study demonstrates that allele-specific 

mapping not only effectively characterizes the regulatory architecture but also provides a cost-

efficient alternative to population-scale eQTL mapping, offering potential insights into gene-

environment interactions and rare variant effects. These findings highlight the utility of hybrid 

designs for elucidating complex gene regulatory mechanisms.  
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INTRODUCTION 

Among phenotypically divergent individuals between and within species there is 

substantial regulatory variation of gene expression that involves changes in abundance and 

spatiotemporal distribution without structural alterations (King and Wilson 1975; Lemos et al. 

2008; Wittkopp et al. 2008). Regulatory variation can arise due to genetic and environmental 

perturbations to the regulatory programs of gene expression. Environmental perturbations may 

broadly include stage of development and differentiation, physiological and disease status, and 

external stimuli. For example, expression of heat shock protein 70 (hsp70) in Drosophila cells is 

rapidly induced upon exposure to high temperature (Spradling et al. 1975). Genetic 

perturbations, on the other hand, are ultimately due to mutations in DNA sequences that are 

heritable. For example, sequence variation in the yellow gene in different Drosophila species 

leads to gene expression divergence and ultimately pigmentation variation (Wittkopp et al. 

2002). 

According to their underlying molecular mechanisms, regulatory genetic variation can be 

classified into two modes, cis and trans regulatory variation. Cis regulatory variation alters DNA 

sequences that have regulatory potential for genes in physical proximity. For example, mutations 

in the yellow gene in Drosophila lead to the gain of multiple transcription factor binding sites, 

thus enhancing yellow transcription and leading to male specific wing spot pigmentation 

(Gompel et al. 2005). Trans regulatory variation affects diffusible factors such as transcription 

factors, microRNAs, and RNA binding proteins that can act on distal genes. For example, 

mutations in a single D-MEF2 transcription factor can cause myogenesis deficiency in larval and 

adult Drosophila (Ranganayakulu et al. 1995). Previous studies have invariably shown that cis 

regulatory variation accounts for the majority of intra- and inter-specific gene expression 

differences (Wittkopp et al. 2004; Tirosh et al. 2009), whereas contribution of trans regulatory 

variation appears to be larger between species than within species (Lemos et al. 2008; Osada et 

al. 2017).  
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There are two major strategies to genetically characterize regulatory variation. In diploid 

organisms, allele specific expression (ASE) is a widespread phenomenon where one allele is 

preferentially expressed over the other (Ge et al. 2009; Crowley et al. 2015). In heterozygous 

individuals ASE is due to cis regulatory effects because both alleles share the same trans-acting 

factors and cellular environment whereas in inbred parents differential expression is due to both 

cis and trans regulatory effects. Therefore, comparison of allelic abundance of RNA transcripts in 

F1 hybrids and in parents can distinguish cis and trans regulatory effects. This hybrid allele 

specific mapping approach can also be used to identify allele-specific epigenetic effects such as 

parent of origin effects (Takada et al. 2017; Floc’hlay et al. 2021). 

Expression quantitative trait loci (eQTL) mapping is another strategy to identify 

regulatory effects. This strategy relies on large populations with genetically divergent individuals 

in the same species. In humans, large scale eQTL mapping has identified eQTLs that are shared 

between or specific to different tissues (GTEx Consortium et al. 2017). In Drosophila, eQTL 

mapping studies have also found environmentally plastic regulatory variation (Cannavò et al. 

2017; Huang et al. 2020). These eQTL mapping studies either focused on cis-eQTLs only or 

found cis-eQTLs to be more prevalent, suggesting that cis-regulatory variation was more 

prominent within species. While the F1 hybrid design is able to identify genes under cis- and/or 

trans regulation, eQTL mapping can provide information on sequence variation associated with 

the regulatory effects. 

In this study, we apply the F1 hybrid allele specific mapping design to characterize the 

regulatory landscape of gene expression in reciprocal crosses of inbred lines from the Drosophila 

melanogaster Genetic Reference Panel (DGRP), where eQTLs have also been mapped 

previously. Although many previous studies have applied the hybrid allele specific mapping 

approach to characterize regulatory landscape in flies, this study is the first to do so in the 

presence of eQTL mapping information in the same population. This allows us to directly 

compare these two approaches in their abilities to characterize regulatory variation. 
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RESULTS 

Counting allele-specific RNA-Seq Reads 

To identify genes under the control of cis versus trans regulation, we reciprocally crossed 

four pairs of DGRP lines that were chosen to be maximally divergent in exons. Within each pair, 

we sequenced whole-body RNA of 50 pooled 3-5 day old females for both parental lines and 

both reciprocal F1 crosses, each with two biological replicates. To eliminate mapping bias 

(Stevenson et al. 2013), we constructed line specific genomes by substituting variant sites in the 

BDGP6 reference genome with alleles of the DGRP lines. Reference annotations were also 

modified according to cumulative coordinate changes by indels between the reference genome 

and the line-specific genomes. For each RNA-Seq sample, we mapped sequence reads to both 

parental line specific genomes and assigned each read to one of the parents according to the 

alleles it carried. We sequenced on average 22.6M 150 bp single-end reads, of which 75.4% 

could be uniquely mapped to either genome. Between 23.95% and 26.07% of the uniquely 

mapped reads overlapped with informative DNA variant sites, which allowed us to classify them 

according to their parental origin. Remarkably, we were able to classify the vast majority (>97%) 

of reads derived from the parental samples correctly to their own genome (Figure 2.1), 

suggesting that the bioinformatic method was effective. In hybrids, except for one cross (Figure 

1a, 138x819), approximately 50% of reads were assigned to either parent, consistent with the 

expectation the parental genomes should on average produce an equal amount of RNA 

transcripts. We retained three crosses where the hybrids had a ratio of parental reads within the 

range of 43-57% (Figure 2.1b-d). 
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Figure 2.1 Mapping reads to parental genomes. RNA sequence reads were mapped 

to line-specific genomes. Informative reads that overlap variant sites were assigned to 

one of the two parental genomes. Proportion of informative reads over total assigned 

reads was plotted for each sample. Proportion of unassigned reads was plotted as a 

fraction of total assigned reads. (a) Crosses between 138 and 819; (b) 158 and 748; (c) 

229 and 703; (d) 233 and 810. 

Identification of genes with cis or trans regulatory effects 

To identify genes under the influence of cis and/or trans regulatory effects, we fitted 

generalized linear models comparing read counts derived from the parental alleles in the inbred 

parents and the F1 hybrids using edgeR (Robinson et al. 2010), which models read counts 

distributed as a negative binomial distribution. Because different crosses have different 

informative variant sites, the models were fitted to all eight biological replicates (two for each of 

the parents and two for each of the reciprocal crosses), but separately for each of the three pairs 

of lines. This method takes advantage of edgeR’s generalized linear model framework and its 

flexible parameterization to quickly identify cis and trans effects. First, if the two alleles are 

differentially expressed in the F1 hybrids, cis regulatory effects are called. Second, if there is a 
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difference in the allelic effects between parental strains and F1 hybrids, trans regulatory effects 

are present. It is important to note that trans effects can enhance the allelic effects or compensate 

the changes. Although there are more complex classifications of regulatory effects, we chose to 

focus on these two easily interpretable effects.  

 

Figure 2.2 Characterizing regulatory architecture by hybrid allele-specific 

mapping. Cis and trans regulatory effects were called (FDR = 0.05) in each of the three 

reciprocal crosses (a – c). (d) Overlap between gene identities of cis regulated genes 

identified in each cross. 

We identified between 512, 445, 372 cis regulated genes in crosses between 158 and 748, 

229 and 703, and 233 and 810 respectively (Figure 2.2a-c) as well as 448, 113, 23 trans 

regulated genes, and 81, 51, and 15 that were regulated by both mechanisms. In general, there 

were more cis regulated genes than trans regulated genes and cis effects were larger, consistent 

with previous studies within and between Drosophila species (Wittkopp et al. 2004; Osada et al. 

2017). Overlap between genes identified in different crosses was moderate (Figure 2.2d). 

However, it is difficult to attribute the lack of overlap to genetic reasons because not all pairs of 

crosses have the same divergence between cis regulatory elements. 

No evidence for widespread parent-of-origin effect in gene expression 

Our reciprocal design allowed us to identify parent-of-origin effects, if any. We tested for 

allelic differences (maternal versus paternal) in both of the reciprocal crosses and look for 

differences that were persistent in both crosses. No genes were significantly differentially 

expressed in the same parental direction in both crosses by more than two-folds in all three pairs 
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of crosses (Figure 2.3). Consistent with previous work (Lyko et al. 2000), this analysis indicated 

that parent-of-origin effect in steady state RNA abundance was not a widespread phenomenon. 

 

Figure 2.3 Parent-of-origin effects in reciprocal crosses. Log fold changes of 

maternal versus paternal in forward (male parent is the first of the indicated pair) and 

reverse (female parent is the first of the indicated pair) crosses are plotted against each 

other. Significant effects that are of the same sign indicate consistent maternal versus 

paternal effect or parent-of-origin effect. 

Hybrid allele-specific mapping largely recapitulates cis-eQTL mapping effects 

We have demonstrated that hybrid allele-specific mapping is able to partition the genome 

into those that are under cis or trans regulation in gene expression. To further evaluate its 

effectiveness and accuracy, we compared hybrid allele-specific mapping to eQTL mapping, 

which was performed in the DGRP including all lines used in this study (Tan et al. 2024 under 

review). We predicted gene expression based on the sum of eQTL allelic effects each line 

carried, which represented the total effects of all mapped eQTLs. Most genes had fewer than five 

eQTLs. This allowed us to compare fold changes of gene expression between a pair of DGRP 

lines based on 1) difference between inbred parents; 2) difference between the parental 

haplotypes within the F1 hybrid; 3) difference between eQTL predicted parental line gene 

expression.  

First, we compared fold changes between eQTL (both cis and trans) predicted gene 

expression in the parental lines with observed fold changes. Strong concordance was found 

(correlation between 0.51 and 0.56, Figure 2.4) in all three pairs of lines, suggesting that eQTL 
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effects were highly reproducible. Interestingly, there were genes that showed no difference based 

on eQTL effects but large differences in the parental lines. These may be due to rare variants that 

were not tested in the eQTL mapping. 

 

Figure 2.4 Comparison between eQTL predicted fold changes and observed fold 

changes. 

Second, we compared fold changes between cis-eQTL predicted gene expression in the 

parental lines with fold changes between the alleles in the F1 hybrids for genes that showed at 

least some cis differences in the hybrid allele-specific mapping. Remarkably, cis-eQTL predicted 

expression was highly correlated with cis effects estimated in the F1 hybrids (correlation 

between 0.64 and 0.73,Figure 2.5). Not surprisingly, when restricted to genes with mapped cis 

effects in F1 hybrids, the correlations were substantially higher than comparing eQTL predicted 

expression and observed parental expression. This result suggested that hybrid allele-specific 

mapping largely recapitulates cis-eQTL mapping effects. 

 

Figure 2.5 Comparison between cis-eQTL predicted fold changes and observed 

fold changes in F1 hybrids. 
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Finally, we compared fold changes between trans-eQTL predicted gene expression in the 

parental lines with fold changes between the parental for genes that showed at least some trans 

differences in the hybrid allele-specific mapping. The correlations, for much fewer genes, were 

much weaker (Figure 2.6), suggesting that trans effects were less conserved across lines. 

 

Figure 2.6 Comparison between trans-eQTL predicted fold changes and observed 

fold changes in parental lines. 

Taken together, these results suggested that hybrid allele-specific mapping is able to 

largely recapitulate cis eQTL mapping performed at a population scale. 
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DISCUSSION 

We performed one of the few intra-specific hybrid allele-specific mapping studies in 

Drosophila melanogaster. Our results indicated the approach was highly effective, partitioning 

the Drosophila genome into cis and trans regulatory effects in specific pairs of inbred strains. 

More importantly, the allelic effects estimated in hybrid allele-specific mapping largely agreed 

with those estimated from a population scale eQTL mapping study, especially for cis eQTLs. 

This is important, because it allows characterization of regulatory variation to be performed in a 

much more cost-effective and efficient way. 

Our method of estimating allele specific expression using read counts as opposed to SNP 

allele counts (van de Geijn et al. 2015) was novel and reduced reference bias. Hybrids produced 

roughly 50% of reads originating from either parents. The read count based approach is able to 

leverage existing RNA-Seq analytical framework and avoids integrating results across SNPs, 

which can be challenging. 

There are at least two advantages for such an effective strategy. First, application of this 

approach across treatments and conditions can be used to characterize interactions between 

regulatory variation and environmental factors as opposed to applying environmental treatments 

to many inbred strains, which may be cost prohibitive (Chapter 3 of this thesis applies this 

strategy). Moreover, eQTL mapping requires high frequency of mutations to be properly tested. 

On the other hand, hybrid allele-specific mapping can work with rare and even private mutations, 

a significant advantage of this approach. Indeed, there were many genes whose eQTLs cannot be 

mapped but significant cis effects were observed in hybrids (Figure 2.5).  
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METHODS 

DGRP lines cross and RNA-Seq 

Four pairs of DGRP lines were reciprocally crossed: line 138 and line 819, line 158 and 

line 748, line 229 and line 703, line 233 and line 810. RNA-Seq was performed as previously 

described (Huang et al. 2020). Briefly, female 3-5 day mated adults of the parental lines and F1 

hybrids were collected and whole body RNA was extracted from pool of 50 flies. The total RNA 

was subjected to Illumina stranded mRNA sequencing by 125bp single-end. An average of 30.66 

million reads and 60.02 million reads were sequenced for inbred lines and hybrid lines 

respectively. 

RNA-Seq mapping 

Line specific reference genomes of involved DGRP lines were constructed by modifying 

the Drosophila melanogaster reference genome (BDGP6) using variants called in the Drosophila 

melanogaster Genetic Reference Panel (Huang et al. 2014). For each cross, sequenced reads of 

parents and F1 were mapped to both line specific reference genomes. Reads overlapping variants 

between the parental strains were retained and assigned to either genome based on matches. We 

required that the reads must map better to one of the parental genomes than the other based on 

numbers of mismatches and otherwise considered the reads ambiguous. We were able to 

uniquely assign 23.95% to 26.07% of reads (Table 2.1), indicating high diversity in the DGRP to 

apply the hybrid design. Importantly, among reads that overlapped informative SNPs, the 

proportions of ambiguous reads were typically less than 2%, indicating strong performance of 

the read assignment procedure. Ratios of reads from two lines in most of hybrid lines were 

approximately 1:1. Deviation of the ratio from 1:1 indicates possible contamination and one of 

our four pairs were removed due to this reason. 

Cis and trans effect identification 

Genome-wide read counts were analyzed using edgeR (Robinson et al. 2010). Read 

counts were normalized and fitted to generalized linear models implemented in edgeR that 
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models read counts as negative binomial distributions. We test for differences between alleles of 

genes using the model counts ~ allele + cross + cross:allele, where counts is the response 

variable for read counts, allele represents origin of the alleles from which read counts are 

derived, cross represents where the counts are derived from F1 hybrid or parents and the 

interaction between the two variables. Significant allele effect when the cross is F1 indicates 

significant cis effect, while significant interaction between cross and allele indicates trans effect. 

This allows us to partition the genome into genes that have 1) cis effect only, 2) trans effect only, 

3) both, and 4) neither. 

To test for parent-of-origin effect, differential expression was called within either 

direction of the reciprocal cross and significant differential expression in both directions of 

crosses but of the same sign was considered parent-of-origin effect. 

Finally, we used eQTL mapping results obtained from another study where all DGRP 

lines were profiled for gene expression using the same RNA-Seq procedure and eQTLs were 

mapped for all common variants (MAF > 0.05). eQTLs were partitioned into cis (< 5kb from 

transcription start site) and trans and used to predict gene expression in the parental lines using 

estimated eQTL effects. The predicted gene expression was compared with observed expression 

in the parental lines as well as estimated cis effects in the F1 hybrids. 
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APPENDIX 

samples Mapped reads Assigned reads 

138_1 11017922 2796900(25.39%) 

138_2 11249223 2885285(25.65%) 

138x819_1 20114075 5096831(25.34%) 

138x819_2 20940982 5290737(25.26%) 

158_1 12219168 3166694(25.92%) 

158_2 9251009 2404577(25.99%) 

158x748_1 23435876 6003262(25.62%) 

158x748_2 24252451 6222797(25.66%) 

229_1 14482971 3527671(24.36%) 

229_2 13311243 3255936(24.46%) 

229x703_1 28876456 6916797(23.95%) 

229x703_2 29868185 7162258(23.98%) 

233_1 10442643 2672663(25.59%) 

233_2 12396063 3221797(25.99%) 

233x810_1 19962393 5027879(25.19%) 

233x810_2 20660782 5208263(25.21%) 

703_1 10474606 2571082(24.55%) 

703_2 9476565 2254403(23.79%) 

703x229_1 22693993 5461213(24.06%) 

703x229_2 23497586 5649571(24.04%) 

748_1 10114496 2615169(25.86%) 

748_2 10206187 2637279(25.84%) 

748x158_1 19630915 5037129(25.66%) 

748x158_2 20316873 5214217(25.66%) 

810_1 11411180 2906068(25.47%) 

810_2 11916936 3025834(25.39%) 

810x233_1 23355609 5935253(25.41%) 

810x233_2 24232357 6141953(25.35%) 

819_1 9973306 2558508(25.65%) 

819_2 11591755 3022120(26.07%) 

819x138_1 23608656 6026538(25.53%) 

819x138_2 24518927 6253184(25.50%) 

Table 2.1 Percentage of assigned reads in mapped reads for all sequenced samples 
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CHAPTER 3: HYBRID ALLELE-SPECIFIC MAPPING OF TRANSLATIONAL 

REGULATORY VARIATION IN DROSOPHILA 

ABSTRACT 

Gene expression regulation involves intricate mechanisms at multiple levels, including 

transcription of RNAs and translation of mRNAs to proteins. Variation in gene expression within 

and between species contribute significantly to phenotypic diversity. While regulatory variation 

in steady state mRNA level has been well characterized in many populations and species, the 

genetic variation and evolution of translational control remains largely unexplored. In this study, 

by combining the hybrid allele-specific mapping design and ribosome profiling (Ribo-Seq), we 

investigated the regulatory architecture divergence of two Drosophila species. We first developed 

high quality genome assemblies for Drosophila melanogaster and Drosophila simulans that had 

N50 approaching full chromosomes. We then profiled RNA abundance, ribosome occupancy, and 

translation efficiency in both species and their F1 hybrids at 3rd instar larval stage, and raised 

under two different temperatures. This allowed us to test for allelic effects that contributed to 

regulatory variation at multiple levels and partition the genome into those under cis and trans 

regulation. We found that the majority of allelic difference between the two species can be 

attributed to cis effects at all of RNA, ribosome, and translation efficiency levels.   
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INTRODUCTION 

Regulatory genetic variation contributes to species divergence. The contribution of 

regulatory variation in addition to coding variation to species divergence is well established 

(King and Wilson 1975). Regulatory genetic variation can be broadly divided into those that 

change cis (proximal) regulatory sequence elements and variants altering trans (distal) acting 

factors. Although the relative contribution of cis and trans regulatory variation is highly variable 

across studies, it is generally accepted that both modes of regulatory variation lead to the 

expression divergence among species and cis regulatory effects tend to be individually larger 

(Wittkopp et al. 2004). Although gene expression regulation involves complex layers of control, 

from transcription to translation, the contribution of regulatory variation to species divergence 

beyond steady state RNA abundance remains largely unknown. Recent studies suggested that 

buffering between the regulatory layers led to lower divergence in translation than transcription 

(Wang et al. 2020).  

Hybrid allele-specific mapping is a powerful approach for dissecting the contributions of 

cis- and trans-regulatory effects to gene expression differences. In hybrids, each gene has two 

alleles—one inherited from each parent—and their expression can be compared directly within 

the same cellular environment. By comparing allele-specific expression levels in the parental 

lines and F1 hybrids, we can infer whether observed differences are due to cis-regulatory 

elements, which are linked to the gene itself, or trans-regulatory elements, which involve 

diffusible factors that affect multiple genes. This approach allowed us to identify genes that are 

differentially regulated by cis- or trans-factors, providing a comprehensive understanding of the 

genetic basis of regulatory divergence. This approach has been applied to study transcriptional 

regulatory variation between and within Drosophila species (Wittkopp et al. 2004; Wittkopp et 

al. 2008; Graze et al. 2009; Coolon et al. 2014; Osada et al. 2017) and others as well (Emerson et 

al. 2010; Osada et al. 2017). The advent of high throughput sequencing made this approach more 

readily applicable due to the ability of sequence reads to interrogate allele identity and 

abundance simultaneously. 
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Post-transcriptional gene expression regulation is another crucial aspect of gene 

expression. While transcriptional regulation determines the abundance of mRNA, post-

transcriptional mechanisms, such as translation efficiency, play a significant role in determining 

protein levels. Translation efficiency, which refers to the rate at which mRNA is translated into 

protein, can vary between alleles and is influenced by both cis- and trans-regulatory factors.  

Ribosome profiling (Ribo-Seq) is sequencing based approach that turns ribosome 

occupancy on mRNAs into digital counts by sequencing ribosome protected fragments after 

nuclease digestion of mRNAs (Ingolia et al. 2009; Dunn et al. 2013). Similar to RNA-Seq, Ribo-

Seq also provides information on both allelic identity and abundance, making it amenable to 

hybrid allele-specific mapping. For example, Ribo-Seq has been applied to hybrids in rice (Zhu 

et al. 2023) and mice (Hou et al. 2015) to characterize the regulatory landscape of translation. 

Cis- and trans-regulatory elements play critical roles in modulating gene expression, 

contributing to phenotypic variation between species and within hybrids. The study of cis- and 

trans-effects is crucial for understanding how genetic variation shape gene expression in hybrid 

individuals. Here, we used hybrids of two closely related species, Drosophila melanogaster and 

Drosophila simulans, to investigate regulatory differences in gene expression at transcriptional 

and translational levels. Our experimental approach utilized RNA-Seq and Ribo-Seq to 

distinguish between transcriptional and translational regulation, supported by highly contiguous 

T2T genome assemblies for precise allele-specific analyses. 

The availability of high quality genome assemblies for the used strains of Drosophila 

melanogaster and Drosophila simulans was a critical aspect of our study. The assemblies provide 

complete, high-quality genome sequences, enabling accurate mapping of reads to specific alleles 

and reducing ambiguity in allele-specific analyses. This level of precision is essential for 

distinguishing between cis- and trans-regulatory effects in hybrids, as it allows us to assign 

expression differences to either parental allele with confidence. The trio-binning approach used 
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for assembly ensured that each parental genome was assembled independently, providing a 

robust foundation for downstream analyses of hybrid gene expression. 
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RESULTS 

High-quality genome assembly and annotation of Drosophila simulans and Drosophila 

melanogaster 

To assist the hybrid allele specific mapping process, we generated high-quality genome 

assemblies and annotations for Drosophila simulans and Drosophila melanogaster using the trio-

binning strategy (Koren et al., 2018). The sequencing depth included approximately 51× 

coverage of PacBio HiFi reads with 99.8% of reads above Q20, 55× coverage of Oxford 

Nanopore Technologies (ONT) ultra-long reads (maximum read length of 661 kb and N50 of 

83.6 kb) in the hybrid (Figure 3.1a, b), and 83× and 71× coverage of Illumina 150 PE reads for 

parental D. simulans and D. melanogaster, respectively. Importantly, there are two prominent 

peaks representing the one-copy and two-copy peaks for the F1 hybrid, which provided a strong 

basis for the trio-binning approach to work (Figure 3.1c). 

 

Figure 3.1 Sequence data for genome assembly. (a) Scatter plot of PacBio HiFi 

reads by length and average read quality. (b) Scatter plot of ONT ultra-long reads by 

length and average read quality. (c) K-mer frequency plot of paternal (D. simulans) 

DNA-Seq, maternal (D. melanogaster) DNA-Seq reads and F1 hybrid HiFi reads. 

a b 
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Figure 3.1 (cont’d) 

 

Assemblies were generated using the trio module implemented in Hifiasm (Cheng et al. 

2021) and subsequently polished with NextPolish2 (Hu et al., 2024) to correct for potential errors 

involving single nucleotide variants and small insertions/deletions (InDels). The assemblies 

reached chromosome-level resolution without detectable haplotype switch errors (Figure 3.2). 

We evaluated assembly quality using metrics implemented in four software packages: Merqury, 

BUSCO, QUAST, and Nanopore Pomoxis. The assemblies achieved high quality, as evidenced 

by a Merqury quality value (QV) exceeding 60, >99.3% coverage of the Drosophila gene set, 

and >92% alignment to published genome references (Table 3.1). 

c 
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 Figure 3.2 Genome assembly quality evaluation. (a) D. simulans assembly aligns 

with an existing genome assembly. (b) D. melanogaster assembly aligns with the 

existing genome reference (BDGP6). (c) Haplotype switch error test for paternal and 

maternal assemblies. 

c 

a b 
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 D.simulans D.melanogaster 

Number of Contigs 18 46 

total_bps 145,656,428 156,917,366 

longest 60,327,594 36,759,586 

median 199,098 159,901 

N50 53,690,975 24,690,071 

Merqury QV 63.7 61.4 

BUSCO 99.3% 99.5% 

Genome fraction 94.1% 92.5% 
 

Table 3.1 Summary of genome assemblies and quality evaluation 

Decontamination of the assemblies was performed using an integrated approach 

involving BUSCO (Manni et al., 2021), BLASTp, and FCS (Astashyn et al., 2024). Repetitive 

regions were predicted and masked using RepeatMasker, while rRNA regions were identified 

using RNAmmer. Gene annotations from the novel assemblies were aligned with published 

annotations (Flybase) using Liftoff (Shumate and Salzberg, 2021). To evaluate structural 

consistency, D-Genies was employed to align the newly assembled genomes to reference 

genomes using Minimap2, generating a collinearity plot that demonstrated high concordance in 

scaffolding between the newly assembled genomes and existing references (Figure 3.2a, b). 

To ensure that the trio-binning approach did not introduce haplotype switch errors, high-

quality unique k-mers from the parental genomes were aligned to the assemblies using Merqury. 

We found undetectable levels of haplotype switch errors, demonstrating the high phasing 

accuracy of the assemblies (Figure 3.2c). The resulting assemblies and annotations were used for 

downstream data analysis, including the identification of orthologous gene pairs between the two 

species using Syngap (Wu et al., 2024), which combines collinearity and reciprocal BLAST 

results. 
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Sequencing the transcriptome and translatome of D.melanogaster and D.simulans and their 

F1 hybrids  

To characterize the regulatory architecture of gene expression and the influence of 

environment, we crossed D.melanogaster females (virgin) to D.simulans males and collected 

third instar larvae from both the parental strains and the F1 hybrids. The flies were subjected to 

two temperature treatment, including the standard 25 °C and a low temperature 20 °C which 

slows down development. We aimed for four biological replicates for each strain (parental or F1) 

in each thermal environment. Total RNA was extracted from each sample and sequenced by 

stranded mRNA-Seq. Matched cytoplasmic lysate was extracted and subjected to Ribo-Seq. 

To filter out rRNA, tRNA, snRNA or snoRNA contamination in Ribosome profiling 

reads, sequenced reads were initially mapped to a combined set of rRNA, tRNA, snRNA, and 

snoRNA sequences from the Rfam database (Kalvari et al., 2021) using Bowtie (Langmead et al., 

2009). Unmapped reads of length 25-34 nt were retained as clean reads for subsequent analyses 

RNA-Seq reads and Ribo-Seq ribosome-protected fragments (RPFs) were mapped to a 

combined D. simulans and D. melanogaster genome using HISAT2 (Kim et al., 2019). Uniquely 

mapped reads were phased between the species and used for allele-specific expression analysis. 

The phasing rates for RNA-Seq reads ranged from 37-41%, while Ribo-Seq reads had phasing 

rates between 24-31% (Table 3.2), confirming the feasibility of using ribosome profiling data for 

allele-specific mapping studies. 

sample type average reads informative reads 

D.mel RNA 27,095,977 11,107,955(41%) 

D.sim RNA 26,531,779 10,785,880(40.7%) 

Hybrid RNA 26,963,103 9,881,899(36.6%) 

D.mel Ribo 17,110,481 4,017,502(23.5%) 

D.sim Ribo 18,660,037 5,705,419(30.6%) 

Hybrid Ribo 20,425,331 5,595,723(27.4%) 
 

Table 3.2 Read count summary for RNA-Seq and Ribosome profiling 
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All uniquely mapped and phased reads were counted for all coding sequences (CDS 

regions) for RPFs and RNA-Seq reads in both species. For samples derived from the parental 

species, the mapped reads exhibited nearly 100% species-specificity for both RNA-Seq and 

Ribo-Seq while hybrid samples displayed a roughly 50:50 distribution (Figure 3.4). Allele-

specific translation efficiency was calculated as the TPM of RPFs in CDS regions divided by the 

TPM of genes. 

 

Figure 3.3 Allele-specific read phasing in RNA-Seq and Ribo-Seq. Barplots 

showing proportions of reads mapped to either genome in RNA-Seq (a) and Ribo-

Seq (b). The sample labels follow the format of species-replicate-temperature. 

m=melanogaster, s=simulans.  

When plotted along the chromosomes, there were roughly equal coverage for the 

melanogaster and simulans alleles (Figure 3.4) and coverage from RFPs were similar to mRNA, 

suggesting that the primary determinants of RFP coverage was still transcription. However, there 

were also differences in RFP and mRNA that may represent regulation at the post-transcriptional 

level. 

b a 
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Figure 3.4 Read count distribution on chromosome of one representative hybrid 

sample F-1-25. Distribution of phased RNA-Seq reads and Ribo-Seq reads of hybrid 

on Chromosome X (a) and Chromosome 3L(b). The lines above and below zero 

represent the melanogaster and simulans genome derived reads respectively. 

To evaluate the quality and reproducibility of using mRNA-Seq and Ribo-Seq to estimate 

allele specific RNA abundance and ribosome occupancy, we obtained RNA expression and RFP 

expressed as transcripts per million reads (TPMs) and compared them between different 

biological replicates, species, and temperature treatments. Remarkably, the samples fell into 

distinct clusters for RNA expression, primarily based on parental strains versus F1 hybrids and 

secondarily based on origin of species within hybrids (Error! Reference source not found.a). T

here was no clustering between samples treated with the same temperature environment 

suggesting that at a global level, temperature does not change RNA abundance dramatically, at 

least less so than species divergence. Furthermore, biological replicates were highly correlated 

with each other (Error! Reference source not found.b), suggesting high reproducibility. 

a 

b 
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Figure 3.5 Quality and reproducibility of RNA abundance estimation. (a) 

Heatmap showing the correlation between RNA-abundance in parental lines and 

hybrids. (b) Correlation scatterplot of all D.melanogaster samples as a representative 

to show reproducibility. 

 

a 
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Figure 3.5 (cont’d) 

 

Ribo-Seq was more complex than mRNA-Seq due to its shorter fragment length and 

contamination of ribosomal RNA reads. After filtering out RFPs that mapped to ribosomal and 

small structural RNAs, we found a strong enrichment of RFPs at 30 nt long (Figure 3.6a), 

consistent with previous work that RFPs were around 30 nt (Ingolia et al. 2009; Dunn et al. 

2013). Furthermore, over 90% of of RPFs mapped to coding sequence (CDS), followed by 

mapping to 5' UTRs and 3' UTRs (Figure 3.6b) suggesting that the RFPs are true RFPs and are 

associated with bona fide translation. The correlation between samples were generally lower for 

TPMs of RFPs than of mRNAs and there was no strong clustering. Nevertheless, correlation 

between biological replicates remained high, which suggested high reproducibility. 

b 
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Figure 3.6 Ribosome profiling reads quality control. (a) Distribution of ribosome 

protected fragments (RPFs) length. (b) Percentages of RPFs mapped to genomic 

features. 

           

Figure 3.7 Quality and reproducibility of RPF abundance estimation. (a) 

Heatmap showing the correlation between RPF-abundance in parental lines and 

hybrids. (b) Correlation scatterplot of all D.melanogaster samples as a representative 

to show reproducibility. 

a b 

a 
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Figure 3.7 (cont’d) 

 

Extensive gene expression and translation differences between D. simulans and D. 

melanogaster alleles 

The applications of both mRNA-Seq and Ribo-Seq to the hybrid allele specific mapping 

design allow us to characterize the regulatory architecture at both the transcriptional and post-

transcriptional levels. 

In both parental strains, the correlation between RNA abundance and RFP abundance 

(ribosome occupancy) was high (Figure 3.7, 0.74 in D.mel and 0.73 in D.sim) but substantially 

different from unity. This suggested that RFP abundance was dependent on transcription. The 

more mRNA there are, the more they are translated. However, when normalizing RFP abundance 

by mRNA abundance to obtain translation efficiency, the correlation was much weaker (Figure 

3.7), suggesting that regulation of translation is not completely coupled with regulation of 

transcription. 

b 
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Figure 3.8 Correlation between RNA abundance, RPF abundance and 

translation efficiency. Scatter plot between log2 RNA abundance in TPM and log2 

RPF abundance in TPM in a representative D.mel (a) and D.sim (b) sample. Gradient 

color indicates translation efficiency. 

To further characterize the effects of the melanogaster and simulans alleles on 

transcription and translation, we fitted a full model in edgeR modeling RNA, RFP read counts as 

well as translation efficiency, in parents and hybrids separately. The model contains effects of the 

source of the allele (melanogaster versus simulans), temperature (25 versus 20), and the 

interaction between the two factors. Interestingly, the allelic effects (log2 fold change) were 

largely consistent between the two temperatures (Figure 3.9). Very few genes were significant (5 

in RNA abundance and 1 in RPF abundance at FDR = 0.05) for the source by temperature 

interaction term. This result suggested that the allelic effects were consistent between the two 

temperatures in both parental lines and in hybrids. 

a b 
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Figure 3.9 Little genotype by temperature interaction in RNA abundance, RPF 

abundance and translation efficiency. Scatter plot of Log2 allele fold change 

(simulans/melanogaster) at 20 ℃ and 25 ℃ in parental lines and F1 hybrids for RNA 

abundance (a. b) RPF abundance (c, d) and translation efficiency (e, f). Red lines 

indicate 4-fold difference. 

a        b 

c        d 

e        f 
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Because the interaction term was not significant, we then tested effects of temperature 

and source of allele pooling data from both temperatures. This allowed us to identify genes that 

showed significant differential RNA abundance, RFP abundance, and translation efficiency 

between the melanogaster and simulans alleles (source factor) and between the two temperatures 

(temperature factor). Numbers of showed in Table 3.3 at threshold of FDR=0.05. The results 

suggested that allelic effects contributed far more to regulatory variation than environmental 

effects such as temperatures (Error! Reference source not found.).  

 

Regulatory level Source  Temperature 

RNA abundance 3599 80 

RPF abundance 563 89 

Translation efficiency 2011 1 

Table 3.3 cis- and trans- regulatory effects identified in gene expression 

regulatory levels. 

 

Figure 3.10 Differential RNA abundance, RPF abundance, and translation 

efficiency due to allelic (source) and temperature effects. Volcano plots showing 

up and downregulated genes in RNA abundance due to allelic effect (a) and 

temperature effect (b). (c, d) same plots but for RPF abundance. Same plots but for 

TE (e, f). 

a b 
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Figure 3.10 (cont’d) 

 

 

The tests in both parental strains and F1 hybrids allowed us to classify genes into four 

categories, including genes under cis regulation only, trans regulation only, both cis and trans, 

and neither, for each of RNA abundance, RFP abundance, and translation efficiency. As 

expected, we found that the majority of regulatory variation in RNA abundance was due to at 

least some level of cis effects (Figure 3.11a). A similar pattern was found for RFP abundance 

(Figure 3.11b) but with fewer significant genes. Finally, cis effects were also the majority in 

translation efficiency (Figure 3.11c). To test whether the regulation for these three levels was 

distinct, we asked if the genes identified as cis versus trans effects overlapped between the three 

d c 

e f 
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layers. The sharing between genes under the same mode of regulation was stronger for cis effects 

(Figure 3.11d) than for trans effects (Figure 3.11e).  

 

      

Figure 3.11 Identification of cis- and trans- regulatory effects on RNA 

abundance RPF abundance and translation efficiency. Scatter plot showing 

comparison of allelic effect in parents and hybrids for RNA abundance (a) RPF 

abundance (b) TE (c). Venn diagrams showing gene overlap between three levels of 

regulation by cis- effect (d) and trans- effect (e). 

  

a b c 

d e 
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DISCUSSION 

Using a hybrid allele-specific mapping approach combined with RNA-Seq, Ribo-seq, and 

high quality genome assemblies, we elucidated the contribution of cis- and trans-regulatory 

effects to gene expression regulation in Drosophila species divergence at multiple levels. 

Although regulation at multiple levels were distinct and uncoupled, we found cis regulation to be 

the predominant mode of regulation in both transcriptional and post-transcriptional levels. 

This study represents the first in flies that applies the hybrid allele-specific mapping 

approach to characterize translational control as measured using Ribo-Seq. While it's possible to 

map cis and trans regulatory effects by population scale mapping, which is possible in flies, it 

remains a costly approach in many instances. The hybrid mapping design offers a quick and cost-

effective way to identify genes that are controlled by cis regulatory elements versus trans acting 

factors. Chapter 2 of this thesis demonstrated that at the RNA abundance level, hybrid mapping 

design can largely recapitulated effects estimated in population scale eQTL mapping. In this 

study, we identified many genes in either category that can be further investigated. For example, 

it would be useful to specifically identify translational control elements that explained the 

species divergence in translation of a gene. 

The temperature-controlled experimental design allowed us to investigate the impact of 

environmental factors on gene expression regulation. Differences in gene expression and 

translation efficiency observed between the two temperature conditions provided insights into 

how temperature influences regulatory divergence in hybrids. We subjected parental lines and 

hybrids to low temperature (20℃) treatment to investigate transcriptional and translational 

response as well as whether the allelic effects can be modified by different environments 

(genotype by environment interaction). However, we did not find strong temperature effect and 

found no evidence of GxE. This is in stark contrast to a previous study in adult flies that found 

strong evidence of GxE for temperature treatment in gene expression within Drosophila 

melanogaster ((Huang, Carbone, Lyman, Anholt, & Mackay, 2020)). There could be many 

reasons. First, the divergence between the two species may be too large such that small changes 
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induced by temperature may not be significant. Second, the temperature treatment (20 versus 

25℃) may not be strong enough for 3rd instar larvae. Further investigation is needed to 

demonstrate the usefulness of this approach to study GxE. 
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MATERIALS AND METHODS 

Drosophila crossing, sample collection and sequencing 

 

Figure 3.12 Experimental design of Drosophila crossing and sample collecting 

Our experimental design, illustrated in Figure 3.12, details the temperature-dependent 

hybrid crosses and sampling of third-instar larvae for RNA-Seq and Ribo-seq. Two Drosophila 

lines were purchased from National Drosophila Species Stock Center (Cornell College 

Agriculture and Life Science): Drosophila simulans (simC167.4, SKU: 14021-0251.199), 

Drosophila melanogaster (Genome project WGS strain, SKU: 14021-0231.36). Virgin females 

of Drosophila melanogaster were picked every 12 hours for newly hatched flies and then were 

raised in vials for 3 days to allow them to mature, and to verify that they were virgins. Adult 

males of Drosophila simulans were selected and crossed to Drosophila melanogaster virgin 

females with a ratio of 90 males to 30 females in a vial. For each group, two crosses were 

conducted in temperature conditions 25 ℃ and 20 ℃. The flies were allowed to mate and lay 

eggs for 3 days in 25 ℃ and 5 days 20 ℃ before they were removed from the vials. The same 

routine was performed for both parental lines. After 3-6 days of development, we collected 3rd 

instar larvae every 2 hours, 3rd instar larvae were identified as those individuals who climbed to 

the top of vial wall and kept still. The collected larvae were frozen in liquid nitrogen and stored 
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in -80℃ refrigerator until lysis. Around 30 larvae of each sample were pooled together and 

added to 2ml tubes with 1ml frozen lysis buffer inside, tissue lysates were obtained following 

this method (Dunn, Foo, Belletier, Gavis, & Weissman, 2013). For each sample, 600 µl of lysate 

was sent to Advanced RNA Profiling Core in Case Western Reserve University for ribosome 

profiling libraries construction, and another 70 µl of lysate was used to extract total RNA. 

Ribosome profiling libraries along with total RNA were sent to the Genomic Core in Michigan 

State University to do library construction and sequencing. Stranded RNA-Seq libraries were 

sequenced on NovaSeq 6000 using paired-end 150-pb sequencing, Small RNA Ribo-Seq 

libraries were sequenced on NovaSeq 6000 using single-end 100-bp sequencing. 

High molecular weight DNA (HMW DNA) of hybrids were extracted from F1 larvae 

using PacBio Nanobind HMW DNA extraction kit. HMW DNA of hybrids were then sent out to 

commercial sequencing company for PacBio HiFi-Seq and ONT ultra-length-Seq. Genomic 

DNA of parental lines were extracted and sent to MSU Genomics Core for libraries construction 

and Sequencing. Stranded DNA-Seq libraries were sequenced on NovaSeq 6000 using paired-

end 150-pb sequencing (Error! Reference source not found.a). 

Genome assembly and annotation 

 

 

Figure 3.13 Diagram of DNA sequencing and T2T genome assembly 

a 
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Figure 3.13 (cont’d) 

 

Genome assembly pipeline was show in Error! Reference source not found. b. Illumina s

hort reads were cleaned by fastp (v0.23.2) (Chen, 2023). PacBio HiFi reads were filtered as 

average reads quality higher than 20. ONT ultra-length reads were firstly committed to adapter 

detection and trim by Porechop (v0.2.4) and then filtered with lowest average reads quality of 10 

and shortest read length of 40k. Hybrid HiFi reads along with parental short reads were used to 

build 19-mer merqury (v1.3) (Rhie, Walenz, Koren, & Phillippy, 2020) database to estimate 

sequencing depth and heterozygosity. Three kinds of sequencing data were subjected to HiFiasm 

(v0.19.9) (Cheng, Concepcion, Feng, Zhang, & Li, 2021) with trio binning mode and verkko 

b 
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(v2.2.1) (Rautiainen et al., 2023). Haplotype assemblies from HiFiasm have better continuity and 

used for next assessment. Bandage (Wick, Schultz, Zobel, & Holt, 2015) was used to visualize 

haplotype assemblies and calculate assemble statistics. Merqury was used to estimates 

correctness (quality value, QV) of assemblies and to estimate haplotype switch error. BUSCO 

(Manni, Berkeley, Seppey, & Zdobnov, 2021) was used to evaluate assemble completeness. 

Quast (v5.2.0) (Mikheenko, Prjibelski, Saveliev, Antipov, & Gurevich, 2018) compares 

assemblies with respective reference to estimate fragment coverage of reference. D-Genies 

(Cabanettes & Klopp, 2018) was used to draw co-linearity plot of assemblies with reference 

genome. Assemblies’ decontaminations were performed by combined BUSCO, FCS (NCBI) and 

Quast searching/mapping results that indicate bacterial genome. Ribosomal RNA genes were 

predicted by RNAmmer (Lagesen et al., 2007), and repeat regions in assemblies are annotated 

and masked by RepeatMasker (v4.1.7). Annotation of new assemblies were done by lift over 

reference gene annotation by Liftoff (v1.6.3) (Shumate & Salzberg, 2021). At last, ortholog gene 

pairs between D.melanogaster and D.simulans were identified by SynGAP (v1.2.5) (Wu, Mai, 

Chen, & Xia, 2024). 

RNA-Seq and Ribo-Seq data analysis 

 

 

Figure 3.14 Translation efficiency calculation and cis-/trans- effects 

identification. 

a 

b 
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RNA-Seq reads was cleaned by fastp (v0.23.2) (Chen, 2023) to remove low quality reads 

or excessive N contained reads. Ribosome profiling reads were first subject to cutadpt (v4.9) 

(Martin, 2011) to trim adapter introduced through libraries construction, then the short reads was 

mapped to a combined sequences of  rRNA, tRNA, snRNA and snoRNA download from Rfam 

(Kalvari et al., 2021) database and flybase by Bowtie (v1.3.1) (Langmead, Trapnell, Pop, & 

Salzberg, 2009) software. Failed to mapped reads were then filtered length from 25nt to 34 nt 

considered as clean RPF reads. 

RNA-Seq reads and RPFs were mapped to combined assemblies of D.melanogaster and 

D.simulans by HISAT2 (v2.2.1) (Kim, Paggi, Park, Bennett, & Salzberg, 2019). Only uniquely 

mapped gene were retained that considered as allele-specific. Readcount of genes were then 

counted by HTSeq (v2.0.5) (Putri, Anders, Pyl, Pimanda, & Zanini, 2022; Danecek et al., 2021). 

Translation efficiency, defined as the ratio of RPFs to mRNA abundance, was calculated for each 

gene as TPM of RPFs divided by TPM of RNA-Seq (Figure 3.14a). A negative binomial 

generalized log-linear model was fit to the read counts for each gene by edgeR package 

(Robinson, McCarthy, & Smyth, 2010) to identify  species source effect, temperature effect and 

their interaction effect. For TE values, a generalized linear model was fitted by Ribodiff for all 

gene to identify source effect and temperature effect. To identify cis- and trans-effects, Source 

effect of each gene assessed between parental lines and between hybrid two alleles were 

compared as Figure 3.14b illustrated. For RNA-Seq, RPFs and TEs, source effect affected genes 

and temperature effect affected genes were subjected to Gene ontology (GO) enrichment 

respectively to exploring possible pathways. 
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CHAPTER 4: OVERALL CONCLUSION AND DISCUSSION 

Gene expression regulation, encompassing transcriptional, post-transcriptional, and 

translational processes, represents a cornerstone of phenotypic diversity and evolutionary 

adaptation. This dissertation offers a comprehensive exploration of regulatory mechanisms 

within and between Drosophila species, elucidating the roles of cis- and trans-regulatory effect in 

shaping gene expression. Through the application of sequencing technologies such as RNA-Seq 

and ribosome profiling (Ribo-Seq), this work has provided new insights into the genetic and 

environmental influences on gene expression dynamics. 

Summary of Key Findings 

The first study characterized regulatory variation within Drosophila melanogaster, 

highlighting the predominance of cis-regulatory effects. These findings underscore the localized 

influence of genetic variants near their target genes in driving transcriptional diversity. While 

trans-regulatory effects were less common, their presence suggests an essential role in 

maintaining network-level coherence in gene expression. 

The second study also revealed a dominant contribution of cis-regulatory effect in 

interspecies comparisons between Drosophila melanogaster and Drosophila simulans. Notably, 

we found many cis- and trans- affected genes at the translational level in addition to the 

transcriptional level, suggesting that these regulatory effects modulate translation efficiency to 

buffer or amplify transcriptional differences.  

Discussion on Methodological Advances 

One of the contributions of this dissertation is the innovative application of allele-specific 

RNA-Seq and Ribo-Seq in F1 hybrids to dissect cis- and trans-regulatory contributions at both 

transcriptional and translational levels. These methods allowed for high-resolution analysis of 

allele-specific expression and translation, capturing subtle regulatory differences that might be 

masked in bulk analyses. 
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However, it is essential to acknowledge the limitations of these methodologies. For 

example, allele-specific analyses depend heavily on differences of coding sequences between 

parental lines and require inbred lines. This method will have limited power to capture genes that 

are only bearing non-coding region variants.  

Moreover, the use of temperature-controlled experiments provided valuable insights into 

environmental modulation of regulatory dynamics. This approach can be extended to study other 

environmental variables, such as nutrient availability or oxidative stress, which are known to 

influence gene expression through both cis- and trans-regulatory mechanisms. 

Evolutionary Implications 

This dissertation highlights how the interplay between cis- and trans-regulatory elements 

contributes to evolutionary processes at multiple levels. Cis-regulatory elements, being tightly 

linked to their target genes, are more likely to evolve under purifying selection, ensuring the 

conservation of essential gene functions. In contrast, trans-regulatory factors, such as 

transcription factors or RNA-binding proteins, often have broader effects across gene networks, 

making them more prone to diversifying selection. 

The observation that translational regulation often buffers transcriptional variation 

suggests a protective mechanism during evolutionary transitions. This buffering could provide 

populations with the flexibility to tolerate potentially deleterious mutations at the transcriptional 

level while gradually adapting to new environmental conditions. Such a mechanism may be 

particularly relevant in hybridization events, where divergent regulatory networks must integrate 

and maintain organismal fitness. 

Gene-Environment Interactions 

Environmental modulation of gene expression is an important aspect of this dissertation. 

The results from temperature-dependent experiments revealed environmental factors can act 

differently across different layers of gene expression process between species. 
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Future research could employ multi-omics approaches to explore how environmental 

changes influence gene expression at multiple regulatory levels simultaneously. For instance, 

integrating ATAC-Seq for chromatin accessibility, ChIP-Seq for transcription factor binding, and 

metabolomics for cellular state profiling could provide a holistic view of gene-environment 

interactions. 

Translational Applications 

Beyond basic research, the insights gained from this dissertation have potential 

translational applications in fields such as agriculture, medicine, and biotechnology. 

Understanding the mechanisms underlying cis- and trans-regulatory variation can inform 

breeding programs aimed at improving stress tolerance or productivity in crops and livestock. 

Similarly, identifying regulatory elements that contribute to disease susceptibility could lead to 

novel therapeutic targets. 

In the context of evolutionary biology, the findings from this dissertation can help predict 

how populations might respond to rapid environmental changes, such as those driven by climate 

change. By identifying genes and regulatory networks that are highly plastic or robust under 

environmental stress, researchers can better anticipate the adaptive potential of natural 

populations. 

Future Directions 

While this dissertation has provided significant insights into the regulatory dynamics of 

gene expression, several questions remain open for future investigation: 

Integration of Post-Transcriptional and Post-Translational Layers: While this work 

focused on transcriptional and translational regulation, other regulatory layers, such as RNA 

modification (e.g., m6A) and protein post-translational modifications, remain underexplored. 

Integrating these layers into the current framework could provide a more comprehensive 

understanding of gene regulation. 
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Functional Validation: The regulatory effects identified here were inferred based on 

allele-specific expression and translation data. Functional validation using CRISPR/Cas9 

genome editing or other experimental approaches such as reporter genes could confirm the 

causal relationships between specific regulatory elements and their target genes. 

Population-Level Studies: Extending these analyses to population-level datasets could 

reveal how regulatory variation contributes to phenotypic diversity and adaptive evolution within 

and between populations. 

Non-Model Organisms: Expanding the methodologies and insights gained from this 

dissertation to non-model organisms could validate the generality of the findings and uncover 

unique regulatory mechanisms in different evolutionary contexts. 

 


