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ABSTRACT
Energy storage technologies are key to a future of less reliance on fossil fuels and cleaner energy.
Rechargeable batteries, particularly lithium-ion batteries have become a mainstay in energy storage,
notably in electric vehicles and mobile applications. However, optimizing their performance to
achieve faster charging, increased capacity, and higher utilization remains a challenge. Accomplish-
ing these goals requires a microscopic-level understanding of battery electrodes, which is hindered
by their complex morphologies. Computer simulations can bridge this gap by providing insights
into microstructure phenomena. A framework combining smoothed boundary method (SBM) and
adaptive mesh refinement (AMR) is introduced to model and study electrode microstructures. This
framework is implemented with finite difference methods (FDM) and parametrized with material
properties from literature. We demonstrate the framework’s usage and effectiveness with half-cell
simulations of Li,Nij;3Mn;;3C01,30, (NMC-333) cathode through one-dimensional and three-
dimensional simulations on synthetically generated microstructures. A crucial goal of our work
is studying lithium plating on electrodes which is a major obstacle in realizing an electrode’s true
theoretical capacity and fast charging. Graphite, the predominant anode material in lithium-ion
batteries, is particularly prone to lithium plating, especially at fast charging conditions. Thus,
modeling graphite is critical to grasp the dynamics of li-ion batteries and lithium plating. Graphite
anode undergoes phase transformations under lithiation. Incorporating the Cahn-Hilliard phase-
field equation into the framework allows for detailed and more accurate simulations of these phase
transformations in graphite anodes. Using the developed framework for graphite, we identified
overcharging conditions, the influence of particle size, and the importance of pore tortuosity on real
reconstructed electrodes. The framework can facilitate the design of thick electrodes, promising
higher capacity without experimental construction. Furthermore, the framework allowed us to
examine two different approaches to delay lithium plating in graphite. A thermodynamic approach
of hybrid anodes where we mix graphite with hard carbon and a kinetic approach of tunnels where
we introduce synthetic channels in the electrode. Through our simulations, we identify that hard

carbon particles act as a buffer for lithiation in hybrid anodes, delaying the surface saturation of



graphite particles and thus delaying the lithium plating on graphite. On the other hand, creat-
ing tunnels generates easier paths for ion diffusion and therefore leads to better utilization of the
electrode. Such channels in thick electrodes can generate high-capacity and efficient electrodes.
Finally, the development of this framework culminates with a demonstration of full-cell simula-
tions. In summary, simulating electrochemical processes in complex electrode microstructures is
streamlined by the presented framework and offers a fast and robust tool for designing and studying

microstructures.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Energy storage technologies have become increasingly indispensable in modern times, signif-
icantly impacting the efficiency and environmental footprint of electrical power networks. They
serve a crucial role in enhancing overall effectiveness while mitigating environmental impact
throughout energy generation and distribution [1,2]. Among these technologies, rechargeable
batteries stand out as a versatile solution for storing energy sourced from various outlets for later
usage as required. Notably, they have gained traction in powering electric vehicles, contributing
to the conservation of fossil fuels and the reduction of carbon emissions in recent years. Lithium-
ion batteries have one of the highest energy densities and have seen widespread adoption across
diverse applications, from everyday devices like cell phones, and computers, to more far-reaching
applications like drones, remote surveillance, and electric vehicles. Other popular energy storage
technologies include pumped hydro, compressed air energy storage (CAES), and flywheel. Newer
technologies like hydrogen and supercapacitors are also being explored [3—9]. Pumped hydro and
CAES are large-scale and long-discharge duration technologies making them desirable for bulk
energy applications including load management. On the other hand, high initial costs and slower
response times render them less suitable for any applications requiring immediate power supply.
Flywheels store kinetic energy in a rotating mass and have long life cycles, high energy density,
low maintenance costs, and quick response speeds. High initial costs and limited capacity restrict
their usage for any long-duration energy delivery leaving them ideal for short-term applications
like load-leveling and load-shifting. Supercapacitors or electrochemical capacitors utilize a thin
layer of conducting electrolyte as the dielectric between two solid conductors. Fast response times
and long lifetimes make them potentially a decent alternative to batteries. Their power density is
generally higher than that of batteries, while their energy density is typically lower. The relatively
low energy density and high self-discharge limit their current usage in practice. Fuel cells, similar

to batteries, convert stored chemical energy directly into electrical energy through electrochemical



reactions using hydrogen and oxygen. They are typically lightweight, highly scalable, and versatile
in their usage. The lack of hydrogen infrastructure and high capital investment requirements must
be addressed to fully realize their potential. Hydrogen energy storage complements fuel cells,
typically, acting as the external fuel supply. Hydrogen is environmentally clean and offers high
energy density but faces the same problems of high costs and limited possibilities for hydrogen
production. Overall, energy storage needs to be technologically improved to meet the demands of
the power system, expedite the transition away from over-reliance on fossil fuels, and facilitate the
integration of renewable energy sources. [3—9] Lithium-ion batteries stand as the technology that
offers the best balance of versatile applications, low cost, high energy density, long cycle life, and
relatively low self-discharge rates.

Lithium-ion batteries, despite their prevalent use, have ample room for optimizing battery
performance which necessitates a deep and comprehensive understanding of battery electrodes’
mechanism and behavior [10-12]. Key areas of improvement include faster charging, increased
capacity, higher utilization, and improved temperature control [13—-16]. A significant barrier to
gaining such an understanding is the non-uniform nature of Li-ion battery electrode microstructures,
which elicit irregular particle-electrolyte interfaces and convoluted electrolyte pathways. The
intricacy of these complex microstructure configurations dictates the macroscopic properties and
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performance of electrodes.

From here on, in this chapter, we outline some key foundations necessary for understanding the
rest of the thesis. Firstly, the workings of a typical Li-ion battery are detailed. Then, an introduction
to modeling and simulation for batteries is presented. Finally, the chapter concludes with an outline

of the rest of the dissertation.
1.2 Background

1.2.1 Working of a Lithium-ion batteries

A standard lithium-ion battery is composed of a cathode, an anode, and an electrolyte. Both
electrodes have current collectors at one end. Fig. 1.2 shows a general schematic of a typical
lithium-ion battery. These electrodes primarily consist of lithium-storage particles capable of
accommodating the insertion or extraction of lithium ions [11, 17]. Consequently, the porosity and
particle sizes influence the capacity and rate performance of an electrode. Additionally, electrodes
also comprise of a small fraction of electrochemically inactive additives and binder particles, which
enhance electronic conduction and structural integrity, respectively. A separator layer, typically a
porous insulating polymer membrane, is interposed between the two electrodes. This layer prevents
any physical short between the two electrodes and facilitates ion transport in the cell. The liquid
electrolyte resides in the electrodes’ interparticle space and the separator’s pores facilitating the
migration of lithium salt ions between the electrodes.

During a standard charge cycle of a Li-ion battery, once a load is applied, lithium ions diffuse
from the cathode to the anode through the electrolyte. Correspondingly, electrons move in the
opposite direction through the current collectors and outer circuit. This results in the electrochem-
ical storage of external energy in the battery, converting it into chemical energy in the anode and
cathode materials which have different chemical potentials. The movements of the lithium ions
and the electrons are reversed during a prototypical discharge cycle as illustrated in Fig. 1.2. The
chemical energy is released through Faradaic reactions on the two electrode surfaces, where the
choice of the two electrodes determines the total energy change [17]. Thus, morphological factors,

such as porosity, tortuosity, particle sizes, and reactive area significantly impact the cell’s perfor-



mance, particularly under high charge/discharge rates [18, 19]. In addition to the microstructures,
the choice of electrode and electrolyte materials also determines the cell’s performance.
Wittingham [20] pioneered the use of a layered TiS, cathode in the first rechargeable lithium
battery. Subsequently, several other cathodes including, but not restricted to, layered LiCoO;
and manganese spinel were explored. Contemporary cathode materials predominantly consist of
lithium metal oxides due to their higher cell voltage and equivalent energy density. Examples of such
metal oxides include LiCoO, (LCO), LiNi;_,_,Mn,Co,0, (NMC), LiMn,O4 (LMO), and LiFePO4
(LFP) [20]. These materials undergo intercalation reactions when lithium is inserted or extracted
without changing the host crystal lattice. Similarly, intercalation-type materials like graphite, hard
or soft carbon, and LisTi5O1, (LTO) currently dominate the anode market in lithium-ion batteries.
There is a growing interest in conversion-type materials for both cathodes (such as LiFeOF and
LiFeO;) and anodes (including silicon-based and lithium metal). Despite their high energy densities
and material abundance , these conversion-type materials remain largely confined to laboratory
investigations due to the changes induced in their crystal structure upon lithiation/delithiation [21].
Significant volume changes can be observed during the conversion reactions. Current conversion-
type electrodes also suffer from poor cycle life due to the breakdown of electrode structures. [21]
The study and enhancement of the microstructures and materials of each component are imperative

in striving towards the aforementioned key objectives in advancing Li-ion battery technology.
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Modeling and computer simulations can offer a promising avenue for delving into the intricate
electrochemical dynamic within Li-ion batteries [22,23]. Understanding these dynamics can help
improve Li-ion battery technology. The next section discusses electrochemical modeling and

illuminates its advantages in improving battery technology.

1.3 Modeling and Simulations

Modeling and computer simulations offer a promising avenue for delving into the intricate
electrochemical dynamic within Li-ion batteries [22,23]. Broadly speaking, there are three basic
approaches to modeling dynamic electrochemical simulations [23,24]. One such approach involves
Equivalent Circuit and Impedance models [25-27], which employ simple electrical elements like
resistors, capacitors, and constant phase elements to replicate battery behavior driven by complex
underlying electrochemical processes within the cell. These methods facilitate fast and straightfor-
ward modeling of batteries and are typically used for battery control or load management. However,
the accuracy of their predictions relies on the precision of representative input model parameters.
Moreover, these models lack the ability to offer physical insights into electrochemical processes
within electrode microstructures.

A second approach is data-driven models. These models leverage historical or real-time
data [28-31] to predict battery behavior in new setups and new operating conditions. While these
techniques bypass the need for understanding and modeling underlying physics, they suffer from a
similar drawback of disconnect between simulation results and the physical mechanism within the
battery cells. Additionally, empirical models require reconstruction or retraining once the battery
configurations are altered.

The third approach for electrochemical modeling involves mechanistic models, which utilize
physical principles and mathematical equations to describe the system [32-35]. These models
offer the most insights into battery performance, capturing the underlying physics. However,
their applicability is limited to the systems being simulated, requiring new simulations if any
changes are made to the system. Currently, the most commonly used technique to simulate

electrochemical processes at a macroscopic level is Porous Electrode Theory (PET) [32], developed



by Newman et. al. PET treats a porous electrode as a homogeneous medium, utilizing average
physical properties (averaged over volume) to solve governing equations and study the dynamics
within the ‘homogeneous’ electrode. This approach simplifies diffusion in a three-dimensional
(3D) interparticle space to a one-dimensional (1D) diffusion problem using an effective diffusivity.
Consequently, these models alleviate computational burdens associated with explicitly defining
complex electrode microstructures. However, since PET models treat electrodes as homogeneous
media and focus primarily on macroscopic behavior, they do not capture or reveal electrochemical
dynamics at the microstructure level. In reality, electrodes significantly deviate from perfect
homogeneity and periodic structures. The non-uniformity in the microstructures leads to variation
in porosity and tortuosity resulting in varying degrees of (de)lithiation in the electrode. Thus,
necessitating explicit consideration of their complex microstructures and morphology to accurately
capture the dynamics within an electrode.

The finite element method (FEM) stands as a widely adopted technique for microscopic elec-
trochemical simulations which can account for any complexities in the microstructures [36, 37].
FEM solves the governing equations (typically partial differential equations, PDEs) on meshes
conformal to the geometries of the electrode microstructure. In FEM, the governing equations are
generally developed based on a sharp-interface description. In our work, we define sharp interfaces
as sharp boundaries with no thickness between different components in a system. Numerically
solving these equations necessitates generating body-conformal meshes. Generating such meshes,
especially for complex 3D electrode microstructures and tortuous interparticle spaces is an arduous
and time-consuming task. In many cases, broken meshes need to be manually fixed [38] before
running any simulations. Finite volume methods (FVM) face similar challenges, requiring body-
conforming meshes when solving sharp-interface described governing equations, thus demanding
comparable pre-simulation efforts. Some researchers have utilized voxels in 3D reconstructed elec-
trode microstructures directly as elements in simulations [39-41]. While this approach overcomes
the challenge of generating complex meshes, the highly non-smooth particle-electrolyte interfaces

may introduce numerical errors and instability. Additionally, the computational costs can escalate



significantly with a large number of voxels in a system. A few voxel-based simulations [42,43]
divide cubic voxels by their diagonal planes to improve the smoothness of interfaces. Nevertheless,

computational demands will remain high for a large number of voxels.

1.4 Dissertation outline

This thesis is divided into eight chapters including this introduction. An electrochemical
simulation framework is developed and utilized for 3D microscopic simulations on electrodes. We
validate and test our framework on several electrodes (both cathodes and anodes) and employ it to
study mechanisms for improving electrodes’ performance. We briefly outline the rest of the chapters
here. Chapter 1 introduces the motivation and highlights some relevant background information.

Chapter 2 presents the developed modeling framework. First, we detail the electrochemical
governing equations solved in our framework in a half-cell. Then we describe the methods,
Smoothed Boundary Method (SBM), Adaptive Mesh Refinement (AMR), and Finite Difference
Methods (FDM) employed in the framework. SBM is used to reformulate the governing equations
such that to allow them to be solved on uniform, non-conformal meshes. AMR complements SBM
by enabling us to generate finer meshes near interfaces and coarser meshes in the bulk. FDM is the
choice of numerical technique in our work to solve differential governing equations.

Chapter 3 validates and uses the developed framework for the NMC-333 electrode using 1D
and 3D simulations. Two synthetic 3D microstructures are created using the Discrete Element
Method (DEM) for these simulations. Material properties obtained from existing literature are
incorporated into the model for more accurate results. Additional simplistic mechanical and
thermal simulations are also performed and presented. Chapter 3 demonstrates the applicability
and versatility of our developed framework. Chapter 4 modifies the presented framework with
the Cahn-Hilliard equation for phase separation and presents several studies on reconstructed 3D
graphite microstructures. Through these studies, we can examine the physical fields in several
graphite anodes, and using these fields we explore ways of improving graphite anode performance,
particularly delaying the onset of plating.

The next two Chapters 5 and 6 explore two different approaches to alleviate lithium plating in



graphite. Chapter 5 uses a thermodynamic approach of introducing a buffer of hard-carbon particles
with graphite particles to alleviate plating on the graphite anode. With the introduction of the hard-
carbon particles, we observe a three-stage lithiation process in the hybrid electrode. We explore
several configurations and parameters of the hybrid electrode that can affect the performance of
the electrode. On the other hand, Chapter 6 looks at a kinetic approach by creating new pathways
through graphite anodes allowing better utilization and higher capacity of the anode before reaching
the plating condition. We examine the impact of such tunnels on electrode performance in this
chapter. Furthermore, we investigate the effect of tunnel arrangement, size, and tunnel-to-tunnel
distance on the improvement offered by the tunnels. The hexagonal arrangement of tunnels is
identified to be more efficient than the square arrangement. Optimal tunnel radii are determined
for various electrode thicknesses and tunnel arrangements (including their pattern and separation).

Chapter 7 culminates the development of this framework by presenting full-cell simulations
with both cathode and anode. The microstructures presented in Chapters 3, 4, 5, and 6 are utilized
along with a new separator microstructure to perform these full-cell simulations. This chapter acts
as a demonstration of the full-cell framework which opens new avenues for electrode design by
studying their behavior in a full-cell.

Lastly, Chapter 8 summarizes and concludes the dissertation. It also briefly discusses applica-
tions of the developed framework for Electrochemical Impedance Spectroscopy (EIS) simulations

by Dangqi et al. Additionally, we suggest several avenues for extending our research in the future.



CHAPTER 2

MODELING FRAMEWORK AND NUMERICAL METHODS

This chapter outlines a framework developed to solve electrochemical equations in 3D electrodes
with complex microstructures. This framework is utilized through Chapters 3-7. Any variations
in the modeling for a chapter are specified at the beginning of that chapter. In this chapter, for
simplicity of understanding, only the governing equations of a half-cell are presented. Chapter
7 details extending these equations to a full cell. During the charge/discharge cycle of a Li-
ion battery, several mechanisms operate simultaneously, including (1) Li-ion transport within
the electrode particles, (2) current continuity in the electronically conductive solid phases, (3)
ionic transport within the electrolyte, (4) current continuity in the ionically conductive electrolyte,
and (5) electrochemical reactions at the particle-electrolyte interfaces. All these mechanisms are
mathematically described by classical differential equations, which are coupled to each other. Refer
to Fig. 2.1 (a) for an illustration.

For solving differential equations in a complex system, conventional sharp-interface methods
like Finite Element Method (FEM) or Finite Volume Method (FVM) necessitate meshes conforming
to the geometries. Thus, presenting a significant challenge for simulating phenomena in complex
3D electrode microstructures which are highly tortuous and porous. In the developed framework,
we employ the Smoothed Boundary Method (SBM) [44—48] to overcome the need for body-
conforming meshes in solving the governing equations. For some simulations in this work, SBM is
used in conjunction with Adaptive Mesh Refinement (AMR) [49], a technique that can generate fine
meshes near interfaces while keeping a course mesh everywhere else. Combining SBM with AMR
allows for enhanced simulation accuracy of SBM by allowing the use of thin interfaces. The refined
meshes utilized in the simulations also do not conform to the complex, irregular particle-electrolyte
interfaces, thus simplifying mesh generation. The conventional equations that describe the physical
phenomena within the three regions— electrode particles, electrolyte, and interface— are outlined
first. Then, we describe the SBM reformulation of those equations and the AMR mesh generation

used in the framework. In our simulations, we integrate the SBM+AMR framework with Finite



Difference Method (FDM) stencils due to their straightforward implementation. The numerical
method is also presented in this chapter. The complete framework was first presented in Malik et al,
Journal of The Electrochemical Society, 169(7):070527, Jul 2022 [24] and subsequently extended
with a phase-field in Malik et al, 77:109937, January 2024 [50]. This chapter is substantially drawn
from these publications.
2.1 Conventional governing Equations

In this section, we detail and describe the governing equations, which serve as the foundation
of our framework. These equations pertain to a half-cell with the assumption of a lithium metal

counter electrode on the other side of the cell.
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Figure 2.1 (a) Schematic illustration of electrolyte and particle regions with the associated
electrochemical governing equations. The yellow color indicates the inside of particles, the brown
color indicates particle surfaces, and the light blue color indicates the electrolyte. (b) Illustration
of diffuse interface and domain parameter with the SBM-reformulated governing equations.
Domain parameter s continuously transitions across the electrolyte-particle interface.
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2.1.1 Electrode particles
Intercalation materials represent the predominant choice for electrode materials in lithium-ion
batteries. An intercalation reaction inserts a lithium ion into the host crystal without altering its

structure. The chemical formula can be typically described by
xLit +xe” +G = Li,G (2.1)

where G denotes an intercalation electrode material. In the context of this work, G can signify one
of the three materials: NMC, graphite, or hard carbon. Once intercalated into electrode particles,
lithium ions diffuse/migrate through the host crystal’s interstices (or vacant sites), as indicated by
the brown arrow in Fig. 2.1(a). The Li transport can be described generally by

0X >
6_;’ =-V.j,=V-(M,Vu,) € Q,, (2.2)

where X,, M, and u,, are the site occupancy fraction, transport mobility, and chemical potential,
respectively, of Li in the host crystal, fp = —M,Vu, is the Li flux, ¢ denotes time, and Q,, denotes
the domain of the particle. The subscript p denotes the particle for Li storage. The lithium
concentration in the particle is C, = pX),, where p is the site density. On the particle surface, the
insertion/extraction rate is described by ry,/p = 7 - f € 0Q,, where 7 is the inward unit vector
of the particle surface, f = —M,Vu, is the (de)intercalation flux vector, and 0€2, is the active
surface where the reaction occurs. Please note that 0Q, represents the active surface, which may
not encompass all particle surfaces. Regions covered by inactive materials, such as binders, are
considered inactive. However since binder phases are not included in our model, all particle-
electrolyte interfaces count as active. Consequently, in this work, 0€, is equivalent to 9Q,,. Eq.
(2.2) can be simplified to Fick’s diffusion equation [51] if a solid-solution mechanism is assumed
for lithation/delithiation in the electrode. The simplified equation defines lithium fraction evolution

as
X,
ot

where D, is the Li diffusivity in the particles. The boundary condition stays the same even after

=V (D,VX,) € Q,, (2.3)

this simplification. For phase-separating electrode materials, y, will be formulated in a more

11



complicated form (e.g., as in the phase-field models [52—54]). This behavior is detailed further in
Chapter 4 as it pertains more to graphite anodes.
The electric current density in the conductive solid regions is given by iy = —k;V¢, and

describes electron transport. The current continuity condition, therefore, is described by
Viig=0eQy = V- (xkV¢,) =0€Q, (2.4)

where «; and ¢ are the electrical conductivity and electrostatic potential, respectively. This
equation is subject to the boundary condition, iy = —k;V¢, = Fry, € 0Q,, where F is the Faraday
constant. As mentioned earlier, ; specifies all conductive solid regions, which may include
additives in addition to electrode particles as well. The additive phases can be incorporated into the
electrochemical simulations by including an additional domain parameter function [44]. However,

we do not consider additives in the work presented here.

2.1.2 Electrolyte

Within an electrolyte, both cations and anions undergo electro-diffusion, which combines the
diffusion driven by gradients of ion concentration and the migration driven by electrostatic potential
gradients. For a binary electrolyte, that contains only one species of cations and anions each, the

diffusion and migration terms can be consolidated [55], resulting in the equation:

oC, ie - Vi,
=V-D,VC, -
ot R o

€ Q,, (2.5)

where C,, D,, and i, are the salt concentration, the ambipolar diffusivity of the salt, and the ionic
current in the electrolyte, respectively. z;, v;, and t; are the charge number, dissolution number,
and transference number, respectively, where the subscript ‘+’ denotes cation. Here, we assume
that the electrolyte is binary, comprising solely one species of monovalent cation and one species
of anion. The salt concentration is related to the ionic concentration by C, = v,Cy = v_C_. The
ambipolar diffusivity is expressed as D, = (zzmiD_ — z_m_D,)/(zym; — z-m_), where m; is
the transport mobility and D; is the diffusivity of the ions with the subscripts indicating cations

and anions. The derivation of Eq. (2.5) can be found in Ref. [S5]. €. specifies the domain of
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electrolyte. The salt concentration is subject to the boundary condition: ry, = v,7i ~fe € 0Q,, where
fe =-D,VC,+t,i./(z4vF) is an effective salt flux vectorand t, = 1 —t_ = zym, /(zemy—z-m_).

Assuming current continuity in the electrolyte (i.e., charge separation in diffuse double layer
regions is ignored), V - i, = 0, where i, = —Fz,v,[(z4my — 22m_)FC, V¢, + (D — D_)VC,]
and ¢, is the electrostatic potential in the electrolyte. Thus, we obtain the equation governing the

electrostatic potential field in the electrolyte regions as
V- [(zemy —2-m_) FC. V¢, + (D4 - D_)VC,] =0 € Q,, (2.6)

with the boundary condition z4Fry, =7 - i, € 0Q,.
2.1.3 Interface reaction and Butler-Volmer equation

At the particle-electrolyte interfaces, lithium ions in the electrolyte react with electrons in the
electrode particle and are then intercalated into the particle, see Fig. 2.1(a) for an illustration.
Lithium concentrations, as well as the electrostatic potentials, on both sides of the interface, are
involved in determining the surface reaction rate, which is typically expressed by the Butler-Volmer

equation [24,55]:

r —i—o ex —az —ex —(l—a)z+F 2.7)
o= T E P\ TR ) TP\ TR | '

where « is the symmetry factor, R is the ideal gas constant, 7 is the absolute temperature, =
[#]2 — ¢eq is the overpotential on the particle surfaces. [¢]) = ¢, — ¢ € A, is the electrostatic
potential drop across the electrolyte-particle interface. ¢, is the equilibrium voltage, which is also
the open circuit voltage for a reversible electrode system. In this work, the dissolution number is
assumed to be one. Also, the symmetry factor is assumed to be 0.5 for simplicity, which is generally
valid for non-insulator electrode materials [56].

The reaction rate obtained in Eq. (2.7) serves as the common boundary condition that couples
Egs. (2.2) — (2.6) and the values of r,, are also determined by the results of those equations. Solving
these equations in the conventional FEM or FVM requires discretizing the complex particle (£2,)
and electrolyte ((€2,) domains with conformal meshes, which forms the largest challenge of complex

microstructure simulations.
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2.2 Smoothed Boundary Method

We solve these equations on complex electrode microstructures by modifying them using the
smoothed boundary method [24,50,57,58,58,59]. Following ideas from Refs. [44—-47,47,48], we
introduce a continuous domain parameter () to define the regions occupied by electrode particles.
The value of ¢ is uniformly one inside the particles and uniformly zero outside. Since no additive
phases are considered in this work, ¢, = 1 — ¢ serves as the domain parameter for the electrolyte
region. The particle-electrolyte interface is implicitly defined by the region of 0 < ¢ < 1. The
narrow regions where ¢ transitions from one to zero define the locations of particle-electrolyte
interfaces implicitly. See Fig. 2.1(b) for an illustration. Please note that the finite-thickness diffuse
interface in the SBM is a numerical smeared interface, not a physical interface. The domain
parameters have a similar form to the order parameters in the phase-field methods. The original
electrochemical governing equations can be reformulated with ¢ such that body-conforming mesh
is no longer required in solving the reformulated equations. The equations are reformulated as

follows.

2.2.1 Electrode/Particles
As mentioned earlier, a domain parameter ¢ is used to define the space occupied by the
electrode particles. The value of ¢ is one inside the particles and zero outside as mentioned earlier.

Multiplying ¢ on both sides of Eq. (2.3), we obtain
X,
lﬂw =yV- (DpVXp)’ (2.8)
Using the product rule of differentiation on the right-hand side of Eq. (2.8), we further write
YV -(D,VX,) =V -(yD,VX,)-Vy - (D,VX,), 2.9
Combining these two equations results in

0X,
L=V WD VX,) = Vi - (D, VXy), (2.10)

The second term on the right-hand side serves as an ‘internal’ boundary condition within the

computational domain. The Neumann boundary condition on the particle surface (ry,/p =17 - f €
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0Q,) can be expressed in the diffuse interface description as
—:ﬁ-f:—-(—DpVXp), (2.11)

where 71 = Vi /|Vi| is the unit inward normal vector of the diffuse interface. Substituting Eq.

(2.11) to Eq. (2.10), we obtain the SBM version of the Li transport equation:

X, 1 V| rn

— ==V (WwD,VX,)+ —— 2.12
Following a similar procedure, we can derive the SBM version of the current continuity equation for
the electrode particles by starting with multiplying Eq. (2.4) with ¢ and implementing the product

rule to obtain

YV - (kVs) =V - (YksVs) = Vi - (k,V ) =0, (2.13)
Again, substituting the boundary condition 7i - iy = Vi /|Vy/| - (=« V) = —z_Fry, into Eq. (2.13)
gives the SBM version of the current continuity equation in the electrode particles:

V. (l//KSV(ﬁS) - |Vw|Z—Frxn =0, (2.14)

2.2.2 Electrolyte
Similar to the SBM formulation of the electrode, we multiply Eq. (2.5) with ¢, and use the

product rule to obtain

dC 1 1 i, - V¢
¢ = V. (y,D,VC,) — —Vi, - (DVC,) — (2.15)
ot Y, Ve 24V F
where ¢, = 1 — . Recall that D, VC, = —fe + t4i./(z4+v4+ F). Thus, we have
> t
—Vo - (DVC) = Ve - o — ——V, - o, (2.16)
24V

Recalling the boundary conditions that ry, /v, = 7 - Jo = (Ve /IVWe)) - Jo and z4Fry, = 7 - i =

(VY. /|V,|) - i, in Section 2.1.2, Eq. (2.15) can be rewritten as

oC, 1 1
= — V- (YD VC,) + —[|V
5 = 57 WeDTC) + | 1Vwe

t i. - V¢
rj—" V) e T (2.17)
+

b
Vi z4 Vi F
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which is further organized to

oC, 1 V.| rpt- eVt
:_V'(lﬁeDeVCe)'*' | i |r _le +’
ot Yo Ve Vi 2V F

(2.18)

where t_ = 1 — ¢,.. If the transference number is constant, the last term vanishes.

For the current continuity in electrolyte (Eq. (2.6)), we follow a similar procedure to obtain

V. [we(z+m+ - z_m_)FCeVQSe]—
Ve - [(zemy — z22m_)FC, V¢, + (D4 — D_)VC,] (2.19)
=V [ye(D- - DL)VC],

Recall that z, Fry, = 7i-ie = (Vo /|VY|) - { = 2oV F[(zemy — 22m_)FC,V®, + (D, - D_)VC,|},

which leads to

V- [We (zomy —2.m_) FCoVe] + V|22 =V - [y, (D_ - D,)VC,],  (2.20)

Vi

In summary, Egs. (2.12), (2.14), (2.18), and (2.20) are the SBM governing equations reformulated
from the classical Egs. (2.3), (2.4), (2.5), and (2.6), respectively.

aXP _ 1 VY| 7en
V- (YrsVs) = |VYl|z_Fre, =0, (2.14)
0C. _i ) IVipe| ront - _ie'Vt+
Frale !//eV (W.D.VC,) + v v, e F (2.18)
V- (e (zame = 2m) FCVge] + Ve 22 = V- [ (D- = D) VC],  (220)

The reaction rate obtained from the Butler-Volmer equation also serves as the internal boundary

condition that couples the kinetic and static equations above.

I —az F 1 -a)z. F
Fxn = z+0F [CXP( th n) — exp (Qn)] ; (2.7)




These equations can be solved on grid systems (mesh) non-conformal to the complex electrode
microstructures while imposing the reaction flux at the diffuse interfaces that are located by nonzero
values of |Vy|. A quick view of those classical and SBM-reformulated equations and their

associated domains is presented in Fig. 2.1(b).

2.3 Adaptive Mesh Refinement

The Smoothed Boundary Method (SBM) enables the utilization of a grid system that is not
conformal to the internal boundaries when solving governing equations, thus facilitating numerical
simulations on a uniform Cartesian grid system [44]. Typically, four grid points across the diffuse
interface are required to maintain numerical stability. However, employing a uniform, fine grid
system throughout the entire computational domain to resolve a thin diffuse interface would impose
a significant computational burden. In practice, fine grids are primarily necessary near the diffuse
interface. Adaptive Mesh Refinement (AMR) [49,60,61] is a technique that allows for the generation
of a fine mesh only near interface regions while keeping a coarse grid away from the interface.
In our approach, we employ the Finite Difference Method (FDM) to solve the SBM equations on
AMR grid systems for ease of implementation. It’s important to note that the SBM equations are
not restricted to the solvers presented here and can also be implemented with FEM or FVM instead.

In our work, octree and quadtree adaptive mesh refinement (AMR) techniques [49,59-61] were
employed to generate grid systems in 3D and 2D, respectively. The quadtree refinement process
is similar to octree refinement but simpler, given that it is a two-dimensional simplification of the
former. Thus we only describe the octree AMR here. First, the computational domain is discretized
into uniform equal-sized cubes, which are referred to as root-level cells. Each such cell comprises
eight vertices, also known as nodes or grid points. A cell list is then created to store the cell labels
along with the labels of vertices for each cell. Additionally, a node list is generated to store the
node labels and their corresponding positions. To determine the shortest distance of each node
to the internal boundary (i.e., the particle-electrolyte interface), the level-set distancing method
was utilized [44,62]. Subsequently, the center position of each cell is calculated by averaging the

positions of its eight vertices. If the distance from a cell center to the internal boundary is shorter
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than a specified threshold value, the cell is split into eight equal-sized cubes, with each having an
edge length half that of the parent cell. The original cell is then eliminated, and the newly created
cells are referred to as the first-level cells. Additionally, new nodes are inserted into the node list
(as vertices of the new cells) if the position of a new node is not already occupied by an existing
node.

During the refinement processes, neighbor nodes are systematically identified and recorded.
For each node, direct neighbors are determined along each axial direction as the nearest nodes to
that particular node. An illustration can be seen in Fig. 2.2(a), where the black node represents the
center node, and the magenta dots denote the six direct neighbors. At the boundary between two
levels of cells, if no direct neighbor exists in a given direction, the second nearest neighbors are
selected as the indirect neighbors in that direction. Fig. 2.2(b) demonstrates this scenario, where
the cyan dots represent the two indirect neighbors in the west direction. These procedures of cell
splitting, node insertion, and neighbor searching can be executed successively to achieve higher
levels of refinement. By refining the mesh in the interfacial regions, a domain parameter with a
very thin diffuse interface can be utilized while maintaining a resolution of four to six nodes across
the interface. It’s noteworthy that the threshold value for each level of refinement is meticulously
chosen to ensure that there is only one level of difference in adjacent cells. Neighboring cells
differing by more than one level of refinement can cause instability in the numerical solver.

2.4 Numerical methods
We use the Finite Difference Methods (FDM) to solve the governing equations, with the stencil

of a variable-coeflicient second-order derivative operator in 3D as [59, 63]

U — U Uc —u
V- (yVuc) =——— 15'E—C—§W'u (1= Bar = B31)+
Sw + SE SE Sw
2 Uy — u uc — u
(N-U—fs-u)-(l—ﬁu—ﬁsm 2.21)
SN+ Ss SN AXY
2 Ur — u Uc — u
(T' ! C_fB'u)'(l_,BB_,BB)
ST+ SB ST SB

where the subscripts W, E, S, N, B, and T indicate the west, east, south, north, bottom, and top

directions, respectively, the subscript C indicates the center node, u; are the values at different
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nodes, and s; are the distances from the center node to its (direct or virtual) neighbors in the i
direction. & = (¥; + ¥¢)/2 is the average value of ¢ between the center node and its (direct or
virtual) neighbor. ;; are the correction factors for nodes with any indirect neighbors.

Different types of nodes can arise based on a given configuration. If a node has six direct
neighbors, each along one of the axial directions (as illustrated in Fig. 2.2(a)), it is termed a
regular node. For such nodes, all ;; coeflicients are zero. Equation (2.21) simplifies to a standard
seven-point FDM stencil. On the other hand, if a node has two indirect neighbors along a specific
direction, it is labeled as a T-junction. Fig. 2.2(b) provides an example of a west-facing T-junction
on the x-y plane. In this scenario, 812 = sssy/(sw(sw + sg)), while all other S coefficients are

zero. The value of ¥y on the virtual west neighbor (marked by the green circle) is determined by

UBs

Figure 2.2 Schematic illustration of (a) a regular node (black dot) with six direct neighbor nodes
(magenta dots). (b) A west-facing T-junction node (black dot) that has five direct neighbor nodes
(magenta dots) and two indirect neighbors (cyan dots) in the west (—x) direction. (c) A node that
is simultaneously a west-facing and bottom-facing T-junction node. (d) A west-facing
face-centered node that has four indirect neighbors in the west direction. The green circles in (b),
(c), and (d) indicate virtual neighbor nodes.
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averaging Y at the two indirect neighbors (marked by the cyan dots). Similarly, the value of uy on

the virtual west neighbor is calculated by a weighted average of those at the two indirect neighbors.

_ Wsw +yc)usw + Wnw +¥c)unw

(Wsw +¥c) + (Wnw +¥c)

The S values for T-junctions along different directions and on different planes are listed in Table

(2.22)

2.1. It is important to note that a node can simultaneously be classified as a T-junction in two axial
directions. For instance, Fig. 2.2(c) shows a node that serves as a west-facing T on the x-y plane
and a bottom-facing T on the y-z plane. The west and bottom virtual neighbors are indicated as
green circles. The values at those virtual neighbor nodes can be determined using similar methods
as described above.

Another type of node is a face-centered junction, see Fig. 2.2(d) for an example of a west-
facing face-centered junction. In this scenario, both Si» and (i3 are nonzero and the values
can be computed using the formulas in Table 2.1. The ¢ value on the virtual neighbor node
(marked by the green circle) is determined by averaging the values at the four indirect neighbors
(marked by the cyan dots). The value of uy is calculated as the weighted average, given by
uw =Y, (Wi +yc)ui/ Y (Yi+yc), where i denotes the subscripts of the indirect neighbors. In some
cases, a node can function as T-junctions on two orthogonal planes facing the same axial direction.
Such nodes will have four indirect neighbors along that direction. The formulas for calculating 8
values, ¢, and u at the virtual neighbor node remain the same as in the face-centered case. When

calculating gradients, the FDM stencils are

ou SE Uuc — Uy Sw UE — UC
-— = . + . + aplyy + @13U,; (2233.)
ox sw+Sg Sw Sw+ SE SE

ou SN Uc — us S Uy — uc

— = . + . + Qo Uy + Q23U (2.23b)
dy Ss+ Sy S Ss+ Sy SN

ou ST Uc — Ug SB Ur — uc

-— = . + . + @3jlyx + a32Uyy (223C)
0z Sp+ ST SB Sp+ St ST

where the correction factors «;; are provided in Table 2.1. Example derivations of the FDM

stencils, a, and g coeflicients from Taylor series are given in Appendix A. For regular nodes, a

20



Table 2.1 Correction factors for the finite difference stencils used in this work. Adapted from

Ref. [63].
Note that «;;(7.) and §;;(T.) refer to the
@;;(T:) and B;;(T.) value from T-junction type of ..
node type a2 @13 P12 B3
To-vy | Tt 0 e 0
Tw —-xz 0 % 0 Sw (ssbwsﬁt—se)
Tw—xy—xz 0-50'12(Tw—xy) O'SQ’IS(Tw—xz) O-SﬁIZ(Tw—xy) O~5:813(Tw—xz)
T,y 4 a’lZ(Tw—xy) a’13(Tw—xZ) ﬁlZ(Tw—xy) ,813(Tw—xz)
Te—xy . SsSn 5w 0 SsSn 0
Se(SwtSe) Se(Sw+Se)

Te-u: 0 Teloyts) 0 CEDS
Te—xy—xz O-SQIZ(Te—xy) O~50’13(Te—xz) O-SIBIZ(Te—xy) 0'51813(Te—xz)
Te-si @12 (Te-xy) @13(Te-xz) B12(Te—xy) B13(Te-xz)

node type @21 @23 Bai B3
Ts—xy ZViVE:f-i’;n) 0 S (s;:ievn) 0
Ty—y: 0 %Gt 0 ROE
Ts—xy—yz 0-5a21(Ts—xy) 0-5‘1’23 (Ts—yz) 0~5:821(Ts—xy) 0-5ﬁ23 (Ts—yz)
Ts—4; 2] (Ts—xy) a3 (Ts—yz) B21 (Ts—xy) B23 (Ts—yz)
Tn—xy . SvaeSs 0 Swie 0
sn(Ss+Sn) Sp(Ss+Sn)
Tn—y: 0 '% 0 Sn (SSiitsn)
Tn—xy—yz O~5a’21 (Tn—xy) 0.50’23 (Tn—yz) 0-5ﬁ21 (Tn—xy) 0-5,823 (Tn—yz)
Tosi @21 (Ty—xy) @23(T—yz) B21(Th—xy) B23(Th-yz)
node type @31 @32 Bai B
Tb—yz 0 ZSSS(‘?A:S ) 0 s (S;s-:'—v )
SwSeS bib t SwS bih .
Tb—xz ZSbVZS;+’Sl) 0 Sb (;Vb:Sr) 0
Tb—yz—xz 0-50'31(Tb—xz) 0-50'32(Tb—yz) 0~51831(Tb—xz) 0-5ﬁ32(Tb—yz)
Tp-4i @31 (Th-xz) a32(Th-yz) B31(Tp-xz) B32(Tp-y2)
Tiy: i ? i RO ] (1 O]
T’_XZ _2stvgsz+?,) 0 s,(swb:s,) 0
Tt—yz—xz 0.50’31(7}_“) O-SQSZ(E—yZ) 0-5,831(7}—)(2) O-SﬁSZ(TI—yZ)
T4 (l’BI(Tt—xz) Q'SZ(TI—yZ) ﬂ31(Tt—xz) ﬁSZ(TI—yZ)
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coeflicients are zero, and Eqgs. (2.23) reduces to the standard central difference stencils. The values
of s;, @;j, and B;; are determined based on the node positions and the neighboring relationship
recorded in the neighbor list generated during the refinement processes. Therefore, when solving
the SBM-formulated equations with pre-calculated @ and g coefficients, the implementation of
FDM with AMR is essentially similar to the standard finite difference method.

Instead of storing data in 3D arrays as in typical FDM simulations on uniform Cartesian grid
systems, the values of u (which can represent Cp,, C,, ¢, or ¢.) are stored in 1D vectors in our
work, with the indices to corresponding to the node labels. The labels of neighbor nodes in the
FDM stencil, Eq. (2.21), are referenced from the neighbor list created during AMR mentioned
earlier.

The flowchart illustrating the simulation procedures is depicted in Fig. 2.3. For a NMC
cathode, the lithium fraction is updated using Eq. (2.12) with the Euler explicit time scheme. No-
flux boundary conditions are applied to the six faces of the computational domain, including the
particle-current collector interface.

Given that the salt diffusivity in the electrolyte is approximately five orders of magnitude larger
than the Li diffusivity in the particles, the stable time step for Eq. (2.12) is too large for the Eq.
(2.18). Therefore, a fully implicit time scheme with a simple Jacobi relaxation method is utilized
for Eq. (2.18) to update the salt concentration in the electrolyte. At the electrolyte-anode interface,
a uniform influx (or outgoing flux) of lithium ions, calculated based on the total reaction rate, r,,
is enforced to ensure the conservation of lithium ions. Here, it is the counter domain box boundary
to the cathode-current collector box boundary. No-flux boundary conditions are imposed on the
remaining five faces of the computational domain.

Within each time step, an internal iteration to solve ¢,, ¢., and ry, is implemented as follows.
First, Eq. (2.14) is solved for ¢, subject to the Dirichlet boundary condition (¢, |.) on the electrode
current collector. Additionally, the flux boundary condition (r,,) is calculated using Eq. (2.7) on
the particle-electrolyte interface. Similarly, ¢, is obtained by solving Eq. (2.20) with the Dirichlet

boundary condition (¢, |,) on the other electrode surface (assumed to be lithium metal for half-cells)
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and the r,, on the particle-electrolyte interface. No-flux boundary conditions are imposed on the
computational domain boundaries, except for those with Dirichlet conditions. Equations (2.14) and
(2.20) are solved using a simple Jacobi relaxation method. The obtained values of ¢, and ¢, are
substituted to Eq. (2.7) to calculate r,,. Note that the values of r,, on all the grid points within the
diffuse interface are calculated. By multiplying with |Vi/| in Egs. (2.14) and (2.20), the reaction
rates are distributed over the diffuse interface region. The iterative process is repeated until all three
fields reach numerical equilibrium. Although more aggressive solvers can potentially accelerate
the calculations, we currently do not implement other solvers.

For a constant current simulation, the boundary values (¢,|. or ¢.|,) are adjusted to match

* Setinitial X, C,, ¢, and ¢,

Initial conditions: Set a C-rate

Time stepping loop, t

* Solve Eq. (2.12) for X, using a Euler explicit
scheme

* Calculate k, OCV, i, based on the calculated Xp

* Solve Eq. (2.18) for C, using a Euler implicit
scheme

* Calculate D, D,, D_, m,, and m_based on the
calculated X, and C,

Internal iterative loop determining
e Ps, and ¢,

Calculate r,, based on ¢, ., X,,, and C, using

Eq. (2.7)

* Solve Eq. (2.14) for ¢4 using Jacobi relaxation
with r,, and ¢, as the boundary conditions

* Solve Eq. (2.20) for ¢, using Jacobi relaxation

with r,, and ¢, as the boundary conditions

* Adjust ¢ (or ¢, ,) BC according to the obtained
r., t0 maintain the constant C-rate

Figure 2.3 Flowchart of simulation scheme for solving the coupled governing equations in a
half-cell.
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the value of f |V |1, dQ with the desired C rate at each time step. Then, the time-stepping is
continued, and the entire procedure is repeated until termination criteria are satisfied (either cutoff
voltage or lithium fraction). Based on our tests, the adjustment of ¢,|. (or ¢.|,) boundary value to
control the C rate can also be conducted within the internal iteration loop (described above) without

significantly impacting the results.
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CHAPTER 3

MICROSTRUCTURE-LEVEL SIMULATIONS OF NMC-333 ELECTRODE

3.1 Introduction

This chapter introduces and demonstrates the framework we developed for 3D microstruc-
ture electrochemical simulations of electrodes. The framework employs the Smoothed Boundary
Method (SBM) [44] introduced in the previous chapter to circumvent the challenge of generating
body-conformal meshes on complex electrode microstructures. The SBM-reformulated equations
presented in Chapter 2 are solved on 3D microstructures. To mitigate errors incurred from the
thickness of the interface in SBM, Adaptive Mesh Refinement (AMR) is also incorporated in the
framework to reduce the thickness of the interface. AMR can generate mesh systems such that fine
mesh is located near the interface regions and coarse mesh is in the bulk regions as detailed in the
previous chapter [49]. Using AMR meshes can decrease the computational burden by reducing
the number of grid points in the bulk region while keeping the same interface thickness without
sufficiently deteriorating the accuracy. The SBM+AMR method described here was implemented
utilizing Finite Difference Method (FDM) stencils akin to those employed in a uniform grid system.
FDM was selected due to its simplicity and ease of implementation. Nevertheless, the equations
formulated within the SBM framework can also be solved on Adaptive Mesh Refinement (AMR)
grid systems employing Finite Element Method (FEM) or Finite Volume Method (FVM).

In this chapter, we showcase the capabilities of our framework through 3D simulations of a
Li,Nij3Mn;/3C01/302 (NMC-333) cathode. NMC was selected due to its widespread use in
contemporary battery applications. We present simulation results for the NMC half cell during
discharge and charge cycles at various C rates. First, we validate the accuracy of our simulation
framework and investigate its error behavior on a 1D geometry. Subsequently, we extend our
analysis to two 3D complex microstructures: one characterized by a non-uniform particle size
distribution and the other featuring uniform particle size. Using these simulations we demonstrate
the efficacy of the SBM with AMR approach in 3D simulations. Our simulations explicitly

calculate the physical fields within the system, including concentrations and electrostatic potentials,
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while explicitly considering electrode microstructures. While the SBM accurately captures the
distribution of these fields as expected, inaccuracies in predicted cell voltages may arise due to the
exponential terms in the Butler-Volmer equation when using a diffuse-interface approach, which is
studied in this work. Cyclic voltammograms extracted from the simulations for the 3D complex
microstructures exhibit behavior consistent with literature data. Additionally, we present thermal
and mechanical simulations to highlight the versatility of the SBM+AMR framework in studying
discharge/charge-induced multiphysics phenomena. Given the pivotal role of intrinsic material
properties in determining electrode performance, we include parameterization of measured data
as input simulation parameters. Although our simulations were conducted on computationally
generated synthetic electrode microstructures in this study, the proposed method readily extends to
simulations on experimentally reconstructed electrode microstructures. By circumventing the need
for tedious body-conforming mesh generation processes, this approach enables rapid simulations
of complex electrode microstructures. This work was published in Malik et al, Journal of The

Electrochemical Society, 169(7):070527, Jul 2022 [24] and significantly influences this chapter.
3.2 Modeling and equations

3.2.1 Governing equations

For NMC, the electrochemical intercalation reaction in (2.1) can be expressed as
xLit +xe™ + Ni1/3Mn1/3C01/302 = LixNil/gMn1/3C01/302. (3.1

We use the SBM reformulations of the governing equations with AMR and the associated FDM
stencils described in Chapter 2 for all the 3D simulations and the diffuse interface 1D simulations.

The relevant equations are listed here again for reference. Fick’s diffusion equation:

0X 1 \%
—P _ -V (l//DpVXp) + M”x_n, (2.12)
oy v op
Current continuity on NMC electrode:
V- W Vs) = [Vilz_Fr, =0, (2.14)
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Ion diffusion in electrolyte:

0C, 1 |Vio| ront— e - Vi,
=—V.-(.D.,VC,) + - , 2.18
ot e (‘ﬁe e e) e Ve 2V F ( )
Current continuity in electrolyte:
rxn
V- [Ye (zemy —z-m_) FC, V.| + |Vwe|v_ =V [Ye(D--D4)VC,], (2.20)
+

We also use the classical electrochemical governing equations without SBM or AMR for the

sharp-interface description for comparison in a 1D simulation shown here —

9X,
——=V-(D,VX,), (2.3)
ot
V. (kVs) =0, 2.4)
9C _y.pve, teVir g 2.5)
ot Z4 Vs
V- [(z4my —z2-m_) FC, V¢, + (D, - D_)VC,] =0, (2.6)

These sets of equations are solved in conjunction with the Butler-Volmer equation, Eq. (3.2) in

their respective setups. Butler-Volmer equation:

—az4F (1 —a)z.F

RT

xp = ka+ eXp [(b]g] - kbcp eXp |: [¢]5] > (3.2)

This version of the Butler-Volmer equation differs slightly from the formulation presented in
Chapter 2, as it utilizes reaction constants instead of exchange current density. Functionally, both
formulations are equivalent because the reaction constants depend on the exchange current density,
as detailed further in Section 3.2.2.2. This version of the Butler-Volmer equation is used only in
this chapter and was part of our initial framework development. It was later replaced with the
formulation presented in Chapter 2 in Eq. (2.7) to eliminate the need for unnecessary additional

parameters (reaction constants).

3.2.2 Simulation setup — material parameters
The coupled electrochemical mechanisms and resulting electrode performance are strongly

linked to the intrinsic materials properties, which often depend on lithium concentration in both the
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particles and electrolyte. In this section, we present the procedures for parameterizing measured
literature data to establish concentration-dependent material property functions as input simulation

parameters.

3.2.2.1 Li diffusivity and electric conductivity

The green circles in Fig. 3.1(a) represent a set of measured Li diffusivity in NMC disk pellets
at different average lithium fractions (X) taken from Ref. [64], where the measurements were
conducted using electrochemical impedance spectroscopy techniques. The red curve overlaid on
the same plot depicts a fitted function derived from those data points and is provided in Appendix B.
It is worth noting that although the diffusivity in the region X < 0.2 is extrapolated, this approach
is acceptable here as the operation range in our simulations is confined to 0.2 < X < 0.95.

In Fig. 3.1(b), the markers represent the measured electric conductivity of solid NMC disk
pellets at various average Li fractions, sourced from [64], where only five data points are available.
It is observed that the electric conductivity decreases significantly as X increases. This decline
corresponds to a decrease in the valence number of the transition metal elements and an increase
in the formation of ionic bonds in the host crystal. A function describing the electric conductivity
was fitted from these data points, as indicated by the red curve in Fig. 3.1(b). Any missing values
in the low X region were extrapolated. The obtained function is provided in Appendix B. Again,
since the operational range in our simulations is above X = 0.2, this extrapolation is not expected
to result in significant issues.

We assumed a binary electrolyte, with LiPFg dissolved in an arbitrary organic solvent. The ionic
diffusivties for Li* and PF at 1 M of LiPFg salt in the electrolyte were selected to be 1.25 x 1077
cm?/s and 4.0 x 10® cm?/s, respectively as reported in Ref. [45]. Experimental measurements
indicate that electrolyte diffusivity varies with salt concentration with high concentration leading to
lower diffusivity [65]. Therefore, concentration-dependent ionic diffusivities are considered in our
model, while maintaining constant transference numbers as experimentally observed in Ref. [65].
The red curve in Fig. 3.1(c) shows the salt-concentration-dependent ambipolar diffusivity based on

the function reported in Ref. [65]. This red curve was normalized to satisfy the D, and D_ values
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at 1 M mentioned above, resulting in a constant transference number 7_ = 0.76 = 1 —z,. Any terms
associated with V¢, in Egs. (2.5) and (2.18) vanish in this work. The blue and green curves in the
same figure represent the D, and D_ functions, respectively. In this work, we assumed the Einstein
relation, m; = D;/(RT), such that ¢, in Eq. (2.20) is solved with salt-concentration-dependent

mobilities. Detailed diffusivity functions are provided in Appendix B.
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Figure 3.1 (a) Li diffusivity in NMC, (b) electric conductivity in NMC, (c) diffusivity in the
electrolyte, (d) OCV as a function of Xj;, (¢) exchange current density as a function of X;,; at
C, = 1M, and (f) calculated forward and backward reaction constants from the exchange current

density and OCV. The unit of k7 and kj is s™".
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3.2.2.2 Open circuit voltage (OCV), exchange current density, and rate constants in the
Butler-Volmer equation

The open circuit voltage (OCV) refers to the electrostatic potential difference between the
cathode and anode at a zero net current, i.e., the equilibrium cell voltage that counterbalances the
lithium chemical potential difference between the cathode and anode. Mathematically, the cell
voltage (¢) is related to the chemical potential of charge-carriers by ¢ = —(/llcjth‘)de - ,u]afi“)de) /e,
where e is the elementary charge and ,uii is the chemical potential of lithium in corresponding
electrodes.

In quasi-equilibrium OCV measurements, the Li concentration is nearly uniform throughout

all cathode particles for Li solid-solution materials. Lithium salt concentration is also almost

uniform in the electrolyte, with a typical value of 1 M. Metallic Li foils are generally used as the

anode

L © a constant value. The data points

reference anode in such OCV measurements, making u
(green markers) in Fig. 3.1(d) represent ¢ocy for an NMC cathode [66], with a fitted function (the
red curve). Since OCV is measured at near-equilibrium conditions, ¢ocy = ¢.4, Which is used
to calculate the reaction constants from the Butler-Volmer equation as shown later. On a particle
surface [¢]) — ¢eq 18 typically referred to as the surface overpotential. The fitted OCV function is
provided in Appendix B.

Exchange current density (ip) is the current density on the electrolyte-particle interfaces where
the net anodic and cathodic reactions are at equilibrium. Therefore, it can be used along with
measured equilibrium potential (¢.,) to calculate the reaction constants for the Butler-Volmer
equation. The exchange current density values (ip) can be measured experimentally using techniques
such as Tafel plotting or impedance techniques. The green markers in Fig. 3.1(e) represent
reported values of iy at different Li fractions, measured using impedance techniques of single NMC
particles [67]. However, the data points are scarce and unavailable beyond X > 0.54. A fitted
function (the red curve), including extrapolations, is provided in Appendix B.

The intercalation reaction at electrode-electrolyte interfaces is described by Eq. (3.1), where

the forward and backward reactions occur simultaneously. The first and second terms in Eq. (3.2)
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correspond to the rates of the forward and backward reactions, respectively. At equilibrium, the net
reaction is zero, and [¢]? is the equilibrium potential, which is also the OCV ([¢]) = ¢., = docv).

Thus, solving

—az F 1-a)z. F
krCyexp R—;¢eq] = kpCpexp [%¢eq] , (3.3)
leads to the reaction rate constants as
ke= - d k;, = 5 3.4

where C; = C, [mol/cm?] and C,, = pX,. For NMC, p = 0.0501 mol/cm3. The calculated k f
and k;, are given in Fig. 3.1(f) as the red and green curves, respectively, based on the OCV in Fig.

3.1(d) and io in Fig. 3.1(e). The io here for calculating rate constants have a unit of mA/cm?.
3.3 Simulation results and discussion

3.3.1 Pseudo 1-D results

A 1D virtual half-cell was created by setting the left region (x < 12.1 um) to be the electrolyte
and the right region (x > 12.1 um) to be a 1D particle. The total length of the domain is 18 um,
and the size of the 1D particle is 6 ym. The grid system in Fig. 3.2(a) shows the setup for the
1D sharp-interface simulation, in which the light blue grid points and the light gray grid points
indicate the regions for the electrolyte and particle, respectively. The particle-electrolyte interface
is located between light blue and light gray grid points. The grid spacing is uniformly Ax = 0.2
um. In the sharp-interface simulation, 1D versions of Egs. (2.3) and (2.4) were solved in the right
domain, and 1D versions of Egs. (2.5) and (2.6) were solved in the left domain. The r,, was
calculated between the two grid points on the two different sides of the interface. The simulation
was performed following the procedure described in the previous section.

In the SBM, the domain parameter is defined by a hyperbolic tangent function ¢ = 0.5 x (1 +
tanh(d/{)), where ¢ is a parameter controlling the thickness of the diffuse interface and d is the
signed distance function to the interface. Here, d = x —12.1 um. Figure 3.2(b) shows the ¢ profiles
for the zero-level (LvO0, blue dots) and two-level (Lv2, red circles) refinements. The grid spacing

at the root level is the same as in the sharp-interface case. Here, ¢ = 1.5Ax/(2°), 1.5Ax/(2"),
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and 1.5Ax/(2?) in the Lv0, Lv1, and Lv2 cases, respectively, such that the diffuse interfaces span
approximately six smallest grid spacings in all three cases but the interfacial thickness in Lv2 case
is 1/4 of that in Lv0. Note that the interfacial thickness in SBM serves as a numerical parameter to
control the modeling error between the diffuse-interface and sharp-interface approaches. It is not
the thickness of the physical particle-electrolyte interface. We used quadtree refinement to generate
the grid systems for the simulations. The domain parameter has no gradient in the lateral direction
such that the 2D simulation is equivalently 1D (i.e., pseudo-1D simulations). Figure 3.2(c) shows
the pseudo-1D domain parameters used in the Lv0 and Lv2 simulations. The gradient of ¢ near
the particle-electrolyte interface in the Lv2 case is much sharper than that in the Lv0 case. The
Lv2 quadtree refined grid system is shown in Fig. 3.2(d), in which the root-level, first-level, and

second-level cells can be clearly distinguished. Equations (2.12), (2.14), (2.18), and (2.20) were
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Figure 3.2 (a) Computational domain of 1D electrochemical simulations in the sharp-interface
model. The light blue and gray dots are the grid points for the electrolyte and particle domains,
respectively. (b) The ¢, profiles along the primary direction in the Level-0 and Level-2 AMR
cases. (c) The domain parameter ¢/, in the pseudo-1D SBM simulations. The interfacial thickness
is controlled to be approximately 4—6 grid spacings. (d) The Level-2 quadtree refined grid system
in the pseudo-1D SBM simulations.
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solved on the grid system following the procedure mentioned in the previous section. Note that
since Eq. (2.12) was solved using the Euler explicit scheme, the smallest stable time step in the
Lv2 case is 1/16 of that in Lv0. However, we used At = 1.25 x 10™* s, which is stable for all
the pseudo-1D simulations, to mitigate the numerical errors associated with different Az sizes. X),
was initially uniform 0.2 throughout the NMC particle, and C, was uniform 1 M (0.001 mol/cm?)
throughout the electrolyte. The electrostatic potential (¢, |,) on the anode was fixed, and the current
collector’s potential (¢,|.) was continuously adjusted during the simulations to maintain constant
C-rates for the discharge (lithiation). In this work, the cell capacity was defined according to the
lithiation range from X = 0.2 to 0.95, a typical utilization range of layered transition metal oxides.
This range is selected because exfoliation between layers occurs when X < 0.2 and the material
transforms into an electrical insulator when X > 0.95. A cutoff cell voltage of 2.5 V was set to
terminate the discharge simulations.

Figures 3.3(a) through (d) show the simulated C,, X,, ¢., and ¢, profiles, respectively, taken
at t = 346.73 s (X = 0.48) during a 3C lithiation (discharge) process. The gray, blue, and red
curves are obtained from the sharp-interface, Lv0, and Lv2 cases, respectively. The purple dashed
vertical lines indicate the position of the particle-electrolyte interface (¢ = 0.5 at x = 12.1 um),
on the left/right of which is the electrolyte/particle domain (shaded in blue/gray color). In the
SBM simulations, the obtained values of C, and ¢, in the particle region (gray-shade areas in Figs.
3.3(a) and (c)) have no physical meaning [44,68,69]. Similarly, the values of X, and the ¢, in
the electrolyte (blue-shade regions in Figs. 3.3(b) and (d)) have no physical meaning. Note that
while Lv1 simulation was also performed, its results are not presented to keep the clarity of the
plot. As shown by the gray, blue, and red curves in Fig. 3.3(a), C, in the electrolyte decreases
as the position moves toward the particle-electrolyte interface, indicating that Li ions flow to the
particle-electrolyte interface. The obtained C, profiles in the three results almost overlap within
the electrolyte region. Across the interface, Li is intercalated into the particle, raising X, at the
particle surface. X, gradually decreases towards the current collector (the right domain boundary).

The X, profiles have flat tails at the current collector (x = 18 um) due to the no-flux boundary
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condition imposed there. The X, profiles from the three simulations almost overlap within the
particle, except for the values in the regions within the diffuse interface on the left of the purple
dashed line. In Figs. 3.3(a) and (b), the red curves overlap the gray ones more closely than the blue
ones do, reflecting the fact that the SBM results approach the sharp-interface one as the interfacial
thickness decreases, which is achieved by using a higher level of refinement.

The ¢, profiles in Fig. 3.3(c) have a shape similar to that of C, profiles in Fig. 3.3(a). The
negative gradient of ¢, indicates Li-ion flux pointing toward the particle. Due to the high ionic
mobility (equivalently the electric conductivity) in the electrolyte, the variations of ¢, throughout
the electrolyte region are small. Figure 3.3(d) shows the simulated ¢, profiles. Since the electric
conductivity of NMC at X ~ 0.48 is high, the gradients of ¢, throughout the particle in the three
presented results are very small, see Fig. 3.3(e) for a magnified view of (d). Uniform shifts between
the ¢, from SBM and sharp-interface results are observed: the difference between Lv0 and sharp-
interface results is approximately 56 mV, while the difference between Lv2 and sharp-interface
results is approximately only 3 mV. When those shifts are subtracted from the SBM results, the
¢, profiles in the Lv0 and Lv2 simulations overlap well with the sharp-interface one, except for
values in the diffuse interfaces. Throughout the simulations, high ¢, gradients only appear when
NMC is close to being fully lithiated, which is consistent with the fact that the electric conductivity
is low when X > 0.95. The C., X, ¢., and ¢, profiles from Lvl simulation are similar to the
Lv2 ones. The uniform shift between ¢, from Lvl and sharp-interface results is approximately 8
mV. The agreements between the obtained SBM profiles and sharp-interface ones manifest that the
SBM-formulated equations can properly produce results close to the sharp-interface ones with the
same boundary conditions. The accuracy increases with a thinner interfacial thickness [44]. In this
pseudo-1D test, LvO SBM and sharp-interface simulations are still in good agreement even though
the interface is thick (spanning over six root-level grid points).

The cell voltage is the electrostatic potential difference between the current collector and anode
plate as Vo = ¢, |c — ¢e|q. Figure 3.4(a) shows the V¢ curves recorded during 3C discharge from

the 1D sharp-interface, Lv0, Lv1l, and Lv2 SBM simulations, with the OCV on the same plot
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for comparison. In the sharp-interface case, V¢ monotonically decreases from 4.2 to 2.5 V as X
increases from 0.2 to 0.65 until the simulation reaches the cutoff voltage; see the solid green curve
in Fig. 3.4(a). The shape of the V¢ curve exhibits some similarity to the OCV curve but with an

overpotential 0.5—1 V below the OCV curve. (V¢ — docv is the cell overpotential.) The V¢ from the
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Figure 3.3 Simulated (a) C, (b) X, (¢) ¢., and (d) ¢, profiles along the primary direction in the
sharp, SBM Lv0, and SBM Lv2 cases. The profiles are taken under 3C lithiation at X =0.48 and
t =346.73 s. (e) Magnified view of ¢, in the particle region. (f) ¢, profiles after subtracting the
differences in the boundary values of ¢,. Note that the gray curves in (a), (b), (c), (d), and (f)
closely overlap with the respective red curves because of the high accuracy of Lv2 simulations.
The gray and blue shaded regions denote the domain of particle and electrolyte regions.
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Lv2 simulation mostly overlaps with the sharp-interface one, except for a slight deviation near the
end of the simulation; see the dashed green curve in Fig. 3.4(a). The V¢ curve (the cyan curve) from
the Lv1 simulation overlaps well with the sharp-interface one in the range 0.2 < X < 0.55; however,
its deviation from the green curve increases as X > 0.55. The V¢ curve from the Lv0 simulation
significantly deviates from the sharp-interface result, especially when X > 0.5. As mentioned
earlier, the C,, X)), and ¢, profiles from SBM simulations well overlap the sharp-interface ones, but
the ¢, profiles exhibit uniform shifts from the sharp-interface result. The deviation between Lv0
and sharp-interface V¢ curves is due to that uniform shift in the ¢, profiles. This shift decreases as
the interfacial thickness is thinner with a higher level of refinement.

All the concentration and potential profiles have almost identical shapes, indicating that the
SBM can properly solve the governing equations with the flux boundary conditions imposed at
the particle-electrolyte interface. However, as the interfacial thickness increases, the variations of
¢, and ¢, over the diffuse interface increase, which further leads to the variation of [¢]7. Due
to the presence of the exponential terms in the Butler-Volmer equation (Eq. (2.7)), with a thicker
interface, a slight decrease of ¢, | is enough to maintain the magnitude of r,,, during the simulation.

Therefore, the cell voltage in the Lv0 simulation is significantly overestimated. This effect is more

pronounced when the magnitude of ry, is larger. Namely, at a higher C rate, the overestimation
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Figure 3.4 (a) Simulated cell voltage at 3C lithiation of the 1D cases. The solid dark green curve
is from the sharp-interface simulation. The thin gray-green curve, cyan curve, and dashed green
curve are from the SBM pseudo-1D with O, 1, and 2 levels of quadtree refinement. (b) Simulated
cell voltages at different C rates of the 1D cases. Note that the solid curves, thin curves, and
dashed curves are from the sharp-interface, Lv0, and Lv2 SBM-AMR simulations, respectively.
For the clarity of view, figure legends are not included.
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will be more prominent. Figure 3.4(b) shows simulated V¢ curves at 1, 2, 3, and 6C discharge. For
clarity of view, legends are removed from the figure. At 1C discharge, which requires a relatively
lower cell overpotential, the V¢ curves from Lv0, Lv2, and sharp interface simulations overlap well.
As the C rate increases, a larger cell overpotential is needed, and the Lv0 results deviate more away
from the sharp-interface ones, see the corresponding V¢ curves in Fig. 3.4(b). However, since the
interfacial thickness in the Lv2 case is very thin, the Lv2 results are still close to the sharp-interface
ones. Compared to the LvO curves, the Lvl ones have less deviation from the sharp-interface
results, but they are not presented in the figure for clarity of view. In these pseudo-1D simulations,
two levels of refinement are sufficient to match the sharp-interface result. The 1D studies also
indicate that thick interfaces can be adequate in low C-rate simulations, but thin interfaces will be

necessary to maintain the accuracy of V¢ in high C-rate simulations.

3.3.2 3-D simulations of synthetic NMC-333 microstructure

The capabilities of simulating coupled electrochemical processes in complex electrode mi-
crostructures were demonstrated via simulating discharge-charge cycles of 3D microstructures
containing multiple NMC particles, in which the presented SBM equations were solved using FDM

on AMR grids.

3.3.2.1 Log-normal particle size distribution

The 3D complex geometry simulations used synthetic cathode microstructures computationally
generated via discrete element method (DEM) [70], in which the particle radii follow a truncated
log-normal distribution with a lower bound at 6 um and an upper bound at 12.5 ym. There were
119 spheres initially randomly placed in a rectangular domain. Those particles were relaxed, under
an arbitrary body force in the +x direction, and eventually ‘descended’ to the current collector. This
agglomerate was truncated on the east, south, north, bottom, and top sides to fit the rectangular
computational domain, as the virtual cell is shown in Fig. 3.5(a).

The root-level computational domain was 200 X 190 x 150 grid points in the x, y, and z
directions and with a grid spacing of Ax = 0.5 ym. A signed distance function (positive values

inside particles) from each grid point to the particle-electrolyte interface was calculated using the
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level-set distancing method [62]. The ¢ function was obtained by substituting the distance function
into the hyperbolic tangent function as in the previous sections. The total reactive surface area was
approximately 7.92 x 10* ym? obtained by summing all triangular isosurface patches generated
by MATLAB for the particle-electrolyte interfaces. The total volume of NMC agglomerate in the
virtual cell was around 3.04 x 103 um? and the solid volume fraction was around 0.656 calculated
for the region 40 < x < 100 um. In this work, we do not include porous microstructures of
separator membranes due to the lack of such information. Instead, the empty space (0 < x < 32
um) between the virtual anode and cathode serves as the separator. Hereafter, this set of simulations
is referred to as the LN case. Simulations on Lv0, Lv1, and Lv2 were performed, for which the
total numbers of grid points are 5,700,000, 17,232,520, and 63,758,793. The refinement thresholds
were 2.20 and 1.05 root-level Ax for Lvl and Lv2, respectively. In the SBM, generally, at least four

to six grid spacings across the interface should be used to ensure numerical stability. In the 3D

2nd-level

1st-level

root-level

Figure 3.5 (a) The virtual cell generated using the DEM result of 119-particle agglomerate and (b)
the virtual cell generated using the DEM result of 119 equal-sized particle agglomerate. (c) Lv2
AMR grid on the plane of y = 47.5 um of the NMC cathode microstructure in (a). (d) Magnified
view of a portion of (c¢), in which root-level, 1st-level, and 2nd-level cells can be clearly seen.
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cases, we chose four grid spacings, compared to six grid spacings in the pseudo-1D cases earlier,
across the interfacial region to decrease the total number of grid points after AMR. Again, as in the
pseudo-1D cases, we used the same time step (Ar = 4 x 1073 s) for all three levels of simulations.
Figures 3.5(c)-(d) show the Lv2 grid on the plane at y = 47.5 ym, in which the refinement in
particle surface regions can be clearly seen. Since the AMR grid is non-conformal to the irregular
particle-electrolyte interfaces, the refinement is fast. The Lv2 grid system (~64 million grid points)
was generated within 1.5 minutes using 32 CPUs with Message Passing Interface (MPI) on the
High-Performance Computing Center(HPCC) nodes at Michigan State University.

Figure 3.6(a) shows the simulated cell voltage curves of 6C and 1C discharge-charge cycles for
this synthetic microstructure with Lv0, Lv1, and Lv2 AMR. The cutoff voltages are set at 2.5, and

4.2 V. Similar to the 1D case, the V¢ curves of 6C discharge deviate more from the OCV curve than
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Figure 3.6 (a) Simulated cell voltage for 1C and 6C lithiation in the LN synthetic microstructure.
(b) Simulated cyclic voltammograms at 1 mV/s for the LN microstructure. SBM LvO0, Lv1, and
Lv2 results are marked in red, green, and blue colors, respectively. and (c) Simulated cell voltage
curves for 6C and 1C lithiation in the LN, and UN microstructures. (d) Simulated cyclic

voltammograms at 1 mV/s in the LN, and UN microstructures. The results are from SBM Lv2
simulations.
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the 1C discharge curves do. Hysteresis can be observed in the V¢ curve loops. A ~1.1 V voltage
gap presents between the discharge and charge curves of the 6C cycle, and a ~0.7 V voltage gap
exists in the V¢ loop of the 1C cycle. The V¢ curves of the three different levels of AMR in the
1C case are almost overlapping. In the 6C case, significant deviations between the V¢ curves of
the Lv0, Lv1, and Lv2 simulations are observed. The variation between the Lv1 and Lv2 curves is
much smaller than that between the LvO and Lv1 curves. As demonstrated in the 1D case, a thinner
diffuse interface, which is achieved by using a higher-level AMR grid, will increase the accuracy
of SBM simulations. High levels of refinement are more effective in enhancing modeling accuracy
in high C-rate cases, where large overpotentials are expected.

The C,., X, ¢., and ¢, at t = 320 s (X = 0.6, corresponding to the blue triangle on the 6C
curve in Fig. 3.6(a)) during 6C discharge in Lv2 simulation are shown in Figs. 3.7(a) through (d),
respectively. The general observations are similar to those in the 1D simulations. Negative C, and
¢. gradients along the +x direction are seen in Fig. 3.7(a) and (c), indicating Li-ion flow toward
the NMC cathode during discharge. Significant depletion of Li salt concentration (C, ~ 2 x 107
mol/cm™>) occurs near the cathode current collector region, leading to less intercalation in that
area. Core-shell concentration distribution of X, is clearly observed in all the NMC particles (see
Fig. 3.7(b)). However, the ¢, does not show similar core-shell patterns in NMC particles. Instead,
a negative ¢, gradient along +x direction over the entire NMC cathode is observed in Fig. 3.7(d).
This difference originates from the fact that ¢, can reach equilibrium distribution immediately
while X, requires time for diffusion (i.e., Eq. (2.14) is static but Eq. (2.12) is time-dependent), in
addition to the effect of different boundary conditions imposed on the east computational domain
boundary.

Figures 3.7(e) and (f) show C, and X, during the charge process at X = 0.6 (corresponding
to the blue square on the 6C curve in Fig. 3.6(a)). As expected, C, exhibits a positive gradient
+x direction as Li-ions are moving away from the NMC cathode. Because diffusion through the
tortuous interparticle space limits the transport of Li-ions toward the anode, high C, is observed

near the current collector (x ~ 100 um). During charge, deintercalation starts from the particle
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Figure 3.7 Simulated (a) Ce, (b) X, (¢) ¢., and (d) ¢, distributions under 6C lithiation at
t =319.37sand X = 0.595. (e) C. and (f) X, profiles under 6C delithiation at t = 429.07 s and
X =0.595. The distributions are for LN synthetic microstructure in the SBM Lv2 case.
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surfaces. In this set of simulations, the charge process followed the discharge immediately once
the cell voltage reached the cutoff value (2.5 V). Thus, an interesting core-shell X, distribution is
exhibited in the particles as shown in Fig. 3.7(f): low-high-low X, profile along the radial direction
inward. If stress is considered, such an onion-layer concentration distribution would be detrimental,
leading to cracks in the particles.

C. and X, during 1C discharge at r = 3290 s (X = 0.88, corresponding to the blue triangle
on the 1C Lv2 curve in Fig. 3.6(a)) are provided in Figs. 3.8(a) and (b), respectively. This point
is selected to be at the same cell voltage as in Figs. 3.7(a)—(b). Compared to the 6C case, the C,
gradient along the primary direction and X, gradient along the radial direction in the 1C case is
small.

When the system was switched to the charge mode, Li ions were released to the electrolyte.
The process starts in the regions near the separator, as indicated by the increased C, shown in Fig.

3.8(c), taken at X = 0.88 corresponding to the blue square on the 1C charge curve in Fig. 3.6(a).
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Figure 3.8 Simulated (a) C,, (b) X,, distributions under 1C lithiation # = 3290.00 s and X = 0.880.
(c) C. and (d) X, distributions under 1C delithiation at # = 3659.61 s and X = 0.880. The
distributions are for LN synthetic microstructure in the SBM Lv2 case.
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The reaction region will eventually expand over the entire NMC cathode. Since the C rate was low,
the X, distribution was fairly uniform in the particles as can be seen in Fig. 3.8(d), taken at the
same X corresponding to when Fig. 3.8(c) was taken. In this 1C simulation, deintercalation began
roughly uniformly over the cathode because the NMC particles were moderately conductive at the
beginning of the charge. Our other test simulations exhibited different behavior: deintercalation
was more concentrated near the current collector at the start (where electrons left the systems)
because the entire NMC electrode was insulating if the charge began at a very high Li fraction (e.g.,
X > 0.95).

Cyclic voltammetry is a widely used technique to study Faradaic reactions versus redox po-
tentials. The measurements are conducted by varying the loading voltage to a cutoff value and
sweeping back at a constant scan rate (units of mV/s). The reaction current is recorded during the
sweeping and plotted against the cell voltage. Figure 3.6(b) shows cyclic voltammograms obtained
at a scan rate of 1 mV/s from our simulations for the three levels of refinement. The cell voltage
was set to sweep over 4.2 — 2.5 — 4.2 V. The entire sweeping took approximately 3400 s. The
overall discharge-charge rate might be around a 2-3 C rate. Since the C rate was not large, the
simulated cyclic voltammograms from the three AMR levels almost overlap. In the discharge
sweep, as the cell voltage decreased, the magnitude of reaction current increased up to where the
cell voltage was ~3.3 V, after which the magnitude of current decreased. In the charge sweep, the
magnitude of the current monotonically increased until reaching the cutoff voltage. Interestingly,
the voltammograms did not drop toward the end of the charge sweeps as in many experimental
observations [71,72] in which a typical voltammogram near the end of the sweep should behave
like the gray dashed curve in Fig. 3.6(b): reaction current fades as the particles are close to fully
delithiated. Here, we attribute the rise at the end of simulated voltammograms mainly to the fact
that the ip used in the simulations monotonically increases as X ; decreases (see Fig. 3.1(e)), which
is different from general expectations for transition metal oxide cathode materials: low exchange
current density when particles are close to fully delithiated or fully lithiated [45,56,73-75]. Also,

the cutoff was set to be significantly away from the fully delithiated state (X ~ 0).
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An Lv3 simulation of a 6C discharge was performed to verify whether the Lv2 simulations
were sufficiently accurate. The Lv3 mesh system contains 244,033,870 grid points (approximately
four times that in the Lv2 case), which was generated in 17 minutes. The V¢ curve from the Lv3
simulation is shown in Fig. 3.9. The obtained curve (gray) is close to that from Lv2 (blue), although
a small difference can still be discerned in the early and later stages of the simulations. The 6C Lv2
discharge simulation took ~8 hours with MPI parallel computing on 160 CPUs. The code scaling
was fairly linear: the Lv3 simulations required approximately four times the computational hours.
Since the difference between Lv3 and Lv2 results is small, we did not further pursue simulations
with higher levels of refinement. Furthermore, as concluded in the 1D case, the 3D simulations
also suggested that AMR is needed for high C-rate simulations. For low C rate simulations, using
root-level grids can be adequate. As mentioned earlier, AMR can significantly reduce the total
number of grid points. We conducted a performance test of the code on a uniform grid with a grid
spacing equal to the refined Lvl Ax. The system contains a total of 45,215,079 grid points, which
is 2.62 times the AMR one. The computation time for the uniform grid case was 10.3 hours (to

X = 0.58 at a 6C lithiation on 80 CPUs), which is approximately 2.23 times the AMR one (4.67
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Figure 3.9 Simulated cell voltage for 6C lithiation in LN synthetic microstructure for SBM LvO0,
Lvl, Lv2, and Lv3 cases. The Open Circuit Voltage (OCV) curve is shown in black. The Lv0,
Lvl, Lv2, and Lv3 curves are marked in red, green, blue, and gray colors, respectively.
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hours). A slight super-linear speed-up is observed, which we attribute to the possible reasons:
(1) a decrease in the operations of multiplying the correction factors, and (2) the convergence rate
in Jacobi relaxation is faster in the uniform-grid case. This comparison clearly demonstrates the
efficiency of AMR in reducing the computation burden.

Moreover, we used an Allen-Cahn type phase-field approach to remove the cusps in the initial
geometries generated from the DEM particle arrangements, as in Ref. [44]. We set 40 Allen-Cahn
steps in this work. The smoothing slightly increased the particle contact areas. The particle contacts
can affect the overall electric conduction in the electrode. Since NMC is reasonably conductive,
we do not expect a significant change in the results. Nevertheless, investigating how the contact

areas affect the electrochemical performance of an electrode can be a future topic.

3.3.2.2 Uniform particle size distribution

Another synthetic microstructure was created by DEM with equal-sized 119 spheres (radius
of 8.6 um) to demonstrate the microstructure’s effects on electrode performance. This radius was
chosen such that the total volume of the 119 particles was approximately the same as that in the
previous case. Hereafter, this set of simulations is referred to as the uniform (UN) case. The
resulting virtual cell is shown in Fig. 3.5(b). The total reactive surface area, NMC solid volume,
and solid volume fraction are 8.39 x 10* um?, 3.05 x 10° um?>, and 0.643, respectively. While the
total solid volume is similar to the LN case, the reactive surface is approximately 6% more than in
the previous case. The volume fraction in the UN case is slightly lower than that in the LN case
because the smaller particles can fit into the space between large particles in the LN case. Only Lv2
simulations were performed in this set of simulations. There were 67,337,857 grid points in the
mesh system with 2.20 and 1.05 for the Lvl and Lv2 refinement criteria, respectively. All initial
and boundary conditions were the same as in the LN case.

The cyan curves in Fig. 3.6(c) are the 6C and 1C V¢ curves obtained from the UN simulations.
The trends are generally similar to those in Fig. 3.6(a), but the 6C curve during discharge in the UN
case is slightly above that in the LN case. The 6C charge curve is on the right to that in the LN case.

This is expected because the UN case has a larger reactive surface area and slightly higher porosity
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than the LN case, which leads to better electrochemical performance and smaller overpotential.
It is noticed that the discrepancy between the 6C discharge curves is more pronounced at the late
stage, which is due to the increase in electric resistance of NMC particles at a high Li fraction. The
NMC particles have high Li concentration near the surfaces, thus forming high-resistance shells.
As a result, the effect of increasing active surface area to reduce overpotential is more significant.
The 1C curves of the UN case similarly show a slightly smaller overpotential compared to the LN
case, also because the UN case has a slightly larger active surface area. Cyclic voltammetry was
also simulated in the UN case with the identical setup as in Section 3.3.2.1. The voltammogram
shown in Fig. 3.6(d) is slightly below that of the LN case during the discharge sweep and slightly
above the LN curve during the charge sweep; i.e., the reaction current magnitude of the UN case is
slightly larger. This is also expected as the reactive surface area in the UN case is larger than that
in the LN case.

The behavior of C., X,, ¢., and ¢, distributions are similar to those in Section 3.3.2.1.
Therefore, we do not show those 3D results here. Figure 3.10 shows the C,, X, ¢., and ¢,
averaged within the corresponding phases on each y-z plane, taken at Vo = 2.875 V (X = 0.6 and
0.63 for the LN and UN cases, respectively). The C, and ¢, curves have similar shapes: linear in the
separator region (0 < x < 32 um), and the values decay asymptotically as the position approaches
the cathode current collector, reflecting that the intercalation reactions occur in the cathode region.
The profiles from the LN and UN cases almost overlap. However, the X, profile (yellow curve in
Fig. 3.10(b)) in the UN case exhibits pronounced undulation, which is very different from that in
the LN case (red curve). The undulation reflects the periodicity of particle arrangement when the
particles have similar sizes. The valleys in the X, profile (yellow curve) indicate the locations of
particle centers in different layers, while the peaks correspond to the regions of particle-particle
contacts. This fact can be discerned in the ¢, profile as well, where the layers of particle centers
have a larger cross-section area, resulting in a smaller electric resistance. The particle-particle
contact regions have smaller contact areas, leading to a larger electric resistance. As a result, the

¢, in the UN case exhibits a step-like curve, in which the high-slope regions have high resistance.
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Because the LN case has a disordered particle arrangement, its X,, and ¢, profiles are smoother.
Interestingly, the nature of DEM tends to descend larger (heavier) particles to the bottom (the
cathode current collector in this case). The valley in the red curve in Fig. 3.10(b) and the step in the
blue curves in Fig. 3.10(d) both reflect that there is a layer of large particles with center positions
near x ~ 90 um. While profiles similar to those in the LN case can be obtained from conventional
PET simulations, the undulation and steps in X, and ¢, profiles in the UN case are difficult to
detect. This is because the length scale of ordered particle arrangement is significantly larger than
the scale of Ax in PET simulations. These subtle features resulting from particle arrangements can
only be observed when microstructures are explicitly considered. The presented 3D simulation
method can be utilized to calculate the effective homogeneous electrode properties. Those input

parameters will improve the macroscopic approximations in PET simulations.
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Figure 3.10 (a) C,, (b) X, (¢) ¢., and (d) ¢, profiles along the primary direction (x-axis),
obtained by averaging the values in the corresponding phases on the y-z planes, in the LN and UN
Lv2 cases. The profiles are taken under 6C lithiation at V¢ = 2.875 V.
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3.4 Extension to Multiphysics phenomena

The differential equation solvers and AMR grids can be employed to study other phenomena
accompanying electrochemical processes. Heat transport and linear elastic mechanics associated
with charge/discharge cycles are chosen to demonstrate the adaptability of the SBM+AMR frame-
work. Since we intend to promote the diffuse-interface method for simulating complex electrode

phenomena, the investigation of those additional physics is left for future extensions.

3.4.1 Thermal simulations

Joule heating occurs during electrochemical processes. Heat is generated in the particles, elec-
trolyte, and particle-electrolyte interfaces associated with the electrical currents. The temperature
evolution equation can be derived based on energy balance with a diffuse-interface description as
shown in the next section. Here, we ignore any other thermal and thermoelectric effects, such as

enthalpy, the Seeback effect, the Peltier effect, and others. The only source of heat is Joule heating.

34.1.1 Equations and Parameters
The heat equation governs temperature evolution in the particles based on the conservation of
energy: )
ppsp(Z—]; =V-A,VT + Z—[; €Q,, 3.5
with the boundary condition of heat flux: n, - 1,VT = —q, € 0Q,, where T is the temperature,
pp 1s the density, s, is the specific heat, 4, is the thermal conductivity, and «,, is the electrical
conductivity of the particles. i, is the magnitude of electrical current density in the particle as
defined in Section 2.1.1 and the term if, /kp accounts for the Joule heating in the particles. ¢, is the

magnitude of inward heat flux density normal to the particle surface and related to the temperature

gradient according to the Fourier 1st law. Similarly in the electrolyte, we can write

aT, 2
pese 5 =V - AT, + ,l<_ cQ,, (3.6)

with the boundary condition: n, - 4, VT, = —g, € 0€2., where the subscript e indicates electrolyte.

Note that g, = n, - 1,VT, since n, = —n,. The electrical conductivity of the electrolyte is related
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to the ionic diffusivities and salt concentration by

D+ + &)FCe, (3.7)

k., = F|—
RT RT

which has the same physical unit as «,. The two heat equations can be formulated to the SBM

version as:
)
é)Q—V- A, VT, + lﬁ+|V lg (3.8)
PpSp¥p o YpdpVIy ‘/’pkp Ypldp .
o, i; .
PeSeWe—F7— =V " Wede Vi e — plde; .
l’/lat Vt///lVT+z//K \7/ (3.9
e

where ¢, = 1 — ¢,. Summing Egs. (3.8) and (3.9) leads to

oT
[prpsp +(1- wp)pese]E =V [lpp/lp +(1- wp)/le]VT*‘

2 2 (3.10)
wpé +(1- wp)K—ee + VY| - Fron - ([810 = deg)s

Note that the energy balance at the particle surface is described by
qe — qp +i- ([(]5]5 - ¢eq) =0= C}p —qe= Fry, - ([‘p]g - ¢eq)a (3-11)

where i - ([qb]ff — ¢¢q) accounts for the Joule heating across the particle-electrolyte interface. The
material properties used in the thermal simulation are p, = 4.476 g/em?, sp = 0.8036 J /(g-K),
4, =0.0175 W/(cm-K), p, = 1.249 glem?, s, = 1.6478 J /(g'K), A, = 0.0017 W/(cm-K) [76,77].
The unit of T is K.
3.4.1.2 Simulation results

Equation (3.10) was solved using the Crank-Nicolson time scheme on the Laplace term because
the At for Eq. (2.12) is too large for a stable time integration here. The thermal conductivity (4,)
is approximately nine orders of magnitude larger than the particles’ Li diffusivity (D). Note that
the material properties (such as diffusivities, exchange current density, electrical conductivity, and
thermal conductivity) were still set to be the values at 300 K in the electrochemical simulations.
At the same time, the accompanying temperature evolution was simulated. The temperature-
dependent effects of those material properties were ignored because the required data were not

widely accessible.
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Figure 3.11(a) shows the simulated evolution of average cell temperature during a 6C discharge
cycle in Section 3.3.2.1. An adiabatic boundary condition was imposed on this simulation. The
temperature consistently rose as thermal energy was continuously generated. Our analysis shows
that the surface reaction (the last term in Eq. (3.10)) dominated the total heat generation as the
voltage drop across the particle-electrolyte interface was much greater than the electropotential
variations in the particles or electrolyte. It is acknowledged that the total temperature increase may
be overestimated, which is attributed to the fact that the exchange current used here is very small
when X > 0.35 on particle surfaces. If a larger iy in that region is used, the particle-electrolyte
interface voltage drop would be much smaller such that significantly less heat would be generated
during the charge transfer reaction.

The temperature distribution in the cell is fairly uniform, as shown in Fig. 3.11(b): the overall

temperature variation is less than 0.01 K. This result is expected because the thermal conductivities
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Figure 3.11 (a) Simulated cell temperature versus time during 6C discharge. (b) Temperature on
the x-z plane at y = 47.5 um. The black contour lines indicate the particle surface. Calculated
dilation stresses at X = 0.595 at 6C (c) discharge and (d) charge, corresponding to the Li fraction
in Figs. 3.7(b) and (f), respectively. The unit on the color bar is GPa.
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in the particles and electrolyte are much larger than the respective diffusivities. Thus, the tempera-
ture field can reach its near-equilibrium distribution very quickly. This set of thermal simulations
exhibits the transferability of the SBM+AMR method in solving other relevant governing equations

and highlights the impact of input material parameters on the prediction.

3.4.2 Mechanical Simulations
Lithiation/delithiation leads to the expansion/contraction of electrode particles. In the linear

elastic regime, the SBM-formulated mechanical equilibrium equation is given as [44,78]

0 1{0uy %

_ d 0
aTj[‘/"’L”“E(a_m * axk)] HIVURIN: = 5 (WpLikigy), (3.12)

where L;j; is the elastic constant tensor, u; is the displacement, 821 is the eigenstrain due to
lattice expansion/contraction upon lithiation/delithiation, and the repeated indices indicate Einstein
notation of summation. ; is the surface traction along the i-th axial direction. For a free surface,

the second term on the left-hand side vanishes.

3.4.2.1 Equations and parameters

The Young’s modulus of NMCis E; = 142.5and Ep = 117.0GPaat X = 1 and 0 [79], where the
subscripts L and D denote fully lithiated and delithiated states, respectively. A simple Vegard’s law
givesE = Ep+(E.—Ep)X = Ep-p(X) GPa, where p(X) = 1+(Er/Ep—1)X. Foranisotopic case,
the Voigt notation can be used to define Cy; = L1111, C12 = L1122, and C44 = Lj312. Those quantities
are related to Young’s modulus and Poisson’s ratio as C; = E(1+2v)/(1+v)/(1-2v) = C] p(X),
Co=Ev/(1+v)/(1-2v)=CEp(X),and C44 = E/2/(1 +v) = CL, p(X), where the superscript
D denotes the quantities at the delithiated state. We assume the value of Poisson’s ratio is a constant
v = 0.25 [80]. The relative volume expansion of a unit NMC lattice cell is +1.7% [67] from X = 0

0, = &% =(0.017/3)(X - X°) =

to 1. Assuming a linear interpolation, the eigenstrain is ¥ 9 =

1n-°

0.0057(X — X°) = £%(X — X), where XV is the reference stress-free composition. Equation (3.12)
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is expanded along the three coordinate directions as

Da

Y Oou
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Here, we have used x, y, and z to replace x1, x, and x3 in the coordinates, and u, v, and w to replace
ui, up, and us3, respectively, in the displacements. These equations are solved using the Jacobi
relaxation similar to the electro-potential solvers. For each of the equations, the displacement
on the left-hand side was relaxed according to the value on the right-hand side, and the obtained

value was updated to the right-hand side of the next equation. This process was repeated until all
displacements reached numerical equilibrium.
3.4.2.2 Simulation results

Equation (3.12) can be solved with fully anisotropic mechanical properties if those data are
available. However, only isotropic calculations were performed, as a demonstration of solving Eq.

(3.12) on an AMR grid, due to the lack of available data. Here, the stress-free state was assumed
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to be the initial state of the electrochemical cycling, i.e., X, = 0.2. Figures 3.11(c) and (d) show
the calculated dilatational stress o = (0711 + 022 + 0733) /3 stemming from cycling, corresponding
to the X, distribution in Figs. 3.7(b) and (f), respectively. As Li was inserted into the particles,
the host lattice near the particle surface expanded. However, the expansion was constrained by the
lattice coherency imposed in the model, thus exhibiting compressive stress as shown in the deep
blue color in Fig. 3.11(c). As Li was extracted upon charging, the compressive state was relaxed as
indicated by the light blue to green colors shown in Fig. 3.11(d). As a numerical demonstration,
we did not include strain energy as an additional driving force for Li transport, which can be easily
incorporated into the electrochemical simulation if needed. The presented calculation shows the
ease of performing cycling stress simulations using SBM on AMR grids, although the mechanical
equilibrium equation is a more complicated tensor equation. The investigation of mechanical

physics is beyond the current scope.

3.5 Comparison with FEM COMSOL solver

The accuracy of the SBM-AMR solver was verified with a commercial FEM software, COM-
SOL. In both pseudo-1D and single sphere 3D cases, the SBM-AMR produces nearly identical
results to the COMSOL ones. Since we do not have access to the coupled electrochemistry module
in COMSOL, the comparison was made only for X;; with a constant insertion flux. Figure 3.12(a)
shows the pseudo-1D simulation results using COMSOL and SBM-AMR with Lv2 grid at t = 350
s. The element size in COMSOL was set to be similar to the root-level grid spacing. A flux of 3C
insertion was imposed at x = 0 um and a constant diffusivity D = 1 x 107'% cm?/s was set in both
simulations. The black dashed line in Fig. 3.12(a) indicates the position of the left boundary, at
which the flux boundary condition was imposed.

Note that some additional domain was included in the SBM case since the diffuse interface is
an internal boundary in the computational domain. The profiles of X;; along the x direction are
provided in Fig. 3.12(b), which shows the two results closely match each other. Figures 3.12(c)
and (d) show the simulated concentrations in a spherical particle of a 6 ym radius obtained from

COMSOL and the SBM-AMR solver, respectively. The images correspond to the time at 350s
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under a constant insertion flux of 3C rate. The same constant diffusivity as in the pseudo-1D case
above was used in the 3D test. Again, the two results are almost identical, as can be verified by the

X1 profiles along the radial positions in Fig. 3.12(e).

3.6 Conclusions

We demonstrate the novel framework utilizing the Smoothed Boundary Method (SBM) with
Adaptive Mesh Refinement (AMR) to simulate electrochemical processes within electrode mi-
crostructures, facilitating the prediction of electrode performance. This approach eliminates the
need for laborious body-conforming mesh generation tasks typically associated with conventional
sharp-interface methods, thereby significantly accelerating the pre-processing time for complex
microstructure simulations. First, we conduct 1D simulations to investigate error behaviors. Com-

parative analysis between 1D SBM simulations and sharp-interface simulations reveals the SBM’s
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Figure 3.12 Verification of SBM-AMR solver against COMSOL package. All results shown
correspond to # = 350 s. (a) A color plot of concentration distribution in a pseudo-1D case. (b)
Concentration profiles along the x axis. Simulated concentration in a sphere using (c) COMSOL
and (d) SBM-AMR solver. The color ranges in the color bars of both (c) and (d) are the same. A
quarter of the sphere is made transparent to show the concentration inside the particle. (e)
Concentration profiles from the 3D simulations were plotted along the radial position. The results
from COMSOL and the SBM-AMR solver are nearly identical. The COMSOL images were
exported from COMSOL directly, while the SBM-AMR images were generated using Matlab.
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adequacy in accurately capturing thin interface phenomena. Subsequently, we extend the framework
to a 3D model to simulate the distribution and evolution of Li concentration, salt concentration, and
electrostatic potentials within complex microstructures. We emphasize the influence of microstruc-
tures on electrode performance through simulated cell voltage curves and cyclic voltammograms
of synthetic NMC electrodes. Moreover, the simulation outcomes emphasize the significance of
input material parameters. Furthermore, we demonstrate the versatility of our method by extending
it to thermal and mechanical calculations. Finally, we again validate the accuracy of our framework
by comparing it with COMSOL Finite Element Method (FEM) simulations, both in 1D and 3D
settings. While this work primarily employs Finite Difference Method (FDM), it’s important to
note that the presented SBM with AMR framework is adaptable to other numerical methods such
as Finite Element Method (FEM), Finite Volume Method (FVM), or spectral methods. This ver-
satility allows for the simulation of microstructure-level phenomena in various battery electrodes
and electrochemical systems, including fuel cells and photovoltaic cells.

In summary, the pseudo-1D and 3D simulations suggest that SBM with a thick interface is
suitable for simulating low-rate cases, while a thin interface is necessary for high C-rate cases.
The UN and LN 3D simulations showcase the adaptability of the framework for microstructure
simulations. Mesh refinement can be executed in a fast manner, facilitating the exploration of a broad
range of electrode microstructures. Furthermore, this approach can accommodate the incorporation
of additional physical effects such as temperature or stress calculations. Although our study focused
on constant current and cyclic voltammetry loadings, oscillating loadings can also be imposed to
investigate electrochemical impedance spectroscopic behavior at the microstructure level. [58]
We anticipate that the SBM+AMR method will find widespread use in studying microstructure
phenomena and estimating macroscopic performance across various electrochemical systems and

materials.
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CHAPTER 4

PHASE TRANSFORMATIONS AND UNDERSTANDING LITHIUM PLATING IN
GRAPHITE ELECTRODES

4.1 Introduction

In this chapter, we focus on simulating electrochemical processes in complex graphite electrode
microstructures due to graphite’s widespread use and importance in lithium-ion batteries. Graphite
electrodes consist of stacks of graphene sheets. Lithium migrates between these graphene sheets
during lithiation. This migration of lithium ions within graphite is highly anisotropic, occurring
rapidly within the interlayer space but slowly across graphene layers. As lithium fraction in the
graphite increases, they undergo ordering across the graphene layers, leading to phase transforma-
tions in graphite [81, 82]. Graphite can exhibit four different phases based on the lithium fraction
in it. A simplistic illustration of these phases is presented in Fig. 4.1. First, at a low Li fraction,
Li randomly distributes in the whole graphite particle (Stage 1°). Next, Li fills one per three
inter-graphene layers (Stage 3). Then, Li fills one of two layers (Stage 2), and finally, every layer is
filled (Stage 1). These phase transitions are second-order phase transformations, i.e., no changes
are observed in the crystal structure. Within each single phase regime, the open circuit voltage
(OCYV) of graphite exhibits a solid-solution type form, monotonically decreasing as the Li fraction
increases. Notably, the OCV curve shows a flat plateau when two phases coexist in graphite.
Fig. 4.1 illustrates the interlayer ordering of the phases and graphite OCV upon lithiation. The
delithiation follows an opposite sequence of phase transformations. These phase transformations
are crucial for simulating the electrochemical behavior of graphite electrodes.

Despite graphite’s popularity in current Li-ion batteries, graphite anodes still suffer from Li
plating at fast charging [81,82]. The precipitated Li metal results in internal shorting in the batteries,
causing catastrophic issues like fires. This is one of the biggest bottlenecks that prevent a complete
charging of an electric vehicle within 10—15 minutes (6—4 C). A 1C rate (1 C-rate) is defined as a
charge/discharge rate that completes a full charge in 1 hour. Without a comprehensive understanding

of the multiphysics electrochemical processes occurring within the graphite electrodes during fast
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charging operations, advancing microstructure designs to effectively delay or mitigate lithium
plating on graphite anodes remains challenging. Three-dimensional electrochemical simulations
can serve as a viable tool to tackle such complex challenges and can elucidate the detailed dynamics
to complement experimental studies [22,23, 83, 84].

We employ the Cahn-Hilliard phase-field equation [54, 85—87] to model the phase transfor-
mations in graphite replacing the Fick’s diffusion equation in the framework. The Cahn-Hilliard
equation is detailed in the next section and requires a parameterized lithium chemical potential. This
treatment differs from using the regular solution model to construct a thermodynamic free energy
function [88, 89] as typical in phase-field modeling. This equation is coupled with other electro-
chemical governing equations in the framework similar to Fick’s diffusion equation. It is worth
noting that the Cahn-Hilliard equation has previously been employed to simulate the phase transition
in the inter-graphene layers [88-90]. Distinctively, in our work, the Cahn-Hilliard equation models
the phase transformation at the graphite particle scale. We introduced the Cahn-Hilliard equation
in our SBM framework [50]. While previous research has conducted Cahn-Hilliard simulations of
phase separations in various electrode materials, including LFP [54,91], Si [92,93], and FeF; [94],
these efforts were primarily limited to a single-particle scale. Our work extends such simulations
to the scale of electrode microstructures through the utilization of SBM. A significant part of this
work focuses on thick electrodes, an area of considerable interest in recent studies [95,96]. Our
framework offers a computational guide for the design of such thick electrodes, which can be
valuable for advancing research in this direction.

In this chapter, we demonstrate the effectiveness of our simulation framework on a single
graphite disk. We find that the Cahn-Hilliard equation accurately captures the multi-phase transition
process observed in the experimental setup of the disk [81]. Despite the highly anisotropic nature
of lithium transport in graphite, we show that using an isotropic model yields comparable results for
spherical or sphere-like particles, where isotropic mobility is calculated as the volumetric average of
anisotropic mobility. Consequently, we employ isotropic mobility in subsequent three-dimensional

microstructure simulations. For 3D simulations, we utilize three different graphite microstructures
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reconstructed from X-ray computed tomography data [98,99]. We compare the results obtained
using the Cahn-Hilliard model and the Fickian diffusion model on one of these microstructures,
highlighting the differences in performance estimation, particularly at low C-rate operations where
Fick’s diffusion can lead to overestimation of cell voltage. Our simulations can identify when
and where of the theoretical onset of lithium plating on graphite anodes under various charging
conditions, allowing for the optimization of electrode thickness and pore channel tortuosity to
improve high-rate performance. By using this onset as the termination condition for lithiation, we
investigate how electrode thickness and pore channel tortuosity impact high-rate performance across
the three electrodes. Finally, we explore lithiation protocols aimed at improving the achievable
capacities of the electrodes. Since our interest lies in the fast charging of batteries (corresponding

to the lithiation of graphite), delithiation simulations are not presented in this chapter.

/
2+1 ij
,

0 0.2 0.4 0.6 0.8

Figure 4.1 OCYV obtained from Ref. [97]. 17,3, 2, and 1 label the four different graphite phases
upon lithiation simplistically represented by the ball figures. Purple and gray colors represent Li
and C atoms respectively. Phase 1’ is observed for X;; < 0.06. Phase 3 exists between

0.12 < X7; < 0.26. Phase 2 exists between 0.48 < X;; < 0.58. For 0.95 < Xy, phase 1 is
observed. Flat plateaus are observed when two phases coexist.

58



With our solver, we can study several operations of a graphite anode versus lithium metal, pro-
viding valuable insights for optimizing and enhancing anode performance. Overall, our simulation
framework serves as a versatile tool for designing better electrodes and optimizing their operating
conditions, particularly in the context of fast charging of lithium-ion batteries. This chapter is

derived from the published work of the author in Malik et al, 77:109937, January 2024 [50].

4.2 Model and Equations

In this chapter, we modify the framework utilized in Chapters 2 and 3 for graphite simulations.
Unlike the previous chapters, the framework employed here uses solely the smoothed boundary
method (SBM) [44, 50, 57]. For the three-dimensional simulations in this chapter, we use real
microstructures reconstructed from voxel data sourced from literature [98,99]. The voxel centers
extracted from the 3D voxels serve as the grid points for meshing. It’s worth noting that utilizing
voxel data results in a fine root-level refinement, minimizing the need for further refinement.
Consequently, adaptive mesh refinement (AMR) is not utilized in these simulations to avoid any
additional computational burden. Nonetheless, a depiction of an AMR grid on reconstructed
graphite microstructure is detailed in Appendix C for interested readers. A continuous domain
parameter ¢ is utilized to define the region occupied by the graphite particles (¢ = 1) versus the
electrolyte regions (yy = 0). The particle-electrolyte interface is implicitly defined by the region of
0 < ¢ < 1. With a properly selected small thickness, the SBM results can be very close to those
obtained in the conventional sharp-interface simulations [24, 50].

Another significant change introduced in this chapter compared to the framework in Chapters
2 and 3 is the replacement of Fick’s diffusion equation with the Cahn-Hilliard equation to model

diffusion in the electrode particles. We start with Eq. (2.2) to detail the Cahn-Hilliard equation —

0X -
a_t” =-V.j,=V-(M,Vu,) €Q,. (2.2)

The chemical potential comprises contributions from bulk and interface: p, = u, — V- eVX,,
where the chemical potential in the bulk region is defined by the derivative of Gibbs free energy
with respect to the composition as u, = G (X,)/dX,, where G function has multiple wells. Each

well valley (local minimum) corresponds to the respective composition of a stable phase. ¢ is the
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gradient energy coefficient penalizing the sharp composition variation across the phase boundaries.

Thus, Eq. (2.2) is rewritten as

X,
o1

-V (M) = V-,V (29 v evx,), (4.1)
X,

As demonstrated later, the four-well Gibbs free energy function leads to four uniform X, values,
each of which corresponds to its respective stable phase, with narrow transition regions across
different phases within the graphite particles. As before, Eq. (4.1) is reformulated for SBM with

the domain parameter . Multiplying s on both sides of Eq. (4.1) gives

X,

2 UV - (M, Vi), (4.2)

Using the product rule of differentiation on the right-hand side of Eq. (4.2), we further write

AR (Mpvllp) =V (‘pMpVﬂp) -Vy - (Mpvlup)a (4.3)

Combining these two equations results in
oup
ww =V (YMpVuy) =V - (MpVpy), (4.4)

The second term on the right-hand side serves as an ‘internal’ boundary condition within the
computational domain. The Neumann boundary condition on the particle surface (ry,/p =7 - f €

0Q,) can be expressed in the diffuse interface description as

rxn - 7 V
N ALY (=M, Vu,), 4.5)

Ie V|

where 71 = Vi /| V| is the unit inward normal vector of the diffuse interface. Substituting Eq. (4.5)
and u, = up — V- eVX, into Eq. (4.4) and dividing both sides by i, we obtain the SBM version
of the Li transport equation — Cahn-Hilliard equation:

0Xp 1o _v. V1 ran
7_Jv M,V (up — V- eVX,)] + J (4.6)

where p, = 0G(X,)/0X,. Similar to Chapter 3 Eq. (4.6) is solved in conjunction with the
other SBM reformulated electrochemical governing equations listed here— Current continuity on
graphite particle surface:

V- (YxsVs) = |VY|z_Fre, =0, (2.14)
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Ion diffusion in electrolyte:

oC, 1 |Vio| ront— e - Vi,
=—V.-(y.D.VC,) + - , 2.18
ot e (‘//e e e) e Ve 2V F ( )
Current continuity in the electrolyte:
-
V- [Ye (z4my —z2-m_) FC, V.| + |Vwe|% =V [¢.(D--Dy)VC,], (2.20)
=+
Butler-Volmer equation:
io —az F (1 —a)z4F
xn = - - o7 s 2.7
S IRV INWUED S S o

Since no additive phases are considered in this work, ¢/, = 1 — . The details of these formulations
and the procedure for solving these coupled equations can be found in Ref. [24,50]. Because
the complex electrode microstructures are defined by the continuous domain parameter, these
equations can be solved on grid systems that are not conformal to the particle geometries. Thus, by
circumventing the efforts for generating body-conforming meshes required in conventional sharp-
interface modeling, the presented complex microstructure simulations can be implemented much

faster.
4.3 Simulation setup - microstructure and parameters

4.3.1 Material Properties
The values of material properties, which appear in the governing equations, strongly affect the
electrochemical processes. In this work, we parameterized those coefficients (material properties)
from available literature data. They are mostly concentration-dependent quantities such that the
evolution of Li composition influences the electrochemical dynamics. For the Cahn-Hilliard
equation, Eq. (4.6), there are three material parameters: chemical potential, gradient coefficient,
and transport mobility. A cell OCV is the electrical potential difference in a cell at a disconnected
state. Essentially, the Li ions in the cathode and in the anode are in equilibrium at this voltage, thus
no net Li migration between the two electrodes. The Li chemical potentials are related to the OCV
by
Hcathode = Hanode = —€ * $ocv (eV), 4.7)
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where pcarnode = Hp and e is the unit charge. If Li metal is used as the anode, we can set (4040 = 0
as a reference value. The red curve in Fig. 4.1(a) shows a measured graphite OCV curve [97]
against Li metal. There are three voltage plateaus, each of which indicates a two-phase coexisting
region (i.e., miscibility gaps). Shown in Fig. 4.2(b) is the constructed u; curve. The segments
colored in green are —e - ¢ocy in the single-phase regions. Since no phase boundaries will be
present in single-phase regions, uy(X,) = Ucathode-

To allow phase separation, we extrapolated the u; from the single-phase regions to the two-
phase regions, as shown by the red segments in Fig. 4.2(b). These red segments are non-monotonic
such that if X, is within the miscibility gap, spinodal decomposition will occur to move the value
of X, to those corresponding to the lower or upper single phases. Note that phase separation will
not occur if flat plateau values are used for the miscibility regions. The value of the chemical

potential gap (the difference between the maximum and minimum in the non-monotonic function)
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Figure 4.2 Material properties obtained from literature data. (a) Chemical Potential (eV)
constructed from the OCV curve [97]. (b) Diffusivity (cm?/s) in the four single-phase

regions [100]. (c) Mobility (cm?/].s) constructed from the diffusivity curve, and (d) Exchange
current density (mA/cm?) [75].
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can be parameterized from intrinsic voltage hysteresis exhibited on the OCV measurements. The
constructed u; function led to an approximately 25 mV voltage hysteresis (see Fig. 4.3 (a)), which
was close to experimentally observed values (20-25 mV) [101]. The Gibbs free energy of Li in
graphite corresponding to the u; function is shown in Fig. 4.3 (b) and (c). It has four local energy
minima corresponding to the four single-phase regions. This free energy function is completely
parameterized from measured data, demonstrating a different methodology from conventional
regular-solution models.

The gradient energy coeflicient € is related to the interfacial energy and width of the phase
boundaries. Typically, its value can be estimated by integrating the Gibbs free energy along the
thickness direction over the phase boundary. Unfortunately, due to the lack of experimental data
on the interfacial energy between the different phases in graphite, we selected a value of (0.81)2,
where [ is a characteristic length (I = 0.1625 um, which is half of the voxel edge length of the
reconstructed microstructures in this work). This value was selected to ensure a stable phase field
simulation, such that the phase boundary width remained to be approximately 4/. We acknowledge
that more accurate parameterization can be achieved if more material data are available.

Mobility determines how fast mass transport occurs under a driving force: fp = -M,Vu,.

(The driving force is typically the gradient of chemical potential.) If the flux is described by Fick’s

(@ (b), ©
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Li Li Li

Figure 4.3 (a) Parameterized Li chemical potential with voltage hysteresis. The green color
represents the single-phase regions while the red color represents the two-phase regions. (b)
Parameterized Gibbs free energy of Li in graphite. The black dashed lines are the common
tangent lines between two adjacent single phases. There are four single well regions
corresponding to the four stable phases. (c) A magnified view of (b).
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law, it is fp = -D,VX,. Thus, the mobility is related to the diffusivity according to
D
M,=—2_
P ou,0X,

(4.8)
In this work, we used a set of report D, data [100], which have four distinct values in the four
single phases. The D, value is close to a constant value in each respective phase. However,
we multiplied the values by a factor of 100 X 2/3, in which the factor of 100 is to increase the
value of D, to be closer to the more commonly observed values [102, 103]. The factor of 2/3
stems from a volumetric average of the diffusivities parallel and perpendicular to the graphene
layers in graphite particles. The diffusivity perpendicular to the graphene sheets is assumed to be
negligible here. As demonstrated later in Section 4.4.1.2, using the average diffusivity can produce
equivalent results to those obtained from a fully anisotropic model. Since the graphite orientations
in the reconstructed microstructures are unavailable in this work, we treated the graphite particles
as an isotropic material for Li transport and used the ‘average’ diffusivity for parameterizing the
mobility, unless otherwise stated. The D, values for the four single phases are shown as the solid
line segments in Fig 4.2(b).

Figure 4.2(c) shows the M), function used in the simulations. The M), in each of the stable single-
phase regions are obtained using Eq. (4.8). Because phase separation occurs in the miscibility gaps,
diffusivity data are not available for the composition within the miscibility gaps. Thus, M, within
the miscibility gaps was extrapolated from the data in the stable single-phase regions. The M),
curve in the miscibility gaps has high values shown as the humps on the red curve in Fig 4.2(c).

Exchange current density, ip in Eq. (2.7), is the current density on an electrode surface established
at the equilibrium between the salt concentration in the electrolyte, Li fraction in the particle, and
the electric potential drop across the electrolyte-particle interface. The iy value can be measured
using Tafel plotting or impedance techniques. However, the measurement processes are sometimes
highly tedious. Thus, a Li composition-dependent iy function for graphite-electrolyte interfaces is
not widely available in the literature. Most of the available experimental data are just one single
value at a specific Li fraction. Here, we used an iy function obtained using kinetic Monte Carlo

simulations [75], as shown in Fig 4.2(d). This data set spans the entire Li composition range.
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The iy value is small in the near fully delithiated and fully lithiated regions and has a plateau in
the intermediate composition region. We acknowledge that more quantitative predictions can be
achieved with more accurate data if they are available for material parameterization. The presented
Hp, M, and i functions are difficult to be fitted with closed-form functions. Therefore, we tabulated
them into tables and interpolated their values based on X, in the simulations. Furthermore, graphite
is a highly conductive material. We set a uniform «; = 3.3 S/cm for Eq. (2.14). We assume the
same binary electrolyte from Chapter 3, with LiPFg dissolved in an arbitrary organic solvent. We
use the same ambipolar diffusivity in Eq. (2.18) and ionic diffusivities in Eq. (2.20) as in Chapter

3 and Refs. [24,50,57,58].

4.3.2 Electrode Microstructures and Simulation Setups

Electrochemical processes were simulated using the presented approach on three different
openly available reconstructed graphite electrode microstructures [98,99]. The downloaded TIFF-
stack image files were converted to 3D voxel arrays, where the voxel edge size is 325 nm. A region
of 180 x 170 x 160 voxels was cropped from each of the datasets, corresponding to the dimensions
of 58.5 x55.2x52 ,um3. They are shown in Fig. 4.4(a) through (c) and referred to as E_II, E_III,
and E_IV, respectively. As can be observed, E_II consists of relatively large sphere-like particles
and serves as the standard case in this work. E_III has a smaller particle size, which leads to higher
porosity and a higher surface-to-volume ratio compared to the other two electrodes.

E_IV has plate-like/flake-like particles. It can be clearly seen that the primary direction
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Figure 4.4 (a) Electrode 1I (E_II), (b) Electrode II1 (E_III), and (c) Electrode IV (E_IV).
Morphological properties of the shown electrodes are provided in Table 4.1.
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(electrode thickness direction or the x-direction in Fig. 4.4) is perpendicular to the graphite plates
in E_IV. This leads to a high through-plane tortuosity compared to the other electrodes. These
three microstructures were chosen in this study because of their different characteristics. Table 4.1
summarizes the key microstructure properties. Note that morphological properties were calculated
for both the through-plane (TP) and in-plane (IP) configurations. The TP configurations are those
in Fig. 4.4. The IP configurations were obtained by rotating the electrodes by 90 degrees around
the y-axis. In this case, for the E_IV IP case, the primary direction (Li metal anode to the graphite
electrode current collector) is parallel to the graphite plates. In the simulations presented later, the
default setups were in the TP configurations unless otherwise mentioned.

In this work, we doubled the grid resolution using the MATLAB function ‘imresize3’. Similar
to Ref. [24], an empty space was included to serve as the separator region (100 grid spacings).
Thus, the grid system in our simulation contained 360 x 440 x 320 uniform grid points, for which
the grid spacing was Ax = 162.5 nm (half of the voxel size). Using the voxel centers directly as the
grid points, we employed the level-set distancing method as in Ref. [44] to calculate the distance
to the nearest particle surface of each grid point. The domain parameter for the graphite particle
regions was defined using ¢ = [1 +tanh (d/¢ )] /2, where d was the shortest distance to particle
surfaces and ¢ was a numerical parameter to control the thickness of the diffuse interface. Here,

we set { = Ax, such that the diffuse interface of ¥ spanned approximately 4Ax. The time step size

Table 4.1 Morphological properties for the three reconstructed graphite electrodes in the
simulations. The quantities outside and inside the parentheses are for the cropped regions and the
entire microstructure data, respectively.

Microstructure Electrode 11 Electrode III Electrode IV
Parameter
Feature Large spherical particles | Small particles | Plate-like/flake-like particles
Porosity* 33.70 (32.52) 35.96 (36.65) 32.71 (33.04)
Through-plane pore tortuosity* 1.50 (1.59) 1.52 (1.67) 2.86 (2.64)
In-plane pore tortuosity”® 1.29 (1.39) 1.23 (1.47) 1.24 (1.46)
Simulation cell size (um?) 58.5x71.5%x52 58.5x71.5%x52 58.5x71.5%x52
solid volume (um?) 108,130 104,437 112,039
particle surface area in TP (,umz) 30,892 33,464 32,380
particle surface area in IP (um?) 29,679 33,514 29,476
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was At = 2.6 X 1073 s in the following 3D simulations. The boundary conditions were imposed
similarly to those in Section 4.4.1.2. A cut-off voltage of 0.00 V was used in all the following
simulations to avoid the overcharging condition explained in Section 4.4.1.1.

All the physical fields involved in the electrochemical processes in the graphite electrode
microstructures, i.e., X,, ¢,, C,, and ¢., were solved simultaneously in our simulations according
to the equations presented in Section 4.2. The SBM microstructure simulations here did not require
body-conformal mesh. Instead, the uniform Cartesian grid system for the calculations was built
directly using the cuboidal voxels. Thus, we skipped the processing time for generating mesh
conforming to the complex electrode microstructures. As a demonstration, Fig. 4.5(a) through (d)
show the four fields for E_II at the cut-off point under a 6C constant current lithiation.

The primary direction (electrode thickness direction) is along the x-axis. As can be seen in Fig.
4.5(a), X, exhibits a radial variation in each particle. In the electrode scale, the particle surface

X, exhibits a variation along the primary direction. There are gradients present in the other three
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Figure 4.5 (a) Lithium fraction in particle, (b) lithium salt concentration, (c) electropotential in
particle, and (d) electropotential in the electrolyte for 6C lithiation in the TP E_II configuration at
the cut-off point X = 0.53.
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fields. All these gradients agree with the flow directions of the ions in the electrolyte and electrons
in the particle network. A more extensive description of these fields can be found in Ref. [24]. As
this behavior is generally similar to that in Ref. [24], we do not emphasize these three fields further

in this work.
4.4 Results and Discussion
4.4.1 Model examination

4.4.1.1 Single disk simulation

Firstly, we validate if the presented Cahn-Hilliard phase-field equation coupled with other
electrochemical equations can properly emulate the phase transformation processes in a graphite
particle. A virtual battery cell containing a single circular graphite disk was used in this simulation
as shown in Fig. 4.6(a). The disk radius was 2.5 um. It was placed at the west end of the
computational domain, contacting the current collector on the west domain boundary. This acted
as the boundary condition of the electropotential in the graphite disk.

To simplify and accelerate the simulation, the east, south, and north boundaries were assumed

Figure 4.6 (a) Virtual battery cell containing a single circular graphite disk. The disk was lithiated
ata 0.5Crate. X, distributions in the disk from the simulation at (b) ~ 2240s; Phases 1’ and 3 can
be observed. (c) ~ 3380s; Phase 1’ has disappeared and Phase 2 is visible now. (d) ~ 4140s;
Phases 3, 2, and 1 can be observed here, and (e) ~ 4900s; all Phases 3, 2, and 1 can be seen.
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to be Li metal, which provided the electropotential boundary condition for the electrolyte and the
ion sources for the electrolyte. This can be viewed as a scenario that a graphite disk is surrounded
by infinite Li sources. The computational domain was of dimensions of 8.1 x 8.1 x 0.6 um?,
which was discretized with a uniform grid (with a grid spacing of Ax = 0.1 ym). The time step
size was At = 1.056 x 1072 s. The SBM interfacial thickness was approximately 4Ax. As a
structure indicator, the SBM diffuse interface stays stationary since we assume particle deformation
(morphology change) is negligible. The space not occupied by the graphite disk was assumed
to be filled with electrolytes. No-flux boundary conditions were imposed on the top and bottom
boundaries, thus, acting as a quasi-2D simulation. The cell voltage (CV) is the difference between
the electropotential on the current collector and the Li metal. In the simulation, the electropotential
on the Li metal was set to 0.00 V and the lithiation current was controlled by adjusting the
electropotential on the current collector. The box boundary conditions are set for solving ¢, and
@, 1.e., Egs. (2.14) and (2.20) respectively, such that the Butler-Volmer reaction, Eq. (2.7), at the
particle-electrolyte interface, provides the insertion/extraction flux to move the phase boundary
within the disk.

A constant 0.5C loading was set for the lithiation process with a cut-off voltage of 0.00 V.
Note that a 1C rate (1 C-rate) is defined as a charge/discharge rate that completes a full charge in
1 hour, so 0.5C corresponds to a full charge in 2 hours. The cut-off threshold was set to avoid
overcharging. Reaching this overcharging condition could result in a negative electropotential drop
across the graphite-electrolyte interface, which thermodynamically favors lithium plating on the
graphite surface over insertion into the graphite particle [104].

Figures 4.6(b) through (e) show the snapshots of Li fraction (X,,) evolution in the disk. Note that
while other physical fields, such as electropotentials and salt concentration, were simultaneously
simulated, they are not presented here as our focus is the phase transformation dynamics in the
graphite particle. The initial Li fraction was set to be uniformly 0.02 throughout the disk. Li site
density in graphite was set to be p = 0.0312 mol/cm>. As Li was inserted into the disk, X p» near the

surface region increased, exhibiting a gradient along the radial direction. A clear coexistence of
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Phase 1’ and 3 can be observed in Fig. 4.6(b). Further lithiation led to continuous increases of X, in
the outer region of the disk and formed a new phase near the surface. Phase 1’ quickly disappeared
because of two factors: 1) its miscibility gap (0.06 < X;; < 0.12) to Phase 3 is very small and 2)
Phase 1’ chemical potential is much higher than Phase 3. Thus, Phase 1’ rapidly transitioned to
Phase 3. Phase 2 can be observed in Fig. 4.6(c). The region of the new phase expanded inward at
the expense of the old phase. This type of phase transformation continued as lithiation proceeded.
Figure 4.6(e) shows the morphology of the coexistence of Phase 3, 2, and 1 in the disk at the late
stage of lithiation. The single disk simulation exhibits a phase distribution that closely resembles the
phase morphology experimentally observed by Guo et al [81], demonstrating the proper emulation
of phase transitions in graphite using the presented model. The minor difference arises from the
difference in setups, wherein the experiment [81] had lithium metal placed only on the northeast
corner. However, due to the lack of exact material parameters in the experiments, quantitative

comparison cannot be offered in this work.

4.4.1.2 Anisotropic Li transport
Graphite due to its layered structure is highly anisotropic in the intra-particle Li transport
behavior. The presented SBM model allows fully anisotropic simulations, where the mobility in

Eq. (4.6) will be a tensor:

My 0 0
M,=| 0 My 0 | (4.9)
0 0 M.

Here, the subscripts z” and y” indicate the in-plane directions of the graphene sheets within a graphite
particle, and x” indicates the through-plane (TP) direction. In this test, we assume the in-plane (IP)
mobility is four orders of magnitude greater than the TP mobility; i.e., My = M, = 10000M,-.
We set M, = 1.5 X M, for the anisotropic simulation. (The factor of 1.5 will be explained later.)
Because the crystal orientations of the graphite particles in the reconstructed microstructures are
not available, we employed the discrete element method (as in Ref. [24]) to generate a synthetic

microstructure, in which the crystal orientation of each spherical particle was randomly assigned.
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The particle size follows a truncated log-normal distribution as in Ref. [105]. The colors in Fig.
4.7(a) indicate the crystal orientation of each particle using a color scheme of the inverse-pole
figure.

The computational domain contains approximately 1300 particles and has 360 x 220 x 320
grid points with Ax = 0.5 um. A Li metal serving as the Li source is placed on the west domain
boundary (x = 0), thus the primary Li transport direction is along the west-east direction (the x-axis
direction in Fig. 4.7(b), which is also the electrode thickness direction).

Figure 4.7(b) shows the simulated Li fraction at X = 0.29 under a 6C lithiation. (X is the
average Li fraction throughout the entire electrode, which is equivalently the degree of discharge,
DoD.) Interestingly, although the Li transport is highly anisotropic within each spherical graphite
particle, the X, only varies along the sphere radial direction as in a typical isotropic case. This is
attributed to the fact that X, has distributed axisymmetrically in each circular inter-graphene layer.
(Here, the graphene layers are parallel to the latitude planes of the sphere). The size of each circular
layer decreases as the distance from the center plane increases. The smaller layers (near the pole
regions) fill fast and the larger layers (near the equator plane) fill slowly. As a result, the overall X,
varies only radially. Figure 4.8 offers a scheme illustration for this phenomenon.

For comparison, a fully isotropic simulation was performed on the same microstructure, but
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Figure 4.7 (a) Pole figure for the synthetic spherical microstructure with the colors indicating the
fast diffusion direction of each particle. (b) Lithium fraction in the particle at X = 0.29, and (c)
CV curve comparison for the anisotropic and isotropic cases at 1C and 6C rates. The lithium
fraction at the cut-off voltage is highlighted by the grey arrows.
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with a scalar mobility value given as
1 2
Mp = g(MX'+My'+MZ') X §MZ" (410)

The X, distribution from the isotropic simulation taken at the same X is very similar to the
anisotropic case. The cell voltage curves of 1C and 6C lithiation from the anisotropic and isotropic
simulations are plotted in Fig. 4.7(c). In both 1C and 6C cases, the anisotropic (solid) and isotropic
(dashed) curves almost overlap. As demonstrated by this test, a fully isotropic transport model
produces electrochemical simulation results very similar to those obtained from fully anisotropic
simulations if the electrode is comprised of randomly oriented spherical particles. Therefore, a
fully isotropic model was employed to simulate the electrochemical processes in reconstructed

graphite electrodes because the crystal orientations are unavailable in those data.

4.4.2 Cahn-Hilliard(CH) vs Fick’s Diffusion(FD): Electrode 1I

In section 4.4.1.1, we substantiate the Cahn-Hilliard (CH) equation’s effectiveness in simulating
phase transition in a single graphite disk. However, graphite particles were sometimes inaccurately
modeled as Li solid-solution using Fick’s law for Li transport within [ 106—108], without considering
the phase transformation process during (de)lithiation. In this section, we further investigate
the difference in modeling graphite particles as a phase-separating or solid-solution material by
comparing Cahn-Hilliard (CH) and Fick’s diffusion (FD) simulation results. As FD does notinclude

phase boundary

particle surface

Figure 4.8 The solid black lines indicate the sphere surface and the cyan dashed circle indicates
the internal phase boundary. The green arrows indicate Li insertion flux. As the inter-graphene
layer is away from the center plane, the circular plane becomes smaller and will be filled faster. As
a result, the internal phase boundary remains a spherical shape concentric to the sphere surface.
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phase transition behavior, the energy that would be otherwise consumed in these transformations
goes into electrochemical reactions. Therefore, theoretically, FD is expected to overestimate the
electrode’s performance.

We performed two additional sets of constant-current simulations for 1C and 6C lithiation using
Fick’s diffusion equation, Eq. (2.12), for Li transport in graphite particles in E_II. The values of Li
diffusivity in the four stable phases are shown as the red segments in Fig. 4.2(b), and the values in
the two-phase regions are linearly interpolated from the single-phase regions. All other material
properties and simulation conditions were the same as in the previous E_II simulations.

Fick’s diffusion equation:

aXP 1 |V¢’| I'xn
=—-V-(yD,VX,) + ——.
(WD,VX)) U p

= = " (2.12)
Figure 4.9(a) shows simulated CV curves for 1C and 6C cases. The 1C results of the FD and
CH simulations are plotted as the yellow dashed and red solid curves, respectively. While the FD
model treats graphite particles as a Li solid solution, the FD curve still shows step-like profiles upon
lithiation as in the CH case, reflecting the plateaus on the OCV. However, the FD curve extended
to a higher achievable DoD (0.87) than the CH curve (0.78).

Despite the step-like CV curve, the X, in the FD model, shown in Fig. 4.9(b) and (d), exhibits
a continuous inward gradient in the particles, which significantly differs from the multiphasic
coexistence morphology in the CH results, see in Fig. 4.9(c) and (e). Without accounting for
the phase transitions, the Fickian diffusion model results in only a continuous gradient of Li
concentration within each particle, as well as across the electrode. Experimentally observed sharp
color changes across different phases either within a graphite disk [81] or across a graphite anode
[82] are only replicated in the CH results. Since the system at a 1C lithiation is thermodynamically
closer to the equilibrium, without the hindrance of phase boundary motion during phase transitions,
the FD model clearly overestimated the achievable DoD.

In contrast, in the 6C simulations, the total achievable DoDs in the CH and FD results are very

similar. This is because the particle surfaces in the two models all reached Li saturation in a short

time due to the kinetic limitations of inward transport. However, the intrinsic difference in the
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thermodynamics of the two models is still reflected in the shapes of the CV curves. Specifically,
the FD curve (cyan dashed curve) exhibits a much less step-like profile in the 3-2 phase region
(0.12 < X < 0.22), where the curve monotonically decreases as opposed to the plateau in the same
region on the blue solid curve (CH model). In the 6C lithiation, both CH and FD have high inward
gradients in the X, distributions. Although the morphologies are different (FD has continuous
inward gradients, but CH has multiphasic coexistence layers), the overall distributions are similar.
Thus, their overall achievable DoDs are similar.

As pointed out by Bazant’s work [109], it is important to model graphite correctly as a phase-
separating material, rather than a Li solid-solution. Our results demonstrate that the CH model
more accurately depicts Li transport and phase transition behavior in graphite particles. The FD
model can significantly overestimate graphite electrodes’ performance at low C rates. At high C
rates, even though the predicted achievable DoDs are similar, the two models can lead to CV curves

with different shapes. In the rest of this work, we will perform only CH simulations for the graphite
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Figure 4.9 (a) CV curves for Cahn-Hilliard and Fick’s diffusion at 1C and 6C rates. Lithium
fraction distributions in particles at 1C, taken at X = 0.73, for (b) FD case and (c) CH case, with
zoomed-in views in (d) and (e), respectively. The green arrow in (d) points to a particle showing a
continuous inward gradient. The arrow in (e) indicates a particle exhibiting Phases 1, 2, and 3
with yellow, red, and dark green colors, respectively.
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electrodes.

4.4.3 Electrode behaviour comparison

E_II, E_III, and E_IV have significant differences in their morphological properties. See
Table 4.1. While thermodynamics determines the material’s intrinsic properties, microstructures
will dictate the kinetic behavior. Therefore, although the electrodes were all made of the same
graphitic carbon, they are expected to have different electrochemical performances. Among the
three electrodes, E_III has a significantly higher surface-to-volume ratio (approximately 11%) than
those of the other two electrodes. E_III also has a higher porosity (approximately 10%) than the
other two.

Microstructure electrochemical simulations were performed for these three electrodes. Here,
the setups are the TP configurations. Figure 4.10(a) shows the cell voltage curves extracted from the
simulations at 1C lithiation. E_III (the green curve) showed the largest achievable DoD (0.87) before
reaching the cut-off voltage, which is much greater than those of the other two electrodes (0.785 and
0.775 for E_II and E_IV, respectively). Evidently, the high surface-to-volume ratio (equivalently, a
small average particle size) of E_III has the most influential role on the electrochemical performance
in this case. Even though E_II and E_IV have obvious differences in particle morphologies, their
performances are nearly identical at this low C rate.

Figure 4.10(b) shows the CV curves for these three electrodes at 6C lithiation. The high rate

(a) Simulated Cell voltage at 1C (b) Simulated Cell voltage at 6C
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Figure 4.10 Simulated CV curves for the through-plane (TP) configurations of the three electrode
microstructures (a) at 1C rate and (b) at 6C rate.
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performances of E_II and E_IV are expected to be notably distinct because they have a substantial
difference in the pore tortuosities. Interestingly, E_II and E_IV did not perform very differently
and they had similar achievable DoD (0.52 for E_II and 0.53 for E_IV). Similar to the 1C case,
E_III had a much larger achievable DoD (0.64) at 6C lithiation. These results indicate that, for
electrodes of this thickness (55.2 um), pore tortuosity does not strongly impact the performance
even though at high rates. Rather, it is still the surface-to-volume ratio dominating the performance.
To examine the thickness effect, we extended the thicknesses of E_II and E_IV microstructures to
110.4 um (i.e., double thickness) and performed another set of simulations. Hereafter, we refer
these microstructures to as E_II-2X and E_IV-2X. Shown in Fig. 4.11 are the CV curves of E_II-2X
and E_IV-2X at a 6C rate. The two dotted lines are the CV curves from the original thickness cases
provided for comparison. The achievable DoD for E_II-2X is 0.505, significantly larger than 0.415
for E_TV-2X.

Evidently, the high pore tortuosity of E_IV substantially hindered the cell performance (from
DoD = 0.52 to 0.41) by doubling its thickness. For E_II, on the other hand, the achievable DoD
only marginally decreased from 0.53 to 0.505. In this case, the capacity of intercalated Li in the
double-thickness E_II-2X is roughly twice that of the original-thickness case. Figure 4.11(b) shows
the CV curves plotted versus moles of intercalated Li for E_II and E_IV of original and double
thicknesses. Although the double-thickness electrodes have poorer performances, they still achieve

larger capacities because of the increase in volume.
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Figure 4.11 (a) Simulated CV curve comparison, and (b) total inserted lithium in E_IT and E_IV
for single thickness (1X) and double thickness (2X) cases.
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Furthermore, even though the original and double-thickness E_II have achieved similar DoD,
their energy efficiencies are different. Energy efficiency can be defined as the ratio of released
energy during a lithiation process to the theoretical energy that can be obtained from an equilibrium
process. The area below a CV curve is the released energy and the area below the OCV curve is
the theoretical energy. The difference between these two quantities is the waste heat generated in
the process. Figure 4.12 offers an illustration. Here the theoretical energy is calculated up to the
cut-off DoD.

For E_II, increasing from the original to double thickness changes the efficiency from 58.5%
to 47.4%. Note that while the achievable DoD for E_II did not change much by increasing its
thickness, the energy efficiency varied significantly. For E_IV, the efficiency changed from 55.3%
to 40.2% as the thickness was doubled. The variation is larger than the E_II case. Since the
Li capacity in the double-thickness configuration was twice the original one, the total waste heat

generated was also much larger.
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Figure 4.12 Cell voltage vs time for E_II at 6C lithiation. As this is a constant current lithiation,
the purple area under the 6C curve gives an estimate for the energy released in 6C lithiation,
which can be calculated using E, = / I - V.dt where [ is the cell current and V., is the cell voltage.
The orange + purple area estimates the available energy at the equilibrium condition until the
cut-off point. The ratio between the released energy and the theoretical energy is the energy
efficiency for this lithiation process.
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High contrast between the TP tortuosity (2.86) and the IP tortuosity (1.24) of E_IV can be
noted in Table 4.1. The apparent difference in these two tortuosities can be inferred from the
plate-like particles in the E_IV microstructure. Additional simulations were conducted to examine
the performance of E_IV in the IP configuration. Figure 4.13(a) displays the cell voltage curves
for E_IV at 6C and 1C lithiation in the TP and IP configurations. In either 6C or 1C cases, the CV
curves for the two configurations almost overlap, indicating that the electrode thickness (55.2 ym)
is too small to reflect the impact of pore tortuosity.

Thus, we extended the electrode microstructure to double and triple the original thickness and
performed simulations at 6C lithiation on those electrodes. Despite the inherent challenges in poor
kinetics, mechanical strengths, etc., appropriate designs of thick electrodes can lead to a higher
loading and overall energy density by reducing the volume occupied by inactive components (such
as separators and current collectors) [95]. While several recent studies [95,96] have experimentally
explored the strategies for designing better thick electrodes, the following results can provide
insights into such developments using simulations.

The CV curves are plotted in Fig. 4.13(b). For the TP case, increasing the thickness from the
original (55.2 um) to double (110.4 um) and then to triple (165.6 um) thicknesses decreased the
achievable DoD from 0.52 to 0.41 and further to 0.175, respectively. See the three solid curves

in Fig. 4.13(b). Even though the achievable DoD decreased, because of the increase in volume,
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Figure 4.13 (a) Simulated CV curves for E_IV in the TP and IP directions at 1C and 6C rates. (b)
Simulated CV curves for E_IV in the TP (solid lines) and IP (dashed lines) directions at 6C for
single, double, and triple thicknesses.
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the double-thickness TP E_IV-2X still has a nearly 57% more achievable Li capacity than the
original-thickness one. However, the triple-thickness TP E_IV-3X only reached nearly the same
Li capacity as the original case. The achievable Li capacities are 1.83 x 107, 2.88 x 10~, and
1.84 x 1072 moles of TP E_IV, TP E_IV-2X, and TP E_IV-3X, respectively. Clearly, increasing
the thickness has a diminishing effect on the total achievable Li capacity at this rate, indicating an
optimal thickness for the highest Li capacity for a specific microstructure. The energy efficiency
changed from 55.3% to 40.2% and to 34.9%. The shapes of the CV curves also varied as the
thickness increased. The original-thickness curve (solid red) shows slight multiple steps, indicating
phase transitions during lithiation. In contrast, the curve (solid blue) of the triple-thickness case
appears smooth with a negative slope. We interpret the linear curve for the thick electrode to be
due to the strong non-uniformity of lithiation across the length of the electrode.

Figures 4.14(a) and (b) exhibit the simulated X, for the TP E_IV and TP E_IV-3X cases,
respectively, at a point close to the cut-off. Almost all particle surfaces in the original-thickness
case reached a fully lithiated state throughout the entire electrode (as indicated by the bright yellow
color). In contrast, in the triple-thickness case, only the particle surfaces in the front region
(16 < x < 40 um) reached a fully lithiated state. The particle surfaces in the remainder of the
electrode were still at the Stage-3 phase (X, = 0.25, indicated by the dark green color). Although
only a portion of the particle surfaces was saturated with Li, those regions dominated the cell
voltage to the cut-off value. Correspondingly the blue curve in Fig. 4.13(b) dropped rapidly and
exhibited a monotonic negative slope.

The simulated CV curves for the IP configurations are plotted as the dashed curves in Fig.
4.13(b). Extending the electrode from the original to double and further to triple thicknesses
decreased the achievable DoD from 0.52 to 0.489, and to 0.355, respectively. The corresponding
energy efficiency are 57.5%, 46.3%, and 41.0%, respectively. Clearly, the low tortuosity in
the IP configurations leads to smaller decreases in both achievable DoD and energy efficiency,
compared to the TP cases. The triple-thickness IP configuration retained nearly twice that of the TP

configuration in the achievable DoD. The slope of the CV curve (dashed blue) in the IP E_IV-3X

79



here is smaller than that in the TP E_IV-3X (solid blue), suggesting that the X,, on the particle
surfaces in the IP case will be more homogeneous throughout the electrode compared to the TP
case. Experimental work has shown that aligning plate-like graphite particles along the primary
diffusion direction significantly enhances the cell performance in comparison to unaligned particle
configurations [95,110, 111]. Our simulations fulfill the need for a quantitative evaluation of such
effects.

Figure 4.14(c) displays the simulated X,,, in which the particle surfaces with saturated X, were
in the region approximately 16 < x < 70 um, and the particle surfaces in the remainder of the
electrode were in Stage 2 (X, = 0.54). These TP versus IP simulations support the experimental
observations of enhancing cell performance by aligning the plate-like graphite particles along the
primary direction [110].

Respective simulations were also performed on the original-thickness E_II and E_III in their IP
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Figure 4.14 Lithium fraction in particle at 6C lithiation at the cut-off point for (a) TP single
thickness at X = 0.52, (b) TP triple thickness at X = 0.175, and (c) IP triple thickness at X = 0.35.
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configurations to compare them. The CV curves are provided in Fig. 4.15.

The TP and IP configurations performed very similarly. This is not surprising because tortuosity
only has a minimal effect on the performance of electrodes of the original thickness examined here.
Additionally, the TP and IP tortuosities of E_II or E_III have similar values.

In summary, these simulations demonstrate that, for electrodes of the original thickness (55.2
um), the performance is affected only by particle sizes. The impact of pore tortuosity becomes
prevalent once the thickness increases to double or more of the original case. In thick electrodes,
a higher tortuosity will decrease the achievable DoD and energy efficiency more rapidly. As
thick electrodes garner increasing attention for high-capacity applications and have been actively
explored [95,112,113], the presented methodology offers the necessary quantitative tool to estimate

their electrochemical performances without explicitly using their microstructures.

4.4.4 Lithiation protocols

Fast charging capability is crucial for the market penetration of electric vehicles. A full
charge in ten minutes corresponds to a 6C rate. When graphite particle surfaces are saturated
with intercalated Li, the electropotential across the particle-electrolyte interfaces becomes negative
[104]. In this case, Li metal formation on particle surfaces is thermodynamically favored over

insertion, resulting in Li plating. Thus, a negative electropotential drop across graphite surfaces

Simulated Cell voltage - Ell & Ell

0.3 —QOCV —Ell at 6C ||
=" —Ellat 1C —Elll at 6C
O —Elll at 1C
@ |
4‘9 02 Y Dashed - In-plane
'6 \ Solid - Through-plane
> | -
— 0.1
(O]
(&}
0 L
0 0.25 0.5 0.75 1
XLi

Figure 4.15 Simulated cell voltage curves at 6C and 1C rates for E_II and E_IIT in TP (solid lines)
and IP (dashed lines) configurations. The TP and IP results are very similar.
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indicates an overcharging condition, which is used as the cut-off criterion in the simulations. In this
section, we use microstructure simulations to explore an approach to increasing electrodes’ high
C-rate capacity.

Figure 4.16(a) shows CV versus time for 6C lithiation of E_II for both TP and IP configurations.
The CV curve reached the cut-off point at approximately 333 s, roughly half of the expected 6C
duration (600 s).

In this section, we perform additional electrochemical simulations to explore how much further
electrode utilization can be achieved at full 600 s without reaching the cut-off plating voltage (~ 0
V). The simulations were performed on E_II in the TP configuration and were terminated when
either the lithiation process reached 10 minutes or the cell voltage reached the cut-off voltage.

Several lithiation protocols, started with 6C, were examined and the details are in Table 4.2.

Table 4.2 Lithiation protocols, started with a 6C rate, examined in simulations.

protocols achievable DoD duration

Case 1 6C — plating point 0.53 333s

Case2  6C — constant voltage 0.68 600 s

Case 3 6C — 4C — plating point 0.58 381s

Case 4 6C - 4C — 1C 0.61 600 s

Case 5 6C — 1C 0.59 600 s

Case 6 6C — 2C 0.66 600 s
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Figure 4.16 (a) Cell voltage vs time at 6C for TP and IP configuration. (b) Cell voltage vs time
curves for lithiation protocols shown in the table 4.2. The green curve is beneath the blue curve
when 316 < ¢t < 355 s. All the curves before 316 s are beneath the black curve.
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In these simulations, once the CV reached 0.03 V, we reduced the insertion fluxes, which
moved the electrode away from the plating point and allowed it to slowly accept Li until it reached
the 10-minute duration (or the plating point again). The value of the switch point (0.03 V) was
conservatively chosen to be close to but still above the Li-plating condition of the electrode at a 6C
rate.

The simulated CV curves under these protocols are plotted in Fig. 4.16(b), in which only Case
1 (full-6C) and Case 3 (6C-followed-by-4C) were terminated before 600 s. Case 2 followed the
typical constant-current-constant-voltage (CC-CV) protocol. It reached an achievable DoD of 0.68
at 600 s, showing a significant increase (~ 0.15) relative to Case 1 during the additional 267 s.
In Case 3, the initial 6C rate was reduced to a 4C rate after the CV reached the switch point.
Clearly, there was a short relaxation period (316325 s), during which the cell voltage increased.
See the green curve in Fig. 4.16(b). During this relaxation period, the inward flux dictated by the
X, gradient (established by the 6C insertion) was larger than the 4C surface insertion flux. Thus,
the particle surface X, decreased and the CV increased. In the relaxation period, the Biot number
is greater than one. Once the inward X, gradient matched that for the 4C surface flux, surface
X, accumulated again and CV dropped. This 6C—4C case reached plating condition at 381 s
with an achievable DoD of 0.58, only a 0.05 increase compared to a full-6C case. See the values
reported in Table 4.2. Case 4 included an additional constant 1C insertion after Case 3 reached

the switch point. The 1C period proceeded for about 220 s (37% of the total time). However, it
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Figure 4.17 (a) Current vs time, and (b) CV curves for lithiation protocols shown in Table 4.2
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only marginally increased the DoD by 0.03. Case 5 switched the current to 1C after 6C lithiation
reached the switch point. Compared to Case 1, the additional 284 s of 1C lithiation increased the
DoD from 0.53 to 0.59. Comparing Case 5 with Case 4, the short 4C period (316—353 s) increased
DoD by 0.02. The plots of cell current versus time and CV curves versus DoD corresponding to
those in Fig. 4.16(b) are provided in Fig. 4.17. The achievable DoDs for the cases examined above
can be read from those figures.

Table 4.3 lists the results of several additional lithiation protocols, which did not start with a 6C
rate. Cases 7 through 10 were all CC-CV lithiation protocols with increasing currents.

Compared with Case 2 (6C-CV), a higher initial C rate increased the achievable DoD. For
instance, Case 10 (8C-CV) achieved a DoD of 0.694 at 600 s. However, the increase is marginal
and seems to approach a limiting value. With initial lower C rates (Cases 7 and 8), the achievable
DoDs are lower than the 6C-CV case. Overall, the results show that a high constant current in the
CC-CV protocols can slightly increase the achievable DoD within the total 600 s duration. The
curves of DoD versus time for these CC-CV simulations are shown in Fig. 4.18.

However, the high currents also lead to heat waste. The electrochemical energy released in the
lithiation processes is also provided in Table 4.3, which shows a gradual decrease in energy release
as a higher current is used in the CC-CV protocols. Thus the balance of achievable DoD and energy
efficiency should be considered in terms of optimization. Based on the data presented in Table 4.3,
it is likely that 5C-CV would be a sensible choice for a 600 s charging over 6C-CV, as the increase
in DoD from 5C-CV to 6C-CV is marginal (~ 0.016). Still, a 5C start can reduce the stress on the

particles which may help prolong the cycle life of the particles.

Table 4.3 CC-CV lithiation protocols examined in simulations

protocols achievable DoD energy release
Case 7 4C — constant voltage 0.627 2.03x107° ]
Case 8 5C — constant voltage 0.664 1.93x107> J
Case2 6C — constant voltage 0.680 1.82x107 J
Case 9 7C — constant voltage 0.689 1.71x107> J
Case 10 8C — constant voltage 0.694 1.60x1073 J
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These simulations confirmed that the CC-CV lithiation, originally set up as a protective measure
to avoid plating, can also deliver a significant increase in electrode DoD. The constant-voltage
treatment leads the system to a relaxation by itself, which better performs than imposing another
high rate insertion. While some of these facts may already be qualitatively known by battery
researchers, this work provides a facile tool to assess such effects quantitatively. Note that the
lithiation protocol study presented here is specific to E_II. If the system was changed to another
electrode (e.g., E_III or E_IV), the exact quantitative results might be different, and the optimal
protocols might differ as well. Nevertheless, our tool and framework are capable of identifying the

optimum protocol for any electrode microstructure with any material properties.

4.4.5 Anisotropic effect in E_IV

In Section 4.4.1.2, we demonstrated that anisotropy in Li transport has only a negligible impact
on the performance of electrodes consisting of randomly oriented spherical graphite particles. In
Sections 4.4.3 through 4.4.4, we restrained the simulations to isotropic models for investigating the
microstructure effects on graphite electrodes. However, E_IV has plate-like particles, which leads
the through-plane direction to be easily identified as the slow transport direction. Here, we include
the anisotropic Li transport in a new 6C simulation, in which the through-plane Li mobility is four

orders of magnitude smaller than the in-plane mobility. The X, distribution at the cut-off point

ggnstant Current - Current Voltage

0.6}
004
0.2 —4C-CV —7C-CV/(]
—5C-CV —8C-CV
6C-CV
O | 1 1
0 200 400 600
time (s)

Figure 4.18 Simulated DoD versus time for different CC-CV lithiation protocols. The DoDs at
600 s are provided in Table 4.3)
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(DoD =0.41) is shown in Fig. 4.19(a).

Figure 4.19(b) shows the simulated CV curve, plotted with a cyan dashed line. The isotropic
result (presented earlier) is also provided (the blue curve) here for comparison. A significant
decrease in cell performance is observed as the cell voltage is considerably lower in the anisotropic
result. The achievable DoD at 6C is much lower at 0.41. Figures 4.19(c) and (d) compare the same
zoomed-in section for an anisotropic and an isotropic simulation at the same DoD (0.41). The
anisotropic result shows sharper gradients of X, in the through-plane direction (x-direction) while
relatively more uniform lithium distribution can be observed in the isotropic case. Furthermore, the
isotropic particles have a higher X, in their core centers. Evidently, the anisotropy in Li transport
should be included for accurate simulations for graphite particles with a large aspect ratio. Thus,
for all E_IV simulations presented earlier, the CV curves are expected to move toward the left
if including transport anisotropy. Conversely, the isotropic results should be still valid for the

simulations of sphere-like particles (E_II and E_III). Nevertheless, while our model is capable of
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Figure 4.19 (a) Lithium fraction in particle for E_IV with anisotropy at 6C lithiation at the cut-off
point X = 0.41, (b) CV curves for anisotropic and isotropic models for E_IV; (c) and (d)
zoomed-in comparison for anisotropic and isotropic lithium concentration distribution.
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including crystal orientations explicitly, it is difficult to detect graphite particles’ crystal orientations
in X-ray CT scans. Thus, using isotropic models is a forced choice due to the lack of orientation

information. For spherical particles, the isotropic assumption is valid regardless.

4.5 Conclusion

We utilize the Cahn-Hilliard phase-field equation with the smoothed boundary method to sim-
ulate lithium transport and phase transitions in graphite particles within electrode microstructures,
using input material properties parameterized from existing literature. Our simulations leverage
direct voxel data specifically for graphite anodes but can be applied to analyze a wide range of other
microstructures and materials. By establishing this framework, we demonstrate its efficacy in con-
ducting in-silico(virtual) experiments to explore intricate details within electrode microstructures.

Our findings highlight the importance of considering phase transitions in electrode simulations.
Neglecting these transitions by employing Fick’s diffusion law to model Li transport in graphite
particles leads to overestimating the electrode’s performance. We investigate the influence of
morphological properties such as porosity and tortuosity at the microstructural level by comparing
three different reconstructed graphite electrodes. While pore tortuosity appears to have only
a minor impact on electrode performance for thicknesses less than approximately <~100 um,
it becomes significant for thicker electrodes. These findings are consistent with experimental
observations, further validating our simulation approach. Additionally, our simulations explore
the effect of different lithiation protocols on extending electrodes’ achievable Depth of Discharge
(DoD). Within a target 6C duration, we quantitatively demonstrate that a constant-current constant-
voltage protocol marginally outperforms other constant-current protocols. While these insights
align with physical intuitions, our simulations provide valuable quantitative predictions based on
explicit considerations of microstructures.

This work establishes a versatile framework transferable to the study of various electrodes. It
has been successfully applied to investigate hybrid anodes [57], optimize tunnels in electrodes,
and explore full-cell dynamics. Moreover, our work demonstrates the feasibility of simulating

multiphysics phenomena in highly complex microstructures using modest computational resources.
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While accurate material property parameters are essential for quantitative performance predictions,
acquiring high-quality material properties experimentally can be challenging. Therefore, besides
serving as a digital design tool for electrodes, we propose that our SBM framework could be

employed to calibrate intrinsic material parameters in electrochemical measurements accurately.
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CHAPTER 5

UNRAVELING HYBRID ANODE DYNAMICS AND ALLEVIATING PLATING

In this chapter, we investigate hybrid graphite-hard carbon anodes using the framework demon-
strated in the previous chapters. As highlighted in Chapter 4, while graphite remains widely
utilized in lithium-ion batteries, it exhibits limitations under fast charging conditions. Fast charging
in graphite can result in poor electrode utilization due to spatially inhomogeneous current [114].
Additionally, Li plating becomes significantly favorable during fast charging on graphite an-
odes [115-117]. This chapter focuses on addressing these challenges via a thermodynamic
approach, exploring hybrid anodes. Mixing various carbon-based materials [118, 119], and in-
corporating hard carbon to graphite anode [120—122] have been subjects of study in the literature,
aiming to harness the benefits of both materials while minimizing their drawbacks. Recently, a
graphite/hard carbon hybrid anode has shown potential in delaying and mitigating Li plating [123].
Chen et al. recently demonstrated that a graphite-hard carbon hybrid electrode offers significant
advantages over a pure graphite or a pure hard-carbon electrode [123]. Hard carbon, composed of
graphene fragments in an amorphous arrangement, exhibits a lower Li site density than graphite.
Although hard carbon displays lower energy density, it demonstrates a more homogeneous cur-
rent [124—-126], which can be advantageous in delaying plating. Hereafter, we refer to hard carbon
simply as “carbon.”

We adapt the framework presented in Chapter 4 for hybrid anodes. The smoothed boundary
method (SBM) is employed to circumvent the need for conformal meshes at the microstructure
level. While we continue using the Cahn-Hilliard equation to describe Li diffusion in graphite
particles, Fick’s diffusion equation is adequate to model Li diffusion in carbon particles as carbon
anode does not undergo any phase transformations during lithiation. As in Sections 3.3.2 and
4.4.1.2, a discrete element method is utilized to create synthetic electrode microstructures, allowing
individual electrode particles to be distinguished and easily assigned to different active materials.
Concentration-dependent material properties, parameterized from reported experimental data, are

incorporated in the simulations.
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In this chapter, the SBM simulations revealed an interaction between graphite and carbon
particles at the microstructure level, which agrees with the Porous Electrode Theory (PET) modeling
in Ref. [123]. During lithiation of the hybrid electrode, Li insertion is initially concentrated on
carbon particles as it is thermodynamically favored in the first stage. Then, as the Li fraction
in carbon increases, leading to a higher Li chemical potential in carbon particles compared to
graphite particles, lithiation switches to graphite particles in the second stage. A third stage is
revealed upon saturation of graphite particle surfaces where lithiation to carbon is favored again.
This third stage of lithiation is especially beneficial at high C rates in delaying the onset of
plating conditions. At these high C rates, graphite particle surfaces saturate much faster and the
carbon particles act as a buffer to accommodate the additional lithium intake. This phenomenon
represents another coupling behavior in addition to the physical mechanisms mentioned earlier,
introducing a new aspect of electrode design. Thus, Li migration across graphite-hard carbon
interfaces is examined as well. Microstructure arrangements, such as particle sizes and positions,
can be manipulated to kinetically enhance or hinder the thermodynamics-driven interaction, as
demonstrated in the simulations. Moreover, the simulations indicate that a hybrid graphite-carbon
(HGC) electrode has a lower chance of Li plating than a pure graphite electrode, supporting
reported experimental observations [123]. The impact of intrinsic material properties, such as Li
diffusivity and exchange current density on carbon particles is also examined in the simulations. The
SBM offers a significant advantage of fast implementation of electrode microstructure simulations,
enabling easy rearrangement of particle configurations and reassignment of material properties to
different particles. As a result, we expect this method to be widely employed to computationally
study the effects of microstructure and intrinsic material properties on battery performance.

The content presented in this chapter is adapted from the author’s publication in Affan Mailk
et al., Electrochemical dynamics in hybrid graphite—carbon electrodes, MRS Communications

(2022) [57].
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5.1 Modeling and equations

As described previously, SBM employs a continuous domain parameter () to differentiate
between regions occupied by electrode particles and the electrolyte. In Chapters 3 and 4, we
explored half-cells with electrodes containing a single active material, while the hybrid anode in
this chapter is composed of two active materials: graphite and hard carbon. SBM allows us to easily
incorporate multiple domain parameters to define different materials within a system. In this work,
we utilize two solid domain parameters: ¢, and ¢, representing graphite and hard carbon particles,
respectively. The third domain parameter representing the electrolyte is defined as ¥, = 1 -y — .
The Li transport process in graphite is described by the Cahn-Hilliard equation, as in Chapter 4.

The Cahn-Hilliard equation for graphite in hybrid anode:

% = wigv. |0 MV (18 = - 89X, )| +

where the subscript ‘g’ corresponds to graphite and yé’ =0f,/0Xg. Xi, i, My, 1, fi, and p; are Li

|V¢’|ge Txn,ge
ve  Pg '

5.1

fraction, domain parameter, mobility, chemical potential, free energy function, and Li site density,
respectively. 7 is time, € is the gradient energy coefficient, and r,,; is the surface reaction rate.
The three domain parameters in the hybrid half-cell lead to three different interfaces. We

differentiate different interfaces by using

IVirlij = [IV¥il V5. (5.2)

Thus, |Vi/|g. denotes the interface between graphite and electrolyte, |Vi/|.. denotes the interface

between carbon and electrolyte, and |V, denotes the interface between graphite and carbon.
The kinetic equation for Li fraction evolution in hard carbon is similar to Eq. (5.1), except that

the gradient coefficient vanishes because Li stays as a solid solution in amorphous carbon. The

equation is shown here—

X 1 V C xn,ce
0 c:—V~l//cMCV,uc+| Wlce Txn,
ot e e Pc (5.3)
1 dfe IV ce Fxn,ce )
=—V -y .M.V .
e WeMe (GXC) ¥ e Pc ’

where the subscript ‘c’ indicates carbon and ‘ce’ indicates hard carbon-electrolyte interface. The

subscripts ‘ge’ and ‘ce’ indicate graphite-electrolyte and carbon-electrolyte interfaces, respectively.
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The magnitude of |Vi/| is nonzero only at particle-electrolyte interfaces, thus effectively delineating
these interfaces. The current continuity equation, Eq. (2.14), requires modification to accommodate
both graphite and hard carbon particles. We have two distinct particle surfaces within the hybrid
anode, each with its own reaction flux and electrical conductivity. To address this, we introduce
equivalent reaction fluxes and equivalent conductivities derived using the two domain parameters.
These are then substituted into Eq. (2.14) to account for the new particle surfaces introduced in the

hybrid anode. The modified equation is shown here. Current continuity in the hybrid anode:

V. [(wgkg + lpckc)vﬁbs] - (|Vw|gerxn,ge + |VW|cerxn,ce) (Z—F) =0, (54)

where k; and ¢, are the electrical conductivities and the electropotential, respectively. The subscript
‘s’ indicates the entire solid i.e., the electropotential spreads over the entire solid, including both
graphite and hard carbon. The domain of solid can be expressed by s = ¢z + ¥, but |V, and
|V | are two different types of reactive surfaces. F is the Faraday constant, and z_ is the charge
number. The subscript ‘=’ indicates anion.

Similar adjustments are made to ion diffusion and current continuity in the electrolyte expressed

in Egs. (5.5) and (5.6), respectively. Ion diffusion in electrolyte:

9C., — LV - ($.D.VC,) + (lv'vl’lgerxn,ge + |V‘/’|cerxn,ce) l__ 3 e - Vt+,
6t lvlje l//e Vi Z+V+F

(5.5

Current continuity in the electrolyte:

1
V. [we (Z+m+ - Z—m—) FCeV¢e] + (|Vw|gerxn,ge+|V‘//|cerxn,ce)V_ =
* (5.6)

V-[g.(D-—-Dy)VC,],
The surface reaction is calculated using the Butler-Volmer equation on the graphite-electrolyte

interfaces, Eq. (5.7) —

—az. F 1-—a)z F
T'xn,ge = k}gc+ exXp . [¢]§] - kicg exXp [% [¢]§} (57)
and on the carbon-electrolyte interfaces, Eq. (5.8) —
B —az4F . 1 —a)z4F
Fance = ki exp [ o7 [¢]i] ~ k,Ceexp [% [¢]£] (5.8)
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individually, where k; and k;} are the forward and backward reaction rate constants, respectively,

given by

00, az F l0,g (@ — 1)z4F
kS = s | and k¢ = s ). 5.9
/= ZFC, eXp( RT * q) et = FC, eXp( RT Ve >9)

Similarly, for carbon, we have

Cc
€
f 2 FCy

k

10,¢ az F
XP | %+
RT

] C _1 F
</’gq) and kj = 0c_ o ((a )%+

°. .10
—rc e %) (5.10)

The SBM equations are then solved on a regular grid system, with a standard finite difference
method [45-48] similar to Chapter 4.

The gradients of chemical potential drive Li transport in electrode particles. The chemical
potential is related to the open-circuit voltage (OCV) by ®@ocy = (¢ — iy 0) /e, where ygi is the
chemical potential of metallic Li (a constant value), and e is the elemental electron charge. Note that
here we have assumed that metallic Li is the counter-electrode. Figure 5.1(a) shows experimentally
measured OCVs of graphite-Li [97] and carbon-Li [123] cells versus the degree of discharge (DoD),
from which u, and u. were extracted for the simulations. (Here, we used a graphite OCV curve
slightly different from Ref. [123] to maintain consistency with our other work [50].) The four
single-phase regions of Li,Cg are indicated by the numbers 1° through 1 on the gray curve, and the
plateaus are the two-phase regions. The green curve monotonically decreases, indicating that Li
stays a solid solution in carbon. The red curve is an expected OCV of a 50-50 hybrid electrode,
obtained by linear interpolation from graphite and carbon OCVs. For the 50-50 hybrid electrode,
the distribution is based on cell volume for ease of implementation. However, this approach can be
easily adjusted to a weight-based ratio in any future studies. The curve is reasonably similar to the
measured one in Ref. [123].

The Li mobility in graphite was parameterized from reported diffusivity data [100] according
to Dg = M,(0u,/0X,), where D, has four respective values of the four phases. Exchange current
density (ip), crucial in determining the rate constants of (de)intercalation reaction, is scarce in the
literature. Thus, a Kinetic Monte Carlo simulated X,-dependant iy [75] was used in this work. Due

to the lack of experimental data for carbon, we assumed that Li diffusivity in carbon is a constant
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with a similar magnitude to that in graphite, and iy on the carbon-electrolyte surface is the same as
that of graphite. Furthermore, since there is no available data, Li migration across particle contacts
was considered in two extreme cases. The permeability was chosen to be zero for most of the
simulations to eliminate interparticle transport. However, in two of the presented simulations, the
other extreme of infinitely large permeability was examined by setting a substantially high value of
permeability (relative to the mobility). The material parameters are detailed in the next section.

While SBM is uniquely powerful for directly using reconstructed microstructures in the sim-

(a) . . . . (b) i . . —0.3
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0.8 —hybr]| O gl 02 ¢
0.6 € 2
3 S 50 &
004 5 10.1 &=
0.2 # 25
oL 3 2=
O 02 04 06 08 1 5] 10 15 20
DoD diameter (um)

5
Yy (km)32.5 0

5
y (pm)32.5

Figure 5.1 (a) OCV curves of graphite, carbon, and 50-50 hybrid electrodes. (b) Particle size
distribution of the synthetic electrode microstructure in the simulations. (c) The virtual battery
cell in the simulations, in which the gray and green colors indicate graphite and carbon particles,
respectively, the semi-transparent cyan plate indicates the Li metal anode, the brown plate in the
back indicates the current collector and the empty space between Li foil and hybrid electrode
serves as the separator. Synthetic 50-50 hybrid electrodes in which graphite and carbon are
assigned to (d) the small and large particles, respectively, and (e) front and back, respectively.
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ulations [44, 127], we do not have access to X-ray computed-tomography reconstructed hybrid
graphite-carbon (HGC) electrode microstructures that can clearly distinguish graphite and carbon.
Thus, synthetic HGC microstructures made of spheres were computationally generated using the
discrete element method for the simulations. The electrode contains 1159 spherical particles with
a size distribution shown in Fig 5.1(b), approximately following a log-normal function. The gray
and green colors in Fig 5.1(c) indicate graphite and carbon particles, respectively, in which the
particles were randomly assigned to the two active materials, but the volume fractions were kept
approximately equal. A virtual battery cell, comprised of Li foil (cyan slab), separator (empty
space between cyan slab and electrode), HGC electrode, and current collector (brown slab), was

used in the electrochemical simulations; see Fig 5.1(c).

5.1.1 Material parameters
Graphite and carbon OCV (¢ocvy) curves are shown in Fig 5.2(a). The chemical potentials of

Li in graphite and carbon are

Mg = —docv,g (€V) (5.11)
He = —Pocv.c (€V), (5.12)

respectively, versus metallic Li. The curves are shown in Fig 5.2(b). Note that ¢ocv , has
plateaus in two-phase regions. To impose chemical potential for phase separation, we extrapolate
the curve from single-phase to two-phase regions. Thus, there are non-monotonic (laid-down
S-shaped) regions on the gray curve in Fig 5.2(b). Li diffusivities in graphite are assumed to be
8.99x1071%,6.67 x 10711, 3.93x 107!, and 1.20 x 107! cm?/s for Phase-1" (X < 0.06), Phase-3
(0.12 < X < 0.26), Phase-2 (0.48 < X < 0.58), and Phase-1 (X > 0.95), respectively. The
four segments of Li diffusivity are shown as the four gray horizontal lines in Fig 5.2(c). Here,
we have multiplied the values in the data [100] by 100 x 2/3 for the simulations, such that the
input parameters are close to many other measurements [103]. The Li diffusivity in hard carbon is
assumed to be 1.0 x 10~ cm?/s, shown as the green horizontal line in Fig 5.2(c). Li mobilities are
calculated from diffusivities and chemical potentials using Einstein’s relationship. Li mobilities in

graphite and carbon are shown as the gray and green curves, respectively, in Fig 5.2(d). The hump
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Figure 5.2 Material parameters used in the simulations. (a) OCV curves of graphite and carbon
electrodes. (b) The chemical potential of Li in graphite and carbon. (c) Li diffusivities in graphite
and carbon. (d) Li mobilities in graphite and carbon. (e) Exchange current density. (¢) Ambipolar
diffusivity and ionic diffusivities.
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regions in M, (gray curve) are extrapolated from the valley regions. Exchange current density is
parameterized from reported KMC simulation results [75] and is shown as the gray curve in Fig
5.2(e). Ambipolar salt diffusivity, cation diffusivity, and anion diffusivity are shown as the red,

green, and blue curves in Fig 5.2(f). The function of D, is
D, = 0.00489 x exp(—7.02 — 830C, + 50000C?) cm?/s. (5.13)

We scaled the concentration-dependent Li salt diffusivity in Ref. [65] such that the values of D, and
D_at1Mare 1.25x 107% cm?/s and 4.0 x 107% cm?/s, respectively, as in Ref. [45]. The electrical
conductivities of graphite and carbon used in the simulations are 3.3 and 1.0 S/cm, respectively.
Li site densities used in the simulations for graphite and carbon are 0.0312 and 0.0227 mol/cm?,
respectively. In this work, we tabulated u,, ., My, M., and reaction constants into tables, instead
of fitting them to functions. Those quantities were interpolated from the tables in the simulations.
The simulation domain has a dimension of 320 x 215 x 360 Cartesian grid with Ax = 0.325 um.
We again adopt the binary electrolyte, LiPF¢ dissolved in an arbitrary organic solvent, as detailed
in Chapter 3. The ambipolar diffusivity in Eq. (2.18) and ionic diffusivities in Eq. (2.20) are also

identical to the ones used before. More details can be found in Chapter 3 and Refs. [24,50,57,58].
5.2 Results and Discussion

5.2.1 Simulations on 50% hybrid anode

Figures 5.3(a) through (c) display snapshots of simulated Li fraction in the hybrid electrode at
three different times during a constant 6C-rate lithiation. Here, C rates represent the rates of charge
or discharge in terms of capacity. Specifically, 6C means a full charge or discharge in 1/6 hours (10
minutes). The total capacity of this hybrid electrode is 1.041 x 10~8 mol of Li (or 1.004 mAh), for
which a 6C rate corresponds to 2.790 x 10~* mA. Detailed calculation is provided in the Appendix
D.1. At the initial state, the Li fraction in graphite is X, ~ 0.02, and that in carbon is X, ~ 0.23.
See the gray and green arrows in Fig 5.3(a) for the initial Li fractions in the graphite and carbon
particles, respectively. These lead to an average Li faction (X, equivalent to DoD) of the electrode

tobe X ~ 0.125.
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Here, we set the initial X, to be 0.02 instead of 0 to ease numerical implementation. A small
time step size will need to be used for a stable simulation if X, = 0 because the magnitude of y, at
X, = 01is large. We do not expect additional insights to be gained in much longer simulations in
which the initial X, is 0. The initial values of X, and X, are equilibrated at an initial cell voltage of
0.5265 V. Since Li fractions determine chemical potential and Butler-Volmer reaction rate, the cell
voltage, and OCV curves are plotted versus Li fraction, i.e., DoD. Note that DoD in this chapter
is normalized with each electrode’s total capacity. The simulation reveals a three-stage lithiation
process. Initially, Li is predominantly inserted into carbon particles, after which intercalation shifts
considerably towards graphite particles. Subsequently, Li insertion in carbon particles becomes
favored again. These three stages correspond to the three segments with different slopes on the
blue curve, simulated cell voltage (CV), in Fig 5.4(a). In the first stage, graphite particles are in
Phase-1" (X, < 0.06, indicated as 1’ in Fig 5.1(a)). Increasing X, requires a substantial increase

in chemical potential (u,), as inferred from the steep slope of the gray curve in Phase-1 in Fig 5.2
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Figure 5.3 Simulated Li fraction in the hybrid electrode for a 6C lithiation at depth of discharge

(DoD) equal to (a) 0.125 ( = 0 s), (b) 0.185 ( = 35 s), and (c) 0.41 (¢ = 183 s). The row below
shows the magnified views.
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(which corresponds to the gray curve in Phase-1" in Fig 5.1(a)); i.e., the resistance of Li insertion

to graphite is large. As a result, Li insertion mainly occurs in the carbon particles, leading to high
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Figure 5.4 (a) Simulated cell voltage: blue and brown curves are for the 6C and 1C lithiation,
respectively. Li fraction over time for (b) 6C and (c) 1C lithiation. The three markers on the blue
curve in (a) indicate the corresponding DoDs to Fig 5.3(a) through (c). The red, gray, and green
curves in (b) and (c) are the fractions of the whole electrode, graphite particles, and carbon
particles, respectively. The magenta line and triangle in (b) indicate the time corresponding to Fig
5.3(b). The cyan line and square in (b) indicate the time corresponding to Fig 5.3(c). The cyan
line in (c¢) indicates the time when graphite and carbon curves intersect. The three black arrows in
(c) point to the three plateaus on the carbon curve. The three arrows labeled A (magenta), B
(blue), and C (green) highlight the three stages of lithiation, respectively.
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X, on carbon particle surfaces; see the magenta arrow in Fig 5.3(b) for an example.

Note that the governing equations of Li salt concentration evolution and electrostatic potential
in the electrolyte, electrostatic potential in the particles, and reaction rate on the particle surfaces are
also simultaneously solved in the SBM at the microstructure level. However, since the X evolution
most intuitively represents the cell voltage behavior, we focus our discussions only on X distribution
in the particles in this chapter. Examples of other fields are provided in Figs. 5.5 and 5.6. Given
their similarity with the fields presented in previous chapters, in-depth discussions of those fields
are not presented here. Readers are referred to Ref. [24, 50, 123] to study the relevant impacts from
those fields. Although both X, and X, increase during this stage, X, increases much faster. Figure
5.4(b) shows the evolution of average Li fractions of the entire electrode (red), carbon particles
(green), and graphite particles (gray). The curves are plotted versus time to highlight the time
scale. Since a constant 6C rate was used, time is linearly scaled with DoD: ¢t = 600 s corresponds
to DoD = 1. At the point that Fig 5.3(b) was taken (corresponding to the black triangle markers in
Fig 5.4(a) and (b)), X, has increased from 0.23 to 0.34 while X, only increased from 0.02 to 0.03.

As X, in graphite particles exceeds the solubility limit of Phase 1°, intercalation into graphite
becomes much easier because a large X, variation requires only a small change in u,. Within
the multiple-plateau regime (0.06 < X, < 0.83), the total decrease of OCV over the entire
multiple-plateau regime is small, as shown on the gray curve in Fig 5.1(a). Thus, Li intercalation
to graphite occurs increasingly, as indicated by the steep slope of the gray curve in Fig 5.4(b),
passing the vertical magenta line. This stage corresponds to the second part of the blue CV curve
(0.2 < DoD < 0.56) in the 6C simulation in Fig 5.4(a). Figure 5.3(c) shows the Li fraction at
t = 183 s and DoD = 0.41 corresponding to the black square markers in Fig 5.4(a) and (b), at
which average X, = 0.32 and X. = 0.5, but surface X, has reached > 0.8 on some graphite particle
surfaces; see the cyan arrow in Fig 5.3(c). However, large graphite particles still have their cores
at Phase 1’ (X, < 0.05) due to the inherent phase separation in graphite. The coexistence of the
four different phases in a concentric core-shell structure can be observed for those particles. An

illustrative image is shown in 5.7 to show the distribution of four phases in the graphite particles.
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Figure 5.5 Simulated (a) Li salt concentration in the electrolyte, (b) Li fraction in electrode
particles, electrostatic potentials in the (c¢) electrolyte and (d) particles, and (¢) SEPD on particle
surfaces at X = 0.41 at r = 183 s at 6C lithiation.
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Figure 5.6 Simulated (a) Li salt concentration in the electrolyte, (b) Li fraction in electrode

particles, electrostatic potentials in the (c¢) electrolyte and (d) particles, and (¢) SEPD on particle
surfaces at X = 0.41 at r = 1068 s at 1C lithiation.
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A third stage is also observed, albeit briefly before meeting the termination criteria, where
lithiation to carbon once again becomes favored over graphite. This shift occurs because graphite
particle surfaces become saturated with lithium, significant resisting further Li insertion. In
contrast, carbon surfaces maintain a lower lithium concentration due to lithium forming a solid
solution within the carbon, unlike the phase separation observed in graphite. This allows the
carbon particles to act as a buffer for lithiation, which is not present in a pure graphite anode,
thus alleviating plating. We further discuss this phenomenon in Sections 5.2.2 and 5.2.3. This
third stage corresponds to the third segment of the blue CV curve (0.56 < DoD < 0.63) in the 6C
simulation in Fig. 5.4(a). During this stage, X, on graphite surfaces is significantly higher than X,
on carbon surfaces, although the average Li fraction in graphite is still marginally lower than that in
carbon, as observed in Fig. 5.4(b). The three stages of lithiation are highlighted as A, B, and C in

Figs. 5.4 (b) and (c), respectively. Henceforth, this 6C lithiation simulation serves as the baseline

80

60

40 .

20

100

o graphite  carbon

Figure 5.7 Li fraction in graphite and carbon particles for 6C lithiation at X = 0.635. The
magnified view shows that there are four phases in graphite particles: from the core to the surface
are Phase 1’ (dark blue), 3 (light blue), 2 (green), and 1 (bright yellow). The average X, and X_
are similar, but X, is more uniform in carbon particles. The carbon particle surfaces are less
saturated than the graphite surfaces.
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result and is referred to as the standard case for future comparisons.

In addition to the high C rate case, simulation was performed on the same synthetic electrode for
a 1C lithiation, and the obtained CV is plotted as the brown curve in Fig 5.4(a). As expected, the CV
is closer to the OCV at a low rate, and the CV curve exhibits a more pronounced multiple-plateau
region (with three plateaus). A small dip is observed near DoD = 0.26, which indicates a sudden
decrease in Gibbs free energy of graphite when Phase 3 nucleates from a Li-saturated, metastable
Phase 1°. Similar small CV drops are commonly seen in simulations of phase-separating materials
yet not reported in experimental measurements. Phase separation (nucleation of a new phase)
from a metastable (supersaturated) state will suddenly reduce the system’s free energy according to
classical thermodynamics, leading to a sudden change in cell voltage. This phenomenon is widely
observed in phase-field simulations of electrochemical materials involving phase transformations,
for example, in the simulations of intercalation of Li,FePOy4 [34,45,56,128-130]. The simulated

cell voltage curves will exhibit a dip or peak when a new phase nucleates in the particles. While a

X =0.56, CV =0.0377V 1
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Figure 5.8 Li fraction in graphite and carbon particles for 6C lithiation at X = 0.56. The magnified
view highlights the difference in surface Li concentration between graphite and carbon particles.
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20-30 mV nucleation barrier for Li,FePO,4 has been measured from the intrinsic hysteresis [131]
of cell voltage on cycling, such a dip/peak on cell voltage curves, corresponding to the nucleation
barrier, has not been reported in experiment observations. It is generally believed that the dip/peak
associated with the nucleation event in each individual particle is averaged out in the aggregate of
a real electrode [131], which usually contains a large number of particles. Therefore, dips/peaks
cannot be resolved on an electrode’s measured cell voltage curve.

The three-stage dynamics is more clearly observed in the 1C case as it is closer to an equilibrium
process. Initially, intercalation occurs mainly into carbon, then switches to graphite, as indicated by
the steep slope of the green curve in Fig 5.4(c) before r = 452 s, and finally switches back to graphite
(t >~ 2400 s). In contrast to the 6C case, the intrinsic thermodynamic behavior of phase separation
in graphite is more pronounced in the second-stage dynamics at 1C. For instance, three plateaus
can be observed on the green X, curve; see the black arrows in Fig 5.4(c). it is important to note
that Li remains a solid solution in amorphous carbon throughout the whole process. Each plateau
corresponds to one of the two-phase regions of graphite. These slow carbon lithiation speeds can
be understood as follows. At low rates, graphite lithiation during a two-phase process requires only
a small p, variation (ug variation would be zero in an equilibrium phase transformation). Thus,
when graphite is in a two-phase transformation, most Li is inserted into the graphite, leading to
reduced carbon lithiation rates.

This thermodynamic behavior is even more prominent at the final stage (¢ > 2000 s or DoD >
0.635), during which the average X, is higher than the average X, see the curves passing the cyan
vertical line in Fig 5.4(c). The cross-over point is where the graphite and carbon OCV curves in
Fig 5.1(a) intersect, after which the thermodynamics favor a higher X, than X.. The video files of
6C and 1C simulations are available on Ref. [57] SI web page and are detailed in Appendix D.2
(phase transformation wave sweeping through the electrode can be observed in some of the videos,
which is equivalent to the ‘heterogeneous reaction rate’ discussed in Ref. [123].).

The moles of Li intercalated to graphite and carbon are shown in Fig. 5.9(a) and (b) for

6C lithiation and 1C lithiation, respectively. The red, gray, and green curves are for the hybrid
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Figure 5.9 Simulated Li intakes over time. The standard case: (a) 6C lithiation and (b) 1C
lithiation. Cases of 6C lithiation in (c) small graphite and (d) small carbon particles. Cases of 6C
lithiation in (e) graphite and (f) carbon in the front region. Cases of 6C lithiation in (g) high
carbon ip and (h) low carbon diffusivity.
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electrode, graphite particles, and carbon particles, respectively. It should also be noted that although
X_. increases in a similar range to that of X, in Fig 5.4(b) and (c), the total amount of Li intercalated
to graphite is much larger than that to carbon because Li site density in graphite is approximately

1.5 times that of carbon.
5.2.2 Surface electropotential drops (SEPDs)

5.2.2.1 Pure carbon vs pure graphite vs 50% hybrid

Surface electropotential drops (SEPDs, electrostatic potential across the particle-electrolyte
interface) were examined in simulations of a pure carbon electrode, a pure graphite electrode, and
a 50-50 hybrid electrode at 6C lithiation. Since Li fractions determine particle overpotential, we
examine the electrochemical performance with the same initial DoD for all three electrodes. Again,
the initial DoD was set to be 0.04 for the ease of numerical implementation. Note that because the
capacity of each electrode is different, a 6C rate corresponds to different current densities. The
quantities are provided in Appendix D.1. The cutoff point was set at the state that intercalation
was no longer thermodynamically favored on active surfaces throughout the entire electrodes; i.e.,
SEPDs were all below zero. (Negative SEPD indicates that the chemical potential for forming Li
metal is lower than that for intercalation, and thus Li-plating is thermodynamically favored [104].)
Figure 5.10(a) shows the simulated cell voltages of those three electrodes. The cutoff occurred
at similar times in the three simulations. The respective cell voltage curves versus capacity are
provided in Fig. 5.11. The SEPD distributions at cutoff are shown in Fig 5.10(b) through (d). In
the pure carbon and pure graphite electrodes, SEPDs monotonically descend toward the separator
regions, but SEPDs in the hybrid electrode strongly correlate to the type of particles. The SEPD is
more negative on graphite particle surfaces than on carbon particle surfaces. See the magenta and
cyan ovals in Fig 5.10(d).

The simulations showed that X, on graphite surfaces is much higher than that in the bulk
because of the inherent phase separation. On the other hand, X, is more uniform in the particles.
Even when the average X, is higher than X, the carbon surface is still unsaturated with Li. Carbon

particles can further accommodate Li that would be plated on graphite surfaces; i.e., carbon serves
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Figure 5.10 (a) Simulated cell voltage at 6C lithiation of carbon (green curve), graphite (gray
curve), and hybrid (blue curve) electrodes. Simulated particle surface electropotential drop (Volt)
at the cutoff point for (b) carbon, (c) graphite, and (d) hybrid electrodes. The particle surface
electropotential drops at the regions near the separator are approximately -1, -2.45, and -1.6 mV in

carbon, graphite, and hybrid electrodes, respectively. The magenta and cyan ovals indicate regions
with more graphite and carbon particles, respectively.
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as a buffer for excessive Li in the hybrid electrode. Thus, less Li plating would occur on the
saturated graphite surface. The SEPDs near the separator are approximately —2.45, —1.6, and
—1 mV in the graphite, hybrid, and carbon electrodes, respectively, indicating that Li plating is
more favored on the graphite electrode than on the other two. This result directly supports the
experimental observations [123] that Li plating is less observed on hybrid electrodes than on a pure
graphite electrode. While the role of phase separation in graphite on Li plating has been previously
discussed by Chen et al [123] and Gao et al [109], the SBM simulations illustrate this mechanism

at the particle-microstructure level.
5.2.3 Exploration of hybrid anode arrangements

5.2.3.1 Effect of permeability

The fact that a hybrid electrode exhibits a three-stage lithiation process indicates a difference in
the driving force of Li intercalation between carbon and graphite particles. Such a deviation may
lead to Li migration across graphite-carbon contact interfaces. Thus, two additional simulations
were performed to study such an effect from a modeling perspective, in which permeability of

1 x 107 cm/(s-eV) per Li was assigned to graphite-carbon interfaces (similar to the treatment in
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Figure 5.11 Simulated cell voltage curves of hybrid, pure graphite, and pure carbon electrodes at
6C lithiation. The curves are plotted versus Li capacity. As can be seen, the capacity of a pure
graphite electrode is larger than that of hybrid and pure carbon electrodes.
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Ref. [46]). This value, several orders of magnitude greater than Li mobility, was chosen such that
the permeability will not limit Li migration. The blue curves in Fig 5.12(a) and (b) show the Li
migration rates from graphite to carbon particles (across the interfaces) at 6C and 1C lithiation,
respectively.

In the first stage (r < 52 s) of 6C lithiation, Li migrates from graphite to carbon as interca-

lation into carbon is thermodynamically favored. During this stage, Li insertion into carbon via
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Figure 5.12 Li exchange rate (blue curve) between graphite and carbon particles at (a) 6C and (b)
1C lithiation. A positive value indicates migration from graphite to carbon. The blue curves
reference the y-axis on the right. The gray and green curves are the electrochemical insertion rates
of graphite and carbon, respectively. They refer to the y-axis on the left.
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electrochemical reaction through the carbon-electrolyte interface is approximately five times the
insertion to graphite via electrochemical reaction (see the green and gray curves before r = 52 s in
Fig 5.12(a)). The fluctuations on the gray, green, and blue curves indicate phase separation events
in graphite (surface regions). Upon entering the second stage, graphite particles started to absorb
Li from carbon particles, as indicated by the negative exchange rate on the blue curve. During this
stage, the electrochemical insertion into carbon is reduced to roughly a quarter of that into graphite.
In the third stage (r > 280 s), the electrochemical insertion to carbon increases while the insertion
to graphite decreases as illustrated by the green and gray curves in Fig 5.12. Although, the Li ex-
change between graphite and carbon remains graphite-favored, indicated by the negative exchange
rate (the blue curve), the trend appears to shift towards a carbon-favored exchange. Throughout the
6C lithiation, Li across the interfaces of the two particles is less than 1% of the electrochemical
insertion flux to either graphite or carbon.

As shown in Fig 5.12(b), Li migration from graphite to carbon occurred during most of the
entire 1C lithiation, except for a short period during the transition between the first and second
stages (450 < t < 780 s, where the blue curve is below zero). In this 1C case, the magnitude of
the electrochemical insertion rate to the thermodynamically favored particles is roughly eight to
ten times that to the non-favored particles (see the overall magnitudes of the gray and green curves
in Fig 5.12(b)) because the lithiation process reflects more intrinsic thermodynamic behavior at
a low rate. Compared to the 6C case, surges of electrochemical insertion to graphite are more
pronounced in the second stage, as indicated by the clear humps on the gray curve, corresponding
to the recessions on the green curve. Those surges of Li electrochemical insertion to graphite were
accompanied by ‘leakage to carbon particles,” indicated by the humps on the blue curve in 5.12(b).
In this 1C simulation, Li migration to carbon through particle contacts could sometimes be greater
than Li insertion via surface electrochemical insertion. Nevertheless, Li migration across particle
contacts was fairly low: the overall lithiation rates of graphite and carbon were very similar to
those from the standard case (zero permeability case, the insertion rates are plotted as the thin,

light-colored curves in Fig 5.12(b) for comparison). In principle, we found that the permeability
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of particle contact interfaces has no significant influence on the lithiation behavior.

5.2.3.2 Effects of particle size

It is interesting to examine the effects of particle size on the performance of the hybrid electrode.
Figure 5.1(d) shows a synthetic electrode microstructure with the same particle configuration, but
in which particles with a diameter smaller than 11.34 ym are assigned with graphite properties
(marked in gray), and the rest are carbon (marked in green), resulting in a 49 : 51 graphite-carbon
volume ratio. (Here, 49 : 51 is the ratio closest to 50 : 50 by dividing particle population with
diameters.) We first discuss the results of 6C simulations here. Simulations of 1C lithiation are
presented later. The gray curve in Fig 5.13(a)-1 is the simulated CV. As in Fig 5.4(a), CV curves are
plotted versus DoD. The total capacity of this electrode is close to that in the standard case because
graphite and carbon each occupy ~50% of the total volume.

In the first stage, the CV curve falls below the standard case (the thin blue curve), indicating a
larger cell overpotential (or less efficient electrochemical performance) compared to the standard
case (randomly assigning particles). Cell overpotential is the deviation between cell voltage and
cell OCV. A smaller cell overpotential is equivalent to a higher electrochemical efficiency. The
decrease in performance is because insertion to carbon is hindered by the low surface-to-volume
ratio of large carbon particles, even though insertion to carbon is thermodynamically favored during
this stage. In contrast, in the second stage (during which intercalation to graphite is favored), the
high surface-to-volume ratio of small graphite particles facilitates the lithiation. Thus, the CV
curve is lifted above that in the standard case. The evolutions of average Li fraction in graphite and
carbon particles are plotted in the dark gray and dark green curves in Fig 5.13(a)-(ii), respectively.
As in Fig 5.4(b), Li fraction evolution curves are plotted versus time. Compared to the standard
case (the thin dotted curves), intercalation to graphite is much enhanced by using small graphite
particles. X, even exceeds X, after = 225 s. (The X, and X, curves of the standard case in Fig
5.4(b) are presented as the thin dotted curves in Fig 5.13(a)-(ii) for comparison). The third stage is
barely reached before meeting the termination criteria in these simulations, as observed from Fig.

5.13(a)-ii. At the simulation cutoff, the average X, has increased from 0.02 to 0.78, but the average
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Figure 5.13 Simulated cell voltages and Li fraction evolution at 6C lithiation for (a)-(i) and (ii) of
large-versus-small graphite particles, (b)-(i) and (ii) of front-versus-back graphite particle
locations, and (¢)-(i) and (ii) of high carbon iy and low D, cases, respectively. The dotted lines
represent the standard case, a 6C lithiation in 50% hybrid anode with random distribution shown
in Fig. 5.1(c)
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X, only increased from 0.23 to 0.58.

The green curve in Fig 5.13(a)-i is the simulated CV of the flipped case, in which particles
with diameters larger than 11.34 um are assigned with graphite properties. Due to the enhanced
insertion into carbon particles (with smaller sizes), the CV curve in the first stage of lithiation
falls on the right to that of the standard case, indicating an enhanced electrochemical performance.
However, in the second stage, intercalation to graphite particles is hindered by graphite particles’
large sizes. Thus, the CV curve falls below the thin blue curve. The effect of enhanced Li insertion
to carbon, stemming from smaller particle sizes, can also be observed from the higher slope of
the light green curve compared to the dark green one in Fig 5.13(a)-ii. Furthermore, the operation
time of this small carbon particle case (up to 311 s) is significantly reduced compared to that in the
small graphite particle case (up to 367 s).

Fig. 5.14(a) displays the simulated cell voltage curve for 1C lithiation for both small graphite
and small carbon cases. The thermodynamic effect in 1C cases is similar to that in 6C cases. Small
graphite particles facilitate the second stage of lithiation. Small carbon particles facilitate the first
stage of lithiation. Li fraction evolution and accumulated Li intake to graphite and carbon in the

1C lithiation is also presented in Fig. D.3(a)-(i) and (ii) in the Appendix D.3.

5.2.3.3 Effects of particle locations

Next, we examined the effect of particle locations. Figure 5.1(e) shows the microstructure
configuration (the same particle configuration), in which particle centers located in x < 44.5
um were assigned with graphite properties in the first case and otherwise assigned with carbon
properties in the second case; i.e., graphite and carbon particles were located in the ‘front’ and
‘back’ regions of the electrode. The volume fraction ratio is 50 : 50 between graphite and carbon.
The simulated CV for 6C lithiation is plotted as the gray curve in Fig 5.13(b)-i. The fact that carbon
particles were away from the counter electrode hindered the insertion into the carbon particles in
the first stage of lithiation. Thus, the CV (gray) curve is shifted to the left of the standard case (thin
blue curve). In the second stage (insertion to graphite is favored), the shorter distance between

graphite and the counter electrode improved the electrochemical performance slightly: the gray
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curve is slightly above the thin blue one. While in the third stage, the two effects roughly balance
each other placing the gray curve almost on top of the standard blue curve. Overall, the position

of graphite particles slightly enhanced the Li intact, as can be seen in the dark gray curve in Fig
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Figure 5.14 Simulated cell voltage versus DoD at 1C lithiation. (a) Case for comparison between
small graphite and small carbon particles. (b) Case for comparison between graphite or carbon
particles in the front region. (c) The cases of high carbon iy and low carbon D..
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5.13(b)-1i compared to the standard case (the thin dotted gray curve). The green curve in Fig
5.13(b)-i is the simulated CV of the ‘flipped’ case, in which carbon particles were located in the
front region. The fact that carbon particles were located closer to the counter electrode led to a
slightly improved electrochemical performance in the first stage, as indicated by the green curve
falling slightly on the right to the standard case. In the second and third stages, the effect of the
graphite particles being located in the back region decreased the electrochemical performance, as
indicated by the green curve being below the thin blue curve.

In terms of increase in Li fraction over time, placing carbon particles in the front region
facilitated the Li intake to carbon, as indicated by the slope of the light green curve in 5.13(b)-ii.
However, such an arrangement also decreases Li intake to graphite. Because graphite possesses
a much larger Li capacity than carbon, there is no improvement in the total Li intake in this case
compared to the standard case as shown in Figs. 5.9(e) and (f). A similar observation can be
inferred from 1C lithiation curves displayed in Figs. D.3 in Appendix D.3. The effect of placing
graphite or carbon particles in the front region is minimal in the 1C case as seen in Fig. 5.14(b)

where the curves are very similar to the standard case.

5.2.3.4 Effects of exchange current density and mobility

The exchange current density on the carbon surface is an uncertain material parameter in the
presented simulations because we do not have access to measured data for hybrid anodes. An
additional simulation with carbon io . ten times that of graphite iy, was performed on the electrode
microstructure of the standard case to examine the impact of carbon i on the simulation results.
The simulated CV for 6C lithiation is plotted as the gray curve in Fig 5.13(c)-(i), and the Li fraction
evolutions are plotted in the dark-colored curves in Fig 5.13(c)-(ii). In the first stage (DoD < 0.225
or ¢t < 60 s), the high iy . enhanced Li insertion to carbon, and thus the CV curve falls on the right
to the thin blue curve (the standard case where io . = iog). This effect extended to the second and
third stages, during which the enhanced insertion to carbon slightly decreased the amount of Li
insertion to graphite, thus reducing the overpotential on graphite surfaces and leading the CV (gray)

curve to be slightly above the thin blue curve. The overall Li fraction evolutions (the dark-colored
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curves in Fig 5.13(c)-(i1)) in this simulation are very similar to those in the standard case (the thin
dotted curves) but with an extension in the operation time (378 s compared to 342 s in the standard
case). Interestingly, even though io , was kept the same as in the standard case, the SEPD (-0.15
mV, shown in Fig. 5.15) at the cutoff of this simulation is only approximately 10% of that in the
standard case, implying that much less Li-plating will be observed with a high iy .. This may be the
case observed in experiments. Unfortunately, no exact value of carbon iy is available to examine
this hypothesis.

Li mobility in carbon (M,) is another uncertain material parameter in this work. The green
curve in Fig 5.13(c)-(i) is the simulated CV for 6C lithiation, in which M. is set to be one order of
magnitude smaller than that in graphite (M,). As expected, Li insertion to carbon was hindered,
leading the CV (green) curve to fall to the left of the standard case (the thin blue curve) in the first

stage. This effect extended to the second and third stages, during which insertion flux to graphite
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Figure 5.15 Simulated SEPD on HGC surfaces at 6C lithiation for the case of high carbon iy .
The unit of the color bar is V. The dark blue regions are graphite particles.
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was larger than that in the standard case to maintain the same C rate. The net effect led to a large
overpotential on graphite particle surfaces. Consequently, the green CV curve fell below the thin
blue curve. The reduced insertion rate to carbon and increased insertion rate to graphite during the
second stage can be inferred by the low and high slopes of the light green and light gray curves,
respectively, in Fig 5.13(c)-ii. The light gray curve even intersects the light green one near t ~ 223s.
This set of simulations implies that the impact of M, is not as pronounced as ip . in the first stage
of lithiation, although the majority of Li insertion occurs on the carbon particles. Furthermore, the
lithiation dynamics in a hybrid electrode are affected in a complex way by the status of the two
active materials. For instance, as illustrated in the previous simulation, increasing carbon i ., which
enhances lithiation to carbon, will also increase Li insertion to graphite. A decrease in insertion
to carbon (e.g., due to low diffusivity in this simulation) will force the insertion toward graphite.
The lithiation behavior cannot intuitively reflect only one of the intrinsic material properties. This
complexity makes predicting and analyzing cell performance difficult without detailed simulations,

such as those presented in this text.

5.3 Conclusion

In this chapter, we demonstrate the efficacy of our framework utilizing the smoothed bound-
ary method to simulate electrochemical processes within computationally generated, synthetic
graphite-carbon hybrid electrode microstructures. In this approach, a phase-field method is utilized
to model the complex multi-phase lithiation processes of graphite. Despite carbon being a lithium
solid solution, the multi-phase behavior of graphite induces a multi-stage lithiation process in the
hybrid electrode. Initially, the lithiation of carbon is thermodynamically favored, followed by a shift
towards favored lithiation of graphite in the second stage. In this stage, the surface concentration
of graphite increases rapidly. In the third stage, the carbon particles start getting lithiated again
where the surface concentration of graphite is extremely high while carbon surface concentration
is relatively low. The simulation outcomes align with observations indicating significantly reduced
Li plating on hybrid graphite-hard carbon anodes compared to pure graphite counterparts. Addi-

tionally, we find that electrode performance can be influenced by manipulating particle sizes and

118



positions within the microstructure. Among the various arrangements explored, employing smaller

graphite particles appears to be the most efficient approach.
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CHAPTER 6

HIGH-THROUGHPUT INVESTIGATION OF FREE PATHWAYS/ TUNNELS IN
GRAPHITE ANODES FOR IMPROVED LITHIUM-ION BATTERY PERFORMANCE

6.1 Introduction

As briefly mentioned in Chapter 4, thick electrodes have gained renewed interest in designing
lithium-ion batteries for high-capacity applications. [95, 112, 113] For the same thickness of a
stack of battery cells, the one with thick electrodes will have fewer inactive components, such
as separators and current collectors. Therefore, careful and pedantic design of such electrodes
can lead to a higher loading and overall energy density. However, thick electrodes inherently
have poor kinetics and lack mechanical strength. Several researchers have explored the design of
better thick electrodes using experiments. [95,96] In our work, we use simulations to gain insight
into the design of better thick electrodes. Introducing free pathways/tunnels in the electrodes can
enhance the salt ion migration through the electrodes, thus, combating the challenges of poor
kinetics faced by thick electrodes mentioned in Refs. [95, 132]. These types of electrodes are also
called perfoliated electrodes. Recently, a few experimental studies have shown tunnels to delay
reaching the overcharging condition (cut-off condition) [107, 133, 134]. Porous Electrode Theory
(PET) modeling has also been employed to simulate the performance of graphite electrodes with
laser-ablated tunnels [107, 135]. However, the microstructural-level details were not resolved in
the PET simulations. Additionally, resolving tunnels with PET involves simulating PET spheres in
3D, effectively creating pseudo-4D simulations, which substantially increase computational time
and memory requirements.

In this chapter, we examine the effects of introducing straight cylindrical tunnels in the electrode
microstructures. More specifically, we study graphite microstructures as we demonstrated in
Chapter 4 the need for improved salt diffusion toward the back of the electrode, especially for
thick electrodes and high C-rates. We use an automated high throughput strategy to compare and
contrast various factors that affect the impact of tunnels in an electrode as well as compare several

thicknesses of the electrodes. The idea of high-throughput computations has been common in

120



Density Functional Theory (DFT) and Molecular Dynamics (MD) calculations [136—139] serving
the dual purpose of screening existing and novel materials and generating new data for machine
learning applications. Following similar principles, high-throughput electrochemical simulations
with tunnels can allow us to identify and study patterns and empirical relations between tunnels
and their electrochemical performance. Furthermore, the generated data can be used in data-driven
approaches to predict tunnel behavior. Since the simulations in this work require only the voxel
microstructural data, it is extremely easy to introduce tunnels by removing some voxels. The
simulations were performed only for 6C lithiation because the effect of tortuosity is not significant

at a low C rate as discussed in Chapter 4.
6.2 Model

6.2.1 Governing equations

We used the same modeling framework as discussed in Chapters 2, 4, and 5. We briefly
summarize the framework here. The SBM reformulated equations solved for the engineered
graphite electrodes are listed here —

Cahn-Hilliard equation:

8XP 1 VY| ren
— ==V |yM,V -V.-eVX,) |+ ——. 4.6
el LA (TR AR ] Rt (4.6)
Current continuity on graphite particle surface:
V- (YksVs) = |Vilz_Fry, = 0. (2.14)
Ion diffusion in electrolyte:
0c, 1 Vel ront- e - Vi
=—V-(y.D.VC,) + Vel 7ant- _ L z (2.18)
ot Ve Ve V4 Z4 Vi F
Current continuity the in electrolyte:
-
V- [Ye (zemy —z2-m_) FC.V¢,] + |V¢e|% =V [¢.(D- - D;)VC,], (2.20)
+
Butler-Volmer equation:
i —az4F 1 -a)z, F
Fen = Z+°F [exp( o n) — exp (%n)] 2.7)

These equations are detailed in previous Chapters 2, 4, and 5.
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6.2.2 Tunneled microstructures

As in Chapter 4, the 3D simulations on graphite in this chapter use real microstructures
reconstructed from experimental data. Data for graphite is publicly available at [99]. The graphite
reconstructed microstructures E_ITand E_IV are detailed in Chapter 4 and displayed in Fig. 4.4. The
first demonstration of a tunnel uses E_IV-3X used in Chapter 4 with dimensions of 58.5x55.2x 52
um? where 165.6 um is the triple thickness. A tunnel was introduced at the center of this electrode
with a radius of 12 um. This tunnel removed approximately 15% of the active material.

For our high throughput studies, we use different variations of E_II, some demonstrated in
Fig. 6.1. Due to the enormity of the data required to analyze the impact of tunnels on several
thicknesses of the electrodes, we designed an automated process to create cylindrical tunnels in
the electrode. A trick to save computational effort is using unit cells like those shown in Fig.
6.1. These microstructures can be assumed as a unit cell of the entire bigger electrode and can
be duplicated to extrapolate results for multiple tunnels as demonstrated in Figs. 6.3 and 6.1.
Namely, symmetric boundaries are used to represent self-repeating unit cells. Thick electrodes

were obtained by repeating a single unit of the electrode and connecting them back to back as

Hexagonal tunnel array d=88.4um, t=220 um

(d)

L/,

808838

40\“‘ 50

o or=24.4pum,27.6% 00 r=30.5um, 43.1% ® 0 or=39.6 um, 72.3%

50

Figure 6.1 Illustration of a hexagonal tunnel array in E_II microstructures with thickness,
t=220um, and different tunnel volume/radius: (a) no tunnel, (b) 3.9% tunnel volume, (c) 15.5%
tunnel volume, (d) 27.6% tunnel volume, (e) 43.1% tunnel volume, and (f) 72.3% tunnel volume,
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illustrated in Fig. 4.14(b). Four different electrode thicknesses were created and studied ~ 55um,

~ 110um, ~ 165um and ~ 220um further referred to as 1X, 2X, 3X, and 4X in this chapter.

6.2.2.1 Factors affecting tunnel performance

For the rest of the chapter, we shorthand improvements shown by introducing tunnels to tunnel
performance for the sake of brevity. To quantitatively analyze a tunnel performance, we look at
several simulation results from a cell cycle including total achievable capacity, Before we present
any simulation results in the upcoming sections, let us define three parameters — achievable SoC
(state of charge), tunnel volume fraction, and achievable Li capacity. We define achievable SoC as
the maximum lithium fraction attained before reaching the overcharging condition, tunnel volume
fraction as the fraction of the volume of the electrode covered by the tunnel, and achievable Li
capacity as the maximum capacity attained before reaching the overcharging condition. Addition-
ally, we use normalized Li capacity to highlight comparisons between different electrodes which is
calculated by normalizing the capacity of any electrode with respect to the capacity of the electrode
with no tunnels. These three parameters will be essential in analyzing the impact of tunnels on
electrode behavior. Furthermore, we hypothesize that the parameters listed below are the primary

influential factors of a tunnel in an electrode.

* Radius of the tunnel (r): As tunnels aim to provide easy diffusive transport channels for
the electrolyte, the radius of the tunnels is an apparent determining factor for improving the
electrode’s achievable capacity. Through our studies discussed later in this chapter, we found
that an optimal radius can be identified for a given thickness of the electrode. A small tunnel
doesn’t provide enough of a channel for ion migration, while a thick wide tunnel leads to too

much capacity loss due to the removed electrode volume.

* Inter-tunnel Distance/Tunnel separation (d): Additionally, the placement of the tunnels
also affects their performance. We hypothesize that each tunnel has an "affected region"
around it. This "affected region" is a volume surrounding the tunnel illustrated in Fig. 6.6,

where a noticeable improvement in Li diffusion can be observed due to the introduction of
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that tunnel. This "affected region" renders placements of the tunnels with respect to each
other crucial to the overall enhancement of performance. Inter-tunnel distance or tunnel

separation is defined as the center-to-center distance between tunnels.

* Thickness of the electrode (t): While the thickness of the electrode doesn’t directly deter-
mine improvements made by the introduction of a tunnel, it changes the optimal radius and

arrangement for the tunnels.

6.3 Results and Discussions

6.3.1 Impact of a tunnel in thick electrodes

Figure 4.14(b) indicates that the back of TP E_IV-3X is barely utilized during a 6C lithiation.
This directly results from the highly tortuous path for salt ion migration. We create a straight
cylindrical tunnel in the E_IV-3X. To highlight the enhancement of tunnels in ion migration,
we select TP E_IV-3X in the simulations because it has a larger pore tortuosity than those of
E_IT and E_III. Since the simulations in this work require only the voxel microstructural data,
it is extremely easy to introduce tunnels by removing some voxels (i.e., setting voxel values to
zero). The simulations were performed only for 6C lithiation because the effect of tortuosity is not
significant at a low C rate.

Figure 6.2(a) shows the simulated CV curves for TP E_IV-3X at a 6C rate with and without
a tunnel. As shown in the previous section, TP E_IV-3X without a tunnel can reach only 0.175
DoD (corresponding to ¢ = 105 s) at the cut-off condition. On the other hand, with the tunnel, the
electrode’s achievable DoD was increased by nearly threefold: 0.505 (corresponding to ¢ = 307
s). Even after accounting for the loss of active materials, the tunneled electrode still had a total
achievable Li capacity of 2.45 (= 0.505 x 0.85/0.175) times the one without the tunnel.

Figure 6.2(b) displays the X, in the tunneled electrode at the cut-off point. A uniform lithiation
throughout the electrode is observed. This is noticeably different from the no-tunnel case in Fig.
4.14(b), in which the back of the electrode is barely lithiated. Even though tunnels can enhance the

spread of salt ions, some large graphite particles still have cores devoid of lithium, highlighting that
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particle size is a limiting factor at high-rate (de)lithiation. Figures 6.2(c) and (d) contrast the salt
ion concentration in the electrolyte in the no-tunnel and tunneled cases. Both images were taken
at the cut-off points (reaching the Li-plating point). Clearly, the tunnel alleviated the depletion
of salt ions in the electrode. See the light-blue colors in Fig. 6.2(d), as opposed to the dark-blue
colors in Fig. 6.2(c). Additionally, as indicated by the red color in Fig. 6.2(c), salt ions are highly
concentrated in the separator region because they cannot be distributed deeply into the electrode.

As aresult, lithiation was highly concentrated on the front side (near the separator) of the electrode

(a)  Simulated Cell voltage at 6C (b) Lifraction (X ) in electrode at 307s 1
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Figure 6.2 (a) CV curves for TP E_IV-3X at 6C with and without a tunnel. (b) X, in particles in
TP E_IV-3X with a tunnel. C, in TP E_IV-3X (c) without a tunnel and (d) with a tunnel. Note
that (c) and (d) have been rotated along the z-axis to show the back side of the electrodes.
Electropotential drop across the particle surfaces (e) without a tunnel and (f) with a tunnel.
Subfigures (b) through (e) are plotted at the cut-off point.
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and the electrode reached the cut-off point much earlier than the tunneled electrode.

Figures 6.2 (e) and (f) show the electropotential drop across the electrode particle surfaces for
the no-tunnel and tunneled cases, respectively, at the time when the no-tunnel case reaches the
cut-off condition. While some regions in the no-tunnel case reached the plating condition (negative
electropotential drop), all surfaces in the tunneled case still had a positive electropotential drop,
indicating that insertion was still thermodynamically favored. This result supports the experimental
observations in Ref. [107, 133, 134].

In summary, we found that while tunnels allow the spread of the reactions more uniformly
throughout an electrode, the enhancements are prominent only in thick (> 150 um) graphite elec-
trodes. We also demonstrate the ease of using direct voxel simulations to examine the microstructure
effects. A further comprehensive study of the engineering design of electrode microstructures can

be a future extension.
6.3.2 Systematic study of tunnels

6.3.2.1 Arrangements: Square vs Hexagonal and effects of tunnels with different electrode
thicknesses.

A key factor in studying the behavior of tunnels is their arrangement with respect to each other.

We examine two such arrangements, square and hexagonal, as illustrated in Fig. 6.3.

Square arrangement  Hexagonal arrangement

(a) (b)

Figure 6.3 Singular units of tunnels of a (a) Square arrangement, and (b) Hexagonal arrangement.

126



The key differences in the two arrangements as highlighted in Fig. 6.3 is the relative position
of any two tunnels. In the square arrangement, any two tunnels are at a 90° angle while in the
hexagonal arrangement, tunnels are at a 60° angle. Note that for the two arrangements, the thickness
and the width of the unit cell are kept the same with different heights to accommodate for the two
different angles between any two tunnels as illustrated in Fig. 6.3.

We run automated simulations with increasing tunnel radius for the four different thicknesses
for both arrangements. The tunnel separation, d, is kept at ~ 88um for all these simulations. The
width of a unit cell is chosen to be 44.2um for both arrangements. Accordingly, the depth of the
unit cell is set to 44.2um for the square arrangement and 76.7um for the hexagonal arrangement.
As in Chapters 4 and 5, cell voltage = ~ OV is set as the cut-off condition for these simulations.
Fig. 6.4 (a) shows the achievable SoC for all four electrode thicknesses with the two arrangements
at a 6C lithiation rate. The solid lines represent the hexagonal arrangement while the dashed lines
represent the square arrangement. Fig. 6.4 (a) clearly indicates that the hexagonal arrangement
performs better than the square arrangement, displaying higher achieved SoC over increasing tunnel

volume fractions in electrodes. Fig. 6.4 (b) distinctly highlights the contrast in achievable SoC
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Figure 6.4 Achieved State of Charge (SoC) vs tunnel volume fraction/coverage for both hexagonal
and square arrangements (a) for four different thicknesses of the electrode: 55um, 110um, 165um
and 220um, and (b) for quadruple thickness (220um) at 6C lithiation and tunnel separation, d =

~ 88um. The gray line delineates the two behaviors of achievable SoC observed over increasing
tunnel volume fractions.
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for the quadruple thickness (220um) between the two arrangements. In the plateau region of the

curves, the hexagonal arrangement cases achieved approximately 5% higher SoC. Fig. 6.5 displays

Square arrangement Hexagonal arrangement

) N N o
(um) ° r=9.75 um, 15.5% [* Y (um)zo 0 o r=18.2 §m 15.5% 04
2 um, 15. .

SoC: 0.58; 4.21e-9mol SoC: 0.60; 7.66e-9 mol

Figure 6.5 Li concentration for a quadruple thickness electrode (220um) at a 6C lithiation rate in a
(a) square arrangement, and (b) hexagonal arrangement. Both arrangements are compared with
the same tunnel volume fraction, 15.5%. The hexagonal arrangement displays a higher achievable
SoC.

“Affected” region of the tunnel
)y T —————

| Better

Square arrangement Hexagonal arrangement

Figure 6.6 (a) Square arrangement, and (b) Hexagonal arrangement. The blue area signifies the
"affected" region of a tunnel. The orange area indicates the area "unaffected" by tunnels. We can
clearly see that the "unaffected" area is larger for the square arrangement.
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the lithium concentration profile at the cut-off voltage in both arrangements. A higher SoC is
observed for the hexagonal arrangement (0.60 vs 0.58) at this cut-off for the same tunnel volume
fraction of 15.5%. These observations indicate that the hexagonal arrangement of tunnels induces a
higher performance increase than the square arrangement. To explain this behavior, we hypothesize
an "affected" region of the tunnel is defined as a region surrounding a tunnel where the introduction
of that particular tunnel enhances the diffusion in the electrode. This is simply due to the ease of
diffusion of Li through the new pathways and the surrounding region having more access to Li
ions. An illustration of the "affected" regions for the two arrangements is shown in Fig. 6.6. A
higher coverage of the electrode by this "affected" region (shown in blue color) is observed in the
hexagonal arrangement. Consequently, for any further simulations and studies, we primarily focus

on the hexagonal arrangement of tunnels.

6.3.2.2 Effect of tunnel radius

In this section, we investigate the impact of the tunnel radius on electrode performance. We
vary tunnel radius from 0 — 40 pum for quadruple thickness, t = 220 ym with tunnel separation, d =
88.4 um, and a hexagonal arrangement of tunnels. Fig. 6.7 (a) shows the cell voltage curves vs SoC
for fourteen tunnel radii varying from 0 — 40 pum at a 6C lithiation rate. It can be noticed that the
achievable SoC at the cut-off point increases with increasing tunnel radii. Additionally, on curves
where more graphite particles achieve higher utilization, more pronounced steps appear on the cell
voltage curves, indicating that the overall lithiation processes are closer to equilibrium processes
even though all of them are lithiated at the same 6C rate. This is also displayed with the blue
curve in Fig. 6.7 (b). The curve reveals two distinct slopes: an initial rapid increase in achievable
SoC, followed by a saturated plateau region. As discussed later, the initial stage signifies the lateral
(radial direction to the tunnel) Li salt diffusion in the electrolyte is still limited. This limitation
arises because the tunnel cross-sectional area is insufficient to support Li salt in all lateral directions
along the tunnel cylinder surfaces. Consequently, reaching the cut-off condition is governed by
diffusion in the primary (thickness) direction. Notably, the particle surfaces remain unsaturated

(as indicated by bright yellow regions) throughout the entire electrode. In contrast, in the plateau
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region, the lateral diffusion can cover most of the electrode volume. At this stage, further increases
in tunnel radius no longer enhance Li supply. However, as the tunnel radius increases, the tunnel
volume increases and the total graphite volume decreases depicted by the red curve in Fig. 6.7
(b). This trade-off implies an optimal tunnel radius where a balance of achieved SoC and graphite
volume is achieved. We can identify this optimum in Figs. 6.7 (c) and (d). Cell voltage vs capacity
curves for all fourteen radii are presented in Fig. 6.7 (c) and the achievable Li capacity is displayed
in Fig. 6.7 (d). The achieved capacity increases initially with an increase in tunnel volume fraction

and drops again with any further increase in tunnel volume fraction after reaching the optimal point.

Hexagonal arrangement, d = 88.4 um at 6C lithiation
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Figure 6.7 (a) Cell voltage curves vs SoC, (b) achieved SoC at cut-off and graphite volume vs
tunnel volume fraction, (c) cell voltage vs capacity (mAh), and (d) achieved capacity at cut-off.
Hexagonal arrangement in E_II at 6C lithiation with an increasing radius from 0 — 40um for
quadruple thickness (220um) and a tunnel separation of 88.4um.
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The green curves in Fig. 6.7 (c) correspond to the increasing capacity stage and the red curves
correspond to the decreasing capacity stage. For this electrode and a hexagonal arrangement of
tunnels, the optimal tunnel radius is identified as, r = 18.2um, where a 15.5% graphite volume is
removed. An outstanding 117% increase in total achievable capacity is observed at this optimal
tunnel radius. Li concentration in the electrodes is presented for three different radii, r = Oum,
18.2um, and 39.6um in Fig. 6.8 (a), (b), and (c) respectively. Fig. 6.8 (a) belongs to the first stage
of capacity increase with tunnel volume where a significant volume of the electrode is not utilized
before reaching the cut-off voltage due to hindered diffusion of Li ions. It can seen that roughly
only 1/4 of the electrode reaches surface saturation at the cut-off point. Fig. 6.8 (b) shows the
optimal tunnel radius electrode. At the cut-off point, the entire electrode reaches surface saturation.
From this radius onward, all electrodes reach surface saturation at the cut-off point. Lastly, Fig. 6.8
(c) belongs to the last stage where the electrode is efficiently utilized, however, too much volume
has been removed for the tunnels for the electrode to demonstrate any significant improvements.
In the plateau region, increasing tunnel radius only marginally enhances achievable SoC. This is
attributed to the fact that the largest particles cannot be fully lithiated at this C rate. In other words,
the radial inward diffusion in particles dominates the lithiation even though lateral Li salt diffusion
is sufficient.

We also present the cell voltage curves and cell voltage vs capacity curves for the square
arrangement in Fig. 6.9. This arrangement exhibits similar behavior to the hexagonal arrangement
with an optimal tunnel radius of 16.5um. Although these exact quantitative findings only apply to
the presented electrodes, the qualitative patterns and behavior extend to any electrode. An optimal
tunnel radius that maximizes the achievable capacity exists for all thick electrodes. Tunnels/free
pathways can be created in a thick electrode with optimal tunnel radius to attain higher achievable

capacity before reaching the cut-off voltage.

6.3.2.3 Effects of thickness
In this section, we analyze the improvements tunnels offer in conjugation with the thickness of

electrodes. We keep the tunnel separation, d = 88.4um, width = 44.2um, and depth = 76.7um as
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constants for these simulations. Four different electrode thicknesses, ~ 55um, ~ 110um, ~ 165um
and ~ 220um referred to as 1X, 2X, 3X, and 4X are studied in this section. The unit cell for a
hexagonal arrangement of tunnels shown in Fig. 6.1 is used for all the cases.

Fig. 6.10 (a) shows the achieved state of charge (SoC) with increasing tunnel sizes for all four

thicknesses. Achieved SoC refers to the lithium fraction of the electrode filled before reaching

Hexagonal arrangement, d = 88.4 um at 6C lithiation
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Figure 6.8 Li concentration in the electrode with (a) tunnel radius = Oum and volume = 0%, (b)
tunnel radius = 18.2um and volume = 15.5%, and (c) tunnel radius = 39.6um and volume =
72.3%. Hexagonal arrangement in E_II at 6C lithiation with an increasing radius for quadruple
thickness (220um) and a tunnel separation of 88.4um.
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Figure 6.9 (a) Cell voltage curves vs SoC, and (b) cell voltage vs capacity (mAh). Square
arrangement in E_II at 6C lithiation with an increasing radius from 0 — 42um for quadruple
thickness (220um) and a tunnel separation of 87.7um.
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Figure 6.10 (a) Achieved State of Charge (SoC) vs tunnel volume fraction, and (b) achieved

capacity vs tunnel volume fraction. Hexagonal arrangement in E_II at 6C lithiation for four
thicknesses and a tunnel separation of 88.4um.
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the cut-off condition. As in the previous simulations, the cut-off condition is selected as the
overcharging condition when the cell voltage reaches below OV. For 1X (purple curve) and 2X
(yellow curve) electrodes, only small improvements can be observed with the introduction of
tunnels with the SoC increasing to ~ 0.71 from 0.62 and 0.58 respectively. The 3X and 4X
electrodes with no tunnels display a massive dip in performance with 0.39 and 0.24 achievable
SoC. In these cases, we see a remarkable increase in SoC with the introduction of tunnels. A
steep increase of 50% in SoC is observed in the 3X case while an exceptional increase of 200%
is noticed in the 4X case until the tunnel volume grows to approximately 20%. The increase in
achievable SoC tapers off significantly after any further enlargement of tunnels even for the 3X
and 4X cases. This suggests that even for very thick electrodes, there is an optimal size or radius
for tunnels beyond which they provide minimal benefits. The total achievable capacity is also
plotted in Fig. 6.10 (b) to further substantiate this claim. As can be seen again, tunnels do not
contribute in the 1X and 2X cases, and the highest capacity in these electrodes is attained with no
tunnels or very small tunnels. This indicates that Li salt diffusion in the primary diffusion direction
is sufficient to penetrate electrodes of these thicknesses. Perfoliation will simply decrease total
achievable capacity. Optimal points can be recognized for 3X and 4X electrodes at ~ 7% and
~ 15% tunnel volume with a capacity increase of 30% for 3X and an exceptional 117% increase for
4X. Compared to the original single thickness with no tunnels case, the improvement in achievable
capacity is even more remarkable, ~ 160% increase for the 3X case and ~ 230% increase for the
4X case. Once the effects of tunnel enhancement saturate i.e. when the "affected" region of the
tunnels begins to overlap and lateral diffusion in the electrolyte eases, particle sizes become the
limiting factor. This is because diffusion into the particle is not affected by the introduction of these
tunnel/free pathways. We demonstrate the Li concentration profile in the four electrode thicknesses
in Fig. 6.11. Evidently, the electrodes are more uniformly lithiated across their thickness compared
to no tunnel cases (see Fig. 6.8 (a) for a counter example). Yet some particle cores are still devoid
of lithium validating the premise that particle sizes are the constraint to achieving even higher

capacity in these electrodes. We conclude that for electrodes with thickness < 110um, tunnels do
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not enhance performance and are therefore a futile investment, but creating thicker electrodes with
optimal tunnels can provide high-capacity electrodes.

We concede that only four thicknesses are insufficient to draw concrete conclusions and the exact
quantitative optimal tunnel volume and capacity specifically pertains to the electrode. However, we
argue that the 4X case is already closing toward the diffusion limit in the electrolyte and the optimal
thickness lies somewhere in the range or close to what we explore in our work. Additionally, our
study and framework here pave the way for any future studies on specific electrodes and provide a
general qualitative idea for optimal tunnels in electrodes.
6.3.2.4 Effect of tunnel separation

In this section, we use our high-throughput strategy to examine the impact of inter-tunnel
distance/tunnel separation (d) on electrode performance. Three tunnel separation, d = 60um,

74.2um, and 88.4um are analyzed here. A varying radius is employed with the three tunnel

Hexagonal arrangement
Tunnel separation

Y (um)

Figure 6.12 Singular units of tunnels of hexagonal arrangement with tunnel separation, d = (a)
60um, (b) 74.2um, and (c) 88.4um.
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separations for four thicknesses of electrodes with a hexagonal arrangement of tunnels. The unit
cells of the three cases are displayed in Fig. 6.12. To generate electrodes with these three tunnel
separations while maintaining a hexagonal arrangement, different widths and depths are used to
form the unit cells. The cross-sections of the electrode are 29.7um x 52um for d = 60um in Fig.
6.12 (a), 37um x 64.4um for d = 74.2um in Fig. 6.12 (b), and 44.2um x 76.7um for d = 88.4um
in Fig. 6.12 (c).

Since the volume of each of these unit cells differs, we present normalized achievable capacity
instead of total achievable capacity for all 12 cases (three tunnel separations for four thicknesses)
in Fig. 6.13. The achievable capacities for any electrode with a tunnel are normalized with
the achievable capacity for that electrode with no tunnel to calculate the normalized achievable
capacity displayed here. The capacities show similar behavior for the three tunnel separations
for any electrode thickness. Once again, any considerable impact of tunnels is only observed in
electrode thickness > ~ 110um (the red and the blue curves), i.e., diffusion in the primary direction
is sufficient to penetrate electrodes of these thicknesses. As the tunnel separation decreases, the
optimal tunnel radius decreases, and the highest achievable capacity increases albeit only marginally.

We believe that an empirical pattern can be identified between the tunnel separations, d, and optimal
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Figure 6.13 Normalized Li capacity for three tunnel separations, d = 60um, 74.2um, and 88.4um
for four different thicknesses of the electrode, 55um, 110um, 165um and 220um.
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tunnel radius, r, and thus a new factor d/r can be used to generate tunnels for any new electrode
microstructure. However, recognizing any such pattern will require more data collection for other
tunnel separations. The following hypothesis is proposed: as the tunnel separation decreases, the
tunnel radius for optimal achievable capacity decreases. Eventually, the electrode reaches a uniform
low porosity configuration. However, such low-porosity electrodes may lack mechanical strength.
Thus, a balance between electrochemical performance and mechanical strength will need to be
considered, which is beyond the scope of the current work.

In summary, a combination of optimal tunnel radius, r, and correspondingly optimal tunnel
separation, d, for thick electrodes can provide significantly higher capacity before reaching the

cut-off voltage i.e. the overcharging condition.

6.4 Conclusions

Tunnels have demonstrated improvement, particularly for thick electrodes (greater than approx-
imately 110 pum), albeit with a trade-off between higher utilization and loss in volume. There is an
opportunity for optimization in the arrangement (including orientation and tunnel separation), and
the size of tunnels impacting achievable utilization and total capacity before the onset of plating. A
systematic study of tunnels has been conducted, comparing hexagonal versus square arrangements
and exploring the effects of increasing electrode thickness, tunnel radius, and tunnel separation. It
has been observed that very large tunnels do not significantly improve achievable capacity due to
the immense loss of active material. At the same time, higher utilization is achieved with larger
tunnels, reaching a maximum total capacity at a tunnel coverage of approximately 10-20 % in
the electrodes studied here. The hexagonal arrangement of tunnels provides better coverage and
thus higher achievable capacity. An optimal combination of tunnel radius and tunnel separation
exists for all electrodes and can be identified through our high-throughput studies. Additionally,
identifying patterns for optimal tunnel radius and optimal tunnel separation are under investigation,

along with exploring different tunnel shapes.
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CHAPTER 7

THREE-DIMENSIONAL ELECTROCHEMICAL SIMULATIONS IN A FULL CELL

7.1 Introduction

Throughout this work, we have primarily focused on half-cell (single electrode) simulations
with the assumption of a lithium metal counter electrode on the other side of the cell. While
these simulations offer great insights into electrode behavior, it is imperative to incorporate both
cathode and anode in a combined cell for a more comprehensive understanding of the working of
a practical Li-ion battery. In this chapter, we showcase an extension to our developed framework
capable of simultaneously simulating both cathode and anode. We leverage the microstructures
detailed in chapters 3 and 4 to model NMC as the cathode and graphite as the anode, respectively.
In the previous chapters, we solved the governing electrochemical equations defining diffusion in
electrode and electrolyte, current continuity in electrode and electrolyte, and faradaic reaction at the
particle-electrolyte interfaces. In a full-cell setup, we simulate the two electrodes and the electrolyte
simultaneously, thus requiring additional equations in the solver. The full-cell solver is detailed in
the next section. As in the previous chapters, the governing equations are reformulated with SBM.
A notable difference here is that the potential in the electrolyte has no-flux boundary conditions on
two sides (where the current collectors are) in contrast to the half-cells where the no-flux boundary
condition was present only on one side. In fact, the internal boundary conditions imposed on the
cathode and anode surfaces for the electrolyte potential are both Neumann conditions. Normally,
a domain subject to only Neumann conditions is a numerically underdetermined problem with no
unique solution. Remarkably, the simulations are still stable and converge to a solution. This can
be explained by the interdependence between the electrolyte potential solver and the two electrode
potential solvers with Dirichlet boundary conditions (near the current collectors). We present 6C

simulations of the full-cell acting to demonstrate and validate the modified framework.
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7.2 Model Formulation

7.2.1 Full-cell modeling

The governing equations presented and utilized in the previous chapters describe a half-cell
containing a single electrode and an electrolyte. In contrast, a full-cell simulation involves two
electrodes (NMC and graphite) interacting with the electrolyte. We once again leverage the
smoothed boundary method (SBM) to reformulate the governing equations allowing the use of
non-conformal meshes in complex geometries. Three domain parameters are employed to define
the three different regions in the cell; ¢ for the cathode, ¢, for the anode, and ¢, for the electrolyte.
Y. can be calculated as ¢, = 1 — (Y. +¢,). Additional equations and boundary conditions required
in a full-cell simulation are presented here.
Cathode:
Similar to Chapter 3 Eq. (2.12), the Li fraction in NMC cathode is described by Fick’s diffusion
equation —

0X. 1 Viclee Fance

P _%v-(gwcvxch v p (7.1)

Here, the subscripts ‘c’ and ‘ce’ denote cathode particles and cathode particle-electrolyte interface

respectively. Similar to Eq. 2.14, the electropotential in NMC is defined by

V. (l//cKcV¢c) - |Vwc|ceZ—Frxn,ce =0. (7.2)

The faradaic reaction on the cathode particles, similar to Chapter 2, is described by the Butler-

Volmer equation —

i —azF (1 —a)z4F
0 + +
xn,ce — cl — ¢ 7.3
Fxn, Z+F[exp( RT n) eXP( RT n) (7.3)

where n. = [¢]¢ — ¢¢, is the overpotential on NMC cathode particle surfaces.
Anode:
For graphite anode, we utilize the formulation shown in Chapter 4, where the Cahn-Hilliard equation
governs the diffusion in graphite particles, similar to Eq. (4.6) —
X, 1

T EV |WaMV (1 -V - eVX,)] +

|Vl7[/a |ae rxn,ae
Ya Pa .

(7.4)
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where pf = 0G,(X,4)/0X,. Here, the subscripts ‘a’ and ‘ae’ denote anode particles and anode

particle-electrolyte interfaces. Similar to Eq. (2.14),the electropotential in the anode is given by

V. (waKaV(pa) - |V‘/’a|an—Frxn,ae =0. (7.5)

The faradaic reaction on the anode particles is expressed using the Butler-Volmer equation, similar

to Eq. (2.7)

~ i —az . F (1 —a)z4F
Yxn,ae = . F [exp( RT 7761) exp( RT Na (7.6)

where n, = [¢]¢ — ¢¢, is the overpotential on graphite anode particle surfaces.

Electrolyte:

In this chapter, the modeling of the electrolyte differs from the approaches in Chapters 3 and 4 and
is more akin to the approach in Chapter 5 with the hybrid anode, due to the addition of another type
of particle surface. To define the ion diffusion in the electrolyte in the full cell, we adjust Eq. (2.18)
similar to the modification shown in Chapter 5. A new ‘source term’ is added to the right-hand side
of Eq. (2.18) to incorporate the reaction fluxes at both the cathode and anode particle-electrolyte

interfaces. The modified equation is shown here:

0 1 v cexn,ce T \Y% elae’xn,ae) - io - V¢t
Ce:_v'(weDeVCe)'*'(l we| ,C | v | ,e)__le +’
8t lpe l//e V+ Z+V+F

(7.7)

The method to identify different interfaces is given in Chapter 5. Similarly, to define the current

continuity in the electrolyte, we update Eq. (2.20) to account for the additional flux:

1
V : [we (Z+m+ - Z—m—) FCeV¢e] + (|Vwe|cerxn,ce+|vwe|aerxn,ae)v_ =
+ (7.8)

V- lye(D--Dy)VCe],
These modifications account for the complexities of ion transport and current flow within the elec-
trolyte due to the presence of both cathode and anode particles in a full-cell simulation.
Boundary conditions:
Eq. (7.2) for the cathode is subject to a Dirichlet boundary condition, ¢.|.., at the cathode current
collector (the computational boundary box, x = 113.75um), displayed as the right boundary in

Fig. 7.1 (a) and (b), and an internal boundary condition ry, .. Similarly, Eq. (7.5) for the anode is
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subject to a Dirichlet boundary condition, ¢4, at the anode current collector (the computational
boundary box, x = Oum), displayed as the left boundary in Fig. 7.1 (a) and (b); and an internal
boundary condition, ., 4.. Eq. (7.8) for the electrolyte contains two internal boundary conditions,
Yxn.ce and ¥y, 0. No flux boundary conditions are applied to Eqgs. (7.1), (7.4), and (7.7).

Solver:

Egs. (7.1) and (7.4) are solved to obtain the Li fractions in NMC and graphite, respectively, using
the forward Euler explicit scheme. Additionally, Eq. (7.7) is solved for ion concentration in the
electrolyte employing an Euler implicit scheme. As before, an implicit scheme is chosen for the
electrolyte solver because of the large difference in diffusivity values between the electrolyte and the

electrodes. Within each time step, the three electropotentials are computed in an internal iterative

Figure 7.1 (a) Full-cell microstructure without a separator; (b) Side-view of full-cell highlighting
the anode, the cathode, and separator regions. The empty spaces and pores in (a) and (b) are filled
with the electrolyte; (c) Full-cell microstructure with a synthetic separator; and (d) The electrolyte
in a full-cell.
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loop from Egs. (7.2), (7.3), (7.5), (7.6), and (7.8) until a numerical equilibrium is reached where
the changes in these potentials become negligible. Once numerical equilibrium is achieved, the
two reaction currents, Iy, . and Iy, 4. are used to calculate the total current on both cathode and
anode, respectively. The simulation progresses to the next time step only if the total currents on
both electrodes match the target current within a small tolerance (around 0.2%). If this criterion is
not met, an iterative adjustment process is initiated. In cases where the total currents deviate from
the target, the boundary conditions for the electropotentials at the current collectors, ¢ 4|4 and ¢¢|cc,
are adjusted proportionally to difference in the total currents from the target current. The electropo-
tentials, ¢, and ¢, in both cathode and anode are subsequently adjusted to match the changes in
the boundary conditions. Following these adjustments, the five fields (three electropotentials and
two reaction currents) in the internal loop are relaxed until a new numerical equilibrium is attained.
This process of adjusting boundary conditions and re-solving the inner loop continues until the total
currents on both electrodes converge to the target current. Note that the target current is determined
based on the chosen C-rate for the cathode. Once convergence is achieved, the simulation proceeds
to the next time step. In the next time step, Egs. (7.1), (7.4), and (7.7) are solved using the new

updated values for 1y, . and 1y, 4.. An illustration of the iterative process is provided in Fig. 7.2.

7.2.2 Simulation setup - microstructures and material parameters

The microstructure setup for the full-cell simulations is shown in Fig. 7.1. The graphite anode
is situated on the left with gray color particles obtained from Ref. [99], while the NMC cathode
is located on the right with yellow color particles generated using the Discrete Element Method
(DEM). Two scenarios for the separator are tested. In Fig. 7.1 (a), the separator is empty and is
assumed to be filled with the electrolyte, while in Fig. 7.1 (c), a synthetic bi-continuous separator
microstructure generated using a Cahn-Hilliard phase separation is utilized. In both cases, the
pores and empty spaces are filled with the electrolyte as shown in Fig. 7.1 (d).

A region of 48.75um X 61.75um X 48.75um is used for both the cathode and the anode in the
full-cell simulation. The separator region is chosen to be 16.25um. The grid size (dx) used for

these simulations is 0.325um based on the voxel values for the graphite microstructure. The raw

142



data for the microstructure is smoothed to avoid any isolated voids.

NMC material parameters are the same as in Chapter 3. Graphite material parameters are the
same as in Chapters 4, 5, and 6. Similar to previous chapters, LiPFg is the choice of electrolyte in
this chapter. Electrolyte properties are also same as in the previous chapters.

7.3 Results and Discussion

As our focus throughout this work has been fast charging, we present 6C charge and discharge
simulations of the presented full-cell microstructures. Fig. 7.3 demonstrates Li concentration in
both the electrodes during 6C charge and discharge cycles. Figs. 7.3 (a), (b), and (c) correspond to

a discharge cycle while (d), (e), and (f) represent a charge cycle at 6C. Note that the simulations

Initial conditions: Setinitial X, X,, Co ®c, & and &,
Set a C-rate

Time stepping loop, t

* Solve Egs. (7.1) and (7.4) for X, and X, using a
Euler explicit scheme

e Solve Eq. (7.7) for C, using a Euler implicit scheme

Internal iterative loop determining

b, d,, and d,

* Calculater,, .. andr,, ., using Egs. (7.3) and
(7.6)

* Solve Eq. (7.2) for ¢, with r,, .. and .. as
boundary conditions

* Solve Eq. (7.5) for ¢, with r,,, .. and ¢, ,; as
boundary conditions

* Solve Eq. (7.8) for d, with r,,, .o and r,, .. as
boundary conditions

If | Ifor _Itargetl >gor| Iy - Itargetl > &€

- Adjust ¢ .. and ¢, and ¢, ,c and ¢,
Else

— Exit

Figure 7.2 Updated flowchart of simulation scheme for solving the coupled governing equations in
a full-cell.
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for these demonstrations use a 6C rate based on the cathode loading. In the future, C-rate based
on anode can also be utilized seamlessly in our full-cell framework. Delithiation of graphite can

easily be observed in the discharge cycle from Figs. 7.3 (a), (b), and (c). The four phases can also
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(a) Lifraction in Solid at Os (d) Lifraction in Solid at Os
ok 0.8 0.8
.40 0.6 0.6
€
=20
N 0.4 0.4
03
50 100 B0 0.2
0 o 0 o
Y (um) X () O Y (um) X (um) 0
1 1
(e) Lifraction in Solid at 118s
0.8
0.6
0.4
0.2
0
1
0.8
0.6
0.4
0.2
0 0o 0 o
Y (um) X (um) 0 Y (um) X (um) 0

Figure 7.3 Li concentration in the electrodes for a discharge cycle at a 6C cathode rate (a) at Os,
(b) at 120s, and (c) at 240s; Li concentration in the electrodes for a charge cycle at a 6C cathode
rate (a) at Os, (b) at 118s, and (c) at 236s. The blue arrows highlight the direction of lithium
movement during that cycle.
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be noticed in graphite during both delithiation and lithiation as in Chapter 4. During the discharge
cycle, the surfaces of graphite particles get highly delithiated while the core remains relatively full
with Li due to this phase behavior. In contrast, NMC lithiation during the discharge cycle leads to a
more uniform insertion as NMC is treated as a Li solution in our framework. Similar observations
can be made during the charge cycle where graphite is lithiated from the Li coming from NMC.
Phase behavior of graphite leads to the graphite particle surfaces being full while the core remains
relatively empty. The region close to its current collector at x = 0 is filled slower and emptier than
the graphite closer to the separator.

Fig. 7.4 (a), (b), and (c) shows electrostatic potential across the two electrodes for a charge
cycle at a 6C cathode rate. A small gradient is observed along the thickness of the electrodes,
similar to Chapters 3 and 4. Fig. 7.4 (d) demonstrates the overpotential on the two electrodes
during the charge cycle. Following ideas from Chapters 4 and 5, we can identify the points of
negative overpotential in the graphite anode, thus allowing us to identify the location and time of the

theoretical onset of plating. As in Chapters 4 and 5, a higher negative overpotential is observed near
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Figure 7.4 Electrostatic potential in the electrodes for a charge cycle at a 6C cathode rate (a) at Os,
(b) at 118s, (c) at 236s; and (d) Overpotential on the electrodes at 236s. The blue arrow highlights
the direction of lithium movement during the charge cycle.
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the separator compared to the current collector. This identification can be helpful with electrode
design.

Fig. 7.5 illustrates concentrations in the electrolyte for both discharge and charge cycles at
a 6C cathode rate. Concentration gradients across the whole length can be observed in the cell.
Additionally Fig. 7.6 shows electrostatic potential in the electrolyte. Initial ion concentrations in
the electrolyte are chosen to be 1M uniformly.

Due to the time dependence of electrolyte concentration, C,, a no-flux boundary condition is
deemed appropriate. However, solving for electrolyte potential, ¢, presents challenges as two-sided
no-flux boundary conditions can be numerically unstable. Through the use of internal loops for
convergence, a numerical equilibrium is achieved, with cathode potential, ¢, and anode potential,
¢, having Dirichlet boundary conditions and being indirectly linked to electrolyte potential, ¢,

through reaction fluxes on the anode, ry,, 4., and cathode, 1y, .. This approach stabilizes the solution
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Figure 7.5 lon concentration in the electrolyte for a discharge cycle at a 6C cathode rate (a) at Os,
(b) at 120s, (c) at 240s; Li concentration in the electrodes for a charge cycle at a 6C cathode rate
(a) at Os, (b) at 118s, and (c) at 236s. The blue arrows highlight the direction of lithium movement
during that cycle.
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for ¢, in our simulations.

Figs. 7.7(a) displays the simulated cell voltage curve for a 6C discharge cycle without a separator
as the blue curve. The initial Li fraction in the cathode is chosen to be 0.2 and increases until the
termination criterion is reached. Unlike the simulated CV curve for graphite anode from Chapters

4, 5, and 6, this simulated cell voltage curve does not show any kinks and more resembles the
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Figure 7.6 Electrostatic potential in the electrolyte at a 6C cathode rate (a) for a discharge cycle at
120s, and (b) for a charge cycle at 118s. The blue arrows highlight the direction of lithium
movement during that cycle.
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Figure 7.7 Simulated cell voltage curves at 6C cathode for full-cell for (a) a discharge cycle with
and without separator, and (b) a charge cycle with two n/p ratios.
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NMC cathode curves from Chapter 3. As the potential drop for NMC cathode at equilibrium
is significantly higher (~1.8V from X = 0.2 to 1.0) than the potential change for graphite anode
(~0.6V from X = 0.0 to 1.0), the CV curve for the full-cell is dominated by Li solution behavior
of NMC.

Additionally, Fig. 7.7(b) compares the simulated cell voltage curves for n/p ratios of 1.0 and 1.2
for a 6C charge cycle. For these simulations, an initial Li fraction of 0.9 is selected for the cathode
and a constant 6C cathode current is maintained until the termination criterion is achieved. A n/p
ratio of 1.2 shows a higher achievable DoD due to more efficient lithiation of graphite during the
charging process as there is less lithium per unit volume diffusing in the graphite anode.

Fig. 7.7(a) also compares the simulated CV curve for the two full cells displayed in Fig. 7.1, one
without the separator and one with the separator for a 6C discharge cycle. It can be observed that
the introduction of the separator did not lead to any significant changes and only marginally shifted
the CV curve. However, a noticeable change is detected in the ion concentration in the electrolyte
within the separator region. Fig. 7.8 illustrates the ion concentration in the electrolyte for the two
cases. To elucidate the deviation from the no separator case Fig. 7.9(a) displays a 2D cross-section

line plot of the ion concentration in the electrolyte in the two cases. Notably, introducing the
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Figure 7.8 Ion concentration in the electrolyte (a) no separator, (b) with a separator.
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separator induces a higher gradient for the ion concentration in the separator region due to the
new tortuous path generated for the electrolyte. A 6C cycle on this microstructure did not provide
sufficient time for the effect to propagate to the end of the electrodes, resulting in only a minor
impact on the overall cell voltage curve. Nevertheless, these simulations serve as a demonstration

of the adaptability of the full-cell framework.

7.4 Conclusion

This chapter demonstrates an additional framework using the smoothed boundary method to
simulate electrochemical processes in a full-cell simulation. By combining a cathode (NMC)
and graphite anode, the model incorporates a more realistic representation of a cell, enabling the
exploration of three domain parameters with six fields and two reaction fluxes. Numerical stability
is achieved in our solver despite the implementation of two no-flux boundary conditions on the
electrolyte potential due to its integration with the electrode potential solvers through reaction
fluxes. The capabilities of the developed full-cell framework are presented through simulations of

charge and discharge cycles at a 6C lithiation rate. The role of the separator is also highlighted
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Figure 7.9 (a) Two-dimensional cross-section line plot of ion concentration in the electrolyte
highlighting the gradient induced by the introduction of the separator, (b) Zoomed-in version of
the separator region.
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using two different full-cell setups, further showcasing the model’s adaptability. The presented

full-cell model demonstrates its potential for advancing battery design.
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CHAPTER 8

SUMMARY, PROSPECTS AND FUTURE WORK

8.1 Summary

Lithium-ion batteries do and will play a pivotal role in the energy sector by reducing our reliance
on fossil fuels as a society. They are already ubiquitous in electronic devices and electric vehicles.
Still, major areas of improvement include higher safety, even further increasing energy density, and
reducing costs. Gaining insights into microstructure-level phenomena inside a lithium-ion battery
is essential to designing batteries and electrodes to achieve these goals. Mathematical modeling and
computer simulations provide an approach to understanding and visualizing such microstructure-
level phenomena. Governing equations defining the several simultaneous processes occurring in a
battery are well-known and are primarily simultaneous differential equations. Various numerical
methods like Finite Different Method (FDM), Finite Element Method (FEM), etc. are usually
implemented to solve these equations.

This dissertation introduces a new framework employing a diffuse-interface method, the
Smoothed Boundary Method (SBM), in conjunction with a mesh refinement method, Adaptive
Mesh Refinement (AMR) for electrochemical simulations. SBM allows for the use of a uniform
grid mesh instead of a conformal mesh which is typically utilized in traditional numerical solvers
modeling the complex electrode microstructures. Thus, reducing computational burden and time
for microstructure-level electrochemical simulations. A diffuse interface defined by a domain pa-
rameter, ¢ enables the use of a uniform grid for the complex and convoluted microstructures. This
domain parameter is used to modify the governing equations in SBM. However, as a consequence
of using the diffuse interface, solving these SBM reformulated electrochemical governing equations
can incur some inaccuracies in the simulation results. Modifying to a finer mesh can negate and
reduce any such inaccuracies. However, a finer mesh will significantly increase the computation
burden of the electrochemical simulations, thus nullifying the improvements offered by SBM. A
compromise between the two scenarios can work well in which a finer mesh is utilized only near

the diffuse interface while still using a regular mesh in bulk. AMR is a technique that fulfills this
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requirement of varying grid sizes across the entire domain. When combined with SBM can give
highly accurate simulation results without any considerable increase in the computational burden.
In this work, the framework of SBM+AMR is combined with finite difference numerical schemes
to simulate the electrochemical behavior.

The framework is tested and validated on an NMC-333 cathode, a common cathode in con-
temporary batteries. Synthetic spherical microstructures are computationally generated using the
Discrete Element Method (DEM) for these simulations. Comparisons with sharp-interface solu-
tions in 1-D and COMSOL solutions on a 3-D sphere confirm the accuracy of our method. The
framework’s versatility is realized by presenting charge-discharge cycling, cyclic voltammetry, ther-
mal, and mechanical simulations. The following majority of the dissertation focuses on studying
graphite anodes. Phase transformations and the onset of plating in the graphite anode are identified
in 3-D microstructures. Two different approaches are explored to mitigate and delay the onset of
plating in the graphite anode. The first approach is a thermodynamic one, using a hybrid anode
where hard carbon particles are mixed with graphite particles creating a buffer for lithium insertion
instead of deposition on the graphite surface, thus delaying the onset of plating in the electrode. The
second approach is kinetic in which new pathways/tunnels are artificially created in the electrode
allowing easier diffusive channels for more efficient electrode usage, consequently achieving higher
capacity before reaching the overcharging conditions. Various configurations and parameters are
studied for both approaches through 3-D microstructure electrochemical simulation. The disserta-
tion culminates with an introduction and presentation of the extension of our framework to full-cell

simulations.

8.2 Other prospects

The developed framework is employed by Danqi et. al in Refs. [58, 140] for electrochemical
impedance spectroscopy (EIS) simulations. EIS is a commonly used technique to measure the
electric properties of a material and characterize the behavior of an electrochemical system. An
alternating current (AC) signal probes the electrochemical system and measures its current response.

The impedance spectra calculated from the response over a range of frequencies provide insights
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into the electrochemical behavior of the system.

Ref. [58] employs our framework with multiple sinusoidal voltage loadings to capture the
underlying relations between the obtained macroscopic properties and electrode microstructures
of the NMC-333 cathode. The provided framework facilitates the examination of how various
properties influence EIS curves. Fig. 8.1 briefly illustrates some of the simulation results presented
in the paper. Fig. 8.1 (c) contrasts EIS curves for two different geometries displayed in Figs. 8.1 (a)
and (b) as Geo-1 and Geo-2, respectively. Both geometries are generated with a radius distribution
having the same mean radius of 5.8 um and a similar porosity of ~ 0.72. The primary difference

between the two geometries is the variance of the distribution around the mean, leading to different
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Figure 8.1 (a) Configuration of the virtual cell for Geo-1, (b) configuration of the virtual cell for
Geo-2, (c) Nyquist plot of simulated EIS curves of Geo-1 and Geo-2 electrodes with average
initial Li fraction = 0.25, (d) Nyquist plot of simulated EIS curves with initial Li fractions equal to
0.25, 0.50, 0.75, and 0.90 in the NMC electrode, and (e) Nyquist plot of simulated EIS curves for
initial salt concentrations = 0.5M, 1.0M, and 2.0M in the electrolyte. Figures obtained from [58].
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particle surface areas and surface area-to-volume ratios, 68,061 um? and 0.22 um~" for Geo-1 and
49,151 um? and 0.28 um~! for Geo-2, respectively. The two simulations are initialized with the
same Li fraction of 0.25, resulting in the same exchange current density. As can be noticed from
Fig. 8.1 (c), the two geometries produce largely different Nyquist plots and significantly different
charge transfer resistances, 2.60 x 10°Q for Geo-1 and 3.45 x 10°Q for Geo-2 calculated as twice the
radius of the semi-circle. The ratio of the two resistances, R; Geo—2/R¢.Geo—1 = 1.33 is found to be
consistent with the inverse of the two electrode surface areas, Ageo—1/AGeo—2 = 1.38. Additionally,
Fig. 8.1 (d) shows four Nyquist plots of simulations with different initial average Li fractions, X,
= 0.25, 0.50, 0.75, and 0.90 for the microstructure Geo-1. Based on these Li fractions and the
corresponding electropotential boundary conditions, the four different exchange current densities,
io are calculated to be 1.448 x 107!, 4.079 x 1073, 2.685 x 1073, and 2.495 x 103 mA/cm?
respectively. These iy values can be substituted in the relation, R.; = RT/zFip, to determine
charge transfer resistances (R.;). Using this relation, the ratios of R.;’s for the four Li fractions
are found to be 1:35:53:58, respectively, which are consistent with the values determined from the
Nyquist plots in Fig. 8.1 (d). The exact computed R,; values from the Fig. 8.1 (d) are 0.26 x 10°,
8.50 x 10, 12.80 x 10°, and 14.20 x 10° Q. Finally, the authors demonstrate the effect of varying
initial electrolyte salt concentration, C,, from 0.5M to 1.0M to 2.0M. The changes in the salt
concentrations induce changes to ambipolar and ionic diffusivities. The Nyquist plot for the three
EIS simulations can be found in Fig. 8.1 (e). As the C, increases, the radius of the semi-circle
decreases, indicating an increase in the reaction rate with C,. Each frequency is positioned similarly
across all three concentrations, thus implying that the double-layer capacitance has a negligible
impact on the EIS behavior for this concentration range. The Warburg impedances (the linear part
of the curves) are also approximately the same across the three concentrations, with a shift to the
right. This similarity signifies that the Li diffusion in the electrode particles is the limiting factor
for the diffusional impedance. As the Li diffusivity in the electrolyte is approximately six orders of
magnitude larger than in the particle, the variation of salt diffusivity due to C, has an insignificant

effect on the Warburg impedance, largely corresponding to relatively lower frequency loadings.
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Salt concentration, C,, tends to reach an equilibrium easier for these low-frequency loadings.

Ref. [140] extends the EIS simulation studies to graphite anodes. Fig. 8.2 briefly presents a
few findings from Ref. [140]. In contrast to NMC, graphite electrode undergoes phase transitions
when lithiated or delithiated. As discussed in detail in Chapters 4, 5, and 6, graphite exhibits
four phases labeled as 1°, 3, 2, and 1 in our work illustrated in Fig. 4.1. These phase transitions
cause interesting behavior in EIS simulations. Fig. 8.2 (a) displays simulated EIS curves for the
four uniform and stable single-phases in a lithiated graphite anode. The different EIS curves result
in four different charge transfer resistances, all consistent with total theoretical charge transfer
resistances calculated using R.; = RT /zFiy. Next, the EIS responses for multi-phase morphologies
are contrasted with uniform single-phase morphologies and each other. Note that, a core-shell

concentration distribution is observed for lithium in the electrodes. Fig. 8.2 (¢) compares Nyquist
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Figure 8.2 (a) Simulated EIS curves for single-phase stages 1°, 3, 2, and 1 on the E_II electrode, (b)
Stage 3-2 core-shell phase morphologies of a (i) thick shell and (i1) thin shell, (c) Simulated EIS
curves for the two core-shell stage 3-2 cases, which are similar to the single-phase stage 2 case, (d)
Phase morphologies of (i) stage 3-2 coexistence generated using the Cahn-Hilliard equation, (ii)
Planar modification of (i), and (iii) stage 2-1 coexistence generated using the Cahn-Hilliard
equation, and (e) Simulated EIS curves for d-(i), (ii), and (iii). The blue circle highlights an
inductive loop observed in these phase-separated morphologies. Figures obtained from [140].
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plots for single-phase-3 and two different core-shell concentration distributions between phases 3
and 2. The two core shells are illustrated in Figs. 8.2 b-(i) and b-(ii) and differ in the depth of lithium
penetration inside the particles leading to a thicker shell in Fig. 8.2 b-(i). The EIS responses for the
two core shells overlap almost completely, diverging only slightly from the uniform single-phase-3
in the Warburg impedance region at very low frequencies. Despite the significant differences in
average lithium fraction among the three distributions, the near-complete overlap suggests that the
EIS response for multi-phase morphologies is stepwise rather than continuous. This implies that
the EIS curve remains largely unchanged over a range of Li fractions and shifts suddenly when new
phases form in shell layers. In conclusion, if the electrode surface properties remain constant over
a range of lithium fractions when probed, it can be assumed that the electrode is undergoing phase
transitions. On the contrary, if there is a continuous change in measurements, a solid-solution
lithiation can be inferred in the electrode. The authors also presented a study of phase-separated
morphologies in graphite which rarely occur naturally in batteries but offer interesting insights
nonetheless. Phase-separated or spinodal configurations are generated using the Cahn-Hilliard
equation without any surface reactions. One spinodal configuration illustrated in Fig, 8.2 d-(i) has
phase-separated stages 3 & 2, and another configuration with phase-separated stages 2 & 1 is shown
in Fig, 8.2 d-(ii1). Additionally, a planar artificial configuration is generated from (i) where the two
stages 3 & 2 are physically separated into two halves of the electrode displayed in Fig. 8.2 d-(ii).
The Nyquist plots for these three synthetic configurations are shown in Fig. 8.2 (e). The semi-circle
regions corresponding to (i) and (ii) (with stages 3 & 2) in blue and red are almost overlapping.
The slight deviation results from the small differences in average exchange current densities (ip’s)
caused by the different morphologies. On the other hand, the semi-circle region for (iii) (with
stages 2 & 1) in black is substantially larger than the other two, indicating a larger charge transfer
resistance, R.;, as the average exchange current density is smaller in this case. More peculiarly,
a "loop" is observed in the low-frequency regions for all three morphologies highlighted by the
blue circle in Fig. 8.2 (e). This loop, more commonly referred to as an inductive loop, is often

associated with EIS measurements involving phase transformations. One potential explanation for
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these induction loops can be the sudden change in exchange current densities at phase boundaries
on particle surfaces. Since the deviation in exchange current density between phases 2 & 1 is
greater than that between phases 3 & 2, the induction loop is significantly larger and spans more
frequencies for the phases 2 & 1 case.

Presented above are some of the EIS simulation results conducted by Dangi et. al. Interested
readers are encouraged to refer to the full articles in Ref. [58] and [140] for additional details.
The papers effectively demonstrate the applicability and versatility of the presented framework for

exploring and examining EIS behavior.

8.3 Future Work

In the future, the studies and the investigations performed in this dissertation can be extended
to full cells for more realistic and accurate quantitative simulation results using the new full-
cell framework. More specifically, we can (1) examine the impact of hybrid anodes on full-cell
performance and their role in alleviating plating in a full cell, and (2) the effect of tunnels in a full
cell can be studied. It is also imperative to analyze tunneling in cathodes alongside the tunnels in
the anodes. As introducing these tunnels/pathways affects the total Li flux in/out of the anode, the
Li flux for the cathode will also be affected.

Another area where we have made some strides but need to explore more is examining other
different anode materials using the developed framework, especially in the hybrid anode setup.
We have conducted a few preliminary simulations for hybrid anodes incorporating lithium titanate
(LTO), silicon, and silicon oxide anodes with graphite and hard carbon anodes [141-144]. Silicon
is a promising anode material as it displays significantly high capacity (~ 10 times the theoretical
capacity of graphite) and is highly abundant and cheap compared to several other anode materials.
However, as an anode, it faces considerable volume expansion during lithiation (about 200 —300%)
which can lead to structural changes and mechanical degradation over multiple cycles [142, 143].
Creating a hybrid anode with silicon can potentially resolve the volume expansion issue to some
extent. Composite particles comprising silicon and hard carbon show promise as high-capacity

anode particles with remarkably less volume expansion [144]. These composite particles can
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be effortlessly simulated using our framework and the simulations can provide deep insights
into their construction and benefits. Other cathode materials can be researched as well using
the full-cell framework. We conducted rudimentary simulations for lithium cobalt oxide (LCO)
[145, 146], lithium iron phosphate (LFP) [147, 148], lithium nickel manganese cobalt-811 (NMC-
811) [148, 149], and lithium nickel cobalt aluminum oxide (NCA) [150, 151] cathodes with our
single electrode framework. Expanding on that, the detailed performance of these cathodes in a
full cell can be easily explored.

Furthermore, investigating the numerical solver and the refinement process can be prudent
in improving the simulations using the developed framework. To contrast the computational
performance, an implementation of the SBM+AMR equations using the finite element methods
(FEM) or the finite volume methods (FVM), rather than the finite difference schemes used in
this work, should be examined. Additionally, while the octree refinement is highly effective in our
framework, it is not necessarily the most computationally efficient refinement technique for complex
3D microstructures and needs to be compared to alternative refinement techniques such as block
or patch refinement [152-157]. Lastly, we concede that our implementation of the framework
in FORTRAN is not highly optimized for computational time and speed. In the future, this
implementation can be potentially improved by incorporating already existing optimized solvers,

libraries, and frameworks.

158



(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]
[13]

BIBLIOGRAPHY

M. Aneke and M. Wang. Energy storage technologies and real life applications — a state of
the art review. Applied Energy, 179:350-377, 2016.

Xing Luo, Jihong Wang, Mark Dooner, and Jonathan Clarke. Overview of current develop-
ment in electrical energy storage technologies and the application potential in power system
operation. Applied Energy, 137:511-536, 2015.

Mathew Aneke and Meihong Wang. Energy storage technologies and real life applications
— A state of the art review. Applied Energy, 179:350-377, October 2016.

Léonard Wagner. Chapter 27 - Overview of Energy Storage Technologies. In Trevor M.
Letcher, editor, Future Energy (Second Edition), pages 613—631. Elsevier, Boston, January
2014.

Md Mustafizur Rahman, Abayomi Olufemi Oni, Eskinder Gemechu, and Amit Kumar.
Assessment of energy storage technologies: A review. Energy Conversion and Management,
223:113295, November 2020.

H. Ibrahim, A. Ilinca, and J. Perron. Energy storage systems—Characteristics and compar-
isons. Renewable and Sustainable Energy Reviews, 12(5):1221-1250, June 2008.

Susan M. Schoenung. Characteristics and Technologies for Long- vs. Short-Term En-
ergy Storage: A Study by the DOE Energy Storage Systems Program. Technical Report
SAND2001-0765, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States);
Sandia National Lab. (SNL-CA), Livermore, CA (United States), March 2001.

Alexandra Zablocki. Fact Sheet | Energy Storage (2019) | White Papers | EESI.

Hanif SedighNejad, Tariq Igbal, and John Quaicoe. Compressed Air Energy Storage System
Control and Performance Assessment Using Energy Harvested Index. Electronics, 3(1):1-
21, March 2014. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

Arumugam Manthiram. An outlook on lithium ion battery technology. ACS Central Science,
3:1063-1069, 2017.

John B. Goodenough and Kyu-Sung Park. The Li-lon Rechargeable Battery: A Perspective.
Journal of the American Chemical Society, 135(4):1167-1176, January 2013. Publisher:
American Chemical Society.

M. Armand and J. Tarascon. Building better batteries. Nature, 451:652—-657, 2008.

Manuel Weiss, Raffael Ruess, Johannes Kasnatscheew, Yehonatan Levartovsky,
Natasha Ronith Levy, Philip Minnmann, Lukas Stolz, Thomas Waldmann, Margret
Wohlfahrt-Mehrens, Doron Aurbach, Martin Winter, Yair Ein-Eli, and Jiirgen Janek. Fast
Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Advanced Energy
Materials, 11(33):2101126, 2021.

159



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Taehoon Kim, Wentao Song, Dae-Yong Son, Luis K. Ono, and Yabing Qi. Lithium-ion
batteries: outlook on present, future, and hybridized technologies. Journal of Materials
Chemistry A, 7(7):2942-2964, 2019.

Anna Tomaszewska, Zhengyu Chu, Xuning Feng, Simon O’Kane, Xinhua Liu, Jingyi Chen,
Chenzhen Ji, Elizabeth Endler, Ruihe Li, Lishuo Liu, Yalun Li, Siqi Zheng, Sebastian
Vetterlein, Ming Gao, Jiuyu Du, Michael Parkes, Minggao Ouyang, Monica Marinescu,
Gregory Offer, and Billy Wu. Lithium-ion battery fast charging: A review. eTransportation,
1:100011, August 2019.

Xinghui Zhang, Zhao Li, Lingai Luo, Yilin Fan, and Zhengyu Du. A review on thermal
management of lithium-ion batteries for electric vehicles. Energy, 238:121652, January
2022.

Da Deng. Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering,
3(5):385-418, 2015.

Dhrupad Parikh, Tommiejean Christensen, Chien-Te Hsieh, and Jianlin Li. Elucidation of
Separator Effect on Energy Density of Li-lon Batteries. Journal of The Electrochemical
Society, 166(14):A3377, October 2019. Publisher: IOP Publishing.

Dhrupad Parikh, Tommiejean Christensen, and Jianlin Li. Correlating the influence of
porosity, tortuosity, and mass loading on the energy density of LiNip ¢Mng 2Cog 20, cathodes
under extreme fast charging (XFC) conditions. Journal of Power Sources, 474:228601,
October 2020.

Arumugam Manthiram. A reflection on lithium-ion battery cathode chemistry. Nature
Communications, 11(1):1550, March 2020. Number: 1 Publisher: Nature Publishing Group.

Hui Cheng, Joseph G. Shapter, Yongying Li, and Guo Gao. Recent progress of advanced
anode materials of lithium-ion batteries. Journal of Energy Chemistry, 57:451-468, June
2021.

Ying Ma. Computer Simulation of Cathode Materials for Lithium Ion and Lithium Batteries:
A Review. ENERGY & ENVIRONMENTAL MATERIALS, 1(3):148-173, 2018.

Ulrike Krewer, Fridolin Roder, Eranda Harinath, Richard D. Braatz, Benjamin Bediirftig,
and Rolf Findeisen. Review—Dynamic Models of Li-Ion Batteries for Diagnosis and Oper-
ation: A Review and Perspective. Journal of The Electrochemical Society, 165(16):A3656,
November 2018. Publisher: IOP Publishing.

Affan Malik and Hui-Chia Yu. Complex Electrode Microstructure Simulations using a
Smoothed Boundary Method with Adaptive Mesh Refinement. Journal of The Electrochem-
ical Society, 169(7):070527, Jul 2022.

Bor Yann Liaw, Ganesan Nagasubramanian, Rudolph G. Jungst, and Daniel H. Doughty.
Modeling of lithium ion cells — a simple equivalent-circuit model approach. Solid State
Ionics, 175:835-839, 2004.

160



[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Ecker. Lithium Plating in Lithium-Ion batteries: An experimental and simulation ap-
proach. Shaker Verlag, 2016.

Y. Hu, S. Yurkovich, Y. Guezennec, and B. J. Yurkovich. A technique for dynamic battery
model identification in automotive applications using linear parameter varying structures.
Control Engineering Practice, 17:1190-1201, 2009.

Seyed Mohammad Rezvanizaniani, Zongchang Liu, Yan Chen, and Jay Lee. Review and
recent advances in battery health monitoring and prognostics technologies for electric vehicle
(EV) safety and mobility. Journal of Power Sources, 256:110-124, 2014.

Mehmet Ugras Cuma and Tahsin Koroglu. A comprehensive review on estimation strategies
used in hybrid and battery electric vehicles. Renewable and Sustainable Energy Reviews,
42:517-531, 2015.

Gae-won You, Sangdo Park, and Dukjin Oh. Real-time state-of-health estimation for electric
vehicle batteries: A data-driven approach. Applied Energy, 176:92—-103, 2016.

Pritpal Singh, Ramana Vinjamuri, Xiquan Wang, and David Reisner. Design and imple-
mentation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable
defibrillators. Journal of Power Sources, 162:829-836, 2006.

J. Newman and W. Tiedemann. Porous-electrode theory with battery application. AIChE
Journal, 21:25-41, 1975.

M. Doyle, T.F. Fuller, and J. Newman. Modeling of galvanostatic charge and discharge of
the lithium/polymer/insertion cell. Journal of The Electrochemical Society, 140:1526, 1993.

T R Ferguson and M Z Bazant. Nonequilibrium Thermodynamics of Porous Electrodes.
Journal of The Electrochemical Society, 159(12):A1967 — A1985, 01 2012.

Andrew M. Colclasure, Kandler A. Smith, and Robert J. Kee. Modeling detailed chemistry
and transport for solid-electrolyte-interface (SEI) films in Li—ion batteries. Electrochimica
Acta, 58:33-43, 2011.

Y.-H. Chen, C.-W. Wang, X. Zhang, and A.M. Sastry. Porous cathode optimization for
lithium cells: Tonic and electronic conductivity, capacity, and selection of materials. Journal
of Power Sources, 195:2851-2862, 2010.

A F Bower and P R Guduru. A simple finite element model of diffusion, finite deformation,
plasticity and fracture in lithium ion insertion electrode materials. Modelling and Simulation
in Materials Science and Engineering, 20:045004, 2012.

S J Cooper, D S Eastwood, J Gelb, G Damblanc, D J L Brett, R S Bradley, P J Withers,
P D Lee, A J Marquis, N P Brandon, and P R Shearing. Image based modelling of

microstructural heterogeneity in LiFePOy4 electrodes for Li-ion batteries. Journal of Power
Sources, 247(c):1033 — 1039, 02 2014.

161



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Bo Yan, Cheolwoong Lim, Leilei Yin, and Likun Zhu. Three dimensional simulation of
galvanostatic discharge of LiCoO, cathode based on X-ray nano-CT images. Journal of The
Electrochemical Society, 159(10):A1604-A1614, 2012.

Samuel J. Cooper, Antonio Bertei, Donal P. Finegan, and Nigel P. Brandon. Simulated
impedance of diffusion in porous media. Electrochimica Acta, 251:681-689, 2017.

Andreas H. Wiedemann, Graham M. Goldin, Scott A. Barnett, Huayang Zhu, and Robert J.
Kee. Effects of three-dimensional cathode microstructure on the performance of lithium-ion
battery cathodes. Journal of The Electrochemical Society, 88:580-588, 2013.

Mehdi Chouchane, Emiliano N Primo, and Alejandro A Franco. Mesoscale effects in the
extraction of the solid-state lithium diffusion coefficient values of battery active materials:
Physical insights from 3D modeling. The Journal of Physical Chemistry Letters, pages 1 —
6, 03 2020.

Abbos Shodiev, Emiliano N Primo, Mehdi Chouchane, Teo Lombardo, Alain C Ngandjong,
Alexis Rucci, and Alejandro A Franco. 4D-resolved physical model for electrochemical
impedance spectroscopy of Li(Nij_,_,Mn,Co,)O,-based cathodes in symmetric cells: Con-
sequences in tortuosity calculations. Journal of Power Sources, 454:227871, 04 2020.

Hui-Chia Yu, Hsun-Yi Chen, and K. Thornton. Extended smoothed boundary method for
solving partial differential equations with general boundary conditions on complex bound-
aries. Modelling and Simulation in Materials Science and Engineering, 20(7):075008,
September 2012. Publisher: IOP Publishing.

Bernardo Orvananos, Todd R. Ferguson, Hui-Chia Yu, Martin Z. Bazant, and Katsuyo
Thornton. Particle-level modeling of the charge-discharge behavior of nanoparticulate phase-
separating Li-ion battery electrodes. Journal of The Electrochemical Society, 161:A535—
A546, 2014.

Bernardo Orvananos, Rahul Malik, Hui-Chia Yu, Aziz Abdellahi, Clare P Grey, Gerbrand
Ceder, and Katsuyo Thornton. Architecture Dependence on the Dynamics of Nano-LiFePO4
Electrodes. Electrochimica Acta, 137:245 — 257, 08 2014.

Bernardo Orvananos, Hui-Chia Yu, Rahul Malik, Aziz Abdellahi, Clare P. Grey, Gerbrand
Ceder, and Katsuyo Thornton. Effect of a size-dependent equilibrium potential on Nano-
LiFePOy particle interactions. Journal of The Electrochemical Society, 162:A1718—-A1724,
2015.

B Orvananos, H C Yu, A Abdellahi, R Malik, C P Grey, G Ceder, and K Thornton. Kinetics
of Nanoparticle Interactions in Battery Electrodes. Journal of The Electrochemical Society,
162(6):A965 — A973, 02 2015.

Chohong Min, Frédéric Gibou, and Hector D Ceniceros. A supra-convergent finite difference
scheme for the variable coefficient poisson equation on non-graded grids. J. Comput. Phys.,
218(1):123-140, October 2006.

162



[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

Affan Malik, Kent Snyder, Minghong Liu, and Hui-Chia Yu. Phase-field electrochemical
simulations of reconstructed graphite electrodes. Journal of Energy Storage, 77:109937,
January 2024.

M.S. Wittingham. Lithium batteries and cathode materials. Chemical Reviews, 104:4271—
4302, 2004.

Devin T O’Connor, Michael J Welland, Wing Kam Liu, and Peter W Voorhees. Phase
transformation and fracture in single Li,FePO, cathode particles: a phase-field approach

to Li—ion intercalation and fracture. Modelling and Simulation in Materials Science and
Engineering, 24(3):035020 — 17, 03 2016.

L Hong, L Liang, S Bhattacharyya, W Xing, and L-Q Chen. Anisotropic Li intercalation
in a Li,FePO4 nano-particle: a spectral smoothed boundary phase-field model. Physical
Chemistry Chemical Physics, 18(14):9537 — 9543, 03 2016.

Liang Hong, Linsen Li, Yuchen-Karen Chen-Wiegart, Jiajun Wang, Kai Xiang, Liyang
Gan, Wenjie Li, Fei Meng, Fan Wang, Jun Wang, Yet-Ming Chiang, Song Jin, and Ming
Tang. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation
kinetics in olivine lithium iron phosphate. Nature Communications, 8(1):1194, October 2017.

J. Newman and K. E. Thomas-Alyea. Electrochemical Systems. Wiley, 2004.

Martin Z Bazant. Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium
Thermodynamics. Accounts of Chemical Research, 46(5):1144 — 1160, 05 2013.

Affan Malik, Kent Snyder, Minghong Liu, and Hui-Chia Yu. Electrochemical dynamics in
hybrid graphite—carbon electrodes. MRS Communications, 2022.

Danqgi Qu, Affan Malik, and Hui-Chia Yu. Physics-based simulation of electrochemical
impedance spectroscopy of complex electrode microstructures using smoothed boundary
method. Electrochimica Acta, 2022.

Dangi Qu, Robert Termuhlen, and Hui-Chia Yu. Simulation of electrochemical double layer
formation with complex geometries. Journal of The Electrochemical Society, 167:140515,
2020.

Han Chen, Chohong Min, and Frédéric Gibou. A supra-convergent finite difference scheme
for the poisson and heat equations on irregular domains and non-graded adaptive cartesian
grids. Journal of Scientific Computing, 31:19-60, 2007.

K. F. C. Yiu, D. M Greaves, S. Cruz, A. Saalehi, and A. G. L. Borthwick. Quadtree grid
generation: Information handling, boundary fitting and CFD applications. Computers &
Fluids, 25:759-769, 1996.

C.-L. Park, P. W. Voorhees, and K. Thornton. Application of the level-set method to the
analysis of an evolving microstructure. Computational Materials Science, 85:46-58, 2014.

163



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Robert Termuhlen, Kieran Fitzmaurice, and Hui-Chia Yu. Smoothed boundary method
for simulating incompressible flow in complex geometries. Computer Methods in Applied
Mechanics and Engineering, 399:115312, September 2022.

Ruhul Amin and Yet-Ming Chiang. Characterization of electronic and ionic transport
in Li1_xNi0'33MI’10.33C00_3302 (NMC333) and Li1_xNi0,50Mn0,20C00_3002 (NMC523) as a
function of Li content. Journal of The Electrochemical Society, 163:A1512—-A1517, 2016.

Lars Ole Valgen and Jan N Reimers. Transport Properties of LiPFs-Based Li-Ion Battery
Electrolytes. Journal of The Electrochemical Society, 152(5):A882 — 10, 2005.

Naoki Nitta, Feixiang Wu, Jung Tae Lee, and Gleb Yushin. Li-ion battery materials: present
and future. Materials Today, 18:252-264, 2015.

Ping-Chun Tsai, Bohua Wen, Mark Wolfman, Min-Ju Choe, Menghsuan Sam Pan, Liang
Su, Katsuyo Thornton, Jordi Cabana, and Yet-Ming Chiang. Single-particle measurements

of electrochemical kinetics in nmc and nca cathodes for Li-ion batteries. Energy & Environ-
mental Science, 11:860-871, 2018.

A Bueno-Orovio and V M Perez-Garcia. Spectral smoothed boundary methods: The role
of external boundary conditions. Numerical Methods for Partial Differential Equations,
22:435-448, 2006.

A Bueno-Orovio, V M Perez-Garcia, and F H Fenton. Spectral methods for partial differential
equations in irregular domains: The spectral smoothed boundary method. SIAM Journal on
Scientific Computing, 28:886-900, 2006.

Stefan Luding. Introduction to discrete element methods. European Journal of Environ-
mental and Civil Engineering, 12:785-826, 2008.

Xifei Li, Jian Liu, Mohammad Norouzi Banis, Andrew Lushington, Ruying Li, Mei Cai, and
Xueliang Sun. Atomic layer deposition of solid-state electrolyte coated cathode materials
with superior highvoltage cycling behavior for lithium ion battery application. Energy &
Environmental Science, 7:768-778, 2014.

Yang Wang, Justin Roller, and Radenka Maric. Morphology-controlled one-step synthesis of
nanostructured LiNi; ;3Mn;,3Co1,30; electrodes for Li-ion batteries. ACS Omega, 3:3966—
3973, 2018.

P J Bouwman, B A Boukamp, HJ M Bouwmeester, and P H L Notten. Influence of diffusion
plane orientation on electrochemical properties of thin film LiCoO, electrodes. Journal of
The Electrochemical Society, 149(6):A699-A709, 2002.

Xin-Cun Tang, Lian-Xing Li, Qiong-Lin Lai, Xia-Wei Song, and Li-Hui Jiang. Investigation
on diffusion behavior of Li* in LiFePOy4 by capacity intermittent titration technique (CITT).
Electrochimica Acta, 54:2329-2334, 2009.

E. M. Gavilan-Arriazu, O. A. Pinto, B. A. Lopez de Mishima, D. E. Barraco, O. A. Oviedo,
and E. P. M. Leiva. Kinetic Monte Carlo applied to the electrochemical study of the Li-ion
graphite system. Electrochimica Acta, 331:135439, January 2020.

164



[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

D. Werner, A. Loges, D. J. Becker, and T. Wetzel. Thermal conductivity of li-ion batteries
and their electrode configurations — a novel combination of modelling and experimental
approach. Journal of Power Sources, 364:72-83, 2017.

A. Loges, S. Herberger, P. Seegert, and T. Wetzel. A study on specific heat capacities of li-ion
cell components and their influence on thermal management. Journal of Power Sources,
336:341-350, 2016.

Hui-Chia Yu, Doaa Taha, Travis Thompson, Nathan J Taylor, Andrew Drews, Jeff Sakamoto,
and Katsuyo Thornton. Deformation and stresses in solid-state composite battery cathodes.
Journal of Power Sources, 440:227116, 11 2019.

Rong Xu, Hong Sun, Luize Scalco de Vasconcelos, and Kejie Zhao. Mechanical and
structural degradation of LiNi, Mn,Co,O; cathode in Li-ionbatteries: An experimental
study. Journal of The Electrochemical Society, 164(13):A3333—-A3341, 2017.

Eric Jianfeng Cheng, Kicheol Hong, Nathan John Taylor, Heeman Choe, Jeff Wolfenstine,
and Jeff Sakamoto. Mechanical and physical properties of LiNig 33Mng 33C00.330, (NMC).
Journal of the European Ceramic Society, 37(9):3213-3217, 2017.

Yinsheng Guo, Raymond B. Smith, Zhonghua Yu, Dmitri K. Efetov, Junpu Wang, Philip
Kim, Martin Z. Bazant, and Louis E. Brus. Li Intercalation into Graphite: Direct Optical
Imaging and Cahn—Hilliard Reaction Dynamics. The Journal of Physical Chemistry Letters,
7(11):2151-2156, June 2016. Publisher: American Chemical Society.

Stephen J. Harris, Adam Timmons, Daniel R. Baker, and Charles Monroe. Direct in situ
measurements of Li transport in Li-ion battery negative electrodes. Chemical Physics Letters,
485(4):265-274, January 2010.

Alexander Urban, Dong-Hwa Seo, and Gerbrand Ceder. Computational understanding of Li-
ion batteries. npj Computational Materials, 2(1):1-13, March 2016. Number: 1 Publisher:
Nature Publishing Group.

Alejandro A. Franco. Multiscale modelling and numerical simulation of rechargeable lithium
ion batteries: concepts, methods and challenges. RSC Advances, 3(32):13027-13058, July
2013. Publisher: The Royal Society of Chemistry.

John W. Cahn and John E. Hilliard. Free Energy of a Nonuniform System. I. Interfacial
Free Energy. The Journal of Chemical Physics, 28(2):258-267, February 1958. Publisher:
American Institute of Physics.

Ming Tang, James F Belak, and Milo R Dorr. Anisotropic Phase Boundary Morphology in
Nanoscale Olivine Electrode Particles. The Journal of Physical Chemistry C, 115:4922 —
4926, 2011.

Daniel A Cogswell and Martin Z Bazant. Theory of Coherent Nucleation in Phase-Separating
Nanoparticles. Nano Letters, 13:3036 — 3041, 2013.

165



[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Marion Chandesris, Damien Caliste, Didier Jamet, and Pascal Pochet. Thermodynamics
and related kinetics of staging in intercalation compounds. JOURNAL OF PHYSICAL
CHEMISTRY C, 123(38):23711-23720, SEP 26 2019.

Matthieu Rykner and Marion Chandesris. Free energy model for lithium intercalation
in graphite: Focusing on the coupling with graphene stacking sequence. JOURNAL OF
PHYSICAL CHEMISTRY C, 126(12):5457-5472, MAR 31 2022.

Raymond B. Smith, Edwin Khoo, and Martin Z. Bazant. Intercalation kinetics in multiphase-
layered materials. JOURNAL OF PHYSICAL CHEMISTRY C, 121(23):12505-12523, JUN
15 2017.

Yi Zeng and Martin Z. Bazant. Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery
Particles. MRS Online Proceedings Library, 1542(1):0201, July 2013.

L. Chen, F. Fan, L. Hong, J. Chen, Y. Z. Ji, S. L. Zhang, T. Zhu, and L. Q. Chen. A
Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated
Silicon Electrodes. Journal of The Electrochemical Society, 161(11):F3164, October 2014.
Publisher: IOP Publishing.

Fangliang Gao and Wei Hong. Phase-field model for the two-phase lithiation of silicon.
Journal of the Mechanics and Physics of Solids, 94:18-32, September 2016.

Hui-Chia Yu, Feng Wang, Glenn G. Amatucci, and Katsuyo Thornton. A Phase-Field Model
and Simulation of Kinetically Asymmetric Ternary Conversion-Reconversion Transforma-
tion in Battery Electrodes. Journal of Phase Equilibria and Diffusion, 37(1):86-99, February
2016.

Yudi Kuang, Chaoji Chen, Dylan Kirsch, and Liangbing Hu. Thick Electrode Batteries:
Principles, Opportunities, and Challenges. Advanced Energy Materials, 9(33):1901457,
September 2019.

Junsheng Zheng, Guangguang Xing, Liming Jin, Yanyan Lu, Nan Qin, Shansong Gao, and
Jim P. Zheng. Strategies and Challenge of Thick Electrodes for Energy Storage: A Review.
Batteries, 9(3):151, March 2023. Number: 3 Publisher: Multidisciplinary Digital Publishing
Institute.

Moses Ender, Jochen Joos, André Weber, and Ellen Ivers-Tiffée. Anode microstructures
from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-
tomography. Journal of Power Sources, 269(c):912 — 919, 12 2014.

Simon Miiller, Jens Eller, Martin Ebner, Chris Burns, Jeff Dahn, and Vanessa Wood. Quanti-
fying Inhomogeneity of Lithium Ion Battery Electrodes and Its Influence on Electrochemical
Performance. Journal of The Electrochemical Society, 165(2):A339, January 2018. Pub-
lisher: IOP Publishing.

Simon Miiller. X-ray tomography data of four commercial lithium ion battery graphite
electrodes: Research data supporting “quantifying inhomogeneity of lithium ion bat-

tery electrodes and its influence on electrochemical performance”. https://www.research-
collection.ethz.ch/handle/20.500.11850/224851, 2018.

166



[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Lukas Pfaffmann, Claudia Birkenmaier, Marcus Miiller, Werner Bauer, Tim Mitsch, Julian
Feinauer, Yvonne Kramer, Frieder Scheiba, Andreas Hintennach, Thomas Schleid, Volker
Schmidt, and Helmut Ehrenberg. Investigation of the electrochemically active surface area
and lithium diffusion in graphite anodes by a novel OsQO; staining method. Journal of Power
Sources, 307(C):762 - 771, 03 2016.

Rachid Yazami, Audrey Martinent, and Yvan Reynier. Some thermodynamics and kinetics
aspects of the graphite-lithium negative electrode for lithium-ionbatteries. In Igor V. Bar-
sukov, Christopher S. Johnson, Joseph E. Doninger, and Vyacheslav Z. Barsukov, editors,
New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Super-
capacitors and Fuel Cells, NATO Science Series II: Mathematics, Physics and Chemistry,
pages 245-258, Dordrecht, 2006. Springer Netherlands.

Kristin Persson, Vijay A. Sethuraman, Laurence J. Hardwick, Yoyo Hinuma, Ying Shirley
Meng, Anton van der Ven, Venkat Srinivasan, Robert Kostecki, and Gerbrand Ceder. Lithium
Diffusion in Graphitic Carbon. The Journal of Physical Chemistry Letters, 1(8):1176—1180,
April 2010. Publisher: American Chemical Society.

Hua-Jun Guo, Xin-Hai Li, Xin-Ming Zhang, Hong-Qiang Wang, Zhi-Xing Wang, and Wen-
Jie Peng. Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and
disordered carbon. New Carbon Materials, 22(1):7 — 10, 2007-03.

Xiao-Guang Yang, Yongjun Leng, Guangsheng Zhang, Shanhai Ge, and Chao-Yang Wang.
Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear
to nonlinear aging. Journal of Power Sources, 360:28 — 40, 08 2017.

Robert Termuhlen, Xanthippi Chatzistavrou, Jason D Nicholas, and Hui-Chia Yu. Three-
dimensional phase field sintering simulations accounting for the rigid-body motion of indi-
vidual grains. Computational Materials Science, 186:109963, 08 2020.

Timo Danner, Madhav Singh, Simon Hein, Jorg Kaiser, Horst Hahn, and Arnulf Latz.
Thick electrodes for Li-ion batteries: A model based analysis. Journal of Power Sources,
334:191-201, December 2016.

Kuan-Hung Chen, Min Ji Namkoong, Vishwas Goel, Chenglin Yang, Saeed Kazemiabnavi,
S. M. Mortuza, Eric Kazyak, Jyoti Mazumder, Katsuyo Thornton, Jeff Sakamoto, and
Neil P. Dasgupta. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned
three-dimensional graphite anode architectures. Journal of Power Sources, 471:228475,
September 2020.

Vittorio De Lauri, Lukas Krumbein, Simon Hein, Benedikt Prifling, Volker Schmidt, Timo
Danner, and Arnulf Latz. Beneficial effects of three-dimensional structured electrodes for the
fast charging of lithium-ion batteries. ACS APPLIED ENERGY MATERIALS, 4(12):13847-
13859, DEC 27 2021.

Tao Gao, Yu Han, Dimitrios Fraggedakis, Supratim Das, Tingtao Zhou, Che-Ning Yeh,
Shengming Xu, William C. Chueh, Ju Li, and Martin Z. Bazant. Interplay of Lithium
Intercalation and Plating on a Single Graphite Particle. Joule, 5(2):393-414, February 2021.

167



[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Juliette Billaud, Florian Bouville, Tommaso Magrini, Claire Villevieille, and André R.
Studart. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries.

Nature Energy, 1(8):1-6, July 2016. Number: 8 Publisher: Nature Publishing Group.

Dhrupad Parikh and Jianlin Li. Bilayer hybrid graphite anodes via freeze tape casting for
extreme fast charging applications. Carbon, 196:525-531, 2022.

Zhijia Du. Understanding limiting factors in thick electrode performance as applied to high
energy density Li-ion batteries. Journal of Applied Electrochemistry, 47(3):405 — 415, 03
2017.

Jingyi Wu, Xiao Zhang, Zhengyu Ju, Lei Wang, Zeyu Hui, Karthik Mayilvahanan, Kenneth J.
Takeuchi, Amy C. Marschilok, Alan C. West, Esther S. Takeuchi, and Guihua Yu. From
Fundamental Understanding to Engineering Design of High-Performance Thick Electrodes
for Scalable Energy-Storage Systems. Advanced Materials, 33(26):€2101275, 2021.

Andrew M. Colclasure, Alison R. Dunlop, Stephen E. Trask, Bryant J. Polzin, Andrew N.
Jansen, and Kandler Smith. Requirements for Enabling Extreme Fast Charging of High
Energy Density Li-Ion Cells while Avoiding Lithium Plating. Journal of The Electrochemical
Society, 166(8):A1412, April 2019. Publisher: IOP Publishing.

Thomas Waldmann, Bjorn-Ingo Hogg, and Margret Wohlfahrt-Mehrens. Li plating as
unwanted side reaction in commercial Li-ion cells — A review. Journal of Power Sources,
384:107-124, April 2018.

David E. Brown, Eric J. McShane, Zachary M. Konz, Kristian B. Knudsen, and Bryan D.
McCloskey. Detecting onset of lithium plating during fast charging of Li-ion batteries

using operando electrochemical impedance spectroscopy. Cell Reports Physical Science,
2(10):100589, October 2021.

Eric J. McShane, Andrew M. Colclasure, David E. Brown, Zachary M. Konz, Kandler Smith,
and Bryan D. McCloskey. Quantification of Inactive Lithium and Solid-Electrolyte Inter-
phase Species on Graphite Electrodes after Fast Charging. ACS Energy Letters, 5(6):2045—
2051, June 2020. Publisher: American Chemical Society.

Katsunori Yanagida, Atsushi Yanai, Yoshinori Kida, Atsuhiro Funahashi, Toshiyuki Nohma,
and Ikuo Yonezu. Carbon Hybrids Graphite-Hard Carbon and Graphite-Coke as Nega-
tive Electrode Materials for Lithium Secondary Batteries Charge/Discharge Characteristics.
Journal of The Electrochemical Society, 149(7):A804, May 2002. Publisher: IOP Publish-
ing.

Richard Schmuch, Ralf Wagner, Gerhard Horpel, Tobias Placke, and Martin Winter. Per-
formance and cost of materials for lithium-based rechargeable automotive batteries. Nature
Energy, 3(4):267-278, April 2018. Publisher: Nature Publishing Group.

Chuanzhang Ge, Zhenghua Fan, Jie Zhang, Yongmin Qiao, Jianming Wang, and Licheng
Ling. Novel hard carbon/graphite composites synthesized by a facile in situ anchoring method
as high-performance anodes for lithium-ion batteries. RSC Advances, 8(60):34682—-34689,
October 2018. Publisher: The Royal Society of Chemistry.

168



[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Young-Geun Lim, Jung Woo Park, Min-Sik Park, Dongjin Byun, Ji-Sang Yu, Yong Nam Jo,
and Young-Jun Kim. Hard Carbon-coated Natural Graphite Electrodes for High-Energy and
Power Lithium-Ion Capacitors. Bulletin of the Korean Chemical Society, 36(1):150-155,
2015.

Kyung-Jin Kim, Taek-Soo Lee, Hyung-Giun Kim, Sung-Hwan Lim, and Sung-Man Lee. A
hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel
anode materials for lithium-ion batteries. Electrochimica Acta, 135:27-34, July 2014.

Kuan-Hung Chen, Vishwas Goel, Min Ji Namkoong, Markus Wied, Simon Miiller, Vanessa
Wood, Jeff Sakamoto, Katsuyo Thornton, and Neil P. Dasgupta. Enabling 6C Fast Charging
of Li-Ion Batteries with Graphite/Hard Carbon Hybrid Anodes. Advanced Energy Materials,
11(5):2003336, 2021.

Edward Buiel and J. R Dahn. Li-insertion in hard carbon anode materials for Li-ion batteries.
Electrochimica Acta, 45(1):121-130, September 1999.

D. A. Stevens and J. R. Dahn. The Mechanisms of Lithium and Sodium Insertion in Carbon
Materials. Journal of The Electrochemical Society, 148(8):A803, June 2001. Publisher:
IOP Publishing.

E. Irisarri, A. Ponrouch, and M. R. Palacin. Review—Hard Carbon Negative Electrode Ma-
terials for Sodium-Ion Batteries. Journal of The Electrochemical Society, 162(14):A2476—
A2482, 2015.

Hui-Chia Yu, Stuart B Adler, Scott A Barnett, and K Thornton. Simulation of the diffusional
impedance and application to the characterization of electrodes with complex microstruc-
tures. Electrochimica Acta, 354:136534, 09 2020.

S Dargaville and T W Farrell. A comparison of mathematical models for phase-change in
high-rate LiFePOy4 cathodes. Electrochimica Acta, 111:474 — 490, 11 2013.

S Dargaville and T W Farrell. The persistence of phase-separation in LiFePO4 with two-
dimensional Li+ transport: The Cahn—Hilliard-reaction equation and the role of defects.
Electrochimica Acta, 94:143 — 158, 04 2013.

Srivatsan Hulikal, Chun-Hao Chen, Eric Chason, and Allan Bower. Experimental Calibra-
tion of a Cahn-Hilliard Phase-Field Model for Phase Transformations in Li-Sn Electrodes.
Journal of The Electrochemical Society, 163(13):A2647 — A2659, 09 2016.

Wolfgang Dreyer, Janko Jamnik, Clemens Guhlke, Robert Huth, Joze Moskon, and Miran
Gaberscek. The thermodynamic origin of hysteresis in insertion batteries. Nature Materials,
9(5):448 — 453, 04 2010.

Chang-Jun Bae, Can K Erdonmez, John W Halloran, and Yet-Ming Chiang. Design of
Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Perfor-
mance. Advanced Materials, 25(9):1254 — 1258, 12 2012.

169



[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Jan B. Habedank, Joseph Endres, Patrick Schmitz, Michael F. Zaeh, and Heinz P. Huber.
Femtosecond laser structuring of graphite anodes for improved lithium-ion batteries: Abla-
tion characteristics and process design. Journal of Laser Applications, 30(3):032205, August
2018. Publisher: Laser Institute of America.

Nathan Dunlap, Dana B. Sulas-Kern, Peter J. Weddle, Francois Usseglio-Viretta, Patrick
Walker, Paul Todd, David Boone, Andrew M. Colclasure, Kandler Smith, Bertrand J. Tremo-
let de Villers, and Donal P. Finegan. Laser ablation for structuring Li-ion electrodes for fast
charging and its impact on material properties, rate capability, Li plating, and wetting.
Journal of Power Sources, 537:231464, July 2022.

Vishwas Goel, Kuan-Hung Chen, Neil P. Dasgupta, and Katsuyo Thornton. Optimization of
laser-patterned electrode architectures for fast charging of Li-ion batteries using simulations
parameterized by machine learning. ENERGY STORAGE MATERIALS, 57:44-58, MAR
2023.

Dane Morgan, Gerbrand Ceder, and Stefano Curtarolo. High-throughput and data mining
with ab initio methods. Measurement Science and Technology, 16(1):296, December 2004.

Anubhav Jain, Geoftfroy Hautier, Charles J. Moore, Shyue Ping Ong, Christopher C. Fischer,
Tim Mueller, Kristin A. Persson, and Gerbrand Ceder. A high-throughput infrastructure for
density functional theory calculations. Computational Materials Science, 50(8):2295-2310,
June 2011.

Shyue Ping Ong. Accelerating materials science with high-throughput computations and
machine learning. Computational Materials Science, 161:143—-150, April 2019.

Dingguo Xu, Qiao Zhang, Xiangyu Huo, Yitong Wang, and Mingli Yang. Advances in data-
assisted high-throughput computations for material design. Materials Genome Engineering
Advances, 1(1):el1, 2023.

Dangqi Qu and Hui-Chia Yu. Multiphysics Electrochemical Impedance Simulations of Com-
plex Multiphase Graphite Electrodes. ACS Applied Energy Materials, 6(6):3468-3485,
March 2023. Publisher: American Chemical Society.

Hao Zhang, Yang Yang, Hong Xu, Li Wang, Xia Lu, and Xiangming He. LiTiO spinel
anode: Fundamentals and advances in rechargeable batteries. InfoMat, 4(4):e12228, 2022.

Guanjia Zhu, Wei Luo, Lianjun Wang, Wan Jiang, and Jianping Yang. Silicon: toward
eco-friendly reduction techniques for lithium-ion battery applications. Journal of Materials
Chemistry A, 7(43):24715-24737, 2019.

Jingxing Wu, Yinliang Cao, Haimin Zhao, Jianfeng Mao, and Zaiping Guo. The critical
role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries.
Carbon Energy, 1(1):57-76, 2019.

Hyun Jung Kwon, Jang-Yeon Hwang, Hyeon-Ji Shin, Min-Gi Jeong, Kyung Yoon Chung,
Yang-Kook Sun, and Hun-Gi Jung. Nano/Microstructured Silicon—Carbon Hybrid Compos-
ite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries.
Nano Letters, 20(1):625-635, January 2020. Publisher: American Chemical Society.

170



[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Sujith Kalluri, Moonsu Yoon, Minki Jo, Suhyeon Park, Seungjun Myeong, Junhyeok Kim,
Shi Xue Dou, Zaiping Guo, and Jaephil Cho. Surface Engineering Strategies of Layered
LiCoO, Cathode Material to Realize High-Energy and High-Voltage Li-lon Cells. Advanced
Energy Materials, 7(1):1601507, 2017.

Si-Dong Zhang, Mu-Yao Qi, Si-Jie Guo, Yong-Gang Sun, Xin-Xin Tan, Pei-Zhong Ma, Jin-
Yang Li, Rong-Zhong Yuan, An-Min Cao, and Li-Jun Wan. Advancing to 4.6 V Review and
Prospect in Developing High-Energy-Density LiCoO, Cathode for Lithium-Ion Batteries.
Small Methods, 6(5):2200148, 2022.

Zishan Ahsan, Bo Ding, Zhenfei Cai, Cuie Wen, Weidong Yang, Yangzhou Ma, Shihong
Zhang, Guangsheng Song, and Muhammad Sufyan Javed. Recent Progress in Capacity
Enhancement of LiFePO,4 Cathode for Li-lIon Batteries. Journal of Electrochemical Energy
Conversion and Storage, 18(010801), June 2020.

S. El Moutchou, H. Aziam, M. Mansori, and I. Saadoune. Thermal stability of Lithium-ion
batteries: Case study of NMC811 and LFP cathode materials. Materials Today: Proceedings,
51:A1-A7, January 2022.

Katharina Mérker, Philip J. Reeves, Chao Xu, Kent J. Griffith, and Clare P. Grey. Evolution
of Structure and Lithium Dynamics in LiNiggMng Cop 10, (NMC811) Cathodes during
Electrochemical Cycling. Chemistry of Materials, 31(7):2545-2554, April 2019. Publisher:
American Chemical Society.

Hoon-Hee Ryu, Nam-Yung Park, Jeong Hyun Seo, Young-Sang Yu, Monika Sharma, Robert
Miicke, Payam Kaghazchi, Chong S. Yoon, and Yang-Kook Sun. A highly stabilized Ni-rich
NCA cathode for high-energy lithium-ion batteries. Materials Today, 36:73-82, June 2020.

Agus Purwanto, Cornelius Satria Yudha, U. Ubaidillah, Hendri Widiyandari, Takashi Ogi,
and Hery Haerudin. NCA cathode material: synthesis methods and performance enhance-
ment efforts. Materials Research Express, 5(12):122001, September 2018. Publisher: IOP
Publishing.

M. R. Pivello, M. M. Villar, R. Serfaty, A. M. Roma, and A. Silveira-Neto. A fully adaptive
front tracking method for the simulation of two phase flows. International Journal of
Multiphase Flow, 58:72-82, January 2014.

M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of Computational Physics, 82(1):64—84, May 1989.

Louis H. Howell and John B. Bell. An Adaptive Mesh Projection Method for Viscous
Incompressible Flow. SIAM Journal on Scientific Computing, 18(4):996-1013, July 1997.
Publisher: Society for Industrial and Applied Mathematics.

Boyce E. Griffith, Richard D. Hornung, David M. McQueen, and Charles S. Peskin. An
adaptive, formally second order accurate version of the immersed boundary method. Journal
of Computational Physics, 223(1):10-49, April 2007.

171



[156] R. M. J. Kramer, C. Pantano, and D. I. Pullin. Nondissipative and energy-stable high-order
finite-difference interface schemes for 2-D patch-refined grids. Journal of Computational
Physics, 228(14):5280-5297, August 2009.

[157] Koji Nishiguchi, Rahul Bale, Shigenobu Okazawa, and Makoto Tsubokura. Full Eulerian
deformable solid-fluid interaction scheme based on building-cube method for large-scale par-

allel computing. International Journal for Numerical Methods in Engineering, 117(2):221—
248, 2019.

[158] Caihao Weng, Jing Sun, and Huei Peng. A unified open-circuit-voltage model of lithium-ion
batteries for state-of-charge estimation and state-of-health monitoring. Journal of Power
Sources, 258(C):228 — 237, 07 2014.

172



APPENDIX A

EXAMPLE OF FDM STENCIL DERIVATION
Here, we use the Taylor series to derive the FDM stencil for a west-facing T-junction based on
the examples in Ref. [49, 60]. The node-neighbor configuration is shown in Fig. A.1. In the east

direction, we can write

S2

uE:uc+sEux+7Euxx+--' , (A.1)

where the subscripts x and xx indicate derivative. In the west direction, we can write

28
UNW = UC — Swlyx + SNUy + Tuxx + 7”” — SWSNUxy + - (A.2)
and
Sy 5§
Usw = Uc — Swlly — Sslty + 714” + 5uyy + SWSSUyy + 00 (A.3)

Eq. (A.2) Xsg + Eq. (A.3) Xsy eliminates the u, terms, and ignoring higher order terms gives

2
1 Sw SSSN
ssluc —u +syluc—u = SWlly — —Uyy — ——U A4
SS+SN[S(C nw) + sy (uc —usw)| = swuyx 5 U 5 Uy (A4)
which can be organized to
Sw SSSN
uc —uUw = Swily — 71/txx - Tl/lyy (AS)

where uw = (ss/(ss+ sn)) unw + (sn/(ss + sn)) usw can be viewed as the u value on the virtual
west neighbor (the green circle in Fig. A.1). To eliminate u, terms, we use Eq. (A.1) Xsw — Eq.

(A.5) Xsg to obtain

swse (Sw + SE) SESSSN
sw (ug —uc) — sg (uc —uw) = > Unx 5 Uy (A.6)
which is organized to
2 Ug —uUc uc —uw SSSN
Uy = - - Uyy. (A.7)
sw+Sg \ SE Sw sw(sw +sE)
In the y-direction
2
SN
Uy = uc +syuy + Euyy +-- (A.8)
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52

Eq. (A.8) Xs5 — Eq. (A.9) Xsy eliminates the u, terms. Ignoring the higher-order terms and

performing some algebraic operations gives

2 uy —u uc —u
lyy = N X (A.10)
Ss+ SN SN Ss
Similarly, in the z-direction

i
uT:uC+sTuz+?uzz+--- (A.11)

2

5p
uB:uc—sBuZ+7uzz+~- (A.12)

Eq. (A.11) xsp — Eq. (A.12) Xs7 eliminates the u, terms. Ignoring higher-order terms and

performing algebraic operations again gives

2 ur —u uc—u
Uy, = r-—c 75 (A.13)
S+ ST ST SB
The Laplace operator is written as
V2U = gy + thyy + U (A.14)

Figure A.1 Illustration of node configuration of a west-facing T-junction.

174



Combining Egs. (A.6), (A.10), and (A.13), we obtain

2 Ug —uc uc —uw
Viy = — +

Sw + SE SE Sw

2 Uy —Uc Uc — Us SSSN

— 1l-—|+ (A.15)

55+ SN SN ss sw(sw + SE)

2 Ur —uc Uc — Upg
Sp+ ST ST SB ’

which contains a nonzero correction factor

SSSN
= — A.l6
Biz SwGsw +55) (A.16)

for a west-facing T-junction on the x-y plane. The first subscript, ‘1°, indicates that it is a T-junction
along the x-axis, and the two subscripts, ‘12’, indicate that this T-junction is on the x-y plane.
Performing the derivations for T-junctions and face-centered junctions in all three axial directions
and summarizing the results will give the general form of FDM Laplace stencils with all correction
factors similar to Eq. (2.21).

As in Refs. [49,60], for a Laplace operator with variable coefficient, V - (4 Vu), we start with

the second derivative in the x-direction:

(viy) . = 2 (Ye+yc up—uc ssDyw+snDsw
*x Sw + SE 2 SE Ss+SN
(A.17)
SSSN
sw(sw + Sg) (lﬁuy)y,
with the assumption of

+ - + —
Dyw = Yet+ynw uc—unw . Dy = Yc+ysw uc = usw (A.18)

2 Sw 2 Sw

Following similar earlier algebraic derivations, one can obtain Eq. (2.21). The correction factor,

«;;, for the first derivatives in Eq. (2.23) can also be derived from the Taylor series similarly.
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APPENDIX B

PARAMETERIZATION OF MATERIAL PROPERTIES
Based on the values corresponding to the green circles in Fig. 3.1(a), Li diffusivity in NMC crystals

in terms of Li fraction was fitted using Matlab® curve-fit function as
Dy; = (0.0277 = 0.0840X +0.1003X?) x 1078 cm?/s, (B.1)

which is shown as the red curve in Fig. 3.1(a). Here X is the same quantity as X, in the main text.
This curve indicates a low Li diffusivity when X ~ 0.5, commonly observed in layered transition
metal oxide cathode materials, reflecting the Li ordering in those host crystals. Similarly, the
electric conductivity of NMC as a function of Li fraction was fitted based on the green circles in

Fig. 3.1(b) as
k =0.0193 + 0.7045 tanh(2.399X) — 0.7238 tanh(2.412X) S/cm, (B.2)

which is shown as the red curve in the same figure. At a high Li fraction, the valence electrons
move toward Li centers. Ionic bonding prevails, thus showing a low conductivity. We scaled the
concentration-dependent Li salt diffusivity in Ref. [65] such that the values of D, and D_ at | M
are 1.25 x 1076 cm?/s and 4.0 x 1076 cm?/s, respectively. The D, and D_ curves are shown as the

green and blue curves in Fig. 3.1(c). The D, was obtained as
D, = 0.00489 x exp(—7.02 — 830C, + 50000C?) cm?/s, (B.3)

which is indicated as the red curve in the same figure.
The open-circuit voltage as a function of Li fraction was fitted from the green circles in Fig. 3.1(d)

using the suggested function in Ref. [158] as
docy = 1.095X% — 8.234 x 107" exp (14.32X) +4.692 exp (-0.5389X) V, (B.4)

which is shown as the red curve in the same figure. The exchange current density fitted from the

green circles in Fig. 3.1(e) is

io = 1070-2(X-0.37)-0.9376 anh(8.961X~3.19)~1.559 1 A o2 (B.5)
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which is plotted as the red curve in the same figure. All the curve fittings were performed using

Matlab® curve-fit function.
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APPENDIX C

ADAPTIVE MESH REFINEMENT ON RECONSTRUCTED GRAPHITE
MICROSTRUCTURE

For accurate electrochemical simulations, it can be advantageous to directly utilize 3D voxelated
data obtained from reconstructed microstructures in SBM simulations [44,127], with voxel centers
serving as the grid points. Our octree AMR code was tested to generate L2 meshes on two X-ray
computed tomography reconstructed graphite electrode microstructures [98,99]. Figures C.1(a)
and (b) show the two microstructures: one contains sphere-like particles and the other plate-like
particles. The input data comprise 360 x 220 x 320 = 25, 344, 000 voxels with a voxel edge size
of 0.325 um. Using the refinement criteria of 2.20 and 1.05 for the Lvl and Lv2 refinement
criteria, L2 meshes were generated in approximately 13.75 and 19.25 minutes, respectively. The
total numbers of grid points are 303,877,035 and 308,607,135, respectively, approximately 12.2
times the original number. The initial voxelated 3D data can be manipulated easily to create
artificial microstructures. For instance, Fig. C.1(c) displays an electrode with a conic tunnel that
mimics a laser-ablated tunnel [107], achieved by removing the voxels in the space occupied by
the tunnel. The L2 mesh contained 303,823,339 grid points and was generated in about 12.8
minutes. A small region of the grid system is depicted in Fig. C.1(d). Notably, the root-level mesh
(voxels) is reasonably fine, suggesting that AMR may not be necessary in this case. Additionally,
the total number of grid points can be reduced by coarsening the root-level cells to alleviate the
computational burden in simulations. However, such treatment may not significantly decrease the
number of grid points since most grid points are associated with L1 and L2 cells. In our tests,
the total number of nodes only decreased to ~ 220 million. Therefore, considering computational
costs, we recommend employing AMR with SBM either when complex geometries are challenging
to discretize with body-conforming meshes, such as in highly porous electrode microstructures, or
when the operating conditions of the system are extreme, such as high C rate lithiation/delithiation.
If the domain of interest can be easily meshed, conventional sharp-interface approaches will be

more cost-effective and efficient computationally.
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Figure C.1 Reconstructed 3D microstructures: (a) Electrode with large and spherical-like particles
(electrode II_a in Ref. [99]), (b) Electrode with plate-like particles (electrode IV in Ref. [99]), (¢)
Electrode with a conical tunnel at the center to mimic a configuration of laser ablated electrode,

and (d) A magnified view of the grid system in (c) to show the L2 octree refinement. The spatial
unit is gm.
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APPENDIX D

SUPPLEMENTARY INFORMATION TO CHAPTER 5

D.1 Liintake in terms of moles

The volumes of graphite and carbon particles are 1.94 x 10° and 1.92 x 103 um?>, respectively,
in the standard case. Multiplying with Li site densities, the capacity of the graphite particles,
that of the hard carbon particles, and the total capacity are 6.053 X 10~°, 4.358 x 1072, and
1.041 x 1078 mol (or 1.004 mAh), respectively. For a 6C rate of this hybrid electrode, the current
is 1.041 x 1078 x 96485.3/3600 x 1000 = 2.790 x 10~* mA. The total capacities of pure graphite
and hard carbon electrodes with the same volume as the hybrid one will be 1.204 x 10~8 mol (or
1.162 mAh) and 8.762 x 1078 mol (or 0.845 mAh). A 6C rate for the pure graphite and hard
carbon electrodes will be 3.228 x 10™* and 2.348 x 10~ mA, respectively. The cross-section area
(y-z plane) of the computational domain is 1.217 x 10™* cm?. Thus, the cell current densities at
6C are 2.293, 2.653, and 1.390 mA/cm? for the hybrid, pure graphite, and pure carbon electrode,
respectively. For the cases of arranging particles according to positions and sizes, the insertion
currents are similar to the standard case because graphite and carbon both occupied 50% of the

total volume.
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D.2 Simulation videos

Videos are provided on Ref. [57] SI web page. The video file names are listed below.

Table D.1 Video file names. Four physical fields in the standard case (random particle
arrangement) are provided here. For the remaining cases, only the Li fractions are provided.

6C 1C
random arrangement
Li fraction LiFrax_Random_6C.mov LiFrax_Random_1C.mov
salt conc SaltConc_Random_6C.mov SaltConc_Random_1C.mp4

electrode potential ElectrodePoten_Random_6C.mov ElectrodePoten_Random_1C.mp4
electrolyte potential | ElectrolytePoten_Random_6C.mov | ElectrolytePoten_Random_1C.mov
small graphite particles

Li fraction LiFrax_SmlGrap_6C.mov ‘ LiFrax_SmlGrap_1C.mp4
small carbon particles
Li fraction LiFrax_SmlCarb_6C.mov ‘ LiFrax_SmlCarb_1C.mp4
graphite particles in the front
Li fraction LiFrax_GrapFront_6C.mov ‘ LiFrax_GrapFront_1C.mp4
carbon particles in the front
Li fraction LiFrax_CarbFront_6C.mov ‘ LiFrax_CarbFront_1C.mp4
high carbon i
Li fraction LiFrax_highCarbI0_6C.mov ‘ LiFrax_highCarbI0_1C.mp4
low carbon D,
Li fraction LiFrax_LowCarbDif_6C.mov ‘ LiFrax_LowCarbDif_1C.mp4
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D.3 Simulations of 1C lithiation
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Figure D.3 Simulated Li fraction evolution (column i) and accumulated Li intakes (column ii)
over time at 1C lithiation. (a) Cases of small graphite or small carbon particles. (b) Cases of
graphite or carbon in the front region. (c) Cases of high carbon iy or low D..
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