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ABSTRACT 

Natural disasters cause significant economic losses and death tolls worldwide. In the 

United States alone, weather-related disasters have cost over $2.5 trillion in the past four 

decades, with increasing severity over time. Governments implement disaster risk 

reduction policies to mitigate these impacts by promoting avoidance behaviors, reducing 

exposure, and minimizing damage to people, crops, and property. However, critical 

questions remain understudied: Do these policies effectively reduce weather-related 

impacts? How can their efficacy be evaluated? What drives governments to terminate 

ineffective policies? This dissertation addresses these questions and provides insights for 

policymakers. 

The first chapter, “Tropical Cyclone Day-Off Orders, Warnings, and Avoidance 

Behavior,” examines Taiwan's day-off policy during tropical cyclones, which allows 

residents to avoid exposure to strong winds, landslides, and flooding. Using transportation 

data as a proxy for avoidance behavior, the analysis reveals that while mandatory day-off 

orders reduce exposure, people may take similar actions even without them. Comparing 

Taiwan with Miami-Dade County, Florida, the study finds similar avoidance patterns in 

areas without mandatory orders. These findings suggest that providing reliable information 

may allow individuals to make informed decisions, reducing unnecessary disruptions. 

The second chapter, “Efficacy Analysis of Cloud Seeding Programs in Kansas 

Agriculture,” evaluates cloud seeding as a hail suppression strategy for protecting crops in 

Kansas, a state prone to severe hailstorms. The findings show that cloud seeding reduces 

hailstorm intensity but does not significantly lower crop loss ratios, as hailstones remain 

large enough to cause damage. Additionally, cloud seeding unintentionally increases flood-

related crop losses and exhibits spillover effects, reducing downwind counties’ sorghum 

productivity. Despite a positive net present value overall, these spillover effects lead to 

negative net present value in downwind counties, complicating the program's cost-benefit 

profile. 

The third chapter, “Factors Influencing Policy Termination: The Cloud Seeding 

Program in Kansas,” investigates the determinants of policy termination using Kansas' 

cloud seeding program as a case study. Analysis reveals that counties experiencing higher 

hail-induced crop losses are more likely to terminate the program, reflecting its perceived 



 
 

inefficacy. Furthermore, neighboring counties' termination decisions delay the termination 

process, aligning with diffusion theory, which posits that governments learn from 

neighbors’ experiences. This study highlights the role of inefficacy and policy diffusion in 

driving termination decisions. 

In conclusion, this dissertation explores the effectiveness and sustainability of disaster 

risk reduction policies through the lens of two case studies: Taiwan’s tropical cyclone day-

off orders and Kansas’ cloud seeding program. The findings emphasize the importance of 

rigorous evaluation to improve policy design and highlight the need for continued research 

into innovative risk reduction strategies to enhance resilience against natural disasters. 
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INTRODUCTION 

Natural disasters result in substantial economic losses and significant death tolls 

globally. In the United States alone, the total costs of weather-related disasters have 

exceeded $2.5 trillion over the past four decades. Additionally, there is a noticeable trend 

of increasing severity in these disasters. 

According to the IPCC (2012), weather-related risk encompasses three interrelated 

components: hazardous events, exposure, and vulnerability. If any one of these components 

is absent, the risk does not exist. For instance, a landslide is a powerful natural disaster, but 

if no residents or properties are located in the potential affected area, the probability of 

landslide risk is nearly zero. Based on this framework, governments are implementing 

disaster risk reduction policies to help people take aversion or avoidance actions and 

mitigate adverse impacts on human beings, crops, and properties from these three 

perspectives.  

However, do these policies effectively reduce weather-related impacts? How can we 

evaluate the efficacy of risk reduction policies? How do governments decide to terminate 

ineffective policies? Additionally, what are the determinants of these decisions? These 

questions are critical but understudied. Therefore, the goal of this dissertation is to explore 

and shed light on these questions and provide insights for future policymakers. 

In the first chapter, titled “Tropical Cyclone Day-Off Orders, Warnings, and 

Avoidance Behavior,” I investigate the avoidance behaviors of the day-off policy in Taiwan 

for reducing exposure to tropical cyclones. On average, four tropical cyclones make 

landfall in Taiwan each year, causing significant damage. To protect people from tropical 

cyclones, the government announces mandatory day-off orders, which allow residents to 

stay home, avoiding work and school to reduce exposure to strong winds, landslides, or 

flooding. However, this policy is controversial. Governors may announce a day-off, but 

the tropical cyclones might not reach Taiwan due to its unpredictability, causing 

unnecessary interruptions to businesses and schools. Instead of conducting surveys as 

previous literature has done, I used transportation data to explore people’s responses to 

these mandatory orders. Given that the public transportation system in Taiwan is mostly 

underground, reliable, and operational during tropical cyclones, a decrease in passenger 

numbers would explicitly imply that people are not going to work or school, capturing their 
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avoidance behavior. The results indicated that people do respond to the government's day-

off order. However, they might take similar actions even without the mandatory order. Due 

to data limitations, I compared the situation with another hurricane-prone area, Miami-

Dade County in Florida, and found that the pattern of avoidance behavior is similar without 

a mandatory order. Based on these findings, governments might consider providing 

information and allowing individuals to make avoidance decisions according to their 

temporal and spatial situations.  

Besides reducing exposure to natural disasters, it is rarely discussed how to adopt 

policies to reduce hazardous events themselves. This is largely due to the fact that most 

natural disasters, such as earthquakes, are difficult to predict or too powerful to control. In 

the late 1940s, scientists began exploring a new field of earth engineering: cloud seeding. 

Their initial experiments aimed to reduce the intensity and alter the direction of hurricanes 

in the Gulf region. However, these experiments did not achieve their goals. Consequently, 

after the 1970s, scientists shifted their focus from modifying hurricanes to hail suppression 

and rain augmentation. 

In the second chapter, titled “Efficacy Analysis of Cloud Seeding Programs in Kansas 

Agriculture,” I delve into the implementation of cloud seeding and evaluate its 

effectiveness in Kansas. This state is a leading producer of winter wheat, corn, and sorghum, 

but these crops are threatened by extreme hailstorms every growing season. Recognizing 

the local need, the government has sponsored experimental fees and provided financial 

support to implement cloud seeding. However, the efficacy of hail suppression remains 

contentious, and the spillover effects in the context of hail suppression have not been 

thoroughly discussed in the literature. In this chapter, I found that cloud seeding reduces 

the magnitude of hailstorms. However, the average size of hailstones after treatment still 

exceeds the threshold size that causes damage. Consequently, cloud seeding does not 

statistically significantly reduce crop loss ratio due to hail. Additionally, I discovered that 

cloud seeding unintentionally increases flood-related crop loss ratio, likely due to the 

concentration of rainfall within a short time window. Furthermore, the results indicate that 

the spillover effect of cloud seeding exists: downwind areas experience productivity losses 

in sorghum production, though there is no significant effect on precipitation. Finally, I 

provide a cost-benefit analysis in the chapter. Overall, in Kansas, the net present value of 
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the cloud seeding program in terms of crop productivity is positive. However, it is not a 

win-win situation for all counties. When considering downwind counties that experience 

the spillover effect, the net present value of the cloud seeding project turns negative.  

In Kansas, despite significant subsidies and positive net present value overall, local 

governments decided to terminate the cloud seeding program. Conversely, in Taiwan, there 

are frequent debates whenever local governments announce a day-off order due to an 

approaching tropical cyclone that does not ultimately reach the island. People have 

submitted proposals to terminate the day-off order to the National Development Council 

in Taiwan, but these proposals have not garnered enough votes to pass.  

In the third chapter, titled “Factors Influencing Policy Termination,” I review the 

policy termination theory and examine the determinants that led to the termination of the 

cloud seeding program in Kansas. Local governments in Kansas annually decide whether 

and how much to sponsor the cloud seeding program. Initially, I profiled the counties that 

participated in the cloud seeding program, highlighting characteristics such as frequent 

hailstorms, higher support rates for the Republican Party, and greater numbers of 

neighboring counties also involved in the program. This profile characterizes a cluster of 

counties in Western Kansas, where higher elevations expose them to significant hailstorm 

risks. I further explored the determinants influencing the termination of the cloud seeding 

program in Kansas. The results indicate that counties experiencing higher crop loss ratios 

due to hail in previous years were more likely to terminate the cloud seeding program. This 

finding underscores the perceived inefficacy of the cloud seeding efforts in mitigating hail 

damage for these counties. Additionally, the termination decisions of neighboring counties 

delayed the decision-making process of observed counties. According to diffusion theory, 

counties’ decisions are influenced by their neighbors through a learning process, where 

counties gather information from neighboring experiences before making their own 

decisions.   

In conclusion, this dissertation explores the complex realm of disaster risk reduction 

policies, focusing on both exposure and hazard reduction strategies. The research aims to 

reveal the factors that influence the efficacy and termination of these policies, drawing 

insights from case studies such as Taiwan's day-off orders and Kansas' cloud seeding 

program, contributing to a deeper understanding of how such policies unfold in practice.
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CHAPTER 1: Tropical cyclone day-off orders, warnings, and avoidance behavior 

I. Introduction 

Tropical cyclones, also known as hurricanes and typhoons, are regional extreme 

weather phenomena that result in fatalities and tremendous economic losses every year. 

Over the past five decades, tropical cyclones have resulted in more than 1,945 disasters, 

$1.4 trillion (USD) in economic losses, and approximately 780,000 deaths worldwide, 

according to World Meteorological Organization 1 . To mitigate fatalities and losses, 

governments play a crucial role in assisting residents in taking action to avoid harm during 

tropical cyclones. Governments provide information and guidelines and may also issue 

mandatory orders to compel people to take protective measures, such as evacuating 

hazardous areas due to flood risk. These avoidance behaviors, wherein people take action 

to reduce their disaster exposure, help to mitigate potential harm and damages (Dickie, 

2017). However, the effectiveness of government-issued mandatory orders in influencing 

individuals' avoidance behavior during tropical cyclones remains underexplored. This 

research aims to address this gap in the literature and offer new insights for policymakers 

considering similar risk reduction strategies. 

In Taiwan, since 1980 the government has issued typhoon day-off orders to facilitate 

avoidance behavior. This policy mandates a day off from work and school to either stay 

put or evacuate from dangerous areas. Similarly, in the United States (US), governments 

issue mandatory evacuation orders to prompt citizens to take protective measures in 

response to hazardous events, including flooding and wildfires. However, such mandates 

are potentially controversial due to the inherent uncertainty in accurately anticipating 

exposure. For instance, the route of a tropical cyclone is unpredictable within a short time 

horizon. When risk averse government officials make decisions as tropical cyclones 

approach, they tend to make more precautionary decisions, leading to an over reliance on 

mandatory orders, resulting in higher socio-economic costs (Hausken, 2021). For example, 

the mandatory evacuation from Hurricane Rita led to approximately 100 traffic-related 

deaths. In this article, I examine the degree to which people engage in avoidance behavior 

in response to mandates versus the provision of information/guidance without mandates. 

Most of the literature on avoidance behavior examines taking actions to prevent 

 
1 See https://wmo.int/topics/tropical-cyclone. 

https://wmo.int/topics/tropical-cyclone
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temporal or permanent health damage, such as reducing exposure to heatwaves, air 

pollution, and water contaminants (Dickie, 2017; Sheldon and Sankaran, 2019; Kim, 2021). 

Within the context of tropical cyclones, the key literature discusses optimal evacuation 

decisions, including route selection and the timing of evacuation order announcements, 

with the goal of informing government evacuation plans.  

Regarding individual behavior, Whitehead (2005) conducted several surveys to learn 

about contingent hurricane evacuation decisions, such as when and how to evacuate 

hazardous zones during hurricanes. Although surveys can provide detailed and micro-level 

data, they are expensive and time-consuming. Moreover, people may forget details over 

time or experience trauma, leading to recall errors. 

Rather than conducting surveys to obtain information on individual behavior, some 

researchers have used aggregate data to investigate avoidance behavior over longer time 

periods. For example, Neidell (2009) examined avoidance behavior in relation to 

attendance at public facilities when people receive air quality information. Moretti and 

Neidell (2011) utilized marine transportation data to measure avoidance behavior in the 

context of air pollution. Similarly, Sheldon and Sankaran (2019) used aggregate electricity 

usage data to investigate avoidance behavior in Singapore during Indonesian forest fires. 

Finally, Rabassa et al. (2021) analyzed bike-sharing data in Buenos Aires to investigate 

avoidance behavior when people receive heatwave alarms, showing that those with greater 

vulnerability are more aware of the alarms.  

Moreover, access to critical information may influence averting behavior. Lack of 

sufficient information increases vulnerability due to false or inaccurate risk perceptions 

(IPCC, 2012). False risk perceptions in turn lead to gaps between hazardous events and the 

severity of the consequences, resulting in insufficient averting behavior (Thompson and 

Dezzani, 2021). In the context of tropical cyclones, empirical evidence shows that 

individuals who have experienced previous storm evacuations tend to evacuate half a day 

earlier upon receiving subsequent evacuation orders (Jiang et al., 2022). Information 

quality is also discussed, including how to make critical evacuation decisions in the 

presence of a high level of uncertainty (Kailiponi, 2010), as well as comparing how people 

respond to detailed information versus a simple warning (Dormandy et al., 2021). Finally, 

Beatty et al. (2019) employed supermarket scanner data in the US to investigate consumer 
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responses to government advice on tropical cyclones. 

To my knowledge, there are no studies that utilize aggregate data to investigate 

avoidance behavior in the context of tropical cyclones, nor is there research examining how 

people respond to alarms. In this chapter, I utilize metro system transportation usage data 

to examine tropical cyclone avoidance behavior in two major tropical cyclone regions 

worldwide: Taipei City and Kaohsiung City in Taiwan, as well as Miami-Dade County in 

the United States. Ideally, my examination would entail an event study to examine behavior 

before and after the adoption of the day-off order policy in Taiwan, but data constraints 

prevent such analyses. I therefore examine transportation usage patterns in different 

regions with different disaster policies to learn more about disaster aversion behavior in 

two policy regimes. I think the cases of Taiwan and Florida are comparable for several 

reasons.  

First, both regions experience a similar frequency of tropical cyclones in a year, with 

at least two storms annually over the past few decades. Additionally, they employ identical 

criteria for categorizing the intensity of tropical cyclones, enabling us to identify storms of 

similar scales in the two regions. Second, both regions face similar threats from tropical 

cyclones, such as flooding from storm surges and riverine floods, as well as flying debris 

from strong wind gusts. Consequently, government authorities in each region have 

implemented disaster avoidance policies. In Taiwan, the day-off order requires individuals 

to either stay in place or evacuate from hazardous areas. Similarly, the Florida state and 

local governments may issue a mandatory evacuation order, which implies a day-off for 

residents living in evacuation zones. In other words, businesses have no right to require 

workers to work in the evacuation zones under a mandatory evacuation order. However, 

compared to Taiwan, Florida issues mandatory orders less frequently, which provides an 

opportunity to identify tropical cyclones of similar magnitudes and observe behavior in the 

two regions with and without mandatory orders. 

Additionally, both regions share similar environmental conditions and demographic 

variables. For example, their average temperatures and precipitation levels are comparable 

(refer to the summary statistics in Section 3, Table 3). Both areas have populations of over 

2.6 million, with Kaohsiung City having 2.8 million residents and Miami-Dade County 

having 2.7 million residents. Finally, the usage rate and customer demographics of the 
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public transportation systems are also similar. Approximately 5% of the population in both 

cities rely on the public transportation system as their primary means of transportation. The 

behaviors associated with public transportation usage are also similar; for instance, the 

main age group falls between 16 and 34 years old, and the primary purpose for using public 

transportation is commuting between home and work. 

Moreover, according to a survey conducted by the Miami-Dade Transportation 

Planning Organization (2018), over 80% of people who choose to use public transportation 

in Miami-Dade County have access to an automobile. The distributions of household 

income among transit users were consistent with household income distribution in Florida2. 

For example, only 8% of public transportation users in Miami-Dade County have a 

household income of less than $25,000 annually, compared to 10.7% of the population in 

Florida. Therefore, the transportation data does not disproportionately represent the low-

income population or those without access to a car who rely on public transportation in the 

region. 

This article offers several contributions to the literature on disaster aversion. First, to 

the best of my knowledge, this article is the first to discuss how people respond to 

government-mandated day-off orders. My analysis demonstrates that people do respond to 

government orders by engaging in avoidance behavior. Second, this article adopts a 

different approach to studying avoidance behavior. In this literature, survey-based research 

is the more common approach to investigate avoidance behavior in the context of tropical 

cyclones. In this article, I also use aggregate transportation data to analyze responses to 

information without government mandates. Third, I provide case studies from two regions 

and compared people’s responses under mandatory orders versus information-only 

schemes. 

  

 
2  According to the United States Census Bureau, household income distribution in Florida in 2022 is as 

follows: 10.7% earn less than $25,000, 19.7% earn between $25,000 and $49,999, 17.4% earn between 

$50,000 and $74,999, 13.4% earn between $75,000 and $100,000, and 33.2% earn above $100,000. (see: 

https://data.census.gov/table/ACSST1Y2022.S1901?q=Florida%20Income%20and%20Poverty). According 

to the Miami-Dade Transportation Planning Organization (2018), survey results show that annually, 8% of 

households earn less than $25,000, 20% earn between $25,000 and $49,999, 20% earn between $50,000 and 

$74,999, 18% earn between $75,000 and $100,000, and 34% earn above $100,000. 

https://data.census.gov/table/ACSST1Y2022.S1901?q=Florida%20Income%20and%20Poverty
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The paper proceeds as follows. Section II provides background on Taiwan and 

Miami’s cyclone policies, section III describes the data, section IV describes the empirical 

approach, section V presents the results, and discussions with conclusions are presented in 

section VI. 

II. Background  

Taiwan is a hot spot of natural disasters in the world (World Bank, 2005). In total, 

73.1% of the Taiwan territory and 73.1% of the population are threatened by more than 

four kinds of natural disasters. Also, almost 95.1% of the population in the country was at 

a high mortality risk from more than three kinds of natural disasters. Among all types of 

natural disasters, typhoons and earthquakes cause tremendous economic loss and fatalities 

in Taiwan. For example, the earthquake that occurred on September 21, 1999 resulted in 

2,415 deaths and 11,305 people who were severely wounded. The total economic loss was 

$11.2 billion. In 2009, Typhoon Morakot caused 644 fatalities, 1,555 people who were 

severely wounded, and $3.4 billion economic losses, which was 0.91% of GDP (NCDR, 

2011).  

On average, four typhoons make landfall in Taiwan every year with strong wind is the 

main cause of damage.  However, even though some typhoons only pass by Taiwan without 

a direct hit, they may come with a southwesterly flow3. Sometimes several typhoons pass 

by together and cause the Fujiwara effect. In those two situations, severe precipitation 

occurs within a very short period (i.e., 24 or 48 hours), triggering landslides, storm surges, 

and floods. 

To help limit potential damages, national and local governments provide instructions 

and information to the public to enable preparations before extreme weather events occur. 

In the case of the United States, when tropical storms approach the National Weather 

Service provides data on the predicted path and potential precipitation. Based on this 

information, state governments issue voluntary or mandatory evacuation orders. When 

people receive a mandatory evacuation order, they should evacuate to the designated 

evacuation zone. However, such orders are not enforceable. If people decide to stay in the 

 
3  According to Rodo and Comin (2003), “The surface wind starts in the southern Indian Ocean as a 

southeasterly flow, crosses the equator and becomes a southwesterly flow in the northern tropical Indian 

Ocean”. 
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exposed area(s), they are responsible for their personal well-being during the storm and 

will not be prioritized if rescue services are needed. 

For small island countries such as Taiwan, evacuation only happens in mountain areas. 

Staying at home is a more practical avoidance strategy for tropical cyclones for two main 

reasons. First, typhoons typically cover half of Taiwan's territory; thus, there is no way to 

evacuate the entire population at the same time as there is no safe place to go. Second, 

buildings in Taiwan are required to follow Seismic Building Codes and Wind Resistance 

Design Specifications and the Commentary of Buildings. For example, all buildings in 

Taipei are required to resist a maximum ten-minutes average wind speed of 42.5 meters 

per second. Building codes therefore provide a certain level of protection during typhoons. 

Before 1980, the annual typhoon death toll was around 100. After 1980, the number 

dropped to 56. Injuries also decreased from 367 people (1958-1980) to 222 people (1981-

2019), as shown in Figure 1. In 2009, Typhoon Morakot broke historical precipitation 

records and caused the second-highest number of deaths and economic loss in history of 

Taiwan4. Excluding this outlier, the average death toll and injuries during typhoons (1981-

2019) were even lower at 38 and 180, respectively. 

 

Figure 1. Tolls and Injuries during tropical cyclones in Taiwan (1958-2019)5 

The decrease in death was coincident with the implementation of the typhoon day-off 

policy in the 1980s. In Taiwan, government officials announce a “typhoon day-off” when 

 
4 Typhoon Morakot has broken historical precipitation records, including one-day rainfall of 1,402 mm and 

a two-day rainfall of 2,146 mm. The two-day precipitation was even over than the thirty-year average annual 

precipitation. And the heavy precipitation caused a landslide in the mountain area of Kaohsiung, and 474 

people dead.   
5 The data source is Ministry of the Interior, https://www.nfa.gov.tw/cht/index.php?code=list&ids=233.  

https://www.nfa.gov.tw/cht/index.php?code=list&ids=233
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a typhoon or other severe weather events occur. When officials announce the orders, the 

stock market is closed, and all governmental works and compulsory education classes are 

suspended, enabling people to stay home or evacuate from potential flood and landslide 

areas to designated safe places. 

Between 1977 and 1993, typhoon day-off periods were announced by either the 

premier or the president. When a typhoon made landfall, local governments were required 

to report damage to the Executive Yuan. The premier considered information from the 

entire country and then made decisions whether to announce a typhoon day-off. For quicker 

disaster responses, after 1993 typhoon day-off periods were announced by the Directorate-

General of Personnel Administration who referred to local weather conditions and allowed 

selected cities or regions (not all) to announce a typhoon day-off.   

Until 2000, the Taiwan government legislated Operation Regulations on the 

Suspension of Offices and Classes because of Natural Disasters (henceforth referred to as 

Regulation). The Regulation provides objective standards for implementing a day-off, 

including accumulated precipitation, wind speed, landslide warning, and other factors. 

Currently, the Regulation authorizes local government officials to announce a typhoon day-

off because local authorities have better knowledge of local conditions.  

During a typhoon, the Central Weather Bureau announces typhoon warnings when 

typhoons approach Taiwan and provides updates every six hours, according to the 

Regulation. Typhoon alarms include the forecasted information on typhoons, such as wind 

speed, route, and precipitation. Also, typhoon alarms are announced to the public via TV, 

radio, and the internet. In addition to typhoon alarms, people also receive day-off orders as 

determined by local authorities. Typhoon day-off periods can be treated as a stronger signal.  

To provide sufficient time for preparedness, the Regulation requires local authorities 

to announce day-off orders the day before the typhoon is expected to make landfall and no 

later than 10 p.m. Regarding the day-off order issuance timing, there is a trade-off between 

flexibility for firms and workers to adjust work schedules and the actual need for a typhoon 

day-off order. In general, the prediction of the typhoon path has an average of 80 to 100 

km error in 24 hours. Based on available information, sometimes governments issue a 

typhoon day off, but the cyclone does not actually affect the target areas (i.e. counties or 

cities). Notably, local governments do not announce a typhoon day-off for every typhoon, 
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but rather base decisions on forecasted weather conditions. Although typhoon day-off 

orders are mainly for government workers and school students, most businesses from the 

private sector also follow the orders, effectively making the order of broad scale and 

mandatory. According to the law in Taiwan, workers can refuse to go to work based on the 

day-off announcement. Therefore, day-off orders announced by local governments become 

a binding rule for businesses. This policy consistently provokes debate after tropical 

cyclones. In 2018, residents proposed canceling the day-off order to Taiwan's National 

Development Council, but the proposal did not gain sufficient support.  

Overall, most people trust the Central Weather Bureau and the day-off decisions made 

by local government authorities, resulting in the continuation of the day-off order policy. 

Likewise, residents of Miami-Dade County receive information from the National 

Hurricane Center (NHC) through various channels, including TV, radio, and the internet. 

The information is updated every six hours, and different types of information are provided 

(as detailed in section 3.2). In Florida, when a hurricane poses a potentially life-threatening 

risk, the government also issues mandatory evacuation orders6. 

I hypothesize that mandatory government orders have a larger avoidance effect than 

warnings during tropical cyclones. In other words, I expect that a higher percentage of 

people will either stay at safe places or evacuate the hazardous zone when they receive a 

government day-off order compared to when they freely take precautions in response to 

government provided information and warnings. To test this hypothesis, I use data from 

public transportation systems to examine avoidance behaviors. When individuals receive 

information or mandatory orders, they may choose to remain at safe shelters or at home or 

evacuate from high-risk zones.  

The primary purpose of public transportation is commuting to work and school. 

Therefore, when individuals receive a mandatory order and decide to stay at home, I expect 

a significant decrease in public transportation usage. During a tropical cyclone, a decline 

 
6 Government officials announce a storm surge map to residents, and residents can base their evacuation on 

the weather forecast for the zone. Normally, evacuation from a storm surge zone to a safe zone takes more 

than 10 hours, so the government can only announce an evacuation order based on the hurricane watch, which 

is the projection 48 hours in advance. Using outdated information to make these evacuation orders also caused 

mistakes several times in history. Furthermore, even when the government authorities announce an 

evacuation order, they can only encourage businesses to close earlier and allow employees to prepare earlier. 

It is the responsibility of residents to make an evacuation plan, including the departure time and evacuation 

destination. Shelters are provided only for those who have no other place to go. 
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in public transportation usage may indicate that aversion strategies are being taken by 

residents within the cyclone-affected areas. 

III. Data 

In this study I use data on public transportation usage, government released 

information, and weather to evaluate disaster avoidance behaviors. Data sources with 

descriptions are provided below. 

(1) Public transportation data 

First, the public transportation system should be reliable and continue running even 

during tropical cyclones to serve as a measure of avoidance behavior. In Taiwan, the metro 

system is essential infrastructure and provides service even when the government issues 

typhoon day-off orders. Similarly, in Miami-Dade County, the bus system is utilized to 

evacuate residents during tropical cyclones. Hence, public transportation usage 

information is available during tropical cyclones to measure avoidance behaviors. 

Public transportation usage data can be used as a measure of the degree to which 

people engage in avoidance behavior during tropical cyclones. Among all transportation 

modes, metro system usage data in Taiwan is chosen to evaluate avoidance behavior for 

several reasons. First, urban traffic data, such as car flow, is limited and available only for 

important intersections in cities. Further, daily data is unavailable for those intersections. 

Second, most of the metro system in Taiwan is underground and thus strong winds and 

rainfall do not physically affect the service. For a small portion of the metro system that is 

above ground, services adjust to storms and strong winds by slowing speed and providing 

longer service intervals.  

In this study, two different cities in northern and southern Taiwan are used to evaluate 

avoidance behavior by measuring differences in metro usage before, during, and after day-

off orders. Daily passenger trip data for the Taipei Metro System and the Kaohsiung Metro 

System are obtained from the websites of Taipei Rapid Transit Corporation and the 

Kaohsiung Rapid Transit Corporation7. Data are composed of daily time series between 

2009 and 2019, excluding SARS (2002-2003), the financial crisis (2007-2008), and 

COVID-19 (after 2020), which were major macro events that influenced willingness to use 

 
7 Metro systems is just a portion of public transportation, so the population used metro system was less than 

those percentages, see footnote 1. 
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the public transportation systems. 

Before describing the data in more detail, there is a concern that deserves 

consideration. Although underground metro systems can continue operations during 

periods of strong wind and rainfall, flooding could still hamper the underground metro 

system. During the period of evaluation, the Rapid Transit Corporations addressed this 

problem. After typhoon Nari flooded the Taipei metro system in 2001 the Taipei Rapid 

Transit Corporation installed water pumps and water gates to prevent inundation during 

typhoons and extreme precipitation. Following the installation of water pumps and gated, 

both Taipei Metro System and Kaohsiung Metro System provided reliable transportation 

services during extreme flooding events. 

For the Miami-Dade County case, transportation data come from the Department of 

Transportation and Public Works (DTPW), which includes information on three public 

transportation systems, Metrobus, Metrorail, and Metromover. The Metromover is a 

railway system that services a specific area in downtown Miami. Among these three means 

of transportation, the largest and most reliable one is the Metrobus. The bus system not 

only covers a broader area than the other options, but it also keeps running during hurricane 

events. Additionally, the DTPW also provides evacuation buses when mandatory 

evacuation orders are issued. Daily passenger ride data for Miami-Dade County are 

obtained from Miami-Dade County Public Records System8. Due to the data availability 

and avoiding the COVID period, 2015 October to 2019 December data for Miami-Dade 

County is used. 

Although Metrobus and Metrorail are reliable transit systems in Miami Dade-County, 

during Hurricane Matthew and Irma the transportation services were closed for three days, 

which were October 6th, 2016, September 10th, 2017, and September 11, 2017. I dropped 

those three data points from the dataset9. 

  

 
8 Miami-Dade County Public Records System: 

https://miamidadecounty.govqa.us/WEBAPP/_rs/(S(qbunqbakjua002frrxllbfbq))/SupportHome.aspx?sSessi

onID=  
9 The Metrobus and Metrorail service were officially recorded as closed on October 6, 2016, but in my dataset, 

15,472 and 2,764 rides on Metrobus and Metrorail were recorded, respectively. 

https://miamidadecounty.govqa.us/WEBAPP/_rs/(S(qbunqbakjua002frrxllbfbq))/SupportHome.aspx?sSessionID=
https://miamidadecounty.govqa.us/WEBAPP/_rs/(S(qbunqbakjua002frrxllbfbq))/SupportHome.aspx?sSessionID=
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(2) Weather data  

Taiwan’s typhoon data come from the Typhoon Database 10 , which provides 

information on typhoon scale, routes, event date, maximum wind speed near the typhoon 

center, and typhoon warnings. Typhoon routes are an important consideration in local 

government decision-making. If the magnitude of an incoming typhoon is severe but the 

predicted route is not close to a given location, then a local government will not issue a 

day-off order. For example, the southern city Kaohsiung issued a day-off order in 2010 for 

the Route 9 typhoon Lionrock, but the northern city Taipei did not. Based on historical 

typhoon patterns, there are ten different routes as shown in Figure 2. Route 0 means the 

typhoon is close to Taiwan but never makes landfall. Routes 1 to nine are the pathways that 

typhoons pass through Taiwan after making landfall. Route 10 is a category that collects 

typhoons that make landfall but do not belong to routes one to nine. 

Every year many typhoons form in the Western North Pacific, but only those that 

impact Taiwan are included in this study. According to the Regulation, The Central Weather 

Bureau in Taiwan issues typhoon warnings when typhoons are within 300 km of the 

shoreline. These typhoons are defined as having an impact on Taiwan. 

Data on historical typhoon day-off periods are collected from the website of the 

Directorate-General of Personnel Administration11. The day-off periods that only applied 

to specific small regions, such as communities in mountain areas, were excluded because 

metro systems do not cover the mountain areas. In addition, mountain areas are more 

fragile than cities, and people may potentially evacuate to safer places to avoid landslides. 

Those evacuation decisions are beyond the scope of this study. 

Typhoon day-off orders and typhoon warnings are correlated with weather conditions. 

To control for weather conditions, I collect daily weather data from 2009 to 2019. Weather 

data come from the Central Weather Bureau Observation Data Inquiry System12 . On 

average, each city had at least one weather station and several automatic weather stations. 

I use data from traditional weather stations for each city because the data from automatic 

weather stations do not cover the research period.    

 
10 Typhoon Database: https://rdc28.cwb.gov.tw/TDB/  
11 Historical day-off order: https://www.dgpa.gov.tw/en/index?mid=138  
12 Central Weather Bureau Observation Data Inquire System:  

https://e-service.cwb.gov.tw/HistoryDataQuery/  

https://rdc28.cwb.gov.tw/TDB/
https://www.dgpa.gov.tw/en/index?mid=138
https://e-service.cwb.gov.tw/HistoryDataQuery/
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Source: Central Weather Bureau 

Figure 2. Routes of Typhoons  

 The weather information in Miami includes tropical cyclone data and historical 

weather data. I obtain data from tropical cyclone reports from the National Hurricane 

Center (NHC) and Central Pacific Hurricane Center (CPHC)13. Similar to the Taiwan case, 

before a tropical cyclone makes landfall, the NHC and CPHC will announce alarms that 

are released on TV, radio, and the internet, providing updates every six hours. Therefore, 

people receive information and then decide the degree to which they will take any 

avoidance actions. The alarm types depend on the magnitude of the tropical cyclone, 

including storm surge warnings, hurricane warnings, tropical storm warnings, storm surge 

watch, hurricane watch, tropical storm watch, tropical cyclone public advisory, and tropical 

cyclone track forecast cone14. When a tropical cyclone watch or warning affects target areas, 

the NHC and CPHC will further issue a Tropical Cyclone Public advisory and update it 

every three hours. All the watches and warnings are issued for specific areas ranged 

between breakpoints, which are defined by the NHC and CPHC15. For studying avoidance 

behavior in Miami-Dade County, I first determine how many tropical cyclones affected the 

target areas. To do this, I count the number of times that the NHC and CPHC issued watches 

and warnings for the breakpoints located in Florida. From 2015 to 2019, 83 hurricanes 

occurred in the Atlantic, Caribbean Sea, and Gulf of Mexico areas. In total, 13 hurricanes 

 
13 https://www.nhc.noaa.gov/  
14 More details on: https://www.weather.gov/safety/hurricane-ww  
15 Hurricane and tropical storm watch/warning breakpoints map: https://www.nhc.noaa.gov/breakpoints/.  

https://www.nhc.noaa.gov/
https://www.weather.gov/safety/hurricane-ww
https://www.nhc.noaa.gov/breakpoints/
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affected Miami-Dade County over the period of analysis. 

I gather Miami historical weather data from the National Centers for Environmental 

Information which is funded by the National Oceanic and Atmospheric Administration 

(NOAA)16 . The data includes wind speed, temperature, and precipitation. The Miami 

International Airport weather observation station was chosen because the station is located 

in the middle of the bus and railway system and is likely to better represent the weather 

conditions when people make decisions. 

During the 2009-2019 period, 53 typhoons made landfall in Taiwan. The local 

government of Kaohsiung announced 27 typhoon day-off orders and 163 typhoon alarms. 

The local authorities in Taipei City and New Taipei City announced 23 typhoon day-off 

orders and 162 typhoon alarms. Table 1 shows that in Taipei and New Taipei City, fourteen 

and seven day-off orders occurred in moderate and severe typhoons, respectively. 

Kaohsiung had a pattern similar to Taipei but announced more days-off during milder 

typhoons. Among the data, five of ten day-off orders were implemented when typhoons 

came through Routes 9 and 10. Typhoons that came via Route 9 might bring heavy 

precipitation, and Route 10 is unexpected. In sum, people regularly receive day-off orders 

during moderate and severe typhoons. 

Table 1. Scales of typhoon and day-off orders 

Scale 
Number  

(2009-2019) 

Day-off for Taipei and 

New Taipei City (days) 

Day-off for 

Kaohsiung City 

(days) 

Mild 21 2 10 

Moderate 19 14 13 

Severe 13 7 4 

Total 53 23 27 

 

  

 
16 https://www.ncdc.noaa.gov/cdo-web/datatools/selectlocation.  

https://www.ncdc.noaa.gov/cdo-web/datatools/selectlocation
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Sustained wind speed is the standard for classifying the scale of tropical cyclones. In 

Miami, the sustained wind speed between 62 to 119 kilometers per hour is called a tropical 

storm, and the magnitude is equivalent to a mild typhoon in Taiwan. From Table 2, the 

scales of hurricanes are equivalent to moderate and severe typhoons. Therefore, in my 

research, when I compare two different places, I examine the behavior when people receive 

day-off orders and hurricane alarms for tropical cyclones of similar magnitudes. 

Table 2. Magnitudes of Tropical Cyclones 

Taiwan Miami-Dade County 

Scale 
Wind speed 

(km/hour) 
Scale 

Wind speed 

(km/hour) 

Mild typhoon 62-117 Tropical Storm 62-118 

Moderate typhoon 118-183 Hurricane-Category 1 119-153 

Severe typhoon > 183 Hurricane-Category 2 154-177 

  Hurricane-Category 3 178-209 

  Hurricane-Category 4 210-249 

  Hurricane-Category 5 > 249  

 

Table 3 provides summary statistics for the variables discussed above. From Table 3, 

passenger trips of Kaohsiung and Miami-Dade County are around one-tenth of Taipei and 

New Taipei city. The precipitation data show the distribution of extreme rainfall, which 

often results in landslides or flooding. For example, the mean of precipitation in Kaohsiung 

city is 5.58 mm, and the standard deviation is around 17.8 mm. However, the maximum 

daily rainfall during a typhoon is 507 mm, which is almost 100 times the average.  
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Table 3. Summary statistics 

Variable Obs Mean Std. Dev Min Max 

Transportation (passenger trips)     

Kaohsiung Metro 4,017 157,997 39,977 23,086 472,378 

Taipei & New Taipei Metro 4,017 1,793,785 362,994 150,025 3,205,325 

Miami-Dade Metrobus   1,823 159,447 49,447 95 267,902 

Miami-Dade Metrorail  1,550 54,167 20,869 144 88,970 

Miami-Dade Metromover  1,547 21,445 6,249 0 51,690 

      

Weather       

New Taipei-temperature (℃) 4,017 23.31 5.44 5.4 32.3 

Taipei-temperature(℃) 4,017 23.58 5.5 5.6 33.2 

Kaohsiung-temperature(℃) 4,017 25.71 3.9 7.9 32.0 

Miami-temperature (℃) 1,826 25.63 3.48 11.1 31.7 

New Taipei-precipitation (mm) 4,017 5.66 18.5 0.0       379.5 

Taipei-precipitation (mm) 4,017 6.12 17.8 0.0 306.7 

Kaohsiung -precipitation (mm) 4,017 5.58 23.6 0.0 507.0 

Miami-precipitation  1,826 4.83 12.5 0 139.5 

      

New Taipei-wind speed (m/s) 4,017 2.07 1.0 0.1 8.4 

Taipei-wind speed (m/s) 4,017 2.43 1.2 0.4 9.6 

Kaohsiung -wind speed (m/s) 4,017 2.06 0.7 0.2 10.4 

Miami-wind speed (m/s) 1,824 3.53 1.4 0.9 17.2 

 

  



19 
 

IV. Empirical Strategy  

In this section, conceptual models and empirical strategies are introduced. Also, 

concerning the characteristics of the time series data, several econometric tests were 

conducted to inform the selection of the most appropriate empirical approach.       

(1) Conceptual Model 

To measure the effect of the day-off policy on safety, assume the following safety 

production function (Neidell, 2009): 

Safety=f(tropical cyclone*avoid, V) 

where Safety measures the level of safety, such as increasing life expectancy or 

reducing accidents. Tropical cyclone includes a set of typhoon magnitude and trajectory 

variables, such as wind speeds, rainfall, scale, route, etc. Avoid includes factors that capture 

avoidance behavior. Interacting typhoon with avoid captures exposure to natural disaster 

risk, which is consistent with the risk definition noted in the introduction (IPCC, 2014). 

Even though a given typhoon magnitude is severe, avoidance behavior may reduce 

hurricane exposure. Avoid captures the scale of avoidance depending on the magnitude of 

tropical cyclone and other variables, such as alarms, risk perceptions, or past experiences. 

V is a vector of other behavioral and socioeconomic factors that may affect safety. For 

example, as mentioned in section 2, buildings should be compliant with building codes.  

Suppose that social and environmental investments can enhance human safety. In the 

production function, the frequency and magnitude of hazardous events are negatively 

related to safety. For example, Category 5 hurricanes might reduce the life expectancy of 

residents in affected areas. However, avoidance behavior can mitigate the adverse effects 

of hazardous events. For instance, individuals may take precautions and choose to stay 

indoors when a tropical cyclone impacts the coastal area. 

(2) Testing time-series data 

Given the time-series nature of the data, stationarity is required for the regression 

analysis. However, in many cases time-series data are not stationary and thus may result in 

spurious relationships between variables (Granger and Newbold, 1974). Daily metro 

system passenger trips are my main data, and Figure 3 presents time trends in the data17. 

 
17 I also controlled for time trends, the results of which are available in the Appendix.  
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The Augmented Dicky Fuller (ADF) test is used to check the unit root. The results show 

passenger trips for both Taipei and Kaohsiung metro systems are stationary, which means 

shocks only have an impact within limited periods. I control time fixed effects in the 

empirical analysis, including the day of week and the month of the year, which influence 

passenger ride patterns. For example, the primary purpose of utilizing public transportation 

is commuting to work and school, so the number of passengers naturally decreases on 

weekends. Moreover, during the summer and winter vacations, the number of passengers 

also decreases. 

  
(a) Taipei metro (b) Kaohsiung metro 

Figure 3. Passenger trips for metro systems 

When using high-frequency time-series data, there may also be serial correlation 

issues. I therefore conduct a Durbin-Watson test, revealing that serial correlation problems 

are present. Figure 4 shows the partial autocorrelations, and the autocorrelations exhibit 

seasonality. From the graph, seven periods (days) form a cycle and show that the metro 

system appears to have a weekly pattern. I include two lags of the dependent variable and 

adopt the Breusch-Godfrey test to check first-order and higher-order serial correlation in 

the errors. Including the two lags of the dependent variable removes serial correlation from 

the errors. 
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(a) Taipei metro (b) Kaohsiung metro 

Figure 4. Partial autocorrelations of passenger trips 

For the Miami Dade-county case, unlike Taiwan, Figure 5 shows decreasing time 

trend for daily passenger rides for the Metrobus. After the ADF test, the results show 

passenger rides for Metrobus, Metrorail, and Metromover are all stationary. And similarly, 

including two lags of the dependent variable removes serial correlation in the errors.   

 
Figure 5. Passenger rides of three public transportation systems in Dade County 

(3) Empirical Strategy  

In the empirical analysis, I evaluate responsiveness of people to typhoon alarms. After 

testing and modifying the time series data as described in previous section, I employ 

ordinary least squares regression analysis in this study, as illustrated in Equation (1) 

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + 𝛽1𝑑𝑜𝑓𝑓𝑡 + 𝛾1𝑤𝑖𝑛𝑑𝑡−1 ×

𝑟𝑜𝑢𝑡𝑒𝑡−1+𝛾2𝑟𝑎𝑖𝑛𝑡−1 + 𝛼1𝑛ℎ𝑜𝑙𝑖𝑑𝑦𝑡 + 𝛼2𝐷𝑂𝑊 + 𝛼3𝑀𝑂𝑌 + 𝜀𝑡                            (1) 
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where 𝑃𝑆𝑡 is the total count of daily passengers in the Kaohsiung metro system from 2009 

to 2019. Because the dependent variables are non-normal with an asymmetric distribution, 

I use the natural logarithm to approximate the normal distribution. For the Taiwan case, 

test how people change their behavior in response to the typhoon day-off order. To address 

autocorrelation in time series data (see section 3), two lags of the dependent variable, 

log⁡(𝑃𝑆𝑡−1) and log⁡(𝑃𝑆𝑡−2), are added in the regression. The independent variable 𝑑𝑜𝑓𝑓𝑡 

is a dummy variable where the value is equal to one when the government announces a day 

off on day t and zero otherwise. However, because local governments are required 

announce the day-off on the previous day, day t-1, they can only make decisions based on 

the weather forecasting on day t-1. I therefore control for rainfall, wind speed, and route 

on day t-1. The interaction between wind speed and the typhoon route is intended to capture 

the decision-making process. When the typhoon wind speed exceeds the warning level, but 

the typhoon route is not close to the city, then the typhoon doesn't impact the city, hence 

no day-off order is issued. 

I also control for confounding factors that may influence the total count of passengers 

in the metro system. For example, the Taipei Metro Company continued to build new 

stations after 2009, and more stations attract more passengers. Also, commuters cause the 

passenger numbers to fluctuate because of weekends or school vacations. To control those 

confounders, I include national holiday (nholiday) and time trends in equation (1), 

including day of week (DOW) and month of the year (MOY). Finally, 𝜀𝑡 is the error term 

of estimation.  

People received day-off orders (doff) on day t-1, but day-off occurs on day t. In 

addition, people also make decisions based on the weather conditions of day t. People 

might not exhibit avoidance behavior when the weather was good on day t. I therefore 

illustrated this situation with specification (2) as follows. The first bracket shows the past 

information on day t-1, and the second bracket represents the information on day t.     

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + 𝛼1𝑛ℎ𝑜𝑙𝑖𝑑𝑦𝑡 + 𝛼2𝐷𝑂𝑊 + 𝛼3𝑀𝑂𝑌 +

[𝛽1𝑑𝑜𝑓𝑓𝑡 + 𝛾1𝑤𝑖𝑛𝑑𝑡−1 ∙ 𝑟𝑜𝑢𝑡𝑒𝑡−1+𝛾2𝑟𝑎𝑖𝑛𝑡−1] + [𝜌1𝑟𝑎𝑖𝑛𝑡 + 𝜌2𝑤𝑖𝑛𝑑𝑡] + 𝜀𝑡           (2) 

Because Taipei city and New Taipei City are adjacent, many people travel from New 

Taipei City to Taipei city to work or go to school. Therefore, as illustrated in specification 
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(3) I estimate the interaction effect of rainfall from both the Taipei government and the 

New Taipei government. 

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + [𝛽1𝑑𝑜𝑓𝑓𝑇𝑎𝑖𝑡 + 𝛾1𝑤𝑖𝑛𝑑𝑡−1 × 𝑟𝑜𝑢𝑡𝑒𝑡−1 +

𝛾2𝑟𝑎𝑖𝑛𝑇𝑎𝑖𝑡−1 + 𝛾3𝑟𝑎𝑖𝑛𝑁𝑇𝑎𝑖𝑡−1] + 𝛼1𝑛ℎ𝑜𝑙𝑖𝑑𝑦𝑡 + 𝛼2𝐷𝑂𝑊 + 𝛼3𝑀𝑂𝑌 + 𝜀𝑡                    (3) 

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + [𝛽1𝑑𝑜𝑓𝑓𝑇𝑎𝑖𝑡 + 𝛾1𝑤𝑖𝑛𝑑𝑡−1 × 𝑟𝑜𝑢𝑡𝑒𝑡−1 +

𝛾2𝑟𝑎𝑖𝑛𝑇𝑎𝑖𝑡−1 + 𝛾3𝑟𝑎𝑖𝑛𝑁𝑇𝑎𝑖𝑡−1] + [𝜌1𝑟𝑎𝑖𝑛𝑇𝑎𝑖𝑡 + 𝜌2𝑟𝑎𝑖𝑛𝑁𝑇𝑎𝑖𝑡 + 𝜌3𝑤𝑖𝑛𝑑𝑇𝑎𝑖𝑡 +

𝜌4𝑤𝑖𝑛𝑑𝑁𝑇𝑎𝑖𝑡] + 𝛼1𝑛ℎ𝑜𝑙𝑖𝑑𝑦𝑡 + 𝛼2𝐷𝑂𝑊 + 𝛼3𝑀𝑂𝑌 + 𝜀𝑡                    (4) 

Next, I examine the general avoidance behavior in Miami-Dade County to alarms (not 

mandatory orders) through specification (5). 𝑎𝑙𝑎𝑟𝑚𝑇 is the total number of alarms issued 

by NOAA during period t. I examined different lag periods for alarms, including 

contemporaneous (t) and one and two period lags (t-1 and t-2). 

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + 𝛽1𝑎𝑙𝑎𝑟𝑚𝑇 + 𝛾1𝑤𝑖𝑛𝑑𝑡 +⁡𝛾2𝑟𝑎𝑖𝑛𝑡 +

𝛼1𝐷𝑂𝑊 + 𝛼2𝑀𝑂𝑌 + 𝜀𝑡                                                                                (5)         

As briefly discussed in section 3, I use hurricane watches and hurricane warnings for 

Miami-Dade County to estimate the avoidance behavior when people receive alarms of 

severe tropical cyclones through specifications 6a, 6b, and 6c. 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒_𝑤𝑎𝑡𝑐ℎ𝑡−2 is the 

hurricane alarm people receive where I use two lag periods because the announcement 

occurs 48 hours in advance. Similarly, 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒_𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑡−1 is the hurricane alarm 

people receive, where I use one lag period because the hurricane warning is announced 36 

hours in advance. According to NOAA, people should prepare extra supplies and plan for 

evacuation when receiving a hurricane watch, and people should be well-prepared or leave 

when receiving a hurricane warning. If the alarm is the only information people rely on, 

they will make plans accordingly. 

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + 𝛽1𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒_𝑊𝑎𝑡𝑐ℎ𝑡−2 + 𝛼1𝐷𝑂𝑊 +

𝛼2𝑀𝑂𝑌 + 𝜀𝑡                         (6a) 

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + 𝛽1𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒_𝑤𝑎𝑡𝑐ℎ𝑡−2 + 𝛾1𝑤𝑖𝑛𝑑𝑡 +

𝛾2𝑟𝑎𝑖𝑛𝑡 + 𝛼1𝐷𝑂𝑊 + 𝛼2𝑀𝑂𝑌 + 𝜀𝑡                                                                     (6b) 

log⁡(𝑃𝑆𝑡) = 𝜌1log⁡(𝑃𝑆𝑡−1) + 𝜌2log⁡(𝑃𝑆𝑡−2) + 𝛽1𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒_𝑤𝑎𝑡𝑐ℎ𝑡−2 +

𝛽2𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒_𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑡−1 + 𝛾1𝑤𝑖𝑛𝑑𝑡 + 𝛾2𝑟𝑎𝑖𝑛𝑡 + 𝛼1𝐷𝑂𝑊 + 𝛼2𝑀𝑂𝑌 + 𝜀𝑡           (6c) 
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V. Results 

(1) Avoidance behavior  

Table 4 presents the results for how day-off orders affect passenger trips for Taiwan. 

The first two columns show estimates for Kaohsiung, and the other two columns present 

estimates for Taipei and New Taipei. All four specifications offer evidence that people 

exhibit avoidance reactions in response to day-off orders. In specifications (1) and (3), the 

passenger trips drop 71.20% and 94.78% and are significant at the 1% level, respectively. 

In specifications (2) and (4), people also respond to day-off orders, and there are 58.08% 

and 83.87% reductions in passenger trips in Kaohsiung and Taipei, respectively. When the 

specification includes current period weather information, the impacts of day-off orders 

become smaller in both cities. 

Referring to Figure 1, Kaohsiung city is located in southern Taiwan. Typhoons on 

Route 7 have a stronger impact than on Routes 4 to Kaohsiung city because when a typhoon 

makes landfall from Route 4, the magnitude of a typhoon is reduced by the Central 

Mountain Range. However, if a typhoon makes landfall on Route 7, the power is not 

reduced by the mountain range and is even stronger because the ocean provides more 

energy to sustain the typhoon. As shown in Table 4, when the wind speed in period t-1 

increases, typhoons on Routes 4 and Route 7 are associated with significant reductions in 

passenger trips. Moreover, the coefficient on the Route 7 variable is larger than Routes 4. 

However, in Taipei and New Taipei, typhoons that follow Route 2 have stronger impacts 

than other routes. 

Turning to other non-typhoon results, national holidays generate different patterns 

across metro systems in the two cities. In Kaohsiung, more people use the metro system, 

with 15.9% increase in passenger trips on holidays. However, in Taipei and New Taipei, 

fewer people use the metro system during holiday periods, with around a 20% drop in 

passenger trips. These different patterns are due to the fact that more people live in 

Northern cities for work, but they go home to other cities for national holidays. 
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Table 4. Estimated impacts of day-off order on amount of passengers (fixed-effect) 

 Kaohsiung Taipei & New Taipei 

Specification (1) (2) (3) (4) 

𝐥𝐧⁡(𝑷𝑺𝒕−𝟏) 0.6242*** 

0.0942*** 

-0.7120*** 

0.0012** 

0.6168*** 

0.1049*** 

-0.5808*** 

0.0015*** 

0.5134*** 

0.3241*** 

-0.9478*** 

0.0008*** 

0.5259*** 

0.3082*** 

-0.8387*** 

0.0010*** 

𝐥𝐧⁡(𝑷𝑺𝒕−𝟐) 

𝒅𝒐𝒇𝒇𝒕 

𝒓𝒂𝒊𝒏𝒕−𝟏 

     

𝒘𝒊𝒏𝒅𝒕−𝟏 × 𝒓𝒐𝒖𝒕𝒆𝒕−𝟏        

0 

1 

2 

3 

4 

5 

6 

7 

9 

10 

-0.0002 

-0.0000 

0.0023*** 

0.0015* 

-0.0012* 

0.0004 

-0.0005 

-0.0019* 

0.0009 

0.0008 

-0.0002 

0.0001 

0.0017* 

-0.0018** 

-0.0004 

0.0002 

-0.0003 

-0.0007 

0.0008 

-0.0000 

0.0009** 

0.0028*** 

0.0102*** 

0.0057*** 

0.0014*** 

0.0006 

0.0006 

-0.0005 

0.0001 

-0.0008 

0.0013*** 

0.0033*** 

0.0102*** 

0.0059** 

0.0015*** 

0.0010 

0.0010 

-0.0007 

-0.0006 

-0.0002 

 𝑲𝒂𝒐𝒉𝒔𝒊𝒖𝒏𝒈𝒓𝒂𝒊𝒏𝒕  -0.0014***   

𝑲𝒂𝒐𝒉𝒔𝒊𝒖𝒏𝒈𝒘𝒊𝒏𝒅𝒕  -0.0017   

𝑻𝒂𝒊𝒑𝒆𝒊𝒓𝒂𝒊𝒏𝒕    -0.0013*** 

𝑻𝒂𝒊𝒑𝒆𝒊𝒘𝒊𝒏𝒅𝒕    0.0104*** 

𝑵𝒆𝒘𝑻𝒂𝒊𝒑𝒆𝒊𝒓𝒂𝒊𝒏𝒕    -0.0001 

𝑵𝒆𝒘𝑻𝒂𝒊𝒑𝒆𝒊𝒘𝒊𝒏𝒅𝒕    -0.0232*** 

Nhday 0.1590*** 0.1596*** -0.2071*** -0.2066*** 

R-squared 0.7407 0.7518 0.7901 0.8029 

*:10%, **:5%, ***:1% statistic significant. 

Table 5 presents results for avoidance behavior in Miami-Dade County, which shows 

a 30% reduction in bus rides due to hurricane warnings. For comparison, note that in 

Tiawan passenger rides are also reduced by around 10% when people receive alarms. One 
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important related finding is that bus rides in Miami-Dade County are sensitive to weather 

conditions, such as wind and precipitation. For comparison, a 1% increase in precipitation 

causes a 0.2% decrease in passenger rides in Kaohsiung but a 9% decrease in Miami-Dade 

County. A possible explanation is that bus stops do not provide cover or transit tunnels 

between buildings. But the subway system in Kaohsiung is underground, and each railway 

stop is in a building or close to a building. The difference between the two types of 

transportation systems may result in different passenger behaviors. However, I also 

estimated regressions for Metrorail and Metromover, and the results were similar to the bus 

system. These findings lead to a second possible explanation, which is that residents in 

Miami-Dade County rely more on weather conditions for daily decisions than do residents 

of Taiwan. 

Table 5. Avoidance behavior _Miami Dade County Metrobus system (fixed-effect) 

Specification (5a) (5b) (5c) (5d) 

ln(𝐛𝐮𝐬𝐫𝐢𝐝𝐞𝒕−𝟏) 0.452*** 0.455*** 0.472*** 0.455*** 

ln(𝐛𝐮𝐬𝐫𝐢𝐝𝐞𝒕−𝟐) -0.024  -0.037 -0.049 -0.047 

     

Awind -0.006*** -0.007*** -0.008*** -0.007** 

Rain -0.071*** -0.072*** -0.071*** -0.071*** 

Alarm -0.302***    

𝐀𝐥𝐚𝐫𝐦𝒕−𝟏  -0.269***  -0.182*** 

𝐀𝐥𝐚𝐫𝐦𝒕−𝟐   -0.257*** -0.154*** 

constant  6.579*** 6.723*** 6.657*** 6.832*** 

R-squared 0.779 0.777 0.776 0.778 

*:10%, **:5%, ***:1% statistic significant. 

I use transportation data to proxy people’s avoidance behavior, and the results 

presented in Tables 4 and 5 provide evidence of avoidance behavior. However, I also want 

to examine the degree to which people engage in avoidance behavior regardless of whether 

government officials announce a day off or issue a warning. Unfortunately, for Taiwan data 

limitations prevent such analyses. Therefore, I introduce Miami-Dade County, which has a 

similar total population, public transportation usage rate, and weather conditions to 
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Kaohsiung City, and compare transportation usage during hurricanes under a warning-only 

scenario. 

As described in section 3.2, NOAA issues different types of warnings related to the 

magnitude of tropical cyclones. From Table 1, in the case of Taiwan government officials 

are more likely to a announce day-off with moderate and severe typhoons. Therefore, I 

select similar magnitude tropical storms in Miami, which are storms categorized as 

hurricanes. I test the specification when people receive a hurricane watch and hurricane 

warnings to identify avoidance behavior when people receive information without 

mandatory orders. Table 6 shows that in Miami-Dade County transportation usage drops 

70.7% and 73.0% two days after people are informed of a hurricane with and without 

controlling for weather18, respectively. The avoidance magnitude is similar to Kaohsiung 

City in the case of a mandatory day-off order.  

Table 6. Avoidance behavior _Miami Dade County bus system with different warning 

types (fixed-effect) 

Specification (6a) (6b) (6c) 

ln(𝐛𝐮𝐬𝐫𝐢𝐝𝐞𝒕−𝟏) 0.398*** 0.386*** 0.377*** 

ln(𝐛𝐮𝐬𝐫𝐢𝐝𝐞𝒕−𝟐) -0.061** -0.055* -0.049* 

    

Awind  -0.006*** -0.005*** 

Rain  -0.069*** -0.069*** 

    

𝐇𝐰𝐚𝐭𝐜𝐡𝒕−𝟐 -0.730*** -0.707*** -0.425*** 

𝐇𝐰𝐚𝐫𝐧𝐢𝐧𝐠𝒕−𝟏   -0.245*** 

    

Constant  7.623*** 7.727*** 7.765*** 

R-squared 0.789 0.796 0.805 

 

  

 
18 This reduction might be because NOAA issues a hurricane watch 48 hours in advance and recommends 

people prepare and review personal evacuation plans. 
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VI. Conclusions 

Tropical cyclones cause tremendous damage in regions, and some scientists believe 

that both the frequency and the intensity of tropical cyclones will increase due to climate 

change (IPCC, 2012). Since the 1980s, the Taiwanese government has implemented 

typhoon day-off orders and alarms in an effort to reduce fatalities and the economic impacts 

of typhoons. The alarms and day-off orders provide information and guidelines upon which 

the public make avoidance decisions. I used aggregate transportation data from 2009 to 

2019, combined with information on fifty typhoons, to evaluate the degree to which 

avoidance behavior is influenced by typhoon warnings and mandatory day-off policies. 

The findings show that people respond to typhoon day-off orders in differing magnitudes. 

In Taipei and Kaohsiung cities, the analysis indicated that there is a 60% to 95% drop in 

metro passenger trips when day-off orders are announced. If people receive typhoon alarms, 

there is a 5% to 10% drop in metro passenger trips.  

However, day-off orders become controversial and costly when governments 

announce them in advance based on forecasts, but typhoons change paths such that the 

order was not needed. Whether a policy mandates action or simply provides adequate 

warning information, if the magnitude of the avoidance behavior response is similar, it 

would seem that the two policies are equally effective. However, according to the New 

Media Lab in Taiwan, between 2006 and 2015, recorded wind speed and rainfall data 

indicate that the magnitude of tropical cyclones often did not meet the criteria for declaring 

a day off. In Taichung City, a major manufacturing hub in central Taiwan, the rate of 

unnecessary day-off declarations was 73%19 . This suggests that the mandated day-off 

orders may result in relatively greater economic costs due to weather forecasting error. 

This article further examines avoidance behavior during similarly severe tropical 

cyclones but without mandatory orders. Due to data limitations, comparing avoidance 

behaviors before and after the adoption of the day-off order policy in Taiwan is not feasible. 

Additionally, the dataset does not provide comparable intensities of tropical cyclones with 

and without mandatory orders. Consequently, I selected a comparable case, Miami-Dade 

County, based on several perspectives, including the data availability, frequency of tropical 

cyclones, environmental and demographic considerations, and characteristics of public 

 
19 See: https://udn.com/upf/newmedia/2015_data/20150930_udntyphoon/udntyphoon/index.html  

https://udn.com/upf/newmedia/2015_data/20150930_udntyphoon/udntyphoon/index.html
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transportation usage. The results indicate a similar level of avoidance behavior in Miami-

Dade County, where people respond to hurricane watches by reducing bus passenger trips 

by about 70%. This study provides valuable insights that contribute to the ongoing 

discussion surrounding mandatory day-off policies. The evaluation demonstrates that 

people respond to alarms and instructions aimed at minimizing disaster exposure, with this 

response being comparable in magnitude to that observed with mandatory orders.  

Mandatory orders may be deemed necessary in situations where information is 

incomplete and there is a high degree of uncertainty. However, in regions where residents 

possess substantial experience and knowledge of natural disasters, governments may find 

it sufficient to provide information and empower school authorities and business 

owners/managers, as well as residents, to make avoidance decisions based on their 

temporal and spatial circumstances. For instance, there was considerable public outcry 

following the late announcement by local authorities in Florida, which many believe 

contributed to the 125 deaths resulting from Hurricane Ian in 2022. However, upon closer 

examination of victim characteristics, a relatively high portion were new residents who 

were unfamiliar with hurricane exposure. Even though the government provides 

information, those who are unaware or have less experience may fail to take appropriate 

safety measures when a tropical cyclone approaches. 

Although utilizing aggregate data represents a novel approach in studying avoidance 

behavior during natural disasters, due to data limitations this article  does not offer a cost-

benefit analysis of scenarios with and without mandatory orders. Also, I do not have 

information about individual perspectives, such as trust or past disaster exposure 

experiences. Exploring alternative data sources, such as smartphone tracking data, holds 

promise for future research. More granular data may unveil precise timing and locations, 

enabling the calculation of social costs and offer enhanced recommendations to 

policymakers.  
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CHAPTER 2: Efficacy analysis of cloud seeding program in Kansas agriculture 

I. Introduction 

Hailstorms cause tremendous economic losses in the United States (US) and across 

the globe. From 2003 to 2023, severe hailstorms caused $35.8 billion in losses in the US 

(NOAA, 2024)20 . Moreover, hailstone size may increase in the central US and could 

potentially cause more damage in the future, according to meteorology simulations (Fan et 

al., 2022). 

To mitigate hail damage, more than 50 countries around the globe have adopted 

weather modification programs, more specifically, cloud seeding, for hail suppression 

purposes since the 1970s, including the US, Russia, France, Spain, Romania, Argentina, 

etc.21 The microphysical process of hail formation is extensively discussed in the literature 

(Lamb and Verlinde, 2011; Allen et al., 2020; see section II for more details). The main 

idea of cloud seeding for hail risk reduction is to launch chemical particles into clouds, 

thereby reducing the frequency and magnitude of hailstones (Knight, 1977).  

Most existing research on the effectiveness of cloud seeding programs evaluates 

factors such as the size and volume of hailstones, the frequency of hail events, and the 

distribution of hailstone sizes over a certain period (Bergant, 2011; Changnon, 1971; 

Dessens et al., 2016; Gavrilov et al., 2013; Rivera et al., 2020; Spiridonov et al., 2015). 

Among these studies, the intensity of hail is often measured by the size of the hailstones, 

as smaller hailstones, which have less kinetic energy, are associated with less damage to 

crops, livestock, property, and even humans (Pirani et al., 2023; Púčik et al., 2019). 

However, the relationship between the size of hailstones, frequency of hail events, and 

crop damage is not yet clear. In the literature, there are relatively few studies that examine 

the effect of cloud seeding hail suppression in reducing crop loss, but more studies on direct 

property damage (Allen et al., 2020; Changnon & Changnon, 2000; Childs et al., 2020). 

Childes et al. (2020) conducted interviews with farmers, revealing that most farmers 

 
20This number represents the costs attributed solely to hailstorms, although instances of tornado outbreaks, 

high winds, and hailstorms often occur concurrently. Furthermore, disaster costs in NOAA reports encompass 

damages to residential and commercial properties (including buildings, vehicles, and boats), infrastructure 

(such as roads, bridges, and electrical facilities), agricultural assets (including crops, livestock, and timber), 

as well as losses related to business interruptions.   
21 See World Meteorological Organization: https://public-old.wmo.int/en/resources/bulletin/seeding-change-

weather-modification-globally  

https://public-old.wmo.int/en/resources/bulletin/seeding-change-weather-modification-globally
https://public-old.wmo.int/en/resources/bulletin/seeding-change-weather-modification-globally
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worried about small-size large-volume hailstones more than large-size hailstones. Also, 

Púčik et al. (2019) indicate hailstones size of 2 to 3 centimeters (around 1 inch) in diameter 

damage crops most. Therefore, measuring hailstone size and the frequency of hail events 

might not be an appropriate approach for evaluating  hail suppression program 

effectiveness. In other words, cloud seeding might reduce the frequency and magnitude of 

hailstones but could potentially cause more damage. The effectiveness of cloud seeding on 

crop loss remains ambiguous22.  

Only a few studies examine the effectiveness of hail suppression programs on crop 

damage and productivity. Soviet scientists provided hail suppression by launching rockets 

into clouds, reporting a 50% to 90% reduction in crop hail damage (Federer et al., 1986). 

Abshaev et al. (2023) indicated that over the past 65 years, Russia improved its rocket 

seeding technology, thereby reducing hail crop damage by as much as 86%. In the US, 

Knowles and Skidmore (2021) found that cloud seeding in North Dakota resulted in a 13% 

increase in wheat yields per harvested acre and a 0.548 decrease in the wheat loss ratio in 

North Dakota. According to research by Ekland et al. (1999), cloud seeding reduced the 

crop loss ratio by 27% in Kansas and minimized damaged planted areas by 34% to 48%. 

One concern regarding cloud seeding for hail suppression is the potential reduction in 

rainfall in downwind areas. When a downwind region receives less precipitation or more 

hailstones after cloud seeding in the target areas, it is referred to as the downwind effect. 

This effect has been a concern for northwest Kansas counties that terminated cloud seeding 

programs. However, while the downwind effect has been discussed in the context of cloud 

seeding for rain enhancement purposes, it has not received much attention in the hail 

suppression context (Solak et al., 2003; DeFelice et al., 2014; Wang et al., 2019). Only a 

few studies have explored the potential rainfall changes in hail suppression areas. For 

example, the Kansas Water Office, responsible for cloud seeding operations in Kansas, 

reported a decrease of 0.25 inches in average precipitation during the growing season in 

the targeted areas (Eklund et al., 1999). Conversely, in Alberta, there was a 2.2% increase 

in rainfall in hail suppression areas (Krauss and Santos, 2004). 

 
22  The relationship between hail magnitude and damage also depends on growth stage of crop, canopy 

position of crops, weather, and water management (Holman et al., 2022). For example, cotton is more 

vulnerable to hail in the bud stage than in the boll stage (McGinty et al., 2019; Yue et al., 2019). 
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When policymakers decide whether to continue a policy, providing an evaluation of 

its efficacy is crucial. In the literature, the most common measurements are the size of 

hailstones and the frequency of hail events. In this study, I use a broader set of 

measurements to evaluate the efficacy of the cloud seeding program, including its impact 

on hailstone size and frequency, crop damage, and crop yields, while also considering 

potential downwind effects. The purpose is to evaluate the degree to which choosing 

different measurements may lead to different conclusions. When different measurements 

yield conflicting conclusions, it can spark discussions and encourage collaboration to 

improve the technology or management of the program. 

Kansas serves as a fitting focal point for this analysis due to its status as a prominent 

producer of winter wheat, corn, and sorghum in the US, and the significant hail damage 

experienced by its crops. I use county level data over the 2002-2020 period for Kansas in 

this paper. As a prelude to the full set of findings, the analysis shows that cloud seeding is 

associated with reductions in hail size in target areas. Even though the size of hailstones 

decreases, there are no statistically significant reductions in hail or drought damage. 

However, the results indicate that cloud seeding is associated with more flooding damage 

to crops. This finding is consistent with the literature that severe rain or inundation can 

occur in target areas after cloud seeding (Almheiri et al.,2021; Spiridonov et al., 2015; 

Tuftedal et al., 2022; Yoo et al., 2022). Lastly, the findings indicate that cloud seeding 

enhances corn productivity within the seeding area but diminishes sorghum productivity in 

downwind areas. Leveraging these outcomes, I conduct a cost-benefit analysis of the 

Kansas cloud seeding program. While the overall net present value of the program is 

positive, it is essential to recognize that this is not universally beneficial; certain counties, 

particularly those downwind, exhibit negative net present values. 

The remaining sections of this chapter are structured as follows: Section II provides 

an introduction to cloud seeding in Kansas. The methodology and data are outlined in 

Sections III and IV, respectively, followed by the presentation of results in Section V. 

Section VI presents the cost-benefit analysis. Finally, conclusions and policy implications 

are discussed in Section VII. 
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II. Background 

This section begins with a discussion of the primary rationale behind considering 

cloud seeding as a promising method of reducing hail. I also provide an overview of 

research findings related to cloud seeding efficacy. The section concludes with a detailed 

discussion of the Kansas cloud seeding project. 

(1) Cloud seeding for hail suppression   

The hail formation process is well-documented in the literature (Allen, 2020). Two 

primary components are essential for hailstone production: supercooled water and embryos. 

Supercooled water refers to liquid water persisting below the freezing point of pure water 

for an extended duration. This phenomenon often occurs in convective cloud systems 

where updrafts bring cloud condensation nuclei (CCN) into the cloud. Condensation of 

water vapor on these CCNs results in the formation of supercooled water droplets. 

The merging of supercooled water droplets, typically due to contact with embryos, 

initiates a chain reaction of freezing processes, leading to the formation of hailstones. Small 

hailstones may revert to embryos, attracting more supercooled water, sustaining the 

freezing process, and allowing for further growth. Hailstones eventually fall when they 

reach a size too substantial to be supported within the clouds. 

According to microphysical theory, the core concept behind cloud seeding is to 

stimulate beneficial competitiveness processes. This theory posits that natural embryos in 

clouds, such as dust or pollen, may not be plentiful enough. Consequently, the introduction 

of artificial embryos, like silver iodide or dry ice, can compete with natural embryos, 

preventing the overharvesting of supercooled water droplets by natural embryos. The 

expected result is that all hailstones should be smaller than those without seeding. Smaller 

hailstones have the potential to melt before reaching the ground, effectively mitigating 

potential hail damage. 

The promise of controlling hail damage through cloud seeding led to extensive 

investigations dating back to the 1970s. During this period, several multi-year projects 

aimed to explore the beneficial competitiveness hypothesis and assess the feasibility of 

cloud seeding technology. 

From 1972 to 1976, the National Hail Research Experiment (NHRE) spanned multiple 

states in the US, including Northeast Colorado, Kansas, Nebraska, and Wyoming. However, 
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the results revealed no statistically significant effects in reducing the frequency and size of 

hail (Allen et al., 2020; Foote et al., 1979; Knight and Squires, 1982; Squires and Knight, 

1982). Subsequent to NHRE, from 1977 to 1982 Switzerland, Italy, and France initiated 

the Grossversuch IV project to test Soviet hail suppression technology. Similar to the 

NHRE, the results demonstrated no statistically significant difference in hail frequency and 

magnitude between seeded and non-seeded areas (Federer et al., 1986). A reexamination 

of the Grossversuch IV project data by Auf der Maur and Germann (2021) even suggested 

that cloud seeding might increase the kinetic energy of hailfall, potentially intensifying 

damages. 

Despite inconclusive results from experimental projects, countries worldwide 

persisted in their investment in cloud seeding for hail suppression. Real-world seeding data 

played a pivotal role in evaluating the efficacy of these programs. In Slovenia, Serbia, and 

Argentina, no statistically significant changes were observed in either the frequency or 

magnitude of hailstorms (Bergant, 2011; Gavrilov et al., 2013; Rivera et al., 2020). Greece 

and Spain witnessed a reduction in hailstone magnitude without a significant impact on 

frequency (Spiridonov et al., 2015; Dessens et al., 2016). In contrast, A study in France 

indicated that cloud seeding resulted in a substantial decrease in both the frequency and 

magnitude of hailstones (Changnon, 1971). These diverse outcomes highlight the 

complexity and variability in the effectiveness of cloud seeding initiatives across different 

geographical regions.  

(2) Weather modification in Kansas: A four-decade cloud seeding initiative  

Cloud seeding has been a cornerstone of weather modification efforts in the US for 

six decades. Among the states actively adopting cloud seeding, Kansas, along with North 

Dakota and Texas, stand out, implementing this technique primarily during the warm 

season23. The focus in these states has been on hail suppression and rain enhancement, with 

occasional applications for fog dispersion. 

 

 
23 Several states in the US have implemented cloud seeding during different seasons and for various purposes. 

States such as California, Nevada, Idaho, Utah, Wyoming, and Colorado employ cloud seeding in the cold 

season for snowpack augmentation and rain enhancement, with primary objectives aimed at increasing water 

storage in reservoirs and replenishing groundwater. While cloud seeding has been proven to increase rainfall 

and runoff by an average of 10% to 20% (Rosenfeld and Woodley, 1989; Bruintjes, 1999; Flossmann et al., 

2019), its efficacy for hail suppression remains a subject of controversy. 
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To emphasize the risk and exposure to hail, Figure 6 illustrates the distribution of 

severe hail—defined as hailstones over 1 inch (25.4 mm) in diameter—across the US24. 

The map depicts the significant threat posed by hazardous hail events, particularly in the 

Great Plains region, including Kansas. In 2022 alone, Kansas experienced 289 major hail 

events, ranking it fourth among states in hailstone frequency after Texas, Nebraska, and 

Minnesota. This highlights the pressing demand for effective measures to abate the costly 

impact of severe hailstorms25. 

Among the states, Kansas leads in winter wheat and sorghum production in the US 

and ranks among the top ten states for corn production. Agriculture contributes $81 billion 

to Kansas's economy, with approximately 88% of the state's land dedicated to farmland for 

crops and livestock. According to the Kansas Crop Planting Guide26, winter wheat should 

be planted from mid-September to late October, varying depending on geographic zones, 

with harvest taking place the following summer. Corn and sorghum are typically seeded 

between late April and mid-May. However, vulnerability to hailstorms, prevalent from 

April to September, poses a threat to the pre-mature stages of wheat and silk corn, leading 

to potential crop yield losses. The rapid onset of damage within minutes makes cloud 

seeding programs desirable in Kansas to mitigate forecasted crop-damaging hail. 

The Kansas Water Authority is the key entity managing the cloud seeding program in 

Kansas27. In the 1990s, the western part of Kansas was the primary target for cloud seeding. 

However, a five-year program faced suspension due to protests led by the grassroots group, 

Citizens for Natural Weather28 . Their opposition was not rooted in doubts about hail 

suppression efficacy but in concerns that seeding clouds might alter local and adjacent 

precipitation patterns. In 1999, four northern Kansas counties voted to withdraw from the 

cloud seeding program. The present study focuses on the southwestern part of Kansas, 

where 14 counties agreed to participate in the cloud seeding program in 2002 as shown in 

Figure 7 (blue area). 

 
24 The National Centers for Environmental Information (NCEI) identifies severe hail based on the diameter 

of hailstones. Appreciable damage occurs only when the diameter is over 1 inch (25.4 mm). The threshold 

for damaging hail size was adjusted in 2010 from 19.1 mm to 25.4 mm, as suggested by stakeholders (NCEI, 

2009). It's worth mentioning that larger hailstones tend to be less spherical (Allen, 2020). 
25 See: https://www.iii.org/table-archive/22795. 
26 See: https://bookstore.ksre.ksu.edu/pubs/l818.pdf.  
27 Kansas Water Authority is within and as part of the Kansas Water Office. 
28 See: https://www.latimes.com/archives/la-xpm-2000-jun-11-mn-39711-story.html  

https://www.iii.org/table-archive/22795
https://bookstore.ksre.ksu.edu/pubs/l818.pdf
https://www.latimes.com/archives/la-xpm-2000-jun-11-mn-39711-story.html
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Source: NOAA 

Figure 6. Hail distribution in Great Plains 

 
Figure 7. Map of counties participating in the cloud seeding project (2002, Kansas) 
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The Kansas Water Office executed an Operational Plan for the Weather Modification 

Project, where the project manager made daily seeding decisions based on the Operation 

Plan and meteorological data during the program's active period29, typically from April to 

September. On a daily basis, the project manager assesses all available data to determine 

the seedability of incoming clouds. If a seeding decision is made, the project manager 

contacts the pilot and crew to confirm the seeding strategy. Following mission completion, 

pilots report cloud responses and data to the operation center for analysis. The Operation 

Plan acknowledges the potential spillover effect in adjacent areas, impacting not only the 

downwind but also the upwind areas, with buffer zones set at 25 and 10 miles, respectively. 

Cloud seeding programs in Kansas have dual objectives, focusing on both hail 

suppression and rain augmentation. According to the Operation Plan, hail suppression 

generally takes precedence over rain augmentation. However, adjustments are made based 

on soil moisture levels and crop growth stages, with priority given to areas vulnerable to 

hail risks. Additionally, when a convective cloud system is unstable, the seeding mission 

shifts from rain augmentation to hail suppression. Operation records align with the 

Operation Plan, revealing that from 2002 to 2020, cloud seeding days were 65% for hail 

suppression and 35% for rain augmentation, as illustrated in Figure 8. Nevertheless, the 

number of counties participating in the cloud seeding project has declined over time, with 

no Kansas counties in the program since 2017 (see Figure 9). As of 2022, Kansas is no 

longer affiliated with the North American Weather Modification Council. 

 

 
29 Meteorological data comprise hourly observations, aviation terminal forecasts, severe weather warnings, 

synoptic surface and upper air analyses, storm data within the operational area, and satellite imagery. 
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Data source: NOAA. 

Figure 8. Number of modification days for hail suppression and rain enhancement 

in Kansas 

 
Data source: NOAA. 

Note: In total, there are 105 counties in Kansas. 2007 data is missing. 

Figure 9. Numbers of counties participating in Kansas cloud seeding program 
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III. Methodology 

(1) Model 

The cloud seeding program is a jointly funded initiative by county governments and 

the Kansas state government. Each year, the state government invests around $240,000 to 

support the radar system, which is the most expensive component of the program. County 

governments decide annually whether to participate in the program and determine their 

contributions based primarily on population. 

To model the decision-making process, I adapted the framework developed by Brien 

and Eger III (2021), which explores a jointly funded program between state and sub-state 

governments. In this model, different levels of government compete to reduce their 

contributions while still maintaining the provision of the public good. Brien and Eger III's 

(2021) model builds on the work of Hettich and Winer (1984, 1988), who developed a 

normative model of tax structure to identify the motivations behind government decisions. 

Their model assumes that the aim of government officials is to maximize voter support, 

rather than acting as altruistic or omnipotent social planners. In this model, there are M 

county governments and one state government. County level elected officials seek to 

maximize utility specifically related to the jointly funded program. For a representative 

county j, there are N people living in the county. 

County government official maximization problem: 

𝑀𝑎𝑥⁡𝑈𝑗 =∑𝑏𝑖(𝛼𝑗 ∙ 𝐸𝑗̅) − 𝑠(𝛼𝑢𝐸̅𝑗
𝑢) − 𝑐𝑖(𝑣𝑖)

𝑁

𝑖=1

 

Subject to 𝐸𝑗̅ = 𝐿𝑗 + 𝐴̅ 

where ⁡𝑣𝑖 =
𝐿𝑗

𝑁
 

The local government elected official decides whether to participate in the program, 

with 𝛼  as a binary variable (1 for participation, 0 otherwise). Once the county official 

decides to participate, he/she then determines the annual expenditure, 𝐸̅ , on the cloud 

seeding program. When the county adopts the program, it generates benefit for the residents. 

The political support to the county official can be expressed as 𝑏𝑖(𝛼 ∙ 𝐸̅), representing voter 

i’s expected support for the county official due to the expenditure on cloud seeding program 
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(Hettich and Winer, 1988). For example, spending on cloud seeding might reduce hail 

damage to farmer i’s crops in the county, leading farmer i to support the county government 

official and thus increase the likelihood of success in the next election. While the 

expenditures (𝐸̅) could in principle depend on other variables, for simplicity 𝐸̅ is constant.  

The political cost refers to the cost of levying taxes from taxpayers, represented by 

the function 𝑐𝑖(𝑣𝑖). In the function, 𝑣𝑖 may represents not only the taxes paid by voter i, 

but also the broader deadweight loss associated with taxation (Hettich and Winer, 1988). 

The specific definition of 𝑣𝑖 depends on the design of tax collection and the goals of the 

research. Within the framework envisioned by Hettich and Winer (1988), all farmer 

production functions and taxable activities are included in the model, whereas Brien and 

Eger III's (2021) assume identical taxpayers, with each paying the same amount of tax for 

the project, represented as  𝑣𝑖 =
𝐿

𝑁
. I follow Brien and Eger III's (2021) in this research 

because the focus is on the efficacy of cloud seeding program where local government 

contributions to covering the cost of cloud seeding are based on population size30.  

Expenditure on cloud seeding program is equal to the county government’s 

contribution, denoted as 𝐿𝑗, plus, the contribution from the state government, denoted as⁡𝐴̅.  

One key difference in my model and that of Brien and Eger III's (2021) and Hettich 

and Winer (1988) is the function of 𝑏𝑖(). They assumed that 𝜕𝑏𝑖 𝜕𝐸̅⁄ > 0, which indicates 

that expenditure on the jointly funded program effectively corrects externalities. Although 

cloud seeding is intended to suppress hail damage, its effect might be zero or even negative. 

A key goal of this chapter is to test the effectiveness of cloud seeding program. If the 

program results in a negative or zero impact on farmers in the county and leads to reduced 

political support, the outcome to the maximization problem would be to terminate the 

program, where 𝛼 = 0.  

For a cloud seeding program, the political support in the county might be influenced 

by decisions made by upwind counties, i.e., a spatial spillover effect, represented by 

𝑠(𝛼𝑢𝐸̅𝑗
𝑢). As mentioned in background section, one potential and controversial spillover 

effect of cloud seeding program is a reduction in rainfall in downwind areas.  For example, 

 
30 According to the Council Grove Republican, "County governments normally pay between $12,000 and 

$35,000 each year to help finance the weather effort, depending on population" (May 7, 1996, p. 2). 
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farmer i might experience reduced rainfall and adverse impacts on flood and crop 

production, which could consequently lower the overall probability of voting for the 

current government. Here, I have not accounted for farmers’ risk perceptions, but rather 

assume that farmers accurately attribute the rainfall reduction to the cloud seeding program 

rather than other potential causes, such as long-term climate trends.  

The state government decides how much contribute to the cloud seeding program but 

does not control how the funds are distributed among the counties. This is represented as 

⁡𝐴𝑗 =
𝐴

∑ 𝛼𝑗
𝑀
𝑗=1

 . Therefore, the fewer counties that participate in the program, the more 

funding each participating county receives. However, reduced county participation may 

affect the total contribution from the state, which in turn could influence both the efficacy 

of the cloud seeding program and the potential support for it. For example, Kansas weather 

modification program officials have noted that too many storms with too few aircraft for 

cloud seeding missions can negatively impact the program’s effectiveness.  

Additionally, the state government may be unwilling to contribute to the program if 

the total contributions from local governments fall below a minimum service threshold, 𝑇. 

If the combined expenditure of all participating counties is less than 𝑇, the state government 

will contribute nothing, resulting in the termination of the jointly funded program. County 

officials focus solely on their own maximization problem and are unaware of the threshold 

set by the state government. The state government does not experience spillover effects. If 

the total political support resulting from funding the cloud seeding program is positive, the 

state government will pursue the political benefits, even if negative support exists from 

county j. For the empirical examination, I use data to estimate the political benefit in the 

form of crop production impacts including spillover effects from the cloud seeding program. 

In the final section of Chapter II, I presented a cost-benefit analysis using estimated 

parameters and costs. 

(2) Empirical strategy 

Based on the model introduced above, three major hypotheses are tested in this study: 

Hypothesis 1: Based on the concept of beneficial competition (Detwiler, 2002), 

participation in a cloud seeding program reduces the frequency and intensity of hailstorms 

in the target area. 
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Hypothesis 2: Participation in a cloud seeding program reduces hail damage to crops in 

target areas. 

Hypothesis 3: A spillover effect exists in cloud seeding programs for hail suppression and 

rain enhancement in downwind areas.  

The main idea of cloud seeding program as a damage control agent is based on the 

concept of beneficial competition (Detwiler, 2002). It assumes that hailstorm frequency 

and magnitude are functions of cloud seeding, where artificial embryos are introduced into 

the clouds to compete with natural embryos in supercooled water. The result is an increased 

production of smaller hailstones that hopefully melt before hitting the ground.  Additionally, 

I test for the presence of and determine whether spillovers are positive or negative. 

Consequently, cloud seeding potentially reduces crop damage. 

To achieve this goal, panel data and the specification presented in equation (1) are 

employed. In equation (1), 𝑚𝑖 controls the characteristics of county i that do not vary over 

a short period, such as altitude, referred to as county-fixed effects. Additionally, 𝜆𝑡 

represents time fixed effects, which is included in the model to account for unobserved, 

time-specific factors—such as El Niño—that could influence the dependent variable across 

all counties. . Controlling for county and time effects helps to insure the comparability of 

all observations.  

𝑌𝑖𝑡 = 𝛼 ∙ 𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑖𝑡 + 𝛽 ∙ 𝑈𝑊𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑗𝑡 + γ ∙ Χ𝑖𝑡 +𝑚𝑖 + 𝜆𝑡 + 𝜇𝑖𝑡           (1) 

𝑌𝑖𝑡 represents a set of outcome variables in county i in year t. I examined several outcome 

variables that include hail frequency, hail magnitude, crop damage, and crop production. 

The variable 𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑖𝑡 denotes the cloud seeding program participation in county i in year 

t, where 1 indicates participating in cloud seeding program, and 0 otherwise. The parameter 

𝛼  captures the marginal effect of the cloud seeding program participation on outcome 

variables. Additionally, 𝑈𝑊𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑖𝑡 denotes the seeding decision in upwind county j of 

county i in year t, with 1 indicating seeding and 0 otherwise. The parameter 𝛽 captures the 

spillover effect on outcome variables from the upwind seeding county on downwind county. 

The vector 𝑋𝑖𝑡  includes covariates such as moisture and temperature, will be discussed 

further in the Data section below. Finally, 𝜇𝑖𝑡 denotes the error term. 
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IV. Data 

For testing the hypotheses presented above, data from various sources are compiled: 

(1) Cloud seeding data 

The cloud seeding data used in this study are derived from the National Oceanic and 

Atmospheric Administration (NOAA). In compliance with Federal Law31 , all weather 

modification activities are mandated to submit weather modification project reports to 

NOAA. For the Kansas cloud seeding program, based on cloud conditions the program 

operator will call the pilots to standby for data collection or seeding missions. Once the 

pilots seed the clouds, it will be recorded in the NOAA report. Even if a hailstorm travels 

into a non-participating county, the program operator cannot require the pilot to execute a 

seeding mission beyond the boundary of the participating county. Therefore, cloud seeding 

activities only occur within the boundaries of participating counties. The dataset spans from 

2002 to the present and includes information on the counties participating in cloud seeding 

program. 

(2) Hailstorm and weather data 

Hailstorm data is obtained from the Next Generation Weather Radar (NECRAD). This 

dataset provides comprehensive information about the location and magnitude of each 

hailstorm. The frequency of hail is determined by the total number of hailstorms that 

occurred during the growing season. The dataset spans from 1955 to 2022 and is aggregated 

at the county level during the growing season. 

Other weather-related data are extracted from the NOAA Climate Data Online (CDO) 

dataset, which comprises weather observations from various stations. Data for each county 

are aggregated from various stations within the county. The dataset includes information 

such as maximum and minimum temperatures. From these data, I computed Growing 

Degree Days (GDD) and Stress Degree Days (SDD) during the growing seasons, from 

April to September, using the following formula: 

𝐺𝐷𝐷 = max⁡(0,
𝑇𝑚𝑎𝑥 + 𝑇⁡𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒) 

  

 
31 Public Law 92-205, or “Weather Modification Reporting Act of 1972”. 
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For GDD, the equation considers the daily mean temperature, calculated as the 

average of the daily maximum temperatures, 𝑇𝑚𝑎𝑥 , and minimum temperatures, 𝑇𝑚𝑖𝑛 . 

𝑇𝑏𝑎𝑠𝑒  represents the base temperature for crop growth, which varies by crop type. 

Specifically, it is set at 40 degrees Fahrenheit for winter wheat (McMaster and Smika, 1988) 

and 50 degrees Fahrenheit for corn (Cross and Zuber, 1972).  If the mean temperature falls 

below base temperature, GDD is set to zero. The GDD accumulates throughout the growing 

season. Based on the empirical strategy, I calculated three distinct GDD values for winter 

wheat, sorghum, and corn. When estimating the impact on crop productivity, I used crop-

specific GDD for each crop. For analyzing the impact on crop damage, I chose a base 

temperature of 40 degrees Fahrenheit, given that winter wheat is the predominant crop in 

Kansas. This explanation is also included in the section describing the GDD calculation. 

For SDD, the formula involves subtracting the upper temperature threshold 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

from the daily maximum temperature 𝑇𝑚𝑎𝑥. If 𝑇𝑚𝑎𝑥 is below 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, SDD is set to zero. 

The upper temperature threshold is consistent at 86 degrees Fahrenheit for all crops (Cross 

and Zuber, 1972). When temperatures exceed 86 degrees Fahrenheit, crops may either 

cease growth or incur damage. 

𝑆𝐷𝐷 = 𝑚𝑎𝑥⁡(0, 𝑇𝑚𝑎𝑥 − 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

On a different note, crop growth relies on adequate moisture. The Palmer Z index, a 

measure of moisture deviation from normal climate on a monthly basis, is employed. This 

index, obtained from NOAA32, distinguishes between wet and dry conditions. Following 

Knowles and Skidmore (2021), the variables for dryness 𝐷𝑟𝑦𝑖𝑡  and wetness 𝑊𝑒𝑡𝑖𝑡  are 

calculated as:  

𝐷𝑟𝑦𝑖𝑡 = −min⁡(0, 𝑃𝑍𝑖𝑡) 

𝑊𝑒𝑡𝑖𝑡 = 𝑚𝑎𝑥⁡(0, 𝑃𝑍𝑖𝑡) 

A higher count of 𝐷𝑟𝑦𝑖𝑡/𝑊𝑒𝑡𝑖𝑡, indicating a greater deviation from the normal climate, 

indicates drier/wetter conditions in the county during the growing season. According to 

NOAA, if 𝐷𝑟𝑦𝑖𝑡 falls between 0 and 1.24, it indicates a normal climate, while a value above 

2.75 indicates extreme drought. Similarly, if 𝑊𝑒𝑡𝑖𝑡 falls between 0 and 0.99, it indicates a 

 
32 See https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/. 

https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/
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normal climate, and a value above 3.50 indicates extreme wetness. From Table 1, on 

average, the moisture in Kansas during growing seasons is near normal.  

(3) Crop data 

Crop indemnity data is obtained from the USDA Risk Management Agency Cause of 

Loss Historical Data Files. These data provide information on indemnity payments and loss 

ratios for different perils, including hail, drought, and excess moisture (i.e. flood)33. The 

crop loss ratio is defined as the total indemnity divided by the total premium. The total 

premium comprises the premium paid by farmers plus public subsidy. The target crop loss 

ratio for US crop insurance is 0.88, indicating that the insurance company retains 12% of 

the premium to cover unexpected shocks. If the loss ratio exceeds 1, the insurance company 

is in an unsustainable situation. Additionally, crop yield data for winter wheat, corn, and 

sorghum, the top three major crops in Kansas, are included in the analysis. The crop yield 

data are measured in bushels per acre and are sourced from the USDA34. 

(4) Wind direction data 

The wind direction data is obtained from the National Aeronautics and Space 

Administration Land Data Assimilation System 2 (NLDAS-2) dataset, with a resolution of 

0.25 degrees35 . Using QGIS version 3.32.3, wind speed and directions were calculated 

based on zonal velocity (U wind) and meridional velocity (V wind)36 . In Kansas, the 

prevailing wind during the growing seasons (April to September) generally comes from 

the west, as depicted in Figure 10. This wind direction data is crucial for identifying 

downwind areas. 

 
33 In Kansas, 35.8% of indemnity is due to drought, 17.5% due to flood, and 8.2% due to hail. 
34 See USDA National Agricultural Statistics Service: https://quickstats.nass.usda.gov/ 
35 1 degree is equal to 69 miles. 
36 The wind data from NASA is 10 meters above the surface. Although NOAA provided wind data under 17 

levels, the resolution of data is 2.5-degree latitude x 2.5-degree longitude global grid. 

https://quickstats.nass.usda.gov/
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Figure 10. Wind direction in Kansas (2003 July)37 

Table 7 presents a summary of descriptive statistics. The data gathered from various 

sources form an unbalanced panel, so the observation numbers differ for each variable. The 

maximum recorded hail frequency is 94, indicating that 94 hailstorms were observed in 

one county during the growing season (April to September), with an average of 10.32 

hailstorm occurrences during the growing season. Furthermore, the magnitude of 

hailstorms is evaluated based on the diameter of hailstones. On average, the diameter of 

hailstones is 1.13 inches, which exceeds the threshold that causes damage to crop plants. 

The largest hailstone recorded during the period of analysis in Kansas is 3 inches. 

Additionally, note that the loss ratios for different perils are above 0.88, the design ratio of 

the USDA. This suggests that the indemnity caused by extreme weather events might be 

underestimated, and the premium may not be sufficient to cover the indemnity. Table 8 

summarizes the definitions and data sources of the variables used in this study. 

  

 
37 The Kansas shapefile is from USGS National Boundary Dataset: 

https://www.sciencebase.gov/catalog/item/59fa9f5de4b0531197affb31  

https://www.sciencebase.gov/catalog/item/59fa9f5de4b0531197affb31


47 
 

Table 7. Descriptive Statistics for Kansas Sample (County-Level Data, 2002–2020) 

Variable* Obs** Mean Std. dev. Min Max 

Weather      

hail frequency (times/year) 1,890 10.32 8.78 0 94  

hail magnitude (inch) 1,890 1.13 0.33 0 3  

rainfall (inch) 1,881 3.55 1.30 0.69 9.10 

Loss Ratio       

Hail  1,540 2.90 1.69 0.02 17.71 

flood (excess moisture)  1,817 1.70 0.99 0.22 8.82 

Drought 1,841 2.37 1.10 0 9.78 

Yield (bushel per acre       

Sorghum 1,418 67.32 22.92 13 134  

winter wheat 1,855 40.82 10.12 12.1 80  

Corn 1,654 118.72 38.24 18 225  

Production (1,000 bushel)***      

Sorghum 1,418 2,090 1,908 9.4 12,400  

winter wheat 1,855 3,308 2,764 9.0 18,500  

Corn 1,654 4,961 5,042 14.8 32,400  

Environmental       

GDD40 1,842 3923 835 0 5150  

GDD45 1,842 3344 725 0 4535  

GDD50 1,842 2770 617 0 3922  

SDD86 1,842 487 242 0 1532  

Dry 1,890 0.43 0.70 0 3.52  

Wet 1,890 0.60 0.79 0 4.46  

* Data pertain to the entire year and are not restricted to the cloud seeding season. 

**The sample is unbalanced, with varying numbers of years included for each county. 

*** This represents the total annual production for each county in Kansas, measured in 

thousands of bushels.  
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Table 8. Variable definitions 

Variable Definition Data Source 

Hail 

frequency 

Total number of hailstorms occurs in growing season in 

county i  

Next Generation 

Weather Radar 

Hail 

magnitude 

Average diameter of hailstones in growing season in 

county i (inches) 

Next Generation 

Weather Radar 

Rainfall Average rainfall in growing season in county i (inches) NOAA  

Climate Data Online 

Seeding Participation in a cloud seeding program by county i (0 

and 1)     

NOAA 

UWseeding Participation in a cloud seeding program by upwind 

county of county i (0 and 1) 

NOAA and NLDAS-2 

Dry Drought severity deviates from normal weather 

conditions and is calculated using the Palmer-Z index. 

NOAA  

Wet Wetness severity deviates from normal weather 

conditions and is calculated using the Palmer-Z index. 

NOAA  

GDD 

 

Growing degree day is a measure of heat accumulation 

in the growing season, calculated by summing the 

difference between the daily temperature and the base 

temperature*.  

NOAA  

Climate Data Online 

SDD Stress degree day is a measure of heat stress on crop 

plants in the growing season, calculated by summing 

the difference between the maximum daily temperature 

and 86 degrees Fahrenheit.  

NOAA  

Climate Data Online 

Loss ratio Total indemnity divided by total premium for each 

peril  

USDA Risk 

Management Agency 

Crop Yield Crop production bushel per acre  USAD  

National Agricultural  

Statistics Service 

Crop 

Production 

Total production of crops (winter wheat, corn, and 

sorghum) in 1,000 bushel 

USAD  

National Agricultural  

Statistics Service 

* The base temperatures are 40 degrees Fahrenheit for winter wheat, 45 degrees Fahrenheit for sorghum, and 

50 degrees Fahrenheit for corn.  
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V. Results and discussion  

In this section, I first present the core results obtained from using all Kansas counties. 

However, to explore the robustness of the findings, I establish a subsample by 

incorporating nearby counties in adjacent states into the evaluation. Using this broader set 

of counties, I compute the propensity score for each county. Utilizing these propensity 

scores, I match counties that adopted and did not adopt the cloud seeding program based 

on propensity scores and present the estimation results accordingly. Finally, leveraging the 

parameters derived from the estimation, I conduct an analysis of the costs and benefits 

associated with the cloud seeding program in Kansas. 

(1) Estimating the cloud seeding program impacts in Kansas 

Table 9 presents the regression results and estimated effects of the cloud seeding 

program on hail frequency and magnitude for all Kansas counties. The average size of 

hailstones in Kansas is 1.13 inches, exceeding the size threshold that might potentially 

cause damage to crops. The results indicate that cloud seeding programs show no 

statistically significant effect on hailstorm frequency in target counties or downwind 

counties. However, estimates indicate that hail size diminishes by 0.10 inches in target 

areas, which is about 8%, but there is again no statistically significant effect on hail size in 

downwind areas. Additionally, insufficient moisture in the air as measured by the Dry index 

correlates with decreased hail frequency and magnitude. Moreover, there is an increase in 

rainfall of about 0.26 inches in targeted regions, representing approximately 7.3%, with a 

corresponding decrease of 0.08 inches in downwind areas, although this decrease is 

statistically insignificant. These results suggest that cloud seeding has not resulted in the 

“rain steal” phenomenon in this region. 

Also, of interest is whether there is evidence that cloud seeding reduces crop damage. 

In Table 9, the regressions results examining the impact of the cloud seeding program on 

the crop loss ratio in Kansas are presented. The table reveals that the cloud seeding program 

had no statistically significant impact on the crop hail loss ratio or the crop drought loss 

ratio. However, the analysis revealed that the cloud seeding program is associated with an 

increase in crop flooding damage. Flooding damage, indicative of excessive precipitation, 

can impede farmers' ability to sow crops or lead to crop damage. As detailed in Table 9, the 

cloud seeding program results in a notable rise in the flooding crop loss ratio by 0.54, 
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around a 32% increase with a 99% level of significance. It is worth noting that the US crop 

insurance typically reserves a 12% premium for severe and unexpected disaster losses, a 

sum considerably lower than the observed increase. This suggests that the elevated flooding 

crop loss ratio could present challenges to the financial sustainability of crop insurance 

companies. In the long term, there may be implications for increased insurance premiums 

and subsidies. 

The existing literature may provide evidence to support the crop flooding damage 

resulting from cloud seeding. Following cloud seeding missions for hail suppression, target 

areas tend to experience heightened precipitation of 10% to 12% (Spiridonov et al., 2015; 

Tuftedal et al., 2022). Furthermore, in cases where the cloud seeding mission is aimed at 

rain augmentation, the target areas often encounter even more substantial increases in 

precipitation. Drawing from experiences in other warm-season cloud seeding countries, 

Almheiri et al. (2021) conducted intensity-duration-frequency curves, revealing heightened 

rainfall intensities post-cloud-seeding missions and elucidating the potential reasons 

behind the significant urban inundation experienced by the United Arab Emirates in 2007 

after seeding. Similarly, Yoo et al. (2022) observed a significant increase in runoff by 

approximately 60% in Korea following cloud seeding. In Texas, individual cells witnessed 

a 50 to 100% surge after seeding (Texas Natural Resource Conservation Commission, 

1997). 

Additionally, researchers assert that the speed at which rainfall occurs is understudied. 

In the natural environment, storms usually endure for only two to six hours, and rainfall or 

hail may fall steadily. However, experimental evidence suggests that cloud seeding can 

trigger the generation of more hailstones or rainfall within a 30-minute timeframe. This 

implies that precipitation is concentrated in a shorter duration, potentially explaining the 

elevated flooding crop loss ratio observed after cloud seeding programs.  

I also explored whether cloud seeding contributes to increased crop production or crop 

yield by mitigating hail damage or enhance rainfall. Table 9 presents the impacts of cloud 

seeding on major crops, namely winter wheat, corn, and sorghum. Cloud seeding has no 

statistically significant effect on wheat or sorghum production in the target counties. 

However, there is a statistically significant increase of 17.82 bushels per harvested acre in 

corn yield, accounting for approximately a 15% increase. Conversely, in downwind 
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counties, the spillover effect of the cloud seeding program results in a significant decline 

of sorghum productivity by approximately 10 bushels per harvested acre, reflecting a 

decrease of around 15%. 

A potential explanation for these findings is that winter wheat can thrive in dryland 

conditions, but production and yield may decline when moisture levels are excessively high. 

These findings align with the patterns observed in Table 9. Also, less moisture as measured 

by the variable Dry significantly decreases production and yield on crops, but it affects 

wheat less than corn and sorghum. As anticipated, GDD contributes to increased crop 

production and yield, while SDD is linked to decreased production and yield. However, 

different crops exhibit varied responses to the Wet variable38. 

 
38 Corn vs. Grain Sorghum in Water Limited Scenarios:   

https://www.cropquest.com/corn-vs-grain-sorghum/# 

https://www.cropquest.com/corn-vs-grain-sorghum/
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Table 9. Cloud seeding effects (Kansas sample)  

 Weather variables Crop loss ratio Crop productivity  

Hail  

frequency 

Hail  

magnitude 
Rainfall 

Hail  

Loss 

ratio 

Drought 

Loss 

ratio 

Flooding 

Loss 

ratio  

Wheat Corn Sorghum 

Seed 
-0.43 

(1.13) 

-0.10* 

(0.05) 

0.26*** 

(0.08) 

0.29 

(0.26) 

0.11 

(0.13) 

0.54*** 

(0.16) 

-0.66 

(1.52) 

17.82*** 

(3.54) 

-2.03 

(2.41) 

UWseed 
2.55 

(1.59) 

0.10 

(0.08) 

-0.08 

(0.11) 

-0.18 

(0.36) 

0.20 

(0.19) 

0.11 

(0.22) 

-3.04 

(2.23) 

5.65 

(5.05) 

-9.98*** 

(3.36) 

Wet 
0.89*** 

(0.31) 

0.02 

(0.01) 

0.81*** 

(0.02) 

0.19** 

(0.08) 

0.12*** 

(0.04) 

0.24*** 

(0.04) 

-0.69* 

(0.40) 

0.44 

(1.04) 

3.74*** 

(0.77) 

Dry 
-1.79*** 

(0.45) 

-0.06*** 

(0.02) 

-0.50*** 

(0.03) 

0.43*** 

(0.11) 

0.65*** 

(0.05) 

0.26*** 

(0.06) 

-3.57*** 

(0.56) 

-6.77*** 

(1.35) 

-10.76*** 

(1.01) 

GDD 
0.0002 

(0.001) 

-0.00001 

(0.00002) 

0.0001*** 

(0.0001) 

0.0001 

(0.0002) 

-0.0001 

(0.0003) 

-0.0001 

(0.0001) 

-0.0004 

(0.0005) 

0.004*** 

(0.001) 

0.004*** 

(0.001) 

SDD 
0.0002 

(0.0002) 

0.0001 

(0.0001) 

-0.0002 

(0.0002) 

-0.00001 

(0.001) 

0.0003 

(0.0003) 

0.0005 

(0.0003) 

0.002 

(0.003) 

-0.04*** 

(0.007) 

-0.034*** 

(0.005) 

County 

Fixed-effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time 

Fixed-effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-square          

Within 0.195 0.056 0.789 0.210 0.509 0.163 0.386 0.565 0.712 

Between 0.029 0.004 0.527 0.161 0.040 0.019 0.067 0.001 0.226 

Overall 0.136 0.051 0.565 0.197 0.482 0.135 0.327 0.208 0.599 

Observations 1,842 1,842 1,835 1,842 1,800 1,774 1,615 1,426 1,193 

*:10%, **:5%, ***:1% statistic significant.
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(2) Estimating the cloud seeding program impacts in West Kansas 

The data used in the preceding estimations included all counties in Kansas. To ensure 

robustness, the analysis is revised to include counties adjacent to Kansas in Colorado and 

Oklahoma, forming control and comparison groups. To identify treated counties for the 

analysis, I utilized a logit model to predict the probability of counties adopting the cloud 

seeding program. The initial analysis focused solely on data from 2002, a year with a 

relatively high number of adopting counties compared to other years. In the logit model, 

variables such as downwind status, GDD, SDD, and the Palmer Z index were used to 

estimate the probability of adoption.  The main difference arises from using the Palmer Z 

index rather than the Dry and Wet variables specified in the Data section (Section IV). This 

decision stemmed from the fact that 2002 experienced relatively dry conditions with lower 

moisture levels compared to normal conditions. Consequently, most of the Wet variables 

equated to zero, offering limited information due to the small sample size. Hence, I chose 

to utilize the Palmer Z index, the original variable employed in generating the Dry and Wet 

variables, in the logit model. 

Based on the results of the logit model, I generated propensity scores for each county. 

Subsequently, I ranked each county by the propensity and matched one county that adopted 

the cloud seeding program to two counties that did not adopt the program but had similar 

propensity scores. In other words, within each matched group, these three counties 

exhibited similar tendencies to adopt the cloud seeding program. Consequently, I excluded 

counties that were not matched, as they might confound the results. After matching, 36 

counties were included in the evaluation, primarily concentrated in the western part of 

Kansas, which is referred to as the West Kansas sample hereafter. In Figure 11, the counties 

shaded in orange indicate the West Kansas sample. 

In the Table 10 weather variable columns, the cloud seeding program similarly shows 

no statistically significant impact on hailstorm frequency. In the West Kansas sample, the 

cloud seeding program increases hail magnitude in downwind areas by 0.11 inches, 

approximately 9%. In the appendix, Table A2 provides the results using all samples, 

including Kansas and adjacent counties, and the impact of cloud seeding program on 

hailstorm frequency and magnitude is both insignificant.  
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In short, these results are consistent with the literature; the evidence suggests that the 

cloud seeding program may not have a statistically significant impact on hailstorm 

frequency and magnitude, or the impact is negligible (Bergant, 2011; Gavrilov et al., 2013; 

and Rivera et al., 2020). 

 

Figure 11. Kansas and West Kansas sample counties 

In the Table 10 crop loss ratio column, despite the increase in hail magnitude due to 

the upwind cloud seeding program, the hail loss ratio does not exhibit a corresponding 

increase in the downwind areas. According to the results, the cloud seeding program is not 

statistically significant in the hail loss ratio regression. As observed in Table 9 crop loss 

ratio column, the cloud seeding program also raises the crop flooding loss ratio by 0.50 

(31%). Less moisture, as indicated by Dry, increases the loss ratio of drought and flooding 

on crops. As mentioned earlier, intense precipitation is sometimes observed after seeding 

events, and the intense precipitation can cause flooding, especially if the soil is dry. 

Therefore, if the Dry indicator deviates more from normal weather conditions, damage to 

croplands is more likely when intense precipitation occurs39.  

The estimated effects of cloud seeding on crop productivity in Table 10 are similar to 

Table 9. The cloud seeding program improves corn productivity in the seeded area by 8.5  

per bushel per harvested acre, around 7%. However, the magnitude in West Kansas sample 

 
39 See World Food Program “Why do floods follow droughts? Look to the Somali Region of Ethiopia”. 

https://www.wfpusa.org/articles/floods-follow-droughts-ethiopia/  

https://www.wfpusa.org/articles/floods-follow-droughts-ethiopia/
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is smaller than the full Kansas sample. However, the cloud seeding program decreases 

sorghum productivity in downwind areas by 10.15, around 16%, which is similar to the 

result of full Kansas sample.  

In conclusion, the evidence presented in this chapter provides some evidence that 

there is a statistically significant impact on hailstorm magnitude but not frequency. 

Moreover, I found no evidence that cloud seeding reduced hail and drought indemnities on 

crops. However, the analysis suggests that cloud seeding may have unintentionally resulted 

in increased losses from excess moisture (i.e. flooding) in seeding areas. Finally, the results 

suggest that there are spillover effects of the cloud seeding program on downwind areas, 

and the results are robust among different samples. Cloud seeding is associated with an 

increase in corn productivity in seeded areas and a decrease in sorghum productivity in 

downwind areas. These findings may be because corn favors more moisture, while 

sorghum is sensitive to excess moisture and flooding. While I found that the cloud seeding 

program has an impact on crop productivity, the mechanism might not be due to the 

beneficial competitiveness hypothesis but unintended changes in precipitation patterns, 

such as increasing intense rainfall. 
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Table 10. Cloud seeding effects (West Kansas sample) 

Variable 

Weather variables Crop loss ratio Crop productivity  

Hail 

frequency 

Hail 

magnitude 
Rainfall 

Hail  

Loss 

ratio 

Drought 

Loss 

ratio 

Flooding 

Loss 

ratio  

Wheat Corn Sorghum 

Seed 
0.30 

(1.10) 

-0.03 

(0.05) 

0.02 

(0.05) 

0.24 

(0.23) 

0.03 

(0.11) 

0.50*** 

(0.18) 

-0.71 

(1.31) 

8.50** 

(4.06) 

-2.59 

(2.46) 

UWseed 
3.15** 

(1.46) 

0.12* 

(0.06) 

-0.08 

(0.06) 

-0.17 

(0.31) 

0.13 

(0.15) 

0.06 

(0.25) 

-2.29 

(1.81) 

0.15 

(5.47) 

-10.19*** 

(3.27) 

Wet 
0.18 

(0.44) 

-0.03 

(0.02) 

0.20*** 

(0.02) 

0.18* 

(0.09) 

0.09* 

(0.04) 

0.22*** 

(0.07) 

0.39 

(0.56) 

2.70 

(1.82) 

4.61*** 

(1.06) 

Dry 
-1.44** 

(0.64) 

0.01 

(0.03) 

-0.15*** 

(0.03) 

0.06 

(0.15) 

0.50*** 

(0.07) 

0.22* 

(0.12) 

-2.28*** 

(0.78) 

-8.13*** 

(2.31) 

-10.15*** 

(1.49) 

GDD 
0.001 

(0.001) 

0.0001 

(0.0001) 

0.0002*** 

(0.0001) 

-0.0002 

(0.0003) 

-0.0002 

(0.0001) 

-0.0002 

(0.0002) 

-0.003* 

(0.001) 

0.005 

(0.005) 

-0.001 

(0.003) 

SDD 
-0.001 

(0.003) 

-0.0002 

(0.0002) 

-0.001*** 

(0.0002) 

0.001 

(0.001) 

0.001* 

(0.0004) 

0.001 

(0.001) 

0.007 

(0.004) 

-0.026* 

(0.014) 

-0.011 

(0.008) 

County 

Fixed-effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time Fixed-

effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-square          

within 0.220 0.138 0.637 0.272 0.670 0.198 0.689 0.396 0.748 

between 0.015 0.004 0.324 0.057 0.184 0.005 0.0004 0.117 0.127 

Overall 0.173 0.114 0.241 0.239 0.612 0.160 0.539 0.147 0.538 

Observations 638 638 641 617 615 587 498 454 466 

*:10%, **:5%, ***:1% statistic significant. 
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(3) Cost-Benefit analysis of cloud seeding program 

The cloud seeding program has two primary purposes: to preserve water resources in 

Western Kansas Groundwater Management District No. 1 and to reduce hail damage 

through rain enhancement and hail suppression. In the previous section, I presented 

evidence that the cloud seeding program increases precipitation by an average of 0.26 

inches in target areas during the growing season. While this outcome generates a benefit 

from a water resource management perspective, the evaluation also shows that it raises 

crop loss ratios due to unintended flooding. Estimating the value of aquifer recharge falls 

beyond the scope of this research. Moreover, the flood damage to crops is already reflected 

in crop yield data; combining crop yields and flood damage into the cost-benefit analysis 

would result in double-counting. 

According to Sophocleous (2015), farmers in western Kansas withdraw groundwater 

for irrigation at a rate 12 to 40 times greater than the rate of aquifer recharge. Additionally, 

the Kansas Department of Agriculture reports that approximately 85% of water discharge 

is used for irrigation40. Therefore, changes in productivity (e.g., corn yield) due to the cloud 

seeding program may serve as a proxy for the value of water resources and the damage 

caused by flooding. In the remainder of this section, I calculate the costs and benefits of 

the cloud seeding program from the perspective of both county and state governments. 

(a) County Government 

In the model presented in Section III, county government officials maximize net 

political benefits by deciding whether to participate in the cloud seeding program. County 

officials may choose to prioritize majority interest groups in the county to gain more votes. 

In counties that participate in the cloud seeding program, a major contribution to Gross 

Domestic Product (GDP) comes from the agricultural sector. The Regional Economic 

Analysis Project estimates Kansas’s GDP by county from 2017 to 2022, indicating that in 

most counties involved in the cloud seeding program, over 40% of GDP is attributed to 

agriculture (see Figure 12). Therefore, it is rational for county government officials to make 

decisions that protect farmers' interests and gain their political support. Consequently, in 

the cost-benefit analysis conducted from the perspective of county government, the 

 
40 See the Kansas Department of Agriculture: https://www.agriculture.ks.gov/divisions-programs/division-

of-water-resources/water-appropriation/water-use-reporting. 

https://www.agriculture.ks.gov/divisions-programs/division-of-water-resources/water-appropriation/water-use-reporting
https://www.agriculture.ks.gov/divisions-programs/division-of-water-resources/water-appropriation/water-use-reporting
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benefits of cloud seeding include increased productivity, while the costs involve spillover 

effects and expenses associated with the project. 

 

Figure 12. Agriculture's Contribution to County GDP (Percentage) 

In Table 11, I present the net social benefit (NSB) for each county that participated in 

the cloud seeding program from 2002 to 2016, where NSB is equal to social benefits minus 

social costs. The values are expressed in real terms (2002 dollars), without discounting. 

This approach was chosen because county government officials typically make decisions 

based on one-year timeframes, often overlooking long-term benefits (the benefits of the 

program are realized in the following year, making the evaluation period relatively short). 

Furthermore, as noted by Boardman (2018), empirical evidence suggests that county 

governments are less concerned with discount rates when allocating budgets to projects41. 

I converted the costs and benefits for county governments from nominal to real terms using 

the Consumer Price Index, with 2002 as the base year.  

In addition, the net present value (NPV) for each county is also provided. I use 

Equation (3) to estimate the present value of the net social benefits from the cloud seeding 

program, discounted back to 2002. 𝑁𝑆𝐵𝑡 represents the net social benefit from the cloud 

seeding program during period t. The discount rate (r) used here is sourced from the Office 

of Management and Budget for 2002. To demonstrate that the overall assessment is not 

sensitive to the discount rate, I also apply a real discount rate of 3.1% for 10-year projects 

and 3.9% for 30-year projects. 

 
41 However, I also provided the Net Present Value, calculated using equation (3), in Table 5. 
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𝑁𝑃𝑉 = ∑
𝑁𝑆𝐵𝑡

(1+𝑟)𝑡
𝑇
𝑡=0 ⁡                                        (3) 

The cost of the cloud seeding program encompasses both state and county government 

budgets. Data on the state government budget are taken from The Governor’s Budget 

Report, focusing on the portion allocated to the Kansas Water Office for weather 

modification. County government budget information is obtained from the Kansas 

Department of Administration. For Gove, Haskell, and Wallace counties, where specific 

data are unavailable, the average expenditure across all participating county governments 

is used as a substitute. On average, each participating county contributed $19,225 annually 

to finance the cloud seeding program. Consequently, the total annual cost of the cloud 

seeding initiative in Kansas amounts to approximately $367,880, including variable and 

fixed costs. 

The benefit of a cloud seeding program is the productivity gain in corn. However, the 

estimates indicated that the downwind counties experience a productivity loss in sorghum 

due to spillover effects, even after opting out of the cloud seeding program. Therefore, I 

calculate the cumulative benefit for each county over the entire period of cloud seeding 

program, from 2002 to 2016.  

The benefit computation involves multiplying the yield gain and loss per acre by the 

total harvested acres in each county and the respective price per bushel of crops in Kansas. 

The yield changes attributable to the cloud seeding program are determined by the 

parameters estimated from Table 4, the productivity gain of corn is 8.5 bushels per acre 

and the productivity loss of sorghum is 10 bushels per acre42. These parameters serve as 

the basis for conducting the cost-benefit analysis for the affected counties. Key data sources 

for this analysis include the USDA National Agricultural Statistics Services, which 

provides information on the harvested acres of corn and sorghum in each county, as well 

as the prices of these crops. The price used here is the average crop price for the year43. 

  

  

 
42 I also estimated the cost-benefit results using the parameters from Table 9: the productivity gain for corn 

is 18 bushels per acre, and the productivity loss for sorghum is 10 bushels per acre. Please see Table D1.  
43 The USDA NASS dataset provides monthly crop prices only, and the price used for the cost-benefit analysis 

is the average annual crop price. 
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Table 11. Net Benefit and Net Present Value of Counties Participating in the Cloud 

Seeding Program (2002–2016) 

County 

Number of years  

participating in 

program during 

2002-2016 

Net benefit 

(2002-2016) 

(real 2002 dollars) 

Net Present Value 

Real discount 

rate 3.1% 

Real discount 

rate 3.9% 

Finney 10 1,831,075 1,426,941 1,345,617 

Gove 2 790,496 611,813 575,094 

Grant 8 4,873,625 4,101,933 3,939,103 

Gray 10 2,959,406 2,404,498 2,287,780 

Greeley 6 6,189,554 4,649,501 4,331,813 

Hamilton 11 5,506,160 4,586,679 4,393,534 

Haskell 8 17,803,679 14,700,000 14,000,000 

Kearny 13 2,015,673 1,382,509 1,252,628 

Lane 14 -8,631,244 -7,137,036 -6,820,124 

Scott 14 -2,517,396 -1,800,892 -1,657,309 

Stanton 6 8,702,797 6,554,645 6,118,098 

Stevens 2 4,375,014 3,237,275 3,001,360 

Wallace 2 1,076,670 737,243 670,059 

Wichita 11 7,220,984 5,869,599 5,571,474 

Based year: 2002.  

The resulting of the cost-benefit analysis are presented in Table 11. The benefits vary 

depending on the major crops in the county, the number of years participating in the 

program, and spillover effects from adjacent counties. Overall, the net benefits for most of 

the participating counties are positive, even with different discount rates. For example, 

Stevens County participated for two years, generating a net benefit of 4 million dollars. 

However, Lane and Scott Counties participated in the program over the entire period of 

analysis and experienced negative net benefits because of spill over effects on sorghum. 

(b) State Government 

The state government, rather than county governments, is responsible for investing in 

and maintaining the program's capital, such as radar systems, offices, and aircraft. In doing 
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so, the state should also account for discounting the overall project. While county 

governments may focus on gaining political support within their jurisdictions, the state 

government must consider potential impacts on downwind counties that did not participate 

in the program but were still affected by seeding activity. These counties, which did not 

participate in the program, experienced downwind effects due to their proximity to the 

seeded areas. The externalities for these counties were included in the analysis. 

Table 12 presents multiple sets of NPV estimates to show that the results are not 

sensitive to the choice of discount rates44. Counties not participating in the cloud seeding 

program but were affected by spillover effects experienced total losses of approximately 

$30 million over the period. Participating counties, when accounting for the discount rate, 

gained around $40 million. Although some counties showed a negative net present value, 

the overall benefit remains positive.  

The Kansas Water Office estimated the return ratio of the cloud seeding program in 

six target counties in Kansas (Eklund et al., 1999). Their report concluded that the program 

reduced crop damage, resulting in a return ratio of 37 based on this reduction. Similarly, in 

a study by Knowles and Skidmore (2021), the cloud seeding program in North Dakota was  

found to generate a return ratio of around 37. In the present research, without considering 

downwind counties, the discounted net present value of the 14 Kansas target counties is 

$41,324,710, while the discounted cost is $4,098,507, resulting in a return ratio of 

approximately 10. However, when spillover effects are taken into account, the return ratio 

decreases to around 3. These results are consistent with past literature, which also reported 

positive return ratios for cloud seeding programs in Kansas and North Dakota. 

Even with a favorable cost-benefit ratio, the state government still terminated the 

program. The potential explanation is that the state government is also pursuing political 

support based on the model in Section 3, but the spillover effects shown in Table 12 might 

result in disapproval in counties experiencing negative impacts. 

  

 
44 I also estimated the cost-benefit results using the parameters from Table 9: the productivity gain for corn 

is 18 bushels per acre, and the productivity loss for sorghum is 10 bushels per acre. Please see Table D2. 
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Table 12. Net present value of cloud seeding program in Kansas 

 Net present value 

(2002-2016) 

Real Discount Rates 

3.1% 

Real Discount Rates 

3.9% 

NPV (participating) 39,009,128  41,324,710  

NPV (non-participating) -28,031,183  -29,149,102  

Overall  10,977,945  12,175,608  

Base year: 2002. 
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V. Conclusion  

Hail damage to agriculture often receives inadequate attention, particularly in regions 

like Kansas, where frequent hailstorms result in significant crop losses. To mitigate hail 

damage, the Kansas state and county governments implemented a cloud seeding program 

aimed at suppressing hail while also enhancing regional precipitation. This study examines 

the program’s effectiveness using various measures, including its impact on hailstorm 

frequency and intensity, crop damage, and crop production, while accounting for potential 

spillover effects. 

When using the frequency and intensity of hail to evaluate the efficacy of the cloud 

seeding program, my empirical findings indicate that the program lacks a statistically 

significant impact on reducing hail frequency and intensity, or the observed impact is 

negligible. This is consistent with empirical findings from Slovenia, Serbia, and Argentina 

(Bergant, 2011; Gavrilov et al., 2013; and Rivera et al., 2020).While the program decreased 

average hailstone size by about 8%, from 1.13 inches to 1.03 inches, the average size of 

the hailstones is still greater than  1 inch, which is considered a potentially harmful size by 

NOAA. This may explain why cloud seeding does not yield a statistically significant 

reduction in crop loss ratios associated with hail in this study. However, I also observed an 

increase in precipitation within targeted areas. Similarly, the analysis shows no evidence 

of reductions in crop loss ratios due to drought.   

Interestingly, the evidence identifies an unintended consequence: the program is 

linked to an increase of approximately 32% and 35% in crop flood loss ratios in cloud-

seeded counties, as revealed in both Kansas and West Kansas samples. This result aligns 

with previous findings showing that precipitation intensity often rises sharply following 

cloud seeding missions (Almheiri et al, 2021; Spiridonov et al., 2015; Texas Natural 

Resource Conservation Commission, 1997; Tuftedal et al., 2022; and Yoo et al. 2022). 

Additionally, flooding may result from seeding conducted after drought conditions, where 

overly dry soil is not able to effectively absorb water. I also examined potential downwind 

effects of the Kansas cloud seeding program. First, the evidence provides no support for a 

“rain theft” phenomenon among counties; when an upwind county participates in cloud 

seeding, downwind counties do not experience a change in rainfall during growing season. 

Second, cloud seeding may provide additional benefits such as increased rainfall or 
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potential underground water recharge. The findings indicate that downwind counties 

experienced approximately a 15% loss in sorghum productivity, as evident in both the 

Kansas and West Kansas samples. Simultaneously, seeded counties experienced increased 

corn production of 15% and 8.3%. 

The findings regarding crop productivity are robust, and the aggregate net benefit and 

net present value of the cloud seeding program are positive based on the estimations. 

However, the overall outcome may not be entirely advantageous, as the analysis presents 

potential unintended consequences. There are limitations of the study due to data 

constraints, specifically the absence of information on seeding dates and locations. Use of 

county level data, as reported in this chapter, could potentially lead to an overestimation of 

the impact of cloud seeding because hail damage is often localized, occurs in narrow, 

elongated zones rather than uniformly affecting the entire crop fields.  

Given the vast expanse of cropland in the U.S., relying solely on crop insurance can 

impose significant financial burdens on both farmers and taxpayers45. Another alternative, 

such as anti-hail nets (Gandorfer et al., 2016; Porsch et al., 2018; Rogna et al. 2021; Rogna 

et al., 2022), are not feasible for large-scale farms or ranchers due to their cost and 

practicality, , and large hailstones can still penetrate these nets (Childs et al., 2020)46.  

Cloud seeding remains a promising approach for reducing hail damage across 

extensive agricultural areas. First, advancements in technology, such as the use of 

uncrewed aircraft systems, have the potential to improve the efficiency and effectiveness 

of seeding operations (DeFelice et al., 2023). Second, future discussions should focus on 

optimizing project design and addressing spillover effects. Introducing a compensation 

mechanism for affected areas could mitigate negative externalities and enhance the 

program’s sustainability. More research is needed to better understand the efficacy of cloud 

seeding and its broader impacts. Continued exploration of this technology is vital for 

developing innovative, cost-effective solutions to mitigate hail damage and support the 

agricultural sector.  

  

 
45  On average, producers only pay 40% of the premium, see: https://www.ers.usda.gov/topics/farm-

economy/farm-commodity-policy/title-xi-crop-insurance-program-provisions/  
46 Average farmland sizes are 60 ha and 11 ha in Germany and Italy, respectively. In the USA, the average 

farmland size is 445 ha, and it might be the reason why farmers could not establish anti-hail net. Therefore, 

cloud seeding might be a more cost-efficient way to avoid hail damage. 

https://www.ers.usda.gov/topics/farm-economy/farm-commodity-policy/title-xi-crop-insurance-program-provisions/
https://www.ers.usda.gov/topics/farm-economy/farm-commodity-policy/title-xi-crop-insurance-program-provisions/
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CHAPTER 3: Factors influencing policy termination 

I. Introduction  

Hailstorms have caused economic losses of approximately $35.8 billion in the United 

States (US) over the past two decades (NOAA, 2024). Weather modification, specifically 

cloud seeding, is a promising tool to mitigate hail damage as well as alleviate drought47.   

According to the National Oceanic and Atmospheric Administration (NOAA), Kansas, 

Oklahoma, and Texas are among the most hail-prone areas in the US48. Due to this exposure, 

Kansas adopted cloud seeding from 1975 to 2016 for both hail suppression and rain 

augmentation. While the state government provided funding for the weather modification 

program, it required financial sponsorship from county governments to provide radar, pilot 

and aircraft, and seeding material. County government officials could then decide whether 

to participate in the program, which required budget allocations based on population size. 

According to NOAA’s weather modification report, the number of county 

governments participating in the program steadily decreased each year from 2002 until the 

state government suspended the program in 2016 due to tight funding. Also, during the 

2002 to 2016 period several counties opted out and later rejoined the program. These 

observations suggest that there might be other potential factors influencing cloud seeding 

program termination decisions. For example, in the late 1990s farmers in Southeast 

Colorado expressed a concerns that cloud-seeding makes more hail for areas next to the 

targeted zones49. In the early 2000s, farmers in Kansas stated: “We don’t question that cloud 

seeding is reducing hail. We just want to make sure it’s not hurting the total precipitation 

in our area50 .” These concerns led farmers in northwest Kansas to form a grassroots 

organization, Citizens for Natural Weather, to oppose the cloud seeding. This background 

information suggests that there are a variety of potential factors that may influence 

decisions at the local level to exit the cloud seeding program; this paper offers an 

 
47 The principle of cloud seeding involves injecting fine particles into clouds to stimulate the hailstone, rain, 

or snow generation process.  The goal of cloud seeding in Kansas generate smaller hailstones and/or increase 

rainfall. 
48 See Severe Weather Maps, Graphics, and Data Page from NOAA: 

https://www.spc.noaa.gov/wcm/index.html#data  
49 See: https://www.chieftain.com/story/special/1997/03/01/kansas-cloud-seeding-plan-

worries/8762492007/  
50 From Kansas State Historical Society dataset: https://kansashistoricalopencontent.newspapers.com/  

https://www.spc.noaa.gov/wcm/index.html#data
https://www.chieftain.com/story/special/1997/03/01/kansas-cloud-seeding-plan-worries/8762492007/
https://www.chieftain.com/story/special/1997/03/01/kansas-cloud-seeding-plan-worries/8762492007/
https://kansashistoricalopencontent.newspapers.com/
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investigation of these potential factors. 

Relative to analyses of policy adoption decisions, the research on policy termination 

is scarce. Policy termination theory emerged in the late 1960s to define policy termination, 

explore its rarity, and establish a theoretical framework. By the early 2000s, policy makers 

in debt burdened industrialized countries sought guidance regarding the conditions for 

terminating public investments and focused on the determinants of policy termination 

(Bauer, 2009; Ferry and Bachtler, 2013). Case studies dominate empirical research on 

policy termination, covering topics such as international trade (Rhee and Jang, 2022), tax 

incentives (Thom, 2021), regional development (Ferry and Bachtler, 2013), climate policy 

(Krause et al., 2016), and wage laws (Hwang, 2021). However, only one paper examines 

policy termination in the context of disaster risk reduction: termination of the face mask 

policy in the U.S. (Wang and Liu, 2024).  

Disaster risk reduction policies are designed to enhance social, economic, and 

environmental resilience51 . The goal of this paper is to investigate the potential factors 

influencing cloud seeding program termination decisions at the county level, thereby 

helping to address a gap in the research on policy termination within disaster risk arena. 

Moreover, discussions on policy termination often focus on national or state-level 

suspensions, with only a few papers examining decision-making processes at the local 

government level (Krause et al., 2016; Lamothe and Lamothe, 2015). This paper also aims 

to fill the gap by providing insights into the local government decision-making processes.  

Specifically, in this paper cloud seeding program termination decisions by Kansas 

county government officials are studied. The empirical analysis begins with a Logit model 

to explore factors associated with the participation of the cloud seeding program over the 

2002-2013 period. In addition, a Cox proportional hazard model is used to assess potential 

factors influencing the termination decision-making process. The present study examines 

four hypotheses derived from policy termination theory: fiscal stress, project efficacy, the 

diffusion effect, and political ideology.  Each of these hypotheses is discussed in greater 

detail in the body of the paper. 

  

 
51 See the explanation from United Nations Office for Disaster Risk Reduction: 

https://www.undrr.org/terminology/disaster-risk-reduction  

https://www.undrr.org/terminology/disaster-risk-reduction
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As a prelude to the full set of findings, the Logit analysis reveals county characteristics 

the influence the likelihood of county participation in the cloud seeding program: counties 

experiencing more frequent hailstorms, with higher levels of Republican support, and 

surrounded by neighboring counties that use clouding seeding are more likely to participate 

in the program. The Cox proportional hazards model offers an evaluation of factors 

influencing program termination among those counties that participated in the program.  

This evaluation indicates that among counties that adopted the cloud seeding program, 

termination is more likely in a county that experienced higher hail damage/losses in the 

previous year. Counties are also more likely to terminate the program if neighboring 

counties adopt cloud seeding, possibly due to the rapid spread of hailstorms across multiple 

counties, which may generate a free rider problem. Interestingly, fiscal stress and political 

ideology did not show significant influence on the likelihood of program termination.  

The remaining parts of this paper are as follows: Section II provides background on 

the Kansas cloud seeding program. Section III reviews the literature on policy termination 

and presents a more detailed discussion of the hypotheses examined in this paper. Section 

IV and V present the data and empirical strategy, respectively. The results and conclusions 

are demonstrated in Section VI and VII.   
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II. History and background of cloud seeding programs in Kansas 

The cloud seeding program in Kansas serves dual purposes, focusing on both hail 

suppression and rain augmentation, where hail suppression generally takes precedence 

over rain augmentation. Operational records indicate that from 2002 to 2016, cloud seeding 

days were allocated 65% for hail suppression and 35% for rain augmentation. 

It is not a coincidence that counties adopting the cloud seeding program are 

concentrated in western Kansas (See Figure 13). Annual precipitation in western Kansas 

ranges from 13 inches to 30 inches, while in eastern Kansas it ranges from 30 inches to 50 

inches. Additionally, Kansas' elevation rises from east to west, with the highest elevations 

exceeding 4,000 feet and the lowest near 700 feet above sea level in eastern Kansas. 

Elevation is closely related to hailstorms and potential hail damage. The freezing level in 

convective cloud systems is closer to the ground in higher elevation regions. Consequently, 

even less intense thunderstorms can produce hail because the relatively high elevation 

creates a natural freezing level for thunderstorms. Furthermore, hailstones can remain at 

the freezing level longer and grow larger. Hailstones of over 1 inch in size can potentially 

cause damage. To summarize, , western Kansas experiences dry conditions and frequent 

hailstorms.  

 
Figure 13. Map of counties participating in the cloud seeding program (2002, 

Kansas) 
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In 1972, severe drought damaged Western Kansas agriculture, prompting local 

governments to request state intervention. The State Finance Council approved $100,000 

in emergency funds to implement cloud seeding in northwest Kansas for drought relief. 

The Kansas Water Resources Board worked with the U.S. Bureau of Reclamation to 

oversee the cloud seeding pilot project. However, before the project could be executed, 

moisture conditions improved, shifting the project's goal to experimenting with cloud 

seeding in nature. 

Colby City in northwest Kansas conducted the first cloud seeding experiment in 1972 

over a nine-week period. In 1973 and 1974, four counties joined the pilot project. The 

Kansas Water Resources Board published special report, which stated: “The fact that a 

portion of the funds supporting the Kansas cumulus projects came from county sources was 

an indication of at least localized interest in operational cloud seeding52.” Increasingly, 

county governments showed their support: After the Kansas Weather Modification Act 

passed in 1974, eleven counties applied for permits and licenses to operate cloud seeding 

programs. 

Residents in the county expressed their opinions to county commissioners about 

sponsoring the program. The county commissioners then voted and allocated funds in the 

following year. The agency operating the cloud seeding program in the region was the 

Western Kansas Groundwater Management District No. 1 (GMD1, see Figure 14). In each 

year of the program, GMD1 held an annual meeting to promote the cloud seeding program. 

In 2012, GMD1 supported the weather modification program53, but also provided extra 

funding of $20,000 to each participating county54.  

 
52 See the reference Kostecki (1977). 
53 State government provides support for the most expensive part of the program, including a highly sensitive 

radar system, telecommunications, and a data link for computing.  
54 See https://www.cjonline.com/story/news/politics/state/2012/09/04/drought-hurting-kansas-programs-

rain-effort/16422352007/  

https://www.cjonline.com/story/news/politics/state/2012/09/04/drought-hurting-kansas-programs-rain-effort/16422352007/
https://www.cjonline.com/story/news/politics/state/2012/09/04/drought-hurting-kansas-programs-rain-effort/16422352007/
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Source: Kansas Department of Agriculture, see: https://agriculture.ks.gov/divisions-

programs/dwr/managing-kansas-water-resources/groundwater-management-districts  

Figure 14. Groundwater Management Districts in Kansas 

However, members of the public have different opinions about cloud the seeding 

program. In the November 28, 1994 edition of the Council Grove (Kansas) Republican55, 

an article stated: “Officials at the Kansas Water Office in Topeka want Kansas taxpayers 

to give them $390,000 to mess with nature.” The same article quoted Cloud seeding project 

Manager Keith Lebbin “Who doesn’t mess with Mother Nature? If you have a section of 

land and grow anything but buffalo grass, you’re messing with Mother Nature. Every time 

you start your car, you’re messing with Mother Nature.”  

In addition to ethical questions, there are also practical concerns about the cloud 

seeding program. The Groundwater Management District Number 4 (GMD4) held 20 

public meetings to launch a five-year cloud seeding program starting in April 1997 (see 

Figure 2). However, opposition to cloud seeding among farmers in the region was 

evidenced by the formation of an organization called Citizens for Natural Weather. 

 
55 From Kansas State Historical Society dataset: https://kansashistoricalopencontent.newspapers.com/ 

https://agriculture.ks.gov/divisions-programs/dwr/managing-kansas-water-resources/groundwater-management-districts
https://agriculture.ks.gov/divisions-programs/dwr/managing-kansas-water-resources/groundwater-management-districts
https://kansashistoricalopencontent.newspapers.com/
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According to a newspaper article dated May 18, 199856 , the farmers stated: “We don’t 

question that cloud seeding is reducing hail. We just want to make sure it’s not hurting the 

total precipitation in our area.” In 1999, counties within GMD4 opted out of the weather 

modification program. Moreover, Rawlins County sued GMD4, challenging the authority 

of the local government. 

Based on research by the Kansas Water Office, the benefit-cost ratio of the cloud 

seeding program is 37:157. This ratio indicates that an investment of one dollar can generate 

an additional 37 dollars in crop yields for the sponsoring counties, excluding other potential 

benefits. Despite evidence of the program's high return on investment, it was suspended in 

2016. The stated reason for suspension was a tight Kansas Water Office budget58.  

Moreover, even though the cloud seeding program is highly subsidized, the number 

of participating counties decreased from a maximum of 17 to just 2 before the state halted 

the program, as shown in Figure 15.  

 
Data source: NOAA. 

Note: In total, there are 105 counties in Kansas. 2007 data is missing. 

Figure 15. Numbers of counties participating in Kansas cloud seeding program 

  

 
56 From Kansas State Historical Society dataset: https://kansashistoricalopencontent.newspapers.com/ 
57 See the webpage of WKGMD#1: https://www.gmd1.org/weather-program/. 
58 See the webpage of WKGMD#1: https://www.gmd1.org/weather-program/. 

https://kansashistoricalopencontent.newspapers.com/
https://www.gmd1.org/weather-program/
https://www.gmd1.org/weather-program/
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III. Policy Termination and Hypothesis  

Relative to extensive analyses of policy adoption decisions, the research on policy 

termination is scarce59 (DeLeon, 1978) and understudied (Geva-May, 2001; and Lamothe 

and Lamothe, 2015). DeLeon (1978) defined policy termination as the complete cessation 

of functions, programs, organizations, and projects by the government. However, there is 

still some debate about the concept of policy termination, as policies may not be terminated 

entirely but rather modified or adjusted in different forms (Hogwood and Peters, 1982).  

DeLeon (1978) categorized two types of policy termination: strict termination and 

partial termination. Strict termination means that the functions, programs, and projects of 

the government stop and cease entirely. There are two extreme cases of strict policy 

termination: the first is when the policy has fully achieved its goals and is no longer needed; 

the second is when the policy exacerbates the situation and is terminated. Partial 

termination involves reconsidering the policy due to redundancy, obsolescence, or 

dysfunction, and then terminating or revising government functions, organizations, 

programs, or policies. Partial termination is equivalent to policy adjustment or policy 

succession (Hogwood and Peters, 1982; and Ferry, 2013). 

In the context of the cloud seeding program in Kansas, neither state nor county 

governments have used the program since 2016. Moreover, as of 2023 Kansas is no longer 

a member of the North American Weather Modification Council. Although the Kansas 

government has not abrogated the Weather Modification Act, the Kansas cloud seeding 

program was effectively terminated at the state level after 2016. Note also that prior to 

2016 a number of county governments halted their participation in the program.  

However, cloud seeding program termination does not fully align with the description 

of strict termination. First, it is impossible for a risk reduction policy to fully achieve its 

goal of fully eliminating natural disaster risk and thus be no longer needed. Second, there 

is no strong evidence that the cloud seeding program exacerbated hail damage, although 

most farmers were concerned about spillover effects such as decreased precipitation. On 

the other hand, the cloud seeding program also does not meet the definition of partial 

termination, as there is no similar program to replace weather modification for hail 

 
59 A simple keyword search in the Web of Science Core Collection yielded 79,471 results for policy adoption 

and 3,052 results for policy termination. 
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suppression purposes. 

Although there are gaps in the theory, the focus of policy termination research has 

shifted from establishing a general policy termination theory to identifying the 

determinants of policy termination due to practical needs (Ferry and Bachtler, 2013). More 

importantly, the understudy of policy termination is at least partly due to its infrequent 

occurrence (Bardach, 1976), which has led most termination studies to concentrate on 

qualitative case studies or perspective analysis (Lamothe and Lamothe, 2015). 

Lamothe and Lamothe (2015) were the first to combine policy termination theory with 

policy diffusion theory and the make-and-buy concept from a different literature, providing 

a quantitative analysis. This work has inspired the emergence of more quantitative research 

on policy termination (Li, 2017; Miao, 2019; Hwang, 2021; Rhee and Jang, 2022), with 

empirical studies employing various theories from different fields depending on the policy 

context (see Table 13). 

Table 13. Related theories and potential factors/pathways 

Theory Potential factors or pathways 

Policy termination theory (Kaufman, 

1976; deLeon, 1978) 

 Fiscal stress 

 Political ideology 

 Program effectiveness  

 Interest group influence 

Policy diffusion theory (Berry and 

Berry, 2014; Li, 2017; Hwang, 2021) 

 Regional diffusion (Neighbors) 

 Leader-laggard diffusion (innovation) 

 Vertical diffusion (Federal/State/County) 

Policy entrepreneur literature 

(Geva-May, 2004; O’Neill et al.; 

2018; Hatch and Mead, 2021; ) 

 Entrepreneur can reduce the cost of 

government learning new knowledge 

Public choice theory (Tiebout, 1956) 
 Redistributed services 

 Services delivered by special districts 

Make-or-Buy Literature (Geva-May, 

2001; Lamothe and Lamothe, 2015) 

 Cost of termination (financial, political, 

emotional, or legal) 

 Transaction cost (provide service by 

contract with the third party) 

 Previous Service delivery modes (private 

for profit company or market) 

Hettich and Winer  
 Political support and economic foundation 

of tax structure 
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Based on the literature and the context of cloud seeding in Kansas, I propose four 

hypotheses that might influence the termination decision. 

(1) Fiscal stress  

Fiscal stress is a factor influencing county government decisions to terminate policies 

(DeLeon, 1983). When faced with a tight budget, the government official might have the 

incentive to terminate policies or cut back budgets to reduce expenditure and save money 

(Kirkpatrick et al., 1999). Some empirical research indicates that governments with poor 

fiscal health tend to terminate public services (Graday and Ye, 2008). However, more 

empirical findings show that fiscal stress does not play a significant role in policy 

termination (Volden, 2010; Krause, 2016; Hwang, 2021). 

In the case of the cloud seeding program, it was stated that GMD1 ceased operations 

due to a tight budget. However, for county governments, the cloud seeding program is 

highly subsidized, making it unlikely to be terminated unless local fiscal stress is severe 

and other services must be prioritized. 

Hypothesis 1: The probability of terminating the cloud seeding program increases if the 

local government faces fiscal stress. 

(2) Political ideology  

Political ideology often plays a dominant role in determining a policy’s continuation 

or termination (deLeon, 1983, 2002; Volden, 2010). First, the current party might want to 

terminate existing policies if they have an opposing political affiliation (Bardach, 1976; 

Berry et al., 2010; Birchall, 2014; Ragusa, 2010). Second, different parties or political 

affiliations have different preferences, such as being more conservative or more 

welcoming of emerging ideas and new technology. Empirical studies have discussed how 

political ideology affects the termination of face mask policies during COVID-19 (Wang 

and Liu, 2024) and policies related to extreme weather events (Gould et al., 2024). 

Conversely, policymakers may try to maintain the status quo and prevent the termination 

of current or existing decisions, which might be linked to concerns about failure or 

incompetence (Dür, 2001; Thom, 2020). 

In Kansas, most counties support the Republican Party, but the level of support 

varies between counties. This variation might influence decisions to terminate the cloud 

seeding program. 
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Hypothesis 2: The probability of terminating the cloud seeding project increases if the 

political party affiliations are more conservative. 

(3) Program effectiveness  

The goal of government is to provide effective programs and policies to improve 

social welfare. Therefore, it seems straightforward to terminate a policy if it proves 

ineffective (deLeon, 1983; Turnhout, 2009). However, there are three reasons why a policy 

might not be terminated even if the program is inefficient. First, many public policies are 

ineffective due to political inefficacy (Shipan & Volden, 2008), meaning governments lack 

the capability to implement well-designed policies, sometimes turning them into harmful 

ones (Khoshnevis and Chelleri, 2018). Therefore, most governments prefer to keep the 

program and improve implementation efficiency rather than terminate existing policies. 

Second, policy evaluations are rarely purely objective, and many factors can undermine 

the credibility of evaluations (Thom, 2021). Kasdin and McCann (2019) surveyed federal 

governments and found that the probability of terminating low-effectiveness programs is 

not higher than for those rated highly effective. Moreover, from the sponsor's perspective, 

program ineffectiveness is the main reason for termination, but from the non-sponsor's 

point of view, effectiveness of the program is often irrelevant to policy termination. Finally, 

in the literature, while program effectiveness may be a crucial factor, the complexity of 

policies, especially high-level policies that encompass multiple programs, makes it difficult 

to use a single index or perspective to assess program effectiveness or agency performance 

(Krause, 2016; Thom, 2021). 

The evaluation of the efficacy of cloud seeding programs, particularly in reducing hail 

damage, remains controversial. In the literature, two main approaches are used to measure 

the efficacy of cloud seeding programs. The first involves measuring differences in 

hailstorm frequency and magnitude (Bergant, 2011; Changnon, 1971; Dessens et al., 2016; 

Gavrilov et al., 2013; Rivera et al., 2020; Spiridonov et al., 2015). The second approach 

measures reductions in crop loss or increases in crop yield, with empirical research 

demonstrating significant reductions in crop damage due to cloud seeding (Federer et al., 

1986; Ekland et al., 1999; Knowles and Skidmore, 2021; Abshaev et al., 2023). The impact 

of program efficacy on the decision to terminate cloud seeding programs remains unclear. 
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Hypothesis 3: The probability of terminating the cloud seeding program increases if county 

government officials and/or their constituents perceive the program to be ineffective. 

(4) Policy diffusion   

The definition of policy diffusion is "one government's policy choices being 

influenced by the choices of other governments" (Shipan and Volden, 2012; Lamothe and 

Lamothe, 2015). The influence diffuses through three major channels: learning, 

competition, coercion, or fulfilling norms and standards, with the first two being core 

mechanisms (Shipan and Volden, 2012; Berry and Berry, 2014; Miao, 2019). 

However, governments can easily be influenced by neighboring jurisdictions (Walker, 

1969) because counties that share a border often have frequent interactions when making 

decisions. Moreover, they may face similar challenges, such as hail damage or drought, 

and share similar socioeconomic or political profiles. Therefore, neighboring counties' 

decisions may also be suitable for themselves (Miao, 2019). Studies have found that 

neighbors' decisions influence the likelihood of policy termination (Lamothe and Lamothe, 

2015; Li, 2017; Hwang, 2021; Thom, 2021). 

In Kansas, counties that adopted the cloud seeding program are concentrated in the 

western part, as mentioned in Section II. From an operational standpoint, if most counties 

do not contribute to the program, its efficacy might diminish, rendering the public budget 

spent in vain (Boyce, 2000). Such a scenario was described in the final report of the Kansas 

cloud seeding program:60 “…most programs resulted in too many storms on active seeding 

days, indicating the need for additional aircraft.” Therefore, termination decisions in these 

counties might be influenced by their neighbors' decisions regarding program efficacy. 

Hypothesis 4: The probability of terminating the cloud seeding project increases if the 

number of border counties also abandon the cloud seeding program. 

 

 

 

 

  

 
60 Please see the report from Kansas State University extension, page 3. https://www.ksre.k-

state.edu/irrigate/oow/p97/BossertWeatherModification.pdf  

https://www.ksre.k-state.edu/irrigate/oow/p97/BossertWeatherModification.pdf
https://www.ksre.k-state.edu/irrigate/oow/p97/BossertWeatherModification.pdf
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IV. Data 

To test the hypothesis outlined in the preceding section, I utilize Kansas county-level 

data to investigate the factors that influence county participation as well as the termination 

decision-making process of the cloud seeding program. Owing to data constraints where 

data spanning from 2003 to 2013 is accessible, I examine program participation and 

termination for county governments. I compile a variety of datasets, and the summary of 

variables along with their respective data sources are provided in Table 14, while Table 15 

presents summary statistics. 

Table 14. Definition of variables and data sources 

Variables Description Data source 

Participate 

0 and 1. If the county 

sponsors/participates cloud seeding 

program in year t, then 1, and 0 

otherwise. 

NOAA weather modification 

report. 

Termination 

0 and 1. If the county terminate cloud 

seeding program in year t, then 1, and 

0 otherwise. 

NOAA weather modification 

report. 

Fiscal stress 

Percentage change in county 

government revenue between year t 

and year t-1 

The government’s budget 

report (Kansas State) 

Republican 

Percentage of county i voting 

Republican Party in General election 

statistics for US Senator/President  

Kansas Statistical Report 

Loss_hail Loss ratio of hail on crops at year t-1 USDA 

Loss_drought 
Loss ratio of drought on crops at year 

t-1 
USDA 

Loss_flood Loss ratio of flood on crops at year t-1 USDA 

Frequency 
Number of hailstorms in county i at 

year t-1 
NOAA 

Magnitude 
Average size of hailstone in county i at 

year t-1 (inch) 
NOAA 

Neighbor 

Percentage of neighbor counties, which 

sharing a boarder with county i, 

terminate cloud seeding program in 

year t-1 

NOAA weather modification 

report. 

Education 
Percentage of population in county i 

with bachelor degree in year t-1 Kansas Statistical Report 
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Data on cloud seeding participation originate from the NOAA Weather Modification 

Report 61 . Regarding the Participate variable, a value of 1 indicates that the county 

participates in a cloud seeding program, while a value of 0 denotes otherwise. Similarly, 

the Terminate variable is created with a value of 1 indicating that the county has terminated 

its cloud seeding program, and 0 otherwise. The participation analysis includes all Kansas 

counties, whereas termination analysis excluded counties that never participate in the 

program. Throughout the period of analysis, approximately 9.4% of observations indicate 

participation in cloud seeding programs.   

Utilizing the same dataset, I introduce the Neighbor variable, representing the 

percentage of adjacent counties that terminated their cloud seeding programs in the 

preceding period t-1. This variable is expressed in percentage terms rather than as a count 

of adjacent counties to account for variation in the number of adjacent counties each county 

may have (Berry and Berry, 1990; Hwang, 2021). On average, 90.9% of adjacent counties 

that participated in the cloud seeding program ultimately halted the participation. The 

capture the political ideology, I used the percentage of votes to Republican Party in General 

election statistics for US Senator/President. On average, the percentage of vote for 

Republican Party is 70.5%, which means in every election, about 70.5% of voters in the 

county voted to Republican Party.  

Fiscal stress is gauged by the percentage change in county government revenue from 

year t to t-1. I refrained from employing the direct expenses of the cloud seeding program 

as a proxy for fiscal stress since they represent only a minor fraction of a county 

government's budget. On average, each participating county allocated $19,225 towards 

financing the cloud seeding program in a year. In Table 15, the average change stands at 

5.2%, indicating an average annual increase in total county government revenue. 

Nonetheless, some counties encountered significant fluctuations, with decreases or 

increases of approximately 50%. 

As discussed in the preceding section, assessing the efficacy of programs is often 

debated. Hence, I employ several variables to gauge the efficacy of the cloud seeding 

program. Firstly, local governments may be cognizant of the frequency and severity of 

 
61 According to Federal Law, all weather modification activity should submit report to NOAA. 
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hailstorms. Higher occurrences of hail or significant damage from drought could 

potentially influence their decisions regarding program participation. To represent the 

frequency and severity of hailstorms, I utilize the number of hailstorms that occurred in 

county i in year t-1, as well as the average size of hailstones in county i during the same 

period. On average, each county experiences 12 hailstorms annually, with a maximum of 

83 occurrences in a single year. Regarding hailstone size, a county typically encounters 

hailstones measuring 1.12 inches, surpassing the 1-inch threshold known to cause damage. 

Secondly, local governments may take into account crop losses resulting from extreme 

weather events, which could be associated with the cloud seeding program. These events 

include hail damage, drought, and flooding. To capture crop losses, I utilize the loss ratio 

of crop insurance attributed to hail, drought, and flood events.62. 

Additionally, I control for education level, where, on average, 19.4% of the population 

within a county holds a college degree. These data were sourced from the Kansas Statistical 

Abstract. 

Table 15. Summary statistics  

Variable Observation Mean Std. dev. Min Max 

Sponsor 1,040 0.094 0.292 0.000 1.000 

Fiscal stress 832 0.052 0.185 -0.711 2.977 

Republican 1,040 0.705 0.086 0.458 0.901 

Loss_hail 936 2.570 1.885 0.000 11.454 

Loss_drought 917 2.704 1.231 0.000 7.856 

Loss_flood 886 1.732 1.023 0.221 8.829 

Frequency 918 12.841 9.579 1.000 83.000 

Magnitude 918 1.128 0.226 0.750 2.542 

Neighbor 1,040 0.909 0.215 0.000 1.000 

Education 1,040 0.194 0.060 0.106 0.516 

Note: There are negative loss ratio in the dataset, I adjust the negative value to zero. 

  

 
62 Loss ratio is insurance indemnity divided by total premiums.   
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V. Modeling and empirical strategy  

In this paper, two empirical approaches are used to test the hypotheses. First, a Logit 

model is employed to investigate the factors associated with cloud seeding program 

participation. Second, a Cox proportional hazards model is used to examine factors 

influencing cloud seeding program termination. 

(1) Logit model 

In the literature, logit models have been used to investigate potential factors associated 

with policy adoption (Li, 2017; Miao, 2019) and termination (Lamothe and Lamothe, 2015; 

Krause, 2016). In this research, I use a logit model to explore the characteristics of counties 

and their correlation with participation in the cloud seeding program.  

The conditional probability of participating in the cloud seeding program is denoted 

by Pr(𝑌 = 1|𝒙) = 𝜋(𝒙) . And the multivariable logit regression model is given by the 

equation (1) (Hosmer et al., 2013). 

⁡𝑔(𝒙) = ln (
𝜋(𝒙)

1−𝜋(𝒙)
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2…+ 𝛽𝑚𝑥𝑚 + ε     (1) 

In this paper, the specifications as equation (2), the estimated logit as follow: 

𝑔(𝒙) = 𝛽0 + 𝛽1𝐹𝑖𝑠𝑐𝑎𝑙_𝑆𝑡𝑟𝑒𝑠𝑠𝑖𝑡−1 + 𝛽2𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑖𝑡−1 + 𝛽3𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑡−1 +

𝛽4𝑅𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛𝑖𝑡−1 + 𝛽5𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡−1 + ε                            (2) 

In equation (2), all covariates are lagged by one period. This is because county 

governments must pass the budget before seeding the clouds during the growing season; 

therefore, their decisions are likely influenced by information from the previous year. The 

covariates are thoroughly described in the relevant previous section, with the exception of 

Efficacy, which is represented by a different proxy as discussed in the preceding section. 

(2) Proportional hazards model 

Survival analysis has been used to study political events such as policy termination 

and factors associated with their occurrence (Baybeck et al., 2011; Box-Steffensmeier and 

Jones, 2004; Li, 2017; Hwang, 2021). The hazard rate in survival analysis indicates the rate 

at which units experience a political event, considering both the duration spent in the initial 

state and the transition to a subsequent state (Box-Steffensmeier and Jones, 2004). 
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Survival analysis, or event history analysis, employs various methodologies, with the 

most common being the investigation of the duration of survival time before experiencing 

an event using a proportional hazards model. The assumption of the probability of hazard,⁡

h(𝑡|𝒙), is a proportion of time passed.  

h(𝑡|𝒙) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽𝒙) 

ℎ0(𝑡)  is the baseline hazard rate, which means the county has a certain underlying 

probability of terminating the program. The Cox model is a semi-parametric model that 

does not specify the baseline hazard (Cox, 1972). 

Wang and Yao (2023) introduced the application of the Cox proportional hazards 

model with covariates that vary over time. Under the Cox model, the probability for county 

i to terminate the cloud seeding program at period t is given by:  

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖(𝑡)

= ℎ0(𝑡) ∙ exp⁡(𝛽1𝐹𝑖𝑠𝑐𝑎𝑙𝑖,𝑡−1 + 𝛽2𝑅𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛𝑖,𝑡−1 + 𝛽3𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖,𝑡−1

+ 𝛽4𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑖,𝑡−1 + 𝛽5𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1) 

The dependent variable Termination is 1 if county i terminates the cloud seeding 

program in period t. 𝐹𝑖𝑠𝑐𝑎𝑙𝑖,𝑡−1 is the fiscal stress of county i in period t-1. 𝐼𝑑𝑒𝑜𝑙𝑜𝑔𝑦𝑖,𝑡−1 

is the political ideology of county i in period t-1. 𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑖,𝑡−1 is the efficacy of cloud 

seeding project of county i in period t-1. 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑖,𝑡−1 is the percentage of neighborhood 

of county i in period t-1 which terminate cloud seeding policy. 𝛽1 to ⁡𝛽5 is the hazard ratio 

I am interested in estimating.  

In the Cox proportional hazards model, a hazard ratio larger than one is defined as a 

positive coefficient, indicating that with a change in the covariate, the risk of termination 

is increased. Conversely, a coefficient smaller than one is defined as a negative coefficient, 

indicating that with a change in the covariate, the risk of termination decreases. For 

example, if  𝛽1>1, it indicates that an increase of one unit in fiscal stress increases the 

likelihood of a county terminating the cloud seeding program. 
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VI. Results and discussion 

This section provides the empirical results accompanied by a discussion of findings. 

(1) Empirical results of policy participation 

Table 16 presents the Logit model results, highlighting factors associated with 

participation in cloud seeding programs: those with high hailstorm frequency, strong 

Republican Party support, and with neighboring counties that also participate in cloud 

seeding.  First, when more hailstorms occurred in a county in the previous year, the odds 

ratio of participation in cloud seeding program significantly increases. This result suggests 

that regions experiencing frequent hailstorms naturally are more likely to adopt cloud 

seeding. The Neighbor variable is also statistically significant, indicating that if a county 

is surrounded by counties in the program, it is highly likely to also be in the program, and 

vice versa. These two results capture the characteristics of western counties in Kansas, 

which share similar geographical features and face challenges from extreme weather events.  

Conversely, counties with a greater percentage of votes for the Republican Party have 

a higher likelihood of participation in the cloud seeding program. The coefficient for 

political ideology is much larger than the coefficient for hailstorm frequency. These results 

are consistent with Gould et al. (2024), indicating that while experiencing more extreme 

weather events, such as hailstorms, has a positive impact, political ideology strongly 

influences decision-making regarding weather-related mitigation policies. Finally, the 

results indicate that fiscal stress and loss ratios are not significantly correlated to 

participation in cloud seeding programs. 

In the Logit model, a higher percentage of Republican votes increases the probability 

of participating in the cloud seeding program. Although Republicans are generally less 

favorable toward climate change policies (Chandler, 2009; Miao, 2019), the results from 

this analysis are consistent with Carman et al. (2022), who found that Republicans are more 

willing to engage in policies addressing extreme weather events rather than climate change. 

Additionally, Giordano et al. (2020) show that majority Republican communities 

experience policy changes following uncommon extreme weather events. With regard to 

hailstorms, the evaluation indicate that counties with a higher percentage of Republican 

votes are more likely to participate in cloud seeding programs to mitigate the impacts of 

extreme weather. 
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Table 16. Results of Logit model   

Coefficient (i) (ii) (iii) (iv) 

Fiscal stress -0.277 -0.214 -0.389 -0.387 

 (1.150) (1.057) (0.269) (1.013) 

     

Frequency 0.075*    

 (0.044)    

Magnitude  0.792   

  (1.334)   

Loss ratio (Hail)   0.269  

   (0.184)  

Loss ratio (Drought)    0.141 

    (0.258) 

     

Neighbor -8.291*** -8.166*** -8.377*** -8.571*** 

 (1.761) (1.686) (1.749) (1.747) 

     

Republican 26.564*** 25.483*** 23.489** 23.163** 

 (10.313) (9.923) (9.838) (9.561) 

     

Education -27.921 -29.581 -0.207 -0.230 

 (18.845) (18.056) (0.172) (0.169) 

     

Constant -15.289* -14.033* -14.034 -12.621 

 (8.764) (8.334) (8.703) (8.434) 

Observation 815 815 936 917 
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(2) Empirical results of policy termination 

Table 17 presents the results of the Cox proportional hazards model. The dataset 

includes all samples—14 counties across 2003 to 2013—that adopted the cloud seeding 

program. This model evaluates the survival duration (i.e., the number of years until the 

program was terminated) using time-varying covariates. Additionally, counties that re-

adopted the cloud seeding program and later terminated it are reintroduced into the analysis 

(Wang and Yao, 2023) Therefore, it is not necessary to exclude samples after their first opt-

out from the program. 

In column (i) of Table 17, the loss ratio due to hail significantly increases the 

probability (risk) of program termination,  consistent with hypothesis 3. This result 

indicates that counties are more likely to terminate participation in the cloud seeding 

program if they continue to experienced a high hail-induced crop damage loss ratio despite 

cloud seeding. This variable reflects the perceived inefficacy of the program and the 

influence on the decision-making process for program termination.  

A one percentage-point increase in the loss ratio due to hail raises the likelihood of a 

county government terminating the cloud seeding program by 16.1%. This result remains 

robust when controlling for other covariates, as shown in column (ii), where the likelihood 

of termination increases by 14.9% per percentage-point increase in the loss ratio.  
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Table 17. Results of Cox proportional hazard model  

Hazard Ratio (i) (ii) (iii) 

Fiscal stress  0.301 0.527 

  (0.339) (0.376) 

Loss ratio (Hail) 1.161** 1.149*  

 (0.083) (0.089)  

Loss ratio (Drought)   0.524 

   (0.289) 

Neighbor   0.092** 0.054** 

  (0.094) (0.062) 

Republican  1.040 0.292 

  (3.656) (0.796) 

Education  4.589 56.489 

  (18.312) (225.820) 

Observation  112 84 84 

Surprisingly, among the counties participated in the cloud seeding program, the 

variable Neighbor significantly decrease the likelihood of termination.  This finding 

indicates that county i is less likely to terminate participation if a neighboring county 

terminates. These results contradict the direction predicted by Hypothesis 4.  

Diffusion theory suggests that local governments are influenced by their neighbors 

through processes of learning, competition, and adherence to norms and standards. In the 

case of Kansas, decisions by county officials to participate in cloud seeding are influenced 

by neighbors, though the exact source of this influence remains unclear.  

Li (2017), for example, used a Cox proportional hazards model to investigate how 

policy diffusion influences the adoption of education policies by state governments. The 

author found that when more neighboring states adopt a policy, it delays adoption by the 

observed state, a phenomenon referred to as “inverse policy diffusion”. Similarly, in this 

chapter, I found that a county is less likely to terminate the cloud seeding program as the 

percentage of neighboring counties terminating the program increases. Counties may 

choose to postpone termination to observe potential consequences and gather more 

information from their neighbors before making a decision. 



 

 
 

86 

In discussing the political aspects of policy termination, Weiss (1993) identifies three 

ways in which political ideology influences termination: political pressures, the provision 

of crucial evidence for termination within the political process, and the political messages 

carried by termination. None of these factors are evident in the case of the Kansas cloud 

seeding program, which does not support the hypothesis 2 However, it is notable that while 

counties with greater Republican voters are more likely to have participated, there is no 

evidence from this evaluation that Republican influences (or lack thereof) drove policy 

termination. The potential reason might be because  Republicans dominate in most of 

Kansas counties, although the percentage of support changes within counties over time, the 

variation might not be reflected in the policy termination.  

Finally, as shown in Table 17, there is no evidence to support Hypothesis 1, which 

posited that fiscal stress influences policy termination. Two possible explanations for this 

finding are as follows: First, the budget allocated to the cloud seeding program is relatively 

small compared to the overall county government budget, and cutting such a minor 

expenditure may not substantially alleviate fiscal stress. Second, most counties 

participating in the cloud seeding program prioritize disaster reduction and water resource 

preservation, making the program a strategic investment rather than a dispensable cost. 
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VII. Conclusion  

Hailstorms cause significant damage in the US, and cloud seeding is considered a 

promising tool for reducing this risk. In Kansas, since 1972, the state government and 

county government authorities have collaborated on cloud seeding programs for nearly 

four decades. The state government has presented evidence that the program's cost-benefit 

ratio is 37. Despite the high estimated net benefit, many counties discontinued program 

participation and in 2016 the state government suspended the whole program. 

In this paper I first used a Logit model to investigate the factors associated with county 

participation in cloud seeding programs. A summary of this portion of the evaluation is as 

follows.  First, I found that counties experiencing more frequent hailstorms are more likely 

to participate in the cloud seeding program. Moreover, a county is more likely to participate 

in the program the higher is the percentage of border counties that participate in the 

program. Finally, counties with higher support rates for the Republican Party are more 

likely to participate in the cloud seeding program. In summary, counties participating in 

the cloud seeding program ten to have more hailstorms, strong Republican support, and 

have border counties that also participate in the cloud seeding program. 

Focusing on those counties that participated in the cloud seeding program, I also 

examined factors that influence termination of the cloud seeding program.  Specifically, I 

adopted a Cox proportional hazards model to examine the factors influencing termination 

decisions. I found that fiscal stress does not significantly influence termination decisions. 

This could be due to two reasons. First, the cost of the cloud seeding program constitutes 

only a small portion of the local government budget. Second, the program is highly 

subsidized by the state government. In addition, a higher loss ratio for hail in the previous 

period increases the likelihood of termination. This finding suggests that perceptions of 

program effectiveness based on recent past experience may influence the termination 

decision. Finally, I found the neighbors’ decisions also influence termination decisions, 

which is consistent with the policy diffusion theory.  In summary, this analysis offers new 

information regarding the policy termination process in the context of subnational 

government termination decisions.  

There may be other potential factors influencing termination decisions that could not 

be included due to data constraints. First, cloud seeding programs can easily become 
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“scapegoats” when undesired extreme weather events occur63, such as droughts in Kansas, 

flooding in the UAE, and storms in California. This political pressure from public opinion 

might also influence policy termination. Second, the debate between strict termination and 

partial termination remains unresolved. While I did not find alternative policies specifically 

for cloud seeding programs aimed at hail suppression, crop insurance could potentially 

protect farmers from extreme weather damage, fulfilling a similar role to cloud seeding. 

This overlap might lead to the explicit termination of cloud seeding programs in favor of 

well-developed and highly subsidized crop insurance schemes. However, many aspects of 

policy termination remain uncertain, necessitating further research in the future. 

 

 

 

 

 

 

  

 
63 See the February 2014 newsletter from GMD1: “The upcoming 2014 season will see the program shrink 

to its smallest size since it began. Much of this decline is attributable to the program being a convenient 

scapegoat by the uninformed for the current prolonged drought.” 

https://www.gmd1.org/2014_Feb_newsletter_final.pdf 

https://www.gmd1.org/2014_Feb_newsletter_final.pdf
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APPENDIX 

Table A1 Avoidance behavior _Miami Dade County Metrobus system (time trend) 

Specification (5a) (5b) (5c) (5d) 

ln(𝐛𝐮𝐬𝐫𝐢𝐝𝐞𝒕−𝟏) 0.392*** 0.394*** 0.398*** 0.394*** 

ln(𝐛𝐮𝐬𝐫𝐢𝐝𝐞𝒕−𝟐) -0.393*** -0.393*** -0.393*** -0.395*** 

     

Awind -0.006** -0.007*** -0.007*** -0.007*** 

rain -0.087*** -0.089*** -0.088*** -0.088*** 

Alarm -0.317***    

𝐀𝐥𝐚𝐫𝐦𝒕−𝟏  -0285***  -0.201** 

𝐀𝐥𝐚𝐫𝐦𝒕−𝟐   -0.260*** -0.138* 

dow -0.012** -0.012** 0.011** 0.012*** 

moy -0.008*** -0.008*** -0.008*** -0.008*** 

_cons 17.175*** 17.174*** 14.616*** 14.632*** 

R-squared 0.311 0.309 0.308 0.310 
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Table A2 Avoidance behavior _ Miami Dade County Metrorail system (time trend) 

Specification (5a) (5b) (5c) (5d) 

ln(𝐦𝐞𝐭𝐫𝐨𝐫𝐢𝐝𝐞𝒕−𝟏) 0.539*** 0.541*** 0.544*** 0.541*** 

ln(𝐦𝐞𝐭𝐫𝐨𝐫𝐢𝐝𝐞𝒕−𝟐) -0.436*** -0.435*** -0.435*** -0.436*** 

     

Awind -0.006 -0.006* -0.007* -0.006* 

rain -0.064*** -0.067*** -0.066*** -0.066*** 

Alarm -0.305***    

𝐀𝐥𝐚𝐫𝐦𝒕−𝟏  -0.238***  -0.169* 

𝐀𝐥𝐚𝐫𝐦𝒕−𝟐   -0.216*** -0.113 

dow -0.017** -0.017** -0.018** -0.018** 

ym -0.004*** -0.004*** -0.004*** -0.004*** 

_cons 12.725*** 12.718*** 12.689*** 11.047*** 

R-squared 0.307 0.304 0.304 0.305 

Note: Wind doesn’t affect the passenger rides of rail system significantly. The reason might 

be because rail system provides cover for users. 
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Table A3 Avoidance behavior _ Miami Dade County Metromover system (time trend) 

Specification (5a) (5b) (5c) (5d) 

ln(𝐦𝐨𝐯𝐞𝐫𝐫𝐢𝐝𝐞𝒕−𝟏) 0.319*** 0.320*** 0.321*** 0.320*** 

ln(𝐦𝐨𝐯𝐞𝐫𝐫𝐢𝐝𝐞𝒕−𝟐) -0.029 -0.029 -0.029 -0.030 

     

Awind -0.006 -0.007 -0.007* -0.007 

rain -0.066** -0.067*** -0.067*** -0.067*** 

Alarm -0.231**    

𝐀𝐥𝐚𝐫𝐦𝒕−𝟏  -0.198**  -0.150 

𝐀𝐥𝐚𝐫𝐦𝒕−𝟐   -0.166* -0.076 

dow 0.015** 0.015** 0.015** 0.015** 

ym -0.003*** -0.003*** -0.003*** -0.003*** 

_cons 8.871*** 8.859*** 8.842*** 8.850*** 

R-squared 0.126 0.125 0.124 0.125 
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Table B1. Crop damage indemnity (dollars per insured acre) 

Variable 
Total Kansas West Kansas 

hail drought flooding hail drought flooding hail drought flooding 

Seed 
0.47 

(0.56) 

-1.68 

(3.21) 

1.28* 

(0.72) 

0.33 

(0.58) 

-3.73 

(3.27) 

1.54* 

(0.79) 

0.61 

(0.73) 

1.38 

(2.61) 

1.11 

(0.79) 

UWseed 
0.09 

(0.80) 

6.05 

(4.56) 

0.17 

(1.03) 

0.001 

(0.82) 

5.07 

(4.61) 

0.24 

(1.11) 

0.25 

(1.00) 

6.37* 

(3.59) 

0.241 

(1.08) 

Wet 
0.15 

(0.13) 

-3.72*** 

(0.74) 

2.26*** 

(0.16) 

0.26* 

(0.16) 

-3.37*** 

(0.93) 

2.52*** 

(0.22) 

0.33 

(0.26) 

-2.30** 

(0.95) 

1.20*** 

(0.29) 

Dry 
-0.99*** 

(0.19) 

12.31*** 

(1.10) 

0.80*** 

(0.25) 

-0.79*** 

(0.23) 

16.24*** 

(1.32) 

0.80** 

(0.32) 

-0.98*** 

(0.37) 

8.71*** 

(1.34) 

0.45 

(0.41) 

GDD 
0.0001 

(0.0003) 

-0.001 

(0.001) 

-0.001* 

(0.0003) 

0.0001 

(0.0002) 

-0.002 

(0.002) 

-0.001** 

(0.0004) 

-0.0001 

(0.001) 

-0.004* 

(0.002) 

0.0004 

(0.001) 

SDD 
0.001 

(0.001) 

0.015** 

(0.006) 

0.001 

(0.001) 

0.001 

(0.001) 

0.022*** 

(0.007) 

0.003 

(0.002) 

0.003 

(0.002) 

0.025*** 

(0.008) 

-0.001 

(0.002) 

County 

Fixed-effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time 

Fixed-effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-square          

within 0.125 0.476 0.310 0.114 0.547 0.329 0.190 0.563 0.116 

between 0.063 0.001 0.030 0.002 0.073 0.081 0.094 0.142 0.015 

Overall 0.077 0.422 0.230 0.081 0.510 0.231 0.134 0.508 0.100 

*:10%, **:5%, ***:1% statistic significant.  
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Table B2. Cloud seeding effects (Total sample)  

Variable 
Weather variables Crop loss ratio Crop productivity 

frequency magnitude rainfall hail drought flooding Wheat Corn Sorghum 

Seed 
-0.28 

(1.16) 

-0.05 

(0.04) 

0.06 

(0.05) 

0.27 

(0.27) 

0.16 

(0.13) 

0.53*** 

(0.16) 

-0.70 

(1.51) 

16.22*** 

(3.93) 

-3.44 

(2.50) 

UWseed 
2.78* 

(1.63) 

0.10* 

(0.06) 

-0.09 

(0.07) 

-0.10 

(0.38) 

0.22 

(0.19) 

0.11 

(0.24) 

-2.95 

(2.21) 

4.41 

(5.63) 

-

11.02*** 

(3.52) 

Wet 
0.34 

(0.26) 

-0.001 

(0.009) 

0.29*** 

(0.01) 

0.15** 

(0.06) 

0.09*** 

(0.03) 

0.23*** 

(0.04) 

-1.13*** 

(0.37) 

1.24 

(0.99) 

3.01*** 

(0.67) 

Dry 
-1.67*** 

(0.40) 

-0.01 

(0.02) 

-0.13*** 

(0.02) 

0.35*** 

(0.10) 

0.58*** 

(0.05) 

0.20*** 

(0.06) 

-3.53*** 

(0.52) 

-7.38*** 

(1.31) 

-9.98*** 

(0.91) 

GDD 
0.0003 

(0.001) 

0.0001 

(0.0001) 

0.0001*** 

(0.00002) 

0.0002 

(0.0001) 

0.00003 

(0.0001) 

-0.0001 

(0.0001) 

-0.001 

(0.001) 

0.01*** 

(0.002) 

0.01*** 

(0.001) 

SDD 
0.001 

(0.002) 

-0.0001 

(0.0001) 

-0.001*** 

(0.0001) 

-0.001 

(0.001) 

0.0001 

(0.0003) 

0.001* 

(0.0003) 

0.003 

(0.003) 

-0.04*** 

(0.007) 

-0.03*** 

(0.005) 

County Fixed-

effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time Fixed-

effects 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-square          

within 0.164 0.103 0.599 0.130 0.454 0.158 0.390 0.457 0.651 

between 0.0001 0.044 0.493 0.015 0.076 0.011 0.093 0.003 0.123 

Overall 0.095 0.081 0.101 0.099 0.418 0.132 0.306 0.137 0.477 

Observations 2,259 2,259 2,319 2,196 2,154 2,128 1,762 1,665 1,468 

*:10%, **:5%, ***:1% statistic significant.  
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C. Farmers Production Model 

Link to the model section, the government officers can levy tax from the residents. 

And based on Hettich and Winer (1984, 1988), the taxable activity can be derived from the 

production functions.  

The cloud seeding program serves as a tool to mitigate hail damage, with the 

expectation that target areas experience increased agricultural productivity. However, the 

downwind effect may result in unintended impacts from the cloud seeding program. To 

offer a clearer assessment of these potential effects, consider the damage control model, as 

proposed by Lichtenberg and Zilberman (1986). In this approach, damage control agents, 

such as pest control and theft prevention, play a crucial role in preserving crop production 

and profitability.  

Building on the work of Knowles and Skidmore (2021), who applied the damage 

control framework to the evaluation of cloud seeding programs as damage control agents 

for wheat and barley crops in North Dakota. Of direct relevance, Trilnick and Zilberman 

(2021) developed a structural model based on the damage control approach, which 

introduced microclimate engineering and sunlight reflection as damage control agents for 

pistachio yields in California. 

In equation (1), 𝑌𝑖𝑡(𝑍,𝑊)  represents the potential output function under weather 

conditions 𝑊, encompassing factors such as temperature, moisture, hail, etc. 𝑍 is a vector 

of production inputs, including fresh water, fertilizer, and labor, etc. 𝑌𝑖𝑡
0(𝑍)  denotes the 

minimum crop output regardless of weather conditions, which is interpreted as the crop 

resiliency. For instance, it may account for a portion of the crops surviving after hail 

damage, and farmers might implement post-hail remedies to expedite the recovery of crops 

from damage. 𝐺𝑖𝑡(𝑊(𝑐𝑖𝑡)) is the damage or loss function, where 𝐺𝑖𝑡(𝑊⁡(𝑐𝑖𝑡)) ∈ [0,1], and 

𝑐𝑖𝑡 indicates whether county i participated in cloud seeding program, the damage control 

of hail, in year t or not.  

𝑌𝑖𝑡(𝑍,𝑊) = 𝑌𝑖𝑡
0(𝑍) + 𝑌𝑖𝑡

1(𝑍){1 − [𝐺𝑖𝑡(𝑊𝑖(𝑐𝑖𝑡)]}                             (A1) 
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With this production function, farmers collectively in county i address the profit 

maximization problem outlined in equation (2), where  𝑝𝑦, 𝑝𝑧, and 𝑝𝑐 represent the prices 

of outputs, inputs, and participation in the cloud seeding program, respectively. For 

simplicity, here after denote 𝑌𝑖𝑡
0(𝑍) as equal to zero. 

max
𝑐𝑖𝑡

⁡⁡⁡𝜋𝑖𝑡 = 𝑝𝑦{𝑌𝑖𝑡
1(𝑍)[1 − 𝐺𝑖𝑡(𝑊𝑖(𝑐𝑖𝑡))] − 𝑝𝑧𝑍 − 𝑝𝑐𝑐𝑖𝑡                     (A2) 

Assuming that farmers do not adjust inputs, 𝑍, in conjunction with the decision of whether 

or not to participate in the cloud seeding program, the marginal effect of cloud seeding 

participation on profit is shown in equation (3). 

𝑑𝜋𝑖𝑡

𝑑𝑐𝑖𝑡
= 𝑝𝑦𝑌𝑖𝑡

1(𝑍)(−
𝜕𝐺𝑖𝑡

𝜕𝑊𝑖𝑡

𝜕𝑊𝑖𝑡(𝑐𝑖𝑡)

𝜕𝑐𝑖𝑡
) − 𝑝𝑐       (A3) 

From equation (3), the price and production are both positive terms. In general, weather 

conditions have a positive correlation with damage (
𝜕𝐺(𝑊(.))

𝜕𝑊
>0). For instance, when more 

hailstorms occur in a year, there is a higher probability of crop damage. Moreover, as 

predicted by the beneficial competitiveness hypothesis (see section II), if the cloud seeding 

program effectively modifies adverse weather impacts such as reducing hailstorm 

frequency and magnitude, then 
𝜕𝑊(𝑐𝑖𝑡)

𝜕𝑐𝑖𝑡
<0.  

The damage abatement model should also account for spatial spillovers. For instance, 

Schneider et al. (2021) demonstrated that the timing of pest population control by one 

farmer can influence the efficacy of neighboring farmers' damage abatement inputs. In this 

study, I incorporate spatial spillovers into the model, where upwind county j’s decision 

regarding participation in the cloud seeding program influences county i’s weather, such as 

less rainfall or hailstorms. The revised maximization problem is illustrated in equation (4), 

and the marginal effect of cloud seeding participation on profit is shown in equation (5). 

max
𝑐𝑖𝑡

⁡⁡⁡𝜋𝑖𝑡 = 𝑝𝑦{𝑌𝑖𝑡
1(𝑍)[1 − 𝐺𝑖𝑡(𝑊𝑖(𝑐𝑖𝑡, 𝑐𝑗𝑡))] − 𝑝𝑧𝑍 − 𝑝𝑐𝑐𝑖𝑡                         (A4) 

𝑑𝜋𝑖𝑡

𝑑𝑐𝑖𝑡
= 𝑝𝑦𝑌𝑖𝑡

1(𝑍) (−
𝜕𝐺𝑖𝑡

𝜕𝑊𝑖𝑡

𝜕𝑊𝑖𝑡(𝑐𝑖𝑡,𝑐𝑗𝑡)

𝜕𝑐𝑖𝑡
) − 𝑝𝑐       (A5) 

In the damage control model, the damage control agent may not directly enhance crop 

production; in some cases, it might even lead to a reduction in crop production (Lichtenberg 
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and Zilberman, 1986). For instance, pesticides may not directly improve crop yield but can 

reduce pests, resulting in better plant growth. However, excessive pesticide application can 

harm crop plants. Similarly, if cloud seeding is effective and spillover effect is not 

considered, then  
𝜕𝑊(𝑐𝑖𝑡)

𝜕𝑐𝑖𝑡
<0. However, if spillover effects are taken into consideration, the 

sign  
𝜕𝑊𝑖𝑡(𝑐𝑖𝑡,𝑐𝑗𝑡)

𝜕𝑐𝑖𝑡
  is unknown; it could be either positive or negative. Based on this model, 

in the following section, the efficacy of cloud seeding and potential spillover effects are 

tested. 
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Table D1. Net Benefit and Net Present Value of Counties Participating in the Cloud 

Seeding Program (2002–2016) 

County 

Number of years  

participating in 

program during 

2002-2016 

Net benefit 

(2002-2016) 

(real 2002 

dollars) 

Net Present Value 

Discount rate 

3.1% 

Discount 

rate 3.9% 

Finney 10 22,385,099 19,300,000 18,600,000 

Gove 2 1,459,277 1,065,190 984,491 

Grant 8 11,625,797 9,338,420 8,858,088 

Gray 10 19,057,089 15,300,000 14,500,000 

Greeley 6 11,344,974 8,027,018 7,364,672 

Hamilton 11 10,271,209 8,280,079 7,855,697 

Haskell 8 36,540,874 29,600,000 28,200,000 

Kearny 13 12,153,677 10,000,000 9,580,517 

Lane 14 -6,337,185 -5,135,528 -4,883,257 

Scott 14 9,101,877 8,026,396 7,793,650 

Stanton 6 15,862,281 12,500,000 11,800,000 

Stevens 2 7,954,878 6,330,899 5,975,491 

Wallace 2 1,976,468 1,597,694 1,515,924 

Wichita 11 17,683,923 14,700,000 14,000,000 

*Price is average price of each month of grain crops. The production gain and loss are 

based on the estimation of Table 3. 
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Table D2. Net Present Value of Cloud Seeding Program in Kansas 

 Net present value 

(2002-2016) 

Real Discount Rates 3.1% 3.9% 

NPV (participating) -28,031,183  -29,149,102  

NPV (non-participating) 39,009,128  41,324,710  

Overall  10,977,945  12,175,608  

 

 


