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ABSTRACT 

Though box compression strength (BCS) is commonly used as a performance criterion for shipping 

containers, the state-of-the-art BCS estimation produces results within a broad range of values. In 

this study we implemented a new approach, artificial neural networks (ANN), to explore how much 

data may be needed for an ANN to reasonably predict compression strength, and how the ANN 

approach performs while facing variation that adversely impacts other modeling methodologies. 

An ANN model can be built by comprehensively adjusting four modeling factors that interact with 

each other to influence model accuracy and can be optimized by minimizing model MSE. Using 

both data available from the literature and a “synthetic” data set using idealized data based on the 

McKee equation, we find that model estimation accuracy remains limited by the uncertainty or error 

in the input parameters combined with uncertainty from the ANN process itself, and we produce an 

estimate for this impact. The population size to build an ANN model that can reasonably estimate 

BCS has been identified based on different data sets in this study. 

Packaging design plays a crucial role in ensuring the protective performance of packages. Various 

factors must be considered to ensure package strength during the packaging design process. 

Understanding the relative importance of each influencing factor or design feature provides 

valuable insights for optimizing packaging material utilization. However, current methods such as 

testing and finite element analysis have limitations in evaluating the relative significance of these 

parameters. In response to these challenges, in this research, we applied different methods to 

comprehensively evaluate the relative importance of different packaging design features on a given 

packaging property. Using BCS as a representative packaging property, the relative importance of 

up to six BCS features (Edge Crush Test (ECT), Perimeter, Thickness, Depth, and Flexural Stiffness 

in both the machine and cross-machine directions) were evaluated. Four distinct ANN methods 



 
 

were employed - Connection weights method, Gradient-based method, Permutation method, and 

SHAP values. These techniques were applied to two datasets: one comprising "synthetic" data based 

on the McKee formula and the other representing real-world scenarios. The reliability of these 

methods was assessed. Different input feature importance (FI) scores obtained from the four 

methods have been calculated and compared with theoretical BCS FI derived from the McKee 

formula. The BCS feature ranking result given by the synthetic data is verified by the theoretical 

feature importance ranking indicated by the McKee formula. Although box depth is considered to 

have zero importance in the McKee formula, the BCS feature importance ranking from the real 

dataset highlights its significance, aligning with buckling theory. The study gives an insight into the 

BCS feature importance evaluation using ANN approach and guides packaging design material and 

cost saving. 

The ultimate objective of this research is to develop a comprehensive ANN model for predicting 

Box Compression Strength (BCS). To achieve this, we utilized a dataset encompassing a wide range 

of box dimensions commonly encountered in industrial applications. After applying multiple 

optimization methods to determine the optimal number of hidden neurons and further identifying 

the key factor values influencing the model, a generalized ANN model was trained. The trained 

ANN model can predict the BCS commonly used in the industrial applicable level with an error of 

9.51%. The primary factor contributing to the high BCS error is the presence of boundary data 

points and the small sample size of the current data set. One possible strategy to improve ANN 

prediction accuracy is to continually expand the current dataset sample size using available 

resources. In essence, this study serves as a roadmap for forthcoming research endeavors seeking 

to leverage ANN techniques to tackle challenges and provide solutions within the corrugated 

industry.
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CHAPTER 1: BACKGROUND 

This chapter focuses on the Box Compression Strength (BCS) of corrugated packaging using the 

Artificial Neural Network (ANN) approach. This chapter covers four main sections: BCS, existing 

approaches for BCS evaluation, ANN, and the application of ANN. The BCS section discusses the 

application of corrugated packaging, the reasons for its failure, and the factors influencing BCS. 

The section on existing methods for evaluating BCS introduces the shortcomings of each method. 

The ANN section covers the architecture and components of ANN, its working principles, and its 

various types. The application of ANN section introduces different fields involving ANN 

applications, with a particular emphasis on packaging. 

1.1 BOX COMPRESSION STRENGTH (BCS) 

In the packaging industry, evaluating packaging properties is essential to ensure the reliability of 

a package's utilization. Among various types of packaging, corrugated packages have gained 

significant popularity in the modern market. Due to the unique properties of corrugated paperboard, 

evaluating the properties of these packages has become a critical research topic. Given the diverse 

demands of the market, estimating the strength of corrugated boxes has become increasingly 

important. Box Compression Strength (BCS) is one of the most crucial parameters to consider for 

corrugated packages. Over the past 130 years, the compression strength of corrugated boxes has 

been extensively studied due to failures occurring during the shipping, distribution, and storage 

processes of various [1]. 

1.1.1 Ubiquitous corrugated box  

Corrugated boxes are one type of shipping container that is widely used in the market currently. 

Corrugated boxes are made from paper, and machine-shaped from corrugated box boards with 

hollow structures. Since the corrugated box was first accepted by legal freight classification 
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organizations as containers for freight transportation, the application history of corrugated boxes 

and studying corrugated box dynamics has been over more than 100 years. Corrugated boxes are 

widely applied in various fields [2] because of their lightweight, low cost, ease of assembly and 

disassembly, good sealing performance, certain cushioning and anti-vibration ability, and easy 

recovery and waste treatment. 

The most commonly used corrugated box structure is the Regular Slotted Container (RSC) due to 

its simplicity in production, formation, and ease of use. With the development of the economy, e-

commerce has become increasingly popular. As e-commerce advances, the types of corrugated 

boxes have diversified. Various box structures are now being utilized in the market, as shown in 

Figure 1 [3]. 

 

Figure 1 Different structures of corrugated boxes used in the market 

The utilization of corrugated boxes has become widespread across various countries. According to 

the 2015 Global Corrugated Packaging Market Overview report, based on data from the United 
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Nations, each person in the world uses packaging worth over USD 110 annually, significantly 

contributing to the expansion of the packaging industry [4]. The corrugated packaging industry is 

witnessing an incredible growth due to the increasing demand in packaging for food & beverages, 

personal and household care products, medicines, and other products. The booming e-commerce 

industry is playing a vital role in the adoption of corrugated packaging for consumer goods. Around 

85% of corrugated packaging is used for shipping boxes where high protection is required. 

Moreover, the increasing popularity of corrugated retail display stands which are used for effective 

highlighting of products in retail stores is likely to contribute to the expansion of the corrugated 

packaging business. These factors are increasing the global production of corrugated boards. In 

2017, as per International Corrugated Case Association (ICCA) over 240 billion square meters of 

corrugated boards were produced, where North America occupies 30% revenue share of the total 

production [4]. 

Furthermore, innovative solutions provided to key vendors for the adoption of corrugated packaging 

are also contributing to the growth of the global corrugated packaging market. For instance, 

International Paper Co. uses cellulose fibers in corrugated packaging which is mainly used for 

packaging textiles, construction material, paints and coatings, and other non-durable goods [4]. 

The global corrugated packaging market is segmented on the following basis: Slotted boxes, 

Telescope boxes, Folder boxes, Self-Erecting Boxes / Auto-Bottom Boxes, Bliss / Rigid Boxes, and 

Others (Mailing Boxes, Bin Boxes, Slide Boxes). Based on End-User, the global corrugated 

packaging market is segmented into Food & Beverages, Electronic Goods, Personal and Home Care 

Goods, Glassware & Ceramics, Healthcare & Pharmaceuticals, and Others (Textile, Chemical, 

Paper products). Based on Geography, the global corrugated packaging market is segmented into 

North America (U.S. & Canada); Latin America (Brazil, Mexico & the rest of Latin America); 
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Europe (the U.K., Germany, France, Italy, Spain, Poland, Sweden &  the rest of Europe); Asia-

Pacific (China, India, Japan, Singapore, South Korea, Australia, New Zealand, the rest of Asia); 

Middle East & Africa (GCC, South Africa, North Africa, the rest of Middle East and Africa) and 

Rest of World. All these markets have a large market size measured in USD billions and a 

production quantity measured in tonnes. Almost 80% of the volume of paper packaging used in the 

United States are corrugated boxes. A similar proportion of goods are transported using corrugated 

boxes. The goods are not only the goods from the distribution process to the end user but also the 

parts of goods brought to their assembly locations using corrugated boxes as well. Corrugated boxes 

protect the products during almost all the phases of the distribution process [1]. Corrugated boxes 

are one of the main types of delivery packages in China as well. 9.9 billion corrugated boxes have 

been used in China as reported in 2015 [5]. 

Due to a huge spike in the e-commerce segment, the corrugated packaging market is growing 

rapidly, as a consequence the global corrugated market is growing faster at the rate of 5.62% 

annually and it has been predicted to achieve $386 billion in 2026, as reported by the Indian Pulp 

and Paper Technical Association [6]. E-commerce retail sales are continuing to surge, with 

estimates of around 20% annual growth in e-commerce trade in Europe. This will have a profound 

impact on packaging demand, especially in the corrugated industry as it represents 80% of demand 

in e-commerce. The corrugated Packaging Market size was valued at USD 70 billion in 2022 and 

is poised to depict a 4% CAGR through 2023-2032, on account of the burgeoning e-commerce sales 

worldwide [7]. 

As sustainable development becomes a global priority, corrugated packages are gaining popularity 

in packaging, reflecting the growing emphasis on sustainability throughout the value chain. 

Corrugated packages are easy to recycle, and the pulp and paper industry has already adapted to 
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converting these into new generations of container boards. Consumers prefer corrugated protective 

formats over polymer-based alternatives, such as expanded polystyrene (EPS) foams [6]. 

1.1.2 Reason of failure of corrugated packages 

The failure of corrugated boxes can be influenced by both distribution and material factors. The 

actual BCS of corrugated will decrease over time due to various environmental factors, such as 

stacking height, the mass of the filled box, the number of layers packed high, types of pallets used 

and overhang, unitizing practice, and the number of pallets high packed at the storage, storage, and 

distribution time, and transportation circumstances [8]. 

The overhang has a significant influence on the BCS of corrugated boxed during the storage and 

shipping process. The major strength of a container is mostly derived from the corners [9] as 

demonstrated in Figure 2 below. 

 

 

Figure 2 Load Distribution along the Perimeter of Corrugated Box (source: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ijltemas.in/DigitalLibrary/Vol.6Issu

e7/26-28.pdf) 

Practice such as overhang should be avoided as it has been found that the deficit in BCS of packed 

boxes as an effect of overhang can range between 23–49% but vary on the extent and direction 

(length, width, or adjacent panel) of the overhang [10]. Another practice that should be avoided is 

misalignment of the boxes when packed on each other on a pallet as it plays a significant role in 
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decreasing the strength and the lifetime of the box, where the percentage decrease in BCS (lateral) 

value can be as much as 11% and 31% for 90% contact area and 80% contact area, respectively 

[11]. To ease the consequences of environmental factors, the end user must minimize the habit of 

particular methods that negatively affect the strength characteristics of the corners, including 

overhang on the pallet, packing on pallets with only a few slats, excessive shrink warp tension, and 

using “interlocking” stacking patterns [11]. 

Corrugated cardboard is a highly deformable material, the limit of its use may be delimited by the 

deformation of the box [12]. Corrugated boxes are made from a specialized material known as 

corrugated paperboard. It is necessary to accurately estimate the strength of corrugated boxes before 

applying them in real-world scenarios. This is due to their unique material composition, which 

allows their structure to be easily customized and strengthened to achieve high packaging 

performance but can also degrade over time due to prolonged use or environmental factors such as 

humidity. Paper material is orthotropic, exhibiting non-linear mechanical properties, which means 

that it possesses varying strength in different directions. For instance, the tensile strength of paper 

fibers in the machine direction can double compared to that in the cross-machine direction as strain 

increases [13]. Consequently, the orientation of corrugated board utilization becomes critical. 

However, even when the corrugated board is used in the correct direction, the weaker direction of 

this anisotropic material can lead to the failure of the corrugated box under specific conditions. For 

example, unexpected damage to the box's side panels can be induced by shock or piercing, 

significantly reducing the strength of the corrugated box. 

1.1.3 Influencing factors of BCS 

BCS is influenced by various factors, such as material properties, flute types, dimensions, and more. 

Each factor, or BCS feature, affects the BCS differently. The BCS features for corrugated packaging 
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can be systemized into three groups, the mechanical strengths of the raw paper material, the 

corrugated board, and the corrugated box itself. In the level of raw paper, the key factors involve 

liner type, weights of liner and a constant related to the fluting. The critical influencing factors for 

BCS involve the ring crush test (RCT), Concora liner test (CLT), Takeup factor, thickness, flexural 

stiffnesses in Machine Direction and Cross Machine Direction (MD and CD), Edge Crush Strength 

(ECT) and moisture content, etc, as shown in Figure 3. When it comes to the level of corrugated 

box, dimensions and perimeter of the box, design structure, applied load ratio, stacking time, and 

buckling ratio all have significant impact on the BCS value of a corrugated package. What’s more, 

some other factors also make a difference in BCS, such as the presence of openings, ventilation 

holes and perforations, moisture content of the box, storage time, stacking conditions, etc [14]. 

 
Figure 3 BCS Influencing Factors 

ECT (Edge Crush Test) can be a vital indicator for the BCS of the corrugated packages. The BCS 

of a packaging container of the regular slotted container (RSC) design has been anticipated from 

the ECT value of the board [15]. The ECT & BCS, Stiffness & BCS, and Thickness & BCS links 

were proven to be solid and positive correlations. 

The effect of box depth (which is not included in the McKee formula) is that the box becomes 

weaker as the height increases due to the wall buckling, where the compression strength dropped 

by as much as 62% from the 127mm to 1219mm box heights, which points out the weakness of 
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using McKee formula [9]. 

The stacking pattern has a significant impact on the BCS. Existing research has revealed that 

column stacking practice results in higher strength as compared to interlocking stacking patterns, 

and while stacking boxes, one needs to ensure that the four carton corners are placed in alignment 

[9], see Figure 4 below. 

     

Figure 4 Column and interlocking stacking pattern of corrugated boxes 

The mechanical properties are important design features because the function and performance of 

a product depend on its capacity to resist deformation under the stresses encountered in use, hence 

in design, the usual objective is for the product and its components to withstand these stresses 

without significant change in geometry [16]. Edge Crush Test (ECT) and Flat Crush Test (FCT) are 

the main two tests that determine if the mechanical properties of the corrugated board will meet the 

set or targeted performance of the box in the market [17]. 

1.2 APPROACHES FOR BCS ESTIMATION 

The evaluation methods of BCS primarily include three approaches: compression tests (the most 

traditional method), mathematical models, and Finite Element Analysis (FEM). Each method has 

its drawbacks in BCS evaluation, and while researchers have made efforts to address these 

challenges, improving evaluation efficiency and accuracy still presents difficulties. 
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1.2.1 Compression Test 

Compression test is one of the commonly used methods to test the corrugated box compression 

strength or stack load, to make sure the boxes do not fail when stacked over each other during the 

storage and distribution process. The Box Compression Test (BCT) is a standardized procedure 

designed to measure the maximum pressure or force that a material can withstand before rupturing. 

It is particularly relevant for assessing the strength of corrugated and paperboard materials 

commonly used in packaging applications. Different test standards are applied based on the 

requirements of corrugated packaging of different utilizations. The test standards involve ISO 

12048 Packaging - Complete, Filled Transport Packages - Compression and Stacking Tests Using 

a Compression Tester, TAPPI T 804 Compression test of fiberboard shipping containers, ASTM 

D642 Standard Test Method for Determining Compressive Resistance of Shipping Containers, 

Components, and Unit Loads, JIS Z0212 Japanese Industrial Standard Method of Compression Test 

for Packaged Freights and Containers, ASTM D4169 Standard Practice for Performance Testing of 

Shipping Containers and Systems. The ASTM D642 is developed by the American Society for 

Testing and Materials (ASTM) to determine the compressive resistance of shipping containers, 

components, and unit loads. The key points include the test method which is to apply the 

compressive force to the package until failure and the result interpretation about how to determine 

the maximum compressive load. TAPPI T804 is provided by the Technical Association of the Pulp 

and Paper Industry (TAPPI) focusing on the determination of the compressive strength of 

fiberboard shipping containers by applying the compressive load until the failure of the packages. 

ISO 12048 is an international standard that defines the compressive and stacking tests for transport 

packages by applying compressive force to a package until failure or set load to simulate the 

stacking conditions in warehouses. JIS Z0212 focuses on compression test methods for corrugated 
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fiberboard boxes by applying compressive load until collapse and recording the force [18]. ASTM 

D4169 is a (Food and Drug Administration (FDA) - recognized consensus standard for conducting 

a transit simulation study for sterile barrier medical device packaging systems, it is the most 

common choice in the medical packaging industry [19]. Overall, the box compression Test is a 

fundamental assessment that evaluates the strength and resilience of packaging materials, and the 

compression test gives insight into the optimization of packaging design and material selection. 

However, there are some limitations of the compression test. The package sample is limited by the 

laboratory facilities. The test conduction is limited by the laboratory setting and environment. 

Besides, a lot of other factors can reduce the accuracy of the compression test, including systematic 

errors, instrumental errors, environmental errors, procedure errors, and human errors [20]. Some 

instruments have limitations, which can cause consistent deviation from the real value. Laboratory 

temperature and humidity can change because of the unexpected failure of electronic devices. 

Human errors can cause measurement deviation, which cannot be eliminated in laboratory testing. 

In addition, the compression test process is very time-consuming and costly, starting with 

preconditioning of at least 24 hours in the required temperature and humidity environment, then 

setting up the sample, mounting it onto the testing apparatus, and ensuring that it is evenly aligned 

and free from any wrinkles or folds that could affect the test results, then applying the pressure 

steadily using the testing machine with a certain moving speed [21]. A testing machine for the 

compression test is shown in Figure 5. To minimize errors, multiple samples need to be tested. 

When it comes to various box structures, box dimensions, box materials, etc, the workload of 

physical testing increases dramatically. The current compression test can only test boxes one by 

one, which is very low efficiency. On top of repeated testing of one single sample, samples with 

different material properties, and different batches of product source can further increase the error 
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of compression test. Thus, these are the drawbacks of compression testing. 

 

Figure 5 Testing machine for Box Compression Test 

1.2.2 Mathematical models 

Many mathematical models have been developed for BCS evaluation. The McKee formula is one 

of the most commonly used mathematical models used in industry for BCS estimation for 

corrugated packages, as shown in equation (1) [9]. The McKee formula was developed by McKee 

et al. [22] in the 1960s. McKee’s formula estimates the BCS of corrugated boxes by employing 

three basic physical parameters of a box, including ECT, thickness, and box perimeter. However, 

the McKee formula is limited in its predictive accuracy by the uncertainty in the measurements of 

package properties [23]. The McKee formula is simple and accurate to predict the regular slotted 

container (RSC). The research by McKee et al. [22]. presented certain limitations due to the 

simplification of more general physical relationships. Fundamentally, these were linear regression 
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analyses based on specific data sets, typically limited by processing constraints. 

𝐵𝐶𝑆 = 5.87 × 𝐸𝐶𝑇 × √𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 × 𝑃  

Where: 

ECT – Edge Crush Strength (lb/in). 

Thickness – Thickness of the corrugated board (in). 

P – Perimeter of the box (in). 

(1) 

The McKee formula has limitations in that it must only be utilized when the length-to-width ratio 

or the height-to-length ratio of the box is not too large. Specifically, this assumes that the length is 

less than three times the width, and the perimeter is less than seven times the depth [14]. However, 

corrugated packaging patterns have become more and more diverse as the advancing of e-commerce, 

corrugated packages with various dimensions become more and more common. Plus, the McKee 

formula is not able to estimate the BCS of packages with various patterns available in the market, 

as it does not account for variations in material properties and box structures.  

The limitation of the McKee formula is the limited consideration of only three physical parameters 

of a box. There are a lot of other physical parameters that influence the BCS, such as structural 

mechanics factors (flexural stiffness, torsional stiffness, diagonal stiffness), production factors 

(crush, scoring, slotting quality), use factors (the squareness of the box when erected, how the box 

is sealed).  Many of these are difficult or impossible to capture in a closed-form mechanistic model 

of BCS. For example, torsional stiffness, also called shear stiffness, measures the torsional 

resistance of a corrugated board in the machine direction (MD). When a corrugated box undergoes 

compressive loading in the MD, the side walls tend to deform outwardly in a buckling response to 

the compression. This deformation is affected by the longitudinal shear stiffness. The shear stiffness 

can directly influence how well the box can protect its product [24]. However, MD torsional 

stiffness is a more sensitive predictor of corrugated board performance and there is no test standard 

for this parameter [25]. 
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As mentioned above, buckling is another critical factor that influences the compression strength of 

corrugated boxes. Urbanik, T. J., & Frank, B. (2006) studied the impact of buckling on the box 

compression strength and formulated a mathematical equation to demonstrate the relationship 

between buckling and BCS [26], as shown in equation (2). However, this equation involves some 

parameters (such as the flexural stiffness in transverse, axial, and twisting directions) that are 

difficult to obtain after the corrugated board production process, causing the utilization restriction 

of this equation to estimate the BCS. Although researchers have attempted to develop other 

equations to estimate BCS more accurately, these equations still contain parameters that are difficult 

to access. For example, an improved version of the McKee formula after considering buckling is 

shown in equation (3), the flexural stiffnesses in the transverse, and axial directions are included in 

this equation, and they are usually not measured after the corrugated board production process. 

For inelastic buckling    𝑃1= 𝑃𝑓l= α𝑃𝑚l  

For elastic buckling 

   𝑃1 = 𝑃𝑓l= α(4𝜋2)η𝑃𝑚
(1−η) (𝐸𝐼𝑥𝐸𝐼𝑦)-η l(1−2η)

 ((
d

𝑙
(

𝐸𝐼𝑥

𝐸𝐼𝑦
)1/4)𝜏 2ĉ+𝑀

4(1−𝑣2)
)η  

Where: 

P – compression. 

Pm – ECT. 

l – panel length. 

d – depth. 

EIx, EIy, EIxy – Flexural stiffness per unit width in transverse, axial, and twisting 

directions. 

𝑣 – Geometric mean Poisson’s ratio. 

ĉ – Normalized in-plane shear modulus of elasticity derived in Urbanik (1992) 

 cˆ= 𝑣 + 2(1 - 𝑣2)(𝐸𝐼𝑥𝑦/ 𝐸𝐼𝑥)√𝐸𝐼𝑦/𝐸𝐼𝑥 . 

𝜏- Empirical improvement. 

η = 1 - b (b is McKee formula constants). 

 

(2) 

 

𝐵𝐶𝑆 =  2.028𝐸𝐶𝑇0.746√𝐸𝐼𝑥 × 𝐸𝐼𝑦)
0.254

𝑃0.492 

Where: 

ECT - Edge Crush Strength (lb/in). 

(3) 
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EIx, EIy - Flexural stiffness in the machine direction & cross-machine direction of the 

corrugated board (lb*in). 

P - Perimeter of the box (in). 

1.2.3 Finite Element Analysis (FEA) 

Finite element analysis (FEA), a powerful technique often used for the simulation of engineering 

processes, is finding a home in the corrugated industry, and has been applied to evaluate the BCS 

of corrugated packages. FEA models generate predictions by leveraging fundamental physical 

mechanics across different length scales, stitching together functional relationships to estimate the 

effect of changes in very basic material properties (e.g., paper elasticity) on the larger final system 

(e.g., box strength). When the functional form is known, the propagation of parameters and their 

impacts produce a prediction of the result. Various studies have explored using an FEA approach 

to predict ECT 26-29. or BCS 30-39., allowing for a detailed examination of the impact of moisture, 

perforations, holes, openings, crushing, and more complex structures. Literature has grown so 

extensively that even review articles addressing the usefulness of FEA on broader topics have 

sections discussing corrugated paperboard packaging [27]. Each of these studies requires detailed 

information on the material parameters to input into the models, typically producing a reasonable 

agreement between the model and the limited number of physical samples evaluated. As such, they 

potentially contribute to our understanding of the impact of specific changes examined (i.e., hole 

size and placement.) [28]. However, very few of these studies address or investigate how well their 

models work with boxes made of different, varied, or unknown materials. They also don't often 

discuss how the varying physical and mechanical properties of paper or combined board can affect 

the accuracy of their predictions. Typically, the input parameters required for an FEA are not 

properties regularly measured in the papermaking or box-making process. Thus, existing (published) 

analyses cannot reasonably be used for a generalized assessment of a random box in the same way 

that we can use the McKee equation. 
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1.3 ARTIFICIAL NEURAL NETWORK (ANN) 

ANN is a subset of AI, which serves as an intelligent tool with great advantages in data processing 

and estimation. Artificial neural network was introduced in 1956 [29]. Artificial neural networks 

are inspired by the human biological neural network. An ANN is an algorithm that can recognize 

the relationships of a set of data and use the computer to make decisions or predictions. The 

Artificial neural network (ANN) model involves computations and mathematics, which simulate 

the human–brain processes. The Artificial Neural Networks (ANNs) are a very different 

computing approach that can also be used to explore the underlying relationships in a set of data 

and generate predictive models. 

ANNs have many advantages because they can strive to take whatever information we happen to 

know in terms of materials inputs and gather relationships to the outputs of interest. This inference 

process can take in a broader range of inputs, teasing out their connections (implicit or explicit) to 

“understand” their relationship to a given output. The goal of ANNs is to minimize the error of the 

predicted property. By mapping features in data, ANNs can substantially add to the power of 

exploratory data analysis [30]. Using ANNs can bring many benefits to scientific research [31], 

making more consistent decisions and shortening the decision-making process [32]. Given the 

fundamentally non-linear relationship between fiber characteristics and the mechanical properties 

of paper, combined board, and boxes, this alternate approach is beginning to garner interest among 

researchers [33, 34]. The prediction capability of ANN potentially allows us to incorporate a large 

number of input parameters into a single prediction model, limited only by the size of our data set. 

ANN research to date has focused on specific areas or factors influencing box strength [35]. 

1.3.1 Components and architectures of ANNs 

An ANN consists of three types of layers, including the input layer, hidden layers, and output 
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layers. Each layer contains several neurons which are real numbers, and these neurons are 

connected by weights which are the influence strength between the two neurons connected. If the 

neuron in the last layer has a strong influence on the neuron in the next layer, the weight is a large 

number. If the influence of the neuron in the last layer is weak on the neuron in the next layer, the 

weight is a small number, a typical ANN schematic is shown in Figure 6. An activation function 

is involved to realize nonlinear patterns between the input and output. An ANN can have two or 

more hidden layers, and each layer can have several neurons. Therefore, all the connections or 

weights between neurons allow an ANN to have a high number of degrees of freedom. Sometimes, 

a bias is also added to the summation (or the weighted sum of all neurons) to allow an ANN to get 

activated above a certain value. The biases also increase the number of degrees of freedom of an 

ANN. As a result, an ANN can have a high flexibility and high capability to recognize the 

nonlinear pattern for a set of data and provide the best possible prediction through several iteration 

weights updating. 

 

 

Figure 6 Schematic of a typical ANN  

Input: Input data is usually labeled which is used for ANNs to learn and recognize the underlying 

patterns (or relationships) in the input data. Input data can be collected through physical tests, 

mathematical fabrication, and some other approaches. The values of input data will be the neurons’ 
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values in the input layer. 

Weights and biases: Weights and biases are the parameters through a whole neuronal network. The 

weights of the connections between neurons are the adjustable model parameters that govern how 

the model calculates the output from the given inputs. To some degree, weights can be also 

regarded as the coefficients of input data. By adjusting the weights, ANNs can reduce the influence 

of those not important inputs and increase the influence of those critical inputs. In this way, an 

ANN can nudge its output as close as possible to the real values. The adjusting of weights and 

biases is the key part of ANNs’ learning. 

Epoch: An epoch signifies the process of feeding a dataset into the model and the model's weights 

are adjusted to reduce the overall error. This iterative repetition of the process, known as multiple 

epochs, continues until the error reduction rate falls below the given criteria. 

Activation function: Activation function is a series of functions that allows an ANN to realize non-

linear operations. Considering the complex problems in real situations in our lives, most of those 

problems are complicated non-linear problems, such as the changeable temperature around a year 

or several years. To fit the non-linear problems using ANNs, activation functions are necessary. 

Without applying a non-linear activation function, an ANN will be just a linear combination of 

input values. There are different types of activation functions, both linear functions and non-linear 

functions. Although the linear function has very limited application, it can still be counted as a 

type of activation function. The non-linear activation functions are more commonly used. Figure 

7 presents graphical representations of several commonly used activation functions, which play a 

crucial role in ANNs. These activation functions introduce non-linearity into the network, allowing 

it to model complex relationships within data that would otherwise be impossible for a purely 

linear system to capture. It is this non-linear behavior that enables ANNs to process intricate 
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patterns, make meaningful decisions, and effectively solve complicated real-world problems 

across various domains, such as image recognition, natural language processing, and predictive 

analytics. 

 

Figure 7 Common activation functions (Source: 

https://en.wikipedia.org/wiki/Activation_function) 

The working principle of ANNs is related to the weight updates during the training process. 

Weights are assigned randomly at the beginning of the ANN learning process. An ANN calculates 

the outputs by receiving the input neurons’ values, computing the weighted sum of all neurons in 

the last layer, adding biases, and passing the weighted sum to an activation function. This process 

is called propagation. Since the weights are randomly assigned initially, there is usually a 

difference between the outputs and the real values. An ANN will minimize the difference by 

updating the weights and biases, which is called the backpropagation process. An ANN usually 

updates the weights and biases several times to give a best-predicted result. This is the working 

principle of ANNs or how ANNs learn from the data and make predictions [36, 37]. 



19 
 

1.3.2 Cost Function 

The cost function is the criteria of an ANN to adjust its weights. Generally, the cost function 

calculates the error between the output and actual values and chooses the output with minimum 

error. There are different types of cost functions used in an ANN depending on what problem an 

ANN is solving 50-52.. Generally, there are two common types of problems, regression problems 

and classification problems. Based on the problems that need to be solved, the commonly used 

cost function includes three types, which are Regression cost Functions, Binary Classification cost 

Functions, and Multi-class Classification cost Functions. If the problem that needs to be solved is 

a regression problem, then a regression cost function should be used. If the problem needs to be 

solved is a classification problem, then a binary classification problem or multiple-class 

classification cost functions should be chosen. 

Regression cost function: The regression cost function deals with predicting a continuous value, 

for example, the weather during a day, or the mileage that a person drives. The regression cost 

function measures the average error or the average difference between the output and real value of 

data training over the entire data set. There are three different errors to calculate by using the 

regression cost function, including Mean Error (ME), Mean Squared Error (MSE), and Mean 

Absolute Error (MAE). 

Mean Error (ME) is equal to the sum of the error between the output and the real value, as shown 

in equation (4). For each training data point, the error between the output and the real value can be 

either positive or negative, and they can cancel out each other when they are added up then giving 

zero error to the regression models. Due to this cancel-out problem, Mean Error (ME) is usually 

not used frequently. 

𝑀𝐸 =
1

𝑛
∑(𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)

𝑛

𝑖=1

 (4) 
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Where n is the number of samples in a trained dataset. 

Mean Squared Error (MSE) is the average square difference between the output and real value, 

which is shown in equation (5). MSE doesn’t have the drawback of cancelling out problems in 

Mean Error (ME), which is more commonly used for regression models. However, the 

disadvantage of MSE is that it is not very robust for the outliers in a dataset because the square 

can enlarge the error from the outlier data points. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)2

𝑛

𝑖=1

 

Where n is the number of samples in a trained dataset. 

(5) 

Mean Absolute Error (MAE) is the average absolute difference between the output and real value, 

as shown in equation (6). MAE improves the shortcoming of Mean Error (ME) by using the 

absolute value of the error for each data point. MAE is very robust to the outliers in a dataset. So, 

if a dataset that an ANN needs to train has many noises or outliers, calculating MAE for the 

regression models is better. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

𝑛

𝑖=1

 

Where n is the number of samples in a trained dataset. 

(6) 

1.3.3 Classification of ANNs 

ANNs are classified into two types, feed-forward neural networks, feed-back neural networks, or 

recurrent neural networks [38]. 

The first type of ANN is called feed-forward neural networks [39]. In feed-forward neural 

networks, the connections between nodes don’t form a cycle, which means the signals move only 

in one direction, from input to output. Figure 8 shows the schematic of a typical feed-forward 

propagation. The feed-forward ANN calculation process cycle includes a forward-step 
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computation of fitting input data into an ANN and a backward-step computation of calculating 

errors and updating the weights in the model. A single iteration of this computational process is 

termed an epoch within an ANN. 

 

Figure 8 Schematic of a typical feed forward propagation 

Training process of feed-forward ANN: While training a model using data, a feed-forward ANN 

approach segments a given set of known data into two uneven groups, training data and testing 

data. The former is used to build and refine the model, and the latter is used to evaluate the model 

accuracy. 

Generally, to assess an ANN, 67% of data of a data set is split into training data, and the remaining 

33% is split into testing data. Each node in the hidden layers could be defined based on a weighted 

sum of the parameters in the prior layer, as shown in equation (7). 

 

ℎ𝑗
𝑖 = 𝑓 ∑(𝑤𝑘

𝑗
× 𝑥𝑘)

𝑘

 

Where 

ℎ𝑗
𝑖 is the value of jth neuron in ith hidden layer. j = 1, 2, 3,…, n1 when i =1 ; j = 

1,2,3,…, n2 when i = 2. 

𝑥𝑘 is the value of kth neuron in previous layer, k = 1, 2, 3,…, n. 

𝑤𝑘
𝑗
 is the weight from the kth neuron in previous layer to jth neuron. 

(7) 
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f is the activation function. 

One of the most popular feed-forward neural networks is the convolutional neural network (CNN). 

CNN is especially good for image recognition and classification because CNN can identify the 

patterns in an image. CNN can be used to recognize the content or numbers in an image. Figure 9 

shows an example of CNN recognizing a handwritten digital number ‘2’. 

  

Figure 9 An Example CNN architecture for a handwritten digit recognition task 

 

The second type of ANN is called feed-back neural networks also can be called recurrent neural 

networks (RNN) [40, 41]. Feedback neural networks allow signals to move in both directions, say 

input to output or output to input, which can form a loop traveling for signals.  Feed-back neural 

networks are dynamic networks that keep changing until they reach an equilibrium point [42]. 

1.3.4 Learning strategies of ANNs 

ANNs use different learning strategies, including supervised learning, unsupervised learning, and 

reinforced learning. 
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In supervised learning, ANNs learn the underlying relationships between input data and output 

data. ANNs recognize the governing function involving all input data and the output. It is like a 

fitting process that fits a function between the input data and output data. In supervised learning, 

ANNs need labeled input data and output data, which can teach the computer to learn the patterns 

between the input data and output data. Supervised learning ANNs are mainly used for 

classification and regression problems. 

For unsupervised learning, ANNs don’t need a labeled input data set to guide the computer to learn 

the underlying patterns between input and output data. Instead, unsupervised learning ANNs 

classify a set of elements according to some similar patterns between data and data. Unsupervised 

learning ANNs are mainly used for clustering and anomaly detection problems. 

Reinforced learning neural networks are different from supervised learning neural networks [43]. 

Reinforced learning doesn’t need labeled input data and output data. Figure 10 is the typical 

framing of a reinforced learning scenario. 

 

Figure 10 The typical framing of a reinforced learning scenario 

An intelligent agent takes actions in an environment. The environment interprets the agent’s action 

result as a reward and a representation of the state and gives feedback to the agent so that the agent 
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can adjust its action to maximize the accumulative reward. The environment of reinforced learning 

typically adopts the Markov decision process (MDP) [44], a mathematical framework that is good 

for modeling decision-making when the outcomes are partly random and partly under the control 

of a decision-maker. Many reinforced learning neural networks use dynamic programming 

techniques. Reinforced learning can be used for environmental learning. 

1.4 APPLICATIONS OF ANNS 

The ANN approach has been utilized in many different applications and various fields over the 

past few decades [45]. In recent years ANNs have drawn attention in the areas of Facial 

Recognition, Image Analysis, and Natural Language Processing (NLP). In the field of packaging, 

ANNs have also been utilized to solve certain problems, such as transport packaging cushioning 

property evaluation, polymer product characteristics prediction, and municipal solid waste (MSW) 

management. However, the application of ANNs in packaging strength estimation is very limited. 

1.4.1 Applications of ANNs in Facial Recognition, Image Analysis, and NLP 

ANNs have been applied in facial recognition area. An optimized ANN system using a harmony 

search algorithm was developed to improve the accuracy of face recognition, which can give a 

lower Mean Squared Error than the other hybrid ANN system called hybrid particle swarm 

optimization ANN [46]. Application of ANNs in predicting turbulent stock markets was discussed 

and studied [47]. A hybrid ANN model based on a genetic algorithm and simulated annealing was 

developed to predict the stock market with improved accuracy and a new set of input variables for 

ANN models was proposed [48]. ANNs with different algorithms (including Levenberg-

Marquardt, Scaled Conjugate Gradient, and Bayesian Regularization) were studied to predict the 

Indian stock market, getting an accuracy of 99.9% using tick data [49]. 

In the field of image classification and regression, Deep Learning (DL), a subset of ANN, has also 
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been applied to characterize the symmetries of simulated measurements of samples. In ref. 216, 

Ziletti et al. (2018) obtained a large database of perfect crystal structures, introduced defects into 

the perfect lattices, and simulated diffraction patterns for each structure [50]. DL models were 

trained to identify the space group of each diffraction pattern. The model achieved high 

classification performance, even on crystals with significant numbers of defects, surpassing the 

performance of conventional algorithms for detecting symmetries from diffraction patterns. DL 

has also been applied to classify symmetries in simulated STM measurements of 2D material 

systems by Choudhary et al. (2021) [51]. 

In Natural language processing, one of the major uses of NLP methods is to extract datasets from 

the text in published studies. Cooper et al. (2019) demonstrated a “design-to-device approach” for 

designing dye-sensitized solar cells that are co-sensitized with two dyes [52]. Natural language 

processing can also directly make material predictions without intermediary models. shitoyan et 

al. (2019) reported that word embeddings (i.e., numerical vectors representing distinct words) 

trained on materials science literature could directly predict materials applications through a 

simple dot product between the trained embedding for a composition word (such as PbTe) and an 

application word (such as thermos electrics) [53]. 

1.4.2 Applications of ANNs in Packaging 

ANNs have been applied in packaging since the 1990s, involving different fields in packaging. 

According to the reports recently published, ANNs’ applications have been explored in the various 

parts of packaging, from transport packaging, and cushioning packaging, to packaging design and 

manufacturing systems, PE product characteristics prediction, and municipal solid waste (MSW) 

management for classifying different packaging materials. 

Applications of ANN in transport packaging: Bahrami et al. (1995) developed an intelligent 
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packaging system to retrieve a design from a standard set of chair designs that can satisfy the 

required needs using ANNs [54]. Siripong Malasri (2015) applied an artificial neural network in 

transportation packaging to measure the temperature of a wooden software pallet stringer under 

different temperatures at the time of the drop test, by building several temperature profiles from 

data collection with different starting temperatures. This application solved the problem of 

thermocouple cords interfering with the free-fall drop of a pallet sample [55]. 

Applications of ANN in cushioning packaging: Yanchun Liang & Xiaowei Yang et al. (1996) 

developed neural networks to identify the nonlinear characteristics in cushioning packaging to help 

reduce the shock and vibration during the transportation process [56]. 

Applications of ANN in design and manufacturing: Siripong Malasri et al. (2016) developed a 

neural network to estimate the temperature profile in a wooden Softwood Pallet Stringer during the 

time of drop test [34]. 

Applications of ANN in material product characteristics prediction: Polyethylene (PE) is one of the 

most widely used polymers in packaging materials. The ethylene index (EIX) is an important 

variable for PE product characteristics. However, EIX is hard to measure because it is affected by 

various factors, such as pressure, ethylene flow, hydrogen flow, catalyst flow, etc. To estimate EIX, 

different neural network models were developed by Akbar Maleki & Mostafa Safdari Shadloo et al 

(2020). Their result showed that the Multi-Layer Perceptron model could predict the production 

level of HDPE with a high Regression coefficient [57]. 

Applications of ANN in municipal solid waste (MSW) management: Municipal solid waste (MSW) 

is waste from rejected packages with different packaging materials. The sustainable management 

of MSW is a challenging task when it comes to packaging sustainability, because MSW involves 

all kinds of packaging materials, including plastics, paper, metal, glass, and wood, and the 
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characterization of different packaging materials is very expensive. That’s how the modeling 

approaches comes. The classical models are less effective, and artificial intelligence models have 

drawn the attention of researchers. Adeleke & Akinlabi et al. (2021) explored the application of 

neural networks in predicting the physical composition of MSW. They optimized the network 

architecture, training algorithms and activation function of a neural network to predict the fraction 

of MSW streams from meteorological parameters with high accuracy. Multiple training algorithms, 

and activation functions are combined and compared to optimize the neural network to predict the 

percentage composition of four different maximum packaging materials streams based on the data 

of minimum temperatures, wind speed, and humidity in their case study. Their study result 

concluded that the complex physical composition of MSW can be predicted with a single hidden 

layer neural network, which provided the theoretical support for handling MSW and contributed to 

the academic community related to packaging sustainability [58]. Oliveira & Sousa et al. (2019) 

also studied a feedforward neural network to identify the varies (from the level of education of the 

population, the size and level of urbanization of the municipality to factors intrinsic to the waste 

collection service) influencing the amount of separately collected packaging waste. With a dataset 

of 42 municipalities in Portugal, their study result showed that the high-performance neural network 

gave a 34% higher coefficient of determination (R-value) than the traditional regression models 

[59]. 

Although the ANN approach has been explored in various aspects of the packaging field, there are 

limited studies evaluating the BCS of corrugated packages at an industry-applicable level using 

ANN models. The primary challenge lies in collecting a sufficiently large data set that encompasses 

the majority of BCS values used in the industry. Existing studies often rely on small datasets that 

do not adequately represent the broad range of commonly used box dimensions or BCS values, 
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making it difficult to build a generalized ANN model suitable for industry applications. This study 

aims to bridge this gap by developing a generalized ANN model for BCS evaluation, using a dataset 

that encompasses the majority of commonly used box dimensions in the industry. 

1.5 RESEARCH OVERVIEW 

This paper evaluates the Box Compression Strength (BCS) of corrugated boxes using an Artificial 

Neural Network (ANN). Chapter one describes the background of the research, including 

fundamental knowledge of BCS and ANN, as well as the motivation behind the study. 

Chapter two details the training of the ANN model using available datasets for BCS evaluation, 

examining key modeling factors including the number of neurons in the hidden layers, epoch 

number, number of modeling cycles, and number of data points. By applying datasets from both 

the literature and synthetic data created using the McKee formula, the optimal values for these 

factors and the minimum data population needed were identified. This chapter provides insights 

into the ANN's performance in evaluating BCS values and demonstrates the feasibility of using 

ANN to estimate BCS. 

Chapter three investigates the relative importance of packaging design features using the ANN 

approach. Using BCS as a representative packaging property, four different ANN algorithms 

(Connection Weights method, Gradient-based method, Permutation method, and SHAP values) 

were employed to determine the relative importance of different BCS features (Edge Crush Strength 

(ECT), box dimensions, thickness, and flexural stiffness). A synthetic dataset generated using the 

McKee formula was used to compute the theoretical relative importance of these BCS features. The 

ANN predicted BCS feature importance ranking aligns with the theoretical relative importance of 

studied BCS features. A real dataset from the industry was also used to estimate the relative 

importance of five BCS features. The ANN predicted feature importance ranking was also 
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consistent with theoretical relative importance calculated from the McKee formula. In addition, the 

ANN predicted BCS feature importance from the real data set proves the importance of depth was 

not zero, which aligns with the buckling theory and reveals the inaccuracy of the McKee formula. 

The result indicates the feasibility of applying the ANN approach to evaluate the relative importance 

of packaging design features, allowing designers to minimize the design effort by prioritizing 

changing the more impactful packaging design features. These findings guide for material and cost 

savings in packaging design. 

Chapter four covers the development of an ANN using a real dataset that includes box dimensions 

representative of the majority of BCS values at an industry application level. An extracted dataset 

from the real data that covers the majority of BCS values used in the industry was applied to train 

a generalized ANN model. The values of key ANN modeling factors were determined based on the 

study of previous datasets and five optimization methods for optimizing the hidden layers neuron 

configuration, including Information Criteria using the AIC method, Hebb's rule, Information 

Criteria using the BIC method, Optimal Brain Damage rule, and Bayesian method. The optimal 

hidden neuron configuration was identified by striking a balance between the model prediction error 

minimization and computational efficiency maximization. The final ANN model prediction error 

for the test data was calculated for BCS prediction. The error was 9.52%. A possible solution for 

improving the ANN prediction accuracy is given in the end. Chapter Five summarizes the work of 

this research and highlights the research directions for future studies. This study provides a 

methodological guide for future research exploring the applicability of ANN approaches to address 

problems and answer questions in the packaging industry. 

 Objectives of this research: 

• Objective 1: Study how the ANN performs in evaluating BCS and determine the amount of 



30 
 

data required for reliable ANN predictions. 

• Objective 2: Validate the ANN capability for evaluating the relative importance of 

packaging design features using BCS as a representative packaging design property. 

• Objective 3: Develop a generalized ANN model applicable at an industrial level using a 

real-world data set. 
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CHAPTER 2: A COMPARATIVE ANALYSIS OF ARTIFICIAL NEURAL NETWORK 

(ANN) ARCHITECTURES FOR BOX COMPRESSION STRENGTH ESTIMATION 

2.1 INTRODUCTION 

In this chapter, we investigate the data requirements for an artificial neural network (ANN) to 

estimate compressive strength and evaluate the ANN's ability to address input variation limitations 

in the papermaking and box manufacturing process. Supervised learning methods are applied. 

Given the limited existing research, it remains to be seen whether an ANN can estimate BCS any 

more accurately than our historical, closed-form approaches. A properly structured ANN might be 

able to identify additional parameters that contribute to BCS with similar level of impact as known 

existing factors (e.g., Edge crush test (ECT) value) and thus improve current models over the 

known levels of inherent variation in the input data. In order to leverage those opportunities, we 

need to clearly identify the size of the data set required. Compared with many ANN applications 

which automatically create the underlying data to build a model, collecting data point for BCS 

estimation model is comparatively expensive, necessitating a series of off-line tests. For ANN 

modeling of corrugated packaging, the challenges required to generate sufficient data sets may 

well be the limiting factor on the capability of the model. 

This research aims to apply ANN to the box compression strength (BCS) of corrugated boxes. 

Various datasets of BCS have been collected and used to train the ANN model for BCS evaluation. 

The training process is complex and influenced by multiple factors, including internal factors 

related to ANN architecture and external factors pertaining to the applied datasets. 

Internal factors of ANN involve the number of input neurons, hidden neurons, hidden layers, 

output neurons, and epochs. A new concept called modeling cycle was introduced to mitigate the 

noise in ANN predictions. This concept aims to obtain results that accurately reflect the average 
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error level of ANN predictions, thereby enhancing the reliability of the model's output. In this 

study, the BCS features serve as the input neurons, and BCS values are the output neurons. Thus, 

the number of input neurons corresponds to the number of BCS features used during ANN model 

training, and the number of output neurons is one. The ANN training process involves determining 

the optimal number of hidden neurons, hidden layers, epochs and modeling cycles. 

External factors include the number of data points needed to achieve reliable training results for 

the ANN model. A dataset that is too small cannot provide reliable results, while an excessively 

large dataset can unnecessarily increase ANN training time. Therefore, it is crucial to determine 

the minimum amount of data needed to avoid resource wastage while ensuring robust model 

performance. 

2.2 DATA SETS APPLIED 

In this study, three datasets were trained to build an ANN model for BCS estimation. The three 

data sets include the McKee data set, an idealized data set and a data set with variation. The McKee 

data set is from literature presented by McKee in 1963 [22], specifically compiled for BCS 

estimation. It consists of 63 data points derived from box compression testing. The idealized data 

set is a synthetic data set based on McKee equation [22]. This data set was generated by including 

the box dimensions, ECT values, and thicknesses of 3,009 boxes commonly used in commerce 

and substituting them into the McKee equation. The data set with variation was created by 

introducing random errors to the parameters of the idealized data set's boxes.  BCS values were 

then calculated using the McKee equation [22]. This process was carried out to achieve a variation 

of ±5.4% for BCS. It contains an equivalent number of data points as the idealized data set. 

Detailed descriptions of these three datasets are provided in the ANN training section, delineating 

the specifics for each dataset. 
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2.3 ANN KEY FACTORS INITIALIZATION 

To begin, we apply the ANN approach to the existing data from McKee's 1963 research. Although 

the McKee data set proves too small for a robust ANN study, its well-established nature enables 

us to define our ANN methodology. Moreover, it illustrates the process to readers who are familiar 

with box compression modeling but less acquainted with ANNs. Next, we employ the ANN 

approach to analyze a significantly larger "synthetic" data set, constructed using idealized data 

derived from the McKee equation. This dataset allows us to evaluate the potential accuracy of an 

ANN model when applied to an established large data set and physical relationship. Furthermore, 

we introduce variation to the input data of the idealized data set, enabling us to assess how this 

variation propagates through the ANN. This investigation addresses the fundamental question of 

data set size and evaluates whether the current data collection approaches in the corrugated 

industry are sufficiently advanced to support the application of ANN in assessing box 

performance. The conclusion has been appropriately presented at the end, encapsulating the main 

findings and providing a conclusive summary. 

A general ANN is structurally composed of three fundamental types of layers: the input layer, the 

hidden layer(s), and the output layer. The input layer receives raw data and passes it forward, while 

the hidden layer(s) performs complex computations by applying activation functions to weighted 

inputs. The output layer then generates the final prediction or classification result based on the 

processed information. Each layer consists of multiple neurons, which are interconnected with 

neurons from adjacent layers, forming a network of weighted connections that facilitate learning 

and pattern recognition. In this study, the ANN model specifically designed for evaluating BCS 

follows this structural framework and is visually represented in Figure 11, illustrating the 

organization and connectivity of the network’s layers. By leveraging this multi-layered structure, 
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the ANN can effectively capture non-linear relationships in the data, improving the accuracy and 

reliability of BCS evaluations. 

 

Input Output 

Edge Crush Strength (lb/in) – ECT 

Flexural stiffness in the machine direction of the 

combined board (lb*in) – EIx 

Flexural stiffness in the cross-machine direction 

of the combined board (lb*in) – EIy 

Board Thickness (in) – BT 

Box Length (in) – BL 

Box Width (in) – BW 

Box Depth (in) –BD 

Box Compression 

Strength (lb) – BCS 

 

Figure 11 A model of an Artificial Neural Network (ANN) structure for predicting box 

compression strength (BCS) using inputs provided by the McKee data set 

At the beginning of the ANN training process, all weights between nodes are randomly assigned.  

The squared difference between predicted BCS values from our training data and their actual BCS 

values is then calculated in equation (8), and the weights are adjusted via a backpropagation 

process. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝐵𝐶𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐵𝐶𝑆𝑎𝑐𝑡𝑢𝑎𝑙)

2

𝑛

𝑖=1

 

 

(8) 
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where n is the number of samples in a trained dataset, and MSE represents mean 

squared error 

As mentioned above, an ANN approach segments a given set of known data into two uneven 

groups, training data and testing data. The former is used to build and refine the model and the 

latter is used to evaluate the model accuracy. To assess our ANN, 67% of each data set were split 

into training data and the remaining 33% were split into testing data. Each node in the hidden 

layers could be defined based on a weighted sum of the parameters in the prior layer, as shown in 

equation (9). 

 

ℎ𝑗
𝑖 = 𝑓 ∑(𝑤𝑘

𝑗
× 𝑥𝑘)

𝑘

 

 

ℎ𝑗
𝑖 is the value of jth neuron in ith hidden layer. j = 1, 2, 3,…, n1 when i =1 ; j = 

1,2,3,…, n2 when i = 2. 

𝑥𝑘 is the value of kth neuron in previous layer, k = 1, 2, 3,…, n. 

𝑤𝑘
𝑗
 is the weight from the kth neuron in previous layer to jth neuron. 

f is the activation function. 

(9) 

The choice of activation function is critical for ANN model prediction. To enhance efficiency, the 

Rectified Linear Unit (ReLU) is used as the activation function for hidden layers since it’s the 

default activation function for hidden layers and perhaps the most common function used for 

hidden layers in Machine Learning studies [60]. Besides, since only a subset of neurons is activated 

at any given time, the ReLU activation function significantly mitigates the vanishing gradient 

problem, which often hampers deep neural network training by causing gradients to diminish as 

they propagate backward through layers. This property allows ReLU to enhance learning 

efficiency and contribute to faster convergence during model training. Since the output layer 

typically uses a different activation function from the hidden layers, a sigmoid function was 

selected. The sigmoid function is widely used in neural network research due to its smooth and S-

shaped curve, which maps input values to a range between 0 and 1. This characteristic makes it 
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particularly suitable for binary classification tasks and probabilistic interpretation. Moreover, its 

first derivative is computationally convenient, facilitating gradient-based optimization methods 

[61]. The sigmoid function is an efficient way of producing an output p∈0,1., which can be 

interpreted as a probability. Plots of the ReLU function and sigmoid function are shown in Figure 

12 and Figure 13. 

 

Figure 12 The curve of the ReLU function 

 

Figure 13 The curve of the sigmoid function 

This study involved running programming tasks on an HP Laptop 15t-dy100 featuring an Intel(R) 

Core(TM) i5-1035G1 CPU, operating at a processing speed of 1.00GHz. The coding process to 

train the ANN model was conducted using Jupiter Notebook software, an integrated development 
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environment (IDE). Figure 14 illustrates the sequential steps in constructing an ANN model. The 

training duration varied depending on the dataset's size and characteristics, influenced by the 

combination of hardware and software. For instance, training a smaller data set of around 60 data 

points took approximately 3 minutes, whereas training a larger data set comprising approximately 

3000 data points required about 30 minutes. 

 

Figure 14 Flow for building an ANN model for BCS estimation 

2.4 ANN AND MCKEE DATE SET 

Like many of the modeling efforts in the industry, we begin our exploration of the applicability of 

ANNs on box compression estimation with the work of McKee et.al. Their model was built using 

63 data points including A-, B-, and C-flute boxes. This data set captured information on ECT, 

flexural stiffness in the machine and cross-machine directions of the combined board (Elx and Ely), 

thickness of the corrugated board, and the length, width, and depth of the box. Those seven 

physical parameters serve as the input parameters for an ANN model with BCS as the output, as 

shown in Figure 11. Of note, these parameters are not independent - flexural stiffness depends in 

part on the thickness of the board. Including all the available parameters in the data allows the 

ANN to appropriately assess the relative importance of each parameter to BCS estimation. 
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To assess our ANN given the limited data presented by McKee et.al., the 63 data points were split 

into 42 training data points and 21 testing data points. Two hidden layers were implemented to 

generate the output value (BCS). We initially considered utilizing 200 epochs for conducting the 

calculations. 

Model accuracy and consistency can be influenced by many modeling factors. The first task in 

developing an ANN model includes optimizing neuron number combinations in each of the hidden 

layers. We implemented an exhaustive search method [62] examining different neuron number 

combinations in the various layers, as shown in Figure 15: To assess the model accuracy, the 

neuron numbers for the first hidden layer were examined ranging from 80 to 184 (with an 

increment of 8). Similarly, for the second hidden layer, the neuron numbers were examined from 

24 to 42 (with an increment of 3). The MSE was calculated for each combination to evaluate the 

model's accuracy. In each case a random selection of data points from the underlying data set was 

used, which has implications on the robustness of the minimum MSE. The minimum MSE 

occurred with 160 neurons in the first hidden layer and 36 in the second hidden layer. To confirm 

this result, the increments for both hidden layers were reduced. The increment of 8 in the first 

hidden layer decreased to 2, and the increment of 3 in the second hidden layer decreased to 1. 

Remarkably, even with these decreased increments, the minimum MSE still occurred with the 

same combination of neuron numbers. The same structural framework was maintained for 

analyzing the McKee data to ensure consistency and comparability in the evaluation process. 

Notably, this design choice allows for a significantly higher degree of freedom in the model 

compared to the amount of available data in the McKee dataset. This imbalance suggests that the 

model has the flexibility to capture a wide range of potential relationships and interactions within 

the data, which may not be fully constrained by the limited dataset. As a result, the excess degrees 
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of freedom could contribute to the observed variations across different parameter combinations, 

as illustrated in Figure 15. 

 

Figure 15 Mean Squared Error (MSE) calculations for the model using McKee data with varying 

numbers of neurons in each of two hidden layers for the McKee data set. The error is minimized 

for 160 neurons in the first layer and 36 neurons in the second 

To understand the computational load further, we explored how the number of epochs impacted 

model convergence. While again this calculation is not resource intensive for a small data set like 

the one provided by McKee et.al., it becomes critical to stop the process at convergence once the 

data set grows. Figure 16 illustrates that the MSE begins to converge in less than 50 epochs. As 

the number of epochs increases up to 200, the rate at which the MSE decreases gradually slows 

down, indicating that each additional epoch yields only a small incremental improvement. This 

phenomenon suggests that the model's performance is reaching a plateau, where further training 

offers minimal benefits relative to the computational cost. To address this challenge and strike an 

optimal balance between computational time and model accuracy, we implement a stopping 

criterion: the training process is halted once the MSE reduction rate falls below 3.0%. This 

threshold serves as a practical indicator that the model has achieved sufficient convergence, and 

that additional training is unlikely to significantly enhance performance. In our experiments, this 
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threshold is typically reached at approximately 100 epochs, ensuring that we maintain optimal 

computational efficiency while still achieving a robust level of accuracy. Consequently, this 

approach not only saves valuable computational resources but also minimizes the risk of 

overfitting by preventing unnecessary prolonged training. 

 

Figure 16 MSE versus epoch plot of different data numbers (McKee data set) 

The number of data points plays a very important role in the ANN accuracy. Figure 17 displays 

how the number of data points influences the ANN accuracy. Exploring different total population 

sizes from 30 to the full data set of 63 points, the chosen population was randomly divided into 

training data (2/3 of the points) and testing data (1/3 of the points). In the modeling process, 

partitions of underlying data vary from modeling cycle to cycle. This can have a significant impact 

on the model accuracy due to some special data points may fall into training data in a given cycle 

and fall into testing data in the subsequent cycle. To assess the impact of variation in the input data 

on model results and predictions, the process of partitioning a data set into training and testing data 

was regularly repeated. Multiple modeling cycles were performed. For the McKee data set, a 

sufficient number of “modeling cycles” of 60 were performed in each population size from 30 data 
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points to the full data set. Overall, the calculation process reflects a confidence interval on the 

model output related to the breadth of variation in potential input data sets. The confidence 

intervals around the mean error reflected the ANN training accuracy, as shown in Figure 17. As 

expected, ANN accuracy increases with population size. For this small data set like the McKee 

data set, ANN accuracy of the whole data set is notably higher than that of the partial data set, 

which concludes that the whole data set is needed for the McKee data set to minimize the error. 

 

Figure 17 Average error in estimated box compression strength given different subsets of the 

data (McKee data set), each run through 60 modeling cycles. Note error bars indicate 95% 

confidence intervals on the mean values 

Since ANN randomly splits the data into training and testing data in the modeling process, each 

modeling cycle can have different underlying data partitions. As a result, each modeling cycle can 

generate a unique model that optimally fits the training data provided but can produce very 

different values for the error when assessing the testing data. Therefore, it is important to 

understand how many modeling cycles are required to have results converge to a “typical” 

reliability. To investigate the impact of different underlying data partitions on the accuracy of the 

ANN, various numbers of modeling cycles were examined. Figure 18 shows that when we 
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partitioned the full McKee data set (all 63 points), the training data accuracy remained relatively 

consistent as the number of evaluation cycles increased. The average testing data accuracy 

converged after roughly 60 rounds of testing, very similar to the total number of data points in the 

database. 

 

Figure 18 Mean of average error in estimated box compression strength given different numbers 

of modeling cycles. Note that the testing data values converge after 60 modeling cycles (McKee 

data set). Error bars indicate 95% confidence intervals on the mean values 

We have explored four modeling factors common in the ANN process using the data presented by 

McKee: the combination of neuron numbers in hidden layers, the number of epochs, the number 

of modeling cycles, and the number of data points in a data set. An optimal combination of neuron 

numbers in hidden layers can minimize the MSE and increase the ANN accuracy for BCS 

estimation. As the epoch number increases, the MSE reduction rate becomes increasingly slow. 

To strike a balance between computational time and accuracy, a stopping point when the MSE 

reduction rate falls below 3.0% was selected to ensure optimal computational efficiency without 
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significantly compromising accuracy. Consistency for the ANN model is realized when the 

number of modeling cycles reaches a critical number for a given population size, and a minimum 

number of data points can be identified at which the MSE is minimized, and the ANN is most 

robust. We carry these observations forward into our analysis of larger, more generalizable data 

sets. 

2.5 ANN AND AN IDEALIZED DATA SET 

McKee et.al.’s simplified model for box compression strength can be used to explore the 

applicability of ANN to compression strength estimation. However, the limited size of their data 

set constrains the ANN approach as noted above. Therefore, a larger data set is desirable. Using 

the simplified McKee equation [22] as shown in equation (1), a synthetic data set could be 

generated. 

In this way, the “idealized” data set was created with 3,009 data points. These data points represent 

boxes with ranges in length, width, aspect ratio, ECT, thickness and flute types (B- & C-flute) 

commonly used in North America (Table 1). Note that each “data point” discussed in this section 

is a specific set of information defining the physical properties of the box (lengths, width, 

thickness, and ECT) and the associated BCS calculated using equation (1). 

Table 1 Minimum and maximum values of the data incorporated in the idealized data set 

Property Min Max 

Length (cm) 19.05 99.38 

Width (cm) 12.70 76.96 

L/W (aspect ratio) 1.00 4.00 

Perimeter (cm) 71.12 346.71 

Thickness (cm) 0.26 0.44 

ECT (lbs/inch) 64.77 228.35 

Given the “perfect” nature of the fabricated data set, it is obvious that a simple least-squares fit of 

equation (1) to the input parameters reproduces the BCS values with 100% accuracy and 0% error. 

With a data set this large, one might also hope to overcome the ANN challenges experienced in 
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fitting the much more limited data from McKee, and potentially reproduce the expected values in 

a test data subset perfectly, with close to no variation from the actual values. 

To start this process, 67% of the data set (2,016 randomly selected samples) were used for the 

ANN training process and the rest were used for evaluation of the resulting model. With 200 

epochs, the optimal neuron number combination in the hidden layers was again explored using an 

exhaustive search method. Figure 19 displays the examination of neuron numbers in the first 

hidden layer, ranging from 128 to 160 (with an increment of 8), as well as the examination of 

neuron numbers in the second hidden layer, ranging from 24 to 48 (with an increment of 3). 

 

Figure 19 Mean Squared Error (MSE) calculations for the model using idealized data with 

varying numbers of neurons in each of two hidden layers for the idealized data set. The error is 

minimized for 142 neurons in the first layer and 45 neurons in the second 

The MSE was calculated for each combination to assess the model's accuracy. The MSE was 

minimized with 144 neurons in the first hidden layer and 45 neurons in the second hidden layer. 

To validate this result, the increments for both hidden layers were reduced to 1. Notably, the 

minimum MSE was observed with 142 neurons in the first hidden layer and 45 neurons in the 

second hidden layer. As with our McKee analysis above, this number of neurons provides more 

degrees of freedom in our modeling space than data sets in our model population. Note that the 

MSE is much lower than for the McKee data set because the data is perfect. However, the values 
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are not zero indicating some residual uncertainty in the estimation of BCS even for this idealized 

data. 

In exploring the idealized dataset, we employed an analytical approach similar to that used in the 

McKee dataset analysis within the context of ANNs. Specifically, we investigated how varying 

the number of training epochs impacted the model's MSE, with these findings initially illustrated 

in Figure 20-a. As the training progressed and the number of epochs increased to 200, we observed 

a general downward trend in the MSE, indicating improvements in model performance. However, 

this improvement was not entirely smooth; significant fluctuations were present in the MSE values, 

suggesting intermittent variability in the learning process. As the number of epochs continued to 

increase, the rate at which the MSE decreased began to slow down, highlighting a diminishing 

return in performance gains with additional training. To address the challenge posed by these 

fluctuations and to provide a clearer, more interpretable view of the overall trend, we applied the 

Moving Average technique [63], This method effectively smoothed out short-term irregularities, 

resulting in a refined graphical representation of the MSE trend that is depicted in Figure 20-b. 

The smoothed graph not only offers a more consistent and reliable perspective on the model's 

performance improvements over time but also aids in the identification of the optimal training 

duration. By reducing the visual noise in the MSE curve, we can more accurately pinpoint the 

stage at which additional epochs no longer yield significant benefits, thereby enhancing our 

understanding of the model's learning dynamics and informing decisions regarding computational 

resource allocation. This comprehensive analysis ultimately provides valuable insights into the 

balance between training efficiency and model accuracy, further demonstrating the robustness of 

our approach when applied to both idealized and real-world datasets. Moreover, these findings 

underscore the importance of tailoring the training process to the specific characteristics of the 
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dataset at hand, paving the way for future research into adaptive training strategies and alternative 

smoothing techniques that could further optimize model performance. 

 

 

Figure 20 Mean Squared Error (MSE) of the fits as a function of epochs for different sized data 

subsets from the idealized data set. 6a displays the raw MSE calculated for each epoch, while 6b 

presents smoothed data, more clearly displaying the asymptotic nature of the functional 

relationships 

This revealed that the MSE experienced a rapid decrease before reaching 50 epochs. From 50 to 

200 epochs, the MSE decreased steadily, and the large fluctuations disappeared after 140 epochs. 
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Similar to the study of the McKee data set, to strike a balance between computational time and 

accuracy, a stopping point was selected when the MSE reduction rate falls below 3.0% after 

applying the Moving Average technique. This threshold is typically reached at approximately 140 

epochs, ensuring optimal computational efficiency without significantly compromising accuracy. 

When examining the full data set of 3,009 data points, the ANN accuracy remained relatively 

consistent while the confidence interval around the mean error decreased as the number of 

modeling cycles increased (Figure 21). 

 

Figure 21 Mean of average error in estimated box compression strength given different numbers 

of modeling cycle (Idealized data set). Note error bars indicate 95% confidence intervals on the 

mean values 

To better understand why the error in the model was not zero as might be expected for a model 

fitting “perfect” data, the specific results from each cycle were examined. It was observed that the 

BCS errors of four data points in particular always showed higher estimation errors than other data 

points. Those four data points are at the limits of the data set (or boundary data points). Figure 22 

shows the frequency of the actual BCS values. As is typical for data at the end points of a 

distribution, these four points have excessive leverage in the modeling. Their impact on model 

accuracy in test data depends on what adjacent points happen to be in the training data. When the 
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boundary data points are randomly selected to be part of the testing data and thus do not appear in 

the training data, the result tends to show higher BCS average error. The average error across 

multiple cycles is impacted by this contribution. 

 

Figure 22 BCS distribution of 3,009 data points (Idealized data set) 

To see the influence of population size on the ANN accuracy for the perfect model (similar to 

Figure 17 above), we examined populations from 600 to 3,009 data points using 10 modeling 

cycles. The results show that the mean of BCS average errors fluctuates notably when we consider 

a limited number of data subsets (Figure 23). Even for this larger population, the impact of limiting 

population size remains significant if the iterative process is not executed for a sufficient number 

of cycles. In our analysis, we observed that over the course of 50 modeling cycles, the mean BCS 

average error exhibited a steady decline as the volume of included data increased. However, this 

trend reached a plateau at approximately 1,500 data points, beyond which additional data did not 

yield noticeable improvements in accuracy. This finding suggests a crucial relationship between 

the number of modeling cycles and the population size, indicating that both factors must be 

carefully considered together to optimize model performance. If the population size is too small, 
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even a high number of iterations may not be sufficient to minimize error effectively. Conversely, 

if the process is not iterated enough times, the model may fail to fully leverage the benefits of a 

larger dataset. Therefore, achieving an optimal balance between these two parameters is essential 

to maximizing model accuracy and reliability. 

 

Figure 23 Average error in estimated box compression strength given different numbers with 

same modeling cycles of 10 and 50 (Idealized data set). Note error bars indicate 95% confidence 

intervals on the mean values 

The combination of neuron numbers, the number of epochs, the number of modeling cycles, and 

the number of data points impacts the accuracy of the ANN prediction. Even when using the full 

data population (>3000 data points) and many modeling cycles on a perfect data set generated by 

a closed form equation, the average relative error of the BCS prediction is not zero. From Figure 

23, in conjunction with Figure 21, this analysis identifies the error contribution of the ANN 

approach itself at around 0.4% when estimating BCS from this type of data and data sets of this 

size. This residual error is independent of any physical properties; rather, it arises from the ANN 

process itself. As such, we would expect it to be additive 10. to any other errors that may arise in 
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using a model for prediction, including measurement errors of the input parameters to the model 

as well as fundamental errors in the model functional form. 

2.6 ANN AND A DATA SET WITH VARIATION 

Variation occurs naturally in all processes. Typical variations in measurement of inputs associated 

with the performance of a corrugated box are on the order of 4-5% for measured quantities like 

ECT and BCS. To further study if and how the ANN model works while handling a data set 

incorporating variation, we modified the ideal set to represent boxes that might appear in 

commerce. We added fluctuations to each input value, using randomized, normally distributed 

values on the order of the variation observed in the different test methods. As with the idealized 

data set, a “data point” represents a specific set of information defining the physical properties of 

the box (lengths, width, thickness, and ECT) and the associated BCS calculated by equation (1). 

The average absolute difference between the new predicted BCS values for the 3,009 data points 

and the “actual” BCS of the idealized model was obtained by adding variations to the input 

parameters and calculated by equation (1). This process was carried out to achieve a variation of 

±5.4% for BCS. We then followed the same process as for the idealized data set: 67% of the data 

set (2,016 randomly selected samples) were used for the ANN training process and the remaining 

were used for evaluation of the model. We used the same number of epochs and neuron numbers 

in hidden layers as in the idealized modeling. 

To explore the impact of the number of epochs on the convergence behavior of the ANN model, 

we conducted experiments by running the model on different subsets of data for up to 250 epochs. 

In these experiments, we observed that the MSE decreased rapidly during the first several epochs 

across all data subsets, as illustrated in Figure 24 Notably, the largest dataset consistently achieved 

the lowest MSE for any given epoch, indicating that a greater volume of data can enhance the 
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learning efficiency and accuracy of the model. In alignment with our earlier modeling efforts, 

Figure 24-a displays the raw MSE values computed at each epoch, providing a detailed view of 

the initial rapid improvement followed by a gradual tapering in error reduction. 

 

 

Figure 24 Mean Squared Error (MSE) as a function of epochs for different sized data subsets 

from the variation data set. 10a displays the raw MSE calculated for each epoch, while 10b 

presents smoothed data, more clearly displaying the asymptotic nature of the functional 

relationships 

a) 

b) 
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To further elucidate the long-term convergence behavior and to reduce the impact of short-term 

fluctuations, Figure 24-b presents a smoothed version of the data using an appropriate smoothing 

technique. This smoothed graph clearly highlights the asymptotic behavior of the MSE, allowing 

us to discern the point at which additional epochs yield diminishing returns. As expected, given 

the deliberate addition of variation to the input data, the MSE values observed in these experiments 

are considerably higher than those recorded for the idealized dataset shown in Figure 20.  

This contrast underscores the challenges introduced by increased data variability and emphasizes 

the need for robust modeling strategies when working with more complex, real-world datasets. 

We modeled different population sizes as above to again identify the influence of population size 

on ANN accuracy (Figure 25). 

 

Figure 25 Average error in estimated box compression strength given different numbers with 

same modeling cycles of 10 and 50 (Data set with Variation). Note error bars indicate 95% 

confidence intervals on the mean values 

The accuracy of both the training data and testing data remained relatively consistent as the number 

of modeling cycles increased. While the accuracy of the training data was in line with expectations 
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from the variation built into the data set (~5.4%), the influence of limiting population size can have 

a meaningful impact if we don’t iterate the process sufficiently. Notably, the ANN approach was 

not working with any more information than the closed form equation itself, and so the prediction 

accuracy did not improve upon what we would get from the closed form equation. Test data 

accuracy didn’t begin to converge until around 1500 data points when we used 20 modeling cycles, 

yet accuracy occurred slightly sooner (~1250 data points) when we used 70 modeling cycles. The 

BCS average error levels out at 2,500 data points, nearly the entire data set, at a value combining 

the inherent uncertainty in the input data and the uncertainty of the ANN process itself, identified 

above. This is notably larger than for the idealized data, because of the influence of variation in 

the input parameters. As with the idealized data above, the influence of modeling cycles and 

population size need to be considered together. The minimum data population size to get a robust 

result is also larger for the variation data set. 

2.7 CONCLUSION 

In this session of our study, we explored BCS estimation using Artificial Neural Networks across 

input data sets that included both actual data from the literature and data based on literature models. 

Partitioning each data set into test and training subsets and running multiple modeling cycles on 

different partitions provides an analysis of average model estimation accuracy that can be expected 

when the resulting models encounter new data. An ANN model with high accuracy and 

consistency can be built by adjusting four modeling factors: the combination of neuron numbers 

in hidden layers, the number of epochs, the number of modeling cycles, and the size of the data 

set. All four interact to influence model accuracy and can be optimized by minimizing model MSE. 

The combination of neuron numbers in the two hidden layers was determined as 160 and 36 for 

the McKee data set, and 142 and 45 for the idealized data set. Employing the same stopping 



54 
 

criterion, where the MSE reduction rate is required to be below 3.0%, the epoch numbers were 

established as 100 for the McKee data set and 140 for the idealized data set. To ensure a robust 

result with high consistency in the ANN, it was found that 60 modeling cycles are needed for the 

McKee data set, 50 modeling cycles are required for the idealized data set, and 70 modeling cycles 

are necessary for the data set with variation. The data size needed to get a robust result varies based 

on the input data variations and can be identified by minimizing average BCS error: For the McKee 

data set, 63 data points are not enough for an ANN to predict the BCS reasonably. The other two 

data sets (idealized data set and data set with variation) need at least 1000 data points to get a 

robust result for ANN prediction. The data size needed is significant and data collection can be 

expensive considering the physical testing required. Our ANN models had more degrees of 

freedom than the number of underlying data sets, which might lead us to expect that we could 

perfectly fit the underlying data and achieve BCS estimations very close to “measured” values. 

Instead, we found that model estimation accuracy remains limited by the uncertainty or error in 

the input parameters combined with uncertainty from the ANN process itself. The variation of 

input parameters had a positive correlation with an ANN process (high variation increases the 

training error and vice versa). By identifying the challenges of small data sets and the 

interrelationship between modeling parameters and the estimation error in the data space, this 

study provides a methodological guide for future research exploring the applicability of ANN 

approaches to address problems and answer questions in the corrugated industry. 



55 
 

CHAPTER 3: EVALUATION OF PACKAGING DESIGN RELATIVE FEATURES 

IMPORTANCE USING ANN 

3.1 INTRODUCTION 

This chapter focuses on leveraging artificial neural network (ANN) models to evaluate the relative 

importance of packaging design features. In this section, Box Compression strength (BCS) was 

used as a representative packaging property, and the relative importance of up to six packaging 

design features was assessed using four ANN-based methods (the weight connections method, the 

permutation method, the gradient-based method, and SHAP values) based on the reliability of 

feature importance rankings. Two datasets were utilized: one synthetic dataset generated using a 

widely used mathematical model (the McKee formula) and one real dataset [26]. These datasets 

were used to train ANNs to assess packaging design feature importance. Theoretical feature 

importance was calculated and compared with the feature importance from the four ANN-based 

methods. This result demonstrates the feasibility of applying the ANN approach to evaluating the 

relative importance of packaging design features. 

3.2 CURRENT METHODS FOR EVALUATING BCS FEATURE IMPORTANCE 

Packaging design plays a vital role in ensuring packaging performance. Effective design can 

reduce costs by minimizing material usage and waste while protecting products during 

transportation, storage, and handling. To improve packaging performance, the design process must 

consider various influencing factors, each of which impacts specific packaging properties 

differently. Understanding the relative importance of these influencing factors for packaging 

design, or packaging design features, is crucial for enhancing packaging performance and 

maximizing cost savings. 
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The evaluation of the relative importance of packaging design has traditionally relied on 

conventional physical testing, which involves numerous mechanical tests to obtain accurate 

measurements, making the process both resource-intensive and time-consuming. Consequently, 

several new methods for assessing the importance of packaging design features have emerged in 

recent years. Techniques such as the Analytical Hierarchy Process (AHP) [64, 65], and Finite 

Element Analysis (FEA) [27, 66, 67] have been developed to optimize different packaging systems. 

Alicia Pérez et al. (2020) applied AHP to optimize a company business strategy of corrugate 

cardboard boxes to support multicriteria decision-making, generating multiple improvements, 

such as the reduction of the overall cost, the optimal fill rate operations, and the articulation of the 

strategic and functional decisions in this organization [65]. Jongmin Park et al. (2020) investigated 

the edgewise compression behavior (load vs. displacement plot, ECT, and failure mechanism) of 

corrugated paperboard based on different types of testing standards and flute types using finite 

element analysis (FEA) and experimental analysis [67]. However, these methods are not 

consistently applied or fully integrated into industry practices. For instance, a primary 

disadvantage of AHP is expert subjectivity [68]. AHP relies on expert input for pairwise 

comparisons between options, where experts evaluate the relative importance or performance of 

one option over another. These judgments, being influenced by personal opinions, can introduce 

subjectivity [69]. On the other hand, FEA requires material properties that are challenging to obtain 

due to the anisotropic and non-linear mechanical behavior exhibited by paper fibrous material [70]. 

Additionally, there are limited applications of these methods for systematically evaluating the 

importance of packaging design features. Therefore, there is a substantial opportunity to develop 

a more efficient approach for assessing the feature importance for packaging design. 
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3.3 ANN APPROACH FOR EVALUATING FEATURE IMPORTANCE 

Despite the limited advancement in methods for evaluating packaging design feature importance, 

researchers have extensively explored various methods for evaluating the relative importance of 

input variables. In the last decades, Artificial Neural Networks (ANNs) have gained growing 

interest in various engineering and multidisciplinary research fields, such as the tourism industry 

[71], the financial sector [72], and complex engineering applications [73]. However, in the field of 

packaging, Artificial Neural Networks (ANNs) have been applied in only a few areas, such as 

estimating edge crush resistance and evaluating other packaging properties [74, 75], with limited 

applications beyond these. 

Tomasz Gajewski et al. (2024) predicted the crush resistance of corrugated packaging boxes with 

ventilation openings, packages with perforations, and typical flap boxes using different ANN 

models [76]. Siripong Malasri et al. (2016) trained a small data set of 74 box samples using ANN 

to predict the compression strength of cubical RSC single-wall corrugated boxes [34]. ANNs have 

been a focal point due to their capability to generalize complex non-linear problems. 

ANN modes have been implemented to evaluate the relative importance of input variables using 

many methods. Some commonly used methods include the weight connections method [77], the 

sensitivity analysis method, the gradient-based method [78], and SHAP (Shapley Additive 

exPlanations) values [70]. Within the weight connections method, the measures of input variable 

importance rely on the connection strengths (weights) within a trained neural network [79]. In 

1991, Garson et al. (1991) proposed a method to determine the relative impact of each input 

variable by calculating the percentage of output weight values associated with the contribution of 

a single input across the entire network [79, 80]. Yoon et al. (1994) provided a representation of 

the relative contribution of input i with respect to the overall behavior of the neural network [81]. 
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Compared with Garson’s method, Yoon’s method considers the direction (positive/negative) of 

the contribution of an input. In 1999, Howes and Crook also proposed a formulation to determine 

the relative influence of input variables in neural networks [77, 79], which is similar to Yoon’s 

method. However, it normalizes the effect of extreme weights connecting input and hidden nodes 

and is the only method measuring the importance of the variables in multiple hidden layers. 

Additionally, SH Tsaur et al. (2002) [82] defined the input importance scores by taking the sum 

of the weights connecting the input to the output layer. JD Olden et al. (2021) measured the relative 

importance of the input variables based on the product of the input-hidden and hidden-output 

connection weights and summing the products across all hidden neurons [77]. Within the gradient-

based method, A Hill et al. (2020) [78] proposed a gradient-based method to identify the relative 

importance of influencing factors for robotic control by obtaining the gradient of the output with 

respect to any component of the neural network using the chain rule. As for the sensitivity method, 

one of the most commonly used techniques is the permutation method. H Mandler et al. (2023) 

used the permutation method to measure the sensitivity of a model with the presence or absence 

of a feature to determine the importance scores of input features in fluid dynamics using a neural 

network-based turbulence model. Regarding SHAP values [83], SM Lundberg et al. [70] presented 

a unified framework for interpreting predictions, assigning each feature an importance value for a 

particular prediction in a deep learning model. 

These methods have found application in various domains for extracting the influence of inputs in 

machine learning models. For instance, they have been used to analyze design parameters' impact 

on complex engineering systems, guest loyalty to hotels in the tourist industry, the relative 

importance of textual indexes in predicting the future performance of banks, and geographical 

phenomena visualization, among others. NL da Costa et al. (2021) [77] utilized Garson’s method 
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to evaluate the contribution of inputs to outputs in trained neural networks for both classification 

and regression problems. Goh, A.T. C. [84] employed Yoon’s method to identify the relative 

importance of input factors influencing cone stresses and soil properties in an ANN model. HF 

Luoh et al. (2014) [85] applied Tsaur’s method to identify moderating effects concerning tour 

leader age stereotypes, age in-group bias, and respondents’ age on perceived roles played by tour 

leaders. J Iqbal et al. (2023) [86] utilized Olden’s connection weights method to predict banks' 

future performance by identifying the relative importance of textual indexes representing 

management sentiments in banks’ annual reports. K Fukumizu et al. (2012) [87] conducted 

dimension reduction for both feature extraction and variable selection based on the gradient-based 

method in supervised learning. A Altmann et al. (2010) [88] estimated the distribution of measured 

importance for each variable in a non-informative setting based on the permutation method in 

RandomForest (RF) models. Ziqi Li (2022) [89] applied SHAP values to extract spatial effects for 

interpreting and visualizing complex geographical phenomena and processes in machine learning 

models. 

Based on the reliability of packaging feature importance rankings of the synthetic dataset generated 

using the widely used mathematical model, four ANN-based methods were selected to evaluate 

the importance of the target packaging design features in this study. These four methods are the 

Connection Weights method, the Gradient-based method, the Permutation method, and SHAP 

values. The principles underlying each method for extracting input feature importance are 

explained in this section. 

3.3.1 Connection Weights method 

The Connection Weights method is a valuable technique for interpreting ANN models. An ANN 

comprises three types of layers: input, hidden, and output layers, as depicted in Figure 26. Neurons 
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in each layer are connected by weights, which indicate the strength of the connections between the 

neurons. The Connection Weights method employs the weight matrix to determine the relative 

significance of each input feature in relation to the output [77]. The weights in the first layer, which 

connect the input neurons, can reflect the relative importance of each input feature. Thus, the 

Connection Weights method derives the relative importance of input features by extracting these 

weights from the first layer, as illustrated in equation (10) and Figure 26. The get-weights function 

was employed to extract the weights from the first layer of the ANN model. 

𝐼𝑖 = 𝜎𝑖 ∑ |𝑤𝑖𝑗|
𝑛ℎ𝑖𝑑𝑑𝑒𝑛

𝑗=1
 

Where: 

𝜎𝑖 - The standard deviation of the ith input. 

𝐼𝑖 - The ith input's importance. 

𝑛ℎ𝑖𝑑𝑑𝑒𝑛- The number of hidden nodes in the first layer. 

𝑤𝑖𝑗 - The weight connecting the ith input to the jth hidden node in the first layer. 

(10)  

 
Figure 26 The ANN structure & Connection weights method extracts the weights in the first 

layer as the input feature importance 
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3.3.2 Gradient-based method 

The gradient-based method is a key technique for evaluating how a model’s outputs are influenced 

by its input features. It involves calculating the partial derivative of the output with respect to the 

input, which measures sensitivity. This approach is applicable in Deep Neural Networks (DNNs), 

a specialized type of ANN. [90]. Examining how variations in input features influence the 

predicted output can reveal insights into feature importance within ANN models. The gradient's 

magnitude indicates the extent of change in the predicted output due to an infinitesimal alteration 

in the input feature [91]. The gradient of output 𝑦̂ with respect to input X is represented in equation 

(11), 

∇𝑦̂ = ∇𝐹(𝑋) =  [
𝜕𝐹(𝑋)

𝜕𝑥1
⋯

𝜕𝐹(𝑋)

𝜕𝑥𝑑
]

𝑇

 (11) 

The differentiability of deep neural networks is determined by the activation function used. 

Activation functions like sigmoid, ReLU, and Tanh are differentiable almost everywhere. In this 

study, where the sigmoid function is utilized, a central difference method was applied to 

numerically approximate the gradient of F(X) at X, as defined in equation (12), 

𝜕𝐹(𝑋)

𝜕𝑥𝑘
 ≜

𝐹(𝑋(𝑘+)) − 𝐹(𝑋(𝑘−)) 

2𝛿𝑥
 

Where: 

𝑋(𝑘+) ≜ X + 𝛿𝑥 ∙ 𝑒𝑘            𝑋(𝑘−) ≜ X - 𝛿𝑥 ∙ 𝑒𝑘   

(12) 

𝛿𝑥∈ R is the step size, and for all k = 1, . . . , d, ek ∈ Rd is the standard basis vector. The terms F(X 
(k+)) and F(X (k−)) are obtained from two forward passes of the model. The importance of the kth 

feature is then defined as the absolute value of the partial derivative with respect to xk. This gradient 

vector provides the feature importance for a single test sample. To determine the global feature 

importance, the feature importances for all samples in the test set SN were averaged, where N 

represents the number of samples in the test set [91], as outlined in equation (13), 

Sample gradient imp (𝑥𝑘) ≜ |
𝜕𝐹(𝑋)

𝜕𝑥𝑘
|𝑋 

Global gradient imp (𝑥𝑘) ≜ 
1

𝑁
 ∑ |

𝜕𝐹(𝑋)

𝜕𝑥𝑘
|𝑋𝑋∈𝑆𝑁

  
(13) 
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In this study, gradients were computed using tf.GradientTape(), a Python tool that allows for 

nesting to calculate higher-order derivatives. 

3.3.3 Permutation method 

The Permutation method measures a feature's importance by observing how model accuracy 

changes when the values of that feature are randomly shuffled while keeping other feature values 

intact. A feature with higher importance will have a greater effect on the model's accuracy when 

its values are shuffled [83]. As detailed in equation (14) and Table 2, to determine the feature 

importance of feature fj, the column corresponding to fj is randomly shuffled to generate a 

corrupted data set Dkj. The ANN model is then trained on Dkj, and its accuracy is compared with 

the accuracy of the original model s. The difference in accuracy scores indicates the importance of 

feature fj. 

𝑖𝑗 = 𝑠 −  
1

𝐾
∑ 𝑠𝑘𝑗

𝐾

𝑘=1

 

Where: 

ij - Importance for feature fj. 

s - Reference score of the model m on data set D. 

K - Repetition times for randomly shuffling column j of the dataset D to generate a 

corrupted version of the data named Dkj. 

skj - Score of the model on corrupted data Dkj. 

(14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, the np.random.permutation() function from the NumPy library in Python is utilized 

to randomly shuffle the input features in the ANN. 

Table 2 Principle of permutation feature importance 
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3.3.4 SHAP values 

SHAP (SHapley Additive exPlanations) values provide a method for interpreting the outputs of 

machine learning models. This approach uses principles from game theory to measure the 

contribution of each feature to the final prediction [92, 93]. It aims to fairly allocate the 

contributions of each feature towards achieving the overall result [94]. SHAP values can be applied 

in machine learning to measure the contribution of each feature to the model's prediction, providing 

insights into how each feature collectively influences the final outcome [95]. In evaluating feature 

importance, SHAP values compare the model's output with and without a specific feature for a 

given data point, accounting for all possible combinations of the other features. The average 

difference in the output is then computed. The SHAP value for feature Xj in a model is represented 

by equation (15): 

Shapley (𝑋𝑗) = ∑
𝐾!(𝑝−𝑘−1)!

𝑝!
(𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆))𝑆⊆N\{𝑗}  

Where: 

p – The total number of features. 

N\{j} – A set of all possible combinations of features excluding Xj. 

S – A feature set in N\{j}. 

f(S) – The model prediction with features in S. 

f(S∪{j}) – The model prediction with features in S plus feature Xj. 

(15) 

According to equation (15), the SHAP value of a feature represents its marginal contribution to 

the model’s prediction, averaged across all possible models with varying combinations of features 

[95]. Equation (15) determines feature importance for a single data point. In our study, which 

involves multiple data points, this process is repeated for each data point. The average difference 

in output across all data points is then used as a metric to quantify the contribution and importance 

of a single feature in the model's predictions. This approach ensures that the impact of each feature 

is evaluated in a comprehensive manner, considering various interactions within the dataset. One 

practical example of how SHAP values are calculated for multiple data points in our dataset is 
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illustrated in Figure 27, where the contributions of individual features are systematically analyzed 

to provide a clear interpretation of their influence on the model's output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, the explainer.shap_values() function from the SHAP library in Python is employed 

to compute the SHAP values for each BCS feature. 

3.4 FLOW OF FEATURE IMPORTANCE EVALUATION USING ANN 

To evaluate the input feature importance, the first step is to train an ANN model. In principle, 

training an ANN model involves building a function that recognizes the underlying relationships 

between input variables and output variables. By feeding the models with values of relevant input 

features and the corresponding output values of available data points, an ANN can be trained to 

learn the relationship between output(s) and their input features. Consequently, the trained ANN 

1. Calculate the SHAP value of one data point (take Length of the box for example). 

a. Take all the combinations 

of different features. 

b. Calculate the difference between 

the model predictions with and 

without feature length (for each 

combination). 

c. Average the difference of all 

combinations. 

2. Calculate the absolute mean SHAP value of all data points. 

Figure 27 Calculation process of SHAP values with multiple data points in a data set 
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model can forecast the output values for new data points based on their input feature values as they 

become available. In this section, the process began by constructing an ANN model through the 

training of available data sets, analogous to the procedure used for predicting output values. Then 

the four aforementioned methods (the weight connections method, the permutation method, the 

gradient-based method, and SHAP values) were applied to assess the relative importance of 

various packaging design features within the trained ANN model. The results of the packaging 

design feature importance assessment were validated by comparing them with the theoretical 

feature importance calculated using the well-established mathematical model. Figure 28 illustrates 

the sequential procedure for mapping input feature importance within an ANN model utilizing the 

four selected methods. The development and training of the ANN model were carried out using 

Jupyter Notebook, an integrated development environment (IDE). 

 
Figure 28 Flow of mapping feature importance using four ANN based methods 

3.4.1 Methods for hidden layer neuron number optimization 

When it comes to the methods for optimizing the hidden layer neuron numbers, the key is to 

balance the model accuracy and the computational efficiency. Recall Chapter 3, the exhaustive 

search method could identify the hidden layer neuron setting by locating the minimum error of 

ANN model prediction. However, the exhaustive search method is very time-consuming. 
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Therefore, researchers have investigated various computation techniques to achieve the output 

with minimum calculation while maintaining a high model accuracy. 

The Akaike information criterion (AIC) was introduced by Akaike, Hirotogu in the 1998 [96], it 

originally was developed to identify an optimal model from a class of competing models [96] but 

has been adapted to the detection of outlier gene expression and model evaluation. By evaluating 

the model with different input features deleted, the input feature importance can be evaluated at 

the same. Hebb’s rule, also known as Hebb’s law or Hebbian learning, is a neuropsychological 

theory proposed by Canadian psychologist Donald Hebb in 1949 [97]. Hebb’s Rule is based on 

the idea that the brain is capable of reorganizing itself in response to experience: when two neurons 

are activated simultaneously, the connection between them is strengthened. The Bayesian 

information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) was 

developed by Gideon E. Schwarz and published in a 1978 paper [98]. The BIC is a criterion for 

model selection among a finite set of models in statistics, attempting to resolve this problem by 

introducing a penalty term for the number of parameters in the model [99]. The Optimal Brain 

Damage (OBD) rule was proposed by Yann Lecun et al. in 1989 by removing unimportant weights 

from a network to reduce the training examples required and improve the learning speed. OBD 

uses the second derivatives of the error function to determine which weights in the network are 

least important to the overall performance, making a trade-off between network complexity and 

training set error [100]. Bayesian Optimization is created by Jonas Mockus in the 1970s [101, 102]. 

Bayesian Optimization builds a probability model of the objective function and uses it to select a 

hyperparameter to evaluate the true objective function [103]. 

In this study, five computation methods, including Information Criteria using the AIC method, 

Hebb's rule, Information Criteria using the BIC method, Optimal Brain Damage rule, and Bayesian 
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Optimization method, were applied to optimize the hidden layer neuron number setting in order to 

reduce the computation time and achieve a high efficiency of ANN model training. 

3.4.2.1 Bayesian optimization method 

Bayesian Optimization is designed for black-box derivative-free global optimization [104]. 

Bayesian Optimization builds a probability model of the objective function and uses it to select 

hyperparameters to evaluate the true objective function. The true objective function is a fixed 

function, as shown in the dotted line in Figure 29. Generally, for a derivative-free function, what 

can be accessible are some data points (or observations), but not all, as shown as the black points 

in Figure 29. A surrogate model (surrogate function) can be built to approximate the true objective 

function. The surrogate function is represented as the black line in Figure 29. 

 
Figure 29 Schematic of Bayesian optimization process (source: 

http://haikufactory.com/files/bayopt.pdf) 

The blue shade represents the deviation. A surrogate function by definition is “the probability 

representation of the objective function”, which is essentially a model trained on the 
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(hyperparameter, true objective function score) pairs. As some observations have been known, it 

is possible to find new observations by trying different parameters, and this is where an acquisition 

function needs to be built. An acquisition function can be generated using the surrogate function, 

which will be detailed in this chapter later. The way to identify the new observation is to locate 

the maximum point of the acquisition function and calculate the corresponding hyperparameter 

and its objective function. After the new observation is found, the surrogate function and 

acquisition function will be updated. This process is repeated till the surrogate function is as close 

as possible to the objective function. The schematic of the Bayesian Optimization process is shown 

above in Figure 29. 

In this study, the Gaussian Process Model (GP) was used as the surrogate function. The Gaussian 

Process Model’s acquisition function is the Expected Improvement function, as shown in equation 

(16), 

𝐸𝐼(𝑥) =  ∫ 𝒎𝒂𝒙(𝑓(𝑥)∗ − 𝑓(𝑥), 0)𝑝𝑀(𝑓(𝑥)|𝑥)𝑑𝑓(𝑥)
∞

−∞

 

Where: 

𝑝𝑀(𝑓(𝑥)|𝑥) : the surrogate function. 𝑓(𝑥) is the true objective function score, 𝑥 is the 

hyperparameter. 

𝑓(𝑥)∗ : the minimum observed true objective function score so far. 

𝑓(𝑥) : new scores. 

(16) 

 

Function BayesianOptimization() was used in Python to conduct the Bayesian Optimization for 

ANN hidden layer optimization. 

3.4.2.2 Information Criteria using Akaike information criterion (AIC) method 

The Akaike information criterion (AIC) is an estimator of prediction error and thereby relative 

quality of statistical models for a given set of data 126-128.. Given a collection of models for the 

data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC 

provides a means for model selection. 
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Let k be the number of estimated parameters in a statistical model of some data. Let 𝐿 ̂ be the 

maximized value of the likelihood function for the model. Then the AIC value of the model is the 

following, as shown in equation (17) [105] [106]. 

𝐴𝐼𝐶 = 2𝑘 − ln 𝐿̂ 

Where: 

𝐿̂ - The maximized value of the likelihood function for the model. 

𝑘 - The number of estimated parameters in a statistical model. 

(17) 

This number estimates the amount of information that is lost when the model M is used to 

approximate reality. The model with the lowest AICM is considered the one best fitting the data 

[107]. 

In this study, the mean squared error (MSE) was calculated as the 𝐿̂ in the equation above. Given 

a set of candidate models for the data, the preferred model is the one with the minimum AIC value. 

Thus, AIC rewards goodness of fit (as assessed by the likelihood function), but it also includes a 

penalty that is an increasing function of the number of estimated parameters. The penalty 

discourages overfitting, which is desired because increasing the number of parameters in the model 

almost always improves the goodness of the fit [108]. 

3.4.2.3 Information Criteria using Bayesian information criterion (BIC) method 

Bayesian information criterion (BIC) (Stone, 1979) is another criterion for model selection that 

measures the trade-off between model fit and complexity of the model. A lower AIC or BIC value 

indicates a better fit [109]. In statistics, the Bayesian information criterion (BIC) or Schwarz 

information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set 

of models; models with lower BIC are generally preferred. It is based, in part, on the likelihood 

function and it is closely related to the Akaike information criterion (AIC). When fitting models, 

it is possible to increase the maximum likelihood by adding parameters, but doing so may result 
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in overfitting. Both BIC and AIC attempt to resolve this problem by introducing a penalty term for 

the number of parameters in the model; the penalty term is larger in BIC than in AIC for sample 

sizes greater than 7 [110]. The BIC is formally defined as shown in equation (18) [111] [112], 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2ln 𝐿̂ 

Where: 

𝐿̂ -  The maximized value of the likelihood function of the model, i.e. 𝐿̂ = 𝑝(𝑥 | 𝜃, 𝑀) 

, where are the parameter values that maximize the likelihood function and 𝑥 is the 

observed data. 

𝑛 - The number of data points in 𝑥, or the sample size. 

𝑘 - The number of parameters estimated by the model. 

(18) 

In this study, the mean squared error (MSE) was calculated as the 𝐿̂ in the equation above. 

3.4.2.4 Hebb's rule 

According to Hebb’s rule, in a network, the more often two neurons are activated together, the 

more efficient the connection between them becomes. When we learn new information or skills, 

the connections between neurons in our brain are modified to facilitate the formation of new neural 

pathways. Hebb’s rule suggests that this process of neural reorganization is driven by the repeated 

co-activation of neurons. 

From the point of view of artificial neurons and artificial neural networks, Hebb's principle can be 

described as a method of determining how to alter the weights between model neurons. The weight 

between two neurons increases if the two neurons activate simultaneously and reduces if they 

activate separately. Nodes that tend to be either both positive or both negative at the same time 

have strong positive weights, while those that tend to be opposite have strong negative weights. 

The implementation of Hebb's rule is: 

a) Train the neural network using all of the neurons in the hidden layer. 

b) Use the weights learned during training to calculate the Hessian matrix. 

c) Use the Hessian matrix to calculate the sensitivity of the cost function with respect to 
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each neuron. 

d) Prune the neurons with the smallest sensitivity values. 

This process can be repeated until the desired level of network complexity is reached. 

In this study, Hebb’s rule used two empirical functions in the Python library. 

3.4.2.5 Optimal Brain Damage (OBD) rule 

The Optimal Brain Damage (OBD) rule is to use the second derivatives of the error function to 

determine which weights in the network are least important to the overall performance, making a 

trade-off between network complexity and training set error [100]. The OBD procedure can be 

carried out as follows: 

a) Choose a reasonable network architecture. 

b) Train the network until a reasonable solution is obtained. 

c) Compute the second derivatives for each parameter. 

d) Compute the saliencies for each parameter. 

e) Sort the parameters by saliency and delete some low-saliency parameters. 

 f) Iterate to step b). 

In this study, OBD is applied based on an empirical function in the Python library. 

3.4.2 ANN neuron number determination in the hidden layer 

To build an ANN model, the values of three key modeling factors need to be determined. These 

three modeling factors include the hidden neuron number setting, the epoch number, and the 

modeling cycle number. Dataset for training an ANN was randomly divided into two subsets: a 

training data set for training the model and a testing data set for assessing model accuracy. To 

construct the ANN model, the number of hidden layer(s), and neuron numbers for each layer were 

determined by balancing the model accuracy and computational efficiency. In this study, five 
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optimization methods were examined, each targeting the optimization of the hidden layer 

configuration. These methods included the Bayesian optimization method [113] [103], 

Information Criteria using the Akaike information criterion (AIC) method [96], Information 

Criteria using the Bayesian information criterion (BIC) method [98], Hebb's rule [114], and the 

Optimal Brain Damage (OBD) rule [100]. The final hidden layer configuration was determined 

based on minimizing error and maximizing computational efficiency through a comprehensive 

comparison of model errors across the five optimization methods mentioned above. Figure 30 

presents a conceptual diagram of the ANN structure developed in this study. 

 

Figure 30 A conceptual diagram of the ANN structure used in this study 

The number of epochs was determined based on the model loss (error) versus epoch plot. The 

epoch count was chosen when the model error decreased and reached a stable, plateaued level. 

3.4.3 Final relative feature importance determination 

With the optimal hidden neuron setting and the optimal epoch number, the studied packaging 

design features were incorporated into the ANN model. The relative importance of these packaging 
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design features was evaluated using the previously mentioned four methods. Each method 

provided importance scores for the studied packaging features, which were then normalized to a 

scale from 0 to 1 to account for differences in scaling. Referring to the mathematical model, The 

theoretical feature importance of 0 for features not included in the mathematical model was used 

to identify and eliminate unreliable methods. In practice, researchers and practitioners often 

average feature importance scores from various methods to obtain a more stable or general feature 

ranking. Therefore, in this study, to produce a comprehensive measurement, the feature importance 

results from the reliable methods were averaged to determine the final importance of different 

packaging design features. To confirm the validity of these results, the averaged packaging design 

feature importance was compared with the theoretical feature importance calculated using the 

well-established mathematical model. 

3.5 CASE STUDY FOR FEATURE IMPORTANCE ANALYSIS 

As a critical parameter in the evaluation of shipping containers, BCS is determined by various 

factors, such as material properties, flute types, dimensions, and more. Each factor, or BCS feature, 

affects the BCS differently. Understanding how each BCS feature influences the BCS value and 

identifying the most impactful ones are crucial for packaging design. This knowledge enables 

designers to strategically prioritize adjustments to the most influential features, ultimately reducing 

material consumption and costs [115]. However, few systematic methods to evaluate the BCS 

features have been developed yet. Current analytical methods for BCS prediction indicate the 

dominant BCS features but require plenty of various mechanical tests considering the various BCS 

features. Existing numerical models based on finite element analysis (FEA) face difficulties in 

obtaining relevant parameters and dealing with the anisotropic non-linear properties of paper 

materials. Assessing the BCS feature importance is a great challenge for the corrugated packaging 
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industry. Therefore, in this section, BCS was used as a representative packaging property to 

validate the capability of the ANN approach in assessing the relative importance of packaging 

design features. Two datasets — one synthetic and one real—were employed as case studies. Up 

to six BCS features —including box perimeter, depth, ECT, thickness, and bending stiffness in 

both machine (EIx) and cross directions (EIy) — were evaluated using the four selected ANN-

based approaches. The average feature importance of these BCS features, as determined by the 

ANN approach, was calculated to provide a comprehensive result. These values were then 

compared with the theoretical feature importance values derived from the McKee formula to verify 

the ANN assessment. 

3.5.1 Case study 1-Relative feature importance of the synthetic data set 

The first data set used was a synthetic dataset which was created by inputting the box perimeters, 

depths, ECTs, and thicknesss of 3,009 commonly used commercial boxes [116] into the simplified 

McKee formula, as detailed in equation (19) [117] to compute the BCS values. 

𝐵𝐶𝑆 = 5.87 × 𝐸𝐶𝑇 × √𝐶𝑎𝑙𝑖𝑝𝑒𝑟 × 𝑃 

Where: 

ECT – Edge Crush Strength (lb/in). 

Thickness – Thickness of the corrugated board (in). 

P – Perimeter of the box (in). 

(19) 

Using the simplified McKee formula along with the concept of derivatives, we computed the 

theoretical relative importance of the four BCS features. The analysis, detailed in Figure 31, shows 

that the ECT feature has the highest relative importance, with a weight of 0.500, indicating that it 

is the most influential factor in the model. Both the perimeter and thickness features were found 

to have equal significance, each contributing a weight of 0.250, which underscores their moderate 

but noteworthy impact on the model's performance. In contrast, the depth feature was determined 

to have no influence in this analysis, receiving a weight of 0. This outcome, as illustrated in  Figure 
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31, not only quantifies the contributions of each feature but also emphasizes the critical role of 

ECT in the model, while suggesting that the depth feature may be redundant or less relevant for 

this particular application. 

 

Figure 31 Theoretical BCS Feature Importance calculated using the Simplified McKee formula 

3.5.1.1 ANN training using the synthetic data set 

During the ANN model training process, the synthetic dataset with 3009 data points was randomly 

divided into two subsets: 70% of the data (2016 data points) for training the model and the 

remaining 30% (993 data points) for testing the model’s accuracy. 

As previously mentioned, the hidden layer neuron number setting was determined by comparing 

the model errors obtained by the five optimization methods mentioned in section 2.1(including the 
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corresponding model errors over 70 modeling cycles. The results showed that the AIC method 

achieved the lowest model errors with one hidden layer and 120 neurons. The BIC method 

produced the second-lowest model error, with one hidden layer and 34 neurons. The error 

difference between these two methods was no more than 0.0032, considering their 95% confidence 

intervals (0.0032±0.0015 and 0.0026±0.0011). This indicates that the more complex configuration 

suggested by the AIC method was not necessary. In contrast, the simple configuration of 34 

provides nearly the same accuracy but is significantly more efficient in terms of computational 

resources. Consequently, the neuron configuration proposed by the BIC rule was applied 

throughout the study for this data set. Namely, the ANN model developed in this real data set 

includes a single hidden layer with 34 neurons. 

 

Figure 32 Optimal neuron numbers in the hidden layer(s) determined by different methods for 

the synthetic data set 
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which showed that model error reduction plateaued after 25 epochs. To maintain a conservative 

approach, the number of epochs was set to 35. 

 
 Figure 33 Model Loss (Error) versus epoch plot with 34 neurons in the hidden layer 

The feature importance of 10 modeling cycles was averaged to obtain a reliable average feature 

importance. 
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provide a comprehensive overview of how different methods evaluate feature importance and 

highlight any similarities or discrepancies in their assessments. 

 
Figure 34 ANN evaluated BCS feature importance of the synthetic data set generated using the 

Simplified McKee formula 

The ranking of BCS feature importance consistently identified by the four methods is ECT > 

Perimeter > Thickness > Depth. However, the connection weights method shows unusually high 

importance for the depth feature, which deviates significantly from the expected value of zero 

given the synthetic dataset's design. This discrepancy renders the results from the connection 

weights method unreliable. Therefore, the feature importance results of the other three approaches 

were averaged to provide a comprehensive estimate of BCS feature importance. The average BCS 

feature importance from these three methods shows that ECT weights 0.525, perimeter 0.295, 

thickness 0.180, and depth 0.004, as illustrated in Figure 35 (left). When compared to the 

theoretical BCS feature importance ranking calculated using the simplified McKee formula 
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indicates that the ANN approach can be a potential tool for evaluating the relative importance of 

packaging design features. 

 
Figure 35 Comparison of the average feature importance assessed by the selected ANN-based 

methods and theoretical BCS feature importance calculated using Simplified McKee formula 
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0.500, perimeter has 0.330, both stiffness EIx and EIy have 0.085, and depth has no importance 

(0), as shown in Figure 36. 

𝐵𝐶𝑆 =  2.028𝐸𝐶𝑇0.746√(𝐸𝐼𝑥 × 𝐸𝐼𝑦)
0.254

𝑃0.492 

 

Where: 

ECT - Edge Crush Strength (lb/in). 

EIx, EIy - Flexural stiffness in the machine direction & cross-machine direction of the 

corrugated board (lb*in). 

P - Perimeter of the box (in). 

(20) 

 

Figure 36 Theoretical BCS Feature Importance calculated using the Improved McKee formula 

3.5.2.1 ANN training using the synthetic data set 
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the Bayesian optimization method, AIC method, BIC method, Hebb's rule, and the OBD rule) to 

minimize the model error and maximize the computational efficiency. Figure 37 presents the 

optimal neuron settings for the hidden layer as determined by each method, along with their 

corresponding model errors over 70 modeling cycles. 

 

Figure 37 Optimal neuron numbers in the hidden layer(s) determined by different methods for 

the real data set 

The results showed that Bayesian optimization achieved the lowest model errors with two hidden 
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hidden layer and 34 neurons. The error difference between these two methods was no more than 

0.0191, considering their 95% confidence intervals (0.101±0.0048 and 0.091±0.0043). This 

indicates that the more complex configuration suggested by Bayesian optimization was not 

necessary. In contrast, the simple configuration of 34 provides nearly the same accuracy but is 

significantly more efficient in terms of computational resources. Consequently, the neuron 

configuration proposed by the OBD rule was applied throughout the study for this data set. 
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Namely, the ANN model developed in this real data set includes a single hidden layer with 34 

neurons. 

The number of epochs was determined based on the model loss (error)-epoch plot (Figure 38), 

which showed that model loss (error) reduction plateaued after 40 epochs. To ensure a conservative 

result, the number of epochs was set to 50. 

 
 Figure 38 Model loss (error) versus epoch plot with 34 neurons in the hidden layer 

The feature importance of 10 modeling cycles was averaged to achieve a reliable average feature 

importance. 
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equaled 1 for each method, as illustrated in Figure 39. 

 

Figure 39 ANN evaluated BCS feature importance of the real data set 

The results from the three methods demonstrate overall consistency and have been averaged to 

establish a comprehensive ranking of the five BCS feature importances. The average BCS feature 
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increases, buckling theory suggests that depth can significantly affect compression strength, 
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for measuring feature importance accurately reflect practical applications. Furthermore, although 

the theoretical BCS feature importance ranks EIx EIy equally, the average importance ranking from 

the three methods shows a 0.017 difference between these two features. This small variation is 

understandable considering the fluctuations of measurement inaccuracies that mathematical 

models may not fully account for. 

 

Figure 40 Comparison of the average ANN evaluated BCS feature importance of the real data set 

and theoretical BCS feature importance calculated using the Improved McKee formula 

In summary, the BCS feature importance ranking for the real dataset is consistent with the findings 

from the theoretical feature importance. The evaluation of the real dataset provides a real-world 

context to the findings and further demonstrates the capability of the ANN approach in terms of 

feature importance evaluation for packaging design. 

3.6 CONCLUSION 

This study introduces a new method for evaluating the importance of packaging design features 

using four ANN-based approaches: the Connection Weights method, the Gradient-based method, 

0.480 0.500

0.235

0.330

0.116

0.0850.099

0.0850.070

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

Average Feature Iportance (Real

data set)

Theoretical BCS Feature

Importnace (from Improved McKee

formula)

ECT P EIy EIx d



85 
 

the Permutation method, and SHAP values. Using BCS as a representative packaging design 

property, the relative importance of up to six BCS features was assessed through these ANN-based 

approaches. One synthetic dataset derived from the well-established mathematical model (McKee 

formula) and one real dataset were used as two case studies for training the ANN model and 

obtaining the feature importance influencing BCS. The feature importance rankings provided by 

the ANN approaches were consistent with the theoretical feature importance calculated using the 

mathematical model across both datasets. This result highlights the effectiveness of the ANN 

approach in evaluating feature importance in packaging design, allowing for a more efficient 

assessment of the relative impact of various design features. This allows designers to prioritize 

adjustments to the most influential features, ultimately reducing material consumption and costs. 

For instance, to increase BCS, designers can first consider increasing the box dimensions for a 

minimal design effort and reduced material waste, rather than modifying the thickness or flexural 

stiffness, which would require changes to the materials or production process. Overall, this study 

offers a novel approach to assessing packaging design feature importance through ANN 

techniques, providing practical insights for improving material efficiency and cost-effectiveness. 

This method can be easily applied to evaluate the relative importance of other packaging properties 

beyond BCS, offering valuable insights for addressing various challenges in the packaging 

industry using ANN approaches. 
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CHAPTER 4: BUILDING A GENERALIZED ANN MODEL TO EVALUATE BCS 

4.1 INTRODUCTION 

The goal of this chapter is to build a generalized artificial neural network (ANN) model for box 

BCS evaluation. Based on the available data, a dataset extracted from a real data set containing the 

majority of BCS values used in the industry was utilized to train the model. 

The ANN modeling factors include the number of epochs, modeling cycles, and the hidden layer 

neuron setting. The number of epochs and modeling cycles were set up based on conservative 

results from the dataset with variation. Specifically, the number of epochs was set to 140, and the 

number of modeling cycles was initially set to 70 to get a conservative result. The hidden layer 

neuron setting was optimized using the same five optimization methods as Chapter 4 while 

balancing the model accuracy and computational efficiency. Namely, the five optimization 

methods used in this chapter are the Information Criteria using the Akaike information criterion 

(AIC) method, Hebb's rule, the Information Criteria using the Bayesian information criterion (BIC) 

method, the Optimal Brain Damage rule, and the Bayesian Optimization method. 

To evaluate the performance of the ANN model, the model prediction error of the test data was 

calculated and compared. After comparing the model error given by each optimization method, 

the optimal hidden neuron configuration, determined by the Optimal Brain Damage rule, consists 

of a single hidden layer with 35 neurons. This configuration was selected for its ability to best 

balance model accuracy and computational efficiency. This configuration resulted in a model error 

of 9.51% when evaluated on the test dataset, indicating that the model achieves a strong balance 

between accuracy and generalizability for practical industry applications. The observed error can 

primarily be attributed to the presence of boundary data points, which introduce variability and 

potential inconsistencies in the predictions, as well as the limited size of the dataset, which restricts 
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the model's ability to learn from a broader range of patterns. Despite these challenges, the model 

demonstrates reliable performance, making it suitable for real-world implementation. Further 

refinements, such as expanding the dataset or employing advanced regularization techniques, 

could potentially enhance accuracy and reduce error margins. The overall structure and logical 

progression of this chapter are visually outlined Figure 41, providing a clear roadmap of the 

analysis and methodology employed. 

 

Figure 41 Flow of building a generalized ANN model for BCS prediction 

4.2 EXTRACT REAL DATA SET TO COVER THE MAJORITY OF BCS IN THE 

INDUSTRY 

To build a generalized ANN model for BCS evaluation, we trained a data set extracted from real-

world data containing the most commonly used box dimensions. Based on an investigation of box 

dimensions used in the industry, provided by Packaging Corporation of America (PCA) company, 

we determined that 90% of commonly used boxes in the industry have the following dimensions: 

length between 8 and 25 inches, width between 5.75 and 19 inches, and depth between 4 and 28 

inches. Therefore, our extracted dataset includes box dimensions within these ranges. The dataset 

comprises 395 data points in total, with BCS values ranging from 347 to 2172 lbs. 
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4.3 DETERMINATION OF HIDDEN LAYER NEURON SETTING 

Five methods mentioned above (including the Information Criteria using the AIC method, Hebb's 

rule, the Information Criteria using the BIC method, the Optimal Brain Damage rule, and the 

Bayesian Optimization method) for optimizing the ANN hidden neuron number setting were 

applied. 

The model error of test data obtained by each method has been calculated and compared, as shown 

in Figure 42. 

 

Figure 42 ANN model error with their optimized hidden neuron numbers using the five selected 

methods 
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the OBD rule, and 138 in both the first and second hidden layer for the Bayesian Optimization 

method. Overall, the model error decreases as the hidden neuron number increases. The model 

errors of the test data using the Bayesian method and the OBD rule are the lowest and second 

lowest. However, the error reduction rate is not significantly improved when the number of hidden 

neurons increases to 138 across two hidden layers (as determined by the Bayesian method), 

compared to 35 neurons in a single hidden layer (as determined by the OBD method). Therefore, 

35 neurons with one single hidden layer obtained by the OBD rule were chosen as the optimal 

hidden neuron number setting, reducing the training computation time while maintaining a good 

performance for the ANN prediction. 

4.4 TRAINING ANN MODEL TO EVALUATE BCS IN THE INDUSTRY 

With the optimal neuron number of 35 in the hidden layer, 140 epochs, 70 modeling cycles, and 

395 data points from the real world, the ANN model was trained and the model error from 10 to 

70 modeling cycles with have been calculated with the 95% confidence interval, as shown in 

Figure 43. 

 
Figure 43 ANN Model error of the samples covering the 90% BCS values with commonly used 

dimensions of boxes in the industry 
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Overall, the model error of both train and test data converged at 30 modeling cycles. The ANN 

prediction error for BCS is below 9.60%. The average BCS error of the train and test data across 

70 modeling cycles is 9.26% and 9.51%, respectively, as shown in Figure 44. 

 

Figure 44 Average BCS error in the train and test data cross the 70 modeling cycles 

To investigate the reason that causes the BCS error for the ANN model prediction, the BCS 

distribution of two random distinctive modeling cycles was also studied and plotted, as shown in 

Figure 45. The actual BCS distribution is represented by the blue columns, while the predicted 

BCS distributions for two randomly selected modeling cycles are shown in orange and green. 
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smaller sample size than the minimum sample size required for achieving reliable ANN prediction 

accuracy. 

 
Figure 45 BCS distribution of ANN model prediction for the extracted real data set 

The structure of the generalized ANN model built for BCS prediction is shown in Figure 46. 

 
Figure 46 The structure of the generalized ANN model built by the real data set 
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The structure of the generalized ANN model contains six BCS features as the inputs, 1 hidden 

layer with 35 neurons. The optimal epoch number is 50 and the optimal modeling cycle number 

is 30. 

4.5 CONCLUSION 

In this chapter, a generalized ANN model for BCS evaluation targeting industrial applications has 

been built. A generalized dataset derived from real-world data was used to cover the 90% BCS 

values with commonly used dimensions of boxes in the industry. Drawing from the training results 

of the previous data sets (data set with variations), ANN modeling factor values for epoch number 

and modeling cycles’ number were set to 140 and 70, respectively, to ensure a conservative 

outcome. Five methods (the Information Criteria using the AIC method, Hebb's rule, the 

Information Criteria using the BIC method, the Optimal Brain Damage rule, and the Bayesian 

Optimization method) for optimizing the hidden layer neuron setting were investigated and their 

training results with the corresponding model errors were compared. The optimal neuron number 

in the hidden layer was determined to be 35 to strike a balance between minimizing the model 

error of the test data and saving computational training time. Throughout 70 modeling cycles, the 

average BCS error for the test data, accounting for the corresponding neuron count in the hidden 

layer, was computed at 9.51%. The BCS value distribution revealed that the data points whose 

BCS values fell between 347 lbs and 450 lbs, as well as those exceeding 1997 lbs, exhibited higher 

errors in the ANN prediction. This observation suggests that the primary factor contributing to the 

high BCS error is the presence of boundary data points. These data points, situated at the edges of 

the dataset range, pose challenges for the ANN model in accurately predicting their corresponding 

BCS values. The small sample size of the extracted real dataset is another limiting factor that 

hinders achieving higher ANN prediction accuracy. In conclusion, the current ANN model can 
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predict the BCS of commonly used box dimensions in the industrial applicable level with an error 

of 9.51%. One possible strategy to improve ANN prediction accuracy is to continually expand the 

current dataset sample size using available resources. In summary, this study provides valuable 

insights utilizing the ANN approach to evaluate BCS of corrugated packages and solve the 

problems in the corrugated industry. 
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CHAPTER 5: RESEARCH SUMMARY AND FUTURE RESEARCH 

5.1 RESEARCH SUMMARY 

This dissertation research explores the feasibility of using ANN to evaluate the BCS of corrugated 

packaging. The results demonstrate that employing ANN for BCS prediction is both feasible and 

meaningful, offering substantial advantages over traditional evaluation methods. ANNs can 

effectively address several challenges inherent in current BCS evaluation methods, including 

enhancing efficiency, reducing costs, and ensuring the validity of model construction, among 

others. The intelligent and robust analytical capabilities of ANN, grounded in data and 

mathematical methodologies, hold significant potential for enhancing efficiency, cost-

effectiveness, and reliability in BCS evaluation. This study contributes to the exploration of ANN's 

potential in predicting BCS and its application in addressing complex challenges within the 

corrugated industry. 

To optimize the key modeling parameters of ANN for BCS evaluation with a reliable result 

(Chapter 3), both data sets from literature with small data population and synthetic data sets with 

large data populations have been trained to interpret the performance of ANN for BCS estimation. 

Four key modeling parameters (the combination of neuron numbers in hidden layers, the number 

of epochs, the number of modeling cycles, and the size of the data set) can significantly influence 

the ANN prediction accuracy and can be optimized based on the ANN model error reduction. 

These four ANN modeling parameters have been identified for the data set from literature and two 

synthetic data sets. The result shows that these ANN modeling factors’ values vary as the data sets 

internal noises change. The small data set with 63 data points needs a relatively larger hidden 

neuron number setting of 160 and 36 in the first and second hidden layer with 100 epochs and 60 

modeling cycles; For a large data set with 3009 data points with variations of ±0.4% and ±5.4%, 
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neuron number setting in the hidden layer needed was 45 and 142 in the first and second hidden 

layer, epoch needed was 140, modeling cycles needed were 50 and 70, and the minimum data 

points number required to achieve a reliable ANN prediction were around 1500 and 2500, 

respectively. The results highlighted that the optimal values of these ANN modeling factors varied 

depending on the characteristics and size of the dataset, particularly in response to internal noise 

levels. This variability underscores the importance of carefully tuning these parameters to achieve 

robust and accurate BCS predictions across different data scenarios. The optimization scenario is 

to strike a balance between model error minimization and model complexity, as well as the training 

efficiency maximization. 

To explore the feasibility of applying the ANN approach for evaluating the relative importance of 

packaging design features, BCS was used as a representative packaging property and up to six 

BCS features’ relative importance have been evaluated in ANN to guide packaging design cost 

and material saving (Chapter 4). A synthetic dataset (generated using the McKee formula) and a 

real dataset (from industry) were used to determine the relative feature importance influencing 

BCS. Four methods—Connection Weights, Gradient-based, Permutation, and SHAP values—

were employed in this analysis. This analysis identified the relative importance ranking of six BCS 

features (ECT, thickness, flexural stiffness in both machine (EIx) and cross-machine (EIy) 

directions of the corrugated board, perimeter, and depth of the box). The result shows that the 

ANN estimated BCS relative importance ranking aligns with the theoretical relative feature 

importance ranking calculated using the McKee formula. Notably, the analysis of the real dataset 

reveals that, although Depth is ranked last, it still has a notable influence. In general, Depth remains 

an important factor in determining BCS (Buckling Compression Strength). As the depth value 

increases, buckling theory suggests that depth can significantly affect compression strength, 
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making it a critical consideration. Despite being theoretically assigned an importance value of zero 

in the McKee equation [74], implying it may not be a key factor in certain models or calculations, 

the real-world data demonstrates that its effect should not be disregarded. This result indicated that 

the ANN predicted BCS feature importance is more reflective to the real-world cases compared 

with the analytical method. This study demonstrates the capability of the ANN approach in terms 

of feature importance evaluation for packaging design, helping designers prioritize adjustments to 

the most influential features, ultimately reducing material consumption and costs. This method can 

be easily applied to evaluate the relative importance of other packaging properties beyond BCS, 

offering valuable insights for addressing various challenges in the packaging industry using ANN 

approaches. 

Based on the study conducted above, finally, a generalized ANN model for BCS evaluation has 

been built using a data set derived from real data (Chapter 5). The ANN modeling factors of epoch 

and modeling cycles were conservatively set to 140 and 70 based on the training of the data set 

with variation. The hidden layer neuron number setting was optimized using the same five 

optimization methods as Chapter 4 (including the Information Criteria using the AIC method, 

Hebb's rule, the Information Criteria using the BIC method, the Optimal Brain Damage rule, and 

the Bayesian Optimization method). The optimized hidden neuron setting was identified to be 35 

given by the Optimal Brain Damage rule by achieving a balance of model error minimization and 

model training time-saving. The epoch number and modeling cycle number were determined to 50 

and 30 when the training error reduction reached a plateau. With the corresponding ANN modeling 

parameters and 395 data points, a generalized ANN model was trained and achieved an accuracy 

of BCS error of 9.51% for the industrial applicable level. 
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5.2 FUTURE RESEARCH 

Great effort should be continuously put into the development of the ANN model improvement as 

it can bring renovation for corrugated packaging design and optimization, achieving efficiency, 

sustainability, and cost-effectiveness in the corrugated board industry. First, BCS data obtained 

from real testing is the most reliable source. Therefore, physical testing can be used to validate the 

ANN-predicted BCS values and assess the importance of features such as flexural stiffness in the 

machine and cross-machine directions. Second, additional parameters influencing BCS, such as 

the corrugated board layer and flute type, can be incorporated into this study. The current research 

focuses solely on single-wall boxes; however, double-wall boxes and C-flute are in high demand 

in the U.S. market. Third, other criteria for evaluating the accuracy of the ANN model, beyond 

MSE, can be considered to provide a more comprehensive understanding of its predictive 

performance. Additionally, the Finite Element Method (FEM) tool could be utilized to generate 

BCS data [119], replacing synthetic data derived from the McKee formula. Besides, the ANN 

model prediction accuracy can be further improved by trying some other techniques that were not 

involved in this study, such as data transformation [120] to modify the distribution of input 

variables so that they can better match outputs, data augmentation [121, 122] to boost robust 

accuracy of the ANN model, weight decay and dropout to improve the generalization performance 

of ANN model and further improve the model accuracy [123, 124]. 

Last but not the least, the current data set can be expanded as much as possible to cover more BCS 

data existing in the industry so that the generalization of the ANN model can be improved to a 

better level. The more BCS data reflecting industry application can be collected, the more accurate 

the ANN model prediction fitting to the actual BCS values. Although the current data set has been 

able to cover 90% of the corrugated boxes commonly used in industry, it is still important to 
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expand it to cover the remaining 10% of corrugated boxes, which is critical for the final 

generalization of the ANN model. Further, it is critical to keep up to date the data set to cover the 

large majority of dimensions of the corrugated boxes used in the industry considering the changing 

needs in the market, so that the developed ANN model can keep up pace with the needs of 

customers in modern life.
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