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ABSTRACT 

Woody breast (WB), one of the major muscular myopathies in poultry, impairs the quality and 

marketability of poultry products, leading to significant economic losses for poultry industries 

worldwide due to product downgrading and consumer complaints. WB-affected broiler breast 

fillets are characterized by abnormal tissue hardness, muscle rigidity, and irregular shape profiles. 

Manual evaluation based on tactile palpation and visual examination is the current practice for WB 

assessment at poultry processing facilities, but it is subjective, labor-intensive, and may cause 

contamination or safety concerns due to physical contact for evaluation. This thesis aimed to 

investigate the applicability of two emerging optical imaging technologies, i.e., 1) light scattering 

imaging (LSI) and 2) sinusoidal illumination reflectance imaging (SIRI), under both broadband 

and multispectral modes, for assessing WB myopathy in broiler breast fillets. The corresponding 

broadband and multispectral images were collected using custom-assembled imaging platforms 

from broiler meat samples of varying WB conditions, respectively. Different types of features were 

extracted from the resultant images (i.e., scattering images and demodulated SIRI images) and 

then utilized for discriminant modeling to classify samples into two [i.e., “Normal (no WB)” and 

“Defective”] and three [i.e., “Normal (no WB)”, “Moderate”, “Severe”] categories according to 

WB conditions. Two imaging technologies, i.e., LSI and SIRI, implemented in both broadband 

and multispectral modes have shown promising potential for the detection of WB defects in broiler 

breast fillets. More research is needed to further enhance the performance of WB assessment.  
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CHAPTER 1: INTRODUCTION 

1.1 Poultry Industry 

Poultry meat is a primary source of animal proteins and essential nutrients such as vitamins, 

iron, zinc (Marangoni et al., 2015). The global demand for poultry products has steadily increased 

in recent years due to their affordability and associated health benefits (Ellsworth et al., 2023). In 

the United States (U.S.), per capita consumption of poultry meat has grown from 82.9 lbs to 99.5 

lbs over the past decade and is projected to increase to 107.5 lbs by 2033 (NCC, 2022a). To meet 

the growing demand for poultry meat, intense genetic selection of broilers has been implemented 

over decades, enabling substantial increases in growth rate, weight gain, and feed efficiency 

(USDA-ERS, 2024).  

 
Figure 1.1. Broiler performance in the United States: market age and weight from 1925 – 

2023 (NCC, 2022b).  

As shown in Figure 1.1, the average size and weight of broilers on the market have doubled 

over the past 30 years for exceptional growth performance and breast meat yield (NCC, 2022b). 

However, the rapid growth of broilers has brought about the prevalence of muscular myopathies 

or defects in poultry meat (Petracci et al., 2015; Tijare et al., 2016), such as woody breast, white 

striping, and spaghetti meat (Che et al., 2022). These myopathies impair the quality and consumer 
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acceptance of poultry products (da Silva et al., 2017), leading to an annual loss of hundreds of 

millions of dollars for the U.S. poultry industry (Barbut, 2019).  

1.2 Woody Breast (WB) Myopathy and Instrumental Measurement 

WB, which is among the most challenging quality issues in the global poultry industry, is a 

muscle anomaly characterized by abnormal tissue hardness, muscle rigidity, and irregular shape 

profiles (Caldas-Cueva & Owen, 2020), along with elevated levels of fibrosis, collagen, lipidosis, 

etc. (Sihvo et al., 2014; Soglia et al., 2016), although the etiology remains to be fully ascertained. 

Previous studies have reported a high incidence of WB in broiler fillets of about 60%-90%, 

influenced by factors such as flocks, dietary treatments, bird age, and among others (de Almeida 

Mallmann, 2019; Tijare et al., 2016; Xing et al., 2020; Barbut, 2019). Currently, at commercial 

poultry processing facilities, WB assessment is done manually based on hand palpation combined 

with visual examination by trained personnel (Figure 2.1) (Pang et al., 2020; Dalgaard et al., 2018). 

This approach is labor-intensive, costly, and prone to human assessment errors.  

Instrumental texture analysis methods (Xiong et al., 2006; Morey & Owens, 2017), such as 

Meullenet-Owens razor shear (MORS), blunt MORS (BMORS), and Warner-Bratzler shear, have 

been applied to correlate physical measurements (e.g., peak count, shear force, energy) with WB 

conditions (Bowker & Zhuang, 2019). In Yang et al. (2021), an expressible fluid (EF) measurement 

method, which employs external force to press a sample of defined size onto filter paper to extract 

water or juice, was investigated for predicting degrees of WB conditions in broiler breast fillets, 

resulting in an accuracy of 93.3% in classifying samples into three WB degrees. However, these 

approaches above are destructive, time-consuming, and thus not suited for online detection of bulk 

samples.  

Siddique et al. (2021, 2022) performed the bioelectrical impedance analysis (BIA) as a non-
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destructive method to assess WB conditions in broiler breast meat, obtaining accuracies of 66.7%-

88.9% in differentiating normal and defective samples using support vector machines (SVM) 

algorithm. The performance of BIA depended on the severity of WB degree (i.e., normal, moderate, 

and severe) and instrument configurations (i.e., hand-held and plate BIA). Parajuli et al. (2024) 

reported on the use of a force-sensing robot device to characterize the spatial distribution of WB 

in broiler fillets based on compression force measurements. Either the BIA or force sensing 

approach has noticeable limitations given the requirement of close contact with samples, which is 

susceptible to food contamination, relatively slow for sample evaluation, and hence may not be 

preferred for in-line detection. Sun et al. (2021) applied an active air-deformation system, 

originally developed for tenderness evaluation of poultry meats based on shape deformation 

analysis (Lee et al., 2008), to assess WB conditions in broiler fillets, where the best correlation 

coefficient of -0.86 was achieved between deformation diameter (i.e., D15) and WB categories 

(i.e., normal, mild, and severe). Despite these investigations, since no imaging technology was 

involved, the lack of or limited spatial information acquired on poultry samples could hinder the 

effective discrimination between normal and myopathic samples.   

1.3 Computer Vision and Optical Sensing Technology  

Computer vision or imaging technology has received widespread attention in meat quality 

evaluation (Taheri-Garavand et al., 2019; Modzelewska-Kapituła & Jun, 2022; Park, 2016), with 

a handful of recent studies on WB assessment. Caldas-Cueva et al. (2021) reported an accuracy of 

84% for distinguishing normal from WB-affected broiler carcasses using color images. A small set 

of the features describing carcass structural information (e.g., length, width, area, etc.) were 

extracted and modeled using logistic regression analysis, in which broiler carcasses affected by 

WB showed greater breast width at cranial and caudal regions (P < 0.05) as well as greater angles 
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at the tip of keel and breast areas in the caudal section (P < 0.05). Yoon et al. (2022) developed a 

side-view machine vision system for online detection of WB-affected broiler breast fillets, where 

the muscle rigidity and bending characteristics of each sample fillet were analyzed. Three different 

conveyor speeds of 10-100 feet per second were tested, and an average overall accuracy of about 

95% was achieved in classifying two-class (normal vs defective) samples. These studies 

demonstrated the relevance of sample geometric morphology (e.g., dimensions, bending curvature, 

etc.) to WB assessment, although there was room for improvement in differentiating between 

moderate and severe WB categories.  

Yoon et al., (2016) and Ekramirad et al. (2024) employed optical coherence tomography (OCT) 

to image the subsurface tissues of broiler meats for WB detection, achieving an overall accuracy 

of 95% for differentiating normal and WB-affected samples. It is noted that OCT is a mesoscopic 

imaging modality that acquires information from small sample areas, e.g., 5 mm × 1.7 mm (lateral 

× depth) in Ekramirad et al. (2024), which could be limited in characterizing the spatial 

heterogeneity of poultry samples.  

Other optical sensing technologies have been also investigated for poultry quality assessment. 

Wold et al. (2017, 2019) used near-infrared spectroscopy (NIRS) to assess WB conditions of 

broiler fillets, where a commercial 15-band NIR scanning system [QVision500 (TOMRA Sorting 

Solutions, Leuven, Belgium)] originally used for meat chemical composition analysis was adapted 

for online WB detection. The NIR scanner yielded an accuracy of 91.1% in classifying normal and 

WB-affected chicken samples, while a separate benchtop NIRS instrument achieved a higher 

accuracy of 96.6% (Wold & Løvland, 2020). Geronimo et al. (2019) utilized NIRS combined with 

a computer vision system for classifying normal and WB-affected breast samples, obtaining 

overall accuracies of 96.3% and 91.8%, respectively; however, the limited number of samples (40 
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normal and 40 defective) used in their research may result in unreliable performance evaluations. 

Li et al. (2022) applied NIRS and compression speed models for WB detection and obtained 

an accuracy of 82.58% and 82.14% in recognizing normal and WB-affected samples, respectively. 

NIRS is well suited for online applications, but as a point sensing technique, it acquires information 

from a small area, which may restrict its detection capacity; currently, few NIRS units are 

commercially adopted by poultry industries (Barbut et al., 2024).  

Recently, Pallerla et al. (2024) reported using line-scanning hyperspectral imaging in the 

spectral range of 400-1,000 nm for classifying fillet samples of three WB degrees (“normal”, “mild 

WB”, and “severe WB”), obtaining an overall accuracy of 95%. However, conventional line-

scanning hyperspectral imaging still faces challenges with lengthy image acquisition and 

processing for online food inspection (Lu et al., 2020b). There is a continuing interest in advancing 

imaging technology to effectively detect WB in chicken fillets for enhanced quality assessment.  

1.4 Light Scattering Imaging (LSI) 

Chicken meat affected by WB myopathy has altered tissue structure and composition (Sihvo 

et al., 2014; Soglia et al., 2016), such as an increase in degenerative and atrophic fibers and 

elevated levels of fibrosis, collagen, lipidosis, and necrosis as well as harder texture. These WB-

associated lesions imply a change in optical properties, especially light scattering (Vishwanath et 

al., 2009; Birth, 1978; Birth et al., 1978; Qin & Lu, 2007), compared to normal tissues. Since 

optical scattering indicates structural/textural characteristics of tissues (Vishwanath et al., 2009; 

Birth et al., 1978), imaging technology that enhances light scattering measurements would be 

conceivably useful for WB assessment.  

Early research into light scattering imaging (LSI) of foods was focused on fruit firmness 

prediction (McGlone et al., 1997; Cho & Han, 1999; Tu et al., 2000; Noh & Lu, 2007). For instance, 
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Lu (2004a, 2004b) extracted spatial scattering profiles extracted from scattering images of apples 

for firmness prediction. In subsequent work, Peng & Lu (2006a, 2006b, 2006c, 2007, 2008) 

proposed a modified, four-parameter Lorentzian distribution function to characterize scattering 

profiles for predicting the firmness and soluble solids content of apples. A handful of studies were 

reported on the use of LSI for meat quality evaluation (Xia et al., 2008; Ranasinghesagara et al., 

2010). In Cluff et al. (2008, 2013) and Wu et al. (2012), LSI in hyperspectral mode was employed 

for classifying beef samples based on tenderness. Hyperspectral scattering imaging was also 

utilized to assess pork tenderness (Sun et al., 2019a) and freshness (Li et al., 2016). Despite these 

prior studies, to the best of our knowledge, there has been a lack of research on the use of LSI for 

assessing myopathic defects such as WB in poultry. Moreover, few studies have systematically 

engineered features of scattering images for model development.   

1.5 Sinusoidal Illumination Reflectance Imaging (SIRI) 

Sinusoidal illumination reflectance imaging (SIRI), which employs spatially modulated light 

in the sinewave form for sample imaging, is capable of depth-resolved characterization for 

enhanced tissue defect detection as well as three-dimensional (3-D) surface reconstruction (Lu & 

Cai, 2024), which can be difficult to achieve by conventional uniform illumination imaging. In 

SIRI, acquired pattern images are demodulated into two sets of intensity images, i.e., direct 

component (DC) and amplitude component (AC) (Lu et al., 2016a); DC corresponds to the image 

due to uniform illumination, while AC is unique to sinusoidally modulated structured light, which 

provides better contrast and resolution for physical features, depending on the spatial frequency of 

illumination patterns (Lu & Lu, 2019). Numerous studies demonstrated the effectiveness of SIRI 

for enhanced detection of defects in horticultural products, such as bruises in apples (Lu et al., 

2016b; Lu & Lu, 2017, 2018a, 2018b; Li et al., 2018), chilling injury in cucumbers (Lu & Lu, 
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2020; Lu & Lu, 2021; Lu et al., 2021), and early decay in peaches (Sun et al., 2019b) and oranges 

(Li et al., 2023, 2024).  

Recently, the application of SIRI in broadband, panchromatic imaging mode was extended to 

meat products (Olaniyi et al., 2023a, 2023b, 2024; Cai et al., 2024). In assessing white striping 

(WS) in chicken fillets, a muscular defect characterized by white striations on meat 

surface/subsurface, AC images resulted in consistently better accuracies with improvements up to 

12% or higher compared to DC images, depending on modeling approaches (Olaniyi et al., 2023b). 

In SIRI, because light patterns projected onto samples are deformed by the sample geometry, such 

deformation can be utilized for 3-D surface reconstruction on a pixel level using demodulated 

phase images combined with existing profilometry techniques in optical metrology (Zhang, 2018a; 

Zuo et al., 2018), as demonstrated in a study on surface profiling of apples (Lu & Lu, 2018c). WB-

affected chicken fillets tend to exhibit ridge-like bulges along the cranial to caudal region varying 

with severities of WB, as opposed to normal (WB-free) fillets that have relatively flat and uniform 

shape profiles (Caldas-Cueva & Owen, 2020; Kuttappan et al., 2016). Additionally, WB-affected 

fillets are often affected by WS defects due to the interrelated histological changes in the affected 

muscle tissues (Bowker et al., 2019; Aguirre et al., 2020). These characteristics of WB make SIRI 

potentially effective for WB assessment of poultry breast fillets given the demonstrated efficacy 

of the imaging technique for surface geometry profiling of samples (Lu & Lu, 2018c) and WS 

detection of poultry meat (Olaniyi et al., 2023a, 2023b). To the best of our knowledge, no research 

has been carried out on the feasibility and potential of SIRI for poultry WB assessment. 

1.6 Hypothesis and Objectives 

WB impairs poultry products' quality, consumer acceptance, and marketability, leading to 

significant economic loss for the U.S. poultry industry and beyond. Appropriate inspection 

https://pubmed.ncbi.nlm.nih.gov/?term=Aguirre%20ME%5BAuthor%5D
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technology has yet to be implemented at the processing line for objective, non-contact, and 

automated detection of WB conditions in poultry meat, enabling product grading, sorting, and 

value-added processing. LSI and SIRI are two emerging optical imaging technologies that have 

received significant attention for quality detection in horticultural products. This study was built 

upon the hypothesis that the application of LSI and SIRI can be applied to poultry products for 

enhanced assessment of WB conditions in broiler breast fillets.  

The study is to investigate the applicability of emerging LSI and SIRI in detecting WB 

conditions in broiler breast meat. Specific objectives of the research are to:  

1) Conduct quantitative texture measurement of samples using a texture analyzer (Chapter 2); 

2) Acquire images from chicken fillets of varying WB conditions using custom-assembled 

imaging platforms under a highly focused light beam and sinusoidal illumination, respectively 

(Chapters 2 and 3); 

3) Develop algorithm pipelines that extract features from broadband images (i.e., scattering image 

and demodulated SIRI images) for classifying samples into two and three WB categories 

(Chapters 2 and 3); 

4) Upgrade broadband LSI and SIRI systems into multispectral mode for potentially improved 

WB assessment (Chapter 4); 

5) Evaluate the efficacy of LSI and SIRI in different modes (i.e., broadband and multispectral) 

for WB assessment in broiler breast fillets. 
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CHAPTER 2: DETECTION OF WOODY BREAST CONDITION IN BROILER BREAST 
FILLETS USING LIGHT SCATTERING IMAGING 

2.1 Broiler Breast Samples 

A total of 242 broiler breast fillets were collected in three batches from the deboning line of a 

commercial poultry processing plant (Orland, IN, USA), with sample sizes of 75 (10/20/2023), 80 

(01/04/2024), and 87 (05/09/2024) per sampling, respectively, which was to ensure that 

experiments on each batch could be completed within two months and therefore to minimize 

potential quality degradation during cold storage. The broiler fillets were assessed by trained 

personnel at the processing facility and classified into three categories by WB conditions: 95 

“Normal”, 72 “Moderate”, and 75 “Severe” samples, based on hand palpation and visual 

examination. Figure 2.1 shows photographs taken during poultry sampling.  

 
Figure 2.1. Broiler breast fillets sampled and evaluated at a commercial poultry processing 

plant (Orland, IN, USA).  

These fillets were packed in coolers filled with ice and immediately transported to the 

laboratory for this study. Upon arrival, they were further evaluated to correct potential errors in 
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categorization, and then individually packed in a foam tray, wrapped in film, and stored in a freezer 

at -20 °C before image collection. The frozen samples were transferred to cold storage at around 

2 °C for 24-48 hours prior to imaging to allow them to thaw. The effects of the freeze-thaw process 

on the broiler samples were not considered in this study (Villegas-Cayllahua et al., 2023; Soglia et 

al., 2019). Figure 2.2 shows photographs of representative broiler meat samples of three WB 

conditions [i.e., “Normal (no WB)”, “Moderate”, and “Severe”], where the two defective samples 

are characterized by an out-bulging shape profile at the cranial and caudal ends varying with the 

severity of WB, as compared with the normal (no WB) one.  

 
Figure 2.2. (a) Front and (b) side views of example broiler breast fillets of three woody 

breast (WB) conditions, i.e., “Normal (no WB)”, “Moderate”, “Severe”.  

2.2 Texture Measurement 

Right after image collection (described in Session 2.3 and 3.1), each sample was weighted and 

subjected to texture analysis using a texture analyzer (TA.XT2i, Stable Micro Systems, Surrey, 
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UK), equipped with a blunt Meullenet-Owens razor shear (BMORS) probe. The texture analysis 

provided quantitative measures of samples in terms of the shear force (N) and energy (N.mm). The 

samples were sheared seven times by the BMORS probe on the ventral surface at the cranial region 

(Bowker & Zhuang, 2019; Pang et al., 2020) with a test speed of 5 mm/s, pre- and post-speed of 

10 mm/s, and a trigger force of 10 g, up to a maximum puncture depth of 20 mm (Figure 2.3). 

Table 2.1 summarizes the instrumental measurements of broiler fillets used in this study. The WB-

affected samples had higher values of shear force and energy compared to normal (non-WB) 

samples, which agrees with previous observations on WB assessment (Bowker & Zhuang, 2019; 

Sun et al., 2021; Yoon et al., 2022); though, these measurements were overall lower than those 

previously reported, probably due to the relatively small samples (in terms of weight) collected in 

this study. Differences in bird strains, flocks, and meat status (e.g., fresh non-frozen vs. frozen-

thawed meat) contribute to variations in texture measurements (Bowker & Zhuang, 2019; Petracci 

et al., 2015; Tijare et al., 2016).  

Table 2.1 Statistics of the weight and texture properties (mean ± standard deviation) of 
broiler breast samples 

 “Normal” “Moderate” “Severe” 

Number of samples 95 72 75 

Average weight (g) 194.14±69.99 267.17±54.62 292.21±41.49 

Average shear force (N) 8.45±1.63 15.22±5.43 28.29±12.09 

Average shear energy (N.mm) 70.69±12.98 121.96±35.18 211.13±83.9 
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Figure 2.3. Texture analyzer with a blunt Meullenet-Owens razor shear probe used for 

measuring shear force (N) and energy (N.mm) of broiler meat samples. 

2.3 Imaging System  

A benchtop light scattering imaging (LSI) system was assembled for chicken meat imaging. It 

mainly consists of, as schematically shown in Figure 2.4, a computer, a high-performance 

monochromatic camera (Edge 4.2, PCO, Kelheim, Germany) with a resolution of 2048 × 2048 

pixels, attached with a 35 mm fixed focal length lens (Edmund Optics Inc., Barrington, NJ, USA), 

and a broadband light source unit. The light, which was generated from a DC-regulated quartz 

tungsten halogen lamp (Newport Corporation, Irvine, CA, USA) alongside a radiometric power 

supply controller set at 500 W, passed through a visible-near-infrared optical fiber with a core size 

of 200 µm (Ocean Insight, Orlando, FL, USA) and a collimator to form a focused beam of about 

1.8 mm in diameter at the cranial region of the chicken fillet; it induced light scattering within 

meat tissues, covering an apparent scattering area of about 30 mm in diameter (Figure 2.4).  

The camera was positioned perpendicularly downward at about 19 cm above the sample to 
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capture backscattered light from the sample, with a pixel resolution of about 0.03 mm/pixel. The 

optical fiber was angled about 10° with respect to the vertical axis and at a distance of 11 cm from 

the sample. The configuration including the sample-camera distance and light incident angles were 

kept consistent during the entire experiment to minimize influences on light scattering imaging. 

The illumination/imaging area of each sample was previously leveled to avoid the interference of 

the sample surface geometry on light scattering. The system was operated within an enclosed 

cabinet to avoid the interference of ambient light. It is noted that the imaging settings (e.g., light 

source wattage, beam size, imaging distance, exposure time, etc.) were previously determined in 

a preliminary imaging test to ensure effective interaction of light with meat tissues while avoiding 

damage to the tissues due to exposure to highly-focused lighting; though, some other settings such 

as beam size and exposure time were not fully optimized in this study.  

 
Figure 2.4. Schematic of a broadband light scattering imaging system for woody breast 

assessment of broiler breast meat. 

Broiler meat samples were individually placed on a sample stage that allowed for vertical 
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adjustments, ensuring consistent sample-camera distance for light scattering and image acquisition 

across all samples. The camera bundled software (camware v4.2, PCO, Kelheim, Germany) was 

used to collect images with an exposure time of 150 ms. As shown in Figure 2.4, the acquired 

scattering image is roughly radially symmetric to the beam incident point, and the pixel intensity 

outside the saturation area (i.e., the glare spot on the image) gradually decreases as the distance 

from the beam incident point increases, which is indicative of light scattering signals of the sample. 

Although the imaging measurement does not decouple the combined effect of light absorption and 

scattering of meat tissues, it captures typical characteristics of spatially resolved diffuse reflectance 

of biological tissues (Kienle et al., 1996) and provides quantitative descriptions of light scattering 

in the meat sample.  

2.4 Feature Analysis and Classification Modeling  

In this chapter, two types of features, i.e., 1) deep-learning-based and 2) hand-crafted scattering 

features, were extracted from scattering images for characterizing broiler samples of varying WB 

conditions [i.e., “Normal (no WB)”, “Moderate”, and “Severe” WB] and classification modeling. 

The raw scattering images (of 2048 × 2048 pixels) were used for both deep-learning and hand-

crafted analyses. A pre-trained model, i.e., ResNeXt-101 (Xie et al., 2017), was applied to the 

scattering images for extracting features, referred to as the deep-learning-based features. The 

ResNeXt-101, extended from the original ResNet (He et al., 2016) with improved capabilities of 

learning discriminative features from images, consists of a concatenated block of 100 

convolutional layers per path/cardinality, followed by a fully connected (FC) layer. To extract 

features by the ResNeXt-101, herein, its FC layer was discarded, and the model convolutional base 

was used as a feature extractor to yield a total of 2048 features from each input image. On the other 

hand, hand-crafted features pertinent to light scattering were extracted for model development, as 
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opposed to the deep features by the ResNeXt-101. 

 As shown in Figure 2.5, the scattering image was partitioned into two areas, i.e., 1) a saturation 

area (SA), manifested as a glare spot, where pixel intensity reached the maximum, and 2) a light 

scattering (LS) area where the pixel intensity decreased to a certain percentage level of the 

maximum, with the source-detector distance increasing. In this chapter, the LS areas of varied 

sizes, with the pixel intensity attenuated to levels ranging from 50% to 5%, were considered for 

image analysis. Based on the visual examination of differences in scattering images between 

normal and defective samples, the features that describe the shape characteristics of SA and LS, 

which are relevant to the light scattering ability of samples, were extracted to represent the 

scattering images for mode development.   

 
Figure 2.5. Example of a scattering image represented in (a) 2-D and (b) 3-D, consisting of a 
saturation area (SA) and a light scattering (LS) area of varied sizes, with the pixel intensity 

attenuated to levels ranging from 50% to 5%. 

Moments (Gonzalez & Woods, 2018) are widely used for shape representation in pattern 

recognition tasks. Here, three types of moments, including 1) raw moments; 2) centralized 

moments; and 3) Hu-moments (Hu, 1962), were adopted for image representation and model 

development. The raw moments are a set of statistical measures related to the object shape, from 

which basic region properties such as area and centroid can be derived. Unlike raw moments, 

centralized moments consider the spatial distribution of pixels relative to the object centroid and 



16 
 

are invariant to the image translation. Advanced moments, such as Hu-moments and their 

derivatives (Hu, 1962; Zhang et al., 2020), improve upon the basic moments and are designed to 

provide more robust representations that are invariant to image translation, scale, and rotation. 

Fourier-Descriptors offer another effective means of representing the shape of an object (Zahn & 

Roskies, 1972), which encodes the object contour into a set of frequency components (i.e., Fourier 

coefficients) through the Fourier transform. In this chapter, both moments and Fourier-Descriptors, 

including 24 moments (consisting of 10 raw moments, 7 centralized moments, and 7 Hu-moments) 

and 64 Fourier descriptors, were extracted from the SA and LS areas, respectively, yielding a total 

of 176 features per scattering image by concatenating them together, which is referred to as the 

Shape-Description features.  

In previous studies of light scattering imaging of fruits, a modified Lorentzian distribution 

(MLD) function with four parameters was employed to represent a scattering profile, where the 

four parameters were estimated and then used for fruit quality assessment (Peng & Lu, 2006a, 

2006b, 2006c, 2007). The Lorentzian distribution (LD) function is commonly used for describing 

laser profiles and light distribution patterns in optics research (Davis, 1996). Compared to the 

original LD, in the MLD, an additional parameter was introduced, for more accurately representing 

scattering profiles (Peng & Lu, 2006a, 2006b, 2006c). The MLD function is expressed as follows:   

 
( )

MLD , ( 0)
1 / d

ba x
x c

= + >
+

  (2.1) 

where x is the scattering distance, and a, b, c, and d are four parameters to be estimated. A detailed 

description of the MLD parameter implications is given in (Peng & Lu, 2006a, 2006b), but it is 

noted that only x greater than zero (x > 0) was used in this study for MLD fitting (Figure 2.6). 

Different from previous studies (Peng & Lu, 2006a, 2006b, 2006c) that extracted one profile 
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in two axis directions from a scattering image, in this chapter, a scattering profile was extracted 

from each of the four quadrants in a scattering image, as illustrated in Figure 2.6, which accounted 

better for the spatial inhomogeneity of light scattering characteristics of meat tissues. To obtain the 

scattering profile, the center of the incident beam was first identified in the scattering image, and 

then the image was divided into empirically determined 100 concentric circular bands with equal 

pixels (or distance), covering a scattering area with a light attenuation level of 10%. The scattering 

profile of each quadrant was obtained by averaging all pixels on the band within that quadrant, and 

then it was normalized by dividing the profile by its maximum. Finally, four normalized scattering 

profiles, with their saturation portions excluded, were fitted with the MLD respectively, resulting 

in a total of 16 model parameters (features) for each image.  

 
Figure 2.6. The procedures of processing a scattering image for obtaining the parameters of 

a modified Lorentzian distribution (MLD) function and numerical integration areas of 
each scattering profile within the quadrant. 

Moreover, the area under the scattering profile obtained above, that is the shaded area under 



18 
 

the curve in Figure 2.6, was calculated through numerical integration, denoted as the numerical 

integration area (NIA) feature. The area feature is also related to the optical scattering ability of 

samples and is potentially useful. Here 4 NIA features were obtained from four quadrants per 

image. As a result, all hand-crafted features, extracted for scattering image representation, include 

1) 176 Shape-Description features, 2) 16 MLD features, and 3) 4 NIA features. Concatenating 

these features resulted in a total set of 196 hand-crafted features per scattering image, which would 

be used for sample classification.  

Figure 2.7 shows the modeling pipeline for classifying broiler breast samples. The two 

independent sets of features, i.e., 1) deep-learning-based and 2) hand-crafted features, were 

employed separately for model development. The extracted feature data was randomly partitioned 

into training and test sets according to the ratio of 65% : 35% (corresponding to 157 : 85 fillet 

samples). A holdout validation with 20 replications was adopted for model training and evaluation.  

 

Figure 2.7. The procedures for classifying broiler breast samples into “Normal” , 
“Moderate”, and “Severe” WB categories using the extracted features. 

 
After the initial modeling of the two sets of features, feature reduction approaches including 

MRMR (minimum redundancy maximum relevance) (Ding & Peng, 2005) and PCA (principal 
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component analysis) (Jolliffe, 2002) were applied to reduce model complexity and potentially 

improve classification accuracy. MRMR aimed to select a subset of features most relevant to 

intended tasks with the least correlation among features, while PCA was to transform the raw 

feature data into a small number of new variables called principal components (PCs) that explain 

most of the variance in the raw data. Regularized linear discriminant analysis (RLDA), which is a 

simple yet potent classifier for modeling high-dimensional features (Guo et al., 2007), was 

employed to classify poultry meat samples with the raw and reduced set of extracted features, 

respectively. The two tunable hyperparameters of RLDA, including the regularization parameter γ 

(0 < γ < 1) and the shrinkage δ (δ > 0), were determined through Bayesian optimization with 10-

fold cross-validation on training data in this chapter. 

The performance of discriminant models was quantified in terms of overall classification 

accuracy and corresponding confusion matrix in 20 repeated holdout validations. Feature analysis 

and discriminant modeling were conducted with the aid of Matlab R2022b (The MathWorks Inc., 

Natick, MA, USA), PyTorch (version 1.13.1), and Scikit-learn (version 1.0.2) in Python (version 

3.8.16) on a desktop computer workstation with an Intel® Core™ i9-10900x CPU (256 GB RAM) 

and an NVIDIA RTX A6000 GPU. 

2.5 Results 

2.5.1 Scattering Images and Profiles 

Figure 2.8 shows example scattering images of broiler meat samples of varying WB conditions. 

Compared to the “Normal” (WB-free) samples, the scattering images of defective samples 

(affected by “Moderate” and “Severe” WB) tended to have larger saturation areas that were more 

radially symmetric regarding the beam incident point, varying with the severity of WB. The 

average saturation area size (in terms of pixel counts) of the “Normal”, “Moderate”, and “Severe” 
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samples were 29,326±10,832, 41,695±9,563, and 48,136±7,407 pixels, respectively. In contrast, 

the WB-affected samples (including “Moderate” and “Severe”) exhibited overall smaller scattering 

areas (beyond the saturation areas) than the “Normal” samples, given the same light attenuation 

level. The pixel intensity outside the saturation area gradually decreased as the distance from the 

beam incident point increased. Given the scattering area delimited by a light attenuation level of 

10% of the maximum (Figure 2.6), chicken samples of “Normal”, “Moderate”, and “Severe” 

classes had average areas of 450,776±51,338, 430,366±43,186, and 409,729±39,200 pixels, 

respectively, although the differences among the classes were not significant. This suggests that 

the WB-affected samples attenuated light more rapidly in the spatial domain.  

 
Figure 2.8. Examples of scattering images for normal and WB-affected broiler breast 

samples.  

Figure 2.9 (a) shows the scattering profiles of samples of three WB categories extracted from 

the scattering areas defined at a light attenuation level of 10% of the maximum. The scattering 

profiles of the WB-affected samples [red and green curves in Figure 2.9 (a)] appeared to decrease 

more rapidly than that of the normal ones (blue curves), with the source-detector distance 

increasing, although the differences were subtle. These observations on scattering profiles could 
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merit a future investigation of quantitative estimation of scattering coefficients of normal and 

defective samples using tissue optics approaches (Bigio & Fantini, 2016). Figure 2.9 (b) shows a 

scatter plot for the chicken samples visualized using the first two PCs of their scattering profiles, 

where PC1 and PC2 account for 89.27% and 9.09% of the total variance, respectively. The 

separation between normal and defective samples (“Moderate” and “Severe” combined) was 

present to some degree, but not clearly defined. A substantial overlap existed between the 

“Moderate” and the other two categories (“Normal” and “Severe”), which would complicate the 

differentiation between these two categories and present challenges to the overall classification of 

the three WB categories.  

 
Figure 2.9. (a) Scattering profiles with the saturation portion excluded, for all normal and 
defective samples, i.e., “Normal”, “Moderate”, and “Severe”; (b) scatter plot in the space 
spanned by the first two principal components (PCs) for three woody breast categories of 

broiler breast meat samples.  

 2.5.2 Classification 

Figure 2.10 shows the overall accuracies in classifying normal and defective (affected by 

“Moderate” and “Severe” WB defects) samples using the hand-crafted features extracted from the 

SA and LS areas of varying light attenuation levels. The LS features were extracted from the 

regions beyond the SA with the light attenuated to a range of 50% and 5% of its maximum intensity 

in a 5% decrement, to examine the effects of light attenuation levels. The performance of LS 
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features varied with the light attenuation levels, with overall accuracies of 77.74%-85.77% and 

60.6%-68.33% in 2- and 3-category classification, respectively. The combination of the features 

from SA and LS produced higher accuracies than those of the LS features used alone across most 

attenuation levels, except at 30% and 35% light attenuation levels where LS features slightly 

outperformed the combined features of SA and LS in either 2- or 3-category modeling scenarios, 

though the differences in accuracy between were not significant (P > 0.05). The combined features 

yielded overall accuracies ranging from 82.74%-85.77% and 65%-70% for 2- and 3-category WB 

classification, respectively (Figure 2.10).  

 
Figure 2.10. Overall accuracies of classifying broiler meat samples into (a) two (i.e., 

“Normal” and “Defective”) and (b) three (i.e., “Normal”, “Moderate”, and “Severe”) WB 
categories using the Shape-Description features extracted from the saturation area (SA) 
and light scattering (LS) areas delimited at varying light attenuation levels (50% - 5%), 

respectively.  

These results suggested that the SA features contributed positively to modeling performance. 

The LS area at the 20% light attenuation level, although it did not yield the best classification 

accuracy when only LS features were modeled, produced the best accuracy (i.e., 85.77% and 70%, 
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respectively) in both 2- and 3-category modeling when the combined features of LS and SA were 

used. The combined set of hand-crafted features was therefore chosen for further modeling 

experiments described below.  

 
Figure 2.11. Overall accuracies of deep-learning-based and hand-crafted features in 

classifying broiler meat samples into two (i.e., “Normal” and “Defective”) and three (i.e., 
“Normal”, “Moderate”, and “Severe”) WB categories.  

Figure 2.11 shows the comparison of classification performance based on deep-learning-based 

features and different sets of hand-crafted features. In the 2-category modeling, deep-learning-

based features yielded an overall accuracy of 76.43% in differentiating between normal and 

defective samples, while higher accuracies of 76.67%-86.61% were obtained by hand-crafted 

features sets. Among the three types of hand-crafted features, as shown in Figure 2.11, the 176 

Shape-Description features produced the highest accuracy of 85.77%, followed by the 16 MLD 

features with an accuracy of 83.63% and then 4 NIA features with an accuracy of 76.67%. Further 

improvements were achieved by concatenating these hand-crafted features together, yielding 

accuracies of 86.01% with the combination of MLD and Shape-Description features and 86.61% 

with a complete set of hand-crafted features, representing significant improvements (P < 0.05) of 

9.58% and 10.18% over that obtained using deep-learning-based features, respectively. Similar 

results were reported in the 3-category modeling, where hand-crafted features consistently 
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outperformed deep-learning-based features (55.36%) by a large margin, with overall improved 

accuracies ranging from 58.57%-70.06%. Still, the complete set of 196 hand-crafted features 

achieved the highest accuracy of 70.06% for the 3-category WB classification, with a significant 

improvement of 14.7% (P < 0.05) over that of deep-learning-based features.  

These results demonstrate the superiority of purposely engineered features from scattering 

images and profiles over the features extracted by a generic “black box” deep learning model, for 

classifying normal and defective broiler samples. The mediocre performance of the ResNeXt-101 

model is likely because this model, pre-trained on the large-scale ImageNet dataset, which consists 

mostly of natural scene images, was directly applied to extract features from the scattering images 

without any adaptation or further post-training. While the model has shown strengths in extracting 

certain local features (e.g., edges, corners, colors) in visual categorization tasks in the computer 

vision community, the ImageNet images dramatically differ from the light scattering images of 

chicken samples in this work, which could have restricted the transform learning performance of 

the ResNeXt-101, leading to the limited classification accuracy. An end-to-end deep-learning 

model trained from scratch on large volumes of dedicated data could deliver better performance in 

WB classification, which remains to be investigated in our future work.  

To improve model performance, feature selection was performed on the full set of hand-crafted 

features. Figure 2.12 (a) shows the performance of RLDA trained using the top 5 to 195 features 

in a 5-feature increment, ranked by importance according to the MRMR algorithm (Ding & Peng, 

2005). In 2-category modeling, the accuracy peaked at 87.92% when the top 40 features were used 

for modeling and then fluctuated around 85% as more features were included. With the same top 

40 features, an overall accuracy of 70.24% was achieved for the 3-category WB classification and 

reached a maximum of 70.77% when the top 140 features were modeled. The selected features, 
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although not fully optimized, produced slight improvements of 1.31% (2-category) and 0.71% (3-

category) with reduced model complexity, compared to full-features-based modeling.  

 
Figure 2.12. (a) Overall classification accuracies of using subsets of the most relevant hand-

crafted scattering features ranked by the MRMR algorithm, ranging from 5 to 195 in an 
increment of 5; row-wise confusion matrices (where row and columns correspond to actual 
and predicted labels) for (b) two and (c) three categories modeling based on the top-ranked 

40 and 140 features (best accuracy), respectively. The confusion matrix was obtained by 
pooling and row-wise normalizing classification results in 20 repeated holdout validations. 

 
Figure 2.12 (b) shows the corresponding confusion matrix for the 2-category classification. 

The “Normal” samples contributed more to misclassifications (17.6% false negatives), with 82.4% 

of them correctly classified, compared to a higher accuracy of 91.6% for recognition of the 

“Defective” samples. In 3-category modeling, as shown in 2.12 (c), misclassifications were 

primarily observed between the “Moderate” and “Severe” classes, with only 60.5% and 68.5% of 

samples correctly classified, while the “Normal” samples were well differentiated from the WB-

affected ones, especially from those of the “Severe” class, with misclassifications of less than 5% 

between them [i.e., 2.6% and 3.4%, Figure 2.12 (c)]. Including a larger, more balanced set of 

chicken samples for modeling could potentially help improve classification accuracy.  

The compositions of the top 10 features ranked by MRMR, with the normalization of feature 

weights (corresponding to the importance), for 2- and 3-category WB classification, are shown in 

Figure 2.13. The two most relevant features in both 2- and 3-category modeling scenarios were the 

shape descriptors of the saturation area, specifically, the Hu-moments, which confirmed the 
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importance of the saturation area of scattering images for WB assessment. The following two most 

relevant features in 2-category modeling were the MLD features describing the scattering profiles, 

and the rest of the top features were all relevant to the shape characteristics of saturation and 

scattering areas [Figure 2.13 (a)], while in the 3-category modeling, as illustrated in Figure 2.13 

(b), all the top features, except an MLD feature, were shape-related and contributed to WB 

classification. This analysis indicates that shape features of SA and LS areas are important to WB 

assessment, and the potential of MLD features remains to be fully ascertained with further 

investigation.  

 
Figure 2.13. Top 10 normalized feature weights ranked by MRMR (minimum-redundancy-
maximum-relevance) for (a) 2- and (b) 3-category woody breast classification, respectively. 

Aside from the MRMR-based feature section, PCA (Jolliffe, 2002) was applied to reduce the 

full set of hand-crafted features into low-dimensional representations for sample classification. 

The discriminant model was sequentially trained using the first 5 to 155 PCs in a 5-PC increment 

for 2- and 3-category WB classification, respectively [Figure 2.14 (a)]. The first 15 PCs produced 

the best accuracy of 87.05% in the 2-category modeling, which is slightly higher by 0.44% (P > 

0.05) than that obtained from full-feature modeling (86.61%), and then the accuracy gradually 

declined to around 78% as more PCs were used. Similarly, in the 3-category modeling, the 

accuracy peaked at 68.63% with the first 20 PCs and then decreased as more PCs were modeled, 
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showing comparable accuracy to the full-feature modeling (70.06%) while using a reduced set of 

features (or PCs).  

 

Figure 2.14. (a) Overall classification accuracies of using the first 5 to 155 principal 
components (PCs) in a 5-feature increment; row-wise confusion matrices (where row and 

columns correspond to actual and predicted labels) for (b) two and (c) three categories 
modeling based on the 15 and 20 PCs (best accuracy), respectively. 

 
The corresponding confusion matrices for the 2- and 3-category classification are shown in 

Figure 2.14 (b) and (c). Likewise, the misclassification in 2-category modeling was primarily due 

to the “Normal” samples with a false negative rate of 21.9%, while a recognition accuracy of 

93.1% was achieved for the “Defective” class. In 3-category modeling, the “Moderate” and 

“Severe” samples were relatively more difficult to differentiate, with misclassification rates of 

25.5% and 29.9% between them, while 78.5% of the “Normal” samples were correctly classified, 

which are overall consistent with the results obtained using a smaller set of 140 features selected 

by MRMR [Figure 2.13 (c)].  

2.6 Discussion 

This chapter has demonstrated the feasibility of broadband LSI as a new approach to the 

assessment of WB conditions in broiler breast meat. Although direct comparisons with other 

imaging techniques in previous studies are challenging due to different samples and methodologies, 

the performance of LSI shown in this chapter is encouraging. Geronimo et al. (2019) reported 
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91.8% accuracy in classifying normal and WB-affected chicken samples using color images. 

Ekramirad et al. (2024) acquired optical coherence tomography images from normal and WB-

affected chicken fillets and reported 95% classification accuracy. However, both studies were 

limited in their sample size, with 80 and 30 chicken fillets used for the 2-Category WB 

classification by Geronimo et al. (2019) and Ekramirad et al. (2024), respectively, as opposed to 

242 samples in this study. The use of small sets of selected samples for modeling could result in 

an overestimation of model performance, which demands validations with more samples for 

reliable assessment. With a larger, more balanced set of sample data collected, an end-to-end deep-

learning model trained from scratch could also be established for potentially improved WB 

assessment, which remains to be further investigated.  

The current LSI platform only acquired broadband or panchromatic images, which can be 

upgraded into a multispectral mode by either using a multispectral camera or installing a filter 

device in front of the existing monochromatic camera, as done in Chapter 4. This would arguably 

result in additional spectral information, potentially translating into better performance in WB 

classification. However, the broadband LSI technique has better potential to be implemented for 

online WB detection of chicken meat at processing facilities. More dedicated efforts in both 

software and hardware are needed to move forward the technique beyond this proof-of-concept 

study toward practical application. In addition to the feature engineering-based approaches for WB 

assessment in this study, it is important to point out that the spatially-resolved scattering profiles 

extracted from scattering images can be utilized for inversely estimating absorption and scattering 

coefficients of meat samples based on light propagation models in biological tissues (Kienle et al., 

1996; Bigio & Fantini, 2016), which provide quantitative insights into tissue optical properties and 

can inspire new approaches to poultry quality evaluation.  
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2.7 Conclusions 

A broadband LSI technique was assembled and evaluated in this chapter for assessing WB 

conditions in broiler breast fillets. Normal and WB-affected samples showed differences in the 

characteristics of the shape of SA and LS areas as well as scattering profiles, providing the basis 

for utilizing scattering images to classify them into different WB categories. This chapter 

demonstrated that the hand-crafted features extracted from scattering images and profiles were 

useful for WB classification. The light attenuation levels that were used to define scattering areas 

for feature extraction affected model performance. The full set of 196 engineered features from 

both saturation and scattering areas of scattering images yielded overall classification accuracies 

of 86.61% and 70.06% for 2- and 3-category WB classification, respectively, outperforming the 

deep learning-based features (76.43% and 55.36%) by a significant margin of 10.18% and 14.7% 

(P < 0.05). Further improvements of 87.92% and 70.77% were achieved by modeling subsets of 

40 and 140 features selected by MRMR for 2- and 3-category WB classification, respectively, 

while PCA produced comparable accuracies of 87.08% and 68.63% using the first 15 and 20 PCs. 

More efforts are needed to develop classification models based on an expanded set of chicken 

samples and implement the imaging technique in multispectral mode (Chapter 4) while pursuing 

real-time implementation for online detection. 
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CHAPTER 3: ASSESSMENT OF WOODY BREAST CONDITION IN BROILER 
BREAST FILLETS USING SINUSOIDAL ILLUMINATION REFLECTANCE IMAGING 

COUPLED WITH SURFACE PROFILOMETRY 

3.1 Imaging System 

A benchtop broadband SIRI system, as schematically shown in Figure 3.1, was assembled for 

poultry imaging. The system mainly consisted of a quartz tungsten halogen (QTH) light source 

(Newport Corporation, Irvine, CA, USA) connected with a power supply controller, a digital light 

projector (DLP) (DLi6500 Optics Bundle, DLi, Austin, TX, USA) that uses a digital micromirror 

device of 1920 × 1080 pixels for spatial light modulation, a monochromatic camera (Edge 4.2, 

PCO, Kelheim, Germany) with a resolution of 2048 × 2048 pixels, equipped with a 35 mm fixed 

focal length lens (Edmund Optics Inc., Barrington, NJ, USA), and a desktop computer. The light 

from the QTH lamp passed through a visible-near-infrared liquid light guide (Newport Corporation, 

Irvine, CA, USA) to the DLP for light pattern illumination onto broiler breast samples for imaging.  

The DLP and camera were synchronized by a trigger cable to allow for simultaneous pattern 

projection and image acquisition. The camera was positioned perpendicularly downward at about 

50 cm above the sample, with a pixel resolution of about 0.1 mm/pixel. The projector was set up 

at an angle of about 10° with respect to the camera and 40 cm from the sample, illuminating an 

area of about 25 cm × 15.5 cm. A pair of crossed linear polarizers were attached in front of the 

projector and camera lenses to reduce specular reflection from the sample surface. The SIRI system 

was operated in an enclosed dark chamber for sample illumination and image collection to avoid 

the interference of ambient light. 
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Figure 3.1. Schematic of a broadband SIRI system for assessing woody breast of broiler 

meat. 
 

In SIRI, three phase-shifted sinusoidal patterns with phase offsets of 0, 2π/3, and 4π/3 at a 

given spatial frequency are normally used due to the ease of three-phase demodulation to retrieve 

intensity and phase images (Lu & Lu, 2019). In this chapter, images were acquired under the 

illumination of a sequence of three-phase-shifted patterns at eight different spatial frequencies of 

0.015-0.150 cycles/mm. These spatial frequencies differ from those in our previous studies on 

white striping (WS) assessment of broiler meats (Olaniyi et al., 2023a, 2023b, 2024), because 

physical calibration of the illumination patterns was further considered in this study. These patterns 

were generated as 8-bit bitmaps in Matlab R2022R (The MathWorks Inc, Natick, MA, USA) and 

then loaded to the graphical interface software (LightCrafter 6500/9000 GUI, Texas Instruments, 

Dallas, Texas) of the projector for sample illumination. The same groups of samples were used in 

this study for all imaging (LSI and SIRI) and texture instrumental experiments (as well as in 

Chapter 4), with detailed descriptions provided in Chapter 2. The broiler samples were individually 

placed on a sample stage and imaged under consecutive switching of a set of 24 preloaded 
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illumination patterns (24 = 3 phase-shifted patterns per spatial frequency × 8 spatial frequencies) 

triggered by the camera bundled software (camware v4.2, PCO, Kelheim, Germany) with an 

exposure time of 500 ms. 

3.2 Image Processing 

The acquired pattern images were first processed by a low-pass Gaussian filter of 3×3 pixels 

kernel size to suppress image noise. Then, as illustrated in Figure 3.2, the acquired three phase-

shifted pattern images at each spatial frequency were demodulated into DC, AC, and phase images 

as follows: 
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where I1, I2, and I3 are the reflectance pattern images acquired under the illustration of three phase-

shifted patterns at the same spatial frequency, and the demodulation operations are performed on 

a pixel basis. The intensity images, DC and AC, characterize the optical properties of a sample (Lu 

& Lu, 2019; Lu & Cai, 2023), while the phase image depicts the surface geometry of the sample 

(Figure 3.2). Thereafter, histogram-based automatic thresholding (Lu & Lu, 2017) was adopted on 

the DC images to separate broiler meat samples from the background and further applied to the 

corresponding AC and phase images.  

It is important to note the arctangent function Eq. (3.3) for phase retrieval results in phase 

values wrapped to the range of – π to π, with 2π discontinuities or jumps in the resultant map, 
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which is referred to as the wrapped phase (Zhang, 2018b). Further phase unwrapping is needed to 

restore the wrapped phase to a continuous phase map (also known as the absolute phase). The 

relationship between the absolute phase (ϕ) and wrapped phase (φ) is provided as follows:  

 2πkφ ϕ= +  (3.4) 

where k is the integer number to represent fringe orders of the wrapped phase, which remains to 

be determined using a phase unwrapping technique.  

Among numerous absolute phase recovery techniques, the two-frequency method (Zhang, 

2018b), which employs the phase information obtained at low frequency to unwrap the high-

frequency phase, was adopted in this chapter given its high-resolution [or signal-noise-ratio (SNR)] 

and precision for absolute phase retrieval. The fringe order k can be uniquely determined using the 

following equation (Huntley & Saldner, 1993; Zhao et al., 1994):  
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2π
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where Round() is a function that returns the closest integer value, fh and fl represent the spatial 

frequency of high and low fringe patterns, respectively, and  φh and ϕl are the wrapped and absolute 

phases at the same high and low spatial frequencies, respectively.  

Here the spatial frequencies of 0.03 cycles/mm (low-frequency) and 0.15 cycles/mm (high-

frequency) were used to retrieve the phase map. The ϕl was coarsely restored by comparing the 

wrapped phase with the estimated reference phase using the method proposed by Wang et al., 

(2023), which suffers from low SNR and resolution in the phase map due to the sparse fringe 

distribution at a lower frequency. According to Eq. (3.5), though, the low-frequency phase ϕl can 

be used to determine the fringe order k of the wrapped phase at high frequency. With the fringe 

order k obtained, the high-frequency absolute phase ϕh with improved measurement resolution and 



34 
 

precision was calculated using Eq. (3.4). Thereafter, a phase-difference map was attained by 

subtracting the estimated reference map from the absolute phase ϕh, which depicts the topographic 

surface profiles of a sample due to the proportional relationship between the phase difference and 

surface height (Lu & Cai, 2023; Lu & Lu, 2018c). Finally, the resultant phase difference maps 

were subjected to a median filter with 5×5 pixels kernel size to reduce noise, before subsequent 

feature extraction and modeling.  

 
Figure 3.2. Image processing to obtain the phase-difference, direct component (DC), and 
amplitude component (AC) images using three phase-shifted patterned images at each 

spatial frequency. 

3.3 Feature Analysis and Classification Modeling  

The two sets of image data obtained, i.e., the phase images (Dataset I) and the intensity DC 

and AC images (Dataset II), were utilized separately for feature analysis and WB classification 

modeling, as shown in Figure 3.3. Previous studies have shown the superiority of using pre-trained 

deep-learning (DL) models over hand-crafted feature engineering in extracting textural features 
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from intensity images for WS assessment of poultry meat (Olaniyi et al., 2023a, 2023b). Here, the 

pretrained image classification model, i.e., ResNeXt-101 (Xie et al., 2017), was used as a feature 

extractor for both phase and intensity images. As done for scattering images in Chapter 2 (Section 

2.4), the output from the last convolutional layer of the model was taken as the features, which is 

a vector of 2048 features for each given input image. Although pretrained DL models were 

effective for extracting discriminative features from the demodulated intensity (DC and AC) 

images for assessing physical characteristics of meat samples (e.g., WS in poultry meat and beef 

marbling) (Olaniyi et al, 2023a, 2023b; Cai et al., 2024), the chance is that these models like 

ResNeXt-101 may not be well suited for representing the phase difference images in this study, 

because the phase difference images, which depict the surface geometry of samples, differ 

dramatically from DC or AC images or other types of natural scene images in the ImageNet 

database used for pre-training DL models.  

 
Figure 3.3. The procedures for classifying normal and WB-affected broiler meat samples 

using features extracted from intensity and phase-difference images.   

Given the potential risk in using DL-based feature extraction for phase difference images, due 

attention was given to hand-crafted feature engineering, which may lead to more effective features 

than those obtained from the DL model, for capturing sample geometry. The histogram of gradient 
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(HOG) (Dalal & Triggs, 2005) and local binary patterns (LBP) (Ojala et al., 1996, 2002) are the 

image descriptors that capture local gradients and spatial structures (e.g., shape or contour) in 

images, which have been used to extract features from 3-D depth maps for human face/action 

recognition (Ali et al., 2018; Tatarenkov & Buchatsky, 2018; Chen et al., 2015). Inspired by LBP, 

binarized statistical image features (BSIF) provide meaningful representations of images by 

implementing filters learned using statistics of images for improved pattern classification 

performance (Kannala & Rahtu, 2012).  

In this chapter, as indicated in Figure 3.3, all three types of local descriptors (HOG, LBP, and 

BSIF) were extracted from the phase difference images to build the set of hand-crafted features as 

opposed to the DL-based features for WB assessment. These features, which were extracted using 

an open-source Matlab Toolbox Balu (version 4.1) (Mery, 2011), included 1800 HOG, 59 LBP, 

and 128 BSIF. The HOG feature set was constructed using 20 × 10 spaced cells in horizontal and 

vertical directions with 9 histogram bins, resulting in 1800 features. The LBP features were 

calculated for 58 rotation-invariant uniform patterns and all non-uniform patterns defined in an 8-

pixel neighborhood (Ojala et al., 2002). For the BSIF descriptor, the features were extracted with 

a filter size of 5×5 pixels and 7-bit length, which is the default setting of the Balu toolbox (Mery, 

2011). Since both filter size and the length of the bit string affect the resultant feature set and 

downstream model performance (Kannala & Rahtu, 2012), the two parameters were empirically 

tuned in extracting features from phase-difference images for improved model performance by 

varying the filter size from 3 to 17 (in an increment of 2), followed by adjusting the bit length from 

5 to 12 with the optimized filter size (see Section 3.4.2). The extracted hand-crafted features were 

concatenated in different combinations for model development and performance evaluation.   

For each sample, the DL-based features were extracted from both phase-difference and 
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intensity (DC and AC) images at different spatial frequencies, while the hand-crafted (HOG, LBP, 

and BSIF) features were only used on the phase-difference image. Classification models were built 

for WB assessment by using the phase-difference and intensity image features separately as well 

as their combination. As done in Chapter 2 (Section 2.4), the extracted feature dataset was 

randomly partitioned into training and test sets according to the ratio of 65% : 35%, and RLDA 

(Guo et al., 2007) was employed to build models for differentiating between normal and WB-

affected samples. The two tunable hyperparameters of RLDA, including the regularization 

parameter γ (0 < γ < 1) and the shrinkage δ (δ > 0), were optimized through grid search with 10-

fold cross-validation on training data. To obtain a reliable estimate of model performance, a 20-

repeated holdout validation was carried out for model training/testing, and the averaged accuracy 

over the 20 replications was calculated as the primary metric for performance evaluation.  

Feature analysis and classification modeling were performed using the DL framework PyTorch 

(version 1.13.1) and the scikit-learn library (version 1.0.2) in Python (version 3.8.16) and the Balu 

Toolbox (Mery, 2011) in Matlab R2022R (The MathWorks Inc, Natick, WA, USA) on a desktop 

computer with an Intel® Core™ i9-10900x CPU (256 GB RAM) and an NVIDIA RTX A6000 

GPU (with 48 GB RAM). 

3.4 Results   

3.4.1 Demodulated Images  

Figure 3.4 shows example phase-difference images of normal and defective (affected by 

moderate and severe WB) chicken fillets. These images reflect the topographic surface profiles of 

samples. The defective broiler examples, particularly the ones affected by severe WB defects (third 

row, Figure 3.4), with the color bar ranging from blue to red representing surface geometry/height, 

show ridge-like bulges along the cranial to caudal region varying with the severity of WB, while 
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the normal (no WB) samples presented with relatively flat and uniform shape profiles (first row). 

These surface profiles characterize the physical shape differences visually observed, as shown in 

Figure 2.2. Hence, the image (geometric) features that represent the sample surface profiles are 

likely to be effective for classifying normal and WB-affected samples. 

 

Figure 3.4. Examples of demodulated phase-difference (or phase-depth) images of normal 
and defective (affected by moderate and severe WB myopathies) broiler breast fillets.  

Figure 3.5 shows examples of demodulated intensity (DC and AC) images of normal and WB-

affected samples. Compared with DC, AC images vary with spatial frequency and appear to 

provide better visualization of textural characteristics (e.g., white striations) of samples, except 

that the intensity of AC images diminishes as the spatial frequency increases. This observation on 

intensity images is in agreement with previous poultry and beef imaging (Olaniyi et al., 2023a, 

2023b, 2024; Cai et al., 2024). However, the intensity images reveal little information on the 

geometry of samples. It is reported that WS is sometimes co-occurrent with WB in broiler meat to 
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a varying degree due to the interrelated histological changes in the affected muscles (Bowker et 

al., 2019; Aguirre et al., 2020). The co-occurrence of WS in the WB-affected samples could 

potentially contribute to differentiating between normal and defective samples in modeling textural 

features extracted from the intensity images. It should be noted that, in this study, most of the 

normal (WB-free) samples showed no incidence of WS defects, while only a small percentage 

(around 30% through visual inspection) of WB-affected samples (e.g., the last row example in 

Figure 3.5) were affected by WS defects.   

 
Figure 3.5. Examples of demodulated intensity images, i.e., direct component (DC) and 

amplitude component (AC), at the spatial frequencies of 0.015–0.15 cycles/mm (from left to 
right) for normal and WB-affected broiler breast samples. 

https://pubmed.ncbi.nlm.nih.gov/?term=Aguirre%20ME%5BAuthor%5D
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3.4.2 Classification   

The two types of features extracted from the phase-difference images, i.e., 1) DL-based and 2) 

hand-crafted geometric features, were used for building RLDA models for classifying broiler fillet 

samples into two and three WB categories. Figure 3.6 (a) shows the overall classification accuracy 

based on the DL-based features and different sets of hand-crafted feature sets. In the 2-category 

classification, the DL-based features yielded overall accuracy of 71.96%, while the hand-crafted 

features achieved better performance (given higher accuracy and smaller variations), with overall 

accuracies ranging from 82.62%-87.86%, representing significant improvements of 10.66%-

15.90% (P < 0.05). Among the three types of hand-crafted features, LBP and BSIF outperformed 

HOG substantially, yielding the classification accuracy of 86.13% and 87.86%, respectively. 

Likewise, in the 3-category modeling, the hand-crafted features achieved consistently better 

classification accuracy (58.69%-71.49%) over the DL-based features (50.06%), and the best 

accuracy of 71.49% was obtained by BSIF and LBP-BSIF combined features, which generally 

agreed with the results in the 2-category modeling, except with overall lower accuracies. It is noted 

that the combination of hand-crafted features [1) LBP and BSIF combined and 2) HOG, LBP, and 

BSIF combined] produced mediocre improvements in both 2- and 3-category modeling scenarios, 

i.e., slightly lower/identical accuracy and no statistically significant differences (P > 0.05), 

confirming that BSIF were more effective than LBP and HOG for WB assessment.  

The scattering plot based on the first two PCs of the BSIF features, as shown in Figure 3.6 (b), 

confirmed the separation between normal (blue marker) and WB-affected (green and yellow 

markers) broiler fillet samples; however, there was also an overlap observed between moderate 

and severe WB categories, resulting in less effective in differentiating between samples of these 

two WB categories and thus negatively impact the overall performance in 3-category WB 
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classification (discussed below, Figures 3.9 and 3.10).  

 
Figure 3.6. (a) Overall classification accuracies of deep-learning-based and hand-crafted 

features extracted from phase-difference images for two and three WB categories 
modeling; (b) scatter plot of the BSIF features in the space spanned by the first two 

principal components (PCs) for three WB categories of chicken fillet samples. HOG, LBP, 
and BSIF denote histograms of gradient, local binary pattern, and binarized statistical 

image features, respectively. 

 
Figure 3.7. Overall classification accuracies by modeling binarized statistical image 

features (BSIF) extracted for different (a) filter sizes and (b) bit length.  

Among the three types of hand-crafted features, the BSIF showed the most discriminative 

ability. To exploit BSIF for improved WB assessment, its two parameters, including the filter size 

and bit length (Kannala & Rahtu, 2012), were tuned to extract better feature sets from the phase-

difference images. For the sake of optimization efficiency, instead of conducting an exhaustive 

grid search for the best parameter pair, the filter size was first tuned with the bit length set to default, 
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and thereafter the bit length was tuned by applying the optimized filter size. Figure 3.7 shows the 

effect of varying the parameters on the classification accuracies. Overall, it seems the accuracy 

decreased with relatively larger filter sizes and increased with relatively larger bit lengths in both 

2- and 3-category modeling scenarios. In first-round optimization, tuning the filter size to 5 × 5 

pixels yielded the local highest accuracy of 87.86% and 71.49% in 2- and 3-category modeling 

[Figure 3.7 (a)], respectively, which are identical to those obtained by the default BSIF (Figure 

3.6); further improved accuracies of 88.69% (2-category) and 71.55% (3-category) were then 

obtained with the bit length set to 11 [Figure 3.7 (b)]. The optimized BSIF (with 5 × 5 pixels filter 

size and 11 bit length) produced overall accuracies of 0.83% and 0.06% better than that achieved 

before optimization (see Figure 3.6), despite no statistically significant improvements (P > 0.05).  

Figure 3.8 shows the overall classification accuracies using the intensity image (DC and AC) 

features and their combination with the hand-crafted features from the phase-difference images for 

classifying normal and WB-affected broiler fillet samples. The feature combination was done by 

concatenating the optimized BSIF features (5 × 5 pixels filter size and 11-bit length) with the 

features of AC images at individual spatial frequencies to produce the ensemble of AC-phase 

image features. In the 2-category classification, the DC images produced a baseline overall 

accuracy of 80.24%, while the AC images offered better accuracies of 81.43%-84.88%, and the 

highest accuracy of 84.88% was obtained at 0.055 cycles/mm, which is 4.64% higher than that 

obtained by DC (P < 0.05). Similar results were observed in 3-category modeling, where AC 

images remained superior over DC, yielding the highest improvement of 4.58% at both 0.055 and 

0.150 cycles/mm (64.88%) than that obtained by DC (60.30%). The combined features of AC and 

phase difference images yielded significant improvements at all the spatial frequencies, with the 

overall classification accuracy ranging from 86.07%-87.74% and 70.00%-72.08% in 2- and 3-
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category modeling, respectively, outperforming the AC image features used alone.  

 
Figure 3.8. Comparison of overall accuracies for the intensity image [direct component 

(DC) and amplitude component (AC)] features and the combination of AC image features 
with the phase-difference image features in classifying broiler meat samples into (a) two 

and (b) three WB categories.  

These results validated the positive effects of the geometric features from the phase-difference 

images for WB assessment. The best feature combination in 2-category modeling (with 87.74% 

accuracy at 0.150 cycles/mm) still fell behind the hand-crafted features, i.e., the optimized BSIF 

(88.69%), of the phase-difference images, with a small accuracy gap of 0.95% from that achieved 

by the latter, while in 3-category, slightly improved accuracies of 71.79% and 72.08% were 

obtained by concatenating the optimized set of BSIF with textural features from the AC images at 

0.055, 0.070, or 0.150 cycles/mm. Despite higher accuracies (71.79% and 72.08%), the combined 

features showed no statistically significant improvements (P > 0.05) over that obtained by the 

optimized BSIF alone (71.55%), where the numerical difference in accuracy is primarily attributed 

to the randomness of modeling. These suggest that the phase image-derived geometric features 

contributed primarily to the success in classifying normal and WB-affected chicken meat samples 
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while the AC image-derived textural features were less effective.  

 
Figure 3.9. (a) Overall classification accuracies of using subsets of the most relevant hand-
crafted scattering features ranked by the MRMR algorithm, ranging from 5 to 2005 in an 

increment of 50; row-wise confusion matrices (where row and columns correspond to 
actual and predicted labels) for (b) two and (c) three WB categories modeling based on the 
top-ranked 1805 and 1605 features (best accuracy), respectively. The confusion matrix was 
obtained by pooling and row-wise normalizing classification results in 20-repeated holdout 

validations.  

As done in Chapter 2, two feature reduction methods, i.e., MRMR and PCA, were adopted to 

reduce model complexity and potentially improve classification accuracy. Considering the 

primarily positive effect of the phase-derived features, the best feature set, i.e., the optimized BSIF, 

of phase difference images was chosen as the feature base for dimensionality reduction in both 2- 

and 3-category modeling scenarios. Figure 3.9 (a) shows the overall accuracies for 2- and 3-

category WB classification using the top 5 to 2005 features in a 50-feature increment, ranked by 

importance according to the MRMR algorithm (Ding & Peng, 2005). In 2-category modeling, the 

top-ranked 55 features yielded an overall classification accuracy of 85.60%, which is comparable 

to that obtained from full-feature modeling [88.69%, see Figure 3.7 (b)]. The accuracy fluctuated 

around 85%-88% and then peaked at 88.75% when the top-ranked 1805 features were used for 

modeling. In 3-category modeling, an overall accuracy of around 70% was achieved starting from 

the top 55 features, with the highest accuracy of 71.79% obtained using the top-ranked 1605 

features. The selected features, i.e., 1805 and 1605 feature subsets, although were not effectively 
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simplified by MRMR, produced slight improvement of 0.06% and 0.24% (P > 0.05) over those of 

the full-feature set for 2- and 3-category WB classification, respectively.  

Figure 3.9 (b) and (c) show the corresponding confusion matrices for the classification results. 

In 2-category modeling, the misclassification was primarily due to the “Normal” class with a false 

negative rate of 15.4%, while 91.5% of the “Defective” samples were correctly classified. In 3-

category modeling, the “Normal” samples were well differentiated from the WB-affected ones, 

particularly from those of the “Severe” class [with less than 2% misclassifications, Figure 3.9 (c)], 

obtaining an overall classification accuracy of 85.8%; however, distinguishing between the 

“Moderate” and “Severe” classes remained challenging, with misclassification rates of 31.2% and 

24.8% between them. Further efforts are needed to improve the performance in differentiating 

between the “Moderate” and “Severe” samples.  

PCA (Jolliffe, 2002) was further examined to reduce the full set of BSIF features into low-

dimensional representations for WB classification. The RLDA model was trained using the first 5 

to 155 principal components (PCs) in a 5-feature increment, and the overall classification accuracy 

on the test data is shown in Figure 3.10 (a). In the 2-category classification, the accuracy peaked 

at 89.29% using the first 30 PCs, and then slightly decreased as more PCs were modeled. Similarly, 

in the 3-category classification, the highest accuracy of 69.23% was achieved using the 20 PCs, 

after which the accuracy fluctuated and slightly declined. The corresponding confusion matrices 

for the classification results are shown in Figure 3.10 (b) and (c). Likewise, in 2-category modeling, 

the “Defective” samples were more accurately classified than the “Normal” samples (85.4%), 

achieving a recognition accuracy of 91.9% [Figure 3.10 (b)]. In 3-category modeling, the 

misclassification primarily occurred between the “Moderate” and “Severe” classes, with 50.7% 

and 65.5% of samples correctly classified, respectively, while 85.1% of normal samples were 
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successfully differentiated from the WB-affected samples. Notably, an overall accuracy of above 

95% was achieved for classifying between the “Normal” and “Severe” samples [1.7% and 1% 

misclassifications, Figure 3.10 (c)]. PCA produced comparable accuracies to those achieved using 

MRMR-selected features for modeling (Figure 3.9), while significantly reducing the feature 

dimensions (PCs), which helps improve model efficiency and minimize the risk of overfitting, 

making it more promising for online WB detection.  

 

Figure 3.10. (a) Overall classification accuracies of using the first 5 to 155 principal 
components (PCs) in a 5-feature increment; row-wise confusion matrices (where row and 

columns correspond to actual and predicted labels) for (b) two and (c) three WB categories 
modeling based on the 30 and 20 PCs (best accuracy), respectively.  

3.5 Discussion   

This chapter presents a proof-of-concept validation of the applicability of broadband SIRI 

coupled with phase analysis for classifying broiler fillet samples into two and three categories 

according to WB conditions. The SIRI technique allows reconstruction of the surface topography 

of chicken samples, which is reflected in the retrieved phase-difference images, for enhanced WB 

assessment in comparison with using intensity images (DC and AC), which differs from 2-D 

computer vision techniques reported on poultry WB assessment (Geronimo et al., 2019; Caldas-

Cueva et al., 2021; Yoon et al., 2022). It should be noted that the pipeline for feature engineering 

and model development outlined in this chapter has room for further optimization and improved 
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WB classification, although the BSIF feature extraction was locally optimized. Although 

noticeable accuracies of around 95% were reported for the 2-category WB classification in (Yoon 

et al., 2022; Ekramirad et al., 2024), these previous studies only examined a small collection of 

chicken samples (fewer than 50) and often lacked reliable repeated validations in their modeling 

pipeline, which could lead to an overestimate of classification performance.  

Further research into SIRI will involve collecting an expanded, more balanced set of broiler 

samples to enhance model performance, especially to improve the accuracy of differentiating 

between moderate and severe WB-affected samples. Since the present SIRI acquires only 

broadband images, given the efficacy of spectral sensing for WB assessment (Wold et al., 2017, 

2019, 2020; Pallerla et al., 2024), it is possible to enhance WB assessment by implementing SIRI 

in multi-/hyper-spectral mode. Notably, in addition to the phase analysis-based SIRI technique in 

this chapter, other 3-D imaging techniques such as time of flight and stereovision can also provide 

surface topography of poultry samples. It would be worthwhile to pursue a dedicated study on 

performance evaluation of 3-D imaging techniques for WB assessment of broiler meat, especially 

given the availability of cost-effective, consumer-grade depth cameras. The off-the-shelf depth 

cameras may not deliver high-precision 3-D maps but are compact standalone imagers that can be 

readily implemented for high-speed food quality detection (Xu et al., 2024). It is also important to 

point out that the SIRI technique can be applied to quantify and map optical properties (absorption 

and scattering) of poultry tissues using the computational methods developed in the spatial 

frequency domain imaging (Cuccia et al., 2009; Bigio & Fantini, 2016; Lu et al., 2020a), which 

would provide more insights into WB assessment of poultry meat.  

Moving forward, the SIRI system of this chapter, which was only applied to stationary samples, 

has yet to be upgraded for real-time quality detection of moving samples, which is challenged by 
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the lengthy acquisitions of multiple (three patterns/frames in this chapter) phase-shifted sinusoidal 

pattern images at a given spatial frequency. Single-shot image demodulation, which has been 

researched in the field of optical metrology and biomedical optics (Feng et al., 2019; Aguénounon 

et al., 2019), will be a viable solution to the implementation of real-time SIRI if intensity (DC and 

AC) and phase images can be retrieved from single-phase images with minimal artifacts. Recently, 

generative artificial intelligence has received considerable attention in image generation. These 

generative models (Liu et al., 2024; Zuo et al., 2024) have the potential to achieve single-frame 

image demodulation, facilitating the online implementation of SIRI.  

3.6 Conclusions   

This chapter presents an evaluation of a broadband SIRI system for assessing WB conditions 

in broiler breast fillets. The surface profiles of samples reconstructed using a phase demodulation 

and processing procedure captured the shape differences between normal and WB-affected chicken 

samples, while the demodulated intensity (DC and AC) images revealed only the surface texture 

characteristics of samples. An algorithm pipeline extracted different types of features from the 

phase difference images (depicting sample geometry) and the intensity images and built models 

for classifying normal and defective (affected by moderate and severe WB defects) broiler fillet 

samples. The hand-crafted features of the phase difference images were more effective for WB 

assessment than the textural features of either DC or AC images. Overall accuracies of 88.69% 

and 71.55% were achieved using the optimized set of BSIF from phase difference images for 2- 

and 3-category WB classification, respectively, representing improvements of 3.81%-8.45% and 

6.67%-11.25% over the accuracy obtained by textural feature from DC and AC images. The 

ensemble of the optimized phase-derived features and the intensity image features yielded higher 

accuracies than using the features of intensity images alone, but still overall underperformed the 
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phased-derived features, except for slight but insignificant improvements (P > 0.05) of 71.79% 

and 72.08% in 3-category modeling, implying that the sample geometry was more relevant than 

surface texture characteristics to WB assessment. Feature reduction that applied to the optimized 

phase-derived BSIF produced improvements of 89.29% (2-category) and 71.79% (3-category) by 

modeling 30 PCs and a subset of 1605 features selected by MRMR, respectively. This chapter has 

demonstrated the efficacy of broadband SIRI with surface profilometry for WB assessment in 

broiler breast meat.  
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CHAPTER 4: FEASIBILITY INVESTIGATION OF MULTISPECTRAL IMAGING FOR 
EVALUATION OF WOODY BREAST IN BROILER BREAST FILLETS  

4.1 Multispectral Imaging 

4.1.1 Introduction 

Multispectral imaging captures image data at multiple, discrete wavelengths, enabling analysis 

of the properties of products or scenes through both spatial and spectral information. Given the 

non-invasive and versatile capabilities, multispectral imaging technology has received 

considerable attention in the agriculture and food fields over the past few decades (Qin et al., 2013). 

Most multispectral imaging systems share three hardware components, i.e., light source, 

wavelength dispersive device, and detector (Lu et al., 2017). A light source is to generate light, 

usually broadband light (as opposed to the laser that produces a narrow band of wavelengths), to 

illuminate samples. A wavelength dispersive device is used to disperse incident light into separate 

wavelengths and project the dispersed light onto an area-array detector (usually a digital camera) 

for data acquisition.  

Different types of wavelength dispersive devices are available, enabling different spectral 

image acquisition approaches. There are three common types of wavelength dispersive devices, 

e.g., a filter wheel that contains multiple bandpass filters, imaging spectrographs, and 

electronically tunable filters (ETFs). Mounted in front of a monochromatic camera, a filter wheel 

enables acquiring spectral images sequentially by rotating the wheel, either manually or 

automatically, with different filters in place. This approach offers some flexibility in selecting 

bandpass filters of interest and can be a cost-effective way to implement multispectral imaging. It 

is generally limited to imaging at a small number of wavebands (basically 4~8) and inefficient in 

image acquisition especially when manual rotation is required. Imaging spectrographs use 

diffraction gratings (e.g., prism-grating-prism) for wavelength dispersion based on the fact that the 
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direction of light propagation within is wavelength dependent (Qin et al., 2017), which is capable 

of providing high spectral resolutions and wide spectral ranges. They are generally used for line 

scanning measurements in hyper-spectral imaging systems.  

ETFs are used for area scanning measurements; two major types of ETFs exist, including 

acousto-optic tunable filter (AOTF) and liquid-crystal tunable filter (LCTF) (Abdlaty et al., 2018). 

The AOTF is a diffraction-based device that works as an electronically tunable bandpass filter 

based on light-sound interactions in an anisotropic crystal (Stratis et al., 2001). Its wavelength 

selection is controlled by varying the frequency of acoustic waves applied to the crystal. The LCTF, 

on the other hand, is a birefringent-based device that uses phase retardance (delay) between 

ordinary and extraordinary light passing through a liquid crystal to isolate a single wavelength 

from the incident broadband light. Both AOTF and LCTF are capable of rapid wavelength 

selection while preserving imaging integrity in terms of spatial and spectral resolutions (Abdlaty 

et al., 2018); yet the LCTF is more compact and flexible in design, making it easy to integrate into 

various optical imaging systems. Over the past few decades, therefore, LCTF-based multispectral 

imaging systems have been assembled and utilized in medical diagnosis (Abdulhalim et al., 2007; 

Vega et al., 2024) and further extended to applications in food quality inspection (Peng & Lu, 

2006b, 2006c; Lu & Lu, 2018a; Lohumi et al., 2021).  

4.1.2 Multispectral LSI and SIRI Systems  

This chapter was built on Chapters 2 and 3, where broadband LSI and SIRI were evaluated, to 

build multispectral LSI and SIRI systems and achieve potentially enhanced assessment of WB 

conditions in broiler breast fillets. Both the earlier broadband LSI and SIRI systems were upgraded 

into multispectral mode by installing an LCFT (VariSpec, Cambridge Research and 

Instrumentation, Inc., Woburn, MA, USA) that operate in the wavelength range of 650-1,000 nm, 
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in front of the existing monochromatic camera, as schematically shown in Figure 4.1. The LCTF 

in each stage consists of a pair of parallel polarizers with a liquid crystal layer in between 

(Beeckman et al., 2009; Abuleil & Abdulhalim, 2016). In the SIRI system, therefore, the LCTF, in 

addition to working as an electronically tunable bandpass filter, also plays a role in suppressing 

specular reflections from poultry samples in conjunction with a separate linear polarizer mounted 

in front of the projector (acting as a pair of crossed linear polarizers) (Lu & Lu, 2018a).  

 
Figure 4.1. Schematic of multispectral LSI (a) and SIRI (b) systems.  

 
The same groups of samples as in Chapters 2 and 3 were used for multispectral LSI and SIRI 

experiments. Except for the addition of the LCTF, all other hardware configurations remained the 

same as the corresponding broadband imaging described in Sections 2.3 and 3.1. The graphical 

interface software (i.e., Varispec) developed with Matlab programming was used to control the 

LCTF for selecting wavebands of interest. To ensure adequate image quality, the camera exposure 

times were set to 1,500 ms and 2,000 ms for multispectral LSI and SIRI systems, respectively. For 

LSI, a total of 36 spectral scattering images were acquired by adjusting the LCTF in the region of 

650-1,000 nm in 10 increments. Given the relatively lengthy acquisition process in multispectral 

SIRI, which required about 1 minute to capture images (i.e., 24 patterned images) for each sample 
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at a given waveband, a larger waveband increment of 15 nm was implemented in tuning the LCTF 

for image collection, resulting in a total of 24 spectral images for each meat sample in the 

multispectral SIRI system.  

4.2 Classification Modeling for Multispectral LSI  

Figure 4.2 shows the modeling pipeline for classifying broiler breast samples using 

multispectral scattering images. Given the validated efficacy in Chapter 2, the same types of hand-

crafted features, including 1) NIA, 2) MLD, and 3) Shape-Description features, continued to be 

used in this chapter for feature extraction from scattering images at individual wavebands. As done 

in Chapters 2 and 3, the extracted feature data was randomly split into training and test sets 

according to the ratio of 65% : 35%, and a RLDA model was then built to classify broiler breast 

samples based on WB conditions. The scattering images were modeled separately for each 

waveband, ranging from 650 nm to 1,000 nm in increments of 10 nm, to identify the optimal 

wavebands or spectral ranges for WB assessment in broiler meat samples. The extracted features 

from individual wavebands were concatenated together to enhance the classification performance. 

Likewise, a holdout validation with 20 replications was performed to provide a reliable estimate 

of model performance across all wavelengths.  
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Figure 4.2. The procedures of using the multispectral scattering images for woody breast 

assessment of broiler breast meat.  

4.2.1 Results 

Figure 4.3 (a) shows the mean spectra of scattering images delimited by a light attenuation 

level of 10% (excluding the saturation areas) for broiler meat samples of three WB categories. 

Since the scattering images are spatially dependent, reference target-based calibration, which is 

commonly used in multi-/hyper-spectral imaging to correct for non-uniform instrument responses 

at different wavebands (Lu et al., 2020b), was not applied in this study. Despite the uncorrected 

spectra, the differences among the three WB categories still existed in their spectral curves [Figure 

4.3 (a)]. The WB-affected samples (“Moderate” and “Severe”) appeared to have higher reflectance 

in the wavelength range of 650-1,000 nm than the “Normal (no WB)” samples. As shown in Figure 

4.3 (b), the differences among the three WB categories can also be visualized in the scatter plot 

using the first two PCs of their mean spectra, where PC1 and PC2 account for 92.06% and 7.30% 

of the total variance, respectively. However, it appeared to be difficult to distinguish between the 

“Moderate” and “Severe” samples due to the substantial overlap between them [Figure 4.3 (b)], 
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which is consistent with the observations in Chapters 2 and 3.  

 
Figure 4.3. (a) Mean spectra (uncorrected) of scattering images delimited by a light 

attenuation level of 10% (excluding the saturation areas) for broiler meat samples of three 
WB categories; (b) scatter plot in the space spanned by the first two principal components 

(PCs) for three WB categories of broiler meat samples.  

To further validate the potential of spectral information for WB assessment, quantitative 

modeling was performed by taking the mean spectra of broiler samples (at 36 wavebands) as input 

for RLDA modeling, obtaining overall accuracies of 82.98% and 63.63% for 2- and 3-category 

WB classification, respectively. These results indicate the positive effects of using spectral 

information on WB assessment in broiler fillets.  

Figure 4.4 shows the overall accuracies achieved with different sets of hand-crafted features at 

individual wavebands (from 650 nm to 1,000 nm) for 2-category (red) and 3-category (blue) WB 

classification of broiler meat samples, respectively. For the NIA features, higher classification 

accuracy was observed in the near-infrared (NIR) range compared to the visible (VIS) range, with 

the maximum accuracies of 81.67% and 63.93% for 2- and 3-category classification achieved at 

970 nm and 1,000 nm, respectively [Figure 4.4 (a)]. Similarly, the MLD features produced better 

classification performance in the NIR region, yielding the highest accuracies of 83.63% (2-

category) and 63.15% (3-category) at 930 nm and 940 nm, respectively [Figure 4.4 (b)]. The shape-

description features consistently outperformed the NIA and MLD in classifying broiler meat 
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samples, which is in agreement with the findings in Chapter 2. The maximum accuracies of 85.36% 

(2-category) and 68.15% (3-category) were achieved by shape-description features at 730 nm and 

860 nm, respectively [Figure 4.4 (c)].  

 

Figure 4.4. Comparisons of overall accuracies for the hand-crafted features extracted from 
scattering images at individual wavebands between 650 nm and 1,000 nm in increments of 
10 nm, for two- and three-category WB classification, including (a) numerical integration 
area (NIA), (b) modified Lorentzian distribution (MLD), (c) shape-description, and (d) the 

combined set of features, respectively.  

Unlike the NIA and MLD, both of which produced better performance in the NIA region, the 

shape-description features yielded inconsistent classification performance between 2- and 3-

category modeling, as well as relatively large variations across the wavelength, making it difficult 

to identify a specific waveband or spectral range that most effective for WB classification in broiler 

meat. These three types of hand-crafted features at individual wavebands were then concatenated 

together for model classification. An improved accuracy of 86.19% was obtained in 2-category 
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modeling, while a slightly lower accuracy of 67.74% (P > 0.05), compared to the accuracy of 

68.15% by the shape-description features, was obtained for 3-category classification. Compared 

to the classification results achieved by the broadband LSI system in Chapter 2, where the best 

overall accuracies (without feature reduction) were 86.61% and 70.06% for 2- and 3-category 

classification, respectively, the result of 86.19% (2-category) and 68.15% (3-category) obtained in 

this chapter under multispectral scattering imaging was slightly worse. This is likely because the 

above modeling analysis was carried out separately for each individual waveband. Concatenating 

hand-crafted scattering image features across multiple wavebands could potentially improve the 

performance of WB classification.   

Figure 4.5 shows the overall accuracies of using the combined sets of hand-crafted features 

across multiple wavelengths (up to 36) for WB classification. The hand-crafted features from 

individual wavebands were firstly ranked by classification accuracy [Figure 4.4 (d)] and 

incrementally combined from 2 to 36 wavebands to assess the effect of feature combination across 

multiple wavelengths on WB classification. As the number of wavelengths increased, overall, the 

classification accuracy improved progressively at first, reaching a peak with a certain number of 

combined wavelengths, and then declined slightly as more wavelengths were combined for 

modeling. The highest 2-category classification accuracy of 87.20% was achieved when features 

from the top-ranked 10 wavebands were combined. Similarly, the best performance for 3-category 

modeling was obtained by combining features from the top 16 wavebands, resulting in an overall 

accuracy of 70.48%. Slight improvements in accuracy (P > 0.05) were achieved through 

concatenating hand-crafted features at different wavebands over the best accuracies of 86.61% (2-

category) and 70.06% (3-category) by the broadband LSI in Chapter 2. The improvement was 

primarily driven by the hand-crafted features extracted from images in the VIS region, indicating 
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that the spectral-based scattering imaging is beneficial for WB assessment. More dedicated studies 

are needed to further improve the performance of WB assessment in broiler breast meat.  

 
Figure 4.5. Distributions of overall accuracies of the combined hand-crafted features across 

multiple wavelengths (up to 36) for 2- and 3-category WB classification. 

4.2.2 Discussion  

Among the hand-crafted features for WB assessment, the shape-description features, while 

achieving higher accuracy, showed inconsistency between 2- and 3-category classification, as well 

as relatively large fluctuations in classification accuracy across the wavelengths. These variations 

is probably associated with the use of the LCTF in multispectral LSI system. The LCTF adopted 

in this study is a Lyot-based electronically tunable filter, with each stage consisting of a pair of 

parallel polarizers and a liquid crystal layer in between (Yang et al., 2010; Beeckman et al., 2009), 

as schematically shown in Figure 4.6. The linear polarizer is commonly used to confine the light 

field to a single plane along the direction of propagation, ensuring that light with a consistent 

polarization orientation passes through (Figure 4.7). However, the linear polarizer-based LCTF 

could lead to variations in the scattering images of broiler meat samples as the orientation of the 

LCTF/built-in polarizer changes, resulting in the inconsistency in shape characteristics of both the 

saturation area (SA) and light scattering (LS) area.  
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Figure 4.6. (a) Single stage of a Lyot LCTF that consists of a pair of parallel polarizers with 

a liquid crystal layer in between; (b) configuration of the Lyot LCTF (only shows four 
stages). Figures (a) and (b) are adapted from Yang et al. (2010) and Beeckman et al. (2009). 

 
Figure 4.7. Schematic illustration of linear polarization. Figure is adapted from Blanchon 

et al. (2021).  

To ascertain the hypothesized effect of polarizer orientation, scattering images of broiler meat 

samples were captured at different polarization directions, as shown in Figure 4.8. A polarization 

camera with on-chip polarizing filters in four different directions (LUCID, TRI050S1-PC, 

Richmond, Canada), i.e., 0°, 45°, 90°, and 135°, was used to replace the sCMOS-based camera 

(Edge 4.2, PCO, Kelheim, Germany) in the broadband imaging systems (Chapters 2 and 3) for 

polarization imaging tests. These findings indicate that using polarization-independent filtering 

devices, such as filter wheels, may be better suited than the LCTF for implementing multispectral 

LSI for WB assessment in broiler breast meat. Further efforts are needed to optimize the imaging 

setup of the current multispectral LSI system to achieve more accurate and reliable classification 

performance. Additionally, quantitative analysis to estimate optical absorption and scattering 

coefficients of chicken meat samples could provide more insights into WB assessment.  
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Figure 4.8. Examples of scattering images of normal and WB-affected (moderate and 

severe) broiler breast samples captured at four different polarization directions (0°, 45°, 
90°, and 135°).   

4.3 Classification Modeling for Multispectral SIRI 

Chapter 3 has demonstrated the efficacy of broadband SIRI with surface profilometry for WB 

assessment in broiler breast meat. The phase-derived geometric features contributed more to the 

success in classifying broiler samples of different WB conditions, then features from the AC image. 

Multispectral imaging enables capturing image data across multiple different wavelengths. By 

selecting proper wavelengths or spectral ranges, it is possible to acquire images that enhance the 

characterization of textural features of broiler meat samples (e.g., white striping) and thereby the 

performance of subsequent modeling tasks. In this section, multispectral SIRI was evaluated to 

achieve potential improvements in the assessment of WB conditions in broiler meat samples. For 

each spatial frequency, a total of 24 spectral images were acquired by adjusting the LCTF in the 

region of 650-1,000 nm in 15 increments. The potential effect of textural features on WB 

assessment was explored using the newly developed multispectral SIRI system.  
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Figure 4.9 shows the procedures for classifying broiler breast samples using multispectral SIRI 

images. A pretrained ResNeXt-101 model was used for extracting features from the intensity 

images of DC and AC at individual wavelengths, respectively. Different from the intensity images 

that varied with the wavelengths, the phase image-derived surface profiles of samples were almost 

the same at all wavelengths. Hence, phase difference images were only required to be retrieved 

form SIRI pattern images at a single specific waveband for subsequent analysis and modeling. 

Binarized statistical image features (BSIF), which were the best hand-crafted feature set for WB 

assessment by broadband SIRI as validated in Chapter 3, were extracted from the phase difference 

images as compared with the textural features from intensity images across all wavelengths. 

Similarly, the feature data was randomly partitioned into training and test sets according to the 

ratio of 65% : 35%, and the RLDA was utilized to classify broiler breast samples into different 

categories according to their WB conditions. A holdout validation with 20 replications was carried 

out for performance evaluation across all wavelengths.  

 
Figure 4.9. The procedures of classifying normal and WB-affected (moderate and severe) 

broiler meat samples based on the multispectral SIRI images.  
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4.3.1 Results  

Given a 3-D multispectral datacube, mean spectra were extracted for each broiler meat sample 

by averaging the spectra of all pixels within the corresponding region of interest (sample mask). 

The corrected spectrum (i.e., relative reflectance) was then obtained by dividing the mean 

spectrum of each sample by that of the reference (white and dark) (Lu et al., 2020b). In the 

multispectral implementation of SIRI, two sets of spectral images, i.e., DC and AC, were obtained 

from the demodulation using phase-shifted pattern images at different spatial frequencies (Chapter 

3). In this section, the demodulated intensity (DC and AC) images were used separately at each 

spatial frequency, thus allowing for extracting the spectral features of broiler meat samples at nine 

different spatial frequencies as used in Chapter 3.  

Figure 4.10 (a) shows the corrected mean spectra of broiler meat samples of three WB 

categories extracted from DC images. The differences among WB categories were minimal based 

on the spectral curves. Substantial overlaps were also observed in the scatter plot of broiler samples 

[Figure 4.10 (b)], suggesting that these samples are not readily distinguishable through 

unsupervised approaches. Further, RLDA models were built for quantitative evaluation of 

classification performance. The corrected mean spectra of broiler samples at nine spatial 

frequencies were used separately as the input for discriminant modeling, with the results shown in 

Figure 4.11. Overall, these spectral features showed limited performance in classifying broiler 

samples, with relatively lower accuracies across all spatial frequencies than those achieved using 

broadband image features in Chapter 3. The maximum accuracies of 81.55% (2-category) and 

62.8% (3-category) were attained at 0 and 0.150 cycles/mm, respectively. The results suggest 

spectral features were less effective than textural or depth features (Chapter 3) for WB assessment. 

However, it should be noted that the classification performance may vary with different processing 
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and modeling approaches and could potentially be improved with optimized modeling.  

 
Figure 4.10. (a) Mean spectra (corrected) of broiler meat samples of three WB categories 
extracted from DC images; (b) scatter plot in the space spanned by the first two principal 

components (PCs) for three WB categories of broiler meat samples.  

 
Figure 4.11. Overall accuracies of using mean spectra at different spatial frequencies (DC 

and AC) for two and three WB categories classification.  

A further investigation was performed to utilize textural features extracted from images at 

individual wavebands for WB classification. Figures 4.12 shows the overall classification 

accuracies of textural features extracted from demodulated intensity images at different spatial 

frequencies across a wavelength range of 650–1,000 nm in increments of 10 nm. The classification 

performance varied across the spectral range, with overall higher and more stable accuracies 

achieved in the VIS wavebands compared to the NIR range. This is likely because textural features 

on the sample surface (e.g., WS) that are relevant to WB assessment were more effectively 

captured in the VIS region, thereby positively contributing to the classification modeling. On the 
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other hand, in terms of spatial frequency, better accuracies were generally achieved at higher 

spatial frequencies in the range of 0-0.150 cycles/mm, which tend to resolve the characteristics of 

superficial meat tissues. Overall, these findings are in agreement with those in Chapter 3.  

For the 2-category classification [Figure 4.12 (a)], the highest accuracy of 86.61% was 

achieved at a waveband of 755 nm and a spatial frequency of 0.150 cycles/mm, while for the 3-

category classification [Figure 4.12 (b)], the maximum accuracy reached 65.06% at 770 nm and 

0.090 cycles/mm. Given the consistently better performance observed in the 700-800 nm range, 

the 755 nm waveband was empirically chosen for obtaining phase difference images of broiler 

meat samples. The best phase-derived BSIF features (5 × 5 pixels filter size and 11 bit length, as 

validated in Chapter 3) were applied to the resultant phase difference images for feature extraction. 

Overall accuracies of 89.17% and 72.92% were achieved using the best set of BSIF from phase 

difference images for 2- and 3-category WB classification, respectively, representing 

improvements of 2.56% and 7.86% (P < 0.05) over the best accuracy obtained by textural features 

of AC images (Figures 4.12).  

To further validate the effects of intensity image features on WB classification, the feature 

combination was done by concatenating the BSIF features with the features of AC images that 

produced the highest classification accuracy (Figures 4.12), resulting in a slightly lower accuracies 

of 89.11% and 71.37% for 2- and 3-category WB classification, respectively. Still, the ensemble 

of the phase-derived BSIF features and the intensity image features yielded higher accuracies than 

using the features of intensity images but underperformed the phased-derived features, implying 

that the sample geometry was more relevant than texture characteristics to WB assessment, despite 

enhanced surface textures by the multispectral SIRI.  
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Figure 4.12. Comparisons of overall accuracies for the textural features extracted from 
demodulated intensity images at different spatial frequencies in the waveband range of 

650-1,000 nm in increments of 10 nm for (a) two- and (b) three-category WB classification.  

4.3.2 Discussion  

This section presents an evaluation of the applicability of multispectral SIRI for classifying 

broiler meat samples according to WB conditions. Consistent with the conclusion in Chapter 3, 

the phase image-derived geometric features were more effective for WB assessment than textural 

features from either DC or AC images across the entire wavelength range of 650 to 1,000 nm in 

10 nm increments. In this regarding, further research can be beneficial by evaluating other 3-D 

imaging techniques, e.g., time of flight (ToF) and stereovision, for WB assessment of broiler meat, 

especially considering the prevalence of cost-effective, consumer-grade depth cameras. In addition, 



66 
 

although texture feature analysis based on intensity images was less effective for WB assessment, 

it is useful for assessing WS conditions in broiler meat (Olaniyi et al., 2023a, 2023b). Hence, it 

would be also worthwhile to pursue a dedicated study on the performance evaluation of SIRI for 

detecting the co-occurrent myopathies (e.g., WS and WB combined) in broiler meats, utilizing 

textural and shape features that specifically contribute to WS and WB detection, respectively. With 

SIRI, more insights into WB assessment can be gained by quantitatively estimating the optical 

properties (i.e., absorption and scattering) of chicken meat tissues (Cuccia et al., 2009; Bigio & 

Fantini, 2016; Lu et al., 2020a).  
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CHAPTER 5: DISCUSSION AND CONCLUSION 

This study explored the potential of two emerging optical imaging techniques, i.e., LSI and 

SIRI, for assessing WB conditions in broiler breast fillets. The experimental results from the 

broadband LSI and SIRI in Chapters 2 and 3 provided initial insights into the texture/structural 

and shape characteristics of broiler meats associated with WB myopathy. For LSI, the differences 

between normal and WB-affected broiler samples were revealed in the characteristics of the shape 

of SA and LS areas as well as scattering profiles. The full set of 196 hand-crafted features extracted 

from scattering images achieved overall accuracies of 86.61% and 70.06% for 2- and 3-category 

WB classification, respectively, outperforming the DL-based features that yielded accuracies of 

76.43% and 55.36%, with significant improvements of 10.18% and 14.7% (P < 0.05). SIRI, 

another emerging imaging technique examined in this study, which is capable of depth-resolved 

characterization and 3-D sample topography of samples, was evaluated for its effectiveness in WB 

defect detection as an alternative to conventional uniform illumination-based imaging. The phase-

derived surface profiles of samples captured the shape (geometry) differences between normal and 

WB-affected chicken samples, while the demodulated intensity (DC and AC) images revealed only 

the surface texture characteristics of samples. The geometric features of phase difference images 

were more effective for WB assessment than the textural features of intensity images (i.e., DC and 

AC). Overall accuracies of 88.69% and 71.55% were achieved using the optimized set of BSIF 

from phase difference images for 2- and 3-category WB classification, respectively, representing 

improvements of 3.81%-8.45% and 6.67%-11.25% over the accuracy obtained by textural feature 

from DC and AC images.  

Furthermore, multispectral LSI and SIRI systems were assembled by installing an LCTF in 

front of the monochromatic camera. Chapter 4 presents a preliminary investigation to evaluate the 
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feasibility of multispectral LSI and SIRI for detecting WB conditions in broiler meat. For the 

multispectral LSI, slight improvements of 87.20% (2-category) and 70.48% (3-category) were 

obtained through concatenating hand-crafted features at multiple wavebands over the best 

accuracies (without feature reduction) of 86.61% and 70.06% by the broadband LSI in Chapter 2. 

However, the presence of linear polarizers in the LCTF caused variations in the scattering images 

of broiler meat samples depending on the LCTF’s orientation, resulting in inconsistencies in the 

shape characteristics of both the SA and LS areas. This issue may be addressed by implementing 

multispectral imaging using a filter wheel-based wavelength-tunable device replacing the LCTF 

or directly a multispectral camera, for more accurate and reliable WB classification, On the other 

hand, multispectral SIRI produced the best classification accuracies of 89.17% and 72.92% using 

the optimized set of BSIF from phase difference images for 2- and 3-category WB classification, 

respectively. The ensemble of the phase-derived BSIF features and the intensity image features 

yielded higher accuracies than using the features of intensity images but still underperformed the 

phased-derived features, implying that the sample geometry was more relevant than surface texture 

characteristics to WB assessment.  

It is also important to point out that, compared to 3-category classification, the 2-category 

classification is more practically meaningful for the time being, considering that at current poultry 

facilities identified WB-affected meat is generally discarded without resorting to further value-

added processing, which otherwise would demand grading and sorting chicken fillets into 3 or 

more categories. The development of further processing techniques for the remediation or 

utilization of WB-affected meat is a research subject (Williams, 2024). The performance of WB 

classification in this study demonstrated encouraging results for 2-category modeling, achieving 

an accuracy of about 88% in differentiating normal and WB-affected samples, although the 3-
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category modeling was less satisfactory, with an overall accuracy of around 71%.  

Additionally, accounting for variations among three sample batches collected on different dates 

(Batch 1: 10/20/2023, Batch 2: 01/04/2024, and Batch 3: 05/09/2024) in this study, model 

performance may vary if training and testing are done batchwise, compared to polling combined 

batches for modeling as done in Chapters 2-4. Hence, further classification models were built using 

the first two batches for training (167 samples) and the remaining batch (75 samples) for testing 

to validate the generalization of the proposed methods for WB classification. Compared to the 

results achieved when all three batches of samples were mixed and then partitioned for training 

and testing, substantially lower accuracies were observed here with the first two batches of samples 

used for model training and the last batch for testing (Table 5.1), representing significant decreases 

of 6%-9% and 10%-16% (P < 0.05) for 2- and 3-category classification, respectively. The 

performance deterioration indicates the differences among sample batches, which have a negative 

impact on WB classification. Including more representative samples with greater variation for 

model training is expected to achieve more reliable classification results. To develop robust models, 

domain generalization techniques are also worth researching.   

Table 5.1 Comparison of accuracies for 2- and 3-category WB classification using the first 
two batches of samples for model training and the last batch for testing.  

Mode Technology 2-Category Classification 3-Category Classification 

Broadband 
LSI 79.31% 59.77% 

SIRI 78.16% 60.92% 

Multispectral LSI 81.61% 55.17% 

SIRI 82.76% 60.92% 

Despite methods developed in this study, there is a continuing need to expand the scope and 

depth of current research for a better understanding of WB myopathy in broiler fillet meats. Further 

efforts are needed to explore LSI and SIRI in hyperspectral mode, which will offers more abundant 
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spectral information for tissue characterization and may lead to better differentiation among WB 

conditions in broiler meat. It is also important to point out that both LSI and SIRI can be utilized 

for quantifying optical properties (i.e., absorption and scattering) of meat tissues based on the 

modeling of light propagation in biological materials (Kienle et al., 1996; Cuccia et al., 2009), 

providing more insights into WB assessment of broiler meat. However, either hyperspectral-based 

imaging or optical property measurement would be limited to research purposes due to their 

relatively lengthy data acquisition and computational complexity (Lu et al., 2020a). In contrast, 

the broadband imaging shows better potential to be implemented for online WB detection of broiler 

meat at processing facilities. Additionally, the rapid developments in artificial intelligence over the 

past decade open opportunities for facilitating online WB detection, e.g., using deep generative 

models for potential single-frame image demodulation in SIRI, which warrants future work.  
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