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ABSTRACT

Energy storage technologies are key to a future of less reliance on fossil fuels and cleaner energy.

Rechargeable batteries, particularly lithium-ion batteries have become a mainstay in energy storage,

notably in electric vehicles and mobile applications. However, optimizing their performance to

achieve faster charging, increased capacity, and higher utilization remains a challenge. Accomplish-

ing these goals requires a microscopic-level understanding of battery electrodes, which is hindered

by their complex morphologies. Computer simulations can bridge this gap by providing insights

into microstructure phenomena. A framework combining smoothed boundary method (SBM) and

adaptive mesh refinement (AMR) is introduced to model and study electrode microstructures. This

framework is implemented with finite di!erence methods (FDM) and parametrized with material

properties from literature. We demonstrate the framework’s usage and e!ectiveness with half-cell

simulations of Li𝐿Ni1/3Mn1/3Co1/3O2 (NMC-333) cathode through one-dimensional and three-

dimensional simulations on synthetically generated microstructures. A crucial goal of our work

is studying lithium plating on electrodes which is a major obstacle in realizing an electrode’s true

theoretical capacity and fast charging. Graphite, the predominant anode material in lithium-ion

batteries, is particularly prone to lithium plating, especially at fast charging conditions. Thus,

modeling graphite is critical to grasp the dynamics of li-ion batteries and lithium plating. Graphite

anode undergoes phase transformations under lithiation. Incorporating the Cahn-Hilliard phase-

field equation into the framework allows for detailed and more accurate simulations of these phase

transformations in graphite anodes. Using the developed framework for graphite, we identified

overcharging conditions, the influence of particle size, and the importance of pore tortuosity on real

reconstructed electrodes. The framework can facilitate the design of thick electrodes, promising

higher capacity without experimental construction. Furthermore, the framework allowed us to

examine two di!erent approaches to delay lithium plating in graphite. A thermodynamic approach

of hybrid anodes where we mix graphite with hard carbon and a kinetic approach of tunnels where

we introduce synthetic channels in the electrode. Through our simulations, we identify that hard

carbon particles act as a bu!er for lithiation in hybrid anodes, delaying the surface saturation of



graphite particles and thus delaying the lithium plating on graphite. On the other hand, creat-

ing tunnels generates easier paths for ion di!usion and therefore leads to better utilization of the

electrode. Such channels in thick electrodes can generate high-capacity and e"cient electrodes.

Finally, the development of this framework culminates with a demonstration of full-cell simula-

tions. In summary, simulating electrochemical processes in complex electrode microstructures is

streamlined by the presented framework and o!ers a fast and robust tool for designing and studying

microstructures.



Copyright by
AFFAN MALIK
2024



This thesis is dedicated to my parents and my brother.

v



ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to all those who have provided

their invaluable support and assistance throughout my Ph.D. journey and the completion of this

thesis. Firstly, I extend my heartfelt thanks to my advisor, Dr. Hui-Chia Yu, for his continued

guidance and unwavering support. His expertise and encouragement have been instrumental in my

growth as a researcher and academic. Beyond being a mentor and providing invaluable feedback,

he has taught me the importance of articulating and refining my ideas with clarity and confidence,

lessons I will carry forward in my career. I am also deeply grateful to my committee members,

Dr. Scott Calabrese Barton, Dr. Philip Eisenlohr, and Dr. Huan Lei, for their valuable insights,

constructive feedback, and continuous support. Their assistance at crucial junctures has been

pivotal in shaping the trajectory of my research and Ph.D. career. A special thanks goes to my

research group members, Danqi Qu and Robert Termuhlen, for their help, insightful opinions, and

generous advice over the years.

I would like to acknowledge FORD Motor Company for its financial support through the

FORD-MSU alliance project, which helped make this research possible. I am also indebted to

the High-Performance Computing Center (HPCC) resources provided by the Institute for Cyber-

Enabled Research (ICER) at Michigan State University.

I am greatly thankful to my friend, Chauncey Splichal, who has been a constant source of

encouragement throughout my Ph.D. journey. His support has pushed me beyond what I ever

imagined I could achieve. To my family away from home—Aditya, Apoorva, Gouree, Shalin,

Sushanta, Renu, and Sneha—thank you for the warmth, love, and companionship you brought

into my life in a new and unfamiliar place. Through good times, bad times, and the strange times

(looking at you, COVID), your presence made all the di!erence. Any expression of gratitude would

be incomplete without acknowledging my newfound brothers—Surya, Vinai, Neil, and Bhaskar.

They have stood by me through thick and thin, and their camaraderie and the sense of home they

provided have been crucial to my well-being. I would also like to show my appreciation for the rest

of the ‘Squirtle squad’—Alan, Bryan, Jimmy, Chris, and so many more "volleyball" friends—who

vi



provided me a much-needed balance in my life. The time spent with them has been a wonderful

outlet and a great source of joy and relaxation. To my ‘forever friends’—Samrat, Saurabh, Ajay,

Pratik, Hima, and Richik—who I have been fortunate to know for over a decade, thank you for the

constant a!ection, support, and inspiration you have provided. Your belief in me long before this

journey began has been one of the greatest sources of strength and motivation throughout the years.

Finally, and definitely most importantly, a special thanks and all my love go to my family—my

parents and my brother—for their unconditional love, encouragement, and understanding during

the challenging phases of this journey. Their support has been the source of my strength and

motivation. To everyone mentioned above, and to anyone I may have inadvertently missed, I

express my deepest gratitude. Without your support and encouragement, this work would not have

been possible. Thank you!!

vii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 MODELING FRAMEWORK AND NUMERICAL METHODS . . . . . 9

CHAPTER 3 MICROSTRUCTURE-LEVEL SIMULATIONS OF NMC-333
ELECTRODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 4 PHASE TRANSFORMATIONS AND UNDERSTANDING LITHIUM
PLATING IN GRAPHITE ELECTRODES . . . . . . . . . . . . . . . . 56

CHAPTER 5 UNRAVELING HYBRID ANODE DYNAMICS AND
ALLEVIATING PLATING . . . . . . . . . . . . . . . . . . . . . . . . 89

CHAPTER 6 HIGH-THROUGHPUT INVESTIGATION OF FREE PATHWAYS/
TUNNELS IN GRAPHITE ANODES FOR IMPROVED
LITHIUM-ION BATTERY PERFORMANCE . . . . . . . . . . . . . . 120

CHAPTER 7 THREE-DIMENSIONAL ELECTROCHEMICAL SIMULATIONS IN
A FULL CELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

CHAPTER 8 SUMMARY, PROSPECTS AND FUTURE WORK . . . . . . . . . . . 151

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

APPENDIX A EXAMPLE OF FDM STENCIL DERIVATION . . . . . . . . . . . . . 173

APPENDIX B PARAMETERIZATION OF MATERIAL PROPERTIES . . . . . . . . 176

APPENDIX C ADAPTIVE MESH REFINEMENT ON RECONSTRUCTED GRAPHITE
MICROSTRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

APPENDIX D SUPPLEMENTARY INFORMATION TO CHAPTER 5 . . . . . . . . 180

viii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Energy storage technologies have become increasingly indispensable in modern times, signif-

icantly impacting the e"ciency and environmental footprint of electrical power networks. They

serve a crucial role in enhancing overall e!ectiveness while mitigating environmental impact

throughout energy generation and distribution [1, 2]. Among these technologies, rechargeable

batteries stand out as a versatile solution for storing energy sourced from various outlets for later

usage as required. Notably, they have gained traction in powering electric vehicles, contributing

to the conservation of fossil fuels and the reduction of carbon emissions in recent years. Lithium-

ion batteries have one of the highest energy densities and have seen widespread adoption across

diverse applications, from everyday devices like cell phones, and computers, to more far-reaching

applications like drones, remote surveillance, and electric vehicles. Other popular energy storage

technologies include pumped hydro, compressed air energy storage (CAES), and flywheel. Newer

technologies like hydrogen and supercapacitors are also being explored [3–9]. Pumped hydro and

CAES are large-scale and long-discharge duration technologies making them desirable for bulk

energy applications including load management. On the other hand, high initial costs and slower

response times render them less suitable for any applications requiring immediate power supply.

Flywheels store kinetic energy in a rotating mass and have long life cycles, high energy density,

low maintenance costs, and quick response speeds. High initial costs and limited capacity restrict

their usage for any long-duration energy delivery leaving them ideal for short-term applications

like load-leveling and load-shifting. Supercapacitors or electrochemical capacitors utilize a thin

layer of conducting electrolyte as the dielectric between two solid conductors. Fast response times

and long lifetimes make them potentially a decent alternative to batteries. Their power density is

generally higher than that of batteries, while their energy density is typically lower. The relatively

low energy density and high self-discharge limit their current usage in practice. Fuel cells, similar

to batteries, convert stored chemical energy directly into electrical energy through electrochemical
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reactions using hydrogen and oxygen. They are typically lightweight, highly scalable, and versatile

in their usage. The lack of hydrogen infrastructure and high capital investment requirements must

be addressed to fully realize their potential. Hydrogen energy storage complements fuel cells,

typically, acting as the external fuel supply. Hydrogen is environmentally clean and o!ers high

energy density but faces the same problems of high costs and limited possibilities for hydrogen

production. Overall, energy storage needs to be technologically improved to meet the demands of

the power system, expedite the transition away from over-reliance on fossil fuels, and facilitate the

integration of renewable energy sources. [3–9] Lithium-ion batteries stand as the technology that

o!ers the best balance of versatile applications, low cost, high energy density, long cycle life, and

relatively low self-discharge rates.

Lithium-ion batteries, despite their prevalent use, have ample room for optimizing battery

performance which necessitates a deep and comprehensive understanding of battery electrodes’

mechanism and behavior [10–12]. Key areas of improvement include faster charging, increased

capacity, higher utilization, and improved temperature control [13–16]. A significant barrier to

gaining such an understanding is the non-uniform nature of Li-ion battery electrode microstructures,

which elicit irregular particle-electrolyte interfaces and convoluted electrolyte pathways. The

intricacy of these complex microstructure configurations dictates the macroscopic properties and

(a) (b)

Figure 1.1 (a) Time scales, and (b) power density vs energy density for various energy storage
systems with di!erent storage capacities. (a) adapted from Ref. [3] and (b) adapted from Ref. [4].
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performance of electrodes.

From here on, in this chapter, we outline some key foundations necessary for understanding the

rest of the thesis. Firstly, the workings of a typical Li-ion battery are detailed. Then, an introduction

to modeling and simulation for batteries is presented. Finally, the chapter concludes with an outline

of the rest of the dissertation.

1.2 Background

1.2.1 Working of a Lithium-ion batteries

A standard lithium-ion battery is composed of a cathode, an anode, and an electrolyte. Both

electrodes have current collectors at one end. Fig. 1.2 shows a general schematic of a typical

lithium-ion battery. These electrodes primarily consist of lithium-storage particles capable of

accommodating the insertion or extraction of lithium ions [11,17]. Consequently, the porosity and

particle sizes influence the capacity and rate performance of an electrode. Additionally, electrodes

also comprise of a small fraction of electrochemically inactive additives and binder particles, which

enhance electronic conduction and structural integrity, respectively. A separator layer, typically a

porous insulating polymer membrane, is interposed between the two electrodes. This layer prevents

any physical short between the two electrodes and facilitates ion transport in the cell. The liquid

electrolyte resides in the electrodes’ interparticle space and the separator’s pores facilitating the

migration of lithium salt ions between the electrodes.

During a standard charge cycle of a Li-ion battery, once a load is applied, lithium ions di!use

from the cathode to the anode through the electrolyte. Correspondingly, electrons move in the

opposite direction through the current collectors and outer circuit. This results in the electrochem-

ical storage of external energy in the battery, converting it into chemical energy in the anode and

cathode materials which have di!erent chemical potentials. The movements of the lithium ions

and the electrons are reversed during a prototypical discharge cycle as illustrated in Fig. 1.2. The

chemical energy is released through Faradaic reactions on the two electrode surfaces, where the

choice of the two electrodes determines the total energy change [17]. Thus, morphological factors,

such as porosity, tortuosity, particle sizes, and reactive area significantly impact the cell’s perfor-
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mance, particularly under high charge/discharge rates [18, 19]. In addition to the microstructures,

the choice of electrode and electrolyte materials also determines the cell’s performance.

Wittingham [20] pioneered the use of a layered TiS2 cathode in the first rechargeable lithium

battery. Subsequently, several other cathodes including, but not restricted to, layered LiCoO2

and manganese spinel were explored. Contemporary cathode materials predominantly consist of

lithium metal oxides due to their higher cell voltage and equivalent energy density. Examples of such

metal oxides include LiCoO2 (LCO), LiNi1→𝑀→𝑁Mn𝑀Co𝑁O2 (NMC), LiMn2O4 (LMO), and LiFePO4

(LFP) [20]. These materials undergo intercalation reactions when lithium is inserted or extracted

without changing the host crystal lattice. Similarly, intercalation-type materials like graphite, hard

or soft carbon, and Li4Ti5O12 (LTO) currently dominate the anode market in lithium-ion batteries.

There is a growing interest in conversion-type materials for both cathodes (such as LiFeOF and

LiFeO2) and anodes (including silicon-based and lithium metal). Despite their high energy densities

and material abundance , these conversion-type materials remain largely confined to laboratory

investigations due to the changes induced in their crystal structure upon lithiation/delithiation [21].

Significant volume changes can be observed during the conversion reactions. Current conversion-

type electrodes also su!er from poor cycle life due to the breakdown of electrode structures. [21]

The study and enhancement of the microstructures and materials of each component are imperative

in striving towards the aforementioned key objectives in advancing Li-ion battery technology.

Figure 1.2 Schematic of a cell during discharge/charge processes.
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Modeling and computer simulations can o!er a promising avenue for delving into the intricate

electrochemical dynamic within Li-ion batteries [22, 23]. Understanding these dynamics can help

improve Li-ion battery technology. The next section discusses electrochemical modeling and

illuminates its advantages in improving battery technology.

1.3 Modeling and Simulations

Modeling and computer simulations o!er a promising avenue for delving into the intricate

electrochemical dynamic within Li-ion batteries [22, 23]. Broadly speaking, there are three basic

approaches to modeling dynamic electrochemical simulations [23,24]. One such approach involves

Equivalent Circuit and Impedance models [25–27], which employ simple electrical elements like

resistors, capacitors, and constant phase elements to replicate battery behavior driven by complex

underlying electrochemical processes within the cell. These methods facilitate fast and straightfor-

ward modeling of batteries and are typically used for battery control or load management. However,

the accuracy of their predictions relies on the precision of representative input model parameters.

Moreover, these models lack the ability to o!er physical insights into electrochemical processes

within electrode microstructures.

A second approach is data-driven models. These models leverage historical or real-time

data [28–31] to predict battery behavior in new setups and new operating conditions. While these

techniques bypass the need for understanding and modeling underlying physics, they su!er from a

similar drawback of disconnect between simulation results and the physical mechanism within the

battery cells. Additionally, empirical models require reconstruction or retraining once the battery

configurations are altered.

The third approach for electrochemical modeling involves mechanistic models, which utilize

physical principles and mathematical equations to describe the system [32–35]. These models

o!er the most insights into battery performance, capturing the underlying physics. However,

their applicability is limited to the systems being simulated, requiring new simulations if any

changes are made to the system. Currently, the most commonly used technique to simulate

electrochemical processes at a macroscopic level is Porous Electrode Theory (PET) [32], developed
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by Newman et. al. PET treats a porous electrode as a homogeneous medium, utilizing average

physical properties (averaged over volume) to solve governing equations and study the dynamics

within the ‘homogeneous’ electrode. This approach simplifies di!usion in a three-dimensional

(3D) interparticle space to a one-dimensional (1D) di!usion problem using an e!ective di!usivity.

Consequently, these models alleviate computational burdens associated with explicitly defining

complex electrode microstructures. However, since PET models treat electrodes as homogeneous

media and focus primarily on macroscopic behavior, they do not capture or reveal electrochemical

dynamics at the microstructure level. In reality, electrodes significantly deviate from perfect

homogeneity and periodic structures. The non-uniformity in the microstructures leads to variation

in porosity and tortuosity resulting in varying degrees of (de)lithiation in the electrode. Thus,

necessitating explicit consideration of their complex microstructures and morphology to accurately

capture the dynamics within an electrode.

The finite element method (FEM) stands as a widely adopted technique for microscopic elec-

trochemical simulations which can account for any complexities in the microstructures [36, 37].

FEM solves the governing equations (typically partial di!erential equations, PDEs) on meshes

conformal to the geometries of the electrode microstructure. In FEM, the governing equations are

generally developed based on a sharp-interface description. In our work, we define sharp interfaces

as sharp boundaries with no thickness between di!erent components in a system. Numerically

solving these equations necessitates generating body-conformal meshes. Generating such meshes,

especially for complex 3D electrode microstructures and tortuous interparticle spaces is an arduous

and time-consuming task. In many cases, broken meshes need to be manually fixed [38] before

running any simulations. Finite volume methods (FVM) face similar challenges, requiring body-

conforming meshes when solving sharp-interface described governing equations, thus demanding

comparable pre-simulation e!orts. Some researchers have utilized voxels in 3D reconstructed elec-

trode microstructures directly as elements in simulations [39–41]. While this approach overcomes

the challenge of generating complex meshes, the highly non-smooth particle-electrolyte interfaces

may introduce numerical errors and instability. Additionally, the computational costs can escalate
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significantly with a large number of voxels in a system. A few voxel-based simulations [42, 43]

divide cubic voxels by their diagonal planes to improve the smoothness of interfaces. Nevertheless,

computational demands will remain high for a large number of voxels.

1.4 Dissertation outline

This thesis is divided into eight chapters including this introduction. An electrochemical

simulation framework is developed and utilized for 3D microscopic simulations on electrodes. We

validate and test our framework on several electrodes (both cathodes and anodes) and employ it to

study mechanisms for improving electrodes’ performance. We briefly outline the rest of the chapters

here. Chapter 1 introduces the motivation and highlights some relevant background information.

Chapter 2 presents the developed modeling framework. First, we detail the electrochemical

governing equations solved in our framework in a half-cell. Then we describe the methods,

Smoothed Boundary Method (SBM), Adaptive Mesh Refinement (AMR), and Finite Di!erence

Methods (FDM) employed in the framework. SBM is used to reformulate the governing equations

such that to allow them to be solved on uniform, non-conformal meshes. AMR complements SBM

by enabling us to generate finer meshes near interfaces and coarser meshes in the bulk. FDM is the

choice of numerical technique in our work to solve di!erential governing equations.

Chapter 3 validates and uses the developed framework for the NMC-333 electrode using 1D

and 3D simulations. Two synthetic 3D microstructures are created using the Discrete Element

Method (DEM) for these simulations. Material properties obtained from existing literature are

incorporated into the model for more accurate results. Additional simplistic mechanical and

thermal simulations are also performed and presented. Chapter 3 demonstrates the applicability

and versatility of our developed framework. Chapter 4 modifies the presented framework with

the Cahn-Hilliard equation for phase separation and presents several studies on reconstructed 3D

graphite microstructures. Through these studies, we can examine the physical fields in several

graphite anodes, and using these fields we explore ways of improving graphite anode performance,

particularly delaying the onset of plating.

The next two Chapters 5 and 6 explore two di!erent approaches to alleviate lithium plating in
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graphite. Chapter 5 uses a thermodynamic approach of introducing a bu!er of hard-carbon particles

with graphite particles to alleviate plating on the graphite anode. With the introduction of the hard-

carbon particles, we observe a three-stage lithiation process in the hybrid electrode. We explore

several configurations and parameters of the hybrid electrode that can a!ect the performance of

the electrode. On the other hand, Chapter 6 looks at a kinetic approach by creating new pathways

through graphite anodes allowing better utilization and higher capacity of the anode before reaching

the plating condition. We examine the impact of such tunnels on electrode performance in this

chapter. Furthermore, we investigate the e!ect of tunnel arrangement, size, and tunnel-to-tunnel

distance on the improvement o!ered by the tunnels. The hexagonal arrangement of tunnels is

identified to be more e"cient than the square arrangement. Optimal tunnel radii are determined

for various electrode thicknesses and tunnel arrangements (including their pattern and separation).

Chapter 7 culminates the development of this framework by presenting full-cell simulations

with both cathode and anode. The microstructures presented in Chapters 3, 4, 5, and 6 are utilized

along with a new separator microstructure to perform these full-cell simulations. This chapter acts

as a demonstration of the full-cell framework which opens new avenues for electrode design by

studying their behavior in a full-cell.

Lastly, Chapter 8 summarizes and concludes the dissertation. It also briefly discusses applica-

tions of the developed framework for Electrochemical Impedance Spectroscopy (EIS) simulations

by Danqi et al. Additionally, we suggest several avenues for extending our research in the future.
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CHAPTER 2

MODELING FRAMEWORK AND NUMERICAL METHODS

This chapter outlines a framework developed to solve electrochemical equations in 3D electrodes

with complex microstructures. This framework is utilized through Chapters 3-7. Any variations

in the modeling for a chapter are specified at the beginning of that chapter. In this chapter, for

simplicity of understanding, only the governing equations of a half-cell are presented. Chapter

7 details extending these equations to a full cell. During the charge/discharge cycle of a Li-

ion battery, several mechanisms operate simultaneously, including (1) Li-ion transport within

the electrode particles, (2) current continuity in the electronically conductive solid phases, (3)

ionic transport within the electrolyte, (4) current continuity in the ionically conductive electrolyte,

and (5) electrochemical reactions at the particle-electrolyte interfaces. All these mechanisms are

mathematically described by classical di!erential equations, which are coupled to each other. Refer

to Fig. 2.1 (a) for an illustration.

For solving di!erential equations in a complex system, conventional sharp-interface methods

like Finite Element Method (FEM) or Finite Volume Method (FVM) necessitate meshes conforming

to the geometries. Thus, presenting a significant challenge for simulating phenomena in complex

3D electrode microstructures which are highly tortuous and porous. In the developed framework,

we employ the Smoothed Boundary Method (SBM) [44–48] to overcome the need for body-

conforming meshes in solving the governing equations. For some simulations in this work, SBM is

used in conjunction with Adaptive Mesh Refinement (AMR) [49], a technique that can generate fine

meshes near interfaces while keeping a course mesh everywhere else. Combining SBM with AMR

allows for enhanced simulation accuracy of SBM by allowing the use of thin interfaces. The refined

meshes utilized in the simulations also do not conform to the complex, irregular particle-electrolyte

interfaces, thus simplifying mesh generation. The conventional equations that describe the physical

phenomena within the three regions— electrode particles, electrolyte, and interface— are outlined

first. Then, we describe the SBM reformulation of those equations and the AMR mesh generation

used in the framework. In our simulations, we integrate the SBM+AMR framework with Finite
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Di!erence Method (FDM) stencils due to their straightforward implementation. The numerical

method is also presented in this chapter. The complete framework was first presented in Malik et al,

Journal of The Electrochemical Society, 169(7):070527, Jul 2022 [24] and subsequently extended

with a phase-field in Malik et al, 77:109937, January 2024 [50]. This chapter is substantially drawn

from these publications.

2.1 Conventional governing Equations

In this section, we detail and describe the governing equations, which serve as the foundation

of our framework. These equations pertain to a half-cell with the assumption of a lithium metal

counter electrode on the other side of the cell.

(a)

(b)

Figure 2.1 (a) Schematic illustration of electrolyte and particle regions with the associated
electrochemical governing equations. The yellow color indicates the inside of particles, the brown
color indicates particle surfaces, and the light blue color indicates the electrolyte. (b) Illustration
of di!use interface and domain parameter with the SBM-reformulated governing equations.
Domain parameter 𝑂 continuously transitions across the electrolyte-particle interface.
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2.1.1 Electrode particles

Intercalation materials represent the predominant choice for electrode materials in lithium-ion

batteries. An intercalation reaction inserts a lithium ion into the host crystal without altering its

structure. The chemical formula can be typically described by

𝐿Li+ + 𝐿e→ + G↭ Li𝐿G (2.1)

where G denotes an intercalation electrode material. In the context of this work, G can signify one

of the three materials: NMC, graphite, or hard carbon. Once intercalated into electrode particles,

lithium ions di!use/migrate through the host crystal’s interstices (or vacant sites), as indicated by

the brown arrow in Fig. 2.1(a). The Li transport can be described generally by

𝑃𝑄𝑅

𝑃𝑆

= →↑ · ↓𝑇𝑅 = ↑ ·
(
𝑈𝑅↑𝑉𝑅

)
↔ ω𝑅, (2.2)

where 𝑄𝑅, 𝑈𝑅, and 𝑉𝑅 are the site occupancy fraction, transport mobility, and chemical potential,

respectively, of Li in the host crystal, ↓𝑇𝑅 = →𝑈𝑅↑𝑉𝑅 is the Li flux, 𝑆 denotes time, and ω𝑅 denotes

the domain of the particle. The subscript 𝑅 denotes the particle for Li storage. The lithium

concentration in the particle is 𝑊𝑅 = 𝑋𝑄𝑅, where 𝑋 is the site density. On the particle surface, the

insertion/extraction rate is described by 𝑌𝐿𝑍/𝑋 = ↓𝑍 · ↓𝑇 ↔ 𝑃ω𝑎, where ↓𝑍 is the inward unit vector

of the particle surface, ↓𝑇 = →𝑈𝑅↑𝑉𝑅 is the (de)intercalation flux vector, and 𝑃ω𝑎 is the active

surface where the reaction occurs. Please note that 𝑃ω𝑎 represents the active surface, which may

not encompass all particle surfaces. Regions covered by inactive materials, such as binders, are

considered inactive. However since binder phases are not included in our model, all particle-

electrolyte interfaces count as active. Consequently, in this work, 𝑃ω𝑎 is equivalent to 𝑃ω𝑅. Eq.

(2.2) can be simplified to Fick’s di!usion equation [51] if a solid-solution mechanism is assumed

for lithation/delithiation in the electrode. The simplified equation defines lithium fraction evolution

as
𝑃𝑄𝑅

𝑃𝑆

= ↑ ·
(
𝑏𝑅↑𝑄𝑅

)
↔ ω𝑅, (2.3)

where 𝑏𝑅 is the Li di!usivity in the particles. The boundary condition stays the same even after

this simplification. For phase-separating electrode materials, 𝑉𝑅 will be formulated in a more

11



complicated form (e.g., as in the phase-field models [52–54]). This behavior is detailed further in

Chapter 4 as it pertains more to graphite anodes.

The electric current density in the conductive solid regions is given by i𝑐 = →𝑑𝑐↑𝑒𝑐 and

describes electron transport. The current continuity condition, therefore, is described by

↑ · i𝑐 = 0 ↔ ω𝑐 =↗ ↑ ·
(
𝑑𝑐↑𝑒𝑐

)
= 0 ↔ ω𝑐, (2.4)

where 𝑑𝑐 and 𝑒𝑐 are the electrical conductivity and electrostatic potential, respectively. This

equation is subject to the boundary condition, i𝑐 = →𝑑𝑐↑𝑒𝑐 = 𝑓𝑌𝐿𝑍 ↔ 𝑃ω𝑎, where 𝑓 is the Faraday

constant. As mentioned earlier, ω𝑐 specifies all conductive solid regions, which may include

additives in addition to electrode particles as well. The additive phases can be incorporated into the

electrochemical simulations by including an additional domain parameter function [44]. However,

we do not consider additives in the work presented here.

2.1.2 Electrolyte

Within an electrolyte, both cations and anions undergo electro-di!usion, which combines the

di!usion driven by gradients of ion concentration and the migration driven by electrostatic potential

gradients. For a binary electrolyte, that contains only one species of cations and anions each, the

di!usion and migration terms can be consolidated [55], resulting in the equation:

𝑃𝑊𝑔

𝑃𝑆

= ↑ · 𝑏𝑔↑𝑊𝑔 →
ie · ↑𝑆+
𝑁+𝑕+𝑓

↔ ω𝑔, (2.5)

where 𝑊𝑔, 𝑏𝑔, and i𝑔 are the salt concentration, the ambipolar di!usivity of the salt, and the ionic

current in the electrolyte, respectively. 𝑁𝑖, 𝑕𝑖, and 𝑆𝑖 are the charge number, dissolution number,

and transference number, respectively, where the subscript ‘+’ denotes cation. Here, we assume

that the electrolyte is binary, comprising solely one species of monovalent cation and one species

of anion. The salt concentration is related to the ionic concentration by 𝑊𝑔 = 𝑕+𝑊+ = 𝑕→𝑊→. The

ambipolar di!usivity is expressed as 𝑏𝑔 = (𝑁+𝑗+𝑏→ → 𝑁→𝑗→𝑏+)/(𝑁+𝑗+ → 𝑁→𝑗→), where 𝑗𝑖 is

the transport mobility and 𝑏𝑖 is the di!usivity of the ions with the subscripts indicating cations

and anions. The derivation of Eq. (2.5) can be found in Ref. [55]. ω𝑔 specifies the domain of
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electrolyte. The salt concentration is subject to the boundary condition: 𝑌𝐿𝑍 = 𝑕+↓𝑍 · ↓𝑇𝑔 ↔ 𝑃ω𝑔, where

↓𝑇𝑔 = →𝑏𝑔↑𝑊𝑔 + 𝑆+i𝑔/(𝑁+𝑕+𝑓) is an e!ective salt flux vector and 𝑆+ = 1→ 𝑆→ = 𝑁+𝑗+/(𝑁+𝑗+→ 𝑁→𝑗→).

Assuming current continuity in the electrolyte (i.e., charge separation in di!use double layer

regions is ignored), ↑ · i𝑔 = 0, where i𝑔 = →𝑓𝑁+𝑕+[(𝑁+𝑗+ → 𝑁→𝑗→)𝑓𝑊𝑔↑𝑒𝑔 + (𝑏+ → 𝑏→)↑𝑊𝑔]

and 𝑒𝑔 is the electrostatic potential in the electrolyte. Thus, we obtain the equation governing the

electrostatic potential field in the electrolyte regions as

↑ · [(𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔 + (𝑏+ → 𝑏→) ↑𝑊𝑔] = 0 ↔ ω𝑔, (2.6)

with the boundary condition 𝑁+𝑓𝑌𝐿𝑍 = ↓𝑍 · i𝑔 ↔ 𝑃ω𝑔.

2.1.3 Interface reaction and Butler-Volmer equation

At the particle-electrolyte interfaces, lithium ions in the electrolyte react with electrons in the

electrode particle and are then intercalated into the particle, see Fig. 2.1(a) for an illustration.

Lithium concentrations, as well as the electrostatic potentials, on both sides of the interface, are

involved in determining the surface reaction rate, which is typically expressed by the Butler-Volmer

equation [24, 55]:

𝑌𝐿𝑍 =
𝑖0
𝑁+𝑓

[
exp

(→𝑘𝑁+𝑓
𝑙𝑚

𝑛

)
→ exp

( (1 → 𝑘)𝑁+𝑓
𝑙𝑚

𝑛

)]
, (2.7)

where 𝑘 is the symmetry factor, 𝑙 is the ideal gas constant, 𝑚 is the absolute temperature, 𝑛 =

[𝑒] 𝑅
𝑔
→ 𝑒𝑔𝑜 is the overpotential on the particle surfaces. [𝑒] 𝑅

𝑔
= 𝑒𝑅 → 𝑒𝑔 ↔ 𝑃ω𝑎 is the electrostatic

potential drop across the electrolyte-particle interface. 𝑒𝑔𝑜 is the equilibrium voltage, which is also

the open circuit voltage for a reversible electrode system. In this work, the dissolution number is

assumed to be one. Also, the symmetry factor is assumed to be 0.5 for simplicity, which is generally

valid for non-insulator electrode materials [56].

The reaction rate obtained in Eq. (2.7) serves as the common boundary condition that couples

Eqs. (2.2) – (2.6) and the values of 𝑌𝐿𝑍 are also determined by the results of those equations. Solving

these equations in the conventional FEM or FVM requires discretizing the complex particle (ω𝑅)

and electrolyte ((ω𝑔) domains with conformal meshes, which forms the largest challenge of complex

microstructure simulations.
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2.2 Smoothed Boundary Method

We solve these equations on complex electrode microstructures by modifying them using the

smoothed boundary method [24,50,57,58,58,59]. Following ideas from Refs. [44–47,47,48], we

introduce a continuous domain parameter (𝑂) to define the regions occupied by electrode particles.

The value of 𝑂 is uniformly one inside the particles and uniformly zero outside. Since no additive

phases are considered in this work, 𝑂𝑔 = 1 → 𝑂 serves as the domain parameter for the electrolyte

region. The particle-electrolyte interface is implicitly defined by the region of 0 < 𝑂 < 1. The

narrow regions where 𝑂 transitions from one to zero define the locations of particle-electrolyte

interfaces implicitly. See Fig. 2.1(b) for an illustration. Please note that the finite-thickness di!use

interface in the SBM is a numerical smeared interface, not a physical interface. The domain

parameters have a similar form to the order parameters in the phase-field methods. The original

electrochemical governing equations can be reformulated with 𝑂 such that body-conforming mesh

is no longer required in solving the reformulated equations. The equations are reformulated as

follows.

2.2.1 Electrode/Particles

As mentioned earlier, a domain parameter 𝑂 is used to define the space occupied by the

electrode particles. The value of 𝑂 is one inside the particles and zero outside as mentioned earlier.

Multiplying 𝑂 on both sides of Eq. (2.3), we obtain

𝑂

𝑃𝑄𝑅

𝑃𝑆

= 𝑂↑ · (𝑏𝑅↑𝑄𝑅), (2.8)

Using the product rule of di!erentiation on the right-hand side of Eq. (2.8), we further write

𝑂↑ · (𝑏𝑅↑𝑄𝑅) = ↑ · (𝑂𝑏𝑅↑𝑄𝑅) → ↑𝑂 · (𝑏𝑅↑𝑄𝑅), (2.9)

Combining these two equations results in

𝑂

𝑃𝑄𝑅

𝑃𝑆

= ↑ · (𝑂𝑏𝑅↑𝑄𝑅) → ↑𝑂 · (𝑏𝑅↑𝑄𝑅), (2.10)

The second term on the right-hand side serves as an ‘internal’ boundary condition within the

computational domain. The Neumann boundary condition on the particle surface (𝑌𝐿𝑍/𝑋 = ↓𝑍 · ↓𝑇 ↔
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𝑃ω𝑎) can be expressed in the di!use interface description as

𝑌𝐿𝑍

𝑋

= ↓𝑍 · ↓𝑇 = ↑𝑂
|↑𝑂 | · (→𝑏𝑅↑𝑄𝑅), (2.11)

where ↓𝑍 = ↑𝑂/|↑𝑂 | is the unit inward normal vector of the di!use interface. Substituting Eq.

(2.11) to Eq. (2.10), we obtain the SBM version of the Li transport equation:

𝑃𝑄𝑅

𝑃𝑆

=
1
𝑂

↑ ·
(
𝑂𝑏𝑅↑𝑄𝑅

)
+ |↑𝑂 |

𝑂

𝑌𝐿𝑍

𝑋

, (2.12)

Following a similar procedure, we can derive the SBM version of the current continuity equation for

the electrode particles by starting with multiplying Eq. (2.4) with 𝑂 and implementing the product

rule to obtain

𝑂↑ · (𝑑𝑐↑𝑒𝑐) = ↑ · (𝑂𝑑𝑐↑𝑒𝑐) → ↑𝑂 · (𝑑𝑐↑𝑒𝑐) = 0, (2.13)

Again, substituting the boundary condition ↓𝑍 · i𝑐 = ↑𝑂/|↑𝑂 | · (→𝑑𝑐↑𝑒𝑐) = →𝑁→𝑓𝑌𝐿𝑍 into Eq. (2.13)

gives the SBM version of the current continuity equation in the electrode particles:

↑ · (𝑂𝑑𝑐↑𝑒𝑐) → |↑𝑂 |𝑁→𝑓𝑌𝐿𝑍 = 0, (2.14)

2.2.2 Electrolyte

Similar to the SBM formulation of the electrode, we multiply Eq. (2.5) with 𝑂𝑔 and use the

product rule to obtain

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) →
1
𝑂𝑔

↑𝑂𝑔 · (𝑏𝑔↑𝑊𝑔) →
ie · ↑𝑆+
𝑁+𝑕+𝑓

, (2.15)

where 𝑂𝑔 = 1 → 𝑂. Recall that 𝑏𝑔↑𝑊𝑔 = →↓𝑇𝑔 + 𝑆+i𝑔/(𝑁+𝑕+𝑓). Thus, we have

→↑𝑂𝑔 · (𝑏𝑔↑𝑊𝑔) = ↑𝑂𝑔 · ↓𝑇𝑔 →
𝑆+

𝑁+𝑕+𝑓
↑𝑂𝑔 · i𝑔, (2.16)

Recalling the boundary conditions that 𝑌𝐿𝑍/𝑕+ = ↓𝑍 · ↓𝑇𝑔 = (↑𝑂𝑔/|↑𝑂𝑔 |) · ↓𝑇𝑔 and 𝑁+𝑓𝑌𝐿𝑍 = ↓𝑍 · i𝑔 =

(↑𝑂𝑔/|↑𝑂𝑔 |) · i𝑔 in Section 2.1.2, Eq. (2.15) can be rewritten as

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
1
𝑂𝑔

(
|↑𝑂𝑔 |

𝑌𝐿𝑍

𝑕+
→ |↑𝑂𝑔 |

𝑆+𝑌𝐿𝑍
𝑕+

)
→ ie · ↑𝑆+

𝑁+𝑕+𝑓
, (2.17)
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which is further organized to

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
|↑𝑂𝑔 |
𝑂𝑔

𝑌𝐿𝑍𝑆→
𝑕+

→ ie · ↑𝑆+
𝑁+𝑕+𝑓

, (2.18)

where 𝑆→ = 1 → 𝑆+. If the transference number is constant, the last term vanishes.

For the current continuity in electrolyte (Eq. (2.6)), we follow a similar procedure to obtain

↑·
[
𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→)𝑓𝑊𝑔↑𝑒𝑔

]
→

↑𝑂𝑔 ·
[
(𝑁+𝑗+ → 𝑁→𝑗→)𝑓𝑊𝑔↑𝑒𝑔 + (𝑏+ → 𝑏→)↑𝑊𝑔

]
= ↑ ·

[
𝑂𝑔 (𝑏→ → 𝑏+)↑𝑊𝑔

]
,

(2.19)

Recall that 𝑁+𝑓𝑌𝐿𝑍 = ↓𝑍 · i𝑔 = (↑𝑂𝑔/|↑𝑂𝑔 |) ·
{
→ 𝑁+𝑕+𝑓

[
(𝑁+𝑗+→ 𝑁→𝑗→)𝑓𝑊𝑔↑ε𝑔 + (𝑏+→𝑏→)↑𝑊𝑔

]}
,

which leads to

↑ · [𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔] + |↑𝑂𝑔 |
𝑌𝐿𝑍

𝑕+
= ↑ · [𝑂𝑔 (𝑏→ → 𝑏+) ↑𝑊𝑔] , (2.20)

In summary, Eqs. (2.12), (2.14), (2.18), and (2.20) are the SBM governing equations reformulated

from the classical Eqs. (2.3), (2.4), (2.5), and (2.6), respectively.

𝑃𝑄𝑅

𝑃𝑆

=
1
𝑂

↑ ·
(
𝑂𝑏𝑅↑𝑄𝑅

)
+ |↑𝑂 |

𝑂

𝑌𝐿𝑍

𝑋

, (2.12)

↑ · (𝑂𝑑𝑐↑𝑒𝑐) → |↑𝑂 |𝑁→𝑓𝑌𝐿𝑍 = 0, (2.14)

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
|↑𝑂𝑔 |
𝑂𝑔

𝑌𝐿𝑍𝑆→
𝑕+

→ ie · ↑𝑆+
𝑁+𝑕+𝑓

, (2.18)

↑ · [𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔] + |↑𝑂𝑔 |
𝑌𝐿𝑍

𝑕+
= ↑ · [𝑂𝑔 (𝑏→ → 𝑏+) ↑𝑊𝑔] , (2.20)

The reaction rate obtained from the Butler-Volmer equation also serves as the internal boundary

condition that couples the kinetic and static equations above.

𝑌𝐿𝑍 =
𝑖0
𝑁+𝑓

[
exp

(→𝑘𝑁+𝑓
𝑙𝑚

𝑛

)
→ exp

( (1 → 𝑘)𝑁+𝑓
𝑙𝑚

𝑛

)]
, (2.7)
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These equations can be solved on grid systems (mesh) non-conformal to the complex electrode

microstructures while imposing the reaction flux at the di!use interfaces that are located by nonzero

values of |↑𝑂 |. A quick view of those classical and SBM-reformulated equations and their

associated domains is presented in Fig. 2.1(b).

2.3 Adaptive Mesh Refinement

The Smoothed Boundary Method (SBM) enables the utilization of a grid system that is not

conformal to the internal boundaries when solving governing equations, thus facilitating numerical

simulations on a uniform Cartesian grid system [44]. Typically, four grid points across the di!use

interface are required to maintain numerical stability. However, employing a uniform, fine grid

system throughout the entire computational domain to resolve a thin di!use interface would impose

a significant computational burden. In practice, fine grids are primarily necessary near the di!use

interface. Adaptive Mesh Refinement (AMR) [49,60,61] is a technique that allows for the generation

of a fine mesh only near interface regions while keeping a coarse grid away from the interface.

In our approach, we employ the Finite Di!erence Method (FDM) to solve the SBM equations on

AMR grid systems for ease of implementation. It’s important to note that the SBM equations are

not restricted to the solvers presented here and can also be implemented with FEM or FVM instead.

In our work, octree and quadtree adaptive mesh refinement (AMR) techniques [49,59–61] were

employed to generate grid systems in 3D and 2D, respectively. The quadtree refinement process

is similar to octree refinement but simpler, given that it is a two-dimensional simplification of the

former. Thus we only describe the octree AMR here. First, the computational domain is discretized

into uniform equal-sized cubes, which are referred to as root-level cells. Each such cell comprises

eight vertices, also known as nodes or grid points. A cell list is then created to store the cell labels

along with the labels of vertices for each cell. Additionally, a node list is generated to store the

node labels and their corresponding positions. To determine the shortest distance of each node

to the internal boundary (i.e., the particle-electrolyte interface), the level-set distancing method

was utilized [44, 62]. Subsequently, the center position of each cell is calculated by averaging the

positions of its eight vertices. If the distance from a cell center to the internal boundary is shorter
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than a specified threshold value, the cell is split into eight equal-sized cubes, with each having an

edge length half that of the parent cell. The original cell is then eliminated, and the newly created

cells are referred to as the first-level cells. Additionally, new nodes are inserted into the node list

(as vertices of the new cells) if the position of a new node is not already occupied by an existing

node.

During the refinement processes, neighbor nodes are systematically identified and recorded.

For each node, direct neighbors are determined along each axial direction as the nearest nodes to

that particular node. An illustration can be seen in Fig. 2.2(a), where the black node represents the

center node, and the magenta dots denote the six direct neighbors. At the boundary between two

levels of cells, if no direct neighbor exists in a given direction, the second nearest neighbors are

selected as the indirect neighbors in that direction. Fig. 2.2(b) demonstrates this scenario, where

the cyan dots represent the two indirect neighbors in the west direction. These procedures of cell

splitting, node insertion, and neighbor searching can be executed successively to achieve higher

levels of refinement. By refining the mesh in the interfacial regions, a domain parameter with a

very thin di!use interface can be utilized while maintaining a resolution of four to six nodes across

the interface. It’s noteworthy that the threshold value for each level of refinement is meticulously

chosen to ensure that there is only one level of di!erence in adjacent cells. Neighboring cells

di!ering by more than one level of refinement can cause instability in the numerical solver.

2.4 Numerical methods

We use the Finite Di!erence Methods (FDM) to solve the governing equations, with the stencil

of a variable-coe"cient second-order derivative operator in 3D as [59, 63]

↑ ·
(
𝑂↑𝑝𝑊

)
=

2
𝑐𝑞 + 𝑐𝑟

(
𝑠𝑟 · 𝑝𝑟 → 𝑝𝑊

𝑐𝑟

→ 𝑠𝑞 · 𝑝𝑊 → 𝑝𝑞

𝑐𝑞

)
·
(
1 → 𝑡21 → 𝑡31

)
+

2
𝑐𝑢 + 𝑐𝑣

(
𝑠𝑢 · 𝑝𝑢 → 𝑝𝑊

𝑐𝑢

→ 𝑠𝑣 ·
𝑝𝑊 → 𝑝𝑣

𝑐𝑣

)
·
(
1 → 𝑡12 → 𝑡32

)
+

2
𝑐𝑚 + 𝑐𝑤

(
𝑠𝑚 · 𝑝𝑚 → 𝑝𝑊

𝑐𝑚

→ 𝑠𝑤 · 𝑝𝑊 → 𝑝𝑤

𝑐𝑤

)
·
(
1 → 𝑡13 → 𝑡23

)
(2.21)

where the subscripts 𝑞 , 𝑟 , 𝑣, 𝑢 , 𝑤, and 𝑚 indicate the west, east, south, north, bottom, and top

directions, respectively, the subscript 𝑊 indicates the center node, 𝑝𝑖 are the values at di!erent
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nodes, and 𝑐𝑖 are the distances from the center node to its (direct or virtual) neighbors in the 𝑖

direction. 𝑠𝑖 = (𝑂𝑖 + 𝑂𝑊)/2 is the average value of 𝑂 between the center node and its (direct or

virtual) neighbor. 𝑡𝑖 𝑇 are the correction factors for nodes with any indirect neighbors.

Di!erent types of nodes can arise based on a given configuration. If a node has six direct

neighbors, each along one of the axial directions (as illustrated in Fig. 2.2(a)), it is termed a

regular node. For such nodes, all 𝑡𝑖 𝑇 coe"cients are zero. Equation (2.21) simplifies to a standard

seven-point FDM stencil. On the other hand, if a node has two indirect neighbors along a specific

direction, it is labeled as a T-junction. Fig. 2.2(b) provides an example of a west-facing T-junction

on the 𝐿-𝑀 plane. In this scenario, 𝑡12 = 𝑐𝑣𝑐𝑢/
(
𝑐𝑞 (𝑐𝑞 + 𝑐𝑟 )

)
, while all other 𝑡 coe"cients are

zero. The value of 𝑂𝑞 on the virtual west neighbor (marked by the green circle) is determined by

(a) (b)

(c) (d)

Figure 2.2 Schematic illustration of (a) a regular node (black dot) with six direct neighbor nodes
(magenta dots). (b) A west-facing T-junction node (black dot) that has five direct neighbor nodes
(magenta dots) and two indirect neighbors (cyan dots) in the west (→𝐿) direction. (c) A node that
is simultaneously a west-facing and bottom-facing T-junction node. (d) A west-facing
face-centered node that has four indirect neighbors in the west direction. The green circles in (b),
(c), and (d) indicate virtual neighbor nodes.
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averaging 𝑂 at the two indirect neighbors (marked by the cyan dots). Similarly, the value of 𝑝𝑞 on

the virtual west neighbor is calculated by a weighted average of those at the two indirect neighbors.

𝑝𝑞 =
(𝑂𝑣𝑞 + 𝑂𝑊)𝑝𝑣𝑞 + (𝑂𝑢𝑞 + 𝑂𝑊)𝑝𝑢𝑞

(𝑂𝑣𝑞 + 𝑂𝑊) + (𝑂𝑢𝑞 + 𝑂𝑊)
. (2.22)

The 𝑡 values for T-junctions along di!erent directions and on di!erent planes are listed in Table

2.1. It is important to note that a node can simultaneously be classified as a T-junction in two axial

directions. For instance, Fig. 2.2(c) shows a node that serves as a west-facing T on the 𝐿-𝑀 plane

and a bottom-facing T on the 𝑀-𝑁 plane. The west and bottom virtual neighbors are indicated as

green circles. The values at those virtual neighbor nodes can be determined using similar methods

as described above.

Another type of node is a face-centered junction, see Fig. 2.2(d) for an example of a west-

facing face-centered junction. In this scenario, both 𝑡12 and 𝑡13 are nonzero and the values

can be computed using the formulas in Table 2.1. The 𝑂 value on the virtual neighbor node

(marked by the green circle) is determined by averaging the values at the four indirect neighbors

(marked by the cyan dots). The value of 𝑝𝑞 is calculated as the weighted average, given by

𝑝𝑞 =
∑ (

𝑂𝑖 +𝑂𝑊

)
𝑝𝑖/

∑ (
𝑂𝑖 +𝑂𝑊

)
, where 𝑖 denotes the subscripts of the indirect neighbors. In some

cases, a node can function as T-junctions on two orthogonal planes facing the same axial direction.

Such nodes will have four indirect neighbors along that direction. The formulas for calculating 𝑡

values, 𝑂, and 𝑝 at the virtual neighbor node remain the same as in the face-centered case. When

calculating gradients, the FDM stencils are

𝑃𝑝

𝑃𝐿

=
𝑐𝑟

𝑐𝑞 + 𝑐𝑟

· 𝑝𝑊 → 𝑝𝑞

𝑐𝑞

+ 𝑐𝑞

𝑐𝑞 + 𝑐𝑟

· 𝑝𝑟 → 𝑝𝑊

𝑐𝑟

+ 𝑘12𝑝𝑀𝑀 + 𝑘13𝑝𝑁𝑁 (2.23a)

𝑃𝑝

𝑃𝑀

=
𝑐𝑢

𝑐𝑣 + 𝑐𝑢

· 𝑝𝑊 → 𝑝𝑣

𝑐𝑣

+ 𝑐𝑣

𝑐𝑣 + 𝑐𝑢

· 𝑝𝑢 → 𝑝𝑊

𝑐𝑢

+ 𝑘21𝑝𝐿𝐿 + 𝑘23𝑝𝑁𝑁 (2.23b)

𝑃𝑝

𝑃𝑁

=
𝑐𝑚

𝑐𝑤 + 𝑐𝑚

· 𝑝𝑊 → 𝑝𝑤

𝑐𝑤

+ 𝑐𝑤

𝑐𝑤 + 𝑐𝑚

· 𝑝𝑚 → 𝑝𝑊

𝑐𝑚

+ 𝑘31𝑝𝐿𝐿 + 𝑘32𝑝𝑀𝑀 (2.23c)

where the correction factors 𝑘𝑖 𝑇 are provided in Table 2.1. Example derivations of the FDM

stencils, 𝑘, and 𝑡 coe"cients from Taylor series are given in Appendix A. For regular nodes, 𝑘
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Table 2.1 Correction factors for the finite di!erence stencils used in this work. Adapted from
Ref. [63].

Note that 𝑘𝑖 𝑇 (𝑚↘) and 𝑡𝑖 𝑇 (𝑚↘) refer to the
𝑘𝑖 𝑇 (𝑚↘) and 𝑡𝑖 𝑇 (𝑚↘) value from T-junction type of 𝑚↘.

node type 𝑘12 𝑘13 𝑡12 𝑡13

𝑚𝑥→𝐿𝑀
𝑐𝐿𝑐𝑀𝑐𝑁

2𝑐𝑂 (𝑐𝑂+𝑐𝑁) 0 𝑐𝐿𝑐𝑀
𝑐𝑂 (𝑐𝑂+𝑐𝑁) 0

𝑚𝑥→𝐿𝑁 0 𝑐𝑃𝑐𝑄 𝑐𝑁
2𝑐𝑂 (𝑐𝑂+𝑐𝑁) 0 𝑐𝑃𝑐𝑄

𝑐𝑂 (𝑐𝑂+𝑐𝑁)
𝑚𝑥→𝐿𝑀→𝐿𝑁 0.5𝑘12(𝑚𝑥→𝐿𝑀) 0.5𝑘13(𝑚𝑥→𝐿𝑁) 0.5𝑡12(𝑚𝑥→𝐿𝑀) 0.5𝑡13(𝑚𝑥→𝐿𝑁)
𝑚𝑥→4𝑖 𝑘12(𝑚𝑥→𝐿𝑀) 𝑘13(𝑚𝑥→𝐿𝑁) 𝑡12(𝑚𝑥→𝐿𝑀) 𝑡13(𝑚𝑥→𝐿𝑁)
𝑚𝑔→𝐿𝑀 - 𝑐𝐿𝑐𝑀𝑐𝑂

2𝑐𝑁 (𝑐𝑂+𝑐𝑁) 0 𝑐𝐿𝑐𝑀
𝑐𝑁 (𝑐𝑂+𝑐𝑁) 0

𝑚𝑔→𝐿𝑁 0 - 𝑐𝑃𝑐𝑄 𝑐𝑂
2𝑐𝑁 (𝑐𝑂+𝑐𝑁) 0 𝑐𝑃𝑐𝑄

𝑐𝑁 (𝑐𝑂+𝑐𝑁)
𝑚𝑔→𝐿𝑀→𝐿𝑁 0.5𝑘12(𝑚𝑔→𝐿𝑀) 0.5𝑘13(𝑚𝑔→𝐿𝑁) 0.5𝑡12(𝑚𝑔→𝐿𝑀) 0.5𝑡13(𝑚𝑔→𝐿𝑁)
𝑚𝑔→4𝑖 𝑘12(𝑚𝑔→𝐿𝑀) 𝑘13(𝑚𝑔→𝐿𝑁) 𝑡12(𝑚𝑔→𝐿𝑀) 𝑡13(𝑚𝑔→𝐿𝑁)

node type 𝑘21 𝑘23 𝑡21 𝑡23

𝑚𝑐→𝐿𝑀
𝑐𝑂𝑐𝑁𝑐𝑀

2𝑐𝐿 (𝑐𝐿+𝑐𝑀) 0 𝑐𝑂𝑐𝑁
𝑐𝐿 (𝑐𝐿+𝑐𝑀) 0

𝑚𝑐→𝑀𝑁 0 𝑐𝑃𝑐𝑄 𝑐𝑀
2𝑐𝐿 (𝑐𝐿+𝑐𝑀) 0 𝑐𝑃𝑐𝑄

𝑐𝐿 (𝑐𝐿+𝑐𝑀)
𝑚𝑐→𝐿𝑀→𝑀𝑁 0.5𝑘21(𝑚𝑐→𝐿𝑀) 0.5𝑘23(𝑚𝑐→𝑀𝑁) 0.5𝑡21(𝑚𝑐→𝐿𝑀) 0.5𝑡23(𝑚𝑐→𝑀𝑁)
𝑚𝑐→4𝑖 𝑘21(𝑚𝑐→𝐿𝑀) 𝑘23(𝑚𝑐→𝑀𝑁) 𝑡21(𝑚𝑐→𝐿𝑀) 𝑡23(𝑚𝑐→𝑀𝑁)
𝑚𝑍→𝐿𝑀 - 𝑐𝑂𝑐𝑁𝑐𝐿

2𝑐𝑀 (𝑐𝐿+𝑐𝑀) 0 𝑐𝑂𝑐𝑁
𝑐𝑀 (𝑐𝐿+𝑐𝑀) 0

𝑚𝑍→𝑀𝑁 0 - 𝑐𝑃𝑐𝑄 𝑐𝐿
2𝑐𝑀 (𝑐𝐿+𝑐𝑀) 0 𝑐𝑃𝑐𝑄

𝑐𝑀 (𝑐𝐿+𝑐𝑀)
𝑚𝑍→𝐿𝑀→𝑀𝑁 0.5𝑘21(𝑚𝑍→𝐿𝑀) 0.5𝑘23(𝑚𝑍→𝑀𝑁) 0.5𝑡21(𝑚𝑍→𝐿𝑀) 0.5𝑡23(𝑚𝑍→𝑀𝑁)
𝑚𝑍→4𝑖 𝑘21(𝑚𝑍→𝐿𝑀) 𝑘23(𝑚𝑍→𝑀𝑁) 𝑡21(𝑚𝑍→𝐿𝑀) 𝑡23(𝑚𝑍→𝑀𝑁)

node type 𝑘31 𝑘32 𝑡31 𝑡32

𝑚𝑦→𝑀𝑁 0 𝑐𝐿𝑐𝑀𝑐𝑄
2𝑐𝑃 (𝑐𝑃+𝑐𝑄 ) 0 𝑐𝐿𝑐𝑀

𝑐𝑃 (𝑐𝑃+𝑐𝑄 )
𝑚𝑦→𝐿𝑁

𝑐𝑂𝑐𝑁𝑐𝑄
2𝑐𝑃 (𝑐𝑃+𝑐𝑄 ) 0 𝑐𝑂𝑐𝑁

𝑐𝑃 (𝑐𝑃+𝑐𝑄 ) 0
𝑚𝑦→𝑀𝑁→𝐿𝑁 0.5𝑘31(𝑚𝑦→𝐿𝑁) 0.5𝑘32(𝑚𝑦→𝑀𝑁) 0.5𝑡31(𝑚𝑦→𝐿𝑁) 0.5𝑡32(𝑚𝑦→𝑀𝑁)
𝑚𝑦→4𝑖 𝑘31(𝑚𝑦→𝐿𝑁) 𝑘32(𝑚𝑦→𝑀𝑁) 𝑡31(𝑚𝑦→𝐿𝑁) 𝑡32(𝑚𝑦→𝑀𝑁)
𝑚𝑆→𝑀𝑁 0 - 𝑐𝐿𝑐𝑀𝑐𝑃

2𝑐𝑄 (𝑐𝑃+𝑐𝑄 ) 0 𝑐𝐿𝑐𝑀
𝑐𝑄 (𝑐𝑃+𝑐𝑄 )

𝑚𝑆→𝐿𝑁 - 𝑐𝑂𝑐𝑁𝑐𝑃
2𝑐𝑄 (𝑐𝑃+𝑐𝑄 ) 0 𝑐𝑂𝑐𝑁

𝑐𝑄 (𝑐𝑃+𝑐𝑄 ) 0
𝑚𝑆→𝑀𝑁→𝐿𝑁 0.5𝑘31(𝑚𝑆→𝐿𝑁) 0.5𝑘32(𝑚𝑆→𝑀𝑁) 0.5𝑡31(𝑚𝑆→𝐿𝑁) 0.5𝑡32(𝑚𝑆→𝑀𝑁)
𝑚𝑆→4𝑖 𝑘31(𝑚𝑆→𝐿𝑁) 𝑘32(𝑚𝑆→𝑀𝑁) 𝑡31(𝑚𝑆→𝐿𝑁) 𝑡32(𝑚𝑆→𝑀𝑁)
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coe"cients are zero, and Eqs. (2.23) reduces to the standard central di!erence stencils. The values

of 𝑐𝑖, 𝑘𝑖 𝑇 , and 𝑡𝑖 𝑇 are determined based on the node positions and the neighboring relationship

recorded in the neighbor list generated during the refinement processes. Therefore, when solving

the SBM-formulated equations with pre-calculated 𝑘 and 𝑡 coe"cients, the implementation of

FDM with AMR is essentially similar to the standard finite di!erence method.

Instead of storing data in 3D arrays as in typical FDM simulations on uniform Cartesian grid

systems, the values of 𝑝 (which can represent 𝑊𝑅, 𝑊𝑔, 𝑒𝑅, or 𝑒𝑔) are stored in 1D vectors in our

work, with the indices to corresponding to the node labels. The labels of neighbor nodes in the

FDM stencil, Eq. (2.21), are referenced from the neighbor list created during AMR mentioned

earlier.

The flowchart illustrating the simulation procedures is depicted in Fig. 2.3. For a NMC

cathode, the lithium fraction is updated using Eq. (2.12) with the Euler explicit time scheme. No-

flux boundary conditions are applied to the six faces of the computational domain, including the

particle-current collector interface.

Given that the salt di!usivity in the electrolyte is approximately five orders of magnitude larger

than the Li di!usivity in the particles, the stable time step for Eq. (2.12) is too large for the Eq.

(2.18). Therefore, a fully implicit time scheme with a simple Jacobi relaxation method is utilized

for Eq. (2.18) to update the salt concentration in the electrolyte. At the electrolyte-anode interface,

a uniform influx (or outgoing flux) of lithium ions, calculated based on the total reaction rate, 𝑌𝐿𝑍,

is enforced to ensure the conservation of lithium ions. Here, it is the counter domain box boundary

to the cathode-current collector box boundary. No-flux boundary conditions are imposed on the

remaining five faces of the computational domain.

Within each time step, an internal iteration to solve 𝑒𝑅, 𝑒𝑔, and 𝑌𝐿𝑍 is implemented as follows.

First, Eq. (2.14) is solved for 𝑒𝑅 subject to the Dirichlet boundary condition (𝑒𝑅 |𝑧) on the electrode

current collector. Additionally, the flux boundary condition (𝑌𝐿𝑍) is calculated using Eq. (2.7) on

the particle-electrolyte interface. Similarly, 𝑒𝑔 is obtained by solving Eq. (2.20) with the Dirichlet

boundary condition (𝑒𝑔 |𝑎) on the other electrode surface (assumed to be lithium metal for half-cells)
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and the 𝑌𝐿𝑍 on the particle-electrolyte interface. No-flux boundary conditions are imposed on the

computational domain boundaries, except for those with Dirichlet conditions. Equations (2.14) and

(2.20) are solved using a simple Jacobi relaxation method. The obtained values of 𝑒𝑅 and 𝑒𝑔 are

substituted to Eq. (2.7) to calculate 𝑌𝐿𝑍. Note that the values of 𝑌𝐿𝑍 on all the grid points within the

di!use interface are calculated. By multiplying with |↑𝑂 | in Eqs. (2.14) and (2.20), the reaction

rates are distributed over the di!use interface region. The iterative process is repeated until all three

fields reach numerical equilibrium. Although more aggressive solvers can potentially accelerate

the calculations, we currently do not implement other solvers.

For a constant current simulation, the boundary values (𝑒𝑅 |𝑧 or 𝑒𝑔 |𝑎) are adjusted to match

Figure 2.3 Flowchart of simulation scheme for solving the coupled governing equations in a
half-cell.
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the value of
∫
|↑𝑂 |𝑌𝐿𝑍𝛥ω with the desired C rate at each time step. Then, the time-stepping is

continued, and the entire procedure is repeated until termination criteria are satisfied (either cuto!

voltage or lithium fraction). Based on our tests, the adjustment of 𝑒𝑅 |𝑧 (or 𝑒𝑔 |𝑎) boundary value to

control the C rate can also be conducted within the internal iteration loop (described above) without

significantly impacting the results.
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CHAPTER 3

MICROSTRUCTURE-LEVEL SIMULATIONS OF NMC-333 ELECTRODE

3.1 Introduction

This chapter introduces and demonstrates the framework we developed for 3D microstruc-

ture electrochemical simulations of electrodes. The framework employs the Smoothed Boundary

Method (SBM) [44] introduced in the previous chapter to circumvent the challenge of generating

body-conformal meshes on complex electrode microstructures. The SBM-reformulated equations

presented in Chapter 2 are solved on 3D microstructures. To mitigate errors incurred from the

thickness of the interface in SBM, Adaptive Mesh Refinement (AMR) is also incorporated in the

framework to reduce the thickness of the interface. AMR can generate mesh systems such that fine

mesh is located near the interface regions and coarse mesh is in the bulk regions as detailed in the

previous chapter [49]. Using AMR meshes can decrease the computational burden by reducing

the number of grid points in the bulk region while keeping the same interface thickness without

su"ciently deteriorating the accuracy. The SBM+AMR method described here was implemented

utilizing Finite Di!erence Method (FDM) stencils akin to those employed in a uniform grid system.

FDM was selected due to its simplicity and ease of implementation. Nevertheless, the equations

formulated within the SBM framework can also be solved on Adaptive Mesh Refinement (AMR)

grid systems employing Finite Element Method (FEM) or Finite Volume Method (FVM).

In this chapter, we showcase the capabilities of our framework through 3D simulations of a

Li𝐿Ni1/3Mn1/3Co1/3O2 (NMC-333) cathode. NMC was selected due to its widespread use in

contemporary battery applications. We present simulation results for the NMC half cell during

discharge and charge cycles at various C rates. First, we validate the accuracy of our simulation

framework and investigate its error behavior on a 1D geometry. Subsequently, we extend our

analysis to two 3D complex microstructures: one characterized by a non-uniform particle size

distribution and the other featuring uniform particle size. Using these simulations we demonstrate

the e"cacy of the SBM with AMR approach in 3D simulations. Our simulations explicitly

calculate the physical fields within the system, including concentrations and electrostatic potentials,

25



while explicitly considering electrode microstructures. While the SBM accurately captures the

distribution of these fields as expected, inaccuracies in predicted cell voltages may arise due to the

exponential terms in the Butler-Volmer equation when using a di!use-interface approach, which is

studied in this work. Cyclic voltammograms extracted from the simulations for the 3D complex

microstructures exhibit behavior consistent with literature data. Additionally, we present thermal

and mechanical simulations to highlight the versatility of the SBM+AMR framework in studying

discharge/charge-induced multiphysics phenomena. Given the pivotal role of intrinsic material

properties in determining electrode performance, we include parameterization of measured data

as input simulation parameters. Although our simulations were conducted on computationally

generated synthetic electrode microstructures in this study, the proposed method readily extends to

simulations on experimentally reconstructed electrode microstructures. By circumventing the need

for tedious body-conforming mesh generation processes, this approach enables rapid simulations

of complex electrode microstructures. This work was published in Malik et al, Journal of The

Electrochemical Society, 169(7):070527, Jul 2022 [24] and significantly influences this chapter.

3.2 Modeling and equations

3.2.1 Governing equations

For NMC, the electrochemical intercalation reaction in (2.1) can be expressed as

𝐿Li+ + 𝐿e→ + Ni1/3Mn1/3Co1/3O2 ↭ Li𝐿Ni1/3Mn1/3Co1/3O2. (3.1)

We use the SBM reformulations of the governing equations with AMR and the associated FDM

stencils described in Chapter 2 for all the 3D simulations and the di!use interface 1D simulations.

The relevant equations are listed here again for reference. Fick’s di!usion equation:

𝑃𝑄𝑅

𝑃𝑆

=
1
𝑂

↑ ·
(
𝑂𝑏𝑅↑𝑄𝑅

)
+ |↑𝑂 |

𝑂

𝑌𝐿𝑍

𝑋

, (2.12)

Current continuity on NMC electrode:

↑ · (𝑂𝑑𝑐↑𝑒𝑐) → |↑𝑂 |𝑁→𝑓𝑌𝐿𝑍 = 0, (2.14)
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Ion di!usion in electrolyte:

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
|↑𝑂𝑔 |
𝑂𝑔

𝑌𝐿𝑍𝑆→
𝑕+

→ ie · ↑𝑆+
𝑁+𝑕+𝑓

, (2.18)

Current continuity in electrolyte:

↑ · [𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔] + |↑𝑂𝑔 |
𝑌𝐿𝑍

𝑕+
= ↑ · [𝑂𝑔 (𝑏→ → 𝑏+) ↑𝑊𝑔] , (2.20)

We also use the classical electrochemical governing equations without SBM or AMR for the

sharp-interface description for comparison in a 1D simulation shown here —

𝑃𝑄𝑅

𝑃𝑆

= ↑ ·
(
𝑏𝑅↑𝑄𝑅

)
, (2.3)

↑ ·
(
𝑑𝑐↑𝑒𝑐

)
= 0, (2.4)

𝑃𝑊𝑔

𝑃𝑆

= ↑ · 𝑏𝑔↑𝑊𝑔 →
ie · ↑𝑆+
𝑁+𝑕+𝑓

↔ ω𝑔, (2.5)

↑ · [(𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔 + (𝑏+ → 𝑏→) ↑𝑊𝑔] = 0, (2.6)

These sets of equations are solved in conjunction with the Butler-Volmer equation, Eq. (3.2) in

their respective setups. Butler-Volmer equation:

𝑌𝐿𝑍 = kf𝑊+ exp
[→𝑘𝑁+𝑓

𝑙𝑚

[𝑒] 𝑅
𝑔

]
→ kb𝑊𝑅 exp

[ (1 → 𝑘) 𝑁+𝑓
𝑙𝑚

[𝑒] 𝑅
𝑔

]
, (3.2)

This version of the Butler-Volmer equation di!ers slightly from the formulation presented in

Chapter 2, as it utilizes reaction constants instead of exchange current density. Functionally, both

formulations are equivalent because the reaction constants depend on the exchange current density,

as detailed further in Section 3.2.2.2. This version of the Butler-Volmer equation is used only in

this chapter and was part of our initial framework development. It was later replaced with the

formulation presented in Chapter 2 in Eq. (2.7) to eliminate the need for unnecessary additional

parameters (reaction constants).

3.2.2 Simulation setup – material parameters

The coupled electrochemical mechanisms and resulting electrode performance are strongly

linked to the intrinsic materials properties, which often depend on lithium concentration in both the
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particles and electrolyte. In this section, we present the procedures for parameterizing measured

literature data to establish concentration-dependent material property functions as input simulation

parameters.

3.2.2.1 Li di!usivity and electric conductivity

The green circles in Fig. 3.1(a) represent a set of measured Li di!usivity in NMC disk pellets

at di!erent average lithium fractions (𝑄) taken from Ref. [64], where the measurements were

conducted using electrochemical impedance spectroscopy techniques. The red curve overlaid on

the same plot depicts a fitted function derived from those data points and is provided in Appendix B.

It is worth noting that although the di!usivity in the region 𝑄 < 0.2 is extrapolated, this approach

is acceptable here as the operation range in our simulations is confined to 0.2 < 𝑄 < 0.95.

In Fig. 3.1(b), the markers represent the measured electric conductivity of solid NMC disk

pellets at various average Li fractions, sourced from [64], where only five data points are available.

It is observed that the electric conductivity decreases significantly as 𝑄 increases. This decline

corresponds to a decrease in the valence number of the transition metal elements and an increase

in the formation of ionic bonds in the host crystal. A function describing the electric conductivity

was fitted from these data points, as indicated by the red curve in Fig. 3.1(b). Any missing values

in the low 𝑄 region were extrapolated. The obtained function is provided in Appendix B. Again,

since the operational range in our simulations is above 𝑄 = 0.2, this extrapolation is not expected

to result in significant issues.

We assumed a binary electrolyte, with LiPF6 dissolved in an arbitrary organic solvent. The ionic

di!usivties for Li+ and PF→
6 at 1 M of LiPF6 salt in the electrolyte were selected to be 1.25 ≃ 10→7

cm2/s and 4.0 ≃ 10→6 cm2/s, respectively as reported in Ref. [45]. Experimental measurements

indicate that electrolyte di!usivity varies with salt concentration with high concentration leading to

lower di!usivity [65]. Therefore, concentration-dependent ionic di!usivities are considered in our

model, while maintaining constant transference numbers as experimentally observed in Ref. [65].

The red curve in Fig. 3.1(c) shows the salt-concentration-dependent ambipolar di!usivity based on

the function reported in Ref. [65]. This red curve was normalized to satisfy the 𝑏+ and 𝑏→ values
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at 1 M mentioned above, resulting in a constant transference number 𝑆→ = 0.76 = 1→ 𝑆+. Any terms

associated with ↑𝑆+ in Eqs. (2.5) and (2.18) vanish in this work. The blue and green curves in the

same figure represent the 𝑏+ and 𝑏→ functions, respectively. In this work, we assumed the Einstein

relation, 𝑗𝑖 = 𝑏𝑖/(𝑙𝑚), such that 𝑒𝑔 in Eq. (2.20) is solved with salt-concentration-dependent

mobilities. Detailed di!usivity functions are provided in Appendix B.

(a) (b)

(c) (d)

(e) (f)

Figure 3.1 (a) Li di!usivity in NMC, (b) electric conductivity in NMC, (c) di!usivity in the
electrolyte, (d) OCV as a function of 𝑄𝛩𝑖, (e) exchange current density as a function of 𝑄𝛩𝑖 at
𝑊𝑔 = 1 M, and (f) calculated forward and backward reaction constants from the exchange current
density and OCV. The unit of 𝛬 𝛯 and 𝛬𝑦 is s→1.
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3.2.2.2 Open circuit voltage (OCV), exchange current density, and rate constants in the
Butler-Volmer equation

The open circuit voltage (OCV) refers to the electrostatic potential di!erence between the

cathode and anode at a zero net current, i.e., the equilibrium cell voltage that counterbalances the

lithium chemical potential di!erence between the cathode and anode. Mathematically, the cell

voltage (𝑒) is related to the chemical potential of charge-carriers by 𝑒 = →
(
𝑉

cathode
Li → 𝑉

anode
Li

)
/e,

where e is the elementary charge and 𝑉
𝑖

Li is the chemical potential of lithium in corresponding

electrodes.

In quasi-equilibrium OCV measurements, the Li concentration is nearly uniform throughout

all cathode particles for Li solid-solution materials. Lithium salt concentration is also almost

uniform in the electrolyte, with a typical value of 1 M. Metallic Li foils are generally used as the

reference anode in such OCV measurements, making 𝑉
anode
Li a constant value. The data points

(green markers) in Fig. 3.1(d) represent 𝑒OCV for an NMC cathode [66], with a fitted function (the

red curve). Since OCV is measured at near-equilibrium conditions, 𝑒OCV = 𝑒𝑔𝑜, which is used

to calculate the reaction constants from the Butler-Volmer equation as shown later. On a particle

surface [𝑒] 𝑅
𝑔
→ 𝑒𝑔𝑜 is typically referred to as the surface overpotential. The fitted OCV function is

provided in Appendix B.

Exchange current density (𝑖0) is the current density on the electrolyte-particle interfaces where

the net anodic and cathodic reactions are at equilibrium. Therefore, it can be used along with

measured equilibrium potential (𝑒𝑔𝑜) to calculate the reaction constants for the Butler-Volmer

equation. The exchange current density values (𝑖0) can be measured experimentally using techniques

such as Tafel plotting or impedance techniques. The green markers in Fig. 3.1(e) represent

reported values of 𝑖0 at di!erent Li fractions, measured using impedance techniques of single NMC

particles [67]. However, the data points are scarce and unavailable beyond 𝑄 > 0.54. A fitted

function (the red curve), including extrapolations, is provided in Appendix B.

The intercalation reaction at electrode-electrolyte interfaces is described by Eq. (3.1), where

the forward and backward reactions occur simultaneously. The first and second terms in Eq. (3.2)
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correspond to the rates of the forward and backward reactions, respectively. At equilibrium, the net

reaction is zero, and [𝑒] 𝑅
𝑔

is the equilibrium potential, which is also the OCV ([𝑒] 𝑅
𝑔
= 𝑒𝑔𝑜 = 𝑒OCV).

Thus, solving

𝛬 𝛯 𝑊+ exp
[→𝑘𝑁+𝑓

𝑙𝑚

𝑒𝑔𝑜

]
= 𝛬𝑦𝑊𝑅 exp

[ (1 → 𝑘)𝑁+𝑓
𝑙𝑚

𝑒𝑔𝑜

]
, (3.3)

leads to the reaction rate constants as

𝛬 𝛯 =
𝑖0

𝑁+𝑓𝑊+
exp

(
𝑘𝑁+𝑓
𝑙𝑚

𝑒𝑔𝑜

)
, and 𝛬𝑦 =

𝑖0
𝑁+𝑓𝑊𝑅

exp
( (𝑘 → 1)𝑁+𝑓

𝑙𝑚

𝑒𝑔𝑜

)
, (3.4)

where 𝑊+ = 𝑊𝑔 [mol/cm3] and 𝑊𝑅 = 𝑋𝑄𝑅. For NMC, 𝑋 = 0.0501 mol/cm3. The calculated 𝛬 𝛯

and 𝛬𝑦 are given in Fig. 3.1(f) as the red and green curves, respectively, based on the OCV in Fig.

3.1(d) and 𝑖0 in Fig. 3.1(e). The 𝑖0 here for calculating rate constants have a unit of mA/cm2.

3.3 Simulation results and discussion

3.3.1 Pseudo 1-D results

A 1D virtual half-cell was created by setting the left region (𝐿 < 12.1 𝑉m) to be the electrolyte

and the right region (𝐿 > 12.1 𝑉m) to be a 1D particle. The total length of the domain is 18 𝑉m,

and the size of the 1D particle is 6 𝑉m. The grid system in Fig. 3.2(a) shows the setup for the

1D sharp-interface simulation, in which the light blue grid points and the light gray grid points

indicate the regions for the electrolyte and particle, respectively. The particle-electrolyte interface

is located between light blue and light gray grid points. The grid spacing is uniformly ϑ𝐿 = 0.2

𝑉m. In the sharp-interface simulation, 1D versions of Eqs. (2.3) and (2.4) were solved in the right

domain, and 1D versions of Eqs. (2.5) and (2.6) were solved in the left domain. The 𝑌𝐿𝑍 was

calculated between the two grid points on the two di!erent sides of the interface. The simulation

was performed following the procedure described in the previous section.

In the SBM, the domain parameter is defined by a hyperbolic tangent function 𝑂 = 0.5 ≃
(
1 +

tanh(𝛥/𝛱)
)
, where 𝛱 is a parameter controlling the thickness of the di!use interface and 𝛥 is the

signed distance function to the interface. Here, 𝛥 = 𝐿→12.1 𝑉m. Figure 3.2(b) shows the 𝑂 profiles

for the zero-level (Lv0, blue dots) and two-level (Lv2, red circles) refinements. The grid spacing

at the root level is the same as in the sharp-interface case. Here, 𝛱 = 1.5ϑ𝐿/(20), 1.5ϑ𝐿/(21),
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and 1.5ϑ𝐿/(22) in the Lv0, Lv1, and Lv2 cases, respectively, such that the di!use interfaces span

approximately six smallest grid spacings in all three cases but the interfacial thickness in Lv2 case

is 1/4 of that in Lv0. Note that the interfacial thickness in SBM serves as a numerical parameter to

control the modeling error between the di!use-interface and sharp-interface approaches. It is not

the thickness of the physical particle-electrolyte interface. We used quadtree refinement to generate

the grid systems for the simulations. The domain parameter has no gradient in the lateral direction

such that the 2D simulation is equivalently 1D (i.e., pseudo-1D simulations). Figure 3.2(c) shows

the pseudo-1D domain parameters used in the Lv0 and Lv2 simulations. The gradient of 𝑂 near

the particle-electrolyte interface in the Lv2 case is much sharper than that in the Lv0 case. The

Lv2 quadtree refined grid system is shown in Fig. 3.2(d), in which the root-level, first-level, and

second-level cells can be clearly distinguished. Equations (2.12), (2.14), (2.18), and (2.20) were

(a)

(b)

(c)

(d)

Figure 3.2 (a) Computational domain of 1D electrochemical simulations in the sharp-interface
model. The light blue and gray dots are the grid points for the electrolyte and particle domains,
respectively. (b) The 𝑂𝑅 profiles along the primary direction in the Level-0 and Level-2 AMR
cases. (c) The domain parameter 𝑂𝑅 in the pseudo-1D SBM simulations. The interfacial thickness
is controlled to be approximately 4–6 grid spacings. (d) The Level-2 quadtree refined grid system
in the pseudo-1D SBM simulations.
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solved on the grid system following the procedure mentioned in the previous section. Note that

since Eq. (2.12) was solved using the Euler explicit scheme, the smallest stable time step in the

Lv2 case is 1/16 of that in Lv0. However, we used ϑ𝑆 = 1.25 ≃ 10→4 s, which is stable for all

the pseudo-1D simulations, to mitigate the numerical errors associated with di!erent ϑ𝑆 sizes. 𝑄𝑅

was initially uniform 0.2 throughout the NMC particle, and 𝑊𝑔 was uniform 1 M (0.001 mol/cm3)

throughout the electrolyte. The electrostatic potential (𝑒𝑔 |𝑎) on the anode was fixed, and the current

collector’s potential (𝑒𝑅 |𝑧) was continuously adjusted during the simulations to maintain constant

C-rates for the discharge (lithiation). In this work, the cell capacity was defined according to the

lithiation range from 𝑄 = 0.2 to 0.95, a typical utilization range of layered transition metal oxides.

This range is selected because exfoliation between layers occurs when 𝑄 < 0.2 and the material

transforms into an electrical insulator when 𝑄 > 0.95. A cuto! cell voltage of 2.5 V was set to

terminate the discharge simulations.

Figures 3.3(a) through (d) show the simulated 𝑊𝑔, 𝑄𝑅, 𝑒𝑔, and 𝑒𝑅 profiles, respectively, taken

at 𝑆 = 346.73 s (𝑄 = 0.48) during a 3C lithiation (discharge) process. The gray, blue, and red

curves are obtained from the sharp-interface, Lv0, and Lv2 cases, respectively. The purple dashed

vertical lines indicate the position of the particle-electrolyte interface (𝑂 = 0.5 at 𝐿 = 12.1 𝑉m),

on the left/right of which is the electrolyte/particle domain (shaded in blue/gray color). In the

SBM simulations, the obtained values of 𝑊𝑔 and 𝑒𝑔 in the particle region (gray-shade areas in Figs.

3.3(a) and (c)) have no physical meaning [44, 68, 69]. Similarly, the values of 𝑄𝑅 and the 𝑒𝑅 in

the electrolyte (blue-shade regions in Figs. 3.3(b) and (d)) have no physical meaning. Note that

while Lv1 simulation was also performed, its results are not presented to keep the clarity of the

plot. As shown by the gray, blue, and red curves in Fig. 3.3(a), 𝑊𝑔 in the electrolyte decreases

as the position moves toward the particle-electrolyte interface, indicating that Li ions flow to the

particle-electrolyte interface. The obtained 𝑊𝑔 profiles in the three results almost overlap within

the electrolyte region. Across the interface, Li is intercalated into the particle, raising 𝑄𝑅 at the

particle surface. 𝑄𝑅 gradually decreases towards the current collector (the right domain boundary).

The 𝑄𝑅 profiles have flat tails at the current collector (𝐿 = 18 𝑉m) due to the no-flux boundary
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condition imposed there. The 𝑄𝑅 profiles from the three simulations almost overlap within the

particle, except for the values in the regions within the di!use interface on the left of the purple

dashed line. In Figs. 3.3(a) and (b), the red curves overlap the gray ones more closely than the blue

ones do, reflecting the fact that the SBM results approach the sharp-interface one as the interfacial

thickness decreases, which is achieved by using a higher level of refinement.

The 𝑒𝑔 profiles in Fig. 3.3(c) have a shape similar to that of 𝑊𝑔 profiles in Fig. 3.3(a). The

negative gradient of 𝑒𝑔 indicates Li-ion flux pointing toward the particle. Due to the high ionic

mobility (equivalently the electric conductivity) in the electrolyte, the variations of 𝑒𝑔 throughout

the electrolyte region are small. Figure 3.3(d) shows the simulated 𝑒𝑅 profiles. Since the electric

conductivity of NMC at 𝑄 ⇐ 0.48 is high, the gradients of 𝑒𝑅 throughout the particle in the three

presented results are very small, see Fig. 3.3(e) for a magnified view of (d). Uniform shifts between

the 𝑒𝑅 from SBM and sharp-interface results are observed: the di!erence between Lv0 and sharp-

interface results is approximately 56 mV, while the di!erence between Lv2 and sharp-interface

results is approximately only 3 mV. When those shifts are subtracted from the SBM results, the

𝑒𝑅 profiles in the Lv0 and Lv2 simulations overlap well with the sharp-interface one, except for

values in the di!use interfaces. Throughout the simulations, high 𝑒𝑅 gradients only appear when

NMC is close to being fully lithiated, which is consistent with the fact that the electric conductivity

is low when 𝑄 > 0.95. The 𝑊𝑔, 𝑄𝑅, 𝑒𝑔, and 𝑒𝑅 profiles from Lv1 simulation are similar to the

Lv2 ones. The uniform shift between 𝑒𝑅 from Lv1 and sharp-interface results is approximately 8

mV. The agreements between the obtained SBM profiles and sharp-interface ones manifest that the

SBM-formulated equations can properly produce results close to the sharp-interface ones with the

same boundary conditions. The accuracy increases with a thinner interfacial thickness [44]. In this

pseudo-1D test, Lv0 SBM and sharp-interface simulations are still in good agreement even though

the interface is thick (spanning over six root-level grid points).

The cell voltage is the electrostatic potential di!erence between the current collector and anode

plate as 𝛴𝑊 = 𝑒𝑅 |𝑧 → 𝑒𝑔 |𝑎. Figure 3.4(a) shows the 𝛴𝑊 curves recorded during 3C discharge from

the 1D sharp-interface, Lv0, Lv1, and Lv2 SBM simulations, with the OCV on the same plot
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for comparison. In the sharp-interface case, 𝛴𝑊 monotonically decreases from 4.2 to 2.5 V as 𝑄

increases from 0.2 to 0.65 until the simulation reaches the cuto! voltage; see the solid green curve

in Fig. 3.4(a). The shape of the 𝛴𝑊 curve exhibits some similarity to the OCV curve but with an

overpotential 0.5–1 V below the OCV curve. (𝛴𝑊 →𝑒𝛶𝑊𝛴 is the cell overpotential.) The𝛴𝑊 from the

(a) (b)

(c) (d)

(e) (f)

Figure 3.3 Simulated (a) 𝑊𝑔, (b) 𝑄𝑅, (c) 𝑒𝑔, and (d) 𝑒𝑅 profiles along the primary direction in the
sharp, SBM Lv0, and SBM Lv2 cases. The profiles are taken under 3C lithiation at 𝑄̄ = 0.48 and
𝑆 = 346.73 s. (e) Magnified view of 𝑒𝑅 in the particle region. (f) 𝑒𝑅 profiles after subtracting the
di!erences in the boundary values of 𝑒𝑅. Note that the gray curves in (a), (b), (c), (d), and (f)
closely overlap with the respective red curves because of the high accuracy of Lv2 simulations.
The gray and blue shaded regions denote the domain of particle and electrolyte regions.
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Lv2 simulation mostly overlaps with the sharp-interface one, except for a slight deviation near the

end of the simulation; see the dashed green curve in Fig. 3.4(a). The𝛴𝑊 curve (the cyan curve) from

the Lv1 simulation overlaps well with the sharp-interface one in the range 0.2 < 𝑄 < 0.55; however,

its deviation from the green curve increases as 𝑄 > 0.55. The 𝛴𝑊 curve from the Lv0 simulation

significantly deviates from the sharp-interface result, especially when 𝑄 > 0.5. As mentioned

earlier, the𝑊𝑔, 𝑄𝑅, and 𝑒𝑔 profiles from SBM simulations well overlap the sharp-interface ones, but

the 𝑒𝑅 profiles exhibit uniform shifts from the sharp-interface result. The deviation between Lv0

and sharp-interface 𝛴𝑊 curves is due to that uniform shift in the 𝑒𝑅 profiles. This shift decreases as

the interfacial thickness is thinner with a higher level of refinement.

All the concentration and potential profiles have almost identical shapes, indicating that the

SBM can properly solve the governing equations with the flux boundary conditions imposed at

the particle-electrolyte interface. However, as the interfacial thickness increases, the variations of

𝑒𝑔 and 𝑒𝑅 over the di!use interface increase, which further leads to the variation of [𝑒] 𝑅
𝑔
. Due

to the presence of the exponential terms in the Butler-Volmer equation (Eq. (2.7)), with a thicker

interface, a slight decrease of 𝑒𝑅 |𝑧 is enough to maintain the magnitude of 𝑌𝐿𝑍 during the simulation.

Therefore, the cell voltage in the Lv0 simulation is significantly overestimated. This e!ect is more

pronounced when the magnitude of 𝑌𝐿𝑍 is larger. Namely, at a higher C rate, the overestimation

(a) (b)

Figure 3.4 (a) Simulated cell voltage at 3C lithiation of the 1D cases. The solid dark green curve
is from the sharp-interface simulation. The thin gray-green curve, cyan curve, and dashed green
curve are from the SBM pseudo-1D with 0, 1, and 2 levels of quadtree refinement. (b) Simulated
cell voltages at di!erent C rates of the 1D cases. Note that the solid curves, thin curves, and
dashed curves are from the sharp-interface, Lv0, and Lv2 SBM-AMR simulations, respectively.
For the clarity of view, figure legends are not included.
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will be more prominent. Figure 3.4(b) shows simulated 𝛴𝑊 curves at 1, 2, 3, and 6C discharge. For

clarity of view, legends are removed from the figure. At 1C discharge, which requires a relatively

lower cell overpotential, the𝛴𝑊 curves from Lv0, Lv2, and sharp interface simulations overlap well.

As the C rate increases, a larger cell overpotential is needed, and the Lv0 results deviate more away

from the sharp-interface ones, see the corresponding 𝛴𝑊 curves in Fig. 3.4(b). However, since the

interfacial thickness in the Lv2 case is very thin, the Lv2 results are still close to the sharp-interface

ones. Compared to the Lv0 curves, the Lv1 ones have less deviation from the sharp-interface

results, but they are not presented in the figure for clarity of view. In these pseudo-1D simulations,

two levels of refinement are su"cient to match the sharp-interface result. The 1D studies also

indicate that thick interfaces can be adequate in low C-rate simulations, but thin interfaces will be

necessary to maintain the accuracy of 𝛴𝑊 in high C-rate simulations.

3.3.2 3-D simulations of synthetic NMC-333 microstructure

The capabilities of simulating coupled electrochemical processes in complex electrode mi-

crostructures were demonstrated via simulating discharge-charge cycles of 3D microstructures

containing multiple NMC particles, in which the presented SBM equations were solved using FDM

on AMR grids.

3.3.2.1 Log-normal particle size distribution

The 3D complex geometry simulations used synthetic cathode microstructures computationally

generated via discrete element method (DEM) [70], in which the particle radii follow a truncated

log-normal distribution with a lower bound at 6 𝑉m and an upper bound at 12.5 𝑉m. There were

119 spheres initially randomly placed in a rectangular domain. Those particles were relaxed, under

an arbitrary body force in the +𝐿 direction, and eventually ‘descended’ to the current collector. This

agglomerate was truncated on the east, south, north, bottom, and top sides to fit the rectangular

computational domain, as the virtual cell is shown in Fig. 3.5(a).

The root-level computational domain was 200 ≃ 190 ≃ 150 grid points in the 𝐿, 𝑀, and 𝑁

directions and with a grid spacing of ϑ𝐿 = 0.5 𝑉m. A signed distance function (positive values

inside particles) from each grid point to the particle-electrolyte interface was calculated using the
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level-set distancing method [62]. The 𝑂 function was obtained by substituting the distance function

into the hyperbolic tangent function as in the previous sections. The total reactive surface area was

approximately 7.92 ≃ 104
𝑉m2 obtained by summing all triangular isosurface patches generated

by MATLAB for the particle-electrolyte interfaces. The total volume of NMC agglomerate in the

virtual cell was around 3.04 ≃ 105
𝑉m3 and the solid volume fraction was around 0.656 calculated

for the region 40 < 𝐿 < 100 𝑉m. In this work, we do not include porous microstructures of

separator membranes due to the lack of such information. Instead, the empty space (0 < 𝐿 < 32

𝑉m) between the virtual anode and cathode serves as the separator. Hereafter, this set of simulations

is referred to as the LN case. Simulations on Lv0, Lv1, and Lv2 were performed, for which the

total numbers of grid points are 5,700,000, 17,232,520, and 63,758,793. The refinement thresholds

were 2.20 and 1.05 root-level ϑ𝐿 for Lv1 and Lv2, respectively. In the SBM, generally, at least four

to six grid spacings across the interface should be used to ensure numerical stability. In the 3D

(a) (b)

(c) (d)

Figure 3.5 (a) The virtual cell generated using the DEM result of 119-particle agglomerate and (b)
the virtual cell generated using the DEM result of 119 equal-sized particle agglomerate. (c) Lv2
AMR grid on the plane of 𝑀 = 47.5 𝑉m of the NMC cathode microstructure in (a). (d) Magnified
view of a portion of (c), in which root-level, 1st-level, and 2nd-level cells can be clearly seen.
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cases, we chose four grid spacings, compared to six grid spacings in the pseudo-1D cases earlier,

across the interfacial region to decrease the total number of grid points after AMR. Again, as in the

pseudo-1D cases, we used the same time step (ϑ𝑆 = 4 ≃ 10→3 s) for all three levels of simulations.

Figures 3.5(c)-(d) show the Lv2 grid on the plane at 𝑀 = 47.5 𝑉m, in which the refinement in

particle surface regions can be clearly seen. Since the AMR grid is non-conformal to the irregular

particle-electrolyte interfaces, the refinement is fast. The Lv2 grid system (⇐64 million grid points)

was generated within 1.5 minutes using 32 CPUs with Message Passing Interface (MPI) on the

High-Performance Computing Center(HPCC) nodes at Michigan State University.

Figure 3.6(a) shows the simulated cell voltage curves of 6C and 1C discharge-charge cycles for

this synthetic microstructure with Lv0, Lv1, and Lv2 AMR. The cuto! voltages are set at 2.5, and

4.2 V. Similar to the 1D case, the𝛴𝑊 curves of 6C discharge deviate more from the OCV curve than

(a) (b)

(c) (d)

Figure 3.6 (a) Simulated cell voltage for 1C and 6C lithiation in the LN synthetic microstructure.
(b) Simulated cyclic voltammograms at 1 mV/s for the LN microstructure. SBM Lv0, Lv1, and
Lv2 results are marked in red, green, and blue colors, respectively. and (c) Simulated cell voltage
curves for 6C and 1C lithiation in the LN, and UN microstructures. (d) Simulated cyclic
voltammograms at 1 mV/s in the LN, and UN microstructures. The results are from SBM Lv2
simulations.
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the 1C discharge curves do. Hysteresis can be observed in the 𝛴𝑊 curve loops. A ⇐1.1 V voltage

gap presents between the discharge and charge curves of the 6C cycle, and a ⇐0.7 V voltage gap

exists in the 𝛴𝑊 loop of the 1C cycle. The 𝛴𝑊 curves of the three di!erent levels of AMR in the

1C case are almost overlapping. In the 6C case, significant deviations between the 𝛴𝑊 curves of

the Lv0, Lv1, and Lv2 simulations are observed. The variation between the Lv1 and Lv2 curves is

much smaller than that between the Lv0 and Lv1 curves. As demonstrated in the 1D case, a thinner

di!use interface, which is achieved by using a higher-level AMR grid, will increase the accuracy

of SBM simulations. High levels of refinement are more e!ective in enhancing modeling accuracy

in high C-rate cases, where large overpotentials are expected.

The 𝑊𝑔, 𝑄𝑅, 𝑒𝑔, and 𝑒𝑅 at 𝑆 = 320 s (𝑄 = 0.6, corresponding to the blue triangle on the 6C

curve in Fig. 3.6(a)) during 6C discharge in Lv2 simulation are shown in Figs. 3.7(a) through (d),

respectively. The general observations are similar to those in the 1D simulations. Negative 𝑊𝑔 and

𝑒𝑔 gradients along the +𝐿 direction are seen in Fig. 3.7(a) and (c), indicating Li-ion flow toward

the NMC cathode during discharge. Significant depletion of Li salt concentration (𝑊𝑔 ⇐ 2 ≃ 10→4

mol/cm→3) occurs near the cathode current collector region, leading to less intercalation in that

area. Core-shell concentration distribution of 𝑄𝑅 is clearly observed in all the NMC particles (see

Fig. 3.7(b)). However, the 𝑒𝑅 does not show similar core-shell patterns in NMC particles. Instead,

a negative 𝑒𝑅 gradient along +𝐿 direction over the entire NMC cathode is observed in Fig. 3.7(d).

This di!erence originates from the fact that 𝑒𝑅 can reach equilibrium distribution immediately

while 𝑄𝑅 requires time for di!usion (i.e., Eq. (2.14) is static but Eq. (2.12) is time-dependent), in

addition to the e!ect of di!erent boundary conditions imposed on the east computational domain

boundary.

Figures 3.7(e) and (f) show 𝑊𝑔 and 𝑄𝑅 during the charge process at 𝑄 = 0.6 (corresponding

to the blue square on the 6C curve in Fig. 3.6(a)). As expected, 𝑊𝑔 exhibits a positive gradient

+𝐿 direction as Li-ions are moving away from the NMC cathode. Because di!usion through the

tortuous interparticle space limits the transport of Li-ions toward the anode, high 𝑊𝑔 is observed

near the current collector (𝐿 ⇐ 100 𝑉m). During charge, deintercalation starts from the particle
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7 Simulated (a) 𝑊𝑔, (b) 𝑄𝑅, (c) 𝑒𝑔, and (d) 𝑒𝑅 distributions under 6C lithiation at
𝑆 = 319.37 s and 𝑄 = 0.595. (e) 𝑊𝑔 and (f) 𝑄𝑅 profiles under 6C delithiation at 𝑆 = 429.07 s and
𝑄 = 0.595. The distributions are for LN synthetic microstructure in the SBM Lv2 case.
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surfaces. In this set of simulations, the charge process followed the discharge immediately once

the cell voltage reached the cuto! value (2.5 V). Thus, an interesting core-shell 𝑄𝑅 distribution is

exhibited in the particles as shown in Fig. 3.7(f): low-high-low 𝑄𝑅 profile along the radial direction

inward. If stress is considered, such an onion-layer concentration distribution would be detrimental,

leading to cracks in the particles.

𝑊𝑔 and 𝑄𝑅 during 1C discharge at 𝑆 = 3290 s (𝑄 = 0.88, corresponding to the blue triangle

on the 1C Lv2 curve in Fig. 3.6(a)) are provided in Figs. 3.8(a) and (b), respectively. This point

is selected to be at the same cell voltage as in Figs. 3.7(a)–(b). Compared to the 6C case, the 𝑊𝑔

gradient along the primary direction and 𝑄𝑅 gradient along the radial direction in the 1C case is

small.

When the system was switched to the charge mode, Li ions were released to the electrolyte.

The process starts in the regions near the separator, as indicated by the increased 𝑊𝑔 shown in Fig.

3.8(c), taken at 𝑄 = 0.88 corresponding to the blue square on the 1C charge curve in Fig. 3.6(a).

(c) (d)

(a) (b)

Figure 3.8 Simulated (a) 𝑊𝑔, (b) 𝑄𝑅 distributions under 1C lithiation 𝑆 = 3290.00 s and 𝑄 = 0.880.
(c) 𝑊𝑔 and (d) 𝑄𝑅 distributions under 1C delithiation at 𝑆 = 3659.61 s and 𝑄 = 0.880. The
distributions are for LN synthetic microstructure in the SBM Lv2 case.
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The reaction region will eventually expand over the entire NMC cathode. Since the C rate was low,

the 𝑄𝑅 distribution was fairly uniform in the particles as can be seen in Fig. 3.8(d), taken at the

same 𝑄 corresponding to when Fig. 3.8(c) was taken. In this 1C simulation, deintercalation began

roughly uniformly over the cathode because the NMC particles were moderately conductive at the

beginning of the charge. Our other test simulations exhibited di!erent behavior: deintercalation

was more concentrated near the current collector at the start (where electrons left the systems)

because the entire NMC electrode was insulating if the charge began at a very high Li fraction (e.g.,

𝑄 > 0.95).

Cyclic voltammetry is a widely used technique to study Faradaic reactions versus redox po-

tentials. The measurements are conducted by varying the loading voltage to a cuto! value and

sweeping back at a constant scan rate (units of mV/s). The reaction current is recorded during the

sweeping and plotted against the cell voltage. Figure 3.6(b) shows cyclic voltammograms obtained

at a scan rate of 1 mV/s from our simulations for the three levels of refinement. The cell voltage

was set to sweep over 4.2 ⇒ 2.5 ⇒ 4.2 V. The entire sweeping took approximately 3400 s. The

overall discharge-charge rate might be around a 2–3 C rate. Since the C rate was not large, the

simulated cyclic voltammograms from the three AMR levels almost overlap. In the discharge

sweep, as the cell voltage decreased, the magnitude of reaction current increased up to where the

cell voltage was ⇐3.3 V, after which the magnitude of current decreased. In the charge sweep, the

magnitude of the current monotonically increased until reaching the cuto! voltage. Interestingly,

the voltammograms did not drop toward the end of the charge sweeps as in many experimental

observations [71, 72] in which a typical voltammogram near the end of the sweep should behave

like the gray dashed curve in Fig. 3.6(b): reaction current fades as the particles are close to fully

delithiated. Here, we attribute the rise at the end of simulated voltammograms mainly to the fact

that the 𝑖0 used in the simulations monotonically increases as 𝑄Li decreases (see Fig. 3.1(e)), which

is di!erent from general expectations for transition metal oxide cathode materials: low exchange

current density when particles are close to fully delithiated or fully lithiated [45, 56, 73–75]. Also,

the cuto! was set to be significantly away from the fully delithiated state (𝑄 ⇐ 0).
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An Lv3 simulation of a 6C discharge was performed to verify whether the Lv2 simulations

were su"ciently accurate. The Lv3 mesh system contains 244,033,870 grid points (approximately

four times that in the Lv2 case), which was generated in 17 minutes. The 𝛴𝑊 curve from the Lv3

simulation is shown in Fig. 3.9. The obtained curve (gray) is close to that from Lv2 (blue), although

a small di!erence can still be discerned in the early and later stages of the simulations. The 6C Lv2

discharge simulation took ⇐8 hours with MPI parallel computing on 160 CPUs. The code scaling

was fairly linear: the Lv3 simulations required approximately four times the computational hours.

Since the di!erence between Lv3 and Lv2 results is small, we did not further pursue simulations

with higher levels of refinement. Furthermore, as concluded in the 1D case, the 3D simulations

also suggested that AMR is needed for high C-rate simulations. For low C rate simulations, using

root-level grids can be adequate. As mentioned earlier, AMR can significantly reduce the total

number of grid points. We conducted a performance test of the code on a uniform grid with a grid

spacing equal to the refined Lv1 ϑ𝐿. The system contains a total of 45,215,079 grid points, which

is 2.62 times the AMR one. The computation time for the uniform grid case was 10.3 hours (to

𝑄 = 0.58 at a 6C lithiation on 80 CPUs), which is approximately 2.23 times the AMR one (4.67

Figure 3.9 Simulated cell voltage for 6C lithiation in LN synthetic microstructure for SBM Lv0,
Lv1, Lv2, and Lv3 cases. The Open Circuit Voltage (OCV) curve is shown in black. The Lv0,
Lv1, Lv2, and Lv3 curves are marked in red, green, blue, and gray colors, respectively.
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hours). A slight super-linear speed-up is observed, which we attribute to the possible reasons:

(1) a decrease in the operations of multiplying the correction factors, and (2) the convergence rate

in Jacobi relaxation is faster in the uniform-grid case. This comparison clearly demonstrates the

e"ciency of AMR in reducing the computation burden.

Moreover, we used an Allen-Cahn type phase-field approach to remove the cusps in the initial

geometries generated from the DEM particle arrangements, as in Ref. [44]. We set 40 Allen-Cahn

steps in this work. The smoothing slightly increased the particle contact areas. The particle contacts

can a!ect the overall electric conduction in the electrode. Since NMC is reasonably conductive,

we do not expect a significant change in the results. Nevertheless, investigating how the contact

areas a!ect the electrochemical performance of an electrode can be a future topic.

3.3.2.2 Uniform particle size distribution

Another synthetic microstructure was created by DEM with equal-sized 119 spheres (radius

of 8.6 𝑉m) to demonstrate the microstructure’s e!ects on electrode performance. This radius was

chosen such that the total volume of the 119 particles was approximately the same as that in the

previous case. Hereafter, this set of simulations is referred to as the uniform (UN) case. The

resulting virtual cell is shown in Fig. 3.5(b). The total reactive surface area, NMC solid volume,

and solid volume fraction are 8.39 ≃ 104
𝑉m2, 3.05 ≃ 105

𝑉m3, and 0.643, respectively. While the

total solid volume is similar to the LN case, the reactive surface is approximately 6% more than in

the previous case. The volume fraction in the UN case is slightly lower than that in the LN case

because the smaller particles can fit into the space between large particles in the LN case. Only Lv2

simulations were performed in this set of simulations. There were 67,337,857 grid points in the

mesh system with 2.20 and 1.05 for the Lv1 and Lv2 refinement criteria, respectively. All initial

and boundary conditions were the same as in the LN case.

The cyan curves in Fig. 3.6(c) are the 6C and 1C 𝛴𝑊 curves obtained from the UN simulations.

The trends are generally similar to those in Fig. 3.6(a), but the 6C curve during discharge in the UN

case is slightly above that in the LN case. The 6C charge curve is on the right to that in the LN case.

This is expected because the UN case has a larger reactive surface area and slightly higher porosity
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than the LN case, which leads to better electrochemical performance and smaller overpotential.

It is noticed that the discrepancy between the 6C discharge curves is more pronounced at the late

stage, which is due to the increase in electric resistance of NMC particles at a high Li fraction. The

NMC particles have high Li concentration near the surfaces, thus forming high-resistance shells.

As a result, the e!ect of increasing active surface area to reduce overpotential is more significant.

The 1C curves of the UN case similarly show a slightly smaller overpotential compared to the LN

case, also because the UN case has a slightly larger active surface area. Cyclic voltammetry was

also simulated in the UN case with the identical setup as in Section 3.3.2.1. The voltammogram

shown in Fig. 3.6(d) is slightly below that of the LN case during the discharge sweep and slightly

above the LN curve during the charge sweep; i.e., the reaction current magnitude of the UN case is

slightly larger. This is also expected as the reactive surface area in the UN case is larger than that

in the LN case.

The behavior of 𝑊𝑔, 𝑄𝑅, 𝑒𝑔, and 𝑒𝑅 distributions are similar to those in Section 3.3.2.1.

Therefore, we do not show those 3D results here. Figure 3.10 shows the 𝑊𝑔, 𝑄𝑅, 𝑒𝑔, and 𝑒𝑅

averaged within the corresponding phases on each 𝑀-𝑁 plane, taken at 𝛴𝑊 = 2.875 V (𝑄 = 0.6 and

0.63 for the LN and UN cases, respectively). The𝑊𝑔 and 𝑒𝑔 curves have similar shapes: linear in the

separator region (0 < 𝐿 < 32 𝑉m), and the values decay asymptotically as the position approaches

the cathode current collector, reflecting that the intercalation reactions occur in the cathode region.

The profiles from the LN and UN cases almost overlap. However, the 𝑄𝑅 profile (yellow curve in

Fig. 3.10(b)) in the UN case exhibits pronounced undulation, which is very di!erent from that in

the LN case (red curve). The undulation reflects the periodicity of particle arrangement when the

particles have similar sizes. The valleys in the 𝑄𝑅 profile (yellow curve) indicate the locations of

particle centers in di!erent layers, while the peaks correspond to the regions of particle-particle

contacts. This fact can be discerned in the 𝑒𝑅 profile as well, where the layers of particle centers

have a larger cross-section area, resulting in a smaller electric resistance. The particle-particle

contact regions have smaller contact areas, leading to a larger electric resistance. As a result, the

𝑒𝑅 in the UN case exhibits a step-like curve, in which the high-slope regions have high resistance.
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Because the LN case has a disordered particle arrangement, its 𝑄𝑅 and 𝑒𝑅 profiles are smoother.

Interestingly, the nature of DEM tends to descend larger (heavier) particles to the bottom (the

cathode current collector in this case). The valley in the red curve in Fig. 3.10(b) and the step in the

blue curves in Fig. 3.10(d) both reflect that there is a layer of large particles with center positions

near 𝐿 ⇐ 90 𝑉m. While profiles similar to those in the LN case can be obtained from conventional

PET simulations, the undulation and steps in 𝑄𝑅 and 𝑒𝑅 profiles in the UN case are di"cult to

detect. This is because the length scale of ordered particle arrangement is significantly larger than

the scale of ϑ𝐿 in PET simulations. These subtle features resulting from particle arrangements can

only be observed when microstructures are explicitly considered. The presented 3D simulation

method can be utilized to calculate the e!ective homogeneous electrode properties. Those input

parameters will improve the macroscopic approximations in PET simulations.

(a) (b)

(c) (d)

Figure 3.10 (a) 𝑊𝑔, (b) 𝑄𝑅, (c) 𝑒𝑔, and (d) 𝑒𝑅 profiles along the primary direction (𝐿-axis),
obtained by averaging the values in the corresponding phases on the 𝑀-𝑁 planes, in the LN and UN
Lv2 cases. The profiles are taken under 6C lithiation at 𝛴𝑊 = 2.875 V.
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3.4 Extension to Multiphysics phenomena

The di!erential equation solvers and AMR grids can be employed to study other phenomena

accompanying electrochemical processes. Heat transport and linear elastic mechanics associated

with charge/discharge cycles are chosen to demonstrate the adaptability of the SBM+AMR frame-

work. Since we intend to promote the di!use-interface method for simulating complex electrode

phenomena, the investigation of those additional physics is left for future extensions.

3.4.1 Thermal simulations

Joule heating occurs during electrochemical processes. Heat is generated in the particles, elec-

trolyte, and particle-electrolyte interfaces associated with the electrical currents. The temperature

evolution equation can be derived based on energy balance with a di!use-interface description as

shown in the next section. Here, we ignore any other thermal and thermoelectric e!ects, such as

enthalpy, the Seeback e!ect, the Peltier e!ect, and others. The only source of heat is Joule heating.

3.4.1.1 Equations and Parameters

The heat equation governs temperature evolution in the particles based on the conservation of

energy:

𝑋𝑅𝑐𝑅

𝑃𝑚

𝑃𝑆

= ↑ · 𝛷𝑅↑𝑚 +
𝑖
2
𝑅

𝑑𝑅

↔ ω𝑅, (3.5)

with the boundary condition of heat flux: n𝑅 · 𝛷𝑅↑𝑚 = → ⇑𝑜𝑅 ↔ 𝑃ω𝑅, where 𝑚 is the temperature,

𝑋𝑅 is the density, 𝑐𝑅 is the specific heat, 𝛷𝑅 is the thermal conductivity, and 𝑑𝑅 is the electrical

conductivity of the particles. 𝑖𝑅 is the magnitude of electrical current density in the particle as

defined in Section 2.1.1 and the term 𝑖
2
𝑅
/𝑑𝑅 accounts for the Joule heating in the particles. ⇑𝑜𝑅 is the

magnitude of inward heat flux density normal to the particle surface and related to the temperature

gradient according to the Fourier 1st law. Similarly in the electrolyte, we can write

𝑋𝑔𝑐𝑔

𝑃𝑚𝑔

𝑃𝑆

= ↑ · 𝛷𝑔↑𝑚𝑔 +
𝑖
2
𝑔

𝑑𝑔

↔ ω𝑔, (3.6)

with the boundary condition: n𝑔 · 𝛷𝑔↑𝑚𝑔 = → ⇑𝑜𝑔 ↔ 𝑃ω𝑔, where the subscript 𝑔 indicates electrolyte.

Note that ⇑𝑜𝑔 = n𝑅 · 𝛷𝑔↑𝑚𝑔 since n𝑔 = →n𝑅. The electrical conductivity of the electrolyte is related
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to the ionic di!usivities and salt concentration by

𝑑𝑔 = 𝑓

(
𝑏+
𝑙𝑚

+ 𝑏→
𝑙𝑚

)
𝑓𝑊𝑔, (3.7)

which has the same physical unit as 𝑑𝑅. The two heat equations can be formulated to the SBM

version as:

𝑋𝑅𝑐𝑅𝑂𝑅

𝑃𝑚𝑅

𝑃𝑆

= ↑ · 𝑂𝑅𝛷𝑅↑𝑚𝑅 + 𝑂𝑅

𝑖
2
𝑅

𝑑𝑅

+ |↑𝑂𝑅 | ⇑𝑜𝑅, (3.8)

𝑋𝑔𝑐𝑔𝑂𝑔

𝑃𝑚𝑔

𝑃𝑆

= ↑ · 𝑂𝑔𝛷𝑔↑𝑚𝑔 + 𝑂𝑔

𝑖
2
𝑔

𝑑𝑔

→ |↑𝑂𝑅 | ⇑𝑜𝑔, (3.9)

where 𝑂𝑔 = 1 → 𝑂𝑅. Summing Eqs. (3.8) and (3.9) leads to

[
𝑂𝑅𝑋𝑅𝑐𝑅 + (1 → 𝑂𝑅)𝑋𝑔𝑐𝑔

] 𝑃𝑚
𝑃𝑆

= ↑ ·
[
𝑂𝑅𝛷𝑅 + (1 → 𝑂𝑅)𝛷𝑔

]
↑𝑚+

[
𝑂𝑅

𝑖
2
𝑅

𝑑𝑅

+ (1 → 𝑂𝑅)
𝑖
2
𝑔

𝑑𝑔

]
+ |↑𝑂𝑅 | · 𝑓𝑌𝐿𝑍 · ( [𝑒] 𝑅𝑔 → 𝑒𝑔𝑜),

(3.10)

Note that the energy balance at the particle surface is described by

⇑𝑜𝑔 → ⇑𝑜𝑅 + 𝑖 ·
(
[𝑒] 𝑅

𝑔
→ 𝑒𝑔𝑜

)
= 0 =↗ ⇑𝑜𝑅 → ⇑𝑜𝑔 = 𝑓𝑌𝐿𝑍 ·

(
[𝑒] 𝑅

𝑔
→ 𝑒𝑔𝑜

)
, (3.11)

where 𝑖 ·
(
[𝑒] 𝑅

𝑔
→ 𝑒𝑔𝑜

)
accounts for the Joule heating across the particle-electrolyte interface. The

material properties used in the thermal simulation are 𝑋𝑅 = 4.476 g/cm3, 𝑐𝑅 = 0.8036 J /(g·K),

𝛷𝑅 = 0.0175 W/(cm·K), 𝑋𝑔 = 1.249 g/cm3, 𝑐𝑔 = 1.6478 J /(g·K), 𝛷𝑔 = 0.0017 W/(cm·K) [76, 77].

The unit of 𝑚 is K.

3.4.1.2 Simulation results

Equation (3.10) was solved using the Crank-Nicolson time scheme on the Laplace term because

the ϑ𝑆 for Eq. (2.12) is too large for a stable time integration here. The thermal conductivity (𝛷𝑅)

is approximately nine orders of magnitude larger than the particles’ Li di!usivity (𝑏𝑅). Note that

the material properties (such as di!usivities, exchange current density, electrical conductivity, and

thermal conductivity) were still set to be the values at 300 K in the electrochemical simulations.

At the same time, the accompanying temperature evolution was simulated. The temperature-

dependent e!ects of those material properties were ignored because the required data were not

widely accessible.
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Figure 3.11(a) shows the simulated evolution of average cell temperature during a 6C discharge

cycle in Section 3.3.2.1. An adiabatic boundary condition was imposed on this simulation. The

temperature consistently rose as thermal energy was continuously generated. Our analysis shows

that the surface reaction (the last term in Eq. (3.10)) dominated the total heat generation as the

voltage drop across the particle-electrolyte interface was much greater than the electropotential

variations in the particles or electrolyte. It is acknowledged that the total temperature increase may

be overestimated, which is attributed to the fact that the exchange current used here is very small

when 𝑄 > 0.35 on particle surfaces. If a larger 𝑖0 in that region is used, the particle-electrolyte

interface voltage drop would be much smaller such that significantly less heat would be generated

during the charge transfer reaction.

The temperature distribution in the cell is fairly uniform, as shown in Fig. 3.11(b): the overall

temperature variation is less than 0.01 K. This result is expected because the thermal conductivities

(a) (b)

(c) (d)

Figure 3.11 (a) Simulated cell temperature versus time during 6C discharge. (b) Temperature on
the 𝐿-𝑁 plane at 𝑀 = 47.5 𝑉m. The black contour lines indicate the particle surface. Calculated
dilation stresses at 𝑄 = 0.595 at 6C (c) discharge and (d) charge, corresponding to the Li fraction
in Figs. 3.7(b) and (f), respectively. The unit on the color bar is GPa.
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in the particles and electrolyte are much larger than the respective di!usivities. Thus, the tempera-

ture field can reach its near-equilibrium distribution very quickly. This set of thermal simulations

exhibits the transferability of the SBM+AMR method in solving other relevant governing equations

and highlights the impact of input material parameters on the prediction.

3.4.2 Mechanical Simulations

Lithiation/delithiation leads to the expansion/contraction of electrode particles. In the linear

elastic regime, the SBM-formulated mechanical equilibrium equation is given as [44, 78]

𝑃

𝑃𝐿 𝑇

[
𝑂𝑅𝛩𝑖 𝑇 𝛬𝛹

1
2

(
𝑃𝑝𝛬

𝑃𝐿𝛹

+ 𝑃𝑝𝛹

𝑃𝐿𝛬

)]
+ |↑𝑂𝑅 |𝑢𝑖 =

𝑃

𝑃𝐿 𝑇

(
𝑂𝑅𝛩𝑖 𝑇 𝛬𝛹𝛺

0
𝛬𝛹

)
, (3.12)

where 𝛩𝑖 𝑇 𝛬𝛹 is the elastic constant tensor, 𝑝𝑖 is the displacement, 𝛺
0
𝛬𝛹

is the eigenstrain due to

lattice expansion/contraction upon lithiation/delithiation, and the repeated indices indicate Einstein

notation of summation. 𝑢𝑖 is the surface traction along the 𝑖-th axial direction. For a free surface,

the second term on the left-hand side vanishes.

3.4.2.1 Equations and parameters

The Young’s modulus of NMC is𝑟𝛩 = 142.5 and𝑟𝑏 = 117.0 GPa at 𝑄 = 1 and 0 [79], where the

subscripts 𝛩 and 𝑏 denote fully lithiated and delithiated states, respectively. A simple Vegard’s law

gives 𝑟 = 𝑟𝑏+(𝑟𝛩→𝑟𝑏)𝑄 = 𝑟𝑏 ·𝑅(𝑄) GPa, where 𝑅(𝑄) = 1+(𝑟𝛩/𝑟𝑏→1)𝑄 . For an isotopic case,

the Voigt notation can be used to define𝑊11 = 𝛩1111,𝑊12 = 𝛩1122, and𝑊44 = 𝛩1212. Those quantities

are related to Young’s modulus and Poisson’s ratio as𝑊11 = 𝑟

(
1+2𝑕

)
/
(
1+𝑕

)
/
(
1→2𝑕

)
= 𝑊

𝑏

11𝑅(𝑄),

𝑊12 = 𝑟𝑕/
(
1 + 𝑕

)
/
(
1 → 2𝑕

)
= 𝑊

𝑏

12𝑅(𝑄), and 𝑊44 = 𝑟/2/
(
1 + 𝑕

)
= 𝑊

𝑏

44𝑅(𝑄), where the superscript

𝑏 denotes the quantities at the delithiated state. We assume the value of Poisson’s ratio is a constant

𝑕 = 0.25 [80]. The relative volume expansion of a unit NMC lattice cell is +1.7% [67] from 𝑄 = 0

to 1. Assuming a linear interpolation, the eigenstrain is 𝛺0
11 = 𝛺

0
22 = 𝛺

0
33 = (0.017/3) (𝑄 → 𝑄

0) =

0.0057(𝑄 → 𝑄
0) = 𝛺

0(𝑄 → 𝑄
0), where 𝑄

0 is the reference stress-free composition. Equation (3.12)
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is expanded along the three coordinate directions as

𝑊
𝑏

11
𝑃

𝑃𝐿

(
𝑂𝑅(𝑄) 𝑃𝑝

𝑃𝐿

)
+ 𝑊

𝑏

44
𝑃

𝑃𝑀

(
𝑂𝑅(𝑄) 𝑃𝑝

𝑃𝑀

)
+ 𝑊

𝑏

44
𝑃

𝑃𝑁

(
𝑂𝑅(𝑄) 𝑃𝑝

𝑃𝑁

)
=

(
𝑊

𝑏

11 + 2𝑊𝑏

12
)
𝛺

0 𝑃

𝑃𝐿

(
𝑂𝑅(𝑄)

(
𝑄 → 𝑄

0) )→
[
𝑊

𝑏

12
𝑃

𝑃𝐿

(
𝑂𝑅(𝑄) 𝑃𝛻

𝑃𝑀

)
+ 𝑊

𝑏

44
𝑃

𝑃𝑀

(
𝑂𝑅(𝑄) 𝑃𝛻

𝑃𝐿

)
+ 𝑊

𝑏

12
𝑃

𝑃𝐿

(
𝑂𝑅(𝑄) 𝑃𝑥

𝑃𝑁

)
+ 𝑊

𝑏

44
𝑃

𝑃𝑁

(
𝑂𝑅(𝑄) 𝑃𝑥

𝑃𝐿

)]
,

(3.13a)

𝑊
𝑏

44
𝑃

𝑃𝐿

(
𝑂𝑅(𝑄) 𝑃𝛻

𝑃𝐿

)
+ 𝑊

𝑏

11
𝑃
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(3.13b)
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(3.13c)

Here, we have used 𝐿, 𝑀, and 𝑁 to replace 𝐿1, 𝐿2, and 𝐿3 in the coordinates, and 𝑝, 𝛻, and 𝑥 to replace

𝑝1, 𝑝2, and 𝑝3, respectively, in the displacements. These equations are solved using the Jacobi

relaxation similar to the electro-potential solvers. For each of the equations, the displacement

on the left-hand side was relaxed according to the value on the right-hand side, and the obtained

value was updated to the right-hand side of the next equation. This process was repeated until all

displacements reached numerical equilibrium.

3.4.2.2 Simulation results

Equation (3.12) can be solved with fully anisotropic mechanical properties if those data are

available. However, only isotropic calculations were performed, as a demonstration of solving Eq.

(3.12) on an AMR grid, due to the lack of available data. Here, the stress-free state was assumed
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to be the initial state of the electrochemical cycling, i.e., 𝑄𝑅 = 0.2. Figures 3.11(c) and (d) show

the calculated dilatational stress 𝛼𝛥𝑖𝛹 =
(
𝛼11 +𝛼22 +𝛼33

)
/3 stemming from cycling, corresponding

to the 𝑄𝑅 distribution in Figs. 3.7(b) and (f), respectively. As Li was inserted into the particles,

the host lattice near the particle surface expanded. However, the expansion was constrained by the

lattice coherency imposed in the model, thus exhibiting compressive stress as shown in the deep

blue color in Fig. 3.11(c). As Li was extracted upon charging, the compressive state was relaxed as

indicated by the light blue to green colors shown in Fig. 3.11(d). As a numerical demonstration,

we did not include strain energy as an additional driving force for Li transport, which can be easily

incorporated into the electrochemical simulation if needed. The presented calculation shows the

ease of performing cycling stress simulations using SBM on AMR grids, although the mechanical

equilibrium equation is a more complicated tensor equation. The investigation of mechanical

physics is beyond the current scope.

3.5 Comparison with FEM COMSOL solver

The accuracy of the SBM-AMR solver was verified with a commercial FEM software, COM-

SOL. In both pseudo-1D and single sphere 3D cases, the SBM-AMR produces nearly identical

results to the COMSOL ones. Since we do not have access to the coupled electrochemistry module

in COMSOL, the comparison was made only for 𝑄𝛩𝑖 with a constant insertion flux. Figure 3.12(a)

shows the pseudo-1D simulation results using COMSOL and SBM-AMR with Lv2 grid at 𝑆 = 350

s. The element size in COMSOL was set to be similar to the root-level grid spacing. A flux of 3C

insertion was imposed at 𝐿 = 0 𝑉m and a constant di!usivity 𝑏 = 1 ≃ 10→10 cm2/s was set in both

simulations. The black dashed line in Fig. 3.12(a) indicates the position of the left boundary, at

which the flux boundary condition was imposed.

Note that some additional domain was included in the SBM case since the di!use interface is

an internal boundary in the computational domain. The profiles of 𝑄𝛩𝑖 along the 𝐿 direction are

provided in Fig. 3.12(b), which shows the two results closely match each other. Figures 3.12(c)

and (d) show the simulated concentrations in a spherical particle of a 6 𝑉m radius obtained from

COMSOL and the SBM-AMR solver, respectively. The images correspond to the time at 350s
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under a constant insertion flux of 3C rate. The same constant di!usivity as in the pseudo-1D case

above was used in the 3D test. Again, the two results are almost identical, as can be verified by the

𝑄𝛩𝑖 profiles along the radial positions in Fig. 3.12(e).

3.6 Conclusions

We demonstrate the novel framework utilizing the Smoothed Boundary Method (SBM) with

Adaptive Mesh Refinement (AMR) to simulate electrochemical processes within electrode mi-

crostructures, facilitating the prediction of electrode performance. This approach eliminates the

need for laborious body-conforming mesh generation tasks typically associated with conventional

sharp-interface methods, thereby significantly accelerating the pre-processing time for complex

microstructure simulations. First, we conduct 1D simulations to investigate error behaviors. Com-

parative analysis between 1D SBM simulations and sharp-interface simulations reveals the SBM’s

Figure 3.12 Verification of SBM-AMR solver against COMSOL package. All results shown
correspond to 𝑆 = 350 s. (a) A color plot of concentration distribution in a pseudo-1D case. (b)
Concentration profiles along the 𝐿 axis. Simulated concentration in a sphere using (c) COMSOL
and (d) SBM-AMR solver. The color ranges in the color bars of both (c) and (d) are the same. A
quarter of the sphere is made transparent to show the concentration inside the particle. (e)
Concentration profiles from the 3D simulations were plotted along the radial position. The results
from COMSOL and the SBM-AMR solver are nearly identical. The COMSOL images were
exported from COMSOL directly, while the SBM-AMR images were generated using Matlab.
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adequacy in accurately capturing thin interface phenomena. Subsequently, we extend the framework

to a 3D model to simulate the distribution and evolution of Li concentration, salt concentration, and

electrostatic potentials within complex microstructures. We emphasize the influence of microstruc-

tures on electrode performance through simulated cell voltage curves and cyclic voltammograms

of synthetic NMC electrodes. Moreover, the simulation outcomes emphasize the significance of

input material parameters. Furthermore, we demonstrate the versatility of our method by extending

it to thermal and mechanical calculations. Finally, we again validate the accuracy of our framework

by comparing it with COMSOL Finite Element Method (FEM) simulations, both in 1D and 3D

settings. While this work primarily employs Finite Di!erence Method (FDM), it’s important to

note that the presented SBM with AMR framework is adaptable to other numerical methods such

as Finite Element Method (FEM), Finite Volume Method (FVM), or spectral methods. This ver-

satility allows for the simulation of microstructure-level phenomena in various battery electrodes

and electrochemical systems, including fuel cells and photovoltaic cells.

In summary, the pseudo-1D and 3D simulations suggest that SBM with a thick interface is

suitable for simulating low-rate cases, while a thin interface is necessary for high C-rate cases.

The UN and LN 3D simulations showcase the adaptability of the framework for microstructure

simulations. Mesh refinement can be executed in a fast manner, facilitating the exploration of a broad

range of electrode microstructures. Furthermore, this approach can accommodate the incorporation

of additional physical e!ects such as temperature or stress calculations. Although our study focused

on constant current and cyclic voltammetry loadings, oscillating loadings can also be imposed to

investigate electrochemical impedance spectroscopic behavior at the microstructure level. [58]

We anticipate that the SBM+AMR method will find widespread use in studying microstructure

phenomena and estimating macroscopic performance across various electrochemical systems and

materials.
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CHAPTER 4

PHASE TRANSFORMATIONS AND UNDERSTANDING LITHIUM PLATING IN
GRAPHITE ELECTRODES

4.1 Introduction

In this chapter, we focus on simulating electrochemical processes in complex graphite electrode

microstructures due to graphite’s widespread use and importance in lithium-ion batteries. Graphite

electrodes consist of stacks of graphene sheets. Lithium migrates between these graphene sheets

during lithiation. This migration of lithium ions within graphite is highly anisotropic, occurring

rapidly within the interlayer space but slowly across graphene layers. As lithium fraction in the

graphite increases, they undergo ordering across the graphene layers, leading to phase transforma-

tions in graphite [81, 82]. Graphite can exhibit four di!erent phases based on the lithium fraction

in it. A simplistic illustration of these phases is presented in Fig. 4.1. First, at a low Li fraction,

Li randomly distributes in the whole graphite particle (Stage 1’). Next, Li fills one per three

inter-graphene layers (Stage 3). Then, Li fills one of two layers (Stage 2), and finally, every layer is

filled (Stage 1). These phase transitions are second-order phase transformations, i.e., no changes

are observed in the crystal structure. Within each single phase regime, the open circuit voltage

(OCV) of graphite exhibits a solid-solution type form, monotonically decreasing as the Li fraction

increases. Notably, the OCV curve shows a flat plateau when two phases coexist in graphite.

Fig. 4.1 illustrates the interlayer ordering of the phases and graphite OCV upon lithiation. The

delithiation follows an opposite sequence of phase transformations. These phase transformations

are crucial for simulating the electrochemical behavior of graphite electrodes.

Despite graphite’s popularity in current Li-ion batteries, graphite anodes still su!er from Li

plating at fast charging [81,82]. The precipitated Li metal results in internal shorting in the batteries,

causing catastrophic issues like fires. This is one of the biggest bottlenecks that prevent a complete

charging of an electric vehicle within 10–15 minutes (6–4 C). A 1C rate (1 C-rate) is defined as a

charge/discharge rate that completes a full charge in 1 hour. Without a comprehensive understanding

of the multiphysics electrochemical processes occurring within the graphite electrodes during fast
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charging operations, advancing microstructure designs to e!ectively delay or mitigate lithium

plating on graphite anodes remains challenging. Three-dimensional electrochemical simulations

can serve as a viable tool to tackle such complex challenges and can elucidate the detailed dynamics

to complement experimental studies [22, 23, 83, 84].

We employ the Cahn-Hilliard phase-field equation [54, 85–87] to model the phase transfor-

mations in graphite replacing the Fick’s di!usion equation in the framework. The Cahn-Hilliard

equation is detailed in the next section and requires a parameterized lithium chemical potential. This

treatment di!ers from using the regular solution model to construct a thermodynamic free energy

function [88, 89] as typical in phase-field modeling. This equation is coupled with other electro-

chemical governing equations in the framework similar to Fick’s di!usion equation. It is worth

noting that the Cahn-Hilliard equation has previously been employed to simulate the phase transition

in the inter-graphene layers [88–90]. Distinctively, in our work, the Cahn-Hilliard equation models

the phase transformation at the graphite particle scale. We introduced the Cahn-Hilliard equation

in our SBM framework [50]. While previous research has conducted Cahn-Hilliard simulations of

phase separations in various electrode materials, including LFP [54,91], Si [92,93], and FeF2 [94],

these e!orts were primarily limited to a single-particle scale. Our work extends such simulations

to the scale of electrode microstructures through the utilization of SBM. A significant part of this

work focuses on thick electrodes, an area of considerable interest in recent studies [95, 96]. Our

framework o!ers a computational guide for the design of such thick electrodes, which can be

valuable for advancing research in this direction.

In this chapter, we demonstrate the e!ectiveness of our simulation framework on a single

graphite disk. We find that the Cahn-Hilliard equation accurately captures the multi-phase transition

process observed in the experimental setup of the disk [81]. Despite the highly anisotropic nature

of lithium transport in graphite, we show that using an isotropic model yields comparable results for

spherical or sphere-like particles, where isotropic mobility is calculated as the volumetric average of

anisotropic mobility. Consequently, we employ isotropic mobility in subsequent three-dimensional

microstructure simulations. For 3D simulations, we utilize three di!erent graphite microstructures
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reconstructed from X-ray computed tomography data [98, 99]. We compare the results obtained

using the Cahn-Hilliard model and the Fickian di!usion model on one of these microstructures,

highlighting the di!erences in performance estimation, particularly at low C-rate operations where

Fick’s di!usion can lead to overestimation of cell voltage. Our simulations can identify when

and where of the theoretical onset of lithium plating on graphite anodes under various charging

conditions, allowing for the optimization of electrode thickness and pore channel tortuosity to

improve high-rate performance. By using this onset as the termination condition for lithiation, we

investigate how electrode thickness and pore channel tortuosity impact high-rate performance across

the three electrodes. Finally, we explore lithiation protocols aimed at improving the achievable

capacities of the electrodes. Since our interest lies in the fast charging of batteries (corresponding

to the lithiation of graphite), delithiation simulations are not presented in this chapter.

Figure 4.1 OCV obtained from Ref. [97]. 1’,3, 2, and 1 label the four di!erent graphite phases
upon lithiation simplistically represented by the ball figures. Purple and gray colors represent Li
and C atoms respectively. Phase 1’ is observed for 𝑄𝛩𝑖 < 0.06. Phase 3 exists between
0.12 < 𝑄𝛩𝑖 < 0.26. Phase 2 exists between 0.48 < 𝑄𝛩𝑖 < 0.58. For 0.95 < 𝑄𝛩𝑖, phase 1 is
observed. Flat plateaus are observed when two phases coexist.

58



With our solver, we can study several operations of a graphite anode versus lithium metal, pro-

viding valuable insights for optimizing and enhancing anode performance. Overall, our simulation

framework serves as a versatile tool for designing better electrodes and optimizing their operating

conditions, particularly in the context of fast charging of lithium-ion batteries. This chapter is

derived from the published work of the author in Malik et al, 77:109937, January 2024 [50].

4.2 Model and Equations

In this chapter, we modify the framework utilized in Chapters 2 and 3 for graphite simulations.

Unlike the previous chapters, the framework employed here uses solely the smoothed boundary

method (SBM) [44, 50, 57]. For the three-dimensional simulations in this chapter, we use real

microstructures reconstructed from voxel data sourced from literature [98, 99]. The voxel centers

extracted from the 3D voxels serve as the grid points for meshing. It’s worth noting that utilizing

voxel data results in a fine root-level refinement, minimizing the need for further refinement.

Consequently, adaptive mesh refinement (AMR) is not utilized in these simulations to avoid any

additional computational burden. Nonetheless, a depiction of an AMR grid on reconstructed

graphite microstructure is detailed in Appendix C for interested readers. A continuous domain

parameter 𝑂 is utilized to define the region occupied by the graphite particles (𝑂 = 1) versus the

electrolyte regions (𝑂 = 0). The particle-electrolyte interface is implicitly defined by the region of

0 < 𝑂 < 1. With a properly selected small thickness, the SBM results can be very close to those

obtained in the conventional sharp-interface simulations [24, 50].

Another significant change introduced in this chapter compared to the framework in Chapters

2 and 3 is the replacement of Fick’s di!usion equation with the Cahn-Hilliard equation to model

di!usion in the electrode particles. We start with Eq. (2.2) to detail the Cahn-Hilliard equation —

𝑃𝑄𝑅

𝑃𝑆

= →↑ · ↓𝑇𝑅 = ↑ ·
(
𝑈𝑅↑𝑉𝑅

)
↔ ω𝑅 . (2.2)

The chemical potential comprises contributions from bulk and interface: 𝑉𝑅 = 𝑉𝑦 → ↑ · 𝛺↑𝑄𝑅,

where the chemical potential in the bulk region is defined by the derivative of Gibbs free energy

with respect to the composition as 𝑉𝑦 = 𝑃𝛽 (𝑄𝑅)/𝑃𝑄𝑅, where 𝛽 function has multiple wells. Each

well valley (local minimum) corresponds to the respective composition of a stable phase. 𝛺 is the
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gradient energy coe"cient penalizing the sharp composition variation across the phase boundaries.

Thus, Eq. (2.2) is rewritten as

𝑃𝑄𝑅

𝑃𝑆

= ↑ ·
(
𝑈𝑅↑𝑉𝑅

)
= ↑ · 𝑈𝑅↑

(
𝑃𝛽

𝑃𝑄𝑅

→ ↑ · 𝛺↑𝑄𝑅

)
, (4.1)

As demonstrated later, the four-well Gibbs free energy function leads to four uniform 𝑄𝑅 values,

each of which corresponds to its respective stable phase, with narrow transition regions across

di!erent phases within the graphite particles. As before, Eq. (4.1) is reformulated for SBM with

the domain parameter 𝑂. Multiplying 𝑂 on both sides of Eq. (4.1) gives

𝑂

𝑃𝑄𝑅

𝑃𝑆

= 𝑂↑ ·
(
𝑈𝑅↑𝑉𝑅

)
, (4.2)

Using the product rule of di!erentiation on the right-hand side of Eq. (4.2), we further write

𝑂↑ · (𝑈𝑅↑𝑉𝑅) = ↑ · (𝑂𝑈𝑅↑𝑉𝑅) → ↑𝑂 · (𝑈𝑅↑𝑉𝑅), (4.3)

Combining these two equations results in

𝑂

𝑃𝑉𝑅

𝑃𝑆

= ↑ · (𝑂𝑈𝑅↑𝑉𝑅) → ↑𝑂 · (𝑈𝑅↑𝑉𝑅), (4.4)

The second term on the right-hand side serves as an ‘internal’ boundary condition within the

computational domain. The Neumann boundary condition on the particle surface (𝑌𝐿𝑍/𝑋 = ↓𝑍 · ↓𝑇 ↔

𝑃ω𝑎) can be expressed in the di!use interface description as

𝑌𝐿𝑍

𝑋

= ↓𝑍 · ↓𝑇 = ↑𝑂
|↑𝑂 | · (→𝑈𝑅↑𝑉𝑅), (4.5)

where ↓𝑍 = ↑𝑂/|↑𝑂 | is the unit inward normal vector of the di!use interface. Substituting Eq. (4.5)

and 𝑉𝑅 = 𝑉𝑦 → ↑ · 𝛺↑𝑄𝑅 into Eq. (4.4) and dividing both sides by 𝑂, we obtain the SBM version

of the Li transport equation — Cahn-Hilliard equation:

𝑃𝑄𝑅

𝑃𝑆

=
1
𝑂

↑ ·
[
𝑂𝑈𝑅↑

(
𝑉𝑦 → ↑ · 𝛺↑𝑄𝑅

) ]
+ |↑𝑂 |

𝑂

𝑌𝐿𝑍

𝑋

, (4.6)

where 𝑉𝑦 = 𝑃𝛽 (𝑄𝑅)/𝑃𝑄𝑅. Similar to Chapter 3 Eq. (4.6) is solved in conjunction with the

other SBM reformulated electrochemical governing equations listed here— Current continuity on

graphite particle surface:

↑ · (𝑂𝑑𝑐↑𝑒𝑐) → |↑𝑂 |𝑁→𝑓𝑌𝐿𝑍 = 0, (2.14)

60



Ion di!usion in electrolyte:

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
|↑𝑂𝑔 |
𝑂𝑔

𝑌𝐿𝑍𝑆→
𝑕+

→ ie · ↑𝑆+
𝑁+𝑕+𝑓

, (2.18)

Current continuity in the electrolyte:

↑ · [𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔] + |↑𝑂𝑔 |
𝑌𝐿𝑍

𝑕+
= ↑ · [𝑂𝑔 (𝑏→ → 𝑏+) ↑𝑊𝑔] , (2.20)

Butler-Volmer equation:

𝑌𝐿𝑍 =
𝑖0
𝑁+𝑓

[
exp

(→𝑘𝑁+𝑓
𝑙𝑚

𝑛

)
→ exp

( (1 → 𝑘)𝑁+𝑓
𝑙𝑚

𝑛

)]
, (2.7)

Since no additive phases are considered in this work, 𝑂𝑔 = 1→𝑂. The details of these formulations

and the procedure for solving these coupled equations can be found in Ref. [24, 50]. Because

the complex electrode microstructures are defined by the continuous domain parameter, these

equations can be solved on grid systems that are not conformal to the particle geometries. Thus, by

circumventing the e!orts for generating body-conforming meshes required in conventional sharp-

interface modeling, the presented complex microstructure simulations can be implemented much

faster.

4.3 Simulation setup - microstructure and parameters

4.3.1 Material Properties

The values of material properties, which appear in the governing equations, strongly a!ect the

electrochemical processes. In this work, we parameterized those coe"cients (material properties)

from available literature data. They are mostly concentration-dependent quantities such that the

evolution of Li composition influences the electrochemical dynamics. For the Cahn-Hilliard

equation, Eq. (4.6), there are three material parameters: chemical potential, gradient coe"cient,

and transport mobility. A cell OCV is the electrical potential di!erence in a cell at a disconnected

state. Essentially, the Li ions in the cathode and in the anode are in equilibrium at this voltage, thus

no net Li migration between the two electrodes. The Li chemical potentials are related to the OCV

by

𝑉𝑧𝑎𝑆𝛾𝛿𝛥𝑔 → 𝑉𝑎𝑍𝛿𝛥𝑔 = →𝑔 · 𝑒𝛶𝑊𝛴 (eV), (4.7)
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where 𝑉𝑧𝑎𝑆𝛾𝛿𝛥𝑔 = 𝑉𝑅 and 𝑔 is the unit charge. If Li metal is used as the anode, we can set 𝑉𝑎𝑍𝛿𝛥𝑔 = 0

as a reference value. The red curve in Fig. 4.1(a) shows a measured graphite OCV curve [97]

against Li metal. There are three voltage plateaus, each of which indicates a two-phase coexisting

region (i.e., miscibility gaps). Shown in Fig. 4.2(b) is the constructed 𝑉𝑦 curve. The segments

colored in green are →𝑔 · 𝑒𝛶𝑊𝛴 in the single-phase regions. Since no phase boundaries will be

present in single-phase regions, 𝑉𝑦 (𝑄𝑅) = 𝑉𝑧𝑎𝑆𝛾𝛿𝛥𝑔.

To allow phase separation, we extrapolated the 𝑉𝑦 from the single-phase regions to the two-

phase regions, as shown by the red segments in Fig. 4.2(b). These red segments are non-monotonic

such that if 𝑄𝑅 is within the miscibility gap, spinodal decomposition will occur to move the value

of 𝑄𝑅 to those corresponding to the lower or upper single phases. Note that phase separation will

not occur if flat plateau values are used for the miscibility regions. The value of the chemical

potential gap (the di!erence between the maximum and minimum in the non-monotonic function)

(a) (b)

(c) (d)

Figure 4.2 Material properties obtained from literature data. (a) Chemical Potential (eV)
constructed from the OCV curve [97]. (b) Di!usivity (cm2/s) in the four single-phase
regions [100]. (c) Mobility (cm2/J.s) constructed from the di!usivity curve, and (d) Exchange
current density (mA/cm2) [75].
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can be parameterized from intrinsic voltage hysteresis exhibited on the OCV measurements. The

constructed 𝑉𝑦 function led to an approximately 25 mV voltage hysteresis (see Fig. 4.3 (a)), which

was close to experimentally observed values (20–25 mV) [101]. The Gibbs free energy of Li in

graphite corresponding to the 𝑉𝑦 function is shown in Fig. 4.3 (b) and (c). It has four local energy

minima corresponding to the four single-phase regions. This free energy function is completely

parameterized from measured data, demonstrating a di!erent methodology from conventional

regular-solution models.

The gradient energy coe"cient 𝛺 is related to the interfacial energy and width of the phase

boundaries. Typically, its value can be estimated by integrating the Gibbs free energy along the

thickness direction over the phase boundary. Unfortunately, due to the lack of experimental data

on the interfacial energy between the di!erent phases in graphite, we selected a value of (0.8𝛹)2,

where 𝛹 is a characteristic length (𝛹 = 0.1625 𝑉m, which is half of the voxel edge length of the

reconstructed microstructures in this work). This value was selected to ensure a stable phase field

simulation, such that the phase boundary width remained to be approximately 4𝛹. We acknowledge

that more accurate parameterization can be achieved if more material data are available.

Mobility determines how fast mass transport occurs under a driving force: ↓𝑇𝑅 = →𝑈𝑅↑𝑉𝑅.

(The driving force is typically the gradient of chemical potential.) If the flux is described by Fick’s

(a) (b) (c)

Figure 4.3 (a) Parameterized Li chemical potential with voltage hysteresis. The green color
represents the single-phase regions while the red color represents the two-phase regions. (b)
Parameterized Gibbs free energy of Li in graphite. The black dashed lines are the common
tangent lines between two adjacent single phases. There are four single well regions
corresponding to the four stable phases. (c) A magnified view of (b).
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law, it is ↓𝑇𝑅 = →𝑏𝑅↑𝑄𝑅. Thus, the mobility is related to the di!usivity according to

𝑈𝑅 =
𝑏𝑅

𝑃𝑉𝑅/𝑃𝑄𝑅

. (4.8)

In this work, we used a set of report 𝑏𝑅 data [100], which have four distinct values in the four

single phases. The 𝑏𝑅 value is close to a constant value in each respective phase. However,

we multiplied the values by a factor of 100 ≃ 2/3, in which the factor of 100 is to increase the

value of 𝑏𝑅 to be closer to the more commonly observed values [102, 103]. The factor of 2/3

stems from a volumetric average of the di!usivities parallel and perpendicular to the graphene

layers in graphite particles. The di!usivity perpendicular to the graphene sheets is assumed to be

negligible here. As demonstrated later in Section 4.4.1.2, using the average di!usivity can produce

equivalent results to those obtained from a fully anisotropic model. Since the graphite orientations

in the reconstructed microstructures are unavailable in this work, we treated the graphite particles

as an isotropic material for Li transport and used the ‘average’ di!usivity for parameterizing the

mobility, unless otherwise stated. The 𝑏𝑅 values for the four single phases are shown as the solid

line segments in Fig 4.2(b).

Figure 4.2(c) shows the 𝑈𝑅 function used in the simulations. The 𝑈𝑅 in each of the stable single-

phase regions are obtained using Eq. (4.8). Because phase separation occurs in the miscibility gaps,

di!usivity data are not available for the composition within the miscibility gaps. Thus, 𝑈𝑅 within

the miscibility gaps was extrapolated from the data in the stable single-phase regions. The 𝑈𝑅

curve in the miscibility gaps has high values shown as the humps on the red curve in Fig 4.2(c).

Exchange current density, 𝑖0 in Eq. (2.7), is the current density on an electrode surface established

at the equilibrium between the salt concentration in the electrolyte, Li fraction in the particle, and

the electric potential drop across the electrolyte-particle interface. The 𝑖0 value can be measured

using Tafel plotting or impedance techniques. However, the measurement processes are sometimes

highly tedious. Thus, a Li composition-dependent 𝑖0 function for graphite-electrolyte interfaces is

not widely available in the literature. Most of the available experimental data are just one single

value at a specific Li fraction. Here, we used an 𝑖0 function obtained using kinetic Monte Carlo

simulations [75], as shown in Fig 4.2(d). This data set spans the entire Li composition range.
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The 𝑖0 value is small in the near fully delithiated and fully lithiated regions and has a plateau in

the intermediate composition region. We acknowledge that more quantitative predictions can be

achieved with more accurate data if they are available for material parameterization. The presented

𝑉𝑦, 𝑈𝑅, and 𝑖0 functions are di"cult to be fitted with closed-form functions. Therefore, we tabulated

them into tables and interpolated their values based on 𝑄𝑅 in the simulations. Furthermore, graphite

is a highly conductive material. We set a uniform 𝑑𝑐 = 3.3 S/cm for Eq. (2.14). We assume the

same binary electrolyte from Chapter 3, with LiPF6 dissolved in an arbitrary organic solvent. We

use the same ambipolar di!usivity in Eq. (2.18) and ionic di!usivities in Eq. (2.20) as in Chapter

3 and Refs. [24, 50, 57, 58].

4.3.2 Electrode Microstructures and Simulation Setups

Electrochemical processes were simulated using the presented approach on three di!erent

openly available reconstructed graphite electrode microstructures [98,99]. The downloaded TIFF-

stack image files were converted to 3D voxel arrays, where the voxel edge size is 325 nm. A region

of 180≃ 170≃ 160 voxels was cropped from each of the datasets, corresponding to the dimensions

of 58.5 ≃ 55.2 ≃ 52 𝑉m3. They are shown in Fig. 4.4(a) through (c) and referred to as E_II, E_III,

and E_IV, respectively. As can be observed, E_II consists of relatively large sphere-like particles

and serves as the standard case in this work. E_III has a smaller particle size, which leads to higher

porosity and a higher surface-to-volume ratio compared to the other two electrodes.

E_IV has plate-like/flake-like particles. It can be clearly seen that the primary direction

(a) (b) (c)

Figure 4.4 (a) Electrode II (E_II), (b) Electrode III (E_III), and (c) Electrode IV (E_IV).
Morphological properties of the shown electrodes are provided in Table 4.1.
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(electrode thickness direction or the 𝐿-direction in Fig. 4.4) is perpendicular to the graphite plates

in E_IV. This leads to a high through-plane tortuosity compared to the other electrodes. These

three microstructures were chosen in this study because of their di!erent characteristics. Table 4.1

summarizes the key microstructure properties. Note that morphological properties were calculated

for both the through-plane (TP) and in-plane (IP) configurations. The TP configurations are those

in Fig. 4.4. The IP configurations were obtained by rotating the electrodes by 90 degrees around

the 𝑀-axis. In this case, for the E_IV IP case, the primary direction (Li metal anode to the graphite

electrode current collector) is parallel to the graphite plates. In the simulations presented later, the

default setups were in the TP configurations unless otherwise mentioned.

In this work, we doubled the grid resolution using the MATLAB function ‘imresize3’. Similar

to Ref. [24], an empty space was included to serve as the separator region (100 grid spacings).

Thus, the grid system in our simulation contained 360 ≃ 440 ≃ 320 uniform grid points, for which

the grid spacing was ϑ𝐿 = 162.5 nm (half of the voxel size). Using the voxel centers directly as the

grid points, we employed the level-set distancing method as in Ref. [44] to calculate the distance

to the nearest particle surface of each grid point. The domain parameter for the graphite particle

regions was defined using 𝑂 =
[
1 + tanh

(
𝛥/𝛱

) ]
/2, where 𝛥 was the shortest distance to particle

surfaces and 𝛱 was a numerical parameter to control the thickness of the di!use interface. Here,

we set 𝛱 = ϑ𝐿, such that the di!use interface of 𝑂 spanned approximately 4ϑ𝐿. The time step size

Table 4.1 Morphological properties for the three reconstructed graphite electrodes in the
simulations. The quantities outside and inside the parentheses are for the cropped regions and the
entire microstructure data, respectively.

Parameter
Microstructure Electrode II Electrode III Electrode IV

Feature Large spherical particles Small particles Plate-like/flake-like particles
Porosity↘ 33.70 (32.52) 35.96 (36.65) 32.71 (33.04)

Through-plane pore tortuosity↘ 1.50 (1.59) 1.52 (1.67) 2.86 (2.64)
In-plane pore tortuosity↘ 1.29 (1.39) 1.23 (1.47) 1.24 (1.46)

Simulation cell size (𝑉m3) 58.5 ≃ 71.5 ≃ 52 58.5 ≃ 71.5 ≃ 52 58.5 ≃ 71.5 ≃ 52
solid volume (𝑉m3) 108,130 104,437 112,039

particle surface area in TP (𝑉m2) 30,892 33,464 32,380
particle surface area in IP (𝑉m2) 29,679 33,514 29,476
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was ϑ𝑆 = 2.6 ≃ 10→3 s in the following 3D simulations. The boundary conditions were imposed

similarly to those in Section 4.4.1.2. A cut-o! voltage of 0.00 V was used in all the following

simulations to avoid the overcharging condition explained in Section 4.4.1.1.

All the physical fields involved in the electrochemical processes in the graphite electrode

microstructures, i.e., 𝑄𝑅, 𝑒𝑐, 𝑊𝑔, and 𝑒𝑔, were solved simultaneously in our simulations according

to the equations presented in Section 4.2. The SBM microstructure simulations here did not require

body-conformal mesh. Instead, the uniform Cartesian grid system for the calculations was built

directly using the cuboidal voxels. Thus, we skipped the processing time for generating mesh

conforming to the complex electrode microstructures. As a demonstration, Fig. 4.5(a) through (d)

show the four fields for E_II at the cut-o! point under a 6C constant current lithiation.

The primary direction (electrode thickness direction) is along the 𝐿-axis. As can be seen in Fig.

4.5(a), 𝑄𝑅 exhibits a radial variation in each particle. In the electrode scale, the particle surface

𝑄𝑅 exhibits a variation along the primary direction. There are gradients present in the other three

(a) (b)

(c) (d)

Figure 4.5 (a) Lithium fraction in particle, (b) lithium salt concentration, (c) electropotential in
particle, and (d) electropotential in the electrolyte for 6C lithiation in the TP E_II configuration at
the cut-o! point 𝑄 = 0.53.
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fields. All these gradients agree with the flow directions of the ions in the electrolyte and electrons

in the particle network. A more extensive description of these fields can be found in Ref. [24]. As

this behavior is generally similar to that in Ref. [24], we do not emphasize these three fields further

in this work.

4.4 Results and Discussion

4.4.1 Model examination

4.4.1.1 Single disk simulation

Firstly, we validate if the presented Cahn-Hilliard phase-field equation coupled with other

electrochemical equations can properly emulate the phase transformation processes in a graphite

particle. A virtual battery cell containing a single circular graphite disk was used in this simulation

as shown in Fig. 4.6(a). The disk radius was 2.5 𝑉m. It was placed at the west end of the

computational domain, contacting the current collector on the west domain boundary. This acted

as the boundary condition of the electropotential in the graphite disk.

To simplify and accelerate the simulation, the east, south, and north boundaries were assumed

(a) (b)

(c) (d) (e)

Figure 4.6 (a) Virtual battery cell containing a single circular graphite disk. The disk was lithiated
at a 0.5C rate. 𝑄𝑅 distributions in the disk from the simulation at (b) ⇐ 2240s; Phases 1’ and 3 can
be observed. (c) ⇐ 3380s; Phase 1’ has disappeared and Phase 2 is visible now. (d) ⇐ 4140s;
Phases 3, 2, and 1 can be observed here, and (e) ⇐ 4900s; all Phases 3, 2, and 1 can be seen.
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to be Li metal, which provided the electropotential boundary condition for the electrolyte and the

ion sources for the electrolyte. This can be viewed as a scenario that a graphite disk is surrounded

by infinite Li sources. The computational domain was of dimensions of 8.1 ≃ 8.1 ≃ 0.6 𝑉m3,

which was discretized with a uniform grid (with a grid spacing of ϑ𝐿 = 0.1 𝑉m). The time step

size was ϑ𝑆 = 1.056 ≃ 10→2 s. The SBM interfacial thickness was approximately 4ϑ𝐿. As a

structure indicator, the SBM di!use interface stays stationary since we assume particle deformation

(morphology change) is negligible. The space not occupied by the graphite disk was assumed

to be filled with electrolytes. No-flux boundary conditions were imposed on the top and bottom

boundaries, thus, acting as a quasi-2D simulation. The cell voltage (CV) is the di!erence between

the electropotential on the current collector and the Li metal. In the simulation, the electropotential

on the Li metal was set to 0.00 V and the lithiation current was controlled by adjusting the

electropotential on the current collector. The box boundary conditions are set for solving 𝑒𝑐 and

𝑒𝑔, i.e., Eqs. (2.14) and (2.20) respectively, such that the Butler-Volmer reaction, Eq. (2.7), at the

particle-electrolyte interface, provides the insertion/extraction flux to move the phase boundary

within the disk.

A constant 0.5C loading was set for the lithiation process with a cut-o! voltage of 0.00 V.

Note that a 1C rate (1 C-rate) is defined as a charge/discharge rate that completes a full charge in

1 hour, so 0.5C corresponds to a full charge in 2 hours. The cut-o! threshold was set to avoid

overcharging. Reaching this overcharging condition could result in a negative electropotential drop

across the graphite-electrolyte interface, which thermodynamically favors lithium plating on the

graphite surface over insertion into the graphite particle [104].

Figures 4.6(b) through (e) show the snapshots of Li fraction (𝑄𝑅) evolution in the disk. Note that

while other physical fields, such as electropotentials and salt concentration, were simultaneously

simulated, they are not presented here as our focus is the phase transformation dynamics in the

graphite particle. The initial Li fraction was set to be uniformly 0.02 throughout the disk. Li site

density in graphite was set to be 𝑋 = 0.0312 mol/cm3. As Li was inserted into the disk, 𝑄𝑅 near the

surface region increased, exhibiting a gradient along the radial direction. A clear coexistence of
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Phase 1’ and 3 can be observed in Fig. 4.6(b). Further lithiation led to continuous increases of 𝑄𝑅 in

the outer region of the disk and formed a new phase near the surface. Phase 1’ quickly disappeared

because of two factors: 1) its miscibility gap (0.06 < 𝑄𝛩𝑖 < 0.12) to Phase 3 is very small and 2)

Phase 1’ chemical potential is much higher than Phase 3. Thus, Phase 1’ rapidly transitioned to

Phase 3. Phase 2 can be observed in Fig. 4.6(c). The region of the new phase expanded inward at

the expense of the old phase. This type of phase transformation continued as lithiation proceeded.

Figure 4.6(e) shows the morphology of the coexistence of Phase 3, 2, and 1 in the disk at the late

stage of lithiation. The single disk simulation exhibits a phase distribution that closely resembles the

phase morphology experimentally observed by Guo et al [81], demonstrating the proper emulation

of phase transitions in graphite using the presented model. The minor di!erence arises from the

di!erence in setups, wherein the experiment [81] had lithium metal placed only on the northeast

corner. However, due to the lack of exact material parameters in the experiments, quantitative

comparison cannot be o!ered in this work.

4.4.1.2 Anisotropic Li transport

Graphite due to its layered structure is highly anisotropic in the intra-particle Li transport

behavior. The presented SBM model allows fully anisotropic simulations, where the mobility in

Eq. (4.6) will be a tensor:

M𝑅 =



𝑈𝐿
⇓ 0 0

0 𝑈𝑀
⇓ 0

0 0 𝑈𝑁
⇓


. (4.9)

Here, the subscripts 𝑁⇓ and 𝑀
⇓ indicate the in-plane directions of the graphene sheets within a graphite

particle, and 𝐿
⇓ indicates the through-plane (TP) direction. In this test, we assume the in-plane (IP)

mobility is four orders of magnitude greater than the TP mobility; i.e., 𝑈𝑁
⇓ = 𝑈𝑀

⇓ = 10000𝑈𝐿
⇓ .

We set 𝑈𝑁
⇓ = 1.5 ≃ 𝑈𝑅 for the anisotropic simulation. (The factor of 1.5 will be explained later.)

Because the crystal orientations of the graphite particles in the reconstructed microstructures are

not available, we employed the discrete element method (as in Ref. [24]) to generate a synthetic

microstructure, in which the crystal orientation of each spherical particle was randomly assigned.
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The particle size follows a truncated log-normal distribution as in Ref. [105]. The colors in Fig.

4.7(a) indicate the crystal orientation of each particle using a color scheme of the inverse-pole

figure.

The computational domain contains approximately 1300 particles and has 360 ≃ 220 ≃ 320

grid points with ϑ𝐿 = 0.5 𝑉m. A Li metal serving as the Li source is placed on the west domain

boundary (𝐿 = 0), thus the primary Li transport direction is along the west-east direction (the 𝐿-axis

direction in Fig. 4.7(b), which is also the electrode thickness direction).

Figure 4.7(b) shows the simulated Li fraction at 𝑄 = 0.29 under a 6C lithiation. (𝑄 is the

average Li fraction throughout the entire electrode, which is equivalently the degree of discharge,

DoD.) Interestingly, although the Li transport is highly anisotropic within each spherical graphite

particle, the 𝑄𝑅 only varies along the sphere radial direction as in a typical isotropic case. This is

attributed to the fact that 𝑄𝑅 has distributed axisymmetrically in each circular inter-graphene layer.

(Here, the graphene layers are parallel to the latitude planes of the sphere). The size of each circular

layer decreases as the distance from the center plane increases. The smaller layers (near the pole

regions) fill fast and the larger layers (near the equator plane) fill slowly. As a result, the overall 𝑄𝑅

varies only radially. Figure 4.8 o!ers a scheme illustration for this phenomenon.

For comparison, a fully isotropic simulation was performed on the same microstructure, but

(a) (b) (c)

Figure 4.7 (a) Pole figure for the synthetic spherical microstructure with the colors indicating the
fast di!usion direction of each particle. (b) Lithium fraction in the particle at 𝑄 = 0.29, and (c)
CV curve comparison for the anisotropic and isotropic cases at 1C and 6C rates. The lithium
fraction at the cut-o! voltage is highlighted by the grey arrows.
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with a scalar mobility value given as

𝑈𝑅 =
1
3
(
𝑈𝐿

⇓ + 𝑈𝑀
⇓ + 𝑈𝑁

⇓
)
⇔ 2

3
𝑈𝑁

⇓ . (4.10)

The 𝑄𝑅 distribution from the isotropic simulation taken at the same 𝑄 is very similar to the

anisotropic case. The cell voltage curves of 1C and 6C lithiation from the anisotropic and isotropic

simulations are plotted in Fig. 4.7(c). In both 1C and 6C cases, the anisotropic (solid) and isotropic

(dashed) curves almost overlap. As demonstrated by this test, a fully isotropic transport model

produces electrochemical simulation results very similar to those obtained from fully anisotropic

simulations if the electrode is comprised of randomly oriented spherical particles. Therefore, a

fully isotropic model was employed to simulate the electrochemical processes in reconstructed

graphite electrodes because the crystal orientations are unavailable in those data.

4.4.2 Cahn-Hilliard(CH) vs Fick’s Di!usion(FD): Electrode II

In section 4.4.1.1, we substantiate the Cahn-Hilliard (CH) equation’s e!ectiveness in simulating

phase transition in a single graphite disk. However, graphite particles were sometimes inaccurately

modeled as Li solid-solution using Fick’s law for Li transport within [106–108], without considering

the phase transformation process during (de)lithiation. In this section, we further investigate

the di!erence in modeling graphite particles as a phase-separating or solid-solution material by

comparing Cahn-Hilliard (CH) and Fick’s di!usion (FD) simulation results. As FD does not include

Figure 4.8 The solid black lines indicate the sphere surface and the cyan dashed circle indicates
the internal phase boundary. The green arrows indicate Li insertion flux. As the inter-graphene
layer is away from the center plane, the circular plane becomes smaller and will be filled faster. As
a result, the internal phase boundary remains a spherical shape concentric to the sphere surface.
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phase transition behavior, the energy that would be otherwise consumed in these transformations

goes into electrochemical reactions. Therefore, theoretically, FD is expected to overestimate the

electrode’s performance.

We performed two additional sets of constant-current simulations for 1C and 6C lithiation using

Fick’s di!usion equation, Eq. (2.12), for Li transport in graphite particles in E_II. The values of Li

di!usivity in the four stable phases are shown as the red segments in Fig. 4.2(b), and the values in

the two-phase regions are linearly interpolated from the single-phase regions. All other material

properties and simulation conditions were the same as in the previous E_II simulations.

Fick’s di!usion equation:
𝑃𝑄𝑅

𝑃𝑆

=
1
𝑂

↑ ·
(
𝑂𝑏𝑅↑𝑄𝑅

)
+ |↑𝑂 |

𝑂

𝑌𝐿𝑍

𝑋

. (2.12)

Figure 4.9(a) shows simulated CV curves for 1C and 6C cases. The 1C results of the FD and

CH simulations are plotted as the yellow dashed and red solid curves, respectively. While the FD

model treats graphite particles as a Li solid solution, the FD curve still shows step-like profiles upon

lithiation as in the CH case, reflecting the plateaus on the OCV. However, the FD curve extended

to a higher achievable DoD (0.87) than the CH curve (0.78).

Despite the step-like CV curve, the 𝑄𝑅 in the FD model, shown in Fig. 4.9(b) and (d), exhibits

a continuous inward gradient in the particles, which significantly di!ers from the multiphasic

coexistence morphology in the CH results, see in Fig. 4.9(c) and (e). Without accounting for

the phase transitions, the Fickian di!usion model results in only a continuous gradient of Li

concentration within each particle, as well as across the electrode. Experimentally observed sharp

color changes across di!erent phases either within a graphite disk [81] or across a graphite anode

[82] are only replicated in the CH results. Since the system at a 1C lithiation is thermodynamically

closer to the equilibrium, without the hindrance of phase boundary motion during phase transitions,

the FD model clearly overestimated the achievable DoD.

In contrast, in the 6C simulations, the total achievable DoDs in the CH and FD results are very

similar. This is because the particle surfaces in the two models all reached Li saturation in a short

time due to the kinetic limitations of inward transport. However, the intrinsic di!erence in the
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thermodynamics of the two models is still reflected in the shapes of the CV curves. Specifically,

the FD curve (cyan dashed curve) exhibits a much less step-like profile in the 3-2 phase region

(0.12 < 𝑄 < 0.22), where the curve monotonically decreases as opposed to the plateau in the same

region on the blue solid curve (CH model). In the 6C lithiation, both CH and FD have high inward

gradients in the 𝑄𝑅 distributions. Although the morphologies are di!erent (FD has continuous

inward gradients, but CH has multiphasic coexistence layers), the overall distributions are similar.

Thus, their overall achievable DoDs are similar.

As pointed out by Bazant’s work [109], it is important to model graphite correctly as a phase-

separating material, rather than a Li solid-solution. Our results demonstrate that the CH model

more accurately depicts Li transport and phase transition behavior in graphite particles. The FD

model can significantly overestimate graphite electrodes’ performance at low C rates. At high C

rates, even though the predicted achievable DoDs are similar, the two models can lead to CV curves

with di!erent shapes. In the rest of this work, we will perform only CH simulations for the graphite

(a) (b) (c)

(d) (e)

Figure 4.9 (a) CV curves for Cahn-Hilliard and Fick’s di!usion at 1C and 6C rates. Lithium
fraction distributions in particles at 1C, taken at 𝑄 = 0.73, for (b) FD case and (c) CH case, with
zoomed-in views in (d) and (e), respectively. The green arrow in (d) points to a particle showing a
continuous inward gradient. The arrow in (e) indicates a particle exhibiting Phases 1, 2, and 3
with yellow, red, and dark green colors, respectively.
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electrodes.

4.4.3 Electrode behaviour comparison

E_II, E_III, and E_IV have significant di!erences in their morphological properties. See

Table 4.1. While thermodynamics determines the material’s intrinsic properties, microstructures

will dictate the kinetic behavior. Therefore, although the electrodes were all made of the same

graphitic carbon, they are expected to have di!erent electrochemical performances. Among the

three electrodes, E_III has a significantly higher surface-to-volume ratio (approximately 11%) than

those of the other two electrodes. E_III also has a higher porosity (approximately 10%) than the

other two.

Microstructure electrochemical simulations were performed for these three electrodes. Here,

the setups are the TP configurations. Figure 4.10(a) shows the cell voltage curves extracted from the

simulations at 1C lithiation. E_III (the green curve) showed the largest achievable DoD (0.87) before

reaching the cut-o! voltage, which is much greater than those of the other two electrodes (0.785 and

0.775 for E_II and E_IV, respectively). Evidently, the high surface-to-volume ratio (equivalently, a

small average particle size) of E_III has the most influential role on the electrochemical performance

in this case. Even though E_II and E_IV have obvious di!erences in particle morphologies, their

performances are nearly identical at this low C rate.

Figure 4.10(b) shows the CV curves for these three electrodes at 6C lithiation. The high rate

(a) (b)

Figure 4.10 Simulated CV curves for the through-plane (TP) configurations of the three electrode
microstructures (a) at 1C rate and (b) at 6C rate.
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performances of E_II and E_IV are expected to be notably distinct because they have a substantial

di!erence in the pore tortuosities. Interestingly, E_II and E_IV did not perform very di!erently

and they had similar achievable DoD (0.52 for E_II and 0.53 for E_IV). Similar to the 1C case,

E_III had a much larger achievable DoD (0.64) at 6C lithiation. These results indicate that, for

electrodes of this thickness (55.2 𝑉m), pore tortuosity does not strongly impact the performance

even though at high rates. Rather, it is still the surface-to-volume ratio dominating the performance.

To examine the thickness e!ect, we extended the thicknesses of E_II and E_IV microstructures to

110.4 𝑉m (i.e., double thickness) and performed another set of simulations. Hereafter, we refer

these microstructures to as E_II-2X and E_IV-2X. Shown in Fig. 4.11 are the CV curves of E_II-2X

and E_IV-2X at a 6C rate. The two dotted lines are the CV curves from the original thickness cases

provided for comparison. The achievable DoD for E_II-2X is 0.505, significantly larger than 0.415

for E_IV-2X.

Evidently, the high pore tortuosity of E_IV substantially hindered the cell performance (from

DoD = 0.52 to 0.41) by doubling its thickness. For E_II, on the other hand, the achievable DoD

only marginally decreased from 0.53 to 0.505. In this case, the capacity of intercalated Li in the

double-thickness E_II-2X is roughly twice that of the original-thickness case. Figure 4.11(b) shows

the CV curves plotted versus moles of intercalated Li for E_II and E_IV of original and double

thicknesses. Although the double-thickness electrodes have poorer performances, they still achieve

larger capacities because of the increase in volume.

(a) (b)

Figure 4.11 (a) Simulated CV curve comparison, and (b) total inserted lithium in E_II and E_IV
for single thickness (1≃) and double thickness (2≃) cases.
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Furthermore, even though the original and double-thickness E_II have achieved similar DoD,

their energy e"ciencies are di!erent. Energy e"ciency can be defined as the ratio of released

energy during a lithiation process to the theoretical energy that can be obtained from an equilibrium

process. The area below a CV curve is the released energy and the area below the OCV curve is

the theoretical energy. The di!erence between these two quantities is the waste heat generated in

the process. Figure 4.12 o!ers an illustration. Here the theoretical energy is calculated up to the

cut-o! DoD.

For E_II, increasing from the original to double thickness changes the e"ciency from 58.5%

to 47.4%. Note that while the achievable DoD for E_II did not change much by increasing its

thickness, the energy e"ciency varied significantly. For E_IV, the e"ciency changed from 55.3%

to 40.2% as the thickness was doubled. The variation is larger than the E_II case. Since the

Li capacity in the double-thickness configuration was twice the original one, the total waste heat

generated was also much larger.

Figure 4.12 Cell voltage vs time for E_II at 6C lithiation. As this is a constant current lithiation,
the purple area under the 6C curve gives an estimate for the energy released in 6C lithiation,
which can be calculated using 𝑟𝑌 =

∫
𝜀 ·𝛴𝑧𝛥𝑆 where 𝜀 is the cell current and 𝛴𝑧 is the cell voltage.

The orange + purple area estimates the available energy at the equilibrium condition until the
cut-o! point. The ratio between the released energy and the theoretical energy is the energy
e"ciency for this lithiation process.
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High contrast between the TP tortuosity (2.86) and the IP tortuosity (1.24) of E_IV can be

noted in Table 4.1. The apparent di!erence in these two tortuosities can be inferred from the

plate-like particles in the E_IV microstructure. Additional simulations were conducted to examine

the performance of E_IV in the IP configuration. Figure 4.13(a) displays the cell voltage curves

for E_IV at 6C and 1C lithiation in the TP and IP configurations. In either 6C or 1C cases, the CV

curves for the two configurations almost overlap, indicating that the electrode thickness (55.2 𝑉m)

is too small to reflect the impact of pore tortuosity.

Thus, we extended the electrode microstructure to double and triple the original thickness and

performed simulations at 6C lithiation on those electrodes. Despite the inherent challenges in poor

kinetics, mechanical strengths, etc., appropriate designs of thick electrodes can lead to a higher

loading and overall energy density by reducing the volume occupied by inactive components (such

as separators and current collectors) [95]. While several recent studies [95,96] have experimentally

explored the strategies for designing better thick electrodes, the following results can provide

insights into such developments using simulations.

The CV curves are plotted in Fig. 4.13(b). For the TP case, increasing the thickness from the

original (55.2 𝑉m) to double (110.4 𝑉m) and then to triple (165.6 𝑉m) thicknesses decreased the

achievable DoD from 0.52 to 0.41 and further to 0.175, respectively. See the three solid curves

in Fig. 4.13(b). Even though the achievable DoD decreased, because of the increase in volume,

(a) (b)

Figure 4.13 (a) Simulated CV curves for E_IV in the TP and IP directions at 1C and 6C rates. (b)
Simulated CV curves for E_IV in the TP (solid lines) and IP (dashed lines) directions at 6C for
single, double, and triple thicknesses.

78



the double-thickness TP E_IV-2X still has a nearly 57% more achievable Li capacity than the

original-thickness one. However, the triple-thickness TP E_IV-3X only reached nearly the same

Li capacity as the original case. The achievable Li capacities are 1.83 ≃ 10→9, 2.88 ≃ 10→9, and

1.84 ≃ 10→9 moles of TP E_IV, TP E_IV-2X, and TP E_IV-3X, respectively. Clearly, increasing

the thickness has a diminishing e!ect on the total achievable Li capacity at this rate, indicating an

optimal thickness for the highest Li capacity for a specific microstructure. The energy e"ciency

changed from 55.3% to 40.2% and to 34.9%. The shapes of the CV curves also varied as the

thickness increased. The original-thickness curve (solid red) shows slight multiple steps, indicating

phase transitions during lithiation. In contrast, the curve (solid blue) of the triple-thickness case

appears smooth with a negative slope. We interpret the linear curve for the thick electrode to be

due to the strong non-uniformity of lithiation across the length of the electrode.

Figures 4.14(a) and (b) exhibit the simulated 𝑄𝑅 for the TP E_IV and TP E_IV-3X cases,

respectively, at a point close to the cut-o!. Almost all particle surfaces in the original-thickness

case reached a fully lithiated state throughout the entire electrode (as indicated by the bright yellow

color). In contrast, in the triple-thickness case, only the particle surfaces in the front region

(16 < 𝐿 < 40 𝑉m) reached a fully lithiated state. The particle surfaces in the remainder of the

electrode were still at the Stage-3 phase (𝑄𝑅 = 0.25, indicated by the dark green color). Although

only a portion of the particle surfaces was saturated with Li, those regions dominated the cell

voltage to the cut-o! value. Correspondingly the blue curve in Fig. 4.13(b) dropped rapidly and

exhibited a monotonic negative slope.

The simulated CV curves for the IP configurations are plotted as the dashed curves in Fig.

4.13(b). Extending the electrode from the original to double and further to triple thicknesses

decreased the achievable DoD from 0.52 to 0.489, and to 0.355, respectively. The corresponding

energy e"ciency are 57.5%, 46.3%, and 41.0%, respectively. Clearly, the low tortuosity in

the IP configurations leads to smaller decreases in both achievable DoD and energy e"ciency,

compared to the TP cases. The triple-thickness IP configuration retained nearly twice that of the TP

configuration in the achievable DoD. The slope of the CV curve (dashed blue) in the IP E_IV-3X
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here is smaller than that in the TP E_IV-3X (solid blue), suggesting that the 𝑄𝑅 on the particle

surfaces in the IP case will be more homogeneous throughout the electrode compared to the TP

case. Experimental work has shown that aligning plate-like graphite particles along the primary

di!usion direction significantly enhances the cell performance in comparison to unaligned particle

configurations [95, 110, 111]. Our simulations fulfill the need for a quantitative evaluation of such

e!ects.

Figure 4.14(c) displays the simulated 𝑄𝑅, in which the particle surfaces with saturated 𝑄𝑅 were

in the region approximately 16 < 𝐿 < 70 𝑉m, and the particle surfaces in the remainder of the

electrode were in Stage 2 (𝑄𝑅 = 0.54). These TP versus IP simulations support the experimental

observations of enhancing cell performance by aligning the plate-like graphite particles along the

primary direction [110].

Respective simulations were also performed on the original-thickness E_II and E_III in their IP

(a)

(b)

(c)

Figure 4.14 Lithium fraction in particle at 6C lithiation at the cut-o! point for (a) TP single
thickness at 𝑄 = 0.52, (b) TP triple thickness at 𝑄 = 0.175, and (c) IP triple thickness at 𝑄 = 0.35.
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configurations to compare them. The CV curves are provided in Fig. 4.15.

The TP and IP configurations performed very similarly. This is not surprising because tortuosity

only has a minimal e!ect on the performance of electrodes of the original thickness examined here.

Additionally, the TP and IP tortuosities of E_II or E_III have similar values.

In summary, these simulations demonstrate that, for electrodes of the original thickness (55.2

𝑉m), the performance is a!ected only by particle sizes. The impact of pore tortuosity becomes

prevalent once the thickness increases to double or more of the original case. In thick electrodes,

a higher tortuosity will decrease the achievable DoD and energy e"ciency more rapidly. As

thick electrodes garner increasing attention for high-capacity applications and have been actively

explored [95,112,113], the presented methodology o!ers the necessary quantitative tool to estimate

their electrochemical performances without explicitly using their microstructures.

4.4.4 Lithiation protocols

Fast charging capability is crucial for the market penetration of electric vehicles. A full

charge in ten minutes corresponds to a 6C rate. When graphite particle surfaces are saturated

with intercalated Li, the electropotential across the particle-electrolyte interfaces becomes negative

[104]. In this case, Li metal formation on particle surfaces is thermodynamically favored over

insertion, resulting in Li plating. Thus, a negative electropotential drop across graphite surfaces

Figure 4.15 Simulated cell voltage curves at 6C and 1C rates for E_II and E_III in TP (solid lines)
and IP (dashed lines) configurations. The TP and IP results are very similar.
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indicates an overcharging condition, which is used as the cut-o! criterion in the simulations. In this

section, we use microstructure simulations to explore an approach to increasing electrodes’ high

C-rate capacity.

Figure 4.16(a) shows CV versus time for 6C lithiation of E_II for both TP and IP configurations.

The CV curve reached the cut-o! point at approximately 333 s, roughly half of the expected 6C

duration (600 s).

In this section, we perform additional electrochemical simulations to explore how much further

electrode utilization can be achieved at full 600 s without reaching the cut-o! plating voltage (⇐ 0

V). The simulations were performed on E_II in the TP configuration and were terminated when

either the lithiation process reached 10 minutes or the cell voltage reached the cut-o! voltage.

Several lithiation protocols, started with 6C, were examined and the details are in Table 4.2.

Table 4.2 Lithiation protocols, started with a 6C rate, examined in simulations.

protocols achievable DoD duration
Case 1 6C ⇒ plating point 0.53 333 s
Case 2 6C ⇒ constant voltage 0.68 600 s
Case 3 6C ⇒ 4C ⇒ plating point 0.58 381 s
Case 4 6C ⇒ 4C ⇒ 1C 0.61 600 s
Case 5 6C ⇒ 1C 0.59 600 s
Case 6 6C ⇒ 2C 0.66 600 s

(a) (b)

Figure 4.16 (a) Cell voltage vs time at 6C for TP and IP configuration. (b) Cell voltage vs time
curves for lithiation protocols shown in the table 4.2. The green curve is beneath the blue curve
when 316 < 𝑆 < 355 s. All the curves before 316 s are beneath the black curve.
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In these simulations, once the CV reached 0.03 V, we reduced the insertion fluxes, which

moved the electrode away from the plating point and allowed it to slowly accept Li until it reached

the 10-minute duration (or the plating point again). The value of the switch point (0.03 V) was

conservatively chosen to be close to but still above the Li-plating condition of the electrode at a 6C

rate.

The simulated CV curves under these protocols are plotted in Fig. 4.16(b), in which only Case

1 (full-6C) and Case 3 (6C-followed-by-4C) were terminated before 600 s. Case 2 followed the

typical constant-current-constant-voltage (CC-CV) protocol. It reached an achievable DoD of 0.68

at 600 s, showing a significant increase (⇐ 0.15) relative to Case 1 during the additional 267 s.

In Case 3, the initial 6C rate was reduced to a 4C rate after the CV reached the switch point.

Clearly, there was a short relaxation period (316–325 s), during which the cell voltage increased.

See the green curve in Fig. 4.16(b). During this relaxation period, the inward flux dictated by the

𝑄𝑅 gradient (established by the 6C insertion) was larger than the 4C surface insertion flux. Thus,

the particle surface 𝑄𝑅 decreased and the CV increased. In the relaxation period, the Biot number

is greater than one. Once the inward 𝑄𝑅 gradient matched that for the 4C surface flux, surface

𝑄𝑅 accumulated again and CV dropped. This 6C⇒4C case reached plating condition at 381 s

with an achievable DoD of 0.58, only a 0.05 increase compared to a full-6C case. See the values

reported in Table 4.2. Case 4 included an additional constant 1C insertion after Case 3 reached

the switch point. The 1C period proceeded for about 220 s (37% of the total time). However, it

(a) (b)

Figure 4.17 (a) Current vs time, and (b) CV curves for lithiation protocols shown in Table 4.2
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only marginally increased the DoD by 0.03. Case 5 switched the current to 1C after 6C lithiation

reached the switch point. Compared to Case 1, the additional 284 s of 1C lithiation increased the

DoD from 0.53 to 0.59. Comparing Case 5 with Case 4, the short 4C period (316–353 s) increased

DoD by 0.02. The plots of cell current versus time and CV curves versus DoD corresponding to

those in Fig. 4.16(b) are provided in Fig. 4.17. The achievable DoDs for the cases examined above

can be read from those figures.

Table 4.3 lists the results of several additional lithiation protocols, which did not start with a 6C

rate. Cases 7 through 10 were all CC-CV lithiation protocols with increasing currents.

Compared with Case 2 (6C-CV), a higher initial C rate increased the achievable DoD. For

instance, Case 10 (8C-CV) achieved a DoD of 0.694 at 600 s. However, the increase is marginal

and seems to approach a limiting value. With initial lower C rates (Cases 7 and 8), the achievable

DoDs are lower than the 6C-CV case. Overall, the results show that a high constant current in the

CC-CV protocols can slightly increase the achievable DoD within the total 600 s duration. The

curves of DoD versus time for these CC-CV simulations are shown in Fig. 4.18.

However, the high currents also lead to heat waste. The electrochemical energy released in the

lithiation processes is also provided in Table 4.3, which shows a gradual decrease in energy release

as a higher current is used in the CC-CV protocols. Thus the balance of achievable DoD and energy

e"ciency should be considered in terms of optimization. Based on the data presented in Table 4.3,

it is likely that 5C-CV would be a sensible choice for a 600 s charging over 6C-CV, as the increase

in DoD from 5C-CV to 6C-CV is marginal (⇐ 0.016). Still, a 5C start can reduce the stress on the

particles which may help prolong the cycle life of the particles.

Table 4.3 CC-CV lithiation protocols examined in simulations

protocols achievable DoD energy release
Case 7 4C ⇒ constant voltage 0.627 2.03≃10→5 J
Case 8 5C ⇒ constant voltage 0.664 1.93≃10→5 J
Case 2 6C ⇒ constant voltage 0.680 1.82≃10→5 J
Case 9 7C ⇒ constant voltage 0.689 1.71≃10→5 J
Case 10 8C ⇒ constant voltage 0.694 1.60≃10→5 J
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These simulations confirmed that the CC-CV lithiation, originally set up as a protective measure

to avoid plating, can also deliver a significant increase in electrode DoD. The constant-voltage

treatment leads the system to a relaxation by itself, which better performs than imposing another

high rate insertion. While some of these facts may already be qualitatively known by battery

researchers, this work provides a facile tool to assess such e!ects quantitatively. Note that the

lithiation protocol study presented here is specific to E_II. If the system was changed to another

electrode (e.g., E_III or E_IV), the exact quantitative results might be di!erent, and the optimal

protocols might di!er as well. Nevertheless, our tool and framework are capable of identifying the

optimum protocol for any electrode microstructure with any material properties.

4.4.5 Anisotropic e!ect in E_IV

In Section 4.4.1.2, we demonstrated that anisotropy in Li transport has only a negligible impact

on the performance of electrodes consisting of randomly oriented spherical graphite particles. In

Sections 4.4.3 through 4.4.4, we restrained the simulations to isotropic models for investigating the

microstructure e!ects on graphite electrodes. However, E_IV has plate-like particles, which leads

the through-plane direction to be easily identified as the slow transport direction. Here, we include

the anisotropic Li transport in a new 6C simulation, in which the through-plane Li mobility is four

orders of magnitude smaller than the in-plane mobility. The 𝑄𝑅 distribution at the cut-o! point

Figure 4.18 Simulated DoD versus time for di!erent CC-CV lithiation protocols. The DoDs at
600 s are provided in Table 4.3)
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(DoD =0.41) is shown in Fig. 4.19(a).

Figure 4.19(b) shows the simulated CV curve, plotted with a cyan dashed line. The isotropic

result (presented earlier) is also provided (the blue curve) here for comparison. A significant

decrease in cell performance is observed as the cell voltage is considerably lower in the anisotropic

result. The achievable DoD at 6C is much lower at 0.41. Figures 4.19(c) and (d) compare the same

zoomed-in section for an anisotropic and an isotropic simulation at the same DoD (0.41). The

anisotropic result shows sharper gradients of 𝑄𝑅 in the through-plane direction (𝐿-direction) while

relatively more uniform lithium distribution can be observed in the isotropic case. Furthermore, the

isotropic particles have a higher 𝑄𝑅 in their core centers. Evidently, the anisotropy in Li transport

should be included for accurate simulations for graphite particles with a large aspect ratio. Thus,

for all E_IV simulations presented earlier, the CV curves are expected to move toward the left

if including transport anisotropy. Conversely, the isotropic results should be still valid for the

simulations of sphere-like particles (E_II and E_III). Nevertheless, while our model is capable of

(a) (b)

(c) (d)

Figure 4.19 (a) Lithium fraction in particle for E_IV with anisotropy at 6C lithiation at the cut-o!
point 𝑄 = 0.41, (b) CV curves for anisotropic and isotropic models for E_IV; (c) and (d)
zoomed-in comparison for anisotropic and isotropic lithium concentration distribution.
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including crystal orientations explicitly, it is di"cult to detect graphite particles’ crystal orientations

in X-ray CT scans. Thus, using isotropic models is a forced choice due to the lack of orientation

information. For spherical particles, the isotropic assumption is valid regardless.

4.5 Conclusion

We utilize the Cahn-Hilliard phase-field equation with the smoothed boundary method to sim-

ulate lithium transport and phase transitions in graphite particles within electrode microstructures,

using input material properties parameterized from existing literature. Our simulations leverage

direct voxel data specifically for graphite anodes but can be applied to analyze a wide range of other

microstructures and materials. By establishing this framework, we demonstrate its e"cacy in con-

ducting in-silico(virtual) experiments to explore intricate details within electrode microstructures.

Our findings highlight the importance of considering phase transitions in electrode simulations.

Neglecting these transitions by employing Fick’s di!usion law to model Li transport in graphite

particles leads to overestimating the electrode’s performance. We investigate the influence of

morphological properties such as porosity and tortuosity at the microstructural level by comparing

three di!erent reconstructed graphite electrodes. While pore tortuosity appears to have only

a minor impact on electrode performance for thicknesses less than approximately <⇐100 𝑉m,

it becomes significant for thicker electrodes. These findings are consistent with experimental

observations, further validating our simulation approach. Additionally, our simulations explore

the e!ect of di!erent lithiation protocols on extending electrodes’ achievable Depth of Discharge

(DoD). Within a target 6C duration, we quantitatively demonstrate that a constant-current constant-

voltage protocol marginally outperforms other constant-current protocols. While these insights

align with physical intuitions, our simulations provide valuable quantitative predictions based on

explicit considerations of microstructures.

This work establishes a versatile framework transferable to the study of various electrodes. It

has been successfully applied to investigate hybrid anodes [57], optimize tunnels in electrodes,

and explore full-cell dynamics. Moreover, our work demonstrates the feasibility of simulating

multiphysics phenomena in highly complex microstructures using modest computational resources.
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While accurate material property parameters are essential for quantitative performance predictions,

acquiring high-quality material properties experimentally can be challenging. Therefore, besides

serving as a digital design tool for electrodes, we propose that our SBM framework could be

employed to calibrate intrinsic material parameters in electrochemical measurements accurately.
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CHAPTER 5

UNRAVELING HYBRID ANODE DYNAMICS AND ALLEVIATING PLATING

In this chapter, we investigate hybrid graphite-hard carbon anodes using the framework demon-

strated in the previous chapters. As highlighted in Chapter 4, while graphite remains widely

utilized in lithium-ion batteries, it exhibits limitations under fast charging conditions. Fast charging

in graphite can result in poor electrode utilization due to spatially inhomogeneous current [114].

Additionally, Li plating becomes significantly favorable during fast charging on graphite an-

odes [115–117]. This chapter focuses on addressing these challenges via a thermodynamic

approach, exploring hybrid anodes. Mixing various carbon-based materials [118, 119], and in-

corporating hard carbon to graphite anode [120–122] have been subjects of study in the literature,

aiming to harness the benefits of both materials while minimizing their drawbacks. Recently, a

graphite/hard carbon hybrid anode has shown potential in delaying and mitigating Li plating [123].

Chen et al. recently demonstrated that a graphite-hard carbon hybrid electrode o!ers significant

advantages over a pure graphite or a pure hard-carbon electrode [123]. Hard carbon, composed of

graphene fragments in an amorphous arrangement, exhibits a lower Li site density than graphite.

Although hard carbon displays lower energy density, it demonstrates a more homogeneous cur-

rent [124–126], which can be advantageous in delaying plating. Hereafter, we refer to hard carbon

simply as “carbon.”

We adapt the framework presented in Chapter 4 for hybrid anodes. The smoothed boundary

method (SBM) is employed to circumvent the need for conformal meshes at the microstructure

level. While we continue using the Cahn-Hilliard equation to describe Li di!usion in graphite

particles, Fick’s di!usion equation is adequate to model Li di!usion in carbon particles as carbon

anode does not undergo any phase transformations during lithiation. As in Sections 3.3.2 and

4.4.1.2, a discrete element method is utilized to create synthetic electrode microstructures, allowing

individual electrode particles to be distinguished and easily assigned to di!erent active materials.

Concentration-dependent material properties, parameterized from reported experimental data, are

incorporated in the simulations.
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In this chapter, the SBM simulations revealed an interaction between graphite and carbon

particles at the microstructure level, which agrees with the Porous Electrode Theory (PET) modeling

in Ref. [123]. During lithiation of the hybrid electrode, Li insertion is initially concentrated on

carbon particles as it is thermodynamically favored in the first stage. Then, as the Li fraction

in carbon increases, leading to a higher Li chemical potential in carbon particles compared to

graphite particles, lithiation switches to graphite particles in the second stage. A third stage is

revealed upon saturation of graphite particle surfaces where lithiation to carbon is favored again.

This third stage of lithiation is especially beneficial at high C rates in delaying the onset of

plating conditions. At these high C rates, graphite particle surfaces saturate much faster and the

carbon particles act as a bu!er to accommodate the additional lithium intake. This phenomenon

represents another coupling behavior in addition to the physical mechanisms mentioned earlier,

introducing a new aspect of electrode design. Thus, Li migration across graphite-hard carbon

interfaces is examined as well. Microstructure arrangements, such as particle sizes and positions,

can be manipulated to kinetically enhance or hinder the thermodynamics-driven interaction, as

demonstrated in the simulations. Moreover, the simulations indicate that a hybrid graphite-carbon

(HGC) electrode has a lower chance of Li plating than a pure graphite electrode, supporting

reported experimental observations [123]. The impact of intrinsic material properties, such as Li

di!usivity and exchange current density on carbon particles is also examined in the simulations. The

SBM o!ers a significant advantage of fast implementation of electrode microstructure simulations,

enabling easy rearrangement of particle configurations and reassignment of material properties to

di!erent particles. As a result, we expect this method to be widely employed to computationally

study the e!ects of microstructure and intrinsic material properties on battery performance.

The content presented in this chapter is adapted from the author’s publication in A!an Mailk

et al., Electrochemical dynamics in hybrid graphite–carbon electrodes, MRS Communications

(2022) [57].
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5.1 Modeling and equations

As described previously, SBM employs a continuous domain parameter (𝑂) to di!erentiate

between regions occupied by electrode particles and the electrolyte. In Chapters 3 and 4, we

explored half-cells with electrodes containing a single active material, while the hybrid anode in

this chapter is composed of two active materials: graphite and hard carbon. SBM allows us to easily

incorporate multiple domain parameters to define di!erent materials within a system. In this work,

we utilize two solid domain parameters: 𝑂𝜁 and 𝑂𝑧 representing graphite and hard carbon particles,

respectively. The third domain parameter representing the electrolyte is defined as 𝑂𝑔 = 1→𝑂𝜁→𝑂𝑧.

The Li transport process in graphite is described by the Cahn-Hilliard equation, as in Chapter 4.

The Cahn-Hilliard equation for graphite in hybrid anode:

𝑃𝑄𝜁

𝑃𝑆

=
1
𝑂𝜁

↑ ·

𝑂𝜁𝑈𝜁↑


𝑉
𝑦

𝜁
→ ↑ · 𝛺↑𝑄𝜁


+
|↑𝑂 |𝜁𝑔
𝑂𝜁

𝑌𝐿𝑍,𝜁𝑔

𝑋𝜁

. (5.1)

where the subscript ‘g’ corresponds to graphite and 𝑉
𝑦

𝜁
= 𝑃 𝛯𝜁/𝑃𝑄𝜁. 𝑄𝑖, 𝑂𝑖, 𝑈𝑖, 𝑉𝑖, 𝛯𝑖, and 𝑋𝑖 are Li

fraction, domain parameter, mobility, chemical potential, free energy function, and Li site density,

respectively. 𝑆 is time, 𝛺 is the gradient energy coe"cient, and 𝑌𝐿𝑍,𝑖 is the surface reaction rate.

The three domain parameters in the hybrid half-cell lead to three di!erent interfaces. We

di!erentiate di!erent interfaces by using

|↑𝑂 |𝑖 𝑇 =

|↑𝑂𝑖 | |↑𝑂𝑇 |. (5.2)

Thus, |↑𝑂 |𝜁𝑔 denotes the interface between graphite and electrolyte, |↑𝑂 |𝑧𝑔 denotes the interface

between carbon and electrolyte, and |↑𝑂 |𝜁𝑧 denotes the interface between graphite and carbon.

The kinetic equation for Li fraction evolution in hard carbon is similar to Eq. (5.1), except that

the gradient coe"cient vanishes because Li stays as a solid solution in amorphous carbon. The

equation is shown here—
𝑃𝑄𝑧

𝑃𝑆

=
1
𝑂𝑧

↑ · 𝑂𝑧𝑈𝑧↑𝑉𝑧 +
|↑𝑂 |𝑧𝑔
𝑂𝑧

𝑌𝐿𝑍,𝑧𝑔

𝑋𝑧

=
1
𝑂𝑧

↑ · 𝑂𝑧𝑈𝑧↑
(
𝑃 𝛯𝑧

𝑃𝑄𝑧

)
+ |↑𝑂 |𝑧𝑔

𝑂𝑧

𝑌𝐿𝑍,𝑧𝑔

𝑋𝑧

,

(5.3)

where the subscript ‘c’ indicates carbon and ‘ce’ indicates hard carbon-electrolyte interface. The

subscripts ‘ge’ and ‘ce’ indicate graphite-electrolyte and carbon-electrolyte interfaces, respectively.
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The magnitude of |↑𝑂 | is nonzero only at particle-electrolyte interfaces, thus e!ectively delineating

these interfaces. The current continuity equation, Eq. (2.14), requires modification to accommodate

both graphite and hard carbon particles. We have two distinct particle surfaces within the hybrid

anode, each with its own reaction flux and electrical conductivity. To address this, we introduce

equivalent reaction fluxes and equivalent conductivities derived using the two domain parameters.

These are then substituted into Eq. (2.14) to account for the new particle surfaces introduced in the

hybrid anode. The modified equation is shown here. Current continuity in the hybrid anode:

↑ ·
[ (
𝑂𝜁𝑑𝜁 + 𝑂𝑧𝑑𝑧

)
↑𝑒𝑐

]
→
(
|↑𝑂 |𝜁𝑔𝑌𝐿𝑍,𝜁𝑔 + |↑𝑂 |𝑧𝑔𝑌𝐿𝑍,𝑧𝑔

) (
𝑁→𝑓

)
= 0, (5.4)

where 𝑑𝑖 and 𝑒𝑐 are the electrical conductivities and the electropotential, respectively. The subscript

‘s’ indicates the entire solid i.e., the electropotential spreads over the entire solid, including both

graphite and hard carbon. The domain of solid can be expressed by 𝑂𝑐 = 𝑂𝜁 + 𝑂𝑧, but |↑𝑂 |𝜁𝑔 and

|↑𝑂 |𝑧𝑔 are two di!erent types of reactive surfaces. 𝑓 is the Faraday constant, and 𝑁→ is the charge

number. The subscript ‘→’ indicates anion.

Similar adjustments are made to ion di!usion and current continuity in the electrolyte expressed

in Eqs. (5.5) and (5.6), respectively. Ion di!usion in electrolyte:

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
(
|↑𝑂 |𝜁𝑔𝑌𝐿𝑍,𝜁𝑔 + |↑𝑂 |𝑧𝑔𝑌𝐿𝑍,𝑧𝑔

)
𝑂𝑔

𝑆→
𝑕+

→ ie · ↑𝑆+
𝑁+𝑕+𝑓

, (5.5)

Current continuity in the electrolyte:

↑ · [𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔] +
(
|↑𝑂 |𝜁𝑔𝑌𝐿𝑍,𝜁𝑔+|↑𝑂 |𝑧𝑔𝑌𝐿𝑍,𝑧𝑔

) 1
𝑕+

=

↑ · [𝑂𝑔 (𝑏→ → 𝑏+) ↑𝑊𝑔] ,
(5.6)

The surface reaction is calculated using the Butler-Volmer equation on the graphite-electrolyte

interfaces, Eq. (5.7) —

𝑌𝐿𝑍,𝜁𝑔 = kg
f 𝑊+ exp

[→𝑘𝑁+𝑓
𝑙𝑚

[𝑒]𝜁
𝑔

]
→ kg

b𝑊𝜁 exp
[ (1 → 𝑘) 𝑁+𝑓

𝑙𝑚

[𝑒]𝜁
𝑔

]
(5.7)

and on the carbon-electrolyte interfaces, Eq. (5.8) —

𝑌𝐿𝑍,𝑧𝑔 = kc
f𝑊+ exp

[→𝑘𝑁+𝑓
𝑙𝑚

[𝑒]𝑧
𝑔

]
→ kc

b𝑊𝑧 exp
[ (1 → 𝑘) 𝑁+𝑓

𝑙𝑚

[𝑒]𝑧
𝑔

]
(5.8)
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individually, where 𝛬
𝑖

𝛯
and 𝛬

𝑖

𝑦
are the forward and backward reaction rate constants, respectively,

given by

𝛬
𝜁

𝛯
=

𝑖0,𝜁

𝑁+𝑓𝑊+
exp

(
𝑘𝑁+𝑓
𝑙𝑚

𝑒
𝜁

𝑔𝑜

)
𝑎𝑍𝛥 𝛬

𝜁

𝑦
=

𝑖0,𝜁

𝑁+𝑓𝑊𝜁

exp
( (𝑘 → 1)𝑁+𝑓

𝑙𝑚

𝑒
𝜁

𝑔𝑜

)
. (5.9)

Similarly, for carbon, we have

𝛬
𝑧

𝛯
=

𝑖0,𝑧

𝑁+𝑓𝑊+
exp

(
𝑘𝑁+𝑓
𝑙𝑚

𝑒
𝑧

𝑔𝑜

)
𝑎𝑍𝛥 𝛬

𝑧

𝑦
=

𝑖0,𝑧

𝑁+𝑓𝑊𝑧

exp
( (𝑘 → 1)𝑁+𝑓

𝑙𝑚

𝑒
𝑧

𝑔𝑜

)
. (5.10)

The SBM equations are then solved on a regular grid system, with a standard finite di!erence

method [45–48] similar to Chapter 4.

The gradients of chemical potential drive Li transport in electrode particles. The chemical

potential is related to the open-circuit voltage (OCV) by εOCV =
(
𝑉 → 𝑉Li0

)
/e, where 𝑉

0
Li is the

chemical potential of metallic Li (a constant value), and e is the elemental electron charge. Note that

here we have assumed that metallic Li is the counter-electrode. Figure 5.1(a) shows experimentally

measured OCVs of graphite-Li [97] and carbon-Li [123] cells versus the degree of discharge (DoD),

from which 𝑉𝜁 and 𝑉𝑧 were extracted for the simulations. (Here, we used a graphite OCV curve

slightly di!erent from Ref. [123] to maintain consistency with our other work [50].) The four

single-phase regions of Li𝐿C6 are indicated by the numbers 1’ through 1 on the gray curve, and the

plateaus are the two-phase regions. The green curve monotonically decreases, indicating that Li

stays a solid solution in carbon. The red curve is an expected OCV of a 50-50 hybrid electrode,

obtained by linear interpolation from graphite and carbon OCVs. For the 50-50 hybrid electrode,

the distribution is based on cell volume for ease of implementation. However, this approach can be

easily adjusted to a weight-based ratio in any future studies. The curve is reasonably similar to the

measured one in Ref. [123].

The Li mobility in graphite was parameterized from reported di!usivity data [100] according

to 𝑏𝜁 = 𝑈𝜁 (𝑃𝑉𝜁/𝑃𝑄𝜁), where 𝑏𝜁 has four respective values of the four phases. Exchange current

density (𝑖0), crucial in determining the rate constants of (de)intercalation reaction, is scarce in the

literature. Thus, a Kinetic Monte Carlo simulated 𝑄𝜁-dependant 𝑖0 [75] was used in this work. Due

to the lack of experimental data for carbon, we assumed that Li di!usivity in carbon is a constant
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with a similar magnitude to that in graphite, and 𝑖0 on the carbon-electrolyte surface is the same as

that of graphite. Furthermore, since there is no available data, Li migration across particle contacts

was considered in two extreme cases. The permeability was chosen to be zero for most of the

simulations to eliminate interparticle transport. However, in two of the presented simulations, the

other extreme of infinitely large permeability was examined by setting a substantially high value of

permeability (relative to the mobility). The material parameters are detailed in the next section.

While SBM is uniquely powerful for directly using reconstructed microstructures in the sim-

(a) (b)

(c) (d) (e)

Figure 5.1 (a) OCV curves of graphite, carbon, and 50-50 hybrid electrodes. (b) Particle size
distribution of the synthetic electrode microstructure in the simulations. (c) The virtual battery
cell in the simulations, in which the gray and green colors indicate graphite and carbon particles,
respectively, the semi-transparent cyan plate indicates the Li metal anode, the brown plate in the
back indicates the current collector and the empty space between Li foil and hybrid electrode
serves as the separator. Synthetic 50-50 hybrid electrodes in which graphite and carbon are
assigned to (d) the small and large particles, respectively, and (e) front and back, respectively.
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ulations [44, 127], we do not have access to X-ray computed-tomography reconstructed hybrid

graphite-carbon (HGC) electrode microstructures that can clearly distinguish graphite and carbon.

Thus, synthetic HGC microstructures made of spheres were computationally generated using the

discrete element method for the simulations. The electrode contains 1159 spherical particles with

a size distribution shown in Fig 5.1(b), approximately following a log-normal function. The gray

and green colors in Fig 5.1(c) indicate graphite and carbon particles, respectively, in which the

particles were randomly assigned to the two active materials, but the volume fractions were kept

approximately equal. A virtual battery cell, comprised of Li foil (cyan slab), separator (empty

space between cyan slab and electrode), HGC electrode, and current collector (brown slab), was

used in the electrochemical simulations; see Fig 5.1(c).

5.1.1 Material parameters

Graphite and carbon OCV (𝑒OCV) curves are shown in Fig 5.2(a). The chemical potentials of

Li in graphite and carbon are

𝑉𝜁 = →𝑒𝛶𝑊𝛴 ,𝜁 (eV) (5.11)

𝑉𝑧 = →𝑒𝛶𝑊𝛴 ,𝑧 (eV), (5.12)

respectively, versus metallic Li. The curves are shown in Fig 5.2(b). Note that 𝑒𝛶𝑊𝛴 ,𝜁 has

plateaus in two-phase regions. To impose chemical potential for phase separation, we extrapolate

the curve from single-phase to two-phase regions. Thus, there are non-monotonic (laid-down

S-shaped) regions on the gray curve in Fig 5.2(b). Li di!usivities in graphite are assumed to be

8.99≃ 10→10, 6.67≃ 10→11, 3.93≃ 10→11, and 1.20≃ 10→10 cm2/s for Phase-1’ (𝑄 < 0.06), Phase-3

(0.12 < 𝑄 < 0.26), Phase-2 (0.48 < 𝑄 < 0.58), and Phase-1 (𝑄 > 0.95), respectively. The

four segments of Li di!usivity are shown as the four gray horizontal lines in Fig 5.2(c). Here,

we have multiplied the values in the data [100] by 100 ≃ 2/3 for the simulations, such that the

input parameters are close to many other measurements [103]. The Li di!usivity in hard carbon is

assumed to be 1.0≃ 10→11 cm2/s, shown as the green horizontal line in Fig 5.2(c). Li mobilities are

calculated from di!usivities and chemical potentials using Einstein’s relationship. Li mobilities in

graphite and carbon are shown as the gray and green curves, respectively, in Fig 5.2(d). The hump
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2 Material parameters used in the simulations. (a) OCV curves of graphite and carbon
electrodes. (b) The chemical potential of Li in graphite and carbon. (c) Li di!usivities in graphite
and carbon. (d) Li mobilities in graphite and carbon. (e) Exchange current density. (e) Ambipolar
di!usivity and ionic di!usivities.
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regions in 𝑈𝜁 (gray curve) are extrapolated from the valley regions. Exchange current density is

parameterized from reported KMC simulation results [75] and is shown as the gray curve in Fig

5.2(e). Ambipolar salt di!usivity, cation di!usivity, and anion di!usivity are shown as the red,

green, and blue curves in Fig 5.2(f). The function of 𝑏𝑔 is

𝑏𝑔 = 0.00489 ≃ exp(→7.02 → 830𝑊𝑔 + 50000𝑊2
𝑔
) cm2/s. (5.13)

We scaled the concentration-dependent Li salt di!usivity in Ref. [65] such that the values of 𝑏+ and

𝑏→ at 1 M are 1.25 ≃ 10→6 cm2/s and 4.0 ≃ 10→6 cm2/s, respectively, as in Ref. [45]. The electrical

conductivities of graphite and carbon used in the simulations are 3.3 and 1.0 S/cm, respectively.

Li site densities used in the simulations for graphite and carbon are 0.0312 and 0.0227 mol/cm3,

respectively. In this work, we tabulated 𝑉𝜁, 𝑉𝑧, 𝑈𝜁, 𝑈𝑧, and reaction constants into tables, instead

of fitting them to functions. Those quantities were interpolated from the tables in the simulations.

The simulation domain has a dimension of 320 ≃ 215 ≃ 360 Cartesian grid with ϑ𝐿 = 0.325 𝑉m.

We again adopt the binary electrolyte, LiPF6 dissolved in an arbitrary organic solvent, as detailed

in Chapter 3. The ambipolar di!usivity in Eq. (2.18) and ionic di!usivities in Eq. (2.20) are also

identical to the ones used before. More details can be found in Chapter 3 and Refs. [24,50,57,58].

5.2 Results and Discussion

5.2.1 Simulations on 50% hybrid anode

Figures 5.3(a) through (c) display snapshots of simulated Li fraction in the hybrid electrode at

three di!erent times during a constant 6C-rate lithiation. Here, C rates represent the rates of charge

or discharge in terms of capacity. Specifically, 6C means a full charge or discharge in 1/6 hours (10

minutes). The total capacity of this hybrid electrode is 1.041 ≃ 10→8 mol of Li (or 1.004 mAh), for

which a 6C rate corresponds to 2.790≃ 10→4 mA. Detailed calculation is provided in the Appendix

D.1. At the initial state, the Li fraction in graphite is 𝑄𝜁 ⇐ 0.02, and that in carbon is 𝑄𝑧 ⇐ 0.23.

See the gray and green arrows in Fig 5.3(a) for the initial Li fractions in the graphite and carbon

particles, respectively. These lead to an average Li faction (𝑄̄ , equivalent to DoD) of the electrode

to be 𝑄̄ ⇐ 0.125.
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Here, we set the initial 𝑄𝜁 to be 0.02 instead of 0 to ease numerical implementation. A small

time step size will need to be used for a stable simulation if 𝑄𝜁 = 0 because the magnitude of 𝑉𝜁 at

𝑄𝜁 = 0 is large. We do not expect additional insights to be gained in much longer simulations in

which the initial 𝑄𝜁 is 0. The initial values of 𝑄𝜁 and 𝑄𝑧 are equilibrated at an initial cell voltage of

0.5265 V. Since Li fractions determine chemical potential and Butler-Volmer reaction rate, the cell

voltage, and OCV curves are plotted versus Li fraction, i.e., DoD. Note that DoD in this chapter

is normalized with each electrode’s total capacity. The simulation reveals a three-stage lithiation

process. Initially, Li is predominantly inserted into carbon particles, after which intercalation shifts

considerably towards graphite particles. Subsequently, Li insertion in carbon particles becomes

favored again. These three stages correspond to the three segments with di!erent slopes on the

blue curve, simulated cell voltage (CV), in Fig 5.4(a). In the first stage, graphite particles are in

Phase-1’ (𝑄𝜁 < 0.06, indicated as 1’ in Fig 5.1(a)). Increasing 𝑄𝜁 requires a substantial increase

in chemical potential (𝑉𝜁), as inferred from the steep slope of the gray curve in Phase-1’ in Fig 5.2

(a) (b) (c)

Figure 5.3 Simulated Li fraction in the hybrid electrode for a 6C lithiation at depth of discharge
(DoD) equal to (a) 0.125 (𝑆 = 0 s), (b) 0.185 (𝑆 = 35 s), and (c) 0.41 (𝑆 = 183 s). The row below
shows the magnified views.
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(which corresponds to the gray curve in Phase-1’ in Fig 5.1(a)); i.e., the resistance of Li insertion

to graphite is large. As a result, Li insertion mainly occurs in the carbon particles, leading to high

(a)

(b)

(c)

Figure 5.4 (a) Simulated cell voltage: blue and brown curves are for the 6C and 1C lithiation,
respectively. Li fraction over time for (b) 6C and (c) 1C lithiation. The three markers on the blue
curve in (a) indicate the corresponding DoDs to Fig 5.3(a) through (c). The red, gray, and green
curves in (b) and (c) are the fractions of the whole electrode, graphite particles, and carbon
particles, respectively. The magenta line and triangle in (b) indicate the time corresponding to Fig
5.3(b). The cyan line and square in (b) indicate the time corresponding to Fig 5.3(c). The cyan
line in (c) indicates the time when graphite and carbon curves intersect. The three black arrows in
(c) point to the three plateaus on the carbon curve. The three arrows labeled A (magenta), B
(blue), and C (green) highlight the three stages of lithiation, respectively.
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𝑄𝑧 on carbon particle surfaces; see the magenta arrow in Fig 5.3(b) for an example.

Note that the governing equations of Li salt concentration evolution and electrostatic potential

in the electrolyte, electrostatic potential in the particles, and reaction rate on the particle surfaces are

also simultaneously solved in the SBM at the microstructure level. However, since the 𝑄 evolution

most intuitively represents the cell voltage behavior, we focus our discussions only on 𝑄 distribution

in the particles in this chapter. Examples of other fields are provided in Figs. 5.5 and 5.6. Given

their similarity with the fields presented in previous chapters, in-depth discussions of those fields

are not presented here. Readers are referred to Ref. [24,50,123] to study the relevant impacts from

those fields. Although both 𝑄𝑧 and 𝑄𝜁 increase during this stage, 𝑄𝑧 increases much faster. Figure

5.4(b) shows the evolution of average Li fractions of the entire electrode (red), carbon particles

(green), and graphite particles (gray). The curves are plotted versus time to highlight the time

scale. Since a constant 6C rate was used, time is linearly scaled with DoD: 𝑆 = 600 s corresponds

to DoD = 1. At the point that Fig 5.3(b) was taken (corresponding to the black triangle markers in

Fig 5.4(a) and (b)), 𝑄𝑧 has increased from 0.23 to 0.34 while 𝑄𝜁 only increased from 0.02 to 0.03.

As 𝑄𝜁 in graphite particles exceeds the solubility limit of Phase 1’, intercalation into graphite

becomes much easier because a large 𝑄𝜁 variation requires only a small change in 𝑉𝜁. Within

the multiple-plateau regime (0.06 < 𝑄𝜁 < 0.83), the total decrease of OCV over the entire

multiple-plateau regime is small, as shown on the gray curve in Fig 5.1(a). Thus, Li intercalation

to graphite occurs increasingly, as indicated by the steep slope of the gray curve in Fig 5.4(b),

passing the vertical magenta line. This stage corresponds to the second part of the blue CV curve

(0.2 < DoD < 0.56) in the 6C simulation in Fig 5.4(a). Figure 5.3(c) shows the Li fraction at

𝑆 = 183 s and DoD = 0.41 corresponding to the black square markers in Fig 5.4(a) and (b), at

which average 𝑄𝜁 = 0.32 and 𝑄𝑧 = 0.5, but surface 𝑄𝜁 has reached > 0.8 on some graphite particle

surfaces; see the cyan arrow in Fig 5.3(c). However, large graphite particles still have their cores

at Phase 1’ (𝑄𝜁 < 0.05) due to the inherent phase separation in graphite. The coexistence of the

four di!erent phases in a concentric core-shell structure can be observed for those particles. An

illustrative image is shown in 5.7 to show the distribution of four phases in the graphite particles.
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(a) (b)

(c) (d)

(e)

Figure 5.5 Simulated (a) Li salt concentration in the electrolyte, (b) Li fraction in electrode
particles, electrostatic potentials in the (c) electrolyte and (d) particles, and (e) SEPD on particle
surfaces at 𝑄 = 0.41 at 𝑆 = 183 s at 6C lithiation.
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(a) (b)

(c) (d)

(e)

Figure 5.6 Simulated (a) Li salt concentration in the electrolyte, (b) Li fraction in electrode
particles, electrostatic potentials in the (c) electrolyte and (d) particles, and (e) SEPD on particle
surfaces at 𝑄 = 0.41 at 𝑆 = 1068 s at 1C lithiation.
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A third stage is also observed, albeit briefly before meeting the termination criteria, where

lithiation to carbon once again becomes favored over graphite. This shift occurs because graphite

particle surfaces become saturated with lithium, significant resisting further Li insertion. In

contrast, carbon surfaces maintain a lower lithium concentration due to lithium forming a solid

solution within the carbon, unlike the phase separation observed in graphite. This allows the

carbon particles to act as a bu!er for lithiation, which is not present in a pure graphite anode,

thus alleviating plating. We further discuss this phenomenon in Sections 5.2.2 and 5.2.3. This

third stage corresponds to the third segment of the blue CV curve (0.56 < DoD < 0.63) in the 6C

simulation in Fig. 5.4(a). During this stage, 𝑄𝜁 on graphite surfaces is significantly higher than 𝑄𝑧

on carbon surfaces, although the average Li fraction in graphite is still marginally lower than that in

carbon, as observed in Fig. 5.4(b). The three stages of lithiation are highlighted as A, B, and C in

Figs. 5.4 (b) and (c), respectively. Henceforth, this 6C lithiation simulation serves as the baseline

Figure 5.7 Li fraction in graphite and carbon particles for 6C lithiation at 𝑄 = 0.635. The
magnified view shows that there are four phases in graphite particles: from the core to the surface
are Phase 1’ (dark blue), 3 (light blue), 2 (green), and 1 (bright yellow). The average 𝑄𝜁 and 𝑄𝑧

are similar, but 𝑄𝑧 is more uniform in carbon particles. The carbon particle surfaces are less
saturated than the graphite surfaces.
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result and is referred to as the standard case for future comparisons.

In addition to the high C rate case, simulation was performed on the same synthetic electrode for

a 1C lithiation, and the obtained CV is plotted as the brown curve in Fig 5.4(a). As expected, the CV

is closer to the OCV at a low rate, and the CV curve exhibits a more pronounced multiple-plateau

region (with three plateaus). A small dip is observed near DoD = 0.26, which indicates a sudden

decrease in Gibbs free energy of graphite when Phase 3 nucleates from a Li-saturated, metastable

Phase 1’. Similar small CV drops are commonly seen in simulations of phase-separating materials

yet not reported in experimental measurements. Phase separation (nucleation of a new phase)

from a metastable (supersaturated) state will suddenly reduce the system’s free energy according to

classical thermodynamics, leading to a sudden change in cell voltage. This phenomenon is widely

observed in phase-field simulations of electrochemical materials involving phase transformations,

for example, in the simulations of intercalation of Li𝐿FePO4 [34, 45, 56, 128–130]. The simulated

cell voltage curves will exhibit a dip or peak when a new phase nucleates in the particles. While a

Figure 5.8 Li fraction in graphite and carbon particles for 6C lithiation at 𝑄 = 0.56. The magnified
view highlights the di!erence in surface Li concentration between graphite and carbon particles.
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20–30 mV nucleation barrier for Li𝐿FePO4 has been measured from the intrinsic hysteresis [131]

of cell voltage on cycling, such a dip/peak on cell voltage curves, corresponding to the nucleation

barrier, has not been reported in experiment observations. It is generally believed that the dip/peak

associated with the nucleation event in each individual particle is averaged out in the aggregate of

a real electrode [131], which usually contains a large number of particles. Therefore, dips/peaks

cannot be resolved on an electrode’s measured cell voltage curve.

The three-stage dynamics is more clearly observed in the 1C case as it is closer to an equilibrium

process. Initially, intercalation occurs mainly into carbon, then switches to graphite, as indicated by

the steep slope of the green curve in Fig 5.4(c) before 𝑆 = 452 s, and finally switches back to graphite

(𝑆 >⇐ 2400 s). In contrast to the 6C case, the intrinsic thermodynamic behavior of phase separation

in graphite is more pronounced in the second-stage dynamics at 1C. For instance, three plateaus

can be observed on the green 𝑄𝑧 curve; see the black arrows in Fig 5.4(c). it is important to note

that Li remains a solid solution in amorphous carbon throughout the whole process. Each plateau

corresponds to one of the two-phase regions of graphite. These slow carbon lithiation speeds can

be understood as follows. At low rates, graphite lithiation during a two-phase process requires only

a small 𝑉𝜁 variation (𝑉𝜁 variation would be zero in an equilibrium phase transformation). Thus,

when graphite is in a two-phase transformation, most Li is inserted into the graphite, leading to

reduced carbon lithiation rates.

This thermodynamic behavior is even more prominent at the final stage (𝑆 > 2000 s or DoD >

0.635), during which the average 𝑄𝜁 is higher than the average 𝑄𝑧, see the curves passing the cyan

vertical line in Fig 5.4(c). The cross-over point is where the graphite and carbon OCV curves in

Fig 5.1(a) intersect, after which the thermodynamics favor a higher 𝑄𝜁 than 𝑄𝑧. The video files of

6C and 1C simulations are available on Ref. [57] SI web page and are detailed in Appendix D.2

(phase transformation wave sweeping through the electrode can be observed in some of the videos,

which is equivalent to the ‘heterogeneous reaction rate’ discussed in Ref. [123].).

The moles of Li intercalated to graphite and carbon are shown in Fig. 5.9(a) and (b) for

6C lithiation and 1C lithiation, respectively. The red, gray, and green curves are for the hybrid
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9 Simulated Li intakes over time. The standard case: (a) 6C lithiation and (b) 1C
lithiation. Cases of 6C lithiation in (c) small graphite and (d) small carbon particles. Cases of 6C
lithiation in (e) graphite and (f) carbon in the front region. Cases of 6C lithiation in (g) high
carbon 𝑖0 and (h) low carbon di!usivity.
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electrode, graphite particles, and carbon particles, respectively. It should also be noted that although

𝑄𝑧 increases in a similar range to that of 𝑄𝜁 in Fig 5.4(b) and (c), the total amount of Li intercalated

to graphite is much larger than that to carbon because Li site density in graphite is approximately

1.5 times that of carbon.

5.2.2 Surface electropotential drops (SEPDs)

5.2.2.1 Pure carbon vs pure graphite vs 50% hybrid

Surface electropotential drops (SEPDs, electrostatic potential across the particle-electrolyte

interface) were examined in simulations of a pure carbon electrode, a pure graphite electrode, and

a 50-50 hybrid electrode at 6C lithiation. Since Li fractions determine particle overpotential, we

examine the electrochemical performance with the same initial DoD for all three electrodes. Again,

the initial DoD was set to be 0.04 for the ease of numerical implementation. Note that because the

capacity of each electrode is di!erent, a 6C rate corresponds to di!erent current densities. The

quantities are provided in Appendix D.1. The cuto! point was set at the state that intercalation

was no longer thermodynamically favored on active surfaces throughout the entire electrodes; i.e.,

SEPDs were all below zero. (Negative SEPD indicates that the chemical potential for forming Li

metal is lower than that for intercalation, and thus Li-plating is thermodynamically favored [104].)

Figure 5.10(a) shows the simulated cell voltages of those three electrodes. The cuto! occurred

at similar times in the three simulations. The respective cell voltage curves versus capacity are

provided in Fig. 5.11. The SEPD distributions at cuto! are shown in Fig 5.10(b) through (d). In

the pure carbon and pure graphite electrodes, SEPDs monotonically descend toward the separator

regions, but SEPDs in the hybrid electrode strongly correlate to the type of particles. The SEPD is

more negative on graphite particle surfaces than on carbon particle surfaces. See the magenta and

cyan ovals in Fig 5.10(d).

The simulations showed that 𝑄𝜁 on graphite surfaces is much higher than that in the bulk

because of the inherent phase separation. On the other hand, 𝑄𝑧 is more uniform in the particles.

Even when the average 𝑄𝑧 is higher than 𝑄𝜁, the carbon surface is still unsaturated with Li. Carbon

particles can further accommodate Li that would be plated on graphite surfaces; i.e., carbon serves
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(a) (b)

(c) (d)

Figure 5.10 (a) Simulated cell voltage at 6C lithiation of carbon (green curve), graphite (gray
curve), and hybrid (blue curve) electrodes. Simulated particle surface electropotential drop (Volt)
at the cuto! point for (b) carbon, (c) graphite, and (d) hybrid electrodes. The particle surface
electropotential drops at the regions near the separator are approximately -1, -2.45, and -1.6 mV in
carbon, graphite, and hybrid electrodes, respectively. The magenta and cyan ovals indicate regions
with more graphite and carbon particles, respectively.
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as a bu!er for excessive Li in the hybrid electrode. Thus, less Li plating would occur on the

saturated graphite surface. The SEPDs near the separator are approximately →2.45, →1.6, and

→1 mV in the graphite, hybrid, and carbon electrodes, respectively, indicating that Li plating is

more favored on the graphite electrode than on the other two. This result directly supports the

experimental observations [123] that Li plating is less observed on hybrid electrodes than on a pure

graphite electrode. While the role of phase separation in graphite on Li plating has been previously

discussed by Chen et al [123] and Gao et al [109], the SBM simulations illustrate this mechanism

at the particle-microstructure level.

5.2.3 Exploration of hybrid anode arrangements

5.2.3.1 E!ect of permeability

The fact that a hybrid electrode exhibits a three-stage lithiation process indicates a di!erence in

the driving force of Li intercalation between carbon and graphite particles. Such a deviation may

lead to Li migration across graphite-carbon contact interfaces. Thus, two additional simulations

were performed to study such an e!ect from a modeling perspective, in which permeability of

1 ≃ 10→5 cm/(s·eV) per Li was assigned to graphite-carbon interfaces (similar to the treatment in

Figure 5.11 Simulated cell voltage curves of hybrid, pure graphite, and pure carbon electrodes at
6C lithiation. The curves are plotted versus Li capacity. As can be seen, the capacity of a pure
graphite electrode is larger than that of hybrid and pure carbon electrodes.
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Ref. [46]). This value, several orders of magnitude greater than Li mobility, was chosen such that

the permeability will not limit Li migration. The blue curves in Fig 5.12(a) and (b) show the Li

migration rates from graphite to carbon particles (across the interfaces) at 6C and 1C lithiation,

respectively.

In the first stage (𝑆 < 52 s) of 6C lithiation, Li migrates from graphite to carbon as interca-

lation into carbon is thermodynamically favored. During this stage, Li insertion into carbon via

(a)

(b)

Figure 5.12 Li exchange rate (blue curve) between graphite and carbon particles at (a) 6C and (b)
1C lithiation. A positive value indicates migration from graphite to carbon. The blue curves
reference the 𝑀-axis on the right. The gray and green curves are the electrochemical insertion rates
of graphite and carbon, respectively. They refer to the 𝑀-axis on the left.
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electrochemical reaction through the carbon-electrolyte interface is approximately five times the

insertion to graphite via electrochemical reaction (see the green and gray curves before 𝑆 = 52 s in

Fig 5.12(a)). The fluctuations on the gray, green, and blue curves indicate phase separation events

in graphite (surface regions). Upon entering the second stage, graphite particles started to absorb

Li from carbon particles, as indicated by the negative exchange rate on the blue curve. During this

stage, the electrochemical insertion into carbon is reduced to roughly a quarter of that into graphite.

In the third stage (𝑆 > 280 s), the electrochemical insertion to carbon increases while the insertion

to graphite decreases as illustrated by the green and gray curves in Fig 5.12. Although, the Li ex-

change between graphite and carbon remains graphite-favored, indicated by the negative exchange

rate (the blue curve), the trend appears to shift towards a carbon-favored exchange. Throughout the

6C lithiation, Li across the interfaces of the two particles is less than 1% of the electrochemical

insertion flux to either graphite or carbon.

As shown in Fig 5.12(b), Li migration from graphite to carbon occurred during most of the

entire 1C lithiation, except for a short period during the transition between the first and second

stages (450 < 𝑆 < 780 s, where the blue curve is below zero). In this 1C case, the magnitude of

the electrochemical insertion rate to the thermodynamically favored particles is roughly eight to

ten times that to the non-favored particles (see the overall magnitudes of the gray and green curves

in Fig 5.12(b)) because the lithiation process reflects more intrinsic thermodynamic behavior at

a low rate. Compared to the 6C case, surges of electrochemical insertion to graphite are more

pronounced in the second stage, as indicated by the clear humps on the gray curve, corresponding

to the recessions on the green curve. Those surges of Li electrochemical insertion to graphite were

accompanied by ‘leakage to carbon particles,’ indicated by the humps on the blue curve in 5.12(b).

In this 1C simulation, Li migration to carbon through particle contacts could sometimes be greater

than Li insertion via surface electrochemical insertion. Nevertheless, Li migration across particle

contacts was fairly low: the overall lithiation rates of graphite and carbon were very similar to

those from the standard case (zero permeability case, the insertion rates are plotted as the thin,

light-colored curves in Fig 5.12(b) for comparison). In principle, we found that the permeability
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of particle contact interfaces has no significant influence on the lithiation behavior.

5.2.3.2 E!ects of particle size

It is interesting to examine the e!ects of particle size on the performance of the hybrid electrode.

Figure 5.1(d) shows a synthetic electrode microstructure with the same particle configuration, but

in which particles with a diameter smaller than 11.34 𝑉m are assigned with graphite properties

(marked in gray), and the rest are carbon (marked in green), resulting in a 49 : 51 graphite-carbon

volume ratio. (Here, 49 : 51 is the ratio closest to 50 : 50 by dividing particle population with

diameters.) We first discuss the results of 6C simulations here. Simulations of 1C lithiation are

presented later. The gray curve in Fig 5.13(a)-i is the simulated CV. As in Fig 5.4(a), CV curves are

plotted versus DoD. The total capacity of this electrode is close to that in the standard case because

graphite and carbon each occupy ⇐50% of the total volume.

In the first stage, the CV curve falls below the standard case (the thin blue curve), indicating a

larger cell overpotential (or less e"cient electrochemical performance) compared to the standard

case (randomly assigning particles). Cell overpotential is the deviation between cell voltage and

cell OCV. A smaller cell overpotential is equivalent to a higher electrochemical e"ciency. The

decrease in performance is because insertion to carbon is hindered by the low surface-to-volume

ratio of large carbon particles, even though insertion to carbon is thermodynamically favored during

this stage. In contrast, in the second stage (during which intercalation to graphite is favored), the

high surface-to-volume ratio of small graphite particles facilitates the lithiation. Thus, the CV

curve is lifted above that in the standard case. The evolutions of average Li fraction in graphite and

carbon particles are plotted in the dark gray and dark green curves in Fig 5.13(a)-(ii), respectively.

As in Fig 5.4(b), Li fraction evolution curves are plotted versus time. Compared to the standard

case (the thin dotted curves), intercalation to graphite is much enhanced by using small graphite

particles. 𝑄𝜁 even exceeds 𝑄𝑧 after 𝑆 = 225 s. (The 𝑄𝜁 and 𝑄𝑧 curves of the standard case in Fig

5.4(b) are presented as the thin dotted curves in Fig 5.13(a)-(ii) for comparison). The third stage is

barely reached before meeting the termination criteria in these simulations, as observed from Fig.

5.13(a)-ii. At the simulation cuto!, the average 𝑄𝜁 has increased from 0.02 to 0.78, but the average

112



(a)-i -ii

(b)-i -ii

(c)-i -ii

Figure 5.13 Simulated cell voltages and Li fraction evolution at 6C lithiation for (a)-(i) and (ii) of
large-versus-small graphite particles, (b)-(i) and (ii) of front-versus-back graphite particle
locations, and (c)-(i) and (ii) of high carbon 𝑖0 and low 𝑏𝑧 cases, respectively. The dotted lines
represent the standard case, a 6C lithiation in 50% hybrid anode with random distribution shown
in Fig. 5.1(c)
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𝑄𝑧 only increased from 0.23 to 0.58.

The green curve in Fig 5.13(a)-i is the simulated CV of the flipped case, in which particles

with diameters larger than 11.34 𝑉m are assigned with graphite properties. Due to the enhanced

insertion into carbon particles (with smaller sizes), the CV curve in the first stage of lithiation

falls on the right to that of the standard case, indicating an enhanced electrochemical performance.

However, in the second stage, intercalation to graphite particles is hindered by graphite particles’

large sizes. Thus, the CV curve falls below the thin blue curve. The e!ect of enhanced Li insertion

to carbon, stemming from smaller particle sizes, can also be observed from the higher slope of

the light green curve compared to the dark green one in Fig 5.13(a)-ii. Furthermore, the operation

time of this small carbon particle case (up to 311 s) is significantly reduced compared to that in the

small graphite particle case (up to 367 s).

Fig. 5.14(a) displays the simulated cell voltage curve for 1C lithiation for both small graphite

and small carbon cases. The thermodynamic e!ect in 1C cases is similar to that in 6C cases. Small

graphite particles facilitate the second stage of lithiation. Small carbon particles facilitate the first

stage of lithiation. Li fraction evolution and accumulated Li intake to graphite and carbon in the

1C lithiation is also presented in Fig. D.3(a)-(i) and (ii) in the Appendix D.3.

5.2.3.3 E!ects of particle locations

Next, we examined the e!ect of particle locations. Figure 5.1(e) shows the microstructure

configuration (the same particle configuration), in which particle centers located in 𝐿 < 44.5

𝑉m were assigned with graphite properties in the first case and otherwise assigned with carbon

properties in the second case; i.e., graphite and carbon particles were located in the ‘front’ and

‘back’ regions of the electrode. The volume fraction ratio is 50 : 50 between graphite and carbon.

The simulated CV for 6C lithiation is plotted as the gray curve in Fig 5.13(b)-i. The fact that carbon

particles were away from the counter electrode hindered the insertion into the carbon particles in

the first stage of lithiation. Thus, the CV (gray) curve is shifted to the left of the standard case (thin

blue curve). In the second stage (insertion to graphite is favored), the shorter distance between

graphite and the counter electrode improved the electrochemical performance slightly: the gray
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curve is slightly above the thin blue one. While in the third stage, the two e!ects roughly balance

each other placing the gray curve almost on top of the standard blue curve. Overall, the position

of graphite particles slightly enhanced the Li intact, as can be seen in the dark gray curve in Fig

(a)

(b)

(c)

Figure 5.14 Simulated cell voltage versus DoD at 1C lithiation. (a) Case for comparison between
small graphite and small carbon particles. (b) Case for comparison between graphite or carbon
particles in the front region. (c) The cases of high carbon 𝑖0 and low carbon 𝑏𝑧.
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5.13(b)-ii compared to the standard case (the thin dotted gray curve). The green curve in Fig

5.13(b)-i is the simulated CV of the ‘flipped’ case, in which carbon particles were located in the

front region. The fact that carbon particles were located closer to the counter electrode led to a

slightly improved electrochemical performance in the first stage, as indicated by the green curve

falling slightly on the right to the standard case. In the second and third stages, the e!ect of the

graphite particles being located in the back region decreased the electrochemical performance, as

indicated by the green curve being below the thin blue curve.

In terms of increase in Li fraction over time, placing carbon particles in the front region

facilitated the Li intake to carbon, as indicated by the slope of the light green curve in 5.13(b)-ii.

However, such an arrangement also decreases Li intake to graphite. Because graphite possesses

a much larger Li capacity than carbon, there is no improvement in the total Li intake in this case

compared to the standard case as shown in Figs. 5.9(e) and (f). A similar observation can be

inferred from 1C lithiation curves displayed in Figs. D.3 in Appendix D.3. The e!ect of placing

graphite or carbon particles in the front region is minimal in the 1C case as seen in Fig. 5.14(b)

where the curves are very similar to the standard case.

5.2.3.4 E!ects of exchange current density and mobility

The exchange current density on the carbon surface is an uncertain material parameter in the

presented simulations because we do not have access to measured data for hybrid anodes. An

additional simulation with carbon 𝑖0,𝑧 ten times that of graphite 𝑖0,𝜁 was performed on the electrode

microstructure of the standard case to examine the impact of carbon 𝑖0,𝑧 on the simulation results.

The simulated CV for 6C lithiation is plotted as the gray curve in Fig 5.13(c)-(i), and the Li fraction

evolutions are plotted in the dark-colored curves in Fig 5.13(c)-(ii). In the first stage (DoD < 0.225

or 𝑆 < 60 s), the high 𝑖0,𝑧 enhanced Li insertion to carbon, and thus the CV curve falls on the right

to the thin blue curve (the standard case where 𝑖0,𝑧 = 𝑖0,𝜁). This e!ect extended to the second and

third stages, during which the enhanced insertion to carbon slightly decreased the amount of Li

insertion to graphite, thus reducing the overpotential on graphite surfaces and leading the CV (gray)

curve to be slightly above the thin blue curve. The overall Li fraction evolutions (the dark-colored
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curves in Fig 5.13(c)-(ii)) in this simulation are very similar to those in the standard case (the thin

dotted curves) but with an extension in the operation time (378 s compared to 342 s in the standard

case). Interestingly, even though 𝑖0,𝜁 was kept the same as in the standard case, the SEPD (→0.15

mV, shown in Fig. 5.15) at the cuto! of this simulation is only approximately 10% of that in the

standard case, implying that much less Li-plating will be observed with a high 𝑖0,𝑧. This may be the

case observed in experiments. Unfortunately, no exact value of carbon 𝑖0 is available to examine

this hypothesis.

Li mobility in carbon (𝑈𝑧) is another uncertain material parameter in this work. The green

curve in Fig 5.13(c)-(i) is the simulated CV for 6C lithiation, in which 𝑈𝑧 is set to be one order of

magnitude smaller than that in graphite (𝑈𝜁). As expected, Li insertion to carbon was hindered,

leading the CV (green) curve to fall to the left of the standard case (the thin blue curve) in the first

stage. This e!ect extended to the second and third stages, during which insertion flux to graphite

Figure 5.15 Simulated SEPD on HGC surfaces at 6C lithiation for the case of high carbon 𝑖0,𝑧.
The unit of the color bar is V. The dark blue regions are graphite particles.
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was larger than that in the standard case to maintain the same C rate. The net e!ect led to a large

overpotential on graphite particle surfaces. Consequently, the green CV curve fell below the thin

blue curve. The reduced insertion rate to carbon and increased insertion rate to graphite during the

second stage can be inferred by the low and high slopes of the light green and light gray curves,

respectively, in Fig 5.13(c)-ii. The light gray curve even intersects the light green one near 𝑆 ⇐ 223s.

This set of simulations implies that the impact of 𝑈𝑧 is not as pronounced as 𝑖0,𝑧 in the first stage

of lithiation, although the majority of Li insertion occurs on the carbon particles. Furthermore, the

lithiation dynamics in a hybrid electrode are a!ected in a complex way by the status of the two

active materials. For instance, as illustrated in the previous simulation, increasing carbon 𝑖0,𝑧, which

enhances lithiation to carbon, will also increase Li insertion to graphite. A decrease in insertion

to carbon (e.g., due to low di!usivity in this simulation) will force the insertion toward graphite.

The lithiation behavior cannot intuitively reflect only one of the intrinsic material properties. This

complexity makes predicting and analyzing cell performance di"cult without detailed simulations,

such as those presented in this text.

5.3 Conclusion

In this chapter, we demonstrate the e"cacy of our framework utilizing the smoothed bound-

ary method to simulate electrochemical processes within computationally generated, synthetic

graphite-carbon hybrid electrode microstructures. In this approach, a phase-field method is utilized

to model the complex multi-phase lithiation processes of graphite. Despite carbon being a lithium

solid solution, the multi-phase behavior of graphite induces a multi-stage lithiation process in the

hybrid electrode. Initially, the lithiation of carbon is thermodynamically favored, followed by a shift

towards favored lithiation of graphite in the second stage. In this stage, the surface concentration

of graphite increases rapidly. In the third stage, the carbon particles start getting lithiated again

where the surface concentration of graphite is extremely high while carbon surface concentration

is relatively low. The simulation outcomes align with observations indicating significantly reduced

Li plating on hybrid graphite-hard carbon anodes compared to pure graphite counterparts. Addi-

tionally, we find that electrode performance can be influenced by manipulating particle sizes and
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positions within the microstructure. Among the various arrangements explored, employing smaller

graphite particles appears to be the most e"cient approach.
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CHAPTER 6

HIGH-THROUGHPUT INVESTIGATION OF FREE PATHWAYS/ TUNNELS IN
GRAPHITE ANODES FOR IMPROVED LITHIUM-ION BATTERY PERFORMANCE

6.1 Introduction

As briefly mentioned in Chapter 4, thick electrodes have gained renewed interest in designing

lithium-ion batteries for high-capacity applications. [95, 112, 113] For the same thickness of a

stack of battery cells, the one with thick electrodes will have fewer inactive components, such

as separators and current collectors. Therefore, careful and pedantic design of such electrodes

can lead to a higher loading and overall energy density. However, thick electrodes inherently

have poor kinetics and lack mechanical strength. Several researchers have explored the design of

better thick electrodes using experiments. [95, 96] In our work, we use simulations to gain insight

into the design of better thick electrodes. Introducing free pathways/tunnels in the electrodes can

enhance the salt ion migration through the electrodes, thus, combating the challenges of poor

kinetics faced by thick electrodes mentioned in Refs. [95, 132]. These types of electrodes are also

called perfoliated electrodes. Recently, a few experimental studies have shown tunnels to delay

reaching the overcharging condition (cut-o! condition) [107, 133, 134]. Porous Electrode Theory

(PET) modeling has also been employed to simulate the performance of graphite electrodes with

laser-ablated tunnels [107, 135]. However, the microstructural-level details were not resolved in

the PET simulations. Additionally, resolving tunnels with PET involves simulating PET spheres in

3D, e!ectively creating pseudo-4D simulations, which substantially increase computational time

and memory requirements.

In this chapter, we examine the e!ects of introducing straight cylindrical tunnels in the electrode

microstructures. More specifically, we study graphite microstructures as we demonstrated in

Chapter 4 the need for improved salt di!usion toward the back of the electrode, especially for

thick electrodes and high C-rates. We use an automated high throughput strategy to compare and

contrast various factors that a!ect the impact of tunnels in an electrode as well as compare several

thicknesses of the electrodes. The idea of high-throughput computations has been common in
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Density Functional Theory (DFT) and Molecular Dynamics (MD) calculations [136–139] serving

the dual purpose of screening existing and novel materials and generating new data for machine

learning applications. Following similar principles, high-throughput electrochemical simulations

with tunnels can allow us to identify and study patterns and empirical relations between tunnels

and their electrochemical performance. Furthermore, the generated data can be used in data-driven

approaches to predict tunnel behavior. Since the simulations in this work require only the voxel

microstructural data, it is extremely easy to introduce tunnels by removing some voxels. The

simulations were performed only for 6C lithiation because the e!ect of tortuosity is not significant

at a low C rate as discussed in Chapter 4.

6.2 Model

6.2.1 Governing equations

We used the same modeling framework as discussed in Chapters 2, 4, and 5. We briefly

summarize the framework here. The SBM reformulated equations solved for the engineered

graphite electrodes are listed here —

Cahn-Hilliard equation:

𝑃𝑄𝑅

𝑃𝑆

=
1
𝑂

↑ ·
[
𝑂𝑈𝑅↑

(
𝑉𝑦 → ↑ · 𝛺↑𝑄𝑅

) ]
+ |↑𝑂 |

𝑂

𝑌𝐿𝑍

𝑋

. (4.6)

Current continuity on graphite particle surface:

↑ · (𝑂𝑑𝑐↑𝑒𝑐) → |↑𝑂 |𝑁→𝑓𝑌𝐿𝑍 = 0. (2.14)

Ion di!usion in electrolyte:

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
|↑𝑂𝑔 |
𝑂𝑔

𝑌𝐿𝑍𝑆→
𝑕+

→ ie · ↑𝑆+
𝑁+𝑕+𝑓

, (2.18)

Current continuity the in electrolyte:

↑ · [𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔] + |↑𝑂𝑔 |
𝑌𝐿𝑍

𝑕+
= ↑ · [𝑂𝑔 (𝑏→ → 𝑏+) ↑𝑊𝑔] , (2.20)

Butler-Volmer equation:

𝑌𝐿𝑍 =
𝑖0
𝑁+𝑓

[
exp

(→𝑘𝑁+𝑓
𝑙𝑚

𝑛

)
→ exp

( (1 → 𝑘)𝑁+𝑓
𝑙𝑚

𝑛

)]
(2.7)

These equations are detailed in previous Chapters 2, 4, and 5.
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6.2.2 Tunneled microstructures

As in Chapter 4, the 3D simulations on graphite in this chapter use real microstructures

reconstructed from experimental data. Data for graphite is publicly available at [99]. The graphite

reconstructed microstructures E_II and E_IV are detailed in Chapter 4 and displayed in Fig. 4.4. The

first demonstration of a tunnel uses E_IV-3X used in Chapter 4 with dimensions of 58.5≃55.2≃52

𝑉m3 where 165.6 𝑉m is the triple thickness. A tunnel was introduced at the center of this electrode

with a radius of 12 𝑉m. This tunnel removed approximately 15% of the active material.

For our high throughput studies, we use di!erent variations of E_II, some demonstrated in

Fig. 6.1. Due to the enormity of the data required to analyze the impact of tunnels on several

thicknesses of the electrodes, we designed an automated process to create cylindrical tunnels in

the electrode. A trick to save computational e!ort is using unit cells like those shown in Fig.

6.1. These microstructures can be assumed as a unit cell of the entire bigger electrode and can

be duplicated to extrapolate results for multiple tunnels as demonstrated in Figs. 6.3 and 6.1.

Namely, symmetric boundaries are used to represent self-repeating unit cells. Thick electrodes

were obtained by repeating a single unit of the electrode and connecting them back to back as

(a) (b) (c)

(d) (e) (f)

Figure 6.1 Illustration of a hexagonal tunnel array in E_II microstructures with thickness,
t=220𝑉m, and di!erent tunnel volume/radius: (a) no tunnel, (b) 3.9% tunnel volume, (c) 15.5%
tunnel volume, (d) 27.6% tunnel volume, (e) 43.1% tunnel volume, and (f) 72.3% tunnel volume,
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illustrated in Fig. 4.14(b). Four di!erent electrode thicknesses were created and studied ⇐ 55𝑉m,

⇐ 110𝑉m, ⇐ 165𝑉m and ⇐ 220𝑉m further referred to as 1X, 2X, 3X, and 4X in this chapter.

6.2.2.1 Factors a!ecting tunnel performance

For the rest of the chapter, we shorthand improvements shown by introducing tunnels to tunnel

performance for the sake of brevity. To quantitatively analyze a tunnel performance, we look at

several simulation results from a cell cycle including total achievable capacity, Before we present

any simulation results in the upcoming sections, let us define three parameters — achievable SoC

(state of charge), tunnel volume fraction, and achievable Li capacity. We define achievable SoC as

the maximum lithium fraction attained before reaching the overcharging condition, tunnel volume

fraction as the fraction of the volume of the electrode covered by the tunnel, and achievable Li

capacity as the maximum capacity attained before reaching the overcharging condition. Addition-

ally, we use normalized Li capacity to highlight comparisons between di!erent electrodes which is

calculated by normalizing the capacity of any electrode with respect to the capacity of the electrode

with no tunnels. These three parameters will be essential in analyzing the impact of tunnels on

electrode behavior. Furthermore, we hypothesize that the parameters listed below are the primary

influential factors of a tunnel in an electrode.

• Radius of the tunnel (r): As tunnels aim to provide easy di!usive transport channels for

the electrolyte, the radius of the tunnels is an apparent determining factor for improving the

electrode’s achievable capacity. Through our studies discussed later in this chapter, we found

that an optimal radius can be identified for a given thickness of the electrode. A small tunnel

doesn’t provide enough of a channel for ion migration, while a thick wide tunnel leads to too

much capacity loss due to the removed electrode volume.

• Inter-tunnel Distance/Tunnel separation (d): Additionally, the placement of the tunnels

also a!ects their performance. We hypothesize that each tunnel has an "a!ected region"

around it. This "a!ected region" is a volume surrounding the tunnel illustrated in Fig. 6.6,

where a noticeable improvement in Li di!usion can be observed due to the introduction of
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that tunnel. This "a!ected region" renders placements of the tunnels with respect to each

other crucial to the overall enhancement of performance. Inter-tunnel distance or tunnel

separation is defined as the center-to-center distance between tunnels.

• Thickness of the electrode (t): While the thickness of the electrode doesn’t directly deter-

mine improvements made by the introduction of a tunnel, it changes the optimal radius and

arrangement for the tunnels.

6.3 Results and Discussions

6.3.1 Impact of a tunnel in thick electrodes

Figure 4.14(b) indicates that the back of TP E_IV-3X is barely utilized during a 6C lithiation.

This directly results from the highly tortuous path for salt ion migration. We create a straight

cylindrical tunnel in the E_IV-3X. To highlight the enhancement of tunnels in ion migration,

we select TP E_IV-3X in the simulations because it has a larger pore tortuosity than those of

E_II and E_III. Since the simulations in this work require only the voxel microstructural data,

it is extremely easy to introduce tunnels by removing some voxels (i.e., setting voxel values to

zero). The simulations were performed only for 6C lithiation because the e!ect of tortuosity is not

significant at a low C rate.

Figure 6.2(a) shows the simulated CV curves for TP E_IV-3X at a 6C rate with and without

a tunnel. As shown in the previous section, TP E_IV-3X without a tunnel can reach only 0.175

DoD (corresponding to 𝑆 = 105 s) at the cut-o! condition. On the other hand, with the tunnel, the

electrode’s achievable DoD was increased by nearly threefold: 0.505 (corresponding to 𝑆 = 307

s). Even after accounting for the loss of active materials, the tunneled electrode still had a total

achievable Li capacity of 2.45 (= 0.505 ≃ 0.85/0.175) times the one without the tunnel.

Figure 6.2(b) displays the 𝑄𝑅 in the tunneled electrode at the cut-o! point. A uniform lithiation

throughout the electrode is observed. This is noticeably di!erent from the no-tunnel case in Fig.

4.14(b), in which the back of the electrode is barely lithiated. Even though tunnels can enhance the

spread of salt ions, some large graphite particles still have cores devoid of lithium, highlighting that
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particle size is a limiting factor at high-rate (de)lithiation. Figures 6.2(c) and (d) contrast the salt

ion concentration in the electrolyte in the no-tunnel and tunneled cases. Both images were taken

at the cut-o! points (reaching the Li-plating point). Clearly, the tunnel alleviated the depletion

of salt ions in the electrode. See the light-blue colors in Fig. 6.2(d), as opposed to the dark-blue

colors in Fig. 6.2(c). Additionally, as indicated by the red color in Fig. 6.2(c), salt ions are highly

concentrated in the separator region because they cannot be distributed deeply into the electrode.

As a result, lithiation was highly concentrated on the front side (near the separator) of the electrode

(a) (b)

(c) (d)

(e) (f)

Figure 6.2 (a) CV curves for TP E_IV-3X at 6C with and without a tunnel. (b) 𝑄𝑅 in particles in
TP E_IV-3X with a tunnel. 𝑊𝑔 in TP E_IV-3X (c) without a tunnel and (d) with a tunnel. Note
that (c) and (d) have been rotated along the 𝑁-axis to show the back side of the electrodes.
Electropotential drop across the particle surfaces (e) without a tunnel and (f) with a tunnel.
Subfigures (b) through (e) are plotted at the cut-o! point.
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and the electrode reached the cut-o! point much earlier than the tunneled electrode.

Figures 6.2 (e) and (f) show the electropotential drop across the electrode particle surfaces for

the no-tunnel and tunneled cases, respectively, at the time when the no-tunnel case reaches the

cut-o! condition. While some regions in the no-tunnel case reached the plating condition (negative

electropotential drop), all surfaces in the tunneled case still had a positive electropotential drop,

indicating that insertion was still thermodynamically favored. This result supports the experimental

observations in Ref. [107, 133, 134].

In summary, we found that while tunnels allow the spread of the reactions more uniformly

throughout an electrode, the enhancements are prominent only in thick (> 150 𝑉m) graphite elec-

trodes. We also demonstrate the ease of using direct voxel simulations to examine the microstructure

e!ects. A further comprehensive study of the engineering design of electrode microstructures can

be a future extension.

6.3.2 Systematic study of tunnels

6.3.2.1 Arrangements: Square vs Hexagonal and e!ects of tunnels with di!erent electrode
thicknesses.

A key factor in studying the behavior of tunnels is their arrangement with respect to each other.

We examine two such arrangements, square and hexagonal, as illustrated in Fig. 6.3.

(a) (b)

Figure 6.3 Singular units of tunnels of a (a) Square arrangement, and (b) Hexagonal arrangement.

126



The key di!erences in the two arrangements as highlighted in Fig. 6.3 is the relative position

of any two tunnels. In the square arrangement, any two tunnels are at a 90↖ angle while in the

hexagonal arrangement, tunnels are at a 60↖ angle. Note that for the two arrangements, the thickness

and the width of the unit cell are kept the same with di!erent heights to accommodate for the two

di!erent angles between any two tunnels as illustrated in Fig. 6.3.

We run automated simulations with increasing tunnel radius for the four di!erent thicknesses

for both arrangements. The tunnel separation, d, is kept at ⇐ 88𝑉m for all these simulations. The

width of a unit cell is chosen to be 44.2𝑉m for both arrangements. Accordingly, the depth of the

unit cell is set to 44.2𝑉m for the square arrangement and 76.7𝑉m for the hexagonal arrangement.

As in Chapters 4 and 5, cell voltage = ⇐ 0V is set as the cut-o! condition for these simulations.

Fig. 6.4 (a) shows the achievable SoC for all four electrode thicknesses with the two arrangements

at a 6C lithiation rate. The solid lines represent the hexagonal arrangement while the dashed lines

represent the square arrangement. Fig. 6.4 (a) clearly indicates that the hexagonal arrangement

performs better than the square arrangement, displaying higher achieved SoC over increasing tunnel

volume fractions in electrodes. Fig. 6.4 (b) distinctly highlights the contrast in achievable SoC

(a) (b)

Figure 6.4 Achieved State of Charge (SoC) vs tunnel volume fraction/coverage for both hexagonal
and square arrangements (a) for four di!erent thicknesses of the electrode: 55𝑉m, 110𝑉m, 165𝑉m
and 220𝑉m, and (b) for quadruple thickness (220𝑉m) at 6C lithiation and tunnel separation, d =
⇐ 88𝑉m. The gray line delineates the two behaviors of achievable SoC observed over increasing
tunnel volume fractions.
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for the quadruple thickness (220𝑉m) between the two arrangements. In the plateau region of the

curves, the hexagonal arrangement cases achieved approximately 5% higher SoC. Fig. 6.5 displays

(a) (b)

Figure 6.5 Li concentration for a quadruple thickness electrode (220𝑉m) at a 6C lithiation rate in a
(a) square arrangement, and (b) hexagonal arrangement. Both arrangements are compared with
the same tunnel volume fraction, 15.5%. The hexagonal arrangement displays a higher achievable
SoC.

(a) (b)

Figure 6.6 (a) Square arrangement, and (b) Hexagonal arrangement. The blue area signifies the
"a!ected" region of a tunnel. The orange area indicates the area "una!ected" by tunnels. We can
clearly see that the "una!ected" area is larger for the square arrangement.
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the lithium concentration profile at the cut-o! voltage in both arrangements. A higher SoC is

observed for the hexagonal arrangement (0.60 vs 0.58) at this cut-o! for the same tunnel volume

fraction of 15.5%. These observations indicate that the hexagonal arrangement of tunnels induces a

higher performance increase than the square arrangement. To explain this behavior, we hypothesize

an "a!ected" region of the tunnel is defined as a region surrounding a tunnel where the introduction

of that particular tunnel enhances the di!usion in the electrode. This is simply due to the ease of

di!usion of Li through the new pathways and the surrounding region having more access to Li

ions. An illustration of the "a!ected" regions for the two arrangements is shown in Fig. 6.6. A

higher coverage of the electrode by this "a!ected" region (shown in blue color) is observed in the

hexagonal arrangement. Consequently, for any further simulations and studies, we primarily focus

on the hexagonal arrangement of tunnels.

6.3.2.2 E!ect of tunnel radius

In this section, we investigate the impact of the tunnel radius on electrode performance. We

vary tunnel radius from 0 – 40 𝑉𝑗 for quadruple thickness, t = 220 𝑉m with tunnel separation, d =

88.4 𝑉m, and a hexagonal arrangement of tunnels. Fig. 6.7 (a) shows the cell voltage curves vs SoC

for fourteen tunnel radii varying from 0 – 40 𝑉𝑗 at a 6C lithiation rate. It can be noticed that the

achievable SoC at the cut-o! point increases with increasing tunnel radii. Additionally, on curves

where more graphite particles achieve higher utilization, more pronounced steps appear on the cell

voltage curves, indicating that the overall lithiation processes are closer to equilibrium processes

even though all of them are lithiated at the same 6C rate. This is also displayed with the blue

curve in Fig. 6.7 (b). The curve reveals two distinct slopes: an initial rapid increase in achievable

SoC, followed by a saturated plateau region. As discussed later, the initial stage signifies the lateral

(radial direction to the tunnel) Li salt di!usion in the electrolyte is still limited. This limitation

arises because the tunnel cross-sectional area is insu"cient to support Li salt in all lateral directions

along the tunnel cylinder surfaces. Consequently, reaching the cut-o! condition is governed by

di!usion in the primary (thickness) direction. Notably, the particle surfaces remain unsaturated

(as indicated by bright yellow regions) throughout the entire electrode. In contrast, in the plateau
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region, the lateral di!usion can cover most of the electrode volume. At this stage, further increases

in tunnel radius no longer enhance Li supply. However, as the tunnel radius increases, the tunnel

volume increases and the total graphite volume decreases depicted by the red curve in Fig. 6.7

(b). This trade-o! implies an optimal tunnel radius where a balance of achieved SoC and graphite

volume is achieved. We can identify this optimum in Figs. 6.7 (c) and (d). Cell voltage vs capacity

curves for all fourteen radii are presented in Fig. 6.7 (c) and the achievable Li capacity is displayed

in Fig. 6.7 (d). The achieved capacity increases initially with an increase in tunnel volume fraction

and drops again with any further increase in tunnel volume fraction after reaching the optimal point.

(a) (b)

(c) (d)

Figure 6.7 (a) Cell voltage curves vs SoC, (b) achieved SoC at cut-o! and graphite volume vs
tunnel volume fraction, (c) cell voltage vs capacity (mAh), and (d) achieved capacity at cut-o!.
Hexagonal arrangement in E_II at 6C lithiation with an increasing radius from 0 → 40𝑉𝑗 for
quadruple thickness (220𝑉m) and a tunnel separation of 88.4𝑉m.
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The green curves in Fig. 6.7 (c) correspond to the increasing capacity stage and the red curves

correspond to the decreasing capacity stage. For this electrode and a hexagonal arrangement of

tunnels, the optimal tunnel radius is identified as, r = 18.2𝑉𝑗, where a 15.5% graphite volume is

removed. An outstanding 117% increase in total achievable capacity is observed at this optimal

tunnel radius. Li concentration in the electrodes is presented for three di!erent radii, r = 0𝑉𝑗,

18.2𝑉𝑗, and 39.6𝑉𝑗 in Fig. 6.8 (a), (b), and (c) respectively. Fig. 6.8 (a) belongs to the first stage

of capacity increase with tunnel volume where a significant volume of the electrode is not utilized

before reaching the cut-o! voltage due to hindered di!usion of Li ions. It can seen that roughly

only 1/4 of the electrode reaches surface saturation at the cut-o! point. Fig. 6.8 (b) shows the

optimal tunnel radius electrode. At the cut-o! point, the entire electrode reaches surface saturation.

From this radius onward, all electrodes reach surface saturation at the cut-o! point. Lastly, Fig. 6.8

(c) belongs to the last stage where the electrode is e"ciently utilized, however, too much volume

has been removed for the tunnels for the electrode to demonstrate any significant improvements.

In the plateau region, increasing tunnel radius only marginally enhances achievable SoC. This is

attributed to the fact that the largest particles cannot be fully lithiated at this C rate. In other words,

the radial inward di!usion in particles dominates the lithiation even though lateral Li salt di!usion

is su"cient.

We also present the cell voltage curves and cell voltage vs capacity curves for the square

arrangement in Fig. 6.9. This arrangement exhibits similar behavior to the hexagonal arrangement

with an optimal tunnel radius of 16.5𝑉m. Although these exact quantitative findings only apply to

the presented electrodes, the qualitative patterns and behavior extend to any electrode. An optimal

tunnel radius that maximizes the achievable capacity exists for all thick electrodes. Tunnels/free

pathways can be created in a thick electrode with optimal tunnel radius to attain higher achievable

capacity before reaching the cut-o! voltage.

6.3.2.3 E!ects of thickness

In this section, we analyze the improvements tunnels o!er in conjugation with the thickness of

electrodes. We keep the tunnel separation, d = 88.4𝑉m, width = 44.2𝑉m, and depth = 76.7𝑉m as
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constants for these simulations. Four di!erent electrode thicknesses, ⇐ 55𝑉m, ⇐ 110𝑉m, ⇐ 165𝑉m

and ⇐ 220𝑉m referred to as 1X, 2X, 3X, and 4X are studied in this section. The unit cell for a

hexagonal arrangement of tunnels shown in Fig. 6.1 is used for all the cases.

Fig. 6.10 (a) shows the achieved state of charge (SoC) with increasing tunnel sizes for all four

thicknesses. Achieved SoC refers to the lithium fraction of the electrode filled before reaching

(a) (b) (c)

Figure 6.8 Li concentration in the electrode with (a) tunnel radius = 0𝑉𝑗 and volume = 0%, (b)
tunnel radius = 18.2𝑉𝑗 and volume = 15.5%, and (c) tunnel radius = 39.6𝑉𝑗 and volume =
72.3%. Hexagonal arrangement in E_II at 6C lithiation with an increasing radius for quadruple
thickness (220𝑉m) and a tunnel separation of 88.4𝑉m.

(a) (b)

Figure 6.9 (a) Cell voltage curves vs SoC, and (b) cell voltage vs capacity (mAh). Square
arrangement in E_II at 6C lithiation with an increasing radius from 0 → 42𝑉𝑗 for quadruple
thickness (220𝑉m) and a tunnel separation of 87.7𝑉m.
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(a) (b)

Figure 6.10 (a) Achieved State of Charge (SoC) vs tunnel volume fraction, and (b) achieved
capacity vs tunnel volume fraction. Hexagonal arrangement in E_II at 6C lithiation for four
thicknesses and a tunnel separation of 88.4𝑉m.

(a) (b)

(c) (d)

Figure 6.11 Di!erent tunnel thicknesses with hexagonal tunnels and the same tunnel radius,
39.9𝑉m. (a) Single thickness (55𝑉m), (b) Double thickness (110𝑉m), (c) Triple thickness
(165𝑉m), and (d) Quadruple thickness (220𝑉m),
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the cut-o! condition. As in the previous simulations, the cut-o! condition is selected as the

overcharging condition when the cell voltage reaches below 0V. For 1X (purple curve) and 2X

(yellow curve) electrodes, only small improvements can be observed with the introduction of

tunnels with the SoC increasing to ⇐ 0.71 from 0.62 and 0.58 respectively. The 3X and 4X

electrodes with no tunnels display a massive dip in performance with 0.39 and 0.24 achievable

SoC. In these cases, we see a remarkable increase in SoC with the introduction of tunnels. A

steep increase of 50% in SoC is observed in the 3X case while an exceptional increase of 200%

is noticed in the 4X case until the tunnel volume grows to approximately 20%. The increase in

achievable SoC tapers o! significantly after any further enlargement of tunnels even for the 3X

and 4X cases. This suggests that even for very thick electrodes, there is an optimal size or radius

for tunnels beyond which they provide minimal benefits. The total achievable capacity is also

plotted in Fig. 6.10 (b) to further substantiate this claim. As can be seen again, tunnels do not

contribute in the 1X and 2X cases, and the highest capacity in these electrodes is attained with no

tunnels or very small tunnels. This indicates that Li salt di!usion in the primary di!usion direction

is su"cient to penetrate electrodes of these thicknesses. Perfoliation will simply decrease total

achievable capacity. Optimal points can be recognized for 3X and 4X electrodes at ⇐ 7% and

⇐ 15% tunnel volume with a capacity increase of 30% for 3X and an exceptional 117% increase for

4X. Compared to the original single thickness with no tunnels case, the improvement in achievable

capacity is even more remarkable, ⇐ 160% increase for the 3X case and ⇐ 230% increase for the

4X case. Once the e!ects of tunnel enhancement saturate i.e. when the "a!ected" region of the

tunnels begins to overlap and lateral di!usion in the electrolyte eases, particle sizes become the

limiting factor. This is because di!usion into the particle is not a!ected by the introduction of these

tunnel/free pathways. We demonstrate the Li concentration profile in the four electrode thicknesses

in Fig. 6.11. Evidently, the electrodes are more uniformly lithiated across their thickness compared

to no tunnel cases (see Fig. 6.8 (a) for a counter example). Yet some particle cores are still devoid

of lithium validating the premise that particle sizes are the constraint to achieving even higher

capacity in these electrodes. We conclude that for electrodes with thickness < 110𝑉m, tunnels do
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not enhance performance and are therefore a futile investment, but creating thicker electrodes with

optimal tunnels can provide high-capacity electrodes.

We concede that only four thicknesses are insu"cient to draw concrete conclusions and the exact

quantitative optimal tunnel volume and capacity specifically pertains to the electrode. However, we

argue that the 4X case is already closing toward the di!usion limit in the electrolyte and the optimal

thickness lies somewhere in the range or close to what we explore in our work. Additionally, our

study and framework here pave the way for any future studies on specific electrodes and provide a

general qualitative idea for optimal tunnels in electrodes.

6.3.2.4 E!ect of tunnel separation

In this section, we use our high-throughput strategy to examine the impact of inter-tunnel

distance/tunnel separation (d) on electrode performance. Three tunnel separation, d = 60𝑉𝑗,

74.2𝑉𝑗, and 88.4𝑉𝑗 are analyzed here. A varying radius is employed with the three tunnel

(a) (b) (c)

Figure 6.12 Singular units of tunnels of hexagonal arrangement with tunnel separation, d = (a)
60𝑉m, (b) 74.2𝑉m, and (c) 88.4𝑉m.
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separations for four thicknesses of electrodes with a hexagonal arrangement of tunnels. The unit

cells of the three cases are displayed in Fig. 6.12. To generate electrodes with these three tunnel

separations while maintaining a hexagonal arrangement, di!erent widths and depths are used to

form the unit cells. The cross-sections of the electrode are 29.7𝑉𝑗 ≃ 52𝑉𝑗 for d = 60𝑉𝑗 in Fig.

6.12 (a), 37𝑉𝑗 ≃ 64.4𝑉𝑗 for d = 74.2𝑉𝑗 in Fig. 6.12 (b), and 44.2𝑉𝑗 ≃ 76.7𝑉𝑗 for d = 88.4𝑉𝑗

in Fig. 6.12 (c).

Since the volume of each of these unit cells di!ers, we present normalized achievable capacity

instead of total achievable capacity for all 12 cases (three tunnel separations for four thicknesses)

in Fig. 6.13. The achievable capacities for any electrode with a tunnel are normalized with

the achievable capacity for that electrode with no tunnel to calculate the normalized achievable

capacity displayed here. The capacities show similar behavior for the three tunnel separations

for any electrode thickness. Once again, any considerable impact of tunnels is only observed in

electrode thickness > ⇐ 110𝑉m (the red and the blue curves), i.e., di!usion in the primary direction

is su"cient to penetrate electrodes of these thicknesses. As the tunnel separation decreases, the

optimal tunnel radius decreases, and the highest achievable capacity increases albeit only marginally.

We believe that an empirical pattern can be identified between the tunnel separations, d, and optimal

Figure 6.13 Normalized Li capacity for three tunnel separations, d = 60𝑉𝑗, 74.2𝑉𝑗, and 88.4𝑉𝑗
for four di!erent thicknesses of the electrode, 55𝑉m, 110𝑉m, 165𝑉m and 220𝑉m.
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tunnel radius, r, and thus a new factor d/r can be used to generate tunnels for any new electrode

microstructure. However, recognizing any such pattern will require more data collection for other

tunnel separations. The following hypothesis is proposed: as the tunnel separation decreases, the

tunnel radius for optimal achievable capacity decreases. Eventually, the electrode reaches a uniform

low porosity configuration. However, such low-porosity electrodes may lack mechanical strength.

Thus, a balance between electrochemical performance and mechanical strength will need to be

considered, which is beyond the scope of the current work.

In summary, a combination of optimal tunnel radius, r, and correspondingly optimal tunnel

separation, d, for thick electrodes can provide significantly higher capacity before reaching the

cut-o! voltage i.e. the overcharging condition.

6.4 Conclusions

Tunnels have demonstrated improvement, particularly for thick electrodes (greater than approx-

imately 110 𝑉m), albeit with a trade-o! between higher utilization and loss in volume. There is an

opportunity for optimization in the arrangement (including orientation and tunnel separation), and

the size of tunnels impacting achievable utilization and total capacity before the onset of plating. A

systematic study of tunnels has been conducted, comparing hexagonal versus square arrangements

and exploring the e!ects of increasing electrode thickness, tunnel radius, and tunnel separation. It

has been observed that very large tunnels do not significantly improve achievable capacity due to

the immense loss of active material. At the same time, higher utilization is achieved with larger

tunnels, reaching a maximum total capacity at a tunnel coverage of approximately 10-20 % in

the electrodes studied here. The hexagonal arrangement of tunnels provides better coverage and

thus higher achievable capacity. An optimal combination of tunnel radius and tunnel separation

exists for all electrodes and can be identified through our high-throughput studies. Additionally,

identifying patterns for optimal tunnel radius and optimal tunnel separation are under investigation,

along with exploring di!erent tunnel shapes.
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CHAPTER 7

THREE-DIMENSIONAL ELECTROCHEMICAL SIMULATIONS IN A FULL CELL

7.1 Introduction

Throughout this work, we have primarily focused on half-cell (single electrode) simulations

with the assumption of a lithium metal counter electrode on the other side of the cell. While

these simulations o!er great insights into electrode behavior, it is imperative to incorporate both

cathode and anode in a combined cell for a more comprehensive understanding of the working of

a practical Li-ion battery. In this chapter, we showcase an extension to our developed framework

capable of simultaneously simulating both cathode and anode. We leverage the microstructures

detailed in chapters 3 and 4 to model NMC as the cathode and graphite as the anode, respectively.

In the previous chapters, we solved the governing electrochemical equations defining di!usion in

electrode and electrolyte, current continuity in electrode and electrolyte, and faradaic reaction at the

particle-electrolyte interfaces. In a full-cell setup, we simulate the two electrodes and the electrolyte

simultaneously, thus requiring additional equations in the solver. The full-cell solver is detailed in

the next section. As in the previous chapters, the governing equations are reformulated with SBM.

A notable di!erence here is that the potential in the electrolyte has no-flux boundary conditions on

two sides (where the current collectors are) in contrast to the half-cells where the no-flux boundary

condition was present only on one side. In fact, the internal boundary conditions imposed on the

cathode and anode surfaces for the electrolyte potential are both Neumann conditions. Normally,

a domain subject to only Neumann conditions is a numerically underdetermined problem with no

unique solution. Remarkably, the simulations are still stable and converge to a solution. This can

be explained by the interdependence between the electrolyte potential solver and the two electrode

potential solvers with Dirichlet boundary conditions (near the current collectors). We present 6C

simulations of the full-cell acting to demonstrate and validate the modified framework.
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7.2 Model Formulation

7.2.1 Full-cell modeling

The governing equations presented and utilized in the previous chapters describe a half-cell

containing a single electrode and an electrolyte. In contrast, a full-cell simulation involves two

electrodes (NMC and graphite) interacting with the electrolyte. We once again leverage the

smoothed boundary method (SBM) to reformulate the governing equations allowing the use of

non-conformal meshes in complex geometries. Three domain parameters are employed to define

the three di!erent regions in the cell; 𝑂𝑧 for the cathode, 𝑂𝑎 for the anode, and 𝑂𝑔 for the electrolyte.

𝑂𝑔 can be calculated as 𝑂𝑔 = 1→ (𝑂𝑧 +𝑂𝑎). Additional equations and boundary conditions required

in a full-cell simulation are presented here.

Cathode:

Similar to Chapter 3 Eq. (2.12), the Li fraction in NMC cathode is described by Fick’s di!usion

equation —
𝑃𝑄𝑧

𝑃𝑆

=
1
𝑂𝑧

↑ ·
(
𝑂𝑏𝑧↑𝑄𝑧

)
+ |↑𝑂𝑧 |𝑧𝑔

𝑂𝑧

𝑌𝐿𝑍,𝑧𝑔

𝑋𝑧

. (7.1)

Here, the subscripts ‘c’ and ‘ce’ denote cathode particles and cathode particle-electrolyte interface

respectively. Similar to Eq. 2.14, the electropotential in NMC is defined by

↑ · (𝑂𝑧𝑑𝑧↑𝑒𝑧) → |↑𝑂𝑧 |𝑧𝑔𝑁→𝑓𝑌𝐿𝑍,𝑧𝑔 = 0. (7.2)

The faradaic reaction on the cathode particles, similar to Chapter 2, is described by the Butler-

Volmer equation —

𝑌𝐿𝑍,𝑧𝑔 =
𝑖
𝑧

0
𝑁+𝑓

[
exp

(→𝑘𝑁+𝑓
𝑙𝑚

𝑛𝑧

)
→ exp

( (1 → 𝑘)𝑁+𝑓
𝑙𝑚

𝑛𝑧

)]
(7.3)

where 𝑛𝑧 = [𝑒]𝑧
𝑔
→ 𝑒

𝑧

𝑔𝑜
is the overpotential on NMC cathode particle surfaces.

Anode:

For graphite anode, we utilize the formulation shown in Chapter 4, where the Cahn-Hilliard equation

governs the di!usion in graphite particles, similar to Eq. (4.6) —

𝑃𝑄𝑎

𝑃𝑆

=
1
𝑂𝑎

↑ ·
[
𝑂𝑎𝑈𝑎↑

(
𝑉
𝑎

𝑦
→ ↑ · 𝛺↑𝑄𝑎

) ]
+ |↑𝑂𝑎 |𝑎𝑔

𝑂𝑎

𝑌𝐿𝑍,𝑎𝑔

𝑋𝑎

. (7.4)
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where 𝑉
𝑎

𝑦
= 𝑃𝛽𝑎 (𝑄𝑎)/𝑃𝑄𝑎. Here, the subscripts ‘a’ and ‘ae’ denote anode particles and anode

particle-electrolyte interfaces. Similar to Eq. (2.14),the electropotential in the anode is given by

↑ · (𝑂𝑎𝑑𝑎↑𝑒𝑎) → |↑𝑂𝑎 |𝑎𝑔𝑁→𝑓𝑌𝐿𝑍,𝑎𝑔 = 0. (7.5)

The faradaic reaction on the anode particles is expressed using the Butler-Volmer equation, similar

to Eq. (2.7)

𝑌𝐿𝑍,𝑎𝑔 =
𝑖
𝑎

0
𝑁+𝑓

[
exp

(→𝑘𝑁+𝑓
𝑙𝑚

𝑛𝑎

)
→ exp

( (1 → 𝑘)𝑁+𝑓
𝑙𝑚

𝑛𝑎

)]
(7.6)

where 𝑛𝑎 = [𝑒]𝑎
𝑔
→ 𝑒

𝑎

𝑔𝑜
is the overpotential on graphite anode particle surfaces.

Electrolyte:

In this chapter, the modeling of the electrolyte di!ers from the approaches in Chapters 3 and 4 and

is more akin to the approach in Chapter 5 with the hybrid anode, due to the addition of another type

of particle surface. To define the ion di!usion in the electrolyte in the full cell, we adjust Eq. (2.18)

similar to the modification shown in Chapter 5. A new ‘source term’ is added to the right-hand side

of Eq. (2.18) to incorporate the reaction fluxes at both the cathode and anode particle-electrolyte

interfaces. The modified equation is shown here:

𝑃𝑊𝑔

𝑃𝑆

=
1
𝑂𝑔

↑ · (𝑂𝑔𝑏𝑔↑𝑊𝑔) +
(
|↑𝑂𝑔 |𝑧𝑔𝑌𝐿𝑍,𝑧𝑔 + |↑𝑂𝑔 |𝑎𝑔𝑌𝐿𝑍,𝑎𝑔

)
𝑂𝑔

𝑆→
𝑕+

→ ie · ↑𝑆+
𝑁+𝑕+𝑓

, (7.7)

The method to identify di!erent interfaces is given in Chapter 5. Similarly, to define the current

continuity in the electrolyte, we update Eq. (2.20) to account for the additional flux:

↑ · [𝑂𝑔 (𝑁+𝑗+ → 𝑁→𝑗→) 𝑓𝑊𝑔↑𝑒𝑔] +
(
|↑𝑂𝑔 |𝑧𝑔𝑌𝐿𝑍,𝑧𝑔+|↑𝑂𝑔 |𝑎𝑔𝑌𝐿𝑍,𝑎𝑔

) 1
𝑕+

=

↑ · [𝑂𝑔 (𝑏→ → 𝑏+) ↑𝑊𝑔] ,
(7.8)

These modifications account for the complexities of ion transport and current flow within the elec-

trolyte due to the presence of both cathode and anode particles in a full-cell simulation.

Boundary conditions:

Eq. (7.2) for the cathode is subject to a Dirichlet boundary condition, 𝑒
𝑧 |𝑧𝑧, at the cathode current

collector (the computational boundary box, 𝐿 = 113.75𝑉m), displayed as the right boundary in

Fig. 7.1 (a) and (b), and an internal boundary condition 𝑌𝐿𝑍,𝑧𝑔. Similarly, Eq. (7.5) for the anode is
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subject to a Dirichlet boundary condition, 𝑒
𝑎 |𝑎𝑧, at the anode current collector (the computational

boundary box, 𝐿 = 0𝑉m), displayed as the left boundary in Fig. 7.1 (a) and (b); and an internal

boundary condition, 𝑌𝐿𝑍,𝑎𝑔. Eq. (7.8) for the electrolyte contains two internal boundary conditions,

𝑌𝐿𝑍,𝑧𝑔 and 𝑌𝐿𝑍,𝑎𝑔. No flux boundary conditions are applied to Eqs. (7.1), (7.4), and (7.7).

Solver:

Eqs. (7.1) and (7.4) are solved to obtain the Li fractions in NMC and graphite, respectively, using

the forward Euler explicit scheme. Additionally, Eq. (7.7) is solved for ion concentration in the

electrolyte employing an Euler implicit scheme. As before, an implicit scheme is chosen for the

electrolyte solver because of the large di!erence in di!usivity values between the electrolyte and the

electrodes. Within each time step, the three electropotentials are computed in an internal iterative

(a) (b)

(c) (d)

Figure 7.1 (a) Full-cell microstructure without a separator; (b) Side-view of full-cell highlighting
the anode, the cathode, and separator regions. The empty spaces and pores in (a) and (b) are filled
with the electrolyte; (c) Full-cell microstructure with a synthetic separator; and (d) The electrolyte
in a full-cell.
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loop from Eqs. (7.2), (7.3), (7.5), (7.6), and (7.8) until a numerical equilibrium is reached where

the changes in these potentials become negligible. Once numerical equilibrium is achieved, the

two reaction currents, r𝐿𝑍,𝑧𝑔 and r𝐿𝑍,𝑎𝑔 are used to calculate the total current on both cathode and

anode, respectively. The simulation progresses to the next time step only if the total currents on

both electrodes match the target current within a small tolerance (around 0.2%). If this criterion is

not met, an iterative adjustment process is initiated. In cases where the total currents deviate from

the target, the boundary conditions for the electropotentials at the current collectors, 𝑒
𝑎 |𝑎𝑧 and 𝑒

𝑧 |𝑧𝑧,

are adjusted proportionally to di!erence in the total currents from the target current. The electropo-

tentials, 𝑒𝑎 and 𝑒𝑧, in both cathode and anode are subsequently adjusted to match the changes in

the boundary conditions. Following these adjustments, the five fields (three electropotentials and

two reaction currents) in the internal loop are relaxed until a new numerical equilibrium is attained.

This process of adjusting boundary conditions and re-solving the inner loop continues until the total

currents on both electrodes converge to the target current. Note that the target current is determined

based on the chosen C-rate for the cathode. Once convergence is achieved, the simulation proceeds

to the next time step. In the next time step, Eqs. (7.1), (7.4), and (7.7) are solved using the new

updated values for r𝐿𝑍,𝑧𝑔 and r𝐿𝑍,𝑎𝑔. An illustration of the iterative process is provided in Fig. 7.2.

7.2.2 Simulation setup - microstructures and material parameters

The microstructure setup for the full-cell simulations is shown in Fig. 7.1. The graphite anode

is situated on the left with gray color particles obtained from Ref. [99], while the NMC cathode

is located on the right with yellow color particles generated using the Discrete Element Method

(DEM). Two scenarios for the separator are tested. In Fig. 7.1 (a), the separator is empty and is

assumed to be filled with the electrolyte, while in Fig. 7.1 (c), a synthetic bi-continuous separator

microstructure generated using a Cahn-Hilliard phase separation is utilized. In both cases, the

pores and empty spaces are filled with the electrolyte as shown in Fig. 7.1 (d).

A region of 48.75𝑉m ≃ 61.75𝑉m ≃ 48.75𝑉m is used for both the cathode and the anode in the

full-cell simulation. The separator region is chosen to be 16.25𝑉m. The grid size (dx) used for

these simulations is 0.325𝑉m based on the voxel values for the graphite microstructure. The raw
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data for the microstructure is smoothed to avoid any isolated voids.

NMC material parameters are the same as in Chapter 3. Graphite material parameters are the

same as in Chapters 4, 5, and 6. Similar to previous chapters, LiPF6 is the choice of electrolyte in

this chapter. Electrolyte properties are also same as in the previous chapters.

7.3 Results and Discussion

As our focus throughout this work has been fast charging, we present 6C charge and discharge

simulations of the presented full-cell microstructures. Fig. 7.3 demonstrates Li concentration in

both the electrodes during 6C charge and discharge cycles. Figs. 7.3 (a), (b), and (c) correspond to

a discharge cycle while (d), (e), and (f) represent a charge cycle at 6C. Note that the simulations

Figure 7.2 Updated flowchart of simulation scheme for solving the coupled governing equations in
a full-cell.
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for these demonstrations use a 6C rate based on the cathode loading. In the future, C-rate based

on anode can also be utilized seamlessly in our full-cell framework. Delithiation of graphite can

easily be observed in the discharge cycle from Figs. 7.3 (a), (b), and (c). The four phases can also

(a) (d)

(b) (e)

(c) (f)

Figure 7.3 Li concentration in the electrodes for a discharge cycle at a 6C cathode rate (a) at 0s,
(b) at 120s, and (c) at 240s; Li concentration in the electrodes for a charge cycle at a 6C cathode
rate (a) at 0s, (b) at 118s, and (c) at 236s. The blue arrows highlight the direction of lithium
movement during that cycle.
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be noticed in graphite during both delithiation and lithiation as in Chapter 4. During the discharge

cycle, the surfaces of graphite particles get highly delithiated while the core remains relatively full

with Li due to this phase behavior. In contrast, NMC lithiation during the discharge cycle leads to a

more uniform insertion as NMC is treated as a Li solution in our framework. Similar observations

can be made during the charge cycle where graphite is lithiated from the Li coming from NMC.

Phase behavior of graphite leads to the graphite particle surfaces being full while the core remains

relatively empty. The region close to its current collector at 𝐿 = 0 is filled slower and emptier than

the graphite closer to the separator.

Fig. 7.4 (a), (b), and (c) shows electrostatic potential across the two electrodes for a charge

cycle at a 6C cathode rate. A small gradient is observed along the thickness of the electrodes,

similar to Chapters 3 and 4. Fig. 7.4 (d) demonstrates the overpotential on the two electrodes

during the charge cycle. Following ideas from Chapters 4 and 5, we can identify the points of

negative overpotential in the graphite anode, thus allowing us to identify the location and time of the

theoretical onset of plating. As in Chapters 4 and 5, a higher negative overpotential is observed near

(a) (c)

(b) (d)

Figure 7.4 Electrostatic potential in the electrodes for a charge cycle at a 6C cathode rate (a) at 0s,
(b) at 118s, (c) at 236s; and (d) Overpotential on the electrodes at 236s. The blue arrow highlights
the direction of lithium movement during the charge cycle.
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the separator compared to the current collector. This identification can be helpful with electrode

design.

Fig. 7.5 illustrates concentrations in the electrolyte for both discharge and charge cycles at

a 6C cathode rate. Concentration gradients across the whole length can be observed in the cell.

Additionally Fig. 7.6 shows electrostatic potential in the electrolyte. Initial ion concentrations in

the electrolyte are chosen to be 1M uniformly.

Due to the time dependence of electrolyte concentration, C𝑔, a no-flux boundary condition is

deemed appropriate. However, solving for electrolyte potential, 𝑒𝑔 presents challenges as two-sided

no-flux boundary conditions can be numerically unstable. Through the use of internal loops for

convergence, a numerical equilibrium is achieved, with cathode potential, 𝑒𝑧, and anode potential,

𝑒𝑎 having Dirichlet boundary conditions and being indirectly linked to electrolyte potential, 𝑒𝑔

through reaction fluxes on the anode, r𝐿𝑍,𝑎𝑔, and cathode, r𝐿𝑍,𝑧𝑔. This approach stabilizes the solution

(a) (b) (c)

(d) (e) (f)

Figure 7.5 Ion concentration in the electrolyte for a discharge cycle at a 6C cathode rate (a) at 0s,
(b) at 120s, (c) at 240s; Li concentration in the electrodes for a charge cycle at a 6C cathode rate
(a) at 0s, (b) at 118s, and (c) at 236s. The blue arrows highlight the direction of lithium movement
during that cycle.
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for 𝑒𝑔 in our simulations.

Figs. 7.7(a) displays the simulated cell voltage curve for a 6C discharge cycle without a separator

as the blue curve. The initial Li fraction in the cathode is chosen to be 0.2 and increases until the

termination criterion is reached. Unlike the simulated CV curve for graphite anode from Chapters

4, 5, and 6, this simulated cell voltage curve does not show any kinks and more resembles the

(a) (b)

Figure 7.6 Electrostatic potential in the electrolyte at a 6C cathode rate (a) for a discharge cycle at
120s, and (b) for a charge cycle at 118s. The blue arrows highlight the direction of lithium
movement during that cycle.

(a) (b)

Figure 7.7 Simulated cell voltage curves at 6C cathode for full-cell for (a) a discharge cycle with
and without separator, and (b) a charge cycle with two n/p ratios.

147



NMC cathode curves from Chapter 3. As the potential drop for NMC cathode at equilibrium

is significantly higher (⇐1.8V from 𝑄 = 0.2 to 1.0) than the potential change for graphite anode

(⇐0.6V from 𝑄 = 0.0 to 1.0), the CV curve for the full-cell is dominated by Li solution behavior

of NMC.

Additionally, Fig. 7.7(b) compares the simulated cell voltage curves for n/p ratios of 1.0 and 1.2

for a 6C charge cycle. For these simulations, an initial Li fraction of 0.9 is selected for the cathode

and a constant 6C cathode current is maintained until the termination criterion is achieved. A n/p

ratio of 1.2 shows a higher achievable DoD due to more e"cient lithiation of graphite during the

charging process as there is less lithium per unit volume di!using in the graphite anode.

Fig. 7.7(a) also compares the simulated CV curve for the two full cells displayed in Fig. 7.1, one

without the separator and one with the separator for a 6C discharge cycle. It can be observed that

the introduction of the separator did not lead to any significant changes and only marginally shifted

the CV curve. However, a noticeable change is detected in the ion concentration in the electrolyte

within the separator region. Fig. 7.8 illustrates the ion concentration in the electrolyte for the two

cases. To elucidate the deviation from the no separator case Fig. 7.9(a) displays a 2D cross-section

line plot of the ion concentration in the electrolyte in the two cases. Notably, introducing the

(a) (b)

Figure 7.8 Ion concentration in the electrolyte (a) no separator, (b) with a separator.
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separator induces a higher gradient for the ion concentration in the separator region due to the

new tortuous path generated for the electrolyte. A 6C cycle on this microstructure did not provide

su"cient time for the e!ect to propagate to the end of the electrodes, resulting in only a minor

impact on the overall cell voltage curve. Nevertheless, these simulations serve as a demonstration

of the adaptability of the full-cell framework.

7.4 Conclusion

This chapter demonstrates an additional framework using the smoothed boundary method to

simulate electrochemical processes in a full-cell simulation. By combining a cathode (NMC)

and graphite anode, the model incorporates a more realistic representation of a cell, enabling the

exploration of three domain parameters with six fields and two reaction fluxes. Numerical stability

is achieved in our solver despite the implementation of two no-flux boundary conditions on the

electrolyte potential due to its integration with the electrode potential solvers through reaction

fluxes. The capabilities of the developed full-cell framework are presented through simulations of

charge and discharge cycles at a 6C lithiation rate. The role of the separator is also highlighted

(a) (b)

Figure 7.9 (a) Two-dimensional cross-section line plot of ion concentration in the electrolyte
highlighting the gradient induced by the introduction of the separator, (b) Zoomed-in version of
the separator region.
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using two di!erent full-cell setups, further showcasing the model’s adaptability. The presented

full-cell model demonstrates its potential for advancing battery design.
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CHAPTER 8

SUMMARY, PROSPECTS AND FUTURE WORK

8.1 Summary

Lithium-ion batteries do and will play a pivotal role in the energy sector by reducing our reliance

on fossil fuels as a society. They are already ubiquitous in electronic devices and electric vehicles.

Still, major areas of improvement include higher safety, even further increasing energy density, and

reducing costs. Gaining insights into microstructure-level phenomena inside a lithium-ion battery

is essential to designing batteries and electrodes to achieve these goals. Mathematical modeling and

computer simulations provide an approach to understanding and visualizing such microstructure-

level phenomena. Governing equations defining the several simultaneous processes occurring in a

battery are well-known and are primarily simultaneous di!erential equations. Various numerical

methods like Finite Di!erent Method (FDM), Finite Element Method (FEM), etc. are usually

implemented to solve these equations.

This dissertation introduces a new framework employing a di!use-interface method, the

Smoothed Boundary Method (SBM), in conjunction with a mesh refinement method, Adaptive

Mesh Refinement (AMR) for electrochemical simulations. SBM allows for the use of a uniform

grid mesh instead of a conformal mesh which is typically utilized in traditional numerical solvers

modeling the complex electrode microstructures. Thus, reducing computational burden and time

for microstructure-level electrochemical simulations. A di!use interface defined by a domain pa-

rameter, 𝑂 enables the use of a uniform grid for the complex and convoluted microstructures. This

domain parameter is used to modify the governing equations in SBM. However, as a consequence

of using the di!use interface, solving these SBM reformulated electrochemical governing equations

can incur some inaccuracies in the simulation results. Modifying to a finer mesh can negate and

reduce any such inaccuracies. However, a finer mesh will significantly increase the computation

burden of the electrochemical simulations, thus nullifying the improvements o!ered by SBM. A

compromise between the two scenarios can work well in which a finer mesh is utilized only near

the di!use interface while still using a regular mesh in bulk. AMR is a technique that fulfills this
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requirement of varying grid sizes across the entire domain. When combined with SBM can give

highly accurate simulation results without any considerable increase in the computational burden.

In this work, the framework of SBM+AMR is combined with finite di!erence numerical schemes

to simulate the electrochemical behavior.

The framework is tested and validated on an NMC-333 cathode, a common cathode in con-

temporary batteries. Synthetic spherical microstructures are computationally generated using the

Discrete Element Method (DEM) for these simulations. Comparisons with sharp-interface solu-

tions in 1-D and COMSOL solutions on a 3-D sphere confirm the accuracy of our method. The

framework’s versatility is realized by presenting charge-discharge cycling, cyclic voltammetry, ther-

mal, and mechanical simulations. The following majority of the dissertation focuses on studying

graphite anodes. Phase transformations and the onset of plating in the graphite anode are identified

in 3-D microstructures. Two di!erent approaches are explored to mitigate and delay the onset of

plating in the graphite anode. The first approach is a thermodynamic one, using a hybrid anode

where hard carbon particles are mixed with graphite particles creating a bu!er for lithium insertion

instead of deposition on the graphite surface, thus delaying the onset of plating in the electrode. The

second approach is kinetic in which new pathways/tunnels are artificially created in the electrode

allowing easier di!usive channels for more e"cient electrode usage, consequently achieving higher

capacity before reaching the overcharging conditions. Various configurations and parameters are

studied for both approaches through 3-D microstructure electrochemical simulation. The disserta-

tion culminates with an introduction and presentation of the extension of our framework to full-cell

simulations.

8.2 Other prospects

The developed framework is employed by Danqi et. al in Refs. [58, 140] for electrochemical

impedance spectroscopy (EIS) simulations. EIS is a commonly used technique to measure the

electric properties of a material and characterize the behavior of an electrochemical system. An

alternating current (AC) signal probes the electrochemical system and measures its current response.

The impedance spectra calculated from the response over a range of frequencies provide insights
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into the electrochemical behavior of the system.

Ref. [58] employs our framework with multiple sinusoidal voltage loadings to capture the

underlying relations between the obtained macroscopic properties and electrode microstructures

of the NMC-333 cathode. The provided framework facilitates the examination of how various

properties influence EIS curves. Fig. 8.1 briefly illustrates some of the simulation results presented

in the paper. Fig. 8.1 (c) contrasts EIS curves for two di!erent geometries displayed in Figs. 8.1 (a)

and (b) as Geo-1 and Geo-2, respectively. Both geometries are generated with a radius distribution

having the same mean radius of 5.8𝑉m and a similar porosity of ⇐ 0.72. The primary di!erence

between the two geometries is the variance of the distribution around the mean, leading to di!erent

(a) (b) (c)

(d) (e)

Figure 8.1 (a) Configuration of the virtual cell for Geo-1, (b) configuration of the virtual cell for
Geo-2, (c) Nyquist plot of simulated EIS curves of Geo-1 and Geo-2 electrodes with average
initial Li fraction = 0.25, (d) Nyquist plot of simulated EIS curves with initial Li fractions equal to
0.25, 0.50, 0.75, and 0.90 in the NMC electrode, and (e) Nyquist plot of simulated EIS curves for
initial salt concentrations = 0.5M, 1.0M, and 2.0M in the electrolyte. Figures obtained from [58].
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particle surface areas and surface area-to-volume ratios, 68,061 𝑉𝑗
2 and 0.22 𝑉𝑗

→1 for Geo-1 and

49,151 𝑉𝑗
2 and 0.28 𝑉𝑗

→1 for Geo-2, respectively. The two simulations are initialized with the

same Li fraction of 0.25, resulting in the same exchange current density. As can be noticed from

Fig. 8.1 (c), the two geometries produce largely di!erent Nyquist plots and significantly di!erent

charge transfer resistances, 2.60≃105ω for Geo-1 and 3.45≃105ω for Geo-2 calculated as twice the

radius of the semi-circle. The ratio of the two resistances, 𝑙𝑧,𝛽𝑔𝛿→2/𝑙𝑧,𝛽𝑔𝛿→1 = 1.33 is found to be

consistent with the inverse of the two electrode surface areas, 𝜂𝛽𝑔𝛿→1/𝜂𝛽𝑔𝛿→2 = 1.38. Additionally,

Fig. 8.1 (d) shows four Nyquist plots of simulations with di!erent initial average Li fractions, 𝑄𝑅

= 0.25, 0.50, 0.75, and 0.90 for the microstructure Geo-1. Based on these Li fractions and the

corresponding electropotential boundary conditions, the four di!erent exchange current densities,

𝑖0 are calculated to be 1.448 ≃ 10→1, 4.079 ≃ 10→3, 2.685 ≃ 10→3, and 2.495 ≃ 10→3 mA/cm2

respectively. These 𝑖0 values can be substituted in the relation, 𝑙𝑧𝑆 = 𝑙𝑚/𝑁𝑓𝑖0, to determine

charge transfer resistances (𝑙𝑧𝑆). Using this relation, the ratios of 𝑙𝑧𝑆’s for the four Li fractions

are found to be 1:35:53:58, respectively, which are consistent with the values determined from the

Nyquist plots in Fig. 8.1 (d). The exact computed 𝑙𝑧𝑆 values from the Fig. 8.1 (d) are 0.26 ≃ 106,

8.50 ≃ 106, 12.80 ≃ 106, and 14.20 ≃ 106 ω. Finally, the authors demonstrate the e!ect of varying

initial electrolyte salt concentration, C𝑔, from 0.5M to 1.0M to 2.0M. The changes in the salt

concentrations induce changes to ambipolar and ionic di!usivities. The Nyquist plot for the three

EIS simulations can be found in Fig. 8.1 (e). As the C𝑔 increases, the radius of the semi-circle

decreases, indicating an increase in the reaction rate with C𝑔. Each frequency is positioned similarly

across all three concentrations, thus implying that the double-layer capacitance has a negligible

impact on the EIS behavior for this concentration range. The Warburg impedances (the linear part

of the curves) are also approximately the same across the three concentrations, with a shift to the

right. This similarity signifies that the Li di!usion in the electrode particles is the limiting factor

for the di!usional impedance. As the Li di!usivity in the electrolyte is approximately six orders of

magnitude larger than in the particle, the variation of salt di!usivity due to C𝑔 has an insignificant

e!ect on the Warburg impedance, largely corresponding to relatively lower frequency loadings.
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Salt concentration, C𝑔, tends to reach an equilibrium easier for these low-frequency loadings.

Ref. [140] extends the EIS simulation studies to graphite anodes. Fig. 8.2 briefly presents a

few findings from Ref. [140]. In contrast to NMC, graphite electrode undergoes phase transitions

when lithiated or delithiated. As discussed in detail in Chapters 4, 5, and 6, graphite exhibits

four phases labeled as 1’, 3, 2, and 1 in our work illustrated in Fig. 4.1. These phase transitions

cause interesting behavior in EIS simulations. Fig. 8.2 (a) displays simulated EIS curves for the

four uniform and stable single-phases in a lithiated graphite anode. The di!erent EIS curves result

in four di!erent charge transfer resistances, all consistent with total theoretical charge transfer

resistances calculated using 𝑙𝑧𝑆 = 𝑙𝑚/𝑁𝑓𝑖0. Next, the EIS responses for multi-phase morphologies

are contrasted with uniform single-phase morphologies and each other. Note that, a core-shell

concentration distribution is observed for lithium in the electrodes. Fig. 8.2 (c) compares Nyquist

(a) b-
(i) (ii)

(c)

d-
(i) (ii) (iii)

(e)

Figure 8.2 (a) Simulated EIS curves for single-phase stages 1’, 3, 2, and 1 on the E_II electrode, (b)
Stage 3-2 core-shell phase morphologies of a (i) thick shell and (ii) thin shell, (c) Simulated EIS
curves for the two core-shell stage 3-2 cases, which are similar to the single-phase stage 2 case, (d)
Phase morphologies of (i) stage 3-2 coexistence generated using the Cahn-Hilliard equation, (ii)
Planar modification of (i), and (iii) stage 2-1 coexistence generated using the Cahn-Hilliard
equation, and (e) Simulated EIS curves for d-(i), (ii), and (iii). The blue circle highlights an
inductive loop observed in these phase-separated morphologies. Figures obtained from [140].
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plots for single-phase-3 and two di!erent core-shell concentration distributions between phases 3

and 2. The two core shells are illustrated in Figs. 8.2 b-(i) and b-(ii) and di!er in the depth of lithium

penetration inside the particles leading to a thicker shell in Fig. 8.2 b-(i). The EIS responses for the

two core shells overlap almost completely, diverging only slightly from the uniform single-phase-3

in the Warburg impedance region at very low frequencies. Despite the significant di!erences in

average lithium fraction among the three distributions, the near-complete overlap suggests that the

EIS response for multi-phase morphologies is stepwise rather than continuous. This implies that

the EIS curve remains largely unchanged over a range of Li fractions and shifts suddenly when new

phases form in shell layers. In conclusion, if the electrode surface properties remain constant over

a range of lithium fractions when probed, it can be assumed that the electrode is undergoing phase

transitions. On the contrary, if there is a continuous change in measurements, a solid-solution

lithiation can be inferred in the electrode. The authors also presented a study of phase-separated

morphologies in graphite which rarely occur naturally in batteries but o!er interesting insights

nonetheless. Phase-separated or spinodal configurations are generated using the Cahn-Hilliard

equation without any surface reactions. One spinodal configuration illustrated in Fig, 8.2 d-(i) has

phase-separated stages 3 & 2, and another configuration with phase-separated stages 2 & 1 is shown

in Fig, 8.2 d-(iii). Additionally, a planar artificial configuration is generated from (i) where the two

stages 3 & 2 are physically separated into two halves of the electrode displayed in Fig. 8.2 d-(ii).

The Nyquist plots for these three synthetic configurations are shown in Fig. 8.2 (e). The semi-circle

regions corresponding to (i) and (ii) (with stages 3 & 2) in blue and red are almost overlapping.

The slight deviation results from the small di!erences in average exchange current densities (i0’s)

caused by the di!erent morphologies. On the other hand, the semi-circle region for (iii) (with

stages 2 & 1) in black is substantially larger than the other two, indicating a larger charge transfer

resistance, 𝑙𝑧𝑆 , as the average exchange current density is smaller in this case. More peculiarly,

a "loop" is observed in the low-frequency regions for all three morphologies highlighted by the

blue circle in Fig. 8.2 (e). This loop, more commonly referred to as an inductive loop, is often

associated with EIS measurements involving phase transformations. One potential explanation for
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these induction loops can be the sudden change in exchange current densities at phase boundaries

on particle surfaces. Since the deviation in exchange current density between phases 2 & 1 is

greater than that between phases 3 & 2, the induction loop is significantly larger and spans more

frequencies for the phases 2 & 1 case.

Presented above are some of the EIS simulation results conducted by Danqi et. al. Interested

readers are encouraged to refer to the full articles in Ref. [58] and [140] for additional details.

The papers e!ectively demonstrate the applicability and versatility of the presented framework for

exploring and examining EIS behavior.

8.3 Future Work

In the future, the studies and the investigations performed in this dissertation can be extended

to full cells for more realistic and accurate quantitative simulation results using the new full-

cell framework. More specifically, we can (1) examine the impact of hybrid anodes on full-cell

performance and their role in alleviating plating in a full cell, and (2) the e!ect of tunnels in a full

cell can be studied. It is also imperative to analyze tunneling in cathodes alongside the tunnels in

the anodes. As introducing these tunnels/pathways a!ects the total Li flux in/out of the anode, the

Li flux for the cathode will also be a!ected.

Another area where we have made some strides but need to explore more is examining other

di!erent anode materials using the developed framework, especially in the hybrid anode setup.

We have conducted a few preliminary simulations for hybrid anodes incorporating lithium titanate

(LTO), silicon, and silicon oxide anodes with graphite and hard carbon anodes [141–144]. Silicon

is a promising anode material as it displays significantly high capacity (⇐ 10 times the theoretical

capacity of graphite) and is highly abundant and cheap compared to several other anode materials.

However, as an anode, it faces considerable volume expansion during lithiation (about 200→300%)

which can lead to structural changes and mechanical degradation over multiple cycles [142, 143].

Creating a hybrid anode with silicon can potentially resolve the volume expansion issue to some

extent. Composite particles comprising silicon and hard carbon show promise as high-capacity

anode particles with remarkably less volume expansion [144]. These composite particles can
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be e!ortlessly simulated using our framework and the simulations can provide deep insights

into their construction and benefits. Other cathode materials can be researched as well using

the full-cell framework. We conducted rudimentary simulations for lithium cobalt oxide (LCO)

[145, 146], lithium iron phosphate (LFP) [147, 148], lithium nickel manganese cobalt-811 (NMC-

811) [148, 149], and lithium nickel cobalt aluminum oxide (NCA) [150, 151] cathodes with our

single electrode framework. Expanding on that, the detailed performance of these cathodes in a

full cell can be easily explored.

Furthermore, investigating the numerical solver and the refinement process can be prudent

in improving the simulations using the developed framework. To contrast the computational

performance, an implementation of the SBM+AMR equations using the finite element methods

(FEM) or the finite volume methods (FVM), rather than the finite di!erence schemes used in

this work, should be examined. Additionally, while the octree refinement is highly e!ective in our

framework, it is not necessarily the most computationally e"cient refinement technique for complex

3D microstructures and needs to be compared to alternative refinement techniques such as block

or patch refinement [152–157]. Lastly, we concede that our implementation of the framework

in FORTRAN is not highly optimized for computational time and speed. In the future, this

implementation can be potentially improved by incorporating already existing optimized solvers,

libraries, and frameworks.
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APPENDIX A

EXAMPLE OF FDM STENCIL DERIVATION

Here, we use the Taylor series to derive the FDM stencil for a west-facing T-junction based on

the examples in Ref. [49, 60]. The node-neighbor configuration is shown in Fig. A.1. In the east

direction, we can write

𝑝𝑟 = 𝑝𝑊 + 𝑐𝑟𝑝𝐿 +
𝑐

2
𝑟

2
𝑝𝐿𝐿 + · · · , (A.1)

where the subscripts 𝐿 and 𝐿𝐿 indicate derivative. In the west direction, we can write

𝑝𝑢𝑞 = 𝑝𝑊 → 𝑐𝑞𝑝𝐿 + 𝑐𝑢𝑝𝑀 +
𝑐

2
𝑞

2
𝑝𝐿𝐿 +

𝑐
2
𝑢

2
𝑝𝑀𝑀 → 𝑐𝑞𝑐𝑢𝑝𝐿𝑀 + · · · (A.2)

and

𝑝𝑣𝑞 = 𝑝𝑊 → 𝑐𝑞𝑝𝐿 → 𝑐𝑣𝑝𝑀 +
𝑐

2
𝑞

2
𝑝𝐿𝐿 +

𝑐
2
𝑣

2
𝑝𝑀𝑀 + 𝑐𝑞𝑐𝑣𝑝𝐿𝑀 + · · · . (A.3)

Eq. (A.2) ≃𝑐𝑣 + Eq. (A.3) ≃𝑐𝑢 eliminates the 𝑝𝑀 terms, and ignoring higher order terms gives

1
𝑐𝑣 + 𝑐𝑢

[
𝑐𝑣

(
𝑝𝑊 → 𝑝𝑢𝑞

)
+ 𝑐𝑢

(
𝑝𝑊 → 𝑝𝑣𝑞

) ]
= 𝑐𝑞𝑝𝐿 →

𝑐
2
𝑞

2
𝑝𝐿𝐿 →

𝑐𝑣𝑐𝑢

2
𝑝𝑀𝑀 (A.4)

which can be organized to

𝑝𝑊 → 𝑝𝑞 = 𝑐𝑞𝑝𝐿 →
𝑐

2
𝑞

2
𝑝𝐿𝐿 →

𝑐𝑣𝑐𝑢

2
𝑝𝑀𝑀 (A.5)

where 𝑝𝑞 =
(
𝑐𝑣/

(
𝑐𝑣 + 𝑐𝑢

) )
𝑝𝑢𝑞 +

(
𝑐𝑢/

(
𝑐𝑣 + 𝑐𝑢

) )
𝑝𝑣𝑞 can be viewed as the 𝑝 value on the virtual

west neighbor (the green circle in Fig. A.1). To eliminate 𝑝𝐿 terms, we use Eq. (A.1) ≃𝑐𝑞 → Eq.

(A.5) ≃𝑐𝑟 to obtain

𝑐𝑞 (𝑝𝑟 → 𝑝𝑊) → 𝑐𝑟 (𝑝𝑊 → 𝑝𝑞 ) = 𝑐𝑞𝑐𝑟 (𝑐𝑞 + 𝑐𝑟 )
2

𝑝𝐿𝐿 +
𝑐𝑟 𝑐𝑣𝑐𝑢

2
𝑝𝑀𝑀 (A.6)

which is organized to

𝑝𝐿𝐿 =
2

𝑐𝑞 + 𝑐𝑟

(
𝑝𝑟 → 𝑝𝑊

𝑐𝑟

→ 𝑝𝑊 → 𝑝𝑞

𝑐𝑞

)
→ 𝑐𝑣𝑐𝑢

𝑐𝑞 (𝑐𝑞 + 𝑐𝑟 )
𝑝𝑀𝑀 . (A.7)

In the 𝑀-direction

𝑝𝑢 = 𝑝𝑊 + 𝑐𝑢𝑝𝑀 +
𝑐

2
𝑢

2
𝑝𝑀𝑀 + · · · (A.8)

173



𝑝𝑣 = 𝑝𝑊 → 𝑐𝑣𝑝𝑀 +
𝑐

2
𝑣

2
𝑝𝑀𝑀 + · · · . (A.9)

Eq. (A.8) ≃𝑐𝑣 → Eq. (A.9) ≃𝑐𝑢 eliminates the 𝑝𝑀 terms. Ignoring the higher-order terms and

performing some algebraic operations gives

𝑝𝑀𝑀 =
2

𝑐𝑣 + 𝑐𝑢

(
𝑝𝑢 → 𝑝𝑊

𝑐𝑢

→ 𝑝𝑊 → 𝑝𝑣

𝑐𝑣

)
. (A.10)

Similarly, in the 𝑁-direction

𝑝𝑚 = 𝑝𝑊 + 𝑐𝑚𝑝𝑁 +
𝑐

2
𝑚

2
𝑝𝑁𝑁 + · · · (A.11)

𝑝𝑤 = 𝑝𝑊 → 𝑐𝑤𝑝𝑁 +
𝑐

2
𝑤

2
𝑝𝑁𝑁 + · · · (A.12)

Eq. (A.11) ≃𝑐𝑤 → Eq. (A.12) ≃𝑐𝑚 eliminates the 𝑝𝑁 terms. Ignoring higher-order terms and

performing algebraic operations again gives

𝑝𝑁𝑁 =
2

𝑐𝑤 + 𝑐𝑚

(
𝑝𝑚 → 𝑝𝑊

𝑐𝑚

→ 𝑝𝑊 → 𝑝𝑤

𝑐𝑤

)
. (A.13)

The Laplace operator is written as

↑2
𝑝 = 𝑝𝐿𝐿 + 𝑝𝑀𝑀 + 𝑝𝑁𝑁 . (A.14)

Figure A.1 Illustration of node configuration of a west-facing T-junction.
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Combining Eqs. (A.6), (A.10), and (A.13), we obtain

↑2
𝑝 =

2
𝑐𝑞 + 𝑐𝑟

(
𝑝𝑟 → 𝑝𝑊

𝑐𝑟

→ 𝑝𝑊 → 𝑝𝑞

𝑐𝑞

)
+

2
𝑐𝑣 + 𝑐𝑢

(
𝑝𝑢 → 𝑝𝑊

𝑐𝑢

→ 𝑝𝑊 → 𝑝𝑣

𝑐𝑣

) (
1 → 𝑐𝑣𝑐𝑢

𝑐𝑞 (𝑐𝑞 + 𝑐𝑟 )

)
+

2
𝑐𝑤 + 𝑐𝑚

(
𝑝𝑚 → 𝑝𝑊

𝑐𝑚

→ 𝑝𝑊 → 𝑝𝑤

𝑐𝑤

)
,

(A.15)

which contains a nonzero correction factor

𝑡12 =
𝑐𝑣𝑐𝑢

𝑐𝑞 (𝑐𝑞 + 𝑐𝑟 )
(A.16)

for a west-facing T-junction on the 𝐿-𝑀 plane. The first subscript, ‘1’, indicates that it is a T-junction

along the 𝐿-axis, and the two subscripts, ‘12’, indicate that this T-junction is on the 𝐿-𝑀 plane.

Performing the derivations for T-junctions and face-centered junctions in all three axial directions

and summarizing the results will give the general form of FDM Laplace stencils with all correction

factors similar to Eq. (2.21).

As in Refs. [49, 60], for a Laplace operator with variable coe"cient, ↑ ·
(
𝑂↑𝑝

)
, we start with

the second derivative in the 𝐿-direction:

(
𝑂𝑝𝐿

)
𝐿
=

2
𝑐𝑞 + 𝑐𝑟

(
𝑂𝑟 + 𝑂𝑊

2
· 𝑝𝑟 → 𝑝𝑊

𝑐𝑟

→ 𝑐𝑣𝑏𝑢𝑞 + 𝑐𝑢𝑏𝑣𝑞

𝑐𝑣 + 𝑣𝑢

)

+ 𝑐𝑣𝑐𝑢

𝑐𝑞 (𝑐𝑞 + 𝑐𝑟 )
(
𝑂𝑝𝑀

)
𝑀
,

(A.17)

with the assumption of

𝑏𝑢𝑞 =
𝑂𝑊 + 𝑂𝑢𝑞

2
· 𝑝𝑊 → 𝑝𝑢𝑞

𝑐𝑞

and 𝑏𝑣𝑞 =
𝑂𝑊 + 𝑂𝑣𝑞

2
· 𝑝𝑊 → 𝑝𝑣𝑞

𝑐𝑞

. (A.18)

Following similar earlier algebraic derivations, one can obtain Eq. (2.21). The correction factor,

𝑘𝑖 𝑇 , for the first derivatives in Eq. (2.23) can also be derived from the Taylor series similarly.
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APPENDIX B

PARAMETERIZATION OF MATERIAL PROPERTIES

Based on the values corresponding to the green circles in Fig. 3.1(a), Li di!usivity in NMC crystals

in terms of Li fraction was fitted using Matlab® curve-fit function as

𝑏𝛩𝑖 = (0.0277 → 0.0840𝑄 + 0.1003𝑄2) ≃ 10→8 cm2/s, (B.1)

which is shown as the red curve in Fig. 3.1(a). Here 𝑄 is the same quantity as 𝑄𝑅 in the main text.

This curve indicates a low Li di!usivity when 𝑄 ⇐ 0.5, commonly observed in layered transition

metal oxide cathode materials, reflecting the Li ordering in those host crystals. Similarly, the

electric conductivity of NMC as a function of Li fraction was fitted based on the green circles in

Fig. 3.1(b) as

𝑑 = 0.0193 + 0.7045 tanh(2.399𝑄) → 0.7238 tanh(2.412𝑄) S/cm, (B.2)

which is shown as the red curve in the same figure. At a high Li fraction, the valence electrons

move toward Li centers. Ionic bonding prevails, thus showing a low conductivity. We scaled the

concentration-dependent Li salt di!usivity in Ref. [65] such that the values of 𝑏+ and 𝑏→ at 1 M

are 1.25 ≃ 10→6 cm2/s and 4.0 ≃ 10→6 cm2/s, respectively. The 𝑏+ and 𝑏→ curves are shown as the

green and blue curves in Fig. 3.1(c). The 𝑏𝑔 was obtained as

𝑏𝑔 = 0.00489 ≃ exp(→7.02 → 830𝑊𝑔 + 50000𝑊2
𝑔
) cm2/s, (B.3)

which is indicated as the red curve in the same figure.

The open-circuit voltage as a function of Li fraction was fitted from the green circles in Fig. 3.1(d)

using the suggested function in Ref. [158] as

𝑒𝛶𝑊𝛴 = 1.095𝑄2 → 8.234 ≃ 10→7 exp (14.32𝑄) + 4.692 exp (→0.5389𝑄) V, (B.4)

which is shown as the red curve in the same figure. The exchange current density fitted from the

green circles in Fig. 3.1(e) is

𝑖0 = 10→0.2(𝑄→0.37)→0.9376 tanh(8.961𝑄→3.195)→1.559 mA/cm2
, (B.5)
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which is plotted as the red curve in the same figure. All the curve fittings were performed using

Matlab® curve-fit function.
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APPENDIX C

ADAPTIVE MESH REFINEMENT ON RECONSTRUCTED GRAPHITE
MICROSTRUCTURE

For accurate electrochemical simulations, it can be advantageous to directly utilize 3D voxelated

data obtained from reconstructed microstructures in SBM simulations [44,127], with voxel centers

serving as the grid points. Our octree AMR code was tested to generate L2 meshes on two X-ray

computed tomography reconstructed graphite electrode microstructures [98, 99]. Figures C.1(a)

and (b) show the two microstructures: one contains sphere-like particles and the other plate-like

particles. The input data comprise 360 ≃ 220 ≃ 320 = 25, 344, 000 voxels with a voxel edge size

of 0.325 𝑉m. Using the refinement criteria of 2.20 and 1.05 for the Lv1 and Lv2 refinement

criteria, L2 meshes were generated in approximately 13.75 and 19.25 minutes, respectively. The

total numbers of grid points are 303,877,035 and 308,607,135, respectively, approximately 12.2

times the original number. The initial voxelated 3D data can be manipulated easily to create

artificial microstructures. For instance, Fig. C.1(c) displays an electrode with a conic tunnel that

mimics a laser-ablated tunnel [107], achieved by removing the voxels in the space occupied by

the tunnel. The L2 mesh contained 303,823,339 grid points and was generated in about 12.8

minutes. A small region of the grid system is depicted in Fig. C.1(d). Notably, the root-level mesh

(voxels) is reasonably fine, suggesting that AMR may not be necessary in this case. Additionally,

the total number of grid points can be reduced by coarsening the root-level cells to alleviate the

computational burden in simulations. However, such treatment may not significantly decrease the

number of grid points since most grid points are associated with L1 and L2 cells. In our tests,

the total number of nodes only decreased to ⇐ 220 million. Therefore, considering computational

costs, we recommend employing AMR with SBM either when complex geometries are challenging

to discretize with body-conforming meshes, such as in highly porous electrode microstructures, or

when the operating conditions of the system are extreme, such as high C rate lithiation/delithiation.

If the domain of interest can be easily meshed, conventional sharp-interface approaches will be

more cost-e!ective and e"cient computationally.
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(a) (b)

(c) (d)

Figure C.1 Reconstructed 3D microstructures: (a) Electrode with large and spherical-like particles
(electrode II_a in Ref. [99]), (b) Electrode with plate-like particles (electrode IV in Ref. [99]), (c)
Electrode with a conical tunnel at the center to mimic a configuration of laser ablated electrode,
and (d) A magnified view of the grid system in (c) to show the L2 octree refinement. The spatial
unit is 𝑉m.
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APPENDIX D

SUPPLEMENTARY INFORMATION TO CHAPTER 5

D.1 Li intake in terms of moles

The volumes of graphite and carbon particles are 1.94 ≃ 105 and 1.92 ≃ 105
𝑉m3, respectively,

in the standard case. Multiplying with Li site densities, the capacity of the graphite particles,

that of the hard carbon particles, and the total capacity are 6.053 ≃ 10→9, 4.358 ≃ 10→9, and

1.041 ≃ 10→8 mol (or 1.004 mAh), respectively. For a 6C rate of this hybrid electrode, the current

is 1.041 ≃ 10→8 ≃ 96485.3/3600 ≃ 1000 = 2.790 ≃ 10→4 mA. The total capacities of pure graphite

and hard carbon electrodes with the same volume as the hybrid one will be 1.204 ≃ 10→8 mol (or

1.162 mAh) and 8.762 ≃ 10→8 mol (or 0.845 mAh). A 6C rate for the pure graphite and hard

carbon electrodes will be 3.228 ≃ 10→4 and 2.348 ≃ 10→4 mA, respectively. The cross-section area

(𝑀-𝑁 plane) of the computational domain is 1.217 ≃ 10→4 cm2. Thus, the cell current densities at

6C are 2.293, 2.653, and 1.390 mA/cm2 for the hybrid, pure graphite, and pure carbon electrode,

respectively. For the cases of arranging particles according to positions and sizes, the insertion

currents are similar to the standard case because graphite and carbon both occupied 50% of the

total volume.
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D.2 Simulation videos

Videos are provided on Ref. [57] SI web page. The video file names are listed below.

Table D.1 Video file names. Four physical fields in the standard case (random particle
arrangement) are provided here. For the remaining cases, only the Li fractions are provided.

6C 1C
random arrangement

Li fraction LiFrax_Random_6C.mov LiFrax_Random_1C.mov
salt conc SaltConc_Random_6C.mov SaltConc_Random_1C.mp4

electrode potential ElectrodePoten_Random_6C.mov ElectrodePoten_Random_1C.mp4
electrolyte potential ElectrolytePoten_Random_6C.mov ElectrolytePoten_Random_1C.mov

small graphite particles
Li fraction LiFrax_SmlGrap_6C.mov LiFrax_SmlGrap_1C.mp4

small carbon particles
Li fraction LiFrax_SmlCarb_6C.mov LiFrax_SmlCarb_1C.mp4

graphite particles in the front
Li fraction LiFrax_GrapFront_6C.mov LiFrax_GrapFront_1C.mp4

carbon particles in the front
Li fraction LiFrax_CarbFront_6C.mov LiFrax_CarbFront_1C.mp4

high carbon 𝑖0
Li fraction LiFrax_highCarbI0_6C.mov LiFrax_highCarbI0_1C.mp4

low carbon 𝑏𝑧

Li fraction LiFrax_LowCarbDif_6C.mov LiFrax_LowCarbDif_1C.mp4
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D.3 Simulations of 1C lithiation

(a)-i -ii

(b)-i -ii

(c)-i -ii

Figure D.3 Simulated Li fraction evolution (column i) and accumulated Li intakes (column ii)
over time at 1C lithiation. (a) Cases of small graphite or small carbon particles. (b) Cases of
graphite or carbon in the front region. (c) Cases of high carbon 𝑖0 or low 𝑏𝑧.
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