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ABSTRACT 
 

Forests are increasingly seen as cost-effective mechanisms to mitigate and adapt to climate 

change. However, significant uncertainties remain for how climate change may affect future 

forest carbon sink or source strength. This challenge is compounded by the fact that most forest 

policy and planning decisions made today will not manifest for years, decades, or centuries. To 

improve the outcomes of regional greenhouse gas emission reduction efforts, salient and robust 

forest carbon science and data are required. Few studies have assessed gaps and barriers to 

integrating forest carbon data and models into policy and planning. Furthermore, there is an 

increasing need to quantify the impacts of enacting specific policies and management strategies 

to inform decision-making across scales, as well as advancements of associated tools to provide 

robust quantification and characterization of disturbance impacts on future forest carbon 

dynamics. Given these challenges, the first chapter of this dissertation provides a brief overview 

of forests and global climate change and the role of forest carbon data and models to inform 

forest decision-making. The second chapter focuses on assessing barriers and gaps to integrating 

forest carbon data and tools into regional policy and planning initiatives. Our results provide a 

roadmap for more effective science-based communication and education to improve forest 

carbon outcomes. The third chapter explores a suite of alternative forest management and wood 

utilization scenarios, compared to a business-as-usual scenario, to quantify the impacts of 

specific forest policies in the mid-Atlantic region in support of net-zero greenhouse gas 

emissions targets. These results suggest that key climate-smart forestry practices can increase 

both the short-term and long-term forest carbon sink strength without hindering timber supplies 

or reducing forest resilience. The fourth analysis uses a Monte Carlo simulation approach and a 

random forest model to quantify and characterize model variability and sensitivity to future 



 

 

disturbance regimes. These findings suggest that disturbance, including land-use change, 

harvesting, and disease outbreaks, play an important role in driving net ecosystem carbon 

balances in Maryland’s forests. Together, these results exhibit the value of forest carbon models 

to inform forest policy and planning in support of decision-making to address the climate crisis. 

Future work should continue to address future barriers to enhancing forest carbon decision-

making by further integrating climate considerations and leveraging data and tools to inform 

forest policy and planning. 
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CHAPTER 1 

INTRODUCTION 

1.1 Forests and global change 

Forests and society are facing unprecedented challenges due to human-induced climate 

change (Raupach and Canadell, 2010). Forests are increasingly poised to play an outsized role in 

combatting climate change in at least two ways. First, it is well documented that forests are 

primary drivers of global biogeochemical cycling including Earth’s carbon cycle, hydrologic 

cycle, and energy budget (Canadell et al, 2007, Bonan, 2008, Cox et al, 2000, IPCC, 2014, 

Mitchard, 2018, Pugh et al, 2019). Second, forests and forest products provide increasing 

potential to enhance the global forest carbon sinks (Canadell and Raupach, 2008, Griscom et al, 

2017, Fargione et al, 2018, Nunes et al, 2020) in addition to the continued supply of other 

cultural, economic, and ecological services (Diaz et al, 2018). Future contributions of forests to 

mitigating and adapting to climate change are predicated on the successful stewardship and 

management of forests globally. 

 The sustainable provisioning of ecosystem services and co-benefits provided by forests 

requires a greater understanding and forecasting of complex forest dynamics to inform decision-

making with imperfect information where decisions made today will not manifest for years, 

decades, or centuries (Clark et al, 2001, Lindenmayer and Likens, 2009, McDowell et al, 2020). 

Forest example, significant research gaps remain in determining the effect of natural- and 

anthropogenic- stressors, climate change impacts, and disturbance effects on forest 

characteristics and how forests in turn, respond to these drivers (Walker et al, 2020, Anderson-

Teixeira et al, 2021, Hogan et al, 2023). Additionally, significant barriers exist to addressing the 

capacity and technical needs of natural resource managers, landowners, and other forestry 
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professionals to address threats and vulnerabilities due to climate change (Engle, 2011, Nicotra 

et al, 2015, vonHedemann and Schultz, 2021). The sustainable management of forests, to meet 

the needs of today and tomorrow, inherently requires the assessment of trade-offs and the 

identification of opportunities in decision-making to advance the health, resiliency, and 

productivity of our forests and forested lands (Littlefield and D’Amato, 2022). To do so, requires 

increasingly integrated approaches to forest policy and planning where iterative processes 

between science, management, and policy inform and influence each other (Littell et al, 2012, 

Lamb et al, 2021, Peterson St-Laurent et al, 2021).  

1.1.1 Legacies of forest management and climate change considerations  

 Forests in the United States (US) approximate 68% of terrestrial carbon (C) stocks (Liu et 

al, 2014) and 90% of the land sector sequestration potential (EPA, 2016) offsetting nearly 11% 

of total GHG emissions annually (Domke et al, 2020). Increasing mitigation efforts while 

boosting climate resiliency through land restoration and improved management interventions can 

enhance both the sequestration and storage potential of forests in the US (Fargione et al, 2018). 

Working forestlands, which refers to forestlands that are managed to sustainably supply timber, 

energy, paper, and other forest products, provide potential low-cost solutions to abating 

greenhouse gas (GHG) emissions (Griscom et al, 2017). Forests are increasingly seen as natural 

climate solutions (i.e., deliberate human actions that protect, restore, and improve management 

of ecosystems for climate mitigation) which are viable pathways to sustain biodiversity and other 

critical ecosystem services in addition to boosting mitigation potential (Ellis et al, 2024). 

 The eastern US, which comprises of states throughout the lake states region, the lower 

Midwest, the mid-Atlantic region, and the New England region, is home to 65.67 million 

hectares of forestlands (USDA Forest Service, 2024). These diverse forests had been managed 
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sustainably for millennia by indigenous tribes and First Nations (Baumflek et al, 2021, Bulkan, 

2017, Waller et al, 2018). However, throughout the 18th and 19th century, western settlers 

shifted management of forests to prioritize extensive logging and clearcutting of forests to meet 

the energy and building demands of growing urban populations throughout the Atlantic seaboard 

and Midwest (Otto, 1989). Ultimately fears over deforestation, increasing wildfires, and 

dwindling timber supplies shifted management approaches in the late 19th and early 20th century 

to focus on the sustainability of management practices (Millers et al, 1989). The results of these 

shifts in management priorities yielded the current heterogeneous landscape influenced by both 

human-induced and natural activities. 

 This new era, with a greater focus on forest conservation and resilience, led to substantial 

increases in the complex understanding of forest dynamics. However, unabated GHG emissions 

have led to increasing threats and vulnerabilities to eastern forests that are expected to alter 

fundamental ecosystem processes (Joyce et al, 2011, Vose et al, 2016). Vulnerability can be 

conceptualized as the outcome of the combination of multiple stressors and exposures and the 

sensitivity to those stressors (Fussel, 2007, Yoshikawa et al., 2023). Adaptive capacity, or the 

ability of an ecosystem to cope with change due to exposure, can mitigate vulnerability and risk 

(Engle, 2011). For example, forests in the mid-Atlantic regions are projected to face increased 

risk of drought during the growing season, pest pressures, and heavier precipitation events 

(Butler-Leopold et al., 2018, Swanston et al, 2018) which can lead to decreased tree vigor and 

increased mortality, in turn changing their compositional and structural characteristics (Peters et 

al. 2013, Vose et al. 2016). These new and novel forest ecosystems perturbed by climate change 

impacts may be at greater risk of collapse or decreasing biodiversity and forest function 

(Lindenmayer et al, 2016). Where, proactive and adaptive management to address climate 
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change induced threats and vulnerabilities can have substantial implications for future forest 

adaptive capacity. 

 Incorporating climate change considerations  in forest planning will always be challenging 

due to uncertainties of longer time horizons and the complexities of forest ecosystems. 

Increasingly terms such as forest carbon management (Ontl et al, 2020), carbon stewardship 

(Failey and Dilling, 2010, Rockstrom et al, 2021), adaptive management (Yousefpour et al, 

2012), adaptive silviculture (Nagel et al, 2017), or climate-smart forestry (Nabuurs et al, 2017, 

Cooper and MacFarlane, 2023) are being adopted to explicitly link climate change 

considerations with forest planning and management. However, to properly address climate 

vulnerabilities through adaptive and mitigative actions requires a framework to facilitate 

successful implementation. One example, the Climate Change Response Framework (CCRF), 

serves as a guide to i) identify locations, time frames, and goals; ii) assess forest threats and 

vulnerabilities; iii) identify strategies and approaches; iv) plan and implement actions are 

appropriate scales; v) monitoring and evaluation effectively (Swanston et al, 2016). 

 Successful forest carbon stewardship is predicated on bridging science-practice gaps 

(Kirchhoff et al, 2013) in which a framework such as the CCRF can provide a useful roadmap. 

This task requires deeper understandings of broad-scale scientific information, potential climate 

change impacts on forests, and the integration of this knowledge into forest planning and 

management activities (Ontl et al, 2018, 2020). However, crucial gaps still exist between the 

assessment of vulnerabilities, identification of appropriate strategies and approaches, and the 

implementation of management activities on-the-ground including landowner perceptions and 

barriers to adoption (McGann et al, 2023a, McGann et al, 2023b). Necessitating, in part, research 

on not just socio-economic barriers of forest carbon management, but improved quantification 
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and monitoring of the implementation of forest climate action (Keith et al, 2021, Novick et al, 

2022a).  

 Policymakers from national to local scales are advancing forest and climate specific 

policies. Increasingly these policies recognize the ability of forests to reduce GHG emissions but 

also provide a suite of climate adaptation, economic, and social justice benefits (Bennet et al, 

2019, Erbaugh et al, 2020). However, to enact these policies requires interdisciplinary and cross 

sector coordination between state regulators and public land managers, private industry, 

smallholder landowners, and local municipalities. Significant challenges remain in translating 

science into measurable evidence-based targets and policy decisions (Ananda and Herath, 2009). 

Despite these challenges, state and local forestry stakeholders are positioned in a way to further 

implement climate action through incentivizing action (Guerry et al., 2015, Kumar et al, 2020). 

Although action cannot wait, there is still a strong need for continual refinement of frameworks 

and methodologies to responsibly downscale carbon management approaches while addressing 

barriers to implementation (Seddon et al, 2020b).  

 While the study of the global carbon cycle is not new, optimum mitigation and adaptation 

actions are only as good as the tools and information used to support such decision-making. In 

response, the number of tools aimed at assessing the fate of atmospheric CO2 has grown 

significantly across the past decade. The uncertainty of future forest statuses relies upon the 

adoption and integration of innovative data, tools, and models to inform policy and planning 

continually and iteratively (Novick et al, 2022a). Operationalizing forest carbon management 

requires cross-sector and trans-disciplinary collaborations (Kumar et al, 2020). The impetus is to 

act now to curb the worst effects of climate change. There is increasing importance of forest 
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management and policy in tackling climate change from a forest carbon perspective, focusing on 

the implementation and promotion of robust and interdisciplinary understandings of forests. 

1.1.2 Systems-based forest carbon budget 

Forest carbon budgets primarily consist of the storage and flows of carbon through a 

forest ecosystem driven by photosynthesis, biomass turnover, and decay processes. The rate of 

carbon uptake is determined by many factors including solar radiation, air temperature, 

atmospheric chemistry, the availability of water and nutrients, and various ecological processes 

influenced by disturbance, succession, and competition (Odum, 1969, Chapin et al, 2011, 

Stephenson et al, 2014, Curtis and Gough, 2018). The Intergovernmental Panel on Climate 

Change (IPCC) outlines five major pools of carbon: aboveground biomass, belowground 

biomass, aboveground dead organic matter (DOM), belowground DOM, and soil C. Carbon 

moves through the system through a variety of ecosystem processes including forest 

productivity, senescence, mortality, biomass turnover, and decay (Turner et al, 1995, Canham et 

al, 2024). Other anthropogenic actions such as deforestation or tree plantings are also major 

drivers to current forest C sink or source strength (Houghton 1995, Guo and Gifford, 2002, 

Thom et al, 2018).  

System-based approaches provide more holistic ways to evaluate and account for the 

monitoring and measuring the forest carbon budget (Nabuurs et al, 2007, Evans et al, 2012). 

There is a growing consensus that the role of carbon leaving the ecosystem via harvest and the 

storage of that carbon in long-lived wood products is essential to further understand potential 

contributions of forests for both mitigation and adaptation activities (Malmsheimer et al, 2008, 

Verkerk et al, 2020). Utilizing a system-based approach enables the assessment of 

interdependent systems and potential feedbacks between forest ecosystems and forest products, 



 

 7 

concurrently (Evans et al, 2012). Providing deeper insights into the trade-offs of specific forest 

management practices and linkages to other sectors (e.g., energy and construction) that are 

influential to regional and global carbon dynamics. 

1.1.3 Forests as nature-based climate solutions 

Nature-based climate solutions (NbCS) are concerted actions to manage ecosystems to 

increase C sequestration or reduce GHG emissions (Griscom et al, 2017, Seddon et al, 2020a) 

including the moving of systems beyond their original structure, function, or composition (Buma 

et al, 2024). NbCS encompass a wide range of activities across different types of ecosystems and 

agricultural systems grounded in sound scientific principles including conservation, restoration, 

and improved land management such that healthy and resilient natural and working lands 

provide a myriad of societal benefits (Watson et al, 2018, Ontl et al, 2020, Buma et al, 2024). 

However, critical misunderstandings about what constitute NbCS, broader nature-based solutions 

(NbS, Nesshover et al, 2017), and the related natural climate solutions (NCS) – a nearly identical 

term to NbCS but narrower in focus – have garnered considerable controversy and confusion 

(Ellis et al, 2024). While all these concepts are built upon a long history of sound ecosystem 

principles from different disciplines, there has been a significant focus specifically on mitigation 

activities (Nolan et al, 2021) and at times, can be exclusionary of other forest co-benefits 

(Cohen-Shacham et al, 2016). 

 Recent criticisms of potential pitfalls of forest specific NbCS such as greenwashing 

(Nygaard, 2023) or over crediting of carbon offsets (Badgley et al, 2021), has led to a call-to-

action to improve the climate outcomes through using the best available science (Anderson-

Teixeria and Belair, 2021) and improved methodologies (Novick et al, 2022a). A recent study, 

Ellis et al, (2024), outlines five foundational principles for the narrower term, natural climate 
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solutions, including nature-based, sustainable, climate-additional, measurable, and equitable. 

However, recent observed shifts in forested ecosystems and new novel growing conditions 

(McDowell et al, 2022, Yoshikawa et al, 2023, Liu et al, 2024, Trew et al, 2024), increases the 

need to further improve methods to not only measure and monitor current trends (Novick et al, 

2022b), but also forecast future potential states (De Frenne et al, 2021). 

 Going-forward, there is a strong need to test emerging trends in forest dynamics 

(McDowell et al, 2020) as well as improve the ability to simulate forward looking forest 

dynamics. Rapidly changing ecosystems have strong implications for future forest function and 

resilience (Hobbs et al, 2009) where in part, proper management and stewardship may assist in 

guiding forest ecosystems away from catastrophic collapse (Sato and Lindenmayer, 2017). The 

sustainable management of working forestlands will only increase in importance as widespread 

mismatches are observed between vegetative communities and climate (Song et al, 2021, Hill et 

al, 2023). Ultimately, revisions to how humans view conservation and restoration way from more 

traditional approaches or historical forest assemblages may be required (Hobbs et al, 2009, 

Backstrom et al, 2018, Messier et al, 2019) exacerbating the urgency of enacting climate action 

now (van Kooten et al, 2021). 

1.2 Overview of forest carbon models 

Models, simplified representations of reality that focus on key factors and relationships of 

a phenomenon, are useful tools that provide a structured way to investigate and quantify forest 

carbon dynamics including the influence of various biophysical, socioeconomic, and/or 

geographic factors that drive historical and future changes in carbon stocks (Lambin et al, 2001, 

Rindfuss et al, 2008, Anderson-Teixeira et al, 2021). However, models have also been developed 

specifically to inform decision-making across scales from individual smallholder landowners to 
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industrial actors to local or national governments. Increasingly there is a growing need to not 

only monitor, report, and verify historical changes to carbon stocks in forests but quantify future 

potential contributions of forest NbCS to mitigate climate change (Prasad et al, 2024). This need 

is exacerbated by critical mismatch between the most common scales at which forest carbon data 

is collected and the ecosystem to landscape scale at which many relevant planning and policy 

decisions are made (Novick et al, 2022a). 

 Forest carbon models, which are a subset of broader ecosystem models, are models that 

describe the interactions between at least two components of forest carbon cycle but oftentimes 

incorporate other factors that influence forest carbon (Daigneault et al, 2022). The variety of 

types of models and the temporal and spatial scales at which they capture forest carbon dynamics 

can be overwhelming. However, the increasing number of models should be considered a 

strength such that the novel nature in which a particular model might inform forest policy and 

planning is an imperative to increase the predictive power across broad areas helping to reduce 

challenges with the scale at which data is collected and analyzed (Bugmann and Seidl, 2022). 

Models can be categorized in a variety of ways such as methodological approaches to estimate or 

project carbon stock and stock changes. Briefly outlined below, are some major differences 

between empirical, process-based, and hybrid models which all can be used to varying degrees to 

understand the current status of or future impacts to forest carbon dynamics from a specific 

management or policy actions. 

 Process-based ecosystem models, designed to represent underlying biogeochemical 

processes, lend certain strengths to modeling the forest C cycle such as preventing unrealistic 

outcomes through model and variable constraint or explicit coupling of various ecosystem 

processes but remain sensitive to bias inherent to model structure (Renard et al., 2010). Further, 
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these models are built on explicitly stated assumptions about how a system works providing 

transparency grounded in ecological theory making for easier interpretation of results 

(Cuddington et al, 2013). Process-based models generally use “top-down” approaches 

(atmosphere-based) to estimate forest carbon budgets. These models oftentimes are built on 

eddy-covariance flux observations (Medlyn et al, 2005) and atmospheric inversion models 

(Bousquet et al, 1999). These approaches rely on direct measurements of spatial and temporal 

patterns of CO2 and estimate productivity through modeling physiological processes such as 

photosynthesis and autotrophic respiration (Jung et al, 2009, Xiao et al, 2012).  

 Process-based models often lack direct methods and estimates of model uncertainty, 

sensitivity, and validation whereas empirical models inherently provide error and uncertainty 

metrics (Adams et al., 2013; Bonan and Doney, 2018). Generally, forest C models that include 

process-based elements generate uncertainty and biases from i) data uncertainty from 

methodologies, field measurement errors, or instrument imprecisions; ii) sensitivity to initial 

conditions; iii) lack of understanding of underlying processes leading to poor representation in 

model structure; iv) inaccurate assumptions about parameter estimates and distributions; v) 

unknown or poorly constrained drivers; and vi) amplitude of natural variation associated with 

biological systems (Larocque et al., 2008). However, the lack of defined methodologies to 

account for uncertainty creates challenges that should be considered (Geary et al., 2020). 

 Empirical models derive results from extrapolating correlative relationships between 

observed variables. Forest inventorying models and carbon budget models, two examples of 

empirical forest C models, can directly scale-up carbon estimates by utilizing spatio-temporal 

interpolation (Kurz et al., 2013; McGlynn et al., 2022). These direct measurements frequently 

serve as the basis for evaluating or parameterizing process-based models and assessing trends in 



 

 11 

ecosystem production. One advantage of biometric measurements of ecosystem C pools is the 

availability and distribution of forest inventory plots and data (Tinkham et al., 2018). However, 

challenges remain with remeasurement periods, forecasting predictions, and addressing 

uncertainties and model validity (McGlynn et al., 2022). 

 Hybrid methods that combine process-based elements and empirical elements such as 

“gain-loss” approaches use field-based measurements to estimate inventories, forest productivity, 

and disturbance data and process-based elements to simulate dynamics into the future (Kurz et 

al., 2009). These approaches estimate forest carbon stocks and fluxes by tracking total ecosystem 

carbon (or “carbon budget”) and explicitly tracking the fluxes or transfers of carbon between 

pools over time using process-based equations for biomass turnover and decay. These types of 

approaches use age related metrics of forest growth, volume-to-biomass expansion factors to 

convert stem wood in carbon pools, and process-based elements to simulate biomass turnover, 

decay, and heterotrophic respiration.  

1.2.1 Examples of Forest Carbon Accounting Models 

Daigneault et al, (2022) provides a qualitative analysis and summary of relevant forest 

carbon models and frameworks. Additionally, the report creates a framework for model selection 

criteria to aid in assessing the accessibility, usability, spatial and temporal extents and utility of 

scenario predictions to inform future planning and action. The remainder of this section will 

briefly highlight the diversity, application, and limitation of some key models that been 

employed in the eastern US including the Forest Vegetation Simulator (FVS), LANDIS-II, the 

Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), and the ecosystem 

demography model (ED v3.0) to understand past and present forest carbon dynamics. 
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 FVS (Anderson et al, 2020) is a widely used tool developed and maintained by the USDA 

Forest Service that simulates forest stand-level models to assess how forest vegetation changes 

from management, disturbances, or succession. The model uses annual timesteps and forest 

inventory data from the USDA Forest Service Forest Inventory and Analysis Database (FIADB) 

to model growth and yield at the individual tree to stand-level. A sub-carbon extension was 

created to explicitly track the effects of user-defined dynamics on forest carbon and explore how 

current or alternative management actions could affect carbon by projecting tree-level growth 

and mortality of the provided inventory including site-level attributes. The model includes all 5 

IPCC carbon pools plus harvested wood products and generally, provides moderate high utility 

(Daigneault et al, 2022) in exploring management and policy questions related to forest carbon. 

However, spatio-temporal statistics are required to extrapolate results across larger spatial scales.  

 LANDIS-II (Scheller et al, 2007) is a forest landscape model designed to model growth, 

disturbance, and succession at larger landscapes. Entirely open-source, the model has numerous 

extensions used to examine processes such as seed dispersal, carbon dynamics, forest 

management, and climate change effects. The model is quite flexible with regards to both 

temporal and spatial resolutions. The biomass extension can model aboveground mortality, net 

primary productivity, and the decay of dead organic matter using static variables designated by 

species and ecoregion. Currently, the biomass extension only simulates aboveground dynamics 

and HWP. LANDIS-II has high utility for assessing the impacts of forest management and policy 

on forest carbon dynamics (Daigneault et al, 2022). 

 The CBM-CFS3 (Kurz et al, 2013) is an empirically derived, processed-based model that 

simulates stand and landscape-level C dynamics of above- and belowground biomass, litter, 

deadwood, and mineral soils. The model uses a detailed forest inventory and empirical growth-
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yield relationships to simulate productivity with process-based equations to simulate biomass 

turnover and decay processes. The CBM-CFS3 serves as a core component of the Canadian 

national forest carbon monitoring accounting, and reporting system developed within a spatially 

referenced tier 3 approach based on the IPCC gain-loss methods. The model incorporates user 

defined activity data to capture human activities and natural disturbances on annual timesteps. 

The model has had broad applicability within North America and elsewhere globally with high 

utility (Daigneault et al, 2022) for assessing the impacts of management and policy on forest 

carbon with a separate associated framework that is used to track the fate of biomass transferred 

through harvest and land-use change (LUC) to the forest products sector. 

 ED v3.0 (Ma et al, 2022) is a cohort-level, dynamic vegetation model designed to run as 

a stand-alone land surface model that couples with RAMS, the Regional Atmospheric Modeling 

System, providing strengths to modeling future climate states and biophysical feedbacks between 

the atmosphere and biosphere. ED v3.0 provides a temporal resolution on hour timescales and a 

spatial resolution of 90m pixels where the land surface is separated into spatially-contiguous tiles 

of polygons designed to match the regional atmospheric grid cells of RAMS. ED differs from 

other terrestrial models by scaling up physiological processes through individual-based 

vegetation dynamics where cohorts of plants compete mechanistically under varying conditions 

for light, water, and nutrients. The model simultaneously applies natural disturbances, land use, 

and regeneration of lands from disturbance only for aboveground biomass. The utility of ED for 

assessing forest management and policies is moderate as the model does not track all carbon 

pools, timber harvest, or HWP. 
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1.2.2 Decision-support applications and limitations of models 

Decision-support applications of models for policy and management are not new 

(Bagstad et al, 2013, Geary et al, 2020). However, the tools developed for quantifying or 

evaluating forest benefits or trade-offs of forest carbon are oftentimes neither comprehensive nor 

systematic (Noble and Paveglio, 2020, Wong-Parodi et al, 2020) necessitating increased 

integration of these tools into holistic frameworks that better assist decision-making that 

accounts for differences among stakeholders and multi-dimensional aspects of management (Xu 

and Peng, 2022). Enhancing the practical applications of tools to assist in a decision-making 

process provides additional strengths to managing ecosystems under a changing climate (Watkiss 

et al, 2015, Zulian et al, 2018). Further, understanding the limitations and biases of models and 

their results provides added strength within applications (Fischer et al, 2016, Bonan and Doney, 

2018). 

 Ideally accounting for interactions, feedbacks, and other complex aspects of ecosystems 

is fundamental to develop appropriate management measures (Evans et al, 2017). When 

managing in the face of uncertain climate futures, forecast models or making predictions should 

be a key goal of a modeling exercise providing additional insights during future decision-making 

processes (Bode et al, 2017). Evaluating alternative management approaches or understanding 

the effect of specific policy-levers on ecosystem components is useful in identifying potential 

pathways forward to meet desired goals (Baker et al, 2016).  The impetus is for scientists, forest 

managers, and policymakers to make the most informed decisions now despite the challenges 

and social and ecological constraints highlighting the importance of the fundamental uncertainty 

of managing complex forest systems (Milner-Gulland and Shea, 2017). 



 

 15 

1.3 Overview of chapters 

The goal of this dissertation is to first address barriers and gaps to implementation of 

forest planning and management for climate change. Second, to develop a process to 

collaboratively engage with forest resource managers and decision-makers to identify priorities 

and quantify C impacts of those decisions through modeling alternate forest management and 

wood-use pathways in support of net-zero GHG emission targets. Third, advance methodologies 

to quantify model uncertainties and sensitivities to further the potential of forest carbon models 

and forecasting to inform policy and planning. This dissertation relies on mixed-methods 

research, forest inventory data, remotely-sensed metrics of land-use change and forest 

disturbance, and hybrid process-based models to potentially inform future forest management 

and planning. Finally, this dissertation summarizes both policy and management implications of 

the findings. 

 In Chapter 2 (Science-based communication and education needed to improve forest 

carbon science, policy, and management outcomes), this dissertation addresses science-practice 

gaps in forest carbon science, policy, and management by first, assessing gaps and barriers to 

further integrating forest carbon models and science into policy and planning and second, 

developing a framework to bridge the divide. This analysis developed a mixed-method study 

focusing on state forest agencies in the eastern US to assess “where do gaps persist?” and “what 

opportunities exist to improve forest carbon outcomes?” Utilizing survey and semi-structured 

interview devices, the results identified barriers to integrating forest carbon science more 

explicitly into policy and management. Drawing from both the focus groups and survey results, I 

developed a framework with three key areas to improve forest carbon outcomes. Together, this 
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research can enhance decision-making through both the identification of barriers and by 

providing a roadmap to emphasize forest climate action.  

 In Chapter 3 (Modeling climate-smart forest management and wood use for climate 

mitigation potential in Maryland and Pennsylvania), I helped lead a multi-institutional 

participatory research project where I worked directly with state regulators in the mid-Atlantic 

region of the US to: 1) identify priorities and issues for forest management; 2) develop a 

business-as-usual (BAU) simulation to forecast forest carbon and harvest wood product 

dynamics using the CBM-CFS3 modeling framework parameterized with USDA Forest Service 

FIADB and other remotely-sensed metrics of land-use change and forest disturbance; 3) identify 

and model a suite of climate-smart forest management practices and wood utilization scenarios 

to quantify contributions to net-zero GHG targets; and 4) develop outreach materials for 

managers and policymakers. This analysis can help future decision-making by providing robust 

quantification of potential alternative management and wood utilizations strategies in support of 

regional GHG targets. 

 In Chapter 4 (characterizing the sensitivity of carbon stocks and fluxes to disturbance 

variation in Maryland’s forests using the CBM-CFS3 modeling framework), I sought to develop 

and test methodologies to assess confidence intervals and sensitivities of the modeled results 

from chapter 3. This chapter applies a Monte Carlo simulation approach to estimate confidence 

intervals and assess the contribution of disturbance to key model results by introducing variation 

in the disturbance input data. Further, I use a random forest model to assess the sensitivity of the 

results to the individual contribution of carbon fluxes and disturbance. Lastly, I validate the 

model results by comparing them to other published estimates of forest carbon fluxes. By doing 
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so, I further understanding of how forest carbon models can inform policy and planning and 

assessing trade-offs between methodological approaches.  

 Chapter 5 (Outcomes and implications for forest policy and planning) summarizes the 

overarching findings of this dissertation. I explore my results as well as lessons learned 

throughout the participatory approach to modeling forest carbon dynamics in light of 

management and policy implications for climate change mitigation and adaptation. I will address 

challenges and future directions of research to continue to inform both forest management and 

policy directly related to forest carbon. 
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CHAPTER 2 

SCIENCE-BASED COMMUNICATION AND EDUCATION NEEDED TO IMPROVE 

FOREST CARBON SCIENCE, POLICY, AND MANAGEMENT OUTCOMES 

2.1 Abstract 

Climate change is one of the most pressing issues facing humanity and forests are 

increasingly seen as a key pathway to mitigating and adapting to the climate crisis. Because 

forests stand to play a significant role in reaching net-zero emission targets, politicians and 

policymakers must act decisively to engineer a rapid paradigm shift that maintains forests’ 

resilience and adaptive capacity. While there has been significant investment and advancement 

in forest carbon science to inform policy and planning, there remains a persistent science-

practice gap to further integrate scientific information into forest carbon policy and management. 

Here, we use a survey, semi-structured interviews, and a review of relevant policy literature to 

assess the nature and extent of, as well as possibilities to bridge, the science-practice gap with 

regards to forest carbon science, management, and policy. Our results identified barriers to the 

science-practice gap and provide potential pathways to bridge the divide. We identified three key 

areas to improve forest carbon outcomes 1) improved data, tools, and models to assess trends and 

statuses of forests; 2) enhanced carbon science training among state forest practitioners and 

decision-makers; and 3) effective science-based communication for decision-makers and general 

audiences. Engagement with forestry stakeholders and iterative and participatory approaches, 

including targeted education and communication of complex scientific topics, can inform both 

policy and on-the-ground management. Overcoming such barriers to communication highlights 

important linkages between forest managers, policymakers, and scientists to address challenges 

of reaching a net-zero emission.  
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2.2 Introduction 

Global climate change poses an existential threat to ecosystems and society at large. 

Forests play a pivotal role in climate change through regulating the Earth’s carbon, hydrologic, 

and energy cycles (Bonan, 2008) while providing provisioning services such as fiber and food 

(Diaz et al, 2018). Forests are seen as a key pathway to combatting the climate crisis due to their 

potential for carbon sequestration, storage, and substitution benefits from wood products and 

bioenergy (Skog, 2008, Smith et al, 2014, Myllyviita et al, 2021, Petersson et al, 2022) and their 

roles regulating the hydrological cycle including substantial climate cooling benefit (Bonan, 

2008).  

 The impetus is for practitioners, scientists, and policymakers to act now to curb the worst 

effects of climate warming (Cox et al, 2000, Sitch et al, 2008, IPCC, 2014, Allen et al, 2015). 

Forests are not a panacea for climate change mitigation, with the maximum carbon contributions 

limited by tree size and age, forested area, and other aspects of forest dynamics (Clark et al, 

2014, Griscom et al, 2017, Anderson-Teixeira et al, 2019) and may contribute to global GHG 

emissions through maladaptation (Jandl et al, 2015, Gougherty et al, 2021). However, forests still 

provide crucial, low-cost mitigation and adaptation opportunities to meet net-zero emissions 

targets (Swanston et al, 2016, Fargione et al, 2018). Forests provide additional co-benefits 

including improved air and water quality, rural livelihood derivation, and poverty alleviation 

(Locatelli et al, 2008, Diaz et al, 2018, Ontl et al, 2018, Petersson et al, 2022). But to sustain the 

critical co-benefits of forests, the ongoing biodiversity crises must be addressed concurrently 

(Portner et al, 2023).   

 Long-term and short-term forest management objectives increasingly consider trade-offs 

between interdependent goals and co-benefits of carbon-specific management and other 
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traditional management goals, including timber production (Wollenberg et al, 2001, Carpenter et 

al, Hellegers et al, 2008, Hirsch et al, 2010). Understanding the priorities and perceptions of 

forest stakeholders is necessary to fully assess trade-offs and opportunities between management, 

policies, and other goals (Lawler et al, 2008, Williams and Isaac, 2013) to ultimately balance 

mitigation and adaptation goals through more integrated management approaches (Littell et al, 

2012). Figure 1 provides a complementary perspective of interactions between scientists, 

practitioners, and policymakers that engage in forest carbon science, policy, and management. 

However, significant gaps and barriers exist to further integrate forest carbon science into 

planning and policy (von Winterfeldt, 2013, Clifford et al, 2020). Identifying where gaps arise 

and addressing them allows for targeted efforts to increase the capacity of managers and 

policymakers to properly assess, evaluate, and communicate climate management and policy 

implications to all stakeholders resulting in more effective outcomes addressing complex climate 

issues (Janowiak et al, 2014). This emphasizes the need to downscale policy and management 

decision making from the state or sub-regional level to address localized or site-specific climate 

change threats and vulnerabilities to forests (Halofsky et al, 2018). 
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Figure 1. Complementary perspective on the interactions between scientists – practitioners – 
policymakers to address the climate crisis through forest carbon science, management, and 
policy 
 

This persistent gap between science production, forest management activities, and policy 

creation is well documented (Kirchhoff et al, 2013), oftentimes referred to as a “climate 

information usability gap” (Lemos et al, 2012), “knowledge-practice gap” (von Winterfeldt, 

2013), “knowledge-action boundary” (Cook et al, 2013), or “science-practice gap” (Cooper and 

Macfarlane, 2023). Previous studies show a variety of barriers to implement adaptation and 

mitigation actions in forest management and planning, including knowledge deficits (Nelson et 

al, 2016, Dietze et al, 2018), landowner and manager perceptions (Sousa-Silva et al, 2018), lack 

of mandates or coordination between policy and adaptation and mitigation management activities 

(Keenan, 2015), limited resources for adaptation and mitigation activities (Williams and Nelson, 

2017), institutional barriers (Bierbaum et al, 2013), uncertainty within policy mechanisms 

(Olander et al, 2018), and inadequate information on specific tactics or approaches to address 
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vulnerabilities (Williamson et al, 2012). Importantly, climate change impacts on forests are 

oftentimes site-specific or local in nature requiring more place-based or localized information to 

inform subsequent science-practices gaps and leverage local expertise to better contextualize the 

often fuzzy science-practice boundaries that vary across disciplines, institutions, and decision-

makers (Bertuol-Garcia et al, 2018). 

 This paper seeks to do two things: first, measure the scope and scale of the science-

practice gap informed by sub-regional and localized considerations, and second, propose 

potential paths forward to inform mitigation efforts through improved science communication 

and education. We utilized interviews, survey results, a review of relevant policy documents, and 

our own experiences conducting forest carbon outreach efforts to identify barriers and gaps with 

state agency managers and regulators within the eastern United States to more clearly understand 

how forest carbon science can influence on-the-ground planning and management action as well 

as inform policy creation and enaction at the state-level.  

2.2.1  The challenge of merging science with policy and practice 

The dominant role that forests have in determining the fate of atmospheric CO2 has been 

well studied, resulting in the development of diverse methodologies for monitoring and 

quantifying ecosystem dynamics (Novick et al, 2022a) as well as forecasting carbon dynamics 

(Clark et al, 2001; Luo et al, 2011). Approaches should assess the efficacy of management and 

policy as well as inform future forest planning and the influence of socioeconomic systems on 

forest carbon dynamics (Dietze et al, 2018; Garcia-Gonzalo and Borges, 2019). The most 

common method to assess forest carbon—forest inventorying—can directly scale-up carbon 

estimates with spatial and temporal interpolation (Kurz et al, 2013, Shaw et al, 2014). While this 

serves as a basis for most fundamental forest carbon research, inventory methods may not 
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capture sufficient historical and ecological information to address fundamental questions such as 

“how are ecosystems going to change?” and “how does society affect those trajectories?” (Dietze 

et al, 2018).  

 Forest policy and management decisions focused on climate goals require both accurate 

knowledge of current carbon stocks and future changes in these stocks; nevertheless, state-of-

the-art carbon modeling tools addressing these needs have yet to be widely adopted in the US 

(Lamb et al, 2021, Weiner et al, 2021) instead, oftentimes relying on decades-old empirical 

models (Novick et al, 2024). Additional complexities arise in decision-making around the proper 

selection of methodologies to inform the desired question or outcomes (Daigneault et al, 2022). 

For example, choosing between which spatial scale at which to forecast carbon dynamics such as 

the stand-level, landscape-scale, or earth system. Despite recent emphasis at the federal level to 

improve carbon data and tools (GHG IWG, 2023, Westfall et al, 2024), substantial deviations 

remain between the scientific literature and on-the-ground practice implementation (Haya et al, 

2023). This problem is compounded with additional methodological trade-offs between 

accessibility (i.e., financial accessibility and the ease at which data can be obtained) and the 

robustness in which complex ecosystem dynamics (i.e., temporal resolution, spatial scales, and 

biophysical processes modeled) are captured (Novick et al, 2022a).  

 Natural resource policies strongly influence the role forests play in mitigating climate 

change (Howells et al, 2013) through incentivizing better forest management and 

disincentivizing practices that may harm future forest resiliency (Nabuurs et al, 2017). Ideally, 

scientific data and tools, such as quantitative ecological forecasting (Luo et al, 2011), would 

inform management activities and policies to optimize decision-making (Keenan et al, 2019). In 

turn, management and policies would imbue future research trends (Lemos et al, 2012). 
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However, significant communication gaps remain between scientific information, creation of 

climate policy mechanisms, and implementation of climate-focused management activities with 

considerations for the localized effects and vulnerabilities of climate change (von Winterfeldt, 

2013, Bertuol-Garcia et al, 2018, Novick et al, 2022a, Cooper and Macfarlane, 2023). Identifying 

where and how to address communication and educational gaps arise within the scientist-

practitioner-policymaker paradigm (Figure 1) remains of key importance with a specific focus 

on how managers can address regional- to local- challenges.  

 Despite these barriers, states and local governments have increasingly been promoting 

legislation, executive orders, or regulatory changes to proactively address climate change and 

reduce GHG emissions through forest climate action (Canadell and Raupach, 2008, Grassi et al, 

2017). Subnational and localized actors, such as state agency natural resource managers and state 

or local policymakers, are uniquely suited to bridge any knowledge-practice gaps and do so in 

potentially a more impactful way than national level policies and mechanisms (Lemos and 

Morehouse 2005) through their strong influence on publicly managed forests, relationships with 

landowners, and direct interactions with scientists or other knowledge producers (Wellstead et al, 

2003, Lowrey et al, 2009, Halofsky et al, 2018).  

2.2.2  Improving forest carbon science, management, and policy outcomes 

Science-policy models that serve to utilize science for society through policy are not new 

(Kirchoff et al, 2013, Wall et al, 2017). However, forest carbon policies provide emerging 

opportunities where low-cost climate mitigation can be achieved (Griscom et al, 2017) through 

active dialogues and the exchange of information with policymakers (Djenontin and Meadow, 

2018). Both legislative and executive branches can inform future planning through laws and 

executive actions, establishing carbon task forces, or other value setting documents along with 
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allocation of funds to assess current state-wide statuses and trends in forest carbon. In forest 

management, these challenges involve applying scientific principles in ecology (e.g., species 

interactions, growth, mortality) and climate (e.g., forest-climate interactions and feedbacks) to 

forestry practices (Cooper and Macfarlane, 2023). This dynamic is also crucial in policy spaces, 

where understanding actors' perceptions, adoption feasibility, and outcome assessments is 

necessary (Keenan et al, 2019, Jewell and Cherp, 2023). 

How science influences management and policies is inherently political and has high 

stakes: in the case that important science is ignored or incorporated in an incomplete or incorrect 

manner, consequences can include climate maladaptation, which refers to cases when 

management fails to identify or address vulnerabilities to climate change (Pannell and Gibson, 

2015, Sun and Yang, 2016, Hill et al, 2023). As the science of climate adaptation and mitigation 

continuously advances to address new climate and environmental conditions, education and 

communication must continue apace and serve as a conduit for the cross-communication 

between scientists and managers that produces management actionable science; ultimately this is 

critical for effective adaptation and mitigation (Meadow et al, 2015, Howarth and Robinson, 

2024). Figure 2 provides a logical diagram for how effective change to produce robust climate 

solutions by advancing knowledge production, management, and policy together. 
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Figure 2. Logical framework diagram outlining a five-step process to inform forest carbon 
outcomes by identifying gaps and barriers and then address those gaps through education and 
science-based communication 
 
 Science-based communication and education training ideally empowers scientists and 

resource professionals to improve understanding and ability to make informed decisions (Buine 

de Bruin and Bostrom, 2013) and engage in bidirectional dialogues (Roux et al, 2006). The 

increased engagement of researchers with scientific education in the management and policy 

communities, enhances the communications management and policy needs, allowing for studies 

to be designed and conducted addressing these needs through knowledge co-production (Littell e 
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advice on managing their land for carbon climate benefits or participation in carbon payment 

programs (Brand et al, 2020). Communication alone is not enough to craft policy; here, it is 

critical that scientists and managers work together with policymakers to develop specific policies 
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reflect recent science, particularly in light of rapidly occurring climate changes (Cooper and 

MacFarlane, 2023, Frohlich et al, 2018, Abram et al, 2021). 

 Therefore, the goal of effective science-based communication should focus on enabling 

capacity building through the development of appropriate skills, allowing practitioners to work 

effectively across sectors and disciplines to combat climate change through improved 

management and policy outcomes (Cvitanovic et al, 2015). Addressing formative changes in 

policy requires knowledge transfer from researchers and practitioners including landowners. 

Research informed by management further enhances capacity to respond to climate change 

through providing practical knowledge (Fazey et al, 2016). While significant challenges remain 

in the design and implementation of co-produced science, improving the efficacy of relevant 

parties to transfer information through improved communication helps guide decision-makers 

(Djenontin and Meadow, 2018).  

2.3 Methods 

2.3.1 Assessing barriers to utilizing forest carbon science and models for planning and 

management in the Eastern US 

To highlight current gaps and opportunities to address forest carbon science-practice 

gaps, we conducted an analysis of state-level experiences, barriers, and motivations regarding the 

use of forest carbon science, data, and tools to inform policy and management within the eastern 

region of the USDA Forest Service (USFS). The eastern region is comprised of 20 US states 

with varying forest priorities, forest product industries, and policy initiatives providing a wealth 

of differential experiences with how scientists, practitioners, and policymakers interact within 

forest carbon science, policy, and management. Currently, forests in the eastern region largely 

drive forest carbon sinks nationally (Hogan et al, 2024), provide substantial economic 
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contributions (White et al, 2010), and are comprised of a mosaic of natural and working across 

private (both family forest and industrial), state, tribal, and federal ownerships (Markowski-

Lindsay et al, 2024). Furthermore, eastern forests represent a diversity of forest communities and 

subsequent differences in how climate change will affect system drivers, stressors, and adaptive 

capacity (Brandt et al, 2017). This study built off previous experience developing different types 

of education and capacity building materials for forest carbon science, management, and policy 

(FCCP, 2024a, 2024b) as well as conducting pathway analyses to assess carbon trade-offs with 

forest management and wood utilization strategies in the mid-Atlantic region of the US and 

elsewhere (Dugan et al, 2018, Papa et al, 2023).  

2.3.2 Data collection and analysis  

We developed a survey (n = 21, response rate 13%) and semi-structured interview (n = 

30) instruments, to target state-level forest agency employees as well as experts from 

government, academia, and non-governmental organizations (NGO) within the eastern region. 

The survey design was not random such that participants were specifically selected for their 

expertise in their state’s forest planning, inventorying, and modeling efforts. The total number of 

professionals working in forests carbon management and planning at state agencies is not large 

despite recent growth. Interviewees were also selected for their expertise in forest carbon 

science, management, and policy. Both the surveys and interview protocols were developed in 

direct coordination with USDA forest service researchers along with subsequent detailed review 

of key publicly available climate-focused policy documents and previous expert inputs. The 

instruments aimed to explore current activities and assess technical capacity at the “team” or 

“division” level to understand how forest carbon data and tools are used in policy and 

management planning along with assessing motivations for forest climate action. We sought to 
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identify how state agencies were currently utilizing forest carbon data and tools to address 

climate adaptation and mitigation practices, state climate goals, and internal policies related to 

forest carbon and climate change. Additionally, we sought to identify current initiatives and 

characterize motivations to inform why communication gaps persist. Lastly, we quantified 

interest towards implementing specific policies in forest carbon management to further highlight 

the complexities driving science-practice, education, and communication gaps. We used 

descriptive statistics to summarize the results from the surveys and a deductive approach to 

assess themes and trends within the interviews. Survey and interview protocols along with longer 

descriptions of respondents can be found in Appendix A and Appendix B. 

2.4 Results 

2.4.1 Knowledge gaps and barriers 

We found that gaps in five key areas of expertise created barriers to integrating forest 

carbon science into policy and management. Those five areas are: 1) forest carbon science: 

inventorying and carbon estimation, 2) forest management behavior, 3) harvested wood products 

(HWPs), wood utilization, and carbon storage, 4) forecasting: forest carbon simulations and 

future pathway assessments, and 5) communication of results to inform public and private 

decision-making. We broadly found alignment and agreement across the interviews and surveys 

without a lot of dispersion across professionals and their roles in being able to identify key topics 

and gaps. Despite differences across the state contexts such as differences in public lands and 

statewide policies on forests and climate, respondents articulating the same higher-level gaps and 

barriers. However, the ways gaps and barriers were characterized were largely informed by 

localized considerations for climate change threats and vulnerabilities. 
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 We found that most respondents reported high levels of team familiarity with traditional 

forest inventory measurements (Figure 3, 79% reported expert team knowledge). However, 

knowledge diverged when considering carbon estimation and integrating remote sensing or other 

ancillary data into assessments (Figure 3, 74% reported limited or moderate team knowledge). 

We found a lack of information on current forest management practices, especially on municipal, 

federal, and tribal forestlands (Figure 3). Notable barriers existed in understanding the role 

HWPs and wood utilization play in carbon storage (60% reported limited or no team knowledge 

in communicating these topics), especially regarding information about product end-uses, 

product half-lives, product retirement, biomass derived energy, substitution effects, and leakage 

which are all critical components of HWP carbon analyses which were strongly echoed in the 

interviews.  

 We found little technical capacity (52.5% reported limited or no team knowledge) to 

comprehensively analyze sector-wide GHG emission (including both forests and HWPs) despite 

increasing needs and interest (75% reported strong interest in learning more about forest carbon 

datasets and source, 45% reported strong interest in learning more about best practices, and 65% 

reported strong interested in learning more about life-cycle analyses). Interview responses 

strongly expressed that readiness and robustness of analyses increased with direct collaboration 

and support from academia and outside experts. We identified needs for more robust resources to 

assist in the identification of appropriate methodologies to account and forecast carbon (85% 

reported limited or no team knowledge), including the assessment of trade-offs between 

approaches (Figure 3). We generally found low knowledge, or comfort, communicating the links 

between forest carbon and related environment and policy dimensions (50% reported limited or 

no team knowledge) to all relevant stakeholders (Figure 4). Interviews reinforced assessing 
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potential management options, informed by scientific expertise and data, including carbon 

estimation and projections, need to be considered to optimize decision-making and balance 

trade-offs. 

Our results suggest addressing critical gaps and communications needs require the use of 

scientific information (Figure 4), to provide insights and clarify decision-support applications. 

Survey results point to a strong knowledge transfer need within agencies (50% reported strong 

interest in learning about other state’s approaches, and 55% reported strong interest in learning 

about current policies within their own state) to support their role in effectively communicating 

with landowners and policymakers (Figure 4). Whereas interviews largely provided additional 

clarity on specific situations in which the gaps manifest. Two areas of particular relevance were 

the communication of potential climate benefits of HWPs (65% reported strong interest in 

learning more about these topics) and the role of prescribed fire and cuttings for adaptive 

management which came through during interviews. 
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Figure 3. (A) Reported team knowledge on various forest inventory topics including i) forest 
plot designs and how to establish forest plot; ii) plot placement and spatial randomization of 
inventory plots; iii) determining appropriate inventory methods and sampling designs; iv) 
identifying forest characteristics to be measured and why; v) scaling plot and subplot level 
measurements to either the stand, landscape, or regional level; vi) calculating forest biomass, 
carbon, basal area, or volume using plot measurements; vii) mapping forest biomass, basal area, 
or volume estimates and uncertainty using remote sensing; (B) state silviculture methods and 
activities by diverse ownership types throughout the state; (C) dimension of forest carbon 
science including i) forest carbon cycling and dynamics; ii) forest carbon or biomass stock and 
pools; iii) forest carbon fluxes and gas exchange; iv) forest carbon and biomass measurements 
and accounting; (D) forest carbon accounting and modeling topics including i) knowledge about 
what datasets and sources exist that can be used in forest carbon accounting; ii) how to estimate 
forest carbon from plot-level measurements; iii) how to scale plot-level measurements to the 
landscape or regional level; iv) how to use remote-sensing data to map or calculate forest carbon; 
v) ability to process and interpret primary results and data outputs from carbon assessments; vi) 
IPCC guidance and best practices regarding carbon accounting and monitoring with the forest 
sector; vii) how to link carbon modeling with economic analysis and modeling; viii) other states’ 
approaches to carbon accounting and modeling; ix) which forest carbon modeling frameworks 
would best suit state or agency goals and needs. See survey questions 5, 11, 18, and 20 in 
Appendix A for survey language and response categories 
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Figure 4. (A) Reported team awareness of policy linkages and comfort communicating forest 
carbon science and results with policymakers include i) existing state or sub-state policies and 
programs that incentivize or discourage particular forest management practices (e.g., 
incentivizing harvest, incentivizing delayed harvest) within your state; ii) communicating links 
between carbon assessment and modeling results and policy for policymakers; and iii) state-
based policies, programs, and levers in use in other states or countries. (B) reported team comfort 
communication linkages between forest carbon and related environmental and policy topics 
including: i) forest carbon and climate; ii) forest carbon and/or energy policies; iii) links between 
short- and long-term carbon cycles add their importance in climate mitigation; iv) forest carbon 
assessments and modeling results across spatial scales including smaller spatial extents (i.e., 
parcel or county) to larger spatial extents (i.e., state, region, or subregion); v) harvested wood 
products storage, fossil fuel substitution, and carbon leakage; vi) forest carbon assessments and 
modeling results in relation to other working lands (agriculture) assessments and modeling 
results and policies); vii) links between forest carbon assessments and modeling results with  
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Figure 4. (cont’d)  
other non-forested ecosystems. (C) reported interest in learning more including: i) datasets and 
sources that can be used in forest carbon accounting; ii) IPCC guidance and best practices 
regarding carbon accounting and monitoring; iii) modeling carbon in harvest wood products; iv) 
life-cycle assessments including substitution and leakage concepts; v) links between carbon and 
economic modeling; vi) Existing policies that impact forest management practices; vii) potential 
new policies or programs for forest management; viii) how to communicate linkages between 
carbon modeling results and policy. See survey questions 20 & 21 in Appendix A for survey 
language and response categories 
 

 
 
2.4.2 Regional forest carbon initiatives, motivations, and policy interest 

Understanding the priorities and motivations of why forestry stakeholders undertake 

specific initiatives or allocate funding can be an important step to addressing potential barriers 

and opportunities. Table 1 highlights forest carbon accounting and modeling and capacity 

building initiatives currently undertaken in the Eastern region identified during interviews and 

reviews of publicly available documents. These examples provide insights into motivations and 

initiatives which may help us understand and circumvent barriers preventing integration of 

scientific knowledge and forest policy and management planning. Interviews provided additional 

insights that factors that vary from place to place such as the role and size of the forest products 

sector, voter concern, specific climate change impacts such as sea-level rise or wildfire also play 
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an important role in understanding motivation towards forest climate action. Highlighting the 

need for flexible and locally informed efforts to bridge communication or education gaps that are 

effective in the context of individual states.  

Table 1. Examples of key forest carbon accounting, modeling, capacity building initiatives and 
educational trainings undertaken by states in the USDA forest service eastern region. See 
Appendix B for a complete list of examples identified in review of relevant literature 
 Project Overview Funding and Motivation 
State Examples 
Maine Maine has assessed forest carbon mitigation 

potential using forest inventory and analysis 
(FIA) data, remote sensing, Forest Vegetation 
Simulator (FVS), and the LANDIS-II forest 
landscape model. Results published in Saffeir et 
al, (2021). 
 

Funded through the Governor’s Forest 
Carbon Task Force established by 
Executive Order on Jan 13, 2021 
charged with developing incentives to 
encourage forestland management 
practices that increase carbon storage 
while maintaining harvest levels. 

Maryland and 
Pennsylvania  

These states conducted a project to assess 
alternate GHG pathways in the forestry and 
forest products sectors using the CBM-CFS3 
modeling framework, parameterized by FIA data 
and other remotely sensed metrics of disturbance 
and land-use change. Includes forest product 
sector analyzes a subsequent process-based 
model to track harvested wood product (HWP) 
carbon dynamics. Results are published in Papa 
et al, (2023).  
 
-- 
Includes subsequent economic trade-off analysis 
to assess the viability of voluntary forest carbon 
offsets by assessing the sensitivity of additional 
carbon benefits across a range of carbon prices. 
Results in Pokharel et al, (2024a; 2024b) 

Funded through the United States 
Climate Alliance (USCA) and carried 
out by a partnership between American 
Forests, Michigan State University 
Forest Carbon and Climate Program, 
and Northern Institute of Applied 
Climate Science (NIACS). The goal is 
to continually build capacity within 
state policymaking to understand the 
role of forest management and policy 
under climate change and assess 
implications for forest mitigation 
activities. 
 
 
 

Regional Example  
Securing 
Northeast 
Forest Carbon 
Program 

Cooperative effort of the State Foresters of 
Connecticut, Maines, Massachusetts, New 
Hampshire, New York, Rhode Island, and 
Vermont focused on securing private forest 
carbon on working lands through targeted 
trainings and through the sales of voluntary and 
compliance markets, conservation easements, 
and management practices.  

Funded through the USDA Forest 
Service’s Landscape Scale Restoration 
grant program with a goal to increase 
capacity of consulting foresters and 
landowners to increase carbon benefits 
on working forestlands through 
voluntary and compliance markets, 
management practices, and 
conservation easements. 

 
 Assessing the interest and feasibility of specific forest carbon policies or programs 

provides additional insights into where science-practice gaps may occur. Table 2 provides our 

survey findings on interest and disinterest of specific policy assessments or implementation 
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related to forest carbon and the forest sector highlighting important variation across states and 

complications with state needs and interests. We found strong interest in keeping forests as 

forests, either through avoiding permanent forest loss or through reforestation and afforestation 

practices. Results show broad interest in carbon offsets on both public and private lands, 

increasing the intensity of management of adaptation, and support for not disrupting timber 

supplies. We found that perceptions were broadly disinterested or mixed for regulatory 

frameworks such as carbon taxes and cap and trade programs in addition to reducing or delaying 

harvest. Results suggest the need for stronger emphasis on both science and policy towards forest 

conservation and the efficacy of carbon offset mechanisms. 

Table 2. Respondent’s perceived agency interest in assessing or implementing various policies 
or programs at the state-level (% of respondents). See survey question 27 in Appendix A for 
survey wording and response categories 

 
 
2.5 Discussion 

2.5.1 Closing gaps and ways forward: how education and communication can better inform 

climate change mitigation outcomes 

In the past decade, there has been considerable growth in carbon science, policy, and 

management. To meet current and future demands, there is a need for more trained professionals 

with proper communication tools (Wynes and Nicholas, 2017). By first assessing barriers and 
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gaps, and then identifying regional motivations and policy interests, novel strategies to enhance 

decision-making can be framed to further translate science into action. Drawing from both the 

results and expertise in forest carbon education and outreach, we propose three areas to reduce 

gaps and barriers by advancing scientific methods, accessible and effective tailored scientific 

training, and science-based communication of complex forest carbon science. 

2.5.1.1 Improved data, tools, and models 

Effective policies and management strategies necessitate robust and accurate science 

production (Fahey et al, 2009, Cook et al, 2013). Carbon accounting serves as a basis for 

understanding the role of forests in GHG emissions reductions. However, there is a need for 

refined data and tools, specifically fine scale heterogeneous data and more accessible tools, to 

improve not just general needs but inform site-specific prescriptions of management and needs 

(Novick et al, 2022a). Increased information about management activities on privately managed 

lands is critical to, first, reveal the consequences of current policy across landscapes and, second, 

to craft effective policy (Peterson St-Laurent et al, 2021, Poudel et al, 2024). The task of 

downscaling broader recommendations and guidance into specific management tactics is 

difficult, but the streamlining of tools and models that continually incorporate information and 

data in real time will continue to improve decision-making (Klug and Kmoch et al, 2015).  

 At present, the amount of forest land managed with cutting edge and continually updated 

forest management models like forest vegetation simulator (FVS, Dixon et al, 2002), LANDIS-II 

(Scheller et al, 2007), CBM-CFS3 (Kurz et al, 2009, Kull et al, 2019), and Ecosystem 

Demography model (ED v3.0, Ma et al, 2022) remains modest (Lamb et al, 2021, Daigneault et 

al, 2022). A deeper understanding of databases, methods, and models used to derive conclusions 

about specific management and policy decisions on forest outcomes only serves to improve 



 

 38 

future decision-making. In addition to the creation of more accessible tools, we identified three 

specific data needs to improve forest carbon outcomes: i) better integration of data in continuous 

assessments (Lister et al, 2020), ii) improved small area estimation to move beyond the general 

recommendation paradigm (Lister and Leites, 2021), and iii) better quantification of forest 

disturbance data to constrain forest dynamics more accurately (Kurz et al, 2018, Decuyper et al, 

2022). The use of modeling tools and data likely serves to improve the policy process, which 

ultimately creates better outcomes for forest management and society (Sutherland et al, 2011).  

2.5.1.2 Enhanced trainings and learning modalities 

Our results demonstrate that practitioners and decision-makers would benefit from 

additional training to gain knowledge in forest carbon science. Such training would better inform 

their own management work and improve their ability to accurately advise landowners on 

potential tradeoffs of more traditional forest management, prioritizing carbon stewardship, or 

enrolling in carbon payment programs. Forestry professionals need training on a variety of 

methodological approaches to understanding the current state of forest carbon, tracking past and 

future trends, and performing scenario analyses of management practices to meet future goals 

(Knight et al, 2008). Specific training focus areas include gaining familiarity with current forest 

carbon modeling frameworks, assessing trade-offs between modeling results, and the 

development of statistical and coding skills. 

 We found a disconnect between the current workforce knowledge and what is needed and 

desired. Improving training would better inform management activities and help stakeholders 

balance potential trade-offs between objectives such as timber production and carbon storage. 

Drawing from our experience developing education and training materials for forest carbon 

practitioners, we have found that increasing access to information targeting key topics in state-
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level forest carbon inventorying and modeling (including annotated bibliographies) helped make 

this connection. Training targeting fundamental forest carbon concepts and advanced 

understanding of how to model harvest wood product yields, and associated statistical 

uncertainties, enabled participants to be more confident and effective decision-makers (FCCP, 

2022).  

 Traditional academic education in forestry has been slow to incorporate forest carbon 

accounting, ecosystem modeling, and life-cycle analyses of HWPs. Hybrid learning models 

utilizing both remote learning and in-person learning targeted at professions, landowners, and 

policymakers provide ideal situations fostering peer-to-peer learning environments, a form of 

social learning, that begins to increase the efficacy of communication. Reducing the barriers of 

education through cost-effective training available online through broad collaborations and 

partnerships such as the Forests + Climate Learning Exchange Series (LES, 2024) can foster 

thoughtful exchange between audiences. Hybrid and remote learning may remove language and 

locality barriers for governments, non-governmental organizations, and practitioners should not 

hinder educational and training availability (Amano et al, 2016).  

 Lastly, we highlight a cutting-edge virtual reality visualization, the Forest + Climate 

Visualization Partnership, that uses a science-aligned, data-driven approach to communicate the 

complex relationships between forests, carbon, and climate (Ackerman et al, 2022). While 

landscape visualization techniques have long been recognized as an effective communication 

tool to bridge communication gaps and public perceptions (Lange, 2001), advances in 

visualization techniques serve as a new frontier in connecting stakeholders with sustainable 

forest management, forest carbon dynamics, and other forest benefits. 
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2.5.1.3 Effective science-based communication 

Our results show that communication of forest science concepts and results to inform 

public and private decision-making remains lacking. To properly communicate with diverse 

forest stakeholders requires a diversity of knowledge and communications strategies (Anderson, 

2013). Linking forest carbon to policy and social-economic systems is of bidirectional 

importance (Garcia-Gonzalo and Borges, 2019). Properly communicating findings to 

policymakers supports achieving improved impacts on the ground (O’Connell and McKinnon, 

2021). Improved awareness from planners and managers can serve to help shape assessments to 

further target and improve management decisions (Littell et al, 2012). 

 Social learning and processes for robust decision-making are supported by a body of 

science (Dietz, 2013). Interview discussions point towards the need for adaptable methods of 

communication linking scientific analysis and public deliberation enhance awareness and the 

development of new value systems regarding forest management improving decision-making and 

in turn forest carbon outcomes. Sound decisions are subject to preferences and values of the 

decision-makers; thus, it is imperative that managers understand the science regarding 

outcomes—particularly negative outcomes—associated with inactions in the face of climate 

change impacts, as well as the benefits of management practices that help adapt and mitigate 

these impacts. Interviews reinforced the notion that collaboration across government, academia, 

and industry may encourage more open and transparent processes that can be easily and 

continuously improved through effective science-based communication (Yohe and 

Oppenheimer, 2011). 

 Our results found that audiences that are diverse in backgrounds, knowledge sets, and 

levels of education in relevant areas necessitate the creation of new and novel communication 
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techniques (Bowers et al, 2016). Communication and training strategies should be crafted 

directly towards the desired audiences; there is no one size fits all method to creating effective 

scienced-based communication (Monroe et al, 2019). Developments in technology such as 

virtual reality environments (Ackerman et al, 2022) and hybrid-learning models should serve as 

starting points to increase the ability to effectively translate complex scientific topics into 

understandable segments for a variety of audiences and stakeholders.  

2.6 Conclusion 

The results of this study of state forest agencies represent concepts that are directly 

applicable across disciplines and audiences. Bridging the science-practice gap through 

communication and education serves to improve climate outcomes through the development of 

multifaceted priorities and opportunities. Addressing climate change requires scalable solutions 

sensitive to on-the-ground contexts. Further integration of carbon accounting, ecological models, 

life-cycle analyses, and policy assessments is necessary to improve future climate outcomes 

while balancing the economic benefits of forests accomplished through the robust training of 

future forest carbon professionals and leaders who possess the proper tools. 

 Forest managers are uniquely suited to advance the ever-evolving demands of research in 

relation to climate and forests through their unique localized expertise. The co-production of 

knowledge driven by the scientist-manager knowledge flow then provides critical information to 

crafting more effective and salient policy devices. While the idea of science-policy models is not 

new, forest carbon science, policy, and management has emerged as another discipline in which 

significant climate impacts may be achieved through policy creation. 

 Forestry and forest sciences are critical to achieving the policies and management 

strategies required to act on information about natural and natural-managed forest systems to 
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prevent the collapse of forest ecosystems and the exacerbation of climate change. Improved 

science-based communication serves to help align interests from across sectors reducing the 

likelihood of adopting biased policies and management strategies that may ultimately lead to 

goal failures. The cross-disciplinary nature of forest carbon science necessitates the importance 

of further integrating research and tools, education, and policy opportunities through robust 

communication techniques to effectively leverage prior and ongoing efforts to address climate 

change to ensure better outcomes. 

2.7 Ethical statement 

The Michigan State University Institutional Review Board determined this study (MSU 

Study ID: STUDY00007550) had been exempt under 45 CFR 46.104(d) 2ii. All participants 

provided written informed consent prior to interview or survey. 
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CHAPTER 3 

MODELING CLIMATE-SMART FOREST MANAGEMENT AND WOOD USE FOR 

CLIMATE MITIGATION POTENTIAL IN MARYLAND AND PENNSYLVANIA 

3.1 Abstract 

State and local governments are increasingly interested in understanding the role forests 

and harvested wood products play in regional carbon sinks and storage, their potential 

contributions to state-level greenhouse gas (GHG) reductions, and the interactions between GHG 

reduction goals and potential economic opportunities. We used empirically driven process-based 

forest carbon dynamics and harvested wood product models in a systems-based approach to project 

the carbon impacts of various forest management and wood utilization activities in Maryland and 

Pennsylvania from 2007 to 2100. To quantify state-wide forest carbon dynamics, we integrated 

forest inventory data, harvest and management activity data, and remotely-sensed metrics of land-

use change and natural forest disturbances within a participatory modeling approach. We 

accounted for net GHG emissions across (1) forest ecosystems (2) harvested wood products, (3) 

substitution benefits from wood product utilization, and (4) leakage associated with reduced in-

state harvesting activities. Based on state agency partner input, a total of 15 management scenarios 

were modeled for Maryland and 13 for Pennsylvania, along with two climate change impact 

scenarios and two bioenergy scenarios for each state. Our findings show that both strategic forest 

management and wood utilization can provide substantial climate change mitigation potential 

relative to business-as-usual practices, increasing the forest C sink by 29% in Maryland and 38% 

in Pennsylvania by 2030 without disrupting timber supplies. Key climate-smart forest management 

activities include maintaining and increasing forest extent, fostering forest resiliency and natural 

regeneration, encouraging sustainable harvest practices, balancing timber supply and wood 
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utilization with tree growth, and preparing for future climate impacts. This study adds to a growing 

body of work that quantifies the relationships between forest growth, forest disturbance, and 

harvested wood product utilization, along with their collective influence on carbon stocks and 

fluxes, to identify pathways to enhance forest carbon sinks in support of state-level net-zero 

emission targets. 

 

Material from: Papa, C. C., DeLyser, K., Clay, K., Gadoth-Goodman, D., Cooper, L., Kurz, W.A., 

Magnan, M., Ontl, T. (2023). Modeling climate-smart forest management and wood use for 

climate mitigation potential in Maryland and Pennsylvania.  Front. For. Glob. Change, 6, 

1259010. 

 

For full text of this work, please go to: https://doi.org/10.3389/ffgc.2023.1259010 
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CHAPTER 4 

CHARACTERIZING THE SENSITIVITY OF CARBON STOCKS AND FLUXES TO 

DISTURBANCE VARIATION IN MARYLAND’S FORESTS USING THE CBM-CFS3 

MODELING FRAMEWORK 

4.1 Abstract 

Forests play a key role in climate mitigation while simultaneously providing additional 

co-benefits, including wildlife habitat, air and water purification, and cultural values. Forecasting 

forest carbon dynamics is essential to policy and planning in support of net-zero greenhouse gas 

emission targets. However, complex environmental issues require advancements in 

methodologies and models to support decision-making for climate policies. In this study, we 

simulated carbon dynamics in Maryland forests from 2007-2050 under a range of varying 

disturbance regimes utilizing the CBM-CFS3 modeling framework. We leveraged nationally 

consistent datasets, including inventory data from the USDA Forest Service’s Forest Inventory 

and Analysis program, empirical growth-yield relationships, and remotely-sensed data on land-

use change and natural disturbances. We applied a Monte Carlo simulation approach to estimate 

confidence intervals for carbon stocks and fluxes by taking into account the nature and 

distribution of disturbance input data. Additionally, we applied a random forest model to assess 

ecosystem flux, biomass turnover, and decay rates sensitivity to variation in disturbance inputs in 

terms of relative importance. We then validated model results against other estimates of carbon 

stocks and fluxes for the region. Under varying disturbance regimes, net biome productivity 

sequestered on average -0.41 MMT CO2e yr-1 with an averaged 95% confidence interval width 

of 0.26 MMT CO2e yr-1 (-0.54 and -0.29 MMT CO2e yr-1, or ±31.7%) from 2007-2050. Net 

ecosystem emissions were most sensitive to land-use change, harvest allotments, and disease 
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outbreaks. Our study advances methodological approaches to characterize the variability and 

sensitivity of an empirically-derived processed-based model to inform future forest management 

and planning actions in direct support of increasing the substantial mitigation benefits of forests. 

4.2 Introduction 

Forests are an increasingly valued pathway for achieving carbon neutrality via their role 

in sequestering carbon through photosynthesis and storing carbon in woody biomass and soils 

(Griscom et al, 2017). Not only are forests influential in global biogeochemical cycling (Bonan, 

2008, Pan et al, 2011), they provide many co-benefits to society (Diaz et al, 2018). To 

understand the current and future potential of forests to mitigate climate change, regional- and 

national-scale forest carbon accounting, monitoring, and forecasting are essential (Nabuurs et al, 

2007). In order to assess the applicability of models under increasingly and rapidly changing 

climatic and disturbance regimes, advances in forest carbon modeling methodologies must be 

accompanied by thorough assessments of model variability, uncertainty, and sensitivity 

(Magnussen et al, 2014). This will improve the effectiveness of decision-support applications of 

models for future policy and management actions by allowing for more accurate assessments of 

potential trade-offs between goals (Bruno Soares et al, 2018, Geary et al, 2020, Littlefield and 

D’Amato, 2022). 

Modeling the flows of carbon (C) stocks is a complex undertaking with multiple and 

interacting processes, including vegetative growth and mortality, biomass turnover rates, 

litterfall, heterotrophic respiration, and natural and anthropogenic disturbances (White et al, 

2008, Sturtevant and Fortin, 2021). Climate change complicates ecosystem dynamics and adds 

novel complexities in a rapidly changing world including natural and anthropogenic disturbances 

influencing and interacting with tree recruitment, growth, death, and turnover (McDowell et al, 
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2020). Alongside climate change, past and future changes to land use, forest management, and 

natural disturbance regimes add additional challenges to predicting how forests will respond to 

stressors (Sturtevant and Fortin, 2021). Disturbance and management furthermore influence key 

ecosystem processes such as biomass turnover and decay rates, in turn influencing future C 

dynamics (Pugh et al, 2019, Yuan et al, 2019, Wijas et al, 2024).  

The intersection of these drivers is particularly relevant in the eastern US, where tree 

cuttings – including the conversion of forestland to non-forests – are some of the most impactful 

forest drivers of net ecosystem C fluxes at local to regional scales (Williams et al, 2016, Brown 

et al, 2018, Oswalt et al, 2019). Recent studies have shown that the scale of harvest and biomass 

removals (Brown et al, 2024), forest regrowth (Pugh et al, 2019), forest successional dynamics of 

carbon sequestration (Birdsey et al, 2023, Canham et al, 2024), harvested wood product 

dynamics (McKinley et al, 2011, Birdsey et al, 2023, Brown et al, 2024) and carbon leakage, a 

shift in carbon emissions to another area caused by shifts in timber supply and market conditions 

(Nepal et al, 2013, Pan et al, 2020), are poised to play an outsized role in the future mitigation 

potential of forests in the eastern US. Thus, ongoing forest management decisions will greatly 

impact the future strength of regional forest C sink or source. 

To quantify and incentivize the capacity of forests to offset anthropogenic GHG 

emissions driving climate change, regional and global forest C budgets must capture complex 

drivers, including forestry activities (Kurz et al, 2009, Klug and Kmoch, 2015, Wang et al, 

2016). Models must accurately characterize the influence of future disturbance regimes (both 

natural and anthropogenic), interacting with uncertain growing conditions and decay rates, and 

capture robust estimates of uncertainty and sensitivity to better inform decision-making about 
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forest management and policy (Beier et al, 2016, Kautz et al, 2016, Hartmann et al, 2018, 

Hudiburg et al, 2019, Sturtevant and Fortin, 2021, Novick et al, 2022a).  

To meet these challenges, forest ecosystem models have rapidly evolved over the past 

few decades (Clark et al, 2001, Luo et al, 2011, Bugmann and Seidl, 2022, Novick et al, 2022a) 

with a greater emphasis on operationalizing the indicators modeled (Klug and Kmoch, 2015). 

These models address complex environmental issues, providing decision support for forest 

policy and management in direct contribution to net-zero greenhouse gas (GHG) emission targets 

from national to regional scales (Larocque et al, 2011, Dugan et al, 2017, Bodner et al, 2021, 

Novick et al, 2022a, Sleeter et al, 2022). Increasingly, operational or landscape scale models that 

incorporate ecological, socioeconomic, or political perspectives at larger spatial and temporal 

scales have greater utility for informing forest management and planning and the potential use of 

forests to offset GHG emissions (Kurz et al, 2002, Novick et al, 2022b).  

Methods and criteria for characterizing model behaviors, uncertainty, and sensitivity are 

commonly developed for other types of models such as hydrological models (Haghnegahdar et 

al, 2017) and earth and environmental system models (Razavi and Gupta, 2015, Pianosi et al 

2016, Haghnegahdar and Razavi, 2017, Razavi et al, 2021). However, empirically-based 

simulation models for forest carbon dynamics generally lack defined methods or criteria (Yanai 

et al, 2010, Xiao et al, 2014) especially related to GHG inventories and emissions reporting for 

forests (Raczka et al, 2013, Yanai et al, 2020, Yanai et al, 2023).  There are several areas of 

opportunity for forest carbon model improvement and expansion. First, many forest C models 

focus on near-term simulations (Dietze et al, 2017), in part due to modeling limitations as well as 

variability about future climate and disturbance regimes oftentimes limiting decision-making 

applications. Second, identifying the scale and complexity at which to model ecosystem 
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dynamics remains challenging (Green et al, 2005, Van Nes and Scheffer, 2005). Third, rigorous 

assessments of models and systematic methods are needed to improve forward looking analyses 

of forest policy and management (White et al, 2008, Yanai et al, 2020, Bugmann and Seidl, 

2022, McGlynn et al, 2022). Fourth, inter-model comparisons provide additional insights on 

model performance and relevant ways to significantly improve model performance (Wang et al, 

2011, Raczka et al, 2023). Refining methodological approaches will further reduce variability 

and uncertainty in forest C dynamics caused by natural variability in forest ecosystems (Niu et al, 

2017, Piao et al, 2019). These refinements enhance the application of models to inform decision-

making under the context of climate change, providing resource managers and policymakers 

with robust information to tackle increasingly complex issues (Keenan, 2015, Boisvenue et al, 

2016, Larocque et al, 2016, Geary et al, 2019). 

In this study, we build off previous modeled results published in Papa et al, (2023) to 

characterize and assess both model variability and sensitivity to disturbance inputs, a topic with 

regional policy implications for achieving net zero GHG emission targets utilizing a ‘Gain-Loss’ 

approach within the CBM-CFS3 modeling framework. Papa et al, (2023) used a system-based 

approach accounting for GHG emissions across the forest ecosystem, harvest wood products, 

substitution benefits from wood utilization, and carbon leakage associated with reducing in-state 

harvesting activities, showing that enacting key forest management practices can increase the 

forest C sink strength by 29% in Maryland by 2030 without disrupting timber supplies as 

compared to a business-as-usual simulation. Here, we build upon those results to characterize the 

variability and sensitivity of the CBM-CFS3 model to the key forest disturbances and variation 

in those disturbances – including regeneration and management processes that comprise it – 

revealing how fluctuations in both the extent and severity of these drivers underlies our certainty 
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in model predictions. Assessing these drivers offers important inferences for how future changes 

in forest disturbance regimes may alter key ecosystem processes. Specifically, we estimated 

confidence intervals for key forest ecosystem C stocks and C fluxes for the business-as-usual 

(BAU) simulation from Papa et al, (2023) using a Monte Carlo approach to investigate the range 

of potential net C ecosystem balances by simulating future potential forest disturbance regimes. 

We then assessed model sensitivity to variation in disturbance regimes for key model outputs 

including biomass turnover, heterotrophic respiration, and other disturbance related emissions 

and fluxes to better understand how model structure and disturbance inputs may affect net C 

balances. Finally, we validated the model results by comparing and benchmarking estimated 

projections with other estimates of regional net forest C balances to evaluate model reliability 

and reasonability of the estimates. This study informs future policy and planning by refining our 

understanding of how changes in future potential disturbance regimes may affect the regional 

potential of forests to be a C sink or source. 

4.3 Methods 

4.3.1 Study Area 

Maryland forests have a substantial portion of aging forests (i.e., reaching their 

commercial rotational age) with almost half of the forest area being over 80 years old (Figure 5). 

The current age distribution of forests in Maryland has resulted from a legacy of land 

management since the 19th century which involved widespread clearing of forested landscapes 

for agriculture and growing populations. The subsequent rate of forest regrowth of depleted 

agricultural lands was influenced by alterations of forest management regimes, legacy effects of 

unsustainable harvests, and disruptions to historic natural disturbance regimes specifically the 

exclusion of fire (Millers et al, 1989; Otto, 1989). Therefore, Maryland provides a unique case 
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study to explore the role of future harvest and other disturbances on driving regional C balances. 

The structure of Maryland’s forests is indicative of forests within the mid-Atlantic region more 

broadly, making the results widely applicable. 

 

 
Figure 5. Forest age demographics by forest type group in 2019. Data: USDA Forest Service, 
2024 
 

Maryland has 37% forest cover (0.99 million hectares) dominated by hardwood forests 

(Quercus spp., Carya spp., Fagus grandifolia, Acer rubrum, Liquidambar styraciflua, and 

Liriodendron tulipifera) but with a sizable area of forest communities dominated by loblolly and 

shortleaf pine (Pinus taeda, P. virginiana, and P. echinata) along the coastal areas (Table 3). 

Privately managed forestlands comprise about 73% of the forested area while state and 

municipal managed forestlands account for another 24.3% with the remaining 2.7% of forestland 

being under federal jurisdiction (Figure 6). 
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Figure 6. Map of forest distribution and forest ownership in Maryland. Data: Sass et al, 2020 
 
Table 3. Percentage of forestland by forest type group in Maryland. Data: USDA Forest Service, 
2024 

Forest Type Group Percentage (%) 
Oak / hickory group 59.81 
Loblolly / shortleaf pine 
group 

16.26 

Oak / pine group 7.82 
Oak / gum / cypress group 4.70 
Elm / ash / cottonwood group 3.91 
Maple / beech / birch group 3.75 
White / red / jack pine group 1.42 
Other hardwoods group 1.22 
Nonstocked 0.66 
Other softwoods group 0.58 

 
4.3.2 CBM-CFS3 Modeling framework 

The Carbon Budget Model of the Canadian Forest Sector version 3 (CBM-CFS3) is an 

empirically derived processed-based model used to simulate forest carbon dynamics (Kurz et al, 

2009; Kull et al, 2019). The model incorporates both human activities and natural disturbances to 

simulate forest C dynamics on annual timesteps. Although this model was originally developed 
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as a core component of Canada’s national GHG monitoring system (Kurz et al, 2018), it has been 

widely utilized internationally and domestically in the United States to explore questions 

regarding forest carbon cycle science and forest management and policy (Kurz et al, 2013, Pilli 

et al, 2013, 2017, 2022, Dugan et al, 2017, 2018a, 2018b, 2021, Oguin et al, 2018, Sleeter et al, 

2022, Papa et al, 2023) and has been validated against national forest inventory data (Smyth et 

al, 2010, Shaw et al, 2014, Pilli et al, 2013, Pilli et al, 2016). It also complies with the 

Intergovernmental Panel on Climate Change (IPCC) systems-based modeling framework (Kurz 

and Apps, 2006).  

The CBM-CFS3 utilizes empirically derived growth-yield curves to simulate forest 

growth and productivity along with user-defined disturbance and activity data, including 

harvests, cuttings, land-use change (LUC), and disease and insect outbreaks. The model 

estimates ecosystem carbon stocks using a detailed forest inventory defined by forest attributes 

such as ownership, forest type, or site productivity, and volume-to-biomass equations. Process-

based equations are used to simulate annual C turnover and decay. Further, the model uses 

disturbance matrices to capture the flows of carbon between biomass and dead organic matter 

(DOM) pools caused from both natural and anthropogenic actions (Kurz et al, 1992). 

Disturbance matrices are at their core a set of assumptions about the transfer and fate of carbon 

following a disturbance event. Matrices define the proportion of each biomass or DOM pool that 

is transferred to another terrestrial carbon pool, the atmosphere, or the forest products sector 

(Kull et al, 2019). 

The CBM-CFS3 framework allows for seamless transitions between previously modeled 

outcomes and future forecasted estimates where carbon removed via harvest, cuttings, or LUC 

can be directly inputted into an associated process-based harvested wood products (HWP) 



 

 54 

modeling framework, critical for sector-wide accounting and life-cycle analyses. Important to 

note, the CBM-CFS3 modeling framework does not include assumptions around changes to 

albedo, hydraulic regimes, or other climate change effects on growing conditions. The current 

framework can only support spatially referenced data and is not spatially explicit, meaning that 

users can define spatial areas by defining them in the forest inventory, but the model does not 

take a pixel-based approach to modeling forest carbon dynamics. The model is not stochastic in 

the sense that activity data are entirely user-defined, and the model applies a rule-based approach 

to implementing and sequencing individual disturbance events. Further, post disturbance 

dynamics are use-defined and must be informed by literature-based or expert assumptions as 

processes such as forest regrowth are not assumed (i.e., will forest stands naturally regenerate, 

regenerate due to human actions, or remain treeless). Lastly, despite temperature, precipitation, 

and soil type dictating rates of decomposition and soil respiration, the model lacks within 

simulation climate sensitivity to ecosystem process controlled by process-based equations.  

4.3.3 Model Inputs 

Papa et al, (2023) describes in detail model inputs and parameterization which we briefly 

summarize here. Model inputs came from several key sources. We estimated growth-yield 

relationships with the USDA Forest Service Forest Inventory and Analysis Database (FIADB, 

USDA Forest Service 2024) using a Gompertz growth curve which assumes non-asymptotic 

symmetry (Fekedulegn et al, 1999). We also estimated a detailed forest inventory and annual 

harvest removals from the FIADB. Additionally, we used the FIADB to calibrate allometric 

volume-to-biomass equations and other necessary stand attributes. We used remotely-sensed data 

to describe the frequency and extent of both natural disturbances and LUC including utilizing the 

national Insect and Disease Detection survey (USDA Forest Service, 2020) to estimate and 



 

 55 

characterize defoliating and mortality events. We used the LANDFIRE Historic Disturbance 

dataset to estimate the extent and severity of wind and wildfire disturbances (USGS, 2016); we 

further validated wildfire estimates through tabular data provided by the Maryland Department 

of Natural Resources (MDNR). Lastly, we estimated annual rates of deforestation and 

afforestation overlaying the National Land Cover Database (NLCD, Wickham et al, 2021) with a 

forestland ownership dataset (Sass et al, 2020) and a national geodatabase of protected areas 

(USGS, 2018) to conduct a from-to change assessment. We validated disturbance and post-

disturbance dynamics heuristically with direct input from experts within the Maryland 

Department Natural Resources. Again, additional details are available in Papa et al, (2023). 

4.3.4 Conceptual description of uncertainty and sensitivity 

For this analysis, we define “uncertainty” (U) as a confidence interval (CI: typically 95% 

CI) for model output indicators by introducing variation within model disturbance data that 

reflects the uncertainty in these inputs as determined by a normal distribution. Total uncertainty 

contains multiple sources of uncertainties (U1, U2, U3, …, Un) such as parameter inputs for forest 

areas, biomass increments determined by growth-yield curves, disturbances targets, DOM C 

stock initialization, or parameters for controlling rates of biomass turnover and DOM decay. 

Uncertainty may also arise from the model structure and random selection of forest stands for 

disturbance. However, in this study, we only consider uncertainty defined as a confidence 

interval estimated from varying the extent and severity of annual disturbance regimes randomly 

(e.g., annual fluctuating the amount of biomass removed from harvest). 

Sensitivity is defined as the degree to which model results are influenced by changes to 

process-based equations, input parameters, or model structure. It is a valuable tool to assess the 

significance of complex interactions (Holling, 1973) and is increasingly popular with ecosystem 
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models (Cariboni et al, 2007, Seddon et al, 2016). Other forms of model performance such as 

“accuracy” which refers to the difference between estimates and a true value or “precision” 

which considers the distribution of estimates relative to each other, irrespective of the true value, 

may also contribute to uncertainty and sensitivity. However, formally assessing accuracy or 

precision was out of the scope of work for this study. We benchmarked estimates against other 

published datasets. Here, we assessed sensitivity by applying a random forest model to the model 

outputs to determine the degree of importance variation in disturbance input data had on model 

results. 

4.3.5 Summary of analysis, sensitivity, and model validation 

In the previous analysis published in Papa et al, (2023), a business-as-usual (BAU) 

simulation was developed for all forestlands in Maryland that projected longer-termed data of 

forest disturbance and management activities from 2007 to 2100. The BAU outcome (i.e., the 

counterfactual) was compared to 15 alternative scenarios exploring forest management, climate 

change impacts, and bioenergy to compare the net difference in mitigation potential. However, 

the original study (Papa et al, 2023) did not report any estimation of confidence intervals or 

uncertainty and merely reported the outcomes of each individual simulation. Therefore, we reran 

the BAU simulation from 2007-2050 utilizing a Monte Carlo approach while introducing 

variation to annual disturbance regimes randomly by generating new disturbance tables for each 

simulation drawn from the data distribution of the underlying disturbance data used to 

parameterize the model inputs. This allowed us to estimate confidence intervals for key model 

outputs to assess and characterize shifting disturbance regimes effects on ecosystem processes. 

We then compare the median estimates against the BAU simulation in part to validate the BAU 

simulation projected estimates. We also conducted a sensitivity analysis – using a random forest 
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model – to assess each disturbance’s contribution to the confidence intervals as well as the range 

of variation for each model output. Lastly, we benchmarked our results against different regional 

estimates of C stock density and fluxes to further assess and validate our results. 

Ecosystem processes related to biomass turnover, decay, and other ecosystem emissions 

are important determinants of net C ecosystem balances thus assessing the importance of and the 

range of values caused variation introduced from model inputs informs understanding of 

structural model assumptions (Razavi et al, 2021). Doing so can highlight processes and 

parameters that cause the highest variability in model outputs (Haghnegahdar and Razavi, 2017). 

Further, assessing the sensitivity of key model parameters caused by variation in disturbance 

inputs allows for the examination of potential model limitations, particularly regarding long-term 

applications (Pappas et al, 2013). Given the outsized role disturbance and forest recovery from 

disturbance play in determining forest carbon sink or source strength in the eastern region 

(Brown et al 2018, Canham et al, 2024), we focused our analysis on characterizing the effects of 

varying model disturbance data as determined by the distribution of said data. Therefore, we did 

not vary process-based equations for turnover and decay, climate parameters, model allometry, 

inventory, growth-yield curves, or individual disturbance matrices. Parameter values for 

disturbance data were varied independently and randomly because the correlation structure 

among parameters or their contribution to the overall uncertainty is not known. 

For each simulation, 2007-2019 encompasses what is referred to as the rollback period 

and 2020-2050 is referred to as the simulation projection, 2020 is the model projection point. 

The rollback period was parameterized with historical data whereas the simulation project was 

parameterized projecting longer-termed data informed by the data distribution. To provide 

seamless transition between past disturbances and future projects, we started with a forest 
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inventory estimated from 2020 data and ‘rollbacked’ (i.e., a procedure that uses multiple 

iterations and historical information related to stand-replacing disturbance events to retroactively 

estimate an earlier forest inventory) the inventory using the probability distribution of stand-

replacing disturbances to estimate a new inventory for the year 2007. This was done to ensure 

the forest inventory matched year 2020 all while providing better constrained and initialized 

DOM C and Soil C stocks, improving model projections (Smyth et al, 2017). The rollback period 

has been shown to better stabilized belowground dynamics in addition to the model’s own 

internal spin-up procedure for stabilizing DOM pools (Morken et al, 2022, Metsaranta et al, 

2023). 

4.3.5.1 Monte Carlo modeling approach to estimate confidence intervals 

Building upon the results in Papa et al, (2023) in which scenarios were simulated a single 

time (including the BAU), a Monte Carlo simulation approach was used to estimate confidence 

intervals for key model outputs which represents the uncertainty of future C trajectories under 

varying disturbance regimes. Spanning 2007-2050, we conducted 100 simulations to estimate 

and construct 95% CIs from the 2.5th and 97.5th percentiles for expected values. Additional runs 

become prohibitive due to computational and data storage limitations. Variation for each 

simulation was introduced by altering annual disturbance input data randomly (Table 4) which 

represent and characterize the amount, extent, and severity of each individual disturbance and 

post-disturbance dynamics. We generated disturbance event tables – tabular tables used to 

characterize and define disturbance events by dictating the flows of carbon proportionally – for 

each individual simulation by taking a random draw determined by the probability distribution of 

each individual disturbance type (Table 4) using a normal distribution. Disturbance events are 

inputted on an annual basis in terms of area or weight of carbon disturbed using a rule-based 
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approach constraining the type of forest, ownership, age, or other characteristics that are then 

chosen by the model to be disturbed. In addition to summarizing the data inputs and 

distributions, Table 4 briefly summarizes the model output and distributions of disturbance 

events. These outputs inform model reliability in disturbance representation within the model 

framework and serve as a check on model reliability of data input representation within the 

modeling framework (Pianosi et al, 2016). Longer descriptions of each individual disturbance 

type can be found in Appendix C. 

Our analysis focuses on estimating confidence intervals for key model outputs including 

Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), biomass turnover, and 

heterotrophic respiration or decay as well as forest C stock densities and individual components 

of forest C pools; other ecosystem indicators are briefly reported. We chose these indicators due 

to the outsized role they play in determining net ecosystem C balance. Additionally, we 

estimated confidence intervals for carbon transferred to harvest wood products, but we do not 

address variation in emissions from the forest products sector. Fluxes are presented in terms of 

MMT CO2e, and C stocks and densities are presented in terms of Tg C and Mg C ha-1, 

respectively. Appendix C provides longer descriptions of disturbances, ecosystem fluxes, 

transfers, and carbon pools used in this study. 
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Table 4. Summary of disturbance inputs, disturbance outputs, and data distributions used in 
Monte Carlo approach expressed in rates per year. Business-as-usual (BAU) results originally 
reported in Papa et al, (2023) are reported here to show variation in results from the Monte Carlo 
approach compared to median results 

 2.5th 50th 97.5th se 

BAU 
median 
default 
value 

Relative 
difference 

(%) 
Absolute 
difference 

Disturbance Inputs 
Harvest (MMT C 
yr-1) 

0.217 0.229 0.241 0.006 0.228 0.17 393.29 

Deforestation (ha 
yr-1) 

2926 3000.1 3067.7 36.2 2988.99 0.37 11.15 

Afforestation (ha 
yr-1) 

2658.4 2789.5 2931.6 69.7 2796.12 0.24 6.58 

Fire (ha yr-1) 326.1 330.3 334.6 2.2 330.57 0.08 0.25 
Abiotic (ha yr-1) 2591.5 2653.4 2717.5 32.1 2655.67 0.09 2.31 
Disease (ha yr-1) 10879.6 11323.5 11765.1 225.9 11367.53 0.39 44.00 
Insect – Defoliation 
(ha yr-1) 

3525.5 3666.7 3825.2 76.5 3678.18 0.31 11.48 

Insect – Mortality 
(ha yr-1) 

145.6 150.5 155.4 2.5 150.68 0.14 0.20 

Disturbance Outputs 
Harvest (ha yr-1)  6841.62 7134.35 7506.41 207.2 7302.05 2.30 167.7 
Deforestation (ha 
yr-1) 

2653.75 2722.92 2807.53 35.31 2810.16 3.10 87.25 

Afforestation (ha 
yr-1) 

2658.43 2789.54 2931.64 69.70 2796.12 0.24 6.58 

Fire (ha yr-1) 326.10 330.33 334.64 2.18 354.07 6.71 23.74 
Abiotic (ha yr-1) 2573.57 2635.74 2699.41 32.10 2571.17 2.51 64.57 
Disease (ha yr-1) 10826.32 11271.9 11711.68 225.82 10805.2 4.32 466.7 
Insect – Defoliation 
(ha yr-1) 

3516.5 3657.63 3816.12 76.44 3602.4 1.53 55.23 

Insect – Mortality 
(ha yr-1) 

143.98 148.85 153.74 2.49 147.18 1.14 1.67 

 
For each disturbance iteration, a value in terms of area or weight of carbon was randomly 

drawn from its assumed distribution, and an estimate for annual disturbance rate was calculated. 

To estimate annual harvest allotments, we used a random draw and a normal distribution with the 

estimated standard error (se) and variance derived from FIA population estimates in Bechtold 

and Patterson (2005) utilizing the same forest attributes outlined in Appendix C. Population 

estimates (and associated sampling errors) are standardized equations and procedures used to 
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estimate sampled-based population estimates for forest attributes of interest such as forest area, 

number of trees, and merchantable volume typically from state-wide inventories conducted 

across a specific set of years. In FIA estimation, samples are a set of plots selected for the 

attributes of interest in which plots are assigned to a stratum (non-overlapping areas of a known 

or estimated size) that in aggregate define the population of interest (Pugh et al, 2018). FIA 

assumes normality of the distribution of estimates and can be used to compute appropriate 

confidence intervals from the stratum mean.  

Uncertainty within LUC estimates derived from remotely-sense metrics can arise from 

error associated with wrongful classification of forest versus nonforest as well as 

mischaracterization of harvest and deforestation. Additionally, imprecise boundaries, satellite 

artifacts, and multiple statuses occurring within an individual pixel (Lechner et al, 2012, Povey 

and Grainger 2015, Persson and Stahl, 2020) can also contribute to uncertainties. Currently, no 

precise estimates of error exist for these data or other similar types of remotely-sensed data 

products. Estimates of LUC uncertainty vary widely from ±10-30% (Wickham et al, 2017, 

Wickham et al, 2023). We chose an error of ±15% after discussion with forestry experts in the 

region as projecting LUC remains difficult due to predicting future driving factors such as 

population growth, populations concentrated in urban areas, and economics.  

Similarly, we applied the same ±15% using a normal distribution to estimate variation in 

remotely-sensed derived estimates for fire, abiotic, disease, and insect disturbances assuming 

similarly derived data have similar uncertainty. We then compared the results of the Monte Carlo 

approach to median values estimated from the results in Papa et al, (2023), which applied the 

median target values for disturbance inputs (Table 4) again serving as a check on model 

assumptions previously made. 



 

 62 

4.3.5.2 Random forest model to assess variable importance and sensitivity 

In order to understand the importance of key model parameters and the range of values 

caused by varying disturbance input data, we conducted a sensitivity analysis to assess each 

disturbance type contribution to the total estimated confidence interval (u) in terms of variable 

importance and parameter ranges. Variables of higher importance and larger parameter ranges 

represent model inputs that have a greater influence on model outputs relative to the distribution 

of the input variable. The randomization of disturbance input data lends greater strength to 

characterizing variable contributions to estimating the confidence intervals and assessing model 

sensitivities through detecting influential interactions (Razavi et al, 2021). We assessed 

sensitivity within two key parts of the modeling framework due to their outsized influence on net 

C ecosystem balances. First, we assessed the sensitivity of biomass turnover and decay rates (i.e., 

ecosystem transfers) by their component parts to variation in disturbances. Second, we assessed 

sensitivity to ecosystem indicators and emissions including biomass lost from disturbance, total 

emissions from all DOM pools, total emissions from all biomass components, and NBP which 

estimates total biome emissions including harvest removals and disturbance.  

To assess model sensitivity, we used a random forest (RF) model (Breiman, 2001) from 

the ‘caret’ package (Kuhn, 2008) in the R coding environment (R Core Team, 2020) to calculate 

relative importance, parameter range, and overall contribution to the model parameter results. RF 

models offer advantages over other parametric approaches (such as generalized linear models), 

including handling residual noise for predictions and probably estimates for multicategory 

depend variables (Gromping, 2012, Ziegler and Konig, 2014). RF models minimize overfitting 

and provide straight-forward checks of model results to limit bias and increase validity including 

for high-dimensional problems involving many features (Ziegler and Konig, 2014, Fox et al, 
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2017, Antoniadis et al, 2021). Furthermore, RF models have been shown to provide unbiased 

variable selection and importance measures can be used reliably for variable selection even when 

predictor variables vary in scale and number (Strobl et al, 2007, Gromping, 2012, Probst et al, 

2019) 

The RF method is a machine learning algorithm developed as an extension of bootstrap 

aggregation which is a method to reduce variance within noisy data and improve accuracy in 

comparison to other regression or supervised classification methods (Breiman, 2001). Random 

forest regressions consist of a collection of regression trees which can be used to assess the 

prediction accuracy of the out-of-bag observations (i.e., observations in the dataset that were not 

used in training the regression model) allowing for an estimation of an unbiased error rate. The 

algorithm draws n bootstrap samples from the original data and grows regression trees where at 

each node it chooses the best split among variables (Breiman, 2001, Liaw and Wiener, 2002). 

Prediction accuracy can then be estimated for each predictor variable permutation. This approach 

then takes the averaged difference between the two accuracies and normalizes by the standard 

error over all trees. Further, the mean squared error (MSE) is calculated on the out-of-bag data 

and variable permutation (Liaw and Wiener, 2002). These differences are then averaged and 

normalized by the standard error (Bylander, 2002). Sensitivity results are measured with regards 

to variable importance measures model improvement when splits are made on an individual 

predictor (Wei et al, 2015). Relative importance is defined as a percentage of model 

improvement with respect to the top predictor. Predictor variables are then scored relative to 

other variables (Archer and Kimes, 2007). We then constructed variable importance plots in 

descending order. Lastly, we constructed tornado diagrams which depict graphically how much 

of the variation in data inputs (i.e., RF model predictor variables) affect each subsequent model 
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result, conditional to the mean. Larger widths indicating variation in the inputs had the greatest 

effect on the modeled results. 

4.3.5.3 Model validation 

The benchmarking of model results against other estimates provides validity and 

confidence to reasonable estimates as well as upper and lower limits of C stocks and stock 

changes. Although models may vary methodologically, we compared forest C stock densities and 

fluxes against both FIADB derived biomass estimates and other remotely-sensed derived 

regional estimates to assess agreement or disagreement in other approaches as this had yet to be 

regarding the results published in Papa et al, (2023). To validate our model results against similar 

estimates, we compared historical baselines of C densities and C stocks to model outputs with 

estimates of two other inventory-based estimates aggregated at the state level of Maryland from 

2010-2019 as well as a variety of published remotely-sensed estimates.  

First, we estimated biomass using the component ratio method (FIAcrm) which provides 

nationally consistent biomass estimates by using tree attributes to estimate tree volume which is 

converted to biomass using compiled sets of species-specific specific gravities and proportions of 

tops, limbs, and stumps (Jenkins et al, 2003, Heath et al, 2009, Woodall et al, 2011). For this 

method, we used the FIADB which we accessed through the FIA DataMart (USDA Forest 

Service, 2024) using the rFIA package (Stanke et al, 2020) to estimate C density. Second, we 

compared our modeled estimates of C stock density against both the FIAcrm method and revised 

FIA estimates published in Walters et al, (2023) which utilize the new National Scale Volume 

and Biomass Estimators (NSVB) providing improvements in consistency and accuracy of 

accounting of structured components of trees, biomass, and carbon (Westfall et al, 2024). 

Importantly, definitions of soil and litter pools varied between the methodologies, but the CBM 
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results were redefined to better match FIA definitions. In addition to inventory-based 

comparisons, we compared model estimates of C stock densities and total statewide C stocks 

against remotely-sensed derived estimates (Wang et al, 2018, Huang et al, 2019, Hurtt et al, 

2019, MDE, 2023). When possible, we compared both mean values and confidence intervals, if 

reported. Lastly, we directly compared a temporal trend in total ecosystem stock density change 

against those previously published in Walters et al, (2023). 

4.4 Results 

4.4.1 Carbon fluxes 

While the net C sink is predicted to decline (Figure 7), it remains a net sink for the 

entirety of the simulation with only minimal drops in the timber supply (Figure 7) consistent 

with Papa et al, (2023). Additionally, our results show a minimal decrease in C transferred to 

HWP primarily driven by a lack of eligible forest records that met the criteria to be harvested. 

Average 95% CI width was 0.26 MMT CO2e and 0.22 MMT CO2e for NBP and HWP 

respectively. The average annual flux for NBP was -0.41 MMT CO2e. Whereas, C transferred to 

HWP products had an average annual flux of 1.30 MMT CO2e noting this is not an 

instantaneous emission and a transfer of C. 

 The largest relative difference between simulation and BAU medians was NEP (2.37%) 

followed by NBP (2.16%). Disturbance release, net growth, and NPP had the next largest 

difference, albeit relatively smaller differences. NBP had the largest CI width (0.26 MMT CO2e 

yr-1, or ±31.7%) and standard error (0.067) suggesting that disturbance remains an important 

driver of C dynamics (Table 5). NEP and decay showed the two smallest average CI widths of 

0.124 MMT CO2e yr-1 and 0.111 MMT CO2e yr-1 (Figure 8). Turnover had the largest average 



 

 66 

CI width of 0.237 MMT CO2e yr-1. Finally, CI width for NPP increased the largest amount as 

compared to other ecosystem indicators. 

 

Figure 7. Estimates for annual flux rates of (a) Net Biome Productivity and (b) C transferred to 
HWPs with associated uncertainty for all forestland in Maryland (2007-2050) in MMT CO2e. 
The solid lines represent the 50th percentile (median) and the dashed lines represent the 2.5th and 
97.5th percentiles of 100 bootstrapped totals. NBP represents total ecosystem productivity minus 
carbon transferred to harvest wood products sector and other disturbance related emissions; 
negative values denote net sequestration. Positive values for carbon transferred to harvested 
wood products represent a removal of carbon from the ecosystem. The bottom panels represent 
the CI width (97.5th - 2.5th percentiles). Red dashed lines show simulation projection point 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 67 

Table 5. Median values (2007–2050) for ecosystem carbon flux components in the simulations 
(97.5th, 50th, and 2.5th percentiles) and for default parameter values, as well as the percentile at 
which the default value lies in the simulations and the difference between the simulation median 
and the default estimate, in both relative (%) and absolute (MMT CO2e yr-1) terms 

Carbon flux 
component 2.5th 50th 97.5th se 

BAU 
median 
default 
value 

Relative 
difference 

(%) 
Absolute 
difference 

Net primary 
productivity 

-21.768 -21.696 -21.624 0.037 -21.65 0.213 -0.046 

Litterfall 18.816 18.870 18.924 0.027 18.849 0.109 0.021 
Net growth 2.770 2.825 2.881 0.030 2.818 0.222 0.006 
Heterotrophic 
respiration 

19.901 19.956 20.009 0.028 19.945 0.057 0.011 

Net ecosystem 
productivity 

-1.800 -1.747 -1.687 0.032 -1.707 2.372 0.040 

Disturbance 
releases 

1.203 1.316 1.423 0.055 1.324 0.611 0.008 

Net biome 
productivity 

-0.542 -0.406 -0.293 0.067 -0.398 2.155 0.009 

Disturbance 
transfers 

1.189 1.300 1.408 0.055 1.309 0.658 0.009 

 
Amount individual turnover parameters, other C to soil which includes non-merchantable 

biomass pools such as stumps, tops, and branches had the largest standard error (Table 6). The 

two largest turnover fluxes, in terms of absolute values, were foliage C (9.044 MMT CO2e yr-1) 

and Fine root C (4.699 MMT CO2e yr-1). Foliage C had an average annual flux of 9.044 MMT 

CO2e and a CI width of 0.072 MMT CO2e. Inversely, fine root C to soil saw an annual average 

flux of 4.699 MMT CO2e and an average CI width of 0.013. Very fast aboveground decay and 

slow aboveground decay had the largest standard errors of decay parameters. These two decay 

parameters also had the largest median values of 9.236 MMT CO2e and 3.066 MMT CO2e yr-1. 

The fast belowground and fast aboveground pools had the next largest annual flux of 2.095 

MMT CO2e and 1.945 MMT CO2e, respectively. 
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Figure 8. Estimates for (a) net ecosystem productivity; (b) net primary productivity; (c) 
turnover; and (d) decay rates with associated uncertainty for all forestland in Maryland (2007-
2050) in MMT CO2e. The solid lines represent the 50th percentile (median) and the dashed lines 
represent the 2.5th and 97.5th percentiles of 100 bootstrapped totals. Negative values for growth 
denote a net sequestration whereas positive values for decay rates denotes a positive emission to 
the atmosphere. Positive values for turnover rates denotes the amount of carbon transferred from 
living biomass C pools to DOM pools. The bottom panels represent the CI width (97.5th - 2.5th 
percentiles). Red dashed lines show simulation projection point 
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Table 6. Median values (2007-2050) for turnover and decay parameters by component for the 
Monte Carlo simulation results (97.5th, 50th, and 2.5th percentiles) and for BAU default 
parameters, as well as the percentile at which the default value lies in the simulations and the 
difference between the simulation median and the default estimate, in both relative (%) and 
absolute (MMT CO2e yr-1) terms 

Carbon flux 
component 2.5th 50th 97.5th se 

BAU 
median 
default 
value 

Relative 
difference 

(%) 
Absolute 
difference 

Turnover Parameters 
Total biomass to 
soil 

20.515 20.63 20.747 0.237 20.563 0.327 0.067 

Merchantable C to 
soil 

1.786 1.813 1.84 0.056 1.815 0.133 0.002 

Foliage C to soil 9.008 9.044 9.081 0.072 9.024 0.225 0.020 
Other C to soil 3.289 3.342 3.391 0.109 3.332 0.295 0.010 
Coarse root C to 
soil 

1.613 1.641 1.669 0.056 1.646 0.290 0.005 

Fine root C to soil 4.69 4.699 4.71 0.013 4.699 0.003 0.001 
Decay Parameters 
Total heterotrophic 
respiration 

19.896 19.951 20.003 0.028 19.945 0.032 0.006 

Very fast 
aboveground 

9.207 9.236 9.266 0.015 9.224 0.134 0.012 

Fast aboveground 1.938 1.945 1.953 0.004 1.945 0.015 0.001 
Slow aboveground 3.033 3.066 3.095 0.015 3.068 0.074 0.002 
Medium 0.618 0.623 0.629 0.002 0.623 0.078 0.001 
Very fast 
belowground 

0.871 0.879 0.887 0.004 0.877 0.208 0.002 

Fast belowground 2.090 2.095 2.100 0.003 2.092 0.109 0.002 
Slow belowground 1.362 1.366 1.369 0.002 1.367 0.063 0.001 
Stem Snag 0.428 0.43 0.432 0.001 0.430 0.172 0.001 
Branch Snag 0.255 0.257 0.258 0.001 0.257 0.184 0.001 

 
4.4.2 Carbon stocks 

All carbon pools and total ecosystem C stock density CI width increased over time, 

implying that disturbance has a large impact of C stock density following model initialization of 

C pools (Figure 9). Increases in soil C and deadwood pools are consistent with the results 

showing larger annual biomass turnover than decay throughout the simulation. Even though C 

stock density varied across pools, total C stocks statewide increased as the forests remain a net 

sink throughout the simulation. Fluctuations in C stock density was largely driven by changes in 
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the forest area, where forest area initially decreases but eventually begins to increase in 2028. 

Total ecosystem C density had an average of 281.14 Mg C ha-1 across the simulation and the 

highest average CI width of 0.959 Mg C ha-1 (Figure 9).  

 For individual C pools, aboveground biomass had the largest simulation CI width of 

0.511 Mg C ha-1. Soil C has the largest overall stock density of 116.12 Mg C ha-1 with an average 

CI width of 0.46 Mg C ha-1. Total ecosystem C and slow C belowground had the two largest 

standard errors of 0.258 and 0.125 respectively (Table 7). Merchantable C had the largest 

average CI width of 0.343 Mg C ha-1 (Table 7). Branch snag C and stem snag C had the two 

largest median differences of 0.393% and 0.167% suggesting that variation in disturbances has 

an important effect on dead wood dynamics. 
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Figure 9. Estimates of carbon density (Mg C ha-1) for total ecosystem C (a), aboveground 
biomass (b), belowground biomass C (c), deadwood (d), litter (e), and soil (g) with associated 
uncertainty for all Maryland forestlands (2007-2050) in Tg C ha-1. Solid line represents the 50th 
percentile (median) where dashed lines represent the 2.5th and 97.5th percentiles from 100 
bootstrapped totals. The bottom panels represent that CI width (97.5th – 2.5th percentiles). Red 
dashed lines show simulation projection point 
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Table 7. Median values (2007-2050) for carbon stock density (Mg C ha-1) by pool component 
for the Monte Carlo simulation results (97.5th, 50th, and 2.5th percentiles) and for BAU default 
parameters, as well as the percentile at which the default value lies in the simulations and the 
difference between the simulation median and the default estimate, in both relative (%) and 
absolute terms (Tg C ha-1) 

Carbon stock 
density by 
component 2.5th 50th 97.5th se 

BAU median 
default value 

Relative 
difference 

(%) 
Absolute 
difference 

Total Ecosystem 
C 

280.774 281.278 281.746 0.258 281.026 0.09 0.252 

Merchantable C 59.064 59.265 59.479 0.087 59.232 0.055 0.033 
Foliage C 3.396 3.408 3.42 0.006 3.408 0.003 0.001 
Other C 18.876 18.963 19.044 0.043 18.961 0.010 0.002 
Coarse Root C 15.528 15.56 15.596 0.018 15.547 0.081 0.013 
Fine Root C 2.003 2.005 2.006 0.001 2.004 0.025 0.001 
Stem Snag C 7.515 7.549 7.585 0.018 7.519 0.393 0.030 
Branch Snag C 1.104 1.109 1.117 0.003 1.111 0.167 0.002 
Very Fast C 
Aboveground 

5.722 5.74 5.757 0.009 5.739 0.024 0.001 

Very Fast C 
Belowground 

0.651 0.652 0.655 0.001 0.652 0.068 0.001 

Fast C 
Aboveground 

6.052 6.103 6.163 0.028 6.115 0.194 0.012 

Fast C 
Belowground 

1.232 1.242 1.252 0.004 1.242 0.007 0.001 

Medium C 7.486 7.554 7.617 0.032 7.55 0.053 0.004 
Slow C 
Aboveground 

37.919 38.008 38.101 0.046 37.996 0.031 0.012 

Slow C 
Belowground 

113.958 114.205 114.442 0.125 114.257 0.045 0.052 

 
4.4.3 Model sensitivity to disturbance 

4.4.3.1 Turnover and decay sensitivity by component 

Belowground very fast DOM emissions (i.e., labile root materials) and aboveground slow 

DOM emissions (i.e., coarser woody debris, Figure 10) were the most important variables in 

determining total decay sensitivity. Both aboveground very fast DOM and belowground very fast 

DOM emissions have stronger negative influences on decay rates whereas aboveground slow 

DOM and belowground slow DOM have stronger positive influence on decay rates (Figure 10). 

Total biomass turnover was most sensitive to foliage turnover rates (Figure 10). The total 
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turnover remained significantly less sensitive to other biomass turnover rates. Both the upper and 

lower limits for foliage turnover have the largest overall range of sensitivity (Figure 10). 

 

 
Figure 10. Relative importance and sensitivity of decay rates (a, b) and biomass turnover (c, d) 
by individual component to variation in disturbance amount from the random forest model. 
Variable importance (panels a and c) is determined by mean change in accuracy scaled by its 
standard deviation. Panels b and d show the 90% confidence interval in tCO2e for each 
component part for biomass turnover and decay rates 
 
4.4.3.2 Ecosystem indicator sensitivity by disturbance 

Biomass turnover to soil caused directly by disturbances (i.e., not annual ecosystem 

processes such as litterfall) was highly sensitive to harvest rates (Figure 11). Total DOM 

emission rates remained most sensitive to rates of disease disturbances; however, harvest, LUC, 

and defoliator events were also influential (Figure 11). While LUC and harvest were ranked 

higher in variable importance, the tornado plots suggest fire and harvest have important  
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Figure 11. Sensitivity and relative importance of biomass to soil from disturbance (a, b), total 
DOM emissions (c, d), total biomass emissions (e, f), and net biome productivity (g, h) to 
variation in disturbance amount by disturbance type from the random forest model. Variable 
importance (panels a, c, e, and g) is determined by mean change in accuracy scaled by its 
standard deviation. Panels b, d, f, and h show the 90% confidence interval in tCO2e for each 
disturbance type for each major ecosystem flux or emission 
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implications to the overall range of sensitivity values, showing the largest range in values from 

the mean (Figure 11). Total biomass emissions and net biome productivity suggest that LUC and 

harvest disturbances are the most important to determining model sensitivity (Figure 11 and 

Figure 11). 

4.4.4 Model comparison and validation 

Our model estimates of carbon stock densities are comparable to other inventory-based 

and remotely-sensed estimates averaged across 2010-2019. For inventory-based assessments 

(Table 8), total ecosystem C stock densities from our results varied by -7% to +9% when 

compared to FIAcrm and revised FIA estimates from Walters et al, (2023). The largest 

differences occurred in aboveground, deadwood, and soil C densities. Compared to remotely-

sensed estimates of C stocks, our aboveground C density estimates fell within ranges reported by 

Huang et al, (2019) of 49.8-93.8 Mg C ha-1. However, Hurtt et al, (2019) estimated an average 

aboveground C density 51.85 Mg C ha-1 which was substantially lower (-40%) than our results. 

Wang et al, (2018) estimated ranges for aboveground C density of 0-200 Mg C ha-1, but does not 

provide any averaged values, making it difficult to draw direct comparisons other than that our 

estimates fall well within that range. The averaged remotely-sensed estimates of C density vary -

40% to +14% as compared to our results. 
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Table 8. Comparison of C density to other modeled estimates of C density (Mg C ha-1) for 
Maryland forests from average across 2010-2019. The definition of litter was changed from the 
definition in the CBM-CFS3 framework which includes a portion of organic soil to reflect 
definitions used more closely in the other studies. Definitions for carbon pools do not always 
remain consistent across studies, but CBM results were redefined to match FIA definitions. 
FIAcrm method is only estimated from 2014-2019 which comprises of the most recent complete 
inventory window 
Carbon Pool CBM-CFS3 se FIAcrm se Walters se 
AGB 81.86 0.066 92.08 0.711 88.64 - 
BGB 17.60 0.009 16.18 0.122 16.92 - 
Deadwood 16.66 0.023 20.00 0.147 6.18 - 
Litter 11.92 0.027 13.35 0.045 13.34 - 
Soil C 115.13 0.078 113.57 0.211 101.43 - 
Total 
ecosystem C 

243.08 0.194 256.18 0.985 226.51 - 

 
When comparing estimates to remotely-sensed estimates of total statewide C stocks, our 

results estimated an average total C stock of 81.1 Tg C for aboveground biomass and 98.5 Tg C 

for total biomass for all forestlands from 2010-2019. The Maryland 2020 GHG inventory (MDE, 

2023) estimated 115 Tg C for aboveground biomass for the same time period, which is 

approximately 41% larger than our estimate. Hurtt et al, (2019) reported statewide aboveground 

C stocks of 110.8 Tg C (100.3-125.9 Tg C), which corresponds to a 36.6% increase over our 

results. Huang et al, (2015) report a range of values for both aboveground biomass, 97.2 – 146.6 

Tg C, and total biomass, 125.5 – 175.8 Tg C, which are both larger than our estimates. These 

remotely-sensed estimates of statewide biomass consistently estimated larger aboveground 

biomass stocks of 20-80%, whereas total biomass C varied 27-78% larger than our results.  

Lastly, we compared temporal trends in C stock density from 2010-2019 against Walters 

et al, (2023). Both estimates increase in C density across the simulation (Figure 12). However, 

estimates from Walters et al, (2023) increased at a substantially higher rate when compared to 

our estimates. This is consistent with Walters et al, (2023) larger annual net C flux of -3.32 
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MMT CO2e yr-1 estimate as compared to -0.61 MMT CO2e yr-1 for our model results suggesting 

significant differences in productivity and emissions.  

 

 
 

Figure 12. Trend in ecosystem C stock density (Mg C ha-1) for CBM-CFS3 results and estimates 
published in Walters et al, (2023)  
 
4.5 Discussion 

There has been increasing emphasis on developing and advancing methods for ecosystem 

models that contain process-based elements to more holistically understand uncertainty, model 

calibration, model diagnostics with the aim to improve robust decision-making (Pianosi et al, 

2016, Razavi et al, 2021). Analyzing the effects of and sensitivity to input parameter variation 

provides more detailed insights into the subjectivity of a model and the influence of data 

distributions of the inputs (Haghnegahdar and Razavi, 2017, Haghnegahdar et al, 2017). To date, 

few studies have attempted to systematically assess forest C models that employ a “gain-loss” 
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approach such as the CBM-CFS3 modeling framework. Furthermore, diagnosing possible model 

deficiencies allows for future improvements and enhancements of decision-making applications 

for similar approaches (Pappas et al, 2013, Razavi and Gupta, 2015). This further emphasizes the 

importance of our study to advance methods of model characterization and diagnostics in support 

of forest planning and policy creation. 

Improving both management activities and policy requires refined projections of forest 

carbon dynamics and the interaction with human management and natural disturbances, which 

requires reducing uncertainty in forecasting forest C dynamics. Improved models allow 

policymakers and planners to lower the risk of ecosystem failure under global climate change 

(Tulloch et al, 2020). This study quantified model variability and sensitivity by constructing 

confidence intervals and characterizing model sensitivities to variation in disturbance input data, 

and then, validating model results against other estimates of forest carbon for Maryland’s forests. 

Our results suggest that even with variation in disturbances, Maryland’s forests are projected to 

remain a net sink until 2050, albeit with significant weakening of the sink strength over time. In 

addition to, providing increased understanding in how shifting disturbance regimes may impact 

an empirically-derived process-based model with direct decision-support applications for forest 

management.  

4.5.1 Opportunities to improve forest carbon assessments 

Comparing results across analyses remains challenging due to differences in model 

configurations and uncertainty profiles. Stinson et al, (2010), which used the CBM-CFS3, 

suggests annual emissions are highly sensitive to widespread and severe disturbances in 

Canadian forests. However, Metsaranta et al, (2017) suggests that growth and soil C dynamics 

are more impactful than disturbance in determining CBM-CFS3 uncertainty. This result partially 
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contradicts results in Smyth and Kurz, (2013) which suggests that dead organic matter C stocks 

were insensitive to variations in model parameters. Our results do suggest that variation in 

disturbances have larger effects on live aboveground biomass and labile dead organic matter 

pools whereas recalcitrant dead organic matter pools have lower variation except for soil C 

(Table 6). These results reflect recent findings suggesting that labile root inputs are 

approximately five times more likely to be stabilized as soil organic matter than aboveground 

litter (Jackson et al, 2017).  

Our specific approach allows for comparison to a similar analysis conducted by 

Metsaranta et al, (2017) which suggested that biomass increments, and decay parameters are the 

largest sources of uncertainty within the CBM-CFS3. Results are consistent with other 

ecosystem model approaches including across regional (Richardson et al, 2010, Xiao et al, 

2014), national (Peltoniemi et al, 2006), and global (Todd-Brown et al, 2013) scales where the 

largest contributors to uncertainty are model parameters (Xiao et al, 2014). Our results suggest 

that changes to productivity and decay – which are driven in part by disturbance dynamics – 

influence net C balances aligning with recent evidence across the US with uncertainty towards 

future C sink strength (Hogan et al, 2024). Other studies suggest that insufficient sample sizes of 

inventory data can limit Monte Carlo approaches to estimating net C balances (Magnussen et al, 

2014). However, this is somewhat ameliorated in this study by leveraging a nationally-consistent 

inventory database (Yanai et al, 2023). 

Directly comparing results of our analysis with other assessments of forest C estimation 

remains challenging due to different model purposes, unique model configurations, legacies of 

model code, and the processes they represent (Metsaranta et al, 2017, Bugmann and Seidl, 2022). 

For example, we found it challenging to compare our modeled results to other estimates of C 
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stocks and fluxes as definitions of forestlands varied, which treed systems were included (i.e., all 

treed systems included woodlands and urban canopies versus FIA definitions of forestlands), 

core assumptions around methodological approaches, model structure differences, and varying 

degrees of opacity with regards to detailed peer-reviewed methodologies. Other studies suggest 

that omissions of certain land use classifications can contribute significantly to model 

uncertainties (McGlynn et al, 2022). However, we still found it beneficial to benchmark our 

estimates (Table 8 and Figure 12) against previously published estimates to better compare the 

benefits and biases of different approaches. There is a growing need to understand differences 

across modeling approaches and the ramifications of model assumptions with a specific focus on 

improving the usability of models for planning and policy applications (Pretzsch et al, 2008). 

Multiple paths exist for future emphasis on analyses seeking to characterize the effects of 

and sensitivity to forest disturbance including 1) emphasis on the process and implementation of 

approaches or 2) improving representation of ecological processes in models including further 

integrating climate change impacts and inclusion of inherent methods to quantify sources of 

uncertainty (Klug and Kmoch, 2015, Dietze et al, 2017, McGlynn et al, 2022). Additional 

emphasis can be placed on understanding the interpretation of results across spatial scales and 

implications of those results to inform decision-making (Beier et al, 2016, Bodner et al, 2021). 

For example, statewide forest planning versus management planning of a specific forest has very 

different implications for decision-making that reflect selecting appropriate methods to quantify 

both C accounting and associated uncertainties. 

4.5.2 Impacts of forest management on carbon trajectories 

Our results suggest that harvest, LUC, and disease play an important role in determining 

biomass turnover and decay rates as well as dictating future forest productivity. This finding 
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agrees with other system level studies that included temperate mixed forests (Metsaranta et al, 

2010, Yuan et al, 2019) and national scale studies (Williams et al, 2016). Additionally, our study 

suggests long-term management can balance timber supply with ecosystem productivity to 

sustain a net C sink in working forests (Figures 7). Where, timber production has the potential to 

provide additional carbon storage as a long-lived durable wood product and economically sustain 

a forest products sector which often provides a substantial portion of the financing for forest 

management (Mckinley et al, 2011; Petersson et al, 2022; Skog, 2008). While this area deserves 

more attention, long-lived HWP may provide additional substitution benefits through the 

replacement of fossil-based materials, products, and energy with sustainable source forest fiber 

and biomass (Geng et al, 2017; Howard et al, 2021) further boosting the climate mitigation 

potential of forest products (Sharma and Malaviya, 2023).  

One of the single largest threats to both forest health and forest C stocks and future 

sequestration potential is human-caused global climate change and the subsequent future risk of 

disturbance (Allen et al, 2015, Seidl et al, 2017, McDowell et al, 2020) and could potentially 

offset future net positive changes in forest C stocks national (Williams et al, 2016). Uncertainty 

around the future risk driven of tree mortality driven by the confluence of drought and disease 

pressures should be an area of increased focused going forward (Teshome et al, 2020, Hartmann 

et al, 2022, McDowell et al, 2022)   Our results corroborate that future disturbance regimes – 

including both anthropogenic and natural disturbances – can have substantial impacts on forest C 

trajectories. Climate change induced risk necessitates further evaluation of intensifying 

disturbance regimes caused by climate change due to varying effects of the type and severity of 

disturbance on net ecosystem C balances (Thom and Seidl, 2015). 
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Prioritizing forest resilience and adaptive capacity in management provides a suite of 

opportunities to ensure the needs of society are met without compromising future benefits of 

forests (Seidl and Lexer, 2013; Falk et al, 2022). Future priorities of forest management should 

consider the increasing importance of new and novel pests and diseases (Roberts et al, 2020), 

alterations to habitat distributions (Iverson et al, 2008), increasing frequency in drought and fire 

(Allen et al, 2015). Doing so allows for the prioritization of multiple benefits and goals in 

addition to carbon specific goals (Littlefield and D’Amato, 2022). This could potentially serve as 

a key mechanism to optimize C balances over multiple spatial scales and time horizons without 

minimizing other integral forest co-benefits. 

4.5.3 Knowledge gaps and future research 

This study only seeks to assess and characterize model variation and sensitivity with 

regards to specific disturbance parameters derived from the input data distributions and 

estimates. While we identify other areas that variation may arise (Appendix C), we did not 

attempt to estimate or characterize variation related to these sources including random stand 

selection, biomass increments, DOM C pool initialization, model parameters for turnover and 

decay, tree allometry and C fraction, error associated with inventory estimates, and other 

uncertainty that may arise from model structure. It is likely that these factors may significantly 

influence results from the CBM-CFS3 modeling framework. Furthermore, issues such as climate 

change – including changes to tree mortality and productivity – as well as uncertainty around 

future LUC most likely increases the range of variation in future C stocks and fluxes. 

Our results suggest that the net C balance of Maryland’s forests is dominated by net 

primary productivity, decay, and harvest removals. Changes to environmental conditions such as 

CO2 fertilizations, nitrogen depositions, changes to moisture regimes, and other climate forcings 
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including shifts in albedo will continue to have large impacts on ecosystem fluxes but were 

largely outside the purview of this study. Future operational-scale models need to incorporate 

more process-based elements such as these to continue to reduce forecasting uncertainties. 

Finding synergies across model approaches and leveraging different advantages across 

methodologies serves as one example where the diversity in approaches can be seen as a strength 

(Bugmann and Seidl, 2022, Sleeter et al, 2022). Efforts should continue to focus on addressing 

discrepancies between areas where approaches disagree and focus on how to further integrate 

remote sensing data and improve ecophysiological representation into empirically derived 

models used in forecasting. Furthermore, improved benchmarking of forest C estimates requires 

continued advancements in measuring and monitoring of forest carbon to both improve model 

assumptions and validate model results (Novick et al, 2022b). 

Community dynamics such as interactions between forest demographics, site conditions, 

impacts of natural disturbances, regeneration, and species competition play an outsized role in 

determining forest C balance (Ekhold et al, 2023). By necessity, models such as the CBM-CFS3 

implicitly capture some of these dynamics within the growth-yield relationships to estimate 

forest productivity. Increased understanding of how species life history strategies interact with 

disturbance, competition, and growth conditions serve to further inform forest planning and 

decision-making. As of now, these factors are not explicitly captured but future analytical 

refinements should consider further integrating new and novel scientific information across 

disciplines and data to refine forecasting ability. Our study does not incorporate information 

about future states of ecosystem and growing conditions such as shifts to habitat suitability, 

species migration, biodiversity, and changes to the adaptive capacity or resilience of forests. 
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Lastly, our study only considered carbon dynamics within the forest ecosystem and did 

not track C that left the forest for the forest products sector. Future research should focus on 

furthering methods to incorporate and quantify uncertainty related to the storage of C in short- 

and long-lived HWP (Jasinevivius et al, 2015). Substitution benefits from durable long-lived 

wood products and bioenergy are poorly understood (Birdsey et al, 2023). Quantification of 

displacement factors of substituting wood for other carbon intensive materials is an additional 

area that necessitates future focus (Myllyviita et al, 2021). Additional methodological 

approaches should focus on further refining, improving, and reducing uncertainty estimates for 

forest C models. Increasing both the precision and accuracy of model predictions further 

facilitates forest management and policy decision-making in support of reducing climate change 

impacts. Forecasting of future carbon dynamics provides a wealth of information to managers 

and policymakers to assist decision support in achieving those goals (Bodner et al, 2021). For 

example, quantification of the magnitude of future C sink or source strength can inform 

management activities to improve both climate benefits and forest resilience. Where, continuing 

to leverage operational or landscape scale models serve to provide strengths for forest policy and 

planning at the subregional level (Kurz et al, 2009).   

4.6 Conclusion 

Utilizing a Monte Carlo simulation approach, we estimated and characterized variation in 

net C balances in Maryland’s forests contributed from shifting disturbance regimes. Our results 

suggest that Maryland forestland will remain a net C sink through 2050 without substantially 

reducing future timber supplies even with increases in the extent and severity of forest 

disturbances. Additionally, we quantified CBM-CFS3 model sensitivity to natural and 

anthropogenic disturbance with regards to turnover and decay components and major ecosystem 
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fluxes. Our results suggest major ecosystem components were most sensitive to rates LUC, 

harvest, and disease outbreaks increasing understanding of the magnitude in which these factors 

may affect future forest C balances. Lastly, we validated and compared estimates of C density 

and stocks against both inventory-based and remotely-sensed estimates for Maryland. Our results 

demonstrate an advancement in assessing both model potential and reducing uncertainty in forest 

C budgets within an empirically derived processed-based modeling approach. 

While our results suggest that Maryland’s forests are projected to remain a net C sink, the 

strength of the forest C sink is projected to weaken through the middle of the century. Carbon 

densities by ecosystem component varied over the simulation but remained relatively stable at 

the ecosystem level. Our results also suggested certain disturbance regimes may lead to larger C 

stocks in soil and dead organic material and lower C stocks in living biomass. Further 

management and policy actions that focus on boosting forest health and resilience in addition to 

conserving forestland can be enacted now to increase the relative strength of the net C sink 

without hampering future adaptive capacity and resilience of Maryland’s forests. 

A variety of methods exist to estimate C balance in managed forests in Maryland, but few 

methods provide uncertainty with estimates or assessments of how model parameters are affected 

by disturbance. Continued refinement and advancement of uncertainty and sensitivity methods is 

required to address gaps in the monitoring, observation, and quantification of forest C dynamics 

in particular managed forests in the eastern US. Addressing the climate crisis necessitates multi-

sector actions, but improving quantification of forest C balances significantly contributes to 

meeting cross-sector collaborations to meet net-zero emission targets. 
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CHAPTER 5 

OUTCOMES AND IMPLICATIONS FOR FOREST POLICY AND PLANNING 

5.1  Research Synthesis 

The preceding chapters explored various aspects of forest carbon and the use of forest 

carbon models to inform policy and planning by improving both the understanding of barriers to 

utilization and furthering methodological approaches to quantify forest contributions to net-zero 

GHG emission targets. Chapter 2 identified gaps and barriers to further integrating forest carbon 

models and science into policy and planning along with developing a framework to bridge the 

divide. Chapter 3 developed a business-as-usual simulation for Maryland and Pennsylvania 

forestlands and a suite of climate-smart forest management and wood utilization scenarios to 

quantify contributions of forests to net-zero GHG targets informing future management and 

policy planning. Chapter 4 further advanced methodological approaches and understanding of 

CBM-CFS3 model sensitivities to disturbance, a major driver of forest carbon dynamics, using a 

tier 3 IPCC compliant modeling framework improving projections of future management actions. 

These results have critical implications for future forest planning and policy as implementation 

and planning around natural climate solutions continues from local to national levels. 

 Analysis of gaps and barriers to further integrating forest carbon science and data into 

policy and planning (chapter 2) identified five areas where significant gaps occur including: 1) 

forest carbon science: inventorying and carbon estimation, 2) forest management behavior, 3) 

harvested wood products (HWPs), wood utilization, and carbon storage, 4) forecasting: forest 

carbon simulations and future pathway assessments, and 5) communication of results to inform 

public and private decision-making. Additionally, chapter 2 identified regional forest carbon 

initiatives, motivations, and policy interests to better inform ways to circumvent barriers 
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preventing integration of scientific knowledge into forest policy and planning. With these results, 

a framework was developed to bridge the science-practice gap in forest carbon science through: 

1) improved data, tools, and models to assess trends and statuses of forests; 2) enhanced carbon 

science training among state forest practitioners and decision-makers; and 3) effective science-

based communication for decision-makers and general audiences. The science-practice gap is not 

new (Kirchhoff et al, 2013, Cooper and Macfarlane, 2023), but through participatory engagement 

and targeted education and communication, these efforts can inform policy and on-the-ground 

management (Hedelin et al, 2021). Ideally leading to sound decision-making through providing 

more effective guidance to improve forest carbon science, policy, and management outcomes 

through science-based communication and education (Anderson, 2013, O’Connell and 

McKinnon 2021). 

 Chapter 3 developed a suite of participatory model simulations to analyze potential trade-

offs between climate-smart forestry, wood utilization strategies, and a continuation of business-

as-usual practices. Results showed that implementing a variety of climate-smart forestry 

practices can provide substantial climate change mitigation potential, increasing the forest C sink 

by 29% in Maryland and 38% in Pennsylvania by 2030 as compared to the business-as-usual 

simulation without disrupting timber supplies.  Informed by state-wide priorities and concerns 

for forest management, the modeled scenarios examined various forest management activities 

including maintaining and increasing forest extent, fostering forest resiliency and natural 

regeneration, encouraging sustainable harvest practices, balancing timber supply and wood 

utilization with tree growth and preparing for potential future impacts of climate change. The 

results of this study furthers a growing body of literature examining and quantifying future 

potential relationships between forest growth, forest disturbance, and harvest wood product 
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utilization. Results such as these may provide valuable information to forest managers and 

planners when designing and implementing management activities for climate benefits while 

properly balancing trade-offs, risks, and uncertainties associated with the complex interactions of 

managing forests and the forest product sectors (McKinley et al, 2011, Yuan et al, 2019, 

Littlefield and D’Amato, 2022).  

 Chapter 4 used a Monte Carlo approach and random forest model to assess and 

characterize variation and sensitivity of Maryland’s project forest carbon sink until 2050 in 

response to changes in disturbance frequency and severity. Anthropogenic activities, such as 

harvest, and other natural disturbances remain an important driver to forest carbon dynamics in 

the eastern United States. However, significant uncertainties remain in quantifying the potential 

contribution of forests to net-zero GHG emission targets (Cook-Patton et al, 2020, Pugh et al, 

2020, Mo et al, 2023, Wu et al, 2023, Lamb et al, 2024). The results of this study suggest that 

both human and natural disturbances including land-use change remain important drivers to the 

strength of forest carbon sinks. Additionally, the results suggest that major ecosystem fluxes 

within the CBM-CFS3 modeling framework remain sensitive to variation in disturbance. 

However, potentially to a lesser degree than other model parameters such as process-based 

equations to model biomass and turnover, modeling initialization, and estimates of forest 

productivity (Smyth et al, 2013, Metsaranta et al, 2017). This study supports a growing need to 

develop and implement robust and accessible tools for forest managers and practitioners to make 

better informed decisions regarding the trade-offs between management strategies (Bradford and 

D’Amato, 2012, Creutzburg et al, 2017, Schwaiger et al, 2019). Improving the efficacy of 

forecasting models to inform forest policy and planning empowers forest stakeholders by better 

informing the decision-making process (Yousefpour et al, 2017, Klapwijk et al, 2018). 
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 Together, these results suggest that concerted efforts now to reduce barriers of utilization 

of forest carbon models to inform forest policy and planning can provide valuable insights to 

decision-making for natural and working forestlands. The importance of forests in both climate 

change mitigation and adaptation will only increase in the coming years as recent studies suggest 

that current proposed mitigation activities globally, do not align with current temperature targets 

(Lamb et al, 2024). However, trade-offs between interdependent goals and co-benefits across 

both spatial and temporal scale will also increase in importance. The sustainable management of 

forests depends upon thoughtful stewardship practices and the balancing of multiple goals to 

foster resilient and healthy forests continue to provide the benefits in which human society relies 

upon. 

5.2  Future Research 

The previous analyses represented methodological improvements for quantifying future 

potential contributions of forests to net-zero GHG emission reduction goals as well as improving 

the integration of forest carbon science and data into forest policy and planning by identifying 

gaps and barriers and conducting a pathway analysis of potential mitigation strategies. However, 

areas of future work remain in terms of both methodological advancements and applications of 

those methods to inform important questions around future forest carbon dynamics and 

improving the efficacy of mitigation and adaptation outcomes through informed decision-

making. Future work will continue to build on the concepts to inform forest stewardship in direct 

contribution to increasing the resiliency and health of forests globally in an effort to limit the 

negative effects of unabated GHG emissions and subsequent climate warming. Presented below 

are a few specific areas of future research. 
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5.2.1  Further integrating models into policy and planning 

As more US states and local governments begin to adopt legislation and executive actions 

with the goal of reducing GHG emission, there is a growing need to understand how those policy 

levers will affect both forest ecosystems (Markkanen and Anger-Kraavi, 2019, Morecroft et al, 

2019) as well as socioeconomics (Chazdon et al, 2015). The needs across states and governance 

levels differ widely depending on region specific climate change threats and vulnerabilities, 

current capacities, and political will. Forest carbon models can be useful in helping to identify 

effective and politically feasible policy strategies (Jewel and Cherp, 2020) in addition to 

quantifying the potential impacts of enacting such policies (Hoppe et al, 2023). Increasing the 

transparency and verifiability of methodologies used to estimate potential carbon fluxes can shed 

new insights on the efficacy of voluntary offset mechanisms or other future mitigation actions 

specific to forests and the forest sector at large (Badgley et al, 2021, Jones and Lewis, 2023). 

 In addition to increasing the understanding of forest climate specific forest management 

through empirical studies (Torresan et al, 2021), there is a growing need to also identify gaps and 

barriers to landowner adoption of climate-smart forestry practices or adaptive silviculture 

(Mason et al, 2021). This is even more important in places such as the eastern US where 

forestlands are predominately private smallholder managed. The development of decision-

support tools to help in planning and management is critical to the success of proper forest 

stewardship in the face of climate change (Menzel et al, 2012, Acosta and Corral, 2017). 

Managers and landowners need to navigate an unprecedented time where the culmination of 

decisions now may not be realized for decades to come necessitating that the best available data, 

predictions, and decision-support tools be utilized to manage forested landscapes for a multitude 

of benefits.  
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 Continued refinements to methodologies used to account, monitor, and forecast forest 

dynamics is necessary to inform planning and management efforts (Novick et al, 2022a). 

Additional emphasis is needed on just assessing the impacts of specific management practices or 

policies on forest dynamics but the subsequent impacts on the forest products sector (Keith et al, 

2015). Alterations to harvest rotations and silvicultural regimes can have profound impacts on 

the socioeconomics of the forest products sectors and landowner incomes (Roberge et al, 2016) 

in turn potentially impacting management practices through perturbing the flow of finance from 

forest products to landowners (Favero et al, 2017). The creation of datasets that continue to 

represent diverse site conditions across forests can be used to benchmark modeling efforts used 

to assess impacts across policy-relevant scales (Coulston et al, 2014).  

 Improved implementation of modeling frameworks used in scenario or pathway 

assessments to understand potential trade-offs will only become more important as managers are 

asked to make decisions with large uncertainties and the impacts of those decisions that may not 

be observable over longer time periods (Maxwell et al, 2022, Cantarello et al, 2024). Lastly, 

significant knowledge gaps remain regarding the climate mitigation potential for the forest 

products sector and more specifically the substitution effects or wood utilization and the 

monitoring of leakage from forest carbon offset projects (Howard et al, 2021, Hurmekoski et al, 

2021). The current emphasis on carbon capture and storage from wood-based bioenergy and 

emissions from the wood product manufacturing process will also continue to increase as 

policymakers seek new and novel ways to boost the climate benefits of forest products in the 

near term (Petersson et al, 2022, Cantarello et al, 2024). 
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5.3  Concluding Remarks 

Addressing the climate crisis requires substantial reductions in global GHG emissions. 

However, forests will continue to provide a myriad of mitigative and adaptive benefits to help 

society cope with the negative effects of sustained climate warming. Near term climate 

mitigation from natural and working forestlands should not supplant the other crucial benefits 

forest provide such as fuel, fiber, and timber in addition to other regulating and supporting 

ecosystem services. The management of our global forests will require new and novel 

approaches to foster resilient and healthy forests in the face of a changing planet. While there is 

large disagreement on the best path forward with regards to forest management and planning, all 

relevant stakeholders need to continue an active dialogue informed by the best available 

scientific knowledge to continue to work together to advance the importance of forest 

conservation and management in combatting global climate change. 
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APPENDIX A: DETAILS ON SURVEY PROTOCOL 

Online survey introduction 

This survey has been designed to assess state-level forest carbon and harvested wood product 

inventory and modeling needs, including for data interpretation, results communication, and 

linkages with state policy and goals.  

 

The survey is part of the Forest Carbon Data and Modeling Integration and Evaluation Project, 

made possible with a grant from the U.S. Department of Agriculture, Forest Service Eastern 

Region. The project’s aims are to assess interest in and build capacity for forest carbon modeling 

among USFS Region 9 states. You are being asked to complete this survey as your skills, 

experiences, and perceptions will be helpful in identifying state-level capacities, motivations, and 

knowledge gaps. Please know that all responses are anonymous.  

 

A couple of clarification notes as you complete this survey:  

 

1) By ‘forest carbon’, we are referring to any of the five major carbon pools in terrestrial 

ecosystems (i.e., aboveground live, belowground live, aboveground dead, dead 

organic matter, and soil carbon), carbon fluxes between terrestrial carbon pools and 

carbon fluxes between forest carbon pools and the atmospheric carbon pool. 

 

2) Some questions ask about your “team’s” level of knowledge or experience, rather 

than solely your individual knowledge or experience. For the purposes of this survey, 

a “team” is defined as a group of people who perform interdependent tasks to 
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accomplish a common mission or specific objective, in this case forest carbon 

modeling and forest inventory and analysis. Depending on your position and role 

within your agency, your “team” could be large (e.g., the entire department, agency, 

or division), or small (e.g., your immediate workgroup).  Question 4 will ask you to 

briefly describe your “team” for the purposes of this survey. 

 

We anticipate 30-40 minutes for survey completion and are extremely grateful for your 

participation.  

 

Online survey questions and possible answers 

# Survey Question Possible 
Responses 

1 For which state do you work? Drop-down: all 
states and DC 

2 For which organization or agency do you work? Open-ended 
3 What is your position title? Open-ended 
4 As noted in the introduction to this survey, some of the following 

questions will ask about your team’s level of knowledge or 
experience. By “team”, we are referring to a group of people who 
perform interdependent tasks to accomplish a common mission or 
specific objective, in this case forest carbon modeling and 
inventorying. In a few words, please describe the “team” you work 
with on matters related to forest carbon modeling and/or forest 
inventory and analysis. 

Open-ended 

5 How would you categorize your team’s knowledge on the 
following forest inventorying topics? [rank 1-6]:  
 
A. Forest plot designs and how to establish forest plots 
B. Plot placement and spatial randomization of inventory plots 
C. Determining appropriate inventory methods and sampling 

design 
D. Identifying forest characteristics to be measured and why 
E. Scaling plot and subplot level measurements to either the stand, 

landscape, or regional level 

1) No knowledge; 
2) Limited 
knowledge; 3) 
Moderate 
knowledge; 4) 
Expert knowledge; 
5) Don’t know; 6) 
Don’t know what 
this refers to 
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F. Calculating forest biomass, carbon, basal area, or volume using 
plot measurements 

G. Mapping forest biomass, basal area, or volume estimates and 
uncertainty using remote sensing (e.g., LiDAR, satellite 
imagery) 
 

6 In which ways has your team used Forest Inventory and Analysis 
(FIA) and other forest inventory data? [1-5 – check all that apply]:  
A. Use of annual FIA produced reports and statistics 
B. Analysis/ estimation of summary statistics and forest 

characteristics using FIA online tools 
C. Analysis of forest inventory and measurement data collected 

outside of FIA (e.g., collected by state, academic, or other 
organizations) 

D. Further analysis using FIA data but also incorporating other 
sources or types of inventory data (i.e., supplemental inventory 
data, geospatial data, survey data, etc.) 

E. More robust estimation of forest attributes using FIA or non-
FIA data, including but not limited to: Estimation of forest 
recruitment, growth rates, annual productivity, age-structures, 
size classes, species diversity/abundance, or canopy dynamics 

F. Economic analyses to complement forest inventory analysis  
 

1) completed 
internally; 2) 
completed by other 
state teams/ 
agencies; 3) done 
by external (e.g., 
consultants or 
academic partners); 
4) Don’t know; 5) 
Not applicable 

7 What is your team’s level of familiarity about aspects of the FIA 
database [rank 1-6]:  
A. FIA database content 
B. Accessing FIA data 
C. FIA data interpretation 
D. FIA sampling and stratification methodology  
E. FIA database structure, nomenclature, and data attributes 
F. FIA population estimates procedures 
G. FIA Quality Assurance and Quality Control (QA/QC) and 

accuracy standards 
H. Forest carbon/biomass calculations using FIA data 
 

1) No knowledge; 
2) Limited 
knowledge; 3) 
Moderate 
knowledge; 4) 
Expert knowledge; 
5) Don’t know; 6) 
Don’t know what 
this refers to 

8 Regarding the FIA program and database: Which of the following 
would you be interested in learning more about? [choose 1-4]:  
A. FIA database contents 
B. Accessing FIA data 
C. FIA data interpretation 
D. FIA sampling and stratification methodology  
E. FIA database structure, nomenclature, and data attributes 
F. FIA population estimates procedures 
G. FIA Quality Assurance and Quality Control (QA/QC) and 

accuracy standards 

1) No interest; 2) 
Some interest; 3) 
Strong interest; 4) 
Don’t know what 
this refers to 

https://www.fia.fs.fed.us/
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H. Forest carbon/biomass calculation using FIA data 

9 Which of following methods have you used to access FIA 
Inventory data? [choose 1-5]: 
A. EVALIDator 
B. DATIM (Design and analysis toolkit for inventory and 

monitoring) 
C. FIA DataMart 
D. FIADB/EVALIDator Application Programming Interface (API) 
E. SQL 
F. rFIA 
G. Other coding language or environment 

1) Do not use; 2) 
Used 1-2 times; 3) 
Used 3-10 times; 4) 
Used more than 10 
times; 5) Unsure 
what this is 

10 [If ‘other’, above] What other coding language or environment 
have you used to access FIA inventory data and with what 
regularity?  
 

Open-ended 

11 How would you classify your team’s knowledge of silvicultural 
methods and activities across the following ownership categories in 
your state? [rank 1-5]: 
A. Private 
B. State 
C. USFS 
D. Other Federal 
E. Local/Municipality 
F. Tribal Lands 
 

1) no knowledge; 
2) limited 
knowledge; 3) 
moderate 
knowledge; 4) 
expert knowledge; 
5) don’t know 

12 What information, resources or training do you need to improve 
your ability to access, process, and understand FIA Inventory Data 
for state level forest carbon inventory and modeling needs?  

Open-ended 

13 Does FIA meet your data needs to measure or monitor state or 
program goals? Please explain.  

Open-ended 

14 How would you classify your team’s knowledge about the 
following items relating to Timber Product Output (TPO) 
assessments and data [rank 1-6]:  
 
A. What TPO surveys measure  
B. Sampling and stratification methodology  
C. Database structure, nomenclature, and data attributes 
D. Where and how to access primary data 
E. How to interpret data 
 

1) No knowledge; 
2) Limited 
knowledge; 3) 
Moderate 
knowledge; 4) 
Expert knowledge; 
5) Don’t know; 6) 
Don’t know what 
this refers to; 7) 
Don’t Use/Not 
Available 
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15 In which ways has your team used mill and timber product data? 
Check all that are appropriate and leave blank if none apply or are 
not applicable to your team. [1-5]: 
 
A. Use of TPO/ RPA reports or summary estimates provided (e.g., 

fact sheets) 
B. Primary analysis using TPO data 
C. Primary analysis using TPO data in combination with 

supplemental state-level mill or wood products data  
D. Use of state-collected mill data reports or summary estimates  
E. Primary analysis of state-collected mill data 
F. Analysis of harvested wood product export and import data  
G. Analysis of harvested wood product carbon storage 
H. Analysis of product end-uses 
I. Analysis of product half-lives 
J. Analysis of product retirement (e.g., recycling, landfills, 

burning for energy capture)  
K. Economic analyses regarding mills or harvested wood products  
L. Mill or economic analysis to determine existing or potential 

product feasibility 
M. Analysis of harvested wood products energy use 
N. Analysis of harvested wood product fossil fuel emissions 

offsetting  
 

1) completed 
internally; 2) 
completed by other 
state teams/ 
agencies; 3) 
completed by 
external (e.g., 
consultants or 
academic partners); 
4) don’t know; 5) 
Don’t know what 
this refers to 

16 How would you rank the available mill data in your state (either 
from TPO or state assessments) for state carbon and harvested 
wood product modeling needs along the following dimensions? 
[rank 1-4]: 
 
A. Updated with sufficient regularity 
B. Sufficient representation of existing mills 
C. Product categories are appropriately and sufficiently 

categorized or binned  
 
 

1) Inadequate; 2) 
Adequate; 3) More 
than necessary; 4) 
Don’t know 

17 What information, resources or training do you need to improve 
your ability to access, process, and understand mill and harvested 
wood product data for state level forest carbon inventory and 
modeling needs? 
 

[open-ended] 

18 How would you rank your team’s knowledge around carbon cycle 
science and forest carbon and/or biomass [rank 1-5]: 
 
A. Forest carbon cycling and dynamics 
B. Forest carbon or biomass pools/stocks 
C. Forest carbon fluxes and gas exchange 

1) No knowledge; 
2) Limited 
knowledge; 3) 
Moderate 
knowledge; 4) 
Expert knowledge; 
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D. Forest carbon and biomass measurements and accounting 
 

5) Don’t know; 6) 
Don’t know what 
this refers to 

19 How much of your job involves policy or management analysis or 
decision making related to the following forest carbon topics? [rank 
1-3]: 
 
A. Forest carbon cycling and dynamics 
B. Forest carbon or biomass pools/stocks 
C. Forest carbon fluxes and gas exchange 
D. Forest carbon and biomass measurements and accounting 
 

1) none; 2) some; 
3) a significant 
amount 

20 How would you rank your team’s knowledge regarding forest 
carbon accounting, modeling, and linkages with policy [rank 1-6]: 
 
A. Knowledge about what datasets/sources exist that can be used 

in forest carbon accounting  
B. How to estimate forest carbon from plot-level measurements 
C. How to scale plot-level measurements to the landscape or 

regional level 
D. How to use remote sensing data to map or calculate forest 

carbon  
E. IPCC guidance and best practices regarding carbon accounting 

and monitoring within the forest sector 
F. Which forest carbon modeling frameworks would best suit state 

or agency goals/ needs 
G. Other states’ approaches to carbon accounting and modeling 
H. Ability to process and interpret primary results/ data outputs 

from carbon assessments  
I. How to link carbon modeling with economic analysis/ 

modeling 
J. Awareness of existing state or sub-state policies/ programs that 

incentivize or discourage particular forest management 
practices (e.g., incentivizing harvest, incentivizing delayed 
harvest) within your state  

K. Awareness of state-based policies/ programs/ levers in use in 
other states or countries  

L. Comfort using the appropriate language to communicate about 
forest carbon and climate 

M. Comfort using the appropriate language to communicate about 
forest carbon and/or energy policies 

N. Comfort communicating links between carbon assessment and 
modeling results and policy for policymakers 

O. Comfort communicating links between carbon assessment and 
modeling results and policy for general audiences (e.g., 
including landowner, constituents, business interests) 

1) No knowledge; 
2) Limited 
knowledge; 3) 
Moderate 
knowledge; 4) 
Expert knowledge; 
5) Don’t know; 6) 
Don’t know what 
this refers to 
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P. Comfort communicating links between forest carbon 
assessments and modeling results in relation to other working 
lands (agriculture) assessments and modeling results and 
policies. 

Q. Comfort communicating links between forest carbon, harvested 
wood products storage, fossil fuel substitution and carbon 
leakage. 

R. Comfort communicating links between short term and long-
term carbon cycles and their importance in climate mitigation. 

S. Comfort communicating links between forest carbon 
assessments and modeling results with other non-forested 
ecosystems including but not limited to, grasslands, prairies, 
wetlands, shrublands, savannas, peatlands, high altitude 
montane systems, coastal systems 

T. Comfort in understanding and communicating forest carbon 
assessments and modeling results across spatial scales 
including smaller spatial extents (i.e., parcel or county) to larger 
spatial extents (i.e., state, region, or subregion) 

 
21 Regarding forest carbon modeling, which of the following would 

you be interested in learning more about? [1-3]:  
 
A. Datasets/sources that can be used in forest carbon accounting  
B. How to estimate forest carbon from plot level measurements on 

site carbon 
C. How to scale plot-level measurements to landscape or regional 

level 
D. Forest sector IPCC guidance and best practices regarding 

carbon accounting and monitoring  
E. How to model carbon in harvested wood products 
F. Lifecycle assessment of wood products versus fossil fuel-based 

products incorporating substitution and leakage concepts 
G. Other states’ approaches to forest carbon accounting and 

modeling   
H. Differences between existing modeling frameworks and tools 

for scenarios and projections 
I. Links between carbon and economic modeling  
J. Existing state or sub-state policies/ programs that impact forest 

management practices within your state  
K. Potential state-based policies/ programs for forest management 

(e.g., those used in other states or countries)  
L. How to communicate linkages between carbon modeling results 

and policy 
 

1) No interest; 2) 
Some interest; 3) 
Strong interest 

22 To what degree are the following barriers to your engagement with 
forest carbon modeling? [rank 1-4]: 

1) not at all; 2) 
slight barrier; 3) 
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A. Insufficient data 
B. Lack of access to data  
C. Insufficient funding 
D. Lack of trained personnel  
E. Insufficient personnel time 
F. No interest 
G. Political barriers 
H. Other 
 

significant barrier; 
4) don’t know   

23 What other barriers to carbon modeling do you encounter? 
 

[If ‘Other’, above] 

24 Do you expect your agency would prefer to build in-agency 
capacity for carbon modeling or hire outside consultants? 
 
A. Building in-agency capacity 
B. Hiring outside consultants 
C. Both 
D. Neither 
E. Don’t know 
 

[Choose one] 

25 How would you rank the interest in raising awareness of activities 
leading to increased carbon storage among the following groups 
within your state? [rank 1-5]: 
 
A. Your personal interest  
B. Executive-level interest (i.e., governor and governor’s office/ 

administration) 
C. Department or Agency-level interest  
D. State legislature interest  
E. Industrial forest sector interest 
F. Industrial/investor landowner interest 
G. Family forest landowner interest  
H. General population interest 
 

1) No interest; 2) 
Little Interest; 3) 
Moderate Interest; 
4) High Interest; 5) 
Unsure 

26 How would you rank the interest in raising awareness of activities 
leading to reduced GHG emissions among the following groups 
within your state? [rank 1-5]: 
 
A. Your personal interest  
B. Executive-level interest (i.e., governor and governor’s office/ 

administration) 
C. Department or Agency-level interest  
D. State legislature interest  
E. Industrial forest sector interest 
F. Industrial/investor landowner interest 

1) No interest; 2) 
Little Interest; 3) 
Moderate Interest; 
4) High Interest; 5) 
Unsure 
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G. Family forest landowner interest  
H. General population interest 
 

27 How would you characterize the current interest (for either 
assessment or implementation) in the following policies and 
programs within your agency? [rank 1-8]: 
 
A. Policies for delayed or reduced harvest on public lands 
B. Policies to keep forests as forests 
C. Programs to minimize the impact of forest disturbances on 

public lands 
D. Incentive programs delayed or reduced harvest on private lands 

(e.g., via property tax incentives) 
E. Incentive programs encouraging harvest on private lands (e.g., 

via property tax incentives) 
F. Carbon projects on public/ state lands 
G. Programs to encourage/ support carbon projects on private 

lands   
H. Green growth/ sprawl limits 
I. Emissions reduction targets (including determined at the agency 

level, legislatively determined, or through an Executive Order) 
J. Cap and trade program  
K. Carbon tax 
L. Offsetting of public sector emissions 
M. State level clean fuel standard 
N. Programs to intensify management  
O. Programs to encourage use of biomass energy  
P. Other  
 

1) Strong 
disinterest; 2) Some 
disinterest; 3) 
Mixed interest for 
and against; 4) 
Somewhat 
interested; 5) 
Strong interest; 6) 
Not discussed; 7) 
Don’t know; 8) 
Unsure what this 
means 

28 If ‘other’, what other policies or programs does your agency have 
an interest (positive or negative) in assessing or implementing? 
 

[If ‘Other’, above] 
[open-ended] 

29 Has your agency identified any potential issues or barriers to 
implementing carbon projects on state lands? 

[open-ended] 

30 To what degree are the following forest disturbances of concern in 
your state? [rank 1-5]: 
 
A. Climate change 
B. Wildfire 
C. Insect 
D. Disease 
E. Storm/ wind throw 
F. Harvesting 
G. Drought 
H. Flooding 
I. Conversion to non-forest uses 

1) No concern; 2) 
Minimal concern; 
3) Some concern; 
4) Strong concern; 
5) Unsure 
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J. Fragmentation 
 

31 Are there any other forest disturbances of particular interest or 
concern in your state? If so, please list briefly here. 

[open-ended] 

32 Which forest management scenarios would you have the greatest 
interest in assessing with a carbon model (that is, deviations from 
current forest management practices on either public or private 
lands)? [rank 1-6]: 
 
A. Deferred harvest 
B. Pre-commercial thinning 
C. Commercial thinning 
D. Reforestation following harvest 
E. Afforestation 
F. Prescribed burning 
 

1) No interest; 2) 
Little interest; 3) 
Moderate interest; 
4) High interest; 5) 
Unsure; 6) Don’t 
know what this 
refers to   

33 Are there any other forest management scenarios you have an 
interest in assessing with a carbon model? 

[open-ended] 

34 Regarding harvested wood products, which of the following would 
you have the greatest interest in assessing with a carbon model? 
[rank 1-6]: 
 
A. Increased wood reuse/ recycling   
B. Development of new wood products or wood product industries 

(e.g., mass timber, biochar)  
C. Shifting use of lower value wood (e.g., toward different 

products) 
D. Increased use of post-harvest forest residues 
E. Leaving low-grade wood and residues on-site (cut and leave)   
F. Increases in sawmill lumber volume recovery  
G. Increased use of sawmill residues 
H. Decreased use of wood products 
I. Increasing the use of wood fuel for heat only 
J. Increasing the use of wood fuel for electricity generation only 
K. Increasing the use of wood fuel for combined heat and power  
 

1) No interest; 2) 
Little interest; 3) 
Moderate interest; 
4) High Interest; 5) 
Unsure; 6) Don’t 
know what this 
refers to 

35 Are there any other harvested wood product scenario you have an 
interest in assessing with a carbon model? 

[open-ended] 
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APPENDIX B: DETAILS ON REVIEW OF RELEVEANT LITERATURE AND SEMI-

STRUCTURED INTERVIEWS 

Table B.1. Examples of key forest carbon accounting, modeling, capacity building initiatives 
and educational trainings undertaken by states in the USDA forest service eastern region 
 Project Overviews Funding and Motivation 
State Examples 
Maine Maine has assessed forest carbon mitigation 

potential using forest inventory and analysis 
(FIA) data, remote sensing, Forest Vegetation 
Simulator (FVS), and the LANDIS-II forest 
landscape model. Results published in Saffeir et 
al, (2021). 
 

Funded through the Governor’s Forest 
Carbon Task Force established by 
Executive Order on Jan 13, 2021 charged 
with developing incentives to encourage 
forestland management practices that 
increase carbon storage while maintaining 
harvest levels. 

Maryland and 
Pennsylvania  

These states conducted a project to assess 
alternate GHG pathways in the forestry and 
forest products sectors using the CBM-CFS3 
modeling framework, parameterized by FIA data 
and other remotely sensed metrics of disturbance 
and land-use change. Includes forest product 
sector analyzes a subsequent process-based 
model to track harvested wood product (HWP) 
carbon dynamics. Results are published in Papa 
et al, (2023).  
 
-- 
Includes subsequent economic trade-off analysis 
to assess the viability of voluntary forest carbon 
offsets by assessing the sensitivity of additional 
carbon benefits across a range of carbon prices. 
Results in Pokharel et al, (2024a; 2024b) 

Funded through the United States Climate 
Alliance (USCA) and carried out by a 
partnership between American Forests, 
Michigan State University Forest Carbon 
and Climate Program, and Northern 
Institute of Applied Climate Science 
(NIACS). The goal is to continually build 
capacity within state policymaking to 
understand the role of forest management 
and policy under climate change and 
assess implications for forest mitigation 
activities. 
 
 
 

Michigan, 
Minnesota, 
and Wisconsin 

These states are currently conducting a project 
to assess alternate GHG pathways in the forestry 
and forest products sectors using the CBM-
CFS3 modeling framework, parameterized by 
FIA data and other remotely sensed metrics of 
disturbance and land-use change. Includes forest 
product sector analyses a subsequent process-
based model to track harvested wood product 
(HWP) carbon dynamics. 
 

Funded through the United States Climate 
Alliance (USCA) and carried out by a 
partnership between American Forests, 
Michigan State University Forest Carbon 
and Climate Program, and Northern 
Institute of Applied Climate Science 
(NIACS). The goal is to continually build 
capacity within state policy-making to 
understand the role of forest management 
and policy under climate change and 
assess implications for forest mitigation 
activities. 
 

Massachusetts Massachusetts has utilized FIA inventory data 
and FVS to model forest characteristics through 
space and time to assess the response of forest 
dynamics to management decisions. 

Primarily focused on more traditional 
forest planning but includes a carbon 
component and is intended for internal 
agency planning, motivated by 
Massachusetts legislature and regional 
initiatives 
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Table B.1. (cont’d) 
New Jersey New Jersey developed the Forest Management 

Optimization Model (ForMOM), a set of tools 
designed to optimize forest management for 
carbon and simulated using FIA data and the 
FVS. ForMOM applies linear optimization to 
FVS outputs to assess optimal management. 
 

Motivated by internal planning for forest 
management and stewardship with the goal 
to simulate different management 
scenarios to constrain and optimize to find 
optimal management activities. 

New York 
 
 
 
 
 
 
 
 

The Climate & Applied Forest Research 
Institute (CAFRI) based at SUNY ESF is a 
multi-disciplinary team that developed a 
summary report utilizing high-resolution forest 
mapping, change detection, and hierarchical 
forecasting for carbon accounting and future 
landscape change. Results published in Beier et 
al, (2023). 
 
 

Funded by the New York State 
Department of Environmental 
Conservation and the New York State 
Environmental Protection Fund, state 
funding with the goal of applying 
emerging technologies to study and 
translate the role New York’s Forest 
ecosystems play in climate adaptation and 
mitigation to guide and support statewide 
adaptive management efforts. 

Vermont Vermont developed a framework to continually 
monitor forest carbon dynamics following IPCC 
guidelines (IPCC 2006) using FIA data on forest 
cover, carbon, and land-use change. Results 
published in Kosiba, (2021).  
 

Motivated in part by the passage of 
legislation and by the Governor’s office. 
Results are one part of a larger statewide 
carbon budget including all sectors 
(Galford et al, 2021) with the goal to 
decision making and planning by 
informing on the current GHG balance, 
emissions, and carbon stocks as well as 
serve as a foundation to improve tracking 
and accounting of GHG emissions going 
forward. 

New York 
Connects: 
Climate Smart 
Farms & 
Forests 

The NY Department of Environmental 
Conservation partnered with New York State 
Agriculture and Markets, Cornell University, 
SUNY ESF, and Syracuse University to expand 
cost share grant programs focused on enhancing 
carbon uptake on private-lands and fund efforts 
to improve MRV, research forest management 
practices and identify barriers of 
implementation. 

USDA Partnerships for Climate-Smart 
Commodities Grant program funded 
partnership between DEC, AGM, Cornell 
University, SUNY ESF, and Syracuse 
University with a state goal to increase 
implementation of climate smart 
agriculture and forestry practices in an 
effort towards reducing GHG emissions 
through the Climate Leadership and 
Community Protection Act. 

Regional Examples  
Securing 
Northeast 
Forest Carbon 
Program 

Cooperative effort of the State Foresters of 
Connecticut, Maines, Massachusetts, New 
Hampshire, New York, Rhode Island, and 
Vermont focused on securing private forest 
carbon on working lands through targeted 
trainings and through the sales of voluntary and 
compliance markets, conservation easements, 
and management practices.  

Funded through the USDA Forest 
Service’s Landscape Scale Restoration 
grant program with a goal to increase 
capacity of consulting foresters and 
landowners to increase carbon benefits on 
working forestlands through voluntary and 
compliance markets, management 
practices, and conservation easements. 
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Table B.1. (cont’d)  
State and 
Tribal 
Capacity 
Building on 
Forest Carbon 
Webinar and 
Workshop 
Series 

Cooperative partnerships between Michigan 
State University Forest Carbon and Climate 
Program, Penn Soil Resource Conservation and 
Development Council, USDA Forest Service, 
and the Northern Institute of Applied Climate 
Science (NIACS) conducting a webinar and 
workshop series targeted at state and tribal forest 
agency staff to increase capacity towards forest 
carbon science, management and policy with a 
specific focus on carbon models, accounting, 
and science communication. 

Funded through Penn Soil Resource 
Conservation and Development Council 
under a cooperative agreement with the 
USDA forest Service, and with other 
support from the USDA Forest Service, 
and NIACS with a goal to increase the 
capacity of state and tribal employees in 
forest carbon science, adaptation and 
mitigation as an effort to inform forest 
policy and planning at the state or tribal 
level. 
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Overview of semi-structured interviews 

Table B.2. Descriptions of key personnel who participated in semi-structured interviews 
Group Description of duties 
State agency personnel 
    Forestry division leaders Oversee implementation of agency level mission including the 

implementation of legislative and/or executive directives. 
Development and implementation of forest management goals and 
climate action plans. Provide direction for forest restoration, 
forestry assistance and landowner engagement programs. 
 

    Forest resource specialists, biometricians, 
and forest planning specialists 

Oversee statewide forest planning, inventorying, and analyses of 
forests and forest resources. Provide technical assistance related to 
commercial and small holder forest landowners. Development 
management strategies for state managed lands. Coordinate with 
planning and implementation of climate action plans. 
 

    Climate and adaptation policy specialists 
 

Analyze legislative and regulatory proposals, develop climate 
policy strategies, and lead strategic thinking related to climate 
policies. Prepare strategic briefs and documentations about 
emerging trends to provide technical assistance for both internal 
agencies and legislative climate policy. 
 

    Wood utilization and marketing 
specialists 

Maintains working relationships with forest products industry 
providing technical assistance. Aids in coordination of timber 
harvest and production surveys. 
 

    Urban forest specialists 
 

Provide technical assistance for the development of urban forest 
planning. Development of outreach materials and programs about 
urban forests. Fostering urban wood reuse initiatives. 
 

Non-state agency personnel 
    Climate scientists (academia, federal 
agencies) 

Conduct applied research related to forest carbon science, forest 
health, silviculture, carbon accounting, and various ecosystem 
processes. Develop of forest carbon tools, models, and guidelines 
to aid in the quantification of forest carbon stocks, fluxes, and 
other GHG emissions. Development and implementation of forest 
inventories for GHG emission reporting. 
 

    NGO personnel Third party verification of forest carbon offset projects, 
development of forest carbon offset projects and accounting 
protocols. Third party auditing of forest certification and provision 
other forestry related consulting services.  
 

    Forestry consultants Provides technical assistance and consulting services to private 
landowners, Develop individual forest management plans. 
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Forest agency personnel – Interview protocol: 

1. Could you briefly introduce yourself by stating name, title, and roles/responsibilities 

within your organization? 

2. Could you please describe any timber allocation models or timber supply models utilized 

by your state in planning?  

3. Has your agency or state ever conducted any type of forest carbon accounting exercise, 

either in-agency or with external partners?  

4. Has your agency or state done any type of data collection on or analysis of harvested 

wood products outside of TPO surveys and reports, either in-agency or with external partners?  

5. Has your agency or state ever conducted any type of forest carbon modeling exercise to 

simulate or project future forest sector emissions including any type of scenario assessment of 

future management practices on forest sector emissions, either in-agency or with external 

partners?  

6. Within your agency, can you briefly describe current capacity and constraints to 

conducting both forest carbon accounting and forest carbon modeling exercises?  

7. In our experience, we have found that some prefer to hire consultants to conduct carbon 

modeling exercises for a variety of reasons including expertise and agency constraints as well as 

science communication and credibility. Do you have (or do you expect your agency would have) 

a preference to conduct such exercises in-house or hire out to consultants? Why?  

8. What type of modeling exercise would be most beneficial to your state’s and/or agency’s 

goals? What type of results would be most useful? Why?  

9. Regarding carbon modeling, what are some of the most important knowledge sets that 

current and/or future staff will need in the future? Is there a want and/or desire for 
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trainings/materials around these knowledge sets? If so, what is the preferred way to increase 

agency capacity? 

10. Is there or has there ever been a task force, working group, committee etc. at the state 

level exploring carbon (may include those related to economic, social, political analyses; 

emissions targets; other carbon)? What motivated that? 

11. What policies, programs, or incentive structures (if any) exist that include goals for 

increasing forest carbon (and for what ownerships or geographies might those cover)?  

12. Does your state have an interest in bolstering participation with carbon markets on public 

or private lands?  

13. Does your state have interest in developing or incentivizing new forest commodities?  

14. Is there anything else that you would like to share or discuss? 

15. Do you have any questions for me? 
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APPENDIX C: DETAILS ON MODELING APPROACH AND PARAMETERS 

Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) 

The CBM-CFS3 is a landscape-level model for forest ecosystem carbon dynamics to 

assess the carbon stocks and changes in carbon stocks. Developed for operational scale, the 

model can also be used down to the stand level to assess both past changes and evaluate future 

changes seamlessly. The CBM-CFS3 accounts for carbon stocks and stock changes in tree 

biomass and dead organic matter (DOM) represented in Figure C.1. The CBM-CFS is a growth 

and yield based ecosystem C model that predicts C stocks and stock changes in 10 biomass pools 

using user provided volume to age relationships and volume to biomass conversions. In 

additional to the 10 biomass pools, the model also estimates 11 DOM pools (including woody 

litter, soil organic horizon, and mineral soils) as well as carbon dioxide (CO2), methane (CH4), 

carbon monoxide (CO), and nitrous oxide (N2O) from combustion process caused by wildfires or 

prescribed burns. Emissions can be easily reported in terms of CO2 equivalent (CO2e). Table C.1 

provides an overview of biomass and DOM pools represented by the CBM-CFS3 while Table 

C.2 provides an overview of fluxes and ecosystem transfers estimated by the CBM-CFS3. 
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Figure C.1. The Carbon pool structure of the CBM-CFS3. “Very fast,” “fast,” “medium,” and 
“slow” refer to the relative decay rates for the pools. Curved arrows represent transfers of carbon 
to the atmosphere, and straight arrows represent transfers from one pool to another. SW = 
softwood, HW = hardwood, AG = aboveground, BG = belowground. Used with permission from 
Kull et al, (2019) 
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Table C.1. Ecosystem carbon pools represented by the Carbon Budget Model of the Canadian 
Forest Sector (CBM-CFS3) and brief descriptions of the biomass, dead organic matter (DOM) 
and soil C contained in these pools 
CBM-CFS3 pool Description 
Total Ecosystem Carbon in biomass and DOM pools 
Aboveground Biomass Carbon in all aboveground biomass pools 
Belowground Biomass Carbon in all belowground biomass pools (coarse plus fine roots) 
Aboveground DOM Carbon in DOM pools above the mineral soil 
Belowground DOM Carbon in DOM pools in the mineral soil 
Deadwood Carbon in belowground fast, medium, softwood, and hardwood stem snag, 

and soft and hardwood branch snag DOM pools 
Litter Carbon in very fast aboveground, fast aboveground, and slow aboveground 

DOM pools 
Soil C Carbon in very fast belowground, slow belowground, and black carbon 

DOM pools 
Merchantable C Carbon in the merchantable portion of softwood and hardwood stem wood 

and stem bark (excluding tops and stumps) 
Foliage C Carbon in softwood and hardwood live foliage 
Other C Carbon in softwood and hardwood nonmerchantable stem wood and bark, 

and both merchantable and nonmerchantable branches, tops, stumps, and 
their bark 

Coarse Root C Carbon in softwood and hardwood coarse live roots (≥5 mm in diameter) 
Fine Root C Carbon in softwood and hardwood fine live roots (<5 mm in diameter) 
Stem Snag C Carbon in DOM with input from the Merchantable biomass pool includes 

dead standing stemwood of merchantable size including bark; default decay 
rate is half the default decay rate for the medium pool to the stem snag pool 

Branch Snag C Carbon in DOM with input from the Other biomass pool includes dead stand 
branches, dead tops and stumps of merchantable size trees, and dead non-
merchantable size trees, including bark; default decay rate is half the default 
decay rate for the fast pool to the branch snag pool 

Very Fast C 
Aboveground 

Carbon in DOM with input from foliage biomass and fine roots in the forest 
floor (the L horizon1, consisting of foliar litter and dead fine roots <5 mm in 
diameter); very fast turnover rate 

Very Fast C 
Belowground 

Carbon in DOM with input from fine root biomass in the mineral soil (Dead 
fine roots in the mineral soil, <5 mm in diameter); very fast turnover rate 

Fast C Aboveground Carbon in DOM with input from branches, tops, stumps, and sub-
merchantable trees (Fine and small woody debris and dead coarse roots in 
the forest floor, approximately ≥5 and <75 mm diameter); fast turnover rate 

Fast C Belowground Carbon in DOM with input from coarse roots (Dead coarse roots in the 
mineral soil, ≥5 mm in diameter); fast turnover rate 

Medium C Carbon in DOM with input from merchantable stemwood and/or stem snags 
(Coarse woody debris on the ground; medium turnover rate 

Slow C Aboveground Carbon in DOM with input from Aboveground Very Fast, Fast, and Medium 
DOM pools (The F, H, and O horizons1); slow turnover rate 

Slow C Belowground Carbon in DOM with input from Belowground Very Fast and Fast DOM 
pools (Humified organic matter in the mineral soil); slow turnover rate 

 1Soil Classification Working Group (1998) 
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Table C.2. Ecosystem carbon fluxes represented by the Carbon Budget Model of the Canadian 
Forest Sector (CBM-CFS3) 

Category CBM-CFS3 flux or 
ecosystem transfer 

Descriptions 

Ecosystem Transfers Net primary production 
(NPP) 

Sum of all bomas carbon production during a year 

Litterfall Total litterfall minus loss of litter carbon due to 
decomposition 

Net growth Net biomass increment before losses from disturbances 
Net ecosystem production 
(NEP) 

NPP minus all losses of carbon due to decomposition 

Disturbance releases Sum of all carbon released to the atmosphere due to 
decomposition and excluding direct losses from 
disturbance 

Net biome production 
(NBP) 

NEP minus losses of carbon due to harvesting and 
disturbance 

Disturbance transfers Carbon transferred to the forest product sector from 
disturbances such as LUC, harvests, or cuttings 

Biomass to soil from 
disturbance 

Total transfer of carbon from all biomass pools to all 
DOM pools due disturbance 

Delta total DOM Change in DOM carbon stocks 
Delta total biomass Change in Biomass carbon stocks 

Biomass turnover Total biomass to soil Sum of all Biomass turnover processes 
Merchantable C to soil Transfer of carbon from Merchantable pools to DOM 

pools 
Foliage C to soil Transfer of carbon from Foliage pools to DOM pools 
Other C to soil Transfer of carbon from Other pools to DOM pools 
Coarse root C to soil Transfer of carbon from Coarse root pools to DOM pools 
Fine root C to soil Transfer of carbon from Fine root pools to DOMpools 

Heterotrophic 
respiration (decay) 

Heterotrophic respiration 
(decay) 

Sum of all decay processes 

Very fast aboveground Transfer of carbon from the Aboveground Very Fast DOM 
pool to the atmosphere 

Fast aboveground Transfer of carbon from the Aboveground Fast DOM pool 
to the atmosphere 

Slow aboveground Transfer of carbon from the Aboveground Slow DOM 
pool to the atmosphere 

Medium Transfer of carbon from the Medium DOM pool to the 
atmosphere 

Very fast belowground Transfer of carbon from the Belowground Very Fast DOM 
pool to the atmosphere 

Fast belowground Transfer of carbon from the Belowground Fast DOM pool 
to the atmosphere 

Slow belowground Transfer of carbon from the Belowground Slow DOM 
pool to the atmosphere 

Stem Snag Transfer of carbon from the Stem pool to the atmosphere 
Branch Snag Transfer of carbon from the Branch pool to the atmosphere 
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CBM-CFS3 Parameterization, activity data, and data inputs 

We employed a spatially-referenced IPCC compliant approach to simulate past and future 

forest carbon dynamics with the CBM-CFS3 modeling framework. The modeling framework 

represents forested landscape spatially by assigning each stand a series of forest attributes, called 

classifiers, derived from the forest inventory (Table C.3). The CBM-CFS3 is an empirically 

driven growth-yield ecosystem C model where forest growth is predicted using mean annual 

increment (MAI) of tree volume determined by stand age and forest attributes. As the 

simulations progress, carbon is transferred from biomass pools to dead organic matter pools by 

both annual forest processes such as litterfall and user defined disturbance data. Disturbance 

even schedules including harvest, land-use change, and natural disturbances are user defined 

where users create transitions rules to define post-disturbance dynamics. Figure C.2 provides a 

conceptual diagram of the causal-flow of the modeling process showing data inputs and model 

parameterization, the monte carlo simulations, post simulation error propagation, and random 

forest model. 
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Figure C.2. Causal-loop diagram showing modeling flow outlining steps for data acquisition and 
modeling processes 
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Table C.3. List and descriptions of classifiers for the forest inventory 
Classifier Description Values 
STATE_UNIT FIA condition code to identify FIA 

survey unit (groupings of counties within 
each state) 

24_2   Maryland: North Central 
24_3   Maryland Southern 
24_4   Maryland: Lower Eastern Shore 
25_5   Maryland: Western 
 

OWNGRPCD FIA condition code to delineate stand 
ownership 

10      USFS 
20      Other Federal 
30      State and Local Government 
40      Private and Native American 
 

RESERVCD FIA condition code to denote reserves 
tatus for public lands, where reserved 
land is permanently prohibited from 
being managed for wood products; 
however, logging may occur to meet 
other management objectives. 
 

0        Not reserved 
1        Reserved 

TYPGRPCD FIA reference code indicating forest type 
group 

0        Nonforest 
100    White / red / jack pine group 
120    Spruce / fir group 
160    Loblolly / shortleaf pine group 
170    Other eastern softwoods group 
200    Douglas-fir group 
260    Fir / spruce / mountain hemlock group 
380    Exotic softwoods group 
390    Other softwoods group 
400    Oak / pine group 
500    Oak / hickory group 
600    Oak / gum / cypress group 
700    Elm / ash / cottonwood group 
800    Maple / beech / birch group 
900    Aspen / birch group 
960    Other hardwoods group 
990    Exotic hardwoods group 
900    Nonstocked 
 

ALSTKCD FIA condition code indicating stocking 
code for all live trees including seedlings 

1        Overstocked (100+%) 
2        Fully stocked (60-99%) 
3        Medium stocked (35-59%) 
4        Poorly stocked (10-34%) 
5        Non-stocked (0-9%) 
 

THINCD Binary code to denote whether a stand 
has undergone a thinning treatment to 
signal transition to post-thinning yield 
curve 
 

0        Stand has not been previously thinned 
1        Stand has been previously thinned 
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Activity data 

To parameterize the CBM-CFS3 framework, we utilized longer-term averaged activity 

data from 2007-2019 to quantify harvest removals, LUC, and other natural disturbances 

including wildfire, prescribed fire, disease and insect outbreaks, and other abiotic disturbances 

that affect forest C cycling. Model simulations were run from 2007-2050 where the years 2007-

2019 were parameterized with historical activity data and longer-term averages were utilized to 

forecast model simulations until the year 2050. To provide seamless transition between past 

disturbances and future projects, we started with a forest inventory estimated in 2020 and 

‘rollbacked’ the inventory utilizing the probability distribution of stand-replacing disturbances to 

estimate a new inventory for year 2007. This rollback period was utilized to better constrain and 

initialize DOM C and Soil C dynamics and stocks for model projections (Smyth et al, 2017). 

Estimates of merchantable volume and corresponding biomass from FIADB were used to 

calibrate model allometric volume-to-biomass assumptions to better reflect forest and growth 

conditions in Maryland. 

The first primary input of the CBM-CFS3 modeling framework is a detailed forest 

inventory derived from the US Forest Service’s Forest Inventory and Analysis Database 

(FIADB) which was access through the FIA DataMart (USDA Forest Service, 2019) using the 

rFIA package (Stanke et al, 2020) in the R programming environment (R Core Team, 2020). 

Methods from Bechtold and Patterson (2005) and Pugh et al, (2018) were used to estimate the 

inventory that delineates forest stands by attributes such as forest type, stocking class, ownership, 

age, and region. The second key input is volume-age curves used to predict merchantable volume 

which are then converted to biomass utilizing allometric equations (Boudewyn et al, 2007). 

These growth-yield curves are linked explicitly to the aforementioned forest inventory allowing 
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for landscape scale C stock estimation for each unique combination of forest type and stocking 

class represented in the forest inventory. Growth-yield relationships were estimated using a 

Gompertz growth curve (eq. 1) which assumes non-asymptotic symmetry (Fekedulegn et al, 

1999).  

𝑦𝑦(𝑡𝑡) =  𝛼𝛼 exp (−𝛽𝛽 exp(−𝑘𝑘𝑡𝑡)                                                          (C1) 

 
Where, α is the upper asymptote, β is the growth displacement, and k is the growth rate or 

slope at time t. 

Data used to describe the location and quantity of forest harvest or cuttings, LUC, fire, 

and other natural disturbances are the final key inputs. Longer term averages from 2007-2020 

were utilized to forecast the model until 2050 from the projection point of 2020. Historical 

harvest allotments for the model rollback period were estimated using FIADB data from 2007-

2019 and methods from Bechtold and Patterson (2005) and described in more detail in Papa et al, 

2023. Removals were estimated in merchantable volume and were converted to carbon using 

methodologies and specific gravities reported by Smith et al, (2006).  

The national Insect and Disease Detection survey (USDA Forest Service, 2020) was used 

to estimate defoliating and mortality events. Wind disturbance was estimated using the 

LANDIFRE Historic Disturbance dataset (USGS, 2016). Wildfires were also derived from the 

LANDFIRE Historic dataset and validated through tabular data provided by the Maryland 

Department of Natural Resources (MDNR). Annual rates of deforestation and afforestation were 

estimated by overlaying the National Land Cover Database (NLCD, Wickham et al, 2021) with a 

forestland ownership dataset (Sass et al, 2020) and a national geodatabase of protected areas 

(USGS, 2018) Individual disturbance matrices were developed for both defoliating and mortality 

events by wood type (i.e., hardwood versus softwood) caused by disease and insects outbreaks 
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based off an extensive literature review to assess the impacts of and more accurately capture post 

disturbance dynamics understanding that in temperate mid-Atlantic forests, disease and insect 

pathogens are primarily host specific. Disturbance and post-disturbance dynamics were validated 

heuristically with direct input from experts within the Maryland Department Natural Resources. 

 

Volume to biomass conversions 

To convert the growth-yield curves represented as a volume to biomass, the CBM-CFS3 

utilizes allometric equations to predict wood volume-to-biomass (Boudewyn et al., 2007). 

Additionally, volume-to-biomass relationships account for the non-merchantable portions of 

trees (tops and limbs, stumps, bark, and foliage). The allometric equations utilized are specific to 

forest type group and environmental conditions. To account for differences in growth form and 

volume-to-biomass relationships, we augmented existing default allometric equations to better 

represent these relations for Eastern US growing conditions. To do so, we estimated volume and 

biomass values estimated from the FIADB (USDA Forest Service 2019) and related them to 

model coefficients for the following equation: 

 
𝑏𝑏𝑚𝑚 = 𝑎𝑎 𝑥𝑥 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑏𝑏 (C2) 

 
where bm is total biomass in metric tons per hectare, volume is merchantable volume 

(defined as stems with at least 5-inch DBH and one 8-foot log) in cubic meters per hectare, and a 

and b are non-linear model parameters fit separately to ecozone and leading tree species. Using 

FIA derived inputs by forest type group for bm and volume, we recalibrated the allometric 

equation above using new coefficients for each forest type group in Maryland. 

 

Description of forest disturbances 
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Disturbance name, intensity and description for disturbance matrix events utilized and 

parameterized in the CBM-CFS3 modeling framework (Table C.4). When default disturbances 

matrices were insufficient to capture dynamics, new disturbance matrices and transition rules  

were created with consultation with state partners. 
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Table C.4. Definition and description of disturbances 
Disturbance 

Category 
Disturbance 
Name 

Intensity 
(averaged) 

Description 

Harvest Clearcut 90% 
volumetric 
removal 

A silvicultural method used to regenerate a stand by the 
removal of most or all woody vegetation during harvest 
creating a completely open area leading to the 
establishment of an even-aged stand. Regeneration can 
be from natural seeding from adjacent stands or from 
trees cut in the harvest operation. Regeneration is 
established during or following stand removal. 

 Seed tree cut 70% 
volumetric 
removal 

A silvicultural method designed to bring about 
reproduction by leaving enough large mature trees, 
singly or in groups, to naturally seed the area with 
adequate stocking of desired species. Varies from 
shelterwood cuts such that the residual stocking is not 
sufficient to protect, modify, or shelter the site in a 
significant way. Mature trees can be later removed in an 
overstory removal cut or retained indefinitely. 

 Shelterwood 
cut 

50% 
volumetric 
removal 

A silvicultural method used to regenerate a stand by 
manipulating the overstory and understory to create 
conditions favorable for the establishment and survival 
of desirable tree species. The method is designed to 
regenerate an even-aged stand and normally involves 
removal of most of the overstory, in two or more 
cuttings, after the new stand is established. The 
overstory serves to modify understory conditions, create 
a favorable environment for reproduction, and provide a 
seed source. A secondary function of the overstory is to 
allow further development of quality overstory stems 
during seedling establishment to increase the efficient 
use of growing stock. The system is characterized by a 
preparatory cut (optional), seeding cut(s), and overstory 
removal. The most vigorous trees are normally retained 
and less vigorous trees removed. 

 Group 
selection / 
overstory 
removal 

30% 
volumetric 
removal 

Silvicultural methods in which the stand overstory is 
removed in one cut to provide release of established 
seedlings and saplings. Group selection refers to a 
silvicultural method designed to regenerate and maintain 
uneven-aged stands by removing some trees at regular 
intervals. Overstory removal results in an even-aged 
stand structure as opposed to uneven-aged. It differs 
from the clearcut and the coppice regeneration methods 
in that seedling and sapling regeneration is established 
prior to overstory removal. It differs from the 
shelterwood and seed tree methods in that no 
manipulation of the overstory is needed to establish 
regeneration. 

 Diameter-
limit-cut 

70% 
volumetric 
removal 

An unsustainable cutting method that selectively 
removes or cuts the most valuable and highest quality 
trees leaving behind lower value and lower quality trees. 
Landowners in the past have been economically 
incentivize to conduct unsustainable diameter-limit-cuts, 
also known as high-grading, to maximize short term 
economic yields, but reducing overall structure and 
vigor of the remnant stand. 
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Table C.4. (cont’d)  
 

 Thinning 30% 
volumetric 
removal 

Thinning is a cultural treatment conducted in stands past 
the sapling stage to reduce stand density, primarily to 
improve tree growth, enhance tree health, or recover 
potential mortality. It entails the removal of trees to 
temporarily reduce stocking to concentrate growth on 
the more desirable trees. Normal thinning does not 
significantly alter the gross production of wood volume. 
Thinning does impact stand growth, development, and 
structure. It provides the main method, implemented 
between regeneration and final harvest, to increase the 
economic productivity of stands. Individual thinnings 
can be commercial or non-commercial (TSI), depending 
on landowner objectives and local markets for materials 
cut in the thinning operation. Regeneration is not an 
objective of thinning; overstory gaps are small and 
should close rapidly 

Land-use 
change 
(LUC) 

Afforestation Planting of trees on non-forest lands converting to a 
forest land-use designation 

Deforestation The permanent conversion of forest lands to non-forest 
categories including agriculture or settlements 

Defoliator Insect - Defoliation (SW) Low severity defoliation event affecting conifer species  
(~10 defoliation) 

Insect - Defoliation (HW) Low severity defoliation event affecting broadleaf 
species (~10 defoliation) 

Mortality Insect - Mortality (SW) Low severity mortality event affecting conifer species 
(~10% mortality) 

 Insect - Mortality (HW) Low severity mortality event affecting broadleaf species 
(~10% mortality) 

Disease Disease Moderate severity mortality and defoliation event 
affecting both conifer and broadleaf species (~10% 
mortality and ~10% defoliation)  

Abiotic Abiotic Low severity mortality and defoliation even caused by 
windthrow or other abiotic disturbances (~10% 
mortality and ~10% defoliation) 

Fire Prescribed fire Low severity fire that consumes ~60% of litter, ~36% of 
small deadwood and ~12% of coarser deadwood 
materials. Also consumes ~40% of nonmerchantable 
stemwood, branches, foliage, and roots. 

Low-intensity wildfire Low severity fire that consumes deadwood and litter 
pools with minimal mortality 

 

Default model parameters 

Default parameters for proportions of stumps, tops, and merchantable stems for softwood 

and hardwood species (Table C.5) and default DOM turnover parameters and values (Table 

C.6). 
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Table C.5. Merchantable softwood and hardwood proportions used in the CBM-CFS3 
 Softwood Hardwood 
Stump 
height 
(cm) 

Top 
Diameter 
(cm) 

Minimum 
DBH 
(cm) 

% 
tops 

% 
stumps 

% 
merchantable 
stem 

% 
tops 

% 
stumps 

% 
merchantable 
stem 

30 7 9 2.132 5.390 92.478 3.477 5.52 91.003 
 
Table C.6. CBM-CFS3 default dead organic matter (DOM) turnover parameters and values 
Average; Slow DOM Pool  0 
Average; Decay Multiplier  1 
Average; Stand-Replacing 
Disturbance Interval (years)  

125 

Turnover Rate; Softwood Branch  0.04 
Turnover Rate; Hardwood Branch 0.04 
Turnover Rate; Stem Annual  0.0067 
Snag Fall Rate; Softwood Stem  0.032 
Snag Fall Rate; Softwood Branch 0.1 
Snag Fall Rate; Hardwood Stem  0.032 
Snag Fall Rate; Hardwood Branch 0.1 
Foliage Fall Rate; Softwood  0.15 
Foliage Fall Rate; Hardwood 0.95 

 
Sources of model uncertainty 

There is additional uncertainty associated with the modeling framework attributable to 

the selection of stands for disturbance across geographies and spatial boundaries. However, the 

specific stands affected are not known. The CBM-CFS3 framework utilizes and applies rule-

based decision-making used to select specific forest records to be affected by an individual 

disturbance per year (Kurz et al, 2009). For disturbances such as harvest, disease and insect 

outbreaks, and LUC, forest type specific information was used to inform targeted records, but 

spatial boundaries were not. Fire and abiotic disturbances, however, were targeted completely at 

random to capture the stochastic nature of such events more thoroughly. This resulting approach 

increases the uncertainty around the effects of disturbance on model results as each execution per 

simulation differs in the records affected caused by the random selection of stands. The 

disturbance data formatted as model inputs and are entirely user-defined.  
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Growth-yield curves, volume-to-biomass equations, and the forest inventory primarily 

influence model estimates of net growth portion of Net Primary Productivity (NPP, i.e., growth 

minus autotrophic respiration). The CMB-CFS3 estimate NPP as the sum of net biomass 

increment and replacement of biomass turnover (Kurz et al, 2013). While uncertainty estimates 

can be estimated for both the forest inventory and yield curves, we chose not to introduce this 

uncertainty within our analysis to isolate the effects of disturbance inputs on model parameters 

and minimize the uncertainty within the modeled results. Table C.8. provides a list of factors, 

parameters, and model structures that affect model uncertainty in the CBM-CFS3 framework. 

Table C.7. Summary of model parameters affecting uncertainty (Ui). This study focuses solely 
on disturbance targets as a source of uncertainty for carbon stocks and fluxes. Summarized from 
Metsaranta et al, (2017), Kull et al, (2019), Kurz et al, (2009), Kurz et al, (2013), and Kurz et al, 
(2018) 

Disturbances Description Additional methodological detail 
Random stand 
selection 

The random seed value for sorting 
records prior to selection stands for 
disturbance 

Disturbance events specified by the user 
periodically affect certain eligible stands, 
but eligible stands are compiled and 
sorted according to user-specified rules. 
Eligible forest records can only be 
affected by one disturbance event per 
simulation timestep (Kull et al, 2019) 

DOM C stock 
initialization 

Historic and last disturbance severity and 
frequency during model initialization 
to populate soil and DOM carbon 
pools 

Default parameters based on initial 
nonforest soil type (Janzen et al, 1997) to 
initialize soil carbon pools during model 
spin-up period (Kurz and Apps, 1996, 
Kurz et al, 2009, and Li et al, 2003) 

Biomass 
increments 

Mean annual increment of merchantable 
volume predicted by stand age 

Empirical growth-yield models inherently 
provide uncertainty metrics. However, 
the CBM-CFS3 does not stochastically 
model stand dynamics. Additionally, 
stand age can be an inaccurate predictor 
of volume (Stokland, 2021, Brunner, 
2021) especially in stands with multiple 
age cohorts 
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Table C.7. (cont’d)  
 
Allometric 
equations / 
wood type / bark 
fractions 

Models used to predict tree volume-to-
biomass relationships. Equations 
used to convert aboveground 
biomass to belowground biomass by 
components. Wood densities used to 
describe hardwood and softwood 
forests, and the ratio used to estimate 
bark fraction of tree bole and 
branches 

Utilized generalized equations for forest 
type groups and standard bark fractions 
found in Boudewyn et al, 2007 and Li et 
al, 2003. Where, wood density (Pretzsch, 
2019) and bark fraction (Jenkins et al, 
2003) have been shown to significantly 
affect allometry in mixed stands 

Biomass 
turnover / DOM 
C modelling 
parameters 

Parameters used to simulate biomass 
turnover and DOM C dynamics 
dependent on ecological parameters 
determined by local conditions. 

Ecological parameters including soil type, 
precipitation, and temperature control 
and impact of turnover, decay, and 
initialization throughout the model (Kull 
et al, 2019) 

C fraction Model assumes a 0.5 ratio of biomass to 
carbon  

0.5 is commonly deployed to convert dry 
biomass to carbon. However, recent 
estimates imply that C concentrations of 
woody tissues vary from 18-75% 
dependent upon tissue type, growing 
conditions, wood density, and species 
(Doraisami et al, 2022, Martin et al, 
2021) 

Inventory The area, age distribution, and 
productivity class for forest records 
used to classify forestlands 

Materials and methods describes inventory 
estimation. Longer description of 
methods can be found in Papa et al, 2023 

Disturbance 
targets* 

The amount, severity, and frequency of 
the targets used to simulate forest 
management activities and natural 
disturbances including harvests, 
cuttings, land-use change, wildfire, 
prescribe fires, defoliating events, 
mortality events, and windthrow 

Materials and methods describe uncertainty 
of disturbance targets. Table 3 gives 
probability distribution of harvest 
removals and areas disturbed. Papa et al, 
2023 provides longer detailed 
methodologies of disturbance estimation 
and definitions. Longer descriptions of 
disturbances can also be found in 
Additional materials 1. 

Post-disturbance 
assumptions 

Assumptions regarding regeneration, 
stand growth, and recovery following 
disturbance 

User defined transition rules for post-
disturbance dynamics of stands affected 
by disturbance events (Kull et al, 2019) 

*Only source of uncertainty considered in this study 
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APPENDIX D: DETAILS ON RANDOM FOREST MODEL 

Hyperparameter and tuning for random forest model 
 
Table D.1. Hyperparameter tuning for turnover. Defined as the number of randomly drawn 
candidate variables out of which eat split is selected when growing a tree. For each model tuning 
the model with the lowest RMSE and MAE is bolded 

mtry RMSE R-squared MAE 
2 173.0727 0.891 134.428 
5 168.9187 0.875 129.724 
9 178.4722 0.850 137.852 

 
Table D.2. Hyperparameter tuning for decay. Defined as the number of randomly drawn 
candidate variables out of which eat split is selected when growing a tree. For each model tuning 
the model with the lowest RMSE and MAE is bolded 

mtry RMSE R-squared MAE 
2 141.959 0.911 102.243 
3 133.527 0.917 96.132 
5 133.537 0.908 97.338 

 
Table D.3. Hyperparameter tuning for biomass to soil from disturbance. Defined as the number 
of randomly drawn candidate variables out of which eat split is selected when growing a tree. 
For each model tuning the model with the lowest RMSE and MAE is bolded 

mtry RMSE R-squared MAE 
2 212.490 0.786 157.424 
4 179.514 0.806 134.149 
7 173.834 0.785 133.136 

 
Table D.4. Hyperparameter tuning for total DOM emissions. Defined as the number of randomly 
drawn candidate variables out of which eat split is selected when growing a tree. For each model 
tuning the model with the lowest RMSE and MAE is bolded 

mtry RMSE R-squared MAE 
2 307.283 0.155 239.300 
4 305.635 0.169 237.763 
7 308.796 0.165 241.008 

 
Table D.5. Hyperparameter tuning for total biomass emissions. Defined as the number of 
randomly drawn candidate variables out of which eat split is selected when growing a tree. For 
each model tuning the model with the lowest RMSE and MAE is bolded 

mtry RMSE R-squared MAE 
2 368.524 0.351 284.432 
4 353.616 0.386 276.449 
7 355.418 0.378 279.559 
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Table D.6. Hyperparameter tuning for net biome productivity. Defined as the number of 
randomly drawn candidate variables out of which eat split is selected when growing a tree. For 
each model tuning the model with the lowest RMSE and MAE is bolded 

mtry RMSE R-squared MAE 
2 386.119 0.278 315.216 
4 372.186 0.317 306.121 
7 373.240 0.327 304.779 
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