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ABSTRACT

Natural disasters cause significant economic losses and death tolls worldwide. In the
United States alone, weather-related disasters have cost over $2.5 trillion in the past four
decades, with increasing severity over time. Governments implement disaster risk
reduction policies to mitigate these impacts by promoting avoidance behaviors, reducing
exposure, and minimizing damage to people, crops, and property. However, critical
questions remain understudied: Do these policies effectively reduce weather-related
impacts? How can their efficacy be evaluated? What drives governments to terminate
ineffective policies? This dissertation addresses these questions and provides insights for
policymakers.

The first chapter, “Tropical Cyclone Day-Off Orders, Warnings, and Avoidance
Behavior,” examines Taiwan's day-off policy during tropical cyclones, which allows
residents to avoid exposure to strong winds, landslides, and flooding. Using transportation
data as a proxy for avoidance behavior, the analysis reveals that while mandatory day-off
orders reduce exposure, people may take similar actions even without them. Comparing
Taiwan with Miami-Dade County, Florida, the study finds similar avoidance patterns in
areas without mandatory orders. These findings suggest that providing reliable information
may allow individuals to make informed decisions, reducing unnecessary disruptions.

The second chapter, “Efficacy Analysis of Cloud Seeding Programs in Kansas
Agriculture,” evaluates cloud seeding as a hail suppression strategy for protecting crops in
Kansas, a state prone to severe hailstorms. The findings show that cloud seeding reduces
hailstorm intensity but does not significantly lower crop loss ratios, as hailstones remain
large enough to cause damage. Additionally, cloud seeding unintentionally increases flood-
related crop losses and exhibits spillover effects, reducing downwind counties’ sorghum
productivity. Despite a positive net present value overall, these spillover effects lead to
negative net present value in downwind counties, complicating the program's cost-benefit
profile.

The third chapter, “Factors Influencing Policy Termination: The Cloud Seeding
Program in Kansas,” investigates the determinants of policy termination using Kansas'
cloud seeding program as a case study. Analysis reveals that counties experiencing higher

hail-induced crop losses are more likely to terminate the program, reflecting its perceived



inefficacy. Furthermore, neighboring counties' termination decisions delay the termination
process, aligning with diffusion theory, which posits that governments learn from
neighbors’ experiences. This study highlights the role of inefficacy and policy diffusion in
driving termination decisions.

In conclusion, this dissertation explores the effectiveness and sustainability of disaster
risk reduction policies through the lens of two case studies: Taiwan’s tropical cyclone day-
off orders and Kansas’ cloud seeding program. The findings emphasize the importance of
rigorous evaluation to improve policy design and highlight the need for continued research

into innovative risk reduction strategies to enhance resilience against natural disasters.
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INTRODUCTION

Natural disasters result in substantial economic losses and significant death tolls
globally. In the United States alone, the total costs of weather-related disasters have
exceeded $2.5 trillion over the past four decades. Additionally, there is a noticeable trend
of increasing severity in these disasters.

According to the IPCC (2012), weather-related risk encompasses three interrelated
components: hazardous events, exposure, and vulnerability. If any one of these components
is absent, the risk does not exist. For instance, a landslide is a powerful natural disaster, but
if no residents or properties are located in the potential affected area, the probability of
landslide risk is nearly zero. Based on this framework, governments are implementing
disaster risk reduction policies to help people take aversion or avoidance actions and
mitigate adverse impacts on human beings, crops, and properties from these three
perspectives.

However, do these policies effectively reduce weather-related impacts? How can we
evaluate the efficacy of risk reduction policies? How do governments decide to terminate
ineffective policies? Additionally, what are the determinants of these decisions? These
questions are critical but understudied. Therefore, the goal of this dissertation is to explore
and shed light on these questions and provide insights for future policymakers.

In the first chapter, titled “Tropical Cyclone Day-Off Orders, Warnings, and
Avoidance Behavior,” I investigate the avoidance behaviors of the day-off policy in Taiwan
for reducing exposure to tropical cyclones. On average, four tropical cyclones make
landfall in Taiwan each year, causing significant damage. To protect people from tropical
cyclones, the government announces mandatory day-off orders, which allow residents to
stay home, avoiding work and school to reduce exposure to strong winds, landslides, or
flooding. However, this policy is controversial. Governors may announce a day-off, but
the tropical cyclones might not reach Taiwan due to its unpredictability, causing
unnecessary interruptions to businesses and schools. Instead of conducting surveys as
previous literature has done, | used transportation data to explore people’s responses to
these mandatory orders. Given that the public transportation system in Taiwan is mostly
underground, reliable, and operational during tropical cyclones, a decrease in passenger

numbers would explicitly imply that people are not going to work or school, capturing their



avoidance behavior. The results indicated that people do respond to the government's day-
off order. However, they might take similar actions even without the mandatory order. Due
to data limitations, | compared the situation with another hurricane-prone area, Miami-
Dade County in Florida, and found that the pattern of avoidance behavior is similar without
a mandatory order. Based on these findings, governments might consider providing
information and allowing individuals to make avoidance decisions according to their
temporal and spatial situations.

Besides reducing exposure to natural disasters, it is rarely discussed how to adopt
policies to reduce hazardous events themselves. This is largely due to the fact that most
natural disasters, such as earthquakes, are difficult to predict or too powerful to control. In
the late 1940s, scientists began exploring a new field of earth engineering: cloud seeding.
Their initial experiments aimed to reduce the intensity and alter the direction of hurricanes
in the Gulf region. However, these experiments did not achieve their goals. Consequently,
after the 1970s, scientists shifted their focus from modifying hurricanes to hail suppression
and rain augmentation.

In the second chapter, titled “Efficacy Analysis of Cloud Seeding Programs in Kansas
Agriculture,” 1 delve into the implementation of cloud seeding and evaluate its
effectiveness in Kansas. This state is a leading producer of winter wheat, corn, and sorghum,
but these crops are threatened by extreme hailstorms every growing season. Recognizing
the local need, the government has sponsored experimental fees and provided financial
support to implement cloud seeding. However, the efficacy of hail suppression remains
contentious, and the spillover effects in the context of hail suppression have not been
thoroughly discussed in the literature. In this chapter, | found that cloud seeding reduces
the magnitude of hailstorms. However, the average size of hailstones after treatment still
exceeds the threshold size that causes damage. Consequently, cloud seeding does not
statistically significantly reduce crop loss ratio due to hail. Additionally, | discovered that
cloud seeding unintentionally increases flood-related crop loss ratio, likely due to the
concentration of rainfall within a short time window. Furthermore, the results indicate that
the spillover effect of cloud seeding exists: downwind areas experience productivity losses
in sorghum production, though there is no significant effect on precipitation. Finally, |

provide a cost-benefit analysis in the chapter. Overall, in Kansas, the net present value of



the cloud seeding program in terms of crop productivity is positive. However, it is not a
win-win situation for all counties. When considering downwind counties that experience
the spillover effect, the net present value of the cloud seeding project turns negative.

In Kansas, despite significant subsidies and positive net present value overall, local
governments decided to terminate the cloud seeding program. Conversely, in Taiwan, there
are frequent debates whenever local governments announce a day-off order due to an
approaching tropical cyclone that does not ultimately reach the island. People have
submitted proposals to terminate the day-off order to the National Development Council
in Taiwan, but these proposals have not garnered enough votes to pass.

In the third chapter, titled “Factors Influencing Policy Termination,” | review the
policy termination theory and examine the determinants that led to the termination of the
cloud seeding program in Kansas. Local governments in Kansas annually decide whether
and how much to sponsor the cloud seeding program. Initially, I profiled the counties that
participated in the cloud seeding program, highlighting characteristics such as frequent
hailstorms, higher support rates for the Republican Party, and greater numbers of
neighboring counties also involved in the program. This profile characterizes a cluster of
counties in Western Kansas, where higher elevations expose them to significant hailstorm
risks. | further explored the determinants influencing the termination of the cloud seeding
program in Kansas. The results indicate that counties experiencing higher crop loss ratios
due to hail in previous years were more likely to terminate the cloud seeding program. This
finding underscores the perceived inefficacy of the cloud seeding efforts in mitigating hail
damage for these counties. Additionally, the termination decisions of neighboring counties
delayed the decision-making process of observed counties. According to diffusion theory,
counties’ decisions are influenced by their neighbors through a learning process, where
counties gather information from neighboring experiences before making their own
decisions.

In conclusion, this dissertation explores the complex realm of disaster risk reduction
policies, focusing on both exposure and hazard reduction strategies. The research aims to
reveal the factors that influence the efficacy and termination of these policies, drawing
insights from case studies such as Taiwan's day-off orders and Kansas' cloud seeding

program, contributing to a deeper understanding of how such policies unfold in practice.



CHAPTER 1: Tropical cyclone day-off orders, warnings, and avoidance behavior
I. Introduction

Tropical cyclones, also known as hurricanes and typhoons, are regional extreme
weather phenomena that result in fatalities and tremendous economic losses every year.
Over the past five decades, tropical cyclones have resulted in more than 1,945 disasters,
$1.4 trillion (USD) in economic losses, and approximately 780,000 deaths worldwide,
according to World Meteorological Organization®. To mitigate fatalities and losses,
governments play a crucial role in assisting residents in taking action to avoid harm during
tropical cyclones. Governments provide information and guidelines and may also issue
mandatory orders to compel people to take protective measures, such as evacuating
hazardous areas due to flood risk. These avoidance behaviors, wherein people take action
to reduce their disaster exposure, help to mitigate potential harm and damages (Dickie,
2017). However, the effectiveness of government-issued mandatory orders in influencing
individuals' avoidance behavior during tropical cyclones remains underexplored. This
research aims to address this gap in the literature and offer new insights for policymakers
considering similar risk reduction strategies.

In Taiwan, since 1980 the government has issued typhoon day-off orders to facilitate
avoidance behavior. This policy mandates a day off from work and school to either stay
put or evacuate from dangerous areas. Similarly, in the United States (US), governments
issue mandatory evacuation orders to prompt citizens to take protective measures in
response to hazardous events, including flooding and wildfires. However, such mandates
are potentially controversial due to the inherent uncertainty in accurately anticipating
exposure. For instance, the route of a tropical cyclone is unpredictable within a short time
horizon. When risk averse government officials make decisions as tropical cyclones
approach, they tend to make more precautionary decisions, leading to an over reliance on
mandatory orders, resulting in higher socio-economic costs (Hausken, 2021). For example,
the mandatory evacuation from Hurricane Rita led to approximately 100 traffic-related
deaths. In this article, I examine the degree to which people engage in avoidance behavior
in response to mandates versus the provision of information/guidance without mandates.

Most of the literature on avoidance behavior examines taking actions to prevent

1 See https://wmo.int/topics/tropical-cyclone.
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temporal or permanent health damage, such as reducing exposure to heatwaves, air
pollution, and water contaminants (Dickie, 2017; Sheldon and Sankaran, 2019; Kim, 2021).
Within the context of tropical cyclones, the key literature discusses optimal evacuation
decisions, including route selection and the timing of evacuation order announcements,
with the goal of informing government evacuation plans.

Regarding individual behavior, Whitehead (2005) conducted several surveys to learn
about contingent hurricane evacuation decisions, such as when and how to evacuate
hazardous zones during hurricanes. Although surveys can provide detailed and micro-level
data, they are expensive and time-consuming. Moreover, people may forget details over
time or experience trauma, leading to recall errors.

Rather than conducting surveys to obtain information on individual behavior, some
researchers have used aggregate data to investigate avoidance behavior over longer time
periods. For example, Neidell (2009) examined avoidance behavior in relation to
attendance at public facilities when people receive air quality information. Moretti and
Neidell (2011) utilized marine transportation data to measure avoidance behavior in the
context of air pollution. Similarly, Sheldon and Sankaran (2019) used aggregate electricity
usage data to investigate avoidance behavior in Singapore during Indonesian forest fires.
Finally, Rabassa et al. (2021) analyzed bike-sharing data in Buenos Aires to investigate
avoidance behavior when people receive heatwave alarms, showing that those with greater
vulnerability are more aware of the alarms.

Moreover, access to critical information may influence averting behavior. Lack of
sufficient information increases vulnerability due to false or inaccurate risk perceptions
(IPCC, 2012). False risk perceptions in turn lead to gaps between hazardous events and the
severity of the consequences, resulting in insufficient averting behavior (Thompson and
Dezzani, 2021). In the context of tropical cyclones, empirical evidence shows that
individuals who have experienced previous storm evacuations tend to evacuate half a day
earlier upon receiving subsequent evacuation orders (Jiang et al., 2022). Information
quality is also discussed, including how to make critical evacuation decisions in the
presence of a high level of uncertainty (Kailiponi, 2010), as well as comparing how people
respond to detailed information versus a simple warning (Dormandy et al., 2021). Finally,

Beatty et al. (2019) employed supermarket scanner data in the US to investigate consumer



responses to government advice on tropical cyclones.

To my knowledge, there are no studies that utilize aggregate data to investigate
avoidance behavior in the context of tropical cyclones, nor is there research examining how
people respond to alarms. In this chapter, I utilize metro system transportation usage data
to examine tropical cyclone avoidance behavior in two major tropical cyclone regions
worldwide: Taipei City and Kaohsiung City in Taiwan, as well as Miami-Dade County in
the United States. Ideally, my examination would entail an event study to examine behavior
before and after the adoption of the day-off order policy in Taiwan, but data constraints
prevent such analyses. I therefore examine transportation usage patterns in different
regions with different disaster policies to learn more about disaster aversion behavior in
two policy regimes. I think the cases of Taiwan and Florida are comparable for several
reasons.

First, both regions experience a similar frequency of tropical cyclones in a year, with
at least two storms annually over the past few decades. Additionally, they employ identical
criteria for categorizing the intensity of tropical cyclones, enabling us to identify storms of
similar scales in the two regions. Second, both regions face similar threats from tropical
cyclones, such as flooding from storm surges and riverine floods, as well as flying debris
from strong wind gusts. Consequently, government authorities in each region have
implemented disaster avoidance policies. In Taiwan, the day-off order requires individuals
to either stay in place or evacuate from hazardous areas. Similarly, the Florida state and
local governments may issue a mandatory evacuation order, which implies a day-off for
residents living in evacuation zones. In other words, businesses have no right to require
workers to work in the evacuation zones under a mandatory evacuation order. However,
compared to Taiwan, Florida issues mandatory orders less frequently, which provides an
opportunity to identify tropical cyclones of similar magnitudes and observe behavior in the
two regions with and without mandatory orders.

Additionally, both regions share similar environmental conditions and demographic
variables. For example, their average temperatures and precipitation levels are comparable
(refer to the summary statistics in Section 3, Table 3). Both areas have populations of over
2.6 million, with Kaohsiung City having 2.8 million residents and Miami-Dade County

having 2.7 million residents. Finally, the usage rate and customer demographics of the



public transportation systems are also similar. Approximately 5% of the population in both
cities rely on the public transportation system as their primary means of transportation. The
behaviors associated with public transportation usage are also similar; for instance, the
main age group falls between 16 and 34 years old, and the primary purpose for using public
transportation is commuting between home and work.

Moreover, according to a survey conducted by the Miami-Dade Transportation
Planning Organization (2018), over 80% of people who choose to use public transportation
in Miami-Dade County have access to an automobile. The distributions of household
income among transit users were consistent with household income distribution in Florida?.
For example, only 8% of public transportation users in Miami-Dade County have a
household income of less than $25,000 annually, compared to 10.7% of the population in
Florida. Therefore, the transportation data does not disproportionately represent the low-
income population or those without access to a car who rely on public transportation in the
region.

This article offers several contributions to the literature on disaster aversion. First, to
the best of my knowledge, this article is the first to discuss how people respond to
government-mandated day-off orders. My analysis demonstrates that people do respond to
government orders by engaging in avoidance behavior. Second, this article adopts a
different approach to studying avoidance behavior. In this literature, survey-based research
is the more common approach to investigate avoidance behavior in the context of tropical
cyclones. In this article, I also use aggregate transportation data to analyze responses to
information without government mandates. Third, I provide case studies from two regions
and compared people’s responses under mandatory orders versus information-only

schemes.

2 According to the United States Census Bureau, household income distribution in Florida in 2022 is as
follows: 10.7% earn less than $25,000, 19.7% earn between $25,000 and $49,999, 17.4% earn between
$50,000 and $74,999, 13.4% earn between $75,000 and $100,000, and 33.2% earn above $100,000. (see:
https://data.census.gov/table/ACSST1Y2022.S1901?g=Florida%20Income%20and%20Poverty). According
to the Miami-Dade Transportation Planning Organization (2018), survey results show that annually, 8% of
households earn less than $25,000, 20% earn between $25,000 and $49,999, 20% earn between $50,000 and
$74,999, 18% earn between $75,000 and $100,000, and 34% earn above $100,000.
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The paper proceeds as follows. Section II provides background on Taiwan and
Miami’s cyclone policies, section III describes the data, section IV describes the empirical
approach, section V presents the results, and discussions with conclusions are presented in
section VI.

II. Background

Taiwan is a hot spot of natural disasters in the world (World Bank, 2005). In total,
73.1% of the Taiwan territory and 73.1% of the population are threatened by more than
four kinds of natural disasters. Also, almost 95.1% of the population in the country was at
a high mortality risk from more than three kinds of natural disasters. Among all types of
natural disasters, typhoons and earthquakes cause tremendous economic loss and fatalities
in Taiwan. For example, the earthquake that occurred on September 21, 1999 resulted in
2,415 deaths and 11,305 people who were severely wounded. The total economic loss was
$11.2 billion. In 2009, Typhoon Morakot caused 644 fatalities, 1,555 people who were
severely wounded, and $3.4 billion economic losses, which was 0.91% of GDP (NCDR,
2011).

On average, four typhoons make landfall in Taiwan every year with strong wind is the
main cause of damage. However, even though some typhoons only pass by Taiwan without
a direct hit, they may come with a southwesterly flow®. Sometimes several typhoons pass
by together and cause the Fujiwara effect. In those two situations, severe precipitation
occurs within a very short period (i.e., 24 or 48 hours), triggering landslides, storm surges,
and floods.

To help limit potential damages, national and local governments provide instructions
and information to the public to enable preparations before extreme weather events occur.
In the case of the United States, when tropical storms approach the National Weather
Service provides data on the predicted path and potential precipitation. Based on this
information, state governments issue voluntary or mandatory evacuation orders. When
people receive a mandatory evacuation order, they should evacuate to the designated

evacuation zone. However, such orders are not enforceable. If people decide to stay in the

3 According to Rodo and Comin (2003), “The surface wind starts in the southern Indian Ocean as a
southeasterly flow, crosses the equator and becomes a southwesterly flow in the northern tropical Indian
Ocean”.



exposed area(s), they are responsible for their personal well-being during the storm and
will not be prioritized if rescue services are needed.

For small island countries such as Taiwan, evacuation only happens in mountain areas.
Staying at home is a more practical avoidance strategy for tropical cyclones for two main
reasons. First, typhoons typically cover half of Taiwan's territory; thus, there is no way to
evacuate the entire population at the same time as there is no safe place to go. Second,
buildings in Taiwan are required to follow Seismic Building Codes and Wind Resistance
Design Specifications and the Commentary of Buildings. For example, all buildings in
Taipei are required to resist a maximum ten-minutes average wind speed of 42.5 meters
per second. Building codes therefore provide a certain level of protection during typhoons.

Before 1980, the annual typhoon death toll was around 100. After 1980, the number
dropped to 56. Injuries also decreased from 367 people (1958-1980) to 222 people (1981-
2019), as shown in Figure 1. In 2009, Typhoon Morakot broke historical precipitation
records and caused the second-highest number of deaths and economic loss in history of
Taiwan®. Excluding this outlier, the average death toll and injuries during typhoons (1981-
2019) were even lower at 38 and 180, respectively.

o
=
©

600
1500 2000
L L

tolls

400
Injury
1000

0
00

ﬂLLLju.JJ,¢ ] Lll..LJ LiLLL

T T
2000 2020

- -
1960 1980 2000 2020 1960 1980
year year

Figure 1. Tolls and Injuries during tropical cyclones in Taiwan (1958-2019)°
The decrease in death was coincident with the implementation of the typhoon day-off

policy in the 1980s. In Taiwan, government officials announce a “typhoon day-off” when

* Typhoon Morakot has broken historical precipitation records, including one-day rainfall of 1,402 mm and
a two-day rainfall of 2,146 mm. The two-day precipitation was even over than the thirty-year average annual
precipitation. And the heavy precipitation caused a landslide in the mountain area of Kaohsiung, and 474
people dead.

5 The data source is Ministry of the Interior, https://www.nfa.gov.tw/cht/index.php?code=list&ids=233.
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a typhoon or other severe weather events occur. When officials announce the orders, the
stock market is closed, and all governmental works and compulsory education classes are
suspended, enabling people to stay home or evacuate from potential flood and landslide
areas to designated safe places.

Between 1977 and 1993, typhoon day-off periods were announced by either the
premier or the president. When a typhoon made landfall, local governments were required
to report damage to the Executive Yuan. The premier considered information from the
entire country and then made decisions whether to announce a typhoon day-off. For quicker
disaster responses, after 1993 typhoon day-off periods were announced by the Directorate-
General of Personnel Administration who referred to local weather conditions and allowed
selected cities or regions (not all) to announce a typhoon day-off.

Until 2000, the Taiwan government legislated Operation Regulations on the
Suspension of Offices and Classes because of Natural Disasters (henceforth referred to as
Regulation). The Regulation provides objective standards for implementing a day-off,
including accumulated precipitation, wind speed, landslide warning, and other factors.
Currently, the Regulation authorizes local government officials to announce a typhoon day-
off because local authorities have better knowledge of local conditions.

During a typhoon, the Central Weather Bureau announces typhoon warnings when
typhoons approach Taiwan and provides updates every six hours, according to the
Regulation. Typhoon alarms include the forecasted information on typhoons, such as wind
speed, route, and precipitation. Also, typhoon alarms are announced to the public via TV,
radio, and the internet. In addition to typhoon alarms, people also receive day-off orders as
determined by local authorities. Typhoon day-off periods can be treated as a stronger signal.

To provide sufficient time for preparedness, the Regulation requires local authorities
to announce day-off orders the day before the typhoon is expected to make landfall and no
later than 10 p.m. Regarding the day-off order issuance timing, there is a trade-off between
flexibility for firms and workers to adjust work schedules and the actual need for a typhoon
day-off order. In general, the prediction of the typhoon path has an average of 80 to 100
km error in 24 hours. Based on available information, sometimes governments issue a
typhoon day off, but the cyclone does not actually affect the target areas (i.e. counties or

cities). Notably, local governments do not announce a typhoon day-off for every typhoon,
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but rather base decisions on forecasted weather conditions. Although typhoon day-off
orders are mainly for government workers and school students, most businesses from the
private sector also follow the orders, effectively making the order of broad scale and
mandatory. According to the law in Taiwan, workers can refuse to go to work based on the
day-off announcement. Therefore, day-off orders announced by local governments become
a binding rule for businesses. This policy consistently provokes debate after tropical
cyclones. In 2018, residents proposed canceling the day-off order to Taiwan's National
Development Council, but the proposal did not gain sufficient support.

Overall, most people trust the Central Weather Bureau and the day-off decisions made
by local government authorities, resulting in the continuation of the day-off order policy.
Likewise, residents of Miami-Dade County receive information from the National
Hurricane Center (NHC) through various channels, including TV, radio, and the internet.
The information is updated every six hours, and different types of information are provided
(as detailed in section 3.2). In Florida, when a hurricane poses a potentially life-threatening
risk, the government also issues mandatory evacuation orders®.

I hypothesize that mandatory government orders have a larger avoidance effect than
warnings during tropical cyclones. In other words, I expect that a higher percentage of
people will either stay at safe places or evacuate the hazardous zone when they receive a
government day-off order compared to when they freely take precautions in response to
government provided information and warnings. To test this hypothesis, I use data from
public transportation systems to examine avoidance behaviors. When individuals receive
information or mandatory orders, they may choose to remain at safe shelters or at home or
evacuate from high-risk zones.

The primary purpose of public transportation is commuting to work and school.
Therefore, when individuals receive a mandatory order and decide to stay at home, I expect

a significant decrease in public transportation usage. During a tropical cyclone, a decline

® Government officials announce a storm surge map to residents, and residents can base their evacuation on
the weather forecast for the zone. Normally, evacuation from a storm surge zone to a safe zone takes more
than 10 hours, so the government can only announce an evacuation order based on the hurricane watch, which
is the projection 48 hours in advance. Using outdated information to make these evacuation orders also caused
mistakes several times in history. Furthermore, even when the government authorities announce an
evacuation order, they can only encourage businesses to close earlier and allow employees to prepare earlier.
It is the responsibility of residents to make an evacuation plan, including the departure time and evacuation
destination. Shelters are provided only for those who have no other place to go.
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in public transportation usage may indicate that aversion strategies are being taken by
residents within the cyclone-affected areas.
III. Data

In this study I use data on public transportation usage, government released
information, and weather to evaluate disaster avoidance behaviors. Data sources with
descriptions are provided below.

(1) Public transportation data

First, the public transportation system should be reliable and continue running even
during tropical cyclones to serve as a measure of avoidance behavior. In Taiwan, the metro
system is essential infrastructure and provides service even when the government issues
typhoon day-off orders. Similarly, in Miami-Dade County, the bus system is utilized to
evacuate residents during tropical cyclones. Hence, public transportation usage
information is available during tropical cyclones to measure avoidance behaviors.

Public transportation usage data can be used as a measure of the degree to which
people engage in avoidance behavior during tropical cyclones. Among all transportation
modes, metro system usage data in Taiwan is chosen to evaluate avoidance behavior for
several reasons. First, urban traffic data, such as car flow, is limited and available only for
important intersections in cities. Further, daily data is unavailable for those intersections.
Second, most of the metro system in Taiwan is underground and thus strong winds and
rainfall do not physically affect the service. For a small portion of the metro system that is
above ground, services adjust to storms and strong winds by slowing speed and providing
longer service intervals.

In this study, two different cities in northern and southern Taiwan are used to evaluate
avoidance behavior by measuring differences in metro usage before, during, and after day-
off orders. Daily passenger trip data for the Taipei Metro System and the Kaohsiung Metro
System are obtained from the websites of Taipei Rapid Transit Corporation and the
Kaohsiung Rapid Transit Corporation’. Data are composed of daily time series between
2009 and 2019, excluding SARS (2002-2003), the financial crisis (2007-2008), and

COVID-19 (after 2020), which were major macro events that influenced willingness to use

" Metro systems is just a portion of public transportation, so the population used metro system was less than
those percentages, see footnote 1.
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the public transportation systems.

Before describing the data in more detail, there is a concern that deserves
consideration. Although underground metro systems can continue operations during
periods of strong wind and rainfall, flooding could still hamper the underground metro
system. During the period of evaluation, the Rapid Transit Corporations addressed this
problem. After typhoon Nari flooded the Taipei metro system in 2001 the Taipei Rapid
Transit Corporation installed water pumps and water gates to prevent inundation during
typhoons and extreme precipitation. Following the installation of water pumps and gated,
both Taipei Metro System and Kaohsiung Metro System provided reliable transportation
services during extreme flooding events.

For the Miami-Dade County case, transportation data come from the Department of
Transportation and Public Works (DTPW), which includes information on three public
transportation systems, Metrobus, Metrorail, and Metromover. The Metromover is a
railway system that services a specific area in downtown Miami. Among these three means
of transportation, the largest and most reliable one is the Metrobus. The bus system not
only covers a broader area than the other options, but it also keeps running during hurricane
events. Additionally, the DTPW also provides evacuation buses when mandatory
evacuation orders are issued. Daily passenger ride data for Miami-Dade County are
obtained from Miami-Dade County Public Records System®. Due to the data availability
and avoiding the COVID period, 2015 October to 2019 December data for Miami-Dade
County is used.

Although Metrobus and Metrorail are reliable transit systems in Miami Dade-County,
during Hurricane Matthew and Irma the transportation services were closed for three days,
which were October 6th, 2016, September 10th, 2017, and September 11, 2017. I dropped

those three data points from the dataset®.

8 Miami-Dade County Public Records System:

https://miamidadecounty.govqa.us/WEBAPP/ rs/(S(gbungbakjua002frrx1lbfbq))/SupportHome.aspx?sSessi
onlD=

% The Metrobus and Metrorail service were officially recorded as closed on October 6:2016, but in my dataset,
15,472 and 2,764 rides on Metrobus and Metrorail were recorded, respectively.
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(2) Weather data

Taiwan’s typhoon data come from the Typhoon Database °, which provides
information on typhoon scale, routes, event date, maximum wind speed near the typhoon
center, and typhoon warnings. Typhoon routes are an important consideration in local
government decision-making. If the magnitude of an incoming typhoon is severe but the
predicted route is not close to a given location, then a local government will not issue a
day-off order. For example, the southern city Kaohsiung issued a day-off order in 2010 for
the Route 9 typhoon Lionrock, but the northern city Taipei did not. Based on historical
typhoon patterns, there are ten different routes as shown in Figure 2. Route 0 means the
typhoon is close to Taiwan but never makes landfall. Routes 1 to nine are the pathways that
typhoons pass through Taiwan after making landfall. Route 10 is a category that collects
typhoons that make landfall but do not belong to routes one to nine.

Every year many typhoons form in the Western North Pacific, but only those that
impact Taiwan are included in this study. According to the Regulation, The Central Weather
Bureau in Taiwan issues typhoon warnings when typhoons are within 300 km of the
shoreline. These typhoons are defined as having an impact on Taiwan.

Data on historical typhoon day-off periods are collected from the website of the
Directorate-General of Personnel Administration'!. The day-off periods that only applied
to specific small regions, such as communities in mountain areas, were excluded because
metro systems do not cover the mountain areas. In addition, mountain areas are more
fragile than cities, and people may potentially evacuate to safer places to avoid landslides.
Those evacuation decisions are beyond the scope of this study.

Typhoon day-off orders and typhoon warnings are correlated with weather conditions.
To control for weather conditions, I collect daily weather data from 2009 to 2019. Weather
data come from the Central Weather Bureau Observation Data Inquiry System!?. On
average, each city had at least one weather station and several automatic weather stations.
I use data from traditional weather stations for each city because the data from automatic

weather stations do not cover the research period.

10 Typhoon Database: https://rdc28.cwb.gov.tw/TDB/

1 Historical day-off order: https://www.dgpa.gov.tw/en/index?mid=138
12 Central Weather Bureau Observation Data Inquire System:
https://e-service.cwb.gov.tw/HistoryDataQuery/
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Source: Cerlvvtrali Weafher Bureau

Figure 2. Routes of Typhoons
The weather information in Miami includes tropical cyclone data and historical
weather data. I obtain data from tropical cyclone reports from the National Hurricane
Center (NHC) and Central Pacific Hurricane Center (CPHC)®. Similar to the Taiwan case,
before a tropical cyclone makes landfall, the NHC and CPHC will announce alarms that
are released on TV, radio, and the internet, providing updates every six hours. Therefore,
people receive information and then decide the degree to which they will take any
avoidance actions. The alarm types depend on the magnitude of the tropical cyclone,
including storm surge warnings, hurricane warnings, tropical storm warnings, storm surge
watch, hurricane watch, tropical storm watch, tropical cyclone public advisory, and tropical
cyclone track forecast cone'®. When a tropical cyclone watch or warning affects target areas,
the NHC and CPHC will further issue a Tropical Cyclone Public advisory and update it
every three hours. All the watches and warnings are issued for specific areas ranged
between breakpoints, which are defined by the NHC and CPHC®®. For studying avoidance
behavior in Miami-Dade County, I first determine how many tropical cyclones affected the
target areas. To do this, I count the number of times that the NHC and CPHC issued watches

and warnings for the breakpoints located in Florida. From 2015 to 2019, 83 hurricanes

occurred in the Atlantic, Caribbean Sea, and Gulf of Mexico areas. In total, 13 hurricanes

13 https://www.nhc.noaa.gov/
14 More details on: https://www.weather.gov/safety/hurricane-ww
15 Hurricane and tropical storm watch/warning breakpoints map: https://www.nhc.noaa.gov/breakpoints/.
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affected Miami-Dade County over the period of analysis.

I gather Miami historical weather data from the National Centers for Environmental
Information which is funded by the National Oceanic and Atmospheric Administration
(NOAA)'®. The data includes wind speed, temperature, and precipitation. The Miami
International Airport weather observation station was chosen because the station is located
in the middle of the bus and railway system and is likely to better represent the weather
conditions when people make decisions.

During the 2009-2019 period, 53 typhoons made landfall in Taiwan. The local
government of Kaohsiung announced 27 typhoon day-off orders and 163 typhoon alarms.
The local authorities in Taipei City and New Taipei City announced 23 typhoon day-off
orders and 162 typhoon alarms. Table 1 shows that in Taipei and New Taipei City, fourteen
and seven day-off orders occurred in moderate and severe typhoons, respectively.
Kaohsiung had a pattern similar to Taipei but announced more days-off during milder
typhoons. Among the data, five of ten day-off orders were implemented when typhoons
came through Routes 9 and 10. Typhoons that came via Route 9 might bring heavy
precipitation, and Route 10 is unexpected. In sum, people regularly receive day-off orders
during moderate and severe typhoons.

Table 1. Scales of typhoon and day-off orders

Day-off for
Number Day-off for Taipei and
Scale Kaohsiung City
(2009-2019) New Taipei City (days)
(days)

Mild 21 2 10

Moderate 19 14 13

Severe 13 7 4

Total 53 23 27

16 https://www.ncdc.noaa.gov/cdo-web/datatools/selectlocation.
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Sustained wind speed is the standard for classifying the scale of tropical cyclones. In
Miami, the sustained wind speed between 62 to 119 kilometers per hour is called a tropical
storm, and the magnitude is equivalent to a mild typhoon in Taiwan. From Table 2, the
scales of hurricanes are equivalent to moderate and severe typhoons. Therefore, in my
research, when I compare two different places, I examine the behavior when people receive
day-off orders and hurricane alarms for tropical cyclones of similar magnitudes.

Table 2. Magnitudes of Tropical Cyclones

Taiwan Miami-Dade County
Scale Wind speed Scale Wind speed
(km/hour) (km/hour)

Mild typhoon 62-117 Tropical Storm 62-118
Moderate typhoon 118-183 Hurricane-Category 1 119-153
Severe typhoon > 183 Hurricane-Category 2 154-177
Hurricane-Category 3 178-209
Hurricane-Category 4 210-249

Hurricane-Category 5 > 249

Table 3 provides summary statistics for the variables discussed above. From Table 3,
passenger trips of Kaohsiung and Miami-Dade County are around one-tenth of Taipei and
New Taipei city. The precipitation data show the distribution of extreme rainfall, which
often results in landslides or flooding. For example, the mean of precipitation in Kaohsiung
city is 5.58 mm, and the standard deviation is around 17.8 mm. However, the maximum

daily rainfall during a typhoon is 507 mm, which is almost 100 times the average.

17



Table 3. Summary statistics

Variable Obs Mean  Std. Dev  Min Max
Transportation (passenger trips)
Kaohsiung Metro 4,017 157,997 39,977 23,086 472,378
Taipei & New Taipei Metro 4,017 1,793,785 362,994 150,025 3,205,325
Miami-Dade Metrobus 1,823 159,447 49,447 95 267,902
Miami-Dade Metrorail 1,550 54,167 20,869 144 88,970
Miami-Dade Metromover 1,547 21,445 6,249 0 51,690
Weather

New Taipei-temperature (°C) 4,017 23.31 5.44 54 32.3
Taipei-temperature(°C) 4,017 23.58 5.5 5.6 33.2
Kaohsiung-temperature(°C) 4,017  25.71 3.9 7.9 32.0
Miami-temperature (°C) 1,826  25.63 3.48 11.1 31.7
New Taipei-precipitation (mm) 4,017 5.66 18.5 0.0 379.5
Taipei-precipitation (mm) 4,017 6.12 17.8 0.0 306.7
Kaohsiung -precipitation (mm) 4,017 5.58 23.6 0.0 507.0
Miami-precipitation 1,826 4.83 12.5 0 139.5
New Taipei-wind speed (m/s) 4,017 2.07 1.0 0.1 8.4
Taipei-wind speed (m/s) 4,017 243 1.2 0.4 9.6
Kaohsiung -wind speed (m/s) 4,017 2.06 0.7 0.2 10.4
Miami-wind speed (m/s) 1,824 3.53 1.4 0.9 17.2
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IV. Empirical Strategy

In this section, conceptual models and empirical strategies are introduced. Also,
concerning the characteristics of the time series data, several econometric tests were
conducted to inform the selection of the most appropriate empirical approach.
(1) Conceptual Model

To measure the effect of the day-off policy on safety, assume the following safety

production function (Neidell, 2009):
Safety=f(tropical cyclone*avoid, V)

where Safety measures the level of safety, such as increasing life expectancy or
reducing accidents. Tropical cyclone includes a set of typhoon magnitude and trajectory
variables, such as wind speeds, rainfall, scale, route, etc. Avoid includes factors that capture
avoidance behavior. Interacting typhoon with avoid captures exposure to natural disaster
risk, which is consistent with the risk definition noted in the introduction (IPCC, 2014).
Even though a given typhoon magnitude is severe, avoidance behavior may reduce
hurricane exposure. Avoid captures the scale of avoidance depending on the magnitude of
tropical cyclone and other variables, such as alarms, risk perceptions, or past experiences.
V' is a vector of other behavioral and socioeconomic factors that may affect safety. For
example, as mentioned in section 2, buildings should be compliant with building codes.

Suppose that social and environmental investments can enhance human safety. In the
production function, the frequency and magnitude of hazardous events are negatively
related to safety. For example, Category 5 hurricanes might reduce the life expectancy of
residents in affected areas. However, avoidance behavior can mitigate the adverse effects
of hazardous events. For instance, individuals may take precautions and choose to stay
indoors when a tropical cyclone impacts the coastal area.
(2) Testing time-series data

Given the time-series nature of the data, stationarity is required for the regression
analysis. However, in many cases time-series data are not stationary and thus may result in
spurious relationships between variables (Granger and Newbold, 1974). Daily metro

system passenger trips are my main data, and Figure 3 presents time trends in the data®’.

17T also controlled for time trends, the results of which are available in the Appendix.
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The Augmented Dicky Fuller (ADF) test is used to check the unit root. The results show
passenger trips for both Taipei and Kaohsiung metro systems are stationary, which means
shocks only have an impact within limited periods. I control time fixed effects in the
empirical analysis, including the day of week and the month of the year, which influence
passenger ride patterns. For example, the primary purpose of utilizing public transportation
is commuting to work and school, so the number of passengers naturally decreases on
weekends. Moreover, during the summer and winter vacations, the number of passengers

also decreases.
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Figure 3. Passenger trips for metro systems
When using high-frequency time-series data, there may also be serial correlation
issues. I therefore conduct a Durbin-Watson test, revealing that serial correlation problems
are present. Figure 4 shows the partial autocorrelations, and the autocorrelations exhibit
seasonality. From the graph, seven periods (days) form a cycle and show that the metro
system appears to have a weekly pattern. I include two lags of the dependent variable and
adopt the Breusch-Godfrey test to check first-order and higher-order serial correlation in
the errors. Including the two lags of the dependent variable removes serial correlation from

the errors.
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Figure 4. Partial autocorrelations of passenger trips
For the Miami Dade-county case, unlike Taiwan, Figure 5 shows decreasing time
trend for daily passenger rides for the Metrobus. After the ADF test, the results show
passenger rides for Metrobus, Metrorail, and Metromover are all stationary. And similarly,

including two lags of the dependent variable removes serial correlation in the errors.
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Figure 5. Passenger rides of three public transportation systems in Dade County
(3) Empirical Strategy
In the empirical analysis, I evaluate responsiveness of people to typhoon alarms. After
testing and modifying the time series data as described in previous section, I employ

ordinary least squares regression analysis in this study, as illustrated in Equation (1)

log (PS;) = p1log (PS;—1) + polog (PS;—3) + Brdof fr + yawinde_4 X
route;_,+y,rain,_q + aynholidy; + a;, DOW + azMOY + ¢ (1)
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where PS; is the total count of daily passengers in the Kaohsiung metro system from 2009
to 2019. Because the dependent variables are non-normal with an asymmetric distribution,
I use the natural logarithm to approximate the normal distribution. For the Taiwan case,
test how people change their behavior in response to the typhoon day-off order. To address
autocorrelation in time series data (see section 3), two lags of the dependent variable,
log (PS;_1) and log (PS;_,), are added in the regression. The independent variable dof f;
is a dummy variable where the value is equal to one when the government announces a day
off on day t and zero otherwise. However, because local governments are required
announce the day-off on the previous day, day t-1, they can only make decisions based on
the weather forecasting on day t-1. I therefore control for rainfall, wind speed, and route
on day t-1. The interaction between wind speed and the typhoon route is intended to capture
the decision-making process. When the typhoon wind speed exceeds the warning level, but
the typhoon route is not close to the city, then the typhoon doesn't impact the city, hence
no day-off order is issued.

I also control for confounding factors that may influence the total count of passengers
in the metro system. For example, the Taipei Metro Company continued to build new
stations after 2009, and more stations attract more passengers. Also, commuters cause the
passenger numbers to fluctuate because of weekends or school vacations. To control those
confounders, I include national holiday (nholiday) and time trends in equation (1),
including day of week (DOW) and month of the year (MOY). Finally, &, is the error term
of estimation.

People received day-off orders (doff) on day t-1, but day-off occurs on day t. In
addition, people also make decisions based on the weather conditions of day t. People
might not exhibit avoidance behavior when the weather was good on day t. I therefore
illustrated this situation with specification (2) as follows. The first bracket shows the past

information on day t-1, and the second bracket represents the information on day t.

log (PS;) = pilog (PS;_1) + pylog (PS;_;) + aynholidy; + a,DOW + a;MOY +
[Bidof f; + yiwind,_, - route,_,+y,rain._,] + [pirain; + p,wind,] + &; )

Because Taipei city and New Taipei City are adjacent, many people travel from New

Taipei City to Taipei city to work or go to school. Therefore, as illustrated in specification
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(3) I estimate the interaction effect of rainfall from both the Taipei government and the

New Taipei government.

log (PS;) = p1log (PS;_1) + palog (PS:_3) + [B1dof frair + vawind,_, X route,_; +
Vol Ailggit—1 + V3T AiMyrait—1] + aynholidy; + a, DOW + asMOY + &, 3)

log (PS;) = p1log (PS;_1) + palog (PS:_3) + [B1dof frair + vawind,_, X route,_; +
Y2rQifNrgir—1 + ¥3rainyrgir—1] + [p17QiNTqi + parainggge + pswindrg +

Pawindyrqic] + aynholidy; + a,DOW + a;MOY + &, 4)

Next, I examine the general avoidance behavior in Miami-Dade County to alarms (not
mandatory orders) through specification (5). alarmy is the total number of alarms issued
by NOAA during period ¢. I examined different lag periods for alarms, including

contemporaneous (t) and one and two period lags (t-1 and t-2).

log (PS;) = pilog (PS;_1) + pylog (PS;_;) + pialarmy + yiwind, + y,rain, +
a,DOW + a,MOY + ¢ ®)]

As briefly discussed in section 3, I use hurricane watches and hurricane warnings for
Miami-Dade County to estimate the avoidance behavior when people receive alarms of
severe tropical cyclones through specifications 6a, 6b, and 6¢c. Hurricane_watch,_, is the
hurricane alarm people receive where I use two lag periods because the announcement
occurs 48 hours in advance. Similarly, Hurricane_warning,_4is the hurricane alarm
people receive, where I use one lag period because the hurricane warning is announced 36
hours in advance. According to NOAA, people should prepare extra supplies and plan for
evacuation when receiving a hurricane watch, and people should be well-prepared or leave
when receiving a hurricane warning. If the alarm is the only information people rely on,

they will make plans accordingly.

log (PS;) = p1log (PS;_1) + p,log (PS;_,) + f1Hurricane_Watch,_, + a;DOW +
a,MOY + ¢, (6a)
log (PS;) = p1log (PS;_1) + p,log (PS;_,) + f1Hurricane_watch;_, + y;wind; +
yaraing + a;DOW + a,MOY + & (6b)
log (PS;) = p1log (PS;_1) + p,log (PS;_,) + f1Hurricane_watch;_, +
p,Hurricane_warning,_, + y,wind; + y,rain, + a;DOW + a,MOY + &, (6¢)
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V. Results
(1) Avoidance behavior

Table 4 presents the results for how day-off orders affect passenger trips for Taiwan.
The first two columns show estimates for Kaohsiung, and the other two columns present
estimates for Taipei and New Taipei. All four specifications offer evidence that people
exhibit avoidance reactions in response to day-off orders. In specifications (1) and (3), the
passenger trips drop 71.20% and 94.78% and are significant at the 1% level, respectively.
In specifications (2) and (4), people also respond to day-off orders, and there are 58.08%
and 83.87% reductions in passenger trips in Kaohsiung and Taipei, respectively. When the
specification includes current period weather information, the impacts of day-off orders
become smaller in both cities.

Referring to Figure 1, Kaohsiung city is located in southern Taiwan. Typhoons on
Route 7 have a stronger impact than on Routes 4 to Kaohsiung city because when a typhoon
makes landfall from Route 4, the magnitude of a typhoon is reduced by the Central
Mountain Range. However, if a typhoon makes landfall on Route 7, the power is not
reduced by the mountain range and is even stronger because the ocean provides more
energy to sustain the typhoon. As shown in Table 4, when the wind speed in period t-1
increases, typhoons on Routes 4 and Route 7 are associated with significant reductions in
passenger trips. Moreover, the coefficient on the Route 7 variable is larger than Routes 4.
However, in Taipei and New Taipei, typhoons that follow Route 2 have stronger impacts
than other routes.

Turning to other non-typhoon results, national holidays generate different patterns
across metro systems in the two cities. In Kaohsiung, more people use the metro system,
with 15.9% increase in passenger trips on holidays. However, in Taipei and New Taipei,
fewer people use the metro system during holiday periods, with around a 20% drop in
passenger trips. These different patterns are due to the fact that more people live in

Northern cities for work, but they go home to other cities for national holidays.
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Table 4. Estimated impacts of day-off order on amount of passengers (fixed-effect)

Kaohsiung Taipei & New Taipei
Specification 1) 2) A3) “4)
In (PS;_41) 0.6242%** 0.6168*** 0.5134%** 0.5259%*x*
In (PS;_,) 0.0942%*** 0.1049%*** 0.3241*** 0.3082%**
doff, -0.7120%** -0.5808*** -0.9478***  -(.8387***
rain,_q 0.0012%** 0.0015%** 0.0008*** 0.0010%***
wind;_{ X route,;_4
0 -0.0002 -0.0002 0.0009** 0.0013***
1 -0.0000 0.0001 0.0028%** 0.0033%**
2 0.0023%** 0.0017* 0.0102%** 0.0102%**
3 0.0015* -0.0018%** 0.0057%** 0.0059**
4 -0.0012* -0.0004 0.0014%*** 0.0015%***
5 0.0004 0.0002 0.0006 0.0010
6 -0.0005 -0.0003 0.0006 0.0010
7 -0.0019* -0.0007 -0.0005 -0.0007
9 0.0009 0.0008 0.0001 -0.0006
10 0.0008 -0.0000 -0.0008 -0.0002
Kaohsiungrain, -0.0014%**
Kaohsiungwind, -0.0017
Taipeirain, -0.001 3%
Taipeiwind, 0.0104%*
NewTaipeirain, -0.0001
NewTaipeiwind, -0.0232%:%*
Nhday 0.1590%*** 0.1596***  -0.2071*** -0.2066***
R-squared 0.7407 0.7518 0.7901 0.8029

*:10%, **:5%, ***:1% statistic significant.
Table 5 presents results for avoidance behavior in Miami-Dade County, which shows
a 30% reduction in bus rides due to hurricane warnings. For comparison, note that in

Tiawan passenger rides are also reduced by around 10% when people receive alarms. One
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important related finding is that bus rides in Miami-Dade County are sensitive to weather
conditions, such as wind and precipitation. For comparison, a 1% increase in precipitation
causes a 0.2% decrease in passenger rides in Kaohsiung but a 9% decrease in Miami-Dade
County. A possible explanation is that bus stops do not provide cover or transit tunnels
between buildings. But the subway system in Kaohsiung is underground, and each railway
stop is in a building or close to a building. The difference between the two types of
transportation systems may result in different passenger behaviors. However, I also
estimated regressions for Metrorail and Metromover, and the results were similar to the bus
system. These findings lead to a second possible explanation, which is that residents in
Miami-Dade County rely more on weather conditions for daily decisions than do residents
of Taiwan.

Table 5. Avoidance behavior Miami Dade County Metrobus system (fixed-effect)

Specification (5a) (5b) (5¢) (5d)

In(busride;_4) 0.452%** 0.455%** 0.472%%* 0.455%**
In(busride;_,) -0.024 -0.037 -0.049 -0.047
Awind -0.006%** -0.007%%** -0.008%** -0.007**
Rain -0.071%** -0.072%** -0.071%** -0.0771%**
Alarm -0.302%**
Alarm;_, -0.269%** -0.182%**
Alarm,_, -0.257%%* -0.154%**
constant 6.579%** 6.723%%* 6.657*** 6.832%%*
R-squared 0.779 0.777 0.776 0.778

*:10%, **:5%, ***:1% statistic significant.

I use transportation data to proxy people’s avoidance behavior, and the results
presented in Tables 4 and 5 provide evidence of avoidance behavior. However, I also want
to examine the degree to which people engage in avoidance behavior regardless of whether
government officials announce a day off or issue a warning. Unfortunately, for Taiwan data
limitations prevent such analyses. Therefore, I introduce Miami-Dade County, which has a

similar total population, public transportation usage rate, and weather conditions to
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Kaohsiung City, and compare transportation usage during hurricanes under a warning-only
scenario.

As described in section 3.2, NOAA issues different types of warnings related to the
magnitude of tropical cyclones. From Table 1, in the case of Taiwan government officials
are more likely to a announce day-off with moderate and severe typhoons. Therefore, I
select similar magnitude tropical storms in Miami, which are storms categorized as
hurricanes. I test the specification when people receive a hurricane watch and hurricane
warnings to identify avoidance behavior when people receive information without
mandatory orders. Table 6 shows that in Miami-Dade County transportation usage drops
70.7% and 73.0% two days after people are informed of a hurricane with and without
controlling for weather'®, respectively. The avoidance magnitude is similar to Kaohsiung
City in the case of a mandatory day-off order.

Table 6. Avoidance behavior _Miami Dade County bus system with different warning

types (fixed-effect)

Specification (6a) (6b) (6¢)
In(busride;_,) 0.398*** 0.386%** 0.377%**
In(busride;_,) -0.061** -0.055%* -0.049%*
Awind -0.006%** -0.005%**
Rain -0.069%** -0.069%**
Hwatch,_, -0.730%** -0.707%** -0.425%**
Hwarning,_4 -0.24 5%
Constant 7.623%** 7.727%%* 7.765%**
R-squared 0.789 0.796 0.805

18 This reduction might be because NOAA issues a hurricane watch 48 hours in advance and recommends
people prepare and review personal evacuation plans.
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VI. Conclusions

Tropical cyclones cause tremendous damage in regions, and some scientists believe
that both the frequency and the intensity of tropical cyclones will increase due to climate
change (IPCC, 2012). Since the 1980s, the Taiwanese government has implemented
typhoon day-off orders and alarms in an effort to reduce fatalities and the economic impacts
of typhoons. The alarms and day-off orders provide information and guidelines upon which
the public make avoidance decisions. I used aggregate transportation data from 2009 to
2019, combined with information on fifty typhoons, to evaluate the degree to which
avoidance behavior is influenced by typhoon warnings and mandatory day-off policies.
The findings show that people respond to typhoon day-off orders in differing magnitudes.
In Taipei and Kaohsiung cities, the analysis indicated that there is a 60% to 95% drop in
metro passenger trips when day-off orders are announced. If people receive typhoon alarms,
there is a 5% to 10% drop in metro passenger trips.

However, day-off orders become controversial and costly when governments
announce them in advance based on forecasts, but typhoons change paths such that the
order was not needed. Whether a policy mandates action or simply provides adequate
warning information, if the magnitude of the avoidance behavior response is similar, it
would seem that the two policies are equally effective. However, according to the New
Media Lab in Taiwan, between 2006 and 2015, recorded wind speed and rainfall data
indicate that the magnitude of tropical cyclones often did not meet the criteria for declaring
a day off. In Taichung City, a major manufacturing hub in central Taiwan, the rate of
unnecessary day-off declarations was 73%?*°. This suggests that the mandated day-off
orders may result in relatively greater economic costs due to weather forecasting error.

This article further examines avoidance behavior during similarly severe tropical
cyclones but without mandatory orders. Due to data limitations, comparing avoidance
behaviors before and after the adoption of the day-off order policy in Taiwan is not feasible.
Additionally, the dataset does not provide comparable intensities of tropical cyclones with
and without mandatory orders. Consequently, I selected a comparable case, Miami-Dade
County, based on several perspectives, including the data availability, frequency of tropical

cyclones, environmental and demographic considerations, and characteristics of public

19 See: https://udn.com/upf/newmedia/2015 data/20150930 udntyphoon/udntyphoon/index.html
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transportation usage. The results indicate a similar level of avoidance behavior in Miami-
Dade County, where people respond to hurricane watches by reducing bus passenger trips
by about 70%. This study provides valuable insights that contribute to the ongoing
discussion surrounding mandatory day-off policies. The evaluation demonstrates that
people respond to alarms and instructions aimed at minimizing disaster exposure, with this
response being comparable in magnitude to that observed with mandatory orders.

Mandatory orders may be deemed necessary in situations where information is
incomplete and there is a high degree of uncertainty. However, in regions where residents
possess substantial experience and knowledge of natural disasters, governments may find
it sufficient to provide information and empower school authorities and business
owners/managers, as well as residents, to make avoidance decisions based on their
temporal and spatial circumstances. For instance, there was considerable public outcry
following the late announcement by local authorities in Florida, which many believe
contributed to the 125 deaths resulting from Hurricane lan in 2022. However, upon closer
examination of victim characteristics, a relatively high portion were new residents who
were unfamiliar with hurricane exposure. Even though the government provides
information, those who are unaware or have less experience may fail to take appropriate
safety measures when a tropical cyclone approaches.

Although utilizing aggregate data represents a novel approach in studying avoidance
behavior during natural disasters, due to data limitations this article does not offer a cost-
benefit analysis of scenarios with and without mandatory orders. Also, I do not have
information about individual perspectives, such as trust or past disaster exposure
experiences. Exploring alternative data sources, such as smartphone tracking data, holds
promise for future research. More granular data may unveil precise timing and locations,
enabling the calculation of social costs and offer enhanced recommendations to

policymakers.
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CHAPTER 2: Efficacy analysis of cloud seeding program in Kansas agriculture
I. Introduction

Hailstorms cause tremendous economic losses in the United States (US) and across
the globe. From 2003 to 2023, severe hailstorms caused $35.8 billion in losses in the US
(NOAA, 2024)?°. Moreover, hailstone size may increase in the central US and could
potentially cause more damage in the future, according to meteorology simulations (Fan et
al., 2022).

To mitigate hail damage, more than 50 countries around the globe have adopted
weather modification programs, more specifically, cloud seeding, for hail suppression
purposes since the 1970s, including the US, Russia, France, Spain, Romania, Argentina,
etc.?! The microphysical process of hail formation is extensively discussed in the literature
(Lamb and Verlinde, 2011; Allen et al., 2020; see section II for more details). The main
idea of cloud seeding for hail risk reduction is to launch chemical particles into clouds,
thereby reducing the frequency and magnitude of hailstones (Knight, 1977).

Most existing research on the effectiveness of cloud seeding programs evaluates
factors such as the size and volume of hailstones, the frequency of hail events, and the
distribution of hailstone sizes over a certain period (Bergant, 2011; Changnon, 1971;
Dessens et al., 2016; Gavrilov et al., 2013; Rivera et al., 2020; Spiridonov et al., 2015).
Among these studies, the intensity of hail is often measured by the size of the hailstones,
as smaller hailstones, which have less kinetic energy, are associated with less damage to
crops, livestock, property, and even humans (Pirani et al., 2023; Pucik et al., 2019).

However, the relationship between the size of hailstones, frequency of hail events, and
crop damage is not yet clear. In the literature, there are relatively few studies that examine
the effect of cloud seeding hail suppression in reducing crop loss, but more studies on direct
property damage (Allen et al., 2020; Changnon & Changnon, 2000; Childs et al., 2020).

Childes et al. (2020) conducted interviews with farmers, revealing that most farmers

DThis number represents the costs attributed solely to hailstorms, although instances of tornado outbreaks,
high winds, and hailstorms often occur concurrently. Furthermore, disaster costs in NOAA reports encompass
damages to residential and commercial properties (including buildings, vehicles, and boats), infrastructure
(such as roads, bridges, and electrical facilities), agricultural assets (including crops, livestock, and timber),
as well as losses related to business interruptions.

2L See World Meteorological Organization: https://public-old.wmo.int/en/resources/bulletin/seeding-change-
weather-modification-globally
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worried about small-size large-volume hailstones more than large-size hailstones. Also,
Pucik et al. (2019) indicate hailstones size of 2 to 3 centimeters (around 1 inch) in diameter
damage crops most. Therefore, measuring hailstone size and the frequency of hail events
might not be an appropriate approach for evaluating hail suppression program
effectiveness. In other words, cloud seeding might reduce the frequency and magnitude of
hailstones but could potentially cause more damage. The effectiveness of cloud seeding on
crop loss remains ambiguous?2.

Only a few studies examine the effectiveness of hail suppression programs on crop
damage and productivity. Soviet scientists provided hail suppression by launching rockets
into clouds, reporting a 50% to 90% reduction in crop hail damage (Federer et al., 1986).
Abshaev et al. (2023) indicated that over the past 65 years, Russia improved its rocket
seeding technology, thereby reducing hail crop damage by as much as 86%. In the US,
Knowles and Skidmore (2021) found that cloud seeding in North Dakota resulted in a 13%
increase in wheat yields per harvested acre and a 0.548 decrease in the wheat loss ratio in
North Dakota. According to research by Ekland et al. (1999), cloud seeding reduced the
crop loss ratio by 27% in Kansas and minimized damaged planted areas by 34% to 48%.

One concern regarding cloud seeding for hail suppression is the potential reduction in
rainfall in downwind areas. When a downwind region receives less precipitation or more
hailstones after cloud seeding in the target areas, it is referred to as the downwind effect.
This effect has been a concern for northwest Kansas counties that terminated cloud seeding
programs. However, while the downwind effect has been discussed in the context of cloud
seeding for rain enhancement purposes, it has not received much attention in the hail
suppression context (Solak et al., 2003; DeFelice et al., 2014; Wang et al., 2019). Only a
few studies have explored the potential rainfall changes in hail suppression areas. For
example, the Kansas Water Office, responsible for cloud seeding operations in Kansas,
reported a decrease of 0.25 inches in average precipitation during the growing season in
the targeted areas (Eklund et al., 1999). Conversely, in Alberta, there was a 2.2% increase

in rainfall in hail suppression areas (Krauss and Santos, 2004).

22 The relationship between hail magnitude and damage also depends on growth stage of crop, canopy
position of crops, weather, and water management (Holman et al., 2022). For example, cotton is more
vulnerable to hail in the bud stage than in the boll stage (McGinty et al., 2019; Yue et al., 2019).
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When policymakers decide whether to continue a policy, providing an evaluation of
its efficacy is crucial. In the literature, the most common measurements are the size of
hailstones and the frequency of hail events. In this study, I use a broader set of
measurements to evaluate the efficacy of the cloud seeding program, including its impact
on hailstone size and frequency, crop damage, and crop yields, while also considering
potential downwind effects. The purpose is to evaluate the degree to which choosing
different measurements may lead to different conclusions. When different measurements
yield conflicting conclusions, it can spark discussions and encourage collaboration to
improve the technology or management of the program.

Kansas serves as a fitting focal point for this analysis due to its status as a prominent
producer of winter wheat, corn, and sorghum in the US, and the significant hail damage
experienced by its crops. I use county level data over the 2002-2020 period for Kansas in
this paper. As a prelude to the full set of findings, the analysis shows that cloud seeding is
associated with reductions in hail size in target areas. Even though the size of hailstones
decreases, there are no statistically significant reductions in hail or drought damage.
However, the results indicate that cloud seeding is associated with more flooding damage
to crops. This finding is consistent with the literature that severe rain or inundation can
occur in target areas after cloud seeding (Almheiri et al.,2021; Spiridonov et al., 2015;
Tuftedal et al., 2022; Yoo et al., 2022). Lastly, the findings indicate that cloud seeding
enhances corn productivity within the seeding area but diminishes sorghum productivity in
downwind areas. Leveraging these outcomes, I conduct a cost-benefit analysis of the
Kansas cloud seeding program. While the overall net present value of the program is
positive, it is essential to recognize that this is not universally beneficial; certain counties,
particularly those downwind, exhibit negative net present values.

The remaining sections of this chapter are structured as follows: Section II provides
an introduction to cloud seeding in Kansas. The methodology and data are outlined in
Sections III and IV, respectively, followed by the presentation of results in Section V.
Section VI presents the cost-benefit analysis. Finally, conclusions and policy implications

are discussed in Section VII.
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II. Background

This section begins with a discussion of the primary rationale behind considering
cloud seeding as a promising method of reducing hail. I also provide an overview of
research findings related to cloud seeding efficacy. The section concludes with a detailed
discussion of the Kansas cloud seeding project.

(1) Cloud seeding for hail suppression

The hail formation process is well-documented in the literature (Allen, 2020). Two
primary components are essential for hailstone production: supercooled water and embryos.
Supercooled water refers to liquid water persisting below the freezing point of pure water
for an extended duration. This phenomenon often occurs in convective cloud systems
where updrafts bring cloud condensation nuclei (CCN) into the cloud. Condensation of
water vapor on these CCNs results in the formation of supercooled water droplets.

The merging of supercooled water droplets, typically due to contact with embryos,
initiates a chain reaction of freezing processes, leading to the formation of hailstones. Small
hailstones may revert to embryos, attracting more supercooled water, sustaining the
freezing process, and allowing for further growth. Hailstones eventually fall when they
reach a size too substantial to be supported within the clouds.

According to microphysical theory, the core concept behind cloud seeding is to
stimulate beneficial competitiveness processes. This theory posits that natural embryos in
clouds, such as dust or pollen, may not be plentiful enough. Consequently, the introduction
of artificial embryos, like silver iodide or dry ice, can compete with natural embryos,
preventing the overharvesting of supercooled water droplets by natural embryos. The
expected result is that all hailstones should be smaller than those without seeding. Smaller
hailstones have the potential to melt before reaching the ground, effectively mitigating
potential hail damage.

The promise of controlling hail damage through cloud seeding led to extensive
investigations dating back to the 1970s. During this period, several multi-year projects
aimed to explore the beneficial competitiveness hypothesis and assess the feasibility of
cloud seeding technology.

From 1972 to 1976, the National Hail Research Experiment (NHRE) spanned multiple

states in the US, including Northeast Colorado, Kansas, Nebraska, and Wyoming. However,
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the results revealed no statistically significant effects in reducing the frequency and size of
hail (Allen et al., 2020; Foote et al., 1979; Knight and Squires, 1982; Squires and Knight,
1982). Subsequent to NHRE, from 1977 to 1982 Switzerland, Italy, and France initiated
the Grossversuch IV project to test Soviet hail suppression technology. Similar to the
NHRE, the results demonstrated no statistically significant difference in hail frequency and
magnitude between seeded and non-seeded areas (Federer et al., 1986). A reexamination
of the Grossversuch IV project data by Auf der Maur and Germann (2021) even suggested
that cloud seeding might increase the kinetic energy of hailfall, potentially intensifying
damages.

Despite inconclusive results from experimental projects, countries worldwide
persisted in their investment in cloud seeding for hail suppression. Real-world seeding data
played a pivotal role in evaluating the efficacy of these programs. In Slovenia, Serbia, and
Argentina, no statistically significant changes were observed in either the frequency or
magnitude of hailstorms (Bergant, 2011; Gavrilov et al., 2013; Rivera et al., 2020). Greece
and Spain witnessed a reduction in hailstone magnitude without a significant impact on
frequency (Spiridonov et al., 2015; Dessens et al., 2016). In contrast, A study in France
indicated that cloud seeding resulted in a substantial decrease in both the frequency and
magnitude of hailstones (Changnon, 1971). These diverse outcomes highlight the
complexity and variability in the effectiveness of cloud seeding initiatives across different
geographical regions.

(2) Weather modification in Kansas: A four-decade cloud seeding initiative

Cloud seeding has been a cornerstone of weather modification efforts in the US for
six decades. Among the states actively adopting cloud seeding, Kansas, along with North
Dakota and Texas, stand out, implementing this technique primarily during the warm
season?3, The focus in these states has been on hail suppression and rain enhancement, with

occasional applications for fog dispersion.

23 Several states in the US have implemented cloud seeding during different seasons and for various purposes.
States such as California, Nevada, Idaho, Utah, Wyoming, and Colorado employ cloud seeding in the cold
season for snowpack augmentation and rain enhancement, with primary objectives aimed at increasing water
storage in reservoirs and replenishing groundwater. While cloud seeding has been proven to increase rainfall
and runoff by an average of 10% to 20% (Rosenfeld and Woodley, 1989; Bruintjes, 1999; Flossmann et al.,
2019), its efficacy for hail suppression remains a subject of controversy.
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To emphasize the risk and exposure to hail, Figure 6 illustrates the distribution of
severe hail—defined as hailstones over 1 inch (25.4 mm) in diameter—across the US?*.
The map depicts the significant threat posed by hazardous hail events, particularly in the
Great Plains region, including Kansas. In 2022 alone, Kansas experienced 289 major hail
events, ranking it fourth among states in hailstone frequency after Texas, Nebraska, and
Minnesota. This highlights the pressing demand for effective measures to abate the costly
impact of severe hailstorms?°.

Among the states, Kansas leads in winter wheat and sorghum production in the US
and ranks among the top ten states for corn production. Agriculture contributes $81 billion
to Kansas's economy, with approximately 88% of the state's land dedicated to farmland for
crops and livestock. According to the Kansas Crop Planting Guide?®, winter wheat should
be planted from mid-September to late October, varying depending on geographic zones,
with harvest taking place the following summer. Corn and sorghum are typically seeded
between late April and mid-May. However, vulnerability to hailstorms, prevalent from
April to September, poses a threat to the pre-mature stages of wheat and silk corn, leading
to potential crop yield losses. The rapid onset of damage within minutes makes cloud
seeding programs desirable in Kansas to mitigate forecasted crop-damaging hail.

The Kansas Water Authority is the key entity managing the cloud seeding program in
Kansas?’. In the 1990s, the western part of Kansas was the primary target for cloud seeding.
However, a five-year program faced suspension due to protests led by the grassroots group,
Citizens for Natural Weather?®. Their opposition was not rooted in doubts about hail
suppression efficacy but in concerns that seeding clouds might alter local and adjacent
precipitation patterns. In 1999, four northern Kansas counties voted to withdraw from the
cloud seeding program. The present study focuses on the southwestern part of Kansas,
where 14 counties agreed to participate in the cloud seeding program in 2002 as shown in

Figure 7 (blue area).

24 The National Centers for Environmental Information (NCEI) identifies severe hail based on the diameter
of hailstones. Appreciable damage occurs only when the diameter is over 1 inch (25.4 mm). The threshold
for damaging hail size was adjusted in 2010 from 19.1 mm to 25.4 mm, as suggested by stakeholders (NCEI,
2009). It's worth mentioning that larger hailstones tend to be less spherical (Allen, 2020).

% See: https://www.iii.org/table-archive/22795.

26 See: https://bookstore.ksre.ksu.edu/pubs/1818.pdf.

27 Kansas Water Authority is within and as part of the Kansas Water Office.

28 See: https://www.latimes.com/archives/la-xpm-2000-jun-11-mn-39711-story.html
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Figure 7. Map of counties participating in the cloud seeding project (2002, Kansas)
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The Kansas Water Office executed an Operational Plan for the Weather Modification
Project, where the project manager made daily seeding decisions based on the Operation
Plan and meteorological data during the program's active period?, typically from April to
September. On a daily basis, the project manager assesses all available data to determine
the seedability of incoming clouds. If a seeding decision is made, the project manager
contacts the pilot and crew to confirm the seeding strategy. Following mission completion,
pilots report cloud responses and data to the operation center for analysis. The Operation
Plan acknowledges the potential spillover effect in adjacent areas, impacting not only the
downwind but also the upwind areas, with buffer zones set at 25 and 10 miles, respectively.

Cloud seeding programs in Kansas have dual objectives, focusing on both hail
suppression and rain augmentation. According to the Operation Plan, hail suppression
generally takes precedence over rain augmentation. However, adjustments are made based
on soil moisture levels and crop growth stages, with priority given to areas vulnerable to
hail risks. Additionally, when a convective cloud system is unstable, the seeding mission
shifts from rain augmentation to hail suppression. Operation records align with the
Operation Plan, revealing that from 2002 to 2020, cloud seeding days were 65% for hail
suppression and 35% for rain augmentation, as illustrated in Figure 8. Nevertheless, the
number of counties participating in the cloud seeding project has declined over time, with
no Kansas counties in the program since 2017 (see Figure 9). As of 2022, Kansas is no

longer affiliated with the North American Weather Modification Council.

2% Meteorological data comprise hourly observations, aviation terminal forecasts, severe weather warnings,
synoptic surface and upper air analyses, storm data within the operational area, and satellite imagery.
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III. Methodology
(1) Model

The cloud seeding program is a jointly funded initiative by county governments and
the Kansas state government. Each year, the state government invests around $240,000 to
support the radar system, which is the most expensive component of the program. County
governments decide annually whether to participate in the program and determine their
contributions based primarily on population.

To model the decision-making process, I adapted the framework developed by Brien
and Eger III (2021), which explores a jointly funded program between state and sub-state
governments. In this model, different levels of government compete to reduce their
contributions while still maintaining the provision of the public good. Brien and Eger III's
(2021) model builds on the work of Hettich and Winer (1984, 1988), who developed a
normative model of tax structure to identify the motivations behind government decisions.
Their model assumes that the aim of government officials is to maximize voter support,
rather than acting as altruistic or omnipotent social planners. In this model, there are M
county governments and one state government. County level elected officials seek to
maximize utility specifically related to the jointly funded program. For a representative
county j, there are N people living in the county.

County government official maximization problem:
N
Max U; = Z bi(a; - E)) — s(a“E}') — c;(vy)
i=1

Subjectto E, = L; + A

L .
where v; = FJ

The local government elected official decides whether to participate in the program,
with « as a binary variable (1 for participation, 0 otherwise). Once the county official
decides to participate, he/she then determines the annual expenditure, E, on the cloud
seeding program. When the county adopts the program, it generates benefit for the residents.
The political support to the county official can be expressed as b;(a * E), representing voter

i’s expected support for the county official due to the expenditure on cloud seeding program
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(Hettich and Winer, 1988). For example, spending on cloud seeding might reduce hail
damage to farmer i’s crops in the county, leading farmer i to support the county government
official and thus increase the likelihood of success in the next election. While the
expenditures (E) could in principle depend on other variables, for simplicity E is constant.

The political cost refers to the cost of levying taxes from taxpayers, represented by
the function c;(v;). In the function, v; may represents not only the taxes paid by voter i,
but also the broader deadweight loss associated with taxation (Hettich and Winer, 1988).
The specific definition of v; depends on the design of tax collection and the goals of the
research. Within the framework envisioned by Hettich and Winer (1988), all farmer
production functions and taxable activities are included in the model, whereas Brien and

Eger III's (2021) assume identical taxpayers, with each paying the same amount of tax for
the project, represented as v; = % I follow Brien and Eger III's (2021) in this research

because the focus is on the efficacy of cloud seeding program where local government
contributions to covering the cost of cloud seeding are based on population size®.

Expenditure on cloud seeding program is equal to the county government’s
contribution, denoted as L;, plus, the contribution from the state government, denoted as A.

One key difference in my model and that of Brien and Eger III's (2021) and Hettich
and Winer (1988) is the function of b;(). They assumed that db;/0E > 0, which indicates
that expenditure on the jointly funded program effectively corrects externalities. Although
cloud seeding is intended to suppress hail damage, its effect might be zero or even negative.
A key goal of this chapter is to test the effectiveness of cloud seeding program. If the
program results in a negative or zero impact on farmers in the county and leads to reduced
political support, the outcome to the maximization problem would be to terminate the
program, where a = 0.

For a cloud seeding program, the political support in the county might be influenced
by decisions made by upwind counties, i.e., a spatial spillover effect, represented by

s(aquu). As mentioned in background section, one potential and controversial spillover

effect of cloud seeding program is a reduction in rainfall in downwind areas. For example,

30 According to the Council Grove Republican, "County governments normally pay between $12,000 and
$35,000 each year to help finance the weather effort, depending on population" (May 7, 1996, p. 2).
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farmer i might experience reduced rainfall and adverse impacts on flood and crop
production, which could consequently lower the overall probability of voting for the
current government. Here, I have not accounted for farmers’ risk perceptions, but rather
assume that farmers accurately attribute the rainfall reduction to the cloud seeding program
rather than other potential causes, such as long-term climate trends.

The state government decides how much contribute to the cloud seeding program but

does not control how the funds are distributed among the counties. This is represented as

A =

J 2?4:1 aj

. Therefore, the fewer counties that participate in the program, the more

funding each participating county receives. However, reduced county participation may
affect the total contribution from the state, which in turn could influence both the efficacy
of the cloud seeding program and the potential support for it. For example, Kansas weather
modification program officials have noted that too many storms with too few aircraft for
cloud seeding missions can negatively impact the program’s effectiveness.

Additionally, the state government may be unwilling to contribute to the program if
the total contributions from local governments fall below a minimum service threshold, T.
If the combined expenditure of all participating counties is less than T, the state government
will contribute nothing, resulting in the termination of the jointly funded program. County
officials focus solely on their own maximization problem and are unaware of the threshold
set by the state government. The state government does not experience spillover effects. If
the total political support resulting from funding the cloud seeding program is positive, the
state government will pursue the political benefits, even if negative support exists from
county j. For the empirical examination, I use data to estimate the political benefit in the
form of crop production impacts including spillover effects from the cloud seeding program.
In the final section of Chapter II, I presented a cost-benefit analysis using estimated
parameters and costs.
(2) Empirical strategy

Based on the model introduced above, three major hypotheses are tested in this study:
Hypothesis 1: Based on the concept of beneficial competition (Detwiler, 2002),
participation in a cloud seeding program reduces the frequency and intensity of hailstorms

in the target area.
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Hypothesis 2: Participation in a cloud seeding program reduces hail damage to crops in
target areas.

Hypothesis 3: A spillover effect exists in cloud seeding programs for hail suppression and
rain enhancement in downwind areas.

The main idea of cloud seeding program as a damage control agent is based on the
concept of beneficial competition (Detwiler, 2002). It assumes that hailstorm frequency
and magnitude are functions of cloud seeding, where artificial embryos are introduced into
the clouds to compete with natural embryos in supercooled water. The result is an increased
production of smaller hailstones that hopefully melt before hitting the ground. Additionally,
I test for the presence of and determine whether spillovers are positive or negative.
Consequently, cloud seeding potentially reduces crop damage.

To achieve this goal, panel data and the specification presented in equation (1) are
employed. In equation (1), m; controls the characteristics of county i that do not vary over
a short period, such as altitude, referred to as county-fixed effects. Additionally, A,
represents time fixed effects, which is included in the model to account for unobserved,
time-specific factors—such as El Nifio—that could influence the dependent variable across
all counties. . Controlling for county and time effects helps to insure the comparability of

all observations.
Yt = a-seeding; + f - UWseeding + v Xiye + m; + Ap + pye (1)

Y;; represents a set of outcome variables in county i in year . | examined several outcome
variables that include hail frequency, hail magnitude, crop damage, and crop production.
The variable seeding;; denotes the cloud seeding program participation in county i in year
t, where 1 indicates participating in cloud seeding program, and 0 otherwise. The parameter
a captures the marginal effect of the cloud seeding program participation on outcome
variables. Additionally, UWseeding;, denotes the seeding decision in upwind county j of
county i in year ¢, with 1 indicating seeding and 0 otherwise. The parameter S captures the
spillover effect on outcome variables from the upwind seeding county on downwind county.
The vector X;; includes covariates such as moisture and temperature, will be discussed

further in the Data section below. Finally, u;; denotes the error term.
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IV. Data

For testing the hypotheses presented above, data from various sources are compiled:
(1) Cloud seeding data

The cloud seeding data used in this study are derived from the National Oceanic and
Atmospheric Administration (NOAA). In compliance with Federal Law®!, all weather
modification activities are mandated to submit weather modification project reports to
NOAA. For the Kansas cloud seeding program, based on cloud conditions the program
operator will call the pilots to standby for data collection or seeding missions. Once the
pilots seed the clouds, it will be recorded in the NOAA report. Even if a hailstorm travels
into a non-participating county, the program operator cannot require the pilot to execute a
seeding mission beyond the boundary of the participating county. Therefore, cloud seeding
activities only occur within the boundaries of participating counties. The dataset spans from
2002 to the present and includes information on the counties participating in cloud seeding
program.

(2) Hailstorm and weather data

Hailstorm data is obtained from the Next Generation Weather Radar (NECRAD). This
dataset provides comprehensive information about the location and magnitude of each
hailstorm. The frequency of hail is determined by the total number of hailstorms that
occurred during the growing season. The dataset spans from 1955 to 2022 and is aggregated
at the county level during the growing season.

Other weather-related data are extracted from the NOAA Climate Data Online (CDO)
dataset, which comprises weather observations from various stations. Data for each county
are aggregated from various stations within the county. The dataset includes information
such as maximum and minimum temperatures. From these data, I computed Growing
Degree Days (GDD) and Stress Degree Days (SDD) during the growing seasons, from

April to September, using the following formula:

Tmax + Tmin

GDD = max (0, — Thase)

31 Public Law 92-205, or “Weather Modification Reporting Act of 1972”.
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For GDD, the equation considers the daily mean temperature, calculated as the
average of the daily maximum temperatures, T4, and minimum temperatures, Tppip -
Tyase represents the base temperature for crop growth, which varies by crop type.
Specifically, it is set at 40 degrees Fahrenheit for winter wheat (McMaster and Smika, 1988)
and 50 degrees Fahrenheit for corn (Cross and Zuber, 1972). If the mean temperature falls
below base temperature, GDD is set to zero. The GDD accumulates throughout the growing
season. Based on the empirical strategy, I calculated three distinct GDD values for winter
wheat, sorghum, and corn. When estimating the impact on crop productivity, I used crop-
specific GDD for each crop. For analyzing the impact on crop damage, I chose a base
temperature of 40 degrees Fahrenheit, given that winter wheat is the predominant crop in
Kansas. This explanation is also included in the section describing the GDD calculation.

For SDD, the formula involves subtracting the upper temperature threshold Ty eshota
from the daily maximum temperature Ty, gy If Tinax 1S below Tipresnoia, SDD is set to zero.
The upper temperature threshold is consistent at 86 degrees Fahrenheit for all crops (Cross
and Zuber, 1972). When temperatures exceed 86 degrees Fahrenheit, crops may either

cease growth or incur damage.
SDD = max (0, Tinax — Tthreshota)

On a different note, crop growth relies on adequate moisture. The Palmer Z index, a
measure of moisture deviation from normal climate on a monthly basis, is employed. This
index, obtained from NOAA®?, distinguishes between wet and dry conditions. Following
Knowles and Skidmore (2021), the variables for dryness Dry;; and wetness Wet;, are

calculated as:
Dry;s = —min (0, PZ;;)
Wet;; = max (0,PZ;;)

A higher count of Dry;,/Wet;;, indicating a greater deviation from the normal climate,
indicates drier/wetter conditions in the county during the growing season. According to
NOAA, if Dry;; falls between 0 and 1.24, it indicates a normal climate, while a value above

2.75 indicates extreme drought. Similarly, if Wet;; falls between 0 and 0.99, it indicates a

32 See https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/.
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normal climate, and a value above 3.50 indicates extreme wetness. From Table 1, on
average, the moisture in Kansas during growing seasons is near normal.
(3) Crop data

Crop indemnity data is obtained from the USDA Risk Management Agency Cause of
Loss Historical Data Files. These data provide information on indemnity payments and loss
ratios for different perils, including hail, drought, and excess moisture (i.e. flood)®. The
crop loss ratio is defined as the total indemnity divided by the total premium. The total
premium comprises the premium paid by farmers plus public subsidy. The target crop loss
ratio for US crop insurance is 0.88, indicating that the insurance company retains 12% of
the premium to cover unexpected shocks. If the loss ratio exceeds 1, the insurance company
is in an unsustainable situation. Additionally, crop yield data for winter wheat, corn, and
sorghum, the top three major crops in Kansas, are included in the analysis. The crop yield
data are measured in bushels per acre and are sourced from the USDA®,
(4) Wind direction data

The wind direction data is obtained from the National Aeronautics and Space
Administration Land Data Assimilation System 2 (NLDAS-2) dataset, with a resolution of
0.25 degrees®. Using QGIS version 3.32.3, wind speed and directions were calculated
based on zonal velocity (U wind) and meridional velocity (V wind)®. In Kansas, the
prevailing wind during the growing seasons (April to September) generally comes from
the west, as depicted in Figure 10. This wind direction data is crucial for identifying

downwind areas.

3 In Kansas, 35.8% of indemnity is due to drought, 17.5% due to flood, and 8.2% due to hail.

34 See USDA National Agricultural Statistics Service: https://quickstats.nass.usda.gov/

%1 degree is equal to 69 miles.

3 The wind data from NASA is 10 meters above the surface. Although NOAA provided wind data under 17
levels, the resolution of data is 2.5-degree latitude x 2.5-degree longitude global grid.
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Figure 10. Wind direction in Kansas (2003 July)*’

Table 7 presents a summary of descriptive statistics. The data gathered from various
sources form an unbalanced panel, so the observation numbers differ for each variable. The
maximum recorded hail frequency is 94, indicating that 94 hailstorms were observed in
one county during the growing season (April to September), with an average of 10.32
hailstorm occurrences during the growing season. Furthermore, the magnitude of
hailstorms is evaluated based on the diameter of hailstones. On average, the diameter of
hailstones is 1.13 inches, which exceeds the threshold that causes damage to crop plants.
The largest hailstone recorded during the period of analysis in Kansas is 3 inches.
Additionally, note that the loss ratios for different perils are above 0.88, the design ratio of
the USDA. This suggests that the indemnity caused by extreme weather events might be
underestimated, and the premium may not be sufficient to cover the indemnity. Table 8

summarizes the definitions and data sources of the variables used in this study.

37 The Kansas shapefile is from USGS National Boundary Dataset:
https://www.sciencebase.gov/catalog/item/59fa9f5de4b0531197affb3 1
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Table 7. Descriptive Statistics for Kansas Sample (County-Level Data, 2002-2020)

Variable* Obs** Mean Std.dev. Min Max
Weather
hail frequency (times/year) 1,890  10.32 8.78 0 94
hail magnitude (inch) 1,890 1.13 0.33 0 3
rainfall (inch) 1,881 3.55 1.30 0.69 9.10
Loss Ratio
Hail 1,540 2.90 1.69 0.02 17.71
flood (excess moisture) 1,817 1.70 0.99 0.22 8.82
Drought 1,841 2.37 1.10 0 9.78
Yield (bushel per acre
Sorghum 1,418 6732 2292 13 134
winter wheat 1,855 40.82  10.12 12.1 80
Corn 1,654 118.72  38.24 18 225
Production (1,000 bushel)***
Sorghum 1,418 2,090 1,908 9.4 12,400
winter wheat 1,855 3,308 2,764 9.0 18,500
Corn 1,654 4,961 5,042 14.8 32,400
Environmental
GDD40 1,842 3923 835 0 5150
GDD45 1,842 3344 725 0 4535
GDDS50 1,842 2770 617 0 3922
SDD86 1,842 487 242 0 1532
Dry 1,890 0.43 0.70 0 3.52
Wet 1,890 0.60 0.79 0 4.46

* Data pertain to the entire year and are not restricted to the cloud seeding season.
**The sample 1s unbalanced, with varying numbers of years included for each county.
*** This represents the total annual production for each county in Kansas, measured in

thousands of bushels.
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Table 8. Variable definitions

Variable Definition Data Source
Hail Total number of hailstorms occurs in growing season in  Next Generation
frequency county i Weather Radar
Hail Average diameter of hailstones in growing season in Next Generation
magnitude county i (inches) Weather Radar
Rainfall Average rainfall in growing season in county i (inches) NOAA

Climate Data Online
Seeding Participation in a cloud seeding program by county i (0 NOAA
and 1)
UWseeding  Participation in a cloud seeding program by upwind NOAA and NLDAS-2
county of county 7 (0 and 1)
Dry Drought severity deviates from normal weather NOAA
conditions and is calculated using the Palmer-Z index.
Wet Wetness severity deviates from normal weather NOAA
conditions and is calculated using the Palmer-Z index.
GDD Growing degree day is a measure of heat accumulation NOAA
in the growing season, calculated by summing the Climate Data Online
difference between the daily temperature and the base
temperature™.
SDD Stress degree day is a measure of heat stress on crop NOAA
plants in the growing season, calculated by summing Climate Data Online
the difference between the maximum daily temperature
and 86 degrees Fahrenheit.
Loss ratio Total indemnity divided by total premium for each USDA Risk
peril Management Agency
Crop Yield  Crop production bushel per acre USAD
National Agricultural
Statistics Service
Crop Total production of crops (winter wheat, corn, and USAD
Production  sorghum) in 1,000 bushel National Agricultural

Statistics Service

* The base temperatures are 40 degrees Fahrenheit for winter wheat, 45 degrees Fahrenheit for sorghum, and
50 degrees Fahrenheit for corn.
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V. Results and discussion

In this section, I first present the core results obtained from using all Kansas counties.
However, to explore the robustness of the findings, I establish a subsample by
incorporating nearby counties in adjacent states into the evaluation. Using this broader set
of counties, I compute the propensity score for each county. Utilizing these propensity
scores, I match counties that adopted and did not adopt the cloud seeding program based
on propensity scores and present the estimation results accordingly. Finally, leveraging the
parameters derived from the estimation, I conduct an analysis of the costs and benefits
associated with the cloud seeding program in Kansas.
(1) Estimating the cloud seeding program impacts in Kansas

Table 9 presents the regression results and estimated effects of the cloud seeding
program on hail frequency and magnitude for all Kansas counties. The average size of
hailstones in Kansas is 1.13 inches, exceeding the size threshold that might potentially
cause damage to crops. The results indicate that cloud seeding programs show no
statistically significant effect on hailstorm frequency in target counties or downwind
counties. However, estimates indicate that hail size diminishes by 0.10 inches in target
areas, which is about 8%, but there is again no statistically significant effect on hail size in
downwind areas. Additionally, insufficient moisture in the air as measured by the Dry index
correlates with decreased hail frequency and magnitude. Moreover, there is an increase in
rainfall of about 0.26 inches in targeted regions, representing approximately 7.3%, with a
corresponding decrease of 0.08 inches in downwind areas, although this decrease is
statistically insignificant. These results suggest that cloud seeding has not resulted in the
“rain steal” phenomenon in this region.

Also, of interest is whether there is evidence that cloud seeding reduces crop damage.
In Table 9, the regressions results examining the impact of the cloud seeding program on
the crop loss ratio in Kansas are presented. The table reveals that the cloud seeding program
had no statistically significant impact on the crop hail loss ratio or the crop drought loss
ratio. However, the analysis revealed that the cloud seeding program is associated with an
increase in crop flooding damage. Flooding damage, indicative of excessive precipitation,
can impede farmers' ability to sow crops or lead to crop damage. As detailed in Table 9, the

cloud seeding program results in a notable rise in the flooding crop loss ratio by 0.54,
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around a 32% increase with a 99% level of significance. It is worth noting that the US crop
insurance typically reserves a 12% premium for severe and unexpected disaster losses, a
sum considerably lower than the observed increase. This suggests that the elevated flooding
crop loss ratio could present challenges to the financial sustainability of crop insurance
companies. In the long term, there may be implications for increased insurance premiums
and subsidies.

The existing literature may provide evidence to support the crop flooding damage
resulting from cloud seeding. Following cloud seeding missions for hail suppression, target
areas tend to experience heightened precipitation of 10% to 12% (Spiridonov et al., 2015;
Tuftedal et al., 2022). Furthermore, in cases where the cloud seeding mission is aimed at
rain augmentation, the target areas often encounter even more substantial increases in
precipitation. Drawing from experiences in other warm-season cloud seeding countries,
Almbheiri et al. (2021) conducted intensity-duration-frequency curves, revealing heightened
rainfall intensities post-cloud-seeding missions and elucidating the potential reasons
behind the significant urban inundation experienced by the United Arab Emirates in 2007
after seeding. Similarly, Yoo et al. (2022) observed a significant increase in runoff by
approximately 60% in Korea following cloud seeding. In Texas, individual cells witnessed
a 50 to 100% surge after seeding (Texas Natural Resource Conservation Commission,
1997).

Additionally, researchers assert that the speed at which rainfall occurs is understudied.
In the natural environment, storms usually endure for only two to six hours, and rainfall or
hail may fall steadily. However, experimental evidence suggests that cloud seeding can
trigger the generation of more hailstones or rainfall within a 30-minute timeframe. This
implies that precipitation is concentrated in a shorter duration, potentially explaining the
elevated flooding crop loss ratio observed after cloud seeding programs.

I also explored whether cloud seeding contributes to increased crop production or crop
yield by mitigating hail damage or enhance rainfall. Table 9 presents the impacts of cloud
seeding on major crops, namely winter wheat, corn, and sorghum. Cloud seeding has no
statistically significant effect on wheat or sorghum production in the target counties.
However, there is a statistically significant increase of 17.82 bushels per harvested acre in

corn yield, accounting for approximately a 15% increase. Conversely, in downwind
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counties, the spillover effect of the cloud seeding program results in a significant decline
of sorghum productivity by approximately 10 bushels per harvested acre, reflecting a
decrease of around 15%.

A potential explanation for these findings is that winter wheat can thrive in dryland
conditions, but production and yield may decline when moisture levels are excessively high.
These findings align with the patterns observed in Table 9. Also, less moisture as measured
by the variable Dry significantly decreases production and yield on crops, but it affects
wheat less than corn and sorghum. As anticipated, GDD contributes to increased crop
production and yield, while SDD is linked to decreased production and yield. However,

different crops exhibit varied responses to the Wet variable®®.

38 Corn vs. Grain Sorghum in Water Limited Scenarios:
https://www.cropquest.com/corn-vs-grain-sorghum/#
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Table 9. Cloud seeding effects (Kansas sample)

Weather variables

Crop loss ratio

Crop productivity

Hail Hail Hail Drought Flooding
. Rainfall Loss Loss Loss Wheat Corn Sorghum
frequency magnitude . . .
ratio ratio ratio
Seed -0.43 -0.10%* 0.26*** 0.29 0.11 0.54*** -0.66 17.82*** -2.03
(1.13) (0.05) (0.08) (0.26) (0.13) (0.16) (1.52) (3.54) (2.41)
UWseed 2.55 0.10 -0.08 -0.18 0.20 0.11 -3.04 5.65 -0.9R***
(1.59) (0.08) (0.11) (0.36) (0.19) (0.22) (2.23) (5.05) (3.36)
Wet 0.89*** 0.02 0.81*** 0.19** 0.12%%*  (0.24*** -0.69* 0.44 3.74***
(0.31) (0.01) (0.02) (0.08) (0.04) (0.04) (0.40) (1.04) (0.77)
Dr -1.79%** -0.06*** -0.50*** 0.43***  (.65***  (.26%*%* 3 57¥*k* _7TF¥*  _10.76***
y (0.45) (0.02) (0.03) (0.11) (0.05) (0.06) (0.56) (1.35) (1.01)
GDD 0.0002 -0.00001  0.0001***  0.0001 -0.0001 -0.0001 -0.0004  0.004***  (0.004***
(0.001) (0.00002) (0.0001) (0.0002) (0.0003) (0.0001) (0.0005) (0.001) (0.001)
SDD 0.0002 0.0001 -0.0002 -0.00001 0.0003 0.0005 0.002 -0.04***  _0.034***
(0.0002) (0.0001) (0.0002) (0.001)  (0.0003) (0.0003) (0.003) (0.007) (0.005)
County
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-square
Within 0.195 0.056 0.789 0.210 0.509 0.163 0.386 0.565 0.712
Between 0.029 0.004 0.527 0.161 0.040 0.019 0.067 0.001 0.226
Overall 0.136 0.051 0.565 0.197 0.482 0.135 0.327 0.208 0.599
Observations 1,842 1,842 1,835 1,842 1,800 1,774 1,615 1,426 1,193

*:10%, **:5%, ***:1% statistic significant.
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(2) Estimating the cloud seeding program impacts in West Kansas

The data used in the preceding estimations included all counties in Kansas. To ensure
robustness, the analysis is revised to include counties adjacent to Kansas in Colorado and
Oklahoma, forming control and comparison groups. To identify treated counties for the
analysis, I utilized a logit model to predict the probability of counties adopting the cloud
seeding program. The initial analysis focused solely on data from 2002, a year with a
relatively high number of adopting counties compared to other years. In the logit model,
variables such as downwind status, GDD, SDD, and the Palmer Z index were used to
estimate the probability of adoption. The main difference arises from using the Palmer Z
index rather than the Dry and Wet variables specified in the Data section (Section I'V). This
decision stemmed from the fact that 2002 experienced relatively dry conditions with lower
moisture levels compared to normal conditions. Consequently, most of the Wet variables
equated to zero, offering limited information due to the small sample size. Hence, I chose
to utilize the Palmer Z index, the original variable employed in generating the Dry and Wet
variables, in the logit model.

Based on the results of the logit model, I generated propensity scores for each county.
Subsequently, I ranked each county by the propensity and matched one county that adopted
the cloud seeding program to two counties that did not adopt the program but had similar
propensity scores. In other words, within each matched group, these three counties
exhibited similar tendencies to adopt the cloud seeding program. Consequently, I excluded
counties that were not matched, as they might confound the results. After matching, 36
counties were included in the evaluation, primarily concentrated in the western part of
Kansas, which is referred to as the West Kansas sample hereafter. In Figure 11, the counties
shaded in orange indicate the West Kansas sample.

In the Table 10 weather variable columns, the cloud seeding program similarly shows
no statistically significant impact on hailstorm frequency. In the West Kansas sample, the
cloud seeding program increases hail magnitude in downwind areas by 0.11 inches,
approximately 9%. In the appendix, Table A2 provides the results using all samples,
including Kansas and adjacent counties, and the impact of cloud seeding program on

hailstorm frequency and magnitude is both insignificant.
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In short, these results are consistent with the literature; the evidence suggests that the
cloud seeding program may not have a statistically significant impact on hailstorm
frequency and magnitude, or the impact is negligible (Bergant, 2011; Gavrilov et al., 2013;
and Rivera et al., 2020).
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Figure 11. Kansas and West Kansas sample counties

In the Table 10 crop loss ratio column, despite the increase in hail magnitude due to
the upwind cloud seeding program, the hail loss ratio does not exhibit a corresponding
increase in the downwind areas. According to the results, the cloud seeding program is not
statistically significant in the hail loss ratio regression. As observed in Table 9 crop loss
ratio column, the cloud seeding program also raises the crop flooding loss ratio by 0.50
(31%). Less moisture, as indicated by Dry, increases the loss ratio of drought and flooding
on crops. As mentioned earlier, intense precipitation is sometimes observed after seeding
events, and the intense precipitation can cause flooding, especially if the soil is dry.
Therefore, if the Dry indicator deviates more from normal weather conditions, damage to
croplands is more likely when intense precipitation occurs®.

The estimated effects of cloud seeding on crop productivity in Table 10 are similar to

Table 9. The cloud seeding program improves corn productivity in the seeded area by 8.5

per bushel per harvested acre, around 7%. However, the magnitude in West Kansas sample

39 See World Food Program “Why do floods follow droughts? Look to the Somali Region of Ethiopia”.
https://www.wfpusa.org/articles/floods-follow-droughts-ethiopia/
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is smaller than the full Kansas sample. However, the cloud seeding program decreases
sorghum productivity in downwind areas by 10.15, around 16%, which is similar to the
result of full Kansas sample.

In conclusion, the evidence presented in this chapter provides some evidence that
there is a statistically significant impact on hailstorm magnitude but not frequency.
Moreover, I found no evidence that cloud seeding reduced hail and drought indemnities on
crops. However, the analysis suggests that cloud seeding may have unintentionally resulted
in increased losses from excess moisture (i.e. flooding) in seeding areas. Finally, the results
suggest that there are spillover effects of the cloud seeding program on downwind areas,
and the results are robust among different samples. Cloud seeding is associated with an
increase in corn productivity in seeded areas and a decrease in sorghum productivity in
downwind areas. These findings may be because corn favors more moisture, while
sorghum is sensitive to excess moisture and flooding. While I found that the cloud seeding
program has an impact on crop productivity, the mechanism might not be due to the
beneficial competitiveness hypothesis but unintended changes in precipitation patterns,

such as increasing intense rainfall.
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Table 10. Cloud seeding effects (West Kansas sample)

Weather variables Crop loss ratio Crop productivity

. . . Hail Drought Flooding
Variable Hail Hz!ll Rainfall Loss Loss Loss Wheat Corn Sorghum
frequency magnitude . . .
ratio ratio ratio
Seed 0.30 -0.03 0.02 0.24 0.03 0.50%** -0.71 8.50** -2.59
(1.10) (0.05) (0.05) (0.23) (0.11) (0.18) (1.31) (4.06) (2.46)
UWseed 3.15%* 0.12%* -0.08 -0.17 0.13 0.06 -2.29 0.15 -10.19%**
(1.46) (0.06) (0.06) (0.31) (0.15) (0.25) (1.81) (5.47) (3.27)
Wet 0.18 -0.03 0.20*** 0.18* 0.09* 0.22%*** 0.39 2.70 4.6]1***
(0.44) (0.02) (0.02) (0.09) (0.04) (0.07) (0.56) (1.82) (1.06)
Dr -1.44** 0.01 -0.15%**=* 0.06 0.50*** 0.22%* W2 28%F% R 3K _](), ] 5F**
y (0.64) (0.03) (0.03) (0.15) (0.07) (0.12) (0.78) (2.31) (1.49)
GDD 0.001 0.0001 0.0002***  -.0.0002 -0.0002 -0.0002 -0.003* 0.005 -0.001
(0.001) (0.0001) (0.0001) (0.0003) (0.0001) (0.0002) (0.001) (0.005) (0.003)
SDD -0.001 -0.0002 -0.00] *** 0.001 0.001* 0.001 0.007 -0.026* -0.011
(0.003) (0.0002) (0.0002) (0.001)  (0.0004) (0.001) (0.004) (0.014) (0.008)
County
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed- Yes Yes Yes Yes Yes Yes Yes Yes Yes
effects
R-square
within 0.220 0.138 0.637 0.272 0.670 0.198 0.689 0.396 0.748
between 0.015 0.004 0.324 0.057 0.184 0.005 0.0004 0.117 0.127
Overall 0.173 0.114 0.241 0.239 0.612 0.160 0.539 0.147 0.538
Observations 638 638 641 617 615 587 498 454 466

*:10%, **:5%, ***:1% statistic significant.
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(3) Cost-Benefit analysis of cloud seeding program

The cloud seeding program has two primary purposes: to preserve water resources in
Western Kansas Groundwater Management District No. 1 and to reduce hail damage
through rain enhancement and hail suppression. In the previous section, I presented
evidence that the cloud seeding program increases precipitation by an average of 0.26
inches in target areas during the growing season. While this outcome generates a benefit
from a water resource management perspective, the evaluation also shows that it raises
crop loss ratios due to unintended flooding. Estimating the value of aquifer recharge falls
beyond the scope of this research. Moreover, the flood damage to crops is already reflected
in crop yield data; combining crop yields and flood damage into the cost-benefit analysis
would result in double-counting.

According to Sophocleous (2015), farmers in western Kansas withdraw groundwater
for irrigation at a rate 12 to 40 times greater than the rate of aquifer recharge. Additionally,
the Kansas Department of Agriculture reports that approximately 85% of water discharge
is used for irrigation*®. Therefore, changes in productivity (e.g., corn yield) due to the cloud
seeding program may serve as a proxy for the value of water resources and the damage
caused by flooding. In the remainder of this section, I calculate the costs and benefits of
the cloud seeding program from the perspective of both county and state governments.

(a) County Government

In the model presented in Section III, county government officials maximize net
political benefits by deciding whether to participate in the cloud seeding program. County
officials may choose to prioritize majority interest groups in the county to gain more votes.
In counties that participate in the cloud seeding program, a major contribution to Gross
Domestic Product (GDP) comes from the agricultural sector. The Regional Economic
Analysis Project estimates Kansas’s GDP by county from 2017 to 2022, indicating that in
most counties involved in the cloud seeding program, over 40% of GDP is attributed to
agriculture (see Figure 12). Therefore, it is rational for county government officials to make
decisions that protect farmers' interests and gain their political support. Consequently, in

the cost-benefit analysis conducted from the perspective of county government, the

40 See the Kansas Department of Agriculture: https://www.agriculture.ks.gov/divisions-programs/division-
of-water-resources/water-appropriation/water-use-reporting.
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benefits of cloud seeding include increased productivity, while the costs involve spillover

effects and expenses associated with the project.
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Figure 12. Agriculture's Contribution to County GDP (Percentage)

In Table 11, I present the net social benefit (NSB) for each county that participated in
the cloud seeding program from 2002 to 2016, where NSB is equal to social benefits minus
social costs. The values are expressed in real terms (2002 dollars), without discounting.
This approach was chosen because county government officials typically make decisions
based on one-year timeframes, often overlooking long-term benefits (the benefits of the
program are realized in the following year, making the evaluation period relatively short).
Furthermore, as noted by Boardman (2018), empirical evidence suggests that county
governments are less concerned with discount rates when allocating budgets to projects®!
I converted the costs and benefits for county governments from nominal to real terms using
the Consumer Price Index, with 2002 as the base year.

In addition, the net present value (NPV) for each county is also provided. I use
Equation (3) to estimate the present value of the net social benefits from the cloud seeding
program, discounted back to 2002. NSB, represents the net social benefit from the cloud
seeding program during period ¢. The discount rate (r) used here is sourced from the Office
of Management and Budget for 2002. To demonstrate that the overall assessment is not
sensitive to the discount rate, I also apply a real discount rate of 3.1% for 10-year projects

and 3.9% for 30-year projects.

41 However, I also provided the Net Present Value, calculated using equation (3), in Table 5.
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NSB.
NPV = 32 3)

The cost of the cloud seeding program encompasses both state and county government
budgets. Data on the state government budget are taken from The Governor’s Budget
Report, focusing on the portion allocated to the Kansas Water Office for weather
modification. County government budget information is obtained from the Kansas
Department of Administration. For Gove, Haskell, and Wallace counties, where specific
data are unavailable, the average expenditure across all participating county governments
is used as a substitute. On average, each participating county contributed $19,225 annually
to finance the cloud seeding program. Consequently, the total annual cost of the cloud
seeding initiative in Kansas amounts to approximately $367,880, including variable and
fixed costs.

The benefit of a cloud seeding program is the productivity gain in corn. However, the
estimates indicated that the downwind counties experience a productivity loss in sorghum
due to spillover effects, even after opting out of the cloud seeding program. Therefore, I
calculate the cumulative benefit for each county over the entire period of cloud seeding
program, from 2002 to 2016.

The benefit computation involves multiplying the yield gain and loss per acre by the
total harvested acres in each county and the respective price per bushel of crops in Kansas.
The yield changes attributable to the cloud seeding program are determined by the
parameters estimated from Table 4, the productivity gain of corn is 8.5 bushels per acre
and the productivity loss of sorghum is 10 bushels per acre*?. These parameters serve as
the basis for conducting the cost-benefit analysis for the affected counties. Key data sources
for this analysis include the USDA National Agricultural Statistics Services, which
provides information on the harvested acres of corn and sorghum in each county, as well

as the prices of these crops. The price used here is the average crop price for the year*®.

421 also estimated the cost-benefit results using the parameters from Table 9: the productivity gain for corn
is 18 bushels per acre, and the productivity loss for sorghum is 10 bushels per acre. Please see Table D1.

43 The USDA NASS dataset provides monthly crop prices only, and the price used for the cost-benefit analysis
is the average annual crop price.
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Table 11. Net Benefit and Net Present Value of Counties Participating in the Cloud
Seeding Program (2002-2016)

Number of years

participating in

Net benefit

Net Present Value

County ] (2002-2016) Real discount Real discount
program during
2002-2016 (real 2002 dollars) rate 3.1% rate 3.9%
Finney 10 1,831,075 1,426,941 1,345,617
Gove 2 790,496 611,813 575,094
Grant 8 4,873,625 4,101,933 3,939,103
Gray 10 2,959,406 2,404,498 2,287,780
Greeley 6 6,189,554 4,649,501 4,331,813
Hamilton 11 5,506,160 4,586,679 4,393,534
Haskell 8 17,803,679 14,700,000 14,000,000
Kearny 13 2,015,673 1,382,509 1,252,628
Lane 14 -8,631,244 -7,137,036 -6,820,124
Scott 14 -2,517,396 -1,800,892 -1,657,309
Stanton 6 8,702,797 6,554,645 6,118,098
Stevens 2 4,375,014 3,237,275 3,001,360
Wallace 2 1,076,670 737,243 670,059
Wichita 11 7,220,984 5,869,599 5,571,474

Based year: 2002.

The resulting of the cost-benefit analysis are presented in Table 11. The benefits vary
depending on the major crops in the county, the number of years participating in the
program, and spillover effects from adjacent counties. Overall, the net benefits for most of
the participating counties are positive, even with different discount rates. For example,
Stevens County participated for two years, generating a net benefit of 4 million dollars.
However, Lane and Scott Counties participated in the program over the entire period of
analysis and experienced negative net benefits because of spill over effects on sorghum.
(b) State Government

The state government, rather than county governments, is responsible for investing in

and maintaining the program's capital, such as radar systems, offices, and aircraft. In doing
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so, the state should also account for discounting the overall project. While county
governments may focus on gaining political support within their jurisdictions, the state
government must consider potential impacts on downwind counties that did not participate
in the program but were still affected by seeding activity. These counties, which did not
participate in the program, experienced downwind effects due to their proximity to the
seeded areas. The externalities for these counties were included in the analysis.

Table 12 presents multiple sets of NPV estimates to show that the results are not
sensitive to the choice of discount rates**. Counties not participating in the cloud seeding
program but were affected by spillover effects experienced total losses of approximately
$30 million over the period. Participating counties, when accounting for the discount rate,
gained around $40 million. Although some counties showed a negative net present value,
the overall benefit remains positive.

The Kansas Water Office estimated the return ratio of the cloud seeding program in
six target counties in Kansas (Eklund et al., 1999). Their report concluded that the program
reduced crop damage, resulting in a return ratio of 37 based on this reduction. Similarly, in
a study by Knowles and Skidmore (2021), the cloud seeding program in North Dakota was
found to generate a return ratio of around 37. In the present research, without considering
downwind counties, the discounted net present value of the 14 Kansas target counties is
$41,324,710, while the discounted cost is $4,098,507, resulting in a return ratio of
approximately 10. However, when spillover effects are taken into account, the return ratio
decreases to around 3. These results are consistent with past literature, which also reported
positive return ratios for cloud seeding programs in Kansas and North Dakota.

Even with a favorable cost-benefit ratio, the state government still terminated the
program. The potential explanation is that the state government is also pursuing political
support based on the model in Section 3, but the spillover effects shown in Table 12 might

result in disapproval in counties experiencing negative impacts.

441 also estimated the cost-benefit results using the parameters from Table 9: the productivity gain for corn
is 18 bushels per acre, and the productivity loss for sorghum is 10 bushels per acre. Please see Table D2.
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Table 12. Net present value of cloud seeding program in Kansas

Net present value
(2002-2016)

Real Discount Rates Real Discount Rates
3.1% 3.9%
NPV (participating) 39,009,128 41,324,710
NPV (non-participating) -28,031,183 -29,149,102
Overall 10,977,945 12,175,608

Base year: 2002.
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V. Conclusion

Hail damage to agriculture often receives inadequate attention, particularly in regions
like Kansas, where frequent hailstorms result in significant crop losses. To mitigate hail
damage, the Kansas state and county governments implemented a cloud seeding program
aimed at suppressing hail while also enhancing regional precipitation. This study examines
the program’s effectiveness using various measures, including its impact on hailstorm
frequency and intensity, crop damage, and crop production, while accounting for potential
spillover effects.

When using the frequency and intensity of hail to evaluate the efficacy of the cloud
seeding program, my empirical findings indicate that the program lacks a statistically
significant impact on reducing hail frequency and intensity, or the observed impact is
negligible. This is consistent with empirical findings from Slovenia, Serbia, and Argentina
(Bergant, 2011; Gavrilov et al., 2013; and Rivera et al., 2020). While the program decreased
average hailstone size by about 8%, from 1.13 inches to 1.03 inches, the average size of
the hailstones is still greater than 1 inch, which is considered a potentially harmful size by
NOAA. This may explain why cloud seeding does not yield a statistically significant
reduction in crop loss ratios associated with hail in this study. However, I also observed an
increase in precipitation within targeted areas. Similarly, the analysis shows no evidence
of reductions in crop loss ratios due to drought.

Interestingly, the evidence identifies an unintended consequence: the program is
linked to an increase of approximately 32% and 35% in crop flood loss ratios in cloud-
seeded counties, as revealed in both Kansas and West Kansas samples. This result aligns
with previous findings showing that precipitation intensity often rises sharply following
cloud seeding missions (Almheiri et al, 2021; Spiridonov et al., 2015; Texas Natural
Resource Conservation Commission, 1997; Tuftedal et al., 2022; and Yoo et al. 2022).
Additionally, flooding may result from seeding conducted after drought conditions, where
overly dry soil is not able to effectively absorb water. I also examined potential downwind
effects of the Kansas cloud seeding program. First, the evidence provides no support for a
“rain theft” phenomenon among counties; when an upwind county participates in cloud
seeding, downwind counties do not experience a change in rainfall during growing season.

Second, cloud seeding may provide additional benefits such as increased rainfall or
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potential underground water recharge. The findings indicate that downwind counties
experienced approximately a 15% loss in sorghum productivity, as evident in both the
Kansas and West Kansas samples. Simultaneously, seeded counties experienced increased
corn production of 15% and 8.3%.

The findings regarding crop productivity are robust, and the aggregate net benefit and
net present value of the cloud seeding program are positive based on the estimations.
However, the overall outcome may not be entirely advantageous, as the analysis presents
potential unintended consequences. There are limitations of the study due to data
constraints, specifically the absence of information on seeding dates and locations. Use of
county level data, as reported in this chapter, could potentially lead to an overestimation of
the impact of cloud seeding because hail damage is often localized, occurs in narrow,
elongated zones rather than uniformly affecting the entire crop fields.

Given the vast expanse of cropland in the U.S., relying solely on crop insurance can
impose significant financial burdens on both farmers and taxpayers*. Another alternative,
such as anti-hail nets (Gandorfer et al., 2016; Porsch et al., 2018; Rogna et al. 2021; Rogna
et al., 2022), are not feasible for large-scale farms or ranchers due to their cost and
practicality, , and large hailstones can still penetrate these nets (Childs et al., 2020).

Cloud seeding remains a promising approach for reducing hail damage across
extensive agricultural areas. First, advancements in technology, such as the use of
uncrewed aircraft systems, have the potential to improve the efficiency and effectiveness
of seeding operations (DeFelice et al., 2023). Second, future discussions should focus on
optimizing project design and addressing spillover effects. Introducing a compensation
mechanism for affected areas could mitigate negative externalities and enhance the
program’s sustainability. More research is needed to better understand the efficacy of cloud
seeding and its broader impacts. Continued exploration of this technology is vital for
developing innovative, cost-effective solutions to mitigate hail damage and support the

agricultural sector.

% On average, producers only pay 40% of the premium, see: https://www.ers.usda.gov/topics/farm-
economy/farm-commodity-policy/title-Xi-crop-insurance-program-provisions/

46 Average farmland sizes are 60 ha and 11 ha in Germany and Italy, respectively. In the USA, the average
farmland size is 445 ha, and it might be the reason why farmers could not establish anti-hail net. Therefore,
cloud seeding might be a more cost-efficient way to avoid hail damage.
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CHAPTER 3: Factors influencing policy termination

I. Introduction

Hailstorms have caused economic losses of approximately $35.8 billion in the United
States (US) over the past two decades (NOAA, 2024). Weather modification, specifically
cloud seeding, is a promising tool to mitigate hail damage as well as alleviate drought*’.

According to the National Oceanic and Atmospheric Administration (NOAA), Kansas,
Oklahoma, and Texas are among the most hail-prone areas in the US*®, Due to this exposure,
Kansas adopted cloud seeding from 1975 to 2016 for both hail suppression and rain
augmentation. While the state government provided funding for the weather modification
program, it required financial sponsorship from county governments to provide radar, pilot
and aircraft, and seeding material. County government officials could then decide whether
to participate in the program, which required budget allocations based on population size.

According to NOAA’s weather modification report, the number of county
governments participating in the program steadily decreased each year from 2002 until the
state government suspended the program in 2016 due to tight funding. Also, during the
2002 to 2016 period several counties opted out and later rejoined the program. These
observations suggest that there might be other potential factors influencing cloud seeding
program termination decisions. For example, in the late 1990s farmers in Southeast
Colorado expressed a concerns that cloud-seeding makes more hail for areas next to the
targeted zones®. In the early 2000s, farmers in Kansas stated: “We don  question that cloud
seeding is reducing hail. We just want to make sure it’s not hurting the total precipitation
in our area®™.” These concerns led farmers in northwest Kansas to form a grassroots
organization, Citizens for Natural Weather, to oppose the cloud seeding. This background
information suggests that there are a variety of potential factors that may influence

decisions at the local level to exit the cloud seeding program; this paper offers an

47 The principle of cloud seeding involves injecting fine particles into clouds to stimulate the hailstone, rain,
or snow generation process. The goal of cloud seeding in Kansas generate smaller hailstones and/or increase
rainfall.

8 See Severe Weather Maps, Graphics, and Data Page from NOAA:
https://www.spc.noaa.gov/wem/index.html#data

49 See: https://www.chieftain.com/story/special/1997/03/01/kansas-cloud-seeding-plan-
worries/8762492007/

%0 From Kansas State Historical Society dataset: https://kansashistoricalopencontent.newspapers.com/
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investigation of these potential factors.

Relative to analyses of policy adoption decisions, the research on policy termination
is scarce. Policy termination theory emerged in the late 1960s to define policy termination,
explore its rarity, and establish a theoretical framework. By the early 2000s, policy makers
in debt burdened industrialized countries sought guidance regarding the conditions for
terminating public investments and focused on the determinants of policy termination
(Bauer, 2009; Ferry and Bachtler, 2013). Case studies dominate empirical research on
policy termination, covering topics such as international trade (Rhee and Jang, 2022), tax
incentives (Thom, 2021), regional development (Ferry and Bachtler, 2013), climate policy
(Krause et al., 2016), and wage laws (Hwang, 2021). However, only one paper examines
policy termination in the context of disaster risk reduction: termination of the face mask
policy in the U.S. (Wang and Liu, 2024).

Disaster risk reduction policies are designed to enhance social, economic, and
environmental resilience®. The goal of this paper is to investigate the potential factors
influencing cloud seeding program termination decisions at the county level, thereby
helping to address a gap in the research on policy termination within disaster risk arena.
Moreover, discussions on policy termination often focus on national or state-level
suspensions, with only a few papers examining decision-making processes at the local
government level (Krause et al., 2016; Lamothe and Lamothe, 2015). This paper also aims
to fill the gap by providing insights into the local government decision-making processes.

Specifically, in this paper cloud seeding program termination decisions by Kansas
county government officials are studied. The empirical analysis begins with a Logit model
to explore factors associated with the participation of the cloud seeding program over the
2002-2013 period. In addition, a Cox proportional hazard model is used to assess potential
factors influencing the termination decision-making process. The present study examines
four hypotheses derived from policy termination theory: fiscal stress, project efficacy, the
diffusion effect, and political ideology. Each of these hypotheses is discussed in greater

detail in the body of the paper.

51 See the explanation from United Nations Office for Disaster Risk Reduction:
https://www.undrr.org/terminology/disaster-risk-reduction
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As aprelude to the full set of findings, the Logit analysis reveals county characteristics
the influence the likelihood of county participation in the cloud seeding program: counties
experiencing more frequent hailstorms, with higher levels of Republican support, and
surrounded by neighboring counties that use clouding seeding are more likely to participate
in the program. The Cox proportional hazards model offers an evaluation of factors
influencing program termination among those counties that participated in the program.
This evaluation indicates that among counties that adopted the cloud seeding program,
termination is more likely in a county that experienced higher hail damage/losses in the
previous year. Counties are also more likely to terminate the program if neighboring
counties adopt cloud seeding, possibly due to the rapid spread of hailstorms across multiple
counties, which may generate a free rider problem. Interestingly, fiscal stress and political
ideology did not show significant influence on the likelihood of program termination.

The remaining parts of this paper are as follows: Section II provides background on
the Kansas cloud seeding program. Section III reviews the literature on policy termination
and presents a more detailed discussion of the hypotheses examined in this paper. Section
IV and V present the data and empirical strategy, respectively. The results and conclusions

are demonstrated in Section VI and VII.
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II. History and background of cloud seeding programs in Kansas

The cloud seeding program in Kansas serves dual purposes, focusing on both hail
suppression and rain augmentation, where hail suppression generally takes precedence
over rain augmentation. Operational records indicate that from 2002 to 2016, cloud seeding
days were allocated 65% for hail suppression and 35% for rain augmentation.

It is not a coincidence that counties adopting the cloud seeding program are
concentrated in western Kansas (See Figure 13). Annual precipitation in western Kansas
ranges from 13 inches to 30 inches, while in eastern Kansas it ranges from 30 inches to 50
inches. Additionally, Kansas' elevation rises from east to west, with the highest elevations
exceeding 4,000 feet and the lowest near 700 feet above sea level in eastern Kansas.
Elevation is closely related to hailstorms and potential hail damage. The freezing level in
convective cloud systems is closer to the ground in higher elevation regions. Consequently,
even less intense thunderstorms can produce hail because the relatively high elevation
creates a natural freezing level for thunderstorms. Furthermore, hailstones can remain at
the freezing level longer and grow larger. Hailstones of over 1 inch in size can potentially
cause damage. To summarize, , western Kansas experiences dry conditions and frequent

hailstorms.

—! [

Figure 13. Map of counties participating in the cloud seeding program (2002,

Kansas)
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In 1972, severe drought damaged Western Kansas agriculture, prompting local
governments to request state intervention. The State Finance Council approved $100,000
in emergency funds to implement cloud seeding in northwest Kansas for drought relief.
The Kansas Water Resources Board worked with the U.S. Bureau of Reclamation to
oversee the cloud seeding pilot project. However, before the project could be executed,
moisture conditions improved, shifting the project's goal to experimenting with cloud
seeding in nature.

Colby City in northwest Kansas conducted the first cloud seeding experiment in 1972
over a nine-week period. In 1973 and 1974, four counties joined the pilot project. The
Kansas Water Resources Board published special report, which stated: “The fact that a
portion of the funds supporting the Kansas cumulus projects came from county sources was
an indication of at least localized interest in operational cloud seeding®.” Increasingly,
county governments showed their support: After the Kansas Weather Modification Act
passed in 1974, eleven counties applied for permits and licenses to operate cloud seeding
programs.

Residents in the county expressed their opinions to county commissioners about
sponsoring the program. The county commissioners then voted and allocated funds in the
following year. The agency operating the cloud seeding program in the region was the
Western Kansas Groundwater Management District No. 1 (GMD]1, see Figure 14). In each
year of the program, GMD1 held an annual meeting to promote the cloud seeding program.
In 2012, GMDI1 supported the weather modification program®, but also provided extra
funding of $20,000 to each participating county®*.

52 See the reference Kostecki (1977).

%3 State government provides support for the most expensive part of the program, including a highly sensitive
radar system, telecommunications, and a data link for computing.

% See https://www.cjonline.com/story/news/politics/state/2012/09/04/drought-hurting-kansas-programs-
rain-effort/16422352007/
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Figure 14. Groundwater Management Districts in Kansas

However, members of the public have different opinions about cloud the seeding
program. In the November 28, 1994 edition of the Council Grove (Kansas) Republican®®,
an article stated: “Officials at the Kansas Water Office in Topeka want Kansas taxpayers
to give them $390,000 to mess with nature.” The same article quoted Cloud seeding project
Manager Keith Lebbin “Who doesn t mess with Mother Nature? If you have a section of
land and grow anything but buffalo grass, you ’re messing with Mother Nature. Every time
you start your car, you re messing with Mother Nature.”

In addition to ethical questions, there are also practical concerns about the cloud
seeding program. The Groundwater Management District Number 4 (GMD4) held 20
public meetings to launch a five-year cloud seeding program starting in April 1997 (see
Figure 2). However, opposition to cloud seeding among farmers in the region was

evidenced by the formation of an organization called Citizens for Natural Weather.

% From Kansas State Historical Society dataset: https://kansashistoricalopencontent.newspapers.com/
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According to a newspaper article dated May 18, 1998%, the farmers stated: “We don t
question that cloud seeding is reducing hail. We just want to make sure it’s not hurting the
total precipitation in our area.” In 1999, counties within GMD4 opted out of the weather
modification program. Moreover, Rawlins County sued GMD4, challenging the authority
of the local government.

Based on research by the Kansas Water Office, the benefit-cost ratio of the cloud
seeding program is 37:1°’. This ratio indicates that an investment of one dollar can generate
an additional 37 dollars in crop yields for the sponsoring counties, excluding other potential
benefits. Despite evidence of the program's high return on investment, it was suspended in
2016. The stated reason for suspension was a tight Kansas Water Office budget®®.
Moreover, even though the cloud seeding program is highly subsidized, the number

of participating counties decreased from a maximum of 17 to just 2 before the state halted

the program, as shown in Figure 15.
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Note: In total, there are 105 counties in Kansas. 2007 data is missing.

Figure 15. Numbers of counties participating in Kansas cloud seeding program

% From Kansas State Historical Society dataset: https://kansashistoricalopencontent.newspapers.com/
57 See the webpage of WKGMD#1: https://www.gmd1.org/weather-program/.
%8 See the webpage of WKGMD#1: https://www.gmd1.org/weather-program/.
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III. Policy Termination and Hypothesis

Relative to extensive analyses of policy adoption decisions, the research on policy
termination is scarce® (DeLeon, 1978) and understudied (Geva-May, 2001; and Lamothe
and Lamothe, 2015). DeLeon (1978) defined policy termination as the complete cessation
of functions, programs, organizations, and projects by the government. However, there is
still some debate about the concept of policy termination, as policies may not be terminated
entirely but rather modified or adjusted in different forms (Hogwood and Peters, 1982).

DeLeon (1978) categorized two types of policy termination: strict termination and
partial termination. Strict termination means that the functions, programs, and projects of
the government stop and cease entirely. There are two extreme cases of strict policy
termination: the first is when the policy has fully achieved its goals and is no longer needed;
the second is when the policy exacerbates the situation and is terminated. Partial
termination involves reconsidering the policy due to redundancy, obsolescence, or
dysfunction, and then terminating or revising government functions, organizations,
programs, or policies. Partial termination is equivalent to policy adjustment or policy
succession (Hogwood and Peters, 1982; and Ferry, 2013).

In the context of the cloud seeding program in Kansas, neither state nor county
governments have used the program since 2016. Moreover, as of 2023 Kansas is no longer
a member of the North American Weather Modification Council. Although the Kansas
government has not abrogated the Weather Modification Act, the Kansas cloud seeding
program was effectively terminated at the state level after 2016. Note also that prior to
2016 a number of county governments halted their participation in the program.

However, cloud seeding program termination does not fully align with the description
of strict termination. First, it is impossible for a risk reduction policy to fully achieve its
goal of fully eliminating natural disaster risk and thus be no longer needed. Second, there
is no strong evidence that the cloud seeding program exacerbated hail damage, although
most farmers were concerned about spillover effects such as decreased precipitation. On
the other hand, the cloud seeding program also does not meet the definition of partial

termination, as there is no similar program to replace weather modification for hail

%9 A simple keyword search in the Web of Science Core Collection yielded 79,471 results for policy adoption
and 3,052 results for policy termination.
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suppression purposes.

Although there are gaps in the theory, the focus of policy termination research has
shifted from establishing a general policy termination theory to identifying the
determinants of policy termination due to practical needs (Ferry and Bachtler, 2013). More
importantly, the understudy of policy termination is at least partly due to its infrequent
occurrence (Bardach, 1976), which has led most termination studies to concentrate on
qualitative case studies or perspective analysis (Lamothe and Lamothe, 2015).

Lamothe and Lamothe (2015) were the first to combine policy termination theory with
policy diffusion theory and the make-and-buy concept from a different literature, providing
a quantitative analysis. This work has inspired the emergence of more quantitative research
on policy termination (Li, 2017; Miao, 2019; Hwang, 2021; Rhee and Jang, 2022), with
empirical studies employing various theories from different fields depending on the policy
context (see Table 13).

Table 13. Related theories and potential factors/pathways

Theory Potential factors or pathways

* Fiscal stress
Policy termination theory (Kaufman, < Political ideology
1976; deLeon, 1978) * Program effectiveness
* Interest group influence
* Regional diffusion (Neighbors)
* Leader-laggard diffusion (innovation)
» Vertical diffusion (Federal/State/County)

Policy diffusion theory (Berry and
Berry, 2014; Li, 2017; Hwang, 2021)

Policy entrepreneur literature
(Geva-May, 2004; O’Neill et al.;
2018; Hatch and Mead, 2021; )

Public choice theory (Tiebout, 1956)

* Entrepreneur can reduce the cost of
government learning new knowledge

* Redistributed services
* Services delivered by special districts
* Cost of termination (financial, political,
emotional, or legal)
Make-or-Buy Literature (Geva-May, ¢ Transaction cost (provide service by
2001; Lamothe and Lamothe, 2015) contract with the third party)
* Previous Service delivery modes (private
for profit company or market)

* Political support and economic foundation

Hettich and Winer
of tax structure
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Based on the literature and the context of cloud seeding in Kansas, I propose four
hypotheses that might influence the termination decision.
(1) Fiscal stress

Fiscal stress is a factor influencing county government decisions to terminate policies
(DeLeon, 1983). When faced with a tight budget, the government official might have the
incentive to terminate policies or cut back budgets to reduce expenditure and save money
(Kirkpatrick et al., 1999). Some empirical research indicates that governments with poor
fiscal health tend to terminate public services (Graday and Ye, 2008). However, more
empirical findings show that fiscal stress does not play a significant role in policy
termination (Volden, 2010; Krause, 2016; Hwang, 2021).

In the case of the cloud seeding program, it was stated that GMD1 ceased operations
due to a tight budget. However, for county governments, the cloud seeding program is
highly subsidized, making it unlikely to be terminated unless local fiscal stress is severe
and other services must be prioritized.

Hypothesis 1: The probability of terminating the cloud seeding program increases if the
local government faces fiscal stress.
(2) Political ideology

Political ideology often plays a dominant role in determining a policy’s continuation
or termination (deLeon, 1983, 2002; Volden, 2010). First, the current party might want to
terminate existing policies if they have an opposing political affiliation (Bardach, 1976;
Berry et al., 2010; Birchall, 2014; Ragusa, 2010). Second, different parties or political
affiliations have different preferences, such as being more conservative or more
welcoming of emerging ideas and new technology. Empirical studies have discussed how
political ideology affects the termination of face mask policies during COVID-19 (Wang
and Liu, 2024) and policies related to extreme weather events (Gould et al., 2024).
Conversely, policymakers may try to maintain the status quo and prevent the termination
of current or existing decisions, which might be linked to concerns about failure or
incompetence (Diir, 2001; Thom, 2020).

In Kansas, most counties support the Republican Party, but the level of support
varies between counties. This variation might influence decisions to terminate the cloud

seeding program.
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Hypothesis 2: The probability of terminating the cloud seeding project increases if the
political party affiliations are more conservative.
(3) Program effectiveness

The goal of government is to provide effective programs and policies to improve
social welfare. Therefore, it seems straightforward to terminate a policy if it proves
ineffective (deLeon, 1983; Turnhout, 2009). However, there are three reasons why a policy
might not be terminated even if the program is inefficient. First, many public policies are
ineffective due to political inefficacy (Shipan & Volden, 2008), meaning governments lack
the capability to implement well-designed policies, sometimes turning them into harmful
ones (Khoshnevis and Chelleri, 2018). Therefore, most governments prefer to keep the
program and improve implementation efficiency rather than terminate existing policies.
Second, policy evaluations are rarely purely objective, and many factors can undermine
the credibility of evaluations (Thom, 2021). Kasdin and McCann (2019) surveyed federal
governments and found that the probability of terminating low-effectiveness programs is
not higher than for those rated highly effective. Moreover, from the sponsor's perspective,
program ineffectiveness is the main reason for termination, but from the non-sponsor's
point of view, effectiveness of the program is often irrelevant to policy termination. Finally,
in the literature, while program effectiveness may be a crucial factor, the complexity of
policies, especially high-level policies that encompass multiple programs, makes it difficult
to use a single index or perspective to assess program effectiveness or agency performance
(Krause, 2016; Thom, 2021).

The evaluation of the efficacy of cloud seeding programs, particularly in reducing hail
damage, remains controversial. In the literature, two main approaches are used to measure
the efficacy of cloud seeding programs. The first involves measuring differences in
hailstorm frequency and magnitude (Bergant, 2011; Changnon, 1971; Dessens et al., 2016;
Gavrilov et al., 2013; Rivera et al., 2020; Spiridonov et al., 2015). The second approach
measures reductions in crop loss or increases in crop yield, with empirical research
demonstrating significant reductions in crop damage due to cloud seeding (Federer et al.,
1986; Ekland et al., 1999; Knowles and Skidmore, 2021; Abshaev et al., 2023). The impact

of program efficacy on the decision to terminate cloud seeding programs remains unclear.
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Hypothesis 3: The probability of terminating the cloud seeding program increases if county
government officials and/or their constituents perceive the program to be ineffective.
(4) Policy diffusion

The definition of policy diffusion is "one government's policy choices being
influenced by the choices of other governments" (Shipan and Volden, 2012; Lamothe and
Lamothe, 2015). The influence diffuses through three major channels: learning,
competition, coercion, or fulfilling norms and standards, with the first two being core
mechanisms (Shipan and Volden, 2012; Berry and Berry, 2014; Miao, 2019).

However, governments can easily be influenced by neighboring jurisdictions (Walker,
1969) because counties that share a border often have frequent interactions when making
decisions. Moreover, they may face similar challenges, such as hail damage or drought,
and share similar socioeconomic or political profiles. Therefore, neighboring counties'
decisions may also be suitable for themselves (Miao, 2019). Studies have found that
neighbors' decisions influence the likelihood of policy termination (Lamothe and Lamothe,
2015; Li, 2017; Hwang, 2021; Thom, 2021).

In Kansas, counties that adopted the cloud seeding program are concentrated in the
western part, as mentioned in Section II. From an operational standpoint, if most counties
do not contribute to the program, its efficacy might diminish, rendering the public budget
spent in vain (Boyce, 2000). Such a scenario was described in the final report of the Kansas

cloud seeding program:%®

...most programs resulted in too many storms on active seeding
days, indicating the need for additional aircraft.” Therefore, termination decisions in these
counties might be influenced by their neighbors' decisions regarding program efficacy.

Hypothesis 4. The probability of terminating the cloud seeding project increases if the

number of border counties also abandon the cloud seeding program.

80 Please see the report from Kansas State University extension, page 3. https://www.ksre. k-
state.edu/irrigate/oow/p97/BossertWeatherModification.pdf
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IV. Data

To test the hypothesis outlined in the preceding section, I utilize Kansas county-level
data to investigate the factors that influence county participation as well as the termination
decision-making process of the cloud seeding program. Owing to data constraints where
data spanning from 2003 to 2013 is accessible, I examine program participation and
termination for county governments. I compile a variety of datasets, and the summary of
variables along with their respective data sources are provided in Table 14, while Table 15

presents summary statistics.

Table 14. Definition of variables and data sources

Variables Description Data source
0 and 1. If the county
- sponsors/participates cloud seeding NOAA weather modification
Participate :
program in year t, then 1, and 0 report.
otherwise.
0 and 1. If the county terminate cloud . .
Termination  seeding program in year t, then 1, and NOAA weather modification

Fiscal stress

0 otherwise.

Percentage change in county
government revenue between year ¢
and year #-/

Percentage of county i voting

report.

The government’s
report (Kansas State)

budget

Republican  Republican Party in General election =~ Kansas Statistical Report
statistics for US Senator/President

Loss_hail Loss ratio of hail on crops at year #-/ USDA

Loss._drought i(])ss ratio of drought on crops at year USDA

Loss flood  Loss ratio of flood on crops at year -/ USDA

Frequency Number of hailstorms in county i at NOAA
year t-1

Magnitude Average size of hailstone in county i at NOAA
year ¢-1 (inch)
Percentage of neighbor counties, which

. sharing a boarder with county i, NOAA weather modification

Neighbor . . .
terminate cloud seeding program in report.
year ¢-1
Percentage of population in county i

Education = Pop Y Kansas Statistical Report

with bachelor degree in year ¢-/
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Data on cloud seeding participation originate from the NOAA Weather Modification
Report® . Regarding the Participate variable, a value of 1 indicates that the county
participates in a cloud seeding program, while a value of 0 denotes otherwise. Similarly,
the Terminate variable is created with a value of 1 indicating that the county has terminated
its cloud seeding program, and 0 otherwise. The participation analysis includes all Kansas
counties, whereas termination analysis excluded counties that never participate in the
program. Throughout the period of analysis, approximately 9.4% of observations indicate
participation in cloud seeding programs.

Utilizing the same dataset, I introduce the Neighbor variable, representing the
percentage of adjacent counties that terminated their cloud seeding programs in the
preceding period t-1. This variable is expressed in percentage terms rather than as a count
of adjacent counties to account for variation in the number of adjacent counties each county
may have (Berry and Berry, 1990; Hwang, 2021). On average, 90.9% of adjacent counties
that participated in the cloud seeding program ultimately halted the participation. The
capture the political ideology, I used the percentage of votes to Republican Party in General
election statistics for US Senator/President. On average, the percentage of vote for
Republican Party is 70.5%, which means in every election, about 70.5% of voters in the
county voted to Republican Party.

Fiscal stress is gauged by the percentage change in county government revenue from
year ¢ to #-1. I refrained from employing the direct expenses of the cloud seeding program
as a proxy for fiscal stress since they represent only a minor fraction of a county
government's budget. On average, each participating county allocated $19,225 towards
financing the cloud seeding program in a year. In Table 15, the average change stands at
5.2%, indicating an average annual increase in total county government revenue.
Nonetheless, some counties encountered significant fluctuations, with decreases or
increases of approximately 50%.

As discussed in the preceding section, assessing the efficacy of programs is often
debated. Hence, I employ several variables to gauge the efficacy of the cloud seeding

program. Firstly, local governments may be cognizant of the frequency and severity of

61 According to Federal Law, all weather modification activity should submit report to NOAA.
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hailstorms. Higher occurrences of hail or significant damage from drought could
potentially influence their decisions regarding program participation. To represent the
frequency and severity of hailstorms, I utilize the number of hailstorms that occurred in
county 7 in year ¢-1, as well as the average size of hailstones in county i during the same
period. On average, each county experiences 12 hailstorms annually, with a maximum of
83 occurrences in a single year. Regarding hailstone size, a county typically encounters
hailstones measuring 1.12 inches, surpassing the 1-inch threshold known to cause damage.
Secondly, local governments may take into account crop losses resulting from extreme
weather events, which could be associated with the cloud seeding program. These events
include hail damage, drought, and flooding. To capture crop losses, I utilize the loss ratio
of crop insurance attributed to hail, drought, and flood events.%?.

Additionally, I control for education level, where, on average, 19.4% of the population
within a county holds a college degree. These data were sourced from the Kansas Statistical
Abstract.

Table 15. Summary statistics

Variable Observation  Mean  Std. dev. Min Max
Sponsor 1,040 0.094 0.292 0.000 1.000
Fiscal stress 832 0.052 0.185 -0.711 2.977
Republican 1,040 0.705 0.086 0.458 0.901
Loss_hail 936 2.570 1.885 0.000 11.454
Loss_drought 917 2.704 1.231 0.000 7.856
Loss_flood 886 1.732 1.023 0.221 8.829
Frequency 918 12.841 9.579 1.000 83.000
Magnitude 918 1.128 0.226 0.750 2.542
Neighbor 1,040 0.909 0.215 0.000 1.000
Education 1,040 0.194 0.060 0.106 0.516

Note: There are negative loss ratio in the dataset, I adjust the negative value to zero.

62 Loss ratio is insurance indemnity divided by total premiums.
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V. Modeling and empirical strategy

In this paper, two empirical approaches are used to test the hypotheses. First, a Logit
model is employed to investigate the factors associated with cloud seeding program
participation. Second, a Cox proportional hazards model is used to examine factors
influencing cloud seeding program termination.
(1) Logit model

In the literature, logit models have been used to investigate potential factors associated
with policy adoption (Li, 2017; Miao, 2019) and termination (Lamothe and Lamothe, 2015;
Krause, 2016). In this research, I use a logit model to explore the characteristics of counties
and their correlation with participation in the cloud seeding program.

The conditional probability of participating in the cloud seeding program is denoted
by Pr(Y = 1|x) = m(x). And the multivariable logit regression model is given by the
equation (1) (Hosmer et al., 2013).

900 = In (25) = By + By + oz o+ B + € (1)

In this paper, the specifications as equation (2), the estimated logit as follow:

g(x) = Bo + BiFiscal_Stress;;_, + B,Ef ficacy;;_, + f3Neighbor;;_; +
PsRepublican;,_, + PsEducation;_q + € (2)

In equation (2), all covariates are lagged by one period. This is because county
governments must pass the budget before seeding the clouds during the growing season;
therefore, their decisions are likely influenced by information from the previous year. The
covariates are thoroughly described in the relevant previous section, with the exception of
Efficacy, which is represented by a different proxy as discussed in the preceding section.
(2) Proportional hazards model

Survival analysis has been used to study political events such as policy termination
and factors associated with their occurrence (Baybeck et al., 2011; Box-Steffensmeier and
Jones, 2004; Li, 2017; Hwang, 2021). The hazard rate in survival analysis indicates the rate
at which units experience a political event, considering both the duration spent in the initial

state and the transition to a subsequent state (Box-Steffensmeier and Jones, 2004).
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Survival analysis, or event history analysis, employs various methodologies, with the
most common being the investigation of the duration of survival time before experiencing
an event using a proportional hazards model. The assumption of the probability of hazard,

h(t|x), is a proportion of time passed.

h(t]x) = ho(t)exp(Bx)

ho(t) is the baseline hazard rate, which means the county has a certain underlying
probability of terminating the program. The Cox model is a semi-parametric model that
does not specify the baseline hazard (Cox, 1972).

Wang and Yao (2023) introduced the application of the Cox proportional hazards
model with covariates that vary over time. Under the Cox model, the probability for county

i to terminate the cloud seeding program at period ¢ is given by:

Termination;(t)
= ho(t) - exp (B Fiscal; ;1 + p,Republican;,_1 + BsNeighbor;,_,
+ B4Dif fusion;_, + PsEducation; )

The dependent variable Termination is 1 if county i terminates the cloud seeding
program in period t. Fiscal; ;_, is the fiscal stress of county i in period ¢-1. Ideology; ;—1
is the political ideology of county i in period #-1. Ef ficacy;._4 is the efficacy of cloud
seeding project of county i in period #-1. Dif fusion; ., is the percentage of neighborhood
of county 7 in period ¢-/ which terminate cloud seeding policy. 5; to S5 is the hazard ratio
I am interested in estimating.

In the Cox proportional hazards model, a hazard ratio larger than one is defined as a
positive coefficient, indicating that with a change in the covariate, the risk of termination
is increased. Conversely, a coefficient smaller than one is defined as a negative coefficient,
indicating that with a change in the covariate, the risk of termination decreases. For
example, if f;>1, it indicates that an increase of one unit in fiscal stress increases the

likelihood of a county terminating the cloud seeding program.
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VI. Results and discussion

This section provides the empirical results accompanied by a discussion of findings.
(1) Empirical results of policy participation

Table 16 presents the Logit model results, highlighting factors associated with
participation in cloud seeding programs: those with high hailstorm frequency, strong
Republican Party support, and with neighboring counties that also participate in cloud
seeding. First, when more hailstorms occurred in a county in the previous year, the odds
ratio of participation in cloud seeding program significantly increases. This result suggests
that regions experiencing frequent hailstorms naturally are more likely to adopt cloud
seeding. The Neighbor variable is also statistically significant, indicating that if a county
is surrounded by counties in the program, it is highly likely to also be in the program, and
vice versa. These two results capture the characteristics of western counties in Kansas,
which share similar geographical features and face challenges from extreme weather events.

Conversely, counties with a greater percentage of votes for the Republican Party have
a higher likelihood of participation in the cloud seeding program. The coefficient for
political ideology is much larger than the coefficient for hailstorm frequency. These results
are consistent with Gould et al. (2024), indicating that while experiencing more extreme
weather events, such as hailstorms, has a positive impact, political ideology strongly
influences decision-making regarding weather-related mitigation policies. Finally, the
results indicate that fiscal stress and loss ratios are not significantly correlated to
participation in cloud seeding programs.

In the Logit model, a higher percentage of Republican votes increases the probability
of participating in the cloud seeding program. Although Republicans are generally less
favorable toward climate change policies (Chandler, 2009; Miao, 2019), the results from
this analysis are consistent with Carman et al. (2022), who found that Republicans are more
willing to engage in policies addressing extreme weather events rather than climate change.
Additionally, Giordano et al. (2020) show that majority Republican communities
experience policy changes following uncommon extreme weather events. With regard to
hailstorms, the evaluation indicate that counties with a higher percentage of Republican
votes are more likely to participate in cloud seeding programs to mitigate the impacts of

extreme weather.
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Table 16. Results of Logit model

Coefficient (i) (i) (iii) (iv)
Fiscal stress -0.277 -0.214 -0.389 -0.387
(1.150) (1.057) (0.269) (1.013)
Frequency 0.075*
(0.044)
Magnitude 0.792
(1.334)
Loss ratio (Hail) 0.269
(0.184)
Loss ratio (Drought) 0.141
(0.258)
Neighbor -8.291*** -8.166***  -8.377***  -8.571***
(1.761) (1.686) (1.749) (1.747)
Republican 26.564***  25483***  23.489** 23.163**
(10.313) (9.923) (9.838) (9.561)
Education -27.921 -29.581 -0.207 -0.230
(18.845) (18.056) (0.172) (0.169)
Constant -15.289* -14.033* -14.034 -12.621
(8.764) (8.334) (8.703) (8.434)
Observation 815 815 936 917
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(2) Empirical results of policy termination

Table 17 presents the results of the Cox proportional hazards model. The dataset
includes all samples—14 counties across 2003 to 2013—that adopted the cloud seeding
program. This model evaluates the survival duration (i.e., the number of years until the
program was terminated) using time-varying covariates. Additionally, counties that re-
adopted the cloud seeding program and later terminated it are reintroduced into the analysis
(Wang and Yao, 2023) Therefore, it is not necessary to exclude samples after their first opt-
out from the program.

In column (i) of Table 17, the loss ratio due to hail significantly increases the
probability (risk) of program termination, consistent with hypothesis 3. This result
indicates that counties are more likely to terminate participation in the cloud seeding
program if they continue to experienced a high hail-induced crop damage loss ratio despite
cloud seeding. This variable reflects the perceived inefficacy of the program and the
influence on the decision-making process for program termination.

A one percentage-point increase in the loss ratio due to hail raises the likelihood of a
county government terminating the cloud seeding program by 16.1%. This result remains
robust when controlling for other covariates, as shown in column (i), where the likelihood

of termination increases by 14.9% per percentage-point increase in the loss ratio.
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Table 17. Results of Cox proportional hazard model

Hazard Ratio (i) (i) (iii)
Fiscal stress 0.301 0.527
(0.339) (0.376)
Loss ratio (Hail) 1.161** 1.149*
(0.083) (0.089)
Loss ratio (Drought) 0.524
(0.289)
Neighbor 0.092** 0.054**
(0.094) (0.062)
Republican 1.040 0.292
(3.656) (0.796)
Education 4.589 56.489
(18.312) (225.820)
Observation 112 84 84

Surprisingly, among the counties participated in the cloud seeding program, the
variable Neighbor significantly decrease the likelihood of termination. This finding
indicates that county i is less likely to terminate participation if a neighboring county
terminates. These results contradict the direction predicted by Hypothesis 4.

Diffusion theory suggests that local governments are influenced by their neighbors
through processes of learning, competition, and adherence to norms and standards. In the
case of Kansas, decisions by county officials to participate in cloud seeding are influenced
by neighbors, though the exact source of this influence remains unclear.

Li (2017), for example, used a Cox proportional hazards model to investigate how
policy diffusion influences the adoption of education policies by state governments. The
author found that when more neighboring states adopt a policy, it delays adoption by the
observed state, a phenomenon referred to as “inverse policy diffusion”. Similarly, in this
chapter, I found that a county is less likely to terminate the cloud seeding program as the
percentage of neighboring counties terminating the program increases. Counties may
choose to postpone termination to observe potential consequences and gather more

information from their neighbors before making a decision.
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In discussing the political aspects of policy termination, Weiss (1993) identifies three
ways in which political ideology influences termination: political pressures, the provision
of crucial evidence for termination within the political process, and the political messages
carried by termination. None of these factors are evident in the case of the Kansas cloud
seeding program, which does not support the hypothesis 2 However, it is notable that while
counties with greater Republican voters are more likely to have participated, there is no
evidence from this evaluation that Republican influences (or lack thereof) drove policy
termination. The potential reason might be because Republicans dominate in most of
Kansas counties, although the percentage of support changes within counties over time, the
variation might not be reflected in the policy termination.

Finally, as shown in Table 17, there is no evidence to support Hypothesis 1, which
posited that fiscal stress influences policy termination. Two possible explanations for this
finding are as follows: First, the budget allocated to the cloud seeding program is relatively
small compared to the overall county government budget, and cutting such a minor
expenditure may not substantially alleviate fiscal stress. Second, most counties
participating in the cloud seeding program prioritize disaster reduction and water resource

preservation, making the program a strategic investment rather than a dispensable cost.
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VII. Conclusion

Hailstorms cause significant damage in the US, and cloud seeding is considered a
promising tool for reducing this risk. In Kansas, since 1972, the state government and
county government authorities have collaborated on cloud seeding programs for nearly
four decades. The state government has presented evidence that the program's cost-benefit
ratio is 37. Despite the high estimated net benefit, many counties discontinued program
participation and in 2016 the state government suspended the whole program.

In this paper I first used a Logit model to investigate the factors associated with county
participation in cloud seeding programs. A summary of this portion of the evaluation is as
follows. First, I found that counties experiencing more frequent hailstorms are more likely
to participate in the cloud seeding program. Moreover, a county is more likely to participate
in the program the higher is the percentage of border counties that participate in the
program. Finally, counties with higher support rates for the Republican Party are more
likely to participate in the cloud seeding program. In summary, counties participating in
the cloud seeding program ten to have more hailstorms, strong Republican support, and
have border counties that also participate in the cloud seeding program.

Focusing on those counties that participated in the cloud seeding program, I also
examined factors that influence termination of the cloud seeding program. Specifically, I
adopted a Cox proportional hazards model to examine the factors influencing termination
decisions. I found that fiscal stress does not significantly influence termination decisions.
This could be due to two reasons. First, the cost of the cloud seeding program constitutes
only a small portion of the local government budget. Second, the program is highly
subsidized by the state government. In addition, a higher loss ratio for hail in the previous
period increases the likelihood of termination. This finding suggests that perceptions of
program effectiveness based on recent past experience may influence the termination
decision. Finally, I found the neighbors’ decisions also influence termination decisions,
which is consistent with the policy diffusion theory. In summary, this analysis offers new
information regarding the policy termination process in the context of subnational
government termination decisions.

There may be other potential factors influencing termination decisions that could not

be included due to data constraints. First, cloud seeding programs can easily become
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83, such as droughts in Kansas,

“scapegoats” when undesired extreme weather events occur
flooding in the UAE, and storms in California. This political pressure from public opinion
might also influence policy termination. Second, the debate between strict termination and
partial termination remains unresolved. While I did not find alternative policies specifically
for cloud seeding programs aimed at hail suppression, crop insurance could potentially
protect farmers from extreme weather damage, fulfilling a similar role to cloud seeding.
This overlap might lead to the explicit termination of cloud seeding programs in favor of

well-developed and highly subsidized crop insurance schemes. However, many aspects of

policy termination remain uncertain, necessitating further research in the future.

83 See the February 2014 newsletter from GMD1: “The upcoming 2014 season will see the program shrink
to its smallest size since it began. Much of this decline is attributable to the program being a convenient
scapegoat by the uninformed for the current prolonged drought.”

https://www.gmd1.0rg/2014 Feb_newsletter final.pdf

88


https://www.gmd1.org/2014_Feb_newsletter_final.pdf

REFERENCES

Abshaev, M. T., Abshaev, A. M., Malkarova, A. M., & Tsikanov, K. A. (2022). Hail
suppression to protect crops in the North Caucasus. Russian Meteorology and
Hydrology, 47(7), 487-498.

Allen, J. T., Giammanco, I. M., Kumjian, M. R., Punge, H. J., Zhang, Q., &
Groenemeijer, P. (2020). Understanding hail in the Earth system. Reviews of
Geophysics, 58(3), e2019RG000665. https://doi.org/10.1029/2019RG000665

Almbheiri, K. B., Rustum, R., Wright, G., & Adeloye, A. J. (2021). Study of impact of
cloud-seeding on intensity-duration-frequency (IDF) curves of Sharjah City, the
United Arab Emirates. Water, 13(23), 1-15. https://doi.org/10.3390/w13233363

Auf der Maur, A., & Germann, U. (2021). A re-evaluation of the Swiss hail suppression
experiment using permutation techniques shows enhancement of hail energies when
seeding. Atmosphere, 12(12), 1623.

Beatty, T. K. M., Shimshack, J. P., & Volpe, R. J. (2019). Disaster preparedness and
disaster response: Evidence from sales of emergency supplies before and after

hurricanes. Journal of the Association of Environmental and Resource Economists,
6(4), 633-668.

Bennett, D. S. (1999). Parametric models, duration dependence, and time-varying data
revisited. American Journal of Political Science, 43(1), 256-270.

Berry, F. S., & Berry, W. D. (1990). State lottery adoption as policy innovations: An
event history analysis. American Political Science Review, 84(2), 395-415.

Berry, F. S., & Berry, W. D. (2014). Innovation and diffusion models in policy research.
In P. A. Sabatier & C. Weible (Eds.), Theories of the Policy Process (3rd ed., pp.
307-359). Boulder, CO: Westview Press.

Boardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2018). The social
discount rate. In Cost-benefit analysis: Concepts and practice (pp. 237-268).
Cambridge: Cambridge University Press.

Box-Steffensmeier, J. M., & Jones, B. S. (1997). Time is of the essence: Event history
models in political science. American Journal of Political Science, 41(4), 1414-
1461.

Boyce, J. K. (2000). Let them eat risk? Wealth, rights and disaster vulnerability.
Disasters, 24(3), 254-261.

Carman, J. P., Lacroix, K., Goldberg, M. H., Rosenthal, S., Gustafson, A., Howe, P.,
Marlon, J., & Leiserowitz, A. (2022). Measuring Americans’ support for adapting to
‘climate change’ or ‘extreme weather.” Environmental Communication, 16(5), 577-
588. https://doi.org/10.1080/17524032.2022.2087709

Chandler, J. (2009). Trendy solutions: Why do states adopt sustainable energy portfolio
standards? Energy Policy, 37(8), 3274-3281.

Changnon, S. A. (1971). Note on hailstone size distributions. Journal of Applied
Meteorology, 10(2), 168-170.

89


https://doi.org/10.1029/2019RG000665
https://doi.org/10.3390/w13233363

Changnon, S. A., & Changnon, D. (2000). Long-term fluctuations in hail incidences in
the United States. Journal of Climate, 13(4), 658-664.

Childs, S. J., Schumacher, R. S., & Demuth, J. L. (2020). Agricultural perspectives on
hailstorm severity, vulnerability, and risk messaging in eastern Colorado. Weather,
Climate, and Society, 12(4), 897-911.

Cross, H. Z., & Zuber, M. S. (1972). Prediction of flowering dates in maize based on
different methods of estimating thermal units. Agronomy Journal, 64(3), 351-355.

DeFelice, T. P., Axisa, D., Bird, J. J., Hirst, C. A., Frew, E. W., Burger, R. P.,
Baumgardner, D., Botha, G., Havenga, H., Breed, D., Bornstein, S., Choate, C.,
Gomez-Faulk, C., & Rhodes, M. (2023). Modern and prospective technologies for
weather modification activities: A first demonstration of integrating autonomous
uncrewed aircraft systems. Atmospheric Research, 290, 106788.
https://doi.org/10.1016/j.atmosres.2023.106788

DeFelice, T. P., Golden, J., Griffith, D., Woodley, W., Rosenfeld, D., Breed, D., Solak,
M., & Boe, B. (2014). Extra area effects of cloud seeding—An updated assessment.
Atmospheric Research, 135-136, 193-203.

DeLeon, P. (1987). Policy termination as a political phenomenon. In D. J. Palumbo (Ed.),
The politics of program evaluation (pp. 209-233). Beverly Hills, CA: Sage.

Dessens, J., Sanchez, J. L., Berthet, C., Hermida, L., & Merino, A. (2016). Hail
prevention by ground-based silver iodide generators: Results of historical and
modern field projects. Atmospheric Research, 170, 98-111.

Dickie, M. (2017). Averting behavior methods. In P. Champ, K. Boyle, & T. Brown
(Eds.), A primer on nonmarket valuation (2nd ed., pp. 293-346). Springer.

Dormady, N. C., Greenbaum, R. T., & Young, K. A. (2021). An experimental
investigation of resilience decision-making in repeated disasters. Environment
Systems and Decisions, 41(4), 556-576.

Eklund, D. L., Jawa, D. S., & Rajala, T. K. (1999). Evaluation of the Western Kansas
Weather Modification Program. Journal of Weather Modification, 31, 91-101.

Fan, J., Zhang, Y., Wang, J., Jeong, J. H., Chen, X., Zhang, S., Lin, Y., Feng, Z., &
Adams-Selin, R. (2022). Contrasting responses of hailstorms to anthropogenic
climate change in different synoptic weather systems. Earth’s Future, 10(7),
e2022EF002768. https://doi.org/10.1029/2022EF002768

Federer, B., Waldvogel, A., Schmid, W., Schiesser, H. H., Hampel, F., Schweingruber,
M., Stahel, W., Bader, J., Mezeix, J. F., & Doras, N. (1986). Main results of
Grossversuch V. Journal of Applied Meteorology and Climatology, 25(7), 917-957.

Ferry, M., & Bachtler, J. (2013). Reassessing the concept of policy termination: The case
of regional policy in England. Policy Studies, 34(3), 255-273.

Foote, G. B., & Knight, C. A. (1979). Results of a randomized hail suppression
experiment in Northern Colorado. Part I: Design and conduct of the experiment.
Journal of Applied Meteorology, 18(12), 1526-1537.

90


https://doi.org/10.1016/j.atmosres.2023.106788
https://doi.org/10.1029/2022EF002768

Gavrilov, M. B., Markovic, S. B., Zorn, M., Komac, B., Lukic, T., Milosevic, M., &
Janicevic, S. (2013). Is hail suppression useful in Serbia? General review and new
results. Acta Geographica Slovenica, 53(1), 165-179.

Geva-May, L. (2001). When the motto is “till death do us part”: The conceptualization
and the craft of termination in the public policy cycle. International Journal of
Public Administration, 24(3), 263-288.

Geva-May, I. (2004). Riding the wave of opportunity: Termination in public policy.
Journal of Public Administration Research and Theory, 14(3), 309-333.
https://doi.org/10.1093/jopart/muh020

Gould, R. K., Shrum, T. R., Harrington, D. R., & Iglesias, V. (2024). Experience with
extreme weather events increases willingness-to-pay for climate mitigation policy.
Global Environmental Change, 85, 102795.

Granger, C. W. J., & Newbold, P. (1974). Spurious regressions in econometrics. Journal
of Econometrics, 2(2), 111-120.

Hausken, K. (2021). The precautionary principle as multi-period games where players
have different thresholds for acceptable uncertainty. Reliability Engineering and
System Safety, 206, 107224.

Hogwood, B. W., & Peters, G. B. (1982). The dynamics of policy change: Policy
succession. Policy Sciences, 14(3), 225-245.

Hwang, S. J. (2021). An exploration of the diffusion of policy termination: The repeal of
prevailing wage laws by US state governments. Policy Studies, 42(2), 117-131.

IPCC. (2012). Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L.,
Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., &
Midgley, P. M. (Eds.). Managing the risks of extreme events and disasters to
advance climate change adaptation: A special report of working groups | and 11 of
the Intergovernmental Panel on Climate Change (IPCC). Cambridge University
Press.

IPCC. (2014). Summary for policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K.
J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R.
C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea,
& L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability.
Part A: Global and sectoral aspects. Contribution of working group 1 to the fifth
assessment report of the Intergovernmental Panel on Climate Change (pp. 1-32).
Cambridge University Press.

Jiang, F., Meng, S., Halim, N., & Mozumder, P. (2022). Departure timing preference
during extreme weather events: Evidence from hurricane evacuation behavior.
Transportation Research Record. https://doi.org/10.1177/03611981211066901

Jones, B. S., & Baranton, R. P. (2005). Beyond logit and probit: Cox duration models of
single, repeating, and competing events for state policy adoption. State Politics &
Policy Quarterly, 5(4), 420-443.

91


https://doi.org/10.1093/jopart/muh020
https://doi.org/10.1177/03611981211066901

Kailiponi, P. (2010). Analyzing evacuation decisions using multi-attribute utility theory.
International Conference on Evacuation Modeling and Journal of Environmental
Economics. https://www.semanticscholar.org/paper/Analyzing-evacuation-
decisions-using-utility-theory-
Kailiponi/eal2048660f6ab5998fd0619dfb4c711b56c030c

Kasdin, S., & McCann, A. (2021). What drives program terminations for the federal
government? Public Budgeting & Finance, 42(1), 28-44.

Kim, M. J. (2021). Air pollution, health, and avoidance behavior: Evidence from South
Korea. Environmental and Resource Economics, 79(1), 63-91.
https://doi.org/10.1007/s10640-021-00553-1

Kirkpatrick, S. E., Lester, J. P., & Peterson, M. R. (1999). The policy termination
process. Review of Policy Research, 16(1), 209-238.

Knowles, S., & Skidmore, M. (2021). Cloud seeding and crop yields: Evaluation of the
North Dakota Cloud Modification Project. Weather, Climate, and Society, 13(4),
885-898.

Kostecki, D. F. (1977). Weather modification activities in Kansas 1972-1977. Bulletin
22, Kansas Water Resources Board.

Krause, R. M., Yi, H., & Feiock, R. C. (2016). Applying policy termination theory to the
abandonment of climate protection initiatives by U.S. local governments. The Policy
Studies Journal, 44(2), 176-195.

Miami-Dade Transportation Planning Organization. (2018). Factors affecting transit
ridership in Miami-Dade County.
https://www.miamidadetpo.org/library/studies/factors-affecting-transit-ridership-in-
miami-dade-county-final-report-2018-11.pdf

McMaster, G. S., & Smika, D. E. (1988). Estimation and evaluation of winter wheat
phenology in the central Great Plains. Agricultural and Forest Meteorology, 43, 1-
18.

Metzger, S. K., & Jones, B. T. (2022). Getting time right: Using Cox models and
probabilities to interpret binary panel data. Political Analysis, 30(2), 151-166.

Miao, Q. (2019). What affects government planning for climate change adaptation:
Evidence from the U.S. states. Environmental Policy and Governance, 29(5), 376-
394.

Moretti, E., & Neidell, M. (2011). Pollution, health, and avoidance behavior: Evidence
from the ports of Los Angeles. Journal of Human Resources, 46, 154-175.

National Center for Environmental Information. (2009). State Climate Extremes
Committee: Proposed standards for the collection, storage, and measurement of
hailstones. Retrieved from https://www.ncdc.noaa.gov/monitoring-
content/extremes/scec/reports/SCEC-Hail-Guide.pdf

National Science and Technology Center for Disaster Reduction. (2011). Disaster survey
and analysis of Morakot typhoon (Chinese version only). NCDR.

92


https://www.semanticscholar.org/paper/Analyzing-evacuation-decisions-using-utility-theory-Kailiponi/ea12048660f6ab5998fd0619dfb4c711b56c030c
https://www.semanticscholar.org/paper/Analyzing-evacuation-decisions-using-utility-theory-Kailiponi/ea12048660f6ab5998fd0619dfb4c711b56c030c
https://www.semanticscholar.org/paper/Analyzing-evacuation-decisions-using-utility-theory-Kailiponi/ea12048660f6ab5998fd0619dfb4c711b56c030c
https://doi.org/10.1007/s10640-021-00553-1
https://www.miamidadetpo.org/library/studies/factors-affecting-transit-ridership-in-miami-dade-county-final-report-2018-11.pdf
https://www.miamidadetpo.org/library/studies/factors-affecting-transit-ridership-in-miami-dade-county-final-report-2018-11.pdf
https://www.ncdc.noaa.gov/monitoring-content/extremes/scec/reports/SCEC-Hail-Guide.pdf
https://www.ncdc.noaa.gov/monitoring-content/extremes/scec/reports/SCEC-Hail-Guide.pdf

Neidell, M. (2009). Information, avoidance behavior, and health: The effects of ozone on
asthma hospitalizations. Journal of Human Resources, 44, 450-478.

NOAA National Centers for Environmental Information (NCEI). (2022). U.S. billion-
dollar weather and climate disasters. https://www.ncei.noaa.gov/access/billions/
https://doi.org/10.25921/stkw-7w73

Pan, Y., Yan, C., & Archer, C. L. (2018). Precipitation reduction during Hurricane
Harvey with simulated offshore wind farms. Environmental Research Letters, 13,
084007.

Pesaran, M., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal
of Econometrics, 142, 50-93.

Pirani, F. J., Najafi, M. R., Joe, P., Brimelow, J., McBean, G., Rahimian, M., Stewart, R.,
& Kovacs, P. (2023). A ten-year statistical radar analysis of an operational hail
suppression program in Alberta. Atmospheric Research, 295, 107035.

Pucik, T., Castellano, C., Groenemeijer, P., & Kuhne, T. (2019). Large hail incidence and
its economic and societal impacts across Europe. Monthly Weather Review, 147,
3901-3916.

Rhee, J. W., & Jang, Y. J. (2022). Determinants of termination of anti-dumping
measures: The case of Korea. East Asian Economic Review, 26(2), 95-117.

Rivera, J. A., F. Otero, E. N. Tamayo, and M. Silva (2020) Sixty years of hail
suppression activities in Mendoza, Argentina: Uncertainties, gaps in knowledge and
future perspectives. Frontiers in Environmental Science, 8:45. doi:
10.3389/fenvs.2020.00045.

Rymbai H, Deshmukh N. A., Verma V. K., Talang H. D., Devi MB, Jha AK (2019)
Impact assessment of hailstorm on khasi mandarin and other horticultural crops in
Umiam, Meghalaya. Ind J Hill Farm 56-61.

Rabassa, M. J., Grand, M. C., & Garcia-Witulski, C. M. (2021). Heat warnings and
avoidance behavior: Evidence from a bike-sharing system. Environmental
Economics and Policy Studies, 23, 1-28.

Rivera, J. A., Otero, F., Tamayo, E. N., & Silva, M. (2020). Sixty years of hail
suppression activities in Mendoza, Argentina: Uncertainties, gaps in knowledge and
future perspectives. Frontiers in Environmental Science, 8.
https://doi.org/10.3389/fenvs.2020.00045

Rodo, X., & Comin, F. A. (2003). Global climate current research and uncertainties in the
climate system. In F. A. Comin (Ed.), Springer Environmental Management Series
(pp. 189). Springer.

Rogna, M., Schamel, G., & Weissensteiner, A. (2021). The apple producers’ choice
between hail insurance and anti-hail nets. Agricultural Finance Review, 82, 20-48.

Rogna, M., Schamel, G., & Weissensteiner, A. (2022). Modelling the switch from hail
insurance to anti-hail nets. The Australian Journal of Agricultural and Resource
Economics. https://doi.org/10.1111/1467-8489.12499

93


https://www.ncei.noaa.gov/access/billions/
https://doi.org/10.25921/stkw-7w73
https://doi.org/10.3389/fenvs.2020.00045
https://doi.org/10.1111/1467-8489.12499

Rymbai, H., Deshmukh, N. A., Verma, V. K., Talang, H. D., Devi, M. B., & Jha, A. K.
(2019). Impact assessment of hailstorm on Khasi mandarin and other horticultural
crops in Umiam, Meghalaya. Indian Journal of Hill Farming, 32(2), 56-61.

Sarafidis, V., & Weber, N. (2015). A partially heterogeneous framework for analyzing
panel data. Oxford Bulletin of Economics and Statistics, 77, 274-296.

Sheldon, T. L., & Sankaran, C. (2019). Averting behavior among Singaporeans during
Indonesian forest fires. Environmental and Resource Economics, 74, 159-180.

Shipan, C. R., & Volden, C. (2008). The mechanisms of policy diffusion. American
Journal of Political Science, 52(4), 840-857.

Simeonov, P. (1996). An overview of crop hail damage and evaluation of hail
suppression efficiency in Bulgaria. Journal of Applied Meteorology, 35, 1574-1581.

Sophocleous, M. (2005). Groundwater recharge and sustainability in the High Plains
aquifer in Kansas, USA. Hydrogeology Journal, 13, 351-365.

Spiridonov, V., Karacostas, T., Bampzelis, D., & Pytharoulis, I. (2015). Numerical
simulation of airborne cloud seeding over Greece, using a convective cloud model.
Asia-Pacific Journal of Atmospheric Sciences, 51, 11-27.

Thompson, C. M., & Dezzani, R. J. (2021). Examining relationships between traditional
vulnerability data proxies and hurricane risk perception indicators. Journal of Risk
Research, 24(8), 913-930.

Tuftedal, M. E., Delene, D. J., & Detwiler, A. (2022). Precipitation evaluation of the
North Dakota Cloud Modification Project (NDCMP) using rain gauge observations.
Atmospheric Research, 269. https://doi.org/10.1016/j.atmosres.2021.105996

Wang, C., & Liu, I. S. (2024). Unraveling the politics-science nexus: Diverse strategies in
US states’ termination of mask policies. Policy Studies.
https://doi.org/10.1080/01442872.2024.2303356

Wang, W., Yao, Z., Guo, J., Tan, C., Jia, S., Zhao, W., Zhang, P., & Gao, L. (2019). The
extra-area effect in 71 cloud seeding operations during winters of 2008-2014 over
Jiangxi Province, East China. Journal of Meteorological Research, 33, 528-539.
https://doi.org/10.1007/s13351-019-8122-1

Wenzelburger, G., & Hartmann, K. (2022). Policy formation, termination, and the
multiple streams framework: The case of introducing and abolishing automated
university admission in France. Policy Studies, 43(5), 1075-1095.

Whitehead, J. C. (2005). Environmental risk and averting behavior: Predictive validity of
jointly estimated revealed and stated behavior data. Environmental and Resource
Economics, 32, 301-316.

World Bank. (2005). Natural disaster hotspots: A global risk analysis.
https://openknowledge.worldbank.org/handle/10986/7376

Yoo, C., Na, W,, Cho, E., Chang, K. H., Yum, S. S., & Jung, W. (2022). Evaluation of
cloud seeding on the securement of additional water resources in the Boryeong Dam

94


https://doi.org/10.1016/j.atmosres.2021.105996
https://doi.org/10.1080/01442872.2024.2303356
https://doi.org/10.1007/s13351-019-8122-1
https://openknowledge.worldbank.org/handle/10986/7376

Basin, Korea. Journal of Hydrology, 613.
https://doi.org/10.1016/j.jhydrol.2022.128359

95


https://doi.org/10.1016/j.jhydrol.2022.128359

APPENDIX

Table A1 Avoidance behavior Miami Dade County Metrobus system (time trend)

Specification (5a) (5b) (5¢) (5d)
In(busride;_4) 0.392%** 0.394%%** 0.398*** 0.394%**
In(busride;_,) -0.393%** -0.393%** -0.393%** -0.395%**
Awind -0.006** -0.007*** -0.007*** -0.007***
rain -0.087*** -0.089%** -0.088*** -0.088***
Alarm -0.317%%*

Alarm,_, -0285%** -0.201**
Alarm,_, -0.260%** -0.138%*
dow -0.012%* -0.012%* 0.011%** 0.012%**
moy -0.008*** -0.008*** -0.008*** -0.008***
_cons 17.175%** 17.174%** 14.616%** 14.632%**
R-squared 0.311 0.309 0.308 0.310

96



Table A2 Avoidance behavior _Miami Dade County Metrorail system (time trend)

Specification (5a) (5b) (5¢) (5d)
In(metroride;_;) 0.539%** 0.54 1% 0.544%%* 0.54 1%
In(metroride;_,) -0.436%** -0.435%%* -0.435%** -0.436%**
Awind -0.006 -0.006* -0.007* -0.006*
rain -0.064*** -0.067*** -0.066*** -0.066%**
Alarm -0.305%**

Alarm,_, -0.238*** -0.169*
Alarm,_, -0.216%** -0.113
dow -0.017** -0.017** -0.018%** -0.018%**
ym -0.004*** -0.004%*** -0.004*** -0.004***
_cons 12.725%** 12.718%*** 12.689%*** 11.047%*%*
R-squared 0.307 0.304 0.304 0.305

Note: Wind doesn’t affect the passenger rides of rail system significantly. The reason might
be because rail system provides cover for users.
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Table A3 Avoidance behavior _Miami Dade County Metromover system (time trend)

Specification (5a) (5b) (S¢) (5d)
In(moverride;_;)  0.319%** 0.320%** 0.327%*** 0.320%**
In(moverride;_,) -0.029 -0.029 -0.029 -0.030
Awind -0.006 -0.007 -0.007* -0.007
rain -0.066** -0.067*** -0.067*** -0.067***
Alarm -0.231%*

Alarm,_, -0.198** -0.150
Alarm,_, -0.166* -0.076
dow 0.015%* 0.015%* 0.015%* 0.015%*
ym -0.003*** -0.003*** -0.003*** -0.003***
_cons 8.871H** 8.859H** 8.842%** 8.850%**
R-squared 0.126 0.125 0.124 0.125
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Table B1. Crop damage indemnity (dollars per insured acre)

Variable Total Kansas West Kansas
hail drought flooding hail drought flooding hail drought flooding
Seed 0.47 -1.68 1.28%* 0.33 -3.73 1.54%* 0.61 1.38 1.11
(0.56) (3.21) (0.72) (0.58) (3.27) (0.79) (0.73) (2.61) (0.79)
UWseed 0.09 6.05 0.17 0.001 5.07 0.24 0.25 6.37* 0.241
(0.80) (4.56) (1.03) (0.82) (4.61) (1.11) (1.00) (3.59) (1.08)
Wet 0.15 S3.72%%% ) DEHkF 0.26* -3 37*%% D S Hkk 0.33 -2.30** 1.20***
(0.13) (0.74) (0.16) (0.16) (0.93) (0.22) (0.26) (0.95) (0.29)
Dr -0.99*** 12 31***  (.RO*** 0. 79%*¥*  16.24%** 0.80** -0.98*** 8.71%** 0.45
y (0.19) (1.10) (0.25) (0.23) (1.32) (0.32) (0.37) (1.34) 0.41)
GDD 0.0001 -0.001 -0.001* 0.0001 -0.002 -0.001** -0.0001 -0.004* 0.0004
(0.0003) (0.001) (0.0003)  (0.0002) (0.002) (0.0004) (0.001) (0.002) (0.001)
SDD 0.001 0.015** 0.001 0.001 0.022%** 0.003 0.003 0.025%%** -0.001
(0.001) (0.006) (0.001) (0.001) (0.007) (0.002) (0.002) (0.008) (0.002)
County
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-square
within 0.125 0.476 0.310 0.114 0.547 0.329 0.190 0.563 0.116
between 0.063 0.001 0.030 0.002 0.073 0.081 0.094 0.142 0.015
Overall 0.077 0.422 0.230 0.081 0.510 0.231 0.134 0.508 0.100

*:10%, **:5%, ***:1% statistic significant.
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Table B2. Cloud seeding effects (Total sample)

Variable

Weather variables

Crop loss ratio

Crop productivity

frequency magnitude rainfall hail drought flooding Wheat Corn Sorghum
Seed -0.28 -0.05 0.06 0.27 0.16 (0.53%*x* -0.70 16.22%%** -3.44
(1.16) (0.04) (0.05) (0.27) (0.13) (0.16) (1.51) (3.93) (2.50)
2.78%* 0.10%* -0.09 -0.10 0.22 0.11 -2.95 4.41 s
UWseed (1.63) (0.06) 007)  (038)  (0.19)  (024) (21)  (5.63) 11('3()?2)
Wet 0.34 -0.001 (0.29%** 0.15%*  0.09%#*  (.23%#* ] ]3*** 1.24 3.01%**
(0.26) (0.009) (0.01) (0.06) (0.03) (0.04) (0.37) (0.99) (0.67)
Dr -1.67%** -0.01 -0.13**% (. 35%**k (. 58*F**k  (.20%**k 353wk 7 IRAAK 0 QRFHk
y (0.40) (0.02) (0.02) (0.10) (0.05) (0.06) (0.52) (1.31) (0.91)
GDD 0.0003 0.0001 0.0001*** 0.0002  0.00003 -0.0001  -0.001 0.01***  0.01***
(0.001) (0.0001) (0.00002) (0.0001) (0.0001) (0.0001) (0.001)  (0.002) (0.001)
SDD 0.001 -0.0001 -0.001***  -0.001 0.0001 0.001* 0.003 -0.04%*%  -(0.03%**
(0.002) (0.0001) (0.0001)  (0.001) (0.0003) (0.0003) (0.003)  (0.007) (0.005)
County Fixed- Yes Yes Yes Yes Yes Yes Yes Yes Yes
effects
Time Fixed- Yes Yes Yes Yes Yes Yes Yes Yes Yes
effects
R-square
within 0.164 0.103 0.599 0.130 0.454 0.158 0.390 0.457 0.651
between 0.0001 0.044 0.493 0.015 0.076 0.011 0.093 0.003 0.123
Overall 0.095 0.081 0.101 0.099 0.418 0.132 0.306 0.137 0.477
Observations 2,259 2,259 2,319 2,196 2,154 2,128 1,762 1,665 1,468

*:10%, **:5%, ***:1% statistic significant.
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C. Farmers Production Model

Link to the model section, the government officers can levy tax from the residents.
And based on Hettich and Winer (1984, 1988), the taxable activity can be derived from the
production functions.

The cloud seeding program serves as a tool to mitigate hail damage, with the
expectation that target areas experience increased agricultural productivity. However, the
downwind effect may result in unintended impacts from the cloud seeding program. To
offer a clearer assessment of these potential effects, consider the damage control model, as
proposed by Lichtenberg and Zilberman (1986). In this approach, damage control agents,
such as pest control and theft prevention, play a crucial role in preserving crop production
and profitability.

Building on the work of Knowles and Skidmore (2021), who applied the damage
control framework to the evaluation of cloud seeding programs as damage control agents
for wheat and barley crops in North Dakota. Of direct relevance, Trilnick and Zilberman
(2021) developed a structural model based on the damage control approach, which
introduced microclimate engineering and sunlight reflection as damage control agents for
pistachio yields in California.

In equation (1), Y;(Z, W) represents the potential output function under weather
conditions W, encompassing factors such as temperature, moisture, hail, etc. Z is a vector
of production inputs, including fresh water, fertilizer, and labor, etc. Y;2(Z) denotes the
minimum crop output regardless of weather conditions, which is interpreted as the crop
resiliency. For instance, it may account for a portion of the crops surviving after hail
damage, and farmers might implement post-hail remedies to expedite the recovery of crops
from damage. G;; (W (c;;)) is the damage or loss function, where G;.(W (c;¢)) € [0,1], and
c;r indicates whether county i participated in cloud seeding program, the damage control

of hail, in year ¢ or not.

Yie(Z,W) = Y(Z) + Y (D{1 = [G:e(W; ()]} (Al)
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With this production function, farmers collectively in county i address the profit

maximization problem outlined in equation (2), where p,,, p,, and p, represent the prices
of outputs, inputs, and participation in the cloud seeding program, respectively. For

simplicity, here after denote Y, (Z) as equal to zero.
max Ty = py{Yi%(Z)[l — GitWi(€it))] = P2Z — pcCie (A2)
it

Assuming that farmers do not adjust inputs, Z, in conjunction with the decision of whether
or not to participate in the cloud seeding program, the marginal effect of cloud seeding

participation on profit is shown in equation (3).

9Git OWir(cir)
Pyt () (= 5,5 — pe (A3)

dTL'lt
dCit

From equation (3), the price and production are both positive terms. In general, weather

aGW())
ow

conditions have a positive correlation with damage (——>0). For instance, when more

hailstorms occur in a year, there is a higher probability of crop damage. Moreover, as
predicted by the beneficial competitiveness hypothesis (see section II), if the cloud seeding

program effectively modifies adverse weather impacts such as reducing hailstorm
aW(Cit)<O.

frequency and magnitude, then ”

The damage abatement model should also account for spatial spillovers. For instance,
Schneider et al. (2021) demonstrated that the timing of pest population control by one
farmer can influence the efficacy of neighboring farmers' damage abatement inputs. In this
study, I incorporate spatial spillovers into the model, where upwind county j’s decision
regarding participation in the cloud seeding program influences county i’s weather, such as
less rainfall or hailstorms. The revised maximization problem is illustrated in equation (4),

and the marginal effect of cloud seeding participation on profit is shown in equation (5).

maX T = py{Yl% (Z) lt(W (Clt' Cjt)) pzZ — PcCit (A4)
dmie _ 1 3G, OWi(cir.cjt) _
dcit )/lt (Z) ( BWit aCit ) pC (AS)

In the damage control model, the damage control agent may not directly enhance crop

production; in some cases, it might even lead to a reduction in crop production (Lichtenberg
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and Zilberman, 1986). For instance, pesticides may not directly improve crop yield but can
reduce pests, resulting in better plant growth. However, excessive pesticide application can

harm crop plants. Similarly, if cloud seeding is effective and spillover effect is not

oW (cir)

considered, then <0. However, if spillover effects are taken into consideration, the

Cit

aWit(Citert)

> is unknown; it could be either positive or negative. Based on this model,
it

sign
in the following section, the efficacy of cloud seeding and potential spillover effects are

tested.
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Table D1. Net Benefit and Net Present Value of Counties Participating in the Cloud
Seeding Program (2002-2016)

Number of years Net benefit Net Present Value
participating in (2002-2016)
County ] Discount rate Discount
program during (real 2002
2002-2016 dollars) 31% rate 3.9%
Finney 10 22,385,099 19,300,000 18,600,000
Gove 2 1,459,277 1,065,190 984,491
Grant 8 11,625,797 9,338,420 8,858,088
Gray 10 19,057,089 15,300,000 14,500,000
Greeley 6 11,344,974 8,027,018 7,364,672
Hamilton 11 10,271,209 8,280,079 7,855,697
Haskell 8 36,540,874 29,600,000 28,200,000
Kearny 13 12,153,677 10,000,000 9,580,517
Lane 14 -6,337,185 -5,135,528 -4,883,257
Scott 14 9,101,877 8,026,396 7,793,650
Stanton 6 15,862,281 12,500,000 11,800,000
Stevens 2 7,954,878 6,330,899 5,975,491
Wallace 2 1,976,468 1,597,694 1,515,924
Wichita 11 17,683,923 14,700,000 14,000,000

*Price is average price of each month of grain crops. The production gain and loss are
based on the estimation of Table 3.

104



Table D2. Net Present Value of Cloud Seeding Program in Kansas

Net present value
(2002-2016)

Real Discount Rates 3.1% 3.9%
NPV (participating) -28,031,183 -29,149,102
NPV (non-participating) 39,009,128 41,324,710
Overall 10,977,945 12,175,608
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