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ABSTRACT

Nonlinear optimal control schemes have achieved remarkable performance in numerous engi-
neering applications; however, they typically require high computational time, which has limited
their use in real-world systems with fast dynamics and/or limited computation power. To address
this challenge, neighboring extremal (NE) has been developed as an efficient optimal adaption
strategy to adapt a pre-computed nominal control solution to perturbations from the nominal tra-
jectory. The resulting control law is a time-varying feedback gain that can be pre-computed along
with the original optimization problem, which makes negligible online computation. This thesis
focuses on reducing the computational time of the nonlinear optimal control problems using the
NE in two parts. In Part I, we tackle model-based nonlinear optimal control and propose an
extended neighboring extremal (ENE) to handle model uncertainties and reduce computational
time (Chapter 3). Nonlinear Model predictive control (NMPC), which explicitly deals with system
constraints, is considered as the case study due to its popularity, but ENE can be easily extended to
other model-based nonlinear optimal control schemes. In Part 11, we address data-driven nonlinear
optimal control and introduce a data-enabled neighboring extremal (DeeNE) to remove parametric
model requirement and reduce the computational time (Chapter 4). Data-enabled predictive control
(DeePC), which makes a transition from the model-based optimal control to a data-driven one using
raw input/output (I/O) data, is considered as the case study due to the attention it has received, but
DeeNE can be easily extended to other data-driven nonlinear optimal control approaches. We also
compare the control performance of DeeNE and DeePC for KINOVA Gen3 (7-DoF Arm Robot).
Moreover, we introduce an adaptive DeePC framework, which can be easily transformed into an
adaptive DeeNE, to use real-time informative data and handle time-varying systems (Chapter 5).

Finally, we conclude the thesis and discuss the future works in Conclusion (Chapter 6).
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CHAPTER 1

INTRODUCTION

Constraint-aware optimal control schemes can explicitly handle system constraints while
achieving optimal closed-loop performance [1, 2]. However, such controllers typically involve
solving an optimization problem at each time step and are thus computationally expensive, es-
pecially for nonlinear systems. This has hindered their wider adoption in applications with fast
dynamics and/or limited computation resources [3]. As such, several frameworks have been de-
veloped to improve computational efficiency of nonlinear optimal controllers. One approach is to
simplify the system dynamics with model-reduction techniques [4, 5]. However, these techniques
require a trade-off between system performance and computational complexity, and it is often still
computationally expensive after the model reduction. Another approach is to use function approx-
imators, where functions such as neural networks [6, 7], Gaussian process regression [8, 9], and
spatial temporal filters [10, 11] are exploited to learn the optimal control policy, after which the
learned policy is employed online to achieve efficient onboard computations. However, extensive
data collection is required to ensure a comprehensive coverage of operating conditions. Another
sound approach is to use cloud computing for moving on-board computations from the plant to
a cloud, which employs computer system resources to provide on-demand computing power and
data storage services to users [12]. However, the cloud computing has given rise to a set of new
challenges related to request-response communication delays between the plant and the cloud [13].
Neighboring extremal (NE) [14, 15] is another promising paradigm to attain efficient computations
by proposing a time-varying feedback gain on the state deviations. Despite promising performance,
the NE rely on accurate parametric representations of real systems, but this can be challenging for
complex systems. With this challenge in mind, this thesis focuses on three main objectives:

(1) Developing an extended NE (ENE) for model-based optimal control under model uncertainties;
(i1) Developing a data-enabled NE (DeeNE) for data-driven optimal control;

(ii1) Developing an adaptive data-enabled optimal control for time-varying systems.



1.1 Background

For decades, the design of autonomous systems has critically relied on mathematical models
describing how these systems behave. Models allow scientists and engineers to make predictions
about the system’s behavior and plan future decisions. Model-based optimal control tries to attain
peak performance while guaranteeing system safety, i.e., ensuring that control actions respect
physical limits and safety considerations. As a promising model-based optimal control framework,
model predictive control (MPC) arises to accomplish this task by solving a constrained optimization
problem with future state predictions [16, 17, 18]. However, obtaining the required mathematical
model is often very time consuming and expensive for nonlinear and complex systems [19].
This shortcoming of the model-based optimal control motivates researches on various data-driven
methods that make this controller more practically viable for the nonlinear and complex systems;
however, the existing approaches cause model uncertainties, which necessitates robust optimization
techniques or adaptive strategies to maintain reliable control performance.

As systems and data become increasingly complex and more widely available, respectively,
scientists and practitioners are turning to data-driven methods instead of model-based techniques
[20]. While the model-based optimal controllers rely on plant modeling, data-driven optimal
control involves synthesizing a controller from input/output (I/O) data collected on the real system
[21, 22]. There are two paradigms of the data-driven control: 1) indirect data-driven control that first
identifies a model using the I/O data and then conducts control design based on the identified model
[10], and ii) direct data-driven control that circumvents the step of system identification and obtains
control policy directly from the I/O data [23]. A central promise is that the direct data-driven
control may have higher flexibility and better performance than the indirect data-driven control
thanks to the data-centric representation that avoids using a specific model from identification [24].
Moreover, it is generally difficult to map uncertainty specifications from system identification over
to robust control in the indirect data-driven control, while, this may become easier in the direct

data-driven control.



Recently, aresultin the context of behavioral system theory [25], known as Fundamental Lemma
[26], has received renewed attention in the direct data-driven control. Rather than attempting to
learn a parametric system model, this result enables us to learn the system’s behaviour such that
the subspace of the I/O trajectories of a linear time invariant (LTI) system can be obtained from the
column span of a raw data Hankel matrix of time series trajectories. A direct data-driven optimal
control, called data-enabled predictive control (DeePC) [27], has recently been proposed in the
spirit of the Fundamental Lemma. The DeePC algorithm relies only on the raw I/O data to develop
a non-parametric predictive model, learn the behavior of the unknown system, and perform safe
and optimal control policies to drive the system along a desired trajectory using real-time feedback.
In comparison with the machine learning-based controllers, the DeePC is more computationally
efficient, less data hungry, and more suitable to rigorous stability and robustness analysis [28]. The
DeePC algorithm has been successfully applied in many scenarios, including quadcopters [29] and
power systems [30].

The NE [14] is a promising paradigm to attain (sub-)optimal performance with efficient compu-
tations suitable for the systems with fast dynamics and limited onboard computations. Specifically,
given a pre-computed nominal solution, the NE provides an optimal correction law (to the first
order) to the deviations from the nominal trajectory. The nominal control sequence can be obtained
from a remote powerful controller (e.g., a cloud) or can be computed ahead of time based on an
approximated initial state. The resulting NE control law is a time-varying feedback gain on the
state deviations which is pre-computed along with the original optimal control problem. Therefore,
this adaptation makes negligible online computation and is used towards nonlinear optimal control
problems that are computationally too expensive. The NE has been employed in several engineer-
ing systems, including ship maneuvering control [31], power management [32], full bridge DC/DC
converter [33], and spacecraft relative motion maneuvers [34]. However, the NE framework does

not deal with the model uncertainties and the data-driven controllers (e.g. DeePC).



1.2 Thesis Outline and Contributions

Chapter 2 reviews the model-based nonlinear optimal control, the data-driven nonlinear optimal
control, the DeePC framework, and the NE framework. Chapter 3 studies a robustification of the
NE, called ENE, against the model uncertainties for the model-based nonlinear optimal control
such that the model uncertainties are approximated and incorporated into the optimization problem
as preview information. Chapter 4 studies a data-driven NE, called DeeNE, for the data-driven
nonlinear optimal control using the DeePC framework such that the required parametric model is
removed using Fundamental Lemma. Chapter 5 studies an adaptive DeePC strategy, which can
be easily transformed into an adaptive DeeNE, for time-varying systems such that data matrix is
updated using real-time informative data. The conclusions and the future works are provided in
Chapter 6. Below are the detailed contributions of the main chapters.

Chapter 3: We study the problem of optimal trajectory tracking for the nonlinear systems with
the model uncertainties. In modern applications, the optimal controllers frequently incorporate the
model uncertainties as the preview information (e.g., using a preview prediction model [35]) while
the actual model uncertainties are measured or approximated online. For the NE’s control law, a
time-varying feedback gain is pre-computed along with the original model-based nonlinear optimal
control problem. However, the NE framework only deal with the state perturbations; therefore, the
ENE is developed to consider the preview deviations in the NE adaptations. The derived ENE law
is two time-varying feedback gains on the state perturbations and the preview perturbations.

Chapter 4: We study the problem of data-driven optimal trajectory tracking for the nonlinear
systems with a non-parametric model. Given an initial I/O trajectory and a desired reference
trajectory, the DeePC predicts the behavior of the real system and provides an optimal control
sequence using raw I/O data; however, this approach has shown high computational cost due to
dimension of decision variable. Several approaches have been proposed to reduce the computational
cost of the DeePC for linear time-invariant (LTI) systems. However, finding a computationally

efficient method to implement the DeePC on the nonlinear systems is still an open challenge. We



propose the DeeNE to approximate the DeePC policy and reduce its computational cost for the
constrained nonlinear systems. The DeeNE adapts a pre-computed nominal DeePC solution to the
perturbations of the initial I/O trajectory and the reference trajectory from the nominal ones.
Chapter 5: We study the problem of data-driven optimal control for the time-varying systems.
DeePC uses pre-collected input/output (I/O) data to construct a data matrix for online predictive
control. However, in systems with evolving dynamics, incorporating real-time data into the DeePC
framework becomes crucial to enhance control performance. We propose an adaptive DeePC
framework for the time-varying systems, which enables the algorithm to update the data matrix
online by using real-time informative data. By exploiting the minimum non-zero singular value of
the data matrix, the developed adaptive DeePC selectively integrates informative data and effec-
tively captures evolving system dynamics. Additionally, a numerical singular value decomposition
technique is introduced to reduce the computational complexity for updating a reduced-order data

matrix.



CHAPTER 2

PRELIMINARIES

In this chapter, we review preliminaries of model-based nonlinear optimal control, data-driven
nonlinear optimal control, data-enabled predictive control (DeePC), and neighboring extremal

(NE), to provide contexts for later chapters.

2.1 Model-based Nonlinear Optimal Control
Consider the following discrete-time nonlinear system as:
x(k+1) = f(x(k),u(k)),

y(k) = h(x(k),u(k)),

2.1

where k € N7 represents the time step, x € R” denotes the state vector of the system, u € R is
the control input, and y € R? denotes the output of the system. Moreover, f : R” x R — R is
the system dynamics with f(0,0) =0, and & : R" X R — RP” represents the output dynamics.

Now, consider the following safety constraints for the system (2.1):
C(y(k),u(k)) <0, (2.2)

where C : R? x R™ — R,
Definition 1 (Closed-Loop Performance) Considerthe nonlinear system (2.1) and a control prob-
lem of tracking a desired time-varying reference r by the output of the system y. Starting from the

initial state x, the closed-loop system performance over N steps is characterized by the following

cost function:
N
ING ) = ) b(y(k),u(k), r(k)), (2.3)
k=0
where 'y = [y(0), y(1), ---, y(N)], u = [u(0), u(1), ---, u(N)], and ¢(y,u,r) denotes stage
Cost.

With the defined closed-loop performance metric, the control goal is to minimize the cost func-

tion (2.3) while adhering to the constraints in (2.1)-(2.2). The optimal control aims at optimizing



the system performance over N future steps for the system (2.1), which is expressed as the following

constrained nonlinear optimization problem:

(y*,u") = argmin Jy(y,u,r)

y.u
s.t.  x(k+1)=f(x(k),u(k)),
y(k) = h(x(k),u(k)), (2.4)

C(y(k),u(k)) <0,
x(0) = xq.
where the optimal control sequence (y*(0 : N),u*(0 : N)) is the solution of the above model-based

nonlinear optimal control.

2.2 Data-Driven Nonlinear Optimal Control
In practice, the real nonlinear system (2.1) may not be available; thus, system identification

algorithms are typically used to identify the system model. We denote the identified model as:

A

£k +1) = f(&(k),u(k)),
y(k) = h(x(k),u(k)),

where X, y, and f denote the states, the outputs, and the dynamics of the identified model,

(2.5)

respectively. It is worth noting that f is identified using the system identification algorithms by
collecting sufficient data samples from the real system (2.1).
Now, using the nominal model (2.5), the data-driven nonlinear optimal control is presented as

follows:

(¥, u*) = ar%min JN(F,u, 1)
y,u

A

st 2(k+1) = f(x(k),u(k)),
$(k) = h(%(k),u(k)),

C(y(k),u(k)) <0,

(2.6)

x(0) = xg.



where this control framework represents the indirect data-driven optimal control and requires the
system identification process. However, the direct data-driven optimal control circumvents the step

of the system identification and obtains control policy directly from collected data samples.

2.3 Data-Enabled Predictive Control

As a direct data-driven optimal control, the DeePC [27] makes a transition from model-based
optimal control strategies (e.g. model predictive control (MPC)) to a data-driven one such that
it seeks an optimal control policy from raw input/output (I/O) data without encoding them into
a parametric model and requiring system identification prior to control deployment. Inspired
by Fundamental Lemma [26], the system model (2.1) is replaced by an algebraic constraint that
enables us to predict the length-N future input-output (I/O) trajectory for a given length-T7;,,; past
(I/0) trajectory.

The Hankel matrices H(x“) and H(y?) are built from the offline collected I/O samples u? and

v as:
U ) e UT-T N1
) u3 ctt UT-T i~ N+2
H(u?) = i .7
|UT;pi+N UT;i+N+1 " ur
where H(u?) € R™Tini+N)XL peeds to have full row rank of order m(T;,; + N) + [, where [ < n

represents the observability index, to satisfy the persistency of excitation requirement, and the
number of its columns is denoted as L = T — T;;; — N + 1. The Hankel matrix of outputs
H(yd) e RPUini*N)XL ig puilt in an analogous way from the collected samples yd. Then, the

Hankel matrices are partitioned in Past and Future subblocks as:

U Y
"l=mwd), || =EED, (2.8)

Ur Yp

where Up € RMini*L Uy e RMVXL 'y, € RPTini¥L | and Yy € RPVXL,



Lemma 1 (Fundamental Lemma [26]) Consider a controllable linear time-invariant (LTI) sys-
tem, there is a unique g € RL such that any length-T,; + N trajectory of the system satisfies the

following linear equation under a full row rank H(ud) as:

Up Uini
Yp Yini
8= ) 2.9)
UF u
_YF_ L y .

where Up, Yp, Ur, and Y are fixed data matrices obtained from the offline collected 1/0 data,
(Wini, Yini) is a given length-T;y,; initial trajectory, and (u, y) is a length-N future trajectory which is
predicted online. m|

For a given initial trajectory (u;jn;, Yini) collected from the real system (2.1), one can replace

the optimization problem (2.4) with the DeePC as [27, 36]:

(y*,u*,o'y*,o'u*,g*): argmln JN(y’u’O-y’O-ll’g’r)

y,ll,(Ty,(Tu,g
Up Uini| |Tu
Y ini o
o7 P g= Yini + y ’ (2.10)
Ur u 0
YF y 0

C(y,u) <0,
where Jy(y,u, oy, 0y, g, 1) is the modified cost function for the DeePC with noisy data and

nonlinearities, o, € R”Tini is an auxiliary slack variable to cover process noises, and oy €ERP Tini

is an auxiliary slack variable to cover measurement noises and nonlinearities.

2.4 Neighboring Extremal Optimal Control
Solving a nonlinear optimal control at each time step causes a high computational cost for the

control framework. To address this challenge, the NE [15] adapts a pre-computed nominal control



solution to perturbations from the nominal states. The resulting control law is a time-varying
feedback gain that can be pre-computed along with the original optimal control problem, which
takes negligible online computation.

Consider the closed-loop performance (2.3) for the control objective of regulating the state x

as follows: N
INGW) = > G(x(k),u(k)) + Y (x(N)), .11)
k=0
where x = [x(0), x(1), ---, x(N)], u = [u(0), u(1), ---, u(N —1)], and (x) denotes terminal
cost.

Now, the model-based nonlinear optimal control (2.4) is expressed in the following form:
(x*,u”) = argmin Jy (x, u)
x,u

st. x(k+1)=f(x(k),u(k)),

C(x(k),u(k)) <0,

(2.12)

x(0) = xg.
where the Hamiltonian function and the augmented cost function are defined for the above nonlinear

optimization problem as:

H(k) = ¢(x(k), u(k)) + AT (k + 1) f(x(k),u(k)) + T (k)C (x(k), u(k)), 2.13)
N-1

In(k)y = > (H(K) = AT (ke + Dx(k + 1)+ (x(N)), (2.14)
k=0

where C?%(x(k),u(k)) represents the active constraints at the time step k. u(k) € R is the
Lagrange multiplier for the active constraints, and A(k+ 1) € R” represents the Lagrange multiplier
for the system dynamics (2.1).

Using variational analysis, the NE minimizes the second order variation of the augmented cost

10



function (2.14). Consequently, the NE solves the following nonlinear optimization problem as:

(6x*, 6u*) = arg min 62Ty (k)
ox,0u

sit. ox(k+1) = fe(k)ox(k) + fu(k)ou(k), (2.15)

C&(k)ox(k) + CH(k)Su(k) =0,
(5)6(0) = (5)C0,

where the solution of the above optimization problem is:
ou(k) = K*(k)ox(k),

Zyx (k)

K*'(k)==|1 oKk
Ci (k)

- -1

Zuu (k) C4T (k) (2.16)

if keKd®

Cik) 0

K°(k) =1

Zya (k) 0 .

if kek!

0 0

with
Zux(k) = Hyx (k) + fT(K)S(k + 1) fi(k),

Zuu (k) = Hyu (k) + £ (K)S(k + 1) fu (k),

Zyx(k) = Hyx (k) + £ (K)S(k + 1) fi (),

(2.17)

Zyu(k) = He(k) + fL(k)S(k +1) fu(K),

Zue(K)
ce(ky |

S(k) = Zyx (k) = | Zyy (k) C2T (k)| K° (k) (2.18)

where K¢ and K! are the sets of time steps at which the constraints are active (i.e., C(x(k), u(k)) = 0)

and inactive (i.e., C(x(k),u(k)) < 0), respectively.

11



CHAPTER 3

EXTENDED NEIGHBORING EXTREMAL OPTIMAL CONTROL

In this chapter, we focus on incorporating model uncertainties into Neighboring Extremal
(NE). The NE framework only deal with state perturbations while we can incorporate the model
uncertainties as preview information (e.g., using a preview prediction model), where the actual
model uncertainties are measured or estimated online. We develop an extended NE (ENE) frame-
work to consider the preview deviations in the NE adaptations such that the control policy is two
time-varying feedback gains on the state and preview perturbations. We also develop a constraint
activity-based criteria for the ENE framework to handle large perturbations. Promising simulation

results on cart inverted pendulum problem demonstrate the efficacy of the ENE algorithm.!

3.1 Background

Due to the vast success in optimal control and advancement in sensing, modern control ap-
plications can incorporate the model uncertainties into the control design as preview information.
For example, the road profile preview obtained from vehicle crowdsourcing is exploited for si-
multaneous suspension control and energy harvesting, demonstrating a significant performance
enhancement using the preview information despite noises in the preview [39]. Another example
is thermal management for cabin and battery of hybrid electric vehicles, where traffic preview is
employed in hierarchical model predictive control to improve energy efficiency [40]. Moreover,
light detection and ranging systems are used to provide wind disturbance preview to enhance the
controls of turbine blades in [41]. We develop an extended neighboring extremal (ENE) framework
that can adapt a nominal control law to state and preview perturbations simultaneously. This setup

is applicable when a nominal preview is available, and the preview signal is estimated online.

IThe material of this chapter is from “Extended Neighboring Extremal Optimal Control with
State and Preview Perturbations,” IEEE Transactions on Automation Science and Engineering, 2023
[37] and “Event-Triggered Cloud-based Nonlinear Model Predictive Control with Neighboring
Extremal Adaptations,” IEEE 61st Conference on Decision and Control, 2022 [38].

12



Neighboring extremal (NE) [42, 43, 44, 45] is a promising paradigm to attain efficient com-
putations by proposing a time-varying feedback gain on the state deviations. Specifically, given
a pre-computed nominal solution based on a nominal initial state, the NE yields a control policy
(to the first order) that adapts the nominal control to deviations from the nominal state. The nom-
inal solution can be computed offline and stored online, can be performed on a remote powerful
controller (e.g., cloud), or computed ahead of time by utilizing the idling time of the processor.
The NE framework has been employed in several engineering systems, including ship maneuvering
control [31], power management [32], full bridge DC/DC converter [33], and spacecraft relative
motion maneuvers [34]. Using a parameter estimation for the unknown systems, parameter pertur-
bations are considered in the NE, where the estimated parameters are considered constant during
the predictions of the optimal control problem [46]. In [14], disturbance perturbations have been
considered for the NE in the nonlinear optimal control problems; however, the formulation derived
is limited to a constant disturbance.

In this chapter, we develop the ENE framework for the nonlinear optimal control problems to
adapt a pre-computed nominal solution to both state perturbation and preview perturbation. This is
a generalization of the NE framework [15] where only considers the state perturbation. Moreover,
we treat the ENE problem when nominal non-optimal solution and large perturbations are appeared,
and a multi-segment strategy is employed to guarantee constraint satisfaction in the presence of
large perturbations. Furthermore, promising results are demonstrated by applying the developed
control strategy to the cart inverted pendulum problem. Compared to Chapter 3, we incorporate the
model uncertainties into the NE framework so that we do not need to return the NMPC at several
time steps to handle the model uncertainties, which significantly reduces the computational cost.
This chapter is outlined as: Section II describes the problem formulation and the preliminaries of
the nonlinear optimal control problems. The proposed ENE framework is presented in Section III.
Simulation on the cart-inverted pendulum is presented in Section I'V. Finally, Section V discusses

conclusions.

13



3.2 Problem Formulation

In this section, preliminaries on nonlinear optimal control problems are reviewed, and pertur-
bation analysis problem on the optimal solution is presented for the nonlinear systems with state and
preview perturbations. Specifically, the following discrete-time nonlinear system, that incorporates

a system preview, is considered as:

x(k+1)=f(x(k),u(k),w(k)), (3.1

where k € N* represents the time step, x € R” denotes the measurable/observable states, and
u € R™ is the control input. Here w € R” represents the preview information that can be road
profile preview in suspension controls [39], wind preview for turbine controls [41], and traffic
preview in vehicle power management [40]. Furthermore, f : R” X R™ x R" — R represents
the system dynamics with f(0,0,0) = 0. Moreover, we consider the following general nominal
preview model:

w(k+1) =g(x(k),w(k)), (3.2)

where g : R" x R"” — R’ represents the nominal preview dynamics.

We consider the following safety constraints for the system:
C(x(k),u(k), w(k)) <0, (3.3)

where C : R" x R x R" — R/,
Definition 2 (Closed-Loop Performance) Consider the nonlinear system (3.1) and the control

objective of regulating the state x. Starting from the initial conditions xqo and wy, the closed-loop

system performance over N steps is characterized by the following cost function:

N-1
INGuw) = > $(x(k), u(k), w(k)) + Y (x(N), w(N)), (3.4)
k=0
wherex = [x(0), x(1), -+, x(N)],u = [u(0), u(1), ---, u(N = 1)], w=[w(0), w(l), ---, w(N)],

and ¢(x,u, w) and Y (x, w) denote the stage and terminal costs, respectively.

14



Assumption 1 (Twice Differentiable Functions) The functions f, g, C, ¢, and  are twice con-

tinuously differentiable.

With the defined closed-loop performance metric, the control goal is to minimize the cost
function (3.4) while adhering to the constraints (3.1) and (3.3). The optimal control aims at
optimizing the system performance over N future steps for the system (3.1) using the nominal

preview model (3.2), which is expressed as the following constrained optimization problem:

(x?,u’, w’) = arg min Jy (X, u, w)
X,U,W

st. x(k+1) = f(x(k), u(k),w(k)),
wik+1) = g(x(k), w(k)), (3-5)
C(x(k), u(k), w(k)) <0,
x(0) = xg, w(0) = wy.

Consider a nominal trajectory x°, u’, and w? obtained by solving (3.5) with w’ being the
nominal preview. This computation can be performed on a remote powerful controller (e.g., cloud
computing or edge computing) or can be computed ahead of time based on an approximated initial
state. During implementation, the actual state x(k) and the preview information w (k) will likely
deviate from the nominal trajectory. Let 6x(k) = x(k) —x°(k) and éw(k) = w(k) —w?(k) denote
the state perturbation and the preview perturbation, respectively. Now, to solve the nonlinear optimal
control problem (3.5) for the actual values at each time step k, we seek a (sub-)optimal control policy
u*(k) = u®(k) + éu(k) to efficiently adapt to the perturbations of the nominal trajectory. As such,
using the nominal trajectory and the perturbation analysis, we develop an extended neighboring
extremal (ENE) framework to account for both state and preview perturbations through two time-
varying feedback gains. Moreover, to handle large perturbations, we modify the ENE algorithm
to preserve constraint satisfaction and retain optimal control performance. The details of each

algorithm and their benefits for nonlinear optimal control will be presented in the next part.
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/ Nominal Model (1), Nominal Preview Model (2), Remote,

Constraints (3), gost Function (4) Powerful Controller

. . DOptimal Control
Nominal Initial
State x°(0) =2 Nominal Optimal Trajectory
) ) = [x°(0: N),u°(0: N),w°(0: N)
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wo(0) = !

\ el 5 X /

Plant x(k) Extended Neighboring Extremal
8x(k) = x(k) — x°(k)
w(k) sw(k) = w(k) — w (k)
Su(k) = K;(k)6x(k) + K; (k)éw (k)
|
u*(k) = u°(k) + su(k) Onboard

Figure 3.1: Schematic of Extended Neighboring Extremal Optimal Control with State and
Preview Perturbations.

3.3 Main Result

In this section, we present the ENE framework for the optimal control problem (3.5) subject
to state and preview perturbations. As shown in Fig. 3.1, a nominal trajectory is first computed
based on system specifications (e.g., nominal model, nominal preview model, constraints, and cost
function) along with a nominal initial state and preview. Then, the ENE exploits time-varying

feedback gains to adapt to state and preview perturbations to retain optimal control performance.

3.3.1 Nominal Optimal Solution

In this subsection, we analyze the nominal optimal solution using the Karush-Kuhn-Tucker
(KKT) conditions. Specifically, define K¢ and K’ as the sets of time steps at which the constrains
are active (i.e., C(x(k),u(k),w(k)) = 0 in (3.3)) and inactive (i.e., C(x(k),u(k),w(k)) < 0),

respectively. From (3.5), the Hamiltonian function and the augmented cost function are defined as:

H (k) = ¢(x(k), u(k), w(k)) + AT (k + 1) £ (e(k), u(k), w(k)) + AT (k + Dg(x(k), w(k))

(3.6)
+ul (k)C%(x(k), u(k), w(k)),
N-1
In(ky = " (HK) = a7 (k+ Dx(k+1) = A (k+ Dw(k + D) + ¢ (x(N), w(N)), G.7
k=0

where C%(x(k),u(k),w(k)) represents the active constraints at the time step k. It is worth noting

that C%(x(k),u(k),w(k)) is an empty vector for inactive constraints, and C*(x(k), u(k), w(k)) €
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R if we have /¢ (out of /) active constraints. Furthermore, u(k) € R is the Lagrange multiplier
for the active constraints, and A(k + 1) € R and A(k + 1) € R” represent the Lagrange multipliers
for the system dynamics (3.1) and the nominal preview model (3.2), respectively. It is worth noting

that the Lagrange multipliers (k), A(k + 1), and A(k + 1) are also referred as the co-states.

Assumption 2 (Active Constraints) At each time step k, the number of active constraints is not

greater than m, i.e., C (k) is full row rank.

Since x°(k), u’(k), and w?(k) (k € [0, N]) represent the nominal optimal solution for
the nonlinear optimal control problem (3.5), they satisfy the following KKT conditions for the

augmented cost function (3.7):
Hy(k)=0, k=0,1,..,.N -1,
A(k) = Hy(k), k=0,1,..,N -1,
A(N) = ¥ (x(N), w(N)),
(3.8)
A(k) =Hy(k), k=0,1,..,N -1,

A(N) = ¢ (x(N), w(N)),
u(k) >0, k=0,1,....,N -1,
where the subscripts u, x, and w represent the partial derivatives of a function.
Now, using the KKT conditions (3.8) and the nominal solution x?(k), u®(k), and w?(k), one

can calculate the Lagrange multipliers u(k), A(k + 1), and A(k + 1) online as:
0 =¢u(x®u®,w°) + AT (k +1) £, (x°, u®, w°) + u! (k)C4(x%, u®, w°),
A(k) = e (x®,ul,wO) + AT (k + 1) fio(x°, u®, wO) + AL (k +1)g(x%, w°)
+ 1" () CE (x%,u%, w),
A(N) = g (x°(N), w?(N)), (3.9)
A(k) = ¢y (X u®, wO) + AT (k+ 1) fi (X, u®, w°) + AL (k + 1) gy (x%, w°)
+,uT(k)Cf’V(x0,u0,w0),

A(N) = gy (x?(N), w’ (N)).
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Using the above equations, the Lagrange multipliers can be obtained as:

p(k) = ~(CER)CAT (k)™ C (k) (k) = (CE(k)CaT (k)™ Ca (k) T () A(k + 1),

A(k) = g (k) + AT (ke + 1) fe(k) + AT (k + 1) gu (k) + uT (k)C2 (k),

A(k) = gy (k) + AT (k + 1) i (k) + AT (k + 1) gy (k) + uT (K)CE(K).

(3.10)

Note that 6/ (x%, u®, w°, u°,1°,1°) = 0, and Assumption 2 guarantees that Cfl’(k)C,ﬁ’T(k) is

invertible.

3.3.2 Extended Neighboring Extremal

For this part, we assume that the state and preview perturbations are small enough such that

they do not change the activity status of the constraint. To adapt to state and preview perturbations

from the nominal values, the ENE seeks to minimize the second-order variation of (2.14)4 subject

to linearized models and constraints. More specifically, the ENE algorithm solves the following

optimization problem with the initial conditions x(0) and 6w (0) as:

(6x°, 6u®, 6w°) = arg ;n;g e (k)

st ox(k+1) = fo(k)ox(k) + fu(k)du(k) + fy (K)ow(k),
ow(k + 1) = gx(k)ox(k) + gw(k)ow(k),
C2(k)ox(k) + CE(k)du(k) + C% (k)sw(k) =0,
6x(0) = 6xg, 6w(0) = Swy,

where
T
N_1 5)6(]() Hxx(k) qu(k) wa(k) 5)6(]()

Do outo)| |Hux(k) Huu(k)  Huw(k) | | 6u(ic)
Towo)| |Hux(®) Hyuk) Huw(0)| [ow(o)

T (k) = 62Ty (k) =

| =

+ %5xT(N)wxx(N)6x(N) + %MT(N)WW(N)(SW(N)
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For (3.11) and (3.12), the Hamiltonian function and the augmented cost function are obtained

as:
T

ox(k) Hyx(k) Hyy(k) Hyw(k) | |0x(k)
H’”(k>=% Su(k) | |Hux(k) Huu(k) Huw(k)| |Su(k)

ow (k) Hyx(k) Hyy(k) Hyy (k)| |ow(k)
(3.13)
+ 64T (k + 1) (fi(k)ox (k) + fu(k)ou(k) + fiu (K)w(k))

+ 6T (k + 1) (gx (k)Sx (k) + gy (k)ow (k)

+ 6T (k) (CO(k)ox (k) + CE(k)su(k) + C(k)ow(k)),

N-1
TR (k) = Z (H" (k) — 62T (k + D)ox(k +1) = AT (k + D)ow(k + 1))
k=0 3.14)
1 1
+ 02T (N)ixx (N)8x(N) + 58w (N)rng (N)ow (N),
where Su(k), 5A(k), and 5A(k) are the Lagrange multipliers. By applying the KKT conditions to

(3.14), one has
Hgs(k) =0, k=0,1,....N—1,
o0A(k) = Hg)f(k), k=0,1,....N—1,
0A(N) = lﬁxx(N)(Sx(N)’
(3.15)

oA(k) = Hgfv(k), k=0,1,....N—1,
5/1(N) = Yyw (N)OW(N),
ou(k) >0, k=0,1,....,N—1.

To facilitate the development of the ENE algorithm, several auxiliary variables S(k), W(k),

S(k),and W(k), k =1,2,---,N — 1, are introduced as

Zux(B)
S(K) = Zux (k) = | Zuu (k) €T (1) | K (K) ,
cL (k)
(3.16)
Zuw(K)
W(K) = Zuaw (k) = | 2y () €8T (1) | K (K) ,
Ci (k)

19



Zux (k)

b

S(K) = Zua (k) = | Zuu () €8T (k) | KO (0)

Cy (k)
(3.17)
_ Zuw (k)
WK) = Zunw(0) = | Zyu (k) €87 ()| K (K) ,
Gy (k)
where the terminal conditions for S(k), W(k), S(k), and W (k) are given by
S(N) = yxx(N), W(N) =0, S(N) =0, W(N) = gww(N), (3.18)

and

Zux (k) = Hyx (k) + £ (K)S(k + 1) fe (k) + £ ()W (k + 1)gx(k),

Zuu (k) = Hy (k) + £ (K)S(k + 1) fu (k),

Ziw (k) = Hung (k) + fif (K)S(k + 1) fig (k) + fil ()W (k + 1) gy (k),

Zux(k) = Hyx (k) + £ (K)S(k + 1) fo (k) + £ ()W (k + D) gy (k) + g (k) S(k + 1) fi (k)
+ 8L ()W (k + gy (k).

Zeu(k) = Hyu (k) + L (K)S(k + 1) fu (k) + g1 (K)S(k + 1) fiu (k)

Zuw (k) = Hw (k) + f{ (K)S(k + 1) fig (k) + f{ (F)W (k + 1) gy (k) + gy (K)S(k + 1) fis (k)
+ gy (K)W (k + 1) gw (),

Zyx (k) = Hyx (k) + £, (K)S(k + 1) fie (k) + fs ()W (k + Dgx (k) + gy, (K)S(k + 1) i (k)
+ g ()W (k + 1)gx (k)

Zyu(k) = Hyu (k) + f (K)S(k + 1) fi (k) + g3, (K)S(k + 1) fu (),

Zyow (k) = Hypw (k) + £, (K)S(k + 1) fin (k) + fi5, ()W (k + D gy (k) + gy, (k)S(k + 1) fig (k)

+ gL ()W (k + 1)g (k)
(3.19)
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and

- -1
Zuu (k) CT (k)
if k e K%,
ciky 0
K°(k)=14" (3.20)
Zak(k) 0 _ .
if ke K.
0 0

Theorem 1 (Extended Neighboring Extremal) Consider the optimization problem (3.11) and

the Hamiltonian function (3.13). If Z,, (k) > 0 for k € [0, N — 1], then the ENE policy

su(k) = K} (k)6x(k) + K3 (k)ow(k),

[ ] Zux(k)
Ki(k)=—|1 0| K°(k) :
- C4 (k) (3.21)
R Zuw (k)
K5(k)=—|1 0| K°(k) ,
- Cyy (k)

approximates the perturbed solution for the nonlinear optimal control problem (3.5) in the presence

of state perturbation 6x(k) and preview perturbation éw (k).

Proof 1 Using (3.13), (3.14), and the KKT conditions (3.15), one has

0 = Hyux (k)8x(k) + Hyu (k)51 (k) + Hyo (K)6w (k) + T (k) (k + 1) + C4T (k)ou(k),
(3.22)
SA(k) = Hyx (k)6x (k) + Hyy (K)Su(k) + Hyyo (K)Sw (k) + fI (k)6A(k +1) + gL (k)6A(k + 1)

+CT (k)sp(k),
(3.23)

SA(K) = Hyx (k)6x(k) + Hypy (K)Su(k) + Hypyy (k)W (k) + fI(K)SA(k + 1) + gL (k)sA(k + 1)

+ 8T (k)su(k),
(3.24)
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where SA(N) = Yy (N)ox(N) and SA(N) = Yy (N)w(N). Now, define the following general

relation:
0A(k) = S(k)ox(k) + W(k)ow(k) +T(k), (3.25)
SA(k) = S(k)Sx(k) + W(k)ow (k) + T (k). (3.26)
Using (3.15), (3.25), and (3.26), one has T(N) = 0 and T(N) = 0. Substituting the linearized
model (3.11) and (3.25) into (3.22) yields

Zux (K)6x (k) + Zu (K)Su (k) + Zyo (k)W (k) + COT (K)o (k) + fL ()T (k+1) =0.  (3.27)

Using the linearized safety constraints (3.11) and (3.27), one has

u (k) _ k() Zux (k) 5x(0)
Su(k) Cy (k)
Zuw (k)
— K°(k) sw(k) (3.28)
Cy (k)

- T
N ACH G

0

Now, substituting the model (3.11), (3.25) and (3.26) into (3.23) yields

SA(Kk) = Zux (k) 6x (k) + Zeu (k)01 (k) + Zyy (K)ow (k) + CLT (k)5 () + £ ()T (k + 1)

(3.29)
+ gl ()T (k +1).
Furthermore, substituting (3.28) into (3.29) yields
Zyx (k)
0A(k) = (Zxx(k) - [qu(k) C)‘C‘T(k)} K (k) )6x(k)

Cy (k)

+ (zxw(k) - [zxu(k) c;gT<k>} K°(k) )6w<k> (3.30)
Cy (k)

T ()T (k +1
+fxT(k)T(k+1)—[qu(k) Cgr(k)],(o(k) STk + 1)
0

] + gL ()T (k+1).
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From (3.16), (3.25) and (3.30), it can be concluded that

_ T ()T (k +1
T(k)=g§(k)T(k+1)+fxT(k)T(k+1)—[qu(k) cel (k)| KO (k) (T D . (33D
0

Now, substituting the model (3.11), (3.25) and (3.26) into (3.24) yields

SA(K) = Zyx (K)6x(K) + Zywia (K)6u (k) + Zygrw (K)Sw (k) + CET (k)8 (k)

(3.32)
+ fIOT(k+1) + gL ()T (k +1).
Furthermore, plugging (3.28) into (3.32) yields
_ Zux(k)
0A(k) = [ Zwx (k) — [Zwu(k) c:gT(k)] K (k) ox(k)
Cy (k)
Zuw (k)
+| Zuw (k) - [zwu(k) CfvT(k)] K (k) sw (k) (333)
Cy (k)
T ()T (k+1 _
+ AR OT (k+1) - [Zwu(k) C@T(k)] K (k) fu (DT + D + gL ()T (k +1).
0
Using (3.17), (3.26) and (3.33), one has
_ _ FL)T (k + 1)
T(k) = gh(OT(k+ 1) + FLOT(k +1) = | 2y (k) €87 (0| K (K) .
0
(3.34)

Based on (3.31), (3.34), and the fact that T(N) = 0, T(N) = 0, one can conclude that for k €
[1, N - 1], T(k) = 0, T(k) = 0. Thus, by using (3.28), the ENE policy (2.16) can be obtained. This
completes the proof. O
Remark 1 (Singularity) It is worth noting that the assumption of Z,,, being positive definite (i.e.,
Zuyu(k) > 0,k € [(), N — 1]) is essential for the ENE. Z,,,(k) > 0 is performed to calculate the
ENE such that it guarantees the convexity of (3.11). Considering Z,,,(k) > 0 and Assumption 2,

it is clear that K° (k) (3.20) is well defined. However, when the constraints involve only state and
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preview (i.e., Cd(k) = 0), or when 1% is greater than m (i.e., C{ (k) is not full row rank), the matrix
K is singular, leading to the failure of the proposed algorithm. This issue can be solved using the

constraint back-propagation algorithm presented in [15].

Remark 2 (Nominal Preview Model) Ifwe do not have any idea about the nominal preview model
(3.2) for the existing preview information in the real system, we can simply use w(k +1) = w(k) as
the nominal preview model for the nonlinear optimal control problem (3.5) and the ENE algorithm.
However, it is clear that we achieve the best performance using the ENE when the nominal preview
model describes the preview information perfectly.

Algorithm 1 summarizes the ENE procedure for adaptation the pre-computed nominal control
solution u? (k) to the small state perturbation dx (k) and the small preview perturbation w (k) such

that it achieves the optimal control as u* (k) = u® (k) + 6u(k) using Theorem 1.

Algorithm 1 Extended Neighboring Extremal.

Input: The functions f, g, C, ¢, and ¢, and the nominal trajectory x°(0 : N), u?(0 : N), and
w?(0: N).

1: Initialize the matrices A°(N), 1°(N), S(N), W(N), S(N), and W(N) using (3.9) and (3.18).

2: Calculate, in a backward run, the Lagrange multipliers u° (k), A°(k), and 1° (k) using (3.10).
3: Calculate, in a backward run, the matrices Z(k), the gains K ;‘ (k) and K;‘(k), and the matrices
S(k), W(k), S(k), and W (k) using (3.19), (3.21), (3.16), and (3.17), respectively.

4: Given x?(0), w?(0), 6x(0), and 6w(0), in a forward run, calculate du(k), u*(k), x(k + 1), and
w(k + 1) using (3.21) and (3.1).

3.3.3 Nominal Non-Optimal Solution and Large Perturbations

The ENE is derived under the assumption that a nominal optimal solution is available, and
the state and preview perturbations are small such that they do not change the activity status of
the constraints. In this subsection, we modify the ENE policy for a nominal non-optimal solution
and accordingly improve the algorithm to handle large state and preview perturbations which may
change the sets of inactive and active constraints.

For the nominal non-optimal sequences x°(k), u®(k), w°(k), u°(k), A°(k), and 2°(k),

we assume that they satisfy the constraints described in (3.5) and (3.8) but may not satisfy the
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optimality condition H,, (x°, u°, w®, u®,1°,2°) = 0. Under this circumstance, the cost function

(3.12) is modified as

T
N-1 N—1 6X(k) HXX(k) qu(k) wa(k) (5x(k)
JK;e(k) = 52fN(k) + Z Hg(k)(Su(k) = % Z ou(k) Hux(k)  Huu(k)  Hyuw (k)| | Su(k)

k=0 k=0
ow (k) Hyx (k) Hyu(k) Hypy (k)| |ow(k)

+ 508 (N (NSXN) + 50w (Vs (V) (V)

N-1
+ Z HE (k)su(k).
k=0
(3.35)
Considering the optimal control problem (3.11) and the cost function (3.35), the Hamiltonian

function is modified as

T
ox (k) Hyx(k) Hyy(k) Hyw(k)||0x(k)

H™ (k) = % Su(k) | |Hux(k) Huu(k)  Huw(K) | | Su(k)
ow(k)| |Hwx(k) Hwu(k) Hyw(k)||ow(k)
(3.36)
+ 627 (ke + 1) (fx (k)5x(k) + fu(k)ou(k) + fu (k)ow(k))
+ 67 (k + 1) (gx(k)dx(k) + gw (k)w(k))
+6ul (k) (CE(k)6x(k) + CE(k)Su(k) + C&(k)sw(k)) + HL (k)su(k).
Now, the following theorem is presented to modify the ENE policy for the nominal non-optimal
solutions to the nonlinear optimal control problem (3.5).
Theorem 2 (Modified Extended Neighboring Extremal) Consider the optimization problem (3.11),
the KKT conditions (3.15), and the Hamiltonian function (3.36). If Z,,,(k) > 0 for k € [0, N — 1],

then the ENE policy for a nominal non-optimal solution is modified as

T
su(k) = K} (k)ox(k) + K3 (k)ow (k) + K5 (k) fu OT(k +1) + Hy (k) |

0 (3.37)

K3(k)==|1 o] K°(k),

25



where the gain matrices K7, K5, and K° are defined in (3.20) and (3.21), and T (k) is a non-zero

variable defined in (3.42).

Proof 2 Using (3.15) and (3.36), (3.22) is modified as

Hy (k)ox(k) + Hyy, (k)ou(k) + Hyyy (k)ow (k) + fuT(k)cS/l(k +1)+ C,fT(k)d,u(k) + Hy, (k) =0.
(3.38)
Substituting the linearized model (3.11) and (3.25) into (3.38) yields

Zux (k)ox(k) + Zyy (k)ou(k) + Zyyw (k)ow (k) + CffT(k)(S,u(k) + fuT(k)T(k +1)+H,(k) =0.

(3.39)
Using the linearized safety constraints (3.11) and (3.39), one can obtain
ou(k Zux(k Zuw(k
ulk) =-K%(k) (k) ox(k) — K°(k) (k) ow (k)
Sp(k) C4 (k) Cyy (k)
(3.40)
(k)T (k +1 Hy (k
o [ROOTGD| G|
0 0
Substituting (3.40) into (3.29) yields
Zux(k)
sA(k) = (Zxx(k) - [qu(k) cf;T(k)] K (k) )6x(k)
Cy (k)
Zyw (k)
+ (wa(k) - [qu(k) C,?T(k)] K (k) )6w(k)
Gy (k)
i} 3.41)

’ ] T ()T (k +1
ST OT U+ 1) = |zt ca | k2010 |7 T

0

-Hu(k)

+ 84 (T (k+1) = | Zyy (k) €87 (k) | K ()

0
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From (3.16), (3.25), and (3.41), it follows that

r T (k)T (k + 1) + Hy (k
T(k) = g (T (k+ 1)+ fL(OT(k+ 1) = | 2 (1) €7 ()| K (K) Ju O D+ i)

0
(3.42)
Now, plugging (3.40) into (3.32) yields
- Zyx (k)
6A(k) = (wa(k) - [Zwu(k) C@T(k)] K (k) )6x(k)
Cx (k)
Zyw (k)
+ (wa(k) - [Zwu(k) cgvT(k)} K (k) )6w(k)
Gy (k)
(3.43)

—fuT ()T (k +1)

+ AT+ 1) = | Zyu (k) €T (k) | K (k)
- : 0

—Hu(k)

+ 80 (T (k + 1) = | Zyyu (k) €27 (k) | K (k)

0
Using (3.17), (3.26), and (3.43), one has _
St ()T (k +1) + Hy (k)

T(k) = gl (T (k + 1)+ £ (0T (k + 1) = | 2, (k) €8T ()| KO (6)
0

(3.44)

Based on (3.40), (3.42) and (3.44), the modified ENE policy (3.37) is obtained. This completes the
proof. O

Now, using (3.40), the relation between the state and preview perturbations and the Lagrange

multiplier perturbation is expressed as:

Su(k) = K (k)ox(k) + KZ(k)ow(k),

[ ] Zux(k)
Ky(k)=—|0 1|K°(k) ,
- C4%(k) (3.45)
[ ] Zuw(k)
K5(k)=—10 1|K°(k) :
- Cih (k)
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Moreover, using (3.37), the constraint perturbation is represented as

O0C (k) = Cy(k)ox(k) + Cy(k)ou(k) + Cy (k)ow(k)
= (Cx(k) + Cu(k)K7 (5))x (k) + (Cy (k) + Cu (k) K3 (k))ow (k) (3.46)
+ Cu( K5 () (L (T (k + 1) + Hy (k).

The perturbed Lagrange multiplier and the perturbed constraint are given by
u(k) = u (k) +su(k), (3.47)

C(k) =C%(k)+06C(k). (3.48)

Different activity statuses of the constraints may occur due to large perturbations. To address
this issue, we consider a line that connects the nominal variables x°(0) and w?(0) to the perturbed
variables x(0) and w(0). For the connecting line, we identify several intermediate points such that
the status of the constraint remains the same between two consecutive points. Since we respectively
have p(k) = 0 and C(k) = O for the inactive and active constraints, we use (3.47) for the active
constraints to find the intermediate points which make the constraints inactive. Specifically, for the
active constraints, an a (k) (0 < a(k) < 1) is computed to have u? (k) +a(k)du(k) = 0. Moreover,
we employ (3.48) for the inactive constraints to find the intermediate points which make the
constraints active. For the inactive constraints, the a (k) is computed to have C? (k) +a(k)6C (k) =

0. Thus, for k € [0, N — 1], the intermediate points are achieved using the following equation:

plk) .
~ a0 if kK eK?,
(k) = (3.49)
Ccok) . ]
) if keK'.

The smallest a (k) is found such that the obtained perturbation changes the activity statuses of
the constraints at least at one time step k.
Algorithm 2 summarizes the modified ENE procedure for adaptation the pre-computed nominal

non-optimal control solution to the large state and preview perturbations such that it achieves
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the optimal control as u*(k) = u®(k) + Su(k) using Theorem 2. The algorithm identifies the

intermediate points and determines the modified ENE adaptation policy.

Algorithm 2 Modified Extended Neighboring Extremal.

Input: The functions f, g, C, ¢, and ¢, and the nominal trajectory x°(0 : N), u’(0 : N), and
w?(0: N).

1: Set j =0.

2: Initialize the matrices 1°(N), 1°(N), S(N), W(N), S(N), and W(N) using (3.9) and (3.18).

3: Calculate, in a backward run, the Lagrange multipliers u°(k), 1°(k), and A° (k) using (3.10).
4: Calculate, in a backward run, the matrices Z(k), the gains K| (k), K3 (k), K5 (k), K} (k), and
K;‘(k), and the matrices S(k), W(k), T(k), S(k), W(k), and T (k) using (3.19), (3.37), (3.45),
(3.16), (3.17), (3.42), and (3.44), respectively.

5: Given initial state variation 6x(0) and initial preview variation §w(0), in a forward run, calculate
ou(k),0C(k), a(k), ox(k+1),and ow(k+1) using (3.45), (3.46), (3.49), (3.37), and the variations
of the system (3.11), respectively.

6: Set, in a forward run, a(k) = 1 if a(k) < O or @(k) > 1. Then, find A = min(a(k)). If 1 =0,
change the activity status of the constraint for the corresponding time step £ and go to Step 2.

7: Given x°(0), w?(0), 26x(0), and 26w(0), in a forward run, calculate su(k), u(k), ox(k + 1),
ow(k+1),x(k+1),and w(k + 1) using (3.37) and the variations of the system (3.11).

8: If0 <A < 1, setx?(0) = x2(0) + adx(0), w?(0) = w?(0) + adw(0), 6x(0) = (1 — a)dx(0),
ow(0) = (1 —a)ow(0), and j = j + 1. Then, go to Step 2.

9: If A = 1, in a forward run, calculate u* (k) = u®(k) + Zj ouj(k), x(k+1), and w(k + 1) using
(3.37) and (3.1).

Remark 3 (Designing Parameters) Considering suitable nominal models, the main design pa-
rameters of the proposed approach come from the original optimization problem (3.5), which are
the prediction number N and the designing weights in the stage cost ¢(x,u,w) and the terminal
costy(x,w). The prediction number N must be high enough so that the obtained optimal controller
stabilizes the system; however, higher N causes higher computational cost to solve the optimization
problem. Moreover, the designing weights in the costs must be selected such that both minimum

tracking error and minimum control input are achieved.

Remark 4 (Implementation) The proposed ENE framework is easy to implement and light in
computation. Specifically, given a nominal initial state x°(0), a nominal preview w°(0 : N), a

control objective function to minimize, system and control constraints, a nominal optimal state
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and control trajectory (x°, u?®) will be computed using an optimal control strategy. Note that this
nominal solution can be computed offline and stored online, can be performed on a remote powerful
controller (e..g, cloud), or computed ahead of time by utilizing the idling time of the processor.
In the same time, the ENE adaptation gains Kik(k), K;(k), k=0,1,--- ,N—11in(3.21) can also
be computed along with the nominal control law. During the online implementation, the actual
initial state x(0) and the actual preview w are likely different from the nominal values used for the
optimal control computations. Instead of recomputing the optimal control sequence, the control
correction (3.21) is computed, where 6x(k) = x(k) — x° (k) and 6w (k) = w(k) — w°(k) denote
the state perturbation and the preview perturbation, respectively. Then, the final control is used as
u*(k) = u®(k) + 6u(k), and this implementation is easily extended for the modified ENE. As seen
from the steps discussed above, the proposed approach is easy to implement and involves negligible

online computational cost.

Remark 5 (Nonlinear Model Predictive Control) One can employ the nonlinear optimal control
problem (3.5) as the open-loop nonlinear model predictive control (NMPC) or the closed-loop
NMPC. For the open-loop version, providing the N-length nominal trajectory from the NMPC, the
ENE algorithm approximates the NMPC policy such that it calculates two time-varying N-length
feedback gains on the state and preview perturbations. Although the feedback gains are pre-
computed, the ENE is able to take feedback from the real system for the N predictions in contrast
to the open-loop NMPC. On the other hand, for the colsed-loop NMPC, we save the ENE solution
but we only apply the first control input to the plant at each time step. Taking the feedback from
the real system, the ENE solution from the previous step is considered as the nominal non-optimal
solution, and the ENE algorithm is applied again to adapt the recent solution for the current time

step.

Remark 6 (Comparison) In comparison with the existing NE frameworks [43, 42, 44, 45], we
extend the regular NE approaches that only consider state deviations to a general setting that both

state and preview deviations are considered. This is a significant extension as many modern control
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applications are employing preview information due to the increased availability of connectivity
[39, 40, 41]. The necessity of adapting to preview perturbations is also demonstrated in our
simulation studies, where we show that the proposed ENE can significantly outperform the regular

NE when the preview information has certain variations.

Figure 3.2: Cart-Inverted Pendulum.

3.4 Simulation Results
In this part, we demonstrate the performance of the proposed ENE framework for both small
and large perturbations via a simulation example. The simulation example is adopted from the

cart-inverted pendulum (see Fig. 3.2) whose system dynamics is described by:

. F—Kyz—m(L6?%sin(6) — g sin(d) cos()) — 2w,
Z = s

M+m sin2(9) (350)
i 7cos(0) + gsin(0)  wy
B L mL2’

where z and 6 denote the position of the cart and the pendulum angle. m = 1kg, M = 5kg, and
L = 2m represent the mass of the pendulum, the mass of the cart, and the length of the pendulum,
respectively. g = 9.81m/s? and K, = 10Ns/m are respectively the gravity acceleration and the
damping parameter. The variable force F controls the system under a friction force w, and a

friction torque wg. T = 0.1s is considered as the sampling time for discretization of the model
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(3.50), and we assume that we have certain preview of w, and wg. The states, the outputs, the

preview information, and the control input constraint are respectively expressed as
. 1T
x = [x1,x0,x3,x4]" = [2,2.0,6]",

y = [x1,x:3]7 = [z, 617,
w = [WI’W27W3’ W4]T = [O, Wz, O, WQ]T,
-300 < F < 300.

The following values are used for the simulation: N = 35, x°(0) = [0,0, -, O]T, w?(0) =
[0,0.1,0,0.1]7. Moreover, the nominal preview model is represented as w® (k+1) = —0.008x? (k)—
0.1w° (k). For the small perturbation setting, the initial state perturbation and the actual friction
profile are set as 6x(0) = [0.01,0.01,0.01,0.01]7 and w(k) = 0.004 sin(k)+0.004rand (k)+0.002,
respectively. For the large perturbation setting, the initial state perturbation and the actual friction
profile are chosen as 6x(0) = [0.2,0.2,0.2,0.2]7 and w(k) = 0.015 sin(k) +0.015rand(k) +0.01,
respectively.

Figs. 3.3-3.5 show the control performance of the open-loop NMPC, the standard NE, the ENE,
and the closed-loop NMPC subject to the small perturbations. For the open-loop NMPC, under
the nominal initial state x°(0) and preview w°(0), we obtain the N-length open-loop trajectory
(x?,u’,w?) and apply the open-loop control u® to the system as shown in Fig. 3.3. It is
worth noting that the state and preview information are updated during the optimization problem
based on the considered nominal model (3.50) and the nominal preview model w?(k + 1) =
—0.008x° (k) — 0.1w?(k), respectively. However, since it is the open-loop version of the NMPC,
the controller does not take the feedback from the real states and preview, makes the least control
force, and leads to degraded performance due to the state and preview deviations as shown in Fig.
3.4. The NE is capable of taking the state feedback from the real system and adjusting the nominal
optimal control, the open-loop control trajectory obtained by the NMPC, for the state perturbations.

From Fig. 3.4, one can see that the NE does show an improved performance as compared to the
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open-loop NMPC but it falls short against the ENE since it only handles the state perturbations
without adapting to the preview perturbations. In comparison with the open-loop NMPC and the
NE, the proposed ENE takes the state and preview feedback from the real system and achieves better
performance, where it promptly stabilizes the system with the minimum cost in the presence of state
and preview perturbations as shown in Fig. 3.5. Although we employ the ENE for the open-loop
NMPC, due to the feedback from the real system, the ENE shows a similar control performance
as the closed-loop NMPC for this case as shown in Figs. 3.4 and 3.5. However, the closed-loop

NMPC has high computational cost since it solves the optimization problem (3.5) at each step.

300 ——=— . : _
% ‘ - NE
i 1 - -—.ENE
200 | ";‘ i < Open-Loop NMPC
i AN Closed-Loop NMPC
il T
i f' \'._\‘\
00F ¢ A S
! AN
[ il iy
— | i A
< o I 3y Al SN N
i, i X S A g o
£9 I ! A1 N
L i
100 [ :
it ]
|E 1
It |
-200 [ i
i 1
i i
i i
-300 r L L I L L
5 10 15 20 25 30 35
T [s]

Figure 3.3: Control Input for Small Perturbation.

Figs. 3.6 and 3.7 illustrate the control performance of the open-loop NMPC, the NE, the ENE,
the modified NE, the modified ENE, and the closed-loop NMPC subject to large perturbations.
As shown in Fig. 3.6, one can see that the considered large perturbations change the activity
status of the input constraint, and it causes that the NE and the ENE violates the constraint due
to the absence of the intermediate points between the nominal initial state and preview and the
perturbed ones. However, the modified NE and the modified ENE satisfies the constraint, and

the modified ENE indicates a similar performance as the closed-loop NMPC as shown in Fig.

33



©

@ [rad]

L ceee Reference

B e N ittt NE
e |-~ - ENE

< Qpen-Loop NMPC
Closed-Loop NMPC

5 10 15 20 25 30 35

Figure 3.4: System Outputs for Small Perturbation.

2571

0.5

«10°

B -===NE

- --.ENE

e Qpen-Loop NMPC
Closed-Loop NMPC

Figure 3.5: Cost for Small Perturbation.

3.7. Moreover, to see the role of the nominal preview model on the proposed control scheme,
Figs. 3.8 and 3.9 compare the results of the ENE and the modified ENE for two nominal preview
models w?(k + 1) = w?(k) and w?(k + 1) = —0.008x° (k) — 0.1w°(k) with the actual friction
profile w(k) = 0.008 sin(k) + 0.008rand(k) + 0.004. One can see that the activity status of the

constraint is changed under the considered perturbation; however, it is not high enough to cause
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the constraint violation for the ENE. Furthermore, it can be seen that both the modified ENE and
the ENE accomplish better control performance when the preview model w?(k + 1) = w?(k) is
applied. Providing a suitable nominal preview model leads to well control performance by the
proposed ENE and modified ENE.

Table I compares the performances (i.e. ||y — r||) and the computational times of the proposed
controllers for the small perturbation. Based on the formulations, it is obvious that the ENE and
the modified ENE (MENE) show the same performance and computational time for the small
perturbations. We also have same result for the NE and the modified NE (MNE) for the small
perturbations. Table II compares the performances and the computational times of the proposed
controllers for the large perturbations. In Tables I and II, the closed-loop NMPC (CLNMPC) and
the open-loop NMPC (OLNMPC) show the best and the worst performance, respectively; however,
considering both performance and computational time, the modified ENE presents the best results.

The simulation setup is widely applicable as in many modern applications, a nominal preview
model is available while the actual corresponding signal can also be measured or estimated online.
For example, a wind energy forecast model is obtained using a deep federated learning approach
[35], which can be served as a nominal preview model, and the wind disturbance can also be
measured using light detection and ranging systems in real time [41]. For the considered cart-
inverted pendulum simulations, the nominal preview information is obtained using a nominal
model, i.e. w?(k + 1) = —0.008x°(k) — 0.1w?(k); however, for each time step k, we generate
the real preview information as w(k) = 0.004 sin(k) + 0.004rand(k) + 0.002, which leads to a
perturbation from the nominal one. Providing a nominal solution based on the nominal state and
preview, the proposed ENE framework adapts the nominal control to the perturbations generated
by the measured/estimated real state and preview information. Furthermore, to simulate the
large perturbation case, we follow the same process but change the real preview information as
w(k) = 0.015sin(k) + 0.015rand(k) + 0.01 for Figs. 3.6 and 3.7 and w(k) = 0.008 sin(k) +
0.008rand(k) + 0.004 for Figs. 3.8 and 3.9.
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3.5 Chapter Summary

36

The ENE algorithm was developed to adapt a nominal trajectory to the state and preview
perturbations, and a multi-segment strategy was employed to handle the large perturbations. Sim-
ulations demonstrated the ENE’s technological advances over the NE and the NMPC, and the

nominal preview model is crucial to the effectiveness of the ENE. The proposed ENE framework is
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Figure 3.9: System Outputs for Different Nominal Preview Models.

applicable to general optimal control problem setting as there is no assumption on the under/over-
actuation of the system. If a regular optimal control implementation can yield good performance,
the ENE is expected to yield comparable performance with less computation complexity, where

the computational load of the ENE grows linearly for the optimization horizon.
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Table 3.1: Comparison of Controllers for Small Perturbations.

Control Performance | Time (per loop)
CLNMPC 5.5735 5.7179 ms
MENE 5.6429 0.0659 ms
ENE 5.6429 0.0659 ms
MNE 5.9846 0.0658 ms
NE 5.9846 0.0658 ms
OLNMPC 19.2123 0.1770 ms

Table 3.2: Comparison of Controllers for Large Perturbations.

Control Performance | Time (per loop)
CLNMPC 6.1609 5.7179 ms
MENE 6.2704 0.1225 ms
ENE 6.6838 0.0659 ms
MNE 6.7045 0.1224 ms
NE 7.4038 0.0658 ms
OLNMPC 41.8378 0.1770 ms
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CHAPTER 4

DATA-ENABLED NEIGHBORING EXTREMAL CONTROL

In this chapter, we study the problem of data-driven optimal trajectory tracking for the nonlinear
systems with a non-parametric model. Given an initial I/O trajectory and a desired reference
trajectory, the data-enabled predictive control (DeePC) provides an optimal control sequence using
a data matrix on raw I/O data; however, this approach has shown high computational cost due to
the dimension of the decision variable. We propose a data-enabled neighboring extremal (DeeNE)
to approximate the DeePC policy and reduce its computational cost for the constrained nonlinear
systems. The DeeNE adapts a pre-computed nominal DeePC solution to the perturbations of
the initial I/O trajectory and the reference trajectory from the nominal ones. Simulation-based
analysis is used to gain insights into the effects of the DeeNE, and experimental results validate
that these insights carry over to the real-world systems. The results are demonstrated with a video

of successful trajectory tracking of KINOVA Gen3 (7-DoF Arm Robot). !

4.1 Background

Optimization-based control strategies typically rely on accurate parametric representations of
real systems, but this can be challenging for complex systems. Therefore, data-driven optimal
controllers have become increasingly attractive to both academics and industry practitioners [20].
There are two paradigms of the data-driven optimal control: i) indirect data-driven optimal control
first identifies a model using the I/O data and then conducts control design based on the identified
model [10], and ii) direct data-driven optimal control circumvents the step of system identification
and obtains control policy directly from the I/O data [23]. The direct data-driven optimal control

may have higher flexibility and better performance compared to the indirect one [24].

IThe material of this chapter is from “Computationally Efficient Data-Enabled Predictive Con-
trol for Arm Robots,” 2024 [47] and “Data-Enabled Neighboring Extremal Optimal Control: A
Computationally Efficient DeePC,” IEEE 62nd Conference on Decision and Control (CDC), 2023
[48].
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Recently, a result in the context of behavioral system theory [25], known as Fundamental
Lemma [26], has received renewed attention in the direct data-driven optimal control. In the spirit
of the Fundamental Lemma, a direct data-driven optimal control, called data-enabled predictive
control (DeePC) [27], makes a transition from model-based optimal control strategies (e.g. model
predictive control (MPC)) to a data-driven one. When perfect (noiseless and uncorrupted) I/0 data
is accessible, the DeePC can accurately predict the future behaviors of the LTI systems thanks to the
Fundamental Lemma. In this case, the DeePC has equivalent closed-loop behavior to conventional
MPC with a model and perfect state estimation [27]. However, in practice, perfect data is in
general not accessible to the controller due to measurement and process noises, which leads to
inaccurate estimations and predictions and may degrade the quality of the obtained optimal control
sequence. Moreover, the Fundamental Lemma has been proposed for the LTI systems and is not
perfect to learn the behaviors of the nonlinear systems. Therefore, the DeePC is robustified through
suitable regularizations to ensure good performance under noisy data and nonlinearities [49, 50].
Furthermore, it has been shown that a quadratic regularization is essential for stability [23].

Although the DeePC plays an inevitable role in optimal control strategies, it is computationally
expensive because of the dimension of the decision variable and solving an online optimization
problem at each time step. Several approaches have been proposed to optimize a lower dimension
decision variable and reduce the computational cost of the DeePC for the LTI systems. Subspace
predictive control (SPC) [51, 30] identifies a reduced model for the linear DeePC using the singular
value decomposition of the raw data; however, it is not a pure data-driven controller due to the
identification part. Null-space predictive control (NPC) [28] introduces a lower dimension decision
variable to reduce the computational cost of the DeePC, but it only works for the unconstrained
linear DeePC. Minimum-dimension DeePC [5] uses the singular value decomposition to make
more efficient numerical computation for the constrained linear DeePC. However, for the nonlinear
systems, the computational cost of the DeePC is still a challenging problem and needs to be solved.

It is worth noting that for the SPC and the minimum-dimension DeePC, the choice of the number
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of the singular values to retain/cut is very critical and often not automatized.

In this chapter, we develop a data-enabled NE (DeeNE) framework for the nonlinear DeePC
problem with initial I/O and reference perturbations. Moreover, we treat the DeeNE problem
when nominal non-optimal solutions are present, and a modified control policy is developed to
guarantee the control performance. Promising results are demonstrated by applying the developed
controller to the cart inverted pendulum and the arm robot. The outline of this chapter is as
follows. The problem formulation and the preliminaries of the DeePC are provided in Section II.
Section III presents the proposed data-enabled neighboring extremal for the unknown nonlinear
systems. Section IV presents the simulation results and experimental verifications. Finally, the

conclusions are provided in Section V.

4.2 Problem Formulation
Consider a discrete-time nonlinear system in the following form:
x(k+1) = f(x(k),u(k)),

y(k) = h(x(k),u(k)),

where k € N* denotes the time step, x € R” represents the state vector of the system, u € R™ is

4.1)

the control input, and y € R? denotes the outputs of the system. Moreover, f : R” x R — R is
the system dynamics with f(0,0) =0, and & : R" x R — RP represents the output dynamics.

Consider a safety constraint as
C(y(k),u(k)) <0, (4.2)

where C : R? x R™ — R!.
Definition 3 (Closed-Loop Performance) Consider the nonlinear system (4.1) and a tracking
control problem with the desired trajectory r(k). Starting from an initial state x, the closed-loop

system performance over N steps is characterized by the following cost term:

N-1

INGW = )" g(y(k), u(k)), (4.3)
k=0
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whereu = [u(0), u(1), ---, u(N—=1)],y = [y(0), y(1), ---, y(N = 1)], and ¢(y, u) is the stage

cost.

The model-based optimal control aims at optimizing the system performance over N future

steps for the real system (4.1), which is reduced to the following constrained optimization problem:
(y*,u") = argmin Jy(y, u)
y.u

sit. x(k+1)=f(x(k),u(k))
y(k) = h(x(k),u(k))

C(y(k),u(k)) <0.

4.4)

The key ingredient for the optimal control (4.4) is an accurate parametric model of the system,
but obtaining such a model, using plant modeling or identification procedures, is often the most

time consuming and expensive part of control design.

4.2.1 Non-Parametric Representation of Unknown Systems

Inspired by Fundamental Lemma [26], the system model (4.1) is replaced by an algebraic
constraint that enables us to predict the length-N future input-output (I/O) trajectory for a given
length-T;,; past (I/O) trajectory.

The Hankel matrices H(u4 ) and H( yd ) are built from the offline collected I/O samples u? and
d

y¢ as:
U up “tt UT-T,i—N+1
up u3 Ct UT-T; —N+2
H(u!) = ini : (4.5)
| UT;pi+N UT;i+N+1 " ur
where H(u4) € R™Tini+N)XL peeds to have full row rank to satisfy the persistency of excitation

requirement, and the number of its columns is denoted as L = T — T;,,; — N + 1. The Hankel matrix

of outputs H(yd) e RPTinitN)XL ig built in an analogous way from the collected samples yd.
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Then, the Hankel matrices are partitioned in Past and Future subblocks as

U Y
Pl mwd, 7] =G, (4.6)

Ur Yrp
where Up € R™ini*L U e RMVXL yp € RPTini*¥L and Y € RPNXL,

Lemma 2 (Fundamental Lemma [26]) Consider a controllable linear time-invariant (LTI) sys-
tem, there is a unique g € RL such that any length-T;,; + N trajectory of the system satisfies the

following linear equation under a full row rank H(ud) as

Up Uini
Yp Vini
8= , “4.7)
Ur u
_YF_ L y .

where Up, Yp, Ur, and Y are fixed data matrices obtained from the offline collected I/0 data,
(Uini»> Yini) is a given length-T;y; initial trajectory, and (u, y) is a length-N future trajectory which is

predicted online. O

4.2.2 Data-Enabled Predictive Control
For a given initial trajectory (u;y;, Yini) collected from the real system (4.1), one can replace

the optimization problem (4.4) with data-enabled predictive control (DeePC) as [27, 36]

(y,u',oy",00",g") = argmin Jy(y,u, oy, ou, 8)

y,ll,O'y,(Tu,g
Up Uini Oy
Y i o
PPN Rl PO R D (4.8)
Ur u 0
Yr y 0
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where o, € R™ini is an auxiliary slack variable to cover process noises, oy € RPTini is an
auxiliary slack variable to cover measurement noises and nonlinearities, and Jy (y, u, oy, ou, 8) is
the modified cost function for data-driven controllers with noisy data and nonlinearities.

Now, using y = Ypg, u = Upg, oy = Ypg — yini» and oy, = Upg — u;p; as free optimization
variables, one can rewrite (4.8) as

g* =argmin Jy(Yrg Urg,Ypg — Yini. Upg — ini, 8)
8 4.9)

s.t. C(Ypg,Upg) <0.

If the constraint C(y,u) was absent in (4.8), the problem is referred to the unconstrained
DeePC, and the solution is available in closed form with reduced computational burden. For this
case, one has u = Upg = K(;r + Kél”iw,-ni as the DeePC policy, where KZ, e R™VXPN and Kél”i €
RMNX(m+P)Tini are control gains, r is the desired reference trajectory, and wi,; = [ugﬂ,, ygu,]T
is the given initial trajectory. However, the constrained DeePC (4.8) requires an iterative solver;

therefore, the DeePC may suffer from high computational cost since the dimension of the decision

variable g depends on the length of the collected data 7" in the Hankel matrix.

4.3 Main Result

In this section, given a nominal solution (g, u’, y?), we propose a data-enabled neighboring
extremal (DeeNE) to approximate the DeePC policy in the presence of initial (I/O) and reference
trajectories perturbations. We assume that the initial I/O and reference trajectories perturbations
are small enough such that they do not change the activity status of the constraint. The resulting
equation helps us to reduce the time and effort in computing the data-driven optimal control for the

system (4.1).

4.3.1 Nominal Lagrange Multipliers

Considering (4.9), the augmented cost function are defined as:

INWinis 875 1) = INWinis & 7) + 1 C4(wini, 8). (4.10)
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where C?(w;p;, g) represents the active constraints, and u is the Lagrange multiplier associated
with the active constraints.
Let (w{ ., g% r?) represents the nominal solution for the DeePC (4.8). The nominal solution

satisfies the following KKT conditions for the augmented cost function (4.10) as:

jg(Wini’g,r’/J) =0,
(4.11)
u =0,
where J indicates VJy /Vg.
Assumption 3 (Active Constraints) Cg (Wini» &) is full row rank.

Now, substituting the nominal solution (w?m., g%, r?) into the above KKT condition, one can

calculate the Lagrange multiplier i online. From (4.11), it follows that
Jg(w? .. g%, 1r%) + ,uTCS (w?,»8%) =0. (4.12)
Using the above equation, the Lagrange multiplier can be obtained online as:
— apaT\~ ~a T
u=—(coceTy ca)l. (4.13)

Note that Assumption 3 guarantees that Cg,’ C;’T is invertible. Moreover, it is worth noting that
p = 0 if the constraint C (Wiom" g?) is not active. The Lagrange multiplier (4.13) is considered as

the nominal optimal Lagrange multiplier u°.

4.3.2 Data-Enabled Neighboring Extremal

For this part, we consider the nominal solution (g, u°, y°) as an optimal solution obtained
by the DeePC. To adapt to initial I/O and reference perturbations from the nominal values, the
DeeNE seeks to minimize the second-order variation of (4.10) subject to linearized constraints.
More specifically, the DeeNE algorithm solves the following optimization problem with the given

information dw;,; and or as:

6g" = argmin Jy/
o8 (4.14)
s.t. Cgég =0,
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where

T
| Wini | N\ Iwipwini Iwinig  Iwinir | |OWini
2% - - -

For (4.14), the augmented cost function are obtained as:

T
Wini | Iwipiwini  Iwinig  Iwipir | |OWini
_ 1 _ ) _ T
IN =3 og Towii  Jeg  Jgr || 0g |*+om Cgdg,
51‘ jrwlnl J_y’g jrr (5}”

where du is the Lagrange multiplier.

By applying the KKT conditions to (4.16), one has
Jre =,
ou = 0.

where J gg indicates VJf /Vég.

(4.15)

(4.16)

(4.17)

Considering the DeePC (4.8), we have anominal solution (g, u?, y?) for an initial I/O trajectory

(u;.)m., yl.om.) and reference trajectory r°. For a new initial I/O trajectory (u;p;, yini) and reference

trajectory r, the optimal solution is approximated by u* = u® + Su using the DeeNE adaptation.

The objective is now to develop a DeeNE framework for the data-driven optimal trajectory tracking

problem. The following theorem presents the proposed DeeNE to approximate the DeepC policy

in the presence of initial I/O and reference perturbations.

Theorem 3 (Data-Enabled Neighboring Extremal) Consider the optimization problem (4.14),

the augmented cost function (4.16), and the KKT conditions (4.17). If jgg > 0, then the DeeNE
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policy
6g = K| owin; + K567,

Ki=-|r o|k° Tawini
1 - ’
- 0
o
Ky=—|r o|k° "],
- 0
1
7 T
KO - Jeg Cg
cé 0

(4.18)

approximates the perturbed solution for the DeePC (4.8) in the presence of initial I/O perturbation

Owini and reference perturbation or.

Proof 3 Using (4.16) and the KKT conditions (4.17), one has

Now, using (4.19) and the linearized safety constraints (4.14), one has

Jeo CT||Sg Tows - J,
o == " Swini = || 67
Cg 0 ||ou 0 0
which yields
0g Jow:: J,
- _K° 8Wini SWini — KO 8r Sr.
ou 0 0

Thus, the DeeNE policy (4.18) is obtained, and the proofis completed.

(4.19)

(4.20)

(4.21)

|

Remark 7 (Singularity) It is worth noting that the assumption of J ¢g being positive definite (i.e.,

fgg > 0) is essential for the DeeNE. fgg > 0 is performed to calculate the DeeNE such that it

guarantees the convexity of (4.14). Considering J. og > 0 and Assumption 3, it is clear that K° in

(4.18) is well defined. If Cg is not full row rank, the matrix K° is singular, leading to the failure of

the proposed algorithm. This issue can be solved using the constraint back-propagation algorithm

presented in [15].
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Remark 8 (Control Input) Using the control policy (4.18), one can obtain g* = g° + dg, then

u* = u® +6u is obtained using u = Upg. Therefore, one can conclude that 6u = K’ ,61 + K 5wjp;.

4.3.3 Nominal Non-Optimal Solution

The DeeNE is derived under the assumption that a nominal DeePC solution is available. In this
subsection, we modify the DeeNE policy for a nominal non-optimal solution so that we can use the
DeeNE solution as the nominal solution during the control process. For the nominal non-optimal
sequences (w? ., g%, r?), we assume that they satisfy the constraints described in (4.8) but may not
satisfy the optimality condition Jg (w? 82,1, 1) = 0. Under this circumstance, the cost function

(4.15) is modified as:

T
Wini | [Iwipiwini  Iwinig  Iwipir | |OWini
L 1 i}
_ 2 To _ - . - T
JN =67 N+ Ty 0g = 5| de Towii  Jeg  Jgr 5g | +Jg08. (4.22)
or erim' J_rg Jrr or

Considering the optimal control problem (4.14) and the cost function (4.22), the augmented

cost function is modified as:

T
Wini | |Iwiniwini  Iwinig  Iwipir | [OWini
- 1 - - - T T
]K,e =5 Sg Tow, Jeg Jor 5g |+Jg08+du C§6g. (4.23)
5?’ J_rwli’ll J_rg J_rr 5}’

Now, the following theorem is presented to modify the DeeNE policy for the nominal non-
optimal solutions to the data-driven nonlinear optimal control problem.
Theorem 4 (Modified Data-Enabled Neighboring Extremal) Consider the optimization prob-
lem (4.14), the KKT conditions (4.17), and the augmented cost function (4.23). If J, ¢g > 0, then the

DeeNE policy is modified for a nominal non-optimal solution as:

| J
8¢ = Kiowin + Kior + K5 | 78|,
0

(4.24)

K;‘z—[l o]KO,
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where the gain matrices K7, K3, and K° are defined in (4.18).

Proof 4 Using the KKT conditions (4.17) and the modified augmented cost function (4.23), one

has

Now, using (4.25) and the linearized safety constraints (4.14), one has

Joo CT||5g Torw: - J, J.
88 g _ _ |"8Yini SWini — 8r 57 — 8 , (4.26)
Cg 0 ||ou 0 0 0
which yields
S Tow: - J, J,
8| = _go |78 | s _ ko |78 6~ k0 |7¢] 4.27)
ou 0 0 0
Thus, the modified DeeNE policy (4.24) is obtained, and the proof is completed. |

Remark 9 (Quadratic Cost) One can consider a quadratic cost function Jy(y,w, oy, ou, 8) as:

IN(Y. W, 0y, o 8) = ly = rllg + lulf + Aylloyll3 + dullowll3 + A ligll3, (4.28)

where the positive semi-definite matrix Q € RPNXPN and the positive definite matrix R € R™MNxmN
are weighting matrices, and the positive parameters Ay, Ay, Ag € R are regularization weights. For
the quadratic cost function (4.28), the DeePC is a quadratic program (QP) problem on the decision
variable g, which requires an iterative solver, i.e. an online QP solver such as gpOASES [52]. To

use the DeeNE, we have

Jg =2((Ypg =) QYp + (Upg)  RUF + Ay (Ypg = yini) Yp + Au(Upg — i) Up + Agg"),
Jeg = 20YLQYE + ULRUE + A, YEYp + 4, UL Up + Ay),
Towipi = =2 Y5 + 2,UD),

J_gr = —ZYIY;Q,
(4.29)

where one can see that J. ¢g > 0.
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Remark 10 (Robustness) The DeePC (4.8), the DeeNE (4.18), and the modified DeeNE (4.24)
show that even though an accurate prediction of the future behavior is unattainable in practice
due to the noisy I/0 data and the nonlinearities, the obtained optimal control sequence provides

performance guarantees for the actually realized 1/0 cost.

Algorithm 1 summarizes the modified DeeNE procedure for adaptation the pre-computed
nominal control solution #° to the small initial I/O trajectory perturbation dw;,; and reference
trajectory perturbation §r such that it achieves the optimal control as u™ = u® + du using Theorem
4. One knows that at the first step, we have the nominal optimal solution from the DeePC as
the input of the algorithm; thus, Theorem 1 and Theorem 2 represent same control policy since
J g(wl‘.’m., g%,r?%, u?) = 0 for nominal optimal solution. However, we use Theorem 4 for all time
steps since we use the DeeNE solution as the nominal solution for the future time steps. Moreover,
it is worth noting that choosing s > 0 reduces the computational cost, and in some cases may

improve the control performance [27, 53].

Algorithm 3 Data-Enabled Neighboring Extremal.

Input: The data matrices Up, Yp, Up, and YF; the function C; the weighting matrices Q and R;
the regularization weights 1y, 4, and Ag; the nominal initial I/O w? . and reference r? trajectories;
and the nominal optimal solution (g%, u®, y°) from the DeePC.

1: Calculate the Lagrange multiplier using the nominal optimal solution g° and the nominal initial
I/0 Wiom' and reference r? trajectories in (4.13).

2: Calculate the gains K| and K3 using (4.18).

3: Given the real initial I/O w;,; and reference r trajectories, calculate dw;,; and ér, respectively,
and then 6g and g* using (4.18).

4: Compute the optimal I/O sequences u* = Upg* and y* = Yrg™.

5: Apply optimal control input (u(k),u(k +1),--- ,u(k +5)) = (ug, ”T’ .-+ ,uy) to the plant for
some s < N — 1.

6: Update the nominal initial I/O trajectory, reference trajectory, and optimal solution as Wioni = Wini,
r°=r,g°=g¢* u’ =u" and y° = y*.

7: Set k to k + s and update the initial I/O trajectory w;;,; and the reference trajectory r to the T;y;
most recent /O measurements.

8: Return to (1).

50



Figure 4.1: Cart-Inverted Pendulum.

4.4 Simulation Results

In this section, we demonstrate the performance of the proposed DeeNE framework via two
simulation examples, i.e., a cart-inverted pendulum and an arm robot.
4.4.1 Cart-Inverted Pendulum

For a cart-inverted pendulum (see Fig. 4.1), one has

. F—Kyz—m(L6%sin(0) — g sin(6) cos(0)) — 2d,
Z = ,

M + msin?(0) (4.30)
i Zcos() + g sin(0) _ dy
B L mL?’

where z and 6 denote the position of the cart and the pendulum angle. m = 1kg, M = 5kg, and
L = 2m represent the mass of the pendulum, the mass of the cart, and the length of the pendulum.
g = 9.81m/s? and K; = 10Ns/m are the gravity acceleration and the damping parameter. The
variable force F controls the system under a friction force d; and a friction torque dgy. Ty = 0.02s
is considered as the sampling time for discretization of the model (4.30), and we assume d; and dy
as the process noises. The states, the outputs, the process noise, the measurement noise, and the

control input constraint are expressed as

. 1T
X = [Xl,X2,X3,X4]T = [Z’Z’H’H] >
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y=[xpx3ll +v=[z6]T +v,
d = [dy,da, d3,d4)" = [0,d;,0,dg]",
=50 < F <50.

where d and v represent the process noise and measurement noise, respectively.

The following values are used for the simulation: T7j,; = 30, N = 45, the simulation time
T = 200, x(0) = [0,0,7/270,0]7, and d,, dy = 0.002(2rand(1,T) — 1). We generate the first
initial trajectory (u;y;i, yini) using zero control input, i.e. u;,; = u(0 : 29) = 0, which leads to the
state x(30) = [0.0151,0.0783,0.1225,0.6200]” . Figs. 4.2 and 4.3 show the control performances
of the DeeNE and the DeePC. For the DeePC, we use the DeePC policy (4.8), apply the length-s
optimal control sequence to the plant, and update the initial trajectory w;,; for the next step (see
Algorithm 2 in [27]). As we discussed in Algorithm 1, we use DeeNE policy (4.24) to avoid solving
the DeePC problem at each step and reduce the computational cost. As is obvious from the Fig.
4.2, one can see that the DeeNE policy approximates the DeePC policy very well and is capable
of adjusting the nominal DeePC by fully considering the initial I/O trajectory perturbations. From
Fig. 4.2, one can see that the DeeNE provides similar performance for trajectory tracking problem
as compared to the DeePC; however, the DeeNE reduces the computational cost of the DeePC very
well as shown in Table II. Table I compares the cost-based performance and the computational time
for the DeePC under various values of s, where demonstrates that we have the best performance
for the considered system with s = 5. Table II illustrates the cost-based performance and the
computational time for both DeePC and DeeNE under two cases s = 0 and s = 5, and one can
see that the DeeNE with s = 5 shows the best performance for the regulation of the cart-inverted

pendulum.
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Figure 4.2: Control Input for Cart-Inverted Pendulum.
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Figure 4.3: System Outputs for Cart-Inverted Pendulum.

Table 4.1: Comparison of Performance and Computational Cost for the DeePC with Various s.

DeePC Performance | Time (per loop)
s=0 22.3650 0.1419 ms
s=5 22.1485 0.0284 ms
s=10 22.7375 0.0159 ms

4.4.2 KINOVA Gen3

In order to evaluate the performance of the developed DeeNE, we prove its efficacy on a 7-DoF
robotic manipulator. We learn and control KINOVA Gen3, which is a light weight 7-DoF arm

robot. According to its specifications and for the sake of safety, we consider the minimum and
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Table 4.2: Comparison of Performance and Computational Cost for both DeePC and DeeNE.

Controller Performance | Time (per loop)
DeePC (s =0) | 22.3650 0.1419 ms
DeePC (s =5) | 22.1485 0.0284 ms
DeeNE (s =0) | 24.0375 0.0551 ms
DeeNE (s =5) | 23.5335 0.0102 ms

maximum values for the joint angular velocities (control inputs) as [-7/6, 7/6]rad/s. Limitations
on the Cartesian position coverage are all [—0.9, 0.9]m. We give the joint angular velocities u € R’
to the arm robot and measure the pose of the robot y € R which indicates the 3D position and the
3D orientation of the end-effector. However, to avoid a discontinuous behavior in the orientation
part, we transfer the 3D orientation to 4D orientation using Quaternions. The protocol of data
collection is as follows. We have collected data from the 7-DoF arm robot for 50 trajectories with
T; = 100 data points on each trajectory and the sampling time 75 = 0.1s. It is worth noting that
since we are generating the Hankel matrix using multiple signal trajectories, called mosaic-Hankel
matrix (a Hankel matrix with discontinuous signal trajectories), the number of data points on each
trajectory must be greater than the depth of the Hankel matrix, i.e. 7; > T;,; + N [54]. For
each trajectory, the initial joint angles and the inputs are chosen randomly according to a uniform
probability distribution. Due to the set up condition in the lab (desk structure, wall position, etc.),
we had to stop the robot if it was close to hit an object, ignore that trajectory, and continue the data
collection with another initial position and/or input values.

Details of DeePC are as follows. The reference trajectory r(k) € R’ represents the desired
values for the pose of the robot. According to the quadratic cost function, the matrices Q =
5x10%x 1 pNand R = 1X 102 x I,,,y are considered to penalize the tracking error and control input
amplitude, respectively. The slack variables Ay, 4, = 5 X 107 are used to make sure the feasibility
of the optimal control problem. The regularization parameter 4g = 5 X 102 avoids the overfitting
issue due to the collected noisy data. Finally, the initial trajectory and the prediction lengths are

Tini = 35 and N = 20, respectively. Since we have u € R’ and y € R7, the dimension of the
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mosaic-Hankel matrix is H(u?, y9) e R770x2300

causing high computational cost for applying a
real-time DeePC on the 7-DoF arm robot. For DeePC, we use the DeePC policy, apply the first
s optimal control input u(k : k + s) to the 7-DoF arm robot, measure the pose of the robot, and
update the initial trajectory w;,; and the reference trajectory r for the next step (See Algorithm 2 in
[27]). For an initial pose of the arm robot, we generate the first initial trajectory (u;n;, yini) using
random control inputs, i.e. (u(0 : 34), y(0 : 34)). For a tracking performance index, we use Root
Mean Square Error (RMSE) between the desired reference trajectory and the pose of the arm robot
over the entire trajectory.

In this part, we compare the performance of the proposed DeeNE framework with DeePC
such that we evaluate the tracking performance and computational time for different open-loop
control scenarios s. For this part, we use the forward kinematics model of the 7-DoF arm robot
to evaluate the performance of the control schemes. The reference trajectory r(k) is consider
as a sinusoidal trajectory with 300 data points for the pose of the end-effector. For the desired
reference trajectory r(k), DeePC and DeeNE must accomplish tracking control task. For this case,
we use DeeNE policy to correct the open-loop DeePC solution at each step while we reduce the
computational time. The tracking performance and the computational time are studied for DeePC
and DeeNE frameworks under different open-loop control s. Fig. 4.4 compares the control input
for the open-loop control scenario s = 20, which illustrates taht how DeeNE corrects the DeePC
policy. Figs. 4.5 and 4.6 indicate the position and orientation tracking performance, respectively,
where one can see that DeePC does not track the reference trajectory for s = 20; however, DeeNE
tracks the reference very well. From Table 4.3, we can compare the tracking performance and the
computational time indices for both control algorithms under s = 0, s = 10, and s = 20. One
can see that both controllers perform similar on the tracking performance for s = 0, but DeeNE
provides lower computational time. However, as we increase the open-loop part of the controller,
1.e., s, the performance of DeePC goes down since it predicts the behavior of the system using the

last available initial and reference trajectories. On the other hand, DeeNE takes a feedback from
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the system and update the initial and reference trajectories at each time step, which corrects the

DeePC predictions. Consequently, one can see that DeeNE enables us to have both high-precision

tracking performance and faster motion speed for the 7-DoF arm robot.

0.01 —— DeePC
— - DeeNE
3 o000
-0.01
0 50 100 150 200 250 300
T
0.02 —— DeePC
< oo — DeeNE
3 o
0.00
} -0.01
0 50 100 150 200 250 300 0 50 100 150 200 250 300
T T
—— DeePC —— DeePC
0.01
oo — - DeeNE — DeeNE
n ©
S 600 S 000
} -0.014
0 50 100 150 200 250 300 0 50 100 150 200 250 300
T T
1.00
0.01 —— DeePC
— - DeeNE 075
5 000 0.50
025
—0.01 4 0.00
0 50 100 150 200 250 300 0.0 02 0.4 06 08 1.0

T

Figure 4.4: Control Input for 7-DoF Arm Robot (Simulation).
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Figure 4.5: Position Tracking for 7-DoF Arm Robot (Simulation).
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Figure 4.6: Orientation Tracking for 7-DoF Arm Robot (Simulation).

Table 4.3: Comparison of Performance and Computational Time for DeePC and DeeNE with
Different Open-Loop Control Scenarios.

Controller RMSE Time (per loop)
DeePC (s =0) 0.0023 0.2002 s
DeePC (s = 10) | 0.0048 0.0204 s
DeePC (s =20) | 0.0051 0.0114 s
DeeNE (s = 0) 0.0024 0.0303 s
DeeNE (s = 10) | 0.0027 0.0039 s
DeeNE (s =20) | 0.0031 0.0025 s

4.5 Experimental Verifications

In this part, we apply both controllers on the real 7-DoF arm robot for a closed-loop control
scenario (i.e., s = 0) to make sure the safety and stability of the robot under DeePC. For the
position of the end-effector, we consider the first part of the reference trajectory as the abbreviation
of Michigan State University as MSU including 1000 data points. For the orientation of the end-
effector, we consider the second part of the reference trajectory as 0.5 degree with 1000 data points.
For the desired reference trajectory r(k), DeePC must simultaneously accomplish tracking control
and setpoint control tasks for the position and orientation of the end-effector, respectively. For

this case, we use DeeNE policy to avoid solving the DeePC problem at each time step and reduce
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the computational time, which provides a fast motion speed for the robot. Fig. 4.7 compares
the control inputs generated by both control algorithms, which illustrates the well-performance of
DeeNE on the approximation of the DeePC policy. Figs. 4.8 and 4.9 indicate the position and
orientation tracking performance, respectively, where one can see that both controllers tracks the
reference trajectory very well. From Table 4.4, we can compare the tracking performance and
the computational time indices for both control algorithms, which perform similar on the tracking
performance, but DeeNE provides lower computational time. It is worth noting that since the
computational time of DeePC, i.e. 0.2s, is higher than the sampling time, i.e. 0.ls, we apply
DeePC on the arm robot for the first 0.1s, stop the robot for the second 0.1s to receive the updated
response of DeePC, and then repeat the process using the updated control input. Consequently,
it is obvious that DeeNE enables us to have both high-precision tracking performance and faster
motion speed for the 7-DoF arm robot. Moreover, we cannot stop the system until receiving the
updated response of DeePC for safety-critical scenarios since it may cause an accident for the

robots/autonomous vehicles.

03 03
02 = DeePC 02 = DeePC
— — - DeeNE — -+ DeeNE

0.1

5 o1
-0.1

-0.1
0 200 400 600 800 1000 0 200 400 600 800 1000

uz

03 0.3
0.2 0.2
01 0.1

-0.1 -0.1
0 200 400 600 800 1000 0 200 400 600 800 1000

us
Ug

T T
0.3 0.3
02 = DeePC 02 = DeePC
" — - DeeNE © — - DeeNE
L 0 $ o1
00 "w‘w 00 %JV\M
-0.1 -0.1
0 200 400 600 800 1000 0 200 400 600 800 1000
T T

0.3 1.00
0.2 0.75
3 o1 0.50

OOW 025

0.1

Figure 4.7: Control Input for 7-DoF Arm Robot (Experiment).

We next verify the performance of the control algorithms under the safety constraints, which

the arm robot must avoid unsafe regions and dynamic obstacles. In the second experiment, the
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Figure 4.8: Position Tracking for 7-DoF Arm Robot (Experiment).
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Figure 4.9: Orientation Tracking for 7-DoF Arm Robot (Experiment).

Table 4.4: Comparison of Performance and Computational Time for DeePC and DeeNE.

Controller RMSE Time (per loop)
DeePC 0.0142 0.2005 s
DeeNE 0.0143 0.0307 s
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robot must track the same reference trajectory MSU; however, we consider an unsafe region on
the S part. This case addresses the control tasks that the reference trajectory is obtained offline
using path planning or by the operator, but the controller must avoid unsafe regions through the
given reference trajectory due to the dynamic obstacles. For simplicity, we have considered a
fixed unsafe region on the S part of MSU; thus, both DeePC and DeeNE can satisfy the safety
constraints and track the reference trajectory well as shown in Figs. 4.10-4.12. However, like the
previous task, Table 4.5 shows that the computational time of DeePC is higher than the sampling
time, which may cause an accident for the dynamic obstacles since the robot updated the control
input after receiving the response of DeePC. On the other hand, DeeNE quickly computes the
optimal control input for the updated initial and reference trajectories; therefore, it can avoid the
dynamic obstacles well. A video of the experiments performed can be found at the following link

https://www.youtube.com/watch?v=BIKTUgkAM Vo.

0.3 0.3
02 = DeePC 02 = DeePC

—-+ DeeNE — -+ DeeNE
0.1 0.1

0o M 00 MU\/\I‘L("\/
-0.1 -0.1
0 200 400 600 800 1000 0 200 400 600 800 1000

uy
uz

03 03

02 N 0.2
S o1 01
0o ’W o0 W
-0 -01

0 200 400 600 800 1000 0 200 400 600 800 1000

Ug

T T
03 03
02 — DeepC - — DeepC
- —- DeeNE ° —-+ DeeNE
2 o L o1
0.0 W 00 W
-0.1 -0.1
200 400 600 800 1000 0 200 400 600 800 1000
T T

03 1.00

0.2 0.75
01 0.50

OOW 025

-0.1 0.00
0 0.

uy

.0 0.2 0.4 0.6 0.8 1.0

Figure 4.10: Safe Control Input for 7-DoF Arm Robot (Experiment).

4.6 Chapter Summary
In this chapter, we proposed a computationally efficient method to implement the data-driven

optimal controllers (e.g. DeePC) that include nonlinearities in real time. The DeeNE algorithm
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Figure 4.11: Safe Position Tracking for 7-DoF Arm Robot (Experiment).
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Figure 4.12: Safe Orientation Tracking for 7-DoF Arm Robot (Experiment).

Table 4.5: Comparison of Performance and Computational Cost for DeePC and DeeNE with
Safety Guarantees.

Controller RMSE Time (per loop)
DeePC 0.0148 0.2008 s
DeeNE 0.0149 0.0309 s
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was developed to approximate the DeePC policy in the presence of input/output and reference
trajectories perturbations. The developed DeeNE was based on the second-order variation of the
original DeePC problem such that the computational load of the DeeNE grows linearly for the
optimization horizon. This control approach alleviates the online computational burden and extend
the applicability of data-driven optimal controllers. Simulations of the cart inverted pendulum
system demonstrated the DeeNE’s technological advances over the DeePC. Moreover, simulation
and experimental verifications on the 7-DoF arm robot demonstrated the performance of the DeeNE

compared to the DeePC for a more complex system.
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CHAPTER 5

ADAPTIVE DATA-ENABLED PREDICTIVE CONTROL

In this chapter, we focus on developing an adaptive data-driven optimal control for time-varying
systems. DeePC uses pre-collected input/output (I/0O) data to construct Hankel matrices for online
predictive control. However, in systems with evolving dynamics, incorporating real-time data into
the DeePC framework becomes crucial to enhance control performance. We propose an adaptive
DeePC framework for time-varying systems, enabling the algorithm to update the Hankel matrix
online by adding real-time informative signals. By exploiting the minimum non-zero singular
value of the Hankel matrix, the developed online DeePC selectively integrates informative data
and effectively captures evolving system dynamics. Additionally, a numerical singular value
decomposition technique is introduced to reduce the computational complexity for updating a
reduced-order Hankel matrix. Simulation results on two cases, a linear time-varying system and

the vehicle anti-rollover control, demonstrate the effectiveness of the online reduced-order DeePC.!

5.1 Background

The Fundamental Lemma only holds for deterministic linear time-invariant (LTT) systems [55,
56]. For other systems such as nonlinear systems, stochastic systems, and time-varying systems, the
rank condition on the Hankel matrix is not sufficient to accurately determine the trajectory subspace,
which may lead to poor performance in the data-driven control. Several techniques employing slack
variables and regularization methods have been proposed to address these limitations and enhance
performance for the nonlinear systems and the stochastic systems [27, 29, 57]. Moreover, a robust
Fundamental Lemma has been proposed to ensure the persistently exciting (PE) input with sufficient
order for the stochastic LTI systems [55]. However, these techniques are only effective in local
regions captured by the pre-collected I/O data and cannot handle the new system dynamics that

emerge online. Therefore, it is necessary to update the Hankel matrix online using real-time 1/O

IThe material of this chapter is from “Online Reduced-Order Data-Enabled Predictive Control,”
arXiv preprint arXiv:2407.16066, 2024 [54].

63



data to predict system behavior accurately.

For time-varying systems, i.e., systems with evolving dynamics, online DeePC [58, 59] is
developed to continuously update the Hankel matrix using real-time data. In [58], old data is
replaced with new data: the first column (the oldest data point) is discarded from the Hankel
matrix, all columns are shifted back by one step, and the most recent real-time data is added as
the last column. However, this method requires a PE control input in real-time, which is achieved
by adding a suitable excitation, such as injecting noise into the control input during closed-loop
operation. Injecting noise can deteriorate control performance and put unnecessary stress on
actuators. To address this, [56] presents a discontinuous online DeePC method that replaces the PE
requirement with a rank condition on mosaic-Hankel matrix (a Hankel matrix with discontinuous
I/O trajectories) proposed by [60]. This approach requires only an offline PE input trajectory, which
is produced based on the robust Fundamental Lemma [55], and updates the mosaic-Hankel matrix
if the rank condition is satisfied. However, as mentioned before, a rank condition (or PE condition)
is not sufficient to indicate informative data for non-deterministic LTI systems.

[61] proposes a continuous online DeePC by adding real-time I/O trajectories to the Hankel
matrix, which removes the PE requirement for the real-time control input as the rank condition is
always satisfied. However, continuously increasing the columns of the Hankel matrix leads to high
memory and computational costs. To mitigate this, two numerical singular value decomposition
(SVD) algorithms are used alternatively based on the rank of the Hankel matrix: when the rank of
the Hankel matrix is less than the number of rows, the numerical SVD algorithm [62], which is
designed based on the eigen-decomposition algorithm [63], is applied; and when the rank of the
Hankel matrix is equal to the number of rows, the numerical SVD algorithm [64] is employed.
The online DeePC scheme [61] faces three main limitations: (i) it requires adding all real-time
trajectories to the Hankel matrix, leading to high computational cost and the inclusion of data
without considering its informativeness; (ii) the numerical SVD algorithm [64], as mentioned in

[63], is not fast and can be unstable; and (iii) the dimension of the online SVD-based DeePC can be
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reduced to a minimum possible dimension. These limitations motivate us to propose a new online
reduced-order DeePC. Our approach measures the informativeness of real-time data by observing
the minimum non-zero singular value of the Hankel matrix and uses the most informative data
discontinuously, which addresses challenge (i). By setting a well-tuned threshold on the minimum
non-zero singular value, we are able to capture the new system dynamics that emerge online and
update the Hankel matrix only with the most informative data. Moreover, to overcome challenges
(i1) and (iii), we modify the numerical SVD algorithm [62], as this algorithm only works for
low-rank modifications, and develop an online reduced-order DeePC with adaptive order. These
modifications result in lower computational complexity for the online DeePC and may improve the
control performance for some cases.

In this chapter, we develop an adaptive DeePC framework for the time-varying systems such that
the Hankel matrix is updated using real-time informative data. Promising results are demonstrated
by applying the developed adaptive controller to the linear time-varying system and the vehicle
anti-rollover control. The outline of this chapter is as follows. The problem formulation and the
preliminaries of the DeePC are provided in Section II. Section III presents the proposed adaptive
DeePC for the time-varying systems. Section IV presents the simulation results. Finally, the

conclusions are provided in Section V.

5.2 Problem Formulation

Consider the following unknown discrete-time system:

x(k+1) = f(x(k),u(k)),

y(k) = h(x(k),u(k)),

5.1

where k € N* represents the time step, x € R” denotes the system state, # € R™ indicates the
control input, and y € R” stands for the system output. Moreover, f : R” x R — R” indicates
the system dynamics with f(0,0) =0, and & : R" x R" — RP? denotes the output dynamics.

Assuming the system (5.1) is a linear time-invariant (LTI) system, i.e., f(x(k),u(k)) =
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Ax(k) + Bu(k) and h(x(k),u(k)) = Cx(k) + Du(k), the Fundamental Lemma [26] provides

a non-parametric representation to describe the system behavior.
Definition 4 (Hankel Matrix) Given a signal w(k) € R4, we denote by wy.r the restriction of

w(k) to the interval [1,T], namely wi.7 = [w'(1),w"(2),--- ,w'(T)]". The Hankel Matrix of

depth K < T is defined as:

—w(l) w(2) o w(T-K+ 1)-
2 3 - 2
Heng) = |0 O R (52)
_w(K) wK+1) --- w(T)

Let L =T — K + 1, then we have Hy (w;.7) € RIKXL,

Definition 5 (Persistently Exciting) The sequence w.t is persistently exciting (PE) of order K if

Hyg (wi.r) has full row rank, i.e., rank(Hg (wi.T)) = gK.

Lemma 3 (Fundamental Lemma [26]) Consider the system (5.1) as a controllable LTI system
with a pre-collected input/output (I/O) sequence (u(li:T, y?:T) of length T. Providing a PE input
sequence u‘f:T of order K + n, any length-K sequence (uy.g,y1:x) is an I/O trajectory of the LTI
system if and only if we have
Uik | _ Hg (ud ;) . 5.3)
yik|  |HkGS,)
for some real vector g € RL.

7{K(M(lj:T)

d
7‘{1(()71:7")
citing control input sequence of order K + n ensures that mK + 1 < r < mK + n. Furthermore,

Remark 11 (Rank of Hankel Matrix) Considering r := rank , a persistently ex-

r=mK +nifK > [, wherel < n is the observability index. See [65] for more details.

The Fundamental Lemma shows that the Hankel matrix in (5.3) spans the vector space of

all length-K signal trajectories that an LTI system can produce, provided that the collected input
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sequence is PE of order K +n and the underlying system is controllable. However, the Fundamental
Lemma requires a long continuous signal trajectory to construct the Hankel matrix. [60] extends
the Fundamental Lemma to accommodate multiple short signal trajectories, which we refer to as
discontinuous Fundamental Lemma in this paper. This extended Lemma is developed by using
a general data structure called mosaic-Hankel matrix, which incorporates a dataset consisting of

multiple short discontinuous signal trajectories.

Definition 6 (Mosaic-Hankel Matrix) Ler W = {w! wi_TS} be the set of s discontinuous

L
sequences with length of Ty, - - -, Ts. The mosaic-Hankel matrix of depth K < min(Ty, --- ,Ty) is
defined as:

My (W) = [Hg (wip ) Hg Wi Hg (wh7)]. (5:4)

LetT = Zle Tiand L =T — s(K — 1), then we have Mg (W) € RIKXL,

Lemma 4 (Discontinuous Fundamental Lemma [60]) Consider the system (5.1) as a control-

lable LTI system with a pre-collected I/0 sequence U d— {u1 o } yd = {y1 TR y(li;STY}
of length T which consists of s I/0 sequences of length Ty, - - -, Tg. Providing an input sequence U d
with
Mg (U9)
r :=rank =mK +n, (5.5
Mg (¥Y)

any length-K sequence (uy.x,y1:x) is an I/O trajectory of the LTI system if and only if we have

UK Mg (UY)
= . g, (5.6)
V1K Mg (Y®)

for some real vector g € RL.

It is worth noting that the Hankel matrix (5.2) represents a special case of the mosaic-Hankel
matrix (5.4) with s = 1. The general form (5.4) also describes other special forms, such as Page
matrix or Trajectory matrix [65]. The main advantages of Lemma 4 compared to Lemma 3 are: 1)

it uses multiple short discontinuous trajectories instead of one long continuous trajectory, and ii) it
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replaces the PE condition on the input sequence with the rank condition (5.5) on the I/O matrix.
(5.5) is referred as generalized PE condition [60].

Both (5.3) and (5.6) can be regarded as the non-parametric representation for system (5.1). Let
Tipi» N € Z, and K = Tj,; + N. The Hankel matrices H, K(ucll:T), Hx (y‘ll:T) (or mosaic-Hankel
matrices Mg (UY), Mg (YY) are divided into two parts (i.e., “past data” of length T;; and “future

data” of length N):

Up Yp
= .}_{K(u(li:T)’ = ?{K(y(li:T), 5.7
Ur Yr
or
Up Yp
= Mg (UY), = Mg (YY), (5.8)
Ur Yr

where Up and Uy denote the first Tj,; block rows and the last N block rows of WK(M?.T) (or
Mg (U9)), respectively (similarly for Yp and Yr). The data-enabled predictive control (DeePC) is
formulated as [27, 36]

(' u*, oy, 04,8%) = argmin J(y,u, oy, 0y, 8)
y,M,O'y,O'u,g

Up Uini Ou
U 0
st. | Fle=| "1+ |, (5.9)
Yp Vini Oy
Yr y 0
ueU,yel.

In (5.9), J(y,u, 0y, 0y, g) represents the cost function. u;p; = U—T; k1 is the control input
sequence within a past time horizon of length 7;,;, and # = uy.;,n—1 is the control input sequence
within a prediction horizon of length N (similarly for y;,; and y). U, Y represent the input and
output constraints, respectively. o, € R™ini, oy €RP Tini stand for auxiliary variables.

Both Lemma 3 and Lemma 4 are only valid for deterministic LTI systems. [59] and [58]

respectively show that Lemma 3 can be extended to the nonlinear systems and the time-varying
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systems by continuously updating the Hankel matrix, which require a real-time PE input sequence.
Moreover, [56] removes the real-time PE requirement for the time-varying systems by using Lemma
4. However, the proposed rank condition (or PE condition) is not sufficient to ensure the infor-
mativeness of the data for non-deterministic LTI systems. While the rank condition may hold
for the non-deterministic LTI systems, it can still lead to large prediction errors and poor control
performance. In this paper, we propose an online DeePC framework for the time-varying systems

to improve the rank condition and present a valid indicator for evaluating data informativeness.

5.3 Main Result

In this section, based on the data informativeness of the mosaic-Hankel matrix, we propose an
online DeePC framework for the time-varying systems. The data informativeness is evaluated with
the minimum non-zero singular value of the mosaic-Hankel matrix and is enhanced by adding the
most informative signals to the matrix. It should be mentioned that the rank condition is always
satisfied in real time since we add signal trajectories as additional columns. Moreover, we develop
an online reduced-order DeePC using a numerical singular value decomposition (SVD) to reduce

the computational cost of the control scheme.

5.3.1 Adaptive Data-Enabled Predictive Control

For the deterministic LTI systems, Lemma 3 and Lemma 4 are valid only if the data is sufficiently
informative. However, for the non-deterministic LTI systems, the collected data may result in a full-
rank mosaic-Hankel matrix (or Hankel matrix) but cannot ensure accurate prediction of the system
behavior. To address this issue, [55] proposes a quantitative measure of PE for the input trajectory
based on the minimum non-zero singular value of the Hankel matrix, enhancing the robustness of
the Fundamental Lemma against uncertainties. However, this approach is only effective locally
around collected I/O data and leads to poor performance for the time-varying systems. Therefore,
we focus on improving the performance of the discontinuous Fundamental Lemma for the time-

varying systems. Singular values of a matrix are definedas oy >0 > -+ > 03 > -+ > Ogpqg = 0,
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where o and o,q are also referred as omax and oy, respectively. The singular value o
corresponds to the rank of the matrix and is the minimum non-zero singular value, i.e., all singular
values from o7, to oy are zero.

[55] shows that the prediction error of the Fundamental Lemma can be arbitrarily large, even if
the rank condition on the Hankel matrix is met. The important factor is the data informativeness,
which is represented by the minimum non-zero singular value o;. Therefore, we can update the
mosaic-Hankel matrix with real-time signal trajectories if o increases. If the real-time signal
trajectory contains new information relevant to describing the system behavior (5.1), it increases
or; otherwise, o decreases if the real-time signal trajectory lacks new information. Thus, we
can set a threshold oy, for o to ensure that only the most informative data is added provided
or > oy To achieve better prediction for the time-varying systems using the Fundamental

Lemma, we formulate an online DeePC as follows:

(' u*, oy, 0,8 = argmin J(y,u, oy, 0y, 8)
yau’a—y’a-u’g

U;)) Uini Ou
U¢ u 0
s.t. Flg= w0, (5.10)
Yy Yini| |0y
Yel o Ly O]
ueU,yeld,

where the matrices Uy, U7, Yp, and Y, are updated online. Specifically, denote WY as the combined
data set of U9 and Y9, i.e., W9 = {U9,Y9}. The corresponding mosaic-Hankel matrix M k(W) is

defined as:
Mg (UY)
Mg (W9) == . (5.11)
Mg (YY)
When k < K, the matrices U}’,, U;’,, YI‘D’, and Y}fl are initialized with MK(Wd) G.e., U9 and

Y9 as shown in (5.8)). When k > K, the most recent real-time 1/O sequence Wi_g4l:k =
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T

T T i i
W, gtk Vi—katk] 18 first used to update the matrix

My (W) — MW, wi_gerx| -

Then, the rank and the minimum non-zero singular value of Mg (W) are calculated. If the
minimum non-zero singular value of M k(W) is larger than the threshold oy, i.€., 0 > Opys
then the matrices Ug, va, Y 12, and Yg are updated with MK(Wd); otherwise, the sequence

Wi—k+1:x is removed from Mg (W9).

5.3.2 Adaptive Reduced-Order Data-Enabled Predictive Control

SVD techniques are effective in reducing computational complexity for data-driven control
methods [66, 61]. In this section, we incorporate a new numerical SVD algorithm into the online
DeePC framework such that the reduced-order mosaic-Hankel matrix and corresponding singular
values can be updated efficiently.

Considering r = rank(Mg (W9)), one can formulate the SVD of the mosaic-Hankel matrix

Mg (W) as follows:

> 0
MgW =UsVT = [Uy Ugd || 1V Vi, (5.12)
0 O

where ¢ = m + p, & € RIKXL ig the singular matrix, and U € RIKX9K and v e RLXL are left
and right singular vectors, respectively, such that UUT = UTU = Iygx and VVT = VTV = I,
Moreover, X, contains the top r non-zero singular values, U, € RIKXr Ugk—r € RIK*(gK~r ), and

V, e REX v . € RLX(L=)  Therefore, one can write

Mg (Whg = U2,V g = Mo (WYg', (5.13)

where Mk(Wd) =U,X, € RIKX" and ¢’ = VT g € R”. If the pre-collected data is sufficient rich,
then we have mK + n < r < min(¢K, L). Thus, one can approximate (5.13) using a rank order

mK +n <rg <r,as follows:
Mg (Whg ~ U, T, Vil g = ME(Wg”, (5.14)
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where M}é(Wd) = U Xr, € RIEXTa and ¢” = V[ g € R,

a

Now, one can formulate an online reduced-order DeePC as follows:

(. u*, o5, 00,8") = argmin J(y,u,oy,04,8")
Ysus0y,0u,8"
- L
Up Uini| |ou
144
U? u 0
s.t. Fle = + ], (5.15)
Yy Yini| |0y
7
Y7 | |y ] (O]
ueU,yel,

where the matrices UI‘_?,”, Ug”, Y 12”, and Y g” are updated online based on M}Q(Wd) under an
adaptive order r, such that oy, > oy, It should be mentioned that we use SVD to update
M}Q(Wd) for Mg (W9) — Mg (W, Wk—K+1:k] . Moreover, the adaptive order mK+n < ry < r,
which is based on the threshold singular value oy, allows an adaptive dimension for the reduced-
order mosaic-Hankel matrix M}é(Wd) regarding the data informativity. Indeed, the dimension of
M}Q(Wd), i.e., r4, is changed adaptively based on o7, > oy,

For both proposed online DeePC frameworks, calculating the SVD at each time step is not
computationally efficient for real-time control. Therefore, inspired by [62], we propose a numerical
algorithm to compute the SVD of | Mg (W9), w —K+1: k] by taking advantage of our knowledge of
the SVD of M K(Wd), which reduces the computational time of the proposed online DeePC.

When rank(Mg (W9)) < rows(Mg(W9)), one can express [MK(Wd),Wk—KH:k as X +

ABT, where X = [MK(Wd),O], A=wi_g+1:k-and B =[0,---,0,1] 7. Therefore, one has

% 0
X+ABT =[U, A]l| | [V« B]T. (5.16)

0 7

where Vi = [V,7 0]T. Let P be an orthogonal basis of the column space of (I — U,U,")A, i.e., the
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component of A that is orthogonal to Uy, and set R4 = PT (I — U,U,")A. Now, one can write

I UTA
[Uy A] =[U, P] , (5.17)
0 Ry

where similar to a QR decomposition, R4 needs not be upper-triangular or square. Similarly, let

Rp = Q7 (I -VyV,])B, where Q is the component of B that is orthogonal to Vy. Thus, one has

I VB
[Vx B] = [Vx O] : (5.18)
0 Rp

Substituting (5.17) and (5.18) into (5.16), we have

X+AB'T = [U, P)S[Vx Q]7,

1T T

S I UTAl|z, of|1 vTB (5.19)
0 R4 ||0 I]]l0 Rp

where one can write S as: -

> 0 UTA| VB
s=|" "1+ X , (5.20)
0 0 Ra || R

Using [63], diagonalizing S = USZSVST gives rotations Ug and Vg of the extended subspaces

[Ur P] and [Vy Q] such that

X +ABT = ([U, PIUs)Es([Vs Q1Vs)" (5.21)

is the desired SVD.

Remark 12 (Rank-1 Modifications) For the proposed numerical SVD, we are not limited to only
add one signal to the mosaic-Hankel matrix. The above formulations work for adding more signals
at the same time by defining the correct matrices A and B. However, in our algorithm, we focus on

adding one signal to the matrix at each time step and calculate the SVD of the new matrix based on
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the SVD of the original matrix, which is called Rank-1 modification in the numerical SVD. For Rank-
1 modification, we define P = ||(I-U,UD) A" Y (I-U,UD) A and Q = ||(I-V, VD) B|| "1 (1-V,V])B,
>, Ur'A

which yield S = since VI B = [VI 0][0,...,0,1]T = 0.
0 R

When rank(Mg (W) = rows(Mg (W9)), one needs rewrite the SVD of the mosaic-Hankel
matrix | My (W9), wi_gr1.x | @
X+AB" =U,[Z, U’A]l[Vy B]T (5.22)

Therefore, we only need to provide an orthogonal matrix for [V, B], which yields S = [Zr ()] +
T

U'A Ve B ,and X + ABT = (U,Ug)Zg([Vx Q]Vs)T is the desired SVD.
Rp

Remark 13 (Comparison) Compared to [61], the proposed online reduced-order DeePC mea-
sures data informativity of real-time signals by observing the minimum non-zero singular value
of the mosaic-Hankel matrix, selectively using the most informative signals instead of adding all
real-time trajectories. Moreover, the dimension of the online reduced-order DeePC starts from
rq = mK + n instead of the rank, which leads to the minimum possible dimension for the mosaic-
Hankel matrix. We also refine the numerical SVD algorithm, addressing its speed and stability

issues as noted in [63]. These three contributions improve the control performance and reduce

computational complexity.

5.4 Simulation Results

5.4.1 Linear Time-Varying System

In this subsection, we demonstrate the performance of the proposed online reduced-order

DeePC framework via a simulation example on a linear time-varying (LTV) system, described by:
x(k+1) = A(k)x(k) + B(k)u(k) +dp(k),
(5.23)
y(k) = Cx(k) + dm(k),
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where dj, and dy, represent process and measurement noises, respectively. The matrices A(k),

B(k), and C are constructed as

0.01

0 0001 0
0 001 0 0001
A(k) = A® + A(k)
0 0 00l 0
0 0 0 00l
0.001  0.0001
0.0001  0.001
B(k) = B + A(k) :
0  0.001
0.001 0
1000
C= :
0100

where A(k) is a time-varying parameter, and A° and B° are set as follows:

0921 0 0041 0
0 0918 0 0.033
A% = :
0 0 0924 0
0 0 0 0937
0.017 0.001
0.001 0.023
B° = .
0 0.061
0.072 0

For the simulation, we consider the following values: Tj,; = 35, N = 45, the simulation time
T, = 2100, x(0) = [0.5,0.5,0.5,0.5] T, and dp and dy, are considered random values such that
lldpll, lldm|l < 0.002. Moreover, the initial trajectory (u;n;, yini) iS generated by applying zero

control input to the system and measuring the corresponding output.
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The evolution of A(k) is shown in Fig. 5.1, where one can see that the behavior of the LTV
system is repeating in real time. Fig. 5.1 also depicts the order of the reduced-order mosaic-Hankel
matrix for the proposed online DeePC (5.15), showing that the adaptive order r, changes when the
LTV system switches to different dynamics. For the online DeePC [61], the order is constant and
equal to the rank of the mosaic-Hankel matrix, which is 320 for the collected data set.

Figs. 5.2 and 5.3 show the control performance of the proposed online reduced-order DeePC
(5.15) in comparison with the traditional DeePC [27], the online DeePC [56] (replacing old data
with new data in the mosaic-Hankel matrix), and the online DeePC [61] (adding new data to the
mosaic-Hankel matrix). For the traditional DeePC [27], the DeePC policy (5.9) is employed such
that the first optimal control input is applied to the system, and the initial trajectory {u;ni, Yini}
is updated for the next step (see Algorithm 2 in [27]). From Figs. 5.2 and 5.3, one can see that
the proposed online DeePC shows better tracking performance in comparison with other control
schemes since it uses informative data to update the mosaic-Hankel matrix. The online DeePC
[56] does not show a reasonable performance when all PE data is removed from the mosaic-Hankel
matrix since the rank condition is not enough to evaluate suitable data. Table 5.1 demonstrates
that the developed online DeePC significantly reduces the computational time compared to other
controllers while keep the tracking performance well. Moreover, the average time for computing
the numerical SVD is 0.0261ms for the online DeePC [61]; however, our proposed numerical SVD
(5.22) takes 0.0085ms, which leads to lower computational complexity for the the online DeePC
(5.15). The dimension of the online reduced-order DeePC (5.15) is another reason for better
computational time since it is the minimum possible dimension for the mosaic-Hankel matrix. It is
worth noting that Track. Perf. represents tracking performance, which is root mean squared error

as ||reference — y||, for different control frameworks.
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Figure 5.1: Order of Reduced-Order Mosaic-Hankel Matrix for LTV System.
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Figure 5.2: Comparison of Control Inputs for LTV System.

Table 5.1: Comparison of Tracking Performance and Computational Cost for LTV System.

Controller Track. Time (per loop)
Perf.

DeePC [8] 4.83 0.21s

Online DeePC [13] 3.39 0.18 s

Online DeePC [19] 3.05 0.09 s

Online R.O. DeePC (Ours) | 3.05 0.05s

7



0
300 350 400, 450 , 500 550 600

I I I
200 400 600 800 1000 1200 1400 1600 1800 2000

T

—— Reference
DeePC [§]
Online DeePC - Replacement [13]
Online DeePC - Adding [19]

= = :Online Reduced-Order DeePC (Ours)

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

T

Figure 5.3: Comparison of System Outputs for LTV System.

5.4.2 Vehicle Rollover Avoidance

Rollover is a type of vehicle accident in which a vehicle tips over onto its side or roof. The
rollover propensity of a vehicle is changed for different road surfaces or carried loads. Therefore, it
is a big challenge to derive an accurate model for the vehicle dynamics which includes all operating
conditions. We apply our online reduced-order DeePC to safeguard a vehicle against rollover.
Considering a constant longitudinal speed for the vehicle, the steering wheel angle (SW) acts as
the command, which is generated either by a human operator or a higher-level planning algorithm.
For an arbitrary reference command SW, denoted as u,, the rollover constraint may not be satisfied.
Thus, DeePC is used as a safety filter for the reference command SW u, to obtain an admissible
input u. Indeed, DeePC ensures compliance with the load transfer ratio (LTR) constraint to prevent
potential rollovers.

Following [67], a linear model is considered to represent the vehicle dynamics, which vehicle
roll angle g, roll rate p, lateral velocity v, and yaw rate y represent the states of the system.

Considering the system in the format of (5.23), we have A(k) = A + 0.012(k)A°, B(k) =
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B? +0.012(k)B? as the time-varying matrices, and A°, B?, and C are considered as:

0.00499 0.997 0.0154 —6.81x 1073
~783  —12.2 -65.3 ~3.89
A° =T, +14,
—0.932 -0.799 -6.20 ~1.57
1.52 332 827 ~1.49

_ T
B° =Ty [-5.76 x 107> 2.80 0.278 0.655] ,

C= [0.1200 0.0124 -0.0108 0.0109],

where x = [q p v y]T, u=3SW,y=LTR, and T is sampling time. It should be mentioned that
the matrices A?, B, and C are obtained based on a CarSim model for a standard utility truck under
a constant longitudinal speed 80km/h. More specifically, the vehicle tracks a constant reference
longitudinal speed 80km /h using a feedback control on the gas pedal, which is not discussed here.

Through the LTR, the rollover constraint is defined as:

F.p—F
TR = Z,R z,L ’
mg

where mg is the vehicle weight, and F; g and F, ; stand for the total vertical force on the right-side
tires and the left-side tires, respectively. Note that |LTR| > 1 means wheels lifting off; thus, the
rollover constraint is imposed as:

-1 <LTR< 1.

For the simulation, we consider the following values: T;,,; = 10, N = 15, the simulation time

T. = 1200, the smapling time Ty = 0.1, x(0) = [0,0,0,0]7, and random values ldpl, ldml

IA

0.002. Moreover, the first initial trajectory (u;y;, yini) 1S generated by applying u(k) = 55,k =
1 : T;p; to the system and measuring the corresponding output. For this case, A(k) and r, are
shown in Fig. 5.4, where one can see that the adaptive order r, changes when the system switches
to another dynamics. For the online DeePC [61], the rank of the mosaic-Hankel matrix is 50,

which is the order of the reduced-order mosaic-Hankel matrix. Like the previous case, Fig. 5.4
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illustrates that the online DeePC (5.15) has lower order than the online DeePC [61], which leads to
better computational cost. Figs. 5.5 and 5.6 show the control performance of the proposed online
reduced-order DeePC (5.15) in comparison with the traditional DeePC [27], the online DeePC
[56] (replacing old data by new data in the mosaic-Hankel matrix), and the online DeePC [61]
(adding new data to the mosaic-Hankel matrix). Fig. 5.5 shows the tracking performance and
modification to the reference command SW for the control strategies. As shown in Fig. 5.6, one
can see that the proposed online reduced-order DeePC only satisfies the LTR constraint, and other
control schemes cannot satisfy the constraint. Table II demonstrates that the developed online
DeePC significantly reduces the computational time compared to other controllers while keep the
tracking performance and system safety well. It should be mentioned that Const. Viol. represents
constraint violation number for different control frameworks. In this case, not only our online
DeePC has lower computational cost compared to the online DeePC [61], but also it only satisfies

the safety constraint due to employing useful information in the mosaic-Hankel matrix.
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Figure 5.4: Order of Reduced-Order Mosaic-Hankel Matrix for Vehicle Rollover Avoidance.
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Figure 5.6: System Outputs for Vehicle Rollover Avoidance.

Table 5.2: Comparison of Safety Performance and Computational Cost for Vehicle Rollover

Avoidance.
Controller Const. Time (per loop)
Viol.
DeePC [8] 1 0.024 s
Online DeePC [13] 1 0.025 s
Online DeePC [19] 1 0.010 s
Online R.O. DeePC (Ours) | 0 0.007 s
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5.5 Chapter Summary

In this chapter, we proposed an online DeePC framework that incorporates real-time data
updates into the Hankel matrix, leveraging the minimum non-zero singular value to selectively
integrate informative signals. This approach effectively captures the dynamic nature of the system,
ensuring improved control performance. Furthermore, we introduced a numerical SVD technique
to mitigate the computational complexity associated with data integration. Simulation results
validated the efficacy of the proposed online reduced-order DeePC framework, demonstrating its

potential for achieving optimal control in evolving system environments.
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CHAPTER 6

CONCLUSION

In this thesis, we addressed several existing challenges about the nonlinear optimal control,
including parametric model requirement, model uncertainties, and computational cost. We ap-
proached this topic with three goals in mind: (i) Improving the neighboring extremal (NE) optimal
control to handle the model uncertainties; (i1) Designing a data-driven neighboring extremal optimal

control; and (iii) Developing an adaptive data-enabled predictive control (DeePC).

6.1 Contributions

In Chapter 3, we introduced an extended NE (ENE) to handle the model uncertainties for the
NE, where effectively reduces the computational cost of the model-based nonlinear optimal control.
The developed ENE was based on the second-order variation of the original optimization problem,
which led to a set of Riccati-like backward recursive equations. The ENE adapted a nominal
trajectory to the state and preview perturbations, and a multi-segment strategy was employed
to guarantee closed-loop performance and constraint satisfaction for the large perturbations. In
Chapter 4, we introduced a data-enabled neighboring extremal (DeeNE) to remove the parametric
model requirement for the NE, where is very useful for high computational cost of DeePC. We also
developed a scheme to handle nominal non-optimal solutions so that we can use the DeeNE solution
as the nominal solution during the control process. The developed DeeNE was based on the second-
order variation of the original DeePC problem such that the computational load of the DeeNE grows
linearly for the optimization horizon. In Chapter 5, we introduced an adaptive DeePC framework
for time-varying systems, enabling the algorithm to update the Hankel matrix online by adding
real-time informative signals. By exploiting the minimum non-zero singular value of the Hankel
matrix, the developed online DeePC selectively integrated informative data and effectively captured
evolving system dynamics. Additionally, a numerical singular value decomposition technique was

introduced to reduce the computational complexity for updating a reduced-order Hankel matrix.
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6.2 Future Works

As the future works, two interesting research directions are Nonlinear Fundamental Lemma

and Data-Enabled Control Barrier Function. Below are the detailed objectives of each topic.

6.2.1 Nonlinear Fundamental Lemma

The Fundamental Lemma accurately learns the system’s behaviour such that the subspace
of the I/O trajectories of a linear time invariant (LTI) system can be obtained from the column
span of a data Hankel matrix. However, this lemma is not perfect to learn the behaviors of the
nonlinear systems. Therefore, the DeePC is robustifies the Fundamental Lemma through a suitable
regularization to ensure good performance for the nonlinear systems. However, deriving a rigorous
mathematical theory to develop a Nonlinear Fundamental Lemma would highly show a better

performance for the nonlinear optimal control compared to regularization.

6.2.2 Data-Enabled Control Barrier Function

To guarantee system safety, control barrier function (CBF) has recently emerged as a promising
framework to efficiently handle system constraints [68]. The CBF implies forward invariance of a
safety set based on system dynamics, and robust CBF and adaptive CBF maintains system safety
in the presence of system uncertainties such as unknown disturbance, model mismatch, and state
estimation error [69, 70, 71, 72, 73]. A data-enabled CBF can be proposed for the nonlinear optimal

control to guarantee system safety using raw input/output data.
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CHAPTER 7
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